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1.1 Background 

The first record of breast cancer dates back to 3000 years before Christ.  Various Greek and 

Roman physicians have documented breast lumps that progress into tumours over the 

decades.  The primary form of treatment was surgery that included mastectomies, removal of 

chest muscles, and even the removal of the oestrogen-producing ovaries.  In the mid-‘90s, it 

was suggested that breast cancer is a systemic disease and is capable of metastasizing.  A 

different approach was used to treat breast cancer with the aid of surgeries and the use of 

radiation therapy and chemotherapy.
1,2

  

It was also the start of using general X-rays and film to detect suspicious lesions in 

uncompressed breast tissue.  Mammography is the golden standard for early detection of 

breast cancer and is attributed to the recent reduction in breast cancer mortality.
3-5 

It is 

especially useful for the detection of microcalcifications, which is an early indicator of cancer 

formation.  It has the advantage of high spatial resolution and by using digital mammography 

one can adjust the viewing parameters.  This leads to better detection of suspicious lesions.  

Whether mammography screening is justifiable or not is a controversial subject. Some 

experts and articles state that screening leads to over diagnoses and overtreatment.
6
 Some 

state that screening will result in some women getting a cancer diagnosis even though their 

cancer would not have led to death or sickness. Although there is no proof that the treated disease 

would not have had a detrimental outcome if left untreated.  The American Cancer Society states 

that the 5-year survival rate for women with stage 0 or stage I breast cancer is close to 100%.  

These are cancers that have been detected in the early stages by methods such as 

mammography screening.  For women with stage II and stage III cancers, the 5-year survival 

rate drops to 93 % and 72 % respectively.  For breast cancers that have gone undetected and 

spread to other parts of the body the 5-year survival rate is only 22%.
7
 This shows that breast 
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cancer treatment works best when it is detected in the early stages before spreading outside 

the breast to other parts of the body.  In a recent study by Weedon-Fekaer et al. it was shown 

that screening mammography reduced the mortality rate of a population of woman with 28% 

in comparison with those who had not undergone any screening.
8
 

 Despite the popularity of this imaging technique, it still has its pitfalls due to the 

superposition of structures.  This is in particular for women with dense breasts that consist 

mainly of glandular tissue.
9, 10

 This superposition leads to a low positive predictive value and 

studies have shown that between 70% - 90% of biopsies turn out to be negative.
11

  

1.1.1 Imaging modalities for breast cancer detection 

A mammogram usually consists of two X-ray projection views of a compressed breast in the 

coronal and sagittal planes.  It is hard to detect small lesions or abnormalities when projecting 

a three-dimensional image onto a two-dimensional plane, especially if overlapped with dense 

breast tissue.
11-13

 Multiple studies have shown that magnetic resonance imaging (MRI) may 

be useful in detecting breast cancer
14-17

 but is not a replacement for mammography.  

Contrast-enhanced MRI is sensitive enough to detect breast cancer, but the specificity ranges 

from 37% to 96%.
18

 This limits the use of MRI for early breast cancer detection. 

  An alternative imaging technique is needed that overcomes the limitations of 

mammography.  Dedicated breast computed tomography (CT) is a new technique and 

eliminates the superposition of different structures as seen with mammography. 

1.1.2 Breast Computed Tomography 

 The idea of breast computed tomography developed shortly after the development of 

computed tomography in the late ‘70s.
19-22

 Since the technology was not as advanced as 

today, a body scanner had to be used to perform a chest scan for breast imaging.  This 
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included the thoracic cavity and a significant amount of non-breast tissue.  This leads to an 

increase in the dose that the patient receives and breathing artifacts.  The idea of a breast CT 

was set aside until the early 2000s when the improved technology allowed for a dedicated 

breast CT scanner.
23

 

In 2001 Boone et al. investigated the feasibility of using a breast CT regarding radiation dose 

and image quality.
24

 A patient would lay in a prone position with the breast hanging through 

an opening.  This geometry would avoid exposing any thoracic tissue resulting in coronal 

images of the breast.  They found that the breast CT resulted in lower doses than 

mammography with breasts thicker than 5 cm. Breast CT led to a higher photon penetration 

and better X-ray energy penetration that compensate for the high fluence requirements of the 

CT.  The higher contrast-to-noise ratio (CNR) and signal-to-noise ratio (SNR) and reasonable 

doses make this technique quite impressive.  In a pilot study conducted in 2004, they found 

that breast CT was superior to mammography for the visualisation of masses and also more 

comfortable for the patient.
25

 A further study found that visibility of malignant masses was 

better with contrast-enhanced CT than with unenhanced CT or mammography and it is also 

possible to distinguish between benign and malignant lesions.
26

  The large number of 

projections needed for accurate reconstruction posed a concern regarding the necessary dose 

required during a dedicated breast CT acquisition to acquire good image quality.  This 

concern was addressed by Boone et al. that showed that the dose needed is comparable to that 

of a standard mammogram.
24

 

The Koning Corporation, a leading developer of advanced imaging systems, announced on 4 

February 2015 that the Food and Drug Administration (FDA) approved their Koning Breast 

CT (KBCT) system.  This is the first commercially available three-dimensional (3D) breast 

CT that can image the entire breast without compression.  The KBCT system operates at a 

maximum voltage of 49 kVp and consists of a flat panel detector. 
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Conventional CT systems like the KBCT are usually referred to as single energy CT because 

of the single polychromatic source that is used.  The difference in material contrast that is 

seen depends on the properties of the materials being imaged and the photon energy.  

Different attenuation coefficients will result in different contrasts.  Also, the difference 

between the energy being used and the K-edge of the material will have an effect on the 

resulting contrast.
27

 Materials with the same photon attenuation but different elemental 

composition or mass densities cannot be distinguished with single energy CT.
28

 When using 

single energy CT the cumulative attenuation coefficient is measured over the entire energy 

range in the energy spectrum. 
29-31

 Different materials are expressed in terms of Hounsfield 

units (HUs) and are displayed in shades of grey.  Certain concentrations of calcium and 

iodine may have similar CT numbers and will not be distinguishable from one another on a 

single energy CT.
31

 

The CT number presented by any material is caused by a combination of the photoelectric 

effect and Compton effect.  The photoelectric effect usually occurs at low energies, is very 

dependent on the energy, and is related to high atomic number materials.  The Compton 

effect occurs at energies above 30 kV and depends on the total number of electrons in an 

absorber.  Therefore, it depends on the density of a material and not the atomic number.
32

 

This different response of materials at different energies can be used to differentiate between 

the materials.  This idea gave rise to dual-energy CT and multi-energy CT. 

1.1.3 Dual- and Multi-energy CT 

In dual-energy CT, two different energy spectra are used to acquire two CT datasets.  This 

can be achieved either by switching the kV of one tube or by using two tubes with different 

voltages.  By using this technique, differences in material composition can be detected due to 

the differences in the photoelectric and Compton effects of the materials at different energies.  
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Dual-energy has resolved multiple issues such as image co-registration problems caused by 

temporal changes.
31,33,34

 Other applications include the differentiation or quantification of 

materials with a large difference in atomic numbers.  This can be used for the differentiation 

of bone and iodine in post-processing techniques 
35-37

 and also for the analysis of urinary 

stones.
38-42

. A virtual non-enhanced image is obtained when the iodine content is subtracted 

from the contrast-enhanced image. 
33-34

 The non-contrast CT acquisition can be eliminated by 

replacing the non-contrast-enhanced image with the virtual non-contrast-enhanced image.  

This will limit the dose the patient receives. 

In Figure 1.1 below the difference in the attenuation coefficients for the iodine and bone at 80 

kV and 140 kV can be seen.  The difference is much more pronounced for the iodine in 

comparison with the bone. 

 
Figure 1.1: Attenuation coefficients for a range of energies f or bone, iodine and 
water.  The large difference in attenuation coefficient for the iodine and small 
difference for the bone can be seen clearly.4 3  
 
 

These responses at different energies can exploit information regarding the elemental 

composition as long as the atomic number and/or mass densities are different.
44

 Some of the 
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disadvantages of dual-energy CT is that materials with similar attenuation coefficients cannot 

be distinguished from one another. It lacks soft tissue classification and high dose levels are 

required.
45

 Iodine is often used as contrast agent, but this can lead to an increase in dose in 

organs and tissues.
46

 

The future of CT techniques lies within the additional information that is present in the 

energy spectrum.  By utilising the different energies much richer images can be obtained that 

contains additional information regarding the tissue under investigation.  This imaging 

technique produces such vivid images that it is referred to as “true-colour CT” in a study 

conducted by Gao et al.
47

 

Multi-energy CT has been used for small animal imaging
48

, whole-body clinical systems
49

 

and breast CT.
50

  This technique refers to the utilisation of spectral data that is used for 

differentiation and classification of different tissues within images.
30

  In conventional CT 

techniques, energy-integrating detectors are used where the X-ray interactions are 

accumulated over the entire energy spectrum.
51

  The detector forms a vital part of the imaging 

process, and a newly developed photon-counting detector has been developed for use in 

multi-energy CT.
52,53

  

These detectors can count the number of X-ray photons within a specific energy range.  

These energy ranges are referred to as bins, and there can be up to eight different bins in one 

detector.  All of the energies are acquired at the same time eliminating registration problems 

between the different images.  The energies are within narrow energy ranges
53,55,56

 and the 

tube output usually consists of a single energy spectrum since the separation of energies 

happens in the detector.  This new method of detection provides more optimal weighting than 

intensity integrating, resulting in lower noise and better contrast.
57

 These detectors have been 

considered instead of the conventional X-ray detectors to increase contrast and reduce the 
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dose.  When using multiple-energy in CT, the impact on patient dose must be considered.  The 

dose is actually reduced due to only using a single energy per exposure and the lack of 

contrast agents.  Multi-energy scanning is based on the basic concept of predictable 

differences in attenuation when substances are imaged with different X-ray energies of 

known spectra.  It is, therefore, worthwhile to explore the opportunities that can exist for the 

use of multiple energies.  

Several studies have been conducted with multi-energy CT
58-60

 and include K-edge imaging 

of multiple contrast agents.
56,48

 More than one high atomic number can be distinguished due 

to the range of energies available in multi-energy CT.  Some of these contrast agents include 

iodine, barium, gadolinium and gold.  There exists an increase in attenuation above the 

binding energies of these K-shell electrons due to photoelectric absorption.  This K-edge 

imaging with multiple contrast agents has been demonstrated in mice.
53

 The study showed 

that contrast agents could be given at different time points but imaged simultaneously.  This 

can be used for triple renal or liver studies in a single examination, which would lead to a 

reduction in dose and elimination of patient movement.  

Multi-energy CT has led to the development of new contrast agents such as gold-labelled 

nano-particles.
61

 This can be used for functional imaging as the particles can be targeted to 

specific cells or enzymes.  

1.1.4 Tissue differentiation 

Another use of dual- and multi-energy CT is the determination of the chemical composition 

of tissues.  This is referred to as tissue decomposition and can be used to determine the 

chemical composition of soft tissues.  In previous studies, it has also been used to identify 

calcifications
62

, glandular tissue, adipose tissue
63-65

 and atherosclerotic plaque.
45

 This 
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compositional method has also been used for determining the density of breast tissue by 

calculating the amounts of protein, water and lipid present.
66

 

The possibility exists to differentiate between normal and malignant tissues in terms of 

their composition.  Previous studies have found that malignant tissues have significantly 

higher water and reduced lipid content compared to healthy tissue.
67-70

 Elemental 

concentrations of phosphorus (P), sulphur (S), potassium (K), calcium (Ca), iron (Fe), nickel 

(Ni), selenium (Se) and rubidium (Rb) are also different in malignant tissues.
71-75

 Different 

methods of tissue differentiation are seen in the literature, Ding et al. use a two-step process 

consisting of a calibration phantom.
76

  Le and Molloi use a decomposition algorithm that first 

identifies the material and then computes the concentration.
50

 

The linear attenuation coefficient is a valuable parameter that can be used to distinguish 

between different tissues.  The glandular tissue has a much higher attenuation coefficient than 

fatty tissue at all energies.  There exists a significant difference between the attenuation 

coefficients of glandular tissue and carcinomas at energies below 31 keV as seen in Figure 

1.2 below.
77
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Figure 1.2: Variation in the attenuation coefficient for different breast tissues and 
energies.7 7  
 
 

1.1.5 Energy weighting imaging 

Although the current dedicated breast CT systems operate at 49 keV, it is of great importance 

to explore lower energies, in particular with the development of the photon-counting 

detectors.  In a previous study by Schmidt et al.
78

, a method was investigated for 

reconstructing images from different energy bins using projection-based and image-based 

optimal energy weighting.  Le et al.
79

 also investigated these two types of energy weighting 

modes with a cadmium zinc telluride (CdZnTe) detector.  In both studies, an increase in the 

CNR was seen, but specific parameters like the length of tissue or tissue thicknesses need to 

be known.  These parameters are easy to calculate in phantoms with known dimensions but 

not in the case for phantoms based on clinical data with varying tumour sizes. 

In this dissertation, the feasibility for differentiating between different breast tissues is 

explored through the Monte Carlo (MC) simulation of a virtual multi-energy CT unit.  
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In Chapter 2 the energy spectrum of the Toshiba Aquilion Large Bore (LB) 16 CT is 

approximated by means of BEAMnrc simulations and half-value layer (HVL) comparisons.  

Different component modules (CM’s) are used to model the beam-defining components of 

the virtual CT. 

In Chapter 3 the HUs of the virtual CT is compared to that of the Toshiba Aquilion LB 16 

CT.  It is shown that the MC and reconstruction methods used can accurately model a CT unit 

and some of the results were published in the European Journal of Medical Physics (EJMP).   

In Chapter 4 the possibility of differentiating between different tissues are explored by using 

a range of energies.  Different breast phantoms are modelled and simulated with the egs_cbct 

code.  The Feldkamp-Davis-Kress (FDK) algorithm is used for the reconstruction of the 

projection images.  The CNR for each energy bin is calculated and compared with one 

another. 

In Chapter 5 an alternative image-based energy weighting method is developed that does not 

require prior knowledge information of the effective attenuation coefficient.  The method also 

shows that there is a possibility of using multi-energy CT without the use of contrast agents 

like iodine.   

In Chapter 6 a new method for tissue differentiation is explored based on the mass 

attenuation coefficients of different breast tissues. The sum of the least squares method is 

used together with an in-house developed Interactive Data Language (IDL) program. 
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2.1 Introduction 

BEAMnrc is part of the OMEGA project and is used for the simulation of the radiation beam 

of radiotherapy units.
1
  The code consists of multiple CM’s that can be used to make up the 

different components of the unit being simulated.  

 If X-rays are directed towards an object, they can either be absorbed, scattered or penetrate 

the object completely.  The penetration abilities of a specific beam of X-rays depend on the 

energy of the photons and the density, atomic number and thickness of the object.  The most 

common way to express the penetrating ability of a beam is by means of the HVL.  The HVL 

is the absorber thickness required to reduce the intensity of the incident beam by one-half.  A 

beam with a high HVL is more penetrating than a beam with a low HVL.
2
 

The penetration abilities of a beam through a particular material depend on the energy of the 

incident beam.  A beam containing a spectrum of energies is usually referred to as a 

polychromatic beam.  Each of the energies in this spectrum will have different penetrating 

abilities.  The penetrability of a polychromatic beam will increase as it moves through an 

attenuator since the lower energies are removed and the average energy of the beam changes. 

The effective attenuation coefficient, ,ueff  of a polychromatic beam can be determined by 

using the HVL and is given by 
HVL

ueff

693.0
 .  The equivalent energy is a term that describes 

the energy of a monoenergetic beam that will have an attenuation coefficient similar to .ueff  
3
 

In Figure 2.1 is a plot of the linear attenuation coefficient as a function of photon energy.  If 

we have a 100 kV beam with a HVL of 4.5 mm then the linear attenuation coefficient would 

be as follows: 
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cm
HVL

154.1
693.0                                                     2.1 

Bremsstrahlung X-rays are formed from a Coulomb interaction between an incident electron 

and the nucleus of the target material.  It is caused by the sudden slowing down of the 

incident electron due to the strong electric fields of atomic nuclei.   These electrons will be 

influenced and deflected by the electric field and will lose part of their energy.
3-5

  This energy 

is bremsstrahlung radiation as seen in Figure 2.1.   

 
Figure 2.1:  Interaction between an incoming electron and a nucleus.  The electron is 
deflected and loses energy in the form of Bremsstrahlung. 6  

 
 

The spectrum of energies can range from zero to the kinetic energy of the incident electron.  

The spectrum produced will depend on the kinetic energy of the incident electron and the 

characteristics of the target material.
7,8 

The intensity of the bremsstrahlung is proportional to 

the square of the target atomic number and inversely with the mass of the incident particle.  A 

light particle such as an electron will therefore be more efficient in producing bremsstrahlung 

than a heavier particle.
 
The ‘peak’ of the spectrum will occur at approximately one-third of 

the maximum energy.  A spectrum of 120 kV will therefore have a peak at approximately 40 

kV.  An energy spectrum of 100 kVp can be seen below in Figure 2.2.  The photons below 

the low energy cut-off are so easily attenuated by the anode and added filtration that the 
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emerging energy from them is negligible.  The maximum energy depends on the energy of 

the incoming electron that loses all of its energy during a collision.  

 
Figure 2.2: Energy spectrum from an X-ray tube operating at 100 kVp with 2.5 mm 
aluminium filtration. 9  
 

Low energy photons are absorbed more easily as they mostly undergo photoelectric 

interactions.  This can pose a problem when imaging a patient with a spectrum consisting of 

low energies.  Energies below 10 keV will be completely absorbed by the patient and will 

add to the dose the patient receives.  This can be avoided by filtering the beam with a metal 

sheet, usually aluminium (Al).  The filtration material will increase the ratio of the higher 

photons that can penetrate the patient and add to the radiographic image.  Aluminium has an 

atomic number of 13 and is a good absorber of low energies.  It produces characteristic X-

rays of 1.5 keV that is easily absorbed in the air before reaching the patient. A copper (Cu) 

filter can also be used for higher energies and has an atomic number of 29.  It is used in 

conjunction with an Al filter to filter out the characteristic radiation of the Cu at 8 keV. The 

Cu filter will be the closest to the tube and the Al filter closest to the patient.
10

 

If a collision occurs between the incident electron and a bound orbital electron of the target 

material, characteristic X-rays are formed.  If the incoming electron has sufficient energy, the 
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orbital electron is ejected from its shell, and an electron from a higher level shell fills the 

resulting vacancy.  The energy difference between the two shells is emitted as characteristic 

X-rays, or it can be passed on to another orbital electron that is ejected as an Auger electron 

as seen in Figure 2.3. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.3:  Interaction between an incoming electron and an orbital electron.  The electron is 
ejected, the vacancy is filled by another electron from a higher shell, and characteristic X-rays are 
formed.6 

 

As seen in Figure 2.4 above, an atom consists of different core shells denoted by K, L, M etc.  

Each of these shells has their own binding energy that needs to be exceeded in order to eject 

an electron. For aluminium the K shell has a binding energy of 1.6 keV and copper (Cu) 8.98 

keV. An X-ray absorption spectrum for lead (Pb) can be seen below in Figure 2.4 
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Figure 2.4: The X-ray absorption spectrum for Pb. Three major transitions are seen (K, 
L, and M edges), corresponding to excitation of an electron from n = 1, 2, and 3 shells, 
respectively.4  

 

The increase in the cross-section at the specific edges is due to additional contributions when 

the energy is sufficient to eject an inner shell electron.
4
 

The tube current and exposure time will alter the flux of X-rays, but the X-ray spectrum will 

stay unchanged.  By increasing the tube voltage, the quality of the X-rays will increase and 

therefore the spectrum will have a higher HVL.   

In this chapter, an energy spectrum was generated by simulating an X-ray tube and filters in 

BEAMnrc.  The HVL of this spectrum was benchmarked against that of the Aquilion LB 16 

CT available at our hospital.  The anode angle was chosen in such a way to produce a small 

focal spot size, and the appropriate amount of filtration was determined through calculations.  

The resulting energy spectrum was used in the next chapter for the matching of the simulated 

HUs to that of the Toshiba Aquilion LB 16 CT.  

2.2 Methods & Materials 

The following steps were taken to compare the measured HVL value with the simulated HVL 

by using MC simulations. 
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2.2.1: Step1: HVL measurements for the Toshiba Aquilion LB 16 CT scanner 

The X-ray tube exit window of the CT was parked in a 12 o'clock position, and the HVL 

was determined for 80, 100, 120 and 140 kV with technical support from Tecmed Africa 

(Pty) Ltd.  A Magic-MaX M Rad/Flu/Dent ionisation chamber from IBA Dosimetry was used 

for the determination of the HVL.  The chamber has built-in filtration of 1.5 mm to 30 mm of 

Al equivalent and also the necessary backscatter.  The Magic-MaX M Rad/Flu/Dent was 

placed on the couch of the CT, and the resulting HVL for the different energies was 

determined. 

