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Abstract

Platinum (Pt) is an important catalyst for applicas such as catalytic converters. In this thesis
the formation of platinum nanoparticles was invgsted by means of simulations. For the first
part of the thesis a molecular dynamics simulati@ing the Sutton-Chen potential was
implemented. This program was used for the simarati Low energy structures were found. It
was found that the number of nearest neighboursnapamised in the low energy structures.
The energy barriers that have to be overcome amsatnove around the structures were also
calculated. A model is proposed for the predictodrenergy barriers. The model is useful for
understanding the factors that influence the enbagyiers and thus the mobility of atoms. The
model will also be useful for Monte Carlo simulaiso Simulations were done modelling
physical vapour deposition onto the Pt(111) surface a graphite surface represented by the
Steele potential. It was found that higher tempeest and lower evaporation rates lead to lower
energy structures. The smaller interaction betwien graphite surface and the Pt leads to
structures that have more layers. The parametetiseoSteele potential that determine nearest
neighbour distance and interaction strength betweerand the substrate were adjusted to
simulate other materials. It was found that a misiméetween the nearest neighbour distance of
the substrate and Pt causes an increase in thditymobihe Pt atoms on the surface. The results
of the simulations will enable the choice of suigabubstrate and experimental parameters for

the growth of Pt nanoparticles of desired shapes.



Abstrak

Platinum (Pt) is ‘n belangrike katalis vir toepags soos katalietiese omsitters. In hierdie tesis
word die vorming van platinum nanodeeltjies ondeksdeur middel van simulasies. In die
eerste deel van die tesis word ‘n molekulére dieamisimulasie wat van die Sutton-Chen
potensiaal gebruik maak geimplementeer. Die progegebruik vir simulasies. Lae energie
strukture was gevind. Dit is gevind dat die hoelerl naaste bure in lae energie strukture
gemaksimeer is. Die energieversperrings wat oorknoet word vir atome om langs die
strukture te beweeg is ook bereken. ‘n Model waaririerdie energieversperrings voorspel kan
word, word voorgestel. Die model lig die faktord wiat die energieversperrings en dus die
atoom beweeglikheid beinvioed. Die model sal odkikmaar wees Monte Carlo simulasies.
Simulasies was gemaak vir die opdamping van PtiepPt{111) opperviak en op ‘n grafiet
oppervlak wat met die Steele potensiaal gesimuteddaar is gevind dat hoér temperature en
laer opdampings tempo lei tot laer energie strektdie kleiner interaksie tussen die grafiet
oppervlak en die Pt lei tot strukture wat meer bmyat. Die veranderlikes van die Steele
potensiaal wat die naastebuurafstand en die stedkteinteraksie tussen Pt en die substraat
bepaal was verstel om ander materiale te simuliervas gevind dat ‘n wanaanpassing tussen
die naastebuurafstand van die substraat en Ptrhoegde beweeglikheid van die Pt atome op
die oppervlak veroorsaak. Die resultate van dieukisies gee aanduiding tot die kies van
geskikte substraat en eksperimentele opstellingdiér groei van Pt nanodeeltjies van ‘n

verlangde vorm.
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Chapter 1: Introduction

Platinum (Pt) can be used as a catalyst in catatytnverters in automobiles. The catalytic

converter changes harmful compounds, such as carmmoxide (CO), unburnt hydrocarbons

(HC), and nitrous oxides (NQin the exhaust into less harmful compounds byliakig them

[1]. Better catalysts are required as the requiresnémtthe allowable emissions become more
stringent. In addition it is desirable to decredse price of these catalysts. By using Pt
nanoparticles both these requirements can be nhet.pfice will decrease because less Pt is
required since a nanoparticle contains in the oofler few hundred atoms. The efficiency when

using nanopatrticles will increase because moraserarea is exposed to the harmful gasges [

In this thesis the formation of Pt nanoparticledl We investigated. The investigation was
performed by using molecular dynamic simulationee@dvantage of using simulations is that
more systems can be investigated. More system®beanvestigated with simulations because
more computer time can be obtained with relativeee&ach computer can then do a different
simulation. Performing a large number of experimamith a substance as expensive as Pt would
be impractical. Additionally simulations can be ddor systems that would be very difficult to
do experimentally. Another advantage with simuladigs that more information can be gained
about the movement of the atoms. More informatggdined because all the information from

each step is known precisely.

It is desirable to simulate a system as accuratslpossible. Unfortunately there is a trade-off
between the computational cost and accuracy imalation. This trade-off comes from factors
like:



e System size (number of atoms in the system): usilagger system will resemble the real
world more but computations will be slower,
* Assumptions: using fewer assumptions will be slowean a simulation with more
assumptions, but closer to reality and
» Variables: the size of some variables, like theetstep, influences accuracy and speed
to name a few. It is important that the trade-affs chosen in a way such that the results will be

meaningful and that the simulation is feasibledo d

On the atomic scale atoms are described by Sclyedswave equation (SWE). Simulations
with the SWE will yield the best results. The perhl with this is that such simulations take a
very long time and only small systems and timescalan be simulated. Some simplifying
assumptions (such as assuming that the problerovetie electrons and the nuclei move can be
solved independently of each other) can be ma@aable the simulation of larger systems over
longer timescales3] [4]. The accuracy of these simulations is still atable because molecular
dynamics does not focus on the predictions conagriiie exact behaviour of particles but rather

properties of a whole system.

In molecular dynamics, atoms are treated as clsgarticles moving in a potential field. The
potential field determines the forces on the atamd thus how the atoms will move. Typically
in a molecular dynamics simulation the movements emergies of tens to thousands of atoms

can be simulated for a few nanoseconds.

Another simulation method is Monte Carlo simulasioith Monte Carlo simulations there are
more assumptions but the simulations can be don®fger times and larger systenis [6].
Monte Carlo simulations work by having atoms areghin a structure. An atom then performs a
random jump towards a new position in the structliree probability of a specific jump to occur
is determined by the energy barrier that must gapme in that jump. Thus it is more probable
for a jump to occur if the energy barrier towards hew location is smaller. The barriers for the
Monte Carlo simulations must be found from anotBeurce like molecular dynamics or

experiments.



1.1 Purpose of study

The purpose of this study is to investigate theciacthat determine the size and shape of Pt
nanoparticles. The investigation focused on wiagiplens during the physical vapour deposition
of Pt clusters.

1.2 Layout of thesis

Chapter twodescribes molecular dynamics. It discusses thdlsleamolecular dynamics and

the basic algorithmic concepts.

Chapter threenvestigates small structures of less than temstd’he lowest energy structures
were found. The energy barriers that atoms havevescome as the atoms move around the
structures were also calculated. A model is propaseorder to be able to predict the energy of
the barriers.

Chapter fourinvestigates the deposition of Pt onto a Pt setfdtis is to show the effects of

temperature and deposition rate on the structhsdrm.

Chapter fiveinvestigates the deposition of Pt on a graphitdasa. The deposition rate,

attractive force and size mismatch between thetsatbsand Pt is investigated.

Chapter sixgives a brief discussion of the results.



Chapter 2: Molecular

dynamics simulation details

In a molecular dynamics simulation atoms are teateclassical particles in a potential field. In
order to motivate this from quantum mechanics foewing assumptions are made:

* Itis assumed that the electrons move much falséer the nuclei (the Born-Oppenheimer
assumption). As a result of this assumption theenmnt of the nuclei and electrons can
be regarded as a separate problénThis assumption is justified because the elestro
are so much lighter than the nucleus.

* It is assumed that all the interactions of thetebexs can be captured in a potential. This
potential includes all the interactions betweendleetrons and the nuclei.

» Itis assumed that the atoms can be treated asicdaparticles that move in the potential
field.

With these assumptions the simulation reducesctassical n-body problem in a force field. It is
not possible to solve this n-body problem analjiigcéor a system with more than three

particles. For this reason the trajectories oftadlparticles have to be calculated iteratively.

2.1 Molecular dynamics calculation

The main steps performed during the molecular dycsusimulation are shown iRigure 2.1
The system state is the positions and velocitieslldhe atoms. For the initial system state of a
simulation, the atoms are placed in the positidvad &re described by the starting state of the

experiment which is to be performed. The initialoegty of each atom is calculated from the
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Figure 2.1: Steps in molecular dynamics simulations are showthe left. An example of how

the positions of atoms can be updated is showh@night.

Maxwell-Boltzmann distribution in order that thesgym has the desired temperature. The

accelerationa, for each atom is calculated from the force by gdilewton’s second law,

a=F/m (2.1)
where F is the force on the atom and the mass of the asogivien bym. The force can be
calculated from the potentia8][as follows:

F=4N (2.2)
whereV is the potential. The system is updated by perifogna step with the integrator. There
are restrictions placed on the positions by pecidabundary conditions. The velocities are

controlled by the thermostat in order to keep #regerature at the desired value.



2.2 Potentials

The force as given in (2.2) is a vector field white potential is a scalar field. It is simpler to
communicate the potential. The potential can thenubed to calculate the forces for the

simulation.

All the interactions of the electrons are contaimedhe potential chosen. For this reason it is
important to choose an appropriate potential. Twitergnt types of potential will now be

discussed.

2.2.1Lennard-Jones potential

The Lennard-Jones potential is a pair potentia ihaseful to simulate noble gasses and as a
first approximation for other systems. In a paitgmial the influence between a pair of atoms is
independent of the environment. An advantage afgusi pair potential is that the calculations
are fast because of the simplified model. A disathige of using a pair potential is that a pair

potential will not be accurate for systems wheeeghvironment influences interactions.

The Lennard-Jones potential between atbarsdj, Vii(ij), is given by 9]

VL, (i) = 4¢ {rf] —{rf] (2.3)

where ¢ is the finite distance at which the inter-atomiatgmtial is zeroyr; is the distance

between atoms andj, and ¢ determines the strength of the binding. The patéraind the

contribution from the(a/rij)nterms can be seen Higure 2.2 The first term represents the

repulsion between the atoms and dominates wheattims are too close together. The second

term represents the attraction between the atoms.



1.0 :
12
-------- (alr)
ij
6
N - ===~ ~(alr)
= 5 12 6
S [ (olr,)*(alr)
g |
N
@
B -
c
(0] 0.0
d—
O L
o
©
(D)
N /
© 05k N .
= /
5 ]
pd !
]
I ]
-1.0 1 1 1 1 1 1 1

1 2 3 4
Normalized distance between atomErijo

Figure 2.2: Interaction between the repulsive and attractivente of the Lennard-Jones

potential.

The force from the Lennard-Jones potential canabeutated by using equations (2.1) and (2.2).
The derivation is done in Appendix A. The forcevbatn atoms andj, F,(ij), is given by

L ="r [EJ —%m r 2.4

g |\ B

wherer is the displacement between atdinasd,;.



Table 2.1Sutton-Chen parameters for Pt

parameter value
m 8
n 10
c 34.408
¢ 1.9833x1CF eV
a 3.92 A

2.2.2The Sutton-Chen potential

The Sutton-Chen potential is more suitable forwile metallic atoms like Pt. A potential can be
calculated by using the embedded atom model (EAM)the embedded atom model the
environment is also taken into account when caltigahe interaction between two atoms. This
allows for a much more accurate simulation of ntietadystems. For this investigation the
Sutton-Chen potential was used because it is weddto face centred cubic (fcc) metals like Pt
[10] [11] [12] [13] while the Lennard-Jones is better suited to naasses. The Sutton-Chen

potential for atom is given by

i# \ i

V. (i) = gléz(riJ ~edp ] 2.5)

where

j#i ij

P :z[riJm. (26)

wherer; is the distance between atonandj, a is the length of the unit cell of the fcc metaida
the parametersy, n, ¢ ande¢ are determined by fitting so that the materialhe simulation will
have the same properties as found experimentafig. vRlues of these parameters are given in
[10] and reproduced in Table 2.1.

In equation (2.5) the first termZ(a/rij )n, takes the repulsion between the like charges into

account and the second terfyp, , takes the attraction into account. The repulsgomostly



between the nuclei and is similar in form to thiathe@ Lennard-Jones potential. For the attraction

the electron cloud is taken as the density of thaen.

Combining equations (2.2) and (2.5) it is found tha force on atomis [7]

ke e Bl

2.3 The integrator: updating the system

During the integration step the positions and Jékx of the atoms are updated by a small
amount. The small amount by which the simulatiomdyanced is called the time step. This
updating is repeated until a desired condition &.Mhe size of the time step will determine how
fast the computer simulation will run, but it alsetermines how large the error is in the
simulation [L4]. A larger time step will let the simulation ruaster but also introduce a larger
error. When the time step is larger than a criticalue, which is smaller than the fastest
oscillation period in the simulation, the error vdbminate the results. It is therefore important
to choose a time step that balances the error enstimulation and the speed at which the

simulation runs. A value of £s for the time step is a safe choice.

2.3.1Stérmer-Verlet integrator

The Stormer-Verlet integrator is one of the methdus can be used in order to update the

positions of the atoms in a simulation. The Storivierlet integrator is given by/|
Xpa1 = ZXI Xt @ dt (2.8)
where X, is the position an@, is the acceleration of atonat time stef, anddt is the duration

of one time step. This method is susceptible tonding errors and does not calculate the

velocities of the atoms.



2.3.2Leapfrog integrator

The Leapfrog integrator advances the simulatiothéonext time step by updating the positions

and velocities of all the atoms. The Leapfrog indégr can be written in the form

X,t+1 :Xt +Vt +:112dl (29)

Vi =Vi-p2t @ Ot (2.10)
where X, is the positionyV, is the velocity andg, is the acceleration of atomat time steq,

anddt is the duration of one time step. Compared toStéemer-Verlet integrator, the Leapfrog
integrator are less susceptible to rounding erfbing. velocities are calculated at times between
those for which the positions are calculated, tthes Leapfrog name. Additional calculations

would be required for algorithms that require tléoeities and positions at the same time.

2.3.3Velocity Verlet integrator

The Verlet integrator, also known as the Velocigrét or Velocity-Stormer-Verlet integrator, is
even less susceptible to rounding errors than gapirog integrator. Additionally, the velocities

are calculated for the same times as the positiims velocity Verlet integrator is given by
X=X, +V, dt+ 3 df/2 (2.11)

Via =V t& dy2+_ﬁ+1 at2. (2.12)
The Velocity Verlet integrator is recommended fgesince it has the best error characteristics

with very little computational overhead.

10



2.4 Thermostat

In a system the atoms move around with velocitee®aling to the Boltzmann distribution. The
temperature], of a system is related to the average kinetieggn&KE>, of the atoms in the

system by Boltzmann’s constaktaccording to the following equatiot:
<KE >:g KT. (2.13)

The relationship between the kinetic energy andviecity, v, of an atom with a mass of is

given by [L6]
KE:%m\f. (2.14)

From equations (2.13) and (2.14) it can be dedtlcatithe temperature of the system can be
controlled by scaling the velocities by a fact@o that

vi,new = A\_/i,old (2 15)

whereV, , is atomi’s old velocity and is atomi’s new scaled velocity. One method to

Vi new
control the temperature would be to calculateo that the temperature will be exactly what it
should be after each rescaling. The problem witls gfrocedure is that there are natural
fluctuations in temperature when considering thertstimescales of the simulations. For this
reason the Berendsen thermostat was used. Thed3erethermostat allows fluctuations in the
temperature while still keeping the temperatureselto the desired temperature. The Berendsen

thermostat calculates the scaling factorfs [

)= 1+$[5—1) (2.16)
VT

whereTy is the desired temperatuiiejs the current temperatuid,is the time step, and is the
damping parameter. The damping parameter deterrhiowslong it takes to reach the desired

temperature.

