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Abstract 
 
 
In this study the importance of the luminescent properties of low-dimensional quantum 

structures are investigated focusing on the change in the exciton binding energy with a 

change in the size of the low dimensional Quantum Well or Wire. 

 

With a reduction in dimensionality, moving from bulk semiconductor materials through 

Quantum Wells, Wires and ultimately Quantum Dots, the band structure as well as the 

density of states for these low-dimensional structures change appreciably going from 

quasi-continuous in bulk semiconductors  to discrete in Quantum Dots.  This leads to an 

increase in the energy gap (compared to the bulk material), with a decrease in size for a 

low-dimensional structure.  

 

An interacting electron-hole pair in a Quantum Well-Wire is studied within the 

framework of the Effective-Mass Approximation.  A mathematical technique is presented 

which investigates the quasi-two-dimensional, quasi-one-dimensional behavior of a 

confined exciton inside a semiconductor as the bulk material is reduced in dimensions to 

form a Quantum Well and Wire.  The technique is applied to an infinite Well-Wire 

confining potential.  The Envelope Function Approximation is employed in the approach, 

involving a three parameter variational calculation in which the symmetry of the 

component of the wave function representing the relative motion is allowed to vary from 

the one- to the two- and three-dimensional limits.  A quasi–two-dimensional behavior 

occurs on reducing the well width as the average electron-hole distance decrease leading 

to an increase in the binding energy.  However, when the well width is smaller than a 

critical value, the leakage of the wave function into the barriers becomes more important 

and the binding energy is reduced until it reaches the value appropriate to the bulk barrier 

material for which L = 0. 

 

As the electronic industry progress from micro-technologies to nanotechnologies 

whereby devices are designed in the nanometer range, it becomes increasingly necessary 

to address the concern of the exciton losing its enhanced effects in the ultra- small 
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quantum structures, due to the increased penetration of the exciton wave function into the 

barrier regions in the direction of diminishing spatial confinement. 

 

A trial wave function is employed; written as a product of three wave functions.  The first 

two are corresponding to the single particle wave function of an electron and a hole in the 

Quantum Well-Wire and the third represents a free exciton whose radius is adjusted as a 

variational parameter.  This method can be suitably adapted for any particular choice of 

variational wave function.  The choice of this wave function is only limited by the users’ 

qualitative knowledge of the system under consideration and how this knowledge is 

imbedded into this trial wave function.  

 

Results to this numerical calculation are presented.  Quantitative comparisons with 

previous calculations for quantum wells was made (in the wire limit where Lz → ∞) and 

it was found that there exists a good agreement between this infinite- and other finite- as 

well as infinite - potential models up to a point of 100 Å. 

 

A plot of the binding energy vs. the variational parameter λ revealed that the electron in 

the exciton has a very similar behavior than the electron in the Hydrogen atom (or for that 

matter any particle trapped inside a radial decreasing (i.e. V∼1/r) potential field).  

However on reducing the size and dimensions of the quantum structure, it seems that the 

screening of the other electrons surrounding the hole start to play a very important role 

and the shape of a plot of binding energy versus λ is very similar to that of an alpha 

particle trapped in an atomic nucleus. 

 

It is concluded from this that for accurately predicting the behavior of systems like these 

it is important to include in such a model not only the different dielectric constants for the 

barrier and the well-wire materials, but also to include the change in dielectric constant 

due to a change in size, i.e. ε = ε (L), i.e. to take into account the decrease in the amount 

of electrons in the valence band due to a decrease in size of the Quantum Well-Wire.  
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Chapter 1 

Introduction 
 
‘There’s plenty of room at the bottom!’   - Richard P. Feynman, 1959 
 

 

Nowadays nanoscale physics is one of the most topical research subjects having two 

major areas of focus, one being the important field of potential applications.  This bears 

the promise of a great assortment of materials having explicit properties advantageous in 

every day life.  However, to the researcher in physics, the fundamental aspects where 

quantum mechanics is seen at work, is even more enthralling. Most macroscopic 

phenomena of nanoscale physics can only be understood and described using quantum 

mechanics.  The exquisite tools by which quantum behaviour can be probed an a scale 

significantly larger that the atomic scale, that is, on the nanometer scale, are Quantum 

dots, often denoted as artificial atoms due to their atomic-like properties.  In this way, the 

physics of the devices is closer to classical physics than that of atomic physics but they 

are still sufficiently small to clearly exhibit quantum phenomena.  

 

1.1 History of Quantum Structures 

 
‘What has been will be again, what has been done will be done again; there is nothing 

new under the sun. Is there anything of which one can say, “Look!  This is something 

new"?  It was here already, long ago;    it was here before our time.’    

         -  Ecclesiastes 1:9-10 

 

 

Early in the twentieth century, encounters with physical phenomena, such as electron 

motion, for which Newtonian mechanics could not at all provide an adequate explanation, 

prompted the advent of quantum mechanics, as it required detailed analyses on the 
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nanoscale.  Electron tunnelling through nanoscale barriers is the most direct consequence 

of the laws  of quantum mechanics.  The Esaki tunnel diode gave most convincing 

experimental evidence for this phenomenon in 1957. However even before then 

nanoscale science has played a significant role in the evolution of science and humanity 

as a whole.   A brief description of the evolutionary path of nanoscience follows.  

Colloidal dispersed pigments uses are so old that it is essentially a history of humankind’s 

pursuit of colour.  Such pigments were used by Stone Age peoples in paintings dating 

from the dawn of civilization itself. Ancient Egyptians prepared colloidal dispersions as 

inks. Though not understood as such, these technologies were already widespread by the 

Middle Ages. Such understanding would not come until the 1850s and 1860s when 

visionaries such as Michael Faraday began to unravel the reasons behind the remarkable 

properties of nanocrystalline systems. [2] 

Nano-sized particles have been used in pottery for thousands of years. The oldest known 

such object is thought to be the Lycurgus chalice, dating back to the late fourth century 

AD, Rome, and which can be seen in the National British Museum of History. The 

Roman chalice has a raised fresco showing the myth of King Lycurgus, and is made from 

glass which appears green in reflected light, but red in transmitted light. 

This curious optical effect is caused by 70nm particles of silver and gold contained within 

the glass.  The understanding that glass could be coloured red by adding small amounts of 

gold is often credited to Johann Kunckel, who worked in Germany in the late 

seventeenth century. 
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Johann KUNCKEL (1638-1703) 

 

The chalice, however, is not a unique example of nanoparticles being used in centuries 

past; pottery from the ninth century AD also contains nanoparticles in glazed films 

applied to ceramic pottery. In medieval times the technique was brought to Spain as 

Arabian culture spread, and then migrated to Italy, where Renaissance pottery made 

much use of the effect in polychrome lustres on pottery [3] 

 

The twentieth century was characterized by the fact that science and technology have 

made remarkable progress.  The establishment of quantum mechanics, the development 

of semiconductor devices with the invention of the transistor and the evolution of 

computers and telecommunications were some of the significant highlights.  In the early 

century, the advent of quantum mechanics was driven by encounters with physical 

phenomena such as electron’s motion or photon’s behaviour for which Newtonian 

mechanics could not possibly provide a satisfactory explanation.  The framework of 

quantum mechanics was established in the superb work of Werner Heisenberg, Erwin 

Schrödinger, Paul Dirac and Max Born in the period 1925-1926. 
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It was de Broglie that introduced a new fundamental hypothesis during the infancy of the 

quantum theory:  matter was endowed with a dualistic nature – particles may also have 

the characteristics of waves!  Finding expression in the hands of Schrödinger a 

mathematical equation emerged to be known as the Schrödinger wave equation.  This 

hypothesis stated that an electron is assumed to be represented by a solution to this 

equation.  The continuous non-zero nature of such solutions, even in classically forbidden 

regions of negative kinetic energy, implies an ability to penetrate such forbidden regions 

and a probability of tunnelling from one classically allowed region to another.  The 

concept of tunnelling itself arises from this quantum-mechanical result, and has no 

analogy in classical mechanics.  The subsequent experimental manifestations of that 

concept can be regarded as one of the early triumphs of the quantum theory.  In 1928, 

Fowler and Nordheim [3] explained, on the basis of  electron tunnelling, the main 

features of the phenomenon of electron emission from cold metals by high external 

electric fields, which had been unexplained since its observation by Lilienfeld in 1922. 

In 1969 research on artificially structured materials was initiated when Esaki and Tsu.  

They proposed to use a semiconductor superlattice based on a periodic structure of 

alternating layers of semiconductor materials with wide and narrow band gaps.  The first 

superlattices were fabricated using an AlGaAs/GaAs material system (Figure 1.1)  

 

Figure  1.1:  AlGaAs-GaAs superlattice 
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1970’s and beyond 

Early in the 1970s, the first quantum wells (QWs) which were also the first low 

dimensional heterostructures, were developed.    Almost thirty years later, in 2000, the 

Nobel Prize in Physics was rewarded to Zhores Alferov and Herbert Kroemer for 

developing semiconductor heterostructures used in high-speed- and opto-electronics, 

recognizing the importance of quantum wells.  Today quantum wells form the basis of 

most of the optoelectronic devices and their importance must therefore not be 

underestimated.                                      

                                                

   Zhores I. Alferov and Herbert Kroemer 

In these quantum well structures the electrical carriers (electrons and holes) are confined 

in a two dimensional (2D) plane.  For this reason they are often referred to as being “two 

dimensional” though in the strictest sense they are not completely two dimensional since 

the thickness of the quantum wells are usually in the order of nanometers and do not 

completely vanish.  The first advantage of such a design involves the optical properties of 

these quantum wells.  Optical properties can be tuned by changing the structural 

parameters:  typically thickness and composition.  This is known as band-gap 

engineering.  The reduced dimensionality also leads to improved optical performances:  

by reducing the size of one dimension the probability of electron-hole recombination 

increases. 
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 Led by the insights to this discovery, scientists investigated the possibility of reducing 

the dimensionality of heterostructures even further in order  to create one dimensional 

(1D  - quantum wire) and zero dimensional (0D -  quantum dot) structures.  An 

interesting consequence of changing the density of states for quantum dots is that this 

change leads to a discrete DOS for QDs.  For this reason QDs are often described as 

artificial atoms, making them exceedingly fascinating for fundamental studies. 

The quest to find new solutions to meet the worldwide energy demand stimulated the 

development of modern quantum dot technology even further.  The advantage of the 

surface area-to-volume ratio of nanocrystal particles for energy generation was realized 

and photo-electrochemistry research (e.g. solar energy conversion) was tapping the 

semiconductor/liquid interface to utilize this.  Then in the early 1980s two very 

influential and independent developments from two labs arose.  Drs. Alexander Efros and 

A.I Ekimov of the Yoffe Institute in St. Petersburg (then Leningrad) in the former Soviet 

Union and Dr. Louis Brus at Bell Laboratories.  Bell Labs scientists were studying the 

optical phenomena that occur when the properties of bulk semiconductor materials 

change.  Their work contributed to the understanding of the quantum confinement effect 

that explains the correlation between size and colour for these nanocrystals. 

 

Drs. Alex Ekimov, Alex Efros and Sasha Efros 

Dr. Ekimov discovered quantum dots with his colleague, Dr. Efros, while working at the Ioffe Institute in 

St. Petersburg, Russia. Dr. Ekimov's discovery of quantum dots occurred at nearly the same time as the 

discoveries by Dr. Brus at AT&T Bell Labs. Dr. Ekimov is the recipient of the prestigious State Prize of the 

USSR in Physics and Technology and the Alexander Von Humboldt Award for his work in semiconductor 
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nanocrystals. He has been a visiting professor at Ecole Polytechnique and University Clode Bernade in 

France, Max Planck Institute in Germany and Osaka University in Japan. He is internationally renowned in 

the scientific community and has more than 100 publications and several patents [4]. 

 

Louis E. Brus, 

“Thomas A. Edison” -  Professor of Chemical Engineering,  Brus is one of the founders of a new 

branch of solid state physics and chemistry: inorganic nanostructures. He pioneered the study of 

physical, electronic and chemical properties of semiconductor nanocrystals as a function of their 

size [5]. 

Experimenting with nanocrystal semiconductor materials, Dr. Brus and his collaborators 

observed solutions of astonishingly different colours made from the same substance.    

This observation led to the discovery that there is a very clear transition when a structure 

becomes smaller than a fundamental scale, intrinsic to the substance.  The Bohr radius of 

the electron-hole pair determines this scale length.   

Ever since then ways to make the quantum dots water-soluble were discovered by two of 

these Bell Labs scientists (Dr. Moungi Bawendi and Dr. Paul Alivisatos).  They moved to 

MIT and UC Berkeley, respectively, were they continued their investigation of quantum 

dots’ optical properties.  Another significant discovery by these two scientists showed 

that by adding a passivating inorganic “shell” around the nanocrystals, and then shining 

blue light on them, caused the quantum dots to shine brightly [6]. 

Even though it was predicted in 1982 that QDs could be used as the active region of 

lasers, providing a reduced threshold current and improved temperature dependence, it 

has taken nearly a decade to develop reliable growth techniques to produce QDs of a 

quality suitable for commercial applications. QD devices have now been demonstrated in 
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many research laboratories, and commercial products are now starting to be available on 

the market [7]. 

The advances we see reported today in nanotechnology owe their origins to scientific 

research that has been going on for over a hundred years, some of which has been 

conducted by some very famous and respected scientists, including Michael Faraday, 

Irving Langmuir and Albert Einstein. 

As time has gone on, further advances have been built upon this and other research and 

new techniques have been developed to allow matter at the nanoscale to be seen and 

studied. These include the development of the Scanning Tunneling Microscope (STM), 

which allows individual atoms to be moved, and high-resolution electron microscopes. 

These machines have used a wealth of previous research and have in turn fuelled further 

advances in science. 

The time milestones below show the progress of some of the scientific and especially 

technological advances that have been important in the advancement of nanotechnology. 

During this time period there has been a trend for the different disciplines of science to 

converge towards the nanoscale: physics and engineering have been considering smaller 

and smaller objects, chemistry has been considering larger and larger groups of atoms, or 

molecules. 

This convergence means that ideas in physics, chemistry and biology can be shared, and 

new advances can be made in materials science, medicine, electronics, environmental 

technology, and many other areas, that might not have occurred otherwise. [3] 

1857 -   This year marks the introduction of ‘colloidal gold ‘ samples to the Royal 

Society by Michael Faraday.  This suspension of gold nanoparticles in solution 

was totally transparent in some lighting, but in other lighting conditions could 

produce differently coloured solutions of ‘ruby, green, violet or blue’. [8]  
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1905 – A thoroughly quantitative theory for the colloid dispersion state was provided 

by Albert Einstein wherin he considered colloids to behave as ‘large atoms’ and 

explained their movement in terms of Brownian motion. Jean-Baptiste Perrin 

confimed this theory experimentally and this contributed toward Perrin’s 1926 

Nobel prize. 

1932 - Langmuir established the existence of monolayers (layers of atoms or 

molecules one atom thick). These monolayers have peculiar two-dimensional 

qualities, and led to the development of a totally transparent glass produced by 

forming a thin film of fluorine compound on the surface.  He was awarded the 

Nobel prize in 1932 for this work on thin films. 

1958 - Richard P. Feynman gave a ground-breaking speech:  ‘There’s plenty of room 

at the bottom’.  He discussed the possibility of controlling materials at the level 

of atoms and molecules.  The vision of the possibilities of science and 

technology at the nanoscale was born.  He became a Nobel laureate in 1965. 

1974 – Norio Taniguchi of the University of Tokyo coined the term ‘nanotechnology’ 

in this year. He used the word to refer to ‘production technology to get the extra 

high accuracy and ultra fine dimensions, i.e. the preciseness and fineness on the 

order of 1 nm (nanometre)’(On the Basic Concept of “NanoTechnology”, [9] 

1981 – The Scanning Tunneling Microscope (STM) was invented by IBM scientists, 

Gerd Binning and Heinrich Rohrer, for which they were awarded the Nobel 

prize in 1986. This microscope allows atomic-scale three-dimensional profiles 

of surfaces to be obtained. The microscope relies on a tip that is positioned 

within 2 nm of the surface and measures the electron density of the surface.   

1985 – C60, known as buckminsterfullerene, was discovered by Richard Smalley, 

Robert Curl and Harold Kroto while investigating the outer atmosphere of stars, 

for which they were awarded the Nobel Prize in 1996. C60 is more commonly 

known as a buckyball as the 60 carbon atoms are arranged into a sphere made of 

12 pentagons and 20 hexagons (exactly like a football). 
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1990 – Don Eigler, also from IBM, showed that the position of atoms could be 

controlled precisely. Using the STM he manoeuvred 35 xenon atoms on a nickel 

surface so that they spelled out ‘IBM’. This was achieved at high vacuum and in 

the supercooled temperature of liquid helium. 

1991 – The process to make ‘graphitic carbon needles ranging from 4 nm to 30 nm in 

diameter and 1 micron in length’ (Nature 354, 1991, 56) was discovered by 

Sumino Iijima in this year. The needle-like tubes he described consisted of 

multiple sheets of graphite rolled into hollow tubes, which have now become 

known as carbon nanotubes. In 1993 the first single-walled nanotubes (SWNT) 

were produced. 

1993 – The first high quality quantum dots were synthesised by Murray, Norris and 

Bawendi.  These dots consisted of nearly monodisperse CdS, CdSe and CdTe 

(Journal of the American Chemical Society, 1993, 115).   Quantum dots are 

very small particles with interesting optical properties: they absorb normal 

white light and, depending on their size, emit a range of bright colours. This 

property arises directly from the very small size of the particle.  

1997 - In this year the first ‘nanotransistor’ – a complete metal oxide semiconductor 

transistor was invented by Lucent Technologies.  Being only 60 nm wide and 

consisting of a source, drain, gate and gate oxide, it improved the key measures 

of performance. The key advance was being able to fabricate a 1.2 nm thick 

gate oxide layer. Other companies have since built smaller nanotransistors. 

2000 – Lucent technologies in collaboration with Oxford University  fabricated the 

first DNA motor. These devices are similar to motorised tweezers and have the 

potential to make computers 1 000 more powerful than today’s machines. The 

hope is that DNA motors can be attached to electrically conducting molecules to 

assemble rudimentary circuits by acting as switches [10]. 

 2001 - Nanohorns, irregularly shaped nanotubes, were developed as fuel cells for 

hydrogen-based fuel such as methanol. They group together creating a high 
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surface area ideal for catalysts. NEC Corporation announced that the latest 

generation weigh less than 2 pounds, when fully fuelled, and power a laptop for 

5 hours before needing refuelling. 

2002 – Nanoparticles that produce a stain-repellent coating, embedded in clothing, 

have been developed.  Nano-care™ khakis have the fabric fibres coated with 

nanowhiskers 10–100nm in length. This new stain-repellent fabric is available 

from a number of high street retailers and is available in trousers, shirts and ties. 

2003 – Nanosolar Inc in California fabricated prototype solar cells which use 

conducting polymers and nano-based particles. This technology has great 

advantages, compared to that for traditional silicon-based solar cells, including 

making the products much cheaper and easier to make. These cells are also 

produced in flexible sheets, making them suitable for many applications. 

2004 - Research and development in many nanotechnology fields continues rapidly; 

some recent developments include the following:  Nanospectra Bioscience has 

used gold-coated nanoshells to destroy cancer tumours in mice (Cancer Letters, 

209, 171). NanoScale Materials Inc. has developed a family of non-toxic nano-

engineered products that counteract a variety of chemical warfare agents and 

toxic chemicals. 

The Future 
 

A plot of the number of publications per year (in the nanotechnology field) over the last 

20 years is shown below (Figure 2).  It is interesting to note that there has been an almost 

exponential increase in the amount of papers published over this period of time, showing 

clearly the immense fascination that nanoscience holds and the increasing realization of 

the potency of this field of science. 
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Figure 2: Plot of number of publications per year vs. year for publications in      

nanoscience. 
 

 However over a period of 7 years (Figure 3), the technological advancement whereby 

reaching smaller and smaller feature sizes has become possible, has only increased 

linearly.               
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Figure 3:   Plot of minimum feature size vs. year  
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1.2 Purpose of this study 
 
This study’s main focus is the development of a theoretical model to calculate an 

exciton’s binding energy for a Quantum Well-Wire structure for different sizes.  

Although infinite confining potentials are used in this study, the model can easily be 

modified to account for finite confining potentials.  A specific trial wave function is used 

to achieve comparable results; however any chosen trial wave function is easily 

compatible in this model.  Thus the choice of the trial wave function is at the users’ 

discretion where the economy as well as its qualitative correctness – i.e. how well it 

describes the physics of the system - of that wave function would be the main parameters 

to consider when making this choice.  

  

1.3 Layout of the thesis 
 
Chapter 2 introduces the reader to the theory behind low-dimensional structures focusing 

on the influence on the band structure, density of states and energy curves.  

Experimentally measured absorption curves for quantum structures are discussed. 

 

Chapter 3 lays the foundation for the mathematical techniques that are used in this 

dissertation in order to calculate the binding energy of an exciton in a Quantum Well-

Wire structure.  In particular focus falls on the Variational Approach, the Effective Mass 

– and Envelope Function Approximations.  Insight is also given into atomic units, since 

these units facilitate an easier approach to the programming aspect of very small 

numbers. 

 

Chapter 4 shows the theory behind and calculation of the exciton binding energy in a 

Quantum Well-Wire structure.  Emphasis falls on the Hamiltonian of the system, the 

expectation value of the binding energy, the chosen trial wave function and the solution 

to the Hamiltonian and thus expectation value when the infinite confining potential 

boundary conditions are considered.  All the relevant mathematical equations are shown, 

which are solved via numerical techniques.  Justification for introducing some 
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simplifying terms is given in terms of vectors and simplification is done via substitution 

and differentiation. 

