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Abstract: 

 

 

 

 

 

 

A central result of this thesis is the prediction of short period (transient) GW signatures, 

using General Relativity. This thesis focused on various LIGO and SKA Gravitational 

Wave (GW) sources such as collapsing supernovae, rapidly spinning magnetars, the 

coalescence of compact binary objects and the stochastic Gravitational Wave 

backgrounds produced by Super Massive Black holes. Upper limits for the GW 

amplitudes and frequencies were predicted by means of numerical and analytic methods. 

Finally, the prospects of detecting Gravitational Waves from the galactic center will be 

discussed. 
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Opsomming: 

 

 

 

'n Kern deel van die projek was die identifisering van Gravitasie Golf spektra wat deur 

galaksiese bronne geproduseer word, met die gebruik van Alegmene Relatiwiteit.  

Hierdie projek het gefokus op verskeie LIGO en SKA Gravitasie Golf bronne soos 

supernovas, magnetars, die samesmelting van kompakte binêre voorwerpe en die 

stogastiese Gravitasie Golf agtergronde wat deur massiewe gravitasie kolke veroorsaak 

word. Bo-grense vir die Gravitasie Golf amplitudes en frekwensies was bereken deur 

gebruik te maak van numeriese en analitiese metodes. Gevolglik word die vooruitsigte vir 

moontlike waarneming van Gravitasie Golwe uit die galaktiese middelpunt ook bespreek. 
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Chapter 1 

 

Introduction  

 

 

Gravitational waves (GWs) are ripples in spacetime that are directly predicted by 

Einstein’s geometric interpretation of gravity, ultimately opening a new window in 

astronomy.  Nature provides us with equations, such as Maxwell’s equations, that have 

radiative solutions; it is therefore no surprise that the Einstein’s equations also contain 

radiative solutions in the form of GWs.  These waves travel at the speed of light from the 

radiating source, carrying energy away from the system.  The non-dispersive nature of 

the GWs allows them to propagate unhindered through the universe.  The existence of 

GWs can contribute to physicists’ and astronomers’ understanding of the universe and the 

explanation of some of the most fundamental laws of physics. 

 

 

Gravitational waves are very small distortions of spacetime geometry which propagate 

through space as waves.  These distortions of spacetime are caused by massive bodies 

and travel through Universe with the speed of light.  Gravitational waves squeezes and 

stretches spacetime by very small quantities.  This squeezing and stretching (the strain) of 

spacetime itself is denoted by the symbol h .  This characteristic also mathematically 

produces the wave polarizations of the GW (see Fig. 1.1, Fig. 1.2 and Appendix A). 

These tiny changes can be detected by isolating the test masses from all other 

disturbances in the vicinity.  Massive objects that move curve, spacetime.  It takes time 

for the spacetime to react and ripples in spacetime occur since information propagates at 

the speed of light.  This is analogous to the ripples on a pond if you were to disturb the 

surface by throwing in a large object.   
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Fig. 1.1: The two polarizations of the propagating GW ( h and h ); the 

characteristic strain of this wave correspond to ~h L L (From Aharonian et al., 2013). 

 

 

Fig. 1.2: The time evolution of test masses.  The GW stretches and pulls the mass 

configuration (like a tidal force) corresponding to the unique polarizations ( h  
and h ) as 

the wave propagates in spacetime itself (From Aharonian et al., 2013).  

 

GW sources are divided up into several frequency classes: low frequency 

(
8 6~10 10  Hzf   ), intermediate frequency (

4 2~10 10  Hzf   ) and high frequency 

( ~1 3000 Hzf  ).  These various classes of GWs can be detected with the SKA (using 

Pulsar Timing Arrays and radio telescopes), eLISA (interferometers in space) and LIGO 

respectively.  GWs signatures produced by transient astrophysical sources are divided 

into several classes: burst signature (unique characteristic of the signature appearing 
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once), continuous signatures (repeatable signature), chirp signatures and stochastic 

backgrounds (signatures produced by population of gravitating astrophysical objects).   

The universe is possibly filled with small, very detailed background sounds (like deep 

hums) from the early universe or from massive objects orbiting one another.  The 

background therefore will consist of extremely old signals from the very early universe, 

as well as the slow interactions of massive binary black holes.  This source is known as a 

stochastic GW background and scales as a power law of the characteristic frequency 

associated with the gravitating population (e.g. the stochastic background produced by 

colliding Super Massive Black holes). The SKA (see Fig. 1.3) proposes a unique system 

that could observe a stochastic GW background that is produced by a population of 

SMBH binaries. This could be done by using pulsar timing arrays; arrays of pulsars 

where each earth-pulsar arm forms a leg of an interferometer, after which an incoming 

GW would influence the pulse train from the pulsar, producing residuals in the ultra-fine 

timing measurements of the pulsar. This source of GWs is considered as low amplitude 

waves ( ~ nHzf ).     

 

 

Fig. 1.3:  The Kat-7 radio telescope; the basis of the SKA project and the proposed Pulsar 

Timing Array GW detection model (From www.ska.ac.za). 

       

More exotic objects such as neutron stars (continous gravitational wave sources) and 

supernovae events (burst gravitational wave sources) are candidates for strong GW 

radiation. The Hulse-Taylor (Aharonian et al., 2013) binary neutron star system, named 

after the astronomers who discovered the system more than 20 years ago and was 

http://www.ska.ac.za/
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rewarded the Nobel Prize in 1993, provided the first indirect detection of the emission of 

GWs.  These authors showed that the measured orbital decay coincides with the 

theoretical predictions made by the theory of General Relativity to better then 1%.        

Fig. 1.4 illustrates an over-simplified binary orbital evolution (such as the Hulse-Taylor 

binary pulsar) in spacetime, producing ripples in the fabric of spacetime.  

 

These objects (neutron stars and binary mergers) generate a wide range of unique GWs.  

Gravitational waves produced by these sources are planned to be detected by LIGO using 

laser interferometery.  This process involves the observation of the change in the path 

travelled by a photon in one of these interferometer arms.  This small disturbance in the 

photon path length can be in principle caused by the stretching and squeezing of 

spacetime induced by the GW travelling into the plane of the detector.  LIGO will only 

be able to detect objects within the frequency band of 3-3000 Hz.   

 

Fig. 1.4: Visualization of ripples in spacetime caused by evolving binary systems 

(From Aharonian et al., 2013). 

To put the relative sizes of GWs from different astrophysical sources into context, we 

refer the reader to Fig. 1.5 that illustrates the upper limits for the GW strains produced by 

various binary systems.  The formula that was used to obtain the GW upper limits for 

various binary sources 
2

4
~

MG
h

dc a

 
 
 

 scales sensitively with the distance from the detector 

to source ( d ), the total mass of the companions ( M ) and the separation distance of 
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companions   ( a ).  This relation will be derived in detail in the Chapter 3 (see Eq. (3.37) 

in Section 3.6) and represents the amplitude of the GW wave produced by binary mergers 

as a function of orbital frequency, since the distance between the companions ( a ) can be 

related to the orbital frequency by using Kepler’s law  32 orbital
GMf

a
  . 

 

Fig. 1.5: GW upper strain 
2

4
~

MG
h

dc a

 
 
 

 limits for various binary sources.  Planets: 

Jupiter-Sun binary, BBH: binary stellar mass black hole ( 1 1 ~1.4m m M ), SMBH: 

binary super massive black hole ( 6

1 1 ~10m m M ), a GW generator containing two one 

ton masses orbiting one another with a frequency of 10 Hzf  , NSNS: the Hulse-Taylor 

pulsar and WDWD: binary white dwarf system (with mass
1 1

1~
2

m m M  and an 

orbital period of 30 minutes). 

 

Future space based detectors such as the Laser Interferometer Space Antenna (LISA) will 

be detecting GWs from extreme mass ratio inspirals (EMRIs).  This GW source 

essentially originates from a light object orbiting a massive object.  One example of this 

is a neutron star (or a stellar black hole) orbiting SgrA* (Aharonian et al., 2013). 
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The LIGO (Laser Interferometer Gravitational Wave Observatory, see Fig. 1.6) detectors 

are situated in Hanford and Livingston (USA).  LIGO has already performed several tests 

and upgrades to their system (see Fig. 1.7).  Fig. 1.7 illustrates the strain spectral 

amplitude ( fh ), defined as the square of the power per unit frequency ( hS ), plotted as a 

function of frequency between 3-3000 Hz (see Appendix B).  The collaboration 

initialized the AdvLIGO system, which will be more sensitive than the original LIGO 

design.  AdvLIGO has the capability of detecting GWs from merging neutron stars up to 

a distance of 30 Mpc (Matthew Pitkin et al., 2012), see Fig 1.8. 

It is the stretching and squeezing characteristic of the wave that inspired most of the 

engineering behind LIGO, which was one of the first facilities specifically designed to 

detect GWs from astrophysical events, see Fig. 1.6.  

 

 

 

Fig. 1.6: The LIGO instrument located in Hanford (USA), the unique design of the 

perpendicular interferometer arms rest is based on the two GW polarizations (From 

www.ligo.caltech.edu). 

 

 

 

 

http://www.ligo.caltech.edu/
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Fig. 1.7:  Goals and test runs of LIGO down to the Advanced LIGO sensitivity.  

The graph shows clear noise contributions due to shot noise (10 Hz 100 Hzf  ) and 

thermal noise ( 1000 Hz 3000 Hzf  ) (From www.ligo.caltech.edu).  The y-axis 

represents the strain spectral amplitude ( fh ).  Shot noise is due to the photon bouncing 

between the mirrors and the interferometer arms, several times, before exciting the 

interferometer. 

 

 

 

 

 

http://www.ligo.caltech.edu/
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Fig. 1.8:  The enlarged observational field of the newly proposed AdvLIGO 

interferometer (From www.ligo.caltech.edu). 

LIGO (and AdvLIGO) will allow the observer to detect high frequency GWs from 

astrophysical sources such as spinning stars and binary merging events. These detectors 

provide the possibility of verifying the existence of black holes through their interactions 

with one another and their GW signatures that they produce.  Furthermore, it will be able 

to detect GWs from other astrophysical objects such as magnetars and supernovae.  The 

GW spectra they produce could be linked to their electromagnetic counterparts (as part of 

a multi-messenger network) (Matthew Pitkin et al., 2012).  

The new SKA project will be the most sensitive and fastest surveying radio telescope 

available (Aharonian et al., 2013). The SKA will detect dipole electromagnetic radiation 

in the frequency range of between 70 MHz to 10 GHz with an angular resolution of less 

than 0.1 arcsecond.  The SKA is aiming to detect stochastic GW backgrounds (see the 

low frequency (
8 6~10 10  Hzf   ) part of the sensitivity curve in Fig. 1.8b) via the 

precise timing of pulsars. 

http://www.ligo.caltech.edu/
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(a) 

 

(b) 

 

 

 

 

 

 

 

Fig. 1.9 (a,b):  Benchmark sensitivity curves for several modern ground and space 

interferometers (from Matthew Pitkin et al., 2012). LIGO’s frequency band spans the 

range between 3-3000 Hz and is sensitive for GWs with typical strains ranging between

21 20~10 10h   .   
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Gravitational wave astronomy, being radically different from all electromagnetic wave 

observations, can create a new spectrum of observations to link with the SKA project.  

Phenomena under investigation (Aharonian et al., 2013) include: The in-spiral and 

coalescence of pairs of neutron stars, the merging of super massive binary black holes 

(Taylor et al., 1982) and glitches in neutron stars.  These glitches change the spinning 

star’s magnetic field, moment of inertia and spin configuration, modifying the dynamics 

and effectively changing the GW spectrum.   LIGO will be searching for these neutron 

star glitch signatures in the GW spectra. 

 

Einstein showed the existence of GWs in a 1916 paper (Einstein, 1915), but later 

corrected all the mathematical errors in his 1918 paper (Einstein, 1916).  We shall only 

mention the recent development in the field of GW astronomy.  Throughout the 1960s, 

Chandrasekhar developed his own slow-motion formalism, dealing with extended fluid 

bodies (as opposed to point masses) at one post-Newtonian order after another 

(Chandrasekhar, 1970).   Burke and Thorne derived the quadrupole formalism for the 

GW emission from binary systems (Burke and Thorne, 1970).  The field of GW 

astronomy consists of the numerical simulation (and analytical modelling) of waves 

produced by binary interactions and transient sources (together with the associated 

electromagnetic counterparts).  Huge efforts are being done in the field of the Post 

Newtonian theory to describe the orbits (and essentially the GW signature) of mergers to 

a very high accuracy (Blanchet, 1989).  Numerical relativists design and construct 

complicated codes to solve Einstein equations to produce GW signatures generated by 

stellar core collapse (Reiswigg, 2011) and binary mergers (Hughes, 2009).  A great deal 

of effort is going into understanding the transient GW sky.  This includes: GW 

population predictions, GW signature production and instrumental design (Anderson, 

2013).    

 

The purpose of this thesis is to understand the basic GW signatures from various sources 

that could be observed by LIGO and the SKA.  In this thesis we investigated numerical 

and analytical models for GW signatures produced by several astrophysical objects.  We 
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extended the GADGET (Springel, 2005) code to include a GW module (without GW 

back reaction).  With the SKA coming online in the near future, we investigated GW 

signatures from stochastic backgrounds and debated the idea of a multi-detector system 

consisting of LIGO, the SKA and high energy telescopes such as CHANDRA or FERMI.  

 

One of the most exciting hosts of exotic gravitating objects is the galactic centre (GC). It 

possibly contains many GW sources. Modern-day formation rate studies predict the 

existence of a few hundred millisecond pulsar (MSP)-Black hole (BH) binaries in the GC. 

It also predicts the possibility of MSPs orbiting the SMBH (SgrA*) in the GC. This 

provides a great opportunity to combine GW and radio astronomy to investigate some 

theories associated with black holes and star (or pulsar) formation rates.  The SKA will 

be a good tool for this endeavour since it can potentially reveal a collection of several 

thousand pulsars (Aharonian et al., 2013).  However, since most of the GW observations 

of the transient galactic sources fall into the LIGO (more recently the AvdLIGO) band, 

the SKA will play a major role in the field of GW astronomy through pulsar observations 

and Pulsar Timing Arrays (PTAs).  Supernovae events also support the possibility of 

multi-detector systems.  Supernovae core bounce events could be detected by LIGO (that 

serves as an early trigger), followed moments after by follow-up observations by other 

detectors.  This process will explore and exploit the physics of astrophysical objects in a 

unique way. 

 

Chapter 2 gives a mathematical review of the properties of GWs within the frameworks 

of General Relativity and the Post Newtonian Theory. Chapter 3 and Chapter 4 outline 

the application of the quadrupole formalism to various transient LIGO sources (both 

analytical and numerical modelling).  Chapter 5 outlines the prospects of detecting GWs 

with the new and upcoming SKA and the possibility of detecting GWs from the galactic 

center.  Lastly, Chapter 6 presents a discussion of the results presented in this study. 
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Chapter 2 

 

A mathematical review of the properties of GWs 

within the frameworks of General Relativity and 

the Post Newtonian Theory 

 

2.1 Introduction to the weak field limit and the quadrupole formalism 

 

 

Einstein showed that the existence of GWs is a natural consequence of GR.  He showed 

that when flat spacetime is perturbed slightly, the field equations lead to a wave equation 

for perturbation.  This wave equation has solutions that behave like “transverse” waves, 

and propagate non-dispersively through spacetime. 

 

It was mentioned in Chapter 1 that spacetime itself is very rigid.  In order to produce a 

weak field limit approximation and derive an equation to relate a gravitational wave to a 

possible source (typically being the stress energy tensor T 
) a very small perturbation 

 1h  can be introduced to the background metric ( g ).  The justification of the 

small perturbation comes from the fact that spacetime is so rigid.  Starting with a Lorentz 

(local inertial) coordinate system 

 

                                                             .g h                                                      (2.1) 

 

This perturbation leads to a wave equation (see Appendix A for detailed derivation)  
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4

16
,

G
h T

c
 


 

                                
(2.2) 

 

where represents the D’Alembertian operator.  The solution of Eq. (2.2) is a wave 

equation which is similar to the electromagnetic wave equation.  Electromagnetic 

radiation is produced whenever charge is accelerated through space and is dipolar in 

nature (only the leading contribution).  Gravitational radiation differs from this in the 

sense that its leading contribution is that of the quadrupole mass moment associated with 

the mass distribution.  Using the basic principles of the Green’s solution (analogous to 

electromagnetic radiation), a solution of the wave equation could be  

 

                                                 4

4

( , )4
( , ) .

