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GLOSSARY

L

U

<I>

observed population proportion for population i

an observed proportion from a sample from population i

number of successes in a Binomial (ni' Pi)' i = 1,2 experiment, a

random variable

observed number of successes from a Binomial (ni' Pi) population

i = 1,2, not a random variable

number of repetitions from population i = 1,2 also known as

sample size

relative risk

difference, PI - P2

general notation for a parameter

odds ratio

the probability of failing to fmd the specified difference to be

statistically significant

lower confidence limit

upper confidence limit

the cumulative distribution function of the standard normal

distribution

the exponential function, denoting the inverse procedure to

taking logarithms

the Greek capital letter sigma, denoting 'sum of

infmity, the value larger than any imaginable number. Likewise

-<:IJ is the value less than any imaginable negative number.

significance level of a hypothesis test

P

b

e
!If

jJ

vii
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viii

r = I-a general notation for the confidence coefficient in a confidence

interval

a value from the Chi squared distribution, the sampling

distribution for test statistics derived from tables of frequencies.

X~,a the 100(1- a)% percentile of the chi-square distribution with v

degrees of freedom.

Z a the 100(1- a)% percentile of the standard normal distribution
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CHAPTER 1

CONFIDENCE INTERVALS FOR THE DIFFERENCE

BETWEEN TWO PROPORTIONS

1.1 Introduction

The purpose of the statistical analysis of medical research data is to make

observations on a sample of subjects and then draw inferences, in some

instances about the population of all such subjects from which the sample is

drawn. Even a well-designed study can give only an idea of the answer sought

because of random variation in the sample. Results from a single sample are

thus subject to statistical uncertainty, and this uncertainty is related, among

others, to the size of the sample.

An example of the statistical analysis of data would be calculating an estimate

of a parameter and a confidence interval for the parameter. The confidence

interval indicates the precision of the estimate. For example, if the parameter

of interest is a difference between the proportions of patients improving on two

different treatments, and if the independent sample proportions of patients

improving in two groups of 60 patients each receiving the treatments are

respectively 75% and 55%, then the difference of 20% can be reported with a

95% confidence interval of [3.3%; 36.7%]. This interval was calculated

using the Asymptotic normal without continuity correction method. The

estimate of 20% is imprecise, but the imprecision is incorporated into the

presentation of fmdings through reporting a confidence interval.
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Confidence intervals reflect the uncertainty associated with the fmdings of a

study directly on the scale of the original measurement. This has advantages

over the practice of only reporting P-values, which are usually referred to as

'significant' or 'non-significant'. A confidence interval gives a range of values

that contains the true population value of the parameter in question with the

chosen confidence. The confidence level usually used is 95%.

As pointed out above, a single study gives an imprecise estimate of the true

population value in which we are interested. The imprecision is indicated by

the width of the confidence interval, the wider the confidence interval the less

the precision. The width of the confidence interval depends on three factors.

Firstly, larger sample sizes will give more precise results than smaller samples

and thus narrower confidence intervals. Thus wide confidence intervals may

emphasise the unreliability of conclusions based on small samples. During the

planning stage of a study it is possible to estimate the sample size that should

be used by stating the width of the confidence interval required at the end of

the study and carrying out the appropriate calculation for the sample size.

Altman(1992) noted that the determination of an appropriate sample size is a

common task in the planning of clinical trials. Secondly, the smaller the

variability of the data(between subjects, within subjects, from measurement

error and from other sources) the more precise the sample estimate and the

narrower the confidence interval will be. Thirdly, the higher the confidence

level required, the wider the confidence interval will be.

According to Gardner and Altman(1989) the British Medical Journal(BMJ)

expects researchers submitting scientific papers to use confidence intervals

when appropriate. The BMJ also wants a reduced emphasis on the



presentation of P-values. The Lancet, the Medical Journal of Australia, the

American Journal of Public Health, and the British Heart Journal, among

others, have adopted this policy, and it has been endorsed by the International

Committee of Medical Journal Editors. It is therefore important that, with

different analyses of medical data, the user should be able to calculate the

relevant confidence intervals accurately. In the present thesis confidence

intervals of the difference of binomial proportions based on two independent

samples are studied.

In this chapter a general introduction is given. In chapter 2 confidence

intelvals are discussed in general and then the different methods for calculating

confidence intervals for the difference of binomial proportions found in

literature are discussed. In chapter 3 the different confidence interval methods

discussed in chapter 2 are compared through simulation with respect to length

and coverage probability of the respective intervals. In the Appendix the

FORTRAN computer program to calculate all the mentioned confidence

intervals is given.

3
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1.2 Comparison of proportions in medical research

1.2.1 Areas of application

A comparison of proportions is performed in various areas of medical research.

Epidemiology: In epidemiology the risk of disease in different groups of

subjects is often compared. For example, the risk of developing lung cancer

(proportion of subjects who develop lung cancer) in a group of smokers is

compared to the risk of developing lung cancer in a non-smoker group.

Clinical trials: The estimation of response or cure rates is an important aspect

in the analysis of many clinical trials; for example, the response rate

(proportion of patients that are cured) to two different drug treatments may be

compared.

1.2.2 Statistical measures for the comparison of

proportions

1.2.2.1 Proportions

A proportion is calculated as :

where Xj =Number of successes from population i = 1,2

and n, = Number of repetitions from population i = 1,2
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Note that Pi is an estimate for the population parameter Pi which is the

probability for a success in population i = 1,2. We assume the number of

successes is Binomially distributed Xi ~ Bin(ni ,Pi). A proportion can lie in the

interval [0; 1 ], so the difference between two proportions can lie only in the

interval [-1; 1 ], which we will call the definition interval.

1.2.2.2 Difference, odds ratio and relative risk

Three statistical measures often used to compare two proportions PI and P2

are:

(i) the difference h = PI - P2' also called the risk difference,

(ii) the odds ratio If! = PI (1- P2) / (1- PI )P2 and

(iii) the relative risk p = PI / P2.

Santner and Yamagami(1993) noted that the odds ratio is the most difficult of

the three to interpret although it is the easiest for which to calculate conftdence

intervals( at least in the sense that an exact conftdence interval can be

calculated in some situations). Interpretation of the relative risk and of the

difference is relatively easy but conftdence intervals are more difficult to

construct. Anbar(1983) noted that although the odds ratio is a natural

parameter, the difference seems to be of more meaning to the clinician.
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1.3 Problems with confidence intervals for the difference

1.3.1 Unavailability of standard software

Confidence intervals for the difference, odds ratio and the relative risk are

provided by most statistical software, like the SAS® Procedure FREQ

(SAS/STAT Software: Changes and Enhancements through Release 6.12,

Chapter 9, 1997) and CIA (Gardner, 1989). Unfortunately, accurate confidence

intervals for the difference are not available in these software packages.

Thus one of the problems with confidence intervals for the difference of

proportions has been that the methods needed to calculate such confidence

intervals accurately are not readily available in statistical textbooks and

software. Standard textbooks and software usually provide only the

Asymptotic intervals (see section 2.1.1) which in general are satisfactory only

for large samples and proportions close to 0.5, [Fleiss(1981), Gardner and

Altman(1989), . Zar(1984), Rosner(1990), Altman(1992), Snedecor and

Cochran(1980)].

As will be discussed below, the conventional Asymptotic methods are prone to

give intervals that do not make sense, in medical and statistical terms. Brenner

and Quan(1990) noted that it has long been known that the conventional

Asymptotic interval methods are problematic. As most standard statistical

software packages have nothing better to offer to the user than the conventional

Asymptotic interval method, this method, despite its shortcomings, IS

continued to be used, mainly because of its ease of calculation.
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1.3.2 Shortcomings of the conventional Asymptotic

interval method.

Problems that can occur when using the conventional Asymptotic interval

method are the following:

1.3.2.1 Intervals of zero length

Consider the situation when we want to calculate the confidence interval for

the difference between the proportion of patients receiving two different types

of drug who develop an illness. Suppose for illustration that nobody develops

an illness in either of the two groups; the resulting Asymptotic confidence

interval for the difference would then be [ 0 ; 0 ]. The interval IS

inappropriately of zero length, and equal to the observed difference, i.e. O.

Newcombe(1995:b) calls this type of violation bilateral Maximum Likelihood

Estimation(MLE) tethering. MLE tethering occurs when either the upper

confidence limit U, or the lower confidence limit L of the confidence interval

[ L ; U] is equal to i ,the estimated difference between the two proportions.

This is an infringement of the principle that the confidence interval [ L ; U]

should represent some "margin of error", on either side of b at least when

b ::j:. -1 and b ::j:. 1. Bilateral MLE tethering, L = b = U , constitutes a degenerate

or zero-width interval(ZWI) and is always inappropriate.



1.3.2.2 Violation of the definition interval

In the same situation as in l.3.2.1, suppose that all patients on drug A develop

the illness and no patient on drug B develops the illness. Suppose that the

number of patients on drug A is 20 and on drug B is 10. The Asymptotic

confidence interval(see (2.2.2)) is then [ 0.93 ; l.08 ], when using the

continuity correction. The interval inappropriately extends over the definition

interval [ -1; 1 ]. This is called overt overshoot(Newcombe(1995:b)).Overt

overshoot occurs when U > 1 or L < -1 . U = 1 is not counted as a violation

when b = 1, and the same applies for L = -1 when b = -1 .

1.3.2.3 Unsatisfactory coverage

Confidence intervals calculated using the conventional Asymptotic method

may have actual coverage considerably different from the specifted(nominal)

coverage.

8

1.4 Objectives of the study

In this study the coverage and length of confidence intervals of different

confidence interval methods for the difference between two Binomial

proportions will be investigated. Recommendations are made as to which

interval methods should be used with respect to different sample sizes.

Suitable interval methods are recommended after regard to the ease and speed



of computation involved with each method.

available as easy-to-use programs.

9

These methods are made



CHAPTER2

CONFIDENCE INTERVALS FOR THE DIFFERENCE

BETWEEN TWO PROPORTIONS

2.1 Methods to calculate confidence intervals in general

2.1.1 Definition of a confidence interval

A confidence interval can be defmed as follows(A.M. Mood, et al (1974)):

Let Xp""Xn be a random sample from the density f(x,B), and r(B) be some

function of B. Furthermore, let T, = ~(Xp""Xn) and T2 = 7;(X" ... ,Xn) be

two statistics(i.e. functions of Xp ... ,XJ satisfying ~:::;Yz for which

Pe[~ < r(B) < 7;] == r holds, where the probability r does not depend on B. If

t, and t2 are respectively values of 1; and T; obtained from an observed

random sample X" ... ,Xn, then the interval [t"t2] is called a lOOr percent

interval for r(B) ; r is called the confidence coefficient. We will denote a

lOOr% confidence interval for r(B) as CONF(r(B))y =[t"t2]. The value r.is

called the lower confidence limit(LCL) and is also denoted as L. The value t2

is called the upper confidence limit(UCL) and denoted as U.

10

One or the other, but not both, of the two statistics 1; = T; (X" ... , X n) or

T; = 1;(X, , ..., Xn) may be constant; that is, one of the two end points of the

interval [t" t2] may be constant in which case the interval [t" t2] will be called

a one-sided confidence interval. Confidence intervals can be obtained by
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several methods. The most frequently used methods are the pivotal quantity

method and the statistical method. We first consider the pivotal quantity

method.

2.1.2 The pivotal quantity method.

A pivotal quantity can be defmed as foHows(Mood, et al (1974)):

Let XI"",Xn be a random sample from the density j(x,B) and

Q = q( XI , ... , X n ; B) be a function of XI, ... , Xn and of the parameter B. If Q has

a distribution that does not depend on B, then Q is said to be a pivotal quantity.

The pivotal quantity method(Mood, et al (1974)), works as follows: If

Q = q(XI, ... , X n; B) is a pivotal quantity and has a probability density function

h( q), then for any fixed r where 0 < r < 1, there exist values ql and q2

depending on r such that P[ ql ~ Q ~ q2] = r .



Figure 2.1.2.1 Density function h(q) of Q.

~h(q)

y

Now, for each possible sample value (xl, ... ,xn) it follows that: ql ~ Q s q2 if

and only if two statistics T; and T; exist such that

~(XI , ... .v.) s r(O) s T;(xl,.··,xn). If ti and t2 are the values of these statistics

t; and T; then [tl' t2] is a 100 r % confidence interval for r(0), since

ql ~ Q s q2 if and only if t, s r(O) ~ T;. But P[ql s Q s q2] = r so

Pe[ I; s r(O) s 7;] = r and according to definition 2.1.1 the interval [tp t2] is a

lOOr % confidence interval for r(0) .

12

A large sample confidence interval for a Bernoulli parameter p, i.e. for the

probability of a success in a single Bernoulli trial, can be obtained by using the

pivotal quantity method as follows. Let ZI"'" Z; denote the elements(random

variables) of a sample of size n from a Bernoulli distribution with probability

function:



fez) = pZ (1- Py-z , z = 0,1

where z denotes the number of successes in one Bernoulli trial.

Now X = Zl+.. ,+Zn = number of successes ill n trials has a Binomial

distribution with probability function

x = 0,1,2, ... ,n.

Note that the proportion p in the Bernoulli probability function and p in the

Binomial probability function is the same. Thus this proportion is called a

Bernoulli or a Binomial proportion.

When the sample SIze is "large enough" it follows from the central limit

theorem that the mean of Zp""Zn namely z = (Zl +",+Zn) / n = X / n is

approximately normal distributed with mean p and variance p(l- p) / n,

denoted:

The statistic X / n is also the maximum likelihood estimator for the parameter

p and denoted as jJ = X / n . According to Zar( 1984) the normal

approximation can be used if p is neither very small(i.e., close to 0) nor very

large(close to 1). Cochran(1977), in Snedecor and Cochran(1980), offered the

following sample size recommendations for different magnitudes of jJ:

l3



0.5

0.4 or 0.6

0.3 or 0.7

0.2 or 0.8

0.1 or 0.9

0.05 or 0.95

~30

Table 2.1.2.1 Sample size recommendations for different magnitudes of p
A

P n

~50

~80

~200

~600

~ 1400

-0* 00

* When p is extremely small, np follows the Poisson distribution.

Now
Ap-p

Q = ~=====.==
~p{l- p)ln

is a pivotal quantity and has an approximate normal distribution N(O,I). Thus

two values qj = -Za/2 and q2 = Za/2 exist such that p(qj s Q:s; q2) = 1-a. The

inequality qj :s; Q:s; q2 can be rewritten as:

, ~P(I-P)< <' ~P(I-P)
p - Z a/2 n - P - P + z a/2 n .