11



Figure 2.3: lllustration of wraparound boundary condition. THarker central atoms are in the
simulation area. The boundary conditions tile thendation area in order to give the
appearance of a larger environment to the atonthénsimulation.

2.5 Boundary conditions

In simulations of a surface it is desirable to mmizie influences like the boundary of the crystal.
To remove the boundaries of the crystal wrapardaouhdary conditions as illustratedkigure
2.3was used. This has the effect that an atom thaesmout of the simulation area towards the

right will enter again from the left. The force thhe atoms have on each other is also affected
by the wraparound conditions.

12



2.6 Big O notation

Big O notation is a method to communicate how \&alllgorithm scales with an increase in the
amount of data the algorithm operates on. How waellklgorithm scales gives an indication of

what amount of data can be processed in a feaduiéion of time.

Big O notation only gives the magnitude of the nemif operations that must be performed as a
function of the data set size, An algorithm that performs a single calculation €ach element
will scale linearly and have a complexity of fp( An algorithm that has to consider every

element for every other element will scale quadediy and have a complexity of @.

It is better to use an @) algorithm than an ®f) algorithm because the i} will take n times

longer to calculate than an@@lgorithm.

2.7 Cut-off radius

From equation (2.5) it can be seen that the effettan atom has on another decreases with 1/
to the powemn. Thus the effect that an atom has on another bulkcomes negligible. Atoms
further than some cut-off radius,, from atomi can be ignored safely when calculating the
potential for atom. A cut-off radius of 2.5 times the nearest neighbdistance was used]|

The influence of the atoms beyond the cut-off radsutaken as zero. The advantage of using a
cut-off radius is that fewer atoms have to be atergid and the simulation will be faster. The

nearest neighbour distance of platinum is 2.77é&kefore the cut-off radius was 7 A.

Care should still be taken with very small (lesantl#:) simulations in order not to introduce
artefacts. When the simulation is very small anmatan influence another atom twice because
of wraparoundFigure 2.4helps to illustrate how this can happen. Whenutating the force on

atomC, all the atoms closer thagp have to be considered. For each of these atormrsniwrest

13



Figure 2.4: lllustration of atoms that have an influence onmat@ when a cut-off radius ofis
used.

neighbours also have to be considered because pf tiktrm in equation (2.7). AtorA is part of
the p; term forB which influence<C. In a similar way atonk also influence€. If the size of the
simulation is 4., atomA will effectively be the same as atdf Atom C will then be influenced

twice by atomA. In order to prevent this, the simulation hasdwenha size larger tham4

2.8 Cell structure for optimised calculation

Without the cut-off radius, performing a step hasinge complexity of Of?) because for each
atom every other atom has to be considered. Whiaig tise cut-off radius many atoms can be
skipped in the calculations because those atomdaaraway. All the atoms still have to be
checked for their distance which means that theriihan is still O¢?).

There is a maximum number of atoms that can fidasshe cut-off radius. Because of this, the
algorithm can be modified to have a complexity ¢h)O The modified algorithm will iterate
through all the atoms. For each of those atomthalltoms closer than are considered. Since
the number of atoms closer thayis independent of, the algorithm has a complexity of 1§)(
The key ideas to change the algorithm from{o O() are:

» Using a cut-off radius so that each atom is onfluenced by a small number of atoms

that are independent nfand less than some maximum value.
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Table 2.2:Comparison of the performance of lists and cells

nearest neighbour lists cells
memory usage n x list size n x integer size
complexity to update data structure o(n?) O(n)

» Using a data structure that gives a small subselldghe atoms in the simulation. This
subset must contain all the atoms that are clbsent.

Two data structures that can be used for this agdition are nearest neighbour lists and célls [

[171[18.

With the neighbour list, each atom has a list oiheg that are closer than a chosen distance to
that atom. The distance would be larger thaby an amount offr. All the atoms that must be
considered will be in the list associated with eatdm. As the atoms move around, the atoms
will move to different lists. The lists will thenake to be updated. Updating the lists is
computationally expensive so it should only be dahen absolutely necessary. The valudrof
will determine how frequently the lists need toupslated. A small value fafr means that the
lists will have to be updated frequently. Usingagke value forir means that more atoms will be

in the list. Larger lists will lead to slower calation. The value forr has to be chosen carefully

in order to give the best results.

When using the cell structure, the simulation asedivided into cells as shown Figure 2.5a

All the atoms are put into cells. Each atom isipuhe cell determined by the atom’s position. In
order to find all the interacting pairs for an ateamthe centre cell, only the atoms in the
neighbouring cells have to be considered. The ehoialr is subject to the same considerations
that were discussed for lists.

A comparison of the performance of lists and asligiven in Table 2.2. From the comparison it
is clear that the cell structure will scale betierthe simulation size increases. The cell stractur
was chosen because it scales better with largeulaiions. The cell structure is only an
optimisation used in order to find all the intemagt pairs of atoms. The calculation of the

potential from the pairs is discussed in the negtien.
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Figure 2.5: lllustration of the cell structure in a plane in52 on the left. Illustration of the cells
to be considered when looking at the centre cedl afibe can be seen in 2.5b on the right.

A further optimization can be made when findingth# pairs. In order to find all the interacting
atoms when working with the atoms in one cell 2&lineighbouring cells have to be considered.
When a pair is found, the results can be savetdtr atoms. This means that only half the pairs
have to be found for each atom. The neighbouriig teat has to be searched is reduces from
26 to 13. The cells that are considered when lapkirthe middle cell in a cube of 3 x 3 cells are
shaded irFigure 2.5b

Setting up the cell structure is computationallpensive so it is desirable not to do it at every
step in the simulationFigure 2.6 helps to clarify when the structure should be esied.
Consider the configuration that would require tlastést updating of the structure. This
configuration is where the atoms are just outsitithe border of a cell between them and are
moving towards each other with a velocitya. This velocity is found by determining the
maximum velocity in the system. In a time stepafdthdt, the distance between any pair of
atoms decreases by no more thagn,2dt. The cells has to be updated when the sum ohedlet

movements are greater thén The cells should thus be refreshed when
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Figure 2.6: Setup to determine when the cell structure shoelcefreshed.

> (max|v | )_ (2.17)

steps
The maximum velocity found during the current steiven by maxy. When the cells are

refreshed, the sum is reset to zero.

2.9 Potential calculation

For each integration time step the potential isudated in two steps. In the first step each phir o
interacting atoms are found from the cell structumd the pair’s interaction parameters are saved
into a temporary structure. In the second stepfohee and potential is calculated from the

calculations in the second step.

In order that the parts of the equation that candbeulated in the first step becomes more clear,

equation (2.7) can be rearranged as

O DRI o () S

Each of the parts that are surrounded by squackdisin equation (2.18) can be updated when

looking at a single pair, but all the pairs havééaraversed twice in order to calculate the whole
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equation. The terms in the square brackets togetitierthe first term in equation (2.5) are saved
during the first step. The indexeésand| are saved together with the last square bracket in
equation (2.18) for the next step.

The potential and accelerations can now be cakdiliiom the parts that were saved in the
previous step. Care has to be taken with the wwvisn doing this step. One option is to use
dimensionless units, that is choose the distantedes atoms, time between steps and the unit
of energy to be onely]. The problem with that approach is that the dwa to be converted
before interpretation. The approach taken heretowakoose the unit of length as angstrom (A),
time as picosecond (ps), mass as atomic massamit)(and energy as electron volt (eV). With
Sl units the numbers would have been very smalinbars that are very small can cause
rounding off errors when used with a computer’sitiah precision. Using the chosen units

minimizes this problem.

When combining equations (2.1) and (2.7) it is fbuthat the acceleration is given in
eV/(A amu). The integrator requires the acceleratio units of A/pé. The derivation of the

conversion factor can be done as

eV 1000N, ame kgnf( 1°A7( s Y _eN ev _ A
a = =— (2.19)
Aamu kg eV $ m 18 p 10 Aamu *
where Avogadro’s number i, and an electron’s charge @ The acceleration can now be
converted as
A _eN ( eV J ( eVv J
| — | = =960 _— 2.20
alnt{pg 10 apot A am %pot A am ( )

Whereay, is the acceleration as required by the integramala, is the acceleration as provided

by the potential calculatior:.
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Chapter 3: Small structures

In this chapter systems of less than ten atoms aiean surface will be reported. The
understanding gained from investigating the smallcsures will help explain the results from

larger simulations.

The structures that have the lowest energies ilinvestigated first. The binding energy per
atom for these structures will be investigated n&xie energy barriers as atoms move around

these structures will be calculated. A model wdlgroposed to predict the energy barriers.

3.1 Minimum energy structures

When adatoms move on a surface, the adatoms wdl i@ cluster together into structures with
the lowest possible energy. The low energy strestwyith less than seven atoms are shown in
Figure 3.1 Figure 3.2shows the low energy structures with seven, egltnine atoms. All the
structures are on the (111) plane of a fcc Pt aty3the surface is shown in teal ligure 3.1
andFigure 3.2 The atoms that form part of the structures aosvshin red. The positions where
atoms can be added adjacent to the structuresndreaied with smaller white spheres with
letters on them. The letters are chosen in a wely that:

» Positions that are similar because of symmetrytiasame letter

» The letters that denote transitions between adfguesitions can only be the same if the

transitions are similar. This requirement will beadissed more in section 3.3 on energy

barriers.
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Figure 3.1: Low energy structures with less than seven atofmes.pbsitions that are adjacent to
the structures are indicated with lettered spheres.
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Figure 3.2: Low energy structures with seven to nine atoms.pds#ions that are adjacent to
the structures are indicated with lettered spheres.

The low energy structures are found with an iteeaprocess. At the start there is just a clean
surface as shown figure 3.1a The process to find the structures is:
* The binding energies are measured at each of te#igyes next to the structures as
indicated inFigure 3.1andFigure 3.2
 An atom is placed at the position with the higheatling energy. There are two special
cases when finding the highest binding energy:
0 In cases where there are positions where thermneiergies are essentially the
same, and those positions are similar becausenoigyry, an atom is placed in

only one of those positions. This can be déignre 3.1aandFigure 3.1b.
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Table 3.1: Parameters used for simulation.

variable value
Timestep (dt) 0.005 ps
Tau for thermostat 0.1
Desired temperature for thermostat 0K
Mass of Pt 195.084 amu
Cut off radius 7 A
Cell size 8 A
Simulation size in x direction 30.47 A
Simulation size in y direction 28.79 A
Number of atom layers 3
Number of atoms in base 396

0 In cases where the highest energies are almodatime but different structures
will be produced, all the structures are invesedatMultiple structures form for
six atoms as can be seenHFmgure 3.1gto Figure 3.1i In the next iteration the
binding energies for all the structures are comsiavhen finding the highest
binding energy. For seven atoms the one structat lad the highest binding
energy is shown ifrigure 3.2a

* Repeat until the structures have the desired size.

The values of the variables used in the simulatibthese structures are given in Table 3.1. In
order to measure the binding energies at the tegtiwsitions, atoms are placed in those
positions. The energy for only one position is nuead at a time. After placing the test atom, the
simulation is run for 1200 steps (6 ps). This aliaive system to relax to the lowest energy. At
the end of the relaxation the potential energyhef $ystems changes by less thafi &0 per
step.
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Figure 3.3: Binding energy per adatom as a function or the loeinof adatoms. The structures
that form are shown close to the corresponding giest

From the structures that are shownFigure 3.1and Figure 3.2it can be seen that the low
energy structures maximise the number of bondsighbouring atoms. The number of bonds
are maximised in a rounded, closed structure wheratoms stick out from the structure. When
considering the binding energy per atom it willdhe®wn that the binding energy is higher for the
structures that are more rounded.

3.2 Binding energy per atom

In Figure 3.3the binding energy per adatom as a function of remof adatoms can be seen.
The binding energy per adatom is calculated addts¢ potential energy the adatoms added to
the system divided by the total number of adatohm& kinetic energy is zero since the target
temperature for the thermostat was 0 K. A more tnegdinding energy means that the structure
is more stable.
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Table 3.2:Energies needed to remove a single atom from various positions.

Position atom is removed from Energy (eV)
On surface -4.984
In surface -6.492
In bulk -6.866

FromFigure 3.3it can be seen that adding an atom increases #rage strength by which all

the adatoms are bound together. Each additional atoreases the number of bonds to nearest
neighbours and next nearest neighbours. It caede that the change in binding energy tends to
decrease as the number of adatoms increase. Tieeex@ptions to the trend in the change in
binding energy when the structures with seven andatoms form. For the structures with seven
and ten atoms, all the atoms have at least thraeesteneighbours on the surface. All the other

structures contain at least one atom with only tearest neighbours.

For comparison, the energies to remove atoms framows positions are given in Table 3.2. The
energies were measured with a simulation of a allgig/stal that contained 7140 atoms. The
binding energy per atom for this larger crystat5s811 eV/atom. This is more than the value
shown inFigure 3.3 because surface has a smaller influence in thgedasimulation. The

binding energy per atom is the energy that musadoed to each atom in order to completely
break up the crystal. The binding energy per aterthé same as the sublimation energy. The
sublimation energy for Pt is -5.856 eV/atoh®][ This compares very favourably to the value of

-5.811 eV/atom found in the simulation.

The vacancy formation energy is the energy requwegmove an atom from the bulk and place
it on the surface. From the values in Table 3.2athergy required to form the first vacancy can
be calculated as 6.866 eV — 4.984 eV in order t@ di.88 eV. This compares well to the
theoretical values of 1.68 e\2(], 1.60 eV P1], 1.28 eV P2 and 1.45 eV 23] and the

experimental value of 1.6 e\2().

24



TiT I LU I LU I LU I LU I LU I LU I LU I LU I LU I T
- /\ -
-4.80 | -
) o -
2 485 §
N—r | i
P
c’ - -
S
] - _ 1
5 - | Energy Barrier
> 490 -
= - 1
© L 4
£
= i 1
-4.95 |- -
L A 4
L V¥ |
_5.00 11 l 1 1 1 l 1 1 1 l 1 1 1 l 1 1 1 l 1 1 1 l 1 1 1 l 1 1 1 l 1 1 1 l 1 1 1 l 1

0O 20 40 60 80 100 120 140 160 180
Step
Figure 3.4: The energy along the path taken when an atom hops A to an adjacent site, B,
on a clean Pt(111) surface. The energy barrieindicated as the difference between the

minimum at the starting position and the maximuigufe 3.5shows the hop from the side.

3.3Energy barriers

In order for the adatoms to move, an energy bamiest be overcome. Heat provides the energy
required for the adatoms to overcome this energydsaThe energy barriers for atoms to move
around the structures will now be calculated. Thgiers will help to understand the structures

that form during deposition.
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Figure 3.5: Finding the path of minimum energy.

An example of an energy barrier can be seefkigure 3.4 Figure 3.4 shows the potential
energy for a single jump as on a clean surface fpositionA to B as shown in the inset. The
energy barrier is the difference between the firstimum, which is where the atom would start,

and the maximum.

In order to calculate the energy barrier for anmmato move to another position it has to be
moved along the lowest energy path. Thereforeiteedtep is to determine the path along which
the atom will move. The change in potential enevfjthe system will then be used to determine
the size of the energy barriers. Since the poteaiergy fluctuates when the system is not at 0 K

all the simulations were done at 0 K.

