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A maximum likelihood based 
offline estimation of student 
capabilities and question 
difficulties with guessing

Abstract:
In recent years, the computerised adaptive test (CAT) has gained 
popularity over conventional exams in evaluating student capa­
bilities with desired accuracy. However, the key limitation of 
CAT is that it requires a large pool of pre-calibrated questions. 
In the absence of such a pre-calibrated question bank, offline 
exams with uncalibrated questions have to be conducted. Many 
important large exams are offline, for example the Graduated 
Aptitude Test in Engineering (GATE) and Japanese University 
Entrance Examination (JUEE). In offline exams, marks are used 
as the indicator of the students’ capabilities. In this work, our key 
contribution is to question whether marks obtained are indeed a 
good measure of students’ capabilities. To this end, we propose an 
evaluation methodology that mimics the evaluation process of CAT. 
In our approach, based on the marks scored by students in various 
questions, we iteratively estimate question parameters such as 
difficulty, discrimination and the guessing factor as well as student 
parameters such as capability using the 3-parameter logistic ogive 
model. Our algorithm uses alternating maximisation to maximise the 
log likelihood estimate for the questions and students’ parameters 
given the marks. We compare our approach with marks-based 
evaluation using simulations. The simulation results show that our 
approach out performs marks-based evaluation.

Keywords: 3-parameter logistic IRT model, alternating optimi
sation, offline exams, computerised adaptive test.

1.	 Introduction
The multiple choice exams are the most popular assess­
ment scheme for large scale exams such as the compu­
terised adaptive test (CAT), Graduate Record Examinations 
(GRE), Scholastic Aptitude Test (SAT) and so on. The 
important features of multiple-choice exams that make it 
more popular are that these exams are easy to evaluate 
and the evaluation criteria can be implemented uniformly 
without any bias. In subjective exams where students give 
descriptive answers for every question, the question of 
partial correctness comes into play, which may result in a 
biased evaluation. In addition, the time and effort required 
for evaluating a subjective exam is quite high. On the 
other hand, in the case of multiple-choice exams, there will 
be exactly one correct answer and the whole notion of a 
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“partially correct answer” disappears. However, the effect of guessing appears in multiple-
choice exams. By way of example, consider an item with four options out of which exactly 
one is the correct answer and the remaining three are distractors. In this case, a student of 
extremely low ability who is unprepared for the exam has a 0.25 probability of answering 
it correctly through guessing. Thus, a guessed response even though it does not give any 
information about the actual capability of a candidate contributes to his/her test score and 
thus skews the assessment. Moreover, in situations with “partial knowledge” the guessing 
factor becomes more significant, since even without knowing the correct answer to an item 
if a candidate is successful in eliminating a few distractors of the item with his/her partial 
information about the item, his/her chances of getting it correct is greater. Thus, the probability 
that a candidate with partial knowledge about the item getting it correct through guessing 
is greater that particular item fails to distinguish a candidate with partial knowledge from a 
candidate with full information. On the other hand, a student who knows the basic method to 
solve an item can make minor errors, which can lead to the wrong choice of response and get 
zero credit for that item. Therefore, the effect of guessing depends on the nature of the item 
and is thus an item parameter.

CAT is one of the most popular evaluation schemes (Van der Linden, Wim & Glas, 2000). The 
important feature of CAT that popularises it, is the “adaptive” feature of conducting the exam. 
In CAT, the test item that a candidate is going to answer next depends on his/her responses to 
the previous questions. If a candidate answers a question of a certain difficulty level correctly, 
s/he will be given a question of slightly greater difficulty level. However, if the response is not 
correct, then the next question will be slightly less difficult. For the adaptive selection of items 
for all the test takers, CAT maintains an item pool that consists of a large number of items 
spanning a range of content levels and difficulty levels and every item is selected based on a 
selection algorithm. In this way, every candidate taking a CAT exam will undergo a self-tailored 
exam. Even though CAT exams are superior to other exams in various aspects, it does have 
some shortcomings as well (Way, Davis & Fitzpatric, 2006). The difficult task of conducting a 
CAT exam is the construction and maintenance of the item pool. The item pool is the prime 
requirement and it should contain questions in a wide range of difficulty levels so that the 
exam is good enough to estimate the capabilities of low and high capability candidates. The 
challenges associated with constructing and maintaining the item pool is:

