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CHAPTER 1: INTRODUCTION 

1.1 BACKGROUND OF THE STUDY 

According to Fetter (1998) a model is “any representation of a real system”. (Bedient et 

al., 1997) stated that “a ground water model is a tool designed to represent a simplified 

version of a real field site”. (Anderson and Woesner, 2002) agree by defining a model as 

“any device that represents an approximation of a field situation. (Mary et al., 2015) further 

stated that “a more powerful ground water model is one that quantitatively represents 

heads in space and time in a simplified representation of the complex hydrogeologic 

conditions in the subsurface”. The most common purpose of a model is to forecast the 

effects of some future action or hydrologic condition, but models are also used to re-

create past conditions (hindcasting) and also as interpretive tools (Mary et al., 2015). 

According to Reilly and Harbough (2004), there are five broad categories of problems for 

ground water modelling: basic understanding of ground water systems; estimation of 

aquifer properties; understanding the present; understanding the past; and forecasting 

the future. 

Ground water models can be divided into physical or mathematical models but for the 

sole purpose of this research, only mathematical models will be focused on. Mathematical 

models use equations to represent the process occurring in a field situation and include 

analytical, numerical and stochastic models (Fetter, 1998). Analytical models require a 

high level of simplification of the natural world in order to define a problem that can be 

solved mathematically to obtain a closed-form solution. Analytical solutions can be solved 

using a hand calculator but more complex solutions use a spreadsheet or computer 

program (Barlow and Moench, 1998). A model is stochastic if any of its parameters have 

a probabilistic distribution. Ground water modelling starts with the equation of flow. Two-

dimensional groundwater flow in a confined aquifer with transmissivity 𝑇 and storativity 𝑆 

is given as: 

𝜕2ℎ

𝜕𝑟2
+
1

𝑟
.
𝜕ℎ

𝜕𝑟
=
𝑆

𝑇

𝜕ℎ

𝜕𝑡
 

 

(1.1) 
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Where ℎ is the hydraulic head, 𝑆 is storativity, 𝑇 is the transmissivity, 𝑡 is time, and 𝑟 is 

the radial distance from the pumping well. Ground water movement is described by a 

group of simplified water flow governing equations; the predictions of ground water 

systems always deviate from observations. Therefore, the uncertainty of ground water 

simulation is inevitable.  

As with any model (e.g. physical), mathematical models are associated with uncertainties. 

According to JiChun and XianKui (2013) uncertainty can be interpreted as “the lack of 

certainty, that is, a future or existing state cannot be described accurately because of 

limited information”. Numerous authors have inconsistently classified uncertainty sources 

of ground water. (Yen et al., 1986) classified modelling uncertainty into five parts: the 

natural uncertainty caused by the inherent randomness of natural process; the model 

uncertainty stemmed from defective model which is not able to represent the real physical 

process; the uncertainty of model parameter; the uncertainty from observation error; and 

the operating uncertainty cause by human factors. (Van Asselt, 2000) proposed that the 

uncertainty sources could be cognized at three levels that are generation location, 

managing level and natural quality respectively. (Liu and Shu, 2000) stressed that, 

according to discipline nature, the source could be interpreted as stochastic, fuzzy, gray, 

and unknown uncertainties. (Merz and Thieken, 2009) classified modelling uncertainties 

as aleatory and epistemic uncertainties. Recently, Hepburn (2011) classified modelling 

uncertainties into three general sources which are model parameter, conceptual model 

(model structure) and observation data. According to Atangana and Van Tonder (2014), 

parameter uncertainty can be defined as “uncertainty that arises in selecting values for 

parameters in the various models”. Parameters associated with ground water models 

include hydraulic conductivity, transmissivity, specific yield, storage coefficient and 

dispersivity. Since hydrogeological data from the field is always limited, parameter 

uncertainty is derived from unreasonable parameter division, the temporal and spatial 

variability and the scaling effect of parameters. Conceptual model (model structure) 

uncertainty is influenced by many factors, including the incorrect setting of model aquifers 

(location, type, number of layer, distribution, etc.), unreasonable estimation of ground 

water model’s boundary conditions and sources and sinks, and the approximation of 

special ground water processes.  
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Therefore, hydrogeological conditions are often simplified incorrectly by ground water 

conceptual model. Observation uncertainty stems from a very wide range, including the 

error caused by the stochastic distribution of the observed variable, indirect measurement 

error, the error of measuring device and human recording error, etc. 

Due to uncertainties in modelling, every ground water model has limitations. Therefore, 

ground water models never uniquely represent the complexity of the real world. 

Groundwater models that represent the natural world have some level of uncertainty that 

must be evaluated and reported. In that respect, forecasting simulations for groundwater 

are similar to weather forecasts. Similar to weather forecasts, groundwater models should 

be qualified by specifying the nature and magnitude of uncertainty associated with a 

forecast (Mary et al., 2015). 

1.2 PROBLEM STATEMENT  

The Theis (1935) equation for groundwater flow in a confined aquifer is one of the 

fundamental solutions for the deterministic mathematical models of groundwater flow. 

The equation was derived based on certain assumptions such as: the aquifer is 

homogenous; has infinite aerial extent, isotropic and of uniform thickness; pumped at a 

constant discharge rate, etc. Based on the above assumptions, Theis simplified and 

ignored high order terms in the derivation of the groundwater flow equation for a confined 

aquifer. However, in reality, such is not the case as aquifers tend to be heterogenous, 

anisotropic, has finite aerial extent due to impermeable boundaries, and are pumped at 

different discharge rates, etc. This study will address such a problem by developing or 

rather modifying the groundwater flow equation for a confined aquifer. The derivation of 

the exact groundwater flow equation for a confined aquifer will not be limited by 

assumptions and no simplifications will be made to the equation. Following the new 

equation, a new numerical scheme for singular partial differential equations will also be 

developed. Theis and our solution will be compared using experimental data from 

different sites. 
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1.3 AIMS AND OBJECTIVES 

The main aim of this research is developing the exact groundwater model within a 

confined aquifer. 

Objectives include: 

1.3.1 Deriving an exact groundwater flow equation in confined aquifer. 

1.3.2 Prove that the above equation has unique solution. 

1.3.3 Create and compare numerical simulations using the Melin transform, Adam 

Bashforth and Inverse Mellin transform to solve singular partial differential equation. 

1.3.4 Solve the exact groundwater model within confined aquifers using the new 

numerical scheme. 

1.3.5 To collect experimental data from different sites and compare them with Theis and 

our solution. 

1.4 RESEARCH OUTLINE 

The dissertation has seven chapters: chapter one provides a background of what 

modelling entails, uncertainties associated with modelling and the derivation of 

groundwater flow in a confined aquifer. Chapter two describes the literature review of 

uncertainties and sensitivity analysis in groundwater modelling. Chapter three presents 

analysis of exact groundwater model within a confined aquifer. Chapter three also shows 

prove that the new groundwater flow equation has unique solution and exists. Chapter 

four shows the creation of the new numerical scheme for singular partial differential 

equation. In addition, stability analysis using the von Neumann method is also provided 

in chapter four. Chapter five discusses the application of data in numerical modelling. 

Chapter five also incorporates interpolation of data and application of interpolation in 

groundwater. In chapter six, our solution was compared to Theis using experimental field 

data. Chapter six also shows numerical simulations of our model. Chapter seven entails 

the conclusion based on the whole research and recommendations are also discussed in 

this chapter. 
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1.5 RESEARCH FRAMEWORK 

The following framework was used to achieve the main aim and objectives of this study: 

 

Figure 1: Research Framework followed in this study. 
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1.6 DERIVATION OF GROUND WATER FLOW IN CONFINED AQUIFER 

The derivation of ground water flow in a confined aquifer starts from Darcy’s law. Darcy’s 

law is a simple proportional relationship between the instantaneous discharge rate 

through a porous medium, the viscosity of the fluid and the pressure drop over a given 

distance. 

From Darcy’s law, we get: 

𝑞 = −𝐾
𝜕ℎ

𝜕𝑟
 

 

(1.2) 

𝑄 = −𝐾𝐴
𝜕ℎ

𝜕𝑙
 

 

(1.3) 

Where 𝑞 is the Darcy flux (𝑚/𝑠), 𝑄 is the discharge (𝑚3/𝑑𝑎𝑦), 𝐾 is the hydraulic 

conductivity (𝑚/𝑑𝑎𝑦), 
𝜕ℎ

𝜕𝑙
 is known as hydraulic gradient, 𝐴 is the cross sectional of flow 

(𝑚2). The negative sign signifies that ground water flows in the direction of head loss. 

Based on the principle continuity equation of flow, the difference between the rate of inflow 

and the rate of outflow from an annular cylinder is equal to the rate of change of volume 

of water within the cylinder. 

 

 

Figure 2: Diagram depicting Inflow and Outflow in a porous medium (Google/Images, 

2017). 
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Thus, 

𝑄1 − 𝑄2 =
𝜕𝑣

𝜕𝑡
 

 

(1.4) 

Where 𝑄1 is the rate of inflow, 𝑄2 is the rate of outflow and 
𝜕𝑣

𝜕𝑡
 is the rate of change of 

volume (𝑉).  

The slope of the hydraulic gradient line (i.e. the piezometric surface) at the inner surface 

is given as 
𝜕ℎ

𝜕𝑡
, where ℎ is the height of piezometric surface above the impermeable 

stratum. This means that the slope of the hydraulic gradient line at the outer surface is 

equal to, 

𝜕ℎ

𝜕𝑟
+
𝜕2ℎ

𝜕𝑟2
𝑑𝑟 

 

(1.5) 

By Darcy’s law. 

                                                               𝑄 = 𝐾𝐼𝐴 

Substituting hydraulic gradient and area in the above equation, we get: 

𝑄1 = 𝐾 [
𝜕ℎ

𝜕𝑟
+
𝜕2ℎ

𝜕𝑟2
𝑑𝑟] . 2𝜋(𝑟 + 𝑑𝑟) 𝑏 

 

(1.6) 

 𝑄2 = 𝐾
𝜕ℎ

𝜕𝑟
 . (2𝜋𝑟) 𝑏 

Based on the definition of storage coefficient (𝑆), is the volume of water released per unit 

surface area per unit change in head normal to the surface. Therefore,  

𝐶ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑣𝑜𝑙𝑢𝑚𝑒 = 𝜕𝑉 = 𝑆(2𝜋𝑟) 𝑑𝑟. 𝜕ℎ 

𝜕𝑣

𝜕𝑡
= 𝑆(2𝜋𝑟) 𝑑𝑟

𝜕ℎ

𝜕𝑡
 

 

(1.7) 

By replacing equation (1.6) and (1.7) in equation (1.4), we get: 

𝐾𝑏 [
𝜕ℎ

𝜕𝑟
+
𝜕2ℎ

𝜕𝑟2
𝜕𝑟] . 2𝜋(𝑟 + 𝜕𝑟) 

    

(1.8) 
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− 𝐾𝑏 [
𝜕ℎ

𝜕𝑟
] . (2𝜋𝑟) = 𝑆(2𝜋𝑟) 𝜕𝑟

𝑑ℎ

𝑑𝑡
 

The above equation is thus divided by 𝐾𝑏 (2𝜋𝑟) 𝑑𝑟 throughout and higher order terms are 

neglected.  

Thus,                    

𝜕2ℎ

𝜕𝑟2
+
1

𝑟
.
𝜕ℎ

𝜕𝑟
=

𝑆

𝐾𝑏
.
𝜕ℎ

𝜕𝑡
 

 

(1.9) 

Since Transmissivity (𝑇)  =  𝐾𝑏, we substitute transmissivity for 𝐾𝑏,  

𝜕2ℎ

𝜕𝑟2
+
1

𝑟
.
𝜕ℎ

𝜕𝑟
=
𝑆

𝑇
.
𝜕ℎ

𝜕𝑡
 

 

(1.10) 

Where ℎ is the head, 𝑟 is radial distance from the well, 𝑠 is storage coefficient, 𝑇 is 

transmissivity and 𝑡 is the time since the beginning of pumping. Above is the basic 

equation of unsteady flow towards the well. 

1.7 DERIVATION OF EXACT SOLUTION OF GROUNDWATER FLOW 

MODEL IN CONFINED AQUIFER USING ANALYTICAL METHODS. 

There are three different analytical methods for solving the new groundwater flow 

equation. 

1.7.1 Method of Separation of Variable 

According to Atangana and Ünlü (2016) separation of variables, also known as the 

Fourier method, is any of the several methods for solving ordinary and partial differential 

equations, in which algebra allows one to rewrite an equation so that each of two variables 

occurs on a different side of the equation. For a partial differential equation with two 

parameters, the method assumes that the solution is in form of: 

ℎ(𝑟, 𝑡) = 𝑈(𝑟)𝑉(𝑡) (1.11) 

The above equation is then replaced in the main equation, and two different equations 

are obtained with the inclusion of the eigen value.  
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This method shall be used to derive the solution of the new groundwater flow equation. 

Replacing equation (1.11) into equation (1.10), we get: 

𝑉(𝑡)
𝑑𝑈(𝑟)

𝑑𝑟
+ 𝑉(𝑡)

𝑑2𝑈(𝑟)

𝑑𝑟2
=
𝑆

𝑇
𝑑𝑡(𝑉(𝑡))𝑈(𝑟) 

 

(1.12) 

By rearrangement, we get the following equations: 

{

𝑑𝑈(𝑟)

𝑑𝑟
+
𝑑2𝑈(𝑟)

𝑑𝑟2
= −𝜆2

𝑆

𝑇
𝑑𝑡[𝑣(𝑡)] = −𝜆2𝑣(𝑡)

 

   

(1.13) 

Here 𝜆 is known as eigen values. The first equation in the above can be solved using the 

Sumudu transform. The Sumudu transform of a function posits that 𝑓 (𝑥) is defined as: 

𝑆(𝑓(𝑥))(𝑢) = ∫
1

𝑢

∞

0

exp [−
𝑥

𝑢
] 𝑓(𝑥) 𝑑𝑥 

 

(1.14) 

The following are useful properties of the Sumudu transform operator: 

𝑆(𝑓(𝑥))(𝑢) =
𝐹(𝑢) − 𝑓(0)

𝑢
, 

    

(1.15) 

𝑆(𝑓′′(𝑥))(𝑢) =
𝐹(𝑢) − 𝑓(0)

𝑢2
−
𝑓(0)

𝑢
, 

 

(1.16) 

𝑆 [
1

𝑥
𝑓′(𝑥)] (𝑢) =

1

𝑢

𝑑𝐹(𝑢)

𝑑𝑢
, 

 

(1.17) 

By applying on both sides of the equation using the above properties, we obtain the 

following expression: 

1

𝑢

𝑑𝑈(𝑢)

𝑑𝑢

𝑈(𝑢) − 𝑈(0)

𝑢2
−
𝑈′(0)

𝑢
= 𝜆2𝑈(𝑢). 

 

(1.18) 

Rearranging, and taking into account the boundary condition, we get:  

𝑢
𝑑𝑈(𝑢)

𝑑𝑢
+ (1 + (𝜆𝑢)2) 𝑈(𝑢) = 0. 

 

(1.19) 

Equation (1.20) can further be arranged as follows: 
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𝑑𝑈 (𝑢)

𝑈 (𝑢)
=
(1 + (𝜆𝑢))2

𝑢
𝑑𝑢.  

 

(1.20) 

The exact solution of the above equation is as follows: 

𝑈(𝑢) = exp [−∫
(1 + (𝜆𝑢)2

𝑢
]. 

 

(1.21) 

Furthermore, applying the inverse Sumudu transform on both sides of equation (1.21) 

we get the following solution:                                                                                                                                                                                                                    

𝑈(𝑟) = 𝐽0 (𝜆
2𝑟).  (1.22) 

The above expression is known as the Bessel function of the first kind and is defined as: 

𝐽0[𝑟] = ∑
(−1)𝑘

𝐾!

∞

𝑛=0

1

Г(𝑘 + 1)
(
𝑟

2
)  2𝑘 

 

(1.23) 

The second equation of Relation (15) that is:   

𝑆

𝑇

𝑑

𝑑𝑡
[𝑉(𝑡)] = −𝜆2𝑉(𝑡),  

 

(1.24) 

Has an exact solution: 

𝑉(𝑡) = 𝑐𝑒𝑥𝑝 [−
𝑇𝜆2

𝛼𝑆
(𝑡)]. 

 

(1.25) 

Thus, applying the procedure of separation of the variables, we get the exact solution of 

the new groundwater flow equation as: 

ℎ(𝑟, 𝑡) = 𝑐∑𝑒𝑥𝑝

∞

𝑛−0

[−
𝑇𝜆𝑛
𝛼𝑆

(𝑡)] 𝐽0[𝜆𝑛𝑟]. 
 

(1.26) 

Using the initial condition, we obtain the exact solution of the new groundwater equation 

to be: 

ℎ(𝑟, 𝑡) =
𝑄

4𝜋𝑇
∑𝑒𝑥𝑝

∞

𝑛−0

[−
𝑇𝜆𝑛
𝛼𝑆

(𝑡)] 𝐽0[𝜆𝑛𝑟]. 
 

(1.27) 
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1.7.2 Laplace-Transform Method 

The second analytical method for solving the new groundwater equation is the Laplace-

transform method.  

Let 𝑓 be a function such that for any 0 < 𝛽 ≤ 𝑛 the Laplace transform of 𝐹(𝑡) exists, then 

the Laplace-transform of 𝑓 is defined as: 

𝐿𝛽(𝑓))(𝑠) = ∫ 𝑓
∞

0

(𝑡)exp [−𝑠𝑡]𝑑𝑡. 
 

(1.28) 

Thus, applying the Laplace-transform on both sides of equation (1.10), we get: 

𝜕𝐻(𝑟, 𝑠)

𝑟𝜕𝑟
+
𝜕2𝐻(𝑟, 𝑠)

𝜕𝑟2
=
𝑆

𝑇
(𝑠𝐻(𝑟, 𝑠) − ℎ(𝑟, 0)). 

  

(1.29) 

By applying the Laplace-transform on both sides, we get:                                                                                     

𝑢
𝑑𝐻(𝑟, 𝑠)

𝑑𝑢
+ 𝑢2𝐻(𝑟, 𝑠) − 𝑢2𝐻(0, 𝑠) − 𝜆2𝐻(𝑢, 𝑠) = 0. 

(1.30) 

With: 

𝜆2 = 𝑠
𝑆

𝑇 
. 

  

(1.31) 

Applying the boundary condition together with the initial condition, we get the following: 

𝑢
𝑑𝐻(𝑢, 𝑠)

𝑑𝑢
+ (𝑢2 − 𝜆2)𝐻(𝑢, 𝑠) = 0. 

 

(1.32) 

The exact solution of the above equation is given as: 

𝑈(𝑟, 𝑠) = 𝐽0 (𝑠
𝑆

𝑇
𝑢). 

 

(1.33) 

Thus, applying the inverse Laplace twice for 𝑠 and 𝑢, we get the exact solution as: 

ℎ(𝑟, 𝑡) = 𝑐 ∫
1

𝑡
exp [−

𝑇𝜆2

𝛼𝑆
(𝑡)]

∞

𝑢

𝑑𝑡, 
 

(1.34) 

By applying the initial condition again, we get the following exact solution of the new 

groundwater equation within a confined aquifer:       
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ℎ(𝑟, 𝑡) =
𝑄

4𝜋𝑇
∫

1

𝑡

∞

𝑢

exp [−
𝑇𝜆2

𝛼𝑆
(𝑡)] 𝑑𝑡 =

𝑄

4𝜋𝑇
𝑊𝛽(𝑢) 

 

(1.35) 

 

𝑢 =
𝑟2𝑆

4𝑇𝑡
ℎ(𝑟, 𝑡) =

𝑐

𝑡 − 𝑡0
exp[−𝑢𝛽0]. 

 

(1.36) 

 

The following integral will be referred to as beta-exponential integral:    

∫
1

𝑡
exp [−

𝑇𝜆2

𝛼𝑆
(𝑡)] 𝑑𝑡.

∞

0

 
 

(1.37) 

1.7.3 Alternative Method 

The third method used was an alternative method which was used to derive the exact 

solution of the new groundwater flow equation. This method is often used for some 

classes of parabolic partial differential equation. This method used the concept of 

reduction of dimension; in particular, the method used the Boltzmann transformation 

(Atangana and Ünlü, 2016). In this method, defined for an arbitrary 𝑡0 < 𝑡 by equation: 

𝑢0 =
𝑆𝑟2

4𝑇(𝑡 − 𝑡0)
 . 