T t x y yG
h t x d y

c x y





 



                             (2.3) 

 

where x  and y  represents the spatial coordinates of the field point and the source, 

respectively, and x y  represents the distance between the source and the field point.  If 

we assume that the source is moving relatively slowly  1v
c

 and that the internal 

field is weak, then the GWs emitted by the physical systems can be approximated; this is 

the origin of the quadrupole formalism.  The qaudrupole tensor is defined as 
 

 

                                                         00 3ij i jQ y y T d y           (2.4) 

 

The general expression for ( , )TT

ijh t d  was derived by solving the wave equation in the far 

field limit and implementing the transverse-traceless (TT) gauge on the solution 

( TT

ij ijh h ).  The traceless part of the gauge insures that that metric is trace-free and the 

transverse part of the gauge projects the tensor components into a plane that is orthogonal 

to the direction of propagation.   This operation produces the quadrupole GW signature 

approximation formula of a system evolving with time: 
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4

2 ˆTT
kl

ij ijkl

G
h Q

rc
                                                 (2.5) 

 

Here 
1

2

k l kl

ijkl i j ijP P P P   represents the projection tensor (orthogonal to the direction of 

wave propagation), with r  being the distance to the source and where 

ˆ 1
3

kl kl

klQ Q Q   represents the reduced quadrupole tensor.  Also we have that

ˆ ˆ
ij ij i jP x x  .  The reader is referred to Appendix A for detailed derivations of this main 

result which includes the use of the relevant gauges. 

 

The quadrupole mass moment is generated by decomposing the mass distribution (or 

source) into spherical harmonics (if we wish to work in spherical harmonics) 

 

                                                  ( , ) ...i i j

i ijF C C n C n n      .                                    (2.6) 

 

 

Fig. 2.1:  Visualization of the quadrupole mass distribution that allow physicists to 

approximate certain complex systems and extract GW from the accelerating mass 

distributions. 

 

Here i

iC n corresponds to the monopole moments and i j

ijC n n  to the quadrupole moments 

in the general multi-pole expansions of a mass distribution.   This formalism could be 

applied to several systems, analytical and numerical, to extract GW signatures from the 

evolving system.  In this thesis the strain spectra will be computed (analytical and 
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numerical) for SN core bounce, rigid deformed rotating bodies, and compact binaries, 

representing the possible LIGO GW sources (see Chapter 3). 

 

To illustrate the use of the quadrupole formalism, consider a binary system of masses 1M  

and 2M  respectively, with reduced mass 1 2 1 2/ ( )M M M M   . In the xy-plane, the 

binary system has a angular frequency of  , hence coordinates cosx r t  and 

siny r t , see Fig. 2.2.  

 

 

 

Fig. 2.2: The visualization of a binary system that emits GWs with a frequency of 

~ 2GW orbitalf f  (from Alan Weinstein CGWAS 2013).  CGWAS (Caltech Gravitational 

Wave Astrophysics School) was held in July 2013 at Caltech in Pasadena.  

Using the standard formula for the quadrupole tensor, soem of the components of 
ijQ

were calculated for this system, using Eq. (2.5). 

 

                                                       

11 2 2

22 2 2

33

21

21

1(cos )
3

1(sin )
3

1
3

sin 2
2

sin 2 .
2

Q r t

Q r t

Q

tQ

tQ

 

 





 

 

 





                                           (2.7) 

 

Here the projection operators (used to construct the projection tensor ijkl ) are 

11 22 1P P   and 33 0P  , if the binary rotates around the z-axis. One could derive a 
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general formula for the GW emitted by such a binary system; if the separation distance of 

the binary is a  and the source is located at a distance d , then Eq. (2.5) reduces to  

 

                                                  
2

4

4
( , ) .TT TT

ij ij

MG
h t d K

dc a


                          (2.8)  

 

Where the tensor TT

ijK contains the polarized oscillatory part (containing either cos2 t or 

sin 2 t ) and 2 4

0 4h MG adc plays the role as the amplitude of the wave.  The upper 

limit for 0h is the amplitude h  (mentioned in Chapter 1), where M represents the total 

mass, d  the distance to the source and a the binary separation.   

 

 

 

Fig. 2.3 illustrates a typical GW signature produced by merging binary neutron stars.  

Simulation methods used to produce the GW signature includes: Post Newtonian (PN) 

frameworks, numerical relativity (NR) and hybrid (HYB) techniques.  The hybrid method 

combines both Post Newtonian techniques and numerical relativity to produce a fast (and 

computationally cheap) algorithm to obtain GW signatures from merging binary neutron 

stars and merging black holes.  Noticeable from Fig. 2.3 is the correlation between the 

two polarizations of the merging binary GW signature, h  and h .  These two 

polarizations are out of phase, but still represent all the parts of the signature: the “chirp” 

signature (pre-merger) and the ring-down signature (post-merger).  The merger signature 

illustrated in Fig. 2.3 was produced by using numerical relativistic algorithms (Kiuchi, 

2012).  
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Fig. 2.3:  The typical “chirp” (the GW signal translates to an audible chirp sound) 

and rung-down GW spectrum of young compact binaries (from Kiuchi, 2012). 

 

The example above illustrates a GW template for equal-mass binary neutron star mergers. 

This implies that the GW signature produced by binary systems (such as the binary 

system PSR913+16 (King, 1986) which has orbital parameters: 1 2~ ~1.4m m M , 

12~10  cma , ~ 7 h 45minT  and orbital eccentricit ~ 0.617e ) will resemble the 

signature illustrated in Fig. 2.3.  The fundamental methodology depicted in this example 

will be followed throughout this thesis when predicting GW upper limits for various 

galactic sources.  

 

The GW signature produced by the coalescence of binary neutron stars (see Fig. 2.3) 

illustrates the main methods used to predict these chirp waveforms (using numerical, 

hybrid or Post Newtonian methods).  Thus, the following sections will outline 

fundamental methods used in Post Newtonian and Numerical Relativity theories to 

extract GWs from astrophysical systems.   
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2.2 The Post Newtonian approximation of Gravitation in flat space through the 

use of the in-house developed pipeline NEWSOR 

 

2.2.1  Introduction 

 

For the PN theory the source is regarded as a perfect fluid; and is characterized by its 

velocity ( v ), density (  ), pressure ( P ) and the normalized internal energy density of the 

system ( ).  The parameters of interest are  

 

                                                              , , , , .
P

v P 


 
 

 
                                               (2.9) 

 

This set of PN parameters completely characterizes the weak-field behaviour of the PN 

theory.  We use two metric potentials to ensure a unique solution in the PN framework  

 

 

                                                       
'

' '

'

( , )
( , ) ,

x t
U x t k dx

x x





                                          (2.10) 

 

which is the gravitational potential and  

 

 

                                                
' '

' '

'

( , ) ( , )
( , ) .

x t v x t
V x t k dx

x x


 




                                   (2.11) 

 

 

Where k and
'( , )v x t

represent the gravitational constant and the four velocity of the 

system respectively.  To keep the system Newtonian (slow moving and small internal 

energy) the following conditions must hold (Petry, 1979): 
2 ,

P
v U U


  and U . 
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Since 5internal energy
~ 10

mass

   the order of the parameter set becomes

2 , , , ~ (2)
P

v U O


 
 

 
. 

 

As in the theory of Relativity, orbits of particles are determined by calculating the 

Lagrangian (L) of particle.  The starting point of this theory is the Newtonian Lagrangian 

of a particle 

 

                                                           
0 0

~ .M

P P
L g

m m

                                        (2.12) 

 

Writing this in metric form  
0.5

0 00 0( 2 2 )j j k

M j jkL m g g v g v v dt      it becomes 

evident that ~ (2)L O , since the Newtonian metric has components  

 

                                      

2

2

2

2
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2
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U
c

U
c

g

U
c

U
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

 
 

 
 
 

  
 
 
 
 
 

                    (2.13) 

 

To construct a Post Newtonian Lagrangian  ~ (4)L O , we need to expand the 

components of the metric respectively: 

 

                                                                

00

0

~ (4)

~ (3)

~ (2).

j

jk

g O

g O

g O

                                                    (2.14) 
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This is analogous to Einstein’s theory. The description (or “accuracy”) of the metric 

determines whether the gravitational field of the source is present and determines the 

accuracy of particle orbits. 

 

The Post Newtonian (PN) expansion is useful for describing the motion of binary systems 

and the GW signatures for a complete range of binary compact objects.  One could use 

this theory to model the solar system properties, predict GW radiation from systems and 

accurately describe the properties of compact objects to reveal certain orbital dynamics 

which cannot be determined by Newtonian theories (such as the precession of Mercury 

around the Sun and the shrinking of an elliptical orbit due to GW emission).   

 

The methodology followed in this chapter we transformed a two particle system into a 

center mass problem (one particle orbiting around an equivalent central massive object). 

The objects have position vectors 1x  and 2x  , with the separation vector being 1 2x x x  .  

The Post Newtonian theory investigates the acceleration of this separation vector, x .  

This vector can be written in the form 2 ...N PN PNx x x x   .  Here Nx and PNx  are 

derived from the standard Newtonian potential and the Post Newtonian potential.  

Investigating all these effects could give some insight into all the corrections needed to 

model a realistic particle orbit.  One example of these Post Newtonian orbital corrections 

is the geodesic effect (Precession of orbits), see Fig. 2.4.  The geodesic effect occurs 

when the particle’s orbit is expanded to the order 2c . See Blanchet et al. (1989) for an 

overview of the Post Newtonian theory.  This will now be investigated by determining 

the PN orbital corrections. I will use the galactic center as an example (see Fig. 2.4).    

 

The main use of the PN theory in modern gravitation research is the prediction of higher 

accuracy orbits of binary systems (whether it is merging binary black holes or neutron 

stars).  This process  requires a PN expansion of the Hamiltonian 

 2 ...N PN PNH H H H   .  We also need to calculate the conserved quantities (such as 

the energy and the angular momentum of the system).   These can then be used to setup 

the equations governing the trajectory of the particle (or star) to order
2c
. See Fig. 2.4.  
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The clover-like orbit of the timelike particle (neutron star) orbiting a super-massive 

object (Sgr A*) in Fig. 2.4, was produced by solving the Euler-Lagrange equation  

 

                                                              0,
d L L

d x x 

 
 

 
                                           (2.15) 

 

where  represents an affine parameter along the world-line of the particle.  In the 

Newtonian limit we have that d dct dc   .  Here 2 2 2 2

tt rrL g t g g g r      in 

Schwarzschild spacetime.  The Schwarzschild metric describes the spacetime 

surrounding a spherical mass and have metric components  1tt
Mg

r
   , 2g r  , 

2 2sing r   and  
1

1rr
Mg

r



  .  Here M represents the Schwarzschild radius 

(
2

2 objectGm
M

c
 ) of the gravitating object.  We solved this set of equations analytically 

the assumptions that the motion is in the equatorial plane  2
   and using the fact 

that for timelike particles 1 ( 1)L L G   .   

 

                                          
2 2

4 3 2( ) ( ),
z z

m m
r r Mr r Mr g r

l l
                          (2.16) 

 

where m , zl  and M represents the mass of the smaller companion (such as a neutron star), 

the angular momentum of the smaller companion and the Schwarzschild radius of central 

super massive black hole (such as Sgr A*).  Solution of Eq. (2.16) was written in a 

numerical form for a binary containing SgrA* and a neutron star (Scharf, 2011) 

 

                                                      
1

( ) .
14 ( , 19.72,3.69)
3

r 
 


 

                             (2.17) 

 



30         (&JMgravity2014/03/28) 

 

Here we used Eq. (2.17) and assumed that 1.4m M , 1M   (in normalized units) and 

1zl  (in normalized units).  Also   represents the Weierstrass function whose values can 

be found in tables of mathematical functions.  Eq. (2.17) was evaluated numerically for 

{0,16 }  to produce the trajectory of a timelike particle (neutron star) around Sgr A* 

(in the center) represented by Fig. 2.4. 

 

 

 

 

 

 

Fig. 2.4:   The geodesic effect (precession) of the orbit of timelike particles (such as 

a neutron star) around a central massive object (such as Sgr A*) represented in 

normalized units (also known as extreme mass ratio inspirals).  The same trajectory is 

also followed when a stellar black hole orbits a super massive galactic black hole. 

 

This theory is also computationally cheap when compared to the full Numerical 

simulations, which occupy months of computational time (Reisswig et al, 2011).  A 

schematic of the procedure followed for the rest of this thesis is presented Fig. 2.5. 
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Fig. 2.5:   A flow diagram of the PN theory. 

 

The above schematic explains the methodology used in this section. Each step was 

symbolically tested with a MAPLE pipeline which we developed and which we will 

explain in following sections.  If the metric is needed to an order higher than the 

Newtonian approximation, then the main process involves the expansion of the metric in 

orders of
2c
.  These expansions will have a physical effect on the equations of motion 

(see Fig. 2.4).  

 

The other component that contributes to the total Lagragian is the gravitational field  GL .  

Similar to the mass energy-momentum tensor
M

T

 , there also exist a tensor for the 

gravitational field, 
G

T

 .  Calculating these tensors would contribute to the total stress 

tensor 
G M

T T T  

    .  Petry (1979) showed that 

 

                                  ; ; ; ;( ) .GL F G g g g g g Lg g g     

                          (2.18) 
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The total Lagrangian is therefore (Petry, 1979) 

 

 

                                                              0 .G ML L E L                                                (2.19) 

 

 

Here E and   are both scaling constants. Using the conservation condition of

0
G M

g T T
x



 

   
   

   
, we solved the set of unknowns , , ,  and ( )E L F G , which has a 

solution of 
0.5

4

4
8, 0.5,  and ( )

k
E L F G G

c


     (Petry, 1979).  Then GL becomes  

 

                                     0.5

; ; ; ;8 .GL G g g g g g g g g     

                           (2.20) 

 

The corresponding gravitational tensor is 

 

                          ; ; ; ;

1
( ) 0.5 .

G

GT F G g g g g Lg g g L
E

   
       


   
 

          (2.21) 

 

The mass energy momentum tensor obtained from GR is 
M dx dx
T g g

d d

 

  
 

 . The 

next step will be to construct the field equations for this total stress tensor, 
G M

T T T    .  

It is also important to keep track of the fundamental quantities such as: det( )g g  and

det( )  .  All of these components will be calculated in proceeding sections using a 

self-developed pipeline (it will also be consistently checked with the derivations done by 

Petry (1979, 1981 and 1992).  The purpose of the program NEWSOR is to verify these 

equations and develop a symbolic metric based PN calculation toolkit.  We wrote this 

program in MAPLE that uses its own tensor analysis package. 
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2.2.2  Calculating the metric, mass and gravity tensors with the use of NEWSOR 

 

I developed a program called NEWSOR that performs tensor calculations in the 

framework of the Post Newtonian framework.  The name NEWSOR was derived from a 

combination of the words “tensor” and “Newtonian”.  The code is a MAPLE based 

pipeline that can perform tensor calculations in symbolic form. This is a self-developed 

pipeline and only uses MAPLE’s ability to construct a tensor object.  The only restriction 

to the pipeline is the fact it requires the user to truncate the calculated terms to some 

order. The basic operation of the code is based on a one dimensional analysis in the 

indices of the tensor. The program calculates 0 0

0 0, , , , , , ,
M G M G M G

i i i i

i i j j
dtT T T T T T G

d
 
 
 

.  Then the 

user can derive expressions for 1 2

1 2,
M M

T T , and 3

3

M

T  etc.  The operation of the code depends 

on the metric to the chosen PN order. Using the fact that 00 ~ (4)g O , 0 ~ (3)jg O  and 

~ (2)jkg O ; the order of the parameters  
2 , , , ,  and 

P
v P U


 changes to (4)O  with 

elements ~ (2),v O
' '

' '

'

( , ) ( , )
( , ) ~ (1)

x t v x t
V x t k dx O

x x









 and ~ (1)S O  as calculated by 

Petry (1979).  The constant k represents the gravitational constant.   In Petry (1979, 1981 

and 1992) the PN metric was constructed 
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     (2.22) 

 

Having an inverse of  
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           (2.23) 

 

 

The following few pages contain output blocks from the program NEWSOR, generated 

by using the Post Newtonian metric which is approximated to the order
2c

.  These 

modules are used to construct the tensor components to model GW emission using this 

approach. 

 

Starting the program NEWSOR, the only input needed is the metric (Appendix C).  After 

the metric was defined, some of the mass and gravity tensor components were determined.  

From there, the formal total tensor, ,
G M

T T T     see Appendix (C.6) and Appendix 

(C.7).   

 

The tensors 
M

T and 
G

T  were also explicitly calculated by Petry (1979, 1981 and 1992). 

The velocity ( v ) in the expression should not be confused with the counter  (in brackets 

on the right)). 
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(2.24) 

 

 

The scalar form of the mass tensor was determined by using the tensor transformation 

law
M M

T g g T  

  
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                               (2.25) 

 

 

Extracting the results (the output blocks) produced by NEWSOR for the tensor 
G

T

 we 

have 
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     (2.26) 

 

After having calculated both parts of the total tensor (
G

T

 and 
M

T

 ) in this section, we then 

determined the energy loss due to GW radiation of a binary system (PSR913+16) within 

the PN framework.  This will be illustrated in the next section. 