 2.2.2 Step 2: X-ray tube simulation in BEAMnrc 

  The MC code, BEAMnrc, was used for the simulation of the X-ray tube.  The set-up 

consisted of a target at an angle of 7 degrees and a filter composed of various materials as 

seen in Figure 2.5 below.  

 
Figure 2.5:  Schematic of the set-up in BEAMnrc for the simulation of the X-ray tube.  
(The image is not to scale)  
 
Beryllium windows are often added to an X-ray tube to hold a perfect vacuum.  Beryllium 

only has 4 electrons for the interaction with X-rays and a low density of 1.85 g/cm
3
. It is 

therefore virtually transparent to X-rays and was not included in the X-ray tube simulation.
12

 

The simulation efficiency was improved by modifying the default parameters in the macro 

file beamnrc_user_macros.mortran. The BDY_TOL parameter is used to avoid round-off 

errors by shifting the boundaries between different regions in the geometry by a small 
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distance.  In the kilovoltage range the charged particle step size is of the same order of 

magnitude as the default value of 10
-5

 cm and will affect the backscatter correction.
9
 The 

value of boundary tolerance BDY_TOL was modified to 5×10
−7

 cm to limit the deviations in 

the total backscatter coefficient. The maximum directional bremsstrahlung split number was 

set to 2×10
4
 as suggested by Ali and Rogers.

13
 Variance reduction techniques (VRTs) such as 

Rayleigh scattering, atomic relaxations, bound Compton scattering, electron impact ionisation 

and spin effects were implemented as recommended for low-energy simulations.  The XCOM 

database was used for photon cross-sections. The global electron cut-off energy (ECUT) and 

photon cut-off energy (PCUT) were set to 0.512 MeV and 0.001 MeV respectively.  The 

electron-step algorithm and boundary cross algorithm (BCA) was PRESTA-II and EXACT, 

respectively.  The skin depth for the BCA was set to three elastic mean free paths. 

2.2.3 Step 3: HVL simulations in DOSXYZnrc 

The simulated HVL value was determined in DOSXYZnrc by using the resulting phase space 

of step 2. 

The HVL was verified with the help of the DOSXYZnrc code.  The resulting phase space file 

from BEAMnrc was used as input for the DOSXYZnrc simulation.  The X-ray source was 

placed a distance of 100 cm from a semi-infinite slab of aluminium.  The slab thickness was 

increased in small increments, and the dose was scored in a water phantom 150 cm from the 

source.  The central voxel was used for scoring with a dimension of 1 x 1 cm to improve the 

dose statistics.  To satisfy the conditions of narrow-beam geometry, a small parallel source 

was used to ensure no scattered photons are recorded.  The same simulation parameters were 

used as in the case of the BEAMnrc simulation. 

The simulation set-up can be seen in Figure 2.6 below. 
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Figure 2.6:  Simulation set-up in DOSXYZnrc for the determination of the HVL.  
 

The HVL was determined as the thickness of material that reduces the dose to one-half of the 

initial value when there is no material (aluminium) in the beam path.  This was done for 

phase space files with various amounts of Al filtration and filters consisting of a combination 

of Cu and Al.  

2.2.4 Step 4: Berlin cavity theory correction 

The Toshiba Aquilion LB 16 CT HVL was determined with in-air measurements and the 

simulated HVL was done in water.   The simulated values obtained in water were converted 

to in-air measurements to compare the two values with one another.  The linear attenuation 

coefficient was derived from the HVL by using Equation 2.1.  The effective energy of the 

beam was obtained from the NIST database
10

 by using the calculated linear attenuation 

coefficient of the X-ray beam.  The mass energy-absorption coefficient for water and air at 

the effective energy was then used.  It was assumed that only photon interactions would occur 

since no build-up is needed for such a low energy and that charged particle equilibrium 

exists.  



CHAPTER 2: CT MODELLING IN BEAMNRC TO CHARACTERISE CONE BEAM 

PROPERTIES 

33 

 

  The Berlin (Burlin) cavity theory and the ratio of the mass energy-absorption coefficients 

were used to convert the simulated water measurements to in-air measurements as shown 

below.  














en

water

air
air

water

D

D                                                             2.2 

2.2.5 Step 5: HVL determination 

The corrected dose values from step 4 versus the thickness of Al were plotted and an 

exponential curve was fitted to the data.  The equation of the fitted curve was used for the 

determination of the HVL as seen below.  

ezy x                                                                           2.3 

Where y equals the dose values on the y-axis, z is the y-intercept,  is the slope of the 

exponential curve and x is the thickness of Al on the x-axis in mm.  The HVL will reduce the 

initial intensity on the y-axis, without any Al present, I 0 , to half of its value as shown below. 

ez
I x
2

0                                                                       2.4 

To obtain the value of x , that represents the HVL value, Equation 2.3 is rearranged to give 

the following: 

xz
I











2
ln 0                                                               2.5 

The HVL is expressed in mm of Al.  The two HVL values were compared with one another. 
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2.3 Results & Discussion 

2.3.1 HVL measurements for the Toshiba Aquilion LB 16 CT scanner 

The Toshiba Aquilion LB 16 CT scanner had an HVL of 5.3 mm of Al and was measured as 

explained in Section 2.2.1. 

2.3.2 Spectral distributions from BEAMnrc simulations 

The spectral distribution of the phase space file without filtration and with various amounts of 

filtration can be seen in the figures below.  The number of particles incident from the original 

source was 20 million, resulting in an uncertainty below 1%. 

 
Figure 2.7: Energy spectrum of the phase space file resulting from the BEAMnrc 
simulation.  No filtration was added.  The prominent peaks at the low energies will 
increase the patient dose without contributing to the image.  
 

The characteristic K, L and M X-ray line energies are seen in Figure 2.7 above.  The K-line 

energies are a result of the ejection of a K-shell electron that is then filled with an electron 
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from the L-shell ( K ) or the M-shell ( K ).  The different transitions that give rise to the 

emission lines can be seen below in Figure 2.8.  

 
Figure 2.8:  Different emission lines due to transitions between the shells. 1 4  
 

The mass attenuation coefficient for aluminium can be seen in Figure 2.9 as taken from the 

NIST database.
11

 The mass absorption coefficient is, 



and the mass energy-absorption 

coefficient is


en . 
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Figure 2.9: The mass attenuation coefficient and mass energy -absorption coefficient 
for aluminium.  A sharp increase is visible at the K-edge of 1.6 keV.1 5  

 

As seen below in Figure 2.10, aluminium filtration of 2 mm absorbs almost all the energies 

below 20 keV. 
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Figure 2.10: Energy spectrum of the phase space file resulting from the BEAMnrc 
simulation.  Different amounts of filtration were added.  The Al filters out the lower 
energies and increases the mean energy of the energy spectrum.  
 

In Figure 2.11 below the effect of a compound filter consisting of Cu and Al can be seen.  

The Cu filter causes excessive filtration and absorbs almost all of the photons below 40 keV. 

An overall attenuation of the photon beam can be seen.  The characteristic X-rays at 8 keV 

that is produced by the Cu are filtered out by using an Al filter. 
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Figure 2.11: Energy spectrum of the phase space file resulting from the BEAMnrc 
simulation.  Different amounts of Cu and Al filtration were added.  Almost all the 
energies below 40 keV are filtered out.  The Al filter absorbs the characteristic 
radiation of the Cu at 8 keV. 
 
 

2.3.3 HVL verification 

The following section shows results obtained by using an energy spectrum with 3 mm of Al 

filtration. 

The dose values from the DOSXYZnrc simulation in water versus the thickness of Al 

absorption material can be seen for a filtered energy spectrum of 120 kV in Figure 2.11 

below, by using the set-up shown in Figure 2.6.  The dose decreases exponentially as the 

thickness of Al increases.  As the beam passes through the first piece of Al, the lower energy 

photons have been eliminated and the remaining higher energy photons produce a beam 

which has a higher effective energy leading to an exponential curve.   The uncertainties in the 

dose values are below 0.5 %. 
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Figure 2.12: Exponential decrease in dose in water as a function of Al thickness.  The 
uncertainties in the dose values are smaller than the symbol size and below 0.5 %.  
The 95% confidence levels are indicated. 

The simulated water data were converted to in-air measurements by the following mass 

energy-absorption coefficient ratios. 









 








0.086

0.075
DDD water

en

air

water

waterair



                                                   2.6 

The resulting dose values for the air are shown below. 
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Figure 2.13: Exponential decrease in dose in the air as a function of Al thickness.  The 
uncertainties in the dose values are smaller than the symbol size and below 0.5 %.  
The 95% confidence levels are indicated. 

The HVL from the in-air dose values is calculated by using equation 2.4 as seen below. 

25.50.126-14-9.264E
2

14-9.564E
ln 








 mm                            2.7 

The calculated HVL from the simulated data, 5.25 mm of Al, was within 1% of the measured 

value of 5.3 mm of Al for the Toshiba Aquilion LB 16 CT scanner. 

2.4 Conclusion 

In this chapter, it was shown that the energy spectrum of the Toshiba Aquilion LB 16 CT 

could be approximated with the aid of MC simulations.  The BEAMnrc code successfully 

modelled the X-ray tube, and the simulated HVL could be matched with the measured HVL.  

An aluminium filter absorbs all the low energies and increases the mean energy of the X-ray 
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beam.  The output could then be used for the further simulation of the RMI phantom for HU 

verification in the next chapter.  

  

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 



CHAPTER 2: CT MODELLING IN BEAMNRC TO CHARACTERISE CONE BEAM 

PROPERTIES 

42 

 

2.5 References 

1.  Rogers DWO, Faddegon BA, Ding GX, Ma C-M, We J, Mackie TR. BEAM: A Monte 

Carlo code to simulate radiotherapy treatment units. Med Phys. 1995 May 

1;22(5):503–24.  

2.  Radiation Penetration [Internet]. [cited 2017 Jan 20]. Available from: 

http://www.sprawls.org/ppmi2/RADPEN/ 

3.  Pawlicki T, Scanderbeg DJ, Starkschall G. Hendee’s Radiation Therapy Physics. John 

Wiley & Sons; 2016. 349 p.  

4.  Dowsett D, Kenny PA, Johnston RE. The Physics of Diagnostic Imaging Second 

Edition. CRC Press; 2006. 706 p.  

5.  Allisy-Roberts P, Williams J. Farr's Physics for Medical Imaging. W.B. Saunders 

Company. (2007) ISBN:0702028444 

6.  X-Ray Technology By: PROF. Dr. Moustafa Moustafa Mohamed Faculty of Allied 

Medical Science Pharos University in Alexandria. - ppt download [Internet]. [cited 

2017 Jan 25]. Available from: http://slideplayer.com/slide/6188331/ 

7.  Khan FM. The Physics of Radiation Therapy. Fourth edition. Philadelphia: LWW; 

2009. 592 p.  

8.  Podgorsak E. IAEA Review of Radiation Oncology Physics - A HAndbook for 

Teachers and Students. Vienna: International Atomic Energy Agency; 2005. 

9.  Dendy PP, Heaton B. Physics for Diagnostic Radiology, Third Edition. CRC Press; 

1999. 470 p. 

10.  Curry, III TS, Dowdey JE, Murray, JR. RC. Christensen’s Physics of Diagnostic 

Radiology. Fourth edition. Philadelphia, London: Lea & Febiger; 1990. 522 p.  

11.  Penner-Hahn JE. 2.13 - X-ray Absorption Spectroscopy. In: McCleverty JA, Meyer TJ, editors. 

Comprehensive Coordination Chemistry II [Internet]. Oxford: Pergamon; 2003. p. 159–86. 

Available from: http://www.sciencedirect.com/science/article/pii/B008043748601063X 

12.  Carlton RR, Adler AM. Principles of Radiographic Imaging: An Art and A Science. 5 

edition. Clifton Park, NY: Delmar Cengage Learning; 2012. 832 p.  

13.  Benchmarking EGSnrc in the kilovoltage energy range against experimental 

measurements of charged particle backscatter coefficients - MedicalPhysicsWeb 

[Internet]. [cited 2016 Dec 29]. Available from: 

http://medicalphysicsweb.org/cws/article/journals/33025 

14.  BEARDEN JA. X-Ray Wavelengths. Rev Mod Phys. 1967 Jan 1;39(1):78–124.  

15.  NIST: X-Ray Mass Attenuation Coefficients - Aluminum [Internet]. [cited 2017 Mar 

17]. Available from: 

http://physics.nist.gov/PhysRefData/XrayMassCoef/ElemTab/z13.html 

http://www.sprawls.org/ppmi2/RADPEN/


CHAPTER 3: RMI PHANTOM SIMULATION IN EGS_CBCT 

43 

 

 

 

CHAPTER 

3 

RMI phantom simulation in egs_cbct 

This chapter includes work published by the author – Appendix I (van Eeden et 

al. Phys Medica Eur J Med Phys. 2016 Oct 1; 32(10)) 

Table of Contents 

 

3.1 Introduction ........................................................................................................................ 45 

3.2 Methods & Materials ......................................................................................................... 49 

3.2.1 Modelling of the RMI phantom .................................................................................. 49 



CHAPTER 3: RMI PHANTOM SIMULATION IN EGS_CBCT 

44 

 

3.2.1.1 Egsphant file format and conversion ....................................................................... 52 

3.2.1.2 RMI phantom simulation ......................................................................................... 52 

3.2.1.3 Monte Carlo transport parameters in egs_cbct ........................................................ 53 

3.2.1.4 Bowtie filter determination ...................................................................................... 55 

3.2.1.5 Reconstruction algorithm software .......................................................................... 58 

3.2.1.6 HU determination..................................................................................................... 59 

3.3 Results & Discussion ......................................................................................................... 59 

3.3.1 RMI phantom and bowtie filter modelling ................................................................. 59 

3.3.2 Efficiency improving techniques ................................................................................ 61 

3.3.3 Reconstructed RMI phantoms..................................................................................... 61 

3.4 Conclusion ......................................................................................................................... 65 

3.5 References .......................................................................................................................... 66 

 

 

 

 

 

 

 

 
 



CHAPTER 3: RMI PHANTOM SIMULATION IN EGS_CBCT 

45 

 

3.1 Introduction 

The specifications of a CT scanner usually depict all the information needed to perform an 

accurate simulation of the X-ray tube and beam modifying parameters.  This includes the 

geometry of the scanner, anode angle, focus-isocentre distance, focus-detector distance, 

filtration and specifics regarding the collimators.  This information is not always available, 

and other methods have been used in previous studies.  Most recent studies use transmission 

measurements
1,2

 and MC simulations
3-5

 to estimate the X-ray spectrum.  Older methods 

include nonlinear least-square fits to experimental data
6,7

 and empirical methods.
8-11

 

Other beam modifiers such as bowtie filters are used in multislice and cone beam CT (CBCT) 

to ensure a more uniform fluence reaches the detector.
12-16

 There exist differences in the X-

ray beam path length as it passes through an object.  A polychromatic beam consists of 

photons with different energies.  As this beam passes through an object, the lower energies 

are absorbed, and only the higher energies remain.  This leads to an increase in the mean 

energy of the beam.  The path length of the beam is longer through the centre of a cylindrical 

phantom (indicated by the red line) as seen below in Figure 3.1. This will result in more low 

energies being removed, and the beam will become ‘harder'.  The path length at the periphery 

of the phantom is much shorter (indicated by the blue line below), and less beam hardening 

occurs.  

 
Figure 3.1:  A cylindrical phantom seen from the side and the front.  The path length 
through the centre of the phantom indicated by  the red line is longer than the path 
length through the periphery of the phantom indicated by the blue line.  
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This altering in the attenuation profile for a polychromatic beam across the phantom from the 

centre to the periphery causes a cupping artifact.
17  

This does not happen for a monoenergetic 

beam since the quality of the beam doesn’t change as it passes through a phantom.
19

 

Compensator materials such as bowtie filters can be used to reduce beam-hardening and 

eliminate artifacts.
18 

A bowtie filter has two-sided symmetry and an increase in thickness as a 

function of an increasing angle from the centre ray.  This leads to a reduction in the radiation 

dose at the periphery of the field of view (FOV).
16

 The design of the bowtie filter differs 

between the different CT scanners and is dependent on the linear attenuation coefficient and 

the size of the object being imaged.  One of the methods to determine the bowtie filter design 

is through measurements.
16,20-22

 This is not always possible in a busy department with a 

heavy workflow, and technical support is sometimes needed.    

MC has been used previously in CT dosimetry studies and is regarded as the most accurate 

dose calculation code.
23

 Previous studies include patient-specific dose calculations,
24,25

 

validation for complex geometries
26

 and industrial applications
27,28

. In the field of breast CT 

imaging, the GEANT4-based simulation package was used for scatter distribution 

determination
29

 and organ dose calculations.
30

 Recent studies include the influence of 

monoenergetic and polyenergetic glandular dose coefficients
31

 and mean glandular dose 

evaluations.
32

 As stated in a study by McMillian et al.
33

, most CT simulations lack validation 

beyond CT dose index (CTDI) measurements
34

 and mostly include dose calculations.
35-37

 

A reason for this can be the inefficiency of CT simulations with the currently available MC 

codes.
38

 The user code egs_cbct was used which is an EGSnrc user code written in C++ by 

Ernesto Mainegra-Hing and Iwan Kawrakow.
39,40

 EGSnrc
41

 is the most frequently used MC 

application in medical physics
23

 and include many user codes that can be used for the 

simulation of various geometries.  With the egs_cbct user code, it is possible to set up a 

CBCT imaging system without knowledge of the C++ programming code.  It is mainly used 
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for the fast estimation of scatter contribution in CBCT but can be used for other applications 

as well. 

The egs_cbct code uses several VRTs together with a denoising algorithm to improve the 

scatter simulation efficiency.  Since its release in March 2013, it has already been used for 

several studies.
42-45

 One of the original papers describes how these VRTs can improve the 

efficiency of scatter calculations for a chest phantom by three orders of magnitude.
39

 In a 

further paper by Thing et al. 
46

, the specific optimisation for different geometries is explored. 

The detector detects the air-kerma after passing through a phantom at a specific angle.  To do 

a full CT simulation, one has to submit each angle separately and obtain projection images 

around the phantom. In order to measure the attenuation along the beam path accurately, one 

needs first to run a simulation without a phantom to produce a ‘blank' scan.  The resulting file 

from the blank scan, I 0 , is used to compute the final signal as seen in Equation 3.1 below. 

t
I

I











0

ln                                                             3.1 

I is the projection measurement with a phantom,  is the linear attenuation coefficient (cm
-1

) 

and t  is the thickness of the phantom in cm. 

The resulting projections are then backprojected to reconstruct the original image.  During 

backprojection, the projections are ‘smeared back’ across the image from the angle it 

originally came from.  This results in a blurry version of the correct image.  This can be 

accounted for by using filtered backprojection where each projection is filtered before it is 

backprojected as seen below in Figure 3.2.
47
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                                                                                 b) 
Figure 3.2:  a)  Simple backprojection where each profile is smeared along its original 
path. b)  Filtered backprojected where each profile is filtered before it is 
backprojected.4 7  
 
 

There are high-pass filters and low-pass filters that can be used for the filtering of the 

projection data.  The Ram-Lak filter is a high-pass filter and will sharpen parts of the image 

where there is a sudden change in signal, e.g. at the edges.  A downfall of this filter is that it 

amplifies statistical noise and therefore it is always used in combination with a low-pass 

filter.
48

 These combination filters smooth the image and reduces the amplification of the 

noise of the Ram-Lak filter, but results in a decrease in resolution.  There exists a trade-off 

between the high-pass filters to sharpen the image and low-pass filters to reduce the noise.  

The Shepp-Logan filter is obtained by multiplying the Ram-Lak filter by a sinc function.  The 

reconstructed images will have a reduction in noise but with some edge sharpness. A Cosine 

filter is obtained by multiplying the Ram-Lak filter by a cosine function. Similarly, Hamming 

and Hann filters are obtained by multiplying Ram-Lak filter by Hamming and Hann windows 

respectively. Ram-Lak and Shepp-Logan filters are high pass filters which keep the edges 

information intact, whereas Cosine, Hamming and Hann filters are band pass filters. They are 

used to smooth the image and remove extra edges from the image.
49

 

In this chapter, the egs_cbct user code was used to simulate a fan beam CT to benchmark the 

simulated HUs against the measured ones.  This was done for a Toshiba Aquilion LB 16 CT 

unit and the RMI 465 Electron Density CT phantom from Gammex.  Using this phantom in 
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conjunction with CT simulations one can establish the relationship between the electron 

density (ρe) of various tissues and their corresponding HUs.  

