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Abstract: Enzymes classified with the same Enzyme Commission (EC) that are allotted in different
glycoside hydrolase (GH) families can display different mechanisms of action and substrate specifici-
ties. Therefore, the combination of different enzyme classes may not yield synergism during biomass
hydrolysis, as the GH family allocation of the enzymes influences their behavior. As a result, it is
important to understand which GH family combinations are compatible to gain knowledge on how
to efficiently depolymerize biomass into fermentable sugars. We evaluated GH10 (Xyn10D and XT6)
and GH11 (XynA and Xyn2A) β-xylanase performance alone and in combination with various GH
family α-L-arabinofuranosidases (GH43 AXH-d and GH51 Abf51A) and α-D-glucuronidases (GH4
Agu4B and GH67 AguA) during xylan depolymerization. No synergistic enhancement in reducing
sugar, xylose and glucuronic acid released from beechwood xylan was observed when xylanases
were supplemented with either one of the glucuronidases, except between Xyn2A and AguA (1.1-fold
reducing sugar increase). However, overall sugar release was significantly improved (≥1.1-fold reduc-
ing sugar increase) when xylanases were supplemented with either one of the arabinofuranosidases
during wheat arabinoxylan degradation. Synergism appeared to result from the xylanases liberating
xylo-oligomers, which are the preferred substrates of the terminal arabinofuranosyl-substituent de-
branching enzyme, Abf51A, allowing the exolytic β-xylosidase, SXA, to have access to the generated
unbranched xylo-oligomers. Here, it was shown that arabinofuranosidases are key enzymes in the
efficient saccharification of hetero-xylan into xylose. This study demonstrated that consideration of
GH family affiliations of the carbohydrate-active enzymes (CAZymes) used to formulate synergistic
enzyme cocktails is crucial for achieving efficient biomass saccharification.

Keywords: α-L-arabinofuranosidase; α-D-glucuronidase; β-xylanase; glycoside hydrolase; hetero-
synergy; xylan degradation

1. Introduction

Xylan-containing lignocellulosic biomass is a renewable, carbon-neutral energy source
that has considerable potential as a feedstock for the large-scale production of second-
generation liquid fuels [1]. Xylan is a hetero-polysaccharide, primarily made up of xy-
lose residues that are connected via β-1,4-glycosidic bonds [2,3]. The backbone chain
is substituted with different side chains, such as glucuronopyranosyl, 4-O-methyl-D-
glucuronopyranosyl, α-L-arabinofuranosyl, acetyl, feruloyl and p-coumaroyl residues,
to varying degrees [3–5].

Xylan is present in many different plant species; however, its abundance and composi-
tion may vary between plants [6,7]. Based on their composition, xylans are classified as
arabinoxylans (AXs), glucuronoxylans (GXs) and arabinoglucuronoxylans (AGXs) or glu-
curonoarabinoxylans (GAXs). AXs and GAXs are the main non-starch hemicelluloses found
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in the cell walls of endosperms of Gramineae such as wheat, bamboo, rice, sorghum, sugar-
cane and ryegrass [8,9]. On the other hand, hardwood and softwood species generally have
the majority of their xylan-type of hemicelluloses being GXs and AGXs, respectively [3,4].

In plants, xylan is closely associated with cellulose and lignin through the formation
of covalent and non-covalent linkages, thereby providing a rigid and protective structure
for the plant cell wall [10]. In as much as xylan-containing lignocellulosic biomass has
potential as a feedstock for the production of second-generation fuels, the presence of
xylan polysaccharides that cover and are intertwined with cellulose is a barrier to cellu-
losic ethanol production, as the presence of xylan results in the resistance of biomass to
conversion into fermentable sugars [11].

To accomplish efficient and complete xylan hydrolysis, the synergistic action of various
xylanolytic enzymes is required [12,13]. The two key xylanolytic enzymes required for this
degradation process are endo-1,4-β-D-xylanases (EC 3.2.1.8) and 1,4-β-D-xylosidases (EC
3.2.1.37) [3,12]. Endo-1,4-β-D-xylanases are responsible for cleaving internal β-1,4-glycosidic
bonds in the xylan backbone into shorter oligosaccharides, whereas 1,4-β-D-xylosidases
initiate their mode of action from the non-reducing end of the chain, hydrolyzing xy-
looligosaccharides to D-xylose [12]. Xylanases have been classified into glycoside hydrolase
families GH5, 8, 10, 11, 30, 43, 62 and 98 in the CAZy database, with GH10 and 11 being
the best-characterized families [14–17]. According to the CAZy database, xylosidases are
presently found in glycoside hydrolase families GH3, 30, 39, 43, 52, 54, 116 and 120 [18].