 

(1.38) 

However, in the case of the new groundwater flow equation, the above equation cannot 

be used, and to extend this method to the scope of beta-partial differential equation, 

Atangana and Ünlü (2016) proposed the following transformation:     

𝑢𝛽0 =
𝑆𝑟2

4𝑇[(𝑡 − 𝑡0)]
 . 

 

(1.39) 

Now, considering the following function: 

ℎ(𝑟, 𝑡) =
𝑐

𝑡 − 𝑡0
exp[−𝑢𝛽0]. 

 

(1.40) 

With 𝑐 being any arbitrary constant. If we assume that 𝑟𝑏 is the ratio of the borehole from 

which the groundwater is being taken out from the aquifer, thus, the total volume of the 

water withdrawn from the aquifer is provided by:                                                  
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𝑄0𝛥𝑡0 = 4𝜋𝑐𝑇. (1.41) 

Here: 

ℎ(𝑟, 𝑡) =
𝑐

𝑡 − 𝑡0
exp[−𝑢𝛽0], 

 

(1.42) 

Is the drawdown which will be experimental at a detachment, 𝑟 from the pumping well 

after the time space of 𝛥𝑡0. Now, 𝛾, assume that the above formula is continual 𝑚-times, 

meaning that water is being removed for a very short period of time, 𝛥𝑡𝑘, at consecutives 

times. 𝑡𝑘+1 = 𝑡𝑘 + 𝛥𝑡𝑘, (𝑘 = 0, 1, 2, … ,𝑚). In this instance, since the new groundwater flow 

equation is linear, the total drawdown at any time 𝑡 > 𝑡𝑘 is given by: 

ℎ(𝑟, 𝑡) =
1

4𝜋𝑇
∑

𝛥𝑡𝑘𝑄𝑘
𝑡 − 𝑡𝑘

𝑛

𝑘=0

exp[−𝑢𝛽0]. 
 

(1.43) 

In the above equation, the summation can be transformed into an integral if 𝛥𝑡 → 0, then 

equation (1.44) becomes: 

ℎ(𝑟, 𝑡) =
1

4𝜋𝑇
∫ 𝑄(𝑥)
𝑡

𝑡0

exp[−𝑢𝛽0]

𝑡 − 𝑥
𝑑𝑥 

 

(1.44) 

A particular important solution which arises when 𝑡0 is considered at the origin zero and 

at the point where the discharge rate is independent of time, then equation 

(1.43) becomes: 

ℎ(𝑟, 𝑡) =
𝑄

4𝜋𝑇
∫

1

𝑡

∞

𝑢

exp [−
𝑇𝜆2

𝛼𝑆
(𝑡)] 𝑑𝑡 =

𝑄

4𝜋𝑇
𝑊𝛽(𝑢). 

 

(1.45) 

  

                                           

                          

 

 



 

14 
 

CHAPTER 2: LITERATURE REVIEW OF UNCERTAINTIES AND 

SENSITIVITY ANALYSES 

2.1 UNCERTAINTIES OF GROUNDWATER MODEL 

The most direct method for assessing uncertainties is to derive the statistical information 

of output directly. However, the direct method is infeasible in practical application. This is 

due to challenges in mathematics and numerical solution when deriving statistical result. 

The other challenge is that the statistical properties on the system structure and input are 

mostly unknown. This chapter discusses the various methods and techniques to analyze 

uncertainties of model parameters, conceptual model and observation data. 

2.2 UNCERTAINTY ANALYSIS OF GROUNDWATER MODEL 

PARAMETERS 

Choosing appropriate model parameters to use on the model is the first step or challenge 

that has to be faced. The choice of model parameters will have a great influence on the 

simulated results. The parameters of a groundwater model such as hydraulic conductivity, 

are always uncertain because of measurement error, heterogeneity, and scaling issues. 

In the past few decades, there has been developments of various methods and 

techniques for assessing the impact of input parameter uncertainty on model predictions. 

According to JiChun and XianKui (2013), the most popular and feasible methods for 

parametric uncertainty are Generalized Likelihood Uncertainty Estimation (GLUE), 

Markov Chain Monte Carlo (MCMC), Bayesian Recursive Estimation (BARE), etc. 

2.2.1 Generalized Likelihood Uncertainty Estimation (GLUE) 

GLUE is a Monte Carlo Simulation technique based on the equifinality (Beven and Binley, 

1992; Beven and Freer, 2001). It rejects the idea of a single correct representation of the 

system in favor of many acceptable or behavioral system representations that should be 

considered in the evaluation of uncertainty associated with predictions (Beven, 2006). 

 



 

15 
 

For each simulator sampled from a prior set of possible system representation a likelihood 

measure is calculated that reflects the ability of the simulator to simulate the system 

responses. Simulations that perform below a rejection criterion are discarded from the 

further analyses and the likelihood measures of retained simulators are rescaled so as to 

render the cumulative likelihood equal to one. Ensemble predictions are based on the 

predictions of the retained set of simulators, weighted by their respected rescaled 

likelihood.  

The likelihood or “goodness of fit” used in GLUE are a measure of the ability 

(performance) of a simulator to reproduce a given set of observed system responses. 

Therefore, they represent an expression of belief in the predictions of that particular 

simulator rather than a formal definition of probability being the correct representation of 

the system (Binley and Beven, 2003). GLUE has the advantage of simple structure, easy 

operation and wide applicability. GLUE has been widely used for many purposes, such 

as precipitation-runoff model, distributed basin hydrological model, soil erosion model, 

groundwater model, unsaturated zone model and flood model. GLUE has some 

shortcomings. Due to the ineffective sampling technique, this method requires a large 

number of simulations to obtain the convergence of Monte Carlo simulation. Furthermore, 

for complex and high-dimensional uncertainty issues, it is likely to generate unreliable 

and inconsistent result (JiChun and XianKui, 2013). 

2.2.2 Markov Chain Monte Carlo (MCMC) 

Markov Chain Monte Carlo (MCMC) is a dynamic sampling technique. By constructing a 

Markov Chain with stable density distribution, the probability distribution space of target 

function is sufficiently searched in the process of evolving Markov Chain. The searching 

process is constructed by two functions which are proposal and acceptance functions. 

Proposal function (or proposal distribution) is used for generating alternative sample of 

parameter set, and whether the parameter sample is accepted or rejected depends on 

acceptance function (or transition function). Sampling algorithm is the core of MCMC, 

which determines the sampling efficiency and reliability of uncertainties analysis (JiChun 

and XianKui, 2013).  
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MCMC methods use two sampling techniques, namely single-chain and multi-chain 

techniques. Single-chain techniques was developed in early MCMC methods. (Metropolis 

et al., 1953) proposed the Metropolis algorithm to simulate energy levels of atoms in 

crystal structure. Based on Metropolis algorithm, (Hastings et al., 1970) developed 

Metropolis-Hastings (M-H) algorithm which is able to make use of any form of transition 

function, and meet the requirement of detailed balance. (Haario et al., 1999) developed 

an adaptive proposal distribution (AP) algorithm, AP is operated by a normal distribution 

of which the mean and variance are calculated by retained samples. Based on AP 

algorithm, (Haario et al., 2001) developed an Adaptive Metropolis (AM) algorithm, with 

respect to AP, AM is superior in updating the mean and covariance of proposal distribution 

by using previous sampling information based on a regression formula. 

(Vrugt et al., 2003) developed a multi chain evolving algorithm, Shuffled Complex 

Evolution Metropolis algorithm (SCEM) which assembles the advantages of M-H 

algorithm, controlling random search, competition evolution and shuffled complex 

evolution. The convergence rate is improved by adopting multiple parallel Markov chains, 

and exchanging searching information between chains. (Braak et al., 2006) reported a 

genetic algorithm based differential evolution Markov Chain (DE-MC). This is a multi-

chain parallel evolution technique by combining MCMC and differential evolution method. 

Based on DE-MC, (Vrugt et al., 2009) proposed a differential evolution adaptive 

Metropolis algorithm (DREAM). This method generates a proposal sample based on the 

difference of one (or several) couple of parameter samples. In addition, the adopted 

strategies of DREAM include sampling from a group of updated random subspaces, 

estimating the probability distribution of the cross probabilities of random subspaces. 

Therefore, the convergence rate of DREAM is improved significantly.  

MCMC method is superior in strong flexibility, high reliability in various environmental 

models uncertainty analysis. MCMC method has a good performance on complex 

uncertainty issues which include high nonlinear, high dimensional and multimodal 

probability distribution. MCMC method is inferior in huge computing time-consuming 

requirement. In addition, MCMC method is restricted in the application of parallel 

computing techniques because of its logic computing characteristics. 
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2.2.3 Bayesian Recursive Estimation (BARE) 

Bayesian Recursive Estimation (BARE) requires only an initial guess of the region of the 

parameter estimates to be specified before the model can be used to begin the generation 

of one-step ahead (and multiple-step-ahead) predictions. These predictions are 

described in terms of the probabilities associated with different output values (or can be 

summarized in terms of a “most likely” prediction and a “Bayesian confidence interval”). 

The uncertainty associated with the prediction will be relatively large in the beginning. A 

recursive procedure is used to update (reduce) the uncertainty associated with the 

parameter estimates as successive input-output measurement data are assimilated. The 

reduced parameter uncertainty results in smaller prediction uncertainties (Thiemann et 

al., 2001). 

2.3 UNCERTAINTY ANALYSES OF GROUNDWATER CONCEPTUAL 

MODEL 

Conceptual models have many uncertainties due to both the scarcity of data and 

subjectivity of many modelling decisions. Modelers are forced to make simplistic 

assumptions of reality. Model errors are introduced in, for example, the parameterization, 

discretization, parameter zonation and boundary conditions selected. Uncertainties in the 

conceptual model have been recognized as a main source of uncertainty in model 

prediction (Usunoff et al., 1992; Neumann and Wierenga, 2003; Hojberg and Refsgaard, 

2005). Three types of model uncertainties can be defined: conceptual model uncertainty, 

mathematical model uncertainty, and computer code uncertainty (Zio and Apostolakis, 

1996). In general, the sources of model uncertainty can be further classified as follows: 

2.3.1 Model Structure 

The uncertainty in model structure and mathematical equation is referred to as conceptual 

error (Hua lei and Schilling, 1996). This type of uncertainty arises from the simplification 

made in the mathematical computation in the model structure. Model structure is the 

reason of different solution and output between one model and another (Baalousha, 

2003). 
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2.3.2 Model Concept 

Every model concept arises from assumptions made about the aquifer properties. These 

assumptions do not always take into account the complexities of the aquifer 

(heterogeneity) and as such result in another type of uncertainty. Boundary and initial 

conditions also play an important role in the modelling process and affects the output of 

the model. 

2.3.3 Model Resolution 

In terms of accuracy, more finer elements in the model domain result in more accurate 

solution. On the other hand, as the number of elements increases, the computation time 

increases as well. For this reason, the selection of mesh size is important in terms of 

accuracy and can result in uncertainty if the mesh is coarse (Baalousha, 2003). 

However, the existing approaches for coping with conceptual model uncertainties are 

neglected, and uncertainties analyses are performed considering only parameter 

uncertainty and using only a single conceptual model. As the development of uncertainty 

analysis in groundwater conceptual model, the multi-model method has become an 

important theory in treating groundwater modelling uncertainty. The groundwater system 

is represented by a set of conceptual models which are weighted by their corresponding 

performance on reproducing the groundwater system (Refsgaard et al., 2007). The 

behavior of unknown groundwater system is described by the combination of outputs of 

alternative models. In general, multi model analysis includes the following steps: (1) 

constructing a group of plausible conceptual models based on prior information; (2) 

calibrating these alternative conceptual models by obtained conditioning data; (3) 

weighting or ranking these conceptual models by using a criterion; (4) removing these 

models with significantly unreasonable performances; (5) ensemble prediction by 

combining the weighted predictions of retained conceptual models. 
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Poeter and Anderson (2005) proposed a Kullback-Liebler information based multi-model 

theory, this method can evaluate the weight of alternative models, but the prior 

information cannot be formally incorporated into assembled predictions. (Refsgaard et 

al., 2006) developed a pedigree analysis method to assess conceptual model uncertainty, 

this method is able to integrate various kinds of prior knowledge. However, each part of 

predictive uncertainty cannot be delineated quantitatively. Bayesian Model Averaging 

method is firstly proposed by (Drapper, 1995; Kass et al., 1995), this method infers the 

posterior probabilities of alternative conceptual models based on Bayesian inference, and 

each part of predictive uncertainty can be described separately. The formula of BMA is 

given as:  

𝑃(∆ | 𝑍) = ∑𝑃

𝑑

𝑘=1

(∆|𝑍,𝑀𝑘) 𝑃(𝑀𝑘 | 𝑍) 
 

(2.1) 

Where ∆ denotes a predictive variable, 𝑝(∆ | 𝑍) is the ensemble probability of ∆, and 

𝑃(∆|𝑍,𝑀𝑘 ) represents the probability of ∆ given observation 𝑍 and model 𝑀𝑘. 𝑝(𝑀𝑘|𝑍) is 

the posterior probability of model 𝑀𝑘, which can be computed using Bayesian theorem; 

𝑃(𝑀𝑘 | 𝑍) =
𝑃(𝑍 | 𝑀𝑘) 𝑃 (𝑀𝑘)

∑ 𝑃𝑘
𝑖=1 (𝑍 | 𝑀𝑖) 𝑃(𝑀𝑖)

 
 

(2.2) 

Where 𝑝(𝑀𝑘)  denotes the prior probability of model 𝑀𝑘 , 𝑝 (𝑍|𝑀𝑘) is the intergrated 

likelihood measure of conceptual model 𝑀𝑘. 

Conceptual model’s posterior probability is obtained by combining conceptual model’s 

prior probability and integrated likelihood value 𝑝(𝑍|𝑀𝑘) which indicates the performance 

on reproducing groundwater observations (Kass et al., 1995; Rojas et al. 2010). 

Moreover, the variance of groundwater model’s prediction is divided into within-model and 

between-model variances which represent the uncertainties of model parameter and 

structure respectively (Rojas et al., 2008; Ye et al., 2010).  

BMA methods can be divided into two broad categories; the Monte Carlo based BMA 

method (MC-BMA) and the information criteria (or model selection criteria) based BMA 

method (IC-BMA). Kullback-Liebler (K-L) information is the base of model selection 

theory.  
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When information criteria are used for selecting models, each conceptual model will 

obtain a K-L value which represents the loss of information as the real groundwater 

system is represented by this model (Refsgaard et al., 2006). Therefore, a series model 

selection criterion is developed for estimating K-L value, e.g. Akaike Information Criterion 

(AIC), second-order-bias-corrected AIC (AICc), Bayesian Information Criterion (BIC), and 

Kashyap Information Criterion (KIC), (Neuman and Wirenga, 2003; Burnham and 

Anderson, 2005).  

IC-BMA is the main idea for current multi-model averaging methods. Neuman and 

Wirenga (2003) proposed a suit of strategies for constructing and selecting conceptual 

models, assembling model’s outputs and making optimum prediction, which is lack of 

formality. Neuman (2003) proposed a KIC based Maximum Likelihood Bayesian 

Modelling Average (MLBMA) to overcome this defect. MLBMA can integrate the 

information on field conditions and observations, and the final outcome depends on the 

combination of model outputs and prior information. 

The software Multi-Model Analysis (MMA) is a convenient and efficient tool for conceptual 

model’s uncertainty analysis. MC-BMA method calculates conceptual models integrated 

likelihood value 𝑝(𝑍|𝑀𝑘) by Monte Carlo simulation which is applied to inverse model’s 

parameter space. (Rojas et al., 2008) firstly proposed GLUE based BMA method, for 

which GLUE is used to estimate conceptual models integrated likelihood value. In 

addition, (Rojas et al., 2010) pointed that for IC-BMA method, the application of 

information criteria includes a step of model calibration. Thus, model structures deviation 

could be compensated by model calibration, which will cause statistical bias of conceptual 

model’s posterior probability. By contrast, MC-BMA determines posterior weight based 

on the likelihood distribution of corresponding conceptual model and its prior probability. 

Therefore, MC-BMA prevents multi-model average prediction from the erosion of biased 

parameter estimation.  

Furthermore, (Raftery et al., 2005) proposed an Expectation Maximization (EM) method 

to solve the weight and variance of conceptual models iteratively. EM-BMA assumes that 

model’s prediction follows normal distribution, and it is hard to assure that EM algorithm 

convergences to global optimum’s weight and variance.  
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2.4 UNCERTAINTY ANALYSIS OF GROUNDWATER OBSERVATION 

DATA 

Observation errors are produced in the processes of measuring, collecting, recording, 

storing and importing data. They include system and random errors. When groundwater 

model is calibrated and verified based on a group of biased observation data, the 

uncertainties related to model output, parameter inversion, output prediction, etc., are 

regarded as observation error. Observation error is always merged with other sources, 

such as model parameter and structure uncertainties, to affect model output 

simultaneously. Uncertainty analysis of groundwater observation data has not been given 

enough attention in comparison with model parameter and conceptual model 

uncertainties. Observation data has always been assumed to be accurate, or given a 

simplified error structure (Post et al., 2008; Renard et al., 2009). Groundwater model 

observation uncertainty is assessed combined with the uncertainty analysis of model 

parameter and or structure. Furthermore, groundwater is an open system, the simulation 

errors stem from multiple sources, and data scarcity is the special factor which enhances 

the uncertainty of groundwater numerical simulation. Therefore, the residuals will often 

have a complicated structure that is hard to delineate or interpret (JiChun and XianKui, 

2013). 

Presently, observation uncertainty is usually assessed by comprehensive evaluation 

methods. The common used methods include Bayesian Forecasting System (BFS), 

integrated Bayesian uncertainty estimator (IBUNE), Bayesian total error analysis 

(BATEA), and data fusion method (Krzysztofo, 1999; Ajami et al., 2007; Nowak et al., 

2010). (Troldborg et al., 2010) proposed an assembled method which combines Bayesian 

model averaging, Bayesian geostatistics method and Kalman ensemble generator to 

account for conceptual model and measurement uncertainties. In addition, the 

observation error is assumed to be normal and independent with zero mean and a fixed 

covariance matrix. (Refsgaard et al., 2010) evaluated the predictive uncertainty of a 

conceptual rainfall-runoff model based on BATEA. Furthermore, the total uncertainty was 

divided into input and structure uncertainties, and they were described and assessed 

quantitatively. 
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(Renard et al., 2009) made a comparison between IBUNE and BATEA, and drew a 

conclusion that these two methods are both constructed based on the hierarchical 

generalized processing of input uncertainty. Moreover, for the first type of IBUNE, the 

likelihood function and posterior distribution are predictive variables stochastic functions, 

which is inconsistent with the standard essential function. In addition, the second type of 

IBUNE is inferior in sampling efficiency and convergence rate (JiChun and XianKui, 

2013). 

2.5 SENSITIVITY ANALYSIS OF GROUNDWATER MODEL 

Sensitivity analysis is “the study of how uncertainty in the outputs of a model (numerical 

or otherwise) can be apportioned to different sources of uncertainty in the model input” 

(Saltelli et al., 2004). Uncertainty analysis focuses rather on quantifying uncertainty in 

model output. Ideally, uncertainty analyses and sensitivity analyses should be run in 

tandem with uncertainty analyses preceding. Sensitivity analysis can serve a number of 

useful purposes in the economy of modelling. It can surprise the analyst, uncover 

technical regions in the space of the inputs, establish priorities for research, simplify 

models and defend against falsifications of the analysis. 

According to Reilly and Harbaugh (2004) Sensitivity analysis is the evaluation of model 

input parameters to see how much they affect model outputs, which are heads and flows. 

The relative effect of the parameters helps to provide fundamental understanding of the 

simulated system. Sensitivity analysis also is inherently part of model calibration. The 

most sensitive parameters will be the most important parameters for causing the model 

to match observed values. For example, an area in which the model is insensitive to 

hydraulic conductivity generally indicates an area where there is relatively little water 

flowing. 
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If the model is being calibrated, then changing the value of hydraulic conductivity in this 

area will not help much in causing the model to match observations. The calibration will 

not provide much certainty about the value of the parameter, but the uncertainty will not 

matter provided the model is not used in situations where large amounts of water will flow 

in that area. Such a model, however, would probably not be suitable for evaluation of 

recharge or withdrawal in this area because the amount of flow in the area would be much 

greater than it was when the model was calibrated, and the uncertainty from the 

calibration would be unacceptable. 