1) Questions in the item pool should be pre-calibrated. For calibrating questions, extra test 
items are given as field tests in every exam. These are uncalibrated questions that are 
given in the exam which do not affect the test score of a candidate but whose difficulties 
are determined from the responses of the candidates whose capabilities are estimated from 
the pre-calibrated questions. The difficulty of an item is fixed only after taking a sufficient 
number of field tests. The problem associated here is that, as a number of students see these 
questions, the difficulty of the question is no longer the estimated one. Thus, the questions 
that the candidates see will not have the calculated difficulties when they are used for testing. 
Therefore, the entire process of calibrating questions and then estimating the capabilities of 
candidates using those calibrated questions will be erroneous in a cyclic manner.

2) The item pool should be periodically repopulated. Items that are frequently given for the 
exam will become known to the examinees. Consequently, the difficulty of the question is 
different from the calibrated value as time progresses. This will result in the wrong estimation 
of capabilities. To avoid this, the pool should be restored and fresh items should replace the 
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known ones. However, accurately finding the time point at which an item in the pool is to be 
replaced is not an easy task.

3) In exams with many disciplines, constructing and maintaining an item pool for each 
discipline is quite a difficult task. It is very expensive and requires plenty of effort to construct 
an item pool.

4) One other issue with CAT exams is the option to go back in the exam. More clearly, a 
candidate can return to a previous question and reattempt it at any point in time in the exam. 
While there is variation across various adaptive tests on whether or not to allow modifying 
past attempts, there is disagreement about to what extend this will help in estimating the 
parameters (Way et al., 2006). Since this feature of reattempting items is not incorporated in 
our analyses, we will not pursue it in this work. Apart from all these difficulties, security issues 
are also a major concern in CAT exams.

Charles Spearman came up with the first theory of psychometric test analysis known as 
the classical test theory (CTT) in 1906. Sixty years later, Lord and Novick reformulated CTT 
using a modern mathematical statistical approach (Lord, Novick & Birnbaum, 1968). The 
main shortcoming of CTT is that it does not consider the item properties. To be precise, in 
multiple-choice exams where the total score is considered as the measure of the candidate’s 
capability, the items that a candidate answered correctly does not play any role in deciding 
his/her capability. In such a situation, answering an easy question correctly and a very difficult 
question correctly fetches him/her the same credit that does not seem to be appropriate. 
Binet and Simon (1916) introduced the item based test theory known as the item response 
theory (IRT) in 1916, where the item parameters such as the difficulty of the question are also 
considered in the assessment. This paper uses an IRT model for all the analyses conducted.

In this paper, we are focusing on offline exams. By the term “offline”, we mean the exams in 
which the scores of the test takers are not available after the end of the test. In CAT exams, 
by the end of the test, each examinee gets to know his test score. However, in offline exams 
the test score is disclosed to the public as well as the test takers after a certain timeframe. In 
these exams, test scores of a candidate not only depends on his/her sole performance but 
also on the general nature of the exam. In addition, here the questions are not pre-calibrated.

