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ABSTRACT

Introduction and Aim: Few studies have been carried out to determine the influence of Computed Tomography
(CT) acquisition parameters (slice thickness, tube potential difference (kVp), and tube current time product
(mAs)) on the quantitative image features in radiomics studies. There is little evidence in the published literature,
of studies that use mathematics to establish radiomic texture features that are independent of the CT scan
technique parameters. The stability of radiomic texture features may have a great impact on the diagnosis and
treatment of cancers. Robust texture features can be used to track radiotherapy treatment response. In this
study radiomic texture features were investigated to identify features that did not depend on the CT technique

par ameters.

Methodology: The credence cartridge radiomics (CCR) phantom was imaged at four CT units at the Universitas
Academic and the National District hospitals. The tube current-time product (mAs) was varied from 75 to 400
mAs in steps of 25mAs while the kilovoltage peak and slice thickness were kept set at 120kVp and 5 mm
respectively. The CT tube potential was investigated at 80, 100, 120 and 135 kVp whilst mAs and slice thickness
was kept set at 300 mAs and 5 mm respectively. The slice thickness was varied from 1 mm to 5 mm whilst the
mAs and kVp was kept constant at 300 mAs and 120kVp respectively. The acquisition field of view (FOV) and
pitch were kept constant. The images obtained were processed using PyRadiomics software platform of 3D
Slicer and the Matlab 2017a package. PyRadiomics was used to segment and extract a total of 105 radiomics
texture features for each region of interest (ROI) delineated on an image. The 105 radiomic features included
13 shape features, 18 first order statistics features, 23 grey-level co-occurrence matrix, 14 grey level difference
matrix, 16 grey-level run length matrix, 16 grey level size zone matrix and 5 neighbourhood grey tone difference
matrix features. For each 10 CCR phantom inserts, 16 ROI of 2cm diameter was segmented by aligning the
centre of the ROI at the centre of the insert. The Matlab package was used to segment and extract image
matrices that were used to perform hand GLCM calculations. A kV Cone Beam Computed Tomography (kV
CBCT) acquired cervical cancer data-set was used to establish the robust radiomic texture features response to
radiotherapy treatment. The kV CBCT images were acquired first day and weekly during the 25 treatment

fractions.

Results: Five first order statistic radiomic features and six grey level co-occurrence matrix features were identified
in the experimental test and mathematical manual calculations tests to vary with coefficients of variance of less
than or equal to 10 % when the slice thickness was varied. Most of the radiomic texture features were weak and
unstable (coefficients of variance above 10%) at very small slice thickness (< 2.5 mm) and robust at medium
(= 2.5 mm) to large slice thickness (3.75 mm and 5 mm ) (coefficients of variance < 10 %). The above was

attributed to an averaging effect (image smoothening) on the images when the slice thickness of image
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acquisition is increased. The image noise was observed to be less in large slice thickness when compared to
noise at small slice thickness. Radiomics features were independent and stable to the tube potential at greater
than 100 kV. At high tube potential the radiation attenuated signal detected at the CT detector was higher
cancelling the noise effects. The robustness of these radiomic features depended on the material comprising

the insert analysed.

The extent of mAs dependence observed for the dense cork and plaster resin materials inserts was low
compared to the dependence on the solid acrylic material insert. All the other phantom inserts (rubber particles,
natural cork and the 3 acrylonitrile butadiene styrene plastic) data plots showed smaller variations around the
central axis (zero feature value) of the skewness, uniformity, entropy and kurtosis features graphs. Irrespective
of the mAs changes, the radiomic texture feature values obtained from all of the ABS materials inserts, rubber
particles and natural cork inserts were consistently smaller, closer to zero. A general decrease in image noise as
the mAs of image acquisition was increased in images of uniform or relatively uniform material was also

observed.

The patient tumour analysis showed some radiomic texture features response to radiotherapy treatment. This
was shown by the changes observed on the inverse difference, inverse difference moment, entropy and
difference variance texture features. The texture features had their values decrease from start of treatment (first
fraction) to the last treatment fraction. The decrease was not smooth along the treatment period, there were
some anomalies on the trends. This decrease was ascribed to the change in the heterogeneity of the tissues

within the treatment region of interest evaluated.

Conclusion: Overall, using theoretical analysis and a practical approach, robust radiomic features that were
independent of the CT scan parameters were observed. The experimental approach showed that the phantom
insert materials had influence on radiomic texture feature values obtained in investigations. Radiomic texture
features demonstrated that tumours had a variation of heterogeneity between them. The observation agrees
with other clinical studies that showed that tumours exhibit some extensive genetic and phenotypic variations.
Radiomic texture features can be utilised to depict tumour texture changes along the treatment timeline as
shown in this study. A great challenge would be to associate the radiomic texture feature changes to the clinical
biological changes. For future robust radiomic feature studies, the use of phantoms with tissue like materials

was proposed.

Key words: 1.) Radiomic Texture features, 2.) Computed Tomography, 3.) Tumour, 4.) Phantom, 5.) Imaging

parameters, 6.) Robust, 7.) Slice thickness, 8.) Tube potential difference, 9.) Tube current, 10.) Software

v|iPage



TABLE OF CONTENTS

Acknowledgments 0 DediCation .....ocviiiiiiiiiiiiiiiiii ii
7T o0 [ iii
F o6 1ot TP iv
Table Of COMEENLS 1uviiiiiiiiiiiiiiii e a e s b e e b e e s ab e e s b e e s aa e s saba e nae s Vi
Table Of FIZULES cuviiiiiiiiiiiiiiiii it e viii
LASE OF TADLES wevvviiiiiiiiiiii e e X
ADDLEVIAHONS TLAST.uviiiiiitiiiiiiie it e sa e xi
Chapter 1: General INtrodUCON ..ovviiiiiiiiiiiii 1
L1 INELOAUCHION ..ot bbb as b 2
1.1.1 Computed tomography (CT) .......cccociiiiiiiiiiiiiiiiiii s 2
1.1.2 CT factors that influence image formation and quality...........cccoceriiiiiiiiiiiniiiiiciiciee, 3
1.1.3 General RadiomiiCs ........coociiviiiiiiiiiiiiiiiiiii 6
1.1.4 Study Problem Statement ..........ccccviiiiiiiiiiiiiiiiiii i 10
1.1.5 Study Aim and ODbBJECHIVES.........ccciiiiiiiiiiiiiiiiii 11
Chapter 2: Texture features and their relation to CT image formation ......cceeuvvvieeiiiiieiieniiiiicnecnecsec s 12
2.1 Introduction to theoretical robust radiomic features recognition.............c.cccccevveeicrvivncccrennccnennes 13
211 CT Image qUAlity .......cooeiviiiiiiiiiiiiiiiii s 13
2.1.2 First order statistical features ..........ccovviiiiiiiiiiiiiiii 15
2.1.3 Grey-Level Co-occurrence Matrix (GLCM) Features .........ccccoovuiiviiiiiiiiniininiiicc e 17
2.1.4 Software DesCription...........cccuiiiiiiiiiiiiiiiii 28
Chapter 3: Materials and Methods ....cvviiiiiiiiiiiiiiiiiiiii 29
3.1 Materials and MethOds............ccooiiiiiiii s s 30
3.1.1 Introduction to the material and methods...........ccocivviiiiiiiiiiniiiii 30
3.1.2 Phantom StuAY .......cccovviiiiiiiiiiiiiiiiiccic e 30
3.1.3 Contouring and Feature EXtraction..........cccccceviiiiiiiiiiiiiiiiiiiec 33
3.1.4 Impact of the volume region of interest (ROI) on radiomic texture features....................... 35
3.1.5 Normalising the radiomic texture features data...........c.ccevivniiiiiiniiiiiii 37

O 0 T 1 4 L 10 RS 38
3.1.7 Imaging Parameters.........ooiiiiiiiiiiiiiiiiiiii i 39
3.1.8 Feature extraction re@ion of iNterest..........ccccvviiiiiiiiiiiiiiiiiii 40



3.1.9 Radiomics Feature Calculation SOFEWALE ........ccouuiiiieiiiiiiie et e e e e e e e e e eaas 44

3.1.10 Statistical software analysis..........ccocvvviiiiiiiiiiiiiii 45
Chapter 4: Results Presentation ....oiueiiiiiiiiiiiiiiiiic i 46
UL RESUILS ...ttt ettt b bbb bbb bbb bbb bbb bbb bbb bbb bene 47
4.1.1 Introduction tO rESULt SECTION .....eciiiuiiiiiiiiiiieieiiieeeeietee e e e s e e e s e e e s enne e e e ssreeeesanneeeesannneeeean 47
4.1.2 Phantom f@SULLS.......cuiiiiiiiiiiiiiiiiiii ittt st sra e 48
4.1.3 Cervical cancer patient COhOIt teSULLS...........ocoiiiiiiiiiiiiiiii e 75
Chapter 5: Discussion Of fIdINgGS.....coviiiiiiiiiiiiiiiiiiiic e 83
5.1 DIESCUSSION ...ttt ettt et e st st e s st asest e s et b aestaebessestassesesnessasensentesson 84
5.1.1 Phantom results diSCUSSION .......cciiiiiiiiiiiiiiiiiiiiie ittt e e e e snae e 84
5.1.2 Cervical cancer results diSCUSSION.......ccccuiiiiiiiiiiiiiiiieiiie e 91
Chapter 6: CONCIUSION ..viiiiiiiiiii i b e b e b e sb e saeeeas 95
6.1 Conclusion and final CONSIAEIALIONS ...........ccooveiiueiiieiriciierec e seeaes 96
6.2 Limitations and RecomMmendations...........c.ccoceeeueueuiuiueieuereueereieiereierereseresesereseseseseresesesesesesesesesesesesesesesens 98
RETEIEIICES. . uvvttttettieiiiitiee et ettt e e e e s ettt e e e e e s sttt e e e e e e s s s aaababaeeeeesaaaasb e s aaaeesssaasastaaeaeesssaasssseaaeeeesnssnnsnes 99
APPEIAICES wvvvviiniiiiiiitii i saeeea 109
A. CCR phantom image sample used for manual calculations as demonstrated in Chapter 2.................. 109

B. Sample graphs of Tumour Sensitivity to radiotherapy treatment .......ccvveeeeeeieeerieeerieerrecmrienreensiensenens 112

C. Toshiba Aquillion Large bore CT unit tube current heat maps sample.......cccooocviirviiiviciiciincnnienninns 119
D. Evaluation COMMIttee aPPLOVAL.....coiueviueiieeiiieiieeiieeieeeetie et saens 121

B. Bhics CIEATANCE ...vvvviieieietcieieieieteteteteteteteiete ettt ettt bbbt bbb bbb bbb bbb bbb bbb bbb bebebebebebebesene 122

vi|Page



TABLE OF FIGURES

Fig 1. A CT scanner model showing the basic scanning position of a patient. The schematic diagram shows the corresponding X-ray source

and detectors positions and their relative rotational motion inside the CT scanner gantry. (Courtesy of the Medical Encyclopaedia).............. 3
Fig 2. Two-dlimtensional G106 c........c....oovueevvuiiiniiiiiiiiiiiiiiiiiiiiitcete ettt s st 15
Fig 3. Grey tone colonr and the corresponding level..................covovuieviiiiiniiniiiniiiniiiiiiiiiicic 16
g 4. 55 Grey SCale image MaArIX.......cueevueevueecuieiieieeteeieecie ettt sttt ettt sttt s st st r ettt 16
Fig 5. 5x5 normalized grey scale immage matrixc...............co.ociivuiiiuiiiiiiiiiiiiiiiiiiiiiicic s 16
Fig 6. Towo-dlimensional i71age..................c..ccoovuiiiiiiiiiiiiiiiiiiiiiiic ittt e 18
Fig 7. 555 grey scale image matrix..............ccuoovuiiiiiiiiniiiniiiiiiiiiiiic s 18
Fig 8. GLLCM of 5x5 matrix of an image for distance d = 1 and direction @ = 00 .......cooeveeeevuiniininiiniiniiieieicnieneneseeeeeens 18
Fig 9. Some of the directions that are used to calculate the co-0ccurrence matrices.............ouveviiviiviiiiiiiniiiiiiiiiiiiccie e 19
Fig 10. The credence cartridge radiomics (CCR) phantom(Mackin et aly, 2077 )..c.ueieiiviiiiiniiiiiniiiiiiiiiciiciicniicieiceic e 31
Fig 11. Phantons Study S6am Set-tp ...........c.oovuivviiiniiiniiiiiiiiiiiiiiiiiiic it 32
Fig 12. 3d slicer CCR phanton ROI contonrs delineation Set-tp.................ovvevuiiviiniiniiniiniiniiniiiiiiiciicsiisicesie s 34
Fig 13. Matlab 2017 a package CCR phantom Segmentation ..................oecvievuiiniiisiiniiniiniiniiiiiiic st 35
Fig 14. Representation of the phantom image with ROI drawn to evaluate the effect of ROI volume on radiomic texture features. ............. 37
Fig 15. Representation of the patient images uterus segmentation for feature extraction in a 3D view. The first image a) of Fig 15 show the
anatomy sample of the image data sample before the clinical treatment volume was drawn as shown in b). ...........coccovvvviiniiniiniiniinnen 42
Fig 16. Representation of the patient images with the 5 ROIs contoured inside the uterns segment for feature extraction in a 3D view
PYRGUIOMIICS vt et 42
Fig 17. 2 cm diameter spheres segmentation inside the bladder ROL ..............coooviviiiiiniiiininiiiiiiniiiiiniciicic s 44
Fig 18. First order statistics patient normalised feature difference relationship with tube current variation for the 10 inserts of the CCR
phantom images on the GE Brightspeed machine. ...............c.covuivuiiviiiiiiiiiiiiiiiiiiiiiciciic i s 49
Fig 19. First-order statistics tumour normalised feature variability due to tube potential difference variation for the 10 inserts of the CCR
phanton imaged on the GE Brightspeed MaACHINe.............oovievivreiiiiiniiiniiiiiiii ittt 50
Fig 20. First-order statistics patient normalised feature difference trend dne to slice thickness variation for the 10 inserts of the CCR phantom
imaged on the GE BrightSPpeed machine. ..............cocucovuiiuiinuiiiiiiniiiiiiiiiiiiiiic s 51
Fig 21. The effect of RV on a texcture feature in relation to the tumour response to treatment. The six graphs illustrate the behavionr of the
first order statistics feature, skewness, obtained from the 2" insert for patients A 10 F. ...cocoeveveveveeuerereeeeireninineniseeieseseneetesesesenenaes 52
Fig 22. The effect of RV on a texture feature in relation to the tumour response to treatment. The six graphs demonstrate the behaviour of the
first order statistics feature, skewness, obtained from the 9" insert for patients A 10 F..c.covueevereernieeneneinenieeniniesinesenesesnesenensens 53
Fig 23. The effect of RV on a texcture feature in relation to the tumour response to treatment. The six graphs display the bebaviour of the first
order statistics featnre, skewness, obtained from the 10" insert for patients A 10 F...ccovevevueueuereueuerninininenensieenereseeestnenenesaesenenenens 54
Fig 24. k1 heat maps that represent the patient normalised GLDM and GLCM fexture feature values of all the 10 cartridges that matke
up the CCR phantom shown in Fig 10, and the images used were acquired using a GE Light Speed Scanner. .............c.cooovuiivuiiiinnnn. 55
Fig 26. RV heat maps that represent the patient normalised GLSZM and NGTM feature values of all the 10 cartridges that mafke up the
CCR phantom shown in Fig 10, and the images unsed were acquired nsing a GE Light Speed CT machine. ...........cueeveveviiniinninnennnnnn. 57

Fig 27. mAs heat maps that represent the patient normalised GLLDM and GLLCM texture feature values for the plaster resins, natural cork
and solid acrylic cartridges that make up the CCR phantom shown in Fig 10, and the images used were acquired using a GE Light Speed
CT THACHINC. «.eeeeeeeee ettt ettt st e et b e e btes bt e e bt e s bt e e bt e s bt e e bt e e bt e e st e s bt e easte e st e emaeeesbeeseesasteesstesseeenneens 58
Fig 28. mAs heat maps that represent the patient normalised first order statistics and GLLRLM feature values for the plaster resins, natural
cork and solid acrylic cartridges that make up the CCR phantom shown in Fig 10, and the images used were acquired using a GE Light
SPOCA CT THACHINC. ettt st aa e 59
Fig 29. mAs heat maps that represent the patient normalised GLLSZNM and NGTM feature values for the plaster resins, natural cork and
solid acrylic cartridges that mafke up the CCR phantom shown in Fig 10, and the images used were acquired using a GE Light Speed CT
THACHINC.c v cveevevietenietete ettt et b e a R h e a e a e h e a e h e a e bt a e s ae e a e ns 60

vii|Page



Fig 30. mAs heat maps that represent the patient normalised GLLDM and GLLCM texture feature values for the rubber particles, sycamore
wood and 50% ABS cartridges that mafke up the CCR phantom shown in Fig 10, and the images used were acquired nsing a GE Light
SPCA CT THACHINC. ettt sttt ettt sttt ettt a e s b s at ettt sa et e b sat st sat e s e saesbesaesbeenesneennens 61
Fig 31. mAs heat maps that represent the patient normalised first order statistics and GLLRILM feature values for the rubber particles,
sycamore wood and 50% ABS cartridges that make up the CCR phantom shown in Fig 10, and the images unsed were acquired using a GE
Liight SPEed CT TACHINC. ..ottt sttt sttt ettt st sttt b e s a e bt et et et n b sresaesae et en 62
Fig 32. mAs heat maps that represent the patient normalised GLLSZM and NGTM feature values for the rubber particles, sycamore wood
and 50% ABS cartridges that make up the CCR phantom shown in Fig 10, and the images used were acquired using a GE Light Speed
CT THACHINC. «.eeeeeeeeeee ettt ettt ettt st e ettt s bt e s at e s bt e e sat e s bt e e bt e s bt e s st e s ba e e ste s bt e esate s st e esstesasteestesasbeeatesseeennneens 63
Fig 34. Slice thickness heat maps that represent the patient normalised first order statistics and GLRIM feature values of all the 10
cartridges that mafke up the CCR phantom shown in Fig 10, and the images nsed were acquired nsing a GE Light Speed C1 machine....65
Fig 35. Slice thickness heat maps that represent the patient normalised GLSZM and NGTM feature values of all the 10 cartridges that

make up the CCR phantom shown in Fig 10, and the images used were acquired using a GE Light Speed CT machinte....................... 66
Fig 36. Comparison of sensitivity of texctural features in relation to the Sampling VOIUmMe ..........c...oovvvvuiiiniiiiiiiniiiiiiiiiiceee, 74
Fig 37. Comparison of sensitivity of texctural features in relation to the Sampling VOIUme ...............ccoeevuviiviiiviiiniiiniiiiiiiciienee, 75

Fig 38. Graphical representation of selected GLLCM robust radiomic features (e.g. difference entropy) and their behavionr during the
radiotherapy treatment course of patients A to F. The graphs display the comparison of the tumonrs A to F, which was extracted from
PALENES A 10 T TEPOCTIVELY. .ottt ettt sttt sttt a e sa ettt et sre bttt 76
Fig 39. Graphical representation of the selected GLLCM robust radiomic features (e.g. joint entropy) and their bebaviour during the
radiotherapy treatment conrse of patients A to F. The graphs allow comparison of the tumours A to F, which was extracted from patients A
) P 77
Fig 40. Grapbhical representation of the selected GLLCM robust radiomic features (e.g. joint energy) and their bebavionr during the
radiotherapy treatment course of patients A to F. The graphs allow comparison of the tumours A to F, which was extracted from patients A

