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ABSTRACT 

 

Downscaling of Global Circulation Model Predictions to Daily Rainfall  

over the Upper Olifants River Catchment 

 

Abraham Stephanus Steyn 

 

M.Sc. in Agrometeorology at the University of the Free State 

December 2008 

 

Climate change could have far reaching consequences for all spheres of life. 

Continued greenhouse gas (GHG) emissions at or above current rates will cause 

further warming and induce further changes in the global climate system. This is 

particularly true for southern Africa where an ever-increasing population is already 

causing an increase in the demand for fresh water and much of the agricultural food 

production depends on rain.  

 

Global Circulation Models (GCMs) are the main source of climate projections under 

varying GHG emission scenarios. The spatial resolution of GCMs is too coarse to 

resolve sub-grid processes such as convection and precipitation. However, 

agrohydrological application models often require information at a network of point 

locations, implying the need to downscale the GCM output. Downscaling approaches 

have subsequently emerged as a means of employing large-scale atmospheric 

predictor variables (such as the 500 hPa meridional velocity) to develop station-scale 

meteorological series. Variables such as daily rainfall, which are not always 

accurately represented by the GCMs, can be derived using statistical approaches to 

build relationships between the required forecast parameter and variables that are 

simulated more accurately. 

 

Previous investigators have used the statistical downscaling model (SDSM) to 

downscale climate projections of daily rainfall over North America and Europe. A 

similar methodology was adopted to downscale daily rainfall projections under the 

A2 and B2 emission scenarios at five selected quaternary catchments (QCs) within 
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the Upper Olifants River catchment. The downscaling was performed for the summer 

months of December, January and February (DJF). 

 

The set of generic predictors which were identified across all five QCs included 

surface airflow strength, vorticity, divergence and specific humidity, 850 hPa wind 

direction and relative humidity as well as 500 hPa relative humidity and meridional 

wind velocity. Generally, all the predictors exhibited a reasonably low explanatory 

power. The considerable variation in the resultant correlations between the large-

scale predictors and the observed daily precipitation at the selected QCs may very 

well have stemmed from the convective nature of the rainfall patterns, being 

irregularly distributed in space and time. Generally, the downscaling model results 

were not very encouraging as the model failed to produce satisfactory results for four 

of the five QCs.  

 

For one of the QCs, namely Groblersdal, the projected changes for the future climate 

were assessed by calculating several delta-statistics. Only a few of the indices 

revealed a clear change, while most indices exhibited inconsistent changes for DJF 

across three future periods centred on the 2020s, 2050s and 2080s. Similar changes 

in the characteristics of the daily rainfall series are projected for the early and mid 

21st century under the A2 and B2 scenarios. Differences in the expected GHG 

forcing under the B2 scenario does not seem to affect any of the rainfall indices 

differently from the A2 scenario until the late 21st century. It should however be noted 

that the projected changes are often smaller than the model errors which implies that 

the downscaling model is simply not sensitive enough for the projected changes to 

be taken at face value. Therefore the results should only be used with caution. The 

fact that the downscaling procedure provides similar results for the A2 and B2 

scenarios suggests that it is at least to some extent robust and stable. 
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Desember 2008 

 

Klimaatverandering kan verreikende gevolge inhou vir alle vlakke van die 

samelewing. Volgehoue kweekhuisgas (KHG) vrylatings teen vlakke wat die huidige 

tempo ewenaar of oorskry, sal verdere verwarming teweeg bring en verdere 

veranderinge in die globale klimaatstelsel veroorsaak. Dit is veral waar vir suider-

Afrika waar ŉ steeds groeiende bevolking reeds ŉ toename in die vraag na vars 

water veroorsaak en ŉ groot gedeelte van die landboukundige voedselproduksie van 

reënval afhanklik is.  

 

Globale Sirkulasiemodelle (GSMs) is die hoofbron van klimaatvooruitskouings onder 

veranderende KHG vrystellingscenario’s. Die ruimtelike resolusie van GSMs is te 

grof om prosesse soos konveksie en reënval wat kleiner as die roosterveld is te 

hanteer. Landbou-hidrologiese toepassingsmodelle vereis dikwels inligting by ŉ 

netwerk punte wat dan die behoefte om die GSM uitvoer af te skaal beklemtoon. 

Afskalingsbenaderings het gevolglik ontluik as ŉ middel om groot-skaalse 

atmosferiese voorspellersvelde (soos die 500 hPa meridionale windspoed) in te span 

om stasievlak weerkundige reekse te ontwikkel. Veranderlikes soos die daaglikse 

reënval, wat nie altyd akkuraat deur GSMs voorgestel word nie, kan afgelei word 

deur middel van statistiese metodes wat verwantskappe vaslê tussen die vereiste 

parameter en veranderlikes wat meer akkuraat gesimuleer word. 

 

Vorige navorsers het die statistiese afskalingsmodel (SDSM) ingespan om 

klimaatprojeksies van daaglikse reënval oor Noord-Amerika en Europa af te skaal. ŉ 

Soortgelyke metodologie is aangeneem om daaglikse reënvalprojeksies onder die 
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A2 en B2 vrystellingscenario’s by vyf gekose sub-opvanggebiede binne die Bo-

Olifantsrivier af te skaal. Die afskaling is uitgevoer vir die somermaande Desember, 

Januarie en Februarie (DJF). 

 

Die stel generiese voorspellers, wat oor al vyf sub-opvanggebiede geïdentifiseer is, 

sluit oppervlak windsterkte, vortisiteit, divergensie en spesifieke humiditeit, 850 hPa 

windrigting en relatiewe humiditeit asook 500 hPa relatiewe humiditeit en 

meridionale windspoed in. Oor die algemeen het al die voorspellers relatief lae 

verklarende vermoëns getoon. Die aansienlike variasie in die gevolglike korrelasies 

tussen die groot-skaalse voorspellers en die waargenome daaglikse reënval by die 

gekose sub-opvanggebiede mag teweeg gebring word deur die konvektiewe aard 

van die reënvalpatrone wat onreëlmatig in tyd en ruimte versprei is. In die algemeen 

was die afskalingsmodel se resultate nie baie bemoedigend nie aangesien dit gefaal 

het om aanvaarbare resultate vir vier uit die vyf sub-opvanggebiede te verskaf.  

 

Vir een van die sub-opvanggebiede, naamlik Groblersdal, is die 

vooruitgeprojekteerde veranderinge vir die toekomstige klimaat geevalueer aan die 

hand van ŉ aantal delta-statistieke. Slegs ŉ paar van die indekse het ŉ duidelike 

verandering getoon, terwyl meeste indekse vir DJF onkonsistente veranderings oor 

drie toekomstige periodes, wat op die 2020s, 2050s en 2080s fokus, getoon het. 

Soortgelyke veranderinge in die eienskappe van die daaglikse reënvalreeks word 

onder die A2 en B2 scenario’s voorspel vir die vroeë- en mid-21ste eeu. Verskille in 

die verwagte KHG forserings tussen die A2 en B2 scenario’s blyk nie ŉ invloed op 

enige van die reënvalindekse te hê tot die laat 21ste eeu nie. Daar moet gelet word 

dat die geprojekteerde veranderinge dikwels kleiner is as die modelfoute wat dan 

impliseer dat die afskalingsmodel eenvoudig nie sensitief genoeg is om die 

geprojekteerde veranderinge blindelings te aanvaar nie. Die resultate moet gevolglik 

versigtig gebruik word. Die feit dat die afskalingsprosedure soortgelyke resultate vir 

die A2 en B2 scenario’s lewer toon dat dit ten minste rigied en stabiel is. 
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CHAPTER 1   INTRODUCTION 

 

 

1.1 Background 

 

According to Trenberth et al. (2007) global mean surface temperatures have risen by 

0.74°C ± 0.18°C when estimated by a linear trend over the period spanning 1906 – 

2005. Climate change could have far reaching consequences for all spheres of life as 

continued greenhouse gas (GHG) emissions at or above current rates will cause further 

warming and stimulate further changes in the global climate system. This is particularly 

true for southern Africa where an ever-increasing population is already causing an 

increase in the demand for fresh water and much of the agricultural food production 

depends on rain (Walker & Schulze, 2006). 

 

Results from Global Circulation Models (GCMs) are the main source of climate 

forecasts of various time scales. These dynamical models represent the world as an 

array of grid-points. However, the spatial resolution of GCMs is too coarse to resolve 

regional scale effects (Hessami et al., 2008). Consequently, sub-grid processes, such 

as convection and precipitation, are particularly difficult to reproduce, necessitating the 

parameterisation of these important processes. This implies that locations and variables 

for which forecasts are required may not be represented explicitly by these models 

(Maini et al., 2004). In addition, the GCMs have systematic errors and are deterministic. 

Non-linear responses and the intrinsically chaotic nature of the climate system make the 

job of climate forecasting that much more problematic (MacKellar et al., 2006). It is 

apparent that – complex and sophisticated as GCMs are – these models are by no 

means perfect representations of the climate system (MacKellar et al., 2006). 

 

For some types of impact assessment (e.g. risk of drought or flooding in large 

catchments) aerially averaged quantities such as the grid-box variables output from a 

GCM may be sufficient. However, in many cases information are required at a network 

of point locations, implying the need to downscale the GCM output (Murphy, 1998). This 
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is particularly true when the model simulations are required to drive agrohydrological 

application models. Such models are frequently concerned with small, sub-catchment 

scale processes, occurring on spatial scales much smaller than those resolved in GCMs 

(Wilby & Wigley, 1997). The climate-sensitive agricultural sector can benefit from these 

forecasts by incorporating regional precipitation forecast information into agricultural 

planning and management strategies (Rossel & Garbrecht, 2001). 

 

Downscaling approaches have subsequently emerged as a means of interpolating 

large-scale atmospheric predictor variables (such as mean sea-level pressure) to 

station-scale meteorological series (Wigley et al., 1990; Hay et al., 1991, cited in Wilby 

& Wigley, 1997). Variables such as rainfall, which are not always accurately 

represented by these models, can be derived using statistical approaches to build 

relationships between the required forecast parameter and variables that are simulated 

more accurately. Owing to model imperfections, systematic errors may occur. The 

statistical interpretation of numerical weather prediction forecasts possesses an inbuilt 

accounting capability for the local topographic and environmental conditions that control 

the precipitation and other surface weather parameters and can compensate for any 

model biases (Landman et al., 2001, Maini et al., 2004). Even if global models in future 

are run at high resolution the need will still remain to ‘downscale’ the results from such 

models to individual sites or localities for impact studies (Wilby & Wigley, 1997). Maini et 

al. (2004) found that even for the medium range statistically downscaled forecasts are a 

definite improvement over direct model output and even have an edge over man-

machine mixed forecasts. 

 

This study utilised the statistical downscaling model (SDSM) developed by Wilby et al. 

(2002). The model was calibrated for the summer months of December, January and 

February and tested with the use of observed datasets of daily rainfall as the predictand 

and normalised NCEP variables as the predictors. The calibrated model was tested 

against an independent set of observed daily rainfall data. The model was then used to 

construct downscaled daily rainfall projections under the A2 and B2 emission scenarios 

at the quaternary catchment level. 
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1.2 Objectives of the Research 

 

1.2.1 Problem statement and research question 

There is a gap between the spatial resolution at which contemporary GCMs provide 

their output variables and the resolution required by agrohydrological application 

models. This implies the need to downscale the GCM output to smaller spatial scales. 

The research question thus arises: “Is it possible to use statistical methods to effectively 

downscale GCM data to produce realistic daily rainfall simulations over the Upper 

Olifants River catchment?” 

 

1.2.2 Objectives 

Though the general objective of this study is to develop a method to statistically 

downscale GCM data to produce daily rainfall simulations over the Upper Olifants River 

catchment, the following specific objectives were identified: 

 To identify quaternary catchments for which the downscaling will be performed; 

 To obtain climatological and model data and prepare the data for manipulation; 

 To develop a statistical model that will produce downscaled daily rainfall over 

selected quaternary catchments; 

 To compare the GCM projected rainfall with the daily rainfall series of the current 

climatic period; and 

 To compare the GCM projected rainfall under different GHG emission scenarios. 

 

 

1.3 Organisation of the Report 

 

A taxonomy of downscaling methods are provided in Chapter 2 accompanied by a 

general review of each downscaling method. A description of the downscaling method 

used in this study is also furnished. In Chapter 3 the reader is introduced to the study 

area. This section mainly focuses on the geographical and climatological aspects that 

are relevant to the study. All the climatological data that were used in this study are 

described in Chapter 4. The source of the data as well as subsequent manipulations are 



4 

 

discussed. The methodology, which draws from that used by other climate change 

scenario impact researchers, are described in Chapter 5, followed by a discussion of 

the downscaling results in Chapter 6. Conclusions regarding the statistical downscaling 

technique and projected changes in the daily summer rainfall are furnished in     

Chapter 7. The thesis concludes with a discussion of the proposed future research.  
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CHAPTER 2  REVIEW OF DOWNSCALING TECHNIQUES 

 

 

2.1 Introduction 

 

Downscaling activities are normally either spatial or temporal in nature. This spatial or 

temporal nature usually stems directly from the application of the downscaling 

procedure. Certain studies require the use of either high resolution gridded data or the 

use of site-specific data, while other studies may require the use of hourly or daily data, 

neither of which is catered for by large-scale GCMs. 

 

According to the scientists at the Canadian Institute for Climate Studies (CICS, 2007) 

spatial downscaling refers to “the techniques used to derive finer resolution climate 

information from coarser GCM output”. The foundation of spatial downscaling is the 

assumption that it will be possible to establish significant relationships between the local 

and large-scale climate (thus allowing important site-scale information to be determined 

from large-scale information alone) and that these relationships will remain valid under 

future climate conditions. By integrating some of these regional climate controls, spatial 

downscaling may be able to add value to coarse-scale GCM output in some areas, 

although its effectiveness will be very much dependent on the region and climate data 

available. Each case will be different and may necessitate the investigation of different 

downscaling techniques before a suitable methodology is identified – and in some 

cases it may not be possible to improve upon the coarse-scale simulations by 

downscaling with currently available methods. 

 

Adhering to the following general recommendations should facilitate the spatial 

downscaling process (CICS, 2007): 

 The GCM being used for spatial downscaling should be able to simulate the 

atmospheric features which will influence the specific area’s climate quite well e.g. 

positions of large anticyclones, jet streams and storm tracks. 
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 The downscaling technique should be based on a climate variable which does not 

exhibit large sub-grid variations in space i.e. it is better to use a variable such as 

mean sea level pressure rather than one such as precipitation. 

 The variables used in the downscaling process should also ideally be direct model 

output (e.g. sea level pressure) and not be based on parameterisations involving 

other model variables, as is the case with precipitation.  

According to Murphy (1998) any viable downscaling technique must also consider 

regional forcings (arising from orography, coastlines, lakes, land surface characteristics, 

etc.) known to influence local climate.  

 

Temporal downscaling refers to “the derivation of finer-scale temporal data from 

coarser-scale temporal information e.g. daily data from monthly or seasonal information” 

CICS (2007). Its main application is in scenario impact studies, particularly for the 

derivation of daily scenario data from monthly or seasonal scenario information. Monthly 

model output is available from many GCM runs, whilst only a small number of these 

have archived daily model output. Daily output is also not considered to be as robust as 

model output at the monthly or seasonal time scales and so is not generally 

recommended for use in scenario impact studies. The most straightforward method for 

obtaining daily data for a particular climate change scenario is to relate the monthly or 

seasonal changes to a historical daily weather record from a particular station. In this 

way the current observed climate variability and matching sequences of wet and dry 

days can be emulated, thus assuming that the wet and dry day sequencing does not 

change. 

 

 

2.2 Classification of Techniques 

 

Drawing from reviews by Hewitson and Crane (1996), Wilby and Wigley (1997), Murphy 

(1998), Wilby et al. (2002), the Canadian Institute for Climate Studies (2007), Wilby and 

Dawson (2007) and Hessami et al. (2008), downscaling methods may be grouped into 

the categories presented in Table 2.1. In reality, some downscaling approaches 
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embrace the attributes of more than one of these techniques and therefore tend to be 

hybrid in nature (Wilby & Wigley, 1997). 

 

Table 2.1: Classification of downscaling methods 

Statistical Downscaling Dynamical Downscaling 

Empirical methods 

Weather pattern-based approaches 

Stochastic weather generators 

Regression-based methods 

Limited-area modelling 

Stretched-grid modelling 

 

 

2.3 Statistical Downscaling 

 

As a nonlinear dynamical system, the atmosphere is not perfectly predictable in a 

deterministic sense. A large portion of weather forecasting has a statistical basis and, 

therefore, statistical methods are useful, and indeed necessary parts of the forecasting 

endeavour (Wilks, 1995). Statistical downscaling is based on the fundamental 

assumption that regional climate is conditioned by both the local physiographic features 

as well as the large scale atmospheric state (Hessami et al., 2008). On this basis, large 

scale atmospheric fields are related to local variables through a statistical model in 

which GCM simulations are used as input for the large scale atmospheric variables (or 

“predictors”) to downscale the local climate variables (or “predictands”) with the use of 

observed climatic data. Most statistical downscaling work has concentrated on 

predicting the rainfall and temperature at a single site as these are the most important 

input variables for many natural systems models (Wilby et al., 2004). The choice of 

downscaling method is governed by the application and to some extent the nature of the 

local predictand. According to Wilby et al. (2004) issues that need to be considered 

when attempting statistical downscaling are the choice of downscaling method, the 

choice of predictors, whether or not extremes should be modelled, whether or not 

tropical areas are included and possible feedbacks from other climate subsystems. 
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2.3.1 Empirical methods 

In this method the local variable in question (e.g. surface air temperature or 

precipitation) can be predicted from values of a corresponding variable simulated at 

nearby GCM grid-points, with empirical adjustments to allow for systematic simulation 

errors and unresolved subgrid-scale effects (Murphy, 1998). This implies that a linear or 

non-linear factor can be applied to the GCM simulated predictand in order to derive a 

“post-processed” predictand. It should be noted that this technique does not comply with 

the general recommendations as laid out by the Canadian Institute for Climate Studies 

(2007) since the corresponding variable is bound to exhibit marked sub-grid variations 

in space. This does not, however, mean that this technique cannot be used in 

conjunction with another downscaling method such as high resolution modelling as part 

of a more sophisticated hybrid approach. 

 

Empirical downscaling has successfully been applied to multi-model ensembles 

consisting of different GCM scenarios in order to explore inter-model similarities and 

differences (Benestad, 2004). Empirical downscaling requires an adequate record of 

past observations for the local predictand, which limits the downscaling to locations 

where there are observations. 