The main point that we are focusing on in this work is that in offline exams when total marks 
are used as the input measure for estimating the capabilities of the students, then score 
comparison across disciplines, years and sessions is not justified. Scores need to be compared 
across disciplines when students with scores in different disciplines apply for a common 
programme. For example, a student with a score in computer science engineering can apply 
for a programme in electrical engineering and vice versa. Similarly, many interdisciplinary 
courses consider scores from various disciplines while applying. Therefore, score comparison 
across disciplines becomes vital. Score comparison across years becomes relevant in those 
exams that have a validity of more than a year. In such exams, a candidate can apply for a 
programme while his/her score is valid. In such a case, it is imperative to compare scores 
across years. The third scenario is a multiple session exam, where students take exams in 
different batches answering different question papers and are finally ranked in a single rank 
list. For example, in cases of large-scale offline exams such as GATE, students take tests in 
different test centres for the same discipline by answering different question papers and are 
finally ranked in a common rank list. Here question papers are different for different batches 
and therefore comparison of scores cannot be justified if total marks are used as the only 
deciding parameter.
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Summary of contribution
We propose a maximum likelihood based alternating optimisation algorithm for the three-
parameter logistic model for estimating the student parameter, capability and the question 
parameters, difficulty, discrimination and guessing. In our previous work, we proposed an 
alternating optimisation based estimation of student capabilities and question difficulties 
(Moothedath, 2016) for the two-parameter Rasch model. The effect of guessing is not 
considered in that work. In this paper, the effect of guessing is included and experimental 
results are demonstrated to compare the proposed maximum likelihood based algorithm with 
the mark-based method. However, the exams considered in this work are not adaptive and 
negative marking is not considered here.

Organisation of the paper
Section 2 details the model employed in this work for estimating the student parameter, 
capability and the question parameters, difficulty, discrimination and guessing. The details 
of the maximum likelihood estimation are given in section 3 and the likelihood function of 
the concerned problem is formulated here. Section 4 summarises the pseudocode for the 
proposed scheme. For verifying the performance of the proposed maximum likelihood based 
scheme, we conducted a few experiments. The details of the experiments conducted and the 
metrics that are used for the comparison is given in section 5. Simulation results corresponding 
to these experiments are given in section 6. Section 7 and section 8 comprises of concluding 
remarks and references respectively.

2.	 Model
This section discusses the model used in this paper for assessment. We employed Birnbaum’s 
three-parameter model for all the analyses done in this work. Birnbaum proposed an item 
characteristic curve which (Baker, 1985) gives the probability of jth student answering ith 
question correctly.

Pi(cj) = gi + (1-gi)
exp{ai(cj-di )}

1+exp{ai(cj-di )}
 	 (1)

where cj  denotes the capability of the jth student and di , ai  and gi  denotes the difficulty, discrimi­
nation and guessing factor of the ith question respectively. The guessing factor is the likelihood 
that a student of extremely low ability answers the item correctly. The parameters of the model 
are as follows: (1) capability cj, (2) difficulty di , (3) discrimination ai , (4) guessing factor gi . 
Henceforth, i stands for the question index and j denotes student index. 
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Figure 1:	 ICC for correct response with d = 0.5, a = 4.255 and g = 0.25

Figure 1 is the item characteristic curve (ICC) which shows the variation of probability of 
answering a question of difficulty 0.5 correctly when 0.25 guessing factor is involved. The plot 
shows that an unprepared candidate who has no knowledge about the item can answer it 
correctly with 0.25 probability. In addition, as capability increases the probability of answering 
correctly also increases and finally saturates to 1.
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Figure 2:	 ICC for incorrect response with c = 0.5, a = 4.255 and g = 0.25

Figure 2 shows the item characteristic curve that shows the variation of probability of answering 
incorrectly as a function of question difficulty. The plot shows that for quite a low difficulty 
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question the probability of answering incorrectly is very low and as the difficulty increases the 
probability of answering incorrectly saturates to a value lower than 1. Thus, even when the 
question difficulty is very high when compared to the capability, there is still the probability of 
answering it correctly because of the guessing factor involved.

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0
Capability

Pr
ob

ab
ilit

y 
of

 c
or

re
ct

 re
sp

on
se

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

a=4.255
a=6
a=10

Figure 3:	 ICC for correct response with d = 0.5 and g = 0.25

Figure 3 shows the variation of probability of answering correctly for questions for different 
discrimination values. It is clear from the plot that as the discrimination value increases 
the plot becomes more and more steep. The steeper the curve, the better the item is, as it 
can differentiate candidates of diverse capabilities. Thus, it is always advisable to include 
questions of large discrimination values in the test. However, constructing items with large 
discrimination levels is very difficult.