10 T TESPECHIVELY .. et a e s e st 78
Fig 41. Graphical representation of the selected GLLCM robust radiomic features and their behaviour during the radiotherapy treatment conrse
of patients A to F. The graphs allow comparison of the tumonrs A to F, which was extracted from patients A to I respectively ............... 79
Fig 42. Graphical representation of the tumonr average sensitivity to the radiotherapy fractionated treatment using texture features........... 8o
Fig 43. Graphical representation of tumonr A sensitivity to the radiotherapy fractionated treatment employing the identified robust texture
JRATUTES. «voviviiiiiticit ettt e b e b e e et a e bttt e aa e eaeeeae s 113
Fig 44. Grapbhical representation of tumonr B sensitivity to the radiotherapy fractionated treatment employing the identified robust texcture
L2 R 114
Fig 45. Graphical representation of tumour C sensitivity to the radiotherapy fractionated treatment employing the identified robust texture
JRATUTES. «cvvoviviiiitiit ettt bbb e e et a e b ettt eaa e eaeeeae s 15
Fig 46. Grapbhical representation of tumonr D sensitivity to the radiotherapy fractionated treatment employing the identified robust texture
JEAIHTES. ettt e e s b e a e s h e s a et b e bbb sa et ne e 116
Fig 47. Graphical representation of tumonr E sensitivity to the radiotherapy fractionated treatment employing the identified robust texiture
JRATUTES. «vvoviviiiiiiict ettt e bbb e e et e a e bttt eaa e eaeeeae s 17
Fig 48. Grapbhical representation of tumonr F sensitivity to the radiotherapy fractionated treatment employing the identified robust texcture
JEAIHTES. vttt e e e h e s b st a e h b sh et e ae e s 18
Fig 49. Tube current heat maps that represent the patient normalised first order statistics and GLRLM feature values of 5 cartridges that
make up the CCR phantom, and the images used were acquired nsing a Toshiba Aquillion CT machine. .............ccovvvvuvnnineninnnnnne. 119
Fig 50. Tube current heat maps that represent the patient normalised GLDM, GLCM, GLSZM and NGTM feature values of 5
cartridges that make up the CCR phanton, and the images used were acquired using a Toshiba Aquillion CT machine....................... 120

ix|Page



LIST OF TABLES

Table 1: Imaging protocol of the CCR phantom at the Toshiba Aquillion] LB CT S6ans ......coueeeeeecuevuerensirineeiicienieseneneeeeeenns 33
Table 2: Inmaging protocol of the CCR phantom at the GE LightSPpeed Scans..............cvevuiivuiiiiiiiiiiiiiniiiiiiiiiiiiciic et 33
Table 3: Shows a sample of cervical cancer Patient Aata...................cccciivuiiiiiiiiiiiiiiiiiiiiiiiiiii e 39
Table 4: Results of kilovoltage peak influence on image noise from acrylic insert...........oeevuieviiviiniiniiiiiniiniiiieiic e 67
Table 5: Results of slice thickness influence on image noise from rubber particles insert. .........c..ooovviviiiiiiiiniiniiniiiiiiiniccinn 67
Table 6: Results of tube current influence on image noise from rubber particles insert...........oouooueviiniiiiiniiniiniiiiiieiicnciceieei 67
Table 7: RV influence on GLLCM texcture feature estimated using 10x10 matrices for data of wood insert. ...........cccoevveeviivennnnnenn. 68
Table 8: RV influence on GLCM texcture feature estimated using 10x10 matrices for data of acrylic insert. ...........covuvvueenenninvennnnnnn. 69
Table 9: Toshiba Unit: Slice thickness influence on GLCM texture feature estimated using 10x10 matrices of rubber insert. ................. 70
Table 10: GE unit: Slice thickness influence on GLCM texcture feature estimated using 10510 matrices of acrylic insert. ............ouen..... 71
Table 11: Toshiba nnit: mAs influence on GLCM texcture feature estimated nsing 10510 matrices of Wood material........................... 72
Table 12: GE unit mAs influence on GLCM texcture feature estimated using 10510 matrices of Acrylic material. ................couvvuenn.. 73
Table 13: Coefficient of variance (COV’) in percentage (%o) of GLLCM radiontic feaiures. ..............coueviivuiiviiiniiiniiiniiniiniiniiiiiinnenn 81
Table 14: Comparison of radiomic shape feature valnes within the Patient cODOTE .........c..couvevuiiviiniiniiiiiiniiniiiciic i 82
Table 15: 8x8 Image Intensity matrix sample from Acrylic insert centre SHee ...........ovevviviiiiiniiiniiiniiiiiiiiniiiiic e 109
Table 16: 8x8 Image Intensity matrix sample from Acrylic insert centre SHee ............cuovviviiiiiiniiiniiiniiiiiiiiniiiiicc e, 109
Table 17: 8x8 Image Intensity matrisc sample from Acrylic insert centre slige ...........cocuevvvuiiviiiiniiiiiiiiiiiiiniiiiiiiciiecccien 110
Table 18: 8x8 Image Intensity matrisc sample from Acrylic insert centre Slge ...........cocuvvvvuiivviiiiiiiiiiiiiiiiniiiiiiiiiiccn 110
Table 19: 8x8 Image Intensity matrix sample from Sycamore Wood centre slice..........ouevueeeiviiviiiiininiiiiiiiiniinicncniceeeeneeies 110
Table 20: 8x8 Image Intensity matrix sample from Sycamore Wood centre slice..........cccvuevuivuinnininiiniininiiiiiiiiieiccnic s 111
Table 21: 8x8 Image Intensity matrix sample from Sycamore Wood centre slice...........c.ovuevivuinivinviiniiiiiniiiniiiiieiccnicsneneenenns 111
Table 22: 8x8 Image Intensity matrix sample from Sycamore Wood centre Slge.............cc.oovuvviiniiniiniiniiniiniiiiiiiiiiiiiiiin 111
Table 23: 8x8 Image Intensity matrix sample from Sycamore Wood centre slice.............cc.coveviiiiiiiiniiiniiiiiniiniiniiiiiiicnicsiene 112

x|Page



ABBREVIATIONS LIST

2D

3D
ABS
Adeno
CBCT
CCR
CT
COV
FOV
fr
GLCM
GLDM
GLRLM

GLSZM

HU
HX
HXY
HY
Id
Idm
Idmn

Idn

- Two dimensional

- Three dimensional

- Acrylonitrile Butadiene Styrene plastic
- Adenocarcinomas

- Cone Beam Computed Tomography
- Credence cartridge radiomics

- Computed tomography

- Coefficient of Variance

- Field of View

- Normalised feature value

- Grey-Level Co-occurrence Matrix

- Grey Level Dependence Matrix

- Grey Level Run Length Matrix

- Grey Level Size Zone Matrix

- Gray

- Hounsfield Units

- the entropy of py

- Entropy in the X and Y co-occurrence matrix rows relationship
- the entropy of p,,

- Inverse Difference

- Inverse Difference Moment

- Inverse Difference Moment Normalized

- Inverse Difference Normalised

xi|Page



Imcl
Imc2
kV or kVp
LET
mAs
Mg
MSCT
Ng
NGTDM
NGTM
P

PDF
Pixels
PTV
QC
RBE
ROI
RT
SFOV
SNR
Squam
SSCT
Voxels

<

- Information measures of correlation 1
- Information measutres of correlation 2
- Kilovoltage peak

- Linear energy transfer

- Tube current time product

- milligrams

- Multi-slice computed tomography

- Discrete intensity levels

- Neighbourhood Grey Tone Difference Matrix
- Neighbourhood Grey Tone Matrix

- Intensity histogram

- Probability density function

- Picture elements

- Planning target volume

- Quality control

- Relative biological effectiveness

- Region of Interest

- Radiotherapy treatment

- Scan Field of View

- Signal to Noise ratio

- Squamous cell carcinomas

- single slice computed tomography

- Volume elements

- Less than or equal to

xii|Page



Chﬂpt@l‘ 1: General Introduction

l1|Page



1.1 Introduction

The thesis seeks to give an insight into the study that aimed to investigate the effect of CT scan parameters on
radiomic texture features by imaging and analysing images of an invariant phantom. The investigation also
established robust radiomic features that are independent of the CT scan technique variables. This was done
by analysing the mathematics of quantitative radiomic features from the basic CT image formation physics

point of view.

1.1.1 Computed tomography (CT)
CT is a reproducible non-invasive imaging modality that utilises ionizing radiation for depicting small (down to
the size of about 0.6 mm in diameter) and/ or large human structures to reveal a large range of pathological
processes such as cancer and inflammation in clinical practice. The information portrayed by CT images is
considered reproducible and objective (Fletcher et al., 2016). CT has found use in all hospital cancer
management departments (diagnostic radiology, nuclear medicine and radiation oncology) mainly because of
its potential to acquire relatively high-resolution images with volume element (voxels) sizes of approximately 1
mm? (Gillies, 2012). CT image formation follows Lambert-Beer’s law (Manmadhachary et al., 2017; Chityala et
al., 2011)(represented by equation 1) in that each image represents scaled normalized x-ray attenuation values
for the voxel within the slice imaged. Variation in the x-ray attenuation (object or patient contrast) by absorption
or scattering in dissimilar types of tissue results in differences in the intensity of the x-rays eventually reaching
the CT detectors (Goldman, 2007). Each data point on the image is then represented by the CT number per
pixel.

© =@y X e~ ZilX; 1)
Where, @ is the beam intensity received by the CT unit (shown in fig 1) radiation detectors after attenuation,
@ is the initial beam intensity, [ is the linear attenuation coefficient in cm?/g of the individual ray-line (i) and
X; is the mean mass thickness in g/cm? of the features in the x-ray path.
A matrix of the x-ray intensities that represent the CT numbers (measured in Hounsfield Units, HU) of all the
points within an imaged slice obtained at the detectors will then be reconstructed into a map of voxels
(represented by the picture elements (pixels) in the image). The quality of the images produced by a CT unit is
determined by the fidelity of the CT numbers, accurate reproduction of low-contrast resolution (small
differences in attenuation) and the precise depiction of small, closely spaced objects (spatial resolution). Thus,
the integrity of the quality assurance program implemented on the CT unit establishes the calibre of images
produced.
Radiomics uses computed tomography digital images to derive quantitative image features. The quantitative
image features developed by radiomics techniques have both spatial resolution (voxel size) and contrast (grey-

level/density) resolution (Lu et al., 2016). The quality of the spatial resolution and density resolution on images
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is influenced by the x-ray intensities received at the detector end of the CT unit which is determined by image

acquisition techniques and parameters.

X-ray source Direction of
This generates rotation of
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Fig 1. A CT scanner model showing the basic scanning position of a patient. The schematic diagram shows the corresponding X-
ray source and detectors positions and their relative rotational motion inside the CT scanner gantry. (Courtesy of the Medical

Eneyclopaedia)

1.1.2 CT factors that influence image formation and quality

1.1.2.1 Slice thickness

Slice thickness is an imaging parameter (usually from a sub-millimetre scale to 10 mm) that is usually
predetermined by the centre’s imaging protocols or is selected by the Operator to fulfil the clinical imaging
obligation. Studies have shown that the slice thickness affects image resolution in that high spatial resolution
within an image is produced by acquiring the image through the use of small slice thickness which is also
associated with large data sets (Ford and Decker, 2016). This is due to the reduced tissue signal averaging in the
slice direction thus better definition of tissue interfaces can be achieved, but this comes at the cost of detected
signal intensity. The detectors collect more photons over thicker slices to establish good low-contrast
resolution. Essentially CT image noise affects the potential to resolve low-contrast structures. Quantum
mottling significantly contributes to the CT image noise due to the fact that quantum noise depends on the
number of x-ray photons contributing to the image (Goldman, 2008). Increasing the number of photons
received at the detectors results in a decrease in the image noise (Zukhi and Yusob, 2017). Images acquired

using small slice thicknesses (e.g. 1-2 mm), are prone to noise and images acquired using larger slice thicknesses
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can be affected by the partial volume effect artefact. Slice thickness is the full width at half maximum (FWHM)

of the sensitivity profile, in the centre of the scan field.

1.1.2.2 Scan field of view (SFOV)

SFOV is referred to as the maximum selectable volume (field) to be imaged that gives a reconstructed image
(Salemi et al., 2016). The SFOV is usually selected by the radiographer operating the machine who, under the
guidance of the radiologist or by standard protocols and clinical judgement, selects a field that covers all the
areas of possible disease that needs to be imaged. A smaller SFOV than required might exclude the required
structure from the visible image produced after imaging. The quality of an image depends on the SFOV in that
a small SFOV increases the spatial resolution in the image. This is because by selecting a small SFOV the whole
reconstruction matrix is used for a smaller region resulting in the reduction of the pixel size which is determined
by dividing the SFOV by the matrix size. In most cases, using a fixed number of pixels means that selection of

a larger SFOV will decrease resolution due to larger voxels.

1.1.2.3 Pitch

Goldman L (Goldman, 2008) produced two distinct pitch definitions that relate to whether the type of the CT
scanner is a single slice CT (SSCT) or multi-slice CT (MSCT). Detector pitch is related to an SSCT whilst MSCT
relates to beam pitch. Detector pitch is defined as the table increment during a single gantry rotation divided
by beam width. A pitch of 1 would mean the scan table moves a distance equal to beam collimation width per
single tube rotation. A pitch greater than 1, the couch moves a distance greater than the x-ray beam collimation
per scan rotation. This means gaps between adjacent x-ray beams creating a helix. This result in reduced image
quality (low signal-to-noise-ratio) but with less dose give to the patient. Lower than a pitch of 1 the x-ray beams
overlaps irradiating a volume more than once per scan. There is no patient dose saving due to slow scan speed
at lower pitch settings. Beam pitch is defined as table increment in a single gantry rotation divided by the total
thickness of all simultaneously acquired slices. Helical MSCT acquired images can be noisier if many detector
samples are used for slice measurements such that fewer x-ray photons contribute to each calculated slice
sample for larger pitches. If the helical MSCT pitch is increased for the same x-ray technique parameters (kVp
and mAs), the number of photons contributing to images decreases lineatly. Therefore, “effective” mAs (mAs,y)
is usually specified by some manufacturers, to maintain the same level of image noise regardless of the pitch. If
scanners employ effective mAs no dose considerations will be involved as the mAs will be adapted to pitch to
maintain constant image noise. Lower pitch settings assist in reducing spiral artifacts (Nagel, 2007). The mAs,;

is calculated as follows

_ mA
L e @
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1.1.2.4 Exposure technique parameters

Exposure technique parameters (factors) refer to the machine settings of x-ray tube voltage (kVp), tube current
(mA) and exposure time (s) that are either operator selected or automatically selected by the unit for a given
study (Goldman, 2007, 2008). A higher kVp would mean more x-rays penetrate the subject under investigation
to reach the detectors. The quantity of the x-rays produced will be increased and the x-ray beam energy is also
increased. A higher tube current would substantially increase the x-ray intensity thus the number of x-rays
photons detected would also increase proportionally (assuming no change in the tube voltage). A faster rotation
time corresponds to shorter detector sampling times. The product of tube current and rotation time (mAs) is a
common parameter which embodies the characteristic function of mA and s separately. An increase in mAs
decreases the image noise thus resulting in improved image quality with more distinct pixel values. mAs is
directly proportional to dose, so an increase in mAs will increase dose. A selection of mAs values which do not

considerably increase the dose to the patient with limited image quality benefit is usually recommended.

1.1.2.5 Reconstruction matrix and algorithm

A CT image is made up of a square image with rows and columns of pixels that ranges in size from 256 x 256
to 1024 x 1024 (Flores et al., 2015). The reconstruction algorithm consists of an algorithm that includes
application of a filter and a kernel to the projection data acquired. The mathematical algorithm filter suppresses
the smearing by back-projections that occurs during image reconstruction and the kernel reduces the noise that
would have been enhanced by the high-pass or sharper filter (Geyer et al., 2015). Several algorithms that assist
in achieving specific clinical imaging requirements are available. For example, soft tissue algorithms for
examining more soft tissue organs like the abdomen, or the head, exist for most CT scanners. High-resolution
algorithms which provide greater spatial resolution, for detailed representation of bone and other regions of
high natural contrast such as the lungs and spine, also exist. The algorithm selected for each image
reconstruction strongly affects the appearance and the characteristics of the CT image. Algorithms must thus
be carefully selected depending on the application, or clinical use to which any specific CT examination is to be
put.

One of the main areas of application of CT imaging is in the field of cancer detection and treatment. CT uses
include cancer screening, detection and staging, guidance in tissue extraction procedures (biopsy), treatment
planning, image-guided treatment (Cone Beam CT) and post-treatment assessments. During radiotherapy
preplanning processes, CT is widely used because of easy and robust assignment of electron densities to the
scanned image structures which has an application in the treatment planning dose calculations. Other imaging
modalities such as Magnetic Resonance Imaging (MRI), Ultrasound Imaging, Positron Emission Tomography
(PET) imaging and Single-Photon Emission Computed Tomography (SPECT) find widespread and meaningful

usage in clinical scenarios that require knowledge of the patient’s physiological processes and functions.
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1.1.3 General Radiomics

Radiomics seeks to distinguish and extract information about tissue structures in an image. Texture analysis is
applied to quantify these tissue structures and thereby differentiate or identify similar image features. Image
segmentation and shape identification are the pre-processing steps that are employed to classify, segment and
identify feature shape (Stinivasan and Shobha, 2008). In a multi-textured image, segmentation establishes
demarcations between regions of different textures and these boundaries should be simple, smooth and spatially
accurate (Padayachee et al., 2006). The same technique of texture analysis may be employed to track variations
in the tumour response to treatment by quantifying tissue texture differences pre-treatment, on-treatment and
post-treatment. Texture analysis is a procedure for measuring and assessing digital image characteristics by
evaluating the relative position and intensity of signal features. Texture represents stochastic grey scale
variations in an image. The spatial vatiation of pixels/ voxels and their grey-level intensity define the textures
within a digital image or region of interest in an image (Beckers et al., 2017). Textures are therefore mathematical
parameters computed from the distribution of pixel intensities, which distinguishes the tissue structures
revealed in the image (Nailon, 2012; Srinivasan and Shobha, 2008; Castellano et al., 2004). The human eye will
petceive a texture in terms of roughness (coarse/fine), smoothness, regular and irregular (Haralick et al., 1973)
whereas computer-aided image analysis can quantify textures which the eyes cannot readily perceive or quantify.
This means tissue heterogeneities that cannot be perceived by the naked eye can be measured by quantitative
texture analysis (QTA) (Zhang et al., 2017). Although radiomic texture features were originally described for
projection radiology images, their use in tomographic imaging is more justifiable as overlapping textures and
structures are minimized. Therefore, radiomics is seen as a tool that can meaningfully assist in making medical
decisions that will be evidence based on texture features that are derived from CT images or any other imaging
modality (Bodalal et al., 2018; Tsougos et al., 2018; Lambin et al., 2017).

The general understanding in the classification of the texture of an image is that a group of mutually related
pixels compose a texture. Images are characterized by pixels that are established by varying densities in imaged
materials. The pixels that define a texture are called primitives or texture elements (Stinivasan and Shobha,
2008).

Various methods are used to analyse texture structures in images;

1) Statistical techniques,

2) Model-based techniques,

3) Structural or syntactic and

4) Filter Bank Based Methods

1.1.3.1 Statistical techniques
First-order (1s-order) and second-order (2rd-order) statistical image analysis techniques are estimates of the

probability density functions (PDF).
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1.1.3.1.1 First-order
Ist-order statistical methods refer to images analysis methods that examine the grey-level distributions only. The

Is-order method considers the frequency of a particular grey-level at a random image position and does not

consider correlations, or co-occurrences, between pixels.

