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SUMMARY 

 

Fire is a natural phenomenon in many ecosystems. The positive and negative impacts of fire on 
biodiversity and natural resources has been a centre of attention across the world particularly within 
protected areas. Fire risk assessment systems provide an integrated approach for managing resources 
at stake and reducing the negative impact of fire. Fire Risk Index is of great assistance in which 
estimates the probability of fire occurrence and areas are quantitatively divided into different zone 
classified based on similar characteristics, which influence fire behaviour. Fire risk have traditionally 
been measured from point data collected at sparse weather stations and field survey. The accuracy of 
assessment may be limited by density of point data and spatial interpolation method errors. Remote 
Sensing techniques provide a cost-effective way of assessing required parameters such as fuel 
characteristics (moisture & biomass) and weather conditions in near-real time.  Moreover, RS 
techniques have the ability to reveal spatial pattern of fire risk in recurrent, consistent way over large, 
remotely inaccessible mountainous area. 

This study focused on development of Fire Potential Index for mountainous Golden Gate 
Highlands National Park, Free State Province, South Africa using Geospatial techniques. MODIS 
products MOD11A1, MODO9GA for fire seasons of 2011 -2014; and 30m Advanced Spaceborne 
Thermal Emission and Reflection Radiometer -Digital Elevation Model (ASTER-DEM) were used 
for data retrieval. Land Surface Temperature (LST); Normalized Difference Water Index derived 
Relatively Greenness Index (RGIndwi); Normalized Multi-Drought Index (NMDI) and Elevation were 
selected based on their significance in fire risk assessment. Variables were used to estimate two 
critical parameters, Fuel Moisture Content (RGIndwi & NMDI) and Potential Surface Temperature 
(LST & Elevation). GIS was used during index calculation, data processing and analysis among other 
processes. Conversion of parameter’s values into common danger scale was conducted using 
Normalization Tool. Reclass Tool for classification each data layer into five classes using manual 
classification method based on its impact on increasing the fire potential. Pairwise comparison of 
Analytic Hierarchy Process for assigning weightages for the parameters. Weighted Overlay tool for 
integration these parameters into construction of FPI. The final FPI Map was categorized into five 
classes as insignificant, low, medium, high and extreme high based on the FPI values. Fire points 
were used to validate the FPI map applying Extract Values to Points Tool. Geographical Weighted 
Regression (GWR) analysis was used to measure FPI performance. 

The results revealed that about 12% of the park area was identified as high to extreme high danger 
zone,13%- medium danger zone and 42% - low danger zone towards fire. Largest area coverage of 
high to extreme fire danger classes was observed during 2013 (17%), 2014 (16%), 2012 (8%), and 
2011(6%). The area was observed during September (17%), August (11%) and July (6%). The model 
revealed an overall accuracy of 89% ranging from 33%-100% indicating that maximum of fires fell 
under low to extreme high fire danger classes. GWR analysis show a sound agreement between FPI 
and the fire danger with overall R2 of 0,69 ranging from 0,17 to 0,98. Therefore, the results suggest 
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that the constructed FPI can be useful for monitoring spatiotemporal distribution of susceptibility of 
vegetation to fire.  

The use of image fusion techniques to improve spatial and temporal resolutions of sensors as they 
are many freely available sensors that are sufficient in spectral resolution but have poor spatial and 
temporal resolutions should be encouraged. Plans to prevent and control fire in GGHNP should be 
more orientated to high and extreme fire danger areas. It was recommended the prediction of the 
index may be increased by incorporating more parameters such as Land-Cover-Land-Use (LULC), 
fuel type map and meteorological variables (wind speed and direction & insolation). 

 

Keywords: Fire, Fire Risk Assessment; Fire Risk Index; Fire Danger; Fire Potential Index; Remote 
Sensing; GIS; Golden Gate Highlands National Park 
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1.1 Background 

Fire is an important natural ecological factor that has occurred since time immemorial on the global 
ecosystem. There is evidence that the earliest use of fire by humans occurred more than one million 
years ago (Pausas and Keeley, 2009). Fire has become an increasing threat responsible for burning 
about 350 million hectares (ha) annually on average-basis (Food and Agricultural Organisation, 
2007). Although vegetation fire statistics may be highly inaccurate, at the continental scale, Africa is 
the largest contributor with approximately 64% of the global total burnt area (Tansey et al., 2004) 
with Sub-Sahara region being the highest (168 million ha; 230 million ha)  (Food and Agricultural 
Organisation, 2007) hence Africa is known as “Fire continent”. Australasia contributes 16 %, Asia 
14 %, South America 3%, North America 2% and Europe 1% (Tansey et al., 2004).   

In addition, countries invest billions of dollars annually on fire-related activities such as 
prevention, prescribe burning and suppression. For instance, Canada has spent an average of between 
US$ 531 million annually whereas the US Department of Agricultural Forest service’s spent more 
than US$ 11.5 billion; South American countries Brazil, Argentina and Bolivia spent high as US$ 1.6 
billion annually with Australia investing approximately US$ 5, 612 million (González-Cabán, 2013).  

 

1.2 Wildfire Drivers 

In order to understand the factors contributing to fire risk, it is significantly necessary to examine 
the fire environment. According to Countryman (2004), fire environment is the “surrounding 
conditions, influences and modify force” that determine the behaviour of fire. Several factors are 
responsible for fire occurrence as depicted in Figure 1.1. At local scale, the occurrence of fire needs 
three basic components, (depending on the so called “fire fundamentals triangle (see figure 1.1), fuel, 
ignition and oxygen (Bachmann and Allgower, 2001). A fire requires fuel to burn, air to supply 
oxygen and a heat source to bring the fuel up to ignition temperature. At landscape scale, the fire 
behaviour is determined by three principal environmental factors: fuel, weather and topography. At 
a regional or global fire is influenced by climate, vegetation and land-use (Jin, 2010).  

 

Figure 1:1. Fire drivers at different scales (Jin, 2010) 
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1.3 Concepts of Fire Risk Assessment  

The risk assessment exists in number of disciplines; hence, the history of its application is full of 
contestation. In the context of fire management, its conceptual definition should encompass the most 
relevant components associated with the fire process. However, the terminologies fire risk and fire 
hazard are still controversial especially when compared with those used in disaster management.  
Consistent with most common terminology used in fire management “complex defined by volume, 
type, condition arrangement and location that determine the degree of fire hazard is a fuel ignition 
and resistance to control” as defined by US National Wildfire Coordinating Group (Hardy, 2005). 
The concept of fire danger describes the factors affecting the inception, spread and resistant to control 
and subsequently fire damages, often expressed as index (Chuvieco et al., 2014). Bachmann and 
Allgower (2001) defined fire risk as the probability of a wildland fire occurring at a specified location 
and under specific circumstances together with its expected outcome as defined by its impacts on the 
objects it affects.  

The above definitions emphasized on the destructive and negative impacts of fire, however, Miller 
and Ager (2013) emphasised that within the context fire management both positive and negative 
outcomes can be realized from a given fire, especially where a fire is used as the ecological 
management tool. Therefore, negative connotation associated with fire as “catastrophic” should be 
minimized from the fire management vocabulary.  

 

1.4 Role of Remote Sensing in Wildfire Risk Assessment 

Remote Sensing (RS) is the science and art of obtaining information about an object, area or 
phenomenon through analysis of data acquired by device that is not in contact with object, area or 
phenomena under investigation (Flasse et al., 2004). Since the launch of the first environmental 
remote sensing Landsat in 1972 (Roy et al., 2013), RS has proven to be significant beneficial to many 
disciplines ranging from land cover mapping to hydrology management. Fire management also has 
its own share of benefits from RS.  RS observation provides reliable information timeously and cost-
effectively. Remote Sensing play pivotal role in providing fire event at different spatial and temporal 
scales. For example, monitoring burnt scar areas requires data at higher spatial resolution in order to 
distinguish burnt areas from other land cover types but may not require data on daily basis. However, 
mapping active fires needs monitoring systems with a capability to capture data on fire event at near 
real time hence RS data with daily revisit time is used.  

RS data provides significant role in the near real time monitoring of vegetation water content. For 
instance, National Oceanic and Atmospheric Administration – Advanced Very High Resolution 
Radiometer (NOAA-AVHRR) which has coarse spatial resolution of 1km and high temporal 
resolution of 1 day provides a good platform for producing daily information on vegetation changes 
and moisture (Yebra et al., 2013). Most of the approaches depend on satellite which integrate 
multispectral sensors that incorporate infrared and near-infrared bands to determine vegetation 
presence, changes or stress status (Herawati et al., 2015). These include sensors such as Landsat, TM 
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and ETM, National Oceanic and Atmospheric Administration – Advanced Very High Resolution 
Radiometer (NOAA-AVHRR) and Systeme Pour IÓbservation de la Terre (SPOT), Moderate 
Resolution Imaging Spectraradiometer (MODIS), Advanced Spaceborne Thermal Emission and 
Reflection Radiometer (ASTER). 

RS also provides one of the only means of fuel classification and biomass by using or fusing 
Synthetic Aperture Radar (SAR) and laser scanning data. Airborne Light Detection and Ranging 
(LIDAR) is an instrument that provides three-dimensional information of the arrangement of number 
of features including vegetation and fuel distribution (Herawati et al., 2015). An effective alternative 
for overcoming two main limitations of optical data (i.e. estimation of fuel height and surface fuels 
when covered by forest canopy (Arroyo et al., 2008, Gonzalez-Olabarria et al., 2012, Mutlu et al., 
2008, Riaño et al., 2007). LIDAR provides topographical information which play important role in 
fire spreading (Burns, 2012). Similar to thermal spectroscopic sensors, SAR can penetrate cloud cover 
so it is useful for detecting changes in vegetation cover and obtaining information soil moisture and 
vegetation dryness through haze (Herawati et al., 2015). 

Other important role RS is that it can provide spatially distributed information about fuel 
temperature and other weather data at adequate spatial and temporal. Meteorological satellites in geo-
stationary are able to collect images of a large area frequently (Flasse et al., 2004). For example, 
Meteosat Second Generation (MSG) Spinning Enhanced Visible and Infrared Imager (SEVIRI) 
suitable for retrieval of environmental parameter that change rapidly in time and been used to measure 
Air temperature and Relative Humidity (Nieto et al., 2010). 

 

1.5 South African Environment and Fire 

Wildfire (termed veldfire in South Africa) is a natural and inescapable ecological factor in South 
African (SA) landscape and is the inevitable consequence of fire-prone vegetation and warm, dry 
climate (Forsyth et al., 2010). More than 60% of South Africa ecosystems are fire dependent, 32% 
are fire independent and the remainder are fire sensitive (Le Maitre et al., 2014). Fire dependent 
ecosystem are where fire is necessary for regeneration of most of plant but where inappropriate fire 
regimes can alter the species composition, vegetation structure or ecosystem functions or combination 
of these. Two latter ecosystems do not require fires for regenerations however, fire sensitive 
ecosystems are fire prone and can be adversely affected by inevitable fires if fires are too frequently 
or severe while fire independent ecosystems occurs where fires are very rare or absent  (Forsyth et 
al., 2010). 

Additionally, SA is strongly influenced by climatic conditions as a result the country has two fire–
seasons both in summer and winter rainfall areas. All provinces except Western Cape fall under 
summer rainfall areas with fire season starting in May till September.  Across SA, rainfall is key 
determinant of vegetation growth and thus accumulation of litter of fuel for fires. This variation in 
the rainfall has even greater effect on the annual net primary production (a measure of the biomass 
growth of the vegetation in a year) (Forsyth et al., 2010) which in fact, the ultimate determinant of 
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the available fuel in wildfires (Le Maitre et al., 2014). For  example, in the eastern and southern parts 
of the country which receive more than 650 mm per year, enough fuel is produced to sustain wildfires 
every year (Le Maitre et al., 2014).   

Based on projected climate changes impacts for mid to late 21st century, likely and very likely 
increased of wildfire was projected by (Intergovernmental Panel on Climate Change (IPCC), 2007) 
due to an increased warm spells and increase in drought affected areas.  Moreover, it has been 
observed that warming rate over the past 15 years (1998 -2012) has increased by 0.05oC  (-0.05 to 
0.15) per decade (IPCC, 2013).  South Africa is no exception as statistical evidence has shown that 
over the past four decades (1960 -2003), average annual temperature increased by 0.13oC per decade 
together with changing precipitation pattern within the country (Benhim, 2006). With these kinds of 
temperature rises that exceeded the rate of mean global temperature rise, increased in fire frequency 
has been observed in the winter rainfall biomes and significant decreases of precipitation in the north 
east of the country during El Nino years (Republic of South Africa, 2010). 

Like elsewhere in the world, SA’s wildfire risks are associated with human factors such as biomass 
burning for land clearing and people as an omnipresent ignition source (Forsyth et al., 2010) either 
by accident, negligence or deliberately. Hence, with the combination of fuel availability, weather 
conditions and ignition, SA is suitable for periodic and frequent fire. Approximately 60% of the 
country fall under extreme and high veldfire risk classes as shown in Figure 1.2. Therefore a clear 
understanding of where, under what conditions fire are desirable and where and when they should be 
avoided is necessary in order to appropriate fire management (Forsyth et al., 2010). 

 
Figure 1:2.  Overall assessment of veldfire risk level in South Africa (Forsyth et al., 

2010) 
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South Africa has a long history in the management of veldfire, reflecting the need to balance 
ecological requirements of the natural vegetation and a risk-based approach to the management of 
veldfire.  The two key Acts governing the administration of veldfire are the National Veld and Forest 
Fire Act, 1998 (Act no.101 of 1998) NFFVA, and the Disaster Management Framework (NDMC 
2005) under the Disaster Management Act (Act no. 57 of 2002). NFFVA calls for integrated fire 
management recognising both the ecological role of fire for maintaining healthy ecosystem and the 
need to reduce risk posed by fire (Van Wilgen et al., 2012). Chapter 2 of the act provides for the 
introduction of national fire danger rating system as a measure for the prevention of veldfire, early 
warning system of dangerous conditions and for the planning of veldfire operations; preparedness 
measures as well as for the management of risk to life and property (Bridgett et al., 2003). 

Disaster Management Act, 57 of 2002 and its associated National Disaster Management 
Framework (2005) provides for the establishment of National Disaster Management Centre (NDMC). 
NDMC has the objective of promoting an integrated and coordinated system of disaster management 
with special emphasis on prevention and mitigation, by organs of state in different spheres, statutory 
functionaries and the role players. The National Environmental Management Act, 1998 (Act no.107 
of 1998) is another legislature that provide 20 principles and 8 constitutes sustainability development 
that must be considered when making decision concerning the protection of the environment and 
must guide the interpretation, administration and implementation of any law concerned with the 
protection and management of the environment.  Principles pertaining to veld fires in the Act include 
those that require avoiding, minimizing of remedying. For instance, (i) disturbance to ecosystem or 
loss of biodiversity, (ii) pollution or degradation of environment, (iii) disturbance of landscapes and 
sites that constitutes the nation’s cultural heritage, and (iv) require caution when native impacts on 
the environment and people rights are possible.  

While National Environmental Management: Protected Act, (Act no. 57 of 2003) and Biodiversity 
Act, (Act no.10 of 2010) simultaneously require the protection and conservation of the country’s 
exceptional biodiversity and ecological sensitive areas. NFFVA requires the development of 
standardised national Fire Danger Rating System (FDRS), a rigorous reliable and harmonised FDRS 
still not been formally adopted (United Nations Developement Program, 2011). In an attempt to 
standardise the FDRS, South Africa has adopted the Burning Index of United States National Fire 
Danger Rating System (US FDRS) (Bridgett et al., 2003). However, the efficacy of US FDRS still 
requires accurate fuel models to calibrate the system. This is particularly problematic in South Africa, 
as the country does not yet have fuel models to use for different terrains and lack local fuel type, fire 
climatic and moisture conditions adopted (United Nations Developement Program, 2011). 
Furthermore, data based on lowland area can be misleading when applied in complex, elevated 
terrain. After attempting the Burning Index of US FDRS, the country adopted the Low-veld Fire 
Danger Rating System (FDRS) model.  
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1.6 Problem Statement  

Despite progress in fire mitigation and management, the country still experiences many fire 
episodes annually particularly in mountainous regions (Strydom and Savage, 2016). Mountainous 
areas are more vulnerable due to its rugged terrain. Implementation of integrated fire management is 
complex and remains incomplete due to the lack or limited knowledge on the spatial and temporal 
dimensions of the fire risk conditions (Van Wilgen et al. (2012). Lowveld FDRS is based on 
meteorological variables measured from sparsely distributed weather stations located at the area that 
may not be very appropriate for fire risk estimation. The measurements are point based and do not 
have uniform and extensive spatial covered of the area. Model suffers from errors due to spatial 
interpolation techniques that may be unsuitable in areas of complex terrain. The model is ineffective 
for understanding the spatial and temporal behaviour of fire risk conditions because these conditions 
may change considerably over space and time. Therefore, the development of a better tool for fire 
prevention and mitigation strategies is critical. 

