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Abstract 

 

Platinum (Pt) is an important catalyst for applications such as catalytic converters. In this thesis 

the formation of platinum nanoparticles was investigated by means of simulations. For the first 

part of the thesis a molecular dynamics simulation using the Sutton-Chen potential was 

implemented. This program was used for the simulations. Low energy structures were found. It 

was found that the number of nearest neighbours are maximised in the low energy structures. 

The energy barriers that have to be overcome as atoms move around the structures were also 

calculated. A model is proposed for the prediction of energy barriers. The model is useful for 

understanding the factors that influence the energy barriers and thus the mobility of atoms. The 

model will also be useful for Monte Carlo simulations. Simulations were done modelling 

physical vapour deposition onto the Pt(111) surface and a graphite surface represented by the 

Steele potential. It was found that higher temperatures and lower evaporation rates lead to lower 

energy structures. The smaller interaction between the graphite surface and the Pt leads to 

structures that have more layers. The parameters of the Steele potential that determine nearest 

neighbour distance and interaction strength between Pt and the substrate were adjusted to 

simulate other materials. It was found that a mismatch between the nearest neighbour distance of 

the substrate and Pt causes an increase in the mobility of the Pt atoms on the surface. The results 

of the simulations will enable the choice of suitable substrate and experimental parameters for 

the growth of Pt nanoparticles of desired shapes. 
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Abstrak 

 

Platinum (Pt) is ‘n belangrike katalis vir toepassings soos katalietiese omsitters. In hierdie tesis 

word die vorming van platinum nanodeeltjies ondersoek deur middel van simulasies. In die 

eerste deel van die tesis word ‘n molekulêre dinamiese simulasie wat van die Sutton-Chen 

potensiaal gebruik maak geïmplementeer. Die program is gebruik vir simulasies. Lae energie 

strukture was gevind. Dit is gevind dat die hoeveelheid naaste bure in lae energie strukture 

gemaksimeer is. Die energieversperrings wat oorkom moet word vir atome om langs die 

strukture te beweeg is ook bereken. ‘n Model waarmee hierdie energieversperrings voorspel kan 

word, word voorgestel. Die model lig die faktore uit wat die energieversperrings en dus die 

atoom beweeglikheid beïnvloed. Die model sal ook bruikbaar wees Monte Carlo simulasies. 

Simulasies was gemaak vir die opdamping van Pt op die Pt(111) oppervlak en op ‘n grafiet 

oppervlak wat met die Steele potensiaal gesimuleer is. Daar is gevind dat hoër temperature en 

laer opdampings tempo lei tot laer energie strukture. Die kleiner interaksie tussen die grafiet 

oppervlak en die Pt lei tot strukture wat meer lae bevat. Die veranderlikes van die Steele 

potensiaal wat die naastebuurafstand en die sterkte van interaksie tussen Pt en die substraat 

bepaal was verstel om ander materiale te simuleer. Dit was gevind dat ‘n wanaanpassing tussen 

die naastebuurafstand van die substraat en Pt ‘n verhoogde beweeglikheid van die Pt atome op 

die oppervlak veroorsaak. Die resultate van die simulasies gee aanduiding tot die kies van 

geskikte substraat en eksperimentele opstelling vir die groei van Pt nanodeeltjies van ‘n 

verlangde vorm. 
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Chapter 1: Introduction  

Platinum (Pt) can be used as a catalyst in catalytic converters in automobiles. The catalytic 

converter changes harmful compounds, such as carbon monoxide (CO), unburnt hydrocarbons 

(HC), and nitrous oxides (NOx) in the exhaust into less harmful compounds by oxidizing them 

[1]. Better catalysts are required as the requirements for the allowable emissions become more 

stringent. In addition it is desirable to decrease the price of these catalysts. By using Pt 

nanoparticles both these requirements can be met. The price will decrease because less Pt is 

required since a nanoparticle contains in the order of a few hundred atoms. The efficiency when 

using nanoparticles will increase because more surface area is exposed to the harmful gasses [2]. 

 

In this thesis the formation of Pt nanoparticles will be investigated. The investigation was 

performed by using molecular dynamic simulations. One advantage of using simulations is that 

more systems can be investigated. More systems can be investigated with simulations because 

more computer time can be obtained with relative ease. Each computer can then do a different 

simulation. Performing a large number of experiments with a substance as expensive as Pt would 

be impractical. Additionally simulations can be done for systems that would be very difficult to 

do experimentally. Another advantage with simulations is that more information can be gained 

about the movement of the atoms. More information is gained because all the information from 

each step is known precisely. 

 

It is desirable to simulate a system as accurately as possible. Unfortunately there is a trade-off 

between the computational cost and accuracy in a simulation. This trade-off comes from factors 

like:  

 



2 
 

 

• System size (number of atoms in the system): using a larger system will resemble the real 

world more but computations will be slower, 

• Assumptions: using fewer assumptions will be slower than a simulation with more 

assumptions, but closer to reality and 

• Variables: the size of some variables, like the time step, influences accuracy and speed 

to name a few. It is important that the trade-offs are chosen in a way such that the results will be 

meaningful and that the simulation is feasible to do.  

 

On the atomic scale atoms are described by Schrodinger’s wave equation (SWE). Simulations 

with the SWE will yield the best results. The problem with this is that such simulations take a 

very long time and only small systems and timescales can be simulated. Some simplifying 

assumptions (such as assuming that the problem of how the electrons and the nuclei move can be 

solved independently of each other) can be made to enable the simulation of larger systems over 

longer timescales [3] [4]. The accuracy of these simulations is still acceptable because molecular 

dynamics does not focus on the predictions concerning the exact behaviour of particles but rather 

properties of a whole system. 

 

In molecular dynamics, atoms are treated as classical particles moving in a potential field. The 

potential field determines the forces on the atoms and thus how the atoms will move. Typically 

in a molecular dynamics simulation the movements and energies of tens to thousands of atoms 

can be simulated for a few nanoseconds. 

 

Another simulation method is Monte Carlo simulations. With Monte Carlo simulations there are 

more assumptions but the simulations can be done for longer times and larger systems [5] [6]. 

Monte Carlo simulations work by having atoms arranged in a structure. An atom then performs a 

random jump towards a new position in the structure. The probability of a specific jump to occur 

is determined by the energy barrier that must be overcome in that jump. Thus it is more probable 

for a jump to occur if the energy barrier towards the new location is smaller. The barriers for the 

Monte Carlo simulations must be found from another source like molecular dynamics or 

experiments.  
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1.1 Purpose of study 

The purpose of this study is to investigate the factors that determine the size and shape of Pt 

nanoparticles.  The investigation focused on what happens during the physical vapour deposition 

of Pt clusters.  

1.2 Layout of thesis 

Chapter two describes molecular dynamics. It discusses the details of molecular dynamics and 

the basic algorithmic concepts. 

 

Chapter three investigates small structures of less than ten atoms. The lowest energy structures 

were found. The energy barriers that atoms have to overcome as the atoms move around the 

structures were also calculated. A model is proposed in order to be able to predict the energy of 

the barriers.  

 

Chapter four investigates the deposition of Pt onto a Pt surface. This is to show the effects of 

temperature and deposition rate on the structures that form. 

 

Chapter five investigates the deposition of Pt on a graphite surface. The deposition rate, 

attractive force and size mismatch between the substrate and Pt is investigated. 

 

Chapter six gives a brief discussion of the results. 

Equation Chapter 2 Section 1 
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Chapter 2: Molecular 

dynamics simulation details  

In a molecular dynamics simulation atoms are treated as classical particles in a potential field. In 

order to motivate this from quantum mechanics, the following assumptions are made: 

• It is assumed that the electrons move much faster than the nuclei (the Born-Oppenheimer 

assumption). As a result of this assumption the movement of the nuclei and electrons can 

be regarded as a separate problem [7]. This assumption is justified because the electrons 

are so much lighter than the nucleus. 

• It is assumed that all the interactions of the electrons can be captured in a potential. This 

potential includes all the interactions between the electrons and the nuclei.  

• It is assumed that the atoms can be treated as classical particles that move in the potential 

field.  

With these assumptions the simulation reduces to a classical n-body problem in a force field. It is 

not possible to solve this n-body problem analytically for a system with more than three 

particles. For this reason the trajectories of all the particles have to be calculated iteratively.  

 

2.1 Molecular dynamics calculation 

The main steps performed during the molecular dynamics simulation are shown in Figure 2.1. 

The system state is the positions and velocities of all the atoms. For the initial system state of a 

simulation, the atoms are placed in the positions that are described by the starting state of the 

experiment which is to be performed. The initial velocity of each atom is calculated from the 
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Maxwell-Boltzmann distribution in order that the system has the desired temperature. The 

acceleration, ,a  for each atom is calculated from the force by using Newton’s second law,  

 /a F m=  (2.1) 

where F is the force on the atom and the mass of the atom is given by m. The force can be 

calculated from the potential [8] as follows: 

 F V=−∇  (2.2) 

where V is the potential. The system is updated by performing a step with the integrator. There 

are restrictions placed on the positions by periodic boundary conditions. The velocities are 

controlled by the thermostat in order to keep the temperature at the desired value.  

 

 

 

 

 

 

 

Figure 2.1: Steps in molecular dynamics simulations are shown on the left. An example of how 

the positions of atoms can be updated is shown on the right. 

 

 

System state 

Calculate accelerations 

Update system 

Apply restrictions 

Velocity 

Acceleration 
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2.2 Potentials 

The force as given in (2.2) is a vector field while the potential is a scalar field. It is simpler to 

communicate the potential. The potential can then be used to calculate the forces for the 

simulation. 

 

All the interactions of the electrons are contained in the potential chosen. For this reason it is 

important to choose an appropriate potential. Two different types of potential will now be 

discussed. 

 

2.2.1 Lennard-Jones potential 

The Lennard-Jones potential is a pair potential that is useful to simulate noble gasses and as a 

first approximation for other systems. In a pair potential the influence between a pair of atoms is 

independent of the environment. An advantage of using a pair potential is that the calculations 

are fast because of the simplified model. A disadvantage of using a pair potential is that a pair 

potential will not be accurate for systems where the environment influences interactions.  

 

The Lennard-Jones potential between atoms i and j, VLJ(ij) , is given by [9] 

 

12 6

( ) 4LJ
ij ij

V ij
r r

σ σε
    
 = −           

 (2.3) 

where σ is the finite distance at which the inter-atomic potential is zero, r ij is the distance 

between atoms i and j, and ԑ determines the strength of the binding. The potential and the 

contribution from the ( )n

ijrσ terms can be seen in Figure 2.2. The first term represents the 

repulsion between the atoms and dominates when the atoms are too close together. The second 

term represents the attraction between the atoms.  
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The force from the Lennard-Jones potential can be calculated by using equations (2.1) and (2.2).  

The derivation is done in Appendix A. The force between atoms i and j, ( )LJF ij , is given by 

 

14 8

2

48 1
( )

2LJ
ij ij

F ij r
r r

ε σ σ
σ

    
 = −           

 (2.4) 

where r is the displacement between atoms i and j. 

 

 

 

 

 

 

Figure 2.2: Interaction between the repulsive and attractive terms of the Lennard-Jones 

potential. 
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2.2.2 The Sutton-Chen potential 

The Sutton-Chen potential is more suitable for use with metallic atoms like Pt. A potential can be 

calculated by using the embedded atom model (EAM). In the embedded atom model the 

environment is also taken into account when calculating the interaction between two atoms. This 

allows for a much more accurate simulation of metallic systems. For this investigation the 

Sutton-Chen potential was used because it is well suited to face centred cubic (fcc) metals like Pt 

[10] [11] [12] [13] while the Lennard-Jones is better suited to noble gasses. The Sutton-Chen 

potential for atom i is given by  

 1
( )

2

n

SC i
j i ij

a
V i c

r
ε ρ

≠

  
 = −     
∑  (2.5) 

where 

 .

m

i
j i ij

a

r
ρ

≠

 
=   

 
∑  (2.6) 

where r ij  is the distance between atoms i and j, a is the length of the unit cell of the fcc metal, and 

the parameters m, n, c and ε are determined by fitting so that the material in the simulation will 

have the same properties as found experimentally. The values of these parameters are given in 

[10] and reproduced in Table 2.1. 

 

In equation (2.5) the first term, ( )n

ija r∑ , takes the repulsion between the like charges into 

account and the second term, iρ , takes the attraction into account. The repulsion is mostly 

 Table 2.1:Sutton-Chen parameters for Pt  
 parameter value  

 m 8  
 n 10  
 c 34.408  
 ε 1.9833x10-2 eV   

 a 3.92 Å  
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between the nuclei and is similar in form to that of the Lennard-Jones potential. For the attraction 

the electron cloud is taken as the density of the nuclei. 

 

Combining equations (2.2) and (2.5) it is found that the force on atom i is [7] 

 
2

1 1

2

n m

ij

i
j i ij ij iji j

a cm a r
F n

r r r
ε

ρ ρ≠

     
  = − − +             

∑ . (2.7) 

2.3 The integrator: updating the system 

During the integration step the positions and velocities of the atoms are updated by a small 

amount. The small amount by which the simulation is advanced is called the time step. This 

updating is repeated until a desired condition is met. The size of the time step will determine how 

fast the computer simulation will run, but it also determines how large the error is in the 

simulation [14]. A larger time step will let the simulation run faster but also introduce a larger 

error. When the time step is larger than a critical value, which is smaller than the fastest 

oscillation period in the simulation, the error will dominate the results. It is therefore important 

to choose a time step that balances the error in the simulation and the speed at which the 

simulation runs. A value of 5 fs for the time step is a safe choice. 

 

2.3.1 Störmer-Verlet integrator 

The Störmer-Verlet integrator is one of the methods that can be used in order to update the 

positions of the atoms in a simulation. The Störmer-Verlet integrator is given by [7] 

 2
, 1 , , 1 ,2i t i t i t i tx x x a dt+ −= − +  (2.8) 

where ,i tx  is the position and ,i ta  is the acceleration of atom i at time step t, and dt is the duration 

of one time step. This method is susceptible to rounding errors and does not calculate the 

velocities of the atoms.  
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2.3.2 Leapfrog integrator 

The Leapfrog integrator advances the simulation to the next time step by updating the positions 

and velocities of all the atoms. The Leapfrog integrator can be written in the form 

 

 , 1 , , 1/2i t i t i tx x v dt+ += +  (2.9) 

 , 1/2 , 1/2 ,i t i t i tv v a dt+ −= +  (2.10) 

where ,i tx  is the position, ,i tv is the velocity and ,i ta  is the acceleration of atom i at time step t, 

and dt is the duration of one time step. Compared to the Störmer-Verlet integrator, the Leapfrog 

integrator are less susceptible to rounding errors. The velocities are calculated at times between 

those for which the positions are calculated, thus the Leapfrog name. Additional calculations 

would be required for algorithms that require the velocities and positions at the same time. 

 

2.3.3 Velocity Verlet integrator 

The Verlet integrator, also known as the Velocity Verlet or Velocity-Störmer-Verlet integrator, is 

even less susceptible to rounding errors than the Leapfrog integrator. Additionally, the velocities 

are calculated for the same times as the positions. The velocity Verlet integrator is given by 

 2
, 1 , , , 2i t i t i t i tx x v dt a dt+ = + +  (2.11) 

 , 1 , , , 12 2i t i t i t i tv v a dt a dt+ += + + . (2.12) 

The Velocity Verlet integrator is recommended for use since it has the best error characteristics 

with very little computational overhead. 
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2.4 Thermostat 

In a system the atoms move around with velocities according to the Boltzmann distribution. The 

temperature, T, of a system is related to the average kinetic energy, <KE>,  of the atoms in the 

system by Boltzmann’s constant, k, according to the following equation [15]: 

 
3

2
KE kT< >= . (2.13) 

The relationship between the kinetic energy and the velocity, v, of an atom with a mass of m is 

given by [16] 

 21

2
KE mv= . (2.14) 

From equations (2.13) and (2.14) it can be deduced that the temperature of the system can be 

controlled by scaling the velocities by a factor λ so that 

 , ,i new i oldv vλ=  (2.15) 

where ,i oldv is atom i’s old velocity and ,i newv  is atom i’s new scaled velocity. One method to 

control the temperature would be to calculate λ so that the temperature will be exactly what it 

should be after each rescaling. The problem with this procedure is that there are natural 

fluctuations in temperature when considering the short timescales of the simulations. For this 

reason the Berendsen thermostat was used. The Berendsen thermostat allows fluctuations in the 

temperature while still keeping the temperature close to the desired temperature. The Berendsen 

thermostat calculates the scaling factor as [7] 

 01 1
Tdt

T
λ

τ
 = + − 
 

. (2.16) 

where T0 is the desired temperature, T is the current temperature, dt is the time step, and τ  is  the 

damping parameter. The damping parameter determines how long it takes to reach the desired 

temperature. 
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2.5 Boundary conditions 

In simulations of a surface it is desirable to minimize influences like the boundary of the crystal. 