Since ~ p{l- P )1 n ~ ~ p{l- P )1 n it follows that

, ~p(1-ft) , ~ft(I-P)
p - Za/2 n :s;p s; p + Za/2 n

() _ '+ ~p(1-p)CONF p j-a - p - Z a/2 n . (2.1.2.1)

and consequently

14



The normal approximation usually does not give accurate confidence limits;

according to Vollset(1993), it is especially poor when np or nq is less than 5,

or when p is near 0 or 1. Furthermore, the normal approximation gives

confidence limits symmetric around p, which can result in the computation of

a nonsensical confidence limit where the lower confidence limit(LCL) L for p

could be less then 0 or the upper confidence limit(UCL) U for p could be

more than I.

2.1.3 The statistical method to determine confidence

intervals

The pivotal quantity method for calculating a confidence interval for p,

described above, is only valid for large sample sizes. When the sample size n

is so small that the cel!tral limit theorem cannot be used, one can use the

"Statistical Method" to construct a confidence interval for p.

Suppose XI, ••• , Xn are the elements of a random sample from f( x, 0) and

suppose T = T( XI, ... , X n) is a statistic. Assume that T is continuous( a similar

method exists for discrete statistics) with probability density function g(t, 0) .

Now two functions h. (0) and ~ (0) can be defmed such that

P(T::::; hi (0)) = a / 2 and P(T ~ h2 (0)) = a /2 where 0 < a < 1 is a very small real

number and where h; (0) < ~ (0) for all o.

15

This is shown graphically in Figure 2.1.3.1.
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Figure 2.1.3.1 Distribution of T.

1-<>.

~ (9)

As in Figure 2.1.3.2, sketch ~(e) and ~(e) as functions of e and let t' denote

the value of T= T(XI, ...,Xn), obtained from a single random sample e.g.

t' = T(xl, ... ,xn). Draw a horizontal line at t = t' to intersect ~(e) and ~(e)

respectively at e -values VI and V2. The interval h,v2] is then a (l-a)%

confidence interval for 8.

To prove this statement let e· be the true value of e. Then from Figure

2.1.3.2 we see that

16

h, (e·) s t· ~h2(e·)
if and only if VI s e· ~V2 for any observed t", But according to the definition

of h; and ~:

so

p( hl (e*) s T ~ h2 (e*)) = 1-a,

p( VI ~ e ~ v2) = 1-a
and consequently according to definition 2.1.1



t' -----------------,----------------:----------------
, ,, ,, ,, ,
, ,

Figure 2.1.3.2 hi (e) as functions of e; i = 1,2.

h
2
(e·) ---------------------------------- :

h) (e·) ------------------(--------------;

El

It is not really necessary to sketch the functions h, (e) and ~ (e) to fmd the

confidence interval. Note that V2 is the value of e where the line t = t' and

the curve t = h; (e) intersect. Thus we solve for e from:

00

= f g(t,e) dt for continuous t E(-OO,OO)
-00

t'

= :Lg(t,e) for discrete t defmed over [a,b].
l=a

Similarly, to fmd VI we solve for e from

17



b

= :Lg(t,B) for discrete t defmed over [a,b].
/=/'

eo

= Ig(t, B) dt for continuous t E (-00,00)
I'

We illustrate the method by fmding a confidence interval for aBernoulli

parameter p based on a small sample.

Suppose a Bernoulli experiment is conducted n = 4 times and that there is

x = 1 success. We wish to fmd a 95% confidence interval for p. Note that

since n is very small we cannot use the interval(2.1.2.1) which is valid only

for large n. Consider T = X as our statistic which has a Binomial Bin( 4, p)

distribution where p is the probability of a success. Note that t· = 1 indicates

only one success. To get V2 we solve for p from the probability equation

p( T s to) = 0.025

i.e. P(T ~ 1)= 0.025

(~)(1-pt +(:)P(l- p)3 = 0.025

(1- p)3(1 + 3p) = 0.025 .

Let f(p)=(1-pY(1+3p)=0.025 then if p=0.805 we get

f(0.805)=0.0253 ~O.025. Thus v2 =0.805.

18

To fmd VI solve for p from the probability equation P(T?:.l) = 0.025.

Thus P(T < 1)= 0.975

P(T = 0) = 0.975



P = 0.0063 = VI .

Thus the 95% confidence interval for pis: CONF(P)O.95 = [ 0.0063 ; 0.805 ].

2.2 Methods to calculate confidence intervals for the

difference between two proportions

2.2.1 Introduction

We are interested in fmding confidence intervals for the difference between

two Bernoulli( or Binomial) proportions PI and P2 from two independent

Bernoulli distributions with probability functions

( )

I-Z

flz) = P; 1- Pi wherez = 0,1 and j=1,2. If a random sample Zli"",Zni of

nJ

size ni is taken from the Bernoulli distribution j then the sum Xi = "LZij of
i=1

these random elements Zu has a Binomial distribution B(ni,pJ with

probability function:

, for i,j=~2.
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can be approximated by the normal distribution with mean niPi and variance

niP;(l-Pi) e.g. X;-N(niPi;n;p;(l-Pi))' Approximate confidence intervals



XI - Bin(nl,PI) and X2 - Bin(n2,P2) independently, then

according to the Central Limit Theorem

approximately

can be obtained for each Pi ( or qi = 1-Pi) using the normal approximation to

the binomial distribution as in section 1.2, in combination with the pivotal

quantity method(see section 2.2.2).

2.2.2 Tbe conventional approximate confidence interval

based on the pivotal quantity method

An approximate confidence interval for differences between two proportions

can be derived as follows. If PI = XI/nl is the estimator of PI from the first

sample, and P2 = X2 / n2 the estimator of P2 from the second, where

independently from

Thus approximately

ft, ~ft, - NlP' ~ p,{ p, (In~p,) + p,(~~ p')J J
and
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Q is a pivotal quantity for PI - P2' Consequently two values ql = -Za/2 and

q2 = Za/2 exist such that p(ql s Q::; q2) = r = 1-a . But ql ::; Q::; q2 can be

rewritten in the form:

A (1 A) A (1 A)
PI - PI + P2 - P2 and we get the 1 OO( 1 - a)% large sample confidence

~ nl n2

interval for b = PI - P2 as:

This confidence interval corresponds to the acceptance region of the r test for

a 2x2 contingency table without correcting for continuity. This interval is also

called the "conventional confidence interval" for the difference PI - P2' This

interval method is easy to calculate with a calculator and is used in the

software SAS® Procedure FREQ(SAS/STAT Software: Changes and

Enhancements through Release 6.12, Chapter 9, 1997) and CIA(Gardner,

1989) as the interval method to calculate the confidence interval for the

difference PI - P2 .

Example: If XI = 56, x2 = 48, nl = 70 and ~ = 80 then the 95% confidence

interval is given by CONF(PI - pJ095 = [0.0575 ; 0.3425 ].
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Yates( 1934) proposed a modification of this confidence interval, usmg a

continuity correction, yielding the confidence interval

CONF (PI - P2) I-a =

(

A _ A ) + [ PI (1- PI) + P2 (1- P2) + (_1 + _1 )]PI P2 - Za12, .
,nl n2 2nl 2n2

(2.2.3.1)

2.2.3 Approximate confidence interval with continuity

correction

This interval method is easy to calculate with a calculator.

Example: If XI = 56, x2 = 48, nl = 70 and ~ = 80 then the 95% Yates

confidence interval is given by CONF(PI - P2)095 =[ 0.0441 ; 0.3559 ].

The correction takes account of the fact that a continuous distribution( the chi

square and normal, respectively) is being used to represent the discrete

distribution of sample frequencies. Studies of the effects of the continuity

correction have been made by Vollset(1993), who compared 13 methods for

computing binomial intervals. He strongly discourages the "standard textbook"

method and its "continuity corrected" version. This is also an opinion held by

several other authors, such as Ghosh(1979), Blyth and Still(1983), Storer and

Kim(1990), Edwardes(1994) and Bohning(1994). Other authors, like

Fleiss(1981) and Gardner and Altman(1989), however, still recommend that

the correction should be used because the incorporation of the correction for

continuity brings probabilities associated with t and Z into closer agreement

with the exact probabilities than when it is not applied. Altman(1992)
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2.2.4 The Hauck and Anderson(1986) interval

mentions that it is advisable to use a continuity correction when comparing two

proportions, especially when the samples are small. The effect is to reduce

slightly the observed difference between the two proportions.

Hauck and Anderson( 1986) proposed another modification of the conventional

approximate confidence interval(2.2.2). They performed a simulation study to

compare seven confidence interval methods for the difference of two binomial

probabilities based on the normal approximation. Their approach was directed

toward identifying and comparing methods for widening the uncorrected

intervals, treating the Yates correction as giving the maximum widening. They

considered different choices of standard errors and several continuity

corrections. They recommended the use of the continuity correction

. t ) combined with the use of (ni - 1) rather than n, in the estimate of
2mm »,».
the standard error. This yields the following confidence interval:

CONF(p _ p) = (pA _ pA ) + [z PI (1- PI) + P2 (1- P2) + 1 ]
I 2 I-a I 2 - a/21/ . ( )~ nl -1 n2 -1 2mm »,».

(2.2.4.1)

This interval method is easy to calculate with a calculator.
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Example: If XI = 56, x2 = 48, nl = 70 and ~ = 80, then the 95% Hauck and

Anderson confidence interval is given by

CONF(pl - P2)O.95 = [ 0.0435 ; 0.3565 ].
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Beny(1990) comments that the Hauck and Anderson confidence interval offers

better performance than the conventional confidence interval. He also suggests

that when both observed proportions are equal to zero, or both are equal to one,

the lower confidence limit could be taken as -1 + (a / 2tn2 and the upper limit

as 1- (a / 2Y' nl •

2.2.5 Improvements to the conventional approximate

interval

2.2.5.1 Unified method for constructing confidence

intervals

The following unified method can be used to improve the conventional

approximate confidence interval for PI - P2' Let XI - Bin(nl,PI) independent

of X2 - Bin(n2,P2) and denote ql = 1-PI and q2 = 1-P2' The following

reparametrization is useful: a = PI +P2 ; b = PI - P2; U = (1/4 Xl/nl + 1/ n2);

and v = (1I4XlInl -I/n2).

estimators of a, b, PI and P2

Let a, b, PI and P2 be maximum likelihood

Let

V(a, b; u, v) = Var(b) = Var(PI - P2)

= Var(PI) + Var(P2) - 2Cov(PI' P2)



= PI(I- PI) + P2(1- P2)
nl n2

= u[(2 - a)a - b2
] + 2v(l- a)b.

The approach to fmd confidence intervals for b = PI - P2 (see Beal(1987)) is

based upon solving for b from the equation:

(b - br = cVar(b)

= cV(a,b;u, v), (2.2.5.l.1)

where c = X ;.a, and where a and b are expressions for a and b which do not

necessarily contain the variable b. Different intervals can now be calculated

by solving b from (2.2.5.l.1) by choosing different values for a and b.

2.2.5.2 Bayesian approach

~
A Bayesian approach to the estimation of a and b can be used. Briefly,

assuming independence of the prior distributions of the two proportions, i.e. an
\

implicit prior density function proportional to

(2.2.5.2.1)

as suggested by Jeffreys(1961) and Perks(1947)(see Good(1965) p.18), the

posterior mean of a = PI + P2 IS grven by (Beal(1987) p.943):

~( ) nl ~ a + 1 n2 ~ a + 1 fta a = PI + + P2 + or a ~ -1.
nl +2(a+l) nl +2(a+l) n2 +2(a+l) n2 +2(a+l)
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a = -1/2 seems to be a good overall choice.

If a = -1 then a( -1) = a = PI + P2. If a increases, the prior for the difference

puts less weight on the extremes of the unit square(i.e. the points (-1,-1),

(-1,1), (1,-1) and (1,1)). Then a(a) tends more towards 1. Each value of a

defmes a distinct confidence interval CONF(PI - P2) for PI - P2. Let us

denote this interval briefly here as I(a). Now I(a) has confidence levels

larger than those of 1(-1). Several values of a were tried by Beal( 1987) but

The interval 1(-11 2) will now be referred to as the Jeffreys- Perks interval

since the prior(2.2.5.2.1) with a = -1/2 arises naturally from the invariance

theories of Jeffreys and Perks(Good(1965) pp. 18, 28, 29). We discuss this

interval in section 2.2.5.5. The interval I(-1) will be referred to as the

Haldane interval, since the prior a = -1 is the result of Haldane priors on PI

and P2 (Haldane(1945) p.223). This interval is discussed in section 2.2.5.6.

2.2.5.3 The conventional approximate interval

26

By letting a = a and iJ = i . êi and b denote hypothetical values of a and b,

and v(a,b;u, v) = PI(l- PI) + P2(1- P2) , equation (2.2.5.1.1) is then
nl ~

which is a quadratic equation in b with two roots bl = b - k and bil = b + k ,

where



Let L = max(-l,bJ) and U = min(bu,l), then the confidence interval is given by

CONF(b)l_a = CONF(PI - P2)I-a = [L,U]

-b+ PI(l-j\) P2(1-P2)
- -za/21, + ,

~ nl ».
(2.2.5.3.1)

which is the conventional interval as derived in (2.2.2). Thus the unified

method for constructing confidence intervals for PI - P2 yields the

conventional approximate interval when êi and b are chosen as êi = a and
~ ~
b = b.

2.2.5.4 The Anbar(1983) interval

This interval is constructed like the conventional approximate interval except

that êi and b are chosen as êi = 2PI - b and b = b, which after eliminating êi

gives a quadratic expression in b, namely:
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= c(u( 4PI - 2b - 4p~ + 2Plb + 2Plb - 2b2) + 2v(b - 2Plb +b2))

.. b2 - 2bb + b2 = b2(2v - 2u)c + b(2v - 2u + 4Plu - 4Plv)c + (4PI - 4POuc

.. b2(1- 2vc + 2uc) + 2b(-b - vc + uc - 2Pluc + 2PI vc) + (b2 - 4Pluc + 4PI2UC)= O.

This equation is of the form Ab2 + Bb + C = 0, from which we can solve for b

yielding:



bl = B-~B2 -4AC and b = B+~B2 -4AC.
2A u 2A

Here c=zaI2; A=1-2vc+2uc;

Let L = max( -l,bl) and U = min(bu ,1) then

CONF(b) = CONF(p, - P2)'-a = [ L ; U]

where b is calculated from, (2.2.5.l.1).