In addition, the activities of accessory enzymes are required to liberate the substituents
from the xylan backbone [5,19]. These enzymes are α-L-arabinofuranosidases (Abfs) and
α-D-glucuronidases (EC 3.2.1.131) [20]. Abfs remove L-arabinose (L-Araf) residues from
the backbone [2]. Abfs belong to families GH2, 3, 10, 43, 51, 54 and 62 in the CAZy database.
Abfs that release L-Araf units from mono-substituted main-chain D-xylopyranosyl (D-
Xylp) motifs are termed AXH-m, while those that release single L-Araf residues from
double-substituted main-chain D-Xylp motifs are termed AXH-d. The α-D-glucuronidases
(EC 3.2.1.131) are known to catalyze the hydrolysis of the α-1,2-linkages between xylose
and D-glucuronic acid residues [2]. According to Nurizzo et al. [21], some GH4 and
67 glucuronidases prefer short glucuronic acid-substituted xylo-oligomers and are gen-
erally intracellular or membrane-associated, while others have specificity for polymeric
glucuronic acid-containing polymeric xylans, these being consequently extracellularly pro-
duced enzymes. Generally, GH115 glucuronidases are more active on polymeric glucuronic
acid-containing polymeric xylans [22,23], compared to GH4 and 67 glucuronidases [24,25].

As global interest in using xylan-containing lignocellulosic feedstocks for second-
generation biofuel production increases, accompanying knowledge on how to efficiently
depolymerize these feedstocks into fermentable sugars is required. Since enzymes classified
with the same Enzyme Commission (EC) that are allotted to different glycoside hydrolase
(GH) families can display different mechanisms of action and substrate specificities; for
example, short xylooligosaccharides and soluble (branched) xylan-active GH10 xylanases
versus insoluble xylan-active GH11 xylanase [3]. It is therefore expected that a combination
of different enzyme classes may not yield synergism or synergize to comparable extents
during biomass hydrolysis, as the GH family allocation of the enzymes influences their
behavior. As a result, it is important to understand which GH family combinations are
compatible to gain knowledge on how to efficiently depolymerize biomass into fermentable
sugars. Research seeking to understand the synergism of various xylanases (GH10 and
GH11) with other xylanolytic enzymes, Rex and debranching enzymes, such as feruloyl
esterases, for efficient xylan degradation has been conducted by our research group. How-
ever, the intricate role of GH family allocations of debranching enzymes on their synergism
with xylanases from various GH families during hetero-xylan degradation is not well
established. The current study sought to unravel synergistic associations using GH10 and
GH11 endo-xylanases from various organisms with various EC and GH family debranch-
ing enzymes, α-L-arabinofuranosidases (GH43 and GH51) on wheat flour arabinoxylan
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and α-D-glucuronidases (GH4 and GH67) on beechwood glucuronoxylan for the efficient
degradation of these hemicellulosic substrates.

2. Results and Discussion
2.1. Substrate Specificity Determination

All the xylanolytic enzymes used in the study were assessed for their physicochemical
properties (pH optima, temperature optima and thermal stabilities) before substrate speci-
ficity studies were conducted. The pH optima of the enzymes fell in a range of between
5.0 and 7.0, with SXA and Xyn10D exhibiting the lowest pH optimum of 5.0, while AguA
exhibited the highest pH optimum of 7.0. Both α-arabinofuranosidases, Abf51A and AXH-
d, and xylanases, Xyn2A and XT6, displayed pH optima of 6.0. The enzymes were found
to have temperature optima around 40 ◦C. The two fungal GH11 xylanases, Xyn2A and
XynA, and GH51 α-arabinofuranosidase, Abf51A, all displayed maximal activity at 50 ◦C
(Table 1). The GH10 xylanase, Xyn10D, displayed a temperature optimum of 60 ◦C. The
bacterial GH10 xylanase, XT6, and α-arabinofuranosidase, GH43 AXH-d, displayed maxi-
mal activity at 70 ◦C. The other xylanolytic enzymes, besides Xyn2A and XT6, displayed
high thermal stability at 37 ◦C compared to 50 ◦C (data not shown). The enzymes were
then tested for specific activities using different substrates at 37 ◦C and 50 mM sodium
citrate buffer, pH 5.0, since these conditions assured fairly good and stable activity (the
enzymes retained more than 80% relative activity) of all the enzymes assessed in this study
(Table 1).

Table 1. Properties of the studied xylanolytic enzymes. Where Nd = not determined.

