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CHAPTER 1

INTRODUCTION

1.1 WHAT IS STRUCTURAL CHANGE?

It is generally recognised that a physical entity experiences structural change as it evolves

over time, e.g. the society and its economic behaviour changes over time and an economic

policy that was once ineffective may become effective.

In many fields of empirical science, theories have been proposed arguing that a behavioral

relat.ionship changes over time. Such a change occurs, e.g. in the demand and supply char-

acteristics of a product over its life cycle. In the new product stage, demand may have high

income elasticity and low price elasticity, but in the standardized stage the price elasticity

increases while income elasticity decreases. Within each stage, however, the demand rela- .

tienship may be stable enough to be described by regression with constant paramet.ers. In

such a case, a switching regression model may be appropriately used.

On the other hand, data with considerable noise may suggest the use of a regression model

in which parameters follow random walk patterns or some steady and systematic changes

over all the sample periods. There are many ways in which parameters of regression models

are assumed to change.

An example of structural change is pointed out by Nordhaus and Samuelson (1985). In the

late 1940's many Keynesian economists emphasized the role of fiscal policy, i.e. changes in

taxes and government expenditures, as the key to controlling the business cycle and these

advocates of fiscal policy tended to slight the role of money. In the 1948 edition of a leading

college textbook on economics this view was reflected with the words: "Today few economists

regard Federal Reserve monetary policy as a panacea for controlling the business cycle". The

1985 edition of the textbook, thirty-seven years later, states: "Money is the most powerful

and useful tool that macroeconomic policy makers have at their disposal" and "in the U.S.

today, the central bank (Federal Reserve system) is the most important factor in the making

of macroeconomic policy" .
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Structural change may be defined as a change in one or more parameters of the model in

question. In the example of the effectiveness of monetary policy above, we may observe that

the once significant interest-rate variable in the investment function or in the demand-for-

money question has changed to insignificant.

Given data then, we need to make inferences on join points (or the points at which parameters

change) if they are unknown and on parameters within each regime. Inferences on both

join points (change-points) and parameter changes are important, because they will provide

evidence on which a particular theory is correct or not. Furthermore, poor forecasts of

econometrics models may result if the models do not account for structural shift.

Bayesian procedures are applied to solve inferential problems of structural change. Among

the various methodological approaches within Bayesian inference, emphasis is put on the

analysis of the posterior distribution itself, since the posterior distribution can be used for

conducting hypothesis testing as well as obt.aining a point estimate.

Diagrammatically, the statistical inference process can be described as follows:

MATHEMATICAL MODEL

j(XIO),O E n
1

Prior Information

II(O),O E n
1

Sample Data

X = (X1, ... ,Xn)

1
Posterior Distri bu tion

II(OIX),O E n
1

Posterior Inferences

/ 1 '\,
Estimation Test of hypothesis Prediction
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1.2 HISTORY OF STRUCTURAL CHANGE IN STATISTICS

For some 40 years beginning with Page, statisticians have been studying and developing

probability models that account for a changing distribution of random variables. The goal

has been to develop inference procedures that will estimate the parameters, test hypothesis

about the parameters and forecast future observations.

Page (1954, 1955, 1957) found methods for detecting change in the distribution of a sequence

of independent random variables and these tests are based on cumulative sums called cusums.

Page's objective was to find efficient methods for quality control and his approach was non-

parametric. Quandt (1958) devoted attention to the problem of fitting lines or curves to data

which suggest abrupt changes in parameter values from one range of the independent variable

to another. He suggested tests of the hypothesis that a sudden change in behaviour has

occurred at an estimated join point and described maximum likelihood estimation procedures

for the model parameters and the join point.

In the next decade there was a burst of activity which was based mostly on paramet.ric

statistical procedures. Chernoff and Zacks (1964) and Kander and Zacks (1966) studied

sequences of normal random variables and found a Bayesian test to detect a change in the

mean. Other contributions have been made by Sprent (1961), Robison (1964), Hudson (1966)

and Gardner (1969). Bhattacharya and Johnson (1968) determined the sampling properties

of the t.est.s found by Chernoff and Zacks (1964) and Kander and Zacks (1966).

During the late 1960's and early 1970's, Hinkley (1969, 1971) studied structural change

in sequences of random variables and in linear regression models, and he employed a non-

Bayesian parametric method. For example, to detect change, the likelihood ratio test was

used and maximum likelihood was used for estimating the parameters of binomial and normal

sequences. The asymptotic properties of these procedures were also studied by him. His work

appears to have stimulated the study of structural change.

In one of the earliest Bayesian contributions, Bacon and Watts (1971) introduced the transi-

tion function to model "smooth" changes in the regression function. Prior to the Bacon and

Watts study, the change was represented by a shift point m = 1,2, ... ,n - 1, where n is the
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number of observations. That is, suppose that the first m random variables Xl, X2,···. Xm

have a common distribution and the remaining Xm+l, ... ,Xn have another (distinct) com-

mon distribution, where m = 1,2, ... ,n - 1. Thus the change-point indexes where or when

the change occurs. The transition function allows one to model structural change, allowing

the number of the change (either abrupt or smooth) to be incorporated into the model. Bacon

and Watts (1971) found exact small-sample inferences for the parameters of the transition

function and their method was to be adopted in later research.

Motivated by Bacon and Watts (1971), the decade of the 1970's was a time of many Bayesian

contributions. Structural change of univariate and multivariate linear models received most.

of t.he attention. Ferreira (1975), Holbert. and Broemeling (1977) and Chin Choy and

Broerneling (1980) all studied two-phase regression problems. The observations are the

}i's and the X/s are the corresponding values of the independent variable. Assuming a

normal distribution for the errors, two problems are solved. First, assuming that. a change

(m :S n - 1) has (or will) occurred, the parameters are estimat.ed by finding their marginal

posterior distribution. Secondly, detecting a change in the parameters is examined by testing

the hypothesis 1 :S m :S n- 1. The test is based on the marginal posterior distribution of the

change-point. Based on the Bayesian approach, Holbert (1973) and Holbert and Broemeling

(1977) assigned a uniform proper prior distribution to the change-point m and an improper

prior t.o the unknown regression paramet.ers. They derived the post.erior distribution of

TrI for cl number of cases. Ferreira (1975) also assigned a vague-type prior distribution to

the unknown regression paramet.ers and assigned three different. prior distributions for the

change-point. m and the regression paramet.ers. The Chin Choy and Broemeling (1980) pa-

per gives a Bayesian way to detect a future shift. in the parameters of a general linear model

and the test. is contrasted to a sequential test of Smith (1975).

Anot.her import.ant. contribution to structural change was the intervention analysis of Box

and Tiao (1975), who found a way to study changes in the mean of a time series represented

by an ARrvIA process. They represented the change by a transfer function which allows a

very general class of intervent.ion effects, and the st.atistical analysis is based on the time

series techniques pioneered by Box and Jenkins (1970).
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In the 1980's, l'vlenzefricke (1981) examined a changing linear model, with a change in the

precision parameter at an unknown change-point, from the Bayesian viewpoint. Hsu (1982)

examined a linear model that exhibited changes in regression parameters and precision at

an unknown change-point. He assumed that the observations follow an exponential power

distribution and used numerical integration to evaluate the posterior distributions of the

regression and precision parameters. Salazar (1980, 1982) considered changes in the mul-

tivariate linear model using a change-point parameter. Moen (1983) developed a detailed

analysis of the multivariate linear model and Tsurumi, et al. (1984) developed a gradual

switching multivariate regression model with stochastic constraints.

Moen, Salazar and Broemeling (1985) generalized the work of Chin Choy and Broemeling

(1980), who investigated the change in the regression parameters of univariate linear models.

They studied the case in which the assumption was made that there has been a single shift in

the regression matrix of a multivariate linear model at some unknown point m. Broemeling,

et al. (1987) discussed Bayesian inference of two-phase linear multiple regression models,

presenting Bayesian inference of two-phase multivariate linear regression models. They also

reviewed the Bayesian analysis of multivariate regression models, first with natural conjugate

priors and then with diffuse priors. They also made a posterior analysis of a join point and

parameter shift.

Till the 1990's, very few studies on changing linear models consider the problem of a change in

the precision parameter at an unknown change-point. Ng (1990) used the Bayesian approach

to examine the linear model in which both the mean and the precision change exactly once at

an unknown point in time. Furthermore he also generalized the results of Menzefricke (1981)

and obtained the Bayesian predictive distribution of k future observations in a closed form, as

a mixture of multivariate t. Wang and Lee (1993) considered a Bayesian approach to detect

a change-point in the intercept of simple linear regression. The Jeffrey's non-informative

prior is employed and compared with the uniform prior in Bayesian analysis.

Most of the mentioned analyses are under the assumption of exactly one change-point.

Complications arise due to the changing dimensions of the parameter space if the number of

change-points are unknown. Barryand Hartigan (1992) propose a product partition model
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for multiple change-points. Groenewald (1993) considered a general Bayes procedure for

the examination of possible change-points in the linear model. Provision is made for the

possibility of no, one or more than one change-point under the assumption of homogeneity

of error variance. In linear regression, certain components which may be the cause of a

change-point, can be examined. His results are in terms of posterior probabilities over a

class of conjugate priors.

1.3 BAYES FACTORS

The Bayesian approach to hypothesis testing was developed by Jeffreys (1935, 1961) as

a major part of his program for scientific inference. The centerpiece was a number, now

called the Bayes factor, which is the posterior odds of the null hypothesis when the prior

probability on the null is one-half. Jeffreys was concerned with the comparison of predictions

made by two competing scientific theories. In his approach, statistical models are introduced

to represent the probability of the data according to each of the two theories and Bayes'

theorem is used to compute the posterior probability that one of the theories is correct.

According to Kass and Raftery (1993), often lost from the controversy however, are the

practical aspects of the Bayesian methods: how conclusions may be drawn from them, how

they can provide answers when non-Bayesian methods are hard to construct, what their

strengths and limitations are.

Kass and Raftery (1993) begin with data D assumed to have arisen under one of the two

hypotheses HI and H2 according to a probability density pr(DIHl) and pr(DIH2). Given a

priori probabilities pr(H1) and pr(H2) = 1 - pr(Hl), the data produce aposteriori probabil-

ities pr(H1ID) and pr(H2ID) = 1 - pr(H1ID). Since any prior opinion gets transformed to

a posterior opinion through consideration of the data, the transformation itself represents

the evidence provided by the data. In fact, the same transformation is used to obtain the

posterior probability, regardless of the prior probability. Once they convert to the odds scale

(odds = probabilityj(l - probability)), the transformation takes a simple form. From Bayes'

Theorem they obtain
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so that
pr(HIID) pr(DIHI)pr(HI)

-
pr(H2ID) pr(DIH2)pr(H2)'

and the t.ransformation is simply multiplication by

(1.1 )

which is the Bayes factor.

Thus, in words, posterior odds = Bayes factor x prior odds, and the Bayes factor is the

ratio of the posterior odds of HI to its prior odds, regardless of the value of the prior odds ..

(The terminology is apparently due to Good (1983) who attributes the method to Turing in

addition to, and independently of, Jeffreys at about the same time.) When the hypotheses

HI and H2 are equally probable a priori so that pr(HI) = pr(H2) = ~, the Bayes factor

is equal to the posterior odds in favor of HI' The two hypotheses may well not be equally

likely a priori, however.

In the simplest case, when the two hypotheses are single distributions with no free parame-

ters, Bl2 is the likelihood ratio, In other cases, when there are unknown parameters under

either or both of the hypotheses, the Bayes factor is still given by (1.1) and in a sense it

continues to have the form of a likelihood ratio. Then the densities pr(DIHk) (k = 1,2) are

obtained by integrating over the parameter space, so that in equation (1.1),

(1.2)

where fh is the parameter under Hk, II(BkIHk) is its prior density and pr(DIBk, Hk) is the

probability density of D given the value of Bk, or the likelihood function of B (Bk may be a

vector with dimension dk).
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Note that the prior distributions I1(BkIHk), k = 1,2 are necessary, although considered both

good and bad. Good, because it is a way of including other information about the values

of the parameters. Bad, because these prior densities may be hard to set when there is no

such information.

The quantity pr(DIHk) in (1.2) is the marginal probability of the data, since it is obtained by

integrating the joint density of (D, Bk) given D over Bk, It is also the predictive probability

of the data, i.e. the probability of seeing the data that actually were observed, calculated

before any data became available. It is also sometimes called a marginal likelihood or an

integrated likelihood. Note that, as in computing the likelihood ratio statistic, but unlike

in some other applications of likelihood, all constants appearing in the definition of the

likelihood pr(DIBk, Hk) must be retained when computing B12 (B12 is closely related to the

likelihood ratio statistic, in which the parameters Bk are eliminated by maximization rather

t.han by integration).

In the Bayesian approach to model selection or hypothesis testing with models or hypotheses

of differing dimensions, it is typically not possible to utilize standard non-informative prior

dist.ributions which has led Bayesians to use conventional proper prior distributions or crude

approximations to Bayes factors (e.g. the Bayesian information criterion (BIC) developed

by Schwarz (1978)). So Berger and Pericchi (1995) introduced a new criterion called the

int.rinsic Bayes factor, which is fully automatic in the sense of requiring only standard non-

informative priors for its computation, and yet seems to correspond to very reasonable actual

Bayes factors. The criterion can be used for nested or non-nested models, and for multiple

model comparison and prediction. From another perspective, the development suggests a

general definition of a "reference prior" for model comparison.

Berger and Pericchi (1995) proposed a completely general method of testing and model

selection that. will be argued t.o be essentially equivalent to the conventional proper prior

approach (the convent.ional prior approach of Jeffreys (1961)), but without the need to deter-

mine a reasonable proper prior. Unlike the BIC criterion, which starts with an asymptotic

approximation to the Bayes factor and t.hen simply ignores the term involving the prior,

Berger and Pericchi's (1995) approach can be thought of as automatically "correcting" BIC
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by inserting a reasonable value for the term that BIC ignores.

So Berger and Pericchi (1995) considered models Ml, M2, ... , Mp, with the data X having

density 1i(xIBi) under model Mi. The parameter vectors Bi are unknown and are of dimen-

sion k; Bayesian model selection proceeds by selecting prior distributions ITi(Bi) for the

parameters of each model, together with prior probabilities Pi of each model being true. The

posterior probability that Mi is true is then

where Bji) the Bayes factor of M, to Mi, is defined by .

where mj (x) is the marginal or predictive density of X under lvIj.

Computing Bji requires specification of ITi(Bi) and ITj(Bj). Often in Bayesian analysis, one

can effectively use non-informative (or default) priors ITt' (Bi)' Three common choices are

the "uniform" prior ITy(Bi) (X I, the Jeffreys prior ITf(Bi) (X (det(Ii(Bi)))~, where Ii(Bi) is

t.he expected Fisher information matrix corresponding to Mi, and the reference prior ITf (Bi),

definit.ions of which can be found in Bernardo (1979) and Berger and Bernardo (1992). Using

any of the ITt' in (1.4) would yield

B f\I = mf ( x) = ,,-1-;;-1_j_(x_I_BJ_')_IT_f_(B_J_)_dB_j
Jt mt'(x) 1h(xIBi)ITf(Bi)dBi

(1.5 )

The difficulty with this solution is that the ITt' are typically improper and hence defined only

up to arbitrary constants ei. Hence B~ is defined only up to ~, which is itself arbitrary.

A common solution to this problem is to use part of the data as a training sample. Let x( €)

9
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denote the part of the data to be so used and x( -e) represent the remainder of the data.

The idea is that x ([) will be used to convert the IIiv (0;) to proper posterior distributions

where fi(x(£)IO;) is the marginal densit.y of X(£) under M; and

The idea is to then compute the Bayes factors wit.h the remainder of the data, x( -e), using

the II;"'(O;lx(£)) as priors. The result is easily shown to be

J fj( x( -e) 10j, x(£) )II7 (Ojlx(£) )dOj

NJ f;(x( -£)10;, x(£)) II(O;lx(£))dO;
,

= Bf;' B{j(x(£)),

where

N m;'" (x(£))
B;j(x(£)) = mf(x(£))'

Clearly (1.8) removes the arbit.rariness in the choice of constant. multiples of the II;"': the

arbit.rary ratio Z that. multiplies Bf; would be cancelled by the ratio ~ that would then

multiply B{j(x(£)). Note that, while the first motivating expression in (1.8) seems t.o require

the conditional distribution of x( -e) given x(£), t.he second expression only utilizes t.he

typically much simpler marginal densities of x(£).

The above use of a training sample makes sense only if the m;'" (x(£)) in (1.7) are finite. This

is formalized in a definit.ion.

10
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Definition: A training sample, x(.e), will be called proper ifm[V(x(£)) < 00 for all JI.{i, and

minimal if it is proper and no subset is proper.

The training sample idea has been informally used many times. More formal developments

of the idea can be found in Lempers (1971), Atkinson (1978), Geisser and Eddy (1979),

Spiegelhalter and Smith (1982) and Gelfand, Deyand Chang (1992), although not all these

works utilize the idea with ordinary Bayes factors. Other references and the general asymp-

totic behavior of training sample methods can be found in Gelfand and Dey (1993). Ait.kin

(1991) can also be considered to be a training sample method; it takes the entire sample x as

a training sample to obtain rr[V(Oilx) and then uses this as the prior in (1.8) to compute t.he

Bayes factor. This double use of the data is, of course, not consistent. with usual Bayesian

logic and the method violates the asymptotic criterion rather severely.

Independently of the work of Berger and Pericchi (1995), De Vos (1993) has proposed a

training sample method for linear models that is similar to their proposal.

For a given data set x, there will typically be many minimal training samples. Let

XT = {x(l), x(2), ... , x(L)}

denote the set of all minimal training samples, x (.e). Clearly the Bayes fact.or B21 (£), as

defined in (1.8), will depend on choice of the minimal training sample. To eliminate this

dependence and increase stability, a natural idea is to average the B21 (.e) over all x(.e) EXT.

This average can be done either arithmetically or geometrically, leading to t.he arithmetic

intrinsic Bayes factor (AIBF) and geometric intrinsic Bayes fact.or (GIBF) defined respee-

tively by

AI 1 ~ () N 1 ~ N ( ()B21 = L L B21 .e = B21 . L L B12 x .e ),
C=l C=l

(1.10)

1 1

Bg! ~ (Q B21(f1)' ~ Bft (Q B[;(X(f))r (1.ll)
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where the Bt;(x(P)) are defined in (1.9). Note that Bf/ :::;BN, since the geometric mean is

less than or equal to the arithmetic mean (for positive variables). Thus Bf/ will favor the

simpler (nested) model to a greater extent than will BN. Also note that Bfl = y}rr and
21

not as in (1.10) with the indices reversed. The asymmetry arises because of Ml being nested

within M2. For Bf./ there is no problem, as reversing the indices in (1.11) clearly results in

ab· Berger andPericchi (1998) also define a median intrinsic Bayes factor (MIBF).
21

O'Hagan (1995) advocated the fractional Bayes factor (FBF), a new variant of the partial

Bayes factor, on grounds of consistency, simplicity, robustness and coherence. In general,

the partial Bayes factor divides the data into two parts, x = (y, z). The first part y is used

as a training sample to provide information about ()l and ()2 and the second part z is used

for model comparison. To avoid the arbitrariness of choosing a particular y or having to

consider all possible subsets of a given size, O'Hagan defined a simplified form of the partial

Bayes factor as follows. Let b = r;. If both m and ti are large, the likelihood fi(yl()i) based

only on the training sample y will be approximate to the full likelihood fi(xl()i) raised to

the power b. The FBF is then

(1.12)

where

(1.13)

If TIi(()i) = Cihi(()i), hi a function whose integral over the ()i-space converges, the indetermi-

nate constant ei cancels out, leaving

(1.14)

So O'Hagan (1995) proposes using a fractional part of the entire likelihood, [f( xl())jb, instead

of a training sample. This tends to produce a more stable answer than use of a particular
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training sample, but will fail the asymptotic criterion, unless b cx ~ as the sample size n

grows. The behavior of fractional Bayes factors for such b is well worth study, although it

appears to be quite difficult to decide on a specific choice of b. O'Hagan suggested b = ~,
where m is the minimal sample size (when it is unique). Other suggestions are In and IOg~n).

Another approach is the imaginary training sample device of Spiegelhalter and Smith (1982).

The basic idea, a variation on a theme of Good (1947), is to imagine that a data set. is

available which: (1) involves the smallest possible sample size permitting a comparison of

Afo and Nh and (2) provides maximum possible support for Mo. On the strength of (2),

such a data set would lead to Bal > 1 (data have provided evidence in favour of 1110). But

on the basis of (1), one could only have Bal = 1 + E, where E > 0 is rather small (that

is, such evidence as exists must be very weak, since the data set is necessarily very small).

Suppose that Eo, El denote the design matrices for regression models 1110,1111 occurring in

the "thought experiment" generating the imaginary training sample, which leads to an F-

statistic value F = 0 (giving maximum support to Mo). Spiegelhalter and Smith (1982)
1

deduce that ~ = [:~i~~:r2.The device of an imaginary training sample therefore provides

a general solution to the problem of assigning a value to the hitherto undefined ratio of

constants. Booth and Smith (1982) applied this to change-point analysis.

In t.his study we will eliminate hyperparameters by integrating out or by introducing limits

where possible or by determining partial Bayes factors. Some of the disadvantages of the

Intrinsic Bayes factor (IBF) is the definition of a minimal sample in change-point analysis,

incoherency, especially with the Arithmetic Intrinsic Bayes factor (AIBF), and that more

computer intensive calculations is required. Berger's solution to the coherency problem is to

use weighted averages.

The fractional Bayes factor looks better on grounds of coherency, robustness, simplicity and

consistency and the problem of a minimal sample is not present, except that the posterior

probabilities can sometimes be very sensitive to the choice of the training fraction b, as will

be shown in some of the examples.

Another version of the partial Bayes factor is the "Posterior Bayes Factor" (PBF), suggested
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by Aitkin (1991). Here the marginal likelihood of the data is replaced by the expected value,

or posterior mean of the likelihood, with expectation taken with respect to the posterior

distribution.

Thus the Bayes factor in favour of model Ml when compared to model M2, is given by

(1.15)

where

Lj = j fJ(xIOj)I1(Ojlx)dOj

_ j[f(xIOj)fI1(Oj)dOj

- J j(xIOj)I1(Oj)dOj

(1.16)

(1.17)

One of the main criticisms against the PBF is the reuse of the data (see discussion of Aitkin's

paper), once for estimation, and then for model comparisons. We will not make use of this

method further on, except in the illustrative example.

Illustrative Example 1

To illustrate and compare the partial Bayes factors mentioned in the previous section, we

will consider the simplest example of a change-point and calculate the following five partial

Bayes factors:

(i) Improper priors, (ii) Imaginary training sample, (iii) Fractional B.F., (iv) Intrinsic BF

and (v) Posterior BF.

Let Xl, X2, ... , Xn be a sequence of normal random variables with known variance (J'2 = 1.

Under model !vlo: Xi rv N(J.Lo, 1), i = 1, ... , n, and under model

14



Xi '" N (J.LI, 1);

Xi '" N(J.L2, 1);

i = 1, ... , k
(l.18)

i=k+l, ... ,n,

where k is fixed.

"'le assume the vague improper prior, IT(J.Lj) cx: 1, j = 0,1,2 throughout the example.

The marginal likelihood under lllJo is then

(l.19)

and under Nh,

(l.20)

where
n k n

S2 = 2:)Xi - X)2, S? = 2:)Xi - x1)2, si = L (Xi - x2f
i=l i=l i=k+l

(i) Just using the improper prior, the Bayes factor is

1

B mo [k(n - k)]2 (2 )_1 _lk(n-kl(Xl_X2)2
Ok = - = n 2 e 2 tt •

mk n
(l.21)

(ii) For the imaginary training sample method, the minimal sample is ti = 2 with k = 1,

while perfect support for Mo means that Xl = X2. In this case the Bayes factor should

be approximately one, but according to (l.21) we have BOk = (2n)-!, so let

(l.22)
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(iii) The fractional Bayes factor is defined as

(1. 23)

with

and similarly for m%. For b = ~ (the minimal sample size over n), we get

1

F
(
n) '2 (n-2)k(n-k) (- "")2B - Xl-X2

Ok = "2 e 2n< . (1.24)

(iv) For the arithmetic intrinsic Bayes factor we have

where

(1.25)

and BkOj(€) is the Bayes factor calculated from two observations, xlj before or at k,

and X2j after k, and j = 1, ... ,L indexes all possible pairs (Xlj, X2j). Then

(1.26)

where

(1.27)

Then the AIBF is
1

\J [2k(n-k)]'2 _k(n-k)(x_x)2 l~ lS2(f)B~k = e 2n 1 2 . L G e 2} .

n j=l
(1.28)

Similarly for t.he Geomet.ric and Median IBF's.
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(v) The Posterior Bayes factor follows from equations (1.15) to (1.17) and is given by

P k(n-k) (- -)2
B --- XI-X2Ok= e 2n . (1.29)

All these Bayes factors are based on the quantity

d2 _ k (n - k) (_ _) 2
- Xl - X2 ,

ti
(1.30)

and when the data supports model Mo perfectly, d2 o and we would expect the

Bayes factor to be large, increasing with n.

When d2 = 0, we have the following:

maxBOk = [
k(n - k)] ~

2rm

[k(n; -:
, F _ (n) ~maxBOk - "2

1

[
2k(nn',-k)]2 L 1maxBói: = i L e2Sj(e)

j=l

and
maxBt; = 1. (1.31)

Bt; is always smaller or equal to one and obviously unrealistic. Further, Bt;! > BÓk

unless all observations in the sequence are equal, and BÓk > Bak. Also notice that the

maximum value of BÓk_ does not depend on the position of the change-point, while Bt~

still depends on the variation between observations.
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From a frequentist viewpoint, it is interesting to examine the long-term properties of

these Bayes factors. For d given in (1.30), the expectation under model Mk is

(1.32)

where Ó = Ml - J.L2·

The expected values of the Bayes factors are then as follows:

1

E[B 1
- [k(n - k)]2 -1 _ló2

Ok - 7r e 4 ,. 47rn

and

(1.33)

The expect.ation of Bó~ is too complex, but is larger than that of B6k'

Figure 1.1 shows the four Bayes factor expectations from (1.33) as a function of

Ó = J.Ll - J.L2 for n = 100 and k = 50. The values are surprisingly low for Ó = 0 with the

maximum of BÓJc = 5.025. On the other hand, for Ó > 0, the Bayes factors decrease

very slowly, showing a difficulty to discriminate between the two models. The ordinary

Bayes factor and Posterior Bayes factor are obviously too low for Ó close to zero.

Illustrative example 2

When (J2 is unknown, the partial Bayes factors give intuitively better results. Consider the

same two models as before, with vague prior, I1(J.Lj, (J2) (X ;2' j = 0, 1,2.
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(i) The ordinary Bayes factor is

1

B - _1. [k(n - k)]2 r(n;-l) (S?+Si)¥
Ok-Jr 2 r(n-2) n-l·n -2- (S2)--r (1.34)

(ii) The imaginary training sample method. With n = 3, k = 1 and S2 = Sf+Si (Xl = X2)

we have

1 [2] ~ 2-1.
BOk =:; 3 [S 1 2.

For this to be equal to one, our Bayes factor should be

1

BI _ 1. [3k(n - k)]2 r(n;-I) [sr+si] n;-2
Ok - Jr2 ') r(n-2) S2 .~n 2

(1.35 )

(iii) For the fractional Bayes factor with b = ~we have

r (n-l) 2 2 n-3
BF = Jr~ -2- [SI + S2] 2

Ok r (n;2) S2 (1.36)

(iv) The Posterior Bayes factor is

1

P . _.1. [k(n - k)]2 r(n-1.) (S2+S2)"-1B - Jr 2 2 I 2
Ok - I n r(n-l) (S2)"-1 . ( 1.37)

The Intrinsic Bayes factor will not be considered here.

These Bayes factors depend on the ratio between S2 and Sf + sr The maximums, when

S2 = Sf + Si, is

r (n-l)
F 1. 2

maxBOk = Jr2 r (n;2) ,

19



[
3k(n - k)] ~maxB6k = max Bt,.. ---'--.----'-

2n

and

r (n - ~) r (n;2)
max BP. = ma..xB . -

Ok Ok I'(n _ l)f (n;l) (1.38)

Not.ice that max BOk and max BÓ!c depend on S2, and that maxB6k > maxBÓk for n > 3,

whieh is the opposite of what happened in example 1 (see figure 1.1).

In Figure 1.2 the maximum Bayes factors are plotted as a function of n when k = ~ and

S2 = 1. Now the B6k is the highest while BÓk is the most conservative. The other two of

course are decreasing functions of S2.

The above two simple examples illustrate the widely different answers that can be obtained,

depending on the partial Bayes factor used. All claimed to be reasonably "objective", but

the interpretation of the weight of evidence in favour of a particular model clearly differs,

and this can change from one application to the next.

The purpose of this study is the Bayesian detection and estimation of change-points in a

variety of statistical models. \Ve try to be as objective as possible so that the result can be

considered as default, with little subjective prior input. One way of doing this is by use of

partial Bayes factors. \Ve will consider only the intrinsic and fractional Bayes factors for this

purpose, as they are applicable in most cases and seem to give the most sensible answers

in a variety of conditions. In the conclusion some of their advantages and disadvantages

experienced during this study will be discussed.
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Figure 1.1: Expected Bayes factors as a function of 6 = 1-"1 - /12 for n = 100,k =

50. (1) Usual Bayes factor, (2) Imaginary training sample, (3)

Fractional Bayes factor, (4) Posterior Bayes factor.
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Figure 1.2: Maximum possible Bayes factor as a function of n for k = ~, S2 = 1

(1) Usual Bayes factor, (2) Imaginary training sample, (3) Frac-

tional Bayes factor, (4) Posterior Bayes factor.

In chapter 2 the multivariate normal model will be examined with a change in the mean

vector, a change in the mean vector and covariance matrix and a change in only the covariance

matrix. We will also consider component analysis, multiple change-points, Bayes factors and

the univariate case. Four illustrations will be used in chapter 2. In chapter 3 changes in the

linear model will be examined, with seven illustrations, while changes in some other models

(with eleven illustrations) will be considered in chapter 4. The hazard rate will be studied

in chapter 5 (with two illustrations), while a conclusion, a summary of other methods and

applications in the literature and possible extensions will be given in chapter 6.
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CHAPTER 2

CHANGES IN THE NORMAL MODEL

2.1 INTRODUCTION

The problem of a change in the mean of random variables at an unknown time point has been

addressed extensively in the literature. Broemeling (1974) considered a Bayesian analysis of

a univariate normal model with known or unknown variance where (1) both the means /-LI

and /-L2 are known, (2) /-LI is known and /-L2 i~ unknown and (3) both the means are unknown.

Holbert and Broemeling (1977) also considered a change in the normal means and estimated

the change-point in a sequence of independent random variables from a Bayesian viewpoint.

Theoretical results and numerical examples were given.

Lee and Heghinian (1977) also made a Bayesian study about a shift in the mean of a set

of independent univariate normal random variables with unknown common variance. The

marginal and joint posterior distributions of the unknown time point and the amount of shift

are derived. Booth and Smith (1982) looked at changes of the mean in the univariate as well

as the multivariate normal sequence and Broemeling and Tsurumi (1987) also considered

a change in the mean (both /-LI, /-L2 unknown) of normal sequence, both from a Bayesian

viewpoint. Smit.h (1975) considered a Bayesian analysis of a univariate normal case with

a changing mean where (1) all the parameters are known, (2) /-LI known, /-L2 unknown and

the reciprocal of the variance known, (3) /-LI known, /-L2 unknown and the reciprocal of the

variance unknown and (4) all the parameters unknown.

Within a non-Bayesian framework, this same problem of a changing mean has been dis-

cussed by Chernoff and Zacks (1964), Kander and Zacks (1966) and Sen and Srivastava

(1973), although the emphasis and the objectives differed from those in the paper of Smith

(1975). More non-Bayesian work on this problem includes that of Page (1954, 1955, 1957)

using cumulative sums, and Hinkley (1970), using asymptotic arguments based on maximum

likelihood estimates and likelihood ratio tests. Gardner (1969) considered the problem of

detecting changes in the mean of independent unit variance normal random variables when
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the times of change are assigned an apriori distribution. Two situations were considered:

The unknown amounts of change are (1) arbitrary, or (2) successively plus and minus the

same unknown quantity. Sen and Srivastava (1975) and Bhattacharya and Brockwell (1976)

also studied the problem of a change in the mean of a univariate normal distribution, all

from non- Bayesian viewpoints.

The problem of a change in both the mean and variance as well as just a change in the

variance at an unknown time point has, however, been covered less widely. Smith (1975)

considered the normal case and gives posterior probabilities for the point in time when both a

variance change and mean change occurs. Menzefricke (1981) also used a Bayesian approach

to analyze a sequence of independent normal random variables in which the precision may

have been subjected to one change at an unknown point in time. Posterior distributions

were found both for an unknown point in time at which the change occurred and for the

magnitude of the change.

From a non-Bayesian viewpoint, Hsu (1977,1979) examined the problem of testing whether

there has been a change in the variance at an unknown time point by using sampling theory

and applied the theory to stock-return data. It was of interest whether the uncertainty in

the stock market was increased at some point during the Watergate events, an increase in

uncertainty being measured by an increase in variance. Hsu (1977, 1979) extended the work

of Miller, Wichern and Hsu (1971), who gave a Bayesian treatment of a similar problem.

These papers, however, assumed that the mean of the process is known. A paper by Davis

(1979) dealt with robust methods for the detection of a change in the variance.

In this chapter we want to find the marginal mass function of k, given the data, i.e. 1r(kj X),

and the posterior distributions of the parameters in the multivariate normal distribution for

no, one or more than one change-point for the cases where just the mean changes, the mean

and variance change and just the variance changes. We will also consider component analysis

of the mean vector and covariance matrix and determine Bayes factors for the three cases.

The univariate case will also be looked at, including autocorrelation for this case.

Finally, we will draw comparisons between our results and some of the results from the ref-
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erences cited above and look at a few applications.

2.2 EXACTLY ONE CHANGE-POINT IN THE MULTIVARlATE MODEL

2.2.1 A CHANGE IN THE MEAN

2.2.1.1 VARIANCE ~ KNOWN

Broemeling (1974) considered the univariate normal sequence with common known variance

(J2 = 1 and suppose that the first k(k E In-I) observations have mean JLI and the remaining

n - k have mean JL2, where -00 < JLI < JL2 < 00. With JLI known, the improper vague

prior ITO(JL2) cx: const(JL2 E (JLI, (0)) and IIo(JL2) = 0 otherwise, is used. He estimated the

change-point k by getting the posterior distribution II(k) by considering the cases where (1)

both means are known, (2) JLI is known and (3) both means are unknown. Here we consider

a multivariate generalization of the case where both means are unknown.

Suppose that X I, ... ,X n are. independent normal random vectors such that

i = 1, ... , k
(2.2.1)

i = k + 1, ... ,n - 1

where n 2: 2p - 1, Xi E JR? and 1 ::; k ::; ti - 1.

Furt.hermore the mean vectors J.LI and J.L2 are unknown, with J.LI =J. J.L2' The known covariance

matrix ~ remains unchanged through the change of the mean at an unknown k.

The sequence is changing in the mean, where the first k values have a mean vector J.LI and

the remaining n - k values have a different mean vector J.L2'

Assuming that a change has taken place, one will want to be able to detect the change and

to estimate it as well as the other parameters of the model. To do a Bayesian analysis, one

should choose prior densities. Let the marginal prior density of k be II(k) = _1_ and the
n-1

marginal prior density of J.LI and J.L2 be such that
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and

where f} and <l> are assumed known.

The joint distri bu tion of X (n xp) = [X 1, ... , X nl conditional on J-Ll and J-L2 and the change

having taken place at k(l S k S ti - 1) is given by

where

We want to find the marginal posterior distribution of k, given the data, i.e. IT(kIX).

Furthermore we want to find the posterior distributions of J-Ll and J-L2, i.e. IT(J-Lllk, X) and

The marginal distribution of X is given by

where k1 = k, k2 = n - k and
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(2.2.2)

The posterior marginal mass function of k is then

II(kIX, (J, <1>,I:) = n~(Xlk, e, <1>,I:)II(k)
L f(Xlk, (J, <1>,I:)II(k)
k=l

(2.2.3)

where 7r(k) = _l_.
n-l

We want to find the posterior distributions of /-LI and /-L2 where

n-l

II(/-LjIX, e, <1>,I:) = L II(/-Ljlk, X, (J, <1>,I:)II(kIX, (J, <1>,I:), j = 1,2.
k=l

(2.2.4)

and

i = 1,2.

Also notice from (2.2.4) that the unconditional posteriors of /-Lj(j = 1,2), (given X, (J, <1>,I:)

are mixtures of normal distributions.

uP to this stage the hyperparameters <1>and (J were assumed known. In practice this is not

usually true. In fact little may be known about the distributions of the means /-LI and /-L2' If

the number of change-points is fixed as in this section, vague improper priors can be used.

So if we let <1>-1 -+ 0 in equation (2.2.3), the posterior of k simplifies to

(k k )-P/2e-!tr(Slk+s2k)r;-1II(kIX, I:) = -n_...:..,.1-1-2...:....._------
L (k1k2)-p/2e-!tr(Slk+s2k)r;-1
k=l

where

(2.2.5)
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Furthermore

i = 1,2.