 

2.3.2 Weather pattern-based approaches 

These approaches (also referred to as weather typing or the use of analogues) typically 

involve grouping local, meteorological data in relation to prevailing patterns of 

atmospheric circulation (Wilby & Dawson, 2007). The weather classification scheme 

may either be objectively or subjectively derived (Wilby & Wigley, 1997). The circulation-

to-environment approach, as put forward by Yarnal (1993) finds the investigator 

assessing specific environmental variables relative to synoptic classes. The investigator 

designs a fairly general synoptic classification to relate to a particular region. The 

classification typically represents the entire period for which data is available and is 

independent of the environmental response.  
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Synoptic classifications can either employ ‘synoptic types’ which classify similar weather 

properties (e.g. distinct combinations of weather elements) or ‘map-pattern 

classifications’ which classify the relationships between objects (e.g. pressure patterns). 

Hewitson and Crane (2002; 2006) employed self-organising maps as a mechanism for 

climate classification. Yarnal (1993) identified the following synoptic classification 

methods: 

 Manual synoptic types; 

 Correlation-based map patterns; 

 Eigenvector-based synoptic types; 

 Eigenvector-based map patterns; 

 Eigenvector-based regionalisations; 

 Compositing; 

 Circulation indices; and 

 Specification. 

 

After selecting a classification scheme it is then necessary to simulate the local surface 

variables, such as precipitation, from the corresponding (daily) weather patterns (Wilby 

& Wigley, 1997). This is accomplished by deriving conditional probability distributions for 

observed data. The precipitation series may be further disaggregated by month or 

season, or by the dominant precipitation mechanism (Wilby et al., 1995, cited in Wilby & 

Wigley, 1997). The ‘forcing’ weather pattern series are typically generated using Monte 

Carlo techniques or from the pressure fields of GCMs (Wilby & Wigley, 1997). 

According to Díez et al. (2005), when applied to an ensemble forecast system, the 

method of analogues can be used in probabilistic mode (considering the joint empirical 

Probability Density Function (PDF) obtained by combining the analogue sets for each of 

the ensemble members), or in numeric mode (considering the 75th percentile estimation 

of the set of analogues for each of the ensemble members). 
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Wilby et al. (2004) and CICS (2007) list the following advantages and disadvantages 

common to weather pattern-based approaches: 

 

Advantages: 

 This technique may provide more realistic scenarios of climate change at individual 

sites than the direct application of GCM-derived scenarios; 

 This technique is much less computationally demanding than dynamical 

downscaling using numerical models; 

 This approach is based on sensible physical linkages between climate on the large 

scale and weather on the local scale; 

 This technique is quite versatile as it can be applied to a wide variety of studies e.g. 

surface climate, air quality, flooding, etc.; and 

 Overlaying (compositing) can be employed for the analysis of extreme events. 

 

Disadvantages: 

 This technique requires the additional task of weather classification; 

 Large amounts of observational data may be required to establish statistical 

relationships for the current climate; 

 Specialist knowledge may be required to apply the technique correctly; 

 The relationships may not be valid under future climate forcing; 

 It may not capture intra-type variations (i.e. variations that occur within a specific 

synoptic type) in surface climate; and 

 Different relationships between the weather types and local climate may have 

occurred at some sites during the observed record. 

 

Regardless of the means of classifying and/or generating new weather pattern series, 

the circulation-based approach to downscaling remains particularly appealing because it 

is founded on sensible physical linkages between climate on a large scale and weather 

on the local scale (Wilby & Wigley, 1997). In their review of downscaling methods, Wilby 

and Wigley (1997) found that circulation-based approaches perform better than some of 

the other statistical downscaling methods. 
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2.3.3 Stochastic weather generators 

Stochastic weather generators can be regarded as “statistical characterisations of the 

local climate, or as elaborate random number generators whose output resembles real 

weather data” (Wilks, 1999). Their application in climate change studies involves 

perturbing the stochastic model parameters to reflect a changed climate, and then 

generating synthetic weather series consistent with this new climate for use with impact 

models (Wilks, 1999). At the heart of all stochastic weather generators are first- or 

multiple-order Markov renewal processes in which, for each successive day, the 

precipitation occurrence (and possibly amount) is governed by outcomes on previous 

days (Wilby & Wigley, 1997). Although stochastic weather generators are more widely 

used in temporal downscaling, they may also be used for spatial downscaling which 

requires a large amount of observed station data that may not be readily available 

(CICS, 2007). Daly et al. (1994, cited in Wilby & Wigley, 1997) present a method of 

spatially distributing stochastic weather generator parameters across landscapes, even 

in complex terrain, by combining interpolation techniques with digital elevation models. 

Semenov and Brooks (1999) describe a method to produce daily rainfall and 

temperature data for the gaps between observed sites with the aid of spatial 

interpolation of stochastic weather generator output. 

 

Alternatively, disaggregating of monthly precipitation totals obtained from GCMs can be 

done by means of a stochastic weather generator. Such a weather generator consists of 

a model of weather variables as stochastic processes and it must be calibrated with 

daily meteorological observations. The estimation of precipitation involves first using a 

Markov procedure to model the occurrence of wet and dry days, where after the amount 

of precipitation falling on wet days is modelled using a functional estimate of the 

precipitation frequency distribution. Remaining variables are then computed based on 

their correlations with each other and with the wet or dry status of each day. After 

calibrating the weather generator, a parameter file is produced which contains a 

statistical description of the characteristics of the climate at the site under examination. 

The stochastic component within a weather generator is controlled by the selection of a 

random number. By varying this random number completely different weather 
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sequences can be generated (CICS, 2007). This means that it is possible to generate 

many sequences of daily weather for a particular scenario. However, the statistical 

characteristics (e.g. mean and variance) of each sequence should be very similar, if not 

identical, but the day-to-day values will vary thus representing the natural variability. 

Weather generators have been used with success in a range of applications in 

agriculture and environmental management. Wallis and Griffiths (1995) used a weather 

generator to derive daily values for precipitation, wind speed and wind direction, while 

Oelschlägel (1995) employed a statistical weather generator to derive daily values for 

precipitation, temperature and radiation. 

 

Wilby et al. (2004) and the Canadian Institute for Climate Studies (2007) lists the 

following advantages and disadvantages associated with the use of stochastic weather 

generators: 

 

Advantages: 

 The ability to produce large ensembles for uncertainty analysis or time series of 

unlimited length for extremes; 

 The opportunity to obtain representative weather time series in regions of sparse 

data, by interpolating observed data; and 

 The ability to alter the weather generator’s parameters in accordance with scenarios 

of future climate change – changes in variability can be incorporated as well as 

changes in mean values. 

 

Disadvantages: 

 Seldom able to describe all aspects of climate accurately, especially persistent 

events, rare events and decadal- or century-scale variations; 

 Designed for use independently at individual locations and few weather generators 

can account for the spatial correlation of climate (e.g. changing precipitation 

parameters may have unanticipated effects on secondary variables like 

temperature); and 
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 Assume similar wet and dry day sequencing under future climate forcing (personal 

addition). 

 

2.3.4 Regression-based methods 

These approaches generally involve establishing linear or nonlinear relationships 

between sub-grid scale parameters and coarser resolution (grid scale) predictor 

variables (Wilby & Wigley, 1997). These methods are also referred to as “statistical 

interpretation” or “statistical postprocessing” in the literature (Maini et al., 2004; Marzban 

et al., 2005). Two of the more popular approaches that improve over climate simulation 

and numerical weather prediction (NWP) and are used in most operational centres the 

world over, are model output statistics (MOS) and perfect prognosis (PP) (Maini et al., 

2004; Marzban et al., 2005). Both of these methods utilise the idea of relating model 

forecasts to observations through linear regression (Marzban et al., 2005). More 

sophisticated techniques, such as ‘expanded downscaling’ (Burger, 1996), can model 

the mean and short-term variability by linking in a bilinear way the covariance of the 

global circulation with the covariance between local weather variables. Marzban (2003, 

cited in Marzban et al., 2005) also allows for non-linear relationship among the 

variables. Since the internal weights of an artificial neural network (ANN) model imitate 

nonlinear regression coefficients, is seems reasonable to group ANN approaches under 

regression methods as well (Hewitson & Crane, 1996).  

 

Having derived a regression equation or trained an ANN to relate the observed local 

and regional climates, the equations may then be ‘forced’ using regional scale climate 

data obtained from a GCM operating in either a ‘control’ or ‘perturbed’ state (Wilby & 

Wigley, 1997). An alternative approach, relating to the empirical method, involves 

regressing the same parameter from a regional to local scale, or across several scales 

(e.g. Carbone & Bramante, 1995, cited in Wilby & Wigley, 1997). 

 

The Canadian Institute for Climate Studies (2007) lists the following advantages and 

disadvantages that apply to regression-based approaches: 
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Advantages: 

 Relatively straightforward to apply and computationally less demanding than 

dynamical downscaling; 

 Provides more realistic scenarios of climate change at individual sites than the 

straight application of GCM-derived scenarios to an observed climate data set; 

 Ensembles of high resolution climate scenarios may be produced relatively easily. 

 

Disadvantages: 

 Large amounts of observational data may be required to establish statistical 

relationships for the current climate; 

 Specialist knowledge may be required to apply the technique correctly; 

 It may not be possible to derive significant relationships for some variables; 

 Provides a poor representation of the observed variance and extreme events; 

 The relationships are only valid within the range of the data used for calibration and 

so should not be extrapolated as future projections for some variables may lie 

outside of this range; and 

 A predictor variable which may not appear as the most significant when developing 

the transfer functions under the present climate may be critical under future climate 

conditions. 

 

2.3.4.1 Model output statistics (MOS) 

The MOS approach uses quantities from climate simulations or NWP output as 

predictor variables, whereas the PP approach only uses the climate simulation or NWP 

forecast predictors when making forecasts. As depicted in Figure 2.1 the MOS 

approach uses these predictors in both the development and implementation of the 

statistical equations (Wilks, 1995). This gives MOS the capacity to include the 

influences of specific characteristics of different GCM or NWP models at different 

projections into the future directly in the regression equations (Wilks, 1995). The 

regression equations are developed for a future predictand (e.g. tomorrow’s 

temperature) using GCM or NWP forecasts for values of the predictors at that future 

time (e.g. tomorrow’s forecasted 1000 – 850 hPa thickness). Therefore, to develop 
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MOS forecast equations it is necessary to have a developmental data set composed of 

historical records of the predictand, together with archived records of the forecasts 

produced by the climate simulations or NWP model for the same days on which the 

predictand was observed (Wilks, 1995). The time lag in MOS forecasts is therefore 

incorporated through using the GCM or NWP forecast. 

 

Although MOS is known to remove the bias from climate simulations or NWP forecasts, 

its development generally requires large datasets involving both observations and 

model variables that are not always readily available (Marzban et al., 2005). 

Furthermore, GCM or NWP models are not static and regularly undergo changes aimed 

at improving their performance. The MOS method therefore requires that during the 

archival period the model configuration should have been kept unchanged. Today’s 

rapidly changing model environment prevents the widespread use of the MOS 

technique because every time a significant change in the numerical model is made, the 

MOS equations have to be redeveloped (Maini et al., 2004). According to Marzban et al. 

(2005), MOS is known to maintain reliability but loses sharpness and converges to 

climatology for longer time-period forecast projections. In order to achieve greater 

stability, a larger developmental sample is required for both MOS and PP (Maini et al., 

2004). 

 

 

Figure 2.1: Development of a MOS forecast (COMET, 2008) 
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2.3.4.2 Perfect prognosis (PP) 

As the term “perfect prognosis” implies, this technique makes no attempt to correct for 

possible climate simulation or NWP model errors or biases, but takes their forecasts for 

future atmospheric variables at face value, thus assuming they are perfect (Wilks, 

1995). The assumption is that the model predictor (e.g. model forecast of 700 hPa 

geopotential height) is equal to the observed predictor (e.g. observed 700 hPa 

geopotential height) for all times. Here it is sufficient to produce the regression 

equations from simultaneous values of the observed predictors and observed 

predictand (Marzban et al., 2005). Thus, only historical climatological data are used in 

the development of a PP forecasting equation as depicted in Figure 2.2. 

 

 

Figure 2.2: Development of a PP forecasting system (COMET, 2008) 

 

PP equations do not incorporate any time lag. Simultaneous values of observed 

predictors and predictands are used to fit the regression equations i.e. the equations 

specifying “tomorrow’s” predictand are developed using “tomorrow’s” predictor values 

(Wilks, 1995). However, in applying the regression equation, it is the GCM forecasts of 

the predictors that are substituted into the regression equation. Therefore, the forecast 

time lag in the PP approach is contained entirely within the GCM time steps (Wilks, 

1995). This, however, implies that quantities not forecast by the GCM or NWP model 

cannot readily be included as potential predictors. If the GCM or NWP forecasts for 
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tomorrow’s predictors really are perfect, the PP regression equations should 

theoretically provide very good forecasts (Wilks, 1995). 

 

However, if the climate simulations or NWP model is flawed, information is lost due to 

model deficiency. It then follows that a generalisation of PP where the predictor and 

predictand are taken at different times (e.g. 700 hPa geopotential height at analysis 

hour against future rainfall) may actually outperform the conventional PP (Marzban et 

al., 2005). This stems from the fact that even for a deficient model the model analysis 

should be more accurate than the model forecasts. Marzban et al. (2005) noted that PP 

is less restrictive because its development is not limited by the availability of model 

data, but concluded that its forecasts are biased and have higher error variance than 

MOS forecasts. Maini et al. (2004) followed a PP approach for the statistical 

interpretation of NWP products. The resultant medium range precipitation forecasts 

showed increased skill when compared with that from the direct model output. 

 

It has been well established that MOS provides better forecasts than PP due to its 

ability to account for some of the systematic errors in GCMs (Maini et al., 2004) but in 

the case of short-term forecasts over Canada, Brunet et al. (1988) have shown that PP 

outperforms MOS. Although PP forecasts are not bias free, their development is much 

simpler as it requires only observations for both predictor and predictand (Marzban et 

al., 2005). PP forecasts also do not deteriorate when significant changes are made to 

the numerical model and the same equation will remain valid as they were not 

developed using GCM output (Maini et al., 2004).  

 

2.3.4.3 Reanalysis (RAN) 

Kalnay (2003, cited in Marzban et al., 2005) proposed the utilization of reanalysis data 

to develop a postprocessor with the advantages of both MOS and PP, but without the 

weaknesses due to limited training data. This method, referred to as RAN by Marzban 

et al. (2005) also has the added quality of separating the loss of information between 

predictor and predictand into its components – one due to the inadequacies of the 

numerical model, and the other due to chaos in the atmosphere itself. As a first step, 
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one may develop a regression equation that translates the numerical model predictor to 

the observed one. This regression model would capture only model deficiencies 

(Marzban et al., 2005). The second step would then involve developing a regression 

equation that maps the observed predictor to the observed predictand. Since this 

regression does not involve the model at all, it captures the loss of information due to 

chaos in the atmosphere (Marzban et al., 2005). This two-step approach may be 

employed in practice to produce a forecast for the predictand, and so, in a way, this 

method can be considered as a hybrid of MOS and PP, since both the observed and 

numerical model predictors are engaged in forecasting the predictand (Marzban et al., 

2005). Since this approach does not allow for the predictor and predictand to be the 

same physical quantity (as the second step would then involve mapping a variable onto 

itself), Marzban et al. (2005) suggested replacing the observed predictor with a 

“reanalysis” value. Here the numerical model is used to provide the best estimate of the 

reanalysis, followed by a regression model to provide the best estimate of the observed 

predictand. Marzban et al. (2005) concluded that MOS may be expected to outperform 

PP and RAN in terms of bias, error variance, and mean squared error, but that the 

uncertainty of MOS forecasts may be hindered by the limited size of available model 

data. This may be due to the fact that the calibration period in MOS is limited by the 

period of archived GCM forecasts which is sometimes too short to capture the full 

climate variability. RAN forecasts have lower uncertainty than MOS if its sample size is 

larger than MOS’s sample size (Marzban et al., 2005). 

 

 

2.4 Dynamical Downscaling 

 

2.4.1 Limited-area modelling 

The resolution of contemporary GCMs is still not fine enough to resolve small-scale 

atmospheric circulations, for example those affected by complex topographical features 

and land cover inhomogeneity (McGregor, 1997). Dynamical downscaling involves the 

nesting of a higher resolution Limited-Area Model (LAM) within a coarser resolution 

GCM (Wilby et al., 2002). LAMs are similar to GCMs, but operations are performed at a 
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higher resolution and therefore contain a better representation of, among other things, 

the underlying topography within the model domain (CICS, 2007). Depending on the 

model resolution, LAMs may also be able to resolve some of the atmospheric processes 

which are parameterised in a GCM (CICS, 2007). A high resolution model thus 

simulates the climate features and physical processes in much greater detail for a 

limited area of the globe. 

 

The general approach is to embed a higher-resolution LAM within the ‘driving’ GCM, 

using the GCM to define the initial and (time-varying) boundary conditions (Wilby & 

Wigley, 1997). This procedure is commonly referred to as ‘nesting’. Most nesting 

techniques are one-way i.e. there is no feedback from the LAM simulation to the driving 

GCM. The global model simulates the response of the global circulation to large scale 

forcing, whilst the LAM accounts for sub-GCM grid scale forcing, such as complex 

parameterisations, orography or details of the land surface, in a physically-based way 

and thus enhances the simulations of atmospheric and climatic variables at finer spatial 

scales (CICS, 2007). LAMs may be computationally demanding, depending on the 

domain size and resolution, and are as expensive to run as a global GCM (Wilby & 

Wigley, 1997; CICS, 2007). This has limited the length of many experiments. They are 

also somewhat inflexible in the sense that the computational demands apply each time 

that the model domain is shifted to another region. Moreover, the LAM is completely 

dependent on the accuracy of the GCM grid-point data that are used to force the 

boundary conditions of the region – a problem that also applies to circulation-driven 

downscaling methods (Wilby & Wigley, 1997). Any errors in the GCM fields may be 

aggravated in the LAM thus resulting in poor simulation of the regional climate (CICS, 

2007). 

