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Abstract

This thesis investigates the second-order refined peaks over threshold model called
the Extended Pareto Distribution (EPD) introduced by Beirlant et al. (2009).
Focus is placed on estimation of the Extreme Value Index (EVI). Firstly we in-
vestigate the effectiveness of the EPD in modelling heavy-tailed distributions and
compare it to the Generalized Pareto Distribution (GPD) in terms of the bias,
mean squared error and variance of the EVI. This is done through a simulation
study and the Maximum Likelihood (ML) method of estimation is used to make
the comparison.

In practice, data can be tampered by some arbitrary process or study design.
We therefore investigate the performance of the EPD in estimating the EVI for
heavy-tailed data under the assumption that the data is completely observable
and uncontaminated, random right censored and contaminated respectively.

We suggest an improved ML numerical procedure in the estimation of EPD pa-
rameters under the assumption that data is completely observable and uncontami-
nated. We further propose a Bayesian EPD estimator of the EVI and show through
a simulation study that this estimator leads to much improved results as the ML
EPD estimator. A small case study is conducted to assess the performance of the
Bayesian EPD estimator and the ML EPD estimator using a real dataset from a
Belgian reinsurance firm.

We investigate the performance of some well known parametric and semi-parametric
estimators of the EVI adapted for censoring by a simulation study and further il-
lustrate their performance by applying them to a real survival dataset. A censored
Bayesian EPD estimator for right censored data is then proposed through an al-
tered expression of the posterior density. The censored Bayesian EPD estimator
is compared with the censored ML EPD estimator through a simulation study.

Behaviour of the minimum density power divergence estimator (MDPDE) is as-
sessed at uncontaminated and contaminated distributions respectively through an
exhaustive simulation study including other EPD estimators mentioned in this
thesis. The comparison is made in terms of the bias and mean squared error. EVI
estimates from the different estimators are then used to estimate quantiles, the
results are reported concurrently with the EVI estimates. We illustrate the per-
formance of all mentioned estimators on a real dataset from geopedology, in which
a few abnormal soil measurements highly influence the estimates of the EVI and
high quantiles.
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5.13 MSE of EVI estimates for a Fréchet sample of size n=200 (left),

and size n=500 (right), and EVI of 1 (top) and 0.5 (bottom) . . . . 68

5.14 EVI estimates of a Burr sample of size n=200 (left), and size n=500

(right), and EVI of 1 (top) and 0.5 (bottom), 90 % HPD (shaded fill) 69

5.15 MSE of EVI estimates for a Burr sample of size n=200 (left), and

size n=500 (right), and EVI of 1 (top) and 0.5 (bottom) . . . . . . 70

5.16 EVI estimates of a Student-t sample of size n=200 (left), and size

n=500 (right), and EVI of 1 (top) and 0.5 (bottom), 90 % HPD

(shaded fill) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.17 MSE of EVI estimates for a Student-t sample of size n=200 (left),

and size n=500 (right), and EVI of 1 (top) and 0.5 (bottom) . . . . 72

5.18 Simulated mean value of τ for a sample of sizes n = 200 (left)
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6.3 A Fréchet(γX = 0.25) distribution censored by a Fréchet(γY =

0.2046), thus γZ = 0.25∗0.2046
0.25+0.2046

= 0.1125 and proportion of non-

cencored data —p = 45% (65% Censoring in the right tail); (a) EVI

estimates adapted for censoring and (b) EVI estimate not adapted

for censoring, (c) RMSE . . . . . . . . . . . . . . . . . . . . . . . . 91

6.4 Pareto Quantile-Quantile plots for survival data related with cancer

of the tongue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.5 Estimates of the EVI for survival data related with cancer of the

tongue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.6 Estimates of γX(left) and MSE(right) for a Fréchet(γX) distri-
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bution censored by another Fréchet(γY ) at 40% censoring in the

right-tail of X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.8 Estimates of γX(left) and MSE(right) for a Fréchet(γX) distri-
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Notation

γ Extreme value index.

Γ Gamma function.
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Chapter 1

Introduction

“The top 1% of a population owns 40% of the wealth; the top 2% of Twitter users send

60% of all tweets; medical care for the most expensive one fifth of patients accounts for

four fifths of total spending. These figures are always reported as shocking, as if any-

thing but a nice bell curve were an aberration, but Pareto distributions pop up all over.

Regarding them as anomalies prevents us from thinking clearly about the world”

—Clay Shirky, as quoted in Newsweek the Guardian

Heavy-tailed processes are found everywhere; financial meltdowns, political catas-
trophes, natural disasters, insurance claims, amongst others. We usually treat
heavy-tailed events as somewhat surprising and mysterious events since they hap-
pen with such small probabilities but have such adverse consequences. Extreme
events raise controversial issues in statistics in the sense that most commonly
employed, simple and statistical appealing methods fail to capture many strange
properties of the underlying distribution of such processes.

Extreme Value Theory (EVT) aims to describe the tails of the underlying distri-
bution in order for us to understand its properties thereof. Through EVT we are
thus able to now quantify the probabilities of occurrence of these extreme obser-
vations. In this thesis, primary focus is placed on distributions with heavy-tails
i.e. heavier than exponential.

The aim of this chapter is to give a description of the research problem at hand
and explain the scope of this study as well as its contribution to EVT. An outline
of the entire dissertation is given at the end of this chapter.
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1.1. PROBLEM STATEMENT

1.1 Problem statement

A crucial parameter in EVT is the Extreme Value Index (EVI). This parameter
measures the tail heaviness of the underlying distribution and is used to estimate
other extreme quantities such as small tail probabilities, high quantiles and return
periods. It is therefore a fundamental concern of EVT to develop new and accurate
estimators of the EVI.

The development of new estimators of the EVI is usually anchored on bias reduc-
tion, variance reduction, efficiency and more recently robustness.

According to the Peaks Over Threshold (POT) methodology, the distribution of
excesses over a threshold converges in distribution to a Generalized Pareto distri-
bution (GPD), a conditional distribution function in the limit of some infinitely
high threshold. There exists a number of methods which can be used to estimate
parameters of the GPD.

Under the second order framework Beirlant et al. (2009) was able to refine the
simple Pareto approximation thereby developing the extended Pareto distribution
(EPD) which is also a limiting distribution of the relative excesses over a threshold.
Estimating parameters of the EPD results in an asymptotically unbiased estimator
of the EVI. In this thesis we give special attention to the EPD.

The main problem is that in reality we do not always have the luxury of modeling
completely observable and uncontaminated data. The data can sometimes be
censored, contaminated, truncated or simply just missing. In such cases, we need
to either develop new estimators or alter currently existing ones to withstand the
effects of such settings.

1.2 Objectives and contribution of the study

The Objective of this study is to firstly show through a simulation study, that the
EPD is a better POT model to consider than the GPD in terms of the bias, mean
squared error and variance.

Furthermore we investigate different estimation methods for estimating parameters
of the EPD and assess the behavior of these estimators through a number of
simulation studies in terms of the bias and mean squared error.

The simulation studies are set according to the following design:

1. Uncontaminated and non-censored data

2. Right censored and uncontaminated data

3. Non-censored and contaminated data
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1.3. OUTLINE OF STUDY

From these simulation studies, EVI estimates of the different estimators are drawn
and used to further estimate extreme quantiles which will also be assessed at
contaminated and uncontaminated distributions.

The main contributions of this thesis to EVT are as follows:

• An asymptotically unbiased EPD Bayesian estimator is proposed using a
non-informative prior. Accuracy of this estimator can be heightened by
incorporating expert opinion into the prior distribution. This can be very
helpful, especially in EVT since extreme data is often scarce.

• We extend the censored EPD likelihood approach of Beirlant et al. (2016) for
estimating the EVI for right censored data into a Bayesian paradigm. There
exists very little literature on censoring EVT, moreover parametric Bayesian
methods for censored data in EVT are almost non-existent.

• An exhaustive simulation study is conducted under various settings from
which one can assess the behavior of estimators. This simulation study
will aid practitioners in observing how the different methods of estimation
perform when subjected to censorship and contamination.

1.3 Outline of study

In Chapter 2 a brief overview of EVT is given. The following literature is provided
on historical developments in EVT in Section 2.2; Bayesian methods in EVT in
Section 2.2.1; Tail estimation in EVT Section 2.2.2; Tail estimation under contam-
ination in Section 2.2.3 and right censoring in Section 2.2.4. The extremal limit
problem is discussed in Section 2.3. And a brief definition of the POT framework
is given in Section 2.3.1.

In Chapter 3 the EPD is introduced and defined. Generalization of the EPD is
shown along with some properties of the Pareto, the EPD and the GPD in Sec-
tion 3.2. The ML estimation procedure is detailed in Section 3.3. In Section 3.4,
further comparison is made between the EPD, the GPD and the Hill (1975) esti-
mate, in terms of the mean square error, variance and bias by way of simulation.
Some chapter concluding remarks are made in Figure 3.4 and Section 3.5.

In Chapter 4 an improved maximum likelihood estimation procedure is proposed
and detailed in Section 4.2. In Section 4.3 a simulation study is conducted to com-
pare this proposed estimation procedure to the previously applied one in Chapter 3.
Some chapter concluding remarks are made in Figure 4.3.

In Chapter 5 the Bayesian EPD estimator is proposed. A short overview of
Bayesian inference is given in Section 5.2. The estimation procedure is detailed
in Section 5.3.3. An exhaustive Monte Carlo simulation study is conducted in
Section 5.5 to assess the behavior of our estimate where the second order param-
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1.3. OUTLINE OF STUDY

eter is fixed (the first case) and where the second order parameter is estimated
concurrently with other parameters (the second case). A case-study is conducted
in Section 5.7 using a real dataset. Some chapter concluding remarks are made in
Section 5.8.

In Chapter 6 performance of the EPD under random right censorship is investi-
gated. Section 6.1.1 shows a closer look into some situations in practice in which
random censoring can occur. A general treatment of random right censoring is
given in Section 6.2. In Section 6.3 a simulation study is conducted to assess the
behavior of the EVI estimators mentioned in Section 6.2. In addition to the Monte
Carlo simulation conducted in Section 6.3, a case study is conducted in Section 6.4.
In Section 6.5 we extend the EPD likelihood-adapted approach of Beirlant et al.
(2016) into a Bayesian setting, and construct a censored posterior. In Section 6.6
an additional simulation study is conducted to assess the censored Bayesian esti-
mator in comparison to the censored ML estimator. In Section 6.7 some chapter
concluding remarks are made.

In Chapter 7 performance of the EPD is assessed when data is contaminated.
The minimum density power divergence estimator (MDPDE) is also defined in
this chapter. In Section 7.2 a short definition of the the MDPDE is given. In
Section 7.2.1 the estimation procedures of the MDPDE are shown. In Section 7.3
an exhaustive simulation study is conducted, to assess the performance of our
estimates and a brief case study is carried out in Section 7.4 to further assess the
behavior of the MDPDE in comparison to other mentioned estimators when data
is both contaminated and uncontaminated. Some chapter concluding remarks are
made in Section 7.5

Finally an overall conclusion of this study is given in Chapter 8.
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Chapter 2

Overview of Extreme Value Theory

2.1 Introduction

The aim of this chapter is to give a brief summary of EVT and discuss the basic
result of the extremal limit problem. Section 2.3.1 extends the limit problem into
modelling data conditional on some high threshold using the GPD. Section 2.4
covers some basic graphical tools used in EVT. In Section 2.6 we provide a short
summary of some well known necessary and sufficient first and second order results
from EVT which are used subsequently throughout this thesis.

The rest of this chapter is organized as follows. In Section 2.2 we discuss available
literature on historical developments in EVT. We further provide some literature
on Bayesian methods in EVT in Section 2.2.1. We provide further literature on
the tail estimation in Section 2.2.2. In Section 2.2.3 we provide some literature on
tail estimation under contamination and under right censoring in Section 2.2.4.

The extremal limit problem is discussed in Section 2.3. And a brief definition of
the POT framework is given in Section 2.3.1. In Section 2.4 we discuss some well
known graphical tools in EVT. This chapter ends of with detailed explanations of
first-order and second-order conditions in EVT and regular varying functions in
Section 2.6.

2.2 Historic developments of classical theory of

extremes

Extreme value theory is a branch of statistics mainly concerned with asymptotic
distributions of the maximum (minimum) of independent, identically distributed
random variables.
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2.2. HISTORIC DEVELOPMENTS OF CLASSICAL THEORY OF
EXTREMES

The first reference of extremes can be found in the Bible (Genesis): Methuselah,
the man reported to have lived the longest at the age of 969. The Genesis flood
narrative which makes up chapters 6–9 in the book of Genesis considers many
great floods, including the preparation of Noah’s ark – the long rain, the large
flood and the structural safety of the ark.

The field of EVT began with a paper by E.L Dodd in 1923. Dodd was able to relate
the asymptotic growth of the maximum of a number of independent identically
distributed random variables to the rate at which the right tail of the underlying
probability density function f fell off to zero. Following this idea, in 1927 Fréchet
introduced an idea that if there exists a limit law for maxima (or minima), then
that law must be stable in the sense that the distribution F of the maximum (or
minimum) of a number of independent identically distributed observations drawn
from it must be of the same type, except for a linear transformation (Loynes,
1986).

In 1928 an English statistician by the name of Leonard Henry Caleb Tippett
applied his statistical knowledge to the problem of yarn breakage rates in weaving
in an effort to make cotton threads stronger (Stanton, 1987).

While at the Shirley Institute, Tippet realized that for a single cotton thread, the
strength of its weakest fibers had more control over the overall strength of that
thread. Tippet along with Sir Ronald Aylmer Fisher found the three asymptotic
limits that described the distributions of extremes in their paper titled On the
estimation of the frequency distributions of the largest or smallest member of a
sample.

In 1936 von Mises established simple and sufficient conditions for the existence
of a limit distribution of a sequence of partial maxima, linearly normalized, of an
independent identically distributed sequence.

Gnedenko (1943) then developed the first mathematically rigorous treatment of
the fundamental limit theorems of extremes, defined in Theorem 2.1 of Section 2.3.
The roles played by E.L Dodd and M. Fréchet were instrumental in providing the
conceptual framework needed to develop the asymptotic theory of extremes.

The evolution of regular variation also played a crucial role in EVT. Karamata
(1930) studied Taubarian theorems and functions of regular variation. These func-
tions were subsequently applied to the study of stationarity of distributions in
probability and to asymptotic behavior of differential equations.

In his ground breaking doctoral thesis titled ”On Regular Variation and its Appli-
cation to the Weak Convergence of Sample extremes” (de Haan, 1970). Laurens de
Haan’s work gave rise to a variant, or refinement, of Karamata’s regular variation
and regular variation soon became the core primacy necessary for understanding
extremes. Comprehensive literature on regular variation and probability can be
found in Bingham et al. (1987).
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2.2. HISTORIC DEVELOPMENTS OF CLASSICAL THEORY OF
EXTREMES

2.2.1 Bayesian methods in extreme value theory

There exists very little literature that link Bayesian inference to EVT the frame-
work. A common conceptual complication with Bayesian methods in EVT is the
formulation of prior beliefs in an EVT context.

The Weibull distribution is a sub-family of the Generalized Extreme Value (GEV)
distribution with a negative EVI (γ < 0). Early reference of Bayesian inference
based on this 3-parameter Weibull class was made by Basu (1964), Holla (1966)
and Bhattacharya (1967).

The first paper to illustrate the computational feasibility within extreme value
models using prior distributions that were scientifically motivated was by Smith
(1987). In this paper, Smith (1987) use the 3-parameter Weibull distribution and
compared the maximum likelihood (ML) estimator with the Bayesian estimator
using informative priors.

Sinha and Sloan (1988) proposed using Bayes linear estimates to approximate the
posterior expectations for the Weibull distribution as well as the survival function
F̄ . This method was however only able to yield the first and the second posterior
moments instead of the full posterior distribution.

Engelund and Rackwitz (1992) considered a 2-parameter Gumbel distribution (also
a sub-family of the GEV distribution) and compared the Bayesian estimators with
the ML estimators for a simulated dataset. They reported that the Bayesian
estimators were more efficient than those of the ML-based estimators.

Pickands III (1994) proposed a non-conjugate specification of the prior distribution
for the GPD.

Coles and Tawn (1996) conducted a case study where they incorporated expert
knowledge into prior distribution as a basis for Bayesian analysis of extreme rain-
fall.

For other references on Bayesian approaches in EVT, see for example, Coles and
Powell (1996), Reiss and Thomas (1999), Coles et al. (2001), Reiss et al. (2001)
and Beirlant et al. (2004)

2.2.2 Tail estimation

Let X1, X2, ..., Xn be independent, identically distributed random variables, dis-
tributed according to some unknown distribution function F . A question of great
interest is how to obtain a good estimator for the quantile

F←(1− ε) = inf{y : F (y) ≥ 1− ε}, (2.1)

for ε very small, such that this quantile is situated at the border of, or beyond the
range of the data. The study of such extreme quantities is directly linked to the
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2.2. HISTORIC DEVELOPMENTS OF CLASSICAL THEORY OF
EXTREMES

accurate estimation of the tail of the distribution function

F̂ (x) := 1− F (x) = P(X > x) (2.2)

for some large threshold say x. In EVT the behavior of the tail distribution is
known to be governed by the EVI, this parameter measures the tail heaviness of
F and is thus of primordial importance. There exists a vast amount of literature
devoted to the estimation of this parameter. In this thesis we mention for example,
Hill (1975), Smith (1987), Dekkers et al. (1989), Drees (1996) and Beirlant et al.
(1996).

2.2.3 Tail estimation under contamination

Model misspecification and contamination by outliers are common problems in
statistics. Robust statistical analysis aims to construct methods that are able to
withstand the effects of outliers. However by way of contrast, in EVT more at-
tention is given to extreme observations whereas robust methods aim to reduce
the influence that outlying observations have on statistical quantities. It is thus
uncommon for one to lay claim of some conceptual contradiction. However ro-
bust methods for extreme values have already been considered in literature e.g.
Brazauskas and Serfling (2000) considered robust estimation in the context of a
strict Pareto distribution. Dupuis (1998), Peng and Welsh (2001) and Juárez
and Schucany (2004) considered the problem of making inferences about extreme
values when the underlying distribution is a GEV distribution, a GPD and light
or heavy-tailed, respectively. Dell’Aquila and Embrechts (2006) noted that “Ro-
bust methods do not down-weight ‘extreme’ observations if they conform to the
majority of the data”.

Basu et al. (1998) introduced the minimum density power divergence estimator
(MDPDE) as a parametric estimator that balances the trade-off between efficiency
and robustness. Kim and Lee (2008) obtained a robust estimator for γ > 0 by
fitting the strict Pareto distribution to the top order statistics using the MDPDE
criterion, however the estimators were not asymptotically unbiased. Vandewalle
et al. (2007) fitted a partial density component involving a mixture of two Pareto
distributions by minimizing a L2 distance. Dierckx et al. (2013) introduced a
robust and asymptotically unbiased estimator for γ by fitting the EPD to a sample
of relative excesses by the MDPDE criterion. Goegebeur et al. (2014) then further
derived a robust and asymptotically unbiased extreme quantile estimator. Other
contributions of robust methods in EVT can be found in Dupuis and Victoria-Feser
(2006) and Hubert et al. (2013) amongst others.

2.2.4 Tail estimation theory under censoring

In extreme value analysis, very little work has been done in estimation of the tail
distribution under censorship. Extreme value analysis for right censored Pareto-
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2.3. EXTREMAL LIMIT PROBLEM

type data was first considered by Beirlant et al. (2007) followed by Einmahl et al.
(2008) and later Gomes and Neves (2011). Beirlant et al. (2007) used a general-
ization of the POT methodology using the GPD, and also proposed an adaptation
of the moment estimator. Einmahl et al. (2008) later proved in detail, asymp-
totic normality results for various estimators of the EVI under random censorship.
Worms and Worms (2014) presented some new approaches for estimating the EVI
in the framework of random right censorship, based on the ideas of Kaplan-Meier
integration and the synthetic data approach of Leugrans (1987). Beirlant et al.
(2016) showed that the bias of the estimators of the right tail EVI can be substan-
tial and proposed the adapted EPD likelihood approach by showing that it leads
to much improved results, both in bias and MSE.

2.3 Extremal limit problem

Suppose the sample X1, X2, ..., Xn is independent and identically distributed ran-
dom variables from a distribution F . Let Xn,n = max{X1, ...Xn} denote the
maximum of the sample and let Sn := X1 + X2 + ... + Xn be the sum. Generally
the classical central limit problem tries ro find constants an ≥ 0 and bn such that

Yn := a−1
n (Sn − bn) (2.3)

tends in distribution to a non-degenerate distribution. The limit can then be used
to approximate the distribution of the quantity Yn (Beirlant et al., 2004). Typically
for any distribution F the Normal distribution is attained as the limit of the Sn
unless the F has heavy tails, in which case a stable distribution will appear as the
limit. Particularly Pareto-type distributions which have an infinite variance and
thereby generating non-normal/extreme limits that produce asymptotic behavior
different from normal behavior.

In EVT the main concern is finding the possible limit distributions of the maximum
Xn,n. That is, the search for non-degenerate distributions of X ∈ R for which there
exist a sequence of numbers bn and an where n ≥ 1 such that

P

(
Xn,n − bn

an
≤ x

)
→ G(x), n→∞. (2.4)

The term non-degenerate implies that the distribution does not have all its mass
centered at one point. The limit problem was first solved by Gnedenko (1943),
Fisher and Tippett (1928) in what is known as the first Extreme value theorem
and later revived by de Haan (1970).

Theorem 2.1. Fisher-Tippett-Gnedenko
Let X1, X2, ..., Xn be a sequence of independent, identically distributed random
variables from common distribution function F and denote

Xn,n = max{X1, X2, ..., Xn}
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2.3. EXTREMAL LIMIT PROBLEM

the sample maximum. If condition 2.4 holds for a non-degenerate distribution G,
then G belongs in the GEV family of distributions and is of the form

G(x|µ, σ, γ) =


exp

(
−
(

1 + γ
x− µ
σ

)−1/γ
)
, 1 + γ

x− µ
σ

> 0, γ 6= 0,

exp(− exp

(
−x− µ

σ

)
), x ∈ R, γ = 0

(2.5)
where µ ∈ R is the location parameter, σ > 0 the scale parameter and γ is the tail
index also known as the EVI. N

Generalized extreme value distributions can be characterized by the following fam-
ilies conditional on γ.

Fréchet: γ > 0

G1(x|γ) = exp(−x−1/γ) (2.6)

Extreme Weibull: γ < 0

G1(x|γ) = exp(−|x|−1/γ) (2.7)

Gumbel: γ = 0

G1(x|γ) = exp(− exp(−x)) (2.8)

The GEV is most commonly applied to the method of Block maxima which is the
traditional modelling approach in EVT. This method is implemented by group-
ing the data into equal blocks of equal length. Thereafter we make an assump-
tion that the maximum in each block follows the asymptotic distribution G(x)
(De Zea Bermudez and Kotz, 2010). The sampled data for this approach is shown
graphically in Figure 2.1a. A more recent alternative approach, known as the
POT method has been developed by hydrologists over the last 46 years; to model
exceedances over a high threshold (Dupuis, 1998).
The POT methodology offers a unifying approach to the modelling of heavy tailed
distributions (McNeil and Saladin, 1997). Here, a sufficiently high threshold t is
chosen, and the observations above this threshold are then modelled by a GPD as
defined in Section 2.3.1. This approach is shown graphically in Figure 2.1b.