To remove the boundaries of the crystal wraparound boundary conditions as illustrated in Figure 

2.3 was used. This has the effect that an atom that moves out of the simulation area towards the 

right will enter again from the left. The force that the atoms have on each other is also affected 

by the wraparound conditions.  

 

  

  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3: Illustration of wraparound boundary condition. The darker central atoms are in the 
simulation area. The boundary conditions tile the simulation area in order to give the 
appearance of a larger environment to the atoms in the simulation. 
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2.6  Big O notation 

Big O notation is a method to communicate how well an algorithm scales with an increase in the 

amount of data the algorithm operates on. How well an algorithm scales gives an indication of 

what amount of data can be processed in a feasible duration of time. 

 

Big O notation only gives the magnitude of the number of operations that must be performed as a 

function of the data set size, n. An algorithm that performs a single calculation for each element 

will scale linearly and have a complexity of O(n). An algorithm that has to consider every 

element for every other element will scale quadratically and have a complexity of O(n2). 

 

It is better to use an O(n) algorithm than an O(n2) algorithm because the O(n2) will take n times 

longer to calculate than an O(n) algorithm. 

 

2.7 Cut-off radius 

From equation (2.5) it can be seen that the effect that an atom has on another decreases with 1/r 

to the power n. Thus the effect that an atom has on another quickly becomes negligible. Atoms 

further than some cut-off radius, rc, from atom i can be ignored safely when calculating the 

potential for atom i. A cut-off radius of 2.5 times the nearest neighbour distance was used [7]. 

The influence of the atoms beyond the cut-off radius is taken as zero. The advantage of using a 

cut-off radius is that fewer atoms have to be considered and the simulation will be faster. The 

nearest neighbour distance of platinum is 2.77 Å therefore the cut-off radius was 7 Å.  

 

Care should still be taken with very small (less than 4rc) simulations in order not to introduce 

artefacts. When the simulation is very small an atom can influence another atom twice because 

of wraparound. Figure 2.4 helps to illustrate how this can happen. When calculating the force on 

atom C, all the atoms closer than rc have to be considered. For each of these atoms their nearest 



14 
 

neighbours also have to be considered because of the ρj term in equation (2.7). Atom A is part of 

the ρj term for B which influences C. In a similar way atom E also influences C. If the size of the 

simulation is 4rc, atom A will effectively be the same as atom E. Atom C will then be influenced 

twice by atom A. In order to prevent this, the simulation has to have a size larger than 4rc.  

 

2.8 Cell structure for optimised calculation 

Without the cut-off radius, performing a step has a time complexity of O(n2) because for each 

atom every other atom has to be considered. When using the cut-off radius many atoms can be 

skipped in the calculations because those atoms are far away. All the atoms still have to be 

checked for their distance which means that the algorithm is still O(n2).  

 

There is a maximum number of atoms that can fit inside the cut-off radius. Because of this, the 

algorithm can be modified to have a complexity of O(n). The modified algorithm will iterate 

through all the atoms. For each of those atoms all the atoms closer than rc are considered. Since 

the number of atoms closer than rc is independent of n, the algorithm has a complexity of O(n). 

The key ideas to change the algorithm from O(n2) to O(n) are: 

•  Using a cut-off radius so that each atom is only influenced by a small number of atoms 

that are independent of n and less than some maximum value. 

 

Figure 2.4: Illustration of atoms that have an influence on atom C when a cut-off radius of rc is 
used. 
 

rc 

A B C D E 
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• Using a data structure that gives a small subset of all the atoms in the simulation. This 

subset must contain all the atoms that are closer than rc.  

Two data structures that can be used for this optimisation are nearest neighbour lists and cells [9] 

[17] [18].  

 

With the neighbour list, each atom has a list of atoms that are closer than a chosen distance to 

that atom. The distance would be larger than rc by an amount of ∆r. All the atoms that must be 

considered will be in the list associated with each atom. As the atoms move around, the atoms 

will move to different lists. The lists will then have to be updated. Updating the lists is 

computationally expensive so it should only be done when absolutely necessary.  The value of ∆r 

will determine how frequently the lists need to be updated. A small value for ∆r means that the 

lists will have to be updated frequently. Using a large value for ∆r means that more atoms will be  

in the list. Larger lists will lead to slower calculation. The value for ∆r has to be chosen carefully 

in order to give the best results. 

 

When using the cell structure, the simulation area is divided into cells as shown in Figure 2.5a. 

All the atoms are put into cells. Each atom is put in the cell determined by the atom’s position. In 

order to find all the interacting pairs for an atom in the centre cell, only the atoms in the 

neighbouring cells have to be considered. The choice of ∆r is subject to the same considerations 

that were discussed for lists. 

 

A comparison of the performance of lists and cells is given in Table 2.2. From the comparison it 

is clear that the cell structure will scale better as the simulation size increases. The cell structure 

was chosen because it scales better with larger simulations. The cell structure is only an 

optimisation used in order to find all the interacting pairs of atoms. The calculation of the 

potential from the pairs is discussed in the next section.  

 

Table 2.2: Comparison of the performance of lists and cells 

  nearest neighbour lists cells 

memory usage n x list size n x integer size 

complexity to update data structure O(n
2
) O(n) 
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A further optimization can be made when finding all the pairs. In order to find all the interacting 

atoms when working with the atoms in one cell, all 26 neighbouring cells have to be considered. 

When a pair is found, the results can be saved for both atoms. This means that only half the pairs 

have to be found for each atom. The neighbouring cells that has to be searched is reduces from 

26 to 13. The cells that are considered when looking at the middle cell in a cube of 3 x 3 cells are 

shaded in Figure 2.5b. 

 

Setting up the cell structure is computationally expensive so it is desirable not to do it at every 

step in the simulation. Figure 2.6 helps to clarify when the structure should be refreshed. 

Consider the configuration that would require the fastest updating of the structure. This 

configuration is where the atoms are just outside of the border of a cell between them and are 

moving towards each other with a velocity vmax. This velocity is found by determining the 

maximum velocity in the system. In a time step of length dt, the distance between any pair of 

atoms decreases by no more than 2vmax dt. The cells has to be updated when the sum of all these 

movements are greater than ∆r. The cells should thus be refreshed when 

a b 

 

 

 

Figure 2.5: Illustration of the cell structure in a plane in 2.5a on the left. Illustration of the cells 
to be considered when looking at the centre cell of a cube can be seen in 2.5b on the right. 
 

 

rc 
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 (max )
2i

i
steps

r
v

dt

∆≥∑ . (2.17) 

The maximum velocity found during the current step is given by max |v|. When the cells are 

refreshed, the sum is reset to zero. 

 

2.9 Potential calculation 

For each integration time step the potential is calculated in two steps. In the first step each pair of 

interacting atoms are found from the cell structure and the pair’s interaction parameters are saved 

into a temporary structure. In the second step the force and potential is calculated from the 

calculations in the second step. 

 

In order that the parts of the equation that can be calculated in the first step becomes more clear, 

equation (2.7) can be rearranged as 

 
[ ]2 2

1 1

2

n m

ij ij

i
j i j iij ij ij iji j

a r cm a r
F n

r r r r
ε

ρ ρ≠ ≠

             = − − +                       

∑ ∑ . (2.18) 

Each of the parts that are surrounded by square brackets in equation (2.18) can be updated when 

looking at a single pair, but all the pairs have to be traversed twice in order to calculate the whole 

  Figure 2.6: Setup to determine when the cell structure should be refreshed. 
 

 

vmax vmax 
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equation. The terms in the square brackets together with the first term in equation (2.5) are saved 

during the first step. The indexes i and j are saved together with the last square bracket in 

equation (2.18) for the next step. 

 

The potential and accelerations can now be calculated from the parts that were saved in the 

previous step. Care has to be taken with the units when doing this step. One option is to use 

dimensionless units, that is choose the distance between atoms, time between steps and the unit 

of energy to be one [17]. The problem with that approach is that the data has to be converted 

before interpretation. The approach taken here was to choose the unit of length as angstrom (Å), 

time as picosecond (ps), mass as atomic mass unit (amu) and energy as electron volt (eV). With 

SI units the numbers would have been very small. Numbers that are very small can cause 

rounding off errors when used with a computer’s limited precision. Using the chosen units 

minimizes this problem. 

 

When combining equations (2.1) and (2.7) it is found that the acceleration is given in          

eV/(Å amu). The integrator requires the acceleration in units of Å/ps2. The derivation of the 

conversion factor can be done as 

 

2 22 10

2 12 2

1000  amueV  kg m 10 Å s eV Å

Å amu kg eV s m 10 ps 10 Å amu ps
a aN eNe    

= =   
  

 (2.19) 

where Avogadro’s number is Na and an electron’s charge is e. The acceleration can now be 

converted as 

 int 2

Å eV eV
9600

ps 10 Å amu Å amu
a

pot pot

eN
a a a

     = ≈     
    

 (2.20) 

Where aint is the acceleration as required by the integrator and apot is the acceleration as provided 

by the potential calculation. Equation Chapter 3 Section 1 
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Chapter 3: Small structures 

In this chapter systems of less than ten atoms on a clean surface will be reported. The 

understanding gained from investigating the small structures will help explain the results from 

larger simulations. 

 

The structures that have the lowest energies will be investigated first. The binding energy per 

atom for these structures will be investigated next. The energy barriers as atoms move around 

these structures will be calculated. A model will be proposed to predict the energy barriers. 

 

3.1 Minimum energy structures 

When adatoms move on a surface, the adatoms will tend to cluster together into structures with 

the lowest possible energy. The low energy structures with less than seven atoms are shown in 

Figure 3.1. Figure 3.2 shows the low energy structures with seven, eight and nine atoms. All the 

structures are on the (111) plane of a fcc Pt crystal. The surface is shown in teal in Figure 3.1 

and Figure 3.2. The atoms that form part of the structures are shown in red. The positions where 

atoms can be added adjacent to the structures are indicated with smaller white spheres with 

letters on them. The letters are chosen in a way such that: 

• Positions that are similar because of symmetry has the same letter 

• The letters that denote transitions between adjacent positions can only be the same if the 

transitions are similar. This requirement will be discussed more in section 3.3 on energy 

barriers. 
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a b c 

d e F 

g h i 

Figure 3.1: Low energy structures with less than seven atoms. The positions that are adjacent to 
the structures are indicated with lettered spheres. 
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a b c 

d e f 

Figure 3.2: Low energy structures with seven to nine atoms. The positions that are adjacent to 
the structures are indicated with lettered spheres. 
 

 

The low energy structures are found with an iterative process. At the start there is just a clean 

surface as shown in Figure 3.1a. The process to find the structures is: 

• The binding energies are measured at each of the positions next to the structures as 

indicated in Figure 3.1 and Figure 3.2.  

•  An atom is placed at the position with the highest binding energy. There are two special 

cases when finding the highest binding energy: 

o  In cases where there are positions where the binding energies are essentially the 

same, and those positions are similar because of symmetry, an atom is placed in 

only one of those positions. This can be seen Figure 3.1a and Figure 3.1b.  
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o In cases where the highest energies are almost the same but different structures 

will be produced, all the structures are investigated. Multiple structures form for 

six atoms as can be seen in Figure 3.1g to Figure 3.1i. In the next iteration the 

binding energies for all the structures are considered when finding the highest 

binding energy. For seven atoms the one structure that had the highest binding 

energy is shown in Figure 3.2a. 

•  Repeat until the structures have the desired size.  

 

The values of the variables used in the simulation of these structures are given in Table 3.1. In 

order to measure the binding energies at the testing positions, atoms are placed in those 

positions. The energy for only one position is measured at a time. After placing the test atom, the 

simulation is run for 1200 steps (6 ps). This allows the system to relax to the lowest energy. At 

the end of the relaxation the potential energy of the systems changes by less than 10-6 eV per 

step. 

 

Table 3.1: Parameters used for simulation. 
variable value 

Timestep (dt) 0.005 ps 

Tau for thermostat 0.1 

Desired temperature for thermostat 0 K 

Mass of Pt 195.084 amu 

Cut off radius 7  Å 

Cell size 8  Å 

Simulation size in x direction 30.47  Å 

Simulation size in y direction 28.79  Å 

Number of atom layers 3 

Number of atoms in base 396 
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 From the structures that are shown in Figure 3.1 and Figure 3.2 it can be seen that the low 

energy structures maximise the number of bonds to neighbouring atoms. The number of bonds 

are maximised in a rounded, closed structure where no atoms stick out from the structure. When 

considering the binding energy per atom it will be shown that the binding energy is higher for the 

structures that are more rounded.  

 

3.2 Binding energy per atom 

In Figure 3.3 the binding energy per adatom as a function of number of adatoms can be seen. 

The binding energy per adatom is calculated as the total potential energy the adatoms added to 

the system divided by the total number of adatoms. The kinetic energy is zero since the target 

temperature for the thermostat was 0 K. A more negative binding energy means that the structure 

is more stable.  

 

Figure 3.3: Binding energy per adatom as a function or the number of adatoms. The structures 

that form are shown close to the corresponding energies.  
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From Figure 3.3 it can be seen that adding an atom increases the average strength by which all 

the adatoms are bound together. Each additional atom increases the number of bonds to nearest 

neighbours and next nearest neighbours. It can be seen that the change in binding energy tends to 

decrease as the number of adatoms increase. There are exceptions to the trend in the change in 

binding energy when the structures with seven and ten atoms form. For the structures with seven 

and ten atoms, all the atoms have at least three nearest neighbours on the surface. All the other 

structures contain at least one atom with only two nearest neighbours. 

 

For comparison, the energies to remove atoms from various positions are given in Table 3.2. The 

energies were measured with a simulation of a cubical crystal that contained 7140 atoms. The 

binding energy per atom for this larger crystal is -5.811 eV/atom. This is more than the value 

shown in Figure 3.3 because surface has a smaller influence in the larger simulation. The 

binding energy per atom is the energy that must be added to each atom in order to completely 

break up the crystal. The binding energy per atom is the same as the sublimation energy. The 

sublimation energy for Pt is -5.856 eV/atom [19]. This compares very favourably to the value of                     

-5.811 eV/atom found in the simulation. 

 

The vacancy formation energy is the energy required to remove an atom from the bulk and place 

it on the surface. From the values in Table 3.2 the energy required to form the first vacancy can 

be calculated as 6.866 eV – 4.984 eV in order to give 1.88 eV. This compares well to the 

theoretical values of 1.68 eV [20], 1.60 eV [21], 1.28 eV [22] and 1.45 eV [23] and the 

experimental value of 1.6 eV [20]. 

 

Table 3.2: Energies needed to remove a single atom from various positions. 
 Position atom is removed from Energy (eV)  

 On surface -4.984  

 In surface -6.492  

 In bulk -6.866  
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3.3 Energy barriers           

In order for the adatoms to move, an energy barrier must be overcome. Heat provides the energy 

required for the adatoms to overcome this energy barrier. The energy barriers for atoms to move 

around the structures will now be calculated. The barriers will help to understand the structures 

that form during deposition. 

 

 

 

 

Figure 3.4: The energy along the path taken when an atom hops from A to an adjacent site, B, 

on a clean Pt(111) surface.  The energy barrier is indicated as the difference between the 

minimum at the starting position and the maximum. Figure 3.5 shows the hop from the side. 
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An example of an energy barrier can be seen in Figure 3.4. Figure 3.4 shows the potential 

energy for a single jump as on a clean surface from position A to B as shown in the inset. The 

energy barrier is the difference between the first minimum, which is where the atom would start, 

and the maximum. 

 

In order to calculate the energy barrier for an atom to move to another position it has to be 

moved along the lowest energy path. Therefore the first step is to determine the path along which 

the atom will move. The change in potential energy of the system will then be used to determine 

the size of the energy barriers. Since the potential energy fluctuates when the system is not at 0 K 

all the simulations were done at 0 K. 

 

Figure 3.5 illustrates how the path of minimum energy was found. The test atom is moved in the 

direction from the start to the end positions in small increments. After each movement of the test 

atom, the structure is allowed to relax while the test atom is constrained to a plane perpendicular 

to the direction of movement. Since there was only a small change from the previous state the 

system was relaxed for only 400 steps. After the 400 steps the change in energy was less than  

10-6 eV. Only the atoms closer than 16 Å to the test atom were allowed to relax, in order to 

prevent the whole structure from deforming. With small increments the test atom will move 

along the path of lowest energy. A hundred steps were used to move the atom from the start to 

end positions.  