Figure 3.5illustrates how the path of minimum energy wasthurhe test atom is moved in the
direction from the start to the end positions iranimcrements. After each movement of the test
atom, the structure is allowed to relax while th&t atom is constrained to a plane perpendicular
to the direction of movement. Since there was @ngmall change from the previous state the
system was relaxed for only 400 steps. After the g@ps the change in energy was less than
10° eV. Only the atoms closer than 16 A to the tesmatvere allowed to relax, in order to
prevent the whole structure from deforming. Withadimincrements the test atom will move
along the path of lowest energy. A hundred step® weed to move the atom from the start to

end positions.
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The activation energy that is required to move tmafrom one position to the next is the
difference between the binding energy at the baggand the binding energy at the highest
point in the barrier. In Table 3.3 it can be sdwat the activation energy for self-diffusion on a
clean Pt(111) surface is 0.193 eV. This value cosgpwell with previously published values of
0.194 eV 4], 0.260 eV p5] [26], 0.250 eV R7], 0.160 eV 8 and 0.176 eV39].

The energy barriers between all adjacent test atoifgure 3.1andFigure 3.2were calculated.
Table 3.5gives the energies féfigure 3.1¢ The first two columns give the letters that asedl

to indicate the start and the end position of tleenawhen it was moved. The binding energy in
the start and end positions are given in the neatdolumns. The fifth column gives the barrier
energy as calculated in the simulation. The laBiron gives the barrier energy as predicted by
the model proposed in the next section.

When there are jumps that are similar becauserfrstry only one of them are given. Care has
to be taken to ensure that the jumps are actuiatiyes. ConsiderFigure 3.X. The A-B and B-C
jumps appear symmetric when only considering thegaads. Those jumps are not symmetric

when the surface structure is considered.
The barrier energies for the first four structuiregigure 3.1are given in Table 3.3, Table 3.4,

Table 3.5, and Table 3.6. The energies for theaktte structures ifigure 3.1andFigure 3.2

are given in Appendix B.
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Table 3.3:Energies fronfigure 3.1a

Binding energy (eV) Barrier (eV)
Start End Start End Calculated Predicted
A B 4.979 4.980 0.193 0.010

Table 3.4:Energies fronfFigure 3.1b

Binding energy (eV)

Barrier (eV)

Start End Start End Calculated Predicted
A B 5.428 5.432 0.244 0.258
B C 5.428 5.432 0.244 0.258
C A 5.428 5.432 0.244 0.269

Table 3.5:Energies fronfFigure 3.1c

Binding energy (eV)

Barrier (eV)

Start End Start End Calculated Predicted
A E 5.377 5.737 0.120 0.209
A B 5.377 5.348 0.323 0.265
B C 5.345 5.363 0.188 0.257
C D 5.376 5.738 0.201 0.215
Table 3.6:Energies fronfigure 3.1d
Binding energy (eV) Barrier (eV)
Start End Start End Calculated Predicted
A C 4.992 5.654 0.424 0.429
B B 5.328 5.332 0.298 0.288
B C 5.328 5.663 0.216 0.219
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Figure 3.6: The energy barriers clusters into four groups defyeg on how many atoms are

closer than twice the nearest neighbour distancéhéostart and end positions. The four clusters
are characterised iffable 3.7

The influence of the number of atoms close to thg and end positions on the energy barrier is
shown inFigure 3.6 The four clusters seen Figure 3.6are characterised ifable 3.7 It is
important to notice that there is quite a largergndarrier for atoms that jump down from an
island. The energy barrier to move to a positioat tts more favourable or slightly less
favourable is in the range of 0.1 to 0.3 eV. Thergwn barrier is much larger for a jump to a
position that has a binding energy that is muchelowhe energy barrier to move around on top

of an island is slightly lower than moving aroundaclean surface. The energy barrier increases
as the size of the island increase.
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Table 3.7: Description of the four clusters froRigure 3.6

Description of jump Number of Number of Energy barrier (eV)
atoms that are atoms that are
close to start. close to end.
Movement on top of island 10-16 12-16 0.1-0.3
Jump down from island 10-16 23-25 0.4-0.48
Jump to more favourable position 21-23 21-25 0.1-0.3
Jump to less favourable position 23-25 22-24 0.45-0.6

3.4 The uncorrelated contribution model for predicting energy

barriers

A model to predict the energy barriers for the jgngh atoms on a surface is proposed in this
section. This model would be useful in Monte Caimulations. For the model it is assumed
that:

Each atom has a fixed influence on the barriesjreetive of that atom’s environment.
The influence of an atom will decrease proportidoélft.

The influence of an atom is in the direction of finep.

The barrier is affected by the environment at taet &ind the end of the jump.

The contributions from the start and end positioage a similar form.

o a0k wnh PP

All the atoms are in lattice positions.

Figure 3.7shows how the nearest neighbour surface atomseimie the energy barrier for the

jump by hindering or helpingrigure 3.9 shows how the position of an atom influences the
atom’s contribution the energy barrier. The nearesghbours to the starting position have a
much greater influence on the barrier than the nesrest neighbours. Atoms further than the
next nearest neighbours have almost no contribtiticdhe barrier energy. There can be no atoms

closer than the nearest neighbour distance becdassumption 6.
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Figure 3.7: Influences of surface atoms in jump.

Figure 3.8: When an atom moves, the angle is taken as thetaevieom the line that connects
the start, A, and end, B, positions.
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Figure 3.9: The effect of relative position on the size of¢baetribution to the energy barrier
can be seen here. The start position is at (0,m@) the jump is towards the right. The contour
lines indicate what positions have the same enagytribution towards the barrier. The

positions closer to the start position have a geeanergy contribution.
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From assumptions 4 the energy barrigy,is

EB = 9) + Estart + Eend (31)
wherepy is a fitting parametertsiat is the contributiorfrom the start position anBeng is the

contributionfrom the end position.

From assumption 1 the contributions for the atoars loe added together in order to obtain the

energy barrier, therefore the energy barrier faipmn pos Epos iS given by

r <f'rc

Epos: pl z C

(3.2)

pos i

where p, is a fitting parameter, is the cut-off radius beyond which the contribosoof the

atoms become negligible and are discargex is eitherstart or endin order to indicate the

position andCyos,i is the contribution of atomto positionpos

From assumptions 2 and 3 the contributiGg,s; of atomi to positionposis

Cposi = {L + pzj(cosgpos,i + pa) (3.3)

I’pos.. i 1

wherer__. is the distance from atoirto positionpos &_ .. is the angle between atdanand the

pos, i pos, i

line that connects the start and end positionsaas inFigure 3.8 and the parameteps, p»,
and pz are used to fit the model to the results fromdineulations.

From assumption 5 the contributions from the stad end positions form the same equation but
with different fitting parameters. Combining eqoas (3.1), (3.3), and (3.2) and providing
different fitting parameters to the start and eadifons, the energy barrier is given by

I

start,\<rrc 1

Es=m+n Z (ﬁ”“ QJ(COSHStart,i + )
1 start,i 2

’ (3.4)

i Y m[#+ &j(cosﬁendﬁ n)

i rend, i + Pe

where p, to p, are fitting parameters.
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Figure 3.10: Histogram with Gaussian fit for the errors in theediction of the model. The

Gaussian has a mean of 1.3 x>18V and a standard deviation of 2.5 X*1&V.

The model was fitted to the barriers from all thenps inFigure 3.1and Figure 3.2and a
histogram of the errors, which is the differenceween the barrier energies from the
calculations and the model, was created. A Gaussieve was fitted to the histogram in order to
get the standard deviation of the model. This carséen inFigure 3.10 Using the standard
deviation of the Gaussian fit, the quality of thedal could be measured. It was found that using
the nearest and next-nearest neighbours, whicllatento a cut-off radius of 5.7 A, provided
good results. The standard deviation of the Gansgsi&igure 3.10is 0.025 eV, which means
that the difference between the barrier energyipted by the model and the barrier energy as
calculated using molecular dynamics will differ legs than 0.025 eV in approximately 68% of
the cases and differ by less than 0.05 eV in apprately 95% of the cases. The fitting
parameters that were found are given in Table Bd8.further comparison the predicted and
calculated barriers are given in Table 3.3, Tabfe Bable 3.5, and Table 3.6 and the tables in

Appendix B.
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Table 3.8: Values of the fitting parameters for the modelRor

Fitting parameter Value
Po -7.920926 x 10
p1 -3.727818 x 18
P2 -2.767271 x 19
Ps -1.256022 x 10
P4 -1.727271 x 1b
Ps 9.408896 x 18
Pe -3.310704 x 19
P 6.439961 x 19
Ps 1.616139 x 10

3.5Discussion

The lowest energy shapes was found for surfacetates with less than 11 atoms. It was found
that rounded shapes have lower energy. Atoms tleabaund to only one or two atoms will
easily move to positions of lower energy. Atomd @@ in a position of low energy will tend to
stay there because of the high energy barrieefrihg a low energy site.

The energy barriers for atom movement next to dlaednergy structures were calculated. It was
found that the energy barriers could be roughlgsifeed into four groups based on the number
of atoms near the start and end positions of thgjuA simplified model was created in order to
predict the energy barrier based on the environmiém proposed model for predicting energy
barriers has an error of 0.025 eV. Depending onsthrilation parameters the model can be

more than six orders of magnitude faster than usisgnulation to find the energy barrier.
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Chapter 4: Island growth on
Pt(111)

In this chapter the growth of islands with hundrefi@toms will be discussed. The process of
physical vapour deposition (PVD) will be used asblasis for the investigation. The influence of

temperature and evaporation rate will be investigat

4.1 PVD and model used to represent PVD

PVD is used to create thin layers of a materiah@ubstrate. A schematic illustrating how PVD
functions is shown irFigure 4.1a The material to be deposited is evaporated ia@wm in
order to prevent contamination and allow the evatgar material to reach the substrate. The
substrate is in the plume of evaporated materiaé Material sticks to the substrate and layers

form.

The model used in the simulations is showfigure 4.1b In the model a surface of four layers
of atoms were used. The atoms in the bottom laygeeld stationary. Atoms were projected
towards the surface from random locations. Thenmlebetween the addition of the atoms
determines the evaporation rate. All the projeetinins had energies of 0.13 eV, corresponding
to a temperature of 1000 K. The temperature ofttedl atoms was controlled by using the

Berendsen thermostat.
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Figure 4.1: A simplified illustration of PVD is given on theftt The model used to represent
PVD is given on the right.
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Surface laye

:I— Subsurface laye

Figure4.2: Colour codes used in the visualization of islanovgh.

4.2 Effect of temperature on island growth

The first simulations were to determine the effettsubstrate temperature on island growth.
Simulations using the model for PVD were done aiows temperatures. Results from the
simulation at 300 K, 700 K, and 1100 K are showrdrigure 4.3 The parameters used in the
simulation are shown in Table 4.1. The colour c¢ #toms inFigure 4.3is determined by

height.Figure 4.2shows the colours used for the different layers.
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a) 300 K b) 700 K c) 1100 K

Figure4.3: Simulation state at 80 % surface coverage for tleslected temperatures.

Table 4.1: Parameters used for simulation.

variable value

Timestep (dt) 0.01 ps
Length of simulation 1,000,000 steps (10 ns)
Time between addition of atoms 5000 steps (50 ps)
Tau for thermostat 0.1
Cut off radius 7 A
Cell size 8 A

Simulation size in x direction 55.4 A
Simulation size in y direction 52.78 A

Number of atom layers 4
Number of atoms in base 1760

With an increase in temperature, the energy aVailibatoms increases. With more energy, the
atoms have a higher probability of jumping acrassrergy barrier. Thus a higher temperature
leads to increased mobility of atoms. As atomsteluand the size of the island increases, the
islands become less mobile. Some of the reasonthdodecrease in mobility of larger clusters

are that the atoms are bound more tightly in largj/ands and that more atoms have to move in
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order for the larger island to move. The effectttd decreased mobility of clusters is that an

atom moves around on the surface until the atonchkester together with other atoms.

The number of islands that form are related tortheber of jumps that an atom can perform
between the addition of subsequent atoms. TheiHibetl that an atom reaches an existing
structure will increase as the number of jumps thatatom performs increases. If a new atom is
added to the surface before the previous atom f@usttucture, the two atoms that have not
found a structure can cluster in order to form & s&ucture. The likelihood that new structures

form is related to the number of jumps that occatwieen the addition of atoms. As the

temperature increase the frequency of jumps ineraad larger structures form.

There are a few islands in the simulation at 30#skseen ifrigure 4.3a These islands are not in
the lowest energy state because the atoms dida& Baough mobility to find the low energy
positions. The islands from the simulation at 70Ga¥Kseen irFigure 4.3bare closer to the
lowest energy state because of the increased iyobilthe atoms. During the simulation at 700
K some of the low energy structures from the presiohapter are seen to have formed. In the
simulation at 1100 K, as seenkigure 4.3¢ only one island forms. The single islandFigure
4.3c appears as multiple islands because of the perimolindary conditions. Only one island
forms because the atoms are mobile enough to faclaséer before more atoms are added onto

the surface.

For each of the temperatures from 100 K to 120 Isteps of 100 K, a simulation was done.
These simulations are shown kgure 4.4 In order to show the evolution of the islands,
snapshots of the simulations are given. At low terafures the atoms are relatively stationary
because the atoms are effectively frozen in plddeen the atoms are deposited the atoms have
some energy, but the energy from the heat quidklyighates into the neighbouring atoms and are
removed. This causes the atoms to stay very ctosleet point of impact and as a result small
structures that are faceted is formed. As the teatpess get higher, the atoms become more
mobile and find a more energetically favourableigpms. The structures become larger and
smoother. When the temperature gets very highediges get less smooth. At these temperatures

the atoms have enough energy and move away frostiheture edge. Almost all the atoms are
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Figure 4.4: Growth of islands as a function of temperature. ltaolumn shows how t
structures develop at that temperature. The rovesvshow the structures are different when
temperatures are different. The colours of the at@m chosen according to their height.
layer below the surface layer is dark blue. Thefaue layer is light blue. The atoms directly

the surface are yellow. The atoms in the seconel lalyove the surface are bright yellow.

directly on the surface. At the low temperaturesitiiands are so small that not many atoms land
on the islands. At higher temperatures the atonve lemough energy to jump down from the

island.
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4.3 Effect of evaporation rate on island growth

The evaporation rate can be varied by changingntimber of steps between the addition of
atoms. By increasing the time between the additbatoms the evaporation rate is lowered.
Halving the evaporation rate requires running timeukation for twice the amount of time in
order to retain the same percentage surface covefdng parameters used for the simulation at
different evaporation rates are shown in Table 4.2.

Figure 4.5shows the structures that form at three diffeesaiporation rates. IRigure 4.5it can

be seen that larger islands form with a lower evapan rate. With lower evaporation rates an
atom can perform more jumps before the next atomdejgosited. The result of more jumps
before the addition of extra atoms is that lesscstires form, and that those structures are larger.
The increase in structure size due to lower evdjporaates is similar to the increase in structure

size due to higher temperatures.

