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Summary 

The yeast Kluyveromyces marxianus has become an important micro-organism for industrial 
applications, as have other non-conventional yeasts. It has the advantages over Saccharomyces 
cerevisiae (baker’s yeast) in that it is more thermotolerant, has a much higher growth rate and can 
utilise a wider range of sugars, including the pentose D-xylose, which is found abundantly in 
lignocellulosic biomass. Although considerable advances have been made in engineering S. cerevisiae 
strains to ferment pentose sugars, their performance in this respect still does not approach that of 
glucose fermentation. S. cerevisiae is the model Crabtree positive yeast, meaning that it naturally 
ferments glucose even if oxygen is present at a high level. Crabtree negative yeasts, such as K. 
marxianus, have to be forced into a fermentative metabolism by imposing oxygen-limited conditions, 
which is impractical on industrial scale. Thus, a tremendous amount of knowledge needs to be gained 
regarding the regulation of metabolism in this non-conventional yeast before success could be 
expected in the re-programming of K. marxianus strains into xylose fermenting, Crabtree positive 
strains. The challenge of bringing a non-model species such as K. marxianus to the point of identifying 
key regulators affecting central metabolic pathways seems formidable. The aims of this work was to 
firstly harness the new technology of next-generation sequencing (NGS) to create a first draft genome 
for K. marxianus strain UFS-Y2791 and to generate high-quality RNA-seq differential transcriptome 
datasets, simultaneously capturing a tremendous amount of information. Efficient analytical methods 
and software implementations were also developed to explore these large datasets in an efficient 
manner, revealing new insights into the response of this species to glucose and xylose as carbon 
sources.  
 
RNA-seq data revealed a striking resemblance with the pattern of glucose derepression in the xylose 
medium, with up-regulation of genes for alternative carbon source utilisation, especially in the 
peroxisomes. Subsequently, two independent approaches were taken to identify differentially active 
transcription factors regulating the response. The first was the enumerative method of heptamer 
frequency comparisons, revealing the most likely regulators of differentially expressed genes. 
Secondly, a likelihood statistical approach was designed that employs multiple sources of evidence, 
which resulted in the construction of the first genome-wide gene regulatory network for K. marxianus. 
The method bridges the gap between the new NGS-based methods, which can rapidly generate data 
on any non-model species, and the wealth of experimental data that exist for a model species such as 
S. cerevisiae. Gene set enrichment statistics of the transcription factor target sets showed a general 
pattern that the activities of differentially active transcription factors were regulated primarily by post-
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translational modifications instead of gene regulation. The use of RNA-seq was further expanded to 
the elucidation of the kinases that regulate transcription factors. The chromosomal context of 
differential gene expression was also investigated. Clusters of genes were identified, similar to the 
sub-telomeric regions previously identified in S. cerevisiae, but not close to telomeres. These regions 
contain industrially important enzymes and the potential binding sites for differentially active 
transcription factors.  
 
Finally, the possible roles of cofactor balances were investigated. Flux balance analysis was 
demonstrated here in rationalising the genetic response observed in RNA-seq transcriptomics and to 
understand the complex interplay between ATP, NADPH and NADH, the cofactor specificity of the 
oxidative pentose phosphate pathway, as well as the role of fructose-1,6-bisphosphatase. New roles 
are proposed for the latter enzyme, which differs from the currently accepted norm. A strategy for 
the metabolic engineering of a future xylose fermenting K. marxianus strain is also presented.  
 
The integrated analysis presented here expands our knowledge base of this yeast species, which is set 
to become increasingly important in a future bio-economy.  
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Opsomming 

Die gis Kluyveromyces marxianus het ŉ belangrike mikroörganisme geword vir industriële toepassings, 
soos ook ander nie-konvensionele giste. Dit het die voordele bo Saccharomyces cerevisiae (bakkersgis) 
dat dit meer termotolerant is, ŉ baie hoër groeitempo handhaaf en ŉ groter verskeidenheid suikers 
benut, insluitend die pentose D-xilose, wat volop in lignosellulose-biomassa voorkom. Hoewel 
beduidende vordering al gemaak is in die genetiese manipulering van S. cerevisiae-stamme om 
pentoses te fermenteer, is hul prestasie in hierdie opsig steeds nie vergelykbaar met dié van glukose-
fermentasie nie. S. cerevisiae is die model Crabtree-positiewe gis, wat beteken dat dit glukose 
natuurlik fermenteer, selfs al is ’n hoë suurstofvlak teenwoordig. Crabtree-negatiewe giste soos K. 
marxianus moet tot ’n fermentatiewe metabolisme gedwing word deur suurstof-beperkende 
toestande in te stel, wat op ’n industriële skaal onprakties is. ŉ Geweldige hoeveelheid kennis oor die 
regulering van metabolisme in hierdie nie-konvensionele gis moet dus opgebou word voordat sukses 
verwag kan word met die herprogrammering van K. marxianus-stamme na xilose-fermenterende, 
Crabtree-positiewe stamme. Die uitdaging om ŉ nie-modelspesie soos K. marxianus tot by die punt te 
bring waar sleutelreguleerders wat die sentrale metabolisme beïnvloed, geïdentifiseer kan word, blyk 
formidabel te wees. Die doelstellings van hierdie werk was, eerstens, om die nuwe tegnologie van 
volgende-generasie volgordebepaling (VGV) in te span om die eerste voorlopige genoom vir die K. 
marxianus-stam UFS-Y2791 te bepaal en hoë gehalte RNA-seq differensiële transkriptoomdatastelle 
te genereer, en om terselfdertyd ŉ geweldige hoeveelheid data vas te vang. Doeltreffende analitiese 
metodes en programmatuur-implementerings is ook ontwerp om hierdie groot datastelle op ŉ 
doeltreffende wyse te verken, wat nuwe insigte aan die lig gebring het ten opsigte van die respons 
van hierdie spesie tot glukose en xilose as koolstofbronne.  
 
In die xilose-medium het die RNA-seq data ’n sterk ooreenkoms met die patroon van glukose-
derepressie getoon, met die op-regulering van gene vir die benutting van alternatiewe 
koolstofbronne, veral in die peroksisome. Gevolglik is twee onafhanklike benaderings gevolg om die 
differensieël-aktiewe transkripsiefaktore wat die respons reguleer, te identifiseer. Die eerste was die 
numeriese metode van heptameerfrekwensie vergelykings, wat die mees waarskynlike reguleerders 
van differensieël-uitgedrukte gene onthul het. Tweedens, is ŉ waarskynlikheids-statistiese benadering 
ontwerp wat veelvuldige bronne van bewyse inspan, wat gelei het tot die konstruksie van die eerste 
genoomwye geen-regulatoriese netwerk vir K. marxianus. Die metode oorbrug die gaping tussen die 
magdom eksperimentele data vir ŉ modelspesie soos S. cerevisiae en die nuwe VGV-gebaseerde 
metodes, wat vinnig data van enige nie-model spesie kan genereer. Geen-stel verrykingstatistiek vir 
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die transkripsiefaktor teikenstelle het ’n algemene patroon aangedui dat die aktiwiteite van 
differensieël-aktiewe transkripsiefaktore primêr deur post-vertaling modifikasies gereguleer is, eerder 
as deur geen-regulering. Die gebruik van RNA-seq is verder uitgebrei na die toeligting van die kinases 
wat die transkripsiefaktore reguleer. Die chromosomale konteks van differensiële geen-uitdrukking is 
ook ondersoek. Groepe gene is geïdentifiseer, soortgelyk aan die sub-telomeriese streke wat 
voorheen in S. cerevisiae geïdentifiseer is, maar wat nie naby aan die telomere geleë was nie. Hierdie 
streke bevat industrieel-belangrike ensieme en die potensiële bindingsetels vir differensieel-aktiewe 
transkripsiefaktore.  
 
Laastens, is die moontlike rolle van kofaktorbalanse ondersoek. Fluksbalans-analise is hier as ’n 
kragtige hulpmiddel gedemonstreer vir die rasionalisering van die genetiese respons wat met RNA-
seq transkriptomika waargeneem word, en om die komplekse interaksie tussen ATP, NADPH en NADH, 
die kofaktor spesifisiteit van die oksidatiewe pentosefosfaat-weg, sowel as die rol van fruktose-1,6-
bisfosfatase, te verstaan. Nuwe rolle word vir die laasgenoemde ensiem voorgestel, wat verskil van 
die tans aanvaarde norm. ŉ Strategie vir die metaboliese manipulering van ŉ toekomstige xilose-
fermenterende K. marxianus-stam word ook aangebied. 
 
Die geïntegreerde analise wat hier aangebied word, brei ons kennisbasis van hierdie gisspesie uit wat 
in ŉ toekomstige bio-ekonomie toenemend belangrik gaan word.  
 
Sleutelwoorde 
Kluyveromyces marxianus 
Xilose 
Transkripsiefaktore 
Biochemiese netwerk analise 
Geen-stel verryking 
Metaboliese Reguleringsanalise 
Bayes netwerk 
Metabolisme 
Fluks-balans Analise 
Fruktose-1,6-bisfosfatase 
Bio-brandstof 
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Chapter 1 
 Introduction and Literature Review 
 
Introduction 
Global warming is by now established as a major threat to the long-term survival of the human race 
and could lead to the extinction of species at a global scale if solutions are not found to mitigate this 
problem. A major contributing factor is the burning of fossil fuels, leading to increased carbon dioxide 
concentrations in the atmosphere. Although technologies such as wind, solar and nuclear energy will 
become very important in this effort in the move to a greener future, these do not readily replace the 
liquid fuels powering ships, aeroplanes and motor vehicles. Liquid fuels such as petroleum derived 
from the refining of crude oil or the gasification of coal are energy dense and thus very convenient to 
use. However, they are non-renewable since they are based on a finite supply of fossil fuels. On the 
other hand, renewable biofuels in the form of ethyl alcohol (ethanol) or butanol might replace these, 
and can be produced at a large scale as the primary fermentation products of yeasts or bacteria. The 
best established biofuel is ethanol produced by baker’s yeast, Saccharomyces cerevisiae [Hahn-
Hägerdal et al. 2007]. Industrial scale biofuel production has been done on a large scale in the USA 
and in Brazil [Rosillo-Calle 2012]. In the USA, maize (corn) starch is converted to the monomer glucose, 
which is then fermented by S. cerevisiae which naturally produces ethanol, even in the presence of 
oxygen. In Brazil, the large-scale production of sugarcane yields the disaccharide sucrose, which is the 
feedstock used for bioethanol production. A significant problem is that the production cost of the 
sugar by either of these two methods is high. The cost of the sugar has been estimated at up to 70% 
of the final cost of bioethanol [Marini et al. 1997, Pfromm et al. 2010]. It is, therefore, imperative that 
strains should be optimised for maximal ethanol yields from the substrate. A more fundamental set 
of problems are those involving competition between biofuel production and food production for 
arable land, socio-economical injustices, and inequality [Rosillo-Calle 2012].  
 
There now exists a huge opportunity for exploiting the abundant lignocellulosic biomass for the 
production of biofuels, recombinant proteins and biomaterials, and this resource cannot be ignored 
[Rosillo-Calle 2012]. Lignocellulosic biomass such as agricultural wastes and paper pulp currently goes 
to waste at a massive scale, which could potentially be used as a cheap carbon source as a second-



 

2  

generation feedstock instead of glucose or sucrose from maize or sugarcane. This is dependent on 
effective technologies for depolymerisation of lignocellulose [Hahn-Hägerdal et al. 2007] and the 
development of microbial strains that could utilise and ferment the sugars that constitute 
lignocellulose. A major component in lignocellulose is the five-carbon sugar xylose as well as arabinose 
[Hahn-Hägerdal et al. 2007]. Natural strains of S. cerevisiae, however, do not utilise pentoses. 
Extensive efforts in metabolic engineering of S. cerevisiae for xylose fermentation over nearly two 
decades have resulted in a few strains of S. cerevisiae that can ferment xylose, but sensitivity of the 
strains to toxins in the lignocellulosic hydrolysate, among others, are problematic [Hahn-Hägerdal et 
al. 2007]. An alternative strategy would be to employ a non-traditional yeast which naturally utilises 
five-carbon sugars, such as Kluyveromyces marxianus, for ethanol production [Nonklang et al. 2008]. 
The main challenge is that these yeasts do not naturally produce high concentrations of ethanol. S. 
cerevisiae and other Saccharomycetes produce ethanol even in the presence of oxygen, an effect 
known as the Crabtree effect [Crabtree 1929, De Deken 1966, Postma et al. 1989]. Crabtree negative 
yeasts, on the other hand, have to be forced into fermentation by restricting oxygenation. The latter 
process is not only less productive as compared to the use of the Crabtree positive yeasts, but the 
requirement of controlled oxygen limitation [Kuloyo et al. 2014] would be expensive from an industrial 
perspective, which would also requires robustness of the process to control parameters.  
 
The need for efficient pentose fermenting strains deserves consideration of genetic re-programming 
of non-conventional yeasts into Crabtree positive, xylose fermenting strains. A top candidate for this 
endeavour is Kluyveromyces marxianus. Apart from its ability to utilise xylose, arabinose and many six-
carbon sugars, it is more thermotolerant than S. cerevisiae [Fonseca et al. 2008, Lane et al. 2010] and 
grows well on biomass hydrolysate [Akanni et al. 2015]. Moreover, it has an extremely high growth 
rate; in fact, the highest among all known eukaryotes [Groeneveld et al. 2009]. In order to guide such 
an ambitious endeavour, an in depth understanding of the genetic and metabolic regulation in K. 
marxianus at a genome-wide scale is essential. The latter is the main aim of this study. A powerful 
method of capturing knowledge of gene regulation is to construct models. These may be interrogated 
for elucidating the differentially active regulators, or be used in a predictive sense to guide genetic 
manipulations.  
 
Before any models can be constructed, a blueprint is required. At the time this investigation 
commenced, no complete genome or reasonably complete draft genome existed for K. marxianus. 
The only one was a draft genome of 20% completion, which is not sufficient for the purpose, which 
was sequenced by the Genelovures Consortium [Llorente et al. 2000, Souciet 2011]. Next-generation 
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sequencing (NGS), however, is now an affordable option for generating a draft genome. Chapter 2 
describes the sequencing and assembly of the first draft genome for strain UFS-Y2791. This strain was 
isolated from the juice of the arid zone succulent Agave americana by Carolina Pohl-Albertyn of the 
University of the Free State, and shows potential as a bioethanol producer [Kuloyo et al. 2014]. A draft 
genome of Kluyveromyces marxianus UFS-Y2791 is presented in this chapter. This formed the 
blueprint for subsequent investigations regarding bioinformatics, computational biology and 
transcriptome analyses presented in this thesis. Some innovations involving optimisation of assembly 
parameters, inclusion of genome annotations into this optimisation procedure, and a software 
programme that facilitates the process are also presented in this Chapter 2. 
 
Another method that employs NGS is RNA-seq. This is a powerful method of obtaining RNA levels of 
all transcribed genes under a particular condition [Trapnell et al. 2010]. It has major advantages over 
microarray analysis in that it has an improved sensitivity, an increased dynamic range and is less 
influenced by various forms of bias. Further, it does not require the construction of a specialised array, 
making it ideal for the study of non-model species. In Chapter 3, RNA-seq is employed to explore the 
differential genetic response of K. marxianus to glucose and xylose as the respective carbon sources. 
The findings are compared to another transcriptomics data set published very recently 
[Lertwattanassakul et al. 2015].  
 
Chapter 3 describes the in depth exploration of the RNA-seq datasets from a several perspectives, 
making use of Gene Ontology, metabolic pathway maps at various scales, biochemical network maps 
and gene set enrichment statistics. Several differentially regulated pathways and biochemical 
processes were identified. It was also investigated whether the yeast regulated its metabolic fluxes in 
central metabolism mostly at the enzyme kinetic level in response to changes in the concentrations of 
metabolites, or whether gene regulation played a significant role. The theoretical formalism of 
Metabolic Regulation Analysis (MRA) [Ter Kuile and Westerhoff 2001] was used for this purpose in this 
investigation. To perform each of these analyses, a comprehensive suite of software programmes was 
designed and coded in this study, called Reactomica, using the Wolfram Mathematica language. All 
subsequent modelling and data analyses performed in this work were also implemented in this 
manner. In each of the chapters, bioinformatics and computational biology algorithms were designed 
and written as part of Reactomica, and used in the analysis. In most cases, detailed explanations of 
the algorithms are provided in a condensed format in the Materials and Methods sections and 
addenda. 
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Two independent approaches were taken to elucidate the most likely candidate transcription factors 
(TFs) regulating genome-wide gene regulation. The first was the enumerative method of heptamer 
frequency comparisons used in Chapter 4. This method revealed the top candidate TFs. The second 
approach involved the construction of complete gene regulatory networks at the genome-wide scale, 
subsequently employing enrichment statistics to reveal differentially active TFs. A new method for 
construction of gene regulatory networks, based on likelihoods, is presented in Chapter 5. This method 
combines multiple sources of evidence, ranging from the evidence of DNA binding sites in the species 
of interest, to experimental evidence of interactions in the model species, which in this case was S. 
cerevisiae. Chapter 6 extended the idea and improved the process. These are the first gene regulatory 
networks for K. marxianus. Chapter 5 focusses on the methods that were required for network 
construction, including improvement of the draft genome and multiple genome alignment. Some 
algorithmic details are provided in Addenda 1-4. The network was subsequently used to elucidate 
kinases that might be the master regulators, affecting the activity of TFs, in a new approach presented 
in Chapter 7. 
 
It is known that in S. cerevisiae, X and Y elements occur which are regions close to telomeres that 
regulate a series of adjacent genes by chromatin silencing [Smith et al. 2011]. The perspective of 
complete chromosomes is reported in Chapter 8, where clusters of differentially expressed genes 
were sought.  
 
Finally, a computer simulation study of metabolism was made, using the theoretical framework of Flux 
Balance Analysis (FBA) Schilling et al. [1999] (Chapter 9). This study is not only relevant to the species, 
but also in a more general sense. For metabolic engineering, cofactor balances cannot be ignored and 
neither can they be interpreted separately. The complex relationship between the balances of 
NADH/NAD, ATP/ADP and NADPH/NADP, the fluxes in the oxidative pentose phosphate pathway 
(PPP), the pyruvate dehydrogenase bypass (PDB), ethanol production, electron transport chain (ETC) 
and glycerol production was investigated. In particular, fructose-1,6-bisphosphatase (FBP) is discussed 
as an enzyme which might have a special (‘moonlighting’) role, which might not be limited to its 
gluconeogenic role, as is usually assumed in the case of yeast. Finally, a possible engineering strategy 
is proposed for developing a future xylose fermenting strain of K. marxianus. The framework of FBA 
was built into Reactomica for these analyses. 
 
RNA-seq and other NGS variants have recently been established in terms of the experimental 
protocols, and excellent software programmes have become available such as Bowtie [Langmead et 
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al. 2009, Langmead et al. 2012], TopHat [Trapnell et al. 2013, Kim et al. 2013] and CuffLinks [Trapnell 
et al. 2013]. However, it is important to note that these provide only core data processing of read 
data, up to the calculation of differential expression or elucidation of splice variants. Downstream 
analyses are much less standard and is an active field in Bioinformatics and Computational Biology. A 
major goal in this study was to develop convenient software programmes that could be used by the 
novice that require no programming skills. The “game changer” would be a programme or set of 
integrated programmes that takes as input, a genome, phenotypic data such as RNA-seq 
transcriptomics, and additional sources of evidence for biochemical interactions in model species and 
automatically create models of metabolism, gene regulation and signal transduction, and analyse the 
phenotypic data using these models as blueprint. Since the digital world and social media has brought 
with it a taste for visual communication, the outputs from these programmes need to be visually 
attractive. In particular, such a programme would need to allow the automated construction of 
biochemical networks, perform a variety of gene set enrichment statistics, render biochemical 
pathway maps at various scales and perform metabolic flux and other simulations. It would also need 
to construct genome-wide gene regulatory networks for a non-model species and make best use of 
the large databases of biochemical interactions in model species such as the Saccharomyces Genome 
Database (SGD). Some of these functionalities cannot be performed without core data processing 
ability such as DNA binding motif scans and heptamer frequency comparisons. The complex 
integrative process of constructing gene regulatory networks based on multiple sources of evidence, 
including multiple genome alignment, would also require a robust framework for genome-based data 
integration with a built-in genome locus coordinate system. This makes genomic track based 
visualisation not only convenient from a user perspective, but necessary for error checking.  
 
Software with this number of diverse functionalities does not exist today, as far as the author is aware. 
Several other software programmes do exist that perform individual functionalities, including Galaxy 
[Afgan et al. 2015], PathwayTools [Karp et al. 2009], Raven [Agren et al. 2013], Cytoscape [Shannon et 
al. 2003], FiatFlux [Zamboni et al. 2005] and the genome browser at UCSC [Kent et al. 2002]. However, 
a large amount of code would still need to be developed for seamless integration, most likely in the 
Linux environment. A software programme that consists of multiple languages has the drawback of 
being difficult to maintain, and might become dependent on individual code repositories. Servers such 
as the genome browser at UCSC and Galaxy are run on Linux servers and developed by teams of skilled 
bioinformaticians. In this thesis, a unique suite of programmes was developed that performed the 
above functionalities in a single, platform independent programming language, while making use of 
outputs from standard, established programmes for basic NGS data processing. The Wolfram 
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Language, best known as Mathematica, has grown to be a highly sophisticated engine for scientific 
computations. This commercial language was chosen since it provides endless possibilities with 
powerful algorithms in mathematics, statistics, network analysis, visualisation, machine learning and 
other fields. Since it is, compared to other languages, relatively natural to programme, it might change 
the playing field in the sciences. There are, however, no well-known primary or third party 
bioinformatics packages in the Wolfram Language to date. Reactomica, which was developed in this 
study, is one of the first of these.  
 
It should be noted that even though frameworks such as FBA [Schilling et al. 1999], MRA [Ter Kuile 
and Westerhoff 2001] and methods relating to the use of gene set enrichment [Patil and Nielsen 2005, 
Oliveira et al. 2008] have been developed by others, scope exists for exploration of their utility for 
certain modern data types such as RNA-seq, for refining their implementations and ultimately for their 
integration. In addition, a comment has to be made regarding the practical and economic feasibility 
of a comprehensive systems biology study applied to a non-model organism such as K. marxianus. 
Although ultimately a variety of high-throughput data types such as genome sequencing, RNA-seq, 
proteomics, phospho-proteomics, metabolomics and chromatin immunoprecipitation (ChIP) would be 
ideal for genome-scale systems biology studies, it is neither economically nor practically feasible to 
perform in a short time frame all of these methods. Yet, some of these are particularly rich in the 
relevant information for the purpose of studying genetic and metabolic regulation, and also more 
practically feasible and cost effective as opposed to others. In this study, genome sequencing and 
RNA-seq using NGS is demonstrated and promoted as a highly complementary and rich combination, 
and ideally suited for greatly expanding our knowledge of regulation in a species such as K. marxianus. 
To this end, a variety of analyses were performed on these data sets, resulting in many new 
observations and several new hypotheses.  
 
Literature Review 
 
Since a relevant specific literature review is provided in the introduction of each chapter, only some 
key aspects are discussed below.  
 
Potential of Kluyveromyces marxianus for metabolic engineering 
 
The yeast K. marxianus is homothallic, belongs to the hemiasocycetes and is related to S. cerevisiae 
and more closely to the dairy yeast K. lactis [Lachance 1998; Llorente et al. 2000]. Both species can 
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utilise lactose as sole carbon source [Lane et al. 2010]. K. marxianus has been adopted in industry due 
to its ability to utilise a variety of sugars, the ability of some strains to grow in temperatures as high 
as 53oC, and because it has a high capacity for producing recombinant proteins [Fonseca et al. 2008, 
Lane et al. 2010]. Before molecular biology tools were employed for a systematic classification, yeasts 
were originally classified using physiological and morphological traits. Using molecular classification 
of the D1/D2 region of the 28S rRNA gene, and later multiple genes [Kurtzman 2003], the original 
Kluyveromyces genus was subsequently separated such that some of the original members such as K. 
thermotolerans and K. polysporus were excluded from the Kluyveromyces genus [Kurtzman et al. 1998, 
Kurtzman 2003, Lachance 2007, Lane et al. 2010]. The most closely related species to K. marxianus, in 
order of relatedness, are K. dobzhanskii, K. lactis, K. wickerhamii, K. nonfermentans and K. aestauri. 
Other closely related genera (in order of relatedness) are Lachancea (containing L. thermotolerans), 
Torulaspora, Zygotorulaspora, Zygosaccharomyces, Vanderwaltozyma (containing V. polyspora), 
Tetrapisispora, Nakaseomyces, Saccharomyces, Naumovia and Kazachstania. K. marxianus is now the 
new type species of the genus, whereas the previous type species, K. polysporus, was renamed to 
Vanderwaltozyma polysporus. The genus Kluyveromyces cannot be uniquely identified by a set of 
phenotypic traits shared by all species in the genus and not by other genera [Lachance 2007]. The 
Kluyveromyces genus is thus closely related to the Saccharomyces genus and both fall under the 
Saccharomyces complex. Kluyveromyces is separated from the Saccharomyces sensu stricto species by 
the fact that the latter underwent a whole-genome duplication event 100 million years ago [Wolfe 
and Shields 1997]. Additional copies of the genes allowed rapid evolution, resulting in Crabtree 
positive species in genera such as Saccharomyces and Kazachstania.  
 
The ploidy of Kluyveromyces marxianus has been shown to be either haploid or diploid, depending on 
the species [Pecota et al. 2007, Hong et al. 2007, Nonklang et al. 2009]. This is an important 
consideration when attempting genetic engineering [Lane et al. 2010].  
 
K. marxianus is a respiro-fermentative yeast, since it can perform both oxidative metabolism and 
fermentation. It is currently not established whether it is best characterised as a Crabtree positive or 
negative yeast, since some strains produce ethanol in the presence of oxygen [Lane 2010, Kuloyo et 
al. 2014, Bajpai and Margaritis 1982, Rocha et al. 2011]. The species is already important from an 
industrial perspective, since it is utilised to produce pectinases, β-galactosidases and inulinase 
(reviewed by Fonseca et al. 2008). For these applications, its proneness to Crabtree negative 
behaviour is useful. However, for the purpose of biofuel production, the Crabtree negative behaviour 
is detrimental; hence it is important to understand the mechanistic basis of fermentative behaviour 
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in terms of the metabolic network, the flux constraints, the cofactor balances and the signalling 
networks that govern metabolism. 
 
A very convenient new technology for studying gene regulation at the genome scale is RNA-seq. The 
work by Lertwattanassakul et al. [2015] was the first genome-scale transcriptomics study in K. 
marxianus. These authors studied the differential response to glucose or xylose as the carbon source 
in a rich medium using RNA-seq. Dramatic differential expression was observed in peroxisomal 
metabolism, including β-oxidation. The suggestion was made that this was due to the presence of a 
trace amount of lipids in the complex medium as an additional carbon source that was simultaneously 
utilised with xylose. Most likely, however, the mechanistic basis for this response was the alleviation 
of glucose repression, which is a very important mechanism in S. cerevisiae. Up-regulation of other 
genes involved with utilisation of alternative carbon sources in the absence of glucose was also 
reminiscent of glucose derepression.  
 
The first hypothesis that was addressed in this study was that in K. marxianus the same regulators 
governing glucose repression as in S. cerevisiae would be found. The regulators that govern the 
transcriptional response during glucose repression are briefly reviewed in the following sections, with 
a focus on the peroxisomal genes. 
 
Response to fermentable and non-fermentable carbon sources in S. cerevisiae  
 
The TFs involved in the utilisation of non-fermentable carbon sources are Hap2-5, Rtg1-3, Cat8, Sip4, 
Mig1, Adr1, Oaf1, Oaf3 and Pip2 [Schuller 2003, Wan et al. 2013, Broach 2012]. Broach [2012] wrote 
and excellent in-depth review recently on the control of growth and development in S. cerevisiae. An 
extensive review of these pathways fall outside the scope of this work. Whereas in mammals, cells 
perceive their environment (the bloodstream or interstitial fluid) by the influence of hormones, in 
microorganisms the nutrient molecules serve both as nutrients and as signalling molecules, in a sense 
making signalling more complicated as opposed to that in mammals [Broach 2012]. The most 
important of these molecules is glucose. In fact, one quarter of the 5 770 genes in S. cerevisiae are 
affected by glucose repression [Young et al. 2003]. It is likely that the genes reported to be 
differentially regulated in K. marxianus [Lertwattanasakul et al. 2015] are subject to glucose 
repression, as glucose was absent from the xylose medium. Five interlinked kinase signalling pathways 
are present in S. cerevisiae, which link the concentration of glucose to metabolism, growth and cell 
morphology via the TFs that regulate gene expression. These signalling pathways are (a) the 
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Ras/protein kinase A (PKA) pathway, (b) Sch9, (c) Snf1, (d) the HAP2/3/4/5 complex and (e) Rgt. The 
most influential is the Ras/PKA pathway, which may orchestrate as much a 90% of the differential 
expression in S. cerevisiae cells grown on glycerol after glucose addition [Zaman et al. 2009]. 
Responses such as pseudohyphal growth are dependent on the Ras/PKA pathway. The Snf1 pathway, 
on the other hand, is very important specifically for the regulation of TFs involved with alternative 
carbon source utilisation and peroxisomal metabolism. The HAP2/3/4/5 complex also plays a role in 
the TCA cycle which is, together with Snf1, required for aerobic catabolism of non-fermentable carbon 
sources [Broach 2012]. 
 
While both S. cerevisiae and K. marxianus display a yeast-like morphology in a rich medium when cell 
growth and replication is rapid, a fraction of the cells form pseudohyphae under a nutrient limitation 
or other stresses [Groeneveld et al. 2009]. In S. cerevisiae, phenotype switching is regulated by a 
number of TFs regulating several hundred target genes. These are the transcriptional activators Phd1, 
Mss11, Ash1, Flo8, Msn1, Haa1, Ste12, Tec1 and Mga1 and the transcriptional repressors Nrg1, Nrg2, 
Sfl1 and Sok2 [Broach 2012]. Phd1 and Mga1 are the main regulators of phenotype switching. Two 
different phenotypes (yeast and pseudohyphae) that occur simultaneously is a trademark of stochastic 
noise in gene expression; the levels of activity of these TFs would not be equal in all cells and a 
representative sample from the population shows the average gene expression levels among cells 
[Eldar and Elowitz 2010]. The coordinated action of these TFs activate the filamentous programme in 
which genes like the flocculation gene FLO11 is required [Broach 2012]. Depletion of the carbon source 
signals via both the Snf1 kinase and the Ras/PKA pathways, activating pseudohyphal growth and 
involving Yak1 [Robertson and Fink 1998; Malcher et al. 2011]. 
 
Snf1 has a homolog in mammals, namely the AMP-activated protein kinase (AMPK). When the 
intracellular energy levels decline, AMPK responds to the increased level of AMP by AMP binding to 
the regulatory γ-subunit Snf4 of the Snf1 complex. This leads to the phosphorylation of target TFs and 
the stimulation of glucose uptake, fatty acid β-oxidation and other reactions that generate ATP. At the 
same time it inhibits anabolism. AMPK has been described as a guardian of energy homeostasis 
[Hardie et al. 1998, 2011]. However, in S. cerevisiae, AMP does not stimulate Snf1 [Mitchelhill et al. 
1994, Woods et al. 1994, Wilson et al. 1996, Broach 2012]. Instead, three activating kinases, Sak1, 
Tos3 and Elm1 activate Snf1 by phosphorylation of Thr210. Conversely, the protein phosphatase (PP1) 
complex Reg1/Glc7 complex inhibits Snf1 activity by dephosphorylation of the phosphorylated 
Thr210. The exact mechanism by which glucose interacts via the three kinases and the 
dephosphorylation complex is still unclear, but it seems that inactivation of the PP1 complex is the 
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most likely mechanism of activating Snf1 when the glucose concentration is low [Broach 2012]. 
Notably, the nitrogen starvation response is also relayed through Snf1. Snf1 is activated by the 
inactivation of Torc1 when cells are starved of nitrogen [Orlova et al. 2006]. Other stress factors also 
work through this important master kinase. Oxidative agents, a high sodium chloride concentration 
and an alkaline pH all lead to phosphorylation of Thr210, while heat shock and sorbitol do not [Hong 
and Carlson 2007].  
 
Snf1 activates the transcriptional activators Cat8, Adr1 [Young et al. 2003] and Rds2 [Soontorngun et 
al. 2007]. Rds2 in turn activates gene expression of Hap4 [Broach 2012]. Cat8 and especially Adr1 has 
been implicated in the activation of genes associated with peroxisomal metabolism and specifically β-
oxidation during glucose derepression [Young et al. 2003]. Rds2 is important in the activation of genes 
for gluconeogenesis by hyperphosphorylation [Soontorngun et al. 2007]. Conversely, phosphorylation 
of the transcriptional repressor Mig1 by Snf1 leads to its inactivation, resulting in the restoration of 
gene expression in Mig1 targets [Schuller 2003].  
 
Although phosphorylation of proteins by Snf1 is mostly associated with the activation of gene 
expression, some examples of inhibition have also been found, for example HXT1 [Tomás-Cobos and 
Sanz 2002]. Activity of TF Gcn4 is also suppressed by Snf1 activity, but this is independent of 
transcription of the GCN4 gene [Shirra et al. 2008]. Inhibition of Gcn4 activity is rather affected at the 
translational level and the mechanism involves Gcn2 and Gcn20. Gcn4 is a transcriptional activator 
involved with a large number of genes encoding enzymes in the de novo synthesis of amino acids and 
nucleotides during conditions with low levels of these amino acids. The general theme of the cAMP-
dependent Ras/PKA pathway, however, is that its heightened activity under high glucose 
concentrations leads to the inhibition of gene expression, as opposed to the case for Snf1 which 
usually leads to activation, but under low glucose conditions. In effect, both usually lead to activation 
of gene expression when the glucose concentration is low. 
 
In higher organisms, β-oxidation of fatty acids occurs in peroxisomes and in mitochondria, while in S. 
cerevisiae it occurs exclusively in peroxisomes [Poirier et al. 2006]. Four TFs are involved, namely Oaf1, 
Oaf3, Pip2 and Adr1 (Ratnakumar and Young 2010). Several genes involved in peroxisomal 
proliferation have both the binding motif for the Oaf1/Pip2 TF complex, called the oleate-response 
element (ORE), and the binding motif for Adr1, called the upstream activating sequence (UAS) [Young 
et al. 2003]. These motifs are often in close proximity or overlapping. Peroxisomal proliferation and 
metabolism are both dependent on stimulation by fatty acids, which work via the Oaf1, Oaf3 and Pip2 
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binding, and by glucose derepression, working via Adr1 binding. Adr1 activity is indirectly stimulated 
by a high Snf1 activity under conditions of low glucose concentration [Simon et al. 1996] (discussed 
below).  
 
In the presence of glucose, the addition of oleate results in the binding of the Oaf1/Pip2 TF complex 
to the genes of β-oxidation to activate gene expression [Wan et al. 2013]. Oaf1/Pip2 is understood as 
an activator of genes, while other configurations may suppress activity. It seems that the oleic acid 
response genes are regulated in two patterns. In the first pattern, Oaf1, Oaf3 and Adr1 bind to the 
DNA and shuts down a gene, and a second in which all four TFs bind to the DNA and cause up-
regulation of expression [Smith et al. 2011]. The former set of genes seem to be stress-related, 
whereas the latter set of genes are those specific to fatty acid metabolism. Thus, regulation of these 
oleate response genes is highly combinatorial, and the classification of individual TFs as activators or 
repressors may be flawed in this setting. The complex dynamics have been explored by modelling 
[Smith et al. 2007, Ratushny et al. 2008]. Oaf1 binds oleate, and this results in the activation of target 
genes (as the Oaf1/Pip2 complex) which involves binding of the Mediator complex subunit Gal11 
[Thakur et al. 2009]. The gene expression level of Pip2 is also stimulated by the heterodimer 
Oaf1/Pip2. Oaf1 is constitutively expressed, but its activity depends on binding to fatty acids. Both 
active forms are required to up-regulate Pip2 expression. Pip2 binds with Oaf1 and further increases 
its own expression. This positive feedback loop may be one reason for the dramatic, switch-like 
behaviour of the regulation of peroxisomal genes such as POT1.  
 
Peroxisomal gene regulation is, however, not only stimulated by the presence of fatty acids but is also 
under transcriptional repression by glucose via dephosphorylation of Adr1, which is in some way 
dependent on Snf1. The current understanding, as reviewed by Ratnakumar and Young [2010], is that 
Adr1 is activated indirectly by Snf1, by removal of the phosphates on Ser-230 and Ser-98 on the Adr1 
protein by some unknown interaction partner. Initially it was postulated that phosphorylation 
(inactivation) of Adr1 was carried out by the cAMP-dependent Ras/PKA pathway, inhibiting Adr1 
activity [Cherry et al. 1989]. Later, it was found that a higher activity of the cAMP-dependent Ras/PKA 
pathway leads to a higher expression level of the ADR1 gene [Dombek et al. 1997]. Another kinase is, 
therefore, responsible for the phosphorylation and inhibition of Adr1. This kinase is as yet 
unidentified. Higher Snf1 kinase activity however, leads to lower phosphorylation of Adr1, and hence, 
this unknown protein is likely phosphorylated by Snf1. This unknown protein either increases the rate 
of dephosphorylation of Adr1, or decreases the rate of phosphorylation [Ratnakumar and Young 
2010].  



 

12  

 
Increased activity of the Snf1 pathway thus seems to activate Adr1 dependent gene expression by 
lowering the phosphorylation state of Adr1. The cAMP-dependent Ras/PKA pathway apparently 
causes activation of Adr1-dependent genes by a mechanism that leads to the up-regulation of the 
expression of the ADR1 gene and does not affect the phosphorylation state of the Adr1 protein.  
 
Adr1 is able to activate peroxisomal genes without stimuli by fatty acids via Oaf1 or Pip2. In vivo studies 
using ChIP showed that binding of a constitutively active form of Adr1, Adr1c, which cannot be 
phosphorylated and thereby inactivated, was improved compared to wild-type Adr1 [Ratnakumar and 
Young 2010]. However, the increased binding did not always correlate with increased expression 
levels of the target genes. Thus, the regulating domain of Adr1 that carries the phosphorylation, and 
perhaps even the charge of the phosphate group itself, probably has some effect that alters chromatin 
structure or the formation of the pre-initiation complex. Phosphorylation has multiple effects on the 
activity of Adr1, as was observed with the Adr1c strain. It has effects on (a) the recruitment of the 
SAGA co-activator complex, (b) on the remodelling of chromatin by alternative histone variants, and 
(c) on the phosphorylation state and activity of RNA polymerase II [Ratnakumar and Young 2010]. 
Using ChiP, the authors showed that that more co-activating proteins Ada1 and Gcn5 were recruited 
to promoters by the Adr1c variant compared to the wild type, although the degree of improved 
recruitment varied among genes. Under glucose repression, the constitutive activity of the Adr1c 
protein was not dependent on the involvement of the Mediator complex or the SWI/SNF complex, but 
was dependent on involvement of the SAGA complex. Deletion of the acetyl transferase Gcn5 and 
scaffold Ada1 was deleterious to high constitutive gene expression in the Adr1c strain, while deletion 
in Mediator and SNF/SWI complexes did not make a difference [Ratnakumar and Young 2010].  
 
Recently, Adr1 was shown to cooperate with a histone variant, H2A.Z (histone variant Htz1), which 
was required to expel the repressing activity of Oaf3 in response to oleate [Wan et al. 2013]. Adr1 also 
facilitated the insertion of the H2A.Z histone variant into chromatin. The alternative histone H2A.Z can 
replace H2A, resulting in anti-silenced chromatin. As mentioned above, the combination of Oaf1, Oaf3, 
Pip2 and Adr1 binding sites is reflective of the combinatorial nature of eukaryotic gene regulation. The 
combination of binding sites for Oaf1, Oaf3 and Adr1, without Pip2, is a configuration that promotes 
repression of a gene in response to oleate, whereas if a Pip2 site is present, the gene would respond 
positively to oleate [Wan et al. 2013]. The binding sites for Oaf1, Oaf3 and Adr1 have been shown to 
be enriched at regions within 10 kb of the telomeres of chromosomes in S. cerevisiae [Smith et al. 
2011]. These so-called subtelomeric regions are prone to chromatin silencing in response to 
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environmental signals, and Oaf1, Oaf3 and Adr1 have been described as regulators of subtelomeric 
silencing [Smith et al. 2011]. The positioning of oleate activated genes (when a Pip2 binding site was 
present) is not biased towards subtelometric regions, but randomly distributed. Oaf1 seems to be a 
main player in silencing at X-elements close to subtelomeric regions in response to oleate. However, 
a number of other TFs also bind X-elements [Smith et al. 2011]. In summary, not only is the epigenetic 
code combinatorial, but may also be regional  ̶  at least in the case of the subtelometric regions of S. 
cerevisiae.  
 
Oaf1 and Pip2 also bind to some non-peroxisomal genes such as the citrate synthase gene of the citric 
acid cycle, CIT1 [Karpichev et al. 1998]. ADH2, the alcohol dehydrogenase that is understood to be 
responsible for the utilisation of ethanol, is also strongly induced by the addition of oleate 
[Ratnakumar and Young 2010]. Physical interaction and synergy between Adr1 and Cat8 in the ADH2 
promoter may be a reason for the strong response to glucose derepression. In addition to binding sites 
for Adr1 and Cat8, there are also two half-sites where Oaf1 may bind. Oaf1 might similarly cooperate 
with Adr1 in the ADH2 gene promoter when the signal was the presence of fatty acids [Ratnakumar 
and Young 2010].  
 
In summary, alleviation of glucose repression is governed by master kinases in which cAMP-dependent 
Ras/PKA and Snf1 are predominant. These generally activate gene expression at low glucose 
concentrations by their effects on TFs, where Snf1 kinase activity is increased and Ras/PKA activity is 
decreased. Glucose derepression leads to phenotype switching to pseudohyphae in a fraction of the 
cells and this response is initiated by the TFs Phd1, Mss11, Ash1, Flo8, Msn1, Haa1, Ste12, Tec1, Mga1, 
Nrg1, Nrg2, Sfl1 and Sok2, governed by Phd1 and Mga1 [Broach 2012]. Alternative carbon source 
utilisation is activated by a separate set of TFs, namely Hap2-5, Rtg1-3, Cat8, Sip4, Mig1, Adr1, Oaf1, 
Oaf3 and Pip2 [Broach 2012, Ratnakumar and Young 2010]. Peroxisomal gene expression depends on 
the TFs Adr1, Oaf1, Oaf3 and Pip2. While the combination of Oaf1 and Pip2 binding stimulates gene 
expression in response of oleate addition, regardless of the concentration of glucose, Adr1 activates 
gene expression in response to low a glucose concentration. Snf1 indirectly activates Adr1 via some 
unknown mechanism of dephosphorylation of Adr1, whereas Ras/PKA activates Adr1 activity by some 
unknown mechanism of up-regulating expression of the Adr1 gene. Snf1 is thus a convergence point 
for stimuli not only from glucose limitation, but also from stress factors [Orlova et al. 2006, Hong and 
Carlson 2007]. These stress factors, including nitrogen starvation (working via Torc1), lead to a higher 
activity of Snf1, activating stress responses. In the case of nitrogen starvation, activated Snf1 rather 
leads to a lower protein level of the target TF Gcn4 [Shirra et al. 2008]. Hence, glucose limitation and 
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nitrogen limitation would both cause an increase in the alternative carbon source utilisation capacity 
and a decrease in de novo biosynthetic capacity through Snf1, in a balanced manner. 
 
Since the main aim in this thesis was to establish the regulatory design and the master regulators in 
the non-model species K. marxianus, it was necessary to find evidence for the differential expression 
of genes as well as for TF binding sites in the DNA of K. marxianus. The methods involved in discovering 
TF binding sites are discussed briefly below, along with NGS and selected methods required for the 
study of metabolism. 
 
Transcription factors and DNA binding motifs 
 
Transcription factors bind to DNA at specific sequence patterns called motifs, which can be discovered 
and described in a number of ways [Sinha and Tompa 2000, Lawrence et al. 1993, Stormo et al. 1982, 
Mathelier and Wasserman 2013, Zeng et al. 2016]. Consensus sequences describe the most likely 
single sequence in a group of related sequences bound by the DNA binding protein. If the binding of 
a TF is highly precise in terms of the target sequence, such consensus motifs may be found easily by a 
string matching algorithm. Consensus strings are, however, often too restrictive to be realistic, since 
a DNA binding protein would typically bind a variety of related sequences [Stormo et al. 1982]. A more 
accurate motif would allow degeneracy. A type of string expression that allows degeneracy is known 
as a regular expression. Since DNA binding motifs for TFs usually are short, a relatively restrictive 
regular expression could suitably be used to find putative TF binding sites. The longer and more 
restrictive the regulator expression is, the lower the probability of obtaining false positives. (In Chapter 
8 regular expressions are used to model the motifs for the TFs Mig1, Adr1 and Aft1.)  Regular 
expressions allow a degenerate description, but does not capture the fact that certain sequences are 
better bound by the TF than others. To the contrary, position specific probability matrices (PPMs) 
capture the probability of each base at a specific position being matched by the motif model [Stormo 
et al. 1982]. It is the most commonly used description and is the type most often stored in motif 
databases such as JASPAR [Mathelier et al. 2014]. It cannot account for interactions between bases in 
the motif, however, which determines the three-dimensional shape of the DNA. Markov models or 
Hidden Markov Models improve on weight matrices by capturing these interactions [Mathelier and 
Wasserman 2013]. However, usually there are not sufficient data to represent motifs as Markov 
Models. Artificial neural networks is another such approach that may even capture long-range 
interactions, but is not frequently used for representing TF binding motifs [Zeng et al. 2016]. 
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When scanning a PPM against a stretch of DNA, a motif score is assigned at each position along the 
DNA for each base in the PPM, and since the probability of observing each base along the PPM is 
considered independent from other bases, all the probabilities are multiplied [Mathelier and 
Wasserman 2013]. The higher this score, the better the match. To account for the background 
frequencies of nucleotide bases, a background model is also defined. In the case of PPMs, this could 
simply be a multiplication of background frequencies of the four nucleotides. As the background 
frequencies may also change depending on the distance from the coding region of a gene, the model 
should also incorporate this. (The effect of this distance on background frequencies is explored in 
Chapters 5 and 6.) A motif likelihood ratio is then calculated by normalising the motif score with the 
background score, as below.  

mܮ =  ∏ ݉௡௜ [݅]
∏ ܾ௡௜ [݅]  

The symbol Lm is used throughout this thesis to signify the motif likelihood ratio, which is calculated 
at any position along the length of the DNA region defined as the regulatory region. The symbol m is 
the entry in the PPM at position i in the subsequence that stretches from 1 to n, and b is the 
background frequency of the relevant nucleotide base at a distance d from the transcription start site. 
An Lm value of 1 signifies a completely random match which carries no significance, whereas a large 
number indicates a good match to the PPM compared to the background model. PPMs differ both in 
their length and in their degeneracy. Longer PPMs are more restrictive and are less degenerate (more 
precise) PPMs.  Unfortunately, whatever the method of description of motifs, the degeneracy of DNA 
binding preference of TFs together with the very short nature of most DNA binding motifs result in 
many false positives during their de novo prediction. False positives in the prediction of DNA binding 
sites is a major concern [Hannenhalli 2008]. Additional sources of evidence need to be used to increase 
the accuracy of assigning TF-target gene interactions. (This is the topic of Chapters 4-6.) 
 
The principle of calculating likelihood ratios is very useful and was applied throughout this thesis in 
different contexts. A very useful aspect regarding likelihoods, is that they are convenient for 
combining multiple sources of evidence. The idea behind the use of likelihoods as a Bayesian classifier 
is explained next, before discussing the data generation methods used in this work. This idea 
originated in the analysis of protein-protein interaction datasets and will be discussed in this context, 
although this was adapted to the case of gene regulatory networks in subsequent chapters. Others 
have also followed a Bayesian networks approach [Heckerman et al. 1995, Friedman et al. 2003, Isci 
et al. 2011]. 
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A probabilistic approach to combining datasets 
Modern high-throughput experimental methods have transformed the manner in which scientific 
discoveries are being made. These are especially relevant in areas such as the elucidation of protein-
protein interactions by methods such as yeast-two-hybrid [Fields and Song 1989] and variants of 
affinity chromatography coupled to mass spectrometry (reviewed in Smits and Vermeulen 2016). It 
has been estimated that, by using any single large high-throughput protein-protein interaction dataset 
on its own, a large fraction of the observed interactions would be false positives (low specificity) due 
to a number of experimental artefacts [Collins et al. 2007]. Also, a significant fraction of interactions 
are not observed in a particular experiment due to a low true positive rate (low sensitivity). However, 
multiple experiments are also conducted on the same organism, using different types of experiment 
and possibly in different laboratories, and also possibly repeats of the same experiment. Observing 
the same interaction multiple times should increase the confidence in a certain interaction, especially 
if different experimental methods were used. For instance, Gavin et al. [2002] used the TAP system of 
affinity capture mass spectrometry, while Ho et al. [2002] used a single purification step of the 
captured proteins, but in which the targets were over-expressed. The TAP system has the advantage 
of fewer false positives due to fewer non-specific interactions. In the system in which proteins with a 
low natural abundance are over-expressed, competition by proteins with a high natural abundance is 
mitigated. Combining such datasets should thus be especially useful for altogether different 
experimental types, which each have different strengths and weaknesses. The consensus approach to 
combining datasets would be to use only the overlapping set of observations among experiments. 
However, using only the consensus set would result in keeping only very few interactions, as different 
experiments tend to focus on different types of proteins and interactions. As an important innovation, 
Collins et al. [2007] developed a probabilistic strategy to combine such datasets to end up with 
increased likelihoods for some interactions. A naïve Bayesian classifier states the likelihood ratio of 
two opposing hypotheses: in the numerator, the probability (hypothesis) that any given experiment 
yielded a true positive, and in the denominator, the probability (hypothesis) that any given experiment 
yielded a false positive. The likelihood ratio of an experiment, Le (below), is related to the confidence 
one could have in a certain type of experiment.  

ݕݐ݅ݒ݅ݐ݅ݏ݊݁ݏ =  ܶܲ
ܶܲ +  ܰܨ

݁ݐܽݎ ݁ݒ݅ݐ݅ݏ݋݌ ݁ݏ݈݂ܽ = ܲܨ 
ܲܨ + ܶܰ 

݁ܮ = ݕݐ݅ݒ݅ݐ݅ݏ݊݁ݏ 
 ݁ݐܽݎ ݁ݒ݅ݐ݅ݏ݋݌ ݁ݏ݈݂ܽ
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One beauty of this approach is that, for each interaction observed, the likelihoods of the multiple data 
types can be multiplied to end up with a final likelihood as below. 

ܮ = ×݀ܮ×ܿܮ×ܾܮ×ܽܮ  … 
In the above likelihood equation, the likelihood ratios La, Lb, …Ln are specific to the type of 
experiment, and more than one dataset of the same type may be used. Some experiments will make 
a greater contribution to the final likelihood than other methods, as they have a better sensitivity or 
specificity, or both. At this point it is important to state that the final likelihood is not exactly the 
interpretation of “how many times more likely is an observation a true positive as opposed to a false 
positive”. The equation originates from the Bayesian classifier, which requires also knowing how many 
true interactions there are in the first place, which is unknown. Hence, this naïve Bayesian formulation 
here is more suitably called a likelihood rank ratio. All observations are ranked by the final likelihood 
rank, and the best interactions are chosen, where the number may be some estimate of the total 
number of interactions, such as 10 000.  
 
The (naïve) Bayesian method requires Gold Standard (GS) positive and negative datasets to estimate 
the individual likelihood ratio values for the different experimental types. The GS positive is some 
dataset with a set of high-confidence observations, based on some high-accuracy, low throughput 
experiment. For protein-protein interactions it may be done by co-crystallization or other methods 
which make it obvious that the interactions are highly specific. The GS negative is a dataset that 
contains interactions that do not exist between proteins. There are very few cases reporting that 
proteins do not interact, and hence such as dataset has to be deduced by logic. The expression of 
proteins in a complex is often correlated, as they are required at the same time. Finding proteins with 
anti-correlated expression levels is a logical way to derive a GS negative set.   
 
The calculation of likelihood rank ratio values for an experiment type is demonstrated graphically in 
Figure 1. The goal is to discover the interactions that are not in the GS positive set (already known) by 
using some high-throughput method. Of the observations in the high-throughput dataset, the fraction 
in the GS positive interactions that are observed (true positives) is calculated, as well as the fraction 
that fall in the GS negative (false positives) interactions. The ratio is then the likelihood rank ratio. 
Note that even if a test is not very sensitive to detect interactions, its likelihood rank ratio may be high 
if it was very specific (very few false observations). 
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Figure 1. Top: Gold Standard datasets and discoveries to be made. Bottom: Calculation of likelihood rank ratios. 
Red: observed in high-throughput dataset. Black: not observed in high-throughput dataset.    
 
Although the rank ratio approach has first been demonstrated on protein-protein interaction datasets 
of affinity capture MS [Collins et al. 2007], it has tremendous potential in combination with a variety 
of other types of data, including signal transduction networks and gene regulatory networks, and even 
metabolic signalling networks. It is important to realise that the analytical technologies characteristic 
of the 21st century necessitates the use of such theoretical frameworks for the integration of multiple 
sources of data. From a practical and economic perspective, it is also becoming increasingly important 
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to harness these large datasets that are freely available in public databases for applicability in any 
biotechnology-related product, and not limited to those involving model organisms. (This idea will be 
expanded on in Chapters 5 and 6 involving gene regulatory networks and in Chapter 7 involving kinase 
signalling networks.)  
 
Exploratory data analysis, gene regulatory networks and statistical enrichment 
 
With the advent of the technologies of microarray analysis and high-end MS/MS proteomics around 
the turn of the century, and again with the disruptive advances in NGS applications recently, such as 
RNA-seq, there is an increased interest in exploratory data analysis of these high-content datasets. 
Whereas there has been a strong emphasis on detailed enzyme kinetic studies and the mechanistic 
modelling of metabolism, the focus has changed substantially towards the genetic level in recent 
years.  Microarrays and RNA-seq both provide a tremendous amount of information using 
standardised methods, and compared to enzyme kinetic studies, metabolomics and mass 
spectrometry based proteomics, provides a much easier entry point into systems studies. Tools for 
basic data analyses of NGS data, such as de novo assembly of genomes and RNA transcripts, read-
mapping, variant analysis and differential expression testing of RNA-seq, are now widely available and 
easy to use in online programmes such as Galaxy [Afgan et al. 2015], as are the tools for microarray 
analysis, including the many algorithms in BioConductor [Gentleman et al. 2004] and Chipster [Kallio 
et al. 2011]. However, utilisation of these data for a systems level understanding lags far behind the 
current capabilities for raw data processing. Some of the key concepts deserve a brief review, which 
are the cornerstones in moving from large datasets to a meaningful understanding of cause and effect 
in biochemical systems. These are ontologies, enrichment statistics, in silico networks, the reverse 
engineering approach and probabilistic networks. The principles are not limited to gene expression, 
and have been used throughout this thesis. Importantly, as is explained in Chapters 5 and 6, the 
mechanistic biochemical details in such analyses will become increasingly important in the years to 
come.  
 
An important development in the bioinformatics community was the idea of ontologies, in particular 
Gene Ontology (GO) [Ashburner et al. 2000], to make sense of large microarray datasets. An ontology 
is a structured vocabulary of terms (“GO terms”), each with a clear biological, biochemical or 
physiological meaning and related to each other in a tree structure (see Figure 2). GO actually consists 
for three ontologies: GO cellular location, GO molecular function and GO biological process. For the 
example of GO cellular location in Figure 2, the general term ‘vacuole’ maps to various more specific 
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types of vacuoles, which again maps to even more specific types, some of which may only be found in 
some types of organisms. In gene and protein annotation databases such as the UniProt protein 
database [Boutet et al. 2016], these GO terms are associated with molecular sequences. UniProt 
consists of two types of sequences. Firstly, the Swiss-Prot sequences, in which all examples and the 
GO terms are manually curated. Secondly, the Trembl sequences which are automatically 
computationally annotated, based on their sequence similarity with other well-known (Swiss-Prot) 
sequences. Protein sequences enter UniProt as Trembl entries and progress to Swiss-Prot. Multiple 
proteins may contain the same GO term; for instance, a variety of genes will occur in lytic vacuoles 
and hence carry the term ‘lytic vacuole’. For each term in the ontology, the links (mappings) can be 
followed from the GO term to all of the protein entries in the database carrying that term, and 
subsequently their differential expressions statistics in a microarray or RNA-seq dataset may be looked 
up. The group of genes mapping to an ontology term is termed a gene set. Instead of performing this 
lookup process manually, algorithms can do this efficiently.  
 
A gene set enrichment can subsequently be calculated for each term to test whether the particular 
set of genes is differentially expressed more significantly than is expected from a randomly picked 
gene set of the same number of genes [Ideker et al. 2002]. Enrichment statistics have been reviewed 
by Maciejewski [2013]. More than one way to perform enrichment exists, including the use of discrete 
statistical distributions such as the hypergeometric distribution, in which the number of up or down-
regulated genes are used and compared to the background. The most sensitive method may be the 
one developed by the Nielsen group [Patil and Nielsen 2005, Oliveira et al. 2008], which will be 
referred to as the Z-score method throughout this thesis. In this method, the probability values (p-
values) or their corrected form for multiple comparisons (q-values), originating from differential 
expression calculation of a microarray dataset (adapted for RNA-seq in Chapter 3), are converted to 
Z-scores. In simple terms, the Z-score refers to the number of standard deviations away from a mean. 
Z-scores can be summed for the whole gene set and normalised to the average of the background as 
well as the standard deviation of the background, for a specific number of genes [Patil and Nielsen 
2005, Oliveira et al. 2008]. The calculation of the enrichment score is described by the formula below. 

S = Z(total, Test) − Mean(Z, Background)
Standard deviation(Z, Background)  

As this is in effect a bootstrapping method, the background sets are simulated by randomly sampled 
gene sets containing a specific number of genes, compiling the total Z scores into a list and 
subsequently calculating the average and standard deviation for each number of genes. This should 
be performed for a variety of gene set sizes, covering all gene set sizes so that the enrichment value 
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of any gene set can be calculated after looking up the background mean and standard deviation in a 
table.  
 

 
 
Figure 2. The structure of the GO cellular location ontology below ‘vacuole’. The tree was generated with 
software designed as part of this project, named Reactomica. (See Chapter 3 for more examples of GO 
enrichment and visualization.)  
 
Not only is it challenging to implement such an algorithm in a streamlined form in an integrated 
systems analysis software (part of this work), but it is also a substantial challenge to get a grasp of the 
output. GO [Ashburner et al. 2000] currently has 40 143 terms (July 2016). A table with this many 
terms is not easy to navigate and too large to use efficiently in spreadsheets. The use of visualization 
as a tree or network structure could greatly assist in obtaining an overview of enriched terms, as some 
terms have largely the same meaning. Miniature versions of the full GO ontology are also helpful, 
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especially for visualization. A good example is GO_slim for yeast, which contains most of the important 
terms to gain an initial overview of gene regulation. However, it falls short in more detailed analyses 
and has to be reverted to the elaborate full GO ontology (see Chapter 3). As far as the author is aware, 
currently there is no software that can perform the combination of navigating large ontologies, carry 
out enrichment statistics, visualise enrichments as a tree structure and create streamlined versions, 
although some of these aspects are found in ontology editors such as OBOEdit [Day-Richter et al. 2007] 
and more recently as a plugin for the network visualisation programme Cytoscape [Shannon et al. 
2003].  
 
While some of the abovementioned shortcomings related to gene set enrichment could still be 
overcome by combining a variety of programmes, other specialised potential applications for 
ontologies still require development. Three examples are given below, which were the main reasons 
why a substantial amount of algorithm development was done on ontology related work in this 
investigation. In the relatively simple case of trying to find all genes that have been associated with a 
certain subcellular localization such as the lytic vacuole, a substantial amount of searching may have 
to be done to find the correct GO term, as it is embedded within a large database of terms in which a 
text search might not be very efficient. Visualization of the relationships in a small window (Figure 2) 
is required to pick the correct term, such that the term could be used to find the relevant proteins 
encoded by the genome of interest. A more sophisticated use of GO is to automatically create 
compartmentalised versions of metabolic pathway maps, which may be used to separate RNA-seq 
data into the different subcellular compartments. This application has much potential and may reveal 
novel insights (see Chapter 3). Another application is to apply the co-assignment of GO terms between 
a transcription factor and a potential target as a likelihood ratio. This was used in Chapters 5 and 6 in 
creating the first gene regulatory network for K. marxianus UFS-Y2791. Also, this may have other 
applications such as improving the assignments of protein-protein interactions [Collins et al. 2007].  
 
The concept of gene set enrichment is not limited to ontologies. The concept of metabolic pathways 
as gene sets provides an efficient method to reveal the cellular state or the global differential gene 
expression, since pathways have an explicit meaning and the relationship between metabolic 
pathways is well understood by biologists. Pathway Tools, which operates on the MetaCyc database, 
provides mappings from EC numbers or GO terms to a pathway genome database (PGDB) via the 
PathoLogic algorithm [Karp et al. 2009], while UniProt has recently started to implement pathway 
mappings for proteins. These terms could be used similarly to GO terms for pathway enrichments. A 
significant limitation currently is the representation of complete metabolic charts on a single 
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rendering. Metabolic reactions are hypergraphs (more than one reactant or product), thus any 
automated rendering is bound to be very complex. An innovative approach was taken in this work by 
representing pathway enrichments as nodes in a pathway-to-pathway network, while representing 
textbook-style metabolic pathway maps of individual key pathways individually, painted with 
expression levels or differential expression statistics (see Chapter 3). This complements the cellular 
overview approach followed by a visualization tool such as is found in Pathway Tools [Karp et al. 2009],  
which currently is only for the microarray format.  
 
Apart from ontologies and pathways, any sensible grouping of genes could, in principle, be used as a 
gene set which could be tested for enrichment and visualised in some form. Recently, the concept was 
generalised to ‘reporters’ [Oliveira et al. 2008]. Reporter metabolites are metabolites that are likely 
differentially regulated by the enzymes that produce or consume them [Oliveira et al. 2008]. This 
concept, used in Chapter 3, predicts that the concentration of a metabolite is likely altered, but it 
cannot predict whether the concentration may be higher or lower, as is often the case with 
enrichment statistics. Notably, it predicts changes in the concentrations of metabolites by using 
differential gene expression data, and is thus a complement or even a replacement for the more 
technically challenging metabolomics done by using mass spectrometry methods. Protein complexes 
may also be considered as reporters.  
 
A particularly interesting idea is that of reporter TFs [Oliveira et al. 2008]. The gene set for a TF is the 
set of targets that a TF affects by gene regulation. Finding a high enrichment statistic for such a TF 
(reporter) would suggest that it explains the differential expression of its targets, and hence that it is, 
at least in part, the reason for their differential expression. Knowledge of the differentially active TF 
in a response provides substantial insight into the signalling pathways that are active, but can also 
provide a route to manipulating the cell at a higher regulatory level to cause a dramatic change in 
cellular phenotype. Consider the case in which it might be found that a single TF regulates the switch 
between aerobic and fermentative metabolism, or between the normal phenotype and cancer. 
Genetic manipulation (in case of a microorganism) or treatment with a targeted drug (for humans) 
could then be performed to alter the phenotype by targeting the relevant TF. Finding such a major 
switch in potential biofuel producers such as K. marxianus that could lead to an industrially important 
phenotype, is highly attractive.  
 
A major strength of the enrichment (or reporter) approach is that it is robust towards individual 
potential erroneous assignments of interactions. The knowledge gained on the differential activity of 
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the TF is more important than the correctness of essentially all the assigned interactions. Since the 
sample (gene set) is sufficiently large, the total observed change (enrichment) stands out above the 
background enrichment; hence this is also a sensitive method in the detection of altered biochemical 
activity. The major constraint currently with reporter TFs specifically, however, is that a genome-scale 
gene regulatory network is required for the species of interest. Gene regulation is one of the most 
relevant topics in the biosciences today, but the elucidation of a genome-wide gene regulatory 
network is a major challenge. A substantial effort was invested into reconstructing the first in silico 
genome scale gene regulatory network for K. marxianus, which is presented in Chapters 5 and 6. A 
special likelihood based method was developed which includes multiple sources of evidence, building 
on the idea of a naïve Bayesian classifier, which was described earlier in this review. This gene 
regulatory network was used to obtain the target gene sets for TFs, which were used to calculate 
enrichment statistics using both the Z-score method and the Hypergeometric distribution [Chapter 6]. 
 
The gene regulatory network also turns out to be an important link between transcriptomics data and 
the phosphorylation signal transduction network. In Chapter 7, a method is presented by which the 
activity of important kinases is predicted by RNA-seq data, which by itself does not measure the 
phosphorylation state of proteins.  
 
Although we are decades from grasping the full complexity of eukaryotic gene regulation due to its 
combinatorial nature [Voet and Voet 2011], suitable and robust analytical frameworks such as the 
enrichment statistics and the likelihood based network approaches used in this work, should lead to 
deep insight into cellular regulation of both model and non-model species. This is an exciting time for 
computational and high-throughput biology studies in eukaryotic gene regulation. The key catalyst 
that is now available to allow major gains in knowledge at a rapid pace for non-model species, is the 
advent of NGS. Some of the applications of NGS will be discussed briefly. 
 
Next-generation sequencing 
 
Below is a brief overview of the sequencing technologies, the types of NGS experiments and important 
algorithms. 
 
Sequencing technologies 
Sanger sequencing enabled molecular biology [Sanger and Coulson 1975]. It provided high quality 
reads, but could only be performed in low throughput. In order to complete sequencing the human 
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genome, large sequencing centres were set up with multiple sequencers. This multi-national effort led 
to the first human genome sequence, which required several years. The first high-throughput 
sequencers, such as the Roche 454, revolutionised sequencing by parallelising the process in miniature 
wells and using PCR amplification of fragments of DNA [Wheeler et al. 2008]. However, the next 
generation of sequencers caused another revolution, in which the throughput dramatically increased, 
which coincided with a substantial cost reduction [Bentley et al. 2008]. The Illumina systems currently 
leads the NGS market. The technology works by hybridising single-stranded DNA fragments onto a 
specialised transparent slide. Each fragment is amplified, resulting in a spot of identical fragments. In 
the next step, the complementary strands are synthesised using specialised deoxyribonucleotides that 
can be detected by an optical reader during each round of nucleotide incorporation. Each nucleotide 
is detected as a different colour. The sequence of appearance of colours corresponding to each spot 
is then converted into a nucleotide sequence. The most popular Illumina instrument currently is the 
Illumina MiSeq, which provides approximately 15 Gb of sequence per run, with read lengths of up to 
300 bp. The larger Illumina systems such as the HiScanSQ produce shorter reads of 75-100 bp but at a 
larger scale. A competing technology is the Ion Torrent/Ion Proton instruments. The detection of base 
pair inclusion is, instead of optical detection, based on the detection of small changes in pH originating 
from the inclusion of nucleotide bases, which saves on cost [Rusk 2011]. The process is called ion 
semiconductor sequencing. With both these next-generation sequencing technologies, the major 
constraint is the read length. Since the read quality deteriorates with an increase in read length, the 
longest reads of sufficient quality are approximately 300 bp. Many applications in NGS requires reads 
to be as long as possible. This is especially important when genome assemblies have to be done where 
repetitive regions have to be spanned. Short reads cannot span repetitive regions and hence 
assemblies become inaccurate if the read lengths are shorter than the length of the repeating regions 
[Compeau et al. 2011]. Another revolution in sequencing is expected in the form of single molecule 
sequencing. In this method, no synthesis or PCR is applied, which also eliminates bias towards certain 
types of sequence. Instead, the method directly reads the base pairs in individual DNA or even RNA 
molecules [van Dijk et al. 2014]. Moreover, the read length promises to be very long. 
 
An innovation in sequencing technology that is available on platforms such as Illumina is paired-end 
sequencing, which was explained by Bentley et al. [2008] and is summarised below. After the suitable 
number of PCR cycles has been performed in which nucleotides are incorporated onto the single-
stranded reads and the quality drops to a non-usable level, a process called bridge amplification is 
performed. In this step, the DNA is bent over such that the free end binds with the slide, forming a 
bridge. Several steps are then carried out to effectively turn the fragment around such that the same 
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number of PCR steps (sequencing) can be done from the other end. The result is a dual set of reads, 
each pair corresponding to the sequences of the ends of a fragment. The data pair is then stored in 
two separate .fastq files and the pairs are kept in the same order such that they could be used together 
during read-mapping and other steps in data analysis. Paired-end sequencing effectively doubles the 
amount of data, and since the approximate distance between the two reads on the opposite ends of 
a fragment is known, this information could be used to improve assemblies. A variation on this is long 
mate-pair sequencing [Bentley et al. 2008]. Long fragments of up to 25 Kb are selected, the ends of 
the fragments labelled with a biotin tag and the fragments circularised by joining the ends of a 
fragment. These circular DNAs are then fragmented and the part containing the two original ends of 
the long fragment, with the two biotin tags in the centre, purified by making use of the affinity of 
biotin for avidin. These shorter fragments, containing the inverted ends, are then ligated to the 
adapters for paired-end sequencing, followed by the standard sequencing protocol. Mate-pair reads 
are especially useful for de-novo assembly of genomes, or genome finishing by which contigs from de 
novo assemblies can be sewn together by using the approximate distance between the reads on the 
ends of long fragments.  
 
Genome assembly 
Two methods of genome assembly can be distinguished. The first is read-mapping of NGS data to a 
reference genome, which would mostly be that of a different strain or individual of the same species. 
This process is useful for detecting genetic differences among individuals in a population, such as for 
performing genome-wide association studies in humans, or to detect the differences between strains 
of pathogenic or non-pathogenic Escherichia coli. A good algorithm for read-mapping is Bowtie 
[Langmead et al. 2009, Langmead and Salzberg 2012].  
 
Another approach is de novo assembly, which does not require a reference genome. The algorithm 
effectively looks for overlaps among NGS reads and sew these together into contigs. The best 
established method is de novo assembly based on the de Bruijn graph method [Compeau et al. 2011]. 
This algorithm was coded to demonstrate the process of de novo genome assembly using de Bruijn 
graphs (Figure 3). Briefly, the algorithm first separates each NGS read (1 in the figure) into overlapping 
k-mers (k-letter words) (2 in the figure). All the adjacent k-mers in a read are marked as adjacent by 
constructing a connected graph where the nodes are the k-mers in a read. Next, all identical, or nearly 
identical k-mers between reads are mapped to one another to result in a graph containing all the data 
(3). Subsequently, these identical nodes (4) are collapsed into single k-mer nodes. In this manner, the 
arcs (edges) become increasingly dense with the evidence of connections between adjacent k-mers 
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(5). Finally, the graph is traversed to find the path along k-mers with the most supporting evidence 
(6), which is then sewn together into the final sequence and coverage at each base (7).  
 

 
 
Figure 3. The process of de novo assembly using the de Bruijn graph method. Images are the output from an 
assembler coded as part of the project, for demonstration purposes. The process is explained in the text.  
 
The de Bruijn graph algorithm uses a large amount of computer memory, but can be parallelised, as 
was done for Abyss [Simpson et al. 2009]. Another popular de novo assembler is Velvet [Zerbino 2008]. 
Assembly statistics are useful to characterise the quality of a de novo assembly. The values of N50, 
N75 and N90 are respectively defined as 50% of the genome residing in contigs equal or longer than 
the N50 value, 75% of the genome in contigs equal or longer than the N75 value, and so forth.  
 