1.1.3.1.2 Second-order
The 2nd-order statistical image analysis method incorporates an interpretation of pixels spatial location (relative

distance among pixels and their relative orientation) in its image grey-scale distribution examination
(Kodituwakku, 2014; Stefan, 2012). Computer-aided diagnostic systems widely use statistical methods to analyse
a selected region of interest on an image to produce texture information such as the mean, variance, standard
deviation etc. The grey-level co-occurrence matrix (GLCM), the grey-tone difference matrix (GTDM), linear
discriminant analysis (L, and the grey-level run-length matrix method (GLRM) are some of the image

processing techniques that are of 2rd-order statistics.

1.1.3.1.3 Grey-level co-occurrence matrix
The image statistical information about the distribution of nearby pixels within a region is described by the

GLCM method, also known as the spatial grey-level dependence (SGLD) matrix (Padayachee et al., 20006).
GLCM does not only consider the intensity dispersion, but it also considers relative positions. Consider the
PDF of an image matrix pg g (i, j) to be represented by Py g (i, j) then the probability of the co-occurrence of
grey levels, I and j for two pixels separated by a distance d at an orientation angle 8 is represented by an element
(i,)). Counting the pairs of pixels separated by a defined number of matrix elements, or the distance, in a

particular orientation is used to calculate the matrix.

1.1.3.1.4 Grey-tone difference matrix
GTDM the sum of a set of pixels having a grey-tone, I, of the difference between the voxels of the set and the

mean value of a column of elements, g(i), in a matrix, computed over the corresponding neighbourhood.

From GTDM, several features can be computed: Coarseness, contrast, busyness, complexity, and strength.

1.1.3.1.5 Linear discriminant analysis
L,is used to distinguish features in linear combinations of two or more, by setting weights on each feature that

can maximize the variance between classes and minimizing variance within the class (Theodoridis and

Koutroumbas, 2009).
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1.1.3.1.6 Grey level run-length
The GLR technique can be used to compute texture features by considering a set of pixels of constant grey-

level, g, spatially located in a straight line of length, 7, at an angle, 6, which can be represented by a probability

function, Py (g, 1) (Alobaidli et al., 2014).

1.1.3.1.7 Grey-level run-length matrix
GLRM probability function, Pg(g, 1), can be used to define texture features as: long run emphasis, short run

emphasis, run-length non-uniformity, run-length percentage and grey-level non-uniformity (Incoronato et al.,

2017; Padayachee et al., 2000).

1.1.3.2 Model-based techniques

Model-based methods use the Gaussian Markov random fields and Gibbs random fields techniques. According
to Cohen et al. the Gaussian fields method is used to model texture features whilst the Markov random fields
(MRF) are used to create boundaries of the textured features (Cohen and Cooper, 1984). The MRF method
considers the textural distributions and spatial positions of pixels in an image. Therefore, MRF defines the
energy function on a label field to minimize that energy function through optimization. This means model-
based methods depend upon making an image model based on certain parameters captured from the

fundamental qualities of the studied texture.

1.1.3.3 Structural or syntactic methods

Micro or macro-textures (primitives) are used to represent texture in structural or syntactic methods by
quantifying the spatial arrangements of the primitives. Structural descriptors view texture in terms of these
texture primitives. To describe the texture, primitives are defined and the rules of placement of these primitives
are also established. Syntactic methods are suitable for textures where primitives can be described using a larger
variety of properties than just grey level properties for example, shape description (Sepp and Matti, 2005;
Vuduc, 1997). Using these properties, the primitives can be identified, defined and assigned a label. For grey-

level images, tone can be replaced with brightness.

1.1.3.4 Filter Bank Based Methods
Referred to in other literature as the spectral technique (Padayachee et al., 2006) because it applies the spatial
and frequency domains to extract texture features. Filter bank techniques include, but are not limited to

Laplacian of Gaussian filter, Gabor filters, wavelet transforms and the Fractal dimensions methods.
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1.1.3.4.1 Laplacian of Gaussian filter
The Laplacian of Gaussian filter uses scales that correspond to the width of the filter to highlight structures

(Incoronato et al., 2017). 2nd-order statistics can then be applied to an image to extract texture patterns (coarse)

from the highlighted structures.

1.1.3.4.2 Gabor filters
Gabor filters are mainly suitable for image segmentation because they use edge detection in different directions

and widths to filter image features.

1.1.3.4.3 Wavelet transforms
Wavelet transforms are mathematical algorithms (filters) that cut up data into various distinct frequency (low

and high) coefficients to study each component with a resolution matched to its scale without losing spatial
localization. High-frequency coefficients contain information on the directionality of the texture. Using a
moving variable sized window, wavelets provide a more flexible way of analysing both space and frequency

contents of an image (Aggarwal and K. Agrawal, 2012).

1.1.3.4.4 Fractal dimension analysis
Fractal dimension analysis relates the change at which the outer surface area of an object or feature, increases

as the scale of measurement gets smaller (Padayachee et al., 2000). Parameters such as mean and standard

deviation can be extracted (Incoronato et al., 2017).

A summary of the textural feature extraction and classification approaches established on the above methods.

Frequency based methods are considered less efficient, while statistical methods are particularly useful for
random patterns or textures. Syntactic or structural methods give better results in complex patterns analysis.
Potential limitations exist in radiomics image analysis. The diverse radiomic texture features applied in clinical
trials and clinical practices present challenges in that the acquisition parameters are not standardized. A wide
range of imaging equipment, acquisition techniques and reconstruction parameters have been identified to be
possible limiting factors that influence the computed values of quantitative image features (Lu et al., 2010).
There exist studies that focused on texture variation caused by the intra- and inter-variability between tumours,
and/ or scanner differences (Mackin et al., 2015). Mackin et al.’s investigation showed that the calculated image
texture feature parameters without filtering are likely to be influenced by differences in the imaging protocols
or CT scanner type (Larue et al., 2017; Mackin et al., 2015). In this study, image texture analysis would give
attention to investigate robust texture characteristics or features that are either independent or dependent on

the machine scan parameters using a non-variant phantom. The nature of a textured object can be mapped by
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applying mathematical algorithms to generate patterns that characterize the different features existing in the
object of interest. Invariant mathematical vectors produced by image processing algorithms would represent a
uniform feature (cluster), which would be well separated from measurement vectors that correspond to
different textures. In this sense, texture analysis can be considered as a pattern recognition or classification
technique.

Review papers by Sanduleanu et al. and Alobaidle et al. state that most studies have shown the prognostic
power of radiomic features in diagnostic radiology radiomics studies and the potential of predicting effects of
irradiation in therapy (Sanduleanu et al., 2018; Alobaidli et al., 2014). Huynh et al. in their study of radiomics
analysis of stereotactic body radiation therapy patients with lung cancer concluded that radiomics quantification
has greater prognostic power than conventional data in predicting distant metastases and radiomics has power
to predict survival rate (Huynh et al., 2016). Panth et al. found that ‘the feature value for slow-growing tumours
(gene-induced) was higher than for faster-growing tumours (no gene-induced group) upon combination with
radiotherapy’. They concluded that there is a relationship between the genetic tumour changes and eatly effects

of radiation treatment (Panth et al., 2015).

1.1.4 Study Problem Statement

There is little evidence in the published literature of studies that use mathematics to establish radiomic features
that are independent of the CT scan technique parameters. Most studies published use experimental tests to
assess robustness of radiomic features. In the South Africa context of studies, this research will be a novel study
in the mathematical identification of robust radiomic features that are independent of the CT scan technique
parameters. Around the world few studies (Mackin et al., 2015, 2017; Zheng et al., 2017; Lu et al., 2016) have
been carried out to determine how acquisition parameters influence the computed values of quantitative image
features in radiomics studies. Some radiomics studies have been conducted to investigate the impact that
tumour volume had on radiomic texture features (Shafig-ul-hassan et al., 2018; Byrd et al., 2015). It was
observed through these studies that the tumour volume and other parameters such as pixel size, acquisition
noise, lesion size, phantom size, and reconstruction method have some influence on the radiomic texture

features values.

The stability of radiomic texture features may have a great impact on the diagnosis, segmentation and treatment
of cancers. Stable radiomic features that remain relatively constant at constant physical acquisition parameters
can be used to track radiotherapy treatment response by observing their behaviour throughout administration
of the treatment course. In order to achieve the above, there is need to use an invariant test tool to investigate
quantifiable image features at variable physical acquisition parameters. The findings of this study will assist in
determining the correlation between radiomic features acquired in different imaging settings (e.g. scanner type,

hospital, reconstruction algorithms) making it possible to compare different extracted feature values.
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Already many studies performed using the Credence Cartridge Radiomics (CCR) phantom have demonstrated
that imaging exposure and reconstruction settings have influence on radiomic feature values. Shafig-ul-Hassan
et al (Shafig-ul-hassan et al., 2018) examined the effects of sampling voxel-size on the radiomic features. The
study discovered that normalising the voxel-size or resampling image information using a nominal voxel size
minimizes the dependency of radiomic features on voxel size. Also, Mackin et al. (Mackin et al., 2015) used the
CCR phantom at four different manufacturer CT scanners. The researchers showed that radiomics texture
features presented an estimated variance. Differences in the scanning protocol employed was reported to cause
the intra-scanner variabilities.
1.1.5 Study Aim and Objectives
This study aims to determine the effect of CT scan parameters on radiomic texture features by imaging an
invariant phantom. The investigation seeks to mathematically establish robust radiomic features that are
independent of the CT scan technique variables.
The three objectives of the investigation are as follows:

e Identification of imaging parameter invariant radiomic features.

e Determine the intra- and inter-scanner variability of radiomic features using the Credence Cartridge

Radiomics phantom.

e Retrospective application of identified robust radiomic texture features onto a clinical data set.
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Chap t€1‘ 2: Texture features and their

relation to CT image formation
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2.1 Introduction to theoretical robust radiomic features recognition

The purpose of this chapter 2 is to use the general principles of treating radiomic image features equations to
fundamentally examine the level of radiomic features stableness in relation to CT imaging technique parameters.
The features robustness is of critical significance for radiomic studies in that the use of robust features will
ensure reproducibility in different studies and will assist to accurately prognosticate the subject of interest
(Zwanenburg et al., 2019). This chapter investigated the effects of CT imaging parameters on the radiomic
features at basic levels. The chapter intents to accomplish part of the objective that seeks to identify some
robust radiomic features. Basic hand calculations using theoretical radiomic texture feature equations and image

matrices extracted from the Credence Cartridge Radiomics phantom (CCR) images obtained on CT units.

This part of the study focussed on the theory of CT image formation against the CT techniques to relate image
quality changes to radiomic features degree of variation. The thrust of using images in the radiology and
oncology departments depends on the ease with which image information can be used to make clinical
decisions. Radiomics is a branch of study that strives to improve personalised cancer care using images.
Fundamental interpretations of the way CT scan techniques affects the radiomic features is required. Several
studies (Mackin et al., 2018; Mahmood et al., 2017; Fave, 2015) have drawn conjectures about the robustness
of radiomic texture features. The study by Larue et al. is of particular interest in this study, in that they could
not find any correlation between CT slice thickness or tube current with radiomic texture features (Mackin et

al., 2018).

2.1.1 CT Image quality
The image contrast, spatial resolution, image noise and artifacts are the four fundamental factors that interact

to define the image details (Zukhi and Yusob, 2017b; Katkar et al., 2016; Goldman, 2007).

In CT imaging, contrast is influenced by the differences in the intensity of the x-rays ultimately reaching the
detectors as a result of differential x-ray attenuation in different types of tissue. Image contrast resolution refers
to the ability of an imaging procedure to consistently discern subtle differences in image density between tissues

of closely similar grey level values.

Spatial resolution refers to the ability of the imaging unit to show on an image small objects that are close
together, as separate objects. Spatial resolution in CT imaging is mainly determined by the size of the detector
and the spacing between the sampling measurements. A reasonable spatial resolution is usually achieved if the
size of the detector is comparable to the size of the objects to be resolved and sampling measurements spacing

that is closer together.

The factors contrast and spatial resolution influence the signal-to-noise ratio (SNR) of an image. Both affect

the x-ray quanta used to formulate structures per pixel in an image. Bushberg et al. pointed out the superiority
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of the CT imaging modality’s contrast resolution capabilities to other x-ray modalities (Bushberg et al., 2002).
The contrast resolution capability of CT stands out in differentiating subtle soft tissue tumours. In clinical
situations which the CT number difference between the tumour and the surrounding tissue is small (e.g., 20
CT numbers), and the noise in the CT numbers is smaller (e.g., 3 CT numbers), the tumour and surrounding
tissues can be distinguished to a trained human obsetver or algorithm (Alsleem et al., 2013; Bushberg et al.,
2002). On the other hand, attempting to increase the spatial resolution at constant FOV and dose levels by
reducing the voxel size would reduce the number of x-rays per voxel. The reduction of the x-ray quanta per
voxel would decrease the SNR, therefore a compromise between spatial resolution and contrast resolution is
usually recommended. In relation to the above theory, radiomic texture features that depend on the pixel
intensity distribution are therefore expected to be influenced by the factors that affect the contrast and spatial

resolutions.

Image noise is the random fluctuations in the CT number of otherwise uniform materials observed on CT
images. CT image noise is attributed to the limited number of photons to form an image and this is associated

to the number of x-rays contributing to each detector measurement.

There is a known linear relationship between the slice thickness and the number of x-rays detected by the
detector at a constant kV and mAs. The slice thickness in CT imaging affects the beam width entering the
detector in a manner in which doubling the slice thickness approximately doubles the number of photons
reaching the detector (Goldman, 2007). An improved contrast resolution and a higher SNR are achieved at
larger slice thicknesses due to the increase in the number of x-rays detected for the same x-ray tube techniques.
Under similar conditions, the spatial resolution is expected to be reduced due to the beam width increment,
and partial volume effects become pronounced. To improve spatial resolution thin slices at increased mAs will
partially compensate for the loss of x-ray photons due to the x-ray collimation. The usefulness of images is

certain if there is increased SNR and reduced noise (Alsleem et al., 2013).

The combination of tube amperage and scan time (mAs) influence the beam intensity and the number of x-
rays reaching the detector in a proportional manner. This affects the image noise in such that an increase in the

mAs reduces the image noise because the number x-ray photons to be detected would increase proportionally.

The peak kilovoltage (kV) determines the beam quality of a CT x-ray beam. The kV defines the beam strength
and influences the beam intensity to a certain extent. An increase in the kV increases the number of x-rays
photons and the average energy of the x-ray beam. This promotes a greater number of x-rays to penetrate the
object to reach the CT detectors. Image noise is expected to be reduced because of increased signal detected.
Also the image contrast is expected to be enhanced due to the noise reduction, the higher the tube potential,

the better the contrast-to-noise ratio (CNR) (Nagel, 2007).
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There is a need to investigate the kV, mAs and slice thickness’s influence on the probability density function
of the ROI grey level intensities on CT images. This may assist the researchers to understand radiomic features

robustness in relation to changes that might be formed on CT images due to the scan techniques.

2.1.2 First order statistical features
The first order features represent the distribution of the voxel intensities in an image within a defined region
of interest (ROI). Let us consider P (i) the density occurrence probability of a random gtey level intensity i

within an ROI drawn on an image I. The image I is such that I(x,y) = i where (x,Yy) represents the voxel

position (van Griethuysen et al., 2017). The normalised first order histogram p (i) will be equal to ZPIE?i)' The
grey level intensities i range from 0 to Ng — 1 Where Ng represents the discrete intensity levels
0 P(i) number of voxels with gray level, i, within a ROI s
l — N =
P X P() total number of voxels in the ROI(N,) ®)

Let us consider the fig 2 a two-dimensional 5x5 image

Fig 2. Two-dimensional (2D) inmage

Below is Fig 3 that represents the Key for reading the grey scale images
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Grey level colour Grey level Number

Fig 3. Grey tone colonr and the corresponding level

The original image in fig 2 can be represented by the image matrix P (i) in Fig 4. The grey-level intensities (Ny)

range from 0 to 4.

Grey Level
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Fig4. 5x5 grey scale image matrix

Equation 3 was used to formulate a normalized first order histogram p (i),

0.09 0.02 0.09 0.07 0.07
[0.05 0.02 0.00 0.00 0.00]
p(i) =10.05 0.00 0.00 0.00 0.05]
l0.05 0.05 0.05 0.05 0.05]
l0.05 0.09 0.05 0.05 0.02J

Fig 5. 555 normalized grey scale image matrix

Mean (W) feature

The mean grey level intensity p of p(i) (Fig 5) will be given by the equation 4 below:
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Ng-1

= ip®

i=0

0.09 0.02 0.09 0.07 0.07

[0.05 0.02 0.00 0.00 0.00]

u=zi-|0.05 0.00 0.00 0.00 0.05|

S |005 005 005 005 0.05/|
0.05 0.09 0.05 0.05 0.02 4

pH=0x0.094+0x0.02+0x0.094+0x0.07+0x0.07+1x0.05+1x%x0.02+1x
0+1Xx0+1x0+2%x005+2x0+2%x0+2x0+2x%x0.05+3x0.05+3x
0.054+3x0.05+3%x0.05+3x0.05+4x%x0.05+4x0.09+4x0.05+4x0.05+
4 x0.02

s u=2.06

The mean feature of the grey level intensity within the normalised image matrix in fig 2 is 2.06. Studies by
Alshipli and Kabir (Alshipli and Kabir, 2017), Katkar et al. (Katkar et al., 2016) and He et al. (He et al,, 2016)
showed that image noise has an inverse proportionality with slice thickness. If the slice thickness used to acquire
the image in fig 2 is changed to a larger slice thickness, the contrast detail of the image is expected to improve
as the noise is being reduced. The study by Alshipli and Kabir (Alshipli and Kabir, 2017) has demonstrated that
large slice thicknesses reduce the image noise but the diagnostic content is compromised. Katkar (Katkar et al.,
2016) concluded that the CT image detail is better at the smallest slice thickness in spite of the higher noise.
The partial volume effect has been identified as the cause for the loss of fidelity on the representative anatomy
in images acquired at a large slice thickness. The above analyses and observations fit well with homogenous
images that are usually obtained in quality control test phantoms such as the CATPHAN uniformity slice insert

or water phantoms.

2.1.3 Grey-Level Co-occurrence Matrix (GLCM) Features

GLCM represents the second-order joint probability function of an image within a defined region of interest
(ROI). The GLCM was proposed and introduced in 1973 by Haralick et al. (Haralick et al., 1973). The Haralick
et al. paper proposed extracting the texture features by first computing the co-occurrence matrix followed by
calculating the texture features based on the created co-occurrence matrix. The GLCM follows the rule that the
number of times the combination of grey-levels i and j occur in two voxels in an image that are separated by a

distance, d, represented by the number of voxels in a given direction (8 = 0,90, 270 or 135).

Let us consider Fig 6 a 2D 5x5 image
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Fig 6. Two-dimensional image

The image in Fig 7 can be represented by an image matrix P(i). In this case the grey-level intensities (N; — 1)

range from 0 to 4.

4 1 4 3 3
[21000]
P@=12 0 0 0 2|
o 2 2 2 2l
2 2 2 2 1

[0.21 0.03 0.03 0.00 0.007

[0.03 0.00 0.05 0.00 0.05]|
0.05 0.05 0.26 0.00 0.05

l0.00 0.00 0.00 0.05 0.03J
0.00 0.05 0.05 0.03 0.00

5 x 5 Image matrix Symmetric GLCM Normalized GLCM

Fig 8. GLCM of 5x5 matrix of an image for distance d = 1 and direction @ = 0°

The symmetrical GLCM matrix in Fig 8 is obtained by counting the pairs of voxels within a distance of 1 pixel
from each other and an angle 8 = 0 or 180 (horizontal plane, i.c. voxels to the left and right of the centre
voxel) of the 5x5 image matrix. The 5x5 matrix in Fig 7 was obtained from reading the grey scale level voxel
values of the image in Fig 6. It must be noted that the angles of calculating a co-occurrence matrix can also be

considered in the vertical directions, 8 = 90, 270, and diagonal directions 8 = 45,135,225 and 315.
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135 90 45

180 0

225 270 15

Fig 9. Some of the directions that are used to calculate the co-occurrence matrices

Some radiomics studies use the asymmetry matrices (GLCM obtained by counting the voxel pairs in a single
direction only, to the right only or left only etc.) in their investigations whilst others use the symmetry matrices.
In this study, only the symmetric GLCM matrices were explored. The GLCM matrix can be normalised by
dividing each of the created GLCM matrix cell intensity by the total cell intensities of the GLCM matrix using

P(.j)
XP@))

), where P (i, J) is the co-occurrence matrix, ), P(i, j) is the total voxel intensities

equation 3 (p(i,j) =
within the image or region of interest in an image and p(i, j) is the normalised co-occurrence mattix.

