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ABSTRACT

Wetland hydrology controls the function of the wetland ecosystem and hence it is the
principal parameter for delineation and management of wetlands. It is defined as the water
table depth, duration, and frequency required for an area to develop anaerobic conditions in
the upper part of the soil profile leading to the formation of iron and manganese based soil
features called redoximorphic features. The redoximorphic features must occur at specific
depths in the soil profile with specific thickness and abundance to qualify for a hydric soil
indicators. Therefore, hydric soil indicators are used to evaluate the wetland hydrology if
such a relationship has been verified. The aims of the study were i) to determine soil
variation and hydric soils indicators along a toposequence, ii) to determine the relationships
between soil water saturation, redox potential and hydric soil morphological properties and
iii) to determine the distribution of soil properties and accumulation of soil organic carbon in

hydric and non-hydric soils.

The study was conducted at the upper head-water catchment of the Bokong wetlands in the
Maloti/Drakensberg Mountains, Lesotho. The soil temperature ranged between -10 and
23°C. The soils had a melanic A overlying an unspecified material with or without signs of
wetness, or a G horizon. The organic O occurred in small area. Soil profiles were dug along
a toposequence and described to the depth of 1000 mm or shallower if bedrock was
encountered. = Redoximorphic features were described using standard soil survey
abundance categories. Soil samples were collected from each horizon and analysed for

selected physical and chemical soil properties.

The soils had low bulk density ranging from 0.26 in the topsoil to 1.1 Mg m™ in the subsoil.
Significantly low bulk density was observed in the valleys and highest bulk densities were
observed on the summits. The soil organic carbon content ranged between 0.18% in the
subsoil and 14.9% in the topsoil. The soil also had a high dithionite extractable Fe (mean
93453 g kg™') and low CEC (mean 2649 cmol, kg™”). Soil pH and CEC were relatively lower
in the valleys and higher on the summits. Principal component analysis indicated four
principal components accounted for 60% of the total variance. The first principal component
that contributed 23% of the variation showed high coefficients for soil properties related to
organic matter turnover, the second components were related to inherent fertility, the third

and fourth were related to acidity and textural variation.

Hydric indicators identified in Bokong were histisols (A1), histic epipedon (A2), thick dark

surfaces (A12), redox dark surfaces (F6), depleted dark surfaces (F7), redox depressions



(F8), loamy gleyed matrix (F2) and umbric surfaces (F13). The thick dark surfaces with
many prominent depletions and gley matrix (A12 and F7) occurred in the valleys, while the
midslopes and footslopes were dominated by umbric surfaces (A13). The indicators F6, F7
and F8 were not common. Indicators that were related to the peat formation (A1, A2 and

F13) were frequently observed.

The relationship between soil water saturation and redoximorphic features was verified by
monitoring the groundwater table with piezometers, installed in ten representative wetlands
at depths of 50, 250, 500, 750, and 1000 mm for two years from September 2009 to August
2011. Redoximorphic feature abundance categories were converted into indices. Strong
correlations were observed between redoximorphic indices and cumulative saturation
percentage. The depth to chroma 3 and 4 (d_34) and depth to the gley matrix (d_gley)
correlations were R? = 0.77 and R? = 74 respectively. All redoximorphic indices were poorly
correlated with average seasonal high water table. Strong correlation were also observed
between profile darkening index (PDI) and cumulative saturation (R? = 0.88) and weak

correlations were observed between PDI and average seasonal high water table (R? = 0.63).

A paired t test indicated that soil pH, exchangeable Mg and Na, dithionite extractable Fe and
Al were significantly different between hydric and non-hydric soils. Hydric soils had
significantly higher Mg, Na and Fe content, and significantly low soil pH and Al content.
Generally it appeared that soluble phosphorus, Fe and exchangeable bases accumulated in
hydric soils, while the soil pH and Al content decreased. The mean soil organic carbon
contents were 3.61% in hydric soils and 3.38% in non-hydric soils. However, non-hydric soll
relatively stored more organic carbon (174.4 Mg C ha™) than hydric soils (155.1 Mg C ha™).
The mean soil organic carbon density of the study area was 166x78.3 Mg C ha™) and the
estimated carbon stored was 21619 Mg C (0.022 Tg C; 1Tg = 10"?g) within the 1000 mm soil
depth. About 384.9 Mg C was stored in the hydric soils within the study area, which was
about 1.9% of the total carbon stored in the area to the bedrok or depth of 1000 mm. Among
the wetland types, bogs had significantly higher organic carbon levels (6.17%) and stored

significantly higher carbon (179 Mg C ha™") with at least 44% was store in the A1 horizon.

It was concluded that the strong correlation observed between PDI, d_34, d _gley and
cumulative saturation representing hydric indicators such as histisols (A1), histic epipedon
(A2), umbric surfaces (F13), loamy gleyed matrix (F2) can be used to determine the duration
and frequency of the water table in the landscape studied. These hydric indicators can be

used to delineate wetlands, however, more indicators can be developed.
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CHAPTER 1

INTRODUCTION

1.1 BACKGROUND

Wetlands have free water near the soil surface during most part of the year (Spray &
McGlothlin, 2004). The Ramsar Convention (1971) regards wetlands as “areas of marsh,
fen, peat land or water, whether natural or artificial, permanent or temporary, with water that
is static or flowing, fresh, brackish or salt, including areas of marine water the depth of which
at low tide does not exceed six meters”. The Ramsar wetlands definition was adopted by all
signatory countries including Lesotho (Mokuku et al., 2002) and South Africa with minor
modifications (SANBI, 2009).

Inventories on the wetlands of Lesotho, classifies these as Palustrine, sub-class alpine-mires
best referred to as peatlands (Schwabe & Whyte, 1993; Schwabe, 1995; Marneweck &
Grundling, 1999). The classification was adapted from the "Cowardin" wetland classification
developed in the USA (Cowardin et al., 1979), which uses vegetation types to classify
wetlands. Extensive work has been done to draw-up the wetland vegetation species lists for
different wetlands types of Lesotho (Schwabe & Nthabane, 1989; Schwabe, 1993; Schwabe
& Whyte, 1993; Schwabe, 1995; Marneweck & Grundling, 1999; Mokuku et al., 2002; Kobisi,
2005; Mucina & Rutherford, 2006). The distribution of different vegetation species in
different wetlands of Lesotho is more affected by altitude, terrain, soil moisture, and soil type
(Schwabe & Nthabane, 1989; Schwabe, 1993; Schwabe & Whyte, 1993). Schwabe (1995)
observed that the decomposition of the dominant vegetation types of these wetlands
encourages the development of peat. However, the peat charecteristics have been used by

few studies to further characterise the wetlands.

Peatlands are wetlands that have a peat substrate and have vegetation that encourages
peat formation (Ramsar, 1997). According to SSSA (1997) peat is the “unconsolidated soil
material consisting largely of undecomposed, or slightly decomposed, organic matter
accumulated under conditions of excessive moisture”. However, most soil classification
systems describe peat as an organic material that contain organic carbon content greater
than 12 to 18% depending on clay content of the mineral fraction (FAO, 2006; Soil survey
staff, 2010). Few studies have quantified the soil organic carbon content of Palustrine
wetlands of Lesotho (Walter et al., 2006; Nkheloane et al., 2012). Marneweck and Grundling
(1999) characterised the peat profile of these wetlands by peat colour, colour of expressed

water, Von Post humification scale and description of fibre content. This was the only study



found that has tried to characterise wetland soils of Lesotho and relates peat characteristics
to their hydrology. However, water is the key parameter defining a wetland, therefore, wise

use of wetlands requires knowledge about the hydrology of the wetland.

The concept of hydric soils has been coined to describe soils formed under prolonged water
saturation to develop anaerobic conditions within the root zone and have unique soil
morphology (Mausbach & Parker, 2001). Hence, soil morphology such as soil colour and
diagnostic horizons are used to interpret soil genetic processes and relate them to soil water
regimes (Lin et al., 2008; Lindbo et al., 2010). The wetland ecosystems are dominantly
anaerobic but also have aerobic-anaerobic interfaces characterised by large gradients in
redox potential created by a fluctuating water table. Redox reactions under saturated
anaerobic conditions use secondary electron acceptors such as iron and manganese.
These elements are reduced and become mobile. The redistribution of Fe?* and Mn?" in the
soil leaves colour imprints that represent different redox states in the profile. The soil colour
imprints are called redoximorphic features (Faulkener, 2004) and are used reliably to
estimate the water table dynamics (O’'Donnell et al., 2010; Calzolari & Ungaro, 2012).
Efforts to quantify and interpret redoximorphic features can successfully be used as pedo-

transfer functions in wetland hydrology (Lin, 2003; Lin et al., 2004).

Even though the relationship between redoximorphic features and soil water saturation are
expected, literature has indicated explicitly that such relationships should be verified locally
because several interactions in the soil may affect their development (Lindbo et al., 2010).
Vepraskas and Caldwell (2008) observed that redoximorphic features did not develop
because of low organic carbon or low Fe reserves in the subsoil. In some cases, features
might be relict (which does not represent the current hydrology). Hence it is important to

verify whether or not such existing features are related to the present hydrology.

The initial work of Kotze et al. (1994) in South Africa developed soil indicators of wetland
hydrology for KwaZulu-Natal. They realised that most studies relating the soil redoximorphic
features and water regime are localized to sets of environmental conditions, hence are
therefore unsuitable for universal application. However, such studies can be extended to
larger areas if verifications are carried out (Kotze et al., 1996). This has encouraged further
work to define soil pedogenegic processes from relationships studied between soil profile
morphology and water regime relationships for different soils of agricultural importance in
South Africa (Van Huyssteen et al., 2005; Jennings et al., 2008; Van Tol et al., 2010a;
2010b; Smith & Van Huyssteen, 2011; Van Huyssteen, 2012). Redox indicators such as

Fe** and Mn*" concentrations and depletions confirm the relationship between soil water



regime and redoximorphic features. Thus the linkages between soil morphology and
hydrology in the wetlands of South Africa and Lesotho can provide further insight on

identifying hydric soils, and defining the wetland hydrology.

1.2 MOTIVATION

The high altitude catchments of Lesotho form part of the largest watershed in Southern
Africa, renowned for its large water storage from their wetlands, vast rich rangelands and
unique biological diversity (Strategic Environmental Focus (Pty) Ltd, 2007). The wetlands
cover approximately 1.36% of the total land area of Lesotho (Mokuku et al., 2002), which
play a major role in sustaining the perennial water flow and regulating the water quality of the
major Senqu-Orange river system. These wetlands serve as an economic trade in quality
water between South Africa (SA) and Lesotho, through Lesotho Highlands Water Project
(LHWP). Scovronick and Turpie (2007) estimated grazing value of the three representative
degraded alpine wetlands namely; Khalong-la-Lithunya, Kotisephola (LHWP) and LetSeng-
la-Letsie (the only Ramsar site in Lesotho; Turpie & Malan, 2010) at 111 000 Maloti/year (1
US dollar = 8 Maloti). The projected value 10 years after rehabilitation is 450 000
Maloti/year.

The wetlands that were identified to represent various wetland types in the mountains of
Lesotho by Marneweck and Grundling (1999) include the wetlands of Bokong, Maliba-
Mats’o, Motete, and Matsoku rivers. They are major catchments of the Katse reservoir. It
was noted that the Bokong wetlands are facing a serious problem of land degradation owing
to soil erosion due to the high altitude system, steep topography, and increased
anthropogenic influence on land resources (Lesotho Highlands Development Authority,
1998). Gully erosion accelerated by grazing pressure has been a historic record. Schwabe
(1995) articulated the causes of the damage of these wetlands to overgrazing and trampling
by livestock. According to Mokuku et al. (2002), the degradation was exacerbated by the
construction of the road to Katse dam that traverses through these wetlands. Marneweck
and Grundling (1999) observed the impact of the road causing gully erosion to the extent of

draining the wetlands.

The Bokong catchment was designated as a reserve as part of the strategy to conserve the
environment around the Malibamats’o river at the Katse LHWP. It was renamed the Bokong
Nature Reserve (BNR) within the biosphere nature reserves. Under this BNR, grazing has
been discontinued since 2005. Communal grazing was the major land use prior to the

designation of the BNR, therefore, there was no pristine condition in the BNR. Even though



the degraded wetlands of the Bokong have been recommended for restoration, the success
of such restoration activities should be informed by hydrologic information. The purpose of
the restoration activities is to recreate the former or new hydrology which is a primary factor

influencing plant community and ecosystem functioning.

Restoration success depends on properly restoring the former hydrology. Wetland
restoration projects frequently fail or fall short of expectations because the hydrology of the
proposed site was not properly assessed (Mitsch & Gosselink, 2007). It is important that
long term monitoring of the hydrologic variables, including groundwater flow, surface water
recharge, water level fluctuation, precipitation input, and others, are evaluated to enable

restoring wetland hydrology to become "easier" and a more attainable goal (Zedler, 2000).

1.3 PROBLEM STATEMENT

Lack of continuous long-term data on hydrology in many countries has restricted the use of
hydrologic data for assessment of wetland hydrologic functions (Kotze, 1994; Clausnitzer et
al., 2003; Karathanasis et al., 2003; Vepraskas, 2008). While direct evidence of saturation
may be used as an indicator, the seasonality of wetland hydrology also makes it difficult to
use hydrologic data for wetland delineation which is a prerequisite in the restoration of
wetlands. There is generally little information from which to define minimum hydrological
thresholds for any wetlands in Lesotho. Thus the hydrology can only be assessed by the
biotic and soils criterion. It is expected that a sufficient period of water saturation must be
present to create anaerobic conditions to develop wetland indicator soils and support
wetland indicator plants. Therefore, indicators of wetland hydrology such as vegetation and
soil are used to identify and delineate wetlands, as well as assess wetland performance
(Hurt, 2005; Vepraskas, 2008).

The problem of using vegetation indicator is that it tends to change when hydrology
changes, but soil indicator remains for a longer time in the soil. There are no soil indicators
that have been developed or adopted for the Lesotho wetlands. The high organic matter
content associated with natural fertility, high Fe content in the parent material, and mixing of
soil materials due to cattle grazing and rodent’s disturbance can also mask redoximorphic
features in the surface soil horizons. The aim of this study was therefore to determine
spatial variability of soils of Bokong and the key hydric soil indicators for the evaluation of
wetland hydrology. This should provide a list of minimum soil data sets to evaluate wetland

hydrology for proper wetland delineation and management.



1.4 HYPOTHESES

The study was based on the hypotheses that:

o The relationships between water regimes and redoximorphic features will not hold if
microbial activity is limited by soil pH, soil temperature, low organic matter, or low Fe
content in the soil.

¢ Wetland hydrology determines the redox potential gradients which will influence

redistribution and accumulation of soil elements and soil organic carbon in the profile.

1.5 RESEARCH OBJECTIVES
The aims of this study were:

o To determine the soil properties and hydric soil indicators in selected toposequences.

e To determine the relationship between soil redoximorphic features, redox potential,
and hydrology.

e To determine the distribution of Fe and Mn oxides between hydric and non-hydric
soils.

e To determine the distribution and stock of soil organic carbon between hydric and

non-hydric soils.



CHAPTER 2
LITERATURE REVIEW

2.1 INTRODUCTION

Wetlands have gained global interest since the Ramsar Convention of 1971 that aimed at
protecting the remaining wetlands and the wise use thereof. This initiated many national
regulatory instruments or enforcement of previous existing laws to protect wetlands.
Nevertheless, the existing legislations in most countries are not specific on wetlands but are
aimed at restricting utilization of wetlands for the purposes of conserving other natural
resources. The policies and Acts that deal with wetlands protection in Lesotho include the
Government of the Kingdom of Lesotho (1969; 1999; 2007; 2008a; 2008b; 2008c). These
are the Land Husbandry Act 1969, which restricts cultivation and grazing of wetlands for soil
conservation purposes, while the Livestock and Range Management Policy of 1999 regulate
the grazing pressure on the wetlands. The Lesotho Environmental Bill of 2000 was followed
by the development of environmental impact assessment (EIA) tools and guidelines for the
conservation of natural resources. The Bill led to the enactment of the National
Environmental Act 2008 which encompasses protection of all natural resources and prevails
over all laws where inconsistencies exist. The Bill also initiated the development of Water
and Sanitation Policy 2007, which shifted focus to ecological protection and integrated
management of water resource including wetlands. The Water Act of 2008 also restricts the
use of wetlands for purposes of conserving water resources. However, there is still no

specific National Wetland Policy in Lesotho.

Similarly in South Africa, laws protecting wetlands are presented in various acts such as the
Conservation of Agricultural Resources Act of 1983, the Integrated Environmental
Management and Environmental Conservation Act of 1989, the National Environmental
Management Act of 1998, and the National Water Act of 1998 (Republic of South Africa,
1998). National Wetland Policy is embedded in the Policy on the Conservation and
Sustainable Use of South Africa’s Biological Diversity of 1997 (Department of Environmental
Affairs and Tourism, 2006). Guidelines for delineating wetlands used the definition given in
the National Water Act 36 of 1998 (DWAF, 2005). The Act defines a wetland as “land which
is transitional between terrestrial and aquatic systems where the water table is usually at or
near the surface, or the land is periodically covered with shallow water and which under
normal circumstances supports or would support vegetation typically adapted to life in
saturated soil” (Republic of South Africa, 1998). The Lesotho Water Act No.15 of 2008 also



adopted the South African definition of wetlands. The Act identifies lands between terrestrial
and aquatic systems as wetlands, and the aquatic ecosystems are not part of the delineable
wetlands since they are easy to identify. It also implies that any saturated land without

anaerobic conditions is not a wetland because vegetation would be different.

In the United States of America, a wetland is synonymous to a hydric soil, defined as “a soil
that formed under conditions of water saturation, flooding, or ponding long enough during the
growing season to develop anaerobic conditions in the upper part’” (Hurt et al., 2002). The
definition was used to serve the Food security Act 1989 (USDA-NRCS, 2010) and Clean
Waters Act 1972 (U.S. Army CoE, 1987). The Intergovernmental Panel on Climate Change
(IPCC) defines wetlands as: “lands that are inundated with water for at least part of the year
leading to physio-chemical and biological conditions characteristic of shallowly flooded
systems” (Watson et al., 2000). The accord in wetland definition is that they have wetland
hydrology, soils are hydric, and they support hydrophytic plant communities (Skaggs et al.,
1994; Hurt & Carlisle, 2001; Karathanasis et al., 2003). The concept of hydric soil has been

adopted by many countries to represent wetland hydrology.

This literature review focused on the measurements of soil water saturation and anaerobic
conditions required to satisfy wetland hydrology and the development of a hydric soil. The
review tried to establish consensus and gaps among wetland studies on the relationship
between wetland hydrology and hydric soils and the use of pedo-transfer functions to
describe the wetland hydrology. Lastly, the redistribution and accumulation of soil properties

as influenced by water saturation is reviewed.

2.2 HYDRIC SOILS

Hydric soils experience repeated prolonged saturation or inundation to develop anaerobic
conditions in the upper part of the soil profile. The United States of America through the
National Technical Committee for Hydric Soils (NTCHS) has developed specific tools for
determining and delineating hydric soils in the field (USDA-NRCS, 2010). This was to
complement the insufficiency of the USDA soil taxonomy system (Soil Survey Staff, 2010) to
delineate wetlands. The USDA soil taxonomy aquic moisture regime is a saturated
anaerobic condition (Soil Survey Staff, 2010); however, the moisture control section is too
deep to include many soils which are not hydric. The newly developed NTCHS tools
included the criteria on the water table levels as additional data to the soil survey data. The
NTCHS hydric soil criteria provide soil information such as natural drainage classes, water

table depth, flooding, and aquic moisture regime (Hurt & Carlisle, 2001; Mausbach & Parker,



2001; USDA-NRCS, 2010). The USDA soil taxonomy system was then used to develop a
hydric soil list using the criteria. The list includes all Histisols except Folists, and other soils
in the aquic suborders, great groups, or subgroups that have a high water table (Federal
Register, 1995).

The soil classification of South Africa does not specify or determine soil moisture classes or
soil drainage classes (Soil Classification Working Group, 1991), yet they are very important
in differentiating different soil morphology. Soil moisture regime is not required to classify
soils even at family level. A family can contain a wide range of water regimes hence have
different morphological features. Kotze et al. (1996) developed a similar criterion to NTCHS
for the hydric soils of South Africa. Their three-class soil water regime (permanent, seasonal
and temporary) system is used as a hydric soil indicator to delineate wetlands in South
Africa (DWAF, 2005).

The wetland delineation manual of South Africa (DWAF, 2005) considers four wetlands
indicators, including terrain unit, soil form, soil wetness and vegetation indicators. While a
combination of the four indicators may be used in delineation, the existence of the soil
wetness indicator is primary and vegetation indicator is confirmatory (DWAF, 2005). This
criterion uses the soil forms in the Soil Classification of South Africa to delineate wetlands.
The soil forms indicators in the permanent zone include the Champagne, Katspruit,
Willowbrook and Rensburg forms. The existence of any of the four soil forms represents a
wetland (DWAF, 2005). The temporary and seasonal zones appear in many forms and

families in the SA Soil Classification system.

Wetland soils in Australia belong to five soil orders in the Australian Soil classification (Dear
& Svensson, 2007). They are soils which are seasonal and permanently wet for two to three
months in a year (Hydrosols), soils of aquic suborders (Podosols, and Vertosols), soils with
high organic carbon content (Organosols), and soils with high water table because of human
interference (Anthroposols). The Australian Soil classification has similar problems to the
USDA soil taxonomy in defining the moisture control section and most soils listed as hydric

may not support hydrophytic plants because saturation occurs too deep in the profile.

Bryant et al. (2008) prepared a comprehensive report on the wetland soil indicators and
methodologies to support wetland definition with respect to hydric soils in Australia. A field
guide to soil indicators is a user friendly system which separates indicators into more and
less conclusive indicators. The hydric soil indicators were included in the wetland

delineation manual of Department of Environment and Resource Management (2010). The



manual recommends the independent use of the more conclusive soil indicators to identify

wetlands, while indicators such as mottles require consideration of the current hydrology.

The World Reference Base (WRB) for Soil Resources (FAO, 2006) classifies hydric soils as
Gleysols and uses diagnostic properties such as gleyic properties, gleyic colour and stagnic
colour patterns. Also all organic soils (Histisols) are hydric except those developing on
bedrocks with shallow depth and high drainage. Stagnosols are also other major soil groups
introduced in WRB in 2006 that are hydric. Van Ranst et al. (2011) observed the possibility
of a serious overlap between Stagnosols and other major soil groups with stagnic properties

such as Planosols especially in Ethiopian highlands.

The hydric soil lists developed by all of the above mentioned wetland delineation tools still
require on-site field verification. However, there are other soils that do not require field
confirmation such as Histisols and the four SA soil forms in the permanent zones. This has
made it possible to use soil surveys to preliminarily map wetlands and use site investigations
to identify and delineate wetlands (McBratney et al., 2003; Thompson et al., 2012). Spatial
information on soils allows the use of geographic information systems to update
conventional maps and to predict the distribution of hydric soils (Tiner, 1999; Galbraith et al.,
2003). The digital elevation models, satellite imageries, and soil survey data are used prior
the soil survey to reduce the time and labor required for detailed field survey (Galbraith et al.,
2003). This can be followed by detailed large scale soil surveys (scales of 1:400 to 1:10

000) and onsite investigations to effectively identify hydric soils.

2.3 WETLAND HYDROLOGY MEASUREMENTS

Wetland hydrology is the key variable in wetland ecosystem functioning (Tiner, 1999). The
area that is wet, but has not developed anaerobic conditions does not have a wetland
hydrology. Therefore, the necessary wetland hydrology parameter measurements include
both the measuring of the soil water saturation and the determination of reducing conditions.
The common methods used to measure these parameters are reviewed and employed in

this study.

2.3.1 Determination of soil water saturation

Soil water saturation in wetlands is determined by monitoring the water table using
monitoring wells such as piezometers. The purpose of recording the water level is to

determine the depth, frequency, duration, depth, and the change in the water storage
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budget. A piezometer is a water well that measures the hydraulic head and the vertical
direction of groundwater. It is constructed by a small diameter unslotted stand pipe or tube

open at both ends (Richardson et al., 2001).

Timing and frequency of the water table measurements is an important factor in establishing
relationships between redoximorphic features and water table. Measurements taken at
weekly and bi-weekly intervals are recommended (Morgan & Stolt, 2006). Water table
response reaches the maximum height immediately after precipitation, therefore, the
maximum water level can occur between site visits. Morgan and Stolt (2004) used the
maximum water level recording device (MWTRD), to record highest water table level
reached between site visits. The device was made up of a metal rod inserted in a water
table well fitted with a float and a magnet. In this study the adjusted hydrographs using
MWTRD accounted for >80% of the underestimation of the height of the water table
compared with the weekly measurements. However, the two weeks interval has accounted
for the saturation duration at which anaerobic conditions may develop (Morgan & Stolt,
2006).

Soil water saturation depends on hydrodynamics and the hydroperiod of the system. The
hydrodynamics refers to the movement of ground and surface water to and from a given
wetland, while hydroperiod is defined as temporal fluctuations in water table (Richardson et
al., 2001). Hydrodynamics affect the hydroperiod through controls on the water balance
where the losses balance the gains plus or minus storage. The losses include
evapotranspiration and the gains include precipitation. The components of the water budget
include precipitation (P), surface water inflow (SWI), groundwater inflow (GWI),
evapotranspiration (ET), surface water outflow (SWO), groundwater outflow (GWO) and

change in storage (AS) and they are related as follows:

P+ SWI +GWI = ET + SWO + GWO + AS (2-1)

There are three soil water interaction zones in the profile. These are the saturation, vadose,
and capillary fringe zones (Silliman & Dunn, 2004). The saturated zone is the free water and
the water flow responds to local water table recharge. This can be measured with a
piezometer. The vadose zone is characterized by a mean vertical flow and the water is held
under tension. The capillary fringe is between these two extremes. The soil water moves
vertically up through capillary rise (Richardson et al., 2001). The depth occupied by this
upward flow is called the capillary fringe (Silliman & Dunn, 2004). The thickness of the
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capillary fringe (Richardson et al., 2001) depends upon the size of soil pores (r), resistance

of gravity (g) and the density of water (p):

Hc = 20(cosy)/rpg (2-2)

Where: Hc is the capillary rise, o is the surface tension and y is the contact angle. In a
wetland the capillary rise of medium sand with an effective diameter of 0.1 mm, is 150 mm
above the water table (Richardson et al., 2001). This means that the capillary fringe keeps
the soil wet to the surface as long as the water table is within the rooting zone of 300 mm.
Daka (1993) found that the availability of water during the dry season is an important factor
in classification of wetlands in semi-arid regions. He observed that Dambos of Zambia
become completely dry and without groundwater within several metres depth in dry seasons
and a fall of 1 to 2 m of the water table from the soil surface induces capillary rise (Daka,
1993).

The capillary fringe presents zones of accumulations, and is important in interpreting the
depth of the water table. Fiedler et al. (2004) postulated that mobilised elements in the
reducing zones are transported upward along redox gradients through capillary rise and
accumulate in the capillary fringe above the depth of the fluctuating water table. It can
therefore be deduced that, since mobile Fe** and Mn?* ions diffuse upward and precipitate in
the capillary fringe, the measurement from the soil surface to the upper area of Fe and Mn
accumulations can be an interpretative tool in the determination of a seasonal water table
(Dear & Svensson, 2007).