 
 
Transcriptomics and RNA-seq 
Transcriptomics involves the measurement of RNA levels in the cell at the genome-wide scale. The 
development of DNA microarrays marked the beginning of functional genomics [Schena et al. 1995]. 
Typically, samples are taken from cells of different types or that have been cultivated under different 
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conditions, the RNA purified, reverse transcribed, differentially labelled using fluorescent labels, and 
the labelled cDNA hybridised to a slide containing spots of oligonucleotides that represent each of the 
genes in a genome [Schena et al. 1995]. Usually two samples are mixed, allowing RNA molecules from 
the two samples to compete for the same sites on the array. Subsequently, differential expression of 
each gene is calculated from the ratio of the binding of the two samples, and the experiment usually 
performed in triplicate to calculate p-values. Several steps of normalisation are also required in the 
data analysis, and it is important to take the same amount of RNA from the two samples. It would also 
be highly detrimental if the sample contained RNA from a contaminant species; thus mixed cultures 
cannot be studied. Findings of differentially expressed genes are often confirmed by using a low-
throughput method such as quantitative, real-time PCR and the standard of Minimum Information 
About a Microarray Experiment (MIAME) has been established for the publication of such data 
[Brazma et al. 2001]. Nevertheless, expression microarray has become so popular that there are by 
now a tremendous number of these datasets published. Another revolution in the field of functional 
genomics has resulted from the advent of NGS applied in various forms. NGS has been applied to the 
measurement of RNA levels, which is referred to as RNA-seq. The experimental and data analytical 
protocols have been described by Trapnell et al. [2010] and are summarised below. 
 
In the experimental protocol for RNA-seq, RNA is extracted, fragmented, reverse transcribed, PCR 
amplified, and a library constructed for sequencing by NGS. During the library construction process, 
platform specific sequences such as adapters and PCR primers are ligated to the fragments. RNA-seq 
data are then interpreted by one of three methods. The first is to map the reads to a reference 
genome. This creates a pile-up in which the number of reads that map to a gene are counted and the 
proper statistics used to calculate the abundances of RNA originating from each annotated gene in a 
sample (discussed below). These abundances are then compared between two or more samples to 
calculate fold changes and p-values for differential expression. The second approach is to first 
assemble RNA transcripts de novo, independent from the genome, and then use this set of transcripts 
as the reference to which reads would be mapped quantitatively to calculate differential expression. 
This is the only method that can be performed if a genome is not available, typical of species with very 
large genomes such as plants and other higher eukaryotes. This method also reveals alternative splice 
forms (splice variants) of transcripts. The third approach combines the steps from the first and second 
approaches. Reads are mapped first to a genome in which putative splice junctions have been 
annotated, which are the exon-intron boundaries of eukaryotes. Alternative splice forms of RNAs and 
their abundances are then simultaneously resolved in a probabilistic method lines [Trapnell et al. 
2010]. 
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The benefits and constraints of the different methods of RNA-seq data analysis have been reviewed 
by Martin and Wang [2011]. The first method is the simplest and most suitable for bacteria, archaea 
(which have no introns), as well as for lower eukaryotes such as yeasts, in which only a small number 
of genes have introns. Since data are mapped to a reference genome, the maximal number of reads 
can be utilised for differential expression testing, rendering the method very sensitive. The second 
and third methods are required for high eukaryotes and have the benefit of elucidating splice variants 
and their abundances in different cell lines, under different conditions, or in diseased versus healthy 
states such as cancer. The third method is more sensitive than the second de novo assembly method, 
since the maximum number of reads can be used due to the availability of the reference genome, but 
the accuracy depends on the accuracy of the genome annotation [Martin and Wang 2011]. The latter 
approach has, in a single experiment, revealed thousands of novel transcripts in mammalian cell lines 
[Trapnell et al. 2010], demonstrating the potential of RNA-seq to transform the functional genomics 
landscape. 
 
Theoretically, RNA-seq can detect the presence of a single transcript and is thus similar in its sensitivity 
to quantitative real-time PCR and is superior to microarray analysis. As there is no theoretical upper 
limit, since the detector cannot be saturated, the dynamic range is also superior to microarrays. The 
transcript abundances for paired-end data are reported as FPKM, which is an abbreviation for 
fragments per kilobases of a gene, per million reads sequenced [Trapnell et al. 2010]. This unit implies 
that two normalisations have been performed on the data. Since two samples would not contain 
exactly the same amount of RNA due to differences in extraction efficiency, the abundances are 
normalised by the total numbers of reads sequenced (per million reads), which circumvents the need 
for diluting or concentrating a sample. Also, longer genes would potentially have more reads mapping 
to them compared to shorter genes; hence the number of reads mapping to a gene is normalised by 
the length of the gene (per kilobase of nucleotides in the gene). RNA-seq is also very flexible in that 
mixed cultures can be studied without interference, assuming that the reads could be sufficiently 
mapped to the genome of either species, which would work best if complete genomes of both (or 
multiple species) are available and the species are not very closely related. There is also no need for 
investment into the development of a microarray and it is accordingly very suitable for projects on 
non-model species. Hence, several aspects make RNA-seq superior to microarray analysis, although it 
is more expensive. [Trapnell et al. 2010] 
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Several software programmes for the raw data processing of RNA-seq data have become available. 
TopHat [Kim et al. 2013] is an excellent read-mapping tool for reads, which employs Bowtie [Langmead 
et al. 2009, Langmead and Salzberg 2012], allowing it to span splice junctions. CuffLinks is used for 
resolving splice variants using a reference genome [Trapnell et al. 2013], while CuffDiff is used for 
calculating transcript abundances and differential expression among samples [Trapnell et al. 2010, 
Trapnell et al. 2013]. Galaxy is an excellent online resource for NGS data analysis and provides an easy 
entry into NGS raw data analysis [Afgan et al. 2015]. Improvements could, however, still be made to 
RNA-seq experimental and data analytical protocols, since different algorithms provide somewhat 
different results [Su et al. 2014]. 
 
Methods to study metabolism 
 
Metabolism is central to cellular physiology and hence a focus both in biotechnology research and in 
medical science. Elucidation of metabolic pathways pre-dated the study of signalling pathways and 
genetic regulation [Voet and Voet 2011]. Like all systems in biology, its regulation is complex and non-
linear. Mathematical modelling and computer simulation can provide a deeper understanding of 
regulation and control of these processes as opposed to experimentation alone. Models of 
metabolism can elucidate the rate-limiting steps in a metabolic pathway, which evidently is useful 
from a biotechnology perspective for the purpose of metabolic engineering [Kacsar and Burns 1973]. 
Another is the exploration of the metabolic capacity under a variety of conditions, which might not 
feasibly be tested experimentally [Famili et al. 2003, Schilling et al. 1999]. Also, detailed models of 
metabolism may be used to predict concentrations or reaction rates that are not readily measurable 
with existing technologies at the time. Detailed models of metabolism became popular early on. This 
line of research was greatly supported by the strong emphasis on enzyme kinetic studies which lead 
to elaborate rate equations for a variety of mechanisms, like the well-known Michaelis-Menten 
[Michaelis and Menten 1913] and Hill models [Hill 1910]. These are readily built into a set of 
differential equations and a computer simulation is then used to solve the set of equations over the 
time variable, often leading to a steady state of fluxes and concentrations [Garfinkel et al. 1970, 
Heinrich and Schuster 1998]. Some of the most elaborate mechanistic models of metabolism with 
relevance to biotechnology is that of the glycolytic and fermentative pathways in the yeast S. 
cerevisiae [Teusink et al. 2000]. A key benefit of using a mechanistic, bottom-up approach is that the 
predictions have a direct relationship to parameters that can be manipulated by the experimenter. 
For instance, the maximal activities in enzyme kinetics relate to protein concentrations, which may be 
manipulated by over-expression or knock-out of genes. Another benefit of the extraordinary detail of 
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such models is that these might be thought of as condition-independent. Since the central metabolites 
are mostly treated as variables and not constants, the simulations should still be relevant, and hence 
making the model extrapolatable to other conditions. In most cases, however, these of models based 
on detailed kinetics do not include any signalling or genetic regulation, rendering them again 
dependent on the context under which they were constructed for, unless enzyme activities are 
measured for each condition.  
 
A strong foundation for the understanding of the regulation of metabolism is Metabolic Control 
Analysis (MCA), which has been developed by a number of contributors over several decades [Kacsar 
and Burns 1973, Heinrich and Rapoport 1974, Fell and Sauro 1985, Reder 1988, Conradie et al. 2006]. 
The mathematical formulation can be used to calculate control coefficients that describe the 
contribution of an enzyme to the control of the flux through any reaction in the system, including the 
reaction catalysed by its own activity. To make a simplification, the flux control coefficient describes 
the fractional change in the flux that could be expected by a one percent change in the concentration 
of that enzyme. The higher the flux control coefficient, the more responsive the flux should be to a 
change in the concentration of that enzyme. This theoretical framework has also been extended to 
various other forms, such as supply-demand analysis, which groups several enzymes into reaction 
blocks to study the control by the reaction block via a single linking intermediate [Kroukamp 2003], or 
any number of intermediates [Rohwer and Hofmeyr 2008], on any reaction or reaction block. It is very 
attractive to perform MCA for the purpose of metabolic engineering, as it predicts which enzymes to 
focus on for genetic engineering. To unlock the potential of MCA, at least two main approaches exist. 
The first, more traditional approach, is to characterise the individual enzymes in the pathway by 
enzyme kinetic assays, and make simplifications where needed. Good examples of such studies were 
performed by Teusink et al. [2000], who created a detailed model of fermentative glycolysis in S. 
cerevisiae. The MCA formulation calculates the elasticity coefficients (similar to reaction order, or 
percentage-wise slopes on a graph of rate versus concentration) at the simulated concentrations and 
fluxes close to the reference experimental condition, and then calculates the flux control coefficients. 
Another approach requires the measurement of both fluxes and concentrations of key metabolic 
intermediates [Hofmeyr and Cornish-Bowden 1996].  
 
Unfortunately, applicability of MCA by both approaches is limited by our ability to perform realistic 
experimental measurements. For the detailed enzyme characterisation approach, the labour 
intensiveness of detailed enzyme kinetics, in addition to possible experimental artefacts introduced 
by isolation of the enzymes, limit the approach to a few pathways of key interest. For the experimental 
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MCA approach, our ability to perform accurate, quantitative metabolomics measurements is a serious 
constraint. It is, however, attractive to measure changes in intracellular metabolite levels over time 
after a sudden perturbation of metabolism, such as a pulse of glucose, and fit enzyme kinetics [Visser 
et al. 2002]. This could be termed in vivo kinetics. A variety of mass spectrometry based methods such 
as GC-MS currently exist that can detect hundreds or even thousands of small molecules in a biological 
sample, but the quantitation accuracy is much worse than required to perform accurate quantitative 
experimental MCA throughout the cell, or to accurately fit enzyme kinetics at a series of steady states, 
or after a substrate pulse. LC-MS is more quantitative, since no chemical derivatization is required. 
However, for the sensitive measurement mode of multiple reaction monitoring (MRM), a chemical 
standard is required for each compound of interest. For the majority of metabolites, the standards are 
not available and those that are, are usually very expensive. From own experience, a tremendous 
amount of effort is required in performing a pulse experiment involving sampling and sample 
preparation (the invasive method), including rapid sampling [Visser et al. 2002]. For rapidly growing 
microorganisms, samples ideally need to be quenched within a fraction of a second to stop 
metabolism and minimise changes in the intracellular metabolite levels, which are extremely low in 
most cases. This requires specialised equipment [Visser et al. 2002] which currently is not widely 
available. By using in vivo nuclear magnetic resonance spectroscopy (NMR), the need for rapid 
sampling could be circumvented [Gillies et al. 1981, Crous 2011]. An additional improvement is to use 
NMR to measure the metabolite and cofactor levels using permeabilised cells [Smith 2010]. Since the 
cells are non-growing, longer acquisition times could be used, increasing the sensitivity of NMR 
detection. Fitting in vivo kinetics has the advantage over experimental MCA in that the mechanistic 
details are captured, which gives context independence to the model, allowing predictions of control 
to be make for conditions that may differ from the experimental setup used for fitting [Smith 2010].  
 
Detailed models of metabolism usually capture only a very small fraction of the reactions and 
molecules in the cell. Omics technologies on the other hand, capture a much larger fraction, and thus 
there has been a wide gap between these two sides of systems biology. Metabolic flux analysis at the 
steady state is a powerful set of tools to elucidate the cellular state, at least of central carbon 
metabolism (see a discussion of methods below). Schabort [2007] combined the data from 13C-
Metabolic Flux Analysis (13C-MFA) with a detailed kinetic model of fermentative glycolysis in yeast 
[Teusink et al. 2000]. By including the effects of the larger flux network as hard constraints in a detailed 
kinetic model, the neglected reactions could be filled in for the purpose of rigorous model validation 
at a condition that was different to that for which the model was constructed. In this “13C-constrained 
kinetic modelling” method, the simulated fluxes were forced to the measured values, revealing the 



 

33  

individual enzymes for which enzyme activities or other parameters were incorrect. This is a 
complementary approach to in vivo kinetics measuring intracellular metabolites.  
 
A different approach to the study of metabolism was recently demonstrated by Canelas et al. [2011] 
for S. cerevisiae. The authors focused only on glucose as the carbon source and varied the dilution rate 
in a chemostat culture, measuring the intracellular metabolite concentrations and the fluxes 
throughout central carbon metabolism, and calculated the disequilibrium ratio as a function of 
intracellular flux. The idea was to classify reactions into those that function close to equilibrium or far 
from equilibrium. This knowledge can be very useful, since reactions that function close to equilibrium 
would always simply translate the signals from changes in their own substrate and product 
concentrations into changes in the flux. They would also have very little control over the metabolic 
flux, as is true for reactions that function close to equilibrium, which usually have high maximal 
activities compared to the neighbouring reactions. Moreover, it results in a vast simplification of 
cellular modelling, as the majority of reactions could be modelled using only equilibrium constants, 
which are generally applicable to all species. On the other end of the spectrum, the enzymes that 
function far from equilibrium are the ones that require detailed characterisation with enzyme kinetics, 
as well as measurements of the enzyme activity levels [Canelas et al. 2011]. An in-between class 
contain those reactions that showed a linear response of the flux with the disequilibrium ratio. These 
reactions need to be modelled using both the equilibrium constants and the empirically determined 
slope, which captures the combined effects of protein expression changes (enzyme activity) and the 
kinetic effects of metabolite level changes on the enzyme. It is a good example of a reduction strategy 
that has potential for genome scale modelling, complementary to in vivo kinetics and 13C-constrained 
kinetic modelling.  
 
Rapid equilibrium or near equilibrium enzymes should not require gene regulation, since their activity 
levels would typically be very high compared to the neighbouring enzymes and only very large changes 
would result in a change in flux (in the case when they are substantially down-regulated, and then 
become a rate-limiting enzyme). The classification of some of these reactions in S. cerevisiae were put 
to the test in Chapter 3, using a different species (K. marxianus), and asking whether those classified 
as rapid equilibrium enzymes would indeed be constitutively expressed between conditions in which 
the fluxes through them would change. These different conditions were imposed by using glucose or 
xylose as the carbon source. It is expected that the genes of lower glycolysis and the translaldolase 
and transketolase reactions of the non-oxidative pentose phosphate pathway would be constitutively 
expressed, while the fluxes would be affected by the two different carbon sources. 
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Very recently, a novel approach was developed by the Rabinowitz group [Hackett et al 2016], which 
aims at elucidation of in vivo kinetics and making extensive use of chemostats for yeast, like that done 
by Canelas et al. [2011], but making use of proposed Michaelis-Menten type rate equations in fitting 
procedures. Both the fluxes and metabolite concentrations are measured under multiple conditions, 
and the rate equations are tested as the causal links between the observed changes in metabolite 
levels and fluxes. The use of multiple steady states and especially the accurate measurement of fluxes 
are important for this combined data-driven and hypothesis driven approach. The combination of 
fluxes and proteome data sets by the Milo group has also recently suggested relationships between 
enzyme kinetics and the circuitry design of pathways at the network level [Barenholz et al. 2017]. The 
measurement, or rather, the calculation of metabolic fluxes evidently is becoming increasingly 
important in systems biology and is a non-trivial task. 
 
Metabolic Flux Analysis and related methods 
The metabolic reaction rate at a steady state is called the metabolic flux. A group of related methods 
calculates or predicts fluxes, depending on what data are available. Methods have been thoroughly 
reviewed by Wiechert [2001] and Schilling et al. [1999], and will only be described below as relevant 
to the application in this thesis. Metabolic Flux Analysis (MFA) usually refers to using the metabolite 
balance model as a measurement tool for calculating fluxes, providing a snapshot of metabolism at a 
given condition. Flux Balance Analysis (FBA) uses the flux model in a predictive sense, and usually as a 
function of various simulated growth conditions. This line of research on genome-scale FBA was 
pioneered by the Palsson group [Famili et al. 2003, Schilling et al. 1999]. The basis for most of these 
methods is the stoichiometric matrix, S, which describes the metabolite balances in differential 
equations captured in matrix form. The change in concentrations over time is formulated as 
 

ݔ݀
ݐ݀ =  ܵ.  ݒ

 
The stoichiometric matrix S has m rows describing the metabolite balances and n columns, 
representing the n reactions, and v is the vector containing n fluxes. In MFA and FBA, S is separated 
into two matrices. The first describes the intracellular fluxes, while the second is an identity matrix 
that maps those metabolites that can enter or leave the system via the exchange reactions [Schilling 
et al. 1999]. The formulation is described in Chapter 9. FBA uses linear optimisation to calculate a 
single flux distribution (pattern) in the convex space defined by the null space of flux constraints 
defined by S [Schilling et al. 1999]. As objective function for linear optimisation, the maximised growth 
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rate is often used, which proposes that the flux distribution in an organism would be such that it 
captures as much as possible of the nutrients in the form of biomass such that the in silico organism 
would multiply as rapidly as possible. This makes intuitive sense for microorganisms such as bacteria, 
which likely evolved to compete based on growth rate [Schuetz et al. 2007]. Yeasts that are Crabtree 
negative would also follow this pattern, since wasteful ethanol production is not prevalent in these 
yeasts, including K. marxianus. 
 
13C-Metabolic Flux Analysis (13C-MFA), like MFA, uses the metabolite balance model to calculate fluxes, 
but uses also isotope labelling patterns to impose further constraints on the intracellular flux 
distribution. Two main approaches exist. The first is 13C-Constrained Metabolic Flux Analysis, in which 
the additional constraints imposed by isotope labelling patterns from gas chromatography coupled to 
mass spectrometry (GC-MS) or from nuclear magnetic resonance (NMR) are captured in the form of 
flux ratios and combined with the metabolite balance model [Fischer et al. 2004, Zamboni et al. 2005]. 
The second approach is a simulation approach in which a balance model is set up for all possible 
labelling patterns (isotopomers), and the simulation outputs compared with measured isotope 
labelling patterns [Wiechert 2001]. Whatever the method of calculation, the application of 13C-MFA is 
limited by identifiability, which is the theoretical possibility to calculate the set of fluxes, given the 
labelling pattern of the substrate(s), and by the availability of such a labelled substrate. Often, 13C-
MFA is not applicable for calculating all fluxes for growth from certain substrates, or the most suitable 
labelling pattern may not be available or may be prohibitively expensive. For example, the complete 
set of fluxes in central metabolism in K. marxianus would not be identically identifiable on glucose or 
xylose as growth substrates, and suitable 13C-labelled xylose is very expensive. Hence, in Chapter 3, 
fluxes were estimated by FBA. 
 
Metabolic Regulation Analysis 
 
MCA can be used to calculate explicitly the hierarchical effects of kinases and gene expression on the 
metabolic level. However, the kinetic parameters and binding constants for interactions outside of 
metabolism are rarely measured or measurable at this point in time. A sensible alternative to 
attempting to answer the question of which components have the most control over a pathway, is to 
ask which components most likely were the causative agents leading to a change in the flux of interest, 
considering their observed differential expression. Metabolic Regulation Analysis (MRA) was 
developed to quantitatively separate the metabolic and hierarchical levels of regulation [Ter Kuile and 
Westerhoff 2001]. The metabolic level of regulation involves the changes in metabolite concentrations 
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between two conditions, which is the effect of changes in the environment, transduced as a signal 
through the pathways. It is logical that an increase in a concentration of the substrate of a reaction 
would lead to an increase in the flux, while the opposite is true for the product. The hierarchical level 
of regulation describes the effect that a change in the activity of an enzyme would have on the flux 
through that reaction. Activity of an enzyme is usually directly related to the concentration of an 
enzyme, and may also be affected by post-translational modifications. While metabolite levels are 
very challenging to measure, enzyme activity is simpler to measure accurately, as is the concentration 
of protein levels. In fact, only the relative fold changes of activities or protein levels need to be 
measured in order to determine the hierarchical component, while the metabolic component is 
calculated from the hierarchical component, using the theorem for MRA [Ter Kuile and Westerhoff 
2001]. This formulation is described in Chapter 3. Notably, the MRA approach could potentially use 
the genome-wide data generation methods from proteomics and transcriptomics, effectively 
extending functional genomics to a quantitative description of metabolic regulation. In Chapter 3 the 
idea is extended to the case of RNA-seq, which may gain in popularity since it is a practical approach 
to genome-wide studies in regulation, especially if flux analytical methods such as 13C-MFA or FBA 
would be extended to the larger scale. Indeed, the Nielsen group very recently elucidated that, 
although there is almost no correlation between mRNA levels and their protein levels, reflecting 
differences in translation efficiency, there was a strong correlation when considering their differential 
expression values [Lahtvee et al 2017]. Hence, this new finding supports the use of differential RNA-
seq as a practical and cost-effective replacement for differential proteomics. 
 
Alternative roles for fructose-1,6-bisphosphatase 
 
Derepression of genes involved in the utilisation of alternative carbon sources, such as alternative 
sugar transporters, could be considered as a strategy to both “sense” the presence of supplementary 
nutrients in the absence of the preferred hexoses, and to enable the capacity for their utilisation, in 
case they were present. Such a strategy would prepare a cell for an alternative lifestyle, although the 
gene products may not actually be involved in any metabolic activity if the relevant nutrients were not 
present. Of particular interest is fructose-1,6-bisphosphatase (FBP), and the FBP1 gene is under the 
control of Mig1 and glucose repression in S. cerevisiae [Klein et al. 1998]. However, its centrality to 
energy metabolism distinguishes it from other genes under glucose repression. If FBP is expressed and 
active, it might have a profound effect on central metabolism, whereas transporters and β-oxidation 
could be considered as peripheral to central metabolism and hence would have no effect if the 
relevant nutrients were not present. Hence, the up-regulation of the FBP1 gene might not be for the 
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same purpose as alternative transporters and peripheral pathways. The question arises whether there 
might be other reasons for its up-regulation in the absence of glucose, as is the case in S. cerevisiae. 
The potential roles of FBP are reviewed below. 
 
Fructose-1,6-bisphosphatase, gluconeogenesis and NADPH 
The phosphofructokinase (PFK) reaction of glycolysis is a highly irreversible reaction in vivo, therefore 
a bypass is required during gluconeogenesis, which must have a different chemistry to allow operation 
in the different direction [Voet and Voet 2011]. This reaction is catalysed by FBP and, accordingly, FBP 
activity is usually associated with gluconeogenesis. Previously, a microarray study of the 
transcriptomic response of a recombinant S. cerevisiae strain that could utilise xylose indicated a four-
fold increase in the FBP1 transcript levels in a xylose medium [Runquist et al. 2009]. The authors 
concluded that, due to the additional requirement for NAPDH for xylose utilisation, the oxidative 
pentose phosphate pathway flux had to increase, which would also require a reverse ‘gluconeogenic’ 
flux in upper glycolysis, requiring the FBP reaction. This latter hypothesis might be relevant also to K. 
marxianus when cultivated in a xylose medium, since additional NADPH is required for xylose 
utilisation by xylose reductase. However, the flux constraints and the interconnected nature of 
metabolism through several cofactors poses the question of whether the proposed purpose as an 
NADPH generating mechanism through some cyclic form of PPP flux is indeed possible.  
 
Fructose-1,6-bisphosphatase, ATP substrate cycles and cancer 
A simultaneous flux in both PFK and FBP would result in a substrate cycle that would hydrolyse and 
thus waste ATP. Thus it was assumed in early studies that the two enzymes functioned under separate 
conditions, especially since it was found that the allosteric activators of PFK, AMP and fructose-2,6-
bisphosphate, also inhibited FBP [Voet and Voet 2011]. These substrate cycles, termed ‘futile cycles’, 
were presumed to be avoided. It is, therefore, a logical assumption that gene regulation may also 
follow the same pattern by up-regulating FBP only during gluconeogenesis. Subsequently, however, it 
was found that both these reactions functioned simultaneously in at least mammalian muscle cells 
[Voet and Voet 2011, Newsholme et al. 1984]. It was also demonstrated that this substrate cycle 
actually had a regulatory purpose in the mammalian muscle cell working in a fermentative mode, 
rendering the net glycolytic flux highly responsive to a sudden decrease in ATP concentration during 
muscle contraction (Figure 4) [Voet and Voet 2011, Newsholme et al. 1984]. Adenylate kinase 
responds to a sudden increase in ADP via rapid equilibrium, increasing the level of AMP four-fold from 
its originally very low concentration during the dynamic response, which acts as a signal amplifier for 
a small decrease in ATP. AMP then stimulates PFK and inhibits FBP allosterically, thereby effectively 
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increasing the dynamic range of the response. Fermentative glycolytic flux in mammalian muscles can 
thus be regulated up to 89-fold from a resting state, during which the flux through FBP is significant 
and approaches that of PFK, to an active state in which the FBP flux is nine-fold lower and the PFK flux 
nine-fold higher than in the resting state. Such allosteric regulation does not require genetic 
regulation, but rather the proteins are constitutively expressed and associated with a short-term 
dynamic response.  
 

 
 

Figure 4. Fermentative metabolism in mammalian muscle cells. Adenylate kinase acts as a rapid equilibrium 
enzyme that transduces the increase in ADP after muscle contraction into an increase in AMP in a dynamic 
response, stimulating PFK and inhibiting FBP, resulting in a drastic increase in net glycolysis flux to restore 
homeostasis of ATP concentration.  (Diagram based on data from Voet and Voet [2011]).   
 
Another interesting example is found in the flight muscles of bumblebees, in which PFK and FBP are 
highly expressed and at similar activity, resulting in a highly active substrate cycle that may contribute 
to generate heat for take-off during low temperatures [Newsholme 1972]. This heating effect is 
termed “non-shivering thermogenesis” through substrate cycling which hydrolyses ATP.  
 
Very recently it was discovered that in every one of more than six hundred clear cell renal cell 
carcinoma tumours analysed in humans, a decrease in the expression of the FBP1 gene was evident 
[Li et al. 2014]. The dis-regulation of ATP homeostasis clearly may have a dramatic effect on overall 
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cellular physiology. Tumours, including clear cell renal cell carcinoma, display the Warburg effect in 
which rapid glycolytic flux occurs with concomitant lactate production [Crabtree 1929], strongly 
resembling the Crabtree effect in yeast.  
 
Avoidance of ATP production by uncoupling mechanisms 
Another type of non-shivering thermogenesis is present in mammals, including humans, in which 
brown fat (the brown colour originating from the many mitochondria) catabolises acetyl CoA from 
lipids to generate heat [Voet and Voet 2011]. As the TCA cycle produces NADH and electron transport 
pumps protons into the mitochondrial intermembrane space, the increasing electro-osmotic potential 
across the inner mitochondrial membrane would lead to excessive ATP production via proton 
channelling through F1F0 ATPase if it were not for the presence of a natural uncoupling mechanism. 
This function is performed through thermogenin (UCP1), a transmembrane channel for protons in the 
inner mitochondrial membrane that channels protons without generating ATP [Jarmuszkiewics 2001]. 
Uncoupling is under control of the hormones released by the thyroid gland. It is reasonable to believe 
that only animals would have such internal heating mechanisms, but even plants were found to 
possess uncoupling proteins such as the plant uncoupling mitochondrial protein (PUMP) in potatoes 
[Jarmuszkiewics 2001] and in fruits which undergo a respiratory burst in the ripening process [Jezek 
et al. 1998]. It was later discovered that as much as five uncoupling protein genes exist in mammals 
and that they are tissue-specific, and therefore could have various physiological roles [Luévano-
Martínez 2012]. In the amoeboid protozoan Acanthamoeba castellanii an elusive uncoupling activity 
was discovered that responded in the same manner as thermogenin to fatty acids and nucleotides, 
and was even up-regulated by cold stress [Jarmuszkiewicz 1999].  
 
These findings suggested that uncoupling proteins are conserved throughout the domains of life. In 
the yeast Yarrowia lipolytica a mitochondrial carrier for oxaloacetate and sulphate was found that 
resembled thermogenin in its proton transporting function [Luévano-Martínez 2010]. Some authors 
also reported proton translocation by metabolite transporters [Jarmuszkiewicz 2000]. However, to 
date no proteins have been isolated in yeasts that seem to function as general regulated uncoupling 
mechanisms similar to uncoupling proteins of mammals, a protein family that seems to be absent in 
the fungi [Luévano-Martínez 2010]. 
 
The P/O ratio (the number of moles of ATP produced per NADH molecule, or per half a molecule of 
O2) in most eukaryotes is about 2.5. Early estimates of the P/O ratio in S. cerevisiae grown on glucose 
gave a surprisingly low value of about 1.0 [Verduyn et al. 1990, Sheldon 1996]. This implied that more 
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than half of the potential energy was dissipated by some unknown mechanism. Later it was discovered 
that the theoretical or mechanistic P/O ratio of S. cerevisiae was only 1.5, since the NADH 
dehydrogenase Ndi1p does not translocate protons [Bakker et al. 2001, Famili et al. 2003]. Other 
yeasts have a theoretical P/O ratio closer to 2.5.  
 
In summary, FBP could potentially play a role in the NADPH balance, although flux constraints in the 
PPP and glycolysis might render this a mechanism to be condition specific. Further, simultaneous FBP 
and PFK activity could directly impact on the ATP balance. As such, it might serve as an ATP avoidance 
mechanism. In yeasts, which seemingly lack dedicated uncoupling proteins, this might be an 
alternative to the uncoupling proteins found in mammals and plants. The complex interplay between 
cofactor balances, energy generating pathways and the PPP is explored in Chapter 9, where the 
potential role of FBP is specifically explored in the simulation framework of FBA. Also in Chapter 9, a 
strategy for metabolic engineering of a future xylose fermenting strain of K. marxianus is developed. 
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Chapter 2 
 
A first draft genome for Kluyveromyces marxianus strain 
UFS-Y2791 
 
 
Abstract 
 
Next-generation sequencing of DNA has transformed the field of biotechnology into an information 
rich science. It is foreseeable that the initial steps in biotechnology projects involving the study or 
manipulation of metabolism in microorganisms should involve genome sequencing to serve as a 
blueprint for further downstream analyses. Using next-generation sequencing, a draft genome could 
rapidly be sequenced and assembled de novo at minimal cost, allowing a variety of genome-scale 
investigations of newly discovered species and other non-model species. Genome finishing, however, 
is more costly and time consuming. The question remains, however, whether a properly annotated 
draft genome would be sufficient for the purpose of genomics and systems biology. To this end, a 
draft genome of the yeast Kluyveromyces marxianus was assembled de novo and annotated. 
Metabolic pathway construction showed that 235 pathways could be constructed from this assembly, 
suggesting that this cost-effective protocol is also sufficiently rich in information content to serve as 
blueprint for genomics and systems biology. 
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Introduction 
 
At the time of commencement of this investigation, the only genomic information on Kluyveromyces 
marxianus was a draft genome, covering only approximately 20% of the genome, and was not publicly 
available. This level of completion was not sufficient for in-depth comparative genomics, construction 
of metabolic pathways or gene regulatory networks, or for read-mapping of RNA-seq data. The cost 
of next-generation sequencing (NGS) has dramatically decreased during the last few years, and 
efficient algorithms have become available for genome assembly and annotation. As first objective, a 
nearly complete draft genome for K. marxianus strain UFS-Y2791 was sequenced and assembled. This 
assembly may have been the first for the species at this level of completeness, although other draft 
genomes and even complete genomes for different strains were assembled and published soon 
afterwards [Jeong et al. 2012, Lertwattanassakul et al. 2015]. The focus in this investigation was rather 
a more in-depth analysis of the genome-wide gene regulatory programming of the species, as opposed 
to providing the first annotated genome. In this chapter, a brief description of the resulting draft 
genome and annotation is given.  
 
The de Bruijn graph approach to de novo genome assembly is performed by mapping identical or 
nearly identical words (k-mers) between NGS reads to construct a graph (network), and subsequently 
the graph is traversed to find the shortest path, corresponding to the assembled sequence [Compeau 
et al. 2011]. The k-mer length is an important parameter and needs to be optimised for the data to 
yield and optimal assembly. The N50 value is often used to estimate the quality of a de novo assembly. 
The Abyss assembler for short reads works on the de Bruijn graph principle [Simpson et al. 2009]. 
However, at the time of assembling the draft genome for K. marxianus UFS-Y2791, no automated 
optimisation algorithm was available. Part of the work was, therefore, to find the optimal assembly 
parameters. For this purpose, a convenient programme was coded in Python to facilitate optimisation 
of the procedure by viewing assembly statistics. One useful innovation was to annotate each assembly 
during the optimisation procedure as well, which gave insight into the value of each assembly as a 
basis for gene-based research. Although this initial draft genome contained many contigs, it provided 
a wealth of information and formed the basis for the RNA-seq read-mapping and method 
development presented in later chapters. Even the genome-scale gene regulatory network based on 
this draft genome compared well against that constructed from a complete genome of a different 
strain. This shows that the power of NGS could be utilised to rapidly gain deep insights into non-model 
organisms, for which there is not a large community, even when the genomic blueprint is only a draft 
genome that could be generated at a low cost. 
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Materials and Methods 
Strain cultivation and DNA extraction 
K. marxianus strain UFS-2791, obtained from the yeast culture collection of the University of the Free 
State, Bloemfontein, was grown in YPD medium consisting of 20 g.l-1 glucose, 20 g.l-1 peptone and 10 
g.l-1 yeast extract. Cells were cultivated in 500 ml aerobic shake flasks with a 50 ml working volume, 
at 180 rpm at 35oC, and harvested in mid-exponential phase, which was determined by growth studies 
to occur at an OD600 value of 0.8. Genomic DNA was extracted from the washed pellet using a kit from 
Qiagen DNeasy (Hilden, Germany) and according to the manufacturer’s instructions without 
modification. DNA in elution buffer was sent to the Onderstepoort Biotechnology Platform, Pretoria, 
South Africa for sequencing.  
 
DNA library preparation and sequencing 
 
Library preparation for DNA sequencing was performed by the Onderstepoort Biotechnology 
Platform, Pretoria, with the Nextera DNA Sample Preparation Kit from Illumina (San Diego, CA, USA) 
according to the manufacturer’s instructions. The Nextera kit both fragments the DNA and ligates 
adapters containing the barcodes used for de-multiplexing. Paired-end sequencing was performed on 
the Illumina HiScanSQ platform providing 2×100 bp reads to approximately 100 X coverage of the 10 
Mb genome.  
 
De novo assembly and annotation 
The data obtained from the Onderstepoort Biotechnology Platform were quality assessed using 
FastQC and trimmed using Trimmomatic [Bolger et al. 2014] in Galaxy [Afgan et al. 2015]. Initially, 
Illumina adapter dimers and Illumina adapter readthrough sequences were removed, followed by a 
sliding filter of four bases with a minimum average Phred score of 20. This resulted in 14 495 422 
paired-end reads that could be used in assembly. The Abyss program [Simpson et al. 2009], which uses 
distributed computer memory, was run on a high-performance cluster at the University of the Free 
state, South Africa. Assemblies were performed using a k-mer length from 15 to 63. Statistics of all 
assemblies were inspected using a programme developed in Python, which uses the rpy2 wrapper for 
calling R code, for the purpose of visualisation. The code was implemented with a graphical user 
interface using the Tkinter package for Python. N50, N70 and N90 values were calculated in Python 
3.0 and visualised. Each assembly was also annotated in terms of open reading frames (ORFs) using 
Augustus [Stanke et al. 2008]. After finding the optimal assembly, the ORFs were annotated separately 
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against the SwissProt and Trembl databases of UniProt, using only sequences from the fungal 
kingdom. The database search was performed on a local high-performance computing cluster. The 
threshold for a blastp match was set to 1E-10 (see Chapter 3). To increase the richness of the 
annotation to avoid near-perfect matches to uncharacterised database sequences of K. marxianus or 
other closely related species that were previously submitted to UniProt, a match against a SwissProt 
protein was taken over a match to a protein in Trembl, in which the vast majority of K. marxianus 
proteins are currently maintained, and have not been manually curated by UniProt.  
 
Results 
 
Agarose gel electrophoresis showed that the genomic DNA was mostly intact (Figure 1). NGS was 
performed to approximately 100-fold read depth of the genome, which was estimated at close to 11 
Mb. Figures 2 to 4 show the quality assessment of genomic NGS reads before trimming, showing 
outstanding read quality. The median Phred score per read was 38.  
 

 
Figure 1. A 5% agarose gel showing genomic DNA from K. marxianus UFS-Y2791 to be mostly intact. The 
GeneRuler™ DNA ladder mix was used, with the upper band representing 10 Kb. Genomic DNA is visible in lane 
3. 
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Figure 2. Box-and-whiskers plot of per base quality assessment of genomic NGS data before trimming, 
visualised using the FastQC tool. Orientation of reads is 5’-3’, as sequenced on the Illumina instrument.  
 

 
Figure 3. Box-and-whiskers plot of per base quality assessment of genomic NGS data after trimming using the 
Trimmomatic tool, and visualised using the FastQC tool, showing higher average base quality. Illumina 
adapters were removed, followed by a sliding filter of four bases (from the 3’ end), testing each read for a local 
minimum average Phred score of 20. The number of bases removed differs for each read. Orientation of reads 
is 5’-3’, as sequenced on the Illumina instrument.  
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Figure 4. Mean quality score per read before trimming, as obtained from the FastQC tool. Phred scores were 
calculated over the length of each read. The median Phred score was 38, with a similar mean value. 
 
Scripts were coded in Python to calculate the assembly statistics N50, N75 and N90. In addition, every 
assembly was annotated in terms of ORFs using Augustus. These, along with assembly statistics, were 
plotted by the script using the rpy2 wrapper to call algorithms in the R statistical language.  A graphical 
user interface (GUI) was also developed using the Tkinter toolkit for Python. The GUI is shown in Figure 
5. An optimal N50 value was found when using a k-mer length of 46 bp (Figure 6), while the longest 
contig was found when using a k-mer length of 48 bp (Figure 7). The number of contigs was lowest in 
with k-mer lengths between 34 and 50 bp (Figure 8). 
 
Plotting annotation statistics as a function of k-mer length (Figure 9) revealed and interesting pattern: 
the number of complete ORFs, defined as having both translation start START and STOP codons, 
showed a broad plateau when using k-mer lengths of from 33 to 59 bp. This result suggested that the 
final outcome in functional annotation space would be rather robust to the assembly parameters. 
Using a k-mer length that is too short (below 33) may result in incorrect assemblies, while too long a 
k-mer length may result in very low coverage, also resulting in a fragmented genome. In the Augustus 
annotation, 267 putative introns were found in total, occurring in 201 putative genes.  
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Figure 5. Graphical user interface for plotting assembly statistics using Abyss output. The programme was 
written in Python and the graphical user interface is based on the Tkinter package.  
 

 
Figure 6. N-value assembly statistics of the UFS-Y2791 draft genome as a function of the k-mer length used 
in the Abyss assembly. Black indicates the N50, red indicates the N75 and blue indicates the N90. The N50 
value of 21 063 was used as metric for choosing the best assembly, corresponding to a k-mer length of 46 bp. 
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Figure 7. The longest contig in a given assembly, as a function of the k-mer length used in the Abyss 
assembly. 

 
Figure 8. Number of contigs as a function of the k-mer length. The number of contigs reaches an inversed 
plateau using k-mer lengths of between 35 and 50 bp, in which the most optimal assembly was central. 
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Figure 9. Annotation statistics for various genome assemblies as a function of assembly k-mer length.  
 
Although the longest contig was found at a k-mer length of 48 bp, the best N50 value was chosen as 
the criterion for optimisation since it is commonly used. The optimal N50 value was 21 063 bp and 
found at a k-mer length of 46. The threshold length of a contig for submission to the WGS database of 
the NCBI is 200 bp. In this annotation, 13 genes were contained on contigs smaller than 200 bp. As 
might be expected, these were mostly putative membrane proteins known to have many internal 
repeats of hydrophobic alpha helices, which may be the reason for incomplete assembly using the de 
novo approach (Table 1). These ORFs would often be incomplete. Moreover, the upstream intergenic 
regions would, in most cases, be too short to extract meaningful regulatory features, therefore these 
contigs were removed from further analyses. The file uploaded to NCBI Genbank contained only 
contigs of at least 200 bp. This file was used to create mapping files between the contigs and gene 
features.  
 
During the submission of the sequence data to Genbank, an NCBI BioProject was registered, which is 
reserved for this strain. All subsequent molecular data for this strain will subsequently be linked to 
this BioProject (ID PRJNA316809), BioSample (ID SAMN04590183), Submission ID SUB1551262, 
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accession number LYPD00000000 and locus tag A4A45. All contig names were accordingly adapted 
with locus tags. Contig names start with the locus tag ‘A4A45’, followed by ‘_’, followed by a six-digit 
string ending with the number assigned by the assembly programme Abyss with zeros prepended. 
Previous contig names like ‘25’ were thus adapted to ‘A4A45_000025’. Eight contigs were found to be 
mitochondrial by the automated Genbank upload server and was annotated as such in the fasta file, 
before uploading the file a second time to Genbank (Table 2). The version of the draft genome 
described in the research article from Chapter 3 [Schabort et al. 2016] is version LYPD01000000. The 
length distribution of the 1 096 contigs is given in Figure 10.  
 
Table 1. Putative genes on contigs shorter than 200 bp that have been discarded.  

Reactomica 
ID 

UniProt ID Protein name Other names Gene systematic 
name 

g6.t1 P32478 Cell wall mannoprotein HSP150 (150 
kDa heat shock glycoprotein) 
(Covalently-linked cell wall protein 7) 
(Protein with internal repeats 2) 

HSP150 CCW7 
ORE1 PIR2 
YJL159W 
J0558 

HSP150 

g503.t1 Q02785 ATP-dependent permease PDR12 PDR12 
YPL058C 
LPE14C 

PDR12 

g1426.t1 W7A6M6 Uncharacterized protein C922_00460  
g2014.t1 P46587 Heat shock protein SSA2 SSA2 SSA1 

CaO19.1065 
CaO19.8667 

SSA2 

g2114.t1 P39004 High-affinity hexose transporter HXT6 HXT7 YDR342C 
D9651.11 

HXT7 

g2803.t1 A0A090BNY7 Flo11 super family KMAR_70233  
g2824.t1 P32901 Peptide transporter PTR2 (Peptide 

permease PTR2) 
PTR2 
YKR093W 
YKR413 

PTR2 

g3009.t1 P32478 Cell wall mannoprotein HSP150 (150 
kDa heat shock glycoprotein) 
(Covalently-linked cell wall protein 7) 
(Protein with internal repeats 2) 

HSP150 CCW7 
ORE1 PIR2 
YJL159W 
J0558 

HSP150 

g3173.t1 A0A090BDF9 Flocculation protein FLO9 KMAR_30001  
g3805.t1 P18631 Low-affinity glucose transporter 

(Hexose transporter 1) 
RAG1 KHT1 
KLLA0D13310g 

RAG1 
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g3832.t1 W0TD05 Cell wall mannoprotein HSP150 KLMA_50254  
g4000.t1 P09435 Heat shock protein SSA3 SSA3 YBL075C 

YBL06.07 
YBL0610 

SSA3 

g4780.t1 P49374 High-affinity glucose transporter HGT1 
KLLA0A11110g 

HGT1 

 
Table 2. Mitochondrial genes as annotated by the Genbank upload server.  

Sequence name Length Apparent source 
A4A45_000025 299 mitochondrion 
A4A45_001165 338 mitochondrion 
A4A45_001219 670 mitochondrion 
A4A45_001222 623 mitochondrion 
A4A45_001756 567 mitochondrion 
A4A45_002411 261 mitochondrion 
A4A45_002559 1585 mitochondrion 
A4A45_004867 279 mitochondrion 

 
 

 
Figure 10. Length distribution of 1 096 contigs (of at least 200 bp) for K. marxianus UFS-Y2791. The total length 
of this draft genome was 10 695 463 bp.  
 
The resulting 4953 protein encoding genes were subsequently functionally annotated on the Kegg-
Kaas server, resulting in enzyme EC numbers and GO terms (reported in Chapter 3). The pathways 
discovered by the Pathway Tools Pathologic algorithm are shown in Table 3 below. A total of 235 
pathways could be identified in this manner.  
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Table 3. A summary of pathways discovered in the draft genome of K. marxianus UFS-Y2791 using the 
PathoLogic algorithm of Pathway Tools. 

MetaCYC ID Pathway name number of genes discovered 
PWY-6126 adenosine nucleotides de novo biosynthesis 35 

TRNA-CHARGING-PWY tRNA charging pathway 34 
FERMENTATION-PWY mixed acid fermentation 21 

GLUCONEO-PWY gluconeogenesis I 17 
ANAGLYCOLYSIS-PWY glycolysis III 16 

GLYCOLYSIS glycolysis I 15 
PWY66-21 ethanol degradation II (cytosol) 15 
PWY-5690 TCA cycle variation III (eukaryotic) 15 
PWY-561 superpathway of glyoxylate cycle 14 

MANNOSYL-CHITO-DOLICHOL-BIOSYNTHESIS dolichyl-diphosphooligosaccharide biosynthesis 14 
ANARESP1-PWY respiration (anaerobic) 12 

PWY-6333 acetaldehyde biosynthesis I 11 
PWY-5486 pyruvate fermentation to ethanol II 11 
PWY-3841 folate transformations II (plants) 11 

ARGSYNBSUB-PWY arginine biosynthesis II (acetyl cycle) 10 
GLYOXYLATE-BYPASS glyoxylate cycle 10 

PWY-2201 folate transformations I 9 
PWY-5079 phenylalanine degradation III 8 

PWY66-162 ethanol degradation IV (peroxisomal) 7 
LYSINE-AMINOAD-PWY lysine biosynthesis IV 7 

PWY-2161 folate polyglutamylation 7 
PWY-5076 leucine degradation III 7 
PWY-5057 valine degradation II 7 

PWY3O-4108 tyrosine degradation III 7 
PWY-6168 flavin biosynthesis III (fungi) 7 
PWY4FS-8 phosphatidylglycerol biosynthesis II (non-plastidic) 7 
PWY-6352 3-phosphoinositide biosynthesis 7 

TRIGLSYN-PWY triacylglycerol biosynthesis 7 
HISTSYN-PWY histidine biosynthesis 6 

PWY-5751 phenylethanol biosynthesis 6 
PWY-5686 uridine-5'-phosphate biosynthesis 6 
PWY-5082 methionine degradation III 6 
PWY-5078 isoleucine degradation II 6 

DETOX1-PWY superoxide radicals degradation 6 
BRANCHED-CHAIN-AA-SYN-PWY superpathway of leucine, valine, and isoleucine biosynthesis 6 

PWY-3001 isoleucine biosynthesis I 6 
ILEUSYN-PWY isoleucine biosynthesis I (from threonine) 6 

PWY66-5 superpathway of cholesterol biosynthesis 6 
PWY-922 mevalonate pathway I 6 

PWY-5667 CDP-diacylglycerol biosynthesis I 6 
PWY0-166 pyrimidine deoxyribonucleotides de novo biosynthesis I 6 
PWY-5136 fatty acid β-oxidation II (core pathway) 5 
FAO-PWY fatty acid β-oxidation I 5 
PWY-6629 superpathway of tryptophan biosynthesis 5 

TRPSYN-PWY tryptophan biosynthesis 5 
PWY-5750 itaconate biosynthesis 5 

MALATE-ASPARTATE-SHUTTLE-PWY aspartate degradation II 5 
VALSYN-PWY valine biosynthesis 5 

PWY-6074 zymosterol biosynthesis 5 
PWY-6293 cysteine biosynthesis IV (fungi) 5 
PWY-821 superpathway of sulfur amino acid biosynthesis (Saccharomyces cerevisiae) 5 
PWY-801 homocysteine and cysteine interconversion 5 

GLUCOSE1PMETAB-PWY glucose and glucose-1-phosphate degradation 5 
PWY0-163 salvage pathways of pyrimidine ribonucleotides 5 
PWY-5083 NAD/NADH phosphorylation and dephosphorylation 5 



63  

PWY-6351 D-myo-inositol (1,4,5)-trisphosphate biosynthesis 5 
PYRUVDEHYD-PWY acetyl-CoA biosynthesis (from pyruvate) 5 

LEUSYN-PWY leucine biosynthesis 4 
ARO-PWY chorismate biosynthesis I 4 

NONOXIPENT-PWY pentose phosphate pathway (non-oxidative branch) 4 
PWY0-1182 trehalose degradation II (trehalase) 4 
PANTO-PWY phosphopantothenate biosynthesis I 4 
PWY-5938 R-acetoin biosynthesis I 4 
PWY0-662 PRPP biosynthesis I 4 
PWY-4041 γ-glutamyl cycle 4 
PWY-5920 heme biosynthesis II 4 

HEME-BIOSYNTHESIS-II heme biosynthesis from uroporphyrinogen-III I 4 
PWY-5767 glycogen degradation III 4 
PWY-5941 glycogen degradation II 4 
PWY-5659 GDP-mannose biosynthesis 4 
PWY-6277 superpathway of 5-aminoimidazole ribonucleotide biosynthesis 4 
PWY-6121 5-aminoimidazole ribonucleotide biosynthesis I 4 
PWY-6122 5-aminoimidazole ribonucleotide biosynthesis II 4 

PYRIDNUCSAL-PWY NAD salvage pathway I 4 
PWY-6357 phosphate utilization in cell wall regeneration 4 
PWY-6348 phosphate acquisition 4 
PWY-5189 tetrapyrrole biosynthesis II 4 

SPHINGOLIPID-SYN-PWY sphingolipid metabolism 4 
PENTOSE-P-PWY pentose phosphate pathway 4 

OXIDATIVEPENT-PWY pentose phosphate pathway (oxidative branch) 4 
PWY-6075 ergosterol biosynthesis 4 
PWY-3781 aerobic respiration -- electron donor II 4 
PWY-841 purine nucleotides de novo biosynthesis II 4 

PWY-6124 inosine-5'-phosphate biosynthesis II 4 
COA-PWY coenzyme A biosynthesis 4 

UDPNACETYLGALSYN-PWY UDP-N-acetyl-D-glucosamine biosynthesis II 4 
PWY-5760 β-alanine biosynthesis IV 3 
PWY-2724 fatty acid ω-oxidation   3 

VALDEG-PWY valine degradation I 3 
PWY-6317 galactose degradation I (Leloir pathway) 3 
PWY-4981 proline biosynthesis II (from arginine) 3 

TRESYN-PWY trehalose biosynthesis I 3 
SERSYN-PWY serine biosynthesis 3 

SER-GLYSYN-PWY superpathway of serine and glycine biosynthesis I 3 
GLYSYN-PWY glycine biosynthesis I 3 

PWY0-381 glycerol degradation I 3 
PLPSAL-PWY pyridoxal 5'-phosphate salvage pathway 3 
FOLSYN-PWY superpathway of tetrahydrofolate biosynthesis and salvage 3 

PWY-6613 tetrahydrofolate salvage from 5,10-methenyltetrahydrofolate 3 
ARG-PRO-PWY arginine degradation VI (arginase 2 pathway) 3 
GLYCLEAV-PWY glycine cleavage complex 3 

PWY-6164 3-dehydroquinate biosynthesis I 3 
PROSYN-PWY proline biosynthesis I 3 

PWY-5067 glycogen biosynthesis II (from UDP-D-Glucose) 3 
PWY-6614 tetrahydrofolate biosynthesis 3 
PWY-5669 phosphatidylethanolamine biosynthesis I 3 

ARGASEDEG-PWY arginine degradation I (arginase pathway) 3 
PWY-5344 homocysteine biosynthesis 3 

PWY3O-450 phosphatidylcholine biosynthesis I 3 
PWY-5041 S-adenosyl-L-methionine cycle II 3 

ARGDEG-V-PWY arginine degradation X (arginine monooxygenase pathway) 3 
PWY0-1507 biotin biosynthesis from 7-keto-8-aminopelargonate 3 
PWY-3561 choline biosynthesis III 3 
LIPAS-PWY triacylglycerol degradation 3 
PWY-5084 2-ketoglutarate dehydrogenase complex 3 
PWY-6129 dolichol and dolichyl phosphate biosynthesis 3 
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PWY-4061 glutathione-mediated detoxification 3 
LIPASYN-PWY phospholipases 3 

PWY-5123 trans, trans-farnesyl diphosphate biosynthesis 3 
PWY0-162 pyrimidine ribonucleotides de novobiosynthesis 3 
PWY-6628 superpathway of phenylalanine biosynthesis 3 
PWY-5687 pyrimidine ribonucleotides interconversion 3 

PHESYN phenylalanine biosynthesis I 3 
PWY-4261 glycerol degradation IV 2 
PWY-1722 formaldehyde oxidation V (tetrahydrofolate pathway) 2 

HOMOSER-THRESYN-PWY threonine biosynthesis from homoserine 2 
HOMOSERSYN-PWY homoserine biosynthesis 2 

PWY-2541 plant sterol biosynthesis 2 
PWY-5670 epoxysqualene biosynthesis 2 
PWY-6147 6-hydroxymethyl-dihydropterin diphosphate biosynthesis 2 
PWY-6118 glycerol-3-phosphate shuttle 2 

SO4ASSIM-PWY sulfate reduction I (assimilatory) 2 
PWY-5340 sulfate activation for sulfonation 2 
PWY-6392 meso-butanediol biosynthesis II 2 
PWY-6391 meso-butanediol biosynthesis I 2 
PWY-5951 (R,R)-butanediol biosynthesis 2 

PWY3O-246 (R,R)-butanediol degradation 2 
PWY-4441 DIMBOA-glucoside degradation 2 
PWY-5143 fatty acid activation 2 
PWY-5080 very long chain fatty acid biosynthesis 2 
PWY-6000 γ-linolenate biosynthesis II (animals) 2 

PWY0-1313 acetate conversion to acetyl-CoA 2 
PWY-6536 4-aminobutyrate degradation III 2 
PWY-6693 galactose degradation IV 2 
PWY-5194 siroheme biosynthesis 2 
PWY-5081 tryptophan degradation VIII (to tryptophol) 2 

ILEUDEG-PWY isoleucine degradation I 2 
PWY0-1296 purine ribonucleosides degradation to ribose-1-phosphate 2 

METHIONINE-DEG1-PWY methionine degradation I (to homocysteine) 2 
P21-PWY pentose phosphate pathway (partial) 2 

PWY-5691 urate degradation to allantoin 2 
PWY-5386 methylglyoxal degradation I 2 

PWY3DJ-11470 sphingosine and sphingosine-1-phosphate metabolism 2 
PWY-6151 S-adenosyl-L-methionine cycle I 2 

GLUTATHIONESYN-PWY glutathione biosynthesis 2 
PWY-5970 fatty acids biosynthesis (yeast) 2 
PWY-5122 geranyl diphosphate biosynthesis 2 
PWY0-501 lipoate biosynthesis and incorporation I 2 
PWY-6556 pyrimidine ribonucleosides degradation II 2 

THRESYN-PWY threonine biosynthesis 2 
ASPARTATESYN-PWY aspartate biosynthesis 2 
NAD-BIOSYNTHESIS-II NAD salvage pathway II 2 

PWY0-1264 biotin-carboxyl carrier protein assembly 2 
PWY4FS-6 phosphatidylethanolamine biosynthesis II 2 
PWY-5921 L-glutamine biosynthesis II (tRNA-dependent) 2 
PWY-6281 selenocysteine biosynthesis II (archaea and eukaryotes) 2 
PWY-4081 glutathione redox reactions I 2 

PWY3O-4106 NAD salvage pathway III 2 
PWY-5697 allantoin degradation to ureidoglycolate I (urea producing) 2 
PWY-5458 methylglyoxal degradation V 1 
PWY-5148 acyl-CoA hydrolysis 1 

GLYSYN-ALA-PWY glycine biosynthesis III 1 
PWY0-42 2-methylcitrate cycle I 1 

BGALACT-PWY lactose degradation III 1 
XYLCAT-PWY xylose degradation I 1 

PWY-4101 sorbitol degradation I 1 
PWY3O-19 ubiquinol-6 biosynthesis (eukaryotic) 1 
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PWY-5324 lysine degradation IX 1 
GLYSYN-THR-PWY glycine biosynthesis IV 1 

CITRULLINE-DEG-PWY citrulline degradation 1 
PWY-6330 acetaldehyde biosynthesis II 1 

GLUTAMATE-DEG1-PWY glutamate degradation I 1 
ASPARAGINE-DEG1-PWY asparagine degradation I 1 

ALLANTOINDEG-PWY superpathway of allantoin degradation in yeast 1 
PWY-5703 urea degradation I 1 

GLUTSYNIII-PWY glutamate biosynthesis III 1 
PWY-6619 adenine and adenosine salvage VI 1 

ASPARAGINE-BIOSYNTHESIS asparagine biosynthesis I 1 
ALANINE-SYN2-PWY alanine biosynthesis II 1 

LCYSDEG-PWY L-cysteine degradation II 1 
AMMASSIM-PWY superpathway of glutamate biosynthesis 1 

GLUTSYN-PWY glutamate biosynthesis I 1 
GLUGLNSYN-PWY glutamate biosynthesis IV 1 

GLUTAMINEFUM-PWY glutamine degradation II 1 
SAM-PWY S-adenosyl-L-methionine biosynthesis 1 

ERGOSTEROL-SYN-PWY superpathway of ergosterol biosynthesis 1 
PWY66-341 cholesterol biosynthesis I 1 

PWY66-3 cholesterol biosynthesis II (via 24,25-dihydrolanosterol) 1 
PWY66-4 cholesterol biosynthesis III (via desmosterol) 1 

PWY-6132 lanosterol biosynthesis 1 
PWY-6361 1D-myo-inositol hexakisphosphate biosynthesis I 1 

PWY-46 putrescine biosynthesis III 1 
THIOREDOX-PWY thioredoxin pathway 1 

PWY0-1021 alanine biosynthesis III 1 
PWY-5910 superpathway of geranylgeranyldiphosphate biosynthesis I (via mevalonate) 1 
PWY-5120 geranylgeranyldiphosphate biosynthesis 1 
PWY-5389 methylthiopropionate biosynthesis 1 
PWY-5350 thiosulfate disproportionation III (rhodanese) 1 

GLNSYN-PWY glutamine biosynthesis I 1 
PWY3O-210 glutamate degradation IX (via 4-aminobutyrate) 1 
PWY-6612 superpathway of tetrahydrofolate biosynthesis 1 
PWY-6358 superpathway of D-myo-inositol (1,4,5)-trisphosphate metabolism 1 

PWY0-1305 glutamate dependent acid resistance 1 
PWY-6364 D-myo-inositol (1,3,4)-trisphosphate biosynthesis 1 
PWY-6363 D-myo-inositol (1,4,5)-trisphosphate degradation 1 

SALVPURINE2-PWY xanthine and xanthosine salvage 1 
PWY-6605 adenine and adenosine salvage II 1 
P121-PWY adenine and adenosine salvage I 1 
PWY-5269 cardiolipin biosynthesis II 1 
PWY-6424 sitosterol biosynthesis 1 
PWY-5966 fatty acid biosynthesis initiation II 1 
PWY-5996 oleate biosynthesis II (animals) 1 
PWY-6012 acyl carrier protein metabolism 1 
PWY-6543 p-aminobenzoate biosynthesis 1 

GLUT-REDOX-PWY glutathione redox reactions II 1 
PWY-5870 ubiquinol-8 biosynthesis (eukaryotic) 1 

HEXPPSYN-PWY hexaprenyl diphosphate biosynthesis 1 
ARGSPECAT-PWY spermine biosynthesis 1 

BSUBPOLYAMSYN-PWY spermidine biosynthesis I 1 
PWY-5886 4-hydroxyphenylpyruvate biosynthesis 1 

GLUCONSUPER-PWY D-gluconate degradation 1 
PWY-6019 pseudouridine degradation 1 
PWY-6606 guanosine nucleotides degradation II 1 

ACETOACETATE-DEG-PWY acetoacetate degradation (to acetyl CoA) 1 
MANNCAT-PWY D-mannose degradation 1 

 



66  

Discussion 
 
NGS has become a cost-effective method of genome sequencing. Genome finishing is still more 
laborious and expensive, however. It is now necessary to explore the information content obtainable 
with only NGS and de novo assembly, for the purpose of projects studying a species for the first time. 
Most likely, the short read length of 100 bp obtained on the Illumina instrument was the reason for 
incomplete assembly. The fact that the genome is likely diploid might have been an additional cause 
of a rather low N50 value. Nevertheless, the outstanding read quality resulted in a functionally 
annotated draft genome that is ready for various bioinformatics and computational biology 
approaches to study the metabolism and gene regulation of this species. A total of 235 pathways could 
be assigned. For many of these pathways, large and possibly complete gene sets were assigned, 
including adenosine nucleotide de novo biosynthesis (35 genes), glycolysis (15 genes), TCA cycle 
variation III (15 genes) and fatty acid β-oxidation I (5 genes). For other pathways, only a few genes or 
even a single gene were mapped. The Pathologic algorithm [Karp et al. 2009] variably defines a 
pathway as either a complete set of reactions, or a uniquely identifying reaction or set of reactions, 
distinguishing a pathway from others, hence some pathways are represented by a single reaction and 
gene. Even with partial gene information, this nearly complete blueprint of the cellular machinery 
should be sufficient to enable the analysis of differential gene expression of metabolic pathways. In 
addition, gene set enrichment statistics [Ideker et al. 2002, Patil and Nielsen 2005] is potentially robust 
to missing data.  
 
Conclusions 
 
A first draft genome was assembled for K. marxianus UFS-Y2791 using de novo assembly. Pathway 
annotation resulted in 235 pathways, indicating that the cost and time effective protocol of NGS and 
de novo genome assembly could lead to a wealth of information in the context of systems biology. For 
non-model organisms such as K. marxianus, the goal of discovering differentially regulated pathways 
could thus be reached, even before the more time consuming and expensive process of genome 
finishing. Hence, the procedure should gain popularity with the increasing read length and cost 
effectivity of NGS. 
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Chapter 3 
 
Differential RNA-seq, multi-network analysis and metabolic 
regulation analysis of Kluyveromyces marxianus reveals a 
compartmentalised response to xylose 
 
 
 
This paper was published online in PLoS ONE on 17 June 2016. See supporting information online at  
doi:10.1371/journal.pone.0156242. 
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Abstract 
We investigated the transcriptomic response of a new strain of the yeast Kluyveromyces marxianus, in 
glucose and xylose media using RNA-seq. The data were explored in a number of innovative ways using a 
variety of networks types, pathway maps, enrichment statistics, reporter metabolites and a flux 
simulation model, revealing different aspects of the genome-scale response in an integrative systems 
biology manner. The importance of the subcellular localisation in the transcriptomic response is 
emphasised here, revealing new insights. As was previously reported by others using a rich medium, we 
show that peroxisomal fatty acid catabolism was dramatically up-regulated in a defined xylose mineral 
medium without fatty acids, along with mechanisms to activate fatty acids and transfer products of β-
oxidation to the mitochondria. Notably, we observed a strong up-regulation of the 2-methylcitrate 
pathway, supporting capacity for odd-chain fatty acid catabolism. Next we asked which pathways would 
respond to the additional requirement for NADPH for xylose utilisation, and rationalised the unexpected 
results using simulations with Flux Balance Analysis. On a fundamental level, we investigated the 
contribution of the hierarchical and metabolic regulation levels to the regulation of metabolic fluxes. 
Metabolic regulation analysis suggested that genetic level regulation plays a major role in regulating 
metabolic fluxes in adaptation to xylose, even for the high capacity reactions, which is unexpected. In 
addition, isozyme switching may play an important role in re-routing of metabolic fluxes in subcellular 
compartments in K. marxianus. 
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Introduction 
The yeast Kluyveromyces marxianus is emerging as a host for metabolic engineering and recombinant 
protein production, having a number of advantages over Saccharomyces cerevisiae. These characteristics 
include thermotolerance and the ability to utilise a wide variety of sugars, including the pentose xylose, 
that are abundant in lignocellulosic biomass. Moreover, it is probably the fastest growing eukaryote on 
Earth [1]. Previous studies of this yeast highlighted the large physiological variation among K. marxianus 
strains, in terms of their proneness to fermentation and ability to utilize various substrates, suggesting 
genetic diversity within the species [2]. Our strain UFS-Y2791 produces a significant amount of ethanol 
even under aerobic conditions, suggesting that this strain is not typically Crabtree negative. We recently 
assembled a draft genome of strain UFS-Y2791 from our University of the Free State MIRCEN yeast culture 
collection. The strain was originally isolated from juice prepared from the arid region succulent Agave 
americana.  To enable metabolic engineering of K. marxianus and other yeasts, it is important to 
understand genetic responses to environmental factors and different substrates. Such an understanding 
requires both advanced high-throughput omics methods as well as various integrative computational 
methods. Thus far, only two studies of genome-scale transcript levels in K. marxianus have been 
published. Work on strain DMKU 3-1042 suggested that the yeast up-regulated β-oxidation in the absence 
of glucose repression in a complex xylose medium due to the use of lipids as additional carbon source in 
the absence of glucose, implying possible utilization of the small amounts of lipids present in the rich 
medium [3]. A question that may also arise here is that in case lipids were indeed present in the rich 
medium, whether the response in the β-oxidation was due to glucose de-repression or due to stimulation 
by lipids. Another study focussed on the response of strain Y179 to anaerobic versus micro-aerobic 
conditions, as well as to the concentration of inulin in the medium. This study focussed on highlighting 
differential expression in various stress-response genes, those involved in autophagy, and a number of 
individual key enzymes. Both of these recent studies used a complex medium containing peptone and 
yeast extract [4]. 
 
Next-generation sequencing (NGS) has become a popular method not only for sequencing genomes but 
also for various other experiments [5,6]. RNA-seq is a method in which RNA transcripts are reverse-
transcribed and quantitatively sequenced [7]. This method can accurately quantify differential expression 
and the improved sensitivity and dynamic range, as well as the ability to elucidate splice variants, makes 
it superior to microarray technology. The combination of genome sequencing and RNA-seq of a new 
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species or strain is a powerful approach to rapidly gain both a blueprint (genome) and a response 
(transcriptome) to some perturbations [3] or when comparing different species [8]. Innovative methods 
are now needed to effectively use both the blueprint and the response in a concise manner that is 
attractive to scientists, since a massive amount of data is generated in a single experiment. It is a major 
challenge to investigate and represent omics results at the genome scale. Gene set enrichment using Gene 
Ontology (GO) is an established method for microarrays and is now becoming established for RNA-seq 
(reviewed in [9]). 
 
Analysis of metabolic pathways could be a sensible additional approach as it gives a sense of directionality 
to the response, and the scientist often associates a certain endpoint metabolite with a pathway, 
providing a means to simplify the understanding of the dataset. Painted renderings could be made of 
individual pathways, but often the number of pathways excludes a concise representation, and the 
integrated nature of metabolism is lost. Further, in metabolic pathways the interactions (reactions) consist 
of hypergraphs containing more than one substrate or product, complicating the rendering. Cellular 
overviews, as is available with software such as Pathway Tools, summarises metabolism into a single 
image [10]. However, the cellular overview method usually assumes a single master framework and 
inevitably ignores selected highly connected nodes. Cellular compartmentalisation is also often neglected 
in omics analysis due to the added complexity. 
 
An approach that is complementary to the pathway-based understanding of metabolism is that of the 
study of metabolite levels. Metabolomics, which entails the characterisation and quantification of small 
compounds in the cell, is still technologically demanding and labour intensive, however (reviewed in 
[11,12]). A new approach in systems biology is to derive compounds that are likely differentially expressed 
or extensively homeostatically regulated, from a differential transcriptomics dataset. These are the 
reporter metabolites [13] and the method could be generalised and applied in many scenarios such as 
described elsewhere [14]. 
 
Models of biochemical pathways have much potential to reveal new insights that are not obvious from 
the exploration of datasets. The understanding of complex biochemical datasets using computational 
models is called systems biology. Some flux modelling approaches such as Flux Balance Analysis (FBA) 
simulations could be done even at the genome scale [15,16], as was recently reported for K. lactis [17]. A 
long-standing fundamental question is how the flux through a metabolic pathway is regulated. Is the 
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change in a given flux achieved by changes in the concentrations of metabolites that affect that enzyme 
(metabolic level), or through changes in gene expression or post-translational modifications (hierarchical 
level)? By combining flux models with measured metabolite exchange fluxes, or through more complex 
13C-Metabolic Flux Analysis, estimation of fluxes at different physiological states can be very informative. 
Metabolic Regulation Analysis (MRA) combines differential expression levels with differential flux 
estimates to reveal for each flux the contribution of the metabolic and hierarchical levels of regulation 
[18]. 
 
Here we report on a detailed RNA-seq transcriptomics study to explore the response of K. marxianus UFS-
2791 to glucose and xylose in a chemically defined medium under aerobic conditions, including a number 
of different systemic analyses. Although a major potential future application of K. marxianus may be 
ethanol production from lignocellulosic biomass, which is an anaerobic or oxygen limited process where 
both glucose and xylose may be present, we chose to perform aerobic cultivations with glucose or xylose 
separately to remove any confounding effects. The strain also utilizes these sugars sequentially. The high 
cultivation temperature of 35oC was also chosen as this strain was determined to have a growth optimum 
close to 35oC. Our samples were also taken during mid-exponential phase to eliminate the effect of any 
possible ethanol stress that may occur later during the fermentation. To address the need for effective 
integrative exploration of omics data, including RNA-seq, and to combine these data with modelling and 
simulation, we developed the Reactomica software. We combined gene set enrichment of Gene Ontology 
(GO), reporter metabolites, metabolic pathway maps with a strong focus on subcellular 
compartmentalisation, and two new approaches of representation, namely pathway-to-pathway 
networks and reporter metabolite-enzyme networks. 
 
The aims were to first effectively explore the key features of the differential response to xylose in a 
defined medium under aerobic conditions and determine whether the peroxisomal lipid catabolic 
response previously observed [3] was limited to a rich medium. Subsequently, the central carbon 
metabolism was investigated in detail, separating the response into subcellular compartments. It is known 
that in most yeasts that are able to utilize xylose, the two-step conversion via NADPH dependent xylose 
reductase and the NAD+ dependent xylitol dehydrogenase is present and that the co-factor independent 
isomerase reaction is absent, as in K. marxianus [3]. Under aerobic conditions, the additional NADH 
produced by xylitol dehydrogenase is easily oxidised by the electron transport chain. However, the yeast 
would require additional NADPH for xylose reductase. We investigated which of the key NADPH producing 



73  

reactions would be up-regulated to support this proposed additional requirement for NADPH during 
xylose utilization. The somewhat unexpected results were rationalised by estimating fluxes in central 
metabolism for both conditions. Finally, MRA was used to answer the fundamental question of how 
changes in gene expression and in metabolite concentrations, respectively, contributed to the regulation 
of fluxes. 

Materials and methods 
Genome sequencing and annotation 
The genome of K. marxianus UFS-Y-2791 was sequenced on the Illumina HiScanSQ platform to 100-fold 
coverage at the Onderstepoort Biotechnology Platform, Pretoria, South Africa. Assembly was performed 
de novo using Abyss. Open reading frames were found by Augustus. Putative protein sequences were 
annotated using one of two methods. For annotation of enzymes (778 genes), creation of a pathway 
genome database (PGDB) and all subsequent analysis involving metabolic pathways, protein sequences 
were annotated against the Kegg-Kaas server with default settings on the server, resulting in a list of EC 
number annotations. Output was subsequently parsed and converted to input for the PathoLogic 
algorithm of Pathway Tools. For gene set enrichment using Gene Ontology (GO), sequences were 
additionally annotated against the UniProtKB database on a high-performance computing cluster, using 
BLASTP. An E-value cut-off of 1E-10 was used for gene set enrichment as was done by others [3]. An 
additional 73 genes with E-values between 1E-5 and 1E-10 were included in the list of annotated genes 
and flagged for further annotation. We preferred the rich manually curated SwissProt annotations over 
automated Trembl annotations, resulting in 68.3% of annotations from S. cerevisiae, 17.4% from K. lactis, 
3.2% and 2.8% from two strains of K. marxianus, and the rest from other species. The draft genome, 
predicted open reading frames, predicted protein sequences and functional annotations are made 
available in the Supplementary materials (S1 Draftgenome, S1 ORF, S1 Proteins, S1 Table). 
 
