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ABSTRACT 

 

Nanotechnology has, without  a doubt, ushered in a new era of technological 

convergence and holds the promise of making a profound impact on the way 

research in physics, chemistry, materials science, biotechnology etc. are 

conducted.  The novel properties of materials at the nanoscale (or nanostructures) 

make them useful in a variety of applications, from catalysis to the medical field 

and electronics industry.  However, to exploit these properties at the nanoscale, 

precise control over the morphology and size of nanostructures is required.  One 

strategy that may be explored to tailor nanostructure morphology and size is 

vapour deposition.  A lot of further insight can be gained from computer 

simulations of the processes governing the growth of nanostructures during 

vapour deposition.  A method that shows promise in simulating thin film growth 

through vapour deposition is kinetic Monte Carlo (KMC).  Therefore, in this 

study, a KMC model was developed to describe growth through vapour 

deposition.  A gold on graphite system was simulated to test the model.  In this 

KMC model, substantial effort was devoted to developing the model in different 

stages, each stage being more robust than the previous one.  The assumptions 

made at each stage and possible artefacts (unphysical consequences) arising from 

them are discussed in order to distinguish real physical effects from artificial 

ones.  In the model, data structures, search algorithms and a random number 

generator were developed and employed in an object-orientated code to simulate 

the growth.  Several simulations were performed at different growth conditions 

for each of the stages.  The results are interpreted based on the kinetic constraints 

imposed during the growth.   
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SAMEVATTING 
 

Nanotegnologogie het ongetwyfeld ‘n nuwe era van tegnologiese konvergensie 

ingelui en hou die belofte in om ‘n beduidende impak te hê op die wyse waarop 

navorsing in fisika, chemie, materiaalwetenskap, biotegnologie ens. onderneem 

word.  Die unieke eienskappe van materiale op die nanoskaal (of nanostrukture) 

maak hulle in ‘n verskeidenheid van toepassings, van katalise tot die mediese 

veld en elektroniese industrie, bruikbaar.  Om hierdie eienskappe op die 

nanoskaal aan te wend, word presiese beheer oor die morfologie en grootte van 

die nanostrukture vereis.  Een strategie om die nanostruktuur, morfologie en 

grootte te verander, wat ondersoek kan word is atoomdeposisie.  Heelwat 

verdere insig oor die prosesse wat die groei van nanostrukture tydens 

atoomdeposisie beheer, kan vanuit rekenaarsimulasies verkry word.  ‘n Metode 

wat potensiaal toon om dunfilmgroei deur atoomdeposisie te simuleer, is 

kinetiese Monte Carlo (KMC).  In hierdie studie is ‘n KMC model gevolglik 

ontwikkel om groei tydens atoomdeposisie te beskryf.  Om die model te toets is 

‘n goud op grafiet sisteem gesimuleer.  In hierdie KMC model is beduidende 

moeite gedoen om die model in verskillende stadiums te ontwikkel, elke stadium 

meer robuust as die vorige. Die aannames wat tydens elke stadium gemaak is en 

die moontlike kunsmatige (of onfisiese) gevolge wat as gevolg daarvan ontstaan, 

word bespreek om te onderskei tussen werklike fisiesie effekte en kunsmatiges.  

In die model is datastrukture, soek algoritmes en ‘n ewekansige getal 

genereerder ontwikkel en in ‘n objek-georiënteerde kode ingespan om groei te 

simuleer.  Verskeie simulasies is by verskillende groei voorwaardes vir elk van 

die stadiums uitgevoer.  Die resultate word geinterpreteer met in agname van die 

kinetiese beperkinge teenwoordig gedurende die groei. 

SLEUTELWOORDE: Kinetiese Monte Carlo, Goud Nanostrukture, atoomdeposisie 
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CHAPTER 1  

Introduction 

 

1.1 Background 

The earliest impetus towards nanotechnology was given by the Nobel-prize 

winning physicist, Richard Feynmann, in his visionary lecture “There is plenty of 

room at the bottom” delivered at the American Physical Society (APS) meeting at 

Cal Tech in 1959 in which he said, “The problems of chemistry and biology can be 

greatly helped if our ability to see what we are doing, and to do things on an atomic level, 

is ultimately developed – a development which I think cannot be avoided” [1].  Indeed, 

this vision was realized in the late 1980’s with the invention of the scanning 

tunnelling microscope (STM) [2, 3] which is an instrument that exploits the 

quantum mechanical tunnelling current to generate atomically resolved images 
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of electronic states. In the simplest terms, nanotechnology deals with the size 

selected collection of a few atoms to a few tens of thousands of atoms.  Structures 

on this scale exhibit unique and novel properties, vastly different from 

microsctructures which already, to a reasonable extent, approximate that of the 

infinite bulk.  These properties originate either from spatial confinement of a 

physical entity inside a specified volume (for example, the confinement of 

electronic wave functions inside a region with a size smaller than the electron 

mean free path) or from the significant volume fraction of material located near 

surfaces, interfaces or domain walls [4, 5].    Fabrication and manipulation of 

these nanostructures is therefore a fundamentally exciting and technological 

relevant area of research.   

Nanostructures are usually classified according to their dimensionality which can 

be defined as the number of orthogonal directions Lx, Ly, Lz smaller than the 

nanoscale dimension Lo (see Table 1.1) below which size effects become 

important.  They may be manufactured through one of two disparate 

approaches; namely the top-down and bottom-up techniques [6] as illustrated in 

Figure 1.1.  The former makes direct use of lithographic techniques such as STM 

related nanolithography [7], electron beam writing [8] and micro-contact printing 

[9].   Although these methods can achieve high spatial resolution, they are quite 

slow when used to design nanoscale features.  Bottom-up approaches, on the 

other hand, aim to guide the assembly of atomic and molecular constituents into 

organized nanostructures through processes inherent to the manipulated system.  
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Table 1.1:  Examples of reduced-dimensional material geometries, definitions of their 

dimensionality and of the associated type of confinement. 

Lengths Confinement Dimensionality Type Illustration 

LX,Y,Z  > Lo None No Nanostructures 
Bulk 

Material 

 

 

LX,Y > Lo > LZ 1D 2D Nanostructures Wells 
 

 

LX > Lo > L Y,Z 2D 1D Nanostructures Wires 

 

Lo > LX,Y,Z 3D 0D Nanostructures Dots 
 

 

 

A number of self-assembly techniques have been reported for fabricating 

nanoscale structures and these are broadly divided into two categories, namely 

gas phase synthesis and sol-gel processing. Gas phase synthesis is based on 

evaporation and condensation in a sub-atmospheric inert-gas environment or  

vacuum (for example vapour deposition [10], laser ablation [11], spray pyrolysis 

[12], plasma etching [13] etc.) whereas sol-gel processing [14] is a wet chemical 

synthesis approach that can be used to generate nanostructures by gelation, 

precipitation, and hydrothermal treatment.   
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Figure 1.1:  Schematic illustration of the two approaches followed in the manufacturing of 

nanostructured materials. 

Although great advances have already been made with both these methods in the 

development of protocols that can be used to synthesise nanostructures within a 

narrow size and shape distribution, a detailed fundamental understanding of the 

processes governing synthesis is still lacking in most cases.    Consequently, 

substantial effort is put into establishing models that can foster the development 

of the above mentioned synthesis protocols [15-17].  Ultimately, these models will 

be able to define the design of the nanostructures and as such reduce the number 

of design iterations, experiments and tools required for design.  

Sol-gel processing of nanostructures, although the most promising in terms of 

scale-up strategies and thus commercial exploitation of nanostructures, are in 

many ways far more complex to model than gas phase synthesis.  Numerous 

factors contribute to this, of which the large number of reactions occurring 

during processing, the difficulty in obtaining accurate activation energies and 

nanostructured 
material 

bulk 
material 

nanosized 
building blocks  

lithography, micro-contact 
printing, e-beam writing 

gas-phase synthesis, sol-gel 
processing 
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rate constants and the time scale of the synthesis process are but a few.  On the 

other hand, several simulation methodologies with different degrees of 

crudeness have already been employed to study gas-phase synthesis and some 

have been particularly successful in describing observations made on 

nanostructure growth in molecular-beam epitaxy with the kinetic Monte Carlo 

method shown to be able to reach experimental time-scales [18, 19].     

Metallic nanostructures, especially the coinage metals, have been extensively 

studied for the past decade [20-22], because of their unique physical and chemical 

properties such as a strong optical absorption in the visible region [23].  Gold 

nanostructures, in particular, have received substantial attention over the ages, 

and date back to the pioneering work of Faraday on the synthesis of gold 

hydrosols [24].  Gold nanostructures can potentially utilized in several new 

technologies [25], ranging from electronics, to catalysis, to the chemical industry, 

to biotechnology and more.  Applications include biosensors and DNA labelling 

[26, 27], nanoelectronics [29, 30], calorimetric [31] etc. However, all of these 

applications demand nanostructures with a well-defined size and shape. 

 

1.2 Motivation of study 

Clearly, there is a strong need to synthesise nanostructures with a well-defined 

size and shape in order to exploit the unique properties presented on this scale 

which can ultimately result in industrial and commercial applications.  Moreover, 

precise control over the growth of gold nanostructures can be useful for various 

technologies and especially holds great promise for the bio-medical community.  

Even though valuable information on the mechanisms responsible for 

nanostructure growth can be extracted from experiment, this can be a very time-
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consuming and costly process.   However, one can resort to modelling and 

perform "computer experiments" to aid in elucidating the mechanisms 

responsible for nanostructure growth and to provide guidelines for tailoring 

nanostructure size and shape.   This is also the approach followed in this work. 

More specific, the growth of gold nanostructures via gas-phase synthesis 

(physical vapour deposition) was studied on a model substrate, graphite. The 

reasons for choosing graphite as substrate will become evident in Chapter 4.   

The primary objectives for this work can therefore be summarised as follow: 

• Establish a model for the simulation of gold nanostructure growth on a 

graphite substrate through vapour/atomic deposition. 

• This model should make provision for all relevant time scales (excluding 

atomic vibrations) so that a real experiment can be simulated. 

• From this model, the mechanisms involved in the growth process should 

be determined and deductions made on how they influence the 

nanostructure size and shape. 

• The model has to be designed in such a way that it can be extended to 

vapour deposition experiments with different materials (i.e other than 

gold and graphite).  

It must be emphasised that the focus of this work was not conduct a detailed 

study to elucidate the exact energy barriers for the processes involved in 

nanostructure growth (discussed in Chapter 2); rather it was to develop a model 

to perform simulations on a mesoscopic or microscopic scale.  It was also 
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endeavoured that this model should be sophisticated enough so that further 

development and enhancement can easily follow. 

 

1.3 Layout of thesis 

Chapter 1 gives a general introduction to nanostructure synthesis and provides 

the motivation of this study. 

Chapter 2 describes the self-assembled growth of nanostructures during vapour 

deposition, thermodynamic equilibrium and the kinetic constraints that are 

imposed during growth. 

Chapter 3 gives an overview of some of the simulation methods that can be used 

to model the growth of nanostructures with specific emphasis placed on the 

method used in this study, namely the kinetic Monte Carlo (KMC) method. 

Chapter 4 describes the implementation of the KMC method in terms of data 

structures, search algorithms, process identification and how these are combined 

into an algorithm that can be computer coded.  The application of method for this 

study is also discussed. 

Chapter 5 gives a summary and interpretation of the results obtained using the 

KMC method, as implemented in this study, for the simulation of gold 

nanostructure growth on graphite. 

Chapter 6 concludes the results and some suggestions are made on future work.
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CHAPTER 2  

Self-assembled Growth 

 

Self-assembly has become an increasing hallmark in the field of nanostructure 

synthesis and is essentially based on growth phenomena [31-33].  In self-

assembled growth, atoms and/or molecules are deposited on a substrate, which 

can reside in vacuum, atmosphere or solution.  Nanostructures (or larger 

crystals) consequently evolve on the substrate as a result of numerous competing 

processes.  The equilibrium morphology of crystals has been well established 

more than 100 years ago [34] and can be insightful in understanding the 

equilibrium morphology of nanostructures.   This chapter therefore gives a 

general discussion of crystal growth morphology, under equilibrium as well as 

non-equilibrium conditions, in order to lay the foundation for subsequent 

chapters. 
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2.1 Crystal growth 

2.1.1 Thermodynamic considerations 

The equilibrium morphology of crystals, as determined by thermodynamics, can 

be obtained by minimizing the total surface free energy of the crystal at a 

constant volume and temperature [35].  For isotropic surface free energies (as in 

the case of liquids) the crystal morphology will be spherical and the chemical 

potential constant everywhere on the surface.  The chemical potential is given  

by [35] 
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with μ0 the chemical potential inside the crystal, V the volume of the crystal, N 

the number of atoms in the crystal, 
x
zzx ∂
∂

=  and 
y
zz y ∂
∂

=  the partial derivatives of 

the height, z, over the coordinates of the (x, y) plane respectively and 

( ) ( ) 221,, yxyxyx zzzzzz ++= σφ  the projected surface free energy.  The surface free 

energy, F, is defined as [35] 

 ( )∫∫= dSzzF yxsurf ,σ  ,                    (2.2) 

with ( )yx zz ,σ  the local surface tension integrated over the entire surface S.  The 

constant chemical potential implies that the surface free energy (given by 

equation (2.2)) is a minimum at equilibrium.  Equivalently, the change in the 
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surface free energy, FΔ , at a constant temperature and volume is given by  

.012 =−=Δ μμF        (2.3)            

The crystal surface can consequently be described by equation (2.1), provided 

that the functions F(zx, zy) or φ(zx, zy) are known.  Assuming that the units are 

selected in such a way that the molar volume v = V/N = 1, and that 0μ  = 0, the 

equation for the crystal surface can be written as   

constant=−=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

∂
∂

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂
∂ μφφ

yx zyzx
.       (2.4) 

Equation (2.4) can only be applied to crystal morphologies for which derivatives 

of φ  exist.  This will be the case for rounded crystals since φ  for facetted crystals 

are only defined in a discrete set of orientations in the equilibrium morphology 

(see Figure 2.1).  The surface free energy must then be written as a sum of the 

contributions from the various facets i.e  

 ∑=
f

ffsurf AF σ  ,             (2.5) 

with σf  the value of σ (n) at n = nf and Af the area of the corresponding facet.  The 

equilibrium morphology can be found by minimizing Fsurf at a fixed volume 

∑=
f

ff hAV 2
1 , where hf  = maxR {R⋅nf} and R any point on the crystal surface.  A 

constrained minimization with a Lagrange multiplier λ [36] can be performed to 

enforce the fixed volume condition  

 ( ) 0
2

=⎟
⎠
⎞

⎜
⎝
⎛ +=+ ∑ f

f
ffsurf AhFV δσλλδ .        (2.6) 
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This minimization yields 

2
λσ

−=
f

f

h
 .          (2.7) 

 

 

 

 

 

 

 

 

Figure 2.1: The equilibrium shape of a two-dimensional facetted crystal.  The “area” of 

the f-th facet is Af and hf = R⋅nf  is the distance from the centre of symmetry with R any 

point on the crystal surface. 

It follows that ratio of the surface energy to the distance hf from the origin is 

constant.  At this stage, λ is still unknown, but it can be deduced by noting that 

the variation in free energy at fixed volume can be written as [35]  

NFsurf μδδ = ,                        (2.8) 

with Nδ the variation in particle quantity N.  According to equation (2.6), 

 

O 

Af nf 
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( ) 0=+ surfFVλδ , therefore  

λδλδμδδ NvVNFsurf −=−== ,         (2.9) 

with NVv /=  the volume per particle.   It subsequently follows that 

v/μλ −=  .                        (2.10) 

An expression for the set of { }fh , which describes the equilibrium morphology, 

can then be obtained by combining equation (2.7) and (2.10) resulting in 

μ
σ f

f

v
h

2
=   .            (2.11) 

Examples of equilibrium morphologies are the truncated octahedron and 

rhombic dodecahedron for fcc and bcc structures respectively, as shown in 

Figure 2.2.  These polyhedron shapes are only valid when the surface anisotropy 

is maximal, which is the case at 0 K.  At higher temperatures, the crystal 

equilibrium morphology is more rounded and eventually becomes completely 

spherical at the melting point [35].  In addition to the above methodology, a 

geometric construction, namely the Wulff construction [35], can be used to find 

the equilibrium crystal morphology. 
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Figure 2.2:  Equilibrium shapes at 0 K of an (a) fcc truncated octahedron and a (b) bcc 

rhombic dodecahedron. 

 

The above discussion is only valid for crystals in free space.  Nanostructures are 

however usually grown on supports.  Equation (2.4) must therefore be modified 

to describe the growth of supported crystals, which was done in [37].  

Accordingly, the equilibrium shape of a supported crystal is given by 

 i

adh

i

E
h
h

γ
=

Δ

,            (2.12) 

with Δh the amount by which the crystal’s shape is truncated, hi and γi the central 

distance to the facet parallel to the interface and the corresponding surface free 

energy and  Eadh the work of adhesion (see Figure 2.3). 

 

(a) (b) 
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Figure 2.3:  Schematic representation of the equilibrium shape of a supported polyhedron 

crystal.  The shape of the free crystal is truncated at the interface by an amount Δhs which 

is proportional to the adhesion energy.  The h’s represent the distance from the centre of 

the crystal to the different facets. The surface free energies of the substrate, deposited film 

and interface are given by Sγ , dγ  and intγ  respectively. 

Equation (2.12) assumes that the structure of the crystal and the support are 

identical [38] or that homoepitaxy occurs.  Epitaxy refers to the growth of a 

crystalline layer on (epi) a crystalline substrate, with the substrate 

orientationimposing an order (taxis) on the deposited layer’s orientation [39].  

Sometimes there is a misfit between the lattice of the crystal and the support 

(heteroepitaxy) which can be quantified by  

 
s

ds

a
aam −

= ,     (2.13)  
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with as and ad the lattice parameters of the substrate and the deposited layer 

respectively (see Figure 2.4 for the three different types of epitaxial growth).  

 

 

 

 

 

 

 

 

 

Figure 2.4:  Schematic illustration of (a) lattice-matched, (b) strained and (c) relaxed 

heteroepitaxial structures.   

 

It is useful to combine the Wulff-Kaischew theorem (equation (2.12)) with 

Young’s equation for mechanical equilibrium, since this relationship provides a 

means of using the adhesion energy to determine whether or not a supported 

crystal will wet a surface.  Young’s equation for mechanical equilibrium is given 

by [35] 

 intcos γθγγ += dS ,     (2.14) 

with Sγ  the surface free energy of the substrate, dγ  the surface free energy of the 

deposited film (liquid), intγ the interface energy between the film and the 

substrate  and θ  the contact angle (see Figure 2.5).  

substrate substrate 
+ + + 

(a) (b) (c) 

epitaxial  
layer 

epitaxial  
layer 
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Figure 2.5:  Schematic illustration of a droplet in equilibrium on a surface.  The radius of 

the droplet is R and the droplet is truncated by an amount Δh. The surface free energies of 

the substrate, deposited film and interface are given by Sγ , dγ  and intγ  respectively.  

The adhesion energy is related to the surface interfacial energy through [40] 

 intγγγ −+= dsadhE .    (2.15) 

By combining equations (2.14) and (2.15) it follows that  

 )cos1( θγ += dadhE .    (2.16) 

Complete wetting of the surface will thus occur at a contact angle of 0° and an 

adhesion energy of 2γd.  This corresponds to the well-known Frank-van-der-

Merwe growth mode [41] in which interactions between the substrate and 

deposit atoms greatly exceed those between the deposit atoms. Each layer is 

therefore completely filled before growth of the next layer commences  

(Figure 2.6 (a)). Conversely, at a contact angle of 180°, the crystal morphology 

will be spherical with adhesion energy of zero. Non-wetting or Volmer-Weber 
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growth thus ensues [41].  Characteristic of Volmer-Weber growth is that the 

interactions between the deposit atoms are stronger than those between the 

deposit and substrate atoms. Three-dimensional islands therefore nucleate and 

grow directly on the substrate surface (Figure 2.6 (b)). Lastly, at intermediate 

contact angles, a combination of wetting and non-wetting behaviour can be 

observed and this is termed the Stranski-Krastanov mode [41].  In the Stranski-

Krastanov mode, growth is initially two-dimensional but eventually proceeds 

with the growth of three-dimensional crystals - with their natural lattice constant 

- on top of the two-dimensional layers (Figure 2.6 (c)). 

 

Figure 2.6:  Schematic illustration of the three equilibrium growth modes.  (a) Frank-van-

der-Merwe growth (b) Volmer-Weber growth and (c) Stranski-Krastanov growth. 

The definition of the contact angle as in equation (2.14) can only be used in 

descriptions of isotropic media like a liquid droplet.  In supported crystals, the 

contact angle will be the angle between the substrate and the bottom side facets 

(see Figure 2.3). It is therefore defined by crystallography and not thermodynamic 

equilibrium.  Equation (2.16) is thus insufficient to determine the equilibrium 

growth modes for non-isotropic media.  Instead, the growth modes can be 

substrate 

deposit 

(a) (b) 

(c) 
deposit 
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determined by plotting the relationship between the lattice mismatch and the 

surface energy ratio W given by 

 
s

dsW
γ
γγ −

= ,     (2.17) 

in a so-called phase diagram (Figure 2.7).   If W > 0, layer-by-layer growth will 

occur at negligible lattice mismatch.  Volmer-Weber growth will dominate for W 

< 0 whereas Stranski-Krastanov growth lies between, and competes with, layer-

by-layer and Volmer-Weber growth.  

 

 

 

 

 

 

 

 

Figure 2.7:  The three equilibrium growth modes as a function of mismatch and surface 

energy ratio. The surface free energies of the substrate, deposited film and interface are 

given by Sγ , dγ  and intγ  respectively.  The lattice constants of the deposited film and the 

substrate are given by ad and as respectively.  
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2.1.1 Kinetic considerations 

In the preceding sections, crystal morphology and growth were discussed at 

thermodynamic equilibrium.  However, in practice, crystal growth rarely occurs 

at equilibrium.  This is because the super saturation, S, which is the ratio of the 

pressure around the growing crystal and the equilibrium pressure at the same 

temperature, is typically larger than one.  Generally speaking, the morphology of 

a crystal during growth will be determined by the growth rate of different facets.  

Three different types of facets can be distinguished namely (see Figure 2.8) 

• Flat or F-facet which are parallel to at least two dense atomic rows; 

• Stepped or S-facet which are parallel to at least one dense atomic row;  

• Kinked or K-facet which are not parallel to any dense atomic rows. 

 

 

 

 

 

 

 

Figure 2.8:  Schematic illustration of the various kinds of facets (S, F and K) on a 

growing crystal. 

K 

<100> 

<010> 

<100> 

<100> 

<100> 

<010> F 

F 

S 

S 

F 

K 



 

 20 

The F-facets are mostly atomically flat.  Growth on these facets are thus only 

possible if (i) the super saturation is large enough or if (ii) the growth 

temperature exceeds the roughening temperature.  The roughening temperature 

indicates the threshold above which surface roughening of an F-facet occurs.  The 

S and K facets, on the other hand, are atomically rough, as shown in Figure 2.8, 

and grow spontaneously. The F-facets clearly grow much slower than the K - and 

S-facets and consequently growth morphologies will usually be limited by F-

facets.  The existence of facetted (or anisotropic) growth morphologies can 

primarily be attributed to the anisotropy in the flow of material to the different 

facets.  Several factors can contribute to this source of anisotropy and include the 

following: 

• Deposition flux and surface diffusion:  In the case of growth from a vapour, if 

the main flux to the crystal facets comes from surface diffusion, the growth 

morphologies will be anisotropic if the surface diffusion is anisotropic.  

• Presence of defects:  Defects also lead to the growth of anisotropic crystals.  

As an example, acircular forms occur due to the presence of screw 

dislocations that increases the growth rate in one direction  

[42, 43]; 

• Presence of impurities:  Impurities can drastically influence the growth 

shape of a crystal.  Impurity ions absorb preferentially on <111> faces and 

reduce the growth rate in this direction [44]; 

• Twinning:  Twinning generates reentrant corners that are repeatable 

growth sites.  Twinned crystals are elongated in one direction or  

flat [45]. Successive twinning in a <111> direction gives rise to platelet 

 triangular fcc nanocrystals [46]; 
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• Coalescence:  If two growing crystals touch one another, they will produce 

an anisotropic form that will persist unless the temperature is elevated so 

as to increase surface diffusion to the extent that matter is redistributed 

between the different facets [45]. 

 

2.2 Validity of the Wulff-Kaischew theorem for nanostructures 

The Wulff-Kaischew theorem assumes crystals of macroscopic dimensions.  In 

this study, however, the emphasis is on nanostructures making the use of this 

theorem questionable.  In order to assess their validity for studying 

nanostructures, the various changes induced when scaling down from a macro- 

to nanoscale should be considered.  These include: 

• An increase in the surface energy and stress; 

• An increased stability of different structures, such as the isocahedron; 

• A more prominent relationship between the edge atoms of the different 

facets. For example, consider a Wulff shape limited by (111) and (100) 

facets with n and m respectively the number of atoms along the edges of 

these facets.  The anisotropy of the surface energy is given by [47]  
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In a macroscopic crystal, n = m, and the anisotropy factor is 15.1
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In a nanometre sized structure, the (100) facets disappears which means 
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that m → 0; consequently ⎟
⎠
⎞

⎜
⎝
⎛

m
n  →  ∞ . In these conditions the anisotropy 

factor approaches 3 .  Using an anisotropic factor of 3  and applying the 

Wulff construction [35], an octahedral shape is produced.  This is indeed 

the morphology for a nanostructure in which (100) facets are absent.  An 

experimental validation of the Wulff-Kaischew theorem for nanostructures 

is supplied in [48] in which case the adhesion energy of Pd nanostructures 

on MgO were determined using the Wulff-Kaischew theorem.  The Pd 

nanostructures were grown at a high temperature to obtain the 

equilibrium shape of a truncated octahedron with re-entrant angles at the 

interface (see Figure 2.9).  The measured value of 0.91 N/m is in good 

agreement with the 0.85 N/m obtained with molecular dynamics [49]. 