3.	 Maximum likelihood estimation
Maximum likelihood estimation is a technique for estimating the parameters of a statistical 
model, given the observations. It estimates the parameter values that maximise the likelihood 
of making the observations, given the parameters. The likelihood of a set of parameters, q, 
given the response X is given by,

L(θ|X) = P(X|θ)	 (2)

The objective of this paper is to estimate the capabilities of the test takers and the difficulty, 
discrimination and guessing of the items of the test, given the responses. The responses of 
the candidates are a dichotomous data set denoted as R, the response matrix. The matrix 
R has students as the rows and questions forming the columns of the matrix. Let nS denote 
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the number of students and nQ denote the number of questions. Thus, the matrix R is a 
nS × nQ matrix. Negative marking is not considered in this paper and so every entry in R is 
either 0 or 1. One corresponds to a correct response of the student and 0 corresponds to an 
incorrect response or an unattended question. Thus, the problem can be formulated as, given 
the response matrix R of an exam, we need to estimate the capability vector, C = [c1,c2,...,cns], 
the difficulty vector, D = [d1,d2,...,dnQ], the discrimination factor, A = [a1,a2,...,anQ]  and the 
guessing vector G = [g1,g2,...,gnQ] . The likelihood function for the above problem is:

L(C,D,A) = Prob(R|C,D,A)	 (3)

The likelihood function of a student depends on his/her response to all the questions. While 
for a question, the likelihood function depends on the responses to that particular question 
by all the students. Therefore, the likelihood function of the entire test is the product of the 
likelihood functions of each student for all questions under the assumption that all examinees 
are independent. For L(C,D,A) = Prob(R|C,D,A), the logistic ogive model, the logistic function 
is given by

Pij:=gi + (1-gi)
exp{ai(cj-di )}

1+exp{ai(cj-di )}	 (4)

Qij:= (1-gi)
1

1+exp{ai(cj-di )}	 (5)

where cj  denotes the capability of the jth student, di , ai  and gi  denotes the difficulty, discrimination 
and guessing factor of the ith question respectively.

Then the global likelihood function of the exam is formulated as

Prob(R|C,D,A :=Πj=1 Πi=1
nS nQ Pij

mij (1-Pij)1-mij,	 (6)

where nS is the number of students taking the test, nQ is the number of questions in the test 
and mij is the entry in the response matrix R corresponding to the (i,j)th location. If student i 
made item j correct, then mij =1, else it is 0. Using the logarithm, we get the log likelihood 
function as

L(C,D,A):=logProb(R|C,D,A)= ∑j=1 ∑i=1 mij logPij + (1-mij)log(1-Pij)
nS nQ . 	  (7)

4.	 Proposed algorithm
We propose a maximum likelihood based alternating optimisation algorithm for solving 
this. Alternating optimisation, otherwise called the Gauss Siedel optimisation method, is a 
technique for optimising functions involving a large number of variables by partitioning the set 
of variables into different blocks. In every step, optimisation is done in one block of variables 
keeping the other sets fixed and this is done sequentially. We want to maximise the likelihood 
of the exam given by equation (6). However, maximising (6) is equivalent to maximising (7), 
since the log is a monotonically increasing function. Thus the objective function here is the log 
likelihood function given by equation (7) and the variables over which optimisation is carried 
out, the C, D, A and G vectors. The pseudocode for the proposed algorithm is given below.
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Algorithm
Input: Raw marks matrix

Output: Student capability vector C, question difficulty vector D and question discrimination 
vector A.

1: Initialise D,A,G. 

2: while error norms of estimated levels in previous iteration ≥ tolerance value do

3: 	 for each student j do

4: 		  Using D, A and G find cϵ[0,1] such that L is maximum.