 

 

2.2.3  Post Newtonian Gravitational Waves 

 

 

The first thing that needs to be calculated is the symmetric metric  
g

f g 



  
  
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(Petry, 1979, 1981 and 1992)
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                              (2.27) 
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Here det( )  .  The condition of a symmetric metric ( f 
) has its origin from the 

perturbation analysis ( g h    ) in GR which mathematically produces GWs.  

This perturbation is performed on a symmetric tensor ( g 
), thus f 

also needs to be 

symmetric.  Performing the perturbation  f      through a process that is 

analogous to the metric perturbation of flatspace in GR, a well-known wave propagation 

tensor was produced by Petry (1979, 1981 and 1992)  

 

                                                              
; ; .  

                                                  (2.28) 

 

The tensor 
  has identical characteristics to the perturbation metric ( h

) in the GR 

analysis, with the well-known wave solution  
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
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

 
  

   
                       (2.29) 

 

The connection between the tensors 
  and 

 was derived (Petry, 1992) by using the 

PN metric ( f 
) in the derivation of the PN equations for the gravitational field in flat 

space (  ; ;
G kT f f f kT    

    
   ). This connection was completed by 

introducing the substitution of 
 in the expanded form of  ; ;

f f f kT  

  
 , namely

 ; ; ; ;( ) 4f f kf T       

             .  Here k  is the gravitational constant.       

As in GR, one can derive an expression for the loss of energy due to GW emission from 

the system (also see Eq. 18 in Petry (1992)) 

 

                                                     
2

0| | (| | , ) .i i

GWE c x T x r t r d


                              (2.30) 
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Here   corresponds the unit solid angle and
| |

i
i x

r
x

  is the unit separation vector. 

 

The resultant energy loss rate (Petry, 1992) is  

 

                                               

2

5

4
3 .

15

ij ij ijJ J J
E

c t t t

    
   

   
                            (2.31) 

Where 
4

4 k

c


  and 'ij i jJ T dx

  . 

 

This is a familiar result as predicted in the framework of GR.  We also have that  

 

                                                          
2( ) .i j ij i j ijn n D Q n n J                                          (2.32) 

 

Then the equation for the energy loss due to GW radiation is    

 

                             

2
2 2 2

5 2 2 2
3 .

15 ( ) ( ) ( )

ij ij ii

GW

Q Q Q
E

c t ct t ct t ct

            
        

           
       (2.33) 

 

To convert the problem to an N-body system, the quadrupole tensor needs to be handled 

in an N-body framework (Petry, 1992) 

 

                          
 

2 2

2 2
2 .

( ) ( )

ij
i j i j i j i j

N N N N N N N N N N

N N

Q
m x x m v v v x x v

ct ct

 
   

 
               (2.34)              

 

For a binary system (such as two neutron stars) it is known that 2N  .  Using the 

standard two body framework (with 2 1x x   2 1v v   , 1 2 1 2/ ( )m m m m   and 

2 1m m m  ) , it follows that    
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                                                   
2

2
2 .

( )

ij
i j i j i jQ

ct
      


  


                 (2.35) 

 

Using the Newton’s law of Universal gravity 3
i ra v km

r


 
    

 

, the familiar GR 

result for binary systems was obtained (Petry, 1992)   

 

                                                 
3 2 2

2 2

5 4

8
12 | | 11 .

15
GW

k m
E v r

c r


                                 (2.36) 

 

For the GW energy radiated from a binary system, the same results will be obtained for 

the Hulse-Taylor pulsar when considering the post Newtonian Theory against the General 

Theory of Relativity. NEWSOR also proved to be a helpful tool for calculating the 

necessary PN elements and tensors. These were calculated in a manner similar to that of 

Petry (1979, 1981 and 1992).   

 

In this chapter only a very brief description was presented of the manner in which the 

properties of GWs are treated mathematically within the Einstein quadrupole and Post 

Newtonian (PN) formalisms.  In the next chapter a more quantitative discussion of the 

GW signatures of several classes of astrophysical sources will be presented. 
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Chapter 3 

 

LIGO Sources of Gravitational Waves within the 

quadrupole formalism and the Post Newtonian 

(PN) approximations 

 

In this chapter a brief discussion will be presented of the various classes of LIGO GW 

signatures presented using the quadrupole and Post Newtonian approximations.  As 

mentioned earlier the AdvLIGO detector will probably be sensitive to the high frequency 

end of the GW emission between 3-3000 Hz, with strain amplitudes between 

21 20~10 10h   .  

 

3.1 Introduction to LIGO sources 

 

GWs are emitted when non-spherical mass distributions are accelerated in spacetime such 

as collapsing or spinning stars). Chandrasekhar (1970a and 1970b) investigated GWs 

from mathematical spinning objects to investigate instabilities and unique signatures. He 

described analytically certain natural instabilities occurring in spinning massive stars. 

Each rigid spinning source is characterized by a spin-down time (the time during which 

gravitational waves and other forms of radiation are emitted until all the irregularities and 

deformations are radiated away). These spinning dynamics directly influence the GW 

signatures (just after birth of the astrophysical source) and influence the detectability of 

these sources by ground based interferometers such as LIGO.  The frequency detection 

window of AdvLIGO spans several hertz to kilohertz (see Chapter 1); this window 

includes rapidly spinning and core collapsing objects that have dynamical time scales of 

the order of milliseconds.   
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Astrophysical objects that could be observed with LIGO include: spinning neutron stars, 

supernovae core collapse events, rotating deformed magnetars, and coalescing binary 

neutron star systems or binary black hole systems.  All of these objects are classified as 

transient events (Anderson et al., 2013); see Fig 3.1 for examples of astrophysical objects 

that could emit LIGO detectable GWs.   

 

(a) 

 

(b) 

 

  

  

(c) 

  

(d) 

 

  

Fig 3.1:  (a) Simulation of the merging of two neutron stars (b) Supernovae events 

(Crab Nebula) as seen by Hubble and Chandra (X-ray)  (c) A merging binary black hole 

system (d) Young rotating neutron star objects with internal magnetic fields that deforms 

the star (Adapted from Fryer et al., 2011). 

 

Each of these events can produce GW signatures with distinguishable frequencies and 

amplitudes (see Table 3.1 for a summary of the GW signatures produced by several 

exotic binary mergers).  These compact objects are considered to be the prime transient 
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targets for ground based (terrestrial) interferometers and are contained in the high 

frequency (3-3000 Hz) part of Fig 3.2 that represents the sensitivity curve of the LIGO 

GW detector.   

 

Fig 3.2: Typical GW strains produced by the above mentioned LIGO sources (see 

the frequency window 3-3000 Hz); the graph does not include the Advanced LIGO 

sensitivities.  AdvLIGO will be in the testing phase in a few years (from Fryer et al., 

2011).  See Fig 1.9 (a,b) in Chapter 1 for additional supporting sensitivity diagrams. 

 

Table 3.1: GW signature summary of the galactic binary compact transient sources 

(Adapted from Anderson et al., 2013) 

Source Mass distribution ( M ) Peak GW emission 

times scales (t) 

GW amplitude( h ) 

NS-NS 1.4 M  days-ms  2110h   

NS-BH 1.4 M  days-ms  2110h   

BH-BH 610 M  days-ms  2110h   

SN core 

collapse 

1.6 M  ms  2110h   

Spinning 

objects 

1.4 M  ms  2110h   
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Fig. 3.2 differs from Fig. 1.7 (Chapter 1) is that the GW signature is characterized by GW 

amplitude ( A ) in Fig. 3.2 (on the y-axis), while it is characterized by amplitude (or 

power) spectral density (ASD) with units 
0.5(  Hz )h 

on the y-axis in Fig. 1.7, since it 

represents the amplitude (or the GW signal power) per frequency bin.    AdvLIGO could 

make GW detection from these galactic sources a routine occurrence.     

 

The majority of the numerical work done in the LIGO scientific collaboration (LSC) 

consists of the production of GW signature templates. Analytical studies are also being 

done in the field of GW source modeling and instrument optimization. There exist several 

numerical codes for solving problems in General Relativity or the N-Body framework. 

These codes include: GADGET, VULCAN2D, WHISKY, 1DGR and CACTUS (see 

Dimmelmeier et al. (2010) for a GR code overview).  These simulation platforms can 

predict in great detail the evolution of certain astrophysical events (such as Supernova 

evolution and compact binary merging events).  These codes also allow the users to 

generate the GW strain spectra (GW amplitude evolution spectra). See Fig. 3.3 and Fig. 

3.4 for examples of GW signatures produced by these codes.  Fig. 3.3 illustrates the GW 

signatures that are associated with supernovae (SN) core bounce (the characteristic burst 

GW signature).  Fig. 3.4 illustrates various code outputs of binary merging events 

(Hydrodynamical) and core bounce SN GW signatures.  Both GW signatures illustrated 

in Fig. 3.3 and Fig. 3.4(a), were produced by full General Relativistic codes 

(Dimmelmeier et al., 2002).  Fig. 3.3 illustrates a core collapse GW signature (with 

adiabatic index 4
3

   and density
14 310  g cm  ) and Fig. 3.4(a) illustrates core 

collapse GW signatures (where model 1 3 1A B G  is associated with an adiabatic index 

1.325  and model 1 3 2A B G with an adiabatic index 1.320  ).  The amplitude ( 2

20

EA ) 

of the GW signature illustrated in Fig. 3.3 and Fig. 3.4 is the quadrupole GW amplitude.    

 

Investigating these GW signatures prior to any modeling attempt proves useful when 

deciding what initial model parameters to use and what the simulation timescales will be 

in the simulation/model; this helps when searching for GW signatures in the data that will 

be predicted by the various models. 
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Fig. 3.3:  Supernovae core bounce models produced by Dimmelmeier et al. (2002), 

clearly showing the core collapsing (at ~ 93 mst ) and then producing unique GW 

signals. This is a full relativistic (GR) simulation.  The quantity 2

20

EA  represents the 

amplitude of the GW.  The dashed line represents the GW signature produced by 

Newtonian codes; it is evident that both the GR and the Newtonian GW signatures are 

different from one another, but contain a unique characteristic core bounce signature (at 

~ 93 mst ). 
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(a) 

      

 

 

 

 

 

 

 

 

 

(b) 

 

 

 

 

 

 

 

Fig. 3.4 (a,b):  (a) Core bounce simulation using the Vulcan2D code (from Dimmelmeier 

et al., 2002), the dashed line represents the Newtonian GW signature.  (b) the simulation 

of merging neutron stars forming either a black hole (at t=27.8 ms) or a Hyper Massive 

Neutron Star (HMNS) (at t = 21.7 ms) (from Hotokezaka, 2011). 

 

Both Fig. 3.3 and Fig. 3.4(a,b) reveal useful information (in the GW signatures) in the 

way that if one wishes to compute upper limits of GW signatures for SN core bounce 

events (or merging binary neutron stars), one could construct Newtonian models that 

could produce approximated GW signatures for various GW sources.  Full GR codes are 

needed to obtain high accuracy GW signatures of SN core bounce and merging events.  

Accordingly the following sections will focus on the process of obtaining GW signatures 

for various galactic sources using Newtonian methods. 
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The remainder of this chapter will focus on the different transient sources that produce 

oscillating and bursts of GWs. This will be done by considering the characteristic 

timescales on which GW radiation is emitted and how the frequency of the signal 

changes over time. Most of the analysis is based on the derivation of the transverse-

traceless (
ˆTT

ij ijh CQ ) part of the metric perturbation (specifically for collapsing cores 

and rotating objects), obtained using the quadrupole formalism (see Chapter 2 and 

Appendix A).  All our models will be accompanied by several algorithms that we 

developed to will perform all the necessary calculations.   

 

3.2 Supernovae core bounce 

 

 

If a star with mass ( 8 10 )M M  burns up all its fuel; the gravitational force over 

powers the nuclear force in the core and a dramatic collapse quickly follows (Anderson et 

al., 2013) resulting in a dramatic explosion whereby the outer envelope of the star is 

blown away into space, see Fig 3.5 for examples of SNs.  The final outcome of this 

process could be the formation of neutron stars or black holes (compact remnants). One 

of the GW producing mechanisms of supernovae is the core collapsing bounce phase. 

GWs will be emitted during the collapse due to the core’s changing quadrupole moment 

(see Table 3.2 for a summary of the SN core collapse process and the associated change 

of the quadrupole tensor at various time steps in the collapse process). The bounce phase 

occurs on a dynamical timescale of the order of milliseconds.  Initial rotational energy in 

the progenitor core could extend the collapse by a few milliseconds. The final GW 

signature is strongly influenced by the initial progenitor star’s mass distribution 

deformations in the structure of the core, the total bounce timescale and the initial 

rotational energy of the core (see Table 3.2 and Fig. 3.6).  
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(a) 

 

        (b) 

 

 

(c) 

 

 

 

        (d) 

 

Fig. 3.5: (a) Cas A (Chandra/Spitzer/HST) (b) Crab (Chandra/Spitzer/HST) (c) 

Tycho’s SN 1572 (Chandra and Spitzer) (d) Kepler’s SN 1604 (Chandra) (Christian Ott, 

CGWAS 2013). 
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Table 3.2:  Summary of the evolution of the quadrupole tensor associated with core 

collapse supernovae (from Anderson et al., 2013). 

 

 

Fig. 3.6:  Different progenitor stars collapsing and evolving into different compact 

remnants (from Fryer, 2011). 
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Fig. 3.6 illustrates possible outcomes of progenitor stars with different masses and 

metallicity; we are interested in the relation between the progenitor mass and the different 

compact objects that could be formed. Fig. 3.6 will prove helpful in later sections when 

we attempt to simulate core collapse SNs using different progenitor models, thus initial 

conditions for collapsing SN.   

 

After the core collapse phase neutrino driven convection and shock formation (or perhaps 

an alternative mechanism such as rotational or magneto-rotational instability) generates 

enough energy to blow away the star’s envelope in a beautiful display of power and 

brilliant colours (see Fig. 3.5).  This explosion results in the birth of a compact object that 

might emit GWs that are detectable by LIGO (see Fig. 1.7 in Chapter 1). In this 

subsection, we focus on the GW signature produced by the bounce phase of core collapse 

supernovae; we will also provide motivation as to why LIGO must be included in the 

global network of detector systems together with GRB, neutrino and optical detectors.  

LIGO will be focusing on the detection of GW from compact objects which are remnants 

of SN events.  See Fig. 3.7 for a mind map of what a multi-massagers network entails. 

Also, see Fig 3.8 for a detailed collapse of a 10M progenitor star; the collapse suggests 

that convection occurs at time 500 mst  (Fryer, 2011).  

 

 

 

Fig. 3.7:  LIGOs place in the global detector network system. Core bounce acts as 

the “unseen” trigger that should be detectable by GW ground based interferometers.  This 

should be followed by neutrino and electromagnetic observations.  LIGO could trigger 

the SKA to perform follow up radio observations and source localization. 
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Fig. 3.8:  (Top left) Induced core collapsed at 310 mst  , (Bottom right) at 

~ 500 mst convection starts the explosion that will fatally blow away the core’s envelope 

(from Fryer, 2011).  From the point of view of GW astronomy, both the core bounce 

phase and the convection phase are expected to produce detectable GW signatures. 

 

To investigate the evolution of the density profile associated with the core of a collapsing 

star, we simulated (using a GR code called “1DGR”) the collapse of two different 

progenitor stars (one with mass of 15M and the other with mass of 75M ) to 

investigate the possibility of forming either neutron stars or black holes as compact SN 

remnants.  The results of this simulation are illustrated in Fig. 3.9 and Fig. 3.10. 
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Fig 3.9:  A General Relativistic core collapse density profile of a 15M M  star 

produced with the 1DGR code (used during CGWAS 2013).  According to this code, a 

stable compact remnant is formed.  

 

Both density profiles illustrated in Fig. 3.9 and Fig. 3.10 have unique core bounce 

signatures at 0.1 st  . This prominent signature in the density evolution of the collapsing 

core could produce well-defined GW signatures at the time of SN core bounce.  A stable 

remnant is formed in Fig. 3.9 since the density profile remains stable.  Fig. 3.10 illustrates 

the collapse of a core into a stellar (10 M ) black hole since the density profile increases 

to infinity after core bounce.    
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Fig. 3.10:  A General Relativistic core collapse density profile of a 75M M star 

produced with the 1DGR code (used during CGWAS 2013).  The collapse is followed by 

prompt black hole formation (represented by the increasing density profile, which 

increases to infinity as the singularity forms).  

 

Mechanisms for possible GW emission in core collapse systems include: neutrino 

mechanisms that cause instabilities, magnetorotational mechanisms that influence the 

dynamics of the collapsing rotating core (which amplifies the magnetic field) and the 

acoustic mechanisms that excite pulsations in the rotating core which could produce 

recognizable GW signatures (Anderson et al., 2013). The supernovae rate in a Milky-

Way-sized galaxy is ~ / (30 50) yearsSN  (Fryer, 2011), which proves exiting for future 

GW detectors. The mechanism that drives the core collapse GW emission is the rapidly 
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changing quadrupole moment (
ijQ ).  The changes are produced by the changing mass 

distribution (see Chapter 2). The end product of the collapse scales very sensitively to the 

initial conditions of the progenitor star; these conditions include: core mass, core rotation 

and the equation of state (EOS) of the star. 

