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GLOSSARY

observed population proportion for population i

an observed proportion from a sample from population i
number of successes in a Binomial(n,, p,), i = 1,2 experiment, a
random variable

observed number of successes from a Binomial(n,, p,) population
i =12, not a random variable

number of repetitions from population i =1,2 also known as
sample size

relative risk

difference, p, - p,

general notation for a parameter

odds ratio

the probability of failing to find the specified difference to be
statistically significant

lower confidence limit

upper confidence limit

the cumulative distribution function of the standard normal
distribution

the exponential function, denoting the inverse procedure to
taking logarithms

the Greek capital letter sigma, denoting ‘sum of’

infinity, the value larger than any imaginable number. Likewise
—0 15 the value less than any imaginable negative number.

significance level of a hypothesis test
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general notation for the confidence coefficient in a confidence
interval

a value from the Chi squared distribution, the sampling
distribution for test statistics derived from tables of frequencies.
the 100(1 - &) % percentile of the chi-square distribution with v

degrees of freedom.
the 100(1 - a) % percentile of the standard normal distribution
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CHAPTER 1
CONFIDENCE INTERVALS FOR THE DIFFERENCE
BETWEEN TWO PROPORTIONS

1.1 Imntroduction

The purpose of the statistical analysis of medical research data is to make
observations on a sample of subjects and then draw inferences, in some
instances about the population of all such subjects from which the sample is
drawn. Even a well-designed study can give only an idea of the answer sought
because of random variation in the sample. Results from a single sample are
thus subject to statistical uncertainty, and this uncertainty is related, among

others, to the size of the sample.

An example of the statistical analysis of data would be calculating an estimate
of a parameter and a confidence interval for the parameter. The confidence
interval indicates the precision of the estimate. For example, if the parameter
of interest is a difference between the proporﬁons of patients improving on two
different treatments, and if the independent sample proportions of patients
mmproving in two groups of 60 patients each receiving the treatments are
respectively 75% and 55%, then the difference of 20% can be reported with a
95% confidence interval of [ 3.3% ; 36.7% ]. This interval was calculated
using the Asymptotic normal without continuity correction method. The
estimate of 20% is imprecise, but the imprecision is incorporated into the

presentation of findings through reporting a confidence interval.




Confidence intervals reflect the uncertainty associated with the findings of a
study directly on the scale of the original measurement. This has advantages
over the practice of only reporting P-values, which are usually referred to as
‘significant’ or ‘non-significant’. A confidence interval gives a range of values
that contains the true population value of the parameter in question with the

chosen confidence. The confidence level usually used is 95%.

As pointed out above, a single study gives an imprecise estimate of the true
population value in which we are interested. The imprecision is indicated by
the width of the confidence interval, the wider the confidence interval the less
the precision. The width of the confidence interval depends on three factors.
Firstly, larger sample sizes will give more precise results than smaller samples

and thus narrower confidence intervals. Thus wide confidence intervals may

emphasise the unreliability of conclusions based on small samples. During the
planning stage of a study it is possible to estimate the sample size that should
be used by stating the width of the confidence interval required at the end of
the study and carrying out the appropriate calculation for the sample size.
Altman(1992) noted that the determination of an appropriate sample size is a
common task in the planning of clinical trials. Secondly, the smaller the
variability of the data(between subjects, within subjects, from measurement
error and from other sources) the more precise the sample estimate and the
narrower the confidence interval will be. Thirdly, the higher the confidence

level required, the wider the confidence interval will be.

According to Gardner and Altman(1989) the British Medical Journal(BMJ)
expects researchers submitting scientific papers to use confidence intervals

when appropriate. The BMJ also wants a reduced emphasis on the




presentation of P-values. The Lancet, the Medical Journal of Australia, the

American Journal of Public Health, and the British Heart Journal, among

others, have adopted this policy, and it has been endorsed by the International

Committee of Medical Journal Editors. It is therefore important that, with

different analyses of medical data, the user should be able to calculate the

relevant confidence intervals accurately. In the present thesis confidence

intervals of the difference of binomial proportions based on two independent

samples are studied.

In this chapter a general introduction is given. In chapter 2 confidence

intervals are discussed in general and then the different methods for calculating

confidence intervals for the difference of binomial proportions found in

literature are discussed. In chapter 3 the different confidence interval methods

discussed in chapter 2 are compared through simulation with respect to length

and coverage probability of the respective intervals. In the Appendix the

FORTRAN computer program to calculate all the mentioned confidence

intervals 1s given.




1.2 Comparison of proportions in medical research

1.2.1 Areas of application

A comparison of proportions is performed in various areas of medical research.

Epidemiology: In epidemiology the risk of disease in different groups of
subjects is often compared. For example, the risk of developing lung cancer
(proportion of subjects who develop lung cancer) in a group of smokers is
compared to the risk of developing lung cancer in a non-smoker group.

Clinical trials: The estimation of response or cure rates is an important aspect
in the analysis of many clinical trials; for example, the response rate
(proportion of patients that are cured) to two different drug treatments may be

compared.

1.2.2 Statistical measures for the comparison of

proportions

1.2.2.1 Proportions

A proportion 1s calculated as : D ,

where x, = Number of successes from population i = 1,2

and n, = Number of repetitions from population i = 1,2




Note that p, is an estimate for the population parameter p, which is the
probability for a success in population /= 1,2. We assume the number of
successes is Binomially distributed X, ~ Bin(n,, p,). A proportion can lie in the

interval [ 0 ; 1], so the difference between two proportions can lie only in the

interval [ -1; 1], which we will call the definition interval.

1.2.2.2 Difference, odds ratio and relative risk

Three statistical measures often used to compare two proportions p, and p,

are:

(1)  the difference b = p, - p,, also called the risk difference,

~(ii)  the odds ratio y = p,(1- p,)/(1- p,)p, and

(1) the relative risk p=p, /p,.
Santner and Yamagami(1993) noted that the odds ratio is the most difficult of
the three to interpret although it is the easiest for which to calculate confidence
intervals(at least in the sense that an exact confidence interval can be
calculated in some situations). Interpretation of the relative risk and of the
difference is relatively easy but confidence intervals are more difficult to
construct. Anbar(1983) noted that although the odds ratio is a natural

parameter, the difference seems to be of more meaning to the clinician.




1.3 Problems with confidence intervals for the difference

1.3.1 Unavailability of standard software

Confidence intervals for the difference, odds ratio and the relative risk are
provided by most statistical software, like the SASg Procedure FREQ
(SAS/STAT Software: Changes and Enhancements through Release 6.12,
Chapter 9, 1997) and CIA (Gardner, 1989). Unfortunately, accurate confidence

intervals for the difference are not available in these software packages.

Thus one of the problems with confidence intervals for the difference of
proportions has been that the methods needed to calculate such confidence
intervals accurately are not readily available in statistical textbooks and
software.  Standard textbooks and software usually provide only the
Asymptotic intervals (see section 2.1.1) which in general are satisfactory only
for large samples and proportions close to 0.5, [Fleiss(1981), Gardner and
Altman(1989), . Zar(1984), Rosner(1990), Altman(1992), Snedecor and
Cochran(1980)]. .

As will be discussed below, the conventional Asymptotic methods are prone to
give intervals that do not make sense, in medical and statistical terms. Brenner
and Quan(1990) noted that it has long been known that the conventional
Asymptotic interval methods are problematic. As most standard statistical
software packages have nothing better to offer to the user than the conventional
Asymptotic interval method, this method, despite its shortcomings, 1is

continued to be used, mainly because of its ease of calculation.




1.3.2 Shortcomings of the conventional Asymptotic

interval method.

Problems that can occur when using the conventional Asymptotic interval

method are the following:

1.3.2.1 Intervals of zero length

Consider the situation when we want to calculate the confidence interval for
the difference between the proportion of patients receiving two different types
of drug who develop an illness. Suppose for illustration that nobody develops
an illness in either of the two groups; the resulting Asymptotic confidence
interval for the difference would then be [ O ; 0 ]. The interval 1s
mappropriately of zero length, and equal to the observed difference, i.e. 0.
Newcombe(1995:b) calls this type of violation bilateral Maximum Likelthood
Estimation(MLE) tethering. MLE tethering occurs when either the upper

confidence limit U, or the lower confidence limit L of the confidence interval
[ L ; U]isequal to b, the estimated difference between the two proportions.
This is an infringement of the principle that the confidence interval [ L ; U]
should represent some “margin of error”, on either side of 5 at least when
b=-1and b #1. Bilateral MLE tethering, L =5 = U, constitutes a degenerate

or zero-width interval(ZWI) and is always inappropriate.




1.3.2.2 Violation of the definition interval

In the same situation as in 1.3.2.1, suppose that all patients on drug A develop
the illness and no patient on drug B develops the illness. Suppose that the
number of patients on drug A is 20 and on drug B is 10. The Asymptotic
confidence interval(see (2.2.2)) is then [ 0.93 ; 1.08 ], when using the
continuity correction. The interval inappropriately extends over the definition
interval [ —1; 1 ]. This is called overt overshoot(Newcombe(1995:b)).Overt

overshoot occurs when U >1 or L<-1. U =1 is not counted as a violation

when & =1, and the same applies for L = -1 when b = —1.

1.3.2.3 Unsatisfactory coverage

Confidence intervals calculated using the conventional Asymptotic method
may have actual coverage considerably different from the specified(nominal)

coverage.

1.4 Objectives of the study

In this study the coverage and length of confidence intervals of different
confidence interval methods for the difference between two Binomial
proportions will be investigated. Recommendations are made as to which
mterval methods should be used with respect to different sample sizes.

Suitable interval methods are recommended after regard to the ease and speed




of computation involved with each method. These methods are made

available as easy-to-use programs.




CHAPTER 2
CONFIDENCE INTERVALS FOR THE DIFFERENCE
BETWEEN TWO PROPORTIONS

2.1 Methods to calculate confidence intervals in general

2.1.1 Definition of a confidence interval

A confidence interval can be defined as follows(A.M. Mood, et al (1974)):
Let X,,..., X, be a random sample from the density f(x,6), and 7(6) be some

function of . Furthermore, let T, = 7;(X,,...,X,) and T, = 7,(X,,..., X,) be
two statistics(i.e. functions of X,,.., X ) satisfying 7,<7 for which
P,[7; < 7(6) < T,] =7 holds, where the probability y does not depend on 6. If
t, and ¢, are respectively values of 7, and 7, obtained from an observed
random sample x,,..,x,, then the interval [z,,,] is called a 100y percent
interval for ¢(6); y is called the confidence coefficient. We will denote a
100y % confidence interval for 7(6) as CONF(r(G))7=[tI,12]. The value ¢,is

called the lower confidence limit(LCL) and is also denoted as L. The value ¢,

1s called the upper confidence limit(UCL) and denoted as U .

One or the other, but not both, of the two statistics 7, = T,(X,,...,X,) or
L=T,(X,,..,X,) may be constant; that is, one of the two end points of the
interval [z,,7,] may be constant in which case the interval [z,,7,] will be called

a one-sided confidence interval. Confidence intervals can be obtained by

10




several methods. The most frequently used methods are the pivotal quantity
method and the statistical method. We first consider the pivotal quantity
method.

2.1.2 The pivotal quantity method.

A pivotal quantity can be defined as follows(Mood, et al (1974)):
Let X,,.,X, be a random sample from the density f(x,6) and

0=¢q(X,,...,X,,6) be a function of X,,..., X, and of the parameterd. If Q has

a distribution that does not depend on &, then Q is said to be a pivotal quantity.

The pivotal quantity method(Mood, et al (1974)), works as follows: If
0=¢q(X,,...,X,;6) is a pivotal quantity and has a probability density function
h(q), then for any fixed y where 0<y<1, there exist values ¢, andg,

depending on y such that Pg, <0 <q,]=7.

il



Figure 2.1.2.1 Density function A(q) of Q.

€N

1 42

Now, for each possible sample value (x,,...,x,) it follows that: ¢, <Q<gq, if

and only if two statistics 7, and 7, exist such that
T(x,,....x,) < (6) < T,(x,,...,x,). If ¢, and ¢, are the values of these statistics
T, and 7, then [1,1,] is a 100y % confidence interval for (), since
¢<Q<q, if and only if 7,<7(f)<T,. But Plg<Q0<q]=y so
Pg[T, < 7(6) < T2] =y and according to definition 2.1.1 the interval [7,,7,] is a

100y % confidence interval for 7(6).

A large sample confidence interval for a Bernoulli parameter p, i.e. for the

probability of a success in a single Bernoulli trial, can be obtained by using the

pivotal quantity method as follows. Let Z,..,Z denote the elements(random

variables) of a sample of size » from a Bernoulli distribution with probability

function:

12




f@=p0-p)"~ z=0]1

where z denotes the number of successes in one Bermoulli trial.

Now X =Z+.+Z, = number of successes in n trials has a Binomial

distribution with probability function
n n-x
g(X)=( )p"(l—p) ; x=012,...n.
X

Note that the proportion p in the Bernoulli probability function and p in the

Binomial probability function is the same. Thus this proportion is called a

Bernoulli or a Binomial proportion.

When the sample size is “large enough” it follows from the central limit
theorem that the mean of Z,.,Z, namely z=(Z+.+Z,)/n=X/n is
approximately normal distributed with mean p and variance p(1-p)/n,

denoted:

Ly, #8)

n n

The statistic X /n is also the maximum likelihood estimator for the parameter

p and denoted as p=X/n. According to Zar(1984) the normal
approximation can be used if p is neither very small(i.e., close to 0) nor very

large(close to 1). Cochran(1977), in Snedecor and Cochran(1980), offered the

following sample size recommendations for different magnitudes of p:

13




Table 2.1.2.1 Sample size recommendations for different magnitudes of p

~

p n

0.5 >30
0.40r0.6 >50
0.30r0.7 >80
0.2 0r0.8 >200
0.10r0.9 > 600
0.050r0.95 >1400

*
~0 "

* When p is extremely small, np follows the Poisson distribution.