 

Chapter 5 discusses the results of the variational calculation done in Chapter 4 and 

compares these results with results of calculations done by other authors.  A discussion 

on the effect of the dielectric constants that stems from the results also follows. 

 
A brief conclusion is given in Chapter 6. 
 

Appendix A gives all the mathematical details needed to do the calculations of Chapter 4. 

 

Appendix B gives a glossary and definitions of all the terms that are used and relevant to 

this dissertation. 
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Chapter 2 
 

Theory 
 

‘Poets say that science takes away from the beauty of the stars.  I, too, can see the stars 
on a desert night, and feel them.  But do I see less or more?  The vastness of the heavens 
stretches my imagination – stuck on this carousel my eye can catch one-million-year old 

light.  It does no harm to the mystery to know a little about it.’ 
     

- Richard P. Feynman 
The Feynman Lectures on 
Physics 

 
 

2.1 The Band structure of Quantum Structures 
 
Ever since the invention of the first semiconductor heterostructure-devices there has 

been a great increase in the variety of applications for these structures for example the 

first semiconductor lasers were band-engineered by doping (i.e., they were p-n junctions).  

Since then low-dimensional structures like quantum wells, wires and dots have become 

very important.  They come in various forms:  they can be grown by compositional 

variations in epitaxially grown semiconductor layers by MBE/MOCVD techniques.  

Nanowires/nanotubes/nanocrystals can be grown by bottom-up approaches (by CVD 

techniques, or by solution chemistry).  [1] 

 

What makes nanostructures so useful is the fact that their band structure (that is the band 

structure of the constituent bulk semiconductor) can be precisely engineered.    The result 

of such precise engineered band structures are materials with a wide range of applications 

having the potential to perform functions that are difficult (if not impossible) to achieve 

in bulk materials such as the semiconductor (diode) laser, to name but one example.  

Thus an understanding of the band structure of these artificially engineered materials is of 

great interest.   
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In order to study the behaviour of an electron in a crystalline solid, the Schrödinger 

equation is used: 

  

  

 2
2

( ) ( )

( ) ( ) ( )
2

V E
m

Ψ = Ψ

 
− ∇ + Ψ = Ψ 

 

h

H r E r

r r r
 (2.1.1) 

 
Here V(r) is the crystal potential experienced by the electron, and ψ(r) and E are 

respectively, the state-function/eigenfunction and energy/eigenvalue of this electron.  The 

potential V(r) includes the interaction of the electron with all atoms in the solid, as well 

as its interaction with other electrons.  It is important to note that the potential V(r) is 

periodic.  Such a potential is shown schematically in Figure 2.1.1 

 

 
Figure 2.1.1:  The periodic crystal potential as experienced by an electron [2]          

 

The Bloch theorem gives the solution of (2.1.1) for a periodic potential V(r) as [2] 

 

 

 ( ) ( )ie u⋅Ψ = k r
k kr r  (2.1.2) 

 
 
 
with ie ⋅k r  the envelope function and uk(r) the carrier function.  In understanding the band 

structure in these semiconductor materials the Effective Mass Equation for carriers in 

Ion 

V(r) 
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bulk semiconductors in the envelope-function approximation needs to be obtained.  It 

thus follows that the Effective Mass Equation is: 

  

   [ ]
2

2
* ( ) ( ) ( ) ( )

2 cV E E
m

φ φ
 
− ∇ + = − 

 

h r r r r    (2.1.3) 

 
where the envelope function of carriers in the band under consideration is given by ( )φ r .  

In this form the Schrödinger equation represents an electron in a total potential             

V(r) + Ec(r), (the band-edge behaviour included) and the difficult problem of an electron 

moving through a crystal experiencing very complicated potentials is reduced to a 

textbook-type “particle-trapped-in-a-box” problem. 

 

Now, the true wavefunction (state function/eigenfunction) modelling the particle-like 

nature of the electrons is given by 0( )  ( ) ( )nq φΨ ≈r r r . The periodic crystal potential 

resulting in periodic Bloch eigenstates is represented by n0q ( )r .However; only the 

envelope function is needed to find the band structure of the low-dimensional structure!  

In this lies the power of the envelope function approximation. 

 

2.1.1 Bulk band structure 

 

I) Pure Semiconductors 

 

To obtain precise results the Schrödinger equation / Effective Mass Equation (2.1.1) 

must be solved for the actual potential V(r) in the particular solid of interest.  

However the process of solving the Schrödinger equation for any but the simplest 

potentials is a difficult and time-consuming task, submerged with mathematical 

details.  Although this is essential for obtaining results that may be compared with 

experiments, it is preferable to start the discussion of explicit solutions by using rather 

simplified potentials.  The advantage is that the Schrödinger equation can be solved 

with only minimal mathematical effort and thus the focus can fall on the new physical 

concepts involved.   
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When no external fields are present in the bulk semiconductor, thus having             

V(r) + Ec(r) = constant, the solution to the Shrödinger equation / Effective Mass 

Equation gives envelope functions [7] 

 

 
_ _1( ) i

Volume

e
V

φ = gk rr  (2.1.4) 

 
and energies 

 

 

 
22 22 2 2

0 0* * * *( ) ( ) ( )
2 2

yx z
c c

xx yy zz

kk kE E E
m m m m

 
= + = + + +  

 

h hkk r r  (2.1.5) 

 
 
 

The energy E(kx) (in one dimension) is plotted versus kx in Figure 2.1.2 and exhibits a 

curve in the familiar parabolic shape. 

 

 
Figure 2.1.2:  The parabola representing the dispersion curve for a free particle [2] 
 

It is important to remember that the wavenumbers (kx, ky and kz) are quantized even 

though they are written as continuous variables.  That is 

 

E 

k 
-3π/a -2π/a -π/a π/a 2π/a 3π/a 0 
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 2 2 2 2
x y z

x y z

k k k m m m m
L L L L
π π π π

= = = = = =  (2.1.6) 

 
 

where m = 0, ±1,±2,….   

 

However this quantization is very fine because L is a macroscopic length. Thus for all 

practical purposes, k can be assumed continuous. 

 

I.I)  Density of States (DOS) 

 

When considering electronic processes, like transport phenomena, it is important to 

find the number of available states in a certain energy range in a given band.  This is 

known as the density of states.  Denote the density-of-states-function by g(E).  Then it 

is defined as: 

 

g(E)dE = number of electron states per unit volume in the energy range (E, E+dE)  
 

To evaluate g(E) the definition is applied:  a shell in k-space is drawn whose inner 

and outer surfaces are determined by the energy contours E(k) = E and                   

E(k) = E + dE, respectively, as shown in Figure 2.1.3.  The number of states is then 

given by the number of allowed k values lying inside this shell.  When dividing this 

by the thickness of the shell, dE, the desired function g(E) is obtained.[2] 
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Figure 2.1.3:  Concentric shells in k-space used to evaluate the DOS, g(E)[2] 

 

Clearly g(E) is closely related to the shape of the energy contours, and hence the band 

structure.  The complexities of this structure are reflected in the form taken by g(E). 

 

I.II) Calculation of the Density of States 

 

The following discussion is based on general arguments and common assumptions as 

detailed in Gerald Burns’s Solid State Physics [4]. 

 

In order to calculate the density of states for a semiconductor, begin by assuming that 

semiconductors can be modelled as an infinite quantum well (not to be confused with 

Quantum Wells - the heterojunction) and that the material under consideration is a cube 

with side L.  Suppose electrons with an effective mass, m*, are free to move inside this 

potential well with the energy set to zero inside.   

 

It is important to note that the assumption of a cube with sides L do not affect the result 

since the DOS per unit volume should not depend on the actual size or shape of the 

semiconductor [3]. 

Now, going back to the textbook-like problem described above, the solution to the wave 

equation: [4] 

kx 

ky 
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2 *

2 2

2 ( ( )) 0d m E V x
dx

ψ ψ+ − =
h

 (2.1.7) 

 
 
(where V(x) = 0) are sine and cosine functions: 

 

 

   Ψ = A sin(kxx) + B cos(kxx)       (2.1.8) 

 

 

Here A and B are the normalizing terms to be determined.  Now the solution is subjected 

to the boundary conditions that the wave function must have a zero amplitude for x = 0 

and x = L.  However, since the cosine function cannot be equal to zero at x = 0, it is 

concluded that B = 0.  With these boundary conditions, the following possible values for 

the wavenumber kx are yielded:  

 , 1, 2,3....x
nk n
L
π

= =  (2.1.9) 

 
By now repeating this analysis for the y- and z- directions, each possible solution is found 

corresponding to a cube in k-space with a volume (nπ/L)3 as indicated in Figure (2.1.4) 

 

 
Figure 2.1.4:  Calculating the number of states with wavenumber less than k. 

[3] 
 

k 

ky 

kz 

kx 
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With this result it is possible to find the total number of solutions with a different value 

for kx, ky and kz and with a magnitude of the wave vector less than k.  This is done by 

calculating the volume of one eighth of a sphere with radius k.  This result is then divided 

by the volume corresponding to a single solution (π/L) 3, giving: 

 

     

 
3

31 42
8 3

LN kπ
π

 = × × × × × 
 

 (2.1.10) 

 
 
 
Now, keeping in mind that two possible spins exist for each solution, a factor of 2 is 

added.  By using the chain rule the density per unit energy is found as:  

 

    

 
3

2dN dN dk L dkk
dE dk dE dE

π
π

 = =  
 

 (2.1.11) 

 
 
 
Hence dN/dk can easily be found.  The kinetic energy E of a particle with mass m* is 

related to the wave number, k, by: 

 

 
2 2

*( )
2

kE k
m

= h  (2.1.12) 

 
 
     
So, having E(k) the density of states per unit volume and per unit energy, g(E), becomes: 

 

 

 *3/ 2
3 3

1 8 2( ) ,  0dNg E m E for E
L dE h

π= = ≥  (2.1.13) 
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Interesting to note as that the idea of “zero-point energy” is expressed in this equation as 

the DOS is zero at the bottom of the well (obviously there are no available states for 

negative energies).  Thus there is no available state at E = 0.  The effective mass takes 

into account the effect of the periodic potential on the electron.  The minimum energy of 

the electron is the energy at the bottom of the conduction band, Ec (ground state energy), 

so that the density of states for electrons in the conduction band is given by: 

 

 

 *3/ 2
3 3

1 8 2( ) ,  c c c
dNg E m E E for E E

L dE h
π= = − ≥  (2.1.14) 

 
 
 
or simplified: 

 

 
3

* 2

3 02 2

1 2( )
2D c

mg E E E
π

 
= − 

 h
 (2.1.15) 

 
 
 
Thus the density function, g(E), has a square root dependence of the energy [3]. 

 

For the valence band (VB), similar results hold.  Here the contributions from the Light 

and Heavy hole bands only add to give the total DOS. 
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Figure 2.1.5:  Density of states of bulk (undoped), moderately doped and heavily 

doped semiconductors. [1, 2] 
 

 

II) Doped Semiconductors 

 

When doping a semiconductor material with impurity atoms, extra energy states are 

added in the band gap of the semiconductor.   New states close to the band-edges are 

introduced when a shallow dopant is used.  Now, when a shallow donor is used, the 

effective mass equation is solved via the Hydrogenic model leading to eigenvalues very 

similar to that of a hydrogen atom. [8] 

 

  

 
2 2

2
* ( ) ( ) ( )

2 4 c
e r E E r

m r
φ φ

πε
 
− ∇ − = − 

 

h  (2.1.16) 

 
 
 
The hydrogen atom’s eigenvalues are given by 

0

* 2/n cE E Ry n= − , where  

 

 

 * * 2  13.6  ( ) / rRy m ε= ×  (2.1.17) 
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is the modified hydrogenic energy levels, and in a similar way, for all practical purposes 

the donor states are also assumed to be “atomic like”, i.e. discrete.  Energy separations 

between these individual atomic-like states are very small.  

 

However during heavier doping, the changes that occur are more significant since the 

radii of adjacent electrons associated with adjacent donors can overlap.  This leads to the 

formation of impurity bands.  When this occurs the semiconductor acquires metal-like 

properties, because thermal activation of carriers into the bands is no longer necessary for 

transport.  The effects of moderate and heavy doping on the density of states (DOS) of 

bulk semiconductors are shown in Figure 2.1.5.  

 
2.1.2 Quantum Wells 

 

 
 

Figure 2.1.6:  Quantum Well with x  y dimensions infinite and Lz finite [30]. 
 

In order to understand the band structure of quantum wells it is important to first realize 

how these structures are formed.  By using at least two different types of semiconductor 

materials, one of these having a wider band gap, quantum wells are formed upon 

sandwiching a thin layer of semiconductor between wider band gap barrier layers.  When 

this is the case electrons are free to move unrestricted in the x-y-plane but they are 

AlGaAs 
Lz 

y 

x 

z 

GaAs 
AlGaAs 
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restricted in the z-direction.  Hence the conduction band profile will imitate a one-

dimensional quantum well.  Now in reference to the conduction band edge, Ec0, the 

square-well potential is 

 

   V(x,y,z) = 0,  z < 0              (2.1.18) 

   V(x,y,z) = 0,  z > Lz              (2.1.19) 

   V(x,y,z) = - ΔEc, 0 ≤ z ≤ Lz                        (2.1.20) 

 

 

From this it is clear that the envelope function need to be separated into a planar part (x,y 

- dependant) and a confined part (z - dependant) 

 

  

 ( )1( , , ) ( , ) ( ) [ ( )]x y

x z z

i k x k y
n n n

Area

x y z x y z e z
A

φ θ ξ ξ+ 
= = • 

  
 (2.1.21) 

 
 
 
Assuming an infinitely deep potential well, then only waves that satisfy nz(λ/2) = Lz fit 

into the well of width Lz.  So  

 

 2
zn z

z

k n
L

π π
λ

= =  (2.1.22) 

 
     
with nz = 1,2,3….  

 

This means the z-component of the electron wave number is quantized.  Now the             

z-component of the envelope function (normalized) can be deduced from the textbook-

type “particle-in-a-box” problem in quantum physics.  This leads to [5] 
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 2( ) sin
z

z
n

zz

n zz
LL

π
ζ =  (2.1.23) 

 
 
 
Now, having the envelope function as defined in (2.1.21), the eigenvalues for the 

Effective Mass Equation is easily obtained.  The physical interpretation of these 

eigenvalues is of course the band structure itself 
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h h

14424431442443
 (2.1.24) 

 
 
 
From equation (2.1.24) it is clear that the growth direction of the quantum well (z-

direction) plays a significant role, in the characteristics of the energy band. A quantized 

component in the z-direction exists, contrast to the “free” electron component in the x-y-

plane.  The influence of this is very significant in the band structure.  It decomposes the 

band structure into multiple bands, E2D (kz,ky) (quasi-continuous in the x-y – plane and 

discrete in the z-direction).  These bands are indexed by the quantum number nz, as 

shown in Figure 2.1.7. 

 

 
 

  

 

 

 

 

 

Figure 2.1.7:  Band structure and DOS of realistic hetero-structure quantum wells [1]. 
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I) DOS 

 

When electrons confined in an ideal two dimensional plane (2D - plane) are considered, 

the DOS is constant and given by: [3] 

 

   
* *

2
,2 2 2

4( ) D
c D

dN m mg E
dE h

π
π

= = =
h

             (2.1.25) 

 

 

 
Now, knowing this, and knowing that each sub band (corresponding to the quantum 

number nz ) in the quantum well is an ideal 2D system (thus each sub band has a gc,2D(E) 

contribution to the total DOS)  the DOS of the quantum well is: 

 

    

 
*

2( ) ( )
z

z

QW n
n

mg E E Eθ
π

= −∑h
 (2.1.26) 

 
 
 
As shown schematically in Figure 2.1.7 

Here ( )
znE Eθ − is the Heaviside unit step function. 

 

In light of the above, a discussion on the influence of the confining potential V(z) is 

appropriate.  Via modern epitaxial techniques the spatial changes in the material 

composition can be engineered almost at will.  Thus different forms of confining 

potentials can easily be applied.  For example the parabolic potential (V(z) ~ z2) leads to 

znE values spaced in equal energy intervals which is a characteristic of a square or 

Harmonic Oscillator potential. For triangular potentials (V(z) ~ z) the 
znE values are given 

by Airy functions.  However the band structure and DOS is not influenced by the specific 
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choice of a confining potential, i.e. is not dependent on the shape of the confining 

potential, as it remains similar to the square well, case [1].  Thus the only modification 

will be on the 
znE Enz values and the corresponding subband separations. 

 
 
2.1.3 Quantum Wires 
 
 

 
Figure 2.1.8:  Quantum Wire with Dimensions z infinite and Lx, Ly finite [30]. 

 

There are two approaches for forming quantum wires (as is also the case with quantum 

wells):  the top-down approach or the bottom-up approach.  In the top-down approach 

quantum wires are formed lithographically.  In the bottom-up approach quantum wires 

are formed via direct growth in the form of semiconductor nanowire/nanotubes.  

Whichever approach is preferred, both have the same goal:  to confine the real space 

movement of carriers in two dimensions, leaving only one dimension free for carrier 

movement – hence the name “wire”. 

 

With this in mind, assume that the length of the wire (Lz) along the z-axis is the one 

degree of freedom where carriers are unconfined/free to move unrestricted.  Let the         

Lx 

Ly 

x 

z 

y 

AlGaAs 
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x-y – plane be the two degrees of freedom where the carriers are quantum confined.  Thus 

(Lz, Ly << Lz).  Then it is easy to see that the envelope function must decompose into: 

    

 1( , , ) ( ) ( ) z

x y

ik z
n n

z

x y z x y e
L

φ ζ ζ
 

= • •   
 (2.1.27) 

 
with the z-part of the envelope function the same as that given by equation (2.1.4) and the 

x and y parts representing the quantum confinement in the x-y – plane.  From this the 

energy eigenvalues are 

 

   
2 2

*( , , ) ( , )
2

z
x y z x y

zz

kE n n k E n n
m

= +
h               (2.1.28) 

 

 
If again an infinite confining potential is assumed in the x-y – plane (as is often done in 

quantum wire calculations) then the condition holds that the only waves that will satisfy 

nx,y(λx,y/2)=Lx,y (respectively) will fit into the wire of length Lz.  This naturally leads to 

 

    

 
xn x

x

k n
L
π

=  (2.1.29) 

  
    

 
yn y

y

k n
L
π

=  (2.1.30) 

 
 
where nx,ny = 1,2,3, … independently. 

So now, as before, by using the simple “particle-in-a-box” – problem in quantum physics 

the functions ( ) and ( )
x yn nx yζ ζ  are easily obtained and hence the eigenfunctions are: 
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 (2.1.31) 

 
 
 
Consequently the corresponding band structure is given by: 
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 (2.1.32) 

 
 
 
 
Again, similar to quantum wells, subbands are formed, however in quantum wires 

multiple subbands are formed at each eigenvalue E(nx, ny), spread out as ћ2kz
2/2mzz. 

This is shown in Figure 2.1.9. 

 

 
Figure 2.1.9:  Band structure and density of states of Quantum Wires [1] 
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I) DOS 

 

When electrons confined in an ideal one dimensional line (1D -line) are considered, the 

DOS is given by: 

 

 
* *
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D
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π
π
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− −h

 (2.1.33) 

 
 
 
with Emin being the ground state energy.  Thus the general DOS for a quantum wire can 

be written as: 
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 (2.1.34) 

 
 
 
Now because of the multiple subbands, the DOS has peaks at every eigenvalue E(nx,ny).  

Eigenvalues can also be degenerate due to there being two quantum numbers involved.  

This is where the difference between Quantum Wells and Wires lie; since this can lead to 

peaks occurring at irregular intervals, different to Quantum Wells.  This is also shown in 

Figure 2.1.9 
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2.1.4 Quantum Dots 
 
   

 
 

Figure 2.1.10:  Quantum Dot with dimensions Lx, Ly and Lz  finite [1,7] 
 

In a quantum dot, all three degrees of freedom are quantum confined.  Thus the envelope 

function can be written as 

 

  

 ( , , ) ( ) ( ) ( )
x y zn n nx y z x y zφ ζ ζ ζ= • •  (2.1.35) 

 
 
 
Now suppose that the three sides of the “quantum box” are given by Lx, Ly and Lz, and 

that the confining potential is infinite, as was the case for the Quantum Well and Wire.  

This leads to only waves satisfying the following condition that are allowed in the 

“quantum box”: 
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With this in mind and again using the “particle trapped in an infinite well potential” – 

problem in quantum physics, the envelope function is found to be: 

 

 2 2 2( , , ) sin sin sinyx z

x x y y z z
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L L L L L L
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 (2.1.37) 

 
 
 
This leads to the energy eigenvalues having the form: 
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From equation (2.1.36) it is clear that the quasi-continuous nature of the semiconductor 

(and therefore also the band structure) is no longer present at all in quantum dots, since 

the energy eigenvalues are now indexed by three quantum numbers (nx, ny and nz). 

 

I) DOS 

Since band structure is no longer a term that has any relevance in a quantum dot, the DOS 

is now a sum of delta functions, written as: 

 

 

 , ,
, ,

( )
x y z

x y z

QDot n n n
n n n

g E Eδ= −∑  (2.1.39) 

 
 
    
This is clear if we consider the following:  There is no direction of free motion within the 

quantum dot and therefore no transport within a quantum dot.  Hence there are no quasi-

continuous momentum components.  All this can be seen in Figure 2.1.11. 