Below are examples of the mathematical calculations performed for the 13 texture features following the

Haralick’s texture feature equations. The Normalised GLCM in Fig 8 was used to perform the calculations.
Mean feature

The mean feature (u) is calculated as below

Ng—l
p= ) i-pGip)
i=0
U=0x021+0x003+0x003+0Xx0+0x0+1x003+1x0.03+1x0+ ©
1x0.05+1%0+1x0.05+2x0.05+2x0.05+2x0.26+2 X0+ 2 X 0.05
~ Mean feature = 0.98

Energy feature

The Energy or angular second moment (ASM) feature is calculated as follows;

Ng—l Ng—l
Energy = Z Z p(i, j)?
i=0 j=0
Energy = (0.21)2 + (0.03)2 + (0.03)2 + (0.03)2 + (0.05)2 + (0.05)% + (0.05)% + ©)

(0.05)2 + (0.26)2 + (0.05)% + (0.05)2 + (0.03)2 + (0.05)2 + (0.05)2 + (0.03)?

~ Energy = 0.13
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Variance feature

The Variance feature (6?) is used to measure the dispersion difference between the reference pixel and its

neighbouring pixels.

Ng—1Ng-1
o= > Y - W)
i=0 j=0

0% = (0 — 1.69)2 x 0.21 + (0 — 1.69)% X 0.03 + (0 — 1.69)% x 0.03 + (0 — 1.69)2 x 0 +
(0—1.69)%2 x 0+ (1 — 1.69)% X 0.03 + (1 — 1.69)% X 0 + (1 — 1.69)% X 0.05 + (1 —
1.69)2 x 0+ (1 — 1.69)2 X 0.05 + (2 — 1.69)2 x 0.05 + (2 — 1.69)% x 0.05 + (2 — 1.69)2 x (/)
026+ (2—1.69)2x 0+ (2—1.69)2x0.05+ (3 —1.69)2X 0+ (3—1.69)2 x 0 + (3 —
1.69)2 X 0 + (3 — 1.69)% X 0.05 + (3 — 1.69)2 x 0.03 + (4 — 1.69)2 X 0 + (4 — 1.69)? x
0.05+ (4 —1.69)?> x 0.05+ (4—1.69)?> x0.03+ (4—1.69)2 x 0

~ 02 =165

The standard deviation (o) is therefore calculated as the square root of the variance feature.

~o=v165=129 ®)

Entropy feature

Entropy refers to the measure of the disorder or chaos within the image pixel arrangement that is irreversible
or irremediable. The concept of Entropy is derived from the thermodynamics state of energy lost as heat energy

and is irrecoverable.

Ng—1Ng-1

Entropy = — Z p(i,j) log, p(i,))
i=0 j=0

i=0 j
)
Entropy = —(0.21 X log,0.21 + 0.03 X log,0.03 + 0.03 X log,0.03 + 0 + 0 + 0.03 X
log,0.03 + 0 + 0.05 x log,0.05 + 00.05 X log,0.054+ 0+ 0+ 0 + 0.05 X log,0.05 +
0.03 x log,0.03 + 0 + 0.05 x log,0.05 + 0.05 x log,0.05 + 0.03 X log,0.03 + 0)
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~ Entropy = —3.41

Contrast feature

The measure of the intensity or grey-level variations between a reference pixel and its neighbouring pixels is

calculated using the contrast feature.

Ng=1  (Ng—1Ng-1
Constrast = Z n? Z Z p(i,))
n=0 i=0 j=0 |i—j|=n

Contrast = (0 —0)2 x0.21+ (0 —1)2 X 0.03 + (0 —2)2 x 0.03+ (0—3)2x 0 + (0 —
4)2x0+(1-0)2>%x003+(1-1)2%x0+(1-2)2%x0.05+(1—-3)2x0+(1—-4)?x (10)
0.05+(2—-10)2x0.05+(2—1)2%x0.05+ (2—-2)2x026+(2—3)2x0+ (2—4)?x

005+ (3—-0)2x0+(B3—-1)?x0+(3—-2)?%x0+(3—-3)2x0.05+(3—4)?x0.03+
(4—0)2%x0+(4—1)2%x0.05+(4—2)2%x005+((4—-3)2%x003+(4—-4)?>x%x0

Contrast = 1.85
Correlation feature

The correlation feature relates a reference pixel to a linearly positioned neighbouring pixel in a co-occurrence

matrix. A correlation feature value of 1 would represent a perfect correlation and a 0 value means uncorrelated.
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Ng—1Ng-1

1
Correlation = z Z yp(i,J) — txlty
=0 j=0

O'xO'y =

Correlation = (0 — 1.69) x (0 — 1.69) x 0.21 + (0 — 1.69) x (1 — 1.69) x 0.03 + (0 —

1.69) X (2 — 1.69) x 0.03 + (0 — 1.69) X (3 — 1.69) X 0 + (0 — 1.69) X (4 — 1.69) x 0 +
(1-1.69) x (0 — 1.69) X 0.03 + (1 — 1.69) x (1 — 1.69) X 0 + (1 — 1.69) x (2 —

1.69) X 0.05 + (1 — 1.69) x (3 — 1.69) X 0 + (1 — 1.69) X (4 — 1.69) X 0.05 + (2 —

1.69) x (0 — 1.69) x 0.05 + (2 — 1.69) x (1 — 1.69) x 0.05 + (2 — 1.69) X (2 — 1.69) x (D
026+ (2 — 1.69) X (3 — 1.69) X 0 + (2 — 1.69) X (4 — 1.69) x 0.05 + (3 — 1.69) x (0 —

1.69) X 0+ (3 — 1.69) X (1 — 1.69) X 0 + (3 — 1.69) X (2 — 1.69) X 0 + (32 — 1.69) X

(3 —1.69) x 0.05 + (3 — 1.69) X (4 — 1.69) x 0.03 + (4 — 1.69) x (0 — 1.69) X 0 + (4 —

1.69) x (1 — 1.69) x 0.05 + (4 — 1.69) X (2 — 1.69) X 0.05 + (4 — 1.69) x (3 — 1.69) X

0.03 + (4 — 1.69) X (4 — 1.69) X 0

~ Correlation = 0.76

Homogeneity / Inverse difference moment (Idm) feature

The IDM quantifies the closeness of the GLCM elements distribution to the elements in the GLCM diagonal.

IDM measures the homogeneity of an image.

Ng=1Ng-1

IDM = ; ; (ﬁ)'p(i.ﬂ

1
14(0-0)?

1
1+(0—1)2

1
1+(0-2)2

IDM = ( )x 021+ ( )% 003+ ( )% 003+ ( )x 0+

1+(0-3)2

(1+(01—4)2) X0+ (Tl—o)z) x0.03 + (1+(11—1)2) X0+ (1+(11—2)2) x 0.05 + (1+(11—3)2) x

o+(m)xo.05+( )xo.05+(

1
1+(2-0)2

1
1+(2-1)2

1
1+(2-2)2

(1+(21_3)2) X0+ (1+(21‘4)2) x 0.05+ (1+(31—0)2) X0+ (1+(31—1)2) x0+ (1+(31—2)2) x0+ (12

)xo.05+( )xo.26+
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() % 005 + (55m) * 003 + (5mmam) ¥ 0 + (5gys) % 0.05 +

(1+(41—2)2) x0.05+ (1+(41—3)2) X 0.03 + (1+(41—4)2) X0

~ IDM = 0.66
Sum Average Feature (SA)
2(Ng—1)
SA = Z (iDxsy (D) (13)
i=0
Where:
N,—1 N,;,—1 .. . .

px+y(k) = Zi;qo ijo p(l'])) k=i +], k = {0' 1'2' R Z(Ng - 1)} (14)

SA=(0x%0.21) + (1 % (0.03x0.03)) + (2 x (0.05+ 0+ 0.03)) + (3 x (0 +

0.0540.05+4+0))+ (4x(0+0+.26+0+0)) + (5x (0.05+ 0+ 0+ 0.05)) + 5

(6 x (0.05 + 0.05 + 0.05)) + (7 % (0.03 + 0.03)) + (8 X 0)
~ SA =3.33

Sum Variance Feature (SV)

2(Ng—1)

V= ) (= SApary (D
i=0

SV = ((0—3.33)2x0.21) + ((1 —3.33)? % (0.03 X 0.03)) + ((2 — 3.33) x (0.05 +
0+0.03)) + ((3 = 3.33)2 x (0 + 0.05 + 0.05 + 0)) + ((4 — 3.33)2 X (0 + 0 + .26 + (16)
0+0))+ ((5-3.33)2%(0.05+0+0+0.05)) + ((6 — 3.33)? x (0.05 + 0.05 +
0.05)) + ((7 — 3.33)? x (0.03 + 0.03)) + ((8 — 3.33)? x 0)

~ SV =4.89

Sum Entropy Feature (SE)

2(Ng—1)

SE== )" pey@logpey(® (7
i=0
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SE = —{0.21 X log0.21 + (0.03 x 0.03) X log(0.03 X 0.03) + (0.05 + 0 + 0.03) X
10g(0.05 + 0 + 0.03) + (0 + 0.05 + 0.05 + 0) x log(0 + 0.05 + 0.05 + 0) + (0 + 0 +
26+ 0+0)x10g(0+0+4.26+ 0+ 0) + (0.05+ 0 + 0 + 0.05) X log(0.05 + 0 + 0 +
0.05) + (0.05 + 0.05 + 0.05) X log (0.05 + 0.05 + 0.05) + (0.03 + 0.03) x log(0.03 +

0.03) + 0}
~ SE =193
Difference Average Feature (DA)
Ng-1
DA = Z i Py (D) (18)
i=0
Where:
Ng—1Ng—1
Pr—y(K) = ; ; p(.)) 19)

k= li—jlk={0,1,2,..,2(N, — 1)},

DA =0x (021 + 0+ 0.26 + 0.05 + 0) + 1 x (0.03 + +0.05 + 0 + 0.03 + 0.03 + 0 +
0.05 + 0.03) + 2 x (0.03 + 0 + 0.05 + 0.05 + 0 + 0.05) + 3 X (0 + 0.05 + 0.05 +
0) + 4 x (0 + 0) 20)

~ DA = 0.87

Difference Variance Feature (DV)

Ng—1

DV = ) (= DAY oy
i=0
DV = (0-0.87)?x (0.21 4+ 0 + 0.26 + 0.05 + 0) + (1 — 0.87)% x (0.03 + +0.05 + 0 + @1

0.03 + 0.03 + 0 + 0.05 + 0.03) + (2 — 0.87)% X (0.03 + 0 + 0.05 + 0.05 + 0 + 0.05) +
(3 — 0.87)% x (0 + 0.05 + 0.05 + 0) + (4 — 0.87)2 X (0 + 0)

~ DV =1.09

Difference Entropy Feature (DE)
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Ng-1

DE = — Z Pr—y (D) 10g(Px—y (D)
i=0

DE = (0.21 + 0 + 0.26 + 0.05 + 0) X log(0.21 + 0 + 0.26 + 0.05 + 0) + (0.03 +
+0.05 + 0 + 0.03 + 0.03 + 0 + 0.05 + 0.03) x log(0.03 + +0.05 + 0 + 0.03 + 0.03 +

(22)

0 + 0.05 + 0.03) + (0.03 + 0 + 0.05 + 0.05 + 0 + 0.05) X log(0.03 + 0 + 0.05 + 0.05 +

0 + 0.05) + (0 + 0.05 + 0.05 + 0) x log(0 + 0.05 + 0.05 + 0) + 0

~DE =1.21
Information Measures of Correlation Feature 1

HXY — HXY1

I tion M Correlation 1 = ———r—r~
nformation Measure of Correlation max{HX, HY}

Information Measures of Correlation Feature 2

Information Measure of Correlation 2 = /1 — e~2(HXY2=HXY)
Where:

Px-1s the marginal row probabilities,

Ng-1

px(D) = Z (@)
=0

J
Py~ is the marginal column probabilities,

Ng-1

Py = ) p())
i=0

px (i) = Dy (/)
For symmetric a co-occurrence matrix. This will result in the following calculations

p,(0) = p,(0) = 0.21+0.03 +0.03+0 + 0 = 0.27

p(1) = p, (1) = 0.03 +0 + 0.05 + 0 + 0.05 = 0.13

(23)

24)

(25)

(20)

@7
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px(2) = p,(2) = 0.05 + 0.05 + 0.26 + 0 + 0.05 = 0.41
px(3) = p,(3) = 0+0+0+0.05+ 0.03 = 0.08
py(4) = p,(4) = 0 +0.05 + 0.05 + 0.03 + 0 = 0.13

H - is the entropy of p(i, j),

Ng—1Ng-1

H== "> () log(pG.N) @9

i=0 j=0
HX - is the entropy of py,

Ng-1

HX == > 5 log, (D) @)
i=0

HY - is the entropy of p,,,
Ng—1
HY == " py(D) loga(py () (30)
i=0
For a symmetric matrix HX = HY

HX = HY =0.27 X log0.27 + 0.13 X log0.13 + 0.41 X log0.41 + 0.08 X log0.08
+ 0.13 X 10g0.13 = 0.35

@D
~HX = —1.44
HXY is the entropy which is —3.41
HXY1
Ng—1Ng—1
HXYL== )" " p(,)log(pDpy ()
i=0 j=0
HXY1 = —(0.21 x 10og(0.27 x 0.27) + 0.03 x log(0.27 x 0.13) + 0.03 x log(0.27 x (32)

0.41) + 0 X log(0.27 x 0.08) + 0 X log(0.27 x 0.13) + 0.03 %X log(0.13 x 0.27) + 0 X
log(0.13 x 0.13) + 0.05 X log(0.13 x 0.41) + 0 X log(0.13 x 0.08) + 0.05 x

log(0.13 X 0.13) + 0.05 X log(0.41 x 0.27) + 0.05 x log(0.41 X 0.13) + 0.26 X
log(0.41 x 0.41) + 0 x log(0.41 x 0.08) + 0.05 X log(0.41 x 0.13) + 0 X log(0.08 x

26 |Page



0.27) + 0 x 10g(0.08 X 0.13) + 0 X log(0.08 x 0.41) + 0.05 X log(0.08 X 0.08) +
0.03 X log(0.08 x 0.13) + 0 X log(0.13 X 0.27) + 0.05 X log(0.13 x 0.13) + 0.05 x
log(0.13 x 0.41) + 0.03 X log(0.13 x 0.08) + 0 X log(0.13 X 0.13))

L HXY1 =-2.89
HXY2
Ng—1Ng—1
HXY2 == ) pDpy(DlogeDpy (D)
i=0 j=0

HXY2 = —((0.27 x 0.27) x 1og(0.27 X 0.27) + (0.27 x 0.13) X log(0.27 x 0.13) + (0.27 X
0.41) X log(0.27 x 0.41) + (0.27 x 0.08) x log(0.27 x 0.08) + (0.27 x 0.13) x log(0.27 X
0.13) + (0.13 x 0.27) x log(0.13 x 0.27) + (0.13 x 0.13) x log(0.13 x 0.13) + (0.13 x
0.41) X log(0.13 x 0.41) + (0.13 x 0.08) x log(0.13 x 0.08) + (0.13 x 0.13) x log(0.13 X
0.13) + (0.41 x 0.27) x log(0.41 x 0.27) + (0.41 x 0.13) x log(0.41 x 0.13) + (0.41 x
0.41) X log(0.41 x 0.41) + (0.41 x 0.08) x log(0.41 x 0.08) + (0.41 x 0.13) x log(0.41 X
0.13) + (0.08 x 0.27) x log(0.08 x 0.27) + (0.08 x 0.13) X log(0.08 x 0.13) + (0.08 x
0.41) x log(0.08 x 0.41) + (0.08 x 0.08) x log(0.08 x 0.08) + (0.08 x 0.13) x log(0.08 x
0.13) + (0.13 x 0.27) x log(0.13 x 0.27) + (0.13 x 0.13) X log(0.13 X 0.13) + (0.13 x
0.41) X log(0.13 x 0.41) + (0.13 x 0.08) X log(0.13 x 0.08) + (0.13 X 0.13) x log(0.13 x
0.13))

33)

~ HXY2 = —2.88

Information Measures of Correlation Feature 1

—-3.41 - (—2.89)
max(—1.44,—1.44)

Information Measures of Correlationl =
(34)

~ Information Measures of Correlationl = 0.36

Information Measures of Correlation Feature 2
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Information Measures of Correlation2 = /1 — e—2(-288-(-341)
35)

Information Measures of Correlation2 = 0.81

It is possible that HXY > HXY?2, which would result in returning complex numbers. In these cases, a value of

0 is returned for IMC2. This affects some of the values in Table 7 to Table 12.

The Haralick texture features calculations that have been presented in this section are examples of the method
employed in some part of this study to investigate the influence CT technique parameters. In the illustrations,
a 5x5 co-occurrence matrix obtained from 5x5 matrix of image intensities obtained from an image ROI of 5x5
pixel matrix. The size of the matrix and space within this document was considered when crafting the
demonstration of the algorithms. The images used in the following part of the study where from the CCR
phantom. This part of the study strictly uses phantom images that were acquired at CT machines using standard
acquisition protocols described in Chapter 3 of this document. To control the experiment, the images were not

pre-processed or had filter applied to them for either smoothing of any other purpose.

2.1.4 Software Description
To segment and extract radiomics texture features 3D Slicer software was used in part of this study. 3D Slicer

is a Harvard Medical School developed free and open source software package for image analysis and scientific
visualization (Jennings et al., 2012; Pieper et al., 2000). The use of 3D slicer for clinical investigations includes
tumour segmentations and radiomics quantitative feature enumerations. 3D-Slicer is available and easily
accessible by download for free and 3D slicer has been widely employed in non-small cell lung (NSCLC) tumour
image quantitative studies and has proven to be robust. Velazquez et al. (Velazquez et al., 2013) have concluded
in their study on NSCLC that the 3D Slicer algorithm tumour segmentations were comparable and had a low

variability to those manually delineated by physicians.

MATLAB® 2017a software package was also used to segment and extract pixel intensities. This was performed
on specific insert (cartilage) central slice image. The pixel intensities extracted were used in hand calculation

stage of this study.
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Chap t€1‘ 3: Matetrials and Methods
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3.1 Materials and Methods

3.1.1 Introduction to the material and methods

This chapter 3 builds up on the previous chapter which explored the mathematical layout of some of the
algorithms that are used in the software used to calculate radiomic texture features. The previous chapter as
much as it reviews literature, it executed the hand (manual) calculations of a selected radiomics texture features.
This chapter 3 develops the experimental techniques that were used to fulfil the objectives of the study. The
Credence Cartridge Radiomics phantom (CCR) was imaged at two manufacturer CT scanners (2 Toshiba
Aquillion Long bore CT and 2 GE Lightspeed units). Two programming softwares (3D Slicer and Matlab 2017a
package) were used to process the CCR phantom images. The Matlab 2017a software package was used to
segment and therefore extract image data to get image matrices at variable CT technique parameters. The Matlab
extracted image matrices were used to perform radiomic texture feature calculations. The hand GLCM texture

features enumeration was done with assistance of Microsoft excel spreadsheets.