Property
Xylanolytic Enzyme Assessed

Abf51A AXH-d AguA Agu4B SXA XynA Xyn2A Xyn10D XT6

GH family 51 43 67 4 43 11 11 10 10
Mass (kDa) 58.5 59.4 93.2 Nd 61.9 20.9 25.1 39 43.8

pH optimum 5.5 6.0 7.0 7.5 5.0 7.0 6.0 5.0 6.0
Temperature

optimum 50 70 70 40 40 50 50 60 70

When evaluating the substrate specificities of the α-arabinofuranosidases, Abf51A
displayed the highest arabinofuranosidase activity only on pNPA (161.9 U/mg), while
AXH-d exhibited the highest activity on wheat flour arabinoxylan (30.9 U/mg), followed by
pNPA (2.6 U/mg). Similar to Bifidobacterium sp. GH43 AXH-d, recombinant AXHd3 from
B. adolescentis displayed the highest activity on wheat flour arabinoxylan (28.3 U/mg)
followed by pNPA (0.1 U/mg) [26]. The α-glucuronidase, AguA, exhibited the highest
glucuronidase activity on aldouronic acids (5.7 U/mg) followed by beechwood xylan
(1.6 U/mg). Contrary to our findings, Nagy et al. [24] and Nurizzo et al. [21] noted
that the enzyme does not release 4-O-methyl-glucuronic acid from glucuronoxylan. The
enzyme, AguA, also displayed arabinofuranosidase cross activity on pNPA (2 U/mg).
The α-glucuronidase, Agu4B on the other hand exhibited negligible activity on all the
considered xylan-based substrates (Table 2). Similarly, a previous study showed that Agu4B
was non-xylanolytic, as it has no detectable activity towards 4-O-methyl-D-glucuronoxylan
and its fragment oligosaccharides [27]. The β-xylosidase, SXA, showed the highest activity
(155.6 U/mg) on pNPX and some minor arabinofuranosidase activity (19.8 U/mg) on
pNPA (Table 2). Jordan and Li [28] similarly reported that SXA was 10-fold more active on
pNPX compared to pNPA. All the xylanases displayed the highest activity on wheat flour
arabinoxylan, followed by beechwood xylan (Table 2). GH11 xylanases (XynA and Xyn2A)
showed substantially higher hydrolytic activity on the xylan substrates, beechwood xylan
and wheat flour arabinoxylan, than did GH10 xylanases (Xyn10D and XT6) (Table 2). Our
previous studies showed similar results for the specific activities of most of the GH10 and
GH11 enzymes [5,29].
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Table 2. Specific activities (U/mg protein) of the various xylanolytic enzymes on various xylan substrates. Where
Nd = not determined.

Substrate
Xylanolytic Enzyme Assessed

Abf51A AXH-d AguA Agu4B SXA XynA Xyn2A Xyn10D XT6

pNPA 161.9 2.6 2 Nd 19.8 Nd 2.1 Nd 2.1
pNPX 0.4 0.3 0.2 Nd 155.6 Nd 0.4 Nd 0.4

Aldouronic acids Nd Nd 5.7 0.68 Nd Nd Nd Nd Nd
Beechwood xylan 0 0.23 1.6 0.96 3.9 91 258.4 30.8 141.8
Wheat flour xylan 0 30.9 0.9 0 6.6 370.6 502.1 133.1 273.6

2.2. Degradation Products of GH10 and 11 Xylanases on Xylans

Generally, GH10 xylanases are reported to attack the glycosidic linkage next to a
single or double-substituted xylose toward the non-reducing end and require two unsub-
stituted xylose residues between branched residues, while GH11 xylanases are said to
only hydrolyze glycosidic bonds where the two corresponding xylose moieties in subsites
(−1) and (+1) are not branched [15,30]. Rosa et al. [31] have also proposed that the two
GH family endo-xylanases (GH10 and 11) produce different types of oligosaccharides as
hydrolysis products, as a result of differences in the cleavage specificities of the enzymes.
GH10 xylanases generally release oligomers, in which the sugar at the non-reducing end is
decorated with methyl-glucuronate, while those from family 11 liberate oligomers with
internal methyl-glucuronate substituents during glucuronoxylan degradation [31].

Hydrolysis products as a result of the activities seen for XynA, Xyn2A, Xyn10D
and XT6 on xylans (beechwood and wheat flour) were evaluated. Figure 1a,b indicate
that these enzymes are true endo-xylanases as they mainly release XOS with a degree of
polymerization of two and above. The GH11 family xylanase, Xyn2A, derived from T.
viride also released small quantities of xylose during beechwood and wheat flour xylan
degradation (Figure 1a,b); such a feature has been reported for other fungal xylanases,
such as Thermomyces lanuginosus xylanase reported by Gomes et al. [32]. A homolog to the
T. viride Xyn2A used in this study, XYNII from T. reesei, was shown to have five putative
subsites: three (+1, +2, +3) at the reducing end and two at the nonreducing end (−1,
−2) [33]. Furthermore, it was shown that xylooligosaccharides smaller than or equal to
xylotetraose (X4) bound to XYNII in a manner in which the first (−2) or the last subsite (+3)
is empty [33]; this implies that the hydrolysis of X4 would yield either X2 or X and X3.

Figure 1. TLC analysis of hydrolysis of (a) beechwood xylan and (b) wheat flour arabinoxylan by (1) Xyn10D, (2) XT6,
(3) Xyn2A, and (4) XynA for 6 h at 37 ◦C. A mixture of xylooligosaccharides (xylose [X1] to xylohexaose [X6]) [X] was used
as standards. Un-hydrolyzed xylans (C) were also included as negative controls.