 



 37

 

 
Figure 2.1.11:  Energy levels and DOS of a Quantum Dot [1] 

 

To summarize a comparison between the DOS for a bulk semiconductor, quantum well, 

quantum wire and quantum dot is presented in figure 2.1.12. 

 
Figure 2.1.12: Comparison between DOS for Low-Dimensional structures [6] 
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2.2 Size Dependant Behaviour of Quantum Structures/Optical 
Properties of Quantum Structures 

 
In order to understand that which will follow this section more clearly, a discussion on 

the energy levels of a quantum structure, in specific a zero-dimensional solid, i.e. a 

semiconductor Quantum Dot, will now follow.  Though the results here can be equally 

applied to the semiconductor Quantum Well and Wire cases, this section focuses on the 

extreme case where all 3 spatial dimensions are diminished in order to arrive at an 

oversimplified model for the energy levels of a Quantum Dot in order to understand the 

most relevant physics best and so that it may act as a guide to the understanding of these 

low-dimensional structures. 

 

It is a well known fact that the dispersion relations for the energy of electrons and holes 

in a semiconductor are parabolic at first approximation [see for example [2] and other 

similar sources].  This approximation is true only for electrons and holes that occupy the 

levels that lie at the bottom and top of the conduction and valence bands respectively.  It 

is important to remember that these parabola are really a quasi-continuous set of electron 

(hole) states along a given direction in k-space and that the lowest occupied level in the 

CB and the highest occupied level in the VB are separated by an energy gap, which for 

bulk materials are usually in the order of a fraction of an eV to a few eV. 

 

When the dimensionality of the semiconductor bulk material is reduced in size to a zero-

dimensional Quantum Dot the quasi-continuous nature is emphasized, since (as was 

shown in Section 2.1) only discrete energy levels can exist in the dot.  So now each of the 

original parabolic bands of the bulk case is fragmented into an ensemble of points. 
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Figure 2.2.1:  Energy Dispersion for the 3D bulk semiconductor case compared 

to that of the 0D Quantum Dot case [28] 
  

In order to find a relatively good estimate for these energy levels in a Quantum Dot the 

textbook type “particle-in-a-box” – model is used.  By applying the proper boundary 

conditions to a Schrödinger equation for a particle in a 1D box (trapped in an infinite 

potential well where V(x) = 0 inside the well and V(x=L) = ∞ at the boundaries), the 

solutions are stationary-waves with energies [19,20] 
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Thus the ground state energy for an electron in a 1D potential well is: 
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Now applying similar boundary condition for infinite 3D potential wells remain. 

However the shape of this confining potential now influences the solution of the 

appropriate 3D Schrödinger-equation.  If a cubic shape is assumed, the Schrödinger 

equation can be solved independently for each of the three translational degrees of 

freedom.  Thus the overall ground state energy will simply be the sum of the individual 

zero point energies for each degree of freedom [19,22]: 

 

 

 
2

3 1 2

33
8D Cube D Well

hE E
mL− −= × =  (2.2.3) 

 
 
 
If however, the 3D potential well is a sphere with a diameter D, then the solution to the 

Schrödinger-equation involves the introduction of spherical coordinates and the 

separation of the radial- and angular momentum- parts.  The ground state energy 

(corresponding to an angular momentum = 0) will now be given by: 

 

    

 
2

3 2

1
2D Well

hE
mD− =  (2.2.4) 

 
 
 
And so from this it is clear that the shape (or put more accurately: the volume) of the 

confinement potential will play a significant role in the energy-dispersion:  the smaller 

the confinement-volume, the higher the ground state/zero point energy will be.  (Note that 

in this oversimplified model, the effects of a finite confining potential, i.e. V(x,y,z)≠∞,  

has not even been considered!)  So this gives the zero-point energy for a particle trapped 

in confined space. 
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Now the following need to be considered:  the only way an electron can fill up an energy 

state in the conduction band (CB) is if it is excited to the CB from the valence band (VB).  

This leaves behind a hole in the VB.  Now due to the fact that both these carriers have 

charges, they will interact via the Coulomb force.  However, even before that is 

considered the amount of energy needed to excite the electron to the CB (which is equal 

to the energy gap) must also be taken into account.  And then it must be considered that 

both carriers are confined in the 3D potential well, thus requiring that equation (2.2.4) for 

a spherical Quantum Dot be written as [28]: 

 

 
2

3 2

1
2D Well

hE
Dµ− =  (2.2.5) 

 
 
 
Where µ is now the reduced mass of the exciton (see section 2.3).  Now considering the 

Coulomb interaction between the electron and the hole and also taking into account the 

screening by the rest of the crystal, a binding energy term can be estimated as: 

 

 

 
2

0

1.8
2B

eE
Dπεε

= −  (2.2.6) 

 
 
 
where the dielectric constant, ε, gives and indication of the strength of the screening 

coefficient.   

 

From equation (2.2.6) it is clear that the binding energy is size dependant.  For very large 

Quantum Dots (D → ∞) the Eb plays an almost insignificant role.  However, the smaller 

the diameter of the Dot, the larger the role of the binding energy term will be.  It is this 

role that will be investigated more fully further in this dissertation. 
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So now an estimate of the size dependence of the energy gap of a spherical Quantum 

Dot can be made [22 - 27]: 
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 (2.2.7) 

 
 
 
It was already pointed out the shape of the confining potential plays a significant role (as 

it will be the key factor contributing to the confinement volume). From equation (2.2.7) it 

can be seen that the size of the confining particle (in this case a Quantum Dot) also plays 

a very significant role in the band gap energy.  However it must be clearly stated that 

equation (2.2.7) is only a first approximation as many effects, such as crystal anisotropy 

and the spin-orbit coupling have been neglected, to name but a few [28]. 

 

It is interesting to note the play off between the binding energy, EB, and the confinement 

energy, E3D-Well, in these low-dimensional systems.  The confinement energy is always 

positive and thus the ground state’s energy is always raised with respect to the bulk 

situation.  The binding energy is however always negative and therefore tends to lower 

the ground state energy.  The scaling for the confinement and binding energies are 1/D2 

and 1/D respectively. [28] 
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Figure 2.2.2.:  Energy gap as a function of size for a colloidal CdSe quantum 

dot with a diameter D [28]. 
 

 

2.3 Excitons in Quantum Structures 

 

Even though excitonic states have been known to exist since 1931, the last three decades 

have seen extensive investigation on excitonic states in low-dimensional systems [9 - 11].  

Pioneers in this field are Frenkel, Wannier, Pikus, Lozovik, Peierls and Elliot [e.g. 12].  

The main reason for the investigation into excitonic states in low-dimensional structures 

is as follows:  for bulk materials the binding energy is very low and such states can only 

be observed in very pure materials.  Hence it is usually used for characterization.  In 

poorer quality samples these states merge with band-to-band transitions.  However, in 

low-dimensional structures, the binding energy increases due to the quantum confinement 

effect.  The oscillator strength also increases.  This leads to sharp excitonic transitions. 

[13] The excitonic effect thus dominates the absorption spectrum around the band gap 

for these low-dimensional systems [14].  
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2.3.1 What is an Exciton? 
An exciton is a composite of an electron and a hole due to the mutual Coulomb attraction.  

These objects are rare and rather unstable due to their extremely short lifetime.  When 

energy is absorbed in a bulk semiconductor by an electron, an exciton is formed /created 

when a covalent bond is broken.  This is usually achieved via incoming light (normally 

by laser)  

 

2.3.2 Optical Properties of Excitons 
The creation process of the electron-hole-pair is local:  one photon is giving its energy to 

one localized electron (between two atomic sites) and the empty place where the electron 

was sitting would formally be treated as a hole.  The energy needed to break the covalent 

bond is exactly the band gap energy EG.  Now once the electron has left the valence band 

by being excited into the conduction band, the remaining hole has a net positive charge.  

Hence a Coulombic interaction between these two components can be expected [13].  

This is the exciton binding energy, EB, and is negative as it should be for any bound 

system.  Now, considering the fact that the electron need to be excited across the band 

gap (from the VB to the CB in a semiconductor), the required photon energy must be at 

least equal to EG.  However since the electron will now be bound to the hole (and vice 

versa) this required energy is lowered by the exciton binding energy.  Thus the required 

transition energy, E, for the photon to create a bound exciton in a bulk material is given 

by: 

 

     

       ( )G BE h E E nν= = +  (2.3.1) 

 

where the binding energy, EB, is a function of the principal quantum number  

n = 1,2,3… 

This energy would correspond to the position of an absorption peak in optical 

experiments. 
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Figure 2.3.1:  (a) The energy level diagram of an exciton in a direct band gap 

material.  (b) Excitons in Cu2O (T is the transmission) [15,16] 
 

Thus, from figure 2.3.1., as in the Hydrogen atom, the Coulomb attraction forms bound 

levels of the exciton with the lowest-energy bound state characterized by the effective 

Rydberg energy Ry* and the effective Bohr radius a0*, which is for the 3D case: 
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 (with ε the dielectric constant of the material, m0 the electron mass and  μ the reduced 

mass given by    
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 (me* and mh* the effective masses of the electron and hole respectively) and aB the Bohr 

radius of the Hydrogen atom [16]), and the Rydberg energy: 

 

 *
2

0

Ry Ry
m
µ

ε
=  (2.3.4) 

 
 
with the Hydrogen Rydberg, Ry = 13.6 eV and the Hydrogen Bohr radius, aB = 52.9 pm.  

So it follows that the exciton binding energy is given by. 

 

 
*

2B
RyE
n

= −  (2.3.5) 

 
 
leading to the exciton energy levels given in the semiconductor given by: 

 

 

 ( ) G BE n E E= +  (2.3.6) 

 
 
 
Now to see the importance of the excitonic effect in semiconductor absorption effect, 

remember that the absorption coefficient is usually given by [2]: 

 

    

 ( ) ( )Gh A h Eα ν ν= −  (2.3.7) 

 
 
 
Thus the absorption coefficient increases parabolically with the frequency (energy) above 

the fundamental edge.   



 47

 
Figure 2.3.2 (a) The parabolic shape of an absorption spectrum in a 

semiconductor due to the square root dependence on energy (b) 

The absorption coefficient versus the photon energy as measured 

for GaAs [2] 

 

However, once the excitonic effect is taken into account a modification to the absorption 

coefficient as given by equation (2.3.7), is in order.  This is done by multiplying with a 

Sommerfeld factor which takes the Coulomb interaction of the electron-hole pair into 

account: 

 

 ( )  ( )G Gh A h E F h Eα ν ν ν= − −  (2.3.8) 

 
 
 
with F(hν -EG) the Sommerfeld factor defined as follows:  [17] 
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2 1( )

/ 1 exp( 2 / / )B B

F E
E E E E

π
π

=
− −  (2.3.9) 

 
 
which leads to 

 

 2( )   for  
/ B

B

F E E E
E E

π
= <<  (2.3.10) 

 
 
  
and 

 ( ) 1  for  BF E E E= >>  (2.3.11) 

 
 
   
Thus following is a representation of the absorption spectra for a 3D exciton with and 

without the excitonic effect  

 
Figure 2.3.3:  Absorption spectra for 3D (bulk) Excitons [14] 

 

As can be seen from Figure 2.3.3, as a result of the Coulomb interaction between 

electrons and holes, the absorption coefficient is enhanced from its value by the 

Sommerfeld factor. The above is a representation of what happens in a bulk 

semiconductor material.  It is thus clear that the exciton effect plays a very important role 

in the absorption spectra of semiconductors and therefore much attention need to be paid 
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to it.  But what happens once one dimension of the bulk material is made to “vanish”, i.e. 

when the semiconductor becomes a Quantum Well?   

 

Both the electron and the hole (therefore the exciton as a whole) become trapped inside a 

2D quantum “box”.  This means that their wave functions will be localized in a specific 

region in space, in 1 dimension and, depending on the confining potential, will not be 

likely to tunnel through to other regions.  As a result of the electron and hole being 

“forced” together in a relatively small region in space (usually in the order on nm) their 

mutual attraction will also be increased as the discrete energy levels are “forced” to adapt 

to this confining potential which was not present in the bulk semiconductor case.  Thus 

the binding energy of the exciton is increased with respect to the bulk semiconductor 

material.   This binding energy can be estimated from the Hydrogen atom model to give a 

fair approximation of this value, however special emphasis should be placed on the fact 

that it is only an approximation!  The true binding energy value for these excitons will be 

a function of the dimension parameters of the low-dimensional structure.  Thus, by using 

the Hydrogen atom model, the required photon energy will be: 
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Figure 2.3.4:  Absorption spectra for 2D excitons showing the presence and 

absence of the excitonic effect. [14] 
 

What has happened now is this:  The 2D exciton wave function has shrunk in the 2D 

plane, making its radius *
0( 3 / 4)a .  So, when this is compared to the 3D case, there is an 

enhanced overlap between the electron- and hole- wave functions.  Thus the oscillator 

strength of a 2D exciton is larger that that of a 3D exciton: 
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Here fn3D is the oscillator strength of the nth 3D exciton.  Now the enhancing of the 

binding energy and the oscillator strength leads to the stability of the excitons, causing 

them to be present even at room temperature [14].   

 

Thus far only semiconductor bulk material and semiconductor Quantum Wells have been 

discussed.  However for the Quantum Wire, something very different happens. Unlike in 

the previously two mentioned cases the effect of the quantum confinement on the 
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Sommerfeld factor is to lower this value:  the correlated absorption spectra of realistic 

Quantum Wires show a strong quenching of the 1D single-particle singularity.  The 

Sommerfeld factor, which is greater than unity in the bulk and in Quantum Wells 

(Coulomb enhancement), is instead smaller than unity in Quantum Wires (Coulomb-

induced suppression), thus reducing the influence of dimensionality on the optical 

spectra.  The excitonic-corrected absorption above the band edge is decreased from the 

non-interacting case, i.e., the Sommerfeld factor is negative here. This can be understood 

if it is considered that for strictly 1D systems in the non-interacting case the absorption is 

diverging at the edge. Rather than considering the 1D case as special with respect to the 

2D or 3D case, interpret this as the excitonic effect leading the absorption coefficient 

(above the continuum edge) to behave in a way which is basically independent of the 

dimensionality [17]. 

 
Figure 2.3.5:  Calculated absorption spectra for a V-grooved Quantum Wire.  

The dashed line is for single-particle calculations.  The full line 

is the results where the electron-hole correlations are included 

[18] 
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2.3.3 Effect of decrease in size and dimensionality on Excitons 

 

 
Figure 2.3.6:  A decrease in size and dimension of quantum structures lead to 

an increase in binding energy [14] 
 

Figure 2.3.6 shows the effect of a decrease in the dimensional size for respectively a 

Quantum Well (2D), Wire (1D) and Dot (0D).  Both the binding energy and the oscillator 

strength of an exciton increase with a decrease in size and dimensions.  The effect on the 

radiative lifetime (τRadiative) for these different low-dimensional structures is as follows:   
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with f the oscillator strength.  Thus τRadiative decreases with a decrease in size and 
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Figure 2.3.7:  Absorption in GaAs-GaAlAs Quantum Wells of different                

thicknesses, Lz [29]. 
 

Figure 2.3.7 shows the absorption spectra for GaAs-GaAlAs Quantum Wells for different 

well thicknesses.  In bulk GaAs excitons are very weak at room temperature.  However, 

excitons are very prominent in Quantum Well structures.  The upward shift in energy 

within the quantum well data reflects the quantum size effects within the wells, as the 

relevant energy is the separation between the minima and maxima in the electron and 

hole bands within the wells.  Indeed much of the earliest work that confirmed the effects 

of quantum confinement were optical studies on wells of different thicknesses as shown 

in Figure 2.4.7 

 

In summary, when the size and dimensionality of low-dimensional structures decreases 

the binding energy and oscillator strength of excitons increase which has a profound 

effect on the absorption spectra in optical experiments.  The aim of this dissertation is to 

investigate the change of the binding energy in a Quantum Well-Wire structure to better 

understand this effect. 
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Chapter 3 

 Mathematical Techniques 
 

‘... the whole procedure was an act of despair…’   
 
-  Max Planck on his Quantum Theory, 1900 

 
 

3.1 Variational Approach 
 

In situations where a physical system has a Hamiltonian that is not solvable either via an 

exact solution or to a perturbation treatment, a technique, called the Variational Method 

(also called the Rayleigh-Ritz method) comes in handy [1].  This technique is a very 

useful tool, allowing approximate calculations to be made in quantum mechanics. 

Usually when the Schrödinger equation is non-separable in nature some approximation 

technique must be used.  In a similar situation for a confined system, the variational 

method might constitute an economical and physical appealing approach [2]. One of the 

advantages of the Variational technique is that the method requires only a qualitative 

knowledge of the behaviour of the system under study in order to choose adequately the 

trial wave functions [3].  

 

The Variational Method is based on the simple fact that the average energy of a system, 

i.e. the Expectation Value of its Hamiltonian H, in a state represented by an arbitrary 

wave function, has got to be greater than or equal to the ground-state energy of the 

system [1].  To see this consider the following:  the ground-state energy acts as a lower 

bound on an expectation value calculated with any arbitrary trial wave function.  So, by 

choosing a trial wave function with a number of variational parameters, the expectation 

value of the Hamiltonian H, can be minimized as a function of these variational 

parameters!  The lowest possible ground-state energy will be the solution to the 

Schrödinger equation that is sought after and this depends on the choice of the trial wave 

function, i.e. on the number of variational parameters introduced in the system. 
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This can be proven as follows: 

 

Expand any arbitrary trial wave function ψ in terms of the complete set of eigenfunctions 

un of the Hamiltonian H belonging to the eigenvalues En: 

 

 

 n n
n

a uψ = ∑  (3.1.1) 

 
 
This can also be written in Dirac notation: 
 
 

 

 n n
n

a uψ = ∑  (3.1.2) 

 
 
     
Now the expectation value of the Hamiltonian, H, can be written as 

 

 

 

2

2

| |

| | |

n n
n

n
n

a EH
H

a
ψ ψ

ψ ψ
= =

∑
∑

 (3.1.3) 

 
 
     
 (Note that ψ  may not be normalized) 

An inequality is now obtained if all the energy values, En, are replaced by the ground-

state energy, E0, i.e. by the lowest eigenvalue of H: 
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| |

| |

n
n

n
n

E a
H E

a
≥ =

∑
∑

 (3.1.4) 

 
 
     
Hence to fully exploit the power of the Variational Method, choose a trial wave function 

that amply contains a whole lot of variational parameters, λi: 

 

 

     

 1 2 3( , , ....)ψ ψ λ λ λ=  (3.1.5) 

 
 
 
Then vary those parameters, λi, as such until the expectation value of H is minimized [1]: 

 

 

 0
i

H
λ

∂
=

∂
 (3.1.6) 

 
 
To demonstrate how this technique is used more clearly, consider the case for a quantum 

confined system.  Assume that, for a given quantum system, the time-independent 

Schrödinger equation can be written as: 

 

 

 n n nH Eψ ψ=  (3.1.7) 

 
 
     

Here set ћ = m = 1.  Then 21 ( )
2

H V q= − ∇ +  is the associated Hamiltonian for this 

system with {q} the set of coordinates on which the potential V depends. 
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Now an approximate solution to equation (3.1.7) can be found by replacing the wave 

function, ψn, with a trial wave function, θn.  It is however important that this trial wave 

function possess a similar behaviour at the “origin” as well as asymptotically at infinity.  

Now, with the expectation value being: 

 

 

 
**

* *|
n nn n

n n n n

H dH
H

d

θ θ τθ θ

θ θ θ θ τ
= = ∫

∫
 (3.1.8) 

 
 
    
The estimate of the energy of the system can then be found by simply minimizing the 

function: 

 

 *
n nH dθ θ τ∫  (3.1.9) 

 
 
     
The following additional restriction also holds: 

 

    

 '
*

,n n n n
dθ θ τ δ=∫  (3.1.10) 

 
 
Therefore, as shown earlier, energy eigenvalues can be found which will be at least equal 

to the real eigenvalues (i.e. eigenvalues of the true wave function and not the postulated 

trial wave function) [3]: 

  

     

 *minn n n nH d Eε θ θ τ= ≥∫  (3.1.11) 
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From this it is clear that a bad postulation of the trial wave function, θn, leads to a bad 

estimate of the eigenvalues εn.  And this means that all the qualitative knowledge of the 

system has not been properly included in the trial wave function [3]. 

 

In practice, however, the trial wave function depends on a set of spatial coordinates and 

on a set of unknown parameters, i.e.: 

 

 

 1 2 3( , , .... ) and ( , , ... )n n s n n kx y z zθ θ θ θ α α α α= =  (3.1.12) 

 
 
    
This will mean that the eigenvalue will also be a function of these variational parameters, 

i.e.: 

 

 1 2 3( , , ... )n n kε ε α α α α=  (3.1.13) 

 
 
    
Thus, in order to determine the set {αk}, the following system of equations must be 

solved: 

 

 0,   for  1, 2,...,n

i

i kε
α

∂
= =

∂
 (3.1.14) 

 
 
 
From equation (3.1.14), the eigenvalues εn can be easily obtained.  Thus an approximate 

set of eigenvalues εn for a trial eigenfunction θn, has been obtained and the accuracy (i.e. 

how close these set of eigenvalues are to the real eigenvalues of the real wave 

eigenfunction) is only dependent on the choice of the trial eigenfunction, in specific the 

amount of variational parameters included in it, and how much this reflects qualitatively 

the knowledge available of the system. 
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3.2 Effective Mass and Effective Mass Approximation 
 

The following discussion is based on general arguments and common assumptions as 

detailed in Gerald Burns’ Solid State Physics [4]. 