Fire risk evaluation or assessment systems provide an integrated approach for managing resources 
at stake and reducing the negative impact of fire (Yebra et al., 2008). These systems should include 
a wide range of factors that are related to fire ignition, probability and vulnerability (Chuvieco et al., 
2004). One of the approaches for fire risk evaluation involves indentifying the potentially contributing 
variables and integrate them into mathematical expression known as “index”  (San-Miguel-Ayanz et 
al., 2003). This index, therefore quantifies and indicates the level of risk. Short-term or Dynamic 
Index, Long-term or Short term Index and Integrated or Advance Index also known as Fire Potential 
Index have been developed for fire risk assessment (Adab et al., 2016, San-Miguel-Ayanz et al., 
2003). Fire Potential Index (FPI) is regarded as fuel-moisture based index that used to identify areas 
susceptible to ignition (United States Geological Survey (USGS), 2016).  

 

1.7 Study Aim and Objectives  
The overall aim of this study is to develop Fire Potential Index (FPI) for fire risk assessment over 

the mountainous Golden Gate Highlands National Park (GGHNP), Eastern Free State Province of 
South Africa. 

Objectives of the study included the: 
1. Reviewing of previous studies regarding the successes and limitations of utilising remote 

sensing in monitoring wildfire risk conditions for fire risk assessment/mapping in protected 
area. 

2. Calculate fuel moisture index (FMI) using satellite remote sensed derived variables 
(Relative Greenness Index derived from Normalized Difference Water Index (NDWI) and 
Normalized Multiband Drought Index (NDMI).  

3. Determine the Potential Surface Temperature from Land Surface Temperature and 
Elevation. 

4. Estimation of FPI by using data layers from (2 & 3)  
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1.8 Geographical location and description of the study area 

GGHNP is conservation area located in Thabo-Mofutsanyane District Municipality, north-eastern 
of Free State Province in South Africa, in the foothills of the Maloti Mountains, (28o27’S – 28o 37’S 
and 28o33’E – 28o27’E). Topographically, GGHNP lies between 1654 m and 2815 m above sea level 
(Fig.1.3.). Initially, the park was proclaimed for conservation on the 13th September 1963, 
amalgamated of former farms (Glen Reeen, Wodehouse and Meslsetter) were 11 630 ha (Rademeyer 
and van Zyl, 2014, South African National Parks, 2013). In 1981, Noord Branbant farm was added 
to the park and was enlarged to 6 241 ha.  The park was further extended to 11 630 ha with the 
addition of another eight (8) farmers during the period of 1988 and 1989 (Rademeyer and van Zyl, 
2014). The former QwaQwa National park was incorporated into GGHNP on the 21 November 2008, 
thus increasing the park to its current size of 32 690 ha (Rademeyer and van Zyl, 2014, South African 
National Parks, 2013). The location map is shown in Fig.1.3. 

 

 
Figure 1:3. Location of study area (GGHNP) within Thabo Mofutsanyane District Municipality 

located in Free State, South Africa 
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GGHNP is situated in the summer-rainfall region characterized by rainfall season stretching from 
September to April with a mean annual ranging from 1 800 mm and 2 000 mm thus categorised as 
dry sub-humid region (South African National Parks, 2013). Summers are temperate with mean 
temperature ranges from 13 °C to 26 °C and Winters are cold (mean temperature ranges from 1 °C to 
15 °) (South African National Parks, 2013). Frost is widespread during the winter months and snow 
occasionally falls on the higher peaks in the park (Grab et al., 2011). An Agricultural Weather Station 
of Agricultural Research Council (ARC) located within the park between Latitude: -28.50381 and 
Longitude 28.5838DD; altitude 1849mm recorded the monthly average of max-min of Temperature 
& Relative Humidity as shown in Fig. 1.4.  The rainfall pattern of the study area is shown in Fig 1.5.  

The vegetation of GGHNP falls in the Grassland Biome of South Africa and represents the 
Drakensberg grassland bioregion and the Mesic highland grassland bioregion (South African 
National Parks, 2013) 

 

 
Figure 1:4 Monthly average Temperature and Relative Humidity at Clarens Golden Gate 

Agricultural Weather Stations 
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Figure 1:5. Average month rainfall (2011 -2014) at Clarens Golden Gate Agricultural Weather 

Station 

 

1.9 Outline of Chapters 

The dissertation was organized in four (4) chapters.   

Chapter 1 provided background information about the consequences and effect of fires on 
ecosystem; drivers of wildfire; role of remote sensing in wildfire risk assessment and problem 
statements of the current wildfire risk assessment. This chapter also covered the study aim, objectives 
and the structure of the research report. Chapter 2 presented the literature review on remote sensing 
data and techniques used for monitoring fire risk conditions and its implications for fire risk 
assessment and mapping in protected areas. Chapter 3 presents the development of the scheme for 
estimating Fuel Potential Index using remote sensing-based variables and GIS for the mountainous 
GGHNP. Finally, Chapter 4 summarizes the research outcomes and recommendations for further 
improvements based on the results of chapter two (2) and three (3).
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Chapter 2  
 

 

Review of the Use of Remote Sensing for Monitoring Wildfire Risk 
Conditions to Support Fire Risk Assessment in Protected Areas 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This chapter is based on: 

Molaudzi, D.O and Adelabu, S. “Remote Sensing for Monitoring Wildfire Risk Conditions in 
Protected Areas” 11th International Conference of Africa Association of Remote Sensing of the 
Environment, 24-28 October 2016, Kampala, Uganda 

Molaudzi D.O, Adelabu S.A & Mokubung C.L, “Review of the use of Remote Sensing for 
Monitoring Wildfire Risk Conditions in Protected Areas to support fire risk assessment” South 
African Journal of Geomatics (In review)  
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ABSTRACT 

Fire risk assessment is one of the most components of the management of fire that offers the 
framework for monitoring fire risk conditions. Whilst monitoring fire risk conditions commonly 
revolved around field data, Remote Sensing (RS) play key role in monitoring and quantifying fire risk 
indicators. This study presents a review of remote sensing data and techniques for fire risk monitoring 
and assessment with a particular emphasis on its implications for wildfire risk mapping in protected 
areas. Firstly, we concentrate on RS derived variables employed to quantify both the intrinsic and 
extrinsic factors that influence vegetation flammability. Thereafter, an evaluation of the prominent 
RS platforms such as Broadband, Hyperspectral and Active sensors that have been utilized for 
wildfire risk assessment Furthermore, we demonstrate the effectiveness in obtaining information that 
have operational use or immediate potentials for operational application in PA. RS techniques that 
involve extraction of landscape information from imagery were summarised. A review has concluded 
that in practices, a fire risk assessment that consider all factors that influence fire ignition and 
propagation is impossible to establish, however it is imperative to incorporate indicators or variables 
of very high heterogeneous. 

Keywords: Protected Areas, Fire Risk conditions; Remote Sensing, Wildfire risk assessment 
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2.1 Introduction 

Approximately 133,000 Protected Areas (PA) worldwide covering over 12% of the land surface 
of terrestrials biomes emerged as the cornerstone of efforts towards conservation (Nagendra et al., 
2013). PA is a clearly defined geographical space, recognized, dedicated and managed through legal 
or other effective means to achieve the long-term conversation of nature with associated services and 
cultural values (International Union for Conservation of Nature (IUCN), 2015). Fire is considered as 
a major factor of environmental transformation of ecosystem (Food and Agricultural Organisation, 
2007). On the other hand, fire is recognized as an important ecological process used as the 
management tool for maintaining health ecosystem particularly in PA. However, fires in PA are 
paradoxical (Pereira et al., 2012), in that if properly planned, desired outcomes such as regulating 
fuel accumulations, regeneration of vegetation by removing fungi and microorganisms, diseases and 
insect control, receiving more energy through exposure to solar radiation, mineral soil exposure and 
nutrients release (Bond et al., 2005, Pausas and Paula, 2012) are achieved. In contrast, unwanted or 
uncontrolled fires can be destructive or result in ecological disturbance causing bush encroachment, 
invasion by alien plants, reduction in water yield and loss of biodiversity (Brown and Smith, 2002, 
Jhariya and Raj, 2014). It is always a challenge to reconcile the fire management goals that relate to 
safety on one hand to the maintenance of ecosystem health as acknowledged by Van Wilgen et al. 
(2011). Because approaches to fire management in PA have focused on encouraging particular fire 
patterns in the absence of sound monitoring and assessing fire risk conditions (Mbow et al., 2004). 
Hence, it is imperative to develop an effective and efficient fire management plan to reduce these 
losses and optimize the benefits from fires. Towards the achievement of this goal, fire risk assessment 
has been commended as one of the major components of integrated fire prevention and management 
(Chuvieco et al., 2004a, Leblon et al., 2012, Yebra et al., 2008). 

Different systems or techniques have been used to monitor and assess fire risk conditions in the 
past. For instance, conventional methods such as (i) field reconnaissance (traversing the landscape on 
the ground and recording the extent of similar fuel conditions in notebooks or on paper maps); (ii) 
directly mapped fuel from aerial photo interpretation and (iii) ecological modelling approach which 
uses environmental gradient to create fuel maps for monitoring vegetation conditions have been 
applied for fire risk assessment (Arroyo et al., 2008, Keane et al., 2001). Field sampling involving 
oven drying methods such as gravimetric sampling (involves comparing the difference in weight of 
sample from the field and its oven drying) (Aguado et al., 2007) and analogue sampling methods 
(involves the repeated weighing of a sample exposed to field conditions) such as calibration of a 
sticks known as hazard sticks  (Yebra et al., 2013) were employed to measure fuel moisture content. 
In addition, Fuel moisture content (FMC) has been indirectly measured using meteorological 
variables through the analysis of atmospheric characteristics from which fuel water status is estimated 
(Yebra et al., 2008). Although these conventional methods are considered to be reliable, accurate and 
useful for calibration and  final product accuracy assessment of derived from remote sense data 
(Arroyo et al., 2008), they however suffer from numerous drawbacks. For example, field 
measurements are primary based on point-source data. In general, to forecast fire danger rating over 
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a large geographic regions point data must be interpolated (Leblon et al., 2012) which would be quite 
expensive and laborious in terms of data collection and its processing (Chowdhury and Hassan, 2015). 
Therefore, Leblon (2005) argued that the accuracy of ratings may be limited by the density of point 
data and interpolation methods that generally does not account for fine-scale variations in 
environmental conditions. 

In the past three decades, passive and active remote sensing systems have been employed to 
address the spatial and temporal interpolation limitations associated with conventional methods with 
obvious advantage of spatial and regular temporal coverage (Dalponte et al., 2009). With the 
consideration of the characteristics of various remote sensing systems developed over the past 
decades, the significant mandate of PA and the impacts of fire as well as heterogeneity of 
environmental factors that influence vegetation flammability need to be considered. Questions such 
as how to ensure the long-term sustainability of the PA with complex landscape where diverse 
conflicts of interest meet, i.e. nature conservation and tourism (Aretano et al., 2015). How to 
effectively apply fire as ecological process and develop sound fire management strategy and how to 
monitor fire risk conditions for fire risk assessment based on the remote sensing technology has 
become a critical question within PA. Therefore, summaries and comparisons of different remote 
sensing approaches are urgently required and indispensable for PA management to better understand 
the mechanisms of interactions between vegetation characteristics and its environmental conditions. 
Thus, the objective of this manuscript therefore is to review different remote sensing data and 
techniques that have been used for predicting and monitoring fire risk conditions and its implication 
for fire risk assessment and mapping in PA.  

 

2.2 Remote Sensing in Monitoring Vegetation Conditions for Fire Risk 
Mapping. 

 

In wildfire risk assessment, RS assists in elaboration of fuel or biomass maps in order to create a 
permanent and static database and to determine the meteorological conditions and vegetation state in 
real time and in dynamic way in order to provide the risk indexes (Calle and Casanova, 2008). Several 
studies have demonstrated the existence of relationship between fire and vegetation characteristics 
(Lozano et al., 2007, Schneider et al., 2008) as well as the relationship between remote sensing and 
these variables or indicators (Arroyo et al., 2008). However, in order to understand the usefulness of 
remote sensing in monitoring and mapping wildfire risk conditions, it is crucial to understand the 
relationship between environmental conditions and fire occurrence following protocols as suggested 
by Chowdhury and Hassan (2015). In doing so, more information on remotely sensed data used to 
quantity vegetation flammability was discussed. 
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2.2.1 Vegetation flammability remote sensing derived indices  

Generally, remote sensed based vegetation and water indices have been used to assess the extent 
of vegetation flammability conditions and to understand the fire risk conditions. In simplicity, 
Chowdhury and Hassan (2015) on the basis of environmental conditions broadly categorised these 
indices into (i) vegetation greenness, (ii) meteorological variables; (iii) surface wetness conditions 
and (iv) vegetation wetness conditions. 

 

2.2.1.1 Vegetation greenness 

Vegetation greenness-related indices have been immensely used for obtaining information relative 
to the photosynthetic state of the vegetation and is based on the spectral signature of vegetation 
greenness expressed in Red (R) and Near Infrared (NIR) portions of the spectrum (Table 1). The 
internal structure of healthy leaves act as excellent diffuse reflectors of near-Infrared reflectance 
wavelengths and therefore measuring and monitoring  near–infrared reflectance (NIR) is used to 
determine the healthiness of the vegetation (Barroso and Monteiro, 2010). The healthy vegetation 
shows a very low reflectivity in the Visible Band of the electromagnetic spectrum (0.4 -0.7 
micrometer), less than 20% and its local maximum belong to colour green (0.55 micrometer). While 
unhealthy vegetation lack of chlorophyll in their leaves makes the spectral curve of reflectivity move 
significantly towards the red colour (Calle and Casanova, 2008). 

Normalized Difference Vegetation Index (NDVI) also known as “continuity Index is calculated as 
function of surface reflectance of red (0.6 – 0.70 µm) and NIR (0.70 – 0.90 µm) (Huete et al., 2002). 
No doubt, that NDVI is one of the immensely utilized and well-known VI in measuring both 
morphological and physiological characteristics of the vegetation conditions for estimation and 
monitoring fire risk conditions for fire risk assessment and mapping with PA. For example, NDVI 
have been used to distinguish shrub height in order to distinguish shrub for description of fuel 
conditions (Riaño et al., 2007), to evaluate vegetation cover or canopy cover (Falkowski et al., 2004); 
Leaf Area Index (LAI)(Yebra et al., 2008); biomass (Saatchi et al., 2007, Sannier et al., 2002, 
Verbesselt et al., 2006b); phenology (Van Wagtendonk et al., 2003), and fraction of Absorbed 
Photosynthetic Active Radiation ( fAPAR); fractional of vegetation cover (fPAR) (Jia et al., 2006b). 