Another way of dealing with the problem of unknown hyperparameters is to use a hierarchical

model where the second stage priors are vague. For example, let

11(8) cx 1

and

(2.2.6)

\Ve know that for i= 1, 2

so that
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where

() [21 - (k1<I>L:-1 + I)-I - (k2<I>L:-1 + I)-IJ-l[k1(k1l + L:<I>-l)-lXlk + k2(k21

+L:<I>-l )-lX2k], (2.2.7)

so that

(2.2.8)
This integral is analytically intractable and numerically very complex. In fact this integral

probably does not exist, since the full conditional distribution of <I>-1 is singular for p > 2.

So 1> is not estimable. One possible simplification is to assume that <I>is proportional to

2::, that is 1>-1 = óL:-1, where Ó > O. This is a strong assumption reducing the unknown

matrix to a single unknown parameter Ó. If we use the prior II(Ó) cx t, replacing (2.2.6),
then (2.2.8) reduces to
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which can be integrated numerically.

Another possible solution is to use Gibbs sampling. To ensure proper posteriors a proper

prior can be put on b, e.g. b I"V r(a, b). The full conditional distributions are as follows:

J..LiIX, k, 0, b, J..Lj I"V N (ki~:~~80, ki~8L;), where if i = 1, then j = 2 and vice versa.

e-I [I:(Xi - 1'1)'l:;-1(Xi - 1'1)+I)Xi - 1',)')";-1 (Xi - 1',)1

11(kIX,J..LI,J..L2,b,O) = [kl k2 1'f e -~ L::(Xi - J..LI)'L;-I(Xi - J..LI) + L::(Xi - J..L2)'L;-I(Xi - J..L2)

k=1

and

(2.2.9)

2.2.1.2 VARIANCE L; UNKNOWN

Broemeling (1974) also considered the same model as mentioned in paragraph 2.2.1.1, but

with common unknown variance and the means !-lI and !-l2 known. He used the Jeffrey

vague density I10(0"2) <X ;2' 0"2 > 0 or 110(0"2) = 0 otherwise and determined the posterior

distribution 7f(kIX), where k is the change-point.

Smith (1975) considered the univariate normal model Xi I"V N(xIBI), i 1, ... ,k (k the
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change-point) and Xi rv N(xle2), i = k + 1, ... ,n where N(xlel) f= N(xle2), from a

Bayesian viewpoint. Taking ej = (ILj, a;2), the mean and the reciprocal of the variance, he

consider the special case IL2 f= ILl (ILl known, IL2 unknown) and unknown a12 = a22 = a-2

with standard vague prior assignments for IL2 and a-2.

Once again suppose that

iidN(J-LI' L:);

iidN(J-L2' L:);

i = 1, ... , k
(2.2.10)

i = k + 1, ... ,n

where. J-LI f= J-L2 are still unknown, but the covariance matrix L: is now unknown but still

remains unchanged through the structural change at an unknown k. Notice that n must be

larger than or equal to 2p + 1 for the parameters to be estimable for all 1 ~ k ~ n - 1.

The marginal prior densities of k, J-LI and J-L2 conditional on L:, are still as in the previous

section. Furthermore let the marginal prior density of L:-I be W( v, f), i.e.

(2.2.11)

We once again want to find II(kIX) as well as the posterior distributions of J-LI and J-L2' i.e.

II(J-Lllk, X) and II(J-L2Ik, X).

The joint distribution of X I, ... ,X n conditional on J-LI' J-L2, I; and the change having taken

place at k(l ~ k ~ n - 1) is the same as in section 2.2.1.1, while the marginal distribution

of X is given by
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-1 [I:(Xi - I',)'B-1(x, - 1',) + (I" - 9)'<1>-1(1" - 9)]
e dJ.LI dJ.L2d'5:. -1.

By using the previous result in section 2.2.1.1 where '5:.was known, it now follows that

where {LIL, and {L2L, are as in (2.2.2).

This integral seems intractable, so once again let 4>-1 = 8'5:.-1 so that

kj k2

+2: XiX~ + 2: XiX~ - (kl + 8){Lló{L~ó - (k2 + 8){L2ó U;óJ'5:.-1 d'5:.-1

i = 1,2,

(2.2.12)

(2.2.13)where

(2.2.14)

and

32



1 p(p-l) P ( 1 )rp(-n)=1r 4 nr -(n+1-i) .
2 i=l 2

The constants cep, if independent of k, are of no interest in this section, but are defined

throughout this section as they 'will be needed in later sections. The marginal mass function

of k is then

II(kIX, (J, ó) = n~(Xlk, (J, ó)II(k) .

L f(Xlk, (J, ó)II(k)
k=l

(2.2.15)

Furthermore,

n-l

II(J..LIIX,(J,ó) = L II(J..Lllk,X,(J,ó)II(kIX,(J,ó)
k=l

where

and

so t.hat.

while

IIP::;-llk, X, (J, Ó) IX f(Xlk, I;-l, (J, ó)II(I;-l)

so that
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[ ]

-1kl k2

Ti8 = (v+11,+l-p)(ki+ó) r-l + 2M)f}' +L XiX~ +L XiX~ - (kl + Ó){l18{l~8 - (k2 + Ó){l28{l;8

(2.2.17)

Therefore

kl k2

II(J.Lllk, X, B, ó) cx c2p(kl + ó)p/2Ir-l + 2óBB' +L XiX~ +L XiX~ - (kl + Ó){l18{l~8

where

p(v+n+l) (1 )C2p = 2 2 rp 2 (v + 11,+ 1) . (2.2.16)

Therefore u, has a multivariate t-distribution,

i = 1,2

where

and
n-l

II(J-lJX, B, ó) = L II(J.Lilk, X, (J, ó)7T(kIX, (J, ó),
k=l

i = 1,2

can be obtained.

Up t.o stage, in this section, the hyperparameters Ó and B were assumed known. While

the number of change-points is fixed at one (as we assume), vague improper priors can be

used by letting Ó -+ 0, r-l -+ 0 and v -+ 0 in equation (2.2.12), the posterior of k simplifies to

II(kIX) = n~~lk2)-P/2 [ISlk + S2kl]-n/2 ,

L (klk2)-p/2[ISlk + S2kll-n/2
k=l

(2.2.18)

assuming 7r(k) = n~l Vk. Furthermore, for i = 1,2,
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(2.2.19)

where

and

Another way of dealing with the problem of unknown hyperparameters is to use a hierarchical

model w here the second stage priors are vague. For example let. II (B) cx 1 and II (ó) cx i.
From (2.2.12) and after completing the square it follows that

so t.hat.

II(kIX, ó)

cx clpóp-b-¥(kl + ó)-(Y)(k2 +ó)-(Y)r (V +; - P) [r (v~n)rl7T-p(n2-1)

k=1, ... ,n-1 (2.2.20)

where

(2.2.21)

Clp is given in ,(2.2.14) and
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kj k2

Tór = r-l +L XiX~ +L XiX~ - (kl + órlkixlkX~k - (k2 + ó)-lk~X2kX;k-

(2.2.22)

This can be integrated numerically. Note that Ó can't approach zero as in (2.2.18). In that

case () disappeared when r-l _. O. In this case, () is integrated out before r-l approaches

zero. This means that the prior structural relationship between /-LI and /-L2, namely that

they come from exchangeable priors, is retained, and expressed through ó. However, we can

still let r-l _. 0 and v_.O in equation (2.2.20).

When using Gibbs sampling, the full conditional distributions of /-LI' /-L2, Ó, k and () are the

same as in (2.2.9), with additionally (let r-l _. 0 and v _. 0),

2.2.2 A CHANGE IN THE MEAN AND VARIANCE

In the same univarrate normal model as mentioned in paragraph 2.2.l.2, Smith (1975) also

looked at the special case where the means Ml =f M2 and the reciprocals of the varianees

CT12 =f 0-22 are all unknown. He derived the posterior distribution of k.

Menzefricke (1981) examined the model Xi rv N(Ml, CT12), i = 1, ... , k, Xi rv N(M2, (J22), Z =

k + 1, ... .ri, with unknown means Mj and precis ions CT;, j = 1,2. He derived posterior
CT2

distributions of the change-point k and T = -% the magnitude of the change in variance,
CTl

under the assumptions (1) Ml and M2 are unknown and (2) Ml and M2 are known.
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2.2.2.1 CASE 1.

Suppose again that X I, ... , X n are independent normal random vectors such that

i = 1, ... , k
(2.2.24)

i = k + 1, ... ,n

where n > 2p, Xi E RP and p + 1 ::; k ::; n - p - 1.

Furthermore the mean vectors /-LI =J. /-L2 and the covariance matrices L:I =J. L:2 are unknown.

The marginal prior density of k is still uniform, while the marginal prior densities of /-LI and

/-L.) are such that

/-Li rv N(fh 4\), i= 1,2.

Let the marginal prior density of L:ïl and L:2I be

L:;I rv W(v,f), i = 1,2. (2.2.25)

Vve once again want to find I1(kIX) as well as the posterior distributions of the unknown

parameters.

The joint distribution of X I, ... , X n conditional on /-LI' /-L2' L:I, L:2 and the change having

t.aken place at k, is given by

Then
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1>jl) !LIE, li, + I:X:l:,l Xi + tr(r-ll:,l) - !L;E,li,(k,l:,l + 1>,1) !L'E,li,1
d2:11d2:21 (2.2.26)

and

~ - (k ",-1+ ..1'-.-l)-l(k ",-1- + ..1'-.-lfJ )/-lïEJ}i - iL.Ji '±'i iL.Ji Xik '±'i t ), i = 1,2. (2.2.27)

This integral is numerically very complex and analytically intractable. As before, a possible

solution is to assume that <P1 is proportional to 2:1 and that <P2 is proportional to 2:2, i.e ..

<Pil = Di2:i1, where Di > 0 and i = 1,2.

It then follows that

[
1 ]2 ~ E E kj

= rp(~V) 12f1-v (2~) 2 C3pc4pD?Di(k1 +Dl)-~(k2 +D2)-~1f-1 +D1fJ1fJ~ + LXiX;-

(U+kJ) ~ (U+~)
{t~EIÓl (kl + Dl){t~EJÓJI- 2 1f-1 + D2fJ2fJ; + LXiX; - {t2E2Ó2(k2 + D2){t;E2Ó21- 2

(2.2.28)

where

(2.2.29)

(2.2.30)
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and

p(v+k2l ( 1 )
C4p = 2 2 rp "2 (V + k2) . (2.2.31)

The marginal posterior mass function of k is then

II(kIX (J (J? DD) = f(Xlk, (Jl, (J2, Dl, D2)II(k)
, 1 , _ , 1, 2 n-p-1

L f(Xlk, (Jl, (J2, 81, D2)II(k)
k=p+1

(2.2.32)

and for i = 1, 2

\Ve want to find the conditional posterior distributions of J-L1 and J-L2 where, for j = 1,2,

n-1

II(J-LjIX, (Jj, s; I:j) = L II(J-Ljlk, X, (Jj, s; I:j)II(kIX, (Jj, s; I:j)
k=l

(2.2.33)

where

and

(2.2.34)

Notice from (2.2.33) that the posterior of J-Lj' given X, (Jj, Dj, I:j(j = 1,2) are mixtures of

normal distributions.

The above distributions are still functions of the unknown hyperparameters (Jl, (J2, Dl and

D2· Also, (2.2.33) and (2.2.34) are functions of the I:j. Under the assumption of having a

change-point, vague improper priors can be used. By letting 81 ---t 0, D2 ---t 0, r-1 ---t °
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and v -+ 0 in equation (2.2.28), the posterior of k simplifies to

II(kIX) = n_p~i(klk2)-P/2ISlkl--\lIS2kl-¥

L c5P(klk2)-P/2ISlkl--\lls2kl-¥
k=p+l

(2.2.35)

where

It is interesting to note that if vague priors were assumed from the beginning of the analysis,

the answer is slightly different from (2.2.35), namely the loss of one degree of freedom. Then

we would have

(2.2.36)

Furthermore, for j = 1,2,

Also notice that (j = 1,2)

Another way of dealing with the problem of unknown hyperparameters is to use a hierarchical

model where, once again, the second stage priors are vague. For example let II( Oi) ex 1 and

II(bi)ex t, i=I,2.

\iVeknow from (2.2.28), after completing the square and integrating out Ol and O2, that
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(2.2.39)

(2.2.37)

where

(2.2.38)

so that, wi th r-1 ---+ 0 and v ---+ 0 it follows that

It. is possible to put a vague prior on r-1 in equation (2.2.37) to preserve the prior exchange-

ability assumption between ~l and ~2. This will result in the integral of a function of the

form of a multivarrate Beta distribution of the second kind. VVewill not pursue that here

further, but. will give the equivalent. result. in the univarlate case in paragraph 2.7.2.

(for fixed r and v) are as follows (j=1,2):

Another possible solution is to use Gibbs sampling, where the full conditional distributions

(k -X'k + s Bl)I-L.I rest. of parameters '" N J J JJ. ~ . ,
J k.+ó 'k+ó JJ J J J
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Lt I rest of parameters r-- W (Vj + kj, [r-l+ t( Xi - 1';)(Xi - 1';)'rl) . (2.2.40)

Once again, to ensure proper posteriors, a proper prior must be put on 8j (j = 1,2), e.g.

s, rv f(a, b).

With reference to a more general model, a proper prior can be put on <Pi1(i = 1,2) so as to

obtain proper posteriors, e.g. <Pil rv W(p, \li). So once again Gibbs sampling can be applied,

where the full conditional distributions are now as follows:

II(kl rest of parameters)

n-p-l ~ ~ -~ [t(Xi - /-Ll)'L.:1l(Xi - /-LI) + Ï:(Xi - /-L2)'L.:21 (Xi - /-L2)] ,
LIL.: 11- 2 1L.:21- 2 e

k=p+l

ejl rest of parameters rv N (/-Lj, <Pj),
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and

J.Ljl rest of parameters rv N ((kjEt + 1>j1)-1(kjE.tXjk + 1>tOj), (kjEj1 + 1>j1)-1).

(2.2.41)

2.2.2.2 CASE 2

Here we consider the same model as in case 1, but with different prior assumptions. Let the

marginal prior density of k be the same as previously, while the marginal prior density of J.L1

and J.L2 be such that J.L1' J.L2 rv N(O, 1». Let the marginal prior density of Ell be

(2.2.42)

and assume furthermore that E2 is proportional to El, i.e.

(2.2.43)

Notice that in case 2, a structural relationship is assumed a priori between the two variances,

which is not present in case 1. We once again want to find n(kIX)' II(J.L1Ik, X) and

The joint distribution of Xl,' .. ,X n conditional on J.L1' J.L2, El, E2 and the change having

taken place at k, is given by

k2

e-h 2:(Xi - J.L2)'El1(xi - J.L2).
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(2.2.44)

The marginal distribution of X is given by

where

and

(2.2.45)

This integral is numerically very complex and analytically intractable. A possible solution

is to assume that <I> is proportional to ~l, i.e. <I>-l = 8~11 where 8 > Q.

It then follows that

f(Xlk, (J, 8, ,)

kj . k2

LXiX: - (kl + 8){.L16{.L~6+, LXiX: - (kn + 8){.L2i6{.L;i61-(vt
n) (2.2.46)
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where {lIS is as in (2.2.11), Clp is given by (2..2.14) and

The marginal mass function of k is then

l1(kIX, (J, b, ,) = n_p~~XI(J, b", k)l1(k)

L f(XI(J, b", k)l1(k)
k=p+l

(2.2.47)

and

With the prior 11(1) cx: 1, 0 < , < A where the upper limit on, can be chosen large enough
'Y

and is just to ensure a proper posterior for " it follows that

We want to find the posterior distribution of J.LIand J.L2 where (for j = 1,2)

n.-I

l1(J.LjIX, (J, b", L:I) =L l1(J.Ljlk, X, (J, b", L:l)l1(kIX, (J, s,«, L:l)
k=l

(2.2.48)

and where

and
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Also not.ice from (2.2.48) that the posteriors of J..Lj, given X,B,b" and E1(j - 1,2) are

mixtures of normal distributions.

Under the assumption of having a change-point, vague improper priors can once again be

used. By letting b --? 0, r-1 --? 0 and v --? 0 in equation (2.2.47), the posterior of k

simplifies to

assuming 7r(k) = n-ip+l' k = p + 1,··· ,n - p + 1.

Furthermore

and

Also not.ice that

and

Another way of dealing with the problem of unknown hyperparameters is to use once again

a hierarchical model where the second stage priors are vague. For example let II( B) cx 1 and

II(b) cx i.
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(2.2.49)

We know from (2.2.46), after completing the square, that

f(Xlk, s, 1')

so that

II(kIX, 1', ó)

= f
p
/4v) 12f1-~v (2~) T C1PI'~ Óp-~ (kl + ó)-(9) (tk2 + ór(9)

where Clp is given by (2.2.14),

and

k) k2

Tó,T - r-l +L XiX~ +, L XiX~ - (kl + ó)-lk~XlkX~k - (tk2 + ó)-lkh2X2kX;k-

Furthermore, by letting r-l ---+ 0 and v ---+ 0, it follows that
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where n'Y is the same as n'Yr, but with r-1 omitted. This can be integrated numerically.

Another possible solution is to use Gibbs sampling, where the full conditional distributions

are as follows:

TI(kIX, 2:1,1',1.1.1, J.L2) = [kl k2 1 '
"fl e-j ~(Xi - I-'I)'l:jl(Xi - 1-'1) + 'Y ~ (Xi - I-',)'l:jl (Xi - 1-',)

k=p+1

where a proper prior 8 '" T'(c, b) is put on 8 to ensure that the simulation process won't go

out of control. Furthermore

and by letting r-1 -t 0 and v -t 0 it follows that
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(2.2.50)

With reference to a more general model, a proper prior can be put on 1>-1 so as to obtain

proper posteriors, e.g. 1>-1 rv W(p, \If). So once again Gibbs sampling can be applied, where

the full conditional distributions are now as follows:

k=p+1

and after letting r-1 ---t 0 and v ---t 0,
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(2.2.51)

2.2.3 A CHANGE IN THE VARIANCE

In his study of the same model mentioned in paragraph 2.2.2, Menzefricke (1981) also con-

sidered the case /.L = /.LI = /.L2 where /.L is unknown, i.e. just a change in the variance occurred.

Suppose again that X I, ... ,X n are independent normal random vectors such that

{
iN(j.L, EI); i = 1, ... ,k

Xi '"
iN(j.L, E2); i = k + 1, ... ,n

(2.2.52) .

where ti ~ 2p, Xi E lRP and p ~ k ~ n - p.

Furthermore j.L (i.e. j.LI = j.L2) and the covariance matrices El and E2(EI =f. E2) are unknown.

The marginal prior densities of k and j.L are the same as previously. The joint distribution

of X I, ... , X n conditional on u, El, E2 and the change having taken place at k is given by

with the priors on El and E2,

(2.2.53)

After completing the square, it follows that
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where

It now follows that

(2.2.54)

In this equation the matrix integral is intractable and <1>-1 is inestimable. A first simplifi-

cation can be to put a uniform prior on /-L, i.e. to let <1>-1 --t O. A second step could be to

let r-1 --t 0 and v --t 0 under the assumption that p :::; k :::; n - p, which is equivalent to

putting vague priors on I:11 and I:2"1. (The situation where a vague prior is put on r-1 is
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discussed in the univariate case in paragraph 2.7.3). Then (2.2.54) reduces to

where

The only way to integrate this analytically is to make a further simplification as in the pre-

vious sections, assuming that :Eil = ,:Eïl. This means that the prior on :Eil is replaced by

a prior on , where IIh) cx: 1.. Then
"i

(2.2.55)

where

p(n-p-2) ( 1 )
C7p=2 2 r, 2"(n-p-2),

kl k2

r, =L XiX~ + , L XiX~ - fl"f(kl + k2/)fl~

and

The marginal mass function of k is then

II(kIX. ) = f(Xlk, ,)II(k)
" n-p

L f(Xlk, ,)II(k)
k=p

Furthermore
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n-p

Il(J-LjX, ,) = L Il(J-Ljk, x, ,)Il(kjX, ,)
k=p

where

and

and

Therefore

and also notice that

Another possible solution is to use Gibbs sampling. Once again let <1>-1 rv vV(p, 'It), but now

it is not necessary to include the restriction 2::2"1 = ,2::11. The full conditional distributions

are t.hen as follows:
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where

BI<I>, J-L ,....., N(J-L, <I»,

(
p(n - k + v - P - 1) 1 {[ k2 1 })'Ylk,X, J-L, ~l ,.....,Gamma . 2 '"2tr r-:-l + I)Xi - J-L)(Xi - J-L)' ~ll .

and

BlIIk,X, JL" ~ W (2V + n - p - 1,[r-I + r-I, + I:(x; - JL)(x; - JL)'

(2.2.56)

2.3. NO OR ONE CHANGE-POINT IN THE MULTIVARlATE MODEL

In section 2.2 three normal models are discussed under the assumption of exactly one change-

point. The fixed number of change-points simplifies matters greatly, the parameter spaces

are of the same dimensions and the interpretation of parameters remains the same under all

models and for all values of k. The possibility of no change is however very important in

most applications and should not be ignored.

The problem of no change versus one or more changes in the normal model has been covered

less widely. Broemeling and Tsurumi (1987), however, consider no change versus a change in

the linear model, while Diaz (1982) also studied the case of no change. A possible reason for

the few references on no change versus a change is perhaps because of the problem caused

by the differing dimensions.
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In this section we will add the option of a model with no change (say k = n) to the previous

models, and assign it the prior probability q. In the applications q will usually be taken as

~, so as to give equal prior weight to "no change" versus "a change" .

The marginal prior density of k is then

II(k) = {q for
1.=1 forn-1

k=n

k = 1,2, ... ,n - 1
(2.3.1)

The case k = n has fewer parameters than for 1 :::;k :::; ti - 1, and the marginal of X is the

same for all three normal models. To conform with the prior specifications in paragraph 2.2,

let (for i = 1, ... ,n)

Xi '" iN(/-Lo, B) if k = n

where

/-Lo '" N(O, 4» and B-1", W(v, r).

Vie let. II(O) cx: 1 (as in paragraph 2.2) and justify it by arguing that 0 has the same

interpretation here as in the case of one change-point, although 0 is not estimable in this

case. In fact, putting a vague prior on 0 here is equivalent to a vague prior on /-Lo.

The marginal of X is then independent of 4> and given by

r [l(n + v-I)] (f(Xlk = n, I', v) = 7r-p(n2-1)n-~ P 2 e) Ir-11~vISn + r-11- n±~-l).rp 2V
(2.3.2)

If r-1 ---+ 0 and v - 0, (2.3.2) reduces to

(2.3.3)

where
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and
n

Sn = :L)Xi - Xn)(Xi - Xn)'.
i=I

The marginal posterior distributions of /-La and E-I under no change-point follows directly

as

and

2.3.1 A POSSIBLE CHANGE IN THE MEAN

The posterior distribution of k is given by

qf(Xlk = 17,)TI(k = niX, 8)
n [1 q ](; 17, = 1 f(Xlk, 8) + qf(Xlk = 17,)

~f(Xlk,8)TI(kIX,8) k = 1, ... ,17, - 1 (2.3.4)
n [1 ] ,

(; 17, =1f(Xlk, 8) + qf(Xlk = 17,)

where f(Xlk = 17,) is given in (2.3.3) and f(Xlk, 8) in (2.2.20).

In the case of exactly one change-point, we let 8 --+ 0, i.e. putting a vague prior on /-LI and /-L2'

But. 8 can't approach zero when we are comparing the case" no change" with" one change" ,

because of t.he different dimensions. This can be seen from (2.3.4) where TI(k = niX, 8) --+ 1

as 8 --+ O.

If 8 --+ 00, TI(k = nIX,8) --+ q, so the posterior probability for no change is crucially

dependent on 8. This is an example of Lindley's paradox (Lindley (1957)) where, for fixed

data, the Bayes factor in favour of a certain hypothesis can be manipulated to any degree by
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appropriate choices of hypetparameters. The limiting results above however make intuitive

sense. If 6 ---t 0, it means an infinitely large prior variance for J.Ll and J.L2' which makes it

impossible to detect a change-point from a fixed finite data set, so the probability for no

change goes to one. On the other hand, if 6 ---t 00, the two means are virtually the same,

and the data can't give any information. So the posterior equals the prior probability.

In general, we will consider three possible solutions:

(a) Examine the posterior probabilities as a function of 6. The sensitivity of these proba-

bilities to 6 can then be determined, as well as certain upper and lower bounds.

(b) Use a vague prior on 6, say II (6) cx i over a reasonable fini te range, 0 < 6 < A, and

integrate 6 out. However, the posterior probabilities can also be sensitive to the choice

of A.

(c) Use partial Bayes factors. This approach will be treated in paragraph 2.5.

2.3.2. A POSSIBLE CHANGE IN THE MEAN AND VARIANCE

For case 1 in paragraph 2.2.2 where J.Li rv N(Bi,1>i) and 1>il = 6il:il for i = 0,1,2,

1(XI k; 611 62, I', v) is given in (2.2.37). Together with equations (2.3.2) and (2.3.4), the

posterior probability of k follows as

l1(k = niX, r,v) cx

cx

(2.3.5)
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where C6p is given by (2.2.38).

A possible simplification would be to let 61 = 62. Notice that if 61 = 62 ---? 00, then

(2.3.5), ignoring the normalizing constant, approaches a finite limit which corresponds to a

vague improper prior on <Pi, i = 1,2. For case 2 where II(2:11) is the same as in case 1, but

2:21 = /,2:11, f(Xlk, 6, /') follows from (2.2.49).

II(kIX, 6, /" I', v) then follows as in (2.3.4). The posterior distribution of k is still dependent

on I',u. Their effects will be examined in the univariate case.

2.3.3 A POSSIBLE CHANGE IN THE VARIANCE

With vague priors on /-Li and 2:21 = /,2:11 in equation (2.2.54), it follows that

f(Xlk, /" r,v)

where

so that

f(Xlk, /" I',v)

where
p(n+2v-p-2) ( 1 )

cSp = 2 2 rp "2 (n + 2v - p - 2) .
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(2.3.6)

Now it's possible to let f-1, V ---t 0 when comparing with the mass function for no change-

point. Then

p(n-p-2) ( 1 )where Cïp = 2 2 fp 2"(n - p - 2) .

2.4 COMPONENT ANALYSIS

It is of importance to see which component has the most influence in causing the change

t.o occur at a fixed k. For the case where we have a change in the mean, let M(p x 2) =

[J.Ll' J.L21 '"" N(()l;, @) where @ = 12 01> in the model

(px1)

Xi 1J.L2' ~ '"" N(J.L2, ~), i = k + 1,... ,n
(px 1)

where L;-l '"" vV(v, f).

The joint distribution of X conditional in A1 and ~ can be written in matrix notat.ion as

f(XIJ.L,~) cx 1~~n/2 etr [-~(X - M Ek)'~-l(X - M Ek)]
(p x n)

where
X

(pxk) (px(n-k))
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and

(
i: 0 )kEk = .
o l~_k

The posterior distribution of M is

II(MIX k e if..) cx _1 J _l_etr [-~ {(X - MEk)'L:-1(X - MEk) + (M - 01'2)'<P-1, ,,'1' I<PI IL:I¥ 2

(2.4.1)

When using a vague prior on M and L:-1(<P-1 ---+ 0, r-1 ---+ 0, v ---+ 0)

where

(
kO )J2 = EkE~ =

(2 x 2) 0 ti - k ,

and

so that

(2.4.2)
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If we let mi = [!-Lh !-L2iJ be the i-th row of M, then

(n-p+l)
II(milk,X) cx IPii.~+ (mi - Xki)J2(mi - xki)'l- 2

where

is the Schur complement of the (i, i)th element of P. Finally, let .ó. = (/-LI - /-L2) = Mc, i.e .

.6i = mi c = !-Lli - !-L2i where c = ( _
1
), so that it follows that

(2 x 1) 1

This is a generalized t-distribution with

(2.4.3)

and

var(.6ilk, X) = k( k)t ) . Pii~~n- ~ n-p-3 . (2.4.4)

so that

II(.6lk X)= 1 (k(n-k)p.)~ [ k(n-k)Pii.2(A.._(_. _-. ))2]-(Y)
l' B(l n-p-l) ti u.2 1+ n Ut XlI Xt2

2' 2

(2.4.5)
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represents the marginal posterior distribution of the difference between the z-th components

of the means for a fixed change-point.

If p = 1 and we write

I/. - ( J.LJ.L2
1

)
r-: rv N(812, <t»

(2 x 1)

and

(k x 1)

((n - k) x 1) ,
X

(n x 1)

then

~ 1 ~

V ( IX k) = X/(In - Ik )XJ-1ar J.L, () 2.n-4

If .6. = J.L1 - J.L2 it follows that

so that

In the above analysis, with a vague prior on M, no prior relationship between J.L1 and J.L2

is assumed. This results in the .6.~s being uncorrelated posteriori, each distributed as in

equation (2.4.5).

To retain the prior relationship between the means, let <t>-1 = 152:;-1 and integrate () out

in equation (2.4.1). In this case the .6.~s are correlated and their marginal posteriors are

functions of ó.
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(2.4.6)

Then, with r-1, v -7 0, it follows that

where

. 1 ( k + 16 -16 )K = J2 + 612 - -611' = 2 2

2 -16 n - k + 162 2

so that

where

It. now follows t.hat.

where A(i) denotes the i-th row of the matrix A.

Then we have a generalized t-distribution,

where
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'K-1 nc c=
k(n - k) + ~8n

and

Therefore

(2.4.7)

and
p-l

Var(~i) = n óii.2 1.
(n - p - 2)[k(n - k) + "28n] (2.4.8)

Notice that (2.4.7) reduces to (2.4.3) when 8 ---t 0, but there is a difference of one degree of

freedom between (2.4.8) and (2.4.4).

To determine the influence of each component on the specific position of a change-point, the

expected differences in the means, ~i, can be standardised and compared. So if

(2.4.9)

we can use

(2.4.10)

as a measure of the proportion of the overall influence.

2.5 BAYES FACTORS

2.5.1 A CHANGE IN THE MEAN

The regular Bayes factor for the model as in (2.2.10) follows from (2.2.20) and (2.3.3).
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where nr is given in (2.2.22) and Tab is the same, but with r-l = 0 and where BkO denotes

the Bayes factor in favour of a change-point at k versus no change. To calculate the partial

Bayes factor, we use the improper priors ll(J..Lo,J ..LI,J..L2) cx 1 and ll(I;-I) cx II;-ll-(~), so

that the whole sample Bayes factor is

(2.5.2)

Note that the difficulty with this solution is that the non-informative priors are typically

improper and hence defined only up to arbitrary constants Co. Hence Bfa is defined only up

to fl<., which is itself arbitrary.Co

For this model, the minimal sample size if there are no change-points is p + 1 and if there is

exactly one change-point it would be p + 2.

Booth and Smith (1982) also considered changes of the mean in normal sequences. Consid-

ering the multivariate case, they use the principle of the imaginary training sample method

and define the minimal sample as 2p + 1 when k = p. Their result for BkO is the same as
. (? - ?)ours ll1 _.0._.

In order to calculate the Intrinsic Bayes factor, the minimal sample must be defined. The

size of the minimal sample will be me = mk + 1, where mk = P + 1 is the number of obser-

vations in the minimal sample that must be on the same side of the change-point k. The

set X (£) consists of the two disjoint subsets xmk (£) and Xl (£). In the Bayes factor for the

minimal sample Bófc(x(£)), the term k(n - k) always reduces to p + 1 so that

(2.5.3)
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where

Smk = 2:JXj _ Xmk)(Xj _ XmJ'
j

where the summation is over the subset xmk (.e) and xmk = ~k L Xj and
j

Sme = L (Xi _ Xme) (Xi _ xme)' where the summation is over the set X (.e).

The Arithmetic Intrinsic Bayes factor would then be

Btcf = BfaB{(/(x(.e)) (2.5.4)

where

B~A(X(.e)) = 2_ t B~(x(.e)) where k = 1, ... ,n _ 1
L f=l

and where Bfa is given by (2.5.2) and B~(x(.e)) by (2.5.3).

Furthermore the geometric and the median I B F follows by inserting

1

B~G(x(.e)) = [I}B~(X(.e))l t:

or

To get the Fractional Bayes factor, as described in chapter 1, for this model, it follows that

and

[ ]

-1
P n·_· P nb _ . np(l-b) El!!:. n(1-b)mo(b)=~=rrr(-J) rrr( J) tt" 2 b2JSnJ- 2

o j=l 2 j=l 2
(2.5.5)
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so that

BF _ mk(b) _ r (~) r (~) [ISlk + S2klj_n(!2-
bJ

kO-mo(b)-r(n~l)r(nb-21-p) ISnl ' k=l, ... ,n-l. (2.5.6)

Notice that k plays no role in equation (2.5.6) except in the Sik'S.

The minimal sample for a change in the mean is p + 2. From (2.5.6) it follows that nb must

be greater than p so that we must have b > ~. If b = ~ (which always satisfies b > ~),
(2.5.6) reduces to

Also notice that II(k = niX) = [1 + q(~-::_ql)21B;o]-1 and

[ ]

-1
l-q l-q

ll(kIX) = ( )BkO 1+ ( )L Bjo ,qn-l qn-l.
J

k=l, ... ,n-l.

(2.5.7)

2.5.2 A CHANGE IN THE MEAN AND VARIANCE

The regular Bayes factor for the model as in (2.2.24) follows from (2.3.5) in paragraph 2.3.2

so that with r-1, u ~ 0 it follows that

To calculate the partial Bayes factors, the whole sample Bayes factor, with the improper
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E p(p-l) P (k-j) P (n-k-j) E (k-l) (n-k-l)BIJ, = (2"),,, , JI/ -2- Fl r 2 [k(n - k)t2 [Slkl- -2 IS2kl- -2-

IT r (n - 1- j) n-~ISnl-(n22)
j=l 2

(2.5.8)

In this case the minimal sample will be me = 2mk, where rru. = P + 1 is the number of

observations in the minimal sample which must lie on each side of the change-point k. The

set x(e) consists of the two disjointed subsets before the change-point, x~Je) and after the

change-point, X;'k (e). So

II r (2P+2
1
- j) 2-~ISmel-P

Bt:c( x( e)) = ----_.:;_-------,2;---------[J]r (P + ~- j) 1 (p + l)-qls~,lls,;" if'
(2.5.9)

(2 )
E p(p-l)

Jr 2Jr 4

where

and where the summation is over the subset x~k(e), i = 1,2.

The Arithmetic Intrinsic Bayes factor for this model would then be the same as in equation

(2.5.4), but where Bfa is as in (2.5.8) and Bt:c(x(e)) is as in (2.5.9).

To get the Fractional Bayes factor for this model, it follows that

mk(b) = mk - Jr -np~l-b) IT r (k - j) IT r (n - k - j)
m% - j=l 2 j=l 2

and mo(b) is the same as previously
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so that

BF _ mk(b) _ fp (9) fp (9=l) fp (~) . [/Slk/k1/S2k/k2]- (l~h)

kO - mo(b) - fp (bk;l) I', C(n-2kl-1) fp (n~l) /Sn/n (2.5.10)

Notice from (2.5.10) that bk must be greater than p and that b(n - k) must be greater than

p so that we must have b > f and b > 6 respectively. The minimal sample is 2p + 2, but

b = 2P.:2 does not always satisfy the above restrictions. If we take b = 2r;t2 and we want to

consider all the possible values of kwhere p + 1 ::; k ::; n - p - 1, it follows that n must be

greater or equal to 8 and p < ~ - 1+ Jn2w8n. For example, if n = 40, p must be smaller or

equal to 17 for the fractional Bayes factor to be determined for any p + 1 ::; k ::; n - p - 1.

1£ the above condition on p is not satisfied, we can either increase the fraction b or reduce

the number of possible change-point positions being considered.

2.5.3 A CHANGE IN THE VARIANCE

The regular Bayes factor for the model as in (2.2.52) follows from paragraph 2.2.3 so that

IT f (n - p - 1- j) ,,/(n-~-p-l) [k + (n _ k)tJ-~ /TI'/-(n-~-2)
j=l 2

2P
(P2+2) II r (n +~- j) (n + ó)-~ó~f (n; P) [f (~)] -1 7r~[1 - (n + ót1ór~ /To6/-(Y)

(2.5.11)

where T06 and TI' follow from (2.2.22) and (2.2.55) respectively.

To calculate the partial Bayes factors, the whole sample Bayes factor, with the improper
_E±l

priors D(f.L) cx: 1, IT (~i1) cx: l~i11 2 (i = 1,2) and D('y) cx: ~ is

(2.5.12)
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For this case the minimal sample is exactly the same as in the previous model (2.2.24), but

with

(2.5.13)

where

TAf.) =L XjX} + I L XrX~ - fl-ye(P + 1)(1 + ,)fl~e
j r

and where

and where L is the summation over the subset X~k (f.) and L is the summation over the
j r

subset X;'k (f.) with X~k' X;'k and Sme the same as before.

The Arithmetic Intrinsic Bayes factor for this model would then be the same as in equation

(2.5.4), but. where Bfa is as in (2.5.12) and Bóic(x(f.)) is as in (2.5.13).

To get. the Fractional Bayes factor for this model it follows, after integrating I first, that

= _~ _~
rp (~) rp (¥) 100 [S~k + k1(J.L - Xlk)'(J.L - Xlk)] 2 [Sik + k2(J.L - X2k)'(J.L - X2k)] 2 dJ.L

oo _& _~
r, (~) fp (~) 1= [S~k + k1(J.L - Xlk)'(J.L - Xlk)] 2 [Sik + k2(J.L - X2k)'(J.L - X2k)] 2 dJ.L

(2.5.14)

and mo (b) is the same as previously, so that

BF _ mk(b)
kO - mo(b)
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follows directly.