Strains and cultivation 
All chemicals and fermentation media used in cultivations were obtained from Sigma Aldrich, Seelze, 
Germany. K. marxianus UFS-Y2791 from our University of the Free State MIRCEN yeast culture collection 
was maintained on YPD agar slants at 4oC. Cultivation was carried out under aerobic conditions in 500 ml 
shake flasks with 30 ml working volume at 180 rpm. We chose the shake flask format to allow expensive 
13C-isotopic tracer studies which would be cost prohibitive in bioreactors. All cultivations were carried out 
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at 35 °C. The pre-inoculum was incubated in YPD medium for 8 h. The inoculum was prepared by dilution 
of the pre-inoculum to an OD690 of 0.05 in a chemically defined medium and grown at 35 °C for 16 h. The 
defined medium contained (g l-1): glucose or xylose, 5; (NH4)2SO4, 2.5; MgSO4·7H2O, 0.5; CaCl2·H2O, 0.03; 
NaCl, 0.1; citric acid, 0.25 and KH2PO4, 10. Filter-sterilised vitamins were added to the autoclaved medium 
at the following concentrations (mg l-1): biotin, 0.025; calcium pantothenate, 0.5; nicotinic acid, 0.5; p-
aminobenzoic acid, 0.1; pyridoxine HCl, 0.5; thiamine HCl, 0.5 and myo-inositol, 12.5. Trace elements were 
added according to du Preez and van der Walt [19]. The pH of the medium was adjusted to 5.5. Glucose 
and xylose were quantified using HPLC. Acetate, ethanol and glycerol were the only fermentation 
metabolites secreted in significant amounts and were quantified using HPLC. All samples were taken 
before an OD600 of 0.8 was reached. 
 
RNA-seq data generation 
Cells from duplicate cultivations were harvested in mid-exponential phase at an OD690 of 0.8 by 
centrifugation at 1 000 × g at 4 °C for 5 min. RNA extraction was carried out according to the RNeasy yeast 
RNA kit (Qiagen) protocol, including a DNAase step. Ribosomal RNA was removed by the Ribo-Zero rRNA 
Removal Kit (Illumina) and remaining RNA was sequenced at the Onderstepoort Biotechnology platform 
in Pretoria, South Africa. Paired-end reads were generated using Illumina HiSeq Next Generation 
Sequencing. For each of duplicate samples, 3.75 million trimmed paired-end reads were mapped to the 
UFS-Y2791 genome. Processing of sequencing data was carried out in Galaxy. Reads were trimmed using 
Trimmomatic [20] and mapped to the genome using TopHat, while CuffDiff [20] was used to test for 
differential expression. CuffDiff reports p-values as the statistical significance and well as the q-value, 
which is the p-value after accounting for multiple comparisons [21]. Genes were only considered to be 
significantly differentially expressed when q-values were below 0.05. 
 
Gene set enrichment and reporter metabolites 
For gene set enrichment and all other network constructions and renderings, programs were developed 
as part of a new software suite for integrative systems biology that we call Reactomica, implemented in 
the Wolfram Mathematica language. Gene set enrichment scores for GO terms and pathways were 
calculated similar to that described by Ideker [22] as follows: GO ontologies goslim_yeast.obo and go-
basic.obo.txt.m were obtained from the Gene Ontology database [23]. The ontologies were converted to 
graphs using the ‘is_a’ child-parent mappings. For obtaining the gene set, a depth-first scan was 
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performed from each GO term and all additional GO terms found from the node of interest were collected 
to ensure that highly specialised terms would find utility in GO_slim. Mappings from the annotated genes 
to the GO-terms in the GO ‘biological_process’, ‘molecular_function’ and ‘cellular_component’ attributes 
of a UniProt entry were used to map from GO terms to genes. Significance q-values could be converted to 
Z-scores as the negative of the inverse cumulative distribution function and then summed over all genes 
in the gene set to give the representative statistic for a group of genes as the total Z-score [22]. Random 
gene sets were generated with bootstrapping (1000 iterations) and total Z-scores calculated. The mean 
and standard deviation at a variety of gene set sizes were calculated and used to calculate the enrichment 
score S: 

S = ୞(୲୭୲ୟ୪,୘ୣୱ୲)ି୑ୣ (୞,୆ୟୡ୩୥୰୭୳୬ୢ)
ୗ୲ୟ୬ୢୟ୰ୢ ୢୣ୴୧ୟ୲୧୭୬(୞,୆ୟୡ୩୥୰୭୳୬ୢ)    (1) 

For pathway gene set analysis, MetaCyc pathways were used from the BioCyc pathway genome database 
constructed for this strain using Pathway Tools, which is based on the MetaCyc database. Reporter 
metabolite enrichment scores were calculated in the same manner as described above and according to 
Patil and Nielsen [13]. For reporter metabolites, the background mean and standard deviation of random 
genes sets were rather generated by sampling enzyme-encoding genes only, as opposed to the complete 
gene set, since a large fraction of the differentially expressed genes were metabolic, generating a higher 
random background enrichment. 
 
Pathway maps 
To explore the metabolic response, metabolic pathway maps were created from MetaCyc pathways and 
RNA-seq data were mapped using various colouring schemes with Reactomica, harnessing automated 
hypergraph map layout and manual override. The initial linkage between genes and reactions were made 
by the Pathway Tools algorithm PathoLogic, with genomic annotations from the Kegg-Kaas annotation 
server. For the Log2(fold change) colouring scheme, in the case of more than one enzyme that could 
perform the same function, the largest fold change in expression was used for the colour rendering. 
Additional gene-reaction linkages were made from a UniProt BLASTP annotation. Subsequent 
compartmentalisation made use of the GO ‘cellular_component’ ontology terms. For purpose, a mapping 
was built into Reactomica that maps GO ‘cellular_component’ ontology terms to subscellular 
compartments. 
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Pathway-to-pathway networks 
Pathways were clustered by the number of metabolites in common to generate a scoring matrix. The 
number of metabolites in common was normalised by the smaller of the two metabolite sets of a pathway 
and a threshold was selected for including a mapping that resulted in optimal rendering. Orphaned 
pathways were clustered together. 
 
Molecular networks 
Molecules were clustered by the simple similarity criterion of string matching of SMILES strings of each 
compound in the PGDB using the edit distance. Only the closest match was included as a mapping. The 
method is similar to that done by Barupal et al. [24]. 
 
Reporter metabolite-enzyme networks 
The metabolic network was converted from a hypergraph into a graph in which only the interactions 
between differentially expressed enzyme genes and enriched reported metabolites were retained. 
 
Differential Flux Analysis 
The aim was to approximate the fluxes on glucose and xylose, sufficient for approximation of MRA values. 
FBA was used which included optimisation of biomass formation, and measured specific sugar 
consumption rate and specific ethanol, acetate and were included to constrain the flux solution. The 
model was constructed in Reactomica using reactions from MetaCyc for which representative genes were 
found in the genome annotation of K. marxianus UFS-Y2791. Some additional reactions were defined such 
as the combined electron transport and oxidative phosphorylation reaction. The biomass reaction was 
adapted from Fischer et al. [25]. The flux model and parameters is provided in S5 Table. FBA was 
implemented in Reactomica and the method of FBA was reviewed elsewhere [15]. FBA uses linear 
optimisation, maximising the biomass formation reaction, constrained by the reaction stoichiometry, 
reversibility constraints, uptake rate of nutrients (glucose or xylose) and production rates (ethanol and 
acetate). 
 
Metabolic Regulation Analysis 
The metabolic regulation of a flux can be separated into a metabolic component ρm and a hierarchical 
component ρh. The two levels of regulation are combined in the relation below [18]. 
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1 = ρh +  ρm         (2) 
 
The metabolic component ρm models the contribution to regulation that changes in metabolite 
concentrations make and is described by 

ρm = ෍ ௗ ௟௡(௩)
ௗ ௟௡(௑) . ௗ ௟௡(௑)

ௗ ௟௡(௃)
 
௑     (3) 

 
where J is the flux though that enzyme, modelled by the rate equation v, and affected by changes in the 
concentration of metabolite X. The hierarchical component ρh models the effect of changes in maximal 
activity of the enzyme, which is usually linearly dependent on the enzyme concentration e and described 
by 

ρh = ௗ ௟௡(௘)
ௗ ௟௡(௃)      (4) 

 
The hierarchical component could thus be experimentally determined by measuring a difference in 
maximal enzyme activity. By using equation (2) and substituting with the experimentally determined ρh, 
ρm could also be calculated. Though maximal activity is affected not only by the protein concentration 
and post-translational modifications, it is reasonable and practical to use changes in transcript levels 
obtained from RNA-seq instead of maximal activities or protein levels for an estimated MRA. For MRA, 
gene expression changes were considered significant if at least one gene (among paralogs) was considered 
significant from q-values. Transcript fold changes were calculated from total transcript abundances for all 
genes mapping to a reaction, in case of isozymes resulting from paralogs or multi-functional proteins. In 
this manner, the method is robust to potential errors in annotation of paralogs since central metabolic 
genes are known to have on average higher transcript abundance in comparison with the vast majority of 
other genes. The fold changes of individual minor isozymes with very low expression levels also cannot 
dominate the analysis. 
 
Results 
In glucose medium, respiro-fermentative growth was observed, even though fully aerobic conditions were 
ensured by the small working volume in a large flask, vigorous shaking, and sampling at low OD600 values, 
with ethanol, glycerol and acetate as fermentation products. In xylose medium, fermentation products 
were absent, with an apparently purely respiratory metabolism. The maximum specific growth rate in 
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glucose medium was approximately 0.8 h-1, while the maximum specific growth rate in xylose medium 
was approximately 0.35 h-1. All graphs and other renderings were generated using a new software suite 
for bioinformatics and integrated systems biology, termed Reactomica, which was developed in-house. 
Interactive datasets are provided in Computable Document Format (.CDF) as supplementary materials 
and are viewable using the free Wolfram CDF player, which can be downloaded from the Wolfram website 
[26], or by using Mathematica. High quality differential RNA-seq datasets were generated on the Illumina 
HiSeq platform to a high read depth. Figs 1 and 2 show the distribution of the data. Throughout, “up-
regulated” refers to genes statistically up-regulated in a xylose medium compared to the condition with 
glucose as the carbon source, with a q-value below 0.05, as reported by CuffDiff (see ‘Materials and 
methods’). Out of the total of 4 953 putative genes analysed, 329 were up-regulated and 251 down-
regulated. Supplementary file S1 Table provides all expression values, differential expression statistics and 
UniProt annotations of all genes. 
 
 

 
Figure 1. Volcano plot of RNA-seq data. FC: fold change. –q: the corrected p- values after taking multiple 
comparisons into account, as performed by CuffDiff. Red: up-regulated on xylose. Blue: down-regulated on xylose. 
Black: constitutively expressed. Statistical procedures were performed in CuffDiff. 
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Figure 2. Histogram of RNA-seq log2(fold change) values. Statistical procedures were performed in CuffDiff. 
 
The role of rich medium versus defined medium in the xylose response 
 
We compared results from reference [3], which reported 36 genes in strain DMKU 3-1042 that were up-
regulated only in the aerobic xylose-containing rich medium and not in any of the other three conditions 
tested (see S1 Table) (we refer to this gene set as the xylose-present/glucose absent unique gene set). 
Differential expression of 13 genes were correlated with the reference data (up-regulated in UFS-2791) 
and should be specific to the xylose response (or the absence of glucose), independent from the 
background medium, and present across strains. Notably, POT1, POX1 and FOX2 of peroxisomal β-
oxidation were dramatically up-regulated in both datasets. Carnitine O-acetyltransferase (CAT2), 
associated with inter-compartmental transport of fatty acids, was also strongly up-regulated in both sets, 
supporting increased capacity for lipid catabolism (see a detailed discussion later). ICL2 and CIT3 of the 2-
methylcitrate cycle was also strongly up-regulated in both experiments (see a detailed discussion later). 
Aldehyde dehydrogenase (ALD4), glucokinase 1 (GLK1) and dicarboxylic amino acid permease (DIP5) are 
the other enzymes functioning in central metabolism. Two regulatory proteins Ty transcription activator 
(TEC1) and the G2/mitotic-specific cyclin-4 (CLB4) were also among these. The rest of the genes in this list 
are not well-characterised. These include stationary phase protein 4 (SPG4), putative metabolite transport 
protein ywtG and uncharacterized membrane protein YMR155W. 
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Thirteen genes were uncorrelated with the reference data (constitutive in UFS-2791) (YPR011C, HSP12, 
YHL008C, POP6, NCE103, YLL032C, NCS2, GAS1, TOS1, PDR5, MYO1, EIS1, YDR134C) and are thus specific 
to either the strain or the rich medium. Most of these are uncharacterised proteins. 
 
Finally, two genes were anti-correlated with the reference data (down-regulated in UFS-2791). These are 
the ammonia transport outward protein 3 (ATO3) and dihydroxyacetone kinase 1 (DAK1). The exact 
functions of ATO1, ATO2 and ATO3 are not currently known, apart from their possible involvement in 
mitochondrial retrograde signalling and ammonia production during starvation. It seems that ATO3 
requires rich medium containing amino acids to be up-regulated, as was also observed in S. cerevisiae [27, 
28]. In summary, several genes were highlighted as up-regulated both in our data and the xylose-
present/glucose absent unique gene set from reference [3], in particular, the peroxisomal beta-oxidation 
and the supporting fatty acyl transporters. The roles of a number of other genes are unclear from this 
preliminary analysis, however. 
 
Gene Ontology 
A total of 1 611 GO terms were included in the UniProt annotations of all proteins in the genome (see 
Materials and methods). To obtain an initial overview, the concise ‘GO_slim’ yeast from the Gene 
Ontology Consortium was used. GO term enrichment was performed separately for ‘cellular_component’, 
‘molecular_function’ and ‘biological_process’ components of ‘GO_slim’ and the enrichment scores were 
used to render maps (see ‘Materials and methods’).  There is currently no generally accepted cutoff for 
interpreting significance of an enrichment value [14]. For the ‘cellular_component’ ontology, assuming a 
score cut-off at 1.64 (p = 0.05), five terms were considered to be significantly enriched (Fig 3 and S2 Table). 
These are ‘extracellular region’, ‘peroxisome’, ‘plasma membrane’, ‘membrane’, ‘mitochondrion’ and ‘cell 
wall’. ‘Plasma membrane’ is a subset of ‘membrane’ in the GO-slim ontology. It is striking that the 
peroxisomal genes were up-regulated (14 out of 32 genes) and only one down-regulated. The 
‘extracellular region’ exhibited mostly up-regulation (22 out of 80 genes) with seven down-regulated 
genes. Of the 269 plasma membrane genes, 31 were up-regulated and 22 were down-regulated. In the 
mitochondrion the number of up and down-regulated genes were approximately equal (29 and 23, 
respectively out of 308 genes). The cell wall genes showed also mostly up-regulation, with 17 out of 80 
genes up-regulated and four down-regulated. 
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Figure 3. Gene set enrichment map of RNA-seq data using the ‘GO_slim’ yeast ‘cellular_component’ ontology. Size 
indicates the enrichment score of a gene set. Colour indicates the up/down direction of regulation: Red, up; blue, 
down. Brightness rises with the fraction of genes that are regulated in the dominant direction (up or down). Only 
nodes larger or equal than ‘cell wall’ are significant. 
 
In the ‘molecular_function’ ontology, only three terms are regarded as significant. ‘Oxidoreductase 
activity’, ‘kinase activity’ and ‘peptidase activity’ (Fig 4 and S3 Table). ‘Oxidoreductase activity’ is the most 
highly enriched term in the ‘GO_slim’ gene sets (enrichment score = 4.49) and also in the complete GO 
enrichment (score = 13.2). It is notable that the redox balance, which is regulated by oxidoreductases, is 
one of the key considerations in the ability to utilize pentoses by yeasts, as it usually involves a 
requirement for NADPH and the additional generation of NADH, as should also be the case with K. 
marxianus since it does not possess a xylose isomerase. 
 
The ‘biological_process’ ontology is rich in providing a framework for exploring the regulation of cellular 
processes in response to different carbon sources. The ‘carbohydrate transport’ gene set was the most 
significantly altered, with 21 out of 65 transporter genes up-regulated and 7 down-regulated (Fig 5 and 
S4 Table). The ‘transmembrane transport’ gene set displayed a more equal up vs down-regulation, 
whereas ‘peroxisomal organization’ genes had exclusively up-regulated genes. The latter feature is shared 
with the ‘peroxisome’ gene set in the ‘cellular_component’ ontology, indicative of a general up-regulation 
of peroxisomal components and activities. 
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Figure 4. Gene set enrichment map of RNA-seq data using the ‘GO_slim’ yeast ‘molecular_function’ ontology. Size 
indicates the enrichment score of a gene set. Colour indicates the up/down direction of regulation: Red, up; blue, 
down. Brightness rises with the fraction of genes that are regulated in the dominant direction (up or down). Only 
nodes larger or equal than ‘peptidase activity’ are significant. 
 
The ‘amino acid transport’ gene set also indicated differential expression. The gene set of ‘ion transport’ 
was also enriched, but is closely related to ‘amino acid transport’. Also significant is ‘carbohydrate 
metabolic process’, which is better interpreted in terms of metabolic pathways. Although ‘histone 
modification’ and ‘proteolysis involved in cellular protein catabolic process’ both have significant scores, 
they only have one and four genes, respectively, in the gene sets,  and they were therefore not interpreted 
for further investigation. 
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 Figure 5. Gene set enrichment map of RNA-seq data using the ‘GO_slim’ yeast ‘biological_process’ ontology. Size 
indicates the enrichment score of a gene set. Colour indicates the up/down direction of regulation: Red, up; blue, 
down. Brightness rises with the fraction of genes that are regulated in the dominant direction (up or down). Only 
nodes larger or equal than ‘proteolysis involved in cellular protein catabolic process’ are significant. 
 
In summary, peroxisomal organisation and metabolism were clearly and strongly up-regulated on xylose, 
consistent with a previous observation [3] that at least fatty acid β-oxidation was up-regulated in a 
complex medium that likely contained small amounts of lipids, which were absent in the present study 
where a chemically defined medium was used. Secondly, a strong effect was seen on carbohydrate 
transporters, which was consistent with the experimental setting. Some of these differentially expressed 
putative sugar transporter genes, such as the various HGT1 homologs of K. lactis, were up-regulated as 
high as 1242-fold (see S4 Table). Some of these may encode for xylose transporters. As sugar transporters 



84  

are highly similar, additional annotation of this group is required before more conclusions regarding sugar 
transport may be drawn. Thirdly, the extracellular region was affected. These are proteins that are 
secreted into the medium, such as lytic enzymes or receptors that sense a new environment, as well as 
the mating genes. Some of these gene sets are explored in more detail in the supplementary text S1 Text. 
 
It is interesting to note that although many genes in the mitochondrion were differentially regulated, 
these genes are not the main enzymes of the TCA cycle, electron transport or oxidative phosphorylation. 
Thus, there is no response suggesting adaptation to a change in the internal energy charge. As the 
maximum specific growth rate in xylose medium was less than half of that in glucose medium, whereas 
the cell sizes were comparable, one might expect differential regulation of cell cycle progression genes, 
or even biomass formation-specific genes like those encoding for ribosomal proteins. There was a notable 
absence of such gene sets in the enrichment analysis. This is also reasonable since cell cycle control 
signalling proteins are mostly kinases, which are controlled by post-translational modifications. Most 
genetic responses observed in the data thus deal with utilisation of alternative substrates. Further, there 
was only a weak response in the oxidative stress genes, as was expected from aerobic cultivation. From 
the genes annotated with ‘response to oxidative stress’ (PRDX5, CTT1, CCP1, YFH1, DCS1, HMX1, SVF1, 
YDR222W), only peroxiredoxin-5 (PRDX5, mitochondrion, cytoplasm, peroxisome, 3.9-fold up-regulated) 
and catalase T (CTT1, cytoplasm, 2.4-fold up-regulated) were moderately differentially regulated, 
resulting in an enrichment score of 1.19, which was insignificant against the background enrichment. 
 
The data indicated several interesting aspects regarding sugar utilisation, including up-regulation of 
pathways for utilisation of galactose, xylose and arabinose (see S5). Several enzymes with β-glucosidase 
activity were found in the annotation (see S1 Text), whereas only one enzyme was both extracellular and 
significantly up-regulated (48.8-fold), namely cellobiase (EC 3.2.1.21). Cellobiase is not a typical cellulase 
that can depolymerise cellulose, as it functions to hydrolyse the disaccharide cellobiose. K. marxianus UFS-
Y2791 also does not possess typical secreted xylanases, proteases, peptidases or lipases, which would 
allow a microorganism to thrive on plant matter or even attack a live plant. Instead, the strain possesses 
the inulinase gene INU1 which hydrolyses the fructan inulin or the disaccharide sucrose. The INU1 gene 
was dramatically up-regulated 91-fold and abundantly expressed in xylose medium. 
 
The pheromone signalling system involved in sexual reproduction, as well as several other genes involved 
in the conjugation process as well as in invasive growth, were also up-regulated (see ‘extracellular region’ 
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in S2 Table). In the presence of xylose (or absence of glucose) there is thus a response to physiologically 
adapt to an invasive lifestyle and utilise other sources of nutrients (xylose, arabinose, inulin, cellobiose 
and amino acids), as would be found in the natural plant environment. A long-term survival strategy 
(sexual reproduction) is also activated in the more nutrient-poor condition. 
 
Most metabolic pathways for amino acid synthesis were down-regulated, as was expected at the lower 
growth rate; µmax values of 0.8 and 0.35 were recorded on glucose and xylose, respectively. The well-
known importers of ammonia were constitutive (MEP3) or down-regulated (MEP2, 2.8-fold). 
 
Global metabolic response elucidated by pathway-to-pathway networks 
To capture the global metabolic response to growth on xylose in a single view, an innovative pathway-to-
pathway network was constructed by clustering pathways together by their common metabolites (Fig 6, 
S1 Network and S1 Table). The wide down-regulatory profile of amino acid metabolic pathways is visible, 
where all amino acid biosynthetic pathways were shut down, with only glycine biosynthesis III having 
some element of up-regulation. Similarly, most amino acid catabolic pathways were shut down with only 
glutamate, valine, tyrosine, phenylalanine, tryptophan and methionine degradation III having some up-
regulated genes.  
 
Fatty acid oxidation, peroxisomal ethanol degradation and mixed acid fermentation, which cluster 
together, were mostly up-regulated. Close by in the network is glycolysis, which was down-regulated. A 
moderately increased capacity in the glycerol-3-phosphate shuttle was evident here, with the 
mitochondrial glycerol-3-phosphate dehydrogenase GUT2 gene 4.4-fold up-regulated. Note that the up-
regulated glycerol-3-phosphate shuttle functions independently from down-regulated glycerol 
production. 
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Figure 6. Gene set enrichment map of RNA-seq data using the pathway-to-pathway network. Size indicates the 
enrichment score of the gene set representing each pathway. Colour indicates the up/down direction of regulation: 
Red, up; blue, down. Brightness indicates uni-directionality of regulation. The ‘Self’ cluster on bottom-left includes 
pathways not mapped to other pathways since their intersections scores were below a threshold. 
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Reporter metabolites 
Reporter metabolite enrichment was performed to reveal those metabolites around which significant 
differential expression of enzymes took place. These compounds could be interpreted as those from which 
there was (a) a marked change in capacity for their utilisation or production between conditions, (b) to 
have required a significant degree of regulation by their neighbouring enzymes to establish homeostasis 
in the different environment, or (c) to have a different concentration predicted between conditions where 
it may be a candidate as a signalling molecule. The top eight reporter metabolites of highest enrichment 
were 3-phosphoglycerate, acetaldehyde, NADH, glyceraldehyde-3-phosphate, β-alanine, NAD+, glycerate 
and ethanol, in this order (S1 Table). NADH, NAD+, acetaldehyde and ethanol are involved in redox 
metabolism and thus support the high gene set enrichment score of the GO term ‘oxidoreductase activity’ 
(GO:0016491). It was interesting to note that the enrichment score of ATP was among the lowest against 
the background and considered insignificant. Also, glutathione and its reduced form, which are known to 
be involved in redox metabolism, were not significantly enriched, suggesting no severe oxidative stress. 
Oxidative stress in K. marxianus is seemingly more important under oxygen limiting conditions, as 
imposed by static and high-temperature conditions [3]. 
 
Molecular networks 
To determine whether the reporter metabolites represented any distinct molecular structural groups, a 
molecular network of the reporter metabolites was reconstructed using a simple molecular structure 
similarity matching protocol. This approach could identify some co-regulated groups of structurally 
related molecules that were not evident from pathways-based analyses. Fig 7 shows a number of clusters 
of enriched reporter metabolites grouped by their molecular structures (see interactive file S2 Network 
for molecular structures and annotations). Groupings of CoA-conjugates, long-chain and short-chain fatty 
acids are representative of increased catabolic activity of β-oxidation and activation steps. Up-regulated 
sugar clusters corresponded to those found in reporter metabolite-enzyme networks, but were 
represented in a clearer fashion. Noteworthy is that effectors of trehalose containing sugars and sugar 
lipids were down-regulated. The three-carbon molecules in central carbon metabolism, which are close 
together in the network including 3-phosphoglycerate, 2-phosphoglycerate, glyceraldehyde-3-phosphate 
and glyceraldehyde, were strongly enriched and their effectors down-regulated. This mapping is useful as 
a concise representation of potentially all metabolites in a cell, grouped by their structures. The method 
would especially be useful for visualising metabolomics datasets of which the link to reactions and 
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pathways is not yet clear. A better separation of clusters is obtained in mapping larger metabolites as 
found in secondary metabolism. 
 

 
Figure 7. A molecular network of all reporter metabolites enriched at or above enrichment score >=1.64 (p = 0.05). 
Mapping between compounds was performed with a local string matching procedure based on the SMILES string of 
each compound. Scores were normalised to the string size for the longest of the two molecules in a pairwise 
comparison. Edge weights represent normalised similarity scores. The “Self” node maps all compounds with an 
insufficient normalised similarity score to other compounds (<0.4).  Size indicates the enrichment score of a gene 
set. Colour indicates the up/down direction of regulation: Red, up; blue, down. Brightness indicates uni-directionality 
of regulation. 
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Key enzymes that may affect metabolite pools 
Combining both the reporter metabolites and the enzymes by which they are regulated into an enzyme-
reporter metabolite network, effectively reveals the hotspots of metabolic regulation as well as the key 
players in regulation. Including all interactions with enriched compounds (enrichment score > 1.64, q < 
0.05) was not feasible for a detailed investigation (1352 interactions). Instead, we extracted the 
interactions containing nodes with enrichment scores above 3.0 (Fig 8, see interactive file S3 Network). 

 
Figure 8. Reporter metabolite-enzyme network, capturing enriched reporter metabolites and the enzymes that 
affect them. Only reporter metabolites with enrichment values above 3.0 were included and only the differentially 
expressed genes from RNA-seq with q-values (corrected p-values) below 0.05. For reporter metabolites (circles), size 
indicates the enrichment score of a gene set and colour indicates the up/down direction of regulation. Brightness 
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indicates uni-directionality of regulation. For enzymes (stars), colour indicates the up/down direction of regulation 
based on the log2(fold change) scheme. Reporter metabolite enrichment values are represented in S1 Table. For full 
information on gene names, the interactive file S3 Network or the corresponding annotations in S1 Table, using the 
“Gene names (primary)” column, may be consulted. 
 
A major network is evident in which NAD+/NADH, oxygen and the aldehyde dehydrogenase have a strong 
involvement. A second subnetwork involves sugar metabolism and glycosylation. A third revolves around 
one-carbon metabolism. The subnetwork of NAD+ (enrichment score = 4.2) was extracted (Fig 9, left, see 
interactive file S4 Network), which reveals a number of genes involved with biosynthesis being down-
regulated.  

 
 
Figure 9. Enzyme-metabolite interaction network around redox cofactors. Left: NADH; Right: NADP+.  For reporter 
metabolites (circles), size indicates the enrichment score of a gene set and colour indicates the up/down direction 
of regulation. Brightness indicates uni-directionality of regulation. For enzymes (stars), colour indicates the up/down 
direction of regulation based on the log2(fold change) scheme. For full information on gene names, the interactive 
file S4 Network or the corresponding annotations in S1 Table, using the “Gene names (primary)” column, may be 
consulted. 
 



91  

In addition, a large contribution to the enrichment score is made by the aldehyde dehydrogenases ALD4, 
ALD5 and ALD6, by the alcohol dehydrogenases annotated as ADH2 and ald, and by sorbitol 
dehydrogenase SOR1. 
 
Since K. marxianus relies on an NADPH dependent xylose reductase, it was expected that NADPH would 
be enriched (enrichment score = 2.6). The enzymes directly affecting NADPH are explored in Fig 9 (right, 
see interactive file S5 Network). We anticipated up-regulation of major NADPH producing enzymes to 
supply reducing power for xylose utilisation by xylose reductase. Instead, only three enzymes directly 
involved with NADP(H) were up-regulated. IDP1 (mitochondrial NADP-specific isocitrate dehydrogenase) 
was only moderately up-regulated (2.2-fold). A more significantly up-regulated enzyme, mitochondrial 
quinone oxidoreductase (QOR, 9.9-fold up-regulated) reduces 1,4-benzoquinone, as was shown by cloning 
this gene from K. marxianus in E. coli [29]. It is not part of the major catabolic processes in central 
metabolism, however. Another is YPR127W, a putative pyridoxal reductase that functions to degrade 
vitamin B6 and involved with multidrug resistance and not central metabolism [30]. In the oxidative 
pentose phosphate pathway, which is assumed to be the main generator of NADPH in most species, GND1 
(6-phosphogluconate dehydrogenase) and SOL1 (6-phosphogluconolactonase) were, however, 
constitutively expressed. Another enzyme, SPS19 (peroxisomal 2,4-dienoyl-CoA reductase), was strongly 
up-regulated at 269-fold. It functions to reduce double bonds to facilitate β-oxidation of unsaturated fatty 
acids in the peroxisome [31], another indication that peroxisomal metabolism was strongly differentially 
regulated. 
 
Central carbon metabolism 
To explore the metabolic response of the central carbon metabolism, metabolic pathway maps were 
created from MetaCyc pathways and RNA-seq data were mapped using various colouring schemes. Figs 
10 and 11 show total transcript abundances mapped to reactions (see also S1 Pathway). It is evident that 
on glucose, the central glycolytic route from glucose to ethanol is highly expressed. In xylose medium, 
transcript abundance is less pronounced in glycolysis and ethanol production, whereas PPP, the pyruvate 
dehydrogenase bypass and β-oxidation enzymes increase in transcript abundance. 
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Figure 10. Total transcript levels in central metabolic pathways with glucose as the carbon source. Transcript levels 
for all genes catalysing a reaction were summed. Note the logarithmic scale. Dark grey indicates genes present and 
constitutively expressed. Light grey indicates genes not found in annotation or combined reactions. For reaction 
names, see S1 Pathway. 
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Figure 11. Total transcript levels in central metabolic pathways with xylose as the carbon source. For reaction 
names, see S1 Pathway. 
 
An interesting differential expression pattern is evident in Fig 12. Consistent with the experimental setting, 
the NADPH-dependent D-xylose reductase gene XYL1 was drastically up-regulated on xylose (48.8-fold) 
with very high gene expression levels on xylose. Xylitol dehydrogenase was absent from the annotation. 
However, it has been demonstrated that sorbitol dehydrogenase SOR1 can act as a xylitol dehydrogenase 
in S. cerevisiae [32]. Significant up-regulation of SOR1 by 208-fold supports this function. Xylulokinase 
XKS1 was also 11.3-fold up-regulated. Transaldolase TAL1 of the non-oxidative pentose phosphate 
pathway (PPP) and ribose-5-phosphate isomerase RKI1 were moderately up-regulated (4.8 and 2.6-fold). 
We did, however, not observe up-regulation of any enzymes in the oxidative branch to support additional 
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NAPDH production for xylose utilisation, or to combat oxidative stress by charging of the glutathione 
system. We found a remarkably clear down-regulation of glycolytic genes on xylose with a moderate fold 
change. The gluconeogenesis-associated gene fructose-1,6-bisphosphatase FBP1 was also sharply up-
regulated by 27-fold, which was also observed in a microarray experiment of a xylose utilising 
recombinant S. cerevisiae strain [33]. β-Oxidation reactions and fatty acid activation reactions were clearly 
up-regulated. 
 
Further, there was also a strong apparent down-regulatory effect on alcohol dehydrogenases and 
aldehyde dehydrogenases, and both the citrate synthase of the TCA cycle and the isocitrate lyase of the 
glyoxylate cycle were seemingly dramatically up-regulated. The latter two observations in this analysis, 
however, are misguided by the lack of compartmentalisation of the response. It should be noted that 
many metabolic reactions could be catalysed by more than one enzyme, where for some reactions like 
those catalysed by alcohol dehydrogenase (ADH), there are at least five gene products that could 
potentially catalyse the same reaction. Fig 12 used only the most extremely altered differentially 
expressed gene for rendering. Fig 13 provides a different perspective, however, where reactions that have 
more than one associated gene and which were regulated in opposite directions are identified. These are 
isocitrate lyase, aldehyde dehydrogenase and alcohol dehydrogenase. 
 
Subsequently, the GO ‘cellular_component’ terms from the UniProt_SwissProt_fungi were used to render 
compartmentalised maps reconstructed from MetaCyc pathways. Fig 14 shows that in the cytosol xylose 
utilisation reactions were up-regulated, whereas glycolysis, together with pyruvate decarboxylase, NAD+-
specific acetaldehyde dehydrogenase (ALD) and glycerol production were down-regulated. Further, a 
number of reactions usually associated with the TCA cycle were also present in the cytosol and were 
constitutively expressed. More than one type of ADH with opposite regulatory direction is present in the 
cytosol. In the peroxisomal compartment (see S1 Pathway), β-oxidation of lipids, which in S. cerevisiae is 
performed exclusively in the peroxisomes [34], is clearly visible with only the 3-hydroxyacyl-CoA 
dehydrogenase (OHACYL-DEHYDROG-RXN) gene missing from the annotation. In mitochondria (see S1 
Pathway) the reactions catalysed by the ALDs (ALD4, ALD5, ALD6) and ADHs were still isozyme switching 
reactions. Both ALD4 (up-regulated 83-fold) and ALD5 (down-regulated 167-fold) were strongly 
differentially expressed. Several ADH genes were found in K. marxianus. Two of these were annotated as 
ADH3 and ADH4, both mitochondrial, whereas five (ADH1, ADH2, ADH6, SFA1 and adh) were taken to be 
cytoplasmic. As previously reported [35], ADH2 was only expressed significantly in the presence of 
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glucose, and was in fact the most significantly down-regulated gene in our dataset (229-fold down-
regulated). This corresponds to the regulation of the ADH2 orthologs in S. cerevisiae and K. lactis [35]. 
Conversely, ADH1 was constitutively expressed, again as previously reported [35], which differs from the 
regulation in S. cerevisiae and K. lactis where glucose stimulated ADH1 expression. Transcriptional 
rewiring of ADH isozymes is thus present in K. marxianus compared to its relatives. 
 
 

 
 
Figure 12. Uncompartmentalised response to xylose in central carbon metabolism in a log2(fold change) scheme. 
A log2(fold change) is defined as the log2 ratio of transcripts on xylose divided by that on glucose, as reported by 
CuffDiff. Reactions vETC, vEthylAcetate and vGrowth were manually added to the model. In the case of more than 
one enzyme that could perform the same function, the largest fold change in expression was used for the colour 
rendering. For reaction names, see S1 Pathway. 
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Figure 13. Uncompartmentalised response to xylose in central carbon metabolism as a classification scheme. Blue 
reactions represent those for which more than one enzyme gene has been assigned and for which some were up-
regulated and some down-regulated, referred to as isozyme switching. For reaction names, see S1 Pathway. 
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Figure 14. Compartmentalised response to xylose in central metabolism in the cytoplasm using the classification 
scheme. Blue reactions represent those for which more than one enzyme gene has been assigned and for which 
some were up-regulated and some down-regulated, referred to as isozyme switching. For reaction names, see S1 
Pathway. 
 
In the mitochondrial map, the NADPH specific isocitrate dehydrogenase gene was up-regulated, whereas 
citrate synthase of the TCA cycle and isocitrate lyase were seemingly up-regulated. Surprisingly, the 
glyoxysome map revealed that the glyoxylate cycle specific isocitrate lyase (ICL1) was down-regulated. 
Upon further investigation, the isozyme present in the mitochondrion, which was mapped to the TCA 
cycle by the PathoLogic algorithm using Kegg-Kaas annotations, was in fact ICL2, the 2-methylisocitrate 
lyase, perhaps confusingly termed ICL2. Although ICL1 and ICL2 share a high sequence similarity, the latter 
does not use isocitrate as a substrate and does not produce glyoxylate but uses 2-methylisocitrate instead 
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to produce succinate and pyruvate [36]. The gene product from ICL2 is part of the propionyl-coezyme A 
pathway, otherwise known as the 2-methylcitrate pathway [37]. The pathway starts with CIT3 (YNR001C), 
the mitochondrial enzyme that condenses oxaloacetate with propionyl coenzyme A to form 2-
methylcitrate. Indeed, the citrate synthase that was up-regulated (Fig 12) was not the CIT1 gene 
(YPR001W) that is both cytosolic and mitochondrial and associated with the TCA cycle, but instead the 
mitochondrial CIT3. Further inspection of the full GO ontology enrichment set revealed that all three key 
genes in the 2-methylcitrate pathway were significantly up-regulated. The strength of the response in the 
2-methylcitrate pathway is given in Table 1, where CIT3, PDH1 and ICL2 were up-regulated 294, 32 and 
28-fold, respectively, and Fig 15 shows the connection of this pathway with the TCA cycle. The GO term 
‘propionate catabolic process’ (GO:0019543) was found to be significantly enriched with an enrichment 
score of 5.2. Apart from the last cycle of β-oxidation of odd-chain fatty acids in the peroxisomes as the 
source of propionyl-CoA, the latter could be derived from propionate or even from threonine breakdown 
[36]. In the gene set for ‘threonine metabolic process’ (GO:0006566), only one gene was up-regulated, 
namely the low specificity L-threonine aldolase (GLY1). Another gene was also annotated as GLY1 and 
down-regulated. Thus, there is no conclusive evidence that threonine catabolism was up-regulated. The 
up-regulation of the 2-methylcitrate pathway is, therefore, more likely for the catabolism of short-chain 
fatty acids and not threonine. Painted differential expression pathway maps were generated for all of 235 
metabolic pathways found in the annotation. They can be explored in see S2 Pathway. 
 
 
Table 1. Differential expression of the constituent genes mapped to the GO term ‘propionate catabolic process’ 
(GO:0019543) on glucose and xylose, respectively. 

Id Value 
(Glc) 

Value 
(Xyl) log2(FC) qvalue signt Entry Protein names Gene names 

GK5S-1542 5.2 1512.1 8.2 0.001 yes P43635 Citrate synthase 3 (EC 
2.3.3.16) 

CIT3 YPR001W 
YP9723.01 

GK5S-1543 27.5 901.5 5.0 0.001 yes Q12428 Probable 2-methylcitrate 
dehydratase (EC 4.2.1.79) 

PDH1 YPR002W 
LPZ2W YP9723.02 

GK5S-2306 15.5 436.9 4.8 0.001 yes Q12031 
Mitochondrial 2-
methylisocitrate lyase (EC 
4.1.3.30) 

ICL2 YPR006C 
LPZ6C 
YP9723.06C 
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Figure 15. 2-Methylcitrate pathway. The suggested route of three-carbon units is indicated in magenta. 
 
Metabolic Regulation Analysis to dissect hierarchical and metabolic levels of 
regulation 
Differential metabolic flux analysis can be combined with differential gene expression data in the 
framework of MRA. From Figs 10 and 11 it is evident that in anaplerosis, phosphoenolpyruvate 
carboxykinase had very low transcript levels, while phosphoenolpyruvate carboxylase was absent from 
the annotation. Only the pyruvate carboxylase showed substantial transcript levels and was constitutively 
expressed.  Hence, only pyruvate carboxylase was used in the model for flux estimations. In glucose 
medium, respiro-fermentative metabolism was observed. The specific uptake rate of glucose (on a dry 
cell weight basis) was 9.4 mmol h-1 mg-1 with acetate and ethanol produced at 2.0 and 2.7 mmol h-1 mg-1, 
respectively with no glycerol formation. In xylose medium, acetate, ethanol and glycerol were absent and 
the specific xylose uptake rate was estimated at approximately 5 mmol h-1 mg-1. The ethanol flux 
calculated could be considered as a conservative estimate, since some evaporation of ethanol could be 
expected from the aerobic condition. Fig 16 shows the differential flux outputs, as approximated by 
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combining FBA with the consumption rates of sugars and production rates of ethanol and acetate (see S5 
Table and S3 Pathway for the FBA model, parameters and MRA outputs). The xylose utilisation pathways 
as well as the transaldolases and transketolase fluxes of the non-oxidative PPP were up-regulated, while 
the direction of the glucose-6-phosphate isomerase was changed towards the direction of glucose-6-
phosphate. Notably, the difference in oxidative pentose phosphate pathway flux was only 5% between 
glucose and xylose utilisation modes and was thus considered constitutive, as was found in the transcript 
levels. The rest of central metabolic fluxes were down-regulated. (See S3 Pathway for a more detailed 
log2(fold change) scheme). Although transcript levels do not generally correspond well to protein levels 
and hence to fluxes according to reports using model organisms [38], the overall patterns of expression 
in central carbon metabolism in our RNA-seq analysis corresponded well with the predicted flux patterns. 

 
Figure 16. Differential flux analysis of central carbon metabolism. Fluxes which differed by less than 10% between 
conditions were considered constitutive. For reaction names, see S3 Pathway. 
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Although there is not always a linear correlation between transcript level, protein concentrations and 
maximal activities of an enzyme, we assume differential transcript expression to provide a sufficient 
approximation to hierarchical regulation, as was done by others [39]. Fig 17 shows the separation of 
metabolic regulation into hierarchical and metabolic level regulation. It is evident that the genetic level 
up-regulation of xylose reductase, sorbitol dehydrogenase, xylulose kinase, transaldolase and ribose-5-
phosphate isomerase rendered the regulation as purely hierarchical. Of these, sorbitol dehydrogenase 
acting as a xylitol dehydrogenase would be the most extreme example, as it showed a 208-fold genetic 
up-regulation. These four reactions interact with neighbouring reactions via the metabolites xylulose-5-
phosphate, erythrose-4-phosphate, fructose-6-phosphate and ribose-5-phosphate to stimulate fluxes 
through the transketolases, and to reverse the flux through glucose-6-phosphate isomerase, whereas 
ribose-5-phsophate isomerase may lower the flux through ribulose-phosphate 3-epimerase by lowering 
the concentration of ribulose-5-phosphate. Notably, regulation of fluxes in lower glycolysis is dominated 
by the genetic component, whereas upper glycolysis is regulated approximately equally by the metabolic 
and genetic regulation levels. Downward from pyruvate kinase, regulation is dominated by changes in 
metabolite levels, while some contribution of the genetic regulation level is evident for the fluxes through 
the aconitate hydratases in the TCA cycle. Due to the absence of measured ethanol and acetate in the 
xylose medium, the disappearance of fluxes through pyruvate decarboxylase, alcohol dehydrogenase and 
aldehyde dehydrogenase rendered classification of regulation in these reactions as purely metabolic. 
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Figure 17. Metabolic Regulation Analysis of central carbon metabolism. For reaction names, see S3 Pathway. 
 
 
Discussion 
Modelling of bioprocesses has been attempted for a long time, in many different forms. It was realised in 
the second half of the twentieth century that several confounding factors had to be eliminated in the 
study of metabolism and its gene regulation, arguably with the growth rate as the most important 
confounding factor, since the expression level of many genes are correlated with the growth rate. 
Chemostat cultivation is a useful tool, since the growth rate can be easily controlled. However, for the 
vast majority of industrial applications, chemostats are unrealistic; industrial applications typically involve 
batch cultivation, or fed-batch cultivation to avoid catabolite repression, improve volumetric productivity 
and allow sufficient aeration by controlling the growth rate. Moreover, systems biology has become 
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increasingly data-driven with the availability of high-throughput methods to measure large numbers of 
intracellular metabolites (metabolomics), proteins (proteomics) and especially RNAs (RNA-seq and 
microarray) from a single experiment. It is proposed here that much more could be learned in terms of 
genetic regulation in microorganisms by testing a variety of different cultivation conditions, especially 
substrates, in small batch experiments as compared to the same amount of work in a more sophisticated, 
labour intensive chemostat setup, or at least, complementary information. We showed that in a simple 
and cost-effective batch setup, a large amount of rich RNA-seq data could be generated and fruitfully 
explored. This small working volume also makes expensive isotope labelling studies feasible. In batch 
experiments, however, special care needs to be taken in terms of the timing of sampling, as, for instance, 
fermentation products would accumulate over time and a transcriptome sample late in the fermentation 
may be more reflective of chemical stress than of the metabolic mode. This may especially be a 
confounding factor when comparing the effects of the concentration of substrate. Our experimental 
design alleviated this effect and allowed us to focus on the effects of alternative substrates only. 
 
Previously, exploration of omics datasets mostly focused on only the lists of the most significantly up-
regulated or down-regulated genes separately, or on one or two more advanced types of analyses such 
as GO enrichment, and occasionally on the extraction of active networks. Here we presented one of the 
first examples that explore high-quality RNA-seq data from various perspectives, using different types of 
enrichments and networks, and rationalisation of the response with FBA and MRA as theoretical 
frameworks. Furthermore, combining information from databases such as GO and MetaCyc in the same 
problem and with subcellular compartmentalisation revealed several important features that would have 
been missed using either on its own. 
 
The vastness of the xylose response under aerobic conditions indicates a different, opportunistic lifestyle 
that this yeast apparently adapts to when cultivated on xylose, which may be reminiscent of its natural 
environment where a variety of plant-derived substrates may be utilised. Down-regulation of many 
biosynthetic pathways is concordant with a lower growth rate, although there is a notable absence of 
growth rate specific gene sets in the enrichment statistics. Although many mitochondrial genes were 
differentially expressed, these are not the major enzymes in energy production in mitochondria. Oxidative 
stress also seems minimal in the aerobic xylose medium. Instead, a strong response is seen in the up-
regulation of alternative sugar utilisation machinery, including inulinase, sugar transporters and catabolic 
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routes for alternative sugars. Inulin is a fructan stored in large amounts in some plants, including A. 
americana [40]. Our strain was indeed isolated from an A. americana sample. 
 
K. marxianus lacks enzymes such as secreted proteases, lipases and carbohydrate hydrolases. This yeast 
may thus be dependent on other fungi in the environment for these functions, or its natural habitat may 
be some commensal niche where these monomers are supplied by the plant. The transcriptional 
regulatory basis for this response is likely to be glucose repression by transcription factors such as MIG1 
binding to carbon source response elements, as was suggested to be the case for the inulinase gene 
KmINU1 [4, 41]. 
 
It is interesting to find that the majority of genes for a complete organelle like the peroxisome, which is 
dedicated to lipid oxidation, was dramatically up-regulated in the xylose medium, yet without apparent 
function in the experimental setting. Thus, glucose de-repression is likely sufficient to activate most of the 
response to enable lipid catabolism, and stimulation by lipids may play a smaller role. The mitochondrial 
2-methylcitrate pathway for the degradation of three-carbon molecules was also strongly up-regulated, 
suggesting that a variety of odd-chain fatty acids originating from peroxisomes may be oxidised. 
 
FBA simulations predicted no significant up-regulation of the oxidative PPP flux, but a more intense up-
regulation of the non-oxidative PPP flux and a down-regulation of glycolysis, which were consistent with 
RNA-seq data. Since biomass formation, the major sink for NADPH, is down-regulated in xylose medium, 
and another NADPH sink, xylose reductase, is up-regulated, it thus makes sense that the major source flux 
of NADPH (oxidative PPP) may be similar in both conditions (considering absolute fluxes normalised by 
the biomass concentration). Normalising fluxes to the uptake rate of a carbon source or to the biomass 
formation rate could thus be misleading when interpreting expression data. FBA simulations here thus 
shed light on what could be expected in terms of gene regulation. 
 
MRA was used to separate metabolic regulation into hierarchical and metabolic levels. Reactions in lower 
glycolysis are known to a have high flux capacity due to high enzyme concentrations, and our transcript 
data also indicated this feature on glucose. Chemostat studies of S. cerevisiae classified these high-
capacity reactions as well as the non-oxidative PPP reactions as pseudo-equilibrium or near-equilibrium 
reactions, suggesting that they can be sufficiently described by simple equations making use of 
thermodynamics and empirical studies at various dilution rates [42]; hence both detailed enzyme kinetic 
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expressions and genetic regulation could be ignored. Reversible high capacity reactions like these should 
have low metabolic control coefficients over the flux and are not likely to be regulated at the genetic level 
- at least over small changes in the flux, close to a reference steady state. However, our transcript level 
data for K. marxianus showed that the transcript levels in lower glycolysis were substantially lower on 
xylose, and MRA showed a dominating hierarchical (genetic) level regulation. Flux through transaldolase 
was also dominated by hierarchical regulation. The contribution of hierarchical and metabolic level 
regulation of a reaction would differ between substrates utilised, and may also differ between species. 
 
Reporter metabolite networking suggested that NAD(H), acetaldehyde, ethanol, glyceraldehyde-3-
phosphate, 3-phosphoglycerate and hydrogen peroxide formed a strongly interconnected redox active 
system, with aldehyde dehydrogenases and alcohol dehydrogenases being the main players. This system 
may work across membranes, since acetaldehyde, ethanol and hydrogen peroxide can cross membranes, 
shuttles connect NAD(H) across compartments, and glyceraldehyde-3-phosphate and 3-phosphoglycerate 
are closely connected to NADH. At this stage it is not possible to resolve the fluxes and MRA through the 
acetaldehyde-dependent pyruvate dehydrogenase bypass. It was, however, evident that dramatic 
changes occurred in the transcript levels of the alcohol dehydrogenases and aldehyde dehydrogenases, 
including compartment-specific isozyme switching. As also suggested by Lertwattanasakul et al. [3], 
ethanol may be catabolised in the mitochondria as fast as it is produced. However, it has to be emphasised 
that care needs to be taken in extrapolating gene expression data between studies carried out under 
aerobic and anaerobic conditions. Oxygen limitation results in differential expression of many genes in 
yeasts. 
 
 
Conclusions 
We believe to have captured in a unique manner, and from a number of perspectives, a complex 
transcriptional pattern telling an interesting story about how the cell ‘explores its options’ when the 
nutrient availability changes under aerobic conditions. Strong up-regulation of transporters and pathways 
for utilisation of alternative carbohydrates was evident. In addition, the more opportunistic lifestyle was 
supported by invasive growth, and sexual reproduction was activated as a long-term survival strategy. The 
strong peroxisomal fatty acid catabolic response accompanied by the mitochondrial 2-methylcitrate 
pathway is likely explained by glucose de-repression, similar to that seen for carbohydrate utilisation. As 
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K. marxianus seemingly lacks the secreted enzymes required for depolymerisation of biopolymers, the 
species is probably dependent on other species for supply of monomers such as sugars, amino acids and 
free fatty acids, whereas inulinase is a specialist feature enabling this species to utilise this plant storage 
oligosaccharide. It would be interesting to see whether xylose may have a stimulatory role as suggested 
recently for Saccharomyces cerevisiae [43] and through which signaling pathways this may take place. 
 
MRA was demonstrated here as an informative method to dissect the regulation of fluxes into the 
metabolic and hierarchical levels. It is evident that the genetic level plays a dominating role in the 
regulation of fluxes in central carbon metabolism, not only in the early enabling steps of utilisation of 
xylose as the carbon source, but also in the high capacity reactions of lower glycolysis. In kinetic modelling 
of metabolism, emphasis should thus be placed on genetic regulation, which is currently very challenging. 
Multiple omics would need to be combined to predict such regulatory networks and build realistic models. 
However, in order to resolve fluxes originating from pyruvate, isotopic tracer studies would be required, 
which currently is under investigation. In addition, the isozyme switching observed with alcohol 
dehydrogenase, aldehyde dehydrogenase and acetate-CoA ligase calls for a detailed investigation into the 
compartmentalisation and kinetics of these enzymes, and detailed bottom-up kinetic modelling to 
understand the role of this interesting behaviour. 
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Sugar utilization 
Some interesting aspects arose from the data. Firstly, a variety of carbohydrate utilization genes were 
differentially expressed on glucose vs xylose, mostly for utilization of the hexose galactose, and the 
pentoses xylose and arabinose. Even though these alternative sugars were not present in the medium, 
their utilization pathways were up-regulated, a phenomenon typical of alleviation of glucose repression. 
Secondly, the capacity for hexose utilization by hexokinase was constitutive and high. Thirdly, the initial 
steps in galactose, xylose and arabinose utilization were more strongly up-regulated as compared to later 
steps in each pathway.  
 
Extracellular enzymes 
Since K. marxianus seems to adopt an opportunistic metabolic gene set profile in response to the presence 
of xylose (or absence of glucose), the question arises whether extracellular hydrolases possessing β-
glucosidase activity, such as cellulases, would be activated, allowing K. marxianus to thrive on decaying 
plant matter. Cellulases are prevalent in fungi but not as prevalent in yeasts. The strain possesses fourteen 
genes annotated as having some form of β-glucosidase activity, most of which are secreted 
(supplementary Table 1 below). Beta-glucosidase (EC 3.2.1.21, cellobiase, gentiobiase) is a likely candidate 
that could function to hydrolyze cellobiose, the disaccharide found after hydrolysis by cellulose. It is 48.8-
fold up-regulated and transcribed at a high level on xylose. It would be interesting to see whether this 
strain can grow on cellobiose, which is a trait uncommon to yeasts. Cellulose degradation is a complex 
process and requires the initial degradation of cellulose to cellobiose by cellulases. No cellulases were 
found in the genome, however. No genes were found to have xylanase activity or related terms either. 
Additional searches were performed for proteases, peptidases and lipases, which would be typical of 
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opportunistic yeasts, especially pathogens. A number of proteases, peptidases and lipases were found, 
but none of them are clearly secreted proteins.   
 
Table 1. Enzymes with glucosidase and related activities.  

ID val(Glc) val(Xyl) log2(FC) q signt Entry Protein names Gene names EC 
number 

g3519.t1 33.1 1601.0 5.6 0.001 yes P07337 Beta-glucosidase (Cellobiase) 
(Gentiobiase)  3.2.1.21 

g3265.t1 135.8 347.4 1.4 0.016 yes Q04951 Probable family 17 
glucosidase SCW10 

SCW10 
YMR305C 
YM9952.07C 

3.2.1.- 

g3867.t1 262.7 582.8 1.1 0.047 yes Q12628 Glucan 1,3-beta-glucosidase 
(EC 3.2.1.58) KLLA0C05324g 3.2.1.58 

g4768.t1 841.6 1765.9 1.1 0.062 no P53334 Probable family 17 
glucosidase SCW4 SCW4 YGR279C 3.2.1.- 

g3788.t1 922.9 1826.6 1.0 0.094 no P15703 Glucan 1,3-beta-glucosidase BGL2 SCW9 
YGR282C 3.2.1.58 

g4569.t1 146.2 285.3 1.0 0.090 no Q06625 Glycogen debranching 
enzyme GDB1 YPR184W 2.4.1.25; 

3.2.1.33 

g3018.t1 754.8 1235.7 0.7 0.262 no P53616 Probable secreted beta-
glucosidase SUN4 

SUN4 SCW3 
YNL066W 
N2411 
YNL2411W 

3.2.1.- 

g2805.t1 25.3 39.4 0.6 0.430 no P08019 Glucoamylase, intracellular 
sporulation-specific 

SGA1 SGA 
YIL099W 3.2.1.3 

g1329.t1 48.5 69.2 0.5 0.491 no Q12168 Endo-1,3(4)-beta-glucanase 2 
(Laminarinase-2) 

ACF2 ENG2 
PCA1 YLR144C 
L3180 

3.2.1.6 

g4202.t1 192.4 242.9 0.3 0.662 no P32486 Beta-glucan synthesis-
associated protein KRE6 

KRE6 CWH48 
YPR159W  

g2867.t1 136.4 148.0 0.1 0.904 no P53189 Probable family 17 
glucosidase SCW11 

SCW11 
YGL028C 3.2.1.- 

g1495.t1 77.8 67.8 -0.2 0.829 no P38138 Glucosidase 2 subunit alpha 
ROT2 GLS2 
YBR229C 
YBR1526 

3.2.1.84 

g2866.t1 51.4 42.4 -0.3 0.759 no P53008 Mannosyl-oligosaccharide 
glucosidase (Glucosidase I) 

CWH41 GLS1 
YGL027C 3.2.1.106 

g3564.t1 241.1 164.6 -0.6 0.441 no P53753 Endo-1,3(4)-beta-glucanase 1 
(Laminarinase-1) 

DSE4 ENG1 
YNR067C 
N3547 

3.2.1.6 
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Sexual reproduction and invasive growth 
Yeasts that reproduce sexually through mating have a pheromone sensing system whereby the haploid α-
cells secrete a pheromone, mating factor α-1, which is sensed by the a-cells, a signal that suppresses DNA 
synthesis in the a-cells, thus synchronizing them with α-cells for conjugation. Mating factor α-1 
(MF(ALPHA)1, YPL187W) was up-regulated 53-fold on xylose, whereas barrierpepsin (BAR1, YIL015W) was 
up-regulated 17-fold. Barrierpepsin likely cleaves mating factor α and fine-tunes the concentration of the 
pheromone for optimal conjugation [1]. Similarly, protein SST2 (YLR452C), which also responds to α-
pheromone to desensitize cells to α-pheromone, was 3.3-fold down-regulated [2]. A functional interaction 
between cells during conjugation is made by agglutinins in response to pheromones, of which α-agglutinin 
was up-regulated 5.7-fold. The flocculation proteins FLO1 (YAR050W), FLO11 (YIR019C), and FLO9 
(YAL063C) were also up-regulated. They form functional interactions by causing cell aggregation in liquid 
culture and are known to be involved in the formation of diploid pseudohyphae, which play a role in the 
adhesion of cells to substrates, invasive growth by haploid cells (see [3] for a review). It was shown that 
FLO11 is dominant in invasive growth whereas FLO1 is dominant in flocculation, while they are both under 
the control of the transcription factor encoded by the MSS1 gene [3]. In summary, both sexual 
reproduction was up-regulated as well as a variety of genes involved with morphological changes that 
may be beneficial for penetration into a solid substrate. We observed only few pseudohyphae on xylose 
towards the stationary phase and none on glucose, indicating that the response is not manifested 
completely as a phenotype under these conditions, but likely further stimuli are needed to make a 
transition to invasive growth.  
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Chapter 4  
 
Identification of major transcriptional regulators in central 
carbon metabolism – the enumerative approach 
 
 
Abstract 
In the previous chapters, the construction of a draft genome and an RNA-seq transcriptomics analysis 
of the differential response of Kluyveromyces marxianus strain UFS-Y2791 to glucose or xylose were 
described. The analysis revealed several interesting aspects, including major up-regulation of central 
metabolic routes and up-regulation of enzymes involved in alternative carbon source utilisation. 
Particularly, the peroxisomes and peroxisomal β-oxidation were drastically up-regulated in a xylose 
medium. The pattern is reminiscent of glucose derepression in the xylose medium. The genetic basis 
for the differential expression was investigated by testing the hypothesis that the same key 
transcription factors as identified in S. cerevisiae is the basis for the response. The enumerative 
method of over-represented heptamers was used to reveal Adr1 as the most probable transcription 
factor activating genes in Kluyveromyces marxianus in the xylose medium.  
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Introduction 
 
When Saccharomyces cerevisiae is cultivated in a medium containing glucose above a low threshold, 
the cell represses a large number of genes. One quarter of the 6 000 genes are differentially regulated 
by the presence of glucose [Young et al. 2003]. Glucose transcriptional repression in S. cerevisiae 
involves six signalling pathways and also involves cross-talk between them [Broach 2012, Chapter 1]. 
These signalling pathways that control growth and development have recently been reviewed by 
Broach [2012]. The major pathway responsible for the majority of the changes is the Ras/protein 
kinase A pathway. The most drastic changes to expression levels in central carbon metabolism occur 
due to the action of the Snf1 kinase pathway, however. Snf1 is a master regulator kinase in yeast and 
has a homolog in mammals known as the AMP-activated protein kinase (AMPK). AMPK is understood 
as a guardian of energy homeostasis. It activates glucose uptake and oxidation, and fatty acid 
oxidation, while suppressing anabolic reactions [Broach 2012]. In S. cerevisiae too, it is involved with 
energy metabolism, and additionally regulates the utilisation of alternative carbon sources. In 
mammals, AMPK responds to the energy state by the breakdown products of glucose and not by 
glucose itself. AMP binds to AMPK and regulates its activity. In S. cerevisiae, AMP does not seem to be 
the signal, but more likely glucose signals through an unknown mechanism via upstream kinases such 
as Elm1, Tos3 and Sak1, or via the Reg1/Glc7 complex to the Snf1/Snf4 complex, inhibiting its activity. 
Snf1 activates the transcription factors (TFs) Cat8 via deactivation of Mig1 [Schöler and Schüller 1994, 
Soontorngun et al. 2007], and activates Sip4 [Schüller 2003] and Rds2 [Soontorngun et al. 2007]. Also, 
Snf1 indirectly activates Adr1 by either activating some dephosphorylase that removes the phosphate 
from the regulatory domain of Adr1, or by deactivating some kinase that phosphorylates Adr1 
[Ratnakumar et al. 2010]. These TFs function primarily as activating TFs, whereas Rds2, a major 
regulator of gluconeogenesis, functions both as an activator and a repressor [Soontorngun et al. 2007]. 
The importance of Cat8 and Sip4 in activating gluconeogenesis has previously been emphasised 
[Barnett and Entian 2005, Carlson 1999, Schüller 2003]. 
 
Mig1 is a known repressor of gene expression of a variety of genes in S. cerevisiae, including the CAT8 
gene [Hedges et al. 1995], GAL1 for galactose utilisation [Nehlin et al. 1991] and likely the INU1 gene 
in K. marxianus that encodes inulinase [Lertwattanasakul et al. 2011]. Inulinase allows K. marxianus 
to utilise either sucrose or inulin, a fructan stored at a high concentration in some plants [Chi et al. 
2009]. Mig1 recruits the proteins Ssn6 and Tup1 to repress genes [Treitel and Carlson 1995]. The GAL1 
gene was up-regulated in K. marxianus in a xylose medium, and INU1 was one of the most strongly 



117  

up-regulated genes [Schabort et al. 2016, Chapter 3]. Lertwattanasakul et al. [2011] also found two 
putative Mig1 binding sites in the INU1 promoter of the DMKU3-1042 strain.  
 
Dramatic responses in the up-regulation of peroxisomes and β-oxidation were seen in the previous 
work [Schabort et al. 2016, Chapter 3], along with various other genes in central carbon metabolism. 
It has previously been shown by microarray studies with knockout strains of S. cerevisiae that Adr1 
and Cat8 played a major role in the up-regulation of genes for utilisation of alternative carbon 
metabolism, as well as peroxisomal organisation and β-oxidation [Young et al. 2003]. The latter study 
compared the expression levels of genes in the knockout strains and the wild-type strain during the 
oxidative shift following the depletion of glucose. The affected targets of the SNF1 knockout also 
corresponded with the combination of affected targets of Adr1 and Cat8. For some of these targets, 
putative binding sites could be found based on consensus motif searches and chromatin 
immunoprecipitation (ChIP). It was found that Adr1 was more important than Cat8 [Young et al. 2003]. 
 
The consensus pattern for Adr1 has been described by Cheng et al. [1994]. The zinc finger Adr1 binds 
to a core motif [TGA][TC]GG[AG]G. It usually binds as a dimer in opposite directions and the full motif 
can be described as C[CT]CC[GA][TCA]N{2-36}[TGA][TC]GG[AG]G; the reverse is identical. The core 
recognition site for Mig1 has been described as [GC][TC]GG[GA]G (and C[CT]CC[AG][GC] in the 
opposite direction), also known as the GC-box [Nehlin et al. 1991]. However, a significant bias of the 
sites on the 5’-end of the GC-box to A and T has been described, the so-called AT-box [Lundin et al. 
1982], resulting in a more precise motif [ATG][AT][AT][AT][ATG]N[GC][TC]GGGG and the reverse of 
this pattern is CCCC[GA][GC]N[TAC][AT][AT][AT][CAT]. This pattern was specified as four consecutive 
guanines (or cytosines in the opposite direction), not allowing an adenine at position 5, making it more 
distinct from the Adr1 motif. The zinc cluster TFs Cat8 and Sip4 bind sequences containing CC, followed 
by GCC, separated by a few nucleotides. The Cat8 motif has been described as YCCNYTNRKCCG and 
that of Sip4 as TCCATTSRTCCGR [Roth et al. 2004]. Rds2 recognises very similar sites as Cat8 and Sip4 
[Soontorngun et al. 2007]. 
 
In this chapter, a mechanistic basis is given for the differential expression pattern in a xylose medium 
based on two approaches. Firstly, by the correspondence with target genes of main transcriptional 
regulators in glucose derepression, as identified previously in the model species and using enrichment 
statistics. Secondly, the enumerative method of over-represented heptamers was used to reveal 
putative transcription factor bindings sites in an unbiased manner. Methods for network mapping of 
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heptamers and for an Occam’s razor approach to the enumerative method is also demonstrated, 
which may be valuable additions to data exploration in computational biology.   
 
Materials and Methods 
Strains and cultivation 
K. marxianus UFS-2791 was cultivated in a defined mineral medium containing glucose or xylose in 
aerobic shake flasks. RNA was extracted in mid-exponential phase. Protocols were described in 
Chapter 3 and in Schabort el at. [2016]. 
 
RNA-seq data 
RNA-seq data were generated in previous work for the strain UFS-Y2791 [Schabort et al. 2016, Chapter 
3]. It was found that these data could be efficiently read-mapped to the recently published complete 
genome of a different stain, namely K. marxianus DMKU3-1042 [Lertwattanassakul et al. 2015] using 
TopHat [Trapnell et al. 2009]. Differential expression was calculated using CuffDiff [Trapnell et al. 
2013]. Fold changes were defined as the value in the xylose medium divided by the value in the glucose 
medium, and only applied to genes with q-values below 0.05. 
 
Gene set enrichment statistics 
The set of genes targeted by Adr1 in S. cerevisiae were identified as those that failed to be up-
regulated during glucose derepression in an Adr1 knockout strain [Young et al. 2003]. It was assumed 
that this gene set was the same also in K. marxianus. The hypergeometric distribution was used to 
estimate the probability of finding the same number or more of genes up-regulated (18) in a 
randomised draw of homologs (46) in K. marxianus in a background of 4 093 protein coding genes, 
with 323 being up-regulated.  
 
Motif enrichment statistics using the enumerative method 
All overlapping heptamers in the upstream regions of the K. marxianus DMKU3-1042 genome, up to 
1 000 bp from the translation start site of all up-regulated genes, were counted. This number for each 
heptamer was compared to the number found for all genes by using the binomial distribution. Since 
the background numbers were very high, nearly identical results were obtained compared to when 
the hypergeometric distribution was used. The background was taken to be the count of the same 
heptamer divided by the number of all heptamers, in all upstream regions. The observed heptamer 
frequency was the count of any particular heptamer, and the number of draws taken to be the number 



119  

of heptamers in the upstream regions of all up-regulated genes. The binomial distribution results in a 
p-value for finding the same number or more of a heptamer by chance. The p-values from multiple 
comparisons were corrected by multiplying with the number of comparisons, taken as the total 
number of possible heptamers (16 834), resulting in q-values.  
 
Motif matching 
Heptamers were scanned against motifs from the JASPAR database [Sandelin et al. 2004]. Motifs were 
downloaded as positional probability matrices (PPMs) and the scoring performed in algorithms 
developed for Reactomica [Schabort et al. 2016, Chapter 3]. For PPMs that were either longer or 
shorter than a heptamer, the best local match was used. To calculate the motif score, the relevant 
scores in the PPMs were summed since the genomic context (such as distance from the translation 
start site), on which the background nucleotide frequencies depend, could not be used for a complete 
probabilistic methodology in this position independent method. The score was normalised by the 
maximum possible score that could be obtained, which was equal to the length of either the heptamer 
or the PPM, whichever was the shortest. Clustering of PPMs was done by calculating a distance matrix, 
based on the distance at the best alignment between a pair of PPMs. The distance matrix was used to 
construct a distance tree.  
 
The Occam’s razor motif 
The hypothesis of the simplest explanation for over-represented sequences was used to explain the 
data of heptamer over-representation, and hence could be termed an Occam’s razor approach to the 
heptamer frequency problem. The hypothesis states that the up-regulated response was generated 
by a single, strong-acting TF, which dominated over the effects of minor transcription factors in this 
particular response. The alternative model is that multiple transcription factors contributed 
significantly to this particular response. To construct the Occam’s razor PPM, the top 30 over-
represented heptamers were aligned, and as the reverse complement where relevant. No gaps were 
allowed during the alignment. Missing values on either side of the alignment were filled in as gaps. To 
calculate a frequency matrix, each observed nucleotide was counted as unity, while each gap was 
counted as one of each of the four nucleotides to simulate counts for the unknown bases. The counts 
were converted into a PPM, which is defined as the Occam’s razor motif. This motif was compared to 
each of the short zinc finger TFs for identification. The process is show in Figure 1. 
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Figure 1. The method of converting over-represented heptamers into a PPM for the Occam’s razor approach. 
The PPM is most closely matched the pattern for Adr1, followed by YPR022C and Mig1.  
 
Sequence bias in neighbouring bases 
Over-represented heptamers were mapped to the upstream regions of all up-regulated genes. For 
each match, the 30 bp upstream and downstream of the heptamers were extracted and joined to the 
heptamer, and a list compiled. The lists were converted to frequency matrices, and character bias and 
the G-statistic calculated. 
 
Results 
 
To test the hypothesis that the same major regulator (Adr1) activates genes under glucose 
derepression both in S. cerevisiae and K. marxianus, differential expression values between the two 
species were compared, where fold changes in the values for S. cerevisiae were due to the knockout 
of the Adr1 TF gene (observed under glucose derepression), whereas changes in the values for K. 
marxianus were due to differences in the culture media used, namely using glucose or xylose as carbon 
source. The genes identified by Young et al. [2003] to be targets of Adr1 and their fold changes (due 
to knockout, intact ADR1 divided by knockout adr1) are given in Table 1, along with fold changes in 
RNA-seq values of K. marxianus from this study, calculated as the value in the xylose medium divided 
by the value in the glucose medium. The vast majority of these genes were conserved between the 
two yeasts, allowing a comparison. Notably, out of the nine peroxisomal targets of Adr1 with 
homologs in K. marxianus, eight were up-regulated in the xylose medium. These included the enzymes 
of β-oxidation, fatty acid transporters and the peroxisomal catalase gene CTA1. The genes PXA2 
(peroxisomal long-chain fatty acid import protein 1 / peroxisomal ABC transporter 2) and FAA2 (long-
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chain fatty acid-CoA ligase 2 / long-chain acyl-CoA synthetase 2) were reported to fall just below the 
statistically significant level by Young et al. [2003], and these too were strongly up-regulated in K. 
marxianus according to RNA-seq data, at 21-fold and 84-fold, respectively.  
 
Of the 16 genes involved in non-fermentative carbon metabolism with homologs, eight were up-
regulated and four were down-regulated in the xylose medium. Notably, among these up-regulated 
genes were CIT3 (citrate synthase 3) and ICL2 (2-methylisocitrate lyase) of the methylisocitrate 
pathway. Also up-regulated were ACS1 of the pyruvate dehydrogenase bypass and required for 
acetate utilisation, as well as the mitochondrial aldehyde dehydrogenase gene ALD4. The genes 
encoding both enzymes responsible for glycerol utilization, GUT1 and GUT2, were also up-regulated 
in the xylose medium, and were thus likely regulated by Adr1.  
 