Other indices based on R & NIR exhibit strong relationship with vegetation or fuel conditions than 
NDVI in the both protected and unprotected areas. For example, Soil Adjusted Vegetation Index 
(SAVI) that take into account the influence of bare, unsaturated soil backgrounds in order to minimise 
soil noise (Huete, 1988, Moreau et al., 2003). While Enhance Vegetation Index (EVI) is an example 
of optimized spectral band combinations that aim to minimize VI biases from canopy background 
and aerosol variations and outperformed NDVI over high biomass area since it does not saturate 
easily and it is recommended for tropical dense vegetation (Huete et al., 2002, Huete, 2012). Visible 
Atmospherically Resistant Index (VARI) was developed for estimating green vegetation fraction 
since it minimizes the sensitivity to atmospheric effects (Stow et al., 2005). Since NDVI is also known 
to be impacted by the surface bi-directional reflectance distribution function depending on the 
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structure of the vegetation (Gao et al., 2002), Newnham et al. (2011) used Relative Greenness (RGI) 
calculated from minimum and maximize of NDVI to assess the grassland curing (the senescence of 
plant material caused by seasonal weather pattern, species-specific phenological cycles and plant 
succession). The results showed that RG explained a greater proportion of the variance and provided 
a more accurate estimate of the degree of curing than linear regression against NDVI. The study 
conducted by Zhang et al. (2005) at Grassland National Parks commended the use of Global 
Environmental Monitoring Index (GEMI). GEMI, one of the hybrid vegetation indices for extraction 
of biomass data because is good for vegetation canopy of low cover. On the hand, Bisquert  et al. 
(2014) established that GEMI and EVI were the best indices to characterized the state of vegetation 
at their protected area of Galicia and Asturias in Spain. 

 
Table 2.1. Selected vegetation greenness indices in monitoring fire risk conditions in the 

literature 

Indices Formula Reference 
SR 𝑆𝑆𝑆𝑆 = 𝑁𝑁𝑁𝑁𝑁𝑁/𝑅𝑅 (Falkowski et al., 2004) 

 NDVI 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = (𝑁𝑁𝑁𝑁𝑁𝑁 –  𝑅𝑅)/(𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑅𝑅) 
 

(Rollins et al., 2004); (Bisquert  et al., 2014); (Wang 
et al., 2013b) 

SAVI 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =  (𝑁𝑁𝑁𝑁𝑁𝑁 −  𝑅𝑅)/ (𝑁𝑁𝑁𝑁𝑁𝑁 +  𝑅𝑅 + 𝐿𝐿)  ∗  (1 + 𝐿𝐿) (Verbesselt et al., 2006b) (Huete et al., 2002) 
 

VARI 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 =  𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 – 𝑅𝑅/ 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 + 𝑅𝑅 +  𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 (Gitelson et al., 2002) (Schneider et al., 2008); (Stow 
et al., 2005); 

 
GEMI 

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 =  ŋ (1 − 0.25ŋ ) _  [(𝑅𝑅 –  0.125)]/1 − 𝑅𝑅  
Where  
Ŋ = 2(NIR2 – R2 ) + 1.5R2 +0.5NIR2 / R +NIR +0.5 
 

 
(Pinty and Verstraete, 1992); (Bisquert  et al., 2014) 

RGI 𝑅𝑅𝑅𝑅𝑅𝑅 =  𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖 –𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚 / 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚 −  𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚 (Schneider et al., 2008);(Riaño et al., 2002);(Oldford 
et al., 2006);(Newnham et al., 2011) 

EVI 𝐸𝐸𝐸𝐸𝐸𝐸 =  2.5  [(𝑁𝑁𝑁𝑁𝑁𝑁 – 𝑅𝑅)/ (𝑁𝑁𝑁𝑁𝑁𝑁 + 6 𝑅𝑅 –  7.5 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 +
 1)]  

(Huete et al., 1984); (2002); (Mildrexler et al., 2007); 
(Bisquert  et al., 2014) 

 

2.3.1.2  Meteorological index  

Remote Sensing meteorological variables such as Surface Temperature (Ts), Air Temperature (Ta) 
and Relative Humidity (RH) are used as indicators in monitoring and analysis of fire risk conditions. 
Keetch-Byram Drought Index (KBDI) is a fire/drought index that has been used to estimate fire risk 
conditions from meteorological data such as daily maximum temperature, daily total precipitation 
and minimum annual precipitation (Keetch and Byram, 1968). KBDI is strongly related to vegetation 
water content since most of the vegetation moisture stress are caused by soil moisture deficiencies 
(Aguado et al., 2003) and it has been recommended for operational use in South Africa 
(Dimitrakopoulos and Bemmerzouk, 2003). Its utility has been effectively demonstrated on shrub 
species or herbaceous fuel moisture content (Riaño et al., 2005).  
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2.3.1.3  Surface Wetness Conditions 

Surface Wetness Conditions have been monitored based on the concept of evapotranspiration 
(ET). ET is described as the loss of water from the Earth’s surface to the atmosphere by the combined 
processes of evaporation from the open water bodies, bare soil and plant surfaces, etc. and 
transpiration from vegetation or any other moisture containing living surface (Li et al., 2009). RS-
based ET estimation methods can be broadly categorised into the following groups based on the 
following principles (i) water balance,(ii)surface energy balance, (iii) vegetation indices and 
(iv)hybrid approaches based on vegetation indices and Ts (AghaKouchak et al., 2015). In fire risk 
assessment, hybrid approaches had been widely applied whereby Surface Temperature (TS) has been 
incorporated with the vegetation greenness variables to indirectly estimate the surface wetness 
condition as the indicator for wildfire risk. For example the ratio of NDVI/Ts (Aguado et al., 2003, 
Prosper-Laget et al., 1995); and EVI/Ts (Mildrexler et al., 2007). The incorporation of NDVI and Ts 
assists in justification for the influence on the ground cover rate over the composite Ts measured by 
the sensors (Leblon et al., 2012). This resultant to the various indices such as Stress Index (SI) (Vidal 
et al., 1994), Water Deficient Index (WDI) (Moran et al., 1994, Vidal and Devaux-Ros, 1995); 
Temperature –Vegetation Wetness Index (TVWI) (Akther and Hassan, 2011).  

WDI developed by Moran et al. (1994) estimated by the ratio of LE/LEp by using land surface 
temperature and ambient Ta and has been used for partially vegetated covers. LEp is the latent heat 
flux for potential evapotranspiration rate (Rahimzadeh-Bajgiran et al., 2012) and have a potential for 
evaluating evaporation rate and relative field water deficient for both full cover and partially 
vegetated sites (Verbesselt et al., 2002). TVWI was developed by Sandholt et al. (2002) as a 
simplification of WDI by interpreting the relationship between LST and NDVI in terms of soil 
moisture. It is important for the PA managers to note that these evapotranspiration-concept indices 
are acquired through thermal inertia approach and have two important limitations as described by 
(Calle and Casanova, 2008). Firstly, indices only yield to satisfactory results in soils with little 
vegetation cover since the latter reduces the temperature differences between day and nights.  
Secondly, in order to determine the moisture in a concrete point it is necessary to have the day and 
night temperature in a cloud –free images. However, globally thermal inertia and moisture are 
empirical parameters which provide a reasonable solution to the energetic balance equation (Calle 
and Casanova, 2008). 

 

2.3.1.4  Vegetation Cover Moisture  

In general, quantification of vegetation/fuel cover moisture has been conducted through the 
measure of FMC as defined above or the Equivalent Water Thickness (EWT) defined as ratio between 
the quantity of water and the leaf area (Leblon et al., 2012) and Relative Water Content (RWC) 
compare the water content of a leaf with the maximum water content at full turgor (Ceccato et al., 
2002, Wang et al., 2013b). It is regarded as extremely essential vegetation condition parameter since 
it has inverse relation with ignition probability owing to the fact that the energy necessary to start a 
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fire is used up in the process of evaporation before the fire starts to burn (Dimitrakopoulos and 
Bemmerzouk, 2003). Moreover, fuel cover moisture dilutes volatiles and excludes oxygen from 
combustion zone, however, the water content also affects fire propagation as the source of the flames 
as it reduced with humid materials and therefore reduce vegetation flammability (Chuvieco et al., 
2009). Most studies have directly measured vegetation water content by utilizing water absorption 
channels in the SWIR and contrast it with NIR channels to account for the variations in reflectance 
due to leaf internal structure (Dalponte et al., 2009) (Table 2.2.). However, the sensitivity of these 
indices to the fuel moisture content or vegetation water content varies and similarly fire risk index 
yield to dissimilar results when applied to different biomes or geographic and these creates a 
confusion concerning their efficiency on which the PA managers should take into consideration. 
Therefore, the best index account for the changes in vegetation studies must be determined for each 
species or regions. With the acknowledgement of limitations related to VI, the researchers have 
developed and improved techniques by using hyperspectral and hyper-temporal remote sensing 
derived indices as well by integrating differences indices. For example, Accumulative Relative 
Normalized Difference Vegetation Index (ARNDVI) and integral Ratio Vegetation Index (iRVI) for 
VWC and biomass respectively were used to improve fire risk assessment in savannah ecosystem in 
Kruger National Park of South Africa (Verbesselt et al., 2006b). Hence, it is vital important for PA 
to consider the ratio indices for better operational fire danger estimation.  

 

2.3.1.5  Other variables  

Topography is a very important extrinsic, physiographic variable under static risk  which is related 
to wind behaviour and then affects the fire proneness (Jaiswal et al., 2002). It affects the fire risk 
condition through configuration, exposure and slope (Calle and Casanova, 2008). RS imagery from 
High spatial resolution airborne laser altimetry tool has the capacity to measure surface topography 
commonly used to develop Digital Elevation Models (DEM) or Digital Terrain Models (DTM). DTM 
provide the base elevation which is subtracted from digital surface model to estimate vegetation 
heights and fuel loading (Morsdorf et al., 2008). Moreover, DTM can be used as topographic inputs 
or base elevation map subtracted from canopy and vegetation height to access fuel (Burns, 2012).  
Other variables or parameters, which are very important in fire ignition and suppression, are related 
to human-socio factor, which includes factors such as proximity to roads, settlement, rivers or 
drainage, recreational activities in the natural areas (Chuvieco et al., 2010).  
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Table 2.2. Selected vegetation wetness condition indices derived as a function NIR and 
shortwave infrared (SWIR) to determine the fuel moisture content for fire risk 

Indices Algorithm  References 

Normalized Difference Water 
Index  

"𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =  "  (𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌 − 𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌)/(𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌
+ 𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌) 

(Gao, 1996); (Verbesselt et al., 2006a) 

Global Vegetation Moisture 
Index  

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 = [(𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌 + 0.1) − (𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌 +
0.2)]/[(𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌 + 0.1) + (𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌 + 0.2)]   

(Wang et al., 2013b); (Ceccato et al., 
2002) 

Normalized Differences 
Infrared Index  

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =  𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌 − 𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌/𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌 +
𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌  

 (Hunt and Rock, 1989);(Chuvieco et 
al., 2002) 

Moisture Stress Index (MSI) 𝑀𝑀𝑀𝑀𝑀𝑀 =  𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌/𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌  (Sow et al., 2013) 

Simple Relation Water Index 
(SRWI) 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌/𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  (Gao, 1996); (Sow et al., 2013) 

Normalized Multi Drought 
Index (NMDI) 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏2)−�𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 6)−(𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 7)�
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 2)+�𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 6)−(𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 7)�

  
(Wang et al., 2013),  

 

2.3. Remote sensing platforms for monitoring, assessment and mapping 
wildfire risk  

Fundamentally, the choice of remote sensing data will depend on the amount of information or 
variables that is available to create a fire risk index or model to suffice degree of accuracy and to 
monitor changes (Kennedy et al., 2009). Furthermore Nagendra et al. (2013) highlighted three critical 
aspects that should be considered in the selection of datasets, i.e. (i) Scale (spatial and temporal), (ii) 
the adequacy or quality of spatial datasets and (iii) dataset sources. Different RS instruments and 
platforms have been utilized in the past decades for acquiring imagery to extract indicators for 
monitoring fire risk conditions for wildlife risk mapping with differences success. Thus, a review of 
the prominent remote sensing platforms that have been utilized for obtaining information that have 
operational uses or immediate potentials for operational application in PA management are explored 
in the following section. 

 

2.3.1. Broadband sensors 

Remote sensing broadband sensors imageries have been found to effectively monitor vegetation 
conditions for fuel or biomass mapping and fuel moisture content in wildfire risk assessment for PA. 
Landsat and other coarse, medium to high spatial resolution sensors have relative good spatial and 
spectral resolution essential for the fuel mapping. The 30m spatial resolution of Landsat sensors 
allows spatial detail to be captured at a scale appropriate for monitoring vegetation structure and 
composition (Willis, 2015) and good spectral resolution of seven bands. Erten et al. (2004) used 
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Landsat TM images taken before and after the forest fire in Gallipoli Peninsula Historical National 
Park in Spain to map burned area and to estimate vegetation moisture context in conjunction with 
topographic maps, forest type map, vegetation map, elevation, slope, aspect, topographic map and 
climate data (average, wind, rainfall data and temperature to determine fire risk areas.  The authors 
concluded that remote sensing is a useful tool to determine fire risk area and could support fire 
management activities. Banu et al. (2014) employed Landsat 8 imagery to estimate the vegetation 
moisture in combination with other variables for the cartographic wildfire risk areas in National Park 
Domogled- Cerna Valley in Romania. Because of its revisiting time of 16 days, the operativeness for 
estimation of the FMC in real time is ruled out (Calle and Casanova, 2008) and the constraints to 
cover a cloud-free landscape in a large area, it is difficult to reveal key characteristics of the plant 
where vegetation is highly dense or saturated (Mbow et al., 2004). 

As an alternative, Advanced Very High Resolution Radiometer (AVHRR) sensors of National 
Oceanographic and Atmospheric Administration (NOAA) with a daily temporal resolution have 
demonstrated to be effective for mapping fire risk (in particular dynamic fire risk map) through the 
study of water stress. Sannier et al. (2002) used NOAA- AVHRR to estimate the biomass for wildfire 
risk assessment in Etosha National Park. The study had demonstrated the suitability of AVHRR for 
measuring biomass of grassland in the Park. Maselli et al. (2003) used past-fire occurrence data and 
NOAA-AVHRR NDVI data of 16 years (1985-2000) to estimate fire risk in Tuscany (Central Italy . 
AVHRR has an image archive with long history, it is useful to study long-term changes of vegetation 
however its utility has been restricted because its often introduce substantial errors at the various stage 
of processing and analyzing (Xie et al., 2008). 

Another sensor that has been applied in wildfire risk mapping is Systѐme Pour I’Observation de 
la Terre (SPOT) managed by French Space Agency (CNES). Verbesselt et al. (2006a) used SPOT 
VEGETATION time-series to monitor the vegetation biomass and water content to improve fire risk 
assessment in the savannah ecosystem of Kruger National Park in South Africa. This study illustrated 
the importance for the combination of both vegetation biomass and vegetation water content for fire 
risk assessment.  The study concluded that monitoring of vegetation biomass and water content with 
SPOT VGT provided a more suitable tool for fire management and suppression compared to satellite-
based fire risk assessment methods only related to vegetation water content.   

Fire risk assessment and mapping have been extensively investigated using Moderate Resolution 
Imaging Spectro-radiometer (MODIS). For example, Yebra et al. (2008) estimated FMC of 
Mediterranean vegetation species using a 5-year time (2001 -2005) of Terra MODIS for fire risk 
assessment in the Cabañeros National Park (Central Spain) offering reasonable result with better 
performance on grassland (91% & 89%) than shrublands (73% and 84 %). Dlamini (2011) used 
MODIS Terra and Aqua satellites’ active and burnt area data for the period of between April 2000 to 
December 2008 and January 2001 and December 2001 respectively, to analyse and process the 
biophysical   and socio-economic variables to generate a fire risk map of the Kingdom of Swaziland. 
Accuracy assessment and comparison of the fire risk maps resulted in 93.14% and 96.64% accurate 
respectively, showing adequate agreement between risk maps and the existing data. Although the 
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model is valid for generalized national planning and assessment purposes the author suggested that 
more work is needed to improve data collection and integration for practical application in near real-
time fire risk analysis. Furthermore, the utility of MODIS data was found to be useful for estimating 
herbaceous water content and for monitoring the drying process of herbaceous vegetation and in the 
management of savannah fire by the study conducted by Sow et al. (2013) at Senekal. In comparison 
with other broadbands sensors, MODIS data are available at a significantly higher temporal resolution 
(daily) with the spectral bands available in Landsat data. However, MODIS imagery has limitations 
for monitoring land cover changes (Gillespie et al., 2014) and for validating fire susceptibility indices 
because of possible over or underestimation of the model performance since some large fires have 
several fires detections which are likely to have similar environmental conditions and spatial and 
temporally correlation (Schneider et al., 2008). 