 

 

 

Figure 2.9:  Equilibrium shape of Pd nanostructure supported on a MgO (100) surface.  

The size of the structure is larger than 10 nm. 
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2.3  Nanostructure Growth 

Studying the equilibrium morphology and size of nanostructures and crystals is 

an essential step to understand how these are influenced by various factors.  

Examples mentioned in this chapter include surface diffusion, defects, impurities, 

interaction between the substrate and supported structure, rate of material flow 

to different facets and so forth.  Naturally, precise control of these factors can 

ultimately satisfy the need to tailor the morphology and size of nanostructures.  

However, of critical importance is to first determine the processes that contribute 

to the growth of these equilibrium or albeit non-equilibrium morphologies.  Since 

this study is focused on vapour deposition, the relevant processes that lead to 

nanostructure formation in this situation can therefore be mapped out as follows 

(see Figure 2.10): 

a. deposition of atoms (now termed adatoms) either on the surface or 

existing islands; 

b. diffusion of an adatom across a terrace;  

c. diffusion of an adatom along an island edge; 

d. dissociation of an adatom from an island (step edge);  

e. diffusion of an adatom down from an upper to a lower terrace and vice 

versa (interlayer diffusion); 

f. desorption from a terrace and 

g. capturing of an adatom by an existing island or step edge. 

Each of these processes has to overcome a certain energy barrier before they can 

occur and as such they have different time scales (see Figure 2.11).  The difference 
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in the time scales can be problematic when simulation studies for nanostructure 

and surface growth is conducted.  This is because atomic vibration periods are of 

the order of 10-13 s, whereas the formation of more complicated structures such as 

quantum dots, nanostructures or the deposition of an entire layer can take as 

much as seconds.  Between these two limits there is a huge interval of 13 orders 

of magnitude to describe which can be very cumbersome from a computational 

point of view.  Recently, however, there has been an upsurge in the so-called 

multiscale simulation methods that are specifically aimed at addressing this 

“time-scale” problem.  An overview of these methods and, specifically, how it is 

relevant to this study, is given in the next chapter. 

 

 

 

 

 

 

 

Figure 2.10: The different atomistic processes for adatoms on a surface:                             

(a) deposition, (b) diffusion on terraces, (c) diffusion along a step edge, (d) dissociation 

from a step edge, (e) interlayer diffusion (f) desorption and (g) capture by a step edge. 
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Figure 2.11:  Representation of the timescale over which processes occur during epitaxial 

growth. 
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CHAPTER 3  

Overview of Simulation Methods 

 

3.1 Length scales in growth 

The growth of materials, nanostructured and otherwise, is to a large extent 

governed by the interactions between their atomic constituents, and, perhaps, to 

a lesser extent by the collective environment in which they reside in.  These 

interactions occur on a timescale of nanoseconds to femtoseconds and ultimately 

influence the behaviour of the material at four characteristic length scales 

encountered during growth.  These length scales are robustly defined as: 

• The electronic and atomic scale (~10-9 m) in which the electrons’ quantum 

mechanical state dictate the interactions amongst the atoms; 



 

 

 

27 

• The microscopic scale (~10-6 m) where the interaction between atoms are 

described by interatomic potentials.  The potentials encapsulate the effects 

of bonding between the atoms, as mediated by the electrons; 

• The mesoscopic scale (~10-4 m) where lattice defects such as dislocations, 

grain boundaries and other microstructural elements occur.  The 

interactions between these various entities are usually derived from 

phenomenological theories that encompass the effects of the interactions 

between their atoms; 

• The macroscopic scale (~10-2 m) where a constitutive law determines the 

behaviour of the physical system, viewed as a continuous medium.  On 

this scale, continuum fields such as density, velocity, temperature, 

displacement and stress dominate.  The constitutive laws are mostly 

formulated in such a way so as to capture the effects on materials 

properties from lattice defects, grain boundaries and microstructural 

elements.  

Phenomena at each length scale typically have a corresponding timescale that, in 

correspondence to the aforementioned four length scales, ranges from 

femtoseconds to picoseconds, to nanoseconds, to milliseconds and beyond.  At 

each of these length and time scales, well-established and efficient computational 

approaches have been developed to address the relevant phenomena (see  

Figure 3.1).  For example, to treat electrons explicitly and accurately at the atomic 

scale, methods like Hartree-Fock (HF) [53], quantum Monte Carlo [52], Green’s 

function methods [52], density functional theory (DFT) [53] in the local density 

approximation (LDA) [53] and generalized gradient approximation (GGA) [53] 

can be employed.  Methods performed at the atomic scale are known to be 
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computationally very expensive and are therefore restricted to the study of 

systems containing only tens to hundreds of atoms, depending on the 

approximations made.  Recent progress has however been made in the 

development of linear scaling electronic structure methods, which has enabled 

DFT-based calculations to deal with systems consisting of thousands of atoms 

[54-56]. For the determination of microscopic properties, classical Molecular 

Dynamics (MD) [57, 58] simulations utilizing inter-atomic potentials, often 

derived from DFT calculations, can be performed. Quantum MD using the Car-

Parrinello scheme can also be used for the determination of microscopic 

properties.    

Classical MD is not as accurate as DFT calculations, but is able to provide insight 

into atomic processes involving considerably larger systems, up to 109 atoms.  

The time scales probed with classical MD are however quite limited, at most of 

the order of picoseconds and thus not suitable for simulating growth.  At the 

mesoscopic scale, the atomic degrees of freedom are not explicitly treated, and 

only larger-scale entities are modelled, usually probabilistically, enabling time 

scales in the range of seconds to be reached.  Lastly, on the macroscopic scale, 

finite element methods such as continuum theories examine the large-scale 

properties of materials that are considered to be an elastic continuum over time 

scales of minutes. 
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Figure 3.1:  A schematic illustration of the spatial and temporal scales achievable by 

various simulation approaches:  DFT/QMC (Density Functional Theory/Quantum 

Monte Carlo); classical MD (Molecular Dynamics); KMC (Kinetic Monte Carlo); RE 

(Rate Equation Analysis), and Multiscale encompassing all the preceding time scales.   
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 The challenge in modelling materials, and in particular their growth, is that 

phenomena occur on a scale that require a very accurate and computationally 

expensive description, but also on another scale for which a coarser description is 

satisfactory and, in fact, necessary to describe the entire system.  The goal 

consequently becomes to develop models that combine different methods 

specialised at different scales, effectively distributing the computational power 

where it is needed most.   

Two categories of multiscale simulations can currently be envisioned, namely 

sequential and concurrent.  The sequential methodology attempts to piece 

together a hierarchy of computational approaches in which information is 

obtained from more detailed, smaller-scale models.  This sequential modelling 

approach has proved to be effective in systems where the different scales are 

weakly coupled.  The characteristic of the systems that are suited for a sequential 

approach is that the large-scale variations decouple from the small-scale physics, 

or that the large-scale variations appear homogeneous and quasi-static from the 

small-scale point of view.  Sequential approaches have also been referred to as 

serial, implicit, or message-passing methods.  The second category of multiscale 

simulations consists of the so-called concurrent parallel or explicit approaches.  

These approaches attempt to link methods appropriate at each scale together in a 

combined model, where the different scales of the system are considered 

concurrently and communicate with some type of hand-shaking procedure.  This 

approach is necessary for systems that are inherently multiscale. That is, systems 

whose behaviour at each scale depends strongly on what happens at the other 

scales.     

In this work, a sequential multiscale approach is followed to study growth 

phenomena.  Specifically, this entails coupling a mesoscopic method, namely 
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kinetic Monte Carlo (KMC), with atomistically determined kinetic energy barriers 

of relevant elemental processes that occur during growth of materials.  This was 

done within the framework of transition state theory (TST).  In the following 

sections, the simulation methods used in this study are discussed, with DFT 

receiving a bit more attention than the other microscopic methods, since this 

method is being used more often in multiscale methodologies.  A brief overview 

of methods used on the macroscopic scale is also given, primarily for 

comparative purposes.  Special emphasis is however placed on the kinetic Monte 

Carlo method due to it being the method employed in this study. 

 

3.2 Potential energy surface 

Growth of materials includes surface diffusion, which is the ultimate process 

through which mass transport on surfaces occurs.  The probability of surface 

diffusion of adatoms is intimately related to the specifics of the interactions of 

these adatoms with the substrate. In order to elucidate a description of these 

interactions, suppose that the surface degrees of freedom are denoted by R and 

those of the adatoms by ),,( ZYXad =R .  The adatom/surface mechanics is then 

determined by the corresponding interaction potential ),( adU RR .  In most 

situations, the Born-Oppenheimer approximation (discussed in more detail in the 

next section) can be invoked for the surface; therefore one can restrict the 

interaction potential to the spatial degrees of freedom of the adatoms or 

),,()( ZYXUU ad =R .  The interaction potential perpendicular to the surface, U(Z), 

has a local minimum at Z = Z0 (see Figure 3.2).  An atom deposited on the surface 

(during growth) might get adsorbed in this minimum.  On the other hand,  

U(X, Y), the interaction potential in the lateral direction, displays an oscillatory 
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behaviour and is bound in the surface plane.  This feature of U(X, Y) makes 

diffusive motion probable.  The minima of U(X, Y) will provide stable, or 

metastable adsorption sites for the adatoms and is typically defined as 

 
adsurfad

Z
EEEYXU −−=

⊆
),(minmin),(

'
RR

RR ,  (3.1) 

where ),( adE RR  represents the total energy of the substrate/adatom system, 

Esurf and Ead are, respectively, the energies of the surface and the adatom.  

Minimization is carried out with respect to the height (Z) of the adatom and a 

given subset 'R  or eventually all coordinates R of the substrate atoms.  This is 

done via a constrained atomic relaxation to yield equation (3.1), referred to as the 

potential energy surface or PES in short.  This atomic relaxation can be accounted 

for by quantum mechanical methods such as DFT, of which a summary is given 

in the next section. For highest accuracy full surface relaxation should be 

allowed.  

 

 

 

 

 

 

 

Figure 3.2:  Schematic of a two dimensional slice U(X, Z) through the multi-dimensional 

potential energy hypersurface for the adatom surface interaction.  Z is the distance to the 

surface and X is the adatom coordinate along a given surface direction. 
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3.3 Electronic and atomic scale 

At the electronic and atomic scale, explicit electronic interactions are relevant; 

thus, quantum mechanical methods have to be employed.  Quantum mechanical 

methods are aimed at solving the Schrödinger equation, which describes the 

interaction between the nuclei and electrons in a system [50] and 

is given by 

 ( )
t

itH
∂
Ψ∂

=Ψ η,, Rr  ,    (3.2) 

with { }IRR ≡  the positions of Ni ions, { }ir≡r  the positions of Ne electrons, H the 

non-relativistic Hamiltonian of the system and ),,( tRrΨ  the many body wave 

function. The Hamiltonian of the system can be written as 
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with pi and PI  the momenta of the electrons and ion cores respectively, me the 

electron mass and MI  the mass of the ion core at position RI .  The sums over i 

and I run over all the electrons and ion cores respectively.  The first two terms in 

equation (3.3) are the kinetic energies, Te and Ti, for the electrons and nuclei and 

the last three terms are respectively the Coulomb contributions given by the 

electron-electron, electron-nucleus and nucleus-nucleus interaction.  This 

complex many body problem can be simplified by treating the Hamiltonian 

perturbatively within the Born-Oppenheimer approximation [59].  This 

approximation makes use of the fact that Ti is usually very small due to the large 

masses of the nuclei; therefore, equation (3.3) can be written as  
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,   (3.4) 

with ( ) 4/1
0/ Mm=λ the perturbation introduced by Born and Oppenheimer and 

M0 some of the nuclear masses or their mean.  Within the Born-Oppenheimer 

approximation, Ti is neglected by setting λ = 0.  The many-electron Hamiltonian 

is then given by  

 ieeee VVTH −− ++≡
2
1

2
1

0  .        (3.5) 

There are however situations where the Born-Oppenheimer approximation is no 

longer valid, for example in high-energy atom-surface collisions, or when 

electron-phonon coupling and electronic transitions to excited states are 

important.  Fortunately, the properties of the system studied here can be 

understood on the basis of the Born-Oppenheimer approximation, thus equation 

3.5 can be used with confidence.  Furthermore, the latter provides a quite simple 

concept toward ab initio molecular dynamics in which the Schrödinger equation 

is solved for the electronic ground state and subsequently the ions are moved 

classically according to forces calculated from the ground state energy.  

Although the many body problem has been reduced to a many electron problem 

using the Born-Oppenheimer approximation, the electronic Hamiltonian is 

approximately of the same order as the total Hamiltonian, an practically 

intractable for most systems.  However, the degrees of freedom in the system can 

be dramatically reduced by reformulating the many electron problem in terms of 

an effective one-electron scheme.  This is done within the Hartree-Fock (HF) 

approximation, in which case a Slater determinant of one electron orbitals, )( ii ξϕ , 
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is employed as a trial wave function.  In the above equation, P is the parity of the 

permutation of state indices { }Κ,, 21 pp  and the summation is over all 

permutations.  The ground state of the electronic Hamiltonian is subsequently 

determined from a variational principle [60] using this trial wave function.  

Hartree-Fock theory, although it forms the foundation for the majority of 

computational methods in quantum chemistry, is however incapable of treating 

electron screening efficiently [50].  Another approach to the many body problem 

that is most often used in obtaining potential energy surfaces, is density 

functional theory (DFT).  DFT reformulates the many body problem in terms of 

the single particle density and is founded on the following theorem [61]: 

THEOREM (Hohenberg-Kohn): Given an arbitrary number of electrons Ne moving 

under the influence of static, local and spin-independent external potential )(rυ  leading 

to the Hamiltonian 

υ++= −eeee VTH  

with non-generate ground state ψ0 and corresponding ground-state density )(0 rn , being 

a functional of )(rυ , 

 000 )()( ψδψ ∑ −≡
eN

i
in rrr  ,          (3.7) 

it follows then that  

1. )(rυ and therefore ψ0 are, within a constant, unique functionals of )(0 rn ; 
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2. the energy functional  

            [ ] ∫ += ][)()( nFdrnvnEv rr ,            (3.8) 

where [ ] 00 ψψ eee VTnF +≡  is a universal functional, assumes its 

minimum value for the correct )(0 rn  

                [ ]nEE vn
min0 =              (3.9) 

   if the admissible functions are restricted by the condition 

             [ ] 0)()( ≥=≡ ∫ rrr nNdnnN e Κ .          (3.10) 

The Hohenberg-Kohn theorem does however not explain how to construct the 

functional F[n].  Kohn and Sham [62] proposed an equivalent scheme to treat the 

variational problem.  Their scheme is founded on the existence of an auxiliary 

problem for non-interacting particles, with kinetic energy functional Ts[n] and 

local single particle potential )(rsυ , such that the ground state density of the 

interacting system )(0 rn is reproduced by that of the auxiliary problem )(0, rsn , 

)(0 rn  = )(0, rsn .  Then, from the “auxillary” one-particle Schrodinger equation, 

one gets a representation of ∑= eN

i isn
2

,0 )()( rr ϕ .  By virtue of the Hohenberg-

Kohn theorem, )];([)( ,, rr nisis ϕϕ = and thus Ts[n] is also a unique functional of 

n(r).  The kinetic energy term is therefore exactly represented by  
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From this central assertion, the ground-state density, )(0 rn , for a particular 

external potential )(rυ  can be written as 

[ ] ∫ ∫∫ +=+
−

+= ][][][],['
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where, by definition, EXC[n] is the exchange-correlation energy functional of the 

interacting system with density n(r).  From equations (3.11) and (3.12), as well as 

making use of the stationary dependence of Ev[n] upon density variations such 

that ∫ = 0][ rr dnδ , Kohn and Sham have derived a set of equations to determine 

the auxiliary potential )(rsυ  that generates the quantity )(0 rn .  These Kohn-Sham 

equations are given by 
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where the exchange-correlation potential is defined as the functional derivative 

of EXC[n], 
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The Kohn-Sham equations (equations (3.13) to (3.15)) have to be solved self-

consistently due to the density dependence of the effective Kohn-Sham potential 

sυ .  In contrast to the HF scheme, sυ  is common for all one-particle Kohn-Sham 
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orbitals.  Thus, starting from some initial guess for the density, )(]0[ rn , the 

effective Kohn-Sham potential is set up according to equations (3.14) and (3.15) 

and the new density )(]1[ rn is generated by equation (3.13).  This procedure is 

repeated until a certain convergence criterion is fulfilled.  Once the self-consistent 

density is obtained, the ground-state total energy is computed from equation 

where E0 is given by the exact expression 
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The formulation of DFT as discussed thus far is, in principle, exact, except for the 

exchange-correlation potential that has to be approximated.  Numerous 

approximations to this potential have been made over the years, with the most 

widely used probably the local density (LDA) and generalised gradient (GGA) 

approximations. Clearly, the Kohn-Sham-Hohenberg formulations provide an 

enormous conceptual and computational simplification of the many-electron 

problem.   

 

3.4 Microscopic scale 

Although quantum mechanical methods, such as DFT, are ideally the methods of 

choice due to their accuracy, their applicability to growth simulations is hindered 

by their high computational demand. However, depending on the system 

studied, one may assume that the atoms in the system are classical particles 

moving on a potential energy surface, U(r). Following this assumption, the 

Schrödinger equation (equation (3.2)) may then be replaced by Newton’s  
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equations of classical mechanics [58]  

            )()(
..

trmtF iii = ,           (3.18) 

with mi the mass of the i-th atom, ri the coordinates of the i-th atom Fi the force 

experienced by this atom which can be written in terms of U(r) 
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Equations (3.18) and (3.19) underly the molecular dynamics method and are 

typically integrated by finite difference methods to obtain the atoms’ trajectories 

on the potential energy surface. Most integrators are based on the Verlet 

algorithm and predictor-corrector methods [58], one of which is the velocity 

Verlet algorithm which approximates the atoms’ positions, r, and velocities, v, 

using a truncated Taylor series 

 
2

2
1 )()()()()( ttttttt Δ+Δ+=Δ+ avrr .     (3.20) 

The velocities are only computed at every half a time step 

 ttttt Δ+=Δ+ )()()()2/( 2
1 avv ,             (3.21) 

which are then used to update the acceleration, a, given by 

 ( ))()/1()( ttUmtt Δ+∇−=Δ+ ra  .       (3.22) 

Lastly, the velocities at a full time step is calculated as follows 

 ttttttt ΔΔ++Δ+=Δ+ )()()2/()( 2
1 avv .          (3.23) 
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A major impediment to molecular dynamics is that the integration time step must 

be small enough to capture the vibration modes of the system, with frequencies 

in the order of 1013 s-1.  This requires time steps in the femtosecond range [58].  

On the other hand, transitions during growth occur infrequently, ranging from 

between pico – and microseconds for diffusive processes to milliseconds and 

minutes for aggregation phenomena.  This presents the so-called “time gap” 

problem encountered when trying to used molecular dynamics in growth 

simulations as a significant number of time steps is needed to obtain macroscopic 

time scales.  As a result of this, numerous methods have been developed to 

accelerate molecular dynamics.  However, these are still only applicable to 

infrequent event systems.  Examples of such methods are parallel-replica [63], 

hyperdynamics [64, 65] and temperature accelerated dynamics [66].  These three 

methods have some similarities to the mesoscopic kinetic Monte Carlo method 

implemented in this study. 

 

3.5 Mesoscopic scale 

Despite the existence of the accelerated molecular dynamics methods, other, 

more intuitive, approaches have been developed to address the “time-gap 

problem” presented above.  These approaches have been developed on a 

mesoscopic scale and replace the deterministic equations of Molecular Dynamics 

with stochastic transitions for the infrequent events in the system.  The 

transitions are employed via transition state theory (TST) [67].  The convenience 

of these methods is that they can be directly used for this study, since, on this 

scale, growth can be considered as a stochastic (random) process. 
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3.5.1 Stochastic processes 

A stochastic process is defined in terms of a stochastic variable, say X, which, is 

specified by [68]: 

 The set of possible values (called “range”, “set of states”, “sample state” or 

“phase space”); 

 The probability distribution over this set.  This set can be discrete (e.g. the 

number of molecules of a component in a reacting mixture), continuous 

(e.g. the Brownian motion of a particle) or multidimensional.  In the latter 

case, the stochastic variable is just a vector (e.g. the three velocity 

components of a Brownian particle). 

An infinite number of stochastic variables, Y, can be derived from the stochastic 

variable, X.  These stochastic variables are defined as functions of X by some 

mapping f.  They can be any kind of mathematical object, including functions of 

an additional variable t, written as   

 )(),.....,(),(),()( 21 NtXtXtXtXftY == .   (3.24)  

Such a quantity, )(tY , is called a random function or, since in most cases t stands 

for time, a stochastic process. Examples of stochastic processes include Brownian 

motion, random walks, Poisson and Markov processes.  Figure 3.3 gives a more 

intuitive interpretation of a stochastic process.  
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Figure 3.3:  A schematic interpretation of a stochastic process, Y, as a function of 

stochastic variables {X(ti)}. At successive times, the most probable values of Y have been 

drawn as heavy dots.  The most probable trajectory can be selected from such a picture.  

Two or more trajectories can occur with equal probability. 

 

3.5.2  The conditional probability 

In a system that is intrinsically stochastic, one can derive a Master Equation that 

describes the probability of the system to occupy each one of a set of discrete 

states, W.  In order to obtain such a Master Equation, one has to first define the 

conditional probability.  In general, the conditional probability klP |   is  

given as [69] 

Y(t) 

X(t1) X(t2) X(t3) X(t4) X(t5) X(t6) X(t7) X(t8) 
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(3.25) 

In the above equation, ),;;,( 11 kkk tytyP Κ  is the probability that the stochastic 

variable, Y, assumes the value y1 at t1, y2 at t2 and so on.   

 

3.5.3 The Markov process 

The stochastic processes can be divided into various subclasses, of which the 

Markov processes are part. A Markov process can be defined as a stochastic 

process with the property that, for any set of N successive times 

 (i.e., Nttt <<< ....21 ), it follows that [69] 

 ),|,(),;;,|,( 111|111111|1 −−−−− = NNNNNNNNN tytyPtytytyP Κ .  (3.26) 

Thus, the conditional probability at tN, given the value yN−1 at tN−1, is uniquely 

determined and not affected by knowledge of the values at prior times. A 

Markov process is therefore only dependent on P1 (y1, t1) and P1|1 (y2, t2|y1, t1); 

and subsequently the whole hierarchy can be reconstructed from them. For 

instance, if 321 ttt << , it can be written [69] 

 ),|,(),|,(),(
),;,|,(),;,(),;,;,(
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  . (3.27) 

The above algorithm can be continued successively to find all PN. This property 

makes Markov processes manageable, which is the reason why they are so useful 
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in many applications [70, 71]. The Markov property states that, to make 

predictions of the behaviour of a system in the future, it suffices to consider only 

the present state of the system and not the past history.  The details of the 

Markov processes are much more complex than described here and can be found 

in [69-71]. 

 

3.5.4 The Master Equation 

From the above definitions, the Master Equation can be derived. The details of 

this derivation is however not trivial and are therefore briefly outlined in 

Appendix A.  Instead, only the most important result is presented which is that a 

Markov process, as outlined above, corresponds to a particular Master Equation, 

given by [72] 
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Thus, the Master Equation can be interpreted as a gain/loss equation for the 

probability of each state n. The first term, 'nnW , is the gain due to transitions from 

other states 'n , and the second term, nnW ' , is the loss due to transitions into other 

states 'n . Two very important criteria have to be satisfied when using the Master 

Equation, namely steady state and detailed balance [73].  Steady state occurs 

when the time derivative of the Master Equation is zero.  This implies that the 

sum of all the transitions into a particular state n equals the sum of all the 

transitions out of a particular state n’.  Thus the steady state condition can be  
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written as 
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Detailed-balance, on the other hand, asserts that for each pair, n and 'n , the 

transitions must balance, or,  

 )()( ''' tpWtpW nnnnnn =  .      (3.30) 

It is important to impose detailed balanced to ensure that the Monte Carlo 

transition probabilities are consistent with the Boltzmann distribution [74] 

 Z
etp

TkE B/

)(
Δ−

=
,             (3.31) 

with Z the partition function, kB Boltzmann’s constant, T the temperature of the 

system and ΔE the energy barrier between states n and 'n .  A clear distinction has 

to be made between detailed balance and steady state, as explained in Figure 3.4.  

In Figure 3.4  (a), the anticlockwise transition proceeds at twice the rate of the 

clockwise transition, therefore, S (steady state) holds, but D (detailed balance) 

does not.  In Figure 3.4 (b), both transitions occur at the same rate, thus D is 

satisfied and consequently S as well.  Detailed balance is therefore a sufficient, 

but not necessary condition for thermodynamic equilibrium. 
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      (a)              (b) 

 

Figure 3.4  Schematic illustration of the difference between the steady state condition 

property and detailed balance. The lengths of the arrows are proportional to the transition 

rate).  In (a) steady state is satisfied but detailed balance not, whereas in (b) both steady 

state and detailed balance are satisfied.   