 

There are several theoretical methods for deriving the amplitude of GWs produced by 

such galactic events.  These include: multipole expansion of the metric perturbation or 

the mass distribution and the classic 2-body explosion method (Alder, 1975).  This 

section implements the methods proposed by Thorne (1978), implemented by Muller 

(1991).  Which are based on the multipole expansions of the GW amplitude by Wagoner 

(1977).  Muller (1991) implemented these formulations in the form of hydro-dynamical 

simulations of supernovae. The basis for the Thorne (1978) approach is the transverse-

traceless part of the perturbation of the metric that characterizes the GW radiation 

completely, written in a compact form (Misner, Thorne and Wheeler (MTW), 1970) 

 

      1 ( , , ).TT

jk jkh r A t r                      (3.1) 

 

Here TT

jkh is the strain of the wave in the TT gauge, which is symmetric and time 

dependent.  Indices used here are , , , , {1,2,3}i j k l m .  The amplitude jkA has an angular 

dependence and is decoupled from this dependence by using spherical harmonics 2E

lmT  

and 2B

lmT .  These spherical harmonics represent the angular portion of a set of solutions 

to Laplace's equation.  Ideally the perturbation can be represented in the following way 

(see Chapter 2 Eq. (2.6) for the general multipole expansion) 

 

                           1 2 2 2 2( ) ( , ) ( , ) ( ) .TT E E B B

lm lm lm lm

l m

h r A t r T T A t r                  (3.2) 

 

The spherical harmonics allows the solution to be evaluated in spherical coordinates. The 

multipole amplitudes 2E

lmA and 2B

lmA were obtained by Wagoner (1977) and the first non-

http://en.wikipedia.org/wiki/Laplace%27s_equation
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zero terms that appear in the expansion are the quadrupole terms 2

20

EA  and 2

30

BA .  After 

constructing a sphere with radius r and Newtonian parameters   and v  representing the 

mass density distribution and the Eulerian velocity field, Muller (1991) constructed the 

following quantities 
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                    (3.3) 

 

 

The data needed for the calculation of these quantities were obtained directly through the 

hydro-dynamical simulations of the supernovae collapse event and represent quantities 

that are nothing other than the numerically defined quadrupole ( 2

20

EM ) and octopole 

moments ( 2

30

BM ) (other numerical quadrupole moments will be defined in Chapter 4). 

Muller (1991) showed that these quantities determine the amplitudes 2

20

EA  and 2

30

BA   
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d
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                               (3.4) 

 

The components of 
TTh are given by 

 

 

 2 2

2015 sin 8 .TT Eh A d                            (3.5) 

 

Here d  is the distance to the source and the tranverse traceless part of the strain has the 

symmetry of TT TTh h   . All that remains is to calculate the equations for the energy 
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carried away by the GWs. Knowing that the power radiated (see Appendix A) by GWs 

scales with the change in the Quadrupole moment (or the second derivative of the strain) 

 

                                                           ~ ,ij TT

GW TT ijE C h h         (3.6) 

 

Or by using the amplitudes 2

20

EA  and 2

30

BA    
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Transforming to the Fourier space (Muller, 1991), 

 

                                             
3

2 2
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.
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16

E BGW
lm lm

l m
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Here 2 2( ) ( )E E i t

lm lmA A t e dt   . 

 

To test Eqs. (3.4) - (3.8), we investigated a case study in which we engineerd the density 

function for such a core collapse was engineered (see Fig 3.11 (a,b)).  We used the 

density function  
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3
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                     (3.9) 

 

 

This resulted in the following density profiles, 
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(a) 

 

(b) 

 

Fig. 3.11 (a,b):   Basic engineered collapse: assume a density profile for a 

supernovae core collapse, and generate the GW amplitude associated with this event.  

Only the quadrupole amplitude was used for the calculation.  The signature consists of a 

prominent bounce and ringing phase. 

 

Fig. 3.11 shows that the bounce interval lasts for ~ 50 mst and the corresponding GW 

amplitude was ~1500 cmA . The power output is 
44 -1~10  erg sE  (which is 

9~10
% of 

the total rest-mass energy of a 1M star) and generates (at a distance of 2 kPc ), it 

generates  a strain of  (Muller, 1991) 
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                    (3.10) 

 

To predict an upper limit for the output of GW power from supernovae core bounce, we 

developed a signal extraction algorithm to retrieve the GW signature.  We used the data 

set obtained numerically by (Muller, 1991) using hydro-dynamical simulations of 

collapsing stars to test the algorithm.  See Model B in Table 3.3 (Muller, 1991).  This will 

be detectable with AdvLIGO for all frequencies less than 1000 Hz. 

 

Table 3.3:  Stellar models for supernovae and the GW amplitude produced by each 

collapse (from Muller, 1991).  We used this table to decide what initial conditions to use 

to model SN core collapse. 

 

 

 

 

We used the data from Muller’s Model B (1991) because its initial conditions that are 

closest to those used in other simulations by Dimmelmeier et al. (2010).    
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Our aim was to produce the profile spectrum of 2

20

EM  for Model B in the above table.  

Only the leading order moment (the quadrupole moment, 2

20

EM ) was used. The octopole 

moment was not used since 2 2

20 30~16 7E BM M .  The data set for 2

20

EM spans several 

milliseconds and contains a prominent bounce phase. See Fig. 3.12.  This data set, 

produced by Muller (1991), was then used as input for our GW signal extraction model. 

 

 

 

Fig. 3.12:  The data set for 2

20

EM  of model B (from Muller, 1991). 

 

The above figure illustrates a typical core collapse event, lasting for ~ 50 mst .  The core 

bounce interval lasts for ~10 mst .  The hydro-dynamical simulations produce globally 

smooth data, but locally the data set is not smooth and this generates a problem since

2
2 2

20 202

E Ed
A M

dt
 .  Any noise present in the data will be amplified due to the second 

derivative operator on the data set.  See Fig. 3.13 for a representation of a very noisy 

dataset of 2

20

EA ).  Our algorithm was used to eliminate the simulation-induced noise and to 

extract the core bounce signal. 
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Fig. 3.13:  A very noisy data set of 
2

2

202

Ed
M

dt
.  The data represented by this graph 

was produced by our signal extraction algorithm.  The core bounce has a frequency of 10 

Hertz and all high frequency noise was eliminated.  An good alternative to our algorithm 

is that of LoWESS and LoESS. See http://www.mathworks.com.  

To extract the core bounce signal from the noisy data
2

2

202

Ed
M

dt
, the signal was Fourier 

transformed. The unwanted frequencies were removed and the transformed signal was 

inverse-Fourier transformed, to obtain a clear signal which contains an evident and clear 

core bounce signal, see Fig. 3.14; the prominent thick line represents the extracted signal 

and the bounce signature located at the time of t = 350 ms.                                                        

 

Fig. 3.14:     Fourier transformed signal and the extracted core bounce signal 

produced by our GW signature extraction algorithm. 

http://www.mathworks.com/
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The extracted signal consists of the prominent core bounce and a ring-down following the 

bounce. Model B (with core mass ~1.12coreM M ) produced a GW with amplitude of 

~ 400 cmA  and a strain of 
21~ 3.54 10h   (at a distance of 10 kPc ). This is detectable 

with AdvLIGO for frequencies of less than 1000 Hz.  This implies that SN in the galaxy 

anywhere between the sun and the galactic center will be detectable by AdvLIGO. 

 

GW observations of stellar collapse probe the mechanism behind core-collapse of 

supernovae. GWs provide one of the more valuable windows into the heart of the core-

collapse supernova mechanism.  Other than GWs, neutrinos could escape the core totally 

unhindered (non-dispersive) during collapse, bringing with them valuable information 

regarding the core dynamics and structure evolution. The core bounce GW signal will 

also modeled  numerically in Chapter 4.     

 

 

 

3.3 Spinning objects 

 

If a perfect sphere without any deformation spins, the reduced quadrupole moment does 

not change with time and no GWs are emitted. In the vast nursery of the universe, we 

expect non-spherical rotating objects to be born from supernovae explosions or reborn 

when accretion disks from the material of companions in a binary system. These rotating 

objects can be oblate or prolate, depending on the circumstances and properties of the 

objects (such as magnetic field strength and the existence of dynamical instabilities).  

Spinning or merging objects produce signals of longer duration that could be integrated 

(or observed) for longer time windows (recurring events) compared to acquisition time 

scales of burst events (once off event).  The GW signal produced by a spinning gravitar 

(objects emitting GWs) is an excellent candidate for signature matching (the process of 

finding GWs in set of noisy LIGO data).  

 

Neutron stars and magnetars are modeled numerically to include all the relevant macro 

and micro physics in order to obtain accurate GW signatures.  We will investigate 
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analytically GWs from these exotic objects, treating them as spinning objects of ellipsoid, 

to produce an upper limit for the possible observed GW amplitudes.  These models 

assume that there are no glitches in the rotational characteristics of the spinning object. 

 

Spinning objects that radiate undergo a spin-down over long time periods.  Accordingly 

the associated GW signatures must also change with time. The model described 

quantitatively in this sub-section explains the spin-down of pulsars and magnetars and the 

corresponding GW signatures. To solve this problem, a mathematical object (such as an 

ellipsoid) needs to be chosen that approximates the shape of the spinning objects, also ˆ
ijQ

needs to be evaluated for these objects. This formulation will approximate the energy that 

is radiated away by GWs.  To illustrate, we chose to use an ellipsoid for this task since an 

ellipsoid is a slightly deformed spheroid and is mathematically well-defined. Following 

(Chandrasekhar, 1970a and 1970b), if an ellipsoid with semi-axis 1 2,a a and 3a  is spinning 

around its principle axis, then the calculation involves the inertia tensor ( ijI ). The inertia 

tensor has a well-defined form.  It is symmetric with the form 
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          (3.11) 

 

With I  being the trace of ijI . The components of the tensor are unique and incorporates 

the mass M and the semi-axis ( a ) of the rotating object with uniform density 
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The equatorial deformation (or eccentricity) of the ellipse is  11 22 /e I I I  . The 

magnitude of the components of the inertia tensor for a 1M  object with average cross 

section 10 kma  , is 36 2

11 ~10  kg mI . 

 

If the object rotates with an angular velocity , and has quadrupole tensor ijQ and inertia 

tensor ijI (see Fig. 3.15 for the basic geometrical assumptions of the rotator model), then 

the power radiated due to gravitational wave emission is (Bonazzola et al., 1996. See       

Chapter 2) 

 

       
5

ˆ ˆ
.

45

ij

GW ij

G
E Q Q

c
        (3.13) 

 

The quantity 
ˆ

ijQ  (the third derivative of the reduced Quadrupole moment) was calculated 

for a spinning rod   3~ijQ I  and for a spinning ellipsoid  3~ijQ Ie . The total 

power radiated due to GW radiation is therefore 

                   

                                   
7 2 2 6 -1

5 5

32
10   erg s .

45 5

ij

GW ij

G G
E Q Q I e

c c
                          (3.14) 

 

 

Fig. 3.15:  Basic visual setup for spinning objects, the angle i  is the line of sight of 

the observer, and  the wobble angle. This is an oblate ellipsoid (Chandrasekhar, 1970a 

and 1970b). 
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We will show that a slightly deformed rotating neutron star will emit GWs that could be 

detected with modern day detectors such as LIGO (see Fig.1.7 in Chapter 1 for LIGO 

sensitivities).  Typically these spinning neutron stars have masses of 1.4M and spin-

periods of the order of ms, producing GW signatures with high frequencies (more than 1 

kHz) that could be detected by AdvLIGO within galactic distances.    There are several 

properties that influence the emission of GWs.  The ideal scenario is when the object 

rotates with a constant   and the shape does not change at all, but realistically this is far 

from the truth, since supernovae remnants contain magnetic fields and several torque 

mechanisms that reduce the rotational kinetic energy of the rotating object. Other effects 

such as dynamical instabilities also play a significant role (also known as the rotating bar-

modes).   

 

Magnetic fields, poloidal of toroidal, can deform the rotating object to an ellipsoidal star 

(such as magnetars that can undergo dramatic stresses and deformations). Following 

along the lines of Haskell (2008), if an 1n   polytropic equation of state object has a 

poloidal field, then the deformation of the object is 

 

                                 

2 24
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                    (3.15) 

 

If an 1n   polytrope object has a toroidal field, the deformation on the object is 
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    (3.16) 

 

The sign difference is to distinguish between the oblate and prolate object. Ideally, if the 

deformation is large enough then the neutron star could deform or grow small 

irregularities on the surface (this is expressed by saying that the neutron stars are growing 

mountains), Fig. 3.16 for an illustrates this “deformation” process of a sphere with a size 

of 10 km by an internal magnetic field of
1510  G . 
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Fig. 3.16:  Deforming of a spheroid into an ellipsoid due to strong internal magnetic 

fields. 

 

To illustrate the size of the deformation expected, consider pulsar PSR J2124-3358 

(Jones, 2002).  This is a millisecond pulsar with mass ~1.4M M  and an equatorial 

radius ~ 7.8 kmR . The upper limit for the current rotation rate of the pulsar is

~ 202 Hzf . Assuming that the pulsar has a purely toroidal field of 14~ 8 10  GtB  . Then 

the corresponding deformation is 7~10t
 . This deformation shrinks one of the semi-

axis and effectively grows a mountain (or an irregularity on the surface of the neutron 

star) with height of a fraction of a centimeter.  Using these values, the power emitted by 

GWs is roughly 43 -1~10  erg sGWE . 

 

The initial spin period and wobble angle of the rotating object also contributes to the 

magnitude of GWE  (see Fig. 3.17 for a representation of this relationship).  The wobble 

angle was incorporated into GWE using the method described by Stella (2005), resulting in 

a total power output of 
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Fig. 3.17:  Illustrating the influence of the wobble angle and the initial spin period of 

the rotating object on the magnitude of GWE  (the x-axis is in normalized units). 

 

 

Fig. 3.17 clearly illustrates the fact that faster spinning (more deformed) rotating objects 

looses energy faster due to GW radiation.  If the initial spin period and wobble angle 

are varied, then the main factors influencing the rotating object would also influence the 

ability of LIGO detectors to observe GWs (since these factors influence the spin-down 

and magnitude of the GWs).  To investigate this influence, we use the elegant relation 

derived by Stella (2005) that relates the critical strain ( h ) to the initial spin period, the 

components od the magnetic field and the distance from earth to the rotating object 
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(3.18) 

 

This relation could be illustrated using a mesh-plot of the parameter space, 

 

 

 

 

Fig. 3.18:  Red surface (least steep): strains for different initial conditions, Blue 

surface (most steep): the distance of the object to Earth was made smaller. 

 

Fig. 3.18 shows that the best candidates for LIGO observation are those with large 

magnetic fields, short spin periods, and which are closest to the detector, e.g. within the 

distance of 20 kPc. Candidates for observation by AvdLIGO could include pulsars, 
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supernovae, and magnetars up to the distance of the Hercules supercluster (see Fig. 1.8 in 

Chapter 1).  The only part remaining is classifying the torque mechanisms that act upon 

the relativistically rotating object.  The principle mechanisms that contribute to the spin-

down include: dipole electromagnetic radiation, magnetic winds and gravitational GW 

reaction.  We considered only the mechanisms of dipole radiation and gravitational wave 

emission first, two scenarios were investigated: a rotating object with and without dipole 

radiation, but with the GW torque mechanism present in both. 

 

When only GW torque mechanisms are assumed, we follow along the lines of 

Chandrasekhar (1969). He proposed that a rotating ellipsoid that is subjected to GW 

radiation would tend to deform to its original state, a spheroid, and start spinning faster 

during the process.  Chandrasekhar (1953, 1970a and 1970b) proposed that a Jacobi 

ellipsoid is governed by one geometrical formula and one virial equation 
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Here 12 3,A A  and 12B are Newtonian Potentials which are defined in general by 
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Here  represents permutations of the terms 2 1/2

, ,( )i j ka u .  This formalism illustrates the 

phenomena that for each unique equilibrium figure there exists a unique angular velocity 

associated with the object. The equations of interest for this problem are: 
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               (3.21) 

 

Chandrasekhar (1970a) proposed initial conditions of  2 0
4.3 kma  , 10 kma  and 

0.5

0 ~ 0.53( )G  .  The effect of GW radiation can be seen in Fig. 3.19 and Fig. 3.20. 