Also, during beechwood xylan degradation, Xyn10D and XT6 additionally released an
oligosaccharide, which migrated between xylotetraose and xylopentaose (Figure 1a)—we
anticipate that this product is a xylooligosaccharides substituted with an α-glucuronic acid
side chain (particularly aldopentaouronic acid). Xyn2A, on the other hand, appeared to only
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produce aldopentaouronic acid and no xylotetraose, while XynA exclusively produced
xylotetraose (Figure 1a). Previously, aldotetraouronic acid has been shown to migrate
between xylotriose and xylotetraose during TLC development [29,34]; we therefore hy-
pothesize that aldopentaouronic acid is the compound migrating between xylotetraose and
xylopentaose. Sydenham et al. [35] have demonstrated that GH10 xylanases generate high
quantities of uronic acids compared to GH11 xylanases during hardwood (beech and birch)
xylan degradation.

Generally, the hydrolysis products produced by xylanase using wheat flour (Figure 1b)
were relatively different from those produced when beechwood xylan was used as a sub-
strate (Figure 1a). Similarly, Sydenham et al. reported on this phenomenon when they
evaluated hydrolysis products by two GH10 members, designated GtXyn10A and GtXyn10B,
and two GH11 members, designated OpXyn11A and CcXyn11C, during beechwood, birch-
wood and wheat flour xylan degradation [35]. Similar to findings by Sydenham and others,
family 10 xylanases produced identical hydrolysis product profiles when using the same
substrate (Figure 1a,b, lanes 1 and 2), whereas the product profiles produced by the two
GH11 xylanases differed from one another (Figure 1a,b, lanes 3 and 4) and the profiles
produced by the two GH10 xylanases, particularly during beechwood xylan degradation
(Figure 1a, lanes 1–4). Most of the auxiliary enzymes described so far mostly act only
on substituted oligosaccharides produced by endo-xylanases, and only a few have been
identified with activity on the polymeric xylan; therefore, knowing the hydrolysis products
of the xylanases will shed light in unraveling the mechanism of their synergistic interaction
with these debranching auxiliary enzymes.

2.3. Synergy Studies

Enzyme synergism is a phenomenon that occurs when interactions between two or
more hydrolytic enzymes produce a total effect greater than the sum of the effects of the
individual enzymes [10,36]. In this study, enzyme synergism using xylanases from GH fam-
ilies 10 and 11 during their interaction with α-L-arabinofuranosidases from GH families 43
and 51, as well as α-D-glucuronidases from GH families 4 and 67, was investigated during
the degradation of wheat flour arabinoxylan and beechwood glucuronoxylan, respectively.

2.3.1. Synergism during Beechwood Glucuronoxylan Degradation

O-acetyl-(4-O-methylglucurono)-xylans are the main hemicelluloses present in tradi-
tional industrial hardwoods, with their content varying between 15 and 30% (dry weight
basis) [3]. Complete degradation of these xylans requires the synergistic action of a con-
sortium of glycoside hydrolase enzymes, including endo-xylanase, β-xylosidase and α-
glucuronidase. It appears, in highly decorated xylans, as if the presence of α-glucuronidase
would assist by removing substituents that would have hindered the xylanase from cleav-
ing the xylan backbone [31]. The action of the xylanase is then required to produce short,
decorated oligomers, which are more attractive substrates for α-glucuronidase compared
to decorated xylan polymers. It is proposed that these steps occur simultaneously and are
interdependent of eacFh other during xylan depolymerization [37].

Combinations of Xyn2A and AguA at 93.75:6.25% and 75:25% protein dosage, respec-
tively, exhibited synergistic cooperation and led to a significant (p < 0.05) improvement in
reducing sugar release (approximately 3.5 mg/mL or 30.8% xylan saccharification) during
beechwood xylan degradation compared to when Xyn2A was used alone at a 100% protein
dosage (3.3 mg/mL reducing sugars or 29% xylan saccharification) (Figure 2b).
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Figure 2. Comparative hydrolysis of beechwood xylan by (a) XynA and AguA, (b) Xyn2A and AguA, (c) Xyn10D and AguA,
and (d) XT6 and AguA (lone or mixed at various ratios). ANOVA analysis for improvement of hydrolysis for reducing
sugar and xylose release by the enzyme combinations compared to lone enzyme protein loading, keys: * (p value < 0.05).
Values are represented as mean values ± SD (n = 4).