 

3.5.5 Solution of the Master Equation 

The Master Equation can only be solved analytically for the simplest  

systems [75].  This stems from the fact that all the states in the system must be 

represented in the Master Equation description.  Usually this yields a large 

number of states that are computationally difficult to cope with.  Therefore, the 

Master Equation is frequently solved stochastically with algorithms such as 

Metropolis Monte Carlo. Metropolis Monte Carlo is widely used since, within the 

context of detailed balance, it follows a Markov process to evolve the system 

towards equilibrium, regardless of the pathway.  It also makes all transitions of 

the system to states of lower or equal energy with probability of unity, regardless 

1 

2 3 

1 

3 2 

D violated D valid 
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of the energy barrier, ΔE, to access this state or the process required.  In other 

words, the transition probability per unit time (or transition rate), W, between 

states n and n’ is chosen as 

 ⎩
⎨
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≤Δ
>Δ
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Efor
Efore
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TkE B

.         (3.32) 

Hence, Monte Carlo moves based on the Metropolis algorithm cannot be 

interpreted dynamically as a process that simulates random motion in time.  The 

solution given by equation (3.32) is one of many solutions to the Master Equation 

that can generate the equilibrium configuration.  However, the correct transition 

rates might not obey detailed balance and might correspond to a non-equilibrium 

process.  In order for a method to describe the correct evolution in time as well as 

the proper equilibrium state, it has to consist of a sequence of microscopic 

processes underlying the various transitions in the system [76].  These processes 

can be grouped together by certain distinct events, ei: 

 { }neee ,,, 21 Κ≡E ,    (3.33) 

which can be characterized by average transition rates  

 { }nrrr ,,, 21 Κ≡R .    (3.34) 

The transition rate, as mentioned before, is just the probability per unit time of 

the system undergoing a transition from one state to the next. From  

equations (3.33) and (3.34), it can now be assumed that any particular transition 

possible at time t, can be possible at any time t + Δt with a uniform probability 

which is based on its rate and independent of any previous events. This is, by 

definition, a Poisson process.  The Poisson process is part of a family of Markov 
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processes that are called one-step processes. One-step processes are continuous in 

time, have a range of integers n, and can only jump between adjacent states.  

Figure 3.5 helps to visualize these processes. 

 

 

 

 

Figure 3.5:  Schematic illustration of a one-step process.  Only jumps between adjacent 

states (labelled n) are allowed.  The probability per unit time for jumps in the forward and 

reverse direction is denoted by gn and hn respectively. 

 

The Master Equation for such processes is given by 

 nnnnnnnn pghpgphp )(1111 +−+= −−++&  ,  (3.35) 

where hn is the probability per unit time for a jump from state n to state n - 1 and 

gn is the probability per unit time for a jump from n to n + 1.  One step processes 

occur at: 

• Generation and recombination of charge carriers; 

• single-electron tunnelling; 

• surface growth of atoms. 

gn-1 gn gn+1 gn-2 

hn-1 hn hn+1 hn-2 

n - 2 n  n + 1 n + 2 n - 1 
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Based on the coefficients hn and gn, one-step processes can be categorized as one 

of the following: 

• linear for coefficients that are linear functions of n; 

• nonlinear for coefficients that are nonlinear functions of n and 

• random walks for coefficients that are constant. 

An example of a random walk is the Poisson process which determines the 

probability of n events occurring at time t > 0.  This event could for example be 

the tunnelling of electrons through a single barrier.  The Poisson process is 

defined by setting 

 hn = 0,    gn = q,  pn(0) = δn,0 ,          (3.36) 

with q a constant and the probability of processes in the reverse direction is zero 

(rn = 0).  The Kronecker delta indicates that the probability for no events to occur 

after time zero equals one, and the probability of more than one event to occur 

after time zero equals zero.  Figure 3.6 is a schematic illustration of a Poisson 

process. 

 

 

 

 

Figure 3.6:  Schematic illustration of the Poisson process. 

q q 

n  n + 1 n - 1 
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The Master Equation for the Poisson process has the form: 

 )( 1 nnn ppqp −= −&  ,    (3.37) 

which has the following solution: 
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In the context of transition rates (see next section), q can be set to R, thus   
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The probability density between successive events is then given by  

 
RteRtp −=)( .    (3.40) 

From this probability density, the mean time between successive events is given 

by 

 R
t 1
=

 .    (3.41) 

Equation (3.41) only gives the mean time between successive events; however, it 

may be of interest to know the real time for an event to occur. This can be 

inferred from equation (3.40) by noting that the probability for an event to occur 

at time τ  is given by  
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This probability lies in the interval [0, 1].  The probability for an event not to 

occur is just )(1)( ττ TK −= , which implies ττ ReK −=)( .  The functional inverse of 

)(τK  can then be written as τττ RKK −==− ))(ln()(1 .  Therefore, it follows that 

)(1 τ−K  can relate time to sampling distribution. Since )(τK  can be any number 

(random) in the interval [0, 1], the real time, τ, between successive events is given 

by 

 R
Uln−

=τ
 ,          (3.43) 

with τReU −=  a random number uniformly distributed between [0, 1]. Suppose 

now that there are X species in the system and k events characterised by the rates 

{ } { }krrr ,.....,1= .  The X species can then partition among various possible 

transition events as { } { }kxxX ,.....,1= , where xi is the number of species capable of 

undergoing a transition with a rate ri at ∑=
=

k

i ixX
1

.  If a sufficiently large system 

is used to achieve independence of the various events, then the Monte Carlo 

algorithm effectively simulates the Poisson process and the passage of real time 

can be maintained in terms of {r} and {X} [76].  For each trial i in which the event 

is realised, the time should be updated with an increment τi selected from an 

exponential distribution with ∑ =
=

k

j jji rxR
1

. 

This above formulation is the essence of kinetic Monte Carlo (KMC).  KMC has a 

direct relation to real time, instead of the steps of Monte Carlo.  It can 

consequently be used to study dynamic processes, in particular those where 

energy barriers govern the transition between subsequent states. Inherent to the 

KMC method is the grouping of these processes that underly the transition rates 

and can include the diffusion of atoms on a potential energy surface.  Thus, even 
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though the processes can, in most cases, be easily identified, their corresponding 

transition rates might not always be that trivial to determine.   

To date a number of schemes have been developed to address the problem of 

calculating the transition rates and these differ according to the complexity of the 

treatment of the adatom/surface system. A method that is computationally 

expedient and efficient for the calculation of transition rates is transition state 

theory (TST).  TST makes use of the fact that atoms, which reside in minima on 

the potential energy surface, will only occasionally acquire enough energy to 

overcome the energy barrier between two adjacent minima. TST therefore yields, 

from a canonical distribution, the rate for a system to alternate between two 

states separated by a potential energy barrier.  TST is discussed in more depth in 

the next section. 

 

3.5.6 Transition state theory (TST) 

The underlying idea of transition state theory is outlined in Figure 3.7 in which a 

two-state problem is represented, consisting of the initial state i, final state j and 

the transition state x0 separating the two states.  By assuming a canonical 

ensemble, it is possible to derive an expression for the rate at which the infinite 

heat bath pushes the atom at state i through the transition state to state j.  

Suppose now that an atom is located in a small region, Δx, around the transition 

state and moving towards state j.  The probability of finding the atom in this 

region around the transition state x0 is given by [77] 
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with
TkB

1
=β , kB Boltzmann’s constant and T the temperature of the system.   

The upper limit of the normalization integral in the denominator expresses the 

assumption that the atom resides in site i initially.  Likewise, the probability 

density for the atom having velocity v is 
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Within a short time interval Δt, the atom with (positive) velocity v will enter site j 

provided that Δx is smaller than vΔt.  The total probability that the atom can 

jump from site i to site j can be written as  

 ∫
∞

→→ Δ=Δ=Δ=
0

)()( dvtvxPvPtvP TST
jiji  ,  (3.46) 

where vA→B is the transition rate. Using equations (3.45) and (3.46) an expression 

for the transition rate is obtained 
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It is thus clear that the problem reduces to solving the integral in the 

denominator of equation (3.47).  If V(x0) >> kBT, V(x) can be replaced with its 

expansion to the second order.  The expression then becomes 

 )exp( Evv i
TST

ji βδ−=→ ,               (3.48) 
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where vi is the harmonic vibration frequency of V(x) at site i, and δE is the 

diffusion barrier.  Equation (3.48) thus represents the transition rate associated 

with a process that has to overcome an energy barrier ΔE to occur. 

 

 

 

 

 

 

 

 

 

 

Figure 3.7:  Schematic illustration of the lowest free energy path for a thermally activated 

jump of an adatom from i to j over the saddle point x0. 

 

3.6 Macroscopic scale 

Macroscopic methods are founded on differential equations constructed from 

differentiable densities that replace the underlying atomic structure.  As the 

macroscopic scale is beyond the scope of this work, two of the most popular 

macroscopic methods, namely rate equation analysis and continuum theories, is 
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discussed only briefly below.  This is just to serve as reference to methods that 

can be used on this scale and to compare how they differ from the KMC method 

implemented in this study. 

 

3.6.1 Rate equation analysis 

Rate equation approaches are based on phenomenological identification of 

processes that cause adatom and island densities to change.  If the density of 

adatoms is denoted by n1(t) and the density of islands with size s > 1 by ns(t), a 

rate equation for the density of the adatoms can be written as [78, 79]  

 ∑
∞

=

−−=
2

1
2
11

1 2
s

ss nDnnDJ
dt

dn
σσ ,            (3.49) 

with J the deposition flux on the surface, D the adatom diffusion coefficient and σs  

the capture coefficient for an island of size s. The second and third term in 

equation (3.49) represent the nucleation and the attachment term.  The rate 

equations for the density of an s-atom island ns(t) is given by 

 ssss
s nDnnDn

dt
dn

σσ 1111 −= −− .         (3.50) 

The first term on the right-hand side of equation (3.50) represents the rate of 

increase in the ns(t) by the attachment of adatoms to (s-1)-atom islands. Similarly, 

the second term is the rate of decrease of ns(t) by the attachment of adatoms to s-

atom islands to form (s+1)-atom islands.  Setting the capture numbers to unity 

and introducing the total island density N, a closed set of two equations for n1  
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and N can be obtained 

 NRnRn
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,        (3.51) 
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,             (3.52) 

where R = D/J and θ = Jt the coverage of the surface. Numerical integration of 

equations (3.51) and (3.52) and setting the capture numbers equal to unity for 

simplicity, yields the important scaling laws of rate equation analysis at steady 

state 

 
3/23/1

1 )/(~ −− JDn θ  ;    (3.53) 

 
3/13/1 )/(~ −JDN θ .     (3.54) 

Rate equations are very useful in elucidating island density, however, the 

distribution of island sizes are not correct [78, 79].  A complete description of rate 

equations can be found in [78, 79]. 

 

3.6.2 Continuum theories 

The simplest time dependent description of a growing surface is afforded by the 

continuum theories.  In this case, the stochastic nature of the growth process, 

inherent to the mesocopic methods, is neglected.  Instead, on a more robust scale, 

every property is averaged over a small volume containing many atoms in an 

attempt to capture the essential mechanisms responsible for the growth 

morphology. A detailed description of continuum methods can be found 



 

 

 

57 

elsewhere, however, the first well-known continuum equation, called the  

 

Edwards-Wilkinson equation, can be written as [80]  

 ),(),(),( 2 txtxhv
t

txh η+∇=
∂

∂  .   (3.55) 

The term ν represents the surface tension since νΔ2h tends to smooth the surface, 

whereas η is defined as a noise term. Equation (3.55) corresponds to a growth 

model in which atoms are randomly deposited on a substrate and are allowed to 

diffuse over a finite distance. The above equation is linear in h and is only capable 

of describing the height evolution of the surface. A non-linear perturbation of the 

Edward-Wilkinson equation can however be introduced to account for lateral 

growth, which is done in the Kardar-Parisi-Zhang equation given by [80]  

 ),()),((),(),( 22 txtxhtxhv
t

txh ηλ +∇+∇=
∂

∂  .  (3.56) 

The non-linear term (Δh)2 is responsible for lateral growth. Continuum models 

contain more information than rate equations because the surface morphology is 

also described locally. However, the description is on a coarsed-grained scale 

rather than on the atomic scale since they provide information only on the 

collective nature of growth processes.  Therefore, their applicability is limited to 

length scales larger than the typical interatomic distances. 
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CHAPTER 4  

Implementation of Kinetic Monte Carlo  

 

The basic ideas of kinetic Monte Carlo can be systematically implemented as 

follows: 

• Make justified assumptions to enhance the tractability of the KMC 

method; 

• Identify the relevant processes in the system and employ a means of 

distinguishing them; 

• Adopt a methodology to calculate the rates of the above processes; 
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• Incorporate an appropriate data structure/s which can be used to store the 

calculated process rates; 

• Combine the aforementioned into an algorithm that can be used to 

simulate the system under study, in the case of this study, the vapour 

deposition of gold on graphite. 

Each of these points is discussed in detail in the next four sections. 

 

4.1 The lattice gas assumption 

Probably the most important assumption in implementing KMC is that the 

system under study can be represented by a lattice gas [81].  This entails 

constructing a lattice which constitutes positions on the potential energy surface 

most likely occupied by adatoms. These “lattice gas” models neglect defects or 

dislocations that may develop in a growing film as well as changes in the lattice 

due to relaxation.  Furthermore, deposition only takes place at the pre-set lattice 

sites and diffusion is described by hops between the various sites.  A two-

dimensional illustration of the lattice gas assumption is illustrated in Figure 4.1.   

The lattice gas model, as illustrated in Figure 4.1, can be extended to a quasi-

three-dimensional solid-on-solid (SOS) model (Figure 4.2).  In this case, 

overhangs or voids are disallowed and atoms are deposited directly on top of one 

another.  Essentially, this implies that the growth of the crystal/surface can be 

described by an integer array of variables.  SOS models are therefore able to 

simulate large systems with relatively little complexity. 
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Figure 4.1:  Schematic illustration of the lattice gas assumption.  A two-dimensional 

lattice is constructed which constitutes possible adsorption sites on the substrate.  

Diffusion processes are represented by hops between the lattice sites.  The system size is 

L×L. 

  

Figure 4.2:  Schematic illustration of the lattice gas assumption.  A two-dimensional 

lattice is constructed which constitutes possible adsorption sites on the substrate.  

Diffusion processes are represented by hops between the lattice sites.  The system size is 

L×L.  As overhangs and bulk vacancies are neglected, the surface is fully characterized by 

an integer array of height variables above a square lattice substrate.

L 

L 

L L 
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 KMC does not necessarily imply the use of a lattice and can be performed using 

continuous particle positions.  Such models are usually limited in scope since the 

relevant activation energy barriers must be constantly calculated during a 

simulation and are therefore computationally very time-consuming, especially in 

three dimensions.  An excellent description of an off-lattice or “on-the-fly” KMC 

in one-dimension using a Lennard-Jones system can be found in [82].   

 

4.1.1 The lattice geometry 

In principle, all relevant lattice structures can be implemented in a Solid-on-Solid 

fashion.  However, imposing an inadequate geometry, e.g. using the square 

lattice shown in Figure 4.1 to represent an fcc (111) surface, may result in subtle 

difficulties.  An fcc (111) surface is better represented by a hexagonal lattice;   

however, due to the nature this structure, atoms cannot be stacked on top of one 

another and SOS models can consequently not be employed. Nevertheless, the 

lattice gas assumption is still applicable.  In addition, a heteroepitaxial system has 

to be treated with caution, because the structure of the substrate and deposited 

layer may differ significantly from one another.  This would imply a large lattice 

mismatch which will give rise to strain that may destabilise a normally flat 

surface and either result in the formation of dislocations or mounds [83, 84] as a 

way to release the excess elastic energy.  The construction of a lattice for 

heteroepitaxial systems is therefore not trivial.  In this study (which considers a 

hetero-epitaxial system), the lattice was established by taking into account the 

geometries of the graphite and gold surfaces which are as follow: 

• The graphite surface consists of hexagonally closed packed (hcp) carbon 

atoms, illustrated in Figure 4.3.  The surface atoms are characterised as being 



 

 62 

either α or β bonding sites, with the α site having an atom directly below it in 

the next layer and the β site not. These two chemically distinct sites have 

different binding energies for adsorbate materials [85]. The parameters for the 

unit cell is a = b = 2.46 Å.   

• The gold surface, like graphite, has a close packed structure (fcc) with a lattice 

constant of 4.08 Å [86] and interatomic distance of 2.88 Å [86].  Generally, a 

gold surface will grow in the fcc (111) direction (lowest surface energy plane 

[87]) if no other surface structure is imposed such as the (100) and (110) 

directions. These three fcc structures are depicted in Figure 4.4.  Additionally, 

the fcc (111) packing provides the closest match to the graphite surface (see 

Figure 4.5).   

During vapour deposition, gold atoms can adsorb on (i) the α or β sites on the 

graphite surface or (ii) the three-fold hollow sites created by the atoms in an 

existing gold island.  On the graphite surface, preferential adsorption of gold on 

the graphite surface occurs in the direction of the Zπ  orbital (according to DFT 

studies [88]).  Similar observations were made in ref. [89] in which the adsorption 

of silver atoms on graphite was studied using DFT.    In both these cases it was 

found that the binding energy difference between the two adsorption sites on 

graphite (α and β) is relatively small (~0.05 eV).  The assumption was therefore 

made that adsorption of gold on graphite can be at either of these two sites.  

Furthermore, it was assumed that the gold atoms of the growing deposit are laid 

down in contiguous, linear, parallel arrays separated by 2.88 Å such that the 

arrays coincide with the <1010> directions of the graphite. The lattice misfit 

(discussed in Chapter 2) in this case will be approximately 1.4 %.   Large lattice 

misfits (> 4 %) can lead to strain induced formation of three dimensional islands, 

however, a lattice misfit of 1.4 % is considered small enough to be ignored [90].  
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Even if not, the graphite lattice can easily relax to accommodate the lattice misfit.  

Indeed, such observations have been made before [91].  An illustration of a gold 

island on a graphite substrate is shown in Figure 4.5.  For comparison, a gold 

island on Au (111) is also shown. 

 

 

 

 

Figure 4.3:  Schematic illustration of the graphite surface (basal plane).  The distances 

d100 is 2.84 Å and d110 is 2.46 Å. The unit cell parameters is a = b =2.46 Å.   
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Figure 4.4:  Schematic illustration of the (a) fcc (100), (b) fcc (110) and (c) fcc (111) 

surface structures of gold.  The fcc (111) surface the lowest energy plane. 

 

 

 

 

 

  (a)     (b) 

Figure 4.5:  Schematic illustration of the positions of gold atoms on (a) graphite and (b) 

gold surface respectively.  For clarity, the island gold atoms in (b) are drawn larger than 

the gold atoms in the substrate.  The shaded region illustrates the shape of the gold island. 
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In light of the above discussion, an assumption was made which formed the 

foundation of the model developed to study the system. This was that the lattice 

is hexagonal, with inter-site separations of 2.88 Å, which is the interatomic 

spacing of gold.  Deposition and diffusion on graphite and gold is therefore 

performed on the same lattice. Only when the rates for the processes are 

calculated is it necessary to take into account whether an adatom is on graphite 

or on Au (111).  

 

4.2 Identification of the relevant processes in the system 

The KMC is a very powerful method to describe the growth of islands or 

nanostructures (or thin films) provided that all the relevant processes 

contributing to growth are considered.  Neglect of some processes will result in 

unreliable information about size distribution and morphological behaviour of 

the grown island.  The relevant processes that can occur during vapour 

deposition were indicated in Chapter 2.  These processes might be sufficient to 

predict size distribution; however, to establish the morphology of the islands, 

which is dictated by the diffusion of adatoms around the edges, further 

information is needed.  At any given time, an adatom diffusing along an island 

edge can occupy a certain site.  Specific nomenclature can be assigned to these 

sites which can then be used to distinguish between the different diffusion 

processes that can occur along an island edge, also called edge diffusion (see 

Figure 4.6).   Following this nomenclature, several step diffusion processes can be 

identified (see Figure 4.7).  These are :  (a) kink association, (b) dimer dissociation, 

(c) kink dissociation, (d) step diffusion, (e) corner diffusion and (f) corner 

crossing.  Identification of the processes is based on the number of nearest 
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neighbours in the initial and final positions of the jumping atom, shown in  

Table 4.1. 

 

Figure 4.6:   Definition of various types of atom structures that is attached to island edges 

and special sites the adatoms can occupy (a) step dimer, (b) corner site, (c) kink site and 

(d) step adatom. 

 

Figure 4.7: Various edge diffusion processes important for the modeling of island shape:  

(a) kink association, (b) dimer dissociation, (c) kink dissociation, (d) step diffusion, (e) 

corner diffusion and (f) corner crossing.  Not shown is the diffusion of an adatom on an 

open terrace, dissociation from a step or desorption. 
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Table 4.1:  Illustration of the different processes that can occur during growth.  The 

processes can be identified according to their number of nearest neighbours in an initial 

(Ni) and final state (Nf) of a jumping atom. 

Process Configuration Ni Nf 

Step Diffusion  
 

2 2 

Dimer association/ 
Dimer dissociation   

3 
2 

2 
3 

Dimer-to-kink diffusion  
 

3 3 

Step-to-kink diffusion/ 
Kink-to-step diffusion  

2 
3 

3 
2 

Corner-to-kink diffusion/ 
Kink-to-corner diffusion  

3 
1 

1 
3 

Corner dissociation/ 
Corner association  

1 
0 

0 
1 

Step dissociation/ 
Step association  

2 
0 

0 
2 

Kink dissociation/ 
Kink association  

3 
0 

0 
3 

Step-to-corner diffusion/ 
Corner-to-step diffusion  

2 
1 

1 
2 

Terrrace diffusion 
 

0 0 

Schwoebel Jumps 
 

- - 

 

Edge diffusion of an adatom on graphite differs significantly from that of an 

adatom on Au (111).  This difference arises from the morphology of the 
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underlying surface the diffusing adatom finds itself on.  For an adatom on 

graphite, the morphology (and thus edge diffusion) of the underlying surface is 

the same, regardless at which step the adatom is (see Figure 4.8).  Edge diffusion 

of an adatom on Au (111) (or a fcc (111) surface) is however not as simple.  The 

morphology of the underlying surface is completely different depending on the 

plane that passes though the atoms of the step and the atoms of the substrate.  

From this, two types of close-packed steps can be identified, termed as either A 

or B-steps.   The A-steps are made up of (111) facets and the B-steps are made up 

of (100) facets (see Figure 4.9).   Due to the microscopic difference between these 

two steps, the transition states for the edge diffusion processes as well as the 

activation energies will be different (see Figure 4.10).    The difference in step 

diffusion on the fcc (111) surface is a main driving force in the morphology of 

islands. 

 

 

 

 

 

 

Figure 4.8:  Schematic illustration of a gold island with an adatom on either side of the 

steps.  It is clear that the adatoms will have the same activation energy barrier for either 

step since the morphology of the graphite surface is the symmetric for the steps.  The 

boxes indicate the positions to which the atoms should diffuse. 
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Figure 4.9:  Schematic illustration of the two types of steps on an fcc (111) surface. The A 

step is bounded by a (111) facet and the B-step is bounded by a (100) facet. 

 

               (a)            (b)                                   (c) 

Figure 4.10:  Schematic illustration of the various transition states on the fcc (111) 

surface on the A-step (left) and B-step (right). (a) initial state, (b) transition state and (c) 

final state.  

 

4.3 Calculation of process rates 

The relevant processes identified in Sections 2.3 and 4.2 have to be catalogued 

and their respective rates have to be determined if it is to be used in a KMC 

lattice gas model.  As an illustration of how such a catalogue is constructed, 

consider the diffusion of a single adatom within one layer of a monoatomic 

(100) facet (111) facet 

A-step B-step 

B-step A-step 
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crystal surface with hexagonal symmetry (Figure 4.11). This can represent a gold 

adatom on either an existing gold island or on the graphite substrate. If the 

adatom is only permitted to hop to its nearest neighbours and its rate at each of 

these positions depends only on the nearest neighbourhood of 6 sites, there will 

be 26 = 64 possible configurations (or processes).  In Figure 4.11, only four of 

these possible configurations are shown.  For each of these configurations, a rate 

has to be assigned.  Numerous studies have been conducted in which detailed 

catalogues were constructed to account for the rates of all the processes in the 

system [92].  Although such a methodology might seem conceptually simple at 

first glance, it becomes particularly unfeasible if more processes are considered.  

 

 

 

 

 

 

 

 

Figure 4.11:  Diffusion hops of an adatom on a hexagonal lattie.  In each picture, the 

adatom in the centre is assumed to hop to the right, and four different configurations of 

the neighbourhood are shown.  In principle, there are 26 = 64 configurations.  

Considering symmetry, only 32 are distinct. 
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For practical purposes or because the required detailed information about the 

rates might not be available, simplifying schemes are employed.  The aim is to  

find efficient parameterizations of the relevant energy barriers in terms of a small 

number of independent quantities.  Bond counting schemes have been 

particularly successful in this context [93].  The idea is to consider only very few 

distinct barriers, but to take into account the energies of the involved binding 

states explicitly.  In some schemes only the energy of the initial state determines 

the rate [94], whereas, in general, initial and final configurations are considered 

[95].  In this study, however, a model is adopted in which the total energy barrier 

between two adjacent sites is given by [96] 

( )ijij EEEE −+=
2
1δ ,                                    (4.1) 

with δE the diffusion-energy barrier between the sites. Ej is the energy of the 

adatom at site j and Ei the energy at site i   (see Figure 4.12). 

 

 

 

 

 

 

Figure 4.12:  Illustration of the total energy barrier between two sites i and j with energy 

ΔE between the two minima and additional barrier δE. 
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This total energy barrier can be used to calculate the rates for the processes from 

equation (3.48).  The energy barriers shown in Figure 4.12 and equation 4.1 have 

to be determined from phenomenological arguments, experiments or theoretical 

calculations.  In this study, molecular dynamics and energy minimisation 

algorithms were used to determine the necessary barriers.  Details on these 

algorithms can be found in Chapter 5 and Appendix D.  The total energy barriers 

for the processes calculated with the above mentioned methods are summarised 

and discussed in Chapter 5.      