Mee(1984) noted that we can use equation (2.2.5.l.1) also with êi = 2P2 +b,

b = b and that the results obtained from these two methods differ. To solve

this problem Mee suggested a more theoretically satisfying interval which we

will discuss in section 2.2.5.7. The Anbar(1983) interval is only discussed and

not used in the simulation study.

2.2.5.5 The Jeffreys-Perks(1987) interval

As discussed in section 2.2.5.2 the interval I(a) with a = -112 is known as

the Jeffreys-Perks interval. This interval is calculated as follows:

Set êi = ti and b = b in equation (2.2.5.l.1) and solve for b.

This gives:
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(2.2.5.5.2)

.. b2(1+ cu) + b(-2b - 2vc(1- a))+ (b2 -cu(2 - a)a) = o.

This equation has roots:

b = 2b + 2cv(1- a) ± ~4(b +CV(l-a)y - 4(1 + cu)(b2 - cU(2- a)a)
2(1+cu)

_ b+CV(l-a)±~(b+CV(l-a)Y -(1+cu){b2 -Cu(2-a)a)
- (l+cu)

b+cv(l-a) ~(b+CV(l-a)Y -(1+cu)(b2 -cu(2-a)a)
b- =±~------~------~--------~l+cu l+cu

=±
c{v(a, b;u, v) + cu2(2 - a)a + cv2(1- a)2}

1+cu

= ±Za12
v{a,b; u, v) + cu2(2 - a)a + cv2(1-ar

l+cu

where c = Z~12 .

Thus

CONF(p -p) =I 2 I-a

b + cV(l- a) ~v(a, b;u, v) + cu2(2 - a)a + cv2(1- a)2
b - ± Zal2 (2.2.5.5.1)

1+cu 1+ cu

If ~ = ~ = n , this interval simplifies to

where d = c / .fj;; .
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Beal(1987) noted that this interval is a definite improvement on the

conventional interval. There are however, some values of PI and P2 for

which this interval is too narrow, while the conventional approximate interval

is not too narrow for these choices of PI and P2 .

Example: If XI = 56, x2 = 48, nl = 70 and n2 = 80, then the confidence

interval is given by CONF(PI - P2)O.95 = [0.053 ; 0.3355].

2.2.5.6 The Haldane(1987) interval

The Haldane interval is calculated in the same manner as the Jeffreys-Perks

interval but with jj = .5_ + X2

nl n2

Example: If XI = 56, x2 = 48, nl = 70 and n2 = 80, then the confidence interval

is given by CONF(PI - P2)095 = [0.053 ; 0.3377].

The Jeffreys-Perks and Haldane methods are not easy to calculate with a

handcalculator, though this is still possible. However, the methods are easier

implemented through a computer program. Newcombe(1998:b) noted that

Jeffreys-Perks' and Haldane's intervals as described in Beal(1987) are prone to

certain novel anomalies such as overt overshoot which occurs when the upper

confidence limit is larger than I or the lower confidence limit is less than - 1.
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Nx3 + KX2 + Lx + M = 0, (2.2.5.7.1)

2.2.5.7 The Mee(1984) interval

Mee suggested that equation (2.2.5.l.1) be solved with b chosen as b = b and

a = a·(b) or a = a", the maximum likelihood estimator of a = PI +P2 when

b = PI - P2 has a given value. Since a = a' is now a function of b, equation

(2.2.5.l.1) with these values is not quadratic and cannot be solved in closed

form like in cases 2.2.4.1 and 2.2.4.3. Instead, equation (2.2.5.l.1) has to be

solved numerically to obtain the two roots bl and bu• Since a' is defmed only

in the interval [ 0 ; 2 ] we seek the smallest value where bl E [ - 1 ; 1] and the

largest value bu E[ -1; 1] such that (b-bf ::;;cV(a·,b;u,v) for bl s b s b,

Then L = bl and U = bu •

The following iterative method can be used to calculate the upper limit bu of

the Mee interval:

(1) Use the Jeffreys-Perks method to determine the upper limit bu• Let bl = bu

as a first estimate of the upper limit.

(2) Determine the maximum likelihood estimate of PI' namely P; = p;(bl),

for given bl. This P; is the unique solution in the interval (bl,l) of the

maximum likelihood equation:

where

K = (nl +2nz)bl - N - PI~ - P2nz,

L = (nzbl - N - 2P2nz)bl +(PI~ +P2nz),
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and

K2 L
h = Sgn(g)~ (3N)2 - 3N '

f = ~(ff+COS-I(~)) .

Now calculate in the following order:

K3 KL M
g = (3Nr - 6N2 + 2N '

Then the solution of the maximum likelihood equation (2.2.5.7.1) is:

p; = 2hcos(f) _!S._.
3N

(3) As with Anbar's(1983) interval let

a· = max(2p; -bl;1).

Then let, li = bl and ii = a+ in equation (2.2.5.l.1) to get a Jeffreys-Perks type

interval with limits (b/,bu). Let b2 = bu •

Ib -b I .(4) Is 2

1bll
l::; 1O-4?; If not set bl = b2 and repeat steps (2) to (4); if yes then

stop.

32

Note: If bl = 1 then p; = 1 and step 2 is then skipped.

The lower limit bl of the Mee interval is determined likewise as in steps (1) to

(4) by starting with bl = bl' the lower limit of the Jeffreys-Perks interval. If



Example: If XI = 56, x2 = 48, nl = 70 and n2 = 80, then the 95% confidence

interval is given by CONF(PI - P2)O.95 = [0.0533 ; 0.3377].

bl = -1 then P; = 0 and step 2 is skipped. Santner and Yamagami( 1993) note

that the iteratively computed Mee intervals are not conservative. This interval

method is computer intensive due to the iterative procedure involved.

2.2.5.8 The Miettinen and Nurminen(1985) interval

The interval of Miettinen and Nurminen(1985) is calculated like the

Mee(1984) interval except that the constant e in equation (2.2.5.l.1) is chosen

as eN f(N -1) so that equation (2.2.5.1.1) becomes:

(b - b)= eN f(N -l)Var(a, b;u, v),
where N = nl +~ .

Like the Mee interval method this method requires intensive computation.

Example: If XI = 56, x2 = 48, nl = 70 and n2 = 80, then the 95% confidence

interval is given by CONF(PI - P2)O.95 = [0.0528; 0.3382].
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(2.2.5.9.1)

2.2.5.9 The Wallenstein(1997) interval method

Since the conventional approximate interval is often too short, methods have

been suggested to produce more appropriate, that is, wider confidence

intervals.

The conventional Asymptotic interval:

CONF(PI -P2)I-a =PI -P2 ±Za/2~V(PI,P2)

=[d' ; dj,

where

The lower confidence limit is d' (XI' x2) and the upper confidence limit is

d(xl,x2) or simply [d' ; d]. Let b = PI - P2• Suppose b = d the UCL, then d

is the solution of the implicit equation:

Denote Pild as the estimate of Pi based on assuming b = d. Beal(1987) sets

Plld + P21d = PI + P2' where Pi = Xi / ni and then solves (2.2.5.9.1) explicitly.

Mee(1984) solves (2.2.5.9.1) by using a doubly iterative procedure. The first

step fixes b = d and fmds Plld and P21d that maximise the likelihood, while the

second step updates d to satisfy (2.2.5.9.1) more closely. Miettinen and

Nurminen( 1985) pointed out that we need not perform iteration to fmd the

MLE's, since they are solutions of a cubic and thus we only need a single

iterative procedure. Wallenstein(1997) proposes a slight modification of

Mee's procedure by using least squares estimates(LSE' s) instead of MLE' s for
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proposed replacing PI - P2 in (2.2.5.9.1) by PI - P2 + e to get

d = (PI - P2 + e) + Za/2 ~V(Plld ,P2Id)

The LSE's of Pi subject to the constraint Plld - P21d = d are

(2.2.5.9.2)

Plld and P21d' and allows for a continuity correction e ~ 0 . Wallenstein

and

(2.2.5.9.3)

Now substituting (2.2.5.9.3) into (2.2.5.9.2) we obtain:

[d-(PI - P2 +e)f
2Za/2

=

=

This is equivalent to
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This is a quadratic equation in d of the form:

Ad2 + Bd +C = 0, (2.2.5.9.4)

where

2

B=-2(PI -P2 +&)+ Zal2 (1-2jJ)(nl-n2),nln2

(2.2.5.9.5)

We solve for d from (2.2.5.9.4) by choosing the larger solution

-B+~B2 -4AC
d= .

2A

If for a chosen continuity correction e , the term PI - P2 + e exceeds 1, then

PI - P2 + e should be replaced in B and C by l. To compute the lower bound

d', we replace e by -& in B and C in equation (2.2.5.9.5) and solve equation

(2.2.5.9.4) by choosing the smaller solution of (2.2.5.9.4) namely:

-B-~B2 -4AC
d'= .

2A

If e = 0 then the upper and lower bounds d and d' are the solutions of a single

quadratic equation Ad2 + Bd + C = 0 where A, B and C are given as in

(2.2.5.9.5) with s = o.

If nl = n2 = m then the preliminary confidence interval on b, (d' ,d) IS

(PI - P2) ± (Za12 / J,;;"){PI(I- PI) + P2(1- P2) + z~/2jJ(l- JJ) / mr2
1+Z~12 /2m

(2.2.5.9.6)

in agreement with Beal(1987)(see section 2.2.4.3).
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The procedure described above is valid only if the solution d of the quadratic

equation (2.2.5.9.4) when substituted into (2.2.5.9.3) yields estimates Plld and

P21d in the interval [ 0; 1 ]. Similarly when the solution d' from (2.2.5.9.4) is

substituted in (2.2.5.9.3) we should get estimates Plld' and P21d' in the interval

[ 0; 1 ]. If this constraint is violated we replace Pi Id outside [ 0 ; 1 ] with 1 or

O. For example if PI ~ P2 and P21d < 0 force P21d = 0 so PlId = d and

(2.2.5.9.2) becomes:

V( A A) _ PlId(l- Plld) P2Id(1- P21d)
Plld ,P21d - + ---'----___:_

nl n2

d(l- d)= +0
nl

So equation (2.2.5.9.2) becomes

(

A A ) r(l-d)d= PI-P2+£ =Za/2
nl

Square both sides:

2 2

d? -2d(PI - P2 +£)+(PI - P2 +£f _dZa/2 +d2 Za/2 = o.
nl nl

I.e. d'[l + z~:,]- d[2(ft, - ft, +.)+ z~:,]+(ft, - ft, +e)' = o.

The larger solution for dis
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PI - P2 + e + ~~/2 + Zp!!- {(ftl - P2 + e )[1- (ftl _ P2 + e )]+ :~12}1/2
d= n_2__ ~V_'nl~22 ~------------------n-2---

1+ Z~/2 / ».
(2.2.5.9.7)

d = 2eP, - jl, + 8)+ ~ + , 4[ jl, - jl, +8+ ~ J -+ + ~ ]eP, - jl, + 8)'
2(I+z~l2/nl)

PI - P2 +&+Z~/2 /2nl +(Za/2 / ~){(Pl - P2 +&)[I-(Pl - P2 +&)]+Z~12 /4nlr2

- l+Z~I2/nl

If P2 > PI the simplest thing to do is to switch indices, i.e. we write PI as P2

and P2 as Pl' Then we solve d again as in (2.2.5.9.6) and (2.2.5.9.7).

and P21d' = -d'

So equation (2.2.5.9.2) becomes:

A A '-d'(l+d')
d-(PI-P2 -&)=Za/2\/

V n2

so:

d" [1+ z~:,]-d'[ 2(jl, - jl, - 8)' + z~:,]+(jl, - jl, - 8) = o.
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So d' is the smaller root namely:

2 2 4
~ ~ Za/2 Za/2 ï c. ~ Xl ï c. ~ )) za/2
PI - P2 - e + -2- - ~- \PI - P2 - e - \PI - P2 - e + -4

n2 n2 n2=------~~~~------------~
I+ Z~/2 / n2

2 I 2
~ ~ Za/2 Za/2 ï c: ~ Xl ï t: ~ )) Za/2
PI - P2 - e + -2 - r:::- ~ \PI - P2 - e - \PI - P2 - e +-4

~ V~ ~=--------~----------------
l+z~/2/n2

If PI < P2 we again reverse indices. The case when XI = 0 and X2 = 0 was not

described ill detail ill Wallenstein's paper. Wallenstein, ill personal

correspondence, suggested the use of an ad hoc solution to this case by

invoking the equation (2.2.5.9.6) and the resulting upper confidence limit is

then

d = Z2 /2nl + Z / ..p;:( ~ Z2 / 4nl )

I+ Z2 / nl '

where Z denotes Za/2. The lower confidence limit is calculated as the negative

of the upper bound.
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Example: If XI = 56, x2 = 48, nl = 70 and n2 = 80, then the 95% Wallenstein

confidence interval without continuity correction IS grven by

CONF(PI - P2)095 = [0.0528; 0.3344]. The 95% Wallenstein confidence

interval with correction is given by CONF(PI - P2)O.95 = [0.0392 ; 0.3469].

2.2.6 Intervals based on the Wilson(1927) score

interval

The following score intervals for PI - P2 are based on Wilson's score interval

for the single proportion, and were proposed by Newcombe(1998: b). We will
/

first discuss the score interval method for the single proportion with and

without continuity correction, and then the score interval method for the

difference PI - P2 with and without continuity correction.

The efficient score of a parameter B in a distribution of a random variable Y

with density function parametrized by B, i.e. fy(y,B), is defmed by Cox and

Hinkley(1974, p.I07) as:

U(B) = ologfy(y,B) .
oB

There is a close connection between the position of the maximum likelihood

estimate(MLE) ê and the efficient score namely: u(ê) = o. The variance of

the score U( B) is given by the Fisher information:

where
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These will usually be intervals. The procedure IS invariant under

i(e) = E( _ 8210;2;y,e) .