2.3.1 The generalized Pareto distribution

Within the POT framework, we consider the distribution F of the random variable
X for the kth largest order statistics. We are only interested in estimating the
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2.4. GRAPHICAL TOOLS

(a) BM (b) POT

Figure 2.1: Depiction of the method of Block-maxima (left) and Peaks over a threshold
t (right)

conditional distribution Ft of the variable X above a high threshold t. Which
brings us to what is known as the second theorem in EVT describing the tail
distribution of the random variable X.

Theorem 2.2. Pickands–Balkema–de Haan(Balkema and De Haan, 1974;
de Haan, 1984; Pickands, 1975) Let X be a random variable with distribution
function F . Then, for a large enough threshold t, the conditional excess distribu-
tion function of Z = X − t, given by

Ft(z) = P (X − t ≤ z|X > t) =
F (z + t)− F (t)

1− F (t)
(2.9)

for 0 ≤ z ≤ xF − t, where xF is the right endpoint of the underlying distribution
F . For a large enough threshold t, Ft(z) can be approximated by

Gγ,σ(z) =

 1−
(

1 +
γz

σ

)−1

γ , if γ 6= 0,

1− exp(−z/σ), if γ = 0

(2.10)

where σ > 0, and z ≥ 0 when γ ≥ 0 and 0 ≤ z ≤ −σ/γ when k < 0. N

that is if and only if Gγ,σ is in the maximum domain of attraction of the Extreme
value distribution in Equation 2.5. This is often referred to as the domain of
attraction condition. Equation 2.10 is called the Generalized Pareto distribution
(GPD). In this thesis, we refer to the GPD under the restriction γ > 0.

2.4 Graphical tools

When presented with extreme data, a practitioner needs to first visualize and
analyze the data in order to know which extreme value analysis (EVA) tools to
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apply. We might have questions such as: What is the distribution of the data on its
full support? Is the data heavy-tailed? (usually in comparison to the exponential)
or is there reasonable plausibility for fitting some proposed model? The two most
commonly used graphical tools in EVT are Q-Q plots (short for Quantile-Quantile
plots) and the mean excess plots (also known as mean residual life plots).

Quantile-Quantile plots

A Q-Q plot is a probability plot used to compare two probability distributions by
plotting their quantiles against each other to see if the two probability distributions
are linearly related to each other. This linear relationship can be seen captured
by eye. If the two distributions being compared seem to be linear, the points on
the plot can be approximated by some line y = x. We mainly use Q-Q plots to
compare the theoretical distributions with the empirical distribution of the data.
We can further quantify the agreement of a fitted distribution with the observed
data by means of a correlation coefficient. Since we are comparing the theoretical
distribution and the empirical distribution of the data, we use plotting positions
to form the Q-Q plots (see the following definition by Berning (2010)).

Definition 2.3. Quantile-Quantile Plot
A plot of (Q(i/(n + 1)); xi,n), i = 1, 2, ..., n should be approximately linear if
x1, x2, ..., xn are from a distribution with quantile function Q. N

The following is a table of Q-Q plot coordinates for some distributions as given in
Beirlant et al. (2004).

Table 2.1: Q-Q plot coordinates for some distributions.

Distribution F (x) Coordinates

Normal

∫ x
−∞

1√
2πσ

exp

(
−(t− µ)2

2σ2

)
du

x ∈ R;µ ∈ R, σ > 0
Φ−1(pi,n, xi,n)

Log-normal

∫ x
0

1√
2πσµ

exp

(
−(log t− µ)2

2σ2

)
du

x > 0;µ ∈ R, σ > 0
Φ−1(pi,n, log xi,n)

Exponential
1− exp(−λx)
x > 0;λ > 0

(− log(1− pi,n), xi,n)

Pareto
1− x−α

x > 1;α > 0 (− log(1− pi,n), log xi,n)

Weibull
1− exp(−λxτ )
x > 0;λ, τ > 0

(log(− log(1− pi,n)), log xi,n)
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Mean excess plots

One of the uses of the mean excess plot in EVT is to aid in making a choice of
an extreme threshold t, for which the GPD offers a plausible approximation of the
excess distribution Ft as specified by Equation 2.9. The mean excesses (e) function
of a random variable X is defined as:

e(t) = E(X − t|X > t) (2.11)

provided that E(X) < ∞. Estimates of the mean excesses for sample x1, ..., xn
are given by

ek,n := ên(xn−k,n) =
1

k

k∑
j=1

xn−j+1,n − xn−k,n (2.12)

where the empirical function ên is plotted at values t = xn−k,n, k = 1, ..., n− 1, the
(k + 1)—largest observation (Beirlant et al., 2004).

2.5 Areas of Application

From its inception, the area of EVT has been applied to a wide variety of fields.
In this section we make mention of some common applications in EVT. We re-
fer to Gumbel (2004), de Haan (1970), Galambos and Kotz (1978) and Beirlant
et al. (2004) for a more elaborate body of literature devoted to the theory and
applications of extremes.

Hydrology: EVT is very useful in flood frequency analysis. Practitioners may
be interested in estimating the T -year flood discharge, which is the water level
exceeded every T years on average. The parameter rainfall intensity is also of some
interest in hydrology. This quantity is an essential component when modelling
water course systems, urban drainage and water runoff.

Environmental research and meteorology: Meteorological data, such as ozone
concentration, rainfall and wind speeds, all of which have tremendous impact on
society and could result in negative consequences.

Finance applications: Risk management at a commercial bank is intended to
guard against risk or loss due to fall in prices of financial assets held or issued by
the bank. EVT is used to calculate the maximum (extreme) losses that can occur
in any given time period. A very important quantity in finance is the high quantile
estimate otherwise known as value at risk (VAR), which is the level below which
the future portfolio can drop with a small specified probability.

Insurance applications: Non-life insurance is one of the most prominent areas of
applications of EVT. Portfolios seem to have a tendency to include adversely large
claims that could jeopardize the solvency of a portfolio and possibly a substantial

13
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portion of the company. Another growing area for which EVT is exceedingly
becoming useful is re-insurance.

Geological and seismic analysis: EVT can be used in unveiling some useful tail
characteristics of data such as magnitudes of and losses resulting from earthquakes,
and in diamond sizes and values. A case study is conducted in Chapter 7 using
such data.

Metallurgy: In Metallurgy EVT can be used to model metal fatigue, which causes
failure of a metallic element under extreme stress.

2.6 Second Order Conditions and Regular

Variation

The study of regular variation of first and second order in EVT is motivated by
the need to provide regularity conditions on the behavior of the tail of distribu-
tion functions. These conditions can be very technical and somewhat difficult to
comprehend from an intuitive standpoint.

In EVT we are often only interested in the tail of a distribution thereby negating
the need to make assumptions about the entire distribution. Focus then shifts
to making assumptions about the tail of the distribution. First order regular
variation is crucial to extreme value statistics in that it allows us to make these
assumptions about the tail of a distribution function. More regularity, such as
second order regular variation becomes necessary when we are interested in proving
distributional results of estimators.

We first make the following preliminary setting. From Theorem 2.1, take G up to
scale and location, then the Extreme Value distribution function, dependent on a
shape parameter γ ∈ R becomes

Gγ(x) :=

 exp(−(1 + γx)−1/γ), 1 + γx > 0 if γ 6= 0

exp(− exp(−x)), x ∈ R if γ = 0

(2.13)

We then say that F is in the domain of attraction for maxima of the distribution
function Gγ in Equation 2.13 and write F ∈ DM(Gγ).

Definition 2.4. Second order regular variation
A class of regular varying functions constitutes all functions ultimately zero, sat-
isfying:

lim
t→∞

f(tx)

f(t)
= xρ, for x > 0,with some ρ ∈ R (2.14)

14
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We say, f is regular varying with index ρ and write f ∈ RVρ. Furthermore a
function f is said to be slowly varying if for some x > 0:

lim
t→∞

f(tx)

f(t)
= 1 (2.15)

N

Assume that for a measurable real-valued function f on (0,∞), there exists a
positive auxiliary function a(t) and some γ ∈ R such that

φ(x) = lim
t→∞

(f(tx)− f(t))/a(t) =

∫ x

1

sγ−1ds, x > 0. (2.16)

further assume that

lim
t→∞

(f(tx)− f(t)− a(t)φ(x))/a(t) (2.17)

exists non-trivially with some second auxillary function a1(t). f is then said to be
of generalized regular variation (see de Haan and Stadtmüller, 1996).

In EVT, by taking f to be a tail quantile function U and assuming the existence
of some positive function a(.), we concern ourselves with functions U(.) for which:

lim
t→∞

U(tx)− U(t)

a(t)
exists ∀x > 0. (2.18)

This leads us to the following extended regular variation property of de Haan
(1984).

First-Order Condition

A general tail (γ ∈ R)

The following extended regular variation property (de Haan, 1984), denoted ERVγ,
is a well-known necessary and sufficient condition for F ∈ DM(Gγ):

lim
t→∞

U(tx)− U(t)

a(t)
=

∫ x

1

sγ−1ds =


xγ − 1

γ
if γ 6= 0

lnx if γ = 0,

(2.19)

for all x > 0 and some positive measurable function a > 0. Then for heavy tails
(γ > 0), for any real ρ where ρ = −1/γ,

F ∈ DM(Gγ)⇐⇒ F̄ = 1− F ∈ RV−1/γ (2.20)
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Equivalently, and with U , the tail quantile associated with F , defined as:

U(t) :=

(
1

1− F

)←
(t) = inf

{
x : F (x) ≥ 1− 1

t

}
(2.21)

For a much broader class of distributions with γ > 0 known as the Pareto-type
class, we can choose

a(t) = γxγ`U(t) = γU(t) (2.22)

where `U is a slowly varying function. A distribution function F is said to be in the
domain of attraction of an extreme value distribution if and only if Equation 2.18
holds for the specified inverse function (1/(1− F (.))).

Second-Order Condition

A general tail (γ ∈ R)

The second order condition specifies the rate of convergence in Equation 2.19, we
strictly assume the existence of a function A(t), possibly not changing in sign but
tending to zero as t→∞, such that:

lim
t→∞

U(tx)− U(t)

a0(t)
− xγ − 1

γ

A(t)
= Hγ,ρ(x) :=

1

ρ

(
xγ+ρ − 1

γ + ρ
− xγ − 1

γ

)
(2.23)

for all x > 0 and a0 > 0, with ρ, a non-positive second order parameter con-
trolling the speed of convergence of the partial maxima towards the limit law in
Equation 2.13. We say the function U is of second order regular variation, and we
use the notation U ∈ 2ERV (γ, ρ) noting also that, |A| ∈ RVρ and tends to zero,
hence larger values of ρ correspond to a higher rate of convergence. Written more
specifically by Alves et al. (2007)

Hγ,ρ(x) =



1

ρ

(
xρ − 1

ρ
− lnx

)
if γ = 0, ρ 6= 0

1

γ

(
xγ lnx− xγ − 1

γ

)
if γ 6= 0, ρ = 0

ln2 x

2
if γ = ρ = 0

(2.24)

For heavy tails (γ > 0), in order to measure the rate of convergence in Equa-
tion 2.20, Alves et al. (2007) considered:

lim
t→∞

U(tx)

U(t)
− xγ

Ã(t)
= xγ

xρ̃ − 1

ρ̃
⇐⇒

lim
t→∞

lnU(tx)− lnU(t)− γ lnx

Ã(t)
=
xρ̃ − 1

ρ̃

(2.25)
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for all x > 0, where ρ̃ ≤ 0 is a second order parameter controlling the speed
of convergence of maximum values, linearly normalized towards the limit law in
Equation 2.13. We then say that the function U is of second order regular variation
and write U ∈ 2RVγ,ρ̃.

2.6.1 Fréchet-Pareto class

The context by which Pareto-type tails are defined subsets all models with tails
heavier than exponential for which γ > 0. Such models can be defined for F̄ as:

U(x) = xγ`U(x), x ↑ ∞ (2.26)

for γ = 1/α > 0, with the tail quantile function: U(x) = Q(1−1/x) where Q is the
quantile function. The up arrow notation x ↑ ∞ is used to show fast convergence
of x to infinity. The arithmetic operation symbol {↑} represents an exponential
sequence which grows faster than addition and multiplication operations. It is
shown in Beirlant et al. (2004) that the condition Equation 2.18 for γ > 0 is
equivalent to:

1− F (ut)

1− F (t)
= Pr

(
X

t
> u|X > t

)
→ u−1/γ as t→∞. (2.27)

This is essentially saying that x1/γ(1−F (x)) is slowly varying, and therefore, there
exists a slowly varying function `F (x) such that 1 − F (x) = x−1/γ`F (x). Pareto-
type distributions can therefore be formulated in terms of the distribution F as
well as in terms of the tail quantile function. i.e.

1− F (x) = x−1/γ`F (x) and U(x) = xγ`U(x) , x ↑ ∞ (2.28)

where the two slowly varying functions `U and `F are linked through the Bruyn
conjugation. Next we define a special class of Pareto type distributions, called
the Hall class. This is a wide class of models containing most useful heavy-tailed
parents such as those used in this thesis, namely: the Fréchet, the Burr XII and
the Student-t.

Definition 2.5. Hall class of distributions
Assuming the underlying distribution F satisfies F (0) = 0, the survival function of
a distribution in the Hall class (Hall, 1982; Hall and Welsh, 1985) can be written
as:

F̄ (t) = C1/γt−1/γ[1 + γ−1DCρ/γt−ρ/γ + o(1)], t ↑ ∞, (2.29)

where γ > 0, C > 0, ρ > 0 and D ∈ R.
N

For any τ = ρ/γ and C1/γ ∝ C, we can write Equation 2.29 as:

1− F (x) = Cx−α[1 +Dxτ + o(xτ )], x ↑ ∞, (2.30)
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2.6. SECOND ORDER CONDITIONS AND REGULAR VARIATION

where α > 0, C > 0, τ < 0 and D ∈ R.

Using the tail quantile function, Equation 2.30 can also be written as:

U(t) = Ctγ
(

1 +
A(t)

ρ
+ o(tρ)

)
, A(t) = γβtρ (2.31)

Table 2.2 shows a list of the Pareto type distributions, together with their cor-
responding EVI and slowly varying functions as seen in Beirlant et al. (2004).
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Chapter 3

Extended Pareto Distribution

3.1 Introduction

The POT approach entails modeling clusters of excesses above a threshold with
a Poisson process and fitting the GPD to the excesses above some high enough
threshold. The point process characterization of high-level excesses makes the
GPD a natural selection in fitting excesses over a sufficiently high threshold, in fact
Pickands (1975) showed that the GPD arises as a limiting distribution for excesses
over a high threshold if and only if the parent distribution is in the domain of
attraction of the extreme value distributions.

Another motivation of the GPD arising as a limiting distribution in Peaks over
Threshold (POT) is the ’threshold stability’ property, as given by Davison and
Smith (1990): if Y is a GPD and t > 0, then the conditional distribution of Y − t
given Y > t is also a GPD. In the case of heavy tailed distributions, when fitting a
Pareto distribution (PD) to excesses over a high positive thresholds, this threshold
stability is sometimes not visible as a result of the slow rate of convergence in the
Pickands–Balkema–de Haan theorem.

Beirlant et al. (2009) proposed an extension of the simple PD called the Extended
Pareto distribution (EPD), an asymptotically unbiased estimator of the EVI.

We fit the EPD to relative excesses Xi/t where i = 1, ..., n conditional on Xi > t.
The choice of the threshold has received much attention in literature however the
best method is still to be found. Choosing a data-adaptive threshold t = tn =
Xn−k:n within the ordered sequence X1,n ≤ X2,n... ≤ Xn,n removes the burden of
having to chose an optimum choice of k. One can therefore plot estimates of the
EVI against k, and choose the EVI to be the point where the estimator is more
horizontal. This becomes a problem in the presence of a large bias and leads to
poor coverage probabilities of confidence intervals, which is usually the case with
the Hill estimate, as will be seen in this chapter.
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3.2. GENERALIZATION OF THE EPD

The rest of this chapter is organized as follows: In Section 3.2, Generalization
of the EPD is shown along with some properties of the Pareto, the EPD and the
GPD, to see whether the EPD can improve approximations of absolute and relative
excess distributions with some order of magnitude.

The ML estimation procedure will be detailed in Section 3.3 as given by Beirlant
et al. (2009). In Section 3.4, further comparison is made between the EPD, the
GPD and the Hill, in terms of the mean square error, variance and bias by way
of simulation, to see whether the EPD results in biased-reduced estimates of the
EVI. Some concluding remarks are made in Figure 3.4 and Section 3.5.

3.2 Generalization of the EPD

Suppose we have a sequence of independent and identically distributed observa-
tions X1, X2, ..., Xn, from an unknown distribution function F . By definition of
the Peaks-Over-Threshold method, we are interested in the distribution function
of excesses over a high threshold t:

Pr

(
X

t
> y|X > t

)
⇒ Pr(X > ty|X > t), y > 1. (3.1)

Note, for convenience, we mainly make use of relative excesses X/t instead of
absolute excesses X − t.

Now let x0 be the finite or infinite right endpoint of the distribution F . Then the
distribution function of the excesses in Equation 3.1 can be written as:

Pr(X > ty ∩X > t)

Pr(X > t)
=
Pr(X > ty)

Pr(X > t)
=
F̄ (ty)

F̄ (t)
(3.2)

Using Definition 2.5, the deviation between the true excess distribution and the
asymptotic model for heavy-tailed distributions, can be parametrized using a
power series expansion, and thus Equation 3.2 can be written as:

F̄ (ty)

F̄ (t)
=
C(ty)−α(1 +Dtτyτ + ...)

C(t)−α(1 +Dtτ + ...)
, y ↑ ∞ (3.3)

= y−α
1 +Dtτyτ + ...

1 +Dtτ + ...
, y ↑ ∞ (3.4)

If y ↑ ∞, then Dyτ → 0 and therefore the Maclaurin series (1 + Dtτ + o(tτ ))−1

will converge to the geometric series:

(1−Dtτ + ...) where |Dtτ | < 1. (3.5)

We can therefore write equation Equation 3.4 as:

F̄ (ty)

F̄ (t)
= y−α(1 +Dtτyτ + ...)(1−Dtτ + ...) as y ↑ ∞ (3.6)
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3.2. GENERALIZATION OF THE EPD

= y−1/γ(1 +Dtτyτ −Dtτ + ...) (3.7)

By letting Dγtτ = δt = δ, Equation 3.7 can be written as:

F̄ (ty)

F̄ (t)

y↑∞∼ y−1/γ

(
1 +

1

γ
δyτ − 1

γ
δ + ...

)
(3.8)

Using the same power series expansion property as in Equation 3.5 it can be shown

that the second term in parenthesis, i.e.

(
1 +

1

γ
δyτ − 1

γ
δ + ...

)
converges from

the Maclaurin series:
∼ (1 + δ − δyτ )−1/γ.

Therefore:

F̄ (ty)

F̄ (t)

t↑∞∼ Ḡγ,δ,τ (y) = {y(1 + δ − δyτ )}−1/γ, y > 1 (3.9)

which defines the EPD with parameter vector (γ, δ, τ) in the range τ < 0 < γ and
δ > max(−1, 1/τ). The EGPD is then given by the distribution function:

Hγ,δ,τ (x) = Gγ,δ,τ (1 + x), x ∈ R. (3.10)

Note, Hγ,δ,τ (x) is just a reparametrization of the GPD if τ = −1.

Condition (R). (Beirlant et al., 2009) Let γ > 0 and τ < 0 be constants. A

distribution function F is said to belong to the class F (γ, τ) if x
1
γF (x) → C ∈

(0,∞) as x→∞ and if the function δ defined via:

F (x) = Cx−
1
γ {1 + γ−1δ(x)} (3.11)

is eventually nonzero and of constant sign and such that |δ| ∈ Rτ . N

The following proposition shows that for F ∈ F (γ, τ), the EPD and E(G)PD
improve the PD and GPD approximations to the excess distribution with an order
of magnitude, for the conditional distributions of relative and absolute excesses of
X over t:

Pr(X/t > y|X > t) =
F̄ (ty)

F̄ (t)
and Pr(X − t > x|X > t) =

F̄ (t+ x)

F̄ (t)

Proposition 1. (Beirlant et al., 2009) If F ∈ F (γ, τ), then as t→∞,

sup
y≥1

∣∣∣∣ F̄ (ty)

F̄ (t)
− Ḡγ,δ(t),τ (y)

∣∣∣∣ = o{|δ(t)|} (3.12)

sup
x≥0

∣∣∣∣ F̄ (t+ x)

F̄ (t)
− H̄γ,δ(t),τ (x/t)

∣∣∣∣ = o{|δ(t)|} (3.13)

N
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Proof. Given the conditional distribution of the relative and absolute excesses of
X over t, we have:

F̄ (ty)

F̄ (t)
= y−1/γ 1 + γ−1δ(ty)

1 + γ−1δ(t)
= y−1/γ

1− γ−1δ(t)

1− δ(ty)

δ(t)

1 + γ−1δ(t)


on the other hand, since 0 ≤ 1− yτ ≤ 1 for y ≥ 1 and since δ(t)→ 0,

[y{1 + δ(t)− δ(t)yτ}]−1/γ = y−1/γ{1− γ−1δ(t)(1− yτ )}+ o({|δ(t)|}), t→∞,

Uniformly in y ≥ 1. It thus follows that:

F̄ (ty)

F̄ (t)
− [y{1 + δ(t)− δ(t)yτ}]−1/γ =

−γ−1y−1/γδ(t)

 1− δ(ty)

δ(t)

1 + γ−1δ(t)
− (1− yτ )

+ o({|δ(t)|}), t→∞.

Now using the fact that |δ| ∈ Rτ , the asymptotic relation Equation 3.12 then
follows from the uniform convergence theorem for regularly varying functions with
negative index (Bingham et.al., 1987, Theorem 1.5.2). N

If in Equation 3.12 and Equation 3.13, the EPD tail function Ḡγ,δ(t),τ (y) was
replaced by the PD tail function (y−1/γ), and the EGPD tail function H̄γ,δ(t),τ (x/t)
was replaced by the GPD tail function (1+γx/σ)−1/γ for some σ = σ(t), and τ 6=-
1, then the rate of convergence would in both cases be O{|δ(t)|} only. Therefore
by approximating the distribution of the POT’s X/t given that X > t by the EPD
or EGPD rather than by Pareto or GPD, lifts up the first bias term. We retain
our focus on the EPD.

3.3 Estimation procedures: Maximum

likelihood

Assume the second-order assumption on F in terms of the tail quantile function
U defined by

U(y) = Q(1− 1/y) with Q(p) = inf{x ∈ R : F (x) ≥ p}, (3.14)

where y ∈ (1,∞) and p ∈ (0, 1).
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Assume further that F ∈ F (γ, τ) with lim
x→∞

x1/γF̄ (x) = C ∈ (0,∞), then

lim
y→∞

y−γU(y) = Cγ,

and the function a, eventually non zero and of a constant sign |a| ∈ Rρ, with
ρ = γτ , defined implicitly by

U(y) = Cγyγ{1 + a(y)}, (3.15)

satisfying
a(y) = δ(U(y)){1 + o(1)} = δ(Cγyγ){1 + o(1)}, (3.16)

as y →∞, with δ as in Equation 3.11. Note also that if F is not continuous, then
yF̄ (U(y)) = 1 + o{|a(y)|} as y →∞.