 

Figure 3.5: Finding the path of minimum energy. 
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The activation energy that is required to move an atom from one position to the next is the 

difference between the binding energy at the beginning and the binding energy at the highest 

point in the barrier. In Table 3.3 it can be seen that the activation energy for self-diffusion on a 

clean Pt(111) surface is 0.193 eV. This value compares well with previously published values of 

0.194 eV [24], 0.260 eV [25] [26], 0.250 eV [27], 0.160 eV [28] and 0.176 eV [29].  

 

The energy barriers between all adjacent test atoms in Figure 3.1 and Figure 3.2 were calculated. 

Table 3.5 gives the energies for Figure 3.1c. The first two columns give the letters that are used 

to indicate the start and the end position of the atom when it was moved. The binding energy in 

the start and end positions are given in the next two columns. The fifth column gives the barrier 

energy as calculated in the simulation. The last column gives the barrier energy as predicted by 

the model proposed in the next section.  

 

When there are jumps that are similar because of symmetry only one of them are given. Care has 

to be taken to ensure that the jumps are actually similar. Consider Figure 3.1c. The A-B and B-C 

jumps appear symmetric when only considering the adatoms. Those jumps are not symmetric 

when the surface structure is considered.  

 

The barrier energies for the first four structures in Figure 3.1 are given in Table 3.3, Table 3.4, 

Table 3.5, and Table 3.6. The energies for the rest of the structures in Figure 3.1 and Figure 3.2 

are given in Appendix B. 
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Table 3.3: Energies from Figure 3.1a. 

  
Binding energy (eV) Barrier (eV) 

Start End Start End Calculated Predicted 

A B 4.979 4.980 0.193 0.010 

 

 

Table 3.4: Energies from Figure 3.1b. 

  
Binding energy (eV) Barrier (eV) 

Start End Start End Calculated Predicted 

A B 5.428 5.432 0.244 0.258 

B C 5.428 5.432 0.244 0.258 

C A 5.428 5.432 0.244 0.269 

 

 

Table 3.5: Energies from Figure 3.1c. 

  
Binding energy (eV) Barrier (eV) 

Start End Start End Calculated Predicted 

A E 5.377 5.737 0.120 0.209 

A B 5.377 5.348 0.323 0.265 

B C 5.345 5.363 0.188 0.257 

C D 5.376 5.738 0.201 0.215 

 

 

Table 3.6: Energies from Figure 3.1d. 

  
Binding energy (eV) Barrier (eV) 

Start End Start End Calculated Predicted 

A C 4.992 5.654 0.424 0.429 

B B 5.328 5.332 0.298 0.288 

B C 5.328 5.663 0.216 0.219 

 

 



29 
 

 

Figure 3.6: The energy barriers clusters into four groups depending on how many atoms are 

closer than twice the nearest neighbour distance to the start and end positions. The four clusters 

are characterised in Table 3.7. 

 

 

The influence of the number of atoms close to the start and end positions on the energy barrier is 

shown in Figure 3.6. The four clusters seen in Figure 3.6 are characterised in Table 3.7. It is 

important to notice that there is quite a large energy barrier for atoms that jump down from an 

island. The energy barrier to move to a position that is more favourable or slightly less 

favourable is in the range of 0.1 to 0.3 eV. The energy barrier is much larger for a jump to a 

position that has a binding energy that is much lower. The energy barrier to move around on top 

of an island is slightly lower than moving around on a clean surface. The energy barrier increases 

as the size of the island increase. 
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3.4 The uncorrelated contribution model for predicting energy 

barriers 

A model to predict the energy barriers for the jumps of atoms on a surface is proposed in this 

section. This model would be useful in Monte Carlo simulations. For the model it is assumed 

that: 

1. Each atom has a fixed influence on the barrier irrespective of that atom’s environment. 

2. The influence of an atom will decrease proportional to 1/r.  

3. The influence of an atom is in the direction of the jump.  

4. The barrier is affected by the environment at the start and the end of the jump. 

5. The contributions from the start and end positions have a similar form. 

6. All the atoms are in lattice positions. 

 

Figure 3.7 shows how the nearest neighbour surface atoms influence the energy barrier for the 

jump by hindering or helping. Figure 3.9 shows how the position of an atom influences the 

atom’s contribution the energy barrier. The nearest neighbours to the starting position have a 

much greater influence on the barrier than the next nearest neighbours. Atoms further than the 

next nearest neighbours have almost no contribution to the barrier energy. There can be no atoms 

closer than the nearest neighbour distance because of assumption 6. 

 

Table 3.7: Description of the four clusters from Figure 3.6. 
Description of jump Number of 

atoms that are 

close to start. 

Number of 

atoms that are 

close to end. 

Energy barrier (eV) 

Movement on top of island 10-16 12-16 0.1-0.3 

Jump down from island 10-16 23-25 0.4-0.48 

Jump to more favourable position 21-23 21-25 0.1-0.3 

Jump to less  favourable position 23-25 22-24 0.45-0.6 
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Figure 3.7: Influences of surface atoms in jump. 
 

 

 

Figure 3.8: When an atom moves, the angle is taken as the deviation from the line that connects 
the start, A, and end, B, positions. 
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Figure 3.9: The effect of relative position on the size of the contribution to the energy barrier 

can be seen here. The start position is at (0, 0) and the jump is towards the right. The contour 

lines indicate what positions have the same energy contribution towards the barrier. The 

positions closer to the start position have a greater energy contribution. 
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From assumptions 4 the energy barrier, EB, is 

 0B start endE p E E= + +  (3.1) 

where p0 is a fitting parameter, Estart is the contribution from the start position and Eend is the 

contribution from the end position. 

 

From assumption 1 the contributions for the atoms can be added together in order to obtain the 

energy barrier, therefore the energy barrier for position pos, Epos, is given by 

 
,

1 ,

pos i rcr r

pos pos i
i

E p C
<

= ∑  (3.2) 

where 1p  is a fitting parameter, rrc is the cut-off radius beyond which the contributions of the 

atoms become negligible and are discarded, pos is either start or end in order to indicate the 

position and Cpos,i  is the contribution of atom i to position pos. 

 

From assumptions 2 and 3 the contribution, Cpos,i, of atom i to position pos is 
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, 1
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 
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 (3.3) 

where ,pos ir  is the distance from atom i to position pos, ,pos iθ  is the angle between atom i and the 

line that connects the start and end positions as shown in Figure 3.8, and the parameters p1,  p2, 
and  p3 are used to fit the model to the results from the simulations. 

 

From assumption 5 the contributions from the start and end positions form the same equation but 

with different fitting parameters. Combining equations (3.1), (3.3), and (3.2) and providing 

different fitting parameters to the start and end positions, the energy barrier is given by 
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 (3.4) 

where 0p  to 8p  are fitting parameters. 
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The model was fitted to the barriers from all the jumps in Figure 3.1 and Figure 3.2 and a 

histogram of the errors, which is the difference between the barrier energies from the 

calculations and the model, was created. A Gaussian curve was fitted to the histogram in order to 

get the standard deviation of the model. This can be seen in Figure 3.10. Using the standard 

deviation of the Gaussian fit, the quality of the model could be measured. It was found that using 

the nearest and next-nearest neighbours, which translate to a cut-off radius of 5.7 Å, provided 

good results. The standard deviation of the Gaussian in Figure 3.10 is 0.025 eV, which means 

that the difference between the barrier energy predicted by the model and the barrier energy as 

calculated using molecular dynamics will differ by less than 0.025 eV in approximately 68% of 

the cases and differ by less than 0.05 eV in approximately 95% of the cases. The fitting 

parameters that were found are given in Table 3.8. For further comparison the predicted and 

calculated barriers are given in Table 3.3, Table 3.4, Table 3.5, and Table 3.6 and the tables in 

Appendix B.  

 

Figure 3.10: Histogram with Gaussian fit for the errors in the prediction of the model. The 

Gaussian has a mean of 1.3 x 10-3 eV and a standard deviation of 2.5 x 10-2 eV. 
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3.5 Discussion  

The lowest energy shapes was found for surface structures with less than 11 atoms. It was found 

that rounded shapes have lower energy. Atoms that are bound to only one or two atoms will 

easily move to positions of lower energy. Atoms that are in a position of low energy will tend to 

stay there because of the high energy barrier for leaving a low energy site. 

 

The energy barriers for atom movement next to the low energy structures were calculated. It was 

found that the energy barriers could be roughly classified into four groups based on the number 

of atoms near the start and end positions of the jump. A simplified model was created in order to 

predict the energy barrier based on the environment. The proposed model for predicting energy 

barriers has an error of 0.025 eV. Depending on the simulation parameters the model can be 

more than six orders of magnitude faster than using a simulation to find the energy barrier. 

Table 3.8: Values of the fitting parameters for the model for Pt. 

Fitting parameter Value 

p0 -7.920926 x 10-1 

p1 -3.727818 x 10-5 

p2 -2.767271 x 100 

p3 -1.256022 x 101 

p4 -1.727271 x 101 

p5   9.408896 x 10-3 

p6 -3.310704 x 100 

p7   6.439961 x 10-1 

p8  1.616139 x 100 

 

 



36 
 

Chapter 4: Island growth on 

Pt(111) 

In this chapter the growth of islands with hundreds of atoms will be discussed. The process of 

physical vapour deposition (PVD) will be used as the basis for the investigation. The influence of 

temperature and evaporation rate will be investigated.  

Equation Chapter (Next) Section 1 

4.1 PVD and model used to represent PVD 

PVD is used to create thin layers of a material on a substrate. A schematic illustrating how PVD 

functions is shown in Figure 4.1a. The material to be deposited is evaporated in a vacuum in 

order to prevent contamination and allow the evaporated material to reach the substrate. The 

substrate is in the plume of evaporated material. The material sticks to the substrate and layers 

form. 

 

The model used in the simulations is shown in Figure 4.1b. In the model a surface of four layers 

of atoms were used. The atoms in the bottom layer were held stationary. Atoms were projected 

towards the surface from random locations. The interval between the addition of the atoms 

determines the evaporation rate. All the projected atoms had energies of 0.13 eV, corresponding 

to a temperature of 1000 K. The temperature of all the atoms was controlled by using the 

Berendsen thermostat.  
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Figure 4.2: Colour codes used in the visualization of island growth. 
 
 

4.2 Effect of temperature on island growth 

The first simulations were to determine the effect of substrate temperature on island growth. 

Simulations using the model for PVD were done at various temperatures. Results from the 

simulation at 300 K, 700 K, and 1100 K are shown in Figure 4.3. The parameters used in the 

simulation are shown in Table 4.1. The colour of the atoms in Figure 4.3 is determined by 

height. Figure 4.2 shows the colours used for the different layers. 

a b 

  

 

 

 

 

 

 

Figure 4.1: A simplified illustration of PVD is given on the left. The model used to represent 
PVD is given on the right. 
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a) 300 K b) 700 K c) 1100 K 

   

Figure 4.3: Simulation state at 80 % surface coverage for three selected temperatures. 
 

  

  

 

With an increase in temperature, the energy available to atoms increases. With more energy, the 

atoms have a higher probability of jumping across an energy barrier. Thus a higher temperature 

leads to increased mobility of atoms. As atoms cluster and the size of the island increases, the 

islands become less mobile. Some of the reasons for the decrease in mobility of larger clusters 

are that the atoms are bound more tightly in larger islands and that more atoms have to move in 

Table 4.1: Parameters used for simulation. 
variable value 

Timestep (dt) 0.01 ps 

Length of simulation 1,000,000 steps (10 ns) 

Time between addition of atoms 5000 steps (50 ps) 

Tau for thermostat 0.1 

Cut off radius 7  Å 

Cell size 8  Å 

Simulation size in x direction 55.4 Å 

Simulation size in y direction 52.78 Å 

Number of atom layers 4 

Number of atoms in base 1760 
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order for the larger island to move. The effect of the decreased mobility of clusters is that an 

atom moves around on the surface until the atom can cluster together with other atoms. 

 

The number of islands that form are related to the number of jumps that an atom can perform 

between the addition of subsequent atoms. The likelihood that an atom reaches an existing 

structure will increase as the number of jumps that the atom performs increases. If a new atom is 

added to the surface before the previous atom found a structure, the two atoms that have not 

found a structure can cluster in order to form a new structure. The likelihood that new structures 

form is related to the number of jumps that occur between the addition of atoms. As the 

temperature increase the frequency of jumps increase and larger structures form. 

 

There are a few islands in the simulation at 300 K as seen in Figure 4.3a. These islands are not in 

the lowest energy state because the atoms didn’t have enough mobility to find the low energy 

positions. The islands from the simulation at 700 K as seen in Figure 4.3b are closer to the 

lowest energy state because of the increased mobility of the atoms. During the simulation at 700 

K some of the low energy structures from the previous chapter are seen to have formed. In the 

simulation at 1100 K, as seen in Figure 4.3c, only one island forms. The single island in Figure 

4.3c appears as multiple islands because of the periodic boundary conditions. Only one island 

forms because the atoms are mobile enough to form a cluster before more atoms are added onto 

the surface. 

 

For each of the temperatures from 100 K to 1200 K in steps of 100 K, a simulation was done. 

These simulations are shown in Figure 4.4. In order to show the evolution of the islands, 

snapshots of the simulations are given. At low temperatures the atoms are relatively stationary 

because the atoms are effectively frozen in place. When the atoms are deposited the atoms have 

some energy, but the energy from the heat quickly dissipates into the neighbouring atoms and are 

removed. This causes the atoms to stay very close to the point of impact and as a result small 

structures that are faceted is formed. As the temperatures get higher, the atoms become more 

mobile and find a more energetically favourable position. The structures become larger and 

smoother. When the temperature gets very high, the edges get less smooth. At these temperatures 

the atoms have enough energy and move away from the structure edge. Almost all the atoms are 
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directly on the surface. At the low temperatures the islands are so small that not many atoms land 

on the islands. At higher temperatures the atoms have enough energy to jump down from the 

island. 
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Figure 4.4: Growth of islands as a function of temperature. Each column shows how the 

structures develop at that temperature. The rows show how the structures are different when the 

temperatures are different. The colours of the atoms are chosen according to their height. The 

layer below the surface layer is dark blue. The surface layer is light blue. The atoms directly on 

the surface are yellow. The atoms in the second layer above the surface are bright yellow. 
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4.3 Effect of evaporation rate on island growth 

The evaporation rate can be varied by changing the number of steps between the addition of 

atoms. By increasing the time between the addition of atoms the evaporation rate is lowered. 

Halving the evaporation rate requires running the simulation for twice the amount of time in 

order to retain the same percentage surface coverage. The parameters used for the simulation at 

different evaporation rates are shown in Table 4.2. 

 

Figure 4.5 shows the structures that form at three different evaporation rates. In Figure 4.5 it can 

be seen that larger islands form with a lower evaporation rate. With lower evaporation rates an 

atom can perform more jumps before the next atom is deposited. The result of more jumps 

before the addition of extra atoms is that less structures form, and that those structures are larger. 

The increase in structure size due to lower evaporation rates is similar to the increase in structure 

size due to higher temperatures. 

 

For Figure 4.6 both the evaporation rate and the temperature were varied. This was done in order 

to show how different values for evaporation rate and temperature can produce similar results. In 

order to get results over the greatest range, the evaporation rate was halved for each simulation. 

In all the simulations the same number of atoms was deposited. The number of atoms deposited 

is enough to cover 50% of the surface. The evaporation rate in the first column corresponds to an 

evaporation rate of almost 108 layers/s. 

 

In Figure 4.6 it can be seen the structures that form at 0 K are very similar because the atoms are 

effectively frozen in place once they are on the surface. The structures are not exactly the same 

because the atoms that are deposited on the surface are deposited on random locations. 
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Time between addition of atoms 

2000 steps 

10 ps 

8000 steps 

40 ps 

32000 steps 

160 ps 

   

Figure 4.5: Structures that form at different evaporation rates at 900 K. 
 

Table 4.2: Parameters used for simulation. 
variable value 

Timestep (dt) 0.005 ps 

Tau for thermostat 0.1 

Mass of Pt 195.084 amu 

Cut off radius 7  Å 

Cell size 8  Å 

Simulation size in x direction 119.11 Å 

Simulation size in y direction 119.94 Å 

Number of atom layers 4 

Number of atoms in base 8600 
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Figure 4.6: The effect of evaporation rate and temperature on the formation of structures. Each 

row was done at the same temperature. Each column was done with the same number of steps 

between the addition of subsequent atoms, and thus the same evaporation rate. 

 

 

At the other temperatures a slower evaporation rate leads to larger structures. Larger structures 

can form because the combination of higher temperature and lower evaporation rate enables 

more jumps to occur. From Figure 4.6 it can be seen that an increase in temperature combined 

with a decrease in evaporation rate is much more effective in the creation of large structures than 

a change in only one of them. 
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An interesting feature that was observed was square pyramids as seen in Figure 4.7a. It was very 

interesting because the square doesn’t match the triangular surface. The pyramid lasted a bit 

longer than 0.8 ns at 300 K. During that time the pyramid performed more jumps than the 

structures that matched the surface. The relationship between surface mismatch and mobility will 

be discussed in greater detail in the next chapter. 