The minimal sam ple for this case is also 2p +2 and b has the same condi tions as for a change

in the mean and variance in section 2.5.2.

The posterior probabilities follow from equation (2.2.3). If we let P(Mo) = ~ and P(A1k) =

2m' k = 1, ... ,m be the prior probabilities for no change-point and a change-point at k

respectively, with m possible positions for the change-point, then the posterior probabilities

are given by

(2.5.15)

2.5.4 MULTIPLE CHANGE-POINTS

In the case of a maximum of R possible change-points, let ll(klr) = [(: ) ]_1 and

r = 0, ... ,R, where h is the number of possible change-points for the

particular model. Then

(2.5.16)

where Eko is the Bayes factor in favour of the partition k out of r change-points when

compared to no change-point., and also

I1(k. rly) = [hBl +~ Bl,T + I1(klr = 2) ""' B~,T + ...]-1
, Ok L::: jk I1(klr = 1) ~ J k

J-2 J
(2.5.17)

where in general Bj'k, is the Bayes factor for partition j out of s change-points against

partition k out of r change-points.

For example if R = 2, we get that
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II(k, r = 11Y)= [hBók + 'f BJk + h: L B~,~]-l
j=2 1 j J

(2.5.18)

and

[ ]

-1

1 2 h - 1n-l 12 2
II(k, r = 21y) = "2h(h - l)BOk + -2-]; B/k +7 Bjk (2.5.19)

where the following relationships hold for the Bayes factors:

1 _ BJo
Bjk - Bl '

ka
(2.5.20)

So the posterior probabilities can be written as

[

1 n-l 2 1 ]_1
II(k, r = 11y) = hB6k + Bl L BJo + h _ 1 Bl ~ Bjo

ka J=2 ka J

(2.5.21)

and

II(k r = 21y) = B2 [h(h-l) + h-l ~ Bl + '" B2]-1, ko 2 2 L.....- JO L.....- JO
.' j=2 j

(2.5.22)

If R = 2 and we consider only a subset of say L of the h(h
2
-l) combinations of two change-

points, the prior probabilities become

h(h - 1)
II(k = n) = 2[h(h _ 1) + LJ'

h-1
II(klr = 1) = 2[h(h _ 1) + LJ' k = 2, ... ,n - 1
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and

1
II(klr = 2) = h(h -1) + L' k E k(L) (2.5.23)

and the formulae for the posterior probabilities stay the same as above.

For R change-points with b = P+~+l, the fractional BF follows as a generalization of (2.5.6) as

n-p-R-l
2

r (n-l) r (p+R-r)B" _ P 2 P 2

ok - fp (~) fp (n-;-l) (2.5.24)

for a change in the mean.

2.6 MULTIPLE CHANqE-POINTS (CP'S)

Apart from section 2.5.4, the previous section results are derived for models with at most

one change-point. This theory can regularly be extended to any number of change-points.

In this section we give the results when the actual number of change-points, r 2: 0, is

unknown. As the number of change-points increases, there is an increase of complexity with

the computational aspects. Different approaches have been proposed.

Non-Bayesian approach by Lombard (1987) uses rank tests to test for multiple change-points.

Hartigan (1990) introduced product partition models, which assume that observations in

different components of a random partition of the data are independent. If the probability

distribution of random partitions is in a certain product form prior to making the observa-

tions, it is also in product form given the observations. The product model thus provides a

convenient machinery for allowing the data to weight the partitions likely to hold. Inference

about particular future observations may then be made by first conditioning on the partition

and then averaging over all partitions. Barryand Hartigan (1992) applied these models with

special computational simplicity to change-point problems, where the partitions divide the

sequence of observations into components within which different regimes hold. They show,
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with appropriate selection of prior product models, that the observations can eventually

determine approximately the true partition.

Barryand Hartigan (1993) model the process in which a sequence of observations undergoes

sudden changes (multiple changes) at unknown times, by supposing that there is an under-

lying sequence of parameters partitioned into contiguous blocks of equal parameter values.

The beginning of each block is said to be a change-point. Observations are then assumed to

be independent in different blocks given the sequence of parameters.

Gupta and Chen (1996) applied the Schwarz information criterion together with the binary

segmentation procedure to detect change-points in a set of geological data and the changes

in the frequencies of pronouns in the plays of Shakespeare. The emphasis here was on the

exploratory data analysis rather than the theoretical statistical investigation.

Carlin, Gelfand and Smith (1992) presented a general approach to hierarchical Bayes change-

point models. In particular, desired marginal posterior densities are obtained utilizing the

Gibbs sampler, an iterative Monte Carlo method, avoiding sophisticated analytic and nu-

merical high dimensional integration procedures.

Markov chain Monte Carlo (MCMC) methods for Bayesian computation have however been

restricted to problems where the joint distribution of all variables has a density with respect

to some fixed standard underlying measure. They have therefore not been available for

application to Bayesian model determination where the dimensionality of the parameter

vector is typically not fixed. Green (1995) proposes a new framework for the construction

of reversible Markov chain samplers that jump between parameter subspaces of differing

dimensionality, which is flexible and entirely constructive. He illustrated the methodology

with applications to multiple change-point analysis in one and two dimensions.

The use of MCMC simulation techniques has made feasible the routine Bayesian analysis of

many complex high-dimensional problems. However, one area which has received relatively

little attention is that of comparing models of possibly different dimensions, where the es-

sential difficulty is that of computing the high-dimensional integrals needed for calculating

the normalization constants for the posterior distribution under each model specification
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(Raftery (1995)).

Phillips and Smith (1996) show how methodology developed recently by Grenander and

Miller (1991, 1994). can be exploited to enable routine simulation-based analysis for this

type of problem. Model uncertainty is accounted for by introducing a joint prior probabil-

ity distribution over both the set of possible models and the parameters of those models.

Inference can then be made by simulating realizations from the resulting posterior distri-

bution using an iterative jump-diffusion sampling algorithm. The essential features of this

simulation approach are that discrete transitions, or jumps, can be made between models of

different dimensionality, and within a model of fixed dimensionality the conditional posterior

appropriate for that model is sampled. Model comparison or choice can then be based on

the simulated approximation to the marginal posterior distribution over the set of models.

Lee (1998) considered the problem of estimating the number of change-points in a sequence

of independent random variables in a Bayesian framework. They found that, under mild

assumptions and with respect to a suitable prior distribution, the posterior mode of the

number of change-points converges to the true number of change-points in the frequentist

sense. Furthermore, the posterior mode of the locations of the change-points is shown to be

within Op(logn) of the true locations of the change-points (n is the sample size).

2.6.1 A CHANGE IN THE MEAN

Suppose that X',, ... , X n are independent normal random vectors such that

iN(J.Ll' E); i = 1, ... ,kl

iN(J.L2' E); i = k1 + 1, ... ,k2
(2.6.1)

iN(J.Lr+l' E); i = k; + 1, ... ,n

where

n 2: r + p + 1, X i E IRF and 1::; k1 < k2 < ... < k; ::; ti - 1.
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The mean vectors MI"'" Mr+l are unknown, with Ml =J M2 =J ... =J Mr+l' The un-

known covariance matrix L; remains unchanged through the r structural changes at un-

known k's, where r is fixed and known for the moment. Let the marginal prior densities of

k = [kl, ... , krl be uniform, i.e. I1(klr) = (n-ICrrl, (where ti is large enough to allow all

permutations, i.e. n 2:: rp + p + 1) and the marginal prior density of L;-l be W(v, f) and

Ml" " ,Mr+l '"" iN (e, CP).

The joint distribution of X I, ... ,X n conditional on Ml' ... ,Mr+l and the changes having

taken place at k is given by

with

ko = 0,

and

j = 1, ... , r + 1.

Notice that the partitioning of k must be so that nj 2:: p + 1 for at least one j.

Furthermore

so that
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where for j = 1, ... , r + 1,

and
1 kj

Xj = - LXi.
nJ· . k 1

t= j-l +

As in paragraph 2.2.1, let <1>-1 = 8:B-1 so that

!!£ r+1

(
1 ) 2 p(r+l) Ell Ij(Xlk,O,8,r,r,V)=C1p - 8 2 II(nj+8)-2 r- +(r+l)800

27r j=l

(2.6.2)

and C1pis as in (2.2.14).

The marginal mass function of k is then

IT(kIX, 0, b, r, r,v) = j(Xlk, 0, 8, r, r,v)IT(klr)
L j(Xlk, 0, 8, r, r,v)IT(klr)
k

(2.6.3)

where L is the summation over all combinations of k.
k

The probability that the j-th change-point out of r lies at observation i follows from equation

(2.6.3) as

P[kj = ilr,X, 0, 8, r,v] = L IT(kIX, 0, 8, r, I', v),
kj=i

j = 1, ... .r,
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where L defines all those partitions of k for which the j-th change-point lies at i.

While the number of change-points is fixed, vague improper priors can be used. By letting

8 --t 0, r-1 --t 0 and v --t 0 in equation (2.6.3), the posterior of k simplifies to

(2.6.4)

where

(X· - x)(x· - x)'t J t J.

Furthermore

(2.6.5)

where

A generalization of (2.2.15), when using a hierarchical model with vague second stage priors

11(0) cx: 1 and 11(8) = i, follows from (2.6.2) after integrating out 0, as

f(Xlk, r, r, v) ~ J C~)""h'(':" -j ;Q(n, +W'il'r ("+ ~- P) [r ("; n)r
where

r+l kj r+1

T6r = r-1 + L L XiX~ - L(nj + 8)-ln;xix~ - 86[(r + 1)8 - (nj + 8)-182J8~
j=l i=kj_1+1 j=l

(2.6.6)
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and

This can be integrated numerically. Note that we can't let 8 ---t 0, while we can still let

r-1 ---t 0 and v ---t 0 in the above equation, so that

(2.6.7)

where Tó is given in (2.6.6) with r-1 omitted.

If we assume that the number of change-points (r) is fixed, Gibbs sampling can be used

instead. The full conditional distributions are as follows:

j = 1, ... , r + 1,

(
1 r+1 )

81X, k, B, J-Lj' ~ rv Gamma p, -tr~-l IJJ-Lj - B)(J-Lj - B)' ,
2 j=l

r+1 kj

-~L L (Xi - Xj)'L:-1(Xi - Xj)
j=l i=kj_l +1e

D(kIX,J-LJ,8,L:,B) = ----~k--------
r+1 j

-~L L (Xi - Xj)'~-l(Xi - Xj)Le j=l i=kj_1 +1

k

and, after letting v ---t 0 and r-1 ---t 0, it follows that
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(2.6.8)

uP to this stage r was assumed known, which is not always the case in practice. So let

R = max {r} where R is fixed.

Let the marginal prior density of r be uniform, i.e.

Considering the same model as in (2.6.1), with n ~ Rp + P + 1.

Because of dimensions differing between models, we can't let 8 ----;o. If we let r-1 ----; 0 and·

v ----;0, it follows from equation (2.6.7) that the marginal mass function of k in (2.6.3) will

now be

l1(k(r)IX,8) = R f(Xlk, 8, r)l1(k(r)lr)

L L f(Xlk, 8, r)l1(k(r)lr)
r=O k(r)

r = 0,1, ... ,R (2.6.9)

where L is the summation over all partitions of k(r).
k(r)

The probability for exactly i change-points, where i = 0, ... ,R, is then given by

P[r = ilX, 8J = L l1(k(r)IX, 8). (2.6.10)
k(i)

If 8 must. be eliminated, we must integrate over equation (2.6.7).

Notice that we can't apply standard Gibbs, as the number of change-points is unknown and

the dimensions will differ. However, we can use the MCMC of Green (1995), a reversible-

jump Metropolis-Hastings algorithm, or the MCMC ofPhillips and Smith (1996), an iterative

80



jump-diffusion sampling algorithm.

2.6.2 A CHANGE IN THE MEAN AND VARIANCE

Suppose that Xl, ... ,X n are again independent normal random vectors but such that

iN(J..Ll' ~I);

iN(J..L2' ~2);

i = 1, ... , kl

i = kl + 1, ... , k2

iN(J..Lr+l' ~r+I); i = k; + 1, ... ,n - 1

where 71, 2: (r + l)(p + 1), Xi E JR? and nj 2: p + 1 for all j.

The mean vectors J..Ll' ... ,J..Lr+l with J..Ll -=J J..L2 -=J ... -=J J..Lr+l and the covariance matrices

~l -=J ~2 -=J ... -=J ~r+l are unknown. The marginal prior density of k is uniform for fixed r ,

while the marginal prior densities are such that for j = 1, ... ,r + 1

Then

where

Assume that <p.t = Dj Ljl for j = 1, ... , r + 1 and where Dj > O. It then follows that
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(v'+n') }k -~t XiX~ + r-1 - jlj~jÓj(nj + bj)jl~~jÓj
i=kj_l +1

(2.6.11)

where

and

r-l-I [ p(vj+nj) p(p-l) p (V + n: + 1- i)]
Cgp = II 2 2 'Jr 4 II )) .

j=l i=l 2

The mass function of k is then proportional to (2.6.11).

Under the assumption of having a fixed number of change-points, vague improper priors can

be used. By letting bj --+ 0, r-1 --+ 0 and Vj --+ 0 in equation (2.6.11), the posterior of k

simplifies to

l1(kIX) cx: ClOp IT {nj~trS;':f }
)=1

where
r+1 (n.)

ClOp = IIrp ; .
)=1

Furthermore

Lt Ik,X rv Wïshart (nj,S;l) and J..Ljlk,X rv tp (nj + 1- p,xj,nj(nj + 1- p)S;l).

1
With the hierarchical model l1(Oj) cx: 1 and l1(bj) cx: - for j = 1, ... , r + 1 it follows, after

bj
integrating out Ol, ... ,Or+1, that
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(2.6.12)

where

r+1

P L vs + ti

Cllp = 2 2

j=l

By letting r-1 -t 0 and Vj -t 0 (j = 1, ... , r + 1), it follows that

Note that when r is not fixed, the rest follows as in equation (2.6.9). Also notice that the

full conditional distributions, in order to apply Gibbs sampling, are similar to those given in

paragraph 2.2.2.

Extension of the case of a change in the variance alone to several change-points is also pos-

sible (see paragraph 2.3.3), but because of the multiple numerical integration we will omit

the details here.

2.7 THE UNIVARlATE CASE

The results for the univariate case can directly be derived from the previous sections. The

reason why it's treated in a separate section is to look more critically at certain model

assumptions in a simpler setting. We will also examine the special cases of autocorrelation

and model comparisons.

The general area of non-sequential statistical inference about change-points has been ex-

plored mainly for location-change in a univariate distribution. From a Bayesian approach,

Broemeling (1974), Smith (1975) and Booth and Smith (1982) and from a non-Bayesian
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approach Chernoff and Zacks (1964), Gardner (1969), Hinkley (1970), Sen and Srivastava

(1975), Bhattacharya and Brockwell (1976) and Bhattacharya (1987) have studied the prob-

lem of the change in mean of a univariate normal distribution. Non-parametric methods for

location change in a univariate distribution have been proposed by Battacharya and Johnson

(1968), Sen and Srivastava (1975) and Darkhovskv (1976). Hinkley, et al. (1980) and Zacks

(1983) discussed these and other related contributions.

Smith (1975) and Bhattacharya (1987) also considered a change in the mean and variance

of a univariate normal distribution.

2.7.1 A CHANGE IN THE MEAN

In the univariate case, when p = 1, the marginal prior density of ~-l, i.e.

is replaced by

(]"2 r-v IG(a, ,B).

Furthermore

and

and (2.3.2) is replaced by

_(n-!) _lr[~(n+2a-l)] n+2Cl<-!

f(Xlk = 17., a, ,B) = 7T 2 17. 2 r(a) [2j3lQ[s~ + 2jJt 2

where
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n

s~ = 2:)Xi - Xn)2.
i=l

It also follows from (2.2.20) that

j(Xlk,8,et,{3) = CI2-Ï8-~r(2et+2n-1) [r(2et;n)]-I7l"_(n;-1)

where

k n

n(J = 2{3+ LX; + L x; - (kl + 8)-lk2xik - (k2 + 8tlk~x~k
i=l i=k+l

(2.7.1)

êó is the same as in (2.2.21) and Cl is the same as Clp but with P = 1.

To summarize, for {3----> 0 and et ----> 0

where Tó is the same as in equation (2.7.1) but with {3= O.

The posterior distributions II(k = n1X,8) and II(kIX,8) follow from (2.3.4). Under the

assumption of exactly one change-point and 8 ----> 0, the posteriors follow as
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where

k2

S~k = 2:)Xi - I2k)2.

Furthermore II(kIX) reduces to

(2.7.2)

Under the assumption of no change-point, the posteriors are

J.Lolk = n, 8, X rv t(n - 1, In, T)

and

(J21k = n X rv lG (n - 1 S~)
" 2 '2

n(n - 1)
where T = 2 .

sn
2 2

Note from equation (2.7.2) that the distribution of Slk ~ s2k is chi-squared with n - 2 degrees(J
of freedom under model Mo, independent of k. Although the expectation of (sik + S~k)-~

does not exist, it does not depend on k and II(kIX) is proportional to (klk2)-~, which is a

minimum when k = ~. So the posterior distribution of k would be u-shaped. This makes

sense since failing to find an obvious change-point in the data, the analysis concludes that

the change-point should be near the end points of the sequence where it is less detectable.

If that happens, the model is probably wrong and the model incorporating the possibility of

no change should be used.
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2.7.2 A CHANGE IN THE MEAN AND VARIANCE

2.7.2.1 CASE 1

In this case the prior assumptions are as in (2.2.25).

If p = 1, (2.2.25) is replaced by

a; rv IG(o:, (3).

Furthermore

After integrating Bl and B2 out, (2.2.28) reduces to

where C6 is the same as C6p but with P = 1 and v = 20:. Note that in the univariate case, the

posterior probability is independent of 151and 152.

Furthermore, if we place a vague prior on (3, 11((3) 0: ~, it follows that (see Gradshteyn and

Ryzhik (1980, p285-286)

(2.7.3)

and

F (
kl + 20: - 1 ? TI, + 40: - 2. k2 + 20: - 1)

2 1 , ~o:, , 1- 2
2 2 SIk

(2.7.4)
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where 2Fl (- , . ; . ; .) is the standard hypergeometrie function.

The posterior distributions II(k = niX) and II(kIX, a) follow from (2.3.4). Furthermore,

under the assumption of exactly one change-point and a, f3 --t 0, the posteriors follow as

,ulik, X rv t(kl, Xlk, T3)

,u2Ik, X rv t(k2, X2k, T4)

where T3 = ~i and T4 = ~~and O"ilk, X rv IC (~;~) and O"~lk, X rv IC (¥;~) .
SIk S2k

Furthermore (from 2.2.24) II(kIX) reduces to

II(kIX) cx: r (\-1) r (k2;1) [r (~) r (¥)rl (klk2)-~ (SIk)-(\-I) (S~k)_(k22-1),

k = 2, ... ,n - 2. (2.7.5)

As in the case of change-points in the mean alone, the expectation of (SIk)-(kI2-1)(S~k)-(k22-1)

does not exist under model Mo, but substituting in the individual expectations, we have ap-
k] -1 k2-1

proximately that II(kIX) cx: (kl -1) 2 (k2 -1) 2 under Mi; In contrast with the previous

case, this posterior is unimodal with maximum at k = ~.

2.7.2.2 CASE 2

In case 2, with p = 1, the prior assumptions (2.2.42) and (2.2.43) reduces to

and

Furthermore

,ui rv iN(B, cp)

and
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and

(2.2.32) is replaced by

f(Xlk, /, cx, {J)

where

kj k2

tó'y(3 - 2{J + LX; + / L X; - (kl + ótlkixik - bk2 + ól-Ik~/2x~k -

and êÓ') is given below (2.2.49).

If we once again place a vague prior on {J,I1({J) cx: ~, it follows that (see Gradshteyn and

Ryzhik (1980, p286) f(Xlk = n) is given by (2.7.3) and that

f(Xlk, /, cx, ó) _1_7f-(n~J)'V ~?r(2o+n-l) B (a n-l)
I'(o ) I 2 ' 2

(2.7.6)

where tó, is the same as tór(3 but. with 2{J omitted.

The posterior distributions I1(k = niX) and I1(kIX, /, a, ó) follows from (2.3.4).

Under t.he assumption of exactly one change-point and ó ----> 0 the post.eriors become

J.Lllk,X",,-,t(n, Xlk, T5)

f.ldk, X, / "-' t (n, X2k, T6)

where

89



and

and

Furthermore IT(k IX, 'Y) reduces to

This is again compatible with the Case of a change in the mean alone, giving a u-shaped

posterior when there is no evidence of a change-point. The shape is asymmetrical, depending

on the value of 'Y.

2.7.3 A CHANGE IN THE VARIANCE

If p = 1, (2.2.53) is replaced by

If a vague prior IT(,8) cx: ~ is placed on ,8, it follows that f(Xlk = 17.) is given by (2.7.3) and

that

f(Xlk, a,,8, 'Y)

so that it follows, after integrating out ,8 (see Gradshteyn and Ryzhik (1980, p285), that

f(Xlk, 'Y)

(2.7.7)
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The posterior distributions II(k = niX) and II(kIX, 'Y, a) follows from (2.3.4). Under the

assumption of exactly one change-point it follows that

When no evidence of a change is present, i.e. k2sik ~ klS~k and Ilk ~ I2k, then approxi-
k n-l

mately II(k) cx: 'Y~(kl +'Yk2)-~k~. This is a unimodal function while 'Y > 1with mode at

k = Jh) as long as Jh) < n where

Otherwise the maximum will be at k = n - l.

Under the assumption of exactly one change-point with a, f3 ----+ 0, the posteriors become

flik, X, 'Y rv t(n - 3, fl"(, T7)

and
2 (n - 3O"llk, X,'Y rv te -2-' ~"()

where

2.7.4 BAYES FACTORS AND MODEL COMPARISONS

In this section we'll compare the different models that have been discussed so far for a given

k (or unknown k) to see which model best fits the data. In paragraph 2.5, Bayes factors

are discussed given a certain model. The corresponding Bayes factors in the univariate case

follows directly from there.

We will consider the following four models with a maximum of one change-point, 2 ::; k ::;

n - 2, where M3 is the so-called encompassing model:
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i = 1, ... ,n

!vIl: Xi rv N (f.Ll, CJ?); i = 1, ... , k

Xi rv N(f.Ll,CJ~); i = k + 1, ... ,n

l\12 : Xi rv N(f.Ll, CJi); i = 1, ... , k

Xi rv N (f.L2, CJ?); i = k + 1, ... ,n

M3 : Xi rv N (f.Ll , CJ?); i = 1, ... , k

Xi rv N(f.L2, CJn; i = k + 1, ... ,n.

Notice that in paragraph 2.5, Bij defines the Bayes factor for a change at i compared t.o

a change at. j for a certain model. In this paragraph, Bijk will denote the Bayes factor of

model i versus model j for a fixed k, where i, j = 0, 1,2,3. When k is omitted, Bij would.

refer to the Bayes factor when summed over k.

2.7.4.1 USUAL BAYES FACTORS

If comparing between models, it is important to make the prior distributions as exchangeable

as possible. So the prior assumptions on the parameters of some of the four models will be

slightly different from the previous sections. We assume that, for all four models where

applicable,

a2where cP = Tand IT(B) cx: l.

Then, with k2 = ti - kl,

j,(Xlk, Ó, o,m = ,,-'2 '0,-' ól (kJ+ 2<»I [~:Jr (k, ~ 2,,) rC'~2,,)
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(2.7.9)

which is an integral of a multiple t distribution. Furthermore, if we place a vague prior on

{J, II({J) cx ~, as with e; both being parameters with common meaning for all models, then

(for the integral, see Gradshteyn and Ryzhik (1980, p286)

_!l n+40-1.c! ( )! 1 B (kl + 2ex k2 + 2ex)
7[" 2 2 2 U 2 kl + 2ex 2 --:-:----,-

B(ex, ex) 2' 2
h(Xlk, b, ex) =

F (k2 + 2ex . n + 40:. sik + ~(J.L2 - X2)2) d
2 I 2' 2ex, 2' 1 - 2 + k ( - ) 2 J.L2·\ S2k 2 J.L2 - Xl

This however, is a very complex integral as well as a function of the two hyperparameters b

and 0:.

For the other models it follows that

(2.7.10)

and

h(Xlk, b) n-l [ b 1~ (n - 1)- 7["-2- r -- .
klk2 + ~8 2
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(2.7.11)

Jl (Xlk, a, (3)

and

h(Xlk, a)

(2.7.12)

and

(n-l) I n-1 2 (n-l)Jo(Xlk) = 7[- -2 n-2r(--)[snl- -2 .
2

Note that these results are slightly different from those in paragraph 2.7.2 and 2.7.3 for

model Mo and Ml· Also, with a vague prior on (3, the parameter a disappears if the model

assumes no change in the variance. Similarly, the parameter 8 disappears in models with

no change in the mean. This result is equal to the one obtained by simply putting a vague

improper prior on any first-stage parameter (J-L or (j2) which doesn't change in the model.

The Bayes factors for a given k are then

B .. _ Ji(Xlk, 8, a)
'Jk - ( IS:)·JjXk,u,a

The unconditional Bayes factors would be, with uniform prior on k,
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2.7.4.2 THE INTRINSIC BAYES FACTOR (IBF)

Berger and Pericchi (1995, 1996, 1997) proposed using all possible minimal training samples

and averaging the resulting Bayes factors.

For the Intrinsic Bayes factor we use the vague priors as in paragraph 2.5 where II(O"l, 0"2) oe

::b and II(J.Ll, J.L2) oe l. Let mI" (x) denote the marginal density of the whole data set foraja2

model i when using the above non-informative priors. Then

(2.7.13)

where sik and S~k are defined in paragraph 2.7.l.

Also

(2.7.14)

m~' (x)

(2.7.15)

which can be numerically integrated, and

(2.7.16)

It then follows that

BN( ) _ m~(x)
31 x - N()'ml x

(2.7.17)

95



(2.7.18)

and

(2.7.19)

The minimal sample size is f_ = 4 with f_(x) = (Xtl,Xt2,Xt3,XtJ where t, < t2::; k < t3 < t4

and Xtl f= Xt2' Xt3 f= Xt4' Then if mi(f_(x)) is the marginal density of the minimal sample,

(2.7.20)

where

1
m2(f_(x)) = 27r(si(k) + s~(k))' (2.7.21)

(2.7.22)

1
mo(f_(x)) = 47r(s2(n))~ (2.7.23)

4

where s2(n) = L::(Xti - Xt)2.
i=I

It then follows that
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(2.7.24)

N si(k)s§(k)
B23(x(f)) = 7f(si(k) + s§(k)) (2.7.25)

and

(2.7.26)

Then
A N B[g(x(f))

Bji = Bji (x) . Bfo(X(f))

is the Arithmetic Intrinsic Bayes factor where

-N 1 ~ NBij (x(f)) = L c: Bij (x(f)).
£=1

Similarly the geometric and median intrinsic Bayes factors can be obtained.

2.7.4.3 THE FRACTIONAL BAYES FACTOR (FBF)

For the fractional Bayes factor, with the same priors as the intrinsic, it follows that

F _ n(l-b) !!!! r (¥) ( 2)- n{l-b)
mo = 7f 2 b 2 ( ) sn 2,r nb-1

2

(2.7.27)
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F _n(l-b)!!!! r (~) ( 2 2 )_n(l-b)

m2 = Jf 2 b 2 r (nb;2) Slk + S2k 2 (2.7.29)

and

(2.7.30)

F
The FBF's, Bt;, are then given by Bt; = m~, i, j = 0, 1,2,3.

mj

2.7.5 AUTOCORRELATION

In all previous models the sequence of random variables were assumed to be conditionally

independent. Here we will assume that the observations are correlated with common corre-

lation Cor (Xi, Xi+t) = pt, -1 < p < 1and variance (J"2 under both model Mo (no change)

and model Ml (one change-point). The theory can easily be extended to multiple change-

points. MacNeill, Tang and Jandhyala (1991) examined the annual discharges of the Nile

river at Aswan for possible change-points under the assumption of serial correlation. For a

more general analysis in multiple regression, see Garisch and Groenewald (1999).

Under Mo(k = 17,) we have the model

(2.7.31)

where In is a (17, xl) vector of ones and

{R··} - li-jl .. - 1
lj - P ,'l, J - , ... ,n. (2.7.32)

The prior specifications are
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!-Lorv N(B,6(72), (72 rv IG(a,(3), p rv U(-I, 1) and II(B) cx l. (2.7.33)

Under Ml with change-point at k we have

where

(
Ik 0 ) ( !-LI )Mk = and J.L =
o In-k !-L2

(2.7.34)

with

J.L rv N(I2B, 6(72 h) and II(klk =j:. n) = 1 - q, k = 1,· .. , ti - l(n 2: 5).
n-l (2.7.35)

Under Mo, the joint marginal of X and p reduces to

(3eT (n+2a) n±2o

f(X Ik (3) 2a-1 _(n-l) _1 2 IRI-1 [2(3 + 'R-lH R-I .: 2 ),p ~ = n,a, = 27ï 2 n 2 f(a) 2 x 0 x

(2.7.36)

Then, if a, (3 ____.0, the marginal post.erior distribution of p under Mo is

(2.7.37)

Under 1\11 it follows that
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f(X, pik, Ó, a, (3)
(3af(n+2a-l)

2-a-;! _(!!.=..!.)$.'_l 2 IRI-~IN I-~
27r 2 U 2 f( a) é·

(2.7.38)

(2.7.39)

In this case the posterior of p (for a, (3 ~ 0 as well as Ó ~ (0) is given by

Under both models we must integrate numerically over p in equations (2.7.36) and (2.7.38)

to find the marginal of X.

The posterior distribution of k follows as

D(k = niX, ó) cx qf(Xlk = 71.)

and

1-q
D(kIX, ó) cx -f(Xlk, Ó).

71.-1 (2.7.41)

Also notice that.

(
n - 1

a2lk, X, Ó, p rv lG .; -2- + a;

and
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and that

where

and

where

(2.7.42)

The unconditional (of k) posterior of p is then

n

II(pIX, ó) 0: L II(k = ilX, ó)II(pIX, k = i, ó).
i=l

(2.7.43)

2.8 SUMMARY OF APPROACHES IN THE LITERATURE

As mentioned, Broemeling (1974) considered the univariate normal sequence with a change

in the mean (only one change-point. at k) and with common variance 0-2. He supposed

that the first k(k = 1, ... ,n - 1) have mean /.LI and the remaining n - k have mean /.L2,

where (different. from our study] -00 < /.LI < /.L2 < 00. A uniform prior was put. on k, i.e.

II(k) = n~l' He considered four cases: Case 1 with known /.LI and /.L2 and 0-2 = 1 and derived

k = 1, ... , ti - 1.

Case 2 with /.LI known, /.L2 unknown and 0-2 = 1 and with improper vague prior II(/.L2) cx

const, /.L2 E (/.LI, 00), resulted in the posterior density for k as (with kl = k, k2 = ti - k)
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where <I>(X) is the standard normal distribution function of X. Case 3 has both /-lI and /-l2

unknown and (J2 = 1 and with the prior II(/-lI,/-l2) cx const (-00 < /-lI < /-l2 < (0). For this

case the posterior density for k is

where Ex denotes expectation with respect to a normal distribution with mean X2 and

variance k;;I.

Case 4 with both /-lI and /-l2 known and (J2 unknown and with the prior II((J2) cx a\ ((J2 > 0),

the posterior density for k is

Smith (1975) also considered the univariate normal sequence with only one change-point at

k and considered the cases with (1) all parameters known, (2) /-lI known, /-l2 unknown and

(J12 = (J;;2 = (J-2 known, (3) /-lI known, /-l2 unknown and (J12 = (J;;2 = (J2 unknown, (4)

/-lI,/-l2,(J12 = (J;;2 = (J-2 unknown and (5) /-lI,/-l2, (J12,(J;;2 unknown. The results for the first

three cases corresponds with those of Broemeling, while the results for case 4 is the same as

ours in (2.7.2) and the results of case 5 with

corresponds closely with those in (2.7.5). There is a difference in the constants and the

exponent of S;k as Smith starts with improper priors and we start with proper priors, in

which case the integration over the hyperparameters causes the loss of one degree of freedom.

Menzefricke (1981) studied the three cases with a change in the precision where (1) /-lI and

/-l2 unknown, (2) /-lI and /-l2 known and (3) /-l = /-lI = /-l2 unknown. In case 1 the priors
2

/-li rv N(Bi, ePi) where ePi = ~ (i = 1,2) and p(k) is any discreteare d2
rv lG (f!i 2i)

t 2 '2 '

distribution (k = I, ... ,n). The posterior distribution of k, conditional on Bi, is as follows:
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where

B(a, b)
f(a)r(b)

a.b » 0,- f(a + b) ,

Blk klÓl _ 2 sik
= Ó k (el - Xlk) +k + (31,

1 + 1 1

B2k k2Ó2 _ 2 S~k
- Ó k (e2 - X2k) +k + (32

2 + 2 2

and

k;

sik = I)Xi - Xik)2.

a2

The posterior distribution of"( = -i conditional on k, el and e2
al

is given by

which is a Beta-distribution of the second kind, a well-known result (e.g. Box and Tiao

(1973)).

For vague priors Menzefricke (1981) let I1(ai, ai) =~, al = a2 = -1 and (31 = (32 = o.a1a2

His degrees of freedom differs from ours in equation (2.7.3) as we let (31, (32, al, a2 ---+ O.

In case 3 (change in variance only), the priors on ai and ai are the same as previously.

Further Il rv N (e, ~). The posterior distribution of "( is

and the posterior distribution of k is

p(kIX) cx p(k) 1000 g('Ylk, X)d"(.
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Booth and Smith (1982) also considered changes of the mean in normal sequences for the uni-

variate and multivariate case. For the latter case he supposed that under Mo Yi '"" Np(J.LI' E)

for i = 1, ... ,n and under Mk that Yi rv Np(J.LI,E) for i = 1, ... ,k and Yi '"" Np(J.L2,E)

for i = k + 1, ... ,n. For the unknown parameters J.LI'J.L2'E the improper priors p(J.LjIE) =
El) (E±l) . . I h dCj(27ï)-2IEI-2 and p(E = cIEI- 2 were used. WIth the change-point as c ose to teen -

E n

points as possible he developed the Bayes factors Eko = C2C~kJ 2 CSl~~~2kl) 2" , which is the

same as our (2.4.10). He defined the minimal calibrating sample as n = 2p + 1 when k = p.

If this gives Ykl = Yk2 so that SIk + S2k = Sn, one should want approximately Eko = 1 with
ki E

Sjk = 2:JYi - fh)(Yi - fh)'· This leads to the choice C2 = (p~::~))2.
i=l

2.9 APPLICATIONS

In the applications that follow in this and later chapters, the prior probability for no change.

is taken as q = ~when compared with a single possible change-point. The rest of the

probability is uniformly distributed over the number of possible values of the change-point.

When multiple change-points are considered, up to a maximum of R, the prior mass is again

uniformly distributed among the possible number of change-points i.e. IT(r) = R~l' r =

0,1, ... , R.

The data for all the examples are given in Appendix A.

EXAMPLE 2.9.1

The measurements on rriale Egyptian skulls of Thompson, A. and Randall-Maciver, R.

(1905), as given in Hand, et al., (1994) from 5 epochs are to be analysed with a view

to deciding whether there are any differences between the measurements from the epochs

and if they show any changes with time. A steady change of head shape with time would

indicate interbreeding with immigrant populations. Measurements are: Xl = maximum

breadth, X2 = basibregmatic height, X3 = basialveolar length and X4 = nasal height. The

time periods are 4000 BC(l), 3300 BC(2), 1850 BC(3), 200 BC(4) and AD150(5), so that
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there is four possible change-points. There are 30 observations for each epoch.

If the presence of exactly one change in the mean is assumed, then the posterior probability

of k (by using (2.2.18)) is given in Table 2.1,

Table 2.1

k 1 2 3 4

pr ob 0 0.8399 0.1601 0

showing that a change is most likely to have occurred at k = 2.

For the possibility of no change against one change, the posterior probability of k (by using

(2.3.3), (2.3.4) and (2.2.20) with Ó = 10 (the approximate mean of the unconditional posterior

of Ó - see Figure 2.3) is given by Table 2.2,

Table 2.2

k No change 1 2 3 4

prob 6.5206 x 10-7 0 0.7961 0.2038 0.0001

giving a very low probability for no change and once again indicating a change at k = 2,

which means a change between 3300 BC and 1850 BC.

The unconditional marginal posteriors of the components of the means J-Ll and J-L2' which

follow from (2.2.19), are given by Figure 2.1.
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Figure 2.1: The unconditional marginal posteriors of the four components

of the mean before (-) and after (- - -) the change-point for

example 2.9.1

The distributions of the differences .6.i between the components of J-Ll and J-L2' which follows

from (2.4.5), are given in Figure 2.2.
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Figure 2.2: The distributions of the differences .6i between the components

of /-LI and /-L2 for example 2.9.1.

The unconditional and conditional (given k = 2) posteriors of 6 which follows from (2.4.5),

are given by Figure 2.3, while II(kIX) as a function of 6 is given in Figure 2.4 for k = 2 and

k = 3, which shows that the posterior probabilities are not very sensitive to 6.

107



008

10.07 -
"'\ : :

.. .. .. .. .. ....: ~ : .

f(Otlk,X),-- ,f(OtlX),_

0.06 - .

Figure 2.3: The unconditional (-) and conditional (given k = 2) (- -) poste-

riors of 8 for example 2.9.1
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Figure 2.4: IT(kIX) as a function of Ó for example 2.9.1 for k = 2 (top) and

k = 3 (bottom).