Table 1. Comparison of differential gene expression in K. marxianus UFS-Y2791 and S. cerevisiae for putative 
Adr1 targets.  In column 6, ‘1’ refers to data from Young et al. 2003; ‘2’ refers to data from Young et al. 2002. In 
column four, a value of 1 was used to indicate that there was no significant change. 

gene 
gene ID  
(K. marxianus 
UFS Y2791) 

ADR1/adr1  
(S. cerevisiae) 
[Young et al. 
2003] 

Xyl/Glc  
(K. marxianus) 
[Schabort et al. 
2016] 

 Signi-
fincant 

ADR1 
site 
(ChIP) 

Function 

Non-fermentative carbon metabolism 
FDH2 None 64 - - 1 Formate dehydrogenase 
FDH1 None 52 - - - Formate dehydrogenase 
CIT3 g3431.t1 10 293.2 yes 1 Citrate synthase 
YML131W None 9.1 - - - Quinone oxidoreductase homolog 
ACS1 g3271.t1 9 245.3 yes 2 Acetate-CoA ligase 
ADH5 None 8.2 - - - Alcohol dehydrogenase 
GLO4 g1981.t1 7.7 1 no - Hydroxyacylglutathione hydrolase 
ICL2 g2681.t1 7 28.2 yes 1 2-Methylisocitrate lyase 
ADH2 g157.t1 6.8 0.004 yes 2 Alcohol dehydrogenase 
DIC1 None 6.3 - - - Dicarboxylate transport 
ALD4 g2199.t1 5.5 83.0 yes 1 Aldehyde dehydrogenase 
CYB2 g3255.t1 4.6 5.4 yes - L-Lactate dehydrogenase 
YPL201C None 4.5 - - - Glycerol metabolism? 
YPL113C g539.t1 4.4 1 no - Lactate dehydrogenase homolog 
ALD5 g2677.t1 3.5 0.006 yes - Aldehyde dehydrogenase 
YCP4 g2686.t1 3.4 2.372 yes - Flavodoxin 
OAC1 g1400.t1 3 0.18 yes - Oxaloacetate transport 
YGR043C None 2.6 - - - Transaldolase homolog 
YHL008C g366.t1 2.6 1 no - Formate/nitrite transport 
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gene 
gene ID  
(K. marxianus 
UFS Y2791) 

ADR1/adr1  
(S. cerevisiae) 
[Young et al. 
2003] 

Xyl/Glc  
(K. marxianus) 
[Schabort et al. 
2016] 

 Signi-
fincant 

ADR1 
site 
(ChIP) 

Function 

GUT1 g2372.t1 2.4 8.3 yes 2 Glycerol kinase 
MSS2 g1103.t1 2.4 1 no - Cox1 pre-mRNA splicing factor 
GUT2 g3514.t1 2.3 4.442 yes - Glycerol-3-P dehydrogenase 
CTP1 g4889.t1 2.1 0.14 yes - Citrate transport 

Peroxisome biogenesis and oxidation 
POX1 g3143.t1 55 103.8 yes 1 Acyl-CoA oxidase 
SPS19 g103.t1 17 269.4 yes - 2,4-Dienoyl-CoA reductase (NADPH) 
CTA1 g679.t1 16 11.7 yes 2 Catalase 
FOX2 g2436.t1 16 292.6 yes - 3-Hydroxyacyl-CoA dehydrogenase, enoyl-

CoA hydratase 
POT1 g4245.t1 14 253.3 yes 2 Acetyl-CoA C-acyltransferase 
YMR018W None 6.5 - - - Pex5 homolog; putative pts1 receptor 
PXA1 g1855.t1 5.7 20.0 yes - Peroxisome ABC transporter 
IDP3 None 5 - - - Isocitrate dehydrogenase (NADP+) 
DCI1 None 4.7 - - - Dodecenoyl-CoA -isomerase 
PEX11 g2902.t1 3.3 4.2 yes - Peroxisomal membrane protein 
YOR389W g141.t1 2.7 1 no - Pex21 interaction by two-hybrid 
PCD1 g1340.t1 2.2 28.4 yes - Peroxisomal nudix hydrolase 

Meiosis and sporulation 
ADY2 None 20 - - 1 Transporter, nitrogen utilization 
YPL033C None 15 - - - Meiosis 
DMC1 g1900.t1 7 1 no - Meiotic recombination 
ATO3 g680.t1 6.4 0.30 yes - Ammonia transport/Ady2 homolog 
SPO20 None 5.6 - - - Pro-spore membrane  γ-SNARE 
BNS1 g651.t1 3.2 1 no - Meiosis 
SPS4 g1840.t1 3.1 1 no - Meiosis 
CSM4 None 3 - - - Chromosome segregation meiosis 
SPR6 None 2.1 - - - Sporulation 

Amino acid transport and metabolism 
YLR126C None 7.7 - - - Gln amidotransferase motif 
LEU1 g1737.t1 6.3 1 no - Leucine metabolism 
ALP1 g3072.t1 4.9 1 no - Amino acid transport 
BAG7 None 3.8 - - - General amino acid permease 
CAR2 g1365.t1 3.6 1 no - Arg metabolism 
SSU1 None 3.3 - - - Sulfite transport 
YDR111C None 3.2 - - - Asp aminotransferase homolog 
ARO9 g3678.t1 2.8 3.6 yes - Aromatic amino acid aminotransferase 
BAT1 g2826.t1 2.8 0.33 yes - Branched amino acid aminotransferase 
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gene 
gene ID  
(K. marxianus 
UFS Y2791) 

ADR1/adr1  
(S. cerevisiae) 
[Young et al. 
2003] 

Xyl/Glc  
(K. marxianus) 
[Schabort et al. 
2016] 

 Signi-
fincant 

ADR1 
site 
(ChIP) 

Function 

PUT4 g988.t1 2.8 1 no - Neutral amino acid transport 
PTR2 g4948.t1,  2.5 - no - Peptide transport 
DAL3 g3892.t1 2.2 1 no - Allantoin Met/ureido metabolism 

Transcriptional regulation and signal transduction 
YDL156W None 4.6 - - - Tup1 homolog 
IME1 None 4.5 - - - Meiosis transcription factor 
SLZ1 None 4.3 - - - Meiosis transcription factor 
NRG1 g4637.t1 3.6 1 no - Glucose repression/invasive growth 
GIP2 g3085.t1 3.6 1 no 1 Glc7-regulator 
TEC1 g4465.t1 2.2 4.8 yes - TEA/ATTS family 
RRD1 g3512.t1 2.1 1 no - PP-2A regulator 

Other 
ETR1 None 3.2 - - 1 Dodecenoyl-CoA δ-isomerase, Fatty acid 

biosynthesis 
FOB1 g894.t1 2.9 1 no - rDNA recombination 
DIA3 g3171.t1 2.6 0.048 yes - Acid phosphatase, pseudohyphal growth 
DBR1 g3507.t1 2.6 1 no - RNA lariat debranching enzyme 
ECM8 None 2.5 - - - Cell wall organization and biogenesis 
GSY1 None 2.4 - - - Glycogen synthase 
TIR1 None 2.4 - - - Structural constituent of cell wall 
TRF4 None 2.4 - - - Mitotic chromosome condensation 
GPT2 g1977.t1 2.1 1 no - Glycerol-3-phosphate O-acyltransferase, 

phospholipid Biosynthesis 
YPC1 None 2.1 - - - Ceramidase 
BTN2 g2051.t1 2.1 1 no - Regulation of pH 

 
By contrast, enzymes involved in meiosis and sporulation, amino acid transport and metabolism, 
transcriptional regulation, signal transduction and other processes that have been associated with 
Adr1 in the knockout microarrays study, were mostly not differentially regulated. Further, a 
substantially lower fraction of these genes were conserved between the strains as opposed to those 
in central carbon metabolism. 
 
In total, the 46 homologs in K. marxianus had 18 up and 7 down-regulated genes, resulting in a highly 
significant enrichment score of 9.9 standard deviations away from a random mean, and thus a 
vanishingly small probability of being a randomised sample of 46 genes, given the background. Using 
only the peroxisomal and non-fermentative carbon metabolism targets resulted in an enrichment 
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score of 10.8. Adr1 is, therefore, a putative regulator of the glucose de-repressing response in the 
defined xylose mineral medium, considering experimental evidence from the model species.  
 
A good correspondence was also found between the 40 most significantly up-regulated genes in S. 
cerevisiae under derepressing conditions [Young et al. 2003] and their homologs in K. marxianus 
(Tables 2 and 3). RNA-seq data were both read-mapped to the UFS-Y2791 draft genome from previous 
work [Schabort et al. 2016, Chapter 3] and to the complete genome of strain DMKU3-1042 from 
Lertwattanassakul et al. [2015]. Annotations proved very similar, as did the differential expression 
statistics. Of the 40 genes in S. cerevisiae, 27 and 25 genes could be mapped to the UFS Y2791 and 
DMKU3-1042 genomes, respectively. Of these, 63% and 64% were also very strongly up-regulated. 
Differences were found with PCK1, SFC1, YKL187C, YAT2, MPC3, IDP2, SUE1, which were constitutively 
expressed under both the glucose and xylose conditions. In addition, ATO3 and ICL1 were both down-
regulated. 
 
Table 2. The 40 most significantly glucose-derepressed genes in S. cerevisiae in comparison with the glucose-
xylose response of homologs in K. marxianus. Transcriptomic data of knockout S. cerevisiae strains were from 
Young et al. [2003]. RNA-seq data from our study were both read-mapped to the UFS-2791 draft genome 
assembly and to the DMKU3-1042 complete genome assembly from Lertwattanassakul et al. [2015].   

ORF Gene 

Gene 
(K.marx 
UFS) 

Gene 
(K.marx 
DMKU) 

DR/R 
(S.cer) 
[Young 
et al. 
2003] 

ADR1/ 
adr1 
(S.cer) 
[Young 
et al. 
2003] 

SNF1/  
snf1 
(S.cer) 
 [Young 
et al. 
2003] 

CAT8/ 
cat8 
(S.cer)  
[Young 
et al. 
2003] 

Xyl/Glc 
RNA-seq 
(on K.marx 
UFS draft) 
[Schabort 
et al. 2003] 

Xyl/Glc 
RNA-seq 
(on K.marx 
DMKU) 
[Schabort 
et al. 2003] 

regulators 
predicted 

YLR377C FBP1 g2042.t1 gene4146 130 0.8 36 7.4 27.3 25.4 Cat8 
YKL217W JEN1 g4765.t1 gene1090 98 3.3 28 2.1 156 145 Cat8 
YGR236C SPG1   92 15 5 0.5   Adr1 
YKR097W PCK1 g3511.t1 gene2388 92 1.4 180 3.6 1 1 Cat8 
YJR095W SFC1 g2212.t1 gene4880 78 1.1 170 6.2 1 1 Cat8 
YIL057C RGI1 g3353.t1 gene4421 77 16 8.9 0.8 3.1 3.2 Adr1 
YMR107W SPG4 g369.t1 gene1771 75 2.3 18 0.5 197 182  YCR010C ADY2  gene842 72 20 32 9.3  620 Adr1,Cat8 
YDR384C ATO3 g680.t1 gene1415 55 6.4 2 4.6 0.30 0.29 Adr1,Cat8 
YPL276W FDH2   50 64 5.1 1.8   Adr1 
YPR001W CIT3 g3431.t1 gene4678 50 10 1.4 0.7 293 302 Adr1 
YGL205W POX1 g3143.t1 gene1095 44 55 0.8 2.3 104 71.4 Adr1,Cat8 
YPR002W PDH1 g3432.t1 gene4677 44 2.1 1.1 1 32.8 33.8 ? 
YAL054C ACS1 g3271.t1 gene2271 43 9 30 3.5 245 235 Adr1,Cat8 
YOR388C FDH1   35 52 4.6 1.8   Adr1 
YKL187C YKL187C g3857.t1 gene2946 34 2.7 6.2 3.2 1 1 Cat8 
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ORF Gene 

Gene 
(K.marx 
UFS) 

Gene 
(K.marx 
DMKU) 

DR/R 
(S.cer) 
[Young 
et al. 
2003] 

ADR1/ 
adr1 
(S.cer) 
[Young 
et al. 
2003] 

SNF1/  
snf1 
(S.cer) 
 [Young 
et al. 
2003] 

CAT8/ 
cat8 
(S.cer)  
[Young 
et al. 
2003] 

Xyl/Glc 
RNA-seq 
(on K.marx 
UFS draft) 
[Schabort 
et al. 2003] 

Xyl/Glc 
RNA-seq 
(on K.marx 
DMKU) 
[Schabort 
et al. 2003] 

regulators 
predicted 

YDR256C CTA1 g679.t1 gene4095 34 16 7.6 3.3 11.7 11.5 Adr1,Cat8 
YKR009C FOX2 g2436.t1 gene4660 33 16 2.4 1.5 293 285 Adr1 
YGR067C YGR067C g4524.t1  33 0.9 39 7.1 16.2  Cat8 
YNL195C YNL195C   29 3 7.7 0.8   Adr1 
YER065C ICL1 g64.t1 gene4423 28 0.4 77 20 0.12 0.14 Cat8 
YER024W YAT2 g135.t1 gene4133 26 0.6 5.6 2 1 1 Cat8 
YGR243W MPC3 g3290.t1  26 2.8 6.1 0.6 1   YAR035W YAT1 g3828.t1 gene181 25 0.9 7.4 1.5 3.6 3.5  YMR206W YMR206W g4810.t1 gene4161 25 1.2 5.9 1 7.2 8.1  YIL160C POT1 g4245.t1 gene1055 22 14 1.5 0.4 253 218 Adr1 
YPR150W YPR150W   22 4.3 2 1.3   Adr1 
YLR174W IDP2 g4616.t1 gene1816 21 0.9 16 2.5 1 1 Cat8 
YLR126C YLR126C   21 7.7 1.5 1   ? 
YBR050C REG2   21 1.5 42 5   Cat8 
YEL008W YEL008W   21 1.1 7.5 1.5    YPR006C ICL2 g2681.t1 gene4663 21 7 4 2.1 28.2 31.2 Adr1,Cat8 
YHL032C GUT1 g2372.t1 gene5110 20 2.4 6.8 2.3 8.3 7.9 Adr1,Cat8 
YHR139C SPS100   19 0.5 1 0.7   ? 
YPR151C SUE1 g1464.t1 gene1368 18 3.8 1.9 1.2 1 1 Adr1 
YLR267W BOP2   17 0.4 0.9 0.1   ? 
YNR002C FUN34/ATO2 g766.t1  16 1 1.3 0.6 607  ? 
YNL009W IDP3   15 5 2 1.6   Adr1 
YNL013C YNL013C   15 3 1.6 0.1   ? 
YER179W DMC1 g1900.t1 gene1006 14 7 1.8 0.9 1 1 Adr1 

 
Table 3. Summary of the most significantly glucose-derepressed genes in S. cerevisiae in comparison with the 
glucose-xylose response of homologs in K. marxianus.  

  

ΔAdr1  
(S. cerevisiae) 
[Young et al. 
2003] 

ΔSnf1  
(S. cerevisiae) 
[Young et al. 
2003] 

ΔCat8  
(S. cerevisiae) 
[Young et al. 
2003] 

Xyl/Glc RNA-seq  
(on K. marxianus UFS-
Y2791 draft genome) 
[Schabort et al. 2003] 

Xyl/Glc RNA-seq 
(on K. marxianus 
DMKU3-1042 genome) 
[Schabort et al. 2003] 

total 40 40 40 27 25 
up(significant) 19 29 17 17 16 
down(significant)    2 2 
%up 48 73 43 63 64 
%down       7 8 

 



126  

Based on the transcriptome data, there is thus substantial evidence for the role of Adr1 but also Cat8 
in the xylose response, given the RNA-seq data from glucose and xylose cultivations and considering 
the prior information of their role in glucose repression in S. cerevisiae, in particular for the 
peroxisomal genes. The next objective was to find evidence for the binding sites of these TFs in the 
regulatory regions of up-regulated expressed genes.  
 
The enumerative approach 
The statistical test for over-representation of k-mers in all up-regulated genes (323) with subsequent 
correction for multiple comparisons resulted in five heptamers with q-values below 0.05: CCCCACA, 
ACCCCAG, TGGAGAA, TTCCCCA and GCCGCGC. These were mapped to DNA binding motifs and are 
presented in Table 4. Notably, Adr1 and Mig1 were among the TFs mapping to these heptamers. 
Multiple PPMs may map to the same heptamer. A useful representation is given by the k-mer network 
in Figure 2. This map allows inspection of all motifs matching to a heptamer and reveals overlapping 
specificity. From the k-mer network it can be seen that the stress response factors Msn2 and Msn4, 
and Rgm1 map to all three heptamers, while Adr1 and Mig1 both map to only one heptamer, 
ACCCCAG. The similarity between the four over-represented heptamers is evident, and the challenge 
is to identify which TF best fits the heptamers. A pattern common to four of the five heptamers is a 
repeat of four cytosines, adjacent to adenine or thymidine, typical of binding by zinc finger proteins. 
The pattern TGGAGAA (or TTCTCCA on the opposite strand) is almost identical to TTCCCCA. Decreasing 
the threshold of matching between heptamers and PPMs to 0.5 revealed no additional matches 
between Adr1 and the four heptamers.  
 
Table 4. Over-represented heptamers in upstream regulatory regions of 323 up-regulated genes, with a q-
value smaller or equal to 0.05 after correcting p-values for multiple comparisons using the total number of 
heptamers (16 384) as multiplier. The minimum fractional match score between heptamer and PPM was set to 
0.7.  

JASPAR 
Matrix 
ID 

TF Heptamer p q 
motif 
score/ 
potential  

pattern 

9680 YPR022C CCCCACA 4.17E-09 6.83E-05 0.84 CCCCAC[CG] 
9675 YML081

W CCCCACA 4.17E-09 6.83E-05 0.82 [AC]CCCC[GT]C[AT][CT] 
9669 YGR067C CCCCACA 4.17E-09 6.83E-05 0.81 [AG]CCCC[AG]C[AT][CT][CT][AGT][GT][CGT][AG] 
9585 MSN2 CCCCACA 4.17E-09 6.83E-05 0.80 AGGGG 
9586 MSN4 CCCCACA 4.17E-09 6.83E-05 0.80 AGGGG 
9685 ZMS1 CCCCACA 4.17E-09 6.83E-05 0.79 T[AT]CCCCGC[AT] 
9582 MIG2 CCCCACA 4.17E-09 6.83E-05 0.78 CCCCGC[ACG] 
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9583 MIG3 CCCCACA 4.17E-09 6.83E-05 0.77 CCCCGC[AG] 
9610 RGM1 CCCCACA 4.17E-09 6.83E-05 0.75 AGGGG 
9577 MET31 CCCCACA 4.17E-09 6.83E-05 0.75 [AG][CG]TGTGGCG 
9578 MET32 CCCCACA 4.17E-09 6.83E-05 0.73 [AC]GCCACA 
9576 MET28 ACCCCAG 1.83E-07 3.00E-03 0.83 CTGTGG 
9585 MSN2 ACCCCAG 1.83E-07 3.00E-03 0.80 AGGGG 
9586 MSN4 ACCCCAG 1.83E-07 3.00E-03 0.80 AGGGG 
9610 RGM1 ACCCCAG 1.83E-07 3.00E-03 0.75 AGGGG 
9657 USV1 ACCCCAG 1.83E-07 3.00E-03 0.73 [AT][AT][AT]TTCCCCCTGAA[CT][CT][AT][GT][GT][CG] 
9581 MIG1 ACCCCAG 1.83E-07 3.00E-03 0.72 [AC]CCCC[AG]C 
9512 ADR1 ACCCCAG 1.83E-07 3.00E-03 0.71 [AC]CCCCAC 
9676 YNR063W TGGAGAA 4.35E-07 7.12E-03 0.72 TCGGAGAT 
9598 PDR8 TGGAGAA 4.35E-07 7.12E-03 0.71 [AG]CGGAGAT 
9585 MSN2 TTCCCCA 5.99E-07 9.81E-03 0.80 AGGGG 
9586 MSN4 TTCCCCA 5.99E-07 9.81E-03 0.80 AGGGG 
9604 RDR1 TTCCCCA 5.99E-07 9.81E-03 0.77 TGCGGAA[AC] 
9610 RGM1 TTCCCCA 5.99E-07 9.81E-03 0.75 AGGGG 
9685 ZMS1 TTCCCCA 5.99E-07 9.81E-03 0.74 T[AT]CCCCGC[AT] 
9555 HAL9 TTCCCCA 5.99E-07 9.81E-03 0.73 CGGAA 
9607 REB1 TTCCCCA 5.99E-07 9.81E-03 0.71 [AG]TTACCCGG 
9575 MCM1 TTCCCCA 5.99E-07 9.81E-03 0.70 CC[CT][AT]ATT[AG]GGAA 
9534 DAL81 GCCGCGC 3.06E-06 5.01E-02 0.86 AAAAGCCGCGGGCGGGATT 
9656 UME6 GCCGCGC 3.06E-06 5.01E-02 0.75 TCGGCGGCTAA[AT]T 
9619 RSC30 GCCGCGC 3.06E-06 5.01E-02 0.74 [ACG][CG]CGCGCG 
9597 PDR3 GCCGCGC 3.06E-06 5.01E-02 0.71 TCCGCGGA 
9639 STP2 GCCGCGC 3.06E-06 5.01E-02 0.71 [CT][AG][AG][AT][CT]GGCGCCGCA[CT][CG][AC][AC][

GT][AT] 
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Figure 2. Heptamer network of over-represented heptamers in upstream regulatory regions of 323 up-
regulated genes, with a q-value smaller or equal to 0.05 after correction for multiple comparisons using the 
total number of heptamers (16 384) as multiplier. The minimum fractional match score between heptamer and 
PPM was set at 0.7. 
 
The best match to the CSRE motif of Cat8, with consensus CCGGA[AG], was a weak match to ACCCCAG 
with a matching score of 0.58, violating the consensus. Thus, Cat8 did not seem to be a major player 
in the glucose to xylose response. Other Snf1 dependent TFs Rsa2, Sip4 and Hap4 were absent from 
the list. The top four heptamers were so closely related that most, if not all, could possibly be matched 
by Adr1. A clearly different pattern was observed with the heptamer GCCGCGC, which had an over-
representation score q of 0.05 after correction for multiple comparisons. The alignment of the top 
four is shown in Figure 3. Mig1 may also be relevant along with Adr1. The consensus core GC-box 
binding site for Mig1 was described as [GC][CT]GG[GA]G [Nehlin et al. 1991]. The reverse GC-box can 
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be described as C[CT]CC[GA][GC]. The best two heptamers in our analysis, CCCCACA, ACCCCAG, 
TTCCCCA, and TTCTCCA, were consistent with the reverse GC-box and with Adr1. The heptamers 
TCCCCGC and CTGGGGT (ACCCCAG) were very close to significance after the severe correction for 
multiple comparisons at q-values of 0.08 and 0.17, both matching Mig1.  
 

 
Figure 3. Four heptamers over-represented in upstream regions of all up-regulated genes in K. marxianus, 
after correction for multiple comparisons, along with the consensus motifs for Adr1 and Mig1.   
 
However, a significant bias of the sites on the 5’-end of the GC-box towards A and T has been 
described, the so-called AT-box, and the bias of the third pyrimidine was strongly towards G and not 
A [Lundin et al. 1982]. The forward consensus motif is, therefore, perhaps better described as 
[ATG][AT][AT][AT][ATG]N[GC][TC]GGGG and the reverse of this pattern is 
CCCC[GA][GC]N[CAT][AT][AT][AT][CAT]. On searching the list of top heptamers for an AT-box, it was 
surprising to find that almost none of the top 100 over-represented heptamers could be classified as 
AT-rich. Only poly-A and poly-T was in this list. Poly-T was very close to the significance threshold after 
correction for multiple comparisons at q = 0.056 (p = 3.44×10-6), while poly-A was at q = 1.3 (p = 
7.93×10-5). It is important to mention that the simple correction used here could be interpreted as 
very severe. Either poly-A or poly-T may serve as an AT-box next to a GC-box. However, as the AT-box 
is less well conserved compared to the GC-box, the enumerative method might not reveal an AT-box. 
 
The highest scoring heptamer by far was CCCCACA with a q-value of 6.83×10-5. It was best matched by 
a lesser known zinc finger protein YPR022C, followed by YML081W, a probable TF TDA9 
(Topoisomerase I damage affected protein 9), and zinc finger protein YGR067C. There is currently no 
conclusive evidence for the role of any of these in S. cerevisiae. Other matches were to better known 
TFs MSN2, MSN4, ZMS1, MIG2, MIG3, RGM1, MET31 and MET32 which are associated with various 
biological processes. A clustering of motifs is presented in Figure 4 to show the relationships among 
some of the zinc finger DNA binding motifs highlighted in this Chapter.  
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Figure 4. Similarity between selected PPMs. A local minimum distance was used as the criterion for clustering. 
The regular expressions indicate sequence specificity only, while clustering was performed using the local 
minimum distance criterion between PPMs. The regular expressions were generated by taking all high-scoring 
characters in each position, of which the total probability sums to at least 0.85.  
 
Discovery of an Occam’s razor motif 
The short k-mer length rendered it difficult to decide on the best fit to a PPM. On close inspection it 
was found that in the top 30 heptamers, many contained a stretch of four cytosines, possibly with one 
replacement at the second C to a T, and that these, along with reverse complements, aligned well 
(Table 5). The process of constructing the Occam’s razor PPM is illustrated in Figure 1.  
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Table 5. The top 30 over-represented heptamers in the upstream regulatory regions of the genes up-regulated 
in the xylose medium. The GC-box of the zink finger core binding site is indicated in bold, suggestive of Adr1 or 
Mig1. 

K-mer p q 
CCCCACA 4.17E-09 6.83E-05 
ACCCCAG 1.83E-07 0.003 
TGGAGAA 4.35E-07 0.007 
TTCCCCA 5.99E-07 0.010 
GCCGCGC 3.06E-06 0.050 
TTTTTTT 3.44E-06 0.056 
TCCCCGC 4.89E-06 0.080 
TTGGAGA 5.41E-06 0.089 
TGCTACG 6.26E-06 0.102 
CTGGGGT 1.09E-05 0.179 
TATGGGG 1.22E-05 0.199 
GCGACAG 1.22E-05 0.199 
AACCCCA 1.35E-05 0.221 
TCTCCTC 1.97E-05 0.323 
TGCCCAG 2.48E-05 0.407 
CCAGGCA 2.66E-05 0.435 
CCCCAGA 4.13E-05 0.677 
TAGCAAA 4.32E-05 0.708 
CCCCCCC 4.91E-05 0.804 
CGCCGCG 5.29E-05 0.866 
GTTGCTA 5.58E-05 0.914 
GTGCGCC 5.75E-05 0.942 
AAAAAAA 7.93E-05 1.299 
TGGGGTA 1.00E-04 1.641 
TGCGCCT 1.14E-04 1.874 
TGGCACG 1.18E-04 1.925 
TACCCCA 1.25E-04 2.051 
GTTACGT 1.28E-04 2.095 
CAGGCAC 1.35E-04 2.205 

 
Remarkably, the Adr1 motif closely resembled the PPM from combined heptamers. The strong bias to 
adenine at position seven was consistent with the description of the Adr1 motif, as were the allowance 
of a thymidine at position four and the slight bias towards A or T in the first two positions [Cheng et 
al. 1994]. Taking the combination of the top heptamers was necessary, as Figure 5 (top panel) shows 
that when the heptamer was taken on its own and mapped to the genome, there was a lack of 
sequence bias immediately upstream or downstream of the heptamer.  
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Figure 5. PPMs matching to the top scoring heptamer CCCCACA. The lack of sequence bias immediately 
upstream or downstream is evident in the top panel. 
 
The Adr1 gene is strongly up-regulated in xylose medium 
In support of the involvement of Adr1, its transcript levels were 36-fold up-regulated. Although the 
activity of TFs involved in glucose derepression in S. cerevisiae seem to be mostly regulated by post-
translational modifications (Chapters 6 and 7), it is unlikely that such a high up-regulation in transcript 
levels would not lead to increased activity. To the contrary, CAT8 and RDS2 were constitutively 
expressed and so also were components of the HAP complex HAP2, HAP3 and HAP5, whereas HAP1 
was down-regulated. It is interesting to note that in addition, SIP4 was up-regulated moderately at 
5.5-fold and MIG1 was down-regulated 3.9-fold. The latter two TFs would likely play a role, but likely 
in fewer genes than Adr1. As is typical for the kinases, the gene of Snf1, which controls the activity of 
all these TF, was constitutively expressed in both the glucose and xylose media. 
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Sequence bias in neighbouring bases 
The five over-represented heptamers were mapped to the upstream regions of the 323 up-regulated 
genes. Figures 6 to 10 show the alignments of the regions, along with character bias and the G-statistic. 
Although there was no bias immediately adjacent to the heptamers, which would help with more 
accurate TF identification, there was some evidence of bias towards the same Adr1-type GC-box 
pattern in the neigbouring regions. This pattern is suggestive of these TFs, likely Adr1, binding as 
dimers, although this was not conclusive. Notably, there was a lack of a putative AT-box, which would 
have suggested that Mig1 would be the TF and not Adr1. Also, the heptamer GCCGCGC seems to be 
located in GC-rich regions. 
 

 

 

 
Figure 6. Sequence bias in bases neighbouring the heptamer CCCCACA. Bias for C towards the 5’ side of the 
reverse GC-box suggests that the TF might bind as a dimer.  
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Figure 7. Sequence bias in bases neighbouring the heptamer ACCCCAG. Bias for C towards the 5’ and 3’ sides 
of the reverse GC-box suggests that the TF might bind as a dimer.  
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Figure 8. Sequence bias in bases neighbouring the heptamer TGGAGAA. Bias for C towards the 3’ side of the 
GC-box suggests that the TF might bind as a dimer.  
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Figure 9. Sequence bias in bases neighbouring the heptamer TTCCCCA. No indication of bias is observed.  
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Figure 10. Sequence bias in bases neighbouring the heptamer GCCGCGC. The heptamer is found in a GC-rich 
region. 
 
In S. cerevisiae, the glucose derepression response in genes for the utilisation of alternative carbon 
sources is regulated mostly by the action of the Adr1 and Cat8 TFs, which are in turn regulated by the 
Snf1 kinase [Young et al. 2003, Broach et al. 2012]. Evidence is provided here that also in K. marxianus 
this response is likely mediated by Adr1, with Mig1 having a lesser effect. Efforts to reveal TF binding 
sites are complicated by the fact that TFs bind only short sequences, with significant variation in the 
sequences they bind. Through both using the biological prior information of the target gene set in the 
model species, as well as the unbiased enumerative approach, Adr1 involvement was highlighted. 
Other TFs Cat8, Sip4 and Rds2 do not seem to make up the larger part of the response, although these 
may likely play a lesser role not revealed by the Occam’s razor approach.  
 
Assuming that the response to the absence of glucose and the presence of xylose was analogous to 
the condition of glucose depletion in S. cerevisiae at the end of the exponential phase [Young et al. 
2003], there is evidence of transcriptional rewiring that has taken place during genome evolution. The 
biological explanation is not clear for most of the genes that were not up-regulated in K. marxianus as 
opposed to S. cerevisiae during glucose derepressed conditions. However, the genes PCK1 
(phosphoenolpyruvate carboxykinase), SFC1 (succinate/fumarate mitochondrial transporter) and ICL1 
(isocitrate lyase) are typical gluconeogenic enzymes, and their constitutive expression pointed to the 
requirement for an additional activator for some gluconeogenic genes, including those of the 
glyoxylate cycle. This activator might be Rds2, a known activator of gluconeogenesis [Soontorngun et 
al. 2007]. The targets of Rds1 include PCK1 and SFC1, as well as IDP2 (isocitrate dehydrogenase 2) 
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which was also not up-regulated, as opposed to the case in S. cerevisiae derepression. Among the 
putative Adr1 targets of S. cerevisiae, the best conserved genes were those of the peroxisome and 
central carbon metabolism, for which the vast majority of genes were also strongly up-regulated in K. 
marxianus grown in the xylose medium as opposed to the glucose medium.  
 
Conclusions 
 
There is substantial evidence that Adr1 plays a major part in the up-regulation of peroxisomal genes 
in a xylose medium, as well as of various other genes involved in the utilisation of alternative carbon 
sources. Although both biological prior information and genomics evidence corresponded with Adr1 
as the main effector, the Occam’s razor approach and heptamer counting in general suffered from the 
shortness of the binding site description. In particular, it can in principle not reveal TFs with relatively 
few binding sites and, therefore, misses other TFs. To this end, the higher length of some PPMs should 
be used to full advantage by motif scans. In addition, the wealth of modern experimental data on the 
model species S. cerevisiae may be used to reveal complete genome-scale gene regulatory networks. 
As part of the study, a likelihood framework was designed for this purpose and is the subject of follow-
up work.  
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Chapter 5 
 
A likelihood framework for gene regulatory networks 
 
 
 
Abstract 
 
Previously in this study, a draft genome was assembled for Kluyveromyces marxianus strain UFS-Y2791 
and a detailed transcriptomic analysis performed to study the differential genetic response in glucose 
and xylose defined culture media. It was also shown by using the enumerative approach of heptamer 
frequency comparisons that Adr1 was a likely regulator for the genes that were up-regulated in the 
xylose medium. This enumerative method lacks in that it can only reveal a small subset of potentially 
important transcription factors in the differential regulation, and that it does not make full use of the 
knowledge of DNA binding specificity of transcription factors. To this end, a likelihood method was 
developed in this chapter for the construction of gene regulatory networks. The likelihood based 
approach makes use of several sources of evidence for a given transcription factor-gene interaction. 
Likelihoods were assigned for motif strength, motif conservation among sister species, common Gene 
Ontology terms, and experimental evidence for the interaction in the model species Saccharomyces 
cerevisiae. Finally, reporter transcription factor enrichment was used to reveal the differentially active 
transcription factors. The transcription factors Gcn4 and Gcr2 were elucidated as the most significantly 
differentially active regulators associated with genes that were down regulated in the xylose medium. 
This observation is consistent with prior knowledge of functioning of these activating transcription 
factors. It was notable that the Gcn4 gene itself was constitutively expressed, suggesting that the 
method is superior in detecting differential activity of transcription factors as opposed to the less 
mechanistic reverse engineering methods. 
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Introduction 
 
The study of gene regulation in model organisms such as Escherichia coli, Saccharomyces cerevisiae 
and humans is an active field of research. Many different approaches have been proposed to construct 
gene regulatory models. The most established method is the reverse-engineering approach in which 
multiple gene expressions datasets such as microarrays are used to discover both the underlying 
interaction network and to fit parameters of activation or repression. The reverse-engineering 
approach may be based on dynamic Bayesian networks [Sachs et al. 2005], regression models [Haury 
et al. 2012] or mutual information [Basso et al. 2005, Wang et al. 2009]. An international modelling 
challenge, the DREAM5 project (Dialogue on Reverse Engineering Assessment and Methods) was 
organised to compare the prediction accuracies of a number of methods in a competition [Marbach 
et al. 2013]. It was found that it was much more difficult to infer eukaryotic networks in the reverse 
engineering approach compared to bacteria. This is most probably due to the multiple layers of gene 
regulation found in eukaryotes, which includes regulation of chromatin condensation. A shortcoming 
of the reverse engineering approach is that the level of activity of a transcription factor (TF) cannot 
necessarily be predicted by either the expression level of its mRNA [de Sousa et al. 2009] or even that 
of the protein, while differential expression of the transcription factor gene itself is required to make 
an inference of an interaction in these methods. TFs, like all proteins, are post-translationally modified 
by mechanisms such as phosphorylation which alter their state of activity, and accordingly a linear 
relationship between the measured transcript levels and the activity of the TF does not exist, as seen 
in the expression levels of its targets. Another drawback of the reverse engineering approach is also 
that the method relies heavily on a large number of transcriptome datasets, making it a costly exercise. 
Another potential pitfall is that many of the putative interactions from large-scale transcriptome-
based network construction may arise from secondary transcriptional effects. For instance, the gene 
knockout of a TF may affect another major TF, resulting in false assignment of a TF-target interaction. 
Most important, it has also been shown that co-expression is highly confounded by correlations with 
master regulators such as PCNA and other cell cycle related proteins [Venet et al. 2011]. It is thus 
imperative to approach the problem by using mechanistic information, such as the presence of DNA 
binding motifs, to its full extent, as well as evidence of direct physical interaction between a TF and its 
target DNA. 
 
For model species, many years of research have led to the elucidation of specific interactions between 
TFs and their targets. High-throughput methods such as Chip-chip and Chip-seq, producing large 
datasets of direct physical TF-target interactions, have also been developed in recent years [Bulyk 
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2006]. Other important data types include microarray analyses of TF knockout strains, in which the 
differentially expressed targets become likely candidates as targets for the knockout TF [Harbison et 
al. 2004, Hu et al. 2007]. Such datasets are captured in large databases such as the Saccharomyces 
Genome Database (SGD) [Cherry et al. 2011]. These above-mentioned datasets are so large that the 
quality of the content might be underestimated simply due to the size. These hold tremendous 
potential for integrative network analysis, revealing new insights into regulation [Wang et al 2012, 
Gitter et al. 2009]. A gap in methods to fully employ such data into a compact representation of 
regulatory interactions currently exists, and especially to reveal how they relate to known pathways 
and processes.  
 
For non-model species, including the industrially important yeast Kluyveromyces marxianus, genome-
wide gene regulatory design remains unexplored, as it is for the vast majority of non-model species. 
To enable engineering of such species for the efficient production of biochemicals, a more detailed 
understanding of their gene regulation is required. Discovering individual interactions by knockouts 
or gel-shift assays might be the most accurate, but is, however, not cost effective at the genome scale, 
nor will such a project be completed in a reasonable amount of time. High-throughput experiments 
are a better starting point; however, such experiments are also very expensive. A different approach 
may be to use the wealth of information on model species, including the high-throughput data 
available for these [Cherry et al. 2011], and by using the evidence for DNA-binding sites in the species 
of interest together with the proper statistics to infer the gene regulatory interactions in the species 
of interest. This may be the best starting point for a species with a newly sequenced genome. Such a 
gene regulatory network can already make predictions about TFs that are important in a certain 
response. Ideally, master regulators may be found which may be manipulated to cause a drastic shift 
towards a more preferable metabolic pattern [Sonderegger et al. 2004]. For instance, finding a 
regulator that might increase fermentative metabolism in Crabtree negative, xylose utilising yeasts 
would be an attractive outcome for biofuel production. 
 
The first aim of this chapter was to develop a method for constructing a gene regulatory network in a 
non-model species (K. marxianus) by using the draft genome of the UFS-Y2791 strain of K. marxianus 
(Chapter 2), predicting TF binding sites, and combining this information with high-throughput datasets 
of TF-target interactions in a model species (S. cerevisiae) to construct a gene regulatory network. This 
required a significant amount of code development to perform genome-scale motif finding, handling 
large datasets, and especially to control every step of the integration process. The software developed 
here was developed to enable the use of a fragmented draft genome, as would originate from 
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sequencing and de novo assembly of a new genome. The gene regulatory networks that were 
constructed were based on a statistical likelihood framework that combines multiple sources of 
evidence. 
 
The second aim was to elucidate TFs that were likely important in the differential genetic response 
from glucose to xylose as the carbon source. For this, the gene set enrichment approach was followed, 
otherwise known as the reporter TF method [Patil and Nielsen 2005], but using high-quality RNA-seq 
data. Instead of using the correlations between TFs and targets in transcriptomic data as a means to 
elucidate the regulatory interactions, the network was derived by a more mechanistic explanation 
based on the DNA binding motifs and experimental evidence of an interaction in the model species, 
while the RNA-seq transcriptomic data was used to select the best model based on enrichment 
statistics. 
 
It is important to note that the gene set enrichment approach taken here to draw the conclusions 
about active TFs is inherently robust to potential errors that may arise in the assignment of TF-target 
interactions, as multiple genes in the target gene set contribute to the conclusion. The conclusion 
about the differential activity of a TF is more important than the presence of any individual interaction. 
In the same fashion of other chapters, the networks are visualised to gain insight into both global 
regulatory features and regulation of individual pathways. This chapter focusses on the methods 
developed and the results are based on the initial draft genome [Schabort et al. 2016]. 
 
Materials and Methods 
RNA-seq data 
RNA-seq data were generated in previous work for the strain UFS-Y2791 [Chapter 3, Schabort et al. 
2016]. The data were mapped to the draft genome of K. marxianus UFS-Y2791 [Chapter 2] using 
TopHat [Trapnell et al. 2009]. Differential expression was calculated using CuffDiff [Trapnell et al. 
2013].  
 
Motif scans 
Motif scans were performed for all regulatory regions in K. marxianus UFS-Y2791, defined as the 1 000 
bp upstream of a gene, which were not allowed to overlap with a neighbouring gene, allowing a match 
in either direction. A motif likelihood Lm was calculated for a motif match by calculating the ratio of 
the probability of the sub-sequence matching the model, divided by the probability of a sub-sequence 
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matching the background model of nucleotide frequencies in the upstream regions, specific to that 
distance from the translation start site (TLSS). Each motif likelihood score Lm was calculated as the 
product of independent occurrences as below, where m is the probability from the PPM matching to 
the character at position i, and b is the background frequency of the character at position i. 

mܮ =  ∏ ݉௡௜ [݅]
∏ ܾ௡௜ [݅൧  

In this likelihood formulation, the background frequency of each nucleotide A, C, G and T is taken into 
account to give an estimate of the statistical significance of a motif match. The background nucleotide 
frequencies were calculated in a sliding window of 30 base pairs in all upstream regions at various 
distances from the TLSS. Effectively, the motif score was normalised to the background frequencies at 
the relevant distance from the TLSS. In this likelihood formulation, the background frequency of each 
nucleotide A, C, G and T is taken into account to give an estimate of the statistical significance of a 
motif match. Moreover, the nucleotide composition changes as a function of distance from the 
translation start site (TLSS). For convenience, an interpolating function was fitted for the background 
frequency of each nucleotide base as a function of position from the TLSS, in which the distances are 
negative values. Values further than 1 000 bp from the TLSS were assumed to have the same frequency 
as at 1 000 bp. 
 
The JASPAR database [Mathelier et al. 2014] contains a large number of DNA binding motifs, 
applicable to many different species and represented in the form of positional probability matrices 
(PPM). Of these, 177 are specified as fungal DNA binding sites, mapping to fungal transcription factor 
proteins from S. cerevisiae. Some PPMs in the database have a high degeneracy (high motif entropy) 
and are thus not very restrictive with regard to the sequences they bind. Others in the database have 
been specified as highly precise. The latter case could have arisen from a very small dataset containing 
the few DNA sequences observed to be bound by a TF. Absolutely precise PPMs (consensus 
sequences) would likely result in too a conservative matching criterion. Pseudocounts are usually 
applied in such a case, in which the non-unity nucleotide scores are altered to a small number to allow 
close matches. The choice of the pseudocount is, however, not arbitrary, and its effect has been 
previously explored and an optimal value estimated as a pseudocount for a given motif entropy 
[Nishida et al. 2008]. A proper algorithm to decide on the choice of the pseudocount was designed as 
part of the work in this chapter, based on the motif entropy. However, since the accuracy with which 
each of the PPMs have been constructed is not evident, pseudocounts for the motifs were not 
included.  
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In effect, (a) the motif entropy at each position in the PPM, (b) the length of a PPM, and (c) the 
background nucleotide frequencies all contribute to the final likelihood score. To demonstrate this 
effect and to be able to understand the results obtained from the genome-wide motif scan, a 
simulation was performed. Sn was defined as the average nucleotide score at any position along the 
length of the PPM. High values of Sn (such as 1) would correspond to highly precise PPMs (low 
entropy). Simulated values for Lm were calculated as follows, where n is the length of the PPM and b 
was assumed to be 0.25, which assumes that background nucleotide frequencies were all equal.  

݉ܮ =  ∏ ܵ݊௡௜ ∏ ܾ௡௜
 

Lm was calculated for every PPM length in the JASPAR database, from 5 to 21 bp, and at various values 
for Sn, from 0.3 to 1 (see Addendum 3, Figure 1). Based on these results, an initial cut-off for Lm was 
decided at 10 in order to save computational time.  
 
It is important to note that transcription of a gene is directional, and intergenic regions should be 
chosen according to direction of transcription. This was one of the most complicated aspects in this 
work, since positions with respect to the direction of transcription and those of the contig needed to 
be kept track of. Motifs were scanned both against the forward and reverse direction of each 
intergenic region. To limit the amount of data captured in this initial phase, only putative motifs with 
an Lm at or above 10 were considered. Only those within 1 000 bp from the TLSS were further 
considered and no lower limit for the size of an intergenic region was set. It was not considered a good 
strategy to use the number of times a motif occurred for the same gene as a measure of likelihood, as 
one could assume that a single TF bound to the DNA in the regulatory region should be sufficient to 
drive or suppress expression. 
 
Construction of a gene regulatory network 
All data processing and visualisation were performed in algorithms developed for Reactomica 
[Chapter 3, Schabort et al. 2016] implemented in the Wolfram language. A likelihood framework was 
developed to incorporate multiple sources of evidence, which is partly based on the idea of a naïve 
Bayesian network using Bayesian classifiers. A Bayesian classifier calculates the likelihood that one 
hypotheses (H1) is more likely, given the data, compared to a competing hypothesis (H0) [Duda et al. 
2001, Jansen et al. 2003, Collins et al. 2007, Chapter 1]. The likelihood L for an interaction was 
calculated as below where Lm is the motif likelihood, Lc the likelihood of motif conservation among 
sister species, Lg the Bayesian classifier for common GO terms, and Li the likelihood set when 
observing the same interaction in the model species or not. 



147  

ܮ =  ݅ܮ×݃ܮ×ܿܮ×݉ܮ 
All observations were ranked by the final likelihood and the best interactions chosen, where the 
number may be some estimate of the total number of interactions, such as 10 000. This naïve Bayesian 
formulation is more suitably called a likelihood rank ratio, as the true number of interactions are 
unknown and some of the classifiers used are arbitrarily set. Therefore, the values might not be 
interpretable as true likelihoods in the strict probabilistic sense. The method of calculating Lm was 
described above. For Lc, seven Kluyveromyces genomes were aligned using the progressiveMauve 
multiple genome aligner [Darling et al. 2010] and the alignment segments converted to conservation 
scores as described in Addendum 2. Lc was calculated as the ratio of the conservation score in the 
frame of a putative motif in K. marxianus, divided by that found in two 20 bp neighbouring regions 
around the motif, each normalised by the number of base pairs in the frames, as the two competing 
hypotheses. For calculating the appropriate Lg values as a function of the number n of GO terms in 
common between a TF protein and its target protein, a Bayesian classifier was used as below using 
Gold Standard positive and negative datasets, similar to what has been done for protein interaction 
datasets [Jansen et al. 2003, Collins et al. 2007, Chapter 1].   

ݕݐ݅ݒ݅ݐ݅ݏ݊݁ݏ =  ܶܲ
 ݏ݁ݒ݅ݐ݅ݏ݋ܲ

݁ݐܽݎ ݁ݒ݅ݐ݅ݏ݋݌ ݁ݏ݈݂ܽ = ܲܨ 
              ݏ݁ݒ݅ݐܽ݃݁ܰ

[݊]݃ܮ                                = ݕݐ݅ݒ݅ݐ݅ݏ݊݁ݏ 
 ݁ݐܽݎ ݁ݒ݅ݐ݅ݏ݋݌ ݁ݏ݈݂ܽ

TP (number of true positives) indicate the number of TF-target pairs included in the Gold Standard 
(GS) positive dataset, and which had n GO terms in common. FP (number of false positives) indicate 
the number of TF-target pairs included in the GS negative dataset, and which had the same number 
of n GO terms in common. The set of TF-target interactions in SGD was considered as the GS positives, 
while the GS negatives were generated by assigning false targets to the same set of TFs. The Lg value 
at each number of common GO terms describes the likelihood ratio of a correct classification versus 
and incorrect classification. In this way, a likelihood Lg could be assigned as a function of the number 
of GO terms as obtained from the UniProt annotations. To counteract the effect of the small sample 
sizes for high values of n, the cumulative function of Li values was considered to be Lg, at a small 
expense of accuracy (see Results). For the likelihood based on conservation of an interaction in the 
models species Li, a simple scoring system was designed that weights the various sources of 
experimental evidence towards direct physical evidence (see Results). The methods of calculating Lc, 
Lg and Li are further explained in the Results section. 
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To construct a network, the n top scoring motifs were allowed to be included as TF-target interactions, 
taking only one motif per interaction. Variations in the calculation of the final likelihood based on Lm, 
Lc, Lg and Li were noted in the Results section and the final network based on the draft genome was 
constructed using the formula below. 

ܮ = ,10]݃݋ܮ   ݅ܮ×݃ܮ×ܿܮ×[݉ܮ
 
 
Likelihood Lc based on sequence conservation among sister species 
Motif conservation among sister yeast species was calculated in a relatively simple manner from the 
processed multiple genome alignment (see Addendum 2 for details). A convenient alignment viewer 
was designed to inspect motif matches as well as their sequence conservation in and around the motif 
region. The sequence conservation scores and the gap marker scores were calculated as described in 
Addendum 2, and is based on the alignment of the UFS-Y2791 genome as well as six other 
Kluyveromyces genomes. Average conservation scores were calculated as the sum of the values in 
these vectors wherein the two background vectors were combined, and normalising both by the 
number of bases. This method automatically corrects for the effect of fewer bases in cases where the 
flanking regions were at the edge of a contig (see Addendum 3 for further details). To convert 
conservation scores into a likelihood ratio for conservation, the average conservation score in the 
motif range Cm was divided by the average background conservation score Cb.  

ܿܮ = ݉ܥ 
ܾܥ  

Cb was calculated from the combined background flanking regions, upstream and downstream of the 
motif, each consisting of 20 base pairs. It was considered to be a good strategy to treat this likelihood 
ratio partly as a qualifier, by setting a minimum Lc value at 0.5. This cut-off value would function similar 
to a pseudocount in motif scans, which avoids too strict a penalty. Another approach was to simply 
take the conservation score inside the motif regions for Lc, which is a value from 0 to 7.  
 
Likelihood Lg based on GO terms in common 
In order to estimate likelihood values Lg for GO terms that are common to the transcription factor and 
the target, a Bayesian classifier was calculated based on Gold Standards. The Gold Standard datasets 
were obtained by considering the TF-target interactions in the SGD as the Gold Standard positive 
dataset, and the GS negative dataset was generated by assigning false targets to the same set of TFs. 
In this way, a likelihood Lg could be assigned as a function of the number of GO terms in common with 
a TF protein and its target protein, as obtained from the UniProt annotations. Using four GO terms in 
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common applied to a very small fraction of examples (0.4%), thus involving a small sample size, could 
lead to a skewed representation. To obtain a smoother function and to allow any number of common 
GO terms, the cumulative scores were calculated as n GO terms or more in common. Herein, all values 
higher than what was obtained at four GO terms in common was taken as the value for four terms in 
common. During the final likelihood calculation for a motif in the DNA, the relevant Lg was taken from 
the distribution.  
 
Likelihood Li based on occurrence of an interaction in the model species  
In S. cerevisiae, 32 311 regulatory interactions have been captured in SGD. This very large interaction 
network was constructed mostly from microarray transcriptomics experiments. Code was developed 
for Reactomica to import these interactions, along with other types of interactions from YeastMINE, 
which is generic to other instances of InterMINE. When mapping the proteins encoded by these genes 
to proteins in K. marxianus by a conservative reciprocal BLASTP match with E-value cut-off of 1E-6,  
13 799 interactions resulted, involving 119 TFs and 3 377 target genes. Essentially, this is the list of 
interactions that would be obtained regardless of a motif present or any other supporting evidence 
for an interaction in K. marxianus. This list was used to look up whether a TF-target interaction (from 
motif matching) also existed in S. cerevisiae.  
 
Multiple types of high-throughput experiments were captured in the SGD [Cherry et al. 2011]. Some 
sources of evidence might be considered stronger than others. Direct physical evidence might be 
stronger evidence as opposed to microarray type of experiments which could result in many false 
positives due to secondary transcriptional effects. Since the true set of interactions is not known for 
S. cerevisiae, a true GS positive dataset does not exist and a strict Bayesian classifier approach could 
not be taken. Rather, a pragmatic approach was taken by assigning likelihoods based on a scoring 
system, weighted towards evidence for direct physical hier kort iets – physical wat?  (See Table 1 in 
Addendum 3). The confidence spectrum ranged from weak support (“microarray RNA expression”) to 
strong support (“chromatin immunoprecipitation-chip assay” and “chromatin immunoprecipitation-
chip assay”). 
 
Combining all sources of evidence and construction of regulatory networks 
The overall likelihood L was subsequently calculated for each motif-target pair by the following 
equation: 

ܮ =  ݅ܮ×݃ܮ×ܿܮ×݉ܮ 
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The list of final likelihoods was sorted and the interactions with the top n scores taken to construct a 
regulatory network. As an innovation, the enrichment statistic was used as a measure of confidence 
in any regulatory network constructed. The enrichment statistic of the target gene set of each TF is a 
measure of the total differential expression of the targets in comparison with the background 
differential expression, based on the RNA-seq data [Patil and Nielsen, Chapter 3, Schabort et al. 2016]. 
If it was assumed that a TF functioned mainly alone in a differential response, it is logical that the 
larger the enrichment statistic of a differentially active TF, the more consistent the network would be. 
At the same time, not all TFs would be active in the differentially expression response, and it would 
be better to find networks in which only a few TFs were active (with large enrichment scores), with 
the majority of TFs having low enrichment scores. Thus, the best network was chosen as the one with 
the highest enrichment statistic for any TF. Convenient methods were developed to explore the 
relationship between the enrichment statistic, number of TFs and the number of targets in a TF 
network. To calculate enrichment statistics, the method of simulated background distribution using 
randomly picked gene sets (the Z-score method) was used [Patil and Nielsen 2005, Schabort et al. 
2016] where the enrichment score was calculated as below. 

S = Z(total, Test) − Mean(Z, Background)
Standard deviation(Z, Background)  

The Z-score was calculated from the q-values from the CuffDiff output [Chapter 3, Schabort et al. 
2016]. Note that the enrichment statistic is independent from the number of targets in the gene set, 
as the background enrichment statistic was calculated to incorporate a mean and a standard deviation 
for each possible number of genes in a gene set [Patil and Nielsen 2005].  
 
 
Results and Discussion 
 
The scoring system used to construct the regulatory network and the resulting metrics are reported 
first, followed by optimisation of the network and extraction of differentially active transcription 
factors based on statistical enrichment. 
 
Development of a scoring system based on multiple sources of evidence and 
likelihood ratios 
In the motif scoring procedure, three parameters strongly affect the confidence or strength of the 
assignment of the motif: a) motif strength, which is the opposite of motif entropy, b) motif length, and 
c) the background nucleotide frequencies in the genome and its comparison with the motif of interest. 
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Figure 1 is a graphical overview of the 177 PPMs found in the JASPAR database in terms of the strength 
of the patterns. Figure 2 shows the distribution of PPM lengths of all 177 PPMs in the JASPAR database 
for fungi. A substantial fraction of these are short motifs of only five to nine base pairs in length. Figure 
3 depicts the background frequency of each nucleotide base as a function of distance from the TLSS, 
using the draft genome of strain UFS-Y2791. It can be seen that the 200 bp upstream from the TLSS 
(signified by 800 bp – 1 000 bp in Figure 3) is highly biased, which encodes the 5’ untranslated region 
on mRNA and the core promoter. Each of the 177 PPMs in the JASPAR database was scanned against 
upstream regulatory regions of K. marxianus, and after taking the distance-dependent background 
frequencies into account, putative interactions with minimum likelihood Lm of 10 were retained (see 
Methods). 
 

 
Figure 1. Graphical overview of 177 motifs in the JASPAR database of PPMs for fungi. Nucleotide preference scores 
(probabilities) in PPMs are indicated as a dark colour, with black as 1 and white as zero. Rows in each PPM represent 
nucleotide scores for A, C, G and T, in that order from above. Rendering was performed in Reactomica. 
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Figure 2. Distribution of motif lengths in the fungal JASPAR database.  
 

 
Figure 3. The background frequency of each base as a function of distance from the TLSS. In the figure, the 
position of the TLSS is taken as 1 000 bp, therefore 1 000 bp from the TLSS is indicative of position number 1. 
 
Figure 4 shows the length distribution of intergenic regions that are upstream to genes. In the draft 
genome, 4 786 genes could be searched for motifs. A total of 1 416 762 motif matches were found 
with a likelihood ratio Lm at or above 10, some with extremely high likelihood ratios, as high as 
5.34×1010 (Figure 5), indicating near-perfect matches to long motifs. The majority of motifs, however, 
had Lm values below 10 000. As many of these motifs occurred multiple times in the same regulatory 
region of a particular gene, the number of interactions based on Lm was 489 380. 
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Figure 4. Length distribution of upstream regions in the K. marxianus UFS-2791 de novo draft genome assembly 
from Chapter 2. 
 

 
Figure 5. Distribution of the motif likelihood Lm.  
 
The highest scoring motifs are likely to originate from the longer PPMs since these can potentially 
accumulate a higher likelihood score. While any of these motifs may be considered a sufficiently good 
motif match, especially the high-scoring ones, the vast majority would be false positives. Since there 
are approximately 33 838 interactions in the SGD, the number of 489 380 interactions assigned by Lm 
as above 10 was approximately 14.5-fold more than expected. The next goal was to combine Lm values 
with additional sources of evidence to eliminate the majority of these and to finally elucidate the true, 
functional DNA binding sites for TFs. 
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Figure 6 shows the distribution of Lc based on the conservation scores in the motif regions only, which 
has no normalisation with the conservation scores in the flanking regions, considered as background.  
It is evident that the majority of motifs were found in regions where three non-reference genomes 
aligned with the reference genome UFS-Y2791. A significant proportion of these motifs had identical 
nucleotides in in all four genomes, as evident from a uniform stretch with the conservation score of 
exactly 3. A small fraction only is in regions where more than three genomes align with the reference, 
of which only very few approach complete identity in the motif region. Also, a significant fraction of 
the motifs were in regions in which there was no alignment with any other genome, as indicated by a 
value of 0. 

 
Figure 6. Distribution of conservation likelihood values Lc, taken as conservation scores corresponding the motif 
regions only, without normalisation with the background conservation. 
 
The distribution of the Lc values based on the ratio of conservation scores within and around the motif 
is shown in Figure 7. It can be seen that a significant number of motifs proved to have a score of zero, 
due to the UFS-Y2791 genome not aligning with any other genome in the region that corresponded to 
the same motifs as noted above. Secondly, the majority of Lc values were very close to one, which 
would result in no change in the final likelihood. Thus, the background normalisation method 
automatically corrected for the number of alignments to the reference. Finally, a small fraction of 
motifs had likelihood ratios of up to 3.5, thus this classifier could increase the likelihood rank ratio L 
by about 3.5. Finally, a method was used in which the minimum value for Lc was set at 0.5 to avoid 
overly strict scoring by the conservation criterion, mostly due to inability of the multiple genome 
aligner to align divergent genomes. Figure 8 shows the distribution of Lc values from the latter 
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method. Figure 9 demonstrates the effect that each method of calculating Lc had on the final 
likelihood, L, calculated as the product of Lm and Lc. The distributions of final likelihoods, L, largely 
reflected that of Lm, but the first Lc method would eliminate approximately 25 % of motifs. 
 

 
Figure 7. Distribution of conservation likelihood values Lc, calculated from the ratio of conservation scores inside 
motif regions divided by those from the flanking regions. 
 
 

 
Figure 8. Distribution of conservation likelihood values Lc, calculated from the ratio of conservation scores inside 
motif regions, divided by those from the flanking regions, as well as a minimum value for Lc of 0.5. 
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Figure 9. Distribution of final scores calculated as Lm×Lc. Black, Lm only. Blue, Lm×Lc with Lc calculated as motif 
conservation and no normalisation. Magenta, Lm×Lc with Lc as motif conservation normalized by conservation 
in the flanking regions. Red: Lm×Lc with Lc as motif conservation normalized by background, where the minimum 
value for Lc was 0.5. 
 
The likelihood ratio profile for common GO terms, Lg, based on the Bayesian classifier and a Gold 
Standard dataset (see Materials and Methods), is shown in Figure 10. The raw data and calculations 
are shown in Table 1. Since the function was decreasing at the largest number of GO terms in common, 
possibly due to the small number of occurrences, the cumulative function was used instead as the 
measure for Lg (Figure 11). 

  
Figure 10. Likelihood ratio Lg as a function of n GO terms in common between a TF and a target gene. Numbers 
indicate the fraction of interactions in the training set that had this likelihood ratio. 
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Figure 11. Likelihood ratio Lg as a function of at least n GO terms in common between a TF and a target gene. 
Numbers indicate the fraction of interactions in the training set that had this likelihood ratio. 
 
Table 1. Calculation of Lg from GS positive and negative datasets. 

n GO in common n pairs GS pos n in common 
n pairs GS neg 

GS pos GS neg 
n or more in GS pos 

n or more in GS neg 
sensitivity FP rate 

n GO in common for Lg Lg 

0 23637 0 21349 30183 28127 30183 28127 1.000 1.000 1 1 
1 4798 1 5163 30183 28127 6546 6778 0.217 0.241 2 0.900 
2 1236 2 1243 30183 28127 1748 1615 0.058 0.057 3 1.009 
3 356 3 288 30183 28127 512 372 0.017 0.013 4 1.283 
4 107 4 42 30183 28127 156 84 0.005 0.003 5 1.731 
5 33 5 24 30183 28127 49 42 0.002 0.001 6 1.731 (1.087) 
6 11 6 11       >6 1.731 
7 1 9 7         
8 1           
9 1           

10 1           
26 1                   

 
From Figure 12 it is evident that the vast majority of motif-target pairs in K. marxianus had zero or one 
GO term in common between the TF and target. The distribution of the likelihood rank ratio L in Figure 
13 appeared identical to the original. For a small fraction, however, the likelihoods could be increased 
by up to 1.28 or 1.73-fold. Note that even though the effect on the overall distribution was not 
obvious, the order of likelihoods was altered, which would result in a different gene regulatory 
network, since only the best interactions are to be retained as interactions. 
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Figure 12. Likelihood ratios Lg for all motif-target pairs in K. marxianus.  
 

  
Figure 13. Effect of the likelihood ratio Lg. Black, Lm; cyan, Lg. The distribution was not altered, while for very 
few interactions, an improvement might have been achieved. 
 
The likelihood based on a common interaction, Li, was assigned based on a custom scoring system. 
Out of the 13 799 interactions mapping between K. marxianus and S. cerevisiae based on homology, 
there was evidence for 4 706 interactions based on putative DNA binding sites with Lm values above 
10, corresponding to 14 052 motifs. The number of motifs was substantially more than the number of 
interactions, since for many of these, multiple occurrences of the same motif were found in a given 
regulatory region. Figure 14 shows the distribution of the number of the same motif found for each 
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possible interaction from the complete list of motifs with Lm values above 10. Figure 15 shows that 
the likelihood based on common interactions between the two species, Li, was a very restrictive 
classifier, with only a small fraction of the motifs receiving improved scores. The data are shown in 
Table 2.  
 

 
Figure 14. Distribution of the number of the same motifs found for a given TF-target interaction. The majority 
of interactions had multiple motif matches from the same motif. 
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Figure 15. Likelihood based on a common interaction between K. marxianus and S. cerevisiae. 
 
Table 2. Likelihood based on a common interaction between the two species K. marxianus and S. cerevisiae. 

Li Number of motifs 
1 1 402 710 

   1.5        3 727 
2        7 433 
4        2 360 
8           532 

 
 
Methods for optimising the regulatory network 
The true number of gene regulatory interactions is not known for any species. SGD contains 32 311 
interactions for S. cerevisiae. Assuming approximately 6 000 genes for S. cerevisiae, this is 
approximately 5.4 interactions for every target gene. K. marxianus UFS-Y2791 has approximately 4 
953 protein-encoding genes. At an assumed 5.4 TF-target interactions, 26 673 interactions would be 
present. Thus, the 26 673 putative interactions with the highest final likelihoods would construct an 
analogous network for K. marxianus. Using lower numbers should result in a network of higher 
confidence, however. Accordingly, a number of gene regulatory networks were constructed for each 
likelihood criterion assessed below, where the number of best scoring motifs-target interactions was 
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varied from 1 000 to 28 000. Note that these resulted in fewer TF-target gene interactions, since only 
one TF-target gene interaction was included among all motif-target interactions belonging to a target 
gene.  
 
It was found that the likelihood ratio Lm which captures the motif strength, dominated the scoring 
system when calculating the final likelihood rank ratio, L, as Lc×Lg×Li. Several methods were 
subsequently tested in which the likelihoods Lm, Lc, Lg and Li were used in several combinations to 
find an improved balance between the parameters in terms of their contribution in shaping the 
distribution of rank ratio L. These are described in detail in Appendix 3. The best network among all 
methods was obtained by allowing 9 000 motifs, using the Log10(Lm)×Lc×Lg×Li method, resulting in 5 
443 interactions and 136 TFs (Table 3). A slightly higher scoring network could be generated with a by 
using 16 000 motifs, which would likely be less accurate due to the larger number of false positives.  
 
Notably, Gcn4 and Gcr2 were revealed as the most significantly enriched in the 9000 motif model and 
this result was relatively robust to the choice of method. Gcn4 (general control protein 4) was 
significantly enriched with targets differentially regulated, mostly downward. Gcr2 (glycolysis 
regulator 2) was the second most significantly enriched TF, with a very significant enrichment score of 
3.64 and differential targets almost exclusively down-regulated. Gcn4 is a known activator in amino 
acid and purine biosynthesis in S. cerevisiae [Hinnebusch and Fink 1983, Hope and Struhl 1985] and 
the RNA-seq data on K. marxianus [Chapter 3, Schabort et al. 2016] showed that amino acid and purine 
biosynthesis were down-regulated in the xylose growth medium. Gcr2 is well known as an activator 
of the expression of glycolytic enzymes [Uemura and Jigami 1992]. Although it binds DNA, it 
phosphorylates Gcr1 (glycolysis regulator 1), which also interacts with multiple glycolysis genes in S. 
cerevisiae. 
 
Table 3. Enrichment statistics for an optimised gene regulatory network with 9 000 motifs allowed (5 443 
interactions), using the likelihood function Li = Log10(Lm)×Lc×Lg×Li. TFs with scores above 1.67 (p < 0.05) are 
shown. 

name1 name2 Length[Targets] Z(0) nNo nDown nUp motiflength 
9547 GCN4 89 5.25 65 16 8 21 
9549 GCR2 13 3.64 8 4 1 7 
9645 SWI4 20 3.04 13 2 5 8 
9543 GAL4 2 2.74 1 0 1 15 
9629 SOK2 26 2.71 19 3 4 11 
9669 YGR067C 9 2.67 5 2 2 14 
9520 ASH1 6 2.55 3 0 3 10 
9638 STP1 17 2.17 13 2 2 8 



162  

name1 name2 Length[Targets] Z(0) nNo nDown nUp motiflength 
9653 TYE7 30 2.13 22 7 1 7 
9666 YDR520C 5 1.99 3 1 1 10 
9631 SPT2 19 1.97 15 3 1 10 
9656 UME6 13 1.91 9 1 3 13 
9620 RTG3 103 1.89 83 14 6 20 
9556 HAP1 24 1.87 18 3 3 8 
9522 BAS1 21 1.85 16 2 3 21 
9662 YAP6 46 1.85 35 3 8 20 
9551 GLN3 3 1.83 2 1 0 5 
9517 ARO80 39 1.79 31 3 5 21 
9637 STE12 48 1.77 39 1 8 7 
9550 GIS1 2 1.76 1 0 1 9 
9667 YER130C 2 1.76 1 0 1 9 
9527 CHA4 7 1.76 4 2 1 8 
9679 YPR015C 19 1.67 15 0 4 20 

 
Finally, to obtain a general overview of the network, it was rendered in Reactomica. Figure 16 shows 
the TFs interacting with their target genes. The TFs (triangles) were rendered using the Clarity 
colouring scheme for enrichment statistics, and used enrichment scores also for calculating the sizes 
of the triangles. A very useful aspect of this method is that it simultaneously (a) elucidated the most 
significantly enriched TFs (size), (b) indicated whether TFs were mostly associated with up-regulated 
genes (orange to red), down-regulated gene (blue), or with mixed differential expression (murky), and 
(c) revealed the number of interactions made by the TFs. Those TFs with few interactions are located 
on the periphery. It is immediately evident that Gcn4 was the most significantly enriched, but was 
associated with a mixture of up and down-regulated targets, whereas Gcr2 was also enriched but was 
strongly associated with down-regulated genes. The rendering of target genes was also suppressed by 
making them very small (if constitutively expressed) and semi-transparent to highlight the 
transcription factors. Moreover, the renderings contain dynamic content; on clicking them in 
Reactomica, a number of actions could be performed, while on hovering, the name of the protein, its 
differential expression or enrichment statistics are shown.  
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Figure 16. The gene regulatory network consisting of 5 443 interactions and 136 TFs using the Clarity colouring 
scheme for TFs. TFs were rendered as triangles, wherein the size is determined by the enrichment score. Warm 
colours (orange to red) indicated that a TF was mostly associated with up-regulated genes, cold colours (blue) 
indicated down-regulation of targets, while murky colours indicated mixed differential expression. Names were 
only included for TFs that were enriched with a score above 1.67 (p < 0.05). 
 
Notably, when rendering the same network using the Differential expression colouring scheme for TFs 
(Figure 17), an interesting pattern was noticed. Most of the significantly enriched TFs, including Gcn4, 
were not differentially expressed themselves. Gcr2 was an exception, since its gene was down-
regulated in the xylose medium. 
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Figure 17. The Gene regulatory network consisting of 5 443 interactions and 136 TFs using the Differential 
Expression colouring scheme for TFs.  
 
The subnetwork of Gcn4 was extracted to reveal its targets and their differential expression (Figure 
18). It was clear that many of these were moderately down-regulated (green) with a few more strongly 
down-regulated (blue), while a few were moderately up-regulated (ochre) or more strongly up-
regulated (brown to red).  
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Figure 18. Targets of Gcn4. The target gene set which was significantly enriched and associated mostly with 
down-regulated targets, but also with a few up-regulated targets. 
 
Conclusions 
 
In this chapter, a likelihood based framework was developed for the construction of a regulatory 
network based on multiple sources of evidence. The calculations were shown for the motif match 
likelihood Lm, the likelihood for motif conservation among species Lc, the likelihood for GO terms in 
common between TF and target, Lg, and the likelihood for conservation of an interaction in the model 
species, Li. The likelihood classifier Lg was shown to find utility for a very small fraction of the number 
of interactions, and was not a very strong classifier as compared to the other classifiers Lm, Lc and Li. 
Besides, the classifier based on experimental evidence in the model species, Li, might be more suitable 
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as opposed to Lg in the case of K. marxianus, since the model species S. cerevisiae has been very well 
studied and the two species have many genes in common. However, if the closest model species were 
only distantly related to the species of interest, Lg might prove essential because GO terms apply to 
all proteins, irrespective of the species compared. Also, it may add some distinguishing power in the 
case of genes that are not conserved between the two species. Further, since Lm was dominant over 
other likelihoods, a balance had to be struck between these by suppressing the effect of Lm somewhat 
by using the Log10 of Lm. The most suitable network size, considering the enrichment statistics and, in 
particular, the distinguishing power for separating between enriched and non-enriched TFs, was found 
to be 9 000 motifs, resulting in 5 443 interactions and 136 TFs. 
 