Sensitivity analysis can be conducted manually or automatically. In the manual approach, 

multiple model simulations are made in which ideally a single parameter is adjusted by 

an arbitrary amount. The changes to the model output for all of the parameter changes 

may be displayed in tables or graphs for evaluation. The automatic approach directly 

computes parameter sensitivity, which is the change in head or flow divided by the change 

in a parameter. Automatic sensitivity analysis is inherently part of automatic parameter 

adjustment for model calibration. The automatic parameter adjustment algorithm uses 

parameter sensitivity to compute the parameter values that cause the model to best 

match observed heads and flows (Reilly and Harbaugh, 2004). 

2.5.1 Probabilistic Sensitivity Analysis 

Mathematical models are built to simulate complex real-world phenomena. Such models 

are typically implemented in large computer programs and are also very complex, such 

that the way that the model responds to changes in its inputs is not transparent. Sensitivity 

analysis is concerned with understanding how changes in the model inputs influence the 

outputs. This may be motivated simply by a wish to understand the implications of a 

complex model but often arises because there is uncertainty about the true values of the 

inputs that should be used for a particular application.  A broad range of measures have 

been advocated in the literature to quantify and describe the sensitivity of a models output 

to variation in its inputs. In practice, the most commonly measures are those that are 

based on formulating uncertainty in the model inputs by a joint probability distribution and 

then analyzing the induced uncertainty in outputs, an approach which is known as 

probabilistic sensitivity analysis (Oakley and O’Hagan, 2004). 
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2.5.1.1 Main Effects and Interactions 

Sensitivity analysis methods can be seen in terms of a decomposition of the function ƞ (. ) 

into main effects and interactions: 

𝑦 = ƞ(𝑥) = 𝐸(𝑌) +∑𝑍𝑖

𝑑

𝑖=1

 (𝑋𝑖) +∑𝑍𝑖
𝑖<𝑗

 𝑍𝑖 , 𝑗, (𝑋𝑖, 𝑗) 
 

∑ 𝑍𝑖
𝑖<𝑗<𝑘

, 𝑗, 𝐾(𝑋𝑖, 𝑗, 𝐾) + ⋯+ 𝑍1,2,…,𝑑(𝑋) 
      

(2.3) 

𝑍𝑖(𝑋𝑖) = 𝐸(𝑌|𝑋𝑖) − 𝐸(𝑌), (2.4) 

𝑍𝑖,𝑗(𝑋𝑖) = 𝐸(𝑌|𝑋𝑖,𝑗) − 𝑍𝑖(𝑋𝑖) − 𝑍𝑗(𝑋𝑗) − 𝐸(𝑌), (2.5) 

𝑍𝑖,𝑗,𝑘(𝑋𝑖,𝑗,𝑘) = 𝐸(𝑌|𝑋𝑖,𝑗,𝑘) − 𝑍𝑖,𝑗(𝑋𝑖,𝑗) − 𝑍𝑖,𝑘(𝑋𝑖,𝑘)  

𝑍𝑗,𝑘(𝑋𝑗,𝑘) − 𝑍𝑖(𝑋𝑖) − 𝑍𝑗(𝑋𝑗) − 𝑍𝑘(𝑋𝑘) − 𝐸(𝑌), (2.6) 

And so on. Refer 𝑍𝑖(𝑋𝑖) as the main effect of 𝑋𝑖, to 𝑍𝑖,𝑗(𝑋𝑖,𝑗) as the first order interaction 

between 𝑋𝑖 and 𝑋𝑗, and so on. 

The definitions of these terms depend on the distribution 𝐺 of the uncertain inputs. 

Considering, for instance, the very simple model ƞ (𝑋1, 𝑋2) = 𝑋1. We have 𝐸(𝑌) = 𝐸(𝑋1) 

and 𝑍1(𝑋1) = 𝑋1 − 𝐸(𝑋1). If 𝐺 is such that 𝑋1 and 𝑋2 are independent then 𝑍2(𝑋2) = 0 and 

𝑍12(𝑋1, 𝑋2) = 0. In this case, the representation reflects the structure of the model itself, 

comprising a linear effect of 𝑋1 with no 𝑋2-effect and no interaction. If, 𝑋1 and 𝑋2 are not 

independent, we get 𝑍2(𝑋2) = 𝐸(𝑋1|𝑋2) − 𝐸(𝑋1) = −𝑍12(𝑋1, 𝑋2), which will not in general 

be 0. Computing and plotting the main effects and first order interactions is a powerful 

visual tool for examining how the model output responds to each individual input, and 

how these inputs interact in their influence on 𝑌. 

2.5.1.2 Variance Based Methods 

Variance based methods of probabilistic sensitivity analysis quantify the sensitivity of the 

output 𝑌 to the model inputs in terms of a reduction in the variance of 𝑌. Two principal 

measures of the sensitivity of 𝑌 to an individual 𝑋𝑖 are proposed.  
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The first principle was proposed by (Saltelli et al., 2000), is                                                                 

𝑉𝑖 = 𝑣𝑎𝑟 {𝐸(𝑌|𝑋𝑖)} (2.7) 

The motivation for this measure is that it is the expected amount by which the uncertainty 

in 𝑌 will be reduced if we learn the true value of 𝑋𝑖. Thus, if we were to learn 𝑋𝑖, then the 

uncertainty about 𝑌 would become Var (𝑌|𝑋𝑖), a difference of Var (𝑌) − 𝐸 {𝑉𝑎𝑟(𝑌|𝑋𝑖)} =

𝑉𝑖, by a well-known identity. Although Var(𝑌) − 𝑉𝑎𝑟(𝑌|𝑋𝑖) can be negative for some 𝑋𝑖, 

its expectation 𝑉𝑖 is always positive, so this is the expected reduction in uncertainty, due 

to observing 𝑋𝑖. 𝑉𝑖 = 𝑉𝑎𝑟 {𝑍𝑖 (𝑋𝑖)} and so is based on the main effect of 𝑋𝑖. 

The second measure, first proposed by Homma and Saltelli (1996), is  

𝑉𝑇𝑖 = 𝑉𝑎𝑟(𝑌) − 𝑉𝑎𝑟{𝐸(𝑌 𝑋 − 𝑖)}, (2.8) 

Which is the remaining uncertainty in 𝑌 that is unexplained after we have learnt everything 

except 𝑋𝑖. Both measures are converted into scale invariant measures by dividing by Var 

(𝑦): 

𝑆𝑖 =
𝑉𝑖

𝑉𝑎𝑟 (𝑌)
 

    

(2.9) 

𝑆𝑇𝑖 =
𝑉𝑇𝑖 

𝑉𝑎𝑟(𝑌)
= 1 − 𝑆 − 𝑖 

(2.10) 

Thus, 𝑆𝑖 may be referred to as the main effect index of 𝑋𝑖, and 𝑆𝑇𝑖 is known as the total 

effect index of 𝑋𝑖. The relative importance of each input in driving the uncertainty in 𝑌 is 

then gauged by comparing their indices. As well as indicating the relative importance of 

an individual 𝑋𝑖 in driving the uncertainty in 𝑌. Equation (2) can be seen as indicating 

where to direct effort in future to reduce that uncertainty. In practice, it is rarely possible 

to learn the true value of any of the uncertain inputs exactly; nor is the cost of gaining 

more information likely to be the same for each input.  

Nevertheless, the analysis does suggest where there is the greatest potential for reducing 

uncertainty through new research. It is not believed that there is any comparable 

interpretation of 𝑆𝑇𝑖 in terms of guiding research effort. It does not follow that the two 

inputs with the largest main effect variances will be the best two inputs to observe. 
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We would need to calculate; 

𝑉𝑖,𝑗 = 𝑉𝑎𝑟 {𝐸(𝑌|𝑋𝑖,𝑗)} = 𝑉𝑎𝑟 {𝑍𝑖 (𝑋𝑖) + 𝑍𝑗(𝑋𝑗) + 𝑍𝑖𝑗(𝑋𝑖,𝑗)} (2.11) 

 

For all 𝑖 and 𝑗, since this is the part of Var (𝑌) that is removed on average when we learn 

both 𝑋𝑖 and 𝑋𝑗. The search for the most informative combinations of input is considered 

further by (Saltelli and Tarantola, 2002). In general, 𝑉𝑝 = 𝑉𝑎𝑟 {𝐸(𝑌|𝑋𝑝)} is the expected 

reduction in variance that is achieved when we learn 𝑋𝑝. 

 2.6 LIMITATIONS IN PERFORMING UNCERTAINTY ANALYSIS 

The main limitation in performing comprehensive uncertainty analyses of Groundwater 

models is the associated cost and effort. The computer resources required for uncertainty 

propagation using conventional methods can sometimes be prohibitively expensive. 

Further, the incorporation of uncertainty associated with structural and formulation 

aspects of the models requires significant effort. Finally, the data needs for characterizing 

input uncertainties are often substantial. Conventional methods for uncertainty 

propagation typically require several model runs that sample various combinations of 

input values. The number of model runs can sometimes be very large, i.e., of the order of 

many thousands, resulting in substantial computational demands.  

On the other hand, in order to estimate the uncertainties associated with model 

formulation, several different models, each corresponding to a different formulation of the 

mathematical problem corresponding to the original physical system, have to be 

developed. The model results corresponding to all the possible combinations give an 

estimate of the range of the associated model uncertainty. Development and application 

of several alternative computational models can require substantial time and effort. Thus, 

the costs associated with uncertainty analysis may sometimes be prohibitively high, 

necessitating a large number of model simulations and/or the development of several 

alternative models.                                                      
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2.7 LIMITS OF SENSITIVITY ANALYSIS 

It is important, however, to recognize that the sensitivity of the parameter in the equation 

is what is being determined, not the sensitivity of the parameter in nature. Therefore, if 

the model is wrong or if it’s a poor representation of reality, determining the sensitivity of 

an individual parameter in the model is a meaningless pursuit. Sensitivity analysis relies 

on assumptions (Saltelli, 2006). 
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CHAPTER 3: ANALYSIS OF EXACT GROUNDWATER MODEL WITHIN 

A CONFINED AQUIFER. 

This chapter aims at deriving an exact solution for groundwater flow in a confined aquifer, 

proving that the equation exists and has unique solution. Numerical simulations will also 

be created and compared using the Melin transform and Inverse Mellin transform to solve 

singular partial differential equation. The derivation of the exact analytical solution of this 

equation will be shown. As mentioned in the previous sections of the last chapters, every 

groundwater flow in a confined aquifer starts from Darcy’s law. The derivation of this 

problem is under the Theis conditions of groundwater flowing within a confined aquifer. 

From Darcy’s law, we get: 

𝑞 = −𝐾
𝜕ℎ

𝜕𝑟
 

 

(3.1) 

𝑄 = −𝐾𝐴
𝜕ℎ

𝜕𝑟
 

 

(3.2) 

Where 𝑞 is the Darcy flux (𝑚/𝑠), 𝑄 is the discharge (𝑚3/𝑑𝑎𝑦), 𝐾 is the hydraulic 

conductivity (𝑚/𝑑𝑎𝑦), 
𝜕ℎ

𝜕𝑡
 is known as hydraulic gradient, 𝐴 is the cross sectional of flow 

(𝑚2). The negative sign signifies that ground water flows in the direction of head loss. 

Based on the principle equation of flow, we get that the water flowing into the porous 

medium minus the water flowing out of the porous medium is equal to the change in 

volume inside the porous medium with respect to time. To achieve this, we set up an 

equation for the head based upon the volume conservation in an annulus of thickness ∆𝑟 

with radial inflow and outflow. The choice of this radial flow is based on the fact that, the 

water enters the borehole symmetrically around the drilled borehole, which has cylindrical 

form. Mathematically, this can be represented as:                     

𝑄1 − 𝑄2 =
𝜕𝑣

𝜕𝑡
 

 

(3.3) 

Where 𝑄1 is the rate of inflow, 𝑄2 is the rate of outflow and 
𝜕𝑉

𝜕𝑡
 is the rate of change of 

volume (𝑉). 
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Thus,                                                                                                              

𝑄1 = 𝐾 [
𝜕ℎ

𝜕𝑟
+
𝜕2ℎ

𝜕𝑟2
∆𝑟] . 2𝜋(𝑟 + ∆𝑟) 𝑏 

  

(3.4) 

 

𝑄2 = 𝐾
𝜕ℎ

𝜕𝑟
. (2𝜋𝑟) 𝑏 

  

Based on the definition of storage coefficient (𝑆), is the volume of water released per unit 

surface area per unit change in head normal to the surface.  

Therefore, 

𝐶ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑣𝑜𝑙𝑢𝑚𝑒 = 𝜕𝑉 = 𝑆(2𝜋𝑟) ∆𝑟. 𝜕ℎ 

Therefore, 
 

𝜕𝑣

𝜕𝑡
= 𝑆(2𝜋𝑟)

𝜕ℎ

𝜕𝑡
 ∆𝑟  

(3.5) 

The area (2𝜋𝑟) ∆𝑟 in equation (3.5), which is the area of a cross-section through the 

annulus, suggested that there is flow normal to that area along the length of the annulus. 

By replacing equation (3.4) and (3.5) in equation (3.3), we get: 

𝐾𝑏 [
𝜕ℎ

𝜕𝑟
+
𝜕2ℎ

𝜕𝑟2
𝑑𝑟] . 2𝜋(𝑟 + 𝑑𝑟) 

− 𝐾𝑏 [
𝜕ℎ

𝜕𝑟
] . (2𝜋𝑟) = 𝑆(2𝜋𝑟) ∆𝑟

𝜕ℎ

𝜕𝑡
 

(3.6) 

By dividing the above equation with 2𝜋, we get:                                                       

𝐾𝑏 [
𝜕ℎ

𝜕𝑟
+
𝜕2ℎ

𝜕𝑟2
𝑑𝑟] . (𝑟 + ∆𝑟) 

− 𝐾𝑏 [
𝜕ℎ

𝜕𝑟
] . 𝑟 = 𝑆(𝑟∆𝑟)

𝜕ℎ

𝜕𝑡
 

   

(3.7) 

The above equation can be divided by 𝑟𝑑𝑟 throughout, we get:                 

𝐾𝑏 [
𝜕ℎ

𝜕𝑟
+
𝜕2ℎ

𝜕𝑟2
𝑑𝑟]

𝑟 + ∆𝑟

𝑟∆𝑟
− 𝐾𝑏 [

𝜕ℎ

∆𝑟𝜕𝑟
] = 𝑆

𝜕ℎ

𝜕𝑡
 

   

(3.8) 
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Rearranging the above equation gives us:                         

𝐾𝑏 [
𝜕ℎ

𝜕𝑟
+
𝑟 + ∆𝑟

𝑟∆𝑟
+
𝜕2ℎ

𝜕𝑟2
.
∆𝑟(𝑟 + ∆𝑟)

𝑟∆𝑟
] 

−𝐾𝑏 [
𝜕ℎ

𝜕𝑟∆𝑟
] = 𝑆

𝜕ℎ

𝜕𝑡
 

  (3.9) 

 

𝐾𝑏 [
𝜕ℎ

𝜕𝑟
.
𝑟

𝑟∆𝑟
+
𝜕ℎ

𝜕𝑟
.
∆𝑟

𝑟∆𝑟
+
𝜕2ℎ

𝜕𝑟2
.
𝑟∆𝑟

𝑟∆𝑟
+
𝜕2ℎ

𝜕𝑟2
.
(∆𝑟)2

𝑟∆𝑟
] 

−𝐾𝑏 [
𝜕ℎ

∆𝑟𝜕𝑟
] = 𝑆

𝜕ℎ

𝜕𝑡
 

  

(3.10) 

𝐾𝑏 [
𝜕ℎ

∆𝑟𝜕𝑟
+
𝜕ℎ

𝑟𝜕𝑟
+
𝜕2ℎ

𝜕𝑟2
+
𝜕2ℎ

𝜕𝑟2
.
∆𝑟

𝑟
] 

−𝐾𝑏 [
𝜕ℎ

∆𝑟𝜕𝑟
] = 𝑆

𝜕ℎ

𝜕𝑡
 

  

(3.11) 

Since Transmissivity (𝑇) = 𝐾𝑏 we substitute transmissivity for 𝐾𝑏,                          

𝑇 [
𝜕ℎ

∆𝑟𝜕𝑟
+
𝜕ℎ

𝑟𝜕𝑟
+
𝜕2ℎ

𝜕𝑟2
+
𝜕2ℎ

𝜕𝑟2
.
∆𝑟

𝑟
] − 𝑇 [

𝜕ℎ

∆𝑟𝜕𝑟
] = 𝑆

𝜕ℎ

𝜕𝑡
 

By dividing the above equation with 𝑇, we get: 

𝑆

𝑇
.
𝜕ℎ

𝜕𝑡
= [

𝜕ℎ

∆𝑟𝜕𝑟
+
𝜕ℎ

𝑟𝜕𝑟
+
𝜕2ℎ

𝜕𝑟2
+
𝜕2ℎ

𝜕𝑟2
.
∆𝑟

𝑟
−

𝜕ℎ

𝜕𝑟∆𝑟
] 

 

(3.12) 

Therefore, 

𝑆

𝑇
.
𝜕ℎ

𝜕𝑡
=
𝜕ℎ

𝑟𝜕𝑟
+
𝜕2ℎ

𝜕𝑟2
[1 +

∆𝑟

𝑟
] 

    

(3.13) 

Thus, above is the exact solution of the groundwater flow equation in a confined aquifer. 

We now introduce a small perturbation term ∆𝑟 = 𝑠𝑐𝑎𝑙𝑖𝑛𝑔 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. 

𝑆

𝑇
.
𝜕ℎ

𝜕𝑡
=
𝜕ℎ

𝑟𝜕𝑟
+
𝜕2ℎ

𝜕𝑟2
[1 +

∆𝑟

𝑟
] 

 

   

(3.14) 
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Indeed, from equation (3.12) to equation (3.14) if one takes the limit as ∆𝑟 tends to zero, 

one will recover the Theis groundwater flow model. The physical problem under 

investigation here is that of flow in an annulus of finite thickness.  We now have to prove 

that the above equation has a unique solution. To determine if the above equation has a 

unique solution, we first have to prove that this operator is well defined and is also a 

contraction. For the operator to be a contraction, K (constant) must be less than 1. 

Thereafter, we must prove that the operator satisfies the Lipschitz condition. If the above 

conditions are satisfied, then this operator has a unique solution. 

The above equation is divided by 
𝑆

𝑇
, thus: 

𝜕ℎ(𝑟, 𝑡)

𝜕𝑡
=
𝑇

𝑆
.
𝜕ℎ

𝑟𝜕𝑟
+
𝑇

𝑠
.
𝜕2ℎ

𝜕𝑟2
[1 +

∆𝑟

𝑟
] 

 

  

(3.15) 

The above equation is then reduced to: 

𝜕ℎ(𝑟, 𝑡)

𝜕𝑡
=
𝜕ℎ

𝜕𝑟
𝑎(𝑟) +

𝜕2ℎ

𝜕𝑟2
𝑏(𝑟) 

  

(3.16) 

𝜕ℎ

𝜕𝑡
= 𝑓(ℎ, 𝑡) 

 

(3.17) 

Where, 

𝑎(𝑟) =
𝑇

𝑆

1

𝑟
 

𝑏(𝑟) =
𝑇

𝑆
[1 +

∆𝑟

𝑟
] 

Therefore, 

𝑓(ℎ, 𝑡) =
𝜕ℎ(𝑟, 𝑡)

𝜕𝑟
𝑎𝑟 +

𝜕2ℎ(𝑟, 𝑡)

𝜕𝑟2
 𝑏(𝑟) 

 

 

(3.18) 

In this section, we present the existence and the uniqueness of the new model using the 

fundamental theorem of calculus and the fixed-point theorem. Thus, applying the 

fundamental theorem of calculus, we get: 
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∫
𝜕ℎ

𝜕𝑙

𝑡

0

𝑑𝑙 = ∫ 𝑓(ℎ, 𝑙) 𝑑𝑙
𝑡

0

 
 

(3.19) 

Thus, 

ℎ(𝑟, 𝑡) − ℎ(𝑟, 0) = ∫ 𝑓(ℎ, 𝑙) 𝑑𝑙
𝑡

0

 
 

(3.20) 

We now define a Banach space given as: 

  

𝐼𝑎,𝑏 = 𝐼𝑎[𝑡0]̅̅ ̅̅ ̅̅ ̅ . 𝐼𝑏(ℎ0)̅̅ ̅̅ ̅̅ ̅̅  (3.21) 

Where, 

    𝐼𝑏(𝑡0)̅̅ ̅̅ ̅̅ ̅̅ = [𝑡0 − 𝑎, 𝑡0 + 𝑎] (3.22) 

                                               

𝐼𝑏[ℎ0]̅̅ ̅̅ ̅̅ ̅̅ = [ℎ0 − 𝑏, ℎ0 + 𝑏] (3.23) 

Г 𝐼𝑎,𝑏 → 𝐼𝑎,𝑏  

(3.24) 

ℎ → Г ℎ = ℎ(𝑟, 0) + ∫ 𝑓(ℎ, 𝑙) 𝑑𝑙
𝑡

0

 
  

(3.25) 

‖𝑙(𝑡)‖∞ = sup
𝑡∈𝐼𝑎

|𝑙(𝑡)| (3.26) 

𝑀 = 𝑆𝑢𝑝 |𝑓(ℎ, 𝑙)| (3.27) 

Firstly, we want to prove that Г is well defined that, we need to find the condition for; 

‖Гℎ − ℎ0‖∞ < 𝑏       

(3.28) 

‖ Г ℎ − ℎ0 ‖∞ = ‖∫ 𝑓(ℎ, 𝑙) 𝑑𝑙
𝑡

0

‖
∞

 
  

(3.29) 

≤ ∫ ‖𝑓(ℎ, 𝑙)‖∞

𝑡

0

𝑑𝑙 
             

(3.30) 

≤ ∫ 𝑀 𝑑𝑙
𝑡

0

 
   

(3.31) 
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≤ 𝑀∫ 𝑑𝑙
𝑡

0

 
 

(3.32) 

≤ 𝑀 𝑇𝑚𝑎𝑥 (3.33) 

‖ Г ℎ − ℎ0 ‖∞ ≤ 𝑀 𝑇𝑚𝑎𝑥 < 𝑏 ⇒ 𝑇𝑚𝑎𝑥 <
𝑏

𝑀
  so Г is well defined if 𝑇𝑚𝑎𝑥 <

𝑏

𝑀
. 