Usually, all the possible processes are stored in a table; however, this can become 

very complex (i.e searching through a very large table and accurately 

determining all the possible situations).  Therefore, the model in this study takes 

into account the basic processes (as set out in Table 4.1) and calculates the proper 

energy barrier (see Appendix E) by counting the number of neighbours around 

the diffusing atom (within a certain interaction radius).  The rate of the process is 

subsequently calculated using equation 3.48.  This way the possibility of 

neglecting a relevant process is greatly reduced.   The rates of the calculated 

processes should however be stored in a data structure which should be 

updatable and searchable during the course of a simulation.   

 

4.4 Data Structures for the storage of the process rates 

Even though the KMC method is an efficient way of evolving system dynamics, 

it can be very slow if the method of storing and selecting process rates (i.e. data) 

is not optimized.  Several data structures can be employed for data storage, such 

as one or multi-dimensional lists, bins and trees [97]. An appropriate data 

structure for KMC specifically will however be determined by (i) accessibility of 
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data, (ii) memory management (iii) cost-effectiveness of search algorithm and 

(iv) scaling behaviour with system size.  The primary data structure in this study 

was an AVL tree [97], since it conforms to the above mentioned criteria [97].  An 

AVL is merely a balanced binary tree [97] and contains a root node with several 

children or leave nodes.  Each node in the AVL tree is linked to an atom in the 

system and contains the sum of all the rates of the processes associated with that 

specific atom.  Additionally, each of these nodes points to a linear list (secondary 

data structure in this study) in which the individual rates of the processes 

associated with each atom is kept.  The list was constructed for this purpose since 

(a) it limits the size of the AVL tree, thereby reducing memory requirements and 

(b) it is faster to search through a “small” linear list than a very large AVL tree.    

An illustration of the AVL tree and linear list, and their connection, is shown in 

Figure 4.13.  A further elaboration of the AVL tree and the linear list can be found 

in Appendix B. 

In Figure 4.13 a square lattice is shown; however this is just a mapping of the 

hexagonal lattice studied in this work.  This mapping was necessary to simplify 

the computer coding and is illustrated in Figure 4.14.  For example, the accuracy 

of the simulation can be adjusted by the number of “rows” and “columns” 

included during the calculation of the rates.  A specific row and column 

combination corresponds to a specific lattice site, which can be occupied or 

unoccupied.  It is thus not necessary to change the code every time adjustment in 

accuracy is required.  Details on the lattice object can be found in Appendix C. 

Selection of an atom in the system which is most likely to move, as well as its 

associated process, is done by traversing the AVL tree and linear list respectively. 

The selection is based on comparison of the total rates of the atoms (as stored in 

the AVL tree) in the system with a random number in the interval [0, 1].  

Similarly, the selection of a process associated with a selected atom is also 
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governed by a random number.  This procedure is discussed in more detail in the 

next section.    

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.13:  Schematic illustration of the AVL tree and linear list used for storing the 

process rates. In this example, atom 7 is selected which can jump to six nearest 

neighbours indicated by the red boxes (excluding inter-layer jumps).  The lattice on which 

the selected atom jumps is shown as rectangular; however, this just is a hexagonal lattice 

“transformed” into a square one.  Figure 4.14 explains this transformation. 
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              (a)             (b) 

Figure 4.14:  Illustration of the (b) square lattice constructed to represent the  

(a) hexagonal lattice.  The red blocks represent first nearest neighbours, blue blocks the 

second nearest neighbours and green blocks the third nearest neighbours. 

 

4.5 An algorithm employing KMC to simulate nanostructure growth 

through vapour deposition 

The final step in the implementation procedure is to combine the principles of the 

KMC method with the assumptions, identified processes and data structures (the 

model) in an algorithm which is capable of simulating growth through vapour 

deposition.  However, some final assumptions concerning the growth process 

have to be made to complete the model.  Different approaches can be followed to 

simulate growth, ranging from conceptually very simple to more complex.   

Many models consider only one adatom as mobile at a given time, and this atom 

is chosen to be the most recently deposited one.  It may, for instance, move to an 

available empty site of lower height in the neighbourhood of the deposition site 

and become immobile.  Thereafter, the simulation proceeds with the deposition 
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of another atom. Other models consider only the immediate incorporation of the 

particle upon the arrival at the surface, whereas activated diffusion over longer 

distances is completely neglected.  These models are computationally very cheap 

and allow for the simulation of large systems and very thick.  Consequently, such 

limited mobility models are employed, for example, in the investigation of basic 

phenomena like kinetic roughening.  Their applicability in material specific 

modelling is, however, rather limited.  In contrast, full diffusion models consider 

all atoms in the system mobile at the same physical time, which makes the 

simulation computationally very complex.  In such full diffusion models, 

deposition can be considered as one of several possible processes.  In this study 

however, deposition was treated separately. Given the deposition rate, F, the 

time between two successive deposition processes was calculated according to   

t = 1/AF,                                                  (4.2) 

with A the area of the simulation area and F the deposition rate in monolayers 

per second.  During this time, the lapse time, adatoms on the surface are 

considered mobile.  Any of the processes summarized in Table 4.1 thus have a 

probability of occurring.  The criteria for determining whether or not a process 

will occur is based on the weighted probability pi of each process given by  

Rrp ii /= ,                                                       (4.3) 

with ri the rate of i-th process and R the total rate in the system of k processes 

∑ =
=

k

i irR
1

.                                                  (4.4) 

A random number, u, in the interval (0, 1] can then be used to select which 

process will occur according to  
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The residence time (inverse of the rate) of the selected process can then be 

calculated and used to update the system time (i.e. the total time in the system).  

If the system time exceeds the lapse time, the next atom may be deposited, else 

the next process is selected.  For convenience sake, the rates of the individual 

atoms were separated from the rates of the individual processes.  In other words, 

each atom has numerous processes which it can undergo.  The rates for each 

atom were summed up and assigned to that particular atom.  This was done for 

each atom in the system.  Selection of a particular atom, was then done in 

correspondence with equation 4.5.  After an atom has been selected, the same 

procedure was followed to select a process.  An algorithm for the simulation of 

vapour deposition can thus be written as follows (shown in Figure 4.15): 

1. Read input parameters – deposition rate, temperature and total simulation 

time or number of atoms to be deposited. 

2. Calculate the lapse time. 

3. Deposit an atom. 

4. Update the rates in the system. 

5. Select an appropriate atom and process. 

6. Add the residence time of the selected process to the system time. 

7. If system time is less than lapse time, go to 4, else go to 3. 

8. Repeat the procedure until the desired number of atoms has been 

deposited or until the total simulation time has been reached. 
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Figure 4.15:  Summary of the algorithm to simulate vapour deposition. 
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CHAPTER 5  

Calculational Details, Results and Discussion 

 

The implementation of the KMC method was discussed in the previous chapter 

and a full diffusion model was presented to simulate the growth of gold 

nanostructures on the graphite surface.  Although this was the envisioned model, 

development thereof occured at different stages, each characterised by the 

assumptions made to describe the system and its dynamics.  Therefore, an 

initially very robust model evolved to one with powerful predictive capabilities, 

provided of course that the inputs are reliable and trustworthy.  This model is 

capable of simulating growth at thermodynamic equilibrium as well as at 

conditions subjected to kinetic constraints.  This chapter thus commences with a 

discussion of what is to be expected for the growth of gold on graphite from a 

purely thermodynamic point of view.  Furthermore, for each stage, the 
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assumptions made are set out and simulation results, considering kinetic 

constraints, are presented.  Artifacts arising from the assumptions are also 

discussed for each stage.    

 

5.1 Preliminary Predictions 

The effect of thermodynamics on the growth of gold on graphite can be deduced 

from equations (2.14) and (2.15) given in Chapter 2.  These equations are 

intcos γθγγ += ds ;     (2.14) 

intγγγ −+= dsadhE ;    (2.15) 

The values for dγ , iγ  and adhE  are 1.354 N/m, 0.89 N/m and 0.514 N/m 

respectively [98].  In order to establish whether Frank-van-der-Merwe, Volmer-

Weber or Stranski Krastanov growth occur, the (i) contact angle and (ii) the 

relationship between the various surface energies have to be determined. The 

surface energy of graphite, sγ , has to be calculated since values from literature 

are too contradictory to use [99].  This is done by substituting dγ , iγ  and adhE  

into equation (2.15)  which yields sγ  = 0.05 N/m.  The contact angle can 

subsequently be determined by substituting dγ , iγ  and sγ into equation (2.14) 

indicating a contact angle of approximately 128°.  It can therefore be concluded 

that Volmer-Weber growth can be expected for the growth of gold on graphite 

(as discussed in Chapter 2).   

The equilibrium morphology of the (three-dimensional) gold nanostructures can 

be determined from the Wulff-construction.  However, as mentioned before, 
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growth during vapour deposition usually occurs at non-equilibrium 

circuimstances and kinetics aspects play a substantial role in controlling the 

morphology of islands which are indeed addressed by the KMC model 

developed in this study.  

 

5.2 Development Stages  

In all of the development stages, the assumptions discussed in Chapter 4 apply, 

except those related to how the processes are selected during a simulation and 

how the lattice was constructed.  These two assumptions were modified from one 

stage to another as more insight was gained into the dynamics of the system and 

artifacts arising due to the assumptions were noticed. The simulations were 

performed for monolayer and multilayer deposition.  Monolayer deposition 

implies the constraint of growth in the z-direction (i.e island growth), whereas 

multilayer deposition allows growth in the z-direction (i.e nanostructure growth).  

In the latter case, atoms may be deposited on top of existing islands or 

nanostructures and the Schwoebel barrier have to be taken into account.  

In addition to the above assumptions, the interaction range of the Sutton-Chen 

potential, used to describe the gold-gold interaction, was taken as approximately 

10 Å (see Figure 5.1).  At this distance, the interaction between two atoms drops 

to 0.78 % of the interaction of the distance at the bulk value (2.88 Å).  Ideally, a 

much larger interaction area should be considered, however this increases 

computational complexity significantly (more neighbours have to be calculated 

for each simulation step) and speed must be sacrificed for improved accuracy.  
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Figure 5.1:  Potential energy curve for the Sutton-Chen potential.   

 

The values of the energy barriers in the simulations were 0.005 eV and 0.12 eV for 

terrace diffusion on graphite and Au (111) respectively, 0.34 eV for diffusion 

along an A-step, 0.24 eV for diffusion along a B-step and 0.15 eV for diffusion 

along a step for an island on graphite.  Desorption from Au (111) occured at 0.7 

eV and at 0.3 eV from graphite if the desorbing atom has no neighbours.   

 

The energy barriers for diffusion along the A and B-step were taken from 

literature [104], and that of diffusion along an island edge on graphite and 

desorption was calculated with a self-written energy minimization code [105] 

utilizing the Sutton-Chen, Lennard-Jones and Brenner potential for the gold-gold, 

gold-carbon and carbon-carbon interactions respectively. In order to assess the 

accuracy of the barriers taken from literature, the same energy minimization code 

was used to calculate the barriers for A and B-step diffusion.   Using this 

Emin 

Ebulk 

rcutoff 
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methodology, energy barriers were calculated as 0.304 eV and 0.27 eV for the A 

and B-step respectively, which are in reasonable agreement with the values from 

literature.  Details on these calculations are given in Appendix E.    

 

It should be noted that for the first stage, the energy barriers used were 0.00197 

eV and 0.028 eV for terrace diffusion on graphite and gold respectively and for 

step diffusion along an island on graphite and 0.32 eV for step diffusion along a 

gold island.  A-steps and B-steps were not yet taken into account at this stage.  

These were also calculated using a self-written energy minimization code [105]; 

however, at this stage the code was not fully developed.  The reason for using 

these values instead of those from literature was because at Stage 1, values from 

literature were not available yet. 

 

From the above values, the activation energies, ΔE, required for the different step 

diffusion processes to occur can be determined.  This is done "on-the-fly" during a 

simulation.  Depending on the level of sophistication required, as many or few 

neighbours can be included in a calculation, as mentioned in Chapter 3.  The 

mobility of the atoms can also be influenced by its nearest neighbours.  In this 

study, atoms were considered mobile unless they had six nearest neighbours (i.e 

bulk).   The activation energies for the different processes discussed in Chapter 4 

are summarised in Table 5.1.  The activation energies shown in Table 5.1 were 

calculated using the energy barriers for Stage 2 - Stage 4, not Stage 1.   

 

It can be noted that the activation energies in Table 5.1 are representative of 

situations where the diffusing atom has the maximum number of next nearest, 

third nearest and fourth nearest neighbours.  Variation of the number of 

neighbours implies that the activation energies will vary too. For example, dimer 

dissociation on graphite has an activation energy of -0.08 eV (from Table 5.1).  
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However, this is only true if the number of next nearest neighbours is three and 

the number of third nearest neighbours is also three.  If the number of third 

nearest neighbours were instead two whilst the number of next nearest 

neighbours remained the same, the activation energy would change to 0.02 eV.  

 

Table 5.1:  Summary of activation energy, ΔE, for the diffusion of a gold adatom around 

an island edge on graphite and Au(111).  Only those processes discussed in Chapter 4, 

Table 4.1 are shown. The processes are identified by Ni and Nf, meaning that, for the step 

diffusion process, with Ni = 2 and Nf = 2, the process can be represented by 2→2. 

Process ΔE on Au(111)  
A-Step (eV)  

ΔE on Au(111)  
B-Step (eV) 

ΔE on 
Graphite (eV) 

1→0  0.47  0.47   0.29 
1→1  0.34  0.24   0.16 
1→2 -0.05 -0.06 -0.1 
1→3  0.01 -0.08 -0.28 
2→0 0.57  0.57   0.55 
2→1  0.72  0.62  0.41 
2→2  0.34  0.24 0.16 
2→3  0.25  0.16 -0.02 
3→0 0.75  0.75  0.75 
3→1  0.73  0.64   0.59 
3→2  0.43  0.32  0.34 
3→3  0.34  0.24  0.16 

 

The rates for some the processes summarised in Table 5.1 were calculated using 

equation 3.48 and the influence of temperature on their activation is shown 

graphically in Figures 5.2 to 5.4.  From the figures it can be elucidated when a 

process is activated.  This is the case if there is a rapid increase in the magnitude 

of the rate for small temperature changes.  Activation of a process does however 

not necessarily imply that it has a probability to occur.  Provided that the 
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residence time of the process, added to the system time, is not greater than the 

lapse time, the process has a probability to occur, otherwise it cannot.  It should 

be mentioned that the Schwoebel barrier, as indicated in Table 5.1, can also vary 

depending on the number of neighbours in the initial and final state, as discussed 

before.  
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Figure 5.2 : Rates for different processes on a step of a Au island on graphite. The 

different curves apply to jumps characterised by the change in the number of nearest 

neighbours in the surface plane. 
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Figure 5.3 : Rates for different processes on an A-step of a Au island on Au (111). The 

different curves apply to jumps characterised by the change in the number of nearest 

neighbours in the surface plane. 

0.0E+00

1.0E+06

2.0E+06

3.0E+06

4.0E+06

5.0E+06

6.0E+06

7.0E+06

8.0E+06

9.0E+06

1.0E+07

100 200 300 400 500 600 700
Temperature (K)

Ra
te

 (1
/s

)

1 -> 1
2 -> 1
2 -> 2
3 -> 1
3 -> 2
3 -> 3
2 -> 0
3 -> 0
1 -> 0
Schwoebel

 

Figure 5.4 :  Rates for different processes on the B-step of a Au island on Au (111). The 

different curves apply to jumps characterised by the change in the number of nearest 

neighbours in the surface plane. 
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The different stages and the simulations performed at each stage are discussed in 

detail in the next three sections. 

 

5.2.1 Stage 1 

The assumptions made in this stage, in addition to those in Chapter 4, include the 

following: 

• Only α and fcc sites on graphite and Au (111) respectively were 

considered as possible adsorption sites and jumps were only allowed to 

neighbouring α or fcc sites;   

• Following deposition, only the most recently deposited atom was allowed 

to move, with the other atoms in the systems considered fixed;  

• The process with the largest probability was selected to occur  

(p ∝ e-ΔE/kBT). 

• The desorption process was neglected.   

Simulations were performed for monolayer and multilayer growth at different 

deposition rates, temperatures and nucleation sites.  Deposition occurred at 

randomly selected sites.  The details of the simulations are given below together 

with the results.  Before the results are interpreted though, it should be 

mentioned that considerable care has to be taken to differentiate between real 

physical effects (due to the growth conditions and processes that occur) and 

simulation artifacts.   
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5.2.1.1 Monolayer growth 

The deposition rates probed in the simulation for monolayer deposition were 

between 5x10-1 10ML/s and 5x10-4 ML/s and temperatures ranged between  

100 K and 600 K.   A total number of 50 nucleation sites were randomly placed on 

a 200 x 200 lattice.  The surface coverage after deposition was 0.25 ML.   The 

following deductions can be made from the simulation (see Table 5.2): 

• Fractal-like islands are observed for all the deposition rates at 100 K 

although the number of the fractal-like-like islands increases (> 50, which 

is the number of nucleation sites) with increasing deposition rate and 

decreasing temperature.  This increase is due to the creation of new 

nucleation sites, since the probability of atoms to reach existing islands 

decreases with an increasing deposition rate.  The reason for fractal-like 

behaviour at 100 K is two-fold:  firstly, there may be certain processes that 

are not activated at this temperature and secondly, some processes may 

be activated, but the deposition rate may be too fast to allow them to 

occur.  The two processes dictating the fractal-like behaviour are step 

diffusion and step-to-corner diffusion (the latter not being relevant in this 

simulation as discussed below).  Neither of these two processes is 

activated at 100 K (from Figure 5.2 it can be seen that a process with an 

energy barrier of 0.32 eV to occur will only be activated at around 250 K, 

i.e where the the magnitude of the rate increases rapidly for a small 

temperature change).  The step-to-corner diffusion process can not occur 

in any case because the model only allows the process with the largest 

probability to occur.  Based on the above discussion, it can therefore be 

concluded that the growth of islands occurs via a “hit-and-stick” 

mechanism.   
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 A transition from fractal-like to compact island morphology is made 

between 100 K and 300 K at deposition rates of 5x10-4 ML/s and 5x10-3 

ML/s.   The apparent transition can be ascribed to the activation of the 

step diffusion process.  Atoms can therefore diffuse along island edges 

toward the centre of an island.  For the deposition rates of 5x10-2 ML/s and 

5x10-1 ML/s at 300 K, islands are still fractal-like since the rate for the step 

diffusion process is slower at this temperature and fewer atoms can reach 

the center of an island.  The fractal-like arms are however thicker than 

those at 100 K, indicating that atoms were able to diffuse along the island 

edges. 

 Another apparent transition from fractal-like to compact islands is made 

between 300 K and 500 K for deposition rates of 5x10-2 ML/s and 5x10-1 

ML/s.   At 500 K, the rate for the step diffusion process is fast enough so 

that more atoms can redistribute themselves along the island edges and 

therefore they have a higher probability to reach the centre of an island.   

 At 500 K there is not much observable change in the island morphology 

for the deposition rates of 5x10-4 ML/s and 5x10-3 ML/s and this is also the 

case for all the deposition rates at 600 K.  This behaviour is understandable 

however, since the process with the largest probability is selected to occur 

during the simulation.  Processes that have only a slight probability to 

occur (such as step-to-corner diffusion) are not allowed to and the island 

morphology is therefore simulated as irregularly compact.     

 

The island density (number of atoms per number of sites) for the different 

deposition rates and temperatures can also be determined and is shown in 

Figures 5.5 and  5.6 respectively.   There is a decrease in the island size (i.e the 
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number of sites it occupies) and an increase in the island density with increasing 

temperature.  This indicates the apparent transition from fractal-like to compact 

islands. 

 

Table 5.2:  Island morphologies for monolayer growth at different temperatures and 

deposition rates using the assumption that only the most recently deposited atom is 

mobile at a given time and considering only the largest probability in the system. The 

coverage is 0.25 ML.  A total number of 50 nucleations sites were randomly placed on the 

200 ×200 substrate. 
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Figure 5.5:  Average island size (number of sites) for different temperatures at a given 

deposition rate. 
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Figure 5.6:  Average island density for different temperatures and deposition rates. 
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5.2.1.2 Multilayer growth 

The deposition rates used in the simulation for multilayer growth were between 

0.05 ML/s and 10 ML/s and temperatures ranged between  100 K and 600 K.   A 

total number of 25 nucleation sites were randomly placed on the substrate.  The 

surface coverage after deposition was 0.4 ML.  The following deductions can be 

made from the simulation (see Table 5.3): 

• Fractal-like islands are observed for all the deposition rates at the lowest 

temperature (100 K).  The number of the fractal-like islands increases 

(> 25, which is the number of nucleation sites) with increasing deposition 

rate and decreasing temperature.  This is particularly noticeable at a 

deposition rate of 10 ML/s at 100 K in which case the fractal-like islands 

are very small.  The same explanation as for the case of monolayer 

deposition applies - new nucleation sites are created because the 

probability of atoms to reach existing islands decreases with an increasing 

deposition rate.  The fractal-like behaviour at 100 K can however not be 

explained in terms of step diffusion.  At this temperature, the step 

diffusion process is not activated; however, the Schwoebel jump process 

is (see Figure 5.1) but the rate for this process is too slow to allow enough 

atoms to jump on top of an island and thereby reduce the fractal-like 

morphology.  Similar to the case of monolayer deposition, at high 

deposition rates, there are fewer atoms that can jump on islands and 

growth also occurs via a "hit-and-stick" mechanism.    One should 

however not lose sight of the fact that a substantial amount of time is 

spent by an atom merely diffusing around on a terrace.  Therefore, by the 

time an atom reaches an island, very little time is left for diffusion along 

an edge, thus enhancing the probability of "hit-and-stick" growth.   
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• Between 100 K and 300 K, there is an apparent transition from fractal-like 

to compact islands for 0.05 ML/s.  At this temperature, the rate for the 

Schwoebel jump process is much faster and more atoms have the 

probability to jump on top of island, thereby decreasing the size and 

increasing the density of the island.  The islands are still fractal-like for the 

other deposition rates, although they appear denser, due to the 

aforementioned reason. 

• At 500 K, the nanostructures for the deposition rates 0.5 ML/s, 

1 ML/s and 10 ML/s also appear to be more compact.  Yet again, at 

higher temperatures the rate for the Schwoebel jump process is much 

faster and more atoms can jump on the nanostructures, decreasing their 

size. 

• Lastly, at 600 K, there is not much observable change in the morphology 

of the nanostructures at any of the deposition rates.  All that can be 

noticed is the number of nanostructures is slightly less than for the lower 

temperatures.  For 0.05 ML/s and 0.55 ML/s this number is close to the 

number of nucleation sites, namely 25.   

As before, the nanostructure density (number of atoms per number of sites) for 

the different deposition rates and temperatures can also be determined and is 

shown in Figures 5.7 and 5.8 respectively.   Again, there is a decrease in the island 

size and increase in island density with increasing temperature indicating the 

transition from fractal-like to compact islands. 
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Table 5.3: Nanostructure morphologies for multilayer growth at different temperatures 

and deposition rates on a 200 ×  200 substrate using the assumption that only the most 

recently deposited atom is mobile at a given time and considering only the largest 

probability in the system. The coverage is 0.4 ML.  A total number of 25 nucleations sites 

were randomly placed on the lattice. 
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Figure 5.7:  Average nanostructure size (number of sites) for different temperatures at a 

given deposition rate. 
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Figure 5.8:  Average nanostructure density for different temperatures and deposition 

rates. 
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5.2.1.3 Simulation Artifacts 

The reliability of the results obtained from simulations performed in this stage is 

hindered by what can be termed as simulation or model artifacts.  Only those 

artifacts that can be attributed to the assumptions made are discussed here, 

although there may be others that are not as clear to see.  These artifacts explain 

the somewhat unexpected morphologies of the islands/nanostructures and are as 

follow: 

• Largest probability process selection:  Selecting only the process with the 

largest probabibility prohibits the occurence of processes that lead to the 

rounding or facetting of islands.  Processes with the largest probability are 

step diffusion and Schwoebel jumps for monolayer and multilayer growth 

respectively.  As a consequence of this artifact, islands/nanostructures 

assume an irregular morphology with protuded arms.  This is because 

atoms that arrive at tips or corner sites cannot diffuse around to a step and 

merely stick where it attached. 

• Moving only the most recently deposited atom:  It is difficult to assess the 

influence of this assumption on the island/nanostructure morphology 

because of the large role played by the above assumption. If it is accepted 

that the above assumption holds, moving only the most recently deposited 

atom is not expected to have such a great effect, since, in most cases; an 

atom deposited on a graphite substrate will have the highest probability to 

occur.  For example, terrace diffusion has an energy much smaller than 

step diffusion (0.00197 eV as opposed to 0.32 eV).  However, if an atom is 

deposited next to a kink site (or if it attaches from the terrace), there might 

be an atom that is not attached to any kink site and that would therefore 
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have the highest probability to move.  If the residence time required to 

execute the kink dissociation process added to the system time exceeds the 

lapse time, the next atom would be deposited, even though step diffusion 

(which will have the largest probability) could have occured.  Therefore, 

islands will not assume their correct morphology, and will therefore have 

a morphology which is more irregular than that of the physical situation.  

In the case of multilayer growth, if an atom is deposited on a terrace, it 

will also have the largest probability to occur of all the other processes in 

the system.  Similar to the case of monolayer growth, an atom may attach 

or be deposited next to a kink site and, due to the assumption, be selected 

to occur even though there may be a larger probability process in the 

system.  For both monolayer and multilayer deposition, a new nucleation 

centre (created when the sytem time exceeds the lapse time before an atom 

reaches an island) may have a higher probability to move than an atom 

deposited at any position on a step. 