 

 

Fig. 3.19:  The evolution of the semi-axis  2a
 
to the original state of a spheroid with 

a radius of 10 km.  The unit of time,

 

3

525
~ 3.23 10

18 s

a a
T s

R c

 
  

 
, that governs the 

dynamics of the spinning ellipse can be found in Chandrasekhar (1970a) Eq. (14). 
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Fig. 3.20:  The evolution of the deformation factor e with time.   

 

 

Fig. 3.19 and 3.20 illustrate the effect of GW radiation on a rotating deformed sphere (it 

could be a deformed rotating neutron star); over time the deformation is radiated away 

and the object spins up, in an ideally sense the ellipsoid changes back to a spheroid and 

increases its rotational kinetic energy.  The integrals of ijkA and ijkB are part of a special 

family of integrals called the Legendre elliptical integrals (Carlson, 2002) 
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The integral is transformed into a well-known integral  
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Here ( , , )FR     is an elliptical function of the first kind and can be estimated from 

mathematical tables and ( , , )   could be any real number entry.  In general any integral 

of the form 
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has a solution of 
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Here    /ij i j k m i j k mU X X Y Y YY X X x y   ,  
0..5

i i iX a b x  and  
0..5

i i iY a b y  , with 

{ , , , }i j k m representing a set of four indices, namely{1,2,3,4} .  These solutions have 

interesting symmetric characteristics 
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Here ( , , , )     are any real number values. Considering the relation 2

122B G   , we 

developed a relationship (see Fig. 3.21 for a representation of this relation between the 
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Fig. 3.21:  Angular velocity as a function of distortion.  The emission of GWs slowly 

changes the ellipsoid to a spheroid.  The angular velocity is presented in normalized units 

with initial values that were proposed by Chandrasekhar (1970a). 

 

Fig. 3.21 illustrates the phenomena of the effect of GW radiation on a rotating ellipsoid; 

the end-result is a faster rotating spheroid (Eq. (2.27) was solved in MATLAB).  GW 

emission radiates away any deformation of the object over long enough time periods. 

 

The torque mechanism for EM dipole radiation is similar to that of GW spin-down 

mechanisms (Stella, 2008) 
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Where e represents the deformation of the star. If one considers the case of maximal GW 

emission (where  is a maximum), then it follows by inspection that .dipole GWs 

Returning to the main relation of this sub-section  7 2 2 6 -1

5

32
10  erg s
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GW

G
E I e

c

 
   

 
 it 

directly follows that 2 2 6~GWE I e  .  A realistic model for the GW signature from these 

spinning objects needs to be developed (including all the leading order spin-down 
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effects), to develop accurate templates for LIGO for use in searches for GWs from these 

objects.   This will be the task of the next section, to investigate a primitive magnetar 

spin-down model. 

 

 

 

Fig. 3.22: GW strain upper limits for several pulsars with respect to the sensitivity 

(black solid line) aimed at AdvLIGO (from Aasi et al., 2013).  The reader can refer to the 

paper of Aasi et al. (2013) for another overview on GWs from spinning objects.  The 

“stars” are the strain upper limits of the pulsars and the “triangles” are spin-down upper 

limits for various pulsars from the cataloque.  For background on this figure see Table 8 

and Fig. 1 in the paper of Aasi et al. (2013).  Readers who wish to calculate the GW 

upper limits for various known pulsars can use the ATNF pulsar catalog 

(http://www.atnf.csiro.au/people/pulsar/psrcat/). 

 

 

http://www.atnf.csiro.au/people/pulsar/psrcat/
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Why is it so important to have these astrophysical objects in the GW template banks of 

LIGO and other ground based interferometers? The answer to this question was presented 

in a recent paper by Aasi et al. (2013) where the authors calculated the GW upper limits 

for a large number of pulsars.  They also plot the GW contributions of these pulsars and 

the sensitivity lines of LIGO including AdvLIGO). See Fig. 3.22. 

 

 

 

 3.4  A primitive magnetar model and an application 

 

To introduce this sub-section on GWs from magnetars, we refer the reader to a recent 

paper that contains radio pulse broadening measurements for the recently discovered 

galactic center pulsar J1745-2900 (Spitler et al., 2013).  This pulsar is a magnetar that 

was discovered 3 arcseconds away from Sgr A* by using the Effelsberg 100-m Radio 

Telescope (together with independent detections by other radio telescopes). This 

magnetar has a magnetic field of 
14~10 GB and could be used measure the effect of the 

galactic interstellar plasma screen on emitted pulses or flares (the pulse smearing effect).   

 

 

Magnetars are neutron stars that acquire really large magnetic field strengths through a 

process of differential rotation and amplification of the initial magnetic field of the 

spinning object.  It is evident from the previous sections that these objects must have fast 

initial rotational spin periods or large magnetic fields to justify the observed spin-down 

rate. The magnetic fields range between 
14 1710  G 10  G   (Stella, 2005). The massive 

magnetic field produces a slight deformation of the object, which makes it unstable and 

oblate (Chandrasekhar, 1970a).   

 

 

Due to the enormous initial spin rates and magnetic fields, the object loses rotational 

energy very rapidly and the spin-down rate is unusually large.  There are several 

prominent mechanisms that torques the spin-down of the infant magnetar. These include: 
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dipole radiation due to the pole magnetic fields (see Fig. 3.23), magnetic winds and, less 

prominent, gravitational wave emission. Gravitational Waves contribute least to the total 

radiated energy from the spinning object, but Gravitational Wave (GW) signatures 

accompany every small kink, core collapse, gamma ray burst, transition to other classes 

of compact objects and final stellar end-points such as black hole formation. GW 

signatures can provide useful information about the object. 

 

 

 

Fig. 3.23:  Growing MHD (Magneto Hydro Dynamical) instability in magnetars that 

might cause the exotic magnetic field arrangements in the rapidly spinning magnetars 

(from Aharonian et al., 2013). 

 

To produce a primitive magnetar model, it is necessary to investigate all the mechanisms 

that act on the spinning object. This was done in the previous section for the GW 

radiation and the dipole radiation, both being very distinct, but dipole radiation dominates 

as the leading torque mechanism. The model is based on a few assumptions (see Fig. 3.24 

for the geometrical assumptions of the magnetar model): the spinning magnetar is an 

orthogonal rotator, the main torque mechanism is dipole electromagnetic radiation, any 

deformation in the object is due to the internal magnetic field configuration, any kinks 

(like star quakes or glitches) are ignored, and finally, the line of sight and the wobble 

angle are optimal (that is / 2   and 0).i   
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 Fig. 3.24:  Geometrical assumptions for the spinning magnetar, deformed by a 

magnetic field (from Bonnazzola, 1996). 

 

 

We applied this model to three different magnetars with identical spin periods, masses, 

and distances from the Earth, but different magnetic field configurations.  The parameters 

for these three cases were: 
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Assuming that the three magnetars all have spin periods of 2 msiP  , neutron star sizes 

of 10 kma  , masses of 1M and are at a distance of 10 kPc (Galactic distance) from  

Earth, then the GW signature, derived from the quadrupole formalism (Haskell, 2008), is 

given by 
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with I ,  d ,   and e  representing the moment of inertia of the neutron star, the distance 

to the source, the angular velocity and the eccentricity respectively. 

 

Ideally the object would spin without losing any energy and the spin rate would remain 

constant, but realistically seconds after birth some magnetars loses a large part of its 

energy reservoir (see Fig. 3.25). To construct the model, all torque mechanisms need to 

be included  
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                                                                                                                                      (3.31) 

 

This total spin-down formula includes dipole radiation (
dipole ), magnetic winds ( MW ) 

and GW radiation ( GW ) spin-down rates (MTW, 1970).  We derived the equations for 

the power emitted, incorporating losses through GWs, magnetic dipole radiation and 

magnetic winds 
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(3.32) 

 

where pole dB B , R , LCR  and openr represents the neutron star magnetic field at the polar 

cap, radius of the neutron star, radius of the light cylinder and the radius of the polar cap 

of the neutron star respectively.  The light cylinder radius ( LCR ) is the distance from the 

neutron star to where magnetic fields sweep around at the speed of light.   
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Fig. 3.25 illustrates the fact that EM dipole radiation dominates the spin-down in the 

early life of the Magnetar.  This effect will influence the spin-down profile of the 

Magnetar and the associated GW signature profile.  

 

 

Fig. 3.25:  Evolution of  , due to each spin-down mechanism for initial conditions 

of 16 15 4 36 2~10 G,  ~10 G, ~10 km, ~10 , ~10 kg mt poleB B R e I  and ~ 2 msiP .  The time 

( )t  is in seconds.  GWs contribute least to the spin-down over this time interval and 

become increasingly less dominant for spun-down pulsars.  

 

I used MATLAB to evolve the dynamical system consisting of h


, total  and t . This 

algorithm enabled us to calculate the individual signature formations of the produced 

GWs from such spinning objects. The model was applied to magnetars of different 

magnetic configurations.  Fig. 3.26 shows the signatures produced by the algorithm for 

different magnetars).  GW signatures displayed in Fig. 3.26 and Fig. 3.27 were produced 

by modeling rapidly spinning magnetars (Stella, 2005) with initial periods of 2 msiP 

(this is the period associated with young magnetars shortly after birth), but with different 

magnetic fields and eccentricities. 
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(a) 

 

(b) 

 

(c) 

 

Fig. 3.26:  Evolution of the GW waveform for 15 14 6( ~10 , ~10 , ~10 )t pa B G B G e  ,

16 15 4( ~10 , ~10 , ~10 )t pb B G B G e   and 17 16( ~10 , ~10 , ~ 0.01)t pc B G B G e . 
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Fig. 3.26 illustrates the spin-down evolution of magnetars with time; these figures show 

that the magnetars are most active (from the view point of their GW signature evolution) 

for a short time after birth.   AdvLIGO could detect the GWs produced by these 

magnetars within galactic distances, since just after birth they produce GWs with 

frequencies of several kHz and strains of
23~10h 

(see Fig. 1.7 in Chapter 1). 

 

We also applied this model to a known magnetar, SGR 1806-20 (see Fig. 3.27). It was 

discovered in 1979 and has been identified as a soft gamma repeater. SGR 1806-20 is 

located about 14.5 kPc (50,000 light-years) from Earth on the far side of our Milky Way 

galaxy in the constellation of Sagittarius. It has a diameter of no more than 20 kilometers 

and rotates about its axis every 7.5 seconds (Aharonian et al., 2013).  This specific 

magnetar application is different from those in Fig. 3.26, in that the magnetar (SGR 

1806-20) possesses more realistic parameters that could set upper limits for LIGO 

magnetar GW detections.   

 

 

Fig. 3.27:  The evolution of the GW waveform of SGR 1806-20 with parameters of

2 ms,  12 km,  M=1.4iP a M   and 14.5 kPcd  . 

 

Fig. 3.27 illustrates typical GW signatures for realistic magnetars at a distance of a few 

kPc (galactic magnetars).  Typical spin-down time scales for a, b, and c (see Fig. 3.26) 

spinning down to a frequency of 10 Hz are: 0.85 years, 3 days and 0.77 hours.  The 

model represents realistic spin-down time scales (Stella, 2005).  The initial frequency, 
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size, and deformation influence the evolution of the dynamic system and the spin-down 

rates.  AdvLIGO could readily detect these GWs with frequencies of several kHz and 

strains of
23~10h 

(see Fig. 1.7 in Chapter 1). 

 

 

 

 

3.5  Binary neutron star mergers  

 

This upper limit model was modified for a further application to binary neutron star 

mergers. Hotokezaka (2011) showed using relativistic simulations of the merging objects, 

how the merger occurs and investigated its evolution after, either collapsing into a black 

hole or the formation of Hyper Massive Neutron Stars (HMNS).  These merging events 

are the most important sources of GWs and hold secrets to unlocking the questions of 

how the equation of state (EoS) of exotic objects influences the evolution of the star. See 

Table 3.4 and Fig. 3.28 for simulations by Hotokezaka (2011) of several different 

mergers.  We used data presented in Hotokezaka (2011) to decide what initial conditions 

needed in our modified model for mergers.  

 

Table 3.4:  Different EoSs producing mergers with different masses and sizes 

(Adapted from Hotokezaka, 2011). 

 

EOS Mass ( M ) R (km) 

APR4 2.213 11.428 

Sly 2.047 11.736 

H3 1.788 13.840 

H4 2.032 13.759 

 

Here APR4, Sly and H3 are EoSs derived by a variational method applied to a core 

consisting of neutrons and protons, an effective potential applied to the same type of core 

as APR4, and a relativistic mean-field method applied to a core consisting of neutrons, 
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protons and hyperons.  The EoS H4 is identical to that of H3, but with a different 

nucleon-meson coupling coefficient (Hotokezaka, 2011).  These different EOSs produce 

HMNS with different sizes.   

 

 

Fig. 3.28: The evolution of several mergers with different EOSs resulting in different 

scenarios (HMNS or BH formation) (from Hotokezaka, 2011)  

 

The final cataclysmic moments of binary neutron star mergers last for about ~100 mst .  

Hyper massive neutron star (HMNS) formation last only several miliseconds. In these 

events the merging soup of particles is subjected to a plethora of forces and rotation. 

Energy is emitted away quickly, making these objects prime candidates for Gamma Ray 

Bursts (GRB) and Short Gamma Ray Bursts (SGRB). Important to this thesis are the 

accompanying GWs.  
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To modify our algorithm for this application, the torque mechanisms must be included 

that deals with the changing structure of the rotating object resulting from mass shedding, 

GW energy radiation and EM dipole radiation. The point of departure is the spin-down 

total  (Shibata, 2002) 
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                                                                                                                                      (3.33)                                                                                                                   

 

For this scenario, deformation plays a significant role. The model was constructed 

together with the Maclauren Spheroid sequence 2 2 2

1 11 11 3 33 13( 2 2 ; 2 )A I I A I e B       

which states that for every object with unique rotation    there exists a corresponding 

deformation factor e  (with 1 3,A A and 13B  being the Newtonian ellipsoidal potentials). As 

in the previous sub-section of spinning objects, this application produces a new modified 

dynamical system that needs to be solved  
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                            (3.34)                 

 

We have used several EOSs (APR4, Sly, H3 and H4 in Hotokezaka, 2011) to investigate 

their influence on the GW signature of merger. These objects were assigned an initial 

deformation of ~ 0.8e and placed a distance of 100 MPc from Earth. The new model was 

solved, using a modified algorithm, to predict the first 10 ms of such an event.  See Fig. 
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3.29 and Fig. 3.30 for a representation of the GW signature produced by these different 

mergers. 

 

 

 

Fig. 3.29:    GW signature of HMNS during binary neutron star merging. The EOS 

APR4, which is a variational method with neutron-proton composition, emits the 

maximum GW signal.  The colour legends can be found in Fig. 3.30. 

 

 

Fig. 3.30:    The time evolution of the semi-axis and the deformation factor for the first 

10 ms for several HMNS evolutions, the Maclauren sequence tends to a spheroid             

( 0e ) over time. 
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The EoS plays a major role in the maximum strain produced by such an event, it allows 

the existence of unique objects (HMNS) and objects with unique size, rotation and life 

cycles, also showed in Hotokezaka (2011).  There exist distinct GW signatures for each 

EOS, and the evolution of the instability evolve uniquely. For this event the EOS APR4 

produced the most prominent strain which can be observed by the LIGO or AdvLIGO 

detectors (in the upper limit case).  Our algorithm dynamically evolves the geometrical 

form of the merging objects, through the process of calculating the Maclauren sequence 

associated with these objects (see Eq. 3.34). 

 

Fig. 3.29 and Fig. 3.30 show the upper limits for the GW signatures produced by our 

algorithm, for several mergers that evolve in the first few milliseconds after the merging 

event.  Different EoSs were used to simulate merger objects of different sizes (see Table 

3.4).  Read et al., (2013) studied the influence of the EOS on the tidal fields produced by 

each merging companion in the last few orbits before merging. The tidal field warps the 

spacetime and produces GWs.  Supernovae core bounce events, magnetars and binary 

neutron star mergers are all possible sources of GWs, depending on their initial spin 

periods, EOS, magnetic fields, mass and structural deformations. Due to the torque 

mechanisms that are present, the maximum GW activity windows of these objects occur 

only in the earliest stages of the evolution. Due to the fast energy deposition rates of the 

above investigated remnants, GRB events are associated with merging neutron stars and 

other remnants, and these events could be observed by modern large array radio-

telescopes such as the SKA, in an attempt to unify GW detectors with radio and optical 

telescopes.  