Now
__p-p
N/ pil -p )/ n
is a pivotal quantity and has an approximate normal distribution N(0,1). Thus

two values ¢, = —z,,, and ¢, = z,,, exist such that P(q, <Q<gq,)=1-a. The

inequality g, < O < ¢, can be rewritten as:

R 1- R 1-
p_za/Z p( p) _pSp+Za/2 p( p) :
n n
Since /p(1- p)/n ~[p(1- p)/n it follows that
) H(1- p ) H(1- p
P~Zun p( p) sSpsptzy, p( p)
n n
and consequently
. (1
CONF(p), . = ptz,, @ . (2.1.2.1)

14




The normal approximation usually does not give accurate confidence limits;

according to Vollset(1993), it is especially poor when np or ng is less than 5,
or when p is near 0 or 1. Furthermore, the normal approximation gives
confidence limits symmetric around p, which can result in the computation of
a nonsensical confidence limit where the lower confidence limit(LCL) L for p
could be less then O or the upper confidence limit(UCL) U for p could be

more than 1.

2.1.3 The statistical method to determine confidence

intervals

The pivotal quantity method for calculating a confidence interval for p,

described above, 1s only valid for large sample sizes. When the sample size »
1s so small that the central limit theorem cannot be used, one can use the

“Statistical Method” to construct a confidence interval for p.

Suppose  X,,.., X, are the elements of a random sample from f(x,6) and
suppose 7 =T(X,,..., X,) is a statistic. Assume that 7 is continuous(a similar
method exists for discrete statistics) with probability density function g(z,6).
Now two functions #(6) and #(f) can be defined such that
P(T <h(8))=a/2 and P(T > h,(0))= a/2 where 0<a <1 is a very small real
number and where 4(6) <4,(6) for all 6.

This 1s shown graphically in Figure 2.1.3.1.

15




Figure 2.1.3.1 Distribution of T.

Y% o

hy @ h, (®

As in Figure 2.1.3.2, sketch #,(6) and h,(6) as functions of & and let " denote
the value of 7'=17(X,,...,X,), obtained from a single random sample e.g.
t" =T(x,,...,x,). Draw a horizontal line at 7 =" to intersect 4(6) and ,(6)

respectively at §-values v, and v,. The interval [v,,v,] is then a (1-a)%

confidence interval for 0.

To prove this statement let " be the true value of . Then from Figure
2.1.3.2 we see that

h(6") <t <h(67)
if and only if v, < 8" <v, for any observed ¢*. But according to the definition
of » and A, :
P(n(6")<T<h(67))=1-a,
S0 Pv,<0<v,)=1-a

and consequently according to definition 2.1.1

16




CONF(6)_, =[,.v,].

Figure 2.1.3.2 7,(6) as functions of ;5 i=12.

It is not really necessary to sketch the functions #(6) and A,(6) to find the
confidence interval. Note that v, is the value of 6 where the line 7=¢" and
the curve ¢ = 4(6) intersect. Thus we solve for 8 from:

%a =P(r<t")

- I g(1,6) dt for continuous 7 (-, )

-0

= > g(t,6) for discrete ¢ defined over [a,b].

=a

Similarly, to find v, we solve for 6 from

%a = P(Tz t‘)

17




= I g(1,6) dt for continuous 7 (—o,)

b
= g(t,6) for discrete ¢ defined over [a,b].

We illustrate the method by finding a confidence interval for a Bernoulli

parameter p based on a small sample.

Suppose a Bermoulli experiment is conducted »=4 times and that there 1s

x =1 success. We wish to find a 95% confidence interval for p. Note that

since n is very small we cannot use the interval(2.1.2.1) which is valid only

for large n. Consider 7= X as our statistic which has a Binomial Bin(4, p)
distribution where p is the probability of a success. Note that " =1 indicates
only one success. To get v, we solve for p from the probability equation
P(T<1")=0025

ie. P(T<1)=0025
@(1 -7y +@P(1 - p) =0025

(1- p)’(1+3p) = 0.025.
Let f(p)=(1-p)’(1+3p)=0025 then if p=0805 we get

7(0805)=0.0253 ~0.025. Thus v, =0805.

To find v, solve for p from the probability equation P(7 >1)=0.025.
Thus P(T <1)=0975

P(T =0)=0975

18




@ p°(1-p)* =0975

p=00063=v,.

Thus the 95% confidence interval for p is: CONF(p),,, =[ 0.0063 ; 0.805 ].

0.95

2.2 Methods to calculate confidence intervals for the

difference between two proportions

2.2.1 Introduction

We are interested in finding confidence intervals for the difference between
two Bernoulli(or Binomial) proportions p, and p, from two independent

Bernoulli distributions with probability functions

fj(z):pj(l—p].)lnz wherez=0,1 and j=1,2. If a random sample Z ,...,Z, of

"y
size n, is taken from the Bernoulli distribution ; then the sum X, = Z  of

i=l
these random elements Z, has a Binomial distribution B(nj, pj) with

probability function:

£t () (=) o 112

If n;p, is “large”(usually »,p, >5) then the Binomial distribution B(n,,p,)
can be approximated by the normal distribution with mean »p, and variance

np(l-p) eg X, ~N(n,.p,.;n,.p,.(1— p,.)). Approximate confidence intervals
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can be obtained for each p,(org, =1- p,) using the normal approximation to

the binomial distribution as in section 1.2, in combination with the pivotal

quantity method(see section 2.2.2).

2.2.2 The conventional approximate confidence interval

based on the pivotal quantity method

An approximate confidence interval for differences between two proportions

can be derived as follows. If p, = X, /n, is the estimator of p, from the first
sample, and p,=X,/n, the estimator of p, from the second, where
X, ~Bin(n,,p,) and X, ~ Bin(n,,p,) independently, then  approximately

according to the Central Limit Theorem

131 zﬁ"N(pl’pl(l_p])j

n, h,
independently from
1-
ﬁ2:£~N(p2’p2( p2))
n, n,

Thus approximately

S 1- 1-
2 —p2~N(p1 —pz;[p‘( p), pal pz)n

n n,

and
b~ P, —(pl _pz)

\/pl(l—pl)+pz(1-pz)

n n,

0= ~N(0,1).
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Q is a pivotal quantity for p, - p,. Consequently two values ¢, = -z, and
q, =z,, exist such that P(q, <Q0<gq,)=y=1-a. But ¢, <Q<g, can be

rewritten in the form:

p](l“p1)+p2(1“p2)

n, n,

b - b, _Zalz‘/pl(l_pl) +p2(1_p2)

Sp—DP, <D D, +Za/2‘/
n n '

1 2

p](l_pl) + pz(l_Pz)
n, n,

Since p, and p, are unknown, ‘/ 1s replaced by

\/p, (l_p‘)+p2(1_p2) and we get the 100(1- @)% large sample confidence
n, n,

interval for b = p, — p, as:

T
CONF(p, - p,),, = (ﬁ,-—ﬁz)izm\/p'( h), b(1=b) (2.2.2.1)

n, n,
This confidence interval corresponds to the acceptance region of the 3* test for
a 2x2 contingency table without correcting for continuity. This interval is also
called the “conventional confidence interval” for the difference p, - p,. This

mterval method is easy to calculate with a calculator and is used in the
software SASg Procedure FREQ(SAS/STAT Software: Changes and
Enhancements through Release 6.12, Chapter 9, 1997) and CIA(Gardner,
1989) as the interval method to calculate the confidence interval for the

difference p, - p,.

Example: If x,=56, x,=48, n, =70 and n, =80 then the 95% confidence

interval is given by CONF (p, - p,),,,= [ 0.0575 ; 0.3425 ].
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2.2.3 Approximate confidence interval with continuity

correction

Yates(1934) proposed a modification of this confidence interval, using a
continuity correction, yielding the confidence interval

CONF (pl - pz)

- -

(ﬁl _ﬁz)i{zalz\/ﬁl(l—ﬁl)_‘_ﬁz(l"ﬁz)+( 1 N 1 j] 223.1)

n, n, 2n,  2n,

This interval method is easy to calculate with a calculator.

Example: If x =56, x,=48, »n =70 and n, =80 then the 95% Yates
confidence interval is given by CONF(p, - p,), ,.=[ 0.0441 ; 0.3559 ].

The correction takes account of the fact that a continuous distribution(the chi
square and normal, respectively) is being used to represent the discrete
distribution of sample frequencies. Studies of the effects of the continuity
correction have been made by Vollset(1993), who compared 13 methods for
computing binomial intervals. He strongly discourages the "standard textbook"
method and its "continuity corrected” version. This is also an opinion held by
several other authors, such as Ghosh(1979), Blyth and Still(1983), Storer and
Kim(1990), Edwardes(1994) and Bo6hning(1994).  Other authors, like
Fleiss(1981) and Gardner and Altman(1989), however, still recommend that
the correction should be used because the incorporation of the correction for
continuity brings probabilities associated with »* and Z into closer agreement

with the exact probabilities than when it is not applied. Altman(1992)
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mentions that it is advisable to use a continuity correction when comparing two
proportions, especially when the samples are small. The effect is to reduce

slightly the observed difference between the two proportions.

2.2.4 The Hauck and Anderson(1986) interval

Hauck and Anderson(1986) proposed another modification of the conventional
approximate confidence interval(2.2.2). They performed a simulation study to
compare seven confidence interval methods for the difference of two binomial
probabilities based on the normal approximation. Their approach was directed
toward identifying and comparing methods for widening the uncorrected
intervals, treating the Yates correction as giving the maximum widening. They
considered different choices of standard errors and several continuity

corrections.  They recommended the use of the continuity correction

, combined with the use of (», — 1) rather than », in the estimate of
2 mm(nl , nz)

the standard error. This yields the following confidence interval:

~ ~ D (1- D p.(1- D 1
CONF(p, = py) 1o =Py~ P2) E| 2, p=p) + P,(1- Py) +—
n =1 n, —1 2min(n,,n,)

(2.2.4.1)

This interval method is easy to calculate with a calculator.

Example: If x, =56, x,=48, n =70 and n, =80, then the 95% Hauck and
Anderson confidence interval is given by

CONF(p, - p,),,,= [ 0.0435 ; 0.3565 ].
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Berry(1990) comments that the Hauck and Anderson confidence interval offers
better performance than the conventional confidence interval. He also suggests

that when both observed proportions are equal to zero, or both are equal to one,

the lower confidence limit could be taken as —1+(/2)"" and the upper limit

Uny

as 1-(a/2) ™.

2.2.5 Improvements to the conventional approximate

interval

2.2.5.1 Unified method for constructing confidence

intervals

The following unified method can be used to improve the conventional

approximate confidence interval for p, — p,. Let X, ~Bin(n,p,) independent
of X, ~Bin(n,,p,) and denote ¢, =1-p and g¢,=1-p,. The following
reparametrization is useful: a=p,+p,; b=p-p,; u=0/4X1/n +1/n,);
and v=(/4)1/n-1/n,). Let 4, b, p and p, be maximum likelihood

estimators of a, b, p, and p, .

Let
V(a,b;u,v) =Var(b) = Var(p, - p,)

= Var(f’]) + Var(ﬁz) - ZCOV(ﬁ] :ﬁz)
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_n(-p) p(-pr)

n n,

-L(p —pf)+n%(pz -p})

n,
= u[(2 - a)a - b2] + 2v(l - a)b .
The approach to find confidence intervals for &= p, - p, (see Beal(1987)) is

based upon solving for 5 from the equation:
A\2 ~
(6-5) =cvar(d)
= cV(4,bu,v), : (2.2.5.1.1)
where ¢ = ., and where 4 and b are expressions for a and b which do not

necessarily contain the variable 4. Different intervals can now be calculated

by solving & from (2.2.5.1.1) by choosing different values for 4 and 5.

2.2.5.2 Bayesian approach

A Bayesian approach to the estimation of @ and b can be used. Briefly,
assuming independence of the prior distributions of the two proportions, i.e. an
mmplicit pri\or density function proportional to

(»-P:-9,-9,)" (2.2.5.2.1)
as suggested by Jeffreys(1961) and Perks(1947)(see Good(1965) p.18), the
posterior mean of a=p +p, is given by (Beal(1987) p.943):

d(a) = ‘ b+ e+l e b, + 2+l foras-l.
m+2a+l)" n+2(a+l) n,+2(a+1) n, +2(a+1)
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If @ =-1 then 4(-1)=d=p, +p,. If a increases, the prior for the difference

puts less weight on the extremes of the unit square(i.e. the points (-1,-1),
(-11), (1,-1) and (1,1)). Then 4(a) tends more towards 1. Each value of «
defines a distinct confidence interval CONF(p, - p,) for p,—p,. Let us
denote this interval briefly here as /(a). Now I(a) has confidence levels
larger than those of 7(-1). Several values of a were tried by Beal(1987) but

a =-1/2 seems to be a good overall choice.

The interval I(-1/2) will now be referred to as the Jeffreys-Perks interval

since the prior(2.2.5.2.1) with a =-1/2 arises naturally from the invariance
theories of Jeffreys and Perks(Good(1965) pp. 18, 28, 29). We discuss this

interval in section 2.2.5.5. The interval 1(—1) will be referred to as the

Haldane interval, since the prior a = -1 is the result of Haldane priors on p,

and p, (Haldane(1945) p.223). This interval is discussed in section 2.2.5.6.

2.2.5.3 The conventional approximate interval

~

By letting @=4 and 5 =b, & and 5 denote hypothetical values of a and 5,

and V(é,l;;u,v) = h(1-h) + pz(l—pz), equation (2.2.5.1.1) is then
n,

(b_b‘)2 _ ZZ (ﬁ](l_ﬁl) + ﬁz(l_pz)) _ kz(say)

-z
nl n2
which is a quadratic equation in » with two roots 5, =b—k and b =b+k,

where
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Let L = max(-1,4,) and U = min(b,,1), then the confidence interval is given by
CONF(b),_, = CONF(p, - p,),_. =[L.,U]

:biza,z\/ﬁ'(l—pl)+pz(l_pz) (2.2.5.3.1)

n, n, ’
which is the conventional interval as derived in (2.2.2). Thus the unified

method for constructing confidence intervals for p, —p, vyields the

conventional approximate interval when @ and » are chosen as a =4 and

~

b=b.