Still under the assumption of one change-point, it is of importance to see which component

has the most influence in causing the change to occur at a fixed k. By using (2.4.3) and

(2.4.4) in (2.4.9) and (2.4.10) we obtained the results given in Table 2.3., row Il'

Table 2.3

Variables Xl X2 X3 X4

Il 35.5080 9.4688 41.6669 13.3563

h 35.4933 9.5407 41.5164 13.4495
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For Ó = 10 and by using (2.4.7) and (2.4.8) in (2.4.9) and (2.4.10) we obtained the results

given by Table 2.3, row 12. The results indicate that Xl, maximum breadth, and X3,

basialveolar length, are the variables mostly responsible for causing a change-point at k = 2.

The posterior probabilities that follow from the FBF (equations (2.5.6) and (2.5.7)) are given

in Table 2.4, where k = 0 denotes "no change".

Table 2.4

k 0 1 2 3 4

Prob. 5.3068 x 10-6 0 0.8293 0.1707 0

which corresponds reasonably well with the results in Table 2.2.

The Intrinsic BF's, following from (2.5.3) and (2.5.4), are given by Table 2.5.

Table 2.5

BkO 1 2 3 4

Arithmetic IBF 7.0990 x 105 6.7493 X 108 7.4676 X 104 4.8849 X 109

Median IBF 0.0390 6.4252 x 103 1.4257 X 103 0.2221

Geometric IBF 2.1235 x 10-5 85.1779 18.4967 1.6977 x 10-4

From Table 2.6, giving the posterior probabilities (from 1.3), we can see that the median

and geometric IBF's correspond with the previous result, but the arithmetic IBF gives a

somewhat different result. Berger and Pericchi (1998) point out that the arithmetic lBF can

be unstable and that the median IBF is much more stable.

Table 2.6

k 0 1 2 3 4

PA 0 0.0001 0.8785 0.1214 0

PM 0.0005 0 0.8180 0.1815 0

Pc 0.0371 0 0.79ll 0.1718 0
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Under the assumption of two change-points, some probabilities for the pair (kl, k2) in (2.6.4)

are given by Table 2.7.

Table 2.7

e; k2 probability

1,3 0.0073

2,4 0.1549

2,3 0.8277

The posterior probabilities that follow from the FBF for no and 2 change-points is given by

Table 2.8.

Table 2.8

0 (3,4) (1,2) (1,3) (2,4) (2,3)

0.0002 0.0024 0.0046 0.0088 0.1641 0.8199

By using (2.5.16) and (2.5.17) with R = 2 in (2.6.9) and (2.6.10), the posterior probabilit.ies

follow as P(r = Olx) = 1.629 x 10-4, P(r = 11x) = 0.9685 and P(r = 21x) = 0.0315. This

indicates only one change-point after the second time period (between 3300 BC and 1850

BC).

It. is int.eresting t.o note that. the classical F-test for the equality of multivarrate means indi-

cates significant. differences (p < 0.01) between all successive time periods, with the difference

bet.ween the second and the t.hird period the most. significant (p < 0.001).

EXAMPLE 2.9.2

For the case of a multiple change in the mean, we considered the Colorado data used by

Chernoff (1973) to illustrate his well-known "Chernoff faces". This data is TI, = 55 obser-

vations on 12 variables representing mineral contents from a 4500-foot core drilled from a
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Colorado mountainside. We considered only 5 variables, which are the same 5 variables that

Srivastava and Worsley (1986) and Gupta and Chen (1996) have used.

For R = 7 and by using (2.5.24) in (2.5.16) and (2.5.17) where BOk is the FBF and where

P[T = jlX] = L ll(k, T = jly]' the posterior probabilities for a change (given by (2.5.24))
k

are given in Table 2.9, showing a high probability for 5 or 6 change-points.

Table 2.9

No Post. prob. Maximum prob. points

0 0

1 0 24

2 0 20 34

3 0.0105 20 26 34

4 0.1202 20 26 34 48

5 0.4166 20 24 26 32 48

6 0.4346 18 23 27 34 43 48

7 0.0315 20 23 27 34 41 43 48

The sets of 5 change-points with highest posterior probability are given in Table 2.10 and

Figure 2.5 shows the marginal distributions of the 5 change-points, given there are 5 change-

points.

Table 2.10

Probability

20 24 26 32 34 0.0772

20 23 27 34 48 0.0821

20 24 27 34 48 0.0840

20 24 26 34 48 0.0894

20 24 26 32 48 0.0956
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ample 2.9.2
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Gupta and Chen (1996) gave the following summary given in table 2.11 of their own results

and that of Chernoff (1973) and Srivastava and Worsley (1986).

Chernoff found 4 change-points, Srivastava and Worsley found five, while Gupta and Chen

found twelve. The only change-points common to all analyses are 20 and 32.

Table 2.11: Change-points for the mineral contents of a core sample

Chernoff Srivastava and Worsley Gupta and Chen Schoeman

6

12 12

18 18

20 20

24 24 24 24

26

28

32 32 32 32

34 34

35

39

41

43

46

48 48

EXAMPLE 2.9.3

To illustrate our results of a change in the mean and variance, we will use the Friday closing

prices collected by Chen and Gnpta (1991) from January, 1990 through December, 1991 for

two stocks (Exxon and General Dynamics). Chen and Gupta (1991) tested the hypothesis of

a change in the variance. The weekly rates of return for these two stocks will be analyzed for

a single change-point, where the weekly rates of returns X, = [Xt1 Xt21 and Xti = Current
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Friday closing price - Previous Friday closing price. There are 103 observations and the

original data is given in Appendix A.

For case 2 in paragraph 2.2.2.2 where we got the prior assumptions E2"l = ,Ell and <1>-1 =

oEll, we took, = 0.4 and 0 = 10 in equations (2.3.3), (2.3.4) and (2.2.49). The probability

for no change was 3.5807 x 10-5 and we got a maximum probability of 0.4144 at the 28th

observation. For case 1, by using (2.3.5), we also get a maximurn at the 28th observation if

we assume 0 = Ol = 02. Notice that. the value of the maximurn depends on O.

In Figure 2.6, where II(kIX) is a function of 0 for, = 0.4, we can see that the post.erior

probability is quite robust with respect. to 0 and the change-point. seems to be in the region

of k = 26 to 28.

o::~............•.....••..•......
l

0.25\~======k~==2~9~~~---..,... ~====.=....=....=..=.:.:::.....:.:::.....=.."_::::"'_::::"::::"'===J

J
I

8 9 10

Figure 2.6: II(kIX) as a function of 0 for example 2.9.3
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In Figure 2.7, where Tt(kIX) is a function of , for 8 = 10, it is clear that for a small ,

the 28th observation gives a maximum probability and if we choose, to be larger than

one, that. the 66th observation gives the maximum probability. Note that Chen and Cupta

(1991) mainly got the 66th observation as a change-point for the return series, but also got

more change-points, under which the 27th and 28th observations. Also note that Chen and

Gupta (1991) used the difference divided by the previous closing price, while we just. used

the difference. It is obvious from Figure 2.7 that the posterior probability is sensitive t.o the

value of ,. It is important to remember that these probabilities are determined under the

rat.her strict assumption of 2:2"1 = "1'2:11.

0.81 n::l f\28 .

1\
05-

d. \ ,.d

1····\·

. )

2
Gamma

3.5 4

Figure 2.7: II(k) as a function of, for example 2.9.3
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Next, if we assume exactly one change-point then, according to (2.2.36), the posterior prob-

ability distribution of k is given as in Figure 2.8 with a maximum at k = 52. This is

completely different from the previous results. The marginal posterior of the elements of 2:;1

and 2:;2 is shown in Figure 2.9 and Figure 2.10, where O"i1(1) and O"i1(2) denote the variance

of the first element of X before and after the change-point. Similarly for the variance of the

second element of X. The posterior means are given as E(O"il(l)IX) = 1.6310, E(O"il(2)IX) =

1.4489, E(0"~2(1)IX) = 1.9532 and E(0"~2(2)IX) = 8.9495. These results indicate that the

assumption of proportional eo-variance matrices used in the previous paragraph may not be

valid. That could be the reason for the discrepancy between the results. In this paragraph

no assumptions about the structures of the eo-variance matrices were made.

O.3.-----~------r-----_.----_.------_.----_.------._----_,

Figure 2.8: The posterior probability distribution of k for example 2.9.3
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Figure 2.9: The marginal posterior of (Jil before (-) and after (--) the

change-point for example 2.9.3
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Figure 2.10: The marginal posterior of (J~2 before (-) and after (--) the

change-point for example 2.9.3

For the FBF in (2.5.10) with b = O.ll (see discussion below (2.5.10)) it follows that the

probability for no change is 0.0033 and that the maximum probability is 0.2568 for the 52nd

observation, as can be seen in Figure 2.ll. This corresponds with the previous results as in

Figure 2.8. Note from (2.5.10) that k and ti - k must be larger than i.
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Figure 2.11: Posterior probability distribution of change-point - FBF for

example 2.9.3

The posterior probability of II(k = niX) as a function of b is given in Figure 2.12. Note that

the probability of no change is smaller than 0.015 for any b < 0.5.
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Figure 2.12: The posterior probability of I1(k = niX) as a function of b for example

2.9.3

Our conclusion is that a change-point occurs in the mean and variance of the weekly returns

ill t.he region of k = 52, which is January 1991.

EXAMPLE 2.9.4

For a change in the variance we will use the weekly closing values of the Dow-Jones Industrial

Average from July 1, 1971 through August 2, 1974, studied by Hsu (1979). The data were

extracted from Daily Stock Price Record: New York Stock Exchange, published quarterly
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by Standard and Poor's Co., New York, N.Y. The weekly closing values will be analyzed for

a single change-point, where the weekly closing values X, = [Xt1 Xt2J and Xti = (Current

weekly closing value - Previous weekly closing value)/Previous weekly closing value. There

are 161 observations and the original data is given in Appendix A. A plot of the data is

given in Figure 2.13.
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Figure 2.13: A plot of the weekly closing values of the Dow-Jones Industrial Av-

erage from July 1, 1971 through August 2, 1974

Chen and Gupta (1997) also used this data, performing a change-point analysis using the

SIC procedure. According to them the stock price started to change at the 91st time point,

which corresponds to the calender week of March 19-23, 1973. Their conclusion matched

Hsu's (1977, 1979).
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Worsley (1986) also considered this data and found a single change-point in late February.

For the FBF which follows from (2.5.14) with b = 0.11, it follows that IT(k = niX) = 0.0007

and that the maximum probability is 0.2088 for the 89th observation, as can be seen in

Figure 2.14.

0.25,----;------,---,---.,-----;------.----.---....,----.-----,

0.1

0.2

0.15

100

Figure 2.14: Posterior probability distribution of change-point - FBF for exam-

pIe 2.9.4

In Figure 2.15, where IT(k IX) is plotted as a function of I' it is clear that for I ::= 0.36 the

result. is similar to the above obtained result. Notice that the probability is very sensitive

when I is very small or close to 1, and 7r(k = niX) -- 1 as I -- 0 or 1.
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Fig 2.15: II(kIX) as a function of I for example 2.9.4

For Gibbs sampling, where the full conditional distributions are given by (2.2.56), the max-

imum probability is 0.2324 at the 89th observation, as can be seen in Figure 2.16. This is

very similar to our results for the FBF (Figure 2.14).
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Figure 2.16: Posterior probability distribution of change-point - Gibbs for

example 2.9.4
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The unconditional marginals of the variances before and after the change-point are given

by Figure 2.17. The expected values of the variances are 2.574 x 10-4 and 7.767 x 10-4

respectively, with 95% credibility intervals of (1.86 - 3.52) x 10-4 and (5.55 - 11.00) x 10-4

respectively. According to these posteriors an estimated value for / is 0.33.
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Figure 2.17: The unconditional marginals of the variances before (-) and

after (--) the change-point for example 2.9.4
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CHAPTER 3
CHANGES IN THE LINEAR MODEL

3.1 INTRODUCTION

Change-point problems has been addressed extensively in the literature and as some

authors referred to change-point while others refer to shift point or switchpoint, it's

necessary to distinguish between the concepts. When it is assumed that the change

occurs at a discrete point between two consecutive observations, with no functional

relationship between the parameters before and after the change, we'll refer to it as a

change-point. In the case of a switchpoint (which can be continuous), say t, we have

the condition that h(ylt) = 12(ylt), where hand 12 are the models before and after

the switchpoint.

It is also important to distinguish between a change in the univariate regression versus

a multivariate regression. The univariate change-point can be a function of time or an

independent variable, while in multiple regression the change-point only makes sense

if the observations are just taken over time. It doesn't make sense in multivariate

regression to look for change-points as a function of independent variables.

Considering the linear model Yi = cx+ xJ3 + Ei with respect to possible change-points,

it is obvious that there are a number of different ways in which changes can occur. The

first question is if any changes have occurred at all and secondly, if there are changes,

how many? Then changes can occur in the parameter vector {3, or in cx or in both.

Another possibility is a change in the error variance, with or without a change in the

parameters.

Two kinds of change-point problems have been dealt with in the literature. The first

one is that of testing for the null hypothesis of no change versus the existence of a change

occurring at some unknown time in a sequence of i.i.d. normal random variables (Page

(1955), Chernoff and Zacks (1964), Gardner (1969), Hawkins (1977), Worsley (1979)),

or in a simple linear model (Quandt (1958), Farley and Hinich (1970), Maronna and



The (second) problem of estimating the point at which the change occurs, has among

others been addressed by Schulze (1982) and Zacks (1982).

Yohai (1978)), or in a general linear model (Worsley (1983), Jandhayala and MacNeill

(1991)), all from a non-Bayesian viewpoint.

Considerable attention has been devoted, e.g. by Hinkley (1969), Hudson (1966),

Quandt (1958, 1960) and Robison (1964), to the problem of fitting lines or curves to

data which suggest abrupt changes in parameter values from one range of the indepen-

dent variables to another. Tests of the hypothesis that a sudden change in behaviour

has occurred at an estimated join point have been suggested by Quandt (1958) and

Hinkley (1969) and maximurn likelihood estimation procedures for the model param-

eters and the join point have been described by Hinkley (1969), Quandt (1958) and

. Robison (1964). Assuming a change does occur, Quandt (1958) estimated the switch-

point m and the regression parameters by a maximum likelihood technique, and Hinkley

(1969, 1971), under the assumption that the two-phase regression model is continuous,

estimated and made inferences about the abscissa of the intersection. In the case of two

constant means the emphasis of published work, in particular that of Page (1954, 1955,

1957) on cumulative sum schemes, has been on testing the null hypothesis Ho : eq = el
against the two-mean alternative.

Still from a non-Bayesian viewpoint two-phase linear models, which is a generalization

of the shift problem for a normal sequence, has been studied by Quandt (1958) and

Hinkley (1969, 1971), while some other studies of two-phase regression problems have

been considered by Quant (1960), Sprent (1961), Hudson (1966), Feder (1975), Farley,

et al. (1975), Brown, et al. (1975), Holbert (1982), Hsu (1982) and McAleer and Fisher

(1982). Harrison and Stevens (1976), Swamy and Mehta (1975) and Farley and Hinich

(1970) have all studied these models. Poirier (1976) gives a review of the literature

concerning the prediction of a future observation when the model has changed.

Many authors have studied the change-point problem associated with regression mod-

els. Brown, Durbin and Evans (1975) introduced a method of recursive residuals to
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test for change-points in multiple regression models. Hawkins (1989) used a union-

intersection approach to test changes in a linear regression model. Kim (1994) consid-

ered a test for a change-point in linear regression by using the likelihood ratio statistic

and studied the asymptotic behavior of the LRT statistic. Chen (1998) studied the

change-point problem for simple linear regression model, as well as for the multiple

linear regression model mainly by using Schwarz Information criterion, SIC (Schwarz,

1978).

Relatively little has appeared in literature about change in the multivariate linear

model. However, Sen and Srivastava (1973, 1975, a,b,c) proposed tests for detecting

change in means and examined the exact and asymptotic properties of the test statis-

tics. Salazar (1980, 1982) considered changes in the multivariate linear model using a

change-point parameter. Moen (1982) developed a detailed analysis of the multivariate

linear model and Tsurumi, et al. (1984) developed a gradual switching multivariate

regression model with stochastic constraints. Booth and Smith (1982) considered a

Bayesian approach to retrospective identification of change-points and studied changes

of the mean in the univariate and multivariate normal sequences as well as changes of

coefficients in regression models.

From a Bayesian viewpoint, Chin Choy and Broemeling (1980), Holbert and Broemel-

ing (1977), Ferreira (1975) and Bacon and Watts (1971) studied the two-phase regres-

sion model, a simplification of the linear model when p = 2. Holbert and Broemeling

(1977) and Smith and Cook (1980) estimated the point at which the change occurs.

Chernoff and Zacks (1964) and Bhattacharya and Johnson (1968) have discussed the

same problem as Page (154, 1955, 1957) within a Bayesian framework.

Bacon and Watts (1971), Ferreira (1975), Holbert and Broemeling (1977), Chin Choy

and Broemeling (1980), Moen, et al. (1985), Smith and Cook (1990) and Kim (1991)

also looked at change-points in linear models. An overview and numerous references

can be found in Broemeling and Tsurumi (1987).

When there is no change in the precision parameter at the switchpoint, the linear model
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reduces to the one studied by, among others, Ferreira (1975), Holbert and Broernel-

ing (1977), Chin Choy and Broemeling (1980) and Land and Broemeling (1983). Chin

Choy and Broemeling (1980) derived the Bayesian posterior distributions of the switch-

point, the regression parameters and the precision parameter, generalizing the studies

of Ferreira (1975) and Holbert and Broemeling (1977). Land and Broemeling (1983)

considered the prediction problem and derived the Bayesian predictive distribution of

k future observations.

Stephens (1994) discussed the use of a sampling-based technique, the Gibbs sampler,

in mult.iple change-point problems and demonstrate how it can be used to reduce the

computational load involved considerably. Carlin, Gelfand and Smith (1992) presented

this new Bayesian analysis. They used Gibbs sampling to res ample (repeatedly sam-

ple) from the joint posterior distribution of all the parameters in a change-point model.

Their study was an advancement in the sense that earlier use of numerical and analyti-

cal approximations could be a'.'oided with their Monte Carlo Markov Chain resampling

technique. Broemeling and Gregurich (1996) approached the same problem, but using

a direct sampling approach in conjunction with analytical reductions, whereby stan-

dard random number generators can be used to directly generate samples from the

post.erior distribution. In this way, convergence issues with Gibbs sampling can be

avoided and the posterior analysis simplified.

Broemeling and Gregurich (1996) confine their study to the fixed sample size version.

Using a direct resampling process, a Bayesian approach is developed for the analysis of

the shift point problem. In many problems it is straight forward to isolate the marginal

post.erior distribution of the shift point parameter and the conditional distribution of

some of the parameters given the shift point and the other remaining parameters. When

this is possible, adirect sampling approach is easily implemented whereby standard

random number generators can be used to generate samples from the joint posterior

distribution of all the parameters in the model. This technique is illustrated with

examples involving one shift from Poisson processes and regression models.

Wang and Lee (1993) considered a Bayesian approach to detect a change-point in the



Yi - Xi/30 + ei; i = 1, ... ,n

or { ,Xi/3l + ei; i = 1, ... , k (3.2.1)
Yi

Xi/32 + ei; i = k + 1, ... ,n

intercept of simple linear regression. He employed the Jeffrey's non-informative prior

and compared it with the uniform prior in Bayesian analysis.

Up to this stage most of the mentioned analyses are under the assumption of exactly

one change-point as complications arise due to the changing dimensions of the param-

eter space if the number of change-points is unknown. Barryand Hartigan (1992)

propose a product partition model for multiple change-points. Groenewald (1993) con-

sidered a general Bayes procedure for the examination of possible change-points in the

linear model and made provision for no, one or more than one change-point under the

assumption of homogeneity of error variance. In linear regression, certain components

which may be the cause of a change-point, can be examined. The results are in terms

of posterior probabilities over a class of conjugate priors.

3.2 NO OR ONE CHANGE-POINT IN THE LINEAR MODEL

3.2.1 A CHANGE IN THE REGRESSION COEFFICIENT WITH

CONSTANT VARIANCE

Consider a linear model where a change may have occurred,

where p ::; k ::; ti - p.

The Xi = [1 Xli' .. Xp-l,i] in the given model are 1 x p known vectors of regressor

variables, the /3i = [,Ba ,Bl'" ,BP-I]' are p x 1 unknown parameter vectors and the ei

are i.i.d. normal random variables with mean zero and variance (J2 > O.

If k = ri, no change has occurred, while exactly one change has occurred somewhere if

1 ::; k ::; ti - 1. So if 1 ::; k ::; 17, - 1, /31 =J. /32 where k is unknown.

. Let the marginal prior mass function of k be
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IT(k) = { q,
____!_.=_q_
n-2p+I'

k=n

p~k~n-p
(3.2.2)

and let f30 and f3 be assigned normal-gamma densities with f30 E !RP, f3ola2 rv

N(Bo, a2<Pll) and f3' = [f3~, f3;] E R2p, f3la2 rv N(B, a2<p) so that

and

(3.2.4)

Furthermore the marginal prior density of a2 if k = n is

-v
QI (1 )QI+I2 _ Il -~

IT(a ) - r(aI) a2 e o ,

while if k =1= n,

2 ..:L_ ( 1 )Q+l --3zIT(a ) = r(Q) a2 e" , (i.e. a2
rv IG(a, ,)). (3.2.5)

In addition, B' = [B~, B~] where Bo E !RP and the covariance matrix <p is a positive-

definite matrix of order 2p where

<p = [<P11 0 1
o <Pll

with <P a 2p x 2p matrix and <P11 a p x p matrix.

The likelihood function for f3I, f32 and a2 follows from (3.2.1) as
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k=n

p~k~n-p
(3.2.6)

where

[ v.. 1 :n x 1,Y = Yk =
Y2k

Yl

Y2 : k x 1Ylk =

Yk

and

Y2k =

Yn

Yk+l

: (n-k) x l.

Furthermore X = [ X
lk

land x, = [Xlk 0 l: n x 2p
X2k 0 X2k

where Xlk = : k x p and X 2k = : (n-k) xp.

The posterior distribution if k = n, according to Bayes' theorem, is

where
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(3.2.7)

A = Q1(n) + J1(n),

(3.2.8)

and (3.2.9)

which results in

(3.2.10)

The posterior distribution if k =1= n is then likewise

(3.2.11)
where

B = Q(k) + J(k),

- -
Q(k) = ((3 - iJk)'(X~Xk + 1>-1)((3 - iJk), (3.2.12)
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(3.2.13)

and (3.2.14)

so that

-~ [2,+(,B-~k)/(X~Xk + <I>-1)(,B - ~k) + Y~Yk + ()'<I>-l() - (X~Yk + <I>-l())'~k]
e .

(3.2.15)

Note that () - J;()o where Jp - [lp lp] so that <I>-l()

2()~<I>ï/ ()o.
<I>-lJ'()o and ()'<I>-l() =p

Our interest is the marginal posterior mass function of k, which can be obtained from

the joint posterior density of the parameters by eliminating all paramet.ers except k.

Therefore, by integrating out ,BO,,Bl,,B2 and (J2 it follows that

and

(3.2.17)

for k = p, ... , n - p.

These expressions ((3.2.16) and (3.2.17)) still leave unknown parameters a, I' al, Il, ()o
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(3.2.18)

and <P11. We proceed to put a vague prior to 00 and integrating to leave expressions

with unknown <Pll,o:",O:I and ,I.

From (3.2.16), after completing the square, it follows that
~ ~~, ~

2'1 + J1(n) = (00 - ,6)'[<P11+ (X'X)-I]-I(OO -,6) + 2'1 + y'y -,6 X'X,6

where

so that

i

,f)ql1>11I-~r( 0:1+ ~)[(~0:1+ n - p)?T] ~reC'l ~n-p) '(20) +;~(~r)(n) '-2
r(0:I)(2?T)~IX'X + <Pl/I~reoh+n)

(3.2.19)

where

(3.2.20)

From (3.2.17), after completing the square, it follows that

where

(3.2.21)

(3.2.22)

and
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(3.2.23)

so that

(3.2.24)

and

n..-I(X' X n..-I)-IX'
'±'l Ik Ik + '±'l IkYlk

so that

8 ly k <1> ()2 rv N(C-I D ()2C-I)o , , , , (3.2.25)

and

(3.2.26)

Furthermore, the posterior of 80 unconditional of k is given by

TI(80Iy, a", <1» cx TI(80Iy, <1>,k = n)TI(k = nl<1>ll, al, ,I, y) +

n-p

L TI(80Iy, a", k)TI(kl<1>, a", y).
k=p

(3.2.27)
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(3.2.28)

Note that all the equations are still dependent on the unknown parameters <I>,a and ,.

3.2.1.1 EXACTLY ONE CHANGE-POINT IN THE MODEL

Assuming now that we have established the existence of a structural change, we can

obtain probabilities of a change at k = 1,2, ... ,n - 1. The behaviour of the other

parameters of the model can then be analyzed, given the change at k, where 1 ~ k ~

n - 1.

Using equation (3.2.17), ignoring all constants, we have

where, from (3.2.13) and (3.2.14), it follows that

~ ~
- [Yk - Xk13k]'Yk + [e - 13k]'<I>-le

(3.2.29)

where i3k is given in (3.2.14).

The marginal posterior mass function in (3.2.28) can therefore be expressed in a dif-

ferent. way, i.e.

IT(kl<I>, y, a", e) cx: IX~Xk + <I>-ll-~ [2, + (Yk - Xk~k)IYk + (e - ~k)'<I>-lel-2Qr.

(3.2.30)

Once the change-point has been determined at, say k = k"; we are now interested in

the distributions of f3 and (J2.
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(3.2.31)

Using (3.2.11) it follows that

II(j3lk = k*,y,a",iP) cx 100 {OOII(j3,Oo,a2,k*ly,a",iP)da-2dOo
-00 Jo

100 , 1 J 2o+2p+n
cx: _OO[U+ (00 - b) 2iP; (00 - b) - 2 dOo

100[ 1 J iP-1J'(2a+n+p) j_[20+;+2P)
cx: 1+ ( ) (00 - b)' p p (0 0 - b) dO0

-00 2a + n + p U

where

and

and which is the integral of a multivariate t-distribution with 2a + n + p degrees of
}pA-IJ'(2a + n + p)

freedom, location vector b and precision matrix p U so that
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( 2o+n+p)IT(,6lk = k"; y, a, I, iP) cx u- 2 (3.2.32)

where

so that. IT(,6 Ik = k", y, a, ,', iP) is a mul tivariate t-distri bution with 2a + n - p degrees

of freedom, location vect.or [X~Xk + iP-I - ~JpiPkl Jp]-I X~Yk and precision matrix

(3.2.33)

Furthermore, by using (3.2.24) and (3.2.32), it follows that

n-I

IT(,6ly, a, I, iP) = L IT(kly, a, ,', iP)IT(,6lk, y, a, I, iP)
k=l

(3.2.34)

where

IT(kly, a, I, iP) cx

(3.2.35 )

and IT(,6lk = k*, y, a, I, iP) is given by (3.2.32).
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(3.2.36)

The marginal posterior density of a2, conditional on k, is

where Q(k) is as in (3.2.12) and J(k) is given by (3.2.13), so that

where

This results in

The marginal posterior density of a2, unconditional of k, is

n-l

II(a2ly, a", <p) = L II(kly, a", <Pu)II(a2Ik, u, a, ,).
k=l

(3.2.37)

where

II(kly, a", <Pu) is given by (3.2.24) and (3.2.35) and II(a2lk, u, a, ,) is given by (3.2.36).
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(3.2.38)

Note that the distributions are still dependent of cx, I and <PIl.

Since the number of change-points is known, we can put vague priors on the parameters

(3 and (]"2, that is if cx, I, <PIll -t 0 in (3.2.4) to (3.2.5), then 11((3,k, (]"2) cx ;2. The

expressions for Q(k) and J(k) becomes

and

where

The posterior of ,Bly, k becomes a multivariate t-distribution with n - 2p degrees of

freedom, location vector [X~Xkl-1X~Yk = ê, and precision matrix IX~Xkl(n - 2p)
y~HkYk

2 (n - 2p 1, )and the posterior of a becomes a lG 2 ; "2YkHkYk .

The marginal posterior mass function of k will be

(3.2.39)

3.2.2 A CHANGE IN THE VARIANCE WITH CONSTANT REGRES-

SION COEFFICIENT

Consider the linear model where a change may have occurred,
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Yi = xd3 + ei; i = 1, ... ,k

Yi = xd3 + Ui; i = k + 1, ... , ti (3.2.40)

Yi = xd3 + ei; i = 1, ... , ti

or

where 1 ::; k ::; ti - 1 where ti ~ p + 1.

The Xi'S and j3 are the same as previously and ei are i.i.d. normal random variables

with mean zero and variance cri > 0 if i = 1, ... , k, and Ui is distributed with mean

zero and variance cri > 0 if i = k + 1, ... ,n.

Exactly one change has occurred somewhere if 1 ::; k ::; ri - 1. So if 1 ::; k ::;

n - 1. cri =J. cri, where k is unknown. Furthermore, if k = n., i.e. no change has

occurred, cr-2 '" r(o:, ,) and if k =J. ti (i.e. I::; k ::; ti - 1 and exactly one change has

occurred), cr12, cr2'2 '" I'(o, I), independently.

Let the marginal prior mass function of k be as in (3.2.2) and let j3 be assigned a

normal density with j3 E IR? '" N ((), CP)and also let

2::0 = cr2In, L =
(2x2) 1

and where cr2 > 0

so that

(3.2.41)

Furthermore the marginal prior density of cri, cri is

I1(cri, cr~) = _r:_ (-21 2) a+1 e-,(~+~)
r(a)2 cr1cr2

(1 ::; k ::; ti - 1)

and
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2 ,,{I (1 )Q+1 _'1

II(a ) = r(a:) a2 e ;;2", (k = n), (3.2.42)

The likelihood function for ;31' ai and ai is from (3.2.6) for k = ti

while for 1 ::; k ::; ti - 1 it follows that

(3.2.43)

The conjugate priors for both cases are given by

e-/trE;-1 e-H;3-0)' <1>-1(;3 - 0)) (1::; k ::; ti - 1).

(3.2.44)

The posterior distribution if k = ti, according to Bayes' theorem, is

e-H;3-0)' <1>-1(;3 - O)e-Hy- X;3)' 2:;-1(y - X;3).

(3.2.45)
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~ = (X' X)-l X'y,

H = I - X(X'X)-lX'

(3.2.46)

(3.2.47)

Furthermore the marginal posterior mass function of k = n is

II(k = nly, ex,,) = JJ J II(,B, 0"2,k = nly, ex", ip)d()d,Bd0"2

-~ ,Q (1 )Q+Ï+l --3IJ -~ [(,B-~)'X'X(,B-~)+y'Hy] 2- (2n) 2q-- - e u e d,BdO"r(ex) 0"2

where

so that

~, ~
y'Hy = y'y -,B X'X,B.

Therefore

II(k = nly, ex,,)

q(2nr('9') _:t_lx'xl-!r (n + 2ex - P) [, + ~y' Hy] _(n+22"-e) .r(ex) 2 2

(3.2.48)

The posterior distribution if 1 :::;k :::;n - 1 according to Bayes' theorem is

(3.2.49)
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1 2a (1) ~+a+l ( 1) n;-k+a+l- q -~ "f f 17, - 2p + 1(27T) 2 r(a)2 O"f O"~
--\ --\

e -r e "2

Furthermore the marginal posterior mass function, if 1 :::;k :::; 17, - 1, is

JJ 1 - q (? )-~ [2a (1) ~+a+l ( 1 ) ";-k+
a
+
1 --;z --;z---- ~7T 2 -- - - eIe 2

17, - 2p + 1 r(a)2 O"f O"~

where

(3.2.50)

and

H _. = ",-I _ ~-l Y (X"~-IX) -1X/~-1Lk L,k .0k .'\. ./ .0k .0k (3.2.51)

so that

I I -1 I -1 ( , -1 ) -1 , -1
Y Hr-kY = Y L:k Y - Y L:k X X L:k X X L:k y.

Therefore
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(3.2.52)

l1(kly, a, ,) cx:
1 20 (1) ~+0+1 ( 1) n;-k+o+l-q -~ ,JJ 71,- 2p + 1 (27r) 2 r(a)2 (Jr (J~

where

with

2
If we let (J? = 7-, it follows that Ek = (Jitlk and y'Hr:,kY = -fzy'Hkt:,y

1

where

(3.2.53)

and

so that, with prior 7r(b) cx: i,

1_ _(~)~ {OO IX'tl XI-~bn;-k+o-lr (_n_+_4_a_-_p)
__ q (27r) 2 ['(0) Jo k 2
71,-1
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{
I }-=s="2 y' H kt:,. Y + , + 8, ~, if 1 ::; k < ti - 1. (3.2.54)

n+4o-p

{~yIHkb.y+,+8,}- 2 d8.

Note that 8 must be eliminated by numerical integration. To summarize, it follows

that.

and

II(kly, Q", 8) <X

3.2.2.1 EXACTLY ONE CHANGE-POINT IN THE MODEL

Assuming once again that we have established the existence of a structural change, we

can now obtain probabilities of a change at k = 1,2, ... , ti - 1. We can then analyze

the behaviour of the other parameters of the model, given the change occurred at k

where 1 ::; k ::; ti - 1.

From (3.2.49) it follows that, with 1>-1 ----t 0,

and that

k+2o

f3ly,k <X ['+~(Y1k-X1kf3)/(Y1k-X1kf3]- 2

(3.2.55)

148



(3.2.57)

which is the product of two t-distributions.

Using (3.2.54), ignoring all constants and letting a, I ---t 0, it follows that

3.2.3 A CHANGE IN THE REGRESSION COEFFICIENT AND THE

VARIANCE

Consider the linear model where a change may have occurred,

Yi = xd30 + ei; i = 1, ... ,n

or

(3.2.58)

The xi's and (3i are the same as previously, and ei are i.i.d normal random variables

with ei '" N(O, O'?) if i = 1, ... ,k and ei '" N(O, O'§) if i = k + 1, ... ,n with O'~, O'~ > °
and p + 1 :::;k: :::; n. - p - 1 with ti ~ 2p + 2.

Furthermore if k: = n, 0'-2 '" r(ao"o) and if k =J. n, 0'12 '" r(al"l) and 0';-2 '"

r(a2, 12)'

Let the marginal prior mass function of k: be as in (3.2.2) and let (30 and (3 be assigned

a normal with

so that
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(3.2.60)

and

(27ra?)-~ e-i;z({32-(J2)'ip:;} ({32 - (J2) lip221-~ .

(3.2.59)

The marginal prior densities of a2 and of ai, a? are then respectively

and

With uniform priors on the (J's, the marginal posterior mass function if k = ti is

Q (2Qo+p+n)
/0

0
I I (200 + P + n) [ 1 ] - 2IT(k = nl y, /0, (0) IX q r((0) IX .Xr 2r 2 /0 + "2 yl Hy

(3.2.61)

where H is given by (3.2.47). The joint posterior distribution if k =I- n according to

Bayes' theorem is
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(3.2.62)

The marginal posterior mass function if k =J n is

(3.2.63)

where
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(3.2.64)

3.2.3.1 EXACTLY ONE CHANGE-POINT IN THE MODEL

From (3.2.62) it follows that

Furthermore

and

If ai, ,'i --+ O(i = 1,2) in (3.2.63), ignoring all constants, it follows that.

(3.2.65)

152



(3.3.1)

3.3 BAYES FACTORS

3.3.1 A CHANGE IN THE REGRESSION COEFFICIENT

Consider the models

i = 1, ... , k

i = k + 1, ... ,17.

!vlo i = 1, ... ,17.

with

{3 a p x 1 vector of unknown parameters and {3 = [{3~ (3;] and ei rv N(O, a2 In). Also

bring in the (Jeffrey's) priors fIo({3~,a2) cx: ;2 and fI1({31,{32,a2) cx: ;2' Furthermore

consider a minimal sample of size f = r + s with r observations before k and s obser-

vations after k.

All parameters are identifiable and we have proper posteriors if f = 2p + 1 and r, s 2:: p.

Let r = p, so that s = p + l. The marginal densities for the whole sample under model

Ah will be

m{;'(x)

For the minimal sample it follows directly that
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(3.3.2)

where Yk(£), Xk(£) and Hk(£) denote the values from the minimal sample of size 2p+ I,

with p observations before or at k and p + 1 after k.

Under model Aio it follows that

m~(x)

7r-(T)lx'xl-~r (n?) [y'Hy]-T

and

Furthermore

(3.3.3)

and

(3.3.4)

so that

BkO(£) = Bfo(x)B~(x(£))
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Bte! = Bfo(x). ± tB~(x(f)).
f=l

(3.3.5)

and

Typically the Arithmetic Intrinsic Bayes factor does not satisfy the coherency condition

that Bij = ~ as mentioned by Berger and Pericchi (1996). The encompassing model

approach suggested by Berger and Pericchi is also not applicable in this change-point

situation, as the only minimal sample satisfying all models is the whole sample. So we

will define all Bayes factors between competing change-point models as relative to the

no change models, i.e. let Bij = ~.