 

From Newton’s second law, it is known that mass is defined as the constant of 

proportionality between force, F, and acceleration, a.  However, when an electron 

interacts with other electrons in a metal or semiconductor, this interaction causes a 

change in the mass of the electron, i.e. the effective mass of the not free electron is 

different form that of a free electron.   

 

For example:  consider a spherical ball with charge Z and mass M being accelerated by an 

external electric field, E, in a frictionless fluid.  It is clear that the force on the ball will 

be:  F = ZE.  However the ratio of ZE/a ≠ M, simply because the ball will also push some 

of the fluid ahead of it.  And thus Newton’s second law will not give the correct 

proportionality constant, i.e. free mass, for this situation but instead will give an 

“effective mass” for the ball different from M.  (This is so if the focus is on the ball only.) 

With this analogy in mind, it is clear to see that an electron moving in a crystal will 

experience the same result, however the effective mass me
* can be larger, smaller of even 

negative in comparison to the rest mass me [4]. 

 

To show this, let the group velocity of an electron in an energy band in a crystal under an 

applied electric field, E, be vg.  A wave packet, whose wave vector is cantered at k, 

represents the electron.  It is known from optics that: 

 

 g
dv
dk
ω=  (3.2.1) 

 
where ω is the angular frequency of the wave.  But since from Planck’s law, it is known 

that there exist a relation between angular frequency and energy, namely: 
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 E ω= h  (3.2.2) 

     
leading to 

 

     

 1
g

dEv
dk

=
h

 (3.2.3) 

 
 
     

 
2 2

2

1 1
 

gdv d E d E dk
dt dt dk dk dt

= =
h h

 (3.2.4) 

 
 
 
Thus, from equation (3.2.4) it is clear that the electron acceleration (dvg/dt) is related to 

the energy dispersion (d2E/dk2), i.e. to the curvature of the band, and the variation of k 

with time under the influence of an external force (dk/dt).  Now the applied electric field 

(applied for a time interval δt) does an amount of work on the electron of charge –e: 

 

     

 ( )gE eE v tδ∂ = − × ×  (3.2.5) 

 
 
 
However, this work can also be written as: 

 

 

 g
dEE k v k
dk

δ δ δ = = 
 

h  (3.2.6) 

     
Stating that: 

 k dk
t dt

δ
δ

=  (3.2.7) 

      



 64

it is clear that: 

      

 
eEdt dk

dk eE
dt

− =

= −

h

h
 (3.2.8) 

 
 
 
from equations (3.2.6) and (3.2.7). 

Now, substitution of dk/dt in equation (3.2.4) leads to: 

 

 

 
2

2 2

1 ( )gdv d Ea eE
dt dk

= = −
h

 (3.2.9). 

 
 
 
This has the same form as Newton’s second law (a = F/m) and hence an effective mass 

(m*) can be defined as: 

 

 
2

* 2 2

1 1 d E
m dk

=
h

 (3.2.10) 

 
 
 
It is therefore clear that the effective mass is simply related to the curvature of the energy 

bands.  

 

 

Although band diagrams are in general quite complex and difficult to calculate, in the 

effective mass approximation (EMA) the bands are assumed to have simple parabolic 

forms near extremes in the band diagram [5].   
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Figure 3.2.1:  Simple two-band model for bulk direct gap semiconductors [5]. 

 

Figure 3.2.1 shows the band structure in the EMA for a bulk direct gap semiconductor.  

The solid lines, showing the real/true band structure, is approximated by parabolic bands 

(dashed lines) at k = 0 in the effective mass approximation.  The curvature of the bands 

reflects the “mass” of the electrons in the conduction band and the holes in the valence 

band.  In this approximation the carriers behave as free particles with an “effective mass” 

m*. 

 

Physically the effective mass attempts to incorporate the complicated periodic potential 

“felt” by the carriers in the lattice.  This approximation completely ignores the 

semiconductor atoms in the lattice to treat the electron and hole as “free particles”. 

 

3.3 Envelope Function Approximation 

 
By combining the effective mass approximation with appropriate boundary conditions  

 

 
0  for  

( )
 for 

V
<

= ∞ >

r a
r

r a
 (3.3.1) 
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(a being the boundaries of the confined system) each of the carriers in the quantum 

structure- /low-dimensional-system -  problem can be viewed as being in a “particle-in-a-

box” - form.  Thus, this requires that the quantum structure is treated as a “bulk” sample, 

i.e. assume that the single particle (electron or hole) wave function can be written in 

terms of Bloch functions: 

 

 ( )( ) ( ) i
nk nku eψ ⋅= k rr r  (3.3.2) 

 
 
 
where unk is a function with the periodicity of the crystal lattice and the wave functions 

are labelled by the band index n and wave vector k.  This approximation is called the 

Envelop Function Approximation (EFA).  The single particle wave function can then be 

written as a linear combination of Bloch functions with expansion coefficients, Cnk: 

 

 

 ( )
single particle ( ) ( )e i

nk nkC uψ ⋅= ∑ k r

k
r r  (3.3.3) 

 
 
Now, assuming that the functions unk have weak k dependence, this will lead to: 

 

  

 ( )
single particle 0 0 single particle( ) ( ) e ( ) ( )i

n nk nu C u fψ ⋅= =∑ k r

k
r r r r    (3.3.4) 

 

 

 
Here the single particle function, fsingle particle, is the “envelope function”.  Now these un0 

functions are usually known from the bulk material.  So the quantum structure- or low-

dimensional - problem is reduced to determining the envelope functions for the single 

particle wave functions: fsingle particle.  Thus, if for example spherically shaped quantum 

dots are assumed, with infinitely high potential barriers at the dot boundary, then the 
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envelope functions of these particles are given by the “particle-in-a-sphere” solutions 

with the free particle mass, m0, replaced by an effective mass, m*. 

 

3.4 Atomic Units 
 

When solving complicated systems of mathematical equations, even the simplest of 

mistakes can result in hours of debugging.  For this reason it is vital to make software as 

clean and simple as possible. One thing that can be done in the physical sciences toward 

this end, is to use dimensional analysis.  

The simplest form of dimensional analysis is to change to a new system of units tailored 

specifically to the problem at hand.  This entails changing numerical values of physical 

constants in the equations used, but not changing the equations themselves at all.  And 

then, once the calculations are completed, the results should be converted back to the 

standard units using the familiar rules for unit conversion.  Such an adapted system of 

units can be very useful when the relevant physical constants have large or small values 

in terms of standard units [6]. 

As an example in atomic-physics so called atomic units are frequently adopted to make 

things easy.  For the purposes of this dissertation, however, a slight modification is 

required to use the so called effective atomic units.  When using this convention one 

measures quantities in units of some suitable atomic constants.  For example one 

measures the mass in units of m* and charge in units of e.  This has the effect that, in 

effective atomic units 

 

    e = m* = ħ = 4πεεr = aB
* = 1 

 

 

Note that the units change when changing the semiconductor material because εr and m* 

then changes [7,8]. 
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Chapter 4 

Theoretical Calculations for 

 Quantum Well-Wire 
 
‘As far as the laws of mathematics refer to reality, they are not certain;  
and as far as they are certain, they do not refer to reality.’  

-  Albert Einstein, "Geometry and Experience", January 27, 1921 

 
‘It is the mark of an educated mind to be able to entertain a thought without accepting it.’  

- Aristotle, Greek critic, philosopher, physicist, & zoologist (384 BC - 322 BC)  

 

 

An interacting electron-hole pair in a Quantum Well-Wire is studied within the 

framework of the Effective-Mass Approximation.  An expansion to a mathematical 

technique proposed by Harrison et. al. [12] is presented.  The technique is applied to an 

infinite Well-Wire confining potential.  The Envelope Function Approximation is 

employed in the approach, involving a three parameter variational calculation in which 

the symmetry of the component of the wave function representing the relative motion is 

allowed to vary from the one- to the two- and three-dimensional limits.   

 

4.1 Introduction 
 

At the beginning of the 1980’s, advances in technology, especially in very accurate 

lithographic techniques, made it possible to confine electrons in a quasi-one-dimensional 

structure known as the Quantum Wire [1-3].  Correlated electron-hole pairs form 

Wannier-excitons in semiconductor heterostructures.  For the past two decades, the study 

of confined excitons in a Quantum Well as well as a Quantum Wire and Wire 

heterostructures has been a subject of great interest and an enormous amount of literature 
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has been devoted to this field [4-8].  It is well established that the confinement of 

excitons in Quantum Wells yields enhanced excitonic effects (such as the binding energy 

and oscillator strength).  This can be exploited in the design of novel optoelectronic 

devices for example blue and ultraviolet light emitting diodes (LEDs) and blue laser 

diodes (LDs) have been developed recently using InGaN Quantum Wells (QWs) as the 

active layers [9-11]. 

 

As was seen in an earlier section (section 2.3), excitons are characteristic of the optical 

spectra of Quantum Wells and Wires [12].  In a real solid, many complicating effects 

inhibit a simple comparison of the experimental observation of the exciton emission 

energy with the theoretical estimate of this value, arising from the uncertainty in the 

knowledge of a range of parameters like the exact widths of the potential wells and 

barriers, the relevant effective mass parameters and the degenerate nature of the valence 

band states [13].  For excitons in most III-V Quantum Wells, for example, both the 

electron and the hole are strongly confined within the well region by the band gap 

discontinuities in the valence band (VB) and conduction band (CB).  This is the case in 

GaAs/(Al,Ga)As among others [14].  A quasi–two-dimensional behaviour occurs on 

reducing the well width as the average electron-hole distance decrease leading to an 

increase in the binding energy.  However, when the well width is smaller than a critical 

value, the leakage of the wave function into the barriers becomes more important and the 

binding energy is reduced until it reaches the value appropriate to the bulk barrier 

material for which L = 0. 

 

As the electronic industry progresses from micro-technologies to nanotechnologies 

whereby devices are designed in the nanometre range, it becomes increasingly necessary 

to address the concern of the exciton losing its enhanced effects in the ultra- small 

quantum structures, due to the increased penetration of the exciton wave function into the 

barrier regions in the direction of diminishing spatial confinement [15]. 

 

In this chapter an expansion of a mathematical technique proposed by Harrison et. al. 

[12,13]  is introduced to investigate the quasi-two-dimensional, quasi-one-dimensional 
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behaviour of a confined exciton inside a semiconductor as the bulk material is reduced in 

dimensions to form a Quantum Well and Wire.  It is standard in literature to employ trial 

wave functions, written as a product of three wave functions:  the first two are 

corresponding to the single particle wave function of an electron and a hole in the 

Quantum Well-Wire and the third represents a free exciton whose radius is adjusted as a 

variational parameter [16].  This method can be suitably adapted for any particular choice 

of variational wave function. 

 

4.2 Exciton Hamiltonian and Expectation Value  
 
 
The validity of the envelope function approximation (which takes the wave function of 

the interacting system of an electron and hole in a semiconductor to be written as the 

product of a Bloch function appropriate to the bottom of the associated (electron) 

conduction or (hole) valence band states together with an envelope function describing 

the relative electron – hole motion) is assumed [13] as well as the effective mass 

approximation, in the single band scheme, allowing the use of relevant effective masses 

for the charge carriers in the CB and VB respectively.  

 

Consider a Wannier exciton in a rectangular Quantum Well-Wire of infinite extent in the 

x-direction but having a width, Ly, and height, Lz, in the y- and z- direction respectively.  

Using the variational scheme, the Hamiltonian of a correlated electron-hole pair can be 

written as: 

     

      e h rH H H H= + +     (4.2.1) 

     

where     

2
2

,*

2 2 2

* 2 2

2

2

e ee z y e
e

e e
e e e

H V
m

H V
m z y

= − ∇ +

 − ∂ ∂= + + ∂ ∂ 

h

h

   (4.2.2) 
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and 

     

 

2
2

,*

2 2 2

* 2 2

2

2

h hh z y h
h

h h
h h h

H V
m

H V
m z y

= − ∇ +

 ∂ ∂
= − + + ∂ ∂ 

h

h
 (4.2.3) 

 
 
are the single-particle Hamiltonians of the electron (hole) and Ve (Vh) is the confining 

potential due to the valence- (conduction-) band offsets, me
* (mh

* ) is the effective mass of 

the electron (hole) appropriate to the VB (CB) of the semiconductor material under 

consideration, and  

     

 

2
2

2 2

2

 
2

 
2

r x Coulomb

r Coulomb

H V

H V
x

µ

µ

= − ∇ +

 ∂= − + ∂ 

h

h
 (4.2.4) 

 
 
is the relative motion Hamiltonian for the electron-hole pair with μ the reduced mass of 

the electron-hole pair : 

 

 
* *

* *
e h

e h

m m
m m

µ =
+

 (4.2.5) 

 
 
and VCoulomb is the Coulombic interaction between the electron and the hole: 

 

 

 
2

4Coulomb
eV

rπε
= −  (4.2.6) 

with r being the electron-hole separation distance and ε the dielectric constant for the 

semiconductor material under consideration. 
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The envelope function is now taken to have the form: 

 

    

 ( , ) ( , ) ( , , , , , )e e e h h h r e e e h h hy z y z x y z x y zφ ϕ ϕ ϕ=  (4.2.7) 

 
 
 

where φe (φh) is the eigenfunction of the Hamiltonian He (Hh) normalized over the 

confined region , i.e. 

 

    

     e e e eH  = Eϕ ϕ  (4.2.8) 

      
 h h h hH  = Eϕ ϕ  (4.2.9) 

 
 

with Ee and Eh being the eigenvalues for these equations.  It is in these Hamiltonians that 

the quantum confinement potential will be present. 

 

It is now simply a matter of solving the expectation value 

 

 

    
ˆ* | |

* |
φ φ

φ φ
< >

< >g
HE = E  +               (4.2.10) 

 

 

in order to calculate the total energy of the electron-hole system (where Eg is the 

semiconductor band gap energy). 
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Equation (4.2.10) can now be expanded to 

 

  

 * * *
* * | * |

φ φ φ φ φ φ
φ φ φ φ φ φ

+e h r
g g

< |H | > < |H | > < |H | > A+B+CE = E  + + +  = E                   
< | > < > < > D

(4.2.11) 

 

 

Consider now the normalizing term, D: 

 

  

 
2 2 2

All Space

* |   | ( , ) | | ( , ) | | |  e e e h h h r e h e hy z y z dx dy dy dz dzφ φ ϕ ϕ ϕ=< > = ∫D  (4.2.12) 

 
 
Now:  φe and φh are both functions of y and z so, the integration over x involve only the 

relative motion term φr.  Thus, the result of this integration will be a quantity that is a 

function of z = |ze - zh| and y = |ye - yh|: 

 

    

 2F( , ) | |  ry z dxϕ= ∫  (4.2.13) 

 
 
 
The remainder of the integral over coordinates ze, zh and ye, yh defined between “effective 

infinities”⊗ μ ( = -∞), ν( = +∞) and ρ( = -∞) , τ( = +∞) gives 

 

 

                                                   
⊗ Since it is impossible to numerically/computationally integrate to ± ∞ it is necessary to integrate only as 

far as “effective infinities”.  Thus the actual values for μ,υ,τ and ρ are at the discretion of the user. However 

the benefits gained in accuracy must be weighed against the increased computational effort.[12] 
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2 2

0 0

D | ( , ) | | ( , ) |  F( , ) 

                          [ ( - - , - - ) ( - - , - - )]  

e e e h h h e h e h
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y z z y y z dy dy dz dz

z z z y y y z z z y y y dy dz

ν µ τ ρ ν τ ν τ

µ ρ µ ρ

ϕ ϕ

δ δ

− −

=

× +

∫ ∫ ∫ ∫ ∫ ∫  (4.2.14) 

 
 
 
If a probability term is defined as 

 

 
-z

2 2 2 2p( , ) | ( ' , ' ) | | ( ', ') | | ( ', ') | | ( ' , ' ) | '  '
y

e h e hy z z z y y z y z y z z y y dy dz
τυ

µ ρ

ϕ ϕ ϕ ϕ
−

= + + + + +∫ ∫ (4.2.15) 

 
 

with p(y,z) being the uncorrelated probability of finding an electron and hole separated by 

a distance 2 2r y z+| |=  (in the confinement plane), then it can be shown that 

 

    

 
-

0 0

F( , ) p( , )  D y z y z dy dz
ν µ τ ρ−

= ∫ ∫  (4.2.16) 

 
 
Consider now the term, A: 

 

 

 * *
e e

All Space

| H |  H     e h e hA dz dz dy dy dxϕ ϕ ϕ ϕ=< > = ∫  (4.2.17) 

 
 
 

Now if 2
,e ez y∇  as in (4.2.2) is given by 

2 2
2

, 2 2e ez y
e ez y

 ∂ ∂∇ = + ∂ ∂ 
  it can be shown that 
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where 

 
2 2

2 2( , )  r r
e e

G y z dx
z y

ϕ ϕ
 ∂ ∂

= + ∂ ∂ 
∫  (4.2.19) 

 

 

In a similar way it can be shown that 

 

 

 
2

*  -  p( , ) G( , )  
2 h

y z y z dy dz
m

= ∫
h

hB DE  (4.2.20) 

 
 
Turning attention to C: 

 

 

 
 

* | |  *   r r r r r r e h e h
All Space

H H dx dy dy dz dzϕ ϕ ϕ ϕ=< > = ∫ C  (4.2.21) 

 
 
After a detailed calculation it is easily shown that: 

  

 

 
2 2e - p( , ) J( , )  p( , ) K( , )  

2 4
y z y z dy dz y z y z dy dz

µ πε
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h =C  (4.2.22) 

 
 
with 
    

 
2

2J( , )  r ry z dx
x

ϕ ϕ
 ∂=  ∂ 

∫  (4.2.23) 
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and 

 2 1( , )  rK y z dx
r

ϕ= ∫  (4.2.24) 

 
    
with     

 2 2 2r x y z+ +| |=  (4.2.25) 

 

Further simplification requires a specific choice of the envelope function φr.   However, 

the next two sections will show the validity of these equations, before a specific choice 

for the envelope function is made. 

 

4.3 Solution to Expectation Value  
 
Here the derivations of equations (4.2.17) through (4.2.24) are shown.  Each individual 

term (A, B, C and D), from equation (4.2.11) is now considered: 

 

First consider the term A: 

 

 * | |eHφ φ=A  (4.3.1) 

 
 *       e e h e h

AllSpace

H dz dz dy dy dxφ φ= ∫A  (4.3.2) 

 
                                  
This can be written as: 
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(4.3.4) 

 
 
 
(The operator VCe is simply multiplicative.) 

Equation (4.3.4) can therefore be written as: 
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h
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  (4.3.5) 

 
Now it can be written: 

 

*

*

*

e e

h h

r r

ϕ ϕ

ϕ ϕ

ϕ ϕ

=

=

=

 (4.3.6) 

      
 
since none of the functions are imaginary. 

Therefore: 
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 (4.3.7) 
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( , ) but ( , )h h e h h h h hz y z yϕ ϕ ϕ ϕ≠ =
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 (4.3.8) 

 

If the second term of equation (4.3.8) is considered, it is clear that, since φh is not a 

function of the coordinates ze and ye, i.e.: 

 

 

(4.3.9) 

 

 

this function (φh) should be treated as a constant with respect to the differential operators. 

It is known however that the result of differentiation on a constant is zero.  Thus the 

second term is reduced to zero, leaving: 
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            (4.3.12) 

 

Now, from equation (4.2.12) it is clear that, in the first term, the integral part of equation 

(4.3.12) is equal to D.  Hence: 
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Now, to avoid confusion in the rest of this and following sections, call z = a and y = b.  

Then equation (4.3.13) can be written as: 

 

 

 
2

* ( , ) ( , )
2 e AllSpace

p a b G a b dadb
m

= − ∫
h

eA DE  (4.3.14) 

 
 
 
exactly as equation (4.2.18), with 

 

 
2 2

2 2( , )   r r
e e

G a b dx
z y

ϕ ϕ
 ∂ ∂= + ∂ ∂ 

∫  (4.3.15) 

as equation (4.2.19).  The justification for introducing the terms a and b shall be shown 

later in this section. 

 

In a similar way B can be found: 
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Consider now the term C: 
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The terms in equation (4.3.21) can be grouped as shown by the curly brackets: 

 

   
                 

 

 

                      (4.3.22) 

 

This gives C as was shown in equation (4.2.22): 
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( , ) ( , ) ( , ) ( , ) 
2 4

ep a b J a b dadb p a b K a b dadb
µ πε

= − −∫ ∫
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with:  

 
2

2( , )  r rJ a b dx
x

ϕ ϕ
 ∂

=  ∂ 
∫  (4.3.24) 

    
and: 

     2 1( , )
( )rK a b dx

r x
ϕ= ∫                           (4.3.25) 

 

  

4.4 Vectors for 6D-space 
 
In this section it will be shown how the terms a and b was introduced in the previous 

section (remember however that in section 4.3 it was stated that z = a and y = b): 

 
First, define: 
 
    a = |ze – zh|       (4.4.1) 
 
    b = |ye – yh|      (4.4.2) 
 
    x = |xe – xh|      (4.4.3) 
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∫ ∫ ∫ ∫ ∫ ∫

where these are the electron-hole separations in the x-, y- and z- directions respectively.  