Secondly, we now prove that Г has Lipschitz condition, that;                                                          

𝑙𝑒𝑡 ℎ1; ℎ2 𝜖 𝐼𝑎,𝑏 

We then evaluate the following  

‖Г ℎ1 − Г ℎ2 ‖∞ 

Where, 

Г ℎ1 − Г ℎ2 = ℎ0 +∫ 𝑓(ℎ1, 𝑙)
𝑡

0

 𝑑𝑙 − ℎ0 −∫ 𝑓(ℎ2, 𝑙)𝑑𝑙
𝑡

0

 
        

  (3.34) 

= ∫ 𝑓(ℎ1, 𝑙) 𝑑𝑙 −
𝑡

0

∫ 𝑓(ℎ2, 𝑙) 𝑑𝑙
𝑡

0

 
  (3.35)     

 

‖∫ (𝑓(ℎ1, 𝑙) − 𝑓(ℎ2, 𝑙))𝑑𝑙
𝑡

0

‖
∞

 
       

     (3.36) 

𝑓(ℎ1, 𝑙) − 𝑓(ℎ2, 𝑙) = 𝑎(𝑟)
𝜕ℎ1
𝜕𝑟

+  𝑏(𝑟)
𝜕2ℎ

𝜕𝑟2
− 𝑎(𝑟)

𝜕ℎ2

𝜕𝑟
− 𝑏(𝑟)

𝜕2ℎ2
𝜕𝑟2

 

 

        

(3.37) 

= 𝑎(𝑟)
𝜕

𝜕𝑟
(ℎ1 − ℎ2) + 𝑏(𝑟)

𝜕2

𝜕𝑟2
(ℎ1 − ℎ2) 

        

(3.38) 

‖∫ (𝑓(ℎ1, 𝑙) − 𝑓(ℎ2, 𝑙)) 𝑑𝑙
𝑡

0

‖
∞

 

= ‖∫ [𝑎(𝑟)
𝜕

𝜕𝑟

𝑡

0

(ℎ1 − ℎ2) +  𝑏(𝑟)
𝜕2

𝜕𝑟2
(ℎ1 − ℎ2)] 𝑑𝑙‖

∞

 

     

 

   

(3.39) 

‖∫ (𝑎(𝑟)
𝜕

𝜕𝑟
(ℎ1 − ℎ2) + 𝑏(𝑟)

𝜕2

𝜕𝑟2
(ℎ1 − ℎ2)

𝑡

0

‖
∞

𝑑𝑙 

≤ ∫ ‖𝑎(𝑟)
𝜕

𝜕𝑟
(ℎ1 − ℎ2) + 𝑏(𝑟)

𝜕2

𝜕𝑟2
(ℎ1 − ℎ2)‖

∞

 𝑑𝑙
𝑡

0

 

    

    

    

(3.40) 
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≤ ∫ {| 𝑎(𝑟)| ‖
𝜕

𝜕𝑟
(ℎ1 − ℎ2)‖

∞
+ |𝑏(𝑟)| ‖

𝜕2

𝜕𝑟2
(ℎ1 − ℎ2)‖

∞

}  𝑑𝑙

 

𝑡

0

 
   

     (3.41) 

∫ [|𝑎(𝑟)| ∝1 ‖ℎ1 − ℎ2‖∞ + |𝑏(𝑟)| ∝2
2 ‖ℎ1 − ℎ2‖∞]

𝑡

0

𝑑𝑡 

 

   

    (3.42) 

≤ ( |𝑎(𝑟)| ∝1+∝2
2 |𝑏(𝑟)|) 𝑇𝑚𝑎𝑥 ‖ ℎ1 − ℎ2 ‖∞ (3.43) 

‖ Г ℎ1 − ℎ2 ‖∞ ≤ 𝐾 ‖ ℎ1 − ℎ2 ‖ (3.44) 

Where, 

𝐾 = 𝑇𝑚𝑎𝑥[| 𝑎(𝑟)|  ∝1+∝2
2 || 𝑏(𝑟)||] (3.45) 

Г is Lipchitz operator Г, 

Г will be contraction if: 

𝐾 < 1 ⇒ 𝑇𝑚𝑎𝑥[| 𝑎(𝑟)|  ∝1+∝2
2 || 𝑏(𝑟)||] < 1  

(3.46) 

This means that, 

⇒ 𝑇𝑚𝑎𝑥 <
1

𝑇𝑚𝑎𝑥[| 𝑎(𝑟)|  ∝1+∝2
2 || 𝑏(𝑟)||]

 
 

(3.47) 

Г is a contraction and well-defined if 𝑇𝑚𝑎𝑥 < min [
1

⃒ 𝑎(𝑟)⃒∝1+⃒ 𝑏(𝑟)⃒∝2
2
,
𝑏

𝑀
].                                                                                                                                                                        

Therefore, if the below inequality holds 

𝑇𝑚𝑎𝑥 < min [
1

⃒ 𝑎(𝑟)⃒ ∝1+ ⃒ 𝑏(𝑟)⃒ ∝2
2
,
𝑏

𝑀
] 

 

(3.48) 

The defined operator Г has a unique exact solution. The above completes the proof. 

3.1 DERIVATION OF EXACT SOLUTION 

In the following subsection, we are going to derive the exact analytical solution of a 

groundwater flow equation for a confined aquifer, using the Boltzmann transform. 

The derivation of exact analytical solution of the groundwater flow equation for confined 

aquifer is as follows: 
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𝑆

𝑇
.
𝜕ℎ

𝜕𝑡
=
𝜕ℎ

𝑟𝜕𝑟
+
𝜕2ℎ

𝜕𝑟2
[1 +

∆𝑟

𝑟
] 

  

(3.49) 

Initial conditions: 

ℎ(𝑟, 0) = 0,  

Boundary conditions: 

𝐿𝑖𝑚
𝜕ℎ

𝜕𝑟
= −

𝑄

2𝜋𝑟
 

𝑟 → 0 

According to the Boltzmann transformation, the reduction of an equation from two 

dimensions to one dimension: 

Let                                                            𝜂 =
𝑟2

𝑡
 

We then change everything in terms of 𝜂. 

𝜕ℎ

𝜕𝑡
=
𝜕ℎ

𝜕𝜂
.
𝜕𝜂

𝜕𝑡
=
−𝑟2

𝑡2
 

    

(3.50) 

𝜕ℎ

𝜕𝑟
=
𝜕ℎ

𝜕𝜂
.
𝜕𝜂

𝜕𝑟
=
2𝑟

𝑡
.
𝜕ℎ

𝜕𝜂
 

    

(3.51) 

𝜕ℎ

𝜕𝑟2
=
𝜕

𝜕𝜂
(
2𝑟

𝑡
.
𝜕ℎ

𝜕𝜂
) .
𝜕𝜂

𝜕𝑟
 

    

(3.52) 

=
𝜕2ℎ

𝜕𝜂2
(
2𝑟

𝑡
.
2𝑟

𝑡
) 

     

(3.53) 

=
4𝑟2

𝑡2
.
𝜕2ℎ

𝜕𝜂2
 

   

(3.54) 

By replacing everything back into equation (3.49), we get: 

−𝑆

𝑇
.
𝑟2

𝑡2
.
𝜕ℎ

𝜕𝜂
=
1

𝑟
.
2𝑟

𝑡
.
𝜕ℎ

𝜕𝜂
 

+
4𝑟2

𝑡2
.
𝜕2ℎ

𝜕𝜂2
(𝑟 +

∆𝑟

𝑟
) 

     

(3.55) 
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=
2

𝑡
.
𝜕ℎ

𝜕𝜂
+
4𝑟2

𝑡2
.
𝜕2ℎ

𝜕𝜂2
 

   

(3.56) 

Putting everything together, we get: 

(1 +
∆𝑟

𝑟
)
4𝑟2

𝑡2
.
𝜕2ℎ

𝜕𝜂2
=
−𝜕ℎ

𝜕𝜂
(
𝑆

𝑇
.
𝑟2

𝑡2
+
2

𝑡
) 

   

(3.57) 

By simplification: 

(1 +
∆𝑟

𝑟
)
4𝑟2

𝑡
.
𝜕2ℎ

𝜕𝜂2
=
−𝜕ℎ

𝜕𝜂
(
𝑆

𝑇
.
𝑟2

𝑡
+ 2) 

  

(3.58) 

Since 
𝑟2

𝑡
= 𝜂, we get: 

(1 +
∆𝑟

𝑟
)4𝜂

𝜕2ℎ

𝜕𝜂2
=
−𝜕ℎ

𝜕𝜂
(
𝑆

𝑇
𝜂 + 2) 

     

(3.59) 

∆𝑟

𝑟
= 𝛽 

Therefore, 

(1 + 𝛽) 4𝜂
𝜕2ℎ

𝜕𝜂2
=
−𝜕ℎ

𝜕𝜂
(
𝑆

𝑇
𝜂 + 2) 

 

(3.60) 

We then divide everything by (1 + 𝛽) 4𝜂: 

𝜕2ℎ

𝜕𝜂2
= 𝜎

1

1 + 𝛽
.
𝜕ℎ

𝜕𝜂
(
𝑆

4𝑇
+
1

2𝜂
) 

 

(3.61) 

𝐿𝑒𝑡 𝑣 =
𝜕ℎ

∝ 𝜂
 

𝑣′ = 𝜎
1

1 + 𝛽
(
𝑆

4𝑇
+
1

2𝜂
)𝑉 

 

(3.62) 

𝑣′

𝑣
= 𝜎

1

1 + 𝛽
(
𝑆

4𝑇
+
1

2𝜂
) 

 

(3.63) 

By integration, we get: 

ln 𝑣 = 𝜎∫
1

1 + 𝛽

𝜂

0

(
𝑆

4𝑇
+
1

2
𝑘)𝑑𝑘 

 

(3.64) 
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ln 𝑣 =𝜎
1

1 + 𝛽
(
𝑆𝜂

4𝑇
+
1

2
ln 𝜂) + 𝐶 

 

(3.65) 

ln 𝑣 = 𝜎
1

1 + 𝛽
(
𝑆𝜂

4𝑇
+
1

2
ln 𝜂) + 𝐶 

 (3.66) 

𝑣 = exp(𝑐) exp [𝜎
1

1 + 𝛽
(
𝑆𝜂

4𝑇
+
1

2
𝑙𝑛 𝜂)] 

 

(3.67) 

𝜕ℎ

𝜕𝜂
= 𝐷𝑒𝑥𝑝 [𝜎

1

1 + 𝛽
(
𝑆𝜂

4𝑇
+
1

2
ln 𝜂)] 

 

(3.68) 

Using the initial conditions, the first derivative 
1

𝑟
 turns to zero, which is equal to −

𝑄

2𝜋𝑟
. 

𝜂 =
𝑟2

𝑡
, 𝑟 → 0, 𝜂 → 0 

By replacing 𝜂 by zero, you obtain the following: 

−
𝑄

2𝜋𝑇
= 𝐷 

By replacing 𝐷 from equation (3.68), we get the following: 

𝜕ℎ

𝜕𝜂
= −

𝑄

2𝜋𝑇
exp [𝜎

1

1 + 𝛽
(
𝑆𝜂

4𝑇
+
1

2
𝑙𝑛 𝜂)] 

 

(3.69) 

  

𝜕ℎ

𝜕𝜂
= −

𝑄

2𝜋𝑇
exp [𝜎

1

1 + 𝛽
.
𝑆𝜂

4𝑇
] exp [𝜎

1

1 + 𝛽
.
1

2
𝑙𝑛 𝜂] 

 

(3.70) 

𝐿𝑒𝑡 𝜎
1

1 + 𝛽
=∝ 

𝜕ℎ

𝜕𝜂
= −

𝑄

2𝜋𝑇
exp [−

𝑆𝜂

4𝑇 ∝
] exp [−

1

2
∝ 𝑙𝑛 𝜂] 

 

(3.71) 

Rearranging exp [−
1

2
𝑙𝑛 𝜂], we get: 

= −
𝑄

2𝜋𝑇
exp [−

𝑆𝜂

4𝑇 ∝
] exp [𝑙𝑛 (𝜂−

1
2
∝)] 

 

(3.72) 

𝜕ℎ

𝜕𝜂
= −

𝑄

2𝜋𝑇
.
1

𝜂2∝
exp [−

𝑆𝜂

4𝑇 ∝
] 
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(3.73) 

We integrate: 

ℎ(𝜂) = −∫
𝑄

2𝜋𝑇
.

𝜂

0

1

𝑘2∝
exp [−

𝑆𝑘

4𝑇 ∝
] 𝑑𝑘 + 𝐵 

 

(3.74) 

Using the initial conditions that says: 

𝑡 → 0, 𝑤𝑒 𝑔𝑒𝑡 ℎ (𝑟, 0) = 0 

𝑡 → 0,   𝜂 =
𝑟2

𝑡
→ ∞ 

0 = −∫
𝑄

2𝜋𝑇

∞

0

1

𝑘2∝
exp [−

𝑆𝑘

4𝑇 ∝
] 𝑑𝑘 + 𝐵 

 

(3.75) 

𝐵 = ∫
𝑄

2𝜋𝑇

∞

0

.
1

𝑘2∝
exp [−

𝑆𝑘

4𝑇 ∝
] 𝑑𝑘 

 

(3.76) 

By replacing equation (3.75) and (3.76) into equation (3.74), we get: 

ℎ(𝜂) = ∫
𝑄

2𝜋𝑇𝑘2∝

∞

0

exp [−
𝑆𝑘

4𝑇 ∝
]𝑑𝑘 

−∫
𝑄

2𝜋𝑇𝑘2∝

𝜂

0

exp [−
𝑆𝑘

4𝑇 ∝
] 𝑑𝑘 

   

(3.77) 

Therefore, 

ℎ(𝜂) =
𝑄

2𝜋𝑇
∫

exp [−
𝑆𝑘
4𝑇 ∝]

√𝑘
∝

∞

𝜂

𝑑𝑘 

 

(3.78) 

𝐿𝑒𝑡 𝑘 = ɤ2,    𝑑𝑘 = 2ɤ 𝑑ɤ 

Thus, we get: 

=
𝑄

2𝜋𝑇
∫

exp [
−𝑆ɤ2

4𝑇 ∝]

ɤ∝−1

∞

𝜂

. 2 ∝ 𝑑ɤ 

 

(3.79) 

=

𝑄
𝜋𝑇 exp [−

𝑆ɤ2

4𝑇 ∝]

ɤ∝−1
𝑑ɤ 

 

(3.80) 

𝑢 = 𝑆ɤ2, 𝑑𝑢 =
2𝑆ɤ𝑑ɤ

4𝑇 ∝
⟹ 𝑑ɤ = 2

𝑇

𝑆

∝

ɤ
𝑑(𝑢) 
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=

𝑄
𝜋𝑇 ∫ exp[−𝑦]

2𝑇 ∝
𝑆ɤ

∞

𝑢
𝑑𝑦

⌊
𝑢 𝑇 ∝ 𝑦

𝑆 ⌋

∝−1
2

 

 

(3.81) 

=
𝑄

𝜋𝑇
∫

exp [−𝑦]

(
𝑢 𝑇 ∝ 𝑦

𝑆 )
∝−1

∞

𝑢

.
2𝑇 ∝

𝑆 (
4𝑇 ∝ 𝑦
𝑆 )

1
2

𝑑𝑦 
 

(3.82) 

𝑄

𝜋𝑇
∫

exp(−𝑦)

(
4𝑇 ∝ 𝑦
𝑆 )

∝
2

∞

𝑢

.
2𝑇 ∝

𝑆
𝑑𝑦 

 

(3.83) 

ℎ(𝜂) =
𝑄

2𝜋𝑇
(

1

4𝑇 ∝
𝑆

)

∝−1
2

∫
exp [−𝑦]

𝑦
∝
2

∞

𝑢

𝑑𝑦 

  

(3.84) 

Above is the exact solution of the groundwater flow equation for a confined aquifer. 
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CHAPTER FOUR: NEW NUMERICAL SCHEME FOR SINGULAR 

PARTIAL DIFFERENTIAL EQUATION 

4.1 INTRODUCTION 

In this section, the Mellin transform is going to be used to remove the singularity in the 

newly developed exact groundwater flow equation in a confined aquifer. The equation 

then becomes ordinary, wherein we can then use the Adam Bashforth method to the 

ordinary differential equation in Mellin space. The inverse of Mellin will then be used to 

get the exact numerical scheme. 

4.2 DERIVATION OF THE NEW NUMERICAL SCHEME TO THE 

EQUATION 

The Mellin transform was first introduced by the Finnish mathematician, R.H. Mellin 

(1854-1933), who was the first to give a systematic formulation of the transformation and 

its inverse. Working in the theory of special functions, he developed applications to the 

solution of hypergeometric differential equations and to the derivation of asymptotic 

expansions. The Mellin contribution gives a prominent place to the theory of analytic 

functions. Mellin’s transformation has proved useful in the resolution of linear differential 

equations in 𝑥(𝑑/𝑑𝑥) arising in electrical engineering by a procedure analogous to 

Laplace’s (Betrand et al., 2000). More recently, traditional applications have been 

enlarged and new ones are emerging. 

Let 𝑓(𝑡) be a function defined on the positive real axis 0 < 𝑡 < ∞. The Mellin 

transformation 𝑀 is the operation mapping the function 𝑓 into the function 𝐹 defined on 

the complex plane by the relation: 

𝑀[𝑓; 𝑠] ≡ 𝐹(𝑠) = ∫ 𝑓(𝑡)𝑡𝑠−1 𝑑𝑡
∞

0

 
 

(4.1) 
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The function 𝐹(𝑠) is called the Mellin transform of 𝑓. In general, the integral does exist 

only for complex values of 𝑠 = 𝑎 + 𝑗𝑏 such that 𝑎 < 𝑎1 < 𝑎2, where 𝑎1 and 𝑎2 depend on 

the function 𝑓(𝑡) to transform. This introduces what is called the strip of definition of the 

Mellin transform that will be denoted by 𝑠(𝑎1, 𝑎2). 