Many adaptations and improvements can still be made to the algorithms developed. For instance, the 
best length of the flanking regions for calculating the background conservation scores could be 
determined. Most important, it was evident that significantly enriched TFs could even be elucidated 
using only the supporting evidence Lg, Lc, and Li, eliminating the motif score Lm in the calculation of 
the final likelihood. This poses the question what the contribution of each of these forms of evidence 
might have been, and whether a single likelihood function should be applied to all TFs alike. Also, Adr1 
and Mig1 were absent from the enriched list, even though the enumerative method of heptamer 
frequency comparisons suggested that Adr1, in particular, was differentially active [Chapter 4]. The 
motifs which the Adr1 and Mig1 bind are very short and degenerate, and would thus be suppressed 
by inclusion of the motif match likelihood Lm. However, even with only using additional sources of 
information (Lc×Lg×Li), these were not enriched. Assuming that the Adr1 and Mig1 targets were 
conserved between K. marxianus and S. cerevisiae, it may also be the case that the true targets have 
not been captured in the SGD; thus the interaction conservation likelihood Li would not have led to 
the inclusion of the target sets of these TFs. Conversely, these target sets may be different between 
the two species, the result of transcriptional rewiring during evolution. These questions are addressed 
in the next chapter. The method presented here shows flexibility in combining multiple sources of 
evidence, with many more possibilities. Moreover, a number of TFs were shown to be enriched, 
including Gcn4, Gcr2, Swi4, Sok2, YGR067C and Ash1, in that order. The regulation of the targets of 
Gcn4 and Gcr2 seems to be consistent with their known functions in activating amino acid biosynthesis 
and glycolysis, respectively. Notably, the genes encoding for strongly differentially active TFs such as 
Gcn4 were constitutively expressed, showing that these major regulators would be missed in the less 
mechanistic, reverse engineering approach which requires differential expression of not only the 
target genes, but also of the TF genes to infer interactions by correlation. Even though these results 
should be interpreted as preliminary, since the method is still not complete and the analysis based on 
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a draft genome, it is noteworthy that the first genome-scale gene regulatory network has been 
constructed for the species from a fragmented draft genome.  
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Chapter 6 
 
A gene regulatory network based on the complete genome 
of Kluyveromyces marxianus 
 
 
Abstract 
 
In Chapter 5, an integrative framework was described for constructing a genome-scale gene regulatory 
network based on multiple sources of information, using mechanistic evidence as far as possible, in a 
likelihood framework. The resulting network was based on a draft genome constructed de novo for 
the Kluyveromyces marxianus strain UFS-Y2791. Enrichment statistics revealed the transcription factor 
Gcn4, followed by Gcr2, as the main regulators. However, the short zinc finger motifs of Adr1 and 
Mig1, which have been elucidated in Chapter 4 using the enumerative method of heptamer 
frequencies, did not appear as enriched in the genome-scale network approach using likelihoods. 
Since the motifs recognised by Adr1 and Mig1 are short and degenerate, their inclusion in the network 
might be suppressed by the low scores they can generate in motif matching. In this chapter, various 
likelihood functions were tested and an improved method was developed. By comparing the results 
from various likelihood functions, the shortcomings in our knowledge could be highlighted. A 
complete genome was used for read-mapping of RNA-seq data and for constructing an improved 
genome-wide gene regulatory network for K. marxianus. Notably, the most significantly enriched 
regulators were not differentially expressed, but rather their differential activity seems to be regulated 
by post-translational modifications. This also demonstrates the advantage of using the mechanistic 
basis for gene regulatory networks used here over the reverse engineering approach. 
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Introduction 
 
RNA-seq transcriptomics of the differential response of Kluyveromyces marxianus to glucose or xylose 
revealed a general pattern of down-regulation of genes involved in de novo amino acid synthesis, as 
well as up-regulation of many genes involved in the utilisation of alternative carbon sources [Chapter 
3, Schabort et al. 2016]. In Chapter 4 the enumerative method of heptamer frequency comparison 
was used to reveal the transcription factors (TF) Adr1 and possibly Mig1 as the most likely regulators 
in the up-regulated response, which corresponded with data from the literature on Saccharomyces 
cerevisiae [Young et al. 2003]. In Chapter 5, a likelihood framework was developed to construct a 
genome-scale gene regulatory network combining the scores from motif scans, motif conservation 
among sister species, common Gene Ontology (GO) terms between TF and target, and experimental 
evidence for the same interaction in the Saccharomyces Genome Database (SGD). Using enrichment 
statistics, also termed reporter TFs [Patil and Nielsen 2005], Gcn4 and Gcr2 were revealed as the most 
important regulators in the differential response to glucose or xylose. This finding corresponded to 
the down-regulation of amino acid de novo synthesis pathways and glycolysis in which these two TFs 
were activators. However, there was no evidence in the enrichment statistics to support the 
involvement of Adr1 or Mig1. The likelihood framework effectively makes motifs compete for 
inclusion into the network based on evidence supporting their presence, and the longer, more 
selective motifs may outcompete the short motifs since they can potentially accumulate a larger score. 
This may explain the lack of finding Adr1 and Mig1 enrichment in the genome-scale reconstruction, 
since these have short degenerate motifs. The use of the Log10 of the motif score supported a better 
balance between the contribution of the motif likelihood, Lm, and other criteria. However, it has to 
be considered that the role of the motif scores for the short, degenerate motifs may be small 
compared to other sources of evidence and also that other methods of calculating the final likelihoods 
(termed functions) need to be explored.  
 
In biological databases such as SGD, some effectors have been associated with hundreds of targets. A 
large fraction of these interactions were derived from knockout expression profiling studies. Possibly 
a significant fraction of these interactions might be the result of secondary effects, where the 
knockout of the regulator affected the expression of another, major regulator. To avoid the secondary 
effects, the type of evidence could be used to emphasise those interactions supported by direct 
physical evidence in addition to expression profiling in the likelihood framework. In this chapter, the 
first aim was to develop a function in which the type of experimental evidence in the model species is 
weighted. A simple scoring system is presented which is useful in the likelihood framework. 
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The second aim was to explore the effect that different functions for assigning the final likelihood for 
an interaction would have on the deductions made from TF enrichment statistics. For long, restrictive 
DNA binding motifs, the motif score alone might provide a better functions for assigning the targets 
as opposed to combining it with experimental data from the model species, which might both be 
incomplete, and possibly irrelevant due to evolutionary differences. The opposite might be true for 
short, degenerate motifs where the binding sites may be hardly detectable and would need strong 
support from evidence in the model species. To explore these scenarios, seven additional functions 
for calculating the likelihoods were designed. One of these was to construct the genome-scale 
network using only the gene regulatory targets from SGD, mapped to the homologs in K. marxianus, 
regardless of the presence of a DNA binding site. Moreover, by comparing the results from enrichment 
statistics between this and the other methods (the enumerative method and several likelihood 
functions), insight can be gained into the shortcomings in our knowledge of the DNA binding motifs in 
the species of interest or even in the model species, as well as possible transcriptional rewiring 
between the species.  
 
It was also considered important to calculate enrichment using an additional criterion together with 
the Z-score method. The hypergeometric distribution can be used for a variety of purposes and was 
used in a previous chapter to calculate the probability of finding a certain number or more of 
differentially expressed targets in a gene set by chance, given the background (Chapter 4). A useful 
feature of the hypergeometric distribution is that it is simpler to calculate compared to the Z-score 
method, and hence facilitates calculating a probability value for either up or down regulation of a gene 
set, thus revealing also the direction of regulation of a gene set.  
 
As was described in Addendum 1, it was found that transcripts from RNA-seq data could be read-
mapped to the complete genome of DMKU3-1042. The final aim in this chapter was to apply the 
improved likelihood framework in the context of this complete genome and to elucidate the 
differentially active TFs that formed the mechanistic basis behind the transcriptional response. 
 
Materials and Methods  
RNA-seq data 
RNA-seq data were generated in previous work for the strain UFS-Y2791 [Chapter 3, Schabort et al. 
2016]. This data was read-mapped to the recently published complete genome of a different stain, 
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DMKU3-1042 from Lertwattanassakul et al. [2015] using TopHat [Trapnell et al. 2009]. Differential 
expression was calculated using CuffDiff [Trapnell et al. 2013].  
 
Motif scans 
Motif scans were performed for all regulatory regions in K. marxianus DMKU3-1042, defined as the 
1000 bp upstream of a gene, which were not allowed to overlap with a neighbouring gene (See 
Chapter 5). Motifs were assigned in both directions. A motif likelihood Lm was calculated for a motif 
match by calculating the ratio of the probability of the sub-sequence matching the model, divided by 
the probability of a sub-sequence matching the background model of nucleotide frequencies in the 
upstream regions. Each motif likelihood score Lm was calculated as the product of independent 
occurrences as below, where m is the probability from the positional probability matrix (PPM) 
matching to the character at position i, and b is the background frequency of the character at position 
i. 

mܮ =  ∏ ݉௡௜ [݅ሿ
∏ ܾ௡௜ [݅൧  

In this likelihood formulation, the background frequency of each nucleotide A, C, G and T is taken into 
account to give an estimate of the statistical significance of a motif match. The background nucleotide 
frequencies were calculated in a sliding window of 30 base pairs in all upstream regions at various 
distances from the translation start site (TLSS). Effectively, the motif score was normalised to the 
background frequencies at the relevant distance from the TLSS.  
 
Construction of a gene regulatory network 
All data processing and visualisation were performed in algorithms developed for Reactomica 
[Chapter 3, Schabort et al. 2016] implemented in the Wolfram language. Various methods of network 
construction were implemented according to the likelihood framework described in Chapter 5, and 
similar to previous applications [Jansen et al. 2003, Collins et al. 2007, Chapter 5], but containing an 
expanded set of functions. The n top scoring motifs based on final likelihood, L, were allowed to be 
included as TF-target interactions. Sources of evidence included the motif score, Lm, the conservation 
of a motif among seven Kluyveromyces isolates, Lc, and the experimental evidence for an interaction 
in SGD, Li. The Gene Ontology score, Lg [Chapter 5], was considered inferior to the experimental 
evidence score Li, in this case, and omitted from the procedure.  
 
The multiple genome alignment of seven isolates of Kluyveromyces using progressiveMauve [Darling 
et al. 2010] is described in Addendum 2, and the use of multiple genome alignments to calculate 
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conservation scores Lc for putative motifs is described in Addendum 3. The origin of motif score, Lm, 
is described above. The motif score, Lm, was implemented as Log10(Lm) in the calculation of final 
likelihoods to suppress the dominating effect of Lm and allow shorter and less precise (higher entropy) 
motifs to compete for inclusion in the network. For the experimental evidence score Li, transcriptional 
regulator-target sets were obtained from the YeastMINE interface of SGD of all gene regulatory 
interactions, where the targets were protein-encoding genes. The genes representing transcriptional 
regulators and targets in S. cerevisiae were mapped to K. marxianus genes annotated by 
Lertwattanassakul et al. [2015] in a two-step process. To improve the richness of the annotation, the 
unique identifier of each K. marxianus protein was used to retrieve the UniProt annotations, and the 
primary name of the gene was then used to match to those in the S. cerevisiae regulatory target sets. 
A scoring system was designed for incorporating the various types of data supporting an interaction 
in S. cerevisiae to calculate Li (described in the Results section).  
 
Eight likelihood functions were compared to incorporate the three sources of evidence in various 
forms, as shown below. 
 
 A) Log10(Lm)*Lc*Li    (Lc >= 0.5) 
 B) Log10(Lm)+Lc+Li     (Lc >= 0.5) 
 C) If[Li==0, Log10(Lm)×Lc, else Log10(Lm)×Lc×Li] (Lc >= 0.5) 
 D) Log10(Lm) 
 E) Log10(Lm)*Lc     (Lc >= 0.5) 
 F) Lc      (Lc >= 0.5) 
 G) Li 
 H) SGD 
 
Function B was to sum the scores instead of their multiplication, which allowed inclusion of 
interactions even though evidence was not available for the model species. Function C was to apply a 
qualifier (if statement): if there is no experimental evidence for an interaction (Li = 0), assume a score 
of 1 for Li and perform multiplication. For all criteria that used the conservation score Lc, it was 
assumed to be 0.5 in cases where Lc was below 0.5. This was necessary to avoid exclusion of motifs 
that occurred in regions that could not be aligned to sister species. The progressiveMauve multiple 
genome aligner used in this study has been optimised for speed and, accordingly, divergent 
orthologous regions might be not be aligned. In addition, the functions Log10(Lm), Log10(Lm)×Lc, Lc and 
Li were also tested. Each of the functions were used to calculate the final likelihood score of a DNA 
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binding motif-target interaction, after which the motif table was sorted according to the final 
likelihood. The top n motifs were subsequently taken to construct a network of TF-target interactions. 
In cases where more than one occurrence of the same motif was found in the same regulatory region, 
the best scoring motif was retained. In effect, all motifs competed against one another for inclusion 
into the regulatory network,  based on the evidence supporting their inclusion. Note that the scores 
from the Li function differ from what was calculated by considering only experimental evidence from 
SGD (the SGD method) in that the presence of at least one top-scoring motif (within the top n motifs) 
was required in the Li function, whereas with the SGD method an interaction was included, regardless 
of the presence of a motif in K. marxianus. Non-TF regulators were omitted from networks constructed 
using the seven likelihood functions, as the presence of a predicted DNA binding motif was required 
(with Lm above 100). 
 
Gene set enrichment statistics 
To calculate enrichment statistics, two criteria were used. The method of simulated background 
distribution using randomly picked gene sets (the Z-score method) were used [Patil and Nielsen 2005, 
Schabort et al. 2016] where the enrichment score was calculated as below. 

S = Z(total, Test) − Mean(Z, Background)
Standard deviation(Z, Background)  

The Z-score was calculated from the q-values from the CuffDiff output [Chapter 3, Schabort et al. 
2016]. Secondly, the hypergeometric distribution was used to estimate the probability of finding the 
same number or more of genes up or down-regulated in each gene set in a background with 4 093 
protein-encoding genes, with 323 up-regulated and 245 down-regulated. To correct for multiple 
comparisons, the p-values from the hypergeometric distribution were multiplied by the number of 
effectors (184) to obtain q-values. For simplicity, the enrichment score was calculated as –Log10(q), 
where the p-value was the output from the hypergeometric test for either differential expression, up-
regulation, or down-regulation.  
 
The enumerative method of motif discovery and Occam’s razor motifs 
To complement the enrichment approach to elucidating differentially active TFs, the enumerative 
method of heptamer frequency comparisons was performed for the down-regulated set of genes, as 
was done for the up-regulated set [see Chapter 4]. The heptamers were mapped to PPMs and a 
threshold score of 0.7 was used to limit matches between heptamers and PPMs. The method of 
constructing a DNA binding motif for a single dominating TF as a simplest explanation approach to 
motif discovery was described in Chapter 4. A combined motif was constructed by aligning these 
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heptamers, filling in equal counts of unobserved bases, calculating an artificial counts matrix, and 
finally calculating a PPM. 
 
Construction of an optimised likelihood network 
The most likely target set for each TF was taken as the set of targets with the most significant 
enrichment score for either up or down-regulation, using the hypergeometric test, among all scoring 
functions, excluding the one based on SGD data alone. The final network consisted of only the top 38 
TFs that were significantly enriched in at least one such test if two criteria were met: at least five 
targets were required and the q-value had to be lower than 0.005 (enrichment score of 2.301). 
 
Results and Discussion 
Emphasising experimental evidence in the model species 
Table 1 shows the enrichment statistics using only biological prior information from SGD, without the 
requirement for a potential DNA binding site in the regulatory region of a target gene (Log10(Lm)) or 
conservation among species (Lc). Gcn4 and Gcr2 were the most significantly enriched TFs (low q-
value), considering any of the hypergeometric tests (differential, up or down regulation). The gene 
sets of Pdr3, Aca1 and Yap3 were too small to provide a meaningful test for consideration. Generally, 
a very good classification between up-regulated and down-regulated gene sets could be revealed for 
the significantly affected target gene sets.  
 
Table 1. Enrichment statistics using only biological prior information of all effectors of transcription in S. 
cerevisiae, regardless of the presence of a top-scoring motif in K. marxianus (method SGD). The results were 
sorted to the minimum of the q-values for either the differential expression, up regulation, or down regulation 
of a target gene set, as calculated using the hypergeometric distribution after correction for multiple 
comparisons. Only the top 30 effectors are shown. FC refers to the fold change observed for the TF gene in RNA-
seq data from Schabort et al. [2016]. The full table is shown in Addendum 4. 

name1 name2 K Z(0) nNo nDown nUp qDiff qUp qDown direction ID FC 
9597 PDR3 1 1.5 0 1 0 0 11.51 0 NA   

 ACA1 2 3.6 0 0 2 0 0 17.05 NA   9660 YAP3 2 3.6 0 1 1 0 0.72 0.41 NA gene1726 1 9547 GCN4 169 11.0 113 39 17 1.4E-13 3.27 4.9E-16 down gene3451 1 9549 GCR2 40 6.0 24 14 2 5.8E-05 84.92 2.3E-08 down gene2613 0.4 
 TUP1 184 6.8 134 30 20 2.4E-08 0.92 5.9E-08 down gene1081 1 
 SPT3 266 7.2 203 37 26 7.1E-08 1.46 7.6E-08 down gene1396 1 9656 UME6 295 8.1 228 25 42 1.4E-07 1.6E-05 0.27 up   
 HFI1 160 8.2 116 26 18 1.9E-07 0.90 8.7E-07 down gene1998 1 
 SPT20 184 7.1 139 29 16 7.1E-06 12.30 2.7E-07 down gene1462 1 
 BUR6 252 6.9 195 17 40 3.0E-06 1.3E-06 9.63 up gene3898 1 9578 MET32 205 6.9 158 23 24 3.2E-05 0.16 5.6E-03 down gene4085 1 
 SUA7 401 3.7 333 17 51 0.01 3.2E-05 116.99 up gene3433 1 
 SPT10 423 6.2 344 31 48 6.1E-05 2.1E-03 0.93 up gene3729 1 9513 AFT1 68 5.7 46 11 11 7.2E-05 0.16 1.2E-02 down gene643 1 
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 CDC73 29 5.9 16 8 5 9.7E-05 1.47 8.4E-04 down gene635 1 
 SIN4 200 4.1 164 26 10 0.17 131.89 1.1E-04 down gene3684 1 9541 FKH2 106 6.8 77 16 13 1.1E-04 1.08 1.5E-03 down gene4226 1 9620 RTG3 38 4.1 25 10 3 4.7E-03 38.97 1.6E-04 down gene4377 1 9522 BAS1 54 4.8 39 12 3 0.03 80.97 1.6E-04 down gene1050 1 9622 SFP1 1306 2.8 1148 94 64 12.2 182.14 2.4E-04 down gene2869 1 
 SIN3 73 5.8 51 12 10 3.0E-04 0.96 0.01 diff gene262 1 9637 STE12 98 3.8 76 3 19 0.05 3.3E-04 127.24 up gene3811 1 9579 MET4 177 6.8 137 21 19 3.5E-04 1.26 4.8E-03 down gene4937 1 9602 PUT3 33 5.3 21 2 10 4.0E-03 5.0E-04 37.68 up gene3852 1 9563 HSF1 231 4.8 184 24 23 1.3E-03 1.68 0.01 diff   9548 GCR1 414 3.1 350 39 25 0.27 96.38 1.5E-03 down gene759 0.2 9545 GAT3 5 4.6 1 2 2 2.9E-03 0.41 0.18 diff   
 SPT7 69 4.7 50 12 7 0.01 11.89 3.0E-03 down gene4603 1 
 HMS1 14 4.4 7 4 3 0.01 1.68 0.06 NA gene3793 1  

Those involved with down-regulated gene sets, in order of the enrichment statistics, included Gcn4, 
Gcr2, Tup1, Spt3, Hfi1, Spt20, Met32, Aft1, Cdc73, Sin4, Fkh2, Rtg3, Ba1, Sfp1, Met4, Gcr1 and Spt7. 
Those involved with up-regulated gene sets were Ume6, Bur8, Sua7, Spt10, Ste12 and Put3. Only for 
Sin3, Hsf1 and Gat3 was the pattern unclear. A benefit of this method (SGD) is that it reveals regulators 
that do not necessarily have DNA binding sites associated, like Tup1.  
 
Notably, out of all enriched regulators, only the genes for Gcr1 and Gcr2 were differentially expressed 
at transcription level. These were both down-regulated in the xylose medium where glycolytic genes 
were all down-regulated [Chapter 3, Schabort et al. 2016], which was consistent with their role as 
activators of glycolysis. The activator Adr1 and the repressor Mig1, which were revealed in a previous 
chapter [Chapter 4] using the enumerative heptamer frequency method as being important in the 
response, were not enriched.  
 
Emphasising direct physical evidence for interactions 
Many of the gene regulatory interactions captured in the SGD originated from transcriptional profiling. 
A fraction of these interactions may have originated from secondary effects which were the result of 
a regulator that regulates another major regulator. Direct physical evidence may be a strong indicator 
of true interactions. A simple scoring system was designed to assign a relative strength to each of a 
variety of types of experimental evidence contained in SGD, weighting the scores higher towards 
direct binding interactions such as chromatin immunoprecipitation (ChIP). The scoring system along 
with evidence codes is given in Table 2. Transcriptional profiling is also a useful, complementary 
method, and to combine the various sources of information, a simple summation of all forms of 
evidence of an interaction was used. Figure 1 shows the distribution of scores of the experimental 
evidence in SGD. Finally, a gene regulatory network was calculated as well as enrichment values for 
the top n among all interactions. For the top 5 855 interactions, strong evidence of direct physical 
interactions or multiple independent transcriptional profiling types were found, while for the majority, 
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evidence was found based on transcriptional profiling. Table 3 shows the numbers of interactions 
containing a certain score Li or higher, which were used as thresholds for assigning gene regulatory 
networks. 
 
Table 2. The scoring system used to weight the various forms of experimental evidence supporting a 
regulatory interaction from SGD. The scores were weighted stronger towards evidence based on direct physical 
interaction with the regulatory regions as opposed to transcriptional profiling. For a final likelihood, Li, the scores 
for various sources were summed. A value of zero was applied for no experimental evidence. 

annotation type experiment type number of occurrences score evidence code 
binding enriched genome-wide gene expression regulator binding enrichment 15486 2 1 

expression activated genome-wide gene expression regulator mutant expression profile 5719 2 2 
binding enriched with conserved binding site genome-wide gene expression regulator binding enrichment with conserved binding site 3782 4 3 

 microarray RNA expression 2900 1.5 4 
expression repressed genome-wide gene expression regulator mutant expression profile 2538 2 5 
expression repressed microarray RNA expression 812 1.5 6 expression repressed ethanol/glucose limitation 500 1.5 7 expression activated microarray RNA expression 489 1.5 8 binding enriched chromatin immunoprecipitation-chip assay 417 8 9 bound chromatin immunoprecipitation-chip assay 404 8 10  chromatin immunoprecipitation-chip assay 340 8 11 expression activated ethanol/glucose limitation 197 1.5 12 bound chromatin immunoprecipitation-seq assay 154 8 13 activated microarray expression profiling 88 1.5 14 binding enriched chromatin immunoprecipitation assay 10 8 15  ethanol/glucose limitation 1 1.5 16 binding enriched/expression repressed chromatin immunoprecipitation assay 1 8 17 

 
 

 
Figure 1. Scoring profile based on experimental evidence in SGD. The evidence score of each type of experiment 
supporting the interaction was summed for the final scores Li. 
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Table 3. The scoring of interactions along with the cumulative distribution function. 
score number CDF 

14 16 16 12 53 69 10 75 144 8 1235 1379 7.5 9 1388 7 5 1393 6 295 1688 5.5 46 1734 5 49 1783 4 3448 5231 3.5 275 5506 3 349 5855 2 22632 28487 1.5 3851 32338  
Each of the values in the cumulative distribution function were used as a cut-off for generating a gene 
regulatory network and to test for the enrichment of transcription regulators. Figures 2-5 show the 
result of using the four different enrichment statistics (the Z-score method and three hypergeometric 
tests). The overall discovery pattern corresponded very well between the method based on the Z-
score, which incorporates the strength of the differential expression of each genes, and the 
hypergeometric method of testing for differential expression, which is based on discrete statistics. It 
seems that by including scores of 8 or above only (1 379 of the top interactions), the most significantly 
enriched regulators were discovered, even though the set of effectors was small. This suggested both 
that the high-scoring ChIP experiments revealed the true interactions and that perhaps there was bias 
in the database towards experiments that focussed on the main regulators in the glucose de-
repression response. Notably, the enrichment scores for the down-regulated sets were much more 
significant as compared to the up-regulated sets. Further, while there was a general increase in 
enrichment scores with an increase in the number of interactions, there was a drop and recovery in 
the score of the up-regulated gene statistics.  
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Figure 2. Enrichment scores based on Z-scores as a function of the threshold score for experimental evidence 
in S. cerevisiae (Li).  
 
 
 
 
 
 
 

 
Figure 3. Enrichment scores based on hypergeometric p-values for differential expression, adjusted for 
multiple comparisons, as a function of the threshold score for experimental evidence in S. cerevisiae (Li).  
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Figure 4. Enrichment scores based on hypergeometric p-values for up-regulation, adjusted for multiple 
comparisons, as a function of the threshold score for experimental evidence in S. cerevisiae (Li).  
 

 
Figure 5. Enrichment scores based on hypergeometric p-values for down-regulation, adjusted for multiple 
comparisons, as a function of the threshold score for experimental evidence in S. cerevisiae (Li).  
 
What the contribution of each type of evidence might be was also investigated (Figures 6 and 7). To 
this end, the final score Li for each interaction was taken as the maximum evidence score among 
different types of experiments supporting the interaction, instead of the sum (Figure 6). The inclusion 
of the transcriptomic experiment in which a conserved binding site was also found in S. cerevisiae 
(“genome-wide gene expression regulator binding enrichment with conserved binding site”, evidence 
code 3 with score 4) seems to have provided many additional effectors with intermediate enrichment, 
although the most significantly enriched effectors were included already with the high-scoring ChIP 
data (Figure 7). Some of the microarray data types provided redundant information, as there was 
seemingly no difference between the scores of 1.5 and 2 in terms of the overall enrichment profile 
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(Figure 7). In addition, the enrichment scores are shown using the hypergeometric test for differential 
expression (Figure 8), up-regulation (Figure 9) and down-regulation (Figure 10). 
 
 
 

 
Figure 6. The scoring profile based on experimental evidence in SGD using maximum evidence scores. To 
calculate the final score for each interaction, the maximum evidence score among different types of experiment 
supporting the interaction was taken to calculate Li. 
 
 
 

 
Figure 7. Enrichment scores based on Z-score as a function of the threshold for the confidence in experimental 
evidence in S. cerevisiae using maximal evidence scores for Li. 
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Figure 8. Enrichment scores based on hypergeometric p-values for differential expression as a function of the 
threshold for the confidence in experimental evidence in S. cerevisiae using maximal evidence scores for Li. 
 
 
 
 
 
 
 

 
Figure 9. Enrichment scores based on hypergeometric p-values for up-regulation as a function of the threshold 
for the confidence in experimental evidence in S. cerevisiae using maximal evidence scores for Li. 
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Figure 10. Enrichment scores based hypergeometric p-values for down-regulation as a function of the 
threshold for the confidence in experimental evidence in S. cerevisiae using maximal evidence scores for Li. 
 
Evidently, the enrichment score of the top effectors did not seem to decline with an increased number 
of interactions, while at the same time the number of effectors were increased. This suggested that 
the different experiments provided evidence for different effectors, that the data were generally 
applicable to the different species, and that various forms of data strengthened the confidence in 
assignments. A good separation between highly enriched and non-enriched regulators could be 
considered a sign of improved accuracy of the network. The hypergeometric test appeared to better 
elucidate those regulators that were important, compared to the Z-score method.  Thus, the best 
function seemed to be to sum the scores in the experimental evidence and for the purpose of 
elucidating active regulators of gene expression, all the evidence could be combined using the 
evidence code developed, if only one threshold for the evidence score Li had to be chosen.  
 
The enrichment score increases of individual effectors can be seen in Figure 11. Significance was 
reached for most of the important effectors only when transcriptome profiling data were included. 
For Bur6, Sua7, Cdc73 and Spt7, the discovery of their apparent importance in K. marxianus was only 
based on the transcriptome profiling data of S. cerevisiae. Only for one regulator, Met32, the scores 
fell from significant to insignificant with the final inclusion of all transcriptome profiling data. The 
pattern of decreasing significance with additional transcriptome profiling was shared by Met4 only. 
Ume6 was initially significantly enriched. Subsequently, its score fell below significance, only to reach 
a higher level of significance with all the data included.  
 
In summary, the scoring system worked very well, and all data could be included for the best general 
network. However, choosing the most significantly enriched target set for each regulator would avoid 



185  

missing some significantly enriched regulators, for which some of the transcription profiling data may 
have resulted from secondary effects. An added benefit in using the SGD data alone is that the 
effectors are not only transcription factors that bind directly to DNA, but also include other modifiers 
of chromatin, such as kinases and acetylases, which associate with certain genes and affect their 
expression.  

 
 

 
 
Figure 11. Enrichment statistics of effectors, calculated with the hypergeometric distribution as a function of 
the total evidence score for an interaction. Hypergeometric p-values were corrected for the number of 
comparisons by multiplication with 184 to result in q-values. Grey blocks indicate that the regulator had at least 
one target. Coloured blocks indicate that the q-value was at or below 0.005 (enrichment statistic –Log(q)  >= 
2.301). Left: statistic for differential expression; Middle: statistic for up-regulation; Right: statistic for down-
regulation. Warmest colours were chosen for the minimum q-value in each of the three test sets. 
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A gene regulatory network based on the complete genome of DMKU3-1042 
The experimental data on interactions in the model species proved valuable to suggest active 
transcription factors in K. marxianus, regardless of the presence of DNA binding sites in this species. 
The presence of binding sites in K. marxianus could now be combined with the experimental evidence 
of interactions in S. cerevisiae, as well as motif conservation among Kluyveromyces species, in the 
likelihood framework.  
 
The nucleotide composition in the complete genome of strain DMKU3-1042 changes as a function of 
distance from the TLSS. Figure 12 depicts the background frequency of each nucleotide base as a 
function of distance from the TLSS using the complete genome for strain DMKU3-1042 
[Lertwattanassakul et al. 2015]. The pattern is almost identical to that found with strain UFS-2791 
[Chapter 5].  
 
 

 
 

Figure 12. The background frequency of each base as a function of distance from the TLSS. The position of the 
TLSS was taken as 1 000 bp, thus 1 000 bp from the TLSS is indicated by position number 1.  
 
The distributions of scores for the three basic forms of data used in the likelihood framework are 
shown in Figures 13 and 14. Very large scores were calculated for the long, informative motifs. Using 
Log10 of the motif likelihood score, Lm, suppressed the dominant effect of the motif score alone. The 
large number of motifs found with Lm value above 100 (892 106) made it necessary to utilise motif 
conservation and experimental evidence from the model species to a large extent. The distribution of 
motif conservation scores, Lc, showed a large number of motifs with a score of approximately 1, 
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indicating that the motif occurred in a well conserved region [see Chapter 5 and Addenda 2 and 3 for 
explanation of the method]. The score was well above 1 for only for a small fraction of motifs, which 
corresponded to motifs that were better conserved compared to the immediately neighbouring 
regions. For 24.7% of motifs, no alignment was obtained to any of the other six Kluyveromyces 
genomes (Figure 13). The distribution of the experimental evidence coupled to the gene 
corresponding to each motif, Li, is also shown in Figure 14. For the vast majority of motifs there was 
no supporting experimental evidence (Figure 13), hence providing a strict limitation to the inclusion 
of an interaction, if Li values were to be multiplied with Log10(Lm) or Lc.  
 

 

 
Figure 13. Distribution of all scores for motif likelihood (Log10(Lm)), motif conservation among Kluyveromyces 
species (Lc) and experimental evidence coupled to the gene corresponding to each motif (Li).  
 
 
 
Dis tr 

 
 
Figure 14. Distribution of the top 14 800 scores for motif likelihood (Log10(Lm)), motif conservation among 
Kluyveromyces species (Lc) and experimental evidence coupled to the gene corresponding to each motif (Li).  
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The distribution of the final likelihood, L, is shown in Figure 15, as calculated using seven different 
likelihood functions. When using the function Log10(Lm)×Lc×Li, 14 642 motifs were included and thus 
the vast majority of possible interactions were discarded. However, since this did not allow the 
discovery of any of the potentially important transcription factors discoverable by motifs scans when 
no model species evidence was available, other functions were also investigated. Function C gave a 
final likelihood distribution in-between that of A and B (Figure 15).  
 

 
 
Figure 15. Distributions of final likelihood scores based on seven likelihood functions.  
 
The number n of interactions was varied to construct various networks and the enrichment statistic 
was calculated for each target set of a TF. The number of interactions n was varied from 500  to 14 500. 
The latter value is approximately the number of regulatory interactions for which there was evidence 
in S. cerevisiae. Figures 16-19 show the enrichment scores obtained for all TFs when using the function 
A (Log10(Lm)×Lc×Li). An additional innovation in this representation was the inclusion of the name of 
each transcription factor on the plot, as well as the relative number of targets indicated as grey disks. 
In this format, the large target gene sets are situated on the near-horizontal line of non-significance, 
whereas the enriched transcription factors rise out from this area. The increased separation of 
significant from insignificant sets was evident for the hypergeometric method (compare Figures 16 
and 17). Gcn4 was again revealed as the most important regulator of down-regulated targets, which 
was followed by Met32 and Arg81 (Figure 19). Ste12 was significant for the up-regulated targets 
(Figure 18). Notably, the down-regulated set was more significant than the up-regulated set. 
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As the amount of data caused a cluttering of data points, a better approach to visualisation was to use 
the block graphics shown in Figures 20 and 21. The same features were visible as in the list plots 
(Figures 16-19), but additional features became visible. This format is very powerful since it gives a 
clearer picture of how enrichment of each regulator changes as a function of the parameter varied; in 
this case, the number of high-scoring motifs allowed for inclusion into the network. This block format 
was generated for all functions (see Addendum 4, Figures 1-12), and a summary is given in a later 
section.  
 
 
 
 
 
 
 
 

 
 
Figure 16. Enrichment scores based on Z(0) values as a function of the number of motifs included in the 
likelihood framework using Log10(Lm)×Lc×Li for calculation of final likelihoods. Grey disks indicate the relative 
number of targets of each effector. 
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Figure 17. Enrichment scores based on the q value for differential expression, using the hypergeometric 
distribution, as a function of the number of motifs included in the likelihood framework using Log10(Lm)×Lc×Li 
for calculation of final likelihoods. 
 

 
Figure 18. Enrichment scores based on the q value for up-regulation, using the hypergeometric distribution, 
as a function of the number of motifs included in the likelihood framework using Log10(Lm)×Lc×Li for 
calculation of final likelihoods.  
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Figure 19. Enrichment scores based on the q value for down-regulation, using the hypergeometric distribution, 
as a function of the number of motifs included in the likelihood framework using Log10(Lm)×Lc×Li for 
calculation of final likelihoods.  
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Figure 20. Enrichment statistics calculated for differential expression in gene sets using the Z-score method 
(left) or the hypergeometric distribution (right) for networks constructed using the function Log10(Lm)×Lc×Li 
for the final likelihood. Hypergeometric p-values were corrected for the number of comparisons by 
multiplication with 184. Grey blocks indicate that the effector had at least one target. Coloured blocks indicate 
that the q-value was at or below 0.005 for the hypergeometric tests (enrichment score >= 2.301) or that the 
enrichment statistic for the Z-score method was at or above 1.64 (p <= 0.05). The warmest colour (red) was 
chosen as 16, which was the highest enrichment score among all tests (Gcn4, down-regulation). White blocks 
indicate no target genes for a TF. 
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Figure 21. Enrichment statistics calculated for up-regulation (left) and down-regulation (right) using the 
hypergeometric distribution for networks constructed using the function Log10(Lm)×Lc×Li for the final 
likelihood.  
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The enumerative heptamer frequency method as independent measure to 
elucidate active transcription factors 
 
After correcting for multiple comparisons, five heptamers were found to be significantly over-
represented in the regulatory regions, using the enumerative method. The results are summarised in 
Table 4. A k-mer network was also drawn to cluster TFs based on their similarity with the same 
hemptamers (Figure 22). 
 
Table 4. Over-represented heptamers in the upstream regulatory regions of 245 down-regulated genes, with 
a q-value smaller or equal to 0.05 after correcting p-values for multiple comparisons using the total number 
of heptamers (16 384) as multiplier. The minimum fractional match score between heptamer and PPM was set 
to 0.7.  

JASPAR Matrix ID TF Heptamer p q motif score/ potential  pattern 
9540 FKH1 AAAAAAA 3.82E-23 6.3E-19 0.781987 [CT][AG]AA[AT]TGTAAACAAA[AG][AG][AG][GT][AG] 9634 STB3 AAAAAAA 3.82E-23 6.3E-19 0.751023 G[GT][CT][CT]AAA[AT]TTTTTCACT[CT][AT][GT][GT] 9521 AZF1 AAAAAAA 3.82E-23 6.3E-19 0.745638 AAAAAGAAA 9587 NDT80 AAAAAAA 3.82E-23 6.3E-19 0.722486 [AT][CT][CT][CT][AC][GT]G[AC]CACAAAA[AT]C[CG][AC][AT][AC] 9547 GCN4 TGACTCA 1.04E-07 0.0017 0.903521 [CG][AG][AT][AG][AG][GT]ATGAGTCAT[AC][CT][AT][CT][AC][AT] 9516 ARG81 TGACTCA 1.04E-07 0.0017 0.881325 [AG]TGACTC[ACT] 9522 BAS1 TGACTCA 1.04E-07 0.0017 0.819378 [GT]C[AT][CT][AG]GCC[AC]GAGTCA[AG][AG][AT][CT][AG][AG] 9515 ARG80 TGACTCA 1.04E-07 0.0017 0.78727 AGAC[GT]C 9663 YAP7 TGACTCA 1.04E-07 0.0017 0.736474 ATTAGTAAGCA 9532 CUP9 TGACTCA 1.04E-07 0.0017 0.716854 TGACACAT[AT] 9540 FKH1 TTTTTTT 4.05E-07 0.0066 0.781987 [CT][AG]AA[AT]TGTAAACAAA[AG][AG][AG][GT][AG] 9634 STB3 TTTTTTT 4.05E-07 0.0066 0.751023 G[GT][CT][CT]AAA[AT]TTTTTCACT[CT][AT][GT][GT] 9521 AZF1 TTTTTTT 4.05E-07 0.0066 0.745638 AAAAAGAAA 9587 NDT80 TTTTTTT 4.05E-07 0.0066 0.722486 [AT][CT][CT][CT][AC][GT]G[AC]CACAAAA[AT]C[CG][AC][AT][AC] 9585 MSN2 CCCCCCC 2.32E-06 0.0380 0.864646 AGGGG 9534 DAL81 CCCCCCC 2.32E-06 0.0380 0.857143 AAAAGCCGCGGGCGGGATT 9586 MSN4 CCCCCCC 2.32E-06 0.0380 0.830323 AGGGG 9610 RGM1 CCCCCCC 2.32E-06 0.0380 0.754 AGGGG 9675 YML081W CCCCCCC 2.32E-06 0.0380 0.748571 [AC]CCCC[GT]C[AT][CT] 9669 YGR067C CCCCCCC 2.32E-06 0.0380 0.745347 [AG]CCCC[AG]C[AT][CT][CT][AGT][GT][CGT][AG] 9582 MIG2 CCCCCCC 2.32E-06 0.0380 0.724971 CCCCGC[ACG] 9514 AFT2 GTGTGTG 2.39E-06 0.0391 0.735714 [CG]ACACCC[CG] 9685 ZMS1 CCCCCCC 2.32E-06 0.0380 0.714388 T[AT]CCCCGC[AT] 9581 MIG1 CCCCCCC 2.32E-06 0.0380 0.70368 [AC]CCCC[AG]C 9680 YPR022C CCCCCCC 2.32E-06 0.0380 0.701556 CCCCAC[CG]  
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Figure 22. Heptamer network of over-represented heptamers in upstream regulatory regions of 245 down-
regulated genes, with a q-value smaller or equal to 0.05 after correction for multiple comparisons using the 
total number of heptamers (16 384) as multiplier. The minimum fractional match score between heptamer and 
PPM was set to 0.7. 
 
Notably, poly A, poly T and poly C were in this list. Also, poly G was ninth in terms of over-
representation, and TATATAT was at number 22. Fkh1, Stb3, Azf1 and Ndt80 mapped to poly A and 
poly T. Polynucleotide stretches as well as the TATA-like sequences render a region of DNA likely to 
have an open structure, devoid of nucleosomes [Radman-Livaja et al. 2010]. Some of these stretches 
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have also been seen in the up-regulated set as over-represented [Chapter 4]. The over-representation 
of these may thus suggest open DNA in all differentially expressed genes and not necessarily that the 
transcription factors Fkh1, Stb3, Azf1 and Ndt80 were differentially active. TATA-box elements also 
indicate environmentally responsive genes [Radman-Livaja et al. 2010]. This patterning will form the 
basis of future studies. Whatever the case may be, the interpretation of these sequences should be 
done with caution. None of the transcription factors bind to stretches of exclusively polynucleotides. 
Their motifs always include some bias towards alternative bases. Consequently, this suggests that 
those transcription factors that map to these heptamers deserve some caution. Nevertheless, it is 
remarkable that again Gcn4 stands out as a regulator of down-regulated genes. It had the closest 
match among all transcription factors to the heptamer TGACTCA. On close inspection of the top 30 
heptamers (Table 5), several heptamers were found to match closely to TGACTCA. The Occam’s razor 
approach was used again, as was performed for up-regulated genes in Chapter 4. The combined motif 
is shown in Figure 23.  
 
Table 5. The top 30 heptamers from the enumerative approach using the regulatory regions from down-
regulated genes. Heptamers with a strong similarity are indicated in boldface.  

K-mer p q 
AAAAAAA 3.82E-23 6.27E-19 TGACTCA 1.04E-07 0.001697 TTTTTTT 4.05E-07 0.006644 CCCCCCC 2.32E-06 0.037997 GTGTGTG 2.39E-06 0.039096 TGAGTCA 9.09E-06 0.148981 GAAGCCC 1.12E-05 0.183445 TGTGTGT 1.16E-05 0.189646 GGGGGGG 1.72E-05 0.281152 TGACACA 1.8E-05 0.294789 GCCCGAT 1.93E-05 0.316475 GAGCACC 2.79E-05 0.457846 CCCCTGG 3.3E-05 0.539999 GTGAGTG 3.72E-05 0.609601 GTTGCCC 3.87E-05 0.634797 CGCACCG 4.54E-05 0.743857 CAGGTCA 4.82E-05 0.790382 AGGGGCT 5.15E-05 0.843853 TCGTTTA 5.79E-05 0.948575 TGCTGAC 6.04E-05 0.988867 CCTGGTC 7.17E-05 1.175253 ATATATA 7.25E-05 1.188533 GACTCAT 7.49E-05 1.226862 ACTCCGG 8.22E-05 1.347221 TTGGGCT 9.29E-05 1.521616 GAGGGGT 0.000117 1.912039 GCCCAAG 0.000127 2.076725 TTATGCG 0.000128 2.100279 GCACGCA 0.00014 2.297738 GCTGACA 0.000146 2.395133  
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Figure 23. Occam’s razor approach to elucidate a common motif in regulatory regions of down-regulated 
genes, using top heptamers from the enumerative method. Top: alignment of seven heptamers from the top 
30. Middle: combined motif obtained by the Occam’s razor approach. Bottom: the PPM for Gcn4 from the 
JASPAR database.  
 
The activator of genes involved with alternative carbon source utilisation Adr1, and the repressor 
Mig1, were not among the most significantly enriched TFs in the likelihood functions. However, when 
the strength of the motif match (Log10(Lm)) was emphasised, and with the support of motif 
conservation among Kluyveromyces species (Lc) in the function Log10(Lm)×Lc, Adr1 was seventh in 
terms of the enrichment (Addendum 4, Figures 5 and 6). When using only the motif score Log10(Lm), 
the score dropped. This suggested that the experimental evidence captured in the SGD for at least this 
motif was incomplete, that that the short motif on its own was insufficient to accumulate a large 
enough score to end up in the top 14 500 motifs, and that the conservation criterion played a very 
important role in the likelihood framework. It was also noted that two other motifs in the top ten in 
the results from the Log10(Lm)×Lc function shared a resemblance with the Adr1 motif (Figure 24). 
These were Zms1, the most significantly enriched TF among all conditions (see results below) and also 
matching to the top heptamer in the up-regulated gene set [see Chapter 4], and significantly enriched 
Aft2. All three these TFs bind a stretch of four cytosines or guanines.   
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Figure 24. The top ten enriched motifs using the Log10(Lm)×Lc function with a network constructed from 14 500 
motifs. A resemblance was found between Zms1, Adr1 and Aft2. 
 
Combining multiple sources of evidence for optimised regulatory networks 
The results from several enrichment tests were summarised in a comparative table of nine separate 
functions (Table 6). The eight likelihood functions comprised various methods to include the 
importance of the motif score (Log10(Lm)), the conservation of a motif among several Kluyveromyces 
species (Lc) and the strength of the experimental evidence for an interaction in SGD (Li), applying the 
evidence strength scoring system (Table 2). The method based only on data from SGD regardless of 
motif presence was also included (method SGD), as well as the heptamer frequency method (method 
I). For each of the likelihood methods, the maximal enrichment score was selected among those from 
several networks, where the interactions were included based on whether their motifs were among 
the top n motifs (Figures 20-21 and Addendum 4, Figures 1-12). Notably, each method revealed 
different regulators that might be implied in the differential response. Discovery of selected TFs is 
discussed below (see Addendum 4 for others).  
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Table 6. Multiple sources of evidence used to reveal differentially active transcription factors. For genes only 
annotated in the UFS-Y2791 strain, the differential expression fold change was included from the read-mapping 
of RNA-seq data to the UFS-Y2791 draft genome. For all cases where the motif strength (Lm) was indicated in 
the final likelihood, the Log10 of Lm was used. SGD refers to the regulatory target sets in SGD, where the targets 
could be mapped to homologs in K. marxianus DMKU3-1042 via the name of the gene, and regardless of whether 
the gene for the regulator was present in K. marxianus. 

Up-regulated target gene sets based on hypergeometric test 
Reg Lm*Lc*Li Lm*Lc|| Lm*Lc*Li Lm+Lc+Li Lm Lm*Lc Lc Li SGD I gene FC motif 

ZMS1  4.2(7)   5.7(36)    y   9685 STE12 4.5(59) 4.8(75) 4.9(56)    4.0(64) 3.5(98)  gene3811 1 9637 UME6        4.8(295) y UFS(g2782.t1) 1 9656 CRZ1      3.8(56)    gene4817 1 9529 MCM1    3.8(47)     y gene2718 1 9575 NRG1    3.5(93)      gene2521 1 9591 PUT3        3.3(33)  gene3852 1 9602 OPI1     3.1(6)     UFS(g1678.t1) 1 9593 AZF1    3.0(568)     y gene3930 1 9521 AFT1 2.6(27) 2.9(30)        gene643 1 9513 SWI4 2.8(39) 2.6(34)        gene5080 1 9645 PHD1 2.7(33)      2.7(33)     9599 YAP7    2.6(48)      UFS(g2174.t1) 1 9663 YNR063W     2.48(54)    y   9676 CIN5 2.4(42) 2.5(40) 2.33(42)       UFS(g3405.t1) 1 9528 RSC30    2.4(30)     y   9619 RGM1      2.4(154)   y   9610 TEA1      2.4(48)    gene3148 1 9649 BUR6        5.9(252)  gene3898 1 NA SUA7        4.5(401)  gene3433 1 NA SPT10               2.7(423)  gene3729 1 NA 
Down-regulated target gene sets based on hypergeometric test  

Reg Lm*Lc*Li Lm*Lc|| Lm*Lc*Li Lm+Lc+Li Lm Lm*Lc Lc Li SGD I gene FC motif 
GCN4 16.4(73) 13.8(56) 15.2(56)  2.4(20)  16.2(68) 15.3(169) y gene3451 1 9547 GCR2 6.9(33) 8.0(23) 8.2(27)    6.9(33) 7.6(40)  gene2613 0.40 9549 AZF1    6.5(743) 7.0(536)    y gene3930 1 9521 SFP1 3.4(885)  2.8(527)    5.1(593) 3.6(1306)  gene2869 1 9622 ARG81 4.7(5) 4.6(5) 4.7(5)    4.6(5)  y gene1497 1 9516 MET32 3.5(96) 3.5(96) 3.6(124)    4.4(118) 2.2(205)  gene4085 1 9578 BAS1 3.6(15) 2.4(10) 2.8(9)    3.4(16) 3.8(54) y gene1050 1 9522 RGT1     3.5(33)     gene4011 1 9611 RTG3 2.8(19) 2.4(10)     3.3(22) 3.8(38)  gene4377 1 9620 SUT2   2.9(47) 2.7(114)      UFS(g3260.t1) 3.4 9644 LEU3  2.9(38) 2.9(39) 2.6(10) 2.4(35)     gene4135 1 9568 GCR1 2.8(60) 2.9(57) 2.8(5)    2.8(182) 2.8(414)  gene759 0.21 9548 YLR278C     2.9(65)     UFS(g1445.t1) 1 9674 CUP2    2.8(63)        9531 FKH2        2.8(106)  gene4226 1 9541 CST6 2.7(112)      2.5(128)   gene1355 1 9530 MAC1       2.6(5)   gene2791 1 9570 GLN3 2.6(21) 2.6(21) 2.4(22)    2.6(21)   UFS(g4493.t1) 1 9551 SPT2 2.6(20)      2.6(20)   (UFS)g3039.t1 1 9631 MET4       2.6(23) 2.3(177)  gene4937 1 9579 CBF1     2.5(428)     (UFS)g4946.t1 1 9525 YPR022C  2.4(9)   2.4(9)     UFS)g1761.t1 1 9680 TYE7    2.4(308)      gene3913 1 9653 TUP1        7.2(184)  gene1081 1 NA SPT3        7.1(266)  gene1396 1 NA SPT20        6.6(184)  gene1462 1 NA HFI1        6.1(160)  gene1998 1 NA SIN4        4(200)  gene3684 1 NA CDC73        3.1(29)  gene635 1 NA SPT7               2.5(69)   gene4603 1 NA  
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Regulators associated with down-regulated target genes  
Gcn4 
Strong enrichment was observed for Gcn4. All data contributed to the assignment of interactions. 
Motif strength alone could not elucidate the gene set, but additional conservation criteria allowed 
discovery of a small target set. The best enrichment was achieved by combining all data as 
Log10(Lm)×Lc×Li. Using the SGD set with the requirement for a motif in the top 14 500 (Li) decreased 
the gene set to less than half that of the SGD set, but by inclusion of conservation criteria and motif 
strength, five additional targets were found. The accuracy of the PPM deserves attention since the 
target set was substantially smaller than the SGD set, although it is possible that substantial rewiring 
may have taken place. Gcn4 was also found as the most likely TF for regulation of down-regulated 
genes using the k-mer networking approach. The Occam's razor motif may provide an improved motif 
for Gcn4. Its involvement is in line with its known function as a major activator of genes for de novo 
amino acid biosynthesis, which were down-regulated in the xylose medium. The GCN4 gene was 
constitutively expressed, however, suggesting involvement of post-translation modifications in the 
differential response. 
 
Gcr2 
Strong enrichment was observed for Gcr2. By allowing motifs to be discovered by the functions 
Log10(Lm)+Lc+Li and If[Li==0, Log10(Lm)×Lc, Log10(Lm)×Lc×Li], which both decouple the final likelihood 
from the requirement for experimental evidence in SGD, but may take advantage of it, a slight 
improvement was made to the enrichment score while keeping fewer targets. At the same time, using 
only the motif strength Log10(Lm), or by requiring motif conservation Log10(Lm)×Lc, resulted in no 
significant enrichment. When a motif (with an Lm score of above 100) was required to allow inclusion 
of an interaction from SGD (function Li), seven of the 40 targets were removed. This result suggested 
that the SGD does capture a substantial number of the conserved interactions, but that some of these 
were not conserved between S. cerevisiae and K. marxianus. Disconnecting the requirement for SGD 
evidence (Log10(Lm)+Lc+Li and If[Li==0, Log10(Lm)×Lc, else Log10(Lm)×Lc×Li]) allowed six or ten genes, 
respectively, to be removed by competition by other high-scoring motifs, but improved the 
enrichment. Thus, the motif seemed to be well described and the incorrect motifs were removed. The 
conservation score Lc apparently did not contribute much to the scoring. In addition, the Gcr2 gene 
was 2.5-fold down-regulated, supporting its role along with Gcr1 as positive regulators of the down-
regulated glycolytic genes. 
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Arg81 
Enrichment of Arg81 using the SGD target set was insignificant. The Arg81 motif is similar to that of 
Gcn4 and out of the five targets for Arg81, three were shared by Gcn4 (see below). Enrichment of 
Arg81 may thus be partly explained by the differential activity of Gcn4. 
 
Gcr1 
Gcr1 showed significant enrichment in both the SGD target set as well as in criteria that combined all 
sources of data. The positive role of the conservation criterion was evident. When a motif was 
required in addition to SGD data, less than half of the sites were found, and with a similar enrichment 
score. This result suggested that either the motif was sub-optimal and possibly too conservative, or 
that many of the targets in the SGD set resulted from secondary effects. 
 
Tup1 
Strong enrichment was found for Tup1. Only SGD data could be used, since Tup1 does not have an 
associated DNA binding motif. Tup1 is recruited as a suppressor of gene expression by DNA binding 
proteins, including Mig1 [Treitel et al. 1995]. Occurrence in the down-regulated set was consistent 
with its function as a suppressor of gene regulation. 
 
Regulators associated with up-regulated target genes  
ZMS1 
The 36 targets of Zms1 were discovered by motif strength and conservation among the Kluyveromyces 
species. Conservation was required, but incorporation of SGD data was detrimental to the enrichment 
score, suggesting that these were unique to K. marxianus, or that the targets in S. cerevisiae were not 
correctly documented. Also, it mapped to the most over-represented heptamer, implying that the 
enrichment might have been the result of a different zinc finger type of TF, such as Adr1 or Mig1. 
 
 
 
Ste12 
The Ste12 gene set was enriched using the SGD method. Requirement for the motifs (Li) made an 
improvement, and motif strength was more important than sequence conservation. Yet, motif 
strength on its own failed to discover the enriched set. The results suggested that the Ste12 gene set 
has been conserved, but these regions could not be aligned well by the genome aligner. 
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Phd1 
Phd1 was shown to be enriched only when motifs were required (Li) or by using all data 
(Log10(Lm)×Lc×Li), and not by the SGD data alone. Increased emphasis on the motif score did not allow 
significance, since the motif was not very precise, and did not compete well with other motifs in this 
method. Phd1 activates genes for pseudohyphal growth, and some of these genes were up-regulated 
in the xylose medium. No PHD1 gene was found, however. 
 
Creating an optimised enrichment network 
The optimised target gene sets for each of the transcription factors identified were extracted and a 
genome-scale gene regulatory network was constructed (Figure 25). Only TFs were included, and only 
those that were associated with DNA-based evidence in K. marxianus (functions containing Log10(Lm), 
Lc and Li), regardless of the SGD method. The network comprises 3 545 interactions involving 38 TFs 
and 2145 protein-encoding gene targets. Some TFs have overlapping target sets. Figure 26 shows the 
number of targets in common between each pair of TFs and the number of targets in each gene set.  
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Figure 25. The network optimised for the best enrichment statistics. TFs are indicated in triangles and targets 
in circles. The calculation of the colours of TFs was based on their enrichment statistics using the Z-score 
approach and the ‘clarity’ scheme in Reactomica: warm colours (red) indicate a target gene set that was 
generally up-regulated; cold colours (blue) indicate a target gene set that was generally down-regulated; 
murkiness indicates a target gene set that was approximately equally up and down-regulated. For the targets 
(circles), large circles indicate differential expression, with warm colours indicating up-regulation and cold 
colours indicating down-regulation. Small, light grey circles indicate targets that were constitutively expressed.  
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Figure 26. Number of target genes in common between transcription factors. The number of targets in each 
gene set is found on the diagonal. 
 
Subnets for various TFs are shown below (Figure 27-39). The down-regulated Gcn4 targets are mostly 
genes encoding for enzymes in amino acid biosynthesis (Figure 27). Differentially expressed targets 
for Gcr2 and Arg81 were exclusively down-regulated, while the majority of differentially expressed 
targets for Gcn4, Bas1, Rtg3 and Gcr1 were down-regulated approximately two to four-fold (Figures 
27-32). Many of these targets are involved in amino acid or nucleotide biosynthesis, one-carbon 
metabolism and glycolysis. This pattern supports the observation of a specific growth rate in a defined 
xylose medium that was approximately 40% of that in the glucose medium [Chapter 3, Schabort et al. 
2016]. A substantial fraction of the Met32 targets were up-regulated and it is less clear whether Met32 
was associated with down-regulated or up-regulated targets (Figure 33). Among the generally up-
regulated target gene sets, Zms1, Ste12 and Mcm1 had differentially expressed targets which were 
almost exclusively up-regulated (Figures 34-36). The differentially expressed targets of activator Phd1 
were exclusively up-regulated (Figure 37). For Nrg1 and Aft1, a more mixed pattern of differential 
expression was observed (Figures 38 and 39).  
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Figure 27. TF-target network with Gcn4 as TF. For the TF (triangle), warm colours (red) indicate a target gene 
set that was generally up-regulated; cold colours (blue) indicate a target gene set that was generally down-
regulated; murkiness indicates a target gene set that was approximately equally up and down-regulated. For the 
targets (circles), large circles indicate differential expression, with warm colours indicating up-regulation and 
cold colours indicating down-regulation. Small, light grey circles indicate targets that were constitutively 
expressed. Differentially expressed target genes were mostly down-regulated. 
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Figure 28. TF-target network with Gcr2 as TF. Differentially expressed target genes were mostly down-
regulated. See Figure 27 legend for the meaning of colours and shapes. 
 
 
 

 
 
Figure 29. The TF-target network with Arg81 as TF. Differentially expressed target genes were mostly down-
regulated. See Figure 27 legend for the meaning of colours and shapes. 
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Figure 30. The TF-target network with Bas1 as TF. Differentially expressed target genes were mostly down-
regulated. See Figure 27 legend for the meaning of colours and shapes. 
 

 
 
Figure 31. The TF-target network with Rtg3 as TF. Differentially expressed target genes were mostly down-
regulated. See Figure 27 legend for the meaning of colours and shapes. 
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Figure 32. The TF-target network with Gcr1 as TF. Differentially expressed target genes consisted of both up 
and down-regulated genes, with the majority being down-regulated. See Figure 27 legend for the meaning of 
colours and shapes. 
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Figure 33. The TF-target network with Met32 as TF. Differentially expressed target genes consisted of both up 
and down-regulated genes. See Figure 27 legend for the meaning of colours and shapes. 
 

 
Figure 34. The TF-target network with Zms1 as TF. Differentially expressed target genes consisted of almost 
exclusively up-regulated genes. See Figure 27 legend for the meaning of colours and shapes. 



210  

 

 
Figure 35. The TF-target network with Ste12 as TF. Differentially expressed target genes consisted of almost 
exclusively up-regulated genes. See Figure 27 legend for the meaning of colours and shapes. 
 

 
Figure 36. The TF-target network with Mcm1 as TF. Differentially expressed target genes consisted of almost 
exclusively up-regulated genes. See Figure 27 legend for the meaning of colours and shapes. 
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Figure 37. The TF-target network with Phd1 as TF. Differentially expressed target genes consisted of exclusively 
up-regulated genes.  See Figure 27 legend for the meaning of colours and shapes. 
 
 

 
Figure 38. The TF-target network with Nrg1 as TF. Differentially expressed target genes consisted of equal 
proportions of up and down-regulated genes. See Figure 27 legend for the meaning of colours and shapes. 
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Figure 39. The TF-target network with Aft1 as TF. Differentially expressed target genes consisted of both up and 
down-regulated genes. See Figure 27 legend for the meaning of colours and shapes. 
 
Mapping transcription factors to pathways 
To functionally organise the gene regulatory network, target genes of the down-regulated gene sets 
were mapped to pathways. Figure 40 shows the TF-enzyme-pathway network. The regulators 
associated with down-regulated targets (Gcn4, Arg81, Bas1, Gcr2, Gcr1) were clearly associated with 
pathways that were, as a whole, significantly enriched and down-regulated in the xylose medium. 
Met32 seems to have a more mixed character. The up-regulated TF-target sets were omitted from the 
analysis for clarity. 
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Figure 40. The transcription factor-enzyme-pathway network. The calculation of the colours of TFs and 
pathways was based on their enrichment statistics using the Z-score approach and the ‘clarity’ scheme in 
Reactomica: warm colours indicate gene set that was generally up-regulated; cold colours indicate a gene set 
that was generally down-regulated; murkiness indicates a gene set that was approximately equally up and down-
regulated. Circles indicate genes encoding enzymes involved in the pathways to which they map. Warm colours 
indicate up-regulation and cold colours indicate down-regulation.  
 
TFs regulating other TFs 
To explore the higher gene regulatory programme among TFs, a TF-TF network was constructed 
(Figure 41). Among the enriched TFs, only Gcr1 and Gcr2 were themselves differentially expressed at 
transcript level. 
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Figure 41. TF-TF network. Colours indicate enrichment statistics from the target set of each TF, using the ‘clarity’ 
scheme in Reactomica. Small grey triangles represent non-enriched TFs. Loops indicate auto-regulation by a TF. 
 
Discussion 
 
Construction of gene regulatory networks is greatly hampered by the fact that DNA binding motifs of 
transcription factors are very short and not very precise, resulting in many false positive predictions 
from motif scans alone. Such predictive work has to be complemented with experimental data on TF-
target interactions. Multiple high-throughput methods such as transcriptome profiling have revealed 
many interactions in the model species S. cerevisiae, where some of these may have resulted from 
secondary transcriptional effects. Other methods such as ChIP provide direct physical evidence of TF-
target interactions. In this study a framework to incorporate these multiple sources of evidence was 
demonstrated, in which the benefits of each method could be combined in the construction of a 
likelihood based gene regulatory network. This framework is flexible in incorporating the multiple 
sources of evidence using an evidence code based scoring system. As the focus is increasingly on non-
model yeast species such as K. marxianus for the production of biofuels and recombinant proteins, a 
major challenge is to construct such networks for these non-model species to predict outcomes of 



215  

genetic engineering strategies. Experiments such as ChIP is labour intensive and costly, making it an 
impractical approach for the rapid construction of gene regulatory networks when there is not a large 
research community working on the same species. The likelihood framework demonstrated here 
effectively bridges the gap between datasets that could rapidly be generated for a non-model species 
(a complete or draft genome and RNA-seq) and the wealth of interaction data on a model species such 
as S. cerevisiae. Seven different likelihood based functions were used to construct networks, and these 
were compared to one which was purely based on the interaction data from SGD. For each network, 
the enrichment statistical methods using the Z-scores or the hypergeometric distribution were 
calculated for the target gene set of each regulator. The hypergeometric method was found to be 
much simpler in implementation, especially in distinguishing between generally up or down-regulated 
target sets.  
 
Finding an increased enrichment statistic for a few, sufficiently large gene sets could be considered a 
sign of capturing more true interactions and fewer false interactions. Also, finding a clearer pattern of 
either up or down-regulation in a target gene set could similarly be seen as an improvement, since a 
TF would generally do either of the two activities, although some may function in both mechanisms. 
By choosing optimally enriched target sets, it was found that each of the seven likelihood functions 
had its merits, depending on the specific TF. A single scoring function may not be a suitable treatment 
for all TFs. The various scenarios found included (a) a target gene set that was transcriptionally rewired 
compared to the model species, (b) that the motif was sub-optimal and required improvement 
(relaxation by inclusion of pseudocounts or requiring more pattern specificity), (c) that the enriched 
motif might rather be a proxy for a different TF that has more experimental evidence supporting its 
activity, and (d) that the dataset in SGD might contain interactions originating from secondary effects. 
This may provide a new avenue of research in that these scenarios suggest the foci for further 
experimentation, or even automated machine learning approaches to improvement of the gene 
regulatory network. It was finally opted to construct the final network on the best enrichment 
statistics for a given TF among all functions that required a DNA motif to be present in the species of 
interest. 
 
In addition, the study revealed key insights into the mechanistic basis of the differential genetic 
response of K. marxianus to glucose or xylose in a defined medium. It was revealed that primarily 
Gcn4, but also Arg81, Bas1 and Rtg3 were strongly involved in de novo amino acid synthesis, 
corresponding to the observation that their gene targets were mostly down-regulated. Although it is 
known that Bas1 has a similar DNA binding specificity to that of Gcn4 [Springer et al. 1996], only two 
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of the 15 targets in the network were common with the 73 targets of Gcn4. Thus, Bas1 activity cannot 
be explained by Gcn4 differential activity. Similarly, Gcr2 and Gcr1, for which the targets were also 
down-regulated, are known activators of glycolysis [Holland et al. 1987, Uemura et al. 1992]. Tup1 is 
also in the list of effectors with down-regulated targets, but is not described by a DNA binding motif 
like the transcription factors. Tup1 is a protein involved with repression of gene expression and 
recruited by transcription factors such as Mig1 [Treitel et al. 1995].  
 
In the target sets that were mostly up-regulated, the master transcriptional regulator of pseudohyphal 
growth, Phd1, was revealed as differentially active (Figure 37). Ste12 clearly was also a regulator of 
up-regulated targets (Figure 35). These are both activators of the pseudohyphal growth response 
[Broach 2012] which was detected by gene set enrichment using Gene Ontology [Chapter 3, Schabort 
et al. 2016]. Mating factor alpha -1 (MF(alpha)1) may have been up-regulated by increased activity of 
Phd1 or by Mcm1 (Figure 37). Mcm1 is known to be involved with regulation of mating type specific 
genes [Elble and Tye 1991] and PHD1 is a master regulator in pseudohyphal growth activation [Gimeno 
and Fink 1994]. Phd1 also targets Ste12 transcription. Tec1, which is under the control of Ste12 in the 
network and also an activator of pseudohyphal growth genes [Broach 2012], was up-regulated 4.3-
fold, whereas Ste12 was constitutively expressed. Tec1 cooperates with Ste12 to make the activity 
specific to pseudohyphal growth, distinguishing it from the role in mating [Roberts and Fink 1994, 
Madhani and Fink 1997]. Two kinases phosphorylate and activate Ste12, namely Fus3 [Elion et al. 
1993] and Kss1 [Bardwell et al. 1998]. Kss1 activity is associated with pseudohyphal growth, whereas 
Fus3 is associated with conjugative/polarised growth during mating. Both these kinases form part of 
the pheromone signalling cascade involving Ste2, Ste3, Gpa1, Ste18, Ste5, Ste20, Ste11 and Ste7, the 
latter of which phosphorylates Fus3 and Kss1. The mating pheromone binds to Ste2 (on a-cells) or Ste3 
(on α-cells) on the cell surface, sending the signal to the kinase cascade. Ste2 was 12.6-fold up-
regulated, Ste3 3.1-fold, and the G-protein alpha subunit Gpa1 3.3-fold. In addition, the pheromone 
MF(alpha)1 was up-regulated 49-fold. Evidently, the absence of glucose repression made the 
pheromone signalling system both more active and responsive. Up-regulation of Tec1 suggested that 
the system promoted pseudohyphal growth, yet the 25-fold up-regulation of Fus3 suggested 
suppression of pseudohyphal growth, since Fus3 phosphorylates Tec1, leading to its ubiquitin-
dependent degradation [Bao et al. 2004].  
 
Thus, Phd1 and Mcm1 both have potential to be involved with increased pseudohyphal growth, 
complementary to the pheromone system. The kinases that regulate the activity of Phd1, Ste12 and 
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Mcm1 may play a significant role in morphology which is not immediately evident from the RNA-seq 
data analysis performed thus far.  
 
A completely separate and complementary approach to the elucidation of differentially active 
transcription factors was also taken. The enumerative method of heptamer counting is unbiased to 
evidence of TF-target interactions in the model species and is based purely on the presence of over-
represented heptamers in a set of regulatory regions (for up or down regulated gene sets) compared 
to the background (for all genes). While the enumerative method is well established, its fundamental 
limitation lies in the short nature of the heptamers revealed, which makes it difficult to reveal which 
TF was responsible for the differential activity. The Occam’s razor approach that was developed in 
Chapter 4 was shown here to reveal the TF which was also found to be the most significantly enriched 
in the likelihood method, which was Gcn4. Notably, the Occam’s razor approach to the enumerative 
method also revealed the activity of some zinc finger TF in the up-regulated gene sets, which most 
likely was Adr1 or Mig1, or a combination of the two, but these were not revealed by the likelihood 
method as among the most significantly enriched TFs. It is possible that the significantly enriched 
Zms1, which also is a zinc finger protein binding to a stretch of guanines or cytosines, may be a proxy 
for Adr1 or Mig1 and that any or both of these TFs may have obtained a slightly different binding 
specificity compared to the S. cerevisiae Adr1 and Mig1. The Occam’s razor approach did, however, 
reveal a striking similarity to the Adr1 site. It was also noted that the Adr1 and Mig1 target sets in SGD 
appeared to miss some of the true targets of these important TFs, compared to studies such as done 
by Young et al. [2003] which revealed that Adr1 targeted most of the peroxisomal metabolic genes. 
This could be the reason why neither of these were enriched when using the SGD target sets. 
Additional support for their activity was found in that Adr1 was 37-fold up-regulated, which was the 
most significant among all TFs, while Mig1 was 4-fold down-regulated, consistent with their roles as 
activator and repressor of transcription, respectively. Notably, it was found that the enrichment score 
of Adr1 was substantially higher when using only motif strength and motif conservation among 
Kluyveromyces species, bringing Adr1 into the seventh position in terms of enrichment score. When 
using only the motif score Log10(Lm), the score dropped. This observation suggested that the 
experimental evidence captured in the SGD for at least this motif was incomplete, that that the short 
motif on its own was insufficient to accumulate a large enough score to end up in the top 14 500 
motifs, and that the conservation criterion played a very important role in the likelihood framework. 
It was also noted that two other motifs in the top ten in the results from the Log10(Lm)×Lc function 
shared a resemblance with the Adr1 motif (Figure 24). These were Zms1 and Aft2. Zms1 also matched 
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to the top heptamer in the up-regulated gene set (see Chapter 4). All three these TFs bind a stretch of 
four cytosines or guanines.   
 
Among the enriched TFs in the optimised network, only Gcr1 and Gcr2 were differentially expressed. 
This suggested that apart from Gcr1 and Gcr2, and also likely Mig1 and Adr1 which could not be 
detected as enriched but were differentially expressed, the mode by which TFs generally were 
regulated was by post-translational modification and not by gene regulation. The network structure 
of the TF-TF network indicates Gcr1, Ste12 and Met32 as having auto-regulatory wiring. Apart from 
Phd1 activating Ste12 and Gcr2 activating Gcr1, not much was evident from the higher regulatory 
organisation. It is evident that post-translational modifications, such as the master regulator kinases, 
must provide the signals from the environment to this set of TFs to initiate the differential response.  
 
Conclusions 
 
This work presents the first genome-wide gene regulatory network for the yeast K. marxianus. The 
likelihood framework was shown to be flexible in incorporating multiple sources of evidence, bridging 
the gap between what can be generated rapidly for a non-model species (a genome or draft genome 
and RNA-seq), and the wealth of data on regulatory interactions in a model species. The analysis 
revealed that Gcn4, along with Arg81, Bas1 and Rtg3, controlled the down-regulation of a large 
number of genes encoding enzymes involved in amino acid synthesis. All of these TFs were themselves 
constitutively expressed, suggesting major involvement of post-translational modifications. These 
interactions would have been missed using the reverse-engineering approach using transcriptomic 
data alone which requires differential expression of the TF genes. Conversely, the down-regulation of 
glycolysis is explained by the down-regulation of the Gcr1 and Gcr2 genes. The true identities of 
regulators that controlled the up-regulated genes were less obvious. Various lines of evidence 
suggested that the differential activity of, firstly, Adr1 and, secondly, Mig1 was responsible for the up-
regulation of the genes encoding enzymes and transporters for alternative carbon source utilisation. 
Yet, the likelihood framework revealed enrichment of motifs that bore a strong resemblance to those 
for Adr1 and Mig1 zinc finger motifs. Since the enrichment score for Adr1 was improved when the 
motif score was emphasised over that of the SGD dataset, it suggested that the targets did not 
correspond with those of S. cerevisiae, or that the true targets of Adr1 were not captured in SGD. A 
noteworthy development is that the method of optimising the enrichment statistic paves the way for 
automated network construction and, particularly, that it suggests which improvements could be 
made to improve the discovery of the true targets, depending on the regulator in question. 



219  

References 
 
Broach JR. Nutritional control of growth and development in yeast. Genetics. 2012;192: 73-105. 
Bao MZ, Schwartz MA, Cantin GT, Yates JR, Madhani HD. Pheromone-dependent destruction of the 

Tec1 transcription factor is required for MAP kinase signaling specificity in yeast. Cell. 
2004;119(7):991-1000. 

Bardwell L, Cook JG, Voora D, Baggott DM, Martinez AR, Thorner J. Repression of yeast Ste12 
transcription factor by direct binding of unphosphorylated Kss1 MAPK and its regulation by the 
Ste7 MEK. Genes Dev. 1998;12(18): 2887-2898.  