The 3D Slicer software with plugins of PyRadiomics was also used to segment the CCR phantom images.
Radiomic texture features were extracted from the region of interests (ROIs) on the PyRadiomics platform.
For each insert segmented phantom insert 16 set of a list of radiomic texture features were extracted to
Microsoft excel spreadsheet for analysis and presentation. This investigated the use of invariant tool to

practically identify robust features and compare features from the different CT scanners used in this study.

To explore the use of the identified robust texture features on a patient data set. A section was designated for
the patient cohort (cervical cancer patient group). The weekly obtained Cone beam Computed Tomography
patient images was also segmented on the 3D Slicer PyRadiomics platform to extract the radiomic features for

further analysis.

3.1.2 Phantom Study

Different CT machines available at the Universitas Academic Hospital complex (UAH) were used for data
collection. The authority to access and use the UAH equipment was formally sought from the hospital
management. The CCR phantom shown in Fig 10 below was supplied by the M D Anderson Caneer Centre,

University of Texas.

The CCR phantom consisted of 10 different cartridges, each of the size 10.1 x 10.1 x 3.2 cm?. The properties
of the cartridges resembled various human tissue textures. The phantom cartridges were made of the following
materials; Cartridge 1 composed of plaster resin, the second was made of natural cork, acrylic made the third
cartridge, high density cork for the fourth cartridge, glued and pressured rubber particles made up the fifth

cartridge, sycamore wood was used to make the sixth cartridge and the seventh up to the tenth cartridges were
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composed of acrylonitrile butadiene styrene plastic with honeycomb holes that made the filling levels to be

between 50% and 20% with a 10% decrement from cartridge 7 to 10 (Yasaka et al., 2017; Mackin et al., 2015).

~ 20%Filled ABS

30% Filled ABS

40% Filled ABS

50% Filled ABS

Rubber Particles

Dense Cork
Solid Acrylic

Natural Cork

| Plaster Resin
£

Fig 10. The credence cartridge radiomics (CCR) phantom(Mackin et al., 2017)

3.1.2.1 Acquisition

In general, the use of medical images in the detection of tumours during any stage of cancer treatment or the
diagnosis stage depends on the trained clinical professional’s ability to perceive the contrast and other image
properties with accuracy. The above is true if all the images used are clinically acceptable fit for the purpose,
thus a quality control (QC) program that ensures good picture quality must be in place for the machines used
for patient imaging. In this study, the image quality QC was performed before the CCR phantom was imaged

on each of the machines used.

To determine the intra-and inter-scanner variability of the radiomic texture features, the CCR phantom was

acquired using the CT machines — 2 General Electric (GE) and 2 Toshiba large bore.
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Fig 11. Phantom Study scan set-up

The set-up in Fig 11 was used to scan the CCR phantom on all the CT scanners. The CCR phantom has a
marker that was used to align the phantom at the laser crosshairs of the CT scanners, used for patient or
phantom alignment before scanning. Three CT technique parameters (mAs, slice thickness and kVp) were
investigated in the phantom study. A reconstruction interval of 1 was used during the phantom imaging hence
an adjacent interval or zero inter-slice gaps was used for all scans. To investigate the effects of changing the
mAs on the radiomic features, a single fixed slice thickness (5mm) and 120kVp were selected, then the mAs
was varied from a 75 mAs to 400 mAs. The kVp was changed from 80 kV to 135kVp with the slice thickness
and mAs fixed at 5 mm and 300 mAs respectively. This was to investigate the effects of kVp variation. During
the mAs and kVp variation acquisitions, the pixel size sampling was set fixed by making the field of view (FOV)
at which the images of the phantom were acquired constantly. A FOV of 160.9 mm was used and this
corresponded with a pixel size ranging 0.31 mm. The pixel size was calculated as FOV/mattix size and a matrix
size of 512 by 512 was kept constant for all scans also. This meant that the voxel size was a fixed parameter for
the mAs and kVp investigations. Only the slice thickness study had the voxel size changing as slice thickness
vary. Therefore, there was a total of 90 phantom sets for the mAs, kVp and slice thickness study for each unit.
To facilitate inter-scanner comparison, close similar acquisition and reconstruction parameters were used across

different scanners as shown in Table 1 and Table 2.

32| Page



Table 1: Imaging protocol of the CCR phantom at the Toshiba Aquillion/ LB CT scans

Scanning parameters CT Unit
Tube voltage 80, 100, 120 and 135 kVp
Tube current 75, 100, 150, 200, 250, 350 & 400 mAs
Field of View 160.9 mm
Slice thickness 1.0, 2.0, 3.0 and 4 mm
Reconstruction algorithm Standard, Thorax, abdomen and head
Pitch 1
Matrix size 512

Table 2: Imaging protocol of the CCR phantom at the GE Lightspeed scans

Scanning parameters CT Unit
Tube voltage 80, 100, 120 and 140 kVp
Tube current 20, 50 to 350 mAs in steps of 25mAs
Field of View 160.9 mm
Slice thickness 0.625, 1.25, 2.5, 3.75 and 5 mm
Reconstruction algorithm Standard, Thorax, abdomen and head
Pitch 1
Matrix size 512

3.1.3 Contouring and Feature Extraction

For importing, exporting and contouring purposes, a sophisticated open-source software platform for
biomedical research called 3D Slicer was used (Yip et al., 2017; Velazquez et al., 2013; Jennings et al., 2012).
MATLAB® 2017a software package was also used to segment and extract pixel intensities. This was petformed

on specific insert (cartilage) central slice image.
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Fig 12. 3d sticer CCR phantom ROI contours delineation set-up

As illustrated in Fig 12, spheres of a 20 mm diameter each were used to draw ROIs on the CCR phantom
images. Initially, a Cartesian plan was inserted on the axial phantom insert image that was going to be
segmented. Then four spherical ROIs were contoured on the four regions of the Cartesian plan giving a total
of 16 spherical ROIs drawn per CCR insert. The spherical ROIs were kept identical (2 cm diameter) in size for
all images used. Radiomic features were extracted and calculated using the radiomics extension of 3D Slicer

(PyRadiomics) (Balvay et al., 2019; Griethuysen et al., 2017; Jennings et al., 2012).

A single square segment that covered 90% of the CCR phantom insert as displayed in Fig 13 was used to extract
image matrices on Matlab 2017a package. A 512x512 image matrix was extracted to Microsoft excel spreadsheet

per image. Using the 512x512 image matrix, four small 10x10 matrices were further extracted around the origin
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of the bigger matrix. The 10x10 image matrices were used to perform radiomics hand calculations using the
mathematical equation examples in chapter 2. The sizes of the co-occurrence matrices obtained from these
10x10 image matrix relied on the range of the pixel intensities within the ROL. The significance of the features
values was evaluated by employing the co-efficient of variance (COV %) (Kim et al., 2016; Yan et al., 2015).
Features that produced a COV % that was systematically small (less than 10%) through the test-retest method
were considered robust (Molina et al., 2016; Reed et al., 2002). Consistently small dispersions of the feature
values around the mean of that feature obtained as a result of CT image acquisition parameter systematic change
determines the robustness of the feature. The 10x10 image matrices were also used to analyse the relationship

between image noise and CT imaging technique parameters.
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Fig 13. Matlab 2017a package CCR phantom segmentation

3.1.4 Impact of the volume region of interest (ROI) on radiomic texture features

Two schools of thought existed about which ROI to use for the patient data sample investigation. The first
idea was to use the PTV ROI already existing on the patient image data set and the second idea was to use a

fixed ROI to be inserted inside the PTV. There was therefore a need to evaluate the impact of the ROI volume
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on the radiomics texture features. The outcome of this evaluation was to be employed in the whole study by

choosing the appropriate volume of ROI to extract radiomic texture feature data from images.

The cervical cancer treatment patient data used in this study had the uterus delineated by experts (Dosimetry
Medical Physicist and Radiographers) to represent the PTV for radiotherapy treatment purposes. This was
because, at the Universitas Academic Hospital oncology department in Bloemfontein, cervix cancer patients
were mainly treated through radical 3D conformal planning which conforms the radiation beams to the whole
uterus. Also, the images used were acquired through the Cone Beam Computed Tomography (CBCT) imaging
modality which did not offer better visibility of tissue differences. The CBCT images did not clearly reveal the

tumour but the uterus and bladder was clearly seen and easily delineated.

Initially the study intended to use the uterus delineated on the Monaco planning simulation software, as the
base ROI from which the radiomic features would be extracted from on 3D slicer. This meant all the shape
parameters used to calculate the shape features and all the other features that made use of those shape
parameters would depend on the shape and size of the uterus. Other radiotherapy studies have shown that the
uterus shape and size can vary between treatment fractions due to changes in bladder fillings (Hoogeman et al.,
2017; Ye et al,, 2017; Virendra et al., 2015). The changes of the uterus positions were attributed to the bladder
location and anatomy. The bladder is located directly in front of the uterus. The bladder anatomy allows it to
expand and contract depending on the amount of fluid it will be holding at a particular point in time. The
changes in the bladder volume would greatly influence the shape and size of the uterus, in that if full the bladder
pushes against the uterus leading to uterus changing size or shape. This meant the shape of the ROI could

change when either the bladder is full, half-full, one-quarter full or empty.

Hence the second suggestion was to use a fixed volume ROI drawn inside the uterus using 3D Slicer software
to extract the texture features. This would overcome the dependence of the radiomic texture features on volume
or number of voxels in the ROL. Using a fixed volume would promote biological factors to be the only factors

that influence radiomic texture features changes as the treatment progresses rather than some physical factors.

A study was conducted to investigate the assumption that the size of the sampling ROI could cause changes in
the values of the robust radiomic feature values. This would also justify the use of fixed size ROIs segments

within the base ROI (Uterus) to extract radiomic texture features.

The rubber insert image samples from the CCR phantom was used. Using the 3D slicer software, six sphere
ROIs of varying diameters were drawn. The diameters of the ROI were 2 ¢cm, 1.5 cm, 1 ¢m, 0.5 cm, 0.3 cm and
0.1 cm respectively. The radiomic texture features were then enumerated using PyRadiomics extension of the

3D slicer. Fig 14 show ROIs of varying volume that were used to evaluate the effect of volume ROI on radiomic
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texture. A sample of texture features extracted was then plotted against the diameters of the spheres ROI as

shown in Fig 36 and Fig 37 in the results section.

Fig 14. Representation of the phantom image with ROI drawn to evaluate the effect of ROI volume on radiomic texture features.

3.1.5 Normalising the radiomic texture features data

Two approaches were considered and employed when normalising the radiomics calculated texture features

values. The first approach involved equation 36 below
=)
£o= (L 7y (36)

Where fy is the patient normalised feature definition, f, is the calculated feature value at a specific imaging

parameter (e.g. this can be a feature value at 50 mAs, 100mAs or any other value used during acquisition), f}, is
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the feature value at a given baseline (e.g. 5mm for slice thickness analysis, 300mAs for tube current analysis and
or 140 kV for tube potential difference investigations), 0 is the standard deviation of the tumour texture feature
values and [, is the tumour feature mean value. Using equation 36 the texture feature variations caused by
changing a given imaging technique parameter (kV, mAs and/or slice thickness) that were being investigated
in this study could be assessed in relation to the tumour differences (inter patient variation). If calculated based
on the g; and Uy of a patient’s treatment fraction, the dependence of the imaging parameter changes due to the

stage of treatment were assessed.

The second approach was using the z-score standardisation/ normalisation process. Equation 37 was used to

perform the feature calculation normalisation;

fo—
Op

fz = (37)

Where f, is the —z-score normalised feature value definition, fp, is the calculated feature value at a specific
imaging parameter (e.g. this can be a feature value at 50 mAs, 100 mAs or any other value used during
acquisition), i is the mean value of the calculated feature at the specific parameter being investigated, g, is

the standard deviation value of the calculated feature at the specific parameter being investigated.
3.1.6 Patient group

The data that was used to monitor the robust radiomic texture features was from patients who underwent
cervical cancer radiotherapy radical treatment with concurrent chemotherapy at the Universitas Academic
Hospital Annex from 2016 to 2017. The patients were treated using 3D conformal external beam radiation
therapy. The patient group were all stage three cancer patients, but the extent of the stage was not the same.
This group of patients did not have the same type of cancer, some had Squamous cell carcinomas, and at least
1 had Adenocarcinoma, see Table 3 below. The data was used for another study in at Universitas Academic
Hospital that had an Ethics number 28/2014A. This meant the data samples was acquited prior to this study
hence the study was retrospective. Ethical approval was obtained from the University of the Free State and
Department of Health research committees to use the patient images for this study. The analyses were
performed using the kV Cone Beam CT (kV CBCT) images and CT images, clinical factors, and outcomes data
from a set of 6 patients treated. The inclusion criteria for patients in this study were the presence of a
pathologically proven, the tumour not surgically removed, locoregional metastasis and the use of the bladder
protocol during the imaging sessions of 25 treatment fractions. The exclusion criteria for this investigation; the

patients must not have a positive pregnancy screening, the imaging bladder protocol was not strictly followed
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for the imaging stage of the patient (pre-treatment), body weight that exceeded the limits of the treatment couch

and the images not visible enough for the uterus to be segmented.

The goal of this part of the study was to determine the variations on the radiomic features pre-treatment and
at the end of treatment. This was to determine the biological differences in the tumour region along the
treatment time thus could be used as a measure of the clinical relative biological effectiveness (RBE). Though
factors such as the type of tumour cells, beam energy, depth of a tumour from the surface, dose per fraction
and the linear energy transfer (LET) determine the RBE. In this patient study group the treatment administered
was a 2Gy per fraction photon dose for 25 fractions with a brachytherapy boost of more than 2Gy to the
prescription point. CBCT images acquired on the first day of treatment was used and the subsequent start of

every week CBCT and the last fraction.

Table 3: Shows a sample of cervical cancer patient data

Patient | Stage | Age | Endo | Parametrial Vaginal Adeno/ Pre- Chemo | Chemo | Previous
/Exo Invasion Involvement | Squam | treatment | Cycles | (mg) Chemo
Tumour Cisplatin
size
A 1I1B 48 Bi-lateral Sup 2/3 *Squam | 34x50 mm 6 39 mg
B IIIB | 44 | +Endo Left *Squam | 50x45 mm 5 39mg | 4 cycles
C 111B1 67 | -Exo Bi-lateral 1/2 —Adeno | 76x44 mm 6 48 mg
D IIIB | 60 | -Exo Bi-lateral *Squam | 81x75 mm 6 48 mg | 3 cycles
E IIIB1 | 62 Right Sup 2/3 *Squam 6 46 mg
F 1IIB1 | 53 | -Exo Left *Squam | 50x48 mm 6 43 mg 1 cycle

*Squam is Squamous cell carcinomas, 7Adeno is Adenocarcinomas, +Endo is Endocervix, -Exo is Exocervix
3.1.7 Imaging Parameters

The patients were imaged weekly during their treatment with the institutional bladder protocol on the Toshiba
Aquilion/ LB (large bore) and on the Elekta kV CBCT for the pre-treatment set-up at National Hospital-Annex
in Bloemfontein. Before CT imaging, all patients who were involved in the study were given clear instructions
specifying their fluid intake. Patients were required to drink about 500-700 cm? of water at least 1 hour before
the scans and another 500 cm3 30 minutes before the scan. The CT was first performed with a full bladder.
Then, in the same position, another set of CT images were acquired after the patients were asked to empty their

bladders. The patient images were acquired using the pelvic imaging protocol. The peak tube voltage of 120
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kV, tube current of 32 mA, and exposure time of 40 seconds on the Elekta kV CBCT. At the Toshiba machine
a peak tube voltage of 135 kV, tube current of 300 mA, and the rotation time of 0.75 seconds were used to
acquire the pelvic images. The acquired images were reconstructed into a 512x512 pixel matrix with an image

thickness of 3 mm and an in-plane resolution of 1.6 pixels per mm thus a pixel size of 0.625x0.625 mm?.

The patient study focused on the kV CBCT produced images because it was the modality that was used to scan
the patients frequently at the Linac before treatment was delivered. kV CBCT images were routinely acquired
for patient setup verification at the Linac and at least once a week a set of images was being obtained. The
weekly kV CBCT image data set was used in this study. There are drawbacks in using kV CBCT images for
studies that require an enormous amount of detail from the images. The drawbacks include relatively poor
image quality than regular CT. This is attributed to the increased amount of scatter from the wider distance
between the x-ray source and the detectors panel of the kV CBCT. Also different detector types are used in CT
and kV CBCT. kV CBCT uses a flat-panel detector. The flat panel detector that is used in kV CBCT has very
low spatial resolution abilities as compared to the diode detectors used in conventional CTs thus contributing
to poor image quality being produced by the kV CBCT. The kV CBCT mechanical set-up around the Linac’s
iso-centre produces challenges in improving the kV CBCT image qualities in that the distance between the x-
ray source and the detector is big as compared to a conventional CT. The large distance between the x-ray
source of the kV CBCT and the detector will in-turn promote more X-rays scattering that will reach the detector
during imaging. The kV CBCT imaging scan time of close to 1 minute is longer than conventional CT images
(7-14 seconds) and patients are prone to perform slight movements during the scan, which can introduce subtle
motion artefacts in kV CBCT images. The pelvis images were reconstructed to a 512x512 matrix grid for a 5
mm slice thickness used at the Elekta Synergy Linear Accelerator kV CBCT. The peak kilo-voltage used for the
kV CBCT acquisition was 120kVp, 32 mA and an exposure time of 40 seconds.

3.1.8 Feature extraction region of interest

The use of CT images alone to delineate the target volumes in radiotherapy patient treatment presents
limitations in differentiating soft tissues and the tumour. This is attributed to the tissue attenuation coefficients
that are relatively the same in value. Usually, other imaging modalities (MRI, PET) images that give a better
soft tissue contrast differentiation are fused with CT images of the same target region to draw the region of
interest (ROI). The above allows the delineation of the gross palpable volume (a tumour) and the corresponding

clinical and planning treatment volumes. Ideally, radiomics studies consider only the tumour ROI for analysis.

As can be observed from Fig 15 below, there was no clear tumour observable on the CBCT images for cervical
cancers except on exceptional cases were big and coarse calcifications existed. In practice, kV CBCT images

are mainly used for patient set-up at the Linac before external beam radiotherapy. Specific land markers like
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bones or fiducial markers inside an organ which can be clearly visible on CBCT images, usually assist for the

purpose of Linac pre-treatment set-up.

The clinical treatment volume (uterus) was manually contoured and was used as the base region of interest
(ROI) for feature extraction. The base ROI drawing was performed on the Monaco simulation software
workstation used for patient images pre-treatment planning. The 3D slicer software was then used to delineate
5 ROIs that are 2 cm diameter spheres inside the uterus. The 5 ROIs within the uterus were of a better statistical
significance but the drawback on this was the fact that the kV CBCT images could not provide a clear visible
tumour. The radiomic texture features were then calculated and extracted using the 3D Slicer software. To
ensure that meaningful observations could be drawn from the results extracted, a ROI that produced values
that were extreme outliers as compared to other 4 ROIs were excluded from the further data processing. The
interquartile range method was identify and remove outlier feature values before averages used in plotting
graphs were calculated. In this interquartile range method outliers were identified to any value below the 25%
percentile and any value above the 75 percentile of the sample. This means the results presented on the patient

data section involved either 5 ROIs or 4 ROIs for each uterus information processed.

B: 1: CBCT(#phase:-1) Option 1; Max shices: 52

41| Page



Fig 15. Representation of the patient images uterus segmentation for feature extraction in a 3D view. The first image a) of Fig 15

show the anatomy sample of the image data sample before the clinical treatment volume was drawn as shown in b).