For Figure 4.6both the evaporation rate and the temperature wated. This was done in order

to show how different values for evaporation ratd eemperature can produce similar results. In
order to get results over the greatest range, \thpagation rate was halved for each simulation.
In all the simulations the same number of atoms demosited. The number of atoms deposited
is enough to cover 50% of the surface. The evajporaate in the first column corresponds to an

evaporation rate of almost 4l@yers/s.
In Figure 4.6it can be seen the structures that form at O Kvarg similar because the atoms are

effectively frozen in place once they are on thdage. The structures are not exactly the same

because the atoms that are deposited on the sarfackeposited on random locations.
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Time between addition of atoms
2000 steps 8000 steps 32000 steps
10 ps 40 ps 160 ps

Figure4.5: Structures that form at different evaporation ras900 K.

Table 4.2: Parameters used for simulation.

variable value
Timestep (dt) 0.005 ps
Tau for thermostat 0.1
Mass of Pt 195.084 amu
Cut off radius 7 A
Cell size 8 A
Simulation size in x direction 119.11 A
Simulation size in y direction 119.94 A
Number of atom layers 4
Number of atoms in base 8600
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Time between addition of atoms
1000 steps 2000 steps 4000 steps 8000 steps 16000 steps 32000 steps
5ps 10 ps 20 ps 40 ps 80 ps 160 ps

0K

300 K

600 K

900 K

1.6 x 10 3.2x 10
steps steps
80 ns 160 ns

10°steps 2 x 1@steps 4 x 10steps 8 x 10 steps
5ns 10 ns 20 ns 40 ns

Total simulated time

Figure 4.6: The effect of evaporation rate and temperaturehenformation of structures. Each

row was done at the same temperature. Each coluamdone with the same number of steps

between the addition of subsequent atoms, andieusame evaporation rate.

At the other temperatures a slower evaporation lestds to larger structures. Larger structures

can form because the combination of higher temperadnd lower evaporation rate enables

more jumps to occur. Froigure 4.6it can be seen that an increase in temperaturéioeoch

with a decrease in evaporation rate is much mdeetéfe in the creation of large structures than

a change in only one of them.
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Figure 4.7: Square pyramid found in the simulation. A four atolmster that matches the
substrate is show on the right.

An interesting feature that was observed was squaaamids as seen Figure 4.7a It was very

interesting because the square doesn’'t match idwegtiar surface. The pyramid lasted a bit
longer than 0.8 ns at 300 K. During that time tlyeamid performed more jumps than the
structures that matched the surface. The relatipristween surface mismatch and mobility will

be discussed in greater detail in the next chapter.

4.4 Conclusion

It was found that an increase in the temperatuck aamlecrease in the evaporation rate have
similar effects because both lead to an increasigeimumber of jumps that an atom can perform
before another atom was added. As the atoms perfoore jumps, the structures that form
become larger. Low energy structures discusseaeiptevious chapter formed during the course
of the simulations.
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Chapter 5: Deposition on

graphite

The change mobility of the square pyramid foundthie previous chapter suggested that a
mismatch with the substrate can influence the nitglof the deposited atoms. Different surfaces
will be required in order to test this effect. TBeeele potential provides a model for a surface

that will be well suited for such a test.

5.1 Steele potential

In the simulations in chapter 4 the surfaces wepeasented by four atom layers. Less than one
atom layer was deposited onto the surfaces. Thelailons will be much faster if an analytical

method to represent the surface was used insté@dSteele potential is an analytical expression
that provides the potential between an atom amdjalar surface. An additional advantage of the

Steele potential is that the surface parameterbeararied easily.

The Steele potential in reduced unif8geele is given by B0j

VS*teeIe: EC(Z*)+Z E\( *Z) I( % §) (51)
where
o 2mAe & 2N _ 1
S ) T el &2
and
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Table 5.1:First five values fogs andf, as given in30].

n g/2m f(s,8)/2

1 23 - [cof2m) + oof 7s) + cfs(s + )]
2 2 eofz(s + B) + coba( g+ 5) + chsts- 9]
3 43 -[coq4rs) + cof s ) + cgsAs+ 3))]

[eo{ (3 +s)) rods (s 9) ¢ chsp @ P+
4 273 cos(27( B+ 3)) + cos 2(s - 8§) + cpst 2 )

5  6/V3 2[cof6m ) + cop &s) + cfs7Hs + 3))]

Table 5.2: Parameters for graphite using the Steele potential.

Variable Formula and/or value Description
q 2 Number of atoms in unit cell
a 2.46 A Length of one side of the unit cell
ast as/a;, =392 Reduced surface area of the unit cell
z* zla Reduced distance of atom from the surface
AZ* 1.38 A Reduced distance between graphite layers
Egs Depends on material Parameter giving energy séajawsolid interaction
Ogs Depends on material Parameter giving distance séajas-solid interaction
V*steele Vsteele! €gs Steele potential in reduced units
A ogs! & Ratio to scale potential to correct distance
6
E (2 )-Z”f\ !30( gnj K(62)- z{ gzj %(Qz)}. 5.3)

The values of* andf, for graphite withn lest than six are given in Table 5.1. A descripémd
the values of the parameters in equations (5.13) énd (5.3) are given in Table 5.2. The values

for the interaction parameters between graphitepdaithum are given in Table 5.3.
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Table 5.3:Interaction parameters for graphite and platina@ [31] [32].

Parameter Value
Epc 256 K = 256 x 8.617 x T0eV/K
Opc 2.905 A

The values fols; ands; in equation (5.1) are found from the projectiontlud (X, y) coordinate
onto the graphite crystal structure so that thetijposof the atom on the surface, is given by

the formular = s;a; + Sa;.

The Epterm in equation (5.1) incorporates the uniformtabation from all the layers. Since the
effect of each subsequent layer gets less, onlfirgtfew layers have to be used. Only the first
25 layers were used as B1]. The E, term in equation (5.1) gives the amplitude andftherm
gives the shape of theh term. Only the first 5 terms are used becauseetfect of the others

terms are negligible.

To further speed up the process, simple functioesewised in the place &, andE,. It was
found that a sufficiently accurate fit was prodigefitting functions with the fornaz + b(z +

c)’ to E, while a function with the formaz + b(z + c§ + e(z + ff was required foE,.

Using the Steele potential with simplified fits fire E terms results in much faster simulation
times. For similarly sized systems and 8 millioapst using the Sutton-Chen potential for the
base takes 47 days, while using the Steele poteakies only 16 hours, which is a speedup of

about 70 times. The speedup is similar for othmutations.
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Figure5.1: The Steele potential as calculated for graphitehewn here. The colour indicates
the potential. An atom would be bound more tiginlythe blue locations. The solid lines
highlight the hexagonal structure of graphite. Tdetted rectangle shows the minimum cell

that must be repeated for smooth boundary condition

5.2 Simulation Setup

The Steele potential was used to simulate a geyshitface and the Sutton-Chen potential was
used to simulate the platinum atoms. The Steelenpiat of the graphite surface is shown in
Figure 5.1 Atoms are projected along the z axis towardsstiréace. The surface is along the x
and y axis. Periodic boundary conditions was usethé x and y directions. The sizes were
chosen such that the cells from the graphite serfiis perfectly into the simulated area. The
direction had to be a multiple of 2.46 A while hdirection had to be a multiple of 4.26 A. An
elastic wall was used in tledirection so that atoms that bounce of the surtarehave another

chance to stick to the surface. The Berendsen tistanhwas used to control the temperature of
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Figure 5.2: Structures that form at different temperatures wtiere are 64000 steps (320 ps)
between the addition of atoms.

all the atoms in the system. The atoms were pmgetbwards the surface from uniformly
distributed random locations with a velocity of 3&ps, which would correspond to a

temperature of about 1000 K.

5.3 Investigating evaporation rate

The evaporation is done using the same model agibles in chapter 4, with the modification

that the surface is represented by the Steele fatenstead of layers of atoms. Atoms are
deposited onto the surface with certain intervaswneen addition of subsequent atoms. By
varying the time interval, the evaporation rate t@nchanged. The simulation was done for

various temperatures and evaporation rates.

Figure 5.2shows the structures that form at three diffetentperatures when there are 64000
steps between the addition of atoms. There is dntioge for atoms and small islands to come
together before becoming immobile, thus only alsisyucture formed at this evaporation rate.
When an atom reaches a bigger island, the atommalt likely be in position that is not the

lowest possible energy. At lower temperatures tioena do not have enough energy to easily
move out of this local minimum. As the temperatgets higher it becomes more likely that an

atom will find a position that minimizes the energlythe structure. As the temperature gets
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Time between addition of atoms
1000 steps 8000 steps 64000 steps
5 ps 40 ps 320 ps

Figure5.3: Structures that form at different evaporation ras900 K.

higher, the sides of the structures become moteTle number of nearest neighbour bonds is
larger in the structures that formed at higher terapres. The truncated triangle seefigure

5.2is close to the structure of minimum energy fatiplum on platinum(111) surfacgd.

Figure 5.3 shows how the structures change when the evaporasite is varied and the
temperature is kept constant. At the fastest eaijoor rate the atoms do not even have enough
time to reach a single structure so more than tmetare form. With 8000 steps between the
addition of atoms, only a single structure formst, that structure is not yet in the lowest energy
state. With 64000 steps between the addition ohatdhe structure is much closer to the lowest

energy state.

The results from more variations of temperature eraporation rate are shownkigure 5.4 At
the fastest evaporation rates there were a few stnattures. As the evaporation rate slowed the
number of structures decreased and the structuzeante larger until there was only one

particle. The combination of structures requiretoaver evaporation rate at lower temperatures.

A single atom on the graphite surface is very n@biVhen the atom bonds to another atom, the

cluster that forms becomes less mobile. As momnatare joined to the cluster, the cluster tends
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to become more stationary. When atoms are addiz tcuster sooner, the atoms have less time
to move to equilibrium positions. This explains wat/ very high evaporation rates there are

smaller clusters while at low evaporation ratesdhe one large particle. When the temperature
is higher the atoms move faster so the atoms can farger structures at higher evaporation

rates.

When the platinum atoms are in a large cluster,intdevidual atoms are bound in place so the
cluster cannot change much to find the equilibratracture. When the temperature is increased
the atoms can move around more so it is more liltedy the equilibrium structure will be found.
In Figure 5.4it can be seen that the structures tend towareduilibrium structure when the
evaporation rate is slower and the temperaturegleeh. The equilibrium structure that forms is a
truncated triangle.

The attraction between the platinum is about arroaf magnitude stronger than the attraction
between the platinum and the carbon. The effedhisf is that it will be energetically more

favourable for the platinum to bond together thajust spread out on the graphite. This can be
seen in that the platinum does not form a singjerleon the graphite but rather a layered
structure. The structure tends to grow layer byidayhe layers tend to cover the layers below
them completely, except at low temperatures. At temperatures the energy of the atoms are

too low for the atoms to easily jump down to thgelabelow.
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5.4 Effect of substrate parameters on structure growth

In this section the influence of the mismatch bemvthe substrate and the material deposited on
the surface and the strength of the interactiowden the substrate and the material deposited is
investigated. In order to investigate the effectmiématch, the lattice parametay,of the Steele
potential was varied. In order to vary the intei@cbetween Pt and the substratgis taken as

epc Multiplied by a scaling factor. The scaling factoales the whole potential. Since the whole
potential is scaled, a scaling factor greater taa will increase both the binding energy for the
surface and the barrier for an atom to move adiessurface. A scaling factor greater than one

will thus decrease the mobility of an atom on thdace.

Figure 5.5shows the results for simulations for various ealior the substrate lattice parameter
and scaling factor for the substrate potential. Sineulations were done at a temperature of 900
K with an interval of 64000 steps between the aaldiof atoms. This corresponds to the bottom

right (or left, if the page is in the ‘landscapeiemtation) simulation ifrigure 5.4

The force that the substrate exerts on the Pt atocnsases towards the bottonFigure 5.5 As

the attraction and barriers get larger it is expaéthat the atoms become less mobile. This can be
seen by the shape of the structures that form. Aexpected effect is that the mobility of the
atoms is affected by the amount of mismatch with $hbstrate. This effect becomes evident
when the structures become larger than a critieal. §his is because the neighbouring atoms

help to overcome the batrriers.
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Figure 5.5: Effect of substrate mismatch and attractive foroetloe structures that form. The

column heading gives the value of lattice paramedgthat was used. The first row gives the

factor by which the potential was scaled.

To see how neighbouring atoms can increase mahtiysider the illustrations figure 5.6 In
Figure 5.6athe nearest neighbour distance on the substrateafier than that of Pt. When a Pt
atom is in a minimum position, another Pt atom caénanter the neighbouring minimum
position. The atoms will push on each other andlifed out of the minimum position. The
atom will be bonded to the surface with less enengy energy barrier for a jump will be lower.
In Figure 5.6bthe nearest neighbour distance on the substratarger than that of Pt.
Neighbouring atoms decrease the barrier in muchséime ways as iRigure 5.6a.The only

difference is that the neighbouring atoms attracheother instead of repelling.
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a) Nearest neighbour distance of substrdte Nearest neighbour distance of substrate

smaller than that of Pt larger than that of Pt

Figure 5.6: lllustration of how neighbouring atoms can help magne barriers when there is a
size mismatch with the substrate. The heavy lideates the surface. Atoms want to be on the

lowest point on the surface.

In the centre column with the heading of 2.7 Figure 5.5 the substrate has exactly the same
nearest neighbour distance as that of Pt. As tladingc parameter, and thus the barriers,
increases, the Pt atoms become less mobile. Trhisahaimilar effect to that of a lower
temperature. There is a clear resemblance betweelow temperature structureskigure 4.6

and the structures Figure 5.5where the barriers are high and the substrate atedms small.

Since the presence of neighbours increases thdityothie atoms on the edges of the structures
are very mobile. The high mobility of the edgesegivthe appearance that the structures are

molten.

Another very interesting effect was seen in thstfiow inFigure 5.5 In the first row, most of
the particles that form have more than one layée particles would be stationary and then
suddenly start moving across the surface. Thegartvould move quickly and freely. The
particle would then suddenly stop again. The movemoé the particle is especially interesting
since the Velocity Verlet integrator conserves motam [34], but momentum is not conserved
in the particle’s movement. The answer to this coinum is that the thermostat does not
conserve momentum. The thermostat only ensureshbaverage temperature of the system is
as close as possible to the desired temperatureldder inspection of the particles as they start
and stop moving, some interesting observationsreade. When the particle is stationary, the

atoms that make up the particle vibrate quite ebbdause of the high temperature. When the
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particle moves, the atoms are almost stationagtivel to each other. These effects suggest that

the influence of the thermostat on the simulaticens be the subject of future investigations.

5.5 Conclusion

The Steele potential provided an analytical repried®n of a surface for physical vapour
deposition. Using an analytical expression forsbhgace provided a significant speedup for the
simulations and allowed more parameters to be tigatsed. When the evaporation was done
onto graphite, truncated triangles formed. Thigesponds well to known low energy structures
of Pt. In order to form the truncated triangle, tteaporation rate had to be low and the
temperature had to be high. It was found that amaish between the nearest neighbour distance
and that of Pt resulted in increased mobility @mas on the surface. Weak interaction between
the surface and Pt caused layered structures it 8irong interaction resulted in only a single
layer forming. Anomalous movement of particles sggg that it might be useful to investigate

the effect of the thermostat in the simulations.
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Chapter 6: Discussion

The mobility of an atom is determined by the sttBngf interaction with the substrate, the
amount of energy the atom has from the temperaitithe system, and the structure in the
vicinity. The mismatch affects how the structurBuences movement. The evaporation rate will
determine how long an atom has to move befordetacts with another atom. Once atoms join
together in an island their mobility decreases ttrally. With fast evaporation rates the atoms
do not have enough time to move to equilibrium pmss so the structures that form are small.
With slower evaporation rates the structures becdanger and closer to an equilibrium

structure.