 

Kanamaru and Kanamitsu (2007) used a Regional Climate Model (RCM) to successfully 

perform a dynamical downscaling of the NCEP–NCAR reanalysis over the Northern 

Hemisphere. They claim their success was due to the use of the scale-selective bias-

correction scheme, which maintains the large-scale analysis of the driving global 

reanalysis in the centre of the domain where lateral boundary forcing has little control 
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(Kanamaru & Kanamitsu, 2007). With the aim of producing higher-resolution global 

reanalysis datasets from coarse-resolution reanalysis, Yoshimura and Kanamitsu 

(2008) developed a global version of the dynamical downscaling using a global spectral 

model. In their study a variant of spectral nudging, the modified form of scale-selective 

bias correction, was adopted for regional models. Spectral nudging implies that the 

forcing technique is stipulated not only at the lateral boundaries but also in the model 

interior (Von Storch et al., 2000). 

 

2.4.2 Stretched-grid modelling 

An alternative method of dynamical downscaling is presented in the form of “variable 

resolution modelling” as employed in the Conformal-Cubic Atmospheric Model            

(C-CAM). This GCM has the capacity to run in a variable resolution stretched-grid mode 

to function as a RCM (Engelbrecht et al., 2009). It thus provides high resolution over the 

area of interest i.e. shrinking the grid intervals over the area of interest, whilst gradually 

decreasing the resolution as one moves away from the area of interest (Engelbrecht et 

al., 2009). 

 

Variable resolution modelling provides great flexibility for dynamic downscaling from any 

GCM as compared to the more customary nested limited-area modelling approach 

(Engelbrecht et al., 2009). It basically requires only sea-surface temperatures and far-

field winds from the host model (McGregor and Dix, 2001). Variable resolution 

modelling also circumvents other problems that may arise with limited-area models, 

such as reflections at lateral boundaries (McGregor and Dix, 2001). 

 

Since different downscaling methods have different strengths and weaknesses, this has 

prompted some commentators to advocate closer integration of statistical (i.e. 

stochastic and empirical) and dynamical downscaling methods (Hostetler, 1994; Bass, 

1996, cited in Wilby & Wigley, 1997). Wilby & Wigley (1997) recommend that rigorous 

testing and comparison of statistical downscaling approaches with RCMs be undertaken 

and claim that much can be learnt from applying a number of different approaches in 

combination and from evaluations of the relative merits of regression, weather pattern, 
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stochastic and dynamic models. In time a framework may then be set up to assist 

climate change impact researchers to select a combination of downscaling techniques 

that should provide the best results for their particular application. 

 

 

2.5 Choice of Downscaling Method 

 

For this study, the decision was made to explore the suitability of the statistical 

downscaling model (SDSM) developed by Wilby et al. (2002) to downscale GCM 

projections of future climate. The software was downloaded from the SDSM website 

(https://co-public.lboro.ac.uk/cocwd/SDSM). Within the classification of downscaling 

techniques, SDSM can be viewed as a hybrid of the stochastic weather generator and 

regression-based methods (Wilby & Dawson, 2007). This is because large–scale 

predictor variables are used to condition local–scale weather generator parameters 

such as precipitation occurrence and intensity. In addition, stochastic techniques are 

used to synthetically increase the variance of the downscaled daily time series to better 

agreement with observations (Wilby & Dawson, 2007). 

 

The SDSM software reduces the task of statistically downscaling daily rainfall to the 

following discrete steps (Wilby et al., 2002): 

a) quality control and data transformation; 

b) screening of predictor variables; 

c) model calibration; 

d) weather generation (using observed predictors); 

e) generation of climate change scenarios (using climate model predictors); 

f) statistical analysis. 

More detail on every step is provided in Chapter 5. Figure 2.3 provides a 

diagrammatical depiction of the SDSM scenario generation process. 

https://co-public.lboro.ac.uk/cocwd/SDSM
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Figure 2.3: SDSM climate scenario generation (after Wilby & Dawson, 2007) 

 

The downscaling will be performed within a PP milieu i.e. only observed large-scale 

predictors and observed site-specific predictands will be used in the training of the 

transfer equations. This also implies that the same downscaling model can be used with 

different model experiments (scenarios). 

 

To date, SDSM has been applied to several meteorological, hydrological and 

environmental assessments (e.g. Lines et al., 2005; Wilby et al., 2006, Hessami et al., 

2008). In particular, Lines et al. (2005) used SDSM to downscale the expected climate 

change impacts with respect to daily mean, maximum and minimum temperature as 

well as precipitation for 14 sites across Atlantic Canada. According to Wilby and 

 
Summary 

statistics 
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Dawson (2007) SDSM has also been applied to a range of geographical contexts 

including Africa, Europe, North America and Asia. Work done on several statistical 

downscaling models by Goldstein et al. (2004) revealed that SDSM produced optimal 

results for producing station-scale daily meteorological series of temperature and 

precipitation over Canada. 
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CHAPTER 3  STUDY AREA AND CLIMATOLOGY 

 

 

3.1 Physical and Geographical Description 
 

The location of the Olifants River as one of the primary catchments in the north-eastern 

part of South Africa is shown in Figure 3.1. 

Figure 3.1: Primary catchments of South Africa (DEAT, 2000) 

The Olifants River Catchment covers about 54 570 km2 and is subdivided into 9 

secondary catchments (Institute for Water Quality Studies, 2001) and has a total mean 

annual runoff of approximately 2400 million cubic metres per year. The Olifants River 

and some of its tributaries, notably the Klein Olifants River, Elands River, Wilge River 

and Bronkhorstspruit, rise in the Highveld grasslands. The Olifants River flows north 

through Loskop Dam, meanders past the foot of the Strydpoort Mountains and is forced 

east by the Transvaal Drakensberg, descending over the escarpment. The Steelpoort 

and Blyde tributaries, among others, join the Olifants River before it enters the Kruger 

National Park and neighbouring private game reserves. It then flows east to join with the 
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Letaba River, crosses into Mozambique where it is named the Rio dos Elefantes which 

eventually joins the Limpopo River before entering the Indian Ocean at Xai-Xai north of 

Maputo. 

This study focuses on the Upper Olifants River Catchment, which is primarily situated in 

the Highveld spanning the eastern part of Gauteng and western Mpumalanga. For the 

purposes of this study the Upper Olifants River is defined as that part of the catchment 

that is located on the Highveld, upstream (south) of the confluence with the Eland’s 

River near Marble Hall. Figure 3.2 indicates all the quaternary catchments (QCs) within 

the Upper Olifants River Catchment, with some large towns included for orientation 

purposes - the Olifants River Catchment is marked by the light yellow colouring. QCs 

constitute the most detailed level of operational catchment in the Department of Water 

Affairs and Forestry (DWAF) used for general planning purposes (Midgley et al., 1994). 

 

Figure 3.2: Quaternary catchments of the upper-Olifants River (Schulze, 2006) 
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From Figure 3.2 it can be seen that this area stretches from Rayton and Delmas to the 

west, Belfast and Dullstroom to the east, Bethal and Secunda to the south and Marble 

Hall to the north. When it comes to selecting GCM grid boxes during a later phase of the 

investigation, it is important to note that this covers the area between 24º 50’ and 26º 

30’ S, spanning 28º 30’ E to 30º 05’ E.  

The Highveld is part of the interior plateau of the southern African subcontinent and 

ranges in altitude from 900 m to 1900 m above sea level. Figure 3.3 provides the terrain 

morphology as developed by Kruger (1983) for the Highveld region.  From this figure it 

can be seen that the region is dominated by undulating plains with high mountains in 

the extreme east and a section of lowland and hills in the extreme north.  An area of 

pans and plains are also situated in the extreme southwest. 

 

Figure 3.3:  Terrain morphology of the Highveld (Schulze, 2006, after Kruger, 1983) 
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Activities in the upper reaches of the Olifants River Catchment are characterised 

primarily by mining (mainly coal), electricity generation, manufacturing (mainly steel in 

the vicinity of Middelburg), agriculture (mainly commercial dryland but irrigated in the 

north) and conservation. The potential for arable agriculture is high in the south and low 

to marginal in the north of the study area, while the long-term grazing capacity also 

drops from about 40 large stock units (LSU) in the higher rainfall regions in the south 

and east to about 15 LSU in the drier northern parts (DEAT, 2007). 

 

 

3.2 Quaternary Catchment Selection 

 

Figure 3.2 indicates all the quaternary catchments (QCs) within the Upper Olifants River 

Catchment. For the purpose of this study five quaternary catchments were selected for 

which statistical downscaling will be performed. The selection was carried out in such a 

way as to obtain a reasonable spatial separation between the sites and to include a 

range of terrain morphology types (Figure 3.3), a range of altitudes, mean annual 

precipitation totals (Figure 3.4) as well as well-known towns. Table 3.1 summarises 

some of the physical and climatological characteristics of the selected quaternary 

catchments. For the purpose of geographical identification the five QCs will be named 

after the towns located in them, viz. Witbank, Middelburg, Delmas, Groblersdal and 

Belfast. 

 

Table 3.1: Summary of selected quaternary catchments (after Schulze, 2006) 

QC 
name 

Coordinates Town in QC Altitude Annual 
Rainfall 

Terrain Morphology 

B11K 25º 50’ S  
29º 15’ E 

Witbank 1490 –
1600 m 

~ 640 mm Moderately undulating plains 

B12D 25º 45’ S  
29º 30’ E 

Middelburg 1400 – 
1580 m 

~ 650 mm Low mountains &                     
Moderately undulating plains 

B20A 26º 10’ S  
28º 40’ E 

Delmas 1600 – 
1640 m 

~ 660 mm Plains and pans 

B32D 25º 10’ S  
29º 20’ E 

Groblersdal 800 – 
1000 m 

~ 610 mm Hills and lowlands 

B41A 25º 40‘ S  
30º 00’ E 

Belfast 1800 – 
2000 m 

~ 880 mm High mountains &                       
Moderately undulating plains 
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3.3 Climatological Description 

 

3.3.1 General climatological description 

According to Köppen’s climate classification (Schulze, 2006; Ahrens, 2003) the lower 

lying northern extremities are classed as Cwa (humid mesothermal with dry winters and 

long, hot summers) while the remainder of the area is classed as Cwb (humid 

mesothermal with dry winters and long, cool summers).  Here “long” implies that at least 

4 months of the year has an average temperature of more than 10 ºC, while “hot” 

implies that the average temperature of the warmest month exceeds 22 °C (Ahrens, 

2003; Kruger, 2004). 

 

The average annual precipitation in this Highveld region varies from about 900 mm on 

its eastern border to approximately 650 mm in the west and 550 mm in the lower lying 

northern extremities (Figure 3.4). The rainfall is almost exclusively due to showers and 

thunderstorms and occurs mainly in summer, from October to March, with the maximum 

falls occurring in December and January (Kruger, 2004). There is a gradual shift from 

early summer rain (December maximum) in the east to mid-summer rain (January 

maximum) in the west. A mid-summer dry spell of between 13 to 21 days occurs on the 

Highveld in about 9 out of 10 years (Walker & Schulze, 2008). The winter months are 

normally dry and about 85% of the annual rainfall falls in the summer months; heavy 

falls of 125 to 150 mm occasionally fall in a single day (Schulze, 1994). An average of 

about 75 thunderstorms occur over this area per year. These storms are often violent 

with severe lightning and strong (but short-lived) gusty south-westerly winds and are 

sometimes accompanied by hail. This region has the highest hail frequency in South 

Africa; in the order of 4 to 7 occurrences (depending mainly on altitude) expected 

annually at any one spot, whilst occasionally hailstones may grow to the size of hen’s 

eggs or tennis balls and can cause tremendous damage (Schulze, 1994). Snow may 

occur about once or twice a year, but is still considered exceptional this far north. 
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Figure 3.4: Mean annual precipitation in mm (Schulze, 2006, after Lynch 2004) 

 

Average daily maximum temperature is roughly 27 ºC in January and 17 ºC in July but 

in extreme cases these may rise to 38 ºC and 26 ºC respectively (Schulze, 1994). 

Average daily minima range from about 13 ºC in January to 0 ºC in July, whereas 

extremes can drop to 1 ºC and -13 ºC respectively. The period during which frost is 

likely to form lasts on average for about 120 days from May to September (Schulze, 

1994). In Middelburg 166 days exhibit a 10% probability of recording subzero 

temperatures, while 94 days adhere to an 80% probability (Kotze, 1980). In Belfast 

these figures are 230 days (10% probability) and 131 days (80% probability) 

respectively (Kotze, 1980), mainly due to the higher altitude. 

 

Winds are highly variable but easterly and westerly winds are more prevalent (Kruger, 

2004). On the whole, winds are light except for short periods during storms. Very 

occasionally tornadoes do occur and cause tremendous damage if they happen to strike 

a populated area.  

 

Sunshine duration in summer is about 60% and in winter about 80% of the possible total 

(Schulze, 1994). Solar radiation is higher in the western than the eastern parts of the 

Highveld. The mid-summer solar radiation ranges from 21 MJ m−2 day−1 in the east to 
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about 23 MJ m−2 day−1 in the west and reaching a maximum of 25 MJ m−2 day−1 in the 

north (Schulze, 2006). Mid-winter solar radiation is considerably lower, ranging from 14 

to 16 MJ m−2 day−1 (Schulze, 2006). 

 

3.3.2 Typical near-surface synoptic scale weather patterns over southern Africa 

Although pressure, wind and rainfall patterns are constantly changing, there are certain 

basic patterns in the pressure and wind fields that occur regularly. Seasonal variations 

exist in the location of the southern Atlantic Ocean High (AOH) and southern Indian 

Ocean High (IOH) pressure cells. In the Indian Ocean the pressure cell is subjected to a 

half-annual variation in its latitudinal (N-S) movement, but an annual variation in its 

longitudinal (E-W) movement. In the Atlantic Ocean both the latitudinal and longitudinal 

variations are half-annually (Taljaard, 1996). On average the AOH is located 3º further 

north than the IOH, but both cells shift 5 - 6º northwards in the winter. The annual 

longitudinal shift of the AOH is 7 - 13º, while the IOH is subject to a considerably larger 

longitudinal shift of 24 - 30º (Taljaard, 1996). The latter, therefore, has a much larger 

effect on the weather and climate of South Africa. 

 

3.3.2.1 The basic summer weather patterns 

During the summer months the following weather conditions prevail as depicted in 

Figure 3.5 (Taljaard, 1996): 

i) The Indian and Atlantic high pressure systems move further southwards, causing 

westerly winds to occur well to the south of the country. 

ii) The Indian Ocean High pressure system (IOH) is centred further out to sea. Wind 

blowing from this high pressure cell then has a longer sea track over the warm 

Indian Ocean – where lots of moisture is accumulated – before it moves in over 

the eastern parts of the subcontinent. This often results in cloudy conditions over 

these eastern areas with drizzle along the eastern escarpment and adjacent 

Lowveld. 

iii) Moisture laden south-easterly trade winds invade the eastern (and especially 

north-eastern) parts of the subcontinent. These winds sometimes recurve 
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southwards, influencing the northern provinces; on occasion they move further 

northwards and influence Zimbabwe and Zambia. 

iv) When moist air is in circulation (as imported by the south-easterly trades), uplift 

thereof will result in condensation, cloud formation and precipitation. 

v) The Atlantic Ocean High pressure system (AOH) is a source of subsiding air, 

having its centre fairly near the West Coast of South Africa. The winds blowing 

from it have a short sea track over a cold ocean and thus carry little moisture. 

vi) When the air from the AOH meets that from the IOH, a moisture boundary (also 

called a moisture front or dry-line) forms. Uplift occurs along this moisture front 

due to the undercutting effect of the colder/dryer air (from AOH), often affecting 

the rainfall distribution over the entire region. 

vii) Sometimes the AOH lies further south and then the south-westerly winds have a 

longer sea track and contain more moisture. General rain may then occur over 

the south-eastern parts. 

viii) Due to strong surface heating, a heat low normally develops over the north-

western interior with convergence in and to the east of it. 

ix) South-easterly trades blow to the north of the AOH. These winds accumulate 

moisture and recurve clockwise around the tropical low – which develops over 

northern Angola or the Congo – and invades Angola and the Congo from the 

southwest. These winds are then known as the south-westerly monsoon winds. A 

convergence zone, known as the “Congo Air Boundary” (CAB), develops where 

these winds meet the south-easterly trades from the Indian Ocean. 

x) The north-easterly trades blow across the equator (monsoon) and where they 

meet the south-easterly trades a convergence zone is formed, which is known as 

the Inter-Tropical Convergence Zone (ITCZ). 
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Figure 3.5: Basic summer weather patterns over Southern Africa (Adapted from Taljaard, 
1996) - Bottom figure depicts the situation when the AOH ridges to the south of the 
subcontinent  

 

3.3.2.2 The basic winter weather patterns 

During the winter months the following weather conditions prevail as depicted in Figure 

3.6 (Taljaard, 1996): 

i) The IOH and AOH move further northwards, bringing westerly winds to the 

southern and south-western coastal regions of South Africa. 

ii) Generally cool to cold conditions prevail and in the absence of heat lows over the 

interior, the AOH and IOH are linked across the land. 
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iii) A separate high-pressure cell usually forms over the north-eastern interior. The 

associated subsiding air results in clear skies and calm conditions over large 

parts of the interior. 

iv) With the northwards movement of the AOH and IOH pressure systems, mid-

latitude cyclones, linked with cold fronts develop over the Atlantic Ocean, invade 

the southern regions of South Africa. On occasions these cold fronts have 

influenced regions as far north as Zambia when a strong high-pressure system 

ridges closely behind the cold front. 

v) Cloudy conditions associated with rain influence the southern, south-western and 

eastern coasts. Uplift is mainly due to cyclonic or frontal action, but orographic 

uplift does occur over the escarpment where snowfalls may occur. Interior 

snowfalls usually occur with the presence of a strong high, following closely 

behind a cold front, thus pushing the cold air into the interior. Strong upper air 

flow aids with the uplift, and thus enables condensation and cloud formation to 

take place. 

vi) The north-easterly monsoon disappears completely and the ITCZ shifts far north 

of the equator (between 5ºN and 20ºN). The south-easterly trades still blow to the 

north of the high-pressure belt and move across the equator and recurve north-

eastwards, becoming part of the great summer Monsoon of India. 

vii) The south-westerly monsoon also moves further north, crossing the coast well 

north of Angola. This results in the “Congo Air Boundary” moving much further 

north. 
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Figure 3.6: Basic winter weather patterns over Southern Africa (Adapted from Taljaard, 
1996) 

 

3.3.3 Description of common climatic elements 

 

3.3.3.1 Geopotential heights 

Analyses of the geopotential heights at 1000 hPa can be taken as a carbon copy of the 

mean sea-level pressure analyses. Southern Africa falls within the subtropical high 

pressure belt (Figure 3.13) and on most days synoptic charts will reveal the position of 

the AOH with its centre close to the west coast and the IOH to the east of the 

subcontinent. During the summer months a low pressure trough develops over the 

western interior of the subcontinent while the IOH extends a ridge over the north-

eastern interior (Figure 3.7 top). In the winter a separate high pressure cell develops 

over the north-eastern interior (Figure 3.7 bottom) so that the subtropical anticyclones 

actually link up to form a continuous belt of high pressure over southern Africa. Such 

regions of high-pressure are characterized by subsidence throughout the larger portion 

of the troposphere, divergence at the surface and mainly stable and dry conditions. 
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Figure 3.7: Mean 1000 hPa geopotential heights (in gpm) for January (top) and July (bottom) 
calculated for the 1968-1996 period (NOAA, 2008) 

 

The 850 hPa geopotential heights indicate similar conditions, with a north and westward 

displacement of the 1000 hPa high pressure cells (Figure 3.8). The invasion of the 
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south-western parts by westerly troughs during the winter (Figure 3.8 bottom) is also 

evident. The north-westward displacement of the high-pressure cell with increasing 

height is clearly evident at 500 hPa, where it is centred over the north-western parts 

during summer (Figure 3.9 top). 