2.3.2 Determination of reducing conditions

The determination of reduced soil conditions is required to document hydrological
performance standards linked to wetland function. Measurement of redox potential has
been a challenge for a long time (Rabenhorst & Castenson, 2005). The common approach
to determine reducing conditions in soils is either to measure the redox potential using

platinum electrodes or to use the, a, a dipyridyl colour indicator dye (Bohn et al., 2001).

Redox potential is a voltage that is measured to predict the types of reduced species that
would be expected in the soil solution (Vorenhout et al., 2004). Free electron concentration
has specific activity expressed as potential electron (pe). Potential electron is the negative

logarithm of the electron concentration in a solution. However, potential electron cannot be
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measured but Eh can be measured to represent the reducing intensity. Potential electron is

related to redox potential (Eh):

Eh(mV)
59

pe = —log(e™) = (2-3)
A solution with a high electron activity (low pe) and a low Eh value has a high concentration
of free electrons and will be reducing (Vepraskas & Faulkner, 2001; Fiedler et al., 2007).
The one with a low electron activity (high pe) and a high Eh will have no free electrons and
will maintain reducible elements in their oxidized forms. Therefore, Eh measurements are
used to quantify the tendency of the soils to oxidize or reduce elements (Fiedler & Sommer,
2004).

One of the more useful calculations in redox reactions is the Nernst Equation. This equation
allows for the calculation of the electric potential of a redox reaction in "non-standard"

situations:

_p_ 59 (Red) _ 59mV
Eh(mV) = E - log—(OX) -

(2-4)

The Nernst equation describes that the Eh value at equilibrium will vary according to the soil
pH and the concentration or activity of the oxidised and reduced species in the soil
(Vepraskas & Faulkner, 2001). The equation is used to construct Eh/pH diagrams used to
monitor reducing species in the field under different conditions. Eh measurements obtained
in the field are evaluated along with pH data and Eh/pH phase diagram to determine the type
of species reduced at certain Eh and pH levels. For example Severson et al. (2008)
determined the threshold Eh value for the beginning of iron reduction from a Eh/pH phase

diagram developed for the mineral FeOOH.

Eh(Fe2*) = 1409 — 177pH(pH < 7.5) (2-5)
A correction for pH is given as:

Eh — corrected = Eh — 59 * (pH 7) (2.6)
Platinum electrodes used in the laboratory are easily available but only very few probes are

commercially available for in situ measurements such as the platinum tip or copper electricity

wire (Wafer et al., 2004), the plastic/epoxy based combination electrode (Vorenhout et al.,



13

2004), and glass fiber based (Wafer et al., 2004). Most researchers construct their own
electrodes. Instrumentation problems pose challenges for permanently installed Eh
electrodes because of leakage at the platinum wire/copper wire junction of the Pt electrodes.
Furthermore, lack of a stable, long-term salt bridge connection result in longer stabilization

times especially in low moisture content soils (Dowley et al., 1997).

Continuous redox potential measurements in the field are important, however,
thermodynamic equilibrium is never reached in natural soil systems and as a result redox
measurements tend to be less stable and less reproducible (Dowley et al., 1997; Siggs,
2000; Vepraskas & Faulkner, 2001; He et al., 2003; Veronhout et al., 2004; Fiedler et al,
2007; Vepraskas, 2008; Rabenhorst et al., 2009). Redox potential can fluctuate within short
distances of 1 mm (Fischer, 2000). Vepraskas & Faulkner (2001) associated this with
oxidation of organic tissues and reducing reactions in microsites. Hence, several
measurements taken from a horizon should not be averaged but rather ranked to show
ranges of Eh within a horizon (Fischer, 2000). To overcome temporal and spatial variability
in redox measurements data should be collected through both saturating and draining cycles
and by replicating the measurement. At least five Pt electrodes are recommended per depth
(Vepraskas & Faulkner, 2001).

The most recent approach for assessing reduction in soils known as IRIS tubes (“Indicator of
Reduction in Soil”) was introduced by Jenkinson (2002). The method uses PVC pipes
(approximately 21 mm in diameter) painted with synthetic ferrihydrite, which are then
inserted into the soil. The basic concept of this approach is that synthetic ferrihydrite will be
reduced under anaerobic conditions and removed from the PVC tubes leaving white portions
of uncoated tube (Castenson, 2004; Castenson & Rabenhorst, 2006; Rabenhorst, 2007;
Berkowitz, 2009; Rabenhorst, 2009). The white portion of the tube then represents the
degree of reduction. A more quantitative analysis of the depleted area on the tube using

digital images softwares still poses some challenges (Jenkinson & Franzmeieir, 2006).

The, a dipyridyl method is a colour indicator that reflects either the presence or absence of
Fe? in the soil (Bohn et al., 2001). The qualitative nature of the method makes it ineffective
to determine the concentration of Fe®" that can lead to the development of redoximorphic

features.
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2.4 DEVELOPMENT OF REDOXIMORPHIC FEATURES
2.4.1 Redox reactions and redoximorphic features

Redox reactions are microbial processes driven by soil microorganisms that use organic
compounds for photosynthetic energy (Bohn et al., 2001). The decomposition of organic
compounds under aerobic conditions uses O, as the electron acceptors. Under anaerobic
conditions, secondary electron acceptors are used in the order: Nitrate, MnO,, Fe(OH),,
S0,%, CO,, and finally H* (Vepraskas & Faulkner, 2001). Molecular O, yields higher energy
for oxidation (-686 kcal mol™) than secondary electron acceptors hence more electron
acceptors are required to meet microbial energy demands. Constant reducing conditions
therefore result in decreasing electrode potential. Decreasing electrode potential is followed
by reduction and redistribution of different species of secondary electron acceptors and
development of redoximorphic features (Table 2-1; Bohn et al, 2001). Redoximorphic
features are colours and odour that develop due to redistribution and accumulation of
reducible elements under alternating unsaturated and saturated and anaerobic conditions
(SSSA, 1997; Hurt et al., 2002; USDA-NRCS, 2010).

The unsaturated aerobic soil has relatively high Eh (>500 mV at soil pH 7). In water
saturated soil, there is a rapid exhaustion of O, and NO3” accompanied by a falling Eh to 400
mV at pH 7 where MnO, is reduced (Fiedler et al., 2007). The mobile reduced Mn* may
accumulate as black coloured bodies (Mn**) if the electrode potential increases again after
drainage. The Eh continues to fall as long as water saturation and reduction continues
(Vepraskas, 2001). At Eh values below 200 mV at pH 7 Fe*" is reduced to a mobile Fe**
which will be oxidised again and accumulate when the Eh rises. lron accumulations change
the matrix colour to yellow, orange and red. If the soil is frequently reducing, Fe* is lost
through leaching from the horizon (Fiedler & Sommer, 2004). The leaching of Fe?* from a
soil horizon leaves low chroma grey soil colours (Bohn et al., 2001). The accumulation or
loss of Fe is accompanied by accumulation or loss of Mn too, and the redoximorphic
features that are formed represent either accumulation or loss of both elements. When the
Eh reaches values below -150 mV, SO,* may be reduced to H,S gas. This usually requires
a relatively long period of water saturation and anaerobic respiration (Vepraskas, 2001).
This feature is identified by the odour similar to that of rotten egg. All the mentioned
redoximorphic features can be identified in the field and used to identify and define the

wetland hydrology.
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Table 2-1 Half reaction Redox potential measured in soil (Bohn et al., 2001).
Reducing reactions Eh value Redoximorphic features Examples of features
(pH7) mV  formed

0, +4e~ +4H* - 2H,0 600 to 400  Organic C features Organic and some black
A horizons

MnO, + 2e” 4H* & Mn2?* + 2H,0 400 to 200 Manganese-based Manganese masses,

features black and grey mottles

2FeO0H + 4e~ + 6H* & 2Fe,, + 4H,0 300to 100  Iron-based features Iron masses, red, yellow
and grey mottles

S0,%” 8e~ 10H* — H,S + 4H,0 -150t0 0 Sulfur-based features Odour of rotten egg gas

H* + e - 1/2H, -220 to -150

2.4.2 Types of redoximorphic features

Redoximorphic features are described by their type, abundance, size, contrast, colour, and
distinctness of boundaries. Hurt et al. (2002) divided redoximorphic features into redox

concentrations, redox depletions, depleted matrix, and reduced matrix.

2.4.2.1 Redox concentrations
Reduced forms of Fe or Mn accumulate under aerobic environments where they oxidise to

form concentrations of soft masses on the matrix, pore linings on ped surfaces and along the
root channels or cracks (Vepraskas, 1995; Vepraskas, 2001). These features are often
called high chroma mottles. A high chroma of greater than 4 represent colour ranges from
yellow, orange and red. Soft masses are patches of high chroma within the matrix formed
as a result of Fe and Mn accumulation under oxidised environments on the soil particles.
The pore linings are accumulations on pore surfaces or occur as high chroma bodies on
matrix surfaces next to the pores. Pore linings are similar to an oxidised rhizosphere, which
develop along root channels of growing hydrophytic plants at the root soil interface.
However, the pore linings can also develop at the capillary fringe. Jacobs et al. (2002)
cautioned the use of redox concentrations in identifying hydric soils because these features
may reflect either capillary action up from the zone of saturation, or high water table levels

that occur during extreme rainfall events.

The soft masses may harden to form nodules or concretions. Nodules and concretions are
hard spherical bodies of cemented Fe®* differentiated by concentric layers in their internal
structure of the latter indicating repeated processes. Nodules and concretions are never
used to define hydrology because they may be deposited material and not formed in place
(Vepraskas, 2001).
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2.4.2.2 Redox depletions
The loss of Fe-Mn and clay under anaerobic conditions is observed by low chroma bodies of

grey colours called redox depletions (Fiedler & Sommer, 2004). They are also called grey
mottles. Fe depletions and clay depletions are two kinds of redox depletions differentiated
by their texture in relation to the matrix. Clay depletions will result in coarser texture than the
matrix due to loss of both Fe and clay while Fe depletions have the same texture as the
matrix. Clay depletions are not important in hydric soils since they occur lower than the
rhizosphere (Vepraskas, 2001). A chroma of 2 or less is expected from the depletions
according to the USDA soil taxonomy, while the South Africa soil classification system
describes low chroma as 2 or less if the value is less than 6 and chroma 4 if the value is

above 6 except for 5Y colours (Soil Classification Working Group, 1991).

2.4.2.3 Depleted matrix
If the redox depletions have occupied the whole matrix, it is considered a depleted matrix.

According to USDA-NRCS (2010) a depleted matrix is a low chroma matrix of less than 2
and value of 4 or more. It develops as a result of loss of Fe-Mn under longer saturated and

reduced periods than the duration required to form grey mottles.

2.4.2.4 Reduced matrix
Reduction of iron and subsequent gleying develop the reduced matrix. It has a low chroma

in-situ because of the presence of Fe?* but the colour changes immediately when exposed to
air. It is also called gleyed matrix identified by bluish-grey or grey colour from the gleyed
pages of the Munsell colour book (Hurt et al., 2002). Time required to observe colour
changes is uncertain and if it is used as an indicator of wetland hydrology. A colour test is

also used to show the presence of Fe*".

The reduced and depleted matrixes are also termed gley soil colours (Vepraskas, 2001).
The two have similar colours but are differentiated by change of colour when exposed to air.
If Fe?* is present the matrix chroma increases in the case of the reduced matrix. The G
horizon in the SA soil classification is a reduced matrix with blue or green tints with or
without mottles. The E horizon also has grey matrix colours similar to the G horizon (Soll
Classification Working Group, 1991). The E horizon is the result of weathering and
eluviation of colloidal material including iron oxides from the lower part of the A horizon to
form the Bt or Bs horizons (Soil Survey Staff, 2010). The elluviated layer has a low chroma
because most colouring agents have been leached out. The genesis of the E horizon
depends on the climatic conditions and the drainage of the underlying horizon. It may have

high chroma mottles if periodic saturation occurs due to impermeable underlying horizon.
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Ferrolysis which is the acid decomposition of clay minerals and may influence the formation
of E horizon under periodic saturation due to alternating oxidation and reducing conditions
(Brinkman, 1970; Van Ranst & De Conink, 2002; Lindbo et al., 2010). However, the E
horizon is excluded from a depleted matrix unless it has 2% or more of high chroma mottles
(USDA-NRCS, 2010).

2.4.3 Soil organic carbon features

Anaerobic decomposition rates of organic matter are slower by 10-30% compared to aerobic
decomposition rates (Hurt, 2005). Reduced mineralisation of organic matter result in the
accumulation of organic matter and the development of an O horizon with black to dark grey
colours differentiated from the A horizon by a higher chroma of 3 or more of the latter
(Bridgham et al.,, 2001). The South Africa soil classification has the O horizon as a
diagnostic horizon formed under prolonged saturation. The Organic O horizon is a surface
horizon with organic carbon content >10% throughout the depth of 200 mm (Soil
Classification Working Group, 1991). USDA soil taxonomy and WRB has the Histic
epipedon as a layer with organic soil material and is characterised by saturated reduced
conditions for 30 or more consecutive days (Soil Survey Staff, 2010; FAO, 2006). According
to the FAO (2006) and Soil Survey Staff (2010) the organic soil material must have 12% or
more organic carbon content when added to clay content multiplied by 0.1 or must have 18
percent organic carbon of the fine earth. The Organic O horizon and Histic epipedon are

therefore organic carbon features of reduction.

Another indicator to quantify the thickening and darkening of surface horizons as a result of
water saturation is called Profile Darkness Index (PDI) (Bell et al., 1995; Thompson & Bell,
1996; Thompson & Bell, 1998; Thompson & Bell, 2001). It is calculated for each horizon
with Munsell value of 3 or less and chroma of 3 or less. It is expressed as the total sum of
each horizon thickness with Munsell colour value of 3 or less and chroma of 3 or less

(equation 2-7). The thickness is divided by Munsell colour value and chroma.

n Ahorizon thickness

PDI = Yisi—wcp 1

(2-7)

Where:

The A horizon thickness is measured in centimetres, V; is the Munsell value and C; is the

Munsell chroma. However, a threshold value that separates hydric and non-hydric soils
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should be set which depends on local climate and parent material, hence it requires local

calibration.

2.4.4 Problems in using redoximorphic features

Four soil conditions are needed to form redoximorphic features in soils: i) Saturation with
stagnant water inorder to exclude oxygen (Franzmeier et al. 1983; Vepraskas & Wilding,
1983; Dear & Svensson, 2007). (ii) Suitable pH for microorganism to survive. Thompson
and Bell (1998) observed that iron does not reduce in high pH soils even under anaerobic
conditions.  (iii) A supply of organic C, which serves as the energy source for
microorganisms (Vepraskas & Faulkner, 2001), and (iv) suitable soil temperature
(Vepraskas, 2001). There is a lag period between onset of saturation and the onset of Fe**
reduction, which depends on both soil temperature and organic matter percentage which
directly influence the microbial activity (Vepraskas, 2001). It takes longer for soil to be
reduced in low soil organic carbon content and temperatures below 5°C (biological zero;
Burdt et al., 2005).

Relict redoximorphic features are footprints left by previous soil water fluctuations, but are
not active due to geologic changes (Hurt, 2005). They are useful in identifying soils whose
hydrology has changed. However, Vepraskas (2001) indicated that morphology alone
cannot identify relict features with certainty but hydrological data are necessary to confirm if
they are relict. The morphological characteristics that can distinguish between contemporary
and relict redoximorphic features are described below (Vepraskas, 1995; Greenberg &
Wilding, 1998; Hurt, 2005). Contemporary features have diffuse boundaries, indicating that
they are continuing developing, while relict features have abrupt boundaries. Contemporary
Fe depletions are not overlain by redox concentrations which are overlain by oxidized stable
macropes in relict features. Relict redox concentrations are redder than 5YR and value and
chroma less than 4. Contemporary pore linings may be continuous while relict pore linings

may be broken.
2.5 INTERPRETING SOIL WATER SATURATION FROM REDOXIMORPHIC FEATURES

The depth of the water table fluctuates greatly throughout the year with the highest levels
closest to the surface occurring during the high precipitation or low evapotranspiration
seasons of the year. This variation in water table depth is called seasonal saturation

(Severson et al. 2008). Seasonal saturation can be represented by Seasonal High
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Saturation (SHS) or Seasonal High Water Table. This is the highest expected annual

elevation of soil water saturation or water table (Hurt, 2005; Morgan & Stolt, 2006).

The seasonal high water table is widely applied as a hydrological criterion for many land
uses. The few include delineation, restoration, and protection of wetlands criteria (He et al.,
2002; Hurt, 2005; Severson et al. 2008), onsite wastewater design and construction criteria
(Galusky et al. 1997; He et al., 2003; Morgan & Stolt, 2006; Humphrey & O’Driscoll, 2011a;
2011b), and land suitability for agricultural use criteria (Soil Survey Division Staff, 1993).
The determination of seasonal high water table requires the presence of a wet season or
long term hydrological data. The long term hydrologic data is not easily obtained, hence
redoximorphic features are used. However, most hydropedological correlation studies are
only based on one to three years of weekly or bi-weekly water table measurements (Morgan
& Scolt, 2004; 2006; Vepraskas, 2001; Lindbo et al., 2010). Few studies have 10 years data
(Zobeck & Ritchie, 1984; Khan & Fenton, 1994). Zobeck and Ritchie (1984) compared the
length of water table monitoring study periods from 1 year to 10 years and recommended a
minimum of three years water table monitoring period which does not give large deviations

like one to two years studies.

Furthermore, the determination of seasonal high water table using redoximorphic features
makes the definition of seasonal high water table ambiguous. Redoximorphic features are
indicative of the depth at which the water table rises and remain at the depth for a certain
period. The period differs with soil texture, soil organic matter content, soil pH, soil
temperature, and iron content (He et al., 2002). The foregoing factors lead to confusion in

the interpretation of seasonal high water table from redoximorphic features.

2.5.1 Applications of redoximorphic features and soil water table studies

Studies that have interpreted soil water table in relation to redoximorphic features are
numerous considering the importance of the determinations. Soil drainage classes from soil
taxonomy (Soil Survey Division Staff, 1993; Schoeneberger et al., 2002) can also be
interpreted from redoximorphic features. Somewhat poorly drained, poorly drained, and very
poorly drained soils are associated with a water table at or close to the surface (Soil Survey
Division Staff, 1993; Tiner, 1999). Fletcher and Veneman (2008) described redoximorphic
features associated with soil drainage classes in New England as follows: Excessively,
somewhat excessively, well drained and moderately well drained soils do not have mottles
within the upper 2 meters of soil profile and the water table is below 2 meters. However,

moderately well drained soils can have Seasonal high saturation at 300 to 600 mm which
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last for a very short duration. Somewhat poorly drained soils have chroma 3 or 4 within 600
mm and cumulative saturation is higher than moderately drained. Poorly and very poorly
drained soils have grey subsoil with or without mottles and a water table at or near the
surface for a significant portion of the year. In poorly drained soils Fe depletions occur
higher in the profile and in well drained and moderately drained soils Fe depletions and

reduced matrix occur in deeper horizons (Jacobs et al., 2002).

The soil drainage classes and water regime describe the movement of water and moisture
condition of the profile but do not indicate the degree of water saturation (s-value). Degree
of water saturation is the fraction of pores filled with water, calculated as a ratio of volumetric
water content with respect to the soil pore volume (Hillel, 1980). Van Huyssteen (2004)
hypothesised that there is a level of water saturation at which a sufficient fraction of soil
pores are filled with water to interfere with normal oxidative respiration. The ratio is lower
than 1 as it would be expected in water saturated soils because of the effect of hysteresis
and the ratio of micropore to macropore porosity. Therefore, a soil with lower micropores
(compact soil) will hold less water to obtain the same degree of water saturation than a soil
with a high porosity. Hence, the degree of water saturation at which the soil becomes
anaerobic differs with soil types. The concept of degree of soil wetness takes into account

the capillary fringe concept.

Van Huyssteen et al. (2005) approximated that the onset of reduction in the soils in the
Weatherly catchment in South Africa will occur at a degree of soil water saturation of 0.7
(So.7). Jennings (2007) found the onset of reduction of a yellow brown B horizon to
correspond to Sy7s under laboratory conditions. Follow-up studies to this findings included
calculating the number of days in the year the s-value was 0.78 of porosity in a horizon
expressed as ADs»078 (Kuenene, 2008; Van Huyssteen et al., 2010; Van Huyssteen, 2012).
The number of days the water table remained at a particular depth could be fewer than the
ADq.97s. The cumulative saturation calculated from ADsso7 or ADs-g78 can also be used to

develop a wetland hydrologic criteria.

There are few studies on wetlands soils in South Africa but a lot of hydropedology work has
been developed on non-wetland soils which also included soils with wetness in the surface
and subsoil horizons (Van Huyssteen et al., 2005; Jennings et al., 2008; Kuenene, 2008;
Van Tol et al., 2010a; Van Tol et al., 2010b; Le Roux et al., 2010; Le Roux et al., 2011;
Smith & Van Huyssteen, 2011; Van Tol et al., 2012). Van Huyssteen (1995) realised that
soil colour is largely used in South Africa soil classification system to identify diagnostic

horizons and colour is a reflection of the soil water regime. Van Huyssteen (1995)
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determined the mean duration of free water saturation for some diagnostic subsoil horizons.
The duration of saturation increased in the order of red apedal B horizons (1.3%), yellow-
brown apedal B horizons (18.8%), yellow E (42.4%), and for grey E horizons (54.2%).

Van Tol et al. (2012) described the hydrological behaviour of the diagnostic horizons in a
profile to interpret spatial variability of hydrologic processes. The orthic A overlying a
neocutanic B was saturated only once in 6 months of the study period, while orthic A
overlying a G horizon at Weatherly catchment indicated saturated conditions throughout the
study period of 6 months. The neocutanic B horizon is free draining with no evidence of
saturation while a G horizon has a longer duration of saturation. The neocutanic B will result
in deep drainage while the G horizon will produce more overland flow. The presence of
impermeable layers such as a lithocutanic B will cause periodic saturation above it and it is
identified by a bleached overlying A horizon or E horizon. Van Huyssteen (2012) also
observed similar results on the same soils that the degree and duration of wetness of the
surface horizon depends on the underlying horizon. His study indicated that the duration of
water saturation in the orthic A horizons generally increased with order of occurrence of the
following subsoil horizons: neocutanic B < yellow-brown apedal B < yellow E < grey E < soft
plinthic B < G horizon. Lilly et al. (2012) supported studies that classify soils into functional

hydrologic units as a way to make soil information user friendly to the hydrologist.

The use of redoximorphic features for siting and construction of on-site wastewater systems
(OSWWS) throughout the United States by some regulatory agencies has been found
misleading (He et al., 2003; Morgan & Stolt, 2006). This is because the criteria either
consider only the abundance and not the type of redoximorphic features or consider the
depth of high water table and not the duration of saturation. Morgan and Stolt (2006)
observed that 13 out of 17 moderately well drained soils of New England had seasonal high
water table above the horizon with common redoximorphic features with a mean cumulative
saturation of 6% and 21% in loamy and sandy soils respectively. This also shows that soil
texture should also be considered when making interpretations for redoximorphic features.
The improvement from this criterion considers the kind of redoximorphic features that

develop due to longer water saturation to compromise wastewater treatment.

The shallowest depth to 2 chroma redox depletions sometimes referred to as the chroma 2
index is used to determine the depth of the seasonal high water table and has been used as
a crude index to regulate permits for on-site wastewater systems throughout the United
States (Franzmeier & Jenkinson, 2004; Humphrey & O’Driscoll, 2011a; 2011b). The 2

chroma redox depletions that occupy 2% of the soil volume are expected to indicate depth at
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which the water table is likely to rise and remain for 14 consecutive days seasonal high
water table. The seasonal high water table is used to set the maximum depth of the
dispersal trench bottom for effective treatment which will occur only when the separation

distance between the water table and the bottom dispersal trench is adequate.

The 14 days cumulative saturation has been found not suitable for development of 2 chroma
redox depletions in some soils (He et al., 2003; Vepraskas, 2008; Vepraskas & Caldwell,
2008). He et al. (2003) observed a mean of 21 days to develop 2 chroma colours for soils of
North Carolina. Humphrey and O’Driscoll (2011a) observed that seasonal high water table
occur above the low chroma depletions. This means that low chroma colours require
saturation longer than 14 days to develop. Therefore, if occurrence of a seasonal high water
table for 14 consecutive days compromises the treatment plant, the separation distance from
low chroma colours to the bottom of the dispersal trench must be increased to accommodate
the higher seasonal high water table above 2 chroma colours (Humphrey & O’Driscoll,
2011b).

Franzmeier and Jenkinson (2004) suggested the use of Dsat8, defined as “the depth below
which the soil is saturated more than 8% of the time”. This is equal to 29 cumulative days
for saturation to develop reduction depletions, which is equivalent to "20 or more
consecutive days or 30 or more cumulative days in a normal year" as used to describe

acquic conditions in USDA soil taxonomy.

2.5.2 Indices used to evaluate seasonal high water table

Indices are always suggested based on the scientific background underlying the
relationships. Galusky et al. (1998) derived the following redoximorphic indices for

correlation with estimated water table regimes:

o Depth to gleyed horizon with chroma of 2 or less and value of 4 (d_gley horizon).
e Depth to matrix chroma of 3 or 4 (d_34 horizon)
o Depth to first incidence of redox concentrations (d_conc horizon)

e Depth to first incidence of redox depletions (d_depl horizon)

The gleyed horizon is identified by matrix chroma of 2 or less indicating the depth of wet
season water table Galusky et al. (1998) or seasonal high water table (Veneman et al.,
1998). The G horizon in the South Africa Soil Classification (Soil Classification Working
Group, 1991) is a gleyed horizon with matrix chroma of 2 or 4. USDA-NRCS (2010)
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separates gleyed matrix from depleted matrix. A depleted matrix meets one of the following
colours: If the value is 4, the chroma should be 1 or 2 with common redox concentrations, if
the value is 5, the chroma must be 2 with redox concentrations or value of 5 or 6, the
chroma must be 1 or less with or without redox concentrations. The horizon becomes a
gleyed matrix if the matrix has a gley colour (USDA-NRCS, 2010).

Galusky et al. (1998) included the d_34 index as the horizon that has experienced longer
saturation. South Africa soil classification has a depleted (E) horizon with chroma of 4. This
indicates prolonged saturation with a partial removal of sesquioxides (Soil Classification
Working Group, 1991). Amongst the indices, the d_34 index is mostly highly correlated with
average monthly water table levels derived from a first order auto-regressive model (Galusky
et al., 1998). The correlation was highest in March when seasonal water tables are highest.
The gleyed matrix also has higher correlations during the same rainy season. Galusky et al.
(1998) observed low to poor correlations or no correlations with the d_depl/ and d_conc
respectively. The d_conc and d_depl indices indicate a fluctuating water table (Franzmeier
et al., 1983; Zobeck & Ritchie, 1984; Evans & Franzmeier, 1986; Vepraskas & Caldwell,
2008).

Two other indices established from the studies were used: C1 representing only chroma and
C2 represents both chroma and hue (Evans & Franzmeier, 1988). The C1 and C2 indices
have been tested in different locations but have given irregular results. The inconsistency of
these indices made them not to be further developed for use as indicators of seasonal high
water table. Other soil colour indices are associated with levels of dithionite extractable Fe
(Gobin et al., 2000; Minasny & Hartemink, 2011). Gobin et al. (2000) observed positive

correlation of colour index and redness index with dithionite extractable Fe.