3.2 Methods & Materials 

The phase space file generated by the BEAMnrc simulation from Chapter 2 was used in the 

next step of the simulations as input together with a bowtie filter.  The RMI phantom was 

modelled in IDL and profile information around the phantom was obtained through egs_cbct 

simulations.  These profiles were then used for reconstruction with a filtered backprojection 

algorithm.  The HUs were extracted and used for verification of the commissioning values 

from the Toshiba Aquilion LB 16 CT.   

In this chapter, it was decided to deviate from the original paper by adding the bowtie filter in 

the egs_cbct simulations instead of BEAMnrc.  This will lead to more accurate results since 

there is no component module in BEAMnrc for bowtie modelling. 

3.2.1 Modelling of the RMI phantom 

The Gammex 465 consists of a 33 cm diameter Solid Water® disk approximating the size of 

an average pelvis.  It has 20 inserts of 2.8 cm diameter, each of various tissue and water 

substitutes (Figure 3.3). The physical density (g/cm
3
) and electron density relative to water of 

the insert materials is listed in Table 3.1 
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Figure 3.3:  The RMI 465 phantom configuration with 20 inserts at various positions.  
Detail regarding each insert is found in Table 3.1 below. 
 

Table 3.1: RMI-465 inserts material data.  

Material  Tissue type Density (g cm -3) Electron density  
relative to water 

LN-300 Lung 0.300 0.292 
LN-450 Lung 0.450 0.438 
AP6 Adipose 0.920 0.895 
Polyethylene - 0.920 0.945 
Breast Breast 0.990 0.980 
Water - 1.000 1.000 
CT solid water - 1.015 1.000 
CB3 resin mix - 1.020 1.020 
Brain Brain 1.045 1.039 
Liver Liver 1.080 1.050 
IB1 Inner bone 1.120 1.081 
B200 Bone mineral  1.145 1.099 
CB4 resin mix - 1.150 1.116 
CB2-10% CaCO3  Bone 1.170 1.142 
Acrylic - 1.180 1.147 
CB2-30% CaCO3  Bone 1.340 1.285 
CB2-50% CaCO3  Bone 1.560 1.473 
SB3 Cortical bone 1.840 1.707 

 
The relationship between the HUs and electron densities for all the inserts is seen below in 

Figure 3.4.  These values were obtained during the commissioning of the Toshiba Aquilion 

LB 16 CT scanner.  
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Figure 3.4: The electron density to Hounsfield unit conversion  for the Toshiba Aquilion 
LB 16 CT scanner.  The uncertainties in the Hounsfield units are smaller than the 
symbol size. 

 
 

The RMI phantom was modelled with an IDL program (Appendix II) and written out in an 

*.egsphant file format.
50

 It was then converted to a *.ramp and *.density file that is used by 

the egs_cbct code for simulation.
51

 The phantom inserts were divided into three separate 

simulations because of the limitations of the *.egsphant file format.  All the inserts were 

placed in the middle of the phantom for simplicity. Diagrams of the phantoms can be seen in 

Figure 3.5. 

  
Figure 3.5: 3D view of the phantoms used to simulate the RMI phantom with 20 
inserts. 
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3.2.1.1 Egsphant file format and conversion 

The *.egsphant file is an ASCII file that contains information necessary for DOSXYZnrc to 

run a simulation with a phantom.  It contains information regarding the number of media in 

the phantom and their names, voxel numbers and sizes and material density information.  In 

Figure 3.6 below a slice of a head phantom can be seen. Each number represents a different 

material with a specific density. 

 
Figure 3.6:  The egsphant file consisting of numbers representing the different 
materials present.52  
 

To use the *.egsphant file in egs_cbct, it has to be converted to a *.density and *.ramp file.  

The *.density file is a binary file that contains the specifications of the phantom dimensions 

and the density in each voxel.  A *.ramp file is also needed to convert the densities to the 

correct interaction cross-sections for simulation.  

The CT unit was simulated in two steps. The first step consists of the BEAMnrc simulation as 

discussed in Chapter 2 and the second step includes the RMI phantom and bowtie filter 

simulation in egs_cbct. 

3.2.1.2 RMI phantom simulation 

The RMI phantoms seen in Figure 3.5 were simulated in egs_cbct, and the set-up without the 

bowtie filter can be seen in Figure 3.7 below.  A collimated point source was used with a 
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field size of 30 cm x 0.2 cm, source-to-axis distance (SAD) of 71.2 cm and source-to-surface 

distance (SSD) of 127.5 cm.  The values for the SAD and SSD were found in the 

specifications of the Toshiba Aquilion LB 16 CT.  A gadolinium oxysulfide (GdOS) detector 

was used with a resolution of 2 mm.   

 
Figure 3.7:  The simulation set-up for the RMI phantom with a SAD of 71.2 cm and SSD 
of 127.5 cm.53  
 
The output files from egs_cbct were then used for the reconstruction of the images.  The 

output file of egs_cbct is a binary file containing the detector signal from the primary 

photons, scattered photons or the combined signal from the primary and scattered photons 

(total signal).  The file can be opened with a program like ImageJ where the projection 

images can be viewed. 

3.2.1.3 Monte Carlo transport parameters in egs_cbct 

The XCOM photon cross-section compilation
54

 was used during the simulations.  Rayleigh 

scattering and Compton scattering with binding corrections were implemented.  The PCUT 

and ECUT values were 0.001 MeV and 1.000 MeV, respectively.  Electron transport was 

avoided by choosing a very high value for ECUT.  The efficiency of the primary signal 
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simulation was improved by using efficiency improving techniques (EIT) available in 

egs_cbct.  Since the EITs are aimed at improving scatter simulation efficiency, it was unclear 

if it would be suitable for primary signal simulations.  Forced detection, delta transport, 

denoising algorithm and path length transformation, as seen in the study by Thing et al., 
46

 

were explored.  Equation 3.2 was used to determine the mean relative error (MRE) to see if 

the techniques used introduced a biased result. 

       




N

i
i

ii

x

xx

N
MRE

1 0

01
                                                         3.2 

N is the number of detector pixels, xi  is the signal from pixel i  using the EITs and xi
0  is the 

signal without any EITs.  If the MRE value is smaller than the statistical uncertainty, the 

result is considered to be unbiased. 

The simulation is done with a ray-tracing algorithm that determines the attenuation through 

the phantom.  It is recommended that forced detection is implemented for all simulations in 

egs_cbct.  Delta transport is used for photons not aimed at the detector.  These photons are 

transported directly to the next interaction step by using the maximum interaction cross-

section provided by the user.  No boundary checks are needed for these photons as their 

contribution to the detector is assumed to be small.  The denoising algorithm uses a Savitzky-

Golay filter and three user-defined input values.  The first two are the maximum allowed 

denoising window size in one direction and two dimensions respectively. The third value is 

the threshold for the 
2 -test performed.

51
 A path length stretching technique is implemented 

in egs_cbct denoted by MFPTR.  This technique focuses on scattered photons but was added 

to see the effect on the primary signal. 
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3.2.1.4 Bowtie filter determination                                                    

The bowtie was modelled using the method proposed by Zhang et al.
55

 A brief description of 

the method is given below.  The method aims for uniform flux intensity on the detector by 

reducing the dynamic range. 

The minimum thickness of the filter, t0, was taken to be 1 mm. The change in intensity as an 

X-ray beam passes through an object with diameter D, can be expressed by the Beer-Lambert 

law: 

 
  


LD

I

I
ObjObjObj

 exp
)0(

                                                3.3 

Where )0(I  is the initial intensity of the beam and  I  the intensity after passing through 

the object at an angle  . 

To obtain a complete 3D reconstruction of an object, projections need to be acquired over an 

angular range of at least 180   plus the fan angle. Where the fan angle is calculated with: 

x
cm

cm
fan











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






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SDD 2

idthDetector w
tan2 11                                 3.4 

The SSD is the source-to-detector-distance of 127.5 cm.  The total arc used in this study was 

194 degrees. LObj is the length of the beam path as it crossed the object as in Figure 3.8, 

determined by: 

    sin
2

2
2

2

FAD
D

LObj









                                                   3.5 
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Where FAD is the focal spot to rotation axis distance. This leads to   DLObj 0 and the 

distance is corrected for the variance of the photon fluence using the inverse square law.  

Equation 3.3 becomes 

 
    

 




d

d
LD

I

I
ObjObjObj 2

2 0
.exp

)0(
                                                      3.6 

Where  d  is the total path length at  . Equation 3.6 becomes 

 
   


cos.exp

)0(

2
LD

I

I
ObjObjObj

                                                      3.7 

The attenuation profile should be equalised by the bowtie filter such that  I  is equal to 

 0I .  This requires that 

        1cos.exp 2
0   LLtD BTBTObjObjBTObj

                                  3.8 

Where LBT is the angular length of filtration and the linear attenuation coefficient of the 

bowtie is  BT .  By assuming   tLBT 00  , Equation 3.8 can be rearranged to 

      










BT

Obj

BT

Obj

BT LDtL
cosln2

0                                           3.9 

 
 

 

 

 

 
 

Figure 3.8: Angular length of 
filtration 

 

Figure 3.8: Path length through                                     
an object 
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The coordinates of the bowtie surface are determined with: 

   

    



cos

sintan

2

2

Lyy

Lyx

BT

BT




                                                        3.7 

The bowtie was modelled by using Equation 3.3 to 3.9 and consisted of aluminium, and the 

diameter of the RMI phantom was taken as 8.25 cm.  The dimensions of the phantom were 

reduced as part of a variance reduction technique. 

  A semi-infinite slab was varied in thickness from 1 to 10 cm consisting of water and 

aluminium to determine the linear attenuation coefficients  BT  
and Obj

 in DOSXYZnrc.  A 

parallel source from the energy spectrum falls in on the slab of material, and the dose is 

scored in water.  The simulation set-up is similar to the one used in Chapter 2 for the 

determination of the HVL.  The HVL for each material was determined with the same 

method as explained in Chapter 2. 

Forced detection was used and a ray-tracing calculation type to improve the efficiency of the 

primary signal simulation.  Efficiency improving techniques were used to further increase the 

efficiency as described by Thing et al.
46

 and 1x10
8 

histories were used for the simulation of 

the blank scan and attenuation scan of the phantom.  This resulted in a statistical uncertainty 

of 0.2%.  The complete simulation set-up of BEAMnrc and egs_cbct is seen below in Figure 

3.9. 
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Figure 3.9:  Simulation set-up for the complete CT simulation.  
 
 

3.2.1.5 Reconstruction algorithm software 

An FDK filtered backprojection reconstruction method was used to obtain reconstructed 

images from the simulated profiles by using the Open Source Cone-beam Reconstructor 

(OSCaR) software from the American Association of Physicists in Medicine (AAPM).
56

 It is 

a software package that is developed for computing three-dimensional reconstructions for 

projection image data obtained from cone-beam CT geometries.  The software includes a 

Graphical User Interface (GUI), and the MATLAB codes can be customised for your 

executions.  A few modifications were made to make it more suitable for the reconstruction 

of the RMI phantom by using the profile data from the fan beam configuration.  The software 

was then used for the reconstruction of the RMI phantom with different filters. 
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3.2.1.6 HU determination 

A region-of-interest (ROI) was drawn on each of the inserts on the reconstructed images, and 

the resulting pixel value was obtained.  The pixel value was then linked to the pre-known 

electron density of each insert.  The HUs versus electron density data from the 

commissioning of the Toshiba Aquilion LB 16 CT was available and is displayed in Figure 

3.3. 

3.3 Results & Discussion 

3.3.1 RMI phantom and bowtie filter modelling 

In Figure 3.10 below, the RMI phantom can be seen as displayed by egs_view in egs_cbct.  

IDL accurately modelled the phantom and the *.egsphant file.  All the inserts can be seen in 

egs_view that shows that the egsphant file was successfully converted to a *.ramp and 

*.density file.  

 
a)                                              
 
 
 
 
 
 
 
 
 
b) 
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c) 
Figure 3.10:  The RMI phantom with some of the inserts viewed from the a) x -axis b) z-
axis and c) y-axis.  
 
 

The calculated linear attenuation coefficients for aluminium and water was 2.554 cm
-1

 and 

0.402 cm
-1 

respectively and are in agreement with the values from the XCOM database for an 

average energy between 20 and 30 keV.
57

 These values for the average energy correlates with 

what is expected from the 120 kV energy spectrum derived in Chapter 2. The linear 

attenuation values were used to model the bowtie filter that can be seen below in Figure 3.11. 

 
Figure 3.11:  Bowtie filter model led for a phantom with an 8.25 cm radius. 5 5  
 

The central part of the filter is 1 mm and increases in thickness from the central axis.   
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3.3.2 Efficiency improving techniques 

The following results were obtained for the different efficiency improving techniques. The 

statistical uncertainties are calculated and given by the egs_cbct code. 

Table 3.2:  Results from the different efficiency improvement techniques.  Statistical 

uncertainty ( ) and mean relative error (MRE)  

Phantom Technique used Number of 
histories 

Computation 
time (h) 

 (%) Efficiency 
estimate 

MRE (%) 

RMI Baseline without 
any techniques 

 

1 x 108 0.965 0.214 62.563 0.0 

 Forced detection 1 x 108 0.871 0.214 69.319 0.04 

 Forced detection 
Delta transport  

 

1 x 108 0.540 0.214 111.798 3 x 10-3 

 Forced detection 
Delta transport  

MFPTR = 6.0 

1 x 108 0.520 0.214 116.104 1 x 10-3 

  
Forced detection 
Delta transport  

MFPTR = 6.0 
Denoising algorithm 

1 x 108 0.493 0.214 122.295 1 x 10-3 

 
 

The statistical uncertainty for all the techniques was the same, but there was a difference 

between the simulation time and the efficiency.  The most efficient simulation with the 

shortest simulation time and without any bias result was with forced detection, delta 

transport, an MFPTR value of 6 and the denoising algorithm.  By using these improving 

techniques the simulation time decreased from 0.965 hours to 0.493 hours resulting in a 49% 

decrease in simulation time. 

3.3.3 Reconstructed RMI phantoms 

In the images below the RMI phantom with the bowtie filter can be seen reconstructed with 

various filters. 
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Figure 3.12: The RMI phantom in Figure 3.10 reconstructed with (a) no filter, (b) Ram -
Lak filter, (c) Shepp-Logan filter, and (d) a low pass filter.  All of the images are shown 
with the same display settings. 5 3  

 

All of the inserts ranging from a density of 0.450 g/cm
3 

to 1.870 g/cm
3 

can clearly be seen.  

The inserts that appear black have a density smaller than water, and those appearing white 

have a density larger than water.  The Ram-Lak filter suppresses the low-frequency 

components, but amplifies the high frequencies and, as a result, amplifies the statistical noise 

in the simulated data.  The ring artifacts, especially in the middle of the phantom, can be due 

to some periodic noise that is present in each projection profile used for the reconstruction. 

The number of histories influences the statistical noise which in turn influences the image 

quality.  A small statistical variance is needed to obtain accurate signal-to-noise ratios.  High 

noise levels in the image will result in wrong pixel values which will influence the HU 

correlation.  Similar results were obtained for the other inserts. 

In Figure 3.13 below a profile through the RMI phantom can be seen that shows the 

performance of the bowtie filter.  The bowtie filter reduced the dynamic range on the detector 

and no cupping artifact is visible as seen below in Figure 3.13. 
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Figure 3.13:  Profile through the RMI phantom reconstructed with a low pass filte r.  
No cupping-effect can be seen after the use of the bowtie filter.  
 
 

Some inserts can be seen better than others as displayed in Figure 3.14 below.  The CaCO3 

(10 %) and CaCO3 (30 %) appears white and is clearly visible.  Inserts like the solid water 

(density of 1.02 g/cm3) is barely visible, corresponding to the true CT image of the RMI 

phantom. 

 
Figure 3.14:  The second RMI phantom reconstructed with a Shepp -Logan filter.  (The 
display parameters differ from those used in Figure 3.12) 
 

The correlation between the pixel values of the simulated data and the measured HUs from 

the Toshiba Aquilion LB 16 CT can be seen below in Figure 3.15.  The linear fit can be used 

to convert the pixel values to HUs.  The errors in the pixel values are indicated. 

Solid water 

CaCO3 (30%) 

CaCO3 (10%) 
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Figure 3.15:  Correlation between the simulated pixel values and the measured HU 
numbers.  The errors in the pixel values are indicated.  The 95% confidence levels are 
indicated by dashed lines.  The linear fit can be used to convert the simulated pixel 
values to HU numbers.  
 

The linear fit seen in Figure 3.15 above is used to convert the simulated pixel 

values to HU. 

In Figure 3.16, the correlation between the calculated HUs and the known relative electron 

density can be seen as well as the measured HUs and the known relative electron density 

values. 
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Figure 3.16: The conversion curve for electron density to Hounsfield un its for the 
Toshiba Aquilion LB 16 CT (solid line) and the simulated CT (dashed line). 5 3  

3.4 Conclusion 

MC simulations can lead to long computing hours, especially when a low statistical variance 

and high resolution is needed.  Advances in technology and the availability of high- 

performance computers have made it possible to achieve such results.  This chapter shows 

that the egs_cbct code can effectively simulate fan beam projection data although it is 

designed for scatter calculations in a CBCT set-up. 

The in-house developed IDL program used can successfully generate *.egsphant files that can 

be used for simulations.  The bowtie filter was modelled successfully and no cupping artifact 

was seen. Inserts with small density differences in comparison to water could be seen e.g. 

breast with a density of 0.98 g/cm
3
.  Good correlation was observed between the measured 

HUs and the calculated HUs from the simulated data.  The results from this chapter show that 

it is feasible to simulate a virtual CT and that it can be extended to further studies.   
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4.1 Introduction 

The breast is a modified sweat gland with its purpose being milk production.  By 

understanding its basic anatomy, it is easier to interpret mammography and dedicated breast 

CT images.
1,

 
2
 

The breast consists of three main structures:  the skin, the subcutaneous fat and the breast 

tissue.
3
 Underneath the breast is the pectoral muscle, which is also imaged during a 

mammogram.  The breast tissue consists of Cooper’s ligaments and fibrous strands that 

support the breast.
4
   This parenchyma or functional part of the breast consists of multiple 

segments, drained by lactiferous ducts.  The lactiferous ducts are concentrated beneath the 

nipple with a few major ducts draining into the nipple.  Each of these ducts drains a lobe that 

consists of multiple lobules.
5 
 

The Breast Imaging Reporting and Data System (BI-RADS) were established by the 

American College of Radiology in the mid-1990s.  This system consists of multiple 

categories which aid in the assessment of mammogram images.
6,7

 The description of tissue 

composition is based on the volume of glandular tissue relative to fat and is divided into four 

categories.  These range from almost purely fat to extremely dense and mainly glandular 

tissue.
8
 

Modelling and simulation are valuable tools for research purposes in the field of medical 

imaging.  They offer the possibility of exploring new techniques without the need for 

expensive equipment or patients.  In order to have accurate results, it is important to have 

realistic models that depict the true breast.  Simple mathematical models are commonly used 

for dosimetry simulations in breast phantoms.
9-12

 These phantoms usually consist of 

homogeneous material and lack the detail of real breast tissue.  Realistic 3D breast models 

have been developed
13-17

 for use in digital mammography and breast tomosynthesis 
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applications.
18-20

 Although these models can produce realistic mammograms, some of them 

are not suitable for more complex image modalities such as dedicated breast CT.  One of the 

options is to produce breast phantoms from real breast CT data
21-23

, but this leads to a single 

breast composition without the flexibility to alter it. 

In 2003 a methodology for 3D breast modelling was reported by Bliznakova et al. using a 

combination of 3D geometrical primitives and voxel matrices.
17

 In a further study, a general 

approach was presented for the simulation of compressed soft tissue.
24

 This software was 

used by multiple research organisations and led to a further development of a breast 

simulation software package to be used for research in the field of breast X-ray imaging.
25 

The software is capable of generating a 3D breast model, compress the model, model the X-

ray transport through the breast, produce and visualise the projection images.  Different 

breast components can be modelled such as the external shape, glandular tissue, adipose 

tissue, abnormalities and other components. 