 

 

 

Figure 3.8: Mean 850 hPa geopotential heights (in gpm) for January (top) and July (bottom) 
calculated for the 1968-1996 period (NOAA, 2008) 
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Figure 3.9: Mean 500 hPa geopotential heights (in gpm) for January (top) and July (bottom) 
calculated for the 1968-1996 period (NOAA, 2008) 
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3.3.3.2 Zonal wind components 

Wind is a vector quantity having both direction and speed. For the purpose of this 

discussion the wind will be split into a zonal (west to east) and meridional (south to 

north) component. The distribution of the predominant zonal components of the wind for 

850 hPa and 500 hPa are representative of the circulation in the lower and upper 

troposphere. Generally speaking, the northern parts of southern Africa experience 

surface easterly component winds (the trade wind regime) while the southern parts are 

exposed to the westerlies of the mid-latitudes. In summer (Figure 3.10 top), when the 

subtropical anticyclones have shifted further south, a zone of easterly component winds 

dominate the north-eastern parts of the subcontinent. The observed easterly winds over 

the south-western Cape also stem from this southward shift of the subtropical high 

pressure systems. Westerlies are located over the remainder of the subcontinent with a 

maximum over the western interior. During winter (Figure 3.10 bottom) the westerlies 

intensify and shift further north in accordance with the northward shift of the subtropical 

anticyclones. 

 

At 500 hPa the upper-air high pressure system is situated over the north-western part of 

the subcontinent in summer (Figure 3.9 top) with westerlies predominating over the 

areas to the south of it (Figure 3.11 top). Weaker easterly component winds are 

experienced over the north-eastern parts of the subcontinent and to the north of the 

upper-air high. During wintertime (Figure 3.11 bottom) the westerlies intensify (due to 

increasing pressure gradients as indicated by Figure 3.9 bottom) and invade the whole 

subcontinent so that easterly components are only to be located in the extreme north.  
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Figure 3.10: Mean 850 hPa zonal flow (in ms-1) for January (top) and July (bottom) calculated for 
the 1968-1996 period. Positive values indicate westerly winds (NOAA, 2008) 
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Figure 3.11: Mean 500 hPa zonal flow (in ms-1) for January (top) and July (bottom) calculated for 
the 1968-1996 period. Positive values indicate westerly winds (NOAA, 2008) 

 

Figure 3.12 is a Hovmoller diagram of the monthly long-term mean zonal wind 

components at a point over the Upper Olifants catchment, viz. 25 ºS 30 ºE. From this 

diagram it can be seen that this area is dominated by easterly component winds at the 

lower levels, with westerlies in the upper-air. The westerlies intensify during the winter 



41 

 

and penetrate further down to reach the surface (situated at approximately 850 hPa in 

this region). 

 

 

Figure 3.12: Time section of monthly mean zonal flow (in ms-1) at 25ºS 30ºE calculated for the 
1968-1996 period. Positive values indicate westerly winds (NOAA, 2008) 
 

3.3.3.3 Meridional wind components 

The maintenance of the atmospheric general circulation requires meridional exchanges 

of energy and angular momentum between the poles and the tropics (Taljaard, 1994). 

For meridional flow, the general case is sketched by the Idealised Global Circulation 

(Figure 3.13). According to this 3-cell model the Hadley cell is located in the zone 

between the equator and roughly 30º S. Here the surface flow is equatorward while the 

flow aloft is poleward. As the upper flow in the cell moves poleward, it begins to subside 

in a zone between 20º and 35º latitude. Near the centre of this zone of descending air 

the winds are generally weak and variable (horse latitudes). From the centre of the 

horse latitudes the surface flow spills into a poleward branch and an equatorward 

branch. 
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Figure 3.13: Idealised Global Circulation (Three-Cell Model) 

 

In summer (Figure 3.14 top), when a surface trough frequents the central interior, the 

850 hPa flow obtains a northerly component over the central and eastern interior (to the 

east of the surface trough) with southerly components dominating over the western 

parts (to the west of the surface trough and north of the southern Atlantic Ocean High) 

and over the north-eastern parts (south-easterly trades to the north of the southern 

Indian Ocean High). During winter the high pressure cell over the north-eastern parts 

builds while the surface trough shifts to the west coast. As a result northerly 

components, which also tend to be stronger, spread across the whole western and 

central interior (Figure 3.14 bottom). 

 

As mentioned previously the 500 hPa flow is dominated by the upper-air high pressure 

system. Southerlies predominate over the eastern and northern parts of the 
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subcontinent (Figure 3.15) while the northerly winds tend to intensify and invade the 

south-western parts during winter. 

 

 

 

Figure 3.14: Mean 850 hPa meridional flow (in ms-1) for January (top) and July (bottom) calculated 
for the 1968-1996 period. Positive values indicate southerly winds (NOAA, 2008) 
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Figure 3.15: Mean 500 hPa meridional flow (in ms-1) for January (top) and July (bottom) calculated 
for the 1968-1996 period. Positive values indicate southerly winds (NOAA, 2008) 

 

Figure 3.16 is a Hovmoller diagram of the monthly long-term mean meridional wind 

components at a point over the Upper Olifants catchment, viz. 25 ºS 30 ºE. From this 

diagram it can be seen that the upper-air flow over this area is dominated by southerly-

component winds which stretch all the way to the surface from mid January to June. 
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Low-level northerly component winds invade the region from mid July to December. It is 

the northerly component winds that advect high-energy tropical air into the region during 

the warm season when instability and uplift may lead to cloud development and 

precipitation. 

 

 

Figure 3.16: Time section of monthly mean meridional flow (in ms-1) at 25ºS 30ºE calculated for the 
1968-1996 period. Positive values indicate southerly winds (NOAA, 2008) 
 

3.3.3.4 Relative humidities 

Due to the proximity of the AOH near the west coast of South Africa (Figure 3.7), dry 

conditions are experienced over the western parts due in part to the shorter fetch of the 

southerly component winds (Figure 3.14) over a cold ocean and drying of the air due to 

subsidence. In contrast, the trade winds invading the eastern parts of the subcontinent 

are moisture laden. During the summertime moist air from the tropical latitudes are also 

allowed to be advected southwards over the central and eastern interior (Figure 3.17 

top). In the winter the source of tropical moisture is far removed and very dry conditions 

are experienced over the interior (Figure 3.17 bottom). At 500 hPa the main moisture 

sources are the westerly waves of the mid-latitudes in the winter and a combination of 
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these westerly waves and tropical easterly waves in the summer. This is reflected in the 

long-term mean relative humidities depicted in Figure 3.18. 

 

 

 

Figure 3.17: Mean 850 hPa relative humidities (as a %) for January (top) and July (bottom) 
calculated for the 1968-1996 period (NOAA, 2008) 
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Figure 3.18: Mean 500 hPa relative humidities (as a %) for January (top) and July (bottom) 
calculated for the 1968-1996 period (NOAA, 2008) 

 

In summary, the study area is strongly influenced by the south-easterly trade winds in 

summer (which sometimes curve north-easterly to the east of the surface trough). 

These moisture-laden winds are to a large degree responsible for advecting low-level 
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moisture into the area which is required for thunderstorm development. The unique 

topography with mountains to the east has a strong influence on low-level moisture 

convergence and resultant precipitation – albeit in the form of drizzle along the 

escarpment or thundershowers over the Highveld. A dry, anticyclonic circulation 

dominates the region during the winter while westerly-component surface winds 

sporadically invade the region with the passage of each frontal trough.    
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CHAPTER 4   CLIMATE DATA 

 

 

4.1 Observed Predictand Data 

 

The predictand in this study is daily rainfall over the selected QCs within the larger 

Upper Olifants River Catchment. In order to develop a statistical downscaling model for 

deriving daily rainfall at a specific point location (in this case the specified QC) from 

course-grid GCM data, records of historically observed daily rainfall are required for 

each location. 

 

The record of quality controlled daily rainfall data for each quaternary catchment, 

developed by Lynch (2004) as part of a project sponsored by the Water Research 

Commission (WRC), was used as the observed predictand data. Lynch (2004) compiled 

a comprehensive 50-year database (1950 - 1999) of infilled rainfall station data. This 

dataset was kindly provided by Trevor Lumsden of the School of Bioresources 

Engineering and Environmental Hydrology, University of KwaZulu-Natal. 

 

The initial daily and monthly rainfall datasets used in the study by Lynch (2004) were 

acquired from datasets that had been developed for another WRC project by Dent et al. 

(1989) and had been updated annually till 2000. That information was obtained from an 

assortment of organisations and individuals that include, among others, the South 

African Weather Service (SAWS) which also supplied the data for Lesotho and 

Swaziland (8 281 stations), the Agricultural Research Council (ARC)   (2 661 stations), 

the South African Sugarcane Research Institute (SASRI) (161 stations) as well as a 

number of municipalities, private companies and individuals (1 050 stations). All of 

these stations have not collected data concurrently (Lynch and Schulze, 2006). Figure 

4.1 indicates the distribution of SAWS observation stations in 2007 alone. 
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Figure 4.1: SAWS observational station network in 2007 (provided by Colleen de Villiers of SAWS, 
2007) 

 

It is important to note that the amount of rainfall reported at a station on a particular day 

is the accumulated rainfall in a 24-hour period ending at 06:00 GMT. For the period in 

question (1950 -1999) the SAWS and ARC automatically allocated the 24-hour rainfall 

measured at 06:00 GMT to the previous day during which the bulk of it may have fell 

(personal communication, de Villiers (2007)). 

 

The data were checked by Lynch and Schulze (2006) for incorrect recording of the time 

and date at which the gauge was read and suspect extreme daily rainfall events. In the 

case of missing records, four infilling techniques were employed, viz. an expectation 

maximisation algorithm, a median ratio method, an inverse distance weighting and a 
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monthly infilling technique for rainfall less than 2 mm (Lynch, 2004). Infilling of missing 

values more than doubled the size of the daily rainfall database from 105 753 218 daily 

observed values to a total size of 341 908 152 values (Lynch & Schulze, 2006). 

According to Lynch and Schulze (2006) the infilling process also augmented the size of 

the annual database significantly from an initial 5 118 stations with more than 15 years 

with a complete record to a staggering 9 641 stations that have more than 15 years of 

measurements. 

 

It is important to note that precipitation is intermittent and highly variable in space and 

time, while local topographic and environmental conditions play a key role in the 

distribution thereof (Maini et al., 2004). After missing rainfall values had been filled in 

and the station records extended by the different infilling techniques, Lynch (2004) 

employed a Geographically Weighted Regression (GWR) approach in order to estimate 

rainfall values at those points on a raster grid where no stations with observed data or 

infilled values existed. 

 

For each QC, Lynch (2004) determined a centroid using ArcView GIS. The Daily 

Rainfall Extraction Utility (DREU) developed by Kunz (2004, cited in Lynch & Schulze, 

2006) was used to extract the ten nearest rainfall stations to each pair of the centroid’s 

co-ordinates. These 10 stations are ranked by the DREU using a number of criteria 

including the distance from the rainfall station to the point of interest, station recording 

period and reliability (i.e. the percentage of actual data vs. infilled values). The best 

ranked station was selected as the so-called “driver” rainfall station, with that station’s 

data considered representative of the daily rainfall of that QC (Lynch & Schulze, 2006). 
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4.2 Observed Predictor Data 

 

Large-scale observed predictor data were derived from reanalysis data supplied by the 

National Centers for Environmental Prediction (NCEP). NCEP is an arm of the United 

States of America’s National Weather Service (NWS) and is comprised of nine distinct 

Centres which provide a wide variety of national and international weather guidance 

products to NWS field offices, government agencies, emergency managers, private 

sector meteorologists, and meteorological organizations and societies throughout the 

world (NCEP, 2008). 

 

Observational data are continuously gathered by NCEP from a wide range of sources 

(Kalnay et al., 1996), including global rawinsonde data (since 1948), the 

Comprehensive Ocean Atmosphere Data Set (COADS) which includes ships, buoys 

and near surface data from ocean station reports (since 1947), aircraft data from the 

Global Telecommunication System (GTS) and a number of research experiments (since 

1962), surface land synoptic data from the GTS and the U.S. air force (since 1949), 

satellite sounder data (since 1979), special sensing microwave imager data (since 

1987) and satellite cloud drift winds from geostationary meteorological satellites (since 

1978). 

 

Basically, the NCEP reanalysis system comprises the following three major modules 

(Kalnay et al., 1996): 

 Data decoder and a quality control pre-processor; 

 Data assimilation module with an automatic monitoring system; 

 Archive module. 

 

The data input is pre-processed. Optimal interpolation quality control of all data is done 

in order to identify and withhold data containing gross errors produced by instrumental, 

human, or communication-related mistakes that may occur during the process of 

making or transmitting observations (Kalnay et al., 1996). Observations that are 

accurate but with large errors of representativeness whose measurements represent 
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spatial and temporal scales impossible to resolve properly in the analysis forecast 

system, will also be withheld. 

 

The central module is the data assimilation. The NCEP reanalysis system uses a frozen 

T62 (equivalent to a horizontal resolution of 210 km) global spectral model with a state-

of-the-art spectral statistical interpolation as the analysis module (Kalnay et al., 1996). 

The model has 28 levels in the atmosphere, 5 of which are in the boundary layer and 

about 7 are above 100 hPa (Kalnay et al., 1996). The model contains parameterisations 

of main physical processes such as convection, large-scale precipitation, gravity wave 

drag, radiation with diurnal cycle, interaction with clouds, boundary layer physics, 

surface hydrology and diffusion processes (Kalnay et al., 1996). Further details of the 

NCEP model dynamics and physics can be found in Kanamitsu (1989) and Kanamitsu 

et al. (1991). 

 

The NCEP reanalysis system includes not only the computation of grid point values, but 

also temporal and spatial averages over prescribed areas (Kalnay et al., 1996). Optimal 

averages are computed for temperature, specific humidity, zonal and meridional wind 

components and wind speeds at the 1 000, 850, 700, 500, 300, 200 and 100 hPa levels. 

The reanalysis output is available for 00:00, 06:00, 12:00 and 18:00 GMT on a regular 

2.5º × 2.5º grid. All analysis output fields are monitored with a complex quality control 

system, wherein the data statistics and time tendencies are compared to climatological 

statistics in order to detect errors (Kalnay et al., 1996).  

 

The NCEP reanalysis products have been interpolated onto the same grid as the GCM 

to be described in section 4.4, i.e. 2.5º × 3.75º. The reanalysis products are available for 

the calibration procedure of the Statistical Downscaling Model (SDSM) over the current 

climate period (1961 - 2001). All NCEP data have been averaged on a daily basis from 

6 hourly data, before being linearly interpolated to match the GCM data. Where 

variables are derived, they are computed on the resident 2.5° x 2.5° regular grid, and 

then interpolated (Gachon et al., 2008). The list of predictors has been chosen 

according to the data availability and to correspond to the same physical variables 
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issued from the GCM predictors listed in section 4.4. All the data included are of quality 

‘A’ or ‘B’, which means that they are influenced directly (to some extent) by 

observational data (Kalnay et al., 1996; Gachon et al., 2008). 

 

The mean and standard deviations for the observed predictor variables were calculated 

for the base period 1961 - 1990. The means were subtracted from each daily value 

before dividing by the standard deviation. In this way the predictor variables were 

standardised (normalised) with respect to the set base period. Similar operations were 

carried out on the observed predictand and GCM-derived predictor variables. Since 

GCMs do not always perform well at simulating the climate of a particular region this 

means that there may be large differences between observed and GCM-simulated 

conditions (i.e. GCM bias or error) which could potentially violate the statistical 

assumptions associated with SDSM and give poor results if the predictor data were not 

normalised (CICS, 2008). The normalisation process guarantees that the distributions of 

observed and GCM-derived predictors are in closer agreement than those of the raw 

observed and raw GCM data (CICS, 2008).  

 

NCEP predictor data were downloaded for selected grid boxes from the Data Access 

Integration (DAI) website (CICS, 2008). This DAI portal provides 41 years of daily 

observed predictor data covering the period 1961 – 2001, derived from the NCEP 

reanalysis, interpolated to the same grid as HadCM3 before normalisation was 

implemented by the CICS scientists. 

 

 

4.3 IPCC SRES Scenarios 

 

Greenhouse gas (GHG) emissions are the product of extremely complex dynamic 

systems. Future emissions are highly uncertain and determined by driving forces such 

as demographic development, socio-economic development, and technological change 

(Nakićenović et al., 2000). By the end of the century the world will have changed in 

ways that are difficult to imagine. The Intergovernmental Panel on Climate Change 
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(IPCC) hence developed long-term emissions scenarios for use in climate change 

analysis, including climate modelling and the assessment of impacts, adaptation and 

mitigation. These scenarios are described in detail in the IPCC Special Report on 

Emission Scenarios (SRES) (Nakićenović et al., 2000). A brief description of these 

scenarios is included here as the description of the GCM data, which follows in section 

4.4, refers to them. 

 

According to Nakićenović et al. (2000) the scenarios are alternative descriptions of how 

the future might unfold and are a suitable tool with which to analyse how driving forces 

may affect future emission outcomes and to gauge the related uncertainties. The 

prospect that any single emissions scenario will transpire as described is highly 

uncertain. Four divergent storylines were developed to describe the relationships 

between emission driving forces and their evolution. These storylines add background 

for the scenario quantification (Nakićenović et al., 2000).  