Hydrologic models are being adopted as an alternative approach to estimate water table
data over long periods to determine frequency and duration for individual horizons at a few
benchmark sites (Skaggs, 1978; Skaggs et al., 1994; Galusky et al., 1997; Galusky et al.,
1998; Vepraskas & Lindbo, 2000; He et al., 2002; He et al., 2003; Vepraskas et al., 2004;
Vepraskas, 2008; Vepraskas & Caldwell, 2008; Le Roux et al., 2011). Short-term water
table data sets are extended into the past through modelling to develop indices of hydrology.
DRAINMOD is one hydrological model that has been extensively used in the USA to
calculate how often the soil is saturated within a given depth for a specific duration in a year
(Vepraskas & Lindbo, 2000; He et al., 2002; He et al., 2003; Lindbo et al., 2006; Vepraskas,
2008).
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Skaggs et al. (1994) evaluated seven hydrologic criteria sufficient to determine the presence
or absence of wetland hydrology using DRAINMOD. Each criterion includes the critical
water table depth, duration of high water table and the minimum growing season. Morgan
and Scolt (2006) used a simple model to calculate average monthly water table hydrograph
using daily temperature and rainfall as well as soil properties. The hydrographs were used
successfully to establish the relationship between cumulative frequencies of water table

versus depth of redoximorphic features.

Photography using digital cameras coupled with image analysis software has been used to
quantify soil colour in hydropedological studies (Van Huyssteen, 2004; O'Donnell et al.,
2010) O'Donnell et al. (2010) developed a new method of identifying and quantifying
redoximorphic features from soil cores using a digital camera and image classification
software which enable determination of uncertainty in visual estimates. It gave an accuracy
of 99.6% based on Munsell soil colour groupings used for redoximorphic features
identification. Rewetting of samples with deionized water demonstrated mean change in
identified low chroma and high chroma of 2% (SD £ 4) and 0.03% (SD + 0.3), respectively.

Advances to this study were to determine the minimum measurement scale which is
independent of sample size and accounted for spatial heterogeneity. O'Donnell et al. (2011)
called this representative elementary area (REA). The REAs for low chroma and high
chroma of clay-pan in Missouri, USA, are 1770 mm? + 0.40 and 2540 mm? + 0.70 for low
chroma and high chroma respectively. However, large sampling diameters of 80 mm for
simultaneous capture of low and high chroma and a 250 mm diameter core is recommended

to capture low chroma separately.

2.5.3 Indicators of seasonal high water table

Indicators of hydric soils for wetland delineation must be present within 500 mm of the soil
surface according to DWAF (2005) and within 300 mm for both USDA-NRCS (2010) and
Australia Bryant et al., 2008 respectively. These depths were chosen because they
comprise the rhizosphere of the most hydrophytic vegetation in the respective areas. The
hydric soil field indicators in the US are identified as “soil layers with precisely defined
colours, thickness and depth that contain morphological features of reduction in specific
amounts” (Vepraskas, 2001). Hydric soil field indicators developed by the NTCHS differ
between soil textures. There are indicators of organic layers for “all soils” regardless of the
soil texture, and indicators for “sandy soil materials” and “loamy soil materials” (Hurt et al.,
2002; USDA-NRCS, 2010). Dear and Svensson (2007) argued that USDA-NRCS (2010)
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hydric soils determination tools are subjective. However, they acknowledge that the tools
still remain the most comprehensive and commonly used methods for delineating wetland in

many countries.

Megonigal et al. (1993) observed the most useful field indicators in flooded forest soils of
South Carolina are a low-chroma matrix or a surface horizon high in organic matter with the
matrix chroma of a mineral horizon in the top 30 cm less than 1 when mottles are absent or
less than 2 when mottles are present. Hurt (2005) developed linkages between soil
morphological features and wetland hydrology for the entire coastal zone of the United
States, which indicates depths where soil saturation reliably occurs, or did occur on a regular
basis before site modifications. There is a strong correlation between the depth of seasonal
high saturation and the depth to approved NTCHS field indicators in hydric soils and the
depth to other organic and contemporary redox features in non-hydric soils which increase

the probability of success for the restoration and creation of wetlands.

A similar tool was developed for soils of Australia (Bryant et al., 2008). Some soil indicators
are conclusively used to identify wetlands in Australia. The soil indicators include organic
materials, acid sulphate soil material, and gleyed soil matrix colours. Redox concentrations
such as root channel and pore linings masses and decreasing matrix chroma are just used

as indicative of a wetland soil and require verification of the hydrology (Bryant et al. 2008).

Kotze et al. (1996) modified soil water regime classes which relate the soil morphology in a
wetland. This was because the soil moisture regime classes used by Cowardin et al. (1979)
to classify wetlands and Begg (1990) to differentiate between wetland types are too narrow
to identify in the field hence insufficient to apply for management purposes. The eight
Cowardin et al. (1979) saturation classes were narrowed to three soil water regimes which
are permanent, seasonal and temporary flooded or saturated regimes (Table 2.2). The three

soil water regimes are determined by the depth, duration and frequency of the water table.

Three types of morphological indicators including the matrix chroma, degree of mottling and
presence of sulphur based characteristics at different depths differ under each soil water
zone. Kotze et al. (1996) indicated that mottles are better developed in temporary and
seasonal zones than in permanently wet soils. The temporary soil water regime represents
the outer boundary of the wetland. This is the zone that was used by the USDA-NRCS
(2010) to develop the hydric soil indicators. If the indicators exist in the temporary zones, it
is assumed that soils in the interior of the wetland also are hydric. Delineators using these

tools are therefore expected to sample only the edge of the wetland.
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Table 2.2. A provisional three class system for determining the degree of wetness of

wetland soils based on soil morphology (Kotze et al, 1996).

Soil depth (mm)  Temporary Seasonal Permanent
0-100 Chroma 1-3 Low Chroma 0-2 Chroma 0-1
Few or no mottles Many mottles Few or no mottles
Low/intermediate OM Intermediate OM High OM
Nonsulphudic Seldom sulphudic Often sulphudic
100 — 400 Chroma 0-2 Chroma 0-2 Chroma 0-1
Few/many mottles Many mottles No/few mottles

2.5.4 Common generalisations and gaps in the relationship of redoximorphic features
and seasonal high water table

Broad generalisations that can be drawn from the studies that relate redoximorphic features

to soil saturation are as follows:

Mottle abundance initially increases then steadily decreases as the soil becomes
increasingly wet (Dear & Svensson, 2007). Abundance categories were evaluated
by Morgan and Stolt (2006).

The depletions with chroma 2 or less or Fe concentrations with chroma 6 or more are
related to water table fluctuations and saturation for a shorter time (Severson et al.,
2008). Galusky et al. (1998) derived the d_conc and d_depl indices.

Soils that are predominantly grey with brown or red mottles are often waterlogged for
a longer period than those that are yellow or brown with grey mottles (Dear &
Svensson, 2007). Galusky et al. (1998) derived the d_34 index.

The presence of depleted or reduced matrices indicates a longer duration of
saturation (He et al., 2002; Jacobs et al., 2002; Dear & Svensson, 2007). Galusky et
al. (1998) associated this with the water table of a wet season. Galusky et al. (1998)

derived the d_gley index.

Deficiencies in the studies that relate redoximorphic features to soil saturation are as follows:

Steeper redox gradients in wetlands result in more expressive redoximorphic
features than in drier soils with a lower water table. However, interpretations from
redoximorphic features in wetlands are less developed with little quantitative data
than those made from drier areas. For example, redoximorphic features are used
solely to regulate permits for waste disposal in the United States of America. Criteria
for seasonal high water table for a given period or ADss7 have not been developed
for wetlands soils of South Africa and Lesotho. McKenzie and MaclLeod (1989)

indicated that the establishment of a relationship between morphology and other soil
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properties is hindered by the nature of soil morphological data which lack ratio or
interval scales.

¢ Redoximorphic features associated with that seasonal high water table have not
been tested in enough areas to generalisation on their use. Kotze et al. (1996)'s
literature review and generalised three soil water regime class model in SA soils
have not been tested elsewhere in South Africa other than in Kwazulu-Natal.

o Criteria may not necessarily be the same for all wetland types with different climatic
conditions but technically sound criteria is important to allow regulation and

protection of wetlands functions.
2.6 SOIL PROPERTIES AND SOIL WATER SATURATION

The redox processes together with the soil water saturation redistribute elements in the soil.
The redistribution occurs through several processes such as element fixation, solubility,
diffusion, immobilization, and accumulations. Soil water saturation and anaerobic
environments change soil pH towards pH 7. This is due to the fact that H" ions are used in
reducing reactions (Vepraskas & Faulkner, 2001; Dear & Svensson, 2007). Ferrolysis also
produces acidity that decomposes clay minerals during alternating reducing and oxidizing
conditions in the soil (Brinkman, 1970; Schaetzl & Anderson, 2005). During reduction,
organic matter is oxidized into H,COs3, organic acids, and strong mineral acids (Van Ranst &
De Conink, 2002). Reducing conditions result in Fe** oxides being reduced to Fe?" and
under oxidising environments it will be re-oxidised and hydrolysed to produce H* (Schaetzl &
Anderson, 2005). The accompanying acidity releases interlayer cations from silicate clay
minerals which result in the destruction of clay minerals (Brinkman, 1970; Van Ranst & De
Conink, 2002; Schaetzl & Anderson, 2005).

Le Roux et al. (2005) indicated that ferrolysis is the underlying processes for the formation of
duplex and plinthic soils in the eastern Free State in South Africa characterised by acidity,
matrix colour, Fe-Mn mottles and abrupt textural change. On the other hand Van Ranst et
al. (2011) observed that ferrolysis cannot explain the genesis of duplex soils of Ethiopian
highlands since they have high pH and high reserves of weatherable minerals at the point of

the abrupt textural change.

The low soil pH mainly influences the solubility of various elements in the soil such as Mn?*,
Fe?, Ca?*, Mg%, K*, and Na*. At low pH values (<5.8), Ca®", Mg, and P solubility are
limited while AI** and Mn?* availability is increased and may reach levels toxic to some plants
(Kolka & Thompson, 2006). Craft (2001) indicated that in wetlands, plant growth is always
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limited by the availability of nutrients, with nitrogen and phosphorus being the most limiting.
Phosphorus is cycled through sediments as recalcitrant organic compounds or bound with
iron and aluminum at low pH and calcium at high pH. Ewing et al. (2012) observed
increased solubility of excess P in a drained wetland as compared to natural wetland soils
not used for agriculture, including significantly greater amounts of extractable P, Ca, Mg, Mn,
Zn and Cu. Increased solubility of residual P when wetland hydrology and anaerobic soil

conditions are restored may degrade water quality.

The distribution of Mn?* and Fe®* are also affected by redox potential and degree of
saturation (McDaniel & Buol, 1991). The distribution of these elements follows the
thermodynamic model since they become soluble and precipitate at different redox
potentials (McDaniel & Buol, 1991). Manganese is a more mobile component of soil
systems than Fe and is therefore subject to more extensive redistribution (McDaniel et al.,
1992). lIron precipitates at lower redox potentials than Mn. Mn?" does not precipitate until
draining has caused more oxidised conditions. Therefore Mn** is found in lower depths than

Fe** because Mn?* remains in a reduced, soluble form longer than Fe?* (Bartlett, 1986).

Moore (2006) determined the effect of hydromorphism on the Fe and Mn fractions. The ratio
of the oxalate to dithionite-extractable Fe fractions (Fe,/Feq) was higher in gleyed horizons
suggesting higher amounts of poorly crystalline extractable Fe. Jennings (2007) observed
an exponential (R? = 0.92) increase in Fe** concentration as degree and duration of water
saturation increases. Jokova and Filcheva (2003) observed high contents of dithionite and
oxalate forms in meadow bogs Gleysols indicating an intensive modern weathering process
due to the greater water influence. Olaleye et al. (2000) observed increasing dithionite
extractable Fe (Feq) with depth from 0.70 to 2.95% and from 0.50% to 2.70% in two pedons
in wetland soils of humid climates. Fiedler et al. (2004) indicated that elemental distribution
along redox gradients is a phenomenon linked to topography, upward and lateral diffusion
from the reduced areas along a concentration gradient. However, Fiedler et al. (2004)
recommended future research to validate the upward transport of elements using radioactive

labeled elements.

2.7 CONCLUSIONS

Wetlands are areas characterised by the presence of hydric soils and wetland hydrology that
supports wetland vegetation. The difficulties in acquiring data on wetland hydrology have
resulted in the sole use of hydric soil indicators to delineate wetlands for planning and

restoration. Hydric soils are formed as a result of redox reactions under different water
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regimes in wetlands. It is evident that redox processes involve the redistribution of reducible

elements in the soil and the accumulation of organic matter.

The relationship between soil water saturation and the development of redoximorphic
features requires additional data on the redox potential, contents of organic carbon and Fe
reserves in the soils, soil pH, and soil temperature. The differences in these soil properties
in different landscapes affect the direct use of redoximorphic features to interprete soil water
regime as applied in soil surveys. A system of soil water regime classification is therefore
vital if soil survey interpretations are to be used in hydric soil determinations. Kotze et al.
(1996) summarised hydric soil indicators observed in the three soil water regime classes for
soils of South Africa Soil. USDA-NRCS (2010) has developed more site specific hydric soil
indicators for United States. The two systems can be used as reference to develop relevant
indicators for the wetlands of Lesotho. The relationship between hydric soil indicators and
soil water regime is useful to establish the wetland hydrologic criteria for different wetland

types. Proper criterion applied will ensure success of restoration efforts.
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CHAPTER 3
MATERIAL AND METHODS

3.1. DESCRIPTION OF THE STUDY SITE
3.1.1 Geography and climate

Lesotho is situated approximately between 28°30° - 30°52’ South and 26°58’ - 29°32’ East.
It is land locked and surrounded by the Republic of South Africa. The total land area of
Lesotho is about 30 355 km?. Lesotho held a central position in the former Gondwana which
resulted in high altitude prior to the breakup event (Partridge, 1997). A large part of Lesotho
is made up of basalt flows of the Drakensberg Group (Figure 3.1). This study was
conducted at the upper head-water catchment of the Bokong wetlands in the
Maloti/Drakensberg Mountains. Figure 3-2 delineated the study area from Satellite imagery
showing the Bokong catchment and the part of Maliba-Mats’o River harnessed to create the

Katse dam (Pour L’Observation de la Terre — SPOT- 30 m resolution).

Mean annual precipitation in the Bokong catchment is 1510 mm according to the only
available 20 year (1991 to 2010) precipitation record from the rainfall station in the Bokong
Nature reserve (BNR). The records from 1991 to 1997 gave a range from 932 to 2018 mm
total annual rainfall (Lesotho Highlands Development Authority, 1998). Snowfall occurs
between May and November. Snow falls contribute a significant amount of precipitation for
maintenance of stream flow relative to high intensity rainfalls of which a larger part
evaporates or runs off. The closest temperature records are those of the nearby alpine
areas in Maliba-Mats’o with a mean minimum and maximum of 2 and 22°C in summer and
-3 and 13°C in winter (Mokuku, 1991). The mean annual temperature is 10°C. The mean

soil temperature is 9°C giving a Mesic soil temperature regime (Soil Survey Staff, 2010).

According to the Lesotho Meteorological Services, the monthly mean totals of evaporation in
Lesotho range from 60 to 70 mm during June and July, and 175 to 225 mm in December
and January (Lesotho Meteorological Services, 2008). In general, evaporation is greater

than rainfall over most of the year, with the deficit at its greatest in summer.
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Monthly mean wind speed range from 1.4 m s™ in October to 8 m s™ in August and are
generally westerly varying between 200° and 300°. High winds of up to 20 m s™ can
sometimes be reached during summer thunderstorms. Sunshine records indicate that the

country receives between 60% and 80% of the maximum possible sunshine throughout the
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year. The annual total solar radiation over the country for the past 20 years is estimated to
be between 5700 MJ m? and 7700 MJ m™ and therefore does not constrain plant growth.
The north facing slopes are generally warmer than south facing due to the differences in
radiation. Steep south facing slopes are also shaded by other mountains and therefore very

cold, especially in winter.

3.1.2 Geomorphology.

The geomorphology of Lesotho has been created by the start of Cainozoic era but the
subsequent uplift resulted in renewed incision of river systems to new base levels (Lesotho
Highlands Development Authority, 1998). Drainage systems have developed from
preferentially weathered zones along fractures and dolerite dykes. The succession of lava
flows forming the Lesotho Formation (Drakensberg Group) comprise basalt flows of similar
chemistry which vary texturally as a function of cooling rate (Duncan et al., 1997). This
resulted in basalt flows with varying weathering resistance and it has the dominant influence
on micro-relief. The Bokong catchment has three land systems including the high plateau,
high mountain flats and higher slopes ranging from 3200 m to 2600 m asl (Lesotho
Highlands Development Authority, 1998). Slopes facing south are dominated by slow mass
movement processes whereas the opposite north facing valley flanks have lower gradients
with sheet erosion dominant. There was also renewed slope erosion and gravel deposition
on lower slopes and subsequent organic matter accumulation in the valleys (Lesotho
Highlands Development Authority, 1998; Marneweck & Grundling, 1999).

The variations in geomorphology and topography including the micro-climatological
influences have a significant impact on the ecology. The Bokong wetlands are found in the
Maloti Mountains ecological zone, which cover an area of 18 047 km? (about 65% of the total

Lesotho land area) and forms part of the Drakensberg range.

3.1.3 Soils

The earliest classification of Lesotho soils are the ones presented by Carroll and Bascomb
(1967) and Binnie and Partners (1972) which grouped Lesotho soils into associations.
These two systems and USDA soil taxonomy were embraced in the current system
presented by the Office of Soil Survey (1979) on the Soils of Lesotho, which mapped
Lesotho soils into soil associations on a scale of 1:250 000 (Figure 3-3). Table 3-1 gives the

classification of the soil series that form the soil associations shown in Figure 3-3.
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Soil associations are soil series occurring together. The soil series were named after village
or geographic features near the place where a soil of that series was first observed and
mapped (Office of Soil Survey, 1979). The soils in the study area fall under the Popa-Rock
Land (Basalt) — Matsana soil association which are Loamy, mixed, mesic Typic Hapludolls.
The principal soils in this association are Popa and Matsana series occupying 55% and 27%
of the total area respectively. While other variants like the Fusi series may occur but the

remaining area constitutes the rocklands including cliffs and bare rocks.

The Popa Series (loamy, mixed, mesic Lithic Hapludolls) is found on undulating to steep
topography and is shallow. They occupy crest and convex upper and middle slopes of the
basaltic hills and mountain association. The surface layer is typically very dark brown loam
of about 400 mm thick. The underlying material is variegated brown, greyish brown and dark
yellowish brown loam about 100 mm thick that grades abruptly through greyish brown
weathered basaltic material to indurated basalt bedrock at a depth of approximately 500 mm.
Erosion and leaching due to the high rainfall result in the shallow soils (<600 mm deep) of

the summits and hills (acid lithosols, Lesotho Highlands Development Authority, 1998).

The Matsana series (Fine, loamy, mixed, mesic typic Hapludolls) is found on undulating to
steep slopes and is moderately deep. They occupy crest and plane or convex upper and
middle slopes of the basaltic bedrock controlled terrain. The surface layer is typically very
dark brown and brown, loam and gravelly loam of about 400 mm thick. The subsail is
typically dark reddish brown and dark brown gravelly loam, gravelly clay loam and loam
about 500 mm thick that grades abruptly through greyish brown weathered basaltic material
to indurated basalt bedrock at a depth of approximately 900 mm. The underlying material is

typically variegated brown and dark brown gravelly loam or sandy loam.
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Figure 3-3 Soil associations of Lesotho (Office of Soil Survey of Lesotho, 1979).
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Table 3-1 Classification of Lesotho soil series by soil taxonomy (Office of soil survey of
Lesotho, 1979).
Order Suborder Group Subgroup Family Series
Entisols Psaments Udipsaments Typic Udipsaments Sandy, mixed, mesic Thoteng
Fluvents Udifluvents Typic Udifluvents Sandy, mixed, mesic Caledon
Coarse-loamy,mixed, mesic | Majara
Orthents Udorthents Lithic Udorthents loamy mixed, mesic Ntsi
Aquents Haplaquents Typic Haplaquents Coarse-loamy, mixed, | Theko
mesic
Inceptisols Ochrepts Dystrochrepts Plinthicaquic Dystrochrepts Fine-loamy, mixed, mesic Berea
Aquic Dystrochrepts Coarse-loamy, mixed, | Qalaheng
mesic
Vertisols Uderts Pelluderts Typic, Pelluderts Fine-montmorillonitic, mesic | Pechela
Alfisols Udalfs Paleudalfs Typic Paleudalfs Fine, mixed, mesic Qalo
Ustalfs Haplustalfs Typic Haplustalfs Fine, mixed, mesic Moshoeshoe
Aqualfs Albaqualfs Agric Albaqualfs Fine, mixed, mesic Sephula
Typic Albaqualfs Fine, mixed, mesic Maseru
Fine, loamy mixed, mesic Tsiki
Natraqualfs Typic Natraqualfs Fine, mixed, mesic Patsa
Glossic Natraqualfs Fine, mixed, mesic Ts'akholo
Mollisols Udolls Hapludolls Fluventic Hapludolls Fine-loamy, mixed, mesic Bosiu
Typic Hapludolls Fine-loamy, mixed, mesic Kubu
Fine-loamy, mixed, mesic Leribe
Loamy, mixed, mesic Ralebese
Coarse-loamy, mixed, | Matela
mesic
Fine-loamy, mixed, mesic Matsana
Cumulic Hapludolls Coarse-fine, mixed, mesic Tsenola
Fine-loamy, mixed, mesic Fusi
Fine-loamy, mixed, mesic Maliele
Lithic Hapludolls Loamy, mixed, mesic Popa Lekholong
Fluventic Hapludolls Fine-loamy, mixed, mesic Kolonyama
Coarse-loamy, mixed, | Sofonia
mesic
Argiudolls Typic Argiudolls Fine, mixed, mesic Machache
Fine, mixed, mesic Matsaba
Fine, mixed, mesic Khabos
Fine-loamy, mixed, mesic Khabos thin
Fine, mixed, mesic Thabana
Aquic Argiudolls Fine-loamy, mixed, mesic Rama
Ustolls Argiustolls Pachic Argiustolls Fine, mixed, mesic Seforong
Udic Argiustolls Fine, mixed, mesic Nkau
Aquolls Argiaquolls Typic Argiaquolls Fine, mixed, mesic Bela
Haplaquolls Cumulic Haplaquolls Fine-loamy, mixed, mesic Maseru-dark
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The Fusi series (Cumulic Hapludolls) is found on gentle to moderate sloping hillsides and is
deep. They occupy plane and concave middle and lower slopes of the basalt bedrock
controlled terrain. The surface layer is typically very dark brown and brown, loam and
gravelly loam of about 400 mm thick. The subsoil is typically dark reddish brown and dark
brown gravelly loam, gravelly clay loam and loam about 500 mm thick. The underlying
material is typically variegated brown and dark brown gravelly loam consisting of weathered

rock material.

The Matsana, Popa and Fusi series are soils developed from the in situ weathered basaltic
rock (Office of Soil Survey, 1979). The parent material is high in calcium, magnesium, and
iron and low in silica (Lesotho Highlands Development Authority, 1998). Klug et al. (1991)
commented on the high Ca content (in the region of 10.5% CaO), and volcanic glass that the
basalt of Maloti Mountains contain. The soils therefore have naturally high fertility that
favours luxurious grass growth and a high level of organic matter incorporation. The top
layer is dark and very high in organic matter (6 to 16%, Office of Soil Survey of Lesotho,
1979). The low temperature has further inhibited the decomposition of this organic matter

and it contributes to the dark thick surface layer.

3.1.4 Hydrology

The Bokong wetlands are the water sources for the Bokong River and Lepaqoa stream.
Both drainage systems contribute to the Katse reservoir. These wetlands help to regulate
the quantity of water moving through a watershed by retaining water during wet periods and
releasing it during dry periods. The catchment has many smaller wetlands that provide the

necessary storage capacity and are essential for the proper functioning of a watershed.

3.1.5 Vegetation and wetland types

Lesotho is mainly a grassland biome with six grassland or vegetation types influenced by
mainly altitude and climate (Bredenkamp et al., 1996). Bokong falls in the Alpine Belt which
lies between 2600 m at the upper limit of the Subalpine Belt and 3200 m as the highest point
of the Alpine Belt. Therefore, the vegetation is essentially sub-alpine grassland with a
number of endemic plants species. The vegetation of the Bokong wetlands falls within the
Lesotho Highland Basalt Grassland (Gd 8) as described by Mucina and Rutherford (2006).
Du Preez and Brown (2011) supposed that this vegetation type is one of the most endemic-
rich vegetation units in the Drakensberg Alpine Centre, but only 1% of it is statutorily

conserved in Lesotho. Dominant plants are tussock grasses like Merxmuellera disticha, M.
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drankensbergenis, Festuca caprina, and short shrubs. Trees are non-existent. The grasses

are used for summer grazing.

Schwabe and Nthabane (1989) used the classification and ordination to identify plant
communities which characterise particular wetlands of the Maloti Mountains. The following
vegetation associations were derived as influenced by moisture, soil type, and position within
the wetland system: More saturated sites are dominated by sedges, Haplocarpha nervosa
and /Isolepis angelica. Areas with fluctuating water table are dominated by grasses like
Merxmuellera disticha, Anthraxia fontana, and other plants such as Trifolium are
intermingled. The dry vegetation association that occur in the drier parts of the wetlands
include Helichrysum, Poa annua, Koeleria capensis. In pools, where there is free standing
water two endemic and rare species of Aponogenton and Carex cognata are found. A
healthy wetland is characterised by an abundance of Carex sp., Scirpus sp. and
Merxmullera sp (Schwabe, 1995). Species that are found in dry areas associated with
disturbance by livestock include Senecio sp, Rumex sp., Eumorphia sericea, short sedge
grasses, Helichrysum chionosphaerum. Photographs of selected species are presented in

Appendix 1.

Three wetland types were identified following the provisional classification of wetlands in the
high altitude catchments of Lesotho (Jacot, 1962; Schwabe & Nthabane, 1989; Schwabe,
1995; Marneweck & Grundling, 1999). The three wetland types were bogs, fens and
hillslope seeps. Even though some researchers disputed the existence of bogs in these
wetlands (Cronk & Fennessy, 2001; Du Preez & Brown, 2011), the difference observed is
that fens represent an earlier successional stage of peat accumulation than bogs and tend to
have organic matter content which is relatively lower in fens than bogs. Therefore, these

distinctions were used in this study.

A bog is wetland that accumulates acidic peat, a deposit of dead plant material from usually
mosses while fens are usually characterized by their neutral water pH (Mitsch & Gosselink,
2007). However, Schwabe (1995) described the Bokong fens as acidic and they are usually
valley head fens comprising of large lawns of sedges and grasses, pools. The valley head
fens were the most common wetland types in the study area. Hillslope seeps are formed
due to local stratigraphy such as the impermeable layer of saprolite or hard rock, forming a
perched aquifer (Marneweck & Grundling, 1999). The hillslope seeps are found mainly on
concave slopes or terraces above the tributaries of Bokong River and are also referred to as
seepage zones (Marneweck & Grundling, 1999). These wetlands were supplied by a

shallow perched aquifer hence, the soils became dry during portions of the growing season.
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3.1.6 Land use

The main use of the Maloti Mountains including the Bokong catchment is grazing of
domestic animals including cattle, sheep and goats. The national rangeland inventory
carried out between 1983 and 1986, estimated the Lesotho rangelands to be 75%
overstocked (Range Management Division, 1988). The Lesotho Highlands Development
Authority (1998) indicated that while there have been previous developments for the
conservation of these sensitive areas in the Maloti Mountains through range management
associations (RMAs) as recommended by Schwabe (1993) only relatively small portions are

protected and the remaining portions reflect indicators of unsustainable use.