Several studies have reported on the simulation of a dedicated breast CT with the MC 

codes.
26-28

 Over the past few years, there have been significant advances in detector 

technology and energy resolving or photon counting detectors are now a reality.  These 

detectors together with breast CT have been an active area of research and are worth 

exploring further.
29-31

 

Energy-resolving photon-counting detectors are capable of discriminating between different 

energies and producing multiple monoenergetic images from a single exposure.  These 

detectors rely on direct conversion sensors based on semiconductors such as silicon (Si)
32-36

 

and cadmium telluride (CdTe).
37-41

 CdTe is a promising semiconductor material for the use of 

detecting X-rays and gamma-rays.  It has a high atomic number and high quantum efficiency.  
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The difference between a conventional detector and a CdTe detector can be seen below in 

Figure 4.1. 

 
Figure 4.1:  The detection mechanisms of a conventional detector and a CdTe 
detector.42 
 

In a conventional detector, the X-rays are first converted into light that diffuses and spreads.  

In the CdTe detector, the X-rays move in a narrow path through the semiconductor leading to 

a sharp point-spread function and image.
42

  

Contrast agents such as iodine are often used to increase the contrast that aids in specific 

radiological based diagnosis.
43-46

 This increase, in contrast, exists when the contrast agents 

absorb the X-rays more efficiently.  The maximum contrast will be achieved when the energy 

of the X-rays are slightly above the K-edge peak of the contrast agent.  For iodine, this peak 

occurs at approximately 33.2 keV, and an energy bin at a slightly higher energy will receive a 

stronger signal.  

In this chapter, the feasibility of breast tissue differentiation will be explored when using a 

range of energies.  The BreastSimulator software
14,17,25

 is used to generate three breast 

models with varying tumour sizes and composition.  The models are then converted to a 
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format compatible with the egs_cbct code for the simulation of the projection images. The 

FDK reconstruction algorithm is then used for the reconstruction of the different images.  

4.2 Methods and Materials 

The pre-processor code for EGS (PEGS) generates cross-section data for the EGS code
47

  by 

using the selection of materials, their densities and energy cut-offs.
48

 

4.2.1 The PEGS file 

The elemental composition of the glandular and adipose tissue was taken from The 

International Commission on Radiation Units and Measurements (ICRU) Report 44
49

 and can 

be seen in Table 4.1 below.  It was used to calculate the PEGS photon interaction cross 

section data for the energy range between 1 keV and 200 keV to accurately simulate photon 

transport through the breast phantom.  The malignant tissue consisted of pork muscle as 

described in Section 4.2.3.   

Table 4.1:  Elemental composition of materials present in the breast phantoms  

Material H C N O Elements with Z>8 

Adipose tissue 
 

Glandular tissue 
 

Skin 
 

Malignant tissue 

11.4 
 

10.6 
 

10.0 
 

10.0 

59.8 
 

33.2 
 

20.4 
 

10.7 

0.7 
 

3.0 
 

4.2 
 

2.75 

27.8 
 

52.7 
 

64.5 
 

75 

Na(0.1), S(0.1), Cl(0.1) 
 

Na(0.1), P(0.1), S(0.2), Cl(0.1) 
 

Na(0.2), P(0.1), S(0.2), Cl(0.3), K(0.1) 
 

Cl(0.078) 

 

Adipose tissue consists of a protein matrix of supporting cells for the storage of lipid.  These 

lipids are a mixture of triglycerides and long-chain fatty acids.  Glandular tissue contains 

specialised fat and data are taken from post-menopausal women.  The skin consists of 2 

distinct layers and a connective-tissue layer.  A wide range of compositions are reported since 

it’s so difficult to distinguish between the different layers.
50
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4.2.2 Linear attenuation coefficient determination for the different tissues 

The linear attenuation coefficients are dependent on the tissue type and the energy.  The 

linear attenuation coefficients for all the different tissues in the breast phantom were 

calculated with egs_cbct simulations.  This was done to see if the linear attenuation 

coefficients of the different breast tissues used in this study correlate with that of the 

literature as seen below in Figure 4.2. 

 
Figure 4.2:  Variation of attenuation coefficient with tissue type and energy. 5 1  
 

The thickness of the material was varied, and the resulting signal for energies 20 keV to 65 

keV was scored with a CdTe detector.  The set-up is similar to that of the HVL in Chapter 2 

and can be seen below in Figure 4.3.  It was done in egs_cbct with a collimated source, a 

narrow-beam geometry and monoenergetic photons. 
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Figure 4.3: Simulation set-up in egs_cbct for the determination of the linear 
attenuation coefficients.  
 

The *.att.scan output file of egs_cbct contains the primary signal which is log-transformed 

and normalised to the incident flux of X-rays from the source and is given by Equation 4.1. 

Primary signal in detector element x
I

I p
.ln

0









                                                    4.1 

Where I p  is the detector signal from the primary photons and 0I  is the detector signal from 

the source without any attenuating material in the beam path.
52

 

The linear attenuation coefficient can, therefore, be determined by plotting the output signal 

from the *.att.scan file versus the thickness of material.  The slope of the straight line 

represents the linear attenuation coefficient of the particular tissue.  An example of the graph 

is seen below in Figure 4.4. 
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Figure 4.4: An example of the calculation of the linear attenuation coefficient from 
the simulation output of egs_cbct.  
 

The linear attenuation coefficients are also used in Chapter 6 for the tissue differentiation of 

the different breast tissues. 

4.2.3 Breast phantom modelling 

All the breast phantoms were simulated with the BreastSimulator software package.  All the 

phantoms were based on a small sized breast to reduce the radiation field needed for the 

simulations.  The external shape consisted of a semi-ellipsoid as seen below in Figure 4.5. 
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Figure 4.5:  External shape preview as seen in the BreastSimulator software.  
 

The semi-hyperboloid part is excluded when used for cone beam breast CT techniques.  The 

duct system consists of an arrangement of cylinders to form a tree with branches consisting of 

lactiferous ducts.  The duct configuration is arbitrary for each breast phantom simulation.  

The background texture usually consists of adipose, fibrous and connective tissues.  In this 

study, the background was taken to be adipose tissue since the compositional information 

regarding other non-glandular tissues is not available.  The Cooper’s ligaments are ellipsoid 

shells that are placed randomly in the breast.  The abnormalities were not modelled inside the 

BreastSimulator software but were placed at specific positions via an in-house developed IDL 

code.  The matrix sizes were 256 x 256 x 256, and the pixel size was 1 mm in all three main 

directions.  Dedicated breast CT is specifically aimed at the denser breast and therefore three 

phantoms were modelled, each with their own breast composition.  The composition of 

adipose- and glandular breast tissue were found in the ICRU 44.
49

 Pork muscle with a density 

of 1.066 g/cm
3
 was used as a substitute for breast cancer tissue as reported by previous 

studies.
53-56

 Each phantom consisted of Cooper’s ligaments, major ducts and lactiferous 
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ducts.  Three tumours were included ranging approximately from 4 mm to 8 mm in diameter 

and a fourth irregular shaped tumour.   

The breast configuration is written out in a binary file and read out with a MATLAB code.  

IDL was used to insert the tumours in various positions and write out the *.egsphant file.  

Some difficulties were found with the conversion of the tumour data from the binary file to 

the *.egsphant file, and therefore it was inserted manually in IDL.  The positions and the 

sizes of the different tumours can be chosen by the user.  A detailed explanation of the 

*.egsphant file format can be found in Chapter 3.  The *.egsphant file was then converted to a 

*.ramp and *.density file as discussed in Chapter 3 Section 3.2.1.1.  One of the malignant 

masses contained iodine contrast agent of 8 mg/mL as used in a previous study.
57

   The 

elemental information of the contrast agent was used to calculate the density for the 

generation of the PEGS file as shown below: 

0.008 x 4.93 g.cm
-3 

 + 0.992 x 1 g.cm
-3

 = 1.03144 g.cm
-3 

Where 0.8 and 99.2 represent the percentage iodine and water present respectively.  The 

density of the iodine was taken as 4.93 g/cm
3, 

and that of water is 1 g/cm
3
. The contrast agent 

consists of 0.8 % iodine and 99.2 % water. 

4.2.3.1 Phantom 1 

The first phantom consisted of 89% glandular tissue and 11% adipose tissue with five major 

ducts, five lactiferous ducts and ellipsoid structures with a radius of 3 mm, which represents 

the Cooper’s ligaments. A visualisation of the breast model can be seen below in Figure 4.6. 
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a)                                                             b)                                                   c) 

Figure 4.6:  Advanced visualisation of the breast phantom a) with Cooper’s ligaments 
and b) without Cooper’s ligaments.  (The green structures represent the Cooper’s 
ligaments, and the orange structures represent the ducts)  c) The front view of the 
breast displaying all the glandular tissue present.  
 

The phantom is seen in Figure 4.7 below. 

 
a) 
 

 
b) 
 

 
c) 
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d) 
Figure 4.7:  Slices through the breast phantom matrix.  Malignant masses are 
indicated by a red circle. a) A small mass is seen inside some glandular tissue. b) Two 
slices also consisting of malignant tissue and glandular tissue. c) The third mass inside 
the glandular tissue. d) An irregular sized mass surrounded by Cooper’s ligaments.  
 

4.2.3.2 Phantom 2 

The second phantom consisted of 71% glandular tissue and 29% adipose tissue with six 

major ducts, six lactiferous ducts and ellipsoid structures with a radius of 3 mm which 

represents the Cooper’s ligaments. A visualisation of the breast model can be seen below in 

Figure 4.8. 

 
          a)                                                                  b) 
Figure 4.8: Advanced visualisation of the breast phantom a) with Cooper’s ligaments 
and b) without Cooper’s ligaments.  (The green structures represent the Cooper’s 
ligaments, and the orange structures represent the ducts). c) It is clear that less 
ductal tissue is present in comparison with the first phantom in Figure 4.6. 
 

The phantom is seen in Figure 4.9 below. 
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a) 
 

 
b) 

 
c) 
 

 
d) 
Figure 4.9:  Slices through the breast phantom matrix.  Malignant masses are 
indicated by a red circle. a,b,c) Masses of different sizes present in the glandular 
tissue. d) Irregular mass present on two different slices of the breast.  
 

4.2.3.3 Phantom 3 

The third phantom consisted of 58% glandular tissue and 42% adipose tissue with six major 

ducts, six lactiferous ducts and ellipsoid structures with a radius of 5 mm which represents 

the Cooper's ligaments. A visualisation of the breast model can be seen below in Figure 4.10. 
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          a)                                                                  b) 
Figure 4.10: Advanced visualisation of the breast phantom a) with Cooper’s ligaments 
and b) without Cooper’s ligaments.  (The green structures represent the Cooper’s 
ligaments, and the orange structures represent the ducts)  c) This is the least dense 
breast with less glandular tissue than the breast compositions in Figure 4.6 and Figure 
4.8. 
 

The phantom is seen in Figure 4.11 below. 

 
a) 
 
 

 
b) 
 

 
c) 
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d) 
Figure 4.11:  Slices through the dense breast phantom matrix.  Malignant masses are 
indicated by a red circle. a,b,c) Masses of different sizes present in the glandular 
tissue. d) Irregular mass.  It can be seen that the Cooper’s ligaments are bigger than 
those present in the other two breast phantom.  
 

All the breast phantoms were simulated with monoenergetic energies ranging from 20 keV to 

65 keV in 5 keV increments.  The SAD was 55 cm, and the SSD was chosen so that the 

whole breast could be projected on a detector with voxel sizes of 0.08 cm. The simulation set-

up can be seen below in Figure 4.12.   

 
Figure 4.12: The simulation set-up for the simulation of the three breast phantoms.  
 

A CdTe detector with a pixel size of 0.08 cm was used for the acquisition of the images. 

4.2.4 Reconstruction of the images 

The same OSCaR software was used for the reconstruction as in Chapter 3 Section 3.2.1.5. 
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Projection images over a 360-degree arc were taken with 1 billion histories and a statistical 

variance below 1%. The projection images were reconstructed with the BreastSimulator 

software described in Section 4.2.3 of this chapter.  The OSCaR reconstruction software
58

 

was used for all the reconstructions with a Shepp-Logan filter and reconstruction voxels of 

0.05 cm.  The reconstructed images were then saved in binary format and read out with a 

MATLAB code.  Ring artifacts were present in the images and obscured the structures 

present.  This would lead to inaccurate results for the CNR.  The same blank (air) scan is used 

for each projection and noise at a specific position in the blank (air) scan will be 

backprojected in each projection leading to rings on the reconstructed image.  This is because 

the projection signal was divided by the air scan to get the final signal as seen in Equation 

4.1.  This cause for the ring artifacts was eliminated by using a different blank scan for each 

projection view and thereby adding statistical noise on the profiles opposed to systematic 

noise, which cancels out over a large number of projections.  This resulted in 360 projection 

views, each one normalised by its own blank (air) scan.  The ring artifacts were still present 

after the reconstruction, and it was concluded that it was not caused by the noise in the blank 

(air) scan.  Sinograms were constructed for each slice through the phantom to see if the origin 

of the artifacts can be seen. An example of a sinogram can be seen below in Figure 4.13.  

 
Figure 4.13:  As the X-ray beam rotates around the object, different 1D projection 
profiles are obtained.  The profiles of the same slice for each angle can be placed in a 
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2D space to form a sinogram. Each row represent the same projection profile of the 
image but at a different angle. 5 9  
 

In Figure 4.14 the sinogram of a phantom consisting of two inserts can be seen.  As the X-ray 

beam rotates around the phantom, the inserts will move in a sinusoidal pattern in the 

sinogram. 

 
Figure 4.14:  A) A phantom with two round inserts.B) The resulting sinogram with the 
two inserts clearly visible.5 9  
 

According to a tutorial by Mark Rivers
60

, a vertical stripe on the sinogram will be 

backprojected as a half cylinder centred on the rotation axis.  

The method proposed by Mark Rivers
60

 was used to suppress the ring artifacts. The method, 

as seen in the tutorial, is explained below and was done with an in-house developed IDL 

program (see Appendix III). 

1. The columns, which represent a specific point on the projection profile, were summed and 

divided by the number of rows (represents the degrees).  Very little high frequencies should 

be present as a real object will move in the sinogram as seen in Figure 4.14 above. 

2. A smooth version of the average row values was then subtracted from the raw average row 

values. 

3. The result from step 2 was then subtracted from each row, and the information from the 

resulting sinogram was used for the reconstruction. This results in a sinogram with much less 

vertical striping. 
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The final images were then used for the determination of the CNR. 

4.2.5 CNR determination for all the images 

  An in-house developed IDL code was used to determine the CNR of the images acquired at 

the different photon energies.  The breast phantoms were used as a reference to ensure the 

ROIs were drawn in at the correct positions.  The Canny edge detection algorithm in 

MATLAB was used to determine exactly where the structures were situated in the phantoms.  

The edge detection image was then superimposed onto the reconstructed image, and the ROIs 

positions were determined for each phantom as seen in Figure 4.15.  

 
a) 

 
b) 
Figure 4.15: Left) Reconstructed image. Middle) image with edge detection. Right) 
edge detection superimposed onto the reconstructed image. a) A section of the 
reconstructed image of phantom 1.  From the first image, it is unclear where the 
border of the glandular tissue is.  With the blended image on the right, the border is 
clearly visible. b) A section of the reconstructed image of phantom 3.  The blended 
image clearly indicates the outline of the glandular structure.  
 
 

The Canny edge detection algorithm was developed by John F. Canny in 1986 and is 

considered as one of the most strictly defined methods for structural detection.
61

 In some 

cases, the noise in the background was also detected, and the Sobel method
62

 was used 

instead as seen in Figure 4.16.  

https://en.wikipedia.org/wiki/John_F._Canny
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a)                                            b)                                           c) 
Figure 4.16:  a) The reconstructed image from the breast phantom with noise present 
in the central region of the image. b) Canny edge detection algorithm is detecting all 
the noise and non-uniformities in the background of the  image. c) Sobel edge 
detection method is only detecting the structural parts of the phantom that is used 
for the ROI determination.  
 
 

The most common equation for CNR in digital imaging is given by Equation 4.2 below. 

 b

bT SS
CNR




                                                                    4.2 

Where ST represents the signal in the tissue, in this case, the malignant tissue and Sb denotes 

the background signal, in this case, the glandular tissue.  The standard deviation in the 

background signal is given by σb.  If Equation 4.2 is used for the CNR calculation with 

irregular tissue being the background, it will lead to large standard deviations in its ROI pixel 

counts.  The malignant tissue, on the other hand, consists of spheres and the signal can be 

accurately determined through certain ROI regions.  In Figure 4.17 below the variation in the 

glandular signal can be seen.   
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Figure 4.17: The variation of the signal through glandular tissue i ndicated by the red 
line.   
 

It was decided to use Equation 4.3 below to determine the CNR.
63

 

 o

bT SS
CNR




                                                                4.3 

ST and Sb still represent the signal in the two tissues being compared but the standard 

deviation is taken in a uniform background region, in this case, the adipose tissue as seen 

below in Figure 4.18. 

 
Figure 4.18:  Positions of the background ROI in uniform adipose tissue.  
 

Standard deviation values as large as 100 were found for the glandular tissue using Equation 

4.2.  The standard deviation for background regions used in Equation 4.3 had values ranging 

from 2 to 5. 
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An in-house developed IDL code was used to determine the mean pixel values in the ROIs.  

The program was completely automatic without any user input or inconsistency between the 

different energies.  The program consisted of the following steps: 

1) ROI position determination using edge detection to ensure the regions were in the 

correct position. 

2) A mask was constructed that has a value of 1 inside the specific structure and 0 

outside the structure.  A for-loop was used to record the pixel values in the areas with 

a number of 1. 

3) The mean pixel values were determined for the two ROIs. 

4) The background region as described with Equation 4.3, consisted of 4 ROIs in 

uniform background areas.  The standard deviation was taken as the average standard 

deviation in the four regions.  The background regions were placed in areas not too 

close to the periphery or areas with pronounced ring artifacts. 

The CNR for the same phantom and slice position were compared with one another at 

different energies. 

4.2.6 Image correlation between the breast phantom and reconstructed image 

The reconstructed images were compared to the breast phantom to determine the accuracy of 

the simulation and reconstruction process.  The pixel size and resolution of the two datasets 

differ, and therefore the comparison could not be done on a pixel by pixel basis.  An 

alternative method was used where the structures in the phantom were compared with those 

in the reconstructed images. 
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Automatic feature matching in MATLAB was used to ensure the two datasets, the phantom 

and the reconstructed image, were the same size before comparing them. The method is 

shown in the Figure 4.19 below. 

 
Figure 4.19:  The method used to scale both datasets to the same size and orientation.  
 

A composite image of the breast phantom and scaled reconstructed image was made to see if 

the structures in the images correlate with one another.   
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4.3 Results and Discussion 

4.3.1   Linear attenuation coefficients for the different tissues 

The linear attenuation coefficients for all the tissues can be seen below in Figure 4.20.  The 

shape of the graph correlates well with the one seen in Figure 4.2.  When looking at the 

graph, it is expected that the maximum CNR will be seen for a low energy of 20 keV and that 

it will decrease as the energy increases.  This is by assuming that the noise levels for all the 

energies are the same.  At energies 40 keV up to 65 keV, the decrease in the CNR should be 

more gradually as depicted in Figure 4.23.  The maximum CNR for the iodine contrast should 

be seen just above the K-edge peak at 34-35 keV.  When looking at the Figure below it is 

seen that the difference between the iodine contrast and glandular tissue increases from 20 

keV and upwards. 

 
Figure 4.20:  The linear attenuation coefficients for the different tissues for energies 
from 20 keV.  The K-absorption edge of iodine can be seen at 33 keV.  
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4.3.2   Reconstruction and ring artifact correction 

Some of the projection images obtained through the simulations of the egs_cbct code are seen 

below in Figure 4.21. 

 
Figure 4.21: Left) The projection image for a gantry angle of 0 ᵒ. (The white spots 
encircled in black are markers used for orientation purposes.) Right)  By changing the 
display parameters the Cooper’s ligaments can be seen as oval structures encircled in 
red.  
 
The reconstructed images and their sinograms without the ring artifact correction are seen 

below in Figure 4.22.  Vertical lines on the sinograms that result in the rings are indicated by 

red arrows.  Both of the sinograms are shown with the same display parameters. 

 

 
Figure 4.22:  Reconstructed image with ring artifacts and a sinogram of the specific 
slice. 
 
 

Images of the same slices as in Figure 4.22 are seen below with the ring artifact correction. 
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Figure 4.23:  Reconstructed image with a ring artifact correction and a sinogram 
where the vertical lines are less pro nounced. 
 

When comparing the two sinograms, it can be seen that the vertical lines present are 

suppressed by the correction method. 