 

4.4 Conclusion 

It was found that an increase in the temperature and a decrease in the evaporation rate have 

similar effects because both lead to an increase in the number of jumps that an atom can perform 

before another atom was added. As the atoms perform more jumps, the structures that form 

become larger. Low energy structures discussed in the previous chapter formed during the course 

of the simulations.  

  

a b 

  

Figure 4.7: Square pyramid found in the simulation. A four atom cluster that matches the 
substrate is show on the right. 
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Chapter 5: Deposition on 

graphite 

The change mobility of the square pyramid found in the previous chapter suggested that a 

mismatch with the substrate can influence the mobility of the deposited atoms. Different surfaces 

will be required in order to test this effect. The Steele potential provides a model for a surface 

that will be well suited for such a test. 

Equation Chapter (Next) Section 1 

5.1 Steele potential 

In the simulations in chapter 4 the surfaces were represented by four atom layers. Less than one 

atom layer was deposited onto the surfaces. The simulations will be much faster if an analytical 

method to represent the surface was used instead. The Steele potential is an analytical expression 

that provides the potential between an atom and a regular surface. An additional advantage of the 

Steele potential is that the surface parameters can be varied easily. 

 

The Steele potential in reduced units, V*Steele, is given by [30] 

 * * *
Steele 0 1 2

0

( ) ( ) ( , )n n
n

V E z E z f s s
>

= +∑  (5.1) 

where 

 
6 6

*
0 * * * 10 * * 4

0

2 2 1
( )

5( ) ( )ps

qA A
E z

a z p z z p z

π ∞

=

 
= − + ∆ + ∆ 

∑  (5.2) 

and 
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Table 5.2: Parameters for graphite using the Steele potential. 

Variable Formula and/or value Description 

q 2 Number of atoms in unit cell 

a1 2.46 Å Length of one side of the unit cell 

as*  as / a12  = 31/2/2 Reduced surface area of the unit cell 

z* z / a1 Reduced distance of atom from the surface 

∆z* 1.38 Å Reduced distance between graphite layers 

εgs Depends on material Parameter giving energy scale of gas-solid interaction 

σgs Depends on material Parameter giving distance scale of gas-solid interaction 

V*Steele VSteele / εgs Steele potential in reduced units 

A σgs / a1 Ratio to scale potential to correct distance 

 

 

 

5 2* *6 6
* * *

5 * 2 ** * *

2
( ) ( ) 2 ( ) .

30 2 2
n n

n n n
s

g gA A
E z K g z K g z

a z z

π     
 = −   
     

 (5.3) 

The values of gs*  and fn for graphite with n lest than six are given in Table 5.1. A description and 

the values of the parameters in equations (5.1), (5.2) and (5.3) are given in Table 5.2. The values 

for the interaction parameters between graphite and platinum are given in Table 5.3.  

Table 5.1: First five values for gs
* and fn as given in [30].  

n * / 2ng π  1 2( , ) 2nf s s  

1 2 3  ( ) ( ) ( )( )1 2 1 2 cos 2   cos 2   cos 2   s s s sπ π π − + + +   

2 2  ( )( ) ( )( ) ( )( )1 2 1 2 1 22 cos 2   2   cos 2 2     cos 2   s s s s s sπ π π + + + + −   

3 4 3  ( ) ( ) ( )( )1 2 1 2 cos 4    cos 4    cos 4    s s s sπ π π − + + +   

4 2 7 3 
( )( ) ( )( ) ( )( )
( )( ) ( )( ) ( )( )

1 2 1 2 1 2

1 2 1 2 1 2

cos 2 3  +   + cos 2   3   cos 2 3   2  

cos 2 2  3   cos 2   2   cos 2 2   

s s s s s s

s s s s s s

π π π

π π π

 + + + +
 −

+ + − + −  

 

5 6 3 ( ) ( ) ( )( )1 2 1 22 cos 6    cos 6   cos 6   s s s sπ π π + + +   
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Table 5.3: Interaction parameters for graphite and platinum [12] [31] [32]. 

Parameter Value 

εpc 256 K = 256 x 8.617 x 10-5 eV/K 

σpc 2.905 Å 

 

 

The values for s1 and s2 in equation (5.1) are found from the projection of the (x, y) coordinate 

onto the graphite crystal structure so that the position of the atom on the surface, τ, is given by 

the formula τ = s1a1 + s2a1. 

 

The E0 term in equation (5.1) incorporates the uniform contribution from all the layers. Since the 

effect of each subsequent layer gets less, only the first few layers have to be used. Only the first 

25 layers were used as in [31]. The En term in equation (5.1) gives the amplitude and the fn term 

gives the shape of the nth term. Only the first 5 terms are used because the effect of the others 

terms are negligible. 

 

To further speed up the process, simple functions were used in the place of E0 and En. It was 

found that a sufficiently accurate fit was produce by fitting functions with the form az + b(z + 

c)d to En  while a function with the form az + b(z + c)d + e(z + f)g was required for E0.  

 

Using the Steele potential with simplified fits for the E terms results in much faster simulation 

times. For similarly sized systems and 8 million steps using the Sutton-Chen potential for the 

base takes 47 days, while using the Steele potential takes only 16 hours, which is a speedup of 

about 70 times. The speedup is similar for other simulations. 
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5.2 Simulation Setup 

The Steele potential was used to simulate a graphite surface and the Sutton-Chen potential was 

used to simulate the platinum atoms. The Steele potential of the graphite surface is shown in 

Figure 5.1. Atoms are projected along the z axis towards the surface. The surface is along the x 

and y axis. Periodic boundary conditions was used in the x and y directions. The sizes were 

chosen such that the cells from the graphite surface fits perfectly into the simulated area. The x 

direction had to be a multiple of 2.46 Å while the y direction had to be a multiple of 4.26 Å. An 

elastic wall was used in the z direction so that atoms that bounce of the surface can have another 

chance to stick to the surface. The Berendsen thermostat was used to control the temperature of 

 

Figure 5.1: The Steele potential as calculated for graphite is shown here. The colour indicates 

the potential. An atom would be bound more tightly in the blue locations. The solid lines 

highlight the hexagonal structure of graphite. The dotted rectangle shows the minimum cell 

that must be repeated for smooth boundary conditions. 
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all the atoms in the system. The atoms were projected towards the surface from uniformly 

distributed random locations with a velocity of 3.6 Å/ps, which would correspond to a 

temperature of about 1000 K. 

  

5.3 Investigating evaporation rate 

The evaporation is done using the same model as described in chapter 4, with the modification 

that the surface is represented by the Steele potential instead of layers of atoms. Atoms are 

deposited onto the surface with certain intervals between addition of subsequent atoms. By 

varying the time interval, the evaporation rate can be changed. The simulation was done for 

various temperatures and evaporation rates.  

 

Figure 5.2 shows the structures that form at three different temperatures when there are 64000 

steps between the addition of atoms. There is enough time for atoms and small islands to come 

together before becoming immobile, thus only a single structure formed at this evaporation rate. 

When an atom reaches a bigger island, the atom will most likely be in position that is not the 

lowest possible energy. At lower temperatures the atoms do not have enough energy to easily 

move out of this local minimum. As the temperature gets higher it becomes more likely that an 

atom will find a position that minimizes the energy of the structure. As the temperature gets 

300 K 600 K 900 K 

   

Figure 5.2: Structures that form at different temperatures when there are 64000 steps (320 ps) 
between the addition of atoms. 
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higher, the sides of the structures become more flat. The number of nearest neighbour bonds is 

larger in the structures that formed at higher temperatures. The truncated triangle seen in Figure 

5.2 is close to the structure of minimum energy for platinum on platinum(111) surface [33]. 

 

Figure 5.3 shows how the structures change when the evaporation rate is varied and the 

temperature is kept constant. At the fastest evaporation rate the atoms do not even have enough 

time to reach a single structure so more than one structure form. With 8000 steps between the 

addition of atoms, only a single structure forms, but that structure is not yet in the lowest energy 

state. With 64000 steps between the addition of atoms, the structure is much closer to the lowest 

energy state.  

 

The results from more variations of temperature and evaporation rate are shown in Figure 5.4. At 

the fastest evaporation rates there were a few small structures. As the evaporation rate slowed the 

number of structures decreased and the structures became larger until there was only one 

particle. The combination of structures requires a slower evaporation rate at lower temperatures. 

 

A single atom on the graphite surface is very mobile. When the atom bonds to another atom, the 

cluster that forms becomes less mobile. As more atoms are joined to the cluster, the cluster tends 

Time between addition of atoms 

1000 steps 

5 ps 

8000 steps 

40 ps 

64000 steps 

320 ps 

   

Figure 5.3: Structures that form at different evaporation rates at 900 K. 
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to become more stationary. When atoms are added to the cluster sooner, the atoms have less time 

to move to equilibrium positions. This explains why at very high evaporation rates there are 

smaller clusters while at low evaporation rates there is one large particle. When the temperature 

is higher the atoms move faster so the atoms can form larger structures at higher evaporation 

rates. 

 

When the platinum atoms are in a large cluster, the individual atoms are bound in place so the 

cluster cannot change much to find the equilibrium structure. When the temperature is increased 

the atoms can move around more so it is more likely that the equilibrium structure will be found. 

In Figure 5.4 it can be seen that the structures tend towards the equilibrium structure when the 

evaporation rate is slower and the temperature is higher. The equilibrium structure that forms is a 

truncated triangle. 

 

The attraction between the platinum is about an order of magnitude stronger than the attraction 

between the platinum and the carbon. The effect of this is that it will be energetically more 

favourable for the platinum to bond together than to just spread out on the graphite. This can be 

seen in that the platinum does not form a single layer on the graphite but rather a layered 

structure. The structure tends to grow layer by layer. The layers tend to cover the layers below 

them completely, except at low temperatures. At low temperatures the energy of the atoms are 

too low for the atoms to easily jump down to the layer below. 
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5.4 Effect of substrate parameters on structure growth 

In this section the influence of the mismatch between the substrate and the material deposited on 

the surface and the strength of the interaction between the substrate and the material deposited is 

investigated. In order to investigate the effect of mismatch, the lattice parameter, a, of the Steele 

potential was varied. In order to vary the interaction between Pt and the substrate, εgs is taken as 

εpc multiplied by a scaling factor.  The scaling factor scales the whole potential. Since the whole 

potential is scaled, a scaling factor greater than one will increase both the binding energy for the 

surface and the barrier for an atom to move across the surface. A scaling factor greater than one 

will thus decrease the mobility of an atom on the surface. 

 

Figure 5.5 shows the results for simulations for various values for the substrate lattice parameter 

and scaling factor for the substrate potential. The simulations were done at a temperature of 900 

K with an interval of 64000 steps between the addition of atoms. This corresponds to the bottom 

right (or left, if the page is in the ‘landscape’ orientation) simulation in Figure 5.4. 

 

The force that the substrate exerts on the Pt atoms increases towards the bottom in Figure 5.5. As 

the attraction and barriers get larger it is expected that the atoms become less mobile. This can be 

seen by the shape of the structures that form. An unexpected effect is that the mobility of the 

atoms is affected by the amount of mismatch with the substrate. This effect becomes evident 

when the structures become larger than a critical size. This is because the neighbouring atoms 

help to overcome the barriers.  
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To see how neighbouring atoms can increase mobility, consider the illustrations in Figure 5.6. In 

Figure 5.6a the nearest neighbour distance on the substrate is smaller than that of Pt. When a Pt 

atom is in a minimum position, another Pt atom cannot enter the neighbouring minimum 

position. The atoms will push on each other and get lifted out of the minimum position. The 

atom will be bonded to the surface with less energy and energy barrier for a jump will be lower. 

In Figure 5.6b the nearest neighbour distance on the substrate is larger than that of Pt. 

Neighbouring atoms decrease the barrier in much the same ways as in Figure 5.6a. The only 

difference is that the neighbouring atoms attract each other instead of repelling. 

  Nearest neighbour distance for substrate (Å) 

  1.66 1.94 2.22 2.49 2.77 3.05 3.32 3.6 3.88 
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Figure 5.5: Effect of substrate mismatch and attractive force on the structures that form. The 

column heading gives the value of lattice parameter, a, that was used. The first row gives the 

factor by which the potential was scaled. 
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In the centre column with the heading of 2.77 in Figure 5.5, the substrate has exactly the same 

nearest neighbour distance as that of Pt. As the scaling parameter, and thus the barriers, 

increases, the Pt atoms become less mobile. This has a similar effect to that of a lower 

temperature. There is a clear resemblance between the low temperature structures in Figure 4.6 

and the structures in Figure 5.5 where the barriers are high and the substrate mismatch is small. 

 

Since the presence of neighbours increases the mobility, the atoms on the edges of the structures 

are very mobile. The high mobility of the edges gives the appearance that the structures are 

molten. 

  

Another very interesting effect was seen in the first row in Figure 5.5. In the first row, most of 

the particles that form have more than one layer. The particles would be stationary and then 

suddenly start moving across the surface. The particle would move quickly and freely. The 

particle would then suddenly stop again. The movement of the particle is especially interesting 

since the Velocity Verlet integrator conserves momentum [34], but momentum is not conserved 

in the particle’s movement. The answer to this conundrum is that the thermostat does not 

conserve momentum. The thermostat only ensures that the average temperature of the system is 

as close as possible to the desired temperature. On closer inspection of the particles as they start 

and stop moving, some interesting observations are made. When the particle is stationary, the 

atoms that make up the particle vibrate quite a bit because of the high temperature. When the 

a) Nearest neighbour distance of substrate  

smaller than that of Pt 

b) Nearest neighbour distance of substrate 

larger than that of Pt 

  

Figure 5.6: Illustration of how neighbouring atoms can help overcome barriers when there is a 

size mismatch with the substrate. The heavy line indicates the surface. Atoms want to be on the 

lowest point on the surface. 
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particle moves, the atoms are almost stationary relative to each other. These effects suggest that 

the influence of the thermostat on the simulations can be the subject of future investigations. 

 

5.5 Conclusion 

The Steele potential provided an analytical representation of a surface for physical vapour 

deposition. Using an analytical expression for the surface provided a significant speedup for the 

simulations and allowed more parameters to be investigated. When the evaporation was done 

onto graphite, truncated triangles formed. This corresponds well to known low energy structures 

of Pt. In order to form the truncated triangle, the evaporation rate had to be low and the 

temperature had to be high. It was found that a mismatch between the nearest neighbour distance 

and that of Pt resulted in increased mobility of atoms on the surface. Weak interaction between 

the surface and Pt caused layered structures to form. Strong interaction resulted in only a single 

layer forming. Anomalous movement of particles suggests that it might be useful to investigate 

the effect of the thermostat in the simulations.  
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Chapter 6: Discussion 

Equation Chapter (Next) Section 1 

The mobility of an atom is determined by the strength of interaction with the substrate, the 

amount of energy the atom has from the temperature of the system, and the structure in the 

vicinity. The mismatch affects how the structure influences movement. The evaporation rate will 

determine how long an atom has to move before it interacts with another atom. Once atoms join 

together in an island their mobility decreases drastically. With fast evaporation rates the atoms 

do not have enough time to move to equilibrium positions so the structures that form are small. 

With slower evaporation rates the structures become larger and closer to an equilibrium 

structure. 

 

The structure with the highest surface to volume ratio is found in the top right of Figure 5.5. The 

evaporation rate is low, the temperature is high, the nearest neighbour distance in the substrate is 

larger than that of Pt and interaction strength between Pt and the substrate is the same as between 

Pt and graphite. When doing PVD the deposition rate will be much lower, thus the temperature 

would have to be lowered to get a similar structure. 

6.1 Future work 

The model proposed in chapter 3 will be adapted for the other metals for which Sutton-Chen 

parameters exist. In addition it will be adapted for other surface orientations and mixtures of 

those metals. 

 

A Monte Carlo simulation will be implemented using the model proposed in chapter 3. Using 

Monte Carlo simulations will make it possible to investigate much larger systems than was 

possible with molecular dynamics.  
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The Steele potential for other surfaces will be implemented. This will allow the investigation of 

the effect of surface orientation on the growth of structures. 