Collins SR, Kemmeren P, Zhao X, Greenblatt JF, Spencer F, Holstege FCP, Weissman JS, Krogan NJ. 
Toward a comprehensive atlas of the physical interactome of Saccharomyces cerevisiae. Mol 
Cell Proteomics. 2007;6: 439-450. 

Darling AE, Mau B, Perna NT. ProgressiveMauve: Multiple genome alignment with gene gain, loss 
and rearrangement. 2010. PloS ONE 5(6): e11147. doi:10.1371/journal.pone.0011147. 

Duda RO, Hart PE, Stork DG. Pattern classification. 1st ed. John Wiley and Sons. 2001.  
Elble R, Tye B. Both activation and repression of a-mating-type-specific genes in yeast require 

transcription factor Mcm1. Proc Nati Acad Sci USA. 1991;88: 10966-10970. 
Elion EA, Satterberg B, Kranz JE. FUS3 phosphorylates multiple components of the mating signal 

transduction cascade: evidence for STE12 and FAR1. Mol Biol Cell. 1993;4(5): 495-510. 
Gimeno CJ, Fink GR. Induction of pseudohyphal growth by overexpression of PHD1, a Saccharomyces 

cerevisiae gene related to transcriptional regulators of fungal development. Mol Cell Biol. 
1994;14(3): 2100-12. 

Holland MJ, Yokoi T, Holland JP, Myambo K, Innis MA. The GCR1 gene encodes a positive 
transcriptional regulator of the enolase and glyceraldehyde-3-phosphate dehydrogenase gene 
families in Saccharomyces cerevisiae. Mol Cell Biol. 1987;7(2): 813-20.  

Jansen R, Yu H, Greenbaum D, Kluger Y, Krigan N, Chung S. A Bayesian Networks Approach for 
Predicting Protein-Protein Interactions from Genomic Data. Science. 2003;302(5644): 449-453. 

Lertwattanasakul N, Kosaka T, Hosoyama A, Suzuki Y, Rodrussamee N, Matsutani M, Murata M, 
Fujimoto M, Suprayogi S, Tsuchikane K, Limtong S, Fujita N, Yamada M. Genetic basis of the 
highly efficient yeast Kluyveromyces marxianus: complete genome sequence and transcriptome 
analyses. Biotechnol Biofuels. 2015;8(47). doi: 10.1186/s13068-015-0227-x. 

Madhani HD, Fink GR. Combinatorial Control Required for the Specificity of Yeast MAPK Signaling. 
Science. 1997;275(5304): 1314-1317. 



220  

Marbach D, Costello JC, Küffner R, Vega N, Prill RJ, Camacho DM,  Allison KR, The DREAM5 Consortium, 
Kellis M, Collins JJ, Stolovitzky G. Wisdom of crowds for robust gene network inference. Nat 
Methods. 2013;9(8):796-804. doi:10.1038/nmeth.2016. 

Patil KR, Nielsen J. Uncovering transcriptional regulation of metabolism by using metabolic network 
topology. Proc Natl Acad Sci USA. 2005; 102(8): 2685–2689. PMID: 15710883. 

Radman-Livaja M, Rando OJ. Nucleosome positioning: how is it established, and why does it matter? 
Dev Biol. 2010;339(2): 258-266. doi:10.1016/j.ydbio.2009.06.012. 

Roberts RL, Fink GR. Elements of a single MAP kinase cascade in Saccharomyces cerevisiae mediate 
two developmental programs in the same cell type: mating and invasive growth. Genes Dev. 
1994;8(24): 2974-85. 

Schabort DWP, Letebele PK, Steyn L, Kilian SG, du Preez JC. Differential RNA-seq, multi-network 
analysis and metabolic regulation analysis of Kluyveromyces marxianus reveals a 
compartmentalised response to xylose. PLoS ONE. 2016;11(6): e0156242. 
doi:10.1371/journal.pone.0156242. 

Springer C, Künzler M, Balmelli T, Braus GH. Amino acid and adenine cross-pathway regulation act 
through the same 5’-TGACTC-3’ motif in the yeast HIS7 promoter. J. Biol. Chem. 1996;271(47): 
29637–29643. 

Trapnell C, Pachter L, Salzberg SL. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics. 
2009;25(9): 1105-1111. 

Uemura H, Jigami Y. Role of GCR2 in transcriptional activation of yeast glycolytic genes. Mol Cell Biol. 
1992;12(9): 3834-42. 

Young ET, Dombek KM, Tachibana C, Ideker T. Multiple pathways are co-regulated by the protein 
kinase Snf1 and the transcription factors Adr1 and Cat8. J Biol Chem. 2003;278(28): 26146–
26158. 

 



221  

Chapter 7 
 
Regulation of transcription factors by kinases 
 
 
Abstract 
Kluyveromyces marxianus has been shown to exhibit a strong differential response to glucose or xylose 
as the carbon source. This response seems to be regulated by a few transcription factors, which were 
revealed in previous chapters using independent approaches. Notably, the genes encoding these 
significantly enriched transcription factors, including Gcn4, Ste12 and Phd1, were themselves not 
differentially expressed. Post-translational modifications thus had to be responsible for altering their 
activities. These may include phosphorylation as a common post-translational modification, but also 
a variety of other chemical derivatisations and proteolytic degradation. This chapter aims to elucidate 
the possible kinase-transcription factor interactions that might be responsible for regulating the 
activity of enriched transcription factors in K. marxianus. The data analyses suggested Ssn3 and Pho85 
to be regulating the transcription factors Gcn4 and Ste12 by phosphorylation, which both had enriched 
regulatory target gene sets. The method proposed here uses exclusively RNA-seq data of the targets 
of transcription factors, along with a homology-drafted post-translational modification network and 
suitable network statistics. 
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Introduction 
 
Understanding gene regulation is an active field in research and many fields of biological research can 
benefit from knowledge of gene regulation, ranging from microbial biotechnology to the search for 
cures for hereditary diseases. A major disruptive technology that has emerged in recent years is next-
generation sequencing (NGS). A multitude of applications has arisen recently [reviewed in van Dijk et 
al. 2014, Buermans and den Dunnen 2014]. Major strides have been made in terms of the 
experimental protocols and raw data processing to reveal new forms of data, including RNA 
abundance estimation and isoform elucidation using RNA-seq [Trapnell 2010]. Such experiments have 
drastically altered our view of the biochemical complexity in eukaryotes. However, post-translational 
modifications (PTMs) play an important role in regulation of all cellular processes [Voet et al. 2016]. 
Indeed, many of the transcription factors (TFs) that seem to be regulating the differential glucose and 
xylose response in Kluyveromyces marxianus, including Gcn4, Phd1 and Ste12, were not differentially 
expressed themselves, suggesting a major role for PTMs in regulating the activity of these TFs. 
Phosphorylation is the most common PTM and many of these have been characterised for 
Saccharomyces cerevisiae. The dimension of PTMs is, however, not accessed by NGS experiments such 
as RNA-seq. It may still, however, be possible to reveal differential activity of post-translational 
modifiers, such as kinases, by means of NGS data together with a network enrichment based 
methodology using a homology-drafted PTM network based on a related model species. It is shown in 
this chapter how a kinase network was constructed for K. marxianus based on experimental data for 
S. cerevisiae. Differential enrichment statistics of TFs using RNA-seq data were calculated as before 
(Chapter 6) and used as a replacement for differential phospho-proteomics data. Kinase enrichment 
statistics, based on the TF targets of the kinases, were subsequently calculated. A potentially 
important innovation demonstrated here was to consider all the TFs reachable by a kinase via kinase 
cascades as the target set, at any given depth (network distance), termed long-range enrichment. In 
this manner, even upstream kinases might be revealed. Additionally, a Bayesian likelihood method is 
demonstrated that prunes the network to reveal the most likely interactions or subnetworks. Since 
obtaining genome-wide NGS data certainly is less complicated compared to genome-wide phospho-
proteomics and other techniques based on mass spectrometry, the method proposed here may have 
interesting potential. 
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Materials and Methods 
Cultivations of K. marxianus, RNA-seq data generation and analyses were described in the Materials 
and Methods section, Chapter 3. The genome-wide gene regulatory networks were from Chapters 5 
and 6.  
 
Constructing a kinase interaction network for K. marxianus 
The Saccharomyces Genome Database (SGD) provided a rich source of post-translational 
modifications in S. cerevisiae, and it was found to be an improvement over that from the annotations 
from UniProt. YeastMINE provides a convenient framework for retrieving interactions stored in SGD. 
Computer code was developed to parse the data for YeastMINE and InterMINE to collapse redundant 
rows and create interactions in a convenient native format, amenable to visualisation and enrichment 
statistics in Reactomica. The list of phosphorylation interactions was very large and contained multiple 
sources of evidence per interaction, thus constituting a redundant set. Each S. cerevisiae gene 
represented in the interaction dataset was homology mapped to the K. marxianus set of proteins by 
command-line BLASTP, which was run under Windows 7. The E-value cutoff was set to 1E-5 and only 
the best scoring hit was kept. Subsequently, the interactions in which the target was a regulator of 
transcription were selected, or more specifically, a transcription factor associated with a DNA binding 
site represented in the JASPAR motif database. 
 
A Bayesian classifier approach to kinase enrichment networks 
A systematic approach was developed to select only interactions with a high likelihood of being 
regulated only by the kinase of interest and not by any other. A Bayesian classifier calculates the 
likelihood that one hypotheses (H1) is more likely, given the data, compared to a competing hypothesis 
(H0) [Duda et al. 2001, Collins et al. 2007]. In this case, for each interaction the average enrichment of 
all the targets (transcription factors) of an effector (kinase) was used as H1. For each Kinase-TF 
interaction, the H0 was also calculated, which is the average enrichment of kinases that also 
phosphorylate the target (transcription factor) but is not the kinase in the actual interaction (j!=k). The 
likelihood ratio based on average enrichment Le is then calculated as the likelihood ratio H1/H0.  

݇ܣ)݁ܮ → (ݐܤ = 1ܪ
 0ܪ

݇ܣ)݁ܮ → (ݐܤ =
1ܶ ∑ ௧்(݇ܣ|ݐܤ)ܵ

ܭ1 − 1 ∑ 1ܶ ∑ ௧்௄௝(௝!ୀ௞)(݇ܣ|ݐܤ)ܵ
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Ak represents the k’th kinase in the complete network of K kinases, Bt the t’th TF among the T target 
TFs of Ak, and S(Bt|Ak) the enrichment score of the t’th transcription factor which is a target of the 
kinase Ak. The enrichment scores S(Bt|Ak) were calculated using the Z-score method [Ideker et al. 2002, 
Oliveira et al. 2008, Schabort et al. 2016, Chapter 3] as below.  

S = Z(total, Test) − Mean(Z, Background)
Standard deviation(Z, Background)  

Since the number of kinases that affect a given TF was generally low, using the enrichment scores may 
provide a more sensitive likelihood method as opposed to using the numbers of enriched and non-
enriched TFs, as is often used in Bayesian networks. Finally, one of two methods were used to select 
a final network. Firstly, top scoring interactions were chosen for inclusion in the network. Secondly, 
kinase subnets, based on the average likelihood values Le obtained after the Bayesian classifier, were 
chosen.  
 
The methods were first applied to the gene regulatory network based and the draft genome of K. 
marxianus UFS-Y2791 (Chapter 5), and repeated using the gene regulatory network based on the 
complete genome of strain DMKU3-1042 (Chapter 6). 
 
Long-range enrichment and network distances 
To calculate a long-range enrichment at arbitrary networks distance, a breadth-first scan was 
performed. All TFs along the path were collected and their target gene set enrichment scores 
calculated. These were used as the scores S(Bt).  
 
Results 
 
Figure 1 shows the phosphorylation network homology mapped to K. marxianus. Subsequently, the 
interactions in which the target was a transcription factor were picked. Figure 2 shows this network 
of 145 interactions, involving 52 kinases and 62 transcriptional regulators. These were transcriptional 
regulators derived from the effectors of gene regulatory interactions from YeastMINE. Of these, 18 
did not map to JASPAR DNA binding motifs and were thus co-activators and co-repressors, including 
kinases and other post-translational modifiers, but which were not present in the gene regulatory 
networks constructed in Chapters 5 and 6. A further step was performed to pick only those 
interactions with the targets associated having a DNA binding site in the JASPAR database, leaving 110 
interactions involving 44 transcription factors and 43 kinases (Figure 3).  
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Figure 1. Phosphorylation network in K. marxianus drafted on the interactions in S. cerevisiae.  TFs are 
indicated as triangles with colouring representing the direction of regulation – warm colours (red) indicates up-
regulation while cold colours (blue and purple) indicates down-regulation. Kinases and non-TF proteins are 
indicated as white circles if constitutively expressed. Non-TF phosphorylation targets are indicated with 
pentagons with the same colouring scheme if differentially expressed at transcriptional level. Large clusters of 
targets indicate a central hub kinase. The scheme reveals that generally, kinases as effectors are constitutively 
expressed at transcriptional level. 
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Figure 2. Phosphorylation network in K. marxianus drafted on interactions in S. cerevisiae, in which the targets 
are regulators of gene expression, including TFs, co-activators and co-repressors. TFs are indicated as triangles 
and the colouring scheme indicates the enrichment statistics based on differential expression of all its target 
genes, including non-regulatory genes. Warm colours (red) indicate a target gene set that was generally up-
regulated; cold colours (blue) indicate a target gene set that was generally down-regulated; murkiness indicates 
a target gene set that was approximately equally up and down-regulated. Non-TF proteins are indicated as 
circles, with the colouring scheme based on the transcriptional level differential expression of the relevant gene. 
Warm colours (red) indicate up-regulation and cold colours (blue) indicate down-regulation at transcriptional 
level. 
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Figure 3. Phosphorylation network in K. marxianus drafted on interactions in S. cerevisiae, in which the targets 
were limited to transcription factors that have a DNA binding site in JASPAR. Kinases are indicated by circles 
while TFs are indicated by triangles. The colouring scheme is the same as in Figure 2. 
 
Of the most significantly enriched TFs from the gene regulatory network based on the draft genome 
(Chapter 5), Gcn4, Gcr2, Swi4, Sok2, Ash1 and Tye7 were all included, while Gal4, YGR067C and Stp1 
were absent. By visual inspection, it appeared that Pho85 was an important regulator as three of its 
targets were enriched (Gcn4, Ash1, Gsm1), leaving three (Rim101, Yap3, Stb3) non-enriched. Also, 
Ssn3 was associated with Gcn4, Ste12 and Sok2, leaving only one (Msn4). The CDC28 cyclin dependent 
kinase had three TF targets enriched (Ash1, Swi4, Sok2), of which their targets were mostly up-
regulated. It had a larger fraction of non-enriched transcription factors (Fkh2, Yox1, Ino2, Pho2, Xbp1 
and the Dal81 motif for which no gene homolog was found in K. marxianus). A high fraction of 
enrichment was found for Kss1 with two TFs enriched (Ste12 and Cst6) but Sip4 was not enriched. 
Rag8 had four targets enriched (Hap1, Gcr2, Tye7 and Cha4) and seven non-enriched (Yap1, Leu3, 
Hac1, Yap3, Sko1, Stb3, Rds2).  
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Figure 4 shows the resulting network when only subnetworks with average interactions likelihoods 
above 1 were included. Table 1 shows the underlying data. Ssn3, Mek1 and Pho85 were the top-
scoring subsystems with likelihoods above 1.5. Ssn3 and Pho85 both putatively interacted with Gcn4.  
 

 
 
Figure 4. The kinase-TF network when only interactions with Bayesian classifier likelihood based on average 
enrichments, Le, were selected to be above 1. The likelihood Le of an interaction A->B was calculated as the 
ratio of average enrichments of the targets of kinase A, normalised by the average enrichment of all other 
kinases that may phosphorylate B. Kinases are indicated by circles while TFs are indicated by triangles. The 
colouring scheme is the same as in Figure 2. 
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Table 1. Calculation of the likelihoods of interactions based on average enrichments using a Bayesian classifier 
selected to be above 1. The likelihood Le of an interaction A->B was calculated as the ratio of average 
enrichments of the targets of kinase A, normalised by the average enrichment of all other kinases that may 
phosphorylate B. 

Kinase Kinase TF TF (JAS) TF AvEnr(H1) AvEnr(H0) Le AvLe 
SSN3 g673.t1 MSN4 9586 g3836.t1 2.65 1.01 2.62 1.77 
SSN3 g673.t1 SOK2 9629 g2024.t1 2.65 1.94 1.36 1.77 
SSN3 g673.t1 STE12 9637 g3393.t1 2.65 1.47 1.80 1.77 
SSN3 g673.t1 GCN4 9547 g1996.t1 2.65 2.04 1.30 1.77 
MEK1 g984.t1 TYE7 9653 g3069.t1 2.19 1.30 1.68 1.53 
MEK1 g984.t1 UME6 9656 g2782.t1 2.19 1.40 1.56 1.53 
MEK1 g984.t1 ASH1 9520 g1041.t1 2.19 1.62 1.35 1.53 
PHO85 g2440.t1 RDS2 9606 g1299.t1 1.44 0.84 1.70 1.51 
PHO85 g2440.t1 GSM1 9552 g852.t1 1.44 1.10 1.31 1.51 
PHO85 g2440.t1 STB3 9634 g1338.t1 1.44 0.64 2.25 1.51 
PHO85 g2440.t1 ASH1 9520 g1041.t1 1.44 1.62 0.89 1.51 
PHO85 g2440.t1 RIM101 9612 g2725.t1 1.44 1.44 1.00 1.51 
PHO85 g2440.t1 YAP3 9660 g3426.t1 1.44 0.53 2.73 1.51 
PHO85 g2440.t1 GCN4 9547 g1996.t1 1.44 2.04 0.70 1.51 
SLT2 g556.t1 SWI4 9645 g4004.t1 3.04 2.14 1.42 1.42 
STE20 g2415.t1 CIN5 9528 g3405.t1 1.31 0.94 1.39 1.39 
RIM11 g425.t1 UME6 9656 g2782.t1 1.91 1.40 1.36 1.36 
IRE1 g2659.t1 RTG3 9620 g545.t1 1.89 1.41 1.34 1.34 
RAG8 g4252.t1 RDS2 9606 g1299.t1 1.00 0.84 1.18 1.26 
RAG8 g4252.t1 TYE7 9653 g3069.t1 1.00 1.30 0.76 1.26 
RAG8 g4252.t1 GCR2 9549 g2462.t1 1.00 1.00 1.00 1.26 
RAG8 g4252.t1 SKO1 9626 g4710.t1 1.00 0.71 1.41 1.26 
RAG8 g4252.t1 YAP1 9659 g2401.t1 1.00 0.86 1.16 1.26 
RAG8 g4252.t1 LEU3 9568 g2029.t1 1.00 0.75 1.34 1.26 
RAG8 g4252.t1 HAP1 9556 g781.t1 1.00 1.00 1.00 1.26 
RAG8 g4252.t1 CHA4 9527 g2709.t1 1.00 0.77 1.29 1.26 
RAG8 g4252.t1 STB3 9634 g1338.t1 1.00 0.64 1.56 1.26 
RAG8 g4252.t1 HAC1 9554 g341.t1 1.00 0.82 1.22 1.26 
RAG8 g4252.t1 YAP3 9660 g3426.t1 1.00 0.53 1.90 1.26 
TPK1 g1893.t1 RDS2 9606 g1299.t1 0.64 0.84 0.76 1.21 
TPK1 g1893.t1 SKO1 9626 g4710.t1 0.64 0.71 0.90 1.21 
TPK1 g1893.t1 CHA4 9527 g2709.t1 0.64 0.77 0.82 1.21 
TPK1 g1893.t1 UME6 9656 g2782.t1 0.64 1.40 0.46 1.21 
TPK1 g1893.t1 STB3 9634 g1338.t1 0.64 0.64 1.00 1.21 
TPK1 g1893.t1 MSN4 9586 g3836.t1 0.64 1.01 0.63 1.21 
TPK1 g1893.t1 RGT1 9611 g3741.t1 0.64 0.19 3.40 1.21 
TPK1 g1893.t1 DOT6 9595 g261.t1 0.64 0.37 1.74 1.21 
DUN1 g4717.t1 CUP9 9532 g125.t1 0.88 0.76 1.16 1.15 
DUN1 g4717.t1 CHA4 9527 g2709.t1 0.88 0.77 1.13 1.15 
CKA2 g2293.t1 SPT2 9631 g3039.t1 1.97 1.72 1.14 1.14 
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Kinase Kinase TF TF (JAS) TF AvEnr(H1) AvEnr(H0) Le AvLe 
CKB2 g3674.t1 SPT2 9631 g3039.t1 1.97 1.72 1.14 1.14 
CKB1 g1731.t1 SPT2 9631 g3039.t1 1.97 1.72 1.14 1.14 
CDC28 g1576.t1 FKH2 9541 g2016.t1 1.24 0.41 3.00 1.11 
CDC28 g1576.t1 YOX1 9677 g48.t1 1.24 1.24 1.00 1.11 
CDC28 g1576.t1 INO2 9565 g2711.t1 1.24 1.24 1.00 1.11 
CDC28 g1576.t1 PHO2 9600 g940.t1 1.24 1.24 1.00 1.11 
CDC28 g1576.t1 ASH1 9520 g1041.t1 1.24 1.62 0.76 1.11 
CDC28 g1576.t1 SOK2 9629 g2024.t1 1.24 1.94 0.64 1.11 
CDC28 g1576.t1 9534 9534 g3314.t1 1.24 1.24 1.00 1.11 
CDC28 g1576.t1 XBP1 9658 g2807.t1 1.24 1.24 1.00 1.11 
CDC28 g1576.t1 SWI4 9645 g4004.t1 1.24 2.14 0.58 1.11 
KSS1 g4162.t1 SIP4 9624 g3032.t1 1.25 0.92 1.36 1.07 
KSS1 g4162.t1 CST6 9530 g235.t1 1.25 1.25 1.00 1.07 
KSS1 g4162.t1 STE12 9637 g3393.t1 1.25 1.47 0.85 1.07 

 
The Ssn3 (better known as Srb10 or Cdc8) subsystem showed the strongest enrichment of all kinase 
subsystems with Gcn4, Sok2 and Ste12 enriched. Its other target, the multi stress response regulator 
Msn4, was not enriched, consistent with the lack of observing an enriched stress response in Gene 
Ontology enrichment (see Chapter 3, Schabort et al. 2016).  
 
Explaining away kinase-TF interactions by differential gene expression  
Additionally, the possible effect of kinases on transcription factor activity could be explained away by 
considering differential gene expression of the transcription factor genes, which is a simpler 
explanation for the observed differential activity. Figure 5 shows the same network, but rendered with 
the differential expression of mRNA values from RNA-seq. The TF Ash1 which was enriched in the 
Pho85 target subnetwork was up-regulated 2.4-fold in the RNA-seq data. By contrast, none of the 
targets of Ssn3 were differentially regulated at the gene level, in support of differential kinase activity 
of Ssn3. 
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Figure 5. The kinase-TF network after Bayesian classifier likelihood selection, rendered with differential gene 
expression values of TFs instead of enrichment values. Enriched target TFs of Pho85 Ash1 and Gsm1 were 
moderately up-regulated, eliminating the need for kinase activity. 
 
Phosphorylation sites in Gcn4 
In principle, the presence of a conserved phosphorylation site in the Gcn4 protein of K. marxianus 
would further support the regulation of Gcn4 activity by the ubiquitin-dependent degradation, 
involving site-specific phosphorylation [Chi et al. 2001, Shemer 2002]. O’Shea et al. [1991] determined 
the first crystal structure of Gcn4. It is a two-stranded coil with very few amino acids buried in the core 
of the protein. Therefore, most of the potential phosphorylation sites that can be identified by 
sequence analysis may be exposed to the surface. It is, however, not trivial to map the amino acid 
residue numbers between different species, as the lengths of proteins orthologues may vary between 
species. For S. cerevisiae, the Gcn4 protein has 281 residues, whereas in K. marxianus UFS-Y2791 it 
has 357 amino acids. Generally, the lengths of amino acid sequences corresponded to those of the 
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reference sequences. Sequence alignment had to be performed to properly map sites between 
species. The sequences of Gcn4 in K. marxianus UFS-Y2791 and S. cerevisiae were aligned using BLASTP 
at NCBI for two sequences. Figure 6 shows that the threonine 165 -proline 166 pair that is the critical 
site for phosphorylation by Pho85-Pcl5 and likely also by Srb10, was indeed conserved between the 
two species. The site is at residues 237 and 238 in K. marxianus. This phosphorylated threonine site is 
recognised by the ubiquitination system in S. cerevisiae [Chi et al. 2001, Shemer 2002].  
 

 
 

Figure 6. Alignment of Gcn4 amino acid sequence in K. marxianus UFS-Y2791 (query) and S. cerevisiae 
(subject). The conserved phosphorylation site is indicated in the red block. 
 
Use of the gene regulatory network based on the complete genome of 
DMKU3-1042 
The same analyses were carried out using the optimised gene regulatory network based on the 
complete genome for strain DMKU3-1042 (Chapter 6). Figure 7 shows a similar network as was 
constructed for the draft genome. At a network distance of 1, which corresponded to direct kinase-TF 
interactions, the well-known master kinases Pho85, Ssn3 and Pkc1 were on top of the list of mean 
enrichments (Table 2).  
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Figure 7. Phosphorylation network in K. marxianus drafted on interactions in S. cerevisiae, in which the targets 
were the transcription factors included in the enrichment-optimised gene regulatory network based on the 
complete genome (Chapter 6). Kinases are indicated by circles while TFs are indicated by triangles. The colouring 
scheme is the same as in Figure 2. 
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Table 2. Enrichment statistics of long-range enrichment of kinases via interaction with transcription factors at 
a network depth of 1. The analysis was based on the enrichment-optimised regulatory network based on the 
DMKU3-1042 genome, containing only the 38 TFs included in the optimised TF regulatory network from Chapter 
6. Kinases not shown obtained a score of zero. 

ID name Gene signt. log2FC FC n Ints n Kin n TFs n Enr Av Enr 
gene4081 PHO85 no 0 1 8 6 2 2 7.23 gene4089 SSN3 no 0 1 2 0 2 2 6.83 gene4374 PKC1 no 0 1 2 1 1 1 6.81 gene260 CDC5 no 0 1 5 4 1 1 6.81 gene2023 CDC28 no 0 1 23 21 2 2 5.71 S000005098 Yck2p - - - 5 4 1 1 5.55 S000003147 Tos3p - - - 3 2 1 1 5.55 gene639 HRR25 no 0 1 1 0 1 1 5.55 gene4740 PHO80 no 0 1 1 0 1 1 5.55 gene375 NNK1 no 0 1 1 0 1 1 5.55 gene3314 SWE1 no 0 1 3 2 1 1 5.55 gene307 SKY1 no 0 1 1 0 1 1 5.55 gene2807 MCK1 no 0 1 5 4 1 1 5.55 gene2516 AKL1 no 0 1 1 0 1 1 5.55 gene2239 IME2 yes 1.38 2.61 2 1 1 1 5.55 gene1729 STE20 no 0 1 4 3 1 1 5.55 gene3808 KSP1 no 0 1 6 4 2 2 5.15 gene2308 KSS1 no 0 1 2 0 2 2 4.94 gene1929 CKA2 no 0 1 2 1 1 1 4.89 gene1356 CKA1 no 0 1 2 1 1 1 4.89 S000001177 Yck1p - -  7 3 4 4 4.69 gene4568 SLT2 no 0 1 2 1 1 1 4.61 gene3919 MEK1 no 0 1 2 1 1 1 4.51 gene1985 ATG1 no 0 1 5 2 3 3 4.46 S000001910 Cmk1p - -  3 1 2 2 4.43 gene3298 TPK1 no 0 1 7 5 2 2 4.40 gene3412 IRE1 no 0 1 4 3 1 1 4.03 gene2579 HOG1 no 0 1 5 4 1 1 4.03 gene873 FUS3 yes 4.64 25.01 3 1 2 2 4.02 S000003701 Hal5p - -  2 1 1 1 3.25 S000001649 Tpk3p - -  9 8 1 1 3.25 gene3731 PBS2 no 0 1 3 2 1 1 3.25  

To investigate whether differentially active upstream kinases could be detected by long-range 
enrichment, the analyses were performed at various maximal depths (network distances from each 
kinase via other kinases). The overall distribution of long-range enrichment scores indicated increasing 
fractions of kinases with mediocre scores with an increase in network depth (Figure 8). Figure 9 reveals 
four classes of kinases: (a) kinases with scores that remained at their original values of zero, which 
were those kinases for which the targets had led only to other kinases, (b) kinases with scores that 
remained at their original non-zero values, indicating that all TFs along the path were discovered at a 
depth of one, (c) kinases with scores that dropped from an initial high value, indicating that at least 
one kinase was a target, leading to TFs with low enrichment, and (d) kinases with scores that increased 
at some point, indicating that at least one kinase was a target, which led to TFs with high enrichment. 
In general, short-range interactions could be assigned with higher confidence as opposed to long-
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range interactions, since fewer assumptions were made. Enrichment of kinases belonging to class (b) 
were thus assigned with more confidence as opposed to classes (c) and (d).  
 

 
Fig 8. Distribution of enrichment values of kinases at various network depths. Scores were calculated as the 
mean enrichment values of the TFs that a kinase can phosphorylate itself or via a kinase cascade. Black, depth = 
1; Purple, depth = 2; Blue, depth = 3; Green, depth = 4; Red, depth = 5. 
 

 
Figure 9. Long-range enrichment of kinases via interaction with transcription factors as a function of network 
depth, using only TFs present in the enrichment-optimised regulatory network based on the K. marxianus 
DMKU3-1042 strain. Four classes of kinases are distinguishable: classes of kinases: (a) kinases with scores that 
remained at their original values of zero (b) kinases with scores that remained at their original non-zero values 
(c) kinases with scores that dropped from an initial high value, and (d) kinases with scores that reaches a 
maximum enrichment and subsequent decrease in enrichment.  
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Since this TF-kinase network was constructed only from enriched TFs in the enrichment-optimised 
gene regulatory network (Chapter 6), this analysis resulted in either high-scoring kinase-TF 
interactions or zero-scoring interactions. To develop an improved scoring method, another kinase-TF 
network was constructed, which contained all kinase-TF interactions in the original phosphorylation 
network (Figure 10). In the cases when a TF was not present among the 38 TFs of the optimised TF 
network, a value of zero was assigned as enrichment score for a TF. In Figure 11 it is evident that fewer 
kinases obtained high scores using the improved method. Figure 12 additionally shows that the top 
kinases kept the same high scores as a function of network depth. On closer inspection it is evident 
that seven (Akl1, Pho80, Hrr25, Ssn3, Sky1, Nnk1, Kss1) of the top eight kinases were in the category 
of kinases that kept high enrichments (Table 3). Other kinases (Pkh2p, Ssn8, Vhs1p, Ste7) reached an 
optimum only by discovering other kinases first.  
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Figure 10. Phosphorylation network in K. marxianus drafted on interactions in S. cerevisiae, in which the 
targets were any of the gene regulators, regardless of their inclusion in the enrichment-optimised gene 
regulatory network from Chapter 6. Kinases are indicated by circles while TFs are indicated by triangles. The 
colouring scheme is the same as in Figure 2. 
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Fig 11. Distribution of enrichment values of kinases at various network depths. Scores were calculated as the 
mean enrichment values of the TFs that a kinase can phosphorylate itself or via a kinase cascade. Black, depth = 
1; Purple, depth = 2; Blue, depth = 3; Green, depth = 4; Red, depth = 5. 
 

 
Figure 12. Long-range enrichment of kinases via interaction with transcription factors as a function of network 
depth, using all TFs present in the phosphorylation network. An enrichment score of zero was assigned to a TF 
if it did not exist in the enrichment-optimised gene regulatory network. 
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Table 3. Statistics of the top 20 candidate kinases suggested by long-range enrichment via interaction with 
transcription factors as a function of network depth. Depth is indicated by numbers 1 to 5. The values x;(y);(z) 
represent: mean enrichment of TFs; (number of TFs enriched / number of TFs reachable along cascade); 
(Log2(Fold change) of kinase gene). If the kinase was not differentially expressed in RNA-seq data, a value of 0 
was given for Log2(Fold change). Dashes indicate that the kinase gene was not annotated in the DMKU3-1042 
genome. Entries in bold indicate maximal mean enrichment scores. 

 Gene 1 2 3 4 5 
AKL1 5.55(1/1)(0) 5.55(1/1)(0) 5.55(1/1)(0) 5.55(1/1)(0) 5.55(1/1)(0) 
PHO80 5.55(1/1)(0) 5.55(1/1)(0) 5.55(1/1)(0) 5.55(1/1)(0) 5.55(1/1)(0) 
HRR25 5.55(1/1)(0) 5.55(1/1)(0) 5.55(1/1)(0) 5.55(1/1)(0) 5.55(1/1)(0) 
SSN3 4.55(2/3)(0) 4.55(2/3)(0) 4.55(2/3)(0) 4.55(2/3)(0) 4.55(2/3)(0) 
PKC1 3.41(1/2)(0) 1.7(1/4)(1) 0.973(1/7)(0) 0.619(1/11)(0) 0.524(1/13)(0) 
SKY1 2.78(1/2)(0) 2.78(1/2)(0) 2.78(1/2)(0) 2.78(1/2)(0) 2.78(1/2)(0) 
NNK1 2.78(1/2)(0) 2.78(1/2)(0) 2.78(1/2)(0) 2.78(1/2)(0) 2.78(1/2)(0) 
KSS1 2.47(2/4)(0) 2.47(2/4)(0) 2.47(2/4)(0) 2.47(2/4)(0) 2.47(2/4)(0) 
CKA2 2.44(1/2)(0) 1.63(1/3)(0) 1.49(2/7)(0) 1.31(2/8)(0) 1.31(2/8)(0) 
SLT2 2.31(1/2)(0) 1.15(1/4)(0) 0.769(1/6)(0) 0.461(1/10)(0) 0.384(1/12)(0) 
Pkh2p 0(0/2)(-) 1.7(1/4)(-) 1.14(1/6)(-) 0.757(1/9)(-) 0.524(1/13)(-) 
SSN8 0(0/1)(0) 1.54(1/3)(0) 0.922(1/5)(0) 0.659(1/7)(0) 0.419(1/11)(0) 
Vhs1p 0(0/3)(-) 1.39(1/4)(-) 1.39(1/4)(-) 1.39(1/4)(-) 1.39(1/4)(-) 
IME2 1.39(1/4)(1.4) 1.11(1/5)(1.4) 1.11(1/5)(1.4) 1.11(1/5)(1.4) 1.11(1/5)(1.4) 
CDC5 1.36(1/5)(0) 0.773(2/16)(0) 0.368(4/55)(0) 0.285(5/85)(0) 0.326(7/99)(0) 
FUS3 1.34(2/6)(4.6) 1.15(2/7)(4.6) 1.01(2/8)(4.6) 0.805(2/10)(4.6) 0.575(2/14)(4.6) 
CKA1 1.22(1/4)(0) 0.978(1/5)(0) 1.16(2/9)(0) 1.04(2/10)(0) 1.04(2/10)(0) 
STE7 0(0/2)(0) 1.2(3/11)(0) 1.1(3/12)(0) 1.01(3/13)(0) 0.879(3/15)(0) 
Yck1p 1.17(4/16)(-) 0.782(4/24)(-) 0.667(5/33)(-) 0.479(5/46)(-) 0.505(7/61)(-)  

 
 
The TF-kinase network was also pruned by assigning a likelihood to each interaction, based on the 
ratio of mean enrichment of a kinase (as calculated from all its direct targets), versus the average 
enrichment of all other kinases that may phosphorylate the TF in question, and taking the interactions 
with highest likelihood. Taking only the interactions with likelihoods greater than one led to a reduced 
explained-away network containing the most likely kinase-TF interactions (Figure 13). An alternative 
approach (likelihood subnetworks) was to keep those kinases which had high average likelihoods for 
their direct interactions, based on the explained-away method. In the latter chase, Ssn3, Cdc5, Pho80, 
Akl1 and Hrr25 were identified (Figure 14).  
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Figure 13. Kinase-TF network showing only interactions with a high likelihood, after explaining away 
differential activity that could instead have arisen by the average effect of all other effectors of a target. 
Kinases are indicated by circles while TFs are indicated by triangles. The colouring scheme is the same as in Figure 
2. 
 
 

 
Figure 14. Kinase-TF network showing only kinases with a high average likelihood of target interactions, after 
explaining away differential activity that could instead have arisen by the average effect of all other effectors 
of a target. Kinases are indicated by circles while TFs are indicated by triangles. The colouring scheme is the 
same as in Figure 2. 
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Figure 15. Kinase-TF network showing only kinases subnetworks with a high average likelihood of target 
interactions, after explaining away differential activity that could instead have arisen by the average effect of 
all other effectors of a target. Kinases are indicated by circles while TFs are indicated by triangles. The colouring 
scheme is the same as in Figure 2. 
 
The same likelihood subnetworks approach was used on the TF-kinase network, which again extracted 
Ssn3, but also Mek1, Rim11, Ckb1, Ckb2, Cka2, Ire1 and Slt2 (Figure 15). 
 
Discussion 
 
In this chapter it was shown that the knowledge on the phosphorylation network of the model species 
could in principle be used to create a putative phosphorylation network of K. marxianus. An innovation 
in this chapter was to calculate enrichments for kinases based on the enrichments of the transcription 
factors that they phosphorylate. This was extended to long-range enrichment, which could do the 
same through a phosphorylation network at any depth. In such a way, differentially active upstream 
kinases such as Snf1 may be discoverable. In general, short-range interactions can be assigned with a 
higher confidence as opposed to long-range interactions, since fewer assumptions are made. The 
upstream kinases such as Snf1 were notably absent from this analysis. Since Snf1 was expected to be 
differentially active between the conditions with glucose and xylose as carbon source, which very likely 
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involved the Snf1 targets Adr1 and Mig1 (Chapter 5), this lack of Snf1 enrichment probably indicates 
that Snf1 is too far upstream to be resolved as differentially active by the long-range method.  
 
Additionally, a Bayesian likelihood approach was taken to extract a network of interactions in which 
the differential activity of the targets could not be explained away by the average enrichment of all its 
other effector kinases, but were more likely the result of a single effector kinase. The explained-away 
likelihood network included the most important TF from the down-regulation category, Gcn4, as well 
as Ste12 from the up-regulation category. The genes for both of these TFs were constitutively 
expressed, suggesting their significant enrichments might be explained by the differential activity of 
kinases Ssn3 or Pho85. While Pho85 was considered potentially important when using the analysis 
based on the draft genome, it was considered less supported when using the complete genome of 
DMKU3-1042. Both of these kinases could lead to the phosphorylation and proteolytic degradation of 
Gcn4 by the ubiquitin-dependent system [Chi et at. 2001, Nelson et al. 2003, Raithatha et al. 2012, 
Shemer et al. 2002].  
 
Ssn3 is better known as Srb10 or Cdc8 and is a negative regulator of stress response genes and those 
for pseudohyphal and invasive growth [Raithatha et al. 2012]. In S. cerevisiae, the expression level of 
Ssn3 drops dramatically in exponentially growing cells as they approach the oxidative shift [Holstege, 
et al. 1998], allowing stress response genes to work. The effect Ssn3 on the transcription factor Msn2 
is performed by somehow restricting localisation to the cytoplasm [Chi et at. 2001]. Gcn4, Ste12 and 
Phd1 perform a specific phosphorylation that is recognised by the uniquitin dependent degradation 
system [Chi et at. 2001, Shemer et al. 2002, Nelson et al. 2003, Raithatha et al. 2012]. Ssn3 marks 
chromatin-bound Gcn4p for degradation [Chi et al. 2001]. Ssn3, which also binds and phosphorylates 
the C-terminal domain of RNA polymerase II [Hengartner et al. 1998], may function as a molecular 
clock, limiting the time that a transcription factor can remain bound to chromatin. It is an interesting 
example of the increased specificity introduced by forming complexes. The kinase Ssn3 is brought into 
close contact with the transcription factor Gcn4p by complexing with RNA polymerase, leading to the 
removal of the transcription factor. Its activation is dependent on the cAMP dependent protein kinase 
A pathway and independent from the pheromone response that works via Kss1 (reviewed in Raithatha 
et al. 2012). This would be consistent with the lower activity of Gcn4, as indicated by the many down-
regulated targets of the activator Gcn4 (Chapter 7). However, the degradation of Ste12 by this same 
mechanism, as well as of Phd1 (not in the kinase network) was not consistent with the proposed higher 
activities of Ste12 and Phd1 from enrichment statistics (Chapter 7).  
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The Pho85 gene also was constitutively expressed in the glucose and xylose medium cultivations, as 
evident from the RNA-seq data on K. marxianus, as were the vast majority of kinases. Similar to Ssn3, 
Pho85 phosphorylates Gcn4, leading to its ubiquitin-dependent proteolytic degradation [Shemer et 
al. 2002]. Whereas Srb10 marks chromatin-bound Gcn4p, the apparent role of Pcl5-Pho85 is to mark 
excess, free Gcn4p for degradation [Shemer et al. 2002]. Pho85 is a cyclin-dependent kinase, requiring 
the cyclins Pho80, Pcl1, Pcl5, Pcl6, Pcl9 or Pcl10. Pcl5 is specific for Gcn4 degradation [Shemer et al 
2002]. The Pho85-specific cyclins Pho80, Pcl1, Pcl6, Pcl9 and Pcl10 were constitutively expressed. The 
Pcl5 gene, however, was five-fold down-regulated. This is in accord with the fact that Pho85 is under 
the transcriptional regulation of Gcn4p [Shemer et al. 2002]. The interaction of Gcn4 with the Pcl5 
gene was also found in the likelihood network (Chapter 7). However, since Pcl5 was down-regulated 
five-fold, down-regulation of the Gcn4 targets was inconsistent with Pcl5-Pho85 leading to 
degradation of Gcn4.  
 
The effects of Ssn3 and Pho85 on Gcn4 may be additive or synergistic, as they target free and 
chromatin-associated Gcn4, respectively [Chi et al. 2001]. Other mechanisms, apart from 
phosphorylation, might be at play. For instance, Pho85 is also known to be regulated at the level of 
translation by the kinase Gcn2 [reviewed in Hinnebush 1997].  
 
Conclusions 
 
The data analyses suggested Ssn3 and Pho85 are likely kinases regulating the transcription factors 
Gcn4 and Ste12, which both had enriched regulatory target gene sets. The direction of regulation of 
the targets of Ste12 and Gcn4, however, was not the same. Using RNA-seq data of the target genes of 
TFs, the small numbers of kinase-TF interactions unfortunately did not allow a rigid statistical 
enrichment approach to the study of kinases via their interactions with TFs. Direct physical evidence 
of kinase activity, such as phosphoproteomics, seems to be necessary to make further deductions 
about the activity of regulating kinases. Nevertheless, the method demonstrated in this chapter would 
come into its own when such data becomes available, and could be used in a context of multiple 
network types. 
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Chapter 8 
 
Gene regulation in the context of chromosomes 
 

 
Abstract 
 
The finding that the RNA-seq data from Kluyveromyces marxianus strain UFS-Y2791 could be 
sufficiently mapped to a complete genome of strain DMKU3-1042 opened the way for analysis in the 
context of complete chromosomes. This chapter reports on an investigation of whether the species 
displays clusters of differentially expressed genes similar to the X and Y elements found near the 
telomeres, as is found in Saccharomyces cerevisiae. To the contrary, a small number of gene clusters 
which contained some of the most significantly differentially expressed genes encoding enzymes 
involved with alternative carbon source utilisation, were found further from telomeres. These clusters 
contain putative binding sites for the transcription factors Mig1 and Adr1. The inulinase gene INU1 
was located in one of these clusters, among genes that are involved with the response to metal ions. 
Putative binding sites for the metal responsive transcription factor Aft1 were also found in the gene 
cluster containing INU1, suggesting that expression of this industrially important enzyme might be 
manipulated through control of metal ion concentrations.  
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Introduction 
 
Previous chapters focused on network statistical approaches to analysing RNA-seq data. Several 
transcription factors were revealed to be important in regulating the differential response to glucose 
or xylose as the carbon source (Chapters 4, 5, 6). It was also found that it was possible to map the 
RNA-seq data from Kluyveromyces marxianus strain UFS-Y2791 to a complete genome of strain 
DMKU3-1042 (Addendum 1). This opened the way for improved construction of gene regulatory 
networks (Chapter 6). Also, it made it possible to consider differential expression in the context of 
chromosomes. It is known that in Saccharomyces cerevisiae, chromatin silencing and desilencing 
occurs in regions on the genome, especially close to the telomeres, known as X and Y elements which 
are enriched in transcription factor binding sites (Chapter 1, Smith et al. 2011). Chromatin silencing 
spreads from these regions and may silence several genes together. These regions are approximately 
six to seven kilobases from the telomeres [Smith et al. 2011]. In this chapter, RNA-seq data were 
mapped to chromosomes to investigate whether this phenomenon could be detected in K. marxianus 
or whether other, unusually long clusters of genes were differentially expressed. Further, the 
organisation of the genome in terms of the loci for genes belonging to some of the common metabolic 
functions identified as differentially expressed was investigated. These were the up-regulated genes 
of peroxisomal metabolism, the 2-methyl citrate cycle and sugar transporters.  
 
Mig1 and Adr1 are two important transcription factors involved with glucose repression and 
derepression [Broach 2012]. Mig1 is a transcriptional repressor in S. cerevisiae [Nehlin et al. 1991]. It 
is a zinc finger protein that recognises a conserved GC box described as [GC][CT]GGGG. It was later 
shown that a flanking AT box was also important, thus the motif may be better described as 
“[ATG][AT][AT][AT][ATG].[GC][CT]GGGG” [Lundin et al. 1994]. It was also shown by Lertwattanasakul 
et al. [2011] that two putative binding sites for Mig1 existed in the regulatory region of the INU1 gene 
in K. marxianus DMKU3-1042 that are perfectly conserved in four other strains of K. marxianus. These 
sequences were TTAAATCCGGGG at bp 155 from the translation start site, and TTTTTCCTGGGG at 500 
bp from the translation start site. Both of these match the combined AT box, GC-box consensus 
described by Lundin et al. [1994]. Adr1 is an activator of many genes involved in the utilisation of 
alternative carbon sources, especially those encoding enzymes involved in peroxisomal β-oxidation 
[Young et al. 2003]. The consensus pattern for Adr1 has been described as [TGA][TC]GG[AG]G [Cheng 
et al. 1994]. It usually binds as a dimer in opposite directions between two and 36 bp apart, and the 
more precise motif can be thus be described as C[CT]CC[GA][TCA]N{2-36}[TGA][TC]GG[AG]G, the 
reverse being identical. Based on the enumerative method of heptamer frequency comparison, it was 
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shown in a previous chapter that, firstly, Adr1 and, secondly, Mig1 were strong candidates as major 
regulators of up-regulated genes in a xylose medium which contained no glucose, thus representing 
glucose derepressed conditions (Chapter 4). RNA-seq data of the Mig1 and Adr1 transcripts also 
supported this role (Chapter 4). Motif searches were done to determine whether such binding sites 
may co-localise with any up-regulated gene clusters.  
 
Materials and Methods 
 
Strains and cultivation 
K. marxianus UFS-2791 was cultivated in a defined mineral medium containing glucose or xylose in 
aerobic shake flasks. RNA was extracted in mid-exponential phase. Protocols were described in 
Chapter 3 and in Schabort et al. [2016]. 
 
RNA-seq and differential expression 
RNA-seq reads from K. marxianus strain UFS-Y2791 from previous work [Schabort et al. 2016] were 
mapped to the complete genome of K. marxianus strain DMKU [Lertwattanassakul et al. 2015] using 
TopHat2 [Trapnell et al. 2009, Kim et al. 2013] in Galaxy [Afgan et al. 2015]. For simplicity of analysis 
in the protocol used here, the genome was annotated using Augustus and a gene model of K. lactis 
[Stanke et al. 2008] to obtain annotation tracks. Only annotation tracks ‘gene’, ‘transcript’ and ‘CDS’ 
were selected to serve as quantitation windows for differential expression testing in CuffDiff [Trapnell 
2010]. Pileups were converted to intervals using the Pileup-to-Interval tool in SAM Tools [Li et al. 2009] 
as implemented in Galaxy.  
 
Enrichment for stretches of likely chromatin regulation  
An algorithm was developed for Reactomica [Schabort et al. 2016], implemented in the Wolfram 
Mathematica language for mapping differential expression to chromosomes and to map intervals 
from pile-ups to DNA for visualisation. The hypergeometric distribution is a discrete statistical 
distribution that calculates a probability of finding a certain number of consecutive successes (aces) 
in a certain sample size (cards drawn), given that in the total population (the size of the deck of cards) 
a certain known number of successes (four aces in a deck of cards) exists. The hypergeometric 
probability mass function is given by the formula below, consisting of binomial operators and 
obtainable in The Wolfram language as the function HypergeometricDistribution, where N is the 
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population size, K the number of successes in the population, n the number of draws and k the number 
of successes observed in n draws. 

ܲ(ܺ = ݇) =  (݊ܰ)/(݇−ܭ− ݊ܰ)(ܭ݇)
The cumulative distribution function of this formula can be used to calculate the background 
probability of obtaining at least k successes by means of the function  

(1 - CDF[HypergeometricDistribution[n, K, N], k]) 
where the variable k represents the number of genes that were either up or down-regulated in a 
sample (two separate tests were performed). The variable N represents the total number of genes, K 
the total number of genes either up or down-regulated, and n the number of consecutive genes that 
were analysed and adjacent to one another on the genome. Correcting for multiple comparisons by 
multiplying the p-values with the total gene count (5 162) resulted in a very conservative estimate for 
assigning up-regulated gene clusters in the genome.  
 
Motif searches 
The dimeric binding model of Adr1 binding used was similar to that of Cheng et al. [1994] as a regular 
expression C[CT]CC[GA][TCA]N{2-36}[TGA][TC]GG[AG]G, the reverse being identical. The core 
recognition site (GC-box) for Mig1 was modelled as described as [GC][TC]GG[GA]G (and 
C[CT]CC[AG][GC] in the opposite direction). The more restrictive GC box, AT box pattern was modelled 
as [ATG][AT][AT][AT][ATG]N[GC][TC]GGGG and the reverse of this pattern as 
CCCC[GA][GC]N[TAC][AT][AT][AT][CAT], based on the binding sequences found by Lundin et al. [1994].  
 
Results  
 
Differential expression values from RNA-seq data of strain K. marxianus UFS-Y2791 [Chapter 3, 
Schabort et al. 2016] were mapped to the complete chromosomes of strain DMKU as annotated by 
Lertwattanassakul et al. [2015] and represented in Figure 1. In most chromosomes there seems to be 
a pattern in that several genes close to the telomeres have low expression levels under both conditions 
of glucose or xylose as carbon source. Further, regions on the chromosomes were visible that 
displayed sequences of either up-regulated or down-regulated genes, but were located far from the 
telomeres. 
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Figure 1. Visual representation of genomic chromosomes 1 to 8 and the mitochondrial chromosome mapped with RNA-
seq data from K. marxianus UFS-2791 using the genome annotation by Lertwattanassakul et al. [2015]. Black represents 
intergenic regions. Track 1, normalised transcript levels with glucose as carbon source; Track 2, normalised transcript levels 
with xylose as carbon source. Warmer colours represent highly expressed genes with red indicating the highest; colder 
colours represent lowly expressed genes with violet indicating the lowest. Track 3, classifier up/down classifier scheme: red, 
up-regulated; green, down-regulated; grey, constitutively expressed. Track 4, log2(FC) scheme: warmer colours represent 
the highest positive fold changes, colder colours the highest negative fold changes and grey the constitutively expressed 
genes.  
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On initial inspection, two such gene clusters that were immediately visible on chromosome 1 were 
those between 1 Mbp and 1.2 Mbp, which were both up-regulated in the xylose medium compared 
to the glucose medium, in a surrounding setting of constitutively expressed genes (Figures 2 and 3).  
It was subsequently calculated whether these stretches contained more up-regulated genes than 
could be expected by a selection process that selected six genes at random positions. The calculated 
p-value indicated that the assignment was highly significant, even after severe correction for multiple 
comparisons in which a q-value was obtained (see Methods). This process also revealed more such 
regions (see below).  
 
 

 
Figure 2. Visual representation of chromosome 1 mapped with RNA-seq data from K. marxianus UFS-2791. 
Notice the two clusters of up-regulated genes between 1.1 Mb and 1.2 Mb. Red, up-regulated; Green, down-
regulated; Grey, constitutively expressed; Black, intergenic region.  
 
 
The first gene cluster contained the inulinase gene INU1 on the 5’ end, followed by ARN1 (siderophore 
iron transporter ARN1), KLMA_10520 (uncharacterised protein AN0679), FMP23 (Protein FMP23), 
ZTA1 (probable quinone oxidoreductase) and KLMA_10523 (uncharacterised protein). The second 
gene cluster contained three repeats of the putative high-affinity glucose transporter HGT1, as well as 
GLC3. These three paralogs likely originated via gene duplication. 
 
In both of these clusters, it seems that the gene on the one periphery of the cluster was the most 
significantly up-regulated, with a decrease in the up-regulation further away from that side. This bears 
a resemblance to the mechanism of chromatin silencing which spreads from one locus to other loci 
[Chapter 1, Smith et al 2011]. 
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Figure 3. Visual representation of two clusters of up-regulated genes on chromosome 1. The probability of 
finding six out of six up-regulated genes (INU1, ARN1, KLMA_10520, FMP23, ZTA1, KLMA_10523 between 1 089 
524 bp and 1 108 926 bp) by a random process was effectively zero. The probability for the up-regulation of four 
or more genes (HGT1, HGT1, HGT1 and GLC3) in a cluster of six genes (between 1 147 866 bp and 1 164 063 bp) 
by a random process was calculated at q = 0.027 after correction for 5 162 comparisons (p = 5.3×10-6).   
 
Functional organisation and regulatory potential of the gene cluster containing 
inulinase  
To gain insight into the functional organisation of the up-regulated gene cluster containing the 
biotechnologically important inulinase gene INU1, the functional annotation of the two 
uncharacterised proteins KLMA_10520 and KLMA_10523 was considered. 
 
 

 
Figure 4. The gene cluster containing INU1, between 1.09 Mbp and 1.11 Mbp on chromosome 1, showing the 
direction of transcription.  
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KLMA_10520 has the GO terms "FMN binding [GO:0010181] and oxidoreductase activity 
[GO:0016491]" associated on the UniProt database. For KLMA_10523, a search on ProtoNet [Sasson 
et al. 2002] suggested that the protein may bind to the enzyme protein phosphatase type 1, based on 
structural similarity with other proteins in its protein structural cluster, from a variety of species, 
including GIP1 in S. cerevisiae. Several highly similar sequences were found by a BLASTP search, but 
all of these were to uncharacterised proteins. The best characterised was the GIP1 gene product, 
which is a meiosis-specific regulatory subunit of the Glc7 protein phosphatase [Tu et al. 1996]. Using 
BLASTP, GIP1 was found but at a low statistical significance with only a short region matching GIP1. 
DELTA-BLAST improved the query coverage to 35%, with improved statistical significance (E-value = 
2e-05) to GIP1 (Figure 5). The matching region was 197 bp long, with a 40% similarity and 26% identity 
(Figure 6). A conserved domain or protein family was not reported by DELTA-BLAST.  
 
 
 

 
Figure 5. BLASTP and DELTA-BLAST matches to the KLMA_10523 amino acid sequence. A: GIP1 matched to 
13% of the query (KLMA_10523) with an E-value of 0.006. B: GIP1 matched to 35% of the query (KLMA_10523), 
with an E-value of 2e-05. 
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Figure 6. Alignment of the KLMA_10523 amino acid sequence to that of GIP1 using DELTA-BLAST. 
 
 
 

 
 
Figure 7. The region on chromosome II in S. cerevisiae that contains the FMP23, ZTA1 and GIP1 genes (from 
the UniProt database). 
 
However, and perhaps most significantly, was the genomic context of the KLMA_10523 gene. The 
ZTA1 and FMP23 genes were both found to be present in S. cerevisiae as well, and translated in the 
same orientation as in K. marxianus. In both species, translation occurs away from each other where 
their coding regions are separated by a short intergenic region (compare Figures 4 and 7). The 
organisation of this region of the genome was thus conserved after the genome duplication and 
reshuffling events in the evolutionary past of the Saccharomycetes. In S. cerevisiae, GIP1 is found 
directly downstream of ZTA1 and translated in the same orientation as ZTA1. This was found to be 
exactly the situation in K. marxianus (compare Figures 4 and 7). Most probably, GIP1 and KLMA_10523 
had a common ancestor. Following the same rationale, aligning KLMA_10521 with the RPS11B protein, 
the ribosomal subunit gene which is immediately downstream from FMP23 in S. cerevisiae, did not 
result in any significant similarity. ARN1 was found on chromosome VIII (Figure 8). Using instead the 
protein sequence of EFM1, which occurs immediately upstream of ARN1 (see Figure 8), matched best 
to YHL039W in K. marxianus, namely 906 968 bp to 908 632 bp on Chromosome 8 (AP012220.1), and 
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not on chromosome 1. The closest match to the inulinase gene INU1 of K. marxianus in S. cerevisiae 
was the invertase gene SUC2. In S. cerevisiae, SUC2 is found on chromosome IX (Figure 8).  
 

 
Figure 8. The region on chromosome VIII in S. cerevisiae that contains the ARN1 gene (from the UniProt 
database).  
 

 
Figure 9. The region on chromosome IX in S. cerevisiae that contains the SUC2 gene, a homolog of the INU1 
gene (from the UniProt database).  
 
In summary, it is thus likely that FM23, ZTA1 and KLMA_10523 (GIP1) in S. cerevisiae originated from 
a single genomic region in the last common ancestor, and after the genome duplication event and 
subsequent extensive rearrangements was kept intact in S. cerevisiae, while ARN1 and KLMA_10520 
were moved to other regions or lost, as is the case for INU1. 
 
Notably, FM23 and ARN1 have both been implicated in the response to the concentrations of metal 
ions. It has been suggested that FMP23 (YBR047W) was involved with copper or iron balance, as in S. 
cerevisiae it is up-regulated in response to copper depletion and its regulatory region is enriched with 
binding sites for the Aft1 or Aft2 transcription factors [van Bakel et al. 2005]. Aft1 and Aft2 control a 
number of iron responsive genes [de Freitas at al. 2004]. ARN1 too is regulated by Aft1 [Yun et al. 
2000]. This posed the question of whether the Aft1 and Aft2 binding sites possibly originated before 
the genome duplication event, which would then be present in K. marxianus, and concentrated over 
the INU1 containing gene cluster. 
 
The exact consensus pattern for the Aft1 binding site in the regulatory region of FMP23, "GTGCACCC", 
did not result in any matches in the gene cluster investigated here. However, using the consensus 
motif “[TC]GCACC[TC]” from de Freitas at al. [2004] revealed two potential binding sites for FMP23 
and ZTA1, and one that was in the region of the core promoter of ARN1, but may equally serve as a 
regulator of KLMA_10520 (Figure 10). In addition, the motif was also found at the region upstream of 
the inulinase gene INU1. In the Saccharomyces Genome Database (SGD), the motif is described as 



256  

"PyPuCACCCPu” ([TC][AG]CACCC[AG]), which is more specific. Using this pattern revealed that the 
binding site in the core promoter region of ARN1 matched the more specific pattern, as did the pattern 
closest to the ZTA1 start site  (Figure 10, red lines). If these were true functional binding sites for Aft1, 
this cluster may be responsive to concentrations of metal ions. It may also have a direct application, 
as it could then suggest that inulinase production in this yeast might be further inducible by alterations 
in the concentration of metals such as iron or copper.  
 

  
  
Figure 10. Candidate DNA binding sites for Adr1, Mig1 and Aft1/Aft2 in the vicinity of a gene cluster containing 
INU1, between 1.09 Mbp and 1.11 Mbp on chromosome 1. Black lines, candidate Adr1 binding sites using the 
dimeric binding model; Magenta lines, candidate Mig1 binding sites using the GC box, AT box model; Green lines, 
candidate Mig1 binding sites using the core GC box model; Blue lines, Aft1/Aft2 consensus motif [TC]GCACC[TC]; 
Red lines, Aft1/Aft2 consensus motif PyPuCACCCPu ([TC][AG]CACCC[AG]). 
 
Since the alleviation of glucose repression is a likely explanation for the up-regulation of many genes 
in S. cerevisiae, it was expected that Adr1 and Mig1 may regulate this response (Chapter 4). The short 
and degenerate core binding site of Adr1 resulted in too many putative binding sites to be considered. 
The much more restrictive dimeric binding model revealed only two binding sites in the whole region, 
one of which was directly upstream of the FMP23 gene (Figure 10). Mig1 is also an important 
transcriptional repressor in S. cerevisiae. Both the GC box motif and the combined AT box, GC box 
motifs were scanned through the gene cluster. Three of the combined AT box, GC box motifs were 
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found in this region (Figure 10, magenta lines), of which two were the sites reported by 
Lertwattanasakul et al. [2011]. The other motif is in the same upstream intergenic region of INU1, 
directly downstream of the ARN1 gene. A larger number of the more degenerate GC box motifs was 
also detected (Figure 10, green lines), which appeared to be concentrated over the up-regulated gene 
cluster as opposed to the neighbouring regions. The regulation of this gene cluster may thus both be 
responsive to the concentration of the carbon source and to metal ions.  
 
For the HGT1 gene cluster (Figure 11), the dimeric Adr1 binding sites were notably absent, except for 
one in between two of the HGT1 gene copies. The same HGT1 gene also had a candidate site for Aft1 
binding. However, each of the three HGT1 copies had candidate binding sites for the GC box, AT box 
Mig1 model in their upstream regulatory regions, which were the only such sites in the whole region. 
Like with the INU1 cluster, candidate Mig1 sites were concentrated around the genes with the most 
significant up-regulation. 
 

 
Figure 11. Candidate DNA binding sites for Adr1, Mig1 and Aft1/Aft2 in the vicinity of a gene cluster containing 
three copies of HGT1, between 1.14 Mbp and 1.17 Mbp on chromosome 1. Black lines, candidate Adr1 binding 
sites using the dimeric binding model; Magenta lines, candidate Mig1 binding sites using the GC box, AT box 
model; Green lines, candidate Mig1 binding sites using the core GC box model; Blue lines, Aft1/Aft2 consensus 
motif [TC]GCACC[TC]; Red lines, Aft1/Aft2 consensus motif PyPuCACCCPu ([TC][AG]CACCC[AG]). 
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Genes encoding for the up-regulated 2-methylcitrate cycle are up-regulated 
and co-localised 
A gene cluster with four up-regulated genes (FOX2, KLMA_70428, ICL2 and KLMA_70430) was found 
on chromosome 7 (Figure 12). The FOX2 gene encodes one of the enzymes of β-oxidation, a pathway 
which was strongly up-regulated in the xylose medium, along with many other peroxisomal genes 
(Chapter 3, Schabort et al. 2016, Lertwattanassakul et al. 2015). No other peroxisomal genes were, 
however, found close to the FOX2 gene. Further investigation showed that peroxisomal genes were 
distributed among chromosomes. The up-regulated isocitrate lyase 2 gene, ICL2, was also found within 
the cluster. This ICL2 gene does not encode the glyoxylate cycle enzyme (Icl1), but instead encodes an 
isocitrate lyase isozyme belonging to the 2-methylcitrate cycle. All three genes encoding enzymes of 
the 2-methylcitrate cycle were strongly up-regulated in the xylose medium [Chapter 3, Schabort et al. 
2016]. Strikingly, the other two genes of the 2-methylcitrate cycle, 2-methylcitrate dehydratase 
(PDH1) and citrate synthase 3 (CIT3) were found to be located close to the FOX2-containing gene 
cluster and adjacent to each other (Figure 12).  
 
 

 
 
Figure 12. A cluster of up-regulated genes on chromosome 7.  The probability for the up-regulation of four or 
more genes (FOX2, KLMA_70428, ICL2 and KLMA_70430) in a cluster of six genes (between 874 649 bp and 
895 644 bp) by a random process was calculated at q = 0.027 after correction for 5162 comparisons (p = 
5.3×10-6).  
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Using the dimeric binding model for Adr1 revealed one candidate binding site upstream of FOX2 
(Figure 13), which is in accordance with data for S. cerevisiae, where FOX2 was shown to be under the 
regulation of Adr1 [Young et al. 2003]. Adr1 was also found to be the most likely candidate regulator 
of up-regulated genes based on the enumerative method of heptamer frequency comparisons 
[Chapter 4]. Four other candidate Adr1 sites were found in proximity of the gene cluster, but were 
either inside the coding regions or downstream of the genes. The GC box, AT box motif for Mig1 
resulted in one candidate binding site upstream of the PDH1 gene, immediately downstream of CIT3.  
 

 
Figure 13. Candidate DNA binding sites for Adr1 and Mig1 in the vicinity of a gene cluster on chromosome 7 
containing FOX2. Black lines, candidate Adr1 binding sites using the dimeric binding model; Magenta lines, 
candidate Mig1 binding sites using the GC box, AT box model; Green lines, candidate Mig1 binding sites using 
the core GC box model.  
 
Discussion 
 
The silencing of genes due to chromatin compaction and the reverse process occur in a cascaded 
fashion which spreads across parts of a chromosome [Chapter 1]. In this work, up-regulated gene 
clusters were detected that may be the result of desilencing due to glucose derepression in the xylose 
medium. This resembled the expression patterns of subtelomeric regions found in S. cerevisiae [Smith 
et al. 2011], but were not located close to telomeres. It seems that the most significantly up-regulated 
genes in these clusters were along the periphery of the clusters, with a gradual decrease in differential 
expression towards the other side. This may support a model of spreading of desilencing, especially 
considering a population of cells in which some cells show a more extensive form of de-silencing, 
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covering more of the genes in the cluster. Such cell-to-cell variation is known as stochastic noise, and 
may have various benefits such as faster adaptation to changing conditions by some cells (discussed 
in Chapter 1). Glucose repression involves transcription factors, including Adr1 and Mig1. These were 
also highlighted to be likely important in the differential response to glucose and xylose in K. 
marxianus [Chapter 4]. The mechanism of Mig1 repression is to recruit chromatin silencing proteins 
such as Tup1 [Treitel et al. 1995] leading to the silencing of chromatin. Thus the exact location of Mig1 
sites, such as the distance from the transcription start site and the orientation of its binding, may be 
less important as opposed to those transcription factors that interact with RNAPII via the Mediator 
complex. Candidate GC box, At box Mig1 sites were found in the regulatory regions of these clusters, 
and their abundance also appeared to correlate with the most significantly up-regulated genes, 
notably for the INU1 containing cluster, the three HGT1 copy cluster and for the PDH1 gene. It was 
interesting no note that the highly up-regulated FOX2 gene of peroxisomal β-oxidation was found in 
a cluster together with the ICL2 gene of the up-regulated 2-methylcitrate cycle, and that the other two 
genes of this pathway were found to be up-regulated, located close by and adjacent to each other. 
Adr1, which is known to regulate peroxisomal genes in particular, was found to have a candidate site 
in the regulatory region of the FOX2 gene. It was also interesting to find that the INU1 gene encoding 
inulinase was found in a cluster of other up-regulated genes known to be associated with the response 
to metal ion concentrations in S. cerevisiae. Since this segment of the genome has been conserved in 
S. cerevisiae even after severe reshuffling of the genome in the evolutionary past, it is speculated that 
the same regulatory mechanisms originated in the earlier common ancestor. In accord with this 
notion, candidate binding sites for the metal responsive Aft1/Aft2 binding sites were found for these 
genes, as they also occur in S. cerevisiae.  
 
Conclusions 
 
The genomic context of complete chromosomes provided another route of exploration of RNA-seq 
data in the differential expression response to glucose and xylose as carbon sources in K. marxianus 
UFS-Y2791. The up-regulated gene clusters identified in this work presented and interesting 
perspective on gene regulation. Gene regulation of pathways such as the 2-methylcitrate cycle may 
be coordinated both by transcription factors and their localisation along the chromosome, in which a 
spread of chromatin silencing or desilencing could coordinate the regulation of a gene cluster. For 
others like the genes encoding peroxisomal β-oxidation, the coordination may be more dependent on 
common transcription factor binding sites. The finding of co-localisation of the INU1 gene with metal-
responsive genes, as well as candidate binding sites for a metal responsive transcription factor, poses 
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an interesting perspective on the use of co-regulated gene clusters. Perhaps such knowledge could be 
used in a biotechnological scenario in which the alteration of metal ion concentrations, in particular 
copper and iron, may be used to further improve the production of inulinase, along with a non-
fermentable carbon source to impose glucose derepression. 
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Chapter 9 
 
Elucidation of new condition-dependent roles for fructose-
1,6-bisphosphatase linked to cofactor balances 
 

 
 
This paper was published online in PLoS ONE on 27 May 2017. See supporting information online at  
https://doi.org/10.1371/journal.pone.0177319. 
Schabort DWP, Kilian SG, du Preez JC. Elucidation of new condition-dependent roles for fructose-
1,6-bisphosphatase linked to cofactor balances.  
 
 
Author contributions 
Schabort DWP: Conceptualisation of investigation, writing of programmes, bioinformatics and analysis 
of RNA-seq data, writing of the manuscript. 
Kilian SG: Review of manuscript. 
du Preez JC: Editing and review of manuscript. 
 
 
 
 
 
 
 
 
 
 
 
 
 



264  

Abstract 
 
The cofactor balances in metabolism is of paramount importance in the design of a metabolic 
engineering strategy and understanding the regulation of metabolism in general. ATP, NAD+ and 
NADP+ balances are central players linking the various fluxes in central metabolism as well as biomass 
formation. NADP+ is especially important in the metabolic engineering of yeasts for xylose 
fermentation, since NADPH is required by most yeasts in the initial step of xylose utilisation, including 
the fast-growing Kluyveromyces marxianus. In this simulation study of yeast metabolism, the complex 
interplay between these cofactors was investigated; in particular, how they may affect the possible 
roles of fructose-1,6-bisphosphatase, the pentose phosphate pathway, glycerol production and the 
pyruvate dehydrogenase bypass. Using flux balance analysis, it was found that the potential role of 
fructose-1,6-bisphosphatase was highly dependent on the cofactor specificity of the oxidative pentose 
phosphate pathway and on the carbon source. Additionally, the excessive production of ATP under 
certain conditions might be involved in some of the phenomena observed, which may have been 
overlooked to date. Based on these findings, a strategy is proposed for the metabolic engineering of 
a future xylose-fermenting yeast for biofuel production.  
 
Introduction 
 
Recently, differential RNA-seq transcriptomics of Kluyveromyces marxianus was performed with 
glucose or xylose as the carbon source under aerobic conditions [1, 2]. It is to be expected that much 
of the differential response results from glucose derepression, as is the case with Saccharomyces 
cerevisiae in the absence of glucose, where the response is due to carbon source responsive 
transcription factors such as Adr1 and Mig1. Although the overall pattern of regulation in K. marxianus 
grown with D-xylose as carbon source instead of glucose resembled that of glucose derepression in S. 
cerevisiae, including the strong up-regulation of peroxisomal metabolism [1, 2], it did not represent a 
complete gluconeogenic response. For instance, the glyoxylate cycle was not up-regulated. Other 
signals are seemingly required for up-regulation of the glyoxylate cycle, which would be required if 
the cells were growing on acetyl-CoA arising from the β-oxidation of lipids. Some of the genes under 
glucose repression in S. cerevisiae have been dubbed “gluconeogenic” genes. Of particular interest is 
the fructose-1,6-bisphosphatase (FBP) reaction, catalysed by the Fbp1 protein and encoded by the 
FBP1 gene, which is under the control of the transcription factor Mig1 and glucose repression [3]. 
What distinguishes this gene from other genes subject to glucose repression is its centrality to energy 
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metabolism. If the FBP1 gene is expressed, it is likely to have an effect on energy metabolism, whereas 
unused transporters and β-oxidation would not have an effect if the carbon source were glucose or 
xylose. It is thus possible that the FBP1 gene might take on a different role, not related to 
gluconeogenesis, under some derepressed conditions. The RNA-seq data on K. marxianus [2] revealed 
that the FBP1 gene was up-regulated 27-fold when xylose served as carbon source. Moreover, it was 
recently discovered that in each of more than six hundred tumours of clear cell renal cell carcinoma 
analysed in humans, the expression level of the FBP1 gene was decreased [4]. Hence, a deeper 
understanding of the regulation and dis-regulation of the FBP reaction may as well be important for 
the treatment of cancer. 
 