4.3.2.1 Phantom 1 

The following images were obtained after FDK reconstruction with voxel sizes of 0.05 cm 

and a Shepp-Logan filter.  All of the images are shown with the same display parameters. 
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Figure 4.24:  A reconstructed slice through phantom 1 consisting of glandular and 
malignant tissue (see Figure 4.7 b) for energies 20 keV to 65 keV.  The contrast is 
better for the lower energies, and the structures are also seen in the sinograms.  
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Figure 4.25:  A reconstructed slice through phantom 1 consisting of glandular and 
malignant tissue containing 8mg/mL iodine (see Figure 4.7 c) for energies 20 keV to 65 
keV.  There occurs a sharp increase in the contrast between the iodinated malignant 
and glandular tissue slightly above the absorption edge of iodine.  
 

4.3.2.2 Phantom 2 

The following images were obtained after FDK reconstruction with voxel sizes of 0.05 cm 

and a Shepp-Logan filter.  All of the images are shown with the same display parameters 
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Figure 4.26:  A reconstructed slice through phantom 2 consisting of glandular and 
malignant tissue (see Figure 4.9 d) for energies 20 keV to 65 keV.  The contrast is 
better for the lower energies, and the structures are also seen in the sinograms.  All 
of the Cooper's ligaments are clearly visible at the lower energies but from 55 keV and 
upwards it is hard to distinguish them from the surrounding structures.  
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Figure 4.27:  A reconstructed slice through phantom 2 consisting of glandular and 
malignant tissue containing 8mg/mL iodine (see Figure 4.9 c) for energies 20 keV to 65 
keV.  There occurs a sharp increase in the contrast between the iodinated malignant 
and glandular tissue slightly above the absorption edge of iodine.  The malignant 
tissue with iodine produces a pronounced sinusoidal wave above 35 keV and is clearly 
visible.   
 

4.3.2.3 Phantom 3 

The following images were obtained after FDK reconstruction with voxel sizes of 0.05 cm 

and a Shepp-Logan filter.  All of the images are shown with the same display parameters. 
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Figure 4.28:  A reconstructed slice through phantom 3 consisting of glandular and 
malignant tissue (see Figure 4.11 b) for energies 20 keV to 65 keV.  The contrast is 
better for the lower energies, and the structures are also seen in the sinograms.  At 
the lower energies the malignant mass in clearly visible inside a Cooper's ligament.  
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Figure 4.29:  A reconstructed slice through phantom 3 consisting of glandular and 
malignant tissue (see Figure 4.11 c) for energies 20 keV to 65 keV.  The contrast is 
better for the lower energies, and the structures are also seen in the sinograms.  At 
the lower energies the malignant mass in clearly visible inside a Cooper's ligament.  
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Figure 4.30:  A reconstructed slice through phantom 3 consisting of glandular and 
malignant tissue containing 8mg/mL iodine (see Figure 4.11 d) for energies 20 keV to 
65 keV.  There occurs a sharp increase in the contrast between the iodinated 
malignant and glandular tissue slightly above the absorption edge of iodine.  At 20 
keV the small malignant mass cannot be distinguished from the background structures 
and is also not visible in the sinogram.  
 

The CNRs were calculated for all the images displayed from Figure 4.24 to 4.30 by using the 

method explained in Section 4.2.5.  The CNRs for phantom 1 to 3 without any contrast agent 

is seen below (information regarding the phantom glandularities can be seen in Section 

4.2.3.1 to 4.2.3.3. above). 
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Figure 4.31:  The CNRs for the malignant and glandular tissue for all three the 
phantoms without any contrast agent.  The energies range from 20 keV to 65 keV.  The 
uncertainties in the CNR values are indicated. 
 

The differences seen between the different phantoms in Figure 4.31 depict that the 

glandularity of the phantoms have an effect on the resulting CNRs.  This can be caused by the 

structures and amount of tissue that has to be transversed by the X-ray beam in each 

phantom.  Phantom 1 represents a dense breast and the X-ray beam has to transverse dense 

glandular tissue, leading to low CNR’s.  The opposite happens for phantom 3 consisting of a 

large amount of fatty tissue.  In Figure 4.32 below the CNRs for all three phantoms can be 

seen with contrast agents. 
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Figure 4.32:  The CNRs for the malignant and glandular tissue for all three the 
phantoms with contrast agent.  The energies range from 20 keV to 65 keV.  The 
uncertainties in the CNR values are indicated.  The error bars for phantom 2 is smaller 
than the symbol size. 
 

The lowest CNRs are seen for phantom 3 which is the least dense phantom. This result 

contradicts the results found in Figure 4.31.  A possible reason could be that the location of 

the malignant mass makes it difficult to get an accurate ROI.  In Figure 4.33 below it can be 

seen that very little glandular tissue surrounds the mass and it could be that there was an error 

in the ROI’s.  This could lead to inaccurate ROI values and a CNR that is lower than 

expected. 

 
Figure 4.33:  The position of the malignant mass with iodine contrast.  
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The reason for the increase in the CNR at 35 keV is due to the sharp increase in absorption 

just above the K-edge energy of 33.17 keV.  The CNRs obtained in Figure 4.32 correlate well 

with what is seen for the linear attenuation coefficients seen in Figure 4.23. 

4.3.3 Image correlation between the breast phantom and reconstructed image. 

Image matching was done before image correlation to ensure the two data sets are the same 

size.  It was done with the help of an in-house developed MATLAB code as described in 

Section 4.2.6.  The breast phantom had voxel sizes of 0.1 cm, and the detector had pixel sizes 

of 0.08 cm.  The reconstruction was done with a resolution of 0.05 cm, so some discrepancies 

were expected.  Below the image of the breast phantom can be seen next to the reconstructed 

slice.  

 
Figure 4.34: Left) Breast phantom slice. Right) Reconstructed slice  
 

It seems like the two images are the same size but an offset can be seen when superimposing 

them into one image.  The one data set is displayed with green and the other one with red.  

The yellow parts indicate where there is a match between the two dataset structures. 
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Figure 4.35: Superimposition of the two images.  An offset can be seen between them 
in the vertical direction.  
 

Locations of corresponding points between the two images were detected. 

 
Figure 4.36:  Points of matching features between the two image data sets.  
 

The inverse transformation matrix was calculated, and the reconstructed image was 

transformed to match the size of the breast phantom slice image.  The difference in scale was 

1.0229, and a slight difference in rotation of 0.0252 degrees was detected.  The two images 

after the transformation can be seen below. 

 
Figure 4.37:  Left) Breast phantom slice. Right) Transformed reconstructed slice.  
 

Even though they are the same size and some features correlate between them it does not 

mean that all the structures seen in the breast phantom slice are present after the simulation 
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and reconstruction process.  The breast phantom slice and the reconstructed image were 

superimposed once again to see if all the structures overlap. 

 
Figure 4.38:  The superimposition of the breast phantom slice and the transformed 
reconstructed slice.  It can be seen that there is a good correlation between the 
structures present in both images.  
 

From the image above it can be seen that all the glandular and malignant tissue are present in 

the reconstructed image.  The same was done for two other slices, and the results are seen 

below. 

 
Figure 4.39: Left) Breast phantom slice. Right) Reconstructed slice  
 

 
Figure 4.40: Superimposition of the two images shows that there is a good correlation 
between the structures in the two image data sets. 
 
There are, however, discrepancies between some of the breast phantom slices and the 

corresponding reconstructed images.  The reason for this is that the resolution of the breast 
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phantom and the reconstructed image are different and there can exist a slight offset in the 

slice position.  In Figure 4.41 below there are some glandular tissue differences between the 

two images indicated by red circles.   This shows that the slice position for the two data sets 

is not at the same position.  

 
Figure 4.41: Left) Breast phantom slice. Right)  Reconstructed image slice.  Some small 
differences can be seen in the glandular tissue. This can be because the two images 
are not at the same slice position.  

4.4 Conclusion 

It was shown that a better contrast is seen between the malignant tissue and glandular tissue 

at lower energies.  For phantom 1 the contrast difference between 20 keV and 65 keV was 

6.43, phantom 2 was 5.7, and phantom 3 was 5.99.  The decrease in CNR as the energy 

increases correlate well with the linear attenuation coefficient values obtained for the 

different tissue types at different energies.  The BreastSimulator Software is a valuable tool 

for modelling breast phantoms based on clinical data.  The OSCaR reconstruction software 

can accurately reconstruct the projection data obtained from egs_cbct simulations since good 

correlation was found between the breast phantom and the reconstructed images.  Small 

glandular structures that were in the phantoms were also visible in the reconstructed images.  

Small discrepancies exist due to the differences in resolution for the two datasets.  The ring 

artifacts present in the reconstructed images can obscure the ROI and lead to inaccurate 

results for the CNR.  The rings in the images can lead to higher or lower ROI values and the 

subsequent CNR calculated will not represent the true CNR of the image.  The method 
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proposed by Mark Rivers to remove the ring artifacts is easy to implement and sufficient in 

most cases.  The CNR for the lower energies were at the least 2.5 times higher as for, the 

higher energies.  This leads to better tumour detection and makes the idea of multiple-energy 

CT feasible.  In multiple-energy CT a range of images can be obtained with a single image 

acquisition.  The patient can be exposed to a single energy spectrum that will result in an 

acceptable dose while acquiring low energy images with high CNRs.  If a single low energy 

is used for image acquisition to achieve a high CNR, the dose to the patient will be 

unacceptably high.  Therefore multiple-energy CT is a promising technique that can lead to 

high CNRs within acceptable dose ranges.  If contrast agents are not available for use, then 

multiple-energy CT will still result in 2.5-3 times better CNRs that the conventional methods 

currently used.  A high CNR was still achieved for the breast consisting of 89 % glandular 

tissue and the tumours were still clearly visible.   
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5.1 Introduction 

Photon counting detectors have been investigated for lesion detection in breast CT over the 

past few years.
1-5

   One of the advantages is that this detector assigns equal weight to all the 

photons and optimal weighting schemes can be developed to maximise the CNR. These 

weighting schemes involve giving different energy bins different weights producing a 

combined image with a maximum CNR.  Two methods can be employed and involve either 

weighting of the projection data in each energy bin before image reconstruction or weighting 

the images obtained at each energy bin interval and then combining them.  In previous 

studies, projection-based energy weighting schemes have been applied to CT data.
6-10

   The 

energy bins are weighted and combined before log normalisation and reconstruction. The 

signal from the detector is log normalised with a blank air scan as discussed in Chapter 4 

Section 4.2.2.  A CNR increase was found in these studies by assigning a higher weight to the 

images obtained from projection data for photons of lower energies.   

Niederholder et al. first proposed an image-based energy weighting scheme with results 

comparable to projection-based energy weighting. They found a reduction in the cupping 

effect by applying the weighting after reconstruction and also an increase in the image 

quality.
11

 The weighting is done after the first step of reconstruction by using the Downhill-

Simplex method which is a trial algorithm that finds the optimum weighting function.
12

 In 

image-based energy weighting, the weights are applied to the reconstructed images and then 

combined.  In another study by Schmidt et al.
13

 the weights are calculated analytically to 

maximise the CNR for a combined image obtained by a summation of individually weighted 

images obtained from multiple energy bins.  Specific data regarding the projections or images 

are needed that is not always feasible to acquire. For example, the length of the contrast 

material in the phantom is needed for the projection-based weighting,
13

 which is easy to 

obtain when dealing with a simple phantom with known inserts.  It is however quite difficult 
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to obtain this length when looking at a breast phantom based on clinical data.  The structures 

have random shapes, and the length will vary for each projection.  For the currently proposed 

image-based optimal energy weighting method the reconstructed linear attenuation 

coefficients are needed for the material for which the CNR is calculated and for the 

background.  These values are used to define the absolute contrast between the two materials 

mentioned.  Depending on the reconstruction algorithm used and the processing of the 

images, the pixel values in the images may not represent the attenuation coefficients at all.  In 

another study by Le et al.,
14

 a spectral model was used for the calculation of the weighting 

factors for projection-based energy weighting.  For the image-based energy weighting 

method, the effective linear attenuation coefficients were used that were calculated by using 

the material thicknesses.  Both these studies are limited to phantom studies with simple 

geometries but are difficult to apply to other more complex geometries, such as the breast 

phantoms found in this study. 

In this chapter an alternative method was explored that may be applicable to more complex 

cases.  The first approach is a trial method without needing any prior information such as the 

effective attenuation coefficient or length of the contrast material.  It is an image-based 

energy weighting method that uses random weights and the images from several energy bins 

to optimise the CNR.  This method is further improved by using the weights based on the 

CNRs of the different energies used.  Weighted energy-resolved data is a further 

improvement on photon-counting detectors and aids in constructing an image with the highest 

CNR achievable.
6,15

 

5.2 Methods & Materials 

Multiple reconstructed images were obtained for energies ranging from 20 keV to 65 keV as 

seen in Chapter 4.   
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Two alternative methods of image-based energy weighting were explored to improve the 

CNRs found in Chapter 4. 

5.2.1 Method 1: Trial method  

The first method is based on a trial method in IDL.  The lack of requiring additional 

information such as the effective linear attenuation coefficients or length of structures may 

make this method more applicable to complex phantoms.  No user input is required during 

the calculation of the weighting factors and the time of computation depends on the number 

of trials. A typical number of trials could be 1000. 

For a series of images in the breast phantom, the first step is to determine random weights for 

each image and their associated energy bin.  Each image is then multiplied by its own random 

weight factor, and all of them are summed to form a combined image. These weight factors 

are arbitrary numbers between 0 and 1 and are calculated with the RANDOMU function in 

IDL.
16

 The ROIs values are then determined as explained in Chapter 4, and the CNRs are 

calculated with Equation 4.3.  The CNR of the combined image calculated with Equation 

5.1
14

 is seen below. 
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                                                                 5.1 

Where Ce  is the absolute contrast between the malignant, ROIm , and glandular tissue, ROI g  

for each image for all the different energies.  

ROIROIC gme                                                                       5.2 
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 The standard deviation in the background of each of these images is given by  b , and the 

weighting factor for each energy is we .  An example of the background ROI positions is seen 

below and also in Chapter 4. 

 
Figure 4.18:  Positions of the background ROI in uniform adipose tissue.  
 

A schematic of the process is given in Figure 5.1 below.  The CNRtot  was calculated, and the 

maximum value was saved, CNR tot)max( .  The corresponding weighting factors of the final 

CNR tot)max(  were considered as being the most optimal for the specific set of images.  The 

number of trials depends on the user and the computation power available.  This is considered 

as a post-processing procedure and does not affect the time the patient needs to be imaged.  

On a standard computer with a 2.4 GHz processor, it can take up to a few hours.  This time 

can be reduced with the use of a supercomputer with parallel processing that has a high level 

of computing performance.  
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Figure 5.1:  Schematic of the iterative process of maximising the CNR for a set of 
images acquired at different energies.  
 

This weighting scheme was applied to all the images acquired in Chapter 4, and the results 

are seen in the next section.  The combined CNR was calculated with weighting factors of 1 

for each energy and then compared to that with weighting factors calculated with the iterative 

method 

5.2.2 Method 2: CNR based constraints 

As seen in Chapter 4, the lower energies have higher CNRs than the higher energies.  This 

concept has been used in previous studies to determine weighting factors as discussed in the 

introduction of this chapter.  An improvement on the method explored in Section 5.1 was 

done by also utilising the CNRs but without needing any prior information regarding the 

images. 
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The weighting factors for the different energy bins were devised from the CNRs acquired in 

Chapter 4.  This ensured that the lower energies obtain high weighting factors that decrease 

as the energy increases.  The energy with the highest CNR gets a weighting factor of 1 and 

the rest of the weighting factors are determined with Equation 5.3 below. 

1
max











CNR

CNR
w

i
i                                                                5.3 

Where wi  is the weighting factor for energy bin i, CNRi  is the CNR for energy bin i and 

CNRmax is the maximum CNR out of all the energies. If bin i has a CNR value, CNRi ,  of e.g 

5.2 and the maximum CNR, CNRmax , for all the bins is 8 then the weighting factor for bin i 

will be: 

                                                    65.01
8

2.5









wi                                                         5.4 

  The same method was followed for the images containing the iodine contrast.  

5.3 Results & Discussion 

The following results up to Figure 5.4 show the distribution of the CNRs found with different 

amounts of trials.  This was done to determine the effect of the number of trials on the CNR. 
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Figure 5.2:  The CNR distribution after 100 trials.  
 

 
Figure 5.3:  The CNR distribution after 1000 trials.  
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Figure 5.4:  The CNR distribution after 5000 trials.  
 

It can be seen from the figures above that the resulting CNRs are completely random and that 

no number of trials will result in an optimal solution. As seen in Figure 5.5 below, more trials 

will increase the frequency of CNRs between 7 and 17 but will not necessarily result in a 

higher CNR. 
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Figure 5.5:  The CNR Gaussian distribution after 5000 trials.  
 

The following results up to Figure 5.13 include the CNRs and weighting factors obtained 

after 100 trials.  

5.3.1 Phantom 1 

This phantom consisted of 89% glandular tissue and 11% adipose tissue as discussed in 

Chapter 4.  In the Figure below 100 CNRtot  values with the maximum and minimum values 

are seen.  Figure 5.8 shows the weighting factors for the maximum CNR and the minimum 

CNR after 100 trials.  These weighting factors are used to scale the individual images 

obtained from projection data at the relevant energy bins and then summed to yield the image 

with either the lowest or the highest CNR. 
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Figure 5.6: The combined CNRs obtained with 100 trials and 100 sets of weighting 
factors.  The error bars for the CNRs are smaller than the symbol  size. 

 

The histogram of the CNR distribution is seen below in Figure 5.7. 

 
Figure 5.7:  A histogram distribution of the CNRs.  
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Figure 5.8:  The weighting factors for the maximum CNR and the minimum CNR after 
100 trials.  
 

In Figure 5.6 the maximum CNR after 100 trials was 16.8 ± 0.125 and the minimum CNR 

was 6.57 ± 0.102.   This was calculated in the resulting images from weighting factors 

obtained in Figure 5.8. For the maximum CNR, the highest weight was assigned to the 

second lowest energy.  For the minimum CNR, the highest weight was assigned to the 

highest energy with the lowest CNR.  

The following results were obtained for phantom 1 with 0.8mg/mL iodine contrast. 
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Figure 5.9: The combined CNRs obtained with 100 trials and 100 sets of weighting 
factors for the phantom containing iodine contr ast. The error bars for the CNRs are 
smaller than the symbol size.   

 

The histogram of the CNR distribution is seen below in Figure 5.10.  
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Figure 5.10:  A histogram distribution of the CNRs.  
 
 

Figure 5.11 shows the weighting factors that give rise to the maximum and minimum CNR 

images respectively.   
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Figure 5.11: The weighting factors for the maximum CNR and the minimum CNR for the 
phantom containing iodine contrast . 
 

For the maximum combined CNR of 71.87 ± 0.256, the highest weighting factor was 

obtained for the 35 keV slightly above the K-edge absorption peak and also in the 45 keV 

bin.  For the minimum CNR of 34.72 ± 0.312, the 35 keV has a very low weighting factor 

that will result in an overall low CNR. 

5.3.2 Phantom 2 

This phantom consisted of 71% glandular tissue and 29% adipose tissue as discussed in 

Chapter 4.  In the Figure below 100 CNRtot  values with the maximum and minimum values 

are seen.  Figure 5.14 shows the weighting factors for the maximum CNR and the minimum 

CNR. 

 
Figure 5.12: The combined CNRs obtained with 100 trials and 100 sets of weighting 
factors for Phantom 2. The error bars for the CNRs are smaller than the symbol size.  
 

The histogram of the CNR distribution is seen below in Figure 5.13. 
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Figure 5.13:  A histogram of the distribution of the CNRs.  
 

 
Figure 5.14:  The weighting factors for the maximum CNR and the minimum CNR.  
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The maximum combined CNR after 100 trials were 15.63 ± 0.122 and the minimum 

combined CNR was 4.13 ± 0.145.   

The following results were obtained for phantom 2 with 0.8mg/mL iodine contrast. 

 
Figure 5.15:  The combined CNRs obtained with 100 trials and 100 sets of weighting 
factors for the phantom containing iodine contr ast. The error bars for the CNRs are 
smaller than the symbol size.  

 

The histogram of the CNR distribution is seen below in Figure 5.16.  
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Figure 5.16:  A histogram of the distribution of the CNRs.  
 
 

 
Figure 5.17: The weighting factors for the maximum CNR and the minimum CNR for the 
phantom containing iodine contrast.  
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For the minimum CNR of 27.84 ± 0.105, the lowest weighting factor occurs at the 35 keV 

just after the K-edge absorption peak.  The highest CNR of 86.28 ± 0.201 has a high 

weighting factor at 35 keV and the lowest one at a high energy of 60 keV.  