 

3.6 Binary neutron stars (NSNS) 

 

Another application of the GW quadrupole formalism is to GWs produced by compact 

binary systems (see Chapter 1 and Chapter 2). These objects could be young or old 

binaries, located in the galaxy with elliptical or circular orbits. It is possible to formulate 

the change in the parameters of such systems due to GW radiation (Peters et al., 1963).   
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The change in the semi-axis  a  of a binary system (with total mass 1 1M M M  and 

eccentricity e ) is  
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Using Kepler’s Law (with chirp mass denoted by of 
3 2

5 5M  and 1 2M M

M
  ). Then, 

applying Kepler’s law, the rate of frequency is given by  
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Here f  represents the frequency of the GW, which is 2GW orbitalf f .  If the binary 

consists of two equal mass companions; the chirp mass reduces to ~ NSM  for binary 

neutron stars, and ~ BHM  for binary black holes.  The typical GW strains for these 

binary systems were calculated using the quadrupole formalism and Kepler’s law by 

Peters et al., (1963) and were found to be 
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                        (3.37) 

 

Here d , a  and   correspond respectively to the distance to the GW source, the 

separation distance and the Keplerian frequency, given by
3

GM

a
  .  

 

Using a Taylor (Taylor-T1) expansion for the GW reaction  6( )GWE F    (see for 

example Landau and Lifschitz., 1975), and performing orbital speed ( ) and phase ( ) 

modulation for a binary system with two equal neutron star like objects, a chirp GW 
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signal was investigated to illustrate the effectiveness of the Taylor approximations 

(Konstantin et al., 2006).  The Taylor T1 method is based on an adiabatic circular 

approximation of the orbit (assuming that the orbit shrinks only because of GW energy 

loss).  The phase modulation is
3

( )t
GM


  , the orbital velocity modulation is  

  
1

( ) dEt F
d

 




 
 
(the function  

7
3 10

3
5

32
( )

5
GW

G
F M f

c
   is the GW flux).  

These results reduce the problem to the solution of two differential equations for the 

functions of ( )t and ( )t .  We now have all the necessary elements to determine the GW 

signature h (defined in Eq. 3.37) of a typical binary neutron star system. See Fig. 3.31 

for an illustration of the merging process of two neutron stars. The GW signal represents 

a chirp signal that could be detected by AdvLIGO several days before the merging 

process occurs.  See the high frequency domain of Fig. 1.9(a,b).   

 

 

 

Fig. 3.31:  This graph represents the strain evolution of a merger of two equal mass 

neutron star moments before the actual merger. 
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Compact binary coalescence also enters the LIGO band  ~ kHzf when the two 

companions get relatively close to one another. Binary neutron star mergers produce a 

unique GW spectrum that consists of burst and ring-down large amplitude GW signals 

(see Chapter 1). It is for this reason that NSNSs are the most likely to be observed with 

LIGO.  These sources govern most of the templates of GW signatures produced by 

simulations in the field of Numerical relativity. The usefulness of these sources goes 

beyond the limit of ground based interferometers. The SKA will be able to observe the 

pulsars in these binary systems and also the indirect effect of GWs (such as the Hulse-

Taylor binary pulsar (Landau and Lifschitz., 1975)). The chirp mass  
3 2

5 5M   

strictly determines the merger time and the GW chirp waveform moments before merging. 

Approximation techniques could be used to determine the waveform for the regime 

where 1
v

c
.  Otherwise numerical recipes can be used to approximate the merger GW 

waveform (Landau and Lifschitz, 1975).  

 

In this Chapter we used analytical methods to construct upper limit models for the GW 

signatures emitted by several galactic sources that might be detected by AdvLIGO.  In 

Chapter 4, we will use numerical methods to predict approximate GW signatures for SN 

core bounce.  We will compare the results to that what we found analytically in Chapter 

3. In the next Chapter we will formulate the quadrupole tensor (see Chapter 2) in a 

numerical framework for a mass distribution containing a finite number of particles.  This 

will be done by using the N-body Newtonian code GADGET.    
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Chapter 4 

 

The quadrupole formalism in the numerical 

framework 

 

4.1 Gravitational Wave signatures from supernovae core bounce using Smooth 

Particle Hydrodynamics (SPH) 

 

In the previous sections the GWs produced by SN core bounce were investigated using an 

analytical method (multipole expansion of the mass distribution). In this chapter we 

produce core bounce GW signatures using a Newtonian numerical scheme (a scheme that 

ignores GR).  The Smooth Particle hydrodynamic Newtonian numerical code, GADGET, 

was used to approximate the typical GW amplitude and the wave frequency range of core 

bounce events. This chapter aims at introducing readers to the numerical side of GW 

simulations; retrieving and running parallel code, as well as visualizing results.  Full GR 

codes operate on the same principle.  We use Newtonian codes to retrieve first order GW 

amplitude approximations for SN core bounce, it must also be mentioned that Newtonian 

codes can be used to generate crude upper limits for the GW strain produced by several 

systems and that full GR codes must rather be used if the user wishes to produce GW 

signatures in greater detail. 

 

To retrieve the GADGET N-body code we refer the reader to the GADGET’s web-site 

(http://www.mpa-garching.mpg.de/gadget).  From this site the reader will find everything 

that is needed to get the code up and running (including examples).  The reader must also 

note the technical side of the installation process (included in the supporting documents).  

This chapter does not include the detailed use of GADGET (such as the syntax or inputs).       

 

http://www.mpa-garching.mpg.de/gadget
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To simulate a Newtonian sphere collapsing under gravity and bouncing due to resistant 

internal pressures, we use a formalism that is analogous to that of the quadrupole 

formalism. Smooth particle simulations are generally classified under N-Body numerical 

schemes, which are used for cosmological studies and the merging of binary compact 

objects.  The code essentially uses a collection (or group) of particles to represent a fluid 

or an object.  Unfortunately the code has shortcomings; in the field of subsonic 

turbulence the code fails to predict densities and GW signatures accurately (Springel, 

2005; Abel, 2011). However, the code is an excellent hydrodynamical solver and appears 

to be robust.  The code is also used to generate upper limits for the GW signatures from 

merging binary white dwarfs (detectable by LISA) or merging NSNS.  

 

Let  be collection of particles (or a Newtonian sphere). In the SPH formalism  contains 

i discrete particles with certain masses (see Fig. 4.1 for a representation of such collection 

of particles). SPH allows one to define a smoothing function  ijW that smoothes out any 

disturbance (“action”) radially as an inverse function of radius ( 1r ).  The function ijW  

represents a sampling kernel that selects and acts on a certain collection (or domain) of 

particles, also, this function is monotonically decreasing with relative distance and 

insures smooth derivatives per integration time step (it is this function the causes the code 

to fail in the field of subsonic shocks)  (Springel, 2005). 

 

 

 

 

Fig. 4.1:  The mass distribution  contains i discrete particles with certain masses. 

Typically the distribution could contain n  pairs of neighbours ( , )n ni j .  
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The code allows the user to calculate some physical characteristics of the mass 

distribution such as the density of the system ( ( ) ij ijDens m W  ) and the equations of 

motion of each particle (this is used to obtain the pressure and density of the system ). 

The code is based on the principle that the user defines the geometry of the mass 

distribution and the EOS, using the simple polytropic relation P k  .  The code needs 

certain conditions as input: the total computational time, file output location, integration 

time step and the number of computer core nodes for the run. 

 

The main aim of this chapter is to modify the GADGET code to include the quadrupole 

formalism in the inner schematics of the code.  The GADGET code was constructed for 

parallel computing (which means that arrays/blocks of data are processed faster each 

consecutive time step). The modification discussed in this chapter is still a serial code 

structure (since this choice simplifies the coding procedure). No GW back reaction was 

implemented in the code due to the length and complexity of the code (Springel, 2005). 

Following the approach of Zhuge (1994), the SPH quadrupole tensor was constructed 
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              (4.1) 

 

Here , ,i i iv g   and iP represents the velocity, the gravitational potential, density and 

pressure experienced by each particle. These parameters are determined by the smoothing 

function ( ijW ) that selects a small neighbourhood around each particle i  and effectively 

determines the parameters { , , , }i i i iv g P  in this neighbourhood.  Once the code has 

calculated the components of the quadrupole tensor for each time step, the data is 

converted to a GW strain (Zhuge, 1994)   
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The wave has characteristic amplitude (Zhuge, 1994) 
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This formalism fits well inside the code, since all the required information exists for each 

time step in data array structures (accessible in one of the sub structures of the code).  For 

illustration purposes the code is presented in Appendix D (the code contains the 

implementation of the numeric quadrupole mass moment and GW generation). 

 

One of the main obstacles in of GADGET code is to provide initial mass structures, such 

as the core structure of the SN, approximated in this case with a Newtonian sphere (it is 

much harder to produce more than one structure on the grid and oddly shaped objects are 

difficult to create mathematically).  The initial mass structure code is presented in 

Appendix D. 

 

To investigate the GW signatures from core bounce, one needs to keep in mind that there 

exist fully relativistic codes that incorporate all the necessary micro and macro physics to 

produce a general relativistic core bounce GW signature. Numerical relativists invest 

enormous effort trying to solve problems like these (see Chapter 1 and Appendix A).  The 

GADGET code however is purely Newtonian and does not include physics such as 

neutrino emission and neutrino driven instabilities.  Newtonian codes produce quick and 

approximate methods for the generation of GW signatures, but over estimate the main 

GW signatures associated with, for example, SN core bounce (for reasons that will be 

mentioned later).  Nevertheless, it provides a vehicle to determine upper limits for GW 

signals produced in various classes of astrophysical events. I will now present a few 

examples will be presented for illustration purposes of the capabilities of the code.  
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To initialize and test the modified GW N-body code (GADGET) we performed two test 

simulations; a collapsing core of particles.  The second was of the collision of two very 

dense spheres of particles.  These test-runs were performed to investigate the 

effectiveness of the code and the modified GW GADGET part of code (see extracts of 

code in Appendix D).  Firstly, a non-rotating collapsing core of particles (with radius 

7~10 cmr , 14 -3~10 g cmcore  and 5 / 3  ) was used as a test simulation.  The 

visualization of the data produced by the test run was done by using SPLASH (Springel, 

2005).  See Fig. 4.2. 

 

 

 

 

                                

 

 

Fig. 4.2: A typical collapsing sphere, this event happens over several simulation 

time steps (the axis is in normalised units).  The core shrinks and bounces.  The colour-

bar included in each Figure represents a density scale in normalized units. Time steps are 

in free falling time given by 3
32ff

core

t
G




  . 
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Fig. 4.3:  Two dense objects crashing into one another. Each has 
7~10 cmr  and

14 -3~10 g cmcore , at a distance ~10 kPcd from earth.  The accompanying graph shows 

the log of the amplitude vs. time. The time steps are in units of free falling time

3
32ff

core

t
G




  (Muller, 1991).   

 

These two test GADGET simulations (see Fig. 4.2 and Fig. 4.3) confirm that one can 

construct Newtonian cores to simulate SN core collapse, and that one can also manipulate 

these objects to simulate different GW signatures.  Fig. 4.3 illustrates the different GW 

signatures produced by two very dense objects in collision, the GW burst and ringing 

signatures will be detected up to a distance of a megaparsec with AdvLIGO.  After 

testing the setup files and confirming that a core like object (see Fig.4.2 and Fig. 4.3) can 

be created using the GADGET code, we implemented a more realistic core structure. 

Muller (1991) investigated core bounce mechanisms using hydrodynamic simulations. He 

considered models with different masses, rotations, central densities and density profiles.  

We used Muller’s Model B (1991).  This model initializes a core arising from a 20M  
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progenitor star (having central density of 14 -3~10 g cmcore , 
8~10 cmr , 1.6coreM M

and relativistic adiabatic index of 4 / 3  ).  This is the same model that we investigated 

analytically in Section 3.2.   

 

The above initial conditions were implemented in GADGET, using the setup files 

described above, to simulate core collapse and bounce.  The simulation was repeated and 

the core was intentionally rotated (giving each particle angular velocity), see Fig. 4.4. 

Fig. 4.4:  GADGET simulation of model B. The dynamical time scale of the 

bounce is in milliseconds. The amplitude and the strain are plotted using a log scale, and 

the source (the core bounce event) occurs at a distance of ~10 kPcd  from Earth.   

 

The bump at time ~ 350 mst corresponds to the bounce phase of the collapse. No GW 

back reaction was implemented in this modified GADGET extension code. The bounce 

causes a ripple in spacetime with dynamical frequency in the kHz range.  The small cusps 

in the early stages of the collapse are due to a numerical imperfection (the code 

rearranges the particles slightly when the algorithm starts). 
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The collapse illustrated in Fig. 4.4 is a potential candidate as a source for AdvLIGO 

observed GWs due its favourable GW strains  and frequency  (see Fig. 1.6 in Chapter 1), 

since the characteristic frequency of the burst core bounce GW signature ( ~ kHzf ) and 

the characteristic strain (
21~10h 

) falls into the detection window of AdvLIGO (see Fig. 

1.8 in Chapter 1).  The results obtained by this numerical treatment of the core collapse 

also correspond to that found analytically in Section 3.2.  The modified code can only 

provide upper limits for the GW strain from such core collapse events since it is 

Newtonian in structure.  However comparing the predicted GW signatures with that 

predicted by relativistic codes, the main problem quickly becomes evident, see Fig. 4.5. 

 

 

 

Fig. 4.5:  Log scale plots of two different generations of SN core bounce codes 

(Newtonian codes and full relativistic codes). Both codes used the same core structure, 

containing 15 ms of the core bounce phase as predicted by both generations of codes 

(Dimmelmeier, 2002).  Dimmelmeier’s model 20 2 15S A O  is equivalent to Muller’s model 

B (Muller, 1991). 
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The Newtonian SN core bounce phase occurs later than the GR bounce.  The GR core 

bounce is typically followed by several bounces (ringing phase). GADGET contains no 

GW back reaction, neutrino emission or framework of nuclear density. Neutrino emission 

during SN collapse plays a role in producing instabilities after the core bounce. Moments 

after the bounce, a burst of neutrino flavours are released from the core. We only 

consider electron capture neutrinos in this chapter, which could typically cause 

convectional instabilities and neutrino driven shocks. 

 

It is known that escaping neutrinos generate a memory GW signature (this signature was 

first proposed by Thorne, 1980).  During neutrino emissions caused by electron capture, a 

vast amount of neutrinos are emitted from the proto neutron star like object (one of the 

earliest remnants of the SN collapse). Using the data produced by Thompson (2003) for 

the luminosities of the e - emission (for a 20M progenitor star over a time span of a few 

milliseconds), together with the neutrino memory waveform in Muller (1997) and 

Thompson (2003), we plotted the memory of the GW signature. This plot is  displayed in 

Fig.4.6 and Fig. 4.7. 

 

Neutrino emission is one of the post bounce processes that radiate away a large amount 

of energy in a short amount of time. If a neutrino is emitted with typical energy 

1 MeVE   (Zhuge, 1994), 
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                    (4.4) 

 

Here , ,r   and core  are the wavelength of the neutrinos, the emission time scale, 

neutrino radius (the shell that encapsulates the neutrino burst event, chosen to be

10 kmr   ) and the typical core density.  
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Fig. 4.6:  Electron-capture neutrino emission; the neutrinos follow a memory 

waveform described by 2
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signal is a low frequency signal ( ~100 Hzdynf ) compared with the bounce phase GW 

signal (Thompson, 2003). 
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Fig. 4.7:  After the core bounce phase, the GW memory signal from neutrinos 

strengthens and, at some stage, produces neutrino driven instabilities (convection in the 

core region) that strengthen the general GW signal in the higher frequency range, since 

convectional instabilities have a dynamical timescale of milliseconds (from Zhunge, 

1994).  

 

There exist many codes that implement full General Relativistic algorithms for SN 

collapse and neutrino emission from a proto neutron star like remnant. Neutrinos play a 

very important role in the characteristics of the GW signal after the bounce phase. The 

GADGET code is a robust Newtonian code that supports OpenMP (the capability of 

parallel computing) and is very user friendly.  This code was used to produce several 

upper limits for the possible observed GWs from SN core bounce. We refer the reader to 

references such as Reisswig et al. (2011) if he wishes to perform SN simulations that 

include more detailed physics (in the GR framework).  Modern day codes such as the 

Einstein Toolkit (Reisswig et al., 2011), contain all the relevant physics to produce GWs 

from core collapse SN.  These codes will be utilized in a more quantitative follow-up 

study.   

 

In the next Chapter, we will investigate the role of the SKA in the field of GW 

astronomy.  The SKA is planning the first detection of GWs using Pulsar Timing Arrays 

(PTAs) which will be sensitive to Stochastic GW backgrounds (see the low frequency 

window of Fig. 1.8b) produced by merging binary super massive black holes. In Chapter 

5 we will also be looking at the galactic center (GC) as a possible GW nursery. 
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Chapter 5 

 

Pulsar Timing Arrays (PTAs) and detecting 

Gravitational Waves from the galactic center 

 

In the preceding sections the GW signatures of waves emitted by several classes of 

astrophysical sources (or events) have been discussed.  In this Chapter we will discuss 

briefly the role the SKA is expected to play in the field of GW astronomy.  

 

5.1 SKA Pulser Timing Arrays  

 

Precision radio measurements of binary pulsar systems have provided us with an 

exquisitely accurate tool to test General Relativity.  Tracking pulses from the Hulse-

Taylor system (PSR913+16), to an accuracy of 15 microseconds for example, has yielded 

the first accurate determination of neutron star masses using relativistic timing effects. 