The following are useful properties of the Mellin transform (Poularikas and Alexander, 

1999): 

I. Scaling Property 

𝑀{𝑡𝑎𝑓(𝑡); 𝑠} = ∫ 𝑓(𝑡)𝑡(𝑠+𝑎)−1 𝑑𝑡
∞

0

 
 

= 𝑎−𝑠∫ 𝑓(𝑥)𝑥𝑠−1 𝑑𝑥 = 𝑎−𝑠 𝐹(𝑠)
∞

0

 
   

(4.2) 

II. Multiplication by 𝑡𝑎 

𝑀{𝑡𝑎𝑓(𝑡); 𝑠} = ∫ 𝑓(𝑡)𝑡(𝑠+𝑎)−1 𝑑𝑡 = 𝐹(𝑠 + 𝑎)
∞

0

 
 

(4.3) 

III. Raising the Independent Variable to a Real Power 

𝑀{𝑓(𝑡𝑎); 𝑠} = ∫ 𝑓(𝑡𝑎)𝑡𝑠−1
∞

0

𝑑𝑡 
 

= ∫ 𝑓(𝑥)𝑥
𝑠

𝑎
−
1

𝑎 (
1

𝑎
𝑥
1

𝑎
−1 𝑑𝑥) = 𝑎−1𝐹 (

𝑠

𝑎
) , 𝑎 > 0

∞

0
                      (4.4) 

IV. Inverse of Independent Variable 

𝑀{𝑡−1𝑓(𝑡−1); 𝑠} = 𝐹(1 − 𝑠) (4.5) 

  

V. Multiplication by ln 𝑡 

𝑀{ln 𝑡  𝑓(𝑡); 𝑠} =
𝑑

𝑑𝑠
𝐹(𝑠) 

  

(4.6) 

VI. Multiplication by Power of 𝑙𝑛 𝑡 

𝑀{(ln 𝑡)𝑘 𝑓(𝑡); 𝑠} =
𝑑𝑘

𝑑𝑠𝑘
𝐹(𝑠) 

(4.7) 

VII. Derivative 

𝑀 [
𝑑𝑘

𝑑𝑠𝑘
𝑓(𝑡); 𝑠] = (−1)𝑘(𝑠 − 𝑘)𝑘 𝐹(𝑠 − 𝑘) 

(4.8) 
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(𝑠 − 𝑘)𝑘 ≡ (𝑠 − 𝑘)(𝑠 − 𝑘 + 1)… (𝑠 − 1) 

=
(𝑠 − 1)!

(𝑠 − 𝑘 − 1)!
=

Г(𝑠)

Г(𝑠 − 𝑘)
 

 

(4.9) 

VIII. Derivative Multiplied by Independent Variable 

𝑀 [𝑡𝑘
𝑑𝑘

𝑑𝑠𝑘
𝑓(𝑡); 𝑠] = (−1)𝑘(𝑠)𝑘 𝐹(𝑠)   

= (−1)𝑘
Г(𝑠 + 𝑘)

Г(𝑠)
𝐹(𝑠), (𝑠)𝑘 

= 𝑠(𝑠 + 1)… (𝑠 + 𝑘 − 1) 

  

(4.10) 

 IX. Convolution         

𝑀{𝑓(𝑡)𝑔(𝑡); 𝑠} 

=
1

2𝜋𝑗
∫ 𝐹(𝑧)𝐺(𝑠 − 𝑧) 𝑑𝑧
𝑐+𝑗∞

𝑐−𝑗∞

 

 

(4.11) 

 X.      Multiplicative Convolution 

𝑀{𝑓𝑣𝑔} = 𝑀 [∫ 𝑓 (
𝑡

𝑢
)𝑔(𝑢)

𝑑𝑢

𝑢
; 𝑠

∞

0

] 

= 𝐹(𝑠) 𝐺(𝑠) 

   

(4.12) 

𝑀−1 {𝐹(𝑠) 𝐺(𝑠)} = ∫ 𝑓 (
𝑡

𝑢
)𝑔(𝑢)

𝑑𝑢

𝑢

∞

0

 
 

(4.13) 

XI.      Parseval’s Formula’s 

∫ 𝑓(𝑡) 𝑔(𝑡) =
1

2𝜋𝑗
∫ 𝑀{𝑓; 𝑠} 𝑀{𝑔; 1 − 𝑠} 𝑑𝑠
𝑐+∞

𝑐−∞

∞

0

 
 (4.14) 

∫ 𝑓(𝑡) 𝑔∗(𝑡)𝑡2𝑟+1 𝑑𝑡
∞

0

 

= ∫ 𝑀{𝑓}(𝛽) 𝑀∗{𝑔}(𝛽) 𝑑𝛽
∞

−∞

 

 

(4.15) 

Where, 

𝑀{𝑓}(𝛽) = ∫ 𝑓(𝑡)𝑡2𝜋𝑗𝛽+𝑟
∞

0

𝑑𝑡 
 

(4.16) 
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Application of the new numerical scheme to the equation is as follows: 

𝑆

𝑇
.
𝜕ℎ

𝜕𝑡
=
𝜕ℎ

𝑟𝜕𝑟
+
𝜕2ℎ

𝜕𝑟2
[1 +

𝑑𝑟

𝑟
] 

 

 

The above is the exact solution of the groundwater flow equation in a confined aquifer. 

Introducing a small perturbation term ∆𝑟 = 𝑑𝑟 = 𝑠𝑐𝑎𝑙𝑖𝑛𝑔 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

𝑆

𝑇
.
𝜕ℎ

𝜕𝑡
=
𝜕ℎ

𝑟𝜕𝑟
+
𝜕2ℎ

𝜕𝑟2
[1 +

∆𝑟

𝑟
] 

By dividing the above equation with 
𝑆

𝑇
, we get: 

𝜕ℎ

𝜕𝑡
(𝑟, 𝑡) =

𝑇

𝑆
.
𝜕ℎ

𝑟𝜕𝑟
+
𝑇

𝑠
.
𝜕2ℎ

𝜕𝑟2
[1 +

∆𝑟

𝑟
] 

 

 

𝜕ℎ(𝑟, 𝑡)

𝜕𝑡
=
𝑇

𝑆

𝜕ℎ (𝑟, 𝑡)

𝜕𝑟
𝑎1(𝑟) +

𝜕ℎ2

𝜕𝑟2
𝑎2(𝑟, 𝑡) 

 

(4.17) 

 We then apply the Mellin transform on both sides of (4.17) in r-direction. 

𝑀(
𝜕ℎ(𝑟, 𝑡)

𝜕𝑡
, 𝑃) =

𝑇

𝑆
𝑀 (

𝜕ℎ(𝑟, 𝑡)

𝜕𝑟
𝑎1(𝑟) + 𝑎2(𝑟)

𝜕2ℎ

𝜕𝑟2
(𝑟, 𝑡), 𝑃) 

  (4.18) 

𝑀 = [ℎ(𝑟, 𝑡), 𝑃] = 𝐻(𝑝, 𝑡)  (4.19) 

𝜕𝐻(𝑝, 𝑡)

𝜕𝑡
=
𝑇

𝑆
𝑀(

𝜕ℎ(𝑟, 𝑡)

𝜕𝑟
𝑎1(𝑟) + 𝑎2(𝑟)

𝜕2ℎ

𝜕𝑟2
(𝑟, 𝑡), 𝑃) 

 

 

(4.20) 

𝜕𝐻(𝑝, 𝑡)

𝜕𝑡
=
𝑇

𝑆
𝑀(

𝜕ℎ(𝑟, 𝑡)

𝜕𝑟
𝑎1(𝑟) + 𝑎2(𝑟)

𝜕2ℎ

𝜕𝑟2
(𝑟, 𝑡), 𝑃) 

 

 

𝑃𝑢𝑡 𝑉(𝑡) = 𝐻(𝑃, 𝑡), 

Therefore, 

 

 

𝑑𝑉(𝑡)

𝑑𝑡
= 𝐹(𝑉(𝑡), 𝑡)                                                      (4.21) 

Applying the fundamental theorem of calculus (Batogna and Atangana, 2017), we get: 
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𝑉(𝑡) − 𝑉(0) = ∫ 𝐹
𝑡

0

(𝑉(𝑡), 𝑡)) 𝑑𝑡 
 

  (4.22) 

𝑡𝑛 = 𝑛∆𝑡  (4.23) 

𝑡𝑛+1 = (𝑛 + 1)∆𝑡  (4.23) 

𝑉(𝑡𝑛) − 𝑉(0) = ∫ 𝐹
𝑡𝑛

0

(𝑉(𝑡), 𝑡) 𝑑𝑡 
 

(4.24) 

Within [𝑡𝑛, 𝑡𝑛−1] we approximate using the Lagrange interpolation formula to obtain 

𝐹(𝑡, 𝑉(𝑡)) = 𝑃(𝑡) =
𝑡 − 𝑡𝑛−1
𝑡𝑛 − 𝑡𝑛−1

𝐹(𝑡𝑛, 𝑉(𝑡𝑛)) 

+
𝑡 − 𝑡𝑛

𝑡𝑛−1 − 𝑡𝑛
. 𝐹(𝑡𝑛−1, 𝑉(𝑡𝑛−1)) 

  

 

(4.25) 

𝑡𝑛 − 𝑡𝑛−1 = ∆𝑡 

𝑡𝑛−1 − 𝑡𝑛 = −∆𝑡 

Thus, the approximate polynomial associated to the new equation is given as: 

𝑃(𝑡) =
𝑡 − 𝑡𝑛−1
∆𝑡

𝐹(𝑡𝑛, 𝑉(𝑡𝑛)) 

−
𝑡 − 𝑡𝑛
∆𝑡

𝐹(𝑡𝑛−1, 𝑉(𝑡𝑛−1)) 

  

 

(4.26) 

Let us put for simplicity  𝐹𝑛 = 𝐹(𝑡𝑛, 𝑉(𝑡𝑛))              

𝑉(𝑡𝑛) − 𝑉(0) = ∫ (
𝑡 − 𝑡𝑛−1
∆𝑡

𝐹𝑛 −
𝑡 − 𝑡𝑛
∆𝑡

𝐹𝑛−1) 𝑑𝑡
𝑡𝑛

0

 
      

(4.27) 

=
𝐹𝑛
∆𝑡
∫ (𝑡 − 𝑡𝑛−1) 𝑑𝑡
𝑡𝑛

0

−
𝐹𝑛−1
∆𝑡

∫ (𝑡 − 𝑡𝑛) 𝑑𝑡
𝑡𝑛

0

 
    

(4.28) 

𝑉(𝑡𝑛) − 𝑉(0) =
𝐹𝑛
∆𝑡
[
𝑡2

2
− 𝑡𝑡𝑛−1]0

𝑡𝑛+1 

−
𝐹𝑛−1
∆𝑡

[
𝑡2

2
− 𝑡𝑛𝑡]

0

𝑡𝑛

 

  

 

    

(4.29) 

𝐹𝑛
∆𝑡
[
𝑡𝑛
2

2
− 𝑡𝑛𝑡𝑛] −

𝐹𝑛−1
𝛥𝑡

[
𝑡𝑛
2

2
− 𝑡𝑛𝑡𝑛] 

     

(4.30) 
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𝐹𝑛
∆𝑡
[−

1

2
𝑡𝑛
2] −

𝐹𝑛
∆𝑡
[−

1

2
𝑡𝑛
2] 

  

(4.31) 

=

1
2 𝑡𝑛

2

2∆𝑡
[𝐹𝑛−1 − 𝐹𝑛] 

      

(4.32) 

=
(∆𝑡)2𝑛2

2∆𝑡
[𝐹𝑛−1 − 𝐹𝑛] 

 (4.33) 

Therefore, 

𝑉(𝑡𝑛) − 𝑉(0) =
𝐹𝑛
∆𝑡
[
(𝑛∆t)2

2
− (∆t)2{𝑛(𝑛 − 1)}] +

𝐹𝑛−1
∆𝑡

[
(𝑛∆t)2

2
] 

 

(4.34) 

Applying the inverse Mellin transform, we get: 

ℎ(𝑟, 𝑡𝑛) − ℎ(𝑟, 0) = 𝑀−1 (
𝐹𝑛
∆𝑡
[
(𝑛∆t)2

2
− (∆t)2{𝑛(𝑛 − 1)}] +

𝐹𝑛−1
∆𝑡

[
(𝑛∆t)2

2
]) 

 

(4.35) 

We now do the approximation in space. We can use Forward Euler or Backward Euler to 

obtain, 

𝑥𝑖 − 𝑥𝑖−1 = ∆𝑥   (4.36) 

ℎ(𝑟𝑖, 𝑡𝑛) − ℎ(𝑟𝑖, 0) = 𝑀−1 (
𝐹𝑛

𝑖

∆𝑡
[
(𝑛∆t)2

2
− (∆t)2{𝑛(𝑛 − 1)}] +

𝐹𝑛−1
𝑖

∆𝑡
[
(𝑛∆t)2

2
]) 

 (4.37) 

  

 𝐹(𝑟, 𝑡) =
𝑇

𝑆
(
𝜕ℎ(𝑟, 𝑡)

𝜕𝑟
𝑎1(𝑟) + 𝑎2(𝑟)

𝜕2ℎ

𝜕𝑟2
(𝑟, 𝑡), 𝑃) 

                  

(4.38) 

Thus letting  

ℎ(𝑟𝑖, 𝑡𝑛) = ℎ𝑖
𝑛 

 

(4.39) 

Replacing equation (4.39), (4.38) into equation (4.37) after re-arranging, we get 

ℎ𝑖
𝑛 [1 +

𝑛2∆𝑡

2∆𝑥

𝑇

𝑆
𝑎1(𝑟𝑖) +

𝑛2∆𝑡

2(∆𝑥)2
𝑇

𝑆
𝑎2(𝑟𝑖)]  

= ℎ𝑖
𝑛−1 [

𝑛2∆𝑡

2∆𝑥

𝑇

𝑆
𝑎1(𝑟𝑖) +

𝑛2∆𝑡

2(∆𝑥)2
𝑎2(𝑟𝑖)

𝑇

𝑆
] 
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+ ℎ𝑖−1
𝑛−1 [

𝑛2∆𝑡 𝑇 

2 𝑆∆𝑥
𝑎1(𝑟𝑖) +

𝑛2∆𝑡 𝑇

(∆𝑥)2
𝑎2(𝑟𝑖)] 

+ℎ𝑖−1
𝑛 [

𝑛2∆𝑡 𝑇 𝑎1(𝑟𝑖)

2 𝑆∆𝑥
+
𝑛2∆𝑡 𝑇

(∆𝑥)2
𝑎2(𝑟𝑖)] 

+ ℎ𝑖−2
𝑛−1 [

𝑇

𝑆(∆𝑥)2
𝑎2(𝑟𝑖) − ℎ𝑖−2

𝑛 𝑇𝑎2(𝑟𝑖)

𝑆(∆𝑥)2
] 

 

 

 

(4.40) 

Above is the exact numerical scheme for singular partial differential equation. 

For simplicity, the above equation can be written as: 

ℎ𝑖
𝑛𝑎1 = ℎ𝑖

𝑛−1𝑎2 + ℎ𝑖−1
𝑛−1𝑎3 

+ ℎ𝑖−2
𝑛−1𝑎4 − ℎ𝑖−2

𝑛 𝑎5 

    

(4.41) 

 

4.3 STABILITY ANALYSIS OF NEW NUMERICAL SCHEME USING VON 

NEUMANN METHOD 

The von Neumann stability method was first developed in Los Alamos during World War 

2 by von Neumann and was considered classified until its brief description in Crank and 

Nicholson (1947) and in a publication by Charney et al (1950). Today it is the most widely 

used technique for stability analysis throughout the entire world. This method often uses 

the Fourier analysis and sometimes superposition. It is based on the decomposition of 

motion into formal nodes. In this method, the growth or decay of perturbations are 

analyzed from one step to the next and can be put into effect using standard linear 

algebraic procedures. The method is local in nature. According to Delahaies (2012), the 

stability of a numerical scheme is associated with propagation of numerical error. 

A finite difference scheme is stable if the error stays constant or decrease as the iterative 

process goes on. On the other hand, if the error grows with time, the scheme tends to be 

unstable. The von Neumann stability method has limitations: it can be only applied to 

linear, constant coefficients partial differential equations and neglects boundary 

conditions. Through linearization, the method can be applied to nonlinear systems. 
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Composition of the von Neumann stability method involve: 

• Substituting the trial function, 

𝑈𝑗,𝑛 = 𝝃𝒏𝑒𝑖𝑤𝑗 (4.41) 

Into the approximate difference scheme and find a characteristic equation for the 

amplification factor 𝜉. 

• Finding what restrictions on the parameters are required to have |𝝃| ≤ 1: the 

scheme is von Neumann stable if |𝝃| ≤ 1, and von Neumann unstable if |𝝃| > 1. 

When the characteristic equation has multiple roots, it is required to be distinct. 

Stability analysis to new numerical scheme is as follows: 

ℎ𝑖
𝑛𝑎1 = ℎ𝑖

𝑛−1𝑎2 + ℎ𝑖−1
𝑛−1𝑎3 + ℎ𝑖−2

𝑛−1𝑎4 − ℎ𝑖−2
𝑛 𝑎5  

For stability analysis, we must make sure that  

𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 ≥ 0 

|ℎ𝑖
𝑛| < |ℎ𝑖

0| 

To do the above, we choose 

ℎ𝑖
𝑛 = ℎ́𝑛 exp [𝑗𝑓𝑖∆𝑟]      (4.42) 

ℎ𝑖
𝑛−1 = ℎ́𝑛−1 exp [𝑗𝑓𝑖∆𝑟]   (4.43) 

ℎ𝑖−1
𝑛−1 = ℎ́𝑛−1 exp [𝑗𝑓𝑖(𝑟 − ∆𝑟)]   (4.44) 

ℎ𝑖−2
𝑛−1 = ℎ́𝑛−1 exp [𝑗𝑓𝑖(𝑟 − 2∆𝑟)]  (4.45) 

ℎ𝑖−𝑧 = ℎ́𝑛exp [𝑗𝑓𝑖(𝑟 − 2∆𝑟)] (4.46) 

     We then substitute the above equations to equation (4.40);                               

ℎ́𝑛 exp[𝑗𝑓𝑖∆𝑟] 𝑎1 = ℎ́𝑛−1 exp[𝑗𝑓𝑖∆𝑟] 𝑎2 

+ ℎ́𝑛−1 exp[𝑗𝑓𝑖(𝑟 − ∆𝑟)] 𝑎3 

+ ℎ́𝑛−1 exp[𝑗𝑓𝑖(𝑟 − 2∆𝑟)] 𝑎4 

− ℎ́𝑛 exp[𝑗𝑓𝑖(𝑟 − 2∆𝑟)]. 

 

 

 

 (4.47) 

ℎ́𝑛 exp[𝑗𝑓𝑖∆𝑟] 𝑎1 = ℎ́𝑛−1 exp[𝑗𝑓𝑖∆𝑟] 𝑎2 

+ ℎ́𝑛−1 exp[𝑗𝑓𝑖𝑟] . exp(−𝑗𝑓𝑖∆𝑟) 𝑎3 
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+ ℎ́𝑛−1 exp(𝑗𝑓𝑖𝑟) . exp(−2𝑗𝑓𝑖∆𝑟) 𝑎4 

− ℎ́𝑛 exp(𝑗𝑓𝑖𝑟) . exp (−2𝑗𝑓𝑖∆𝑟)𝑎5. 

(4.48) 

The above equation is simplified by cancelling out (𝑗𝑓𝑖𝑟) 

ℎ́𝑛𝑎1 = ℎ́𝑛−1𝑎2 + ℎ́𝑛−1 exp(−𝑗𝑓𝑖∆𝑟) 𝑎3 

+ ℎ́𝑛−1 exp[−2𝑗𝑓𝑖∆𝑟] 𝑎4 − ℎ́𝑛 exp (−2𝑗𝑓𝑖∆𝑟)𝑎5 

 

(4.49) 

ℎ́𝑛(𝑎1 + 𝑎5 exp(−2𝑗𝑓𝑖∆𝑟)) = ℎ́𝑛−1(𝑎2 + 𝑎3 exp(−𝑗𝑓𝑖∆𝑟)) 

+ 𝑎4 exp (−2𝑗𝑓𝑖∆𝑟) 

 

(4.50) 

Therefore, 

|
ℎ́𝑛

ℎ́𝑛−1
| < 1 ⟹ |

𝑎2 + 𝑎3 exp[−𝑗𝑓𝑖∆𝑟] + 𝑎4 exp [−2𝑗𝑓𝑖∆𝑟]

𝑎1 + 𝑎5 exp [−2𝑗𝑓𝑖∆𝑟]
| < 1 

       

(4.51) 

⃒𝑎2 + 𝑎3 exp(−𝑗𝑓𝑖∆𝑟) + 𝑎4 exp(−2𝑗𝑓𝑖∆𝑟)⃒ 

< |𝑎1 + 𝑎5 exp[−2𝑗𝑓𝑖∆𝑟]| 

 

     

(4.52) 

|𝑎2| + |𝑎3| + |𝑎4| < |𝑎1| + |𝑎5| (4.53) 

By substituting (𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5) we get 

|
𝑛2∆𝑡𝑇

2∆𝑥𝑆
𝑐1(𝑟𝑖)| + |

𝑛2∆𝑡

2(∆𝑥)2
𝑐2(𝑟𝑖)

𝑇

𝑆
| 

+ |
𝑛2∆𝑡𝑇

2𝑆∆𝑥
𝑐1(𝑟𝑖) +

𝑛2∆𝑡𝑇

(∆𝑥)2
𝑐2(𝑟𝑖) +

𝑇

𝑆(∆𝑥)2
𝑐2(𝑟𝑖)| 

< |
1 + 𝑛2∆𝑡

2∆𝑥

𝑇

𝑆
𝑐1(𝑟𝑖) +

𝑛2∆𝑡

2(∆𝑥)2
𝑇

𝑆
𝑐2(𝑟𝑖)| + |

𝑇𝑐2(𝑟𝑖)

𝑆(∆𝑥)2
| ! 