5.3.3 Phantom 3 

This phantom consisted of 58% glandular tissue and 42% adipose tissue as discussed in 

Chapter 4.  In Figure 5.18 below 100 CNRtot  values with the maximum and minimum values 

are seen.  Figure 5.20 shows the weighting factors for the maximum combined CNR and the 

minimum combined CNR. 

 
Figure 5.18: The combined CNRs obtained with 100 trials and 100 sets of weighting 
factors. The error bars for the CNRs are smaller than the symbol size.  

 

The histogram of the CNR distribution is seen below in Figure 5.19. 
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Figure 5.19:  A histogram distribution of the CNRs.  
 
 

  
Figure 5.20:  The weighting factors for the maximum CNR and the minimum CNR.  
 
The maximum combined CNR after 100 trials were 15.53 ± 0.134 and the minimum 

combined CNR was 8.79 ± 0.215.  The weightings factors for the maximum CNR correlate 
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well with that suggested in the literature except for the high weighting factors at 55 and 65 

keV.   

The following results were obtained for phantom 3 with 0.8mg/mL iodine contrast. 

 
Figure 5.21:  The combined CNRs obtained with 100 trials and 100 sets of weighting 
factors for the phantom containing iodine contra st.  The error bars for the CNRs are 
smaller than the symbol size.  

 

The histogram of the CNR distribution is seen below in Figure 5.22.   
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Figure 5.22:  A histogram distribution of the CNRs.  
 
 

 
Figure 5.23: The weighting factors for the maximum CNR and the minimum CNR for the 
phantom containing iodine contrast.  
 



CHAPTER 5: ENERGY WEIGHTING TO IMPROVE IMAGE QUALITY 

139 

 

The highest weighting factor for the maximum CNR of 49.31 ± 0.115 occurs just above the 

K-edge absorption peak.  The highest weighting factors for the minimum CNR of 15.57 ± 

0.238 are at the lower energy of 20 keV and 45 keV which will lead to a suppressed CNR. 

The weighting factors after 10000 trials for the three phantoms are seen below in Figure 5.24. 

 
Figure 5.24:  The optimal weighting factors after 10000 trials for the three phantoms.  
 

It is seen in Figure 5.24 that for even a large number of trials large weights are sometimes 

given to higher energies as seen for phantom 3.  This might lead to a less optimal CNR 

because the higher energies have smaller CNR.   

 



CHAPTER 5: ENERGY WEIGHTING TO IMPROVE IMAGE QUALITY 

140 

 

 
Figure 5.25:  The optimal weighting factors for the iodine after 10000 trials for the 
three phantoms. 
 

The maximum weighting factors are given to the 35 keV energy that is just above the K-edge 

of iodine.  Lower weights are given to the lower energies, and the weighting factors decrease 

as the energy increases above 35 keV. 

It can be seen from the above figures that if larger weights are applied to the lower energies, 

higher CNRs are obtained.  The above method is however not ideal since low weights are 

sometimes applied to the lower energies and vice versa for the higher energies.  Even though 

no prior information is needed for this method, the number of trials needed for an optimal 

solution is unclear.  High or low CNRs are obtained with this iterative method.  A further 

improvement on this method, as discussed in Section 5.2.2, is needed to make it more 

feasible to determine the optimal weighting factors. 
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5.3.4 Method 2: Results 

The following weighting factors were obtained for the different phantoms by using Equation 

5.3. 

 
Figure 5.26:  The weighting factors based on the CNRs  
 

In comparison to Figure 5.24, the lowest energy with the highest CNR, now has the highest 

weighting factor. The CNRs decrease as the energy increases, so does the weighting factors 

according to Equations 5.3 and 5.4. This will lead to better CNRs as those seen in Figure 

5.25. 

For the iodine case, the maximum weight was given to 35 keV since this is the energy bin 

with the highest CNR.  The 20 keV had the lowest CNR and weighting factor, gradually 

increasing up to 35 keV.  For energies 40 keV to 65 keV, the weighting factors decreased as 

seen in Figure 5.23 below. 
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Figure 5.27:  The weighting factors based on the CNRs fo r the iodine.  
 

The lowest energy now has the lowest weighting factor, unlike phantom 2 and 3 in Figure 

5.25.  

The increase in the CNR for the three phantoms with the different methods is seen below in 

Figure 5.28.  A higher CNR is obtained when utilising all the images and not just the 20 keV 

image.  The weighting factors based on the CNRs yield the highest CNRs and correlate with 

that found in previous studies.
13,14 
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Figure 5.28:  Comparison between the different CNR s obtained with the di fferent 
methods.  The uncertainties in the CNRs are indicated if they are larger than the 
symbol size. 
 

An increase in the CNRs is found when the weighting factors are based on the CNRs of the 

different phantoms at the different energies.  

All of the phantoms show a significant increase in the CNR when all of the images are added 

with a weighting factor of 1.  This shows that better CNRs are obtained when all of the 

images are utilised and not just one at e.g. 20 keV.  A further increase in the CNRs is seen 

when weighting factors with random numbers are applied.  This is because images with high 

CNRs now contribute more to the final image and CNR.  The CNRs are further increased 

when the weighing factors used are based on the CNRs of the different images obtained in 

Chapter 4.  

Phantom 1 has an increase of 5.21 ± 0.102 when combining the images with a weighting 

factor of 1.  The random weights increased the CNR with 2.21 ± 0.113  and the CNR based 

weighting factors increased the CNR with a further 0.77 ± 0.098. 
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Phantom 2 has an increase of 5.12 ± 0.312  when combining the images with a weighting 

factor of 1.  The random weights increased the CNR with 1.51 ± 0.248  and the CNR based 

weighting factors increased the CNR with a further 1.32 ± 0.212. 

Phantom 3 has an increase of 3.58 ± 0.101  when combining the images with a weighting 

factor of 1.  The random weights increased the CNR with 2.05 ± 0.889 and the CNR based 

weighting factors increased the CNR with a further 0.74 ± 0.100. 

The increase in the CNR for the three phantoms with the iodine after applying the different 

methods is seen below in Figure 5.29.   

 
Figure 5.29:  Comparison between the different CNR s with iodine obtained with the 
different methods.  The uncertainties in the CNRs are indicated where they are bigger 
than the symbol size.  
 

A big difference is seen when applying the weighting factors for all three the phantoms.  As 

seen in Figure 5.27, all the phantoms have the highest weighting factor at 35 keV just above 
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the K-edge of iodine.  Increases in the CNRs are seen when the weighting factors are based 

on the CNRs of the different phantoms at the different energies.  

Combining all of the images yield a better CNR as seen in Figure 5.29.  This shows that 

multi-energy CT is beneficial even when iodine contrast is used.  When more weight is given 

to the 35 keV image, an increase in the CNR is seen. The highest CNRs are seen when the 

weighting factors are based on the CNRs of Chapter 4. 

Phantom 1 has an increase of 34.74 ± 0.623 when combining the images with a weighting 

factor of 1. This significant increase shows the importance of utilising more than one image.  

The random weights increased the CNR with 1.06 ± 0. 0.715   and the CNR based weighting 

factors increased the CNR with 5.56 ± 0.801.   

Phantom 2 has an increase of 37.22 ± 0.154 when combining the images with a weighting 

factor of 1.  The random weights increased the CNR with 8.11 ± 0.201 and the CNR based 

weighting factors increased the CNR with 10.75 ± 0.258.   

Phantom 3 has an increase of 22.94 ± 1.125 when combining the images with a weighting 

factor of 1.  The random weights increased the CNR with 6.62 ± 1.04 and the CNR based 

weighting factors increased the CNR with 5.15 ± 1.110.  Phantom 3 has lower CNRs than 

phantom1 and phantom 2 even though it has the least amount of glandular tissue.  This can be 

due to the structures in the phantom that can lead to inaccurate ROI values as shown in 

Figure 4.33. 
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5.4 Conclusion 

The CNRs of the different phantoms increase when more than one energy is utilised.  This 

shows that multi-energy CT is a valuable technique that can be used to improve image 

quality.  By applying random weights through a trial process, the CNRs are further improved.  

This is a valid method to use but the random nature of the weighting factors has its pitfalls 

since small weights are sometimes assigned to the lower energies and larger weights to the 

higher energies.  A further improvement in this technique is proposed by using the CNRs of 

the images at different energies to determine appropriate weighting factors.  This method 

correlates with what is suggested in previous studies but it has the advantage that no prior 

information regarding the images is needed.  This method can therefore be used for more 

complex phantoms since no information regarding the effective linear attenuation coefficient 

or structural dimensions such as the length of the contrast element is needed.  The increase of 

1.2 - 1.3 fold for the CNRs obtained by using this method correlate well with that found in 

previous studies by Le et al. 
14

 and Schmidt et al. 
13

 and prove to be a valid method of energy 

weighting.  Smaller increases in the CNRs can be expected because previous studies used 

simple phantoms and this study is based on a clinical phantom data with more variance in the 

structures.  

The proposed method is easier to implement but the iterative method might be more time 

consuming depending on the number of trials and computing power.   
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6.1 Introduction 

In previous studies, elemental concentrations have been determined with dual-energy CT by 

using three-material decomposition algorithms.
1,2

 Contrast agents such as iodine were used 

due to its K-absorption edge properties.  In a study by Liu et. al
3
, a three-material 

decomposition method based on the principle of mass conservation was proposed.  By only 

using two energies a third condition was added to solve the three unknown materials.  It was 

assumed that the sum of the volumes of the three materials equals the volume of the mixture. 

The study showed feasible results but depended on the dual-energy ratios of the two elements 

in the mixture. 

An alternative method is to determine the effective atomic number and effective density of a 

material through the ρZ method. The density and atomic number are found with the help of 

subtraction and division of two linear attenuation coefficients.
4
 This can be implemented 

before reconstruction
5
, and in a more recent study, it was implemented after reconstruction.

4
 

In another study by Schneider et al.
6
  CT numbers were converted into mass density and 

elemental weights of tissues. Landry et al.
7
 proposed an improved method with excellent 

conversion between the effective atomic number and the ratio of the linear attenuation 

coefficients at the two energies. 

As seen in Chapter 4, the linear attenuation coefficients of materials are dependent on the X-

ray beam energy.  Different tissues have different mass attenuation coefficients when 

interacting with X-rays. This can be utilised to identify and extract elemental information 

from specific materials.
8
 

The mass attenuation coefficient is used to define the rate of energy loss by a photon beam as 

it traverses a medium, independent of their state.
9
 The attenuation depends therefore purely 

on the atomic structure of the tissue and the energy of the photon beam.  Materials with the 
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same atomic structure will have the same mass attenuation coefficients e.g. vapour, water and 

ice.   This coefficient is obtained by dividing the linear attenuation coefficient by the density, 




.

      

 

A material with a higher mass attenuation coefficient and density will absorb more photons.  

Bone will, therefore, absorb more photons for the same thickness of soft tissue. This leads to 

the contrast that is seen in a CT image at kilovoltage beam energies. When these mass 

attenuation coefficients are close together, it is difficult to distinguish between them. This is 

seen in megavoltage imaging where poor contrast exists between the bone and soft tissue. 

In Chapter 4, it was seen that a significant difference between the attenuation coefficients for 

the various tissues found in the breast exists at low energies.  In this study, an alternative 

method was explored that uses the mass attenuation information from multiple energies to 

differentiate between different breast tissues.  This technique shows promise in detecting 

malignant tissue by using a single egs_cbct simulation. 

6.2 Methods & Materials 

6.2.1 Overview 

The method consists of using the mass attenuation coefficient information that is calculated 

from a single egs_cbct simulation to differentiate between different tissue types.  The 

simulated tissue type consists of a specific elemental composition and density that is known 

before the simulation. The mass attenuation information for the different elements was 

obtained from the NIST database.
10

  An in-house developed IDL code was used to determine 

the tissue type through a least squares optimisation method.  Different tissue protocols are 
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used for the identification of these breast tissue types.  Each consisting of a set of constraints 

that are derived from the chemical formula of the tissue type.  

6.2.1 Tissue composition and mass attenuation coefficients 

Suppose we have the phantom with an insert of known diameter and known tissue type.  A 

profile can be obtained with egs_cbct at different energies that will contain information 

related to its linear attenuation coefficient.  The linear attenuation coefficient information can 

be calculated from the profile data as shown in Chapter 4 Section 4.2.2.  The mass 

attenuation coefficients for the specific tissue at different energies can be calculated by 

dividing the calculated linear attenuation coefficient (  ) by the density (  ) of the material 

as seen in Equation 6.1. 




 in g/cm

2                                                                                             
6.1 

Where µ is the linear attenuation coefficient in cm
-1

 and ρ is the density in g/cm
3
.  Tabulated 

mass attenuation coefficients for the different elements in these tissues are available from 

NIST.
11,12

 

The feasibility of differentiating between glandular and malignant tissue by means of their 

mass attenuation coefficients was explored.  The three tissue types consist of the following 

elements that are used in Chapter 4 and listed in Table 6.1. 

 
Table 6.1:  The weight fractions of the elemental composition of the breast tissues.  

Materials H(%) C(%) N(%) O(%) Elements with Z>8 

 
Adipose tissue 

 
Glandular tissue 

 
Malignant tissue 

 
11.4 

 
10.6 

 
10 

 
59.8 

 
33.2 

 
10.7 

 

 
0.7 

 
3.0 

 
2.75 

 
27.8 

 
52.7 

 
75 

 
Na(0.1), S(0.1), Cl(0.1) 

 
Na(0.1), P(0.1), S(0.2), Cl(0.1) 

 
Cl(0.078) 
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A sum of least squares method was used to differentiate between the calculated mass 

attenuation coefficients and the NIST values for the corresponding breast tissues.  This 

method minimises the sum of the squares of the differences between the true values and the 

ones calculated from the set of equations with calculated parameters. 

 

  



n

i

ii otS
1

2

                                                             6.2 

The above data set consists of n number of equations where ti is the true value for each 

equation and oi is the calculated value with a set of parameters.  This can also be written as 





n

i

irS
1

2                                                                     6.3 

Where ri
2
 is the residual value which is the difference between the true value and the 

calculated value. 

The mass attenuation coefficient of a compound, such as the breast tissues listed in Table 6.1, 

can be obtained by adding the mass attenuation coefficients of the various elements.
11

 

 








i
i iw                                                                6.4 

 

Where wi is the fraction by weight of the i
th atomic component.  Therefore the following set 

of linear equations containing the mass attenuation coefficients of the tissue and elements 

were used. 

Let's suppose each energy is represented by a bin e.g. 20 keV is bin1, 25 keV is bin2, etc. 
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Where 




1bin

 is the mass attenuation coefficient for each energy bin for the specific breast 

tissue derived from the simulated linear attenuation coefficient data (Section 4.2.2).  The 

mass attenuation coefficients of the different elements are given by 












H bin1

and are 

obtained from the NIST database for the different energies.  The weight fraction of each 

element that is present in the material is given by if . The task at hand is to choose these 

weight fractions randomly over the unit interval [0,1] and to calculate each 
bin i




. The set of 

weight fractions that minimises the difference between the calculated- and NIST mass 

attenuation coefficients at each energy bin, will be accepted as the solution to the set of linear 

equations.

  

A set of constraints based on the elemental compositions of the tissues were used to aid in the 

calculation mentioned above of the weight fractions.   

6.2.2 Tissue-specific protocols 

Three protocols were developed to distinguish between the main breast tissue types namely: a 

glandular-, adipose- and malignant mass tissue protocol. Each of these protocols has their 
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own set of constraints to determine the weight fractions of the elements present in the tissue 

type. These constraints will depend on the tissue type as well as the weight fractions of the 

different elements.  A weight fraction of 0.5 can have a constraint of e.g. 0.4 to 0.6. As seen 

in Table 6.1, different tissue types can consist of the same elements, but the weight fractions 

differ.  The selection of a specific protocol will depend on the tissue type that the user wants 

to identify.  If one wants to determine if the simulated profile contains a malignant mass, then 

the malignant mass protocol will be selected.  The same implies for the glandular and adipose 

tissues. A practical example is shown below.  

Below we have a phantom with an insert of known diameter and known chemical 

composition and density.  This information can be obtained from the PEGS4 file as explained 

in Section 4.2.1. 

  
Figure 6.1:  An example phantom for the determination of the linear attenuation 
coefficient of a specific tissue.  
 

A single simulation in egs_cbct is done at multiple energies at a specific angle to obtain a set 

of profiles.  The linear attenuation coefficients and the mass attenuation coefficients of the 

phantom and insert are then derived with the following equations. 

Primary signal  xyx
I

I p









 ..ln

21
0

                                                    6.5 

Where x is the known diameter of the insert as shown in Figure 6.1.  The mass attenuation 

coefficient is given by Equation 6.1. 



1  in g/cm
2                                                                                             

6.1 
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Since the chemical composition of the material is known, e.g. C550H104O6, the mass 

attenuation coefficients of the various elements can be found in the NIST database.  The mass 

attenuation coefficients obtained through the simulated profile are then used to differentiate 

the tissues by using different protocols.  A detailed explanation is given in the next section. 

6.2.2.1 Choosing a tissue-specific protocol 

The main difference between the different protocols is the constraints that are used to 

determine the weight fractions of each element for each breast tissue type.  For each protocol, 

the weight fraction of each element should be known for the given tissue type, which is not 

unreasonable given that this information is well known e.g. from NIST data.  

The following steps are used to convert from a chemical compound to the weight per fraction 

of each element contained in it. 

1. Firstly the molecular weight of the chemical compound (tissue type) is determined by 

multiplying the molar mass of each element by the number of atoms e.g. the molecular 

weight of water is shown below.  

From the periodic table the mass number for hydrogen is 1.01 and for oxygen it is 16.  This 

means the one mole of oxygen weighs in reality 16 g, and that for hydrogen 1 g.  Since water 

contains two hydrogen atoms and one oxygen atom its molar mass is given by:  

M(H2O) = (2 * 1.01 g/mol) + ( 1 * 16.00  g/mol) = 18.02 g/mol 

2. The weight fraction of hydrogen will therefore be:   

[(2 * 1.01 g/mol) / 18.02 g/mol] = 0.1119  and for oxygen :  

[(16.00 g/mol) / 18.02 g/mol] = 0.8879 

These weight fractions are now used as guide constraints in the tissue protocols. 
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The constraint on the weight fraction for hydrogen will then be a random number between 0.1 

and 0.2 if the chemical compound is water.  For oxygen, it will be between 0.8 and 0.9. An 

interval is chosen such that the different tissues cannot be misinterpreted. 

It might be questioned as to why it is necessary to determine the weight fractions with 

random numbers if they are already known.  The reason for this is that there exist variances 

between different malignant tissues and not all of them have the exact same elemental 

composition.  By using this approach, a malignant mass with a slightly different composition 

can also be identified. 

The tissue type is then determined by using a sum of least squares as described above and 

plotting the resulting mass attenuation coefficient curve on that of the known tissue.  The 

complete method in the IDL code is shown in Appendix IV. 

6.3 Results and Discussion 

The following tissue protocols and their data inputs were used to test how accurately the 

proposed method could differentiate between a malignant mass and glandular tissue. 

6.3.1 Malignant mass  

This example is similar to the one seen in Section 6.2.2.2 above. A malignant mass was 

simulated, and the resulting mass attenuation coefficients were used with the different 

protocols to see if it can be identified.  The resulting graphs of the mass attenuation 

coefficients are seen below. 

The following mass attenuation coefficients were found for the malignant mass through 

egs_cbct simulations as described in Section 6.2.2.  The uncertainties in the simulation are 

below 1%. 
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Figure 6.2:  Simulated mass attenuation coefficients values for a malignant mass.   The 
uncertainties are smaller than the symbol size.  
 

The simulated values were compared with the adipose tissue protocol by using the sum of 

least squares method.  The following results were obtained. 
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Figure 6.3:  Malignant mass with the adipose tissue protocol.  The calculated 
elemental composition is indicated on the graph. (The small amount of N was not 
included) 
 

The maximum absolute difference between the two graphs was 0.241 at an energy of 20 keV.  

The calculated weight fraction for H was 1.60 % too low, for  C it was 30.15 % too high and 

for O was 15.80 % too low in comparison with the weight fractions of adipose tissue.  The 

significant difference in the C weight fraction shows that the simulated tissue could not be 

adipose tissue. 

Secondly, the glandular tissue protocol was used to see if the simulated mass could be 

glandular tissue.  The following results were obtained. 

 
Figure 6.4: Malignant mass with the glandular tissue pr otocol.  The calculated 
elemental composition is indicated on the graph. 
 