F I I· th . . u2(e) b d thor arge samp e sizes, e test stanstic Wu = i(e) can e use to test e

hypothesis Ho:e = eo versus HI:e"* eo (Cox and Hinkley(1974, p.339) yielding

a critical region

Cox and Hinkley(1974, p.343) state that: "Confidence regions based directly

on the efficient score, i.e. using the Wu test statistic, have the advantage that, at

least when there are no nuisance parameters, moments of the test statistic are

obtained directly. Thus, for a one-dimensional parameter e, confidence

regions can be obtained from the inequality

transformation of the parameter. The test statistic has exactly mean zero and

unit variance and corrections based on its higher moments are easily

introduced. "

2.2.6.1 The score interval for a single proportion

without continuity correction

When p is the underlying proportion, the sample proportion jJ IS

approximately normally distributed with mean p and standard error ~pq / n .
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Izl= Ip- Pol,
~P~o

In order to test the hypothesis that P is equal to a prespecified Po against the

alternative hypothesis that P :j; Po, one may calculate the ratio

where qo = 1-Ps, and reject the hypothesis if z exceeds the critical value of

the normal curve for the desired two-tailed significance level. The test is based

on the ratio and if z a/2 denotes the value cutting off the area a / 2 in the upper

tail of the standard normal distribution, an approximate 100(1- a)%

confidence interval consists of all those values of P satisfying

lp-pi <Jpq / n - Z a/2 •

Note that for confidence intervals Po is replaced by p since in confidence

intervals there is no hypothesised value of p. Thus the score interval without

correction is:

(
~ 2 I 2 ~ ~)2np+za/2 ±za/2,,/za/2 +4npq

. U ] = -'-------;-----;---~
, 2(n + Z~I2) . (2.2.6.1.1)
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2.2.6.2 The score interval for a single proportion

with continuity correction

The score interval method for the single proportion with continuity correction

is the same as the score interval method without continuity correction except



the quantity 1/ n subtracted in the numerator is a correction for continuity.

The score interval with continuity correction is calculated as follows:

which yields the confidence interval

CONF(p)l_a = [ L ; U ]. (2.2.6.2.1)

According to Fleiss( 1981) the continuity correction should be applied only

when it is numerically smaller than lp - Po I. The score interval method either

with or without continuity correction, is preferred to the conventional

approximate interval when P is near zero or one. Newcombe(1998:a) noted

that if P = 0 then L must be taken as 0 and if P = 1, then U is taken as 1.

Newcombe also noted that these interval methods result in a good degree and

symmetry of coverage as well as avoidance of aberrations.

2.2.6.3 The score interval without continuity correction

for the difference between two proportions

This method combines Wilson's score intervals for each single proportion in

much the same way as the conventional approximate method combines simple

intervals. To obtain the Wilson score interval, first calculate:
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(2.2.6.3.1 )

and then

L; = ((2n;./J; + Z~I2)- Za/2 ~ Z~12 + 4n;[J;q; )/20; + Z~I2)'

and U; = ((2n;j?l; +Z~I2)+Za/2~Z~12 +4n;[J;q; )/2(n; +Z~/2) for i =1,2.

Substitute L; and U; in

and

Now let L=b - 81 and U=b + 82, then the 100(1- a)% confidence interval for

PI - P2 is given by

This interval method is not so easy to calculate with a calculator though it can

easily be implemented with a computer program.

Example: If XI = 56, x2 = 48, nl = 70 and nz = 80, then the 95% confidence

interval is given by CONF(PI - P2)095 = [ 0.0524 ; 0.3339 ].

2.2.6.4 The score interval with continuity correction for

the difference between two proportions

This interval is calculated similarly to the score interval without continuity

correction. Compute the lower and upper limit as follows:

Firstly compute b = PI - P2 and then also compute
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(2.2.6.4.1)

and

for i =1,2.

Substitute these values into:

and &, = ~'(U,<:J' +(~- L,r
Let L=b - 61 and U=b + 62 which yield the confidence interval

CONF(PI - P2)I-a= [ L ; U ].

This interval method can easily be implemented with a computer program.

Example: If XI = 56, x2 = 48, nl = 70 and n2 = 80, then the 95% confidence

interval is [ 0.0428 ; 0.3422 ].

45



CHAPTER3

COMPARISON

METHODS

OF THE DIFFERENT INTERVAL

3.1 Introduction

The various interval methods were compared by a simulation study. The

simulation study was done using the following algorithm:

1. Specify the parameter combination of proportions PI and P2 and sample

sizes nl and n2 to be investigated.

2. Simulated pairs of 50 000 samples XI and X2 given the specified parameter

combinations of PI' P2' nl and n2 (where Xi - Bin( n., Pi) for i = 1,2) .

3. Calculate confidence intervals for PI - P2 for each of the 50 000 simulated

samples using the different interval methods.

4. Determine the interval length, the occurrence of coverage, violation of the

definition interval and zero width intervals of the different interval methods

for each of the 50 000 samples.

46

The average length was determined as the sum of the differences between the

upper bound and the lower bound for each simulation divided by the total

number of simulations, whereas the coverage, violation of the definition
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interval and the occurrence of zero width intervals are expressed as a

percentage out of 50000 simulations.

The simulation study was done for each combination of proportions and all

sample size combinations, as given in Tables 3.1 and 3.2. The combination of

proportions PI = 0.6 and P2 = 0.4 was used as an example where both

proportions are close to 0.5, where conventional interval methods might

perform satisfactorily. The combination PI = 0.95 and P2 = 0.85 was used as

an example when both proportions are close to 1, and proportions of this

magnitude are typical in clinical trials for cure rates of antibiotics. The

combination PI = 0.95 and P2 = 0.15 was used to examine a situation when the

difference between the two proportions is large. Combination PI = 0.98 and

P2 = 0.9 was used to examine a situation where the difference between the two

proportions is quite small. Combination PI = 0.98 and P2 = 0.1 gives the

corresponding large difference. Combination PI = 0.98 and P2 = 0.98 was used

to examine a situation where the difference between the two proportions is

zero and the proportions are close to 1. Combination PI = 0.98 and P2 = 0.02

was used when the difference between the two proportions is large, and the

individual proportions are close to 0 and 1.

The sample sizes nl = 100 and n2 = 90 were viewed as large. The sample size

combination nl = 60 and n2 = 50 was viewed as moderately large whereas the

combination nl = 30 and n2 = 20 was viewed as a relatively small sample size.

The sample size combination nl = 10 and n2 = 10 was examined as a small but

sometimes imposed sample size.



Table 3.1 Proportion combinations used in simulation study

Proportions

Table 3.2 Sample size combinations used in simulation study

Sample sizes

P, = 0.6

Pt = 0.95

P, = 0.95

P, = 0.98

P, = 0.98

P, = 0.98

Pt = 0.98

nt = 100

nt = 60

nt = 30

nt = 10

P2 = 0.15

P2 = 0.90

P2 = 0.10

P2 = 0.98

P2 = 0.02

n2 = 90

n2 = 50

n2 = 20

n2 = 10

Table 3.3 gives the observed coverages and the average lengths of the various

confidence intervals for Pt = 0.6 and P2 = 0.4 for different sample sizes. Table

3.4 presents the deviations from the definition intervals and zero width

intervals. All values are given as percentages in Table 3.4. Tables 3.5 to 3.16

in pairs provide the same information for the other parameter combinations.

The results of these simulated intervals are discussed in detail in section 3.2.
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The results for the different interval methods are presented in the tables in

sequence of computer intensiveness from the least to the most computer

intensive method. The least computer intensive method is the usual

Asymptotic interval method with or without continuity correction, and the most

computational intensity methods are the iterative methods of Mee, and of

Miettinen and Nurminen. The different methods are also discussed in this

sequence in section 3.2.



Table 3.3 Observed coverage and average length of nominal 95% confidence intervals (PI = 0.6, P2 = 0.4)

Sample Method

SIze

nl' n2 As AsC HA Hal JP Sc SeC W WC Mee MN

100,90 Observed coverage(%) 94.7 96.2 95.7 95.1 95.1 94.9 96.0 95.1 96.5 95.1 95.1

Average length .278 .299 .290 .275 .275 .272 .287 .275 .296 .275 .276

60, 50 Observed coverage(%) 94.4 96.3 95.7 94.9 94.9 94.7 96.1 94.9 96.6 94.9 94.9

Average length .364 .401 .388 .358 .358 .353 .377 .358 .394 .358 .360
V>

30,20 Observed coverage(%) 93.7 96.6 95.9 94.7 94.7 94.3 96.6 94.7 97.6 94.7 94.70

Average length .542 .625 .604 .523 .523 .506 .557 .521 .597 .523 .528

10, 10 Observed coverage(%) 92.1 97.1 95.9 95.3 95.3 95.3 97.2 95.3 98.8 95.6 95.6

Average length .813 1.01 .957 .751 .755 .713 .813 .759 .929 .759 .776

As Asymptotic without correction Sc Score interval without correction

AsC Asymptotic with correction ScC Score interval with correction

HA Asymptotic with Hauck and W Wallenstein's interval without correction

Anderson's correction WC Wallenstein's interval with correction

Hal Haldane interval Mee Mee's interval

JP Jeffreys-Perks interval MN Miettinen and Nurrninen interval



Table 3.4 Percentage of confidence intervals with deviation and zero width (PI = 0.6, P2 = 0.4)

Sample Method

Size

nl' ». As AsC HA Hal JP Sc SeC W WC Mee MN

100,90 Violation of definition interval(%) 0 0 0 0 0 0 0 0 0 0 0

Zero width interval(%) 0 0 0 0 0 0 0 0 0 0 0

60, 50 Violation of definition interval(%) 0 0 0 0 0 0 0 0 0 0 0

Zero width interval(%) 0 0 0 0 0 0 0 0 0 0 0

VI 30,20 Violation of definition interval(%) 0 0 0 0 0 0 0 0 0 0 0......

Zero width interval(%) 0 0 0 0 0 0 0 0 0 0 0

10, 10 Violation of definition interval(%) 1.35 5.16 4.86 0 0 0 0 l.24 2.79 0 0

Zero width interval(%) 0 0 0 0 0 0 0 0 0 0 0

As Asymptotic without correction Sc Score interval without correction

AsC Asymptotic with correction ScC Score interval with correction
ó'

HA Asymptotic with Hauck and W Wallenstein's interval without correction

Anderson's correction WC Wallenstein's interval with correction
{})

V\ Hal Haldane interval Mee Mee's interval

-\) JP Jeffreys-Perks interval MN Miettinen and Nurrninen interval

DQ

Ul



Table 3.5 Observed coverage and average length of nominal 95% confidence intervals (PI = 0.95, P2 = 0.85)

Sample Method

SIze

nl' n2 As AsC HA Hal JP Sc SeC W WC Mee MN

100,90 Observed coverage(%) 94.2 96.9 95.9 94.5 94.9 95.3 97.2 94.5 97.1 95.1 95.1

Average length .169 .189 .181 .167 .170 .177 .191 .171 .193 .176 .177

60,50 Observed coverage(%) . 92.9 97.2 95.6 94.4 95.6 96.1 97.8 94.7 97.6 94.3 94.3

Average length .223 .259 .245 .219 .226 .239 .265 .232 .271 .238 .239

VI 30,20 Observed coverage(%) 92.8 95.6 94.7 94.7 94.7 96.7 99.1 93.9 98.6 92.3 92.3lV

Average length .333 .416 .391 .321 .345 .379 .435 .378 .470 .377 .382

10, 10 Observed coverage(%) 79.7 99.7 87.6 79.7 97.7 99.2 99.9 79.7 99.9 99.2 99.3

Average length .451 .651 .575 .416 .519 .619 .737 .585 .902 .627 .646

As Asymptotic without correction Sc Score interval without correction

AsC Asymptotic with correction ScC Score interval with correction

HA Asymptotic with Hauck and W Wallenstein's interval without correction

Anderson's correction WC Wallenstein's interval with correction

Hal Haldane interval Mee Mee's interval

JP Jeffreys-Perks interval MN Miettinen and Nurrninen interval



Table 3.6 Percentage of confidence intervals with deviation and zero width (PI = 0.95, P2 = 0.85)

Sample Method

size

nl' n2 As AsC HA Hal JP Sc SeC W WC Mee MN

100,90 Violation of definition interval(%) 0 0 0 0 0 0 0 0 0 0 0

Zero width interval(%) 0 0 0 0 0 0 0 0 0 0 0

60,50 Violation of definition interval(%) 0 0 0 0 0 0 0 0 0 0 0

Zero width interval(%) 0 0 0 0 0 0 0 0 0 0 0

\.Jl 30,20 Violation of definition interval(%) 0 0 0 0 0 0 0 0 0 0 0w

Zero width interval(%) .86 0 0 0 0 0 0 0 0 0 0

10, 10 Violation of definition interval(%) 0 .07 .01 0 0 0 0 .07 .58 0 0

Zero width interval(%) 1l.7 0 0 1l.7 0 0 0 1l.7 0 0 0

As Asymptotic without correction Sc Score interval without correction

AsC Asymptotic with correction ScC Score interval with correction

HA Asymptotic with Hauck and W Wallenstein's interval without correction

Anderson's correction WC Wallenstein's interval with correction

Hal Haldane interval Mee Mee's interval

JP Jeffreys-Perks interval :MN Miettinen and Nurminen interval



Table 3.7 Observed coverage and average length of nominal 95% confidence intervals (PI = 0.95, P2 = 0.15)

Sample Method

SIze

nl' ». As AsC HA Hal JP Sc SeC W WC Mee MN

100,90 Observed coverage(%) 93.9 95.7 95.4 94.8 94.8 94.4 96.2 95.2 97.3 95.0 95.2

Average length .169 .190 .181 .170 .170 .172 .186 .177 .200 .169 .170

60, 50 Observed coverage(%) 93.9 95.9 95.2 95.3 95.3 95.1 96.7 95.8 98.2 95.3 95.4

Average length .223 .259 .245 .226 .226 .229 .253 .248 .288 .224 .225

!Jl 30,20 Observed coverage(%) 88.4 93.7 93.5 95.6 95.6 94.2 97.1 97.0 99.0 95.6 95.6-1'0-

Average length .333 .417 .391 .344 .344 .351 .401 .416 .503 .337 .341

10, 10 Observed coverage(%) 87.4 88.l 87.9 93.6 95.9 95.9 95.9 98.1 99.4 95.9 95.9

Average length .451 .651 .576 .511 .514 .539 .641 .664 .850 .501 .516

As Asymptotic without correction Sc Score interval without correction

AsC Asymptotic with correction ScC Score interval with correction

HA Asymptotic with Hauck and W Wallenstein's interval without correction

Anderson's correction WC Wallenstein's interval with correction

Hal Haldane interval Mee Mee's interval

JP Jeffreys-Perks interval :MN Miettinen and Nurminen interval



Table 3.8 Percentage of confidence intervals with deviation and zero width (PI = 0.95, P2 = 0.15)