Data from Very High Resolution (VHR) multispectral remote sensing image such as Quickbird 
was employed to map the forest fuel in central Spain and reported an overall accuracy of 85% (Arroyo 
et al., 2006a). The study illustrated that VHR data can be used to create fuel classification that are 
potentially useful in the prediction of fire behaviour and effects. Similarly, Santi et al. (2014) used 
QuickBird data for mapping fine and coarse biomass/fuel in Florence, Tuscany by determining the 
relationship of NDVI and fine and coarse biomass. Giakoumakis et al. (2002) used both Landsat TM 
and IKONOS imageries to develop fuel type mapping. IKONOS was found to be useful than Landsat 
TM for the forest density measurement.  However, because of its poor spectral information 
unnecessary data were included in the results as unclassified (noise). The primary value of VHR 
imagery for fuel mapping therefore lies not only its ability to produce high resolution maps but also 
in its potential to improve fuel map accuracy with its capability to detect submetric fuel components 
(Arroyo et al., 2006b). The application of VHR is limited to study special topics in relatively small 
area (local scale) due to its high cost and rigid technical parameters (Xie et al., 2008). Although not 
for fire risk assessment, the utility of WorldView 2 images were recommended for mapping tree 
species and canopy gaps in one of the protected subtropical forest in South Africa (Cho et al., 2015). 

Meteosat Second Generation (MSG), the new generation of geostationary meteorological satellite 
developed by the European Space Agency (ESA) in close corporation with the European Organisation 
for the Exploitation of Meteorological Satellites (EUMESAT), possesses a high temporal resolution 
(a near earth image every 15 min) together with a spatial resolution (3 km at sub-satellite point) 
appropriate to regional to continental scales.  In addition, the optical imaging radiometer on-board 
MSG (Spinning Enhanced Visible and Infrared Imager (SEVIRI) presents spectral capabilities that 
are very similar to the TIR bands around 10.8 and 12.0 μm of the NOAA- AVHRR series (Peres and 
DaCamara, 2004). These temporal, spatial and spectral characteristics make MSG-SEVIRI suitable 
for retrieval of environmental parameter that change rapidly in time. Nieto et al. (2010) used MSG-
SEVIRI data to estimate dead fuel content in the Iberian Peninsula of Spain. The accuracy assessment 
showed a negative bias comparison between equivalent moisture content (EMC) of the vegetation 
derived from Ta and vapour pressure, and surface meteorological data. The remote sensed tends to 
underestimate the EMC from the ground. The authors recommended the improvements in Ta and 
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vapour pressure would lead to a better agreement between the observed and the predicted values and 
alternative method for estimation NDVI max that produced unbiased estimation of Ta.  

 

2.3.2  Hyperspectral remote sensing 

Advancement in remote sensing and imaging spectrometry led to the development of hyperspectral 
imagery which has demonstrated to be useful for the spectral and spatial discrimination of fire-related 
vegetation attributes such as green canopy closure, vegetation moistures, ratio dead to live plant 
materials and distribution of bare ground  (Wang  et al., 2010). Hyperspectral imagery also known as 
Imaging Spectrometers (IS) are instruments that have the ability to collect ample spectral information 
across a continuous spectrum general with 100 or contiguous spectral bands across the visible (VIS), 
NIR and SWIR regions of the electromagnetic spectrum, offering unprecedented detailed spectral 
reflectance data from land surface features. Because of its fine spectral information facilitates 
hyperspectral sensors have been used for remote sensing mapping of biophysical and chemical 
information that is directly related to the quality of wildfire fuel including fuel type, fuel moisture, 
green biomass and fuel conditions (Yoon and Kim, 2003). Kötz et al. (2004) demonstrated the 
potential for utility of imageries from hyperspectral remote sensing in assessing and mapping wildfire 
risk assessment.  Jia et al. (2006a) used AVIRIS data to map major forest components and fuel types 
by discriminating the fractional covers of photosynthetic Vegetation  (PV), non-photosynthetic 
vegetation (nPV) and bare soil with 73,5%, 40,3% and 77,6% for PV, NPV and soil respectively. 
These make hyperspectral remote sensing an excellent indicator not only for fuel fractional cover but 
also for fuel condition after fire by greatly improving regional fire risk assessment.  

Similarly, Dennison et al. (2006) illustrated the ability of hyperspectral data AVIRIS to retrieve 
both fire temperature and background land cover for fire spread model in wildfire risk assessment 
with the conclusion that fire and fuel information extracted from hyperspectral data provide the basis 
for eventual real-time complex fire spread model. However, the limitations of AVIRIS are that it is 
only available in small areas upon request and that data processing requires special expertise and 
software (Jia et al., 2006a).  Additionally, the capability of Airborne Imaging Spectrometer data 
(DAIS7915 and ROSIS) to estimate structure and foliage water content of a coniferous canopy for 
fire risk assessment and fire impact management at Ofenpass Valley in Swiss National Park with 
accuracy assessment of 71,6% and 78,2% for foliage water content and dry matter respectively  (Kötz 
et al., 2004). Yoon and Kim (2003) applied Hyperion hyperspectral remote sensing data acquired to 
evaluate its potential of mapping fuel properties such fuel moisture, fuel greenness, live biomass  and 
fuel types. Although the Hyperion imagery included a lot of sensor noise and poor performance in 
liquid water band, the overall results showed that Hyperion imagery is useful for wildfire fuel 
mapping. The usefulness of hyperspectral data to recognize and map fuel type was illustrated when 
the highest accuracy level of 90% was achieved when comparing the MIVIS based results with 
ground truth data of Pollino National Park in the south of Italy (Lasaponara et al., 2006). 



[23] 
 

Thenkabail et al. (2004) compared the ability of Hyperion data with broadband sensors, hyper 
spatial IKONOS, Advanced LandImager (ALI) and ETM+ for southern Cameroon. The study 
established that even the most broadband sensors such ETM+, IKONOS and ALI had serious 
limitations in modelling biomass and in classify Land Use Land Classification (LULC) classes.  The 
study showed the broadbands model that explained 13 -60% of the variability in biomass and LULC 
classification of 42% and 51 % with ALI sensor outperforming IKONOS and ETM+ sensors. When 
compared to other broadband sensors Hyperion produced models that explained 36 -83% more of the 
variability in rainforest biomass and LULC overall accuracy classification of 96% was achieved 
through Hyperion wavelengths. Recently, Mallinis et al. (2014) evaluate and compare the spectral 
and spatial information in Hyperion with QuickBird and Landsat TM image to discriminate and map 
Mediterranean fuel types. The results revealed that the overall accuracy of the QuickBird based fuel 
type mapping was high than 74% with quantity disagreement of 9% and allocation disagreement of 
17%.  The overall accuracy of classifications from Hyperion and Land TM fuel type maps were 
approximately 70% with 16% allocation disagreement and suggested that high spatial resolution 
might be more decisive than high spectral resolution in fuel type mapping of Mediterranean region.  
Although Hyperion has large number of spectral bands that should improve mapping, its operational 
use is limited by higher  data cost, considerable more completed pre-procession phase due to data 
volume and inherent noise, in contrast to Landsat TM imagery which is easier to process, and covers 
a large area (Mallinis et al., 2014). Implicitly assumptions of greater utility of High resolution satellite 
imagery are widespread but its credibility has been questioned depending not only on the 
classification content but on image acquisition parameters and scene configuration (Carter et al., 
2009). Based on the evaluation of classification results in terms of cost and technical characteristics 
the author suggested that the use of hyperspectral datasets is suitable for use in wildfire management 
although they are still unavailable and costly for most developing countries. 

  

2.3.3  Active sensors 

The emergence of active sensors such as Light detection and Ranging (Lidar) and RADAR sensors 
has resulted in increased emphasis on fuel treatment across wide range of spatial scale. Active sensors 
had been widely used to estimate various components of forest structures such as crown and stem 
biomass, foliage water content, crown bulk density and forest height that can be directly incorporated 
into fire spread and fire risk assessment (Saatchi et al., 2007). Furthermore, it has be used as an 
effective solution for overcoming the difficulties encountered when mapping fuel using data derived 
from passive optical sensors (Arroyo et al., 2008). It is employed to estimate fuel height which is 
critical both in fuel loads assessment and fuel discrimination and it provide information of surface 
fuels when they covered by forested canopy (Keane et al., 2001). Several studies have demonstrated 
the successful use of Lidar system in measuring vegetation characteristics. For instance, Morsdorf et 
al. (2008) employed Airborne laser scanner (ALS) to measure the location and geometry of individual 
trees and vegetation cover to quantify fire risk of Swiss National Park in Switzerland. Gonzalez-
Olabarria et al. (2012) illustrated the operational application of Lidar derived data for fire risk 
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assessment at the landscape level for fire management and planning. Due to its efficiency and ability 
to record elevation information below vegetation cover, Lidar has been effectively used to develop 
Digital Elevation Models (DEM) or Digital Terrain Models (DTM) (Burns, 2012). However, its 
affordability would be ultimately be limited by logistics costs and challenges associated with the 
deploying of such airborne sensor system in an African landscape (Naidoo et al., 2012). 

Similar to Lidar, active microwave sensors with the potential to complement optically measured 
characteristics of fuel. The widely used satellite microwave sensors such as European Remote 
Sensing Satellite Synthetic Aperture Radar (ERS-SAR) and RADARSAT have been beneficial in 
wildfire risk analysis.  Leblon et al. (2002) demonstrated the efficacy of using imaging radar system 
to assess canopy and forest fuel moisture content through analysing the potential use of ERS-1 SAR 
backscatter for retrieving Fire Weather Index (FWI) data and FMC. The results revealed significant 
relationships between backscatter and the FWI, and between rate of change in backscatter coefficient 
and in the LFMC, and this indicate the usefulness of ERS-1 images in monitoring fuel moisture. The 
capability of RADAR system for monitoring forest fuel and as potential tool for forest fire risk 
assessment was illustrated by (Saatchi et al., 2007) through the use of Airborne SAR imagery  to 
estimate the distribution of forest biomass and canopy fuel loads in Yellow Stone National Park. The 
authors found good agreement between radar- generated fuel parameters and in-situ measurement 
with r2 value of 0.85 (canopy fuel weight), 0.84 (canopy bulk density) and 0.78 (foliage biomass). 
While some studies including García et al. (2011) combined active and multispectral sensors for 
improving the accuracy of fuel mapping taking advantage of the information provided by Lidar data 
on vertical structure of the fuels and the capability of multispectral sensors to capture horizontal  
distribution of the fuels. SAR usually provide higher resolution images however has inherent of 
speckles which looks as a grainy texture due to random construction and destructive interference from 
multiple scattering (Chowdhury and Hassan, 2015). Other notable limitations include for instance 
right angle surface causes double bounce reflection, volume scattering may occur when radar beam 
penetrates the top most surface and the brightness of the image increase due to high moisture content 
of the target surface (Moreira et al., 2013). According to Levin and Heimowitz (2012) the radar 
operates under commercial mode and revisits time period is quite long (ERS1/2) repeat cycle is 
around 35 days compared to RADARsat -1/2 almost 24 days coverage which limits capturing the 
temporal dynamic of moisture conditions. 

 

2.4.  Remote sensing techniques for wildfire risk mapping 

Regardless of the variety of uses for remote sensing images, the first goal is to extract landscape 
information from the satellite images. Image classification is defined as the process of extracting 
different classes or themes from raw remotely-sensed data (Xie et al., 2008) is known to be a powerful 
technique to do so since mid-1800, when humans first identified different types of land-use and land-
cover in aerial photography (Wang  et al., 2010). However, pre-processing image prior to information 
extraction in order to eliminate data registration errors and to increase interpretability of image is 
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essential. Image pre-processing involves series of operation including but not limited to bad lines 
replacement, geometric and radiometric corrections, image enhancement & masking as well as geo-
referencing. Techniques for extracting data from pre-processed images are grouped into two types: 
traditional and advanced methods.  

Traditional methods include supervised and unsupervised classifications. In an unsupervised 
classification methods are purely relying on spectrally pixel-based statistics and incorporate no prior 
knowledge of the characteristics of the themes being studied (Xie et al., 2008). Two most frequently 
applied methods are K-means (Bian et al., 2013) and ISODATA (Puri et al., 2011). In contrast, a 
supervised classification is an established classification from a training dataset, which contains the 
predictor variables measured in each sampling unit and assigning prior classes to sampling units being 
studies (Xie et al., 2008). Maximum Likelihood classification is regarded as a classic and most widely 
used supervised classification method (Mbow et al., 2004, Rahimzadeh-Bajgiran et al., 2012, 
Verbesselt et al., 2007). A parametric classifier that presuppose that training data values for each 
class in each spectral band are normally distributed (Schneider et al., 2008). Pixel-based classification 
is associated with salt-pepper artefacts limitation (Arroyo et al., 2006b). As a solution to derive on 
classification that is, more accurate, different approaches emerged and made significant contributions 
to the wildfire risk mapping.   

While advanced methods also known as improved classifiers are generally based on traditional 
methods however focus on and expand on specific techniques or spectral features that can lead to 
better classification results. For example, with an increase of high-spatial resolution satellite data, 
pixel-based classification algorithms tend not to be ideal to extract information desired from the data 
exhibiting high frequency components with high contrast and horizontal layover of objects (Wang  et 
al., 2010). Therefore, objected-oriented classification algorithms have been developed as a solution 
to this limitation. In object-based approach, pixels are aggregated before and not after classification. 
The classification is performed on groups of pixels (objects) identified according to predetermined 
rules  and objects can be on the basis of spectral values, spectral variability, size, shape or in relation 
to neighbouring objects as well on hierarchical, with the arrangement of objects on one level 
informing the creation of higher –order objects (Arroyo et al., 2006b).   

Due to the sub-pixel issue associated with medium to coarse spatial resolution of operation satellite 
system like Landsat, a number of image analysis accommodating mixing problems exits (Gitas et al., 
2012). Spectral Mixing Analysis (SMA) has being the most common technique utilized in many 
applications (Riaño et al., 2002, Veraverbeke et al., 2014). SMA addressed this issue by quantifying 
the sub-pixel fraction of cover of different endmembers, which are assumed to be representing the 
spectral variability among the dominant terrain features. Support Vector machines (SVMs) are among 
advanced methods mostly used and highly performing one.  SVMs are non-parametric linear 
classifiers that delineate the optimal separating hyperplane between classes by focusing on pixels that 
lie at the edge of the class distributions with the rest of the training sample effectively being discarded 
(Mallinis and Koutsias, 2012). Mallinis et al. (2014) used SVM method of classification for 
comparing the efficacy of Hyperion with Landsat TM and Quickbird imageries. However, the main 
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issue with SVM include difficulty in choosing the best kernel function (Hussain et al., 2013). 
Although SVM is complex and time consuming method (Hussain et al., 2013), it has the crucial 
ability to detect low cover fractions, which remains challenge to conventional approaches. Besides 
typical techniques, Artificial Neural Network (ANN) a non-parametric approach appears to work well 
with training data sets that are smaller in size than those required for statistical procedures (Mallinis 
and Koutsias, 2012) has been used in wildfire risk analysis (Alonso-Betanzos et al., 2002) however 
its functionalities are not common in image processing software (Hussain et al., 2013).   

Several studies in monitoring and mapping the wildfire risk combined more than one method or 
data source in order to address the shortcomings or limitations of another through integrated 
approaches known as data or image fusion. For instance, MODIS imagery has significant advantage 
in temporary resolution (daily) but it is very poor in spatial resolution 250,500 -1,000 m for certain 
applications whereas Landsat TM imagery performed well in spatial resolution (30 m) but with 16-
day revisit.  Chen et al. (2011) used MODIS – Landsat TM NDVI and fraction of photosynthetically 
active radiation (fPAR) data to assess pre-fire vegetation characteristics and fuel load change of Big 
Desert in south-eastern Idaho. Riaño et al. (2007) combined Lidar and Colour infrared Ortho images 
of Gestosa in Portugal for shrub height mapping. 