 

Each storyline embodies varying demographic, social, economic, technological, and 

environmental developments. All the scenarios based on the same storyline make up a 

“scenario family” (Nakićenović et al., 2000). The scenarios do not include further climate 

initiatives i.e. no scenarios are included that explicitly assume implementation of the 

United Nations Framework Convention on Climate Change or the emissions targets set 

by the Kyoto Protocol. Table 4.1 summarises the main characteristics of the four SRES 

storylines and scenario families as described by Nakićenović et al. (2000), while Figure 

4.2 illustrates the range of GHG emissions in the SRES scenarios. 
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Table 4.1: Main characteristics of the four SRES storylines and scenario families (adapted from 
Nakićenović et al., 2000) 

SRES Scenario A1 A2 B1 B2 

 
Economy 

rapid growth, 
substantial 
reduction in 

regional 
differences in per 

capita income 

development is 
primarily regionally 
oriented, per capita 
economic growth 

are more 
fragmented and 

slower 

rapid changes in 
economic 

structures toward 
a service 

and information 
economy, with 
reductions in 

material intensity 

intermediate 
levels of 

development 

 
Global 

Population 

peaks in mid-
century and 

declines 
thereafter 

continuously 
increasing 

peaks in mid-
century and 

declines 
thereafter 

continuously 
increasing 

(slower than A2) 

 
Technology 

rapid introduction 
of new and more 

efficient 
technologies 

technological 
changes are more 
fragmented and 

slower than in other 
storylines 

introduction of 
clean and 

resource-efficient 
technologies 

more diverse 
technological 

change than in 
the B1 and A1 

 
Socio-Political 

Aspects 

increased 
cultural and 

social 
interactions, 

capacity building 

self-reliance and 
preservation of local 

identities 

improved equity, 
global solutions 

to economic, 
social, and 

environmental 
sustainability 

local solutions to 
economic, social, 

and 
environmental 
sustainability 

Underlying 
Themes 

convergence 
among regions 

heterogeneous 
world  

 

convergent world 
 

focuses on local 
and regional 

levels 

 

 

Figure 4.2: Total global annual CO2 emissions from 1990 to 2100 (in gigatonnes of carbon (GtC/yr)) 
for the various scenario groups. Capital letters refer to the four scenarios described in Table 4.1. 
Each coloured emission band shows the range of projections within each group (Nakićenović et 
al., 2000) 
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4.4 Global Circulation Model Data 

 

Coupled ocean-atmosphere GCMs have become valuable instruments in attempting to 

comprehend and predict climate change (Houghton et al., 1996). Downscaling 

scenarios using more than one GCM running different experiments (i.e. SRES 

scenarios) may produce somewhat different but equally plausible results. Impact 

researchers working at site specific scales would ultimately benefit by comparing 

downscaled projections from two or more scenarios (Lines et al., 2005). For this reason, 

and due to availability, the choice of GCM data fell on the HadCM3 model running the 

SRES A2 and B2 scenarios. A concise description of the model is provided below. 

 

The Third Generation Hadley Centre Coupled Model (HadCM3) is a coupled 

atmosphere-ocean GCM developed at the Hadley Centre for Climate Prediction and 

Research in the UK. It was one of the major models used in the IPCC Third Assessment 

Report in 2001. It has stable control climatology and does not require flux adjustments 

to prevent large climate drifts in the simulation (Gordon et al., 2000). 

 

The atmospheric component of the model has a horizontal resolution of 2.5º of latitude 

by 3.75º of longitude, which produces a global grid of 96 x 73 grid cells (Pope et al., 

2000). This is equivalent to a surface resolution of about 417 km x 278 km at the 

Equator, reducing to 361 km x 278 km at 25º S (over the study area). HadCM3 has 19 

vertical levels using a hybrid vertical co-ordinate and employs a 30 minute time step 

(WDC, 2008). HadCM3 has model years consisting of 360 days in each year (Wilby & 

Dawson, 2007), i.e. each month has 30 days and leap years are not included. 

 

Some of the key features that are new to the third generation model include the 

introduction of a new radiation scheme with 6 shortwave and 8 longwave spectral 

bands, a new land surface scheme that includes a representation of the freezing and 

melting of soil moisture as well as surface runoff and soil deep drainage, modifications 

to the penetrative convective scheme in the atmosphere to include an explicit 

downdraught and the direct impact of convection on momentum (WDC, 2008). 
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Revisions were also made to the parameterisations of orographic and gravity wave 

drag. The atmosphere component of the model also optionally allows the transport, 

oxidation and removal by physical deposition and precipitation scavenging of 

anthropogenic sulphur emissions (WDC, 2008). The atmospheric component is 

described in more detail in Pope et al. (2000) and Gordon et al. (2000). 

 

The atmosphere and ocean exchange information once per day. The oceanic 

component of the model has 20 levels with a horizontal resolution of 1.25 x 1.25 

degrees (WDC, 2008). At this resolution it is possible to represent important details in 

oceanic current structures. The sea ice model uses a simple thermodynamic scheme 

while ice is advected by the surface ocean current. The ocean component is described 

in more detail in Gordon et al., (2000). 

 

HadCM3 data were first downloaded for the grid box overlying the study area (i.e. 25ºS 

30ºE) from the DAI website (CICS, 2008). At a later stage HadCM3 data were also 

downloaded for all eight grid boxes surrounding the selected grid box in order to explore 

the effects of expanding the predictor domain. The DAI portal provides the following 

data subsets: 

 139 years of daily GCM predictor data covering the period 1961 – 2099, derived 

using the SRES A2(a) scenario; and 

 139 years of daily GCM predictor data covering the period 1961 – 2099, derived 

using the SRES B2(a) scenario. 

 

All the data (except in the case of wind directions) have been normalised with respect to 

the 1961 – 1990 period. The value in each grid box or cell (defined over an area of 

3.75º longitude and 2.5º latitude) corresponds to the value over the centre of the cell 

(CICS, 2008). Table 4.2 provides a summary of the 26 HadCM3 predictors which were 

available to this study. The units refer to the units of the climatic element before 

normalisation. 
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Table 4.2: Description of HadCM3 predictors (adapted from Wilby et al., 2002; Wilby & Dawson, 
2007) 

Levels Climatic Element Unit Calculation Method 

2 m Temperature ºC Interpolated at 2 m from the lowest 

model level 

MSL Pressure hPa Calculated from surface pressure, 

temperature and surface geopotential 

Averaged over the 6-h daily values 

850 hPa 

500 hPa 

Geopotential height m2s-2 Calculated from surface pressure, 

temperature and specific humidity 

Averaged over the 6-h daily values 

Near surface Specific humidity g kg-1 Calculated from the model’s humidity 

variable 

Averaged over the 6-h daily values 

Near surface 

850 hPa 

500 hPa 

Relative humidity % Calculated from the model’s humidity 

variable 

Averaged over the 6-h daily values 

Near surface 

850 hPa 

500 hPa 

Wind direction º from N Calculated from averaged 6-h daily 

geostrophic winds 

Near surface 

850 hPa 

500 hPa 

Geostrophic airflow hPa Calculated from zonal and meridional 

geostrophic wind components 

Averaged over the 6-h daily values 

Near surface 

850 hPa 

500 hPa 

Zonal airflow component hPa Geostrophic – calculated from pressure 

gradients 

Averaged over the 6-h daily values 

Near surface 

850 hPa 

500 hPa 

Meridional airflow 

component 

hPa Geostrophic – calculated from pressure 

gradients 

Averaged over the 6-h daily values 

Near surface 

850 hPa 

500 hPa 

Divergence s-1 Calculated from averaged 6-h daily 

geostrophic winds 

Near surface 

850 hPa 

500 hPa 

Vorticity s-1 Calculated from averaged 6-h daily 

geostrophic winds 
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CHAPTER 5  METHODOLOGY 

 

 

5.1 Process Description 

 

The methodology used in this study follows the procedure outlined by Lines and Barrow 

(2002), Wilby et al. (2002) and Lines et al. (2005). The study makes use of the 

Statistical Downscaling Model (SDSM) developed by Wilby et al. (2002) who also used 

SDSM to develop single-site ensemble scenarios of daily rainfall under current and 

future regional climate forcing for Toronto, Canada. Lines et al. (2005) used SDSM to 

downscale the expected climate change impacts with respect to daily mean, maximum 

and minimum temperature as well as precipitation for 14 sites across Atlantic Canada. 

In a more recent study Wilby et al. (2006) also used SDSM to downscale daily 

temperature, precipitation and potential evaporation for the River Kennet in the UK.  

 

Within the nomenclature of downscaling techniques SDSM is best described as a hybrid 

of the stochastic weather generator and regression-based methods (Wilby et al., 2002). 

The SDSM software reduces the task of statistically downscaling daily rainfall into the 

following discrete steps (Wilby et al., 2002): 

a) quality control and data transformation; 

b) screening of predictor variables; 

c) model calibration; 

d) weather generation (using observed predictors); 

e) generation of climate change scenarios (using climate model predictors); and 

f) statistical analysis. 

 

A perfect prognosis (PP) approach is followed, where the forecast or simulated predictor 

variables are taken at face value – assuming them to be perfect. In model calibration, 

observed predictors (in the form of NCEP reanalysis data) are used to describe the 

observed predictand (in the form of daily rainfall data for the selected QCs). In 

implementation, it is the GCM simulation of the predictors that are substituted into the 
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regression equation. For more information on the PP approach the reader is referred to 

Section 2.3.4.2. 

 

 

5.2 Fundamental Assumptions 

 

From the preceding process description it is apparent that the assumption has to be 

made that it is indeed possible to derive significant relationships between the potential 

predictor variables and the predictand over the selected study area. The derived 

relationship must be valid at the synoptic scale as that is the spatial scale used to 

condition the downscaled response (Hewitson & Crane, 1996; Wilby et al., 2004; 

Hessami et al., 2008). 

 

Although SDSM has a built in function for variance inflation and bias correction, the 

underlying assumption of PP is that the GCM simulations of predictor variables are 

accurate. This assumption is necessary in order to apply the same regression equations 

(that are based on historical observations) to simulated predictor values. It also stands 

to reason that the large-scale potential predictors must be variables that are well 

simulated by the GCMs. In principle, the same PP regression equations can be used 

with different GCMs, scenarios, or projections (Wilks, 1995). However, new equations 

would have to be trained for different study areas in order to accommodate regional 

forcings.  

 

Another major assumption is time invariance. It must be assumed that the relationships 

that have been established between the predictors and predictand under the current 

climatic period will also remain valid during future climatic periods outside the fitting 

period. Many climate change studies inherently make this assumption (Hewitson & 

Crane, 1996; Wilby & Wigley, 1997; Wilby et al., 2004) as it is unlikely that the physical 

links between weather systems and the predictand will change. However, it remains a 

point of concern as the established relationships are only valid within the long-term 

variability of the observational data used for calibration while future projections for some 
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variables may lie outside of this range (Wilks, 1995; Wilby et al., 2004). Furthermore, 

one has to assume that the predictor set sufficiently incorporates the future climate 

change signal (Wilby et al., 2004). 

 

 

5.3 Stratification and Transformation of Data 

 

The physical and/or statistical relationships between predictors and predictand may 

change with seasons (Wilks, 1995). One approach to addressing seasonal differences 

is to include predictors that are functions of the day of the year. In Section 3.3 it was 

indicated that the rainfall in the selected QCs across the study area is highly seasonal 

with the bulk of the rainfall occurring in the summer months of December, January and 

February (DJF). For this reason the decision was made to stratify the observed data 

according to the time of year, and to produce forecast equations specifically for this 

three month summer rainfall season. 

 

Rainfall data usually follows a positively skewed distribution. Power transformations can 

be useful for converting atmospheric data to conform to the assumptions of regression 

analysis (Wilks, 1995). In an attempt to downscale precipitation over India, Maini et al. 

(2004) applied the square root to their rainfall data in order to make the distribution 

nearly symmetrical. According to Wilby and Dawson (2007) fourth root, natural log and 

inverse normal transformations are used whenever data are skewed. After comparing 

transformations involving the natural log and powers of two, three, four as well as 

square, third and fourth roots, the decision was made to apply a fourth root 

transformation to the predictand data prior to model calibration. It is hoped that a 

symmetry-producing transformation will allow the application of multivariate statistical 

methods that may assume normal distributions (Wilks, 1995). 

 

Large-scale observed predictor data were derived from NCEP reanalysis data. In most 

spatial downscaling studies, the predictor data used are first normalised with respect to 

the period mean and standard deviation, rather than using the actual data themselves 
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(CICS, 2007). The idea behind the normalisation (or standardised anomalies) is to 

attempt to remove the influences of location and spread from a batch of data (Wilks, 

1995). The physical units of the original data cancel, so normalised values are 

dimensionless quantities with a mean of zero and a standard deviation of 1. An 

alternative way to view normalisation is as a measure of distance, in standard deviation 

units, between a data value and its mean (Wilks, 1995). The NCEP predictor data were 

downloaded for selected grid boxes from the DAI website. The downloaded data has 

already been interpolated to the same grid as the HadCM3 model before normalisation 

with respect to the base period of 1961 – 1990. 

 

 

5.4 Predictor Selection 

 

The selection of predictor variables is one of the most important steps in the 

development of a statistical downscaling scheme because the choice largely determines 

the character of the downscaling results (Hessami et al., 2008). According to Wilby et al. 

(2002; 2004) the identified large scale climate predictor variables should be: 

 physically and conceptually sensible with respect to the site variable (the 

predictand); 

 strongly and consistently correlated with the predictand; 

 readily available from archives of observed data and GCM output; and 

 accurately modelled by GCMs. 

 

According to Wilby et al. (2004) the selection process is complicated by the fact that the 

explanatory power of individual predictor variables may be low – especially for daily 

rainfall. This explanatory power may also vary from one month to the next and from one 

location to the next.  

 

In accordance with the study done by Lines et al. (2005), candidate predictors from the 

GCM grid-box overlying the study area will be used. There are almost always more 

potential predictors available than can be used in a regression, and finding good 
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subsets of these in particular cases is not as easy as one might first imagine. The 

process is definitely not as simple as adding members of the list of potential predictors 

to the regression until an apparently good relationship is achieved (Wilks, 1995). 

Surprisingly, there are dangers associated with including too many predictor variables in 

a forecast equation. Wilks (1995) provides an example where any K = n – 1 predictors 

will produce a perfect regression fit to any predictand for which there are n 

observations. This is easiest to see for the case of n = 2, where a straight line can be fit 

using K = 1 predictor (simple linear regression), since a line can be found that will pass 

through any two points in the plane, and only an intercept and a slope are necessary to 

define a line. This problem, referred to as “overfitting”, generalises to any sample size. 

Overfitting usually manifests itself as an apparent excellent fit on the training data, while 

the fitted relationship falls apart when used with independent data not used in the 

development of the equation. 

 

Wilks (1995) provides several important lessons that can be drawn from this example: 

 Begin development of a regression equation by logically choosing only physically 

sensible or meaningful potential predictors. 

 A tentative regression equation needs to be tested on a sample of data not 

involved in its development. One way to approach this important step is to simply 

reserve a portion of the available data as the independent verification set, and fit 

the regression using the remainder as the training set. The performance of the 

resulting regression equation will nearly always be better for the dependent than 

the independent data, since the coefficients have been chosen specifically to 

minimise the squared residuals in the developmental sample. 

 One needs a reasonably large developmental sample if the resulting regression 

equation is to remain stable. While the number of regression coefficients that can 

be estimated with reasonable accuracy increases as the sample size increases, in 

forecasting practice it is often found that there is little to be gained from including 

more than about a dozen predictor variables in a final regression equation.  
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Studies by Wilby et al. (1998), Huth (2004) and Hessami et al. (2008) have shown that, 

when downscaling precipitation, a combination of circulation (e.g. geopotential heights 

or wind components), temperature and moisture (e.g. relative humidity) predictors is 

better than any single predictor. Hessami et al. (2008) used an automated statistical 

downscaling regression-based approach to reconstruct the observed daily precipitation 

and temperature series in eastern Canada. In their attempts to model the precipitation, 

Hessami et al. (2008) found that the most common combination of predictor variables 

for daily precipitation modelling are relative/specific humidity at 500 hPa, near-surface 

wind speed, 850 hPa zonal velocity and 500 hPa geopotential height. Maini et al. (2004) 

developed an operational model for forecasting location specific quantitative 

precipitation (24 hour accumulated) and probability of occurrence over India thirty days 

in advance. They observed that mean relative humidity (1000-500 hPa level) and 

meridional wind component (850 hPa) are frequently selected for the development of 

quantitative precipitation forecast equations, while the vorticity at 850 hPa is also 

important. According to Hessami et al. (2008), specific and relative humidity are not 

interchangeable, but they are strongly correlated. As their synchronous variation relies 

on the saturation phase of water vapour in the atmosphere, both are highly correlated to 

the occurrence of precipitation. Hence, using either relative or specific humidity should 

provide similar results for downscaling of precipitation since high relative humidities are 

always accompanied by commensurately high specific humidities. According to 

Hessami et al. (2008), the combination of humidity variables at various levels are often 

more significant to the precipitation process (occurrence and intensity) than a single 

value of humidity taken at a solitary level. 

 

Table 4.2 provided a summary of all the GCM predictors available to this study. In each 

instance a parallel set of NCEP predictors, in addition to their 1-day lagged values, will 

be used in the model calibration and subsequent generation of ensemble members (for 

the current climatic period). Since SDSM can only screen 12 predictors at a time, the 52 

potential predictors were evaluated in subsets according to the nature of the predictors. 

In this way a subset were created for the pressure/height variables (e.g. mean sea-level 

pressure, 850 and 500 hPa geopotential heights), low-level wind components (e.g. 
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surface and 850 hPa winds), low-level vorticity and divergence predictors and upper-air 

predictors (e.g. 500 hPa wind components, vorticity and divergence). In this way similar 

predictors were compared to each other so that the best ones could be chosen. 

Vertically integrated moisture flux were not available to this study. Correlation matrices 

were then calculated for each subset along with the partial correlations and P-values. 

The correlation matrix is equivalently the variance-covariance matrix of the standardised 

variables (Wilks, 1995). 

      

During the screening process, all potential predictors were initially awarded a value of 1. 