Sample Method

Size

nl' ». As AsC HA Hal JP Sc SeC W WC Mee MN

100,90 Violation of definitioninterval(%) 0 .01 0 0 0 0 0 .05 .22 0 0

Zero width interval(%) 0 0 0 0 0 0 0 0 0 0 0

60,50 Violation of definitioninterval(%) .46 4.01 l.53 0 0 0 0 4.69 9.99 0 0

Zero width interval(%) 0 0 0 0 0 0 0 0 0 0 0

\Jl 30,20 Violation of definitioninterval(%) 3l.6 62.4 52.6 0 .87 0 .87 4l.5 53.2 0 0
\Jl

Zero width interval(%) .87 0 0 0 0 0 0 0 0 0 0

10, 10 Violation of definitioninterval(%) 67.3 95.9 93.6 0 0 0 1l.8 5l.6 62.1 0 0

Zero width interval(%) 1l.8 0 0 0 0 0 0 0 0 0 0

As Asymptotic without correction Sc Score interval without correction

AsC Asymptotic with correction ScC Score interval with correction

HA Asymptotic with Hauck and W Wallenstein's interval without correction

Anderson's correction WC Wallenstein's interval with correction

Hal Haldane interval Mee Mee's interval

JP Jeffreys-Perks interval "MN Miettinen and Nurminen interval



Table 3.9 Observed coverage and average length of nominal 95% confidence intervals (PI = 0.98, P2 = 0.9)

Sample Method

Size

nl' ». As AsC HA Hal JP Sc SeC W WC Mee MN

100,90 Observed coverage(%) 93.9 96.7 96.0 94.3 94.3 96.5 97.9 95.2 98.3 95.2 95.3

Average length .134 .155 .145 .132 .137 .148 .163 ~144 .168 .144 .144

60,50 Observed coverage(%) 92.8 95.9 95.2 92.8 94.7 97.1 98.8 96.4 98.2 94.2 94.2

Average length .176 .213 .198 .173 .184 .205 .232 .199 .241 .199 .200
<Jl 30,20 Observed coverage(%) 87.1 87.7 87.7 87.2 97.8 99.1 99.9 93.7 99.8 95.9 95.90-

Average length .258 .341 .315 .251 .289 .343 .402 .342 .437 .337 .341

10, 10 Observed coverage(%) 70.2 99.9 71.7 71.2 99.8 99.8 99.9 71.2 99.9 99.8 99.8

Average length .325 .525 .442 .299 .457 .597 .719 .453 .889 .599 .619

As Asymptotic without correction Sc Score interval without correction

AsC Asymptotic with correction ScC Score interval with correction

HA Asymptotic with Hauck and W Wallenstein's interval without correction

Anderson's correction WC Wallenstein's interval with correction

Hal Haldane interval Mee Mee's interval

JP Jeffreys-Perks interval MN Miettinen and Nurrninen interval



Table 3.10 Percentage of confidence intervals with deviation and zero width (PI = 0.98, P2 = 0.9 )

Sample Method

Size

nl' n2 As AsC HA Hal JP Sc SeC W WC Mee MN

100,90 Violation of definition interval(%) 0 0 0 0 0 0 0 0 0 0 0

Zero width interval(%) 0 0 0 0 0 0 0 0 0 0 0

60,50 Violation of definition interval(%) 0 0 0 0 0 0 0 0 0 0 0

Zero width interval(%) .17 0 0 0 0 0 0 0 0 0 0

VI 30,20 Violation of definition interval(%) 0 0 0 0 0 0 0 0 0 0 0
-.l

Zero width interval(%) 6.5 0 0 0 0 0 0 0 0 0 0

10, 10 Violation of definition interval(%) 0 .01 0 0 0 0 0 .01 .13 0 0

Zero width interval(%) 28.2 0 0 28.2 0 0 0 28.2 0 0 0

As Asymptotic without correction Sc Score interval without correction

AsC Asymptotic with correction ScC Score interval with correction

HA Asymptotic with Hauck and W Wall en stein ' s interval without correction

Anderson's correction WC Wallenstein's interval with correction

Hal Haldane interval Mee Mee's interval

JP Jeffreys-Perks interval MN Miettinen and Nurminen interval



Table 3.11 Observed coverage and average length of nominal 95% confidence intervals (PI = 0.98, P2 = 0.1)

Sample Method

Size

nl' ». As AsC HA Hal JP Se SeC W WC Mee MN

100,90 Observed eoverage(%) 92.1 96.5 96.0 95.5 95.5 94.2 97.2 97.4 98.9 95.9 95.9

Average length .134 .155 .145 .137 .137 .141 .155 .162 .185 .136 .136

60,50 Observed eoverage(%) 90.9 95.0 94.9 95.4 95.4 95.3 97.3 97.8 99.3 95.3 95.3

Average length .176 .213 .198 .183 .184 .191 .215 .231 .269 .181 .182

VI 30,20 Observed coverage(%) 88.7 93.3 93.3 96.4 96.4 95.9 96.4 98.5 99.9 96.4 96.400

Average length .258 .341 .314 .287 .288 .305 .355 .393 .468 .281 .284

10, 10 Observed coverage(%) 70.8 71.3 71.2 92.5 92.5 93.5 97.4 99.5 99.9 97.4 97.4

Average length .322 .522 .439 .447 .449 .492 .594 .607 .762 .435 .450

As Asymptotic without correction Sc Score interval without correction

AsC Asymptotic with correction ScC Score interval with correction

HA Asymptotic with Hauck and W Wallenstein's interval without correction

Anderson's correction WC Wallenstein's interval with correction

Hal Haldane interval Mee Mee's interval

JP Jeffreys-Perks interval MN Miettinen and Nurminen interval



Table 3.12 Percentage of confidence intervals with deviation and zero width (PI = 0.98, P2 = 0.1)

Sample Method

Size

nl' n2 As AsC HA Hal JP Sc SeC W WC Mee MN

100,90 Violation of definition interval(%) .35 3.12 l.19 0 0 0 0 9.29 18.4 0 0

Zero width interval(%) 0 0 0 0 0 0 0 0 0 0 0

60,50 Violation of definition interval(%) 12.3 40.6 24.8 0 .15 .15 .15 44.0 56.9 0 0

Zero width interval(%) .15 0 0 0 0 0 0 0 0 0 0

VI 30,20 Violation of definition interval(%) 67.7 9l.1 88.7 0 6.5 0 6.5 66.8 69.4 0 0
\0

Zero width interval(%) 6.5 0 0 0 0 0 0 0 0 0 0

10, 10 Violation of definition interval(%) 63.9 99.5 98.6 0 0 0 28.6 53.9 57.5 0 0

Zero width interval(%) 28.6 0 0 0 0 0 0 0 0 0 0

As Asymptotic without correction Sc Score interval without correction

AsC Asymptotic with correction ScC Score interval with correction

HA Asymptotic with Hauck and W Wallenstein's interval without correction

Anderson's correction WC Wallenstein's interval with correction

Hal Haldane interval Mee Mee's interval

JP Jeffreys-Perks interval MN Miettinen and Nurrninen interval



Table 3.13 Observed coverage and average length ofnominal95% confidence intervals (PI = 0.98, P2 = 0.98)

Sample Method

Size

nl' ». As AsC HA Hal JP Sc SeC W WC Mee MN

100, 90 Observed coverage(%) 96.0 99.6 98.7 96.0 98.7 98.7 99.8 97.5 99.7 97.5 97.5

Average length .076 .097 .088 .075 .086 .107 .123 .09 .117 .107 .107

60,50 Observed coverage(%) 98.3 99.9 99.6 99.2 99.6 99.4 99.9 99.2 99.9 99.2 99.2

Average length .095 .132 .116 .094 .119 .160 .189 .139 .187 .161 .162

0\ 30,20 Observed coverage(%) 99.8 99.9 99.9 99.6 99.9 99.6 99.9 99.6 99.9 99.6 99.60

Average length .119 .202 .172 .127 .205 .299 .363 .304 .420 .303 .308

10, 10 Observed coverage(%) 99.8 100 99.9 99.9 99.9 99.9 100 99.9 100 99.9 99.9

Average length .133 .333 .240 .122 .380 .570 .699 .197 .920 .572 .592

As Asymptotic without correction Sc Score interval without correction

AsC Asymptotic with correction ScC Score interval with correction

HA Asymptotic with Hauck and W Wallenstein's interval without correction

Anderson's correction WC Wallenstein's interval with correction

Hal Haldane interval Mee Mee's interval

JP Jeffreys-Perks interval MN Miettinen and Nurrninen interval



Table 3.14 Percentage of confidence intervals with deviation and zero width (PI = 0.98, P2 = 0.98 )

Sample Method

Size

nl' ». As AsC HA Hal JP Sc SeC W WC Mee MN

100, 90 Violation of definition interval(%) 0 0 0 0 0 0 0 0 0 0 0

Zero width interval(%) 2.2 0 0 0 0 0 0 0 0 0 0

60,50 Violation of definition interval(%) 0 0 0 0 0 0 0 0 0 0 0

Zero width interval(%) 10.8 0 0 0 0 0 0 0 0 0 0

0\ 30,20 Violation of definition interval(%) 0 0 0 0 0 0 0 0 0 0 0.....
Zero width interval(%) 36.4 0 0 0 0 0 0 0 0 0 0

10, 10 Violation of definition interval(%) 0 0 0 0 0 0 0 0 0 0 0

Zero width interval(%) 66.7 0 0 66.7 0 0 0 66.7 0 0 0

As Asymptotic without correction Sc Score interval without correction

AsC Asymptotic with correction ScC Score interval with correction

HA Asymptotic with Hauck and W Wallenstein's interval without correction

Anderson's correction WC Wallenstein's interval with correction

Hal Haldane interval Mee Mee's interval

JP Jeffreys- Perks interval MN Miettinen and Nurminen interval



Table 3.15 Observed coverage and average length of nominal 95% confidence intervals (PI = 0.98, P2 = 0.02 )
»:

Sample Method

Size

nl' ». As AsC HA Hal JP Sc SeC W WC Mee MN

100,90 Observed coverage(%) 88.9 97.9 89.3 93.9 93.9 92.5 96.1 94.3 98.5 96.1 96.1

Average length .076 .097 .088 .086 .086 .094 .108 .096 .116 .085 .085

60,50 Observed coverage(%) 88.6 88.6 88.7 97.0 97.0 93.1 94.2 97.8 99.1 95.7 95.7

Average length .095 .131 .115 .118 .118 .135 .158 .139 .171 .117 .118
0\ 30,20 Observed coverage(%) 63.0 99.9 63.1 92.2 94.8 93.4 93.7 95.7 99.1 96.1 96.1N

Average length .118 .201 .171 .199 .202 .239 .290 .237 .295 .206 .209

10, 10 Observed coverage(%) 33.4 100 99.9 94.1 94.1 94.1 96.6 95.4 33.1 94.1 94.1

Average length .133 .333 .241 .369 .370 .430 .535 .416 .519 .364 .379

As Asymptotic without correction Sc Score interval without correction

AsC Asymptotic with correction ScC Score interval with correction

HA Asymptotic with Hauck and W Wallenstein's interval without correction

Anderson's correction WC Wallenstein's interval with correction

Hal Haldane interval Mee Mee's interval

JP Jeffreys-Perks interval MN Miettinen and Nurminen interval



Table 3.16 Percentage of confidence intervals with deviation and zero width (PI = 0.98, P2 = 0.02)

Sample Method

Size

nl' ». As AsC HA Hal JP Sc SeC W WC Mee MN
--
100,90 Violation of definition interval(%) 45.2 81.7 66.9 0 2.1 0 2.1 25.7 26.7 0 0

Zero width interval(%) 2.1 0 0 0 0 0 0 0 0 0 0

60,50 Violation of definition interval(%) 71.1 97.7 92.9 0 11.2 11.2 11.2 28.2 28.3 0 0

Zero width interval(%) 11.2 0 0 0 0 0 0 0 0 0 0

0\ 30,20 Violation of definition interval(%) 61.2 99.9 99.7 0 36.9 0 36.9 19.9 19.9 0 0w

Zero width interval(%) 36.9 0 0 0 0 0 0 0 0 0 0

10, 10 Violation of definition interval(%) 33.3 100 99.9 0 0 0 66.6 15.1 15.3 0 0

Zero width interval(%) 66.6 0 0 0 0 0 0 0 0 0 0

As Asymptotic without correction Sc Score interval without correction

AsC Asymptotic with correction ScC Score interval with correction

HA Asymptotic with Hauck and W Wallenstein's interval without correction

Anderson's correction WC Wallenstein's interval with correction

Hal Haldane interval Mee Mee's interval

JP Jeffreys-Perks interval MN Miettinen and Nurrninen interval
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3.2 Discussion of simulation study results

The ideal interval method should result in an interval that is short but has
actual coverage close to the nominal coverage, does not deviate from the
definition interval, and has no occurrence of zero width intervals.

3.2.1 Case PI = 0.6 and P2 = 0.4 (Table 3.3 and 3.4)

All methods have relative good coverage except the Asymptotic method
without correction (As). The methods with continuity correction exceed the
nominal coverage of the interval. When the sample size is small (nl = n2 = 10 )
some of the methods deviate from the defmition interval.

Methods recommended for large( n ~ 50) and small samples are the Haldane
(Hal), Jeffreys- Perks (JP), Score interval without correction (Sc), Wallenstein's
interval without correction (W), Mee (Mee) and Miettinen and Nurminen
(MN) intervals. Easy calculable methods are the Haldane interval, Jeffreys-
Perks interval and Score interval without correction.

3.2.2 Case PI = 0.95 and P2 = 0.85 (Table 3.5 and 3.6)

Most of the methods have a good coverage when the sample size is at least
moderately large. When the sample is smaller the methods either over or under
cover. Violation of the defmition interval and zero width intervals also occur
when the sample size is small. Continuity corrected methods tend to exceed the
nominal coverage of the interval.

Methods recommended for large samples are the Jeffreys-Perks (JP), Score
interval without correction (Sc), Wallenstein's interval without correction (W),
Mee (Mee) and Miettinen and Nurminen (MN) intervals.

The recommended method for small samples is the Jeffreys-Perks (JP). The
Mee (Mee) and Miettinen and Nurminen (MN) intervals do not attain nominal
coverage for sample size combination (30,20). The Jeffreys-Perks (JP) method
is easy calculable.



Methods recommended for large samples are the Asymptotic with Hauck and
Anderson's correction (HA), Haldane (Hal), Jeffreys-Perks (JP), Mee (Mee)
and Miettinen and Nunninen (MN) intervals.

3.2.3 Case PI = 0.95 and P2 = 0.15 (Table 3.7 and 3.8)

Most of the methods have a good coverage for large sample sizes. As the
sample size gets smaller most of the methods either exceed or attain coverage
less than the nominal coverage of the interval. Violation of the definition
interval is common when the sample size is less than 100.