Generally, the fusion techniques can be grouped into two classes : (i) colour-related techniques 
such as colour composites (RGB), intensity –hue – saturation (HIS) and (ii) statistical or numerical 
methods such as Principal Component Analysis (PCA) and Tasseled Cap Transformation (TCP, band 
combinations using arithmetic operators and others (Pohl and Van Genderen, 1998). TCP approach 
was employed on Landsat-ETM derived Wetness and Brightness Indices to assess the risk of intensive 
fire propagation in a National Park named Niokola Koba, Senegal West Africa (Mbow et al., 2004). 
Xu et al. (2006) used PCA to sort-out the relationship between forest fire potentials and 
environmental factors to map forest fire risk zones in the Changbai Mountain of Jilin Province, China.  

Integration of RS and GIS is becoming apparent technique in the wildfire risk mapping. There is 
mounting evidence illustrative the utility and operational application of this method of the 
combination of GIS and RS in wildfire risk assessment on which requires its own review. In summary, 
the contribution of RS to GIS includes: (1) RS develops thematic layers for GIS, such as surface 
elevation (Digital Elevation Model [DEM]), land use and land cover mapping, biophysical 
parameters, feature extraction and landscape change; and (2) RS provides ortho-imagery as base data, 
which plays key role in positioning, registration and geo-referencing. On the other hand, the 
contribution of GIS to RS consists of (1) mission planning; (2) ancillary data for geometric and 
radiometric correction, and image classification; and (3) collection, organization and visualization of 
reference data (Wang  et al., 2010). 
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2.5. Conclusion 

The objective of this chapter therefore was to review different remote sensing data and techniques 
that have been used for predicting and monitoring fire risk conditions and its implication for fire risk 
assessment and mapping in PA. To effectively and efficiently use of fire as the management tool in 
PA, it is important to have knowledge on spatial-temporal distribution of fire risk conditions for 
design of fire prevention, detection, and suppression as well as fire effects assessment strategies. RS 
is capable of providing fuel type, load, LULC, topography and weather data at spatial and regular 
temporal coverage at cost-effective with zero destructive way for vegetation studies at remote and 
inaccessible areas. However, the selection of suitable RS data depends on the following: (i) 
description and scale of the study area; (ii) the cost of acquiring, processing the RS imagery as well 
as of the cost and maintenance of hardware and software; (iii) limitations and advantages of each 
sensor and the data source that has a record especially from reviewed literature (operativeness vs 
research purposes).  These are important factors to be considered for monitoring fire risk conditions 
for fire assessment and mapping in PA. 

The review indicated that numerous fire risk indicators have been introduced, however, in general 
Vegetation Greenness-related indices (based on chlorophyll absorption) such as NDVI, EVI and 
SAVI. Vegetation water related indices (based on water absorption) such as NDWI, NDMI and 
GVMI are the most commonly used indices for quantifying fire risk conditions with NDVI & NDWI 
at the top of the list. Overall RS remote sensing data, ranging from Broadband, Hyperspectral and 
active (LiDAR and Radar) have shown great potentials in monitoring fire risk indicators or variables 
for fire risk assessment at all scale. Based on their stress-free acquisition and accessibility, broadband 
Multispectral data have been found to be more effective for monitoring fire risk conditions at regional 
scale. However, mixed pixels and sensor saturation problem have been reported with these data in 
fire risk assessment for complex environments. Furthermore, the absence of red-edge and narrow 
bands to target and highlight specific biophysical parameters such as vegetation dry matter content 
and biomass estimation which are critical for fire risk assessment.  

Although large number of spectral bands in Hyperspectral data should provide accurate mapping 
of fuel types and FMC, its operativeness in fire risk assessment in PA is limited due to higher data 
cost and more complicated pre-processing phase due to increase data volume and inherent noise. 
However, data from active sensors such as RADARSAT-3 and Sentinel 3 (that provide data 
continuity for ERS,) and Advanced Land Observing Satellite (ALOS) PALSAR-2 with different 
polarizations, resolutions, incident angles and microwave bands can offer great opportunity of 
introducing “multi-index of multivariate fire risk index” that combine both vegetation water content 
and surface wetness condition (soil moisture) in fire risk assessment. The Soil Moisture Active 
Passive (SMAP) is a further promising data source that should be evaluated for fire risk assessment 
in PA. 
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Remote sensing approaches to be useful for fire risk assessment in PA the study should be 
conducted not for research purpose only but also should be useful at the operational level. Moreover, 
the specific remote sensing tools and products as well the results should be communicated to the 
general decision-making in non-technical manner. Lack of error values evaluation uncertainty of the 
outcomes in the majority of the RS studies is a critical issue that often prevent stakeholders to trust 
RS data and techniques for conservation assessment in PA (Petrou et al., 2015). Therefore, fusion of 
multisensory and multiresolution data might overcome problems faced by single dataset ad has the 
potential to improve fire risk assessment and mapping in PA. On that note, a lot of research is still 
need to be conducted to full understand the potential of multi sensoral or multi-variate fire risk index 
approach in fire risk assessment especially in PA.   

Noticeably, long-term or structural, short-term or dynamic and advanced or FPI have been used 
extensively for fire risk assessment. However, despite the wide range availability of RS derived 
variables, the synergy between RS derived methods and operational fire danger forecasting systems 
have not been fully exploited mainly because of variation in temporal and spatial dimensions of both 
systems. Furthermore, a note should be taken that in practise a fire risk index that consider all the 
factors that influence or affect fire behaviour it is impossible to establish but it is necessary to 
incorporate RS indicators or variables of very high heterogeneous types.  

Finally, for remote sensing approaches to be useful for the park or land resource management the 
study should be conducted not for research purpose only but also should be useful at the operational 
level. Moreover, the specific remote sensing tools and products as well the results should be 
communicated to the general decision-making in non-technical manner. Lack of error values 
evaluation uncertainty of the outcomes in the majority of the RS studies is a critical issue that often 
prevent stakeholders to trust RS data and techniques for conservation assessment in PA (Petrou et al., 
2015).  
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ABSTRACT 

Fire is a good servant but a bad master. Effective application of fire requires a proper and effective 
integrated fire management plan. Fire risk assessment is the critical components of the plan. 
However, it is very complex. Thus, there is need to understand the complex parameters which are 
responsible for fire risk. Fire risk index can be useful for estimation of the vegetation susceptibility 
to fire occurrence. The objective  of this chapter was to generate fuel potential index using remote 
sensing and GIS techniques for fire risk assessment of Golden Gate Highlands National Park. Remote 
sensed data has been used for creating data layers further FPI Map using GIS techniques. 
Parameters including Fuel moisture content was computed as a ratio of vegetation water index 
(Normalize Differences Water Index derive Relative Greenness Index RGINDWI) to a vegetation dry-
matter index (Normalised Multi-Band Drought Indices). Potential Surface Temperature computed 
from Land Surface Temperature and Elevation. The results revealed that 34%, 42%,13%, 8% and 
4% area of GGHNP are categorized under insignificant, low, medium, high and extreme high 
respectively. Largest area coverage of high to extreme fire danger classes was observed during 2013 
(17%), followed by 2014 (16%), 2012 (8%) and 2011(6%). Whereas in monthly basis was observed 
in September (17%) followed by August (11%) and July (6%). The model revealed an overall 
accuracy of 89% ranging from 33%-100% indicating that maximum of fires fell under low to extreme 
high fire danger classes. GWR analysis show a sound agreement between FPI and the fire danger 
with overall R2 of 0,69 ranging from 0,17 to 0,98. The goodness of fit of the model suggested that 
MODIS products and derived indices have a great potential to predict fire danger in GGHNP. These 
results indicate that this index might be useful for monitoring spatiotemporal distribution of 
susceptibility of vegetation to fire. It is imperative to consider that the derived fire potential or danger 
maps do not completely explain fire occurrence since high FPI values are necessary condition for, 
but not a cause of fires because fire only occurs when ignition agents is present. 

  

Key words GGHNP, Fire Risk Assessment, Fire Potential Index, Remote Sensing 
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3.1 Introduction 

Historically, fire was regarded as a detrimental force and evil to be avoided, until many of fire 
ecologists begin to realise that fire is not that bad but a beneficial phenomenon that should be tolerated 
and understood (Van Wilgen, 2009). Fire is regarded as an important ecological agents, an organising 
factor of ecosystem sustainability (Pereira et al., 2012). Some ecosystems like grassland require fires 
for its stability. Because without the existence of fire, ecosystem such as grassland would be 
substituted by forest (Bond et al., 2005, Van Wilgen, 2009). Generally, the purpose of application of 
fire in the protected or non-protected area is to meet the specific ecosystem services (ES). The most 
significant role that the fire plays in the supply of ES is its use in maintaining fire-dependent 
vegetation structure, since the change in fire regime is likely to change vegetation structure and 
therefore alter the supply of services (Schmerbeck and Fiener, 2015). 

Fire regimes defined by Forsyth et al. (2010) “as the history of fire in particular vegetation type or 
area including the frequency, intensity, season of burning” shape the functionality, structure and 
composition of ecosystem. Fire can be a good tool or a bad visitor. Stemming from this conundrum, 
fires have to be managed with the aim of preventing negative consequences and maximizing the 
benefit. Integrated fire management approach which include integration of fire prevention and fire 
suppression strategies for addressing this fire paradox has been commended (Silva et al., 2010). 
However, from ecological point of view, fire suppression per-sê has been discouraged as a fire 
management strategy because it is creating flammable landscape (Bowman et al., 2009).  

Fire risk conditions have for considerable time been used for fire prevention (Sebastián-López et 
al., 2002). Since fire risk conditions are dynamic and static both in spatial and temporal dimensions, 
therefore, it is a complex notion to measure (Chuvieco et al., 2010). Furthermore, fire risk conditions 
are highly influenced by both biotic and abiotic factors (Fischer et al., 2015). Quantification of biotic 
conditions or indicators aimed at studying the morphological (i.e. fuel load, composition, height and 
density) and physiological (i.e. moisture status and chemical properties) characteristics of vegetation 
(Flasse et al., 2004, Xiao-rui et al., 2005). While abiotic indicators are related to external conditions 
such as topography and meteorological factors (Calle and Casanova, 2008). Knowledge of the 
vegetation characteristics and its environmental conditions have shown to be critical, since they 
constitute primary components of fire risk (Chuvieco et al., 2004b).  

Several studies have demonstrated the relationship between fire occurrence and vegetation 
conditions (Lozano et al., 2007, Sow et al., 2013). In particular vegetation water content as a key 
factor and the most critical indicator affecting fire interaction with fuel (Chuvieco et al., 2002). The 
most widely used parameter to characterized vegetation water content for fire risk assessment is Fuel 
Moisture Content (FMC) (Alonso et al., 1996, Ceccato et al., 2002, Chuvieco et al., 2003, Chuvieco 
et al., 2002, Roberts et al., 2006, Verbesselt et al., 2002, Wang et al., 2013b, Yebra et al., 2008, 
Zarco-Tejada et al., 2003). Fuel Moisture Content is defined as the ratio of the water quantity in 
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vegetation and the dry weight for both the dead and live vegetation (Chuvieco et al., 2002, Verbesselt 
et al., 2007, Yebra et al., 2013).  

Other variables including fuel load (the amount of biomass per unit area or fuel density (the weight 
per unit volume of fuel), fuel type, meteorological parameters such Surface Temperature (Ts), Air 
Temperature (Ta), and precipitation as well as topography have been widely used as direct or indirect 
fire risk indicators. These variables are measured and integrating into an index, in thus, several indices 
have been developed for fire risk assessment based either on the temporal scale by European Union’s 
Joint Research Centre (Adab et al., 2011) or variables data sources (Gabban et al., 2008).   

On temporal-scale basis, fire risk indices can be categorized into long-term or structural indices, 
short-term or dynamic indices or integrated indices (San-Miguel-Ayanz et al., 2003). Adab et al. 
(2013) constructed long-term or structural indices that consider static ( do not change over the short 
period of time and considered stable (for a given period not smaller than a year) variables including 
vegetation type, land cover, land use, slope, aspect, distance to roads and vicinity to settlement areas, 
climatic variables and soils. This index often adopted to identify fire danger that can be identified 
before the fire season (Carrao et al., 2003) in order to identify areas where static or extrinsic factors 
influence vegetation flammability. (ii) Short-term or Dynamic Index created from the variables that 
change moderate continuously due to vegetation or weather conditions. This index detect the 
susceptibility of vegetation during fire season and to identify areas where intrinsic factors may be 
more favourable to fire (Dasgupta et al., 2006). Hence it uses variables that change in short period of 
time (Adab et al., 2013).   

Based on the variable data-source, meteorological indices derived from meteorological variables, 
for instance, most of indices if not all used to compute National Fire Danger Rating Systems 
(Chowdhury and Hassan, 2015). Remote sensing derived indices make use of remote sensing data to 
estimate vegetation conditions in relation to photosynthetic activity or environmental conditions 
(Mbow et al., 2004). Finally, integrated or advanced indices are those that agglomerates several of 
the variables that are independently taken into account by long-term and dynamic indices and make 
use of both meteorological and remote sensed derived data, also known as Fire Potential Index (San-
Miguel-Ayanz et al., 2003).  

FPI estimates vegetation susceptibility to ignition, however does not take into account the 
probability of ignition source(Burgan et al., 1998). FPI is a fire risk index that is highly specific for 
fuel type, weather condition and vegetation status (Huesca et al., 2014). United States Geological 
Survey (USGS) (2016) describe FPI as a moisture-based vegetation flammability indicator for fire 
risk assessment. In comprehending fire risk assessment and increasing the robustness of the indexes, 
most of the researchers developed FPI as the combination of both meteorological and remote sensing 
data.  On which meteorological indexes take into account the characteristics of the climate which is 
related to dead fuel conditions while RS provide data about live vegetation (Martínez et al., 2007). 
For example: (i) Burgan et al. (1998) pioneered FPI and used NOAA AVHRR images to calculate 
NDVI to develop Relative Greenness Index Map and fuel type map in conjunction with 
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meteorological station- based Relative Humidity and Air Temperature for 10-hour dead fuel moisture 
in the United State of America and exhibit a strong relationship with fire frequency R2=0.72. (ii) 
Sebastián-López et al. (2002) employed the same method for the assessment of forest fire risk at the 
European scale. The results showed that the model identifies well those areas at risk of fire. The FPI 
values increases when the fire density values increases. (iii) Applying the similar approach, Huesca-
Martínez et al. (2007) investigated the suitability of NDWI derived from MODIS in comparison with 
NDVI to assess fire potential in three different bio-climatic region of Navarra Automatic Community 
in Europe for the period of February 2000 – 2005. The researchers showed the usefulness of MODIS 
SWIR band for characterizing fire potential dynamics at a regional scale. FPINDVI outperformed by  
FPINDWI in Atlantic bioclimatic region indicating that NDWI is useful vegetation index for estimation 
fire potential in the region. 

Although point-based measurements are reliable, the spatial dynamics of the fire danger is 
calculated using geographic information (GIS)-based interpolation techniques. However, these 
techniques may produce different map outputs using the same input datasets (Chowdhury and Hassan, 
2013). In order to eliminate these uncertainties, remote sensing based data have a greater advantages 
over point-based data as it acquires the spatial variability and able to capture information over remote 
areas (Wang et al., 2013b). In this context, Huesca et al. (2014) used MODIS derived NDWI as proxy 
for fire risk to model FPI. Results showed 93.18% accuracy and demonstrated the spatio-temporal 
dimension that RS data provide combined with statistical time series analysis make it possible to 
develop robust applications for environmental monitoring and forecasting. (v) Babu -Suresh et al. 
(2015) integrated MODIS derived parameters Potential Surface Temperature, Relative Greenness 
Index and Moisture Stress Index to develop FPI for fire risk estimation over mountainous area of 
Uttarakand state (India) with overall accuracy of 87.36%.  