To approximate F̄ (x) for x ≥ t in terms of F̄ (t), Equation 3.13 is written as:

F̄ (ty) = F̄ (t)Ḡγ,δ(t),τ (y) + o{F̄ |δ(t)|} (3.17)

and the remainder term is omitted . Let a random sample X1, X2, ..., Xn from F ,
be ordered as:

X1:n ≤ X2:n ≤ ... ≤ Xn:n

with relative excesses X/t taken over the data-adaptive threshold µ = µn = Xn−k:n

where k = kn ∈ {1, ..., n − 1} is an intermediate sequence of integers, i.e, k → ∞
and k/n → 0 as n → ∞ and taken such that Xi > t, ∀ i ∈ {1, ..., n − 1}. The
estimators of γ and δn are obtained by maximizing the EPD likelihood function
given the sample of k relative excesses Xn−k+i:n/Xn−k:n, i ∈ {1, ..., k}, over the
random threshold Xn−k:n(Beirlant et al., 2009).

The density function of the EPD is given by:

gγ,δ,τ (x) =
d

dx
[Gγ,δ,τ (x)] =

1

γ
x−1/γ−1{1 + δ(1− xτ )}−1/γ−1[1 + δ{1− (1 + τ)xτ}]

(3.18)
The score functions are given by Beirlant et al. (2009) as:

∂

∂γ
log gγ,δ,τ (x) = −1

γ
+

1

γ2
log x+

δ

γ2
(1− xτ ) + O(δ2), (3.19)

∂

∂δ
log gγ,δ,τ (x) =

1

γ
{(1− γτ)xτ − 1}+ {1− 2(1− γτ)xτ+

(1− 2γτ − γτ 2)x2τ} δ
γ

+ O(δ2)

(3.20)
Solving these Linearized score equations yields:

γ̂k,n = Hk,n + δ̂k,n{1− Ek,n(τ)}, (3.21)
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(γ̂k,nτ − 1)Ek,n(τ) + 1 =

{1− 2(1− γ̂k,nτ)Ek,n(τ) + (1− 2γ̂k,nτ − γ̂k,nτ 2)Ek,n(2τ)}δ̂k,n
(3.22)

where

Hk,n =
1

k

k∑
i=1

log(Xn−k+i:n/Xn−k:n), (3.23)

is the Hill (1975) estimate

Ek,n(s) =
1

k

k∑
i=1

(Xn−k+i:n)s, s ≤ 0 (3.24)

Lastly, Beirlant et al. (2009) gives the simplified estimators as:

δ̂k,n = Hk,n(1− 2ρ̂n)(1− ρ̂n)3 1

ρ̂ 4
n

(Ek,n(ρ̂n/Hk,n)− 1

1− ρ̂n
), (3.25)

γ̂k,n = Hk,n − δ̂k,n
ρ̂n

1− ρ̂n
(3.26)

where δ̂k,n can be expected to be of order Op(k
−1/2), n→∞ and ρ = γτ .

In order to estimate τ = τ̂k,n = ρ̂n/Hk,n, the unknown second-order parameter ρ
is then replaced by a consistent estimator ρ̂n which will not affect the asymptotic
distribution of the other estimators. This estimator is estimated externally in
Section 3.3.1.

Due to the Maximum Likelihood estimation’s asymptotic efficiency property, Beir-
lant et al. (2009) was able to prove that the EPD EVI estimator (γ̂EPDk,n ), has in
fact reduced bias in comparison to that of the GPD (γ̂GPDk,n ), and Pareto (γ̂PDk,n ),
expressed explicitly under the second-order condition:

√
k( ˆγEPDk,n − γ) ∼ N

(
0, γ2 (1− ρ)2

ρ2

)
, n→∞ (3.27)

√
k(γ̂PDk,n − γ) ∼ N

(
λ

ρ

1− ρ
, γ2

)
, n→∞ (3.28)

√
k( ˆγGPDk,n − γ) ∼ N

(
λb(γ, ρ), (1 + γ)2

)
, n→∞ (3.29)

where

b(γ, ρ) =
ρ(1 + γ)(γ + ρ)

γ(1− ρ)(1 + γ − ρ)
,

and λ is defined as follows

√
ka(n/k)→ λ ∈ R, n→∞. (3.30)
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Beirlant et al. (2009) showed also that by expressing δn as δn = δ(tn) = δ(Xn−k:n)
Equation 3.30 implies that:

√
kδn = λ+ op(1), n→∞. (3.31)

As can be seen from Equation 3.27, the EPD has a significantly reduced asymptotic
bias term, as compared to both the GPD and the PD. From Equation 3.31 we
know that the estimators are asymptotically unbiased in the sense that whatever
the value of λ, the mean of the normal limiting distribution will always be equal
to zero. Also note that with the EPD estimate, the mean of the limit distribution
is not proportional to λ and therefore it is possible to use a larger k and lower
thresholds. Of the three estimators however, the Hill (1975) estimator has the
smallest asymptotic variance.

3.3.1 Estimation of the second order parameter

In this chapter, we estimate the second order parameter ρ by using Fraga’s esti-
mator (Fraga Alves et al., 2003b). In Chapter 5 however, a comparison is made
between estimating parameters of the EPD with ρ fixed and estimating all three
parameters of the EPD simultaneously. Other possible ways to deal with the sec-
ond order parameter is to fix it at some value, usually −1, this is however not
investigated in this study.

Gomes et al. (2010) notes that to estimate ρ it is necessary to employ many more
upper order statistics than in the first order parameter γ.

Algorithm to estimate ρ

1. Given a sample (X1, X2, ..., Xn), plot the estimates of

ρ̂k,r := min{0,
3(T

(τ)
k,n − 1)

T
(τ)
k,n − 3

}, (3.32)

for τ = 0, where

Tk,n :=

(
M

(1)
k,n

)τ
−

(
M

(2)
k,n

2

)τ/2

(
M

(2)
k,n

2

)τ/2

−

(
M

(3)
k,n

6

)τ/3
(3.33)

and

M
(j)
k,n :=

1

k

∑
i≤k

(logXn−i+1:n − logXn−k:n)j, j ≥ 1. (3.34)
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since τ = 0, the notation abτ = b ln a is used and therefore Equation 3.33 is
written as

Tk,n :=

log(M
(1)
k,n)− 1

2
log

(
M

(2)
k,n

2

)
1

2
log

(
M

(2)
k,n

2

)
− 1

3
log

(
M

(3)
k,n

6

) (3.35)

2. Consider {ρ̂k,n}k∈K as given in Equation 3.32 for large k, say k ∈ K =
([n0.990], [n0.999]), compute their median, denoted ρτ and work with ρ̂ ≡ ρ̂τ0 :=
ρ̂k1 , with

k1 = [n0.995] (3.36)

The choice of the level k1 is not very important, we can consider any reasonably
large value of k of order n1−ε from some intermediate sequence of integers k = k(n)
satisfying lim

n→∞

√
kA(n/k) =∞.

In the next section, a simulation study will be conducted to assess the behavior of
the EPD ML estimator. This estimator will be compared with other estimators in
terms of the bias, MSE and variance.

3.4 Simulation Study

To illustrate the behavior of all three estimators γ̂EPD, γ̂PDand γ̂GPD using the ML
method of estimation, 10,000 samples of size n = 1000 are generated from three
different Pareto-type distributions: the Fréchet, the Burr (XII) and the absolute
Student-t distribution. The γ̂EPD, γ̂PDand γ̂GPD are then estimated using the ML
method of estimation, where the number of observations above a threshold varies
with k.

For each distribution the Monte Carlo estimates of the mean square error, variance
and bias are estimated by averaging out over the 10,000 samples. The second-order
parameter ρ of the EPD is estimated using the Fraga Alves et al. (2003b) method
as explained earlier in Section 3.3.1. This parameter is considered as fixed, while
the other two parameters are estimated with each simulation.

The Monte Carlo estimates of the asymptotic variance, are given in Beirlant et al.
(2009) as:

Var(γ̂EPD) =
1

k

(
γ̂2 (1− γ̂τ̂)2

γ̂τ̂ 2

)
, (3.37)

Var(γ̂PD) = γ̂2 (3.38)

and
Var(γ̂GPD) = (1 + γ̂)2, (3.39)
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respectively. The Monte Carlo estimates of the Mean Square Errors (MSE) for all
three estimators as:

MSE(γ̂) = [(γ̂ − γ)2] (3.40)

while the bias for all three estimators is given by

ˆBias = (γ̂ − γ). (3.41)

Estimates of the Hill (1975) are given as in Equation 3.23, while for the GPD an R
package(’evir’) is used to fit the GPD to the simulated excesses above a threshold,
by way of defining the argument: ’gpd(data, threshold = NA, nextremes =

NA, method = c("ml", "pwm"),information = c("observed", "expected"),

...)’, see, appendix A, (Pfaff et al., 2012).

Next we present results of the simulation study.
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(a) Fréchet, α = 1 (b) Fréchet, α = 2

(c) Fréchet, α = 1 (d) Fréchet, α = 2

(e) Fréchet, α = 1 (f) Fréchet, α = 2

Figure 3.1: Fréchet(α) samples: Mean Square Error (MSE) estimate (top), Variance
estimate (middle) and Bias estimate (bottom). The sample size is n = 1000 and the
plots are obtained by averaging out over 10,000 samples.
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(a) Burr, η = 1, τ = 0.5, λ = 2 (b) Burr, η = 1, τ = 1, λ = 2

(c) Burr, η = 1, τ = 0.5, λ = 2 (d) Burr, η = 1, τ = 1, λ = 2

(e) Burr, η = 1, τ = 0.5, λ = 2 (f) Burr, η = 1, τ = 1, λ = 2

Figure 3.2: Burr(η, τ, λ) samples: Mean Square Error (MSE) estimate (top), Vari-
ance estimate (middle) and Bias estimate (bottom). The sample size is n = 1000 and
the plots are obtained by averaging out over 10,000 samples.
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(a) Student-t, v = 2 (b) Student-t, v = 4

(c) Student-t, v = 2 (d) Student-t, v = 4

(e) Student-t, v = 2 (f) Student-t, v = 4

Figure 3.3: Student-t(v) samples: Mean Square Error (MSE) estimate (top), Vari-
ance estimate (middle) and Bias estimate (bottom). The sample size is n = 1000 and
the plots are obtained by averaging out over 10,000 samples.
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Remarks

Figure 3.1 shows EVI estimates from a Fréchet(α) distribution for case 1 (α =
1 → γ = 1) and case 2 (α = 1 → γ = 1/2): in both cases, the asymptotic
distributions of both the EPD and the GPD estimators have a zero asymptotic
bias while the Hill (1975) has a nonzero asymptotic bias. The EPD in both cases
seems to have reduced biased over a larger range of k’s, regardless of the tailed-
heaviness of the sampled distribution, this can also explain why it is possible to
use larger k’s and lower thresholds for the EPD.

Figure 3.2 shows the EVI estimates from a Burr (XII)(η, τ, λ) distribution for
case 1 (η = 1, τ = 0.5, λ = 2→ γ = 1) and case 2 (η = 1, τ = 1, λ = 2→ γ = 1/2):
For all three estimators, the EPD seems to be the only one that is asymptotically
unbiased, and stable across a larger range of k’s.

Figure 3.3 shows the EVI estimates from a Student-t(v) for both case 1 (v =
2→ γ = 0.5) and case 2 (v = 4→ γ = 0.25): Again the EPD estimator is the only
one which is asymptotically unbiased, as compared to the GPD and Hill (1975)
estimator, regardless of the tail-heaviness of the sampled distribution.

We can thus see that the EPD can be fitted to a larger portion of the data,
and results in reduction of bias and a good fit to excesses over a larger range of
thresholds. This model will therefore be used in later chapters to estimate robust
and asymptotically unbiased extreme quantiles.

3.5 Conclusion

In this section we discussed the motivation for the use of the EPD as a limiting dis-
tribution for excesses over a threshold. A generalization of the EPD was discussed
in Section 3.2 as well as propositions as given by Beirlant et al. (2009) showing
that the EPD improves approximations to the excess distribution with an order of
magnitude.

A detailed simulation estimation procedure was explicated in section Section 3.3
and a simulation study was conducted in Section 3.4. From this study, we can
see that the EPD is a better POT model to consider than the GPD. The rest of
this thesis is focused on investigating other different estimation procedures for the
EPD, and also applying the different methods of estimation to real datasets in
order to assess their performance.
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Chapter 4

Improved EPD maximum likelihood
estimator for complete data

4.1 Introduction

In Chapter 3 we used pseudo-maximum likelihood parameter estimates as given
in Beirlant et al. (2009). The main advantage of these estimates is their rela-
tive ease of implementation. However, analytically solving the score functions of
the maximized EPD likelihood function, means we have to neglect some small
order approximation O(δ2), doing this gives rise to a small bias term. An alter-
native to maximizing the EPD likelihood function approach is to optimize the
likelihood function directly and relaxing the assumption of δ → 0. This can be
achieved by employing a numerical optimization technique. R (R Core Team,
2014) has a General-purpose Optimization function which makes use of the fol-
lowing methods to perform box-constrained optimization and simulated annealing:
the Nelder-Mead (Nelder and Mead, 1965), the Conjugate gradients (Fletcher and
Reeves, 1964), the SANN, a variant of simulated annealing (Bélisle, 1992), the
Brent (Brent, 2013) and the limited memory Broyden-Fletcher-Goldfarb-Shanno
(L-BFGS-B) method (Broyden (1970); Fletcher (1970); Goldfarb (1970); Shanno
(1970)).

We make use of the L-BFGS-B quasi-Newton algorithm, to estimate parameters of
a bounded and constrained function. This method takes advantage of the limited
amount of computer memory used to approximation the original BFGS and thus
implements the algorithm more efficiently. This algorithm is used to mainly solve
large non-linear optimization problems with simple bounds. Byrd et al. (1994)
compared the L-BFGS method against some well known conjugate gradient meth-
ods in terms of execution times, and found the L-BFGS-B method to be faster and
more efficient.

In the following Section 4.2 we detail the estimation procedure as applied in the
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statistical software R, and conduct a simulation study in Section 4.3. Some con-
cluding remarks are made in Figure 4.3.

4.2 Estimation procedure

In this chapter we implement the L-BFGS-B algorithm on the EPD’s negative log
likelihood (objective function), to estimate the parameters γ and δ. Estimators
of γ∗ and δ∗ are found by maximizing the EPD log likelihood or minimizing the
negative log likelihood i.e (γ∗, δ∗) = argmin{− log(

∏n
i=1 gγ,δ,τ (x))}. The likelihood

function of the EPD is given by:

n∏
i=1

gγ,δ,τ (xi) =
1

γn

n∏
i=1

x
−1/γ−1
i

n∏
i=1

{1 + δ(1− xτi )}−1/γ−1

n∏
i=1

{1 + δ[1− (1 + τ)xτi ]}

(4.1)
By taking the log of Equation 4.1 and multiplying by -1, we get the Negative
log-likelihood of the EPD, which is the objective function to be optimized, given
as;

n log γ +

(
1

γ
+ 1

) n∑
i=1

log(xi) +

(
1

γ
+ 1

) n∑
i=1

log(1 + δ(1− xτi ))

−
n∑
i=1

log(1 + δ(1− (1 + τ)xτi ))

(4.2)

The L-BFGS-B algorithm solves this objective function with bounds lower ≤ x ≤
upper on the variables, where g : Rn → R. For an intermediate sequence of integers
k ∈ {1, ..., n − 1}, every next (k + 1) − th vector of parameter estimates (γ, δ) is
bounded by the following lower and upper bound vector: lower = [1e−6,−T ∗|δ̂k|]
and upper = [T ∗ |γ̂k|, T ∗ |δ̂k|], where T is an arbitrary scaler tuning parameter.
The second order parameter ρ is again estimated by the Fraga Alves et al. (2003b)
method and fixed for all k (see Section 3.3.1).

4.3 Simulation study

Estimators γ̂pseudo−EPD, γ̂PDand γ̂GPD are estimated the same way as in Chap-
ter 3, Section 3.4 using the MLE method of estimation, however in this Section an
additional ML estimator is added, we call it here the optim-EPD γ̂optim−EPD. We
generate 10,000 samples of size n = 1000 from four different Pareto-type distri-
butions; the Fréchet, the Burr (XII), the absolute Student-t distribution and the
GPD. For each distribution the Monte Carlo estimates of the mean square error,
variance and bias are estimated by averaging out over the 10,000 samples.
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(a) Fréchet, α = 1 (b) Burr, η = 1, τ = 0.5, λ = 2

(c) Fréchet, α = 1 (d) Burr, η = 1, τ = 0.5, λ = 2

(e) Fréchet, α = 1 (f) Burr, η = 1, τ = 0.5, λ = 2

Figure 4.1: Mean Square Error (MSE) estimate (top), Variance estimate (middle),
and Bias estimate (bottom). The sample size is n = 1000 and the plots are obtained by
averaging out over 10,000 samples.
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(a) GPD, γ = 1;µ = 0;σ = 1 (b) Student-t, v = 2

(c) GPD, γ = 1;µ = 0;σ = 1 (d) Student-t, v = 2

(e) GPD, γ = 1;µ = 0;σ = 1 (f) Student-t, v = 2

Figure 4.2: Mean Square Error (MSE) estimate (top), Variance estimate (middle),
and Bias estimate (bottom). The sample size is n = 1000 and the plots are obtained by
averaging out over 10,000 samples.
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Remarks

For both the Fréchet and the Burr(XII) samples, from Figure 4.1 we can see that
the MSE of the optim-EPD estimator is lower than both the GPD and the pseudo-
EPD. However the optim-EPD estimator has a slightly bigger asymptotic variance
than the pseudo-EPD estimator although in the case of the Fréchet the asymptotic
variance is still smaller than the asymptotic variance of the GPD estimator. Both
EPD estimators have zero asymptotic bias. The optim-EPD estimator is the most
stable of all the four estimators.

For the GPD and the Student-t samples, from Figure 4.2 the optim-EPD has a
smaller MSE than all the other estimators. The optim-EPD has an asymptotic
variance smaller than the GPD estimator but higher than the pseudo-EPD esti-
mator. The optim-EPD estimator gives an overall better performance than all
mentioned estimators for estimating the EVI of Student-t samples. For the GPD
samples the optim-EPD and the GPD estimators have a coinciding MSE better
than the pseudo-EPD estimator. However the variance of the optim-EPD estima-
tor is higher than all other mentioned estimators. Since the data is from a GPD
we can expect the GPD estimator to give the best performance. The optim-EPD
estimator performs better than the pseudo-EPD estimator.

The R statistical software contains a general-purpose optimization package that
works very well for such maximization (minimization) problems. As can also be
seen from the conducted simulations. Following this approach leads to improved
estimates of the EVI. In the next section we introduce a new Bayesian EPD Es-
timator for the EVI and show that this estimator also leads to much improved
results compared to the ML EPD estimator.

In the next chapter we introduce the Bayesian EVI estimator of the EVI and
discuss some methods of approximating the joint posterior density in Bayesian
inference. The Bayesian estimator is also compared with the ML estimator.
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Chapter 5

EPD Bayesian estimator for complete
data

“...it is not asserted that a belief is an idea which does actually lead to action, but one

which would lead to action in suitable circumstances; just as a lump of arsenic is called

poisonous not because it actually has killed or will kill anyone, but because it would kill

anyone if he ate it” (Ramsey, 1931)

5.1 Introduction

In reality perfect information is never available, there are always some uncertain
aspects of any situation. For this reason, beliefs about the uncertainty of a sit-
uation can be an input into the decision making process of any practical course
of action. This concept of uncertainty and rationality embodies the framework
of Bayesian theory. The well known Bayes’ theorem describes the mechanisms
of updating prior beliefs about our observables with new information in light of
changing evidence.

Bayesian theory offers an additional set of interesting tools in EVT that may
very well serve as an alternative to some of the classical methods of estimation
such as the ML method. However complications of Bayesian inference stems from
multidimensional integration problems involved in posterior calculations, amongst
other things. Also, Markov Chain Monte Carlo (MCMC) methods can be “com-
putationally demanding and much harder to implement, using non-conventional
software that is not widely available among researchers and practitioners in the
field” (Fridman and Harris, 1998). However, through advances in computing power
and efficiency of MCMC algorithms, it has become easier to implement MCMC
methods to some common statistical problems.

In EVT we are usually faced with data scarcity, due to the fact that extreme data
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points are scarce for any system, for instance a natural disaster can happen only
5 times in 100 years. One could then ask; can we use an expert’s opinion in our
inference, or do we just rely on the few data points that we have? A pragmatic
motivation for a Bayesian paradigm in EVT is quite clear, that any knowledge that
can help us make better approximations/predictions, should surely be incorporated
when making inference about our model parameters.

In this chapter, we will illustrate the ease of implementing Bayesian estimation
procedures to estimate parameters of the EPD using R and the OpenBUGS soft-
ware package (Sturtz et al., 2010) and also showing that this approach does indeed
result in more stable and less biased estimates of the EVI, in comparison to the
classical MLE.

In Section 5.2 we give a short overview of Bayesian inference. In Section 5.3 we
show how to sample from the joint EPD posterior distribution using the Metropolis
and Gibbs sampling algorithms. In Section 5.3.3 we detail the estimation procedure
through specifying and implementing the EPD model in OpenBUGS, here we show
how we specify the joint posterior and how we derive the prior distributions for
all parameters. In Section 5.3.6, we explain how OpenBUGS chooses its sampling
method. An exhaustive Monte Carlo simulation study is conducted in Section 5.5
to assess the behaviour of our estimate where the second order parameter is fixed
(the first case) and where the second order parameter is estimated concurrently
with other parameters (the second case).

We further demonstrate the benefits of our Bayesian approach with a small case-
study in Section 5.7 using a real dataset and using our estimated parameters to
compute the following quantities:

• Probability of exceedance of a high level x, px := P(X > x) = 1− F (X),

• High Quantile of probability 1− p, p small, defined as χ1−p:=inf({x : F (x) ≥
1− p} =: F←(1− p), p < 1/n),

where F← indicates the left-continuous inverse function of F . Some concluding
remarks are made in Section 5.8.

5.2 Overview of Bayesian Inference

“Sometimes a lot of data can be meaningless: at other times one single piece of
information can be very meaningful” (Taleb, 2010). Bayesian inference has a great
advantage of incorporating in a unified way, any meaningful piece of information
in describing our model parameters. This added advantage can be very useful in
EVT, where data is often not enough to make any reliable inference.

Let x = (x1, ..., xn) denote the observed data of a random variable X distributed
according to a distribution with density function p(x|θ), where θ is a vector of un-
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known parameters in the parameter space Ω. Assuming we have prior knowledge
about the distribution of the parameter vector θ, the density of the prior distribu-
tion for θ can be denoted as p(θ). We can write the likelihood as p(x|θ). According
to Bayes’ theorem, the distribution of θ|x, called the posterior distribution of θ,
can be written as

p(θ|x) =
p(x|θ)p(θ)∫

Ω
p(x|θ)p(θ)dθ

∝ p(x|θ)p(θ) (5.1)

The marginal posterior distribution function of the parameter θi can be obtained
by integrating out the remaining parameters. If θ is p dimensional, the marginal
posterior distribution will be

pi(θi|x) =

∫
θ1
...
∫
θi−1

∫
θi+1

...
∫
θp
p(θ)p(x|θ)dθp...dθi+1dθi−1...dθ1∫

Ω
p(θ)p(x|θ)dθ

. (5.2)

We then rely on modern MCMC methods to approximate the posterior distribu-
tions. Examples of these are: Metropolis-Hastings algorithm, Gibbs sampling,
Slice sampling, rejection sampling and Adaptive rejection sampling. In order to
make inference on θ we take the mean of the posterior samples, the accuracy of
this inference is described by the posterior distribution itself through the Highest
Posterior Density (HPD) region according to a certain probability 1− α.