The Bokong wetlands are degraded due to anthropogenic impacts resulting in gully erosion
that drains the wetlands, followed by the invasion of exotic species. The Lesotho Highlands
Development Authority (1998) attributed the degradation of wetlands to trampling that
damages the delicate vegetal layer of the wetlands and the exceptionally slow recovery
(Lesotho Highlands Development Authority, 1998). Repeated trampling exposes the fragile
organic soils that are removed easily by runoff. Marneweck and Grundling (1999) observed
the elevated remnants of peat which are dry, which indicated the original peat surface which
has undermined the storage capacity of the wetlands. Uncontrolled burning during the dry
season is common in the mountain rangelands of Lesotho and happens in any six out of ten
years (Morris et al., 1991). High wind speed of up to 100 km hr”' increases the probability of
spring fires (Lesotho Highlands Development Authority, 1998).

The protected part of the Bokong wetlands is the Bokong Nature Reserve (BNR). The BNR
is used as tourist site which comprises endemic alpine flora and fauna. The fauna consists
mainly of a number of birds such as bearded vulture and other bird species endemic to the
afro-alpine zone. The Mountain rhebuck population is particularly high and serves a means
of tourist attraction. There are peculiar colonies of the endemic ice rat (Ofomys sloggettii)
that dig tunnels in areas around the wetlands that are not waterlogged. These moles make
underground tunnels around the drying parts of the wetlands which collapse and result in
gullies. Other minor land uses include the harvesting of medicinal plants and grasses for

crafting and thatching for livelihoods.

3.2 HYDROLOGY DETERMINATION

The study area, including the drainage patters, wetlands, and instrumentation is given in

Figure 3-4. The area is approximately 13 km? Wetlands and drainage patterns were
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extracted from existing shape files (Schwabe & Whyte, 1993; Maloti-Drakensberg Trans-
frontier Project, 2006), collected from small scale national data (1:250 000) on the wetlands
of Lesotho. The two were overlaid on a 10 m contour map developed from a 20 m resolution
DEM (Maloti Drankensberg Trans-frontier Project, 2006). The total wetland area within the
study area is 23.145 ha which is about 1.7% of the study area and comprise of 54 wetlands,

ranging from 0.2 to 7.5 ha in size.

3.2.1 Climatic parameters

A weather station which records rainfall, air temperature, relative humidity and soil
temperature was installed at the study site (Figure 3-5). Rainfall intensity was measured
using a tipping bucket rain gauge, from January 2010 to August 2011. The comparison of
the rainfall intensities from January to July 2010 and 2011 are given in Figure 3-6. The 2011
rainfall was charecterised by more rainfall events with higher intensities than in 2010. The
highest rainfall intensities of 7.8 mm in 5 minutes were recorded between January and July

2011, while in 2010 the highest rainfall intensity was 3.4 mm in 5 minutes.

Rueter and Bell (2003) showed the importance of seasonal variations in precipitation when
evaluating the distribution of water in the landscape and its influence on pedogenesis. In
this study, seasonal variations were determined by comparing the two previous year’s
seasonal rainfall patterns and the twenty year seasonal means with the study period rainfall
seasonal variations (Figure 3-7). The daily rainfall records between 1991 and 2011were
taken from the Mphosong weather station situated at an altitude of 3090 m above sea level
within the study site. Spring begins in August and summer starts in November, while winter
starts in May. In all seasons rainfall for the two years prior the commencement of the study
and the twenty year mean did not show much variation from the seasonal rainfall pattern
observed during the study period, except for summer of the 2010/11 season. The summer
rainfall recorded for the 2010/11 season was almost 40% higher than the average rainfall for

all other years.
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Figure 3-4 The study site showing the drainage system and sampled wetlands.

Figure 3-5

Weather station and sensors installed at Bokong in wetland PW32.
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Hydrologic parameters are naturally variable and therefore require many years (10 years) of

ground water monitoring to determine whether minimum standards for water table depth,
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duration and frequency in wetlands are met. Because soil water table behaviour responds to
daily precipitation, a two year water table dataset alone is not sufficient to represent the
water table regimes of the soil. Therefore, in short-term studies, normality of precipitation
during the monitoring period has to be considered. In this study the probability distribution of
a time series was used to describe the probability that monthly rainfall fell into a specified
range of values using quantiles and percentiles (Morgan & Stolt, 2006). Average monthly
precipitation recorded from the Mphosong weather station between 1991 and 2011 were
used to estimate 30 and 70% precipitation probabilities. The probabilities were calculated
using the 2-parameter gamma distribution, gamfit, and gaminv (Mathworks Inc., 2000). The
monthly rainfall distribution was normal within the 20 year period (Table 4-2). Nine months
of the monitoring period had rainfall amounts within the 30 and 70 percentiles. The annual
precipitation recorded at Mphosong weather station from September 2009 to August 2010
was 1510.7 mm and from September 2010 to August 2011 was 2030.1 mm (Table 4-2).

The mean temperatures recorded during the study period was 2°C in winter and 10°C in
summer while mean relative humidity was 66% in winter and 79% in summer. Potential

Evapotranspiration was calculated using the Thornthwaite equation (FAO, 1998):

PET;(0) = 1.6(10Ti/))° (3-1)

This equation uses the mean monthly temperature T; (°C) and latitude (degrees) either in the
Northern or Southern Hemisphere. The highest PET is in December and January at
54.1 mm and 65.3 mm respectively and lowest in June and July at 26.6 mm and 26.3 mm
respectively. This enabled the estimation of the average climatic water balance for the
period 2009 to 2011, which reflected a surplus of moisture during the rainy and warmer
months of November through April and a deficit of moisture during the cooler and drier

months of June through September.
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Table 3-2 Average precipitation recorded in Bokong between 1991 and 2011 and

amount of precipitation recorded between 2009 and 2011.

Month Precipitation (mm)
2009-2010 2010-2011 30% quartile  70% quartile Average
1991-2011
September 16.0 4.4 6.7 36.1 32
October 209.0 130 42.2 96.7 153.1
November 139 329.2 52.8 116.1 225.3
December 128.9 414.9 76.3 126.1 233.2
January 353 420.3 71.5 137.6 255.2
February 147.5 147.5 48.9 99.7 172.5
March 186 180.8 51.3 105.3 183.3
April 231.9 215 22.4 55.4 125.7
May 52.9 135.4 07.2 21.4 56
June 46.5 15.4 2.3 15.1 23.8
July 0 18.2 1.1 8.4 16.7
August 0 19 5.2 29 37.7
Totals 1510.7 2030.1 1514.5

3.2.2 Soil temperature and water content

Soil temperature and water content data were collected using Decagon soil moisture probe
(ECH2O; Cobos, 2006) and Hobo XTI data-loggers (Onset Computer Corporation, 2007)
placed in waterproof polycarbonate containers that were installed at five different depths
(150, 300, 450, 600, and of 7560 mm). The temperature and soil moisture sensors were
placed on the concave west facing lower footslopes at 2897 m above sea level at 15%
slope. The soil depth was approximately 1000 mm to the C horizon and it is situated
immediately above the valley bottom wetlands near PD11 as was indicated in Figure 3-4.
The temperature trends down the profile differed with seasons (Figure 3-8). Soail
temperature ranged between 4.99°C and 8.23°C in winter (May to July) and from 10°C to

12°C in summer (November to January).
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Figure 3.8. Soil temperature and soil water content at different depths from 26 April 2010
to 13 Jan 2011.

The temperatures increase with depth in winter with highest temperatures in the lower 750
mm (Figure 3-8). The lower temperatures in the top layers of the soil were due to the effect
of snowfall. The depth of snow in the profile observed during winter months was 500 mm.

In summer the temperature decreased with depth.

The lowest temperature recorded in the top 150 mm depth was 0.5°C and the highest was
14.6°C (std. dev. was 4.5) compared with the 750 mm depth where the difference between

lowest recorded temperatures was 7.8°C (std. dev. was 1.1) between seasons. Lesotho



46

Highlands Development Authority (1998) indicated that the vegetation of this mountain
climate provides the micro-climate which significantly reduces the wide fluctuations in
temperature at the soil surface that would exist in the absence of such cover. There were
only 3 months (June to August) in a year in which temperatures were below 5°C within the
500 mm depth considered to be inactive microbial period according to the growing season
definition by USDA-NRCS (2010). The 5°C temperature or warmer at 500 mm depth is used
to determine the growing season in soils but the threshold temperatures depend on the soll
properties (Burdt et al., 2005).

The soil moisture content ranged between 0.50 and 0.10 m m™ in winter and 0.20 and 0.8 m
m" from spring through summer seasons (Figure 3-8). There was also an indication of local
stratification down the profile, where soil moisture in the 450 mm depth was higher than the

underlying 600 mm layer during the dry season between May and October.

3.2.3 Water table elevations

Groundwater observations were made using piezometers which were installed in triplicate at
depths of 50, 250, 500, 750, and 1000 mm (Figure 3-8) in ten representative wetlands
(Figure 3-4) to determine both the soil water level and the vertical groundwater movement.
The piezometers were open only at the lower portion of the riser. They were constructed
from 50 mm polyvinyl chloride (PVC) pipes covered at the bottom by geotextile fabric
(Fiedler & Sommer, 2004) protruding on the surface by 100 mm. They were installed in
auger holes, backfilled in approximate depth sequence with soil from the auger hole, and
sealed at the soil surface with bentonite to reduce sidewall flow (Morgan & Stolt, 2004).
Ponding depth was measured with a steel tape (Burdt et al., 2005) once every two weeks.

Water table data was recorded for two seasons from September 2009 to August 2011.
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Figure 3-9 A number of installed piezometers at PW32 wetland sealed with bentonite

and covered at the tops and the depth labelled on top of the caps.

Water table hydrographs were developed from these bi-weekly water table data for two
seasons for each well. The bi-weekly water table data was also used to calculate the
seasonal high water table, average seasonal high water table (ASHWT), and cumulative
saturation for each horizon. The ASHWT was calculated by averaging the lowest and
highest water table values (Morgan & Stolt, 2006). Cumulative frequency is the percentage
time the water table was recorded at different depths (Morgan, 2002). It was calculated as
the number of times the water table depth was recorded divided by the number of

observations during the monitoring period.

The calculated frequencies were then extended to the determination of the cumulative
saturation by multiplying the number of times each depth was recorded by 14 days,
assuming that the water table maintained the same depth to obtain the number of days the
water table resided in that level. This was done by sorting data in descending order and
counting the number of times a specific depth appears, multiplying that amount by the
recording interval (14 days), and then dividing that number by the total time of measurement
(730 days) to get the percentage of time that depth was saturated. These values were then
added to the previous values to obtain a cumulative saturation for that time period. The
cumulative saturation was plotted against the water table depth to obtain the percentage of
time the water table is present within a horizon. A horizon was considered saturated if >75%

of the horizon was under the free water table (Jacobs et al., 2002).
3.2.4 Soil redox potential

Reducing conditions were determined by measuring the redox potential with a Platinum

electrode (Hanna HI7020) calibrated using a redox standard solution of 263 mV at 25°C.
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Two Pt electrodes were installed at 500 mm depth and connected to a CR-1000 Campbell
Scientific Inc. logger near wetland PW32. Along with hourly recorded redox potential
measurements was a Decagon soil moisture probe (ECH,O; Cobos, 2006) recording soil
water content at 500 mm every hour and used to calculate the degree of water saturation.
Reduction was defined by a decrease in Eh of a soil. The degree of saturation in which Eh
starts to decrease was determined by integrating both degree of saturation graph and redox
potential graph and analysing the slopes of the graphs. According to Ponnamperuma
(1972), the Fe* and Mn** start to reduce at 400 mV and 300 mV respectively and pH starts
to increase towards neutrality. The percentage time in hours, for which Eh was less than

400 mV (onset of Fe-oxide reduction), was also determined.

3.3 SOIL CHARACTERISATION
3.3.1 Soil survey

Field exploration of the survey area was done to familiarise with landmarks, wetlands and
borders of the area. The necessary routes for data collection were established based on
detailed examination of 2928AB national topographic sheets at a scale of 1:50 000 (Lesotho
Government, 1982). Soil survey along these routes was done through auger sampling and
observation of road embankments to visualize the sequence of soil distribution in the
landscape. Movement was done upslope to the top of the hill then along contours. All
observations were geo-referenced with a Garmin eTrex 30 GPS with £ 10 m accuracy,
mapped and labeled as Figures 3-9. The main physiographic units of the study area were
firstly delimited on the topographic map and a preliminary legend for soil types was
established. The preliminary legend took into account the set of features that were important
to wetland functions and potentially varying within the physiographic regions. Among them
were soil depth, field estimation of amount of gravel in the A horizon, presence of transitional

AB horizon, presence of stoneline, and presence and depth of redoximorphic features.

Surface analysis was performed on 30 m digital elevation model (DEM) obtained from Maloti
Drankensberg Trans-frontier Project (2006) using a GIS geospatial analysis extension for
slope gradient, aspect (Figure 3-5, (a) and (b) respectively). These were used in the
absence of aerial photographs and ortho-photographs of the area to prepare the base map.
Main physiographic units were described as follows: The summits had a slope of less than
10% and found on elevations higher than 2900 m asl, midslopes had slopes higher than

20% and elevations higher than 2900 m asl, footslopes had slopes between 10 and 24% and
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elevations around and below 2900 m asl, while valleys had slopes less than 10% and
elevations below 2900 m asl.

Soil profiles were marked along hillslope transects from the summit to the valleys. Soll
profiles on the dry land were identified as permanently dry (PD) and from wetlands as
permanently wet (PW). The permanently dry land did not have a water table within 500 mm
of the soil surface. The terrain attributes for the thirty-two (32) profiles are given in Table 3-
2. Four (4) of the profiles were on the summits, five (5) were on the midslopes, nine (9) were

on the footslopes, while six (6) were in the valleys.
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Figure 3-10  Auger observations and labeled profiles in the study area.
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Table 3-3 Distribution of profiles and some selected physical properties in different

physiographic units of Bokong catchment.

Profile Coordinates Elevation Aspect Slope PU Depth
no. South East % (mm)
PDO1 -29.0874 28.4268 2903 NW 18  Footslope 900
PDO02 -29.0868 28.4295 2976 SW 41 Midslope 950
PD03 -29.0908 28.4305 2961 NW 11 Summit 600
PD0O4 -29.0917 28.4310 2977 N 21 Midslope 810
PDO05 -29.0862 28.4245 2860 w 22  Footslope 880
PW06  -29.1028 28.4206 2861 N 30 Midslope 590
PW07  -29.1008 28.4196 2828 NW 11 Footslope 1000
PW08  -29.1005 28.4213 2844 w 13  Footslope 850
PD09 -29.0997 28.4271 2963 E 8  Summit 650
PD10 -29.0907 28.4276 2959 NW 10  Summit 330
PD11 -29.0785 28.4275 2897 w 15  Footslope 1000
PD12 -29.0724 28.4275 2888 SE 5 Valley 800
PD13 -29.0812 28.4180 2913 NE 21 Midslope 600
PD14 -29.0822 28.4213 2897 NE 18  Footslope 720

PD15 -29.0803 28.4212 2898
PD16 -29.0828 28.4315 2976
PD17 -29.0768 28.4315 2901
PD18 -29.0740 28.3992 3062
PW19  -29.0791 28.4277 2887
PD20 -29.0820 28.4264 2909
PW21 -29.0810 28.4247 2862
PD22 -29.0864 28.4220 2867
PD23 -29.0855 28.4204 2907
PW24  -29.0860 28.4236 2850

(%2}
m

16  Footslope 800

8  Summit 420
19  Footslope 1100

8  Summit 800
13  Footslope 850
18 Footslope 1000

4  Valley 1000
18 Footslope 1000
39  Midslope 150
14  Footslope 1000

PW25  -29.0766 28.4270 2883 6 Valley 800
PW26  -29.0788 28.4269 2882 10  Valley 767
PW27  -29.0788 28.4267 2872 7 Valley 1000

PW28 -29.0757 28.4205 3034

PD29 -29.0786 28.4215 2926

PD30 -29.0807 28.4220 2873

PD31 -29.0825 28.4228 2865

PW32 -29.0812 28.4230 2868
1 PU = physiographic units

20  Midslope 1000
23  Midslope 1000
12  Footslope 880
14  Footslope 760

3  Valley 1000

smRonss@LhmsssRhsz

Soil profiles were dug to a depth of 1 meter where possible or shallower where the rock was
encountered. One side of a pit was cleaned and the different horizons demarcated. All
profiles were described using the soil description form of Turner (1991), which includes
features such as matrix colour, abundance, size and colour of redoximorphic features. Soil
profile information was captured in MS Access program of the ARC-Institute for Soil, Climate

and Water in Pretoria. The description of the profiles is given in Appendix 2.
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3.3.2 Redoximorphic features

The description of redoximorphic features was done for each horizon throughout the profile
to determine the hydric soil indicators and determine the relationship between redoximorphic
features and hydrology. The matrix soil colour was described using the Munsell® Soil Colour
Charts (Gretagmacbeth, Munsell®Corporation, 1998). Redoximorphic feature interpretations
were made based on standard soil survey criteria and nomenclature (Turner, 1991; Soil
Survey Staff, 1993; Schoeneberger et al., 2002) with abundance categories as few <2%,
common 2 to 20%, and many >20%. Redoximorphic features were also described to the
depth of 1000 mm because the soils had thick, dark surface layers, and indicators may not

be easily seen within 500 mm of the surface.

Hydric soil indicators were identified using the USDA-NRCS (2010) indicators. Detailed
descriptions of profiles and hydrology data described in Section 3.2 to a depth of 1000 mm

were used to inform modification on these indicators.

3.3.3 Relationship between hydrology and redoximorphic features

The abundance categories for redoximorphic features were modified into indices as
suggested by Galusky et al. (1998), and also consider the type of redoximorphic features.
This study used the following indices and evaluated the relationship between the indices and

water table depth and regimes:

e Few redoximorphic features index was abbreviated as d_RMFs (Morgan & Stolt,
2006).

e Few depletions with common redox concentrations was abbreviated as d_conc
(Galusky et al., 1998; Morgan & Stolt, 2006).

e Common to many depletions with or without few redox concentrations was
abbreviated as d-depl/ (Galusky et al., 1998; Morgan & Stolt, 2006).

¢ Depth to the first gleyed horizon was abbreviated as d_gley (Galusky et al., 1998).

e Depth to chroma 3 and 4 was abbreviated as d_34 (Galusky et al., 1998).

o PDI and depth of black topsoil horizons (equation 2-7) were added because the of

high organic matter accumulation in these landscapes (Rueter & Bell, 2003).

The cumulative saturation of each horizon from all the described profiles with one of the
indices was determined. Only twelve profiles had at least one of the indices and water table

within 1000 mm. This was deemed the percentage time in a year required for saturation to
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develop each type of redoximorphic features. The correlation coefficient of cumulative
saturation percentage and lower depth of the horizon with an index was determined to
evaluate whether redoximorphic features explained the hydrology of the site. The high
correlation would mean that redoximorphic feature index represent the depth to which the

water table commonly rises and remained there for a critical period.

3.3.4 Soil laboratory analysis

Following detailed descriptions of the profiles, representative soil samples were taken with a
hammer starting from the lowest horizon and then upwards to the top horizon, to avoid
contamination. The horizons were sampled at several locations along the pit faces. Soil
samples were then placed in sampling bags, sealed, labeled both inside and outside, and

transported to the laboratory for chemical and physical analyses.

The soil samples collected were air-dried, weighed, crushed, and passed through a 2 mm
sieve and some to pass through a 0.5 mm sieve. The samples screened through a 2 mm
sieve were used for the determination of particle-size analysis, pH, total N, available P, basic
cations (Ca, Mg, Na, and K), and Fe, Mn, and Al. Those that passed through a 0.5 mm
sieve were used for the determination of organic carbon. The soil that remained in the 2 mm
sieve was used for the determination of the gravel content. The soil clods were broken and
washed off. The remaining stones were dried in an oven and weighed as gravel. All the
chemical soil properties were analysed using the methods described by The Non-Affiliated
Soil Analysis Working Committee (1990).

Brief details of the soil analyses and methods are given below:

(a) Particle size analysis (PSA) was determined by fractionation and the pipette method
(Gee & Bauder, 1986). The soil was pre-treated with hydrogen peroxide to remove
organic matter. Seven particles size classes including coarse sand, medium sand,
fine sand, very fine sand, coarse silt, fine silt, and clay were determined.

(b) Soil pH was determined in a 1:2.5 soil: water ratio and 1 M KCI (McLean, 1982).

(c) Organic C was determined by the wet digestion method (Walkley & Black, 1934) and
total C by dry combustion using a LECO Carbon/Nitrogen determinator (LECO,
2008). Dry combustion mean recovery was higher (Appendix 4) and since the study
soils were carbonate free, and organic carbon should equal to total carbon (Fiedler &
Sommers, 2004), dry combustion results were used for further analysis.

(d) Phosphorus was determined using the method of Bray and Kurtz (1945).
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(e) Exchangeable and soluble cations (Ca, Mg, Na, and K) and cation exchange
capacity were determined by leaching with 1 N NH,OAc at pH 7. The CEC was
determined by saturating ammonium acetate leached soil with Na acetate and
leaching again with 1 N NH,OAc at pH 7. Soluble cations were determined by
atomic absorption spectrophotometry (Schollenberger & Simon, 1945).

(f) Iron, Al and Mn oxides were extracted by dithionite citrate bicarbonate (DCB; Mehra
& Jackson, 1960) and determined with atomic absorption spectrophotometry (Varian
SpectrAA-200).

Bulk density of each horizon in representative profiles was determined with the core method
(Blake & Hartge, 1986). A core sample was taken by inserting a cylindrical core sampler of
a known volume (0.00080 m®) with a core driver into the soil (Figure 3-11a). The surface of
the soil area to be sampled was first cleaned. Once the sampler was driven deep enough to
be covered by soil on the top, it was removed carefully using a spade (Figure 3-11b). Both
ends of the core were then leveled with a field knife, covered with boards, tightened with
tape and placed into a sealed plastic bag (Figure 3-11c). Three replicate samples were
taken per horizon. The core samples were weighed and put in an oven to dry for 24 hours at

105°C, after which they were reweighed (excluding the weight of core samplers and boards).

7 g
i
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Figure 3-12  Bulk density samples collection
3.4 STATISTICAL ANALYSIS

The soil properties spatial variability was measured by coefficient of variation. One-way
analysis of variance was used to test whether there were significant differences in soil
properties between different slope positions (SAS Institute, 1999). Correlation matrix was
performed to analyse the level of relationships between soil properties. All the absolute
values of correlation coefficient less than 0.217 were indicating no statistical significant
relationship between soil properties at P> 0.05 as controlled by the sample size (Steel &

Torrie, 1986). The principal component analysis (PCA) was used to analyse the cause of
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soil variation and establish the spatial patterns of soil properties. PRINCOMP procedure

was used to computation of principal components (SAS Institute, 1999).

Relationships between horizons with each of the redoximorphic features index and depth to
the average seasonal high water table (ASHWT) and cumulative saturation were evaluated
using simple regression analysis (Microsoft Corporation, 2010). Analysis of variance and
Turkey’s multiple comparison tests were used to determine differences between mean
cumulative saturation of different indices (SAS Institute, 1999). A comparison of cumulative
saturation means for redoximorphic features indices were evaluated using box plots showing

percentiles, minimum, maximum and mean (Ott & Longnecker, 2001).

The statistical difference between dithionite citrate bicarbonate extractable Fe, Mn and Al
levels and masses and soil organic carbon stock for hydric and non-hydric soils were
determined using the t-test. Analysis of Variance was used to establish the difference in
organic carbon pools from the three wetland types with depth (bogs, fens and hillslope

seeps). Means separation was done using Duncan multiple range test (SAS Institute, 1999).
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CHAPTER 4

SOIL PROPERTIES, HYDRIC SOIL INDICATORS AND SPATIAL VARIABILITY IN THE
TOPOSEQUENCES.

4.1 INTRODUCTION

A catchment is the central unit of planning where all sustainable development activities are
based. Hence, the catchment requires detailed characterization and inventory of soil
resources. Soil information in Lesotho is very sparse. Those available on detailed scale of
1:10 000 are only for a few areas. There is also not such information on the wetlands, hence
strengthening the need for soil information. Stolt et al. (2001) reported that detailed soil
information is needed for assessing soil spatial variability. In small catchments where
geology is uniform, soil spatial variability is influenced by the microclimate and the
topography (Boul et al., 2003; Tsui et al., 2004). The aspect, slope and elevation control
movement of water and material in a hillslope which in turn contributes to spatial differences
in soil properties (Tsui et al., 2004). Slope and aspect affect the soil moisture content in the
landscape while elevation controls the temperature. The soil moisture and temperature
regimes have been reported to influence the pedogenic processes (Boul et al., 2003). In
addition, Ceddia et al. (2009) reported a strong correlation between of relief and soil spatial
variability; however, each soil property exhibits spatial variation depending on the

predominant factors that cause the variability.

In this study the spatial difference was evaluated by grouping the landscape into different
physiographic units called slope positions. Slope positions are geographic objects with a
fuzzy boundary, which reflect the regional terrain attributes as well as local attributes (Qin et
al., 2009). Two areas with the same topographic attributes may belong to different slope
positions and be associated with different geomorphic processes. Geologically, summits
and valleys can have the same slope gradient, but their geographic context and operating
geomorphic processes are completely different hence different pedogenic processes.
Variability in soil properties is expected due to movement of soils down slope, and
differences in pedogenic processes as influenced by moisture variation along the slope (Tsui
et al., 2004). Hence, the purpose of this investigation was to determine the spatial variability

between soil properties and hydric indicators in the toposequences.



57

4.2 SOIL PROPERTIES IN DIFFERENT PHYSIOGRAPHIC UNITS
4.2.1 Soil morphological properties

Soil depth varied between 467 mm on the summits and 900 mm on the footslopes (Figure 4-
1). Lesotho Highlands Development Authority (1998), associated the thinner soils of the
summits and thicker soil on the lower slope positions to aeolian and colluvium erosion and
deposition deposits. The soils of the summits showed minimum degree of profile
development and lacked transitional horizons, while the lower slope position soils had a
developed profile with A1, A2, AB, BA or B1, B, C, C1, G1, and G horizons (Figure 4-1). The
soils at the upper part of the toposequence are usually shallow because they undergo a net
loss due to erosion, while accumulations occur on the footslopes (Carroll & Bascomb, 1967;
Binnie & Partners, 1972; Office of Soil Survey, 1979; Schmitz & Rooyani, 1987; Klug et al.,
1991; Lesotho Highlands Water Authority, 1998).
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Figure 4-1 Horizon lower boundaries at the different slope positions.