The structure with the highest surface to volunt®ria found in the top right dfigure 5.5 The
evaporation rate is low, the temperature is high,rtearest neighbour distance in the substrate is
larger than that of Pt and interaction strengthveet Pt and the substrate is the same as between
Pt and graphite. When doing PVD the deposition waliebe much lower, thus the temperature

would have to be lowered to get a similar structure

6.1 Future work

The model proposed in chapter 3 will be adaptedttierother metals for which Sutton-Chen
parameters exist. In addition it will be adapted dther surface orientations and mixtures of
those metals.

A Monte Carlo simulation will be implemented usitige model proposed in chapter 3. Using
Monte Carlo simulations will make it possible tov@éstigate much larger systems than was
possible with molecular dynamics.
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The Steele potential for other surfaces will be lenpented. This will allow the investigation of

the effect of surface orientation on the growtlstwiictures.

Different thermostats will be investigated in ordeEr determine whether the Berendsen

thermostat had a significant effect on the strigguhat formed.
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Appendix A: Derivation of the
force from the Lennard-Jones

potential

The Lennard-Jones potential is given by

-1 2| | &
Vs —45[{I_U] {I‘” J } (7.1)

From a given potentiaV/, the forcef, can be calculated with the formula
F=-0V (7.2)
For the derivation of the force it is helpful tosti derive the gradient af and 1f. Let the

displacement vector be given By=Xr, +§/ry +2r, , whereX is the unit vector in thz direction

and ry is the component of in the x direction. The length of the displacement vec®r i

r =[] =r2+r 2+ Z. From the definitions of gradient , it follows tha

.0 .0 .0
Or=|X—+y—+72—|r 7.3
( ox yay 62] (7:3)
This can also be written as
Or = Xiir (7.4)
0x,

Where X is the unit vector in thih direction andai is the derivative in théh direction. From
X

the definition ofr
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— o a 2 2 2 }é
Or —ina—)g(rX +r, +rz)
By using the chain rule

Or :z&%(rfﬂyzﬂf)%a%(r 24 241 7

X y z

Now using the definition of and taking the derivative

Or = >A<i£r‘12riﬂ
2

0%

Noting thatg—ri =1 and simplifying
X.

Or =r ™) Xr,
Finally using the definition of
Or=r¥
Equation (7.9) can now be used to simplify calcatet such as
O == =+ 1

The gradient of the potential can now be calculated

12 6
v, = m{{fj —(5] }
i T
Applying the chain rule

S Rk RGEG

Now using equation (7.10) and doing some simpliitcca

oo e oG4 )

Rearranging gives

sl s

60

(7.5)

(7.6)
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(7.8)
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(7.11)
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Simplifying gives

14 8
e\l o 1l o
v ,=-48—||—| —=|—| |T 7.15
N o’ [{ru} Z(ru J } (719

By combining equations (7.2) and (7.15) it is fodhat

F=-0V, = 48%[{% -E(f] ]r (7.16)
o|\r 2\ r.

[
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Appendix B: Data for barriers

Table 0.1: Energies fronfFigure 3.1e

Binding energy (eV) Barrier (eV)

Start End Start End Calculated Predicted
A A 4.994 4.994 0.118 0.122
A C 4.994 5.622 0.447 0.433
A E 4.994 5.652 0.453 0.432
B B 5.337 5.340 0.312 0.288
B C 5.337 5.637 0.191 0.243
C D 5.640 5.320 0.607 0.558
D E 5.322 5.655 0.247 0.246
E F 5.653 5.335 0.553 0.537
F F 5.333 5.334 0.292 0.259
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Table 0.2: Energies froifigure 3.1f

Binding energy (eV) Barrier (eV)

Start End Start End Calculated Predicted
A B 4.968 4.976 0.126 0.142
A D 4.968 5.643 0.428 0.425
A H 4.968 5.632 0.466 0.438
C D 5.315 5.647 0.235 0.221
D E 5.645 5.305 0.600 0.528
E F 5.303 5.589 0.257 0.250
F E 5.592 5.300 0.547 0.550
C G 5.315 5.318 0.265 0.268
G H 5.317 5.636 0.227 0.233
H H 5.634 5.633 0.477 0.491
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Table 0.3: Energies froiffigure 3.1g

Binding energy (eV) Barrier (eV)
Start End  Start End Calculated Predicted
A B 4.977 4.965 0.133 0.192
A E 4.977 5.605 0.460 0.454
A H 4.980 5.648 0.433 0.423
A K 4.980 5.641 0.464 0.435
A N 4.977 5.630 0.424 0.443
B B 4971 4.964 0.125 0.146
B F 4.966 5.590 0.495 0.450
B L 4.970 5.609 0.502 0.443
C N 5.323 5.629 0.167 0.199
C D 5.322 5.327 0.319 0.253
D E 5.323 5.621 0.175 0.211
E F 5.624 5.585 0.552 0.498
F G 5.590 5.309 0.533 0.541
G H 5.309 5.650 0.257 0.246
H I 5.649 5.321 0.568 0.537
I J 5.318 5.322 0.257 0.259
J K 5.321 5.644 0.227 0.233
K L 5.642 5.611 0.483 0.517
L M 5.612 5.317 0.546 0.554
M N 5.312 5.629 0.245 0.254
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Table 0.4: Energies froiffigure 3.1h

Binding energy (eV) Barrier (eV)
Start End  Start End Calculated Predicted
A B 4910 4.935 0.129 0.181
A D 4.910 5.595 0.437 0.430
C C 5.274 5.275 0.239 0.259
C D 5.274 5.598 0.229 0.233
D D 5.596 5.594 0.494 0.491
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Table 0.5: Energies froffhigure 3.1i

Binding energy (eV) Barrier (eV)

Start End Start End Calculated Predicted
A B 4.940 4.955 0.145 0.180
H 4.940 5.639 0.402 0.415
A L 4.940 5.887 0.422 0.410
A O 4.940 5.605 0.400 0.424
B B 4.955 4,952 0.138 0.145
B D 4.955 5.608 0.461 0.431
B F 4.950 5.584 0.450 0.428
C o 5.297 5.623 0.241 0.235
C D 5.297 5.611 0.258 0.220
D E 5.610 5.299 0.576 0.520
E F 5.295 5.586 0.236 0.250
F G 5.589 5.293 0.546 0.550
G H 5.296 5.641 0.257 0.246
H J 5.640 5.314 0.560 0.537
J K 5.313 5.307 0.270 0.285
K L 5.307 5.889 0.213 0.204
L M 5.890 5.323 0.744 0.781
M N 5.326 5.325 0.311 0.283
N O 5.321 5.623 0.204 0.221
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.Table 0.6: Energies frofffigure 3.2a

Binding energy (eV) Barrier (eV)
Start End  Start End Calculated Predicted
A A 4.940 4.936 0.187 0.160
A C 4.940 5.630 0.413 0.423
A D 4.937 5.606 0.404 0.420
B D 5.313 5.607 0.249 0.253
B C 5.314 5.634 0.259 0.272
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Table 0.7: Energies fromffigure 3.2b

Binding energy (eV) Barrier (eV)
Start End  Start End Calculated Predicted
A B 4911 4.835 0.182 0.196
A E 4911 4.929 0.223 0.166
A G 4911 5.603 0.429 0.437
B C 4.933 4.963 0.093 0.120
C H 4.962 5.626 0.449 0.436
E D 4.933 4.935 0.173 0.190
E J 4.933 5.589 0.414 0.436
D L 4.934 5.611 0.426 0.429
F J 5.296 5.589 0.227 0.262
F G 5.296 5.606 0.255 0.251
G H 5.604 5.628 0.476 0.484
H I 5.628 5.304 0.556 0.534
I I 5.301 5.301 0.232 0.277
J K 5.575 5.277 0.525 0.545
K L 5.292 5.615 0.264 0.228
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Table 0.8: Energies frofffigure 3.2c

Binding energy (eV) Barrier (eV)
Start End  Start End Calculated Predicted
A B 4.909 4.930 0.170 0.196
A E 4.909 4.933 0.153 0.152
A G 4.909 5.587 0.443 0.437
B C 4.930 4.953 0.107 0.120
B D 4.930 4.886 0.207 0.226
C H 4.952 5.613 0.450 0.432
C K 4.952 5.617 0.445 0.436
D L 4.884 5.581 0.445 0.452
E M 4.932 5.576 0.423 0.432
F M 5.279 5.574 0.207 0.262
F G 5.279 5.592 0.260 0.251
G H 5.590 5.615 0.482 0.484
H I 5.615 5.290 0.560 0.534
I J 5.286 5.288 0.220 0.277
J K 5.288 5.620 0.227 0.236
K L 5.618 5.579 0.495 0.543
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Table 0.9: Energies froiffigure 3.2d

Binding energy (eV) Barrier (eV)
Start End  Start End Calculated Predicted
A B 4912 4.907 0.183 0.228
A D 4912 4.932 0.160 0.152
A F 4912 5.596 0.436 0.437
B B 4.907 4.799 0.198 0.236
B C 4.907 4.930 0.199 0.152
C G 4.931 5.623 0.419 0.424
C J 4,931 5.890 0.406 0.403
D D 4.935 4.933 0.169 0.160
D P 4.935 5.604 0.434 0.429
E P 5.287 5.579 0.217 0.262
E F 5.287 5.600 0.255 0.251
F G 5.598 5.625 0.477 0.484
G H 5.624 5.302 0.553 0.534
H I 5.299 5.292 0.234 0.303
I J 5.292 5.890 0.215 0.208
J K 5.892 5.307 0.744 0.788
K L 5.310 5.308 0.322 0.285
L M 5.304 5.606 0.173 0.216
M N 5.608 5.568 0.529 0.493
N O 5.575 5.285 0.512 0.537
O P 5.286 5.607 0.265 0.228
P Q 5.605 5.287 0.588 0.531
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Table 0.10: Energies froffigure 3.2e

Binding energy (eV) Barrier (eV)
Start End  Start End Calculated Predicted
A A 4.922 4.923 0.175 0.197
A B 4.922 4.941 0.176 0.196
A C 4.922 4.963 0.177 0.140
A E 4.922 5.605 0.438 0.437
A H 4918 5.583 0.432 0.452
B C 4.941 4.964 0.105 0.120
C F 4.962 5.629 0.447 0.432
C I 4.959 5.610 0.441 0.444
D H 5.299 5.582 0.216 0.283
D E 5.299 5.609 0.255 0.251
E F 5.606 5.631 0.476 0.484
F G 5.630 5.306 0.557 0.534
G G 5.303 5.304 0.226 0.277
H I 5.584 5.605 0.499 0.510
I J 5.612 5.307 0.460 0.541
J J 5.305 5.310 0.327 0.256
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Table 0.11: Energies froffigure 3.2f

Binding energy (eV) Barrier (eV)
Start End  Start End Calculated Predicted
A B 4.935 4.837 0.185 0.227
A E 4.935 4.951 0.168 0.152
A J 4.935 5.622 0.428 0.437
B C 4.933 4.975 0.090 0.163
B H 4.881 4911 0.171 0.208
C D 4974 4.969 0.155 0.120
C K 4.974 5.615 0.483 0.438
D M 4.969 5.632 0.411 0.426
D P 4.969 5.888 0.418 0.425
E F 4.952 4.954 0.174 0.191
E Vv 4.952 5.604 0.416 0.432
F G 4.953 4.954 0.175 0.158
F T 4.953 5.627 0.429 0.429
G H 4.954 4.910 0.182 0.244
G R 4.954 5.608 0.416 0.436
H P 4911 5.887 0.386 0.405
I \Y 5.311 5.605 0.216 0.262
I J 5.311 5.625 0.256 0.251
J K 5.623 5.618 0.480 0.511
K L 5.617 5.312 0.562 0.559
L M 5.307 5.632 0.211 0.244
M N 5.635 5.329 0.487 0.537
N O 5.327 5.337 0.313 0.262
O P 5.333 5.887 0.167 0.179
P Q 5.890 5.316 0.814 0.791
Q R 5.311 5.608 0.228 0.245
R S 5.610 5.305 0.534 0.545
S T 5.308 5.631 0.264 0.228
T U 5.629 5.312 0.586 0.531
U \Y, 5.309 5.604 0.229 0.219
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Appendix C: Code listings

Organization of code

The code is organised in classes. Each class pefone function. When there is multiple ways
for a function to be performed a base class is nm@adat function. A subclass then implements
the specifics of how the function is performed. sThllows for easy moving to a new function

implementation. Examples include using a diffeiategrator or potential.
The settings class is passed to the constructorost classes. This allows all the variables to be
loaded when the classes are constructed. All thahlas that are to be loaded are put together in

a region for easy maintenance.

Code for the viewer, generator and analysis compsne not included here.
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Conversion Functions

The conversion functions are included in the fdamulator.cs’.

//All the conversion functions work in eV and A/ps
private static double avogadro = 6.02214179e23;

private static double electronCharge = 1.602176565e-19;
private static double boltzmann = 1.3806e-23;// in joule

static public double Energy2Velocity(double kineticEnergyIneV, double mass) {
//mass = 195.084 for Pt
double massInKg = mass / (avogadro * 1000);
double energyIn] = kineticEnergyIneV * electronCharge;
double vInMeterPerSecond = Math.Sqrt(2 * energyIn] / massInkKg);
double vInAPerPs = vInMeterPerSecond / 100;
return vInAPerPs;

}

static public double Velocity2Energy(double velocity, double mass) {
return VelocitySquared2Energy(velocity * velocity, mass);

}

static public double VelocitySquared2Energy(double velocitySquared, double ma

ss) {

double energy = 0.5 * mass * velocitySquared * 10 / (avogadro * electronC
harge);// ~ 0.0101 * velocitySquared//*10e8

return energy;

}

static public double Energy2Temperature(double energy, double mass) {
return energy * 2 * electronCharge / (3 * boltzmann);

}

static public double Temperature2Energy(double temperature, double mass) {
return boltzmann * temperature * 3 / (2 * electronCharge);

}

static public double Temperature2Velocity(double temperature, double mass) {
return Energy2Velocity(Temperature2Energy(temperature, mass), mass);

}

static public double Velocity2Temperature(double velocity, double mass) {
return Energy2Temperature(Velocity2Energy(velocity, mass), mass);

}

static public double VelocitySquared2Temperature(double velocitySquared, doub
le mass) {
return Velocity2Temperature(Math.Sqrt(velocitySquared), mass);

}
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Integrator

The integrator as implemented in ‘integrator.cs’ is

using System;
using FileUtils;
using MyStuff;

namespace MD_Simulation {

public abstract class Integrators {
#region Variables that need saving & loading; Code that does that.-----------

protected double dt;

public void Save(SettingHandler loader) {
loader.SaveMember(() => dt);

}

private void Load(SettingHandler loader) {
dt = loader.LoadMember(() => dt);

}

protected Potential.UpdateDelegate UpdateAccelerations;
protected VectorArray x, v, a;//These are just references to the actual data.

protected Integrators(Simulator sim, SettingHandler loader) {
X = sim.x;
Vv = sim.v;
a = sim.a;
UpdateAccelerations = sim.UpdateAccelerations;

Load(loader);
}

abstract public void Step();
}

public class Leapfrog : Integrators {

public Leapfrog(Simulator sim, SettingHandler loader)
: base(sim, loader) {
}

public override void Step() {
x.PlusEqual(v, dt);
UpdateAccelerations();
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v.PlusEqual(a, dt);

}

internal class VelocityVerlet : Integrators {

public VelocityVerlet(Simulator sim, SettingHandler loader)
: base(sim, loader) {

}

public override void Step() {
x.PluskEqual(v, dt, a, dt * dt / 2, false);
v.PlusEqual(a, dt / 2);
UpdateAccelerations();
v.AddToCurrent(a, dt / 2);
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Vector array

In order to make the handling of the arrays of @exceasier in the integrator, a class to assist
with the array was implemented in ‘VectorArray.cs’'.