5.3 Markov Chain Monte Carlo methods

In this section we will illustrate some practical considerations when fitting the EPD
using Bayesian inference. We consider three ways of implementing the EPD model:
programming the model in OpenBUGS by calling it in R using the ”R2OpenBUGS”
package; programming the EPD model directly in R using the Metropolis algo-
rithm and also using the Gibbs sampler. Coding the algorithms directly in R gives
us a greater level of control. However it can get very computationally intensive.

Next we define the Metropolis algorithm as given by Gelman et al. (2014) and the
Gibbs sampler as given by (Gelfand, 2000)

5.3.1 Metropolis algorithm

1. Draw a starting point θ0 where p(θ0|y) > 0, from a starting distribution p0(θ)
(we use here γ0 = Hk,n, δ0 = 0.01 and τ0 = −0.5 as starting points, where
Hk,n is the Hill estimator)

2. For t=1,2,....:

• Sample a proposal θ∗ from a jumping distribution at time t, Jt(θ
∗|θt−1)

(We use here the Normal distribution as a jumping distribution since it
is symmetric)
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• Calculate the ratio of the densities,

r =
p(θ∗)

p(θt−1|y)
. (5.3)

• Set

θt =

 θ∗ with probability min(r, 1)

θt−1 otherwise

(5.4)

Given the current value θt−1, the transition distribution Tt(θ
t|θt−1) of the

Markov chain thus becomes the mixture of a point mass at θt = θt−1, as well
as the weighted version of the jumping distribution, Jt(θ

t|θt−1), that adjusts
for the acceptance/rejection rate. This latter step requires the generation
of a uniform random number. If θt = θt−1 the jump is not accepted. The
algorithm then repeats until a certain number of jumps have been accepted.

5.3.2 Gibbs sampler

Suppose that the parameter vector θ is partitioned into r blocks i.e. θ = (θ1, ..., θr).

If the current state of θ is θ(t) = (θ
(t)
1 , ..., θ

(t)
r ), then assume we make some transition

θ(t+1) as follows:

draw θ
(t+1)
1 from h(θ1|θ(t)

2 , ..., θ
(t)
r ),

draw θ
(t+1)
2 from h(θ2|θ(t+1)

1 , ..., θ
(t)
3 , ..., θ

(t)
r ),

...

draw θ
(t+1)
r from h(θr|θ(t+1)

1 , ..., θ
(t+1)
r−1 ).

The distribution of h(θi|θ1, ..., θi−1, ..., θi+1, ..., θr) are known as the full conditional
distributions, the complete iterations are then produced by updating the entire
vector θ. There are numerous ways to sample from θi. In this thesis we make
use of a technique called discretization. We break the continuous log-posterior
distribution of the EPD into discrete counterparts and use the sample function in
R to sample from the sampling interval with a probability.

5.3.3 Implementation the EPD joint posterior in
OpenBUGS

There are two main versions of BUGS (Spiegelhalter et al., 1995), namely Win-
BUGS and OpenBUGS. OpenBUGS is the open source version of WinBUGS and
can run on both Windows and Linux. In this paper we use the word ‘BUGS’
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and ‘OpenBUGS’ interchangeably. Although it is possible to apply this approach
using the OpenBUGS graphical user interface, we use the “R2OpenBUGS” package
in order to call OpenBUGS from the R (R Core Team, 2014) statistical software.

The EPD distribution function is given in Section 3.2 as

Ḡγ,δ,τ (y) = {y(1 + δ − δyτ )}−1/γ, y > 1 (5.5)

where the parameter vector (γ, δ, τ) is restricted by τ < 0 < γ and δ > max(−1, 1/τ),
with δ = δt = −Dγ−1Cρ/γt−ρ/γ and τ = −ρ/γ. The density function is defined by:

gγ,δ,τ (y) =
1

γ
y−1/γ−1{1 + δ(1− yτ )}−1/γ−1[1 + δ{1− (1 + τ)yτ}] (5.6)

This last piece of information about parameters of the EPD parametric model is
going to be useful in specifying our Bayesian model. We approximate the posterior
distribution in two ways;

• In the first case we estimate only γ and δ, and use an external estimator
given in Section 3.3.1 to estimate the second order parameter ρ, where τ =
ρ/γ. This is shown in Figure 5.1a

• In the second case we estimate all three parameters of the EPD γ, δ and τ
simultaneously. This is shown in Figure 5.1b

Graphical Model

Graphical models aid us in understanding the qualitative conditional independence
structures of a model, allowing us to reduce globally complex models into smaller
local components. In OpenBUGS they are known as ‘Directed Acyclic Graphs’
(DAG) or more commonly as ‘DoodleBUGS’. Below is a graphical model of the
EPD expressing the joint relationship between all the parameters in the model.
From this representation we are able to design the essential structures of the model
for computation.
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(a) Second order parameter ρ̂ fixed (b) Estimating all 3 parameters

Figure 5.1: Representation of the EPD model as a directed acyclic graph (DAG)

This graphical model representation is called a directed acyclic graph because
every node in this graph is directed and there are no cycles. This graphical model
helps us to focus on the essential model structure. In this graphical model, the
vertices are called nodes and represent quantities in the EPD model.

Conditional independence is shown by the directed edges or arrows which run into
the nodes from the parent nodes to the child nodes. The three types of nodes
seen in the DAGs above can be of the following types (see Lunn et al., 2012):

• Constants are fixed by the design of the study, they are always founder
nodes (do not have parents), and are denoted as rectangles in the DAG.
They must be specified in the data file;

• Stochastic nodes are variables following some distribution, and are de-
noted by a circle in the DAG. They may be parents or children (or both).
Stochastic nodes can be observed as being the data or unobservable and
hence parameters or unobservable due to the presence of censoring or miss-
ing values;

• Deterministic nodes are logical functions of other nodes.

The loops in the model are represented by a plate. This is a rectangle containing
all the nodes and arrows of the model part which needs to be repeated (in this
case, the likelihood specification of the EPD). From Figure 5.1 it is then easy to
construct a joint probability distribution for all stochastic notes from the graphical
description of the conditional independence assumption.
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Likelihood

For an intermediate sequence of integers k ∈ 1, ..., n− 1, where k → ∞, we es-
timate only γ and δ. For each sample, we use a fixed estimate of ρ to obtain
τ̂k+1 = ρ̂/γ̂k where τ̂1 = ρ̂/Hk,n. We define a single EPD log likelihood term for a
sample of relative excesses X = (x1, ..., xN) as:

L(xi|γ, τ, δ) = − log(γ)−(
1

γ
+1)[log xi+log(1+δ{1−xτi })]+log(1+δ{1−(1+τ)xτi })

(5.7)
The EPD is not included in the standard distributions list available in OpenBUGS,
and we therefore manually implement the EPD model using a generic sampling
distribution which applies the ‘zero poisson’ method (see Lunn et al., 2012). The
sampling distribution contributes a likelihood term L[i] which is a function of x[i].
Then we use the generic ‘loglik’ distribution dloglik, as a dummy observed variable
by specifying the following in our model specification:

dummy[i]<-0 dummy[i]∼ dloglik (logLike[i])

where logLike is given by Equation 5.7 and represents the contribution to the
log-likelihood of the ith observation.

5.3.4 Prior Choice

Model specification of the prior distribution component can seem somewhat ar-
bitrary. Bernardo and Smith (2009) revealed a striking qualitative difference in
posterior means where different distributions are chosen as priors. Let x denote
the mean of n independent observables from a normal distribution with mean θ
and precision λ, the idea is illustrated by considering the form of the posterior
mean for the parameter θ when p(x|θ) = N(x|θ, nλ) is Normally distributed and
p(θ) is of arbitrary form. It was shown by Pericchi and Smith (1992) that

E(θ|x) = x− n−1λ−1s(x) (5.8)

where

p(x) =

∫
p(x|θ)p(θ)dθ, (5.9)

s(x) =
∂ log p(x)

∂x
(5.10)

We are interested in how the behavior of the posterior mean depends on the as-
sumed mathematical form of p(θ). Bernardo and Smith (2009) considered the
following cases:

1. Assume p(θ) to be Normally with p(θ) ∼ N(θ|µ, λ0), then the posterior will
be a product of two Normal distributions and hence p(x) will be normal,
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making s(x) a linear combination of x and the prior mean. In this case

E(θ|x) = (nλ+ λ0)−1(nλx+ λ0µ) (5.11)

2. Assume p(θ) to be a Student-t distribution with p(θ) ∼ St(θ|µ, λ0, α). In
this case

E(θ|x) = x− (α + 1)(x− µ)

nλ[αλ−1 + (x− µ)2]
(5.12)

(Pericchi and Smith, 1992)

3. Lastly, assume p(θ) to be a double-exponential distribution where

p(θ) =
1

v
√

2
exp

(
−
√

2

v
|θ − µ|

)
(5.13)

for some v > 0, u ∈ R. Pericchi and Smith (1992) proved that if b =
n−1v−1λ−1

√
2,

E(θ|x) = w(x)(x+ b) + [1− w(x)](x− b), (5.14)

where w(x) is a weight function, 0 ≤ w(x) ≤ 1, so that

x− b ≤ E(θ|x) ≤ x+ b (5.15)

By examining the three forms for E(θ|x) we can see the qualitative differences. In
case of the Normal distribution, the posterior mean is unbounded in x−µ. In the
case of the Student-t, for very small x − µ the posterior mean is approximately
linear in x− µ, and for x− µ very large the posterior mean approaches x. In the
case of the double exponential, the posterior mean is bounded, with limits equal
to x ± c, where c is a constant. We therefore have to be very aware of our prior
choice in our model specification.

Clearly the way in which a prior is selected reflects a subjective opinion concerning
the distribution of the parameter in question, prior to observing the data. This
subjective selection may vary from one person to another, and hence make it diffi-
cult to justify our choice of a specific prior. Objective priors assume no subjective
prior information and are derived from the assumed probability density function
of the data, definitions of these two priors are given below (Beirlant et al., 2004):

Definition 5.1. Jeffreys’ prior
Jeffreys’ prior Jeffreys (1961) is defined as

J(θ) ∝
√
I(θ)

where I(θ) is the Fisher’s information matrix with (i, j)-th element

Iij(θ) = E

{
−∂

2 log f(Y |θ)

∂θi∂θj

}
, i, j = 1, ..., p (5.16)

where p denotes the dimension of θ. N

45



5.3. MARKOV CHAIN MONTE CARLO METHODS

The Jeffreys prior is invariant under one-to-one transformations and takes into ac-
count the dependence between the parameters. Bernardo and Smith (2009) noted
that when applied to models appearing in extreme value methodology, Jeffreys’
prior leads to the same confinements as the maximum likelihood approach.

The MDI prior was defined by Zellner (1997) to provide a maximal average data
information on θ. The MDI prior is however not invariant under reparametrization,
but is usually easier to implement.

Definition 5.2. Maximal Data Information (MDI) prior
The MDI prior is defined as

π(θ) ∝ E{log f(Y |θ)}. (5.17)

N

In this study we assign an MDI prior to the parameter γ and a vague truncated
Normal prior to δ. Beirlant et al. (2004) showed that for a Pareto distribution,
the MDI prior is given by:

π(γ) ∝ e−γ

γ
. (5.18)

The EPD is a second order generalization of the simple Pareto distribution, and
this justifies our choice of selecting the Pareto MDI prior for the EPD parameter
γ. This prior can be approximated by a Gamma(α, λ) distribution as follows:

π(γ) =
λα

Γ(α)
γα−1e−λγ ∝ e−γ

γ
, if (α, λ)→ (0, 1), γ > 0 (5.19)

In OpenBUGS this approximation can be specified by choosing α close enough to
zero and λ equal to 1.

The EPD parameters δ and τ have the following constraint δ > max{−1,
1

τ
} and

τ > 1/δ if and only if δ < 0, the last constraint is not mentioned in Beirlant
et al. (2009) but is implied. In order to enforce these constraints, we assign vague
Normal priors, truncated with a lower bound. Also, in order to reflect our relative
ignorance about the true parameter values we set a large prior variance of 106. Only
the Normal distribution can be truncated in OpenBUGS, making it a convenient
choice.

Joint posterior

The joint posterior for the case where only δ and τ are estimated is given by

p(γ, δ|x1, ..., xn) ∝ p(x1, ..., xn|γ, δ)p(γ)p(δ) (5.20)

and for the case where all three parameters (γ, δ, τ) are estimated it is given by

p(γ, δ, τ |x1, ..., xn) ∝ p(x1, ..., xn|γ, δ, τ)p(γ)p(δ)p(τ) (5.21)
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where both p(δ) and p(τ) follow a Normal distribution truncated at the specified
constraints.

5.3.5 Convergence diagnostics

In this section, we assess the mixing and convergence of the Gibbs, Metropolis and
OpenBUGS Markov chains through the following measures:

• Traceplots: A traceplot that oscillates around a particular value and has
small fluctuations indicates that the chain might have reached the correct
distribution.

• Effective Sample Size (ESS) (Kass et al., 1998) ESS is defined as:

ESS =
n

1 + 2
∑∞

k=1 ρk(θ)
(5.22)

where n is the total sample size and ρk(θ) is the autocorrelation of lag k
for θ. A low ESS indicates bad mixing of the Markov chain; we extend this
measure to also look at the effective sampling speed (the rate at which the
effective number of samples are generated).

• The potential scale reduction factor R̂: At convergence R̂ = 1 and a high R̂
means we have to let our chains run longer in order to improve convergence
to the stationary distribution (Gelman et al., 2014). The potential scale
reduction factor is given by:

R̂ =

√
ˆV ar(θ)

W
(5.23)

where W is the mean of the variances of all chains.

It is not the aim of this section to make a generalization concerning the per-
formance of MCMC methods described here, on a general class of Pareto-type
distributions. Instead we use these diagnostic tools to help us make informed pro-
gramming decisions such as the choice of the MCMC algorithm to employ and
ways of making the simulating algorithm computationally efficient. A more gen-
eral simulation study regarding Bayesian inference on heavy tailed distributions is
conducted in Section 5.5.

A sample of size n = 5000 is generated from a Fréchet distribution with EVI=0.5
and stored into a file, FrechetSample.csv. We consider relative excesses with
k = 500. We use the algorithms to estimate all parameters of the EPD (γ, δ, τ)
where the true parameters are γ = 0, δ → 0 as x→∞ and τ = −1/0.5 = −2.

“Keep in mind that OpenBUGS is an MCMC engine that makes use of various
sampling methods including the Metropolis” (see, Section 5.3.6).
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The simulation draws from each algorithm are stored as a 3-dimensional array.
From these simulation draws we investigate mixing of the chains and convergence
using traceplots and an R package called monitor which performs multiple chain
diagnostics. More attention is placed on making inference about the EVI (γ).
From Table 5.1 to Table 5.12 we present a 2-dimensional summary for the input
samples, each row represents one parameter; the columns show the mean, standard
deviation, quantiles, R̂ (potential scale reduction factor) and n eff (estimate of
ESS)

Simulation draws on the EVI (γ) are further then presented using traceplots to
assess their speed of convergence.
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Summary of results

Table 5.1: Gibbs sampler: 1000 iterations of 3 chains

mean se mean sd 2.5% 25% 50% 75% 97.5% n eff R̂

γ 0.54 0.01 0.08 0.41 0.49 0.52 0.58 0.74 46.00 1.08

δ 3.07 0.78 5.77 -0.58 -0.01 0.03 3.53 21.11 54.00 1.04

τ -51.29 14.97 454.48 -382.94 -12.07 -0.51 -0.06 -0.01 922.00 1.00

Table 5.2: Metropolis algorithm: 1000 iterations of 3 chains

mean se mean sd 2.5% 25% 50% 75% 97.5% n eff R̂

γ 0.50 0.00 0.03 0.45 0.48 0.50 0.52 0.55 1496.00 1.00

δ -0.01 0.00 0.00 -0.01 -0.01 -0.00 -0.00 -0.00 16.00 1.04

τ -73.46 20.93 26.00 -107.11 -99.24 -77.54 -43.67 -32.23 2.00 6.00

Table 5.3: OpenBUGS: 1000 iterations of 3 chains

mean se mean sd 2.5% 25% 50% 75% 97.5% n eff R̂

γ 0.51 0.00 0.06 0.40 0.47 0.51 0.54 0.64 1500.00 1.00

δ 0.07 0.01 0.45 -0.77 -0.11 0.01 0.16 1.31 1500.00 1.00

τ -0.93 0.02 0.94 -3.79 -1.22 -0.72 -0.24 -0.03 1500.00 1.00

From Table 5.1, the Gibbs sampler does not seem to converge well since R̂ 6= 1,
however τ seems to converge (R̂ = 1), and has the highest ESS than all other
parameters. Contrary to the Gibbs sampler, the Metropolis algorithm in Table 5.2
seems to have more convergence for γ than for all other parameters, in terms of
both R̂ and ESS. From Table 5.3 OpenBUGS seems to have an overall better
convergence of all parameters with R̂ = 1 and having an overall high ESS than
the two coded algorithms. All estimators seem to result in the average simulation
draws quite close to the true EVI.
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Table 5.4: Gibbs sampler: 1000 iterations of 6 chains

mean se mean sd 2.5% 25% 50% 75% 97.5% n eff R̂

γ 0.53 0.01 0.07 0.39 0.49 0.52 0.57 0.72 74.00 1.04

δ 3.07 1.38 6.12 -0.79 -0.01 0.02 2.57 21.88 20.00 1.15

τ -81.98 22.53 949.49 -465.13 -19.04 -0.66 -0.06 -0.01 1777.00 1.00

Table 5.5: Metropolis algorithm: 1000 iterations of 6 chains

mean se mean sd 2.5% 25% 50% 75% 97.5% n eff R̂

γ 0.49 0.00 0.03 0.44 0.47 0.49 0.52 0.55 96.00 1.05

δ -0.02 0.02 0.09 -0.28 -0.01 -0.01 -0.00 -0.00 15.00 1.31

τ -37.10 9.58 18.72 -67.71 -56.12 -33.38 -24.62 -0.43 4.00 3.77

Table 5.6: OpenBUGS: 1000 iterations of 6 chains

mean se mean sd 2.5% 25% 50% 75% 97.5% n eff R̂

γ 0.51 0.00 0.07 0.35 0.47 0.51 0.55 0.66 3000.00 1.00

δ 0.10 0.01 0.54 -0.87 -0.16 0.02 0.24 1.44 3000.00 1.00

τ -1.00 0.04 2.04 -6.48 -1.00 -0.55 -0.23 -0.03 2879.00 1.00

When using more chains we can see from Table 5.4 that the Gibbs sampler is show-
ing better convergence for τ than other parameters. From Table 5.5 we can see that
convergence of the Metropolis algorithm worsens (R̂ > 1 for all parameters). From
Table 5.6 OpenBUGS seems to maintain convergence of all parameters, notice also
that the mean of simulated γ draws remains 0.51.
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Table 5.7: Gibbs sampler: 5000 iterations, 3 chains

mean se mean sd 2.5% 25% 50% 75% 97.5% n eff R̂

γ 0.54 0.01 0.08 0.42 0.49 0.52 0.57 0.72 161.00 1.01

δ 2.39 0.30 5.26 -0.71 -0.01 0.02 1.69 20.47 303.00 1.00

τ -87.46 36.04 1712.91 -391.23 -22.74 -0.86 -0.11 -0.01 2259.00 1.00

Table 5.8: Metropolis algorithm: 5000 iterations, 3 chains

mean se mean sd 2.5% 25% 50% 75% 97.5% n eff R̂

γ 0.50 0.00 0.03 0.45 0.48 0.50 0.52 0.55 6837.00 1.00

δ -0.01 0.00 0.00 -0.01 -0.01 -0.00 -0.00 -0.00 225.00 1.02

τ -88.23 12.40 23.81 -127.64 -105.48 -93.37 -70.41 -40.32 4.00 2.08

Table 5.9: OpenBUGS: 5000 iterations, 3 chains

mean se mean sd 2.5% 25% 50% 75% 97.5% n eff R̂

γ 0.52 0.00 0.07 0.36 0.48 0.51 0.55 0.68 7500.00 1.00

δ 0.22 0.01 0.74 -0.89 -0.09 0.02 0.36 2.35 7500.00 1.00

τ -2.68 0.08 6.74 -24.36 -1.44 -0.50 -0.20 -0.03 7500.00 1.00

We then revert to using 3 chains but increasing the number of iterations. From
Table 5.7, convergence of the Gibbs sampler improves with δ and τ having R̂ = 1.
From Table 5.8, the Metropolis algorithm seems to be performing similarly as when
we run 1000 iterations. From Table 5.9 OpenBUGS maintains similar performance
with a slight change in the average of the simulated γ draws.
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Table 5.10: Gibbs sampler: 5000 iterations, 6 chains

mean se mean sd 2.5% 25% 50% 75% 97.5% n eff R̂

γ 0.53 0.00 0.07 0.40 0.49 0.52 0.56 0.72 344.00 1.01

δ 2.76 0.28 5.76 -0.74 -0.01 0.01 1.99 21.28 428.00 1.02

τ -179.20 100.82 7804.01 -447.54 -22.08 -0.74 -0.06 -0.01 5992.00 1.00

Table 5.11: Metropolis algorithm: 5000 iterations, 6 chains

mean se mean sd 2.5% 25% 50% 75% 97.5% n eff R̂

γ 0.50 0.00 0.03 0.45 0.48 0.50 0.52 0.55 14484.00 1.00

δ -0.00 0.00 0.00 -0.01 -0.00 -0.00 -0.00 -0.00 11.00 1.18

τ -170.25 43.16 77.66 -322.58 -225.92 -176.53 -104.02 -40.57 3.00 5.41

Table 5.12: OpenBUGS: 5000 iterations, 6 chains

mean se mean sd 2.5% 25% 50% 75% 97.5% n eff R̂

γ 0.51 0.00 0.08 0.34 0.47 0.51 0.56 0.69 14968.00 1.00

δ 0.22 0.01 0.78 -0.91 -0.15 0.03 0.42 2.36 15000.00 1.00

τ -1.47 0.03 3.21 -12.24 -1.09 -0.46 -0.21 -0.03 14790.00 1.00

We further run more chains and more iterations. From Table 5.10 and Table 5.11
we can see that apart from the δ posterior estimates of the Gibbs Sampler, con-
vergence of the Gibbs sampler and the Metropolis algorithm remain the same as
when we used 3 chains. From Table 5.12 we can see that OpenBUGS continues to
converge more than other considered algorithms, maintaining the average value of
the simulated γ draws of 0.5 and with the average of the simulated τ draws being
closer to the true value of τ = -2.