Thus, consider: 

 

 
2 2 2

2 2
* 2 22 e h r r e h e h
e e eAllSpace

dz dz dy dy dx
m z y

ϕ ϕ ϕ ϕ
  ∂ ∂= − +   ∂ ∂  

∫
h

eA DE  (4.4.4) 

 
 
  
Since φr is the only function of x, definite integration over x leaves only a function of a 

and b (bearing in mind that a is itself a function of ze and b, in turn, is a function of ye 

according to definitions (4.4.1) and (4.4.2)).  Therefore it can be stated that the function 

G (as given by equations (4.2.19) and (4.3.15)) will be a function of a and b, i.e. 

 

 

     ( ,  )  ( ,  )G G a b G z y= =     (4.4.5) 

 

 

      
Consider now the remainder of the definite integral over the coordinates ze, zh, ye and yh 

between “effective infinites”: 

 

   

  

          

           (4.4.6) 

 

 

 

Note that the a and b values must be between 0 and ∞, i.e. negative values are not 

considered.  This is so because, since a and b are representative of the distance between 

the electron and the hole (i.e. the absolute distance) it cannot be negative.   
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What does this mean?  It is known that the square of a wave function gives the 

probability of the particle being at those specific coordinates.  Therefore, if the electron 

has a good probability to be at the coordinate (ze, ye) and if the hole has a good 

probability to be at the coordinate (zh, yh) (bearing in mind that the coordinate axis          

z, y → 0 in a Quantum Wire), it is required (by equation (4.4.6) that the separation 

between the electron and hole is equal to a and b in the z- and y- directions respectively.  

But now, it can be written: 

 

 
( )

( )

2 2
2 2

0 0

2 2
2 2

0 0

( , ) ( , ) ( , ) ,  

( , ) ( , ) ( , ) ,  
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ϕ ϕ δ

∞ ∞ +∞ +∞ +∞ +∞

−∞ −∞ −∞ −∞

∞ ∞ +∞ +∞ +∞ +∞

−∞ −∞ −∞ −∞

− − − −  

+ − − − −  

∫ ∫ ∫ ∫ ∫ ∫

∫ ∫ ∫ ∫ ∫ ∫
  

  (4.4.7) 

 
 
 
Thus:  the first term will only have a finite, non-zero value if: 

    

     

    -    e ha z z=     (4.4.8) 

      
And at the same time:     -  e hb y y=      (4.4.9) 

 

 

 (It is very important to note that these two conditions both have to hold at the same 

time!) 

 

The second term only has a finite, non-zero value if: 

    

    -    h ea z z=                        (4.4.10) 

      
And at the same time:     -  h eb y y=                (4.4.11) 
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It is now guaranteed that, if there is a non-zero probability of existence at specific 

coordinates, the difference between these coordinates will be a and b.  But what is the 

physical interpretation of this?  Consider the following:   

 

The amplitude of the wave function of the electron (hole) has a certain finite, non-zero 

value at various places inside the quantum box.  This means the electron (hole) has a 

better probability to “exist” at some coordinates than at others.  Therefore electron (hole) 

has a probability to “exist” at various places (albeit discrete places) inside the quantum 

box (if it is trapped inside!).  But now, because a Coulomb force is also working in on the 

electron (hole) the “amount” of allowed existing points are altered, i.e. different from the 

situation if the electron was only in the box by itself.  (This is like a particle trapped in a 

box, which is trapped in another box, since there are 2 confining potentials:  the quantum 

confinement potential and the Coulomb potential!)  Thus, since the electron and hole are 

only allowed to exist at places where the distance between them is given by a and b 

(inside an already discrete system due to the quantum confinement!), these are the 

positions/points of interest!  Those “other” existing points will not be allowed since then 

the electron and hole won’t be separated by (a, b).  Thus, for such a situation, the 

Coulomb force would not be “turned on”.  Now since the Coulomb force is a continuous 

force, all values for a and b from 0 to ∞ are expected!  So these values must conform to 

the quantum confinement, and not the other way around. 

 

Of course this depends on the specific choice of the quantum confining potential.  If VConf. 

is infinite, a and b can be equal to Ly and Lz at maximum.  If however a finite confining 

potential is used, and tunnelling is possible, then a and b can reach up to ∞.  The upper 

integration parameters (for the appropriate integrals) will be adjusted for this condition.  

 

Now consider: 
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Figure 4.4.1:  An example of a point where the amplitude of the wave squared 

might have a finite, non-zero probability. 
 

The wave functions exist at points in a plane.  In order for the δ-distribution to have a 

non-zero value somewhere, one must integrate over dy and dz at the same time.  But 

since this is impossible, this δ-distribution must be redefined!  Let: 
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 ( , ) Position Vector of electrone ez y= =
uur

ep  (4.4.13) 

and 

                                      ( , ) Position Vector of holeh hz y= =
uur

hp  (4.4.14) 

 
Also, let: 

 ( , ) ( , )e h e hz z y y a b= − = − − =
r uur uur

e hs p p  (4.4.15) 
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Figure 4.4.2.:  Representation of the different vector components. 
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Now the integral (4.4.12) can be written as: 
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uur uur r uur uur uur uur r r

2

e h e h e h

2

e h e h h e

p p s p p p p s

p p s p p p p s s
 (4.4.17) 

 

 

Performing the integration over 
uur

hp first leaves: 

 

1st Term:  Finite value when:   

 = −
uur uur r

h ep p s  (4.4.18) 

2nd Term:  Finite value when: 

 = +
uur uur r

h ep p s  (4.4.19) 

 

Hence: 

 

 

2 2 2 2| ( ) || ( ) | ( )   | ( ) || ( ) | ( )   e h e hG d d G d dϕ ϕ ϕ ϕ
∞ ∞ ∞ ∞ ∞ ∞

∞ ∞ ∞ ∞

− + +∫ ∫ ∫ ∫ ∫ ∫
uur uur r r uur r uur uur r r uur r2 2

e e e e e e
0 - - 0 - -

p p s s p s p p s s p s   (4.4.20) 

 

Let ( , ) ( , ) ( , ) ( , )e e e ez y z y a b z a y b= − = = − = − −
ur uur r

ep p s in the first term.  Then: 

 

   

 = +
uur ur r

ep p s  (4.4.21) 
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Therefore d d=
ur uur

ep p  ;  since 
r
s  is a constant. 

 
Now, remember that the infinite integration parameters as given in the equations in this 

section are actually “effective infinities”: 

 

 

 , , ,µ ν ρ τ= −∞ = +∞ = −∞ = +∞  (4.4.22) 

 
 
 
(as given in section 4.2.)  The integration parameters for equation (4.4.20) will now 

change according to this new definition with
ur
p .  First consider the lower integration 

parameters, i.e. μ ( = -∞) and ρ( = -∞): 

 

 ( , )
    

z a y b

= +

= + +

uur ur r

uure

e

p p s

p  (4.4.23) 

 
Replace the variables over which will be integrated with the lower integration 

parameters: 

     

 ( , ) ( , )e ea b z yµ ρ= + + =
uur

ep  (4.4.24) 

 
 
Now it can be written (since ( , )e ez a y b= − = − −

ur uur r
ep p s  ) : 

        

 

( )                                   
 ( )                                
                                              

( )
  ( )
  

e

e

z z a
a a

y y b
b b

µ
µ

ρ
ρ

= −
= + −
=

= −
= + −
=

 (4.4.25) 
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And thus the new lower integration parameter will be: 

     

 ( , )lower µ ρ=
ur
p  (4.4.26) 

 
 
The same procedure applies for the upper integration parameters, ν(  = +∞) and   

 τ(  = +∞): 

 

Since:   

         ez ν=  (4.4.27) 

and 
 
                                                              ey τ=  (4.4.28) 

It can be written: 

                                                        

 ( )                      
                                 
 ( )
    

e e

e e

z z a
a

y y b
b

ν

τ

= −
= −
= −
= −

 (4.4.29) 

 

And thus: 

 ( , )upper a bυ τ= − −
ur
p  (4.4.30) 

 
Subsequently, by making all the appropriate substitutions in the first term, equation 

(4.4.20) can be written as: 
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  (4.4.31) 
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Now, rename 
uur

ep  to  
ur
p  in the 2nd term.  Then: 
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And then: 
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( , ) ( , ) 
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G a b p a b dadb
m

υ µ−

= − ∫
h

eA DE  (4.4.34) 

 
 
 
A similar procedure can be applied to the terms B and C to show the validity of the 

introduced a and b parameters. 

 

4.5 Specific choice for the Envelope Function φr 
 

With these equations now in hand, this section shows the solution to the probability term 

p(y,z) and discusses the difference between an infinite and finite confining potentials to 

the model at hand. 

 

 Further simplification of equations (4.2.13) through to (4.2.24) requires a specific choice 

of the envelope function φr.  The function (a similar form is often used in literature) 

[13,Error! Reference source not found.,Error! Reference source not found. among 

others] 

 

    

 

2 2 2 2 2( ) ( )e h e hx y y z z

r e
ζ

λ
ψ

 +Ω − + − −
 
 =  (4.5.1) 
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is chosen as the trial wave function describing the relative motion of the electron hole 

pair.  Here Ω, ζ and λ are chosen as variational parameters with the first two being 

dimensionless and λ having units of Å, representing the distance between the electron and 

the hole. 

 

Once the choice for this function has been made with the appropriate variational 

parameters it is a simple matter of minimizing the total energy E (4.2.11) via a variational 

calculation: 
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  (4.5.2) 

 
 

     E = Eg + Ee + Eh + Eb   (4.5.3) 
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 (4.5.4) 

 
 
 
where Eb is the binding energy of the exciton.  An important point to note is that in the 

current formalism of solving (4.5.2) the binding energy can be calculated independent of 

the single particle eigenvalues.  Thus the binding energy of the exciton can be found by 

simply minimizing Eb (i.e. maximizing |Eb|, since Eb   will be negative as long as the 

electron is bound to the hole). 
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Another important point to note is the presence of the single particle wave functions (the 

eigenfunctions φe and φh) in the binding energy term Eb via the probability equation p(y,z)  

(4.2.15).  This will allow the binding energy to have a finite confining potential character 

even if an infinite confining potential is used.  Also, different confining potential shapes 

can easily be incorporated into the binding energy term, by simply adjusting the single 

particle eigenfunctions in p(y,z) appropriately to the chosen confining potential shape. 

 

In order to show the effectiveness of the current formalism, an infinite rectangular 

confining potential is used, i.e. 

 

           

     (| | - )e h eV V z L Vθ ∞= =  (4.5.5) 

 
 

where θ(z) is the Heaviside unit step function. 

 

Note now that choosing the confining potential as above will have no effect on the 

binding energy term whatsoever.  The only effect it will have will be on the range of the 

integration parameters and on the choice of the single particle eigenfunctions, φe and φh, 

in the probability term p(y,z) as these eigenfunctions will now be similar to that of the 

particle confined in a 2D box: 
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y z y z

y zy z y z
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π π
ϕ ϕ

   
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 (4.5.6) 

 
 
 
where only the ground-state is being considered (n = 1). 

This will lead to p(y,z) having the form: 
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 (4.5.7) 

 
 
  
Now, for a finite confining potential it is usually the convention to use: 

 

Vconfining = 0  for 0 ≤y, z≤ Ly,z 

Vconfining = V0  for  y,z>Ly,z 

and hence: 
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 (4.5.8) 

 
 
 
Thus, the single particle eigenfunctions has the same form inside the confined region, 

whether a finite or infinite potential model is used, and in the finite potential model only 

an exponential decay term is “added” during the integration.  Thus as the integration 

range is only over the confined region in the infinite potential model, and the integration 

range is over the entire space, the only difference between these two integrand solutions 

should be the effect of this decaying (“tunnelling”) exponential part.  The effect of this 

will be to lower the calculated energy values as will be seen in Chapter 5:  Results and 

Discussion.  Figure 4.5.1 and Figure 4.5.2 show a comparison between the single particle 

probability densities for an infinite and finite potential well.  Both particles are trapped in 

a Quantum Well-Wire of dimensions 10 Å.  
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Figure 4.5.1:  The probability density for a single particle trapped in a   

infinite potential well with Quantum Well – Wire dimensions 

Ly =  Lz =10 Å 
 

 
 

 
Figure 4.5.2 The probability density for a single particle trapped in a finite 

potential well with Quantum Well – Wire dimensions  

Ly = Lz = 10 Å 
 
From figures 4.5.1 and 4.5.2, it is clear that the shape of the two probability densities 

(from the middle of the box outward) is more or less the same within the box parameters. 
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Hence, the presence of the single particle eigenfunctions in the binding energy term via 

p(y,z) gives the binding energy a finite confining potential character regardless of 

whether an infinite confining potential is used for Ve and Vh.  

                              

It is also useful to see that the unitarily principle (conservation of probability) is not 

violated: 
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∫ ∫   

  (4.5.9) 

 
 
 
as it should be for a infinite confining potential . 

 

4.6 Simplification via substitution and differentiation 
 
The functions F(y,z), G(y,z), J(y,z) and K(y,z) are simplified in Appendix A:  

Mathematical Solutions.  The main idea there is to simplify the integration parameters 

which are from 0 to ∞, to between 0 and 1.  This is done in order to increase the accuracy 

and calculation time of the final numerical solution to these equations.  The solution to 

the probability equation, p(y,z), is also shown in the same appendix.  These functions are 

then solved numerically and minimized  with a software program custom developed (in a 

Windows environment with a Visual Basic 6.0 platform) specifically for these functions 

and the solutions are incorporated in the binding energy equation, equation (4.5.4), to 

minimize this binding energy and hence to find the ground state solution to the binding 

energy. 



 97

4.7 Summary of final equations 
 

In this section a summary of the equations that are simplified, and then solved 

numerically to minimize the exciton binding energy, Eb, as given by equation (4.5.4) is 

presented. 

 

The binding energy term is as follows: 
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 (4.7.1) 

 

 

The terms F(y,z), G(y,z), J(y,z) and K(y,z) are then substituted into equation (4.7.1): 
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And finally the probability equation is as follows (remember that a = z and y = b): 
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Equation (4.7.6) is also substituted into equation (4.7.1). 
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Chapter 5 

Results and Discussion 
 
‘The great tragedy of science - the slaying of a beautiful hypothesis by an ugly fact.‘ 
          

- Thomas Huxley 
 
 
 

Results of the numerical calculations (as discussed in Chapter 4) are presented in this 

chapter.  Quantitative comparisons with previous calculations for Quantum Wells are 

made (in the wire limit where Lz → ∞) to find a good agreement between finite and 

infinite potential models up to a point of 100 Å. 

 

Using the appropriate parameters for the GaAs well in the  GaAs/AlGaAs system        

(me* = 0.067, mh* = 0.45, ε = 12.53) a variational calculation for Quantum Well Wire 

sizes ranging from      Ly = Lz = 3000 Å (‘effective infinity”) to 0 Å has been done.   

 

Note that atomic units where used throughout this chapter (where ħ = e2/2 = 2m = 1) 

unless stated otherwise [1].   

 

Figure 5.1 is presented as the result of such a calculation. 
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Figure 5.1  Exciton binding energy as a function of Quantum Well-  

        Wire parameters Ly and Lz 
 

Notice that the binding energy of the exciton is negative, as it should be for any bound 

system.  For clarity figure 5.1 is presented in an inverted fashion in figure 5.2 
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Figure 5.2  Inverted exciton binding energy as a function of Quantum   

                    Well - Wire parameters Ly  and Lz 
 

A few things are noteworthy on this figure.  Firstly it is clear that for large parameters Ly 

and Lz,,  the exciton binding energy approaches that of the bulk material namely 5.048 

meV [2].  It is known that when the well becomes infinitely wide the confined exciton 

should behave like a free exciton, i.e. the one-particle wave functions become more 

widespread and begin to resemble free Bloch states which constitute free excitons found 

in bulk crystals, [3 - 4] i.e. 

  

 lim free
b bLw
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Figure 5.3:  Binding energy versus Ly and Lz  for extended Quantum Well Wire 

parameters 
 

Figure 5.3 shows the exciton binding energy as a function of the Quantum Well-Wire 

parameters for Ly and Lz extended to the “effective infinity” of 3000 Å.  Detailed analysis 

of the calculation results show that the onset of significant change in the binding energy 

of the exciton as it moves away from the bulk value of 5.048 meV, is at about 100 Å.  

This size range corresponds to the regime of quantum confinement:  in this regime the 

spatial extent of the single particle wave functions are comparable with the Quantum 

Well-Wire size (in at least one dimension).  As a result of these “geometrical” 

constraints, the electron – hole pair is very responsive to the presence of the well-wire 

borders and react to changes in well-wire size by adjusting their energy.  (This 

phenomenon is known as the quantum – size effect) [5] 

Ly (Å) Lz (Å) 

E b
 (m

eV
) 



 105

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100 110

Ly (A)

Eb
 (m

eV
)

 
Figure 5.4:  Binding energy versus Ly.  The z - dimension is extended to infinity 

to approach the quantum well limit. 
 

Figure 5.4 shows the binding energy of the Quantum Well–Wire when the Lz parameter is 

taken to be infinitely wide and the quantum well limit is approached, i.e. two spatial 

dimensions (z and x) are of infinite extent and one dimension (y) is in the same size order 

as the electron and hole wave functions. 

 

Two limiting situations can be observed:  an infinitely wide well, Lz → ∞, and an 

infinitely narrow well, Lz → 0.  For the first situation, the exciton takes the bulk-barrier 

character.  For the latter case, the carrier wave function spreads and penetrates into the 

barriers, making the binding energy decrease towards the value appropriate to the bulk 

material.  For intermediary well width values, when increasing confinement, the binding 

energy is enhanced and then displays a maximum for a critical width value.  This line 

shape of Eb (Ly) seems then to be characteristic of 2D quantum well systems independent 

of the profile of the confining potential [4]. 
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Figure 5.5 shows a comparison between the results of the present dissertation and 

previous research.  The different calculations with different potentials give similar results 

for well dimensions up to about 100 Å. Important to notice is that, an increase in the 

confining potential, leads to an increase in the value of the maximum as well as a shift to 

smaller spacing of this maximum peak.  Hence, since in the current research an “effective 

infinity” was used, it is expected that the maximum/peak should also rise to “effective 

infinity” and be shifted towards smaller spacing to be equal to infinity at Ly ≈ 0.  From 

figure 5.4 it can be seen that this peak lies at Ly = 4 Å.  
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Figure 5.5:  Results for different quantum well potentials [Greene et. al.  [6],             

Diouri et  al [4]] 
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Figure 5.6:  Plot of binding energy vs. the variational parameter λ for 

        Lz → ∞ and Ly → ∞ 
 

A plot of the binding energy versus the variational parameter λ (representing the distance 

between the electron and the hole) for Quantum Well-Wire parameters approaching 

infinity (Lz → ∞, Ly → ∞), gives the expected binding energy curve similar to that of an 

electron inside a Hydrogen atom.  When the electron is close to the hole, the binding 

energy value is very large and negative, but as the electron is moved further away from 

the hole, the binding energy approaches zero to be essentially free at infinity. 

 

However when the Quantum Well –Wire parameters approaches zero (Ly → 0, 

Lz → 0) something quite different is observed.  Figure 5.7 shows a plot of the binding 

energy vs. the variational parameter λ for the above described situation.  (This graph has 

not yet been scaled, since the axis values of this graph are not of importance now, but 

only the graph trend). 
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Figure 5.7:  Plot of binding energy vs. variational parameter λ for zero                                           

Ly → 0 and Lz → 0 (Note that this graph has not yet been scaled) 

 

It is clear from the figure that the binding energy increases positively as the electron 

approaches the hole. It appears that the hole is now repelling the electron!  This can be 

best explained by looking at what happens inside the valence band as the Quantum Well-

Wire is reduced in size.  For Ly and Lz → ∞, the electrons in the valence band, fills up a 

relatively large region of real space (the entire crystal with bulk parameters) compared to 

the region of real space it fills up when the crystal is reduced in size, i.e. when Ly and      

Lz → 0.  Now, taking into account that the number of electrons in the valence band have 

not been reduced (the dielectric constant of the medium has not changed, i.e. ε ≠ ε(Ly, Lz)) 

the electron density has increased since the size of the Quantum Well-Wire has been 

reduced.  Hence the density of the electrons now screening the hole in the valence band 

from the other excitonic component (the electron part of the exciton, i.e. the electron in 
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the conduction band, bound to the hole in the valence band) has increased.  Consequently 

it becomes increasingly more difficult for the electron and hole to recombine due to the 

repulsion/screening of the other electrons in the valence band as the size of the Quantum 

Well-Wire is reduced.  In fact, an amount of energy will have to be added to the electron 

in order for the electron to penetrate this repulsive screening “layer” of electrons in order 

for the electron and hole to recombine. 

 

Now the above would obviously not hold for Quantum Well-Wires grown via some or 

other chemical process, i.e. the above is not true for a Quantum Well-Wire with a fixed 

size, since the amount of electrons in the VB acting as screening electrons remain 

constant and the size of the Quantum Well-Wire does not change.  Thus the above does 

not mean that Quantum Well-Wires with dimensional parameters → 0 will all exhibit this 

property.  For theoretically predicting the behaviour of systems like these it is important 

to include in such a model not only the different dielectric constants for the barrier and 

the well-wire materials (as has been done often in literature [3,7]), but also to include the 

change in dielectric constant due to a change in size, i.e. ε = ε (L), i.e. to take into 

account the decrease in the amount of electrons in the VB due to a decrease in size of the 

Quantum Well-Wire. 