Recommended methods for small samples are the Jeffreys-Perks (JP), Score
interval without correction (Sc), Mee (Mee) and Miettinen and Nunninen
(MN) intervals. Easy calculable methods are the Jeffreys-Perks and Score
interval without correction.

3.2.4 Case PI = 0.98 and P2 = 0.9 (Table 3.9 and 3.10)

Most of the methods exceed or attain coverage less than the nominal coverage
of the interval for large sample sizes (100,90). As the sample size decreases
the tendency for exceeding or never attaining the nominal coverage of the
interval grows in all the methods. Methods with continuity correction tend to
exceed the nominal coverage.

Methods recommended for large samples are the Jeffreys-Perks (JP),
Wallenstein's interval without correction (W), Mee (Mee) and Miettinen and
Nunninen (MN) intervals.

Recommended methods for small samples are the Jeffreys-Perks (JP), Score
interval without correction (Sc), Mee (Mee) and Miettinen and Nunninen
(MN) intervals are recommended. It must be noted that for sample size
combination nl = n2 = 10 all recommended methods have coverage close to
100%. Easy calculable methods are the Jeffreys-Perks and Score interval
without correction.
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3.2.5 Case PI = 0.98 and P2 = 0.1 (Table 3.11 and 3.12)

Methods either exceed or never attain the nominal coverage of the interval and
this worsens as the sample size decreases. Violation of the definition interval
also occurs in some methods for all sample size combinations.

Methods recommended for large samples are Haldane (Hal), Jeffreys-Perks
(JP), Score interval without correction (Sc), Mee (Mee) and Miettinen and
Nurminen (MN) intervals.

Recommended methods for small samples are the Mee (Mee) and Miettinen
and Nurminen (MN) intervals, though both methods exceed the nominal
coverage of the interval.

3.2.6 Case PI = 0.98 and P2 = 0.98 (Table 3.13 and 3.14)

Most of the methods exceed the nominal coverage of the interval. This occurs
more as the sample size gets smaller. Zero width intervals occur in some of the
methods for the small sample size( nl = 10 = n2).

Most methods exceed the nominal coverage, but taken length, deviations and
zero width intervals into account the following methods could be used.
Methods recommended for large samples are the Asymptotic with Hauck and
Anderson's correction (HA), Haldane (Hal), Jeffreys-Perks (JP), Score interval
without correction (Sc), Wallenstein's interval without correction (W), Mee
(Mee) and Miettinen and Nurminen (MN) intervals.

Recommended methods for small samples are the Jeffreys-Perks (JP), Score
interval without correction (Sc), Mee (Mee) and Miettinen and Nurminen
(MN) intervals. Easy calculable methods are then the Jeffreys-Perks and Score
interval without correction.

3.2.7 Case PI = 0.98 and P2 = 0.02 (Table 3.15 and 3.16)

Methods either exceed or do not attain the nominal coverage of the interval for
large sample sizes. For smaller sample sizes this tendency is continued.
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Violation of the definition interval occurs in most of the methods for all sample
size combinations.

It is difficult to recommend a method in this case as they either exceed or never
attain the nominal coverage of the interval. Here the methods of Mee (Mee)
and Miettinen and Nurminen (MN) may be used for large and small sample
sizes as both methods do not suffer from any deviations or occurrence of zero
width intervals. Both methods tend to exceed the nominal coverage of the
interval for large samples and never attain the nominal coverage of the interval
for the smallest sample size combination.

3.2.8 An investigation of the occurrence of zero width
intervals and violation of definition interval for two
special cases

As mentioned earlier the conventional Asymptotic interval method suffers from
the occurrence of zero width intervals and violation of the definition interval.
(see section l.3.2) We calculated examples with the different interval methods
for these cases which are reported in Table 3.17 and 3.18.



Table 3.17 95%, Confidence intervals for p] = 0 and P2 = o.
Sample sizes (n], n2)

Method (100,90) (60,50) (30,20) (la, la)
Asymptotic without correction
Asymptotic with correction
Asymptotic with Hauck and Anderson's correction
Haldane interval
Jeffreys-Perks interval
Score interval without correction
Score interval with correction
Wallenstein's interval without correction
Wallenstein's interval with correction0'1

00

Mee's interval
Miettinen and Nurrninen interval

[0;0] [0;0] [0;0] [0;0]
[ -0.01 ; 0.01] [-0.02; 0.02] [-0.04; 0.04] [-0.10; 0.10 ]
[ -0.01 ; 0.01] [-0.01; 0.01] [-0.03; 0.03] [-0.05; 0.05 ]
[ -0.002 ; 0 ] [ -0.01 ; 0 ] [ -0.03 ; 0 ] [0; 0 ]
[ -0.02 ; 0.02] [-0.04; 0.03] [-0.09; 0.06] [-0.17; 0.17 ]
[ -0.04 ; 0.04] [-0.07; 0.06] [-0.16; 0.11] [-0.28; 0.28 ]
[ -0.05 ; 0.05] [-0.09; 0.07] [-0.20; 0.14] [-0.34; 0.34 ]
[ -0.04 ; 0.04] [-0.06; 0.06] [-0.11; 0.11] [-0.28; 0.28 ]
[ -0.06 ; 0.06] [-0.09; 0.09] [-0.18; 0.18] [-0.40; 0.40 ]
[ -0.04 ; 0.04] [-0.07; 0.06] [-0.16; 0.11] [-0.28; 0.28 ]
[ -0.04 ; 0.04] [-0.07; 0.06] [-0.16; 0.12] [-0.29; 0.29 ]



Sample sizes (np n2)

Table 3.18 95% Confidence intervals when PI = 1.0 and P2 = o.

Method (100,90) _(60,50) (30,20) (10,10)

0\

'"

Asymptotic without correction [ l.00 ; l.00 ] [ l.00 ; l.00 ] [ l.00 ; l.00 ] [ l.00 ; l.00 ]
Asymptotic with correction [ 0.98 ; l.01 ] [ 0.98 ; l.02 ] [ 0.96 ; l.04 ] [ 0.90 ; l.10]
Asymptotic with Hauck and Anderson's correction [ 0.99 ; l.01 ] [ 0.99 ; 1.01 ] [ 0.98 ; 1.03 ] [ 0.95 ; 1.05 ]
Haldane interval [ 0.96 ; l.00 ] [ 0.93 ; 1.00] [ 0.85 ; 1.00] [ 0.68 ; 1.00 ]
Jeffreys-Perks interval [ 0.96 ; 1.00] [ 0.93 ; 1.00 ]* [ 0.85 ; 1.00 ]* [ 0.68 ; 1.00 ]*
Score interval without correction [ 0.94 ; 1.00] [ 0.91 ; 1.00] [ 0.80 ; l.00 ] [ 0.61 ; 1.00 ]
Score interval with correction [0.93; l.00]* [0.88; l.00]* [0.75; l.01 ] [0.51 ; 1.01 ]
Wallenstein's interval without correction [ 0.96 ; l.00 ] [ 0.93 ; 1.00] [ 0.85 ; 1.00] [ 0.68 ; l.00 ]
Wallenstein's interval with correction [ 0.94 ; 0.99 ] [ 0.89 ; 0.98 ] [ 0.78; 0.96 ] [ 0.53 ; 0.92 ]
Mee's interval [ 0.96 ; l.00 ] [ 0.93 ; 1.00] [ 0.84 ; l.00 ] [ 0.68 ; l.00 ]
Miettinen and Nurminen interval [ 0.96 ; l.00 ] [ 0.93 ; l.00 ] [ 0.84 ; l.00 ] [ 0.66 ; l.00 ]
* Violation of the defmition interval occurs at or later than the third decimal
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3.2.8.1 95% Confidence intervals for pj = 0,P2 = °(Table 3.17)

Zero width intervals occur with the Asymptotic without correction for all
sample size combinations and Haldane interval method for the combination
nJ = n2 = 10.

3.2.8.2 95% Confidence intervals for pj = 1.0, P2 = ° (Table 3.18)

Violation of the definition interval occur with the Asymptotic with correction
and Asymptotic with Hauck and Anderson' s correction for all sample size
combinations. For the Score interval with correction it occurs for sample size
combination nJ = 100, n2 = 90 [ 0.93 ; l.0014 ] and ». = 60, n2 = 50 [ 0.88 ;
l.0024]. For the Jeffreys-Perks interval it occurs for the sample size
combination ». = 60, ». = 50 [ 0.93 ; l.00003], », = 30, n2 = 20 [0.85;
l.00014] and nJ = n2 = 10 [0.68; l.00149]. Zero width intervals occur with
the Asymptotic without correction for all sample size combinations.

3.3 Recommendations

We recommend the interval methods of Miettinen and Nurminen and Mee for
use across all cases including small sample size. They are, however, very
computer intensive because of their iterative nature. The best of the more easy
calculable methods is the Jeffreys-Perks method, which is always satisfactorily
if sample size is z 50. The second best is the Score interval without correction.

Beal(1987) also came to this conclusion in his more limited comparison of
methods, when he noted that if one wants to implement a more sophisticated
and complicated interval using a computer program, the Mee and Miettinen
and Nurminen intervals are good choices. Beal also recommended the use of
the Jeffreys-Perks interval when one wants to compute a simple interval.

Newcombe(1998:b) suggests that his methods are the methods yielding shortest
intervals among the intervals, which are easily calculated. We differ somewhat
from this conclusion and found that the Jeffreys-Perks interval yields the best
results among easily calculable intervals. Newcombe's objection that some of
the Bayes estimates of parameters used in the calculation process lie outside
the definition interval [ 0 ; 1 ] may be overlooked since the resulting interval
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has better coverage, shorter length and less violation of the definition interval
than the Score methods.

The Jeffreys-Perks method has a coverage close to 95% or higher and also a
relatively short length for all sample sizes ~ 50. Most practical situations in
clinical trials have a sample size of ~ 50. The Jeffreys-Perks method is thus a
good method to use.



APPENDIX A
COMPUTER PROGRAM TO CALCULATE
CONFIDENCE INTERVALS DESCRIBED

THE

c
c
c This program produces thirteen types of confidence
c intervals for theta=p I-p2 for a 2x2 contingency table:
c
c 1. Simple asymptotic, without continuity correction
c 2. Simple asymptotic, with continuity correction
c 3. Beal's Haldane interval.
c 4. Beal's Jeffreys-Perks interval.
c 5. Mee interval.
c 6. Miettinen-Nunninen interval.
c 7. Asymptotic with Hauck and Anderson correction
c 8. Score interval without continuity correction
c 9. Score interval with continuity correction
c 10. Wallenstein's interval without continuity correction
c Il. Wallenstein's interval with continuity correction
c
c
c
c Limitation: group totals m and n not to exceed 200.
c
c
c Number of positive outcomes in first sample, xl.
c Total number in first sample, nl.
c Number of positive outcomes in second sample, x2.
c Total number in second sample, n2.
c
c

implicit double precision (a-h,l-z)
implicit integer (i-k)

complex(8)
AAA,BBB,CCC,dA,AAD,BBD,CCD,dd,A W,BW,CW,AA W,BBW,CCW,l32,

* ep,xk,magI,mag2,cI,c2,seor,lor,ccI,
* cc2,rbo,rlow,dcI,dc2,eeII,eeI2,ee2I,ee22,yyII,yyI2,yy2I,yy22,bo,

* onder,maal,nbo I,nbo2,non 1,non2,na,nb,nc,nd,add, cbb,or,dda,db,dc,
* ddd,dm,dn
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double precision d1(2),d2(2),pp(2),prr(2,101),thb(2),e(11,2),
& x(11,2),xx(101, 101,11,2),y(11,2,3),fcase( 4),flo( 4),
& ee(10 1,101, 11,2),xt(10 1,101,2),et(10 1,101,2)
integer ilo(101, 101,4) ! ,ilt(101,101)
data thb/-l.Od+O, 1.0d+01
common lal! a,aa,b,bb,c,cc,conf,d,deriv1,deriv2,diff,dA,
&

d1,d2,e,ee,et,AAA,BBB,CCC,AAD,BBD,CCD,dd,AW,BW,CW,AA W,BBW,
CCW,ep,

& f,fcase,flo,four,half,hth,ll ,12,m,n,run,nn,np Il ,np22,nx, one, oldps,
& p,pbar,pi,pp,pr,prr,ps,psihat,psimin,psimax,psiO,p1,p2,132,
& q,q1,q2,r,rw,ss,sss,se,sum,tail,
& th,thb,thetaO,thhat,three,ths,th1,th2,toI7,toI8,tol10,toI12,two,
& u,u1,u2,v,w,x,x1,x2,xx1,xx2,xt,xx,y,z,zero,
& i,ia,iamax,ib,ic,icase,icmax,id,ierr,ihcf,ilo,ih,
& im,imO,inO,in,inp,intabs,inx,iopt,ip,
& ir,irO,is,itab,iter,itest,itO,i 1,i2,j,k,
& xk,mag1,mag2,c1,e2,seor,lor,ee1,

& ec2,rbo,rlow, de1,de2, ee Il, ee 12,ee21, ee22,yy 11,yy 12,yy21 ,yy22,
& bo, onder,maal,nbo 1,nbo2,non 1,non2,na,nb,ne,nd,add, ebb, or,

& dda,db,de,ddd,dm,dn

e
e
e initialise constants
e

open(ll,file='e:\riette\dif.out')
to17 =1.0d-7
tol8 =1.0d-8
tollO =1.0d-10
toll2 =l.Od-12
zero =0.Od+O
half =0.5d+0
one =1.0d+0
two =2.0d+0
three =3.0d+0
four =4.0d+0
conf =9.5d+ 1
tail =half*( one-eonf* 1.0d-2)
z =1.959963985d+0
intabs=l



1000 print*,'Number of positive outcomes in first sample: ia'
print*, 'Total number in first sample: im'
print*, 'Number of positive outcomes in second sample: ib'
print*, 'Total number in second sample: in'
print*, 'THE LARGEST SAMPLE SIZE FOR THE MOMENT IS 200'
read (5, *) ia,im,ib,in
if (ia .ge. 0 .and. ib .ge. 0
& .and. ia .le. im .and. ib .le. in
& .and. im .gt. 0 .and. im .le. 200
& .and. in .gt. 0 .and. in .le. 200) goto 1200
write (11,9710) ia,im,ib,in
goto 1300

1200 call sixmethods
write(11,9299)ia,im,ib,in

9299 format(/'ia=' i5 ' im=' i5 ' ib=' i5 ' in=' i5), "'"
9301 format('Asymptotic interval without continuity correction'/