The colour of the surface horizons for all landscapes positions were dominantly yellow red
(10YR) with value of 2 and chroma 2 to 1. The value was associated with high organic
carbon content (>1.8%) in all profiles, especially in the topsoil (Tripathi et al., 2006). The
subsurface horizon chroma on the upper slope position ranged from 3 to 4, while the
subsurface horizons on the lower slopes were characterised by low chroma. Calero et al.
(2008) and Diaz et al. (2010) associated the high chroma of the subsurface horizons with

low organic carbon content and good soil drainage.

The structure of the surface horizons in all slope positions varied from strong to moderate

medium granular except in the valleys where wetland plant roots formed a mat layer that
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makes horizons structureless. The intermediate subsurface horizons (AB) were weak to
moderate, medium granular structure. The consistence of the surface horizons was loose,

friable when dry, non-sticky and non-plastic when wet.

4.2.2. Spatial soil variability

Variability between soil properties represented by both horizontal and vertical variability
(along the toposequence and with depth) is given in Table 4-1. Minimum and maximum
values observed between soil properties, which reflected a very large range and variation in
most properties. The soil pHwater ranged from 4.5 to 6.1 and pH KClI ranged from 3.8 to 5.5
indicating very strong acid to medium acidity (Table 4-1). This is a reflection of leaching
characteristic of high rainfall areas. Similar soil pH levels were reported by the Office of Sail
Survey (1979) for the three soil series that occur in association in the toposequence of the
mountain soils, which are Matsana, Fusi and Popa soil series (Chapter 3). According to
Wilding and Dress (1978) coefficient of variation classification, soil pH is the least variable
property in this landscape (Table 4-1). Akinbola et al. (2006) also observed least variability
of soil pH irrespective of depth, different slope positions or toposequences, while other

properties vary significantly between toposequences.

Moderately variable properties were soil particle sizes, bulk density and cation exchange
capacity (Table 4-1), suggesting the relatively medium dynamic nature of the properties
(Boul et al., 2003). The mean contents of the soil particle sizes reflect a clay loamy texture.
Bulk density ranged from 0.26 to 1.1 g cm™ (Table 4-1). Most soils have a bulk density
between 1.0 and 1.6 g cm™. The low bulk density observed in the study area was explained
by high organic matter content of the topsoil. According to Fey (2010) exceptionally low bulk
density can be expected where organic matter content and micro-aggregating effects of iron
and aluminium oxides are high. The CEC ranged between 9 and 45 cmol, kg™ with a mean
of 26 cmol, kg™ (Table 4-1).

All other properties were highly variable. The mean distribution of exchangeable bases were
in order of Ca > Mg > K > Na on the exchange complex (Table 4-1). Exchangeable Ca
occupied almost 26% of the exchange complex and contributed 70% of base saturation
percentage. Manganese had the highest CV of 89% and low standard error of the mean.
Manganese is a very mobile element and its distribution is affected by among others the soll
moisture status (Bohn et al., 2001). Most variable properties are important for management

of the site.
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Table 4-1 Descriptive statistics of soil properties at Bokong, Lesotho.
Variable N Max Min Range Mean Std. Std.Error CV %
Dev.

Soil pH KCI 88 5.5 3.8 1.7 4.6 0.30 0.03 6
Soil pHwater 88 6.1 4.5 1.6 55 0.36 0.03 6
Clay % 81 42 15 27 30 4.99 0.55 16
Silt % 81 51 16 35 33 7.75 0.86 23
Sand % 81 67 8 59 37 10.53 1.17 28
CEC cmol, kg™ 88 45 9 36 26 8.63 0.92 32
Bulk density kgm™ 88 1.1 0.26 0.84 0.68 0.23 0.025 34
Alysg kg™ 88 844 106 73 42 16.7 1.79 39
Base Sat. % 88 84 11 73 35 17.35 1.85 48
Avail. P mg kg™ 88 2.046 0.218 1.828 0.7 0.37 0.04 50
Exch. Na cmol. kg” 88 0.91 0.10 0.82 0.26 0.13 0.01 52
Exch. Ca cmol. kg"' 88 239 159 22.31 6.78 3.78 0.40 55
Feqg kg™ 88 181 24 157 93 53 5.66 56
Exch. Mg cmol. kg 88 567 0.28 5.38 1.58 1.03 0.1 64
Total N % 88 21 0.04 2.06 0.52 0.38 0.04 77
Organic C % 88 149 018 147 3.4 2.71 0.28 78
Exch. K cmol, kg™ 88 3.54 015 3.39 048 0.40 0.04 84
Mngg kg™ 88 14 0.1 14 2.1 1.8 0.20 89

T pHwater — soil pH in water, pH KCI soil pH by KCI, Exch. are exchangeable cations, Base Sat. — base
saturation

I Feq, Mng and Alg are dithionite citrate extractable iron, manganese and aluminium respectively.

11 N is the number of observations analysed, Max and Min are the highest value observed in each parameter
respectively, Std. Dev. is the standard deviation, Std. error is the standard error and CV is the coefficient of
variation.

CV%: <15 — Least variable, 15 — 35 — Moderately variable, >35 — Most variable (Wilding & Dress, 1978)

4.2.3. Physical and chemical soil properties

The analysis of variance showed a significant difference between slope positions for silt,
clay, bulk density, soil pH KCI, exchangeable Na, base saturation and manganese and no
significant difference between slope positions and other properties (Table 4-2). All
properties were significantly lower in the valleys except for clay, which was rather
significantly high. There were no significant difference observed between different horizons

in exchangeable bases, base saturation and the dithionite extractable oxides.
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The sand content was relatively uniform between slope positions. Summits had significantly
higher silt content and significantly lower clay content. Clay content decreased with depth
and it was significantly lower in the B2 horizon than overlying horizon (Table 4-2). Similar
trends of clay content with depth were observed by Office of Soil Survey (1979) for mountain
soils of Lesotho. The clay content in these soils ranged from 20 to 26% in the 300 mm of the
soil surface and decreased to 13% in the B2 and 4% in the AC horizon. The soils developed
from the weathered basaltic rock (Office of Soil Survey, 1979) and the influence of the parent
material is evident in the lower horizons. The valleys and midslopes had the lowest bulk
density while the footslopes and summits had significantly higher bulk densities (Table 4-2).
The topsoil bulk density was also significantly lower than the subsoil. The increase in bulk
density with depth may be caused related to less weathering and removal of minerals in the

subsoil (Thangasamy et al., 2005).

The soil pH KCI was significantly lower in the valleys than other slope positions. The pH is
also significantly higher in the B2 horizon than the overlying horizons. Soil organic carbon
(SOC) and total nitrogen (TN) levels ranged from 3.7 and 0.51% in the midslopes to 3.3 and
0.44% in the summits respectively (Table 4-2). Schmitz and Rooyani (1987) attributed the
high levels of organic matter in the mountain soils of Lesotho to the lower temperatures and
evaporation. Walter et al. (2006) reported SOC levels of 6.9% from Oxbow marshes and
4.4% from hillslope seeps in the Drakensberg Mountains with a temperature range of 16 C°
and -2 C°. Nkheloane et al (2012) reported very high means of soil organic carbon of 17.2%
from the upper 500 mm of the soil surface in the mountain rangelands of Thaba-putsoa
Lesotho. Cold temperatures lower the rates of decomposition of organic matter and result in
high accumulations that are reflected on the organic carbon levels of the surface horizons
with a mean of 6.2% (Table 4.2).

The Carbon/Nitrogen (C/N) ratio was relatively uniform in all slope positions (Figure 4-2) with
a mean of 6.9 indicating comparable decomposition rate between slopes positions (Yang et
al., 2010). The C/N ratio of soil organic matter is related to the patterns of nitrogen
immobilization and mineralization during organic matter decomposition by micro-organisms.
The C/N ratio of most arable soils is 8:1 and higher C/N is observed under grassland
(Tisdale et al., 1993). The C/N ratio of the topsoil in the study area ranged from 7:1 to 8:1,
while in the subsoil it ranged between 5:1 and 7:1 (Figure 4-2). The lower C/N ratio in the
subsoil reflects a greater degree of breakdown and development of the humus stored in the
subsoil (Batjes, 2002). Lower C/N in the subsoil may also means more leaching of N relative
to C (Tisdale et al., 1993).
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Figure 4-2 Soil organic carbon (OC) and total nitrogen (TN) ratio (C/N ratio) for each

horizon in the four slope positions.

There were no significant differences in exchangeable Ca, Mg and CEC in terms of slope
positions (Table 4-2). However, the CEC was higher on the summits, which may be
attributed to the nature of the parent material. According to Schmitz and Rooyani (1987), the
clay mineralogy of the basalt in the Maloti Mountains is montmorillonite or interstratified
montmorillonite and illite with or without vermiculite. Bell and Haskins (1997) also found that
Plagioclase is the major mineral of the basalt rocks of the Katse Dam catchments. Van der
Merwe (2000) also observed that smectites are dominant clay minerals in South African soils
with dark topsoil. These soils are non-expanding because they are saturated with divalent
cations particularly Ca, which stabilises the swelling clays. Exchangeable Na was
significantly lower in the summits and valleys, K was highest in the valleys and base
saturation was significantly lower in the valleys (Table 4-2). Available P was not significantly
different between slope positions (Table 4-2). The mean levels of available P ranged
between 0.65 and 0.87 mg kg™ in a toposequence. The low contents of available P may be

attributed to high contents of Al and Fe-oxides coupled with a low pH.

Dithionite citrate bicarbonate extractable elements were very high in this landscape (Table 4-
2). The Feq content ranged between 24 and 181 g kg™ (2.4 and 18.1%) while Mn4 levels
ranged between 0.1 and 14 g kg™ respectively. This was also attributed to the nature of the
parent material. According to Duncan et al (1983) the contents of F,O; and MnO in the
Lesotho Basalt is 10.96% and 0.16% respectively. Jokova and Filcheva (2003) stated that
the high contents of dithionite forms show that intensive modern weathering processes have

occurred. Hidayat et al. (2002) reported Feq content of 12.03% from highly weathered
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oxisols in India. Trakoonyingcharoen et al. (2006) reported iron oxides contents ranging
from 5 to 134 g kg’ in the red soils of the tropics also suggesting highly weathered
environments. Dithionite extractable elements have been widely considered to differentiate
soil types, indicate pedogenic environments, and determine soil age or degree of soil
development by other researchers (McKeague & Day, 1966; Blume & Schwertmann, 1969;
Olaleye et al., 2008; Enya et al., 2011). The Mny was significantly higher in the summits and
midslopes (Table 4-2). The lower contents of Mngy in the valleys were attributed to Mn being
lost under longer saturated anaerobic conditions and high Mn was observed in aerobic
environments (Fieldler & Sommers, 2004). The Feq and Aly were not significantly different

between slope positions (Table 4-2).

4.3 CORRELATION ANALYSIS

The correlation between OC and TN, exchangeable Ca and Mg and base saturation, bulk
density and OC and clay are typical and these were observed in this landscape (Table 4-3).
Particle sizes did not show any relationships with other properties except poor correlation
between clay, bulk density and CEC. Furthermore, dithionite citrate extractable elements
were not correlated with other properties. Poor correlation was observed between soil pH

and Mnq.

Principal component analysis had eigenvalues of eight (8) components between 5.06 (PC1)
and 0.80 (PC8) that contributed 82.8% of the total contribution (Table 4-4). It is important to
note the components that were significant were PC1, 2, 3, 4 and 5, which contributed about
23, 15, 11, 10 and 7% respectively to the cumulative contribution and accounted for 67.9%
variability in soil properties (Table 4-4). The factor pattern that characterised the derived
principal components is given for the first five principal components (Table 4-5). In the first
principal component (PC1) high coefficients were given to organic carbon and total nitrogen.
These variables were related to organic matter turnover in the soil. Hence, PC1 was
considered to determine organic matter input which was favoured by luxuriant vegetation

growth in this environment and uniform C/N ratio along the toposequences and with depth.
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Table 4-4 The first eight eigenvalues and proportion of variance for each the principal
components

Principal component  Eigenvalue Proportion Cumulative

PC1 5.06628093 0.2303 0.2303

PC 2 3.36581558 0.1530 0.3833

PC 3 2.47740315 0.1126 0.4959

PC 4 2.34160826 0.1064 0.6023

PC5 1.69236889 0.0769 0.6792

PC 6 1.31891700 0.0600 0.7392

PC7 1.14882694 0.0522 0.7914

PC 8 0.80810352 0.0367 0.8282

1 PC — Principal components

Table 4-5 Factor pattern for the first five principal components

PC PC1 PC2 PC3 PC4 PC5

Sand 0.181416 0.083464 0.140866 0.524212 -0.123019

Silt 0.124014 -0.104941 -0.114473 -0.500809 0.092631

Clay 0.233129 -0.061842 -0.151045 -0.312875 0.247220

BulkD -0.267891 0.136798 0.087848 -0.022078 -0.176098

ocC 0.391676 -0.100660 0.079892 0.184319 0.043306

TN 0.382927| -0.110523 0.087909 0.154376 0.010662

pHwater 0.190364 -0.002988 0.345513 -0.058830

pH KCl -0.064598 0.029094 0.077882 0.434067

Ca 0.182587 0.470681 -0.008795 -0.023320 0.064992

K 0.217465 0.254109 -0.004113 0.141908 0.054539

Mg 0.146310 0.438521 -0.099555 -0.073635 -0.056374

Na 0.063252 0.330596 -0.186953 0.201620 0.088408

P 0.058526 -0.181995 -0.090871 0.287751 -0.139857

BS -0.000949 0.440184 -0.189889 0.004824 0.242654

CEC 0.307732 0.057636 0.248242 -0.110168 -0.350186

Feq 0.051411 0.193981 0.033651 -0.139214 -0.254109

Mng 0.138700 0.054060 -0.025124 0.099815

Aly 0.044835 0.016167 0.332882 -0.274667 -0.129548

1 PC — Principal components n = 88

FBulkD — bulk density; OC — organic carbon, pHw ater— soil pH in water; pH KCI — soil pH in KCI; Ca, K, Mg, Na, exchange
bases; P — available P; BS — base saturation percentage; CEC — cation exchange capacity; Feq, Mng, Alg, - are dithionite citrate
extractable Fe, Mn and Al.

The PC2 variables with high correlation were Ca, Mg and base saturation (Table 4-5).
These were variables related to the nature of the parent material and hence determine the

inherent soil fertility. The PC3 showed high correlations in soil pH-KCI and Mnd which

determine the soil acidity. The PC4 was more related to soil texture (sand and silt particles).
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4.4 SOIL CLASSIFICATION AND MAPPING
4.4.1 Soil forms of Bokong

Selected soil properties of the sampled profiles used in the classification are given in Table
4-6. The surface horizon of the study area had dark moist and dry colours to qualify as a
melanic A (Soil Classification Working Group, 1991). In addition, exchangeable cations (Ca,

Mg, K, Na) per kg clay for every one percent of organic carbon must be greater than 4 cmol,
1

kg™.
classified as orthic A (Soil Classification Working Group, 1991). Some soils had the sum of

Where the topsoil fails to meet all the requirements of melanic A, the horizon was

exchangeable cations requirements less than 4 cmol, kg™, and then these surface horizons
were classified as Humic A. The organic O was also observed in few profiles. The
underlying material was either yellow-brown apedal B horizon, G horizon or unspecified
material with or without signs of wetness. The three main soil forms (Soil Classification
Working Group, 1991) that were found in Bokong were Mayo on the summits, Inhoek in the

midslopes and footslope and Willowbrook in the valleys (Figure 4-3).

4.4.2 Correlations with FAO/WRB and USDA taxonomy

All profiles previously classified in the South African soil classification (Soil Classification
Working Group, 1991) were further correlated with FAO/WRB (FAO, 2006), USDA soil
taxonomy (Soil Survey Staff, 2010) and the local Lesotho soil series where possible (Table
4-7). According to the FAO/WRB (FAO, 2006), the two maijor soil types of the study area
were Stagnosols and Umbrisols with Phaeozems and Histisols in small localised areas. The
Haplic Stagnosols (Dystric, chromic) mainly occurred in the valleys and concave midslopes,
and Haplic Umbrisol (Humic), were found both on footslopes and midslopes while Leptic
Umbrisol (Humic) occurred on the summits. Stagnic Umbrisol (Humic) and Haplic
Phaeozems also occur on the midslopes and footslopes. Umbrisols are described as soils
which have accumulated organic matter in the mineral soil with low base saturation and it is
associated with Phaeozems where base saturation is higher (FAO, 2006). The Stagnosols
were mainly in the wetlands and classified as Haplic Stagnosols (Dystric chromic). Sapric

Histisols (Dystric) were also observed in few wetlands which have developed peat.
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Table 4-6 Diagnostic horizons selected soil properties and hydric soil indicators for
pedons sampled at Bokong.
Prof. SA LD Matrix colour CEC EC* BS SOC  Clay RMFs** RMFs* Hydric
Id. DH mm Moist Dry cmolc kg~ % % % Conc. Depletions Indicators
PDO1 me 180 10YR2/1 10YR3/1 27.0 7 46 59 29 none None none
me 360 10YR2/1 10YR3/2 30.1 10 33 3.7 27 none None none
ye 580 10YR3/1 10YR3/2 337 8 25 3.2 31 none None none
ye 900 7.5YR4/6 10YR5/4 218 35 25 0.6 27 none None none
PD02 me 260 10YR2/1 10YR3/1 17.7 8 69 5.0 30 none None none
me 390 10YR2/2 10YR3/2 38.0 6 27 58 29 none None none
ye 530 10YR3/3 10YR4/2 40.2 1" 24 3.3 26 m/c/rusty/pores None none
ye 950 10YR4/6 10YR5/4 20.7 41 30 0.7 23 none None none
PD03 ot 280 10YR2/1 10YR3/1 40.2 3 17 7.2 36 none None none
me 440 10YR3/2 10YR3/1 226 7 35 34 36 none None none
ye 600 10YR3/3 10YR3/2 284 7 22 31 30  mi/mirusty/pores None none
ye 1000 10YR4/6 10YR5/6 245 20 30 1.5 26 none None none
PD04 me 170 10YR2/1 10YR3/2 348 4 26 68 36 none None none
ot 340 10YR2/2 10YR3/2 243 3 27 51 37 none None none
me 510 10YR3/2 10YR3/1 19.7 6 27 341 31 none None none
ye 810 10YR3/4 10YR4/3 16.5 26 33 0.7 29 none None none
PD05 me 250 10YR2/1 10YR3/1 217 8 62 6.4 35 none None none
me 540 10YR2/1 10YR3/1 26.8 8 52 47 35 none None none
ye 630 10YR3/4 10YR3/3 17.5 20 76 29 23 none None none
ye 880 10YR3/6 10YR4/3 229 14 20 15 21 none None none
PWO6 o 70 10YR2A 10YR3/2 B9 2 24 126 38 none None F13
me 190 10YR2/1 10YR3/2 446 16 74 6.6 32 none None none
ye 410 5YR4/4 5YR5/4 179 121 84 05 27 cfflred/distnct m/c/blc/pores none
ye 590 5YR4/6 10YR6/8 257 262 69 0.3 26 cfflred/distnct m/c/rusty pores none
PW07 oo 210 10YR2/1 N2.5/0 424 4 49 149 33 none None A2
ot 400  10YR22  1OYR4/4 446 3 17 59 39 fiflorng/distnct None F6
ye 540  75YR4/4  T5YR56 204 22 49 13 35  fiflomg/distnct  flflbl-gm/distnct none
ve 1000 10YRS5/6 10YR5/4 176 93 77 05 28 none clfibl-gm/distct none
PWOS  me 70 10YR21  10YR32 402 7 19 38 27 none None F13
me 200  10YR2/ 10YR32 230 13 46 34 25 flfired/promt None F8
on 750  10YR2/2 5YR5/4 315 14 30 23 30 fifired/distnct None none
on 850  2.5YR5/6 2.5YR6/4 282 319 75 0.2 34 m/clyel/distnct m/c/gry/promt
PD09 me 200 10YR2/1 10YR3/2 40.2 4 18 6.2 27 none None none
ot 250 10YR2/2 7.5YR4/4 326 8 28 35 32 fifblc/pores None none
li 650 10YR3/3 10YR5/4 284 56 55 1.1 24 c/flry/distnct None none

1 SA DH — South African Soil Classification diagnostic horizons (Soil Classification Working Group, 1991): me — Melanic A; ot — Orthic A; oo —
Organic O; ye — Yellow-brown apedal, gh — G horizon; on — Unspecified and li — Llithocutanic.
1 LD - lower depth, CEC — cation exchange capacity; BS — base saturation; SOC — soil organic carbon; conc. - concetrations
11 EC* — exchangeable cations per kg clay for every one per cent of organic carbon (Soil Classification Working Group, 1991)
1t RMFs** — redoximorphic feature. Horizons where.RMFs were not given indicate that they were not observed. The RMFs descriptions include
abundance, size, colour and contrast in the order separated by forward slash (/) (Turner, 1991; Soil Survey Staff, 1993; Schoeneberger et al.,
2002)

Abudance- f- few (< 2%), ¢ — common (2 to 20%), m — many (> 20%)

Size: f- fine, m — medium, ¢ — course

Colour; orng — orange,yel — yellow, bl-grn — bluish green, gry — grey, blc - bleached.

Contrast: promt — prominent, distinct — distinct.
§ Missing values of CEC, EC, BS, SOC, and clay results were either omitted because of high or too low values observed or samples spilled off
from storage.
n/a is for a peat soil where texture of peat was determined by feel method as a sapric material.
# Hydric soil indicators (USDA-NRCS, 2010): A1 Histisols, A2 Histic epipedon, A12 Thick dark surfaces, F2 Loamy gleyed matrix, F6 redox dark
surfaces, F7 Depleted dark surfaces, F8 Redox depressions, F13 Umbric surface.
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Prof. SA LD Matrix colour CEC EC* BS SOC Clay RMFs** RMFs* Hydric
Id. DH Mm Moist Dry cmol kg % % % Conc. Depletions Indicators
PD10 me 200 10YR2/1 10YR3/2 228 7 29 3.7 28 none None none
me 250 10YR2/2 10YR3/2 26.7 8 23 25 30 none None none
li 330 10YR3/4 10YR3/4 264 16 30 2.1 23 none None none
PD11  me 170 10YR2A 10YR4/1 380 6 29 70 28 none None none
me 410 10YR2/2 10YR3/2 40.2 11 27 29 33 none None none
on 800 10YR2/2 10YR3/2 337 14 34 36 23 none None none
on 1000 7.5YR3/4 10YR3/4 304 13 29 25 28 none None none
PD12 me 200 10YR2/1 10YR3/2 26.3 10 49 3.9 32 none None none
me 330 10YR2/1 10YR3/2 28.3 18 44 2.7 27 none None none
me 500 10YR2/2 10YR3/2 249 16 59 2.6 35 none None none
on 700 10YR3/2 10YR4/2 30.3 18 47 21 37 none None none
on 800 10YR3/3 10YR4/3 196 23 50 15 33 Michusty pores None none
PD13 me 200 10YR2/1 10YR3/2 308 5 22 4.5 29 none None none
ot 340 10YR3/3 10YR3/3 424 6 21 49 32 none None none
ye 600 10YR3/4 10YR4/5 1941 17 24 0.9 29 none None none
PD14 me 300 10YR2/1 10YR3/1 326 4 19 45 31 none None none
me 550 10YR2/2 10YR3/2 337 38 31 1.1 26 none None none
ye 720 10YR3/4 10YR3/2 § § § § § none None none
ye 810 10YR4/4 10YR4/4 30.1 51 19 0.3 30 none None none
PD16 me 300 10YR2/1 10YR3/1 29.7 4 28 74 30 none None none
me 350 10YR2/1 10YR3/2 293 7 37 34 28 none None none
li 420 10YR4/3 10YR4/2 19.5 73 19 0.2 28 none None none
PW19  me 450 10YR2/1 10YR3/2 184 6 38 34 34 none None F13
gh 600 10YR3/4 10YR3/2 14.9 6 40 2.6 37 none None none
gh 850 10YR5/1 10YR6/1 16.3 14 3 1.3 27 none Gley none
PD20 me 450 10YR2/1 10YR2/1 35.9 5 20 6.0 27 none None none
ye 600 10YR3/3 10YR3/3 20.0 9 32 2.7 27 none None none
ye 1000 10YR4/4 10YR4/4 18.8 13 42 1.7 37 none None none
PW21 ot 220 5B4/1 10YR4/2 274 5 27 36 42 none None F2
ot 480 75YR4[2  75YR4R 228 57 80 15 32 cffforng/distnct None none
ye 700 75YR4/4  T5YRGM4 296 86 55 07 27 fiflomg/distnct None none
ye 1000  10YR4/4 10YR6/4 § § §  miclomgldistnct  fimyyelffaint none

1 SA DH — South African Soil Classification diagnostic horizons (SCWG, 1991): me — Melanic A; ot — Orthic A; ye — Yellow-brown apedal, gh - G
horizon; on — Unspecified and li — Llithocutanic.
1 LD — lower depth, CEC — cation exchange capacity; BS — base saturation; SOC — soil organic carbon; conc. - concetrations

11 EC* — exchangeable cations per kg clay for every one per cent of organic carbon (SCWG, 1991)

1t RMFs** — redoximorphic feature. Horizons where.RMFs were not given indicate that they were not observed. The RMFs descriptions include
abundance, size, colour and contrast in the order separated by forward slash (/) (Turner, 1991; Soil Survey Staff, 1993; Schoeneberger et al.,

2002)

n/a is for a peat soil where texture of peat was determined by feel method as a sapric material.

Abudance- f- few (< 2%), ¢ — common (2 to 20%), m — many (> 20%)

Size: f- fine, m — medium, c — course
Colour; orng — orange,yel — yellow, bl-grn — bluish green, gry — grey, blc - bleached.
Contrast: promt — prominent, distinct — distinct.
§ Missing values of CEC, EC, BS, SOC, and clay results were either omitted because of high or too low values observed or samples spilled off
from storage.