 

However for Quantum Well-Wire systems where the amount of electrons in the VB 

remains constant, even as the size of the Quantum Well-Wire is reduced, the above would 

hold.  This might be achieved by applying a confining potential in the form of an electric 

field and then systematically changing the position of that electric field as to confine an 

ever smaller and smaller region of space while at the same time (via this confining 

electric field) forcing all the electrons in the VB into this smaller region of space. 
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Chapter 6 

 Conclusion and Future Work 
 
 
‘Where were you, when I set the foundations of the earth? Tell me, if you have 
understanding.  Who set its measurements, if you know, or who stretched a line over it?  
Upon what have its bases been grounded, and who set forth its cornerstone. . .’ 
          

-  Job 38: 4-6 
 

A theoretical method presented by Harrison et. al. was expanded to do a variational 

calculation within the envelope function and effective mass approximations on the 

binding energy of an electron hole pair trapped in an infinite confining potential in a 

quantum well-wire.  A three parameter trial wave function, in which the symmetry of the 

component of the wave function representing the relative motion is allowed to vary from 

the one- to the two- and three-dimensional limits was used, however the technique can be 

used for any choice of trial wave function.   

 

Results of these numerical calculations were presented.  Quantitative comparisons with 

previous calculations for quantum wells were made (in the wire limit where Lz → ∞) and 

it was found that there exists a good agreement between this infinite- and other finite- as 

well as infinite - potential models up to a point of 100 Å. 

 

A plot of the binding energy versus the variational parameter λ revealed that the electron 

in the exciton has a very similar behaviour to the electron in the hydrogen atom (or for 

that matter any particle trapped inside a radial decreasing (i.e. V∼1/r) potential field).   

However on reducing the size and dimensions of the quantum structure, it seems that the 

screening of the other electrons surrounding the hole start to play a very important role 

and the shape of a plot of binding energy versus λ is very similar to that of an alpha 

particle trapped in an atomic nucleus.  Further study on this is required.  
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It is concluded from this that for accurately predicting the behaviour of systems like these 

it is important to include in such a model not only the different dielectric constants for the 

barrier and the well-wire materials, but also to include the change in dielectric constant 

due to a change in size, i.e. ε = ε (L), i.e. to take into account the decrease in the amount 

of electrons in the VB due to a decrease in size of the Quantum Well-Wire.  

 

Future work could include adapting the model for finite potentials as well as adjusting the 

confining potentials appropriate to calculate exciton binding energies for cylindrical, T-

shaped and all sorts of different shaped Quantum Wires. 
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Appendix A 

 Mathematical Solutions 

 
‘Don’t worry about your problems with mathematics, I assure you:  mine are much greater’ 

-  Albert Einstein, in a letter to a high school student Barbara Wilson, 7 January 1943 

 

 

This section proceeds to prove the validity of the equations used as well as present the solutions to these equations 

 

First note that, for this section the following holds: 

 
2 2 2 2' ( ) ( ) ( )e h e h e hr x x y y z z= − + − + −     

2 2 2 2 2 2'r x b aζ⊥= + Ω +  

2 2 2 2 2'r x b aζ⊥= + Ω +  
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F(a,b) 

 
Consider the term F(a, b), from equation (4.2.13), where x has been called x⊥ : 

 

 

( )

( )

2

2

0

2

0

2
2 2 2 2 2

0

2 2 2 2 2

0

F( , )

2

'2 exp

2 exp

2
2 exp

r

r

a b dx

dx

r dx

x b a
dx

x b a
dx

ϕ

ϕ

λ

ζ

λ

ζ

λ

+∞

⊥
−∞

+∞

⊥

+∞

⊥

+∞
⊥

⊥

+∞
⊥

⊥

=

=

 = −  

 + Ω + = −   

 + Ω + = −  
 

∫

∫

∫

∫

∫
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Now: 
2 2 2 2     where  Let x R x R b aζ⊥ = − + = Ω +  

2 2( )x R x⊥ = − +  

 

 

Then  x x R⊥= +  

And  1   since  constant

          

dx R
dx⊥

= =
 

 dx dx⊥=uuuuuuuuur  

 

 

So the influence of this substitution on the integration parameters will be as follows: 
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    then  
                          

 0  then  0

                       

If x x R
x

If x x R

x R

⊥

⊥

= ∞ = ∞ +
= ∞

= = +

=

uuuuur

uuuuuuur

 

So: 

( )( )

( )( )

2
2 2 2 2

2

2
F( , ) 2 exp   

2
 2 exp   

x

x R

R

R x b a
a b dx

R x R
dx

ζ

λ

λ

=+∞

=

+∞

 
− + + Ω + 

 = −
 
  

 
− + + 

 = −
 
 
 

∫

∫

 

 

 

Now: 

Substitute:   cosh         sinh

                                                         sinh   

dxx R R
d
dx R d

θ θ
θ

θ θ

= → =

=uuuuuuuuuuuuuuuuuuuur
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So, consider the influence of this substitution on the integration parameters: 

 

 

( )

-1

-1

-1

If:    then  cosh       

                            cosh                                          

                            cosh                                           

xx
R

R

θ  = ∞ =  
 

∞ =   
= ∞     

                                                                              
 

θ = ∞uuuuur

 

 

 

1

1

1

 If:    then  cosh  

                               cosh

                              cosh (1)  
                            1

xx R
R

R
R

θ

θ

−

−

−

 = =  
 
 

=   
 

=
=uuuur
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Thus: 

 

( )( )

( )( )( )

( )( )( )

2

0

2

0

2

0

2 cosh
F( , ) 2 exp  sinh             

2 1 cosh
2 exp sinh          

2 1 cosh 1
2 exp sinh  

R R R
a b R d

R R
R d

R
R d

θ
θ θ

λ

θ
θ θ

λ

θ
θ θ

λ

∞

∞

∞

 
− + + 

 = −
 
  

 
− − + + 

 = −
 
 
 

 − + + 
= − 

 
 

∫

∫

∫

 

 

 

Now: 

:    ln     or    ln
                                                    

                                                And  

Substitute x x
x e

dxd
x

θ

θ θ

θ

−

= − − =

=
−=

uuuuuuur

uuuuuuuuuur
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So the influence on the integration parameters will be: 

 

 

0

      then                
                              
                            0

    0  then  
                             
                           1

If x e
e

x
If x e

e
x

θ

θ

θ

θ

−

−∞

−

−

= ∞ =

=
=

= =

=
=

uuuuur

uuuur

 

 

 

Also, since:   

 

 

( )

( )

1 1 1cosh ( )
2 2
1 1 1sinh ( )
2 2

e e x
x

e e x
x

θ θ

θ θ

θ

θ

−

−

= + = +

= − = −
 

 

 



 120

it can be written: 

( )( )

( )( )

2

0

1

2
0

1

2
2

1 12 1 1
2 1 1F( , ) 2 exp

2

2 1 2 1 1 11 12 exp   
2

2 1 2 1 1 1(1 )( 1) exp

x

x

R x
x dxa b R x

x x

R x xx xR dx
x

R x xx xR
x

λ

λ

λ

=

=

     + − +          −     = − −          
 
  

 + − +   − = − −     
 

 + − +   −= − − − 
 



∫

∫

1

0

  dx




 
 



∫

 

 

( )( )2
1 2

2
0

2 1 2 1 1 1(1 )( , ) exp   
R x xxF a b R dx

x λ

 + − +    −
= −  

   
 

∫
uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuur

 

 

 

This final equation will be the one that is solved numerically as a function of variational parameters and of Quantum Well-Wire size 

parameters. 
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G(a,b) 
Now, consider the term G(a, b), from equation (4.2.19): 

 
2 2

2 2

2 2

2 2
0

( , )  

           2  

r r
e e

r r
e e

G a b dx
z y

dx
z y

ϕ ϕ

ϕ ϕ
+∞

 ∂ ∂= + ∂ ∂ 
 ∂ ∂

= + ∂ ∂ 

∫

∫        

2 2

2 2
0

2  r r
r

e e

dx
z y
ϕ ϕ

ϕ
+∞  ∂ ∂

= + ∂ ∂ 
∫  

( )( ) ( )( )
2 2

' '
2 2

0

2 exp exp  r
e e

r r dx
z y

ϕ λ λ
+∞  ∂ ∂= − + − ∂ ∂ 
∫  

2 2 2 2 2 2 2 2 2 22 2

2 2
0

2 exp exp  r
e e

x b a x b a dx
z y

ζ ζ
ϕ

λ λ

+∞        + Ω + + Ω +∂ ∂       = − + −
      ∂ ∂        

∫

( ) ( )2 22 2 2 2 2 2 2 22 2

2 2
0

            2 exp exp  e h e h
r

e e

x b z z x y y a
dx

z y
ζ ζ

ϕ
λ λ

+∞        + Ω + − + Ω − +∂ ∂       = − + −       ∂ ∂           
∫  
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Now the solution to the general derivative 
2

2  d
dx

 have to be found.  So let the terms that will be constants with regard to the derivative 

variable be k, l, m, b and r.  Then: 

 
2( )r x b k l

md e
dx

 − + + −
 
 

 
 
 
 
 

 

 

 

Use the chain rule 

u
ude due

dx dx
=  where  

2( )r x b k lu
m

− + +
= −  

 

 

 

Then: 
2( ) 2( )r x b k l

m r x b k lde
dx m

− + +
−  − + +

 = −
  
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The derivative of a constant times a function is the constant times the derivative of the function: 

( )
2( )

2( )

r x b k l
me d r x b k l

m dx

− + +
−

= − − + +  

 

 

Use the chain rule: 

1 2 where ( )  and 1/ 2
n

ndu dunu u r x b k l n
dx dx

−= = − + + =  

( )
2( )

2

2
  ( )

2 ( )

r x b k l
me d r x b k l

dxm r x b k l

− + +
−

= − − + +
− + +

 

 

 

The derivative of a sum is the sum of the derivatives: 
2( )

2

2

( ) ( ) ( ( ) )

2 ( )

r x b k l
m d d de k l r x b

dx dx dx
m r x b k l

− + +
−  + + − 

 = −
− + +
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The derivative of the constants k and l is 0: 
2( )

2

2

( ( ) )

2 ( )

r x b k l
m de r x b

dx
m r x b k l

− + +
−  − 

 = −
− + +

 

 

 

The derivative of a constant times a function is the constant times the derivative of the function: 
2( )

2

2
( )

2 ( )

r x b k l
me r d x b

dxm r x b k l

− + +
−

 = − − 
 − + +

 

 

 

Use the chain rule: 

1  where  and 2
n

ndu dunu u x b n
dx dx

−= = − =  

2( )

2

( )   ( )
( )

r x b k l
me r x b d x b

dxm r x b k l

− + +
−

−
= − −

− + +
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The derivative of a sum is the sum of the derivatives: 
2( )

2

( ) ( ) ( )
 

( )

r x b k l
m d de r x b b x

dx dx
m r x b k l

− + +
−  − − + 

 = −
− + +

 

 

 

The derivative of the constant –b is 0: 
2( )

2

( )    (x) 
( )

r x b k l
me r x b d

dxm r x b k l

− + +
−

−
= −

− + +
 

 

 

The derivative of 1 is n nx nx − : 
2( )

2

( )    
( )

r x b k l
me r x b

m r x b k l

− + +
−

−
= −

− + +
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Simplify, assuming x is positive: 
2( )

2

( )    
( )

r b x k l
me r b x

m r b x k l

− + +
−

−
=

− + +
 

 

 

Now do the second derivative: 
2( )2

2

r x b k l
md e

dx

− + +
− 

 
 
 

 

 

 

The second derivative is the derivative of the derivative 

2( )r x b k l
md d e

dx dx

− + +
−  

  =
    
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Copy the first derivative from above: 
2( )

2

( )
( )

r b x k l
md e r b x

dx m r b x k l

− + + 
 −

=  
− + + 

 

 

 

 

The derivative of a constant times a function is the constant times the derivative of the function: 
2( )

2

( )
( )

r b x k l
mr d e b x

m dx r b x k l

− + + 
 −

=  
− + + 

 

 

 

 

Use the product rule 

2

2

( )

( )
where  and 

( )

d uv du dvv u
dx dx dx

r b x k l x bu e v
m r b x k l

= +

− + + −
= =

− + +

 

2 2

2 2

( ) ( )
( ) ( )

r b x k l r b x k lx b d d x br e e
dx m m dxr b x k l r b x k l

m

    − + + − + +− −    +
    − + + − + +    =  
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Use the chain rule 

2( )
where 

u
ude due

dx dx
r b x k lu

m

=

− + +
=

 

2

2 2

2 2

( )
( ) ( ) ( )

( ) ( )

r b x k le x b r b x k l r b x k ld d x bmr e
dx m m dxr b x k l r b x k l

m

 − + +
 −    − + + − + + −    +

    − + + − + +    
 =  

 

 

 

The derivative of a constant times a function is the constant times the derivative of the function: 

( )
2

2
2

2 2

( )
( ) ( )

( )
( ) ( )

r b x k le x b r b x k ld d x bmr r b x k l e
dx m dxm r b x k l r b x k l

m

 − + +
 −  − + + −  − + + +

  − + + − + +  
 =  
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Use the chain rule: 

1

2where ( )  and 1/ 2

n
n udu dunu

dx dx
u r b x k l n

−=

= − + + =

 

( )
2

2
2

2 2

( )
( ) ( )

( )
2 ( ( ) ) ( )

r b x k le x b r b x k ld d x bmr r b x k l e
m r b x k l dx m dx r b x k l

m

 − + +
 −  − + + −  − + + +

 − + + − + +  
 =  

 

 

 

The derivative of a sum is the sum of the derivatives: 

2
2

2

2 2

( ) ( ) ( ) ( ) ( ( ) )
( )

2 ( ( ) ) ( )

r b x k l d d de x b k l r b x r b x k l d x bm dx dx dxr e
m r b x k l m dx r b x k l

m

 − + +   − + + −   − + + −   +  − + + − + +   
 =  
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The derivative of the constants k and l is 0: 

2
2

2

2 2

( )
( ) ( ( ) )

( )
2 ( ( ) ) ( )

r b x k l de x b r b x r b x k l d x bm dxr e
m r b x k l m dx r b x k l

m

 − + +   − −   − + + −   +  − + + − + +   
 =  

 

 

 

 

The derivative of a constant times a function is the constant time the derivative of the function: 

2
2

2

2 2

( ) ( ) (( ) )
( )

2 ( ( ) ) ( )

r b x k l de r x b b x r b x k l d x bm dxr e
m r b x k l m dx r b x k l

m

 − + +   − −   − + + −   +  − + + − + +   
 =  

 

Use the chain rule: 

1

where  and 2

n
n udu dunu

dx dx
u b x n

−=

= − =
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2

2

2 2

( ) ( )( ) ( )
( )

( ( ) ) ( )

r b x k l de r b x x b b x r b x k l d x bm dxr e
m r b x k l m dx r b x k l

m

 − + +   − − −   − + + −   +  − + + − + +   
 =  

 

 

 

The derivative of a sum is the sum of the derivatives: 

2

2

2 2

( )
( )( ) ( ) ( )

( )
( ( ) ) ( )

r b x k l d de r b x x b b x r b x k l d x bm dx dxr e
m r b x k l m dx r b x k l

m

 − + +   − − + −   − + + −   +  − + + − + +   
 =  

 

 

The derivative of the constant b is 0: 

2

2

2 2

( )
( )( ) ( )

( )
( ( ) ) ( )

r b x k le r b x x b r b x k ld d x bmr x e
m r b x k l dx m dx r b x k l

m

 − + +
 − −  − + + −  − +

 − + + − + +  
 =  
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The derivative of a constant times a function is the constant times the derivative of the function: 

2

2

2 2

( )
( )( ) ( )

( )
( ( ) ) ( )

r b x k le r b x x b r b x k ld d x bmr x e
m r b x k l dx m dx r b x k l

m

 − + +
 − −  − + + −  − +

 − + + − + +  
 =  

 

 

The derivative of 1 is n nx nx − : 

2

2

2 2

( )
( )( ) ( )

( ( ) ) ( )

r b x k le r b x x b r b x k l d x bmr e
m r b x k l m dx r b x k l

m

 − + +
 − −  − + + −  − +

 − + + − + +  
 =  

 

Use the product rule: 

2

( )

1where  and v
( )

d uv du dvv u
dx dx dx

u x b
r b x k l

= +

= = −
− + +
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2

2

2 2 2

( ) ( )( ) ( ) 1 1( ) ( )
( ( ) ) ( ) ( )

r b x k le r b x x b r b x k l d dmr e x b x b
m r b x k l m dx dxr b x k l r b x k l

m

 − + +
 − −   − + +   − + − + −

  − + + − + + − + +   
 =  

 

 

The derivative of a sum is the sum of the derivatives: 

2

2

2 2 2

( )
( )( ) ( ) 1 ( ) ( )( )

( ( ) ) ( ) ( )

r b x k le r b x x b r b x k l d d dx b d dx xmr e x b
m r b x k l m dx r b x k l r b x k l

m

 − + +
 − −   − + + − +   − + − +

  − + + − + + − + +   
 =  

 

 

The derivative of a constant times a function is the constant times the derivative of the function: 

2

2

2 2 2

( )
( )( ) ( ) 1 ( ) ( )( )

( ( ) ) ( ) ( )

r b x k le r b x x b r b x k l d d dx x d dx bmr e x b
m r b x k l m dx r b x k l r b x k l

m

 − + +
 − −   − + + −   − + − +

  − + + − + + − + +   
 =  

 

 



 134

The derivative of 1 is n nx nx −  

2

2

2 2 2

( )
( )( ) ( ) 1 1 ( )( )

( ( ) ) ( ) ( )

r b x k le r b x x b r b x k l d d dx bmr e x b
m r b x k l m dx r b x k l r b x k l

m

 − + +
 − −   − + + −   − + − +

  − + + − + + − + +   
 =  

 

 

The derivative of the constant b is 0: 

2

2

2 2 2

( )
( )( ) ( ) 1 1( )

( ( ) ) ( ) ( )

r b x k le r b x x b r b x k l dmr e x b
m r b x k l m dx r b x k l r b x k l

m

 − + +
 − −   − + +   − + − +

  − + + − + + − + +   
 =  

 

 

Use the chain rule: 

1

2where ( )  and n 1/ 2

n
ndu dunu

dx dx
u r b x k l

−=

= − + + = −
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2

2

2 2 3/ 2 2

( ) ( )( ) ( ) ( ) 1
( ( ) ) 2( ( ) ) ( )

r b x k le r b x x b r b x k l x bmr e
m r b x k l m r b x k l r b x k l

m

 − + +
 − −  − + + −  − + − +

 − + + − + + − + +  
 =  

 

 

 

The derivative of a sum is the sum of the derivatives: 

2
2

2

2 2 3/ 2 2

( ) ( ) ( ) ( ) ( ( ) )( )( ) ( ) 1
( ( ) ) 2( ( ) ) ( )

d d dr b x k l x b k l r b xe r b x x b r b x k l dx dx dxmr e
m r b x k l m r b x k l r b x k l

m

   − + + − + + − − −   − + +    − + − +
− + + − + +  − + +

    =  

 

 

The derivative of the constant k and l is 0: 

2
2

2

2 2 3/ 2 2

( ) ( ) ( ( ) )( )( ) ( ) 1
( ( ) ) 2( ( ) ) ( )

dr b x k l x b r b xe r b x x b r b x k l dxmr e
m r b x k l m r b x k l r b x k l

m

   − − + + − − − −   − + +    − + − −
− + + − + +  − + +

    =  
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The derivative of a constant times a function is the constant times the derivative of the function: 

2
2

2

2 2 3/ 2 2

( ) ( ) (( ) )( )( ) ( ) 1
( ( ) ) 2( ( ) ) ( )

dr b x k l r x b b xe r b x x b r b x k l dxmr e
m r b x k l m r b x k l r b x k l

m

   − − + + − − − −   − + +    − + − −
− + + − + +  − + +

    =  

 

 

 

 

Use the chain rule: 

1

where  n 2

n
ndu dunu

dx dx
u b x

−=

= − =

 

2

2

2 2 3/ 2 2

( ) ( )( ) ( )( )( ) ( ) 1
( ( ) ) ( ( ) ) ( )

dr b x k l r b x x b b xe r b x x b r b x k l dxmr e
m r b x k l m r b x k l r b x k l

m

   − − + + − − − − −   − + +    − + − −
− + + − + +  − + +

    =  
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The derivative of a sum is the sum of the derivatives: 

2

2

2 2 3/ 2 2

( ) ( )( ) ( ) ( )( )( ) ( ) 1
( ( ) ) ( ( ) ) ( )

d dr b x k l r b x x b b xe r b x x b r b x k l dx dxmr e
m r b x k l m r b x k l r b x k l

m

   − − + + − − + − − −   − + +    − + − −
− + + − + +  − + +

    =  

 

 

The derivative of the constant b is 0: 

2

2

2 2 3/ 2 2

( ) ( )( ) ( )( )( ) ( ) 1
( ( ) ) ( ( ) ) ( )

dr b x k l r b x x b xe r b x x b r b x k l dxmr e
m r b x k l m r b x k l r b x k l

m

   − − + + − − − − −   − + +    − + − −
− + + − + +  − + +

    =  

 

The derivative of a constant times a function is the constant times the derivative of the function: 

2

2

2 2 3/ 2 2

( ) ( )( ) ( )( )( ) ( ) 1
( ( ) ) ( ( ) ) ( )

dr b x k l r b x x b xe r b x x b r b x k l dxmr e
m r b x k l m r b x k l r b x k l

m

   − − + + − − − −   − + +    − + + −
− + + − + +  − + +

    =  
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The derivative of 1 is n nx nx −  

2

2

2 2 3/ 2 2

( )
( )( ) ( ) ( )( ) 1

( ( ) ) ( ( ) ) ( )

r b x k le r b x x b r b x k l r b x x bmr e
m r b x k l m r b x k l r b x k l

m

 − − + +
 − −  − + + − −  − + + −

 − + + − + + − + +  
 =  

 

Simplify assuming variable x is positive: 

( )
2( )

2 2

2 2 3/ 2

( ) ( )

( ( ) )

r b x k l
me r r r b x k l b x km lm

m r b x k l

− + +
−

− + + − − −
=

− + +
 

 

 

Hence with this general solution in hand, G(a,b) can now be written as: 

( )

( )

2 2 2 2 2

2 2 2 2 2

( )
2 2 2 2 2 2 2 2 2 2 2 2 2 2

3 22 2 2 2 2 2

( )
2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2

( ( ) 2 )

( )

( , ) 2
( ) 2

h e

h e

x b z z

h e h e h e

h e

r x a y y

h e h e h e

e b x z z b z x z z z

b x z z

G a b
e a x y y a y x y y y

a x

ζ
λ

ζ

λ

ζ λ λ ζ ζ ζ ζ

λ ζ

ϕ

ζ λ λ ζ

λ ζ

− +Ω + −

− + +Ω −

 
 −Ω − + − Ω + + + −

+ 
Ω + + −  

 
=

Ω − − + Ω − + Ω + + Ω − Ω

+ + Ω( )

0

3 22 2

 

( )h e

dx

y y

+∞

 
 
 
 
 
 
  
  
  
 − 
    

∫  
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Now:  Let 'x R x= − +  where 2 2 2 2R b aζ= Ω +  so that: 2 2( ')x R x= − + . 