 

 

 

 

(4.54) 

Therefore, 

|{
𝑛2∆𝑡𝑇

2(∆𝑥𝑆
𝑐1(𝑟𝑖)}| + |

𝑛2∆𝑡

2(∆𝑥)2
𝑐2(𝑟𝑖)

𝑇

𝑆
| + |

𝑛2∆𝑡𝑇

2𝑆∆𝑥
𝑐1(𝑟𝑖)| + |

𝑛2∆𝑡𝑇

(∆𝑥)2𝑆
| 

+ |
𝑇

𝑆(∆𝑥)2
𝑐2(𝑟𝑖)| 

< |
1 + 𝑛2∆𝑡

2∆𝑥

𝑇

𝑆
𝑐1(𝑟𝑖)| + |

𝑛2∆𝑡

2(∆𝑥)2
𝑇

𝑆
(𝑐2𝑟𝑖)| + |

𝑇𝑐2
𝑆(∆𝑥)2

| ! 

     

 

 

 

     

(4.55) 
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𝑛2∆𝑡 𝑇

∆𝑥 𝑆
𝑐1(𝑟𝑖) +

𝑛2∆𝑡 𝑇

𝑆 (∆𝑥)2
𝑐2(𝑟𝑖) <

1 + 𝑛2∆𝑡 𝑇

2(∆𝑥)𝑆 
𝑐1𝑟𝑖 

 

(4.56) 

The above equation can be simplified by taking out the common factor, 

𝑛2∆𝑡 𝑇 𝑐1(𝑟𝑖) +
𝑛2∆𝑡 𝑇

∆𝑥
𝑐2(𝑟𝑖) <

1 + 𝑛2∆𝑡 𝑇

2
𝑐1(𝑟𝑖) 

(4.57) 

We then multiply everything by 2, 

2𝑛2∆𝑡 𝑇 𝑐𝑖(𝑟𝑖) − 𝑛
2∆𝑡 𝑇 𝑐1(𝑟𝑖) +

2𝑛2∆𝑡 𝑇

∆𝑥
𝑐2(𝑟𝑖) < 1 

  

(4.58) 

𝑛2∆𝑡 𝑇 𝐶1(𝑟𝑖) +
2𝑛2∆𝑡 𝑇

∆𝑥
𝑐2(𝑟𝑖) < 1 

 

(4.59) 

We then factorize 𝑁2∆𝑡 𝑇, 

𝑛2∆𝑡 𝑇[𝑐1(𝑟𝑖) +
2𝑐2(𝑟𝑖)

∆𝑥
] < 1 

 

(4.60) 

 Then for condition of stability: 

𝑐1(𝑟𝑖) +
2𝑐2(𝑟𝑖)

∆𝑥
<

1

𝑛 2∆𝑡 𝑇
 

(4.61) 

Therefore, 

[
1

𝑟
] +

2 [1 +
∆𝑟
𝑟 ]

∆𝑥
<

1

𝑛∆𝑡 𝑇
 

 

(4.62) 

The above completes the stability. 
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CHAPTER FIVE: APPLICATION AND DATA 

5.1 APPLICATION OF DATA IN GROUNDWATER MODELLING 

In groundwater studies, the initial stage of every groundwater investigation and analysis 

consists of collecting data. Data collection may include collecting existing geological and 

hydrological data of the site under study. This information includes geology of the area, 

precipitation, evapotranspiration, abstraction rates, water level, land use, aquifer 

hydraulics, initial boundary conditions and many more. At times, such data does not exist 

and this calls for a need to conduct fieldwork. Fieldwork involves going to the actual site 

and taking measurements such as water levels, temperature, PH and total dissolved 

solvents. It also incorporates carrying out slug tests, constant rate test and pump test 

which help understand aquifer hydraulic properties. Measurements, tests and 

observations are recorded in a field book and this what is termed groundwater data. 

Groundwater data is collected using pumps, water loggers, temperature meters, PH, EC, 

and TDS meters. From this data, Other aquifer properties such as storativity, hydraulic 

conductivity and transmissivity are then obtained by indirect calculations and numerical 

simulations. 

The key question to ask, is the data collected a real representation of reality? In most 

cases It is not and little is being done to verify such inaccuracy. The following are 

examples that prove that most data collected in the field are not actual representation of 

reality. 

5.1.1 The Concept of Averaging 

Let’s take a monitoring exercise that is being conducted for site 𝑥. The site has an 

abstraction borehole and three other observation boreholes within the vicinity of the site 

as depicted in figure 1. All three observation boreholes will always have a different 

transmissivity to one another. The question then arises as to which transmissivity will be 

used to model the system. Do we use the highest or lowest transmissivity values in the 

system?  
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If so, is it a real representation of the whole system? Some authors and consultants in the 

industry have resorted to using the arithmetic mean average of the system which leads 

us to our second example. 

 

Figure 3: Monitoring System of Site X (Google/Images, 2017). 

Let’s take a group of five lecturers at a certain department within a university. The first 

lecturer submitted 15 articles to an international accredited journal for review in a year. 

The second lecturer submitted 5 articles within the very same year. The third lecturer then 

submitted only three articles that year. The fourth lecturer submitted two articles while the 

fifth one did not submit any article that particular year. If we are going to use the arithmetic 

mean average of articles submitted by the department within that year, we find that at 

least five articles were submitted per person. Does that give a real representation of 

reality? It does not and such an example can also be applied in groundwater. Using the 

arithmetic mean average to represent the groundwater system is not or does not give you 

the actual representation of reality. 
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Based on the above examples, we realize that field data cannot always be trusted as it 

does not depict the actual truth of what is happening in reality. Before using field data, it 

is important to take as many measurements and try to get a trend. This will further be 

explained in the following sections. 

5.2. APPLICATION OF MATHEMATICS IN DATA PROCESSING 

(Nigmatullin et al.,2014) stated that all data can be divided on two large classes: 

reproducible and unrepeatable data, accordingly. A reproducible data is when a 

measurement is reproducible if the investigation is repeated by another person, or by 

using different equipment or techniques, and the same results are obtained. For certain 

types of data (such as groundwater data) the repetition of the same initial conditions is 

impossible and therefore requires that special methods for analysis of different time series 

be used. In some instances, the control variable 𝑥 is random and the response created 

by the action of this variable on the area or object studied is also random and so all 

responses in this instance cannot be reproducible. (Nigmatullin et al.,2014) further 

suggested the development of a general theory or intermediate model that considers all 

reproducible data. The theory has to satisfy the following requirements: 

• It should give a possibility to express quantitatively a set of the measured functions 

by means of the unified and common set of the fitting parameters. 

• This set of the fitting parameters should form the unified model and many data can 

be compared in terms of one quantitative “language”. It means that there is a 

possibility to create general metrological standard for consideration of reproducible 

data from the unified point of view. 

• All calculations that are contained in this general theory should be error 

controllable. 

• It should give a possibility to eliminate the apparatus (instrumental) function and 

reduce reproducible measurement to an ideal experiment. 

The suggested theory can further be expressed in terms of mathematical formulas in the 

following ways: 
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If 𝑃𝑟 (𝑥) is chosen as the response (measured) function then from the mathematical point 

of view it implies that the following relationship is satisfied: 

𝑦𝑚(𝑥) ≅ Pr(𝑥 + 𝑚. 𝑇𝑥) 

= Pr (𝑥 + (𝑚 − 1). 𝑇𝑥, 𝑚 = 1,2, … . ,𝑀. 

 

(5.1) 

Here 𝑥 is the external (control) variable, 𝑇𝑥 is a “period” of experiment expressed in 

terms of the control variable 𝑥. 

In equation (5.1), an assumption was made that the properties of the object studied during 

the period of time 𝑇𝑥 is not changed. If 𝑥 = 𝑡 corresponds with temporal variable then 𝑇𝑥 =

𝑇 corresponds with the conventional definition of a period. The solution of this functional 

equation is well-known and (in case of discrete distribution of the given data points 𝑥 =

𝑥𝑗 , (𝑗 = 1, 2, … ,𝑁) coincides with the segment of the Fourier series: 

Pr(𝑥) = 𝐴𝑜 +∑ [𝐴𝑐𝑘 cos (2𝜋𝐾
𝑥

𝑇𝑥
) + 𝐴𝑠𝐾sin (2𝜋𝐾

𝑥

𝑇𝑥
)]

∞

𝐾=1

 
 

(5.2) 

Equation (5.2) shows a segment of the Fourier series since in reality all data points are 

always discreet and the number of modes which corresponds with the coefficients of the 

Fourier decomposition is limited. The letter 𝐾 defines the finite mode. The final mode (𝐾) 

is chosen from the requirement that it is sufficient to fit experimental data with the given 

(acceptable) accuracy. The value of 𝐾 can be calculated (shown in equation 5.8) for the 

relative error located in the given interval. The acceptable error interval is between 1 

percent to ten percent (1% − 10%). This interval provides the desired fit of the measured 

function 𝑦(𝑥) to Pr (𝑥) with initially chosen number of models 𝐾 figuring from equation 

(5.2). it is from this relationships that a conclusion can be made. (Nigmatullin et al., 2014) 

concluded that for an ideally reproducible experiment or data, which satisfies the following 

conditions: 1. The Fourier transform 2. Can be used as intermediate model (IM) and the 

number of decomposition coefficients (𝐴𝑜 , 𝐴𝑐𝐾, 𝐴𝑠𝐾) equaled 2𝐾 + 1 can be used as a set 

of the fitting parameters belonging to the Intermediate Model. The meaning of these 

coefficients is well-known and actually this set defines approximately the well-known 

amplitude-frequency response (AFR) associated with the recorded signal 𝑦(𝑥) ≈ Pr (𝑥) 

coinciding with the measured function.  
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Here we increase only the limits of interpretation of the conventional F-transform with 

respect to any variable 𝑥 (including frequency also, if the control variable 𝑥 coincides with 

some current) and show that the segment of this transformation can be used for 

description of an ideal experiment. 

Considering a more general equation: 

𝐹(𝑥 + 𝑇𝑥) = 𝑎𝐹(𝑥) + 𝑏 (5.3) 

The above equation was first developed and used by (Nigmatullin, 2008). The solution of 

the above equation can be written as follows (Nigmatullin, 2008): 

𝑎 ≠ 1 ∶ 𝐹(𝑥) exp (
𝜆𝑥

𝑇
) Pr(𝑥) + 𝐶𝑜 

𝜆 = ln (𝑎) 

𝐶𝑜 =
𝑏

(1 − 𝑎)
 

𝑎 = 1 ∶ 𝐹(𝑥) = Pr(𝑥) +
𝑏𝑥

𝑇𝑥
 

 

(5.4) 

From equation (5.3) the obvious conclusion follows: 

𝐹(𝑥 + 𝑚𝑇𝑥) = 𝑎𝐹(𝑥 + (𝑚 − 1)𝑇𝑥) + 𝑏, 𝑚 = 1, 2, … ,𝑀 (5.5) 

It is interpreted as repetition of a set of successive measurements corresponding to an 

ideal experiment with memory. An assumption was also used about stable properties of 

the object studied during the period 𝑇𝑥 used for the measurements is maintained 

(constants 𝑎 and 𝑏 in equation 5.5 do not depend on time). In reality, this situation cannot 

be performed because of a set of uncontrollable factors. It is expected that in reality all 

these constant parameters including the period 𝑇𝑥 will depend on the current number of 

a measurement 𝑚                    

𝑦𝑚+1(𝑥) = 𝑎𝑚𝑦𝑚 + 𝑏𝑚 or 

𝐹(𝑥 + (𝑚 + 1)𝑇𝑥(𝑚)) = 𝑎𝑚𝐹(𝑥 + 𝑚. 𝑇𝑥(𝑥)) 

+ 𝑏𝑚, 𝑚 = 1, 2, … ,𝑀 − 1 (5.6) 
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In spite, the solution (5.4) is also valid in this case and in the result of the fitting of the 

function (5.4) one can express approximately the current measurement 𝑦𝑚(𝑥) in terms 

of the function (5.4) that represents itself the chosen IM. From this IM one can obtain a 

fitting function for description of reproducible measurements with the shortest memory 

(5.6). So, for each measurement from expression (5.4) one can derive easily the following 

fitting function: 

𝑦𝑚(𝑥) ≅ 𝐹𝑚(𝑥) = 𝐵𝑚 + 𝐸𝑚exp (
𝜆𝑚𝑥

𝑇𝑥(𝑚)
) 

+∑[𝐴𝑐𝐾(𝑚)𝑦𝑐𝐾(𝑥,𝑚) + 𝐴𝑠𝐾(𝑚)𝑦𝑠𝐾(𝑥,𝑚)]

𝑁

𝐾=1

 

𝑦𝑐𝐾(𝑥,𝑚) = exp (
𝜆𝑚𝑥

𝑇𝑥(𝑚)
) 𝑐𝑜𝑠

(2𝜋𝐾𝑥)

𝑇𝑥(𝑚)
 

 

 

 

 

 

(5.7) 

There is a period of time 𝑇 that determines the temporal interval when one cycle of 

measurement is finished. In such a case, the connection between the period 𝑇𝑥 defined 

above and real period 𝑇 is not known. However, the desired fitting parameter 𝑇𝑥 that is 

shown in equation (5.7) can be calculated from the fitting procedure. In order to find the 

optimal value of this parameter 𝑇𝑜𝑝𝑡 that provides the accurate fit, it can be seen that this 

value must be located approximately in the interval [
𝑇𝑚𝑎𝑥

2,2𝑇𝑚𝑎𝑧
], where the value of 𝑇𝑚𝑎𝑥(𝑥), 

in turn, should be defined as 𝑇𝑚𝑎𝑥(𝑥) = ∆𝑥. 𝐿(𝑥). The value ∆𝑥 is a step of discretization 

and 𝐿(𝑥) = 𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛 is a length of the interval associated with the current discrete 

variable 𝑥. Such observation aid in finding the optimal values of 𝑇𝑜𝑝𝑡 and 𝐾 from the 

procedure of minimization of the relative error that always exists between the measured 

function 𝑦 (𝑥) and the fitting function (5.7): 

min[𝑅𝑒𝑙𝐸𝑟𝑟] = min [
𝑠𝑡𝑑𝑒𝑣{𝑦(𝑥) − 𝐹(𝑥; 𝑇𝑜𝑝𝑡, 𝐾)}

𝑚𝑒𝑎𝑛|𝑦|
] . 100% 

1% < min[𝑅𝑒𝑙𝐸𝑟𝑟(𝐾)] < 10% 

𝑇𝑜𝑝𝑡 ∈ [
𝑇𝑚𝑎𝑥

2, 2𝑇𝑚𝑎𝑥
] 
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𝑇𝑚𝑎𝑥 = (𝑥𝑗 − 𝑥𝑗−1).  𝐿(𝑥) (5.8) 

Direct calculations show that instead of minimizing the surface 𝑅𝑒𝑙𝐸𝑟𝑟 (𝑇, 𝐾) with respect 

to the unknown variables 𝑇 and 𝐾 one can minimize the cross-section at the fixed value 

of 𝐾. The value of 𝐾 must satisfy the condition that is given by 1% < min[𝑅𝑒𝑙𝐸𝑟𝑟(𝐾)] <

10%.  

This procedure should be realized for each successive measurement and therefore the 

index 𝑚(𝑚 = 1, 2, … ,𝑀) is neglected in equation (5.8) in order not to overload this 

expression with additional parameters. Every person wants to realize the conditions that 

are close to an ideal experiment with memory expressed by equation (5.3). to achieve 

this, the set of constants 𝑎𝑚 and 𝑏𝑚 can be averaged together with the measured 

functions 𝑦𝑚 in order to substitute equation (5.6) by an appropriate equation that is close 

to the ideal case shown in equation (5.3):                                          

𝑌(𝑥 + 〈𝑇𝑥〉) ≅ 〈𝑎〉𝑌(𝑥) + 〈𝑏〉 

𝑌(𝑥 + 〈𝑇𝑥〉) =
1

𝑀 − 2
∑ 𝑦𝑚(𝑥)

𝑀

𝑚=2

 

𝑌(𝑥) =
1

𝑀 − 2
∑ 𝑦𝑚

𝑀−1

𝑚=1

(𝑥) 
 

(5.9) 

The averaged functions that are obtained from the given set of the reproducible 

measurements are defined by the second row of equation (5.9). (Nigmatullin et al., 2014) 

defined this functional equation as the reduced experiment to its mean values (REMV). It 

can be seen that constants 𝑎𝑚 and 𝑏𝑚 are calculated from equation (5.6) as neighboring 

slopes and intercepts:                                             

𝑎𝑚 = 𝑠𝑙𝑜𝑝𝑒(𝑦𝑚+1,𝑦𝑚) 

𝑏𝑚 = 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡(𝑦𝑚+1,𝑦𝑚) 

𝑀 = 1, 2,… ,𝑀 − 1 

〈𝑎〉 =
1

𝑀 − 1
∑ 𝑎𝑚

𝑀−1

𝑚=1
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〈𝑏〉 =
1

𝑀 − 1
∑ 𝑏𝑚

𝑀−1

𝑚=1

 
 

(5.10) 

The set of numbers entering in equation (5.9) should be equal 𝑀− 1. (Nigmatullin et al., 

2014) elaborated that all the total set of measurements are necessary to justify the 

functional equation (5.6).  

The shortest memory cannot be realized for every experiment. Instead of equation (5.6) 

showing the realization of the simplest case between the neighboring measurements it is 

necessary to consider an ideal situation when the memory covers 𝐿 neighboring 

measurements (Nigmatullin et al., 2014). In such instances, we get: 

𝐹(𝑥 + 𝐿𝑇𝑥) =∑𝑎𝑙

𝐿−1

𝑙=0

𝐹(𝑥 + 𝑇𝑥) + 𝑏 
 

(5.11) 

The set of parameters 𝑎𝑙 and 𝑏 are easily calculated by the Linear Least Square Method 

(LLSM) if we assume that 𝐿 = 𝑀, where 𝑀 corresponds with the last measurement. The 

true value of 𝐿 cannot be calculated and as such, there is a gap in knowledge. The 

measurement process that takes place during the interval [(𝐿 − 1)𝑇𝑥, 𝐿𝑇𝑥] partially 

depends on the measurements that have been taken on the previous temporal intervals 

[𝐿𝑇𝑥, (𝑙 + 1)𝑇𝑥] with 𝐿 = 0, 1, … , 𝐿 − 2. The set of constants [𝑎𝑙](𝑙 = 0, 1, … , 𝐿 − 1) can be 

quantitatively interpreted as the influence of a memory between the successive 

measurements. The solution of equation (5.11) can be written in two forms and was first 

regarded in 2008 (Nigmatullin, 2008):                                  

(𝐴) ∑𝑎𝑙

𝐿−1

𝑙=0

≠ 1: 𝐹(𝑥) =∑(𝐾𝑙

𝐿

𝑙=1

)
𝑥
𝑇𝑥  𝑃𝑟𝑙 (𝑥) + 𝑐0 

𝑐0 =
𝑏

𝐿 − 1
, 1 −∑𝑎𝑙

𝐿−1

𝑙=0

 

(𝐵)  ∑𝑎𝑙

𝐿−1

𝑙=0

= 1: 𝐹(𝑥) =∑(𝐾𝑙)
𝑥
𝑇𝑥  𝑃𝑟𝑙(𝑥) + 𝑐1

𝑥

𝑇𝑥

𝐿

𝑙=1
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𝑐1 =
𝑏

𝑙 − 1
.  𝐿 −∑𝑙. 𝑎𝑙

𝐿−1

𝑙=0

 
 

(5.12) 

The functions 𝑃𝑟𝑙(𝑥) define a set of periodic functions (𝑙 = 1, 2, … , 𝐿) from equation (5.2), 

the values 𝐾𝑙 corresponds with the roots of the characteristics polynomial: 

𝑃(𝐾) = 𝐾𝐿 −∑𝑎𝑙𝐾
𝑙 = 0

𝐿−1

𝑙=0

 
 

(5.13) 

(Nigmatullin et al., 2014) stressed that these roots can either be positive, negative, g-fold 

degenerated (with the value of the degeneracy g) and complex conjugated. It should be 

noted that 𝐵 in equation (5.12), one of the roots 𝐾𝑙 corresponds with the unit value (𝐾1 =

1) that leads to the pore periodic solution. The finite set of the unknown periodic functions 

𝑃𝑟𝑙  (𝑥, 𝑇𝑥)(𝑙 = 1, 2, … , 𝐿 is determined by their decomposition coefficients 𝐴𝑐𝐾
(𝑙)
, 𝐴𝑠𝐾, 𝐿 =

1, 2, … , 𝐿; 𝐾 = 1, 2, … , 𝐾. 