For the Fractional Bayes factor it follows that

(3.3.6)

mo nb n(l-b) r (T), n(l-b)
mo(b) = -b = b27r--2- (b ) (yHyt-2-

mO r n :;p (3.3.7)

and therefore, with b = 2p+l, it follows thatn

(3.3.8)

3.3.2 A CHANGE IN THE VARIANCE

For 1 ~ k ~ n - 1 and with the priors II(j3) cx 1, II(O"?) cx ~

follows that

m~(x)
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(3.3.10)

where L:k is defined above (3.2.41) and

(3.3.9)

(J'2
By letting (J'i = i and 71'(b) (X i, it follows that

Furthermore

(3.3.11)

For the minimal sample 17, = p + 1 it follows that

(3.3.12)

where Dó (p) and H D (p) are defined for the minimal sample with at least one observation

on either side of k.

Then

J IX' Dó(£)XI-~ bP+;-k -1[yl (£)HD(£)y(£)t~ db
BN (x( £)) = "--------.,-------_-;-- __

Ok IX'(£)X(£)I-~ ly'(£)H(£)y(£)I-~ .

The Arithmetic Intrinsic Bayes factor follows as in (3.3.6).
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(3.3.13)

For the Fractional Bayes factor

and

n(l-h)
mo(b) = [y' Hy]- 2 (3.3.14)

so that

EF = mo(b) = [y'Hy]-~ J[y'Hkf::.yt~IX'!::::,.-,;lXI-~b~-ldb

Ok mk(b) J IX' !::::"-,;l XI-~ [y' Hkl:.yt9 bn;k-1db
(3.3.15)

where we can take b = E±.!.n

3.3.3 A CHANGE IN THE REGRESSION COEFFICIENT AND THE

VARIANCE

Consider the same model as in (3.2.58) with the vague priors ll(,61, ,62,ai, an cx: -::h:rCT1CT2

so that

7r- n-;2p IX~Xkl-~r ( k ; p) r (n-~-p) [Y~kHl Ylkr~ [y;kH2Y2kr n-~-p

(3.3.16)

(3.3.17)
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(3.3.18)

and where Xk, Yik' Xik are as defined in section (3.2.1).

With the minimal sample ti = 2p + 2 it follows that k = ti - k = p + 1 and

where Xk(£), etc. are defined as before with p + 1 observations on either side of k.

Furthermore

(3.3.19)

and

(3.3.20)

For the Fractional Bayes factor, with nb = 2p + 2 and kb = p + 1 = b(n - k) mo(b) is

given as

7r_(n-;2P)+lr (n;r) [y'Hyr(n-;2p)+1
m (b) - -----'----;--"-;- -e-t-t- ----

o - b-¥r (~)

and

(3.3.21)

so that
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i = 1, ... , kl

i = kl + 1, ... ,k2
(3.4.1)

mo(b) 7rr (T) (Y'Hy)-~+1

BÓk = mk(b) = r (~) r (9) r (n-;-p) [Y~kHIYlktk-~-1[Y~kH2Y2kr(n \P I)·
(3.3.22)

As in equation (2.5.15) of chapter 2 the posterior probabilities follow for all models.

3.4 MULTIPLE CHANGE-POINTS

Results in this chapter can readily be extended to more than one change-point. As-

suming T change-points in the regression coefficient vector

i = kr + 1, ... ,n

where p ::; kl < k2 < ... < k; ::; n - pand ki+l - k; ~ p for i = 1, ... , r - 1, with the

strict inequality holding at least once. 80 n ~ p(r + 1) + 1. As in section (2.6.1), the

marginal prior density of k = [kl, ... , kr] is uniform over all possible permutations.

As in section (3.2.1), let (3' = [(3~, ... ,(3~+I] E !R(r+l)p and (3la2 rv N(O,a21» where

0= Ir+l &;>00,00 E!RP and 1> = Ir+l &;>1>11. Further as in (3.2.5) let a2 rv IG(a.,f).

Furthermore let

where Yik =

Y(r+l)k
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(3.4.2)

and Xk = diag{Xid : n x (T + l)p where Xik =

With the above notation, the joint posterior of all the parameters is exactly as in

(3.2.15) and the marginal posterior of k conditional on <P, a" is given in (3.2.28),

where Jp = [lp ... lp] : p x (T + l)p.

The marginals of {3 and (J"2 are given in (3.2.34) and (3.2.36) respectively, given k.

If T is unknown, let the marginal prior density of T be uniform, i.e. II(T) = R~l' T =

0, ... ,Rand k(r) = [kl, ... , kr] where k(r)IT is uniformly distributed over all possible

permutations for any given T.

The posterior distribution of T is then given by

II(TI<p, a", B, y) cx

II (k = nl <P 11 , a, "t Bo, y) for T = 0

2.: II (kiT = 1, <P, a, " B, y) fOT T = 1
k

2.:II(kIT = R,<p,a",B,y) for T = R
k

(3.4.3)

where II(k = nl<pll, a", Bo, y) is given by (3.2.16) with q replaced by R~l and II(kIT, <P, a", B, y)

is given by (3.2.17) with n~~\l replaced by R~l times one over the number of permu-

tations of k given T.

The marginal prior density of (J"2 and (J"i, (J"~ is given by (3.2.60), while the marginal

posterior mass function if k i= n is given by (3.2.63). With ai, ,i ---+ 0 the posterior

distribution of k i= nly is given by (3.2.65).
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The Fractional Bayes Factors (FBF) of O'Hagan (1995, 1997) for model mo against

Mrkr from data y is denoted by BÓr where

F mo(b)
BOr = mr(b)' (3.4.4)

where b is the training fraction of the likelihood and

vVenow have the following prior distributions:

For the FBF (a change in the regression coefficient), mo(b) is given by equation (3.3.7),

while for b = (R+l)p+l
n

so that

(3.4.5)

Berger and Pericchi (1995, 1996, 1997) proposed using all possible minimal training

samples and averaging the resulting Bayes factors. The Arithmetic Intrinsic Bayes Fac-
L

tor for model M; against model Mr is defined by AIB~;,kr = B;;,kr(y)·i L B;;,ks(y(f)),
f=l

where B;;,kr(y) is the usual Bayes factor with the whole sample and improper priors

and y(€) represents a minimal training sample. The geometric and median IBF are

defined similarly.

Suppose we use the same vague prior distributions as before, then
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(3.4.6)

For a fixed number of change-points the minimal sample size for a particular partition

k; is p( r + 1) + l. Let Xkr be the set of minimal samples for model M:r, then the set

of minimal samples for comparing M:r and Jl.1:~is X»: n Xk~. The computation of this

set. is complex and the only minimal sample valid for all possible models is the whole

data set.

So we will only apply the lBF for comparing model mo with M:r with r fixed and define

(3.4.7)

3.5 COMPONENT ANALYSIS

As in section 2.4, we can analize the effect of individual components on the position of

the estimated change-point. Considering the case of a single change in the regression

coefficients with constant variance as in paragraph 3.2.l.l., the posterior distribution

of /3' = [/3; /3;] is given below (3.2.38) for fixed k, i.e.

(
~ ((n-2P)X~Xk))/3IY, k ,..._,t n - 2p, /3k, , H .

Yk kYk

Let ~ = C/3 = /31 - /32' where C(p x 2p) = [lp - lp], then ~ represents the differences

between corresponding components of the regression parameter vector before and after

the change-point. The distribution of ~ follows then directly from above as
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(
_? Cf3~ (n - 2P)CX~XkCI)

t ti ap, k : 'H
Yk kYk

( ~ ~ ((n - 2P)X1X))
rv t n - 2p, f31 - f32, I H .

Yk kYk
(3.5.1)

The marginal posterior of the i-th component of 6. is then

.6ily, k rv t (n - 2P,01i - 02i' ((n - :~(XIX);i)), i = 0, 1, ... .p - 1
Yk kYk

(3.5.2)

where

As in (2.4.9) and (2.4.10), the influence of each component on a specific change-point

can be compared by standardizing as

(3.5.3)

with

I=~
t p-l

L_Di
i=O

(3.5.4)
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For a change in mean and variance, comparisons between regression components can

be done similarly, but to find the influence of the variance alone on the change-point

as compared to the mean, the multiple models method of section 2.7.4 can be used for

the linear model with fixed k.

In his paper, Groenewald (1993) derives posterior probabilities of change-points for

three special cases:

(a) Multiple change-points in the parameter vector f3 or a under homogeneity of error

variance,

(b) changes in f3, excluding a, under homogeneity of error variance and

(c) distinguishing between changes in f3 alone, a alone or changes in both.

Writing the model again as y = oe + Xf3 + € where f3 is (p x I), Groenewald (1993) is

interested in distinguishing between changes in f3 alone, a alone or both. Here, due to

the notational complexity, only one possible change-point is considered, but the same

arguments can be extended to any number of change-points. The error variance is

assumed constant.

3.6 SWITCHPOINT (CONTINUOUS CHANGE-POINT)

3.6.1 EXACTLY ONE SWITCHPOINT

f3k
(4 x 1)

{31
Xk

(n x 4)

X2k (3.6.1)
((n - k) x 2)
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o
o (3.6.2)

We assume that Xl < X2 < ... < Xn with switchpoint at Xo, where Xk ::; Xo ::; Xk+l, k =
2, ... ,n - 2, so k is the largest integer for which Xk ::; Xo.

Further, we must have, at the switchpoint, that

So

Thus

= A{3 + JOT

where

-Xo

1

For vague priors, let

11(,B) cx: 1, I1(T) cx: 1, i.e.

l1(k) = Xk+l - Xk, k = 2, ... , n - 2,
Xn-l - X2

i.e. proportional to the length of the interval. (3.6.3)
The likelihood function is
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Xk
(n x 1) ( )

kxl

= -Xoln:k + "'2k
(n-k)xl

(3.6.4)

where

Xkf3k = Xf3 + XkT, X
(nx 2)

Then

(f3 - (X'X)-lX'(y - TXk))'X'X(f3 - (X'xt1x'

(y - TXk)) + (y - TXk)'H(y - TXk)

where

So

and then

+ 'H (-'H- )-l( 'H- )2Y Y - Xk Xk Y Xk

so that
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(3.6.5)

and

f(ylxo, k)

(3.6.6)

As

II(xoly, k) cx: f(ylxo, k)II(xolk)

it follows that

(3.6.7)

with

3.6.2 NO OR ONE SWITCHPOINT

Under the assumption of a switchpoint, model Mxo, the marginal likelihood of the data

is given by
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J (27f )-( n;-3) ((J2)- n;-l IX' xl-~ (x~H Xk)-~

and the fractional marginal likelihood is
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(3.6.8)

(3.6.9)



(3.6.10)

It follows that

Under no change, model Mo,

and

so that

(
n - 2) n-4 (n-4)mo(b) = r -2- 7T--2 b2[y'Hyr -2 (3.6.11)

and the Fractional Bayes factor in favour of no change, with b = ~,is
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(3.6.12)

where

(3.6.13)

Also

P[No switchpoint] = [1+ BiO]-I. (3.6.14)

The probability of a switchpoint in a particular interval follows from equation (3.6.7).

3.7 AUTOCORRELATION

Cariseli and Groenewald (1999) considered the linear model with correlated errors

where y : ti x 1= [Yl, Y2, ... ,YnJ' is an ordered sequence,

X : ti xp, f3: p x 1 and {R};j = p1i-jl, i,j = 1,2, ... ,n,

Suppose there are r structural changes to the model at kl, k2, ... , k.; r E {O, 1, ... , T}

and T < ~ - 1.
- p

Denot.e t.his model by Jvlrkr, where k, = [kl, ... , kr]' Then y = Xrf3r + E, where

X; : ti x p(r + 1) = diag{X(i)}, X(i): ki - ki-l X P where

ko = 0, kr+l = n, i = 1, ... , r + 1 and f3~ : 1 x p(r + 1) = [f3(I)/, ... , f3(r+I)']. (3.7.1)
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p rv U( -1; 1) where lr+l : (r + 1) x 1 = [1, ... ,1], 0' : 1 x pand 1> : p x p. (3.7.2)

Suppose we have the following prior distributions:

2 1
IT(a ) cx 2'a

IT(O) cx 1,

Under model Mrkr, the data are related to the parameters as follows:

(3.7.3)

\"le assume that the prior probability for Mrkr is P(Mrk) = P(klr)P(r) where

P(klr) = [no. of partitions of kj-l and P(r) = T~l' r = 0,1, ... , T.

Let B~r (y) denote the Bayes factor for model Mo (no change- point) against Jvlrkr from

data y. Then B~r(y) = D~O/D~r, where

The posterior probability for model Mrkr can now be calculated for 1> known. For fixed

T,

(3.7.4)

The Fractional Bayes Factors of O'Hagan (1995, 1997), Bg~kr (y) is given by

k mko
Bb, r( ) __ o_

Or y - km rr
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(3.7.5)

and

m~r = 7r~(b-l)b¥r O(n - p(r + 1))) jr O(nb - p(r + 1))) x

jIll [ ] _l[n-p(r+l)]-1 IRI-2IX;R-l Xrl-2 y'R-ly - y' R-l Xr(X;R-l Xr)-l X;R-ly 2 dp

.[11 IRI-~IX;R-l Xrl-~ [y' R-ly - y' R-l Xr(X;R-l xrtl X;R-ly] -~[nb-p(r+l)] dp'

The posterior probability for model Mr
k can now be calculated using the FBF's.

The arithmetic IBF for model M; against model Mr is defined by

where B;;,kr (y) is the usual Bayes factor with the whole sample and improper priors

and y(f) represents a minimal training sample.

Suppose we use the same vague prior distributions as before, then

where

(1) -~[n-(r+l)p]+lm~r(y) = (27r)-~[n-(r+l)p] "2 r O(n - (r + l)p))

x / IRI-~IX;R-l Xrl-~ [y'R-ly - y' n:' Xr(X;R-l xrtl X;R-lyt~[n-(r+l)p)dp.

(3.7.6)
The posterior density of p, conditional on k, also follows as

n-(r+l)p

R-lyr 2 ,-1 < p < 1. (3.7.7)
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}Ii 2.5 + 0.7Xi + Ui, i = 1, , 12

Yj 5 + 0.5Xj + Uj, j = 13, ,20.

3.8 APPLICATIONS

EXAMPLE 3.8.1

Quandt's data (1958) will be analyzed to see whether we can detect a change in the

regression coefficient. This data consists of a sequence of 20 (X, Y) pairs simulated by

Quandt, where the first twelve and last eight of these are obeying respectively,

Here the u's are independent standard normal variates. Quandt's data is plotted in

Figure 3.1, where '0' denotes the first twelve and '*' the last eight observations.

2 4 6 8 10
x

12 14 16 18 20

Figure 3.1: Quandt's data
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Quandt's data was analyzed by a number of people to illustrate methods of change-

point detection. Amongst others, Ferreira (1975), Holbert and Broemeling (1977),

Chin Choy and Broemeling (1980), Land and Broemeling (1983) and Wang and Lee

(1993) analyzed the data. All of them assumed that there is exactly one change-point.

We will calculate the posterior probability of the position of the change-point, assuming

one exists, as well as the probability of no change by using the FBF and the intrinsic

Bayes factor.

Using equation (3.2.39), the posterior probability distribution of k is given in Figure 3.2.

The maximum probability is 0.5353 at the 12th observation. Holbert and Broemeling

(1977) got a maximum probability of 0.5051, while Chin Choy and Broemeling (1980),

by using proper priors, got a maximum probability of 0.6844 (both at the 12th obser-

vation).

0.1

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Figure 3.2: Posterior probability distribution of change-point for example 3.8.1
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The results for the FBF (equation (3.3.8) with (2.5.7)) and the three intrinsic Bayes

factors (arithmetic, median and geometric) from (3.3.3) and (3.3.4) are given in Table

3.1 for no change and for k = 12. In all cases k = 12 was by far the highest probability.

Although the FBF gives the highest probability for k = 12, it also has the highest

probability of 0.1894 for no change among the four methods used. The three intrinsic

Bayes factors give very similar answers.

Table 3.1

No change k = 12

FBF 0.1894 0.6114

Arithmetic IBF 0.0128 0.5284

Median IBF 0.0067 0.5317

Geometric IBF 0.0055 0.5323

Figure 3.3 gives the conditional (k = 12) and unconditional marginals of the five pa-

rameters. The conditional forms of the equations are given below (3.2.38). A summary

of the results is given in Table 3.2.

Table 3.2: Summary of the results of the unconditional marginals of

0'1,0'2, /31, /32 and a2, as well as those of Chin Choy and Broemel-

ing (CCB)(1980).

a1 a2 {J1 {J2 (J2

CCB - mean 2.36 5.45 0.67 0.52 0.83

- 95% HPD 1.24 - 3.42 3.8 - 6.77 0.55 - 0.80 0.41 - 0.63 0.52 - 1.85

Schoeman - mean 2.3345 5.5306 0.6812 0.5031 1.3369

- 95% HPD 0.839 - 3.611 3.349 - 7.722 0.543 - 0.839 0.344 - 0.656 0.489 - 2.569
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Figure 3.3: The conditional (--) and unconditional (-) marginals posteri-

ors of 0.1,0.2, (31, (32, (J2, respectively, for example 3.8.1
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EXAMPLE 3.8.2

For component analysis as in paragraph 3.5 we will use Brownlee's stack loss data,

as given in Hand, et al. (1994). These classic data are observations from 21 days'

operation of a plant for the oxidation of ammonia as a stage in the production of nitric

acid. The carrier variables are air flow (XI), cooling water inlet temperature (0 C)

(X2) and acid concentration (%) (X3). The response variable is stack loss (Y), which

is the percentage of the ingoing ammonia that escapes unabsorbed.

From using the FBF in equation (3.3.8), Table 3.3 gives the probability for no change-

point and of the three highest probability change-points.

Table 3.3

k Probability

No change 2.29 x 10-6

4 0.4740

5 0.5069

6 0.0187

If we assume one change-point the probability, by using equation (3.2.39), for k = 4

is 0.8023, followed by a probability of 0.1742 for k = 5 and a probability of 0.0208

for k ~ 6. Although these probabilities seem quite different from that from the FBF

in Table 3.3, the differences are not that extreme. Out of 16 possible change-points,

both methods give a posterior probability of about 0.98 for a change at either k = 4

or k = 5.

The distribution of cr2 and of cr21k = 4 is given in Figure 3.4 according to the information

below equation (3.2.38). These distributions are almost identical since most posterior

probability mass is concentrated at k = 4.
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35~---.----,-----,----.----.-----r----'----.-----'----;

Figure 3.4: The distribution of 0-2(_) and 0-21k = 4(--) for example 3.8.2

The conditional (k = 4) and unconditional marginal posteriors of the components of

the differences ~ = /31 - /32, by using equation (3.5.2), is given by Figure 3.5. Notice

that the unconditional distribution of the differences has two modes. The major mode

is due to the conditional density of .6.i given k = 4 (with probability 0.8023) and the

minor mode is caused by the conditional density of .6.i when k = 5 (with probability

0.1742).
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ACID: (33

Figure 3.5: The conditional (--) and unconditional (-) marginal posteriors

of the components of the differences a for example 3.8.2

The standardized mean differences between the four regression coefficients before and

after a change at k = 4 (equation (3_5_3)) and the influence of each component in

causing the change-point (equation (3_5.4)) are given in Table 3.4.
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Table 3.4

D I

(30 54.3293 35.36

(31 17.7707 11.57

(32 29.9382 19.48

(33 51.6203 33.59

So it seems that there is a major change in the relationship between stack loss and the

carrier variables after the fourth or fifth day, with major contributor the % acid (X3),

and the intercept.

EXAMPLE 3.8.3

Distances and heights (in metres) achieved by winners of Olympic jumping events from

1896 to 1988 will be analyzed under the assumption of a linear improvement over time

in performance to see whether we can detect a change in the regression coefficient.

The four events are high jump, pole vault, long jump and triple jump. There were no

Olympic games in 1916, 1940 and 1944. Caussinus and Lyazrhi (1997) also analyzed

the dat.a.

By using equation (3.4.5) and (2.5.17), the probability for no change, one change and

two changes are given by Table 3.5, with b = 3P:1 = ~ in the FBF.

Table 3.5: Posterior probabilities for k = 0,1,2 change-points

No change k = 1 k=2

High jump 0.0003 0.9169 0.0828

Pole vault 0 0.1574 0.8425

Long jump 0.0820 0.8288 0.0891

Triple jump 0.2786 0.6340 0.0874
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By using equation (3.2.39), the probabilities of the change-point positions for the four

events, given there is one change-point, are given by Figure 3.6.
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Figure 3.6: The probabilities of the change-point positions for the four

events, given there is one change-point, for example 3.8.3
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The two highest probabilities of the change-points, given there are two change-points,

are given by Table 3.6. This follows from equation (2.5.17).

Table 3.6

Years Probability

High jump 1900 1936 0.0778

1936 1968 0.0647

Pole vault 1908 1960 0.3570

1912 1960 0.1993

Long jump 1900 1964 0.1708

1900 1956 0.0651

Triple jump 1936 1968 0.1457

1936 1964 0.1203

Figure 3.7 gives the men's Olympic performances in the pole vault. Caussinus and

Lyazrhi (1997) decided that two change-points have occured, one after 1908 and an-

other after 1960, which are the same as our results. According to them the second

change-point corresponds to a sudden, or at least very rapid, improvement in the

equipment.
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1900 1910 1920 1930

Figure 3.7: .Men's Olympic performances III the pole vault, for example

3.8.3

In the long jump, Caussinus and Lyazrhi (1997) found that there are two change-points

(1912 and 1936) and one outlier (1968). According to them the two change-points cor-

respond to the two war periods, while the outlying performance in 1968 (Mexico) is

well known. According to our results, only one change-point appears in this sequence

with a probability of 0.8288. The probability of two change-points is only 0.089l. The

triple jump is the event most likely to have no change-point.

EXAMPLE 3.8.4

We will use the windmill data of Jaglekar, Schuenemeyer and LaRiccia (1989), as given

in Hand, et al. (1994), as an example of a switchpoint. For the windmill data direct
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current output (Y) was measured against wind velocity (x, miles per hour). There

were 25 observations recorded. Assuming a linear relationship between current output

of the windmill and wind velocity, we want to determine whether and where there is a

switchpoint.

By using the FBF in equation (3.6.12) and (3.6.14), the probability of no change was

8.945 x 10-5. Assuming a change has occurred, the posterior distribution of the switch

point, by using equation (3.6.7), is given in Figure 3.8. The mean is 4.4264, with a

probability of 0.5586 for the interval 4.1 - 4.6 mph. The slope of the regression line is

0.626 before the switch point and 0.148 after the switch point, which means that the

increase in generated output becomes more than four times slower when windspeeds

exceed about 4.4 mph.

3 5 7 106
Wind velocity

8 94

Figure 3.8: The posterior distribution of the switchpoint, assuming a

change has occured, for example 3.8.4.
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EXAMPLE 3.8.5

As an example of a change in the regression coefficient over time, we will use the data

of monthly dollar volume of sales (in millions) on the Boston Stock Exchange (BSE)

and the combined New York American Stock Exchange (NYA:~I/ISE)from January 1967

to November 1969.

Holbert (1982) analyzed this same data set to illustrate the estimation of the change-

point in two-phase regression by calculating the posterior density of the change-point.

He found out that the maximum posterior density occurred at position 24, which was

corresponding to the calender month of December of 1968 and concluded that it. is a

change-point caused by the abolition of give-ups (commission splitting) in December

of 1968.

Chen (1998) took the same dat.a to illustrate the SIC method for locating the switch-

ing change-point in linear regression, which corresponded to time point. 23, hence the

regression model change-point started at the time point 24. This conclusion coincides

with the one drawn by Holbert (1982) using his method.

Figure 3.9 is the scatter plot of the BSE versus NYAl'vISE, with circles indicating the

pairs of (BSE, NYAMSE) before December 1968 and stars indicating the pairs of (BSE,

NYAl'vISE) on and after December 1968. In this scatter plot, the two regression lines are

also plotted, with the line having dashes indicating the regression line before December

1968 and the solid line indicating the regression line after December 1968.
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o

o

Figure 3.9: Scatter plot and regression lines of BSE versus NYAMSE, given

k = 23, for example 3.8.5

The posterior probabilities from the Arithmetic Intrinsic Bayes factor (IBF), Me-

dian lBF and Geometric lBF, together with the posterior probabilities by assuming a

change-point (using equation (3.2.39)) and by using the FBF, is given in Table 3.7.

The posterior measures of the parameters, given a change-point occured, is given in
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Table 3.7

Table 3.8.

Time point AlBF MIBF GlBF (3.2.39) FBF

0 0.0091 0.0033 0.0032 - 0.0781

23 0.3087 0.3105 0.3105 0.3115 0.4768
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Table 3.8
CONDITIONAL, k = 23 UNCONDITIONAL

Expected value 95% credo int. Expected value 95% credo int.

Before cp After cp Before cp After cp. Before cp After cp Before cp After cp

f30 -110.3096 11.0752 -199- - 22 -114- +136 -53.7681 -9.6231 -233- + 199 -141- +144

f3l 0.0178 0.0067 0.0113 - 0.0242 -0.0023 - 0.0157 0.0123 0.0091 -0.0101- -0.0262 -0.0025 -0.0194

a2 1183.0 697-1910 1347.3 759 - 2231

As an example of a change in the variance, we will once again use the data of the BSE

versus NYAMSE, but with a rearrangement of the X matrix in increasing order.

The posterior probability rr(kly, a, I, 8), by using equation (3.2.53), is sensitive to all

three parameters. Figure 3.10 gives the posterior probabilities of k = 3,4,5,6 and of

no change-point as a function of 8 then a = 2, I = 0.1. Approximately the same figure

is obtained as a function of a and as a function of I'

0.9

0.8

0.7i···

§' 0.6,/.'
~ jE 0.5l-·""
£ 'I

0.3~

0.2 ....

0.1

0.05 0.2
delta

0.40.1 0.15 0.25 0.3 0.35

Figure 3.10: Posterior probabilities of k = 3,4,5, 6(-) and of no change-point

(--) as a function of 8 when a = 2, ,= 0.1, for example 3.8.5
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1.1 1.2 1.3 1.4
(b)

1.5 1.6 1.7 1.8

Figure 3.11 gives the posterior probabilities of the position of the change-point by (a)

assuming a change-point did occur (using equation (3.2.57)), (b) using proper priors,

using equation (3.2.54) with ex = 2, ï = 0.1, <5 = 0.11 and (c) by using the FBF in

equation (3.3.15). For both the FBF (c) and the proper priors when <5 = 0.11 (b), the

probability of no change is 0.2228.

There is no strong evidence of a change-point in the variance when the NYArvISE

changes. If there is one change-point, it looks to be somewhere between a NYAMSE

volume of 11040 and 11280.

1.1 1.2 1.3 1.4
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x 104

Figure 3.11: Posterior probabilities of position of the change-point using (a)

equation (3.2.57), (b) equation (3.2.54) with ex= 2, ï = 0.1, <5 =

0.11 and (c) the FBF in equation (3.3.15), for example 3.8.5
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EXAMPLE 3.8.6

As an example of a change in the mean and variance, we will use the data of raw cotton

imports into the UK by weight, for each year 1770-1800, as given in Hand et al. (1994).

Figure 3.12 represents a plot of this cotton imports in the 18th century.

6~X~10~4 -,,- .- -. ,- -, ~

oL_------~------~------~~----~~----~~----~
1770 1775 1780 1785 1790 1795 1800

Year

Figure 3.12: Cotton imports into the UK in the 18th century

First, to select between the four models no change (Mo), the slope changes (Ml), the

variance changes (M2) and both the slope and variance change (M3), the FBF is used.

Using equations (3.3.6), (3.3.13) and (3.3.21) together with (3.3.7), the FBF and pos-

terior probability for each model is calculated, using a prior probability of ~ for each

model. The results are given in Table 3.9.



Table 3.9

Model Mo Ml M2 M3

Post. prob. 0.0006 0.0069 0.0103 0.9822

This shows overwhelming evidence for a change in both the slope and variance.

Figure 3.13 shows the posterior probabilities of a change-point in the slope and vari-

ance for the cotton import data by (a) assuming a change-point and (b) using the FBF.
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Figure 3.13: Posterior probability of a change-point in the slope and variance

for cotton import data by (a) assuming a change-point and (b)

using the FBF, for example 3.8.6
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Assuming only model M3 or Mo, the posterior probability for no change is 0.0007, using

the FBF in equation (3.3.22). Assuming a change-point, equation (3.2.65) indicates a

change-point after 1780 or 1781 (probability of 0.345 and 0.254 respectively in Figure

3.13 (a). However, the FBF favours a change-point after 1784 (probability of 0.518),

as shown in Figure 3.13(b).

EXAMPLE 3.8.7

\Ve will use the values (in millions of pounds) of British exports for each year 1820 -

1850 as an example of correlated data, given in Hand, et al .. Figure 3.14 represents a

plot of this British exports in the 19th cent my.

75r--------r-------,--------,-------~--------~------~
I I

? i
- I
~ I
~ 551
~ I '; 1r 1
::~ _ 0 : I
::1:-:-----:L----'-----L..__-_L___ - _ .L;-.··_··········_··········_1

1820 1825 1830 1835 1840 1845 1850
Year

Figure 3.14: British exports in the 19th century
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To investigate the effect of correlation, we calculated the FBF in favour of no change,

when p = 0, by using equation (3.3.8) and resulted in a posterior probability of 0.0020

with maximum change-point probability P(k = 14) = 0,1445. If p =J 0, the posterior

probability, by using the FBF in equation (3.7.5), for no change is 0.8042 with a

maximum change-point probability P(k = 6) = 0.0329. So the probability that there

is a change-point depends heavily on whether there is autocorrelation.

Figure 3.15 gives the posterior density of the auto correlation coefficient p (by using

equation (3.7.7)), given a change-point (unconditional of k), assuming no change and

the unconditional posterior of p. The expected value given a change-point is 0.344,

given no change-point is 0.529 and for the unconditional case is 0.493, showing that

the estimated correlation is much smaller when a change-point is assumed.

Figure 3.15: Posterior density of the auto correlation coefficient p, given a

change-point (-. - ., unconditional of k), assuming no change

(--) and the unconditional posterior of p( -) for example 3.8.7

To see which model would best fit the data, let's find the FBF when comparing a model

'T
'T······················

'T
o:f

-0.8 -0.6 -0.4 -0.2 0.2 0.6 0.8o 0.4
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with a change-point but no autocorrelation with a model with auto correlation but no

change-point (Equations (3.3.6) and (3.7.5)). Figure 3.16 shows the FBF in favour

of no change-point. as a function of the auto correlation coefficient p. The maximum,

B = 0.835, occurs at p = 0.375. This shows mild evidence in favour of the change-point

model.

0.9r----.----~----~----r_--~----~----~----~----~--~

0.8

0.7

Ia'!
</) 0.5 ~ ...
Ol
>-co
co
"(ii

.2 0.4
u~
Li: ::~••••...............................................
aIr .
OL_ __ ~ _L -=~ __~ __~ ~ -L ~ L_ __ ~

-1 -0.8 0.80.4 0.6-0.6 -0.4 -0.2 o 0.2

Figure 3.16: FBF in favour of no change-point as a function of the auto cor-

relation, for example 3.8.7

The model that actually fit the British export data best is one with a change-point

after 1834 (k = 14) and autocorrelation of p = 0.110.
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CHAPTER 4
CHANGES IN SOME OTHER MODELS

4.1 CHANGE-POINT IN BERNOULLI TYPE EXPERIMENTS

4.1.1 THE BINOMIAL DISTRIBUTION

Hinkley and Hinkley (1970) considered the binomial parameter in the problem of making

inferences about the change-point in a sequence of zero-one variables. They derived the

asymptotic distribution of the maximum likelihood estimate of the change-point in com-

putable form using random walk results. They also obtained the asymptotic distributions of

likelihood ratio statistics for testing hypotheses about the change-point.

Smith (1975) considered a Bayesian approach to the problem of making inferences about the

change-point. He considered the binomial distribution where a sequence of random variables

Xl, ... , Xn is said to have a change-point at k(1 :::;k :::;17,) if Xi rv Bin (xlpl) (i = 1, ... ,k)

and Xi rv Bin (x Ip2) (i = k + 1, ... ,17,). He considered the cases where (a) Pl and P2 are

known, (b) Pl known, P2 unknown and (c) Pl and P2 unknown.

'vYewill consider the case where both parameters are unknown.

Let the sequence Xl," ., Xn be such that

Xi rv Bin (Pl) mi) , i = 1, ... )k

and

Xi rv Bin (P2, mi), i = k + 1, ... , 17,

so that.

where
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k n

Yl =L Xi and Y2 = L Xi
i=l i=k+1

(4.1.1)

Let k have a uniform prior and let the prior of PI, P2 be

Then

(4.l.2)

so that

(kl r:I) = f(xlk,o:,(3)
'Jr x, 0:, IJ n-1 .

L f(xli,o:,(3)
i=l

(4.l.3)

For a vague prior a number of options are available, such as 0:, (3 = 0, ~ or l. For a symmet-

rical prior we can put. 0: = (3.

Furthermore

and
n

p2lx, k, 0:, (3 rv B(Y2 + 0:, L mi - Y2 + (3).
i=k+1

Also

l1(pilx, 0:, (3) =L I1(Pilx, k, 0:, (3)I1(klx, 0:, (3), i = 1,2.
k:

(4.l.4)

For T = El. it. follows that
P2
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k n

q Lm - Yl + {3 - 1 Lm - Y2 + {3 - 1
IT(Tlx, k ;Ct, {3) cx TY1+O:lo p~+2o:-2(1 - TP2) 1 (1 - P2)k+1 dP2

(4.1.5)

where q = min (1, ~).

Considering the possibility of no change, let P ,......,B(Ct, {3) so that

f(xlk = n, Ct, {3)

Furthermore, if we let IT(k) = { q,
.!..=_q_
n-1 '

k=n

k = 1, ... ,n - 1
(4.1.6)

it follows that

IT(k = nix, Ct, {3) -
qf(xlk = n; Ct, {3)

n 1 _ qL -f(xlk, Ct, {3) + qf(xlk = ti, Ct, {3)
k=l n - 1

[ ]

-11 n-1

1+ q(n~ql) ~ Bjo

and

[
q(n - 1) n-1 ]-1

IT(klx, Ct, {3) = BkO + L BjO ,k = 1· .. ti - 1
1 - q j=l

(4.1.7)

where

196



BkO -
f( xlk, a, {3)

f(xlk = n,a,{3)

k n

B(Yl + a, L mi - Yl + {3)B(Y2 + a, L mi - Y2+ {3)B(a, 13)-1
i=l i=k+l (4.1.8)n

B(a + y, Lmi - Y + {3)
i=l

'vVecan use the proper priors a,{3 ~ ~ or a,{3 ~ 1 in (4.1.8), otherwise we can use partial

Bayes factors with a, {3 ~ o.

If we let a, {3 ~ 0, for the FBF it follows that

n

B(y, Lmi - y)
mo( b) = mo = __ _;i.=.=l:::...__ _

mb n
o B(by, b(L mi - y))

i=l

(4.1.9)

where Y = Yl + Y2 and

B (Yl, tmi - Yl) B (Y2'. t mi - Y2)
mk (b) = mk = t=_l ----'-;_t=_k_+_l__ ----'--_--;-

mt B (byl,b (tmi - Yl)) B (bY2,b(t mi - Y2))
t=l t=k+l

(4.1.10)

so that

y, Yl, Y2 > 0 and b 2:: ~, since the minimal sample size is not unique. When mi = 1, ~ =
1, ... ,n, it becomes a Bemoulli sequence and

B·F _ B(y, n - y)B(by, b(k - yI))B(bY2, b(n - k - Y2))
Ok - B(nb, b(n - y))B(Yl, k - yI)B(Y2, n - k - Y2) (4.1.11)

where 0 < Yl < k, 0 < Y2 < n - k.
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For multiple change-points k = [kl,'" , kT] it follows directly that

T+l

IIB(Yj, mj - Yj)
mk(b) = -T+-,:-~=_l -

IIB(bYj, b(mj - Yj))
j=l

(4.1.12)

'where
kj

Yj = LXi,
i=kj_1+l

kj

mj = L mi,
i=kj_l +1

r+lb>--- n

and ko = 0,' kTH = n, as long as Yj, mj - Yj > 0, j = 1, ... ,T + 1.

4.1.2 THE NEGATIVE BINOMIAL MODEL

Suppose that

n

X,>: Neg Bin (r,p) with fixed r so that, for x = Xl, ... ,xn and Y = LXi,
i=l

[
n (X-I)]f(xlp) = II 1 pnT(1 _ p)y-rn,
1=1 r - 1

Xi = T, r + 1, ...

Furthermore, let

i.e. p '" Beta( a, (3) and

[
n (X-I)]f(xla, (3) = II t B(nT~(~,~)T+{3).
1=1 r - 1

(4.1.13)

If X;>: Neg Bin (r,pl), i = 1, ... , k

and Xi '" Neg Bin (r, P2), (= k + 1, ... , n

it. follows that
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so that

B(kr + a, Yl - kr + {3)
f(xlk, a, {3) oe B(a, {3)2 B((n - k)r + a, Y2 - (n - k)r + {3).

Furthermore

l1(kla, {3, x) oe B(kT + a, Yl - kr + {3)B((n - k)r + a, Y2 - (n - k)r + {3).

For the usual Bayes factor we have

[
n (x. - 1 ) 1D 1"-1 B(nr+a,y-nr+{3)B(a,{3)

BOk = B(kr + a,Yl - kr + {3)B((n - k)r + a,Y2 - (n - k)r + {3)'

For the fractional Bayes factor (a, {3 --+ 0) it follows that

mO = B(nr, Y - nr)

and

mg = B(bnr, b(y - nr))

so that, with a minimal sample of 2 and b = ~, it follows that

() B(nr,y-nr)
mo b = .