# Hydric soil indicators (USDA-NRCS, 2010): A1 Histisols, A2 Histic epipedon, A12 Thick dark surfaces, F2 Loamy gleyed matrix, F6 redox dark

surfaces, F7 Depleted dark surfaces, F8 Redox depressions, F13 Umbric surface.
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Prof. SA LD Matrix colour CEC EC* BS SOC  Clay RMFs** RMFs* Hydric
Id. DH mm Moist Dry cmol kg % % % Conc. depletions Indic.
PW24 ot 110 10YR33  10YR4/3 283 8 3B 29 41 none None none
ot 490  10YR2/ 10YR4/1 200 3 2 59 32 none cffl blc/pores F7
gh 750 5Y4/1 5Y4/1 176 9 43 37 22 none m/c/ blc/pores A12
gh 1000 5Y5/1 5Y5/1 120 50 30 03 23 none m/c/ blc/pores
PW25  me 150  10YR2M  10YR32 98 6 63 35 g cffforngldist None F8
me 350  10YR2/ 10YR3/1 177 5 23 29 3p  Ccfffomg/dist None
gh 600 G2IN 10YR4/2 93 9 36 14 2% m/m/orng/promt c/m/bl-gn/distnct A12
gh 800 G15N 10YR4/2 88 § 39 09 § m/m/orng/promt c/m/bl-gn/distnct A12
PW26  me 120 10YR2.5/1 10YR2/1 39§ 56 58 § none None
ve 450  10YR3/ 10YR3/2 2% 16 45 47 15 none cim/blc/pores F7
on 767 10YRSH  10YRS/4 M 2 14 § none m/clblc/pores
PW27 o0 150  25Y251  25Y25M 370§ 1 124 n/a Peat None Al
on 500  25Y25(1  25Y 250 210§ 26 56 n/a Peat None
on 1000 25Y251  25Y25M 282  § 16 73 n/a Peat None
PW28 ot 150 10YR2/2 10YR4/3 25.0 4 33 5.0 38 none None none
ot 450 10YR2/1 10YR4/3 13.9 16 43 1.4 28 none None none
ye 600 10YR3/3 10YR5/4 156.3 9 35 21 29 none None none
on 1000 10YR33  10YR5/4 153 24 28 08 22 M/Mrusty pores fiyelffaint none
PW32 ot 100  10YR22  10YR32 304 3 16 4.1 43 none None
ot 280 10YR3/ 10YR42 175 3 16 33 25  ffomgffaint None none
ot 370 10YR3/ 10YR32 175 7 16 2.1 25  c/mlomgfdsinct fim/bl-gm/faint none
gh 550 10YR4/2 2 5YR7/2 176 § 23 23 § c/m/orng/dstnct f/m/bl-grn/faint F7
gh 940 10YRSH  1OYRSM 130 14 23 09 23  Mmiclomglpromt  cle/bl-gmidistnt

1 SA DH - South African Soil Classification diagnostic horizons (SCWG, 1991): me — Melanic A; ot — Orthic A; oo — Organic O, ye — Yellow-brown
apedal, gh — G horizon; on — Unspecified and li — Llithocutanic.
1 LD - lower depth, CEC — cation exchange capacity; BS — base saturation; SOC — soil organic carbon; conc. - concetrations
11 EC* — exchangeable cations per kg clay for every one per cent of organic carbon (SCWG, 1991)
1t RMFs** — redoximorphic feature. Horizons where.RMFs were not given indicate that they were not observed. The RMFs descriptions include
abundance, size, colour and contrast in the order separated by forward slash (/) (Turner, 1991; Soil Survey Staff, 1993; Schoeneberger et al.,
2002)

Abudance- f- few (< 2%), ¢ — common (2 to 20%), m — many (> 20%)

Size: f- fine, m — medium, ¢ — course

Colour; orng — orange,yel — yellow, bl-grn — bluish green, gry — grey, blc - bleached.

Contrast: promt — prominent, distinct — distinct.
§ Missing values of CEC, EC, BS, SOC, and clay results were either omitted because of high or too low values observed or samples spilled off
from storage.
n/a is for a peat soil where texture of peat was determined by feel method as a sapric material.
# Hydric soil indicators (USDA-NRCS, 2010): A1 Histisols, A2 Histic epipedon, A12 Thick dark surfaces, F2 Loamy gleyed matrix, F6 redox dark
surfaces, F7 Depleted dark surfaces, F8 Redox depressions, F13 Umbric surface.
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Figure 4-3 Soil map of the study site: (Soil forms; 2 Mayo, 3 Wilowbrook, 4 Inhoek).
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Table 4-7 Soil correlations between the South Africa Soil Forms (Soil Classification
Working Group, 1991) and FAO/WRB (FAO, 2006), and USDA Soil
Taxonomy (Soil Survey Staff, 2010).
SA Soll

Prof. SLP Form FAO/WRB USDA Soil Taxonomy
PDO1 Footslope  Inhoek Haplic Umbrisol (Humic) Humic Dystrudepts
PD02  Midslope Inhoek Haplic Umbrisol (Humic) Humic Dystrudepts
PD03  Summit Inhoek Haplic Umbrisol (Humic) Humic Dystrudepts
PD04  Midslope Inhoek Haplic Umbrisol (Humic) Humic Pachic Dystrudepts
PD0O5 Footslope  Inhoek Haplic Phaeozems Typic Hapludolls
PW06 Midslope Inhoek Haplic Stagnosols (Eutric, chromic)  Aeric Humaquepts
PWO07 Footslope @ Champagne Sapric Histosols (Dystric) Typic Haplosapists
PW08 Footslope Inhoek Haplic Stagnosols (Dystric, chromic) Aeric Humaquepts
PD09  Summit Mayo Leptic Umbrisol (Humic) Humic Lithic Dystrudepts
PD10  Summit Mayo Leptic Umbrisol (Humic) Humic Lithic Dystrudepts
PD11 Footslope Inhoek Haplic Umbrisol (Humic) Humic Pachic Dystrudepts
PD12  Valley Inhoek Haplic Umbrisol (Humic) Humic Pachic Dystrudepts
PD13  Midslope Inhoek Haplic Umbrisol (Humic) Humic Dystrudepts
PD14  Footslope Inhoek Haplic Umbrisol (Humic) Humic Pachic Dystrudepts
PD16  Summit Mayo Leptic Umbrisol (Humic) Humic Lithic Dystrudepts
PW19 Footslope  Willowbrook Stagnic Umbrisol (Humic) Cumilic Humaquepts
PD20 Footslope Inhoek Haplic Umbrisol (Humic) Humic Dystrudepts
PW21  Summit Pinedene Haplic Stagnosols (Dystric, drainic) Aeric Humaquepts
PW24 Footslope Katspruit Haplic Stagnosols (Dystric, chromic) Cumilic Humaquepts
PW25 Valley Willowbrook Haplic Stagnosols (Dystric, chromic) Cumilic Humaquepts
PW26 Valley Pinedene Haplic Stagnosols (Dystric, chromic) Cumilic Humaquepts
PW27 Valley Champagne Sapric Histosols (Dystric) Typic Haplosapists
PW28 Midslope Pinedene Haplic Umbrisol (Humic) Humic Pachic Dystrudepts
PW32 Valley Kartspruit Haplic Stagnosols (Dystric, chromic) Cumilic Humaquepts

T Prof — profile identity

*SLP - Terrain morphological unit

11 SA - South Africa Soil Form (Soil Classification Working Group, 1991)
I+ FAO/WRB (FAO, 2006)

# USDA soil taxonomy (Soil Survey Staff, 2010)

Lesotho has classified its soils using the USDA soil taxonomy (Soil Survey Staff, 2010). In
this study the soils of Bokong were classified as Inceptisols with either an udic and or an
aquic moisture regime. Soils of Bokong with high base saturation are Typic Hapludolls
(PDO05), and a similar classification was made by the Office of Survey (1979) for the Matsana
soil series. The Fusi soil series is also expected on the same landscape. Ironically, the
Office of Survey (1979) classified the Fusi soil series as Cumulic Hapludolls while their soil
characterisation reflected a base saturation lower than 50% throughout the horizon of this
soil. The rather similar soils as the Fusi series were observed in Bokong with a cambic
horizon and low base status and they were classified as Humic Dystrudepts or Humic Pachic
Dystrudepts on the footslopes where the humic layer was thicker. The Aquic suborders
were observed in the wetlands and classified as Cumulic Humaquepts. The USDA soil

taxonomy uses the histic epipedon to classify Histisols hence all Histisols are hydric except
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those which occur over the bedrock (Mausbach & Parker, 2001). Two subgroups,
Fluvaquentic Haplosaprists and Typic Haplosaprists were observed (PWO07 and PW27
respectively). PW27 had organic carbon content (by weight) of more than 12 per cent with
no mineral horizons throughout the depth to greater than 1000 mm, while PWO07 had a

mineral horizon below the histic epipedon.

4.4.3 Hydric soils indicators of Bokong

The main idea of characterizing and classifying the Bokong wetland soils was to identify
hydric soils. The definition of hydric soils is met only when hydric soil indicators are present
(Hurt & Carlisle, 2001). The hydric soil indicators identified in the Bokong wetlands, with
reference to USDA-NRCS (2010) hydric soil field indicators are described in Table 4-8. The
histisols (A1) indicator was observed only in profile PW27 and a histic epipedon was
observed in profile PWO07. Umbric surfaces (F13) were common and were observed in
profiles PW06, PW08 and PW19 which occur on the midslopes and footslopes. The
histisols, histic epipedon and umbric surfaces are formed as a result of slower organic matter
decomposition and formation of peat (USDA-NRCS, 2010). Indicators with prominent

concentrations were not common.

Some profiles had the redoximorphic features occurring deeper than that required by the
USDA-NRCS (2010) indicators and hence could not meet the listed field indicators. The
gleyed matrix observed in PW19 occurred at 600 mm depth from the surface. A gley matrix
colours observed in PW24 and PW25 are used for indicator testing only and are not yet
confirmed as hydric indicators. Profiles PD02, PD03, PD09, PD12 and PW28 had few
concentrations or rust streaks below 500 mm depth (Table 4-7). This suggested that not all
wetlands found in Bokong were hydric according to USDA-NRCS (2010), therefore, proper

characterisation and classification of soils is required to identify hydric soils.

The FAO/WRB classification was able to differentiate the hydric soil from non-hydric
because Histisols and all stagnosols found in Bokong were hydric soils, and profile PW19
was classified as Stagnic Umbrisol (Humic). The non-hydric soils were Haplic or Leptic
Umbrisols. USDA soil taxonomy classified all hydric soils as Aeric or Cumilic Humaquepts
including profile PW19 and Haplosapists. The two soil classification systems satisfactory
identifying hydric soils of Bokong. The South African soil classification system soil forms that
confirm a wetland existence (DWAF, 2005) found in Bokong were Champagne, Katspruit,
Willowbrook soil forms and other hydric soils required classification at family level to

separate them from non-hydric soils (Kotze et al., 1994).
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Table 4-8 Description of hydric soil field indicators identified in the wetlands of Bokong
(USDA-NRCS, 2010).

Indicator Description

Histisol (A1) A layer 400 mm or more within the upper 800 mm of soil surface is

the organic material (12% or more organic carbon).

Histic Epipedon (A2) A histic epipedon underlain by mineral soil material with chroma of 2 or
less.

Thick dark surfaces A layer at least 150 mm thick or more with a depleted or gleyed
(A12) matrix below 300 mm of the surface and the overlaying layer must
have value of 2.5 or less and chroma of 1 or less.

Redox dark surfaces A layer at least 100 mm thick, is entirely within the upper 300 mm of
(F6) the soil surface with matrix value of 3 or less and chroma 2 with few
to many prominent redox concentration

Depleted dark A layer at least 100 mm thick with matrix colour of value 3 or less
surfaces (F7) and chroma of 1 or 2 with common or more redox depletions within
the upper 300 mm of the mineral soil.

Redox depression A layer 50 mm thick or more with few or more distinct or prominent
(F8) redox concentrations within the 150 mm of the soil surface

Loamy gleyed matrix A layer 100 mm thick or more with matrix colour value of 4 and
(F2) chroma of 1 within 25 cm of the soil surface

Umbric surface (F13) A layer 150 mm thick or more from the soil surface with matrix colour
value of 3 or less and chroma of 1 and the lower 100 mm has same
colours with chroma of 2 or less. Umbric surfaces in the higher
landscape positions, dominated by Humic Dystrudepts, are
excluded.

4.5 CONCLUSIONS

The topography had influenced the spatial variation of soil. Soil pH, sand, silt and clay
content, bulk density, and CEC were least to moderately dynamic. Relatively stable (static)
soil properties tend to have a regular spatial structure. Summits had relatively high pH and
CEC and significantly high silt content and bulk density. The valleys had relatively lower pH
and CEC and significantly low silt content and bulk density. Soil pH, sand and bulk density
were increasing with depth, while silt, clay and CEC decreased with depth. All other
properties were dynamic and they gave different spatial patterns. The dynamic properties
were decreasing with depth, except for exchangeable Ca and Na and Fey, which showed
irregular trends, probably due to Fe mobility under different moisture regimes suggesting
intra and inter pedon translocation as the soil water fluctuates. The dynamic properties were
supposed to be more influenced by soil water regimes and above ground inputs into the soil

and they were important in pedogenic processes. The PCA showed that soil factors that are
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contributing more to the spatial variation were organic matter, inherent fertility, acidity and

textural variation and can be used to group soils along a toposequence.

The soil types of Bokong are Umbrisols and Stagnosols (FAO, 2006). The hydric soils of the
study were mainly Haplic Stagnosols (Dystric, chromic). Histisols (PW07 and PW27) and
Stagnic Umbrisol (Humic) in the hillslopes wetlands on the midslopes (PW19) also occur.
However, indicators that relate to the histic nature of the soil were more frequently observed
than iron and manganese based morphological features. Therefore the research focus
should be on developing more indicators for proper characterisation and classification of

soils is required to identify hydric soils. .
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CHAPTER 5

RELATIONSHIP BETWEEN SOIL HYDROLOGY, REDOX POTENTIAL AND HYDRIC
SOIL INDICES

5.1 INTRODUCTION

Wetland hydrology is defined as the water table depth, duration, and frequency required for
wetland ecosystem functioning (Mitsch & Gosselink, 2007). The relationship between
hydrology and redoximorphic features (RMFs) is site specific. Some conditions may,
however, alter this usual relationship. This is because redoximorphic features are not only
directly related to the period of saturation, but also through interaction of the redox
processes and soil environmental conditions (Faulkner & Patrick, 1992). Hence, it is useful
to calibrate RMFs by monitoring the water table and evaluating the presence of reducing
conditions. The objective of this chapter was therefore to determine the relationship

between redox potential, RMFs and soil water regimes in the Bokong catchment.

5.2 HYDROLOGY OF BOKONG WETLANDS

5.2.1 Water table hydrographs

Water table hydrographs were developed from bi-weekly water table data using five different
depths from September 2009 to August 2011 in twelve representative wetlands (Figure 5-1).
Daily precipitation data was also added to bi-weekly rainfall data to compare it with the
developed bi-weekly water table hydrographs. The seasonal patterns were in response to
rainfall. The falling of the water table was characterised by falling peaks, which were more
defined during the winter months of May to October due to lack of precipitation. In most
piezometers, the groundwater table (GWT) rose rapidly following a precipitation event,
reaching a maximum level during longer rainfall storms except for small precipitations events
(i.,e. = 10 mm). In the same way lack of precipitation events within the two weeks led to
water table falling to different levels observed between September 2009 and April 2010
(Figure 5-1). In cases where precipitation did not occur for a month, the water table level fell

below the piezometers, which were 1000 mm deep.
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Figure 5-1 Water table hydrographs at different depths of representative wetlands at
Bokong from September 2009 to August 2011.
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The response to lack of precipitation events differs between wetlands, with deeper GWT
observed in wetlands on the midslopes and footslopes (PW06, PW07, and PW08), while in
the valley bottom, the GWT was much shallower (PW25, PW26, and PW27) (Figure 5-1).
The 2010/11 season which started in September 2010 and ended in August 2011 was
characterised by more rainfall events of high intensities and had 35% more annual rainfall
than in 2009/10 (Chapter 3). It can therefore be inferred that seasonal water table
fluctuations observed in 2010/11 were in response to short interval precipitation events

observed during this season.

5.2.2 Groundwater flows

The piezometers were installed at different depths. The low rainfall during the dry period,
beginning in May and ending in July, resulted in higher hydraulic head at the shallower
piezometer suggesting recharge flow. However, during the rainy season (November to
March), longer rainstorms caused the GWT to rise in all piezometers leading to an equal
piezometric head in all depth. Lateral flows were observed for three months in PW06 and for
about eight months in PW27 in 2009/10 season, while during 2010/11 season, almost the
whole season all wetlands were flooded for 10 months (Figure 5-1). The functional
relationship should be predominantly based on groundwater discharge. However, longer dry
spells due to low rainfall during the winter months (May to July) resulted in low GWT, hence

desiccation of the wetlands.

5.2.3 Cumulative saturation

The water table parameters commonly used to relate water table to soil redoximorphic
features are cumulative saturation and average seasonal high water table (Galusky et al.,
1998; Szogi & Hundall, 1998; Rueter & Bell, 2003; Fiedler & Sommer, 2004; Morgan & Stolt,
2006). The water table data for wetland profiles (PW) was transformed into a cumulative
saturation (Figure 5-2). All piezometers indicated that for more than 80% of monitoring time
the water table resided within the 0-500 mm moisture control section, except for wetlands
PWO06, PWO08 and PW21. The shorter duration of saturation of PW06 and PWO08 wetlands
was associated with disturbance due to grazing since the wetlands were near the grazed
cattle posts, while other wetlands were protected from grazing by domestic animals. PW21
was on the wetland previously affected by road construction that traverses through the
wetland (Marneweck & Grundling, 1999). It was identified as “Wetland 2” in the study by
Marneweck and Grundling (1999).
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Figure 5-2 Cumulative saturation graphs of the ten piezometers in Bokong.

5.2.4 Soil water content

Soil water content data were not continuous throughout the 2010 to 2011 because of
technical instrumentation problems. However, soil water content was measured during
highest rainy and dry period of the 2010/11 season. The soil moisture graph and degree of
saturation at 500 mm in profile PW32 indicated a similar trend to the water table levels
measured in the piezometers, with low soil water content from April 2010 to October (dry
period) and high soil water levels (above 0.8 m m™) from November 2010 to January 2011
(rainy period, Figure 5.3). The higher soil water content in November 2010 until January
2011 was in response to high precipitation during this summer season (Figure 5-3). The
degree of saturation at and above 450 mm in Profile PD11 was also above 80%. The
degree of saturation was calculated by multiplying soil water content values with the bulk
density (Hillel, 1980; Van Huyssteen et al., 2005; Jennings, 2008; Kuenene, 2008; Smith &
Van Huyssteen, 2011). The measurement of soil water at each depth was an average to the
next depth, hence the bulk density used to calculate the degree of saturation was
determined from the four horizons in profile PD11 and the G2 horizon for profile PW32
(Table 5-1).
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Figure 5-3 Daily soil water content (m m™), degree of saturation (s-value) at 500 mm
depth and daily rainfall for PW32 from April 2010 to January 2011.
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Figure 5-4 Degree of saturation at different depths at PD11 from April 2010 to January
2011.
Table 5-1 Bulk density at each depth in PD11 and at 500 mm depth for profile PW32
between 26" April 2010 and 13" January 2011
Horizon Lower depth Bulk density Porosity
PD11 mm Mg m* %
A1 170 0.57 78
A2 410 0.65 75
AB 800 1.01 60
B 1000 0.72 72
PW32 (G2) 550 0.78 70




80
5.2.5 Redox potential and degree of saturation

Redoximorphic features are indicators of the water saturation and reducing conditions in
wetlands. Therefore, determination of reducing conditions is important in hydrology. The
soil moisture content and redox potential (Eh) measured at PW32 were analysed to confirm
reducing conditions in the soil. The hourly recorded redox potential at 500 mm depth at
wetland PW32 during high rainfall months from November, 2010 to January 2011 showed
that Eh was negative throughout the three months at a mean of -2 mV suggesting reducing
conditions (Figure 5-5). The redox potential (Eh) in April to August, 2011 were showing
fluctuations between 100 mV and 340 mV indicating continuing reducing conditions until May

and started to increase above 400 mV in June (Figure 5-6).

An increase in Eh above 400 mV was observed from the intersect of the redox potential and
the soil degree of saturation graphs from reduced to oxidized condition (Figure 5-6). The
degree of water saturation at this point when reduction ceased as given by intercept of the
slope was 0.80. A higher degree of saturation (s value = 0.80) was attributed to the high
porosity of the soil. Hillel (1980) determined field soil saturation at 90% of porosity. The first
approximation of the degree of saturation in which reduction is expected to occur given by
Van Huyssteen et al. (2005), for yellow brown apedal B (Soil Classification Working Group,
1991) in South Africa was 0.70 (Sy7) and Jennings (2008) approximation on the same soill
was 0.78 (Sy.78) under laboratory conditions. However, Smith and Van Huyssteen (2011) on
the same soils observed that Mn?* and Fe*" concentrations remain relatively stable at lower
degree of saturation (S = 0.6 to 0.8) while redox potential changes, hence other factors may

be assumed to have delayed the reduction of Fe and Mn.
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Figure 5-5 Hourly recorded redox potential and degree of saturation at PW32 from
November 2010 to January 2011
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Figure 5-6 Hourly recorded redox potential and degree of saturation at 500 mm depth
PW32 from April to August 2011.

5.2.6 Duration of reduced conditions

The estimated degree of saturation (s-value) at which reduction occurs was determined for
the soil and environmental conditions of Bokong to be 0.80. The duration of saturation under
which reduction occurred (ADs-og0) at PD11 was determined as 0, 0, 31, 37, and 51 days of
the monitoring time from 26" April 2010 to 13t January 2011 for 150, 300, 450, 600, and
750 mm depth respectively. Aerobic conditions were prevailing within the 300 mm depth
from the surface of profile PD11 throughout the monitoring period, since there were no days
observed with the s-value above 0.8. Reducing conditions were expected in profile PD11 for
only 37 days in 266 days (13% of the time) at the 500 mm depth from the soil surface. In
PW32, the soil was expected to be reducing for 170 days out of 266 days (64%) of the
monitoring period in the G2 horizon, at 500 mm depth from the soil surface. Van Huyssteen
et al. (2010) reported a duration of saturation (ADsso70) of 239 to 357 days per year (65-
100%) in the G horizons of soils of South Africa. The observed cumulative saturation in 500
mm in PW32 was 82% (Figure 5-2).

5.3 RELATIONSHIP BETWEEN REDOXIMORPHIC FEATURES AND HYDROLOGY

The cumulative saturation curves indicating redoximorphic features observed in each
horizon for wetland profiles are shown in Figure 5-7. The average seasonal water table is
also indicated. Redoximorphic features were not observed in most surface horizons in many

wetlands profiles. This was due to the black soil colour of the surface horizons that could
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have masked the appearance of redoximorphic features. O’Geen et al. (2007) associated
the absence of redoximorphic features at the summit profile in the Redding catena to a lack
of capillary rise extending into the topsoil. The thickness of the capillary fringe depends on
the pore size distribution of the soil and it determines the depth of the redoximorphic
features. O’Geen et al. (2007) explained the reason of thin capillary fringe to be due to the
high sand content. The sandy soil texture of the Bokong soils may also restrict the capillary
fringe from developing to the surface. Bioturbation by gophers can also explain the lack of
hydric soil indicators/redoximorphic feature (O’Geen et al., 2007). Rodents (ice rats) were
active on the drier edges of the Bokong wetlands (Schwabe, 1995); this may destroy
evidence of hydric soil features especially at the edges of the wetland with shorter duration
of standing water. PW27 did not have any redoximorphic features because of peat

formation throughout its depth (Figure 5-7).

The six morphological indices of redoximorphic features identified from each horizon and
cumulative saturation percentage are given in Table 5-2. Regression coefficients for each
redoximorphic index indicate a significant positive correlation between cumulative saturation
and redoximorphic indices, however, poor correlations were observed between average
seasonal water table and redoximorphic indices (Table 5-3). Higher correlations were
observed between the depth to the gley matrix and depth to chroma 3 and 4 and percentage
saturation (Table 5-3). The results were in agreement with Gulasky et al. (1998) results,
which show a higher correlation between cumulative saturation and depth to first gley
horizon and depth to first partially gleyed/pale horizon indices only. The correlations
between morphological indices and the cumulative saturation suggested that the duration of

water table can be inferred from the redoximorphic features in Bokong.

The poor correlation between morphological indices and the depth of saturation has also
been observed by other researchers (He et al., 2002; He et al., 2003; Vepraskas & Caldwell,
2008). He et al. (2003) ascertained that redox features do not necessarily determine the
water table depth but the duration and frequency of water table at that depth. Furthermore
redoximorphic features are expected to occur higher in the profile than average seasonal
water table (Fiedler et al., 2004; Dear & Svensson, 2007; Severson et al., 2008).
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FTASHWT: Average seasonal high water table.

Figure 5-7 Cumulative saturation graphs of the ten piezometers in Bokong indicating the

redoximorphic features of each horizon.
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Table 5-2 Soil profile description, identified morphological indices, and cumulative

saturation for the ten representative wetlands.

Diagnostic Concentrations ~ Concentrations ~ Depletions Depletions Morphological Cumulative
Profileid.  horizons Depth mm Moist colours % & size Colfcontr % & size Colfcontr Indices* Saturation %
PWO06 ot 0-70 10YR2/1 none none none none none 65
me 70-190 10YR2/1 none none none none none 70
ye 190 - 410 5YR4/4 com/fin red/distnct man bleach pore d_34 n
ye 410-590 5YR4/6 com/fin red/distnct none d_conc 82
PWO7 00 0-210 10YR2/1 none none none none none n
of 210-400  10YR2/2 fewffin omg/distnt none none o_rmfs 70
ye 400 - 540 7.5YR4/4 few/fin orng/distnt few/fi bl-grn/distnct  d_34 &
ye 540-1000  10YR5/6 none none com/fin bligmidistet d_dep! 82
PWO08 me 0-70 10YR2/1 none none none none none 64
me 70-200 10YR2/1 few/fin red/distnct none none d_rmfs 68
on 200 - 750 10YR2/2 few/fin red/distnct none none d_rmfs 8
on 750 - 800 2.5YR5/6 mny/co yel/promt mny/co gry/promt d_depl 79
PWI9  me 0-450 10YR2/1 none none none none none 83
gh 450 - 600 10YR3/4 none none none none d-34 83
gh 600 - 850 10YR5/1 none none none gley d_gley 84
PW21 ot 0-220 5B4/1 none none none none none n
ot 220 - 480 7.5YR 412 com/fi omg/dist none none d_conc 82
ye 480 - 700 7.5YR 4/4 fewfi omng/dist none none d.34 84
ye 700 - 1000 10YR4/4 mny/co orng/dist few/med yelffaint d_34 86
PW24 ot 0-110 10YR4/4 none none none none none 72
ot 110 - 490 10YR2/1 none none com/me bleached d_depl 83
gh 490 - 750 5Y4/1 none none mny/co bleached d_gley 84
gh 750-1000  5Y51 none none mny/co bleached d_gley 86
PW25  me 0-150 10YR4/4 com/f omg/dist none none d_34 82
me 150 - 350 10YR2/1 com/fi orng/dist none none d_conc 83
gh 350 - 600 G2/N mny/med orng/promt com/med bl-gn/distnct  d_gley 84
gh 600 - 800 G1.5N mny/med orng/promt comimed  blgn/distnct  d_gley 85
PW26 me 0-120 10YR 2.5/1 none none none none none 78
ye 120 - 450 10YR 3/1 none none com/me bleached d_depl 84
on 450 - 767 10YR 5/1 none none mny/co bleached d_depl 85
PwW27 00 0-100 2.5Y 2.5/1 none none none none Peat** ”
on 100 - 500 2.5Y 251 none none none none Peat** 82
on 500 - 1000 2.5Y 251 none none none none Peat** 84
PW32 ot 0-100 10YR2/2 none none none none none 72
ot 100 - 280 10YR3/1 few/fin omg/faint none none d_rmfs 9
ot 280-370 10YR3/1 com/med orng/dstnct few/med bl-grn/faint d_conc 79
gh 370 - 550 10YR4/2 com/med orng/dstnct few/med bl-grn/faint d_conc 82
gh 550 - 940 10YR5/1 mny/co orng/promt com/co bl-grn/distnct  d_dep! 85

1 Diagnostic horizons: South Africa soil classification system (Soil Classification Working Group, 1991): me — Melanic A; ot — Orthic A; oo —
Organic O, ye — Yellow-brown apedal, gh — G horizon; on — Unspecified and li — Llithocutanic.
I Concentration % and size, Depletion % and size: (Turner, 1991; Soil Survey Staff, 1993; Schoeneberger et al., 2002)
Abudance- few (< 2%), com — common (2 to 20%), mny — many (> 20%)
Size: fin- fine, med — medium, co — course
11 Concentration col/contr, Depletion col/contr: col/contr — colour contrast: (Turner, 1991; Soil Survey Staff, 1993; Schoeneberger et al., 2002)
Colour; orng — orange, yel — yellow, bl-grn — bluish green, gry — grey, blc - bleached.
Contrast: promt — prominent, distinct — distinct.
1t Morphological indices™:
d_rmfs — depth to few redoximorphic features, d_34 — depth to chroma 3 or 4, d_conc depth common concentrations, d_depl/ — depth to
common and many depletions, d_gley — depth to gleyed horizon.
§ Peat™ with no redoximorphic features observed
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Table 5-3 Linear Regression coefficients for cumulative saturation and average

seasonal high water table (ASHWT) versus the depth to soil morphological

indices.