We now consider computational efficiency in terms of computing time. This con-
sideration will be very important in Section 5.5 when we estimate parameters of the
EPD for k = 1 : 1, 000 and over 1, 000 sample i.e. running the MCMC algorithm
over 1000,000 times.
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Computation time for the EVI posterior samples

Table 5.13: 1000 iterations, 3 chains (time in seconds)

N.eff (N)
Computing time (t)

in seconds Eff sampling speed (N/t)

Metropolis 1496.00 244.02 6.13

Gibbs 46.00 832.28 0.06

OpenBUGS 1500.00 10.96 136.86

Table 5.14: 1000 iterations, 6 chains (time in seconds)

N.eff (N)
Computing time (t)

in seconds Eff sampling speed (N/t)

Metropolis 1926.00 372.31 5.17

Gibbs 74.00 1578.97 0.05

OpenBUGS 3000.00 17.48 171.62

Table 5.15: 5000 iterations, 3 chains (time in seconds)

N.eff (N)
Computing time (t)

in seconds Eff sampling speed (N/t)

Metropolis 6837.00 1650.36 4.14

Gibbs 161.00 5012.48 0.03

OpenBUGS 7500.00 49.88 150.36

Table 5.16: 5000 iterations, 6 chains

N.eff (N)
Computing time (t)

in seconds Eff sampling speed (N/t)

Metropolis 14484.00 5697.22 2.54

Gibbs 344.00 9954.44 0.03

OpenBUGS 14968.00 94.67 158.11

We compute the ESS and the computation time in seconds and use this to then
calculate the effective sampling speed (the rate at which the algorithm generates
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an effective number of samples). As one would expect, computation time of all
MCMC algorithms increase when we increase the number of iterations of number
of chains. This is also the case with the ESS. However the effective sampling speed
of these MCMC algorithms unfold an interesting tendency worthy of note.

In Table 5.13 to Table 5.16 we note that the effective sampling speed of the Gibbs
sampler remains the same regardless of the increase in number of iterations of
number of chains used. However the effective sample speed of the Metropolis algo-
rithm decreases while that of OpenBUGS slightly increases when we increase the
number of iterations of the number of chains ran. Also, when we run 1000 itera-
tions of 3 chains OpenBUGS is 244.02/10.96 ≈ 22 times faster than the Metropolis
algorithm and 832.28/10.96 ≈ 76 times faster than the Gibbs sampler; when we
run 5000 iterations of 6 chains, OpenBUGS is 5697.22/94.67 ≈ 60 times faster
than the Metropolis algorithm and 9954.44/94.67 ≈ 105 times faster than the
Gibbs sampler. We therefore conclude that OpenBUGS is more computationally
efficient.

We further assess convergence using traceplots.

Traceplots

From Figure 5.2 The Gibbs sampler exhibits marginal mixing, we can see that
the chain takes relatively small steps and seems to not traverse to the stationary
distribution quickly. The Metropolis algorithm seems to be mixing well, although
the first few observations might have to be discarded in order to make a more
accurate inference. OpenBUGS seems to vary more than the Metropolis algorithm,
but eventually also mixes well.

From Figure 5.3, the Gibbs sampler still exhibits some marginal mixing when we
increase the number of chains. The Metropolis algorithm also exhibiting some
marginal mixing but eventually seems to converge to the stationary distribution.
We would have to discard more intial values than in the case where only 3 chains
were ran.

From Figure 5.4, the bad mixing of the Gibbs sampler is more apparent, while the
mixing of the Metropolis algorithm seems to be converging faster to the stationary
distribution. We would thus only discard a few initial values in order to make
an inference. OpenBUGS seems to have a good mixing, with no need to discard
initial values. A similar conclusion can be made for both Figure 5.4 and Figure 5.5
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Figure 5.2: Traceplot of the EVI posterior simulations for 1000 iterations of 3 chains
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Figure 5.3: Traceplot of the EVI posterior simulations for 1000 iterations of 6 chains
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Figure 5.4: Traceplot of the EVI posterior simulations for 5000 iterations of 3 chains
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Figure 5.5: Traceplot of the EVI posterior simulations for 5000 iterations of 6 chains

As we can see from our convergence diagnostics that OpenBUGS seems to have
satisfactory performance in terms of mixing and convergence. Moreover Open-
BUGS is computationally efficient. Throughout this thesis we use OpenBUGS
when making a Bayesian inference on parameters of the EPD.
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5.3.6 OpenBUGS Efficient Sampling

BUGS does not generally perform Gibbs sampling, since it employs the most
appropriate sampling scheme for each stochastic node, through a system known
as BUGS ‘Expert system’. The system decides which of the MCMC algorithms it
should use for a specific full conditional distribution, since the target densities of
the parameters are not standard densities. In OpenBUGS however, the sampling
scheme still has the Gibbs theme, since it traverses nodes in the graphical model
and considers their full conditionals as target distributions, even if they cannot be
precisely sampled (Lunn et al., 2012). Below is a sampling method hierarchy used
by WinBUGS, also incorporated in OpenBUGS

Table 5.17: Sampling method hierarchy used by WinBUGS. Each method is only used
if no previous method in the hierarchy is appropriate (Lunn et al., 2012).

Target full conditional Sampling method

Discrete Inversion of cumulative distribution function

Closed form (conjugate) Direct sampling using standard algorithms

Log-concave Derivative-free adaptive rejection sampling (Gilks and
Wild, 1992)

Restricted range Slice sampling (Neal, 2003)

Unrestricted range Metropolis–Hastings (Hastings, 1970; Metropolis et al.,
1953)

5.4 Asymptotic theory

A theoretical prerequisite for many estimators proposed in EVT literature, is the
derivation of their asymptotic properties in order to assess performance. Within
the POT framework, the excesses X1, X2, ..., Xn over some threshold t are as-
sumed to follow a parametric limiting distribution with some parameters (say θ).
In making inference on the model’s parameters, the Maximum likelihood estima-
tion method, assumes some asymptotic simplification in order to obtain analytic
derivations of the parameters. This simplification neglects any uncertainty about
the fixed parameter values since we cannot make any direct probability state-
ments about these unknown parameters. In Bayesian statistics however, these
parameters are treated as random variables having some probability distribution.
Also unlike the MLE/Frequentist approach, which relies on asymptotic theory to
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assess how well a model performs in the long run over an infinite number of hy-
pothetical repetitions, Bernardo and Smith (2009) showed, that under suitable
regularity conditions, as the sample size increases, the posterior distribution of the
continuous parameter of interest θ actually converges to a Normal distribution
N(θ|θ̂n, H(θ̂n)) with precision matrix:

H(θ̂n) =

(
−∂

2 log p(x|θ)

∂θi∂θj

)∣∣∣∣
θ=θ̂n

(5.24)

H(θ̂) is also known as the Hessian matrix which measures the local curvature of
the log-likelihood function at its maximum, θ̂ often called the observed information
matrix. Similarly the large sample behavior of the ML estimate θ̂ is also asymptot-
ically Normal distributed by N(θ̂n|θ, nI(θ)), with precision matrix whose general
element is:

(I(θ))ij =

∫
p(x|θ)

(
−∂

2 log p(x|θ)

∂θi∂θj

)
dx (5.25)

I(θ) is called the Fisher information matrix. Furthermore drawing from the work
of Lindley (1958), Bernardo and Smith (2009) showed, by instituting the conver-
gence of H(θ̂) to nI(θ) as n→∞ and using the fact that the sampling distribution
of θ̂ becomes a location model for θ for n large, that the reference posterior distri-
bution for θ and the asymptotic fiducial distribution of θ, based on the sampling
distribution of θ̂n, are then asymptotically equivalent. In addition, the ML esti-
mator of θ and the asymptotic confidence intervals based on θ̂ will be numerically
identical to both the mode (or mean) and the HPD intervals, based on the appli-
cable reference posterior distribution. Hence, very few differences exist between
Bayesian and Frequentist inferential statements based on asymptotic properties. It
is therefore theoretically unnecessary to derive asymptotics in Bayesian inference.

5.5 Simulation study: MLE vs Bayes

In this section, we perform a Monte Carlo simulation, by generating 1000 sam-
ples, each of size n = 200 and n = 500 from: the Fréchet, Burr and Student-t
distribution with EVI = 1 and EVI = 0.5 respectively. For each distribution and
each estimation method (Bayes and MLE), we compute Monte Carlo estimates of
the EVI and the corresponding MSE by averaging out over the 1000 samples. For
the Bayesian approach in OpenBUGS, we take 6000 draws of each parameter and
discard the first 500.

5.5.1 Case 1: Estimating only two parameters

In this section, the second order parameter of the EPD ρ is estimated externally
using the method discussed in Section 3.3.1 and fixed for every simulation. We do
this for both the EPD Bayesian estimator and the EPD ML estimator.
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Fréchet Distribution

(a) Fréchet, α = 1
(b) Fréchet, α = 1

(c) Fréchet, α = 2 (d) Fréchet, α = 2

Figure 5.6: EVI estimates of a Fréchet sample of size n=200 (left), and size n=500
(right), and EVI of 1 (top) and 0.5 (bottom), 90 % HPD (shaded fill)
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(a) Fréchet, α = 1 (b) Fréchet, α = 1

(c) Fréchet, α = 2 (d) Fréchet, α = 2

Figure 5.7: MSE of EVI estimates for a Fréchet sample of size n=200 (left), and size
n=500 (right), and EVI of 1 (top) and 0.5 (bottom)

It is clear from Figure 5.6 and Figure 5.7 that the Bayesian estimates are per-
forming much better than the ML estimates, for both smaller and larger samples.
The asymptotic bias in Figure 5.6 and the MSE in Figure 5.7 for the Bayesian
estimates is smaller than the ML estimates over a larger range of k values.
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Burr Distribution

(a) Burr, η = 1 : τ = 1 : λ = 1 (b) Burr, η = 1 : τ = 1 : λ = 1

(c) Burr, η = 1 : τ = 2 : λ = 1 (d) Burr, η = 1 : τ = 2 : λ = 1

Figure 5.8: EVI estimates of a Burr sample of size n=200 (left), and size n=500
(right), and EVI of 1 (top) and 0.5 (bottom), 90 % HPD (shaded fill)
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(a) Burr, η = 1 : τ = 1 : λ = 1 (b) Burr, η = 1 : τ = 1 : λ = 1

(c) Burr, η = 1 : τ = 2 : λ = 1 (d) Burr, η = 1 : τ = 2 : λ = 1

Figure 5.9: MSE of EVI estimates for a Burr sample of size n=200 (left), and size
n=500 (right), and EVI of 1 (top) and 0.5 (bottom)

From Figure 5.8 and Figure 5.9 we can see that the Bayesian estimates are per-
forming much better than the ML estimates in all cases. Note also that for the
Bayesian estimate there is some indication of large metropolis jumps for cases
where the EVI=1, the cycles are however smoothened out for larger samples. The
Burr distribution is generally slightly heavier-tailed than the Fréchet, and as can
be seen from Figure 5.9, the MSE of the Bayesian estimate performs even better
for Burr samples than for Fréchet samples. The asymptotic bias in Figure 5.8
and the MSE in Figure 5.9 for the Bayesian estimates are smaller than the ML
estimates over a larger range of k values.
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Student-t Distribution

(a) Student-t, v = 1 (b) Student-t, v = 1

(c) Student-t, v = 2 (d) Student-t, v = 2

Figure 5.10: EVI estimates of a Student-t sample of size n=200 (left), and size
n=500 (right), and EVI of 1 (top) and 0.5 (bottom), 90 % HPD (shaded fill)
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(a) Student-t, v = 1 (b) Student-t, v = 1

(c) Student-t, v = 2 (d) Student-t, v = 2

Figure 5.11: MSE of EVI estimates for a Student-t sample of size n=200 (left), and
size n=500 (right), and EVI of 1 (top) and 0.5 (bottom)

From Figure 5.10 and Figure 7.29 we can see that the Bayesian estimates are out-
performing those of the MLE, in all cases. In the case of the Student-t distribution,
the out-performance is far more pronounced, this could be because the Student-
t distribution is more heavier tailed than the Fréchet and the Burr distribution.
The asymptotic bias in Figure 5.10 and the MSE in Figure 7.29 for the Bayesian
estimates are smaller than the ML estimates over a larger range of k values.

5.5.2 Case 2: Estimating all three parameters

In this section, all the parameters of the EPD are estimated simultaneously using
the ML method of estimation as discussed in Chapter 3 and the Bayesian method
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of estimation.

Fréchet Distribution

(a) Fréchet, α = 1 (b) Fréchet, α = 1

(c) Fréchet, α = 2 (d) Fréchet, α = 2

Figure 5.12: EVI estimates of a Fréchet sample of size n=200 (left), and size n=500
(right), and EVI of 1 (top) and 0.5 (bottom), 90 % HPD (shaded fill)
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(a) Fréchet, α = 1 (b) Fréchet, α = 1

(c) Fréchet, α = 2 (d) Fréchet, α = 2

Figure 5.13: MSE of EVI estimates for a Fréchet sample of size n=200 (left), and
size n=500 (right), and EVI of 1 (top) and 0.5 (bottom)

It is clear from Figure 5.12 and Figure 5.13 that the Bayesian estimates are per-
forming much better than the ML estimates, for both smaller and larger samples.
The asymptotic bias in Figure 5.12 and the MSE in Figure 5.13 for the Bayesian
estimates are smaller than the ML estimates over a larger range of k values.
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Burr Distribution

(a) Burr, η = 1 : τ = 1 : λ = 1 (b) Burr, η = 1 : τ = 1 : λ = 1

(c) Burr, η = 1 : τ = 2 : λ = 1 (d) Burr, η = 1 : τ = 2 : λ = 1

Figure 5.14: EVI estimates of a Burr sample of size n=200 (left), and size n=500
(right), and EVI of 1 (top) and 0.5 (bottom), 90 % HPD (shaded fill)
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(a) Burr, η = 1 : τ = 1 : λ = 1 (b) Burr, η = 1 : τ = 1 : λ = 1

(c) Burr, η = 1 : τ = 2 : λ = 1 (d) Burr, η = 1 : τ = 2 : λ = 1

Figure 5.15: MSE of EVI estimates for a Burr sample of size n=200 (left), and size
n=500 (right), and EVI of 1 (top) and 0.5 (bottom)

From Figure 5.14 and Figure 5.15 we can see that the Bayesian estimates are
performing much better than the ML estimates in all cases. Note also for the
Bayesian estimate there is some indication of large metropolis jumps for cases
where the EVI=1, the cycles are however smoothened out for larger samples.
The asymptotic bias in Figure 5.14 and the MSE in Figure 5.15 for the Bayesian
estimates are smaller than the ML estimates over a larger range of k values.
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Student-t Distribution

(a) Student-t, v = 1 (b) Student-t, v = 1

(c) Student-t, v = 2 (d) Student-t, v = 2

Figure 5.16: EVI estimates of a Student-t sample of size n=200 (left), and size
n=500 (right), and EVI of 1 (top) and 0.5 (bottom), 90 % HPD (shaded fill)
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(a) Student-t, v = 1 (b) Student-t, v = 1

(c) Student-t, v = 2 (d) Student-t, v = 2

Figure 5.17: MSE of EVI estimates for a Student-t sample of size n=200 (left), and
size n=500 (right), and EVI of 1 (top) and 0.5 (bottom)

From Figure 5.16 and Figure 5.17 we can see that the Bayesian estimates are
outperforming those of the MLE, in all cases. The asymptotic bias in Figure 5.16
and the MSE in Figure 5.17 for the Bayesian estimates are smaller than the ML
estimates over a larger range of k values.

5.6 Estimates of the Second Order Parameter

It is clear from the simulation study conducted in Section 5.5.2 that when the
second order parameter ρ is estimated concurrently with other parameters for
k ∈ {1, .., n − 1}, the ML estimator does not perform as good as the Bayesian
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estimator. It is actually a strength of the Bayesian approach to fit models with a
large number of parameters through the use of Monte Carlo Markov chain methods.
This method is one of the most reliable methods to choose a suitable approximating
distribution when sampling from complex Bayesian posterior distributions.

In the following section we produce a similar simulation study to the one conducted
in Section 5.5.2 to further investigate how the Bayesian approach estimates the
second order parameter τ . Table 5.18 shows the three distributions from which
the samples are generated.

Table 5.18: Pareto type distributions with the second order parameter

Distribution 1− F (x) γ ρ τ

Fréchet (α) 1− exp(−x−α)
1

α
-1 −α

Burr (η, τ, λ)

(
η

η + xτ

)λ 1

λτ
−1

λ
−τ

Student-t
∫∞
x

2Γ(n+1
2

)
√
nπΓ(n

2
)

(
1 +

w2

n

)−n+1
2

dw
1

n
− 2

n
−2

From this table, since τ = ρ/γ by setting γ = 1 for the Fréchet we have τ = ρ = −1,
setting η = 1, τ = 1, λ = 1 for the Burr(XII) distribution we have τ = ρ = −1 and
setting v = 1 for the Student-t distribution we have τ = ρ = −1. We can therefore
closely study the behaviour of the second order parameter ρ through estimates of
τ .

We estimate τ using the following methods

1. τ = ρ̂/γ where ρ̂ is Fraga’s estimate and γ is the true EVI,

2. Maximum likelihood parameter estimation method as mentioned in Chap-
ter 4

3. Lastly Bayesian parameter estimation method as explained in this chapter.
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Fréchet

(a) n = 200 (b) n = 500

(c) n = 200 (d) n = 500

Figure 5.18: Simulated mean value of τ for a sample of sizes n = 200 (left) and n = 500
(right) from a Fréchet distribution (where true value τ = ρ = −1), zoomed out view
(top), zoomed in view (bottom)

As compared to γ estimates of the second order parameter ρ should be considered
in a lower part of the sample. From the Figure 5.18 an interesting similarity
between the ML and Fraga’s estimator is apparent. The scale however of the ML
estimator is wider than that of Fraga’s estimate. Moreover, both the ML and
Fraga’s estimates become more stable and pronounced at the higher top order
statistics, say k1 →∞. The Bayesian estimator however is stable throughout.
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Burr

(a) n = 200 (b) n = 500

(c) n = 200 (d) n = 500

Figure 5.19: Simulated mean value of τ for a sample of sizes n = 200 (left) and n = 500
(right) from a Burr distribution (where true value τ = ρ = −1), zoomed out view (top),
zoomed in view (bottom)

The Burr distribution is generally more heavier tailed than the Fréchet distribu-
tion. From Figure 5.19 it appears the ML and Fraga’s estimators become more pro-
nounced and more accurate at higher top order statistics k1 →∞. The Bayesian
estimator is also very stable for all k ∈ {1, ..., n− 1} however it does not perform
as good as the Fraga and ML method in the higher top order statistics.
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Student-t

(a) n = 200 (b) n = 500

(c) n = 200 (d) n = 500

Figure 5.20: Simulated mean value of τ for a sample of sizes n = 200 (left) and n = 500
(right) from a Student-t distribution (where true value τ = ρ = −2), zoomed out view
(top), zoomed in view (bottom)

Lastly the Student-t distribution, also heavier tailed than the Fréchet distribution.
Figure 5.20 presents results more similar to those in Figure 5.19. Fraga’s estimate
is much more accurate for very high top order statistics k ∈ {1, ..., n− 1}.

Remarks

Through the simulation study conducted in Section 5.6 we are now able to see
the behavior of the EPD Bayesian estimator in comparison to the ML and Fraga’s
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estimator. It is now apprehensible why the Bayesian approach works better than
the ML estimator in estimating the EVI. In the case of the ML estimator, the
likelihood of the EPD is maximized and all three parameters are estimated con-
currently and therefore the value of γ is dependent on the value of τ . And therefore
if the value of τ is estimated for every k ∈ {1, ..., n− 1} then we can see from the
simulation study conducted in Section 5.6 that the estimate of the second order
parameter ρ or τ is unstable and thus distorts the trajectories of the sample paths
for γ.

In the case of the Bayesian estimator though, we can refer to the graphical diagrams
in Figure 5.1b. From this Figure we can see that γ is a parent to the node τ
and therefore γ has much influence on τ . Because of this dependence structure
the Bayesian estimator is bound to perform better than the ML estimate if we
estimate parameters for different k ∈ {1, ..., n− 1}.

In the next section we see the performance of our estimators through an application
on a real dataset. In the next case study, the second order parameter ρ will be
estimated externally using Fraga’s estimator as given in Section 3.3.1. And fixed
for all k ∈ {1, ..., n− 1}.

5.7 Case-Study

In this section, we assess the performance of our estimators using a real dataset.
An Extreme Value Analysis (EVA) can be very useful in helping insurance compa-
nies price the unlimited excess-loss layer above some operational priority R, and
the most important estimated quantity in such an analysis is often the Extreme
Value index, from which we can extrapolate high quantile estimates, tail probabili-
ties and various other EVA quantities. We focus on the estimation of the EVI, and
use our estimates to compute corresponding quantiles and small tail probabilities
using both the Bayesian and MLE parameter estimates.

We use data presented in Beirlant et al. (2004) and subsequently studied by Van-
dewalle and Beirlant (2006), Beirlant et al. (2008) and Beirlant et al. (2009). The
data is from a European re-insurer: Secura Belgian Re and contains 371 auto-
mobile claims exceeding e1, 200, 000, spanning over a period of 1988 to 2001 and
gathered from several European insurance companies co-operating with Secura
Belgian Re. This dataset is corrected amongst other things for inflation.
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The EVI and high quantile estimation

From the second order condition (R) and using the EPD as the distribution of
X/un given X > un. Goegebeur et al. (2014) introduced for F̄ (un)→ 0:

U0(
1

pn
) := un

(
pn

F̄ (un)

)−γ (
1− δ(un)

(
1−

(
pn

F̄ (un)

)−ρ))
(5.26)

as an approximation for U(1/pn). Furthermore let X1, ..., Xn be independent and
identically distributed (i.i.d) random variables with a distribution function satisfy-
ing (R) and denote by X1,n ≤ ... ≤ Xn,n the corresponding order statistics. Taking
the data adaptive threshold un = Xn−k,n, replacing F by the empirical distribu-
tion function in (Equation 5.26), and using the fact that e−x ≈ 1 − x for x → 0,
Goegebeur et al. (2014) introduced the following extreme quantile estimator:

Û(
1

pn
) := Xn−k,n

(npn
k

)−γ̂n
exp

(
−δ̂n

(
1−

(npn
k

)−ρ̂n))
(5.27)

where (γ̂n, δ̂n) are estimates of (γ, δ) and ρ̂n is a consistent estimator sequence for
ρ. In this section we use the Bayesian parameter estimates as well as the ML
estimates to estimate the 1− 1/1000 quantile.

(a) (b)

Figure 5.21: Estimates of the Extreme value index (a) and the quantile estimate
associated with p = 0.001 (b) for the Secura Belgian Re data

From Figure 5.21 projected estimates of γ̂Bayes and Q̂Bayes depicted as straight
lines in Figure 5.21 (a) and (b) are the mean of the Bayesian estimates between
k = 100 and k = 350, this is taken as the range for which the Bayesian estimates
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are most stable. It is suggested in Beirlant et al. (2004) to model the complete
distribution of this data by a two components mixture, namely: the Exponential
and the Pareto, with a knot at roughly e2, 600, 000, corresponding to the order
statistic Xn−k:n with k = 95. Beirlant et al. (2009) however showed that this
knot, although detected by the EPD, does not drastically distort tail parameter
estimates. It is clear from Figure 5.21, that the Bayesian estimates of both the EVI
and corresponding Quantile are more stable than those of the MLE. From k = 100,
trajectories of our Bayesian estimates become relatively stable, oscillating around
the points γ̂Bayes u 0.25 in Figure 5.21 (a) and Q̂Bayes u e11, 198, 220 in
Figure 5.21 (b). Note also that the 90% HPD interval for the EVI narrows down
for k large (as we would expect), and all Bayesian EVI estimates over k from k = 5
up to, and including k = (n− 1) are within this credibility region.