Fig 16 below shows the example of 2 cm diameter spheres contouring inside the uterus ROI. Images that had

no visible uterus were excluded from the study.

Fig 16. Representation of the patient images with the 5 ROLs contonred inside the nterus segment for feature extraction in a 3D

view PyRadiomics
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A similar approach as outlined in Fig 16 is shown in Fig 17. Fig 17 represents the delineation of 2 cm diameter
spheres inside the bladder ROI. The bladder 2 cm diameter sphere ROIs were employed in extracting the
radiomic texture features that were used to normalise the tumour 2 cm diameter spheres extracted texture
features. In this study, the coefficient of variation of the bladder texture features values for each treatment
fraction was used to normalise the tumour texture features of that fraction as shown in equation 36. This
method of normalisation assumes that the bladder is filled with a fluid solution which makes it a homogeneous
volume, hence the variation of tumour texture features during the irradiation treatment course can be

determined without data integrity loss.

To exclude the effect of various pre-processing techniques on the texture features, no pre-processing was
performed on the image data sets used in this study. The ROI volume was fixed at 2 cm diameter sphere
segmented within the uterus and the bladder of the patient data set. The minimum number of voxels in the
patient data sample ROI is 789. This satistied the minimum number of voxels required to adequately derive
intensity variations that did not result from a change in the volume of the ROI. This was supported by a
publication by Brooks F.J. and Grigsby P.W. (Brooks and Grigsby, 2014) which observed that smaller tumour
volumes did not contain enough intensity data for heterogeneity quantifiers. This meant small ROI volumes
could cause a significate loss of data integrity because they did not meet the minimum volume (700 voxels)
assumed to prevent degradation of information by under-sampling in the ROIL. Therefore, spheres of 2 cm
diameter that sampled at least 789 voxels were used throughout this study to delineate the ROI for feature

extraction purposes.

The size of the phantom cartridge was the other factor that prompted the 2cm diameter sphere choice. The
cartridge was 10 cm long, 10 cm wide and 3 cm thick. The thickness of the cartridge limited the volume ROI
to be less than 3 cm diameter or/ thick. Considering that the phantom cartridges were stacked one against
another in the phantom, there existed greater chances of the influence of partial volume effect to regions that
were close to edges of the cartridge. Therefore the centre of the sphere was placed at the centre of the cartridge
image such that at least 0.5 cm from the edges of each cartridge being sampled was excluded. 5 spheres were
placed inside the tumour or bladder ROI to ensure precision and accuracy of the radiomic texture features

extracted.
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Fig 17. 2 cm diameter spheres segmentation inside the bladder ROI

3.1.9 Radiomics Feature Calculation Software

The 3D Slicer software package with the radiomics plug-ins extensions installed was used for the calculation of
all radiomic features in this study. The software was an open-source called PyRadiomics (J. J. M. van
Griethuysen et al., 2017). PyRadiomics was compatible with both python 2.7 and python 3 versions (3.4 and
3.5). The 3D Slicer platform provided a graphical user interface to the PyRadiomics library which allowed
viewing and segmenting images. The segments performed on another software could be imported with the
image structures for further processing on the 3D slicer platform to extract the radiomic features (using

PyRadiomics) from specific segments.
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3.1.10 Statistical software analysis

Microsoft Office Excel package and MATLAB 2017a package are the main software employed in this study to

draw statistical and analytic observations and inferences.

The coefficient of variance (COV) was used to show the variability of the tumour radiomics feature values
under the patient study. The COV was also used to show the robustness of the radiomic features used for the
patient analysis study. The COVs were classified into the following four classes; very small (COV < 5%), small
(5% < COV < 10%), intermediate (10% < COV < 20%), and large (COV > 20%) range of vatiation (Kim
et al,, 2016; Yan et al., 2015) . The COV was calculated by dividing the standard deviation (SD) by the average

feature value and then multiplied by 100 to produce a percentage.

45| Page



Chap t€1‘ 4‘: Results Presentation
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4.1 Results

4.1.1 Introduction to result section

This chapter 4 reports the outcomes of the impact of changing the CT imaging parameters on the radiomic
features. The previous chapter outlined in detail the techniques involved in the experimental investigation of
this study. The use of features that are not stable due to scan technique parameters in radiomics studies might
compromise the outcomes of such studies. Therefore assessing radiomic texture features robustness against
the CT scan technique parameters. The work was thus performed to improve the general radiomic frameworks

(Zwanenburg et al., 2019).

The first task was to use a CT scanner to variably change the imaging parameters (changing one parameter at a
time whilst keeping all the other parameters constant) to acquire the CCR phantom. The CCR phantom images
were then processes on PyRadiomics Python software platform. Text features were extracted and therefore
analysed and the results presented in this chapter. Some of the CCR phantom images were also processed on
Matlab software to extract 8x8 ROI matrices from the image pixel intensities arrays. The 8x8 image matrices
were then processed to ascertain image noise relationship to slice thickness, kV and mAs changes. The 8x8
image matrices were also used to perform hand GLCM radiomic texture features calculations as was
demonstrated in chapter 2 with assistance of Microsoft excel spreadsheets and Matlab. The results for the CT
image noise relationship to CT acquisition parameters and the GLCM radiomic texture features calculations

were also presented in this chapter.
The second exercise was to use a variation of robust radiomics texture features on a clinical patient data set.

Recalling that it was proposed on aim that radiomic texture features that are constant to the CT imaging

parameters variations could be used on a clinical cohort to extract information about the radiation treatment.
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4.1.2 Phantom results

The phantom analysis results were displayed in Fig 18 to Fig 35. Fig 18 below demonstrated the tube current-
time product effects on the first order statistics metrics extracted from the 10 cartridges of the CCR phantom.
The CCR phantom images were acquired on the GE and Toshiba scanners. It is important to know that the
points plotted in Fig 18 to Fig 35 were average values of each texture feature normalised to the tumour values.
Each plot point was calculated using equation 36. Thus each plot point was calculated from information
extracted from 16 spheres of 2 cm diameter per insert was displayed in Fig 12. As a result of normalising the
radiomic texture features using equation 36 the standard deviations of the un-normalised data of these features
could not be used to plot the uncertainty of each point. Normalising the standard deviations of the points
plotted in Fig 18 to Fig 35 would not yield a standard deviation therefore that data was meaningless for this
study and could not be plotted as uncertainty bars.
Strong tube current dependence was noticeable on sycamore wood, dense cork and solid acrylic. All the other
materials did not exhibit any variations when the tube current was varied. Sycamore wood, dense cork and solid
acrylic materials had more uniform structures (no texture) hence the results express the change in image noise
as the tube current was being varied. Below is the key for reading Fig 18,
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Fig 18. First order statistics patient normalised feature difference relationship with tube current variation for the 10 inserts of the

CCR phantom images on the GE Brightspeed machine.
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Fig 19 below consisted of 6 graphs that displayed the results of the relation between tube potential difference
(kV) and first order statistics tumour normalised texture feature difference. Strong kV dependence was
noticeable on rubber particles, dense cork and solid acrylic. All the other materials did not exhibit any variations
as the kV was varied. Sycamore wood, dense cork and solid acrylic materials had more uniform structures (no

texture) hence the results express the change in image noise as the kV was being varied.
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Fig 19. First-order statistics tumonr normalised feature variability due to tube potential difference variation for the 10 inserts of

the CCR phantom imaged on the GE Brightspeed machine.

Below is Fig 20 that shows the relationship between first order statistics features and the change in slice
thickness. Strong slice thickness dependence was identified on rubber particles, dense cork and solid acrylic

inserts. All the other insert materials did not exhibit any variations as the slice thickness was varied. Dense cork
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and solid acrylic materials had more uniform structures hence the results express the change in image noise as

the slice thickness was being varied. The ABS showed no dependence on the slice thickness variation. ABS has

air characteristics hence there is less photon attenuation across the four ABS different percentage fillings.

Energy against Slice Thickness

Tumour normalised feature values
=S

1 2 3
Slice Thickness/ mm

Mean against Slice Thickness

Tumour normalised feature values
=

| I | ] ]
-5
-10
0 1 2 3
Slice Thi;knessl mm
Plaster Resin
L Natural Cork I
o Solid Acrylic
Dense Cork
@ Rubber Particles
Sycamore Wood |
=3 50% ABS
40% ABS
o 30% ABS
@ 20% ABS
Fig 20

Tumour normalised feature values

Tumour normalised feature values

Entropy against Slice Thickness

. L]
- - -
: .
$ 3 s ]
1 2 3

Slice Thickness/ mm

Skewness against Slice Thickness

1 2 3
Slice Thickness/ mm

Tumour normalised feature values

Tumour normalised feature values

Kurtosis against Slice Thickness

o L
. . . e
1 2 3 4
Slice Thickness/ mm
Unifermity against Slice Thickness
[} ] L [}
.
s ]
1 2 3 4

Slice Thickness/ mm

. First-order statistics patient normalised feature difference trend due to slice thickness variation for the 10 inserts of the

CCR phantom imaged on the GE Brightspeed machine.

The influence of cervical cancer tumour data used to normalise the phantom texture feature data was examined

and presented in Fig 21. Fig 21 plots were obtained from the CCR phantom cartridge 2 images. The phantom

data was obtained by changing the kV at constant mAs and constant slice thickness as well as other parameters

that influenced texture feature values. Equation 36 was used to normalise the CCR cartridge 2 data. The mean
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and standard deviation of each radiomic feature of the tumour extracted data at specific fractions (before

treatment, 6% fraction, 11t% fraction, 16% fraction, 20% fraction and 25 fraction) was used in equation 30.
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Fig 21. The effect of R on a texcture feature in relation to the tumonr response to treatment. The six graphs illustrate the bebavionr

of the first order statistics feature, skewness, obtained from the 27 insert for patients A fo F.

Fig 22 and Fig 23 displayed the effect of the patient tumour data to the phantom data obtained by changing
the kV imaging parameter using cartridge 9 and 10 (ABS cartridges). The graphs in Fig 22 and Fig 23 showed
mostly a general decrease trend in the normalised feature values as the kV changed from low (80kV) to high
(140kV). Few anomaly trends were also identified. Patient E in Fig 9 had a clear increase on its first fraction

data whilst all the other fractions date showed the general decrease.
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Fig 22. The effect of &1 on a texcture feature in relation to the tumour response to treatment. The six graphs demonstrate the

bebaviour of the first order statistics feature, skewness, obtained from the 9% insert for patients A to F.
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of the first order statistics feature, skewness, obtained from the 10? insert for patients A to F.

Heat maps in Fig 24 to Fig 26 displayed the patient normalised CCR phantom texture features in four colours.
The four colours indicated the extent of the radiomic texture features dependent on the tube potential
difference (kV). The heat maps were used to identify radiomic texture features that were less dependent or
completely independent of the imaging parameter being varied. Texture features that had green and greener
colours across all the 10 cartridge materials in the heat map table were ideally robust, thus they were less
dependent on the kV induced changes. The colours yellow and brown suggested greater dependence on the

induced kV changes. The radiomic texture features presented in these maps where normalised to the cervical

cancer tumour data using equation 36.
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Fig 24. RV heat maps that represent the patient normalised GLDM and GLCM texture feature values of all the 10 cartridges
that make up the CCR phantom shown in Fig 10, and the images used were acquired using a GE Light Speed Scanner.
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Fig 25. &V heat maps that represent the patient normalised first order statistics and GLRIM feature values of all the 10
cartridges that make up the CCR phantom shown in Fig 10, and the images used were acquired using a GE Light Speed CT

machine.
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Fig 26. k1 heat maps that represent the patient normalised GLSZM and NGTM feature values of all the 10 cartridges that
matkee up the CCR phantom shown in Fig 10, and the images used were acquired using a GE Light Speed CT machine.

Fig 27 to Fig 32 heat maps displayed the behaviour of the radiomic texture features in relation to the mAs
changes introduced during imaging. Positions that were coloured brown depend on the mAs. Regions that were
coloured light green and yellow indicated texture features that was relatively independent of the mAs. Texture
features that were in the green region across all the 10 cartridge materials in the heat map table were robust.

The texture features were independent of the mAs induced changes.
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Fig 27. mAs heat maps that represent the patient normalised GLDM and GLCM texture feature values for the plaster resins,
natural cork and solid acrylic cartridges that make up the CCR phantom shown in Fig 10, and the images used were acquired
using a GE Light Speed CT machine.
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Fig 28. mAs heat maps that represent the patient normalised first order statistics and GLRLM feature values for the plaster
resins, natural cork and solid acrylic cartridges that make up the CCR phantom shown in Fig 10, and the images used were
acquired using a GE Light Speed CT machine.
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Fig 29. mAs heat maps that represent the patient normalised GLSZM and NG'TM feature values for the plaster resins, natural

cork and solid acrylic cartridges that make up the CCR phantom shown in Fig 10, and the images used were acquired using a
GE Light Speed CT machine.
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Fig 30. mAs heat maps that represent the patient normalised GLLDM and GILCM texture feature values for the rubber particles,

sycamore wood and 50% ABS cartridges that make up the CCR phantom shown in Fig 10, and the images used were acquired
using a GE Light Speed CT machine.
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Fig 31. mAs heat maps that represent the patient normalised first order statistics and GLRLM feature values for the rubber
particles, sycamore wood and 50% ABS cartridges that make up the CCR phantom shown in Fig 10, and the images nsed were
acquired using a GE Light Speed CT machine.
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Fig 32. mAs beat maps that represent the patient normalised GLSZM and NGTM feature values for the rubber particles,
sycamore wood and 50% ABS cartridges that matke up the CCR phantom shown in Iig 10, and the images used were acquired
using a GE Light Speed CT machine.

Fig 33, Fig 34 and Fig 35 below are heat maps that represent the patient normalised CCR phantom texture
features in four colours. The four colours indicated the extent of the radiomic texture features dependent on
the slice thickness. The colours represent the dependence of the texture features to the slice thickness with the
greener colour representing less to non-dependence to the slice thickness. The colours yellow and brown

suggested greater dependence on the induced slice thickness changes.
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Fig 33. Slice thickness Heat maps that represent the patient normalised GLDM and GLCM fexcture feature values of all the 10

cartridges that matke up the CCR phantom shown in Fig 10, and the images used were acquired using a GE Light Speed CT

machine
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Fig 34. Slice thickness heat maps that represent the patient normalised first order statistics and GLRLM feature values of all the
10 cartridges that matke up the CCR phantom shown in Fig 10, and the images nsed were acquired using a GE Light Speed CT

machine
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Fig 35. Slice thickness beat maps that represent the patient normalised GLSZM and NGTM feature values of all the 10
cartridges that make up the CCR phantom shown in Fig 10, and the images used were acquired using a GE Light Speed CT

machine.

In this study, CCR phantom inserts (non-homogenous inserts, e.g. rubber and sycamore inserts and
homogenous inserts e.g. acrylic) images were used to extract the pixel intensities at specific ROIs for the manual
radiomic features calculations. Average image noise from four 10x10 ROI matrices obtained from the image
pixel intensity matrix (512x512 image matrix) was estimated to ascertain its relationship to slice thickness, kV
and mAs changes. Table 4 to Table 6 displays the results of the manner in which image noise varied with changes

in CT technique parameters.
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Table 4: Results of kilovoltage peak influence on image noise from acrylic insert.

Kilovoltage peak/ kV Noise Standard Deviation COV%
80 11.34 0.24 2.15
100 11.33 0.56 4.96
120 11.11 0.36 3.25
140 11.05 0.15 1.32

Table 5: Results of slice thickness influence on image noise from rubber particles insert.

Slice Thickness/ mm Noise Standard Deviation COV%
1 4.68 0.38 8.04
2 5.00 0.11 2.19
3 3.83 0.30 7.95
4 4.89 0.22 4.39
5 9.95 0.31 3.10

Table 6: Results of tube current influence on image noise from rubber particles insert.

Tube Current/ mAs Noise Standard Deviation COV%
150 11.28 0.49 4.34
200 11.26 0.50 4.41
250 10.99 0.41 3.77
300 11.41 0.36 3.14
350 11.07 0.37 3.37

The results of the hand calculated radiomic texture features relationship to CT technique parameters was
compiled in Table 7 to Table 12 below. Table 7 and Table § constituted the results of the manually computed grey
level co-occurrence texture feature values that showed the impact of kV on the radiomic texture features.
Examples of image matrices used to calculate the radiomic texture features are resembled by Table 15 to Table

18 in the appendix.
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Table 7: k) influence on GLCM texture feature estimated using 10x10 matrices for data of wood insert.

Kilovoltage peak 80 kV 100kV | 120kV | 140kV | Average | StDv %COV

Mean (u) 1129.14 | 1143.62 | 1150.70 | 115479 | 1144.6 9.8 0.9
Energy 0.02 0.03 0.03 0.04 0.0 0.0 24.9
Variance (%) 16.32 7.18 7.87 5.15 9.1 4.3 46.8
Entropy 6.11 5.48 541 5.09 5.5 0.4 6.7
Contrast 24.82 8.05 6.05 4.71 10.9 8.1 74.4
Correlation 3.70 3.16 4.93 2.79 3.6 0.8 22.2
Homogeneity 0.21 0.41 0.29 0.41 0.3 0.1 25.8
Sum average 1140.20 | 1150.25 | 1162.42 | 1159.57 | 1153.1 8.7 0.8
Sum variance 39.61 20.68 25.75 15.89 25.5 8.9 34.8
Sum Entropy -2.89 -2.62 -2.34 -2.55 -2.6 0.2 =717

Difference average | 1121.95 | 1139.12 | 1141.14 | 1151.71 1138.5 10.7 0.9
Difference variance 9.25 3.55 1.46 1.78 4.0 3.1 78.1
Difterence Entropy | -2.26 -1.86 -1.54 -1.60 -1.8 0.3 -15.5
HX -2.65 -2.26 -2.26 -2.12 -2.3 0.2 -8.5

HXY1 5.28 4.52 4.53 4.24 4.6 0.4 8.3

HXY2 5.30 4.52 4.52 4.24 4.6 0.4 8.5

Imci -0.30 -0.42 -0.40 -0.40 -0.4 0.0 1.1

Imc2 0.00 0.00 0.00 0.00 0.0 0.0 0.0
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Table 8: k) influence on GLCM texcture feature estimated using 10x10 matrices for data of acrylic insert.

Kilovoltage peak 80 kV 100kV | 120kV | 140kV | Average StDv %COV

Mean (u) 128.80 144.07 150.67 155.18 144.7 10.0 6.9
Energy 0.01 0.02 0.02 0.03 0.0 0.0 28.8
Variance (02) 12.13 10.33 7.00 5.06 8.6 2.8 32.0
Entropy 6.55 6.21 5.80 5.54 6.0 0.4 6.4
Contrast 17.73 8.77 5.63 5.37 9.4 5.0 53.4
Correlation 3.26 5.94 4.19 2.37 3.9 1.3 33.5
Homogeneity 0.25 0.37 0.35 0.39 0.3 0.1 15.1
Sum average 135.60 151.13 159.34 160.36 151.6 9.9 6.5
Sum variance 30.78 32.53 22.38 14.86 25.1 7.1 28.1
Sum Entropy -2.99 -2.98 -2.76 -2.53 -2.8 0.2 -0.7
Difference average 125.37 139.24 143.96 151.84 140.1 9.6 6.9
Difference variance 6.37 3.74 1.80 1.98 3.5 1.8 52.9
Difterence Entropy -2.20 -1.90 -1.63 -1.67 -1.9 0.2 -12.4
HX -2.56 -2.48 -2.27 -2.15 -2.4 0.2 -7.0

HXY1 5.12 4.97 4.54 4.29 4.7 0.3 7.0
HXY2 5.12 4.97 4.54 4.29 4.7 0.3 7.0

Imcl -0.56 -0.50 -0.56 -0.58 -0.5 0.0 0.7

Imc2 0.00 0.00 0.00 0.00 0.0 0.0 0.0

The results in Table 9 and Table 10 resembled the variability with which the grey level co-occurrence matrix

features varied with slice thickness.
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Table 9: Toshiba Unit: Slice thickness influence on GLCM texture feature estimated using 10x710 matrices of rubber insert.