For each subset the predictor variables that exhibited relatively high partial correlations 

with the observed rainfall and P-values in the vicinity of 0.05 or lower were retained for a 

second round of screening and awarded a value of 2. According to Wilby and Dawson 

(2007), higher correlation values imply a higher degree of association while smaller P-

values indicate that the association is less likely to have occurred by chance. The 

potential predictors that made it through the first round were subsequently evaluated 

together in a final round of screening. Again the predictors adhering to the criteria 

mentioned above were retained as the predictor set for the selected QC. If in the final 

set of 12, the predictor performed better than its peers, it was then awarded a value of 

3. This process of predictor selection was repeated for all 5 of the selected QCs on 

observational DJF data spanning the period 1961 – 1985. An independent dataset is 

used in order to minimise the danger of finding a spurious relationship due to overfitting. 

The allocated values were then added for all the potential predictors across all QCs and 

the top predictors were thus identified in terms of the highest accumulated values (for 

both the predictor and its 1-day lag). A physical restraint was placed by SDSM on the 

number of predictors as only 8 predictors could be included in the final set. This final set 

of top-scoring predictors thus formed a generic set that could be used for the Upper 

Olifants River catchment. 

 

 

  



67 

 

5.5 Model Calibration 

 

During model calibration SDSM takes a user–specified predictand (in this case DJF 

daily rainfall for a specified QC) along with the chosen set of NCEP predictor variables, 

and computes the parameters of multiple linear regression equations through an 

ordinary least squares optimisation algorithm (Wilby & Dawson, 2007). This is carried 

out on independent observational DJF data spanning the period 1961 – 1985 which will 

not be used during the model validation. In the case of precipitation a conditional 

process is employed since daily rainfall amounts depend on the occurrence of wet-days, 

which in turn depend on regional-scale predictors such as humidity, atmospheric 

pressure and vorticity. This implies sequences of wet or dry days are first modelled, 

then the amounts of rain if it is a wet-day. 

 

Wet-day precipitation amounts are assumed to be exponentially distributed and are 

modelled using the regression procedure of Kilsby et al. (1998, cited in Wilby et al., 

2002). According to Wilby et al. (2002) the expected mean wet-day amount is 

empirically forced by the algorithm to equal the observed mean wet-day amount of the 

calibration period, while serial correlation between successive wet-day amounts may be 

incorporated implicitly by lagged predictor variables. 

 

Since seasonal models for daily rainfall are developed in this study, all three months in 

the summer season (December, January and February) will have the same model 

parameters. In addition, SDSM will calculate residual statistics and display these on a 

scatter diagram (plot the residuals against the modelled predictor). Finally, the SDSM 

calibration procedure reports the percentage of explained variance and standard error 

for the regression model. The magnitude of deterministic forcing is indicated by the 

percentage of variance explained by the regression model while the significance of the 

indeterminate or noise fraction by the standard error of the calibrated model (Wilby et 

al., 2002). The Chow test is used to test for structural change in the parameters of a 

model. It tests for model stationarity by checking whether the coefficients estimated over 

one group of the data are similar to the coefficients estimated over another. High Chow 



68 

 

statistic values thus indicate that the fitted model may become unstable in future. The 

model is said to be calibrated when the regression coefficients, explained variance and 

standard error are within acceptable limits for the regression model (Lines et al., 2005). 

 

 

5.6 Ensemble Generation 

 

Given the set of NCEP predictor variables, an internal random number weather 

generator takes the calibrated output (model weights) and stochastically synthesises a 

number of ensembles that are statistically related to the original training dataset (Lines 

et al., 2005). The extent to which time series of different ensemble members differ is 

determined by the relative significance of the deterministic and stochastic components 

of the regression models (Wilby et al., 2002). Precipitation series, for example, display 

more ‘noise’ arising from local factors (Wilby et al., 2002). SDSM uses the standard 

errors to stochastically replicate the distribution of model residuals. A pseudo random 

number generator, as described by Rubinstein (1981, cited in Wilby et al., 2002), 

replicates values from a normal distribution with standard deviation equal to the 

calibration standard error. This stochastic value is subsequently added to each day’s 

deterministic component in order to inflate the variance of the downscaled series and to 

enhance the agreement with daily observations. In the case of conditional processes, 

the model incorporates an additional stochastic process to determine the probability of 

precipitation occurring as prescribed by regional forcing. A random number generator is 

used to determine the outcome - if regional forcing indicates a probability of precipitation 

occurrence, p = 0.65, and the random number generator returns r ≤ 0.65 the day is wet; 

alternatively if r > 0.65 the day is dry. 

 

Individual ensemble members are considered equally plausible (Wilby et al., 2002). The 

ensemble means can be used to represent the synthesized downscaled values. This 

procedure also permits the verification of the calibrated models (using independent 

data) as well as the synthesis of artificial time series for present climate conditions 

(Wilby & Dawson, 2007). In this study 20 ensemble members were created for the 
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verification period spanning 1986 – 1999. After model verification, the procedure was 

repeated for the whole base period of 1960 – 1990 in order to facilitate a comparison 

between the current and future climates. 

 

 

5.7 Model Validation 

 

In the field of statistical weather/climate prediction it is customary for the regression 

equations to be tested on a sample of independent data that has been held back during 

the development of the forecast equations. In this way, the downscaling model can be 

verified against observed predictand data and if judged to be acceptable, the equations 

can be used operationally after recalibration for the whole base period. This procedure 

is actually a special case of a technique known as cross-validation. Cross-validation is a 

resampling technique whose mechanics are analogous to the bootstrap and 

permutation tests (Wilks, 1995). In cross-validation the available observational data are 

repeatedly divided into calibration and verification data subsets. The forecast model is 

developed using the calibration subset as input, and subsequently run for the 

verification period. The resultant model output (downscaled series) are subsequently 

evaluated against the verification subset. Ideally, sufficient observed data should be 

available to enable at least 20 years of data to be used to calibrate a spatial 

downscaling model, with a further 10 years of data (ideally more) being available for 

model verification (CICS, 2007). 

 

In this study, cross-validation is carried out by splitting the observational DJF data into a 

calibration set spanning the period 1961 – 1985 and a verification set spanning the 

period 1986 – 1999. Since observational data will not be available to verify the 

downscaled rainfall for the future climatic periods, it seems reasonable to rather use 

diagnostic criteria to evaluate the performance of the statistical downscaling model. 

Such criteria include the following climatic indices: 

 Maximum daily and total monthly rainfall; 

 Variance; 
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 Percentage of wet days; 

 Mean and maximum dry/wet spell length; 

 Maximum 3-day precipitation total; 

 Number of days with more than 25 mm of rain; and 

 90th percentile of rain day amount. 

These climatic indices are very useful in a number of economic sectors as they may 

help prepare that sector for adaptation to climate change. In the case of agriculture, 

total monthly rainfall and variance aid in determining crop or cultivar suitability. 

Maximum daily rainfall, the number of days with more than 25 mm of rain and the 

maximum 3-day precipitation totals are not only useful in evaluating groundwater 

replenishment but also help indicate potentially damaging heavy rainfall events. Of 

particular importance for agriculture is the wet and dry spell durations. Crops will be at 

risk from dry spells occurring during the growing season. The risk can sometimes be 

determined by assessing the probability that a long dry spell occurs when the plant is 

particularly sensitive, such as just after germination or at flowering (Stern & Coe, 1984).    

 

In their respective studies Wilby and Wigley (2000), Wilby et al. (2002), Maini et al. 

(2004), Lines et al. (2005) and Hessami et al. (2008) made use of some subset of these 

climatic indices for precipitation forecasts. In addition to these, Hessami et al. (2008) 

also computed the mean and the standard deviation of observed and simulated values 

for total monthly precipitation. Additional verification measures will include the quantile-

quantile (Q-Q) plot of the generated ensembles against the observed rainfall, the 

coefficient of determination (R2), standard error (SE) and extreme value analyses. 

 

The Q-Q plot is a scatterplot that is used to compare the dimensional values of the 

observed data with that of the modelled data (Wilks, 1995; Wilby & Dawson, 2007). The 

procedure works by constructing cumulative distribution functions (CDFs) of these data 

sets and plotting the percentiles of the observed and the predicted DJF rainfall against 

one another on a scatter chart with observed data on the vertical axis and modelled 

data on the horizontal axis (Wilks, 1995; Wilby & Dawson, 2007). A Q-Q plot for a 
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regression equation that modelled the predictand well would have the ensembles 

straddling the 45º diagonal line. 

 

R2 can be computed from the following equation: 

SST

SSE

SST

SSR
R  12  

where SSR is the regression sum of squares, SST is the total sum of squared 

deviations of the predicted values around their mean, and SSE is the sum of squared 

differences between the residuals/errors and their means (Wilks, 1995). Qualitatively, R2 

can be interpreted as that portion of the variation of the predictand (proportional to SST) 

that is “described” or “accounted for” by the regression (SSR) (Wilks, 1995; Mendenhall 

& Sincich, 2003). For a perfect regression, SSR = SST and SSE = 0, so R2 = 1. For a 

completely useless regression, SSR = 0 and SSE = SST, so that R2 = 0. In such a case 

the least-squares regression line is almost indistinguishable from the sample mean of 

the predictand, so SSR is very small, and little of the variation in the forecast predictand 

can be ascribed to the regression (Wilks, 1995). 

 

SDSM also allows the user to fit distributions to observed and downscaled data for the 

selected season in order to interpret the return period of extreme events (Wilby & 

Dawson, 2007). Following Wotling et al. (2000), the decision was made to similarly fit a 

Gumbel distribution (using the annual maximum series after the method of Shaw (1994, 

cited in Wilby & Dawson, 2007)) to the rainfall series. The results are plotted up to a 

return period of 100 years. 

 

 

5.8 Generating Downscaling Scenarios of the Future Climate 

 

The ultimate regression equations that are to be used for downscaling future climate 

projections were fit using all the observational data within the base period 1961 – 1990. 

The “Scenario Generator” operation in SDSM was used to produce 20 ensembles of 

synthetic daily weather series given the final set of daily atmospheric predictor variables 
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supplied by a GCM. The GCM predictor variables must be normalised with respect to 

the base period and available for all variables used in model calibration (Wilby & 

Dawson, 2007). The procedure is identical in all respects to the ensemble generation 

described in Section 5.6, except that it was necessary to specify different conventions 

for model dates. This was required since HadCM3 uses fixed year lengths of 360 days. 

For each QC and respective GCM experiment, the operation was first done for the base 

period in order to facilitate an evaluation of how closely the model can simulate the 

present climate. Later the procedure was repeated for 3 tri-decadal periods centred on 

the 2020s (spanning 2011 – 2040), 2050s (spanning 2041 – 2070) and the 2080s 

(spanning 2070 – 2099) in order to facilitate an evaluation of climate projections under 

future GHG forcing. Similar 30-year time slices were considered by Wilby et al. (2002) 

and Lines et al. (2005). 

 

 

5.9 Analysis of Climate Forecasts 

 

As mentioned earlier, the first statistical analysis was performed for the base period 

where several climatic indices were calculated for the observed and ensemble mean of 

the downscaled predictand. This was necessary in order to validate the downscaling 

model against observed data and to inform assessment of the significance of climate 

changes projected by the statistical downscaling. If for example the climate change 

projection results should later indicate changes smaller than the downscaling model’s 

standard error, the model sensitivity to future climate forcing is said to be less than the 

model accuracy. In such cases the projected changes may result from model 

parameters rather than regional forcing (Wilby et al., 2002). This process was repeated 

for each GCM experiment and QC involved and the results were subsequently 

compared.  

 

In a similar fashion, climatic indices were calculated for each tri-decade after which the 

downscaling results were compared to the downscaling results for the base period. 

Comparisons were facilitated by delta statistics which were calculated by taking the 
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absolute differences between the ensemble mean for each tri-decadal period and the 

ensemble mean for the base period. In this way the expected change in the various 

climatic indices mentioned in Section 5.7 could be assessed. 
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CHAPTER 6  RESULTS AND DISCUSSION 

 

 

6.1 Rainfall Predictors 

 

The screening process was performed on each of the five QCs using an independent 

observational dataset for the period 1961 – 1985. The totals for each of the 26 

predictors and their lags are displayed in Appendix A. The columns on the right also 

indicate the rainfall predictors identified by other studies. Since only 8 predictors could 

be included in the final set (a SDSM restriction), the decision was made to select 

predictors based on both the unlagged and lagged totals. Table 6.1 summarizes the 

performance of the top predictors across the 5 QCs. This final set of top-scoring 

predictors thus form a generic set for the Upper Olifants River catchment. The selection 

process was complicated by the low explanatory power of the individual predictor 

variables. Similar low values of explained variance were also reported by other 

researchers who attempted to downscale daily rainfall e.g. Wilby et al. (2004) and Lines 

et al. (2005). 

 

During the screening process it was established that the 1-day lags of the surface 

divergence and surface specific humidity fared much better than their unlagged 

counterparts (see Appendix A), hence the relatively low totals for these predictors in the 

second last column of Table 6.1 and significantly higher values in the last column of 

Table 6.1. The physical significance of these 1-day lags may lie in the convective nature 

of the rainfall over the study area. After a dry-spell, it is often the case that a continuous 

influx of moist air is required before significant convective development can be 

sustained. The 1-day lag in surface specific humidity may therefore act as an indicator 

of preceding moisture at the low-levels, while the divergence may act as an indicator of 

an evolving convective environment. Wilby and Wigley (2000) pointed out some of the 

problems encountered with the use of screen temperature as a predictor for daily 

rainfall. On the one hand high summer temperatures may be a consequence rather than 

a cause of dry conditions, resulting from clear skies and low rainfall. On the other hand 
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high summer temperatures may enhance the instability in the lower troposphere and 

trigger convective development. For this reason the mean screen temperature was 

omitted in the final predictor set. 

 

Table 6.1: Top predictors and their screening results for the grid box centred on 25ºS 30ºE 

Predictor 

 
Symbol in 

Appendix A B32D B20A B11K B12D B41A Total 
Total  

(incl. lag) a 

Mean temperature at 
2m b 

 
temp 2 3 1 2 1 9 14 

Surface  
airflow strength 

 
p__f 3 3 1 2 1 10 15 

Surface  
vorticity 

 
p__z 

 
1 

 
2 

 
1 

 
1 

 
3 

 
8 

 
15 

Surface  
divergence 

 
p_zh 

 
1 

 
1 

 
1 

 
1 

 
1 

 
5 

 
15 

Surface  
specific humidity 

 
shum 

 
1 

 
1 

 
1 

 
1 

 
1 

 
5 

 
15 

Wind direction  
at 850 hPa 

 
p8th 3 3 1 3 2 12 17 

Relative humidity  
at 850 hPa 

 
r850 1 3 3 3 2 12 17 

Relative humidity  
at 500 hPa 

 
r500 3 3 3 3 3 15 20 

Meridional wind 
velocity at 500 hPa 

 
p5_v 3 2 3 3 2 13 18 

    a includes 1-day lag values b omitted from final predictor set 

 

The partial correlations between the selected predictors and the observed daily summer 

rainfall are presented in Table 6.2, while the corresponding P-values are contained in 

Table 6.3. Note that these values do not include those for the 1-day lags which will be 

used in an autocorrelation setup in SDSM, but the accumulated value for the selected 

predictor and its 1-day lag. During the calibration period it is already evident that some 

predictors show considerable variation in their correlations even across such a relatively 

small study area. Again, this may be due to the convective nature of the rainfall over the 

study area. Although all the partial correlations are fairly low, we see that the surface 

airflow strength exhibits a higher correlation value in the north and west (B32D – 

Groblersdal and B20A – Delmas) than in the east (B41A – Belfast). Some of the spatial 

differences seem artificial. An example is the difference in the partial correlations for the 

500 hPa meridional wind velocity between Witbank (B11K) and Middelburg (B12D) 
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which are only about 30 km apart. Although the differences in the terrain morphology 

between these two QCs have been highlighted in Section 3.1, there does not seem to 

be any physical reason why that should influence the strength of the association 

between the daily rainfall and the upper-air wind components within such short a 

distance. 

 

Table 6.2: Partial correlations with observed daily rainfall for the period 1961 – 1985 (values for    
1-day lags are not included) 

Predictor B32D B20A B11K B12D B41A 

Surface airflow strength 0.115 0.076 0.047 0.036 0.006 

Surface vorticity 0.058 0.025 0.113 0.013 0.103 

Surface divergence 0.067 -0.050 -0.079 0.025 0.003 

Surface specific humidity 0.099 0.028 0.015 0.008 -0.019 

Wind direction at 850 hPa 0.059 0.077 -0.011 0.043 0.027 

Relative humidity  
at 850 hPa 0.049 0.024 0.027 0.106 -0.036 

Relative humidity  
at 500 hPa 0.072 0.049 0.075 0.117 0.126 

Meridional wind velocity at 500 hPa -0.080 -0.091 -0.075 -0.018 0.062 

 

Table 6.3: P-values corresponding to the partial correlations in Table 6.2 (values for 1-day lags  
are not included) 

Predictor B32D B20A B11K B12D B41A 

Surface airflow strength 0.009 0.074 0.249 0.377 0.558 

Surface vorticity 0.197 0.456 0.005 0.534 0.021 

Surface divergence 0.141 0.235 0.057 0.462 0.563 

Surface specific humidity 0.026 0.430 0.522 0.552 0.506 

Wind direction at 850 hPa 0.193 0.072 0.542 0.309 0.452 

Relative humidity  
at 850 hPa 0.270 0.458 0.429 0.016 0.380 

Relative humidity  
at 500 hPa 0.110 0.244 0.070 0.007 0.004 

Meridional wind velocity at 500 hPa 0.078 0.031 0.070 0.508 0.174 

 

Since a higher P-value indicates a higher likelihood that the corresponding partial 

correlation may be due to chance, it is interesting to note that the P-values for the 500 

hPa relative humidity and 500 hPa meridional wind are relatively small. This result may 

stem from the higher expected correlations between widespread rainfall producing 

systems such as westerly and tropical-temperate troughs and the observed rainfall 
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across the QCs. It is perhaps also worth commenting here that Groblersdal (B32D) had 

no P-values larger than 0.3 while some of the other QCs such as Middelburg (B12D) 

had 6 P-values larger than 0.3. 