 

Different thermostats will be investigated in order to determine whether the Berendsen 

thermostat had a significant effect on the structures that formed. 
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Appendix A: Derivation of the 

force from the Lennard-Jones 

potential 

Equation Chapter (Next) Section 1 

The Lennard-Jones potential is given by 

 

12 6

4LJ
ij ij

V
r r

σ σε
    
 = −           

 (7.1) 

From a given potential, V, the force, F, can be calculated with the formula 

 F V= −∇  (7.2) 

For the derivation of the force it is helpful to first derive the gradient of r and 1/r. Let the 

displacement vector be given by ˆ ˆ ˆx y zr xr yr zr= + + , wherex̂ is the unit vector in the x direction 

and rx is the component of r in the x direction. The length of the displacement vector is 

2 2 2
x y zr r r r r= = + + . From the definitions of gradient , it follows that  

 ˆ ˆ ˆr x y z r
x y z

 ∂ ∂ ∂∇ = + + ∂ ∂ ∂ 
 (7.3) 

This can also be written as  

 ˆi
i

r x r
x

∂∇ =
∂∑  (7.4) 

Where îx  is the unit vector in the ith direction and 
ix

∂
∂

is the derivative in the ith direction. From 

the definition of r 
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 ( )1
2 2 2 2ˆi x y z

i

r x r r r
x

∂∇ = + +
∂∑  (7.5) 

By using the chain rule 

 ( ) ( )1
2 2 2 2 2 221

ˆ
2i x y z x y z

i

r x r r r r r r
x

− ∂∇ = + + + +
∂∑  (7.6) 

Now using the definition of r and taking the derivative 

 11
ˆ 2

2
i

i i
i

r
r x r r

x
− ∂∇ =

∂∑  (7.7) 

Noting that i

i

r

x

∂
∂

=1 and simplifying 

 1
î ir r x r−∇ = ∑  (7.8) 

Finally using the definition of r  

 
1r r r−∇ =  (7.9) 

Equation (7.9) can now be used to simplify calculations such as 

 
1 2 3r r r r r− − −∇ =− ∇ =−  (7.10) 

The gradient of the potential can now be calculated. 

 

12 6

4LJ
ij ij

V
r r

σ σε
    
 ∇ = ∇ −           

 (7.11) 

Applying the chain rule 
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 (7.12) 

Now using equation (7.10) and doing some simplification 
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 (7.13) 

Rearranging gives  

 ( ) ( )
11 3 5 3 2

1 1
48

2LJ
ij ij ij ij

V r r
r r r r

σ σ σ σε
σ

           ∇ = − − −                          

 (7.14) 
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Simplifying gives 

 

14 8

2

1
48
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V r
r r

ε σ σ
σ
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 (7.15) 

By combining equations (7.2) and (7.15) it is found that  
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 (7.16) 
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Appendix B: Data for barriers 

Table 0.1: Energies from Figure 3.1e. 

  
Binding energy (eV) Barrier (eV) 

Start End Start End Calculated Predicted 

A A 4.994 4.994 0.118 0.122 

A C 4.994 5.622 0.447 0.433 

A E 4.994 5.652 0.453 0.432 

B B 5.337 5.340 0.312 0.288 

B C 5.337 5.637 0.191 0.243 

C D 5.640 5.320 0.607 0.558 

D E 5.322 5.655 0.247 0.246 

E F 5.653 5.335 0.553 0.537 

F F 5.333 5.334 0.292 0.259 
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Table 0.2: Energies from Figure 3.1f. 

  
Binding energy (eV) Barrier (eV) 

Start End Start End Calculated Predicted 

A B 4.968 4.976 0.126 0.142 

A D 4.968 5.643 0.428 0.425 

A H 4.968 5.632 0.466 0.438 

C D 5.315 5.647 0.235 0.221 

D E 5.645 5.305 0.600 0.528 

E F 5.303 5.589 0.257 0.250 

F E 5.592 5.300 0.547 0.550 

C G 5.315 5.318 0.265 0.268 

G H 5.317 5.636 0.227 0.233 

H H 5.634 5.633 0.477 0.491 
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Table 0.3: Energies from Figure 3.1g. 

  
Binding energy (eV) Barrier (eV) 

Start End Start End Calculated Predicted 

A B 4.977 4.965 0.133 0.192 

A E 4.977 5.605 0.460 0.454 

A H 4.980 5.648 0.433 0.423 

A K 4.980 5.641 0.464 0.435 

A N 4.977 5.630 0.424 0.443 

B B 4.971 4.964 0.125 0.146 

B F 4.966 5.590 0.495 0.450 

B L 4.970 5.609 0.502 0.443 

C N 5.323 5.629 0.167 0.199 

C D 5.322 5.327 0.319 0.253 

D E 5.323 5.621 0.175 0.211 

E F 5.624 5.585 0.552 0.498 

F G 5.590 5.309 0.533 0.541 

G H 5.309 5.650 0.257 0.246 

H I 5.649 5.321 0.568 0.537 

I J 5.318 5.322 0.257 0.259 

J K 5.321 5.644 0.227 0.233 

K L 5.642 5.611 0.483 0.517 

L M 5.612 5.317 0.546 0.554 

M N 5.312 5.629 0.245 0.254 
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Table 0.4: Energies from Figure 3.1h. 

  
Binding energy (eV) Barrier (eV) 

Start End Start End Calculated Predicted 

A B 4.910 4.935 0.129 0.181 

A D 4.910 5.595 0.437 0.430 

C C 5.274 5.275 0.239 0.259 

C D 5.274 5.598 0.229 0.233 

D D 5.596 5.594 0.494 0.491 
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Table 0.5: Energies from Figure 3.1i. 

  
Binding energy (eV) Barrier (eV) 

Start End Start End Calculated Predicted 

A B 4.940 4.955 0.145 0.180 

A H 4.940 5.639 0.402 0.415 

A L 4.940 5.887 0.422 0.410 

A O 4.940 5.605 0.400 0.424 

B B 4.955 4.952 0.138 0.145 

B D 4.955 5.608 0.461 0.431 

B F 4.950 5.584 0.450 0.428 

C O 5.297 5.623 0.241 0.235 

C D 5.297 5.611 0.258 0.220 

D E 5.610 5.299 0.576 0.520 

E F 5.295 5.586 0.236 0.250 

F G 5.589 5.293 0.546 0.550 

G H 5.296 5.641 0.257 0.246 

H J 5.640 5.314 0.560 0.537 

J K 5.313 5.307 0.270 0.285 

K L 5.307 5.889 0.213 0.204 

L M 5.890 5.323 0.744 0.781 

M N 5.326 5.325 0.311 0.283 

N O 5.321 5.623 0.204 0.221 
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.Table 0.6: Energies from Figure 3.2a. 

  
Binding energy (eV) Barrier (eV) 

Start End Start End Calculated Predicted 

A A 4.940 4.936 0.187 0.160 

A C 4.940 5.630 0.413 0.423 

A D 4.937 5.606 0.404 0.420 

B D 5.313 5.607 0.249 0.253 

B C 5.314 5.634 0.259 0.272 
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Table 0.7: Energies from Figure 3.2b. 

  
Binding energy (eV) Barrier (eV) 

Start End Start End Calculated Predicted 

A B 4.911 4.835 0.182 0.196 

A E 4.911 4.929 0.223 0.166 

A G 4.911 5.603 0.429 0.437 

B C 4.933 4.963 0.093 0.120 

C H 4.962 5.626 0.449 0.436 

E D 4.933 4.935 0.173 0.190 

E J 4.933 5.589 0.414 0.436 

D L 4.934 5.611 0.426 0.429 

F J 5.296 5.589 0.227 0.262 

F G 5.296 5.606 0.255 0.251 

G H 5.604 5.628 0.476 0.484 

H I 5.628 5.304 0.556 0.534 

I I 5.301 5.301 0.232 0.277 

J K 5.575 5.277 0.525 0.545 

K L 5.292 5.615 0.264 0.228 
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Table 0.8: Energies from Figure 3.2c. 

  
Binding energy (eV) Barrier (eV) 

Start End Start End Calculated Predicted 

A B 4.909 4.930 0.170 0.196 

A E 4.909 4.933 0.153 0.152 

A G 4.909 5.587 0.443 0.437 

B C 4.930 4.953 0.107 0.120 

B D 4.930 4.886 0.207 0.226 

C H 4.952 5.613 0.450 0.432 

C K 4.952 5.617 0.445 0.436 

D L 4.884 5.581 0.445 0.452 

E M 4.932 5.576 0.423 0.432 

F M 5.279 5.574 0.207 0.262 

F G 5.279 5.592 0.260 0.251 

G H 5.590 5.615 0.482 0.484 

H I 5.615 5.290 0.560 0.534 

I J 5.286 5.288 0.220 0.277 

J K 5.288 5.620 0.227 0.236 

K L 5.618 5.579 0.495 0.543 
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Table 0.9: Energies from Figure 3.2d. 

  
Binding energy (eV) Barrier (eV) 

Start End Start End Calculated Predicted 

A B 4.912 4.907 0.183 0.228 

A D 4.912 4.932 0.160 0.152 

A F 4.912 5.596 0.436 0.437 

B B 4.907 4.799 0.198 0.236 

B C 4.907 4.930 0.199 0.152 

C G 4.931 5.623 0.419 0.424 

C J 4.931 5.890 0.406 0.403 

D D 4.935 4.933 0.169 0.160 

D P 4.935 5.604 0.434 0.429 

E P 5.287 5.579 0.217 0.262 

E F 5.287 5.600 0.255 0.251 

F G 5.598 5.625 0.477 0.484 

G H 5.624 5.302 0.553 0.534 

H I 5.299 5.292 0.234 0.303 

I J 5.292 5.890 0.215 0.208 

J K 5.892 5.307 0.744 0.788 

K L 5.310 5.308 0.322 0.285 

L M 5.304 5.606 0.173 0.216 

M N 5.608 5.568 0.529 0.493 

N O 5.575 5.285 0.512 0.537 

O P 5.286 5.607 0.265 0.228 

P Q 5.605 5.287 0.588 0.531 
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Table 0.10: Energies from Figure 3.2e. 

  
Binding energy (eV) Barrier (eV) 

Start End Start End Calculated Predicted 

A A 4.922 4.923 0.175 0.197 

A B 4.922 4.941 0.176 0.196 

A C 4.922 4.963 0.177 0.140 

A E 4.922 5.605 0.438 0.437 

A H 4.918 5.583 0.432 0.452 

B C 4.941 4.964 0.105 0.120 

C F 4.962 5.629 0.447 0.432 

C I 4.959 5.610 0.441 0.444 

D H 5.299 5.582 0.216 0.283 

D E 5.299 5.609 0.255 0.251 

E F 5.606 5.631 0.476 0.484 

F G 5.630 5.306 0.557 0.534 

G G 5.303 5.304 0.226 0.277 

H I 5.584 5.605 0.499 0.510 

I J 5.612 5.307 0.460 0.541 

J J 5.305 5.310 0.327 0.256 
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Table 0.11: Energies from Figure 3.2f. 

  
Binding energy (eV) Barrier (eV) 

Start End Start End Calculated Predicted 

A B 4.935 4.837 0.185 0.227 

A E 4.935 4.951 0.168 0.152 

A J 4.935 5.622 0.428 0.437 

B C 4.933 4.975 0.090 0.163 

B H 4.881 4.911 0.171 0.208 

C D 4.974 4.969 0.155 0.120 

C K 4.974 5.615 0.483 0.438 

D M 4.969 5.632 0.411 0.426 

D P 4.969 5.888 0.418 0.425 

E F 4.952 4.954 0.174 0.191 

E V 4.952 5.604 0.416 0.432 

F G 4.953 4.954 0.175 0.158 

F T 4.953 5.627 0.429 0.429 

G H 4.954 4.910 0.182 0.244 

G R 4.954 5.608 0.416 0.436 

H P 4.911 5.887 0.386 0.405 

I V 5.311 5.605 0.216 0.262 

I J 5.311 5.625 0.256 0.251 

J K 5.623 5.618 0.480 0.511 

K L 5.617 5.312 0.562 0.559 

L M 5.307 5.632 0.211 0.244 

M N 5.635 5.329 0.487 0.537 

N O 5.327 5.337 0.313 0.262 

O P 5.333 5.887 0.167 0.179 

P Q 5.890 5.316 0.814 0.791 

Q R 5.311 5.608 0.228 0.245 

R S 5.610 5.305 0.534 0.545 

S T 5.308 5.631 0.264 0.228 

T U 5.629 5.312 0.586 0.531 

U V 5.309 5.604 0.229 0.219 
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Appendix C: Code listings 

Organization of code 

 

The code is organised in classes. Each class performs one function. When there is multiple ways 

for a function to be performed a base class is made for that function. A subclass then implements 

the specifics of how the function is performed. This allows for easy moving to a new function 

implementation. Examples include using a different integrator or potential. 

 

The settings class is passed to the constructor of most classes. This allows all the variables to be 

loaded when the classes are constructed. All the variables that are to be loaded are put together in 

a region for easy maintenance. 

 

Code for the viewer, generator and analysis components is not included here. 
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Conversion Functions 

 

The conversion functions are included in the file ‘Simulator.cs’. 

 

        //All the conversion functions work in eV and A/ps 
        private static double avogadro = 6.02214179e23; 
        private static double electronCharge = 1.602176565e-19; 
        private static double boltzmann = 1.3806e-23;// in joule 
  
        static public double Energy2Velocity(double kineticEnergyIneV, double mass) {
//mass = 195.084 for Pt 
            double massInKg = mass / (avogadro * 1000); 
            double energyInJ = kineticEnergyIneV * electronCharge; 
            double vInMeterPerSecond = Math.Sqrt(2 * energyInJ / massInKg); 
            double vInAPerPs = vInMeterPerSecond / 100; 
            return vInAPerPs; 
        } 
  
        static public double Velocity2Energy(double velocity, double mass) { 
            return VelocitySquared2Energy(velocity * velocity, mass); 
        } 
  
        static public double VelocitySquared2Energy(double velocitySquared, double ma
ss) { 
            double energy = 0.5 * mass * velocitySquared * 10 / (avogadro * electronC
harge);// ~ 0.0101 * velocitySquared//*10e8 
            return energy; 
        } 
  
        static public double Energy2Temperature(double energy, double mass) { 
            return energy * 2 * electronCharge / (3 * boltzmann); 
        } 
  
        static public double Temperature2Energy(double temperature, double mass) { 
            return boltzmann * temperature * 3 / (2 * electronCharge); 
        } 
  
        static public double Temperature2Velocity(double temperature, double mass) { 
            return Energy2Velocity(Temperature2Energy(temperature, mass), mass); 
        } 
  
        static public double Velocity2Temperature(double velocity, double mass) { 
            return Energy2Temperature(Velocity2Energy(velocity, mass), mass); 
        } 
  
        static public double VelocitySquared2Temperature(double velocitySquared, doub
le mass) { 
            return Velocity2Temperature(Math.Sqrt(velocitySquared), mass); 
        } 
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Integrator 

 

The integrator as implemented in ‘integrator.cs’ is: 

 

using System; 
using FileUtils; 
using MyStuff; 
  
namespace MD_Simulation { 
  
    public abstract class Integrators { 
        #region Variables that need saving & loading; Code that does that.-----------
---------------------- 
  
        protected double dt; 
  
        public void Save(SettingHandler loader) { 
            loader.SaveMember(() => dt); 
        } 
  
        private void Load(SettingHandler loader) { 
            dt = loader.LoadMember(() => dt); 
        } 
  
        #endregion Variables that need saving & loading; Code that does that.--------
------------------------- 
  
        protected Potential.UpdateDelegate UpdateAccelerations; 
        protected VectorArray x, v, a;//These are just references to the actual data. 
  
        protected Integrators(Simulator sim, SettingHandler loader) { 
            x = sim.x; 
            v = sim.v; 
            a = sim.a; 
            UpdateAccelerations = sim.UpdateAccelerations; 
  
            Load(loader); 
        } 
  
        abstract public void Step(); 
    } 
  
    public class Leapfrog : Integrators { 
  
        public Leapfrog(Simulator sim, SettingHandler loader) 
            : base(sim, loader) { 
        } 
  
        public override void Step() { 
            x.PlusEqual(v, dt); 
            UpdateAccelerations(); 



76 
 

            v.PlusEqual(a, dt); 
        } 
    } 
  
    internal class VelocityVerlet : Integrators { 
  
        public VelocityVerlet(Simulator sim, SettingHandler loader) 
            : base(sim, loader) { 
        } 
  
        public override void Step() { 
            x.PlusEqual(v, dt, a, dt * dt / 2, false); 
            v.PlusEqual(a, dt / 2); 
            UpdateAccelerations(); 
            v.AddToCurrent(a, dt / 2); 
        } 
    } 
} 
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Vector array 

 

In order to make the handling of the arrays of vectors easier in the integrator, a class to assist 

with the array was implemented in ‘VectorArray.cs’. 