5: 		  cj :=argmaxL(Ć,D,A,G)
c

 

6: 	 end for

7: 	 for each question i do

8: 		  Using C, A and G find dϵ[0,1] such that L is maximum.

9:		   di :=argmaxL(C,D,A,G)
d

′

10: 	end for

11: 	for each question i do

12: 		 Using C, D and G find aϵ[0,6] such that L is maximum.

13:		   ai :=argmaxL(C,D,Á,G)
a

14: 	end for

15: 	for each question i do

16: 		 Using C, D and A find gϵ[0,1] such that L is maximum.

17:		  gi :=argmaxL(C,D,A,Ǵ)
g

18: 	end for

19:	 go to step 3

20: End while

5.	 Comparison metrics and variables
We conducted a few experiments to verify the performance of the proposed maximum 
likelihood (ML) based method with the conventional raw marks (RM) based method. For this 
we compare the raw marks rank list (RM rank list) and the maximum likelihood rank list (ML 
rank list) with the actual capability rank list (AC rank list). The AC rank list is the ordered list of 
students arranged in the decreasing order of their actual capability (AC) levels. The ML rank 
list is formed at the end of the estimation process by arranging candidates in the descending 
order of the estimated ML capability values. Similarly, candidates are arranged in descending 
order of total marks to form the RM rank list. For x% cut-off bound, the ML cut-off (RM cut-
off) is the capability of the (x/nS) × 100th candidate in the ML rank list (RM rank list). The 
experiments conducted are: (1) fixed number of students and varied number of questions, 
(2) fixed number of questions and varied number of students and (3) multiple session exam 
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where students take exams in batches answering different question papers but finally fall into a 
common rank list. The parameters used for comparing the rank lists and drawing conclusions 
are: (i) number of false-positives, (ii) number of desired students qualified and (iii) number of 
qualified students. 

False-positives are the non-deserving set of candidates that enter the rank list within the 
cut-off bound after the assessment. In the ML rank list (RM rank list), these students’ actual 
capability level is below the cut-off capability but they lie within the cut-off bound in the ML rank 
list (RM rank list). These candidates qualified for the exam but actually were not supposed to. 
Thus, it is always advisable to have a lower number of false-positives in the exam so that truly 
deserving candidates qualify for the exam.

Deserving candidates qualified in the ML (RM) scheme are those students that are present 
within the cut-off bound in the ML rank list (RM rank list) and AC rank list. Therefore, desired 
candidates are the population that corresponds to the set of students who are the actual 
deserving ones. It is advisable to have a greater number of deserving candidates in the rank 
list. The number of qualified students refers to the number of students who qualified for the 
exam. All students whose capabilities is greater than or equal to the cut-off capability in the 
respective rank lists is qualified in that particular rank list. That is, in the ML rank list (RM rank 
list) those students whose ML (RM) capability values are greater than or equal to the ML (RM) 
cut-off capability is qualified in the ML rank list (RM rank list). 

6.	 Simulation results
In this section, we discuss the simulation results showing the comparison of the proposed 
method with the conventional marks based scheme. We used PYTHON as the programming 
platform for all the analyses. The exams were simulated using candidates of randomly 
generated known capability values answering questions of randomly generated known 
difficulties. Then, we used the proposed algorithm for estimating their capability vector C, 
difficulty vector D, discrimination vector A and guessing vector G from the response matrix R. 

Tables and figures in this section demonstrate the simulation results of the conducted 
experiments. ML here stands for the maximum likelihood based assessment result and RM 
stands for the raw marks based assessment result. Table I and table II corresponds to the 
experiment where we fixed the number of questions and varied the number of students for 
the 10% and 30% cut-off bound respectively. The simulation results affirms that the number of 
false-positives is less in the proposed scheme when compared to the conventional raw marks 
based scheme. In addition, the number of candidates qualified is greater in the RM scheme. 
This is because a greater number of students obtain the same score and thus the number of 
candidates qualified will be greater than the specified cut-off bound. This results tie in the RM 
scheme, which need to be resolved. However, the ML scheme does not result in many cases 
of a tie as this method not only takes into consideration the total score of the candidates but 
also considers which of the questions they got right. The third parameter, number of desired 
candidates qualified, is greater for the RM case over the ML case. This is because of the 
large number of qualified candidates here. We verified that if we allow the same number 
of candidates to qualify in both the schemes then ML gives the greater number of desired 
candidates as well.
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Table 1:	 Comparison for nQ = 30 and nS = 200, 500, 1000 and 2000 and cut-off bound = 
10%