Slice Thickness Imm 2mm 3mm 4mm 5mm | Average | StDv | %COV
Mean (u) -530.01 | -598.52 | -528.72 | -527.84 | -581.77 | -553.4 30.5 -5.5
Energy 0.02 0.02 0.02 0.02 0.01 0.0 0.0 18.9
Variance (02) 17.17 24.92 13.77 22.97 97.72 353 315 89.1
Entropy 6.15 6.30 6.24 6.08 0.74 6.3 0.2 3.7
Contrast 3.89 4.03 5.37 4.12 3.99 4.3 0.5 12.8
Correlation 15.22 22.90 10.24 20.91 95.73 33.0 31.7 96.0
Homogeneity 0.42 0.48 0.42 0.45 0.41 0.4 0.0 5.9
Sum average -523.02 | -586.03 | -520.70 | -518.67 | -568.54 | -543.4 28.3 -5.2
Sum variance 64.78 95.65 46.86 87.75 386.89 136.4 126.4 92.7
Sum Entropy -3.30 -3.40 -3.14 -3.27 -3.70 -3.4 0.2 -5.6
Difterence average -535.40 | -609.51 | -535.23 | -535.44 | -593.37 | -561.8 32.8 -5.8
Difference variance 1.33 1.82 2.22 1.68 1.32 1.7 0.3 20.0
Difference Entropy -1.50 -1.57 -1.67 -1.51 -1.50 -1.6 0.1 -4.3
HX -2.67 -2.87 -2.62 -2.74 -3.22 -2.8 0.2 -7.5
HXY1 5.35 5.73 5.20 5.48 6.43 5.6 0.4 7.7
HXY2 5.35 5.73 5.24 5.48 6.43 5.6 0.4 7.5
Imcl -0.30 -0.20 -0.37 -0.22 -0.10 -0.2 0.1 2.2
Imc2 0.00 0.00 0.00 0.00 0.00 0.0 0.0 0.0
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Table 10: GE unit: Slice thickness influence on GLCM texture feature estimated nsing 10x10 matrices of acrylic insert.

Slice Thickness 1.25mm | 2.5mm | 3.75 mm 5 mm Average | StDv %COV

Mean (u) 561.09 562.27 563.46 564.44 562.8 1.3 0.2
Energy 0.02 0.03 0.03 0.04 0.0 0.0 30.2
Variance (%) 17.90 8.82 7.72 5.48 10.0 4.7 47.4
Entropy 6.09 5.64 5.50 5.03 5.6 0.4 6.8
Contrast 11.50 491 5.06 2.38 6.0 3.4 56.5
Correlation 12.15 6.36 5.25 4.29 7.0 3.1 43.6
Homogeneity 0.26 0.37 0.36 0.51 0.4 0.1 24.2
Sum average 572.18 569.55 571.89 569.88 570.9 1.2 0.2
Sum variance 60.11 30.36 26.07 19.54 34.0 15.5 45.7
Sum Entropy -3.03 -2.85 -2.79 -2.66 -2.8 0.1 -4.6
Difference average 552.86 556.82 556.84 560.20 556.7 2.6 0.5
Difference variance 3.34 1.60 1.67 0.94 1.9 0.9 46.8
Difference Entropy -1.87 -1.56 -1.54 -1.30 -1.6 0.2 -12.9
HX -2.59 -2.34 -2.31 -2.09 -2.3 0.2 -7.6

HXY1 5.33 4.69 4.63 4.19 4.7 0.4 8.7
HXY2 5.33 4.69 4.63 4.19 4.7 0.4 8.7

Imcl -0.40 -0.41 -0.38 -0.40 -0.4 0.0 0.3

Imc2 0.00 0.00 0.00 0.00 0.0 0.0 0.0

Displayed in Table 11 and Table 12 are the results of the mAs influence on the radiomic features.
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Table 11: Toshiba unit: mAs influence on GLCM texture feature estimated using 10x10 matrices of Wood material.

Tube Current/ mAs 150 200 250 300 350 Average | StDv | %COV
Mean (u) -529.46 | -508.43 | -515.02 | -527.06 | -513.68 -518.7 8.1 -1.6
Energy 0.01 0.01 0.02 0.01 0.02 0.0 0.0 46.4
Variance (02) 234.90 205.75 20.39 195.13 22.24 135.7 94.3 69.5
Entropy 6.84 7.13 5.80 6.92 6.07 0.6 0.5 7.9
Contrast 5.80 5.73 2.83 6.23 3.36 4.8 1.4 29.3
Correlation 232.00 202.88 20.90 -134.92 |  20.56 68.3 134.7 197.3
Homogeneity 0.38 0.38 0.45 0.34 0.47 0.4 0.0 11.6
Sum average -505.33 | -449.51 -502.03 | -493.18 | -499.36 -489.9 20.6 -4.2
Sum variance 966.55 1587.83 86.43 785.68 85.62 702.4 569.3 81.0
Sum Entropy -4.00 -3.73 -3.25 -2.95 -2.93 -3.4 0.4 -12.6
Difterence average | -557.09 | -537.08 | -526.61 | -554.97 | -526.57 -540.5 13.3 -2.5
Difference variance 2.15 2.03 0.90 2.10 1.32 1.7 0.5 29.4
Difference Entropy -1.70 -1.68 -1.34 -1.68 -1.48 -1.6 0.1 -9.1
HX 3.58 3.61 2.67 3.64 277 3.3 0.4 13.4
HXY1 6.97 7.22 5.36 7.20 5.55 6.5 0.8 12.8
HXY2 7.17 7.35 5.10 7.20 5.55 6.5 0.9 14.7
Imcli -0.03 -0.02 0.17 -0.07 0.19 0.0 0.1 -3.6
Imc2 0.69 0.59 0.00 0.65 0.00 0.6 0.0 6.8
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Table 12: GE unit mAs influence on GLCM texcture feature estimated using 1010 matrices of Acrylic material.

Tube Current/

mAs 150 200 250 300 350 Average StDv %COV
Mean (u) 563.81 564.98 565.69 566.06 566.81 565.5 1.0 0.2
Energy 0.02 0.03 0.03 0.03 0.02 0.0 0.0 8.6
Variance (02) 9.21 7.14 7.73 6.33 8.01 7.7 1.0 12.4
Entropy 5.68 5.39 5.33 5.34 5.54 55 0.1 2.5
Contrast 3.55 3.64 2.68 3.30 3.25 3.3 0.3 10.3
Correlation 7.43 5.32 6.29 4.53 6.38 6.0 1.0 16.5
Homogeneity 0.43 0.40 0.51 0.43 0.46 0.4 0.0 8.3
Sum average 570.63 571.96 571.40 571.15 572.62 571.6 0.7 0.1
Sum variance 33.27 24.93 27.83 21.42 28.78 27.2 4.0 14.5
Sum Entropy -2.89 -2.78 -2.02 -2.71 -2.87 2.7 0.3 -12.2
Difference average | 558.52 559.57 561.25 562.48 562.44 560.9 1.6 0.3
Difference variance 1.25 1.17 1.11 1.10 1.19 1.2 0.1 4.6
Difference Entropy | -1.44 -1.33 -1.39 -1.42 -1.40 -1.4 0.0 -2.5
HX -2.41 -2.30 -2.34 -2.26 -2.31 2.3 0.1 2.2
HXY1 4.83 4.01 4.65 4.49 4.62 4.6 0.1 23
HXY2 4.83 4.01 4.68 4.51 4.62 4.7 0.1 2.2
Imcl -0.35 -0.34 -0.29 -0.38 -0.40 -0.4 0.0 -10.3
Imc2 0.00 0.00 0.00 0.00 0.00 0.0 0.0 0.0

Fig 36 and Fig 37 displayed the sensitivity of the radiomic texture features to the ROI volume. In Fig 36, the

plotted feature values showed a decreasing trend as the sampling volume was increased. In Fig 37, the plotted

feature values displayed an increasing trend as the sampling volume was increased. The observations indicated
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that the features were sensitive and dependent on the number of voxels used in the calculation of the textural
features. As the size of the ROI volume changes then the value of the feature sampled changes, either increasing

or decreasing according to the behaviour of the texture feature.

The effect of the ROI volume on texture feature values
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Fig 36. Comparison of sensitivity of texctural features in relation to the sampling volume
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. The effect of the ROl volume on the texture feature values
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Fig 37. Comparison of sensitivity of texctural features in relation to the sampling volume

4.1.3 Cervical cancer patient cohort results
Fig 38 to Fig 42 displayed the patient tumour response to radiotherapy fractionated treatment. The investigation

utilised some selected robust radiomic features in capturing the subtle response of cervical cancer to
radiotherapy treatment. Fig 38 to Fig 42 exhibit the characteristics of the GLCM texture features extracted
from tumours of patients A to F respectively. The data used in plotting the graphs was obtained by finding the

average tumour value from the individual patient A to F tumours extracted radiomic texture feature values. The
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response or sensitivity of the tumours to radiotherapy treatment of all the patients in the cohort was being
investigated. Un-normalised but comparable average data was used to plot the scatter plots and the standard

deviation was inserted to show the uncertainty in the data.
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Fig 38. Graphical representation of selected GLCM robust radiomic features (e.g. difference entropy) and their behaviour during
the radiotherapy treatment course of patients A to F. The graphs display the comparison of the tumounrs A to F, which was

extracted from patients A to F respectively.
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from patients A to F respectively.
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Fig 40. Graphical representation of the selected GLLCM robust radionsic features (e.g. joint energy) and their behaviour during the
radiotherapy treatment conrse of patients A to F. The graphs allow comparison of the tumours A to F, which was extracted from

patients A to F respectively
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Fig 41. Graphical representation of the selected GLCM robust radiomic features and their behavionr during the radiotherapy
treatment conrse of patients A to F. The graphs allow comparison of the tumonrs A to F, which was extracted from patients A to

F respectively

Fig 42 displayed the patient tumour response to radiotherapy fractionated treatment. The 6 graphs were plotted

using the average of the tumour texture features values normalised to the bladder texture features of this study

79| Page



patient cohorts. The plotted feature values showed oscillating responses to the treatment fractions. The

sinusoidal response of a tumour to treatment shows unequal peaks at different treatment fraction points. This

means these features exhibits a personalised tumour sensitive to radiation treatment.
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Fig 42. Graphical representation of the tumonr average sensitivity to the radiotherapy fractionated treatment using texture features.

Table 13 presents the comparison of tumour variability within the patient cohort. The vatiability is represented

by the coefficient of variance (COV) percentage between patient tumours. The COV% presented in Tuble 13

was an average calculated from the treatment fraction COV% of each patient tumour data.
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Table 13: Coefficient of variance (COV’) in percentage (%) of GLCM radiomic features.

Patient Tumours A B C D E F
GLCM Features COV% COV% COV% COV% COV% COV%
Joint Average 8.8 17.0 6.5 9.8 8.8 10.6
Sum Average 8.8 17.0 6.5 9.8 8.8 10.6
Joint Entropy 10.8 9.8 3.6 53 4.7 5.4
Cluster Shade 5.5 191.2 -86.7 -178.8 -32.8 96.6
Maximum Probability 22.1 23.6 12.1 11.8 10.3 12.9
Idmn 0.4 0.4 0.1 0.5 0.3 0.7
Joint Energy 215 20.7 8.2 8.7 9.1 10.3
Contrast 11.9 17.4 2.9 8.4 11.2 5.7
Difference Entropy 4.7 7.1 1.5 3.4 4.2 25
Inverse Variance 9.3 7.2 2.5 5.4 6.7 4.8
Difference Variance 7.5 13.4 2.2 5.5 6.9 3.8
Idn 0.8 0.9 0.3 0.9 0.7 1.1
Idm 2.6 3.1 0.6 1.9 24 1.2
Correlation 254 38.6 16.0 23.8 253 21.5
Autocorrelation 17.2 33.4 12.8 19.3 17.2 20.3
Sum Entropy 11.5 9.7 4.1 52 5.3 6.1
Sum Squares 24.0 20.9 6.4 11.0 8.7 10.7
Cluster Prominence 57.8 45.8 21.7 33.1 22.0 38.3
Imc2 24.7 20.7 11.9 18.3 19.3 20.6
Imcl -37.8 -33.5 -13.7 -24.8 -27.3 -30.6
Difference Average 10.3 11.4 2.4 6.9 8.9 5.3
1d 2.5 2.8 0.6 1.8 2.2 1.2
Cluster Tendency 30.5 26.1 8.9 14.7 13.2 14.7

Table 14 was created to show the variability of shape features through-out the whole study.
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Table 14: Comparison of radiomic shape feature values within the patient cobort

Patient Tumours

A

B

C D E F
Shape features
Volume Number 1.0 1.0 1.0 1.0 1.0 1.0
Voxel Number 789.0 789.0 789.0 789.0 789.0 789.0
Maximum 3D Diameter 20.0 20.0 20.0 20.0 20.0 20.0
Maximum 2D Diameter Slice 20.0 20.0 20.0 20.0 20.0 20.0
Sphericity 0.9 0.9 0.9 0.9 0.9 0.9
Minor Axis 18.4 18.4 18.4 18.4 18.4 18.4
Elongation 1.0 1.0 1.0 1.0 1.0 1.0
Surface Volume Ratio 0.3 0.3 0.3 0.3 0.3 0.3
Volume 3945.0 | 3945.0 3945.0 | 3945.0 | 3945.0 | 3945.0
Major Axis 18.5 18.5 18.5 18.5 18.5 18.5
Surface Area 1373.0 | 1373.0 1373.0 | 1373.0 | 1373.0 | 1373.0
Flatness 0.8 0.8 0.8 0.8 0.8 0.8
Least Axis 15.6 15.6 15.6 15.6 15.6 15.6
Maximum 2D Diameter Column 18.9 18.9 18.9 18.9 18.9 18.9
Maximum 2D Diameter Row 20.0 20.0 20.0 20.0 20.0 20.0
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Chap t€1‘ 5: Discussion of findings
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5.1 Discussion

In the previous chapter, the experimental results were presented in detail. The section below interprets the
phantom study results and the patient study results. The phantom study discussion involved detailed analyses
referring to the results plotted in Fig 18 to Fig 35. Fig 36 to Fig 37 which illustrated the effects of other image
sampling parameters other than the CT image acquisition parameters on the radiomic features. The cervical

cancer tumour data set results displayed in Fig 38 to Fig 42 were also included in this discussion section.

5.1.1 Phantom results discussion
The phantom results discussion section focussed on the interpretation of the results of the investigation of the
dependence of radiomic texture features on the CT imaging parameters. The discussion also explained

observations about the variability of radiomic features between scanners.

Fig 18 showed the tube current effects on image intensity histograms for the 10 cartridges of the CCR phantom
acquired on the GE scanner. It was observed that the patient normalised feature difference values of the solid
acrylic insert had greater feature values at low mAs as compared to the feature values at high mAs. This suggest
that the radiomic features extracted from the solid acrylic insert were more dependent on tube current. The
uniform structure of the solid acrylic insert did not give substantial texture information. Therefore, we assume
the radiomic features variation observed in Fig 18 in relation to the solid acrylic insert were due to the mAs of
acquisition increase or decrease. This might be associated to the image noise changes that were caused by a
different number of photons reaching the CT detector as the mAs was changed. CT studies have demonstrated
that there is a proportional relationship between image noise and variation in CT number values for a

homogencous area (Marwan Alshipli and Kabir, 2017; Monnin et al., 2017; Lalondrelle and Huddart, 2012).

The relationship between the mAs and the contrast resolution is complex. For increased mAs the image noise
is expected to decrease in such a way that it enhances the image contrast. The enhanced contrast detail might
therefore increase the ability to observe slight changes in the radiomic texture features. Dense cork and plaster
resin materials displayed in Fig 18 demonstrated some relative dependence on the mAs variations at low mAs.
The extent of mAs dependence observed for the dense cork and plaster resin materials inserts was low
compared to the dependence of the solid acrylic material insert. All the other phantom inserts (rubber particles,
natural cork and the 3 acrylonitrile butadiene styrene plastic) data plots showed smaller variations around the
central axis (zero feature value) of the skewness, uniformity, entropy and kurtosis features graphs. Irrespective
of the mAs changes, the radiomic texture feature values obtained from all of the ABS materials inserts, rubber
particles and natural cork inserts were consistently smaller, closer to zero. The smaller dependence might have
been caused by the nature of inserts. The natural cork, rubber particles and ABS materials were more textured
materials. The impact of image noise due to mAs variation was significant on homogenous materials (solid

acrylic, plaster resin inserts) as compared to more textured martials.
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Fig 19 which consisted of 6 graphs. The graphs demonstrated the results of the relation between tube potential
difference (kV) and the first order statistics radiomic features that were normalised using patient tumour data.
The first order statistics features such as mean difference, uniformity and energy was observed to be dependent
on the kV parameter. The kV dependence related to the type of the CCR phantom insert materials that was
being analysed. The plaster resin, solid actylic and rubber particles inserts illustrated a great kV dependence on
low kVs. Except for the plaster resin, solid acrylic and rubber particles inserts, all the materials showed greater
independence to changes of the kV of image acquisition. The kurtosis and energy features showed more
robustness. It was observed from Fig 19 graphs that for most materials of the CCR phantom inserts, the
kurtosis and enetgy feature values had values that approached zero, within £0.5 of the central axis (zero feature
value). Except for skewness in the dense cork analysis, uniformity for solid acrylic and energy for the rubber
particles analysis, all the texture features (kurtosis, energy, skewness, uniformity, mean and entropy) extracted
exhibited gradual changes as the kV was varied from low to high kVs during the phantom acquisition. The

texture feature values were within the range of 1 to -1.

When the kV was increased, the normalised feature difference values approach zero (either from positive or
negative y-axis). Texture features that had their values closer to zero were more stable or robust and in this it
happened at high kV. This might have been because at high kV the radiation attenuated signal detected at the
CT detector was higher, reducing the noise effects. When the kV was increased the number of x-rays in the
beam increased and the energy of the x-rays was also increased. More useful information was formed on the
CT machine detector as compared to images acquired at low kV. Fundamentally there existed an indirect
relationship between the kV and image noise, a complex direct relationship between kV and contrast detail.
Considering the above analysis, it was observed that radiomic texture features extracted from materials with
texture details such as the natural cork, sycamore wood and all the four ABS inserts follows the theoretical
known trends and had normalised robust feature values that approached zero. The pattern observed in Fig 19
demonstrated the magnitude of the dependence of radiomic texture features was determined by the insert
material from which the features were calculated. Also, the features dependence extent was influenced by the
beam quality. In general, it was observed that the radiomic texture features were not absolutely independent of

the kV but their dependence was a relative dependence.