2.2.5.4 The Anbar(1983) interval

This interval is constructed like the conventional approximate interval except
that & and » are chosen as @ =2p,—b and b =5, which after eliminating a

gives a quadratic expression in 4, namely:
(6-8) =c((2~25, +b)(25, ~b)~ 5]+ 2v(1 -2, +5)p)
= c(u(4ﬁ, —-2b-4p; +2[),b+2ﬁlb—2b2)+2v(b—2f)1b +b2))
o b = 2bb + 57 = b (2v = 2u)c + b(2v - 2u+ 4pu — 4p,v)e + (4P, — 4p? Juc
b2(1—2vc+2uc);2b(—5— ve+uc —2puc +2pyve)+ (5 - 4puc + 4ptuc) = 0.

This equation is of the form A5’ + Bb+ C =0, from which we can solve for b

yielding:
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_B++B?-44C

db
24

_B-VB-44C
24

b,

Here c¢=2z,,; A=1-2vc+2uc; B=-b-vc+uc—2puc+2pvc and
C=b*-4puc+4puc.
Let L = max(-1,5,) and U = min(,,1) then
CONF(b) = CONF(p, - ;). =[ L ; U]
where b is calculated from, (2.2.5.1.1).

Mee(1984) noted that we can use equation (2.2.5.1.1) also with a=2p, +5,

b =b and that the results obtained from these two methods differ. To solve
this problem Mee suggested a more theoretically satisfying interval which we
will discuss in section 2.2.5.7. The Anbar(1983) interval is only discussed and

not used in the simulation study.

2.2.5.5 The Jeffreys-Perks(1987) interval

As discussed in section 2.2.5.2 the interval I(a) with @ =-1/2 is known as

the Jeffreys-Perks interval. This interval is calculated as follows:

Set @ =4 and 5 =5 in equation (2.2.5.1.1) and solve for 5.
This gives:

(b - 5)2 = c(u[(2 -d)a-b’ ] +29(1- d)b)

- B —2bb+b* = —cub® + cu(2 - é)d'+ 2cv(1- a)b
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S (14 cu) + b(—25 —2ve(1- d)) + (52 —cu(2 - d)&) =0.

This equation has roots:

26 + 200(1 - 8) (b + (1 - &) 41+ cu 5 — cul2 - 4)a)

b= 2(1+ cu)

b+ ov(l-a)+ (5 +ev(l- d))2 -1+ cu)(l; 2—cu(2- Ez)d)
- (1+ cu)

b b+cv(1-4) N \/(5 +ov(l- d))2 -1+ cu)(52 —cu(2 - d)&)

1+cu h 1+cu

\/c{V(d, b,u, v) +eu(2-ad)a+evi(l- 61)2}

1+cu

=t

\/V(d, bu, v) +cu(2-a)a+cevi(l- &)2

1+cu

= i_zar/Z

where ¢ =22,,.

Thus
CONF(p, - p,),_,=

) b+cv(1-4d) ., \/V(d, bu, v)+ cu?(2 - a)a+cvi(1-a)’

b 22551
1+cu «2 1+ cu ( )
If n =n,=n, thisinterval simplifies to
§ . |e-aa(1+a?)-8
CONF(p, - = td 22552
(p-p).., 1+d? 1+d* ( )

where d =c/+/2n.
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Beal(1987) noted that this interval is a definite improvement on the
conventional interval. There are however, some values of p, and p, for
which this interval is too narrow, while the conventional approximate interval

is not too narrow for these choices of p, and p, .

Example: If x, =56, x,=48, n, =70 and n, =80, then the confidence

interval is given by CONF(p, - p,) ,. = [0.053 ; 03355].

0.95

2.2.5.6 The Haldane(1987) interval

The Haldane interval is calculated in the same manner as the Jeffreys-Perks

. . ~ X X.
mterval but with a=="+2,
n n

Example: If x, =56, x, =48, n, =70 and », =80, then the confidence interval

is given by CONF (p, - p,),,, = [0.053; 03377].

0.95

The Jeffreys-Perks and Haldane methods are not easy to calculate with a
handcalculator, though this is still possible. However, the methods are easier
implemented through a computer program. Newcombe(1998:b) noted that
Jeffreys-Perks' and Haldane's intervals as described in Beal(1987) are prone to
certain novel anomalies such as overt overshoot which occurs when the upper

confidence limit is larger than 1 or the lower confidence limit is less than -1.
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2.2.5.7 The Mee(1984) interval

Mee suggested that equation (2.2.5.1.1) be solved with b chosen as b =5 and
d=a'(b) or d=ad', the maximum likelihood estimator of a=p, +p, when
b= p - p, has a given value. Since a=a" is now a function of 5, equation

(2.2.5.1.1) with these values is not quadratic and cannot be solved in closed

form like in cases 2.2.4.1 and 2.2.4.3. Instead, equation (2.2.5.1.1) has to be
solved numerically to obtain the two roots 5, and b,. Since a” is defined only

in the interval [ 0 ; 2 ] we seek the smallest value where b, €[ -1; 1 ] and the
largest value b, €[ -1;1] such that (b—l;)2 SCV(a',I;;u,v) for b,<b<b,.

Then L=5 and U=5,.

The following iterative method can be used to calculate the upper limit 5, of

the Mee interval:

(1) Use the Jeffreys-Perks method to determine the upper limit 5,. Let b, =b,
as a first estimate of the upper limit.

(2) Determine the maximum likelihood estimate of p,, namely p =p/(5,),
for given 4. This p/ is the unique solution in the interval (b,1) of the

maximum likelihood equation:

N+ K’ + Lx+ M =0, (2.2.5.7.1)

where N=n+n,,
Kz(nl +2n2)b1 -N-pn—-ppn,,

L=(nb—N-2p,n)b +(pm +pm,),
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M=pnb(1-8).

Now calculate in the following order:

K KL . M
(3N)3 6N?* 2N’

g:

K L
(3N) 3N

mo see(E)

Then the solution of the maximum likelihood equation (2.2.5.7.1) is:

h=sgn(g)

2

» K
2 :2hcos(f)—m.

(3) As with Anbar's(1983) interval let
a' = max(Zp,* —bl;l) :
Then let, 5 =5, and @ =a" in equation (2.2.5.1.1) to get a Jeffreys-Perks type

interval with limits (5,5,). Let b, =5,.

1>Yu

@ Is |b2|b_|b'| <107*7?; if not set b =5, and repeat steps (2) to (4); if yes then

1

stop.
Note: If 5 =1then p =1 and step 2 is then skipped.

The lower limit b, of the Mee interval is determined likewise as in steps (1) to

(4) by starting with b, = 5,, the lower limit of the Jeffreys-Perks interval. If
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b =-1 then p/ =0 and step 2 is skipped. Santner and Yamagami(1993) note

that the iteratively computed Mee intervals are not conservative. This interval

method is computer intensive due to the iterative procedure involved.

Example: If x, =56, x, =48, n, =70 and n, =80, then the 95% confidence

interval is given by CONF(p, - p,), .. = [0.0533 ; 03377].

0.95

2.2.5.8 The Miettinen and Nurminen(1985) interval

The interval of Miettinen and Nurminen(1985) is calculated like the
Mee(1984) interval except that the constant ¢ in equation (2.2.5.1.1) is chosen
as cN /(N —1) so that equation (2.2.5.1.1) becomes:

(b - 5)= cN /(N - l)Var(&, b; u, v),

where N =n +n,.
Like the Mee interval method this method requires intensive computation.

Example: If x, =56, x, =48, n, =70 and n, =80, then the 95% confidence

interval is given by CONF (p, - p,) . = [0.0528 ; 0.3382].

0.95
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2.2.5.9 The Wallenstein(1997) interval method

Since the conventional approximate interval is often too short, methods have
been suggested to produce more appropriate, that is, wider confidence

intervals.

The conventional Asymptotic interval:
CONF(P] - pz),_a =D~ P, t2,, I;(pl ,Pz)
=[da'; d],
where

)_ Pl(l_ﬁl) + ﬁz(l—ﬁz) ‘

n n,

(plap2

The lower confidence limit is d'(x,,x,) and the upper confidence limit is
d(x,,x,) or simply [d'; d]. Let b= p, - p,. Suppose b=d the UCL, then d
1s the solution of the implicit equation:

d=p - py*ZV(p,p,)=[L; U1 (2.2.5.9.1)
Denote p,, as the estimate of p, based on assuming b=d. Beal(1987) sets
Pya + Doy = D, + D,, where p, =x,/n, and then solves (2.2.5.9.1) explicitly.
Mee(1984) solves (2.2.5.9.1) by using a doubly iterative procedure. The first
step fixes b=d and finds p,and p,, that maximise the likelihood, while the

second step updates d to satisfy (2.2.5.9.1) more closely. Miettinen and
Nurminen(1985) pointed out that we need not perform iteration to find the
MLE’s, since they are solutions of a cubic and thus we only need a single
iterative procedure. Wallenstein(1997) proposes a slight modification of

Mee’s procedure by using least squares estimates(LSE’s) instead of MLE’s for
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P and p,,, and allows for a continuity correction ¢>0. Wallenstein
proposed replacing p, - p, in (2.2.5.9.1) by p, — p, +& to get
d=(p, P, +&)+2,, V(ﬁud,ﬁzu) (22.592)

The LSE’s of p, subject to the constraint p,, - p,, =d are

n
~ - ~+d—2
Pu=P~P N
and
~ ~ n,
p2|d =p —dw (22593)

where p=np, +n,p,/N and N =n, +n,.

Now substituting (2.2.5.9.3) into (2.2.5.9.2) we obtain:

[d_(ﬁl - b +8)]2 - ﬁlld(l_ﬁlld) 4 ﬁzu(l_l}zu)

2

Zar2 n n,
5% (-3
TN PPN
n] n2
o)l
_ 2| P N pP N w4 N
n|n2

This 1s equivalent to

nn - A 2 - dn _ dn - dan - dn
el GRRD RIS (B SO R (B 250

Za/2
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This 1s a quadratic equation in d of the form:

Ad® + Bd+C =0, (2.2.5.9.4)

where

2
A:1+N"z§,2[l+w] )

(mm,)

2
B=-2(p, - b, +g)+%(1—2ﬁ)(nl —n,),
1772
2 -
C=(p,-p, +e) —M(—l—p). (2.2.5.9.5)

nan
We solve for d from (2.2.5.9.4) by choosing the larger solution

g _B++B?—44C
24 '

If for a chosen continuity correction ¢, the term p, — p, + & exceeds 1, then
D, — P, + € should be replaced in B and C by 1. To compute the lower bound

d', we replace ¢ by —¢ in B and Cin equation (2.2.5.9.5) and solve equation

(2.2.5.9.4) by choosing the smaller solution of (2.2.5.9.4) namely:

- B~ VB? -44C
- 24 '

If £ =0 then the upper and lower bounds 4 and 4' are the solutions of a single
quadratic equation Ad’ +Bd+C=0 where 4B and C are given as in
(2.2.5.9.5) with £=0.

If n,=n,=m then the preliminary confidence interval on b5, (d'.d) is

172

(i’l _pz)i<za/2 /‘/;”-){ﬁl(l—ﬁl)"'ﬁz(l_ﬁ2)+zi/2ﬁ(1—ﬁ)/m}
1+z2, /2m

(2.2.5.9.6)

in agreement with Beal(1987)(see section 2.2.4.3).
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The procedure described above is valid only if the solution d of the quadratic
equation (2.2.5.9.4) when substituted into (2.2.5.9.3) yields estimates p,, and

Py in the interval [ 0; 1]. Similarly when the solution &' from (2.2.5.9.4) is
substituted in (2.2.5.9.3) we should get estimates p,, and p,, in the interval
[ 0; 1]. If this constraint is violated we replace p,, outside [ 0; 1] with 1 or
0. For example if p, 2p, and p,, <0 force p,, =0 so p,=d and
(2.2.5.9.2) becomes:

V(ﬁud ,ﬁzu) = ﬁ”d (1 _ ﬁ"“) + ﬁZld (1 - ﬁzu)

n, n,

d(1-d)

n

+0

So equation (2.2.5.9.2) becomes
d(1-d)

n,

d:(ﬁl - D, +8)=za/2

Square both sides:

2
[d- (b, - b +)] ="=2(d~a*)

1

2 2
d* = 2d(p, - p, +&)+(p, - b, +¢)’ _gltar g2 lan _
n n,

2 2
i.e. d2[1+2";i}—d[2(;31—p2+5)+2—;’1 +(p-p,+&) =0.
1 i

The larger solution for d is
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2 2 7P 2
~ A A ~ z ~ A
2(p, - P, + &)+ 222+ |4l p, - p, +6+zﬂ} —4[1+—“’—2}(p. -p, +e)
Jo n, 2n, n,

2(l+z§,2/n,)

D — D, +5+Zc2z/2 /2n, +(Za/2 /\/Z){(p\l - D, +5)[1_(ﬁ1 - D +5)]+ZZ/2 /4’71}”2
l+z§,,2 /'n,

If p,>p, and p,, >1 set p,, =1 and p,, =1-d then:

N 2 . A s z
p,—p2+8+%+3‘%{(p,—p2+8)[1—(p,—p2+8)]+4—/2

172
2 nz}
d= . (22597

1+2z2,,/n,
If p, > p, the simplest thing to do is to switch indices, i.e. we write p, as p,
and p, as p,. Then we solve 4 again as in (2.2.5.9.6) and (2.2.5.9.7).
If p, 2 p, and p, <O then d'= p,,. — P, =0— p,, <0. Then we set p,, =0

and ﬁ2|d' =-d'

. A 0(1-0) -d'(1+d'
Val'(p”d,,p2|d.) = ( ) * ( ) .

nl n2
So equation (2.2.5.9.2) becomes:
.. -d'(l1+d'
d—(pl—pz—é‘)zza/z (n )
2
$O:
t A o 2 ZZIZ ' '
(@5~ -6 =2 ar(1+0)
2
12 Wa oo A A 2 22/2 | 22/2 2
d*-2d'(p, - p, —&)+(p, - p, —¢) =-22d-—=2d
n, n,

2 2

d’ {Hi"—”—}—d'{z(ﬁ, -p,-¢) +Z”‘J}+(ﬁl - p,—€)=0.
n2 n2
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So d' is the smaller root namely:

2 2 2
2(P pz—g) a/2 \/|:2(P| 132_8)+Z‘z#:| _4[1"'@][?1_132_8]2
n

n, n,

d'= N+, /m)

_ 2n, 2 2 n,
1+z2,/n,
2 2
£, -~ Za za a
By=p -+t \/ 2By~ by —ef1-(p - B - e))+7, o
_ n, n,
1+22,/n

. : . - z
—pl—pz—g+22"‘7/:—z"ﬁ\/(p]—p2—g)(l—(p]—pz—g))+4—n/22

1+z2,/n,

If p, < p, we again reverse indices. The case when x, =0 and x, =0 was not
described in detaill in Wallenstein’s paper.  Wallenstein, in personal
correspondence, suggested the use of an ad hoc solution to this case by
mvoking the equation (2.2.5.9.6) and the resulting upper confidence limit is
then

z* | 2n, +z/ﬁ(\/zz/4nl)

d= >
1+z° /n

b

where z denotes z,,,. The lower confidence limit is calculated as the negative

of the upper bound.
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Example: If x, =56, x, =48, n, =70 and n, =80, then the 95% Wallenstein
confidence interval without continuity correction is given by

CONF(p, - p,),,, = [0.0528; 03344]. The 95% Wallenstein confidence

0.95

interval with correction is given by CONF (p, - p,),,. = [0.0392 ; 03469] .