Metrics and parameters

nQ = 30

nS = 200 nS = 500 nS = 1000 nS = 2000 nS = 5000

ML RM ML RM ML RM ML RM ML RM

No. of candidates qualified 21 24 51 63 101 157 201 228 501 791

No. of false-positives 13 16 31 40 57 100 124 143 295 522

No. of deserving candidates qualified 8 9 20 23 44 57 77 85 206 269

Table 2:	 Comparison for nQ = 30 and nS = 200, 500, 1000 and 2000 and cut-off bound = 
30%

Metrics and parameters

nQ = 30

nS = 200 nS = 500 nS = 1000 nS = 2000 nS = 5000

ML RM ML RM ML RM ML RM ML RM

No. of candidates qualified 61 69 151 181 301 359 602 662 1501 1774

No. of false-positives 21 26 57 78 88 130 196 245 438 637

No. of deserving candidates 
qualified 40 43 94 103 213 229 406 417 1063 1137

Figure 4 and figure 6 indicate the variation of the number of false-positives for the different 
values of the number of students for the proposed ML scheme and the conventional RM 
scheme for 10% and 30% cut-off bound respectively. The plot shows that the number of false-
positives is less in the proposed scheme when compared to RM scheme.
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Figure 4:	 Number of false-positives for nQ = 30 and different nS for 10% cut-off
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Figure 5:	 Demonstration of 90% band of false-positives for nQ = 30 and different nS for 10% 
cut-off
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Figure 7:	 Demonstration of 90% band of gate-crashers for nS = 2000 and different nQ for 
30% cut-off
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Figure 5 and figure7 demonstrate the 90% band of false-positives for fixed nQ and varied nS 
for the 10% and 30% cut-off respectively. All the experiments here are done for 50 different 
exams and all the values in the tables and all the data points in the figures correspond to their 
average. Thus, this plot is drawn to see the variation of the number of false-positives in the 
ML scheme for 90% of the exams. This is to verify the spread of the number of false-positives 
for 90% of the exams conducted. The plot below shows a very narrow band indicating that for 
90% of the exams over which this experiment is averaged, the number of false-positives vary 
in a narrow range.

Table III and table IV show the results corresponding to the experiment where the number of 
students is fixed and the number of questions is varied. This experiment is conducted to check 
the performance of the proposed method for exams of different length, more clearly, exams 
with a different number of items. The results confirm that the proposed method out performs 
the conventional raw marks based scheme in filtering out the most deserving candidates as 
the number of false positives is much less in the ML scheme over RM scheme. In addition, the 
number of ties created is also less in ML method.

Table 3:	 Comparison for nS = 2000 and nQ = 20, 30, 50 and 70 and cut-off bound = 10%

Metrics and parameters

nS = 2000

nQ = 20 nQ = 30 nQ = 50 nQ = 70

ML RM ML RM ML RM ML RM

No. of candidates qualified 201 354 201 354 201 240 201 229

No. of false-positives 129 255 124 143 108 140 108 134

No. of deserving candidates qualified 72 97 77 85 93 100 93 96

Table 4:	 Comparison for nS = 2000 and nQ = 20, 30, 50 and 70 and cut-off bound = 30%

Metrics and parameters

nS = 2000

nQ = 20 nQ = 30 nQ = 50 nQ = 70

ML RM ML RM ML RM ML RM

No. of candidates qualified 601 625 602 662 601 647 601 689

No. of false-positives 236 258 196 245 153 195 157 223

No. of deserving candidates qualified 365 367 406 417 448 452 444 466
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Figure 8:	 Number of gate-crashers for nS= 2000 and different nQ for 10% cut-off