* 2F15.10)
write(11,9301) (x(1,k),k=1,2)

9302 format(/'Asymptotic interval with continuity correction'/2F 15.10)
write (11,9302) (x(2,k),k=1,2)

9303 format(/'Haldane interval'/2F15.1O)
write (11,9303) (x(3,k),k=1,2)

9304 format(/'Jeffrey-Perks interval'/2F15.1O)
write (11,9304) (x(4,k),k=1,2)

9305 format(/'Mee"s interval'/2F15.1O)
write (11,9305) (x(5,k),k=1,2)

9306 format(/'Miettinen and Nurminen interval'/2F15.1O)
write (11,9306) (x(6,k),k=1,2)

9307 format(/'Asymptotic interval with Hauck and Anderson"s'
*,' correction'/2F15.1O)
write (11,9307) (x(7,k),k=1,2)

9308 format(/'Score interval without continuity correction'/2F15.1O)
write (11,9308) (x(8,k),k=1,2)

9309 format(/'Score interval with continuity correction'/2F15.10)
write (11,9309) (x(9,k),k=1,2)

7304 format(/'Wallenstein interval without continuity correction'
*/2F15.1O)
write (11,7304) (x(10,k),k=1,2)

7305 format(/'Wallenstein interval with continuity correction'/2F15.10)
write (11,7305) (x(11,k),k=1,2)
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subroutine sixmethods

1300 continue
close(II,status='keep')

9710 format('Error 'i3 ' I' i3 ' - 'i3 ' I' i3)., , , , , , ,
end

c
c

implicit double precision (a-h,l-z)
implicit integer (i-k)

complex(8)
AAA,BBB,CCC,dA,AAD,BBD,CCD,dd,A W,BW,CW,AA W,BBW,CCW,132,

* ep,xk,magI,mag2,cI,c2,seor,lor,ccI,
* cc2,rbo,rlow,dcI,dc2,eeII,eeI2,ee2I,ee22,yyII,yyI2,yy2I,yy22,bo,

* onder,maal,nbo 1.nboz.non 1,non2,na,nb,nc,nd,add, ebb, or,dda, db, de,
* ddd,dm,dn
double precision dI(2),d2(2),pp(2),prr(2, lOI),thb(2),e(Il,2),
& x(11,2),xx(IO 1,101, 11,2),y(11,2,3),fcase( 4),flo( 4),
& ee(IO 1,10 1,II,2),xt(lOI, lOI,2),et(lOI, 101,2)
integer ilo(IOI,lOI,4) ! ,ilt(IOI,lOI)
common lal! a,aa,b,bb,c,cc,conf,d,derivI,deriv2,diff,dA,
&

dI,d2,e,ee,et,AAA,BBB,CCC,AAD,BBD,CCD,dd,AW,BW,CW,AA W,BBW,
CCW,ep,

& f.fcase.flo.four.half.hth.l l ,12,m,n,nm,nn,np Il ,np22,nx, one, oldps,
& p,pbar,pi,pp,pr,prr,ps,psihat,psimin,psimax,psiO,p I,p2,132,
& q,q I,q2,r,rw,ss,sss,se,sum,tail,
& th, thb, thetaO,thhat,three, ths, th 1,th2, tol7, tol8,tolI 0,tolI2, two,
& u,uI,u2,v,w,x,xI,x2,xxI,xx2,xt,xx,y,z,zero,
& i,ia,iamax,ib,ic,icase,icmax,id,ierr,ihcf,ilo,ih,
& im.imu.inu.in.inp.intabs.inx.iopt.ip;'
& ir,irO,is,itab,iter,itest,itO,i I,i2,j,k,
& xk,magI,mag2,cI,c2,seor,lor,ccI,

& cc2,rbo,rlow,dcI,dc2,eeII,eeI2,ee2I,ee22,yyII,yyI2,yy2I,yy22,
& bo,onder,maal,nbo 1.nboz.non 1,non2,na,nb,nc,nd,add, ebb, or,

& dda,db,dc,ddd,dm,dn
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c
c

if (im .gt. ° .and. in .gt. 0) goto 2000
write (11,9900) im,in
return
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2000 ic=im-ia
id=in-ib
itO=in*ia-im *ib
m=dble(float(im))
n=dble(float(in))
u=( one/m+one/n)/four
v=( one/m-one/n)/four
a=dble(float(ia))
b=dble(float(ib ))
c=dble( float(ic ))
d=dble( float(id))
thhat=a/m-b/n
psihat=half*( a/m+b/n)

c
c Usual Asymptotic interval without and with correction (1 & 2)
c

se=dsqrt(a*c/m**3+b*d/n**3)
x(l,l)=thhat-z*se
x(2, 1)=x(1, l)-two*u
x(1,2)=thhat+z*se
x(2,2)=x(1,2)+two*u

c
c Approximate general interval with Hauck and Anderson correction (7)
c

pll=a/m
p22=b/n

qll=l-pll
q22=I-p22
hacor=one/ïtwo=óninun.njj)
var=ïjp l l *q 11)/(m-I))+((p22*q22)/(n-I))
hamaal=(z*(dsqrt(var)))+hacor
x(7, I)=thhat -hamaal
x(7,2)=thhat+hamaal

c
c Newcombe's score interval without continuity correction (8)
c

thetal=(two*m*pll)+z**2
vierkl =dsqlt(Z**2+(four*m*pll *qll))
deell =two *(m+z* *2)
131=(thetal-( z*vierk 1))/deell
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u31 =(thetal +(z*vierkl))/deel1
theta2=(two*n*p22)+z**2
vierk2=dsqrt(z**2+(four*n*p22*q22))
dee12=two*(n+z**2)
132=(theta2-(z*vierk2))/dee12
u32=(theta2+(z*vierk2))/dee12
ep=z*(sqrt((u31 *(one-u31)/m)+(132*( one-132)/n)))
sn=z*(sqrt((131 *(one-131)/m)+(u32*( one-u32)/n)))
x(8, 1)=thhat-sn
x(8,2)=thhat+ep

c
c Newcombe's score interval with continuity correction (9)
c

thetall=(two*m*pll)+z**2-one
vier I I=z**2-two-(one/m)+((four*pll)*((m*qll)+one))
vierk Il =z*( dsqrt( vier Il))
ddl =two*(m+z**2)
III =(thetall-vierkll)/ddl
theta12=(two*m*pll)+z**2+one
vier 12=z* *2+two-( one/m)+( (four*p Il )*( (m*q Il )-one ))
vierk12=z*(dsqrt(vier12))
u l l =(theta I2+vierk I2)/dd I
theta21=(two*n*p22)+z**2-one
vier21=z**2-two-(one/n)+((four*p22)*((n*q22)+one))
vierk21 =z*( dsqrt( vier21))
dd2=two*(n+z* *2)
121=(theta21- vierk21 )/dd2
theta22=(two*n*p22)+z**2+one
vier22=z**2+two-(one/n)+((four*p22)*((n*q22)-one))
vierk22=z*( dsqrt( vier22))
u21 =(theta22 +vierk22)/ dd2
tep=dsqrt( ((ull-( alm))* *2+((b/n)-121)* *two))
tsn=dsqrt((((alm)-lll )**2+(u21-(b/n))**two))
x(9, 1)=thhat-tsn
x(9,2)=thhat+tep

c
c Wallenstein's interval without continuity correction (10)
c

eps=zero
rw=m+n

c



if (p 1I.lt.p22) then ss=one
else ss=zero
if (pll.lt.p22) goto 2
goto 1

c SHOULD WE SWITCH INDICES? ONLY NECESSARY IF pll<p22.
c

c WHEN IT IS NOT NECESSARY TO SWITCH INDICES
c SOLUTION FOR THE UPPER BOUND d:
1 if (a.eq.O.and.b.eq.O) goto 80

goto 81
80 dA=(z* *2/(2*m)+(z/dsqrt(m))*dsqrt(z**2/( 4*m)))/( 1+z**2/m)

goto 6

81 rw=rw
pbar=((m*p 11)+(n*p22))/rw

EPS 1=p II-p22+eps
if(EPS1.ge.one) then EPSl=one
else EPSl=EPSl

AAA = one+(z**2/rw)*(one+(m-n)**2/(m*n))
BBB = -two*EPSl + (z**2/(m*n))*(one-two*pbar)*(m-n)
CCC = EPSl **2 -(z**2/(m*n)) *rw*pbar*(one-pbar)

dA = (-BBB+sq11(BBB**2 -four*AAA*CCC))/(two*AAA)

c ddo=dA

pld=pbar+(dA *n/rw)
p2d=pbar-( dA*mlrw)

c [Set p2d=0 pld=d and var(pld,p2d) = d*(I-d)/m yielding:]
if (p2d.lt.zero) goto 4
if (pld.gt.one) goto 5
goto 6
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4 dA=(EPSl +(z**2/(2*m))+(z/dsqrt(m))*dsqrt(EPSl *(1-EPSl)+
*(z**2/(4 *m))))/(1 +(z**2/m))

goto 6



c d = do
c [Set pld=1 p2d=l-d and var(pld,psd) = (l-d)*d/n yielding:]

5 dA=EPS 1+(z**2/(2*n»+(z/dsqrt(n»*dsqrt(EPSl *(1-EPS1)+
* (z**2/( 4*n»)/(1 +(lIn)*z**2)

6 UCL=dA
if(pll.eq.p22) goto 70
goto 71

70 LCL=-UCL
goto 14

c SOLUTION FOR THE LOWER BOUND d, NOW DENOTED AS dd:

71 EPS2=pll-p22-eps
if (EPS2.le.zero) then EPS2=zero
else EPS2=EPS2

AAD = one + (z**2/rw)*(1 +(m-n)**2/(m*n»
BBD = -two*EPS2 + (z**2/(m*n»*(one-two*pbar)*(m-n)
CCD = EPS2**2 - ((z**2)/(m*n» *rw*pbar*(one-pbar)

dd = (-BBD-sqrt(BBD**2 -four*AAD*CCD»/(two*AAD)

pi dd=pbar+( (dd *n)lrw)
p2dd=pbar-(( dd*m)/rw)

c [Set pi dd=O then p2dd = -dd var(p 1dd,p2dd) = -dd( 1+dd)/n
c yielding:]

if (pldd.lt.zero) goto 7
goto 20

7 dd=(EPS2+(z**2/(two*n»+z*dsqrt( one/n*(EPS2*( one-EPS2) +
* (z*z/(four*n»»)/( one+((z*z)/n»
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20 LCL = dd



goto 14

c WHEN IT IS NECESSARY TO SWITCH INDICES:
c ss=l
2 nm=m

nn=n
xxl=a
xx2=b
m=nn
n=nm
a=xx2
b=xxl
pll=aJm
p22=b/n

c SOLUTION FOR THE UPPER BOUND d:
rw=m+n
pbar=(m *pIl +n*p22)/rw
EPS 1=p ll-p22+eps
if (EPSl.ge.one) then EPSl=one
else EPSl=EPSl

AW = one+(z**2/rw)*(one+((m-n)**2/(m*n»)
BW = -two*EPSl + (z**2/(m*n»*(one-two*pbar)*(m-n)
CW = EPSl **2 -(z**2/(m*n» *rw*pbar*(one-pbar)

dA = (-BW+sqrt(BW**2 -four*AW*CW»/(two*AW)

p ld=pbar+(( dA*n)/rw)
p2d=pbar-(( dA*m)/rw)

c p2d=0 pld=d and var(pld,p2d) = d*(l-d)/m yielding:
if (p2d.1t.zero) goto 8
if (p ld.gt.l) goto 9
goto 10

8 dA=(EPS1+(z**2/(2*m»+(zldsqrt(m»*dsqrt(EPS1 *(l-EPSl)+
*(z**2/(4 *m») )/(1+(z* *2/m»

goto 10
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c pld=1 p2d=l-d and var(pld,psd) = (l-d)*dJn yielding:
9 dA=EPSl +(z**2/(2*n))+(z/dsqrt(n))*dsqrt(EPS 1*(l-EPSl)+

* (z**2/(4*n)))/(I+(lIn)*z**2)

10 UCL =dA

53 if (pll.eq.p22) goto 13
goto 15

13 LCL=-UCL
goto 14

c SOLUTION FOR THE LOWER BOUND d', NOW DENOTED AS dd:
15 EPS2=p II-p22-eps

if (EPS2.le.zero) then EPS2=zero
else EPS2=EPS2

AAW = one + (z**2/tw)*(one+(m-n)**2/(m*n))
BBW = -two*EPS2 + (z**2/(m*n))*(one-two*pbar)*(m-n)
CCW = EPS2**2 - (z**2/(m*n)) *tw*pbar*(one-pbar)

dd = (-BBW-sqrt(BBW**2 -four*AAW*CCW))/(two*AAW)

pldd=pbar+((dd*n)/rw)
p2dd=pbar-((dd*m)/tw)

c p2dd = -dd and var(p 1dd,p2dd) = -dd( 1+dd)/n yielding
if (pldd.eq.zero) goto 12
goto 21

12 dd=(EPS2+(z* *2/(two*n) )+z*dsqrt( one/n *(EPS2 *(one-EPS2) +
* ((z*z)/(four*n)))))/( one+((z*z)/n))

21 LCL = dd

vn=m
vm=n
m=vm
n=vn
vb=a



va=b
a=va
b=vb

c 'SO THE CORRECT WALLENSTEIN CONFIDENCE INTERVAL IS
c GIVEN BY:')

nUCL=-UCL
nLCL=-LCL
LCL=nUCL
UCL=nLCL

14 x(lO,I)=LCL
x(IO,2)=UCL

c
c Wallenstein's interval with continuity correction (11)
c

eps=1/(2*m)+ 1/(2*n)
rw=m+n
pII=aJm
p22=b/n

c
c SHOULD WE SWITCH INDICES? ONLY NECESSARY IF pIl <p22.
c

if (pII.1t.p22) then ss=one
else ss=zero
if (pII.1t.p22) goto 32
goto 31
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c WHEN IT IS NOT NECESSARY TO SWITCH INDICES
c SOLUTION FOR THE UPPER BOUND d:
31 rw=rw

pbar=((m*p 11)+(n*p22))/rw

EPS 1=p II-p22+eps
if (EPSl.ge.one) then EPSI=one
else EPS 1=EPS 1

AAA = one+(z**2/rw)*(one+(m-n)**2/(m*n))
BBB = -two*EPSI + (z**2/(m*n))*(one-two*pbar)*(m-n)
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CCC = EPS1 **2 -(z**2/(m*n)) *rw*pbar*(one-pbar)

dA = (-BBB+sqrt(BBB**2 -four* AAA*CCC))/(two* AAA)

p 1d=pbar+( dA*nlrw)
p2d=pbar-( dA*m/rw)

c [Set p2d=0 p1d=d and var(p1d,p2d) = d*(l-d)/m yielding:]
if (p2d.lt.zero) goto 34
if (p l d.gt.one) goto 35
goto 36