The maximum absolute difference between the two graphs was 0.053 at an energy of 20 keV.  

The calculated weight fraction for H was 0.99 % too high, for C it was 1.74 % too high, for O 

was 7.24 % too high and for N it was 0.48 % too high in comparison with the weight 
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fractions of glandular tissue.  These differences between the O weight fractions show that the 

simulated tissue could not be adipose tissue. 

Lastly, the malignant tissue protocol was used to see if the simulated mass could be a 

malignant mass. 

 
Figure 6.5: Malignant mass with the malignant mass protocol.  The calculated 
elemental composition is indicated on the graph. 
 

The maximum absolute difference between the two graphs was 0.006 at an energy of 55 keV.  

The calculated weight fraction for H was 1.95 % too high, for C it was 0.98 % too high, for O 

was 0.72 % too high, for N it was 0.21 % too high and for CL it was 0.24 % too high in 

comparison with the weight fractions of glandular tissue.  These small differences and the 

small maximum absolute difference show that the tissue could be a malignant mass.  The 

differences between the weight fractions are too small to represent a different tissue type 
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6.3.2 Glandular tissue  

Glandular tissue was simulated, and the resulting mass attenuation coefficients were used 

with the different protocols to see if it can be identified.  The resulting graphs of the mass 

attenuation coefficients are seen below. 

The following mass attenuation coefficients were found for the glandular tissue through 

egs_cbct simulations as described in Section 6.2.2.  The uncertainties in the simulation data 

are below 1%. 

 
Figure 6.6:  Simulated mass attenuation coefficients values for glandular tissue.  The 
uncertainties are smaller than the symbol size.  
 

The simulated values were compared with the adipose tissue protocol by using the sum of 

least squares method.  The following results were obtained. 
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Figure 6.7:  Malignant mass with the adipose tissue protocol.  The calculated 
elemental composition is indicated on the graph. (The small amount of N was not 
included) 
 

The maximum absolute difference between the two graphs was 0.167 at an energy of 20 keV.  

The calculated weight fraction for H was 1.52 % too low, for C it was 30.19 % too high and 

for O it was 15.82 % too low in comparison with the weight fractions of adipose tissue.  The 

significant difference in the C weight fraction shows that the simulated tissue could not be 

adipose tissue. 

Secondly, the glandular tissue protocol was used to see if the simulated mass could be 

glandular tissue.  The following results were obtained. 
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Figure 6.8: Glandular tissue with the glandular tissue protocol.  The calculated  
elemental composition is indicated on the graph. 
 

The maximum absolute difference between the two graphs was 0.003 at an energy of 25 keV.  

The calculated weigh fraction for H was 0.99 % too low, for C it was 1.28 % too high, for O 

was 0.78 % too high and for N it was 0.48 % too high in comparison with the weight 

fractions of glandular tissue.  This small differences and the small maximum absolute 

difference show that the tissue could be glandular tissue.  The differences between the weight 

fractions are too small to represent a different tissue type 

Lastly, the malignant tissue protocol was used with the glandular tissue 
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Figure 6.9: Glandular tissue with the malignant mass protocol.  The calculated 
elemental composition is indicated on the graph. 
 

The maximum absolute difference between the two graphs was 0.06 at an energy of 20 keV.  

The calculated weigh fraction for H was 1.94 % too high, for C it was 1.22 % too high, for O 

was 3.93 % too low, for N it was 0.20 % too high and for CL it was 0.06 % too high in 

comparison with the weight fractions of glandular tissue.  The difference in the O weight 

fraction shows that the simulated tissue could not be glandular tissue. 

From the above figures it can be seen that the protocols are able to differentiate between the 

two different tissue types.  The maximum absolute difference and the difference between the 

weigh fractions give a quantitative evaluation of the graphs.  This method shows promising 

results but further improvements are necessary to improve the accuracy.  With the use of 

multiple-energies more information is available to use for differentiation between different 

tissues. 
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Before the chapter is concluded a brief discussion will now be presented for the case where 

the tissue under consideration is unknown.  An alternative method is proposed for this case.  

The mass attenuation coefficients cannot be determined without the density information, and 

the constraints cannot be determined without the elemental weight per fraction or percentage 

weight information.  In such a case a comparison can be made between the linear attenuation 

coefficients of the simulated tissue and a known tissue type.  The linear attenuation 

coefficients of the different tissues found in the breast were determined in Chapter 4 and are 

shown again below. 

 
Figure 4.23:  The linear attenuation coefficients for the different tissues for energies 
from 20 keV.  The k-absorption edge of iodine can be seen at 34 keV. 
 
 

There exist a clear difference between adipose, glandular and malignant tissue linear 

attenuation coefficients at low energies.  The use of multiple energies provides a large range 

of linear attenuation coefficients that makes a simple comparison possible.  This will not be 

possible if only two energies are used as with dual-source CT.  
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A single profile from a clinical phantom from Chapter 4 was obtained using egs_cbct 

simulation.  The phantom slice consisted of adipose tissue, glandular tissue and an unknown 

mass.  The complete phantom and simulation set-up is seen below in Figure 6.10.  The 

unknown mass was positioned on the central axis to simplify the simulation and linear 

attenuation coefficient calculation. 

   
Figure 6.10: Clinical phantom used for tissue d ifferentiation.  The white object is the 
unknown mass, l ight grey structures are glandular tissue and the background is 
adipose tissue.  
 

The dimensions of all the structures and the linear attenuation coefficients of the adipose and 

glandular tissue are available (Figure 4.23).  The path length through all the structures was 

determined by using the *.egsphant file (Section 3.2.1.1) output.  The linear attenuation 

coefficient from the unknown mass was calculated by using Equation 6.5 and the dimensions 

of the unknown mass. The linear attenuation coefficients of the unknown simulated tissue 

were plotted against known tissue linear attenuation coefficients. 
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Figure 6.11:  The comparison between the unknown mass and the known tissue linear 
attenuation coefficients.  
 

From the above figure it can be seen that the unknown tissue is likely to be a malignant mass.  

The small deviation exists between the malignant mass linear attenuation coefficients and the 

linear attenuation coefficients of the unknown mass.  This can be a result of a slight 

difference in the weight fractions or density of the two malignant masses.   This method can 

be extended to a more quantitative analysis in future work.  

6.4 Conclusion 

Tissue differentiation is a valuable method that can be used to distinguish between different 

breast tissues.  The method proposed in this chapter showed promising results if the 

simulated tissue type is known.  The accuracy of the identification is highly depended on the 

given weight fractions as assigned in the tissue protocols.  A drawback of this method is that 

it cannot be utilised if the simulated tissue type and density are not known.  The alternative 

method proposed in the discussion can be used to overcome this problem if needed. 
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Further studies can be conducted that includes a method to identify a tissue type when 

another obscures it.  This means that the simulated profile will contain information regarding 

two different tissue types.  This will have a more relevant application on phantoms that 

represent clinical data.  This method can also be extended and utilised for tissue types outside 

of the breast if they have significant differences in their linear attenuation coefficients. 

What is encouraging about the approach used in the quest for tissue differentiation is that the 

study started off with a known breast phantom with known tissue compositions. The real 

stride forward was the ability to determine the attenuation information of the tissue from 

simulations and image information.  From there a system of linear equations could be solved, 

and given the constraints assigned to the allowable values, breast tissue types could be 

identified.  This can, in reality, take place provided that CT scanner detectors can resolve tube 

generated X-ray beams into smaller energy bins as was the approach used in this study. 
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7.1 Introduction 

In this thesis, the feasibility of tissue differentiation by using multiple-energy CT was 

explored. This idea relies on the principle that the linear attenuation coefficients of materials 

are energy dependent.  This is especially important in breast tissue where the difference 

between malignant and normal tissues become prominent below 31 keV. 

Mammography is considered to be the golden standard for early breast cancer detection, but 

it has some pitfalls.  In dense breasts, it becomes difficult to detect malignant lesions because 

of the overlapping of dense breast tissue.  It is suggested that using a dedicated breast CT this 

problem can be overcome and fewer false-negatives will be detected. 

Recent improvements in the technology make it possible to have energy discriminating 

detectors.  This enables one to have a range of monoenergetic images resulting from different 

energies bins by doing a single image acquisition.  The contrast in these images can be 

further improved through image-based energy weighting and by assigning different weights 

to each energy bin. The highest weighting factor is given to the energy bin with the highest 

CNR. 

The possibility of having multiple energy bins also promotes the idea of tissue differentiation.  

Malignant tissues can be distinguished from normal tissue based on their response to these 

different energies.   

These principles have been studied extensively by exploring different means of obtaining 

high CNRs and detecting malignant tissues. 
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7.2 Assumptions of this study 

In this study, it was assumed that simulating monoenergetic energies will have the same 

outcome as that of a photon-counting detector.  These simulations were conducted in 

egs_cbct without the use of a bowtie filter. All the simulations were conducted without 

simulating the scattered radiation.  No additional corrections were applied for beam 

hardening artifacts or possible cupping effects. A normal Shepp-logan filter was used for all 

the reconstructions, assuming that it will produce sufficient image qualities.  

7.3 Future developments 

The work displayed in this thesis has a few shortcomings that can be improved with future 

studies and alternative methods. 

In Chapter 2 the energy spectrum of the Toshiba aquilion 16 LB CT was approximated 

through HVL measurements. A more accurate representation of the CT can be obtained by 

creating a source model and using vendor specifications.   

In Chapter 3 the RMI phantom was simulated with the use of egs_cbct code and a bowtie 

filter.  The calculation of the bowtie filter thickness is a cumbersome task with room for 

potential errors. An alternative method of reducing the dynamic range on the detector can be 

explored and implemented.  With the use of Monte Carlo simulations, studies like these are 

easy to conduct with endless possibilities. 

In Chapter 4 the CNRs were determined for an energy range of 20 to 65 keV.  The Breast 

Simulator software proved to be a very useful tool for the modelling of realistic breast 

phantoms.  Dedicated breast CT is a very active field of research, and it is worthy of 

exploring more simulation studies based on realistic phantoms. 
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In Chapter 5 a new method for image-based energy weighting was proposed that is based on 

a random iterative method. Although it proved to be a valid method, CNR values are needed 

for the weighting factors to obtain an optimal image quality. Further improvements can be 

made on this method by using a more robust iterative regime that will follow the expected 

tendency. 

In Chapter 6, the feasibility of tissue differentiation was explored based on the mass 

attenuation coefficients of various tissues and elements.  This method showed promising 

results, but a few shortcomings were found.  Prior to tissue differentiation, the elemental 

composition of the simulated tissue and its density need to be known.  Further studies can 

involve conducting methods where an unknown mass can be easily identified by using the 

same principles proposed in this chapter. 
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ABSTRACT 

Dedicated breast CT is a new innovative way of imaging breast tissue without the limitations 

of overlapping anatomical features.  It has been shown that the dose received by the patient is 

comparable to that of conventional mammography techniques.  Further developments have 

led to the idea of a photon-counting detector that can be utilised in conjunction with breast 

CT.  This will produce images with higher CNRs and will improve the detection of malignant 

masses.  Other applications of multi-energy CT include image-based energy weighting and 

the differentiation of different tissues. 

The aim of this study was to explore the feasibility for tissue differentiation in breast tissue 

through the Monte Carlo simulation of a virtual multi-energy CT unit. 

The EGSnrc Monte Carlo code was used to simulate a virtual CT unit, similar to the 

Toshiba Aquillion LB 16 CT.  The radiation source modelling code, BEAMnrc, was used to 

model the different components of the virtual CT.  These components include the X-ray tube, 

suitable filters and beam-defining components such as collimators.  A phase-space file was 

obtained consisting of all the particles generated by the different components.  The energy 

spectrum of the Toshiba Aquillion LB 16 CT was approximated by the virtual CT using HVL 

measurements.  

The RMI electron density CT phantom was used to benchmark the virtual CT against the 

Toshiba Aquillion LB 16 CT.  The phantom consists of several inserts with known electron 

densities that produce different CT numbers.  A similar phantom was modelled with an in-

house developed IDL program and used for the simulations.  The reconstructed images were 

then used for the benchmarking of the HUs.  This benchmarking ensured that the method 

used in this study produces a realistic model of a CT unit.  
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Breast simulator software was used to model three breast phantoms consisting of different 

glandularities.  The composition of the different breast tissues was taken from literature.  The 

three phantoms were simulated at 20 keV up to 65 keV in 5 keV increments.  All of the 

image reconstructions in this study was done with a filtered backprojection algorithm by 

using the OSCar reconstruction software.  The CNRs of the different images obtained at 

different energies were assessed.  

Image-based energy weighting was investigated to further enhance the CNRs of the images 

by multiplying each energy bin with a specific weighting factor.  The weighting factors were 

determined by a random number generator in an in-house developed IDL code.  Good results 

were obtained with a 1.2-1.3 fold increase in the CNR.  Further improvements were made by 

applying constraints to the weighting factors of the different energy bins.  

A new method was proposed to differentiate between different breast tissues by using the 

mass attenuation information from multiple energies.  This technique showed promising 

results and can detect malignant tissue by using a single egs_cbct simulation. 

In conclusion, it is feasible to differentiate between different breast tissue types when using a 

multiple-energy CT unit.  Better CNRs are obtained when utilising the information of the 

entire energy spectrum.  This will lead to better tumour detection, even in dense breasts 

consisting of 89% glandular tissue. 

Keywords: Multiple-energy CT, breast CT, Monte Carlo, egs_cbct, image-based energy 

weighting, tissue differentiation  
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OPSOMMING 

Toegewyde bors RT is ‘n nuwe innoverende manier om borsweefsel te beeld sonder die 

beperkinge van oorvleuelende anatomiese kenmerke.  Dit het getoon dat die dosis wat die 

pasiënt ontvang, vergelykbaar is met dié van konvensionele mammografie tegnieke.  Verdere 

ontwikkelings het gelei tot die idee van ‘n foton-tel detektor wat gebruik kan word in 

samewerking met die bors RT.  Dit sal beelde met ‘n hoër kontras-tot-ruis verhouding 

produseer en sal die opsporing van kwaadaardige massas verbeter.  Ander gebruike van 

multi-energie RT, sluit beeld-gebaseerde energie beelding en die differensiasie van 

verskillende weefsels in. 

Die doel van hierdie studie was om die haalbaarheid vir weefsel differensiasie in borsweefsel 

te verken deur die Monte Carlo simulasie van ‘n virtuele multi-energie RT-eenheid. 

Die EGSnrc Monte Carlo-kode is gebruik om ‘n virtuele RT-eenheid, soortgelyk aan die 

Toshiba Aquillion LB 16 RT na te boots.  Die bestraling bron modellerings kode, BEAMnrc, 

is gebruik om die verskillende komponente van die virtuele RT te modelleer.  Hierdie 

komponente sluit in die X-straalbuis, geskikte filters en veldgrootte definieer komponente 

soos kollimators in. ‘n Fase-ruimte lêer is verkry uit al die deeltjies gegenereer deur die 

verskillende komponente.  Die energie spektrum van die Toshiba Aquillion LB 16 RT was 

benader deur die virtuele RT deur middel van half-waarde laag metings. 

Die RMI elektrondigtheid RT fantoom is gebruik om die virtuele RT teen die Toshiba 

Aquillion LB 16 RT te maatstaf.  Die fantoom bestaan uit verskeie insetsels met ‘n bekende 

elektron digthede wat verskillende RT getalle te produseer. ‘n Soortgelyke fantoom is 

ontwikkel met ‘n self ontwikkelde IDL kode, wat gebruik was vir die simulasies.  Die 

gerekonstrueerde beelde is dan gebruik vir die maatstaf van die Hounsfield eenhede.  Die 
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maatstaf verseker dat die metode wat gebruik word in hierdie studie, ‘n realisitiese model van 

‘n RT-eenheid kan lewer. 

Bors simuleerder sagteware is gebruik om drie bors fantome te modelleer wat bestaan uit 

verskillende digthede.  Die samestelling van die verskillende bors weefsel is geneem uit die 

literatuur.  Die drie fantome is gesimuleer met 20 keV tot 65 keV in inkremente van 5 keV.  

Al die beeld rekonstruksies in hierdie studie is gedoen met ‘n gefilterde terug-projeksie 

algoritme deur gebruik te maak van die OSCaR rekonstruksie sagteware. Die kontras-tot-ruis 

verhouding van die verskillende beelde, by verskillende energieë was beoordeel. 

Beeld-gebaseerde energie beelding was ondersoek om die kontras-tot-ruis verhouding verder 

te versterk deur elke beeld by ‘n spesifieke energie te vermenigvuldig met ‘n spesifieke 

gewig faktor.  Die gewig faktore word bepaal met ‘n ewekansige getal genereerder in ‘n self 

ontwikkelde IDL kode.  Goeie resultate is verkry met ‘n 1,2-1,3 voudige toename in die 

kontras-tot-ruis verhouding.  Verdere verbeterings is gemaak deur die toepassing van 

beperkings om die gewig faktore van die verskillende energie te bepaal. 

‘n Nuwe metode is voorgestel om te onderskei tussen verskillende bors weefsel deur gebruik 

te maak van die massa attenuasie inligting uit verskeie energie.  Hierdie tegniek het 

belowende resultate en kan kwaadaardige weefsel op spoor deur die gebruik van ‘n enkele 

egs_cbRT simulasie. 

Ten slotte, dit is moontlik om te onderskei tussen verskillende tipes borsweefsel deur die 

gebruik van ‘n multi-energie RT-eenheid.  Beter kontras-tot-ruis verhoudings word verkry 

wanneer die inligting van die hele energie spektrum gebruik word.  Dit sal lei tot ‘n beter 

gewas opsporing, selfs in digte borste wat bestaan uit 89% klierweefsel. 
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Sleutelwoorde: multi-energie RT, bors RT, Monte Carlo, egs_cbct, beeld-gebaseerde energie 

beelding, weefsel differensiasie 
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pro rmi1_egscbct_bow 

 

xcenter=fltarr(1) 

ycenter=fltarr(1) 

gdiameter=fltarr(1) 

FOV=fltarr(1) 

 

;Size of phantom 

 

resx = 0.1 

resy = 1.0 

resz = 0.1 

 

degree = 0 

 

xrange = 600 

 

yrange = 10 

 

zrange= 421 

 

;zrange = 4 

 

phantom = fltarr(xrange,yrange,zrange) 

finalphantom = fltarr(xrange,yrange) 

rotatedphantom = fltarr(xrange,yrange) 

 

;--------------------------------------------------------------------------

----------------- 

;EGSPHANT 

 

nmed = 9 

 

media = strarr(nmed) 

 

;__________________________________________________________________________

____________________ 

 

;FIRST SIMULATION ; 1-7 

;__________________________________________________________________________

____________________ 

 

media(0) = 'AIR700ICRU'        

media(1) = 'H2O700ICRU' 

media(2) = 'Breast' 

media(3) = 'SB3'    

media(4) = 'Adipose' 

media(5) = 'LN-450'   

media(6) = 'CB4'   

media(7) = 'Poly'   

media(8) = 'AL700ICRU' 

 

estepe = fltarr(nmed) 

 

estepe(*) = 1.0 

 

dimxyz = intarr(3) 

 

for k=0,zrange-1 do begin 

 

for i =0,xrange-1 do begin 
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;; 

for j = 0,yrange-1 do begin 

 

phantom(i,j,k) = 1 

 

endfor 

endfor 

endfor 

 

;__________________________________________________________________________

_________________ 

 

;CO-ORDINATES OF BOWTIE FILTER 

;__________________________________________________________________________

________ 

 

File = filepath('bow_idl.txt', subdirectory = 

['egs_cbct','Breast','FINAL','bow_FINAL']) 

openr, l, file, /get_lun 

result=file_lines(file) 

vector=fltarr(2,result) 

a=fltarr(result) 

b=fltarr(result) 

; 

readf,l,vector 

; 

for i=0,result-1 do begin 

a(i) = vector(0,i) & b(i) = vector(1,i) 

endfor 

 

maks=max(a) 

mini=min(a) 

 

for i=0,result-1 do begin 

phantom(a(i),*,10:b(i)) = 9.0 

endfor 

 

h=0 

 

hier: 

 

print,h 

 

kk =h+90 

 

hoek =kk * !dtor       ;90 IS 0 

 

;POSITIONS OF INSERTS 

 

hoek2 = hoek -(45 * !dtor) 

hoek3= hoek- (90 * !dtor) 

hoek4= hoek- (135 * !dtor) 

hoek5= hoek- (180 * !dtor) 

hoek6= hoek- (225 * !dtor) 

hoek7= hoek- (270 * !dtor) 

hoek8= hoek- (315 * !dtor) 