Morphological indices Cumulative saturation ASHWT
d_34chr 0.77 0.17
d_gley 0.74 0.36

d _conc 0.67 0.01
d_depl 0.58 0.19
d_RMFs 0.50 0.05
Average

TMorphological indices:

d_34 — depth to chroma 3 or 4

d_gley — depth to gleyed horizon

d_conc depth common concentrations

d_depl — depth to common and many depletions

d_RMFs — depth to few redoximorphic features
Table 5-4 shows the profile darkening index (PDI) and depth of the black layer with
corresponding soil water saturation percentages for each profile at 500 mm depth.
Thompson and Bell (2001) suggest the use of PDI to indicate degree of wetness than
redoximorphic features where surface horizon have dark thick layer due to organic matter
accumulation. The PDI and black layer had a good correlation with both soil water
characteristics (Figure 5-8). The higher PDI index indicated that higher organic carbon

accumulations had occurred due to prolonged saturation.

Table 5-4 Average seasonal high water table (ASHWT), profile index (PDI calculated
from equation 2-7), depth of the black layer (mm, value < 2, chroma < 1) and

cumulative saturation at 500 mm.

Profile no ASHWT PDI Depth of black Cumulative saturation %
' (mm) layer at 500 mm depth
PWO06 110 6.3 190 79
PWO07 110 13.3 400 79
PWO08 100 9.3 200 72
PW19 60 0 450 83
PwW21 90 0 0 82
PW24 80 0 0 83
PW25 40 0 0 84
PW26 50 11.7 450 84
PW32 80 8.7 370 82

PW27 40 28.5 1000 82
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Figure 5-8 Linear correlation coefficients for average seasonal water table and

cumulative saturation versus the depth to soil morphological indices.

Thompson and Bell (1996) report a significant correlation between PDI and duration of
saturation at 50 cm (R? = 0.48, a = 0.05), while Rueter and Bell (2003) observe that
thickness of the black layer is better correlated with duration of saturation than PDI (R? =
0.81 and 0.77).

Boxplots representing variability between morphological indices are given in Figure 5-9.
There was a significant difference in cumulative saturation percentage between
morphological indices, with longer duration required to form a gley matrix (d_gley) than the
time required to develop all other redox indices (Figure 5-9). Lindbo et al. (2006) also
observed that redox concentrations correlate to approximately 15% annual water saturation,
but 2 chroma depletions correlate to approximately 80% annual water saturation. West et al.
(1998) also observe that low chroma Fe depletions represent considerable cumulative
saturation, while few depletions with common concentrations can develop with 19%
cumulative frequency in loamy soils. The mean separation showed that the time required to
develop d 34, d conc and d-depl was not significantly different from time required to form
gley matrix, however, the range in cumulative saturation (indicated by the height of the box)
was narrow with d_gley and d_depl. The lower saturation percentage for d_34 than d_conc,
was assumed to be because of the abundance categories used which separated few
concentrations (d_RMFs) from common to many.
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Galusky et al. (1998) reported similar results on the indices, where the d-34 index was highly
correlated with average monthly water table levels derived from a first order auto-regressive
model. The correlation was highest in March when seasonal water tables were highest. The
gleyed matrix also had higher correlations during the same rainy season. Galusky et al.
(1998) observed low to poor correlations or no correlations with the d-depl and d-conc
respectively. The d_conc and d_depl indices indicate a fluctuating water table (Franzmeier
et al., 1983; Zobeck & Ritchie, 1984; Evans & Franzmeier, 1986; Vepraskas & Caldwell,
2008).
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1 Means with different letters are significantly different at the 0.05 level.

I The lower line of the box represents the minimum cumulative saturation percentage (25th percentile) and the end of the

upper line is the maximum cumulative saturation percentage (75th percentile) observed under every RMFs. The cross bar on

whisker line above the box represents the highest observed value and on the lower whisker is the lowest observed value.

t1 Morphological index: PDI - profile darkening index, No RMFs — no redoximorphic features observed, d_RMFs —few d_34 —

depth to chroma 3 or 4, d_gley — depth to gleyed horizon, d_conc depth common concentrations, d_dep/ — depth to common

and many depletions

Figure 5-9 Box plots showing the mean difference in cumulative saturation between the
abundance of redoximorphic features for the 24 months study period from 10

profiles at Bokong.

Redoximorphic features were not identified under a wide range of cumulative saturation
percentage and this was associated with the dark surface horizon which masks the
pigmentation of Fe. The minimum duration of saturation required for Bokong soils to
develop redoximorphic features was 77% of the year. Redoximorphic features were not
observed with cumulative saturation of 72% (Figure 5-9). This was supported by lack of

redox features in the subsoil of permanently dry profile (PD11) with duration of reducing
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conditions of at least 20% of the year (Section 5.2.5). Longer saturation required to develop
redox features could also be linked with low temperatures in this landscape. Vaughan et al.
(2009) also observed that longer duration is required for Fe of ferrihydrite to be reduced as
temperature decreased. However, soil temperatures at Bokong within the 500 mm of the
soil surface was higher than 5°C for at least nine months in a year especially during periods

of higher soil water content.

The good correlation observed between the indices and cumulative saturation percentage
suggested that these indices can be used to determine the duration and frequency of the
water table in this landscape. The hydric field indicators identified that were related to
d_gley and d_34 indices were thick dark surface (A12) and loamy gleyed matrix (F2). The
hydric soil field indicators that were related to the PDI index were histisols (A1), histic
epipedon (A2) and umbric surfaces (F13). The indicators that were represented by the
indices that had poor correlations with the cumulative saturation (d-conc and d-depl) were
redox dark surfaces (F6), depleted dark surfaces (F7) and redox depression (F8) (Table 5-
5).

Table 5-5 Hydric soil field indicators proposed to infer duration and frequency of

saturation of Bokong wetlands.

Hydric Indicator Morphological index Cumulative saturation %

Histisols (A1) PDI 79
Histic epipedon (A2)
Umbric surfaces (F13)

Thick dark surfaces (A12) d_gley 84
Loamy gleyed matrix (F2) d_34 81
Redox depression (F8) d _conc 83
Redox dark surfaces (F6)

Depleted dark surfaces (F7) d depl 83

TMorphological index:
PDI - profile darkening index, d_34 — depth to chroma 3 or 4, d_gley — depth to gleyed horizon, d_conc depth
common concentrations, d_dep/ — depth to common and many depletions

5.4 CONCLUSIONS

There is a significant positive correlation between cumulative saturation and some
redoximorphic indices. However, poor correlations were observed between average
seasonal water table and all redoximorphic indices suggesting that the depth to average
seasonal water table cannot be associated with redoximorphic features. Strong correlations
were observed between the depth to the gleyed matrix and depth to chroma 3 and 4 and
cumulative saturation. However, the percentage time required to form a gleyed matrix was

not significantly different from time required to develop d-34, d-conc and d_depl. Therefore
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d_34 and a gleyed matrix need to be used with other indicators to confirm the presence of
wetland hydrology. None of the indices however, can be used to determine the depth of
seasonal high water table. Field indicators such as histisols, histic epipedon, umbric
surfaces, represented by PDI and thick dark surfaces and loamy gleyed matrix represented
by d-34 and thick dark surface represented by d_gley can be used to determine the duration
and frequency of the water table in the landscape studied, hence can be used to delineate
wetlands. Other field indicators represented by indices with weak correlations with

cumulative saturation (d_conc and d_depl/) may be used with other indicators.



90

CHAPTER 6

THE DISTRIBUTION OF SELECTED SOIL ELEMENTS IN HYDRIC AND NON-HYDRIC
SOILS

6.1 INTRODUCTION

Soil properties distribution in a profile is influenced by soil water regime. The leaching soil
water regimes dominate in freely drained soils, however, wetland ecosystems are dominated
by saturated soil water regimes and redox gradients control the properties’ distribution.
Linkages between soil water regimes and soil properties’ distribution are important to the
understanding of the dominant soil processes in the soil and their ecological impact (Fiedler
& Sommers, 2004), such as element transformation and pollutant retention in soils (Enya et
al., 2011). Freely drained soils have short duration of standing water. This is indicated by
minimal evidence of pedogenesis and result in uniform distribution of secondary Fe and Mn
oxides with depth (O’Geen et al.,, 2007). Fluctuating water table in wetland ecosystems
favours the formation of secondary Fe and Mn which result in concentrations and depletions
in different depths. Free Fe and Mn oxides can be estimated by citrate-bicarbonate-
dithionate (CBD) extraction (McKeague et al., 1971). The ratio of dithionite extractable Mn
and Fe (Mn4/Feq) has been used as a pedochemical indicator of water movement (Bartlett,
1986; McDaniel & Buol, 1991; McDaniel et al., 1992, Khan & Fenton, 1996; Jien et al.,
2010). The objective of this chapter was to investigate the influence of soil water saturation
on the distribution of secondary Fe, Mn, oxides, available P, and cations in the Bokong

wetlands.
6.2 IRON AND MANGANESE OXIDES

6.2.1 Distribution of Fe and Mn in hydric and non-hydric soils

There was no obvious regular pattern in the distribution of both oxides in the profiles (Figure
6-1). Generally, it could not be established which horizons have higher levels of Fey or Mng.
However, both oxides showed similar trends with depth in most profiles (Figure 6-1). For
example, profile PW32 had lower concentrations of Mng and Fey in the transitional horizons
and higher accumulations were observed in the A1 horizons (Figure 6-1). Horizons with high
accumulations of Mng and Fe4 are associated with highly variable redox conditions (Fiedler &
Sommers, 2004). O’Geen et al. (2007) also associated the formation of poorly crystalline Fe

(ferrihydrite) to the fluctuating water table and redox.



91

The horizon that had the lowest Fe content (31 g Feq kg™') was the G horizon in profile PW19
(Figure 6-1). This horizon had gley colours without redox concentrations, suggesting the
solubility and loss of Fe due to longer duration of saturation. Increased solubility of Fe and
Mn was also observed by Jennings (2008) under laboratory conditions, where an increase in
degree of saturation caused a decrease in pe (Eh) and an increase in the soluble Fe?* and
Mn?" concentration. Anaerobiosis leads to the reduction of Fe** and thus to a high release of
soluble Fe?* (Dethier et al., 2012). Moore (2006) also observed pronounced losses of
dithionite-extractable Fe and Mn from gleyed horizons. Khan and Fenton (1996) observed a
pronounced decrease in total Fe as the duration of saturation increased. Eger et al. (2011)
reported the lowest concentrations of 0.34 mg kg™ Feq under super humid New Zealand

conditions where podsolization is dominant.

However, in cases where the G horizon had redox concentrations, the Mny and Fey
concentrations were highest in the profile (Figure 6-1), suggesting increased localised
solubility and accumulation of Fe and Mn due to periodic water saturation (Jennings et al.,
2008). The presence of redox concentrations in the G horizon suggested that accumulations
of re-oxidised Fe and Mn also occur. According to Le Roux et al. (1999), G horizons
develop when interflow drains laterally as bedrock flow, forming a phreatic water table.
However, this phreatic water table responds to seasonal changes in precipitation (Jennings
et al., 2008). Thus, Fe?" that has been lost from the upper horizon accumulates when
oxidised conditions prevail in the G horizon leading to higher concentrations of Feq and Mnj.
Jien et al. (2010) observed the greatest quantities of iron nodules of 492 g kg™ in plinthic
horizons with reducing conditions duration of 47% of a year. The concentrations of Fey4 and
Mny in profile PW27 were uniform throughout the profile. O’Geen et al. (2007) associated
the similarities in extractable Fe with depth to minimal pedogenesis. Profile PW27 had

developed peat throughout the depth of 1000 mm without a mineral soil.

The Mny and Feq4 levels in non-hydric soils were either higher in the transitional horizons
such as in profile PD11 or were lowest (Figure 6-2). The higher concentrations were
assumed to be a result of capillary rise from the water table. The capillary fringe concept
was supported by Richardson et al. (2001); Fiedler et al. (2004); and Dear and Svensson
(2007).
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Figure 6-1 Dithionite citrate bicarbonate extractable iron (Feq) and manganese (Mny)

distribution with depth hydric soils.
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Figure 6-2 Dithionite citrate bicarbonate extractable iron (Fey) and manganese (Mng)

distribution with depth non-hydric soils.
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6.2.2 Pedochemical indicators

Iron oxide had a possible influence on the distribution of manganese oxide. In this
landscape both oxides seemed to follow the same distribution patterns in most profiles. The
correlation coefficient of the two pedogenic oxides in the hydric soils was R? = 0.41 and in
non-hydric soils was R? = 0.46 (Figure 6-3). Enya et al. (2011) associated the co-migration

of the Fe and Mn oxides with the parent material, geomorphic and physicochemical

processes.
6.00 -
® Hydric soils R2=0.41
5.00 1 B Non-hydric soils R? = 0.4567 n
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Figure 6-3 The correlation between Mny and Feq in hydric and non-hydric soils.

The Mny/Feqy ratio was very low ranging from 0.002 to 0.037 in permanently wet (PW)
profiles and higher values ranging from 0.009 to 0.076 in permanently dry (PD) profiles
(Figure 6-4). All permanently wet profiles had Mny/Fey ratio lower than 0.01 except for
PWO06 and PW21 (Figure 6-4). The higher Mny/Feq ratios in both PW08 and PW21 were
attributed to the anthropogenic effects on drainage of the profiles (Section 5.2.3). Jien et al.
(2010) found that Mng/Feq in nodules is a good indicator for determining the depth of
fluctuating water table. The use of the Mny/Feqy ratio has also been used as a good
pedochemical indicator to assess water movement in the profile (Van Huyssteen et al.,
2005). The low ratio in hydric soils showed the loss of Mn out of the profile to the ground

water.
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Figure 6-4 The Mny/Feq ratios in non-hydric permanently dry (PD) and hydric

permanently wet (PW) soils.

6.2 3 Elemental masses

The elemental mass had more influence on the morphology of the soil than the
concentrations (Fiedler & Sommers, 2004). The extracted element masses and clay masses

were calculated as (Fiedler et al., 2004);

100 — cf)

My = 10000

(xiXPﬁiX)’iX

n
i=1

Where M, is mass of Fey, Mng or clay in the pedon (kg m™ profile depth™), x; is Feq, Mng or
clay content in horizon i (g kg™); n is the number of horizons to profile depth; pp is bulk
density (Mg m™); y; is the thickness of the horizon ; (cm); cf; is the coarse fractions >2 mm of
the horizon ; (Vol. %). Selected soil properties were also discussed in relation to drainage.
The mass of Fey and clay were not significantly different between hydric and non-hydric soils
(Table 6-1). The elemental mass for Mny was significantly higher in non-hydric soils. This

was also the case with Mnq levels.
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Table 6-1 Total Feq4 and Mny Masses per profile and the element mass/clay ratio for
each profile
Profiles Feq Mngy Clay Fegd/clay Mng/clay
kg m?

Non-hydric soils

PDO1 34.32 1.15 10.67 3.22 0.357
PD02 35.66 1.54 16.53 2.16 0.713
PDO03 47.48 1.42 22.97 2.07 0.689
PD04 13.10 0.42 10.36 1.26 0.334
PDO05 50.55 1.25 11.83 4.27 0.293
PD09 53.69 1.62 12.99 413 0.392
PD10 23.89 0.94 5.72 417 0.226
PD11 64.43 1.83 15.64 412 0.444
PD12 16.50 0.35 5.09 3.24 0.108
PD13 22.92 0.64 9.44 2.43 0.265
PD14 31.40 1.05 9.63 3.26 0.322
PD16 10.73 0.48 5.08 2.11 0.228
PD20 33.44 0.80 13.61 2.46 0.327
mean 33.70 + 16.5° 1.04 + 0.48° 11.50 £ 11.5° 2.99 0.36
Hydric soils
PWO06 34.50 0.41 5.42 6.36 0.064
PWO7 77.90 0.33 16.85 4.62 0.071
PWO08 42.26 0.79 17.32 2.44 0.325
PW19 26.84 0.43 14.70 1.83 0.233
PW21 47.59 1.30 11.83 4.02 0.322
PW24 87.53 1.24 16.78 5.22 0.238
PW25 20.44 0.10 577 3.54 0.028
PW26 13.72 0.05 1.33 10.33 0.005
PW32 26.77 0.06 9.97 2.69 0.022
mean 41.95 + 25.4° 0.52 + 0.52° 11.11+£5.8° 4.56 0.15
t-test
(P=0.005) 0.18 0.01 0.43

T Means of each element followed the different letters were significantly different between hydric and
non-hydric soils at P = 0.005.

The Fey/clay ratio was higher in hydric soils, while the Mng/clay ratio was higher in non-
hydric soils (Table 6-1). McDaniel et al. (1992) used the element/clay ratio as a
pedochemical indicator of element accumulation. The Mngy/clay masses correlated well with
clay masses (Figure 6-5), while Fed/clay masses did not have any correlation with clay
masses indicating the total independence of Feqs movement from clay. However, the high
correlation between Mny masses and clay in non-hydric soils (R? = 0.81) were assumed to
be due to clay decreases with depth in this landscape. The Mny accumulated in the higher
horizons that were freely draining and decreased with depth in wetter horizons. Therefore,
the relationship of clay and Mny was not associated with the co-migration of the two
properties (clay and Mny). The redistribution of both Mny and Feq was more influenced by

hydraulic and redox gradients (Fiedler et al., 2004).



97

0.7 A A Non-hydric soils R? = 0.8074 A

06 - | Hydric soils R? =0.4693

0 5 10 15 20 25
clay mass (kg m2)

Figure 6-5 The relationship between Mngy/clay ratio and clay mass in non-hydric and

hydric soils.

6.3 DISTRIBUTION OF SELECTED PROPERTIES AS AFFECTED BY SOIL WATER
SATURATION

The means of selected soil properties in different horizons in hydric and non-hydric soils are
given in Table 6-2. A paired t test indicated that soil pH, exchangeable Mg and Na, dithionite
extractable Fe and Al were significantly different between hydric and non-hydric soails.
Hydric soils had significantly higher Mg, Na and Fe content, and significantly low soil pH and
Al content. Generally it appeared that soluble phosphorus, Fe and exchangeable bases

accumulated in hydric soils, while the soil pH and Al content decreased.

The mean dithionite extractable iron and manganese (Fe4 and Mny) contents in hydric soils
were of 104 g Feq kg™ and 1.5 g Mny kg™ while in non-hydric soils it were 83 g Feq kg™ and
2.5 g Mng kg™ (Table 6-2). The significantly higher Fey in hydric soils may be due the
fluctuating water-table in the G horizon that can cause the movement of Fe within the profile.
When the horizon is saturated, the Fe is reduced and moves up with the water table and as
the water table drops the Fe is oxidised and precipitates. However, the Fey might also

accumulate in subsoil where higher electron potential and pH conditions prevail.
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Manganese preferentially accumulated in non-hydric soils. Similar observations were made
by Fiedler and Sommers (2004) in Inceptisols under a temperate humid climate, who
observed higher amounts of Mng in well drained soils and lower levels that ranged between
0.11 and 0.48 g Mny kg™ in reducing conditions. The low concentration of Mng in the hydric
soils suggested a loss of Mn to local groundwater flow (McDaniel et al., 1992). Bartlett
(1986) explained that in well-drained soil profiles secondary Mn can be found at deeper
depths than Fe because it remains in a reduced, soluble form longer than Fe, with

increasing redox potential.

The significantly higher contents of Mg®* and Na* in hydric soils were similarly associated
with the fluctuating water table that regulates the availability and mobility of nutrients (Kolka
and Thompson, 2006). Brinkman (1970) proposed the term ferrolysis to describe redox
reactions in hydromorphic soils. Le Roux et al. (2005) associated redoximorphic features
observed in E and G horizons in the soil of South Africa to ferrolysis. The repeated cycles of
oxidation and reduction of Fe and Mn result in depletions and accumulations of the oxides in
different horizons (Le Roux, et al., 2005; O’Geen et al., 2007). Ferrolysis also lead to
redistribution of other elements, such that during reduction, Fe?" and Mn?" are formed and
displace basic cations, which are then leached through lateral flow and accumulate at the
depth of leaching (Van Ranst & De Conink, 2002; Le Roux, et al., 2005; O’Geen et al.,
2007). Fiedler et al. (2004) indicated that in hydric soils leaching is expected to be
extensive, but the process of lessivage and thus argillic horizon formation is retarded,
probably because the soils do not undergo frequent desiccation. The significantly low soil
pH in hydric soils (Table 6-2) was associated with H* dissociation from organic acids during

aerobic phase of ferrolysis (Webster & McLaughlin, 2010).

Soil phosphorus exists in forms of organic P, fixed P, and ortho-P. Transformation of fixed P
into soluble ortho-P is controlled by redox. Available P decreased with depth both in hydric
and non-hydric soils. Under reduced conditions P is mobilised and accumulates above the
water table (Fiedler et al., 2004). This is as a result of increased solubility of Fe upon
reduction, thereby releasing higher concentrations of adsorbed and precipitated P to the soil
solution. In hydric soil the highest P in the surface horizon and Fe4 content was relatively
lower (Table 6-2).

The variable concentrations of elements among genetically similar horizons reflected that

redistribution of elements is not influenced by weathering alone (McDaniel et al. 1992).
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Fiedler and Sommers (2004) described the redistribution of the pedogenic oxides of this

nature typical of gleyzation processes reflected by development of redoximorphic features.

6.4 CONCLUSIONS

The distribution of dithionite citrate bicarbonate oxides was reflected on the redoximorphic
properties suggesting inter pedon translocations due to hydraulic and redox gradients.
Presence of grey matrices was marked by relatively low contents of both Feq and Mny in
PW19 while occurrences of redox concentrations were reflected by higher concentrations of
Feq and Mny. However, there was no obvious regular pattern in the distribution of the Fegq
and Mny in the profiles. The Mngy/Feq ratio was a good pedochemical indicator to assess
redistribution of Fe and Mn in the profile and hence, the soil water regimes. The Mny/Feq
ratio was higher ratios in non-hydric soils reflecting the affinity of Mn to precipitate at higher
electron potentials, while lower ratios were observed under hydric soils. The possible losses
of Mn to the groundwater table in reduced soils may have led to its lower contents in hydric
soils. lron and Mn oxide distribution was not following any genetic horizon development
patterns and their movement was independent of clay movement. Significantly higher Fey,
Mg?, Na* contents were observed in hydric soils, while soil pH and Aly were significantly

lower.
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CHAPTER 7

SOIL ORGANIC CARBON DISTRIBUTION AND STORAGE IN HYDRIC AND NON-
HYDRIC SOILS OF BOKONG.

7.1 INTRODUCTION

The soil is the World’s third biggest carbon reservoir (Chesworth, 2004). The soil carbon in
the world is estimated at 1500 Gt C, which is three times more than C contained in
vegetation (FAO, 2004). In wetland ecosystems, carbon is reserved in peats (Roulet, 2000).
Peat is a soil material high in organic C composed of root exudates, microbial byproducts,
and dead organic matter at various stages of decay (Webster & McLaughlin, 2010). The
prolonged soil water saturation and anaerobic environments are the primary factor affecting
organic matter dynamics and most biogeochemical functions in peats (Asada & Warner,
2005). Changes in soil water saturation accompanied by redox gradients may lead to
increase in loss of carbon in wetlands (Chesworth, 2004; Yang et al., 2010). However, the
effect is not direct since it depends also on the response of vegetation and microbes to
changes in the water balance yield. Furthermore, the above and below ground allocation of

organic matter is a principal factor controlling the carbon balance (Post & Kwon, 2000).

Soil as carbon sinks have different carbon accumulation patterns (Asada & Warner, 2005).
Research had tried to quantify the differences in soil organic carbon stock by observing the
vertical distribution of organic carbon since they reflect allocations of organic carbon in the
soil (Esteban & Jackson, 2000; Chi et al.,, 2010; Yang et al., 2010). It is important to
understand the vertical patterns of carbon pools of different wetland types which can be
used to predict consequences of changing hydrology on carbon sequestration in wetlands.
The objectives of this chapter were to evaluate the vertical distribution of soil organic carbon
in hydric and non-hydric soils, and to estimate the soil organic carbon stock of Bokong to
1000 mm depth or to the depth of the C horizon.

7.2 VERTICAL DISTRIBUTION OF SOIL ORGANIC CARBON

7.2.1 Hydric soils organic carbon levels

The permanently wet (PW) soils profiles had hydric soil indicators. The soil organic carbon

of profile PW32 decreased with depth, while the bulk density increased (Figure 7-1). Results

also showed that profile PW32 had significantly higher organic carbon in the surface horizon
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than the all the subsoil horizons (Figure 7-1). The high organic carbon in the topsoil was
associated with partial decomposition of organic material due to anaerobic conditions that
slow down the decomposition rate leading to accumulations and formation of peat (SSSA,
1997; Kolka & Thompson, 2006). This is because reduction of Fe and Mn oxides facilitates
the anaerobic oxidation of organic matter, which vyields less energy for microbial
decomposition. The permanently wet (PW) soils had developed peat in the topsoil (SSSA,
1997). The mineral soil underlying the peat had very low carbon content that ranged
between 0.5 and 3% (Figure 7-2).

All permanently wet (PW) profiles generally showed vertical distributions of organic carbon
and bulk density similar to profile PW32 except for profile PW24, which had higher soil
organic carbon levels in the transitional horizon than in the underlying and the overlying
horizons (Figure 7-2). The general decreasing trend of organic carbon content in hydric
soils with depth was drastic from the topsoil into the subsoil suggesting the accumulation of
organic matter from above ground litter and roots and little distribution into the subsoil. The
profiles PW06 and PWO07 had the highest organic carbon especially in the surface horizon,
but it decreases drastically in the subsoil (Figure 7-2). The high organic carbon content may
be attributed to the addition of animal manure from livestock grazing since the two wetlands

were the only grazed wetlands in the study area.

Bulk density (Mg m™3) Organic carbon %
0 0.2 0.4 0.6 0.8 1 0.00 1.00 2.00 3.00 4.00 5.00
0 ! . ! L ) 0 : : : L I
100 + | 100
200 200 -
300 - 300 -
E 400 - E 400 -
< 500 - g 500 -
§ 600 - § 600 -
700 - 200 -
800 - 800 4
900 900 -
1000 - 1000

Figure 7-1 Bulk density and soil organic carbon profiles in PW32.
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7.2.2 Non-hydric soils organic carbon levels

Soil organic carbon steadily decreased with depth in soil profile PD11, while the bulk density
decreased (Figure 7-3). Results also showed that soil organic carbon was significantly
higher in the top horizon and very low in the subsoil as was the case with the permanently
wet soils (Figure 7-3). Similar trends of organic carbon down the profile were observed in
other profiles (Figure 7-4). However bulk density distributions gave irregular trends. Higher
bulk densities were observed in topsoil horizons than in the underlying horizons of some
soils (Figure 7-4). The aboveground or root litter and exudates are responsible for higher
accumulations of soil organic carbon input in the topsoil. The low soil organic carbon in the
subsoil was attributed to limited root distribution in the subsoil due to massive soil structure
(Esteban & Jackson, 2000; Lorenz & Lal, 2005; Rumpel & Knabner, 2011). Rantoa (2009)
reported organic carbon content in the master horizons of soils of South Africa ranged
between 0.3 in the C horizons and 16% in the O horizon. However, the subsoil organic
carbon is about 1.2%. Rantoa (2009) also observed that organic carbon content in these

soils is weakly positively correlated with rainfall and aridity index.
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Figure 7-3 Bulk density and organic carbon profiles in PD11.
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7.2.3 Comparison of organic carbon levels between hydric and non-hydric soils.