0.95

2.2.6 Intervals based on the Wilson(1927) score

interval

The following score intervals for p, — p, are based on Wilson's score interval

for the single proportion, and were proposed by Newcombe(1998: b). We will
first discuss the score interval method for the single proportion with and
without continuity correction, and then the score interval method for the

difference p, — p, with and without continuity correction.

The efficient score of a parameter # in a distribution of a random variable ¥

with density function parametrized by 6, i.e. f,(y,6), is defined by Cox and
Hinkley(1974, p.107) as:

dlog f,(»,6) .

U =—"2

There 1s a close connection between the position of the maximum likelihood
estimate(MLE) & and the efficient score namely: U(@) =0. The variance of
the score U(6) is given by the Fisher information:

Var(U(6)) = E(U*) = i(6)

where
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, 7 log f,y,0
i(6) = E[—Te"— .

U(9)
i(9)

hypothesis H,:0 =6, versus H,:0 = 6,(Cox and Hinkley(1974, p.339) yielding

can be used to test the

For large sample sizes, the test statistic W, =

a critical region

v

,111905

Cox and Hinkley(1974, p.343) state that: “Confidence regions based directly

|2| = >z,

on the efficient score, 1.e. using the 77, test statistic, have the advantage that, at

least when there are no nuisance parameters, moments of the test statistic are
obtamned directly. Thus, for a one-dimensional parameter @, confidence

regions can be obtained from the inequality

@) .

\/l.(7)—za/2'

These will usually be intervals. The procedure is invariant under

transformation of the parameter. The test statistic has exactly mean zero and
unit variance and corrections based on its higher moments are easily

introduced.”

2.2.6.1 The score interval for a single proportion

without continuity correction

When p is the underlying proportion, the sample proportion p is

approximately normally distributed with mean p and standard error /pg/n.

4]




In order to test the hypothesis that p is equal to a prespecified p, against the

alternative hypothesis that p = p,, one may calculate the ratio

- |P - p0|
o = ,
/Poqo
n
where g, =1- p,, and reject the hypothesis if z exceeds the critical value of

the normal curve for the desired two-tailed significance level. The test is based

on the ratio and if z_,, denotes the value cutting off the area a /2 in the upper
tail of the standard normal distribution, an approximate 100(1-a)%

confidence interval consists of all those values of p satisfying
p-p
g SZap -
NPg/n
Note that for confidence intervals p, is replaced by p since in confidence

intervals there is no hypothesised value of p. Thus the score interval without

correction is:

(2’7[7"'22/2 i'za/z\lzz/z +4nﬁ‘i)

CONF =[L;U]=
(p)l_a [ ] 2(n+zz/2)

(2.2.6.1.1)

2.2.6.2 The score interval for a single proportion

with continuity correction

The score interval method for the single proportion with continuity correction

1s the same as the score interval method without continuity correction except
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the quantity 1/n subtracted in the numerator is a correction for contmuity.

The score interval with continuity correction is calculated as follows:

. 20p 422, ~ 1= 2,322, =2~ 1/ n+4p(ng +1)

al2
2 2
2(n +z, ,2)

U 2mp+22, + 142,28, +2-1/n+4p(ng - 1)

- 2(n +z2 ,2) ’
which yields the confidence interval
CONF(p)_=[L ;U 1 (2.2.6.2.1)

According to Fleiss(1981) the continuity correction should be applied only

when it is numerically smaller than |p - p,|. The score interval method either

with or without continuity correction, is preferred to the conventional

approximate interval when p is near zero or one. Newcombe(1998:a) noted
that if p =0 then L must be taken as 0 and if p=1, then U is taken as 1.

Newcombe also noted that these interval methods result in a good degree and

symmetry of coverage as well as avoidance of aberrations.

2.2.6.3 The score interval without continuity correction

for the difference between two proportions

This method combines Wilson’s score intérvals for each single proportion in
much the same way as the conventional approximate method combines simple

intervals. To obtain the Wilson score interval, first calculate:
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E:pl—ﬁz and then

L = ((Zniﬁi + 22/2)" za/z\/Z;/z +4n,p.q; )/ 2(ni + 22/2):
Ui = ((znipi + 22/2)"' Za/z\lzi/z +4n,p,q, )/ 2(ni + Z:,/z) for i =1,2.

and

1- 1-U
Substitute L, and U, in &, =zm\/Ll(n L,)+U2( 2)
1

n,
N L(-L
and 6'2 :Za/z\/Ul(ln U1)+ 2(n 2) .
1 2

Now let L=b-¢, and U=b +¢,, then the 100(1- @)% confidence interval for
p, — p, 1s given by

CONF(p,-p,)_=[L ;U] (2.2.6.3.1)
This interval method is not so easy to calculate with a calculator though it can
easily be implemented with a computer program.

Example: If x, =56, x,=48, n, =70 and », =80, then the 95% confidence
interval is given by CONF (p, - p,),,.=[0.0524 ; 0.3339 ].

2.2.6.4 The score interval with continuity correction for

the difference between two proportions

This interval is calculated similarly to the score interval without continuity

correction. Compute the lower and upper limit as follows:

Firstly compute 4 = p, — p, and then also compute
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N 1 . ng +1
L, =2np, +ZZ/2 -1-z,, \/Zi/z -2-—+4p, Ad T

n, ' 2(n,. +zi,2)
and
~ 2 2 1 ~ niéi -1 -
Uy =2np, + 2, +1+ 24, (20, +2-—+4p, ———— fori=12
n; 2(ni +Za/2)

Substitute these values into:

2 2
and £, = (U,—ﬂj +(—xl— 2) :
n, n,

Let L=5-¢, and U=b + ¢, which yield the confidence interval
CONF(p,-p,)_=[ L ;U 1. (2.2.64.1)

This interval method can easily be implemented with a computer program.

Example: If x, =56, x, =48, n,=70 and n, =80, then the 95% confidence
interval is [ 0.0428 ; 0.3422 ].
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CHAPTER 3
COMPARISON OF THE DIFFERENT INTERVAL

METHODS

3.1 Introduction

The various interval methods were compared by a simulation study. The

simulation study was done using the following algorithm:

1. Specify the parameter combination of proportions p, and p, and sample

sizes n, and n, to be investigated.

2. Simulated pairs of 50 000 samples x, and x, given the specified parameter

combinations of p,, p,, n, and n, (wherex, ~Bin(n,, p,) fori=12) .

3. Calculate confidence intervals for p, — p, for each of the 50 000 simulated

samples using the different interval methods.

4. Determine the interval length, the occurrence of coverage, violation of the
definition interval and zero width intervals of the different interval methods

for each of the 50 000 samples.

The average length was determined as the sum of the differences between the
upper bound and the lower bound for each simulation divided by the total

number of simulations, whereas the coverage, violation of the definition
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interval and the occurrence of zero width intervals are expressed as a

percentage out of 50 000 simulations.

The simulation study was done for each combination of proportions and all
sample size combinations, as given in Tables 3.1 and 3.2. The combination of

proportions p, =06 and p,=04 was used as an example where both

proportions are close to 0.5, where conventional interval methods might
perform satisfactorily. The combination p, =095 and p, = 085 was used as
an example when both proportions are close to 1, and proportions of this
magnitude are typical in clinical trials for cure rates of antibiotics. The

combination p, =095 and p, =015 was used to examine a situation when the
difference between the two proportions is large. Combination p, =098 and
p, =09 was used to examine a situation where the difference between the two
proportions is quite small. Combination p, =098 and p, =01 gives the
corresponding large difference. Combination p, =098 and p, = 098 was used

to examine a situation where the difference between the two proportions is

zero and the proportions are close to 1. Combination p, =098 and p, = 0.02

was used when the difference between the two proportions is large, and the

individual proportions are close to 0 and 1.

The sample sizes », =100 and n, = 90 were viewed as large. The sample size
combination », =60 and n, = 50 was viewed as moderately large whereas the
combination n, =30 and n, =20 was viewed as a relatively small sample size.
The sample size combination », =10 and », =10 was examined as a small but

sometimes imposed sample size.
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Table 3.1 Proportion combinations used in simulation study

Proportions

p, =06 p, =04
p, =095 p, =085
p, =095 p, =015
p, =098 p, =090
p, =098 p, =010
p, =098 p, =098
p, =098 p, =002

Table 3.2 Sample size combinations used in simulation study

Sample sizes

n, =100 n, =90
n, =60 n, =50
n, =30 n, =20
n, =10 n, =10

Table 3.3 gives the observed coverages and the average lengths of the various
confidence intervals for p, = 0.6 and p, = 04 for different sample sizes. Table
3.4 presents the deviations from the definition intervals and zero width
intervals. All values are given as percentages in Table 3.4. Tables 3.5 to 3.16
i pairs provide the same information for the other parameter combinations.

The results of these simulated intervals are discussed in detail in section 3.2.
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The results for the different interval methods are presented in the tables in

sequence of computer intensiveness from the least to the most computer
intensive method. The least computer intensive method is the usual
Asymptotic interval method with or without continuity correction, and the most
computational intensity methods are the iterative methods of Mee, and of
Miettinen and Nurminen. The different methods are also discussed in this

sequence in section 3.2.
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Table 3.3 Observed coverage and average length of nominal 95% confidence intervals (p, =06, p, =04)

Sample Method

size

n, n, As AsC  HA Hal JP Sc SecC W wC Mee MN

100,90 Observed coverage(%) 947 962 957 951 951 949 960 951 965 95.1 951

Average length 278 299 290 275 275 272 287 275 296 275 276
60, 50 Observed coverage(%) 944 963 95.7 949 949 947 96.1 949 966 949 949
Average length 364 401 388 358 358 353 377 358 394 358 360
3 30, 20 Observed coverage(%) 93.7 96.6 95.9 947 947 943 96.6 947 976 947 947
Average length 542 625 604 523 523 506 557 521 597 523 528
10, 10 Observed coverage(%) 92.1 97.1 959 953 953 953 972 953 988 956 956
Average length 813 1.01 957 51 755 713 813 759 929 759 776
As Asymptotic without correction Sc Score interval without correction
AsC  Asymptotic with correction ScC  Score interval with correction
HA  Asymptotic with Hauck and w Wallenstein’s interval without correction
Anderson’s correction WC  Wallenstein’s interval with correction
Hal  Haldane interval Mee Mee’s interval

JP Jeffreys-Perks interval MN  Miettinen and Nurminen interval
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Table 3.4 Percentage of confidence intervals with deviation and zero width (p, =06, p, =04)

Sample Method
Size
n, n, As AsC HA Hal JP Sc ScC W WC Mee MN
100, 90  Violation of definition interval(%) 0 0 0 0 0 0 O 0 0 0 0
Zero width interval(%) 0 0 0 0 0 0 0 0 0 0 0
60, 50 Violation of definition interval(%) 0 0 0 0 0 0 O 0 0 0 0
Zero width interval(%) 0 0 0 0 0 0 0 0 0 0 0
w 30, 20 Violation of definition interval(%) 0 0 0 0 0 0 0 0 0 0 0
Zero width interval(%) 0 0 0 0 0 0 O 0 0 0 0
10, 10 Violation of definition interval(%) 135 516 486 0 60 0 O 124 279 0 0
Zero width interval(%) 0 0 0 0 0 0 0 0 0 0 0
T As Asymptotic without correction Sc Score interval without correction
T AsC  Asymptotic with correction ScC  Score interval with correction

HA  Asymptotic with Hauck and A Wallenstein’s interval without correction
Anderson’s correction WC  Wallenstein’s interval with correction

Hal  Haldane interval Mee Mee’s interval

]
N
N
) JP Jeffreys-Perks interval MN  Miettinen and Nurminen interval
oo




Table 3.5 Observed coverage and average length of nominal 95% confidence intervals ( p, =095, p, = 085)

Sample Method

size

n, n, As AsC  HA Hal JP Sc ScC W wC Mee MN

100,90  Observed coverage(%) 942 96.9 95.9 945 949 953 972 945 971 95.1 951
Average length 169 189 181 167 170 177 191 171 193 A76 177

60, 50 Observed coverage(%) 929 972 95.6 944 956 96.1 97.8 947 976 943 943
Average length 223 259 245 219 226 239 265 232 271 238 .239

[4Y

30,20  Observed coverage(%) 928 956 947 947 947 967 991 939 986 923 923
Average length 333 416 361 321 345 379 435 378 470 377 382

10, 10 Observed coverage(%) 79.7 99.7 87.6 797 977 992 99.9 79.