Figure 8 and figure 10 show the variation of the number of false-positives for different values 
of the number of questions for the proposed ML scheme and the conventional RM scheme 
for the 10% and 30% cut-off bound respectively. The plot shows that the number of false-
positives is less in the proposed scheme when compared to RM scheme.
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Figure 9:	 Demonstration of 90% band of gate-crashers for nS= 2000 and different nQ for 
10% cut-off
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Figure 10:	Number of gate-crashers for nS= 2000 and different nQ for 30% cut-off

Figure 9 and figure 11 demonstrate the 90% band of false-positives for fixed nS and varied nQ 
for the 10% and 30% cut-off respectively. All the experiments here are done for 50 different 
exams and all the values in the tables and all the data points in the figures correspond to their 
average. Thus, this plot is drawn to see the variation of the number of false-positives in the 
ML scheme for 90% of the exams. This is to verify the spread of the number of false-positives 
for 90% of the exams conducted. The plot below shows a very narrow band indicating that for 
90% of the exams over which this experiment is averaged, the number of false-positives vary 
in a narrow range.
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Figure 11:	Demonstration of 90% band of gate-crashers for nS = 2000 and different nQ for 
30% cut-off
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Table V and table VI show the experimental results corresponding to a multiple session exam 
for the 10% and 30% cut-off. Here, students take exams in four different sessions answering 
different question papers and finally their scores are normalised so that they are ranked in a 
single rank list. The normalisation of scores of different sessions is done using the formula 
below.

ḿij = 
mg

t - mg
q)

mti - miq)
 (mij - miq) + mg

q,	 (8)

where mij  is the actual marks obtained by the jth candidate in the ith session, mg
t  is the average 

marks of the toppers in all sessions, mg
q  is the mean of marks of all students in all sessions, 

mti  is the top marks of the ith session and miq  is the average marks of all the students in the 
ith session. 

Table 5:	 Comparison for the multiple session exam for nS = 2000, nQ = 30 done in four 
sessions with cut-off bound = 10%

Metrics and parameters

nS = 2000 , nQ = 30

Session 1 Session 2 Session 3 Session 4

ML RM ML RM ML RM ML RM

No. of candidates qualified 201 259 201 239 201 352 201 324

No. of false-positives 124 174 126 160 131 254 126 224

No. of deserving candidates qualified 77 86 75 79 70 98 75 100

Table 6:	 Comparison for multiple session exam for nS = 2000, nQ = 30 done in four sessions 
with cut-off bound = 30%

Metrics and parameters

nS = 2000 , nQ = 30

Session 1 Session 2 Session 3 Session 4

ML RM ML RM ML RM ML RM

No. of candidates qualified 601 694 601 688 601 741 601 806

No. of false-positives 206 285 196 267 233 338 205 352

No. of deserving candidates qualified 395 409 405 421 368 403 396 454

7.	 Conclusion
We proposed a maximum likelihood based alternating maximisation algorithm for estimating 
student capabilities and question difficulties, discrimination and guessing of an offline exam. 
The model employed in this paper is the 3-parameter logistic ogive model, which is a well-
researched item response model. Experimental tests confirm the improved performance of 
the proposed scheme over the conventional marks based scheme. Student capabilities were 
estimated and maximum likelihood estimated capability based rank list (MLC rank list) is 
compared with the raw marks based rank list (RM rank list). The number of false-positives in 
the top 10% and 30% is compared for both the rank lists with the actual capability based rank 
list (AC rank list) and it was found that the number of false-positives in the ML based method 
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is less for all the experiments. The experiments include varying the number of students and 
questions and importantly, the multiple session exam with students taking tests in different test 
centres, answering different question papers for the same discipline. The proposed method is 
implementable at institutional level as well as for estimating the ability levels of the students 
instead of using marks as the sole criteria. 
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