• Considering only fcc and α absorption and jumping sites:  In the case of 

monolayer growth, this is not expected to have an influence on the island 

morphology.  However, during multilayer growth this assumption may 

lead to a pronounced effect, which will be discussed in more detail in the 

next section. 

• Neglection the desorption process:  At this stage, neglect of this process does 

not appear to have much of an effect.  It will most likely just increase the 

time needed to perform a simulation since more time will be needed to 

deposit a certain amount of atoms if a percentage of that is desorbed from 

the surface. 
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5.2.2 Stage 2 

Evidently, selecting the process with the highest probability results in serious 

simulation artifacts by suppressing the fundamental physical processes that can 

occur during growth.   Consequently, Stage 2 focused on using a random number 

to select the most probable process, as discussed in Chapter 4.  In this stage, the 

data structures, random number generator and search algorithm were developed 

and implemented. Therefore, the assumptions made in this stage, in addition to 

those in Chapter 4, include the following: 

• Only α sites on graphite and fcc sites on Au (111) were considered as 

possible adsorption sites and jumps were only allowed to neighbouring α 

or fcc sites;   

• Following deposition, only the most recently deposited atom was allowed 

to move, with the other atoms in the systems considered fixed;  

• Process selection was made by comparing the weighted probability of each 

process in the system with a random number in the interval [0, 1]; 

• The desorption process was neglected.   

The simulations performed in Stage 1 were repeated using the modifications in 

the assumptions summarised above. It should be emphasised again that 

simulation artifacts may be present which can skew the results presented below. 
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5.2.2.1 Monolayer growth 

The same deposition rates and temperatures as those used in Stage 1 for 

monolayer growth were used in Stage 2. Deposition rates ranged from  

5x10-1 ML/s to 5x10-4 ML/s and temperatures from 100 K to 600 K.   A total 

number of 50 nucleation sites were randomly placed on the substrate and the 

surface coverage after deposition was 0.25 ML.  The following deductions can be 

made from the simulation (see Table 5.2): 

• Similar to the previous simulations, islands are fractal-like at 100 K for all 

the deposition rates. This can again because the step diffusion process is 

not activated at 100 K and atoms stick to an island edge wherever they 

attach (refer to Section 5.2.1.1). 

• An apparent transition from compact to fractal-like islands appear 

between 100 K and 300 K for 5x10-3 ML/s and 5x10-4 ML/s, whereas the 

fractal-like arms of the islands at deposition rates of 5x10-1 ML/s and  

5x10-2 ML/s at 300 K are much thicker.  As mentioned in Section 5.2.1.1, 

the step diffusion process is activated at 300 K and atoms therefore have a 

probability to diffuse along an island edge which can either result in the 

thickening of the fractal-like arms or in a compact morphology.  The step-

to-corner diffusion process is not yet activated at 300 K and the island 

morphology at deposition rates of 5x10-3 ML/s and 5x10-4 ML/s is 

therefore still irregular compact. 

• An apparent transition from compact to fractal-like islands for deposition 

rates of 0.5 ML/s and 0.05 ML/s occur between 300 K and 500 K.  The 

faster rate for the step diffusion process is responsible for this behaviour.  
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The step-to-corner diffusion process, although activated at this 

temperature (with a step diffusion barrier of 0.32 eV, the step-to-corner 

diffusion process has a barrier of approximately 0.72 eV, which is 

indicated in Table 5.1 and Figure 5.3), is too slow to occur at a temperature 

of 500 K and rates of 0.5 ML/s and 0.05 ML/s.  Furthermore, the arms of 

the fractal-like islands become thicker for the two highest deposition rates 

at a higher temperature.  The same explanation as before applies here.   

• There are other similarities with the results from Stage 1.  These are the 

increasing island density with increasing deposition rates and decreasing 

temperatures.  Again, this is due to the fact that more nucleation sites are 

created with an increasing deposition rate and decreasing temperature. 

 The most important difference between Stage 1 and Stage 2 is the facetting 

of the islands at 600 K for deposition rates of 5x10-3 ML/s and 5x10-4 

ML/s.  At this temperature, the rate for the step-to-corner diffusion 

process is fast enough for it to have a probability to occur.  The higher 

deposition rates still exhibit irregular morphologies, indicating that the 

deposition rates are too fast for the step-to-corner diffusion process to 

occur. 

The island density (number of atoms per number of sites) for the different 

deposition rates and temperatures can also be determined and is shown in 

Figures 5.9 and 5.10 respectively.   Like before, there is a decrease in the island 

size and increase in island density with increasing temperature indicating the 

transition from fractal-like to compact islands.   
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Table 5.4:  Island morphology for various temperatures and deposition rates on a  

200 × 200 substrate with a coverage of 0.25 ML with 50 nucleation sites.  Process 

selection was done by comparing the weighted probability of each process in the system 

with a random number in the interval [0, 1].  Only the most recently deposited atom was 

allowed to move between depositions. 
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Figure 5.9:  Average island size (number of sites) for different temperatures at a given 

deposition rate with a coverage of 0.25 ML and 50 nucleation sites. 
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Figure 5.10:  Average island density for different temperatures and deposition rates with 

a coverage of 0.25 ML and 50 nucleation sites. 



 

 

 

103 

The scaling relationship of the island growth has also been investigated.  This 

was done to obtain a comparison between the KMC method and rate equations.  

According to rate equations, a linear relationship exists between the island 

density and the temperature or deposition rate.   The scaling behaviour can be 

determined by depositing an atom on a substrate without any nucleation sites.  

From Figure 5.10 it is seen that the number of islands decreases with increasing 

temperature and deposition rates in a linear fashion.  As example, the number of 

islands' decrease at a given deposition rate is shown in Table 5.5.  The scaling 

behaviour was not investigated for the revised versions of this model.   

 

Table 5.5:  Island morphology for various temperatures at a deposition rate of 

 5 x 10-4 ML/s and coverage of 0.05 ML with no nucleation sites. 

T = 100 K 

 

T = 300 K 

 

T = 500 K 

 

T = 600 K 
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Figure 5.11:  Island density for different temperatures and deposition rates with a 

coverage of 0.05 ML with no nucleation sites. 

 

5.2.2.2 Multilayer growth 

The temperatures used in the simulation for multilayer growth in Stage 2 were 

the same as those in Stage 1; namely between 100 K and 600 K respectively.   The 

deposition rates differed however, ranging between 5x10-4 ML/s and 5x10-1 

ML/s. The surface coverage after deposition was 0.4 ML and 25 nucleation sites 

were randomly placed on the substrate.  The following deductions can be made 

from the simulation (see Table 5.5): 

• Fractal-like behavior is observed for all deposition rates at 100 K.  The 

explanation for this is the same as in Stage 1; namely that the step 



 

 

 

105 

diffusion process is not activated at 100 K and atoms merely attach to an 

island or nanostructure.  Although the Schwoebel jump process can make 

islands less fractal-like, it is not an issue here, since its rate is too slow to 

occur at T = 100 K (see Figure 5.1). 

• Upon increasing temperature, there is an apparent transition from fractal-

like to compact islands between 100 K and 300 K at 5x10-4 ML/s and  

5x10-1 ML/s, whereas the islands at 5x10-2 ML/s and 5x10-1 ML/s are still 

fractal-like (although the fractal-like arms are thicker, for the same reason 

discussed in Stage 1). Two processes are responsible for the compact 

behaviour of the islands namely (i) step-to-corner diffusion and (ii) 

Schwoebel jumps. Both these processes are activated at 300 K; however, 

their rates are too slow to occur at 5x10-2 ML/s and 5x10-1 ML/s, whereas 

they can occur at 5x10-4 ML/s.  The Schwoebel jump process does 

however have a higher probability to occur than the step-to-corner 

diffusion process due to its lower activation energy and will be the 

driving force in determining the nanostructure morphology.    

• At even higher temperatures, the nanostructures become more compact 

and the morphology becomes more rounded or facetted.  For the lowest 

deposition rate of 5x10-4ML/s, the nanostructures assume a facetted, 

triangular morphology at 600 K, whereas it is less facetted, but still 

slightly triangular at  5x10-3ML/s.  At this temperature, the step-to-corner 

diffusion process, partially responsible for facetting, is fast enough to 

occur at these two deposition rates.  The Schwoebel jump process can also 

be responsible for facetting, since atoms jumping on top of existing 

islands or nanostructures leads to mass being transferred away from a 

particular step. For the two highest deposition rates, the islands are still 

irregularly compact.  Thus, even though the step diffusion process has a 
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fast enough rate to occur, the step-to-corner diffusion process has a rate 

which is too slow for it to have a significant probability to occur.   

 

Table 5.6:  Nanostructure morphologies for different temperatures and deposition rates 

and coverages of 0.4 ML. Process selection was done by comparing the weighted 

probability of each process in the system with a random number in the interval [0, 1].  

Only the most recently deposited atom was allowed to move between depositions. 
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5.2.2.3 Simulation artifacts 

The results presented above have to be interpreted carefully.  As with Stage 1, 

there are simulation artifacts present that skew the results.   These artifacts 

explain the somewhat morphologies of the islands and are as follow: 

• Considering only fcc and α absorption and jumping sites:  In the case of 

monolayer growth, this is not expected to have an influence on the island 

morphology but for multilayer growth this has significant consequences.  

If jumps are allowed to only fcc-sites, it implies that, whenever an atom is 

at a B-step (or, if on graphite, a step where the next layer will be a B-step), 

it is not allowed to jump because the closest site in the next layer will be a 

hcp site.  Therefore, the B-steps will grow out, hence a triangular 

morphology (see Figure 5.12). 

 

 

Figure 5.12 :  Triangular nanostructure morphologies for a deposition rate of  

5x10-4ML/s at 600 K and a coverage of 0.4 ML.  The triangular morphology is an 

artificial effect due to the assumption made in the model that only jumps to fcc sites are 

allowed. 

A-step 
A-step 

B-step 

B-step 
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• Moving only the most recently deposited atom:  The effects of this assumption 

in Stage 2 is the same as in Stage 1 and the discussion of Section 5.2.2.1 

therefore applies. 

• Neglecting the desorption process:  The same explanation given in Section 

5.2.2.1 for Stage 1 is relevant here. 

 

5.2.2.4 Stage 3 

In light of difficulties encountered in the first two stages, the model was modified 

to a full diffusion model.  In other words, not only the most recently deposited 

atom is considered mobile between deposition processes, but all of the atoms 

with the one that can perform the process most probable to occur (by means of a 

random number comparison as described in Chapter 4) selected.  Furthermore, 

hcp and β sites were included as posssible adsorption and jump sites in order to 

address the simulation artifact that leads to triangular islands, as discussed 

above.  The assumptions made in this stage, in addition to those in Chapter 4, 

thus include the following: 

• Adsorption sites included α, β, fcc and hcp sites on graphite and Au (111) 

respectively, with jumps only allowed to neighbouring α, β, fcc or hcp 

sites.  Atoms were therefore able to jump on top of an island at either an A 

or a B-step.  At an A-step, an atom will jump from an fcc or hcp site to a 

hcp or fcc site whereas from a B-step it will jump from an fcc or hcp site to 

a fcc or hcp site. 

• Following deposition, all atoms in the system were given a probability to 

move;  
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• The process most probable to occur was selected through a random 

number selection process; 

• The desorption process was neglected.   

Simulations were performed for monolayer and multilayer growth at different 

deposition rates and temperatures.  Deposition occurred at randomly selected 

sites on a 150 x 150 lattice.  At this stage, new values for the energy barriers were 

used, either obtained from literature or calculated (see Section 5.2).  The details of 

the simulations are given below together with the results.  

 

5.2.2.5 Monolayer growth  

The deposition rates probed in the simulation for monolayer deposition were 

between 0.01 ML/s and 1 ML/s and temperatures ranged between  

100 K and 700 K.   A total number of 25 nucleation sites were randomly placed on 

the substrate, however since this stage uses a full diffusion model, these 

nucleation sites were allowed to move.  The surface coverage after deposition 

was 0.2 ML.  The following deductions can be made from the simulation (see 

Table 5.7): 

• Fractal-like islands are observed at 100 K for all the deposition rates, 

although the fractal-like islands are much smaller for the rate of 1 ML/s.  

This is merely because more nucleation sites are created at a higher 

deposition rate and more, smaller islands are formed. 

• An apparent transition from fractal-like to compact islands is made 

between 100 K and 300 K for 0.01 ML/s and between 500 K and 700 K for  
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0.1 ML/s and 1 ML/s respectively.  The explanation is the same as 

discussed in the first two stages. 

• The compact islands at 700 K and 0.1 ML/s is slightly irregular whereas 

those at 0.01 ML/s have a facetted morphology (hexagonal as expected, 

since on graphite there is no "A" or "B" steps and the ratio between the step 

lengths should become one).   The islands at 500 K and 0.01 ML/s is only 

slightly facetted because the step-to-edge diffusion process responsible for 

the facetting is activated (see Figure 5.2), but the rate may be too slow for 

enough of these processes to occur.  In other words, even though these 

processes occur, there is not enough time for the atoms to diffuse along 

atoms along the island edges to more stable sites and thus attain a more 

energetically favourable morphology.  

 

5.2.2.6 Multilayer growth 

The deposition rates and temperatures used in the simulation for multilayer 

growth varied between 0.01 ML/s and 1 ML/s and 100 K and 700 K respectively.   

The 25 random nucleation sites were also allowed to move during the simulation, 

due to the full diffusion model being employed.  The surface coverage after 

deposition was 0.2 ML and a lattice of 150 x 150 sites was used.  The following 

deductions can be made from the simulation (see Table 5.8): 

• The nanostructures at a temperature of 100 K exhibit a fractal-like 

morphology for all of the deposition rates, with the fractal-like 

nanostructures much smaller for the rate of 1 ML/s.  This is also because 

more nucleation sites are created at a higher deposition rate than at a 
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lower one.  The density of the nanostructures also increases with 

decreasing temperature and increasing deposition rate.   

• An apparent transition from fractal-like to compact islands is made 

between 500 K and 700 K for 1 ML/s and between 300 K and 500 K for 0.1 

ML/s and 0.01 ML/s respectively.  The explanation for this transition is 

the same as in the Stage 2.  

• The compact nanostructures at 700 K and 500 K at 0.1 ML/s have a 

rounded morphology whereas the nanostructures at 700 K and 1 ML/s 

have a facetted morphology (hexagonal, quasi-hexagonal and triangular).  

The interpretation of the facetted behaviour for the multilayer growth 

should be treated with caution, although most of the explanation given in 

Stage 2 can be applied here.  In particular since it appears that some of the 

islands have triangles with different orientations.  This behaviour is 

discussed in more depth in the next section. 
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Table 5.7:  Island morphologies for different deposition rates and temperatures 

(monolayer growth) varied as indicated.  The total coverage after deposition was 0.2 ML. 

Only part of the simulated surfaces is shown. 
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Table 5.8:  Nanostructure morphologies (multilayer growth) for different deposition rates 

and temperatures varied as indicated.  The total coverage after deposition was 0.2 ML. 

Only part of the simulated surfaces is shown. 
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5.2.2.7 Simulation artifacts 

The results presented above have yet again to be treated with caution.  As with 

Stage 1 and 2, simulation artifacts may exist that can distort the results.   The 

artefact that may be present during this stage may be due to neglecting the 

desorption process.  This process is still not expected to have such a great effect 

on the island morphology; however, it is addressed in the next section. 

 

5.2.3 Stage 4 

In this stage, the desorption process was included.  Furthermore, a simulation 

artifact not discussed in the previous sections is the size of the intervals over 

which deposition rates and temperatures are probed.  Temperatures of 100 K 

may be too large to quantify the temperature at which a fractal-like to compact 

transition occurs.  In addition, considering a large substrate at a time limits the 

possibility of identifying the exact processes responsible for island or 

nanostructure morphology.  Therefore, in this stage, the interest was to 

investigate the influence of temperature on nanostructure morphology at a given 

deposition rate.  A nucleation site, consisting of a hexagonal island of 7 atoms, 

was placed on the lattice and atoms were randomly deposited on the lattice.  A 

hexagonal island was chosen to prevent a simulation artifact (for example, a 

triangular island might lead to triangular growth). A deposition rate of 1 ML/s 

were used in the simulation, the reason for not considering lower deposition 

rates is the inefficiency of the KMC method at high temperatures and low 

deposition rates, discussed in the next section.  Different temperatures were 

probed in an interval of 50 K.  The results for varying surface coverages are 

shown in Table 5.9. 
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Table 5.9:  Nanostructure morphology (multilayer growth) at different temperatures for a 

deposition rate of 1 ML/s. 

 θ = 0.01 ML θ = 0.03 ML θ = 0.08 ML θ = 0.1 ML 
T 

= 
10

0 
K

  

   

T 
= 

20
0 

K
 

    

T 
= 

30
0 

K
  

   

T 
= 

40
0 

K
  

   

T 
= 

50
0 

K
 

    

T 
= 

55
0 

K
 

    

T=
 6

00
 K

 

    

T 
= 

65
0 

K
 

    

T 
= 

70
0 

K
 

    



 

 116 

From Table 5.9 it can be seen that the nanostructures obtain a more facetted 

morphology at the higher temperatures.  The morphology tend to be triangular, 

however, an interesting observation is made at 650 K and 700 K.  The triangular 

morphology of the nanostructure is inverted at 700 K compared to the 

morphology at 650 K.  Based on the activation energies, step-to-corner diffusion 

on an A-step has a higher activation energy than step-to-corner diffusion on a B-

step.  It is therefore expected that atoms that arrive at corner sites will most likely 

diffuse towards the B-step.  Hence, the B-steps will grow out.  This is indeed 

what is seen at temperatures at 650 K and below.  The inverted morphology at 

700 K indicates that there is a process which is activated at this temperature that 

inverts the step-to-corner anisotropy.  Indeed, upon closer inspection of the rates 

calculated, it appeared that the 4→1 process has an activation energy of 0.72 eV 

and 0.79 eV for the A-step and B-step respectively and the 4→2 process has an 

activation energy of 0.49 eV and 0.63 eV for the A-step and B-step respectively.  

This implies a reversal in the step-to-corner anisotropy; the reason for this is not 

clear at this stage.  The effect of the Schwoebel jump processes should not be 

neglected either, as this barrier can vary according to the number of neighbours 

surrounding the jumping atom in its initial and final state.  Clearly, a detailed 

analysis of the activation energies is needed before accuracte predictions on 

island morphologies can be made. 

The desorption process did not have a significant effect on the results except for 

slowing down the simulation substantially.  This is especially true at higher 

temperatures since atoms diffusing on a graphite terrace have a very high 

probability of desorption due to the weak attraction with the substrate. 
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5.3 Comments on the KMC method 

At this stage of the study, the method is still not fast enough to simulate systems 

on experimental time scales exceeding minutes.  It is particularly slow at high 

temperatures (see Figures 5.13 and 5.14).  Gold on graphite is also difficult to 

model using KMC because the rate of diffusion of gold on graphite is very fast 

(~10-13 s) and a lot of jumps are performed between depositions.  Ideally, the code 

should be optimized and the code parallized. 

 

 

 

 

 

 

 

 

Figure 5.13:  The number of steps needed for completion of a simulation (deposition of 

1000 atoms in a full diffusion model) depends on the temperature and deposition rate. 
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Figure 5.14:  Illustration of the exponential increase of computational time with 

temperature for monolayer deposition using a deposition rate of 0.1 ML/s (deposition of 

1000 atoms with a full diffusion model). 
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CHAPTER 6  

Conclusions and Future Work 

 

6.1 Conclusions 

In this study, a kinetic Monte Carlo model was developed that is able to perform 

physically realistic simulations over a useful range of growth conditions.  The 

emphasis of this work was to establish the model such that it can serve as a 

development platform for other, more advanced models.  Indeed, modules were 

designed that can be used in both other MC and KMC codes.  These modules are 

discussed in Appendix B and C and are for the data structures, the random 

number generator, the lattice object together with its cells and the main 

calculation module which contain the functions that perform the KMC method.  

Many of the functions may be used for MC simulations as well.   
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The KMC model was developed in different stages, each stage characterised by 

the assumptions made to describe the system and the dynamics.  The 

assumptions made (in particular those in Stage 1) results in simulation artefacts, 

as discussed in Chapter 5. However, despite these disadvantages of the model at 

the various stages, several useful predictions can be made. 

In Stage 1, only the most recently deposited atom was allowed to move and the 

process with the highest probability was selected to occur.  Adsorption and 

jumps were also only allowed onto fcc and α sites on Au (111) and graphite 

respectively.  The desorption process was also neglected.  Although the model at 

this stage was very crude, it was able to simulate the increase in the number of 

islands/nanostructures at increasing deposition rates and decreasing 

temperatures.  It could also partially predict a transition from fractal-like to 

compact islands/nanostructures (and thus increasing density with increasing 

temperature and decreasing deposition rate as expected from experiment); 

however, selecting only the process with the largest probability places a question 

mark on the ability of the model to predict transition temperatures.  The model 

was also not able to correctly predict island/nanostructure morphologies, since 

at higher temperatures and lower deposition rates; the islands still had an 

irregular compact morphology.   

At Stage 2, the selection of a process to occur during a simulation was based on a 

random number selection, not by merely considering the one with the largest 

probability.  At this stage, again only the most recently deposited atom was 

allowed to move.  The model was able to obtain an increasing number of 

islands/nanostructures with increasing deposition rate and decreasing 

temperature, similar to Stage 1.  The size of the islands/nanostructures could also 

be partially obtained from the simulation.  The model was also able to partially 

predict the transition from fractal-like to compact islands/nanostructures.  
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Noticeably different from Stage 1 is the ability of the model to attain a facetted 

morphology of simulated islands/nanostructures.  A simulation artefact was 

present though, with triangular nanostructures dominating due to only fcc sites 

considered during the simulation. 

In Stage 3, a full diffusion model was adopted; however, still only the most 

recently deposited atom was allowed to move.   Jumps to hcp sites were also 

included. This model was able to deduce the island/nanostructure distribution 

on the lattice and could attain an increase in the number of 

islands/nanostructures with an increase in deposition rate and decrease in 

temperature.  The model could also partially predict the transition from fractal-

like to compact islands/nanostructues and was able to better describe the 

simulated morphologies of the islands/nanostructures.  The simulation artefact 

present in Stage 2 that resulted in triangular nanostructures was not a factor here.  

Instead, hexagonal, quasi-hexagonal and triangular morphologies were obtained. 

In Stage 4, the desorption process was included, and the same achievements 

made by the model in Stage 3 applies here. 

 The above discussion is summarised in Table 6.1. 

It can also be concluded that although the energy barriers used in the simulations 

were not calculated from first principles, that one can still make useful 

deductions (as discussed above).  In the KMC model, the focus is more on 

relative process rates and thus accurate enough energy differences.  For example, 
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Table 6.1.  Summary of the ability of the KMC model at different stages to simulate a 

specific property correctly. 

Property Partly Achieved Achieved 

Island/nanostructure 
size 

Stage 1 
Stage 2 Stage 3 

Island/nanostructure 
distribution 

Stage 1 
Stage 2 Stage 3 

Island/nanostructure 
density 

Stage 1 
Stage 2 Stage 3 

Transition 
temperatures 

Stage 1 
Stage 2 
Stage 3 

- 

Island/nanostructure 
morphology 

Stage 2 
Stage 3 - 

 
 

having the correct rate ratio between the A and B-steps as input into the KMC 

model, the correct island/nanostructure morphologies may be obtained, 

however, the deposition rate and temperature at which this would occur cannot 

be directly determined.  The model and computer code is of course flexible 

enough to allow improved energy barriers to be used as inputs.   

 

Although the model has a lot of qualitative predictive capability several issues 

have to be addressed before it will be able to perform industrially relevant 

simulations.  These are discussed in the next section. 
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6.2 Future work 

The model itself can be refined by considering the following: 

• Optimization of code should be performed to ensure that the KMC 

method is utilized in the most efficient way.  Included in increasing the 

speed of the simulations is parallelization of the code.   

• The artefact arising because of the lapse time should be addressed in an 

intuitive way.  Processes with very slow rates might not occur during a 

simulation if their residence time exceeds the lapse time.  These processes 

may however have a probability to occur during an experiment.  The 

constraint imposed by the lapse time should thus be addressed.   

• Activation energies for all possible processes should be more accurately 

determined, for example by using DFT methods. 

• The relation between the deposition rate, R, and the vapour pressure, p, in 

the system during evaporation should be addressed in the simulation.  

This relation is given by R = p/(2πkBT).  

The system studied may also be varied and may include the following: 

• Different heteroepitaxial systems:  These include not only other metals on 

graphite, but also other substrates.  A change in the lattice geometry can be 

done in the T_Lattice object.     
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• Effect of gases on the growth conditions:  Gas molecules, such as CO or O 

might preferentially adsorp at certain sites on growing particles and limit 

growth in that direction, therefore altering the morphology of the particles.   