~

99.9 99.2 993

Average length 451 651 375 416 519 619 737 585 902 627 646
As Asymptotic without correction Sc Score interval without correction
AsC  Asymptotic with correction ScC  Score interval with correction
HA  Asymptotic with Hauck and W Wallenstein’s interval without correction
Anderson’s correction WC  Wallenstein’s interval with correction
Hal  Haldane interval Mee Mee’s interval

JP Jeffreys-Perks interval MN  Miettinen and Nurminen interval
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Table 3.6 Percentage of confidence intervals with deviation and zero width (p, =095, p, = 085)

Sample Method

size

n, n, As AsC HA Hal JP Sc ScC W WC Mee MN

100, 90  Violation of definition interval(%) 0 0 0 0 0 0 0 0 0 0 0
Zero width interval(%) o 0 o0 0 0 0 0O 0 0 0 0

60, 50 Violation of definition interval(%) 0 0 0 0 0 0 0 0 0 0 0
Zero width mterval(%) 0 0 0 0 0 0 O 0 0 0 0

30, 20 Violation of definition interval(%) 0 0 0 0 0 0 O 0 0 0 0
Zero width interval(%) 86 0 0 0 0 0 O 0 0 0 0

10, 10 Violation of definition interval(%) 0 07 01 O 0 0 0 07 58 0 0
Zero width interval(%) 11.7 0 0 117 0 0 O 117 0 0 0

As Asymptotic without correction Sc Score interval without correction

AsC  Asymptotic with correction ScC  Score interval with correction

HA  Asymptotic with Hauck and w Wallenstein’s interval without correction

Anderson’s correction WC  Wallenstein’s interval with correction
Hal  Haldane interval Mee Mee’s interval
JP Jeffreys-Perks interval MN  Miettinen and Nurminen interval
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Table 3.7 Observed coverage and average length of nominal 95% confidence intervals (p, =095, p, = 015)

Sample Method

size

n,, n, As AsC  HA Hal JP Sc ScC W wC Mee MN

1>

100,90 Observed coverage(%) 939 957 95.4 948 948 944 96.2 952 973 95.0 952
Average length 169 190 181 170 170 172 .186 177 200 169 170

60,50  Observed coverage(%) 939 959 952 953 953 951 967 958 982 953 954

Average length 223 259 245 226 226 229 253 248 288 224 225
30, 20 Observed coverage(®%) 884 937 935 956 956 942 97.1 97.0 99.0 956 956
Average length 333 417 391 344 344 351 401 416 503 337 341
10, 10 Observed coverage(%) 874  88.1 87.9 936 959 959 959 98.1 994 959 959
Average length 451 651 576 S11 514 539 641 664 850 501 516
As Asymptotic without correction Sc Score interval without correction
AsC  Asymptotic with correction ScC  Score interval with correction
HA  Asymptotic with Hauck and W Wallenstein’s interval without correction
Anderson’s correction WC  Wallenstein’s interval with correction
Hal  Haldane interval Mee Mee’s interval

JP Jeffreys-Perks interval MN  Miettinen and Nurminen interval
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Table 3.8 Percentage of confidence intervals with deviation and zero width (p, = 095, p, = 015)

Sample Method

Size

n, n, As AsC HA Hal JP Sc ScC W WC Mee MN

100, 90  Violation of definition interval(%) 0 0l 0 0 0 0 0 05 22 0 0
Zero width interval(%) 0 0 0 0 0 0 0 0 0 0 0

60, 50 Violation of defimtion interval(%) 46 401 153 0 0 0 0 469 999 0 0
Zero width interval(%) 0 0 0 0 0 0 0 0 0 0 0

30, 20 Violation of defimition interval(%) 316 624 526 0 87 0 87 415 532 O 0
Zero width interval(%) 87 0 0 0 0 0 O 0 0 0 0

10, 10 Violation of definition interval(%) 673 959 936 O 0 0 118 516 621 O 0
Zero width interval(%) 11.8 0 0 0 0 0 0 0 0 0 0

As Asymptotic without correction Sc Score interval without correction

AsC  Asymptotic with correction ScC  Score interval with correction

HA  Asymptotic with Hauck and w Wallenstein’s interval without correction

Anderson’s correction WC  Wallenstein’s interval with correction
Hal  Haldane interval Mee Mee’s interval
JP Jeffreys-Perks interval MN  Miettinen and Nurminen interval
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Table 3.9 Observed coverage and average length of nominal 95% confidence intervals (p, =098, p, =09)

Sample Method
Size
n,, n, As AsC HA Hal Jp Sc ScC w wWC Mee MN

100,90  Observed coverage(%) 939 96.7 96.0 943 943 965 97.9 952 983 952 953

Average length 134 (153 145 132 137 148 163 144 168 144 144
60, 50 Observed coverage(%) 92.8 959 952 928 947 971 98.8 964 982 942 942
Average length A76 213 .198 173 184 205 232 199 241 199 200
N 30, 20 Observed coverage(%) 87.1 87.7 87.7 872 978 991 99.9 93.7 998 959 959
Average length 258 341 3135 251 289 343 402 342 437 337 341
10, 10 Observed coverage(%) 702 999 71.7 712 998 998 999 71.2 999 998 998
Average length 325 525 442 299 4537 597 719 453 889 599 619
As Asymptotic without correction Sc Score interval without correction
AsC  Asymptotic with correction ScC  Score interval with correction
HA  Asymptotic with Hauck and Y Wallenstein’s interval without correction
Anderson’s correction WC  Wallenstein’s interval with correction
Hal  Haldane interval Mee Mee’s interval

Jeffreys-Perks interval Miettinen and Nurminen interval




Table 3.10 Percentage of confidence intervals with deviation and zero width (p, =098, p, =09)

Sample Method

Size

n,, n, As AsC HA Hal JP S¢c ScC W WC Me MN

100,90  Violation of definition interval(%) 0 0 0 0 0 0 O 0 0 0 0
Zero width interval(%) 0 0 0 0 0 0 O 0 0 0 0

60, 50 Violation of definition interval(%o) 0 0 0 0 0 0 0 0 0 0 0
Zero width interval(%) A7 0 0 0 0 0 0 0 0 0 0

@ 30, 20 Violation of definition interval(%) 0 0 0 0 0 0 0 0 0 0 0

Zero width interval(%) 65 O 0 0 0 0 0 0 0 0 0

10, 10 Violation of definition interval(%) 0 01 0 0 0 0 0 01 13 0 0
Zero width interval(%) 282 0 0 282 0 O O 282 0 0 0

As Asymptotic without correction Sc Score interval without correction

AsC  Asymptotic with correction ScC  Score interval with correction

HA  Asymptotic with Hauck and \ Wallenstein’s interval without correction

Anderson’s correction WC  Wallenstein’s interval with correction

Haldane interval Mee’s interval

Jeffreys-Perks interval Miettinen and Nurminen interval




Table 3.11 Observed coverage and average length of nominal 95% confidence intervals (p, =098, p, =01)

Sample Method
Size
n,, n, As AsC HA Hal JP Sc SecC W wC Mee MN

100,90  Observed coverage(%) 92.1 965 960 955 955 942 972 974 989 959 959
Average length 134 155 .145 A37 0 137 141 155 162 (185 136 136

60,50  Observed coverage(%) 90.9 950 949 954 954 953 973 978 993 953 953

Average length 176 213 198 183 184 191 215 231 269  .181 .182
% 30,20  Observed coverage(%) 887 933 933 964 964 959 964 985 999 96.4 96.4
Average length 238 341 314 287 288 305 353 393 468 281 284
10,10  Observed coverage(%) 708 713 712 925 925 935 974 995 999 974 974
Average length 322 522 439 447 449 492 394 607 762 435 450
As Asymptotic without correction Sc Score interval without correction
AsC  Asymptotic with correction ScC  Score interval with correction
HA  Asymptotic with Hauck and A Wallenstein’s interval without correction
Anderson’s correction WC  Wallenstein’s interval with correction
Hal  Haldane interval Mee Mee’s interval

JP Jeffreys-Perks interval MN  Miettinen and Nurminen interval
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Table 3.12 Percentage of confidence intervals with deviation and zero width (p, =098, p, =01)

Sample Method

Size

n, n, As AsC HA Hal JP Sc ScC W WC Mee MN

100,90  Violation of definition interval(%) 35 312 119 0 0 0 0 929 184 0 0
Zero width interval(%) 0 0 0 0 0 0 0 0 0 0 0

60, 50 Violation of definition interval(%) 123 406 248 O 15 15 15 440 569 0 0
Zero width interval(%) 15 0 0 0 0 0 0 0 0 0 0

30, 20 Violation of definition interval(%) 67.7 911 887 O 65 0 65 668 694 0 0
Zero width interval(%) 65 0 0 0 0 0 0 0 0 0 0

10, 10 Violation of definition interval(%) 639 995 986 O 0 0 286 539 375 0 0
Zero width interval(%) 286 0 0 0 0 0 0 0 0 0 0

As Asymptotic without correction Sc Score interval without correction

AsC  Asymptotic with correction ScC  Score interval with correction

HA  Asymptotic with Hauck and w Wallenstein’s interval without correction

Anderson’s correction WC  Wallenstein’s interval with correction
Hal  Haldane interval Mee Mee’s interval
JP Jeffreys-Perks interval MN  Miettinen and Nurminen interval




Table 3.13 Observed coverage and average length of nominal 95% confidence intervals (p, =098, p, =098)

Sample Method
Size
n, n, As AsC HA Hal JP Sc ScC W wC Mee MN

100,90 Observed coverage(%) 96.0 996 987 960 987 987 998 975 997 975 975
Average length 076 097 .08 075 08 .107 .23 .09 117  .107 .107
60,50  Observed coverage(%) 983 999 996 992 996 994 999 992 999 992 992
Average length 095 132 116  .094 119 160  .189 139 187  .161 .162

09

30, 20 Observed coverage(%) 99.8 999 99.9 99.6 999 996 99.9 996 999 99.6 99.6
Average length 119 202 172 A27 205 299 363 304 420 303 308

10, 10 Observed coverage(%) 99.8 100 99.9 999 999 999 100 99.9 100 999 999

Average length 133 333 240 122 380 570 .699 197 920 572 .592
As Asymptotic without correction Sc Score interval without correction
AsC  Asymptotic with correction ScC  Score interval with correction
HA  Asymptotic with Hauck and w Wallenstein’s interval without correction
Anderson’s correction WC  Wallenstein’s interval with correction
Hal Haldane interval Mee Mee’s interval

JP Jeffreys-Perks interval MN  Miettinen and Nurminen interval
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Table 3.14 Percentage of confidence intervals with deviation and zero width (p, =098, p, =098)

Sample Method

Size

n,, n, As AsC HA Hal JP Sc ScC W WC Mee MN

100, 90  Violation of definition interval(%) 0 0 0 0 0 0 0 0 0 0 0
Zero width interval(%) 22 0 0 0 0 0 0 0 0 0 0

60, 50 Violation of definition interval(%) 0 0 0 0 0 0 0 0 0 0 0
Zero width interval(%) 108 0 0 0 0 O 0 0 0 0 0

30, 20 Violation of definition interval(%) 0 0 0 0 0 O 0 0 0 0 0
Zero width interval(%) 364 0 0 0 0 0 0O 0 0 0 0

10, 10 Violation of definition interval(%) 0 0 0 0 0 0 0 0 0 0 0
Zero width interval(%) 66.7 0 0 667 0 O 0 667 0 0 0

As Asymptotic without correction Sc Score interval without correction

AsC  Asymptotic with correction ScC  Score interval with correction

HA  Asymptotic with Hauck and % Wallenstein’s interval without correction

Anderson’s correction WC  Wallenstein’s interval with correction
Hal  Haldane interval Mee Mee’s interval

JP Jeffreys-Perks interval MN  Miettinen and Nurminen interval




Table 3.15 Observed coverage and average length of nominal 95% confidence intervals (p, =098, p, = 0.02)

Sample Method
Size
n, n, As AsC HA Hal JP Sc ScC W WC Mee MN

100,90  Observed coverage(%) 889 979 893 939 939 925 961 943 985 96.1 96.1
Average length 076 097 088 .08 .08 .094 108 096 .116 085 085

60,50  Observed coverage(%) 886 886 887 970 970 931 942 978 99.1 95.7 957
Average length 095 131 115 118 118 135 158 139 171 117 118

79

30, 20 Observed coverage(%) 63.0 999 63.1 922 948 934 93.7 95.7 99.1 9.1 96.1
Average length 118 201 171 199 202 239 290 237 295 206 209

10,10  Observed coverage(%) 334 100 999 941 941 941 966 954 331 941 941

Average length 133 333 241 369 370 430 535 416 519 364 379
As Asymptotic without correction Sc Score interval without correction
AsC  Asymptotic with correction ScC  Score interval with correction
HA  Asymptotic with Hauck and W Wallenstein’s interval without correction
Anderson’s correction WC  Wallenstein’s interval with correction

Hal  Haldane interval Mee Mee’s interval

Jeffreys-Perks interval Miettinen and Nurminen interval




Table 3.16 Percentage of confidence intervals with deviation and zero width (p, =098, p, =0.02)

€9

Sample Method

Size

n, n, As AsC HA Hal JP Sc ScC W WC Mee MN

100,90  Violation of definition interval(%) 452 81.7 669 O 21 0 21 257 267 O 0
Zero width interval(%) 21 0 0 0 0 0 0 0 0 0 0

60, 50 Violation of definition interval(%) 71.1 977 929 0 112 112 112 282 283 0 0
Zero width interval(%) 11.2 0 0 0 0 0 0 0 0 0 0

30,20 Violation of definition interval(%) 612 999 997 0 369 0 369 199 199 0 0
Zero width interval(%) 39 0 0 0 O O 0 0 0 0 0

10, 10 Violation of definition interval(%) 333 100 999 0 0 0 666 151 153 0 0
Zero width interval(%) 666 0 0 0 0 0 0 0 0 0 0

As Asymptotic without correction Sc Score interval without correction

AsC  Asymptotic with correction ScC  Score interval with correction

HA  Asymptotic with Hauck and A% Wallenstein’s interval without correction

Anderson’s correction WC  Wallenstein’s interval with correction
Hal  Haldane interval Mee Mee’s interval

JP Jeffreys-Perks interval MN  Miettinen and Nurminen interval



3.2 Discussion of simulation study results

The ideal interval method should result in an interval that is short but has
actual coverage close to the nominal coverage, does not deviate from the
definition interval, and has no occurrence of zero width intervals.

3.2.1 Case p, =06 and p, =04 (Table 3.3 and 3.4)

All methods have relative good coverage except the Asymptotic method
without correction (As). The methods with continuity correction exceed the
nominal coverage of the interval. When the sample size is small (n, =n, =10)
some of the methods deviate from the definition interval.

Methods recommended for large(#» >50) and small samples are the Haldane
(Hal), Jeffreys-Perks (JP), Score interval without correction (Sc), Wallenstein’s
interval without correction (W), Mee (Mee) and Miettinen and Nurminen
(MN) intervals. Easy calculable methods are the Haldane interval, Jeffreys-
Perks interval and Score interval without correction.