 

using System; 
using System.Collections.Generic; 
using System.Linq; 
using System.Text; 
  
namespace MyStuff { 
  
    public class VectorArray { 
  
        // This class is only to provide a more convenient view of the simulation dat
a for the integrators. 
  
        private MyVector[] simdata; 
  
        public VectorArray(int numberOfSteps, int numberOfAtoms) { 
            simdata = new MyVector[numberOfAtoms]; 
            for(int atom = 0; atom < NumberOfAtoms; atom++) { 
                simdata[atom] = MyVector.Zero; 
            } 
        } 
  
        public VectorArray(int numberOfSteps, VectorArray source, int numberOfExtraAt
oms = 0) { 
            int numberOfAtoms = source.NumberOfAtoms + numberOfExtraAtoms; 
            simdata = new MyVector[numberOfAtoms]; 
            for(int atom = 0; atom < numberOfAtoms; atom++) { 
                simdata[atom] = MyVector.Zero;//step, 
            } 
            for(int atom = 0; atom < source.NumberOfAtoms; atom++) { 
                this[atom] = source[atom]; 
            } 
        } 
  
        public override string ToString() { 
            return ToString(0); 
        } 
  
        public string ToString(int stepInc) { 
            string s = ""; 
            for(int atom = 0; atom < NumberOfAtoms; atom++) { 
                s += this[atom].ToString(); 
                s += " ; "; 
            } 
            return s; 
        } 
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        public int NumberOfAtoms { 
            get { 
                return simdata.Length; 
            } 
            set { } 
        } 
  
        public MyVector this[int index] { 
            get { return simdata[index]; } 
            set { simdata[index] = value; } 
        } 
  
        public MyVector this[int index, double scale] { 
            get { return this[index] * (float)scale; } 
            set { } 
        } 
  
        public void PlusEqual(VectorArray vec1, double vec1Scale) { 
  
            //This is more efficient than using the operators because there are less 
temporary objects. 
            for(int i = 0; i < NumberOfAtoms; i++) { 
                simdata[i] = this[i] + (vec1[i, vec1Scale]); 
            } 
        } 
  
        public void AddToCurrent(VectorArray vec1, double vec1Scale) { 
  
            //This is more efficient than using the operators because there are less 
temporary objects. 
            for(int i = 0; i < NumberOfAtoms; i++) { 
                simdata[i] += (vec1[i, vec1Scale]); 
            } 
        } 
  
        public void PlusEqual(VectorArray vec1, double vec1Scale, VectorArray vec2, d
ouble vec2Scale, bool lookAtAllAtoms = true) { 
  
            //This is more efficient than using the operators because there are less 
temporary objects. 
            int numberOfAtomsToLookAt = MD_Simulation.Simulator.NUMBER_OF_ATOMS_CURRE
NTLY_AFFECTING_SIMULATION; 
            if(lookAtAllAtoms) { 
                numberOfAtomsToLookAt = NumberOfAtoms; 
            } 
  
            for(int i = 0; i < numberOfAtomsToLookAt; i++) { 
                simdata[i] = this[i] + (vec1[i, vec1Scale]) + (vec2[i, vec2Scale]); 
            } 
        } 
    } 
} 
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Potentials 

 

The potentials as implemented in ‘potential.cs’ is: 

 

using System; 
using System.Collections.Generic; 
using FileUtils; 
using MyStuff; 
  
namespace MD_Simulation { 
  
    public class Potential { 
  
        //The purpose of this class is to calculate the potential at a point. 
        //This class can't be used directly. 
        //It is the base class for the class that implements a specific potential. Se
e below for example. 
  
        protected VectorArray x, v, a;//These are just references to the actual data. 
        public double PE, KE; 
        public double maxV;//Used to check whether the cell structure should be  
updated. 
        private double[] vSquared; 
        public double potentialForAtomAdded = 0; 
        public int atomAdded = 0; 
  
        #region Variables that need saving & loading; Code that does that.-----------
---------------------- 
  
        protected bool useSteele = false; 
        protected double steele_size = 2.46; 
        protected double steele_scale_force = 1; 
  
        private double dt; 
        private double targetDistanceTolerance; 
        private string pullAtomTowardsTarget; 
  
        public void Save(SettingHandler loader) { 
        } 
  
        private void Load(SettingHandler loader) { 
            dt = loader.LoadMember(() => dt); 
            targetDistanceTolerance = loader.LoadMember(() => targetDistanceTolerance
); 
            pullAtomTowardsTarget = loader.LoadMember(() => pullAtomTowardsTarget); 
            useSteele = loader.SettingExists("useSteele"); 
            if(useSteele) { 
                steele_size = loader.LoadMember(() => steele_size); 
                steele_scale_force = loader.LoadMember(() => steele_scale_force); 
            } 
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            double desiredTemperature = 0; 
            desiredTemperature = loader.LoadMember(() => desiredTemperature); 
            desiredVelocity = Simulator.Temperature2Velocity(desiredTemperature, 195.
084); 
        } 
  
        #endregion Variables that need saving & loading; Code that does that.--------
------------------------- 
  
        public Cells cells; 
  
        public Potential(Simulator sim, SettingHandler loader) { 
            x = sim.x; 
            v = sim.v; 
            a = sim.a; 
  
            cells = sim.cells; 
            vSquared = sim.vSquared; 
            Load(loader); 
            atomAdded = x.NumberOfAtoms - 2; 
        } 
  
        public delegate void UpdateDelegate(); 
  
        public delegate void PairHandler(int a1, int a2, MyVector r, double r2); 
  
        public void Update() { 
            for(int atom = 0; atom < a.NumberOfAtoms; atom++) { 
                a[atom].MakeZero(); 
            } 
            pot = 0; 
  
            PreCalculate(); 
            cells.ForAllAtomPairs(HandlePair); 
            PostCalculate(); 
  
            //Calculate the potential energy 
            PE = pot; 
            PE *= peScale; 
  
            //Calculate the kinetic energy and the maximum velocity squared 
            double maxV2 = 0; 
            KE = 0; 
            for(int i = 0; i < x.NumberOfAtoms; i++) { 
                double l2 = v[i].LengthSquared(); 
                vSquared[i] = l2; 
                KE += l2; 
                if(l2 > maxV2) { 
                    maxV = Math.Sqrt(l2);//This can possible be moved out of the loop 
                    maxV2 = l2; 
                } 
            } 
            KE = Simulator.VelocitySquared2Energy(KE, 195.084); 
        } 
        #region helper functions 
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        private double desiredVelocity; 
  
        #endregion helper functions 
  
        #region Variables for the calculation by child class 
  
        protected double pot;//Temporary variable to hold the potential during one st
ep. 
  
        protected double peScale;//scaling factor that needs to be applied to the pot
ential energy 
  
        #endregion Variables for the calculation by child class 
  
        #region extern members that the Potential classes HAVE to impliment. 
  
        protected virtual void PreCalculate() { 
        } 
  
        protected virtual void PostCalculate() { 
        } 
  
        protected virtual void HandlePair(int a1, int a2, MyVector r, double r2) { 
        } 
  
        #endregion extern members that the Potential classes HAVE to impliment. 
    } 
  
    /*Convention: 
     * rN = r^N 
     * r_N = r^-N 
     * R_N = r^-N*R where R is a vector 
     */ 
  
    internal class LennardJones : Potential { 
  
        public LennardJones(Simulator sim, SettingHandler loader) 
            : base(sim, loader) { 
            peScale = 4; 
        } 
  
        protected override void HandlePair(int a1, int a2, MyVector r, double r2) { 
            double r_6 = 1 / (r2 * r2 * r2); 
            double r_12 = r_6 * r_6; 
            double potT = r_12 - (r_6); 
            MyVector force = r * (float)((r_12 - r_6 / 2) / r2); 
  
            pot += potT; 
  
            a[a1] += force; 
            a[a2] -= force; 
        } 
  
        protected override void PreCalculate() { 
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        } 
  
        protected override void PostCalculate() { 
            for(int i = 0; i < x.NumberOfAtoms; i++) { 
                a[i] *= 48; 
            } 
        } 
    } 
  
    internal class ShiftedLennardJones : Potential { 
  
        public ShiftedLennardJones(Simulator sim, SettingHandler loader) 
            : base(sim, loader) { 
            peScale = 4; 
            double cutoffRaduis = 0; 
            cutoffRaduis = loader.LoadMember(() => cutoffRaduis); 
            shift = Math.Pow(cutoffRaduis, -12) - Math.Pow(cutoffRaduis, -6); 
        } 
  
        private double shift; 
  
        protected override void HandlePair(int a1, int a2, MyVector r, double r2) { 
            double r_6 = 1 / (r2 * r2 * r2); 
            double r_12 = r_6 * r_6; 
            double potT = r_12 - (r_6); 
            MyVector force = r * (float)((r_12 - r_6 / 2) / r2); 
  
            //lock(potentialLock)            { 
            pot += potT - shift; 
  
            a[a1] += force; 
            a[a2] -= force; 
        } 
  
        protected override void PreCalculate() { 
        } 
  
        protected override void PostCalculate() { 
            for(int i = 0; i < x.NumberOfAtoms; i++) { 
                a[i] *= 48; 
            } 
        } 
    } 
  
    //---------------------------------------------------------------------------- 
    internal struct NearestNeighbour { 
  
        //The purpose of this structure is to cache the data during the calculation. 
  
        public NearestNeighbour(int nn, MyVector R2_5) { 
            index = nn; 
            aDivr_8multRdivr2 = R2_5; 
        } 
  
        public int index;// = the index of the neighbour atom 
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        public MyVector aDivr_8multRdivr2;// (a/r)^m * R/(r^2)  = R / r^(m+2) * a^m 
    } 
  
    internal class SuttonChenPtInRealUnits : Potential { 
  
        public SuttonChenPtInRealUnits(Simulator sim, SettingHandler loader) 
            : base(sim, loader) { 
            aDivr_10multRdivr2 = new MyVector[x.NumberOfAtoms]; 
            aDivr_8 = new double[x.NumberOfAtoms]; 
            aDivr_10 = new double[x.NumberOfAtoms]; 
  
            neigbours = new List<NearestNeighbour>[x.NumberOfAtoms]; 
  
            for(int i = 0; i < x.NumberOfAtoms; i++) { 
                aDivr_10multRdivr2[i] = MyVector.Zero; 
                neigbours[i] = new List<NearestNeighbour>(); 
            } 
  
            //------------------------------- 
            peScale = 1; 
  
            double mass = 195.084; 
            double avogadro = 6.02214179e23; 
            double electronCharge = 1.602176565e-19; 
            forceConversionFactor = electronCharge * avogadro / (10 * mass);// ~ 9600
/mass 
  
            if(useSteele) { 
                steelePot = new SteelePotential(steele_size, steele_scale_force); 
            } 
        } 
  
        private SteelePotential steelePot; 
  
        private double forceConversionFactor; 
  
        #region material specific parameters 
  
        private const double n = 10; 
        private const double m = 8; 
        private const double c = 34.408; 
        private const double a_lattice = 3.92; 
        private const double a_lattice2 = a_lattice * a_lattice; 
        private const double epsilon = 1.9833e-2; 
        private const double ft1scale = -epsilon * n; 
        private const double ft2scale = epsilon * c * m / 2; 
        private const double cmOver2 = c * m / 2; 
  
        #endregion material specific parameters 
  
        private MyVector[] aDivr_10multRdivr2;//First part in the force calculation. 
        private double[] aDivr_8;//This is the p_i terms. 
        private double[] aDivr_10;//This is the first part for the potential calculat
ion. 
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        private List<NearestNeighbour>[] neigbours; 
        /* All the lists should probably be changed to arrays for optimisation. 
         * (http://www.codeproject.com/Articles/340797/Number-crunching-Why-you-
should-never-ever-EVER-us) 
         */ 
  
        protected override void PreCalculate() { 
  
            //Clear all the arrays. 
            for(int i = 0; i < x.NumberOfAtoms; i++) { 
                aDivr_10multRdivr2[i].MakeZero(); 
                aDivr_8[i] = 0; 
                aDivr_10[i] = 0; 
                neigbours[i].Clear(); 
            } 
        } 
  
        protected override void HandlePair(int a1, int a2, MyVector r, double r2) { 
            /* Using multiplication and addition instead of power because of speed 
             * {intel optimisation manual p 762-
763; http://www.intel.com/content/dam/doc/manual/64-ia-32-architectures-optimization-
manual.pdf, 30 aug 2012, 
             * software developers manual http://download.intel.com/products/processo
r/manual/325462.pdf} 
             * */ 
            double r_2 = 1 / r2; 
            double ar_2 = a_lattice2 * r_2;// (a/r)^2 
            double ar_4 = ar_2 * ar_2; 
            double ar_8 = ar_4 * ar_4; 
            double ar_10 = ar_8 * ar_2; 
  
            //r2_n is a length so it will be the same in both directions. 
            aDivr_8[a1] += ar_8; 
            aDivr_8[a2] += ar_8; 
  
            aDivr_10[a1] += ar_10; 
            aDivr_10[a2] += ar_10; 
  
            //R2_n is a vector so its direction will reverse for the second atom. 
            MyVector term1 = r * (ar_10 * r_2);// (a/r)^n * R/(r^2) 
            aDivr_10multRdivr2[a1] += term1; 
            aDivr_10multRdivr2[a2] -= term1; 
  
            MyVector term2 = r * (ar_8 * r_2);// (a/r)^m * R/(r^2) 
            neigbours[a1].Add(new NearestNeighbour(a2, term2)); 
            neigbours[a2].Add(new NearestNeighbour(a1, -term2)); 
        } 
  
        protected override void PostCalculate() { 
            double[] pSqrtUnder1 = new double[x.NumberOfAtoms]; 
            for(int i = 0; i < pSqrtUnder1.Length; i++) { 
                if(aDivr_8[i] == 0) { 
                    pSqrtUnder1[i] = 0;//This means there was no nearest neighbours 
                } else { 
                    pSqrtUnder1[i] = 1 / Math.Sqrt(aDivr_8[i]); 
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                } 
            } 
  
            //------------------------------- 
  
            for(int atom1 = 0; atom1 < x.NumberOfAtoms; atom1++) { 
                MyVector sum2 = MyVector.Zero;// sum { (1/sqrt_p_i + 1/sqrt_p_j) (a/r
)^m R/(r^2) } 
                for(int nn = 0; nn < neigbours[atom1].Count; nn++) { 
                    sum2 += (pSqrtUnder1[atom1] + pSqrtUnder1[neigbours[atom1][nn].in
dex]) 
                        * neigbours[atom1][nn].aDivr_8multRdivr2; 
                } 
  
                a[atom1] = -epsilon * (-
n * aDivr_10multRdivr2[atom1] + cmOver2 * sum2);//now a = f in eV/A 
                pot += 0.5 * aDivr_10[atom1] - c * Math.Sqrt(aDivr_8[atom1]); 
  
                if(atom1 == atomAdded) {//Save info for special atom 
                    potentialForAtomAdded = 0.5 * aDivr_10[atom1] -
 c * Math.Sqrt(aDivr_8[atom1]); 
                    potentialForAtomAdded *= epsilon; 
                } 
            } 
            pot *= epsilon;//don't have to do it for each atom now. 
  
            if(useSteele) { 
                double potTemp = 0; 
  
                for(int atom = 0; atom < Simulator.NUMBER_OF_ATOMS_CURRENTLY_AFFECTIN
G_SIMULATION; atom++) { 
                    a[atom] += steelePot.PotentialAndForceAt(x[atom], out potTemp);//
Apply Steele potential. 
                    pot += potTemp; 
                    if(x[atom].z > 30 && v[atom].z > 0) { 
                        if(v[atom].z > 20) { 
                            v[atom].z *= -0.9; 
                        } else { 
                            v[atom].z *= -1; 
                        } 
                    } 
                } 
            } 
  
            for(int atom = 0; atom < a.NumberOfAtoms; atom++) { 
                a[atom] *= forceConversionFactor;//a=f/m; 
            } 
        } 
    } 
    public class SteelePotential { 
  