Then:   'x x R= +  

And:    ' 1 since Constantdx R
dx

= =  

 'dx dx=uuuuuuuur  

 

Then:   

  then '
                      '

 0 then ' 0

                     '

If x x R
x

If x x R

x R

= ∞ = ∞ +
= ∞

= = +

=

uuuuuur

uuuuuuuur

 

 

 

 

 



 140

So: 

( )
( ) ( )( )

( )( )
( )

( ) ( )( )
( )( )

2

2

2

'
2 2 2 2 2 2 2 2 2 2 2

( ')

3/ 222

'
2 2 2 2 2 2 2 2 2 2 2

3/ 222

'

( , ) 2 '

'

R R x

R R x

R R xR

e x b a x b a
e

R R x

G a b dx

e x a b x b a

R R x

λ

λ

λ

ζ λ ζ ζ

λ

λ ζ ζ

λ

+ − +
−

+ − +
−

∞

+ − +
−

  
  − + Ω + + Ω +     +       + − +
  

  =
  
  Ω − + + Ω + Ω +  
  
  + − +     

∫  

( )
( )( ) ( )

( )( )
( )

( )( ) ( )

( )( )

2

2

2

'
2 2

2 2 2 2 2
( ')

3/ 22
2

'
2 2

2 2 2 2 2

3/ 22
2

' '

'

2

' '

'

R R x

R R x

R R x

e R x b a R R x
e

R R x

e R x a b R R x

R R x

λ

λ

λ

ζ λ ζ

λ

λ ζ

λ

+ − +
−

+ − +
−

+ − +
−

  
    − − + + Ω + + − +             +

     + − +  
   =

 
    Ω − − + + + Ω + − +       

  + − + 
   

'
R

dx
∞


















∫  
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( )( )
( )

( )( ) ( ) ( )( ) ( )

( )

2 2( ')
'

2 2
2 2 2 2 2 2 2 2 2 2

3/ 22
2

2

2 ' ' '
'

:

'

R R x
R R x

R

e e R x b a P R x a b P dx
R R x

With

P R R x

λ
λ ζ λ ζ λ ζ

λ

+ − +
− + − +∞

−

             = − − + + Ω + + Ω − − + + + Ω           + − +     

= + − +

∫
 

( )( )
( )

( )( )
2 2( ')

'
2 2 2 2 2 2 2 2 2 4 2 2 2

3/ 222
2 ' '

'

R R x
R R x

R

e e R x b a a P b P dx
R R x

λ
λ λ ζ ζ ζ ζ

λ

+ − +
− + − +∞

−
 

   = − − + + Ω + Ω + Ω + + Ω    + − +   
∫

( )( )
( ) ( ) ( )

22 ( ')

2 2 2
2 2 2 2 2 2 2 2 2 2 2

3/ 22
2

2 ' ' ' '
'

R R x

R

e R x b a a R R x b R R x dx
R R x

λ

λ ζ ζ ζ
λ

+ − +
−∞         =  − − + + Ω + Ω + Ω + + − + + Ω + − +                  + − +

∫

 

 

Now: 

 cosh   
':   sinh

Let x R
dxThen R
d

θ

θ
θ

=

−
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( )

1

1

1

' '  then cosh

                          cosh

                          cosh
                        

xIf x
R

R

θ

θ

−

−

−

 = ∞ =  
 

∞ =   
= ∞

= ∞uuuuur

 

 

 

 

( )

1

1

1

' '  then cosh

                             cosh    

                             cosh 1   
                           0 

xIf x R
R

R
R

θ

θ

−

−

−

 = =   
 

=   
 

=

=uuuuur
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So:  

( )( )
( )( )

( )

( )

2
22 2 2 2 2 22 ( cosh )

2
2 2 2

3/ 22 220 2 2

cosh
( , ) 2 cosh si

cosh cosh

R R R b a a R R R
eG a b R R R

R R R b R R R

θ
θ λ

θ

ζ θ

λ θ ζ ζ
λ θ θ

+ − +
−=∞

=

        Ω + Ω + + − + +             = − − + + Ω +            + − +   Ω + − +              

∫ nh dθ θ

( )

( )( )( )
( )( )

( )( )

( )( )

2
2

2 2 2 2 2 22 ( 1 cosh )

2
2 2 2

3/ 22 220 2 2

1 cosh
2 cosh sinh

1 cosh 1 cosh

R R b a a R R
e R R R d

R R b R R

θ
θ λ

θ

ζ θ

λ θ ζ ζ θ θ
λ θ θ

+ − −
−=∞

=

        Ω + Ω + + − − +             = − − + + Ω +            + − −   Ω + − −              

∫

 

            ( )
( ) ( ) ( )

22 (1 cosh )
2 2 2 2 2 2 2

2 2 2 2
3/ 22 2 2 2 20

(1 cosh )
2 1 cosh sinh

(1 cosh ) ( (1 cosh ) )

R R
b a a R Re R R d

R R b R R

θ
θ λ

θ

ζ θ
λ θ ζ ζ θ θ

λ θ θ

+ −
−=∞

=

     Ω + Ω + + − +     = − − + Ω +     + −    Ω + −      

∫  

 

             ( )( )
( ) ( ) ( )

22 1 (1 cosh )
2 2 2 2 2 2 2

2 2 2 2
3/ 22 2 2 2 20

1 (1 cosh )
2 1 cosh sinh

1 (1 cosh ) ( 1 (1 cosh ) )

R
b a a Re R R d

R b R

θ
θ λ

θ

ζ θ
λ θ ζ ζ θ θ

λ θ θ

 + − −=∞

=

      Ω + Ω + + − +      = − − + Ω +      + −    Ω + −        

∫  
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             ( )( )
( ) ( ) ( )

22 1 (1 cosh )
2 2 2 2 2 2 2

2 2 2 2
3/ 22 2 2 2 20

1 (1 cosh )
2 1 cosh sinh

1 (1 cosh ) ( 1 (1 cosh ) )

R
b a a Re R R d

R b R

θ
θ λ

θ

ζ θ
λ θ ζ ζ θ θ

λ θ θ

 + − −=∞

=

      Ω + Ω + + − +      = − − + Ω +      + −    Ω + −        

∫  

 

 

Now: 

 

 ln   or  ln
                                            

:   

Substitute x x
x e

dxThen d
x

θ

θ θ

θ

−

= − − =

=
−

=

 

 

0

  then 
                      0

 0 then 
                      1

If x e
x

If x e
x

θ

θ

−∞

−

= ∞ =
=

= =
=

uuuuur

uuuur

 

 

The following identities also hold: 
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( )

( )

1 1 1cosh
2 2
1 1 1sinh
2 2

e e x
x

e e x
x

θ θ

θ θ

θ

θ

−

−

 = + = +  
 = − = − 
 

 

 

Thus:

( )

21 12 1 (1 ) 2 2 2 2 2 2 22
2

2 2 2
3/ 2

2 2 2 2 2

1 11 (1 )
21 1( , ) 2 1

21 1 1 11 (1 ) ( 1 (1 )2 2

R x
x b a a R x

xeG a b R x
x

R x b R xx x

λ
ζ

λ ζ ζ

λ

  + − +    −

      Ω + Ω + + − + +            = − − + + Ω +             + − +  Ω + − +            

0

1

1 1( )
2

)

x

x

dxR x
x x

=

=

   
   
    −   −       

      
         

∫

 

( )

21 1 2 2 2 2 2 2 22 1 (1 )
2

2
2 2 2

3/ 2
2 2 2 2 2

1 11 (1 )
2( 1)( 2) 1 11

2 21 1 1 11 (1 ) 1 (1 )2 2

R x
x b a a R x

xe R x
x

R x b R xx x

λ

ζ

λ ζ ζ

λ

  + − +    −

      Ω + Ω + + − + +       − −      = − − + + Ω +             + − + Ω + − +             

1

0

1 1R x dx
x x

   
   
        −         
            

∫

( )

21 1 2 2 2 2 2 2 22 1 (1 )
2

22
2 2 2

3/ 22
2 2 2 2 2

1 11 (1 )
21 1 11

21 1 1 11 (1 ) 1 (1 )2 2

R x
x b a a R x

xx eR R x
x x

R x b R xx x

λ

ζ

λ ζ ζ

λ

  + − +    −

      Ω + Ω + + − + +        −      = − − + + Ω +                + − + Ω + − +            

1

0

dx

   
   
   
   
                   

∫  
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( ) ( )

21 12 1 (1 )
2

22
2 2 2 2 2 2 2 2 2 2 2 2

3/ 22
2 2

1 1 1 1 11 1 (1 )
2 21 11 (1 )

2

R x
x

R

x eR R x b a R x a b
x x x

R x
x

λ

λ ζ ζ ζ

λ

  + − +    −

 
      −            = − − + + Ω + Ω + Ω + + − + + Ω                             + − +        

1442443

1

0

dx
 
 
 
  

∫

 

( )

21 12 1 (1 )
2

22
2 2 2 2 2 2 2 2

3/ 22
2 2

1 1 1 1 1( , ) 1 1 (1 ) ( )
2 21 11 (1 )

2

R x
x

x eG a b R R x b a R x R
x x x

R x
x

λ

λ ζ ζ

λ

  + − +    −

 
      −            = − − + + Ω + Ω + Ω + + − +                              + − +        

1

0

dx





∫

uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuur

  

 

 

This final equation will be the one that is solved numerically as a function of variational parameters and of Quantum Well-Wire size 

parameters. 
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J(a,b) 
 

Consider the term J(a, b), from equation (4.2.23), where x has been called x⊥ : 

 
2

2( , )  r rJ a b dx
x

ϕ ϕ
 ∂=  ∂ 

∫  

2

2( , )  r rJ a b dx
x

ϕ ϕ ⊥
⊥

 ∂=  ∂ 
∫  

' 2

2
0

( , ) 2 e
r

rJ a b dx
x

λ ϕ ∞ −  
⊥

⊥

 ∂
=  ∂ 

∫  

' '2

2
0

( , ) 2 e
r r

J a b e dx
x

λ λ
 ∞ − −  

⊥
⊥

  ∂=   ∂   
∫  

2 2 2 2 2' 2

2
0

( , ) 2 e
r x b a

J a b e dx
x

ζ
λ λ

⊥ +Ω + ∞ − − 
 

⊥
⊥

  ∂  =
 ∂   

∫  

 

Thus the solution to the general derivative 
2 2 22

2

k p x
le

x

− + + ∂  
 ∂  

 must now be found.  This is done as follows: 
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2 2 2k p x
ld e

dx

+ +
− 

 
 
 

 

 

Use the chain rule: 
u

ude due
dx dx

=  

Where: 

2 2 2k p xu
l

+ +
= −  

2 2 2 2 2 2k p x
l k p xde

dx l

+ +
−  + +

 = −
  

 

 

The derivative of a constant times a function is the constant times the derivative of the function: 

( )
2 2 2

2 2 2

k p x
le d k p x

l dx

+ +
−

= − + +  

 

Use the chain rule: 

1
n

ndu dunu
dx dx

−=  
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Where: 

2 2 2 1 and 
2

u k p x n= + + =  

 

( )
2 2 2

2 2 2

2 2 22

k p x
le d k p x

dxl k p x

+ +
−

= − + +
+ +

 

 

 

The derivative of a sum is the sum of the derivatives: 

( ) ( ) ( )
2 2 2

2 2 2

2 2 22

k p x
l d d de k p x

dx dx dx
l k p x

+ +
−  + +  = −

+ +
 

 

 

The derivative of the constants k2 and p2 are 0: 

( )
2 2 2

2

2 2 22

k p x
le d x

dxl k p x

+ +
−

= −
+ +
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The derivative of xn is nxn-1: 
2 2 2

2 2 2

k p x
le x

l k p x

+ +
−

= −
+ +

 

 

 

Now do the second derivative: 
2 2 22

2

k p x
ld e

dx

+ +
− 

 
 
 

 

 

The second derivative is the derivative of the derivative: 

2 2 2k p x
ld d e

dx dx

+ +
−  

  
    

 

 

Copy the first derivative from three lines above: 
2 2 2

2 2 2

k p x
ld e x

dx l k p x

+ +
− 

 
− 

+ + 
 
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The derivative of a constant times a function is the constant times the derivative of the function: 
2 2 2

2 2 2

1
k p x

ld e x
l dx k p x

+ +
− 

 
= −  

+ + 
 

 

 

 

Use the product rule: 

( )d uv du dvv u
dx dx dx

= +  

Where: 
2 2 2

2 2 2
 and 

k p x
l xu e v

k p x

+ +
−

= =
+ +

 

2 2 2 2 2 2

2 2 2 2 2 2

k p x k p x
l lx d d xe e

dx dxk p x k p x
l

+ + + +
− −    

    +
   + + + +   = −

 
 
  
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Use the chain rule: 
u

ude due
dx dx

=  

Where: 

2 2 2k p xu
l

+ +
= −  

2 2 2
2 2 2 2 2 2

2 2 2 2 2 2

k p x
k p x l

l k p xd x e x de
dx dx lk p x k p x

l

+ +
−+ +

−
 

    + +
   + −    + + + +    = − 

 
 
 
 

 

 

 

The derivative of a constant times a function is the constant times the derivative of the function: 

( )
2 2 2

2 2 2

2 2 2

2 2 2 2 2 2

k p x
k p x l

l d x e x de k p x
dx dxk p x l k p x

l

+ +
−+ +

−
 

  
  − + +  + + + +  = − 

 
 
 
 
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Use the product rule: 

( )d uv du dvv u
dx dx dx

= +  

Where: 

2 2 2

1 and u x v
k p x

= =
+ +

 

( )
2 2 2

2 2 2

2 2 2

2 2 2 2 2 2 2 2 2

1 1( )

k p x
k p x l

l d d e x de x x k p x
dx dx dxk p x k p x l k p x

l

+ +
−+ +

−
    

  + − + +   + + + + + +   = − 
 
 
  

 

 

 

The derivative of xn is nxn-1: 

( )
2 2 2

2 2 2

2 2 2

2 2 2 2 2 2 2 2 2

1 1
k p x

k p x l
l d e x de x k p x

dx dxk p x k p x l k p x
l

+ +
−+ +

−
 

   
   + − + +   + + + + + +   = − 

 
 
 
 
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Use the chain rule: 

1
n

ndu dunu
dx dx

−=  

Where: 

2 2 2 1 and 
2

u k p x n= + + = −  

( )
( ) ( )

2 2 2
2 2 2

2 2 2 2 2 2
3/ 22 2 2 2 2 22 2 2

1
2

k p x
k p x l

l x d e x de k p x k p x
dx dxk p x l k p xk p x

l

+ +
−+ +

−
 
 − + + − + +
 + + + ++ + = −  

 

 

The derivative of a sum is the sum of the derivatives: 

( ) ( )
2 2 2

2 2 2
2 2 2

2 2 2
3/22 2 2 2 2 22 2 2

( ) ( ) ( )
1

2

k p x
k p x l

l

d d dx k p x
e x ddx dx dxe k p x

dxk p x l k p xk p x

l

+ +
−+ +

−

  + +    − − + +
 + + + ++ +
 
 = −  
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The derivative of the constants k2 and p2 is 0: 

( ) ( )
2 2 2

2 2 2

2 2 2 2
3/ 22 2 2 2 2 22 2 2

1 ( )
2

k p x
k p x l

l x d e x de x k p x
dx dxk p x l k p xk p x

l

+ +
−+ +

−
 
 − − + +
 + + + ++ + = −  

 

 

 

The derivative of xn is nxn-1: 

( ) ( )
2 2 2

2 2 2 2
2 2 2

3/ 22 2 2 2 2 22 2 2

1
k p x

k p x l
l x e x de k p x

dxk p x l k p xk p x

l

+ +
−+ +

−
 
 − − + +
 + + + ++ + = −  

 

 

Use the chain rule: 

1
n

ndu dunu
dx dx

−=  

Where: 

2 2 2 1 and 
2

u k p x n= + + =  
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( ) ( ) ( )
2 2 2

2 2 2 2
2 2 2

3/2 2 2 22 2 2 2 2 2

1
2

k p x
k p x l

l x e x de k p x
dxl k p xk p x k p x

l

+ +
−+ +

−
 
 − − + +
  + ++ + + + = −  

 

 

The derivative of a sum is the sum of the derivatives: 

( ) ( )

2 2 2

2 2 2
2 2 2

2

3/ 2 2 2 22 2 2 2 2 2

( ) ( ) ( )
1

2

k p x
l

k p x
l

d d de x k p x
x dx dx dxe

l k p xk p x k p x

l

+ +
−

+ +
−

 + +   
  − −

  + ++ + + + = −  

 

 

 

The derivative of the constants k2 and p2 is 0: 

( ) ( )

2 2 2
2 2 2 2

2
3/ 2 2 2 22 2 2 2 2 2

1 ( )
2

k p x
k p x l

l x e x de x
dxl k p xk p x k p x

l

+ +
−+ +

−
 
 − −
  + ++ + + + = −  
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The derivative of xn is nxn-1: 

( ) ( )

2 2 2
2 2 2 2 2

3/ 2 2 2 22 2 2 2 2 2

1
k p x

k p x l
l x e xe

l k p xk p x k p x

l

+ +
−+ +

−
 
 − −
  + ++ + + + = −  

 

 

Simplify, assuming the variable x is positive: 

( )
( )

2 2 2

2 2 2 2 2 2

3/ 22 2 2 2

k p x
le lk lp x k p x

l k p x

+ +
−

− − + + +
= −

+ +uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuur

 

 

 

Thus, with this solution now in hand, J(a,b) can now be written as: 

( )
( )

2 2 2 2 2
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

3/ 22 2 2 2 2 2
0

( , ) 2 e

x b a
x b a e b a x x b a

J a b dx
x b a

ζ
ζ λ

λ λ λζ ζ

λ ζ

⊥

⊥

+Ω +
− +Ω + −∞ ⊥ ⊥ 

 
⊥

⊥

 
 − Ω − + + Ω +
 =
 + Ω +
 
 

∫  

( )

( ) ( )
2 2 2 2 2

2

2 2 2 2 2 2 2 2 2 2
3/ 22 2 2 2 2 2

0

e( , ) 2 ( )

x b a

J a b b a x x b a dx
x b a

ζ

λ

λ ζ ζ
λ ζ

⊥ +Ω +
−∞

⊥ ⊥ ⊥

⊥

 
   = − Ω + + + Ω +    + Ω + 
  

∫  
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Now: 
2 2 2 2 2 2  ( - )  where 

 

 1 since R constant

            

Let x x R x x R R b a

Then x x R
dxAnd
dx

dx dx

ζ⊥ ⊥

⊥

⊥

⊥

= − → = = Ω +

= +

= =

=

uuuuuuuuuuuur

 

 

 

Then:  

 

  then 
                        

 0 then 0

                       

If x x R
x

If x x R

x R

⊥

⊥

= ∞ = ∞ +
= ∞

= = +

=

uuuuur

uuuuuuur

 

 

So: 

( )

( )( )
( ) ( )

2

2 2 2

3/ 22
2

e( , ) 2 ( )

x R R

x

x R

J a b R x R x R R dx
x R R

λ

λ
λ

 − +  −=∞

=

 
     = − + − − +      − + 
 

∫  
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Let: 

cosh   Then:  sinh

                                     sinh

dxx R R
d
dx R d

θ θ
θ

θ θ

= =

=uuuuuuuuuuuuuuuuuuur
 

 

 

So: 

1

1

1

1

1

  then cosh

                         cosh

                         cosh ( )
                      

  then cosh

                         cosh

xIf x
R

R

xIf x R
R

R
R

θ

θ

θ

−

−

−

−

−

 = ∞ =  
 

∞ =   
= ∞
= ∞

 = =  
 


= 

uuuuur

1                         cosh (1)
                      0θ

−




=
=uuuuur
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Hence: 

( )

( )( )
( ) ( )

2

2

cosh

2 2

3/ 22
20

e( , ) 2 ( ) cosh cosh sinh
cosh

R R R

J a b R R R R R R R d
R R R

θ

θ λ

θ

λ θ θ θ θ
λ θ

 − +  −=∞

=

 
       = − + − × − +        − + 
 

∫

( )( )