Tail probability estimation

Given the order statistic X1:n ≤ ... ≤ Xn:n of an independent sample from an
unknown distribution function F , we are interested in an estimate of the tail
probability pn = F̄ (xn), where xn →∞ and thus pn → 0 as n→∞. At a random
threshold t = Xn−k:n and given some parameter estimates of the EPD (γ̂n, δ̂n, τ̂n),
the tail probability estimate is constructed in Beirlant et al. (2009) as

p̂k,n = ˆ̄F (xn) =
k

n
Ḡγ̂n,δ̂n,τ̂n

(xn/Xn−k:n) (5.28)

An estimator of τ is taken as τ̂n = ρ̂n/γ̂n, where ρ̂n is a consistent estimator of the
second order parameter ρ (Fraga Alves et al., 2003b).

Figure 5.22: Estimates of the tail probabilities ofX greater than an operational priority
level R = 5, 000, 000 for the Secura Belgian Re data
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The horizontal dashed line in Figure 5.22 is a nonparametric estimate of the ex-
ceedance probability 12

371
= 3.24%, where 12 is the number of claims exceeding the

operational priority R and is divided by the total number of claims. We can see
again that trajectories of the Bayesian estimates are relatively more stable than
those of the MLE and oscillate around the point p̂Bayes u 2.31%. From this
case study, we can conclude that a Bayesian approach to EVA does indeed yield
more stability and assurance to some degree, of the accuracy of our estimates. We
therefore regard the Bayesian approach as more desirable than the classical MLE
approach.

5.8 Conclusion

We introduced an improved and efficient Bayesian approach to estimating the Ex-
treme Value Index (EVI) for heavy-tailed data using the computationally efficient
MCMC engine called OpenBUGS. This proposed approach, reduces the bias and
improves stability when compared to the classical MLE. The basic result of consis-
tency of EPD Bayesian estimators can be drawn from the theme of consistency of
general Bayes estimators as given by Schwartz (1965) and Diaconis and Freedman
(1986). As we get more data, the posterior distribution will tend to a ‘point mass’
at the true value of γ, δ and τ .

Through a simulation study we were also able to assess performance of our estima-
tors using samples generated from three heavy-tailed distributions. We found, in
general, that the Bayesian approach with vague prior distributions was better than
the classical MLE in terms of bias reduction and stability. We further compared
the results between the two approaches by conducting a case study using a real
dataset and showed that our Bayesian estimates yield more stable approximations.
We therefore recommend the use of Bayesian methods to estimate parameters of
the EPD.

In the next Section, the EPD Bayesian estimator will be altered and adapted for
right censored data.
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Chapter 6

Estimation of the EVI under random
censorship

6.1 Introduction

In extreme value theory we often assume a complete random univariate sample
(X1, ..., Xn) to be independent and identically distributed by some distribution
function F . The majority of available literature on estimating tail quantities as-
sume the data is complete, non-censored and observable. In this chapter we assume
the data is randomly right censored and assess some well known adapted semi-
parametric EVI estimators for censored data developed by Einmahl et al. (2008).
These estimators are then compared to the GPD censored likelihood developed by
Beirlant et al. (2007) and the parametric EPD censored likelihood developed by
Beirlant et al. (2016) in estimating the EVI for Pareto type distributions i.e in the
estimation of a positive tail index γX . It goes beyond the scope of this thesis to
investigate or derive censored extreme quantile estimators for the EPD.

The rest of this chapter is organized as follows. In Section 6.1.1 we look into
some situaftions in practice in which random censoring can occur. In Section 6.2
we provide the general treatment of random right censoring in EVT and mention
all estimators that will be compared in this chapter. In Section 6.3 we present
results of a Monte Carlo simulation conducted to assess the behavior of the EVI
estimators mentioned in Section 6.2. In addition to the Monte Carlo simulation
conducted in Section 6.3, we illustrate the behavior of the same EVI estimators
for censored cancer data in Section 6.4.

In Section 6.5 we extend the EPD censored likelihood approach of Beirlant et al.
(2016) into a Bayesian setting, and construct a censored posterior. In Section 6.6
we present results of a Monte Carlo simulation conducted to compare the behavior
of the MLE likelihood adapted estimator and the Bayesian censored posterior
estimator. In Section 6.7 a conclusion is made.
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6.1.1 Censoring in Practice

Incomplete data is a very common issue when analyzing survival and insurance
data and sometimes physical phenomena data where extreme measurements might
be incomplete due to damage to the measuring instrument. We start by illustrating
possible situations where random right censoring can occur.

Reinsurance

Assume that for some insurance company, Xi is the loss from an i-th claim. In
practice however, this claim will have a limit say, Ci, possibly induced by an
insurance assessor or negotiator, who investigates the claim and negotiates a set-
tlement figure below or equal to the actual claim. If the claim exceeds this limit i.e.
(Xi > Ci), i = 1, ..., n then the observed claim will be right-censored. We assume
here that X and C are independent and under this set-up X is non-observable, we
therefore only observe (Z,ω) where Zi=min(Xi, Ci) and:

ωi =

 1 if Xi ≤ Ci,

0 if Xi > Ci

(6.1)

Here, ωi is called the indicator variable which determines whether or not the
variable X, is censored. An observation is thus censored whenever ωi = 0. A
reinsurer however is more interested in making inference on the right tail of the
lifetime distribution of X, say F , since it will have to insure the insurance company
over its policy limits. However, due to the presence of right-censoring, the right tail
of the distribution F cannot be accurately estimated unless additional information
is given about the incomplete observations, and the estimation procedures are
adapted for the censoring.

Survival Data

Censoring is a common problem in clinical trials, we therefore provide an small
application study in Section 6.4 where we estimate the extreme index of partially
censored times to death of patients with Cancer of the tongue.

As a general treatment, assume that patients with some type of cancer are studied
to investigate their time to death. Follow-up survival data is then taken on each
patient at the end of the study. Some patient Xi could still be alive at the end of
the study period or analysis and thus the event of interest namely: their time to
death, has not occurred, the observation is therefore right-censored by the time of
study Ci. However censoring may be induced by other factors such as death from
competing risks (for example, the patient dies from a car accident), or the patient
withdraws from the study entirely. Again we can only observe (Zi, ωi) defined as
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above. Our main interest is to make inference on the right tail of the distribution
function (d.f) of X.

6.2 Random right Censoring in EVT

For a more general treatment as given in Beirlant et al. (2007), let Xi, i = 1, ..., n,
be independent and identically distributed random variables with common con-
tinuous d.f FX , and let Yi, i = 1, ..., n be a another sequence of independent and
identically distributed random variables with continuous d.f FY independent of
FX . We then observe Zi = Xi ∧ Yi and ωi = 1{Xi≤Yi}, i = 1, ..., n. Let H be
a d.f of Z1 with τH = inf{x : H(x) = 1} the support of H. Furthermore let
H̄1(z) = P(Z > z, ω = 1) = P(z < X ≤ Y ). We assume that both FX and FY
are in the Fréchet domain i.e. FX ∈ D(Gγ1) and FY ∈ D(Gγ2) with γ1 = γX the
parameter of interest.

We emphasize the following assumptions:

1. X1, X2, ..., Xn are all nonnegative and i.i.d. with distribution function FX
and density fX .

2. Y1, Y2, ..., Yn are all nonnegative and i.i.d. with distribution function FY and
density fY .

3. X and Y are independent.

Censored Fréchet Distribution

Let both X and Y be independent random variables with distribution Fréchet(γ1)
and Fréchet(γ2) respectively, thus for all x > 0, FX(z) = 1 − exp(−z−1/γ1) and
FY (z) = 1− exp(−z−1/γ2). Consequently:

FZ(z) =P(min(X, Y ) ≤ z) = 1− P(X > z)P(Y > z)

=1− exp(−z−1/γ1)exp(−z−1/γ2)

=1− exp(−z−(γ1+γ2)/γ1γ2)

i.e. Z ∼ Frechét(γ), where γ = γ1γ2/(γ1 + γ2), and

fZ(z) = −exp(−z−1/γ1)exp(−z−1/γ2)

(
1

γ1

z−1/γ1−1 +
1

γ2

z−1/γ2−1

)
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6.2. RANDOM RIGHT CENSORING IN EVT

We can now estimate

p ≡ pZ :=P(X ≤ Y |Z = z) = P(ω = 1|Z = z) =
fX(z)(1− FY (z))

fZ(z)

=

−exp(−z−1/γ1)
1

γ1

z−1/γ1−1exp(−z−1/γ2)

−exp(−z−1/γ1)exp(−z−1/γ2)

(
1

γ1

z−1/γ1−1 +
1

γ2

z−1/γ2−1

)

=

1

γ1

z−1/γ1−1

1

γ1

z−1/γ1−1 +
1

γ2

z−1/γ2−1

z→∞
=

1

γ1

1

γ1

+
1

γ2

=
γ2

γ1 + γ2

Therefore, the quotient between any estimator of γ = γZ and an estimator of
p = pZ will provide an estimator of the parameter of interest γX = γ1. The
general case for any extreme value distribution can then be written as:

FX ∈ D(Gγ1), FY ∈ D(Gγ2)→ FZ ∈ D(Gγ), where γ =
γ1γ2

γ1 + γ2

.

We assume the following construction from Einmahl et al. (2008), where Z is a
random variable with d.f H, in this case —Fréchet(γ) and let U be a random
variable with d.f U uniform(0,1) and independent of Z. ω is then defined as:

ω =

 1, if U ≤ p(Z),

0, if U > p(Z)

(6.2)

and,

ω̃ =

 1, if U ≤ p,

0, if U > p

(6.3)

Einmahl et al. (2008) showed that the (Zi, ωi), i = 1, ..., n, resulting from repeating
this construction independently n times, have the same distribution as the initial
pairs (Zi, ωi), i = 1, ..., n, where Z=min(X, Y ) and ω = 1{X≤Y }, for all n ∈ N. p̂
can then also be written as:

p̂ =
1

k

k∑
j=1

1{U[n−j+1,n]≤p(Zn−j+1,n)} (6.4)

and, similarly

p̃ :=
1

k

k∑
j=1

ω̃[n−j+1,n] =
1

k

k∑
j=1

1{U[n−j+1,n]≤p}
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Clearly showing that p̃
d
=

1

k

∑k
j=1 1{Uj≤p}

More generally any function based on the (k + 1) top order statistics in the ob-
served (Z1, Z2, ..., Zn), used to estimate the EVI in complete samples, and generally
denoted as γ̂k,n(Z), will converge towards γ1γ2/(γ1 + γ2) for intermediate k, i.e.
whenever

k = kn →∞ and
k

n
→ 0, as n→∞

and
γ̂k,n,Z
p

p−→ γ1 ≡ γX , as n→∞ (6.5)

6.2.1 Semi-Parametric Estimators

Recently in EVT, semi-parametric approaches have gained more popularity over
parametric methods. This is due to the fact that semi-parametric estimation is
drawn from a general framework, and therefore not based on probabilistic asymp-
totic results, as is the case in parametric approaches.

We consider two classical extreme value estimators, namely: the moment (Dekkers
et al., 1989) and the Generalized Hill (Beirlant et al., 1996) to estimate the un-
censored EVI of the complete sample Z = (Z1, ..., Zn). For j ≥ 1, 1 ≤ k < n, and
with (Z1,n, ..., Zn,n) denoting a set of ascending order statistics associated with the
sample Z, the moment estimator (M) is given by:

γ̂Mk,n(Z) := M
(1)
k,n +

1

2
{1− (M

(2)
k,n/[M

(1)
k,n]2 − 1)−1)} (6.6)

where,

M
(2)
k,n :=

1

k

k∑
i=1

[logZn−i+1:n − logZn−k:n]2 and M
(1)
k,n is the Hill (1975) estimator

defined by:

Hk :=
1

k

k∑
i=1

logZn−i+1:n − logZn−k:n (6.7)

Also for k = 2, ..., n− 1 the generalized Hill(GH) estimator is given by:

γ̂GHk,n (Z) :=
1

k

k∑
j=1

logUHj,n − logUHk,n, where UHj,n = Zn−j:nHj, 1 ≤ j ≤ k,

(6.8)
and Hk defined as in Equation 6.7. Whenever

k = kn →∞ and
k

n
, as n→∞
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6.2. RANDOM RIGHT CENSORING IN EVT

we can prove convergence in probability to γ ≡ γZ in the domain of attraction
where they are valid and under additional validity of second-order condition in
Equation 2.23 asymptotic normality of both estimators can be guaranteed (see for
instance Gomes and Neves, 2011).

Einmahl et al. (2008) showed that all estimators of a non-negative EVI can be
adapted for censoring by simply dividing the origional estimator based on the Z
sample by the proportion of non-censored observations in the k largest Z’s, i.e.

γ̂
(c,M)
k,n (X) :=

γ̂Mk,n(Z)

p̂k
and γ̂

(c,GH)
k,n (X) :=

γ̂GHk,n (Z)

p̂k
(6.9)

with a simple, semi-parametric estimator of p̂ given by:

p̂ = p̂k,n :=
1

k

k∑
j=1

ω[n−j+1], (6.10)

where ω[n−j+1], 1 ≤ j ≤ n, are the induced or concomitant order statistics associ-
ated with the ordered sample Zn−j+1:n, 1 ≤ j ≤ n.

6.2.2 Parametric Estimators

Censoring adapted generalized Pareto distribution

The GPD, as defined in Section 2.3.1 is used to model the right tail of an under-
lying distribution function F , if, F ∈ D(Gγ) we say F belongs to the max-domain
of attraction of Gγ. In the case of censoring the likelihood can be adjusted in the
following way (see Beirlant et al., 2007):

P(Z, ω = 0) =P(Z = Y |ω = 0)P(ω = 0) = P(ω = 0) (6.11)

=P(X > Y ) = F̄ (Y ) (6.12)

F̄ (Y ) is the right censored observation. Also for ω = 1,

P(Z, ω = 1) =P(Z = X|ω = 1)P(ω = 1), (6.13)

=P(Z = X|X ≤ Y )P(X ≤ Y ) (6.14)

=

[
f(Z)

F (Y )

]
[F (Y )] = f(Z) (6.15)

where P(Z, ω = 0) is the joint probability and is equivalent to P(Z∩ω = 0). These
expressions can thus be combined into a single expression:

P(Z, ω) = [f(Z)]ω[F̄ (Z)]1−ω. (6.16)
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6.2. RANDOM RIGHT CENSORING IN EVT

(see for example, Klein and Moeschberger, 2005)
The 2-parameter GPD cumulative distribution function is given by:

Fγ, σ(Z) = 1−
(

1 +
γZ

σ

)−1/γ

(6.17)

(Matthys and Beirlant, 2003) where Z ≥ 0 and γ, σ > 0. Consequently, the
two-parameter density function of a GPD is given by:

f(Z) =
1

σ

(
1 +

γZ

σ

)−1

γ (6.18)

By setting Ej = Zj − t, given Zj > t where t → τF (the right end point of the
distribution F ) and denoting the number of absolute excesses over t by Nt, we use
Equation 6.16 to derive the following GPD MLE estimator, adapted for censoring:

γ̂c,GPDML,k = argmaxγ1

Nt∏
j=1

[fγ1,σ(En−j+1,n)]ωn−j+1,n [F̄γ1,σ(En−j+1,n)]1−ωn−j+1,n (6.19)

For numerical stability we use logs:

γ̂c,GPDML,k = argmaxγ1 =
k∑
j=1

ωn−j+1,n log σ +

(
1

γ
+ 1

) k∑
j=1

ωn−j+1,n logEn−j+1

+

(
1

γ

) k∑
j=1

(1− ωn−j+1,n logEn−j+1,n)

We solve this by taking the negative log-likelihood as the objective function and
minimizing it over its sample parameter space γ, σ > 0.

Extended Pareto Distribution (EPD)

The distribution of the Peaks Over Thresholds can be approximated by the EPD
with distribution function:

Ḡγ,δ,τ (y) = {y(1 + δ − δyτ )}−1/γ, y > 1 (6.20)

where the parameter vector (γ, δ, τ) is in the range τ < 0 < γ and δ > max(−1, 1/τ),
with δ = δ = −Dγ−1Cρ/γt−ρ/γ and τ = −ρ/γ. The density function is defined by:

gγ,δ,τ (y) =
1

γ
x−1/γ−1{1 + δ(1− xτ )}−1/γ−1[1 + δ{1− (1 + τ)xτ}] (6.21)
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6.3. MONTE CARLO SIMULATION

Using Equation 6.16, Bardoutsos et.al (2015) derived the following EPD MLE
estimator adapted for censoring:

γ̂c,EPDML,k = argmaxγ1

k∏
j=1

[
gγ1,δ,τ

(
Zn−j+1,n

Zn−k,n

)]ωn−j+1,n
[
Ḡγ1,δ,τ

(
Zn−j+1,n

Zn−k,n

)]1−ωn−j+1,n

(6.22)
We take the objective function to be the negative log-likelihood of the EPD and
use the fact that τ = ρ/γ. All optimization procedures are executed in R us-
ing the Limited Memory Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm
(Broyden, 1970; Fletcher, 1970; Goldfarb, 1970; Shanno, 1970), for a detailed de-
scription and implementation of this algorithm see Byrd et al. (1995). The algo-
rithm used to estimate the second order parameter ρ ≤ 0, controlling the speed
of convergence of maximum values, as mentioned in Equation 2.23, is given in
Fraga Alves et al. (2003b).

6.3 Monte Carlo Simulation

In this section we perform a simulation experiment to investigate the behavior of
the parametric against the semi-parametric estimators for different values of k.
We consider 3 cases, in the first case only 25% of the data is censored, in the 2nd
case, 40% of the data is censored and in the 3rd case, 55% of the data is censored.

In all cases we perform Monte Carlo simulations, based on 10, 000 runs, with
samples of size n = 1000 from Z. We show the EVI estimates when all estimators
are adapted for censoring, i.e. inferring on the right tail of X, and also the EVI
estimates when the estimators are not adapted for censoring, thus making inference
on the right tail of Z. We lastly show the Root Mean Square Error (RMSE)
between the true estimators of γX and the censoring adapted estimators. The
plots are obtained by averaging out over the 1,000 samples.
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6.3.1 Case 1: 25% Censoring

(a) (b)

(c)

Figure 6.1: A Fréchet(γX = 0.25) distribution censored by a Fréchet(γY = 0.75),
thus γZ = 0.25∗0.75

0.25+0.75 = 0.1875 and proportion of non-cencored data —p = 75% (25% cen-
soring in the right tail); (a) EVI estimates adapted for censoring and (b) EVI estimate
not adapted for censoring, (c) RMSE

From Figure 6.1, we can see that both the EPD estimators adapted and not
adapted for censoring, are performing better than all other estimators in terms
of bias and Root Mean Square Error (RMSE). Both GPD estimators seem to be
performing poorly in comparison to the semi-parametric estimators. Looking at
the RSME in Figure 6.1c and EVI in Figure 6.1a, the Generalized Hill is perform-
ing better than the Moment estimator, and also better than the GPD when k is
large.
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6.3.2 Case 2: 40% Censoring

(a) (b)

(c)

Figure 6.2: A Fréchet(γX = 0.25) distribution censored by a Fréchet(γY = 0.375),
thus γZ = 0.25∗0.375

0.25+0.375 = 0.15 and proportion of non-cencored data —p = 60% (40%
Censoring in the right tail); (a) EVI estimates adapted for censoring and (b) EVI
estimate not adapted for censoring, (c) RMSE

From Figure 6.2, we see that the EPD is still doing considerably better than all
the other estimators. When a larger portion of the data is censored there is an
improvement in bias of the GPD for smaller k. Also, the RMSE of the GPD
coincides with that of the semi-parametric estimators for smaller k.
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6.3.3 Case 3: 55% Censoring

(a) (b)

(c)

Figure 6.3: A Fréchet(γX = 0.25) distribution censored by a Fréchet(γY = 0.2046),
thus γZ = 0.25∗0.2046

0.25+0.2046 = 0.1125 and proportion of non-cencored data —p = 45% (65%
Censoring in the right tail); (a) EVI estimates adapted for censoring and (b) EVI
estimate not adapted for censoring, (c) RMSE

Lastly in Figure 6.3, we see that for high proportion of censoring all estimates
seem to perform relatively poorly, however, the EPD is still sufficiently stable
given the amount of censoring. The GPD is performing better than other semi-
parametric estimators in terms of the EVI and RMSE. Thus, the two censor-
adapted parametric estimators are generally better than the two semi-parametric
estimators at high levels of censoring. Most importantly, the EPD offers a more
stable and bias reduced estimator of the EVI, under censorship. Note, if we censor
X with the same distribution as X, we have 50% censorship in the right tail.
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6.4. APPLICATION TO CANCER SURVIVAL DATA

In this next section we apply the mentioned estimators on a real survival dataset
to further assess their performance in reality.

6.4 Application to Cancer Survival Data

We consider a data set presented by Klein and Moeschberger (2005) and subse-
quently analyzed in the context of Extreme Value by Gomes and Neves (2011).
This data is from a study conducted on the effects of ploidy on the prognosis of
80 male patients diagnosed with cancers of the tongue. Z = time of death or
study completion measured in weeks. We consider both the aneuploid and diploid
tumors. Below is a Pareto QQ plot of the Z-sample.

(a) (b)

Figure 6.4: Pareto Quantile-Quantile plots for survival data related with cancer of the
tongue
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(a) (b)

(c)

Figure 6.5: Estimates of the EVI for survival data related with cancer of the tongue

From Figure 6.4a we can clearly see that there is evidence of a right heavy tail and
we therefore only consider values above 80. Next we estimate p = P(ω = 1|Z = z)
using Equation 6.10. We use p to choose the optimum k. p has a stable region
over 20 ≤ k ≤ 30. From this region we can choose an optimal k at k = 25, and
thus p̂k,n ≈ 0.4. Therefore approximately 60% of this Z sample is censored, at the
point k = 25.

As depicted in Figure 6.5 the EPD estimate of the EVI at k = 25 is γZ = 0.39
while γX = 0.94. The Generalized Hill and the Moment Estimators also seem to
be oscillating around this region. The GPD however becomes more erratic given
this high percentage of censoring, just as we saw in the simulation experiment.
Using censor adapting estimates of the EVI yields more accurate estimations, we
are thus less likely to make adversely incorrect approximations of our quantities
of interest.
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6.5. AN ASYMPTOTICALLY UNBIASED BAYESIAN ESTIMATOR FOR
RANDOM RIGHT CENSORED DATA

We can see that if censoring is not taken into account, the EPD estimators leads to
more conservative estimates of the EVI, remember in this case that, heavier tails
imply larger tail values and thus far more optimistic estimates of survival times
of patients with tongue cancer. Moreover, using parametric estimators is only as
good as knowing which parametric form the data assumes. In this case, the EPD
is a good fit for this Pareto type data, and hence more accurate in approximating
estimates of the EVI.

In the next section we establish an alternative estimation procedure for the EPD
under random right censorship, by altering the EPD posterior density.

6.5 An asymptotically unbiased Bayesian

estimator for random right censored data

In this section, we extend the adapted EPD likelihood approach of Bardoutsos et.al
(2015) to construct what Gatarek et al. (2013) refers to as a censored posterior
distribution by replacing the likelihood in the posterior, by a censored likelihood.
Here we use the same censored likelihood as the one given in Equation 6.22.

It goes beyond the scope of this thesis to analytically evaluate consistency of the
censored posterior formulated here. Simulation methods are used instead, and we
show that this extended approach can be considered as an alternative to the MLE
likelihood adapted estimator as it also leads to much improved results in terms of
the bias and MSE.