There was no significant difference in the organic carbon content between permanently wet
soils and permanently dry soils (Table 7-1). However, organic carbon was apparently higher
in permanently wet soils with higher levels in the topsoil. The transitional horizon of the
permanently dry soils showed higher organic carbon levels than the hydric soils (Table 7-1),
which was attributed to profile differentiation. Most profiles of the permanently dry soils had
AB or BA transitional horizons, while permanently wet soils had distinctly clear different

horizon developed below the A horizon, designated as B1 horizons.

Table 7-1 Mean bulk density (Mg m™) and soil organic carbon content (%) in different

horizons of permanently dry and permanently wet soils.

Profiles* HORIZONS
A1 A2 AB/BA/B1 B/B2/AC Profile
BD OoC BD OoC BD OoC BD OoC BD OoC
Mg m* % Mg m® % Mg m® % Mg m* % Mg m* %
PDO1 0.62 5.86 0.75 3.68 0.82 3.18 1.02 0.58 0.80 3.33
PDO02 0.88 495 0.85 5.75 0.76 3.34 0.95 0.65 0.86 3.67
PDO03 0.80 7.21 0.84 3.37 0.86 3.09 0.96 1.45 0.87 3.78
PDO0O4 0.41 6.84 0.38 5.09 0.54 3.06 0.59 0.70 0.48 3.92
PDO05 0.33 6.35 0.32 4.67 0.97 2.92 1.10 1.51 0.68 3.86
PD09 0.76 6.24 0.48 3.45 it it 0.90 1.13 0.71 3.61
PD10 0.70 3.65 0.62 252 Tt 1 0.96 2.06 0.76 274
PD11 0.57 7.03 0.65 2.89 1.01 3.64 0.72 2.47 0.74 4.01
PD12 0.53 3.85 0.67 2.69 0.44 2.57 0.44 1.82 0.52 2.73
PD13 0.67 4.46 i it 0.51 4.92 0.67 0.91 0.62 3.43
PD14 0.53 4.53 0.80 1.06 0.58 1.06 0.58 0.31 0.62 1.74
PD16 0.61 7.40 0.71 3.38 it it 0.70 0.18 0.67 3.65
PD20 0.72 5.96 1 11 073 270 0.63 1.65 0.69 3.44
PD
mean 0.63° 5.72° 0.64° 3.50° 0.72° 3.05° 0.79° 1.19° 0.69° 3.38°
PWO06 0.26 12.60 0.29 6.64 0.85 0.46 0.85 0.26 0.56 4.99
PWO07 0.30 14.90 0.55 5.87 0.92 1.32 0.82 0.53 0.65 5.66
PWO08 0.33 3.84 0.95 3.36 1.05 2.26 1.05 0.19 0.85 2.41
PW19 0.40 3.36 t+ 1 0.91 262 0.90 133 0.74 2.44
PW21 0.34 3.61 1.03 1.51 2.60 1.51 1.07 0.69 1.26 1.83
PW24 0.88 2.86 0.85 5.89 0.76 3.66 0.95 0.32 0.86 3.18
PW25 0.34 3.45 0.44 2.94 0.87 1.41 0.90 0.91 0.64 2.18
PW26 0.32 5.83 0.44 4.69 i it 1.08 1.42 0.61 3.98
PW27 0.40 12.40 0.42 5.58 i it 0.39 7.29 0.40 8.42
PW32 0.37 4.06 0.46 3.33 0.68 2.34 0.84 0.93 0.59 2.67
PW

mean 0.39" 6.69° 0.60° 4.42° 1.08° 1.95° 0.86° 1.39° 0.73° 3.61°
t-test

(P>0.05) 0.003 0.479 0.702 0.190 0.109 0.084 0.285 0.687 0.79 0.56

1 The means of PD and PW under each parameter and horizon followed by the same letter are not significantly different
according to t- test (P >0.05).

I Profiles*: PD permanently dry soils PW permanently wet soils; BD bulk density; OC — organic carbon

11 PD 12 and PW32 had three horizons in the topsoil (A1, A2 and A3) and A3 BD and OC were added to A2 to enable
comparison with other profiles to be done.

1t Profiles with missing data did not have the designated horizons.

The bulk density was significantly lower in the A1 horizon of permanently wet soils (Table 7-
1; 0.39 Mg m™®). This was attributed to the development of peat (SSSA, 1997) in the top

surface layer of most permanently wet soils. Marneweck and Grundling (1999) reported the
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peat Von Post Humification scale of peat of Bokong wetlands between 6 and 8 in the top
600 mm of the soil surface and 4 within the 1000 mm depth. Verry et al. (2011) reviewed
the correlations between bulk density and Von Post Humufication and observed comparable
high correlations between different studies. According to Paivanen (1969) the bulk density
associated with 4 to 8 Von Post Humification scale values in bogs range between 0.10 and
0.15 Mg m™. Wellock et al. (2011) also reported mean bulk density of 0.13 Mg m™ for raised

bogs peat in Ireland.

7.3 SOIL CARBON STOCK

7.3.1 Soil organic carbon stock in hydric and non-hydric soils

The bulk density and the thickness of a horizon affect the amount of organic carbon stored in
a horizon (Brahim et al., 2010). Hence the estimation of soil organic carbon (SOC) stock
requires knowledge of the vertical distribution of bulk density, OC, and horizon thickness in
profiles. Total carbon percentage was multiplied by the bulk density and thickness of each
soil horizon to get horizon carbon mass (Cy). All horizons carbon mass in one profile were
added to provide an estimate of the mass of carbon stored (kg C m?) in the entire soil
profile. The profile carbon mass (Cpass) is @ measure of the carbon stored in 1 m? area to
the depth of the entire soil profile (Eswaran et al., 2000; Brahim et al., 2010) given in the

equation as:
S0C = ¥, D,iC; D; (7-1)

Where SOC is the soil organic carbon stock (kg C m?), Dy, is the bulk density (Mg m™) of a
horizon i, C; is the proportion of organic carbon (g C g™") in horizon i and D; is the thickness of
this horizon (cm). The SOC density was multiplied by area to estimate SOC storage of the

study area.

The soil carbon stock estimated in this study were from the primary field data obtained from
the detailed soil survey. The mean SOC density of the study area was 166278.3 Mg C ha™
(Table 7-2) or (16.6+7.83 kg C m?). The estimated soil carbon density in this study was
comparable with other studies on similar soils. Lal (2004) reports the soil organic carbon
density in Inceptisols were 148 Mg C ha”and 1170 Mg C ha’in Histisols (adapted from
Eswaran et al., 2000). While the estimates of soil organic carbon densities from temperate
grassland are between 141 and 236 Mg C ha™ (adapted and recalculated from Watson et al.,
2000; Prentice, 2001).
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This was consistent with the calculations by Esteban and Jackson (2000), who estimated the
global soil organic carbon content in temperate grasslands between 0 to 1000 mm depth at
11.7 kg C m™? with a standard deviation of 6.6. Brahim et al. (2010) calculated the carbon
stock of Tunisia with the highest densities observed under Luvisols with densities of 15.92
kg C m?in 0-1000 mm depth. They compared their data with Batjes (1996), who derived
worldwide mean carbon stock from Regosols, Vertisols and Cambisols for 1-1000 mm depth
of 9.6, 11.1 and 9.6 kg C m? respectively. The default reference soil organic carbon stock
(SOCger) under native vegetation in cold temperate moist Umbrisols/Inceptisols is 95 Mg C
ha™ for the top 300 mm depth (Watson et al., 2000). The mean profile soil carbon density in
permanently dry soils soils of the study area was 174.4+77 Mg C ha™, while in permanently
wet soils soils was 155.1+83 Mg C ha™ (Table 7-2). Soil organic carbon density vary
amongst soil profiles which was to some extent attributed to the shallow soil depth in many
profiles, low bulk density due to high soil aggregation and the effect of soil water content,

which affects the vegetation and activity of microbes in the soils.

The estimated carbon stored was 21619 Mg C (0.022 Tg C; 1Tg = 10'?g) within the 1000
mm soil depth. About 384.9 Mg C is stored in the wetlands soils within the study area, which
is about 1.9% of the total carbon stored within 1300 ha to the depth of 1000 mm. Wiesmeier
et al. (2012) reported the highest amount of soil organic carbon with a median value of 11.8
kg m? in grasslands and considerably lower stocks of 9.8 and 9.0 kg m™ in forest and
cropland soils, respectively from southeast Germany. Wiesmeier et al. (2012) associated
the higher soil organic carbon stocks in grassland to the accumulation of organic carbon in
the B horizon which was attributable to a high proportion of carbon rich Gleysols. Rantoa
(2009) also reported the soil organic carbon stocks from 27 land cover classes of the soils of
South Africa to range between 9 Mg ha™ in barren rock to 120.2 Mg ha™ in forest plantations
and the total organic carbon storage of 8.99 £ 0.10 Pg calculated to a depth of 0.30 m, which

was associated with 0.59% of global soil organic carbon.

The depth distribution of soil organic carbon stocks showed that despite the lower organic
carbon concentrations in the A horizons of non-hydric soils, their stocks were considerably
higher compared with hydric soils (Table 7-2). This was due to a deepening of the topsoil.
Wiesmeier et al. (2012) emphasised the importance of determination of soil organic carbon
stocks by horizon for the entire soil profile to incorporate the effect of pedogenic soil organic
carbon. They felt that the soil organic carbon stocks in hydric soils maybe overestimated
since most studies use fixed depth increments to estimate organic carbon sequestration or

emission potential from soils.
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Table 7-2 Soil organic carbon density (Mg C ha™) per horizon in each profile
Horizons
Profiles (0-20 cm) A1 A2 AB/BA/B1 B/B2/AC Total
Mg C ha™
PDO1 72 65 50 57 19 191.2
PD02 87 113 63 36 26 238.5
PDO3 115 162 45 43 56 305.0
PD04 57 48 32 28 12 120.9
PD05 42 53 43 26 41 162.6
PD09 65 95 It 8 41 146.1
PD10 89 51 It 8 16 74.6
PD11 25 68 45 144 36 292.1
PD12 95 41 23 35 8 107.2
PD13 51 60 35 It 16 110.9
PD14 80 72 21 11 2 105.8
PD16 41 135 12 1 - 148.1
PD20 60 193 It 29 42 264.1
PD Means 68 89 37 36 26 174.4
PWO06 48 23 23 9 4 58.5
PWO7 90 94 61 17 20 192.2
PWO08 27 9 41 131 2 182.9
PW19 86 60 It 36 30 126.2
PwW21 25 27 22 34 22 105.1
PW24 50 28 190 72 8 297.9
PW25 23 18 26 31 16 90.5
PW26 37 22 68 It It 90.5
PW27 99 50 94 142 15 285.5
PW32 30 13 28 16 64 121.6
PW Means 52 35 61 54 20 155.1
Grand means 61 65.3 48.5 43.5 23.6 166.3
Std dev. 28 47.9 39.7 43.4 17.4 78.3
Max 115 193 190 144 64 305
Min 23 9 12 1 2 58.5
% contributed 33.5 36.1 26.8 24.0 13.1

tProfiles*: PD permanently dry soils PW permanently wet soils

1BD bulk density; OC — organic carbon

11 PD 12 and PW32 had three horizons in the topsoil (A1, A2 and A3) and A3 BD and OC were added to A2 to enable
comparison with other profiles to be done.

11 Profiles with missing data did not have those horizons.

7.3.2 Soil organic carbon stock in different horizons

About 36% of soil oragnic carbon was stored in the surface horizon (A1) and about 33% was
stored in the top 200 mm (Table 7-2). The results were comparable with Esteban and
Jackson (2000), who reported 40% of soil oragnic carbon distribution in the top layer of 0-
200 mm. This is also in agreement with Batjes (2002) who reported that 44% of the global
soil organic carbon pool is held in the top 300 mm of the soil. Nevertheless, the topsoail is
most prone to changes in land use and soil management (Post et al., 2000; Batjes, 2002;

Ghimire et al., 2011; Bu et al. 2011). Land use and management impact on soil structural
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formation and soil organic carbon storage (Han et al., 2010). Occlusion of soil organic

carbon within soil aggregates also preserves it in soil.

The t-test indicated that there is no significant difference in soil organic carbon storage
between topsoil horizons and transitional horizons; however the A1-horizon was significantly
different from B/B2/AC horizons (Table 7-3). The low soil organic carbon in the subsoil is
stable compared to topsoil soil organic carbon. Rumpel and Knabner (2011) indicated that
the type of soil organic carbon in the subsoil is enriched in microbial-derived C compounds
and depleted in energy-rich plant material, and it is characterised by high mean residence
times of up to several thousand years. Rumpel and Knabner (2011) also observed the
possible stabilization mechanism of soil organic carbon in the subsoil through amorphous
iron and aluminium oxides. The decomposition of subsoil C could only occur by disrupting
the physical structure and adding nutrient supply to soil microorganisms (Han et al., 2010;
Ghimire et al., 2011).

Table 7-3 Means comparison of soil organic carbon (SOC) density in different horizons.
Paired horizons SOC density means t-test (4 = 0.05)
---------- Mg C ha'---———
A1 and A2 65.3 48.5 ns
A1 and AB/BA/B1 65.3 43.5 ns
A1 and B/B2/AC 65.3 23.6 **
A2 and AB/BA/B1 48.5 43.5 ns
A2 and B/B2/AC 48.5 23.6 ns
AB/BA/B1 and B/B2/AC 43.5 23.6 ns

** Significant at the 0.05 probability level
ns - non-significant at the 0.05 probability level

7.4 DISTRIBUTION OF SOIL ORGANIC CARBON IN DIFFERENT WETLAND TYPES.

Soil organic carbon levels, total N and C mass were significantly different between wetland
types with the significantly higher accumulations in the bogs (Table 7-4). The Bogs stored
the highest carbon in the soil (179 Mg C ha™) of which at least 44% was stored in the A1
horizon (Figure 7-5). This was expected since the higher organic carbon content of bogs
differentiates them from fens since the fens represent an earlier successional stage of peat
accumulation. Wellock et al. (2011) reported 1160 + 520 Mg C ha™ for raised bog peat in

Ireland with the mean bulk density of 0.13 Mg m™ and mean organic carbon levels of 46%.

The hillslope seeps and the valley head fens stored the same amount of carbon (Table 7-4).
This indicates that the formation of hillslope seeps and resulting characteristics are

comparable with the fens. Marneweck and Grundling (1999) indicated that hillslope seeps
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are formed due to presence of an impermeable layer causing lateral flow that either seeps
out the sloping land surface or accumulate in concave slopes forming a perched aquifer
(Marneweck & Grundling, 1999). The size of hillslope seeps depends on the quantity of
groundwater discharge and the slope of land surface down the seepage area. Large
hillslope seeps develop into valley head fens. The valley head fens are the dominant type of

wetland in Bokong.

The C/N ratio was not significantly different between the wetland types (Table 7-4). This
suggested that wetlands receive a similar quality of decomposable material (Webster &
McLaughlin, 2010). Schwabe (1995) observed that both bogs and fens of the Maloti
Mountains have the same type of vegetation species. However, the C/N ratio was
significantly different between horizons. The significant decrease in soil organic carbon
levels between horizons could explain the observed significant differences in C/N ratio. The
decline in C/N ratio means a decrease in dissolved organic carbon flux from watersheds,
hence C/N ratio is used as a site quality indicator or NOj is preferentially leached
(Aitkenhead & McDowell, 2000).

C/N ratio also showed highest CV (Table 7-4). The highest variation in C/N ratio (CV = 61%)
suggested that the C/N ratio can readily change with change in land use or management.
Studies use C/N ratio as an indicators which can change over a short period such as one
year of land use change (Aitkenhead & McDowell, 2000; Vranova, 2007). Vranova (2000)
suggested that short term management do not have sufficient time to effect the change in

organic carbon in the soil but C/N can indicate such a change.

Table 7-4 Soil organic carbon pools in different wetland types in Bokong
Wetland type n SOC Total N C/N ratio C-mass
% (kg C m?)

Bogs 11 6.17a 0.89a 6.3a 179a

Valley head fens 19 3.02b 0.52b 6.6a 141b

Hillslope seeps 13 2.85b 0.40b 6.6a 154b
Analysis of Variance

Sources of variation df

Wetland type 2 * * ns *

Depth 3 * ns * *

CV% 41 25 61 31

*Significant at the 0.05 probability level

ns, non-significant at the 0.05 probability level

1 Within columns, means followed by the same letter are not significantly different according to Duncan multiple
range test (0.05).

I n = number of samples, SOC = soil organic carbon, C/N ratio = Carbon/Nitrogen ratio, C-mass = amount of
carbon stored, df = degrees of freedom, CV% = coefficient of variation.
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Figure 7-5 Soil organic carbon profiles in different wetland types of Bokong

7.5 CONCLUSIONS

Soil water saturation affected the patterns of organic carbon in the soil. Higher organic
carbon contents were observed in hydric soils (3.61%) than in that of non-hydric soils
(3.38%). However, the influence of soil water saturation in the sequestration of organic
carbon was not evident since non-hydric soils had apparently higher amounts of carbon
stored than hydric soils. The high organic carbon stock observed in the non-hydric soil was
attributed to the deeper topsoil and higher bulk densities, hence deeper distribution of
organic carbon. Furthermore, the stock of organic carbon present in natural soils represents
a dynamic balance between the input of dead plant material and loss from decomposition
and the lower organic carbon storage in hydric could be due to low inputs of the plant

material because of generally low productivity of wetlands soils.

Furthermore, research highlighted the role of soil water saturation in regulating the
decomposition of organic matter in different wetland types. Bogs stored more soil carbon
than other wetland types and 44% was distributed in the topsoil, while the valley head fens
and hillslope seeps stored same amount of soil organic carbon. This indicated the
importance of hillslope seeps which may be regarded as minor wetlands yet their ecological

role is still comparably significant as valley head fens.
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CHAPTER 8

CONCLUSIONS AND RECOMMENDATIONS

8.1 CONCLUSIONS

Wetlands are areas with high water table at or near the soil surface long enough to develop
anaerobic conditions. The duration and frequency at which the water table resides near the
soil surface is called wetland hydrology. The presence of the water table must be
accompanied by anaerobic conditions for the area to have functions of a wetland. The area
that has a wetland hydrology is supposed to have hydric soils and supports wetland
vegetation. Therefore, hydric soil may be used to infer the existence of a wetland. Hydric
soils are identified in the field using hydric soil indicators, which are morphological features
of specific thickness and abundance that reflect different soil water regimes. The differences
in soil properties and climate in different landscapes affect the direct use morphological
features to interpret soil water regime. Therefore, the established relationship between soll
saturation and development of redoximorphic features is required if soil survey
interpretations are to be used in hydric soil and wetland hydrology determinations. The aims
of this study were to determine the variation in soil properties and hydric soil indicators along
the toposequence, and determine the relationships between soil redoximorphic features, soil

properties redistribution and organic carbon accumulation with hydrology.

The main factors of variability in soil properties in small catchments with uniform geology are
the microclimate and the topography, hence variability was determined between topographic
units along a toposequence named slope positions. Soil pH, soil texture, bulk density and
CEC were relatively stable properties. Summits had coarser texture and higher bulk density.
The valleys had relatively lower pH and CEC and significantly low bulk density. The lower
pH in the valleys could be due to ferrolysis that releases H" and lowers pH and reduces
CEC. The principal component analysis (PCA) showed that dynamic soil properties
especially those related to organic matter inputs and inherent fertility, acidity and textural
variation are important for management of the site. The four factors can be used to group

soils into homogenous units that could be subjected to the same use or management.

Two systems that tried to develop the relationship between hydric soils and wetland
hydrology were reviewed. Kotze et al. (1996) summarised hydric soil indicators observed in
the three soil water regime classes for wetlands soils of South Africa. USDA-NRCS (2010)
has developed more site specific hydric soil indicators for United States. The indicators of

the two systems were used as reference to develop relevant indicators for the wetlands of
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Lesotho. Seven hydric indicators were identified and described. The depletions and loamy
gley matrix (A12 and F7) occurred in the valleys, while the midslopes and footslopes were
dominated by umbric surfaces (A13). Indicators that were related to the peat formation were
frequently observed. Therefore, further characterisation of peat to develop more hydric

indicators is important.

Galusky et al (1998) developed redoximorphic indices and many other indices mostly
developed for waste water treatment were used to determine the relationship between hydric
soil indicators and the current soil water regimes. Strong correlations were observed
between the depth to the gleyed matrix (d_gley) and depth to chroma 3 and 4 (d_34) and
cumulative saturation. The profile darkening index (PDI) correlated with both water table
characteristics. Therefore, field indicators such as histisols, histic epipedon, umbric surfaces
represented by PDI, and thick dark surfaces and loamy gleyed matrix represented by d_34
and d_gley were verified to be representing the current wetland hydrology and can be used

to delineate wetlands.

The statistical difference between dithionite citrate bicarbonate extractable Fe, Mn and Al
and selected soil properties for hydric and non-hydric soils were determined using t-test.
Significantly higher Feq, Mg?*, Na* contents were observed in hydric soils and lower soil pH
and Aly and apparently lower Mny. The solubility of Fe under anaerobic conditions resulted
into mobility of Fe?* and accumulation within the profile due to alternating redox conditions.
The Fe?* was not lost from profile such as with Mn**. The ecological implication of this is
that Fe oxide is effective in adsorbing anions such as phosphate and this may result in lower
release of available P into the water bodies. Iron and Mn oxide distribution did not follow
genetic horizon development patterns and their movement was more controlled by
fluctuating water regimes since more of the oxides were observed where redox

concentrations were in abundance in the profile.

Higher organic carbon levels and lower organic carbon stock observed in the hydric soil
compared with non-hydric soils may be due to lower the organic carbon input in hydric soil.
Hence, the hydric soil may be subjected to a different use or management from non-hydric
soil. Among wetland types, bogs stored more soil carbon than the valley head fens and
hillslope seeps as was expected. The hillslopes seeps were also comparably providing

significant ecological function as valley head fens in terms of storing carbon.
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8.2 RECOMMENDATIONS

The following recommendations were made:

¢ Wetlands and their delineation for management purposes is a topic of considerable
importance worldwide as land for building, agriculture and other conflicting uses
become scarce. This study added to the body of knowledge by exploring methods in
which morphological properties can be verified for use in delineating wetlands.
Through such methodologies, wetland hydrology criteria for different uses can be
developed.

o The two international systems (FAO, 2006 and Soil Survey Staff, 2010) satisfactorily
classified hydric soils of Bokong, suggesting the two systems can be used in
conjunction with hydric soils delineation tools to reduce time of onsite investigations.

e Future research focus should be on verifying and adding more soil indicators within
the mountain ecosystems to develop hydrologic criteria that will be used to delineate
the mountain wetlands.

e Further characterisation of peat to develop more hydric indicators is important.

e The study encountered much challenges to generate continuous hydrologic
measurements using data loggers, such that discontinuous data was obtained. More
robust methods should be explored for longer term monitoring. Such methods may
improve the relationships observed between redoximorphic features and soil water

characteristics.
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APPENDICES

APPENDIX 1: WETLAND SPECIES OF BOKONG

Scirpus ficinoides
Loli / leloli

Kniphofia caulescens
leloele/ khaputiane

Scirpus ficinoides
Loli / leloli
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Eumorphia sericea

Merxmuellera macowanii
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APPENDIX 2C: SELECTED SOIL PROFILES PHOTOGRAPHS OF TYPICAL SOILS OF
BOKONG

Figure 1 Melanic A in PD11

e

B

2
4 A

owapedal in PDO1

Figure 2 Noignosic yellow b
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Figure 3 Proflle PW21 ‘WhICh was previous |dent|f|ed as “Wetland 2”in the study by
Marneweck and Grundllng (1999)

Figure 4 Profile PWO06 with shallow peat depth.
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Figure 3 Profile PWO07 with deeper peat depth.

Figure 3 Landscape position of hillslope seeps and bogs of Bokong PW06 and PWOQ7.
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Figure 7-6 Valley head fens of Bokong (PW26)
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APPENDIX 3 CONT...

PW32
Date 5 25 50 75 100
7-Sep-09 | 0 4.5 0 0 0
21-Sep-09 | 0 0 5 28 15
7-Oct-09 | O 0 50 14 915
21-Oct-09 | O 0 0 0 0
7-Nov-09 | O 0 0 0 0
21-Nov-09 | O 0 0 0 0
10-Dec-09 | 0 25 15 21 21
21-Jan-10 | O 0 0 0 0
7-Feb-10 | O 0 0 0 0
22-Feb010 | O 0 0 0 0
07-Mar010 0 0 0 0 0
22-Mar010 0 0 0 0 0
7-Apr-10 | O 0 0 0 0
22-Apr-10 | O 0 0 0 0
7-May-10 | O 0 0 0 0
22-May-10 | O 0 0 11 145
7-Jun-10 | O 0 0 5 7
22-Jun-10 | O 0 50 14 915
7-Jul-10 | O 25 50 75 100
23-Jul-10 | 5 25 500 75 100
20-Aug-10 | 5 25 500 75 100
7-Sep-10 | 5 25 500 75 100
21-Sep-10 | O 8 50 11 10
7-Oct-10 | O 8 50 11 10
22-Oct-10 | O 0 0 30 36
7-Nov-10 | O 0 0 0 0
21-Nov-10 | O 0 0 0 0
9-Oct-10 | O 0 0 0 0
23-Oct-10 | O 0 0 0 0
7-Nov-10 | O 0 0 0 0
23-Nov-10 | O 0 0 0 0
7-Dec-10 | O 0 0 0 0
21-Dec-10 | O 0 0 0 0
7-Jan-11 | O 0 0 0 0
21-Jan-11 | 0 0 0 0 0
7-Feb-11 | 0 0 0 0 0
21-Feb-11 | O 0 0 0 0
7-Mar-11 | 0 0 0 0 0
21-Mar-11 | O 0 0 0 0
7-Apr-11 | 0 0 0 0 0
21-Apr-11 | 0 0 0 0 0
7-May-11 | 0 0 0 0 0
21-May-11 | 0 0 0 0 0
7-Jun-11 | O 0 0 0 0
21-Jun-11 | O 0 0 0 0
7-Jul-11 | 0 0 0 0 0
21-Jul-11 | O 0 0 0 0
7-Aug-11 0 0 0 0
21-Aug-11 | O 0 0 0 0
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APPENDIX 4: COMPARISON OF SOIL ORGANIC CARBON DETERMINATION
METHODS.

y =0.7329x - 1.1828 *
| R2=0.852 * &
g
@

% SOC wet digestion method
o = N w H (03] [e)] ~ [0}

0.00 2.00 4.00 6.00 8.00 10.00 12.00
% SOC by dry method