 

In Section 3.3 it was highlighted that the bulk of the summer rainfall over the study area 

is in the form of thundershowers, with some orographic rain along the higher lying areas 

to the east. It is general knowledge amongst weather forecasters that the three 

conditions required for thunderstorm development are a continuous inflow of low-level 

moisture, a deep unstable layer that stretches at least 10 000 feet above the surface 

and a trigger action which will initiate the convection and overcome any initial negative 

buoyancy. With the warm Indian Ocean constituting a rich source of maritime air to the 

east of the subcontinent, the advection of low-level moisture from the north and east 

should be a governing factor in rainfall occurrence (see Figure 3.5). This influence is 

thought to be represented by predictors such as the surface specific humidity, relative 

humidity at 850 hPa and the wind direction at 850 hPa. It is also conceivable that the 

surface airflow strength influences not only the magnitude of any possible low-level 

confluence (or diffluence), but also the rate at which moist (or dry) air may be advected 

into the area. Surface convergence will supply the necessary trigger action required for 

the deep convection that occurs in thunderstorms, while vorticity is an indication of the 

horizontal rotation of fluid particles around the local vertical (Holton, 1992) and finds its 

relevance to weather forecasting through the divergence-vorticity relation. 

 

The 500 hPa relative humidity may compensate for any mid to upper-air dryness that 

may enhance cloud evaporation (thereby reducing the chances of rainfall) and reduce 

the latent instability of the air mass. Apart from occasional air mass thunderstorms, the 

majority of the rainfall events over the study area can be traced back to either westerly 

waves or a combination of westerly and easterly waves (generally manifested in the 

form of tropical-temperate troughs). In either case we find that southerly-component 

flows are dry (upstream of the upper-air trough) while northerly component flows are 

relatively moist. In the case of westerly waves, it is well known that the area 

downstream (east) of the trough-line is characterised by cyclonic vorticity advection, 
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upper-air divergence, vertical uplift and thus enhanced thunderstorm development 

(Holton, 1992). The 500 hPa meridional wind speed therefore has a direct bearing on 

the nature of rainfall producing systems in this part of the world. 

 

The calibration results, as described by the explained variance (R2), standard error (SE) 

and Chow test statistic, are displayed in Table 6.4. The model results are not very 

encouraging, yet explained variances are in line with those reported by Lines et al. 

(2005). For the 25-year calibration period (spanning 1961 – 1985) the downscaling 

model could only account for approximately 7% of the variation in the daily DJF rainfall 

at Groblersdal (B32D). The explained variance dropped to a meagre 3% at Belfast 

(B41A) while standard errors averaged 0.45 across the 5 QCs. Results obtained by 

substituting the generic set of predictors, that is thought to be applicable across all 5 

QCs, with those obtained for each QC, only showed slight improvements in the 

respective statistics for some QCs (e.g. an increase in R2 in the order of 0.02) while 

almost any other combination of predictors, including those obtained from the literature, 

indeed proved to be inferior. This at least suggests that the screening procedure was 

not flawed, while a degree of collinearity amongst the candidate predictors may also 

account for the robust results. 

 

Table 6.4: SDSM calibration results for the period 1961 – 1985 

Statistic B32D B20A B11K B12D B41A 

R2 0.066 0.036 0.056 0.054 0.029 

SE 0.476 0.449 0.475 0.449 0.418 

Chow 2.182 6.298 1.494 1.822 2.110 

 

 

6.2 Cross-Validation Results 

 

Validation of the downscaling model was performed with the use of observational data 

over the period 1986 to 1999. Table 6.5 presents the verification results, as described 

by the R2, SE and Chow test statistics. As can be expected, the model performed worse 

over the verification period. For the 15-year verification period (spanning 1986 – 1999) 
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the downscaling model could only account for approximately 6% of the variation in the 

daily DJF rainfall at Groblersdal (B32D). The explained variance dropped to a meagre 

2% at Delmas (B20A) while standard errors still averaged 0.45 across the 5 QCs. The 

Chow test value of 6.079 also indicates that the model may not be stable for Delmas 

(B20A). What is encouraging is that the explained variances are in line with those 

reported for the calibration period in Table 6.4, indicating at least that the model was not 

an overfit. 

 

Table 6.5: SDSM verification results for the period 1986 – 1999 

Statistic B32D B20A B11K B12D B41A 

R2 0.057 0.024 0.049 0.043 0.027 

SE 0.463 0.447 0.479 0.451 0.411 

Chow 1.103 6.079 2.332 0.934 2.313 

 

6.2.1 Quantile-quantile plots 

After using the stochastic weather generator to create equally plausible ensembles of 

the downscaled rainfall over the verification period, the ensembles were subjected to a 

frequency analyses. Figure 6.1 presents the Q-Q plots for each QC and for all 20 

ensemble members after adjusting the variance inflation to a value proposed by Wilby 

and Dawson (2007). SDSM performs variance inflation by adding or reducing the 

amount of “white noise” applied to model estimates (Wilby and Dawson, 2007). In the 

cases of Groblersdal (B32D) and Middelburg (B12D) it is evident that SDSM 

underforecasts low rainfall amounts while high daily rainfall amounts are overforecast. 

The Q-Q plots for Delmas (B20A), Witbank (B11K) and Belfast (B41A) show clear signs 

of model bias, with almost all daily rainfall amounts being overestimated. Apparently 

none of the Q-Q plots depict a regression equation that modelled the predictand well 

which would have been evident by ensembles straddling the 45º diagonal line. When it 

comes to climate change applications, these Q-Q plots are sometimes of more 

relevance than the daily verification statistics. The biases which were pointed out for 

Delmas, Witbank and Belfast imply that the downscaling model will tend to predict 

increased precipitation for any future period.   
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Figure 6.1: Q-Q plots of modelled versus observed rainfall percentiles for the verification period 
1986 – 1999 (each point represents one of the 20 ensemble members) 
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Figure 6.2: Extreme value analyses for the summer rainfall during the period 1986 – 1999 using a 
Gumbel fit (the black line represents the observed rainfall while the red lines depict the 97.5th, 
50th and 2.5th percentiles of the forecast ensembles) 

 

6.2.2 Extreme value analyses 

The time series of observed and forecast daily rainfall were fit to a Gumbel distribution 

and analysed in terms of the return period of rainfall occurrences. The results of the 

extreme value analyses are shown in Figure 6.2. The respective return periods are 
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considerably underestimated over all 5 QCs. As an example we can see that the 

observed return period for a daily rainfall of 100 mm is approximately 50 years in 

Groblersdal (B32D) while the modelled return period for the same value is 

approximately 20 years (as measured by the median). SDSM only managed to generate 

ensembles that straddle the observed return period in Groblersdal (B32D) while the 

forecast return periods over the remainder of the QCs are unacceptably low. 

 

In light of the low explained variances (Table 6.5) and observed biases (Figure 6.1) 

before, this must mean that the SDSM was unable to successfully downscale the daily 

rainfall over 4 of the QCs given the predictors that were available to this study. For this 

reason, the results and discussion pertaining to the projected climate change for these 

QCs will not be included and the remainder of the chapter will only focus on the results 

for Groblersdal (B32D). 

 

6.2.3 Analysis of climatic indices 

Figures 6.3a-c compares the downscaled and the observed values of selected climatic 

indices for the calibration period. These indices form part of the widely used STARDEX 

indices (STARDEX, 2008). In the case of Groblersdal it can be seen that the model 

performed fairly well in most instances. Perhaps the biggest problems were associated 

with an over-inflated variance, especially in the February daily rainfall (a difference of 

187 mm in Figure 6.3a), over-predicting the number of significant rainfall events (here 

defined as days with 25 mm or more in Figure 6.3b) in February with approximately 6 

days and under-predicting the percentage of wet days in December (as indicated in 

Figure 6.3b). For the purpose of this study wet days are defined as days on which any 

rainfall amount (more than 0 mm) was reported. 

 

The mean and maximum dry- and wet-spell lengths (Figure 6.3c) compared reasonably 

well. The downscaling model over-forecasted the maximum dry-spell length for 

December with 5 days while it under-forecasted it with 5 days during February. The 

maximum wet-spell duration was also under-forecast with about 3 days for February.   
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Figure 6.3a: Comparison between observed and forecast climatic indices for the verification 
period (1986 – 1999) for Groblersdal 

 

 

Figure 6.3b: Comparison between observed and forecast climatic indices for the verification 
period (1986 – 1999) for Groblersdal 
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Figure 6.3c: Comparison between observed and forecast climatic indices for the verification 
period (1986 – 1999) for Groblersdal 

 

 

6.3 Description of the Downscaled Current Climate 

 

In order to facilitate a comparison between the projected future climates under the 

different SRES scenarios, a description of the downscaled current climate is necessary. 

This description is based on the same STARDEX climatic indices that were discussed in 

the model verification (Figures 6.3a-c). For the current climatic period (also referred to 

as the base period) the downscaled total rainfall for the summer months vary within a 

narrow band centred around 80 mm, while the variance itself ranges from  218.8 mm in 

February to 260.7 mm in December (Figure 6.4a). The corresponding observed values 

for the calibration period (shown in Figure 6.3a) vary from 9.2 to 10.4 mm. The modelled 

maximum daily rainfall values vary from 99.1 mm in January to 109.5 mm in December 

with standard deviations of 32 and 40 mm respectively.  
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Figure 6.4a: Climatic index values and standard deviations for Groblersdal for the modelled base 
period (1961 – 1990) 

 

As depicted in Figure 6.4b, the number of days with 25 mm of rain or more drops from 

an average value of 30.8 in December to 25.1 in February, with a comparable 

decreases in the values of the 90th percentile (from 30.6 mm in December to 28.1 mm in 

February), maximum 3-day rainfall total (122 mm in December to 112 mm in February) 

and percentage wet days (0.24% in December to 0.22% in February). All of these index 

values for DJF are higher than those observed in the real world (as presented in Figure 

6.3b). It is again interesting to note that compared to the values obtained for the 

calibration period, the downscaling model tend to over-forecast all the index values 

provided in Figure 6.4b. Figure 6.4c indicates that the mean dry-spell duration for the 

three summer months is in the order of 4.5 days, while the wet-spell duration is only 

about 1.5 days. The maximum dry-spell duration ranges between 20.6 and 23.1 days. 

The modelled maximum wet-spell duration is approximately 5 days while the observed 

value for calibration period was between 6 and 8 days (Figure 6.3c). Except in the case 

of the variation and peaks over 25 mm, the climatic index values fall within the range of 

the observed climatic index values as depicted in Figures 6.3a-c. 
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Figure 6.4b: Climatic index values and standard deviations for Groblersdal for the modelled base 
period (1961 – 1990) 

 

 

Figure 6.4c: Climatic index values and standard deviations for Groblersdal for the modelled base 
period (1961 – 1990) 
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6.4 Description of the Downscaled Future Climates 

 

6.4.1 Downscaling of the A2 scenario 

The description of the future climatic periods, as projected by the A2 scenario, focuses 

on the so-called delta statistics of selected climatic indices (Figures 6.5a-c) and the 

expected return period for extreme values (Figure 6.6). In each case the diagnostic 

indices are derived for the summer season using the mean of all 20 generated 

ensemble members. Figures 6.5a-c contain bar charts depicting the absolute difference 

between the ensemble mean of each of the tri-decadal future periods and that of the 

base period (1961 – 1990).   

 

Figure 6.5a indicates the projected changes with regards to the mean, maximum and 

total rainfall along with the expected change in variance. According to the A2 scenario it 

seems that the mean daily rainfall will increase in January and February (0.8 and       

1.1 mm higher for the 2070-2099 period) while inconsistent changes are forecast across 

the three future periods for December. Similarly, no clear linear trend emerges for the 

other climatic indices (viz. maximum, total and variance). This is somewhat surprising 

as one would initially expect changes indicated for the first future period (2011 – 2040) 

to continue and perhaps grow in the successive periods (2040 – 2070 and               

2070 – 2099). At first, one plausible explanation for the inconsistent changes may lie in 

oscillatory variations in the summer rainfall over the north-eastern interior of South 

Africa as first identified by Tyson and Dyer (1975). According to Tyson (1986) the 

rainfall over this region exhibits an unambiguous 18-year cycle with an apparent 

oscillation between a  9-year dry period and a 9-year wet period. Although a full cycle is 

contained within a  30-year period, an extrapolation of Tyson’s observed cycles into the 

future should result in generally dry conditions during the early 2020s and 2050s, while 

wet conditions should prevail during the latter half of the 2020s and 2080s. When 

examining Figure 6.5a such an extrapolation seems to be consistent with at least the 

projected changes for the maximum and total rainfall for the three tri-decadal periods 

centred on the 2020s, 2050s and 2080s.  

 



88 

 

It must however be mentioned that the observed rainfall in the 1990s and early 2000s 

did not fit into the Tyson cycles described above. It therefore seems unreasonable to 

expect this weak amplitude cycle to dominate the projected climate changes. For 

example, a region may become wetter in future due to an increase in the occurrence of 

well-developed tropical-temperate troughs and dry out again as these systems weaken 

and their average positions shift further west. Changes in the atmospheric circulation 

that may result in such a shift in the average position of the tropical-temperate troughs 

have been noted by Engelbrecht et al. (2009). This implies that the inconsistent 

projected changes may not be problematic after all. 

 

 

Figure 6.5a: Delta statistics (downscaled future period minus modelled base period) for selected 
climatic indices according to the A2 scenario (indicated changes are absolute differences) 

 

The projected changes with regard to the number of occurrences greater than or equal 

to 25 mm per day and the rainfall amount corresponding to the 90th percentile are 

depicted in Figure 6.5b. The maximum rainfall total accumulated over 3 consecutive 

days and the percentage of days on which rainfall occurred are also presented. 

According to the A2 scenario it seems that consistent increases can be expected for the 
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month of February in terms of the number of occurrences exceeding 25 mm per day 

and the amount of rainfall corresponding to the 90th percentile. The 3-day rainfall totals 

are expected to change little and the percentage of wet days will decrease slightly. No 

major changes are expected for January in terms of these four climatic indices, while 

December exhibits fluctuating changes consistent with the rainfall changes described 

earlier. In light of the convective nature of the rainfall, a more likely reason for these 

results may lie in a stronger signal for the late summer as opposed to the early summer. 

For the early summer heat thunderstorms, with their irregular occurrence, are perhaps 

more dominant, while cloud band formation becomes more frequent in February as the 

CAB shifts further south (see Section 3.3.2). 

 

 

Figure 6.5b: Delta statistics (downscaled future period minus modelled base period) for selected 
climatic indices according to the A2 scenario (indicated changes are absolute differences) 

 

According to the A2 scenario it seems that the average summer dry-spell lengths are 

expected to increase slightly (with less than one day) across all three tri-decadal periods 

(Figure 6.5c). The maximum dry-spell lengths are expected to increase slightly with 1 to 

2 days by the 2080s during December and January, while a decrease is forecast for 
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February (albeit only with an average of 1.5 days). Mean wet-spell lengths are expected 

to decrease slightly during the summer months, while the maximum wet-spell duration 

shows decreases for January and increases for February, while the signal for December 

is somewhat inconsistent across the three tri-decadal periods. 

  

 

Figure 6.5c: Delta statistics (downscaled future period minus modelled base period) for selected 
climatic indices according to the A2 scenario (indicated changes are absolute differences) 

 

The expected return period for extreme values under the A2 scenario, using a Gumbel 

fit, are depicted in Figure 6.6. It can be seen that the return period for a daily rainfall 

amount of 100 mm at Groblersdal increases to 30 years during the drier period centred 

on the 2050s and remains approximately 20 years throughout the remainder of the 21st 

century as judged against the median. 
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Figure 6.6: Extreme value analyses of daily rainfall for Groblersdal for the various downscaled   
tri-decadal periods according to the A2 scenario 

 

6.4.2 Downscaling of the B2 scenario 

Figure 6.7a indicates the projected changes with regard to the mean, maximum and 

total rainfall along with the expected change in variance. With regards to all four climatic 

indices the projected changes correspond closely to those predicted under the A2 

scenario. The most noteworthy deviations from the A2 scenario come to light in the total 

rainfall and the variance for the period centred on the 2080s, where the total rainfall is 

now expected to decrease slightly during the first two months and the variance is set to 

increase rather significantly during February. Again, no clear linear trend emerges for 

the maximum rainfall and variance during the 21st century. 
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Figure 6.7a: Delta statistics (downscaled future period minus modelled base period) for selected 
climatic indices according to the B2 scenario (indicated changes are absolute differences) 

 

The projected changes with regard to the number of occurrences greater than or equal 

to 25 mm per day, the rainfall amount corresponding to the 90th percentile, the 

maximum rainfall total accumulated over 3 consecutive days and the percentage of 

days on which rainfall occurred are depicted in Figure 6.7b. Again the differences in the 

expected GHG forcing under the B2 scenario does not seem to influence any of these 

climatic indices differently from the A2 scenario until the late 21st century (i.e. 2070 – 

2099). According to the IPCC (2007) about half of the early 21st century warming is 

committed in the sense that it would occur even if atmospheric concentrations were held 

fixed at year 2000 levels. For the 2080s, the biggest deviations from the projections 

under the A2 scenario include a decrease in the number of rainfall days with 25 mm or 

more in December, a decrease in the maximum 3-day rainfall total for January and a 

contrasting increase in the same value for February.  
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Figure 6.7b: Delta statistics (downscaled future period minus modelled base period) for selected 
climatic indices according to the B2 scenario (indicated changes are absolute differences) 

 

 

Figure 6.7c: Delta statistics (downscaled future period minus modelled base period) for selected 
climatic indices according to the B2 scenario (indicated changes are absolute differences) 
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The changes predicted under the B2 scenario for the average and longest dry- and wet-

spell lengths, as illustrated in Figure 6.7c, correspond very closely to those predicted 

under the A2 scenario in Figure 6.5c. This implies that both the mean and maximum 

dry-spell lengths are expected to increase slightly during December and January, while 

the maximum dry-spell duration is expected to decrease during February. Similarly, the 

mean wet-spell lengths are expected to decrease slightly during the summer months, 

while the maximum wet-spell duration shows consistent decreases for January and 

consistent increases for February. This shows that for Groblersdal downscaled wet- and 

dry-spell length is not sensitive to different GHG forcings as prescribed by the A2 and 

B2 scenarios in the HadCM3 model. 

 

The expected return period for extreme values under the B2 scenario, using a Gumbel 

fit, are depicted in Figure 6.8. It can be seen that the return period for a daily rainfall 

amount of 100 mm at Groblersdal increases to 25 years during the drier period centred 

on the 2050s and remains approximately 20 years throughout the remainder of the 21st 

century as judged against the median. 

 

Although projected changes have been obtained from the downscaling model for the 

future climates, it should be noted that in most cases these projected changes are 

comparable or smaller than the errors that were made by the model when tested 

against the verification set (see Figures 6.3a-c). For example, both the A2 and B2 

scenarios indicate that the total rainfall should decrease with 6.5 mm per month in 

December towards the 2050s, but during verification it was shown that for the current 

climatic period the model underestimated the total rainfall in December with 30.1 mm! 