( )( )
( ) ( ) [ ]

2

2

cosh 1

2 2

3/ 2220

e( , ) 2 ( ) (cosh 1) (cosh 1) sinh
(cosh 1)

R R

J a b R R R R R d
R R

θ

λ

λ θ θ θ θ
λ θ

 − + 
 −∞

 
     = − + − × − +      − + 
 

∫  

( )( )( )

( )( )
( ) ( )( ) [ ]

2

2

cosh 1

2 2
3/ 22 2

0

e( , ) 2 (cosh 1) (cosh 1) sinh
(cosh 1)

R R

J a b R R R R R d
R R

θ

λ

λ θ θ θ θ
λ θ

− +
−∞

 
 

  = − + − × − +   − +
  

∫  

( ) ( ) [ ]

2

2
((cosh 1) 1)

2 2
3/ 22 2

0

e( , ) 2 ( (cosh 1) ((cosh 1) 1) sinh
((cosh 1) 1)

R

J a b R R R d
R

θ

λ

λ θ θ θ θ
λ θ

− +
−∞

 
   = − + − × − +    − +  

∫  
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Now, substitute: 

ln    or    ln
                              

x x
x e θ

θ θ
−

= − − =

=uuuuuuur  

Then: 

dxd
x

θ
−

=
uuuuuuuuuur

 

 

  then 0
 0 then 1

If x
If x

θ
θ

= ∞ =
= =

 

 

The following identities also hold: 

( )

( )

2
21 1 1 1 1cosh cosh

2 2 4
1 1 1sinh
2 2

e e x x
x x

e e x
x

θ θ

θ θ

θ θ

θ

−

−

   = + = + → = +   
   
 = − = −  
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So: 

2

2

1 1(( 1) 1)
2

0
2 2

3/ 2
1 2 2

e 1 1 1 1 1 1( , ) 2 ( ( 1) (( 1) 1)
2 2 21 1(( 1) 1)

2

R x
x

dxJ a b R R x R x x
x x x x

R x
x

λ

λ

λ

 + − + 
 −

 
      −        = − + + − × + − + −                          + − +      

∫  

[ ]

2

2

1 1(( 1) 1)
2

0
2 2

3/ 2
1 2 2

1( )1 e 1 1 1 1( , ) 2 ( ( 1) (( 1) 1)
2 2 21 1(( 1) 1)

2

R x
x

xxJ a b R R x R x dx
x x x

R x
x

λ

λ

λ

 + − + 
 −

 
    −       = − − + + − × + − +                     + − +      

∫

2

2

1 1(( 1) 1)
2

1 2
2 2

3/ 22
0 2 2

(1 ) e 1 1 1 1( , ) ( 1) ( ( 1) (( 1) 1)
2 21 1(( 1) 1)

2

R x
x

xJ a b R R x R x dx
x x x

R x
x

λ

λ

λ

 + − + 
 −

 
     −     = − − − + + − × + − +                      + − +      

∫  

2

2

1 1(( 1) 1)
2

1 2
2 2

3/ 22
0 2 2

(1 ) e 1 1 1 1( , ) ( ( 1) (( 1) 1)
2 21 1(( 1) 1)

2

R x
x

xJ a b R R x R x dx
x x x

R x
x

λ

λ

λ

 + − + 
 −

 
     −     = − + + − × + − +                      + − +      

∫

uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu ruuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu

 

 

This final equation will be the one that is solved numerically as a function of variational parameters and of Quantum Well-Wire size 

parameters. 
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K(a,b) 

 

 
Now, consider the term K(a, b), from equation (4.2.24), where x has been called x⊥ : 

2 1( , )  rK a b dx
r

ϕ ⊥= ∫  

2 2 2
2

2 2 2
0

1( , ) 2  
( )

x b a

K a b e dx
x b a

λ
⊥ + +∞

−

⊥

⊥

  
  =

  + +  
∫  

( )
2 2 2

2

1/ 22 2 2

0

( , ) 2  
x b a

K a b x b a e dxλ
⊥ + +∞

−−

⊥ ⊥

 
 = + +
 
 

∫  

 

Now: 

Let 2 2 2 2 2 2 where ( )x R x R b a x R xζ⊥
⊥= − + = Ω + → = − +  

Then:  x x R⊥= +  

And:  1 since R Constantdx
dx⊥

= =
uuuuuuur
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Then: 

  then 
                        

 0  then 0

                        

If x x R
x

If x x R

x R

⊥

⊥

= ∞ = ∞ +
= ∞

= = +

=

uuuuur

uuuuuuur

 

 

So: 

( )
2

2
( )1/ 22 2 2( , ) 2 ( )  

R x Rx

x R

K a b R x b a e dxλ
− + +=∞ − −

=

 
 = − + + +
 
 

∫  

 

Now, let: 

cosh sinh

                                  sinh

dxx R R
d
dx R d

θ θ
θ

θ θ

= → =

=uuuuuuuuuuuuuuuuuuur
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Then: 

( )

1

1

1

  then cosh

                         cosh

                         cosh
                       

xIf x
R

R

θ

θ

−

−

−

 = ∞ =  
 

∞ =   
= ∞

= ∞uuuuur

 

( )

1

1

1

  then cosh

                         cosh

                         cosh 1
                       0

xIf x R
R

R
R

θ

θ

−

−

−

 = =   
 

=   
 

=

=uuuuur

 

 

 

Thus: 

( )
2

2
( cosh )1/ 22 2 2

0

( , ) 2 ( cosh )  R sinh
R R R

K a b R R b a e d
θθ

λ

θ

θ θ θ
− + +=∞ − −

=

 
  = − + + +   

 
∫  
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( )
2

2
( (1 cosh ))1/ 22 2 2

0

( , ) 2 ( ( 1 cosh ))  R sinh
R R

K a b R b a e d
θθ

λ

θ

θ θ θ
− + +=∞ − −

=

 
  = − + + +   

 
∫  

 

 

( ) [ ]
2

2
(1 cosh ) 1

1/ 22 2 2

0

( , ) 2 ( 1 cosh )  sinh
R

K a b R R b a e d
θθ

λ

θ

θ θ θ
+ +=∞

−−

=

 
 = − + + +
 
 

∫  

 

 

Now, substitute:   

ln     or    ln
                               
Then:

x x
x e

dxd
x

θ

θ θ

θ

−

= − − =

=

−=
uuuuuuuuuur

 

 

 

  then 
                       0                       
If x e

x
θ −∞= ∞ =

=uuuuur
 

0 0 then 
                       1                       
If x e

x
θ −= =

=uuuur
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The following identities also hold: 

( )

( )

2
21 1 1 1 1cosh cosh

2 2 4
1 1 1sinh
2 2

e e x x
x x

e e x
x

θ θ

θ θ

θ θ

θ

−

−

   = + = + → = +   
   
 = − = −  

 

 

 

So: 

2
2

1 1(1 ) 11/ 2 20
2 2 2

1

1 1 1 1( , ) 2 ( 1 )  
2 2

R x
xx

x

dxK a b R R x b a e x
x x x

λ

  + + +  −=   −

=

 
        −     = − + + + + −                         
 

∫

2
2

1 1(1 ) 11/ 2 20
2 2 2

1

11 1 1( , ) 2 ( 1)  
2 2

R x
xxxK a b R R x b a e dx

x x
λ

  + + +  −   −

 
 −      = − + − + +                

∫

2
2

1 1(1 ) 1
2

1 2

1/ 22
0 2 2 2

1( , ) ( 1)  
1 1( 1)
2

R x
x

e

xK a b R dx
x

R x b a
x

λ

  + + +    −

 
 
 
   −  = − −  

     + − + +      

∫  
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2
2

1 1(1 ) 1
2

1 2

1/ 22
0 2 2 2

1( , )  
1 1( 1)
2

R x
x

e

xK a b R dx
x

R x b a
x

λ

  + + +    −

 
 
 
   −  =  

     + − + +      

∫

uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuur

 

 

 

 

This final equation will be the one that is solved numerically as a function of variational parameters and of Quantum Well-Wire size 

parameters. 
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P(a,b) 
 

It is useful to see how the solution of the probability equation p(a,b) was derived.  First note the following: 

 

For a particle in a box with infinite potential walls the wave function for a 2D box-model is: 

 

2 2( , ) sin sinnm
y y z z

n y m zy z
L L L L

π πψ
     

=             
 

 

 

So, for this infinite potential Quantum Well-Wire, let the single-particle functions be: 

 

 

single particle
4 sin sine h
y z y z

n y m z
L L L L

π πφ φ φ
     

= = =             
 

 

 

with 1n m= =  for the ground state. 
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Hence: 

2 2 2 2( , ) ( , ) ( , ) ( , ) ( , )
a b

p a b z a y b z y z y z a y b dydz
ν τ

µ ρ

φ φ φ φ
− −

= + + + + +∫ ∫  

2 2 2 2

0 0

2 2 ( , ) ( , ) ( , ) ( , )
yz L bL a

z a y b z y z y z a y b dydzφ φ φ φ
−−

= + + + + +∫ ∫  

 

 

 

 

This is so because: 

1) By changing integration parameters form -∞ to 0 requires a factor of 2, 

2) Infinite potentials are considered at the boundaries.  So there is no possibility of escape at all, i.e. no tunneling.  Therefore 

the particle doesn’t exist from L to ∞, but only between the boundaries of the box (i.e. the length and width of the box).  

Hence, the change from the effective infinities  and ν τ  to Lz and Ly. 

 

Now, the above form of the equation p(a,b) is the more general symmetric form.  However, since the single particle function i.e. for 

the hole and for the electron are exactly the same, the above form of the p(a,b) equation isn’t exactly the right one to use, since it 

considers exactly the same function twice.  This leads to the probability density to have a value of 200%, not 100% as required, i.e. 
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0 0

Probability Density ( , )  2
yz LL

p a b da da= =∫ ∫  

 

 

So, the form to use (to compensate for the similarity between h and eφ φ , is: 

 

 

2 2

0 0

( , ) 2 2 ( , ) ( , )  
yz L bL a

p a b z y z a y b dy dzφ φ
−−

= + +∫ ∫  

 

 

This equation has the property: 

 

0 0

Probability Density ( , )  1
yz LL

p a b da da= =∫ ∫  

 

as it should be. 
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This leads to: 

 

 
2 2

0 0

4 ( ) ( ) 4 )( , ) 2 2 sin sin sin sin
yz L bL a

y z y z

y b z a y zp a b dydz
LyLz L L LyLz L L

π π π π
−−             + +

=                               
∫ ∫  

 

 

The software program Mathematica 4.1 was used to find the solution to this equation, leading to: 

 

 

 

2 2

1 2 2 2 2( , ) 4( ) 2( ) cos 3 sin 4( ) 2( ) cos 3 sin
4 y y y z z z

y z y y z z

b b a ap a b L b b L L L a a L L
L L L L L L

π π π ππ π π π
π

          
 = − − − + × − − − +                         

 

 

 

 

This final equation is the one that was used. 
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Appendix B 

Quantum Structure Glossary 

 

Band gap (EG) 

 

Electron energy levels are not allowed to exist in any form inside the EG.  The band 

gap is a quantum mechanical phenomenon, and is the energy difference that is usually 

on the order of about one electron volt for most semiconductors.  The valence band 

and the (more energetic) conduction band is separated by the band gap and it is 

therefore more difficult for electrons to be excited to the conduction band, since they 

have to absorb energy in some form or another in order to do that.  In a regular 

semiconductor crystal, the band gap is fixed owing to continuous energy states.  In a 

quantum dot crystal, the band gap is size dependent and can be altered to produce a 

range of energies between the valence and conduction band.  Quantum mechanics 

dictates that the band gap of a quantum dot will always be larger in magnitude. 

 

Conduction Band (CB) 

 

The conduction band is the energy state that electrons occupy when they have been 

excited across the band gap.  It thus contains the energy levels above the band gap and 

higher.    Because the band gap is always much larger that the distance between 

energy levels, not many electrons can be excited across  the band gap and cross into 

the conduction band from the valence band.  However thermal collisions do allow a 

very small number of electrons to naturally occupy the conduction band. 

  

When electrons absorb radiation with energy greater than or equal to the band gap 

energy, electrons can be stimulated across the band gap into the conduction band.  

This fact, and their subsequent emission of radiation as the electrons fall back down to 

the valence band, is the basis for the utility of quantum dots, wires and wells. 
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Continuous 

 

When the separation between energy levels is so small that it may be treated as if it 

wasn’t separated by any energy amount at all, the energy band is said to be 

continuous.  This type of model works well for semiconductor crystals with large 

numbers of atoms and physical dimensions much greater than 10 nanometers.  The 

most important consequence of approximating energy levels as continuous is that 

under those conditions, the band gap of a material may be treated as fixed and 

unchangeable. 

 

Discrete 

 

When the addition or subtraction of an atom or an electron to a crystal will 

measurably change the energy of the band gap, it is said that such a system has 

discrete energy levels. 

 

It is when a semiconductor crystal has discrete states that it can be defined as a 

quantum dot, and this is when it takes on useful and interesting properties, because by  

adding or subtracting an atom (a relatively easy engineering process) the crystal emits 

at a different (and specifiable, to within limits) wavelength.  This specification and 

tunability would be impossible with a traditional semiconductor with continuous 

energy levels, because one atom is insignificant given the size of such a bulk 

semiconductor, which are many orders of magnitude larger in number of atoms than a 

low-dimensional structure.  So for large traditional semiconductors the 

adding/subtraction of an atom make the change in the band gap so small, that it is 

impossible to measure to measure or use lucratively.  This results in a fixed band gap.  

 

Energy Level 

 

Quantum mechanics dictates that the electrons of all materials may only have certain 

allowable energies.  Electrons can only exist at one energy level and not in between 

them.  For example, a hypothetical electron may exist with 1 units of energy, or 2 

units of energy, but not with 1.3547 units of energy. 
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Also, the Pauli Exclusion Principle says that only 2 electrons can exist at any one 

energy level.  Thus, in any crystal, electrons will start filling the lowest energy levels 

first, and continue to fill levels with higher energies until no more electrons remain 

without energy levels. 

 

For very small Exciton Bohr radii the distance between levels are appreciable larger 

than what it would for a bulk semiconductor crystal.  It never becomes zero since 

there is always some finite distance between energy levels.  However, if the 

dimensions of a semiconductor crystal become much larger than the Exciton Bohr 

Radius of the material, then the distance between energy levels in the crystal becomes 

very small, and it is then convenient to describe the energy levels as continuous. 

 

Exciton 

 

When an electron leaves the valence band and enters the conduction band and 

electron-hole pair is created bound by Coulomb forces.  This electron-hole pair is 

treated as one single particle with zero net charge and is called an exciton.  Excitons 

have a natural physical separation between the electron and the hole that varies from 

substance to substance; this average distance is called the Exciton Bohr Radius.  The 

exciton bohr Radius is small compared to the crystal in a large (bulk) semiconductor 

crystals.  Thus the exciton is allowed to wander through the crystal relatively 

unrestricted.  In a quantum dot, wire or well, however, the Exciton Bohr Radius is in 

the order of the physical dimension of the low dimensional structure or smaller, and 

the exciton is confined.  This is known as quantum confinement, which means the 

exciton itself will have discrete, rather than continuous energy levels. 

 

Exciton Bohr Radius 

 

When an electron is excited from the valence band to the conduction band it leaves 

behind a hole and these two particles are separated by a distance that is known as the 

Exciton Bohr Radius.  The size of this radius controls how large a crystal must be 

before its energy bands can be treated as continuous.  Therefore, the Exciton Bohr 
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Radius can rightly be said to define whether a crystal can be called a semiconductor 

quantum dot, or simply a bulk semiconductor. 

 

Hole 

 

The absence of an electron in the valence band energy state is usually coined a hole.  

Holes can be treated as positively charged, and arise when a negatively charged 

electron jumps to the conduction band.  The combination of the electron and the hole 

together is called an exciton. 

 

Oscillator Strength 

The oscillator strength is a measure of the probability that a transition represented by 

an electronic oscillator will occur. It is independent of the physical conditions under 

which the atom is radiating.  

 

Quantum Confinement 

When a crystal is in the order of or smaller than the Exciton Bohr Radius of its 

constituent compound, this system is quantum confined.  Under quantum 

confinement, energy levels may be treated as discrete.  By definition, quantum dots 

are in a state of quantum confinement. 

 

Quantum Structure/Low Dimensional Structure 

 

There are many acceptable definitions.  For the purpose of this dissertation, a 

quantum structure is defined as: 

 

1) a crystal of semiconductor compound (eg. CdSe, PbS, GaAs) with a 

diameter on the order of the compound’s Exciton Bohr Radius.  Quantum 

structures have a range of useful electrical and optical properties that 

diverge in character from those of bulk material.  Quantum dots, for 

example, are between 2 and 10 nanometers wide (10 to 50 atoms). 
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2) an electromagnetic radiation emitter with an easily tunable band gap. 

 

 

Valence Band (VB) 

 

The valence band contains all the electrons that are at the very outer edges of the 

atoms making up the crystal.  This band contains all the electrons from the one 

with the lowest energy, to the one with energy just on the lower edge of the band 

gap.  Since electrons tend to occupy energy states with the lowest energy possible, 

the valence band’s energy levels are usually almost completely full. 

 

Wannier Exciton 

 

For a Wannier exciton the electron is bound very weakly to the hole with an 

average radius larger than the lattice spacing.  These exciton are different to the 

Frenkel excitons where the electron is bound much stronger to the hole and 

therefore it is essentially confined to within a single lattice constant. 
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Job 38: 2-41 
 

But the Lord, responding to Job from a whirlwind, said: 

{38:2} Who is this that wraps sentences in unskilled words? 

{38:3} Gird your waist like a man. I will question you, and you must answer me. 

{38:4} Where were you, when I set the foundations of the earth? Tell me, if you have 

understanding. 

{38:5} Who set its measurements, if you know, or who stretched a line over it? 

{38:6} Upon what have its bases been grounded, and who set forth its cornerstone, 

{38:7} when the morning stars praised me together, and all the sons of God made a 

joyful noise? 

{38:8} Who enclosed the sea with doors, when it broke forth as if issuing from the womb, 

{38:9} when I stationed a cloud as its garment and wrapped it in a mist as if swaddling 

an infant? 

{38:10} I encircled it with my limits, and I positioned its bars and doors. 

{38:11} And I said: “This far you will approach, and you will proceeded no further, and 

here you will break your swelling waves.” 

{38:12} Did you, after your birth, command the birth of the sun and show the sunrise its 

place? 

{38:13} And did you hold the extremities of the earth, shaking them, and have you shaken 

the impious out of it? 

{38:14} The seal will be restored like clay, and it will remain in place like a garment. 

{38:15} From the impious, the light will be taken away, and the exalted arm will be 

broken. 

{38:16} Have you entered the depths of the sea, and have you taken a walk in the 

uttermost parts of the abyss? 

{38:17} Have the gates of death been opened to you, and have you seen the doors of 

darkness? 

{38:18} Have you considered the breadth of the earth? If you know all things, reveal 

them to me. 
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{38:19} Which is the way that holds the light, and which is the place of darkness? 

{38:20} In this way, you might lead each thing to its final place, and understand the 

paths of its house. 

{38:21} So then, did you know when you were to be born? And did you know the number 

of your days? 

{38:22} Have you been admitted into the storehouses of the snows, and have you gazed 

upon the stockpile of the brimstone, 

{38:23} which I have prepared for the time of the enemy, for the day of the battle and the 

war? 

{38:24} In what way is the light scattered, and the heat distributed, over the earth? 

{38:25} Who gave a course to the rainstorms, and a path to the resounding thunder, 

{38:26} so that it would rain on the earth far from man, in the wilderness where no 

mortal lingers, 

{38:27} so that it would fill impassable and desolate places, and would bring forth green 

plants? 

{38:28} Who is the father of rain, or who conceived the drops of dew? 

{38:29} From whose womb did the ice proceed, and who created the frost from the air? 

{38:30} The waters are hardened to become like stone, and the surface of the abyss 

freezes over. 

{38:31} Will you have the strength to join together the sparkling stars of the Pleiades, or 

are you able to disperse the circling of Arcturus? 

{38:32} Can you bring forth the morning star, in its time, and make the evening star rise 

over the sons of the earth? 

{38:33} Do you know the order of heaven, and can you explain its rules here on the 

earth? 

{38:34} Can you lift up your voice to the clouds, so that an onslaught of waters will cover 

you? 

{38:35} Can you send forth lightning bolts, and will they go, and on returning, say to 

you: “Here we are?” 

{38:36} Who placed discernment in the guts of man, or who gave the rooster 

intelligence? 
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{38:37} Who can describe the rules of the heavens, or who can put to rest the harmony of 

heaven? 

{38:38} When was the dust cast to become the earth, and when were its clods fastened 

together? 

{38:39} Will you seize prey for the lioness, and will you sustain the lives of her young, 

{38:40} as they rest in their dens or lie in wait in pits? 

{38:41} Who provides the raven with its meal, when her chicks cry out to God, as they 

wander around because they have no food? 

 

Job 42:3-6 
 

 Who is this that hideth counsel without knowledge?  Therefore have I uttered that 

which I understood not, things too wonderful for me, which I knew not.  Hear, I beseech 

Thee, and I will speak;  I will demand of Thee, and declare Thou unto me.  I had heard of 

Thee by the hearing of the ear; but now mine eye seeth Thee; wherefore I abhor my 

words, and repent, seeing I am dust and ashes. . .  

 