The measured decrease in orbital radius of binary pulsar systems is consistent with the 

energy loss predicted due to the emission of Gravitational Waves (GW) from the binary 

system (Pitkin, 2011; Peter, 1963). Other astrophysical phenomena such as, among others 

the recently much discussed, “kilonova” (CGWAS 2013, www.cgwas.org) can 

potentially be associated with binary neutron star merger events. Binary pulsar systems 

are the most likely sources for earth based gravitational wave detectors such as LIGO.  

See Fig. 5.1. 

 

Fig. 5.1 illustrates the detection window of LIGO when observing GWs from merging 

binaries.  These binaries remain in the AdvLIGO band for several days and could trigger 

radio follow-up or source localization by the SKA.  This characteristic detection window 

of LIGO supports the idea of a multi-messenger network, which will be discussed in a 

later section. 

 

http://www.cgwas.org/
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Fig. 5.1: Primitive inspiral modulation using Kepler’s law to illustrate the strain h  

on the GW frequency.  It is apparent that at some stage of the binary system inspiral the 

GW signal enters the LIGO band (3-3000 Hz).  Here M represents the Schwarzschild 

radius of the neutron star.  The merging event of two neutron stars is defined by a unique 

inspiral phase; as these neutron stars move closer to one another, the amplitude and the 

frequency of the GW increase.    

 

The SKA is expected to be the most sensitive radio telescope in the history of science, 

with faster surveys than the Arecibo and Parkes radio telescopes (Aharonian et al., 2013). 

The SKA is planning the challenge of the first GW detection; observing several ms 

pulsars (the Einstein clocks in the universe) in vast arrays over the sky. 
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Fig. 5.2: Artist’s impression of the concept of PTAs (from Aharonian et al., 2013). 

 

These arrays are known more formally as Pulsar Timing Arrays (PTAs). To introduce 

PTAs, we started with the argument: there exist a frequency emitter  ef  far away and 

some receiver  rf . Let  ef  emit continuous pulses with a certain frequency. These 

signals propagate through space, which may be filled with GW disturbances. These will 

have a direct effect on the transmitted signal, effectively dispersing the signal. One could 

insert and remove the disturbance periodically and generate a periodic noise. Ultimately 

the SKA and the proposed PTA project will detect stochastic GW backgrounds; a 

background GW signal that is produced by the superposition of several GWs signals into 

one background noise (Aharonian et al., 2013). 

 

Consider Earth and one pulsar form one leg of an interferometer, and let the pulsar emit 

sharply defined regular pulses towards to the Earth. If a GW passes between this pulsar 

and Earth the effective path length of the photon will be changed introducing a small 

perturbation (noise) in the timing data (Hobbs, 2012). We constructed an array of pulsars 

containing only two pulsars in the sky with unit directional vectors  1 2
ˆ ˆ,i jn n  (Hobbs, 

2012), then the time of arrival becomes (assuming that the GW propagate in the z -

direction) 
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t

TOA t D h n n dt                                         (5.1) 

 

The perturbation in the background metric is given by ijh
 
(this is the disturbance created 

by the GW and represents the small ripples in spacetime). This “disturbance” in the 

background metric was derived from basic GR concepts (Hobbs, 2010).  If the 

perturbation is of flat space ( ij ij ijg h  ), then the assumptions of null geodesics (for 

propagating photons
2 0ds  ) explains the extra travel time term due to the disturbance 

(to first order)  

 

                                                      
1 2

1
ˆ ˆ1 .

2

i j

ijdt dr n n h
 

  
 

                                              (5.2) 

 

Thus the time of arrival (TOA) will contain some GW induced noise. After introducing 

some geometrical constructions and reparameterizing the integral, with the angle between 

the directional vectors ( ˆ ˆ,i jn n ) given by the angle   (Hobbs, 2010), then 

 

                   
1 2

0

ˆ ˆ[( )(1 cos ) ] ( ).

D

i j

emitted ij emitted emitted emittedTOA t D h t t t n n d t t               (5.3) 

 

Here ,r ijh and ,e ijh  represent the GW induced perturbation at the Earth- and pulsar end of 

the timing array respectively, and D is light travel time from the pulsar to the detector 

(see Hobbs (2010) for an overview on PTAs).  This induces a frequency shift, 

 1 2
, ,

ˆ ˆ( )

2(1 cos )

i j

r ij e ij

n nt
h h



 
 


, and a timing noise, 

( )
( )

t
R t dt




  , in the pulsar 

timing data.  If one assumes a PTA containing n  pulsars then the main problem would be 

the correlation between the observed signals (how do we know that all of our pulsars in 

the array experienced the identical GW?).  Luckily there exists a correlation between the 

signals observed the Earth end of the array. This correlation could be constructed using 



103         (&JMgravity2014/03/28) 

 

two pulsars with directions
1 2

ˆ ˆ( , )i jn n . Of particular interest is the correlation function 

between these two pulsars (Hobbs, 2010) at the Earth-end of the interferometer arm 

 

                                       
1 2 21 2
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Here ( , )A     and k̂ represents the direction vector of the GW.  Also, 2 ˆd k represents 

the unit sphere of GW propagation direction k̂ , here both A

ije and A

abe are polarization 

and the indices { , , , }i j a b serving as integers.  The correlation could be seen if one 

calculates the correlation of 100 pairs of pulsars and N = 1000 random cycles of different 

k̂ directional GW vectors, assuming the fact the each GW directional wave could be 

decomposed into orthonormal vectors in the ̂  and ̂ direction, see Fig. 5.3. 

 

 

 

Fig. 5.3: The correlation function of 100 pairs of pulsars at the Earth end of the 

PTA. This correlation function (Hobbs, 2010) is described by the formula: 

1 2

1 cos 1 cos 1 cos 1
ˆ ˆ( , ) log

2 2 12 3
n n

  


   
   

 
 that represents the solid fitted line 

through the correlation points.  This figure was produced in MATLAB. 
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If the SKA were to observe a pulsar for 10 yrT   with sufficiently accurate timing, it 

would be possible to construct PTAs that can be used to detect low frequency GW 

sources of the order of ~ nHzf (Aharonian et al., 2013). The GW noise in timing data 

was investigated theoretically by using pulsar timing simulation packages such as 

TEMPO2. This package allows users to specify which GW background is present, 

whether it is due to a stochastic background or a single periodic source. The code 

operates using two input files: an ephemeris log file and a file containing the simulated 

pulsar timings for any number of pulsars (Hobbs, 2010). The ephemeris file contains 

information such as the pulsar name, right ascension, declination, first and second 

derivatives of the frequency, and the observed arrival times in modified Julian years. Any 

pulsar observation includes measurements of the Time of Arrivals (TOAs).  The TEMPO 

code converts the TOAs to time of emission by applying all the known transformations to 

the timing data file. These “corrections” include the Solar System barycentre, delays due 

to the interstellar medium, and the transformation to the pulsar frame of reference.  Then 

the time of emission can be compared to the pulsar model to produce timing residuals 

(Hobbs, 2010).  The concepts of PTAs were tested with the TEMPO code by retrieving 

an array of targeted SKA pulsar ephemeris files (J2124-33, J1807-08, J1900-30, 

J1038+00 and J0030+04). The TEMPO code uses these files to create a grid and simulate 

timing residuals for each pulsar (see Fig. 5.4 and the sample ephemeris file). 

 

The main aim with PTAs will be the detection of low frequency GW backgrounds due to 

merging Super Massive Black Holes (SMBH) in other galaxies.  The coalescence of these 

binary systems produces characteristic GW amplitudes of 14~10gA  . The strain spectrum 

of a GW background is generally a power law of the GW frequency (Hobbs, 2010), 

1~ g
c g

f
h A

yr





 
 
 

, and is produced by the slow orbiting patterns of binary SMBs. This 

GW background could induce a considerable noise in the timing residuals of a pulsar 

array, see Fig. 5.5. 
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Fig. 5.4:     Timing residuals for the pulsars that form part of an array of five SKA pulsars.  

There is no GW noise present. The residuals were produced for each pulsar by comparing 

the emission time of each pulsar to the standard pulsar model (Hobbs, 2010).  
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Fig. 5.5:      Timing residuals produced for an array of five SKA pulsars by using their 

known ephemeris files. A binary SMBH GW “noise” was chosen with 14~10gA  and 

2

3
    (Hobbs, 2010). 
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/////////////////////////*Sample ephemeris file*/////////////////////////////// 

PSRJ            J2124-3358 

RAJ             21:24:43.85350           4.000e-05 

DECJ            -33:58:44.668            1.000e-03 

DM              4.5956                   2.000e-04 

PEPOCH          53174.0 

F0              202.793897023854    1     9.000e-12 

F1              -8.468E-16          1     9.000e-19 

PMRA            -14.4                    8.000e-01 

PMDEC           -50                      2.000e+00 

START           52649 

FINISH          53485 

EPHEM           DE200 

RM              1.2                      1.000e-01 

PX              4                        2.000e+00 

EPHVER          5 

/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 

 

Fig. 5.4 and Fig. 5.5 were produced by using five standard SKA targeted pulsars, together 

with their ephemeris files.  These were provided by Hobbs (2008). We used one of the 

extensions of the Tempo2 code (called GWbkgrd) together with all the necessary files 

describing the pulsars to investigate the influence of the GW disturbance on the pulsar 

timing residuals. The standard pulsar timing noise (without any GW noise) produced a 

noise with amplitude of A s . If a stochastic GW background is present the noise 

level increases to typical values of A s . However, there exist a number of problems 

with the concept of PTAs.  The noise in the pulse arrival times of the pulsar (so called red 

pulsar noise) increases as the observation time increases.  At some stage this red noise 

enters the GW noise band, complicating the decomposition of the various noise signals a 

very complex task to perform. The SKA is expected to observe single pulsars in binaries 

to indirectly observe the effect of GWs (as it was done for the Nobel Prize winning 

observation of PSR 913+16 (Taylor, 1982)).  

 

5.2 Conclusion: Gravitational Waves from the galactic center 

 

Our galaxy contains a nursery of rich stellar clusters in the direction of the constellation 

of Sagittarius at least a distance of ~ 8 kpcd  from Earth). Hidden behind a thick screen 

of interstellar material (or plasma), lurks a dark massive object at the center of our Milky 
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Way (Genzel, 2010). This nursery is the center in our galaxy (GC). Having interesting X-

ray, radio and infrared spectra, from which it appears that the galactic center harbours 

more than just dense stellar clouds. This object is assumed to be a rotating supermassive 

Kerr black hole with multiple objects in close orbit around it. This super-massive black 

hole (SMBH) (Also known as Sgr A*, due to the fact that the SMBH coincides with the 

position of the radio source Sgr A* in the GC).  It is the nearest strong gravity source to 

Earth (Genzel, 2010). There exist a collection of stars orbiting the assumed SMBH inside 

the central parsec of the GC, known as the S-stars. These stars orbit Sgr A* in complete 

Keplerian orbits and allow astronomers to monitor Sgr A* very accurately (Gillessen, 

2009).  See Fig 5.6.  

 

Fig. 5.6: The collection of S-stars that orbits Sgr A*, the mass of the black hole 

(which is roughly a million times the mass of the sun) was determined by close 

observations of the closed orbit of the star S2 (from Gillessen, 2009). 

 

Since Sgr A* is a stable strong gravity source in the GC and is hidden behind an instellar 

screen. It allows one to test the no-hair theorem (Geroch, 1971) and the effect of pulse 

broadening of a pulsar orbiting Sgr A* (Lui, 2012; Gair, 2012).  It has been showed by 
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Liu et al., (2012) that if one could observe a stable pulsar at 15 GHz orbiting Sgr A* with 

a period of one year, an observer would be able to determine the quadrupole moment of 

Sgr A* with a accuracy of less than 1 in 100.  

 

 

There also exist Extreme Mass Ratio Inspirals (light object orbiting a heavy object) and 

produces interesting GW signatures and orbits with chaotic resonating frequency 

counterparts (Gair, 2012).  This GW source will be observable in the eLISA frequency 

band (
4 1~10 10 Hzf   ).  The SKA will probe the ultra-low GW frequency band             

( ~ nHzf ) via PTAs and LIGO will probe GWs in the frequency band of

~ 3 Hz 3 kHzf  . Sgr A* holds an interesting characteristic of not having steady strong 

accretion rates. Strategically positioning Meerkat and ultimately the SKA to be able to 

follow up on gravitational wave detection (by LIGO) of binary pulsars could potentially 

result in some very exciting modeling of merger physics.  The project of doing targeted 

searches using LIGO for the gravitational wave emission of binary pulsars systems 

discovered by the SKA to place upper bounds on the gravitational waves emitted from 

these systems could be an equally fertile test bed for precision tests of General Relativity. 

 

 

 

 

 

 

 

 

 

 

 

 



110         (&JMgravity2014/03/28) 

 

Chapter 6 

 

Conclusion  

 

 

Gravitational Wave astronomy will give us access to the Universe's “soundtrack” (3-3000 

Hz) within the next decade; opening a new and exciting observational window on the 

Universe. Ground based interferometers (such as LIGO/VIRGO) and radio telescopes 

(such as the SKA) are planning to detect Gravitational Waves through unique 

experiments that use either reflected light between two mirrors or observations of pulses 

from pulsars. Both LIGO and the SKA are in an advanced phase of development and rely 

currently on modelling related to GW detection using interferometers or pulsar timing 

arrays. This necessitated a theoretical study that focuses on retrieving upper limits for the 

GW amplitude and frequency of various LIGO and SKA Gravitational Wave (GW) 

sources such as collapsing supernovae, rapidly spinning magnetars and the coalescence of 

compact binary objects. Upper limits for the GW amplitudes and frequencies were 

retrieved by means of numerical and analytic methods. A core result this project was the 

identification of short period (transient) GW signatures, within the framework of the 

standard quadrupole formalism. 

 

There exist several methods of modelling GWs from different sources that could be 

implemented in several platforms such as SPH numerical schemes and the quadrupole 

formalisms of spinning and collapsing stellar objects. Many of these GWs are detectable 

by modern day detectors such as LIGO, SKA or eLISA. It is also evident that 

accompanying the theory of GW production are mathematical tools that were studied and 

presented in this thesis (Chapter 2 and Appendices). This opens the opportunity to study 

GW sources in the GC and hopefully allows for the testing of GR using the SKA and 

LIGO. To search and understand the GW sky, an observer needs to understand all the 

available methods and models used to describe these complex GW signatures. It will help 
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with the development of the space- and ground based interferometers (especially the 

templates that will be used to search for well-known GW sources). GW signatures 

produced by transient sources are classified according to a strain amplitude and frequency. 

Both LIGO and the SKA are sensitive to GWs with unique amplitudes and frequencies 

(see Chapter 1). We found that spinning neutrons stars, magnetars and supernovae 

produce burst/periodic GW signals (with characteristic frequencies f~kHz and strain 

amplitudes 
21~10h 

) that could be observed with LIGO (see Chapter 3 and Chapter 4). 

Numerical relativity groups are producing GW signatures from supernovae core collapse 

and binary mergers to high accuracy aiming at producing template banks for the use of 

LIGO/VIRGO. The simulation of GW signatures using numerical techniques produces 

detailed signatures that could be linked with multiwavelength astronomy (optical and 

gamma-ray bursts). In Chapter 4 we produced numerically (within the framework of 

Smooth Particle Hydrodynamics) GW signatures for supernovae core bounce events and 

linked the GW spectrum to neutrino emission from these events. The SKA is planning the 

first GW detection (see Chapter 5) by using Pulsar Timing Arrays (which are sensitive to 

GWs in the nanohertz frequency range produced by stochastic GW backgrounds). It is 

evident from this thesis that galactic transient sources produce unique GW signatures 

(bursts, period or stochastic backgrounds) that could be used in multiwavelength detector 

systems as triggers, e.g. neutrino and radio follow-up of GW triggered supernovae core 

collapse (see Chapter 4).  