All other mixtures of the xylanolytic enzymes assessed showed no synergistic co-
operation in reducing sugar, glucuronic acid and xylose release (Figures 2a,c,d and 3).
Moreover, Agu4B displayed no activity on beechwood xylan (Table 2), and as a result, it
did not synergize with any of the xylanases (Figure 3). The 4-O-methyl-D-glucurono-D-
xylan (MGX) represents more than 90% of the hemicellulose component in hardwoods
with an average methyl-glucuronic acid:xylose ratio of 1:10 [38]. Based on the synergy
studies, it was apparent that the hydrolysis of beechwood xylan with a combination of
xylanases with glucuronidases did not improve saccharification yields compared to when
xylanases were used alone. This shows that the low content of 4-O-methyl-D-glucuronic
acid (10%) is negligible enough not to cause steric hindrance on the xylanases when they are
acting on the xylan polymers. Glucuronoxylan degradation by the concerted action of xy-
lanases and glucuronidases has been evaluated previously—from these studies, it has been
demonstrated that the addition of the side-chain cleaving enzyme, glucuronidase, did not
significantly improve the release of reducing sugars from these xylan substrates [31,34,39].
In contrast, the GH67 α-glucuronidase from Dictyoglomus turgidum (DtuAgu) was recently
shown to significantly improve beechwood xylan conversion to xylose when evaluated
using two mixtures of thermostable bacterial enzymes [40]. DtuAgu is distantly related
to the enzyme used in this study, AguA from G. stearothermophilus T6; this may explain
the differences in their substrate specificities and synergistic interactions with xylanases
during glucuronoxylan degradation. Additionally, GH67 α-glucuronidases have been
shown to have specificity for substrates in which 4-O-methylglucuronate is α-1,2-linked
to the reducing terminal xylose in β-1,4-linked xylooligosaccharides [41]. We suspect that
Xyn2A may be releasing this type of aldopentaouronic acid (i.e., UXXX) from beechwood
xylan, while Xyn10D and XT6 may be releasing aldopentaouronic acid with internally
linked 4-O-methylglucuronate, i.e., 23-(4-O-methyl-α-D-glucuronyl)-xylotetraose (XUXX)
or 22-(4-O-methyl-α-D-glucuronyl)-xylotetraose (XXUX). It is also noteworthy to mention
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that the synergistic combinations of Xyn2A and AguA led to no improvement in glucuronic
acid (approximately 0.1 mg/mL or 6% glucuronic acid release) and xylose release (approxi-
mately 1.5 mg/mL or 16.5% saccharification yield), and only reducing sugar release was
significantly improved (Figure 2b). We presume that synergism resulted when AguA re-
moved the decoration on 24-(4-O-methyl-α-D-glucuronyl)-xylotetraose (UXXX) that would
have hindered the action of Xyn2A from processing this oligosaccharide further into shorter
oligosaccharides, i.e., X2 (more likely product) or X and X3 (unlikely since there was no
xylose release improvement). On the other hand, the lack of synergism between AguA and
the GH10 xylanases may result from AguA being unable to process the aldouronic acids in
which the uronic acid is not linked to the non-reducing terminal xylopyranosyl residue but
is internally linked to the oligosaccharide backbone [42]. Therefore, these xylanases would
be unable to process this oligosaccharide into two X2 molecules. It is also noteworthy to
mention that SXA could not assist hydrolysis by cleaving XUXX into X and UXX, which
AgaA could act on, since GH43 xylosidases, such as the one from G. stearothermophilus,
have narrow and shallow catalytic pockets which cannot accommodate branching, such
as a uronic acid or arabinofuranoside, in xylose residues in either −1 or +1 subsites in the
active site [43,44]. Moreover, SXA has been shown to accommodate sugar substitution to a
xylooligosaccharide; if this occurs, two or three residues upstream the +1 site, more towards
the reducing end of the xylooligosaccharide, which extends to the bulk solvent [45].

Molecules 2021, 26, x FOR PEER REVIEW 8 of 15 
 

 

 
Figure 3. Comparative hydrolysis of beechwood xylan by (a) XynA and Agu4B, (b) Xyn2A and Agu4B, (c) Xyn10D and 
Agu4B, and (d) XT6 and Agu4B (lone or mixed at various ratios). ANOVA analysis for improvement of hydrolysis for 
reducing sugar and xylose release by the enzyme combinations compared to lone enzyme protein loading, keys: * (p value 
< 0.05). Values are represented as mean values ± SD (n = 4). 

2.3.2. Synergism during Wheat Flour Arabinoxylan Degradation 
The addition of the GH51 α-L-arabinofuranosidase, Abf51A, particularly at a protein 

loading between 12.5 and 25%, with either one of the xylanases, led to significantly higher 
reducing sugar, xylose and arabinose release in comparison to when the xylanases were 
used alone (see Figure 4). Slightly lower synergism was observed between GH10 xy-
lanases and Abf51A, with reducing sugar release up to 1.18-fold higher for Abf51A to XT6 
(37.8% xylan saccharification) and up to 1.11-fold higher for Abf51A to Xyn10D (36.2% 
saccharification). However, slightly higher synergism was recorded with the GH11 xy-
lanases, where an up to 1.24-fold reducing sugar improvement was recorded for XynA to 
Abf51A at 75:25% with 31% xylan saccharification and 1.32-fold reducing sugar improve-
ment for Xyn2A and Abf51A at the same ratio with 34.8% saccharification. 