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

namespace MyStuff {
public class VectorArray {

// This class is only to provide a more convenient view of the simulation dat
a for the integrators.

private MyVector[] simdata;

public VectorArray(int numberOfSteps, int numberOfAtoms) {
simdata = new MyVector[numberOfAtoms];
for(int atom = @; atom < NumberOfAtoms; atom++) {
simdata[atom] = MyVector.Zero;

}
}

public VectorArray(int numberOfSteps, VectorArray source, int numberOfExtraAt
oms = @) {
int numberOfAtoms = source.NumberOfAtoms + numberOfExtraAtoms;
simdata = new MyVector[numberOfAtoms];
for(int atom = @; atom < numberOfAtoms; atom++) {
simdata[atom] = MyVector.Zero;//step,

}

for(int atom = @; atom < source.NumberOfAtoms; atom++) {
this[atom] = source[atom];

}

}

public override string ToString() {
return ToString(9);

}

public string ToString(int stepInc) {
string s = "";
for(int atom = @; atom < NumberOfAtoms; atom++) {
s += this[atom].ToString();
s +=" 5"
}

return s;
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public int NumberOfAtoms {

get {
return simdata.Length;
}

set { }
}

public MyVector this[int index] {
get { return simdata[index]; }
set { simdata[index] = value; }

}

public MyVector this[int index, double scale] {
get { return this[index] * (float)scale; }
set { }

}

public void PlusEqual(VectorArray vecl, double veclScale) {

//This is more efficient than using the operators because there are less
temporary objects.
for(int i = @; i < NumberOfAtoms; i++) {
simdata[i] = this[i] + (vecl[i, veclScale]);
}
}

public void AddToCurrent(VectorArray vecl, double veclScale) {

//This is more efficient than using the operators because there are less
temporary objects.
for(int i = @; i < NumberOfAtoms; i++) {
simdata[i] += (vecl[i, veclScale]);
}
}

public void PlusEqual(VectorArray vecl, double veclScale, VectorArray vec2, d
ouble vec2Scale, bool lookAtAllAtoms = true) {

//This is more efficient than using the operators because there are less
temporary objects.
int numberOfAtomsTolLookAt
NTLY_AFFECTING_SIMULATION;
if(lookAtAllAtoms) {
numberOfAtomsToLookAt = NumberOfAtoms;

MD_Simulation.Simulator.NUMBER_OF_ATOMS_CURRE

}

for(int i = @; i < numberOfAtomsToLookAt; i++) {
simdata[i] = this[i] + (vecl[i, veclScale]) + (vec2[i, vec2Scale]);

}
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Potentials

The potentials as implemented in ‘potential.cs’ is:

using System;

using System.Collections.Generic;
using FileUtils;

using MyStuff;

namespace MD_Simulation {

public class Potential {

e below

updated.

);

//The purpose of this class is to calculate the potential at a point.

//This class can't be used directly.

//It is the base class for the class that implements a specific potential. Se
for example.

protected VectorArray x, v, a;//These are just references to the actual data.
public double PE, KE;
public double maxV;//Used to check whether the cell structure should be

private double[] vSquared;
public double potentialForAtomAdded = 0;
public int atomAdded = ©;

protected bool useSteele = false;
protected double steele_size = 2.46;
protected double steele_scale_force = 1;

private double dt;
private double targetDistanceTolerance;
private string pullAtomTowardsTarget;

public void Save(SettingHandler loader) {
}

private void Load(SettingHandler loader) {
dt = loader.LoadMember(() => dt);
targetDistanceTolerance = loader.LoadMember(() => targetDistanceTolerance

pullAtomTowardsTarget = loader.LoadMember(() => pullAtomTowardsTarget);
useSteele = loader.SettingExists("useSteele");
if(useSteele) {
steele_size = loader.LoadMember(() => steele_size);
steele_scale_force = loader.LoadMember(() => steele_scale_force);
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double desiredTemperature = 0;
desiredTemperature = loader.LoadMember(() => desiredTemperature);
desiredVelocity = Simulator.Temperature2Velocity(desiredTemperature, 195.

public Cells cells;

public Potential(Simulator sim, SettingHandler loader) {

}

X = sim.x;
v = sim.v;
a = sim.a;

cells = sim.cells;

vSquared = sim.vSquared;
Load(loader);

atomAdded = x.NumberOfAtoms - 2;

public delegate void UpdateDelegate();

public delegate void PairHandler(int al, int a2, MyVector r, double r2);

public void Update() {

}

for(int atom = @; atom < a.NumberOfAtoms; atom++) {
a[atom].MakeZero();

}
pot = 0;

PreCalculate();
cells.ForAllAtomPairs(HandlePair);
PostCalculate();

//Calculate the potential energy
PE = pot;
PE *= peScale;

//Calculate the kinetic energy and the maximum velocity squared
double maxV2 = 0;

KE = 0;

for(int i = @; i < x.NumberOfAtoms; i++) {

double 12 = v[i].LengthSquared();
vSquared[i] = 12;
KE += 12;

if(12 > maxv2) {
maxV = Math.Sqrt(12);//This can possible be moved out of the loop
maxV2 = 12;

}
KE = Simulator.VelocitySquared2Energy(KE, 195.084);

#region helper functions
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private double desiredVelocity;
#tendregion helper functions
#region Variables for the calculation by child class

protected double pot;//Temporary variable to hold the potential during one st
ep.

protected double peScale;//scaling factor that needs to be applied to the pot
ential energy

#endregion Variables for the calculation by child class
#region extern members that the Potential classes HAVE to impliment.

protected virtual void PreCalculate() {

}

protected virtual void PostCalculate() {
}

protected virtual void HandlePair(int al, int a2, MyVector r, double r2) {

}

#tendregion extern members that the Potential classes HAVE to impliment.

}

/*Convention:
*rN = r~N
*r N = r~-N
* R_N = r~-N*R where R is a vector

*/
internal class LennardJones : Potential {

public LennardJones(Simulator sim, SettingHandler loader)
: base(sim, loader) {
peScale = 4;

}

protected override void HandlePair(int al, int a2, MyVector r, double r2) {
double r 6 =1 / (r2 * r2 * r2);
double r_12 = r_6 * r_6;
double potT = r_12 - (r_6);
MyVector force = r * (float)((r_12 - r_ 6 / 2) / r2);

pot += potT;
a[al] += force;

a[a2] -= force;

}

protected override void PreCalculate() {
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}

protected override void PostCalculate() {
for(int i = ©; i < x.NumberOfAtoms; i++) {
a[i] *= 48;
}

}

internal class ShiftedlLennardJones : Potential {

public ShiftedLennardJones(Simulator sim, SettingHandler loader)
: base(sim, loader) {
peScale = 4;
double cutoffRaduis = ©;
cutoffRaduis = loader.LoadMember(() => cutoffRaduis);
shift = Math.Pow(cutoffRaduis, -12) - Math.Pow(cutoffRaduis, -6);

}

private double shift;

protected override void HandlePair(int al, int a2, MyVector r, double r2) {
double r 6 =1 / (r2 * r2 * r2);
double r_12 r 6 * r_6;
double potT = r_12 - (r_6);
MyVector force = r * (float)((r_12 - r_ 6 / 2) / r2);

//lock(potentiallLock) {
pot += potT - shift;

a[al] += force;
a[a2] -= force;

}

protected override void PreCalculate() {

}
protected override void PostCalculate() {

for(int i = ©; i < x.NumberOfAtoms; i++) {
a[i] *= 48;

internal struct NearestNeighbour {
//The purpose of this structure is to cache the data during the calculation.
public NearestNeighbour(int nn, MyVector R2_5) {
index = nn;

aDivr_8multRdivr2 = R2_5;
}

public int index;// = the index of the neighbour atom
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}

public MyVector aDivr_8multRdivr2;// (a/r)”m * R/(r”~2) =R / r~(m+2) * a™m

internal class SuttonChenPtInRealUnits : Potential {

/mass

ion.

public SuttonChenPtInRealUnits(Simulator sim, SettingHandler loader)

base(sim, loader) {
aDivr_10multRdivr2 = new MyVector[x.NumberOfAtoms];
aDivr_8 = new double[x.NumberOfAtoms];
aDivr_10 = new double[x.NumberOfAtoms];

neigbours = new List<NearestNeighbour>[x.NumberOfAtoms];

for(int i = @; i < x.NumberOfAtoms; i++) {
aDivr_10multRdivr2[i] = MyVector.Zero;
neigbours[i] = new List<NearestNeighbour>();

peScale = 1;

double mass = 195.084;

double avogadro = 6.02214179e23;

double electronCharge = 1.602176565e-19;

forceConversionFactor = electronCharge * avogadro / (10 * mass);// ~ 9600

if(useSteele) {
steelePot = new SteelePotential(steele_size, steele_scale_force);

}

private SteelePotential steelePot;
private double forceConversionFactor;

#region material specific parameters

private const double n = 10;
private const double m = 8;
private const double c = 34.408;

private const double a_lattice = 3.92;

private const double a_lattice2 = a_lattice * a_lattice;
private const double epsilon = 1.9833e-2;

private const double ftlscale
private const double ft2scale = epsilon * ¢ * m / 2;
private const double cmOver2 = c * m / 2;

-epsilon * n;

#tendregion material specific parameters

private MyVector[] aDivr_1@multRdivr2;//First part in the force calculation.
private double[] aDivr_8;//This is the p_i terms.
private double[] aDivr_10;//This is the first part for the potential calculat
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private List<NearestNeighbour>[] neigbours;
/* All the lists should probably be changed to arrays for optimisation.
* (http://www.codeproject.com/Articles/340797/Number-crunching-Why-you-
should-never-ever-EVER-us)
*/

protected override void PreCalculate() {

//Clear all the arrays.

for(int i = ©; i < x.NumberOfAtoms; i++) {
aDivr_10multRdivr2[i].MakeZero();
aDivr_8[i] = 0;
aDivr_10[i] = ©;
neigbours[i].Clear();

}

protected override void HandlePair(int al, int a2, MyVector r, double r2) {
/* Using multiplication and addition instead of power because of speed
* {intel optimisation manual p 762-
763; http://www.intel.com/content/dam/doc/manual/64-ia-32-architectures-optimization-
manual.pdf, 30 aug 2012,
* software developers manual http://download.intel.com/products/processo
r/manual/325462.pdf}
* k)
double r_2 =1 / r2;
double ar_2 = a_lattice2 * r_2;// (a/r)"2
double ar_4 = ar_2 * ar_2;
double ar_8 = ar_4 * ar_4;
double ar_10 = ar_8 * ar_2;

//r2_n is a length so it will be the same in both directions.
aDivr_8[al] += ar_8;
aDivr_8[a2] += ar_8;

aDivr_10[al] += ar_10;
aDivr_10[a2] += ar_10;

//R2_n is a vector so its direction will reverse for the second atom.
MyVector terml = r * (ar_10 * r_2);// (a/r)”n * R/(r"2)
aDivr_10multRdivr2[al] += terml;

aDivr_10multRdivr2[a2] -= terml;

MyVector term2 = r * (ar_8 * r_2);// (a/r)"m * R/(r"2)
neigbours[al].Add(new NearestNeighbour(a2, term2));
neigbours[a2].Add(new NearestNeighbour(al, -term2));

}

protected override void PostCalculate() {
double[] pSqrtUnderl = new double[x.NumberOfAtoms];
for(int i = @; i < pSqgrtUnderl.Length; i++) {
if(abivr_8[i] == @) {
pSqrtUnderl[i] = ©;//This means there was no nearest neighbours
} else {
pSqrtUnderl[i] = 1 / Math.Sqrt(aDivr_8[i]);
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for(int atoml = @; atoml < x.NumberOfAtoms; atoml++) {
MyVector sum2 = MyVector.Zero;// sum { (1/sqrt_p_i + 1/sqrt_p_j) (a/r
)*m R/(r~2) }
for(int nn = ©; nn < neigbours[atoml].Count; nn++) {
sum2 += (pSqrtUnderl[atoml] + pSqrtUnderl[neigbours[atoml][nn].in
dex])
* neigbours[atoml][nn].aDivr_8multRdivr2;

}

a[atoml] = -epsilon * (-
n * aDivr_1@multRdivr2[atoml] + cmOver2 * sum2);//now a = f in eV/A
pot += 0.5 * aDivr_1@[atoml] - c * Math.Sqrt(aDivr_8[atoml]);

if(atoml == atomAdded) {//Save info for special atom
potentialForAtomAdded = 0.5 * aDivr_1@0[atoml] -
¢ * Math.Sqgrt(aDivr_8[atoml]);
potentialForAtomAdded *= epsilon;
}
}

pot *= epsilon;//don't have to do it for each atom now.

if(useSteele) {
double potTemp = 0;

for(int atom = @; atom < Simulator.NUMBER_OF_ATOMS_CURRENTLY_AFFECTIN
G_SIMULATION; atom++) {
a[atom] += steelePot.PotentialAndForceAt(x[atom], out potTemp);//
Apply Steele potential.
pot += potTemp;
if(x[atom].z > 30 && v[atom].z > @) {
if(v[atom].z > 20) {
v[atom].z *= -0.9;
} else {
v[atom].z *= -1;

}

}

for(int atom = @; atom < a.NumberOfAtoms; atom++) {
a[atom] *= forceConversionFactor;//a=f/m;
}
}

public class SteelePotential {

//Possible improvements:

// Add lookup for a*sl + b*s2. Savings would probably be very small.