• Inclusion of more processes:  On Ag(100), exchange diffusion is a process 

which occurs (however, not for Au (111)) and during deposition, 

downward funnelling effects etc. can also be included. 
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Appendix A 

Derivation of the Master Equation 

 

The derivation of the Master Equation presented here is significantly simplified 

and a more complete derivation can be found in [71-73].  The derivation starts by 

integrating equation 3.27 over y2.  Thus, for t1 < t2 < t3 it follows that 

 ( ) ( ) ( ) 222331|111221|111133112 ,;,,;,),(,;, dytytyPtytyPtyPtytyP ∫=  .   (A.1) 

Dividing both sides by P1(y1, t1) gives the Chapman-Kolmogorov equation 

 ( ) ( ) ( ) 211221|122331|111331|1 ,|,,|,,|, dytytyPtytyPtytyP ∫= .        (A.2) 

The Chapman-Kolmogorov equation is an identity that must be obeyed by the 

transition probability of any Markov process.  It states that a process starting at t1, 
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with value y1, reaches y3 at t3 via any one of the possible values y2 at the 

intermediate time t2.  For stationary Markov processes the transition probability 

P1|1 does not depend on two times, but only on the time interval; for this case a 

special notation is introduced: 

 ( ) )|(,|, 1211221|1 yyTtytyP τ= ,                                  (A.3) 

with τ = t2 – t1.   A more explicit definition of stationary Markov processses is that 

their moments are unaffected by time thus 

 )()...()()()...()( 2121 NN tYtYtYtYtYtY =+++ τττ  ,  (A.4) 

with )(tY  the average of the stochastic process )(tY .  Therefore, the Chapmann-

Kolmogorov equation becomes 

 ( ) ( ) ( ) 2122313 ||| '' dyyyTyyTyyT ∫=+ ττττ
 .                   (A.5) 

The Master Equation can consequently be derived and it is a more convenient 

version of the Chapman-Kolmogorov equation.  It is a differential equation 

obtained by taking the limit 'τ  → 0.  For small 'τ one can write ( )12' | yyTτ   

 ( ) ( ) )'(|')(| 2
121212' ττδτ OyyWyyyyT ++−=  ,  (A.6) 

with ( )12 | yyW  is the transition probability per unit time from 1y  to 2y .  The 

delta function expresses that the probability to stay at the same state after time 

zero is one, whereas the time to change after time zero equals zero.  Equation A.6 

must be normalised as follows 

 ( ) 1| 212' =∫ dyyyTτ .    (A.7) 
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This will be the case when  

 ( ) ( ) )'(|')()'1(| 2
1212012' ττδττ OyyWyyayyT ++−−= . (A.8) 

The coefficient )'1( 0τa−  in front of the delta function is there to correspond to the 

probability for no transition to take place during 'τ . The expression for 'τT  can 

now be inserted into the Chapman-Kolmogorov equation to give 

 ( ) [ ] ( ) ( ) ( ) 21232123013' |||')(1| dyyyTyyWyyTyayyT ττττ τ −−=+ .    (A.9) 

Dividing equation A.9 by 'τ  and taking the limit 'τ  → 0 yields the differential 

version of the Chapman-Kolmogorov equation : 

 ( ) ( ) ( ) ( ) ( ){ } 21332122313 ||||| dyyyTyyWyyTyyWyyT ∫ −=
∂
∂

ττττ
 .  (A.10) 

This equation is valid for the transition probability of any stationary Markov 

process obeying equation is called the Master Equation.  Rewriting the previous 

equation and suppressing redundant indices gives 

 ( ) ( ) ( ) ( ){ } '''' ,|,|),( dytyPyyWtyPyyWtyP
∫ −=

∂
∂

τ
 ,    (A.11) 

which is the customary form of the Master Equation.  If the range of Y is a 

discrete set of states with labels n, the equation reduces to  

 { }∑ −=
∂

∂

'
''' )()(

)(
n

nnnnnn
n tpWtpW
t
tp ,                      (A.12) 

which is equation 3.28 given in Chapter 3. 
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Appendix B 

Data Structures 

 

A modular approach was followed in the design of the computer code to 

simulate vapour deposition.  The necessity of modularity for this study is two-

fold: (i) most obviously, it is easier to debug smaller programs than larger ones 

and (ii) a well-written modular program places certain dependencies in a single 

routine, making changes easier. It also allows flexibility in adding or removing 

routines by other programmers.  In this study, abstract data types (ADT's) were 

employed to store the calculated rates.  ADT's are nothing but a set of operations.  

They are mathematical abstractions; the method of implementing this set of 

operations is not specified.  They are thus an extension of modular design.  The 

ADT's of choice in this study is the list ADT and the AVL tree.  These two ADT's 

are discussed below. 
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B.1 The List ADT 

Consider a list of the form a1, a2, a3 ... an.  The size of this list is n with a list of size 

zero called a null list.  For any list, except the null list, it follows that ai+1 succeeds 

ai and that ai-1 precedes ai (i > 1).  The first element of the list is a1 and the last 

element is an.  The position of an element ai in the list is i.  Associated with the 

above definitions, there is a set of operations that can be performed, such as 

insert, remove, make empty and find.  All of these instructions can be 

implemented by using an array.  However, this requires that an estimate of the 

maximum size of the array is specified, even if this array is dynamically 

allocated.  Evidently, this is a serious limitation when storing process rates, 

especially if there are many unknown rates.  Keeping the number of rates fixed is 

therefore necessary for this type of ADT.  Furthermore, the insertion and removal 

operations are expensive with a scaling behaviour of O(N).  The list was therefore 

only used to store the rates of a particular atom for different processes.  Thus, for 

N atoms, there are N linear lists.  The size of the list ADT is M, with M referring 

to the number of possible sites around a particular atom at which processes can 

occur.  In the system under study (i.e. a hexagonal lattice) this corresponds to 25 – 

in other words, 12 processes can occur in the same level as the jumping atom, 6 in 

the level below, 6 in the level above and an additional process is the desorption of 

an atom.  The reason why the list ADT was chosen for the storage of the process 

rates will be clarified in the next section.  The array implementation of the list 

ADT in C++ (which is the language used in this study) is as straightforward as 

defining 

double T_List [24]. 

The elements of a particular linear list are just the rates of the individual 

processes for the corresponding atom, which are summed to give the total rate of 
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the corresponding atom.  This total rate is then inserted into the tree data 

structure. 

 

B.2.  The Tree ADT   

A tree can be defined in several ways.  A natural way of defining a tree is by 

means of recursion.  A tree is merely a collection of nodes, with a distinguished 

node, the root, r, connecting zero or more sub trees, T1, T2, ... , Tk, each of whose 

roots are connected by a directed edge to r. [97].   The root of each sub tree is 

termed the child of r with r the parent of the child. In a binary tree (see Figure 

B.1), each root can have only two (or less) children.  Nodes that have no children 

are called the leave nodes of the tree. The values assigned to each node are called 

key values (in this study this is the rates of the individual atoms).  There are 

various kinds of trees, like the binary tree. Binary trees are very useful due to 

their ability to perform efficient data searches.  A binary tree can be made into a 

binary search tree by requiring that for every node of the tree, the values of all 

the keys in the left sub tree are smaller than the values of all the keys in the right 

sub tree (see Figure B.2). 
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Figure B.1:  Schematic illustration of a binary tree.  A binary tree does not necessarily 

have to be balanced. 

 

Figure B.2:  Schematic illustration of a binary search tree.   The key values are as 

indicated in the figure.  
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A binary search tree does not necessarily have to be balanced (i.e. have the same 

height for the left and right sub trees) although it can be.  However, with binary 

search trees it can happen that the tree becomes “too deep” on one side.  A search 

through the tree then becomes equivalent to a search through a linear list.  This is 

especially time-consuming for very deep trees [97].   Typically scaling for binary 

trees can thus range from O(logN) to O(N). Imposing a balance condition on the 

binary search tree can rectify this problem.  Such a binary search tree with an 

added balance condition is the AVL search tree [97].  In this tree, the left and 

right sub trees have the same height or can differ at most by 1 (see Figure B.3).   

 

 

Figure B.3:  Schematic illustration of an AVL binary search tree. The key values of the 

nodes are as indicated in the figure. 
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The balancing of the tree is done by rotating the tree around a selected node to 

ensure that the balance criterion is met.  The other operations that were 

performed on the tree structure were insertions, deletions and finds.  Insertions 

and deletions are done when the rates in the system have to be updated and finds 

when a most probable rate have to be selected. Implementation of a tree structure 

is not as trivial as an array.  The AVL search tree is treated an object named as 

T_Avl_Search_Tree.  It is derived from the binary search tree, 

T_Binary_Search_Tree.  The nodes of the trees are also treated as objects, 

T_Tree_Node, for the binary search tree and T_Avl_Node for the AVL tree.   The 

class structure for the binary search tree nodes contains pointers to the left and 

right child of each node.  The class structure for the binary tree object contains 

pointers to the root node and the last node that was accessed.  The class structure 

for the AVL search tree nodes contains an extra height parameter whilst the class 

structure for the AVL search tree contains extra functions to rotate the tree 

around a specified node to ensure the balance of the tree.  These class structures 

are given in Figures A.4, to A.7 for T_Tree_Node, T_Binary_Search_Tree, 

T_AVL_Node and T_AVL_Search_Tree respectively.  The class structures make 

use of templates in C++.  This allows one to write a class for an arbitrary type and 

only to specify that type whenever the object is used.  One can thus use floats, 

doubles, integers etc. as desired. 

template <class eType> 
class T_Tree_Node 
{ 
 protected: 
      eType eElement; 
          T_Tree_Node *Left; 
          T_Tree_Node *Right; 
  T_Tree_Node *List; 
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T_Tree_Node(eType E = 0, T_Tree_Node *L = NULL, T_Tree_Node 
*R = NULL) : eElement(E), Left(L), Right(R) {} 

  friend class T_Binary_Search_Tree<eType>; 
}; 

//---------------------------------------------------------------------------------------------------- 

Figure B.4:  Class structure of T_Tree_Node. 

 
template <class eType> 
class T_Binary_Search_Tree 
{ 
 protected: 
 
      void MakeEmpty(T_Tree_Node <eType>* &T); 
          void Insert(const eType &X, T_Tree_Node <eType>* &T, int  
 Number); 
         void Remove(const eType &X, T_Tree_Node <eType>* &T); 

void PrintTree(T_Tree_Node<eType> *T, TCanvas* cCanvas, 
double X, double Y, double ParentX, double ParentY, int Width, 
bool HLight) const; 

          T_Tree_Node<eType>* Copy(const T_Tree_Node<eType>* T); 
T_Tree_Node<eType>* Find(const eType &X, T_Tree_Node 
<eType>* T, const eType &Value, T_Tree_Node <eType>*  
Value_Pointer) const; 
T_Tree_Node<eType>* FindMin(T_Tree_Node <eType>* T) const; 
T_Tree_Node<eType>* FindMax(T_Tree_Node <eType>* T) const; 

  T_Tree_Node<eType>* Root; 
          T_Tree_Node<eType>* LastFind; 
 

public: 
      T_Binary_Search_Tree(); 

T_Binary_Search_Tree(T_Binary_Search_Tree &Value); 
virtual ~T_Binary_Search_Tree(); 
const T_Binary_Search_Tree &operator = (const 
T_Binary_Search_Tree  &Value); 
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                 eType operator () () const; 
void MakeEmpty (); 

          virtual float Find(const eType &X); 
            virtual int FindMin(); 

virtual int FindMax(); 
virtual void Insert(const eType &X, int Number); 

          virtual void Remove(const eType &X); 
 
 }; 

//------------------------------------------------------------------------------------------------------ 

Figure B.5:  Class structure of T_Binary_Search_Tree. 

 
template <class eType> 
class T_Avl_Node : public T_Tree_Node<eType> 
{ 
 private: 
           int  Height; 

             friend int Node_Ht(T_Avl_Node *P)  
 {return P ? P->Height : -1;} 

                 friend int Node_Ht(T_Tree_Node <eType> *P)   
  {return Node_Ht((T_Avl_Node<eType>*)P);} 
             friend void Calculate_Height(T_Avl_Node *P) 

{P->Height=1+max(Node_Ht(P->Left),Node_Ht(P->Right));} 
 
         protected: 
          friend class Avl_Search_Tree<eType>; 

 
public: 

Avl_Node(eType E = 0, Avl_Node *L = NULL, T_Avl_Node *R = 
NULL, int H = 0) : T_Tree_Node<eType>(E,L,R), Height(H) {} 

}; 

//------------------------------------------------------------------------------------------------------ 

Figure B.6:  Class structure of T_Avl_Node. 
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template <class eType> 
class T_Avl_Search_Tree : public T_Binary_Search_Tree  <eType> 
{ 
  protected: 
          T_Avl_Node <eType> *Copy(const T_Avl_Node<eType>*T); 

virtual void  Insert(const eType & X, T_Avl_Node<eType>* 
&T, int i); 
virtual void  Remove(const eType & X, 
T_Avl_Node<eType>* &T); 

 
public: 

          T_Avl_Tree():T_Binary_Search_Tree  <eType> () {} 
         const T_Avl_Tree & operator = (const T_Avl_Tree & Value); 

             virtual void Insert(const eType & X, int i) 
            {Insert(X, (T_Avl_Node<eType>  *&) Root, i);} 
             virtual void Remove(const eType &X) 

                 {Remove(X,  (T_Avl_Node<eType>  *&) Root);} 
             void S_Rotate_Left(T_Avl_Node<eType>*  & k2); 

                void D_Rotate_Left(T_Avl_Node<eType> * & k3); 
                void S_Rotate_Right(T_Avl_Node<eType>* & k1); 
                void D_Rotate_Right( T_Avl_Node<eType> * & k3); 
}; 

//------------------------------------------------------------------------------------------------------ 

Figure B.7:  Class structure of T_Avl_Search_Tree. 

 

The details on how classes are written, the role of constructurs, destructors, 

virtual functions and so forth can be found in [97]. Implementations of the 

functions in the above mentioned classes will be supplied upon request to the 

author [105]. 
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In order to use the AVL search tree, an instance of the T_AVL_Search tree has to 

be created first  

T_Avl_Search_Tree <double> T_Atom; 

T_Atom is now the object which will be used. The term “double” refers to the 

data type that will be used during calculations.  Insertions of rates are then done 

recursively by calling the function Insert 

T_Atom->Insert (rate); 

recursive deletions by 

T_Atom->Remove (rate) 

and recursive finds by 

T_Atom->Find (rate). 

“Rate” refers to the total rate of each atom that is either inserted, deleted or has to 

be found.  Each node in the tree is also linked, via the pointer “List” indicated in 

Figure B.5, to a list that contains the rates of the various jump directions of each 

atom.  Insertions are done recursively by comparing the value to be inserted, X, 

with the key values of each node in the tree, starting from the root.  If X is smaller 

than the key value of a node, tree traversal occurs to the left child to the node else 

to the right child.  This procedure is recursively repeated until a leaf node is 

reached.  The same situation applies to removals.  For the AVL tree, however, 

each insertion or removal is accompanied by a rotation of the tree to ensure that 

the tree remains balanced. The selection of the atom most probable to jump at a 

given time in the system is done by calling a find, which again, is done by 
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recursively searching through the tree, as with the case of the insertion and 

removal. The other class structures used are discussed in Appendix C.   
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APPENDIX C 

Class Structures 

 

In conjunction with the AVL_Search_Tree, AVL_Search_Tree nodes (and 

corresponding Binary_Search_Tree and Binary_Search_Tree_Nodes) and linear 

list class structures (T_List), structures also exist for the lattice, cells of the lattice, 

random number, calculation functions and for the main program.  These class 

structures are clarified as follows: 

 

• T_Cell:  This is the structure for the cells of the lattice (i.e a struct).  The 

T_Cell object contains information about the height of the cell, its 

occupancy, the type of atom that occupies it, its row and column numbers, 

its coordinates, its number and lastly whether it is a bulk atom or not. 

• T_Lattice:  This is the class structure for the lattice and contains all the 

T_Cells and is shown in Figure C.1.   

• T_Calculation_Engine:  This is the class structure which contains all the 

member functions and methods to perform the calculations (i.e simulate 
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vapour deposition).  The T_Calculation_Engine class, with some of the 

functions and methods, is shown in Figure C.2.  

• T_Rand: This is the class structure used for the Mersenne Twister random 

number generator.  The class structure is shown in Figure C.3. 

• T_Main:  This is the main class structure (representing the main program). 

The relationship between the various class structures is shown in Figure C.4. 

 

class T_Lattice  
{   public: 
    TLattice (int NX, int NY, int NZ); //constructor  
         virtual __fastcall ~TLattice (void);//destructor  
  double __fastcall Get_X_Coordinate(int i, int j, int k); // for lattice 
          double __fastcall Get_Y_Coordinate(int i, int j, int k); //for lattice        
 double __fastcall Get_Z_Coordinate(int i, int j, int k); //for lattice 
 
         struct Cells 
         {     double X_Coordinate; 
                double Y_Coordinate; 
                double Z_Coordinate; 
             bool Occupied; 
                int Cell_No; 
                int  Neighbours; 
                int Height; 

    int i_I; 
                int i_J; 
                bool Bulk; 
                int Atom_No; 
      }; 
}; //T_Lattice 
//------------------------------------------------------------------------------------------------------ 

Figure C.1:  Class structure for the T_Lattice Object.  Comments are given in italics. 
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class T_Calculation_Engine 
{  public: 

T_Calculation_Engine(int No_Atoms, double Rate, double Temp, int 
Size_X, int Size_Y, int Size_Z); //constructor 
~ T_Calculation_Engine(void); //destructor 
void __fastcall SaveCells(AnsiString Filename); //save existing 
configuration 
void __fastcall ReadCells(AnsiString Filename); //load in a new 
configuration 
void SleepLocal(int Milliseconds); //used to emulate doevents of Visual 
Basic 
void DoEvents(); //used to emulate doevents of Visual Basic 
int __fastcall GetSCParameters (String Element); //get the Sutton-Chen 
potential parameters for gold  
int __fastcall Random_Number(double U_X, double L_X, double 
U_Y, double L_Y); //generate a random number 
int __fastcall GetActParameters (String Element); //get the activation 
energy barriers for a specific element 
int __fastcall Get_Process(int N_i, int N_f, int No_Init, int No_Final, 
int Step_Type); //decide which process occurs in the system 
void __fastcall Get_NB(int i_No, int k, int Ineraction, int Level); //get 
the neighbours of a particular atom 
int __fastcall MoveAtom(String Element, int i_Prob); //calculate the 
rates of the atoms and which one should move 
int __fastcall MoveDirection(String Element, int SelectedAtom); //based 
on the selected atom, calculate in which direction it should move  
void __fastcall Distance(int i, int j, int k, double X, double Y, double 
Z, int k1); //calculate the distance between atoms – used for counting the 
neighbours 
double __fastcall Total_Energy (int No); //calculate the total energy for a 
specific atom in the system – includes all its neighbours 
double __fastcall Level_Energy(double r, int Neighbours); //calculate 
the energy for a specific atom in  the system for one set of neighbours 
double __fastcall Get_Barriers(int i, int Step_Type, int N_i, int N_f); 
//get the activation energy barriers depending on whether on A, B step or on 
graphite 
double __fastcall Get_Activation_Energy (int i, int Step_Type, int 
No_i, int No_f, int s, int N_i, int N_f); //calculate the activation energy for 
a specific process – depends on the activation energy barrier and initial and 
final energy of the particular atom. 
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double __fastcall Get_Rate(int i, double Act_E, double Sim_Temp); 
//calculate  the rate given the activation energy 
double __fastcall Delta_Energy(int No_i, int No_f, int N_i, int N_f); 
//calculate the energy difference between the initial and final positions of an 
atom 
void __fastcall All_Jump_Rates(int No, int NoAtom); //function to put 
all the rates in  a list – contains the functions Get_Activation_Energy, 
Get_Rate, Get_Process 
void __fastcall Get_Probabilities(int SelectedAtom); //put all the rates in 
lists  
void __fastcall Get_ProbabilitiesAtoms(); //put all the rates for the atoms 
in the AVL_Tree 
int __fastcall Select_Probability(); //select which process should be 
performed ie in which direction an atom should move 
int __fastcall Select_ProbabilityAtoms(); //select which atom should move 
int __fastcall Get_Step(int Init, int Final); //determine whether on A or B 
step 
void __fastcall Save(AnsiString Element_Type, AnsiString Filename); 
double __fastcall Absolute(double Number); 
void __fastcall Save_Desorp(AnsiString Filename); 
int __fastcall Move(double X_Coordinate, double Y_Coordinate, 
double Z_Coordinate, double Step_Size, double U_X, double L_X, 
double U_Y, double L_Y, double U_Z, double L_Z, double theta); 
int __fastcall Find_Nearest_Cell(double X2, double Y2, double Z2, 
double U_X, double L_X, double U_Y, double L_Y, double U_Z, 
double L_Z, double theta); 
void __fastcall SaveMSD(AnsiString Filename); 
void __fastcall Update_Rates(String Element, double U_X, double 
L_X, double U_Y, double L_Y, int i_Prob) ; //update the rates in the 
vicinity of the moving atom 
T_Rand drand; // double in [0, 1) generator, already init 
Avl_Search_Tree<double> L_Atom; //create AVL_Tree object 

     };     //T_Calculation_Engine 
//---------------------------------------------------------------------------------------------------- 
 
Figure C.2:  Class structure for the T_Calculation_Engine object.  Comments are given 
in italics. 
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class T_Rand  
{  
 public: 
  // default constructor: uses default seed only if this is the first instance 
   MTRand() { if (!init) seed(5489UL); init = true; } 
  // constructor with 32 bit int as seed 
   MTRand(unsigned long s) { seed(s); init = true; } 
  // constructor with array of size 32 bit ints as seed 
  MTRand(const unsigned long* array, int size) { seed(array,   
 size); init=true;}  
  // the two seed functions 
  void seed(unsigned long); // seed with 32 bit integer 
  void seed(const unsigned long*, int size); // seed with array 
  unsigned long operator()() { return rand (); } 
    ~MTRand() {} // destructor 
 protected: 
   unsigned long rand (); // generate 32 bit random integer 
 private: 
  static const int  n = 624, m = 397; // compile time constants  
 static unsigned long state[n]; // state vector array 
  static int p; // position in state array 
  static bool init; // true if init function is called 
  // private functions used to generate the pseudo random numbers 
  unsigned long twiddle(unsigned long, unsigned long); // used  
 by gen_state() 
  void gen_state(); // generate new state 
  MTRand(const MTRand&); // copy constructor not defined 
  void operator=(const MTRand&);  
 
}; //T_Rand 

//------------------------------------------------------------------------------------------------------ 

Figure C.3:  Class structure for the T_Rand object.  Comments are given in italics. 
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Figure C.4: Class structure of the objects used in the KMC program.  The class T_Main 

is the object associated with the main program.  The lattice is constructed in the class 

T_Lattice, with a T_Cell struct linked to the lattice.  For an LxL lattice there are LxL 

T_Cell objects. The rates of each atom are stored in the nodes, T_AVL_Node, of the 

T_AVL_Search_Tree structure.  The T_AVL_Node is derived from the T_Tree_Node 

of the T_Binary_Search_Tree object whereas the T_AVL_Search_Tree is derived from 

the T_Binary_Search_Tree object.  The rates for each jump direction around an atom in 

the T_AVL_Search_Tree are stored in a list, T_List.  A jumping atom and direction is 

selected by spinning a random number, generated in the T_Rand class structure, and 
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comparing this random number with the weighted probabilities of the respective rates.  

The calculation and update of the rates, saving of data, reading of activation energies and 

so forth are done within the class T_Calculation_Engine.  The results are output to the 

main program. 
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Appendix D 

Random Numbers 

 

All stochastic simulation methods, such as the KMC method implemented in this 

study, are based on the use of noise produced by random number generators.  

These random number generators are of prominent importance since they are 

employed to generate the dynamics of the system under study.  Random number 

generators are deterministic in nature, therefore, if there is any significant 

correlations within the random number sequence, the dynamics of the system 

under study will be biased and the results may become questionable.  Random 

number generators should therefore be subjected to rigorous testing before being 

used in stochastic simulations. 
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Essentially, random numbers can be identified by the fact that their values are 

unpredictable.  In other words, if a sequence of random number is constructed, 

then the probability distribution of the following random numbers has to be 

completely independent of all the other generated numbers.  Three types of 

random numbers can be distinguished.   These are: 

 

 True Random Numbers:  True random numbers are most often gained 

from physical processes such as radioactive decay, thermal noise in 

semiconductors and the like.  It is important to ensure that, when 

constructing a random number generator based on a physical device, that 

merely “random” output is insufficient; the numbers generated must be to 

a large extent representative of independent random variables.  This 

implies that a device that generates a stream of bits, each bit should be 

either 0 or 1 with equal probability.  The bit should also be independent of 

all the other generated bits.  Using devices for the generation of random 

numbers is risky for a couple of reasons.  These include (a) the difficulty to 

install and run them; (b) cost in acquiring them; (c) slow speed; (d) 

inability to reproduce a sequence exactly.  The latter is especially 

important since it is necessary to verify and debug simulation code or to 

compare it to similar systems.  The usefulness of these random numbers is 

that they can be used as seeds for algorithms designed to be random 

number generators. 

 

 Uniform Random Numbers: These random numbers are uniformly 

distributed.  The aim of such numbers is, for example, to control and 



 

 148 

reduce the errors in Monte Carlo simulations. Such uniform distributions 

are typically generated by predefined computer functions or random 

number generators (RNG’s).  Although there are a variety of random 

number generators, none of them are truly uniform, rather they generate a 

sequence of numbers that has a very long repeat periodicity and small 

correlation between numbers within one period.  The probability 

distribution for a uniform random number on the interval (0, 1] is: 

010
101)(

<<=
≤≤=

xif
xifxp

 , 

which means that the probability of getting a number in the interval 

between x and x + dx is equal to 1 when x is between 0 and 1 and zero 

otherwise. 

 Pseudo Random Numbers:  These numbers are generated by a computer 

or algorithm (RNG) and because of this they are not truly random. Every 

new number is generated from the previous ones by an algorithm. This 

means that the new value is fully determined by the previous ones. But, 

depending on the algorithm, they often have properties making them very 

suitable for simulations [100]. 

 

A comparison between uniform and pseudo random numbers is made in 

Figure D.1 and D.2.  It is evident that, for the purpose of this work, a pseudo 

random number generator will have to be used to prevent repetitions in the 

process selection. 
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Figure D.1:  An illustration of random numbers generated with a uniform random 

number generator. 