 

Commented [M3]:  

Commented [MM4]: addressed 

Figure 3. Comparative hydrolysis of beechwood xylan by (a) XynA and Agu4B, (b) Xyn2A and Agu4B, (c) Xyn10D and
Agu4B, and (d) XT6 and Agu4B (lone or mixed at various ratios). ANOVA analysis for improvement of hydrolysis for
reducing sugar and xylose release by the enzyme combinations compared to lone enzyme protein loading. Values are
represented as mean values ± SD (n = 4).

2.3.2. Synergism during Wheat Flour Arabinoxylan Degradation

The addition of the GH51 α-L-arabinofuranosidase, Abf51A, particularly at a protein
loading between 12.5 and 25%, with either one of the xylanases, led to significantly higher
reducing sugar, xylose and arabinose release in comparison to when the xylanases were
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used alone (see Figure 4). Slightly lower synergism was observed between GH10 xylanases
and Abf51A, with reducing sugar release up to 1.18-fold higher for Abf51A to XT6 (37.8%
xylan saccharification) and up to 1.11-fold higher for Abf51A to Xyn10D (36.2% saccha-
rification). However, slightly higher synergism was recorded with the GH11 xylanases,
where an up to 1.24-fold reducing sugar improvement was recorded for XynA to Abf51A
at 75:25% with 31% xylan saccharification and 1.32-fold reducing sugar improvement for
Xyn2A and Abf51A at the same ratio with 34.8% saccharification.
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Interestingly, the addition of GH43 α-L-arabinofuranosidase, AXH-d, with either one
of the xylanases only led to significantly higher reducing sugar release (up to 1.25-fold
higher for AXH-d to Xyn2A (33.5% saccharification), up to 1.16-fold higher for AXH-d to
Xyn10D (35.7% saccharification), up to 1.5-fold higher for AXH-d to XT6 (37.9% sacchar-
ification) and up to 1.35-fold higher for AXH-d to XynA (21.7% saccharification)), while
xylose and arabinose release were not improved (see Figure 5), except with Xyn10D to
AXH-d at 93.75:6.25% and XynA to AXH-d at 87.5:12.5% protein loading, whereby xylose
release was significantly improved up to 1.22-fold and 1.79-fold higher, respectively (see
Figure 5a,c. Here, it appears that AXH-d exhibits similar specificity for intact arabinoxy-
lan compared to arabinofuranosyl-branched xylo-oligomers generated by the action of
xylanases on arabinoxylan—thus, no differences in arabinose release are displayed when
AXH-d is used alone or in conjunction with the xylanases. Interestingly, xylose release was
also not significantly improved when AXH-d was used in conjunction with the xylanases
(Figure 5); we propose that AXH-d targets double-arabinofuranosyl substituted xylose
residues in arabinoxylan, removing a single arabinose unit while the other one is left be-
hind to impede the xylosidase, SXA, action. This phenomenon appears to occur with Abfs,
which release single L-Araf residues from double-substituted main-chain D-Xylp motifs, as
Sorensen et al. reported that the action of Abf II, a GH43 enzyme from Humicola insolens,
did not expose additional xylan stretches for a xylosidase and xylanase to act on during
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arabinoxylan degradation, which in turn indicated that the Abf II catalyzed the release of
arabinose from doubly substituted xylose residues [46]. On the other hand, Abf51A targets
single arabinofuranosyl-substituted xylose residues in arabinoxylan, removing this single
arabinose unit, as a result allowing the xylosidase, SXA, to be able to act on these regions—
thus the improvement in xylose release (see Figure 4). However, it is noteworthy to mention
that AXH-d releases over 20-fold more arabinose from arabinoxylan compared to Abf51A
(Figures 4 and 5). In the future, it would be interesting to evaluate how a combination of
these two mechanistically different α-arabinofuranosidases, Abf51A and AXH-d, would
interact with and influence the hydrolytic potential of backbone xylan cleaving enzymes
xylanase and xylosidase. It is noteworthy to mention that GH10 xylanases appeared to
have a significant influence on the release of monosaccharides xylose and arabinose by
the xylosidase, SXA and arabinofuranosidases during arabinoxylan degradation. It seems
that the GH10 xylanase products were the preferred substrates for these exolytic enzymes,
xylosidase and arabinofuranosidases, in comparison to those released by GH11 xylanases.

Figure 5. Comparative hydrolysis of wheat flour arabinoxylan by (a) XynA and AXH-d, (b) Xyn2A and AXH-d, (c) Xyn10D
and AXH-d, and (d) XT6 and AXH-d (lone or mixed at various ratios). ANOVA analysis for improvement of hydrolysis
for reducing sugar and xylose release by the enzyme combinations compared to lone enzyme protein loading, keys:
* (p value < 0.05). Values are represented as mean values ± SD (n = 4).