Most of the afore-mentioned fuel moisture based remote sensing have focused on live fuels but is 
less commonly used to estimate dead fuel moisture content (DFMC) because is primary affected by 
soil moisture near dead fuel surface (Dimitrakopoulos et al., 2010). However, vegetation indices 
could be used indirectly to estimate dead leaves covering vegetation floor (Adab et al., 2016). Due to 
uncertainties arise in estimating vegetation water content using NIR – SWIR indices since they cannot 
completely remove background soil effects (Gao, 1996). Therefore, a new index called Normalized 
Multi-Band Drought Index (NMDI) was introduced by combining multiple, rather than one SWIR 
band with a NIR band may provide a solution to separate vegetation and soil moisture variables by 
amplifying one signal and minimizing the other (Wang and Qu, 2007). Estimation of moisture content 
(LFMC) and DFMC is critically limited because of disparity in scale of between ground measurement 
and lower spatial resolutions hence using high resolution remote sensing imagery is a critical step to 
obtain accurate fire occurrence from MODIS data. The main aim of this chapter was to investigate 
the potential of remote sensing data in determining the susceptibility of vegetation to fire by 
developing a FPI for mountainous GGHNP. Firstly, the methods applied to generate remotely sensed 
risk variables or indicators in a spatial consistent way (geographical data layers) has been discussed 
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followed by addressing the data integrating techniques into a synthetic FPI. Finally, statistical analysis 
was conducted to assess the effectiveness of the FPI model in fire danger rating. 

GGHNP is a mountainous protected areas lies between 1892m and 2829m above sea level, in the 
foothill of Maloti Mountains in the Rooiberg ranges, north-eastern of the Free State Province in South 
Africa (Rademeyer and van Zyl, 2014, South African National Parks, 2013). Due to its topography, 
it is proclaimed as one of the mountainous protected area. Similarly, to other mountainous protected 
areas throughout globe, GGHNP is of international significances because of its spectacular scenery, 
quality conservation of natural and cultural resources while improving livelihood in the region. It is 
regarded as the learning and demonstration site with excellent education, research and awareness 
opportunities (South African National Parks, 2013). The park forms the part of the most important 
water catchment in Southern Africa (Drakensberg Catchment Complex) with the patches of high 
altitude wetlands. The question on how best to manage or use fire as the management tool in 
mountainous environments is thus an important one that has a bearing on wider range of issues (i.e. 
biodiversity, cultural and water-resources) than just to protect life and property. Protected area 
managers often use fire as intervention to influence vegetation structure and composition by 
manipulating the timing and frequency of fire(Van Wilgen et al., 2011). Although the ecological 
understanding of the role of fire has advanced significantly over the past decades (Van Wilgen et al., 
2012), lack or limitation of information on fuel or vegetation status and fire risk conditions monitoring 
prior to application of fire as the management tool leads to a significant deterioration in natural 
vegetation and socio-economic loss. According to Govender (2011), on an average GGHNP lost 
6809ha of vegetation to fire that account for 20% of the area . Therefore, fire related researches will 
be of significance for effective planning and implementation of fire management plans in order to 
realise its primary mandate of conservation and management of biodiversity, landscapes and 
associated heritage assets. 

  

3.2 Methodology 
3.2.1  Materials 

Remote Sensing data from satellite images were used for this study as shown in Table 3.1.  
Table 3.1. Dataset for the FPI 

S. NO Name of dataset ID Product Spatial 

Resolution   

Temporal 

Resolution 

Data Source 

1 Historical Fire Records  
  

  Fire Ecology:  

SANParks  

2 Surface Reflectance MOD09GA 500m Daily Reverb Website 

3 Land Surface Temperature MOD11A1 1km Daily 

4 Aster Global Digital 

Elevation Model  

ASTGTM 30m   
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3.2.1.1. MODIS Products  

MODIS products freely obtained from Reverb (http://reverb.echo.nasa.gov) maintained by the 
National Aeronautics and Space Administration (NASA) EOSDIS Land Processes Distributed 
Active Archive Centre (LP DAAC) were used for retrieval of  environmental variables that were 
employed for developing Fire potential Index of the study area using 2011 -2014 fire seasons.  
MODIS products included: 

(i) MODIS/Terra Surface Reflectance Daily L2G Global 1 km and 500m SIN Grid V006 
(MODO9GA) 

MODO9GA Version 6 product provides an estimate of the surface spectral reflectance as it would 
be measured at the ground level corrected for atmospheric conditions such as gasses, aerosols and 
Rayleigh scattering. MOD09GA provides Band 1-7 in daily gridded L2G product in the sinusoidal 
projection and its associated quality assurance information at 500-meter reflectance value and 1km 
observation. Among seven bands, 500m Surface Reflectance band 2, 6 and 7 were used. These surface 
reflectance image were used to calculate NDWI and NMDI. 

 

(ii) MODIS/Terra Land Surface Temperature/Emissivity Daily L3 Global 1km SIN Grid 
V006 (MOD11A1) 

This product has been selected because of its spatial and temporal resolution (1km and daily) 
respectively and has data values with minimal cloud influence. The cloud-affected pixels are already 
masked from the image. MOD11A1 is constructed with the results in the MOD11_L2 products 
(generated using MODIS sensor radiance product MOD021km, the geolocation product MOD03, 
atmospheric temperature and water profile product MOD07_L2, the cloud mask product MOD35_L2, 
quarterly Land cover MOD12Q1, and snow product MOD10-L2) products of a day,  through mapping 
the Scientific Data Sets (SDS) of all pixels in MOD11_L2 products onto grids in the sinusoidal 
projection and averaging the LST values of overlapping pixels in each grid with overlapping areas as 
weight (Wan, 2006). It is comprised of daytime and night-time LST, quality assessment, observation 
time, view angles, clear sky coverage and emissivity in band 31 and band 32 estimated by the 
classification -based emissivity methods according to the land cover types in the pixel. 

  

3.2.1.2. ASTER-DEM Data Product  

Advanced Spaceborne Thermal Emission Reflection Radiometer (ASTER) Digital Elevation 
Model (DEM) data at 30 meters freely obtained from USGS EarthExplorer 
(http://earthexplorer.usg.gov) was used for retrieval of elevation values 

 

http://reverb.echo.nasa.gov/
http://earthexplorer.usg.gov/
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3.2.1.3. Historical Fire Data 

Apart from the satellite data, historical wildfire information for the period of 2011 -2014 fire 
seasons were used for validation and images downloading purposes, provided by Fire Ecology 
Department, South Africa National Park. 

 

Data pre-processing 

The data pre-processing of input variables that mainly comprised of MODIS-derived products, fire 
scar/spot data, and STRM-DEM products were executed following several steps as described in the 
following subsections. 

 

Step 1: MODIS Data downloading 

The following criteria were applied as a guidance for downloading imageries. (i) Months that 
experienced the highest number of fire events, (ii) Burn day with fire points equal or greater than five 
(5), (iii). Imagery with a cloud cover of less than or equal to 10%. MODIS Terra satellite product 
(MOD09GA) Surface Reflectance and MOD11A1 LST imageries were downloaded from LP DAAC 
using Reverb/ECHO data portal (http://reverb.echo.nasa.gov/reverb) in Hierarchical Data Format 
(HDF). The study area is covered in h20v11 MODIS tile. In total, 54 granules of both MOD09GA 
and MOD11A1 were downloaded to generate seven (7) periodical data for each year (fire season) 
except year 2014 with only 6 periods. Table 3.2 provide the details of the time periods of data 
downloaded and their respective Julian Date of Year (DoY).  

 
Table 3.2. Julian day and corresponding date of temporal MODIS datasets 

2011 2012 2013 2014 

DoY Date DoY Date DoY Date DoY Date 

241 29 August 2011 212 30 July 2012 208 27 July 2013 204 23 July 2014 

242 30 August 2011 213 31 July 2012 209 28 July 2013 217 05 August 2014 

243 31 August 2011 242 29 August 2012 210 29 July 2013 236 24 August 2014 

244 01 September 2011 243 30 August 2012 233 21 August 2013 248 05 September 2014 

246 03 September 2011 244 31 August 2012 237 25 August 2013 249 06 September 2014 

247 04 September 2011 245 01 September 2012 270 27 September 2013 252 09 September 2014 

248 05 September 2011 246 02 September 2012 271 28 September 2013   

http://reverb.echo.nasa.gov/reverb
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Step 2: Re-projection of MODIS Data 

Since MODIS data were downloaded in sinusoidal projection system and the images were re-
projected into Universal Transverse Mercator (UTM) Zone 35, DATUM: WSG1984 using Data 
Management Tool _Projection & Transformation_Raster_Project Raster in ArcMap software.  

 

Step 3: Retrieval of MODIS Surface Reflectance and Land Surface Values 

Science Data Sets for MODIS products were used to further process projected images to generate 
land surface temperature and surface reflectance values as depicted in Table 3.3. The pixel values 
were stored in the SDS as scaled integer values (SI) and the real value were calculated according to 
MODIS Calibration Support Teams (MCSTs) linear calibration algorithm as shown in Equation 1 
using a Raster Calculator of ArcMap. 

Real Value= Scale factor * (pixel value-offset value)    [1] 

 

Processing of fire scar/spot data 

Historical fire data was received from the Fire Ecology & Biogeochemistry Department, South 
Africa National Parks in polygon shapefile format (polygon) for the period of 2011 -2014. The file 
comprises of fire related information such ID and BurnDay. However, missing fire information such 
as fire location with latitudes and longitudes. Longitude and Latitude were added into the layer of 
attribute information. ArcGIS software, Data Management Tool, was used to Add XY coordinates 
and to convert polygon shapefile into point shape file and fire points layer for each year, month and 
day were created.  

 
Table 3.3. Science data sets (SDS) of MODIS Terra Surface Reflectance and Land Surface 

Temperature 

Science data sets Units Bit type Fill value Valid Range Scale Factor 

Surface Reflectance, MOD09GA 

500m surface reflectance  

Band 2 (841 -876nm);  

Band 6 (1628-1652nm)  

Band 7 (2105 -2155nm) 

Reflectance 16 Bit unsigned 

Integer 

-28672 -100 -16000 0.0001 

Land Surface Temperature (LST), MOD11A1 

Daytime & Night time 
LST  Kelvin 16 Bit 

unsigned Integer 

0 7500-65535 0.02 
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Processing ASTER-DEM data 

Aster DEM at 30 meters was downloaded in Geo-Tiff file format, freely available from USGS 
EarthExplorer (http://earthexplorer.usg.gov) and was clipped to the study area. Elevation layer for 
the study area was re-projected into UTM Zone 35 and resampled to 1000m to match the spatial 
resolution of MOD11A1 using ArcMap Software. 

 

3.2.2 Methods 

According to Chuvieco and Salas (1996), fire danger ratings can be assessed both qualitatively 
and quantitatively. With qualitative methods, fire danger is determined by a set of evaluation criteria 
based on expert knowledge and has been criticised due to its subjectivity (Wang et al., 2013b). 
Quantitative approach generally, creates model to compute the numerical value of fire danger or 
potential index, which later is divided into different fire danger/potential ratings. To develop an 
operational fire potential index, this study employed a quantitative method as proposed and improved 
by (Chuvieco et al., 2014, Chuvieco et al., 2010). Figure 3.1. shows the schematic diagram showing 
the methodology adopted in the study. 

 

http://earthexplorer.usg.gov/
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Figure 3:1. Methodology Flow Chart 
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3.2.2.1  Generation of fire risk factors  

Since, FPI is a moisture based fire danger assessment tool, four (4) biophysical variables such 
Relative Greenness Index derived from NDWI, NMDI, Land Surface Temperature and Elevation 
were used as input variables for constructions of FPI. Because these factors are not independent of 
each other, and indeed prolonged heat and absence of rainfall drive vegetation into water stress 
conditions that lead to an increase of its temperature (Maffei et al., 2013). Moreover, they can be 
directly derived from remote sensing data. 

  

(i) Relative Greenness Index (RGI) 

RGI has been used as proxy to estimate the percentage of live vegetation content and as an 
indicator for live fuel moisture. RGI has been derived from NDVI and NDWI (Burgan and Hartford, 
1993, Gao, 1996).   NDWI is more sensitive to moisture changes in comparison to RGI derived from 
NDVI (Suresh Babu et al., 2015). For this study, RGI derived from NDWI has been used to estimate 
the live fuel moisture in the vegetation. NDWI has been derived from NIR and SWIR bands using 
the equation 

NDWI = 𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌−𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌
𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌+𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌

         [2] 

In general, NDWI derived from the NIR and SWIR channels responds to changes in both water 
content (absorption of SWIR radiation) and spongy mesophyll (reflectance of NIR radiation) in 
vegetation canopies respectively (Gao, 1996). NIR is affected by the internal structure and leaf dry 
matter content, but not by water. The combination of the NIR and SWIR removes variations induces 
by leaf internal structure and dry matter content improving the accuracy in retrieving the vegetation 
water content (Suresh Babu et al., 2015). In general, SWIR reflectance decreases as water content in 
the vegetation increases. In contrast with NIR with simple relative narrow band region (0.7 -1nm), 
SWIR is more complicated because SWIR region is relative wide spectral range (1-3nm). For 
example, SWIR regions of MODIS are band 5, 6 and 7. Ji et al. (2011) categorized SWIR region into 
three (3) variants (i) shorter (1.2 – 1.3nm), (ii) middle (1.55 -1.75nm) and (iii) longer (2.05-2.45nm). 
For this study, the longer SWIR region has been used. Daily NDWI values were calculated according 
to expression [3] as proposed by (Chen et al., 2005): 

NDWI = 𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇(𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃 𝟐𝟐−𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃 𝟕𝟕)
𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇(𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃 𝟐𝟐+𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃 𝟕𝟕)

        [3] 

where band 2 and band 7 are the apparent reflectance’s observed by a satellite sensor in the NIR 
& longer SWIR channels respectively. Float was used to prevent byte overflow errors during 
calculation.  

Relative Greenness has been computed by using Equation 4 

RGI = � 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁−𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚−𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚

� ∗ 100       [4] 
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where RGINDWI is the NDWI based relative greenness for a particular pixel, NDWI is the value for a 
pixel and NDWImin and NDWI max are the minimum and maximum value for that pixel. 

 

(ii) Normalized Multi-Band Drought Index (NMDI) 

NMDI is relatively new index first described by Wang and Qu (2007) using three spectral bands, 
band 2 (0.86 nm) as the reference, and instead of using a single liquid water absorption band like 
NDWI, it uses the difference (slope) between two liquid water absorption bands (band 6: middle and 
band 7: longer) as the vegetation water sensitive band.  For this study, NMDI has been used as an 
indicator of DFMC. NMDI values were computed using Equation 5. 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏2)−(𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 6)−(𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 7))
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 2)+(𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 6)−(𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 7)),      [5] 

where band 2, band 6 and band 7 are the apparent reflectance’s observed by a satellite sensor in 
the NIR, middle & longer SWIR channels respectively. 

After computing the live fuel moisture (RGI) and dead fuel moisture from MODIS spectral bands, 
the composite fuel moisture index was calculated as linear combination of RGI and NMDI using 
Equation 6.  FMI is a dimensionless index and should not be considered as a direct measure of fuel 
moisture content as such, (Sharples, September 2010). 

 𝐹𝐹𝐹𝐹𝐹𝐹 =  𝑅𝑅𝑅𝑅𝑅𝑅−𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁
𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀

         [6] 

All calculations were executed using Raster Calculator Tool of ArcMap 

 

(iii) Potential Surface Temperature 

Potential Surface Temperature (ϴs), a terrain corrected temperature is described as the temperature 
that a parcel would acquire if adiabatically brought to a standard reference pressure (Suresh-Babu et 
al., 2015) Three steps were applied to compute (ϴs) following procedures of (Hassan et al., 2007, 
Suresh-Babu et al., 2015). The first step involved was the calculation of Atmospheric Pressure (P) at 
each of the image pixels referring to their respective point elevations in the acquired DEM of the 
study area. Atmospheric pressure has been calculated using Raster Calculator of QGIS software 
applying Equation 7. 

P = 101.3 �293−0.0065Z
293

�
5.26

        [7] 

where P (in kPa) is the atmospheric pressure and Z (in m) is the elevation above mean sea level.  The 
equation is based on a simplified form of the ideal gas law for neutrally –stratified atmosphere and 
temperature of 20oC at a standard atmosphere (i.e. 101.3 kPa). 