Quite contrary to what the name censored posterior suggests, it is not the likeli-
hood for a censored data set, where all observations lying outside a particular area
are censored. The censored posterior is defined as the product of the conditional
densities of the censored observations given the past observations in the right tail
of F (where we assume all past observations remain uncensored). Since we are
interested in making inference about the right tail of FX , considering also the fact
that X and Y are independent, we do not have to adapt the prior for censoring
i.e. we only need prior knowledge of the right tail of FX . As given in Chapter 5,
the Pareto MDI prior is again considered.

The censored EPD posterior is thus given by

pc,EPD(γ, δ|z) = p(γ, δ)× pc,EPD(z|γ, δ) (6.23)

In the next section we conduct a Monte Carlo simulation to illustrate the behaviour
of the censored Bayesian estimator and compare it to the censored ML estimator.
The second order parameter ρ is estimated externally using Fraga Alves et al.
(2003b)’s algorithm.
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6.6 Monte Carlo Simulation: Bayes vs. MLE

We consider again three cases, in the first case only 25% of the data is censored, in
the 2nd case, 40% of the data is censored and in the 3rd case, 55% of the data is
censored. We generate samples from three heavy-tailed distributions, namely: the
Fréchet, Burr and Student-t distribution. In each case we simulate 1000 samples of
size n = 500 with EVI = 1 and EVI = 0.25 respectively, each distribution censored
by a similar distribution. In the case of the Burr, we vary only the parameter τ .
For instance to achieve 25% censoring in the right tail of a Burr distribution, we
censor a Burr (η = 1, τ = 1, λ = 1) with a Burr (η = 1, τ = 1/3, λ = 1) resulting
in samples from Z ∼ Burr(EV I = 0.75). The same applies to other distributions.

For each distribution and each estimation method, we compute Monte Carlo es-
timates of the EVI and the corresponding MSE by averaging out over the 1000
samples. For the Bayesian approach in OpenBUGS, we take 6000 draws of each
parameter and discard the first 500.

We show the EVI estimates when all estimators are adapted for censoring, i.e.
inferring on the right tail of X, and also the EVI estimates when the estimators
are not adapted for censoring, thus making inference on the right tail of Z. We
lastly show the Mean Square Error (MSE) between the true estimators of γX and
the censoring adapted estimators. We included a 90 % HPD with a shaded fill. The
second order parameter ρ is estimated using Fraga Alves et al. (2003b)’s method.
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6.6.1 Fréchet

Case 1: 25% Censoring

(a) Fréchet(γ = 1) (b) Fréchet(γ = 1)

(c) Fréchet(γ = 0.25) (d) Fréchet(γ = 0.25)

Figure 6.6: Estimates of γX(left) and MSE(right) for a Fréchet(γX) distribution
censored by another Fréchet(γY ) at 25% censoring in the right-tail of X

From Figure 6.6 when subjected to 25% censorship in the right tail of the Fréchet
distribution we can see that the ML estimator is performing slightly better than
the Bayesian estimator in terms of both the bias and the MSE for both heavier
tails (γX = 1) and less heavy tails (γX = 0.25).
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Case 2: 40% Censoring

(a) Fréchet(γ = 1) (b) Fréchet(γ = 1)

(c) Fréchet(γ = 0.25) (d) Fréchet(γ = 0.25)

Figure 6.7: Estimates of γX(left) and MSE(right) for a Fréchet(γX) distribution
censored by another Fréchet(γY ) at 40% censoring in the right-tail of X

From Figure 6.7 when subjected to 40% censorship in the right tail of the Fréchet
distribution, the MSE of the Bayesian estimator now coincides with the ML es-
timator. And performance of the two estimators is ultimately similar for lower
thresholds. The ML estimator still showing much better performance at high
thresholds k → 0.

From Figure 6.8 when subjected to 55% censorship in the right tail of the Fréchet
distribution, the Bayesian estimator performs slightly better for heavier tails (γX =
1) in terms of both the bias and MSE. For less heavy tails however, the ML estima-
tor seems to be doing better than the Bayesian estimator only at high thresholds,
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while the Bayesian estimator performs better at lower thresholds.

Case 3: 55% Censoring

(a) Fréchet(γ = 1) (b) Fréchet(γ = 1)

(c) Fréchet(γ = 0.25) (d) Fréchet(γ = 0.25)

Figure 6.8: Estimates of γX(left) and MSE(right) for a Fréchet(γX) distribution
censored by another Fréchet(γY ) at 55% censoring in the right-tail of X
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6.6.2 Burr (XII)

Case 1: 25% Censoring

(a) Burr(γ = 1) (b) Burr(γ = 1)

(c) Burr(γ = 0.25) (d) Burr(γ = 0.25)

Figure 6.9: Estimates of γX(left) and MSE(right) for a Burr(γX) distribution cen-
sored by another Burr(γY ) at 25% censoring in the right-tail of X

From Figure 6.9 when subjected to 25% censoring in the right tail of a Burr
distribution, both the Bayesian and ML Estimators offer a somewhat similar per-
formance in estimating the true value of the EVI for both γX = 1 and γX = 0.25,
The ML estimator however offers a better performance at high thresholds k → 0.
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Case 2: 40% Censoring

(a) Burr(γ = 1) (b) Burr(γ = 1)

(c) Burr(γ = 0.25) (d) Burr(γ = 0.25)

Figure 6.10: Estimates of γX(left) and MSE(right) for a Burr(γX) distribution cen-
sored by another Burr(γY ) at 40% censoring in the right-tail of X

From Figure 6.10 with 40% censoring in the right tail of the Burr distribution. The
Bayesian and ML estimator offer a similar performance, however as we can see from
Figure 6.9, for smaller EVI values, the ML estimator seems to be performing only
slightly better than the Bayesian Estimators, particularly at high thresholds.
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Case 3: 55% Censoring

(a) Burr(γ = 1) (b) Burr(γ = 1)

(c) Burr(γ = 0.25) (d) Burr(γ = 0.25)

Figure 6.11: Estimates of γX(left) and MSE(right) for a Burr(γX) distribution cen-
sored by another Burr(γY ) at 55% censoring in the right-tail of X

From Figure 6.11 subjected to 55% censorship in the right tail of the Burr distri-
bution, we can see that for heavier tails γX = 1, the Bayesian estimator is doing
considerably better than the ML estimator in terms of the bias and MSE. For
less heavy tails (γX = 0.25) the MSE of the two estimators coincides, with the
Bayesian estimator ultimately better at lower thresholds.
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6.6.3 Student-t

Case 1: 25% Censoring

(a) Student-t(γ = 1) (b) Student-t(γ = 1)

(c) Student-t(γ = 0.25) (d) Student-t(γ = 0.25)

Figure 6.12: Estimates of γX(left) and MSE(right) for a Student-t(γX) distribution
censored by another Student-t(γY ) at 25% censoring in the right-tail of X

Keeping in mind that the Student-t distribution is heavier tailed than both the
Fréchet and the Burr distribution. From Figure 6.12 subjected to 25% censorship
in the right tail of the Student-t distribution, we can see that both the ML and the
Bayesian estimator coincide for both heavier tails (γX = 1) and less heavy tails
(γX = 0.25). The ML estimator however still performing slightly better than the
Bayesian estimator at high thresholds (k → 0).
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Case 2: 40% Censoring

(a) Student-t(γ = 1) (b) Student-t(γ = 1)

(c) Student-t(γ = 0.25) (d) Student-t(γ = 0.25)

Figure 6.13: Estimates of γX(left) and MSE(right) for a Student-t(γX) distribution
censored by another Student-t(γY ) at 40% censoring in the right-tail of X

From Figure 6.13 subjected to 40% censorship in the right tail of the Student-t
distribution, the Bayesian estimator seems to be performing slightly better than
the ML estimator, both in terms of bias and MSE. The ML estimator is still
performing considerably better for heavier tails at high thresholds (k → 0)
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6.6. MONTE CARLO SIMULATION: BAYES VS. MLE

Case 3: 55% Censoring

(a) Student-t(γ = 1) (b) Student-t(γ = 1)

(c) Student-t(γ = 0.25) (d) Student-t(γ = 0.25)

Figure 6.14: Estimates of γX(left) and MSE(right) for a Student-t(γX) distribution
censored by another Student-t(γY ) at 55% censoring in the right-tail of X

From Figure 6.14 subjected to 55% censorship in the right tail of the Student-
t distribution, the Bayesian estimator is performing much better than the ML
estimator particularly for heavier tails (γX = 1). For less heavy tails, the MSE of
both estimators coincide.
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6.7 Conclusion

We investigated the EVI estimators under random right censorship. Through some
numerical studies using the Limited Memory Broyden–Fletcher–Goldfarb–Shanno
(BFGS) algorithm, we were able to implement the parametric EPD censored like-
lihood estimator of Beirlant et al. (2016).

Parametric estimators generally enjoy a considerable advantage of being invariant
to location shifts in the data, as opposed to semi-parametric estimation which can
be very sensitive to location shifts in the data. However, an important requisite
to employing parametric approaches, is that we know the parametric form of the
data for which we wish to make inference about the tail. The parametric form can
sometimes be difficult to recognize. In order to assess and illustrate the behavior
of the chosen parametric and semi-parametric estimators of the EVI, we conducted
a simulation study.

Judging from the EPD’s predominating overall performance in estimating the EVI
under random right censorship, we make a concluding recommendation of using
the EPD to model randomly censored Pareto-Type data. In Section 6.5 we
constructed a censored posterior density function for the EPD, and conducted a
simulation study in Section 6.6 to assess the performance of this estimator in com-
parison to the ML estimator. From this simulation study it was seen that the ML
estimator generally performs better than the Bayesian estimator for higher thresh-
olds as k → 0, while the Bayesian estimator performs better at lower thresholds.

Also it was seen that the Bayesian estimator performs better than the ML es-
timator for heavier tailed distributions, while the ML estimator performs better
for less heavier tailed distributions. Lastly it was apparent the more the data is
censored the better the Bayesian estimator is at estimating the true EVI than the
ML estimator.

We therefore recommend using the Bayesian estimator under the following circum-
stances:

• The data is very heavy tailed (γ > 0.5).

• The data points are few, and you thus wish to use lower thresholds.

• The data is overly censored in the right tail (more than 50% censored).

• Lastly and more importantly, when expert opinion can be elicited and incor-
porated into a prior distribution.

In the next chapter we look again at the estimators mentioned in previous chapters
and assess their performance at contaminated data. And also investigate the newly
developed robust method of estimating EPD parameters –The Minimum Density
Power Divergence Estimator (MDPDE).
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Chapter 7

Estimation of the EVI for contaminated
data

7.1 Introduction

In this chapter we investigate the performance of the different estimation methods
mentioned in previous chapters when applied to contaminated data. Throughout
this study, we make an explicit assumption about the data being independent and
identically distributed, thus making these observations mathematically convenient
to work with. In practice however, these assumptions are not precisely true and
reality is a much more complex system. The previous chapter discussed one such
complexity where data is randomly censored. When modelling randomly censored
excesses with the EPD, the effects of censoring can be overcome by adapting the
model’s likelihood.

All estimation procedures discussed in previous chapters are however not robust
against deviations of the true distribution from the assumed parametric model.
As shown in Section 5.3.4, for the Bayesian estimator the choice of the prior can
be an undesirable source of ambiguity. It can be seen from Section 5.3.4 that the
Bayesian estimator is not robust against misspecification of the prior and as will be
seen in this chapter, the Bayesian, ML, and Hill estimators are not robust against
model contamination. An additional method of estimation also investigated in this
chapter is the Minimum Density Power Divergence Estimator (MDPDE), which
was shown by Dierckx et al. (2013) to be robust against outliers.

This chapter is organized as follows: In Section 7.2 we briefly define the MDPDE.
In Section 7.2.1 we provide in detail, the estimation procedures using the MDPDE.
In Section 7.3 we conduct an exhaustive simulation study, to assess the perfor-
mance of these estimates. A case study is carried out in Section 7.4 to further
assess the behaviour of the MDPDE in comparison to other mentioned estimators
when data is both contaminated and uncontaminated. Some concluding remarks
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are made in Section 7.5

7.2 Minimum Density Power Divergence

Estimator

This section discusses the Minimum Density Power Divergence Estimator (MD-
PDE) as a method for estimating parameters of the EPD model. Dierckx et al.
(2013) introduced the MDPDE in an effort to construct a robust and asymptoti-
cally unbiased estimator of the EVI. The idea of the density power divergence for
developing a robust estimation criterion was first introduced by Basu et al. (1998).
In this chapter we will assess the performance of the MDPDE and compare it to
other estimators mentioned in previous chapters, namely; the ML, Bayesian and
Hill estimator. Using all four estimators of the EVI, we will further estimate high
quantiles associated with some probability p as defined by Goegebeur et al. (2014).
We also consider the Weissman (1978) estimator given as

Û(
1

pn
) = Xn−k,n

(
k + 1

(n+ 1)p

)Hk,n
(7.1)

where Hk,n is the Hill (1975) estimator.

The density power divergence between the density functions f and g is given by
Dierckx et al. (2013) as

∆α(f, g) :=


∫
R[g1+α(y)− (1 +

1

α
)gα(y)f(y) +

1

α
f 1+α(y)]dy, α > 0,∫

R log
f(y)

g(y)
f(y)dy, α = 0

(7.2)

Assume that the density function g depends on a parameter vector θ, and let
Y1, ..., Yn be independent and identically distributed random variables according
to the density function f . The MDPDE is the point θ̂ that minimizes the empirical
density power divergence

∆̂α(θ) :=

∫
R
g1+α(y)dy −

(
1 +

1

α

)
1

n

n∑
i=1

gα(Yi) (7.3)

for α > 0, and

∆̂0(θ) := − 1

n

n∑
i=1

log g(Yi) (7.4)

for α = 0, the latter corresponds with the negative log-likelihood function. The pa-
rameter α controls the trade-off between robustness and efficiency of the MDPDE:
The estimators becomes less robust against outliers and more efficient as α→ 0.

107



7.3. SIMULATION STUDY

7.2.1 Estimation procedure

Let the sample X1, ..., Xn be independent and identically distributed from a dis-
tribution function satisfying (R), and denote the ascending order statistics by
X1,n ≤ ... ≤ Xn,n. Dierckx et al. (2013) showed that the MDPDE for (γ, δ)
satisfies the system of equations:

0 =

∫ ∞
1

gα(y)
∂g(y)

∂γ
dy − 1

k

n∑
j=1

gα−1(Yj)
∂g(Yj)

∂γ
(7.5)

and

0 =

∫ ∞
1

gα(y)
∂g(y)

∂δ
dy − 1

k

n∑
j=1

gα−1(Yj)
∂g(Yj)

∂δ
(7.6)

where g(y) is the density function of the EPD, given by:

g(y) =
1

γ
y−1/γ−1{1 + δ(1− yτ )}−1/γ−1[1 + δ{1− (1 + τ)yτ}] (7.7)

Both these equations depend also on the unknown parameter τ . As noted by
Dierckx et al. (2013), estimating the second order parameter ρ externally leads
to bias-corrected estimators of γ with a smaller asymptotic variance compared
to a joint estimation of (γ, δ, τ). In this section, we adopt the parameterization
τ = ρ/γ and use an external estimator to estimate the second order parameter ρ
for all estimation procedures.

Assuming that τ is known, Dierckx et al. (2013) stated and proved the asymptotic
normality of the sequence of consistent solutions of Equations 7.5 and 7.6, and
further showed that by replacing ρ by an external consistent estimator leads to
the same limiting distribution as in the case where the true ρ is known. For
brevity, proofs of asymptotic properties of the MDPDE are omitted in this study
(see Dierckx et al., 2013, for more details).

7.3 Simulation Study

In this section we study the finite sample behavior of all estimators mentioned in
previous chapters and compare them to the MDPDE. To investigate the optimum
trade off between robustness and efficiency of the MDPDE, we consider three
cases of the MDPDE γn,α where α = 0.1, α = 0.5 and α = 1. We also consider
estimates of high quantiles associated with p = 1/500 and the corresponding Mean
Square Error (MSE): (Û∗(1/pn)/U(1/pn)− 1)2, where Û∗(1/pn) denotes any of the
considered estimators of U(1/pn) as a function of k, the true quantile is indicated
with a straight line.

We denote γ̂Bayesn as the Bayesian EVI estimator and ÛBayes
∗ (1/pn) as the Bayesian

Quantile estimator. We denote in a similar manner the ML and the Hill estimators.
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In Section 7.3.1 1,000 Samples of size 200 and 500 are generated from three different
Pareto type distributions given in Table 2.2, namely: the Fréchet, Burr (XII)
and Student-t distribution all with γ = 0.5. In Section 7.3.2, 1,000 contaminated
samples of size 500 are generated from the three previously mentioned distributions
with γ = 0.5. The plots are obtained by averaging out over the 1,000 samples.

7.3.1 Uncontaminated Distributions

To assess the behavior of estimators at uncontaminated data we simulate 1,000
samples of sizes 200 and 500 respectively from three Pareto type distributions
mentioned above with EVI = 0.5. Table 7.1 shows the different settings of the
simulation study at uncontaminated data.

Table 7.1: Simulation setting for uncontaminated data

Distribution F Quantity Figure

Fréchet (α = 2)
γ̂ and Û(1− 1/500) 7.1

γ̂MSE and ÛMSE(1− 1/500) 7.2

Burr (XII) (η = 1, τ = 2, λ = 1)
γ̂ and Û(1− 1/500) 7.3

γ̂MSE and ÛMSE(1− 1/500) 7.4

Student-t (df = 2)
γ̂ and Û(1− 1/500) 7.5

γ̂MSE and ÛMSE(1− 1/500) 7.6
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7.3. SIMULATION STUDY

Fréchet

(a) Fréchet, α = 2, n=200 (b) Fréchet, α = 2, n=500

(c) Fréchet, α = 2, n=200 (d) Fréchet, α = 2, n=500

Figure 7.1: Estimates of the EVI (top) and U(1-1/500) (bottom) of a Fréchet
sample with EVI = 0.5.

From Figure 7.1 we can see that for uncontaminated samples γ̂Bayesn , γ̂MLE
n and

γ̂0.1,n are performing considerably better than other estimators in terms of bias for
both smaller and larger samples. The same is true in the case of quantile estimates,
however for smaller samples ÛBayes

∗ (1/pn) seems to be performing slightly better
than all considered estimators.
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7.3. SIMULATION STUDY

(a) Fréchet, α = 2, n=200 (b) Fréchet, α = 2, n=500

(c) Fréchet, α = 2, n=200 (d) Fréchet, α = 2, n=500

Figure 7.2: MSE of EVI estimates (top) and U(1-1/500) (bottom) of a Fréchet
sample with EVI = 0.5.

From Figure 7.2 it is more apparent that γ̂Bayesn and ÛBayes
∗ (1/pn) seem to outper-

form other considered estimators in terms of the MSE for lower thresholds k →∞.
It is also clear that γ̂1,n and γ̂0.5,n are under performing.
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Burr

(a) Burr (XII), η = 1, τ = 2, λ = 1,
n=200

(b) Burr (XII), η = 1, τ = 2, λ = 1,
n=500

(c) Burr (XII), η = 1, τ = 2, λ = 1,
n=200

(d) Burr (XII), η = 1, τ = 2, λ = 1,
n=500

Figure 7.3: Estimates of the EVI (top) and U(1-1/500) (bottom) of a Burr (XII)
sample with EVI = 0.5.

Firstly we know that Burr samples are generally heavier tailed than Fréchet sam-
ples, and from Figure 7.3 we can see that γ̂0.1,n seems to be performing much better

than all considered estimators for both smaller and larger samples. ÛBayes
∗ (1/pn)

and ÛMLE
∗ (1/pn) are also performing reasonable well. Performance of ÛBayes

∗ (1/pn)
can be accredited to the efficient estimation of δ in approximating the posterior.
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(a) Burr (XII), η = 1, τ = 2, λ = 1,
n=200

(b) Burr (XII), η = 1, τ = 2, λ = 1,
n=500

(c) Burr (XII), η = 1, τ = 2, λ = 1,
n=200

(d) Burr (XII), η = 1, τ = 2, λ = 1,
n=500

Figure 7.4: MSE of EVI estimates (top) and U(1-1/500) (bottom) of a Burr (XII)
sample with EVI = 0.5.

From Figure 7.4 we can see that in terms of the MSE, γ̂Bayesn and ÛBayes
∗ (1/pn) as

well as γ̂0.1,n and ÛMDPDE
0.1,n (1/pn) are performing considerably better than all con-

sidered estimators. We can also spot a decent performance from γ̂MLE
n particularly

in larger samples.
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Student-t

(a) Student-t, df = 2, n=200 (b) Student-t, df = 2, n=500

(c) Student-t, df = 2, n=200 (d) Student-t, df = 2, n=500

Figure 7.5: Estimates of the EVI (top) and U(1-1/500) (bottom) of a Student-t
sample with EVI = 0.5.

From Figure 7.5, γ̂0.1,n is performing considerably better than all considered es-

timators for both smaller and larger samples. However ÛBayes
∗ (1/pn) seems to

outperform ÛMDPDE
0.1,n for smaller samples.
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(a) Student-t, df = 2, n=200 (b) Student-t, df = 2, n=500

(c) Student-t, df = 2, n=200 (d) Student-t, df = 2, n=500

Figure 7.6: MSE of EVI estimates (top) and U(1-1/500) (bottom) of a Student-t
sample with EVI = 0.5.

From Figure 7.6 γ̂Bayes and ÛBayes
∗ (1/pn) as well as γ̂0.1,n and ÛMDPDE

0.1,n are per-
forming considerably better than all considered estimators in terms of the MSE.
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Remarks

In the case of uncontaminated samples, the MDPD estimator performs better for
α small, in other words by making the MDPDE more efficient. The Bayesian
estimator also performs well for uncontaminated samples. We also note that the
Bayesian quantile estimator performs better in most cases than other considered
quantile estimators.

In the next section we investigate the behavior of the mentioned estimators at
contaminated data.

7.3.2 Contaminated Distributions

With the finite sample behavior of all mentioned estimators, when the data is
contaminated, we consider the same list of distributions but with different measures
of contamination. The contamination distribution F̃ is chosen to be a Pareto

distribution, and is given by F̃ (x) = 1 −
(
x

xc

)−β
, for x ≥ xc, and β = 0.5.

Therefore the true distribution of the data is given by

Fε(x) = (1− ε)F (x) + εF̃ε (7.8)

where F is the Fréchet, Burr (XII) or Student-t distribution and ε is the amount
of contamination. Two cases of xc are shown where xc is 1.2 times the 99.99%
quantile of the uncontaminated distribution F and where xc is 2 times the 99.99%
quantile of the uncontaminated distribution F . Three values of contamination are
chosen as 0.01, 0.05 and 0.1. Table 7.2 shows the different settings of the simulation
study at contaminated data.
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Table 7.2: Simulation setting for contaminated data

Distribution F Quantity ε Figure

Fréchet (α = 2)

γ̂ and Û(1− 1/500)

0.01 7.7

0.05 7.9

0.1 7.11

γ̂MSE and ÛMSE(1− 1/500)

0.01 7.8

0.05 7.10

0.1 7.12

Burr (XII) (η = 1, τ = 2, λ = 1)

γ̂ and Û(1− 1/500)

0.01 7.13

0.05 7.15

0.1 7.17

γ̂MSE and ÛMSE(1− 1/500)

0.01 7.14

0.05 7.16

0.1 7.18

Student-t (df = 2)

γ̂ and Û(1− 1/500)

0.01 7.19

0.05 7.21

0.1 7.23

γ̂MSE and ÛMSE(1− 1/500)

0.01 7.20

0.05 7.22

0.1 7.24
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Fréchet Distribution

(a) xc = 1.2, ε = 0.01 (b) xc = 2, ε = 0.01

(c) xc = 1.2, ε = 0.01 (d) xc = 2, ε = 0.01

Figure 7.7: Estimates of the EVI (top) and U(1-1/500) (bottom) of a Fréchet
sample with EVI = 0.5.