𝑃𝑟𝑙 (𝑥, 𝑇𝑥) = 𝐴0
(𝑙)
+ ∑[𝐴𝑐𝐾

(𝑙) cos (2𝜋𝐾
𝑥

𝑇𝑥
)

𝐾≫1

𝐾=1

 

+ 𝐴𝑠𝐾
(𝑙)
sin (2𝜋𝐾

𝑥

𝑇𝑥
)] 

   

 

(5.14) 

Solution (5.12) has general character and other roots from algebraic equation (5.13) can 

modify the convectional solution. All reproducible measurements having a memory 

associated with 𝐿 neighboring measurements should satisfy to the following functional 

equation: 

𝑦𝑚(𝑥) ≅ 𝐹(𝑥 + (𝐿 + 𝑚)𝑇𝑥(𝑚)) 

=∑𝑎𝑙
𝑚

𝐿−1

𝑙=0

𝐹(𝑥 + (𝐿 + 𝑚)𝑇𝑥(𝑚)) 

+ 𝑏, 𝑚 = 1, 2, … ,𝑀. 

 

 

 

(5.15) 
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A possible averaging procedure that can be applied for calculation of the mean functions 

is shown in equation (5.16). The functional equations (5.16) and (5.11) are similar to each 

other but do not necessarily mean the same. Equation (5.11) is associated with the ideal 

experiment with memory while equation (5.16) describes the typical situation of the real 

experiment when random behavior of the initial measured functions is reduced to tis 

successive mean values (Nigmatullin, 2014).  

In reality, it is always desirable to get the minimal value of 𝐿, as 𝐿 increases the number 

of the fitting parameters that are required during the final fitting of the measured function. 

Equation (16) can be clearly understood and corresponds to the linear presentation of a 

possible memory that may exist between repeated measurements after averaging 

procedure. (Nigmatullin et al., 2014) demonstrated how to eliminate the apparatus 

function and reduce the set of the real reproducible measurement to an ideal experiment 

containing the set of periodic functions only. In equation (5.11) it can be observed that 

the functions𝐹(𝑥), 𝐹(𝑥 + 𝑇),… , 𝐹(𝑥 + (𝐿 − 1)𝑇) are linear independent and available from 

experimental measurements. We get the following linear equations:                                                                                         

𝐹(𝑥) =∑𝐸𝑃𝑙

𝐿

𝑙=1

(𝑥) + 𝑐0 

𝐹(𝑥 + 𝑇) =∑𝐾𝑙

𝐿

𝑙=1

𝐸𝑃𝑙(𝑥) + 𝑐0 

𝐹(𝑥 + (𝐿 − 1)𝑇 =∑𝐾𝑙
𝐿−1

𝐿

𝑙=1

𝐸𝑃𝑙 (𝑥) + 𝑐0 

𝐸𝑃𝑙(𝑥) = (𝐾𝑙)
𝑥
𝑇𝑥 𝑃𝑟𝑙 (𝑥), 𝑙 = 0, 1, … , 𝐿 − 1 

 

(5.16) 
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It is through these linear equations that an unknown function 𝐸𝑃𝑙(𝑥) may be found and 

then restore the unknown periodic functions 𝑃𝑟𝑙(𝑥). It then becomes possible to reduce a 

number of reproducible measurements which were early shown in the frame of the 

desired intermediate model and corresponds to the Prony’s decomposition to an ideal 

experiment. The L-th order of equation (5.17) does not equal to zero if all roots of equation 

(5.13) are not the same. This gives the ideal periodic function that corresponds to 

reduction of the real set of measurements to an ideal experiment: 

𝑃𝑓(𝑥) =∑𝑃𝑟𝑙

𝐿−1

𝑙=0

(𝑥) 
 

(5.17) 

The above equation is very important and can serve as the link between theory and 

practical. From equation (5.4) we get:                                             

〈𝑎〉 ≠ 1, Pr(𝑥) = (〈𝑎〉)
−
𝑥
𝑇𝑥 [𝑦(𝑥) −

〈𝑏〉

1 − 〈𝑎〉
] 

〈𝑎〉 = 1, Pr(𝑥) = 𝑌(𝑥) − 〈𝑏〉 (
𝑥

𝑇𝑥
) (5.18) 

The above formulas eliminate the equipment function based on the demonstrated 

assumptions in equation (5.9) and equation (5.16). The solution for case 𝐵 is important 

and similar to linear equation (5.17) with replacement of the left-hand side by the 

functions:                                      

Φ(x + lT) = F(x + lT) − 𝑐1 (
𝑥

𝑇
+ 𝑙) 

𝑙 = 0,1, … , 𝐿 − 1 (5.19) 

According to (Nigmatullin et al., 2014) attentive analysis of many data prompts the 

efficiency of the following simplified algorithm: 

• From available set of data, one can calculate the mean measurement: 

〈𝑦(𝑥)〉 =
1

𝑀
∑ 𝑦𝑚 (𝑥)

𝑀

𝑚=1

 
 

(5.20) 

And the distributions of the corresponding slopes and intercepts that demonstrates 

marginal measurements having a maximal deviation from its mean value: 



 

61 
 

𝑆𝐿𝑚 = 𝑠𝑙𝑜𝑝𝑒 (𝑦𝑚(𝑥), 〈𝑦(𝑥)〉), 

𝐼𝑛𝑡𝑚 = 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 (𝑦𝑚(𝑥), 〈𝑦(𝑥)〉 

 

(5.21) 

• From these distributions one can find the measured functions having maximal 

deviations and form two limits (maximal deviations from both sides with respect to 

mean function). 

〈𝑦(𝑥)〉 = 𝑎1 𝑦𝑢𝑝(𝑥) + 𝑎0 𝑦𝑑𝑛(𝑥) + 𝑏 (5.22) 

• The case of the reduced memory and marginal functions 𝑦𝑢𝑝(𝑥), 𝑦𝑑𝑛(𝑥) describe 

the limits of the statistical cluster on two opposite limits. The coefficients {𝑎0, 1, 𝑏} 

are found from equation (5.22) by the Linear Least Square Method (LLSM). 

• The desired roots 𝐾1,2 are found from the quadratic equation: 

𝐾2 − 𝑎,𝐾 − 𝑎0 = 0 (5.23) 

The fit of the function 𝑦𝑑𝑛(𝑥) to the Prony’s decomposition allows finding the optimal 

value of 𝑇𝑥.  

From the above demonstrations and explanations, we realize that going to the field and 

collected data is not sufficient enough. If not processed, such data can be very misleading 

and far from reality. It is important to make sure that the data collected follows a similar 

trend, fits to the best fit model and the percentage error calculated is between 1% − 10%. 

If this procedure is not followed then data collection tends to be a fruitless exercise. 

5.3 INTERPOLATION OF DATA 

In numerical analysis, interpolation is a method of constructing new data points within the 

range of a distinct set of known data points. During data collection, one often has many 

data points, obtained through sampling, which represent the values of a function for a 

limited number of values of the independent variable. Such data points are required and 

often used to interpolate the value of that function for an intermediate value of the 

interdependent variable (Wikipedia, 2016). There are different kinds of interpolation 

methods, as stated below. When choosing an interpolation method to use, one needs to 

determine how accurate is the method? Is it not expensive? Number of data points 

needed? Smoothness of the interpolant. 
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5.3.1 Linear Interpolation 

Linear interpolation is the simplest interpolation method. Applying linear interpolation to a 

sequence of points results in a polygonal line where each straight-line segment connects 

two consecutive points of the sequence. Therefore, every segment (𝑃, 𝑄) is interpolated 

independently as follows (Katti et al., 2008; Rahul et al., 2008): 

𝑃(𝑡) = (1 − 𝑡). 𝑃 + 𝑡. 𝑄 (5.24) 

Where 𝑡 ∈ [0,1]. By varying 𝑡 from 0 to 1 we get all the intermediate points between 𝑃 and 

𝑄. Note that 𝑃(𝑡) = 𝑃 for 𝑡 = 0 and 𝑃(𝑡) = 𝑄 for 𝑡 = 1. For values of 𝑡 < 0 and 𝑡 > 1 result 

in extrapolation, that is, we get points on the line defined by 𝑃, 𝑄 but outside the segment 

(𝑃, 𝑄). 

Linear interpolation can be defined in more mathematical terms. 

Definition 1: A linear interpolation 𝑓: [0,1] → ℝ𝑛, 𝑡 ⟼ 𝑓(𝑡) = (𝑓, (𝑡), … , 𝑓𝑛(𝑡) is an affine 

transformation from a unit interval [0,1] to a straight-line segment in ℝ𝑛, where 

𝑓1(𝑡),…,𝑓𝑛(𝑡) are the function components of 𝑓 along each coordinate axis (Katti et al., 

2008; Rahul et al., 2008).  

By definition, an affine transformation preserves barycentric combinations. Therefore, if 

𝑡 ∈ [0,1] is defined as a barycentric combination of the points 0,1 ∈ ℝ 

𝑡 = 𝛼0. 0 + 𝛼1. 1, with 𝛼0 + 𝛼1 = 1 

Then 

𝑓(𝑡) = 𝛼0. 𝑓(0) + 𝛼1. 𝑓(1), with 𝑓(0), 𝑓(1) ∈ ℝ𝑛 

With 𝛼0 = 1 − 𝑡 and 𝛼1 = 𝑡. 
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Figure 4: Plot of data with Linear Interpolation imposed. 

5.3.2 Piecewise Constant Interpolation 

One of the simplest technique of interpolation is to locate the nearest data value, and 

assign the same value as the previous one as shown in figure 2. In simple problems, this 

method is mostly not used, as linear interpolation method is as easy but in cases of 

complex variable interpolation, piecewise constant interpolation is the favored method 

due to its efficiency and its simplicity. 

 

Figure 5: Plot of the data with Piecewise Constant Interpolation applied. 
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5.3.3 Polynomial Interpolation 

Polynomial interpolation is a generalization of linear interpolation. Since linear 

interpolation is a linear function, it is replaced with a polynomial of higher degree. If we 

have 𝑛 data points, there is exactly one polynomial of degree at most 𝑛 − 1 going through 

all the data points as shown in figure 3. The interpolation error is proportional to the 

distance between the data points to the power 𝑛.  

Furthermore, the interpolant is a polynomial and thus infinitely (Wikipedia, 2016). It is in 

this regard that polynomial interpolation is advantageous over linear interpolation.  

Disadvantages of polynomial interpolation include: 

• It is computationally expensive to calculate interpolating polynomials. 

• Often exhibits oscillatory artifacts at the end points. 

Polynomial interpolation can estimate local maxima and minima that are outside the range 

of the samples, unlike linear interpolation. However, these maxima and minima may 

exceed the theoretical range of the function i.e. a function that is always positive may 

have interpolant with negative values (Wikipedia, 2016). Spline interpolation overcomes 

such setbacks. 

 

Figure 6: Plot of the data with Polynomial Interpolation applied. 
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5.3.4 Spline Interpolation 

Note that linear interpolation uses a linear function for each of intervals 𝑋𝑘, 𝑋𝑘+1. Whereas, 

spline interpolation uses low-degree polynomials in each of the intervals, and chooses 

the polynomial pieces such that they fit smoothly together. The resulting function is called 

a spline. For example, the natural cubic spine is piecewise cubic and twice continuously 

differentiable. Moreover, its second derivative is zero at the end points (Wikipedia, 2016). 

Spline interpolation incurs a smaller error than linear interpolation and the interpolant is 

smoother. In spline interpolation, it is much easier to evaluate the interpolant than the 

high degree polynomials used in polynomial interpolation. 

5.3.5 Interpolation Via Gaussian Processes 

This is a powerful non-linear interpolation tool. It is equivalent to many popular 

interpolation tools. Gaussian processes can be used for fitting an interpolant that passes 

exactly through the given data and also for regression (fitting a curve through noisy data). 

Gaussian process regression is also known as Kriging. 

5.3.6 Other Forms of Interpolation 

Other forms of interpolation can be constructed by picking a different class of interpolants. 

Examples of other forms of interpolation include: 

• Interpolation by rational functions using Pade approximant. 

• Interpolation by trigonometric polynomials using Fourier series. 

• The Whittaker-Shannon interpolation formula can be used if the number of data 

points is infinite. 

However, multivariate interpolation is the interpolation of functions of more than one 

variable. Such technique includes Bilinear interpolation and Bicubic interpolation in two 

dimensions, and trilinear interpolation in three dimensions. This type of interpolation may 

be applied to gridded or scattered data. 
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5.4 APPLICATION OF INTERPOLATION IN GROUNDWATER 

Interpolation in groundwater is used for analyzing groundwater flow and analyzing 

groundwater flow and physiochemical parameter distribution. There are areas in which 

observations and measurements cannot be made and leads to geostatistical methods 

being employed to determine the values of such areas where measurements were not 

made. In some instances, people choose to measure groundwater levels and parameters 

at random locations in the field with the hope of interpolating whatever values and 

everything happening within the sampled or measured data points. Therefore, the 

accuracy of such interpolation will determine how accurate is the model output. The 

following is an example of an interpolation techniques and how it is used in groundwater. 

1. Kriging 

According to David (1977) kriging is a technique of making optimal, unbiased estimates 

of regionalized variables at unsampled locations using the structural properties of the 

semi-variogram and the initial set of data values. This type of interpolation technique 

considers the spatial structure of the parameter. It is mostly preferred over other 

interpolation techniques such as arithmetic mean, polynomial interpolation, nearest 

neighbor method and distance weighted method. It also provides an estimation variance 

of every estimated point, increasing the accuracy of the interpolant. 

Methodology 

the initial step of this methodology is calculating the experimental variogram using the 

following equation which was developed by Kumar and Remadevi (2006): 

𝛾∗(ℎ) =
1

2𝑁(ℎ)
∑[2(𝑥𝑖) − 2(𝑥𝑖 + ℎ)]2

𝑁(ℎ)

𝑖=1

 

 

(5.25) 

Where 𝛾∗(ℎ) = estimated value of the semi-variance for lag ℎ;𝑁(ℎ) is the number of 

experimental pairs separated by vector ℎ; 2(𝑥𝑖) and 2(𝑥𝑖 + ℎ) = values of variable 2 at 𝑥𝑖 

and 𝑥𝑖 + ℎ, respectively; 𝑥𝑖 and 𝑥𝑖 + ℎ = position in two dimensions. 
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The semi-variograms are fitted with various theoretical models like spherical, exponential, 

gaussian, linear and power by the weighted least square method. The theoretical model 

that gives the minimum standard error is taken for further analysis. Kriging is then 

performed at all the data points, ignoring, in turn, one by one. (de Marsily and Ahmed, 

1987) explained that differences between estimated and observed values should be 

summarized using the cross-validation statistics: Mean Error (ME), Mean Squared Error 

(MSE), Kriged Reduced Mean Error (MRME), and Kringed Reduced Mean Square Error 

(MRMSE). If the semi-variogram model and kriging procedure sufficiently reproduce the 

observed value, the error should satisfy the following criteria (Kumar and Remadevi, 

2006): 

𝑀𝐸 =
1

𝑁
∑(𝑍∗(𝑥𝑖) − 𝑍(𝑥𝑖)) ≅ 0

𝑁

𝑖=1

 
    

(5.26) 

𝑀𝑆𝐸 =
1

𝑁
∑(𝑍∗(𝑥𝑖) − 𝑍(𝑥𝑖))

2

𝑁

𝑖=1

 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 
  

(5.27) 

𝐾𝑅𝑀𝐸 =
1

𝑁
∑[

(2∗(𝑥𝑖) − 𝑍(𝑥𝑖))

𝜎𝐾𝑖
] ≅ 0

𝑁

𝑖=1

 
 

(5.28) 

𝐾𝑅𝑀𝑆𝐸 =
1

𝑁
∑[

(2∗(𝑥𝑖) − 𝑍(𝑥𝑖))
2

𝜎𝐾𝑖
2 ] ≅ 1

𝑁

𝑖=1

 
 

(5.29) 

 

Where, 𝑍∗(𝑥𝑖), 𝑍(𝑥𝑖) and 𝜎𝐾𝑖
2  are the estimated value, observed value and estimation 

variance respectively, at points 𝑥𝑖. 𝑁 is the sample size. 

For all interpolation techniques, interpolated value of 2 at any point 𝑋0 is given as the 

weighted sum of the measured value: 

𝑍∗ = (𝑋0) =∑𝜆𝑖  𝑍(𝑋𝑖) 𝑖 = 1,2,3… ,𝑁

𝑁

𝑖=1

 
 

(5.30) 

Where 𝜆𝑖 is the weight for the observation 2 at location 𝑋𝑖. In kriging, the weight 𝜆𝑖 are 

calculated by equation (5.31) so to make sure that 𝑍∗(𝑋0) is unbiased and optimal. 
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{
 
 

 
 ∑𝜆𝑖𝛾(𝑋𝑖, 𝑋𝑗) + 𝜇 = (𝑋𝑖, 𝑋0) 𝑖 = 1,2,3… ,𝑁

𝑁

𝑗=1

∑𝜆𝑗 = 1

𝑁

𝑗=1

 

   

 

 

(5.31) 

Where, 𝜇 is the langrage multiplier. 

Inverse Square distance, which is a technique usually used in geohydrology can be used 

to interpolate the groundwater level data. The weights 𝜆𝑖 are inversely proportional to the 

square of distance from the estimation points as: 

𝜆𝑖 =

1
(𝑑 0𝑖)2

∑
1

(𝑑 0𝑖)2
𝑛
𝑖=0

 

 

 

(5.32) 

Where, 𝑑 0𝑖 is the distance between the sample point and the estimated point. 

The above explains how interpolation is applied in groundwater. Even though only one 

method was elaborated, there are many other methods that are used for interpolation of 

groundwater as mentioned in the above sections. The key question to ask is does 

interpolation always give us the true reflection or representation of what is actually 

happening in reality? In most cases, it is not and therefore most interpolation efforts 

results in wrong information and therefore wrong interpretation of the system as will be 

shown in figure 7. 

 

Figure 7: Aquifer system showing discrete sampling points and a discontinuity. 
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The figure above shows an aquifer system where measurements or sampling was done 

at discrete sampling points. Within the system, there is a discontinuity which can be an 

impermeable rock material. Based on the definition and properties of interpolation, we are 

made to understand that in order to interpolate a system accurately, there system needs 

to be continuous. In such a case where there is a discontinuity in an aquifer, one realizes 

that the normally used interpolation techniques that do not account for discontinuities in 

the system cannot be relied upon as they often will give wrong information about the 

system.  

This rises a different question as to when can interpolation be used and when it cannot 

be applied? The following section helps us to understand the concept of multi-step 

interpolation concept which can be very helpful in dealing with problems which normal 

interpolation techniques cannot deal with. 

5.4.1 Multi Step Interpolation Concept 

Conceptually, every numerical method starts from an initial point and then takes a step 

forward in time. This helps to find the solution of the next point. This process carries on, 

step after step to map out the solution. Single step methods refer to only one previous 

point and its derivative to determine the current value. Such methods usually discard all 

previous information before taking another forward step. On the other hand, Multi-step 

methods keep and use information from all previous steps and do not remove or discard 

any information. Therefore, multi-step methods refer to several previous points and 

derivative values. The characteristics feature of one-step is that they need for computing 

𝑦𝐾+1 more than one of the previous approximations 𝑦𝑘, 𝑦𝑘+1. 