 

Figure D.2:  An illustration of random numbers generated with a pseudo random number 

generator. 
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D.1 The Mersenne Twister RNG 

The criteria that should be met for a RNG to be classified as a “good” RNG are as 

follow [100]: 

• It must be able to generate random numbers fast; 

• It must be portable between various platforms; 

• It must have a long period of repeat; 

• It must have repeatable results; 

• It must have a uniform distribution over the set (0, 1]. 

Although most computer languages have built-in RNG’s, these typically have 

limited period and are not truly random [100].  Consequently, one of the most 

advanced RNG’s currently available, namely the Mersenne Twister, has been 

implemented to generate random numbers for the simulations.  A comparison 

between various RNG’s, including the Mersenne Twister, can be found in [100].  

In short, the Mersenne Twister is a generalized feedback shift register and has a 

period of 219937-1, a 623-dimensional equidistribution, accuracy to 32 bits and has a 

working area of 624 words.  It thus allows for a long period and efficient use of 

memory.  It is faster in comparison to most generators and has passed rigorous 

testing [100].  This RNG was specifically designed for Monte Carlo simulations 

and is widely used as the RNG of choice in the statistical community.  The 

mathematics and implementation behind the Mersenne Twister algorithm is 

quite complex, and are therefore not covered here.  A detailed explanation can be 

found in [100].  
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Appendix E 

Calculation of Activation Energy Barriers with Molecular 

Dynamics 

 

The accuracy of the results obtained via KMC simulations is influenced by the 

accuracy of the activation energy barriers for the various processes in the system.  

The activation energy barriers are needed to calculate the rates of the processes, 

as seen in equation 3.48. Although it is possible to get a rough estimate of the 

influence of various processes on island morphology, provided that the 

relationship between the various barriers is correct, comparison with 

experimental results is difficult.  Ideally, first principle calculations are preferred 

for the determination of the activation energy barriers.  On both Au(111) and 
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graphite; however, various DFT calculations were unable to correctly account for 

the gold-graphite interaction [101].  On the other hand, molecular dynamics 

studies on the gold-graphite system is quite popular and a modified Lennard-

Jones potential [102, 103] has been extensively used, with much success, in these 

calculations.  Unfortunately, no literature is currently available on the activation 

energy barriers for diffusion of a gold adatom around a gold island on graphite 

and very little for the diffusion of a gold adatom on bare graphite surfaces.  

Consequently, an energy-minimization routine was written, employing the 

modified Lennard-Jones potential, to calculate these barriers. In contrast to the 

sparsity of information on diffusion of adatoms on graphite, diffusion on and 

along steps on fcc(111) surfaces, and on Au(111) is quite well-studied.   As such, 

activation energy barriers for step and terrace diffusion were obtained from the 

literature, calculated with molecular dynamics using a many-body RGL potential 

[104]. In the next section, a brief discussion is thus given on the methodology to 

calculate the diffusion barriers on graphite and on Au(111).   

 

E.1. Calculation of the activation energy barriers on graphite 

The system used to calculate the activation energy barriers for the edge diffusion 

of a gold adatom along a gold island on graphite, consisted of two sheets of 

graphite, with 120 rows and 110 columns.  A gold island of 50 rows was placed 

on the centre of the graphite sheet.  Figure E.1 shows a schematic illustration of a 

gold island on the graphite substrate.  For clarity, only one graphite layer is 

shown and the number of columns and rows has been reduced.  The interaction 

between the gold atoms was described by the Sutton-Chen potential [106] since 

this potential can be readily implemented and gives reasonable results with 

experiment [107]. 
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The interaction between the gold and graphite atoms was described by a 

modified Lennard-Jones potential [108] whereas the carbon atoms’ interactions 

are described by the Tersoff-Brenner potential which is well-suited for carbon 

based systems [109].  The activation energy for step diffusion was calculated as 

the energy difference between the initial and transition state position of the 

diffusing adatom.  At each of these two positions the energy of the system was 

minimized using an energy minimization routine.  This entailed constraining the 

x-coordinate of the adatom and allowing it to relax in the y and z direction.  At 

each step of the relaxation, the energy of the system was calculated.  The 

calculated energy after relaxation was compared with that before relaxation.  If it 

was less, relaxation in a particular direction was allowed, else not.  This 

procedure was repeated for all the atoms within a specified interaction area, 

taken to be 10 Å.  The code used for this procedure is available from ref. [105].  

Following this methodology, the activation energy barrier for diffusion along a 

step was found to be 0.154 eV.  Calculation of the diffusion energy barrier of a 

single gold adatom on the graphite surface as well as the Schoewbel barrier was 

done following the same method as above.  It was found to be 0.005 eV and 0.126 

eV respectively.   
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Figure E.1:  Schematic illustration of the graphite layer and gold atoms used for 

determining the activation energies along the island edges.  For clarity, the second layer 

of graphite is not shown.  The steps on either side of the island are the same. The 

transition states for the diffusing atom are indicated by crosses. 

 

E.2.  Calculation of the activation energy barriers on Au(111) 

The values that are presented here were obtained from Ferrando et al [104] who 

performed an extensive molecular dynamics study of the anisotropic diffusion 

along the (111) steps of gold and silver. Therefore, only the aspects of the 

methodology followed in the calculations relevant to this study, are addressed 

here.  The system used to investigate the dynamics of a gold adatom along the 

(111) steps of gold were described by a (111) unreconstructed slab with 9 layers in 

the z-direction, 9 rows (x-direction) and 15 columns (y-direction).  An island on 

the slab was represented by a terrace of 7 columns, delimited by an A-step and B-

× 

× 

x 

y 
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step on the left and right hand side respectively (as shown in figure E.1).  An 

adatom was placed alongside either step.  The minimization of the energy at 0 K 

for this structure was done following a quenching procedure [104].  The 

calculation of the energy barriers was done by placing the adatom on the 

transition state (for that particular step) and performing the quenching 

mentioned above.  Figure E.2 shows the diffusion paths along the two steps on 

the Au (111) surface, as well as the transition states.  From these simulations it 

was found that the activation energy barrier for diffusion of a single adatom 

along an A-step is 0.34 eV and along a B-Step is 0.22 eV.   The Schwoebel barrier 

was however not determined in this study [104] and no values could be found in 

the literature either.  Thus, using the same simulation cell as shown in Figure E.1, 

the Schoewbel barrier was calculated in the same fashion as discussed in section 

E.1 yielding a value of 0.504 eV.  As a comparison, the diffusion barriers along 

the A step and B step were also calculated and found to be 0.302 eV and 0.27 eV.  

Although the values are close to those determined in [104], the difference 

between A-step and B-step diffusion is not that prominent. 

 

Figure E.2:  The slab used in the molecular dynamics simulations [104].  The terrace on 

the topmost layer is bounded by an A-step and B-step on the left and right hand sides 

respectively.  Also shown is adatoms on both steps. 

A-Step B-Step 
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Figure E.3:  Schematic illustration of the diffusive paths along the (a) A step and (b) B 

step on Au(111).  The crosses represent the transition states. Open circles denote the 

atoms in the lower layer whereas the black circles denote atoms in the top layer.
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Appendix F 

Supplementary Code 

 

In this appendix, extracts from the programs written in this study is given.  The 

following programs were written: 

• pDiffusion:  This program calculated the activation energy barriers for 

diffusion along the different steps of a Au island on Au(111) and graphite as 

well as the activation energy barrier for diffusion of a Au atom on a graphite 

terrace.  The program was written in Visual Basic 6.0. 

• pKMC:  This program is the main program performing the KMC simulation.  

The program was written in C++. 

• pDisplay:  This program utilizes OpenGL routines to display surface 

morphology as determined by KMC.  The program was written in Visual 

Basic 6.0. 
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• pIsland:  This program calculates island sizes and densities.  The program was 

written in Visual Basic 6.0. 

In the next three sections, some of the code for the pDiffusion, pDisplay and 

pIsland programs are given.  The pKMC code was discussed in Appendix .  

Further information can be obtained from []. 

 
F.1  pDiffusion 
 
Option Explicit 
 
Type AtomVel 
    X As Double 
    Y As Double 
    Z As Double 
End Type 
 
Type AtomForce 
    X As Double 
    Y As Double 
    Z As Double 
End Type 
 
Type Atoms 
    X As Double 
    Y As Double 
    Z As Double 
End Type 
     
Global nn As Integer 
Global NoAtomsC As Integer 
Global mass_Au As Double 
Global E_Au As Double 
Global AtomForAu() As AtomForce 
Global AtomForC() As AtomForce 
Global Energy(1000) As Double 
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Global Nx As Double 
Global Ny As Double 
Global Nz As Double 
Global No_Substrate As Double 
Global AtomPosC() As Atoms 
Global AtomPosAu() As Atoms 
Global f As Double 
Dim fstart As Double 
Global Loc_Dens() As Double 
Dim Local_Density_Sub() As Double 
Dim Local_Density_Surf() As Double 
Dim a As Double 
Dim alfa As Double 
Dim D_t As Double 
Dim D_e As Double 
Dim r_e As Double 
Dim m_t As Double 
Dim Rb As Double 
Dim E As Double 
Dim c As Double 
Dim n As Double 
Dim m As Double 
Dim N_N As Single 
Dim A_t As Double 
Dim B_t As Double 
Dim l_mu As Double 
Dim mu As Double 
Dim beta As Double 
Dim n_t As Double 
Dim c_t As Double 
Dim d As Double 
Dim h As Double 
Dim R_t As Double 
Dim S_t As Double 
Global No_Atoms As Double 
Dim psi As Integer 
_____________________________________________________________________   
Public Function SC_Ui(i As Double, N_Atoms As Double) 
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    Dim j As Double 
    Dim u As Double 
    Dim S1 As Double 
    Dim Vr As Double 
    Dim Sum_Vr As Double 
    Dim r_ij As Double 
    Dim p_i As Double 
    Dim s As Single 
    Dim a_op_r_ij As Double 
    Dim rx_ij As Double 
    Dim ry_ij As Double 
    Dim rz_ij As Double 
    Sum_Vr = 0 
    p_i = 0 
     
    For j = 1 To N_Atoms 
          If (AtomPosAu(j).X <> 0 And AtomPosAu(j).Y <> 0 And AtomPosAu(j).Z 
<> 0) Then 

        If j <> i Then 
              rx_ij = (rx(i, j, "Au", "Au")) 

        ry_ij = (ry(i, j, "Au", "Au")) 
        rz_ij = (rz(i, j, "Au", "Au")) 
        r_ij = (rx_ij ^ 2 + ry_ij ^ 2 + rz_ij ^ 2) ^ 0.5 

                 a_op_r_ij = a / r_ij 
        p_i = p_i + s * (a_op_r_ij) ^ m 

                     Sum_Vr = Sum_Vr + s * (a_op_r_ij) ^ n 
         End If 
      End If 

      End If 
    Next j 
    SC_Ui = 0.5 * Sum_Vr - c * (p_i ^ 0.5) 
     
End Function 
_____________________________________________________________________ 
Public Function SC_Crystal_Energy(No_Atoms As Double, Element As String) 
     
    Dim Sum_U As Double 
    Dim i As Double 
    Sum_U = 0 
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    For i = 1 To No_Atoms 
        If (AtomPosAu(i).X <> 0 And AtomPosAu(i).Y <> 0 And AtomPosAu(i).Z 
<> 0) Then 
         Sum_U = Sum_U + SC_Ui(i, No_Atoms) 
        End If 
  Next i 
   SC_Crystal_Energy = E * Sum_U 
     
End Function 
_____________________________________________________________________ 
Public Function Forces(NoAtoms As Double, j As Double, AtomType As String) 
 
    Dim rx_ij As Double 
    Dim ry_ij As Double 
    Dim rz_ij As Double 
    Dim i As Double 
    Dim k As Double 
    Dim fx As Double 
    Dim fy As Double 
    Dim fz As Double 
    Dim a_on_r As Double 
    Dim r As Double 
    Dim RCutOff As Double 
    Dim Diff As Double 
    Dim p_n As Double 
    Dim p_m As Double 
    Dim Inv_R As Double 
    Dim p As Double 
    Dim f As Double 
    Dim Loc_Dens(10001) As Double 
    Dim Inv_Loc_Dens_j As Double 
    Dim Inv_Loc_Dens_i As Double 
    Dim Sum_Inv_Loc_Dens As Double 
    Dim cm_Sum_Inv_Loc_Dens As Double 
    Dim cm_Sum_p_m As Double 
    Dim np_n As Double 
    Dim Rx_on_R As Double 
    Dim Ry_on_R As Double 
    Dim Rz_on_R As Double 
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    RCutOff = 10  
    Dim cmop2 As Double 
    Dim R_x_on_R As Double 
    Dim R_y_on_R As Double 
    Dim R_z_on_R As Double 
 
    f = 0 
    fx = 0 
    fy = 0 
    fz = 0 
    p = 0 
    p_n = 0 
    p_m = 0 
   
    If (AtomType = "Au") Then 
    LoadParameters ("Au") 
     
    For i = 1 To NoAtoms 
        p = 0 
        For k = 1 To NoAtoms 
        If (AtomPosAu(k).X <> 0 And AtomPosAu(k).Y <> 0 And          
AtomPosAu(k).Z <> 0) Then 
                If k <> i Then 
                    rx_ij = (rx(i, k, "Au", "Au")) 
                    ry_ij = (ry(i, k, "Au", "Au")) 
                    rz_ij = (rz(i, k, "Au", "Au")) 
                    r = (rx_ij ^ 2 + ry_ij ^ 2 + rz_ij ^ 2) ^ 0.5 
                    a_on_r = a / r 
                    p = p + a_on_r ^ m 
                End If 
            End If 
        Next k 
        Loc_Dens(i) = p 
    Next i 
    cmop2 = c * m / 2 
     
    For i = 1 To NoAtoms 
        f = 0 
        PosCounterSC = PosCounterSC + 1 
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        If i <> j And i <= No_Atoms Then 
           rx_ij = (rx(i, j, "Au", "Au")) 
           ry_ij = (ry(i, j, "Au", "Au")) 
           rz_ij = (rz(i, j, "Au", "Au")) 
           r = (rx_ij ^ 2 + ry_ij ^ 2 + rz_ij ^ 2) ^ 0.5 
           If (AtomPosAu(i).X <> 0 And AtomPosAu(i).Y <> 0 And   
          AtomPosAu(i).Z <> 0) Then 
           If (r < RCutOff) Then 
                a_on_r = a / r 
                p_n = a_on_r ^ n 
                p_m = a_on_r ^ m 
                Inv_R = 1 / r 
                Inv_Loc_Dens_j = (1 / Loc_Dens(j)) ^ 0.5 
                Inv_Loc_Dens_i = (1 / Loc_Dens(i)) ^ 0.5 
                Sum_Inv_Loc_Dens = Inv_Loc_Dens_j + Inv_Loc_Dens_i 
                cm_Sum_Inv_Loc_Dens = cmop2 * Sum_Inv_Loc_Dens 
                cm_Sum_p_m = cm_Sum_Inv_Loc_Dens * p_m 
                np_n = n * p_n 
                Diff = np_n - cm_Sum_p_m 
                f = Diff * Inv_R 

   f = E_Au * f 
                R_x_on_R = ((rx_ij)) / r 
                R_y_on_R = ((ry_ij)) / r 
                R_z_on_R = ((rz_ij)) / r 
                fx = fx + f * R_x_on_R 
                fy = fy + f * R_y_on_R 
                fz = fz + f * R_z_on_R 
            End If 
            End If 
      End If       
  Next i 
End If 
AtomForPot1(j).X = fx 
AtomForPot1(j).Y = fy 
AtomForPot1(j).Z = fz 
Forces = f 
 
End Function 
_____________________________________________________________________ 



 

 164 

Public Function LoadParameters(Element As String) 
         
        If Element = "Au" Then 
            E_Au = 0.012793 
            a = 4.08 
            c = 34.408 
            n = 10 
            m = 8 
            mass_Au = 196.97 
        End If 
        If Element = "C" Then 
            a_C = 2 * 0.77 
            mass_C = 12.01 
        End If 
    
End Function 
_____________________________________________________________________ 
Public Function Load_Brenner_Parameters(Element As String) 
 
If Element = "C" Then 
    beta = 15 
    n_t = 0.8047 
    c_t = 19 
    d = 2.5 
    h = 1 
    R_t = 2.1 
    S_t = 1.29 
    m_t = 2.25 
    D_t = 0.2 
    D_e = 6.325 
    r_e = 1.28 
    alfa = 0.0113 
End If 
 
End Function 
_____________________________________________________________________ 
Public Function r(i As Double, j As Double, Atom_Type As String) 
 
    Dim dx As Double 



 

 

 

165 

    Dim dy As Double 
    Dim dz As Double 
    If Atom_Type = "Sub" Then 
        dx = AtomPosC(j).X - AtomPosC(i).X 
        dy = AtomPosC(j).Y - AtomPosC(i).Y 
        dz = AtomPosC(j).Z - AtomPosC(i).Z 
    End If 
     
    If Atom_Type = "Surf" Then 
        dx = AtomPosAu(j).X - AtomPosAu (i).X 
        dy = AtomPosAu (j).Y - AtomPosAu (i).Y 
        dz = AtomPosAu (j).Z - AtomPosAu (i).Z 
    End If 
     
    If Atom_Type = "Both" Then 
        dx = AtomPosC(j).X - AtomPosAu (i).X 
        dy = AtomPosC(j).Y - AtomPosAu (i).Y 
        dz = AtomPosC(j).Z - AtomPosAu (i).Z 
    End If 
     
    r = (dx ^ 2 + dy ^ 2 + dz ^ 2) ^ 0.5 
     
End Function 
_____________________________________________________________________   
Public Function LJ_U(i As Double, No_Atoms As Double, Element_Sub As 
String, Element_Surf As String) 
 
    Dim Epsilon As Double 
    Dim Sigma As Double 
    Dim u As Double 
    Dim Sigma_on_r As Double 
    Dim j As Double 
    Dim r_d As Double 
     
    Epsilon = 0.022 
    Sigma = 2.74 
     
    For j = 1 To No_Atoms 
             r_d = r(i, j, "Both") 
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             If r_d < 7 Then 
            Sigma_on_r = Sigma / r_d 

              u = u - 4 * Epsilon * ((Sigma_on_r) ^ 12 - (Sigma_on_r) ^6) 
    End If 
   Next j 
     
    LJ_U = -u 
     
End Function 
_____________________________________________________________________ 
Public Sub FCC_111(i_max As Double, j_max As Double, k_max As Double, a As 
Single) 
     
    Dim i As Integer 
    Dim j As Integer 
    Dim k As Integer 
    Dim n As Integer 
    Dim f As Integer 
    Dim ff As Integer 
    Dim ak As Single 
    Dim s As Single 
    Dim ss As Single 
    Dim xx As Single 
     
    ak = a / Sqr(2) 
    s = Sqr(3) * (ak / 2) 
    ss = (Sqr(3) / 3) * (ak / 2) 
    xx = a / Sqr(3) 
    For k = 1 To k_max 
        For j = 1 To j_max 
            For i = 1 To i_max 
                ff = ((k - 1) Mod 3) - 1 
                f = j Mod 2 
                If f = 0 Then 
                 f = 1 
                Else 
                 f = 0 
                End If 
                n = n + 1 
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                AtomPosAu(n).X = i * ak + f * (ak / 2) + ff * (ak / 2) 
                AtomPosAu(n).Y = j * s + ff * ss 
                AtomPosAu(n).Z = k * xx 

Next i 
        Next j 
   Next k 
                
End Sub 
_____________________________________________________________________ 
Public Sub MoveSubstrate(Nz_move As Integer, Move_Step As Double, Nx As 
Double, Ny As Double, Nz As Double, U_Start As Double, E_min As Double, 
Element_Sub As String, Element_Surf As String, No_Atoms_Surf As Double, 
Sub_Potential As String, Surf_Potential As String, Surf_Sub_Potential As String) 
         
        Dim En As Double 
        Dim u As Double 
        Dim i As Integer 
        Dim j As Integer 
        Dim k As Integer 
        Dim Atom_Nr As Integer 
        Dim U_Start2 As Double 
        u = Total_Energy(Nx * Ny * Nz, No_Atoms_Surf, Element_Surf,    
        Element_Sub, Surf_Potential, Sub_Potential, Surf_Sub_Potential) 
        U_Start2 = u 
        For i = 1 To Nx * Ny  
                Atom_Nr = Atom_Nr + 1 
                AtomPosC(Atom_Nr).X = AtomPosC(Atom_Nr).X + Move_Step 
                DoEvents 

   u = Total_Energy(Nx * Ny * Nz, No_Atoms_Surf, Element_Surf,   
   Element_Sub,   
   Surf_Potential, Sub_Potential, Surf_Sub_Potential)   

                If U_Start < 0 Then 
                 En = u - U_Start 
                Else 

              En = U_Start - u 
                End If 
         
                If En < E_min Then 
                    E_min = En 
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                Else 
      AtomPosC(Atom_Nr).X = AtomPosC(Atom_Nr).X - Move_Step * 2                           
      u = Total_Energy(Nx * Ny * Nz, No_Atoms_Surf, Element_Surf,   
      Element_Sub,   
      Surf_Potential, Sub_Potential, Surf_Sub_Potential)  

                  En = u - U_Start 
                  If En < E_min Then 
                        E_min = En 
                  Else 
                        AtomPosC(Atom_Nr).X = AtomPosC(Atom_Nr).X + Move_Step 
                  End If 
               End If 
          Next i 
End Sub 
_____________________________________________________________________ 
Public Function Total_LJ(No_Atoms_Sub As Double, No_Atoms_Surf As Double, 
Element_Sub As String, Element_Surf As String) 
 

Dim i As Double 
Dim u As Double 
For i = 1 To No_Atoms_Surf 
    u = LJ_U(i, No_Atoms_Sub, Element_Sub, Element_Surf) 
Next i 
Total_LJ = u 

 
End Function 
_____________________________________________________________________ 
Public Function Total_Energy(No_Atoms_Sub As Double, No_Atoms_Surf As 
Double, Element_Surf As String, Element_Sub As String, Surf_Potential As 
String, Sub_Potential As String, Surf_Sub_Potential As String) 
 

Dim SC As Double 
Dim B As Double 
Dim LJ As Double 
SC = SC_Crystal_Energy(No_Atoms_Surf, Element_Surf) 
B = total_brenner(No_Atoms_Sub, Element_Sub) 
LJ = Total_LJ(No_Atoms_Sub, No_Atoms_Surf, Element_Sub,  
Element_Surf) 
Total_Energy = SC + B + LJ 
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End Function 
_____________________________________________________________________ 
Public Sub MoveSurfaceX(Nz_move As Integer, Move_Step As Double, Nx As 
Integer, Ny As Integer, Nz As Integer, U_Start As Double, E_min As Double, 
Element As String) 
         
        Dim E As Double 
        Dim u As Double 
        Dim i As Integer 
        Dim j As Integer 
        Dim k As Integer 
        Dim Atom_Nr As Integer 
        Atom_Nr = (Nz_move - 1) * Nx * Ny 
        For j = 1 To Ny 
            For i = 1 To Nz 
                Atom_Nr = Atom_Nr + 1 
                AtomPosAu(Atom_Nr).Z = AtomPosAu(Atom_Nr).Z + Move_Step 
                u = SC_Crystal_Energy(Nx * Ny * Nz, Element) 
                E = u - U_Start 
                If E < E_min Then 
                    E_min = E 
                Else 
                    AtomPosAu(Atom_Nr).Z = AtomPosAu(Atom_Nr).Z -  
                    Move_Step^ 2 
                    u = SC_Crystal_Energy(Nx * Ny * Nz, Element) 
                    E = u - U_Start 
                    If E < E_min Then 
                        E_min = E 
                    Else 
                        AtomPosAu(Atom_Nr).Z = AtomPosAu(Atom_Nr).Z +  
                       Move_Step 
                End If 
           End If 
          Next i 
        Next j 
End Sub 
_____________________________________________________________________ 
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Public Sub MoveSurfaceY(Nz_move As Integer, Move_Step As Double, Nx As 
Integer, Ny As Integer, Nz As Integer, U_Start As Double, E_min As Double, 
Element As String) 
         
        Dim E As Double 
        Dim u As Double 
        Dim i As Integer 
        Dim j As Integer 
        Dim k As Integer 
        Dim Atom_Nr As Integer 
        Atom_Nr = (Nz_move - 1) * Nx * Ny 
        For j = 1 To Nz 
            For i = 1 To Nx 
                Atom_Nr = Atom_Nr + 1 
                AtomPosAu(Atom_Nr).Y = AtomPosAu(Atom_Nr).Y + Move_Step 
                u = SC_Crystal_Energy(Nx * Ny * Nz, Element) 
                E = u - U_Start 
                If E < E_min Then 
                    E_min = E 
                Else 
                     AtomPosAu(Atom_Nr).Y = AtomPosAu(Atom_Nr).Y -     
                    Move_Step^ 2 
                    u = SC_Crystal_Energy(Nx * Ny * Nz, Element) 
                    E = u - U_Start 
                    If E < E_min Then 
                        E_min = E 
                    Else 
                        AtomPosAu(Atom_Nr).Y = AtomPosAu(Atom_Nr).Y +  
                        Move_Step 
                End If 
           End If 
          Next i 
        Next j 
End Sub 
_____________________________________________________________________ 
Public Function Optimize(i As Double, StepS As Double, Nx As Double, Ny As 
Double, Nz As Double, Emin As Double, Substrate_Element As String, 
Surface_Element As String, Uvoor As Double, No_Surf_Atoms As Double, fmin 
As Double) 



 

 

 