        //Possible improvements: 
        // Add lookup for a*s1 + b*s2. Savings would probably be very small. 
        // Move common sine calculations out of the derivatives. This would probably 
make it about 15% faster. 
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        public SteelePotential(double steele_size = 2.46, double steele_scale_force =
 1) { 
            oneOverA = 1 / steele_size; 
            epc *= steele_scale_force; 
        } 
  
        public MyVector PotentialAndForceAt(MyVector v, out double potentialForAtom) 
{ 
            double x = v.x * oneOverA;//scaled for the first part to 
            double y = v.y * oneOverA;// the projection to s1 and s2 
            double z = v.z * oneOverSigmapc;//scaled because of z* 
            double s1, s2; 
            xy2s(x, y, out  s1, out  s2); 
  
            double[] EiVal = { E[0](z), E[1](z), E[2](z), E[3](z), E[4](z), E[5](z) }
; 
            double[] fVal = { fscale[0] * f[0](s1, s2), fscale[1] * f[1](s1, s2), fsc
ale[2] * f[2](s1, s2), fscale[3] * f[3](s1, s2), fscale[4] * f[4](s1, s2), fscale[5] 
* f[5](s1, s2) }; 
            double[] ds1fVal = { 0, dsfscale[1] * ds1f[1](s1, s2), dsfscale[2] * ds1f
[2](s1, s2), dsfscale[3] * ds1f[3](s1, s2), dsfscale[4] * ds1f[4](s1, s2), dsfscale[5
] * ds1f[5](s1, s2) }; 
            double[] ds2fVal = { 0, dsfscale[1] * ds2f[1](s1, s2), dsfscale[2] * ds2f
[2](s1, s2), dsfscale[3] * ds2f[3](s1, s2), dsfscale[4] * ds2f[4](s1, s2), dsfscale[5
] * ds2f[5](s1, s2) }; 
  
            double potential = 0; 
            for(int i = 0; i < 6; i++) { 
                potential += fVal[i] * EiVal[i]; 
            } 
  
            double fx = 0; 
            for(int i = 1; i < 6; i++) { 
                fx += EiVal[i] * ds2fVal[i]; 
            } 
  
            double fy = 0; 
            for(int i = 1; i < 6; i++) { 
                fy += EiVal[i] * (ds1fVal[i] - 0.5 * ds2fVal[i]) * yscale; 
            } 
  
            double fz = 0; 
            for(int i = 0; i < 6; i++) { 
                fz += dE[i](z) * fVal[i] * oneOverA; 
            } 
  
            potentialForAtom = potential * epc; 
            return new MyVector(-fx * epc, -fy * epc, -fz * epc); 
        } 
  
        private double yscale = 1 / (Math.Sqrt(0.75)); 
        private const double oneOverPi = 1 / Math.PI; 
        private const double sigmapc = 2.905; 
        private const double oneOverSigmapc = 1 / sigmapc; 
        private double oneOverA = 1 / 2.46; 
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        private double epc = 256 * 8.617e-5; 
  
        private void xy2s(double x, double y, out double s1, out double s2) { 
            s1 = y * yscale; 
            s2 = x - 0.5 * s1; 
  
            //Now scale to be able to put into the simplified f_i functions. 
            s1 *= Math.PI; 
            s2 *= Math.PI; 
        } 
  
        private Func<double, double>[] E = { 
z=> 0.0096486935771095821978704520915926*z - 0.059521754060441273148640561885259 - 
    26.471611160744238588904408970848*Math.Pow(z -
 0.12184210937936890140065315790707, -3.5322725491679580755999268149026) + 
    42.54142210882071140076732262969*Math.Pow(z -
 0.002827972081479003009507611210438, -9.9288944978424673593053739750758), 
  
z=> 0.0026771860330833561689156674390233*z - 0.0080001335758203631631779728650145 + 
    9085.2083334329945500940084457397*Math.Pow(z + 0.49598067010776697438600990608393
, -21.573040985022547744165422045626), 
  
z=> 0.00052913207800193648184389205724187*z - 0.0015240825479119592469889887809131 + 
    399854.43656259006820619106292725*Math.Pow(z + 0.67316046205391855128397082808078
, -30.62437989629312085071433102712), 
  
z=> 0.00030380309088065782186990904101265*z - 0.00086694009177576891386762802937938 + 
    3532181.0755637940019369125366211*Math.Pow(z + 0.74515058420753998991159505749238
, -34.669004507003592152614146471024), 
  
z=> 0.000086304674668712965160920214113816*z -
 0.00024179075872386040536865525751864 + 
    3172851494.797443866729736328125*Math.Pow(z + 0.91574980579651088508086331785307,
 -45.53082920002866273989639012143), 
  
z=> 0.000046458000261504449335259181452784*z -
 0.00012959543941364331121751662934116 + 
    247826959323.0172119140625*Math.Pow(z + 1.0001007632683678316709574573906, -
51.877749048159977007799170678481) 
        }; 
  
        private Func<double, double>[] dE = { 
z=> 93.504945435345021246081687042533*Math.Pow(z -
 0.12184210937936890140065315790707, -4.5322725491679580755999268149026) - 
    422.38929190666385613181726974841*Math.Pow(z -
 0.002827972081479003009507611210438, -
3076210324253425/281474976710656) + 0.0096486935771095821978704520915926, 
  
z=> 0.0026771860330833561689156674390233 -
 195995.5717346183881336514873526*Math.Pow(z + 0.49598067010776697438600990608393, -
22.573040985022547744165422045626), 
z=> 0.00052913207800193648184389205724187 -
 12245294.168510996303070072279607*Math.Pow(z + 0.67316046205391855128397082808078, -
31.62437989629312085071433102712), 
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z=> 0.00030380309088065782186990904101265 -
 122457201.62827396995265461263811*Math.Pow(z + 0.74515058420753998991159505749238, -
35.669004507003592152614146471024), 
z=> 0.000086304674668712965160920214113816 -
 144462559486.67804790978443904502*Math.Pow(z + 0.91574980579651088508086331785307, -
46.53082920002866273989639012143), 
z=> 0.000046458000261504449335259181452784 -
 12856704803128.037505266833196187*Math.Pow(z + 1.0001007632683678316709574573906, -
52.877749048159977007799170678481), 
        }; 
  
        private double[] fscale = { 1, -2, 4, -2, -2, 4 }; 
        private double[] dsfscale = { 1, 4 * Math.PI, -
8 * Math.PI, 8 * Math.PI, 4 * Math.PI, -24 * Math.PI }; 
  
        private Func<double, double, double>[] f = { 
(s1,s2)=> 1,//This is to align the indexes of f and E. 
(s1,s2)=> Math.Cos(2*s1) + Math.Cos(2*s2) + Math.Cos(2*(s1 + s2)), 
(s1,s2)=> Math.Cos(2*s1 - 2*s2) + Math.Cos(2*s1 + 4*s2) + Math.Cos(4*s1 + 2*s2), 
(s1,s2)=> Math.Cos(4*s1) + Math.Cos(4*s2) + Math.Cos(4*s1 + 4*s2), 
(s1,s2)=> Math.Cos(2*s1 + 6*s2) + Math.Cos(6*s1 + 2*s2) + Math.Cos(4*s1 + 6*s2) + Mat
h.Cos(6*s1 + 4*s2) + Math.Cos(2*s1 - 4*s2) + Math.Cos(4*s1 - 2*s2), 
(s1,s2)=> Math.Cos(6*s1 + 6*s2) + Math.Cos(6*s1) + Math.Cos(6*s2) 
        }; 
  
        private Func<double, double, double>[] ds1f = { 
(s1,s2)=> 1, 
(s1,s2)=> Math.Sin(2*s1) + Math.Sin(2*s1 + 2*s2), 
(s1,s2)=> Math.Sin(2*s1 - 2*s2) + Math.Sin(2*s1 + 4*s2) + 2*Math.Sin(4*s1 + 2*s2), 
(s1,s2)=> Math.Sin(4*s1) + Math.Sin(4*s1 + 4*s2), 
(s1,s2)=> Math.Sin(2*s1 + 6*s2) + 3*Math.Sin(6*s1 + 2*s2) + 2*Math.Sin(4*s1 + 6*s2) +
 3*Math.Sin(6*s1 + 4*s2) + Math.Sin(2*s1 - 4*s2) + 2*Math.Sin(4*s1 - 2*s2), 
(s1,s2)=> Math.Sin(6*s1 + 6*s2) + Math.Sin(6*s1) 
        }; 
  
        private Func<double, double, double>[] ds2f = { 
(s1,s2)=> 1, 
(s1,s2)=> Math.Sin(2*s2) + Math.Sin(2*s1 + 2*s2), 
(s1,s2)=> Math.Sin(2*s1 - 2*s2) + 2*Math.Sin(2*s1 + 4*s2) + Math.Sin(4*s1 + 2*s2), 
(s1,s2)=> Math.Sin(4*s2) + Math.Sin(4*s1 + 4*s2), 
(s1,s2)=> 3*Math.Sin(2*s1 + 6*s2) + Math.Sin(6*s1 + 2*s2) + 3*Math.Sin(4*s1 + 6*s2) +
 2*Math.Sin(6*s1 + 4*s2) - 2*Math.Sin(2*s1 - 4*s2) - Math.Sin(4*s1 - 2*s2), 
(s1,s2)=> Math.Sin(6*s1 + 6*s2) + Math.Sin(6*s2) 
        }; 
    } 
} 
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Cells 

 

The cell structure as implemented in ‘Cells.cs’ is: 

 

using System; 
using System.Collections.Generic; 
using System.Linq; 
using FileUtils; 
using MyStuff; 
  
namespace MD_Simulation { 
  
    public class Cells { 
        #region variables and accessors 
  
        #region Variables that need saving & loading; Code that does that.-----------
---------------------- 
  
        private double cellSize; 
        private int xcellCount, ycellCount, zcellCount; 
        private double xWrap, yWrap, zWrap; 
        private double cutoffRaduis; 
  
        public void Save(SettingHandler loader) { 
            loader.SaveMember(() => cellSize); 
  
            loader.SaveMember(() => xcellCount); 
            loader.SaveMember(() => ycellCount); 
            loader.SaveMember(() => zcellCount); 
  
            loader.SaveMember(() => xWrap); 
            loader.SaveMember(() => yWrap); 
            loader.SaveMember(() => zWrap); 
  
            loader.SaveMember(() => cutoffRaduis); 
        } 
  
        private void Load(SettingHandler loader) { 
            cellSize = loader.LoadMember(() => cellSize); 
  
            xcellCount = loader.LoadMember(() => xcellCount); 
            ycellCount = loader.LoadMember(() => ycellCount); 
            zcellCount = loader.LoadMember(() => zcellCount); 
  
            xWrap = loader.LoadMember(() => xWrap); 
            yWrap = loader.LoadMember(() => yWrap); 
            zWrap = loader.LoadMember(() => zWrap); 
  
            cutoffRaduis = loader.LoadMember(() => cutoffRaduis); 
        } 
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        #endregion Variables that need saving & loading; Code that does that.--------
------------------------- 
  
        #region nearest neigbours list 
  
        private MyVector[] nearestNeighbours;//index offsets to nearest neighbour cel
ls 
  
        private void InitializeNearestNeighbours() { 
            int i = 0; 
            nearestNeighbours = new MyVector[13]; 
            nearestNeighbours[i++] = new MyVector(0, 0, 1); 
            nearestNeighbours[i++] = new MyVector(0, 1, -1); 
            nearestNeighbours[i++] = new MyVector(0, 1, 0); 
            nearestNeighbours[i++] = new MyVector(0, 1, 1); 
            nearestNeighbours[i++] = new MyVector(1, -1, -1); 
            nearestNeighbours[i++] = new MyVector(1, -1, 0); 
            nearestNeighbours[i++] = new MyVector(1, -1, 1); 
            nearestNeighbours[i++] = new MyVector(1, 0, -1); 
            nearestNeighbours[i++] = new MyVector(1, 0, 0); 
            nearestNeighbours[i++] = new MyVector(1, 0, 1); 
            nearestNeighbours[i++] = new MyVector(1, 1, -1); 
            nearestNeighbours[i++] = new MyVector(1, 1, 0); 
            nearestNeighbours[i++] = new MyVector(1, 1, 1); 
        } 
  
        #endregion nearest neigbours list 
  
        private VectorArray atomPositions;//the x vector array from simulation. 
        private List<int>[, ,] cells;//There has to be at least 3 cells in all direct
ions to prevent serious wrap around artifacts. 
  
        private List<int> atomsNotInCells; 
  
        private readonly double halfXWrap, halfYWrap, halfZWrap; 
        private double minWrapDist2; 
  
        private double cutoffRaduisSquared;//Critical raduis squared 
        private Potential.PairHandler HandlePair; 
  
        private int this[int x, int y, int z] { 
            get { return cells[x, y, z].Count(); } 
            set { cells[x, y, z].Add(value); } 
        } 
  
        private int this[int x, int y, int z, int atomIndex] { 
            get { return cells[x, y, z][atomIndex]; } 
            set { cells[x, y, z][atomIndex] = value; } 
        } 
  
        #endregion variables and accessors 
  
        #region init 
  
        public Cells(Simulator sim, SettingHandler loader) { 
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            InitializeNearestNeighbours(); 
  
            atomPositions = sim.x; 
  
            Load(loader); 
  
            //Calculate values & init 
            cutoffRaduisSquared = cutoffRaduis * cutoffRaduis; 
  
            halfXWrap = xWrap / 2; 
            halfYWrap = yWrap / 2; 
            halfZWrap = zWrap / 2; 
  
            minWrapDist2 = Math.Min(xWrap, yWrap) - cutoffRaduis; 
            minWrapDist2 *= minWrapDist2; 
  
            //Allocate space for arrays 
            atomsNotInCells = new List<int>(); 
            cells = new List<int>[xcellCount, ycellCount, zcellCount]; 
            for(int xcell = 0; xcell < xcellCount; xcell++) { 
                for(int ycell = 0; ycell < ycellCount; ycell++) { 
                    for(int zcell = 0; zcell < zcellCount; zcell++) { 
                        cells[xcell, ycell, zcell] = new List<int>(); 
                    } 
                } 
            } 
        } 
  
        #endregion init 
  
        #region functions to go through all pairs 
  
        private delegate void CellHandler(); 
  
        public void ForAllAtomPairs(Potential.PairHandler _HandlePair) { 
  
            //This is the function that finds all the pairs of atoms that are interac
ting. 
            HandlePair = _HandlePair; 
            for(int xcell = 0; xcell < xcellCount; xcell++) { 
                for(int ycell = 0; ycell < ycellCount; ycell++) { 
                    ForAllZCells(xcell, ycell); 
                } 
            } 
  
            //Now for atoms not in the cells. 
            for(int atom = 0; atom < atomsNotInCells.Count; atom++) { 
                for(int compareAtom = atom + 1; compareAtom < atomsNotInCells.Count; 
compareAtom++) { 
                    HandlePair_Check(atomsNotInCells[atom], atomsNotInCells[compareAt
om]); 
                } 
            } 
        } 
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        public void ForAllZCells(int xcell, int ycell) { 
            bool onEdge = false; 
            onEdge = onEdge || xcell == 0 || xcell == xcellCount - 1; 
            onEdge = onEdge || ycell == 0 || ycell == ycellCount - 1; 
            for(int zcell = 0; zcell < zcellCount; zcell++) { 
                if(cells[xcell, ycell, zcell].Count == 0) { 
                    continue; 
                } 
                bool onEdge2 = onEdge || zcell == 0 || zcell == zcellCount - 1; 
  
                HandlePairsInCell(xcell, ycell, zcell, onEdge2); 
                HandleNearestNeighbours(xcell, ycell, zcell, onEdge2); 
            } 
        } 
  
        private void HandlePairsInCell(int xcell, int ycell, int zcell, bool onEdge) 
{ 
  
            //Find all interacting pairs in a cell. 
            for(int atom = 0; atom < cells[xcell, ycell, zcell].Count; atom++) {//for
 all atoms in current cell 
                for(int compareAtom = atom + 1; compareAtom < cells[xcell, ycell, zce
ll].Count; compareAtom++) {//for compareAtom in cell 
                    HandlePair_Check(this[xcell, ycell, zcell, atom], 
                                     this[xcell, ycell, zcell, compareAtom]); 
  
                    //have to do wrap checking for atom in same cell becuase it can m
ove out of cell without an update 
                } 
            } 
        } 
  
        private void HandleNearestNeighbours(int xcell, int ycell, int zcell, bool on
Edge) { 
  
            //Find all interacting pairs between this cell and its nearest neighbours
. 
  