B(2r, 2i - 1'))

Furthermore
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B(kr, Yl - kr)B((n - k)r, Y2 - (n - k)r)
(4.1.18)

F mo(b)
BOk = mk(b)' (4.1.19)

pilk, X rv B(kir, Yi - kir); i = 1,2 and the unconditional posterior of Pi (0:, f3 --1 0) will be

as in (4.1.4).

The results for the Geometric distribution f(xlp) = p(l- py-I, X = 1,2, ... follows direct.ly

from t.he Negat.ive Binomial when putting r = 1.

4.1.3 THE MULTINOMlAL MODEL

Consider the distribution

Xi(q x 1) rv Multinonrial (p, m), i = 1, ... , ti

where

f(Xlp) n [m! . 1IT PXlt pXqi1 ...

i=l Xli!'" Xqi! q

= IT [ m! 1 IT PJ
Yi

X ""X ,i=l h· qt- j=l

(4.1.20)

n

where Yj = LXji, j = 1, ... .q.

Furthermore, let the prior on p be

r (t O:j) q

II(p)= qJ=l ITp;i-l, prv Dirichlet (O:l, ... ,O:q)'
ITr(O:j) j

j
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It then follows that the marginal distribution of y is

(4.1.21)

Under the assumption of a change-point, let X i(q x 1) ,......,Multinomial (PI' m), i = 1, ... ,k

and X i(q x 1) ,......,Multinomial (P2' m), i = k + 1, ... .ri.

It follows that

k n

where Ylj = L Xji and Y2j = L Xji, j = 1, ... , q
i=l i=k+l

(4.1.22)

and with identical independent Dirichlet priors,

(4.1.23)

it. follows t.hat.

Then
q q

II r(Oj + Ylj) II r(Oj + Y2j)

D(kly, Ct) cx r(1:oj + mk)r(1:oj + m(n - k))' (4.1.24)

The usual Bayes factor in favour of no change will be
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q q

IIf(aj + Yj) IIr(aj)f(~aj + mk)r(~aj + m(n - k))
jBOk = ----------=---=-q ------=-q--------:q:-------, k = 1, ... , n - 1

r(~aj +mn)f(L: aj) IIf(aj + Ylj) IIf(aj + Y2j)
j=l

(4.l.25)

and for the fractional Bayes factor it follows that

q

b IIf(bYj)m -=-_.:...._
0- f(bmn)

so that

q

IIf(Yj)f(bmn)
mo(b) = q

f(mn) IIf(bYj)
(4.1.26)

and
q q

IIf(bYlj) IIf(bY2j)m % = -==-...,...-:....--==:..,-_____:.,...,..
f(bmk)r(bm(n - k))

so that

q q

. IIr(Ylj) IIr(Y2j)r(bmk)r(bm(n - k))
mk(b) = q q

f(mk)f(m(n - k)) IIr(bYlj) IIr(bY2j)
(4.1.27)

and
q q q

F mo(b) IIr(Yj)r(bmn)f(mk)f(m(n - k)) IIf(bYlj) IIf(bY2j)
BOk = mk (b) = q q q

r(mn) IIr(bYj) IIr(Ylj) IIf(Y2j)f(bmk)r(bm(n - k))
(4.l.28)

for given b. For aj = 0, j = 1, ... ,q, the minimal sample size is not unique, so it is not

clear what b should be. The minimal sample size depends on the observed values. However
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BÓk_ is finite for any b > 0 in (4.1.28) and any k for which Yij > 0 for all i,j. The influence
q

of b is illustrated in example 4.3.3. Notice that :E:EXji = nm, :EPi = 1 and that L Xji = m.
j

The posterior probabilities for k follow from (4.1.7), with q = ~.

Furthermore, conditional on k,

Pilk, 0, Y rv Dirichlet. (Yil + CXI, ... , Yiq + cxq), i = 1,2. (4.1.29)

The unconditional posterior of P (with CXj ---+ 0) follows as

n-l

I1(Pily) cx: L I1(Pilk, y)l1(kly)·
k=l

(4.1.30)

4.1.4 THE MARKOV CHAIN MODEL

Carlin, Gelfand and Smith (1992) were the first to examine the Markov chain change-point

problem from a Bayesian viewpoint, using Gibbs sampling. They suppose a sequence of ti

observations Y = (YI, ... ,Yn) from a process which is a p-state stationary Markov chain

having either transition matrix A or precisely one change to a transition matrix B. The

entries of A are aij = P(Yt+1 = jlYt = i) whence aij ~ 0, :Ejaij = 1; similarly for B with

entries bij. They take independent Dirichlet priors on the rows of A and similar for B. The

multinomial change-point problem occurs as a special case when the }i's are independent

and aij = aj and bij = bj.

Let's start with the simplest Markov chain, i.e. when p = 2.

1 2
A = 1

2

Let the Beta prior before the change be
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where

(4.1.31)

and after the change be

Under model Mo of no change,

n-1

f(yIA) = P(Y1) IIaYt,Yt+l
t=1

and where P(Y1) is the initial state probabilities, the joint distribution is

f(y, A) - f(yIA)IT(A)

(4.1.32)

Example:

If Y = 1 1 2 1 2 2 1. 1 2, then

n-1

IIaYt,Yt+l
t=1

and

Z1 (Zll Z12) = (2 3)

Z2 (Z21 Z22) = (2 1)

204



where Zij is the number of transitions from i to j in the n - 1 steps.

So

and

With vague priors, All = A12 = A21 = A22 = 1:

IT(Aly) - IT(allly)IT(a22ly)

Beta(Zll + 1, Z12 + 1) Beta(z21 + 1, Z22 + 1).

The marginal likelihood of y (with Aij = 0) is

and

where b can be In and where all Zij > 0 (unless Aij > 0 'ti i, j). This is not. really usable

unless t.he chain is long enough t.o have transitions from every state t.o every other st.ate.

Under model Mk it follows that

k-1 n-1
f(yIA, B, k) = p(yI) IT aYt,Yt+l IT bYt,Yt+l

t=1 t=k

and

f(y, A, B, k) <X f(yIA, B, k)a;i1-1(I - all)>'12-1a~~2-1(I - a22)>'21-1

bIil-1(I - bllrYl2-1b~~2-1(I- b22)>'21-1IT(k)
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where 2 ::; k ::; n - 1 for D).. and D"{ proper densities.

Furthermore

and

and
2

II(k ly) cx: II(k) IIB (>\il + z~l' Ai2 + Z~2)B (ril + z~~, li2 + z~;),
i=l

(4.1.33)

and all Z~j' z~j > 0, where Z~j is the number of transitions in Yl, ... , Yk and z~j is the number

in Yk, ... , ~l.

The marginal likelihood of y (with lij = Aij = 0) is

2

mk = IIB(Z~I' z~2)B(z~~, Z~;)
i=l

(4.1.34)

and
2

m~ = IIB(bz~l' bZ~2)B(bz~~, bz~;).
i=l

(4.1.35)

The fractional B F is then

The ordinary B F with Aij = lij = 1 (uniform prior) is

B . = IT B (Zil + 1, Zi2+ 1)
Ok i=l B(Z~1 + 1, z~2+ l)B(z~~ + 1, z~; + 1)"

(4.1.36)

To generalize to p > 2 (Aij = lij = 1), it follows that
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p

p IIr(Zij + 1)

mo = fP(p) II j=(l )
. 1 P
t= r L Zij + P

i=j

(4.1.37)

and

p p

p IIr(Z~j + 1) p IIr(z~j + 1)
mk = r2p (p) II j= 1 II_;;J_' =.,-1------,,-

'~l r (~>;j + p) ; r (~>;;+ p)
(4.1.38)

so that

Also notice that

II(kly) cx: mkII(k).

The marginal posterior of say all is, for given k,

(4.1.39)

and similarly for the other elements.

Multiple change-points

Let.'s consider the transition matrices Al, A2, ... , AR+l where R is the maximum number of

possible change-points. Then

p

II(Ae) = IID)..e;(aei), £ = 1, ... ,R + 1
i=l

and where
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r (t Alii) P
J II Ae··-1DAei (aei) = P aei/ .

IIr(AeiJ j=l
(4.1.40)

Under 1\11." where k = (kl"" kr) and r = 0, ... ,R, it follows that

r (kl+l-1 )
f(ylr, k, Al, f = 1, ... .r + 1) = II II ae+1IYt,Yt+l p(yl)

e=o t=kl

where ko = 1, kr+1 = n.

With Alij = 1, II(r) = R~~ and kir uniform, it follows that

pp pp pp 1
f(y r kA) = II II aZli.i II II aZ2i.i II II aZr+1 ..'i.p(y )[r(p)JP(R+1)--II(kIT)

, , ,i .. hj . . 21J . . r+1,t,J 1 R + 1
t J t J t J

(4.1.41)

and that.
P

IIr(Zeij + 1)
r P

f(ylk, r) = p(yl) [r(p)JP(R+1) II II j .

e-1 i ( P )- r ~ Zeij + P

(4.1.42)

Under mo, it follows that

P

II r(ZOij + 1)
P .

f(y) = p(Y1)[r(p)JP II~(~..+ )
i ZOtJ P

where Zeij is the number of transitions from state i to state j of the observations bet.ween ke

and ke+1 - 1. Then

II IIr( ZOij + 1)
B" = 1 R r(~ZOij + p)

ok [r(p)Jp II II IIr(Zlij + 1) .
r(~ZOij + p)

(4.1.43)
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4.2 EXPONENTIAL TYPE MODELS

4.2.1 THE POISSON MODEL

Raftery and Akman (1986) developed a Bayesian approach to estimate and test for a Poisson

process with a change-point, considering the change-point to be continuous. Carlin, Gelfand

and Smith (1992) presented a general approach to hierarchical Bayes change-point models.

In particular, desired marginal posterior densities are obtained utilizing the Gibbs sampler.

They include an application to changing Poisson processes, applied to the coal mining dis-

aster data of Jarret t (1979). Raftery and Akman (1986) also use the coal mining disaster

data.

There has been speculation that the number of cases of diarrhoea-associated haemolytic

maernic syndrome increased abruptly during the early part of the 1980's. Henderson and

Matthews (1993) investigate this hypothesis and applied change-point models for Poisson

variables to two series of data from regional referral units in Newcastle upon Tyne and

Birmingham.

Using a direct resampling process, Broemeling and Gregurich (1996) developed a Bayesian

approach for the analysis of the change-point problem. They implemented a direct sampling

approach whereby standard random number generators can be used to generate samples

from the joint posterior distribution of all the parameters in the model. They illustrated

this technique with examples involving one shift for Poisson processes and regression models.

Let's first consider the model with exactly one discrete change-point

Xi rv Poisson (>\1); i = 1, ... ,k

Xi rv Poisson (A2); i = k + 1, ... .n,

The likelihood function is

->.«
L(A1, )..2, kly) = ~Xil e-(n-k)A2 )..~2,

IIXi!
i=1

l~k~n-l

where
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k n

Yl = L Xi and Y2 = L Xi·
i=l i=k+l

(4.2.1)

Assuming )'1, >-2, k are independent a priori and that the prior densities have the conjugate

form

(4.2.2)

and we have a uniform prior on k so that

(4.2.3)

and

II(kly, a, (3) = n~(ylk, a, (3) .

L f(ylk, a, (3)
k=l

If we let a --+ 0 and (3 --+ 0 so that 7r(>-ll >-2) cx )..1\2' it follows that

(4.2.4)

Flirthermore

(4.2.5)
and

(4.2.6)
Also
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ll(Aily, a, (3) = L ll(Aily, k, a, (3)ll(kly, a, (3), j = 1,2.
k

(4.2.7)

(4.2.8)

so that

(4.2.9)

where

(4.2.10)

and that

ll( Tly) =L ll( Tly, k, a, (3)ll(kly, a, (3).
k

(4.2.11)

Considering the possibility of no change, let ll(k) = { q;
l=..q.
n-l'

k=n

k=I, ... ,n-l

so that

(3°r(a + y)f (y Ik = n, a, (3) = ------=-n-----'--..:....:..._-

r(a) IIxi!(n + (3t+Y

where
n

y = LXi.
i=l

(4.2.12)

Then the posterior probability of no change follows as

qf(ylk = n)ll(k = nly) -
n 1 _ qL -f(ylk) + qf(ylk = n)n-l
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(4.2.13)

and

il(kly) is the same as in (4.1.7) where

B
kO
= f(ylk, a., (3) _ (3°f(O'. + yI)f(O'. + Y2)(n + (3)'HY .

f(ylk = 71" o,(3) I'(O'.)(k + (3)O+Yl (71, - k + (3)0+Y2f(O'. + y) (4.2.14)

We can't. let o,(3 ___.0 (using vague priors) because of the normalizing constants, but can do

it through partial Bayes factors.

With vague priors, for the fractional BF it follows that

(4.2.15)

(4.2.16)

and

(4.2.17)

so that

(b) B (b b ) (k ) Yl(l-b) (' k ) Y2(l-b)BF _ mo _ Yl, Y2 1 2
Ok---- - -
. mk(b) B(Yl, Y2) 71, 71,

(4.2.18)

If we let b = 1 it follows thatn
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(4.2.19)

For T possible change-points, we have

r+l
f(y)n-Y(l-b) IIf(byi)

BF _ i=l
ok - r+l r-l-I

f(by) IIf(Yi) IIkri(b-l)
i=l i=l

(4.2.20)

where b = r~l and k = (kl ... kr+I) with Yi > 0, i = 1, ... , T + 1.

The post.erior is as before in (2.5.16) and (2.5.17).

For the intrinsic BF for one change-point it follows that

N ( ) (k) -Yl ( k) -Y2B kO = B Yl, Y2:;;: 1- :;;: , (4.2.21)

and with minimal sample size of 2 we have

(4.2.22)

where x(l) is an observation before the change-point, and X(2) an observation after the change-

point.

The intrinsic B F then follows from (1.10) and (1.ll).

4.2.2 THE GAMMA MODEL

Diaz (1982) considered a Bayesian detection of a change of scale parameter in sequence of

independent gamma random variables. He stated two problems: the first is the detection

of the change, while the second is the estimation of the change-point and the two scale

parameters under the assumption that a change has occurred. He assumed Cl: known but uses
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ordinary Bayes factors with improper priors, which does not allow for the indeterminancy

created by the improper priors.

Hsu (1979) presented a classical (non-Bayesian) asymptotic solution to the above mentioned

first problem and made a review of other solutions proposed that can be used only for large

samples.

Let's consider the model

Xirvr(a,,6l); i=l, ... ,k

Xi rv r(a, ,(2); i = k + 1, ... ,n (k=1, ... ,n-1).

Assume a is known

The likelihood function will be

(4.2.23)

kl n

where Yl = L Xi and Y2 = LXi, k, = k, k2 = n - k.
i=l i=kl+l

The priors on ,61 and ,62 are assumed to be independent Gamma densities

Then

(4.2.24)

where kl = k and k2 = n - k. Then, with uniform prior on k,

II(kly, a, a, d) cx: f(xlk, a, a, d).
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If a, d --t 0, i.e. 7f((31, (32) cx {311{32'it follows that

and that

i = 1,2.

Under the assumption of no change,

Xi rv f(a,(3), i = 1, ... ,n, so

The usual Bayes factor in favour of no change

If we let a, d --t 0, the Fractional Bayes factor follows as

and

so that

BF = mo(b) = r(na)r(bk1a)f(bk2a)YF-b)klQy~1-b)k2Q
Ok mk(b) f(k1a)f(k2a)f(bna)y(1-b)no
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(4.2.26)

(4.2.27)

(4.2.28)

(4.2.29)

(4.2.30)

(4.2.31 )



where we'll again take b = ~.

The generalization to multiple change-points follows directly as

BT _ r(na) Trr+1r(bkja) (l-b)kjQ

ok - y(l-b)na. r(k a) Yj
J=l J

for T change-points.

Assume a unknown

When a is unknown, there is no standard way to eliminate a. Then the following possible

solutions can be considered, i.e.:

(1) Determine II(kly, a) and plot it as a function of a for k = 1, ... ,n - 1. In this way

upper and lower bounds can be established.

(2) Estimate a by some empirical Bayes procedure and then replace a by ak'

(3) Puttirig a prior on a on a bounded interval, 0 < a < K and integrate numerically.

Consider again the likelihood function in (4.2.23). Assuming now a change-point at k, the
-2 -2

moments estimator of a from the two groups are ~ and ~ respectively, where Xi and s; are
SI s2

the sample means and variances. Our estimator is then the weighted mean

(4.2.32)n

Under no change the estimator will be ao
different estimator of a.

:~. So for every value of k we will have a

If we assume a change in a as well as in f3, then

(4.2.33)
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Then

(4.2.34)

and for a given k the a's can be estimated as above so that

(4.2.35)

or integrated numerically.

The Fractional Bayes factor follows then similarly to equation (4.2.29) to (4.2.31). The pos-

terior probabilities follows as in (4.1.7).

4.2.2.1 THE EXPONENTIAL MODEL

When a = 1 (fixed) in paragraph 4.2.2, the result for the standard exponential distribution

follows directly from (4.2.23) to (4.2.31).

If censored observations x~, x;, ... ,x:n are present, Yl and Y2 are replaced by Yl + Y; and

Y2 + Y; in equations (4.2.23) to (4.2.31), where

k*

Y; = LX;,
i=l

m

Y; = L x:
i=k* +1

and k* are the number of censored observations below k.

Worsley (1986) gives classical t.ests for change-points in the more general setting of ex-

ponential families of random variables, bilt with particular emphasis on the exponential

distribution.

4.2.2.1.1 THE LEFT TRUNCATED EXPONENTIAL MODEL

A variation on the exponential distribution is the truncated exponential distribution. Jani
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and Pandya (1999) observed a sequence of independent lifetimes Xi, ... , Xk, Xk+l, ... , Xn

from left truncated exponential populations. They let

f(xl,B) = ,Be-{3(x-T/), x;::: ït

with reliability function

R(t) P[X ;::: t]

,Be{3T/100 e -{3x dx

= e-{3(t-T/) . (4.2.36)

Assuming a change-point in the reliability at k so that R; (t) = e-{31 (t - fJ) for Xl, ... , Xk

and R2(t) = e-{32(t - fJ) for Xk+l, ... , Xn, Jani and Pandya (1999) assume marginal prior

distributions of the reliability levels at a common prefixed time T to be log inverse gamma

distributions, i.e.

ai,bi > 0; 0 ~ riT ~ 1;i = 1,2. (4.2.37)

They put a vague prior IT(fJ) =~, 0 ~ ït ~ T on ït- The marginal posterior distributions on

the change-point k were obtained as

IT(klx) =
JvhJ(kl)

n-l

L MkJ(kl)
k1=1

(4.2.38)

where

with
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(4.2.39)

To find the fractional Bayes factor for the problem of a possible change in the parameter ;3,

let's first consider the model with a change-point at k, that is

(4.2.40)

with the priors

(4.2.41)

Then

k = 1, ... ,17, - 1

(4.2.42)

and

(4.2.43)

Under t.he model with no change-point we have

ln
min(x) r(bk)mg = dTJ
o [b(y - kTJ)]n (4.2.44)

so that.

anel

F mo(b)
BOk = mk( b) as before.
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The conditional posteriors of the parameters under the change-point model follow as

and

The unconditional densities can be obtained by averaging over I1(klx) in (4.2.42).

4.2.2.1.2 AN EPIDEMIC CHANGE

Ramanayake and Gupta (1998) and Yao (1993) considered a sequence of independent ex-

ponential random variables that is susceptible to a change in the mean. They wanted to

test whether the mean has been subjected to a change after an unknown point, for an un-

known duration in the sequence, before returning to the original value. They called this the

epidemic change model. The likelihood ratio statistic was derived.

Let Xl, ... ,Xn be a sequence of independent exponential random variables. Consider the

models Mo and Ml with the following means:

Mo : ei = eo; i = I, ... ,n

and

el; i < k_ I

Ml : ei = e2; kl < i ~k2
el; k2 < i ~n,

where kl, k2 are the unknown change-points such that 1 ~ kl < k2 ~ ti - 1 while el and e2
are the unknown parameters such that el, e2 > o.

The density function under Ml will be

i ~kl or i > k2

kl < i ~k2.
(4.2.45)
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The likelihood function will be

(4.2.46)

where
kj n

tI = I>i + L Xi
i=l i=k2+1

k2

and t2 = LXi.
i=kj +1

The joint posterior of kl, k2 is

(4.2.47)

For the Fractional Bayes factor it follows that

and that

(4.2.48)

mo(b) follows as in (4.2.29), with ex= 1.

The only difference between this model and the exponential model with two change-points

is the condition that the mean returns to the initial value after the second change-point.

The conditional and unconditional posteriors of 8 = B2 - Bl follow from numerical integration

of (4.2.46), where
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and

II(8IX) cx: L II(8Ix, kl, k2).
k

(4.2.49)

With censored observations, t, and t2 are replaced by tl + ti and t2 + t; in equations (4.2.46)

to (4.2.49), where ti and t; are again the partial sums of the censored observations as in

paragraph 4.2.2.1.

4.3 APPLICATIONS

EXAMPLE 4.3.1

As an example of the Binomial model, we will use the simulated set of observations first

discussed by Page (1955). This data set was also analyzed by Smith (1975) and Pettitt

(1979). Forty observations were taken, the first twenty were simulated with PI = 0.5 and

the last. twenty were simulat.ed with P2 = 0.84. The full data set consists therefore of n = 40

observations with a change-point at k = 20.

The posterior probability of k, given a change-point, by using equation (4.1.3) is given in

Figure 4.1. A maximum probability of 0.2130 at k = 17 is obtained with uniform priors

0:, /3 = 1. Smith (1975) also got a change-point at k = 17, with probability of 0.367, but

assumed that PI < P2·
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0.1

0.15 .

Figure 4.1: Posterior probability of k, given a change-point for example 4.3.1

By using equations (4.l.6) and (4.l.7) with Ci'.,{3 = 1, the posterior probabilit.y for no change

is 0.2003 and the posterior probability for k = 17 is 0.1703.

By using the FBF in equation (4.l.17) to (4.l.19), the posterior probabilit.y for no change is

0.5368 and the posterior probabilit.y for k = 17 is 0.1072.

The conditional (given k = 17) and unconditional posteriors of PI and P2, by using equation

(4.1.4), are given in Figure 4.2, while the posterior distribution of T = ~, given k = 17 (by

using equation (4.l.5)), is given in Figure 4.3.
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Figure 4.2: The conditional (given k = 17), - -) and unconditional (-) pos-

teriors of Pi and P2 for example 4.3.1
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Figure 4.3: The posterior distribution of T = El, given k = 17 for example 4.3.1.
P2

V-/eget the same change-point as Smith (1975) (k = 17), but the FBF finds little evidence

of a change-point. Pettitt (1979) and Page (1955) found significance for a one-sided test of

no change against a change at k = 17.

As a second example of the Binomial model, we will use the Lindisfarne Scribe's data given

originally by Ross (1950) and subsequently analyzed by Silvey (1956). The data refer to the

number of occurrences of present indicative third person singular endings" -8" and" -(J"

for different sections of Lindisfarne. It is believed different scribes used the endings" -8"
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and" -éJ" in different proportions.

According to Pettitt (1979) a change occurred after the 6th section, but Smith (1980) found

evidence of two change-points, after the 6th and 7th sections. Pettitt used a non-parametric

approach, while Smith used a Bayesian approach. Kashiwagi (1991) also considered the

Scribe's data.

Stephens (1994) also analyzed the Lindisfarne Scribe's data assuming two change-points, but

the dat.a given in Stephens differs from that given by Pettitt. Pettitt gives 18 data points,

while Stephens only gives 13. We will consider the data given by Stephens.

Firstly considering the possibility of a maximum of three change-points, using equation

(4.l.12), we get. the probabilities as in Table 4.l.

Table 4.1

Number of change-points 0 1 2 3

Probability 0.0155 0.4437 0.3363 0.2046

Assuming two change-points, the most likely pair seems to be (4,5) with probability of 0.2559.

Assuming one change-point, both equation (4.l.7) with a.,f3 = 1 and the FBF (equations

(4.l.9) and (4.l.10)) indicate a change after the 5th or 6th section. The probabilit.ies are

given in Table 4.2. For his data set, Pettitt (1979) also suggested a change-point. after the

sixth section.

Table 4.2

Change-point 0 4 5 6 7 8

Usual BF 0.0536 0.0013 0.4710 0.3717 0.0635 0.0199

FBF 0.0337 0.0018 0.4614 0.3916 0.0770 0.0250

Our conclusion is that a change did occur in the Scribe's data, possibly after the 5th or 6th

sections. Two changes are also a possibility, but then after the 4th and again after the 5th

sections.
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EXAMPLE 4.3.3

We will use the data set for the 269 cricket test match outcomes between England and

Australia up to the end of the 1989 season as an example of the multinomial model. This

data set, given by Colwell, Jones and Gillett (1990), takes the value E, A or D depending

on whether England win, Australia win or the match is drawn.

Assuming one change-point, Figure 4.4 gives the posterior probability for the position of the

change-point, using equation (4.1.24) with O:j = 0, j = 1,2,3. The position seems to be

somewhere between the 46th and 51st test with maximum probability of 0.0120 at k = 47

(in 1897).

0.09,..------,--------,-----,-------r---------ri

0.08

0.07

0.06

~0.05
ii

'".g
0: 0.04

0.03

0.02

0.01

50 100 150
k

Figure 4.4: Posterior probability of k given a change-point for example 4.3.3
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As far as the existence of a change-point is concerned, the FBF (using equation (4.l.28))

is very sensitive to the value of b and seen in Figure 4.5, where the posterior probability of

no change is plotted as a function of b. It varies from a maximum (for b < 0.5) of 0.9343

at b = ~ = 0.0037 to a minimum of 0.1334 at b = ~ = 0.2082. O'Hagan (1995) suggested

b = In when robustness is a serious concern. In that case we would have b = 0.061 with

a probability of 0.2162 for no change. This is higher than the probability for any specific

change-point, but much lower than the prior probability of 0.5, and we would consider the

evidence for a change-point inconclusive. When using equation (4.l.25) with proper prior

aj =~, j = 1,2,3, the posterior probability of no change is 0.0115 and the maximum

probability of 0.0877 is also at k = 47, indicating stronger evidence of a change-point.
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Figure 4.5: Posterior probability of no change as a function of training fraction

b for example 4.3.3
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Assuming a change in 1897 (k = 47), Figure 4.6(a) shows the marginal posterior of PI, the

probability of an Australian win, before and after the change-point. Figure 4.6(b) shows

the same for P2, the probability of an England win. We see that the mean probability of an

Australian win has increased from 0.319 to 0.387, while the mean probability of an England

win has decreased from 0.553 to 0.279. The mean probability of a draw has also increased

from a:128 to 0.333.

Figure 4.6: Posterior density functions of the probability of an Australian win

(a) and an England win (b) before (-) and after (- -) a change- point

at 1897 (k = 47) for example 4.3.3
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EXAMPLE 4.3.4

If we model the Australian /England cricket test results of the previous example (4.3.3) as

a Markov chain (as was done by Colwell, et al. (1990)), the resulting posterior probabilities,

assuming a change-point according to equation (4.1.33), is shown in Figure 4.7. However

when using the Bayes factor (equation (4.1.36)), the posterior probability for no change is

0.609, while the maximum probability for a change-point is 0.0053 at k = 175. Thus there

is little evidence of a change-point. There is also no evidence of two or more change-points.

0.04 r-------,-----,---------,,--------r-----....-------,

0.035

0.03

300

Figure 4.7: Posterior probability of k given a change-point for example 4.3.4
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EXAMPLE 4.3.5

We will use the 50 observations simulated by Carlin, Gelfand and Smith (1992) as a second

example of the Markov chain model. They considered a three-state stationary Markov chain

where

0.3333 0.3333 0.3333

and B = 0.1500 0.7000 0.1500

0.3333 0.3333 0.3333

0.7000 0.1500 0.1500

A = 0.3333 0.3333 0.3333

0.3333 0.3333 0.3333

and the change-point is after the 35th observation.

The posterior according to equation (4.1.36) is given in Figure 4.8 with a probability of no

change of 0.152 and a maximum probability of 0.220 at k = 33. Carlin, Gelfand and Smith

(1992) got a maximum probability of 0.34, also at k = 33. However, they did not consider

a probability for no change.

0.25,-,----.-------,---,-------,----r----r--,-----r---.--------,

0.21
I
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~
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2
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0.1

.,

Figure 4.8: Posterior probability of a change-point for example 4.3.5
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The marginal posterior density functions of the first elements of A and B, au and bu, is

shown in Figure 4.9, from equation (4.1.39). The expected values are E(auly) = 0.652 and

E(buly) = 0.306, which corresponds well with the true values of 0.7 and 0.3333. Notice

that the marginal posterior of bu is one-tailed. This is because there are no transitions from

state 1 to state 1 after k = 33.

0.8 0.90.1 0.2 0.3 0.4 0.5 0.6 0.7

Figure 4.9: Unconditional posterior density functions of all and bIl for example

4.3.5

EXAMPLE 4.3.6

As an example of the Poisson model, we will use the diarrhoea-associated haemolytic uraemic

syndrome (HUS) data used by Henderson and Matthews (1993). HUS is a severe, life

threatening illness which predominantly affects infants and young children (Levin and Barret

(1984)). There has been concern that the incidence of HUS has apparently increased sharply
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during the 1980's (Tarr, et al. (1989), Coad, et al. (1991)). The annual frequency of cases of

HUS treated in two specialist centres in Newcastle upon Tyne and Birmingham from 1970

t.o 1989 is considered.

By using equation (4.2.4), we get an obvious change in bot.h sets of dat.a: For Newcastle at.

k = 15 (1984) and for Birmingham at k = II (1980).

The posterior probabilities assuming at most one change-point is given in Table 4.3. All

approaches give essentially the same answers. Considering models with up t.o three change-

points, by using equation (4.2.20), the data seems to favour a single change-point. as seen

in Table 4.4. Figure 4.10 shows the magnitude of the change ~ (from equation (4.2.8)) for

Newcastle and Birmingham.

So it. seems that the change occurred later in Newcastle than in Birmingham and the mag-

nitude of the change is also greater in Birmingham with a mean increase of over 6 t.imes

compared t.o an increase of about. 5 times in Newcast.le.

Henderson and Matthews (1993) compared the models from 0 to 3 possible change-points

pairwise and concluded that there are 2 change-points for Birmingham at II and 16 (1980,

1985) and 3 change-points for Newcastle at. 1,7 and 15 (1970, 1976 and 1984). Our results,

however, from Table 4.4, show no evidence of this.

Table 4.3: Posterior probabilities assuming at most one change-point

P[No changel X] prk = 151X]

FBF l.7 x 10-11 0.9834

Newcastle AIBF 3.3 x 10-12 0.9861

NIIBF l.7 x 10-11 0.9746

CIBF 2.4 x 10-11 0.9832

P[No change IX] prk = niX]

FBF l.9 x 10-13 0.9508

Birmingham AIBF 2.7 x 10-14 0.9591

MIBF 8.4 x 10-14 0.9694

CIBF l.9 x 10-13 0.9648
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Table 4.4: Posterior probabilities for multiple change-points, using the FBF

No change 1 change-point 2 change-points 3 change-points

Newcastle 0 0.4763 0.2311 0.2926

Birmingham 0 0.4325 0.3991 0.1684

12.-----~------~----~----~------~----~------~-----.
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Figure 4.10: Posterior density of the magnitude of the change, ~, for Newcastle

(-) and Birmingham (--), for example 4.3.6.

EXAMPLE 4.3.7

As Cl second example of the Poisson model we will use the much analyzed data set of annual

number of British coal-mining disasters during the 112-year period 1851-1962 gathered by

234



Maguire, et al. (1952), extended and corrected by Jarrett (1979). Frequentist change-

point investigations appear in Worsley (1986) and in Siegmund (1988), while Raftery and

Akman (1986) apply their Bayesian model to investigate a continuous single change-point.

Broemeling and Gregurich (1996) investigated a discrete single change-point, while Carlin,

Gelfand and Smith (1992) used Gibbs sampling in examining for a single change-point.

Green (1995) considered multiple change-points with reversible jump.

Assuming one change-point, Carlin, Gelfand and Smith (1992) found a maximum probability

of 0.42 at 1891 (k = 41) with a = ~ and f3 = O. The same result is obtained from equation

(4.2.3). The FBF (equation (4.2.18)) gives a probability of 0.2366 at 1891, while t.he t.hree

fract.ional Bayes factors (equations (4.2.21) and (4.2.22)) yield 0.2409, 0.2575 and 0.2412.

Allowing for at most 4 change-points, the posterior probabilities from equations (4.2.20)

and (2.5.17) are given in Table 4.5, together with t.he results of Green (1995), who used the

reversible jump algorithm and a Poisson prior on k with mean 3.

Table 4.5

Posterior probability 1'=0 r = 1 1'=2 1'=3 1'=4 T ~ 5

From FBF 5.3 x 10-14 0.2089 0.3367 0.2620 0.1924 -

Green (1995) 0 0.157 0.348 0.266 0.149 0.080

The evidence point.s to 2 change-points with maximum probability at k = [41,97], which is

1891 and 1947. Worsley (1986) and Raftery and Akman (1986) give some possible historic

reasons for t.he possible change-points. According t.o Worsley changes in the coal-mining

regulations during 1896 may have reduced the probability of accidents. According to Raftery

and Akman a fairly abrupt decrease around 1887-1895 may be associated with changes in

t.he coal industry around that time, namely a severe decline in labour productivity starting

at the end of the 1980's, and the emergence of the Miner's Federation at the end of 1889.

The change in 1947 may be due to changes in labour practices just after the war.

The joint posterior of k1 and k2 is shown in Figure 4.1l. The posterior mass is clearly

concentrated around k given above. Figure 4.12 shows the posterior distributions of )'1, A2
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and A3 with means of respectively 3.10, 1.07 and 0.27. So the number of disasters has been

reduced significantly each time.
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Figure 4.11: joint posterior of k1 and k2 given 2 change-points for example 4.3.7
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Figure 4.12: Marginal posteriors of A1(1), A2(2) and A3(3), the mean yearly disaster

rates before, between and after 2 change-points for example 4.3.7

EXAMPLE 4.3.8

For an example of an exponential model we can also use the coal-mining disaster data as

given in Jarrett (1979) in terms of time between disasters. Worsley (1986) and Raftery and

Akman (1986) both found a single change-point during 1890. Assuming one change-point,

we find a maximum probability of 0.2477 at k = 124, using equation (4.2.25), which is

also during 1890. Using the FBF (equation (4.2.31)), the same probability is 0.2439 with

probability of no change 10-14. Raftery and Akman found the probability of no change to
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be 1.58 x 10-14.

Assuming two change-points, the results are again corresponding with that in example 4.3.7,

with maximurn probability at k = [124,187], that is during 1890 and during 1947. The

marginal posterior probability that. k = 124 is the first change-point., is 0.1404 and the

marginal posterior probabilit.y that k = 187 is the second change-point, is 0.2526, while the

joint. probability is 0.0493.

EXAMPLE 4.3.9

\Ve will use the 20 observations artificially generated by Diaz (1982) with a = 2 and unitary

scale parameter /3 = 1 as an example of the Gamma model. Diaz considered three different

sit.uations. In the three cases, the first. eight observations remained unchanged, while in

the first case the last twelve observations of the previous list were taken, in the second and

third they were multiplied by 1.5 and 3 respectively (we only multiplied by 3), in order to

produce a change in the scale parameter after the eighth observation with different. relative

magnitude. Diaz used a prior probability of no change of 0.5.

Figure 4.13 gives the posterior probability of change-point position (with q = 0.5) for the

Diaz data when the data has: (a) no change-point, a = 2 (using equation (4.2.31)); (b)

no change-point, a estimated (using equations (4.2.31) and (4.2.32)); (c) a change-point at

k = 8, a = 2 (using equation (4.2.31)); (d) a change-point at k = 8, a estimated (using

equations (4.2.31) and (4.2.32)).

Diaz (1982) found a probability of 0.39808 for no change in the first case and a probability

of 0.055 in the second case (when t.he last. 12 observations were multiplied by 3), with a

probability of 0.290 at k = 6.

It. appears that the method of estimating the unknown a is working well when comparing

Figures (a) and (b), and Figures (c) and (d).
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Figure 4.13: Posterior probability of change-point position for Diaz data for (a) no

change-point, a = 2; (b) no change-point, a estimated; (c) change-

point at k = 8, a = 2; (d) change-point at k = 8, a estimated
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EXAMPLE 4.3.10

vVe will use the arrival times of aircraft reported to a control sector during a certain time

interval as an example of the exponential model. The sample period was 16/00/00 - 24/00/00

GMT (noon - 8 P.M. New York time) on April 30, 1969. Tabulated values are in seconds

from the start of the sample period. The data were originally collected by the Federal

Aviation Administration, National Aviation Facilities Experimental Center, Atlantic City,

New Jersey. The data seems to fit the exponential model and Hsu (1979) and Diaz (1982)

also analyzed the data.

We found no evidence of change in the interarrival times, which is the same conclusion as Hsu

(1979) and Diaz (1982). For the FBF with ex= 1, the probability for no change is 0.8849.

With unknown ex replaced by ak from equation (4.2.32), the probability for no change is

0.8543.

We also added successive observations together, creating a Gamma sequence with ex =

2,3, .... The posterior probabilities for no change stayed essentially the same as above for

both known and unknown value of ex.

EXAMPLE 4.3.11

As an example of an epidemic change, we will use the Stanford heart transplant data given

by Kalbfieisch and Prentice (1980). This data is the survival times of potential heart trans-

plant. recipients from their date of acceptance into the Stanford heart transplant program.

Ramanayake and Gupta (1998) analyzed the same data, but does not seem to make any dis-

tinction between censored and uncensored observations. Our data set contains 45 uncensored

and 24 censored observations. Figure 4.14 shows the censored and uncensored observations.