// Move common sine calculations out of the derivatives. This would probably
make it about 15% faster.
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public SteelePotential(double steele_size = 2.46, double steele_scale force =
1 {
oneOverA = 1 / steele_size;
epc *= steele_scale_force;

}

public MyVector PotentialAndForceAt(MyVector v, out double potentialForAtom)

double x = v.x * oneOverA;//scaled for the first part to
double y = v.y * oneOverA;// the projection to sl and s2
double z = v.z * oneOverSigmapc;//scaled because of z*
double s1, s2;

xy2s(x, y, out s1, out s2);

double[] Eival = { E[@](z), E[1](z), E[2](z), E[3](z), E[4](z), E[5](2) }

double[] fval = { fscale[@] * f[@](sl, s2), fscale[1l] * f[1](s1l, s2), fsc
ale[2] * f[2](s1, s2), fscale[3] * f[3](sl, s2), fscale[4] * f[4](sl, s2), fscale[5]
* f[5]1(s1, s2) };

double[] ds1fvVal = { @, dsfscale[1l] * ds1f[1](sl, s2), dsfscale[2] * dsif
[2](s1, s2), dsfscale[3] * ds1f[3](sl, s2), dsfscale[4] * ds1f[4](sl, s2), dsfscale[5
] * ds1f[5](s1, s2) };

double[] ds2fval = { @, dsfscale[1] * ds2f[1](sl, s2), dsfscale[2] * ds2f
[2](s1, s2), dsfscale[3] * ds2f[3](sl, s2), dsfscale[4] * ds2f[4](s1l, s2), dsfscale[5
] * ds2f[5](s1, s2) };

)

double potential = 0;

for(int i = 0; i < 6; i++) {
potential += fval[i] * EiVal[i];

}

double fx = 0;
for(int i = 1; i < 6; i++) {

fx += EiVal[i] * ds2fval[i];
}

double fy = 0;
for(int i = 1; i < 6; i++) {

fy += EiVal[i] * (ds1fVval[i] - ©.5 * ds2fVal[i]) * yscale;
}

double fz = 0;
for(int i = 0; i < 6; i++) {

fz += dE[i](z) * fval[i] * oneOverA;
}

potentialForAtom = potential * epc;
return new MyVector(-fx * epc, -fy * epc, -fz * epc);

}

private double yscale = 1 / (Math.Sqrt(0.75));
private const double oneOverPi = 1 / Math.PI;
private const double sigmapc = 2.905;

private const double oneOverSigmapc = 1 / sigmapc;
private double oneOverA = 1 / 2.46;
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private double epc = 256 * 8.617e-5;

private void xy2s(double x, double y, out double sl1, out double s2) {
sl =y * yscale;
s2 X - 0.5 * s1;

//Now scale to be able to put into the simplified f i functions.
sl *= Math.PI;
s2 *= Math.PI;

}

private Func<double, double>[] E = {
z=> 0.0096486935771095821978704520915926*z - ©.059521754060441273148640561885259 -
26.471611160744238588904408970848*Math.Pow(z -
0.12184210937936890140065315790707, -3.5322725491679580755999268149026) +
42.54142210882071140076732262969*Math.Pow(z -
0.002827972081479003009507611210438, -9.9288944978424673593053739750758),

z=> 0.0026771860330833561689156674390233*z - 0.0080001335758203631631779728650145 +
9085.2083334329945500940084457397*Math.Pow(z + ©.49598067010776697438600990608393
» -21.573040985022547744165422045626),

z=> 0.00052913207800193648184389205724187*z - 0.0015240825479119592469889887809131 +
399854.43656259006820619106292725*Math.Pow(z + 0.67316046205391855128397082808078
,» -30.62437989629312085071433102712),

z=> 0.00030380309088065782186990904101265*%z - 0.00086694009177576891386762802937938 +
3532181.0755637940019369125366211*Math.Pow(z + ©.74515058420753998991159505749238
» -34.669004507003592152614146471024),

z=> 0.000086304674668712965160920214113816*z -
0.00024179075872386040536865525751864 +
3172851494.797443866729736328125*Math.Pow(z + ©.91574980579651088508086331785307,
-45.53082920002866273989639012143),

z=> 0.000046458000261504449335259181452784%*z -
0.00012959543941364331121751662934116 +

247826959323.0172119140625*Math.Pow(z + 1.0001007632683678316709574573906,
51.877749048159977007799170678481)

};

private Func<double, double>[] dE = {
z=> 93.504945435345021246081687042533*Math.Pow(z -
0.12184210937936890140065315790707, -4.5322725491679580755999268149026) -
422.38929190666385613181726974841*Math.Pow(z -
0.002827972081479003009507611210438, -
3076210324253425/281474976710656) + 0.0096486935771095821978704520915926,

z=> 0.0026771860330833561689156674390233 -
195995.5717346183881336514873526*Math.Pow(z + ©.49598067010776697438600990608393,
22.573040985022547744165422045626),

z=> 0.00052913207800193648184389205724187 -
12245294.168510996303070072279607*Math.Pow(z + 0.67316046205391855128397082808078, -
31.62437989629312085071433102712),
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z=> 0.00030380309088065782186990904101265 -
122457201.62827396995265461263811*Math.Pow(z + 0.74515058420753998991159505749238, -
35.669004507003592152614146471024),
z=> 0.000086304674668712965160920214113816 -
144462559486 .67804790978443904502*Math.Pow(z + ©.91574980579651088508086331785307,
46.53082920002866273989639012143),
z=> 0.000046458000261504449335259181452784 -
12856704803128.037505266833196187*Math.Pow(z + 1.0001007632683678316709574573906,
52.877749048159977007799170678481),

1

1J _ZJ 4: _ZJ _2) 4 }J
{1, 4 * Math.PI, -
I, -24 * Math.PI };

private double[] fscale = {
private double[] dsfscale =
8 * Math.PI, 8 * Math.PI, 4 * Math.P

private Func<double, double, double>[] f = {
(s1,s2)=> 1,//This is to align the indexes of f and E.
(s1,s2)=> Math.Cos(2*sl) + Math.Cos(2*s2) + Math.Cos(2*(sl + s2)),
(s1,s2)=> Math.Cos(2*sl - 2*s2) + Math.Cos(2*sl + 4*s2) + Math.Cos(4*sl + 2%*s2),
(s1,s2)=> Math.Cos(4*sl) + Math.Cos(4*s2) + Math.Cos(4*sl + 4*s2),
(s1,s2)=> Math.Cos(2*sl + 6*s2) + Math.Cos(6*sl + 2*s2) + Math.Cos(4*sl + 6*s2) + Mat
h.Cos(6*sl + 4*s2) + Math.Cos(2*sl - 4*s2) + Math.Cos(4*sl - 2*s2),
(s1,s2)=> Math.Cos(6*sl + 6*s2) + Math.Cos(6*sl) + Math.Cos(6*s2)

)

private Func<double, double, double>[] dslf = {
(s1,s2)=> 1,
(s1,s2)=> Math.Sin(2*s1) + Math.Sin(2*sl + 2*s2),
(s1,s2)=> Math.Sin(2*s1 - 2*s2) + Math.Sin(2*sl + 4*s2) + 2*Math.Sin(4*sl + 2%*s2),
(s1,s2)=> Math.Sin(4*s1) + Math.Sin(4*sl + 4*s2),
(s1,s2)=> Math.Sin(2*s1l + 6*s2) + 3*Math.Sin(6*sl + 2*s2) + 2*Math.Sin(4*sl + 6*s2) +
3*Math.Sin(6*s1 + 4*s2) + Math.Sin(2*sl - 4*s2) + 2*Math.Sin(4*sl - 2*s2),
(s1,s2)=> Math.Sin(6*s1l + 6*s2) + Math.Sin(6*s1)
}s

private Func<double, double, double>[] ds2f = {
(s1,s2)=> 1,
(s1,s2)=> Math.Sin(2*s2) + Math.Sin(2*s1l + 2*s2),
(s1,s2)=> Math.Sin(2*s1l - 2*s2) + 2*Math.Sin(2*sl + 4*s2) + Math.Sin(4*s1l + 2%*s2),
(s1,s2)=> Math.Sin(4*s2) + Math.Sin(4*sl + 4%*s2),
(s1,s2)=> 3*Math.Sin(2*sl + 6*s2) + Math.Sin(6*sl + 2*s2) + 3*Math.Sin(4*sl + 6*s2) +
2*Math.Sin(6*s1 + 4*s2) - 2*Math.Sin(2*sl - 4*s2) - Math.Sin(4*sl - 2*s2),
(s1,s2)=> Math.Sin(6*s1l + 6*s2) + Math.Sin(6*s2)
}s
}
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Cells

The cell structure as implemented in ‘Cells.cs’ is:

using System;

using System.Collections.Generic;

using System.Ling;
using FileUtils;
using MyStuff;

namespace MD_Simulation {

public class Cells {
#region variables and accessors

#region Variables that need saving & loading; Code that does

private double cellSize;
private int xcellCount, ycellCount, zcellCount;
private double xWrap, yWrap, zWrap;

private double cutoffRaduis;

public void Save(SettingHandler loader) {
SaveMember(() => cellSize);

loader

loader

loader
loader
loader

.SaveMember(()
loader.
loader.

SaveMember (()
SaveMember(()

.SaveMember (()
.SaveMember (()
.SaveMember(()

loader.

}

SaveMember(()

xcellCount);
ycellCount);
zcellCount);

xWrap) ;
yWrap);
zWrap);

cutoffRaduis);

private void Load(SettingHandler loader) {

cellSize =

xcellCount
ycellCount
zcellCount

XWrap
yWrap
zWrap

loader.LoadMember (

loader.LoadMember(() => cellSize);

loader.LoadMember(() => xcellCount);
loader.LoadMember(() => ycellCount);
loader.LoadMember(() => zcellCount);

xWrap) ;

0 =
loader.LoadMember(() => yWrap);
0 =

loader.LoadMember(

zWrap);

cutoffRaduis = loader.LoadMember(() => cutoffRaduis);
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#region nearest neigbours list

private MyVector[] nearestNeighbours;//index offsets to nearest neighbour cel

1s

private void InitializeNearestNeighbours() {
int i = 0;
nearestNeighbours = new MyVector[13];
nearestNeighbours[i++] = new MyVector(e, @, 1);
nearestNeighbours[i++] = new MyVector(e, 1, -1);
nearestNeighbours[i++] = new MyVector(@, 1, 0);
nearestNeighbours[i++] = new MyVector(o, 1, 1);
nearestNeighbours[i++] = new MyVector(1, -1, -1);
nearestNeighbours[i++] = new MyVector(1, -1, 0);
nearestNeighbours[i++] = new MyVector(1, -1, 1);
nearestNeighbours[i++] = new MyVector(1, @, -1);
nearestNeighbours[i++] = new MyVector(1, 0, 0);
nearestNeighbours[i++] = new MyVector(1l, 0, 1);
nearestNeighbours[i++] = new MyVector(l, 1, -1);
nearestNeighbours[i++] = new MyVector(1l, 1, 0);
nearestNeighbours[i++] = new MyVector(l, 1, 1);

}

#tendregion nearest neigbours list

private VectorArray atomPositions;//the x vector array from simulation.

private List<int>[, ,] cells;//There has to be at least 3 cells in all direct

ions to prevent serious wrap around artifacts.

private List<int> atomsNotInCells;

private readonly double halfXWrap, halfYWrap, halfZWrap;

private double minWrapDist2;

double cutoffRaduisSquared;//Critical raduis squared
Potential.PairHandler HandlePair;

private
private

int this[int x, int y, int z] {
{ return cells[x, y, z].Count(); }
{ cells[x, y, z].Add(value); }

private
get
set

}

int this[int x, int y, int z, int atomIndex] {
{ return cells[x, y, z][atomIndex]; }
{ cells[x, y, z][atomIndex] = value; }

private
get
set

}

#tendregion variables and accessors
#region init
public Cells(Simulator sim, SettingHandler loader) {
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InitializeNearestNeighbours();
atomPositions = sim.x;
Load(loader);

//Calculate values & init
cutoffRaduisSquared = cutoffRaduis * cutoffRaduis;

halfXWrap = xWrap / 2;
halfYWrap = yWrap / 2;
halfZWrap = zWrap / 2;

minWrapDist2 = Math.Min(xWrap, yWrap) - cutoffRaduis;
minWrapDist2 *= minWrapDist2;

//Allocate space for arrays
atomsNotInCells = new List<int>();
cells = new List<int>[xcellCount, ycellCount, zcellCount];
for(int xcell = @; xcell < xcellCount; xcell++) {
for(int ycell = 0; ycell < ycellCount; ycell++) {
for(int zcell = @; zcell < zcellCount; zcell++) {
cells[xcell, ycell, zcell] = new List<int>();

}

}

#tendregion init

#tregion functions to go through all pairs

private delegate void CellHandler();

public void ForAllAtomPairs(Potential.PairHandler _HandlePair) {

//This is the function that finds all the pairs of atoms that are interac
ting.

HandlePair = _HandlePair;
for(int xcell = @; xcell < xcellCount; xcell++) {

for(int ycell = 0; ycell < ycellCount; ycell++) {

ForAllzCells(xcell, ycell);

}

}

//Now for atoms not in the cells.
for(int atom = @; atom < atomsNotInCells.Count; atom++) {
for(int compareAtom = atom + 1; compareAtom < atomsNotInCells.Count;
compareAtom++) {
HandlePair_Check(atomsNotInCells[atom], atomsNotInCells[compareAt

om]);
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public void ForAllZCells(int xcell, int ycell) {
bool onEdge = false;
onEdge = onEdge || xcell == @ || xcell == xcellCount - 1;
onEdge = onEdge || ycell == @ || ycell == ycellCount - 1;
for(int zcell = @; zcell < zcellCount; zcell++) {
if(cells[xcell, ycell, zcell].Count == 0) {
continue;

}
bool onEdge2 = onEdge || zcell == @ || zcell == zcellCount - 1;

HandlePairsInCell(xcell, ycell, zcell, onEdge2);
HandleNearestNeighbours(xcell, ycell, zcell, onEdge2);

}

private void HandlePairsInCell(int xcell, int ycell, int zcell, bool onEdge)

//Find all interacting pairs in a cell.
for(int atom = @; atom < cells[xcell, ycell, zcell].Count; atom++) {//for
all atoms in current cell
for(int compareAtom = atom + 1; compareAtom < cells[xcell, ycell, zce
11].Count; compareAtom++) {//for compareAtom in cell
HandlePair_Check(this[xcell, ycell, zcell, atom],
this[xcell, ycell, zcell, compareAtom]);

//have to do wrap checking for atom in same cell becuase it can m
ove out of cell without an update
}
}
}

private void HandleNearestNeighbours(int xcell, int ycell, int zcell, bool on
Edge) {

//Find all interacting pairs between this cell and its nearest neighbours

//if cell is on edge
if(onkEdge) {
for(int nn = ©; nn < nearestNeighbours.Length; nn++) {//for compareAt
om in nearest neigbour cell
int xc = xcell + (int)nearestNeighbours[nn].x;
int yc = ycell + (int)nearestNeighbours[nn].y;
int zc = zcell + (int)nearestNeighbours[nn].z;

WrapCellIndex(ref xc, xcellCount);
WrapCellIndex(ref yc, ycellCount);
WrapCellIndex(ref zc, zcellCount);

if(cells[xc, yc, zc].Count == @) {
continue;//No atoms in the neighbouring cell.