Second step was measurement of Land Surface temperature. LST is one of the primary factors 
leading to fire ignition, a proxy for fuel temperature because LST increase in drier areas due to 
evapotranspiration (Dasgupta et al., 2006, Wang et al., 2013b). Moreover, LST lead to reduction of 
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fuel moisture content thus making fuel more prone to consumption by fire in the event of ignition. In 
general, LST retrieval methods have been categorised into Single window algorithm (Jiménez-Muñoz 
and Sobrino, 2003), split window algorithms and multi-band algorithms provided that Land Surface 
Emissivity’s (LSE) are known a priori. If the LSE are unknown, then the algorithms can be 
categorised in to three types: stepwise retrieval method, simultaneous retrieval of LSEs and LST with 
known atmospheric information, and simultaneous retrieval with unknown atmospheric information 
(Li et al., 2013).  

For this study, LST was retrieved directly from MODIS Land Surface product MOD11A1 L3 
product using daytime observation. The MODIS LST and emissivity products provide per pixel 
temperature and emissivity values. Average temperatures are extracted in degree Kelvin with a 
day/night LST algorithm applied to a pair of MODIS daytime and night observation.  

Finally, Potential Surface Temperature (ϴs) has been calculated using Raster Calculator of ArcMap 
software applying Equation 8: 

𝛳𝛳𝑠𝑠 = 𝐿𝐿𝐿𝐿𝐿𝐿 �𝑃𝑃0
𝑃𝑃
�
0.286

       [8] 

Where ϴs is the potential temperature in K, LST is the near surface temperature or land surface 
temperature in K, Po is the standard atmospheric pressure at mean sea level usually 101.3 kPa and P 
is the atmospheric pressure at a surface in kPa;  

ϴs imageries were re-projected from 1km to 500m for the alignment with FMI imageries. 
 

3.2.2.2 Construction of Fire Potential Index 

After the generation of variables (data layers), these variables were integrated for the construction 
of FPI. Firstly, the original measurement scale of each variable was converted to common danger 
scale or metric. Several methods have been employed to find common danger scale being variable 
normalization, qualitative categorisation and probabilistic approaches (Chuvieco et al., 2014, 
Chuvieco et al., 2010). This study employed variable normalization whereby variables values were 
normalized to the range of [0-1] based on their maximum and minimum using a Raster normalisation 
tool from ArcGIS called Geomorphometry & Gradient Metric Toolbox developed by (Evans et al., 
2016). Reclass Tool was used to classify each data layer into five classes using manual classification 
method based on its impact on increasing the fire potential guided by previous researches. These 
classified groups were assigned numerical rating as shown on Table 3.4. 

Based on the previous research, priorities judgement for pairwise comparisons and judgement 
matrix were established for assigning weights using spreadsheet programme developed by (Goepel, 
2013). The calculation of the weight derivation is shown in Figure 3.2. The characteristics roots and 
vector judgement matrix found that the maximum of characteristics roots is 2.000 and corresponding 
characteristic vector was 87.4% and 12.50% for FMI and Potential Surface Temperature respectively 
and then consistency of the judgement matrix was found to be less than 0.10 or 10% (1%). This ratio 
indicated a good compatibility and a reasonable level of consistency in the pairwise comparison.  
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Table 3.4. Weighting and ratings assigned to variables and classes for FPI 

Variable Values Classes Fire Rating 
Category 

Numerical Rating Weights 

Fuel Moisture 
Index 

0 -0.2 Very Dry Very High 5 87% 

0.2 -0.35 Dry High 4 

0.35-0.50 Moist Medium 3 

0.50 -0.70 Fresh -like Low 2 

0.70 – 1 Fresh Very Low 1 

Potential Surface 
Temperature 

0 -0.2 Cold Very Low 1 13% 
0.2 -0.35 Cool Low 2 
0.35-0.50 Warm Medium 3 
0.50 -0.70 Hot High 4 
0.70 – 1 Very Hot Very High 5 

 

Finally, the Fire Potential Index (FPI) was constructed using Weighted Overlay Tools of ArcMap 
and range of its values was between 1-5. Referring to the fire danger rating system of the Department 
of Agriculture, Forestry and Fisheries (DAFF, 2013), five classes ranging from low to extremely 
dangerous, were defined using the value of FPI as shown in Table 3.5. 

 
Table 3.5. FPI values classified into five categories and their descriptions 

FPI value Fire Danger Class Rating Colour-Code 

1 Low Insignificant Blue 

2 Moderate Low Green 

3 Dangerous Moderate Yellow 

4 Very dangerous High Orange 

5 Extreme Dangerous Extreme High Red 
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Figure 3:2. Analytic Hierarchy Process of for weighting and ranking parameters 

 

3.2.2.3 Validation 

Validation is an important process to undertake while creating any kind of index. In order to 
determine the accuracy of the index’s performance, it is necessary to compare index’s result to the 
real world. Fire danger or Potential Indices are typical validated by fire events, meteorological and 
fuel moisture content (Wang et al., 2013b). Historical fire data from the SANPARKS was used to 
evaluate the effectiveness of the index. Although is the best way to obtain ground-truth data through 
field survey to evaluate the effectiveness of the proposed index. It is very difficult, if not possible to 
conduct it for the study area due to its terrain.  

Extract Values to Points Tool was used to determine the accuracy assessment on which FPI pixel 
cell values were extracted on set of fire points and record the values in the attribute table of an output 
feature class. In additional, Geographical Weighted Regression (GWR) analysis was used to provide 
additional measure of index performance. GWR is a local form of linear regression used to model 
spatially varying relationships, a statistical technique that allows variations in relationships between 
predictor and outcome variable over space to be measured within a single modelling framework 
(Fotheringham et al., 2003). The R-squared (R2) was used to measure the model’s performance. 
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3.3 Results 
3.3.1 Historical fire records 

In total, 850 fire points were recorded during the fire season of 2011 -2014. During these period, 
it was observed that 2013 was the most fire occurring year followed by 2014 and 2012. Less fire 
events were recorded during 2011. Spatial distribution of fire points is shown in Figure 3.3. The 
highest number of fire events was observed in the month of September that shares 40% of total events 
for the fire seasons from 2011 to 2014. The monthly distribution of fire points for fire season periods 
is shown in Figure 3.4. 

 

 
Figure 3:3. Spatial distribution of fire points during 2011 -2014 fire season of the GGHNP 
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Figure 3:4. Monthly historical fire records for the fire season of 2011 -2014 

 

3.3.2 Fuel Moisture Index 

The maps illustrating the spatial distribution of FMI for the time periods are shown in figure 3.7., 
3.8.,3.9., and 3.10 for the year 2011, 2012, 2013 and 2014 respectively. The higher the fuel moisture 
value the lower the chance of fire occurrence. The results revealed that during time periods, on an 
average, highest FMI values categorized under very low to low fire danger rating classes constitute 
37% and 43% area coverage of study area (Fig 3.5) and the period where these FMI values constitute 
very low to low fire potential was observed in the year 2014 (Fig 3.5 & Fig 3.10.) and was observed 
in the month of July (Fig 3.6.). The results showed that lowest FMI values categorized under high to 
very high fire danger classes were observed in the year 2013 and equally observed during the month 
of August and September.  
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Figure 3:5. Mean Annually distribution of area coverage of Fuel Moisture Index for the fire 

season 2011 -2014 

 

 
Figure 3:6. Mean Monthly distribution of area coverage of Fuel Moisture Index for the fire 

season 2011 -2014 

2011 2012 2013 2014 Average
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Figure 3:7. FMI map by combining RGIndwi & NMDI during the year 2011 for GGHNP  
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Figure 3:8. FMI map by combining RGIndwi & NMDI during the year 2012 for GGHNP  
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Figure 3:9. FMI map by combining RGIndwi & NMDI during the year 2013 for GGHNP  
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Figure 3:10. FMI map by combining RGIndwi & NMDI during the year 2014 for GGHNP 
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3.3.3 Potential Surface Temperature 

Potential Surface Temperature (ϴs) was retrieved using LST and elevation. Average (ϴs) daytime 
within GGHNP area during 2011 to 2014 fire season was observed between 310K to 325K as shown 
on Table 3.6. High temperature dries fuels so quickly, and thus increase the probability of fire 
occurrence. The maps showing spatial distribution of potential surface temperature are shown in 
Figures 3.13, 3.14, 3.15, 3.16 during the time periods of the year 2011, 2012, 2013 and 2014 
respectively.  After measuring the potential surface temperature during the fire season from 2011 to 
2014, the areas having highest temperature value were categorized under very high danger classes 
which constituted an average area coverage of 4% (Fig 3.11). Approximately 56% of the area fell in 
high to medium danger classes and 47% of the area coverage fell under very low to low danger classes 
as depicted in Figure 3.11. Largest area which fell under very high to medium fire danger classes 
were observed in 2013 (69%) and during the month of August (66%) (Fig 3.12), followed by 2011 
(67%) and 2014(63%) whereas 58% area of coverage was observed in 2012. However, largest area 
fell under very high fire danger rating was observed in 2011 covering 10% of the study area as shown 
in Figure 3.11.  

 
Table 3.6. Minimum, maximum and average Potential Surface Temperature value (K) of fire 

season of 2011 -2014  

Date Min Max Average Date Min Max Average 
29 August 2011 305 320 315 27 July 2013 308 319 313 
30 August 2011 315 332 323 28 July 2013 306 329 314 
31 August 2011 317 326 321 29 July 2013 304 317 310 
01 September 2011 313 330 320 21 August 2013 308 321 316 
03 September 2011 314 329 320 25 August 2013 309 315 313 
04 September 2011 314 328 320 27 September 2013 319 332 325 
05 September 2011 313 327 318 28 September 2013 318 330 323 
30 July 2012 307 319 311 23 July 2014 309 322 313 
31 July 2012 306 322 313 05 August 2014 308 318 312 
29 August 2012 316 330 319 24 August 2014 308 324 315 
30 August 2012 315 332 324 05 September 2014 314 330 320 
31 August 2012 317 326 320 06 September 2014 320 330 324 
01 September 2012 315 327 320 09 September 2014 320 334 325 
02 September 2012 314 326 319 
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Figure 3:11. Mean Annually distribution of area coverage of Potential Surface Temperature the 

fire season 2011 -2014 

 

 

Figure 3:12. Mean Monthly distribution of area coverage of Potential Surface Temperature for the 
fire season 2011 -2014 
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Figure 3:13. Potential Surface Temperature Maps derived from LST and Elevation during the 

year 2011 for GGHNP 
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Figure 3:14. Potential Surface Temperature Maps derived from LST and Elevation during the 
year 2012 for GGHNP 
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Figure 3:15. Potential Surface Temperature Maps derived from LST and Elevation during the 

study period of 2013 for GGHNP 
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Figure 3:16. Potential Surface Temperature Maps derived from LST and Elevation during the 

year 2014 for GGHNP  
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3.3.4  Fire Potential Index  
 

FPI values were classified into five fire danger categories, viz, Insignificant (blue), Low (green), 
Medium (yellow), High (orange) and Extreme High (Red). Figure 3.17 showed the different level of 
danger classes and corresponding yearly average area of coverage while Figure 3.18 illustrated the 
monthly average. As shown in Figure 3.11 the maximum area fell under low fire danger class which 
constitutes 42% followed by medium class with 13% and insignificant fire danger which constitutes 
13%. Approximately 12% of the area fell under high to extreme high fire danger classes 8% and 4% 
respectively. Largest area coverage of high to extreme fire danger classes was observed during 2013 
(17%), followed by 2014 (16%) and 2012 (8%) whereas only 6% was observed during 2011. Figure 
3.12 revealed that maximum area of coverage fell under insignificant fire danger class and was 
observed during July (86%), followed by August (80%) and September (64%). Approximately 17% 
of the area fell under high to extreme high fire danger classes which were observed during September 
and followed by August (11%) and July (6%). The figures 3.19, 3.20, 3.21 and 3.22 depicted the 
resultant FPI maps for time periods of the year 2011, 2012, 2013 and 2013 respectively overlaid with 
the corresponding active fire points. 

 
 

 
Figure 3:17. Mean Annually distribution of area coverage of Fire Potential Index 
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Figure 3:18. Mean Monthly distribution of area coverage of Fire Potential Index 

 

3.3.5 Model Validation  

According to the South African Fire Danger Rating Systems, fires are likely to occur or ignite 
from low to extreme fire danger ratings and accuracy assessment (i.e. validation) was done to 
individual FPI map based on extracting FPI values to the fire point locations. The model revealed an 
overall accuracy of 89% ranging from 33% to 100% indicating that maximum of fires fell in Low to 
extremely high fire danger classes. Table 3.7. shows the accuracies of the FPI model for different 
DOY periods during the fire season of 2011 to 2014 over the study area. GWR analysis show a sound 
agreement between FPI and the fire points with overall R2 of 0.69 ranging from 0.17 to 0.98 as shown 
in Table 3.7. Therefore, it is possible to conclude that the model performance is significant.  

 
Table 3.7. Accuracies of Fire Potential Index Model 

Date Number of fire points for each fire danger classes Total Fire 
Points 

Accuracy 
% 

GWR 
Insignificant Low Moderate High Extreme 

High 
Unclassified R2 

29 August 
2011 

0 1 4 3 2   10 100 0.71 

30 August 
2011 

0 0 4 3 0   7 100 0.73 

31 August 
2011 

3 7 0 0 0   10 70 0.60 

01 September 
2011 

0 2 4 1 0   7 100 0.17 

03 September 
2011 

5 8 2 4 0   19 74 0.98 

July August September
Insignificant 30 38 32
Low 56 42 34
Medium 32 10 14
High 3 6 12
Extremely  High 3 5 5
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Date Number of fire points for each fire danger classes Total Fire 
Points 

Accuracy 
% 

GWR 
Insignificant Low Moderate High Extreme 

High 
Unclassified R2 

04 September 
2011 

1 8 5 3 1   18 94 0.98 

05 September 
2011 

3 3 4 3 0   13 77 0.73 

30 July 2012 0 1 1 4 0   6 100 0.81 
31 July 2012 0 0 1 3 3   7 100 0.53 
29 August 
2012 

1 2 3 0 0   6 83 0.93 

30 August 
2012 

1 8 0 0 1   10 90 0.68 

31 August 
2012 

0 5 6 5 4   20 100 0.46 

01 September 
2012 

0 3 4 1 5   13 100 0.67 

02 September 
2012 

0 3 4 0 0   7 100 0.03 

27 July 2013 1 15 2 0 0   18 94 0.94 
28 July 2013 2 5 2 0 1   10 80 0.55 
29 July 2013 1 4 4 12 11   32 97 0.97 
21 August 
2013 

0 5 0 0 0   5 100 1 

25 August 
2013 

3 1 1 0 0   5 40 0.98 

27 September 
2013 

0 0 3 12 3   18 100 0.55 

28 September 
2013 

2 5 2 8 7   24 92 0.69 

23 July 2014 0 0 4 1 0   5 100 0.19 
05 August 
2014 

1 2 3 0 0 1 6 83 0.64 

24 August 
2014 

2 1 3 0 0   6 67 0.82 

05 September 
2014 

8 4 0 0 0 1 12 33 0.75 

06 September 
2014 

0 3 6 3 5   17 100 0.94 

09 September 
2014 

0 2 0 2 1 1 5 100 0.7 

  34 98 72 68 44 3 316 89 0.69370
37 
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Figure 3:19. Fire Potential Index Map overlaid with corresponding fire point locations for the 

year 2011. 
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Figure 3:20. Fire Potential Index Map overlaid with corresponding fire point locations for the year 

2012 
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Figure 3:21. Fire Potential Index Map overlaid with corresponding fire point locations for the 

year 2013  
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Figure 3:22. Fire Potential Index Map overlaid with corresponding fire point locations for year 

2014 
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3.4 Discussion 

GGHNP experience winter fire season because of the summer rainfall pattern. Annual fire 
frequency trends as displayed in Figure 3.3. are revealing in terms of the impact of predicted climate 
change and inter-annual climatic variation on fire. As displayed in Figure 3.3. 2013, and 2014 
experienced the greatest number of fires during the fire season of 2011 to 2014. These years (2013 & 
2014) have been cited as the warmest years recorded in the Southern Hemisphere compared to global 
average (National Centers for Environmental Information (NCEI), 2017). One can assume that 
GGHNP annual average air temperature would be similar to that of the Southern Hemisphere as a 
whole. Two possible scenarios have been established for fires under a warming climate (Strydom and 
Savage, 2016). First scenario states that under warmer air temperatures, heat waves and drought 
conditions may be more severe which may result in vegetation desiccating at higher rates, leading to 
drier fuel resulting in increased fire numbers. Secondly, under a warming climate rainfall maybe 
significantly higher. Higher rainfall totals may lead to increased rates of vegetation growth, leading 
to heavier fuel loads which results in more available fuel to burn. As both 2013 and 2014 have been 
marked as the years of above- average air temperature and have high number of fire points therefore 
these two scenarios are accurate.  