The FBF (using equation (4.2.48)) yields a probability of no change of 0.1084, while the

maximum probability for an epidemic change is 0.1319 at the pair k = [1,23], which are the

ages 19 and 48. This shows weak evidence of an epidemic change.

Since there is little reason to believe that an epidemic change model is applicable in this

situation, we also considered the exponential model with two change-points, but without
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the epidemic model restriction. The probability for no change is 0.0268 with a maximum

probability of 0.0206 at k = [4,23], showing again little evidence of change-points, since the

probability of no change, although small, is larger than for any particular change-point.

In fact it looks as if the Stanford heart transplant data has only one change-point, at k = 23

(48 years) with probability of 0.3004, against a probability of 0.0192 for no change-point.
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Figure 4.14: Stanford heart transplant data, censored (*) and uncensored (0)

observations

241



CHAPTER 5)

THE HAZARD RATE

5.1 INTRODUCTION

If a random variable X represents the lifetime or time to failure of a unit, then the reliability

of the unit at time t is defined to be

R(t) = P[X > tJ = 1- Fx(t).

The same function with the notation S(t)

biomedical applications.

1 - Fx (t), is called the survival function in

Properties of a distribution that were previously studied, such as the mean and variance, are

still important in the reliability area, but an additional property that is quite useful is the

hazard function (HF) or failure-rate function. The hazard function, h(t), for a pdf is defined

to be

h(t) = f(t) _ f(t)
1- F(t) S(t)·

The HF may be interpreted as the instantaneous failure rate or the conditional density of

failure at. time t, given that the unit has survived until time t,

f(tlX ;:::t) = h(t).

An increasing HF at time t indicates that the unit is more likely to fail in the next increment

of time (t, t + L).t) than it would be in an interval of the same length at an earlier age. That

is, the unit is wearing out or deteriorating with age.

Similarly, a decreasing HF means that the unit is improving with age. A constant hazard
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function occurs for the exponential distribution and it reflects the no-memory property of

that distribution.

If X "-' Exp( B), then
f(t) Be-Ot

h(t) = 1_ F(t) = e-Ot = B. (5.4)

In this case the failure rate is the reciprocal of the mean time to failure and it does not depend

on the age of the unit. This assumption may be reasonable for certain types of electrical

components, but it would tend not to be true for mechanical components. However, the no

wear out assumption may be reasonable over some restricted time span. The exponential

distribution has been an important model in the life-testing area, due in part to its simplicity.

The Weibull distribution is a generalization of the exponential distribution and it is much

more flexible.

If X "-' Wei( B, (3), then

h(t)
(3B-f3tf3-1e-( ~)"

e-(i)/3

~(~)f3-1 (5.5)=

This reduces to the exponential case for (3 = 1. For (3 > 1, the Weibull HF is an increasing

function of t and for (3 <: 1, the HF is a decreasing function of t.

One typical form of HF in the area of life-testing is a V-shaped or bathtub-shaped HF. For

example, a unit may have a fairly high failure rate when it is first put into operation, due to

the possible presence of manufacturing defects. If the unit survives the early period, then a

nearly constant HF may apply for some period, where the causes of failure are occurring "at

random". Later on the failure rate may begin to increase as wear out or old age becomes a

factor. In life sciences the early failures are associated with the "infant mortality" effect .

Mitra and Basu (1995) considered the problem of estimating change-points in various non-
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monotonic aging models. A general methodology for consistent estimation of the change-

point is developed and applied to non-monotonic aging models based on the hazard rate

function as weil as on the mean residual life function. All the other references considered a

change in a constant hazard rate, while Mitra and Basu (1995) considered changing survival

functions.

A more general model is dealt with by Basu, Ghosh and Joshi (1998) and Ghosh and Joshi

(1992), assuming the failure rate r(t) to have the shape of the "first" part of the "bathtub"

model, i.e. r(t) is decreasing for t < T and is constant for t 2: T. The asymptotic distribution

of one of the estimates proposed earlier has been investigated. This leads to a test for the

hypothesis Ho : T :::; TO vs HI : T > TO (where TO > 0). Asymptotic expression for the power

of this test under Pitman alternatives is derived. Kulasekera and Saxena (1991) consider

"bathtub" and "upside down bathtub" shaped hazard functions and based their estimator

of the change-point on kernel estimators of the density function.

A frequently recurring question posed by leukemia researchers concerns a test of a constant

failure rate against the alternative of a failure rate involving a single change-point. In

answer to this question, Matthews and Farewell (1982) derived and simulated a likelihood

ratio test appropriate for the stated alternative. Consideration is given also to tests based on

alternatives in the log gamma family. Other classical approaches include Matthews, Farewell

and Pyke (1985), Yao (1986) and Pham and Nguyen (1990, 1993).

Nguyen, Rogers and Walker (1984) discussed the estimation of parameters in hazard rate

models with a change-point. Due to the irregularity of the models, the classical maximum

likelihood method and the method of moments cannot be used. A consistent estimator of

the change-point is obtained by examining the properties of the density represented as a

mixture. The performance of the estimator is checked via simulation.

Achcar and Bolfarine (1989) developed a Bayesian approach to the problem of a constant

hazard with a single change-point using non-informative reference priors. They also present

a generalization for the comparison for two treatments.

Ghosh, et al. (1993) examine the asymptotics of a Bayesian approach for the same model,
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but under the assumption of a lower hazard rate after the change-point. Ghosh, Joshi

and Mukhopadhyay (1996) assumed the hazard rate h(t) of a lifetime random variables to

be a constant equal to a up to time T and another constant equal to b thereafter. The

parameters T and (a, b) are assumed to be independent apriori, with T having a uniform

prior on [tl, t2J, 0 < i, < t2 < 00, while the prior of (a, b) is assumed to be smooth.

They proved that the marginal posterior mode of T is n-consistent; the marginal posterior

mass of T is concentrated around an n-l neighbourhood of the unknown parameter value;

the posterior distribution of (a, b) can be approximated by a Normal distribution; a, b, Tare

asymptotically independent aposteriori and one can approximate the posterior mean and

variance of (a, b) by easily computable quantities. The accuracies of these approximations

were examined by a simulation study.

Ghosal, Ghosh and Samanta (1999) considered a family of models that arise in connection

with a sharp change in the hazard rate corresponding to a high initial hazard rate drop-

ping to a more stable or slowly changing rate at an unknown change-point k. Although the

Bayes estimates are well behaved and are asymptotically efficient, it is difficult to compute

them as the posterior distributions are generally very complicated. They obtained a simple

first order asymptotic approximation to the posterior distribution of k. They judged the

accuracy of the approximation through simulation. Zacks (1972) considers a constant fail-

ure rate (exponential) that changes at an unknown time point to an increasing (Weibull) rate.

5.2 THE EXPONENTIAL MODEL

A constant hazard function occurs for the exponential distribution and it reflects the no-

memory property of that distribution mentioned earlier.

If X '" Exp( B), then

f(tjB) = Be-Ot,

F(tjB) = 1- e-Ot (5.6)
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so that the survival function is

S(tI8) = e-Bt (5.7)

and the hazard function follows as

h(tI8) = 8. (5.8)

Under the models

1\10 : No change in hazard rate,

M»: Change at T (continuous)

(5.9)
T<t

Notice that the data is not considered sequentially over time as before, but arranged in order

of magni tude.

Achcar and Bolfarine (1989) consider a discrete prior on T with the observed values as sup-

port, and a vague prior,

(5.10)

on the parameters. They also derive the non-informative Jeffreys prior in the case of un-

censored and censored observations, assuming T known, and show that the above prior is

a reasonable approximation to the Jeffreys prior. Ghosh, et al. (1993, 1996) consider the
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assumptions one needs to make about the prior in order to obtain an analytical approxi-

mation to the posterior density of T. The prior in (5.10) would satisfy their conditions if

o < c < e2 < el < 00 and T is uniform on [tl, tn-ll where 0 < tI < T < tn-l < 00.

\Ve will start by assuming proper conjugate priors on the parameters

(5.11)

and

(5.12)

For censored observations ti < t; < ... < t:n_ it follows that:

If t: > T

and if C < T, -

(5.13)

Under Model MT the likelihood function follows as
kj n ki m

11 f(tile) 11 f(tilel, e2, T) 11(1 - F(t:lel))· 11 (1 - F(t:lel, e2, T))
i=l i=l ki+l

(5.14)
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where kl and k2 are, respectively, the number of uncensored observations before and after

the change point T. Similarly we have k~ and k2 for the censored observations. Further,

kJ kj

Sl = Yl + Y~ = L ti+ Lt:,
i=l i=l

n m
L ti+ L t:

i=ki+l

and

(5.15)

The joint distribution is given by

so that

(5.16)

Wit.h the priors (5.11), the posterior densit.y of the change-point is given by

(5.17)

where Xl < X2 < ... < Xn+m are all the ordered observations and k is running from the index

of the first. to the (n - 2)th uncensored observation. So the posterior of T has a discontinuity

at. each observed value of the variable. The posterior with vague prior (5.10) follows directly

by letting 0:., f3 -> 0 in (5.17). Also, the posteriors of el and e2, conditional on T, follows as
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(5.18)

where

(5.19)

For the distribution of 8 = ~ it follows that

(5.20)

and with the priors

1 1
II(8,8) cx $;8 and II(T) = ,

u tn-l - tI
(5.21)

the posterior of 8 follows as

8> 0, (5.22)

a Beta Type II distribution, so that ~;;~8 has a F-distriblltion with 2kl and 2k2 degrees of

freedom.

The unconditional distributions of 81,82 and 8 follow by averaging over the marginal poste-

rior of T, i.e.

lXk+1

II(8It, t*) =L II(8It, r, T)II(Tlt, t*)dT.
k Xk

(5.23)

In the above analysis the assumption of exactly one change-point in the hazard rate was
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made. To examine the evidence in favour of this assumption, we will consider the Bayes

factor when comparing this model Mr in (5.9) with the model Mo which assumes a constant

hazard with no change.

For the Fractional Bayes factor it follows that

(5.24)

(5.25)

r(n)
mo=--

sn
(5.26)

and

b r(bn)m -o - bnbsnb· (5.27)

If we let b = ~,n

(b) = r(n)
mo 2·Sn- (5.28)

Up to this stage we assumed that there are no restrictions on the hazard rates el and e2. If

we know more accurately that there is a decrease in the hazard rate after the change-point,

t.he prior will change to

(5.29)

Then the joint distribution will be

(5.30)
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so that the posterior distribution follows as

(5.31)

where finc(-' k2) is the incomplete Gamma function and which can be integrated numerically.

5.3 HAZARD RATES FROM COMBINATIONS OF DENSITY FUNCTIONS

Unfort.unately none of the common standard distributions will accommodat.e a U-shaped

hazard rate. To obtain the wanted shape, different combinations of the Weibull hazard rate

can be applied. If X f'V Wei(B,f3) then h(x) = ~ (~)i3-l. This reduces to the exponential'

case for f3 = l. For f3 > 1, it is an increasing function of x and if f3 < 1 it is a decreasing

function of x.

5.3.1 DECREASING HAZARD RATE

Firstly we will consider a lifetime distribution with a strictly decreasing hazard rate up to

a change point T after which it remains constant. Such a model is important in situations

where equipment have high infant mortality rate and manufacturers are interested in the

point. at. which the surviving equipment can be considered more reliable.

In general, if Jl (-) and 12(-) are non-increasing continuous density functions with survival

functions SI (-) and S2(-) respectively, and

X:S;T
(5.32)

x > T,
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This last condition defines the assumption that there is no jump in the density or hazard

functions at the point of discontinuity.

We will assume a Weibull density with decreasing hazard rate for I, (.) and an exponential

density for 12(-).

Then

(5.33)

with hazard rate

(5.34)

where A > 0 and 0 < {3 < 1.

The likelihood function is given by

with notation as in (5.15) and

kj ki

SliJ = YliJ + Y~iJ = L t~ + L t;iJ.
i=l i=l

(5.36)

With the priors

(5.37)
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the joint distribution is

J( * \ (3 ) _ \n1+0:-1e-Al[Sltl+r2(1-,6)rtl+,6rtl-ls2+1'I(3n (rrk1t.) -(1-,6)t, t ,/\ 1, ,7 /\ ,

(5.38)

so that

( )

-(1-,6)
J( t, t*, (3,7) = I'(n + ex) [Sl,6 + T2(1 - (3)7,6 + (37,6-1 S2 +'Y](n+o:) (3n IT ti 7-k2(1-,6).

(5.39)

If ex, (3 --+ 0, the posterior distribution of 7 follows as

(5.40)

The marginal likelihood under Mr will be

(5.41)

Under .Mo the joint distribution follows as

(5.42)

where
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so that

(5.43)

The marginals under the two hypotheses are then, with vague priors 0', {3 --+ 0,

(5.44)

and

(5.45)

so that

In this case we consider the ordinary BOT as reasonable, since we have proper priors on {3

and T. The parameter A which has an improper prior appears under both models. Thus it's

not. required to calculate a Fractional Bayes factor in this case.

5.3.2 INCREASING HAZARD RATE

In the situation where an initially constant hazard rate later changes to an increasing rate

due to wear-out or ageing, we have a combination of an exponential distribution and a

Weibull distribution with increasing hazard rate.

Let's consider the model MT with hazard rate
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{
>..

h(t) = ' f3-1
>. (*) ;

t'S:T

t>T

Then

{

>.e->'t.
f(tl>', 13, T) = ->.T'(f!.:=l) (.!.){3-1 _M(.!.){3

>.e {3 T e {3 T ;

t 'S: T

t > T

It then follows that

where

kj ki

SI = Yl + Y~ = L ti+ Lt;;
i=l i=l

n m
S2(3 = Y2(3 + Y;(3 = L tf + L t;(3

kj +1 ki+1

and T2 = k2 + k2 (as in 5.15).

Let the priors be

1 1
T rv U(t1, tn-I), 7T(>.) cx :x and II(j3) cx~' 1 < 13 < K.

We put an upper limit on 13, since the likelihood function is unbounded if 13 -+ 00.

The post.erior of T is

and for the Fractional Bayes factor the fractional marginal likelihood is
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(5.47)

(5.48)

(5.49)
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(5.51)

( )

b({3-1) {3 -nb
n-2 ti+1 K 1 n 13 - 1 T1-

m~ = L1 1 _T-bk2(.B-1) II ti [b {SI + Tr2 (-) + -S2{3}] r(nb)dj3dT.
i=l t, 1 13 i=kl +1 13 13

This model can then be compared with any of the previous models like (5.24), (5.26) and

(5.45).

5.3.3 THE BATHTUB HAZARD RATE

A lifetime distribution having support [0,(0) is said to be a Bathtub Hazard Rate (BHR)

distribution if there exists a to > 0 such that h(t) is non-increasing on [0, to) and non-

decreasing on [to, 00 ).

The point to need not be unique and we will consider a model with decreasing failure rate on

[0, Tl], a constant failure rate on (Tl, T2J and an increasing failure rate on (T2, (0). Assuming

no jumps at the points of discontinuity, the density function can be written as

)..j31t{31-le->.t{31;

)..131 Tfl-1 e->.Tfl (1-{3!) e->.{31 Tf1-\

At!32-le-Bt{32. ,

(5.52)

t2 < t < 00

wi th ), > 0, 0 < 131 ::::;1, 1::::;132 < K and

(5.53)

The corresponding hazard rate is
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h(t) = (5.54)

The priors are

11().) = ~, 11(,61) = 1, 0 < ,61 ::; 1,

(5.55)

In practice, under the assumption that both change-points fall within the range of observed

data, we will take a = t, and b as either tn-l or tn-2, ensuring at least one observation in

each section of the density function.

Then

where

ri = ki + k;, i = 1,2,3 (5.56)

and

rl+r2

2::::: Xi,
i=rl +1

n+m

2::::: (5.57)
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where Xl < X2 < ... < Xn+m are again all the ordered observations.

Then

(5.58)

The conditional distribution of A is Gamma (n, C). For model comparisons, the fractional

marginal likelihood as in (1.13) can be obtained by a MCMC sampling scheme. As men-

tioned by Gilks (1995), notice from the denominator of (1.13) that

(5.59)

with expectation with respect to the proper density II*(B) cx: Lb(Blx)II(B). So we perform

l'vICMC iterations on the density and estimate mb as the average of Ll-b( BIx) over the

generated samples.

To obtain the marginal posterior distributions, Gibbs sampling can be employed, simulating

from the conditional distributions successively and averaging. After integrating A out, the

full conditional distributions of the other four parameters are given by

(5.60)

(5.61)

II(T lt r (3 (3 T) cx: T-(k2+k3)(!31-1)T!31-1c-n1 , , I, 2, 2 Il' (5.62)

(5.63)
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where
kl n

Tl = IIti, T3 = II
i=l i=kl+k2+l

t·t (5.64)

and where kl, k2 and k3 are the number of observations smaller or equal to Tl, between Tl and

T2 and larger than T2 respectively. Similarly we have k~ ,k2 and k3 for censored observations.

5.4 APPLICATIONS

EXAMPLE 5.4.1

\lVe will consider a data set given in Matthews and Farewell (1982) as well as in Achcar and

Bolfarine (1989). The data specifies the times (in days) from remission induction to relapse

for 84 patients with acute non-lymphoblastic leukemia. There are 51 uncensored and 33

censored observations.

Under the Exponential model the Fractional Bayes factor in favour of model Mo (no change)

when compared with model Mr is BOT = 0.0628 when b = ~ (equations (5.24) to (5.28)).

This translates to a posterior probability for the change-point model of P = 0.9409 with

equal prior weights. This indicates reasonably strong evidence in favour of the change-point

model. In Figure 5.1 the Fractional Bayes factor is shown as a function of b. As b approaches

one, so will BOT' as there is then little or no information left for model comparison. However,

for b reasonably small (b < 0.5) the Bayes factor is fairly robust (BoT < 0.1) with a minimum

of 0.0367 at b = §.n
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The Fractional Saves Factor as a function of b

oL___ _L ~ L_ __ _l ~ L_ __ ~----~--~~--~

o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
b

Figure 5.1: The Fractional Bayes Factor as a function of b for example 5.4.1

According to Mat.thews and Farewell (1982) the classical significance level when testing the

null hypotheses of no change against the change-point alternative is approximately 0.001. .

We also compared the change-point model JUT with a Weibull model with decreasing hazard

rate. The Fractional Bayes factor in favour of M; is 53.64, indicating a much better fit. to

Assuming a change-point, Figure 5.2 shows the posterior distribution of T. The discontinu-

ities occur at each of the uncensored observations.

0.41-····················,···················

0.1

the data than a Weibull model.
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Figure 5.2: The posterior distribution of the change-point r for example 5.4.1

The mode is at 697 days. This is also the maximum likelihood estimator of r (Matthews

and Farewell (1982)).

The unconditional posterior means of Al and A2 are given in Table 5.1 together with the

asymptotic approximations according to Ghosh, et al. (1996) and the maximum likelihood

estimators from Matthews and Farewell (1982).

Table 5.1: Estimates of Al and A2 for example 5.4.1

Al X 103 A2 X 103

Post. Means 2.005 0.3364

Approximation (GJM) 2.081 0.2877

MLE (MF) 2.040 0.4300
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In Figure 5.3 the conditional, given T = 697, and unconditional posteriors of {;= ~: is shown

according to (5.22) and (5.23).

Figure 5.3: Conditional (given T = 697) posterior (- - -) and uncondi-

tional posterior (-) of {;= A2/ Al for example 5.4.1

The unconditional posterior of {;has a mean of 0.1512 and 95% HPD interval (0.007; 0.393).

The maximum likelihood estimator is [; = 0.2108.

Assuming both T and Al known, and equal to the MLE's, Achcar & Bolfarine (1989) report

the posterior mode of {;as 0.1405, and with only T known, as 0.1374. They also give in this

case a 95% HPD interval of (0.1253; 0.3540) by using a normal approximation. We consider

this interval as too narrow. Their unconditional posterior mode is 0.25.
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EXAMPLE 5.4.2

In Appendix A the failure times (hours) of 107 units of a piece of electronic equipment

are given. The data is from Juran and Gryna (1980) and is also analysed by Schneider,

et al. (1990). It is suggested by Schneider, et al. that there is an early failure period of

approximately 20 hours and a wear-out period of about 100 hours, the period between being

fairly constant.

We compared the non-decreasing hazard rate model (5.46) with the bathtub model (5.54)

by means of the IvIC:rvICcalculation (5.59) of the Fractional Bayes factor. After 10 000

simulations from each model and with b = ~, the estimated Bayes factor was calculated

as B = 3.79 in favour of model (5.54), moderate evidence in favour of the bathtub hazard

rate model. Compared to a constant hazard rate model and the single abrupt change model

(5.9), the Bayes factors in favour of the BHR model are, respectively, 1.2 x 109 and 1.3 x 103.

Assuming the BHR model, 15 000 Gibbs samples were kept after burn-in, and the marginal

posterior densities of the five parameters obtained. Some posterior measures are given in

Table 5.2 with the t\VOestimated change-points at 46.9 and 95.5 hours. The position of the

second change-point, T2, can be estimated much more accurately than that of Tl as can be

seen from the 95% HPD Interval. Also some contours of the joint density of Tl and T2 are

shown in Figure 5.4.

Table 5.2: Posterior measures of five parameters for example 5.4.2

Mean Mode Variance 95% Interval

A 0.2071 0.1990 0.0015 0.137 - 0.289

(31 0.7763 0.7780 0.0081 0.604 - 0.958

(32 11.8259 10.6300 23.8981 4.450 - 20.400

Tl 46.922 26.100 483.37 10.80 - 89.40

T2 95.546 97.100 82.99 78.70 - 112.80
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Figure 5.5 shows the expectation of the unconditional distribution of the hazard rate (5.54)

with the 95% credibility interval, and in Figure 5.6 the empirical survival function S(t) =
1 - F(t) is plotted together with the posterior expectation and 95% credibility interval.

Contours of Joint Posterior of Tau1 and Tau2
120r----.-----r----,-----r----,----~----~----r----,----~~

N:::s
nl
f-

60

50~--~~--~----~----~--~~---L----~----L---~-----L--
10 20 30 40 50

Tau1
60 70 80 90 100

Figure 5.4: Contours of the joint posterior density of the change-points 71

and 72 for example 5.4.2
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Figure 5.5: Estimated Hazard Rate with 95% Credibility Interval for ex-

ample 5.4.2
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Figure 5.6: Empir-ical and Estimated Survival Function with 95% Credibil-

ity Interval for example 5.4.2
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CHAPTER (5

CONCLUSIONS AND SUMMARY OF OTHER APPROACHES

6.1 CONCLUSIONS

In this study we have attempted to use a pure Bayesian approach for the detection and

estimation of change-points in a sequence of random variables from a variety of models. The

emphasis was on obtaining" default" results, or at least results with as little as possible

subjective prior input. It is well known that the Bayes factor is very sensitive to the prior,

especially when comparing models of different. dimensions. When the number of change-

points is assumed known, the use of improper priors is not a problem. However, if there

is uncert.ainty about the number of change-points, we must be able to specify reasonable

proper priors under each model or revert to partial Bayes factors. We have looked at two of

them, the Intrinsic and Fractional Bayes factors. The advantages and disadvantages of these

two Bayes factors are discussed in some detail by O'Hagan (1997) and Berger and Pericchi

(1998). We will just mention a few which are particularly relevant in change-point analysis.

Firstly, the Intrinsic Bayes factors generally violate the multiple comparison coherence con-

dit.ion, so B12 is defined as B12 = -Bl where M2 is the more complex model. In general
2l

an encompassing model is usually defined to avoid this problem, and a minimal sample is

then defined with respect. to all possible submodels, However, in change-point. analysis a

minimal sample for all possible positions of the change-point will be the whole sample, so

an encompassing model will not. be possible. In our analysis we have considered only the

minimal sample for each fixed change-point when compared to the no change model and

defined Bij = ~. The shortcoming is that BiO and BjQ are not calculated from the same

set. of minimal samples.

Secondly, the Intrinsic Bayes factor are computationally very intensive, especially for multiple

change-points. For example, if TI. > 100 and the number of change-points is larger than one,

the number of combinations of change-points and minimal samples gets unmanageably large

and use a lot of computer time. This problem can be reduced by taking a random sample
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of minimal samples instead of all possible minimal samples.

In contrast, the Fractional Bayes factor (FBF) is relatively simple to calculate, even for

large samples and multiple change-points. Also the FBF is invariant to transformations

of the data, while IBF's are not always. The FBF does not suffer from the incoherency

problem. So in general we prefer to use the FBF in change-point analysis. In the examples

given t.hroughout this study, both methods gave similar and sensible answers.

The one major practical problem with the FBF is the choice of the training fraction b. We

have seen from the examples that the posterior probabilities can be highly sensitive to the

value of b, but it seems possible to obtain a lower limit on the Bayes factor in favour of no

change (see for example Figure 4.5). O'Hagan (1995, 1997) suggested b = ~, where m is

the minimal training sample size. For increased robustness when ti increases, O'Hagan also

have two other suggestions. namely b = (i£ and b = m,'ogn. However, in some models the, V rt n ogm

minimal training sample is not unique, and our suggestion is to examine the Bayes factor BOk

or the posterior probability for no change over a range of values for b to check the robustness

of your answer.

6.2 OTHER APPROACHES IN THE LITERATURE

Here we want. to summarize some approaches, Bayesian, quasi-Bayesian and non-Bayesian

in the literature that were not. dealt with in this study in any detail.

l\IICMC methods: In chapters two and three we have looked at the Gibbs sampling scheme

for deriving the posterior distribution of a change-point for certain models. However, the

analytical result was usually available under the assumption of exactly one change-point

for certain models. When the number of change-points is unknown however, the ordinary

Gibbs sampling algorithm is not applicable. Papers that deal with Markov chain Monte Carlo

methods when the chain has to move between models of different dimensions include a Gibbs

sampler-based approach by Rotondi and Pagliano (1994), the reversible jump algorithm of

Green (1995) and the jump diffusion sample algorithm of Phillips and Smith (1996). These

methods seem promising when the number of possible change-points are reasonably large.
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Product partition models: This is also an approach to the detection of multiple change-

points. Product partition models were studied by Hartigan (1990) and Barryand Hartigan

(1992, 1993). According to Hartigan (1990), product partition models assume that obser-

vations in different components of a random partition of the data are independent given

the partition. If the probability distribution of random partitions is in a certain product

form prior to making the observations, it is also in product form given the observations.

The product model thus provides convenient machinery for allowing the data to weight the

partitions likely to hold and inference about particular future observations may then be

made by first conditioning on the partition and then averaging over all partitions. Barry

and Hartigan (1992) show, with appropriate selection of prior product models, that the ob-

servations can eventually determine approximately the true partition. Barryand Hartigan

(1993) show that the parameter values may be estimated exactly in 0(17,3) calculations, or

to an adequate approximation by Markov sampling techniques that are 0(17,) in the number

of observations. The Markov sampling computations are thus practicable for long sequences.

Information criteria: The Schwarz information criterion has been applied by Gupta and

Chen (1996), Ramanayake and Gupta (1998) and Chen and Gupt.a (1997, 1999). Gupta and

Chen (1996) applied the Schwarz informat.ion criterion together with the binary segment.a-

tien procedure to det.ect. change-points in a set. of geological data and the changes in the

frequencies of pronouns in the plays of Shakespeare. Ramanayake and Cupta (1998) consid-

ered a sequence of independent exponential random variables that. is suscept.ible t.o a change

in t.he means. They tested whether t.he means have been subject.ed to an epidemic change

aft-er an unknown point, for an unknown duration in the sequence and derived the likelihood

ratio statistic and a likelihood rat.io t.ype statistic. Chen and Gupta (1997) explored testing

and locat.ing multiple variance change-points in a sequence of independent Gaussian random

variables (assuming known and common mean). A binary procedure combined with the

Schwarz information criterion (SIC) is used to search all of the possible variance change-

points existing in the sequence. Chen and Gupta (1999) studied the testing and estimation

of a single change-point in means and variances of a sequence of independent Gaussian nor-
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mal random variables. The SIC is defined as SIC(n) = -210g L(ê) + p log nand Chen and

Gupta's criteria is to reject Mo, the model of no change, if SIC(n) > SIC(k) for some k. The

position of the change-point is estimated by k such that SIC(k) = min SIC(k). Akaike's
k

and Schwarz's criteria are also used by Yao (1988), Caussinus and Lyazrhi (1997) and Xiong

and Milliken (2000).

Decision theory: Decision theory was considered by Lyazrhi (1994). He studied the change-

point problem for normal regression models as the problem of choosing the hypothesis Ho

of no change or one of the hypotheses Hi that one or more parameters change after the

ith observation. The observations are often associated with a known increasing sequence

Ti (for example Ti is the date of the ith observation). It then seems natural to introduce a

quadratic loss function involving (Ti - Tj) 2 for selecting Hi instead of the true hypothesis Hj.

A Bayes optimal invariant procedure is derived within such a framework and compared to

previous proposals. Rukhin (1996) also considered the change-point problem as a multiple

decision problem and show that a positive limit of the minimum Bayes risk for the uniform

prior exists for any loss. lts explicit form and some inequalities are derived for the zero-one

loss function. A multiple decision (non-Bayesian) treatment was used by Haccou and Meelis

(1988) .

Sequential analysis: An approach closely related to a decision theoretic one is sequential

analysis. This includes optimal stopping rules and quality control. All the models described

in our study is for fixed sample size, but can easily be applied sequentially. However, models

that are developed specifically for sequential detection were considered by Zacks and Barzily

(1981), Kenett and Pollak (1983), Zacks (1983, 1991), Zhang (1995) and Zacks (1995).

Sequential methods are especially important in problems of statistical control of processes

with stochastic input, early warning of changes in the distributions and tracking of processes.

Zacks and Barzily (1981) discussed the determination of a stopping rule for the detection

of the time of an increase in the success probability of a sequence of independent Bernoulli

trials. Both success probabilities are assumed known. A Bayesian approach is applied and
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the distribution of the location of the shift in the success probability is assumed geometric

and the success probabilities are assumed to have a known joint prior distribution. The

costs involved are penalties for late or early stoppings. The nature of the optimal dynamic

programming solution is discussed and a procedure for obtaining a suboptimal stopping rule

is determined.

Kenert and Pollak (1983) supposed that one is monitoring a sequence of observations for a

possible increase in the probability of a rare event and that it is not possible to immediately

stop the process under observation or influence it to return to its normal state. According to

them one would then desire a scheme which takes advantage of observations occuring after a

detection of a change is proclaimed. They developed a modification of Page's CUSUM Proce-

dure, taking account of these additional observations. Zacks (1991) provided a development

of a Bayesian tracking algorithm, which estimates parameters of the posterior distributions

of the means under the AMOC model. They also cited other tracking procedures, which

are based on adaptive Kalman filtering. Zhang (1995) discussed and applied Bayesian and

likelihood approaches to on-line detecting change-points in time series to analyze biomedical

data. Using a linear dynamic model, the Bayesian analysis outputs the conditional posterior

probability of a change at time t - 1, given the data up to time t and the status of changes

occ:ured before time t - 1. The likelihood method is based on a change-point regression

model and tests whether there is no change-point. Zacks (1995) developed sequential stop-

ping rules for testing reliability systems having a random number of change-points in their

hazard rate functions. The failure process follows the empirical Bayes model of Littlewood

(1981). Sarkar and Meeker (1997) presented a Bayesian on-line change detection algorithm

for t.he cases when there are multiple jumps and when there is a trend in the process output

parameter. A decision theory based method has been formulated to determine the optimum

inspection interval for process control applications. Karunamuni and Zhang (1996) consid-

ered an empirical Bayes stopping rule for detecting a change in distribution when the prior

is not completely known.

Non-Bayesian papers on optimal stopping include Pollak (1985), Lai (1995) and Yakir (1997).

Papers that deal specifically with quality control and are based on the "Minimum Descrip-
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tion Length" (MDL) criterion are Seki and Hashimoto (1996), Suzuki and Enkawa (1995)

and Suzuki (2000).

Non-parametric approaches to the change-point problem include Pettitt (1979), Wolfe and

Schechtman (1984), Lombard (1987), Eastwood (1993) and Aly and BuHamra (1996).

6.3 OTHER APPLICATIONS

Time series models are not considered in any detail in this study, except for the regression

model with auto correlated errors in paragraph 2.7.5 and 3.7. There we considered only a

change in the regression coefficients. Many variations and extensions of time series models

are of course possible. For example, consider a AR(I) process,

Yi={3Yi-l+Ei; i=I, ... ,n, (6.3.1)

with a possible change in {3. We can also have

Yi = 0: + {3Yi-l + Ei; i = 1, ... , n, (6.3.2)

with a possible change in the mean 0:, or in {3 or in both. We can also consider a moving

average, l'vIA(1) process,

Yi = {3+ Ei - CPEi-l; i = 1, ... , n, (6.3.3)

with possible changes in {3 and/or cp.

Broemeling and Tsurumi (1987) consider some aspects of the three models given above. In

general, very little has appeared about changes in time series with regard to changes in the

covariance or correlation structure of a time series; however, there has been some studies
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about a change in the mean of a process. For example, Box and Tiao (1975) have introduced

changes in the mean of a very general time series

Yi = ii (e ,0 + Ei; i = 1, ... ,n (6.3.4)

where i is a function of unknown parameters e and ~, where the latter are called intervention

effects which change the mean of the process. The errors Ei are assumed to follow and ARf'vIA

process.

Tsurumi (1976) and Salazar (1980) used a transition function to represent both abrupt and

smooth changes in linear models. Tsurumi considered a simultaneous equations model, while

Salazar studied smooth changes in a regression model with autocorrelated errors. Ilrnakun-

nas and Tsurumi (1984, 1985) used a Bayesian approach in the case where the change-point

is known, but there is a possible change in the autocorrelation. Ohtani (1982) considered

two possibilities: a change in the regression parameters and a change in the autocorrelation

coefficient of the error distribution; thus there were two shift points to consider simultane-

ously. Salazar (1982) also studied changes in a and f3 for model (6.3.2), while Cook (1983)

examined the multivariate case.

Kim, Cho and Lee (2000) considered the problem of testing parameter constancy in GARCH

(1,1) models from a frequentist viewpoint. The GARCH (1,1) process is such that

Ei = Zi(ji

.) ? (3')where a: = W + aE: + o: :
2 ,-I ,-1· i=l, ... ,n (6.3.5)

and E(z;) = 0 and E(z'f) = l. A cusum of squares test is proposed in analogy of Inclan and

Tiao's (1994) statistic. lts limiting distribution is derived via using the invariance principle

for martingale sequences.

Spatial statistics: Spatial statistics was considered by Stephens and Smith (1992) and

Raftery (1995). Stephens and Smith (1992) and Masearenhas and Prado (1980) forrnu-
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lated the problem of edge-detection as a statistical change-point problem using a Bayesian

approach. Practical applications of image analysis abound in agronomy (remote sensing),

astronomy (study of galaxies), industrial processing (automated manufacturing and qual-

ity control, medicine (internal body imaging) and the military (intelligence, reconnaissance,

defence/ offence systems), relating variously to imaging technologies such as photography,

tomography, radiography, etc. They have shown that the Gibbs sampler provides an effec-

tive procedure for the required Bayesian calculations and illustrated the use of the method

for "quick and dirty" image segmentation. According to Raftery (1995) in estimating and

testing for change-points in one-dimensional stochastic processes, model-based approaches

have often succeeded. Once a model is specified, the problem can be solved with fairly sim-

ple Bayesian methods. When it is assumed that there is only one change-point, Bayesian

analyses can take especially simple forms. A fairly general solution is given and the possi-

bility of exact finite-sample inference is illustrated with the change-point Poisson process.

Then a general approximate approach based on the Laplace method for integrals applied to

Bayes factors is described. When the number of change-points is not known in advance, the

Bayesian approach often proceeds most naturally using state-space models. The state-space

model approach to change-points was introduced by Harrison and Stevens (1976) under the

name multi-process Kalman Filter. This name describes a general computational strategy.

However, the multi-process Kalman Filter does not always work well and a different Bayesian

state-space modeling approach is reviewed. A different approach uses time series models that

can generate change-points but are not specified in terms of them. One class of such models,

the Markov Transition Distribution (MTD) models is described and its capacity for repre-

senting change-points without the need to specify in advance that they may be present is

illustrated with a simple simulation. In two dimensions the problem is much harder, because

instead of a single change-point we have a whole change curve. The fully Bayesian approach

is then much more difficult. Raftery (1995) reviewed a semi-parametric approach in which

change curves are modeled by principal curves, a family of non-parametric smooth curves

(Hastie and Stuetzle (1989)). The set of potential edge elements (which may be pixels in

an image or events in a spatial point process) is then modeled as a mixture of distributions
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each of which is centered around a different principal curve. These are estimated using gen-

eralizations of traditional cluster analysis methods.

Analysis-of-variance models have received little attention in the literature with respect

to the detection of change-points and there seems to be scope for further research in this

direction. Hirotsu (1997) assume that the two-way data Yij are independently distributed

according either to normal N (J.Lij, 1) or Poisson P(J.Lij), so that the density function is given

by

where

(i < I,j ~ J)

(otherwise) ,
(6.3.6)

with (I, J) an unknown two-way change-point. For the Po isson model we have a(J.Lij)

10g(J.Lij)and for the Normal model a(J.Lij) = J.Lij.

Hirotsu derived exact null and alternative distributions of the two-way maximally selected

:\:2 for interaction between the ordered rows and columns for each of the normal and Poisson

models respectively. The method is one of the multiple comparison procedures for ordered

parameters and is useful for defining a block interaction or a two-way change-point model

as a simple alternative to the two-way additive model. He described the construction of

a confidence region for the two-way change-point. An important. application is found in

a dose-response clinical t.rial with ordered categorical responses, where detecting the dose

level which gives significantly higher responses than the lower doses can be formulated as a

problem of detecting a change in the interaction effects.