 

hoek9= hoek 

hoek10 = hoek -(22.5 * !dtor) 

hoek11 = hoek -(67.5 * !dtor) 

hoek12 = hoek3 



 

185 

 

hoek13 = hoek -(112.5 * !dtor) 

hoek14 = hoek -(157.5 * !dtor) 

hoek15 = hoek5 

hoek16 = hoek -(202.5 * !dtor) 

hoek17 = hoek -(247.5 * !dtor) 

hoek18 = hoek7 

hoek19 = hoek -(292.5 * !dtor) 

hoek20 = hoek -(337.5 * !dtor) 

 

;--------------------------------------------------------------------------

----------------- 

;Cylinder 

 

;Radius of cylinder in cm 

radius =(8.25/resz) 

 

;Center on x-axis: 

xcenter =xrange/2 

 

;Center on y-axis: 

ycenter =330 

 

;Cylinder height in cm 

cylinderh = 5/resx 

 

diameter = 2*radius 

;--------------------------------------------------------------------------

---------------- 

;Cylinder 1 

 

x1center=round(xcenter + (2.7/resx) * cos (hoek)) 

y1center=round(ycenter + (2.7/resz) * sin (hoek)) 

 

;Radius of cylinder 

radius1 =0.7/resx 

 

;--------------------------------------------------------------------------

---------------- 

 

;Cylinder 2 

 

x2center=round(xcenter + (2.7/resx) * cos (hoek2)) 

y2center=round(ycenter + (2.7/resz) * sin (hoek2)) 

 

;Radius of cylinder 

radius2 =0.7/resx 

 

;--------------------------------------------------------------------------

--------------- 

;Cylinder 3 

 

x3center=round(xcenter + (2.7/resx) * cos (hoek3)) 

y3center=round(ycenter + (2.7/resz) * sin (hoek3)) 

 

;Radius of cylinder 

radius3 =0.7/resx 

 

;--------------------------------------------------------------------------

--------------- 

 

;Cylinder 4 



 

186 

 

 

x4center=round(xcenter + (2.7/resx) * cos (hoek4)) 

y4center=round(ycenter + (2.7/resz) * sin (hoek4)) 

 

;Radius of cylinder 

radius4 =0.7/resx 

 

;--------------------------------------------------------------------------

---------------- 

 

;Cylinder 5 

 

x5center=round(xcenter + (2.7/resx) * cos (hoek5)) 

y5center=round(ycenter + (2.7/resz) * sin (hoek5)) 

 

;Radius of cylinder 

radius5 =0.7/resx 

 

;--------------------------------------------------------------------------

--------------- 

;Cylinder 6 

 

x6center=round(xcenter + (2.7/resx) * cos (hoek6)) 

y6center=round(ycenter + (2.7/resz) * sin (hoek6)) 

 

;Radius of cylinder 

radius6 =0.7/resx 

 

;--------------------------------------------------------------------------

--------------- 

 

;Cylinder 7 

 

x7center=round(xcenter + (2.7/resx) * cos (hoek7)) 

y7center=round(ycenter + (2.7/resz) * sin (hoek7)) 

 

;Radius of cylinder 

radius7 =0.7/resx 

 

;--------------------------------------------------------------------------

---------------- 

;Cylinder 8 

 

x8center=round(xcenter + (2.7/resx) * cos (hoek8)) 

y8center=round(ycenter + (2.7/resz) * sin (hoek8)) 

 

;Radius of cylinder 

radius8 =0.7/resx 

 

;--------------------------------------------------------------------------

--------------- 

;Cylinder 9 

 

x9center=round(xcenter + (7.175/resx) * cos (hoek9)) 

y9center=round(ycenter + (7.175/resz) * sin (hoek9)) 

 

;Radius of cylinder 

radius9 =0.7/resx 

 

;--------------------------------------------------------------------------

--------------- 
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;Cylinder 10 

 

x10center=round(xcenter + (5.269843451/resx) * cos (hoek10)) 

y10center=round(ycenter + (5.269843451/resz) * sin (hoek10)) 

 

;Radius of cylinder 

radius10 =0.7/resx 

 

;--------------------------------------------------------------------------

---------------- 

;Cylinder 11 

 

x11center=round(xcenter + (4.968400145/resx) * cos (hoek11)) 

y11center=round(ycenter + (4.96840014/resz) * sin (hoek11)) 

 

;Radius of cylinder 

radius11 =0.7/resx 

;--------------------------------------------------------------------------

--------------- 

;Cylinder 12 

 

x12center=round(xcenter + (7.715/resx) * cos (hoek12)) 

y12center=round(ycenter + (7.715/resz) * sin (hoek12)) 

 

;Radius of cylinder 

radius12 =0.7/resx 

 

;--------------------------------------------------------------------------

--------------- 

;Cylinder 13 

 

x13center=round(xcenter + (4.968400145/resx) * cos (hoek13)) 

y13center=round(ycenter + (4.96840014/resz) * sin (hoek13)) 

 

;Radius of cylinder 

radius13 =0.7/resx 

 

;--------------------------------------------------------------------------

---------------- 

;Cylinder 14 

 

x14center=round(xcenter + (5.2698434519/resx) * cos (hoek14)) 

y14center=round(ycenter + (5.2698434519/resz) * sin (hoek14)) 

 

;Radius of cylinder 

radius14 =0.7/resx 

 

;--------------------------------------------------------------------------

--------------- 

;Cylinder 15 

 

x15center=round(xcenter + (7.179/resx) * cos (hoek15)) 

y15center=round(ycenter + (7.179/resz) * sin (hoek15)) 

 

;Radius of cylinder 

radius15 =0.7/resx 

 

;--------------------------------------------------------------------------

--------------- 

;Cylinder 16 
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x16center=round(xcenter + (5.269843451/resx) * cos (hoek16)) 

y16center=round(ycenter + (5.2698434519/resz) * sin (hoek16)) 

 

;Radius of cylinder 

radius16 =0.7/resx 

 

;--------------------------------------------------------------------------

---------------- 

;Cylinder 17 

 

x17center=round(xcenter + (4.96840014/resx) * cos (hoek17)) 

y17center=round(ycenter + (4.968400145/resz) * sin (hoek17)) 

 

;Radius of cylinder 

radius17 =0.7/resx 

 

;--------------------------------------------------------------------------

--------------- 

;Cylinder 18 

 

x18center=round(xcenter + (7.715/resx) * cos (hoek18)) 

y18center=round(ycenter + (7.7155/resz) * sin (hoek18)) 

 

;Radius of cylinder 

radius18 =0.7/resx 

 

;--------------------------------------------------------------------------

--------------- 

;Cylinder 19 

 

x19center=round(xcenter + (4.968400149/resx) * cos (hoek19)) 

y19center=round(ycenter + (4.968400145/resz) * sin (hoek19)) 

 

;Radius of cylinder 

radius19 =0.7/resx 

 

;--------------------------------------------------------------------------

---------------- 

;Cylinder 20 

 

x20center=round(xcenter + (5.269843451/resx) * cos (hoek20)) 

y20center=round(ycenter + (5.269843451/resz) * sin (hoek20)) 

 

;Radius of cylinder 

radius20 =0.7/resx 

 

;--------------------------------------------------------------------------

----------- 

cylradius = ycenter + (radius/resx) 

 

minx = xcenter - radius ;(begin by minimum vir kringe) 

maxx = xcenter + radius 

 

miny = ycenter - radius 

maxy = ycenter + radius 

 

miny1 = y1center - radius1 

maxy1 = y1center + radius1 

 

miny2 = y2center - radius2 

maxy2 = y2center + radius2 
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miny3 = y3center - radius3 

maxy3 = y3center + radius3 

 

miny4 = y4center - radius4 

maxy4 = y4center + radius4 

 

miny5 = y5center - radius5 

maxy5 = y5center + radius5 

 

miny6 = y6center - radius6 

maxy6 = y6center + radius6 

 

miny7 = y7center - radius7 

maxy7 = y7center + radius7 

 

miny8 = y8center - radius8 

maxy8 = y8center + radius8 

 

miny9 = y9center - radius9 

maxy9 = y9center + radius9 

 

miny10 = y10center - radius10 

maxy10 = y10center + radius10 

 

miny11 = y11center - radius11 

maxy11 = y11center + radius11 

 

miny12 = y12center - radius12 

maxy12 = y12center + radius12 

 

miny13 = y13center - radius13 

maxy13 = y13center + radius13 

 

miny14 = y14center - radius14 

maxy14 = y14center + radius14 

 

miny15 = y15center - radius15 

maxy15 = y15center + radius15 

 

miny16 = y16center - radius16 

maxy16 = y16center + radius16 

 

miny17 = y17center - radius17 

maxy17 = y17center + radius17 

 

miny18 = y18center - radius18 

maxy18 = y18center + radius18 

 

miny19 = y19center - radius19 

maxy19 = y19center + radius19 

 

miny20 = y20center - radius20 

maxy20 = y20center + radius20 

 

dimxyz(0) = xrange & dimxyz(1) = yrange & dimxyz(2) = cylinderh 

 

finaltotphantom = fltarr(xrange+1,yrange+1,cylinderh+1) 

;__________________________________________________________________________

_________________ 
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for k=ycenter-radius,ycenter+radius do begin 

 

for i =xcenter-radius,xcenter+radius do begin 

;; 

for j = 0,yrange-1 do begin 

 

x = -xcenter + i & z = -ycenter + k 

 

    r=sqrt(x^2 + z^2) 

 

    if (r le radius) then begin 

 

    phantom(i,j,k) = 2 

 

    endif 

 

    x = -x1center + i & z = -y1center + k 

 

    r=sqrt(x^2 + z^2) 

 

    if (r le (radius1)) then begin 

 

    phantom(i,j,k) = 3 

 

    endif 

 

    x = -x2center + i & z = -y2center + k 

 

    r=sqrt(x^2 + z^2) 

 

    if (r le (radius2)) then begin 

 

    phantom(i,j,k) = 4 

 

    endif 

 

    x = -x3center + i & z = -y3center + k 

 

    r=sqrt(x^2 + z^2) 

 

    if (r le (radius3)) then begin 

 

    phantom(i,j,k) = 5 

 

    endif 

 

    x = -x4center + i & z = -y4center + k 

 

    r=sqrt(x^2 + z^2) 

 

    if (r le (radius4)) then begin 

 

    phantom(i,j,k) = 6 

 

    endif 

 

    x = -x5center + i & z = -y5center + k 

 

    r=sqrt(x^2 + z^2) 

 

    if (r le (radius5)) then begin 
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    phantom(i,j,k) = 7 

 

    endif 

 

    x = -x6center + i & z = -y6center + k 

; 

    r=sqrt(x^2 + z^2) 

 

    if (r le (radius6)) then begin 

 

    phantom(i,j,k) = 8 

 

    endif 

 

endfor 

endfor 

endfor 

 

phantom(*,*,187:239) = 1.0 

 

;VIEW PHANTOM 

 

window,1 

tvscl,phantom(*,0,*) 

 

dimxyz(0) = xrange & dimxyz(1) = yrange & dimxyz(2) = zrange 

 

 

;WRITING EGSPHANT FILE 

 

xbound = fltarr(xrange+1) 

ybound = fltarr(yrange+1) 

zbound = fltarr(zrange+1) 

; 

File = filepath('xbound.txt', subdirectory = ['egs_cbct']) 

openr, l, file, /get_lun 

readf,l,xbound 

free_lun,l 

 

File = filepath('ybound.txt', subdirectory = ['egs_cbct']) 

openr, l, file, /get_lun 

readf,l,ybound 

free_lun,l 

 

File = filepath('zbound_bow0.txt', subdirectory = ['egs_cbct']) 

openr, l, file, /get_lun 

readf,l,zbound 

free_lun,l 

 

filename = 'RMI1_bow_t_'+strcompress(h)+'.egsphant' 

 

    filename1 = strcompress(filename) 

 

    filename1 = strmid(filename,0,11) 

 

    filename2 =strmid(filename, 12, 25) 

 

    filename3 = filename1 + filename2 
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File = filepath(filename3, subdirectory = 

['egs_cbct','Breast','FINAL','bow_FINAL']) 

openw, l, file, /get_lun 

printf,l,format='(I1)',nmed 

; 

for m = 0, nmed-1 do begin 

    printf,l, media(m) 

endfor 

; 

printf,l,format='(9(f8.6," "," "," "," "," "))', estepe 

 

if (cylinderh le 100) then begin 

 

    printf,l, format='((2(I5)),I4)',dimxyz     ;groter as 90 = (3(I5)) 

 

    endif else begin 

 

    printf,l, format='(3(I5))',dimxyz 

 

endelse 

 

printf,l, format = '(603(f16.7," "))',xbound 

printf,l, format = '(11(f16.7," "))',ybound 

printf,l, format = '(422(f16.7," "))',zbound 

 

rhoq=fltarr(xrange+1) 

 

rho = fltarr(xrange) 

den = fltarr(xrange) 

 

xrange2 = xrange-1 

 

;writing media data 

 

    for k=0,zrange-1 do begin 

    for j = 0,yrange-1 do begin 

    for i = 0,xrange2  do begin 

 

    rho(i) =phantom(i,j,k) 

 

    endfor 

 

    printf,l,format='($,601(I0))',rho 

    printf,l,' ' 

 

    endfor 

 

    printf,l,' ' 

 

    endfor 

 

    for k=0,zrange-1 do begin 

    for j = 0, yrange-1 do begin 

    for i = 0, xrange2  do begin 

 

    den(i) = phantom(i,j,k) 

 

    if (den(i) eq 1) then den(i) = 0.0012048 

    if (den(i) eq 2) then den(i) = 1.000 

    if (den(i) eq 3) then den(i) = 0.980 

    if (den(i) eq 4) then den(i) = 1.820 
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    if (den(i) eq 5) then den(i) = 0.940 

    if (den(i) eq 6) then den(i) = 0.450 

    if (den(i) eq 7) then den(i) = 1.870 

    if (den(i) eq 8) then den(i) = 0.920 

    if (den(i) eq 9) then den(i) = 2.7020 

    endfor 

 

    printf,l,format='(601(f16.7))',den 

    printf,l,' ' 

 

    endfor 

 

    printf,l,' ' 

 

    endfor 

; 

print,'Completed writing media densities' 

 

print,'Completed writing EGS4PHANT file' 

 

free_lun,l 

stop 

 

h=h+1 

 

if (h eq 360) then begin 

 

stop 

 

endif 

 

goto,hier 

 

end 
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pro sinogram_ring 

 

x=350.0 

y=200.0 

 

nrows=360.0 

 

sino = fltarr(350,360) 

 

File = 

filepath('values_glandular.txt',subdirectory=['egs_cbct','Breast','FINAL','

TESIS BREAST']) 

 

values = File  

openr, unit, values, /get_lun 

einde=file_lines(values) 

values=fltarr(einde) 

readf, unit, values 

 

free_lun,unit 

 

for e = 40,65,5 do begin 

 

for zz=0,3 do begin 

 

jj=fix(values(zz)) 

 

for z=0,nrows-1 do begin 

 

filename = 'glandular_mass_tesis_'+strcompress(e)+'_'+strcompress(z)+'.txt' 

 

    filename1 = strcompress(filename) 

 

    filename1 = strmid(filename,0,21) 

 

    filename2 = strcompress(filename) 

 

    filename2 =strmid(filename,22,22) 

 

    filename3 = filename1 + filename2 

 

    filename4 = strcompress(filename3) 

 

    filename5 = strmid(filename3,0,24) 

 

    filename6= strmid(filename3,25,26) 

 

    filename7 = filename5 + filename6 

     

    filenamen = 'glandular_'+strcompress(e) 

 

 

    filenamen1 = strcompress(filenamen) 

 

    filenamen1 = strmid(filenamen,0,10) 

 

    filenamen2 = strmid(filenamen,11,20) 

 

    filefolder = filenamen1 + filenamen2 
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File = filepath(filename7,subdirectory=['egs_cbct','Breast','FINAL','TESIS 

BREAST',filefolder]) 

 

beeld = File  

openr, unit, beeld, /get_lun 

einde=file_lines(beeld) 

beeld=fltarr(einde) 

readf, unit, beeld 

 

free_lun,unit 

 

beeldfinal=fltarr(350,200) 

beeldfinal(*,*) = 0.0 

 

for j=0,y-1 do begin 

xx = (j*350.0) 

xx2 = xx+349.0 

 

beeldfinal(*,j) = beeld(xx:xx2) 

endfor 

 

sino(*,z) = beeldfinal(*,jj) 

 

endfor  

 

sino2 = fltarr(350,360) 

 

diff = fltarr(360) 

 

ave = fltarr(360) 

 

;RING ARTIFACT CORRECTION 

 

ave = total(sino,2) 

 

ave1=ave/nrows 

 

diff = ave1 - smooth(ave1,9,/edge_truncate) 

 

for r =0,359 do begin 

sino2(*,r) = (sino(*,r) - diff(*)) 

endfor 

 

;DISPLAY UNCORRECTED AND CORRECTED SINOGRAM 

 

window,1,xsize=350,ysize=360 

tvscl,sino 

 

window,2,xsize=350,ysize=360 

tvscl,sino2 

 

;WRITE BACK TO PHANTOM SLICE 

 

slice = fltarr(512,512) 

 

 

for hh=0,359 do begin 

for j=0,511 do begin 

slice(81:430,j) = sino2(*,hh) 

endfor 

window,1,xsize=512,ysize=512 
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tvscl,slice 

write_jpeg,'C:\Program 

Files\MATLAB\OSCar\'+filefolder+'\ring\slice_'+strcompress(jj)+'_'+strcompr

ess(hh)+'.jpg',tvrd() 

endfor 

 

endfor 

endfor 

 

print,'end' 

 

end 
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pro least_sum_squared_malignant 

 

  x=fltarr(5) 

  y=fltarr(5) 

  z=fltarr(5) 

  q=fltarr(5) 

  r=fltarr(5) 

  b=fltarr(5) 

  d=fltarr(10) 

 
;Mass attenuation coefficients 

  a = 

[0.790844,0.504831,0.380131,0.310741,0.27167,0.246163,0.227026,0.225263,0.2

08068,0.200432] 

 

m=100000000 

  c = fltarr(100,10) 

  seed=10.0*(randomu(seed)) 

   

  for i=0,999999 do begin 

 

 b=randomu(seed,5)  

 

;Random number generator 

 

  b(0)=0.08+0.04*randomu(seed)  

  b(1)=0.08+0.04*randomu(seed)  

  b(2)=0.7+0.1*randomu(seed)  

  b(3)=0.02+0.01*randomu(seed)  

  b(4)=0.02*randomu(seed) 

   

  eqn1=0.36950*b(0)+ 0.44200*b(1)+  0.86530*b(2)+  0.61790*b(3)+  7.74000*b(4) 

  eqn2=0.36310*b(0)+ 0.31360*b(1)+  0.52650*b(2)+  0.40190*b(3)+  4.06600*b(4) 

  eqn3=0.35700*b(0)+ 0.25620*b(1)+  0.37790*b(2)+  0.30660*b(3)+  2.42600*b(4) 

  eqn4=0.35130*b(0)+ 0.22580*b(1)+  0.30190*b(2)+  0.25740*b(3)+  1.58800*b(4) 

  eqn5=0.34580*b(0)+ 0.20760*b(1)+  0.25850*b(2)+  0.22880*b(3)+  1.11700*b(4) 

  eqn6=0.34060*b(0)+ 0.19570*b(1)+  0.23140*b(2)+  0.21050*b(3)+  0.83130*b(4) 

  eqn7=0.33550*b(0)+ 0.18710*b(1)+  0.21330*b(2)+  0.19800*b(3)+  0.64830*b(4) 

  eqn8=0.33070*b(0)+ 0.18050*b(1)+  0.20040*b(2)+  0.18880*b(3)+  0.52530*b(4) 

  eqn9=0.32600*b(0)+ 0.17530*b(1)+  0.19070*b(2)+  0.18170*b(3)+  0.43940*b(4) 

  eqn10=0.32160*b(0)+ 0.17100*b(1)+ 0.18320*b(2)+  0.17610*b(3)+  0.37750*b(4) 

E1 =(eqn1-a(0))^2 

E2 =(eqn2-a(1))^2 

E3=(eqn3-a(2))^2 

E4=(eqn4-a(3))^2 

E5=(eqn5-a(4))^2 

E6 =(eqn6-a(5))^2 

E7 =(eqn7-a(6))^2 

E8=(eqn8-a(7))^2 

E9=(eqn9-a(8))^2 

E10=(eqn10-a(9))^2 

 

diff_squared=(E1+E2+E3+E4+E5+E6+E7+E8+E9+E10) 

 

 

 