It is noteworthy to mention that the current study only considered synergism between
endo-xylanases and debranching enzymes, arabinofuranosidases and glucuronidases, with
a minimum fixed amount of xylosidase. This may explain the low saccharification yields
achieved during the saccharification of the hetero-xylans (between 30 and 40%). For
efficient hetero-xylan degradation and improved saccharification yields, we propose the
following: (1) fine-tuning the xylosidase ratio, (2) swapping the glucuronidases with the
xylan polymer specific GH115 glucuronidase, (3) the addition of an exo-xylanase (Rex) and
accessory enzymes, such as glucuronoyl esterases, feruloyl esterases, acetyl xylan esterases
and xylan-specific lytic polysaccharide monooxygenases, (4) the exploration of synergism
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using the GH5 arabinoxylanases and GH30 glucuronoxylanases and (5) fine-tuning both
the protein loading and hydrolysis time.

3. Materials and Methods
3.1. Materials and Enzymes

Beechwood-(Xyl:GlcAOMe:Other sugars = 80.8:11.4:7.8%) and wheat flour arabinoxy-
lan (Ara:Xyl = 38:62%), xylobiose, xylotriose, xylotetraose, xylopentaose, xylohexaose,
aldouronic acids mixture (aldotriouronic, aldotetraouronic and aldopentaouronic acids;
(2:2:1)), α-glucuronidase (AguA, GH67) from Geobacillus stearothermophilus T6, a β-xylosidase
from Selenomonas ruminantium (SXA, GH43), a Bifidobacterium sp. α-arabinofuranosidase
(AXH-d,GH43), a Clostridium thermocellum arabinofuranosidase (Abf51A,GH51), a Cellvibrio
japonicas β-xylanase (Xyn10D, GH10) and a Geobacillus stearothermophilus T6 β-xylanase
(XT6, GH10) were all purchased from Megazyme™ (Bray, Ireland). A Thermotoga mar-
itima α-glucuronidase (Agu4B, GH4) was purchased from NZYTech Genes & Enzymes
(Lisbon, Portugal). The p-nitrophenyl substrates (p-nitrophenyl-α-D-arabinofuranoside,
pNPA and p-nitrophenyl-β-D-xylopyranoside, pNPX), xylose and xylanase from Trichoderma
viride (Xyn2A, GH11) were all purchased from Sigma Aldrich (St. Louis, MO, USA). A
GH11 β-xylanase, XynA, from Thermomyces lanuginosus VAPS-24 (Gene Accession Number:
KU366607) was produced at the Enzyme Technology and Protein Bioinformatics Laboratory,
Department of Microbiology, Maharshi Dayanand University, Rohtak 124001, Haryana,
India and purified in-house, as described previously [17,47].

3.2. Protein Determination

Bradford’s method was used to determine the quantity of protein content in the
supplied enzymes [48]. Bovine serum albumin was used as a suitable protein standard.

3.3. Substrate Specificity Determination

Xylanase activity was determined using the polymeric substrates, beechwood flour
arabinoxylan and wheat flour arabinoxylan. The xylanase activities were assayed in 400 µL
reaction mixtures (1% w/v final substrate concentration) containing 300 µL of 1.33% (w/v)
substrate dissolved in 50 mM citrate buffer (pH 5.0) and 100 µL of enzyme solution. The
reaction was conducted at 37 ◦C for 30 min followed by centrifugation at 16,060× g for
5 min. The reducing sugar released was monitored with the DNS (dinitrosalicylic acid)
method, as described by Miller [49]. About 300 µL of DNS was added to 150 µL of each
supernatant sample. This was later followed by boiling on a heating block at 100 ◦C for
5 min, after which it was cooled on ice for 5 min. A single standard curve for the DNS
assay was prepared using xylose as a suitable standard. Enzyme activity was measured in
units (U), where 1 unit was defined as the amount of enzyme releasing 1 µmol of reducing
sugar per min.

Alpha-glucuronidase activity assay reactions were set up the same way as the xylanase
activity assays; however, a mixture of aldouronic acids was used as a substrate and
the release of glucuronic acid was measured enzymatically using a D-galacturonic/D-
glucuronic acid assay kit (K-URONIC, Megazyme). Enzyme activity was measured in units
(U), where 1 unit was defined as the amount of enzyme releasing 1 µmol of glucuronic acid
per min.