34 dA=(EPS 1+(z**2/(2*m))+(z/dsqrt(m))*dsqrt(EPS 1*(l-EPS 1)+
*(z**2/( 4*m))))/(l +(z**2/m))

goto 36

c [Set p1d=1 p2d=1-d and var(p1d,psd) = (l-d)*d/n yielding:]

35 dA=EPS 1+(z**2/(2*n))+(z/dsqrt(n))*dsqI1(EPS 1*(l-EPS 1)+
* (z**2/( 4*n)))/(1 +(l/n)*z**2)

36 UCL =dA

if(p11.eq.p22) goto 60
goto 61

60 LCL=-UCL
goto 33

c SOLUTION FOR THE LOWER BOUND a, NOW DENOTED AS dd:

61 EPS2=pll-p22-eps

if (EPS2.le.zero) then EPS2=zero
else EPS2=EPS2

AAD = one + (z**2/rw)*(1+(m-n)**2/(m*n))
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BBD = -two*EPS2 + (z**2/(m*n))*(one-two*pbar)*(m-n)
CCD = EPS2**2 - ((z**2)/(m*n)) *rw*pbar*(one-pbar)

dd = (-BBD-sqrt(BBD**2 -fom*AAD*CCD))/(two*AAD)

pi dd=pbar+( (dd*n)/rw)
p2dd=pbar-(( dd*m)/rw)

c [Set pldd=O then p2dd = -dd var(pldd,p2dd) = -dd(l+dd)/n
c yielding:]

if (pldd.1t.zero) goto 37
goto 40

37 dd=( eps2-(z* *2/(2*n)))+((z/sqrt(n))*
& sqrt((z**2/( 4*n))-( eps2*(1 +eps2))))/(1 +(z**2/n))

c ddl=dd

40 LeL = dd

goto 33

c WHEN IT IS NECESSARY TO SWITCH INDICES:
c ss=1
32 nm=m

nn=n
xxl=a
xx2=b
m=nn
n=nm
a=xx2
b=xxl
pll=a/m
p22=b/n

c SOLUTION FOR THE UPPER BOUND d:
rw=m+n
pbar=(m*pll+n*p22)/rw
EPS 1=p II-p22+eps
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if (EPS l.ge.one) then EPS 1=one
else EPS 1=EPS 1

AW = one+(z**2/rw)*(one+((m-n)**2/(m*n)))
BW = -two*EPSI + (z**2/(m*n))*(one-two*pbar)*(m-n)
CW = EPSI **2 -(z**2/(m*n)) *rw*pbar*(one-pbar)

dA = (-BW+sqrt(BW**2 -four*AW*CW))/(two*AW)

p Id=pbar+(( dA*n)/rw)
p2d=pbar-(( dA*m)/rw)

c p2d=0 pld=d and var(pld,p2d) = d*(I-d)/m yielding:
if (p2d.1t.zero) goto 38
if (p ld.gt.I) goto 39
goto 50

38 dA=(EPS 1+(z**2/(2*m))+(z/dsqrt(m))*dsqrt(EPS 1*(1-EPS 1)+
*(z**2/( 4*m))))/(I +(z**2/m))

c dI=dA

goto 50

c p l d=I p2d=I-d and var(pld,psd) = (I-d)*d/n yielding:
39 dA=EPSI +(z**2/(2*n))+(z/dsqrt(n))*dsqrt(EPSI *(1-EPS 1)+

* (z**2/(4*n)))/(I+(lIn)*z**2)

50 UCL=dA
if (pIl.eq.p22) goto 46
goto 45

46 LCL=-UCL
goto 33

c SOLUTION FOR THE LOWER BOUND a, NOW DENOTED AS dd:
45 EPS2=p II-p22-eps

if (EPS2.1e.zero) then EPS2=zero
else EPS2=EPS2
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AAW = one + (z**2/rw)*(one+(m-n)**2/(m*n))
BBW = -two*EPS2 + (z**2/(m*n))*(one-two*pbar)*(m-n)
CCW = EPS2**2 - (z**2/(m*n)) *rw*pbar*(one-pbar)

dd = (-BBW-sqrt(BBW**2 -four*AAW*CCW))/(two*AAW)

p Idd=pbar+(( dd*n)/rw)
p2dd=pbar-((dd*m)/rw)

c p2dd = -dd and var(pldd,p2dd) = -dd(l+dd)/n yielding
if (pldd.eq.zero) goto 42
goto 41

42 dd=( eps2-(z**2/(2*n)))+((z/sqrt(n))*
& sqrt( (z* *2/(4 *n))-(eps2 *(1+eps2))) )/( 1+(z* *2/n))

41 LCL = dd

c 'SO THE CORRECT WALLENSTEIN CONFIDENCE INTERVAL IS
GIVEN BY:')

nUCL=-UCL
nLCL=-LCL
LCL=nUCL
UCL=nLCL

33 x(ll,I)=LCL
x(II,2)=UCL

c
c Beal's Haldane & Jeffreys-Perks methods 3 & 4
c

do 2500 i=3,4 ! method
ilo(ia+ l,ib+ l,i)=O
ps=( a/m+b/n)/two
if (i .eq. 4) ps=((a+half)/(m+one)+(b+half)/(n+one))/two
w=u*(four*ps*( one-ps)-thhat**2)
w=w+two*v*( one-two*ps )*thhat
w=w+four*(one-ps)*ps*(z*u)**2



w=w+(z*v*(one-two*ps))**2
w=z*dsqrt(w)/( one+z*z*u)
th=(thhat+z*z*v*( one-two*ps ))/(one+z*z*u)
xCi,1)=th-w
x(i,2)=th+w
do 2200 k= 1,2 ! lower/upper
do 2200 j=I,2 ! 1st/2nd sample
pi=ps-half*x(i,k)*(-one)**j
if (Pi .le. -to112 .or. pi .ge. one+to112) goto 2300

2200 continue
goto 2500

2300 ilo(ia+ 1,ib+ 1,i)=1
2500 continue
c
c Mee's interval and Miettinen and Nunninen's interval (5 & 6)
c
3000 do 4000 i=5,6 !method

do 4000 k=1,2 ! lower/upper
if ((k .eq. 1 .and. ia .eq. 0 .and. id .eq. 0)
& .or. (k .eq. 2 .and. ib .eq. 0 .and. ic .eq. 0)) goto 3900
th1=thhat
th2=thb(k)
th=(th1 +th2)*half
do 3200 iter-1,40 ! for theta within 1e-l2
call profile
pp( 1)=ps+hth
pp(2)=ps-hth
f=((th-thhat)/z)* *2
if (i .eq. 6) f=f*( one-one/(m+n))
f=pp(l )*(one-pp(l ))/m+pp(2)*( one-pp(2))/n-f
if (f .It. zero) goto 3100
th1=th
goto 3200

3100 th2=th
3200 th=(th1 +th2)*half

goto 3950
3900 th=thb(k)

ps=half
3950 e(i,k)=ps
4000 x(i,k)=th

if (x(5, 1) .It. x(6,1) .or. x(5,2) .gt. x(6,2))
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& write (11,9800) ia,im,ib,in,((x(i,k),k=1,2),i=5,6)
return

9800 formatt'Waming: for' i5 ' I ' i5 ' - ' i5 ' I ' i51. " , , , , ,
& 'Mee interval',£15.l0,' to ',£15.10,' not a subset ofl
& 'M-N interval',£15.1O,' to ',£15.10)

9900 format('Error: im=',i6,' in=',i6)
end

subroutine profile
c
c Given a, m, b and n, this subroutine calculates the psi value, ps,
c that maximises the likelihood for any hypothetical value of theta,
c viz. th, between -1 and +1.
c Four cases are distinguished according to the pattern of empty cells.
c
c

implicit double precision (a-h,1-z)
implicit integer (i-k)

complex(8)
AAA,BBB, CCC,dA,AAD,BBD, CCD,dd,A W,BW, CW,AAW,BBW, CCW,132,

* ep,xk,magl,mag2,cl,c2,seor,lor,ccl,
* cc2,rbo,rlow,dcl,dc2,eell,ee12,ee2l,ee22,yyll,yy12,yy2l,yy22,bo,

* onder,maal,nbo 1.nbnZ.non 1,non2,na,nb,nc,nd,add, ebb, or,dda, db,de,
* ddd,dm,dn
double precision dl(2),d2(2),pp(2),prr(2, 101),thb(2),e(11,2),
& x(1l,2),xx(101, 101,11,2),y(11,2,3),fcase( 4),flo( 4),
& ee(lOl, 101, 11,2),xt(1O1,101,2),et(101, 101,2)
integer ilo(10l, 101,4) ! ,ilt(lOl,lOl)
common lal! a,aa,b,bb,c,cc,conf,d,derivl,deriv2,diff,dA,
&

dl,d2,e,ee,et,AAA,BBB,CCC,AAD,BBD,CCD,dd,AW,BW,CW,AA W,BBW,
CCW,ep,

& f.fcase.flo.four.half.hth.ll ,12,m,n,nm,nn,np Il ,np22,nx, one, oldps,
& p,pbar,pi,pp,pr,prr,ps,psihat,psimin,psimax,psiO,p 1,p2,132,
& q,ql,q2,r,rw,ss,sss,se,sum,tail,
& th,thb,thetaO,thhat,three,ths,thl,th2,toI7,toI8,tollO,toI12,two,
& u,ul,u2,v,w,x,xl,x2,xxl,xx2,xt,xx,y,z,zero,
& i,ia,iamax,ib,ic,icase,icmax,id,ierr,ihcf,ilo,ih,
& im,imO,inO,in,inp,intabs,inx,iopt,ip,
& ir,irO,is,itab,iter,itest,itO,i 1,i2,j,k,
& xk,magl,mag2,cl,c2,seor,1or,ccl,
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& ee2,rbo,rlow ,dc 1,de2, ee Il, ee 12,ee21, ee22,yy 11,yy 12,yy21 ,yy22,
& bo,onder,maal,nbo1,nb02,non1,non2,na,nb,ne,nd,add,cbb,or,

& dda,db,de,ddd,dm,dn

c
ps=half
hth=half*th
if (dabs(th) .le. one+to1l2) goto 500
write (11,9900) th
goto 5100

500 if (dabs(th) .gt. one-to1l2) goto 5000 ! then ps=half
if ((ib .eq. 0 .and. ie .eq. 0) .or.
& (ia .eq. 0 .and. id .eq. 0)) goto 4000
if ((ia .eq. 0 .and. ib .eq. 0) .or.
& (ic .eq. 0 .and. id .eq. 0)) goto 3000
if (ia .eq. 0 .or. ib .eq. 0 .or.
& ic .eq. 0 .or. id .eq. 0) goto 2000

c
c Case (i): no empty cells
c
1000 psimin=dabs(hth)

psrmax=one-psurun
1100 p l=ps+hth

p2=ps-hth
q l=one-p l
q2=one-p2
if (p l .lt. to1l2 .or. p2 .It. to1l2 .or.
& q1.lt. to1l2 .or. q2.lt. to1l2) goto 1900
deriv l =a/p I+b/p2-c/q 1-d/q2
deriv2=-a/p1 **2-b/p2**2-c/q1 **2-d/q2**2
oldps=ps
ps=ps-derivllderiv2
if (ps .le. psimin+tol10) ps=half*(psimin+oldps)
if (ps .gt. psimax-tollO) ps=half*(psimax+oldps)
if (dabs(ps-oldps) .gt. to1l2) goto 1100
goto 5000

1900 write (11,9910) ia,im,ib,in,i,th,p1,p2
goto 5000

e
c Case (ii): one empty cell
e
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2000 aa=m+n
if (ib .eq. 0) goto 2200
if (ic .eq. 0) goto 2300
if (id .eq. 0) goto 2400

2100 ths=-(aa-dsqrt(aa**2-four*b*c ))*half/c
ps=-hth
if (th .le. ths) goto 5000
bb=c*( one-th)+d
cc=-hth *((c-d)*( one-hth)+b*hth)
goto 2500

2200 ths=( aa-dsqrt( aa**2-four* a*d)) *half/ d
ps=hth
if (th .ge. ths) goto 5000
bb=d *(one+th)+c
cc=hth *((d-e)*(one+hth)-a *hth)
goto 2500

2300 ths=( aa-dsqrt( aa**2-four* a*d)) *half/ a
ps=one-hth
if (th .ge. ths) goto 5000
bb=a *(one+th)+b
cc=hth*((a-b )*( one+hth)-d*hth)
goto 2500

2400 ths=-( aa-dsqrt( aa**2-four*b *c)) *half/b
ps=one+hth
if (th .It. ths) goto 5000
bb=b*( one-th)+a
cc=-hth *((b-a) *(one-hth)+c *hth)

2500 ps=(bb+dsq11(bb**2-four*aa*cc))*half/aa
if (ia .eq. 0 .or. ib .eq. 0) ps=one-ps .
goto 5000

c
c Case (iii): two empty cells, same row.
c
3000 ps=dabs(hth)

if (ic .eq. 0) ps=one-ps
goto 5000

c
c Case (iv): two empty cells, same diagonal.
c
4000 if (im .eq. in) goto 5000

if (ia .eq. 0) goto 4500
! then ps=half



if (im .lt. in) goto 4300
if (m*th .lt. n) goto 4400

4100 ps=one-hth
goto 5000

4300 if (n*th .lt, m) goto 4400
ps=hth
goto 5000

4400 ps=(m+(m-n)*hth)/(m+n)
goto 5000

4500 if (in .lt. im) goto 4800
if (n*(-th) .lt. m) goto 4900

4600 ps=one+hth
goto 5000

4800 if (m*(-th) .lt. n) goto 4900
ps=-hth
goto 5000

4900 ps=(n+(m-n)*hth)/(m+n)
5000 continue
5100 continue
9900 format('Error: theta=',fl5.12,' out of range')
9910 format('Error for' i5 ' / ' i5 ' - ' i5 ' / ' i5 ' method' i2. " , , , , , , ,
& /'theta=',fl5.12,' pl=',fl6.12,' p2=',fl6.12)
return
end
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