From Figure 7.7 we can see that the MDPD estimators are performing much better
than the Bayes, ML and Hill estimators. γ̂1,n seems to be performing better than
other MDPD estimators. The choice of xc = 1.2 and xc = 2 does not seem to have
much influence on the estimators.
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(a) xc = 1.2, ε = 0.01 (b) xc = 2, ε = 0.01

(c) xc = 1.2, ε = 0.01 (d) xc = 2, ε = 0.01

Figure 7.8: MSE of EVI estimates (top) and U(1-1/500) (bottom) of a Fréchet
sample with EVI = 0.5.

From Figure 7.8 γ̂0.5,n and ÛMDPDE
0.5,n (1/pn) seem to be outperforming the non-

robust estimators γ̂Hilln , γ̂Bayes and γ̂MLE
n as well as their corresponding quantile

estimators in terms of MSE.
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(a) xc = 1.2, ε = 0.05 (b) xc = 2, ε = 0.05

(c) xc = 1.2, ε = 0.05 (d) xc = 2, ε = 0.05

Figure 7.9: Estimates of the EVI (top) and U(1-1/500) (bottom) of a Fréchet
sample with EVI = 0.5.

From Figure 7.9 γ̂1,n and ÛMDPDE
1,n (1/pn) seem to be outperforming all other con-

sidered robust and non-robust MDPD estimators. This is due to the fact that we
have more contamination in the right tail of the distribution F and an MDPD
estimator with α = 1 is more robust against such contamination than an MDPE
with α < 1.
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(a) xc = 1.2, ε = 0.05 (b) xc = 2, ε = 0.05

(c) xc = 1.2, ε = 0.05 (d) xc = 2, ε = 0.05

Figure 7.10: MSE of EVI estimates (top) and U(1-1/500) (bottom) of a Fréchet
sample with EVI = 0.5.

From Figure 7.10 γ̂0.5,n and ÛMDPDE
0.5,n (1/pn) tends to compete with γ̂1,n and ÛMDPDE

1,n (1/pn)
in terms of MSE.

121



7.3. SIMULATION STUDY

(a) xc = 1.2, ε = 0.1 (b) xc = 2, ε = 0.1

(c) xc = 1.2, ε = 0.1 (d) xc = 2, ε = 0.1

Figure 7.11: Estimates of the EVI (top) and U(1-1/500) (bottom) of a Fréchet
sample with EVI = 0.5.

From Figure 7.11 γ̂0.5,n and ÛMDPDE
0.5,n (1/pn) seem to be performing better than all

other considered robust and non-robust estimators. Keeping in mind that there
is now more contamination in the right tail of F (ε = 0.1). It is also clear that
the non-robust estimators considered under perform more when the amount of
contamination increases.
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(a) xc = 1.2, ε = 0.1 (b) xc = 2, ε = 0.1

(c) xc = 1.2, ε = 0.1 (d) xc = 2, ε = 0.1

Figure 7.12: MSE of EVI estimates (top) and U(1-1/500) (bottom) of a Fréchet
sample with EVI = 0.5.

Figure 7.12 confirms the good performance of γ̂0.5,n and ÛMDPDE
0.5,n (1/pn) in terms

of both the bias and MSE in comparison to other considered estimators. It is also
worth noting that γ̂Hilln and ÛWisseman

∗ (1/pn) are performing much better than all
considered non-robust estimators γ̂MLE

n , γ̂Bayesn , ÛBayes
∗ (1/pn) and ÛMLE

∗ (1/pn).
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Burr Distribution

(a) xc = 1.2, ε = 0.01 (b) xc = 2, ε = 0.01

(c) xc = 1.2, ε = 0.01 (d) xc = 2, ε = 0.01

Figure 7.13: Estimates of the EVI (top) and U(1-1/500) (bottom) of a Burr (XII)
sample with EVI = 0.5.

From Figure 7.13 we can see that for the Burr distribution γ̂0.1,n and ÛMDPDE
0.1,n (1/pn)

are performing better than all other considered robust and non-robust estimators.
The xc = 1.2 and xc = 2 still does not have much influence on the estimators.
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(a) xc = 1.2, ε = 0.01 (b) xc = 2, ε = 0.01

(c) xc = 1.2, ε = 0.01 (d) xc = 2, ε = 0.01

Figure 7.14: MSE of EVI estimates (top) and U(1-1/500) (bottom) of a Burr (XII)
sample with EVI = 0.5.

Figure 7.14 confirms the good performance of γ̂0.1,n and ÛMDPDE
0.1,n (1/pn) in com-

parison to all other considered robust and non-robust estimators.
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(a) xc = 1.2, ε = 0.05 (b) xc = 2, ε = 0.05

(c) xc = 1.2, ε = 0.05 (d) xc = 2, ε = 0.05

Figure 7.15: Estimates of the EVI (top) and U(1-1/500) (bottom) of a Burr (XII)
sample with EVI = 0.5.

From Figure 7.15 γ̂0.5,n and ÛMDPDE
0.5,n (1/pn) are once again performing better than

all other considered robust and non-robust estimators. This is due to the increased
amount of contamination in the right tail of F (ε = 0.05).
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(a) xc = 1.2, ε = 0.05 (b) xc = 2, ε = 0.05

(c) xc = 1.2, ε = 0.05 (d) xc = 2, ε = 0.05

Figure 7.16: MSE of EVI estimates (top) and U(1-1/500) (bottom) of a Burr (XII)
sample with EVI = 0.5.

Figure 7.16 confirms the good performance of γ̂0.5,n especially ÛMDPDE
0.5,n (1/pn). At

this point all considered non-robust estimators are performing poorly.
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(a) xc = 1.2, ε = 0.1 (b) xc = 2, ε = 0.1

(c) xc = 1.2, ε = 0.1 (d) xc = 2, ε = 0.1

Figure 7.17: Estimates of the EVI (top) and U(1-1/500) (bottom) of a Burr (XII)
sample with EVI = 0.5.

By further increasing the amount of contamination to ε = 0.1 of the Burr sam-
ples, it can be seen from Figure 7.17 that γ̂0.5,n and ÛMDPDE

0.5,n (1/pn) continue to
outperform all considered robust and non-robust estimators.
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(a) xc = 1.2, ε = 0.1 (b) xc = 2, ε = 0.1

(c) xc = 1.2, ε = 0.1 (d) xc = 2, ε = 0.1

Figure 7.18: MSE of EVI estimates (top) and U(1-1/500) (bottom) of a Burr (XII)
sample with EVI = 0.5.

Figure 7.18 confirms the good performance of γ̂0.5,n and ÛMDPDE
0.5,n (1/pn) in terms

of the MSE and bias.
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Student-t Distribution

(a) xc = 1.2, ε = 0.01 (b) xc = 2, ε = 0.01

(c) xc = 1.2, ε = 0.01 (d) xc = 2, ε = 0.01

Figure 7.19: Estimates of the EVI (top) and U(1-1/500) (bottom) of a Student-t
sample with EVI = 0.5.

From Figure 7.19 γ̂0.1,n and ÛMDPDE
0.1,n (1/pn) appears to be competitive. This is due

to the fact that there is a small amount of contamination in the right tail of F .
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(a) xc = 1.2, ε = 0.01 (b) xc = 2, ε = 0.01

(c) xc = 1.2, ε = 0.01 (d) xc = 2, ε = 0.01

Figure 7.20: MSE of EVI estimates (top) and U(1-1/500) (bottom) of a Student-t
sample with EVI = 0.5.

Figure 7.20 confirms the good performance of γ̂0.1,n and ÛMDPDE
0.1,n (1/pn) in terms

of the MSE. We also note the explosive behavior of ÛMDPDE
0.1,n (1/pn).
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(a) xc = 1.2, ε = 0.05 (b) xc = 2, ε = 0.05

(c) xc = 1.2, ε = 0.05 (d) xc = 2, ε = 0.05

Figure 7.21: Estimates of the EVI (top) and U(1-1/500) (bottom) of a Student-t
sample with EVI = 0.5.

From Figure 7.21 we can see that all estimators perform poorly in terms of bias at
this amount of contamination (ε = 0.05), however γ̂0.5,n and ÛMDPDE

0.5,n (1/pn) main-

tain a reasonably good performance also noting the volatile behavior of ÛMDPDE
1,n (1/pn).
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(a) xc = 1.2, ε = 0.05 (b) xc = 2, ε = 0.05

(c) xc = 1.2, ε = 0.05 (d) xc = 2, ε = 0.05

Figure 7.22: MSE of EVI estimates (top) and U(1-1/500) (bottom) of a Student-t
sample with EVI = 0.5.

Figure 7.22 confirms the reasonable out-performance of γ̂0.5,n and ÛMDPDE
0.5,n (1/pn)

in comparison to all considered robust and non-robust estimators.
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(a) xc = 1.2, ε = 0.1 (b) xc = 2, ε = 0.1

(c) xc = 1.2, ε = 0.1 (d) xc = 2, ε = 0.1

Figure 7.23: Estimates of the EVI (top) and U(1-1/500) (bottom) of a Student-t
sample with EVI = 0.5.

From Figure 7.23 we can see that, despite the reasonable performance of γ̂0.5,n

and ÛMDPDE
0.5,n (1/pn), all considered estimators are very volatile at this amount of

contamination (ε = 0.1) in the right tail of F .
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(a) xc = 1.2, ε = 0.1 (b) xc = 2, ε = 0.1

(c) xc = 1.2, ε = 0.1 (d) xc = 2, ε = 0.1

Figure 7.24: MSE of EVI estimates (top) and U(1-1/500) (bottom) of a Student-t
sample with EVI = 0.5.

Lastly in Figure 7.24 we can see that γ̂0.5,n and ÛMDPDE
0.5,n (1/pn) maintain a reason-

able performance. At this stage all considered robust and non-robust estimators
are performing poorly in terms of both bias and MSE.

Remarks

In case of contaminated samples, the estimators γ̂0.5,n and ÛMDPDE
0.5,n (1/pn) clearly

outperform all the considered non-robust estimators both in terms of bias and
MSE. γ̂0.5,n and ÛMDPDE

0.5,n (1/pn) show much more stable sample paths.

In conclusion, γ̂Bayesn is in general a good alternative to estimating the EVI at
uncontaminated data as well as γ̂MLE

n and γ̂α,n where α is close to zero as well as
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the corresponding quantile estimators. When contamination is present γ̂0.5,n and

ÛMDPDE
0.5,n (1/pn) seem to be less biased compared to all other MDPD estimators and

all considered non-robust estimators. We also noted that γ̂Hilln and ÛWisseman
∗ (1/pn)

performs better when contamination is present than all other considered non-
robust estimators γ̂Bayesn , ÛBayes

∗ (1/pn), γ̂MLE
n and ÛMLE

∗ (1/pn).

In the next section we further assess the performance of all previously considered
estimators with an application to a real dataset.

7.4 Case Study

In this section all previously discussed estimators are applied to a real dataset
and assessed in a real world setting. We use soil data studied by Goegebeur et al.
(2005), Beirlant et al. (2004) and further studied by Vandewalle et al. (2007). This
data is from the Condroz region in Belgium, gathered by the Unit of Geopedol-
ogy at Gembloux Agricultural University (see Goegebeur et al., 2005, for more
information). In agriculture, soil analysis is the basis of fertilizer and amendment
recommendations in the context of managing soil fertility and crop performance.

The development of precision farming has drastically increased the demand for
soil data and laboratories are burdened with large data sets, which inevitably
causes concern about outliers and their apparent influence on the quality of the
information. Robust estimation procedures therefore play a crucial role in the
database management of soil data in order to provide high quality information.

The Condroz database contains calcium content and pH level measurements of
19,516 soil samples originating from different cities in the Codroz, a geographical
region in the southern part of Belgium. Beirlant et al. (2004) saw the need to de-
scribe the tail of the calcium distribution in terms of the covariate pH. Figure 7.25
shows a scatter plot of calcium (Ca) versus pH. From this plot it is clear that these
two variables are positively associated and extreme calcium measurements tend to
occur more often at the higher pH levels.

In this section we focus on estimation of the EVI and high Quantiles conditional
on the pH = {6, 6.5, 7.1, 7.2, 7.3 and 7.4} covariate. Figure 7.26 shows the Box
plots of Ca measurements at different pH levels. It can be seen from these plots
that the data is sometimes more than 1.5 times the interquartile range away from
the box which could imply existence of suspicious observations. The box plots
for pH=6.5 and 7.1 seem to only have one suspicious observation while box plot
pH=7.2 and 7.3 have more observations that can be flagged as suspicious.
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Figure 7.25: Plot of Ca versus pH

We further investigate large observations that do not follow the ultimate linearity
of the Pareto quantile plot in Figure 7.27, and regard them as outliers.

From Figure 7.26 and Figure 7.27 we can see that there exists some outliers that
could be considered as suspicious. For instance in Figure 7.27a we can see from
its ultimate linearity of the Pareto QQ that the data is Pareto, however there
is an observation that is much lower than the others. Also with Figure 7.27b,
Figure 7.27c, Figure 7.27d and Figure 7.27f we get abnormally high observations
far from the linear pattern of the Pareto QQ. It is for this reason that we expect a
robust estimator of the EVI, to outperform all other estimators and not be greatly
influenced by the suspicious observations.
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Boxplots

(a) Boxplot of Ca at pH=6.0 (b) Boxplot of Ca at pH=6.5

(c) Boxplot of Ca at pH=7.1 (d) Boxplot of Ca at pH=7.2

(e) Boxplot of Ca at pH=7.3 (f) Boxplot of Ca at pH=7.4

Figure 7.26: Boxplots of the Ca measurements at different pH levels
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Pareto quantile Plots

(a) Ca measurement at pH=6.0 (b) Ca measurement at pH=6.5

(c) Ca measurement at pH=7.1 (d) Ca measurement at pH=7.2

(e) Ca measurement at pH=7.3 (f) Ca measurement at pH=7.4

Figure 7.27: Pareto quantile plots of the Ca measurements at different pH levels

In Section 7.4.1 we estimate the EVI as well as the corresponding quantile associ-
ated with (p = 1/500), using similar estimation procedures as in Section 7.3, for

139



7.4. CASE STUDY

each covariate pH level.

7.4.1 EVI and High Quantile estimates

(a) Ca measurement at pH=6.0 (b) Ca measurement at pH=6.0

(c) Ca measurement at pH=6.5 (d) Ca measurement at pH=6.5

Figure 7.28: EVI (left) and corresponding quantiles (right) of the Ca measurements
as a function of k at different pH levels
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(a) Ca measurement at pH=7.1 (b) Ca measurement at pH=7.1

(c) Ca measurement at pH=7.2 (d) Ca measurement at pH=7.2

Figure 7.29: EVI (left) and corresponding quantiles (right) of the Ca measurements
as a function of k at different pH levels
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(a) Ca measurement at pH=7.3 (b) Ca measurement at pH=7.3

(c) Ca measurement at pH=7.4 (d) Ca measurement at pH=7.4

Figure 7.30: EVI (left) and corresponding quantiles (right) of the Ca measurements
as a function of k at different pH levels

Remarks

We can see from Figure 7.26 and Figure 7.27 that at pH level 6.0, there exists one
abnormally low observation, therefore when we estimate the EVI and the corre-
sponding quantiles at lower thresholds, this observation will be included. Hence,
as we can see from Figure 7.28a and Figure 7.28b the MPDE estimators are per-
forming considerably better at lower thresholds. It seems as if γ̂0.1,n, γ̂0.5,n and

γ̂1,n converge to some value around 0.2 also ÛMDPDE
0.1,n (1/pn), ÛMDPDE

0.5,n (1/pn) and

ÛMDPDE
1,n (1/pn) converge to a value around Ca=800 for lower thresholds. One

suspiciously low observation is included at k ≈ n− 1 and it is for this reason that
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estimates of γ̂Bayesn and γ̂MLE
n become very explosive.

From Figure 7.27b at a pH level of 6.5 there is evidence of an abnormally high ob-
servation, this observation will be included throughout the entire range of thresh-
olds. We can see however from Figure 7.28c and Figure 7.28d that the MDPD
estimators give more conservative estimates of the EVI and corresponding quan-
tiles. At lower thresholds γ̂0.5,n oscillates around 0.21 and around 0.32 at higher

thresholds. Also ÛMDPDE
0.5,n (1/pn) oscillates around Ca=800 at lower thresholds

and around Ca=1300 at higher thresholds, both estimates are below the suspi-
cious observation.

We can see from Figure 7.27c at pH level 7.1 we have one abnormally high and one
abnormally low observation. As explained previously, an abnormally low observa-
tion is negated by the fact that we consider only observations above a threshold.
From Figure 7.29a and Figure 7.29b it is interesting to note that at high thresh-
olds, the suspicious observation seems to throw off γ̂Bayesn more than any other
estimator, this is because the Bayesian estimator is very sensitive to contamina-
tion in the data. It can be seen here that the MDPD estimators tend to be more
conservative than the other non-robust estimators.

From Figure 7.27d at pH level 7.2 we have 3 abnormally high observations. The
amount of contamination at this covariate level can be considered quite high.
However in Figure 7.29c and Figure 7.29d γ̂0.1,n, γ̂0.5,n and γ̂1,n are not very sensitive
to this contamination of data. In fact γ̂0.5,n and γ̂1,n seem to have much stable paths

as compared to other estimators. ÛBayes
∗ (1/pn) seems however to have a much

more conservative estimate of the corresponding quantiles. This does not seem
very reliable as it sometimes reaches zero. ÛMDPDE

0.5,n (1/pn) and ÛMDPDE
1,n (1/pn)

seem to have more stable paths and is thus more reliable.

From Figure 7.27e at pH level 7.3 the data is reasonable Pareto despite the altered
path of the Pareto QQ. In such a case, if contamination exists it should be of a
very small amount. It can be seen from Figure 7.30a and Figure 7.30b that all con-
sidered robust and non-robust estimators pretty much oscillate around a common
value. However γ̂Bayesn seems to be more sensitive to this small amount of con-
tamination also ÛBayes

∗ (1/pn) is very volatile when compared to other considered
estimators.

From Figure 7.27f there are only a few data points at pH level 7.4 thus making
it difficult to make a reliable inference. However there is an abnormally high
observation, and linearity of the Pareto QQ can only be affirmed in the midsection
of the Pareto QQ. It is clear from Figure 7.30c and Figure 7.30d that at high
thresholds, γ̂Bayesn and γ̂MLE

n are more sensitive.
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7.5 Conclusion

We gave a brief definition of the MDPDE, as well as detailed estimation procedures
of the MDPDE. We assessed the performance of the MDPDE and compared it to
other estimators considered in this thesis through an exhaustive simulation study.
It was clear that when the data is contaminated the MDPDE estimators give
better performance than the non-robust estimators more so in the case where the
parameter α controlling the trade off between efficiency and robustness is α = 0.5.
A case study was also carried out using a real dataset, to further illustrate the
performance of the MDPD estimators.

We conclude this chapter by recommending the use of the MDPDE estimator when
the heavy-tailed data seems suspiciously contaminated. Also we corroborated Dier-
ckx et al. (2013) and Goegebeur et al. (2014)’s recommendation in setting α = 0.5
as it seems more appropriate.
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Chapter 8

Conclusion

The main aim of this thesis was to investigate the second-order refined Peaks Over
Threshold (POT) model called the Extended Pareto Distribution (EPD) and to
also look into currently existing methods of parameter estimation of the EPD.

We started with a brief overview of EVT including some literature on historical
developments in EVT along with literature on Bayesian methods in EVT, tail
estimation, tail estimation under contamination and tail estimation under right
censoring.

The EPD was defined and its generalization was shown along with some prop-
erties of the Pareto Distribution (PD) and the Generalized Pareto Distribution
(GPD). We investigated the effectiveness of the EPD in modelling heavy-tailed
distributions and compared it to the GPD in terms of the bias, mean squared
error and variance of the EVI. The ML estimation procedure was also discussed
in Section 3.3. We verified the EPD to be a better POT model to consider than
the GPD in terms of bias reduction.

An improved Maximum Likelihood (ML) estimation procedure was proposed and
through a simulation study this ML procedure was compared with the one given
in Beirlant et al. (2009). The improved ML estimation procedure seems to have
more stable sample paths than the previously used procedure. However this new
ML estimation procedure does seem to increase the variance by a tenuous amount.

A Bayesian EPD parameter estimator is also proposed with a detailed estimation
procedure. An exhaustive Monte Carlo simulation study was conducted in order
to assess the behavior of the Bayesian EPD estimator where the second order pa-
rameter is fixed (the first case) and where the second order parameter is estimated
concurrently with other parameters (the second case). A case-study was also con-
ducted in using a real dataset to further illustrate the performance of the Bayesian
EPD estimator. From the simulation study, it was clear that the Bayesian EPD
estimator was a good alternative to the ML method of estimation. In fact in
cases where γ > 0.5, the Bayesian EPD estimator seems to be better than the ML
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method. Through a simulation study we further studied how the Bayesian ap-
proach estimated the second order parameter τ . The study revealed that although
the Bayesian estimation procedure estimated τ in a more stable manner, than the
ML and Fraga’s consistent estimator (Fraga Alves et al., 2003b), the Bayesian
approach seems to have a static margin of error and it therefore does not converge
very well to the true value of τ .

We investigated the performance of the EPD under random right censorship. A
general treatment of random right censoring was provided and a simulation study
was also conducted to assess the behavior of the EVI estimators adapted for cen-
soring. In addition to the Monte Carlo simulation study, a case study on real
data was also carried out to further illustrate the performance of the EPD for
right censored data. We extended EPD likelihood-adapted approach of Beirlant
et al. (2016) into a Bayesian setting, and constructed a censored posterior through
which we approximate the posterior of the right tail of the distribution of interest.
An additional simulation study was conducted to assess the censored Bayesian
estimator in comparison to the censored ML estimator. We verified that when the
EPD model is adapted for censoring it results in bias reduced estimates of the true
EVI. We found the Bayesian approach to be a good alternative to the ML method
more especially at higher levels of censoring and when γ > 0.5.

We investigated the performance of the EPD when the data is contaminated. A
short definition of the minimum density power divergence estimator was given and
estimation procedures of the MDPDE were shown.

An exhaustive simulation study was conducted in order to assess the performance
of the estimates and a brief case study was carried out to further assess the be-
havior of the MDPDE in comparison to other mentioned estimators when data is
both contaminated and uncontaminated. We ascertained that when the data is
uncontaminated, the MDPDE is more reliable when α is close to zero, where α
controls the trade off between efficiency and robustness. We further corroborate
that when data is contaminated the MDPDE is more reliable when α = 0.5.

8.1 Further research possibilities

• The Bayesian approach seems to over estimate the second order parameter
by a small margin, one could further investigate how to improve the Bayesian
estimation of this parameter which could lead to much improved estimates
of the EVI;

• The MDI prior used in this study is assumed to be that of a Pareto. De-
spite its plausibility in simulation studies we could improve our posterior
approximation by deriving a more accurate prior from the EPD model.
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