5.4.1.1 Linear 𝒒-Step Method 

Definition 1: A 𝑞 step method with 𝑞 ≥ 1 is a numerical method for approximately solving: 

𝑦′(𝑥) = 𝑓(𝑥, 𝑦(𝑥)),    𝑦(𝑥0) = 𝑦0 (5.33) 
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𝑦𝑘+1 =∑𝑎𝑗 𝑦𝑘−𝑗

𝑞−1

𝑗=0

 

+ ℎ∑𝑏𝑗𝑓(𝑥𝑘−𝑗, 𝑦𝑘−𝑗)

𝑞−1

𝑗=0

 

+ ℎ𝑏−1 𝑓(𝑥𝑘+1, 𝑦𝑘+1), 𝐾 = 𝑞, 𝑞 + 1 

   

 

 

 

 

(5.34) 

 With 𝑞 ≥ 1, 𝑎0, … , 𝑎𝑞−1, 𝑏−1, … , 𝑏𝑞−1 ∈ ℝ, 𝑎𝑞−1 ≠ 0 𝑜𝑟 𝑏𝑞−1 ≠ 0. For 𝑞 = 1, the method is 

called a one-step method. If 𝑏−1 ≠ 0, then the linear 𝑞-step method becomes implicit, if 

not, it’s an explicit method. This multi-step method requires initial 𝑞 values. Equation 

(5.33) only provides the initial value 𝑦0 and initial value 𝑦1 has to be computed using the 

one-step method. The following initial value 𝑦𝑧 can be derived using a one-step method 

or a multi-step method and the process continues to subsequent steps.  

All initial values 𝑦𝑖 , 𝑖 > 0, are numerical assumptions. This setback can be accounted for 

in the error analysis stage. 

5.4.1.2 Predictor Corrector Methods 

The initial point of predictor corrector methods corresponds to the integral form of the 

initial value shown in equation (5.33). 

𝑦(𝑥) = 𝑦0 +∫ 𝑓(𝑡, 𝑦(𝑡))
𝑥

𝑥0

𝑑𝑡 
 

(5.35) 

 Denote the solution at 𝑥 by 𝑦(𝑥), then it holds that: 

𝑦(𝑥) = 𝑦(𝑥) + ∫ 𝑓(𝑡, 𝑦(𝑡))
𝑥

𝑥

𝑑𝑡 
 

(5.36) 

Predictor corrector methods helps approximate the integral on the right-hand side of 

equation (5.36). However, there are two challenges: 

• The dependency of the term in the integral on 𝑡 is generally not known since the 

function 𝑦(𝑡) is unknown. 

• Even if the dependency of the function in the integral on 𝑡 is known, its practically 

impossible to find an analytical expression of the solution. 
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If we assume that the term in the integral of equation (5.36) is known, the derivation 

becomes similar to the derivation of the Newton-Cotes formulas of numerical quadrature. 

Following this sequence, the term in the integral of equation (5.36) is then replaced by a 

polynomial interpolant. Equidistant nodes are used in the construction of the polynomial: 

𝑥𝑖 = 𝑥0 + 𝑖ℎ, 𝑖 = 0,1, …. 

Let the boundaries of the integral be the nodes: 

𝑥 = 𝑥𝑝−𝑗, starting point with parameter j, 

𝑥 = 𝑥𝑝+𝑚, end point with parameter m, 

Since 𝑗,𝑚, ∈, ℕ0 parameters have not been determined, the interpolation polynomial 𝑝(𝑥) 

must satisfy the following parameters: 

• The degree of 𝑝𝑟(𝑥) is lower than or equal to 𝑟. 

• 𝑝𝑟(𝑥𝑖) = 𝑓(𝑥𝑖, 𝑦(𝑥𝑖)) for 𝑖 = 𝑝, 𝑝 − 1,… , 𝑝 − 𝑟. 

Thus, 𝑥𝑝 is the most right-hand side node for computing the interpolation polynomial. 

Lagrange (1736 – 1813) first proposed the solution of this interpolation problem: 

𝑝𝑟(𝑥) =∑𝑓 (𝑥𝑝−𝑙, 𝑦(𝑥𝑝−𝑙)) 𝐿𝑖(𝑥)

𝑟

𝑖=0

 

With, 

𝐿𝑖(𝑥) = ∏
𝑥 − 𝑥𝑝−𝑙

𝑥𝑝−1 − 𝑥𝑝−1
, 𝑖 = 0,1, … , 𝑟.

𝑟

𝑙=0,𝑙≠𝑖

 

Using equation (5.36), it follows that: 

𝑦𝑝+𝑚 ≈ 𝑦𝑝−𝑗 

+∑𝑓 (𝑥𝑝−𝑖, 𝑦(𝑥𝑝−𝑖))∫ 𝐿𝑖(𝑡)
𝑥

𝑥

𝑑𝑡

𝑟

𝑖=0

 

= 𝑦𝑝−𝑗 + ℎ∫ 𝛽𝑖𝑓(𝑥𝑝−𝑖, 𝑦(𝑥𝑝−𝑖))
𝑟

𝑖=0
. 

 

 

 

(5.37) 
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With, 

𝛽𝑖 =
1

ℎ
∫ 𝐿𝑖(𝑡)
𝑥

𝑥

𝑑𝑡 =
1

ℎ
∫ ( ∏

𝑡 − 𝑥𝑝−1

𝑥𝑝−𝑖 − 𝑥𝑝−1

𝑟

𝑙=0,𝑙≠𝑖

)
𝑥

𝑥

𝑑𝑡 

 

 

This method becomes linear. Using the substitution: 

𝑡 = 𝑥𝑝 + 𝑠ℎ = 𝑥0 + (𝑝 + 𝑠)ℎ, 

And the equidistant mesh yields: 

𝛽𝑖 =
1

ℎ
∫ ( ∏

𝑥𝑝 + 𝑠ℎ − 𝑥𝑝−1

𝑥𝑝−𝑖 − 𝑥𝑝−1

𝑟

𝑙=0,𝑙≠𝑖

)ℎ
𝑚

−𝑗

𝑑𝑠 

= ∫ ( ∏
𝑝ℎ + 𝑠ℎ − 𝑝ℎ + 𝑙ℎ

𝑝ℎ − 𝑖ℎ − 𝑝ℎ + 𝑙ℎ

𝑟

𝑙=0,𝑙≠𝑖

)
𝑚

−𝑗

𝑑𝑠 

= ∫ ( ∏
𝑠 + 𝑙

−𝑖 + 𝑙

𝑟

𝑙=0,𝑙=𝑖

)
𝑚

−𝑗

𝑑𝑠 

 

 

 

 

 

(5.38) 

From the above, one can now get different methods depending on which parameters 

(𝑚, 𝑗 𝑎𝑛𝑑 𝑟) one chooses and by replacing 𝑦(𝑥𝑝−𝑖) in equation (5.35) with 𝑦𝑝−𝑖. 

5.4.1.2.1 Adams Bashforth Methods 

The Adams-Bashforth method is given by parameters 𝑚 = 1, 𝑗 = 0, 𝑎𝑛𝑑 𝑟 = 𝑞 − 1. The 

𝑞-step Adams Bashforth method uses the nodes 𝑥𝑘+1 − 𝑞,… , 𝑥𝑘 for computing the 

Lagrangian interpolation polynomial. These are 𝑞 nodes and 𝑝𝑞(𝑥) is at most of degree 

𝑞 − 1 (Lambers, 2011). This method has the following form: 

𝑦𝑘+1 = 𝑦𝐾 + ℎ∑𝛽𝑖𝑓(𝑥𝑘−𝑖, 𝑦𝑘−𝑖)

𝑞−1

𝑖=0

 

 

(5.39) 

 With, 

𝛽𝑖 = ∫ ( ∏
𝑠 + 1

−𝑖 + 1

𝑞−1

𝑙=0,𝑙≠𝑖

)𝑑𝑠
1

0

 

 

(5.40) 
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Where 𝑞 = 1, the term in the integral in equation (5.36) is replaced by a constant 

interpolation polynomial with the node 𝑥𝑘, 𝑓(𝑥𝑘, 𝑦𝑘)) This gives:                                                               

𝑦𝑘+1 = 𝑦𝑘 + ℎ (∫ 𝑑𝑠
1

0

)𝑓(𝑥𝑘, 𝑦𝑘) 

= 𝑦𝑘 + ℎ𝑓(𝑥𝑘, 𝑦𝑘) (5.41) 

From the above, the explicit Euler method is obtained. Furthermore, if 𝑞 = 2, the term in 

the integral is estimated by linear polynomial with the nodes 𝑥𝑘−1, 𝑓(𝑥𝑘−1, 𝑦𝑘−1)) and 

𝑥𝑘, 𝑓(𝑥𝑘, 𝑦𝑘)). Equation (5.39) and (5.40) yields: 

𝑦𝑘+1 = 𝑦𝑘 + ℎ ∫ (
𝑠 + 1

1
)

1

0

𝑑𝑠𝑓(𝑥𝑘, 𝑦𝑘) 

+ ℎ∫ (
𝑠

−1
)

1

0

𝑑𝑠𝑓(𝑥𝑘−1, 𝑦𝑘−1) 

𝑦𝑘 + ℎ = [
3

2
𝑓(𝑥𝑘, 𝑦𝑘) −

1

2
𝑓(𝑥𝑘−1, 𝑦𝑘−1)] 

= 𝑦𝑘 +
ℎ

2
[3𝑓(𝑥𝑘, 𝑦𝑘) − 𝑓(𝑥𝑘−1, 𝑦𝑘−1)] 

 

 

 

 

 

 

(5.42) 

5.4.1.2.2 Adams-Moulton Method 

This method uses the following choice of parameters; 𝑚 = 0, 𝑗 = 1, 𝑎𝑛𝑑 𝑟 = 𝑞. Therefore, 

it follows that, 

𝛽𝑖 = ∫ ( ∏
𝑠 + 𝑙

−𝑖 + 𝑙

𝑞

𝑙=0,𝑙≠𝑖

)
0

−1

𝑑𝑠 
 

(5.43) 

Together with, 

𝑦𝑘 = 𝑦𝑘−1 +  ℎ∑𝛽𝑖𝑓(𝑥𝑘+1−𝑖,𝑦𝑘+1−𝑖)

𝑞

𝑖=0

 

 

(5.44) 

Or, by changing the index, 

𝑦𝑘+1 = 𝑦𝑘 + ℎ∑𝛽𝑖

𝑞

𝑖=0

𝑓(𝑥𝑘+1−𝑖, 𝑦𝑘+1−𝑖) 
 

(5.45) 
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Nodes are given by 𝑥𝑘+1−𝑞, … , 𝑥𝑘, 𝑥𝑘+1. Unlike the Adam-Bashforth method, Adam-

Moulton methods are implicit methods (Lambers, 2011). 

Where 𝑞 = 0, the term in the integral is replaced by constant interpolation polynomial with 

the node at 𝑥𝑘+1, 𝑓(𝑥𝑘+1, 𝑦𝑘+1)).  

This yield: 

𝑦𝑘+1 = 𝑦𝑘 + ℎ (∫ 𝑑𝑠
0

−1

)𝑓(𝑥𝑘+1, 𝑦𝑘+1) 

= 𝑦𝑘 + ℎ𝑓(𝑥𝑘+1, 𝑦𝑘+1 

 

(5.46) 

The above gives implicit Euler method. 

When 𝑞 = 1, we can use a linear interpolation polynomial with the points 𝑥𝑘, 𝑓(𝑥𝑘, 𝑦𝑘)) 

and (𝑥𝑘+1, 𝑓(𝑥𝑘+1, 𝑦𝑘+1)). We get: 

𝑦𝑘+1 = 𝑦𝑘 + ℎ[(∫
𝑠 + 1

1

0

−1

𝑑𝑠) 𝑓(𝑥𝑘+1, 𝑦𝑘+1) 

+(∫
𝑠

−1

0

−1

𝑑𝑠) 𝑓(𝑥𝑘, 𝑦𝑘))]  

𝑦𝑘 + ℎ [
1

2
𝑓(𝑥𝑘+1, 𝑦𝑘+1) + 𝑓(𝑥𝑘, 𝑦𝑘))] 

= 𝑦𝑘 +
ℎ

2
[𝑓(𝑥𝑘+1, 𝑦𝑘+1) + 𝑓(𝑥𝑘, 𝑦𝑘))]. 

 

 

 

 

 

 

(5.47) 

The method used is referred to as the trapezoidal rule. 

5.4.1.2.3 Nylstroom Methods 

This method was first introduced by Evert J. Nystroom (1895 – 1960). This type of method 

is obtained by using 𝑚 = 1, 𝑗 = 1, 𝑎𝑛𝑑 𝑟 = 𝑞 − 1. Nystroom methods have the following 

form: 

𝑦𝑘+1 = 𝑦𝑘−1 + ℎ∑𝛽𝑖

𝑞−1

𝑖=0

𝑓(𝑥𝑘−𝑖, 𝑦𝑘−𝑖) 

 

(5.48) 
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Together with, 

𝛽𝑖 = ∫ ( ∏
𝑠 + 1

−𝑖 + 𝑙

𝑞−1

𝑙=0,𝑙≠𝑖

)
1

−1

𝑑𝑠 

 

(5.49) 

Nylstroom methods are explicit and one method uses the following 𝑞 nodes 𝑥𝑘+1−𝑞 , … , 𝑥𝑘. 

When 𝑞 = 1, the method gives: 

𝑦𝑘+1 = 𝑦𝑘−1 + ℎ(∫ 𝑑𝑠
1

−1

)𝑓(𝑥𝑘, 𝑦𝑘) 

= 𝑦𝑘−1 + 2ℎ𝑓(𝑥𝑘, 𝑦𝑘) 

 

 

(5.50) 

5.4.1.2.4 Milne Methods 

Milne methods are defined by 𝑚 = 0, 𝑗 = 2, 𝑎𝑛𝑑 𝑟 = 𝑞. Using a transform of the index, 

they have the following form: 

𝑦𝑘+1 = 𝑦𝑘+1 + ℎ∑𝛽𝑖

𝑞

𝑖=0

𝑓(𝑥𝑘+1−𝑖, 𝑦𝑘+1−𝑖) 
 

(5.51) 

Together with, 

𝛽𝑖 = ∫ ( ∏
𝑠 + 𝑙

−1 + 𝑙

𝑞

𝑙=0,𝑙≠𝑖

)
0

−2

𝑑𝑠 
 

(5.52) 

  

Milne methods are implicit. 

When implicit methods are required to be used, we have to solve a non-linear equation 

in each node 𝑥𝑘+1. This step has to be performed with repetition to achieve good efficiency 

using the method. An explicit multi-step method can be used to get a good initial iterate. 

For this reason, explicit multi-step methods are called predictor methods and implicit 

multi-step methods are called corrector methods. Combining the two methods results in 

a predictor-corrector method (Lambers, 2011). 
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5.4.1.2.5 Nordsieck Methods 

This method transforms multi-step methods in a one step form. Instead of, 

𝑦𝑘, … , 𝑦𝑘−𝑞+1, 𝑓(𝑥𝑘, 𝑦𝑘), … , 𝑓(𝑥𝑘−𝑞+1, 𝑦𝑘−𝑞+1), 

The method uses the values, 

𝑦𝑘, 𝑦
′(𝑥𝑘), 𝑦

′′(𝑥𝑘), … , 𝑦
(𝑞)(𝑥𝑘), 

The Nordsieck form applies a step length control as It is known from one step methods. 

This is one advantage of the Nordsieck method. Without this control, multi-step methods 

would be complicated. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

77 
 

CHAPTER SIX: NUMERICAL SIMULATIONS 

In this section, we present numerical simulations of the suggested equation for different 

values of scale factor. The numerical simulations are obtained using some theoretical 

values of aquifers parameters. The new parameter added in this work help us to see how 

the cell size or scale factor influences the change in drawdown. This is the main important 

parameter that was removed by Theis to obtain a simpler groundwater flow equation that 

does not include the scale factor.  We thus depict the numerical simulations in figure 8, 

9, 10, 11, 12, 13, 14, 15, 16 and 17 for different values of scale factor. 

 

Figure 8: The numerical simulation for scale factor equals 0.08. 

 

 

 

 

 



 

78 
 

 

Figure 9: Contour plot of numerical simulation for scale factor 0.08. 

 

Figure 10: Numerical simulation for scale factor 0.07. 
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Figure 11: Contour plot of numerical simulation for scale factor 0.07. 

 

Figure 12: Numerical simulation for scale factor equals 0.05. 
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Figure 13: Contour plot of the numerical simulation for scale factor equals 0.05. 

 

Figure 14: Numerical simulation for scale factor equals 0.02. 
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Figure 15: Contour plot of numerical simulation for scale factor equals 0.02. 

 

Figure 16: Numerical simulation for scale factor equals 0.5. 
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Figure 17: Contour plot of numerical simulation for scale factor equals 0.5. 

The above simulations show that the new physical parameter included in our newly 

developed equation play an important role. Based on the numerical simulations and 

contour plots, we observe that the change in drawdown depend on this physical 

parameter. As stated in the introduction, the new physical parameter is the scaling factor 

which Theis removed in his equation. Theis equation does not take into account the 

scaling factor. This physical parameter helps us to observe the gradual change in 

drawdown without overestimating or underestimating the change. The smaller the size of 

the cell, the better we see the change in drawdown but if the cell is too small, we can 

underestimate the drawdown. If the cell is too large, we tend to overestimate the 

drawdown.  

Figure 8 shows a scale factor of 0.08 and we observe that the drawdown in the numerical 

simulation starts above 0.3𝑢 and gradually decreases with time. The contour plot in figure 

9 also shows a gradual change in drawdown, which supports what has been depicted by 

the numerical simulation.  
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As the scaling factor is decreased as shown in figure 10, 11, 12, 13, 14, 15, 16 and 17, 

we observe that even the rate of drawdown changes. This trend can be observed in all 

the numerical simulations and contour plots. It can be seen that increasing or decreasing 

of the scaling factor has a direct impact on the change of drawdown. 
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CONCLUSION 

The main aim of this research was to develop the exact groundwater model within a 

confined aquifer. The aim was to also extend the limitation of Theis equation that does 

not entirely give a true representation of what actually happens in reality. In addressing 

this aim, an exact groundwater flow equation in confined aquifer was derived. The 

equation was proven that it has unique solution. A new numerical scheme was developed 

using the Mellin transform, Adam Bashforth method and inverse Mellin transform. The 

exact groundwater flow model within confined aquifers was simulated using the newly 

developed numerical scheme. The exact solution for groundwater flow equation for a 

confined aquifer was derived using the Boltzmann transform. In conclusion, the newly 

developed groundwater flow equation has a new physical parameter. It can be concluded 

that the new physical parameter has an important role. The new physical parameter is 

the scaling factor. It can also be concluded that this is also the parameter which was 

removed by Theis so as to get a simple model. From the numerical simulations and 

contour plots, we observed that the change in drawdown depends on this physical 

parameter. The smaller the size of the cell, the better we observe the change in drawdown 

but it must also be noted that if the cell size is too small, the drawdown can be 

underestimated. However, if the cell size is too large, the change in drawdown tends to 

be overestimated. In conclusion, our model differs from Theis due to the introduction of a 

physical parameter called the scaling factor. The cell size from one step to another is 

different from Theis. 

In conclusion, we also proposed a new way of applying interpolation in groundwater. 

Multi-step interpolation technique can be very helpful with challenges or problems which 

normal interpolation techniques cannot deal with. For instance, this type of interpolation 

technique can account for discontinuities that may occur within the system underground 

such as dykes and sills. 
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ABSTRACT 

The main aim of this research was to develop the exact groundwater flow model within a 

confined aquifer. We argued that, the Theis groundwater flow model is an approximation 

of the real formulation of the model as he removed some components of the equation to 

have a simple model. Initially, we derived an exact groundwater flow equation for a 

confined aquifer so as to include all high order terms that was removed by Theis and also 

to take into account the assumptions that was used during the derivation of the 

groundwater flow by Theis. Thereafter, we proved that the new groundwater flow equation 

has unique solution. We then derived a new numerical scheme for singular partial 

differential equation that combines the Mellin transform and the Lagrange approximation 

of a continuous function. The Mellin transform was used to remove the singularity in the 

newly developed exact groundwater flow equation for a confined aquifer. The equation 

became ordinary, wherein we used the Adam Bashforth method to the ordinary differential 

equation in Mellin space. The inverse of Mellin was then used to get the exact numerical 

scheme in real space. The derivation of the exact solution of groundwater flow equation 

for a confined aquifer was derived and shown using the Boltzmann transform.  We 

presented the stability analysis of the new numerical scheme using the von Neumann 

method. We also discussed the application of data in groundwater modelling. We argued 

that, most methods used in the collection of data lead to incorrect representation of reality 

or the system under investigation. The application of mathematics to aid in data 

processing was also suggested. Various interpolation methods used in groundwater were 

also discussed. We proposed the concept of Multi-step interpolation technique. Lastly, 

numerical simulations using experimental field data was presented. Our solution was 

compared to Theis. Our simulations show the importance of scaling factor which was 

removed from the Theis groundwater flow equation. The simulations also show that the 

change in drawdown depend on the scaling factor. 

Keywords: Groundwater flow equation; Stability; Mellin transform; Confined aquifer; 

Numerical scheme; Singular partial differential equation.  