This means that the downscaling model is simply not sensitive enough for these 

projected changes to be taken at face value and the results must only be used with 

caution. 
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Figure 6.8: Extreme value analyses of daily rainfall for Groblersdal for the various downscaled    
tri-decadal periods according to the B2 scenario 

 

 

6.5 Exploring the Effects of Expanding the Predictor Domain 

 

Discouraged by the poor model performance, an attempt was made to explore the 

feasibility of employing predictors from a larger spatial domain surrounding the currently 

used grid-box. According to Wilby et al. (2002), the grid-box nearest to the target site 

does not always yield the strongest predictor-predictand relationship. Spatial 

correlations were calculated between the observed rainfall for Groblersdal (B32D) and 

the NCEP predictors identified in Table 6.2 for all eight of the GCM grid-boxes bordering 

the grid-box overlying the QC. The results of these spatial correlations are presented in 

Table 6.6 where the grid-box overlying the study area is situated at 25ºS 30ºE. 

  



96 

 

Table 6.6: Spatial correlations between Groblersdal observed rainfall and selected NCEP 
predictors at indicated GCM grid boxes for the period 1961-1985 

Predictor Coordinates 26,25ºE 30,00ºE 33,75ºE 

Surface 

airflow 

strength 

22,50ºS 0.022 0.117 -0.008 

25,00ºS 0.028 0.129 0.042 

27,50ºS 0.038 0.024 0.027 

Surface 

vorticity 

22,50ºS -0.070 0.030 -0.013 

25,00ºS 0.062 0.084 -0.086 

27,50ºS 0.104 0.076 -0.102 

Surface 

divergence 

22,50ºS 0.042 0.072 0.062 

25,00ºS 0.046 0.110 0.101 

27,50ºS 0.043 0.137 0.117 

Surface  

specific 

humidity 

22,50ºS 0.081 0.048 0.072 

25,00ºS 0.053 0.026 0.059 

27,50ºS 0.004 -0.023 0.059 

850 hPa  

wind 

direction 

22,50ºS 0.116 0.068 -0.001 

25,00ºS 0.059 0.117 -0.017 

27,50ºS -0.004 0.004 0.022 

850 hPa 

relative 

humidity 

22,50ºS 0.087 0.091 0.099 

25,00ºS 0.119 0.121 0.123 

27,50ºS 0.138 0.119 0.096 

500 hPa 

relative 

humidity 

22,50ºS 0.069 0.147 0.058 

25,00ºS 0.047 -0.145 0.143 

27,50ºS -0.002 0.113 0.166 

500 hPa 

meridional 

wind velocity 

22,50ºS -0.143 -0.150 -0.100 

25,00ºS -0.114 0.170 -0.113 

27,50ºS -0.062 -0.099 -0.076 

 

For some of the predictors such as surface airflow strength, 850 hPa wind direction and 

500 hPa meridional wind velocity the grid-box overlying the QC yielded the strongest 

correlations when compared to other adjacent grid-boxes. Surface divergence had a 

higher correlation to the south, while surface vorticity and 850 hPa relative humidity 

revealed marginally stronger correlations to the south-west. In the case of 500 hPa 

relative humidity the highest correlation values lay to the south-east, while only the 

surface specific humidity favoured a position to the north-west. Referring back to our 
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discussion in Section 3.3 it is to be expected that near-surface humidities exhibit 

stronger correlations over grid-boxes to the east as these are closer to the source of 

maritime air. However, there does not seem to be any logical reason why the grid-box to 

the south-east yielded a stronger correlation between Groblersdal’s DJF daily rainfall 

and the observed 500 hPa relative humidity as the majority of weather-producing 

systems approach this area from the west.      

 

Table 6.7: Calibration results for the spatially diverse set of predictors for the period  1961 – 1985 

Predictor 
Selected  
grid-box 

Partial  
correlations P-values 

Surface airflow strength 25,00ºS 30,00ºE 0.091 0.043 

Surface vorticity 27,50ºS 26,25ºE 0.018 0.510 

Surface divergence 27,50ºS 30,00ºE 0.033 0.406 

Surface specific humidity 22,50ºS 26,25ºE  0.047 0.284 

Wind direction at 850 hPa 25,00ºS 30,00ºE 0.074 0.104 

Relative humidity at 850 hPa 27,50ºS 26,25ºE 0.011 0.543 

Relative humidity at 500 hPa 27,50ºS 33,75ºE 0.068 0.133 

Meridional wind velocity at 500 hPa 25,00ºS 30,00ºE -0.088 0.049 

 

A new set of NCEP predictors were then constructed by obtaining the predictors from 

the GCM grid-boxes with the strongest spatial correlations (as indicated in Table 6.6). 

The partial correlations and corresponding P-values between the selected predictors 

and the observed daily summer rainfall at Groblersdal are presented in Table 6.7. The 

calibration results for this spatially diverse set of predictors only yielded an R2 of 0.047, 

a SE of 0.481 and a Chow statistic value of. Compared to the calibration results of the 

original generic predictor set supplied in Table 6.4, this alternative spatially diverse set 

of predictors did not prove to be superior after all. The explained variance was found to 

be lower (R2 of 0.047 versus 0.066 for the set consisting of predictors from 25ºS 30ºE 

alone) while the standard error was slightly bigger (SE of 0.481 versus 0.476 for the set 

consisting of predictors from 25ºS 30ºE alone). The Chow statistic was of comparable 

magnitude (2.868 versus 2.182 for the set consisting of predictors from 25ºS 30ºE 

alone) indicating at least that the model is fairly robust. 
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CHAPTER 7  CONCLUSIONS 

 

 

7.1 Statistical Downscaling Results 

 

As was mentioned in Chapter 3, the bulk of the summer rainfall over the study area is in 

the form of thundershowers, with some orographic rain along the higher lying areas to 

the east. The irregular distribution of thunderstorms in space and time makes 

convective rainfall difficult to predict or downscale. This inherent property of 

thunderstorms may well account for the low explained variance of the predictors (Wilby 

et al., 2002). 

 

The set of generic predictors which were identified across all five QCs included airflow 

strength, vorticity, divergence and specific humidity at the surface, wind direction and 

relative humidity at 850 hPa as well as relative humidity and meridional wind velocity at 

500 hPa. Physical relationships between the daily rainfall at the QC-scale and the 

synoptic-scale circulation were established for each of these predictors. Generally, all 

the predictors exhibited a reasonably low explanatory power. The considerable variation 

in the resultant correlations between the large-scale predictors and the observed daily 

precipitation at the selected QCs may very well have stemmed from the convective 

nature of the rainfall patterns, being irregularly distributed in space and time. This may 

also be the root of the seemingly artificial spatial differences in some of the correlations 

as demonstrated by the 500 hPa meridional wind velocity. In contrast, relatively low     

P-values for the 500 hPa relative humidity and 500 hPa meridional wind may stem from 

the higher correlations between widespread rainfall producing systems such as westerly 

and tropical-temperate troughs and the observed rainfall across the QCs.  

 

The results from the downscaling model produced with SDSM were not very 

encouraging. Validation of the downscaling model over the period 1986 to 1999 failed to 

produce satisfactory results for four of the five QCs as judged against the R2, standard 

error, Chow-statistic, Q-Q plots and extreme value analyses. Yet, explained variances 
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for Groblersdal (B32D) were in line with those reported by Lines et al. (2005). An 

attempt to include predictors from neighbouring GCM grid-boxes did not yield better 

results. 

 

In the case of Groblersdal it was evident that SDSM underforecasted low rainfall 

amounts while high daily rainfall amounts were overforecast. This was also reflected in 

a commensurate underestimation of the return period for extreme daily rainfall amounts. 

When judged with the STARDEX indices the downscaling model for Groblersdal 

performed fairly well. The biggest problems were associated with an over-inflated 

variance, especially in the February daily rainfall, over-predicting the number of 

significant rainfall events in February and under-predicting the number of wet days in 

December. However, except in the case of the variation and peaks over 25 mm, the 

STARDEX index values did fall within the range of the observed climatic index values. It 

should also be kept in mind that the downscaling model was calibrated against 

predictors which were selected for the DJF season and subsequently asked to predict 

daily rainfall for December, January and February separately. This might have 

contributed to differing biases for the individual months. 

 

The projected changes for the future climate (as dictated by both the A2 and B2 

scenarios) were assessed by calculating several delta-statistics. Only a few of the 

indices revealed a clear linear trend (e.g. a decrease in the percentage wet days for all 

three months), while most indices exhibited inconsistent changes for DJF across the 

three future periods. Although most of the inconsistent changes could be fit to an 

extrapolation of the well documented weak oscillatory variations in the summer rainfall 

over the north-eastern interior of South Africa, such a fit is thought to be highly 

coincidental as most GCMs do not contain such cyclic climate forcings. It therefore 

seems unreasonable to expect this weak amplitude cycle to dominate the projected 

climate changes. One can rather imagine that a continued westward shift in the average 

positions of tropical-temperate troughs may cause an area to become wetter during one 

tri-decadal period as these systems move over it and dry out again during another      



100 

 

tri-decadal period as these systems are being displaced further to the west on the 

average. 

 

According to the A2 scenario a relatively drier period is expected for Groblersdal during 

the 2050s. Consistent increases can be expected for the month of February in terms of 

the number of occurrences exceeding 25 mm per day and the amount of rainfall 

corresponding to the 90th percentile, while 3-day rainfall totals are not expected to 

change much. The percentage of wet days will decrease slightly. It seems that the 

average summer dry-spell lengths are expected to increase across all three tri-decadal 

periods, while mean wet-spell lengths are expected to decrease slightly during the three 

summer months. The return period for a daily rainfall amount of 100 mm at Groblersdal 

increases to 30 years during the 2050s but remains at approximately 20 years 

throughout the remainder of the 21st century (judged against the median).  

 

With regard to all the rainfall indices discussed, the projected changes under the B2 

scenario closely resemble those predicted under the A2 scenario. In general it seems 

that the differences in the expected GHG forcing under the B2 scenario does not seem 

to affect any of the rainfall indices differently from the A2 scenario until the late 21st 

century (i.e. 2070 – 2099).  Thus, the downscaling suggests that the future rainfall 

characteristics are not particularly sensitive to the differences in GHG forcing as 

described by the A2 and B2 scenarios. Some of the biggest deviations of the B2 

projections (from the A2 projections) for the 2080s include: 

 a slight decrease in the total monthly rainfall for December and January; 

 an increase in the variance during February; 

 a decrease in the number of rainfall days with 25 mm or more in December; 

 a decrease in the maximum 3-day rainfall total for January; and 

 an increase in the maximum 3-day rainfall total for February;  

 the return period for a daily rainfall amount of 100 mm at Groblersdal increases 

to 25 years during the drier period centred on the 2050s but remains at 

approximately 20 years throughout the remainder of the 21st century (judged 

against the median). 
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From an agricultural point of view, the projected changes mentioned above may point to 

a decrease in groundwater replenishing events during the months of December and 

January while an increase is projected for February.  

 

It should be noted that the projected changes are often smaller than the model errors 

which implies that the downscaling model is simply not sensitive enough for these 

projected changes to be taken at face value. This means that detailed projections 

cannot be made with any useful confidence. However, the fact that the downscaling 

procedure provides similar results for the A2 and B2 scenarios suggests that it is at 

least to some extent robust and stable. 

 

 

7.2 Future Research 

 

In an attempt to overcome the problems arising from discontinuous daily rainfall – 

especially when downscaling to a single site – future research should attempt to 

downscale gridded rainfall from gridded predictor fields over a larger domain. Such an 

approach will however have to incorporate mathematically complex procedures such as 

principal component analyses in order to identify the key modes of variability contained 

in the large gridded variable fields. It may have the advantage that correlations will be 

sought between the spatial distribution of predictors and the spatial distribution of 

rainfall, rather than to seek for such relationships over an individual catchment and the 

near-local values of predictors. Consideration should also be given to incorporate more 

complicated non-linear statistical downscaling techniques in order to better account for 

the highly spatially and temporally heterogeneous and discontinuous nature of the daily 

rainfall over Southern Africa. For example, self-organising maps can be used to 

statistically downscale daily precipitation over South Africa as Hewitson and Crane 

(2006) reported reasonable results with such an approach.  

 

Future research should also include projections from an ensemble of models which may 

include other GCMs such as the Conformal-Cubic Atmospheric Model (C-CAM) which is 
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run at the modelling group of the Department of Geography, Geo-informatics and 

Meteorology at the University of Pretoria, South Africa (Engelbrecht et al., 2009). This 

will facilitate the use of a combined dynamical-statistical downscaling approach and 

candidate predictors that are perhaps more relevant to simulating daily precipitation. 

These may include stability indices and vertically integrated moisture flux convergence, 

as opposed to the relative humidity at one or two levels, and thicknesses rather than 

temperature or geopotential heights. Predictors describing the atmospheric stability 

were not available to this study. If found to be successful, that approach can also be 

tested on other study areas within South Africa. 
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APPENDIX A  PREDICTOR SCREENING    

 

Evaluation of potential predictors (refer to Section 6.1) 

Predictor B32D B20A B11K B12D B41A Total 
for QCs 

Total 
(Incl. Lags) 

Lines 
et al. 

(2005) 

Wilby & 
Wigley 
(2000) 

Maini  
et al. 

(2004) 

Hessami 
et al. 

(2008) 

mslp 1 1 1 1 3 7 12   ×     

l1mslp 1 1 1 1 1 5           

p850 1 1 1 1 1 5 10         

l1p850 1 1 1 1 1 5           

p500 1 1 1 1 1 5 13       × 

l1p500 2 1 3 1 1 8           

temp 2 3 1 2 1 9 14         

l1temp 1 1 1 1 1 5           

p__f 3 3 1 2 1 10 15       × 

l1p__f 1 1 1 1 1 5           

p__u 2 1 2 1 1 7 13 × ×     

l1p__u 1 1 1 2 1 6           

p__v 2 1 1 1 2 7 15 ×       

l1p__v 1 2 2 2 1 8           

p8_f 1 1 1 1 1 5 12         

l1p8_f 1 1 1 1 3 7           

p8_u 2 2 1 1 1 7 14         

l1p8_u 1 1 1 3 1 7           

p8_v 1 1 1 1 1 5 12     × × 

l1p8_v 1 1 2 1 2 7           

p__z 1 2 1 1 3 8 15         

l1p__z 1 1 3 1 1 7           

p_th 3 1 1 2 1 8 15         

l1p_th 1 1 1 1 3 7           

p_zh 1 1 1 1 1 5 15 ×       

l1p_zh 2 2 3 2 1 10           

p8_z 1 1 1 1 1 5 10     ×   

l1p8_z 1 1 1 1 1 5           

p8th 3 3 1 3 2 12 17         

l1p8th 1 1 1 1 1 5           

p8zh 1 1 1 1 1 5 10         

l1p8zh 1 1 1 1 1 5           

p5_f 1 1 3 1 1 7 12         

l1p5_f 1 1 1 1 1 5           

p5_u 1 1 1 1 1 5 10         

l1p5_u 1 1 1 1 1 5           

p5_v 3 2 3 3 2 13 18   ×     

l1p5_v 1 1 1 1 1 5           

p5_z 1 1 1 1 1 5 11 ×       

l1p5_z 1 1 2 1 1 6           

p5th 1 1 1 1 1 5 10   ×     

l1p5th 1 1 1 1 1 5           

p5zh 1 1 1 3 2 8 15 ×       

l1p5zh 1 3 1 1 1 7           

rhum 1 1 1 1 1 5 10     ×   

l1rhum 1 1 1 1 1 5           

shum 1 1 1 1 1 5 15 × ×     

l1shum 3 2 2 1 2 10           

r850 1 3 3 3 2 12 17 ×   ×   

l1r850 1 1 1 1 1 5           

r500 3 3 3 3 3 15 20     × × 

l1r500 1 1 1 1 1 5           
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Explanation of abbreviations used for potential predictors (refer to Section 6.1) 

Abbreviation Level Climatic Element Lag 

mslp Mean sea level Pressure none 

l1mslp Mean sea level Pressure 1-day 

p850 850 hPa Geopotential height none 

l1p850 850 hPa Geopotential height 1-day 

p500 500 hPa Geopotential height none 

l1p500 500 hPa Geopotential height 1-day 

temp Surface Temperature none 

l1temp Surface Temperature 1-day 

p__f Surface Geostrophic airflow none 

l1p__f Surface Geostrophic airflow 1-day 

p__u Surface Zonal airflow component none 

l1p__u Surface Zonal airflow component 1-day 

p__v Surface Meridional airflow component none 

l1p__v Surface Meridional airflow component 1-day 

p8_f 850 hPa Geostrophic airflow none 

l1p8_f 850 hPa Geostrophic airflow 1-day 

p8_u 850 hPa Zonal airflow component none 

l1p8_u 850 hPa Zonal airflow component 1-day 

p8_v 850 hPa Meridional airflow component none 

l1p8_v 850 hPa Meridional airflow component 1-day 

p__z Surface Vorticity none 

l1p__z Surface Vorticity 1-day 

p_th Surface Wind direction none 

l1p_th Surface Wind direction 1-day 

p_zh Surface Divergence none 

l1p_zh Surface Divergence 1-day 

p8_z 850 hPa Vorticity none 

l1p8_z 850 hPa Vorticity 1-day 

p8th 850 hPa Wind direction none 

l1p8th 850 hPa Wind direction 1-day 

p8zh 850 hPa Divergence none 

l1p8zh 850 hPa Divergence 1-day 

p5_f 500 hPa Geostrophic airflow none 

l1p5_f 500 hPa Geostrophic airflow 1-day 

p5_u 500 hPa Zonal airflow component none 

l1p5_u 500 hPa Zonal airflow component 1-day 

p5_v 500 hPa Meridional airflow component none 

l1p5_v 500 hPa Meridional airflow component 1-day 

p5_z 500 hPa Vorticity none 

l1p5_z 500 hPa Vorticity 1-day 

p5th 500 hPa Wind direction none 

l1p5th 500 hPa Wind direction 1-day 

p5zh 500 hPa Divergence none 

l1p5zh 500 hPa Divergence 1-day 

rhum Surface Relative humidity none 

l1rhum Surface Relative humidity 1-day 

shum Surface Specific humidity none 

l1shum Surface Specific humidity 1-day 

r850 850 hPa Relative humidity none 

l1r850 850 hPa Relative humidity 1-day 

r500 500 hPa Relative humidity none 

l1r500 500 hPa Relative humidity 1-day 
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