The β-xylosidase activity was performed using 2 mM pNPX. The assay reaction
mixture was set up in a ratio of 1:9 with 50 µL of appropriately diluted enzyme: 450 µL of
2.25 mM pNPX in 50 mM sodium citrate buffer (pH 5.0) (2 mM pNPX final concentration).
The reaction was conducted at 37 ◦C for 15 min and terminated by the addition of 500 µL
of 2 M sodium carbonate. For α-arabinofuranosidase activity determination, the same
assay as mentioned for β-xylosidase activity was used; however, pNPA was used as a
substrate. The released p-nitrophenyl product was measured at 405 nm. Enzyme activity
was measured in units (U), where 1 unit was defined as the amount of enzyme releasing
1 µmol of p-nitrophenol per min.
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3.4. Determination of Degradation Products of Xylanases

A 400-microliter reaction mixture containing 0.25 mg of a xylanolytic enzyme (XynA,
Xyn2A, Xyn10D and XT6) per g of biomass and 1% (w/v) of xylan (beechwood xylan and
wheat flour arabinoxylan) in 50 mM citrate buffer (pH 5.0) was incubated at 37 ◦C for 6 h.
No β-xylosidase, SXA, was supplemented in these reactions, as we wanted to assess the
hydrolysis products profiles of the individual xylanases. After enzymatic hydrolysis, the
samples were inactivated by heating for 5 min at 100 ◦C. About 5 µL of the samples were
applied to Silica Gel 60 F254 TLC plates (Merck, Darmstadt, Germany). The plates were
then developed twice with 1-butanol:acetic acid:water (2:1:1, v/v/v). The sugars developed
on the plates were finally visualized by heating at 110 ◦C for 10 min after soaking the plates
in Molisch’s Reagent (0.3% (w/v) α-naphthol dissolved in sulfuric acid: methanol solution
(5: 95, v/v)).

3.5. Synergy Studies

In the enzyme synergy studies, enzyme mixtures were used in various combinations
of either a GH10 or GH11 xylanase with a debranching enzyme to formulate hetero-
synergistic binary enzyme mixtures. For beechwood xylan degradation synergy studies,
Agu4A and AguA were used as the debranching enzymes in the hetero-synergism studies.
For wheat flour arabinoxylan degradation synergy studies, Abf51A and AXH-d were used
as the debranching enzymes in the hetero-synergism studies. The enzyme protein mass
ratios considered were 100:0%, 93.75:6.25%, 87.5:12.5%, 75:25% and 0:100% xylanase to
debranching enzyme. All the enzyme mixtures contained xylanolytic enzymes loaded at a
total protein loading of 0.25 mg of enzyme per g of xylan, with S. ruminantium β-xylosidase,
SXA, added at 10% of this loading (0.025 mg per g of xylan) to produce xylose from the
hydrolysates. The experiments were carried out with 1% (w/v) xylan (beechwood xylan
or wheat flour arabinoxylan) in 50 mM sodium citrate buffer (pH 5.0) in a 400 µL total
reaction volume at 37 ◦C, mixing at 25 rpm for up to 24 h. Analysis for reducing sugar
release was conducted according to the methods described in Section 2.3.

Quantitative analysis of arabinose, glucuronic acid and xylose concentration in the
synergism assay hydrolysates were then performed enzymatically (K-ARGA, K-URONIC
and K-XYLOSE, Megazyme) with the incubation time (20 min, twice the manufacturer’s
recommended time) as this gave more reproducible results with the microtiter plate format.
The saccharification yield of xylan was calculated using the following equation:

hydrolysis of xylan % = ((mg/mL of sugar × 0.88)/(mg of sugar per 10 mg/mL xylan)) × 100 (1)

whereby sugar can represent a monosaccharide (such as arabinose, glucuronic acid and
xylose) or reducing sugar.

3.6. Data Analysis

One-way analysis of variance (ANOVA) was used to analyze the activity of the
enzymes. The evaluation was conducted to elucidate significant increases exhibited by
the enzyme combinations for reducing sugar and monosaccharide release (compared
to that released by either one of the enzymes at 100% protein enzyme loading). All
pairwise comparison procedures were based on a 95% confidence level (p < 0.05) and were
conducted with the Data analysis feature in Microsoft® Excel. All reactions were conducted
in quadruplicate (n = 4), and error bars represent standard deviations.

4. Conclusions

The current study contributes to a body of knowledge generated from a series of
investigations that sought to understand the synergism of various xylanases (GH10 and
GH11) with other xylanolytic enzymes, Rex and debranching enzymes, such as feruloyl
esterases, for efficient xylan degradation, which have been conducted by our research
group [5,29,50]. The current study showed that α-glucuronidases do not significantly
improve glucuronoxylan degradation by xylanases, while α-arabinofuranosidases syner-
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gized significantly with xylanases during wheat flour arabinoxylan degradation. The GH
family of the α-arabinofuranosidase greatly influenced the degree of cooperability with the
xylanases. The study demonstrated that it was possible to empirically design a “minimal”
enzyme cocktail for efficient xylan hydrolysis by blending various GH family enzymes
active on different types of bonds in hetero-xylan to achieve effective saccharification.
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