3.2.2 Case p, =095 and p, =085 (Table 3.5 and 3.6)

Most of the methods have a good coverage when the sample size is at least
moderately large. When the sample is smaller the methods either over or under
cover. Violation of the definition interval and zero width intervals also occur
when the sample size is small. Continuity corrected methods tend to exceed the
nominal coverage of the interval.

Methods recommended for large samples are the Jeffreys-Perks (JP), Score
interval without correction (Sc), Wallenstein’s interval without correction (W),
Mee (Mee) and Miettinen and Nurminen (MN) intervals.

The recommended method for small samples is the Jeffreys-Perks (JP). The
Mee (Mee) and Miettinen and Nurminen (MN) intervals do not attain nominal
coverage for sample size combination (30,20). The Jeffreys-Perks (JP) method
1s easy calculable.
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3.2.3 Case p, =095 and p, =015 (Table 3.7 and 3.8)

Most of the methods have a good coverage for large sample sizes. As the
sample size gets smaller most of the methods either exceed or attain coverage
less than the nominal coverage of the interval. Violation of the definition
interval is common when the sample size is less than 100.

Methods recommended for large samples are the Asymptotic with Hauck and
Anderson’s correction (HA), Haldane (Hal), Jeffreys-Perks (JP), Mee (Mee)
and Miettinen and Nurminen (MN) intervals.

Recommended methods for small samples are the Jeffreys-Perks (JP), Score
interval without correction (Sc), Mee (Mee) and Miettinen and Nurminen
(MN) intervals. Easy calculable methods are the Jeffreys-Perks and Score
mterval without correction.

3.2.4 Case p =098 and p, =09 (Table 3.9 and 3.10)

Most of the methods exceed or attain coverage less than the nominal coverage
of the interval for large sample sizes (100,90). As the sample size decreases
the tendency for exceeding or never attaining the nominal coverage of the
interval grows in all the methods. Methods with continuity correction tend to
exceed the nominal coverage.

Methods recommended for large samples are the Jeffreys-Perks (JP),
Wallenstein’s interval without correction (W), Mee (Mee) and Miettinen and
Nurminen (MN) intervals.

Recommended methods for small samples are the Jeffreys-Perks (JP), Score
interval without correction (Sc), Mee (Mee) and Miettinen and Nurminen
(MN) intervals are recommended. It must be noted that for sample size
combination n, =n, =10 all recommended methods have coverage close to
100%. Easy calculable methods are the Jeffreys-Perks and Score interval
without correction.
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3.2.5 Case p, =098 and p, =01 (Table 3.11 and 3.12)

Methods either exceed or never attain the nominal coverage of the interval and
this worsens as the sample size decreases. Violation of the definition interval
also occurs in some methods for all sample size combinations.

Methods recommended for large samples are Haldane (Hal), Jeffreys-Perks
(JP), Score interval without correction (Sc), Mee (Mee) and Miettinen and
Nurminen (MN) intervals. '

Recommended methods for small samples are the Mee (Mee) and Miettinen
and Nurminen (MN) intervals, though both methods exceed the nominal
coverage of the interval.

3.2.6 Case p, =098 and p, =098 (Table 3.13 and 3.14)

Most of the methods exceed the nominal coverage of the interval. This occurs
more as the sample size gets smaller. Zero width intervals occur in some of the
methods for the small sample size(n, =10 = n,).

Most methods exceed the nominal coverage, but taken length, deviations and
zero width intervals into account the following methods could be used.
Methods recommended for large samples are the Asymptotic with Hauck and
Anderson’s correction (HA), Haldane (Hal), Jeffreys-Perks (JP), Score interval
without correction (Sc), Wallenstein’s interval without correction (W), Mee
(Mee) and Miettinen and Nurminen (MN) intervals.

Recommended methods for small samples are the Jeffreys-Perks (JP), Score
interval without correction (Sc), Mee (Mee) and Miettinen and Nurminen

(MN) intervals. Easy calculable methods are then the Jeffreys-Perks and Score
mterval without correction.

3.2.7 Case p, =098 and p, =002 (Table 3.15 and 3.16)

Methods either exceed or do not attain the nominal coverage of the interval for
large sample sizes. For smaller sample sizes this tendency is continued.
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Violation of the definition interval occurs in most of the methods for ali sample
size combinations.

It is difficult to recommend a method in this case as they either exceed or never
attain the nominal coverage of the interval. Here the methods of Mee (Mee)
and Miettinen and Nurminen (MN) may be used for large and small sample
sizes as both methods do not suffer from any deviations or occurrence of zero
width intervals. Both methods tend to exceed the nominal coverage of the
interval for large samples and never attain the nominal coverage of the interval
for the smallest sample size combination.

3.2.8 An investigation of the occurrence of zero width
intervals and violation of definition interval for two
special cases

As mentioned earlier the conventional Asymptotic interval method suffers from
the occurrence of zero width intervals and violation of the definition interval.
(see section 1.3.2) We calculated examples with the different interval methods
for these cases which are reported in Table 3.17 and 3.18.
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Table 3.17 95% Confidence intervals for 5, =0 and p, =o0.

Sample sizes (n,,7,)

Method (100,90) (60,50) (30,20) (10,10)

Asymptotic without correction [0;0] [0;0] [0;0] [0;0]

Asymptotic with correction [-001;001] [-0.02;002] [-0.04;004] [-0.10;0.10]
Asymptotic with Hauck and Anderson’s correction [-0.01;0.01] [-0.01;0.01] [-0.03;0.03] [-0.05;0.05]
Haldane interval [-0.002;0] [-0.01;0] [-0.03;0] [0;0]

Jeffreys-Perks interval [-0.02;002] [-0.04;003] [-0.09;006] [-0.17;0.17]
Score interval without correction [-0.04;004] [-0.07;006] [-0.16;0.11] [-0.28,0.28]
Score interval with correction [-0.05;005] [-0.09;0.07] [-020;0.14] [-0.34;034]
Wallenstein’s interval without correction [-004;004] [-0.06;006] [-0.11;0.11] [-0.28;0.28]
Wallenstein’s interval with correction [-0.06;006] [-0.09;009] [-0.18;0.18] [-0.40,;040]
Mee’s interval [-0.04;004] [-0.07;006] [-0.16;0.11] [-0.28;0.28]
Miettinen and Nurminen interval [-004;004] [-0.07;006] [-0.16;0.12] [-0.29;0.29]
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Table 3.18 95% Confidence intervals when p =10 and p, =o0.

Sample sizes (n,,n,)

Method (100,90) (60,50) - (30,20) (10,10)
Asymptotic without correction [100;100] [100;1.00] [100;1.00] [1.00;1.00]
Asymptotic with correction [098;101] [098;1.02] [096;104] [090;1.10]
Asymptotic with Hauck and Anderson’s correction [0.99;1.01] [099;101] [098;103] [095;1.05]
Haldane interval [096;1.00] [0.93;1.00] [085;1.00] [0.68;1.00]
Jeffreys-Perks interval [096;1.00] [093;100]* [0.85;100]* [0.68;1.00]*
Score interval without correction [094;100] [091;100] [080;100] [0.61;1.00]
Score interval with correction [093;100]* [088;1.00]* [075;101] [0.51,;1.01]
Wallenstein’s interval without correction [096;100] [093;1.00] [085;100] [068;1.00]
Wallenstein’s interval with correction [094;099] [089;,098] [0.78;096] [0.53;0092]
Mee’s interval [096;100] [093;100] [084;100] [0.68;1.00]
Miettinen and Nurminen interval [096;100] [093;100] [084;100] [0.66;1.00]

* Violation of the definition interval occurs at or later than the third decimal




3.2.8.1 95% Confidence intervals for p =0, p, = 0(Table 3.17)

Zero width intervals occur with the Asymptotic without correction for all
sample size combinations and Haldane interval method for the combination
n=n,=10.

3.2.8.2 95% Confidence intervals for 5 =10, p, =0 (Table 3.18)

Violation of the definition interval occur with the Asymptotic with correction
and Asymptotic with Hauck and Anderson’s correction for all sample size
combinations. For the Score interval with correction it occurs for sample size
combination », =100,n, =90 [ 0.93 ; 1.0014 ] and n, =60,n, =50 [ 0.88 ;
1.0024 ]. For the Jeffreys-Perks interval it occurs for the sample size
combination n, =60,n,=50 [ 0.93 ; 1.00003], n =30,n,=20 [ 0.85 ;
1.00014 1 and n, =n, =10 [ 0.68 ; 1.00149 ]. Zero width intervals occur with
the Asymptotic without correction for all sample size combinations.

3.3 Recommendations

We recommend the interval methods of Miettinen and Nurminen and Mee for
use across all cases including small sample size. They are, however, very
computer intensive because of their iterative nature. The best of the more easy
calculable methods is the Jeffreys-Perks method, which is always satisfactorily

if sample size is>50. The second best is the Score interval without correction.

Beal(1987) also came to this conclusion in his more limited comparison of
methods, when he noted that if one wants to implement a more sophisticated
and complicated interval using a computer program, the Mee and Miettinen
and Nurminen intervals are good choices. Beal also recommended the use of
the Jeffreys-Perks interval when one wants to compute a simple interval.

Newcombe(1998:b) suggests that his methods are the methods yielding shortest
intervals among the intervals, which are easily calculated. We differ somewhat
from this conclusion and found that the Jeffreys-Perks interval yields the best
results among easily calculable intervals. Newcombe's objection that some of
the Bayes estimates of parameters used in the calculation process lie outside
the definition interval [ 0 ; 1 ] may be overlooked since the resulting interval
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has better coverage, shorter length and less violation of the definition interval
than the Score methods.

The Jeffreys-Perks method has a coverage close to 95% or higher and also a
relatively short length for all sample sizes >50. Most practical situations in
clinical trials have a sample size of >50. The Jeffreys-Perks method is thus a
good method to use.
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APPENDIX A
COMPUTER PROGRAM TO CALCULATE THE
CONFIDENCE INTERVALS DESCRIBED

C
C
C
v
C
C
C
C
C
C
Y
v
C
C
C
C
C
C
c
C
C
v
C
C
c
C
C
C

This program produces thirteen types of confidence
intervals for theta=p1-p2 for a 2x2 contingency table:

. Simple asymptotic, without continuity correction
. Simple asymptotic, with continuity correction

. Beal's Haldane interval.

. Beal's Jeffreys-Perks interval.

. Mee interval.

. Miettinen-Nurminen interval.

. Asymptotic with Hauck and Anderson correction
. Score interval without continuity correction

9. Score interval with continuity correction

10. Wallenstein's interval without continuity correction
11. Wallenstein's interval with continuity correction

O ~J O\ W & W N =

Limitation: group totals m and n not to exceed 200.

Number of positive outcomes in first sample, x1.
Total number in first sample, nl.

Number of positive outcomes in second sample, x2.
Total number in second sample, n2.

implicit double precision (a-h,1-z)
implicit integer (i-k)
complex(8)

AAA,BBB,CCC,dA,AAD,BBD,CCD,dd,AW,BW,CW,AAW,BBW,CCW 132,

* ep,xk,magl,mag2.cl,c2,seor,lor,ccl,

* cc2,rbo,rlow,dcl,dc2,eell,eel2,ee21,ee22,yyll,yy12,yy21,yy22 bo,
* onder,maal,nbo1,nbo2,non1,non2,na,nb,nc,nd,add,cbb,or,dda,db,dc,
* ddd,dm,dn

72




d1,d2,e,ee.et, AAA,BBB,CCC,AAD,BBD,CCD,dd,AW,BW,CW,AAW BBW,

double precision d1(2),d2(2),pp(2),prr(2,101),thb(2),e(11,2),
& x(11,2),xx(101,101,11,2),y(11,2,3),fcase(4),flo(4),
& ee(101,101,11,2),xt(101,101,2),et(101,101,2)

integer ilo(101,101,4) ! ,ilt(101,101)

data thb/-1.0d+0,1.0d+0/

common /al/ a,aa,b,bb,c,cc,conf,d, deriv],deriv2, diff, dA,
&

CCW,ep,

(e BN o N ¢ I ¢

& f,fcase,flo,four,half hth,11,12,m,n,nm,nn,np11,np22 nx,one,oldps,
& p,pbar,p1,pp,pr,prr,ps,psihat,psimin,psimax, psiO,p1,p2,132,
& q,9q1,92,r,rw,ss,sss,se,sum, tail,
& th,thb,theta0,thhat three,ths,th1,th2.tol7,t0l8,tol110,tol12,two,
& v,ul,u2,v,w,x,x1,x2,xx1,xx2,xt,xx,y,z,zero,
& 1,1a,1amax, ib,ic,icase,icmax,id,ierr,ihcf ilo,ih,
& 1m,im0,in0,in,inp,intabs,inx,iopt,ip,
& ir,ir0,1s,itab, iter,itest,it0,11,i2,j,k,
& xk,magl,mag2,cl,c2, seor,lor,ccl,
& cc2,rbo,rlow,dcl,dc2,eell,eel2,ee2l,ee22,yyll,yy12,yy21,yy22,
& bo,onder,maal, nbol,nbo2,nonl,non2, na,nb,nc,nd,add,cbb,or,
& dda,db,dc,ddd,dm,dn

inttialise constants

open(11,file='c:\riette\dif. out')
tol7 =1.0d-7

tol8 =1.0d-8

tol10 =1.0d-10

tol12 =1.0d-12

zero =0.0d+0

half =0.5d+0

one =1.0d+0

two =2.0d+0

three =3.0d+0

four =4.0d+0

conf =9.5d+1

tail =half*(one-conf*1.0d-2)
z =1.959963985d+0
intabs=1
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1000 print*,'Number of positive outcomes in first sample: ia'
print*, 'Total number in first sample: im'
print*, Number of positive outcomes in second sample: ib’
print*, 'Total number in second sample: in'
print*, THE LARGEST SAMPLE SIZE FOR THE MOMENT IS 200'
read (5,*) ia,im,ib,in
if (1a.ge. 0 .and. b .ge. 0
& .and. 1a .le. im .and. ib .le. in
& .and. im .gt. 0 .and. im .le. 200
& .and. in .gt. 0 .and. in .le. 200) goto 1200
write (11,9710) ia,im,ib,in
goto 1300
1200 call sixmethods
write(11,9299)ia,im,ib,in
9299 format(/1a=',15 ' im="i5,' ib="i5,' in="i5)
9301 format('Asymptotic interval without continuity correction'/
* 2F15.10)
write(11,9301) (x(1,k),k=1,2)
9302 format(/'Asymptotic interval with continuity correction'/2F15.10)
write (11,9302) (x(2,k),k=1,2)
9303 format(/'Haldane interval'/2F15.10)
write (11,9303) (x(3,k),k=1,2)
9304 format(/Jeffrey-Perks interval'/2F15.10)
write (11,9304) (x(4,k),k=1,2)
9305 format(/'Mee's interval'/2F15.10)
write (11,9305) (x(5,k),k=1,2)
9306 format(/'Miettinen and Nurminen interval'/2F15.10)
write (11,9306) (x(6,k),k=1,2)
9307 format(/'Asymptotic interval with Hauck and Anderson"s'
* ! correction'/2F15.10)
write (11,9307) (x(7,k),k=1,2)
9308 format(/'Score interval without continuity correction'’/2F15.10)
write (11,9308) (x(8,k),k=1,2)
9309 format(/'Score interval with continuity correction'’/2F15.10)
write (11,9309) (x(9,k),k=1,2)
7304 format(/'Wallenstein interval without continuity correction’
*/2F15.10)
write (11,7304) (x(10,k),k=1,2)
7305 format(/'Wallenstein interval with continuity correction'/2F15.10)
write (11,7305) (x(11,k),k=1,2)
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1300 continue
close(11,status='keep")