}
for(int atom = @; atom < cells[xcell, ycell, zcell].Count; atom++
) {//for all atoms in current cell
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for(int compareAtom = @; compareAtom < cells[xc, yc, zc].Coun
t; compareAtom++) {//for all atoms in neighbouring cell
HandlePair_Check(this[xcell, ycell, zcell, atom],
this[xc, yc, zc, compareAtom]);

}

for(int atom = @; atom < cells[xcell, ycell, zcell].Count; atom++) {/
/for all atoms in current cell
for(int compareAtom = @; compareAtom < atomsNotInCells.Count; com
pareAtom++) {//for compareAtom in list
HandlePair_Check(this[xcell, ycell, zcell, atom], atomsNotInC
ells[compareAtom]);
}
}
} else {
for(int nn = ©; nn < nearestNeighbours.Length; nn++) {//for compareAt
om in nearest neigbour cell
int xc = xcell + (int)nearestNeighbours[nn].x;
int yc = ycell + (int)nearestNeighbours[nn].y;
int zc = zcell + (int)nearestNeighbours[nn].z;

+

if(cells[xc, yc, zc].Count == 0) {
continue;
}

for(int atom = @; atom < cells[xcell, ycell, zcell].Count; atom++
) {//for all atoms in current cell

for(int compareAtom = @; compareAtom < cells[xc, yc, zc].Coun
t; compareAtom++) {

HandlePair_Check(this[xcell, ycell, zcell, atom],
this[xc, yc, zc, compareAtom]);

}

protected void HandlePair_Check(int al, int a2, bool doWrapAroundCheck = true

) 1

//Checks whether atoms are interacting.
MyVector r = atomPositions[al] - atomPositions[a2];

double r2 = r.LengthSquared();
if(r2 > cutoffRaduisSquared) {
if(!doWrapAroundCheck) {
return;
}
if(r2 >= minWrapDist2) {
ForceWrap(r);

r2 = r.LengthSquared();

if(r2 > cutoffRaduisSquared)
return;

93



} else {
return;
}
}

//Atoms are interacting so pass the details to the potential calculation.
HandlePair(al, a2, r, r2);

}

#tendregion functions to go through all pairs
#region wrapping functions

private void WrapCellIndex(ref int index, int size) {
if(index < @) {
index += size;
} else if(index >= size) {
index -= size;
}
}

public void WrapAll() {
for(int atom = @; atom < MD_Simulation.Simulator.NUMBER_OF_ATOMS_CURRENTL

Y_AFFECTING_SIMULATION; atom++) {
ForceWrap(atomPositions[atom]);
}
}

private void ForceWrap(MyVector v) {
WrapPosition(ref v.x, halfXWrap);
WrapPosition(ref v.y, halfYWrap);
WrapPosition(ref v.z, halfzZWrap);

}

private void WrapPosition(ref double pos, double bound) {
if(pos < -bound) {
pos += bound + bound;
} else if(pos > bound) {
pos -= (bound + bound);

}
}

#tendregion wrapping functions
#region other functions
public void Update() {

//Updates the cell structure
//The atoms not inserted into the cell structure are ignored in the inter

actions but taken
//into account in the kinetic energy calculations so that atoms can be in

troduced easier.
//NOTE: The cell structure is centered around 0,0,0. The simulation shoul

d also be centered there.
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Clear();
for(int atom = @; atom < MD_Simulation.Simulator.NUMBER_OF_ATOMS_CURRENTL
Y_AFFECTING_SIMULATION; atom++) {

int xt = PositionToCellIndex(atomPositions[atom].X, xcellCount);
int yt = PositionToCellIndex(atomPositions[atom].Y, ycellCount);
int zt = PositionToCellIndex(atomPositions[atom].Z, zcellCount);

if((xt <@ || yt <o || zt <o ||
xt >= (xcellCount) ||
yt >= (ycellCount) ||
zt >= (zcellCount))) {
atomsNotInCells.Add(atom);

} else {
this[xt, yt, zt] = atom;

}

}

private int PositionToCellIndex(double pos, int count) {
double index = (pos + count * cellSize / 2) / cellSize;
return (int)index;

}

private void Clear() {
atomsNotInCells.Clear();
for(int xcell = @; xcell < xcellCount; xcell++) {
for(int ycell = 0; ycell < ycellCount; ycell++) {
for(int zcell = @; zcell < zcellCount; zcell++) {
cells[xcell, ycell, zcell].Clear();
}

}

#endregion other functions
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Performing fit for Steel potential

The Matlab® scritp used to perform the fitting fbe Steele potential is provided in this section.

The equations and their derivatives were also gdimh order for to be used in the c# program.

This was done with the following code.

function  SteelePotential()
clc

clear

close all

%All the Pt-C parameters are global and defined her
% so that they can easily be used everywhere.

global alsigmapcdzgepcas AEOEIFiXY xyzsls2

al=2.46;
sigmapc=2.905;
dz = 1.38;

q=2;
epc=256*8.617e-5;
as=(sqrt(3)/2);

A =sigmapc / al;

%This is dz*

%This is a_s*

EO = getfEQ();
Ei = getfEi();
Fi = getfFi();

z =0.5:.01:4;

X=-.2:.005:1.2;

X = X.*2;

Y=X;,

[X,y] = meshgrid(X,Y);

[s1,s2] = toParms(x,y);

fEi_n = getfEi();
fittingStructure = {
startValue}

{getfEQ(), @ffitLinear2, 1.0071603744, [-2.
1.21842109379368900e-001 -3.53227254916795810e+000
2.82797208147900300e-003 -9.92889449784246740e+000
5.95217540604412730e-002]};

{fEi_n{1}, @ffitLinear, 1.6900000000, [9.08
4.95980670107766970e-001 -2.15730409850225480e+001
8.00013357582036320e-003]};

{fEi_n{2}, @ffitLinear, 1.3264898345, [3.99
6.73160462053918550e-001 -3.06243798962931210e+001
1.52408254791195920e-003]};
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%({function2FitTo function2FitWith zeroCrossing

64716111607442390e+001 -
4.25414221088207110e+001 -
9.64869357710958220e-003 -

520833343299460e+003
2.67718603308335620e-003 -

854436562590070e+005
5.29132078001936480e-004 -



{fEi_n{3}, @ffitLinear, 1.2458359721, [3.53 218107556379400e+006

7.45150584207539990e-001 -3.46690045070035920e+001 3.03803090880657820e-004 -
8.66940091775768910e-004]};

{fEi_n{4}, @ffitLinear, 1.0394434840, [3.17 285149479744390e+009
9.15749805796510890e-001 -4.55308292000286630e+001 8.63046746687129650e-005 -
2.41790758723860410e-004]};

{fEi_n{5}, @ffitLinear, 1.0000000000, [2.47 826959323017210e+011
1.00010076326836780e+000 -5.18777490481599770e+001 4.64580002615044490e-005 -
1.29595439413643310e-0041}

h

DoFit(fittingStructure);
fprintf( \n\nprinting all for c#\n\n'
PrintFunctionsForCSharp(fittingStructure) %Remember: s1&s2 are to be
divided by pi and z by sigmapc. Also the derivative s of the sines should be
multiplied by pi
end
%%%% %% % %% % %% % %% % %% % %% % %% % %% % %% % %% Y0 SR8H806480806480806400006288006%896%6%6%% %% %

%Utility functions

function  [s1,s2] = toParms(x,y)

global al
%Projection from X,y coordinates into crystal coord inates.
sl =y/sqrt(0.75);
s2 = x-0.5*s1,;
%Taking just the decimal part because s1 and s2 are between 0 and 1.

sl = s1-fix(sl);
s2 = s2-fix(s2);
end

%%%% %% % %% % %% % %% % %% %% % % %% % %% %% % % %% % %RB884684848089840808080828062008082
%The basic function parts

%%%%% %%

function  EO = getEOQ()
global al sigmapc dz qepc as A
syms zn

EO_preConstant = 2*pi*g*A"6/as;

EO_sum = 0;

EQ_partial_sum = (2/5)*A"6/((z+n*dz)"10)-(1/(z+ n*dz))"4,
for i=0:25
EO_sum = EO_sum + subs(EOQ_partial_sum, n, i );
end

EO_sum = EO_sum * EO_preConstant;
EO_sum = simplify(E0_sum);

EO = EO_sum;
end

function  Ei = getEi()
global al sigmapc dz qepc as A
syms sl s2 z gi n

gi_vals = (2*pi)*[2/sqrt(3), 2, 4/sqrt(3), 2*sq rt(7/3), 6/sqrt(3)]; %
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Ei_preConstant = 2*pi*(A"6)/as;
Ei_part = (A?6/30)*(gi/(2*z))"5*besselk(5,gi*z) -
2*(gil(2*z))"2*besselk(2,9i*2);

for i=1:5
Ei{i} = subs(Ei_preConstant*Ei_part,qgi,gi_v als(i));
end

end

function  Fi = getFi()
syms sl s2

f=24

- (cos(2*pi*sl) + cos(2*pi*s2) + cos(2*pi*(sl +52)));

2*(cos(2*pi*(sl + 2*s2)) + cos(2*pi*(2*sl + s2 )) + cos(2*pi*(sl - s2)))
L (cos(4*pi*sl) + cos(4*pi*s2 ) + cos(4*pi*(s 1+5s2)));

- (cos(2*pi*(3*sl + s2)) + cos(2*pi*(sl + 3*s2 )) + cos(2*pi*(3*sl
2*s2)) + cos(2*pi*(2*s1 + 3*s2) ) + cos(2*pi*(sl - 2*s2)) + cos(2*pi*(2*s1l -
s2))): ..

2*(cos(6*pi*sl ) + cos(6*pi*s2) + cos(6*pi*(sl +s2)1];

for i=1:5
Fi{i} = 1(i);
end

end

%6%%%%6%6% %% %% %% %% % %% %% % % % %% %% %% %% %% % %8R 8%8489808008608980806060898
%Getting the function handles to the parts

880%0%0%%%% %

function  fEO = getfEQ()

syms z
fEO = @(height)subs(getEQ(),z,height);
end

function  fEi = getfEi()

syms z
Ei = getEi();
for i=1:5
fEi{i} = @(height)subs(Ei{i},z,height);
end
end

function  fFi = getfFi()
syms sl s2

Fi = getFi();
for i=1:5
fFi{i} = @(x,y)subs(Fi{i}, {s1,s2}, {x,y});
end
end

%%%% %% % %% % %% % %% % %% %% % % %% % %% %% % % %% % %R888484848089880808080828862808082
%Getting the function handles to the derivatives

%%%%% %%
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function  [fdzEO,dzEO] = getdzEQ()
syms z
temp = getEO();
dzEO = diff(temp,z);
fdzEO = @ (height)subs(dzEO0,z,height);
end

function  [fdzEi,dzEi] = getdzEi()

syms z
temp = getEi();
for i=1:5

dzEi{i} = diff(temp{i},2);
fdzEi{i} = @(height)subs(dzEi{i},z,height);
end

end

function  [fds1Fi,ds1Fi] = getds1Fi()
syms sl s2
temp = getFi();

for i=15

ds1Fi{i} = diff(temp{i},s1);

fds1Fi{i} = @(x,y)subs(ds1Fi{i}, {s1,52}, { X.y1);
end

end

function  [fds2Fi,ds2Fi] = getds2Fi()
syms sl s2
temp = getFi();

for i=15

ds2Fi{i} = diff(temp{i},s2);

fds2Fi{i} = @(x,y)subs(ds2Fi{i}, {s1,52}, { X.y1);
end

end

%%%%%%% % %% %% % %% % %% %% % %% %% %% % %% % %% % %840484886084088088008808808860880%0%0% % %% %

%Performing the fit

function  DoFit(fittingStructure)
for i= 1: length(fittingStructure)

finalParms{i} = Fitf(fittingStructure{i}{:} D)
end
fprintf( \n" )
for i=1:length(finalParms)
fprintf( %f [ ,i-1)
fprintf( '%20.17¢" , finalParms{i});
fprintf( N )
end
end
function  parms = Fitf(f, fittingFunction, zeroCrossing, par ms, i)
global zfz
fz = f(2);
errorFunc = @(parms)Error(parms, fittingFunctio n);

startError = errorFunc(parms);
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parms = fminsearch(errorFunc, parms,
optimset( 'MaxFunEvals' ,500000, ‘Maxiter' , 50000));

figure
ErrorComparePlot(fz, fittingFunction(parms))
subplot(4,1,1),title([ '‘E'int2str(i-1)])

stopError = errorFunc(parms);

fprintf( 'start error = %7.4e\n’ , startError)
fprintf( 'stop error = %7.4e\n’ , StopError)

%  fprintf(\n[")

%  fprintf(' %10.6€’, parms);
%  fprintf('] \n\n")

end

%0%%%%0% % % %% %% % %% %0 %% % %% %0 %% % %% %0 % % % % %0 %0 %%8884648000048884600000008080800R
%Error functions for the fit

%%%%% %%

function  err = ErrorBetween(fnew)

global zfz

err = fnew -fz;

err = (err)./(fz+1); %-+1 so that the error doesn't explode when f is
approximately O

err(z>0.7) = err(z>0.7)*1.2; %make the error on the approach count more

err(z>0.95&z<2.4) = err(z>0.95&z<2.4)*1.3,; %make the error in the minimum
count more

err = sgrt(mean(err.”2)); %ocalculate the rms error

end

function  err = Error(parms, fittingFunction)
err = ErrorBetween(fittingFunction(parms));

% fprintf(err: %7.1e parms:',err);

% fprintf(' %7.1e;', parms);

%  fprintf('\n")

end

%%% %% %% %% %0 %% % %% % %% %% % % %0 %% %% % %% % % % % %08 840488000%860088000%0400888008
%Functions used in the fit

%%%%% %%

function y = ffitLinear(parms)

global z
y=0;
i = 0; y = y+ parms(1+i).*(z+parms(2+i))."parms (3+i);

i = 3;y =y+ parms(1+i).*z+parms(2+i);
end

function y = ffitLinear2(parms)

global z
y=0;
i = 0; y = y+ parms(1+i).*(z+parms(2+i))."parms (3+i);
i = 3; y = y+ parms(1+i).*(z+parms(2+i))."parms (3+i);
i = 6;y =y+ parms(1+i).*z + parms(2+i);
end
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%%%%%%% % %% %% % %% % %% %% % %% %% %% % %% % %% % %840484886084088088008808808860880%0%0% % %% %

function  ErrorComparePlot(fz, fparm)

global z
subplot(4,1,1), plot(z, fz) %original
subplot(4,1,2), plot(z, fparm) %fit
subplot(4,1,3), plot(z, fparm - fz) %error
subplot(4,1,4), plot(z, (fparm - fz)./(fz+1)) %percentage error
end

%%% %% %% % %% %% % %% % %% %% % %% %% % %% %% % %% % %84048484¢

#0%0%0%% %% %

function  PrintFunctionsForCSharp(fittingStructure)
syms sl s2
for i= 1: length(fittingStructure)

fprintf([ \n\nE' int2str(i-1)])
PrintEi(fittingStructure{i{4})
end

Fi = getFi();

[fds1Fi,ds1Fi] = getdsl1Fi();
[fds2Fi,ds2Fi] = getds2Fi();
for i=1:5
fprintf([ \n\nf' int2str(i)])
PrintFi(i, subs(Fi{i},{s1,s2},{s1/pi,s2/pi} ),
subs(ds1Fi{i},{s1,s2},{s1/pi,s2/pi}), subs(ds2Fi{i} {s1,s2},{s1/pi,s2/pi}) )
%PrintFi(i, Fi, ds1Fi, ds2Fi)
end
end

%%% % %% % %% % %% % %% % %% % %% % %% % %% % %% %0 %% Y0 Y4e 800 4e 0000 %0400000000000000006¢
%Printing helpers

%%%%% %%

function  PrintEi(parms)
global sigmapc
syms Xy z
if length(parms)>5
eq = parms(1).*(z+parms(2))."parms(3) +

parms(4).*(z+parms(5)).Aparms(6) + parms(7).*z + pa rms(8);
else
eq = parms(1).*(z+parms(2))."parms(3) + par ms(4).*z + parms(5);
end

%f = simplify(subs(eq, z, z/sigmapc))
f = vpa(simplify(subs(eq, z, z)))
df = vpa(simplify(diff(f)))
end

function  PrintFi(i, Fi, ds1Fi, ds2Fi)
f = vpa(simplify(Fi))
dsif = vpa(simplify(ds1Fi)/pi)
ds2f = vpa(simplify(ds2Fi)/pi)

end
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