Similarly, to other studies, majority of fires occur in August and September during relatively rain-
free winter months, when vegetation is dormant and dry and the start of summer rains when lightning 
prevails (Makhado, 2012, Strydom and Savage, 2016, Van Wilgen, 2009). This may be due to that 
August is known as “dry and windy month”. Wind is a very powerful drying agent of vegetation, high 
wind speed dry fuel out much faster and it increases the supply of oxygen and increase the combustion 
rate of fire. September is the month that coincide with spring warming, a condition that promote fuel 
desiccation and more severe fire (Arganaraz et al., 2016). Yates et al. (2009) have shown in Northern 
Australia that fire lit in the early dry season are smaller or less than the fire that occur late in the dry 
season. GGHNP fire pattern does not support this pattern. Monthly distribution of fire points as 
depicted in Figure 3.4. revealed that fire intensifies at the later stage of dry season. GGHNP falls 
within the Zone 4 lightning strikes for km2 thus the park is naturally prone to lightning (Govender, 
2011). Lightning fires tends to take place after the start of summer rains, one should expect that some 
of fires might be of lightning-induced fires. The study revealed that no fire recorded in June 2011 
however, the only year which experienced late fire was in November and this serves as a challenge 
to critical decision makers on time of prescribe burning. 

According to United States Geological Survey (USGS) (2016), FPI is a fuel-moisture based fire 
risk assessment tool. Numerous remote sensed derived indices and indicators directly or indirectly 
estimate moisture content of fuel including those used to measure FMI (RGINDWI and NMDI) and 
Potential Surface Temperature (LST and elevation) which were used to prepare the FPI. These indices 
and variables were fully described in Section 3.2.2.1. Many other remote sensing- derived indices or 
indicators could not be included during estimation of FPI but the importance of the used indices and 
variables in fire risk assessment is well documented in numerous previous studies (Bian et al., 2013, 
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Burgan, 1996, Chowdhury and Hassan, 2013, Chuvieco et al., 2002, Huesca-Martínez et al., 2007, 
Huesca et al., 2014, Maselli et al., 2003, Wang et al., 2008, Wang et al., 2013b, Yebra et al., 2013). 

The afore-mentioned parameters used for this study and have proven for their effective 
contribution for fire risk assessment and mapping. The results of this study is in line with other 
previous work of different authors (Babu -Suresh et al., 2015, Burgan et al., 1998, Huesca et al., 
2014, Martínez et al., 2007, Qin et al., 2008, Schneider et al., 2008, Wang et al., 2013a). Wang et al. 
(2013a) urged that since fuel moisture content is a ratio of water content to dry mater content, single 
vegetation index may not be used to determine fire potential and used two indices to estimate moisture 
content hence this study used the linear combination of both vegetation water index (RGINDWI) and 
drought effect index (NMDI) to estimate FMI. This is because with a ratio of two indices many factors 
that affect vegetation indices in general such Leaf Area Index and soil noise may be cancelled out 
resulting into consistent estimation of FMI (Hunt et al., 2012). However, dry-matters requires narrow-
band data so monitoring fuel moisture required either a new sensor or combination of two sensors 
one with high temporal resolution for water content and one with high spectral resolution for dry-
matter content (Wang et al., 2013a).  

FMI dynamic in GGHNP was influenced by the distribution of precipitation. High values of FMI 
estimation following relative high rainfalls in 2011 and 2014 as shown in Figure 1.5. This could be 
explained by the fact that vegetation have received sufficient rainfall for its growth and that the 
vegetation entered “green-up” period after the growing season, which increased the water content 
(Liu et al., 2017). On the other hand, the lower values of FMI were observed during 2013 fire season 
and in September and coincide with the highest number of fire points observed during 2013 fire 
season and in the month of September. This could be related to loss of foliage due to severe negative 
rainfall anomaly of 2013. 

LST also have influence on fire risk as it controls fuel temperature and moisture content of the 
fuel. However, in mountainous areas similarly to the study area it is very difficult to quantify LST for 
fire risk assessment as indirect indicator of fuel moisture owing to a complex interaction between 
atmospheric and rugged terrain. In line with other previous studies, a novel approach in overcoming 
terrain-induced variation in LST was adopted by using Potential Surface Temperature in estimation 
of fire risk assessment. For example, Babu -Suresh et al. (2015) used Potential Surface Temperature 
to estimate FPI for Uttarakand . According to Dasgupta et al. (2006), temperature would be expected 
to increase in drier vegetation on account of reduced evapotranspiration. In comparison of Potential 
Surface Temperature with FMI values, slight deviation in mean annual was observed in this study 
(i.e. very dry area only covers 4% vs 7% very high Potential Surface Temperature). This could be 
that high temperature recorded by satellite might be caused by fire itself and therefore the sensors 
recording fire has to be of relatively higher temporal resolution than the one for LST (Chifodya, 
2014). However, stronger relationship between FMI and Potential Surface Temperature was observed 
during 2012 fire season. 
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Estimation and mapping fire potential areas by using GIS and Remote Sensing techniques is a 
complicated task as different parameters are taken into account for analysing their effects in fire in 
different indices. AHP was used for calculating weights during ranking of the parameters. Although, 
AHP is well known and provides a very easy technique for ranking and weight derivation, few 
drawbacks of this process has been criticized by various researchers. During weight derivation by this 
process results created by interaction of those parameters may be ignored to its compensational 
behaviour (Mahdavi et al., 2012). Kordi (2008) also mentioned that the uncertainty associated with 
the mapping of decision makers’ judgement to priority number is not taken into account by AHP.  

According to the South African Weather Services (SAWS) (2017), Southern Hemisphere seasons 
are classified into four: December, January and February are summer months, and the temperature 
and precipitation are at their highest; March, April and May are Autumn, and the temperature and 
rainfall decrease; June, July and August are Winter months and are cold and the temperature is at its 
lowest; and September, October and November are Spring months, and the temperature and rainfall 
increase slowly. However, throughout South Africa the transitional seasons of Autumn and Spring 
tend to be very shot and most analysis of climate is done using the assumption that January is mid-
summer; July mid-winter (South African Weather Services (SAWS), 2017); August –late winter and 
September represents early spring and start of growing season. FPI estimates the fire risk or danger 
quite well. Because according to Dasgupta et al. (2006), during the beginning of the growth season 
(September) fire danger or risk is higher on the average. This is in consistent with this study as shown 
in Figure 3.18. This is the result of vegetation accumulated during the previous seasons (Chifodya, 
2014). Furthermore, the FPI estimation revealed that high to extreme high fire danger decrease during 
mid-winter (July) when temperature drops and increase during late winter month (August), late dry 
season (Figure 3.18). The main reason is that during winter temperature in GGHNP drops to the 
freezing point and snowfalls thus fuel become moist whereas in August strong winds cause vegetation 
to dry making it susceptible to fire. 

 

3.5 Conclusion 

FPI was estimated to determine the susceptibility of vegetation to fire of GGHNP area which was 
the main objective of this chapter. Two parameters namely, Fuel Moisture Index and Potential Surface 
Temperature were used for estimation of FPI. Total of four remotely sensing derived variables or 
factors (i.e. RGIndwi, NMDI, LST and elevation) were used to prepare these parameters. FPI map 
having five danger classes of GGHNP was prepared. Geospatial Techniques such as RS and GIS 
provided the techniques and tools to conduct complicated integration needed and preparation of FPI 
map in a fine scale (landscape scale).   

The FPI values show that on average there is extreme high to high fire danger area which covers 
about 4% and 8% respectively whereas moderate fire danger area constitutes 13% of the park area.  
About 34% and 42% of the park area were identified as insignificant to low fire danger zone 
respectively. In temporal basis, largest area coverage of high to extreme fire danger classes was 



[68] 
 

observed during 2013 (17%), followed by 2014 (16%), 2012 (8%) and 2011(6%) and was observed 
in September (17%) followed by August (11%) and July (6%). Assessment of the effectiveness of the 
FPI model was very important objectives of this chapter. Fire Points data was very helpful for the 
accuracy assessment. The results indicated that the model is reliable because only 11% of fire points 
fell under insignificant fire danger class.   

The goodness of fit of the model suggests that MODIS products and derived indices have a great 
potential to predict fire danger in GGHNP. These results indicate that this model might be useful for 
monitoring spatiotemporal distribution of susceptibility of vegetation to fire. It is imperative to 
consider that the derived fire potential or danger maps do not completely explain fire occurrence since 
high FPI values are necessary condition for, but not a cause of fires because fire only occurs when 
ignition agents is present (Chuvieco et al., 2009)
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4.1 Introduction 

Though fire is regarded as one of the ecological management tools, still poses negative natural and 
socio-economic impacts. Fire risk assessment and mapping is still considered a challenge, geospatial 
technologies such RS and GIS has shown to outperform conventional methods. There have been 
numerous RS studies focused on fire risk assessment and mapping within Protected and Unprotected 
areas, however, few of them has focused on the mountainous area. Planned fire or Prescribed fires in 
the PAs without the knowledge of fire risk conditions lead to serious negative impacts such as loss of 
biodiversity. In South Africa, Fire Danger Rating System has been adopted and is based on 
meteorological variables derived from weather station which is well known for ill-posed spatial-
interpolation problem. Moreover, RS has not been well explored as tool for FDR. In the course of 
this study, a simple but unique fully remote sensing-based fire potential Index for fire risk assessment 
at 500m spatial resolution was developed for the mountainous GGHNP. 

The objectives of this study were to: 

1. Review previous studies regarding the successes and limitations of utilising remote sensing 
in monitoring wildfire risk conditions for fire risk assessment/mapping in protected area. 

2. Calculate fuel moisture index (FMI) using satellite remote sensed derived variables 
(Relative Greenness Index derived from Normalized Difference Water Index (NDWI) and 
Normalised Multiband  Drought Index (NDMI).  

3. Determine the Potential Surface Temperature from Land Surface Temperature and 
Elevation. 

4. Estimate FPI by using data layers from (2 & 3)  

 

4.2 Monitoring fire risk conditions in PAs 

RS is a valuable tool for monitoring fire danger or risk conditions as it can explicitly reveal spatial 
patterns of fire risk in recurrent and consistent way over a large area (Wang et al., 2013b). Chapter 
two (2) reviewed different remote sensing data and techniques that have been used for predicting and 
monitoring fire risk conditions and its implication for fire risk assessment and mapping in PA. The 
review showed the capabilities and the limitations of RS techniques for monitoring fire risk 
conditions. Image fusion techniques, in particular fusion of optical and hyperspectral data, fusion of 
hyperspectral and LiDAR data have demonstrated to improve operational use of fire risk models. The 
integration of GIS and RS data especially broadband multispectral data is emerging as a fashionable 
research field in fire risk assessment.  Regression analyses remained the common effective and easy-
to-use techniques for monitoring and estimations of fire risk conditions. Knowledge-based, ANN, 
AHP and BNN methods has been employed for fire risk assessment. Overall, it can be concluded that 
monitoring and estimation of fire risk conditions for fire risk assessment can be conducted with 
reliable accuracy using multi-sensory or multi resolution data or multi-variate fire risk index. 
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4.3 Estimation of Fire Potential Index 

Estimation of FPI is an essential process as it is fuel-moisture based index for fire risk assessment 
and fuel moisture is one of the critical parameters for both fire ignition and propagation (Yebra et al., 
2013). The main aim of Chapter 3 was to investigate the potential of remote sensing data in 
determining the susceptibility of vegetation to fire by estimation of FPI for mountainous GGHNP. 
The study consisted of four steps: (i) Processing of the input variables (RGIndwi, NMDI, LST, 
Elevation) and generation of remotely sensed risk variables or indicators in a spatial consistent way 
(geographical data layers of FMI, Potential Surface Temperature and Fire Points); (ii) Determination 
of variables-specific fire danger into five fire danger classes (iii) Integration of variable into a 
synthetic FPI. Finally, statistical analysis was conducted to assess the effectiveness of the FPI model 
in fire danger rating.  

The results of this studies indicated that that FPI derived from remote sensed variables can provide 
useful index of fire potential variability on spatial and temporal scale in the mountainous region.  
Thus indicated that MODIS-based FPI developed from RGIndwi, NMDI, LST, Elevation is a useful 
index to estimate the proneness of vegetation to fire in recurrent and consistent manner over a 
mountainous area of the study area GGHNP. This is critical important because of lack of 
inaccessibility of area due to the its rugged topography. Despite the good spatial relationship between 
FPI and past fire occurrences, it is suggested that the proposed methods should be evaluated prior to 
implementing in other ecosystems across the country according to the variables of that particular 
ecosystems. Exception could be made for the similar mountainous grassland landscape like this study 
area, 

Fire regimes can be used to understand the past role of fire, current changes in fire regimes due to 
management actions and as indicators to future management practices and policies. Such dynamic 
variability of fire potential can have significant implications for defining management strategies. The 
difference found in the spatial and temporal dynamic of fire potential depends on the model inputs 
used. This fact can be important in terms of management implication. For instance, FPI can be used 
for resource allocation early in the fire season and planning fuel load reduction following fire season. 

 

4.4 Contributions to knowledge of science 

The main contributions resulted from this dissertation are as follows  

• Numerous reviews have been conducted on the use of RS on fire management, however, 
focused on the fire monitoring or post fire products.  This study reviewed the literature on 
pre-fire stage (i.e. monitoring fire risk conditions for fire risk assessment. 

• In general, FPI was developed and implemented in United States (Burgan et al., 1998), 
Europe (Huesca-Martínez et al., 2007) and India (Babu -Suresh et al., 2015)focusing on 
large scale or continent or regional scale. This study could be first of its kind in South Africa 
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if not within the African continent which focused on mountainous protected landscape that 
is prone to fire. 

• Previous researches computed live fuel moisture content using NDWI derived from MODIS 
SWIR band 5 or 6. Here, NDWI was derived from MODIS SWIR band 7 which shown to 
be more moisture dependent. 

• Both NMDI and Potential Surface Temperature were used to quantify vegetation conditions 
for FPI for the first time 

• The concept of integrating remote sensed derived variables of FMI (RGIndwi and NMDI) 
and Potential Surface Temperature (Elevation and LST) using GIS techniques in predicting 
fire potential conditions are unique and applied over the fire prone mountainous grassland 
protected landscape. 

 

4.5. Future research 
 

Despite the effectiveness of the proposed method of combining RS derived variables that 
characterized vegetation, gathered frequently and continuous in predicting fire potential, the 
following issues should be considered in order to potentially enhance its capability: 

• Vegetation or fuel types and meteorological variables such as relative humidity and 
precipitation are quite often used in the framework of FPI (Burgan et al., 1998) as well as 
wind velocity and direction; insolation are cited as the most influential factors of fire 
occurrence. So thus it will be worthwhile to be investigated  

• Estimation of fire risk conditions is currently critical limited because of variance in temporal 
and spatial dimensions between ground measurement and a sensor. MODIS has high 
temporal resolution which makes useful for providing fire risk conditions however MODIS 
spatial resolution of 500m remain a challenge as does not give enough detail for some fire 
management activities. Therefore, satellite data with high to moderate spatial resolution is 
desired for upscaling ground measurement before low spatial resolution data can be used to 
provide estimates of FMC over landscape scale in fine scale. 

• Modeling and forecasting of this MODIS based FPI on a pixel basis using time series models 
in order to develop a robust application for environmental monitoring and forecasting in 
spatially continuous framework. 

• Improved understanding of climatic variation in a complex topography and its influence on 
spatial and temporal variation in fire potential will be essential if we are to continue to assist 
PA managers to maintain and restore fire as dominant and beneficial ecological process. 
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