9710 format('Error: ',13,' / ',i3,' - '13,' / "13)
end

subroutine sixmethods

mmplicit double precision (a-h,1-z)
implicit integer (i-k)
complex(8)
AAA,BBB,CCC,dA,AAD,BBD,CCD,dd,AW,BW,CW,AAW BBW,CCW,I32,
* ep,xk,magl,mag2,cl,c2,seor,lor,ccl,
* cc2,tbo,rlow,dcl,dc2,eell,eel12,ee21,ee22,yyl1l,yy12,yy21,yy22, bo,
* onder,maal,nbo1l,nbo2,nonl,non2,na nb,nc,nd,add,cbb,or,dda,db,dc,
* ddd,dm,dn
double precision d1(2),d2(2),pp(2),prr(2,101),thb(2),e(11,2),
& x(11,2),xx(101,101,11,2),y(11,2,3),fcase(4),flo(4),
& ee(101,101,11,2),xt(101,101,2),et(101,101,2)
integer 110(101,101,4) ! |ilt(101,101)
common /al/ a,aa,b,bb,c,cc,conf,d,deriv], deriv2, diff,dA,
&
dl,d2,e,ee,et, AAA,BBB,CCC,AAD,BBD,CCD,dd,AW,BW,CW,AAW BBW,
CCW,ep,
& f fcase,flo,four,half hth,11,12,m,n,nm,nn,np 1 1,np22,nx,0ne,oldps,
& p,pbar,pi,pp,pr,prr,ps,psihat, psimin, psimax,psiO,p1,p2,132,
& q.,q1,92,r,rw,ss,sss,se, sum, tail,
& th,thb,theta0,thhat, three,ths,th1,th2 tol7,tol8,tol10,tol 12, two,
& u,ul,u2,v,w,x,x1,x2,xx1,xx2,Xt,XX,y,Z,Z€ero,
& 1,1a,1amax,ib,ic,icase,icmax,id,ierr,ihcf,ilo,1h,
& 1m,im0,in0,in,inp,intabs,inx,iopt,ip,
& 1r,1r0,1s,1tab, iter, itest,it0,11,12,j,k,
& xk,magl,mag2,cl,c2 seor,lor,ccl,
& cc2,1bo,rlow,dcl,dc2,eell,eel2,ee2l,ee22,yyl1l,yyl12,yy21,yy22,
& bo,onder,maal,nbo1,nbo2,nonl,non2 na,nb,nc,nd,add,cbb,or,
& dda,db,dc,ddd,dm,dn

if (im .gt. 0 .and. in .gt. 0) goto 2000
write (11,9900) im,in
return
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2000 ic=1m-ia
1d=in-ib
it0=in*ia-im*ib
m=dble(float(im))
n=dble(float(in))
u=(one/m-+one/n)/four
v=(one/m-one/n)/four
a=dble(float(ia))
b=dble(float(ib))
c=dble(float(ic))
d=dble(float(id))
thhat=a/m-b/n
psthat=half*(a/m+b/n)

Usual Asymptotic interval without and with correction (1 & 2)

se=dsqrt(a*c/m**3+b*d/n**3)

x(1,1)=thhat-z*se

x(2,1)=x(1,1)-two*u

x(1,2)=thhat+z*se

x(2,2)=x(1,2)+two*u
c
¢ Approximate general interval with Hauck and Anderson correction (7)
c

pll=a/m

p22=b/n

qll=1-pll
q22=1-p22
hacor=one/(two*(min(m,n)))
var=((p11*q11)/(m-1))+((p22*q22)/(n-1))
hamaal=(z*(dsqrt(var)))+hacor
x(7,1)=thhat-hamaal
x(7,2)=thhat+hamaal
c
¢ Newcombe's score interval without continuity correction (8)
c
thetal=(two*m*p11)+z**2
vierk1=dsqrt(z**2+(four*m*p11*q11))
deell=two*(m+z**2)
13 1=(thetal-(z*vierk1))/deel1




u3 1=(thetal+(z*vierk1))/deel 1
theta2=(two*n*p22)+z**2
vierk2=dsqrt(z**2+(four*n*p22*q22))
deel2=two*(n+z**2)

132=(theta2-(z*vierk2))/deel2
u32=(theta2+(z*vierk2))/deel2
ep=z*(sqrt((u31*(one-u31)/m)+(132*(one-132)/n)))
sn=z*(sqrt((13 1*(one-131)/m)+(u32*(one-u32)/n)))
x(8,1)=thhat-sn

x(8,2)=thhat+ep

c
¢ Newcombe's score interval with continuity correction (9)
c
thetal I=(two*m*p11)+z**2-one
vier11=z**2-two-(one/m)+((four*p11)*((m*q11)+one))
vierk11=z*(dsqrt(vier11))
dd1=two*(m+z**2)
111=(thetall-vierk11)/dd1
thetal2=(two*m*p11)+z**2+one
vier12=z**2+two-(one/m)+((four*p11)*((m*q11)-one))
vierk12=z*(dsqrt(vier12))
ul 1=(thetal2+vierk12)/dd1
theta2 1=(two*n*p22)+z**2-one
vier21=z**2-two-(one/n)+((four*p22)*((n*q22)+one))
vierk2 1=z*(dsqrt(vier21))
dd2=two*(n+z**2)
121=(theta21-vierk21)/dd2
theta22=(two*n*p22)+z**2+one
vier22=z**2+two-(one/n)+((four*p22)*((n*q22)-one))
vierk22=z*(dsqrt(vier22))
u2 1=(theta22-+vierk22)/dd2
tep=dsqrt(((ul 1-(a/m))**2+((b/n)-121)**two))
tsn=dsqrt((((a/m)-111)**2+(u21-(b/n))**two))
x(9,1)=thhat-tsn
x(9,2)=thhat+tep

Wallenstein's interval without continuity correction (10)

eps=zero
rw=m-+n
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SHOULD WE SWITCH INDICES? ONLY NECESSARY IF p11<p22.

if (p11.1t.p22) then ss=one
else ss=zero

if (p11.1t.p22) goto 2

goto 1

WHEN IT IS NOT NECESSARY TO SWITCH INDICES
SOLUTION FOR THE UPPER BOUND d:

if (a.eq.0.and.b.eq.0) goto 80

goto 81
dA=(z**2/(2*m)+(z/dsqrt(m))*dsqrt(z**2/(4*m)))/(1+z**2/m)
goto 6

81 rw=rw

4

pbar=((m*p11)+(n*p22))/rw

EPS1=pl1-p22+eps
if (EPS1.ge.one) then EPS1=one
else EPS1=EPS1

AAA = onet+(z**2/rw)*(one+(m-n)**2/(m*n))
BBB = -two*EPS1 + (z**2/(m*n))*(one-two*pbar)*(m-n)
CCC = EPS1**2 -(z**2/(m*n)) *rw*pbar*(one-pbar)

dA = (-BBB+sqrt(BBB**2 -four*t AAA*CCC))/(two*AAA)

ddo=dA

pld=pbar+(dA*n/rw)
p2d=pbar-(dA*m/rw)

[Set p2d=0 pld=d and var(p1d,p2d) = d*(1-d)/m yielding:]
if (p2d.1t.zero) goto 4

if (p1d.gt.one) goto 5

goto 6

dA=(EPS1+(z**2/(2*m))+(z/dsqrt(m))*dsqrt(EPS 1*(1-EPS 1 )+

*(2%%2/(4*m))))(1+(z**2/m))

goto 6
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d=do
[Setpld=1 p2d=1-d and var(pld,psd) = (1-d)*d/n yielding:]

O o

W

dA=EPS1+(z**2/(2*n))+(z/dsqrt(n))*dsqrt(EPS1*(1-EPS1)+
* (z¥*2/(4*n)))/(1+(1/n)*z**2)

6 UCL =dA
if (p11.eq.p22) goto 70
goto 71

70  LCL=-UCL
goto 14

C SOLUTION FOR THE LOWER BOUND d’, NOW DENOTED AS dd:

71  EPS2=pl1-p22-eps
if (EPS2.1le.zero) then EPS2=zero
else EPS2=EPS2

AAD = one + (z**2/rw)*(1+(m-n)**2/(m*n))
BBD = -two*EPS2 + (z**2/(m*n))*(one-two*pbar)*(m-n)
CCD = EPS2**2 - ((z*¥*2)/(m*n)) *rw*pbar*(one-pbar)

dd = (-BBD-sqrt(BBD**2 -four*t AAD*CCD))/(two*AAD)

pldd=pbar+((dd*n)/rw)
p2dd=pbar-((dd*m)/rw)

c [Set p1dd=0 then p2dd = -dd var(pldd,p2dd) = -dd(1+dd)/n
C yielding:]
if (pldd.lt.zero) goto 7
goto 20
7 dd=(EPS2+(z**2/(two*n))+z*dsqrt(one/n*(EPS2*(one-EPS2) +
* (z*z/(four*n)))))/(one+((z*z)/n))

20 LCL=dd
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C

c

goto 14

WHEN IT IS NECESSARY TO SWITCH INDICES:

ss=1
nm=m
nn=n
xx1=a
xx2=b
m=nn
n=nm
a=xx2
b=xx1
pll=a/m
p22=b/n

SOLUTION FOR THE UPPER BOUND d:
rw=m-+n
pbar=(m*p11+n*p22)/rw
EPS1=pl1-p22+eps
if (EPS1.ge.one) then EPS1=one
else EPS1=EPS1

AW = one+(z**2/rw)*(one+((m-n)**2/(m*n)))
BW = -two*EPS1 + (z**2/(m*n))*(one-two*pbar)*(m-n)
CW = EPS1**2 -(z**2/(m*n)) *rw*pbar*(one-pbar)

dA = (-BW+sqri(BW**2 -four* AW*CW))/(two*AW)

pld=pbar+((dA*n)/rw)
p2d=pbar-((dA*m)/rw)

p2d=0 pld=d and var(pld,p2d) = d*(1-d)/m yielding:
if (p2d.1t.zero) goto 8
if (pld.gt.1) goto 9
goto 10
dA=(EPS1+(z**2/(2*m))+(z/dsqrt(m))*dsqrt(EPS1*(1-EPS1)+
*(z**2/(4*m))))/(1+(z**2/m))

goto 10




c pld=1 p2d=1-d and var(pld,psd) = (1-d)*d/n yielding:
9 dA=EPS1+(z**2/(2*n))+(z/dsqrt(n))*dsqrt(EPS1*(1-EPS1)+
* (2**2/(4*n)))/(1+(1/n)*z**2)

10 UCL =dA

53 if (p11.eq.p22) goto 13
goto 15

13 LCL=-UCL
goto 14

c SOLUTION FOR THE LOWER BOUND d’, NOW DENOTED AS dd:
15 EPS2=p11-p22-eps

if (EPS2.le.zero) then EPS2=zero

else EPS2=EPS2

AAW = one + (z**2/rw)*(one+(m-n)**2/(m*n))
BBW = -two*EPS2 + (z**2/(m*n))*(one-two*pbar)*(m-n)
CCW = EPS2**2 - (z**2/(m*n)) *rw*pbar*(one-pbar)

dd = (-BBW-sqrt(BBW**2 -four*t AAW*CCW))/(two*AAW)

pldd=pbar+((dd*n)/rw)
p2dd=pbar-((dd*m)/rw)

c p2dd = -dd and var(p1dd,p2dd) = -dd(1+dd)/n yielding
if (pldd.eq.zero) goto 12
goto 21
12 dd=(EPS2+(z**2/(two*n))+z*dsqrt(one/n*(EPS2*(one-EPS2) +
* ((z*2)/(four*n)))))/(one+((z*2)/n))

21 LCL=dd

vn=m
vm=n
m=vm
n=vn
vb=a
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va=b
a=va
b=vb

'SO THE CORRECT WALLENSTEIN CONFIDENCE INTERVAL IS
GIVEN BY?)

nUCL=-UCL

nLCL=-LCL
LCL=nUCL
UCL=nLCL

14 x(10,1)=LCL

C
C
C

x(10,2)=UCL
Wallenstein's interval with continuity correction (11)

eps=1/(2*m)+1/(2*n)
rw=m-+n
pll=a/m
p22=b/n

SHOULD WE SWITCH INDICES? ONLY NECESSARY IF p11<p22.

if (p11.1t.p22) then ss=one
else ss=zero

if (p11.1t.p22) goto 32
goto 31

WHEN IT IS NOT NECESSARY TO SWITCH INDICES
SOLUTION FOR THE UPPER BOUND d:

TW=Iw

pbar=((m*p11)+(n*p22))/rw

EPS1=p11-p22+eps

if (EPS1.ge.one) then EPS1=one

else EPS1=EPS1

AAA = one+(z**2/rw)*(one+(m-n)**2/(m*n))
BBB = -two*EPS1 + (z**2/(m*n))*(one-two*pbar)*(m-n)
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CCC = EPS1*#*2 -(z**2/(m*n)) *rw*pbar*(one-pbar)

dA = (-BBB+sqrt(BBB**2 -four* AAA*CCC))/(two*AAA)

pld=pbar+(dA*n/rw)
p2d=pbar-(dA*m/rw)
c [Set p2d=0 pld=d and var(pld,p2d) = d*(1-d)/m yielding:]
if (p2d.1t.zero) goto 34
if (p1d.gt.one) goto 35
goto 36

34 dA=(EPS1+(z**2/(2*m))+(z/dsqrt(m))*dsqrt(EPS 1*(1-EPS 1)+
*(24*2/(4%m))))/(1+(z**2/m))

goto 36

¢ [Setpld=1 p2d=1-d and var(pld,psd) = (1-d)*d/n yielding;]

35 dA=EPS1+(z**2/(2*n))+(z/dsqrt(n))*dsqrt(EPS1*(1-EPS1)+
* (z**2/(4*n)))/(1+(1/n)*z**2)

36 UCL =dA
if (p11.eq.p22) goto 60
goto 61

60 LCL=-UCL
goto 33

c SOLUTION FOR THE LOWER BOUND d°, NOW DENOTED AS dd:
61 EPS2=p11-p22-eps

if (EPS2.1e.zero) then EPS2=zero
else EPS2=EPS2

AAD = one + (z**2/rw)*(1+(m-n)**2/(m*n))
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BBD = -two*EPS2 + (z**2/(m*n))*(one-two*pbar)* (m-n)
CCD = EPS2**2 - ((z**2)/(m*n)) *rw*pbar*(one-pbar)

dd = (-BBD-sqrt(BBD**2 -four* AAD*CCD))/(two*AAD)

pldd=pbar+((dd*n)/rw)
p2dd=pbar-((dd*m)/rw)
c [Set p1dd=0 then p2dd = -dd var(p1dd,p2dd) = -dd(1+dd)/n
c yielding:]
if (pldd.lt.zero) goto 37
goto 40
37  dd=(eps2-(z**2/(2*n)))+((z/sqrt(n))*
& sqrt((z**2/(4*n))-(eps2*(1+eps2))))/(1+(z**2/n))

c dd1=dd

40 LCL=dd
goto 33

c WHEN IT IS NECESSARY TO SWITCH INDICES:

c ss=1

32 nm=m
nn=n
xx1=a
xx2=b
m=nn
n=nm
a=xx2
b=xx1
pll=a/m
p22=b/n

C SOLUTION FOR THE UPPER BOUND d:
rw=m+n
pbar=(m*p1l1+n*p22)/rw
EPS1=pl1-p22+eps
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if (EPS1.ge.one) then EPS1=one
else EPS1=EPS1

AW = onet(z**2/rw)*(one+((m-n)**2/(m*n)))
BW = -two*EPS1 + (z**2/(m*n))*(one-two*pbar)*(m-n)
CW = EPS1#*2 -(z**2/(m*n)) *rw*pbar*(one-pbar)

dA = (-BW+sqrt(BW**2 -four*t AW*CW))/(two* AW)

pld=pbar+((dA*n)/rw)
p2d=pbar-((dA*m)/rw)

C p2d=0 pld=d and var(pld,p2d) = d*(1-d)/m yielding:
if (p2d.1t.zero) goto 38
if (p1d.gt.1) goto 39
goto 50
38 dA=(EPS1+(z**2/(2*m))+(z/dsqrt(m))*dsqrt(EPS1*(1-EPS1)+
*(z**2/(4*m))))/(1+(z**2/m))

c d1=dA
goto 50
c pld=1 p2d=1-d and var(pld,psd) = (1-d)*d/n yielding:

39 dA=EPS1+(z**2/(2*n))+(z/dsqrt(n))*dsqrt(EPS1#(1-EPS 1)+
* (2+%2/(4*n)))/(1+(1/n)*2**2)

50 UCL =dA
if (p11.eq.p22) goto 46
goto 45

46 LCL=-UCL
goto 33

c SOLUTION FOR THE LOWER BOUND d', NOW DENOTED AS dd:
45 EPS2=p11-p22-eps

if (EPS2.le.zero) then EPS2=zero

else EPS2=EPS2
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AAW = one + (z**2/rw)*(one+(m-n)**2/(m*n))
BBW = -two*EPS2 + (z**2/(m*n))*(one-two*pbar)*(m-n)
CCW = EPS2**2 - (z**2/(m*n)) *rw*pbar*(one-pbar)

dd = (-BBW-sqrt(BBW**2 -four* AAW*CCW))/(two*AAW)

pldd=pbar+((dd*n)/rw)
p2dd=pbar-((dd*m)/rw)

c p2dd = -dd and var(p1dd,p2dd) = -dd(1+dd)/n yielding
if (pldd.eq.zero) goto 42
goto 41
42 dd=(eps2-(z**2/(2*n)))+((z/sqrt(n))*
& sqrt((z**2/(4*n))-(eps2*(1+eps2))))/(1+(z**2/n))

41 LCL=dd

¢ 'SO THE CORRECT WALLENSTEIN CONFIDENCE INTERVAL IS
GIVEN BY:))

nUCL=-UCL
nLCL=-LCL
LCL=nUCL
UCL=nLCL

33 x(11,1)=LCL
x(11,2)=UCL
c
¢ Beal's Haldane & Jeffreys-Perks methods 3 & 4
c
do 25001=3,4 ! method
ilo(ia+1,ib+1,1)=0
ps=(a/m+b/n)/two
if (1 .eq. 4) ps=((a+half)/(m+one)+(b+half)/(n+one))/two
w=u*(four*ps*(one-ps)-thhat**2)
w=w+two*v*(one-two*ps)*thhat
w=w+four*(one-ps)*ps*(z*u)**2
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w=w+(z*v*(one-two*ps))**2
w=z*dsqrt(w)/(one+z*z*u)
th=(thhat+z*z*v*(one-two*ps))/(one+z*z*u)

x(1,1)=th-w

x(1,2)=th+w

do 2200 k=1,2 I lower/upper
do 2200 j=1,2 ! 1st/2nd sample

pi=ps-half*x(i,k)*(-one)**;
if (pi .le. -tol12 .or. pi .ge. one+tol12) goto 2300
2200 continue
goto 2500
2300 ilo(ia+1,ib+1,i)=1
2500 continue
c
¢ Mee’s interval and Miettinen and Nurminen’s interval (5 & 6)
c
3000 do 4000 i=5,6 ! method
do 4000 k=1,2 I lower/upper
if ((k.eq. 1 .and. 1a .eq. 0 .and. 1d .eq. 0)
& .or. (k .eq. 2 .and. ib .eq. 0 .and. ic .eq. 0)) goto 3900
th1=thhat
th2=thb(k)
th=(th1+th2)*half
do 3200 iter=1,40 ! for theta within le-12
call profile
pp(1)=ps+hth
pp(2)=ps-hth
f=((th-thhat)/z)**2
if (1 .eq. 6) f=f*(one-one/(m+n))
=pp(1)*(one-pp(1))/m+pp(2)*(one-pp(2))/n-f
if (f .1t. zero) goto 3100
th1=th
goto 3200
3100 th2=th
3200 th=(th1+th2)*half
goto 3950
3900 th=thb(k)
ps=half
3950 e(1,k)=ps
4000 x(i,k)=th
if (x(5,1) .1t. x(6,1) .or. x(5,2) .gt. x(6,2))
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& write (11,9800) ia,im, ib,in, ((x(i,k),k=1,2),i=5,6)
return

9800 format('Warning: for',i5,'/ ',i5," - ',15,' / ',15/
& 'Mee interval' ,f15.10,' to ',£15.10,' not a subset of'/
& 'M-N interval',f15.10,' to ',f15.10)

9900 format('Error: im='16,' in=",16)
end

subroutine profile

Given a, m, b and n, this subroutine calculates the psi value, ps,
that maximises the likelihood for any hypothetical value of theta,
viz. th, between -1 and +1.

Four cases are distinguished according to the pattern of empty cells.

O O 0 0 6 O 6

implicit double precision (a-h,1-z)
implicit integer (1-k)
complex(8)
AAA BBB,CCC,dA,AAD,BBD,CCD,dd,AW,BW,CW,AAW,BBW,CCW,132,
* ep,xk,magl,mag2 cl,c2 seor,lor,ccl,
* cc2,rbo,rlow,dcl,dc2,eell,eel2,ee21,ee22,yyl 1,yyl12,yy21,yy22,bo,
* onder,maal nbo1,nbo2 nonl,non2 na nb nc,nd,add,cbb,or,dda,db,dc,
* ddd,dm,dn
double precision d1(2),d2(2),pp(2),prr(2,101),thb(2),e(11,2),
& x(11,2),xx(101,101,11,2),y(11,2,3),fcase(4),flo(4),
& ee(101,101,11,2),xt(101,101,2),et(101,101,2)
integer 1lo(101,101,4) ! ,ilt(101,101)
common /al/ a,aa,b,bb,c,cc,conf,d,derivl,deriv2, diff dA,
&
di,d2,e,ee,et, AAA,BBB,CCC,AAD,BBD,CCD,dd,AW,BW,CW,AAW,BBW,
CCW,ep,
& f fcase,flo,four,half hth,11,12, m,n,nm,nn,np11,np22,nx,0ne,oldps,
& p,pbar,p1,pp,pr,prr,ps,psihat,psimin, psimax,psiO,p1,p2,132,
& q,q1,92,1,rw,ss,sss,se,sum,tail,
& th,thb,theta0,thhat three,ths,th1,th2,tol7,tol8,tol10,to0l12,two,
& wulu2,v,w x,x1,x2,xx1,xx2,xt,xx,y,z,zero,
& 1,1a,1amax,1b,ic,icase,icmax,id,ierr,ihcf ilo,ih,
& 1m,im0,in0,in,inp,intabs,inx,iopt,ip,
& 11,110, 1s,itab, iter, itest,it0,11,12,j,k,
& xk,magl,mag2,cl,c2,seor,lor,ccl,
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& cc2,rbo,rlow,dcl,dc2,eell,eel2,ee21,ee22,yyll,yyl12 yy21, yy22,
& bo,onder,maal,nbol,nbo2,non1,non2,na,nb,nc,nd,add,cbb,or,
& dda,db,dc,ddd,dm,dn

ps=half
hth=half*th
if (dabs(th) .le. one+tol12) goto 500
write (11,9900) th
goto 5100

500 1f (dabs(th) .gt. one-tol12) goto 5000 ! then ps=half
if ((1b .eq. 0 .and. ic .eq. 0) .or.
& (1a.eq. 0 .and. 1d .eq. 0)) goto 4000
if ((1a .eq. 0 .and. ib .eq. 0) .or.
& (ic .eq. 0 .and. id .eq. 0)) goto 3000
if (ia.eq. 0 .or. ib.eq. O .or.
& ic.eq. 0 .or. i1d.eq. 0) goto 2000

¢ Case (1): no empty cells

c

1000 psimin=dabs(hth)
psimax=one-psimin

1100 p1=ps+hth
p2=ps-hth
ql=one-pl
q2=one-p2
if (p1 .1t. tol12 .or. p2 .1t. tol12 .or.
& ql .1t tol12 .or. g2 .1t. tol12) goto 1900
derivl=a/p1+b/p2-c/ql-d/q2
deriv2=-a/p1**2-b/p2**2-c/q1**2-d/q2**2
oldps=ps
ps=ps-derivl/deriv2
if (ps .le. psimin+tol10) ps=half* (psimin-+oldps)
if (ps .gt. psimax-tol10) ps=half*(psimax-+oldps)
if (dabs(ps-oldps) .gt. tol12) goto 1100
goto 5000

1900 write (11,9910) 1a,im,ib,in,1,th,p1,p2
goto 5000

c

¢ Case (i1): one empty cell

C




2000 aa=m+n
if (1b .eq. 0) goto 2200
if (ic .eq. 0) goto 2300
if (1d .eq. 0) goto 2400

2100 ths=-(aa-dsqrt(aa**2-four*b*c))*half/c
ps=-hth
if (th .le. ths) goto 5000
bb=c*(one-th)+d
cc=-hth*((c-d)*(one-hth)+b*hth)
goto 2500

2200 ths=(aa-dsqrt(aa**2-four*a*d))*half/d
ps=hth
if (th .ge. ths) goto 5000
bb=d*(one+th)+c
cc=hth*((d-c)*(one+hth)-a*hth)
goto 2500

2300 ths=(aa-dsqrt(aa**2-four*a*d))*half/a
ps=one-hth
if (th .ge. ths) goto 5000
bb=a*(one+th)+b
cc=hth*((a-b)*(one+hth)-d*hth)
goto 2500

2400 ths=-(aa-dsqrt(aa**2-four*b*c))*half/b
ps=one-+hth
if (th .1t. ths) goto 5000
bb=b*(one-th)+a
cc=-hth*((b-a)*(one-hth)+c*hth)

2500 ps=(bb+dsqrt(bb**2-four*aa*cc))*half/aa
if (1a .eq. 0 .or. ib .eq. 0) ps=one-ps
goto 5000

Case (i11): two empty cells, same row.
c
3000 ps=dabs(hth)

if (ic .eq. 0) ps=one-ps

goto 5000

Case (iv): two empty cells, same diagonal.
c

4000 if (im .eq. in) goto 5000 ! then ps=half
if (1a .eq. 0) goto 4500




if (im .1t. in) goto 4300
if (m*th .1t. n) goto 4400
4100 ps=one-hth
goto 5000
4300 if (n*th .1t. m) goto 4400
ps=hth
goto 5000
4400 ps=(m+(m-n)*hth)/(m+n)
goto 5000
4500 if (in .1t. im) goto 4800
if (n*(-th) .1t. m) goto 4900
4600 ps=one+hth
goto 5000
4800 if (m*(-th) .It. n) goto 4900
ps=-hth
goto 5000
4900 ps=(n-+(m-n)*hth)/(m+n)
5000 continue
5100 continue
9900 format('Error: theta=',f15.12,' out of range')
9910 format('Error: for',15,'/ ',15," - ',15,' / ',15," method',i2
& /'theta=',£15.12," p1='"£16.12,' p2=",£f16.12)
return
end
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