171 

 
MoveSubstrate Nz - (i - 1), StepS, Nx, Ny, Nz, Uvoor, Emin, 
Substrate_Element, Surface_Element, No_Surf_Atoms, " ", " ", " " 
MoveSurfaceZ Nz - (i - 1), StepS, Nx, Ny, Nz, Uvoor, Emin, 
Substrate_Element, Surface_Element, No_Surf_Atoms, " ", " ", " " 
MoveSurfaceY Nz - (i - 1), StepS, Nx, Ny, Nz, Uvoor, Emin, 
Substrate_Element, Surface_Element, No_Surf_Atoms, " ", " ", " " 

   
End Function 
_____________________________________________________________________ 
Public Function Brenner(j As Double, No_Atoms As Double, Element_Type As 
String) 
    Dim rd_ij As Double 
    Dim W As Double 
    Dim fc_ij As Double 
    Dim g_theta As Double 
    Dim i As Double 
    Dim count As Integer 
    Dim R1(1, 1, 1) As Double 
    Dim r2(1, 1, 1) As Double 
    Dim k As Double 
    Dim cos_theta As Double 
    Dim dot As Double 
    Dim fc_ik  As Double 
    Dim V_R As Double 
    Dim V_A As Double 
    Dim rd_ik As Double 
    Dim z_ij As Double 
    Dim b_ij As Double 
    Dim denominator As Double 
    If j < NoAtomsC Then 
     
    For i = 1 To NoAtomsC 

count = 0 
         If j > i Then 
              rd_ij = r(i, j, "Sub") 

                        fc_ij = Calculate_fc_Brenner(rd_ij) 
              If fc_ij > 0 Then 
                  V_R = (D_e / (S_t - 1)) * Exp(-beta * ((2 * S_t) ^ 0.5) * (rd_ij  
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                                    - r_e)) 
V_A = (S_t * D_e / (S_t - 1)) * Exp(-beta * ((2 / S_t) ^ 0.5) * 
(rd_ij - r_e)) 

            z_ij = 0 
                 

                      For k = 1 To NoAtomsC 
                      If k <> i And k <> j Then  
                             rd_ik = r(i, k, "Sub") 
                              fc_ik = Calculate_fc_Brenner(rd_ik) 

                            If fc_ik > 0 Then 
                         R1(1, 0, 0) = (AtomPosC(i).X - AtomPosC(j).X) 

                                 R1(0, 1, 0) = (AtomPosC(i).Y - AtomPosC(j).Y) 
                                    R1(0, 0, 1) = (AtomPosC(i).Z - AtomPosC(j).Z) 
                         r2(1, 0, 0) = (AtomPosC(i).X - AtomPosC(k).X) 
                                      r2(0, 1, 0) = (AtomPosC(i).Y - AtomPosC(k).Y) 

                    r2(0, 0, 1) = (AtomPosC(i).Z - AtomPosC(k).Z) 
   dot = dot_product(R1(1, 0, 0), R1(0, 1, 0), R1(0, 0, 1),     
   r2(1, 0, 0), r2(0, 1, 0),  r2(0, 0, 1)) 

                               denominator = (r(i, j, "Sub") * r(i, k, "Sub")) 
                       cos_theta = dot / denominator 

                               g_theta = alfa * (1 + c_t ^ 2 / d ^ 2 - c_t ^ 2 / (d ^ 2 +  
         (h –  cos_theta) ^ 2)) 
                                z_ij = z_ij + fc_ik * g_theta * Exp(m * (rd_ij - rd_ik)) 

                  End If 
                    End If 

                Next k 
            End If 
            b_ij = (1 + z_ij) ^ (-n_t) 
            W = W + fc_ij * (V_R - b_ij * V_A) 
        End If 
    Next i 
    End If 
    Brenner = W 
 
End Function 
_____________________________________________________________________ 
Public Function total_brenner(No_Atoms As Double, Element_Sub As String) 
 

Dim i As Double 
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Dim E As Double 
For i = 1 To No_Atoms 
      E = E + Brenner(i, No_Atoms, Element_Sub) 
Next i 
total_brenner = E 

 
End Function 

___________________________________________________________________________________ 

Public Function Calculate_fc_Brenner(rd_ij As Double) 
 
    Dim fc As Double 
    If rd_ij < R_t Then fc = 1 
    If rd_ij < R_t + D_t And rd_ij > R_t - D_t Then fc = 0.5 - 0.5 * Sin((22 / 7) / 2   
    * (rd_ij - R_t) /(D_t)) 
    If rd_ij > R_t + D_t Then fc = 0 
    Calculate_fc_Brenner = fc 
     
End Function 

___________________________________________________________________________________ 

Public Function dot_product(X1 As Double, Y1 As Double, Z1 As Double, X2 As 
Double, Y2 As Double, Z2 As Double) 
 
    Dim x_sum As Double 
    Dim y_sum As Double 
    Dim z_sum As Double 
 
    x_sum = X1 * X2 
    y_sum = Y1 * Y2 
    z_sum = Z1 * Z2 
    dot_product = x_sum + y_sum + z_sum 
 
End Function 

___________________________________________________________________________________ 

Public Sub C_Substrate(i_max As Double, j_max As Double, k_max As Double, a 
As Single) 
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Dim s As Integer 
Dim i As Integer 
Dim No As Double 
Dim j As Integer 
Dim counter3 As Double 
Dim counter4 As Double 
Dim counter6 As Integer 
Dim k As Integer 
Dim r As Double 
r = 1 * 0.70899 
counter6 = 1 
counter3 = 0 
counter4 = 0 
 
For k = 0 To k_max - 1 
    For j = 0 To j_max - 1 
        counter6 = counter6 + 1 
        For i = 0 To (i_max) / 2 - 1 
           No = No + 1 
           If k Mod 2 = 0 Then 
               counter3 = 0 
                counter4 = 0 
            Else 
            counter3 = (4 * r ^ 2 - r ^ 2) ^ 0.5  
                counter4 = r  
            End If 
            If counter6 <= 2 Then 
                AtomPosAu(No).X = 2 * i * ((4 * r ^ 2 - r ^ 2) ^ 0.5) + counter3  
            Else 
               AtomPosAu(No).X = 2 * i * ((4 * r ^ 2 - r ^ 2) ^ 0.5) + counter3 + (4 * r  
     ^ 2 - r ^ 2) ^ 0.5  
            End If 

AtomPosAu(No).Y = Fix(j / 2) * 2 * r + (j - Fix(j / 2)) * r + counter4 + (j - 
Fix(j / 2)) * 0.70899 + counter4 

             AtomPosAu(No).Z = k * 3.34 
        Next i 
         If counter6 = 4 Then counter6 = 0 
    Next j 
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Next k 
End Sub 

___________________________________________________________________________________ 

F.2  pDisplay 
 
Option Explicit 
 

Public iFlatSmooth As Integer 
Public Sphere1 As GLUquadric 
Public Sphere2 As GLUquadric 
Public dBallRadiusC As Double 
Public dBallRadiusAu As Double 
Public xRot, yRot As GLfloat 
Public bAppRunning As GLboolean 

 
 
Public Type PIXELFORMATDESCRIPTOR 
     

nSize As Integer 
nVersion As Integer 
dwFlags As Long 

     iPixelType As Byte 
cColorBits As Byte 

     cRedBits As Byte 
     cRedShift As Byte 
     cGreenBits As Byte 
     cGreenShift As Byte 
     cBlueBits As Byte 
     cBlueShift As Byte 
     cAlphaBits As Byte 
     cAlphaShift As Byte 
     cAccumBits As Byte 
     cAccumRedBits As Byte 
     cAccumGreenBits As Byte 
     cAccumBlueBits As Byte 
     cAccumAlpgaBits As Byte 
     cDepthBits As Byte 
     cStencilBits As Byte 
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     cAuxBuffers As Byte 
     iLayerType As Byte 
     bReserved As Byte 
     dwLayerMask As Long 
     dwVisibleMask As Long 
     dwDamageMask As Long 
End Type 
 
Public Const PFD_TYPE_RGBA = 0 
Public Const PFD_TYPE_COLORINDEX = 1 
Public Const PFD_MAIN_PLANE = 0 
Public Const PFD_DOUBLEBUFFER = 1 
Public Const PFD_DRAW_TO_WINDOW = &H4 
Public Const PFD_SUPPORT_OPENGL = &H20 
Public Const PFD_NEED_PALETTE = &H80 
Public Declare Function ChoosePixelFormat Lib "GDI32" (ByVal hDC As Long, 
pfd As PIXELFORMATDESCRIPTOR) As Long 
Public Declare Function CreatePalette Lib "GDI32" (pPal As LOGPALETTE) As 
Long 
Public Declare Sub DeleteObject Lib "GDI32" (hObject As Long) 
Public Declare Sub DescribePixelFormat Lib "GDI32" (ByVal hDC As Long, 
ByVal PixelFormat As Long, ByVal nBytes As Long, pfd As 
PIXELFORMATDESCRIPTOR) 
Public Declare Function GetDC Lib "GDI32" (ByVal hWnd As Long) As Long 
Public Declare Function GetPixelFormat Lib "GDI32" (ByVal hDC As Long) As 
Long 
Public Declare Sub GetSystemPaletteEntries Lib "GDI32" (ByVal hDC As Long, 
ByVal start As Long, ByVal entries As Long, ByVal ptrEntries As Long) 
Public Declare Sub RealizePalette Lib "GDI32" (ByVal hPalette As Long) 
Public Declare Sub SelectPalette Lib "GDI32" (ByVal hDC As Long, ByVal 
hPalette As Long, ByVal bln As Long) 
Public Declare Function SetPixelFormat Lib "GDI32" (ByVal hDC As Long, ByVal 
i As Long, pfd As PIXELFORMATDESCRIPTOR) As Boolean 
Public Declare Sub SwapBuffers Lib "GDI32" (ByVal hDC As Long) 
Public Declare Function wglCreateContext Lib "OpenGL32" (ByVal hDC As 
Long) As Long 
Public Declare Sub wglDeleteContext Lib "OpenGL32" (ByVal hContext As Long) 
Public Declare Sub wglMakeCurrent Lib "OpenGL32" (ByVal l1 As Long, ByVal 
l2 As Long) 
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Public hPalette As Long 
Public hGLRC As Long 
 
Public sRenderer As String, sVendor As String, sExtensions As String, sVersion 
As String 
_____________________________________________________________________ 
Public Sub FatalError(ByVal sMessage As String) 
 

MsgBox "Fatal Error: " & sMessage, vbCritical + vbApplicationModal + 
vbOKOnly + vbDefaultButton1, "Fatal Error In " & App.Title 
Unload frmDisplay 
Set frmDisplay = Nothing 
End 

     
End Sub 
_____________________________________________________________________ 
Private Sub SetupPixelFormat(ByVal lhDC As Long) 
 
    Dim pfd As PIXELFORMATDESCRIPTOR 

Dim PixelFormat As Integer 
     
     pfd.nSize = Len(pfd) 
     pfd.nVersion = 1 

pfd.dwFlags = PFD_SUPPORT_OPENGL Or PFD_DRAW_TO_WINDOW 
Or PFD_DOUBLEBUFFER Or PFD_TYPE_RGBA 
pfd.iPixelType = PFD_TYPE_RGBA 

     pfd.cColorBits = 24 
     pfd.cDepthBits = 16 
     pfd.iLayerType = PFD_MAIN_PLANE 
 

PixelFormat = ChoosePixelFormat(lhDC, pfd) 
     If PixelFormat = 0 Then FatalError "Could not retrieve pixel format!" 
     SetPixelFormat lhDC, PixelFormat, pfd 
     
End Sub 
_____________________________________________________________________ 
Private Sub SetupPalette(ByVal lhDC As Long) 
     Dim PixelFormat As Long 
     Dim pfd As PIXELFORMATDESCRIPTOR 
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     Dim pPal As LOGPALETTE 
     Dim PaletteSize As Long 
     PixelFormat = GetPixelFormat(lhDC) 
     DescribePixelFormat lhDC, PixelFormat, Len(pfd), pfd 
     If (pfd.dwFlags And PFD_NEED_PALETTE) <> 0 Then 
          PaletteSize = 2 ^ pfd.cColorBits 
     Else 
          Exit Sub 
     End If 
     
     pPal.palVersion = &H300 
     pPal.palNumEntries = PaletteSize 
     Dim redMask As Long 
     Dim GreenMask As Long 
     Dim BlueMask As Long 
     Dim i As Long 
     redMask = 2 ^ pfd.cRedBits - 1 
     GreenMask = 2 ^ pfd.cGreenBits - 1 
     BlueMask = 2 ^ pfd.cBlueBits - 1 
     For i = 0 To PaletteSize - 1 
          With pPal.palPalEntry(i) 
              .peRed = i 
              .peGreen = i 
              .peBlue = i 
              .peFlags = 0 
          End With 
     Next 
     GetSystemPaletteEntries lhDC, 0, 256, VarPtr(pPal.palPalEntry(0)) 
     hPalette = CreatePalette(pPal) 
     If hPalette <> 0 Then 
          SelectPalette lhDC, hPalette, False 
          RealizePalette lhDC 
     End If 
End Sub 
_____________________________________________________________________ 
Public Sub StartOpenGL(ByVal lTargetHDC As Long) 
 
     SetupPixelFormat lTargetHDC 
     SetupPalette lTargetHDC 
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     hGLRC = wglCreateContext(lTargetHDC) 
     wglMakeCurrent lTargetHDC, hGLRC 
 
End Sub 
_____________________________________________________________________ 
Public Sub StopOpenGL() 
 
     If hGLRC <> 0 Then 
          wglMakeCurrent 0, 0 
          wglDeleteContext hGLRC 
     End If 
     If hPalette <> 0 Then 
          DeleteObject hPalette 
     End If 
     
End Sub 
_____________________________________________________________________ 
Public Sub glRGB(r%, G%, B%) 
    glColor3f r / 255, G / 255, B / 255 
End Sub 
_____________________________________________________________________ 
Public Sub setuprc() 
 
     glClearColor 1#, 1#, 1#, 0# 
     glFrontFace ffCCW 
     RenderScene 
     
End Sub 

___________________________________________________________________________________ 

Public Sub Main() 
 
     dBallRadiusC = 0.77 
    dBallRadiusAu = 4.08 / (2 * 2 ^ 0.5) 
     xRot = 90 
     yRot = 90 
     
     quadSphere = gluNewQuadric() 
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     Sphere1 = gluNewQuadric() 
     Sphere2 = gluNewQuadric() 
     
     gluQuadricOrientation Sphere1, qoInside 
     gluQuadricDrawStyle Sphere1, qdsFill 
     gluQuadricNormals Sphere1, qnSmooth 
     gluQuadricTexture Sphere1, True 
     
     gluQuadricOrientation Sphere2, qoInside 
     gluQuadricDrawStyle Sphere2, qdsFill 
     gluQuadricNormals Sphere2, qnSmooth 
     gluQuadricTexture Sphere2, True 
 
     StartOpenGL frmDisplay.hDC 
     frmDisplay.Show 
     Call setuprc 
     
     bAppRunning = True 
    While bAppRunning = True 
          Call RenderScene 

         DoEvents 
     Wend 
     
   
    Unload frmDisplay 
    Set frmDisplay = Nothing 
     
End Sub 

___________________________________________________________________________________ 

Public Sub RenderScene() 
 
  glClear clrColorBufferBit + clrDepthBufferBit 
  DrawObjects 
  glFlush 
 
End Sub 

___________________________________________________________________________________ 
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Public Sub DrawObjects() 
 
     CSphere 
     AuSphere 

SwapBuffers frmDisplay.hDC 
        
End Sub 

___________________________________________________________________________________ 

Public Sub CSphere() 
 

Dim red As GLubyte 
Dim green As GLubyte 
Dim blue As GLubyte 
Dim h As Integer 
h = 1 
 
For i = 1 To NoAtomsC 
 
        glPushMatrix 
        glRotatef xRot - 90, 1, 0, 0 
        glRotatef yRot - 90, 0, 0, 1 
        glTranslatef AtomPosC(i).X, AtomPosC(i).Y, AtomPosC(i).Z 

 
        red = 0  
        green = 50 

                 blue = 255         
        glColor3ub red, green, blue 
        gluSphere Sphere2, dBallRadiusC, 50, 50 

                 glPopMatrix 
Next I 

 
End Sub 

___________________________________________________________________________________ 

Public Sub AuSphere() 
Dim red As GLubyte 
Dim green As GLubyte 
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Dim blue As GLubyte 
 
    For i = 1 To NoAtomsAu '+ NoAtomsAu2 'NoAtomsAu * 2 
          glPushMatrix 

glRotatef xRot - 90, 1, 0, 0 
          glRotatef yRot - 90, 0, 0, 1 

glTranslatef AtomPosAu(i).X, AtomPosAu(i).Y, AtomPosAu(i).Z   
red = 0  

          green = 200 
blue = 0 

         glColor3ub red, green, blue 
          gluSphere Sphere1, dBallRadiusAu, 50, 50 
          glPopMatrix 
    Next i 
End Sub 

___________________________________________________________________________________ 

Public Sub SetUpLighting() 
   
     glClearColor 0, 0, 0, 0 
     glClearDepth 1 
     glEnable glcDepthTest 
     glDepthFunc cfLEqual 
 
     glMaterialfv faceFront, mprAmbient, 1# 
     glMaterialfv faceFront, mprDiffuse, 1.5 
     glMaterialfv faceFront, mprSpecular, 0.5 
     glMaterialfv faceFront, mprShininess, 20 
     glLightModelfv lmAmbient, 5 
     glEnable glcLighting      'gives an outside ring/darker colour 
        glEnable glcLight0 'gives lighter colour on the inside 
     glColorMaterial faceFront, cmmAmbientAndDiffuse 
     glEnable glcColorMaterial 
     glShadeModel smSmooth 
 
End Sub 

___________________________________________________________________________________ 
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F.3  pIsland 
 
Option Explicit 
Dim counts As Integer 
Dim Island_Count As Integer 
Dim Tot_Dens As Double 
Dim Total_Sites As Double 
Dim Total_Atoms As Double 
 

___________________________________________________________________________________ 

Private Sub Command1_Click() 
  On Error GoTo SaveError: 
     
    CMD1.Action = 1 
    Dim info As Integer 
    Dim Element As String 
     
    Load_Crystal CMD1.filename 
     
       
    Plot_XY Pic, 4.08, 1 
    
     
SaveError: 
    Exit Sub 
    Resume 
End Sub 

___________________________________________________________________________________ 

Private Sub Command2_Click() 
Dim Island_Sites(10) As Double 
Dim Avg_Sites As Double 
Dim Island_Atoms(10) As Double 
Dim Avg_Size As Double 
Dim Avg_Density As Double 
Dim Sites As Double 
Dim Atoms As Double 
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If Island_Count = 0 Then 
    ebAvgDensity = " " 
    ebAvgSize = " " 
End If 
 
Island_Count = Island_Count + 1 
Island_Sites(Island_Count) = No_Sites_Size(CDbl(Text1.Text), CDbl(Text2.Text), 
CDbl(Text3.Text), CDbl(Text4.Text)) 
ebNoSites = Island_Sites(Island_Count) 
Island_Atoms(Island_Count) = No_Atoms_Size(CDbl(Text1.Text), 
CDbl(Text2.Text), CDbl(Text3.Text), CDbl(Text4.Text)) 
ebNoAtoms = Island_Atoms(Island_Count) 
Total_Sites = Total_Sites + Island_Sites(Island_Count) 
Total_Atoms = Total_Atoms + Island_Atoms(Island_Count) 
ebDensity = Island_Atoms(Island_Count) / Island_Sites(Island_Count) 
Tot_Dens = Tot_Dens + Island_Atoms(Island_Count) / 
Island_Sites(Island_Count) 
ebAvgDensity = Tot_Dens 
ebAvgSize = Total_Sites 
If Island_Count = 5 Then 
    Avg_Size = Total_Sites / 5 
    Avg_Density = Tot_Dens / 5 
    ebAvgDensity = Avg_Density 
    ebAvgSize = Avg_Size 
    Island_Count = 0 
End If 
 
 
End Sub 

___________________________________________________________________________________ 

Private Sub Pic_MouseDown(Button As Integer, Shift As Integer, X As Single, Y 
As Single) 
    Dim index As Integer 
    Dim nn As Integer 
    Dim d As Single 
    Dim a As Double 
    a = 4.08 
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    d = (a / Sqr(2)) / 2 
    index = 1 
 
    If index = 0 Then 
        nn = Find_atoom_Nr(CDbl(X), CDbl(Y), a) 
        If Button = 1 Then 
            Pic.Circle (Atoms(nn).X, Atoms(nn).Y), d, QBColor(12) 
        End If 
        If Button = 2 Then 
            Plot_XY Pic, 4.08, 1 
        End If 
     
    End If 
     
    If index = 1 Then 
    nn = Find_atoom_Nr(CDbl(X), CDbl(Y), a) 
    If Button = 1 Then 
        Lbl_muis.Caption = nn 
        Pic.Circle (Atoms(nn).X, Atoms(nn).Y), d, QBColor(12) 
    End If 
    If Button = 2 Then 
        Plot_XY Pic, 4.08, 1 
    End If 
     
    End If 
         
        counts = counts + 1 
        If counts = 1 Then 
            Text1.Text = CDbl(X) 'Atoms(nn).X 
            Text3.Text = CDbl(Y) 'Atoms(nn).X 
        End If 
        If counts = 2 Then 
            Text2.Text = CDbl(X) ' Atoms(nn).X 
        End If 
        If counts = 3 Then 
            Text4.Text = CDbl(Y) 'Atoms(nn).X 
        End If 
         
        If counts = 3 Then counts = 0 
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End Sub 

___________________________________________________________________________________ 

Private Sub Pic_MouseMove(Button As Integer, Shift As Integer, X As Single, Y 
As Single) 
    Static x_mouse As Single 
    Static y_mouse As Single 
    Static z_mouse As Single 
    Dim index  As Integer 
    index = 1 
    If index = 0 Then 
        x_mouse = X 
        y_mouse = Y 
    End If 
     
    If index = 1 Then 
        x_mouse = X 
        z_mouse = Y 
    End If 
     
    If index = 2 Then 
        y_mouse = X 
        z_mouse = Y 
    End If 
     
    Lbl_muis.Caption = "( " & Str(x_mouse) & "," & Str(y_mouse) & "," & 
Str(z_mouse) & " )" 
     
 
End Sub 

___________________________________________________________________________________ 

 
Option Explicit 
Type Atom 
    X As Double 
    Y As Double 
    Z  As Double 
End Type 
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Global Atoms(500001)  As Atom 
Dim No_Atoms As Double 
Dim Atom_Type As String 
Dim a As Double 

___________________________________________________________________________________ 

Sub Load_Crystal(filename As String) 
 
Dim i As Double 
Dim j As Integer 
Dim No As Double 
 
'Input #1, j 
Dim ab As Double 
 
 
Open filename For Input As #1 
 
Input #1, No_Atoms 
'ReDim Atoms(No_Atoms) 
Input #1, j 
For i = 1 To No_Atoms 
    No = No + 1 
    If No > No_Atoms - 1 Then Exit For 
    Input #1, i, Atoms(No).X, Atoms(No).Y, Atoms(No).Z 
Next i 
 
Close #1 
 
Load_Parameters 
 
End Sub 
Sub Load_Parameters() 
 
If Atom_Type = "Au" Then 
    a = 4.08 
End If 
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End Sub 

___________________________________________________________________________________ 

Public Sub Plot_XY(PF As Control, a As Double, Depth_Scale As Integer) 
     
    Dim d As Single 
    Dim ds As Single 
    Dim i As Double 
    Dim j As Integer 
    Dim k As Integer 
    Dim n As Integer 
     
    d = (a / Sqr(2)) / 2 
    ds = d 
     
    PF.Cls 
    n = 0 
     
    For i = 1 To No_Atoms 
                PF.Circle (Atoms(i).X, Atoms(i).Y), d, QBColor(10) 
    Next i 
     
End Sub 
 
Public Function No_Sites_Size(X1 As Double, X2 As Double, Y1 As Double, Y2 
As Double) 
 
Dim X_Size As Double 
Dim Y_Size As Double 
Dim No_Sites_X As Integer 
Dim No_Sites_Y As Integer 
Dim No_Sites As Integer 
 
X_Size = Abs(X2 - X1) 
Y_Size = Abs(Y2 - Y1) 
 
No_Sites_X = X_Size / 2.885 
No_Sites_Y = Y_Size / 2.885 



 

 

 

189 

 
No_Sites = No_Sites_X * No_Sites_Y 
 
No_Sites_Size = No_Sites 
 
End Function 

___________________________________________________________________________________ 

Public Function Find_atoom_Nr(X As Double, Y As Double, a As Double) 
     
    Dim dx As Double 
    Dim dy As Double 
    Dim dz As Double 
    Dim d As Single 
    Dim i As Double 
    Dim r As Double 
    d = (a / Sqr(2)) / 2 
     
    For i = 1 To No_Atoms 
         
     
    dx = Atoms(i).X - X 
    dy = Atoms(i).Y - Y 
     
     
    r = (dx ^ 2 + dy ^ 2) ^ 0.5 
         
        If r < d / 1.5 Then 
            Find_atoom_Nr = i 
            Exit For 
        End If 
         
    Next i 
     
    
End Function 
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______________________________________________________________________________________

Public Function No_Atoms_Size(X1 As Double, X2 As Double, Y1 As Double, Y2 

As Double) 

 
Dim i As Double 
Dim Atom_Count As Double 
 
For i = 1 To No_Atoms 
 
    If Atoms(i).X >= X1 And Atoms(i).X <= X2 And Atoms(i).Y <= Y1 And 
 Atoms(i).Y >= Y2 Then 
         Atom_Count = Atom_Count + 1 
    End If 
Next i 
 
No_Atoms_Size = Atom_Count 
 
End Function 

___________________________________________________________________________________ 
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