The up-regulation of the FBP1 gene in a recombinant S. cerevisiae strain fermenting xylose has been 
postulated as a mechanism to increase NADPH production by a type of cyclic pentose phosphate 
pathway (PPP) [5]. NADPH is also required for xylose utilisation by a yeast such as K. marxianus, in 
which xylose reductase utilises NADPH for reducing power [6, 1]. However, the FBP reaction could also 
have a direct influence on ATP levels. In mammalian muscle cells, both the FBP and 
phosphofructokinase (PFK) reactions act simultaneously in a substrate cycle, effectively dissipating 
free energy by synthesising and hydrolysing ATP. This mechanism allows a greater dynamic range in 
regulation of the flux, making use of adenylate kinase and AMP as a signal amplifier mechanism for 
dynamic responses to changes in ATP concentration [7, 8]. In other cells the substrate cycle could also 
serve as a heat generation method, as in the case of the flight muscles of bumblebees [9]. Heat 
generation is, however, unlikely to be a physiological response in yeasts, as is the signal amplifier 
mechanism that facilitates the dynamic response in glycolytic flux in mammals.  
 
Another type of non-shivering thermogenesis is present in mammals, in which brown fat tissue 
catabolises acetyl CoA from lipids to generate heat. To avoid excessive ATP production, or 
equivalently, to avoid a limitation in ADP, uncoupling mechanisms exist. Hence, ATP can be excessive 
and metabolism is not always geared towards producing the maximal yield of ATP from a substrate. 
In fact, the uncoupling proteins found in mammals are an elaborate mechanism to avoid excessive 
ATP production. These allow the pumping of protons across the mitochondrial membrane, generating 
heat in the process and avoiding the need for protons to pass through the F1F0 ATPase. Thermogenin 
(UCP1) and similar proteins in mammals are the primary uncoupling proteins that allow the passage 
of protons [10]. However, to date, dedicated uncoupling proteins have not been found in yeasts, and 
UPC1-like activity in the yeast Yarrowia lipolytica is due to the promiscuous activity of an anion carrier 
protein [11, 12].   
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A number of questions arise from the above observations: (a) Could an experimental condition or a 
genetic manipulation exist that would cause an ATP imbalance by excessive production of ATP (and 
thus an ADP limitation) in a yeast such as K. marxianus, or is there always a sufficient demand for ATP 
by processes such as biomass formation? (b) If such a situation indeed existed and considering that 
dedicated uncoupling proteins apparently are absent in yeasts, would substrate cycles like those 
induced by the FBP and PFK reactions be good candidate replacement mechanisms for uncoupling 
proteins under such conditions? (c) Further, since the FBP reaction is such a central reaction, with links 
to both ATP as well as to NADPH (as it is associated with gluconeogenesis), what is the true purpose 
of up-regulation of FBP in K. marxianus in a xylose medium when there is no apparent need for the 
FBP reaction? The transaldolase and transketolase reactions of the non-oxidative PPP, which catalyse 
the route of carbon entry from xylose, indeed produce fructose-6-phosphate which is upstream of FBP 
in the glycolytic pathway. (d) Finally, might there be as yet unidentified genetic manipulations which 
could theoretically enable anaerobic xylose fermentation for bioethanol production, given the 
complexities imposed by cofactor balances and flux constraints? These complex questions call for a 
rigid mathematical modelling framework such as Flux Balance Analysis (FBA). In this report, the 
complex interplay between cofactor balances, major metabolic pathways and redox cofactor 
specificity was investigated using FBA as a predictive simulation framework.  
 
Methods 
The RNA-seq transcriptomic data were obtained as described elsewhere [2]. Briefly, Kluyveromyces 
marxianus strain UFS-2791 was cultivated at 35°C under aerobic conditions in a chemically defined 
medium containing glucose or xylose as the carbon source. The FBA model, capturing 56 reactions 
throughout central metabolism with reaction blocks for biomass formation, electron transport and 
oxidative phosphorylation, was described previously (see Schabort et al. [2], supplementary 
materials). The biomass formation formula was obtained from Fischer et al. [13] (See supplementary 
Table S5 in [2]). The phosphate/oxygen ratio (P/O ratio), which refers to the number of ADP to ATP 
conversions by ATP synthase per oxygen atom, was assumed to be 2.5 to simulate metabolism in 
Crabtree negative yeasts. The FBA simulation framework was described by Schilling et al. [14]. FBA 
was implemented in Reactomica using the Wolfram language. Flux constraints were defined by the 
stoichiometric matrix S and the exchange flux matrix E as below, which describe the mass balances of 
each metabolite as rows in the matrices.  

ݒܵ − = ݁ܧ 0      (−∞ ≤ ݒ ≤ ∞ ) 
The intracellular flux vector v and the exchange flux vector e were calculated as a single vector, using 
optimisation with linear programming. In the above equation, E is an identity matrix that maps the 
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vector of exchange fluxes to metabolite balances, where non-zero entries were only present for 
metabolites that can cross the cell boundary, or those which were allowed to be produced in excess, 
such as ATP. The metabolites and cofactors that were allowed to accumulate are indicated in the 
Results section. The upper bounds for all intracellular fluxes were left unconstrained, while irreversible 
reactions were constrained to a lower flux value of zero (See supplementary Table S5 in [2]). The 
uptake flux of the carbon source was constrained to a value of 10 mmol h-1 g biomass-1 specific flux. 
No substrate cycles, which could result in very high fluxes, were allowed. These were identified by Flux 
Variability Analysis [15], implemented also in Reactomica. The objective function was optimisation of 
the growth rate. Fluxes are interpretable in terms of their relative ratios compared to the molar uptake 
rate of the carbon source. 
 
Results 
 
The results of the flux balance analyses of K. marxianus grown on glucose and xylose as respective 
carbon sources are presented below. For clarity, a visual guide to the reversibility of reactions and the 
names of reactions is provided as supplementary material S1 Figures. 
 
Is an increase in NADPH production the likely role for up-regulation of FBP1 in 
the xylose medium? 
Simulations of aerobic metabolism in glucose and xylose media were initially performed. Figs 1 and 2 
show the fluxes in the reference model in simulated glucose and xylose media, respectively. Note that 
for both simulations, the flux was limited by the same value for the sugar transporter at 10 mmol h-1 
g-1, specific to cell dry weight. Although the experimental xylose uptake and growth rates were 
approximately 50% of those for glucose, the power of FBA lies in calculating fluxes relative to a 
reference flux; in this case, the sugar uptake flux. Also, the measured production rates of ethanol and 
acetate were not included here as hard constraints, to facilitate exploring the theoretical limits of the 
model. The biomass formation rate in these simulations have arbitrary units and should be treated in 
a comparative manner among conditions. Throughout, fluxes and exchange rates were interpreted in 
a comparative sense and the units of mmol h-1 g-1 were omitted.  
 
Note that the reversible glucose-6-phosphate isomerase reaction flux switches direction between the 
conditions of glucose and xylose utilisation under simulated aerobic conditions (Figs 1 and 2). These 
simulations revealed that, although glucose-6-phosphate isomerase had to operate in the 
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gluconeogenic direction when using xylose as an in silico carbon source, this was not the case for the 
PFK/FBP step and the FBP reaction did not become active when switching to the xylose in silico 
medium, in contrast to suggestions from literature that the FBP reaction was required to produce 
additional NADPH when xylose was the carbon source [5].   
 

 
Fig 1. FBA simulation with glucose as in silico carbon source. Note that the glucose uptake flux was set to -10 
and fluxes were interpreted relative to this flux as biomass specific fluxes, and that ATP is over-produced in this 
simulation at 28.2 as an exchange flux. This exchange flux represents reactions not directly accounted for in the 
model. Fluxes and exchange fluxes in these simulations are unitless, since they are determined by the upper 
bound of the carbon source uptake flux, set at a value of 10, and interpretation is done in the comparative sense. 
Reaction names, followed by MetaCyc ID’s are as follows (all maps of central metabolism contain the same annotations): 1, glycerol-3-
phosphate dehydrogenase (NAD+) (1.1.1.8-RXN); 2, transketolase (1TRANSKETO-RXN); 3, 2-oxoglutarate dehydrogenase 
(2OXOGLUTARATEDEH-RXN); 4, phosphopyruvate hydratase (2PGADEHYDRAT-RXN); 5, D-fructose 6-phosphate:D-glyceraldehyde-3-
phosphate glycolaldehyde transferase (2TRANSKETO-RXN); 6, phosphoglycerate mutase (3PGAREARR-RXN); 7, 6-phosphofructokinase 
(6PFRUCTPHOS-RXN); 8, phosphogluconate dehydrogenase (decarboxylating) (6PGLUCONDEHYDROG-RXN); 9, 6-phosphogluconolactonase 
(6PGLUCONOLACT-RXN); 10, acetate-CoA ligase (ACETATE--COA-LIGASE-RXN); 11, aconitate hydratase (ACONITATEDEHYDR-RXN); 12, 
aconitate hydratase (ACONITATEHYDR-RXN); 13, 2,3,4-saturated fatty acyl-CoA synthetase (ACYLCOASYN-RXN); 14, alcohol dehydrogenase 
(ALCOHOL-DEHYDROG-RXN); 15, citrate-S-synthase (CITSYN-RXN); 16, D-xylulose reductase (D-XYLULOSE-REDUCTASE-RXN); 17, enoyl-CoA 
hydratase (ENOYL-COA-HYDRAT-RXN); 18, fructose-bisphosphate aldolase (F16ALDOLASE-RXN); 19, fructose-bisphosphatase (F16BDEPHOS-
RXN); 20, fumarate hydratase (FUMHYDR-RXN); 21, glyceraldehyde-3-phosphate dehydrogenase (phosphorylating) (GAPOXNPHOSPHN-
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RXN); 22, glucose-6-phosphate dehydrogenase (GLU6PDEHYDROG-RXN); 23, glucokinase (GLUCOKIN-RXN); 24, glycerol-1-phosphatase 
(GLYCEROL-1-PHOSPHATASE-RXN); 25, isocitrate lyase (ISOCIT-CLEAV-RXN); 26, isocitrate dehydrogenase (NADP+) (ISOCITDEH-RXN); 27, 
isocitrate dehydrogenase (NAD+) (ISOCITRATE-DEHYDROGENASE-NAD+-RXN); 28, acetyl-CoA-C-acyltransferase (KETOACYLCOATHIOL-RXN); 
29, malate dehydrogenase (MALATE-DEH-RXN); 30, malate dehydrogenase (oxaloacetate-decarboxylating/malic enzyme) (NADP+) (MALIC-
NADP-RXN); 31, malate synthase (MALSYN-RXN); 32, 3-hydroxyacyl-CoA dehydrogenase) (OHACYL-COA-DEHYDROG-RXN); 33, 
phosphoenolpyruvate carboxylase (PEPCARBOX-RXN); 34, phosphoenol pyruvate carboxykinase (ATP) (PEPCARBOXYKIN-RXN); 35, pyruvate 
kinase (PEPDEPHOS-RXN); 36, pyruvate, water dikinase (PEPSYNTH-RXN); 37, glucose-6-phosphate isomerase (PGLUCISOM-RXN); 38, 
phosphoglycerate kinase (PHOSGLYPHOS-RXN); 39, pyruvate carboxylase (PYRUVATE-CARBOXYLASE-RXN); 40, ribose-5-phosphate 
isomerase (RIB5PISOM-RXN); 41, ribulose-phosphate 3-epimerase (RIBULP3EPIM-RXN); 42, dihydrolipoyl dehydrogenase (RXN0-1132); 43, 
dihydrolipoyllysine-residue acetyltransferase (RXN0-1133); 44, pyruvate dehydrogenase (acetyl-transferring (RXN0-1134); 45, Acyl-CoA 
oxidase (RXN-11026); 46, pyruvate decarboxylase (RXN-6161); 47, acetaldehyde dehydrogenase (NAD+) (RXN66-3); 48, NADPH-dependent 
D-xylose reductase (RXN-8773); 49, succinate-CoA ligase (ADP-forming) )SUCCCOASYN-RXN); 50, succinate dehydrogenase (ubiquinone) 
(SUCCINATE-DEHYDROGENASE-UBIQUINONE-RXN); 51, transaldolase (TRANSALDOL-RXN); 52, triose-phosphate isomerase 
(TRIOSEPISOMERIZATION-RXN); 53, electron transport (vETC); 54, ethyl acetate synthesis (vEthylAcetate); 55, growth reaction (biomass 
formation) (vGrowth). 56, xylulokinase (XYLULOKIN-RXN). 
 

 
Fig 2. FBA simulation with xylose as in silico carbon source. Note that the xylose uptake flux was set to -10 and 
fluxes were interpreted relative to this flux as biomass specific fluxes, and that ATP is accumulated in this 
simulation at 46.2. The reaction names are as in Fig 1. 
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By optimising for excessive unbalanced NADPH production from xylose, instead of the growth rate, it 
was found that, in principle, two modes of cyclic PPP flux were possible (Figs 3 and 4). Activating the 
FBP reaction (Fig 3) resulted in three-fold the molar yield of NADPH on substrate compared to the 
model without it (Fig 4), with an NADPH balance of 90 versus 30.  
 

 
Fig 3. FBA simulation with xylose as in silico carbon source, inducing complete PPP cycling. Cofactors were 
allowed to exchange with the environment and FBP was active. Production of NADPH was optimised and 
complete cycling did not require glyceraldehyde-3-phosphate to accumulate. Nodes in pink indicate 
consumption and nodes in blue indicate production. Greyscale colours represent fluxes as a fraction of the 
highest flux in the simulation (black). None of the metabolites that were allowed to accumulate did accumulate 
(all yellow). The reaction names are as in Fig 1. 
 
However, when optimising for biomass production with a closed NADPH balance while both the 
unidirectional FBP and PFK reactions were activated, the flux was always glycolytic via PFK from 
glucose-6-phosphate to fructose-1,6-bisphosphate, with no flux through FBP. Deactivating PFK and 
activating FBP (attempting to force a complete cyclic PPP flux, with a gluconeogenic direction) allowed 
steady state only when NADPH was allowed to accumulate in the model (Fig 5) concomitant with a 
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minor decrease in growth rate (0.0895 vs 0.0981), but FBP still did not carry flux. Null mutants of the 
PFK1 and PFK2 genes could thus be expected to have excessive reducing power in the form of NADPH 
when utilising xylose. This would manifest in vivo as a limitation in NADP+ regeneration from NADPH. 
The NADPH imbalance would be further increased in a scenario of a ‘gluconeogenic’ net flux via 
aldolase and FBP towards glucose-6-phosphate, which produces three-fold more NADPH per xylose 
molecule (shown in Fig 3). Thus, in this model where two molecules of NADPH are produced via the 
oxidative PPP, up-regulation of the FBP1 gene cannot result in a higher growth rate by supplying more 
NADPH, but in fact has the opposite effect.  
 

 
Fig 4. FBA simulation with xylose as in silico carbon source, inducing incomplete PPP cycling. Cofactor balances 
were open and FBP was inactive. Production of both NADPH and glyceraldehyde-3-phosphate were optimised. 
Nodes in pink indicate consumption, nodes in blue indicate production and nodes in yellow were allowed to 
accumulate, but did not accumulate. Greyscale colours represent fluxes as a fraction of the highest flux in the 
simulation (black). The reaction names are as in Fig 1. 
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Fig 5. FBA simulation with xylose as the in silico carbon source, allowing overproduction of all biomass 
precursors as well as ATP and NADPH, with PFK inactive and FBP active.  Note the absence of FBP flux and the 
substantial overproduction of only NADPH. Nodes in pink indicate consumption and nodes in yellow were 
allowed to accumulate, but did not accumulate. The reaction names are as in Fig 1. 
 
An interesting observation was that intermediates such as glucose-6-phosphate would accumulate if 
the NADPH balance was closed and if both PFK and FBP were inactivated (Fig 6). The growth rate 
obtained in this scenario was somewhat lower than when the NADPH balance was open (0.0709 vs 
0.0895). Thus, null mutants of the PFK1 and PFK2 genes may likely accumulate an intermediate such 
as glucose-6-phosphate during xylose utilisation, resulting in an overproduction of cell wall 
components, trehalose or glycogen. This finding could have an interesting biotechnological 
application. Nevertheless, this observation demonstrates that up-regulation of FBP in the absence of 
PFK cannot lead to a more balanced NADPH redox state and consequently a higher growth rate, as it 
would lead to a further excess of NADPH which may manifest as an accumulation of glucose-6-
phosphate.  
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Fig 6. FBA simulation with xylose as in silico carbon source allowing overproduction of all biomass precursors 
as well as ATP, while closing the NADPH balance. PFK was inactive and FBP was active.  Note the absence of 
FBP flux and the overproduction of glucose-6-phosphate. The reaction names are as in Fig 1. 
 
A cell may respond the constraint of NADPH overproduction, or NADP+ limitation, in one of several 
ways. Transdehydrogenases that oxidise NADPH while reducing NAD+ would be one such mechanism, 
but transdehydrogenases are absent in yeasts in general, except for Pichia angusta [16]. Conversely, 
trans-oxidation-reduction reaction cycles may occur in which NADPH is in effect exchanged for NADH 
in a cyclic pathway, might occur. Also, the cofactor preference of the oxidative PPP for NADP+ or NAD+ 
would affect the NADPH balance and, therefore, the potential role of FBP. The cofactor preference of 
oxidative PPP enzymes is known to vary among yeast species. The effect of cofactor preference in the 
oxidative PPP and the possibility of trans-oxidation-reduction reaction cycles in other parts of 
metabolism are explored in a later section. However, tightly linked to the redox cofactor balances is 
the ATP balance. These are linked not only via the oxidative metabolism in mitochondria, but also via 
the flux constraints in central metabolism, in which a given pathway may produce or consume ATP, 
NADH, NADPH and their partners in various ratios. Given that the total uptake rate of the carbon flux 
is constant in these simulations, alternative catabolic pathways with different cofactor stoichiometry 
in effect could cause a negative correlation between the production rates of different cofactors. 
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Focussing still on upper central metabolism and the central role of FBP, the role of the ATP balance in 
flux routing is explored next. 
 
The ATP excess hypothesis and new roles for the FBP reaction and glycerol 
production 
In the simulations discussed above, the ATP balance was not closed and ATP was allowed to 
accumulate. This exchange flux of ATP represents reactions that hydrolyse ATP and that are not 
included in the growth reaction and not accounted for in the modelled system. These may include the 
energy requirement for the synthesis and degradation cycles of biopolymers, the action of active 
transporters or unidentified metabolic substrate cycles. On both substrates, a substantial positive ATP 
exchange flux was calculated, but notably the exchange flux of ATP was 64% higher in the xylose in 
silico medium compared to the glucose in silico medium (46.2 vs 28.2, Figs 1 and 2). Using xylose as 
carbon source, ATP supply was thus less likely to be growth rate limiting than when glucose was the 
carbon source, which is counter-intuitive. Also note that if the sugar transporter was to be changed to 
an active transporter, the effect would be negligible under these high ATP-yielding aerobic simulated 
conditions. Notably, it was found that closing the ATP balance caused a drastically decreased growth 
rate (0.0379 vs 0.0983), accompanied by both glycerol production and a flux through the pyruvate 
dehydrogenase bypass (PDB) (Fig 7). In this regard, glycerol production is a strategy to avoid NADH 
production in lower glycolysis and subsequent ATP synthesis resulting from electron transport, and is 
not due to a limited electron acceptor activity for regenerating NAD+, as is observed in S. cerevisiae 
under conditions supporting anaerobic growth [17]. The PDB hydrolyses two ATP equivalents through 
the acetate-CoA ligase step, whereas aldehyde dehydrogenase may produce one of either NADH or 
NADPH. Activation of the PDB led to a small increase in the growth rate but was non-essential for in 
silico growth, whereas glycerol production was essential.  
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Fig 7. FBA simulation with xylose as in silico carbon source, allowing overproduction of all biomass precursors 
as well as NADPH, while closing the ATP balance. FBP activity was inactive while PFK was active. Note the 
production of glycerol and the appearance of flux in the pyruvate dehydrogenase bypass via acetate. The 
reaction names are as in Fig 1. 
 
This state thus resembles phenotypically, an oxygen limited growing phenotype which produces 
glycerol, involving a low oxygen consumption rate (-2.71). This effect is however induced as an ATP 
avoidance strategy. In vivo, it would manifest as a limitation in ADP, which may have its effect via 
enzyme kinetics on various enzymes.  
 
Dedicated mechanisms in the electron transport chain for uncoupling ATP synthesis in yeasts have not 
been reported to date. Therefore, other mechanisms may be required to deal with the higher relative 
ATP production from xylose. The FBP reaction may perform exactly such a function by inducing an ATP 
hydrolysing substrate cycle together with PFK. Like the other glycolytic enzymes, the PFK1 and PFK2 
genes were down-regulated in the xylose medium (Table 1). Notably, while the two subunits of PFK1 
and PFK2 were down-regulated from 1640.1 and 1856.4 FPKM (fragments per kilobase per million 
reads) to 341.0 and 395.4 FPKM, respectively, FBP1 was up-regulated from 13.7 to 374.6 FPKM. Thus, 
the mRNA levels of the PFK and FBP genes were brought from extremely different levels to very similar 
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levels. The presence of highly similar expression levels of genes encoding enzymes has indeed been 
observed in cases of confirmed substrate cycling, such as in mammalian muscle cells and bumblebees 
[7, 9]. Also, based on the striking similarity between simulated flux patterns and RNA-seq levels of 
genes in central metabolism [2], it seems that such deductions could be made in a pragmatic sense, 
linking the accurate transcript abundance levels from RNA-seq to protein levels and, ultimately, to an 
approximation of fluxes in the comparative sense.  
 
Table 1. Relative expression levels (in FPKM) of mRNA in glucose and xylose media as determined by RNA-
seq. 

Gene name Glucose Xylose Fold change from glucose to xylose 
PFK1 1640.1 341 0.21 
PFK2 1856.4 395.4 0.21 
FBP1 13.7 374.6 27.34 

 
 
Activating both the FBP and PFK activities and balancing ATP restored the rapid growth rate and 
avoided glycerol formation (Fig 8). The PFK/FBP substrate cycle induced here served as an alternative 
ATP sink in the absence of the ATP overproduction flux, representing ATP uncoupling, ATPases, or ATP-
dependent membrane transporters. In this situation, activation and de-activation of the PDB made no 
difference to the growth rate or metabolite balances. The differential transcriptomic response of an 
engineered S. cerevisiae strain to xylose under anaerobic conditions was recently determined, which 
also showed a four-fold up-regulation of FBP1 in the presence of xylose [18]. Details of this substrate 
cycle can be seen in the supplementary material S1 Figures. 
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Fig 8. FBA simulation with xylose as in silico carbon source allowing overproduction of all biomass precursors 
as well as NADPH, while closing the ATP balance and with both FBP and PFK reactions active. Note the high 
growth rate, the absence of glycerol production and pyruvate dehydrogenase bypass fluxes, and the FBP/PFK 
substrate cycle that is responsible for the balance in ATP and ADP. The reaction names are as in Fig 1. The 
PFK/FBP substrate cycle serves as an alternative ATP sink in the absence of the ATP exchange flux, which 
represents various mechanisms of ATP utilisation. 
 
Effect of cofactor specificity of oxidative PPP enzymes 
Although data on the subject of redox cofactor specificity is scarce, it has been found that in a number 
of bacteria [19, 20], the oxidative PPP enzymes such as glucose-6-phosphate dehydrogenase are not 
exclusively specific to NADP+, but can also use NAD+. In an attempt to obtain an increased cyclic PPP 
flux in the model, the cofactor specificity of glucose-6-phosphate dehydrogenase was changed in the 
model from NADP+ to NAD+ while allowing all biomass precursors and ATP to accumulate. As there 
was a deficiency of NADPH production in this model, cyclic PPP flux through FBP was observed as well 
as a higher growth rate (0.0777, Fig 9) than when FBP was absent (0.0556, Fig 10). A further increase 
in ATP exchange flux was present in this cyclic PPP mode (85.3, Fig 9), which was nearly double that 
of the reference model with a glucose-6-phosphate dehydrogenase specificity for NADP+ (46.2, Fig 2), 
and three-fold that of the initial model with glucose as carbon source (28.2, Fig 1). Thus, by allowing 
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oxidative PPP enzymes to utilise NAD+ instead of NADP+, the FBP reaction may adopt a dual role. It 
would allow increased production of NADPH by the oxidative PPP, but at the same time this cyclic flux 
induces an increased overproduction of ATP, requiring the presence of the FBP/PFK substrate cycle - 
the second role of the FBP reaction. Absence of both FBP and PFK results in glycerol production, a 
lower growth rate and a substantial ATP overproduction (Fig 10). Although PDB can hydrolyse some 
of the excessive ATP, it cannot be compared to the potential of a substrate cycle to hydrolyse ATP, as 
it cannot carry a flux higher than 50% of the flux in lower glycolysis.   
 

 
Fig 9. FBA simulation with xylose as in silico carbon source, assuming that the oxidative PPP produces one 
NADPH and one NADH. All biomass precursors as well as NADPH and ATP were allowed to accumulate and with 
FBP active and PFK inactive. Note the complete cyclic PPP flux, a large ATP exchange flux and the PDB flux. The 
reaction names are as in Fig 1. 
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Fig 10. FBA simulation with xylose as in silico carbon source, assuming that the oxidative PPP produces one 
NADPH and one NADH. All biomass precursors as well as NADPH and ATP were allowed to accumulate and with 
PFK active and FBP inactive. Note the presence of glycerol production, the absence of PFK flux and a large ATP 
exchange flux. The growth rate was lower compared to the model in Fig 9 where FBP was active. The reaction 
names are as in Fig 1. 
 
Simulated anaerobic conditions 
The FBA model, which is independent from the RNA-seq data, also provides a means to explore the 
theoretical potential of future engineered yeast strains. From this perspective, metabolism is only 
limited by the flux constraints, the activity bounds assumed for the uptake rate of the carbon source, 
and thermodynamic feasibility of the individual reactions, and assumes that gene expression levels 
can be suitably set by the metabolic engineer. In contrast to the aerobic scenario, under simulated 
anaerobic conditions (Fig 11) ATP production was balanced with NADPH approximately balanced. As 
a small overproduction of NADPH occurred, additional flux through the cyclic oxidative PPP was not 
required and thus neither was FBP required for additional NADPH production nor for ADP 
regeneration. Flux through glucose-6-phosphate isomerase, functioning in the gluconeogenic 
direction, was in the model only for the formation of cell wall glucans. Most important, however, was 
that oxaloacetate-decarboxylating (NADP+-requiring) malic enzyme activity was required to be active 
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in order to obtain a steady state in these simulations. Together with pyruvate carboxylase and malate 
dehydrogenase of the TCA cycle, these enzymes formed a substrate cycle in the simulation that 
effectively oxidised the excess NADH, originating from xylulose reductase activity, to NAD+ and 
supplied additional NADPH for xylose reductase. At the same time, excess ATP was consumed by the 
cycle, which resulted in the balancing of ATP production and utilisation. These reactions are also 
shown in Fig 12. Limiting the capacity of malic enzyme in silico also manifested as xylitol accumulation, 
a phenomenon often observed in yeasts growing on xylose.  
 

 
Fig 11. FBA simulation with xylose as in silico carbon source under anaerobic conditions. All biomass precursors 
as well as NADPH and ATP were allowed to accumulate and with both FBP and PFK active. Note the presence of 
ethanol production, absence of FBP flux or ATP accumulation, and the presence of a cyclic flux involving malic 
enzyme (reaction 30) which was required for in silico growth. Limiting malic enzyme activity caused the 
accumulation of xylitol. The reaction names are as in Fig 1. 
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Fig 12. Reactions in anaplerosis that may enable a malic enzyme cycle. Reactions in black indicate the cycle. 
Reaction names are as follows: v1, malate dehydrogenase; v2, malic enzyme (NADP+-
dependent/decarboxylating malate dehydrogenase); v3, pyruvate carboxylase; v4, pyruvate kinase; v5, 
phosphoenolpyruvate carboxylase; v6, phosphoenolpyruvate carboxykinase. OAA: oxaloacetate. PYR: pyruvate. 
MAL: malate. PEP: phosphoenolpyruvate. Pi: orthophosphate. 
 
The gene for malic enzyme, MAE1, was found in our annotation against UniProt, and was constitutively 
expressed under the aerobic conditions tested in glucose and xylose media using RNA-seq [2]. To our 
knowledge, xylose fermentation by K. marxianus under anaerobic or oxygen-limited conditions has 
not been described thus far, which might be the relevant condition for the proposed malic enzyme 
cycle. It is also important to note that no flux was predicted in the oxidative PPP flux under the 
anaerobic condition utilising xylose. Sufficient NADPH for growth was produced by the oxaloacetate-
decarboxylating malic enzyme. Ribose-5-phosphate was derived from xylulose-5-phosphate via 
ribulose-5-phosphate. PDB, which reportedly is utilised under anaerobic conditions [21], only 
contributed a minor effect to the growth rate, as an in silico knock-out of the PDB enzyme only resulted 
in a minor decrease in growth rate. From a flux perspective, its role is thus not clear for anaerobic 
conditions.  
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Responses of an engineered S. cerevisiae strain to xylose under anaerobic conditions was recently 
determined [18], showing a 6.5-fold down-regulation of the MAE1 gene in a xylose medium. However, 
since S. cerevisiae did not evolve for fermenting xylose, the latter observation cannot be extrapolated 
to K. marxianus. There was, however, a four-fold up-regulation of FBP1 in the recombinant S. 
cerevisiae strain when fermenting xylose. 
 
Discussion 
 
Cofactor balance is an important consideration in developing a metabolic engineering strategy. 
However, even without taking enzyme kinetics into account, the multiple reactions that involve NAD+, 
NADP+ and ATP, combined with a variable and uncertain cofactor specificity for redox cofactors, 
render central metabolism complex to understand. FBA as a framework was demonstrated here to 
provide insight into the implications of alternative cofactor specificity of oxidative PPP enzymes. The 
potential role of the FBP reaction in cofactor balance was explored and, at the same time, its possible 
involvement in the ATP balance by forming a substrate cycle with PFK. It was shown that FBP could 
indeed contribute to additional NADPH production during xylose utilisation by causing a cyclic PPP 
flux, but only in a scenario where the oxidative PPP enzymes were not exclusively specific for NADP+ 
and only under aerobic conditions. Additionally, it was shown that in an in silico xylose medium, the 
excess ATP production was substantially greater than on glucose. This effect was increased further 
when the cofactor specificity of oxidative PPP enzymes for NAD+ increased. Thus, FBP may have a dual 
function under aerobic conditions – both to increase NADPH production in yeasts with one NAD+ -
specific oxidative PPP enzyme and to hydrolyse excessive ATP.  
 
Considering metabolic engineering of a future xylose-fermenting, bioethanol-producing yeast, at least 
three main aspects would be critical for success. Firstly, anaerobic growth requires an additional 
fermentative route for oxidation of the additional NADH that is produced by xylitol reductase and 
which cannot stoichiometrically be oxidised by alcohol dehydrogenases, as there is a shortage of 
electron acceptors. Secondly, it has been shown in S. cerevisiae that the glycolytic flux is strongly 
coupled to the yield of ATP during catabolism [22]. For instance, by using recombinant active 
transporters for sugars instead of facilitated diffusion in S. cerevisiae, the ethanol yield on sugar was 
increased while the biomass yield was decreased [23]. Since under xylose utilisation there seems to 
be a further increase in ATP overproduction, negative feedback on glycolysis by a high ATP 
concentration might amplify this problem. Thirdly, for every xylose molecule utilised, one NADPH 
would need to be oxidised which would have to be regenerated from NADP+ in another pathway, 
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which might be the oxidative PPP, putting further flux constraints on the system. Notably, it was shown 
in this report that a potential malic enzyme cycle involving oxaloacetate-decarboxylating, NADP+-
dependent malic enzyme could theoretically fulfil all three roles, enabling xylose fermentation, which 
currently is not theoretically possible in K. marxianus and other natural yeasts that do not possess a 
xylose isomerase gene. The cycle would oxidise the excessive NADH that cannot be oxidised by alcohol 
dehydrogenase due to flux constraints. In doing so, it also provides additional NADPH for the xylose 
reductase step for xylose utilisation. Finally, it forms an additional ATP sink, which may further pull 
glycolytic flux forward to ethanol production. Thermodynamic feasibility of this cycle involving malic 
enzyme should to be calculated based on the concentrations of ATP, ADP, Pi, NADH, NAD+, NADPH 
and NADP+ for this species, which is currently unknown. In addition, the PFK/FBP cycle may constitute 
an additional ATP sink, if it was found that ATP was inhibiting glycolytic flux. This cycle might, in fact, 
already be active in xylose-utilising K. marxianus, since our RNA-seq data showed that the FBP1 gene 
was derepressed in the xylose medium [2].  
 
Other unanticipated findings were brought to light. Aerobic glycerol production as a physiological 
strategy to avoid excessive ATP production was also proposed here. Glycerol production is often 
observed in yeast fermentations and has primarily been associated with oxygen-limited growth 
conditions, but here the simulation demonstrated a different mechanism. The role of the PDB was 
also investigated. It was shown that allowance for a PDB flux increased the simulated growth rate 
under aerobic conditions when ATP was not allowed to be over-produced, as it hydrolysed ATP in the 
ATP over-producing scenario of aerobic xylose utilisation. In the case when oxidative PPP enzymes 
were more specific for NAD+, PDB may also improve growth since it produces additional NADPH. 
However, the potential contribution of PDB to these effects was low, as this flux was constrained by 
the flux in lower glycolysis. In a scenario of a defined mineral medium where the organism has to 
synthesise all biomass components from a sugar as carbon and energy source, as was simulated here, 
the potential flux through the PDB is further decreased as anaplerotic reactions from lower glycolytic 
intermediates subtract from the potential flux to PDB to replenish oxaloacetate for amino acid 
synthesis.   
 
Two additional potential ATP sinks exist in yeasts. The first is another cycle in anaplerosis in which 
pyruvate and phosphoenolpyruvate are interconverted and dissipate free energy by effectively 
hydrolysing ATP [24, 25]. PEP carboxylase was not found in the K. marxianus UFS-Y2791 annotation, 
whereas PEP carboxykinase was constitutively expressed at low levels, as was pyruvate carboxylase 
[2]. Therefore, there was thus no indication of such a cyclic pathway being active. Another is the H+-
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ATPase of the cell membrane [17, 26, 27] as well as the ABC drug efflux pumps of S. cerevisiae [28]. 
H+-ATPase exports protons that originated from the proton symport of nutrients, including NH4+. The 
ATP-hydrolysing capacity of the efflux pumps, however, results in the pumping of protons and NH4+, 
and hence cannot act as condition-independent replacements for uncoupling proteins.  
 
Conclusions 
 
This work shows that cofactor balances should not be interpreted separately. Furthermore, it 
highlighted the importance of experimentally determining the cofactor specificity of oxidative PPP 
enzymes, as the prediction or calculation of fluxes will change, depending on these parameters. The 
ATP balance is highly relevant to metabolic engineering, since ATP not only has a negative feedback 
on glycolysis, but also a high ATP concentration might lead to excessive biomass formation, reducing 
the yield of a primary fermentation product such as ethanol. Thus, from a practical perspective, the 
proposed substrate cycle induced by FBP may be useful in decreasing the effective ATP yield on 
glucose, which may lead to an increase in ethanol production. This cycle might already be employed 
by natural K. marxianus strains, since the FBP1 gene was up-regulated in the glucose-free xylose 
medium, as observed in RNA-seq data. In addition, it was proposed here that a highly active malic 
enzyme cycle, which effectively exchanges redox equivalents from NADH to NADP+, would not only 
solve a redox imbalance under anaerobic, xylose fermenting conditions, but would draw the glycolytic 
flux forward due to forming an ATP sink. Finally, it is evident that ATP should not be thought of as 
always in demand. Depending on the condition, it might become excessive, especially in the case of 
pentose utilisation. The FBP/PFK substrate cycle and its regulation probably plays a key role in energy 
homeostasis, even in yeasts under selected conditions, which could determine phenotype switching. 
Alteration of the activity of the FBP/PFK substrate cycle and its effects on cofactor balances of ATP, 
NADH and NADPH may also be a mechanistic explanation for the recent discovery of the strong 
causative link between mutations affecting the FBP1 gene and renal cell carcinoma in humans.  
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Supplementary Fig 1. Reaction directionality constraints applied in FBA simulations. No arrow indicates a 
reversible reaction. Arrows indicate the direction of unidirectional reactions. Black indicates reactions specified 
by the parameter set to operate from right to left while reactions in red operate from left to right. Reactions in 
blue are specified by the parameter set to be zero in both conditions. Note that often the default reaction 
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direction specified in databases is not the direction in which reactions are catalyzed even under the most 
common conditions. A visual representation of reaction direction greatly facilitates model construction and 
simulation. It is also helpful in situations when no steady state is reached, such that correct bounds could be set, 
and is complementary to reachability analysis and flux variability analysis. 
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Conclusions 
 
In this work, a draft genome of a fast-growing, thermotolerant strain of Kluyveromyces marxianus, 
UFS-Y2791 was sequenced and assembled (Chapter 2 and Addendum 1). It was found that by using 
the cost-effective method of NGS and de novo assembly alone, the resultant draft genome already 
contained sufficient information to capture a detailed view of metabolic pathways in this non-model 
organism. After this reconstruction of a blueprint of cellular machinery and regulation, a large data 
set of differential gene expression was generated using RNA-seq, exploring the response of this yeast 
to glucose or xylose as the carbon source. In addition, the first genome-wide gene regulatory network 
for the yeast K. marxianus was constructed (Chapters 5 and 6). By analysing the network in the context 
of rich RNA-seq data, it was possible to reveal differentially active transcriptional regulators in a novel 
manner. This protocol of in silico network reconstruction was required to progress from the 
exploration of RNA-seq data (Chapter 3) to elucidating cause and effect in this non-model organism 
(Chapters 4-7) in an integrated systems biology manner.  
 
Strikingly, all glycolytic genes were down-regulated in unison in the xylose medium compared to the 
glucose medium, as if by a single transcription factor (TF). The combined action of Gcr1 and Gcr2 may 
well be the mechanistic basis for this observation, of which the genes were both down-regulated 
(Chapters 5 and 6). Similarly, many of the peroxisomal genes were up-regulated, reminiscent of 
glucose derepression as was found in Saccharomyces cerevisiae [Young et al. 2003]. The heptamer 
frequency analysis in Chapter 4 suggested that Adr1 and possibly Mig1 were responsible for their up-
regulation, as well as up-regulation of other genes for the utilisation of alternative carbon sources 
such as the inulinase gene INU1, alternative sugar transporters and those encoding the 2-
methylcitrate cycle [Young et al. 2003]. This was supported both by the strong up-regulation of the 
Adr1 gene and the down-regulation of the Mig1 gene. Other TFs that control peroxisomal genes in S. 
cerevisiae, such as the oleate-responsive Oaf1 and Pip2 [Ratnakumar et al. 2010] were absent from 
the list of enriched TFs, hence Adr1 is the most likely candidate responsible for the strong peroxisomal 
response to the xylose medium containing no glucose. 
 
Although the transcriptomic response in the xylose medium resembled derepression from glucose, it 
did not necessarily resemble gluconeogenesis. For instance, the genes SFC1 (succinate/fumarate 
mitochondrial transporter), PCK1 (phosphoenolpyruvate carboxykinase) and ICL1 (isocitrate lyase) are 
typical gluconeogenic enzymes, but were constitutively expressed with glucose or xylose as carbon 
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substrates. This suggested that at least one additional activator is required for up-regulation of 
gluconeogenic genes, which might be Rds2 and shown previously to activate genes of gluconeogenesis 
in S. cerevisiae [Soontorngun et al. 2007]. By including more such RNA-seq datasets, originating from 
cultivations in multiple nutrient combinations, these additional transcription factors might be 
identified. This approach is currently under investigation.  
 
While various enzymes involved with alternative carbon source utilisation were up-regulated in the 
xylose medium, a number of genes involved in biosynthesis such as nucleotide and amino acid 
biosynthesis were moderately down-regulated, corresponding to the moderately down-regulated 
growth rate. The TF enrichment analysis based on the complete gene regulatory networks from 
likelihoods revealed that the TFs Gcn4, along with Arg81, Bas1 and Rtg3, controlled the down-
regulation of these TFs.  
 
It is notable that none of the major regulators associated with the down-regulated target gene sets 
were themselves down-regulated at the level of gene expression (Chapters 5 and 6). Clearly, post-
translational modifications played a major role in regulating the activity of these TFs, of which 
phosphorylation is probably the most important. The apparent lower activity of Gcn4, combined with 
the many up-regulated genes of carbon source utilisation, suggested that Snf1 was the master kinase 
regulating the activity of Gcn4 via Gcn2 [Shirra et al. 2008] and other TFs, including Adr1 [Young et al. 
2003] and Mig1 [Schuller 2003]. Snf1 is a key regulatory point in combining the signals resulting from 
the presence of fermentable carbon sources, as well as due to nitrogen limitation [Orlova et al. 2006], 
oxidative stress, a high salt concentrations and a high pH value [Hong and Carlson 2007]. Conversely, 
the strong up-regulation of the Adr1 gene rather suggested that the cAMP dependent RAS/PKA 
pathway was differentially regulated [Dombek and Young 1997]. Unfortunately, phospho-proteomics 
is technically very challenging and was, therefore, outside the scope of this investigation. RNA-seq is 
less technically challenging and can detect the differential expression of the genes encoding kinases. 
However, the vast majority of kinases were constitutively expressed. Their activities depend on their 
own phosphorylation states, which is generally the mode of their regulation. Thus, a method was 
developed to create an enriched subnetwork of the kinase signalling networks to elucidate the most 
differentially active kinases by their associations with enriched TFs, which were derived from 
enrichment statistics of the target sets of TFs using RNA-seq data. This analysis suggested the Pho85-
Pcl5 cyclin dependent kinase, as well as the kinase Ssn3 (Srb10, Cdc8), to be important for the 
regulation of Gcn4. The idea was also extended to enrichment at any network depth, which could be 
termed long-range enrichment. Unfortunately, the longer network distances involve increasing 
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numbers of assumptions, making it unlikely to reveal differentially active upstream master kinases 
such as Snf1 and Ras/PKA that do not act directly on TFs. The possibility of improving this method is 
currently under investigation. Likely, phospho-proteomics is the single most suitable complement to 
RNA-seq for investigations of this type.  
 
There was also substantial evidence in support of the yeast pheromone signalling system being 
differentially active (Chapter 6). The pheromone detector component genes of Ste2 and Ste3 were 
up-regulated in the xylose medium, as well as Gpa1 which receives signals from them. A few 
phosphorylation steps downstream in this pathway is Fus3, of which the gene was also up-regulated. 
Fus3 signals to Ste12, which binds to Tec1 (also up-regulated) and activates the gene expression of 
Phd1 (at least in S. cerevisiae), a major transcriptional activator of pseudohyphal growth [Broach 
2012]. Both Phd1 and Ste12 were also shown to be significantly enriched and associated with mostly 
up-regulated genes (Chapter 6). Interestingly, it was found that Ste12 was under the gene regulation 
of Phd1 in the gene regulatory network, suggesting transcriptional rewiring between S. cerevisiae and 
K. marxianus. These observations could be investigated further, which would likely require the 
suitable phospho-proteomics.   
 
The analysis of metabolism and its regulation at the genome scale is hampered by the fact that not all 
fluxes can be measured or calculated at the genome scale, since they may span subcellular 
compartments (Chapter 3). Thus, the network structure may not allow complete identifiability, 
despite the recent advances in 13C-Metabolic Flux Analysis (13C-MFA), practical experimental protocols 
[Dauner and Sauer 2000] and convenient software programs [Zamboni et al. 2005]. While 
improvements in flux analysis is an ongoing field of research, this will inevitably entail a stronger 
integration with the other omics. There also seems to be a strong case for constructing detailed 
enzyme kinetic models of selected pathways in which the fluxes cannot be resolved with 13C-MFA. In 
particular, the pyruvate dehydrogenase bypass and alcohol dehydrogenase displayed isozyme 
switching of enzymes between the conditions, and the metabolic intermediates can cross the 
mitochondrial membrane (Chapter 3). A kinetic model might both resolve the fluxes among the 
compartments and reveal whether the reason behind isozyme switching might reside in alternative 
enzyme kinetic parameters. 
 
In this work, metabolism was studied in several ways and each method discovered different aspects 
regarding metabolism. The use of RNA-seq was demonstrated as a particularly powerful starting point 
for the study of metabolism. Mapping differential RNA-seq data to central metabolic pathways 
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revealed a pattern of all genes in glycolysis being down-regulated, with the up-regulation of genes of 
the non-oxidative pentose pathway (PPP) and constitutive expression of genes of the oxidative PPP, 
as well as constitutive expression of the TCA cycle genes. Using flux balance analysis (FBA) to simulate 
the fluxes that were expected in the glucose and xylose media (differential FBA, Chapter 3), the 
differential flux pattern was found to be strikingly similar to the differential gene expression pattern. 
Hence, even reactions that are usually regarded as rapid equilibrium enzymes [Canelas et al. 2011] 
were differentially regulated. This observation suggested that the genetic level of regulation might be 
equally important to the metabolic level of regulation. The latter form involves the changes in flux 
brought about by changes in metabolite levels and their interaction with the enzymes. The theoretical 
framework of metabolic regulation analysis (MRA) was used as a practical approach to studying the 
contribution of the genetic (hierarchical) and metabolic levels of regulation. The genetic level of 
regulation might play a pertinent role in the regulation of fluxes, depending on the reaction and the 
conditions. MRA could be performed at the genome scale, if flux analysis could be expanded to a scale 
approaching that of functional genomics. It was also notable how well the transcript levels from RNA-
seq corresponded to the simulated flux patterns.  
 
The simulation framework of FBA was used in two instances to rationalise the transcriptomics 
response. By comparing the differential gene expression levels with the fluxes expected in the glucose 
and xylose media, incorrect expectations were revealed. Differential RNA-seq initially revealed that 
the genes of the oxidative PPP, which were expected to be up-regulated since the PPP produces the 
NADPH required by xylose dehydrogenase, were constitutively expressed in both these two culture 
media (Chapter 3). Comparative differential FBA revealed that, due to the lower growth rate on xylose, 
the cell did not require additional NADPH. FBA was also used to explore the potential role of the 
fructose-1,6-bisphosphatase (FBP) reaction, which is regarded as a typical gluconeogenic enzyme. The 
FPB1 gene was up-regulated in the xylose medium (Chapter 9). It was, however, demonstrated that 
especially in the xylose medium, up-regulation of the FBP1 gene might play an active role, serving in a 
futile substrate cycle with the phosphofructokinase (PFK) reaction, and thus likely plays no role in 
additional NADPH production under aerobic conditions. This is applicable to yeasts in which both of 
the oxidative reactions in the oxidative PPP produce a molecule of NADPH, whereas, if either of these 
produce NADH instead, the role for up-regulation of FBP1 may be for providing additional NADPH. In 
the case of cells grown on xylose, FBA showed that the ATP overproduction was substantially higher 
than when grown on glucose, supporting the potential role of the FBP/PFK cycle as a candidate 
replacement mechanism for a dedicated ATP uncoupling mechanism, which seems to be absent in 
yeasts. ATP should thus not be regarded as being always in demand. To the contrary, for the purpose 
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of engineering biofuel producing yeast strains, the utilisation of ATP dissipating strategies might prove 
advantageous, since ATP has a negative feedback on glycolytic flux [de Kock et al. 2012], which 
prevents an overflow metabolism to ethanol. The lack of an ATP hydrolysing mechanism was also 
linked to wasteful glycerol and xylulose production, which are often observed in engineered yeast 
strains and interpreted as representing constraints in oxidative metabolic capacity or oxygen 
limitation, but independent of possible ATP overproduction.  
 
Considering this complex interplay of cofactors, a strategy was proposed for engineering a future 
Crabtree positive, xylose fermenting strain of K. marxianus, making use of a cytoplasmic malic enzyme 
cycle (Chapter 9). In addition, engineering strains for a constitutive high expression of Gcr1 or Gcr2 
might result in an overflow metabolism towards ethanol. Conveniently, the pyruvate decarboxylase 
gene PDC1 also is under the regulation of Gcr2 (Chapter 6). The alcohol dehydrogenase isozyme 
responsible for ethanol production would need to be identified, among several ADH genes, and 
constitutively over-expressed. Alternatively, ADH1 from S. cerevisiae should be a suitable replacement 
for constitutive expression in K. marxianus.  
 
Limitations of this study relate to the fact that only two conditions could be compared and that only 
RNA-seq data could be generated. Proteomics and specifically phosphor-proteomics could be a 
significant benefit, since it was revealed in Chapter 7 that many of the master regulators cannot be 
revealed by long-range enrichment analyses based on RNA-seq data alone. This prediction method, 
which uses the enrichment values of transcription factor based on their targets as a replacement for 
phospho-proteomics, is likely more relevant to close-range enrichment only, and phosporylations 
should likely be directly observed on the organism under study. However, the additional experimental 
complexity and significantly smaller scope of analysis in proteomics rendered these techniques 
outside the scope of this project. Another finding that might question the validity of the approaches 
used to reveal differentially active TFs, was that the putative zinc-finger-like TF involved in up-
regulation of alternative carbon source utilisation genes was not found initially by the likelihood based 
network enrichment approach (Chapter 5). Chapter 4 revealed Adr1 or Mig1 as the most likely 
regulators based on the enumerative k-mer frequency approach, the consistent observations of 
differential expression of both their transcripts, and previous reports on the model species S. 
cerevisiae. After thorough investigation with multiple network construction functions, it was found 
that Adr1 could indeed be discovered from networks generated using the relevant function for 
incorporating the sources of evidence (Chapter 6). This not only implies that different modes of 
network construction should be used to reveal different TFs in a complementary fashion, but also that 
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the enumerative k-mer method, and the innovation of Occam’s Razor motifs should be used in a 
complementary fashion to network-based enrichment approaches. 
Although the work presented in this thesis could be considered as integrative, involving the gene 
regulatory level (Chapters 3, 5 and 6), signalling through kinases, (Chapter 7), the metabolic flux level 
(Chapters 3 and 9), as well as the chromosomal context of gene regulation (Chapter 8), our current 
understanding of eukaryotic gene regulation is still simplistic relative to the true complexity. The 
combination of high-throughput functional genomics datasets, enrichment statistics and likelihood 
based networks is set to become increasingly important in the information-rich future of the 
biosciences. We will likely see increased use of high-throughput datasets, while likelihood-based 
methods, such as was developed in Chapters 5 and 6, can combine multiple sources of evidence. 
Enrichment statistics is a useful method of making sensible deductions involving regulators that affect 
multiple targets. Importantly, the method is robust to potentially false positive assignments of some 
of the interactions. Ultimately, these methods could be combined into a machine learning algorithm 
that could optimise simultaneously the network structure as well as the motifs that define the binding 
sites, and also incorporate signal transduction pathways. This would not only give insight into the gene 
regulatory networks and signalling, but would also pinpoint our lack of knowledge regarding the DNA 
binding sites of certain TFs, revealing contradictions between the experimental data analysed and the 
information on the model species (Chapter 6). It is truly an exciting time for computational biology 
and bioinformatics.  
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Addendum 1 
 
Improved genome assembly and RNA-seq data analysis  
 
 
Abstract 
This addendum explains the improvement of the draft genome for Kluyveromyces marxianus UFS-
Y2791 and improved RNA-seq data analysis. The use of the Velvet de novo genome assembler resulted 
in an improved draft genome assembly with double the N50 value as compared to the assembly using 
Abyss. By using a larger amount of RNA-seq data, an improvement was also made in the sensitivity of 
differential expression analysis. Moreover, it was found that the RNA-seq data from strain UFS-Y2791 
could be effectively mapped directly to the complete genome of strain DMKU3-1042. This work was 
essential for the construction of a genome-scale gene regulatory network and for chromosome-based 
analyses.  
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Introduction 
 
The ultimate goal of this study was to reveal the cause-and-effect pathways used by Kluyveromyces 
marxianus to control the differential response to glucose and xylose. Key to this analysis was the 
elucidation of differentially active transcription factors that controlled gene regulation. Two main 
approaches exist that could be employed for this purpose. Firstly, the enumerative method of k-mer 
frequency comparisons could be used, which reveals over-represented words (k-mers) in the 
regulatory regions of the differentially regulated genes. These k-mers can be matched to transcription 
factor (TF) binding motifs to reveal the identity of the TFs. The second approach is to construct a 
complete gene regulatory network and perform enrichment statistics using the differential RNA-seq 
data. Both these methods require a sufficiently complete draft genome or preferably a complete 
genome. The initial UFS-Y2791 draft genome is fragmented into 1094 contigs larger than 200 bp. 
Although the quality of the contigs may be considered to be very high, given the high per base 
sequencing quality and high coverage, studies in gene regulation could greatly benefit from using a 
more complete assembly for the strain. It might also be possible to map the RNA-seq data of strain 
UFS-Y2791 directly to one of the recently published complete genomes for different K. marxianus 
strains, independently from the genomic DNA data for the UFS-Y2719 strain (Chapter 2). This was 
tested and the results reported in this Addendum. Also, not all the RNA-seq data were used at the 
time of publication of Chapter 3, which could further be used to improve the analyses. Using a larger 
amount of RNA-seq data should result in better coverage of genes by RNA-seq reads, thus allowing 
better statistical significance of differential expression testing. The effect of using three datasets per 
sample instead of one dataset per sample is reported. 
 
In terms of improving the assembly of the UFS-Y2791 draft genome, two routes were investigated. 
Firstly, the alternative de novo assembly algorithm Velvet [Zerbino 2008], was tested. Secondly, DNA 
reads were mapped to the complete reference genomes DMKU3-1042 and KCTC-17555, a process 
known as read-mapping. Using this approach, one option is to take only the stretches of DNA that 
matched the reference genome, discarding the unaligned reads. This might miss long insertions in the 
UFS-Y2791 genome as compared to the reference. Alternatively, the insertions may be filled in by de 
novo assemblies of unaligned reads, or by using the insertions hidden in pileup files. The latter process 
is not trivial, however.  
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The results described here opened up an avenue of complete genomic analysis. The full genomic 
context would later improve the quality of gene regulatory networks (Chapter 6), and subsequently 
allowing RNA-seq analysis in the context of chromosomes (Chapter 8).  
 
Materials and Methods 
Processing of NGS data, de novo genome assembly and annotation 
Genomic DNA and RNA-seq datasets were generated on an Illumina HiScanSQ instrument (described 
in Schabort et al. 2016). The data were quality assessed using FastQC and trimmed using Trimmomatic 
[Bolger et al. 2014] in Galaxy [Afgan et al. 2015] using a sliding filter of four bases with minimum 
average Phred score of 20. De novo assemblies were performed using Abyss and optimised for the k-
mer length using a program developed in Python (Chapter 2) or by using the Velvet-Optimiser [Zerbino 
2008] in Galaxy. N50, N75 and N90 values were calculated in algorithms designed for Reactomica and 
implemented in Mathematica. For reference mapping of genomic NGS data to complete genomes, 
Bowtie2 [Langmead et al. 2009, Langmead et al. 2012] in Galaxy was used, using default parameters. 
WebAugustus [Stanke et al. 2008] was used to find open reading frames. 
 
RNA-seq data analysis 
Reads were mapped to a variety of genome assemblies using TopHat2 in Galaxy [Trapnell et al 2009, 
Trapnell et al. 2013, Kim et al. 2013]. The same read-mapping parameters were used throughout. 
These were as follows. 
The constraint of the number of base pairs that may be different between any read and the genome 
(--read-edit-dist = 2), was set to two, and the final read mismatches was also set at two (--read-
mismatches = 2). The maximum insertion and deletion lengths were both set at 3 (--max-insertion-
length = 3; --max-deletion-length =3). These parameters are important if the quality of the genome 
was uncertain, or if the genome was not actually from the same strain and single nucleotide 
polymorphisms, insertions and deletions were to be expected. CuffDiff [Trapnell et al. 2013] was used 
to test for differential expression. In all cases, a GFF3 file was used to specify the gene windows in 
which CuffDiff calculated the differential expression [Trapnell et al. 2013]. This file either originated 
from annotations of draft assemblies of strain UFS-Y2791, or from the NCBI for strain DMKU3-1042. 
CuffDiff reports p-values as the statistical significance and well as the q-value, which is the p-value 
after accounting for multiple comparisons. Genes were only considered to be significantly 
differentially expressed when q-values were below 0.05. 
 



299  

Results and Discussion 
 
Improved RNA-seq data analysis 
Figure 1 shows the excellent per base Phred scores obtained, demonstrating the high quality of 
Illumina NGS data. A Phred score of 30 indicates that one in a thousand bases in a sequence may be 
incorrect (error rate = 1/(10^(phred/10))). A phred score of 20 is the default threshold, which could 
be assumed sufficient for RNA-seq. The decrease in quality with the number of base pairs sequenced 
is a common feature with most methods of sequencing. Figure 2 shows the quality of the trimmed 
reads. The majority of untrimmed reads had a quality of 37 (Figure 3), indicating one error expected 
in 5 012 bases read. Thus, the data were of outstanding quality.  

 
Figure 1. Box-and-whiskers plot of per base quality assessment of RNA-seq data before trimming, visualised 
using the FastQC tool. Orientation of reads is 5’-3’, as sequenced on the Illumina instrument. 
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Figure 2. Box-and-whiskers plot of per base quality assessment of RNA-seq data after trimming, using the 
Trimmomatic tool, and visualised using the FastQC tool, showing higher average base quality. Illumina 
adapters were removed, followed by a sliding filter of four bases (from the 3’ end), testing each read for a local 
minimum average Phred score of 20. The number of bases removed differs for each read. Orientation of reads 
is 5’-3’, as sequenced on the Illumina instrument. 
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Figure 3. Mean quality score per read before trimming, as obtained from the FastQC tool. Phred scores were 
calculated over the length of each read. The median Phred score was 38, with a similar mean value. 
 
Overall, excellent agreement was found between the fold changes obtained using the previous read-
mapping and one dataset per sample [Chapter 3] and the results obtained with three datasets per 
sample (Figure 4). In the previous analysis, a few genes were found to have infinite fold changes, due 
to no reads aligning in one of the two samples. Due to practical reasons, the fold changes in such cases 
were changed to a value that was twice the maximal fold change that could be calculated. The infinite 
Log 2 fold changes in the original dataset were changed to 12.03 (2×11.03). For the analysis using more 
RNA-seq data, the infinite Log 2 fold changes were changed to 12.48 (2×11.48). Five cases of infinite 
fold changes were found for the original analysis, but only two when more data were used. Thus, the 
lower limit of detection was decreased (improved sensitivity) by using more NGS data. The same was 
done for negative fold changes. While two occurrences were found where no reads were mapped to 
a gene in the xylose condition, no such cases occurred with the improved analysis. Figure 4 shows that 
the previously infinite fold changes were changed to significantly lower and more realistic values. 
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Figure 4. Correlation between RNA-seq analyses in terms of fold changes (Log2 of FC) from glucose to xylose 
as the carbon source, using one and three datasets per sample. Dataset 1: previous analysis, using one dataset 
per sample (Chapter 2); Dataset 2: improved analysis, using three datasets per sample.  
 
An improved de novo assembly using the Velvet-Optimizer 
When using the Abyss assembler in constructing the first draft genome, a script was developed that 
allowed optimisation of the assembly based on only one parameter, the k-mer length (see Chapter 2). 
An optimal value for the k-mer length was found to be 46. In Galaxy, the Velvet-Optimizer assembler 
was recently added, which contains an automatic optimisation routine that optimises various 
parameters simultaneously. The automated Velvet Optimizer was used to determine if a better de 
novo assembly could be obtained.  Figure 5 shows the distribution of contig lengths for the previous 
and the new draft genomes. The N50, N75 and N90 values are useful statistics to determine the quality 
of an assembly. These are summarised in Table 1. Whereas the previous genome was 10 695 063 bp 
in 1 094 contigs equal or longer than 200 bp, the new genome had 10 700 656 bp in 633 contigs equal 
or longer than 200 bp. The Velvet-Optimizer assembly thus consisted of an additional 5 593 bp.  
 



303  

 
Figure 5. Distribution of contig lengths from de novo assemblies. Black: Abyss assembly. Red: Velvet-Optimizer 
assembly. 
 
Table 1. Statistics for de novo assemblies based on N values. 

  Total length Contigs N50 N75 N90 
Abyss  10 695 063 1 094 21 248 12 075 5 789 
VelvetOptimiser 10 700 656  633 39 193 20 399 10 088 

 
In the improved draft genome, the longest contig was almost 50% longer, and the N50 value double 
the length of the previous. However, since the reason for the fragmentation with de novo short-read 
assembly was mostly due to repetitive regions, it may not be possible to improve the assembly using 
only these data. Longer reads may have to be generated on a different platform such as Illumina 
MiSeq, which generates 300 bp lengths, or on PacBio or another single-molecule sequencer that 
generates much longer reads, but which are not widely available yet. Alternatively, long mate-pair 
sequencing could be performed on an Illumina system.  
 
Read-mapping of UFS-Y2791 against the complete genomes of DMKU3-1042 
and KCTC-17555 
A different strategy used for obtaining an improved genome for strain UFS-Y2791 was to perform 
read-mapping of genomic NGS data to a complete genome. Out of a total of the 14 495 422 paired-
end genomic DNA reads used, 11 778 010 (81.25%) could be mapped to the DMKU3-1042 genome 



304  

using Bowtie2 in Galaxy. Similarly, 11 611 290 reads (80.10%) could be mapped to the KCTC-17555 
genome. Tables 2 and 3 show that the two complete genomes have very similar chromosome lengths. 
However, the genome of strain DMKU3-1042 contains the mitochondrial chromosome in addition to 
the eight genomic chromosomes. As Lertwattanassakul et al. [2015] also stated, this is a more 
completely validated genome assembly as opposed to previously published genomes for K. marxianus. 
Upon inspection of resequencing output files, a low sequence coverage was found, suggesting that 
other routes of investigation were more promising. 
 
Table 2. Chromosome statistics of the KCTC-17555 genome.  

Chromosome Length 
JH924896.1_scaffold1 1 738 350 
JH924897.1_scaffold2 1 700 508 
JH924898.1_scaffold3 1 577 254 
JH924899.1_scaffold4 1 410 702 
JH924900.1_scaffold5 1 336 893 
JH924901.1_scaffold6 1 198 968 
JH924902.1_scaffold7 937 562 
JH924903.1_scaffold8 909 243 

 
 
 
 
 
 
 
Table 3. Chromosome statistics of the DMKU3-1042 genome and consensus of the UFS-Y2791 reference 
mapped to the DMKU3-1042 genome. 

Chromosome Length Consensus length Consensus % 
AP012213.1_Chr.1 1 745 387 1 663 211 95.29 
AP012214.1_Chr.2 1 711 476 1 642 304 95.96 
AP012215.1_Chr.3 1 588 169 1 525 613 96.06 
AP012216.1_Chr.4 1 421 472 1 375 132 96.74 
AP012217.1_Chr.5 1 353 011 1 298 216 95.95 
AP012218.1_Chr.6 1 197 921 1 141 744 95.31 
AP012219.1_Chr.7 963 005 903 694 93.84 
AP012220.1_Chr.8 939 718 874 987 93.11 
AP012221.1_mitochondrial 46 308 38 525 83.19 



305  

Improved RNA-seq data analysis 
Excellent mapping of sequence reads to the original de novo draft assembly was found, varying from 
89.9% to 96.7% of reads successfully mapped to the genome, depending on the data file. This 
suggested a high per base quality of the first draft genome. Due to the fragmented nature of the draft 
genome, some of the reads might inevitably not have been mapped. Mapping the RNA-seq reads to 
the Velvet-Optimiser de novo assembly with more data made an improvement in that 96.7 to 97.4 of 
the reads mapped to the genome. When using the DMKU3-1042 genome as reference, the percentage 
of reads decreased as expected. However, 54.2% to 54.1% of reads could still be mapped to the 
DMKU3-1042 genome. This rate of mapping may still be considered to be sufficient, as it still 
amounted to a minimum of 4 153 414 reads mapped in one of the xylose samples and up to 10 244 755 
in one of the glucose samples (Table 4).  
 
The distributions of fold changes calculated when using different genomes as templates are shown in 
Figures 6 to 10. Limiting the differential calculations to only the coding regions marked as ‘CDS’ in the 
GFF3 files yielded indistinguishable results. Excellent agreement in terms of the distribution was also 
seen when using the DMKU3-1042 genome, compared to using other genomes. 
 
Table 4. Read-mapping of paired-end data of strain UFS-Y2791 to the DMKU3-1042 genome.  

Glucose sample 1 
paired-end direction Left reads Right reads 

Input 16 557 856 16 557 856 
Mapped 10 244 755 10 701 778 

Overall read mapping rate 63.30%  
Glucose sample 2 

paired-end direction Left reads Right reads 
Input 9 306 262 9 306 262 

Mapped 5 737 682 5 927 154 
Overall read mapping rate 62.70%  

Xylose sample 1 
paired-end direction Left reads Right reads 

Input 7 991 575 7 991 575 
Mapped 4 153 548 4 489 902 

Overall read mapping rate 54.10%  
Xylose sample 2 

paired-end direction Left reads Right reads 
Input 9 559 431 9 559 431 

Mapped 5 295 989 5 639 053 
Overall read mapping rate 57.20%   
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Figure 6. Distribution of fold changes in RNA-seq values with read-mapping against the Abyss assembly using 
one dataset per sample (from Chapters 2 and 3), in which the GFF3 annotation file was that obtained through 
annotation by the webAugustus web server. Left: Histogram of fold-changes. Right: Volcano plot of q-values 
(corrected p-values, as from CuffDiff) against Log2 fold-changes.  
 

 
Figure 7. Distribution of fold changes in RNA-seq values with read-mapping against the Abyss assembly using 
three datasets per sample, in which the GFF3 annotation file was that obtained through annotation by the 
webAugustus web server.  
 

 
Figure 8. Distribution of fold changes in RNA-seq values with read-mapping against the Abyss assembly using 
three datasets per sample, in which the GFF3 annotation file was that obtained through annotation by the 
webAugustus web server, using only the coding sequences (CDS). 
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Figure 9. Distribution of fold changes in RNA-seq values with read-mapping against the Velvet-Optimizer 
assembly using three datasets per sample, in which the GFF3 annotation file was that obtained through 
annotation by the webAugustus web server. 
 

 
Figure 10. Distribution of fold changes in RNA-seq values with read-mapping against the DMKU3-1042 genome 
using three datasets per sample, in which the GFF3 annotation file was from the NCBI database, as annotated 
by Lertwattanassakul et al. [2015]. 
 
In terms of testing differential expression of individual genes, the highest fractions could be tested 
successfully in the Abyss and Velvet assemblies using all data, at 99.74 and 99.59% testabilities, 
respectively (Table 5). Notably, using the DMKU3-1042 genome allowed 97.16% testability, which was 
not only similar to the assemblies from the UFS-Y2791 strain using all RNA-seq data, but also a larger 
fraction compared to using the original Abyss assembly, using one dataset per sample, for which 
94.81% were testable.  
 
It was found that the latest version of the DMKU3-1042 genome on NCBI contained 4 963 protein 
coding genes, of which 4 952 have been annotated as distinct proteins against UniProt. There were 5 
153 coding sequences (marked ‘CDS’), thus some of the genes that encoded proteins consisted of 
more than one exon separated by introns. Introns were not included in the GFF3 annotation file of 
strain DMKU3-1042. A protein annotation file for Reactomica was created for the 4 952 unique genes 
by retrieving the UniProt annotation entries as a table from UniProt, using the ‘protein_id’ field that 
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links the entries to the UniProt identifiers. This would be used in further functional analyses (Chapters 
5-8). 
 
Table 5. Testability of differential expression of genes based on analyses using various genome assemblies. 

 assembly number of ORFs inf neg inf OK NOTEST % 
testable 

KmaxOnAbyss full gtf 1 set 4953 5 2 4696 257 94.81 
KmaxOnAbyss full gtf 3 sets 4953 2 0 4940 13 99.74 
KmarxOnAbyss gene trans CDS 3 sets 4953 2 0 4940 13 99.74 
KmarxOnVelvet gene trans CDS 3 sets 4861 1 0 4840 21 99.57 
KmarxOnDMKU gene trans CDS 3 sets 4864 8 6 4726 138 97.16 

 
 
Conclusions 
 
In this addendum it was shown that the use of the additional RNA-seq datasets improved the accuracy 
of differential expression fold changes. The draft genome was also substantially improved by the 
Velvet-Optimizer de novo assembler. Notably, it was found that the complete genome of K. marxianus 
DMKU3-1042 could be used for read-mapping RNA-seq data, making RNA-seq data analysis of strain 
UFS-Y2791 in the context of a complete genome possible, and would also facilitate analysis of the gene 
regulatory programme (Chapters 5-8).  
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Addendum 2 
 
Multiple genome alignments and motif conservation 
 
 
Abstract 
 
The finding that RNA-seq data could be effectively read-mapped to the complete genome of strain 
DMKU3-1042 facilitated the construction of gene regulatory networks. The method of gene regulatory 
networks relies not only on the accuracy of motif finding or the availability of supporting data for 
transcription factor-DNA interactions, but also benefits from evolutionary conservation of a motif 
among closely related species. In this work, the genomes of several Kluyveromyces species were 
aligned using multiple genome alignment. To make use of this information for network construction, 
a method had to be developed for using multiple genome alignments in the calculation of 
conservation criteria at putative transcription factor binding sites. This addendum describes the 
software algorithms developed for this purpose, which was integrated into the likelihood framework 
described in Chapters 5 and 6. 
 
Introduction 
 
The development of a likelihood framework for the construction of gene regulatory networks was 
described in Chapter 5. This method required multiple genome alignments of species closely related 
to K. marxianus to calculate the degree of conservation for each TF binding site. Motifs that are 
conserved among sister species have a higher likelihood of being true binding sites. The 
progressiveMauve aligner [Darling et al. 2010] is a convenient program to use as it is fast and even is 
available as a desktop application in Windows. However, is was found that the format of the output 
files did not facilitate straightforward analysis in Reactomica. Therefore, a significant amount of 
software development had to be done to harness the outputs for calculation of conservation criteria 
to be used in the likelihood framework. The methods were developed here using the draft genome of 
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K. marxianus UFS-Y2791 as the reference strain of interest, although the procedures were later carried 
out with the complete genome of K. marxianus DMKU3-1042 as the reference (Chapters 6 and 8). 
 
Multiple genome alignments for calculating the conservation ratio 
Since non-coding DNA generally evolves rapidly compared to coding DNA, it should be best to use a 
variety of closely related genomes to allow sufficient similarity among genomes for proper alignment. 
Hence it was chosen to focus only on the Kluyveromyces genus. Seven complete or draft genomes of 
Kluyveromyces species were aligned using the Windows desktop version of progressiveMauve [Darling 
et al. 2010]. The complete genomes were for K. lactis and K. marxianus strains DMKU3-1042 and KCTC-
17555, while draft genomes were available for K. aestauri, K. dobzhanskii and K. wickerhamii, as well 
as K. marxianus UFS-Y2791 (from this study). These are currently the only species in the Kluyveromyces 
genus for which either complete or published draft genomes are available. The order of upload of the 
genomes into progressiveMauve is important in that the first genome is assumed to be the reference 
genome. As the reference, the complete genome of DMKU3-1042 was uploaded first, which provided 
the correct order of contigs in other strains. As a test for multiple alignment, satisfactory alignment 
was found between the complete genomes of K. marxianus strains DMKU3-1042 and KCTC-17555 
(Figure 1) with very few rearrangements. 
 

 
 
Figure 1. Alignment between the K. marxianus KCTC17555 and DMKU3-1042 genomes using 
progressiveMauve. Colours represent chromosomes and lines represent genome reshuffling during evolution. 
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Inclusion of all genomes resulted in a strongly crossed-over pattern, simply because the ordering and 
direction of the multiple contigs had not been established beforehand. Yet, the output contained 
alignment files organised into correctly alignment segments, which is what was of interest for the 
calculation of motifs. 
 