 

In this study we matched a GW signature to each galactic transient source. Given all that 

we discussed, what can we learn from detecting Gravitational Waves from exotic objects 

such as neutron stars, magnetars and binary mergers? The fundamental consequence of 

GW detection is the test of Einstein's Theory of Relativity. If no GWs are detected it 

implies that there exists serious short-comings in our predicted event rates. However, any 

proof of the existence of GWs will allow us to probe black hole spacetimes, observe 

binary inspirals as standard sirens and link the unique GW signatures of transient sources 

to other parts of the electromagnetic spectrum. Gravitational wave astronomy will 

hopefully improve our understanding of the Universe and all the sources in more detail 

than ever before.  
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GW astronomy will form a fundamental part of a multi-detector astronomy venture; it 

will ultimately be the most sensitive, and the earliest, trigger for SN core bounce and 

NSNSs coalescence. It is due to this that the proposed path for future projects includes 

integrating the SKA and LIGO in a joint detection strategy, since the SKA could observe 

pulsars to high accuracy, and LIGO is independent of any obstacles such as the 

interstellar medium. By combining observations of an array of millisecond pulsars the 

SKA will achieve a sensitivity of a few nanoseconds. This sensitivity could make 

detection of the signal coming from the cosmic population of Massive Black Hole (MBH) 

binaries. One possible extension of this study is to search for new radio pulsar candidates 

for possible GW wave signature studies by utilizing the Fermi-LAT bright source 

cataloque of unidentified sources. It is anticipated that more than 200 millisecond pulsar 

candidates still lurk within the sample of unidentified Fermi-LAT sources. By performing 

a spectral analysis of the gamma-ray data above 300 MeV, pulsar candidates can be 

identified and selected for follow-up observations with the Arecibo radio telescope in 

Peru and the Parkes telescope in Australia (since these radio telescopes meet the 

necessary sensitivity requirements). Detailed observations with MEERKAT (in a few 

years time) will enable us to identify GW effects on the pulse profiles, possibly leading to 

the firm establishment of GW astronomy as a discipline on its own. 
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Appendix A 

 

The weak field limit and the quadrupole 

formalism 

 

In Newtonian theory, gravitation is considered as an instantaneous force between two 

objects and any gravitational effects are transmitted with infinite speed ( v ).  

Einstein’s theory does not suffer from this effect. Just gravitational effects travel at the 

speed of light.  In Einstein theory gravity is interpreted geometrically.   

 

In this thesis we use Greek indices , , , {0,1,2,3}      where the zero indexes 

represents the time component and the Latin indices , ,i j k denote the spatial components.   

 

The metric tensor g is used to measure the length between two spacetime coordinates    

( x
and x dx  ), i.e. the metric measures the lengths of vectors situated at the event x

.  

It is this metric tensor that defines the geometrical properties of the spacetime.  The 

components of the metric g , when expressed in terms of a set of inertial coordinates, 

take the form     

                                                              ( 1,1,1,1).g diag                                  (A.1) 

 

In this thesis we use the signature ( , , , )     throughout. 

 

This produces a spacetime interval (or line-element) 

 

                                                       
2 2 2

2 2 1 2 3 .ds dt dx dx dx                              (A.2) 
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Or using the Einstein summation notation the spacetime interval can be expressed as  

 

                                                                2 .ds dx dx 

                                            (A.3) 

 

The spacetime interval remains invariant under coordinate transformations and is either 

positive, negative or zero, i.e. for a ( , , , )     signature 

 

                                                         2

0,  null

0,  spacelike .

0,  timelike

ds

 
 

  
  

                                        (A.4) 

 

The physical interpretation of Eq. (A.4) is as follows: non-zero rest mass particles 

satisfies 
2 0ds  (timelike), while spacetime travel with velocities v c would satisfy 

2 0ds  (spacelike), whereas for photons 
2 0ds  .  This is illustrated in Fig. A.1. 

 

 

Fig. A.1: Null-cone construction in Minkowskian spacetime. 

 

The world-lines of photons are called light-like geodesics (only under no external forces).  

The world lines of free-particles are called time-like world-lines.  These geodesics can be 

calculated from the variational problem of the spacetime interval (geodesics are the 

straightest world-lines and extremal world-lines with respect to the metric) 
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                                                                    2 0,ds                                                   (A.5) 

 

This produces a world-line (geodesic equation)  

 

                                                         
2

2
0.

x x x  



  

  
 

  
                                      (A.6) 

 

Here  represents an affine parameter and where 

 represent the Christoffel symbols.  

These symbols are represented by 

 

                                             0.5 ,
kk k

k

g gg
g

x x x

   
  

  
    

   
                              (A.7) 

 

The presence of mass (or subsequently energy) curves the fabric of space surrounding the 

object and directly determines the metric of the spacetime.   Einstein formulated this 

fundamental idea in the form of the Einstein Field equations 

 

                                                             
4

8
.

G
G T

c

 
                                                  (A.8) 

 

Here G
is the Einstein tensor (which fundamentally contains the metric tensor that 

geometrically describes the spacetime) and T  is the stress tensor of the source that 

curves spacetime.  If there is no source present then the Einstein equations reduce to the 

vacuum equations (equations of flat space, 0G  ).  

 

In this Appendix the basic properties of GWs will be reviewed.  The discussion will 

present the properties of GWs within the frameworks of General Relativity (the 

quadrupole weak-field formalism) and the Post Newtonian theory.  Each of these 

provides a vehicle to explore certain aspects of the GW emission of astrophysical sources. 
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In order to produce a weak field limit approximation and ultimately deduce an equation 

to relate a gravitational wave and a possible source, typically being the stress energy 

tensor T
, a very small perturbation or change can be introduced to the metric, starting 

with Minkowskian background 

 

                                                            .g h                                                       (A.9) 

 

Defining index raising and lowering operators: h h 

  , h h  

 , h h

  

also  

 

                                                         2( )g g O h 

                                               (A.10) 

 

Expanding the all the known GR quantities: Starting with the Riemann Tensor 

 

                                                  2

, , ( ).R O h  

                                         (A.11) 

 

Or in the full covariant form, 

 

                                        , , , ,
1 .

2
R h h h h           

                          
(A.12) 

 

And generally the Christoffel Symbols can be expressed as follows: 

 

                                             

, , ,

,

, ,

1 ( )
2

1 ( ).
2

g g g g

h h h

 

      

  

    

   

                                    
(A.13) 

 

 

The Ricci tensor becomes 
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 

, ,

, , , ,

1
.

2

R R

h h h h

  

     

  

      

   

   
                                (A.14) 

 

The Ricci scalar, R , becomes 

 

                                                             , , .R h h 

                                                (A.15) 

 

The Einstein tensor can expressed as, 

 

                                                          0.5 .G R R                                              (A.16) 

 

 

Then 

 

                                 

 

, , , , , ,

, , , ,

0.5

1 1
( )

2 2

1
.

2

G R R

h h h h h h

h h h h h h

  

    

         

  

        





 

 

     

     

            (A.17)   

 

To simplify the Einstein tensor, we apply certain gauges.  First of all we use the Lorentz 

gauge (harmonic gauge)  

 

                                                                      0,h

                          (A.18)  

 

together with the energy-momentum conservation laws: 

 

                                                                      0.T 

                                                (A.19)                  

 

One could also define the traceless metric perturbation: 
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                                                                1 ,
2

h h h                                          (A.20) 

 

Together with the condition of: 

 

                                                                           h h                                                   (A.21) 

 

To investigate the freedom of the harmonic gauge, one could easily perform a coordinate 

transformation (
' 'X X    ): 

 

                                                              'h h  


                                           (A.22)      

 

From here one can fix the gauge freedom, by choosing 0  .  This choice will insure 

the invariance of h  .    

 

Applying these gauges to Eq. (A.17)           

 

                                                               
4

16
.

G
h T

c
 


                                         (A.23) 

 

Using the principles of Green’s solution, a solution to the wave equation becomes 

 

                                                 
4

4

( , )4
( , ) .

T t x y yG
h t x d y

c x y





 



                          (A.24) 

where x  and y  represents the spatial coordinates of the field point and the source, 

respectively, and x y  represents the distance between the source and the field point.  

The volume integrals are taken over the part of space time with
retardedt t x y   . 
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Transforming the solution ( , )h t x to Fourier space leads to:  

 

                                    3

4

( , )4
( , ) .

2

ret
i x y retardedi t

T t yG
h x e e d ydt

c x y

 
 







                (A.25) 

 

Assuming the far away limit (where the distance between the field point and the source 

point could be set to the distance from the source to earth, namely ~x y r ), 

 

                                                
3

4

4
( , ) ( , ) .

i rGe
h x T y d y

rc



                                    (A.26) 

 

Taking only the spatial part of ( , )h x   and expanding the integral by using integration 

by parts ( 3( , )T y d y  ) leads to: 

                                         
2

3

004

2
( , ) ( , ) .

i r
i j

ij

Ge
h x y y T y d y

rc

 
                       (A.27) 

 

Using the definition of the Quadrupole tensor ( 00 3ij i jQ y y T d y  ) leads to  

 

                                                  
2

4

2
( , ) ( )

i r

ij ij

Ge
h x Q

rc

 
                               (A.28) 

 

Transforming back to the time domain 

 

                                                           
4

2
( , )ij ij

G
h t x Q

rc
                                                 (A.29) 

 

Finally applying the transverse gauge to the equation above leads to the definition of the 

signature of GWs that links to the changing quadrupole tensor of the source: 
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4

2 ˆTT
kl

ij ijkl

G
h Q

rc
                                               (A.30) 

 

Here 
1

2

k l kl

ijkl i j ijP P P P   represents the projection tensor (orthogonal to the direction of 

wave propagation) and ˆ 1
3

kl kl

klQ Q Q   represents the reduced quadrupole tensor.  

Also, we have that ˆ ˆ
ij ij i jP x x  . 

 

The effective stress-energy tensor of GWs is:  

 

                                                        
4

, , .
32

c
T h h

G



   


                                       (A.31) 

 

The energy loss due to GW radiation through a sphere with radius r , can also be 

calculated since the stress-energy tensor contains the energy flux information, 

 

                                                              2

0

S

E T n r d

                                             (A.32) 

 

Where n
 is the normal vector that points in the direction of the radius r .  If we restrict 

our problem to spherical coordinates, then  

 

                                                    0 ,0 ,

1

32

TT

TT rT n h h
G

 

 


                                   (A.33) 

 

We could now use Eq. (A.30) to produce power radiated 

 

                                                           
8

ij TT

TT ij

G
E Q Q d


                                        (A.34) 
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The only calculation that remains is to eliminate the TT’s: 

 

                                   
1 1

( )( )
2 2

ij TT k l kl a b ab kl TT

TT ij i j ij i j ij TT abQ Q P P P P P P P P Q Q                     (A.35) 

 

Using the fact that ˆ ˆ
ij ij i jP x x  , together with several standard integrals for a surface S 

with radius r , as well as symmetry and null-trace characteristics of the quadrupole tensor, 

we get the power radiated due to GW radiation: 

 

                                                                    
55

ij

ij

G
E Q Q

c
                                         (A.36) 
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Appendix B 

 

Detector sensitivity curves 

 

Sensitivity curves are used to plot the strength required for a GW emitter, as a function of 

frequency, in order to be detectable by ground-based GW interferometers such as LIGO 

or VIRGO.  There are two standard curves that are used, namely a strain sensitivity curve 

and an amplitude spectral density curve.  Strain sensitivity curves are plots of strain ( h ) 

against GW frequency ( GWf ) and amplitude spectral sensitivity ( fh ) curves are plots of 

the square root of the power spectral density ( hS ) against GW frequency ( GWf ).  Here 

hS is the power spectral density and represents the power per unit frequency and is often a 

more desirable representation of sensitivity curves.  One could formulate the relation 

between GW strain ( h ) and power spectral density ( fh ) as follows, 

 

 

                                                                      ,f fh h S                                                (B.1) 

 

where fh has units of 
0.5 Hzh 

.  
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Appendix C 

 

The Post Newtonian expansion of Gravitation in 

flat space 

 

 

In this appendix we use Greek indices , , , {0,1,2,3}     that include the time 

component and , , , {1,2,3}i j k l denote the spatial components. To invoke the setup for 

the field equations, a good starting point would be the Euler equations of the system 

 

                                                     

;

8 ,G G M
L L L

g g g
x

  






 
   

    
 

 

                               (C.1) 

 

this problem can be expanded in shor, by incorporating the Riemann curvature tensor in 

an appropriate way, 

 

;

; ;

;

8

8 .

G G M
k k k

G G G M
k k kk

L L Lg g g
x x xg g g

x

L L L Lg g g
g

x x xg g g g
x x

  

  




  


   

 






 
     

      
 

 

 
      

         
 

  

                      

                  (C.2)                                           

 

Since the Riemann Tensors consists of first and second derivative of the metric, the term 

from (C.2), 
; ;kg

 , contain the nested Riemann Tensors, ultimately (Petry, 1978) reduced 

(C.2)  to a very elegant form, 
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; ;

;

2 16G G
k k G k k k

dx dxL L dx dxg
L g R g g

x g g d d d d
x x


     

    

 
 



   
   

 
     

              
  

                                                                                                                                                   

    (C.3)                                           

Imposing the conditions of 
G M

T T T    , particle conservation 
;

0
dx

d








 
 

 
,  the 

condition of flat space 0kR

    and tensor analysis identity T g T 

   ,equation (C.1) 

with the use of equations (C.2)- (C.3) becomes 

 

                                                
0.5

;

( ) 4 .
g

G g g T
x


 

 




 
   

                               (C.4) 

 

Finally summing over the indices  ,  , equation (C.4) becomes

0.5

;

( ) 4
g

G g g T
x


 

 




 
   

, this result represents the new field equations, after 

incorporating the total tensor 
G M

T T T    . 
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//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 

 

 

 

 

            

 

 

 

            

           (C.5) 

 

 

 

 

 

 

 

///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 

 

>sort(expand(MassTensor_compts[4,4]),c); 

#T44!! 

 

 

 

>sort(expand(MassTensor_compts[1,1]),c); 

#T11!! 

 

 

>sort(expand(MassTensor_compts[1,4]),c); 
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#T14!! 

 

 

 

>sort(expand(MassTensor_compts[4,1]),c); 

#T41!! 

(C.6) 

 

///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 

 

#Gravity tensor T44!! 

 

 

#Gravity tensor T11!! 

    

 

#Gravity tensor T14!! 
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#Gravity tensor T41!! 

                    (C.7) 

///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 
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Appendix D 

 

GADGET code and files  

 

Initialization code: 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

/*Begin::: Gravitational Wave calculation: SPH Q-pole formulation>>>>*/  

%N_gas== the number of particles for the run 

 

for(k=0;k<N_gas;k++) 

{ 

 

I_11+= 

2*P[k].Mass*P[k].Vel[1]*P[k].Vel[1]+(2*P[k].Mass*SphP[k].Pressure/ 

SphP[k].Density)+2*P[k].Mass*P[k].Mass*P[k].Vel[1]*P[k].GravAccel[1]; 

 

I_22+= 

2*P[k].Mass*P[k].Vel[2]*P[k].Vel[2]+2*(P[k].Mass*SphP[k].Pressure 

/SphP[k].Density)+2*P[k].Mass*P[k].Mass*P[k].Vel[2]*P[k].GravAccel[2]; 

 

 

I_12+= 

2*P[k].Mass*P[k].Vel[1]*P[k].Vel[2]+P[k].Mass*P[k].Mass*P[k].Vel[2]*P[k

].GravAccel[1]+P[k].Mass*P[k].Mass*P[k].Vel[1]*P[k].GravAccel[2]; 

 

 

I_13+= 

2*P[k].Mass*P[k].Vel[1]*P[k].Vel[3]+P[k].Mass*P[k].Mass*P[k].Vel[3]*P[k

].GravAccel[1]+P[k].Mass*P[k].Mass*P[k].Vel[1]*P[k].GravAccel[3]; 
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I_23+= 

2*P[k].Mass*P[k].Vel[2]*P[k].Vel[3]+P[k].Mass*P[k].Mass*P[k].Vel[2]*P[k

].GravAccel[3]+P[k].Mass*P[k].Mass*P[k].Vel[3]*P[k].GravAccel[2]; 

 

SystemDensity+=SphP[k].Density; 

} 

 

%writing out the GW data 

 

h_cross_plane= (2*GG/(c_4*distance))*(I_12); 

h_plus_plane= fabs((GG/(c_4*distance))*(I_11-I_22)); 

A_E2=distance*3.66*h_plus_plane; 

 

 

%writing to file .dat 

 

FILE *GRAV; 

GRAV=fopen("r_cross.dat","a"); 

fprintf(GRAV,"%f,%e,%e,%e\n",count,h_cross_plane,A_E2,SystemDensity); 

count+=1; 

fclose(GRAV); 

 

/* End: Gravity Wave calculation: SPH Q-pole formulation>>>>>>>>>>>> */ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

 

 

Mass distribution setup: 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

; Number of Particles.................................................. 

 

  ngas = 2l^round(15) 

 

   

; Constants............................................................ 

 

  G = 6.6738e-8 

  msun = 1.98892e33  
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  omega=0 

  rho0 = 0.14 

  gamma = 4.0/3 

    

    mgas=10*msun 

    rgas = 5.9d11 

 

    tff = sqrt(3*3.1416/(32*G*rho0)) 

 

; Setting the units of the simulation.................................. 

 

   unitMass_in_g = Msun                                                  

   unitTime_in_s = tff                                                   

   unitLength_in_cm = rgas                                              

   unitVelocity_in_cm_per_s = unitLength_in_cm / unitTime_in_s           

 

; Scaling things to code units 

 

   rgas /= UnitLength_in_cm 

   mgas /= UnitMass_in_g 

   omega *= UnitTime_in_s 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

 