            //if cell is on edge 
            if(onEdge) { 
                for(int nn = 0; nn < nearestNeighbours.Length; nn++) {//for compareAt
om in nearest neigbour cell 
                    int xc = xcell + (int)nearestNeighbours[nn].x; 
                    int yc = ycell + (int)nearestNeighbours[nn].y; 
                    int zc = zcell + (int)nearestNeighbours[nn].z; 
  
                    WrapCellIndex(ref xc, xcellCount); 
                    WrapCellIndex(ref yc, ycellCount); 
                    WrapCellIndex(ref zc, zcellCount); 
  
                    if(cells[xc, yc, zc].Count == 0) { 
                        continue;//No atoms in the neighbouring cell. 
                    } 
                    for(int atom = 0; atom < cells[xcell, ycell, zcell].Count; atom++
) {//for all atoms in current cell 
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                        for(int compareAtom = 0; compareAtom < cells[xc, yc, zc].Coun
t; compareAtom++) {//for all atoms in neighbouring cell 
                            HandlePair_Check(this[xcell, ycell, zcell, atom], 
                                             this[xc, yc, zc, compareAtom]); 
                        } 
                    } 
                } 
  
                for(int atom = 0; atom < cells[xcell, ycell, zcell].Count; atom++) {/
/for all atoms in current cell 
                    for(int compareAtom = 0; compareAtom < atomsNotInCells.Count; com
pareAtom++) {//for compareAtom in list 
                        HandlePair_Check(this[xcell, ycell, zcell, atom], atomsNotInC
ells[compareAtom]); 
                    } 
                } 
            } else { 
                for(int nn = 0; nn < nearestNeighbours.Length; nn++) {//for compareAt
om in nearest neigbour cell 
                    int xc = xcell + (int)nearestNeighbours[nn].x; 
                    int yc = ycell + (int)nearestNeighbours[nn].y; 
                    int zc = zcell + (int)nearestNeighbours[nn].z; 
  
                    if(cells[xc, yc, zc].Count == 0) { 
                        continue; 
                    } 
                    for(int atom = 0; atom < cells[xcell, ycell, zcell].Count; atom++
) {//for all atoms in current cell 
                        for(int compareAtom = 0; compareAtom < cells[xc, yc, zc].Coun
t; compareAtom++) { 
                            HandlePair_Check(this[xcell, ycell, zcell, atom], 
                                             this[xc, yc, zc, compareAtom]); 
                        } 
                    } 
                } 
            } 
        } 
  
        protected void HandlePair_Check(int a1, int a2, bool doWrapAroundCheck = true
) { 
  
            //Checks whether atoms are interacting. 
            MyVector r = atomPositions[a1] - atomPositions[a2]; 
  
            double r2 = r.LengthSquared(); 
            if(r2 > cutoffRaduisSquared) { 
                if(!doWrapAroundCheck) { 
                    return; 
                } 
                if(r2 >= minWrapDist2) { 
                    ForceWrap(r); 
  
                    r2 = r.LengthSquared(); 
                    if(r2 > cutoffRaduisSquared) 
                        return; 
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                } else { 
                    return; 
                } 
            } 
  
            //Atoms are interacting so pass the details to the potential calculation. 
            HandlePair(a1, a2, r, r2); 
        } 
  
        #endregion functions to go through all pairs 
  
        #region wrapping functions 
  
        private void WrapCellIndex(ref int index, int size) { 
            if(index < 0) { 
                index += size; 
            } else if(index >= size) { 
                index -= size; 
            } 
        } 
  
        public void WrapAll() { 
            for(int atom = 0; atom < MD_Simulation.Simulator.NUMBER_OF_ATOMS_CURRENTL
Y_AFFECTING_SIMULATION; atom++) { 
                ForceWrap(atomPositions[atom]); 
            } 
        } 
  
        private void ForceWrap(MyVector v) { 
            WrapPosition(ref v.x, halfXWrap); 
            WrapPosition(ref v.y, halfYWrap); 
            WrapPosition(ref v.z, halfZWrap); 
        } 
  
        private void WrapPosition(ref double pos, double bound) { 
            if(pos < -bound) { 
                pos += bound + bound; 
            } else if(pos > bound) { 
                pos -= (bound + bound); 
            } 
        } 
  
        #endregion wrapping functions 
  
        #region other functions 
  
        public void Update() { 
  
            //Updates the cell structure 
            //The atoms not inserted into the cell structure are ignored in the inter
actions but taken 
            //into account in the kinetic energy calculations so that atoms can be in
troduced easier. 
            //NOTE: The cell structure is centered around 0,0,0. The simulation shoul
d also be centered there. 



95 
 

            Clear(); 
            for(int atom = 0; atom < MD_Simulation.Simulator.NUMBER_OF_ATOMS_CURRENTL
Y_AFFECTING_SIMULATION; atom++) { 
                int xt = PositionToCellIndex(atomPositions[atom].X, xcellCount); 
                int yt = PositionToCellIndex(atomPositions[atom].Y, ycellCount); 
                int zt = PositionToCellIndex(atomPositions[atom].Z, zcellCount); 
  
                if((xt < 0 || yt < 0 || zt < 0 || 
                    xt >= (xcellCount) || 
                    yt >= (ycellCount) || 
                    zt >= (zcellCount))) { 
                    atomsNotInCells.Add(atom); 
                } else { 
                    this[xt, yt, zt] = atom; 
                } 
            } 
        } 
  
        private int PositionToCellIndex(double pos, int count) { 
            double index = (pos + count * cellSize / 2) / cellSize; 
            return (int)index; 
        } 
  
        private void Clear() { 
            atomsNotInCells.Clear(); 
            for(int xcell = 0; xcell < xcellCount; xcell++) { 
                for(int ycell = 0; ycell < ycellCount; ycell++) { 
                    for(int zcell = 0; zcell < zcellCount; zcell++) { 
                        cells[xcell, ycell, zcell].Clear(); 
                    } 
                } 
            } 
        } 
  
        #endregion other functions 
    } 
} 
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Performing fit for Steel potential 

 

The Matlab® scritp used to perform the fitting for the Steele potential is provided in this section. 

The equations and their derivatives were also printed in order for to be used in the c# program. 

This was done with the following code. 

 

function  SteelePotential()  
clc  
clear  
close all  
  
%All the Pt-C parameters are global and defined her e  
% so that they can easily be used everywhere.  
    global  a1 sigmapc dz q epc as A E0 Ei Fi X Y x y z s1 s2 fz  
    a1=2.46;  
    sigmapc=2.905;  
    dz = 1.38; %This is dz*  
    q=2;  
    epc=256*8.617e-5;  
    as=(sqrt(3)/2); %This is a_s*  
    A = sigmapc / a1;     
     
    E0 = getfE0();  
    Ei = getfEi();  
    Fi = getfFi();  
  
    z = 0.5:.01:4;  
     
    X=-.2:.005:1.2;  
    X = X.*2;  
    Y=X;  
    [x,y] = meshgrid(X,Y);  
     
    [s1,s2] = toParms(x,y);  
  
    fEi_n = getfEi();  
    fittingStructure = { %{function2FitTo function2FitWith zeroCrossing 
startValue}  
        {getfE0(), @ffitLinear2, 1.0071603744, [-2. 64716111607442390e+001 -
1.21842109379368900e-001 -3.53227254916795810e+000 4.25414221088207110e+001 -
2.82797208147900300e-003 -9.92889449784246740e+000 9.64869357710958220e-003 -
5.95217540604412730e-002]};  
        {fEi_n{1}, @ffitLinear, 1.6900000000, [9.08 520833343299460e+003 
4.95980670107766970e-001 -2.15730409850225480e+001 2.67718603308335620e-003 -
8.00013357582036320e-003]};  
        {fEi_n{2}, @ffitLinear, 1.3264898345, [3.99 854436562590070e+005 
6.73160462053918550e-001 -3.06243798962931210e+001 5.29132078001936480e-004 -
1.52408254791195920e-003]};  
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        {fEi_n{3}, @ffitLinear, 1.2458359721, [3.53 218107556379400e+006 
7.45150584207539990e-001 -3.46690045070035920e+001 3.03803090880657820e-004 -
8.66940091775768910e-004]};  
        {fEi_n{4}, @ffitLinear, 1.0394434840, [3.17 285149479744390e+009 
9.15749805796510890e-001 -4.55308292000286630e+001 8.63046746687129650e-005 -
2.41790758723860410e-004]};  
        {fEi_n{5}, @ffitLinear, 1.0000000000, [2.47 826959323017210e+011 
1.00010076326836780e+000 -5.18777490481599770e+001 4.64580002615044490e-005 -
1.29595439413643310e-004]}  
        };  
     
    DoFit(fittingStructure);  
    fprintf( '\n\nprinting all for c#\n\n' )  
    PrintFunctionsForCSharp(fittingStructure) %Remember: s1&s2 are to be 
divided by pi and z by sigmapc. Also the derivative s of the sines should be 
multiplied by pi  
end  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Utility functions  
  
function  [s1,s2] = toParms(x,y)  
    global  a1  
    %Projection from x,y coordinates into crystal coord inates.  
    s1 = y/sqrt(0.75);  
    s2 = x-0.5*s1;  
    %Taking just the decimal part because s1 and s2 are  between 0 and 1.  
    s1 = s1-fix(s1);  
    s2 = s2-fix(s2);  
end  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%The basic function parts  
  
function  E0 = getE0()  
    global  a1 sigmapc dz q epc as A  
    syms z n  
  
    E0_preConstant = 2*pi*q*A^6/as;  
    E0_sum = 0;  
    E0_partial_sum = (2/5)*A^6/((z+n*dz)^10)-(1/(z+ n*dz))^4;  
    for  i=0:25  
        E0_sum = E0_sum + subs(E0_partial_sum, n, i );  
    end  
    E0_sum = E0_sum * E0_preConstant;  
    E0_sum = simplify(E0_sum);  
  
    E0 = E0_sum;  
end  
  
function  Ei = getEi()  
    global  a1 sigmapc dz q epc as A  
    syms s1  s2  z gi  n 
  
    gi_vals = (2*pi)*[2/sqrt(3), 2, 4/sqrt(3), 2*sq rt(7/3), 6/sqrt(3)]; % 
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    Ei_preConstant = 2*pi*(A^6)/as;  
    Ei_part = (A^6/30)*(gi/(2*z))^5*besselk(5,gi*z) -
2*(gi/(2*z))^2*besselk(2,gi*z);  
  
    for  i = 1:5  
        Ei{i} = subs(Ei_preConstant*Ei_part,gi,gi_v als(i));  
    end  
end  
  
function  Fi = getFi()  
    syms s1  s2   
  
    f = 2*[ ...  
     - (cos(2*pi*s1) + cos(2*pi*s2) + cos(2*pi*(s1 + s2))) ; ...  
     2*(cos(2*pi*(s1 + 2*s2)) + cos(2*pi*(2*s1 + s2 )) + cos(2*pi*(s1 - s2))) 
; ...  
     - (cos(4*pi*s1 ) + cos(4*pi*s2 ) + cos(4*pi*(s 1 + s2 ))) ; ...  
     - (cos(2*pi*(3*s1 + s2)) + cos(2*pi*(s1 + 3*s2 )) + cos(2*pi*(3*s1 + 
2*s2)) + cos(2*pi*(2*s1 + 3*s2) ) + cos(2*pi*(s1 - 2*s2)) + cos(2*pi*(2*s1 - 
s2))) ; ...  
     2*(cos(6*pi*s1 ) + cos(6*pi*s2) + cos(6*pi*(s1  + s2))) ];  
  
    for  i=1:5  
        Fi{i} = f(i);  
    end  
end  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Getting the function handles to the parts  
  
function  fE0 = getfE0()  
    syms z  
    fE0 = @(height)subs(getE0(),z,height);  
end  
  
function  fEi = getfEi()  
    syms z  
    Ei = getEi();  
    for  i = 1:5  
        fEi{i} = @(height)subs(Ei{i},z,height);  
    end  
end  
  
function  fFi = getfFi()  
    syms s1  s2   
    Fi = getFi();  
    for  i = 1:5  
        fFi{i} = @(x,y)subs(Fi{i}, {s1,s2}, {x,y});  
    end  
end  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Getting the function handles to the derivatives  
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function  [fdzE0,dzE0] = getdzE0()  
    syms z  
    temp = getE0();  
    dzE0 = diff(temp,z);  
    fdzE0 = @(height)subs(dzE0,z,height);  
end  
  
function  [fdzEi,dzEi] = getdzEi()  
    syms z  
    temp = getEi();  
    for  i = 1:5  
        dzEi{i} = diff(temp{i},z);  
        fdzEi{i} = @(height)subs(dzEi{i},z,height);  
    end  
end  
  
function  [fds1Fi,ds1Fi] = getds1Fi()  
    syms s1  s2  
    temp = getFi();  
    for  i = 1:5  
        ds1Fi{i} = diff(temp{i},s1);  
        fds1Fi{i} = @(x,y)subs(ds1Fi{i}, {s1,s2}, { x,y});  
    end  
end  
  
function  [fds2Fi,ds2Fi] = getds2Fi()  
    syms s1  s2  
    temp = getFi();  
    for  i = 1:5  
        ds2Fi{i} = diff(temp{i},s2);  
        fds2Fi{i} = @(x,y)subs(ds2Fi{i}, {s1,s2}, { x,y});  
    end  
end  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Performing the fit  
  
function  DoFit(fittingStructure)  
    for  i = 1: length(fittingStructure)  
        finalParms{i} = Fitf(fittingStructure{i}{:} , i);  
    end  
    fprintf( '\n' )  
    for  i = 1: length(finalParms)  
        fprintf( '%f [' ,i-1)  
        fprintf( ' %20.17e' , finalParms{i});  
        fprintf( ']\n' )  
    end  
end  
  
function  parms = Fitf(f, fittingFunction, zeroCrossing, par ms, i)  
    global  z fz  
    fz = f(z);  
    errorFunc = @(parms)Error(parms, fittingFunctio n);  
    startError = errorFunc(parms);  
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    parms = fminsearch(errorFunc, parms, 
optimset( 'MaxFunEvals' ,500000, 'MaxIter' , 50000));  
     
    figure  
    ErrorComparePlot(fz, fittingFunction(parms))  
    subplot(4,1,1),title([ 'E'  int2str(i-1)])  
     
    stopError = errorFunc(parms);  
     
    fprintf( 'start error = %7.4e\n' , startError)  
    fprintf( 'stop error = %7.4e\n' , stopError)  
  
%     fprintf('\n[')  
%     fprintf(' %10.6e', parms);  
%     fprintf('] \n\n')  
end  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Error functions for the fit  
  
function  err = ErrorBetween(fnew)  
    global  z fz  
    err = fnew -fz;  
    err = (err)./(fz+1); %+1 so that the error doesn't explode when f is 
approximately 0  
    err(z>0.7) = err(z>0.7)*1.2; %make the error on the approach count more  
    err(z>0.95&z<2.4) = err(z>0.95&z<2.4)*1.3; %make the error in the minimum 
count more  
    err = sqrt(mean(err.^2)); %calculate the rms error  
end  
  
function  err = Error(parms, fittingFunction)  
    err = ErrorBetween(fittingFunction(parms));  
%     fprintf('err: %7.1e parms:',err);  
%     fprintf(' %7.1e;', parms);  
%     fprintf('\n')  
end  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Functions used in the fit  
  
function  y = ffitLinear(parms)  
    global  z  
    y = 0;  
    i = 0; y = y+ parms(1+i).*(z+parms(2+i)).^parms (3+i);  
    i = 3; y = y+ parms(1+i).*z+parms(2+i);  
end  
  
function  y = ffitLinear2(parms)  
    global  z  
    y = 0;  
    i = 0; y = y+ parms(1+i).*(z+parms(2+i)).^parms (3+i);  
    i = 3; y = y+ parms(1+i).*(z+parms(2+i)).^parms (3+i);  
    i = 6; y = y+ parms(1+i).*z + parms(2+i);  
end  
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
function  ErrorComparePlot(fz, fparm)  
    global  z  
    subplot(4,1,1), plot(z, fz) %original  
    subplot(4,1,2), plot(z, fparm) %fit  
    subplot(4,1,3), plot(z, fparm - fz) %error  
    subplot(4,1,4), plot(z, (fparm - fz)./(fz+1)) %percentage error  
end  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
function  PrintFunctionsForCSharp(fittingStructure)  
    syms s1  s2  
    for  i = 1: length(fittingStructure)  
        fprintf([ '\n\nE'  int2str(i-1)])  
        PrintEi(fittingStructure{i}{4})  
    end  
    Fi = getFi();  
    [fds1Fi,ds1Fi] = getds1Fi();  
    [fds2Fi,ds2Fi] = getds2Fi();  
    for  i = 1:5  
        fprintf([ '\n\nf'  int2str(i)])  
        PrintFi(i, subs(Fi{i},{s1,s2},{s1/pi,s2/pi} ), 
subs(ds1Fi{i},{s1,s2},{s1/pi,s2/pi}), subs(ds2Fi{i} ,{s1,s2},{s1/pi,s2/pi}) )  
        %PrintFi(i, Fi, ds1Fi, ds2Fi)  
    end  
end  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Printing helpers  
  
function  PrintEi(parms)  
    global  sigmapc  
    syms x y z 
    if  length(parms)>5  
        eq = parms(1).*(z+parms(2)).^parms(3) + 
parms(4).*(z+parms(5)).^parms(6) + parms(7).*z + pa rms(8);  
    else  
        eq = parms(1).*(z+parms(2)).^parms(3) + par ms(4).*z + parms(5);  
    end  
    %f = simplify(subs(eq, z, z/sigmapc))  
    f = vpa(simplify(subs(eq, z, z)))  
    df = vpa(simplify(diff(f)))  
end  
  
function  PrintFi(i, Fi, ds1Fi, ds2Fi)  
    f = vpa(simplify(Fi))  
    ds1f = vpa(simplify(ds1Fi)/pi)  
    ds2f = vpa(simplify(ds2Fi)/pi)  
end  
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