Mapping between the segments of multiple genome alignments produced by progressiveMauve, and 
the positions in individual genomes was, however, a complex task. In addition, any of the genomes 
should be available as the reference sequence for constructing the regulatory network (the “gene 
regulatory reference”), even though the most complete genome should be used as the “alignment 
reference”, which is the first genome uploaded into progressiveMauve. An efficient algorithm was 
required for finding segments of a particular type, which would allow straightforward analysis. For 
instance, an alignment segment may comprise of more than one contig for a given species. This 
presumably was allowed in the progressiveMauve software since it would, to an extent, assemble a 
more complete chromosome from contigs. However, assuming that two contigs were indeed situated 
next to one another on a chromosome in the gene regulatory reference, forming part of the same 
upstream regulatory region, while in fact this was only the case in some of the other genomes in the 
aligned segment due to rearrangements of the DNA between strains, may lead to incorrect results. 
Even if two contigs of a strain were adjacent to one another, there is no absolute certainty of the 
number of bases missing between the two contigs. Joining two contigs by their multiple genome 
alignment may even result in an artificially constructed regulatory motif. Moreover, the link between 
a gene and its upstream regulatory region should be clear; preferably both the gene and its upstream 
regulatory region must be in the same alignment segment. Various levels of stringency may thus be 
applied. The most strict criterion being that only those genes that have at least some upstream part 
of their transcript (or coding region), as well as their upstream regulatory region, on the same 
alignment segment for all genomes, should be considered to have multiple alignments of regulatory 
regions. Possible constraints applicable are: (a) only those parts of the multiple sequence alignment 
segments are useful which have ungapped alignments of the reference sequence, for which regulatory 
elements are sought; (b) multiple alignments must have at least some upstream part of their common 
transcript (or coding region), as well as their upstream regulatory region, on the same alignment 
segment for all genomes; (c) the upstream region needs to be long enough, preferably 1 000 bp from 
the translation start site; (d) a segment should not have fewer than a certain number of nucleotides, 
otherwise it becomes meaningless to use them as alignments. Out of the 2 275 segments in which K. 
marxianus UFS-Y2791 DNA featured, 1 584 (69.6%) represented segments that comprised a single 
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contig in K. marxianus UFS-Y2791 (Figure 2). From these, a total of 1 161 segments conformed to the 
criterion of having all seven genomic sections as DNA originating from only one contig.  
 

 
Figure 2. The distribution of the degree of non-interruption of each segment. The number of genome sections 
that originate from a single contig (as opposed to more than one contig brought together by multiple genome 
alignment) is on the Y-axis. A value of seven indicates that a segment (a multiple genome alignment between 
the isolates) contained only one contig per genome for all genomes.  
 
 
Calculating the conservation score 
From the list of segments that conformed to the criteria, alignment segment 87 was explored to 
develop the method. Figure 3 shows the output from a short section of segment 87, as viewed in the 
convenient alignment viewer designed for this purpose. The conservation score on the Y-axis was 
calculated as the number of bases from the seven genomes that were identical to the base in the K. 
marxianus UFS-Y2791 reference. A gap in the alignment was assumed to add zero to the score at a 
nucleotide position. A score of 0 arose when the reference base was a gap. A score of one was 
obtained when none of the other six bases corresponded. A score of two was, for instance, obtained 
when the reference character was C and others were -, -, -, C, C and -. Figure 4 shows the conservation 
scores of the complete segment 87. Peaks of high conservation are visible, with interspersed regions 
of low conservation (with respect to the strain UFS-Y2791 reference genome). To remove noise, a 
sliding filter (moving average) was applied at a window size of 10 bp (Figure 5). Small islands of 
conservation at this window size may correspond to conserved motifs, since the average width of DNA 
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binding sites is approximately 7 bp. Wider peaks of 100 bp or more should correspond to genes. The 
window size for the sliding filter was increased to 100 bp to filter out conserved motifs in divergent 
DNA to retain only peaks corresponding to genes (Figure 6).  
 

 
Figure 3. Alignment view of a section in segment 87 showing the conservation scores. 
 
 

 
Figure 4. Conservation view of the complete segment 87 of the gapped alignment. The resolution is 1 bp. 
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Figure 5. Conservation scores of the complete segment 87 of the gapped alignment. A 10 bp sliding window 
was used to remove noise. Genes and potential conserved regulatory elements are visible as peaks. 
 
 

 
Figure 6. Conservation view of the complete segment 87 of the gapped alignment. A 100 bp sliding window 
was used to remove noise. Genes are visible as peaks. 
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A method for collapsing gapped alignment segments into ungapped 
alignments 
Due to the complexities of mapping alignments to the reference genome, a simpler underlying data 
format was required. To achieve this, a gapped alignment was spliced into a continuous section in 
which the reference genome had no gaps, while gaps were allowed in other genomes in the alignment. 
Insertions in the sister genomes were removed in effect, and a suitable maker system for the deletions 
was introduced (see below). The marker system was introduced not only for the purpose of keeping 
track of removed insertions in sister genomes, but in particular to penalise conservation scores at the 
edges where a DNA section was deleted. One major advantage of the ungapped alignment format is 
that it could be viewed along with genome annotations of the reference strain in an “annotation 
track’-like fashion, as popular in genome browsers. The same resolution settings were applied for 
rendering Figures 7-9. In effect, the gapped alignment adopts the coordinate system of the reference 
genome and this renders obtaining the conservation score much simpler. 
 

 
Figure 7. Conservation view of the complete segment 87 of the ungapped alignment, removing non-reference 
DNA sections where the reference genome had a gap, at 1 bp resolution. 
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Figure 8. Conservation view of the complete segment 87 of the ungapped alignment, removing non-reference 
DNA sections where the reference genome had a gap, at 10 bp resolution. 
 

 
Figure 9. Conservation view of the complete segment 87 of the ungapped alignment, removing non-reference 
DNA sections where the reference genome had a gap, at 100 bp resolution. 
 
An artefact that may arise is that which occurs when an average conservation score is calculated over 
a region (aligning to the reference genome) that spans a gap that has been removed from the non-
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reference genomes. A conservative rule that may be applied for simplicity is that an averaged 
conservation score over the bases in a putative binding motif can be calculated as long as all sequences 
were ungapped in the sliding window. The marker system would signify these removed gaps. 
 
However, it was observed that often a gap in the reference genome was introduced by single 
insertions of DNA sections in single, non-reference genomes, while the other genomes aligned 
perfectly with the reference genome. An identical long gap in both the reference genome and five of 
the homologous non-reference genomes should only penalise for one of the genomes – the one with 
the insertion relative to the reference. An additional vector (marker system) was calculated to capture 
the level of uncertainty introduced into the conservation score by insertions in non-reference 
genomes. Various possibilities exist to calculate such a penalty score. The first (a) is to calculate the 
total number of nucleotides in all genomes existing in this inserted section. Another (b) is to take the 
latter number and normalise it by the total number of characters in the section, to counteract the 
penalty by the number of gaps in non-reference genomes (actually, the lack of insertions). In the latter 
scenario, the total length of the insertion is irrelevant. A long insertion in a single non-reference 
genome would effectively be converted to a score of 1/6 for six non-reference genomes. However, a 
poorly aligned section with many short insertions in multiple non-reference genomes may have the 
same result, which should be avoided. Yet another approach (c) is to count the number of non-
reference genomes which contains at least one insertion. The latter is the most trivial to use in further 
analyses, since the meaning is easier to understand than with methods (a) and (b). A value of one 
means that only one of the six non-reference genomes contained an insertion and thus perhaps the 
insertion could be ignored. The higher this value, the more uncertain the sequence conservation was. 
Method (c) was the approach taken in the rest of this study. Figure 10 demonstrates the procedure of 
converting a gapped alignment into an ungapped alignment and capturing the number of sequences 
that had at least one gap along the edges of the deleted sections.  
 
From Table 6 it is evident that the majority of insertions (compared to the reference genome) was 
introduced by only one or two genomes in an alignment segment (169 insertion sections), whereas 
only in one case (six non-reference genomes as insertion), the insertion should rather be interpreted 
as a deletion from the reference genome with reference to the common ancestor of the seven 
genomes. 
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Figure 10. Method for collapsing gapped alignment segments into ungapped alignments. Top: gapped segment 
where the reference genome (K. marxianus UFS-Y2791) contained a gap. Bottom: ungapped alignment with the 
insertion removed. In this case, the gene regulatory reference was the UFS-Y2791 draft genome, even though 
the multiple genome alignment reference was the complete genome of strain DMKU3-1042.  Note the gap score 
marker at the bottom which captures on both sides of the insertion the number of genomes that contained DNA 
in this section (an insertion relative to the reference genome, which was removed in the ungapped alignment). 
 
 
Table 6. Gap statistics for segment 87. Distribution of the number of sequences present as insertions compared 
to reference sequence. The total length of the reference DNA in the segment was 26 766 bp. The majority of 
insertions (which were removed in the ungapped alignment) was introduced by one or two genomes, whereas 
only for very few such cases these insertions should rather be interpreted as deletions from the reference 
genome, compared to the reference genome (UFS-Y2791).     

Number of non-reference genomes in insertion 
section present as insertion 

Insertion sections with 1-6 genomes present as an 
insertion 

1 87 
2 82 
3 18 
4 10 
5 3 
6 1 
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The total length of the K. marxianus UFS-Y2791 DNA as uninterrupted segments was 9 085 954 bp, 
whereas the total length of the draft genome was 10 695 463 bp. Thus, 84.95% of the K. marxianus 
UFS-Y2791 draft genome was associated with a multiple alignment, even though the draft genome 
was separated into 1 096 contigs longer than 200 bp. This suggested that for a large majority of genes, 
a conservation score should be available to improve the certainty of assigning DNA binding sites. The 
distribution of the lengths of stretches of DNA in the reference draft genome in alignment segments 
is shown in Figure 11. These were only those segments that contained DNA from a single contig in the 
reference strain UFS-Y2791. The ungapped alignment, along with conservation scores and gap marker 
scores, was converted to string format, effectively compressing the large file 37.74-fold.  
 

 
Figure 11. Length distribution of the K. marxianus UFS-Y2791 DNA in processed, ungapped multiple genome 
alignment segments. Only those segments spanning single contigs for K. marxianus UFS-Y2791 were included in 
this analysis. The total length of this aligned genomic DNA was 9 085 954 bp. 
 
Conclusions 
 
A method and accompanying software was also developed to harness the output from the 
progressiveMauve multiple genome aligner by converting data files into a format adopting the 
coordinate system of the reference species and calculating sequence conservation scores for the 
whole genome. This was instrumental in the likelihood method of constructing gene regulatory 
networks used in Chapters 5 and 6. 
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Addendum 3 
 
Addendum for the likelihood method for gene regulatory 
networks - Chapter 5 
 
 
This addendum describes further details of methods from Chapter 5. 
 
Exploring the relationship between average nucleotide score, motif length and 
the motif match likelihood, Lm 
Lm was calculated for every PPM length in the JASPAR database, from 5 to 21 bp, and at various values 
for Sn, from 0.3 to 1 using the equation below. 

݉ܮ =  ∏ ܵ݊௡௜ ∏ ܾ௡௜
 

Figure 1 shows this relationship. A 21 bp motif which only allows perfect matches (Sn = 1) would thus 
accumulate scores between to 1010 and 1011. At the other end of the spectrum, only a PPM that is at 
least 17 bp long could result in an Lm value larger than 10 if it were very degenerate (Sn = 0.3). A cutoff 
for Lm at 10 seems reasonable, and means that the sub-sequence was 10 times more likely to match 
the PPM model than the background model. When Sn was increased to 0.4 (0.15 above the average 
background of 0.25), shorter motifs of 9 bp could be identified. Although this states some form of a 
basis to reason about the significance of a motif match, a strict cut-off should not be decided on at 
this stage, since (a) background frequencies are not 0.25 and are positionally biased, and (2) multiple 
other criteria will be included to decide on the final inclusion of a TF-gene interaction. Inevitably, to 
save computer memory and speed up the algorithm, some cut-off had to be set for inclusion of a motif 
into a motif likelihood table as a potential binding site. It was found that when a cut-off lower than 10 
was set, millions of potential motifs would have to be analysed further for the draft genome (see 
below).  



 

324  

 
Figure 1. Exploring the relationship between average nucleotide score, motif length and the motif match 
likelihood, Lm. The X-axis reflects the length of a motif (PPM). Different lines represent different average 
nucleotide scores (Sn or mat.x), assuming a position independent background frequency of 0.25 for each 
nucleotide. Long motifs could accumulate high scores, compounded by high nucleotide scores.  
 
The conservation score Lc from multiple genome alignments 
Figure 2 shows the alignment of the reversed motif 9634 to the UFS-Y2791 genome as well as six other 
Kluyveromyces genomes. The sequence conservation scores and the gap marker scores were 
calculated as described in Addendum 2. The gap marker scores capture the penalties that could be 
applied to the background conservation scores due to deleting regions from sister species to convert 
the gapped alignment into an ungapped alignment (see Addendum 2 for details). The vector of 
conservation scores (indicated by ‘c’ in the alignment) was separated into a region corresponding to 
the motif (red) and two flanking regions of 20 bp. The latter was be used to estimate a background 
conservation score, which could be compared to that of the motif. The best length of the background 
flanking regions was not determined empirically at this stage, but limiting the length was required, 
since the multiple genome alignment only resulted in segments of alignment between genomes.  
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Figure 2. Multiple genome alignment view of a PPM matching to a candidate motif. The region in red indicates 
the frame corresponding to the PPM. The regions in blue indicate the flanking regions used to calculate the 
background conservation score. The row indicated by ‘s’ specifies the genome of interest (K. marxianus UFS-
Y2791). Rows specified by ‘m’ indicate sister species. The row specified by ‘c’ indicates the conservation score. 
The row specified by ‘i’ indicates the gap marker scores included by deleting regions from sister species to 
convert the gapped alignment into an ungapped alignment.  
 
A possible concern was the presence of gaps in the alignment as depicted in Figure 2 (see Results and 
Discussion in Chapter 5). If the background conservation was to become very small, an unrealistically 
large Lc would be obtained. An important consideration was also that for genome alignment 
segments, significant stretches may occur in which the reference genome aligns with no other 
genome, where the conservation score would be calculated as zero, completely removing the motif 
from further analysis. Inability of the genome aligner to align phylogenetically distant sequences may 
thus have profound effects. It was considered to be a good strategy to treat this likelihood ratio partly 
as a quantifier and partly a qualifier, by not allowing Lc values to be lower than some cut-off value 
(0.5). 
 
The confidence spectrum for the likelihood based on a common interaction, Li 
A custom scoring system was designed to capture confidence in experimentally observed TF-target 
gene interactions of various types (Table 1). At the low end of the confidence spectrum, “microarray 
RNA expression” indicated correlations between expression of a TF gene and a target gene. Somewhat 
stronger evidence was found in “genome-wide gene expression regulator mutant expression profile” 
which indicates that by deleting a TF, there was a significant change in the expression of the target 
gene. A further improvement was found in “genome-wide gene expression regulator binding 
enrichment with conserved binding site”, indicating not only a correlation between the expression of 
TF and target, but also that the relevant motif was present. The strongest evidence is likely found for 
interactions annotated as “chromatin immunoprecipitation-chip assay” and “chromatin 
immunoprecipitation-chip assay”. In these assays, direct physical evidence was brought to light for an 
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interaction between the TF and the target gene upstream regulatory region. A value of one was 
assigned for no experimental evidence. 
 
Table 1. Data from high-throughput experiments with S. cerevisiae capture in the SGD. The value Li is the 
likelihood statistic assigned here to capture the confidence in each type of experiment. Evidence of direct 
physical interaction was preferred over correlations in expression level. Data originated from a multitude of 
datasets found in SGD. 

Annotation Type Experiment Type n Li 
None None 1402710 1 
binding enriched genome-wide gene expression regulator binding enrichment 4053 2 
expression activated genome-wide gene expression regulator mutant expression profile 2573 2 
 microarray RNA expression 2394 1.5 
binding enriched with conserved 
binding site 

genome-wide gene expression regulator binding enrichment with 
conserved binding site 2360 4 

expression repressed genome-wide gene expression regulator mutant expression profile 807 2 
expression repressed ethanol/glucose limitation 749 1.5 
binding enriched chromatin immunoprecipitation-chip assay 518 8 
expression activated ethanol/glucose limitation 379 1.5 
activated microarray expression profiling 123 1.5 
expression repressed microarray RNA expression 50 1.5 
expression activated microarray RNA expression 29 1.5 
 chromatin immunoprecipitation-chip assay 14 8 
 ethanol/glucose limitation 3 1.5 

 
 
Calculation of likelihood rank ratio L, and construction of gene regulatory 
networks 
The likelihood rank ratios L of all TF-target interactions was calculated using the Lm×Lc×Lg×Li 
likelihood function (see Materials and Methods in main text). The number n of top-scoring motifs were 
converted into in silico gene regulatory networks. Figure 3 shows the distribution of number of targets 
per TF for each of 28 gene regulatory networks. The number of large target gene sets increased as n 
increased. For the smallest network (the best 1 000 motifs), only 25 TFs were found, and the a little 
more than 100 target genes were included in the network. As the number of interactions increased, 
so did the number of target gene sets, which corresponded to more TFs in the network. Figure 4 shows 
the enrichment scores for each network and relates the scores to the names of TFs. Notably, the high-
scoring TFs have small target gene sets, which was expected, since large gene sets would be an 
indication of incorrect assignments from poorly matched motifs. The TF Gcn4 was the top scoring TF 
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in most networks. It was also striking that an optimum in the enrichment statistic apparently existed, 
and this is also where Gcn4 was predominant. An optimum enrichment statistic for a TF may indicate 
that the true number of targets was found for that number of interactions in the network. With 
increasing numbers of motifs allowed, the true motifs are discovered, but as more motifs are allowed 
in the larger networks, the increasing rate of false assignments presumably lowered the scores and 
diluted the effect of the true positives. It was interesting that the same trend existed for Bas1 and 
Yap1 with an optimum size of the total gene regulatory network of about 4 000 motifs. 
 

  
Figure 3. Distribution of number of targets per TF for each of 28 gene regulatory networks using Lm×Lc×Lg×Li 
as the likelihood function. Each line represents a network and the colours indicate the number of motifs 
considered. 
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Figure 4. Distribution of enrichment score per TF for each of 28 gene regulatory networks using Lm×Lc×Lg×Li 
as the likelihood function. Each line represents a network and the colours indicate the number of motifs 
considered. A height of 1 in grey disks equals 1 000 targets. A strong optimum enrichment is present when 
including the best scoring 4 000 motifs.  
 
The likelihoods of networks with sizes 1 000, 4 000 and 28 000 were investigated, especially the 
contribution of various sources of information to the final likelihood. Figure 5 shows a breakdown of 
the final likelihood, L (grey dotted line) of the 1 000 motif network into the contributing likelihoods 
for Lm, Lc, Lg and Li. It can be seen that the motif match likelihood Lm played a dominant role in the 
assignment of a high score. Hence, this scheme selects for long motifs and shorter motifs will only 
appear in the network if a larger network is chosen, as also shown in Table 2. This explains the 
observation of only a few TFs in the gene regulatory networks, since only 70 were found for the larger 
network. The distributions of likelihoods seem very similar between the 1 000, 4 000 and 28 000 motif 
networks (Figures 5, 6 and 7). In the 4 000 motif network, Gcn4, Bas1 and Yap1 could be considered 
as significantly enriched, assuming a cut-off at 1.67 (p = 0.05). Gcn4 seemingly regulated seven out of 
its 18 target genes and has a large motif of 21 bp. The 28 000 motif network included a different set 
of TFs, mostly only on the borderline of significance (YDR520C, Eds1, Hap4, Mac1, Cbf1, Yap6, Usv1), 
suggesting that the network contained too many false positives due to the large number of 
interactions. 
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Figure 5. Contribution of various sources of data to the final likelihood for the 1 000 motif network using 
Lm×Lc×Lg×Li. 
 

  
Figure 6. Contribution of various sources of data to the final likelihood for the 4 000 motif network using 
Lm×Lc×Lg×Li. 
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Figure 7. Contribution of various sources of data to the final likelihood for the 28 000 motif network using 
Lm×Lc×Lg×Li. 
 
Table 2. Enrichment statistics for the top 10 TFs using a 4 000 motif network. Likelihoods were calculated as 
Lm×Lc×Lg×Li. Only long motifs were found as Lm was dominating the scoring scheme. 

name1 name2 Length[Targets1] Z(0) nNo nDown nUp length 
9547 GCN4 18 4.27 11 4 3 21 
9522 BAS1 14 2.21 10 2 2 21 
9659 YAP1 11 2.10 7 0 4 20 
9644 SUT2 19 1.58 16 0 3 20 
9603 RAP1 1 1.43 0 0 1 10 
9662 YAP6 17 1.40 13 0 4 20 
9651 THI2 3 1.22 2 1 0 15 
9656 UME6 9 1.08 6 1 2 13 
9587 NDT80 31 0.88 25 3 3 21 
9591 NRG1 16 0.78 14 1 1 20 

 
The motif match likelihood Lm was clearly dominating the scoring system. An attempt should be made 
to suppress this effect and to also allow smaller motifs. Firstly, the effect of removing Lm completely 
was investigated. Motifs that were included all had Lm values above 10, but the likelihood function 
did not contain Lm, as shown below.  

ܮ =  ݅ܮ×݃ܮ×ܿܮ 
Figure 8 shows the distribution of enrichment scores when Lm was removed, resulting in the inclusion 
of all TFs for the largest networks. An absence of a strong optimum enrichment was also evident. 
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Notably, even with this markedly different scoring system in which motif match likelihood played no 
role, the enrichment statistics again identified Gcn4 (general control protein 4) as significantly 
enriched with 11 out of 46 targets differentially regulated, mostly downward (Table 3). In addition, 
Gcr2 (glycolysis regulator 2) was the most significantly enriched TF, above Gcn4, and with a very 
significant enrichment score of 4.47 and 10 out of 22 targets regulated, almost exclusively downward. 
Other strongly enriched TFs (Rtg3, Swi4) and more weakly enriched TFs (Aro80, Hap1, Tye7, Spr2, 
Sok2, Opi1, Cup9, Rds1, Rds2, Ste12, Cin5) were also found. The motifs for Gcr2 may be inspected in 
Table 4 to demonstrate the method of calculation of final likelihood L as Lc×Lg×Li. 
 

 
Figure 8. Distribution of enrichment score per TF for each of 28 gene regulatory networks using Lc×Lg×Li. A 
height of 1 of the grey disks equals 1 000 targets. No distinct enrichment optimum was present. 
 
Table 3. Enrichment statistics for TFs using a 4 000 motif network. All motifs had Lm values of at least 10 but 
likelihood rank ratios L were calculated as Lc×Lg×Li. Both long and short motifs were found among enriched TFs. 
The numbers n Up and n Down refer to the number of target genes up or down-regulated from RNA-seq data. 

motifID TF n Targets Z(0) n No n Down n Up Motif length 
9549 GCR2 22 4.47 12 9 1 7 
9547 GCN4 46 3.62 35 8 3 21 
9620 RTG3 23 3.61 14 8 1 20 
9645 SWI4 21 3.53 13 1 7 8 
9517 ARO80 7 2.54 4 0 3 21 
9556 HAP1 31 2.47 22 6 3 8 
9653 TYE7 19 2.11 14 3 2 7 
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motifID TF n Targets Z(0) n No n Down n Up Motif length 
9631 SPT2 14 2.10 11 2 1 10 
9629 SOK2 30 2.05 23 3 4 11 
9593 OPI1 4 1.96 2 1 1 7 
9532 CUP9 2 1.95 1 1 0 9 
9605 RDS1 1 1.91 0 1 0 7 
9606 RDS2 4 1.89 3 1 0 7 
9637 STE12 58 1.87 46 1 11 7 
9528 CIN5 51 1.67 42 6 3 10 

 
 
Table 4. Targets of TF Gcr2. All motifs had Lm values of at least 10 but likelihood rank ratios L were calculated 
as Lc×Lg×Li. Multiple occurrences of the same motif may occur in the same upstream regulatory region of a 
gene. During construction of a network, only one interaction was created for each TF target gene pair. Even 
though Lm was not included in the final calculation of likelihood L, it is included in the table for completeness. 

TF Target Target name test_id log2FC q Signi-
ficant. 

Lm Lc Lg Li L 

GCR2 GCR1 Glycolytic genes transcriptional 
activator GCR1 

g1639.t1 -2.21 0.001 yes 196.3 1.09 1.74 2.00 3.79 

GCR2 GCR1 Glycolytic genes transcriptional 
activator GCR1 

g1639.t1 -2.21 0.001 yes 224.7 0.95 1.74 2.00 3.31 

GCR2 GCR1 Glycolytic genes transcriptional 
activator GCR1 

g1639.t1 -2.21 0.001 yes 389.8 0.95 1.74 2.00 3.31 

GCR2 RAG2 Glucose-6-phosphate isomerase 
(GPI) (EC 5.3.1.9) 

g1642.t1 -1.24 0.034 yes 158.3 1.17 1.00 2.00 2.35 

GCR2 RAG2 Glucose-6-phosphate isomerase 
(GPI) (EC 5.3.1.9) 

g1642.t1 -1.24 0.034 yes 68.9 1.11 1.00 2.00 2.22 

GCR2 RAG2 Glucose-6-phosphate isomerase 
(GPI) (EC 5.3.1.9) 

g1642.t1 -1.24 0.034 yes 956.9 1.06 1.00 2.00 2.13 

GCR2 CAF40 Protein CAF40 (40 kDa CCR4-
associated factor) 

g1752.t1 0.94 0.159 no 48.7 1.09 1.01 4.00 4.41 

GCR2 PDC1 Pyruvate decarboxylase (EC 
4.1.1.1) 

g1785.t1 -2.50 0.005 yes 221.4 1.60 1.00 4.00 6.42 

GCR2 PDC1 Pyruvate decarboxylase (EC 
4.1.1.1) 

g1785.t1 -2.50 0.005 yes 183.0 1.16 1.00 4.00 4.63 

GCR2 PHO11 Acid phosphatase PHO11 (EC 
3.1.3.2) (P56) 

g2192.t1 -0.61 0.521 no 62.5 1.05 1.00 2.00 2.11 

GCR2 RFC5 Replication factor C subunit 5 
(Replication factor C5) 

g2595.t1 -0.44 0.635 no 206.2 1.00 0.90 4.00 3.59 

GCR2 RFC5 Replication factor C subunit 5 
(Replication factor C5) 

g2595.t1 -0.44 0.635 no 141.1 0.85 0.90 4.00 3.06 

GCR2 IST2 Increased sodium tolerance 
protein 2 

g2598.t1 -0.38 0.617 no 252.5 1.05 1.00 4.00 4.22 

GCR2 IST2 Increased sodium tolerance 
protein 2 

g2598.t1 -0.38 0.617 no 196.4 1.04 1.00 4.00 4.19 
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TF Target Target name test_id log2FC q Signi-
ficant. 

Lm Lc Lg Li L 

GCR2 IST2 Increased sodium tolerance 
protein 2 

g2598.t1 -0.38 0.617 no 8007.8 1.02 1.00 4.00 4.08 

GCR2 IST2 Increased sodium tolerance 
protein 2 

g2598.t1 -0.38 0.617 no 157.2 0.90 1.00 4.00 3.61 

GCR2 IST2 Increased sodium tolerance 
protein 2 

g2598.t1 -0.38 0.617 no 2462.7 0.87 1.00 4.00 3.48 

GCR2 IST2 Increased sodium tolerance 
protein 2 

g2598.t1 -0.38 0.617 no 8018.4 0.81 1.00 4.00 3.25 

GCR2 YCP4 Flavoprotein-like protein YCP4 g2686.t1 1.25 0.020 yes 26.1 1.05 1.00 2.00 2.11 
GCR2 PHM7 Phosphate metabolism protein 7 g2979.t1 -0.76 0.258 no 16.3 0.92 1.00 4.00 3.69 
GCR2 SUN4 Probable secreted beta-

glucosidase SUN4 (EC 3.2.1.-) 
g3018.t1 0.71 0.262 no 882.1 1.18 1.00 4.00 4.72 

GCR2 SUN4 Probable secreted beta-
glucosidase SUN4 (EC 3.2.1.-) 

g3018.t1 0.71 0.262 no 103.6 1.00 1.00 4.00 4.01 

GCR2 SUN4 Probable secreted beta-
glucosidase SUN4 (EC 3.2.1.-) 

g3018.t1 0.71 0.262 no 2289.4 0.81 1.00 4.00 3.24 

GCR2 SUN4 Probable secreted beta-
glucosidase SUN4 (EC 3.2.1.-) 

g3018.t1 0.71 0.262 no 24994.6 0.71 1.00 4.00 2.86 

GCR2 PFK1 ATP-dependent 6-
phosphofructokinase subunit 
alpha (ATP-PFK 1) 

g3288.t1 -2.27 0.001 yes 75.9 1.00 1.00 4.00 4.01 

GCR2 PFK1 ATP-dependent 6-
phosphofructokinase subunit 
alpha (ATP-PFK 1) 

g3288.t1 -2.27 0.001 yes 15410.4 0.94 1.00 4.00 3.79 

GCR2 CMK2 Calcium/calmodulin-dependent 
protein kinase II (EC 2.7.11.17) 

g336.t1 0.09 0.937 no 659.6 1.18 1.00 2.00 2.36 

GCR2 CMK2 Calcium/calmodulin-dependent 
protein kinase II (EC 2.7.11.17) 

g336.t1 0.09 0.937 no 41.8 1.06 1.00 2.00 2.13 

GCR2 TCM62 Mitochondrial chaperone 
TCM62 

g3624.t1 -0.18 0.884 no 24.2 2.19 1.00 1.00 2.19 

GCR2 GPM1 Phosphoglycerate mutase 1 
(PGAM 1) (EC 5.4.2.11) 

g367.t1 -2.35 0.001 yes 26.9 1.43 1.00 2.00 2.86 

GCR2 CDC6 Cell division control protein 6 g3870.t1 0.84 0.273 no 68.6 1.00 1.00 4.00 4.01 
GCR2 SKS1 Serine/threonine-protein kinase 

SKS1 (EC 2.7.11.1) (Suppressor 
kinase of SNF3) 

g3.t1 -2.21 0.001 yes 203.5 1.05 1.01 2.00 2.13 

GCR2 RPA34 DNA-directed RNA polymerase I 
subunit RPA34 (A34) 

g413.t1 -1.86 0.074 no 1698.8 1.10 0.90 4.00 3.96 

GCR2 RPA34 DNA-directed RNA polymerase I 
subunit RPA34 (A34) 

g413.t1 -1.86 0.074 no 74.6 1.09 0.90 4.00 3.92 

GCR2 RPA34 DNA-directed RNA polymerase I 
subunit RPA34 (A34) 

g413.t1 -1.86 0.074 no 256.4 1.07 0.90 4.00 3.87 

GCR2 RPA34 DNA-directed RNA polymerase I 
subunit RPA34 (A34) 

g413.t1 -1.86 0.074 no 122.3 1.06 0.90 4.00 3.83 
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TF Target Target name test_id log2FC q Signi-
ficant. 

Lm Lc Lg Li L 

GCR2 ERG25 Methylsterol monooxygenase 
(EC 1.14.13.72) 

g4447.t1 -1.20 0.032 yes 2337.5 1.13 1.00 4.00 4.54 

GCR2 ERG25 Methylsterol monooxygenase 
(EC 1.14.13.72) 

g4447.t1 -1.20 0.032 yes 56.2 1.09 1.00 4.00 4.35 

GCR2 ERG25 Methylsterol monooxygenase 
(EC 1.14.13.72) 

g4447.t1 -1.20 0.032 yes 94.0 1.05 1.00 4.00 4.22 

GCR2 ERG25 Methylsterol monooxygenase 
(EC 1.14.13.72) 

g4447.t1 -1.20 0.032 yes 817.2 1.00 1.00 4.00 4.01 

GCR2 HOP2 Homologous-pairing protein 2 g4625.t1 0.00 1.000 no 121.3 1.10 1.00 2.00 2.21 
GCR2 ENO Enolase (EC 4.2.1.11) (2-

phospho-D-glycerate hydro-
lyase) 

g4751.t1 -1.74 0.039 yes 2141.6 1.06 1.00 2.00 2.13 

GCR2 ENO Enolase (EC 4.2.1.11) (2-
phospho-D-glycerate hydro-
lyase) 

g4751.t1 -1.74 0.039 yes 173.3 1.05 1.00 2.00 2.11 

GCR2 PHO89 Phosphate permease PHO89 
(Na(+)/Pi cotransporter PHO89) 

g719.t1 1.17 0.091 no 39.7 1.10 1.00 2.00 2.21 

GCR2 PHO89 Phosphate permease PHO89 
(Na(+)/Pi cotransporter PHO89) 

g719.t1 1.17 0.091 no 10.5 1.07 1.00 2.00 2.15 

GCR2 MET3 Sulfate adenylyltransferase (EC 
2.7.7.4) (ATP-sulfurylase) 

g887.t1 -1.31 0.016 yes 35.2 0.75 1.00 4.00 3.01 

 
 
Improving the balance in the likelihood scoring system 
The distribution of final likelihoods based on the likelihood function Lm×Lc×Lg×Li is shown in Figure 9. 
It is evident that the motif likelihood ratio Lm was dominant in the scoring, as the final distribution 
adopted the shape of the distribution of Lm. An improved scoring system may be to effectively weight 
the scoring scheme to include Lm in some suppressed form. Since Lm increases exponentially with the 
length of a motif, the range of Lm was extremely large. Therefore, a good strategy might be to include 
Lm as a Log values like Log2(Lm). Figure 10 shows a more equal contribution by all sources of evidence 
to the final likelihood by using the latter in the function. Figure 11 shows that all TFs were included for 
the larger networks, a trait that shows allowance for short motifs, which required support from 
additional sources of evidence. Again, some optimum in TF enrichment was seen for a network size 
around 16 000 motifs. The resulting distributions and networks were identical when Log10(Lm) was 
used, and subsequently, only Log10(Lm) was used as the output is easier to understand. 
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Figure 9. Distribution of the final likelihoods L based on the likelihood function L  = Lm×Lc×Lg×Li. The final 
likelihood L adopted the shape of Lm. 
 
 

   
Figure 10. Distribution of the final likelihoods L based on the likelihood function L = Log2(Lm)×Lc×Lg×Li. The 
final likelihood L adopted the combined shapes of all likelihood distributions for the various sources of evidence. 
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Figure 11. Distribution of enrichment score per TF for each of 28 gene regulatory networks using 
Log10(Lm)×Lc×Lg×Li. A height of 1 in grey disks equals 1 000 targets. 
 
Using a network with 4 000 motifs again revealed Gcr2, Gcn4, Rtg3, Swi4, Sok2 and Gis1 as enriched, 
while the enrichment scores were somewhat lower than with only Lc×Lg×Li. In a 20 000 motif network 
(Table 5), strongly enriched TFs again were Gcn4, Gcr2, Stb4 and Swi4. Note that shorter motifs were 
included as opposed to the case when Lm was dominating the likelihood function. Since Stb4, Phd1 
and Tfb1 only had 2 targets each, these should be ignored due to the small sample sizes, although the 
enrichment statistic does incorporate the standard deviation of the background enrichment.  
 
Table 5. Enrichment statistics for a 20 000 motif network using the likelihood function Li = Log10(Lm)×Lc×Lg×Li. 
TFs with scores above 1.67 (p < 0.05) are shown. 

name1 name2 Length[Targets1] Z(0) nNo nDown nUp motiflength 
9547 GCN4 168 4.761989 132 22 14 21 
9549 GCR2 18 3.22025 11 6 1 7 
9635 STB4 2 3.120459 1 1 0 7 
9645 SWI4 25 2.97451 17 3 5 8 
9556 HAP1 35 2.903399 25 6 4 8 
9666 YDR520C 13 2.635549 8 4 1 10 
9570 MAC1 11 2.434674 7 0 4 8 
9659 YAP1 177 2.371953 145 13 19 20 
9530 CST6 54 2.369175 42 8 4 9 
9669 YGR067C 30 2.237415 23 3 4 14 
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name1 name2 Length[Targets1] Z(0) nNo nDown nUp motiflength 
9629 SOK2 30 2.175238 23 3 4 11 
9520 ASH1 11 1.928312 7 0 4 10 
9614 RME1 31 1.926014 24 3 4 10 
9522 BAS1 60 1.923404 50 5 5 21 
9674 YLR278C 12 1.909336 9 1 2 8 
9656 UME6 19 1.905283 14 1 4 13 
9612 RIM101 9 1.895591 6 1 2 7 
9638 STP1 23 1.872487 19 2 2 8 
9528 CIN5 63 1.851159 54 5 4 10 
9653 TYE7 69 1.844238 55 10 4 7 
9599 PHD1 2 1.801656 1 0 1 10 
9647 TBF1 2 1.801656 1 0 1 8 
9654 UGA3 3 1.781612 2 1 0 8 

 
Since each run produced a slightly different result, a formalised optimisation criterion may be best to 
decide on the best network. A good optimization criterion to finding the best number of motifs might 
be one that optimises not only for the maximal enrichment statistic, but also for maximal 
distinguishing power between strongly enriched TFs and the majority of non-enriched TFs 
(background). A simple criterion is to use the difference between the highest enrichment score Sa and 
the lowest enrichment statistic Sz, or to increase the robustness, using the mean value of the three 
lowest enrichment scores Sx, Sy and Sz. 

Maximise(݊)        (ܵܽ –  Meanሾܵݔ, ,ݕܵ  (ሿݖܵ
Several other methods were also tested for inclusion of Lm, including raising Lm to various powers 
(Figure 12). The highest scoring network among all methods and all values for n was obtained by 
allowing 16 000 motifs, using the Log10(Lm)×Lc×Lg×Li method. However, a substantially smaller 
network could be generated with a similar score S using 9 000 motifs, which would likely be more 
accurate and which resulted in 5 443 interactions and 136 TFs. Using simply the highest score S as the 
criterion resulted in the same deduction (Figure 13). The best network resulted in again finding Gcn4 
and Gcr2 as most significantly enriched (see Chapter 5, Table 3).  
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Figure 12. Optimisation of the network for the highest score minus the mean of the three lowest scores (Sa – 
Mean[Sx, Sy, Sz]).  
 

 
Figure 13. Optimisation of the network for the highest score Sa.  
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Addendum 4 
 
Addendum for gene regulatory network based on the 
complete genome of Kluyveromyces marxianus - Chapter 6 
 
 
This addendum describes further details of methods from Chapter 6. 
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Figure 1. Enrichment statistics calculated for differential expression in gene sets using the Z-score method 
(left) or the hypergeometric distribution (right) for networks constructed using the function Log10(Lm)+Lc+Li 
for the final likelihood. 
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Figure 2. Enrichment statistics calculated for up-regulation (left) and down-regulation (right) using the 
hypergeometric distribution for networks constructed using the function Log10(Lm)+Lc+Li for the final 
likelihood. 
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Figure 3. Enrichment statistics calculated for differential expression in gene sets using the Z-score method 
(left) or the hypergeometric distribution (right) for networks constructed using the function If[Li==0, 
Log10(Lm)×Lc, Log10(Lm)×Lc×Li] for the final likelihood. 
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Figure 4. Enrichment statistics calculated for up-regulation (left) and down-regulation (right) using the 
hypergeometric distribution for networks constructed using the function If[Li==0, Log10(Lm)×Lc, 
Log10(Lm)×Lc×Li] for the final likelihood. 
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Figure 5. Enrichment statistics calculated for differential expression in gene sets using the Z-score method 
(left) or the hypergeometric distribution (right) for networks constructed using the function Log10(Lm)×Lc for 
the final likelihood.  Note that out of 174 TFs, Adr1 is seventh and Mig1 is nineteenth, while Gcn1 is fifteenth, 
ranked based on enrichment score for differential expression using the hypergeometric distribution. 
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Figure 6. Enrichment statistics calculated for up-regulation (left) and down-regulation (right) using the 
hypergeometric distribution for networks constructed using the function Log10(Lm)×Lc for the final likelihood. 
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Figure 7. Enrichment statistics calculated for differential expression in gene sets using the Z-score method 
(left) or the hypergeometric distribution (right) for networks constructed using the function Log10(Lm) for the 
final likelihood. 
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Figure 8. Enrichment statistics calculated for up-regulation (left) and down-regulation (right) using the 
hypergeometric distribution for networks constructed using the function Log10(Lm) for the final likelihood. 
 



 

348  

 
Figure 9. Enrichment statistics calculated for differential expression in gene sets using the Z-score method 
(left) or the hypergeometric distribution (right) for networks constructed using the function Lc for the final 
likelihood. 
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Figure 10. Enrichment statistics calculated for up-regulation (left) and down-regulation (right) using the 
hypergeometric distribution for networks constructed using the function Lc for the final likelihood. 
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Figure 11. Enrichment statistics calculated for differential expression in gene sets using the Z-score method 
(left) or the hypergeometric distribution (right) for networks constructed using the function Li for the final 
likelihood. 

 
 
 

 



 

351  

 
Figure 12. Enrichment statistics calculated for up-regulation (left) and down-regulation (right) using the 
hypergeometric distribution for networks constructed using the function Li for the final likelihood. 
 
Table 1 shows the complete list of enrichment statistics and gene expression based on RNA-seq for all 
putative transcription factors. The gene for Adr1 had the most significant up-regulation of all 
transcription factors at 37-fold, consistent with its role as activator of the genes involved with the 
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utilisation of alternative carbon sources [Young et al. 2003]. The gene for Mig1, which has been 
suggested to play a lesser role compared to Adr1, was also down-regulated 4-fold, consistent with its 
role in repression. Genes for other regulators such as Tec1 involved in pseudohyphal development, 
and Kar4 involved with pheromone signalling, were up-regulated 4.3-fold and 7.1-fold, respectively, 
suggesting the basis for up-regulated genes in these processes in the xylose medium.  
 
Table 1. Enrichment statistics using only biological prior information of all effectors of transcription in S. 
cerevisiae, regardless of the presence of a top-scoring motif in K. marxianus (method SGD). The results were 
sorted to the minimum of the q-values for either the differential expression, up regulation, or down regulation 
of a target gene set, as calculated using the hypergeometric distribution after correction for multiple 
comparisons. 

name1 name2 K Z(0) nNo nDown nUp qDiff qUp qDown direction ID FC 
9597 PDR3 1 1.5 0 1 0 0 11.51 0 NA   
 ACA1 2 3.6 0 0 2 0 0 17.05 NA   9660 YAP3 2 3.6 0 1 1 0 0.72 0.41 NA gene1726 1 9547 GCN4 169 11.0 113 39 17 1.4E-13 3.27 4.9E-16 down gene3451 1 9549 GCR2 40 6.0 24 14 2 5.8E-05 84.92 2.3E-08 down gene2613 0.4 
 TUP1 184 6.8 134 30 20 2.4E-08 0.92 5.9E-08 down gene1081 1 
 SPT3 266 7.2 203 37 26 7.1E-08 1.46 7.6E-08 down gene1396 1 9656 UME6 295 8.1 228 25 42 1.4E-07 1.6E-05 0.27 up   
 HFI1 160 8.2 116 26 18 1.9E-07 0.90 8.7E-07 down gene1998 1 
 SPT20 184 7.1 139 29 16 7.1E-06 12.30 2.7E-07 down gene1462 1 
 BUR6 252 6.9 195 17 40 3.0E-06 1.3E-06 9.63 up gene3898 1 9578 MET32 205 6.9 158 23 24 3.2E-05 0.16 5.6E-03 down gene4085 1 
 SUA7 401 3.7 333 17 51 0.01 3.2E-05 116.99 up gene3433 1 
 SPT10 423 6.2 344 31 48 6.1E-05 2.1E-03 0.93 up gene3729 1 9513 AFT1 68 5.7 46 11 11 7.2E-05 0.16 1.2E-02 down gene643 1 
 CDC73 29 5.9 16 8 5 9.7E-05 1.47 8.4E-04 down gene635 1 
 SIN4 200 4.1 164 26 10 0.17 131.89 1.1E-04 down gene3684 1 9541 FKH2 106 6.8 77 16 13 1.1E-04 1.08 1.5E-03 down gene4226 1 9620 RTG3 38 4.1 25 10 3 4.7E-03 38.97 1.6E-04 down gene4377 1 9522 BAS1 54 4.8 39 12 3 0.03 80.97 1.6E-04 down gene1050 1 9622 SFP1 1306 2.8 1148 94 64 12.2 182.14 2.4E-04 down gene2869 1 
 SIN3 73 5.8 51 12 10 3.0E-04 0.96 0.01 diff gene262 1 9637 STE12 98 3.8 76 3 19 0.05 3.3E-04 127.24 up gene3811 1 9579 MET4 177 6.8 137 21 19 3.5E-04 1.26 4.8E-03 down gene4937 1 9602 PUT3 33 5.3 21 2 10 4.0E-03 5.0E-04 37.68 up gene3852 1 9563 HSF1 231 4.8 184 24 23 1.3E-03 1.68 0.01 diff   9548 GCR1 414 3.1 350 39 25 0.27 96.38 1.5E-03 down gene759 0.2 9545 GAT3 5 4.6 1 2 2 2.9E-03 0.41 0.18 diff   
 SPT7 69 4.7 50 12 7 0.01 11.89 3.0E-03 down gene4603 1 
 HMS1 14 4.4 7 4 3 0.01 1.68 0.06 NA gene3793 1 9611 RGT1 5 3.2 2 0 3 0.12 0.01 39.73 NA gene4011 1 
 WTM2 19 4.1 11 5 3 0.01 5.08 0.03 NA gene1616 1 9567 IXR1 456 4.4 386 39 31 0.21 49.47 0.01 NA gene4024 1 9530 CST6 308 3.7 257 29 22 0.16 39.22 0.02 NA gene1355 1 9603 RAP1 445 4.3 372 34 39 0.02 2.03 0.32 NA gene3662 1 9684 ZAP1 64 3.8 47 7 10 0.02 0.33 1.87 NA   9599 PHD1 42 2.9 33 0 9 2.50 0.04 160.33 NA   
 KAR4 3 2.9 1 0 2 0.24 0.04 24.98 NA gene28 7.1 9532 CUP9 7 3.3 3 2 2 0.05 1.29 0.59 NA gene1995 1 9528 CIN5 86 4.9 66 8 12 0.05 0.44 3.67 NA   9610 RGM1 18 4.0 11 2 5 0.06 0.10 9.36 NA   9659 YAP1 330 2.2 285 29 16 9.32 153.65 0.07 NA gene2340 3.0 
 NCB2 53 3.9 39 6 8 0.07 0.93 2.18 NA gene280 1 9650 TEC1 46 3.5 35 2 9 0.59 0.08 68.84 NA gene4599 4.3 
 SRB2 15 2.5 11 4 0 3.42 114.29 0.09 NA gene2081 1 
 SRB5 83 3.1 64 8 11 0.09 0.93 2.96 NA gene3502 1 9626 SKO1 12 2.7 8 0 4 1.19 0.09 81.40 NA   
 CSE2 15 6.0 9 3 3 0.10 2.18 0.82 NA gene4152 1 
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name1 name2 K Z(0) nNo nDown nUp qDiff qUp qDown direction ID FC 9631 SPT2 32 4.1 23 6 3 0.30 25.16 0.11 NA   9612 RIM101 24 4.4 16 4 4 0.12 2.71 0.86 NA gene1268 2.6 9625 SKN7 85 3.7 66 8 11 0.13 1.13 3.42 NA gene500 1 9570 MAC1 20 4.0 13 3 4 0.14 1.21 2.42 NA gene2791 1 
 MED2 611 1.3 533 45 33 11.50 146.92 0.15 NA gene1853 1 9568 LEU3 90 2.0 73 11 6 1.50 61.11 0.19 NA gene4135 1 9584 MOT3 21 3.7 14 3 4 0.21 1.51 2.88 NA gene4028 1 9516 ARG81 18 1.9 13 4 1 1.85 57.41 0.22 NA gene1497 1 
 WTM1 18 3.4 12 4 2 0.37 18.15 0.22 NA   
 MBF1 3 3.8 1 1 1 0.24 2.07 1.20 NA gene3984 1 
 FLO8 13 3.2 8 3 2 0.28 7.99 0.46 NA gene5077 1 
 CYC8 103 3.1 82 10 11 0.28 4.83 1.68 NA gene4998 1 9651 THI2 19 2.3 13 4 2 0.53 20.60 0.29 NA   9638 STP1 361 2.0 314 29 18 16.52 150.99 0.30 NA   9531 CUP2 15 3.2 10 1 4 0.67 0.30 28.93 NA   9544 GAT1 12 0.7 9 3 0 6.43 99.34 0.33 NA   
 SSN3 6 2.7 3 2 1 0.33 9.11 0.35 NA gene4089 1 
 HAA1 6 3.0 3 1 2 0.33 0.78 5.46 NA gene2284 1 9524 CAT8 6 3.3 3 2 1 0.33 9.11 0.35 NA gene4748 1 9609 RFX1 381 2.0 328 30 23 5.03 95.48 0.35 NA   9515 ARG80 20 2.7 14 4 2 0.74 23.16 0.37 NA   9639 STP2 5 3.2 3 0 2 2.06 0.41 39.73 NA gene1087 1 9551 GLN3 74 2.6 61 9 4 5.32 91.46 0.44 NA   
 SRB8 14 3.9 9 3 2 0.44 9.72 0.63 NA gene1229 1 9581 MIG1 10 3.7 6 2 2 0.46 3.85 1.82 NA gene892 0.3 
 GCN5 525 1.2 461 38 26 29.59 163.51 0.50 NA gene2846 1 9606 RDS2 7 1.6 5 2 0 6.08 66.98 0.59 NA gene1626 1 
 SSN2 14 4.3 10 3 1 2.50 39.93 0.63 NA gene3001 1 9517 ARO80 11 2.7 7 1 3 0.76 0.64 17.12 NA gene2338 1 
 NGG1 2 0.8 1 0 1 2.22 0.72 17.05 NA gene3608 1 9621 SFL1 2 2.4 1 0 1 2.22 0.72 17.05 NA gene1402 1 9543 GAL4 20 2.5 14 2 4 0.74 1.21 12.20 NA   
 RPD3 181 3.0 150 16 15 0.76 18.40 0.94 NA gene1455 1 9593 OPI1 24 1.5 19 4 1 7.61 82.53 0.86 NA   
 GAL11 4 2.7 2 1 1 0.90 3.96 2.32 NA gene1199 1 9613 RLM1 12 2.2 8 2 2 1.19 6.44 3.11 NA   
 RTF1 3 0.3 2 1 0 6.18 32.43 1.20 NA gene2376 0.4 9598 PDR8 3 2.0 2 1 0 6.18 32.43 1.20 NA   
 ADA2 27 2.6 20 4 3 1.25 15.59 1.46 NA gene2995 1 
 UME1 7 1.3 5 0 2 6.08 1.29 53.11 NA   
 SWI6 76 2.4 62 4 10 3.10 1.31 53.80 NA gene79 1 9636 STB5 17 3.5 12 2 3 1.36 3.44 8.07 NA gene457 1 9592 OAF1 8 1.8 6 0 2 8.95 1.98 59.33 NA gene2265 1 
 HIR2 3 1.1 2 0 1 6.18 2.07 24.98 NA gene691 1 
 PGD1 4 0.9 3 1 0 11.47 41.92 2.32 NA gene877 1 9594 TOD6 4 2.3 3 1 0 11.47 41.92 2.32 NA   9539 FHL1 184 1.3 161 15 8 39.40 151.60 2.45 NA gene1172 1 
 TFC7 526 -1.4 472 35 19 126.26 183.36 2.63 NA gene3923 0.4 9614 RME1 9 1.6 7 0 2 12.35 2.83 65.26 NA gene2302 1 
 PIP2 15 1.7 11 2 2 3.42 11.60 5.79 NA   9527 CHA4 17 2.3 13 1 3 5.87 3.44 35.28 NA gene2563 1 9600 PHO2 86 0.9 74 8 4 26.86 116.42 3.67 NA gene1499 1 9627 SMP1 5 0.0 4 1 0 17.75 50.82 3.75 NA gene786 1 
 GTS1 5 0.8 4 1 0 17.75 50.82 3.75 NA   9683 YRR1 5 1.1 4 1 0 17.75 50.82 3.75 NA   9615 ROX1 34 1.1 28 4 2 13.40 66.03 3.83 NA   
 MSN1 13 0.7 10 2 1 8.50 35.62 3.90 NA   9561 HCM1 4 0.3 3 0 1 11.47 3.96 32.53 NA gene2170 1 9534 DAL81 4 0.7 3 0 1 11.47 3.96 32.53 NA gene3855 1 9634 STB3 4 0.7 3 0 1 11.47 3.96 32.53 NA gene3588 1 
 TOA2 4 1.1 3 0 1 11.47 3.96 32.53 NA gene4952 1 9536 ECM22 4 1.2 3 0 1 11.47 3.96 32.53 NA   9529 CRZ1 4 1.9 3 0 1 11.47 3.96 32.53 NA gene4817 1 
 RGR1 229 2.0 198 17 14 16.50 85.77 4.27 NA gene4290 1 9591 NRG1 48 1.7 39 5 4 6.10 32.92 4.56 NA gene2521 1 9525 CBF1 135 0.9 116 11 8 18.57 86.91 4.75 NA   9514 AFT2 40 2.0 32 3 5 4.92 6.67 22.01 NA   9589 NHP6A 19 0.9 15 1 3 9.18 5.08 41.79 NA   9535 DAL82 28 1.8 23 1 4 14.66 5.11 71.11 NA   9533 DAL80 6 -0.2 5 1 0 24.74 59.16 5.46 NA   
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name1 name2 K Z(0) nNo nDown nUp qDiff qUp qDown direction ID FC 9624 SIP4 6 1.9 5 1 0 24.74 59.16 5.46 NA gene1834 5.7 9670 YHP1 7 2.2 5 1 1 6.08 12.23 7.40 NA   
 HIR3 5 1.4 4 0 1 17.75 6.33 39.73 NA gene2903 1 9556 HAP1 52 1.1 45 5 2 38.20 117.90 6.47 NA gene2706 0.3 9629 SOK2 21 1.5 18 0 3 35.66 7.11 117.86 NA gene4217 2.5 
 MSS11 7 0.9 6 1 0 32.20 66.98 7.40 NA gene1468 1 9645 SWI4 99 2.7 83 7 9 7.45 16.39 17.79 NA gene5080 1 9661 YAP5 248 -0.3 221 17 10 86.98 168.73 8.46 NA   9642 SUM1 44 1.6 36 3 5 8.61 9.98 28.36 NA gene2211 1 
 RTG1 1 -0.5 1 0 0 20.25 11.51 8.73 NA gene1850 1 9655 UPC2 1 -0.5 1 0 0 20.25 11.51 8.73 NA gene3170 0.3 9657 USV1 1 -0.5 1 0 0 20.25 11.51 8.73 NA gene4465 4.3 9582 MIG2 1 1.1 1 0 0 20.25 11.51 8.73 NA   9542 FZF1 1 1.4 1 0 0 20.25 11.51 8.73 NA   9586 MSN4 25 1.0 20 2 3 9.11 12.37 20.76 NA   9553 GZF3 8 0.9 7 1 0 39.95 74.31 9.57 NA gene2635 1 
 SPT6 134 2.3 115 10 9 17.53 60.40 9.64 NA gene4546 1 9575 MCM1 34 0.8 30 0 4 58.37 10.69 148.97 NA gene2718 1 9511 ACE2 32 0.6 27 3 2 24.41 59.58 11.55 NA   9585 MSN2 190 2.1 163 12 15 11.74 25.08 21.36 NA gene2726 1 9518 ARR1 9 0.3 7 1 1 12.35 19.32 11.92 NA   
 BRF1 9 0.8 7 1 1 12.35 19.32 11.92 NA   
 ADF1 7 0.0 6 0 1 32.20 12.23 53.11 NA   9523 CAD1 145 1.2 124 10 11 13.29 35.89 15.14 NA   9601 PHO4 16 0.1 14 0 2 46.83 13.64 99.58 NA   9607 REB1 618 -0.6 555 36 27 134.04 180.24 14.22 NA gene4237 1 9509 ABF1 230 2.1 200 15 15 24.39 67.38 14.42 NA gene2233 1 9554 HAC1 10 0.7 8 1 1 16.25 23.18 14.45 NA   
 MED4 469 0.5 413 28 28 40.91 102.67 14.94 NA gene2585 1 9555 HAL9 8 0.1 7 0 1 39.95 15.65 59.33 NA gene2243 1 9677 YOX1 8 1.7 7 0 1 39.95 15.65 59.33 NA gene2991 1 
 TFC6 17 0.5 14 1 2 19.95 15.82 35.28 NA gene1272 1 9653 TYE7 50 2.3 42 4 4 16.98 36.97 15.94 NA gene3913 1 9587 NDT80 2 -0.7 2 0 0 38.27 22.31 17.05 NA gene3958 1 
 SIP3 2 0.1 2 0 0 38.27 22.31 17.05 NA gene119 1 9521 AZF1 2 0.3 2 0 0 38.27 22.31 17.05 NA gene3930 1 9604 RDR1 2 1.2 2 0 0 38.27 22.31 17.05 NA   9658 XBP1 764 0.6 678 43 43 69.25 138.79 17.15 NA gene4846 2.6 
 SPT8 29 0.4 25 1 3 38.36 19.16 74.24 NA gene1143 0.4 
 CTR9 9 0.3 8 0 1 47.84 19.32 65.26 NA gene1458 1 
 PPR1 12 1.5 10 1 1 25.31 31.37 19.92 NA gene2075 1 
 SPN1 55 1.3 47 4 4 26.64 47.73 21.73 NA   9512 ADR1 10 -0.3 9 0 1 55.74 23.18 70.90 NA gene952 36.9 
 HIR1 3 -0.6 3 0 0 54.31 32.43 24.98 NA gene3197 1 9616 RPH1 14 1.0 12 1 1 35.66 39.93 25.84 NA gene1960 1 9577 MET31 15 0.1 14 1 0 92.65 114.29 28.93 NA   9583 MIG3 4 -1.1 4 0 0 68.59 41.92 32.53 NA   9595 DOT6 4 -0.2 4 0 0 68.59 41.92 32.53 NA gene5043 1 
 NDD1 32 -0.7 29 2 1 87.35 111.17 35.40 NA gene3058 1 
 URE2 5 -0.6 5 0 0 81.30 50.82 39.73 NA gene3677 1 9662 YAP6 685 -0.9 615 36 34 135.45 170.14 40.14 NA   
 STB1 26 0.8 23 1 2 58.76 40.48 64.73 NA   
 PAF1 39 -0.7 35 1 3 79.34 41.45 102.87 NA gene3127 1 9646 SWI5 69 0.4 61 4 4 63.79 80.08 42.06 NA gene3551 1 9566 INO4 53 1.1 47 3 3 67.10 78.35 44.63 NA   9596 PDR1 20 -0.5 18 1 1 70.01 66.03 45.07 NA gene452 0.4 9617 RPN4 68 -0.1 61 2 5 87.81 46.16 116.58 NA gene178 1 9520 ASH1 32 0.1 29 1 2 87.35 59.58 83.38 NA   
 RSF2 80 0.5 72 4 4 96.63 104.43 60.75 NA   9540 FKH1 544 -1.4 494 26 24 168.28 177.96 79.59 NA   
 MED6 100 -1.4 91 3 6 124.15 80.33 130.04 NA gene2107 1 
 IFH1 54 -1.3 50 1 3 133.20 80.97 135.14 NA gene960 1 9565 INO2 55 0.4 50 2 3 105.49 83.58 89.92 NA   9559 HAP4 29 -1.5 28 0 1 155.43 101.19 139.26 NA   9654 UGA3 265 -1.5 244 11 10 173.54 174.87 112.47 NA gene3359 1 9573 MBP1 74 -1.5 70 1 3 169.66 126.89 160.74 NA gene4327 1  
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Regulators associated with down-regulated target genes 
Azf1 
Large Azf1 target sets of 743 or 586 genes, respectively, were found by using the Lm or Lm×Lc 
functions. SGD interaction data proved detrimental to the enrichment score. Aft1 also mapped to poly 
A and poly T, suggesting that many of these may not be true binding sites. The strong enrichment 
found in the down-regulated set is in correspondence with the significant over-representation of poly 
A and poly T using the k-mer networking approach, both for the down-regulated and up-regulated 
gene sets. These observations, therefore, did not suggest any role for Azf1, but rather that genes with 
poly A or poly T were often differentially expressed.  
 
Sfp1 
For Sfp1, moderate enrichment was found with the method using SGD data only, but the very large 
gene set of 1 306 targets were halved by requiring a motif (with a score of above 100, function Li), and 
substantially improving the enrichment. Making use of all data (Lm×Lc×Li) resulted in more sites, but 
decreased the enrichment substantially, suggesting that the PPM of Sfp1 was not optimal for K. 
marxianus, and revealed a substantial number of false binding sites. Using motif strength alone (Lm) 
or Lm×Lc resulted in no significance, supporting the notion of a sub-optimal PPM. Yet, the fact that 
the Li function provided an improvement over the SGD data, suggested that significant transcriptional 
rewiring occurred between K. maxianus and S. cerevisiae, or that a large number of regulatory 
interactions with Sfp1 in SGD were due to secondary transcriptional effects. The Sfp1 PPM thus 
deserves attention for improvement.  
 
Met32 
Low enrichment was found for Met32 using the SGD set. However, when requiring a motif (Li), about 
half of the genes were found, with a substantial improvement in enrichment score. Emphasising the 
motif score resulted in lower enrichment, while it was insignificant when only Lm or Lm×Lc was used. 
This result suggested that the requirement of a motif removed some of the interactions in SGD that 
may have been derived from secondary effects, or which were not present in K. marxianus due to 
evolutionary differences. Since emphasis on the motif strength decreased the number of targets and 
the enrichment score somewhat, the motif likely did not discover all of the true targets, and the PPM 
may need refinement. Since the motif also was short, it may have been out-competed by longer motifs 
when motif strength was emphasised. There was also a striking similarity between the Met32 motif 
and the top heptamer in the k-mer network. Thus, the enrichment of the Met32 motif might have 
been due to differential activity of the zinc finger TF binding the top heptamers, which might likely be 
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Adr1 or Mig1. However, Adr1 or Mig1 should be associated with the up-regulated target set, 
suggesting that the potential role of Met32 deserves further evaluation, and that the PPM needs 
refinement 
 
Bas1 
The best enrichment of Bas1 was found using the SGD target set. The requirement for a motif (Li) 
revealed only 16 of the 54 targets, but with a similar score. Allowing motif discovery independent from 
SGD data (If[Li==0,Lm×Lc, Lm×Lc×Li] or Lm+Lc+Li) resulted in fewer motifs, suggesting the PPM could 
not result in a score sufficiently high to be included in the top 14 500, and would benefit from 
improvement. Although the Bas1 motif is similar to that for Gcn4 [Springer et al. 1996], only two of 
the targets overlapped between the two TFs (see below). 
 
Rgt1 
The Rgt1 gene set was discovered by motif strength and conservation between Kluyveromyces species 
(Lm×Lc), and inclusion of data from SGD was detrimental to the score. There was, however, only five 
genes in the target set from SGD that mapped to K. marxianus genes. The data suggested that there 
may either be a substantially higher number of targets in K. marxianus as opposed to S. cerevisiae, or 
that the true targets in S. cerevisiae have not been documented well, or that the Rgt1 motif may be 
very similar to the motif of another enriched TF. The fact that motif conservation among 
Kluyveromyces species improved enrichment over those discovered by motif strength alone, 
suggested that the sites were true binding sites for some transcription factor, which may be Rgt1.  
 
Rtg3 
Significant enrichment of the Rtg3 gene set was found, based on the SGD data. When motifs were 
required, 22 of the 38 sites were retained, with a slightly lower enrichment. As the importance of the 
motif score Lm was emphasised, the number of targets decreased and enrichment dropped. The motif 
is thus likely sub-optimal. 
 
Sut2 
A fairly high number of motifs (114) were found for Sut2 using motif score alone, but with borderline 
significant enrichment. Conservation criteria seemed detrimental to the score, and no significant 
enrichment was found with the SGD targets alone. Evidence was not sufficient to imply importance of 
Sut2 in the differential response. The SUT2 gene, which was only annotated in the UFS-Y2791 genome 
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as such, was 3.4-fold up-regulated, however, suggesting that further evaluation of its importance was 
required.  
 
Leu3 
While the Leu3 target set was not enriched in the SGD set, or by applying an additional requirement 
for a motif (Li), a small set of ten targets was found by motif strength alone. Including conservation 
selected for 35 targets, and by applying criteria that allowed decoupling of the final likelihood from 
SGD data (If[Li==0,Lm×Lc, Lm×Lc×Li] or Lm+Lc+Li), more targets were discovered and resulted in a 
higher significance. The result suggests that the target set in K. marxianus was somewhat different as 
opposed to the model species. 
 
YLR278C 
Discovery of the target set of YLR278C based on motif strength alone did not result in significance, 
while including conservation among Kluyveromyces species resulted in a significant enrichment. 
Inclusion of data from SGD was detrimental, since the targets of YLR278C have not been documented 
in SGD. Since the enrichment score was rather low, evidence was weak for its involvement in 
differential expression in K. marxianus. 
 
Cup2 
Discovery of the target set of Cup2 was based on motif strength alone, whereas including motif 
conservation among Kluyveromyces species was detrimental. No CUP2 gene was found. Evidence was 
not strong enough to imply Cup2 involvement in the differential response.  
 
Fkh2 
Moderate enrichment was found for the Fkh2 gene set from SGD. When the requirement for a motif 
was included (Li), insignificant results were found, as was found when the motif score was emphasised. 
The motif seemed incorrect for K. marxianus and possibly overly specific. Inclusion of pseudocounts 
in the PPM may improve the enrichment statistic. 
 
YPR022C 
YPR022C was of borderline significance. There was also a striking similarity between the YPR022C 
motif and the top heptamer in the k-mer network. Thus, the enrichment of the YPR022C motif may 
have been due to differential activity of the zinc finger TF binding the top heptamers, which may likely 
be Adr1 or Mig1. 



 

358  

Cst6, Mac1, Gln3, Spt2, Met4, Cbf1 and TYE7 
Borderline significance was found for each of these TF target sets.  
 
Spt3, Spt20 and Hfi1 
Strong enrichment was found for each of these TF target sets. Only SGD data could be used, since 
these regulators do not have associated DNA binding motifs. 
 
Sin4, Cdc73 and Spt7 
Only SGD data could be used for assigning target sets, since these regulators do not have associated 
DNA binding motifs. 
 
Regulators associated with up-regulated target genes  
 
Ume6 
The Ume6 gene set seems to be conserved between K. marxianus and S. cerevisiae, but the motif used 
may not be correct for K. marxianus. The UME6 gene was not included in the DMKU annotation but 
was included in the UFS-Y2791 annotation. 
 
Crz1 
Crz1 was discovered by sequence conservation among Kluyveromyces species alone. This suggested 
that the motifs matched poorly and that a related TF might be responsible for regulating the gene set. 
Rgm1, Crz1, and Tea1 all similarly have a preference for a stretch of four guanines or cytosines. Rgm1 
mapped to three of the top heptamers in the up-regulated gene set. Since the motif match likelihood 
was detrimental to the score, the gene set was likely controlled instead by a different TF matching to 
these heptamers. Adr1 and Mig1 are candidates.  
 
 
 
Mcm1 
Mcm1 was discovered on motif strength alone. Both conservation criteria and SGD data were 
detrimental. Mcm1 also mapped to a top heptamer, with overlap by other TF motifs. Since SGD data 
on Mcm1 did not promote the enrichment, it is possible that the Mcm1 pattern is a proxy for a 
different TF. The detrimental effect of conservation also suggested that this regulatory set may be 
unique to the species, but is a less likely scenario as opposed to being a proxy for another TF.  
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Nrg1 
The Nrg1 enriched set was discovered on motif strength alone. Both conservation criteria and SGD 
data were detrimental to the score. Since SGD data on Nrg1 did not promote the enrichment, it is 
likely that the Nrg1 pattern is a proxy for a different TF. The detrimental effect of conservation also 
suggested that this regulatory set may be unique to the species, but is a less likely scenario as opposed 
to being a proxy for another TF.  
 
Put3 
The Put3 gene set seemed to be conserved between K. marxianus and S. cerevisiae, but the motif used 
may not be correct for K. marxianus, since significant enrichment was only found using the SGD 
method. 
 
Opi1 
The Opi1 set of only six genes was discovered by motif strength and conservation between 
Kluyveromyces species alone, and inclusion of data from SGD was detrimental to the score. The data 
suggested that the target gene set had diverged between the two species. The OPI1 gene was absent 
from the DMKU annotation but was present in the UFS-Y2791 annotation. 
 
Azf1 
Large Azf1 target sets of 743 or 586 or genes were found using Lm or Lm×Lc. Other data proved 
detrimental to the score. Aft1 also mapped to poly A and poly T, suggesting that these may not be 
true binding sites. The strong enrichment found in the down-regulated set correspondended with the 
significant over-representation of poly A and poly T using the k-mer networking approach, both for 
the down-regulated and up-regulated gene sets. This observation did not suggest any role for Azf1, 
but rather that genes with poly A or poly T were often differentially expressed.  
 
Aft1 
All sources of evidence were required for discovery of the Aft1 gene set, using the functions Lm×Lc×Li 
or If[Li==0,Lm×Lc, Lm×Lc×Li]. Using If[Li==0,Lm×Lc, Lm×Lc×Li] obtained more target genes and a higher 
score as opposed to function A, which allowed the Aft1 binding sites to outcompete the binding sites 
of other TFs. The gene set from SGD alone, with 68 targets, did not indicate enrichment, suggesting 
transcriptional rewiring between S. cerevisiae and K. marxianus, or that the SGD target set contained 
a significant fraction of interactions resulting from secondary effects.  
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Swi4 
All sources of evidence (Lm×Lc×Li) were required for discovery of the Swi4 gene set. The gene set from 
SGD alone did not indicate enrichment, and neither did requiring a motif (Li), suggesting 
transcriptional rewiring between S. cerevisiae and K. marxianus. More target genes and a higher score 
were obtained by using the Lm×Lc×Li function, as opposed to the If[Li==0,Lm×Lc, Lm×Lc×Li] function, 
which allowed other motifs with a higher likelihood to outcompete the binding sites for Swi4.  
 
Yap7 
Borderline significance was found for each of these TF target sets. A marginally enriched Yap7 gene 
set was discovered on motif strength alone. Both conservation criteria and SGD data were 
detrimental. Since SGD data on Yap7 did not promote enrichment, it is likely that the Yap7 pattern is 
a proxy for a different TF.  
 
Rsc30 
Borderline significance was found for each of these TF target sets. A marginally enriched gene set of 
Rsc30 targets was discovered on motif strength alone. Both conservation criteria and SGD data were 
detrimental. Since SGD data on Rsc30 did not promote enrichment, it is likely that the Rsc30 pattern 
is a proxy for a different TF.  
 
Rgm1 
Borderline significance was found for each of these TF target sets.  
A marginally enriched gene set was discovered by sequence conservation among Kluyveromyces 
species alone. It suggested that the motifs matched poorly and that a related TF might be responsible 
for regulating the gene set. Rgm1, Crz1, and Tea1 all similarly have a preference for a stretch of four 
guanines or cytosines. Rgm1 mapped to three of the top heptamers in the up-regulated gene set. 
Since the motif match likelihood was detrimental to the score, the gene set was likely controlled 
instead by a different TF matching to these heptamers. Adr1 and Mig1 are strong candidates.  
 
Tea1 
Borderline significance was found for each of these TF target sets. The enriched Tea1 target set was 
discovered by sequence conservation among Kluyveromyces species alone. It suggested that the 
motifs matched poorly and that a related TF might be responsible for regulating the gene set. Rgm1, 
Crz1, and Tea1 all similarly have a preference for a stretch of four guanines or cytosines. Rgm1 mapped 
to three of the top heptamers in the up-regulated gene set. Since the motif match likelihood was 
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detrimental to the score, the gene set was likely controlled instead by a different TF matching to these 
heptamers. Adr1 and Mig1 are strong candidates.  
 
YNR063W and Cin5 
Borderline significance was found for each of these TF target sets.  
 
Bur6 and Sua7  
Strong enrichment was found for each of these TF target sets. Only SGD data could be used for 
assigning interactions, since these regulators do not have associated DNA binding motifs. 
 
Spt10 
Only SGD data could be used for assigning interactions, since Spt10 does not have associated DNA 
binding motifs. 
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