Multi-path change-point problems were considered by Joseph and Wolfson (1992), Kiuchi,

Hart.igan, Holford, Rubinstein and Stevens (1995), Joseph, Vandal and Wolfson (1996),

Joseph, Wolfson. du Berger and Lyle (1997), BuHamra (1997) and Bélisle, Joseph, MacGib-
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bon, Wolfson and du Berger (1998). Multi-path data refer to repeated measurements, say

N independent sequences of random variables, each sequence possibly containing a change-

point. According to Joseph and Wolfson (1992), this extension allowed the effective use

of bootstrap and empirical Bayes methods, both of which is not feasible in the single-path

context. Two classes of these multi-path change-point problems are considered by them.

If the change-point is assumed to occur at the same position in each sequence, then the

terminology "fixed-tau multi-path change-point" is used. In other cases, one may expect the

change-point to occur at random positions in each sequence, according to some distribution,

a "random-tau multi-path change-point" problem. Kiuchi, et al. (1995) proposed empirical

Bayes and hierarchical Bayes change-point models to estimate the distribution of the time

before AIDS diagnosis when a rapid decline in the T4 cell count begins. Results using the

EM Algorithm and Markov chain Monte Carlo indicate that the mean change-point occurs

approximately 1 year before diagnosis with a standard deviation of 9 months. Detection of

a change-point may indicate that an AIDS diagnosis is increasingly likely for an individual

HIV-positive but AIDS-free.

According to Joseph, et al. (1996) several measurements on the same variable in many

experiments may be taken over time, a geographic region or some other index set. It is

often of interest to know if there has been a change over the index set in the parameters

of the distribution of the variable. Frequently, the data consists of a sequence of correlated

random variables and there may also be several experimental units under observation, each

providing a sequence of data. A problem in ascertaining the boundaries between the layers

in geological sedimentary beds is used to introduce the model and then to illustrate the

proposed methodology. It is assumed that, conditional on the change-point, the data from

each sequence arise from an autoregressive process that undergoes a change in one or more

of its parameters. Unconditionally, the model then becomes a mixture of non-stationary

autoregressive processes. Maximum likelihood methods are used and results of simulations

to evaluate the performance of these estimators under practical conditions are given.

Joseph, et al. (1997) present a Bayesian multi-path change-point model, which facilitates

the comparison of baseline measurements to post-intervention values within each individual,
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eliminating the need to explicitly model the effects of baseline means. The main aim of their

paper is to show how the ensemble of sample paths may be used to make Bayesian inference

about the distribution of the times or locations of change. The position of the population

change-point is modelled by using a Dirichlet prior for the probabilities of each possible

discrete change-point. Two applications are shown, one Poisson model with 285 sequences,

each of length 8. and a Normal model with 75 sequences, each of length 10. Belisle, et al.

(1998) used the same Bayesian model as Joseph, el al. (1997) to analyze neuron spike train

data. The data consists of counts of electrical discharges after a stimulus was applied to a

neuron. A Pais son model was used and there were 35 data sequences.

Burlarnra (1997) proposed four non-parametric test statistics for the change-point problem

with repeated measures data. In a Monte Carlo simulation study, critical values for the pro-

posed test statistics are simulated and the performances of the proposed tests are compared

with the performance of some competitive tests in terms of asymptotic behavior and power.

Asymptotic theory was considered by Jandhyala and Minogue (1993), Ghosh, Joshi and

Mukhopadhyay (1996), Lee (1998) and Ghosal, Ghosh and Samanta (1999). Jandhyala and

Minogue (1993) derived simple elegant expressions for the covariance kernels of residual par-

tial sum limit processes under the assumption of a polynomial regression model. A numerical

method of solving Fredholm integral equations is derived, which is shown to provide solutions

that are uniformly close to the analytical solutions. This numerical procedure is applied to

compute quantiles for the asymptotic distributions of Bayes-type statistics derived to test

for change in an arbitrary parameter of a general polynomial regression model. Ghosh, et

al. (1996) examined the asymptotics of a Bayesian approach to the problem of a constant

hazard with a single change-point, under the assumption of a lower hazard rate after the

change-point. Lee (1998) found that the posterior mode of the number of change-points con-

verges to the true number of change-points in the frequentist sense under mild assumptions

and with respect to a suitable prior distribution. Ghosal, et al. (1999) considered a family

of models that arise in connection with sharp change in hazard rate corresponding to high

initial hazard rate dropping to a more stable or slowly changing rate at an unknown change-
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point. Although the Bayes estimates are well behaved and are asymptotically efficient, it

is difficult to compute them as the posterior distributions are generally very complicated.

They obtained a simple first order asymptotic approximation to the posterior distribution

of the change-point.
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APPENDIX A

Example 2.9.1: Male Egyptian skulls

c4000 BC c3300 BC cl850 BC
MB BH BL NH IvIB BH BL NH MB BH BL NH
131 138 89 49 124 138 101 48 137 141 96 52
125 131 92 48 133 134 97 48 129 133 93 47
131 132 99 50 138 134 98 45 132 138 87 48
119 132 96 44 148 129 104 51 130 134 106 50
136 143 100 54 126 124 95 45 134 134 96 45
138 137 89 56 .135 136 98 52 140 133 98 50
139 130 108 48 132 145 100 54 138 138 95 47
125 136 93 48 133 130 102 48 136 145 99 55
131 134 102 51 131 134 96 50 136 131 92 46
134 134 99 51 133 125 94 46 126 136 95 56
129 138 95 50 133 136 103 53 137 129 100 53
134 121 95 53 131 139 98 51 137 139 97 50
126 129 109 51 131 136 99 56 136 126 101 50
132 136 100 50 138 134 98 49 137 133 90 49
141 140 100 51 130 136 104 53 129 142 104 47
131 134 97 54 131 128 98 45 135 138 102 55
135 137 103 50 138 129 107 53 129 135 92 50
132 133 93 53 123 131 101 51 134 125 90 60
139 136 96 50 130 129 105 47 138 134 96 51
132 131 101 49 134 130 93 54 136 135 94 53
126 133 102 51 137 136 106 49 132 130 91 52
135 135 103 47 126 131 100 48 133 131 100 50
134 124 93 53 135 136 97 52 138 137 94 51
128 134 103 50 129 126 91 50 130 127 99 45
130 130 104 49 134 139 101 49 136 133 91 49
138 135 100 55 131 134 90 53 134 123 95 52
128 132 93 53 132 130 104 50 136 137 101 54
127 129 106 48 130 132 93 52 133 131 96 49
131 136 114 54 135 132 98 54 138 133 100 55
124 138 101 46 130 128 101 51 138 133 91 46
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c200 BC cAD150
MB BH BL NH MB BH BL NH
137 134 107 54 137 123 91 50
141 128 95 53 136 131 95 49
141 130 87 49 128 126 91 57
135 131 99 51 130 134 92 52
133 120 91 46 138 127 86 47
131 135 90 50 126 138 101 52
140 137 94 60 136 138 97 58
139 130 90 48 126 126 92 45
140 134 90 51 132 132 99 55
138 140 100 52 139 135 92 54
132 133 90 53 143 120 95 51
134 134 97 54 141 136 101 54
135 135 99 50 135 135 95 56
133 136 95 52 137 134 93 53
136 130 99 55 142 135 96 52
134 137 93 52 139 134 95 47
131 141 99 55 138 125 99 51
129 135 95 47 137 135 96 54
136 128 93 54 133 125 92 50
131 125 88 48 145 129 89 47
139 130 94 53 138 136 92 46
144 124 86 50 131 129 97 44

141 131 97 53 143 126 88 54
130 131 98 53 134 124 91 55
133 128 92 51 132 127 97 52
138 126 97 54 137 125 85 57
131 142 95 53 129 128 81 52
136 138 94 55 140 135 103 48
132 136 92 52 147 129 87 48
135 130 100 51 136 133 97 51



Example 2.9.2: Colorado mountainside data

ZI ZB Zg ZlQ ZI2
320 060 020 250 370
280 060 040 210 420
260 060 010 250 440
305 050 050 260 250
290 050 020 210 510
275 050 020 230 570
280 080 020 270 400
300 120 010 280 300
250 070 030 250 330
285 070 010 240 280
280 060 020 370 300
300 120 060 250 200
280 150 010 280 280
305 130 010 300 260
230 270 030 250 240
325 160 010 280 170
270 160 010 290 330
250 120 001 260 330
260 270 080 480 330
270 180 040 450 220
325 600 080 660 250
315 410 200 600 260
335 360 080 590 170
310 640 240 630 190
410 760 440 800 001
360 770 260 770 010
310 660 380 640 010
420 620 520 680 001

ZI ZB Zg ZIO ZI2
415 370 220 340 001
420 630 510 580 001
450 690 570 630 001
395 580 530 560 010
380 350 320 400 270
430 340 340 360 200
410 170 170 170 060
520 210 190 190 180
385 140 200 260 020
535 110 230 270 070
550 050 230 270 030
510 190 150 230 110
510 140 100 150 040
385 050 050 300 050
505 001 200 130 030
470 160 300 380 060
465 260 440 500 060
400 330 400 390 040
415 220 190 270 010
435 370 360 500 010
370 130 080 330 030
380 070 001 050 030
430 130 070 300 020
420 050 100 350 050
425 100 010 340 010
250 001 001 050 001
520 770 570 800 570
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Example 2.9.3: Friday closing prices

Obs. Exxon General Dynamics Obs. Exxon General Dynamics

1 48 - 06 45 - 05 27 47 - 07 32 - 01

2 47 - 06 41 - 05 28 48 - 06 31 - 05

3 48 - 05 41 - 04 29 48 - 05 31 - 06

4 46 - 06 39 - 07 30 49 - 02 27 - 03

5 47 - 07 39 - 06 31 53 - 01 29

6 48 - 02 37 32 51 - 05 27 - 04

7 48 36 - 06 33 52 - 01 26 - 01

8 47 - 01 36 - 02 34 48 - 07 26 - 02

9 46 - 06 38 35 50 24 - 07

10 46 - 03 37 - 06 36 50 - 07 25 - 05

11 47 - 04 37 - 07 37 51 - 03 25 - 03

12 46 - 01 37 - 05 38 51 - 02 26 - 04

13 46 - 01 37 - 04 39 49 23 - 05

14 46 - 01 37 - 02 40 49 - 07 25 - 04

15 45 - 06 37 - 03 41 48 - 04 22 - 07

16 46 - 03 37 - 02 42 49 - 07 20 - 06

17 45 35 - 04 43 47 - 02 22 - 03

18 46 - 04 34 - 04 44 49 - 05 23 - 04

19 47 - 07 33 - 04 45 50 - 03 23 - 07

20 47 - 06 34 - 05 46 50 - 03 22 - 05

21 46 - 04 34 - 03 47 51 - 01 23

22 47 - 06 35 48 50 - 05 23 - 03

23 47 36 49 49 - 02 24 - 05

24 47 - 07 35 - 05 50 50 - 06 25 - 03

25 47 - 07 33 - 04 51 50 - 06 26

26 47 - 07 32 52 51 - 05 25



Example 2.9.4: New York Stock Exchange Data

890.19 901.80 888.51 887.78 858.43 850.61

856.02 880.91 908.15 912.75 911.00 908.22

889.31 893.98 893.91 874.85 852.37 839.00

840.39 812.94 810.67 816.55 859.59 856.75

873.80 881.17 890.20 910.37 906.68 907.44

906.38 906.68 917.59 917.52 922.79 942.43

939.87 942.88 942.28 940.70 962.60 967.72

963.80 954.17 941.23 941.83 961.54 971.25

961.39 934.45 945.06 944.69 929.03 938.06

922.26 920.45 926.70 951.76 964.18 965.83

959.36 970.05 961.24 947.23 943.03 953.27

945.36 930.46 942.81 946.42 984.12 995.26

1005.57 1025.21 1023.43 1033.19 1027.24 1004.21

1020.02 1047.49 1039.36 1026.19 1003.54 980.81

979.46 979.23 959.89 961.32 972.23 963.05

922.71 951.01 931.07 959.36 963.20 922.19

953.87 927.89 895.17 930.84 893.96 920.00

888.55 879.82 891.71 870.11 885.99 910.90

936.71 908.87 852.38 871.84 863.49 887.57

898.63 886.36 927.90 947.10 971.25 978.63

963.73 987.06 935.28 908.42 891.33 854.00

822.25 838.05 815.65 818.73 848.02 880.23

841.48 855.47 859.39 843.94 820.40 820.32

855.99 851.92 878.05 887.83 878.13 846.68

847.54 844.81 859.90 834.64 845.90 850.44

818.84 816.65 802.17 853.72 843.09 815.39

802.41 791.77 787.23 787.94 784.57 752.58
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Example 3.8.1: Quandt's data set

Obs, No. (i) 1 2 3 4 5 6 7 8 9 10

Xi 4 13 5 2 6 8 1 12 17 20

Yi 3.473 11.555 5.714 5.710 6.046 7.650 3.140 10.312 13.353 17.197

Obs. No. (i) 11 12 13 14 15 16 17 18 19 20

Xi 15 11 3 14 16 10 7 19 18 9

Yi 13.036 8.264 7.612 11.802 12.551 10.296 10.014 15.472 15.65 9.871

Example 3.8.2: Brownlee's stack lost data

Stack loss

Xl X2 X3 y

1 80 27 58.9 4.2

2 80 27 58.8 3.7

3 75 25 59.0 3.7

4 62 24 58.7 2.8

5 62 22 58.7 1.8

6 62 23 58.7 1.8

7 62 24 59.3 1.9

8 62 24 59.3 2.0

9 58 23 58.7 1.5

10 58 18 58.0 1.4

11 58 18 58.9 1.4

12 58 17 58.8 1.3

13 58 18 58.2 1.1

14 58 19 59.3 1.2

15 50 18 58.9 0.8

16 50 18 58.6 0.7

17 50 19 57.2 0.8

18 50 19 57.9 0.8

19 50 20 58.0 0.9

20 56 20 58.2 1.5

21 70 20 59.1 1.5
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Example 3.8.3: Olympic jumping events

Year High Pole Long Triple

Jump vault jump Jump

1 1896 1.81 3.30 6.34 13.72

2 1900 1.90 3.30 7.19 14.43

3 1904 1.80 3.51 7.34 14.33

4 1908 1.90 3.71 7.48 14.92

5 1912 1.93 3.95 7.60 14.76

6 1920 1.94 4.09 7.15 14.50

7 1924 1.98 3.95 7.45 15.53

8 1928 1.94 4.20 7.74 15.21

9 1932 1.97 4.31 7.64 15.72

10 1936 2.03 4.35 8.06 16.00

11 1948 1.98 4.30 7.82 15.40

12 1952 2.04 4.55 7.57 16.22

13 1956 2.11 4.56 7.83 16.34

14 1960 2.16 4.70 8.12 16.81

15 1964 2.18 5.10 8.07 16.85

16 1968 2.24 5.40 8.90 17.39

17 1972 2.23 5.50 8.24 17.35

18 1976 2.25 5.50 8.34 17.29

19 1980 2.36 5.78 8.54 17.35

20 1984 2.35 5.75 8.54 17.56

21 1988 2.38 5.90 8.72 17.61
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Example 3.8.4: Windmill data

Wind velocity, z DC output, Y

2.45 0.123

2.70 0.500

2.90 0.653

3.05 0.558

3.40 1.057

3.60 1.137

3.95 1.144

4.10 1.194

4.60 1.562

5.00 1.582

5.45 1.501

5.80 1.737

6.00 1.822

6.20 1.866

6.35 1.930

7.00 1.800

7.40 2.088

7.85 2.179

8.15 2.166

8.80 2.112

9.10 2.303

9.55 2.294

9.70 2.386

10.00 2.236

10.20 2.310



Example 3.8.5: NYAMSE and BSE values

Time point Calendar NYAIvISE BSE

Month

1 Jan. 1967 10581.6 78.8

2 Feb. 1967 10234.3 69.1

3 Mar. 1967 13299.5 87.6

4 Apr. 1967 10746.5 72.8

5 May 1967 113310.7 79.4

6 Jun. 1967 12835.5 85.6

7 Jul. 1967 12194.2 75.0

8 Aug. 1967 12860.4 85.3

9 Sep.1967 11955.6 86.9

10 Oct. 1967 13351.5 107.8

II Nov. 1967 13285.9 128.7

12 Dec. 1967 13784.4 134.5

13 Jan. 1968 16336.7 148.7

14 Feb. 1968 11040.5 94.2

15 l'vlar. 1968 11525.3 128.1

16 Apr. 1968 16056.4 154.1

17 I\'Iay 1968 18464.3 191.3

18 Jun. 1968 17092.2 191.9

Time point Calendar NYAMSE BSE

Month

19 Jul. 1968 15178.8 159.6

20 Aug. 1968 12774.8 185.5

21 Sep. 1968 12377.8 178.0

22 Oct. 1968 16856.3 271.8

23 Nov. 1968 14635.3 212.3

24 Dec. 1968 17436.9 139.4

25 Jan. 1969 16482.2 106.0

26 Feb. 1969 13905.4 112.1

27 Mar. 1969 11973.7 103.5

28 Apr. 1969 125ï3.6 92.5

29 May 1969 16566.8 116.9

30 Jun. 1969 13558.7 78.9

31 Jul. 1969 11530.9 57.4

32 Aug. 1969 11278.0 75.9

33 Sep. 1969 11263.7 109.8

34 Oct. 1969 15649.5 129.2

35 Nov. 1969 12197.1 115.1
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Example 3.8.6: Cotton imports in the 18th century

Year Imports Year Imports

1770 3612 1786 19475
1771 2547 1787 23250
1772 5307 1788 20467
1773 2906 1789 32576
1774 5707 1790 31448
1775 6694 1791 28707
1776 6216 1792 34907
1777 7037 1793 19041
1778 6569 1794 24359
1779 5861 1795 26401
1780 6877 1796 32126
1781 5199 1997 23354
1782 11828 1798 31881
1783 9736 1799 43379
1784 11482 1800 56011
1785 18400
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Year Exports Year Exports

1820 36.4 1836 53.3
1821 36.7 1837 42.1
1822 37.0 1838 50.1
1823 35.4 1839 53.2
1824 38.4 1840 51.4
1825 38.9 1841 51.6
1826 31.5 1842 47.4
1827 37.2 1843 52.3
1828 36.8 1844 58.6
1829 35.8 1845 60.1
1830 38.3 1846 57.8
1831 37.2 1847 58.8
1832 36.5 1848 52.8
1833 39.7 1849 63.6
1834 41.6 1850 71.4
1835 47.4

Example 3.8.7: British exports in the 19th century

Example 4.3.1: Page's data

Obs. no. 1 2 3 4 5 6 7 8 9 10
Binomial 0 1 1 1 0 0 0 0 0 1
Obs. no. 11 12 13 14 15 16 17 18 19 20
Binomial 1 1 0 0 1 0 0 1 1 1
Obs. no. 21 22 23 24 25 26 27 28 29 30
Binomial 1 1 0 1 1 0 1 1 1 1
Obs. no 31 32 33 34 35 36 37 38 39 40
Binomial 1 1 1 1 1 1 0 1 1 1
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Example 4.3.2: Lindisfarne Scribe's data

No. of occurrences for the following values of i:

1 2 3 4 5 6 7 8 9 10 11 12 13
m. 12 26 31 24 28 34 39 46 41 19 17 17 16t

Xi 21 36 44 30 52 45 48 57 48 22 20 21 20

Example 4.3.3 and 4.3.4: Cricket test match outcomes between England

and Australia

A E A E D A A D A A E E A D E D E E

A A E E E E E E E A E E E E A A E D

E D E E A A E E A E E A A A A D A D

D D E A A A A D D A A E E E A E A E

D D E D A E A A A E A A D D A E E E

E D D E A A A A A A A A D D A A A E

A D D D D E E E E E A E A D D A E A

E E E A E D D A E E A A A D D A E A

A D D A A A D A A A A A A E D D D D

E A E E E D D A E E D A A D A A D A

E A D D E A D D D D A D D D D E A D

A D D D E D D E D D E E A D E A A A

D A A E A D D D A D E E E D E E A E

E E A A A D A D E E E D D A A E D A

D D E E E D D E A D A A D A A D



1 122 1 1 1 1 1 123 3 2
321 121 133 1 1 132
1 1 1 1 1 3 2 2 3 1 2 2 2 2
2 2 2 3 2 322

Example 4.3.5: Sequence of 50 observations for the three-state Markov chain

Example 4.3.6: Annual numbers of cases of HUS at each referral centre

Obs. Year No. of cases at Obs. Year No. of cases at

Newcastle Birmingham Newcastle Birmingham

1 1970 6 1 11 1980 4 1
2 1971 1 5 12 1981 0 7
3 1972 0 3 13 1982 4 11

4 1973 0 2 14 1983 3 4
5 1974 2 2 15 1984 3 7
6 1975 0 1 16 1985 13 10
7 1976 1 0 17 1986 14 16
8 1977 8 0 18 1987 8 16
9 1978 4 2 19 1988 9 9
10 1979 1 1 20 1989 19 15
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Example 4.3.7: British coal-mining disaster data by year, 1851-1962

YEAR COUNT YEAR COUNT YEAR COUNT YEAR COUNT
1851 4 1881 2 1911 0 1941 4
1852 5 1882 5 1912 1 1942 2
1853 4 1883 2 1913 1 1943 0
1854 1 1884 2 1914 1 1944 0
1855 0 1885 3 1915 0 1945 0
1856 4 1886 4 1916 1 1946 1
1857 3 1887 2 1917 0 1947 4
1858 4 1888 1 1918 1 1948 0
1859 0 1889 3 1919 0 1949 0
1860 6 1890 2 1920 0 1950 0
1861 3 1891 2 1921 0 1951 1
1862 3 1892 1 1922 2 1952 0
1863 4 1893 1 1923 1 1953 0
1864 0 1894 1 1924 0 1954 0
1865 2 1895 1 1925 0 1955 0
1866 6 1896 3 1926 0 1956 0
1867 3 1897 0 1927 1 1957 1
1868 3 1898 0 1928 1 1958 0
1869 5 1899 1 1929 0 1959 0
1870 4 1900 0 1930 2 1960 1
1871 5 1901 1 1931 3 1961 0
1872 3 1902 1 1932 3 1962 1
1873 1 1903 0 1933 1
1874 4 1904 0 1934 1
1875 4 1905 3 1935 2
1876 1 1906 1 1936 1
1877 5 1907 0 1937 1
1878 5 1908 3 1938 1
1879 3 1909 2 1939 1
1880 4 1910 2 1940 2
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2.0777 2.1089 0.4033 2.0729 1.3243
1.5223 3.0164 4.0225 3.3887 0.8362
3.3298 1.0387 1.2537 1.3364 1.2291
1.0502 1.7754 3.9709 1.9282 0.2673

Example 4.3.8: Time intervals in days between explosions in mines, from 15

March 1851 to 22 March 1962 (to be read down columns)

157 65 53 93 127 176 22 1205 1643 312
123 186 17 24 218 55 61 644 54 536

2 23 538 91 2 93 78 467 326 145
124 92 187 143 0 59 99 871 1312 75
12 197 34 16 378 315 326 48 348 364
4 431 101 27 36 59 275 123 745 37

10 16 41 144 15 61 54 456 217 19
216 154 139 45 31 1 217 498 120 156
80 95 42 6 215 13 ll3 49 275 47
12 25 1 208 II 189 32 131 20 129
33 19 250 29 137 345 388 182 66 1630
66 78 80 ll2 4 20 151 255 292 29

232 202 3 43 15 81 361 194 4 217
826 36 324 193 72 286 312 224 368 7
40 llO 56 134 96 ll4 354 566 307 18
12 276 31 420 124 108 307 462 336 1358
29 16 96 95 50 188 275 228 19 2366

190 88 70 125 120 233 78 806 329 952
97 225 41 34 203 28 17 517 330 632

Example 4.3.9: Diaz data (to be read across rows)
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Example 4.3.10: Aircraft arrival times

467 761 792 812 926 1,100 1,147

1,163 1,398 1,462 1,487 1,749 1,865 2,004

2,177 2,208 2,279 2,609 2,682 2,733 2,818

2,837 2,855 2,868 3,089 3,209 3,223 3,233

3,272 3,399 2,595 3,634 3,650 3,851 4,176

4,304 4,391 4,453 4,539 4,748 4,839 5,049

5,202 5,355 5,551 5,598 5,640 5,702 5,935

6,000 6,192 6,435 6,474 6,600 6,810 6,824

7,168 7,181 7,202 7,218 7,408 7,428 7,720

7,755 7,835 7,958 8,307 8,427 8,754 8,819

8,904 8,938 8,980 9,048 9,237 9,268 9,513

9,635 9,750 9,910 9,929 10,167 10,254 10,340

10,624 10,639 10,669 10,889 11,386 11,515 11,651

11,727 11,737 11,844 11,928 12,168 12,657 12,675

12,696 12,732 13,092 13,281 13,536 13,556 13,681

13,710 14,008 14,151 14,601 14,877 14,927 15,032

15,134 15,213 15,491 15,589 15,600 15,631 15,674

15,797 15,953 16,089 16,118 16,215 16,394 16,503

16,515 16,537 16,570 16,597 16,619 16,693 17,314

17,516 17,646 17,770 17,897 17,913 17,922 18,174

18,189 18,328 18,345 18,499 18,521 18,588 19,117

19,150 19,432 19,662 19,758 19,789 19,831 19,978

20,119 20,312 20,346 20,449 20,455 20,604 20,675

20,817 20,898 21,245 21,386 21,562 22,022 22,056

22,095 22,182 22,554 22,764 22,955 22,993 23,025

23,117 23,321 23,341 23,650 23,766 23,879 23,888

24,458 24,889 24,930 24,967 25,224 25,312 25,477

25,498 25,712 25,721 25,884 25,919 25,985 26,196

26,459 26,468 26,494 26,505 26,554 26,906 27,003

27,437 27,661 27,675 27,697 27,721 27,734 27,802

27,971 28,116 29,746
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Example 4.3.11: Stanford heart transplant data

U ncensored observations(45) Censored observations(24)
Age Surv. Time Age Surv. Time Age Surv. Time
41 5 53 96 35 39
40 16 48 100 28 109
54 . 16 46 llO 23 131
29 17 47 153 26 180
55 28 43 165 47 265
52 30 52 186 44 340
40 39 47 188 54 370
56 43 51 207 48 397
36 45 51 219 52 445
42 51 48 285 46 482
50 53 19 285 48 515
42 58 49 308 52 545
52 61 42 334 26 596
61 66 47 342 47 620
45 68 48 583 47 670
49 68 50 675 32 841
53 72 58 733 41 915
47 72 44 852 38 941
64 77 45 979 36 ll41
51 78 48 995 45 1321
53 80 43 1032 48 1407
54 81 53 1386 40 1571
56 90 48 1586

33 1799
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Example 5.4.1: Ordered remission durations for 84 patients with acute non-

lymphoblastic leukemia

Uncensored observations (51)
24 46 57 57 64 65 82 89
90 90 III 117 128 143 148 152

166 171 186 191 197 209 223 230
247 249 254 258 264 269 270 273
284 294 304 304 332 341 393 395
487 510 516 518 518 534 608 642
697 955 1160

Censored observations (33)
68 119 182 182 182 182 182 182

182 182 182 182 182 182 182 182
182 182 182 182 182 182 182 182
182 182 583 1310 1538 1634 1908 1996

2057
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Example 5.4.2: Failure times for a piece of electronic equipment

l.0 6.4 19.2 54.2 88.4 114.98

l.2 6.8 28.1 55.6 89.9 115.1

l.3 6.9 28.2 56.4 90.8 117.4

2.0 7.2 29.0 58.3 91.1 118.3

2.4 7.9 29.9 60.2 91.5 119.7

2.9 8.3 30.6 63.7 92.1 120.6

3.0 8.7 32.4 64.6 97.9 12l.0

3.1 9.2 33.9 65.3 100.8 122.9

3.3 9.8 35.3 66.2 102.6 123.3

3.5 10.2 36.1 70.1 103.2 124.5

3.8 10.4 40.1 71.0 104.0 125.8

4.3 11.9 42.8 75.1 104.3 126.6

4.6 13.8 43.7 75.6 105.0 127.7

4.7 14.4 44.5 78.4 105.8 128.4

4.8 15.6 50.4 79.2 106.5 129.2

5.2 16.2 51.2 84.1 110.7 129.5

5.4 17.0 52.0 86.0 112.6 129.9

5.9 17.5 53.3 87.9 113.5
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SUMMARY

In chapter one we looked at the nature of structural change and defined structural change as

a change in one or more parameters of the model in question. Bayesian procedures can be

applied to solve inferential problems of structural change. Among the various methodological

approaches within Bayesian inference, emphasis is put on the analysis of the posterior distri-

bution itself, since the posterior distribution can be used for conducting hypothesis testing

as well as obtaining a point estimate. The history of structural change in statistics, begin-

ning in the early 1950's, is also discussed. Furthermore the Bayesian approach to hypothesis

testing was developed by Jeffreys (1935, 1961), where the centerpiece was a number, now

called the Bayes factor, which is the posterior odds of the null hypothesis when the prior

probability on the null is one-half. According to Kass and Raftery (1993) this posterior odds

= Bayes factor x prior odds and the Bayes factor is the ratio of the posterior odds of Hl to

its prior odds, regardless of the value of the prior odds. The intrinsic and fractional Bayes

factors are defined and some advantages and disadvantages of the IBF's are discussed.

In chapter two changes in the multivariate normal model are considered. Assuming that

a change has taken place, one will want to be able to detect the change and to estimate

its position as well as the other parameters of the model. To do a Bayesian analysis, prior

densities should be chosen. Firstly the hyperparameters are assumed known, but as this

is not. usually true, vague improper priors are used (while the number of change-point.s is

fixed). Another way of dealing with the problem of unknown hyperparameters is to use

a hierarchical model where the second stage priors are vague. We also considered Gibbs

sampling and gave the full conditional distributions for all the cases. The three cases that

are studied is

(1) a change in the mean with known or unknown variance,

(2) a change in the mean and variance by firstly using independent prior densities on the

different variances and secondly assuming the variances to be proportional and

(3) a change in the variance.

The same models above are also considered when the number of change-points are unknown.
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In this case vague priors are not appropriate when comparing models of different dimensions.

In this case we revert to partial Bayes factors, specifically the intrinsic and fractional Bayes

factors, to obtain the posterior probabilities of the number of change-points. Furthermore

we look at component analysis, i.e. determining which components of a multivariate vari-

able are mostly responsible for the changes in the parameters. The univariate case is then

also considered in more detail, including multiple model comparisons and models with au-

to correlated errors. A summary of approaches in the literature as well as four examples are

included.

In chapter three changes in the linear model, with

(1) a change in the regression coefficient and a constant variance,

(2) a change in only the variance and

(3) a change in the regression coefficient and the variance, are considered. Bayes factors

for the above mentioned cases, multiple change-points, component analysis, switch-

point (continuous change-point) and auto correlation are included, together with seven

examples.

In chapter four changes in some other standard models are considered. Bernoulli type

experiments include the Binomial model, the Negative binomial model, the Multinomial

model and the Markov chain model. Exponential type models include the Poisson model,

the Gamma model and the Exponential model. Special cases of the Exponential model

include the left truncated exponential model and the Exponential model with epidemic

change. In all cases the partial Bayes factor is used to obtain posterior probabilities when

the number of change-points is unknown. Marginal posterior densities of all parameters

under the change-point model are derived. Eleven examples are included.

In chapter five change-points in the hazard rate are studied. This includes an abrupt change

in a constant hazard rate as well as a change from a decreasing hazard rate to a constant

hazard rate or a change from a constant hazard rate to an increasing hazard rate. These
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hazard rates are obtained from combinations of Exponential and Weibull density functions.

In the same way a bathtub hazard rate can also be constructed. Two illustrations are given.

Some concluding remarks are made in chapter six, with discussions of other approaches in

the literature and other possible applications not dealt with in this study.

KEYWORDS: autocorrelation, Bayesian analysis, change-point, component analy-

sis, Fractional Bayes Factor, Gibbs sampling, Intrinsic Bayes factor,

linear model, multiple change-point, multivariate normal model,

structural change, switchpoint.



OPSOMMING

In hoofstuk een het ons gekyk na die aard van strukturele verandering en definieer strukturele

verandering as 'n verandering in een of meer parameters van die model. Bayes prosedures

kan toegepas word om inferensiële probleme t.o.v. strukturele verandering op te los. On-

der die verskillende benaderings binne Bayes inferensie is klem geplaas op die analise van

die posterior verdeling, aangesien die posterior verdeling gebruik kan word vir die uitvoer

van hipotese toetsing sowel as die verkryging van 'n puntbenadering. Die geskiedenis van

strukturele verandering in statistiek, beginnende in die vroeë 1950's is ook bespreek. Die

Bayes benadering tot hipotese toetsing is ontwikkel deur Jeffreys (1935, 1961), waarvan die

hoofresultaat 'n getal was (nou na verwys as die Bayes faktor), wat die posterior kansver-

houding van die nulhipotese is wanneer die prior waarskynlikheid op die nulhipotese een-half

is. Volgens Kass en Raftery (1993) is hierdie posterior kansverhouding = Bayes faktor x

prior kansverhouding en die Bayes faktor is die verhouding van die posterior kansverhouding

van Hl tot sy prior kansverhouding, ongeag van wat die waarde van die prior kansverhouding

is. Die Intrinsieke en Fraksionele Bayes faktore is gedefinieer en sommige voordele en nadele

van die Intrinsieke Bayes faktore is bespreek.

In hoofstuk twee is gekyk na die meerveranderlike normaalmodel. Met die veronderstelling

dat 'n verandering plaasgevind het, wil mens in staat wees om die verandering op te spoor en

om sy posisie te bepaal, sowel as die ander parameters van die model. Om 'n Bayes analise

uit te voer, moet prior digthede gekies word. Eerstens is aanvaar dat die hiperparameters

bekend is, maar aangesien dit normaalweg nie waar is nie, is vae onegte priors gebruik

(terwyl die aantal breekpunte vas is). 'n Ander manier om die probleem van onbekende

hiperparameters te hanteer, is om 'n hiërargiese model met vae tweede fase priors te gebruik.

Gibbs steekproefneming is behandel en die volle voorwaardelike verdelings vir al die gevalle

is gegee. Die drie gevalle is:

(1) 'n verandering in die gemiddeld met bekende en onbekende variansie,

(2) 'n verandering in die gemiddeld en variansie deur eers onafhanklike priordigthede op
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die verksillende variansies te gebruik en verder ook te veronderstel dat die variansies

proporsioneel is en

(3) 'n verandering in die variansie.

Dieselfde modelle is ook bestudeer as die aantal breekpunte onbekend is. In hierdie geval

is vae priors nie toepaslik in die vergelyking van modelle met verskillende dimensies nie.

Dus het ons ons gewend tot parsiële Bayes faktore, in besonder die Intrinsieke en Frak-

sionele Bayes faktore, om sodoende die posterior waarskynlikhede van die getal breekpunte

te verkry. Verder is gekyk na komponentanalise om te bepaal watter komponent van die

meerveranderlike variaat grootliks verantwoordelik is vir die verandering in die parameters.

Die eenveranderlike geval is dan ook in meer besonderhede behandel, insluitende die verge-

lyking tussen 'n groep van moontlike modelle en modelle met outogekorreleerde foute. 'n

Opsomming van benaderings in die literatuur, asook vier voorbeelde, is ingesluit.

In hoofstuk drie is veranderings in die lineêre model met

(1) 'n verandering in die regressie koeffisiënt en 'n konstante variansie,

(2) 'n verandering in slegs die variansie en

(3) 'n verandering in die regressie koeffisiënt en die variansie

behandel. Bayes faktore vir die genoemde gevalle, meervoudige breekpunte, komponent-

analise, kontinue breekpunte en outokorrelasie, tesame met sewe voorbeelde, is ingesluit.

In hoofstuk vier is veranderings in ander standaard modelle behandel. Bernoulli tipe eksper-

imente sluit in die Binomiaalmodel, die Negatief Binomiaalmodel, die Multinomiale model

en die Markov ketting model. Eksponensiële tipe modelle sluit in die Poisson model, die

Gamma model en die Eksponensiële model. Spesiale gevalle van die Eksponensiële model

sluit in die links afgeknotte eksponensiële model en die Eksponsensiële model met epidemiese
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verandering. In al die gevalle is parsiële Bayes faktore gebruik om posterior waarskynlikhede

te verkry wanneer die aantal breekpunte onbekend is. Rand posterior digthede van al die

parameters onder die breekpuntmodel is afgelei. Elf voorbeelde is ingesluit.

In hoofstuk vyf is breekpunte in die gevaarkoers bestudeer. Dit sluit in 'n skielike verandering

in die konstante gevaarkoers, sowel as 'n verandering vanaf 'n afnemende gevaarkoers na 'n

konstante gevaarkoers of 'n verandering vanaf 'n konstante gevaarkoers na 'n toenemende

gevaarkoers. Hierdie gevaarkoerse is verkry vanuit kombinasies van Eksponensiële en Weibull

digtheidsfunksies. 'n "Bathtub" gevaarkoers kan op dieselfde wyse gekonstrueer word. Twee

illustrasies is gegee.

In hoofstuk ses is gevolgtrekkings gemaak, met 'n bespreking van ander benaderings in die

literatuur asook ander moontlike toepassings wat nie in hierdie studie behandel is nie.
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