Fig 20 displayed the relationship between first order statistics features and the change in slice thickness. As
observed in the mAs and kV imaging parameters analysis, there existed some radiomic texture feature
dependence on imaging parameters based on the material being analysed. Most of the cartridges show a great
to moderate dependence on slice thickness at small slice thicknesses (< 2.5 mm). Less impact on the radiomic
features was observed on features extracted from images obtained at bigger slice thickness (greater than 2.5
mm). This was assumed to be caused by the averaging effect (smoothing) on images acquired at large slice

thicknesses. The smoothing effect influenced the images to have less image noise which might have been
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accompanied by a reduced image detail. Thin slices reduce the number of transmitted photons in a region of
interest, which lead to larger variations in pixel numbers and therefore increased image noise. To obtain the
same noise level in a thin slice compared to a thick slice you need to increase the quantity of photons in the
slice, i.e. increase mAs/kV/both. It is known theoretically that the square root of beam width (slice thickness)
is inversely associated with image noise (Marwan Alshipli and Kabir, 2017; Monnin et al., 2017; Lalondrelle and
Huddart, 2012). Therefore, the impact of large slice thickness on radiomic features was less dependent on the
image noise, such that any changes noticed on the radiomic texture features might have been due to the nature
of the material being analysed. Whereas the use of small slice thickness caused texture features to be more
dependent because of increased image noise. Thin slices weakened robustness of texture features. Kurtosis,
mean and skewness features displayed less variation when the slice thickness was changed from small to large.

These texture features were robust and less dependent on slice thickness changes.

Fig 21 was plotted to ascertain the tumour data influence on the CCR phantom texture feature values. The
average tumour texture feature values for a specific weekly fraction of a specific patient data set (patient A or
B or C etc.) was used to normalise the phantom cartridge specific texture feature. It was observed in Fig 21 that
there was no specific trend established on the plots due to the tumour fraction data. The trends established by
kV effects (Fig 19) were more prominent. Variations established in the tumour texture features as a result of
radiotherapy treatment progress did not seem to have a stronger influence on the phantom texture features.
The acquisition parameters impact on the CCR phantom radiomic texture features was more significant than
the influence tumour data. The tumour information used in the normalising process rather assisted in exhibiting

the imaging parameter effects being investigated in relation to tumour variability.

Fig 21 to Fig 23 were plotted to investigate the effect of the patient tumour data on the ABS cartridges of the
CCR phantom data obtained by changing the kV imaging parameter. The concepts discussed above for Fig 21
is the same as in Fig 22 and Fig 23 except that the phantom materials being discussed differ (Fig 21 uses CCR
phantom insert 2, whilst Fig 22 and Fig 23 uses CCR phantom inserts 9 and 10). The graphs in Fig 22 and Fig
23 displayed a general decrease in the normalised feature values as the kV was changed from low (80kV) to
high (140kV). It was observed that all the normalised texture feature values were very close to zero. This was
because the material and structure of the acrylonitrile butadiene styrene plastic (ABS) from which the texture
features were extracted. ABS had a honey comb shape with air spares that provided less attenuation to the CT
photon beam, low or high energy beam. Theory points to an increase in the number of photons with high
energy in the photon spectrum of the CT beam when the tube potential difference is changed from low to high.
Noise in an image is caused by a low photon count on the CT detectors. ABS allowed most of the photons
carrying the image detail to reach the CT detectors. The increase in kV reduced the noise detail on the images.
The noise detail reduction was assumed to cause the decreasing trend in texture feature values as the kV was

increased. The difference between texture feature values at 80kV and 140kV was very small because of the
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material (ABS) from which the texture features were extracted. The ABS honey comb air spaces caused less

attenuation to x-rays.

Heat maps in Fig 24 to Fig 26 represented the patient normalised CCR phantom radiomic texture features in
four colours. These indicated the extent of the radiomic texture features dependence on the tube potential
difference (kV). The study was interested in identifying radiomic texture features that were less dependent or
completely independent of the CT imaging parameter that was being investigated. Texture features that
displayed the colour green across all the 10 cartridge materials on the heat map table were ideally robust. These
were the radiomic texture features that were within the limits f,; < 0.5, which resembled independence of the
influence of CT acquisition parameter kV. Most normalised radiomic features that were extracted from inserts
made of materials such as plaster resin, and solid acrylic were mainly dependent on the kV, they had values that
wete above 2.0 (f,, > 2.0). Rubber patticles and sycamore wood exhibit a moderate number of features that
were relatively dependent on the kV (f, > 0.5 but < 1.0). Highly homogenous matetial inserts (plaster resin,
and solid acrylic) rendered most radiomic texture features weak. From that observation it was proposed that
uniform material inserts did not have texture characteristics. The variations observed on the radiomic texture
features obtained from uniform material inserts were influenced directly by the CT acquisition parameters.
About 20 radiomic texture features of the 91 texture features extracted were less dependent on the kV (f, <
0.5). Radiomic texture features extracted from materials natural cork, dense cork, sycamore wood and all the

ABS inserts were relatively stable.

Heat maps in Fig 27 to Fig 32 represented the patient tumour data normalised CCR phantom texture features
that depict the behaviour of the radiomic texture feature in relation to the mAs. Like heat maps displayed in
Fig 24 to Fig 26, cells on the map that are coloured brown showed dependence upon the mAs. Regions that
were coloured light green and yellow symbolise relatively independence to mAs. Texture features that showed
green across all the 10 cartridge materials in the heat map table were considered robust. Most of the extracted
radiomic texture features displayed a dependence on the mAs. The features exhibited brown coloured regions
at low mAs (20 mAs, 50 mAs etc.) and the feature were green at high mAs (200 mAs and above). The trend
was attributed to the decrease in the image noise from low mAs to high mAs. Increasing the mAs increases the
x-ray quanta amount which had an effect of increasing the contrasts-to- noise ratio. High mAs result in
improved image quality due to the decrease in image noise and increased signal-to-noise ratio. Low mAs reduces
the photon quantity such that less number of x-rays reach the detector which cause less detail and more noise
to be present in the image. Most features extracted from plaster resins and solid acrylic cartridges show that
they dependent on mAs. Uniform materials seemed to promote measurement of the noise trend as the mAs
was increased. Materials such as the natural cork, dense cork and sycamore wood that carry some texture in
them had some radiomic features that were relatively dependent on the mAs change. There is greater

dependence at low mAs and less dependence at higher mAs. Radiomic texture features were stable from 200
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mAs and above because less variation in the texture feature values was observed. Image noise might have a
greater impact on the stability of the radiomic texture features in that high noise variations causes high variations

in the feature values.

Fig 30 to Fig 32 used the CCR phantom data obtained from the GE Electric CT unit and Fig 49 to Fig 50 used
data obtained from the Toshiba Aquillion Large bore unit. The above mentioned heat maps showed the inter-
machine relation between radiomic texture features obtained on different manufacturer CT units. It was
observed that for approximately the same acquisition parameters the radiomic texture feature values were not
the same. To relate the two sets of data is complex due to CT machines physical and mechanical parameter
differences. Other studies that compared the image quality differences between CT machines, large bore (85
cm diameter) and normal bore (70 cm diameter) showed that the image quality parameters were not exactly the
same but were comparable (Tomic et al., 2018; Mccann and Alasti, 2004; Garcia-Ramirez et al., 2002). In this

study the radiomics texture features trends were comparable.

Heat maps in Fig 33 to Fig 35 represented the patient normalised CCR phantom radiomic texture features that
indicate the extent of the features dependent on the slice thickness. Theory points to the averaging effect caused
by increasing the slice thickness. Large slice thickness increase the number of transmitted photons in a region
of interest, which lead to smaller variations in pixel numbers and therefore decreased image noise. Reducing
noise should improve contrast. Small slice thickness causes the number of photons within each voxel to
decrease, resulting in increased image noise. Thin slices improve spatial resolution and will introduce blur/loss
of detail. Consider the GLCM radiomic features in Fig 33, the features maximum probability, joint energy,
inverse difference, inverse variance and information measure correlation 1 and 2 were the robust features that
did not get influenced by slice thickness changes. The GLDM had only the radiomic features: small dependence
low grey level emphasis and low grey level emphasis that were entirely independent of the slice thickness
changes as shown in Fig 33. Fig 34 had the first order statistics features; skewness, uniformity, kurtosis and
mean that were robust and independent of the slice thickness manipulations of the experiment. These first-
order statistics features were robust, their values were observed to be influenced by the distribution of pixel
intensities with the ROI of enumeration. Only parameters that can affect the arrangement of the pixel intensities
in the ROI can influence the features. The coarseness and contrast NGTM radiomic textutre features were

independent of the slice thickness as shown in Fig 35.

Table 4 showed an inverse relationship between the kV and image noise which agreed with observations from
other studies that an increase in kV reduces CT image noise (Alsleem et al., 2013; Godoy et al., 2011; Funama
et al., 2005). The investigations by Godoy et al. and Funama et al. suggested that low kV offers an increased
SNR and CNR due to the prominent photoelectric interactions involved that enhances the image contrast.

Thus, their observation suggest that image noise does not affect the image quality at low kV. lodine contrast
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injected was the cause. Though other studies that tested kV using different body parts observed that, low kV

reduces the beam quality which increases the image noise, leading to reduction in image quality and diagnostic

accuracy of CT images (Murakami et al., 2010; Seibert, 2004; Huda et al., 2000; Ertl-wagner et al., 1980).

Table 5 to Table 6 did not provide clear trends of the relationship of the technique parameters (Slice thickness
and mAs) against image noise. Zukhi et al.(Zukhi and Yusob, 2017) published a paper describing the effect of
slice thickness on image noise. They concluded that small slice thickness are susceptible to high image noise
whilst large slice thickness usually have a decreased image noise. Table 5 did not follow the expected trend,
rather some anomalies were exhibited. The image noise in Table 6 generally decreased as the mAs was increased
(from 150 mAs to 250 mAs) with anomaly points (300 mAs and 350mAs). It can be proposed that the changes
in overall noise values obtained from the sampled ROIs when the slice thickness or mAs was changed depended
on the texture pattern of the image inside the ROIs due to type of insert material (rubber particles) from which

they were extracted.

The anomalies were observed to arise in instances where there was a change in spread of the grey level range
within the matrix used to estimate the noise. For the same matrix size used, the greater the range of grey levels,
the greater the noise. The image noise estimated represented a complex phenomenon of the influence it had

on the image quality, the image quality in-turn is assumed to have effects on some radiomic features.

Table 8 shows the calculation results from the kV matrices examples displayed on the appendix Table 15, to
Table 18. Almost all radiomic texture features in Tabl § changed in value when the acquisition kV was changed.
The magnitudes of the mean, energy and difference average features varied incrementally when the kV was
changed from low to high kV values. Entropy, contrast, correlation and HX portrayed a reduced magnitude of
the radiomic texture feature values as the kV was varied from low to high. The IMC1 and IMC2 features
remained effectively constant with kV variation, these 2 features had a COV% that was less than 0.7%. On all
the image matrices obtained from different inserts of the CCR phantom analysed for kV influence on features,
55.6% are consistently at less than 10% COV% and 44.4% of the features were above 10% COV%, see Table
7 from wood insert data and Table 8 from acrylic. The kV results imply there exist radiomic features that were
reproducible and less susceptible to kV acquisition. This suggest that the choice of kV on radiomic signatures
such as the variance, sum variance, difference variance, contrast, correlation and homogeneity could alter the
prognostic value. The clear influence of the kV on the prognostic value of radiomic features has not yet been

investigated and needs further research.

The results in Table 9 displayed the variability with which co-occurrence matrix vary with slice thickness. About
33% of the features vary with more than 10% of standard deviation about the mean for each feature calculated

manually. More than 66% of the features vary with less than 10% of the standard deviations about the mean
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(coefficient of variance). As the slice thickness was increased the pixel intensities within an image vary less, the

general trend expected would be a less variation at large slice thickness due to averaging of pixels.

As was shown in Table 6 lower tube current was associated with high random noise. The random noise was
known to cause a pixel by pixel intensity variability on the pixels that are supposed to carry the same grey scale
density (grey scale information). The results in Table 17 and Table 12 supports the observation that, in general
any parameter change on acquiring images for radiomics studies result in the values of the radiomic feature
changing (Kim et al., 2019; Larue, van Timmeren, et al., 2017; Mackin et al., 2015). The results in Table 17 and
Table 12 also reinforced the view that radiomic feature estimates performed from images obtained from 2 or
more different CT machines shows some differences that ranges from marginal to significant (Midya, 2018;

Larue, van Timmeren, et al., 2017; Fave et al., 2016).

The difference in feature values estimated using 250 mAs and 350 mAs was small for most of the features in
Table 11. Big feature value differences are observed on the 400 mAs compared to either the feature values
estimated from 350 mAs or 250 mAs images. This was attributed to the nature of the phantom insert material
from which the image was obtained. Wood offers a broad Hounsfield Unit (HU) spread (approximately
between -550 to -400 HU) within an image. A wide HU range within the ROI meant a broad range from the
lowest pixel intensity to the highest pixel intensity for a specific mAs of image acquisition. A large range of the
pixel intensity density within the ROI resulted in big size GLCM matrix being formed during feature calculation.
Therefore, texture feature algorithms that involve the subtraction of pixel intensities within its equation (such
as contrast, correlation, variance, sum and difference variance) produce large feature values as compared to

feature values obtained from GLCM that are small.

Table 12 displayed that 22% of the GLCM feature values calculated to estimate the influence of mAs had a
COV of above 10%. 78% of the GLCM feature values in Table 12 had a COV% that is 10% and below. This
means for the GE machine the mAs had a marginal effect on a greater number of the features presented in
Table 12. Kim et al., and Yan et al., studies justified the use of below 10% COV as an appropriate measure of

radiomic texture feature robustness.

The results in Fig 36 demonstrated that the values of 6 features that exhibited a gradual decrease as the ROI
size was increased. The 7 features plotted in Fig 37 showed a steady increase in the texture feature values as the
diameter of the ROI was increased. This meant that the features plotted (Fig 36 and Fig 37) showed that textural
features were sensitive to the number of voxels in the ROI volume. Dercle L et al. in their study suggested the
use of ROI that had more than 200 pixels to extract radiomic texture features (Dercle et al., 2017). The results
in Fig 36 and Fig 37 showed that a variable ROI of data sampling has strong influence on the texture features.
To exclude the influence of ROI size on texture features. This study used a fixed ROI for to extract all radiomic

texture features.
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In general radiomics texture features extracted from the same test phantom at approximately the same imaging
parameters, conditions and imaged at different manufacturer CT units showed similar trends. The feature values
obtained between different manufacturer units were never exact nor were they comparable. The process of
normalising the values of specific features produced comparable patterns when the CT parameters (kV, mAs,

or slice thickness) being varied were assessed.

5.1.2 Cervical cancer results discussion
The data samples used were from kV CBCT images acquired on the day of initial radiotherapy treatment and
the subsequent following first day of the treatment week in the duration of the treatment. Strong observations

were drawn from the patient data results as presented in the below paragraphs.

Fig 38 to Fig 41 illustrates the sensitivity or response of the individual cervical cancer tumours (A, B, C, D, E
and F) to irradiation represented by a selected radiomic features (a mixture of relatively robust and not stable
features). The patient data plots (A, B, C, D, E and F) are on the same Fig to compare sensitivities between
different patients’ tumour response to irradiation. A comparable set of GLCM radiomic features values was
selected and plotted on the same set of axes. The average radiomic feature points plotted in the graphs had
their corresponding uncertainty (standard deviation) bars plotted to show the effect of random errors within
the radiomic texture data. Whilst Fig 42 also depicts the response to radiotherapy treatment, a selected number
of radiomic features calculated from the tumours (A, B, C, D, E and F) average feature values normalized to

the bladder average.

Information measure of correlation (Imc2), inverse difference (Id), difference entropy and difference variance
features were illustrated in Fig 38. With the exception of the Id feature which estimated uniformity in an image,
Imc2, difference entropy and difference variance features displayed voxel intensity level of disorderliness. It
was observed that features Imc2, difference entropy and difference variance in Fig 38 followed similar patterns
of tumour sensitivity during treatment. Id feature followed an inverse pattern to that of heterogeneity estimating
features. Also, tumours A and C had similar trends of response to radiotherapy treatment whilst tumours B, D,
E and F varied significantly with each other. Graphs in Fig 38 showed that generally the tumours were highly
heterogencous during the initial stages of the treatment. The heterogeneities slightly decreased as the treatment
progressed. This was displayed clearly by difference entropy and difference variance features. Tumours B, D

and F clearly displayed the observation, and some anomalies to the general trend were also observed.

Equation 35 represents the feature Imc2 and was used to estimate the mutual relationship between probability
distribution i and j. An Imc2 estimation result of 0.0, would mean the distribution i and j were independent
and result 1 would mean fully dependent and uniform distributions. From Imc2 in Fig 38, it was observed that
the feature values Imc2 of all tumours A to F were between 0.2 and 0.5 with an average standard deviation 0.1.

This showed that tumours A to I had complex texture characteristics that were not uniform.
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Fig 39 displayed radiomic features sum squares, sum entropy, joint entropy and information correlation 1
(Imc1). The sum squares or variance, sum entropy and joint entropy features depicted the variability or
randomness of the pixel intensity levels in the ROI. All these features measured the heterogeneity of the texture.
All the other features shown in Fig 39 with the exception of Imc1, followed an identical trend in all tumours A
to F along the treatment duration. The feature Imc1 represents heterogeneity in an image in the limits -1 and
0, thus presenting a flipped form of the trends observed for the sum squares, sum entropy and joint entropy
features. It was determined in Fig 39 that tumours A and C had a comparable path of response to radiotherapy
treatment whilst tumours B, D, E and F followed their own identical pattern. These tumour feature trend

observations agreed with trends found in Fig 38.

The feature Imc1 in Fig 39 quantifies within the ROI the complexity of texture by assessing correlation between
the probability distributions of i and j. The tumour environments A to IF had very small and negative Imcl
feature values. The Imc1 feature values for tumour C ranged from -0.13 % 0.02 to -0.03 £ 0.002 as was displayed
in Fig 39. The magnitudes of the Imc1 feature values demonstrated tumours that had probability distributions
of i and j that were highly complex. This might suggest that tumours A to F had some highly varying degrees

of texture that were shown to have very weak correlations.

The energy feature shown in Fig 40 measured textural uniformity (depicting disorders in texture) in the ROL
It approximated the frequency of discrete voxel/pixel intensity value paits existing in the neighbour within the
tumour. Tumours A to F show a variation of energy feature values that ranged from 0.17 & 0.01 to 0.44 + 0.03
averages. The energy feature values displayed by these tumours were low on the 0 to 1 scale. A typical uniformity
measure (energy feature) has a feature value maximum of 1 because the energy feature has a normalised range.
Fig 40 displayed that the uniformity of the tumours changed during the course of radiotherapy treatment. The
tumour response displayed by the energy feature shows that before treatment, tumour F had an energy feature
value 0.22. Tumour F’s energy feature value increased to 0.29 & 0.01 in weeks 2 and 3, week 4 the feature value
was estimated to be 0.44 + 0.03 and then it decreased to 0.29 + 0.02 and 0.32 % 0.04 in the 5% and 6t treatment
weeks respectively. An unstable relative increase in the uniformity is therefore established by this observation.
The trends of the energy feature as well as all other features plotted in Fig 38 to Fig 41 were unique to each

tumout.

The contrast feature plotted on the same axes as the energy feature in Fig 40 displayed feature values that were
larger than the energy feature values. The contrast feature measures the spatial frequency of a contiguous
voxels/pixels in an image. The values of the contrast features for tumours B, D and E were mostly above the
0.5 feature value on a 0 to 1 scale. The contrast features of all the patients in this study were larger than the
energy feature values. This implies the contrast feature values observation agreed with the energy feature value

results analysis that tumours A to F were not uniform and had complex texture patterns. Tumours A to F
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contrast feature trends displayed in Fig 40 showed trends that were a flip figure to that of the energy feature.
At a treatment point where the energy feature value was high, the contrast feature values was low and vice
versa. The trends also displayed the tumours heterogeneities that had weak and unstable slight decreases along

the duration of treatment.

Also plotted on Fig 40 were, the texture features inverse difference moment (Idm) and inverse difference
moment normalised (Idmn). Both feature measures image local homogeneity. Idm assumes larger values for
smaller grey tone differences in pair elements. Idmn differ from Idm in that Idmn normalises the squate of the
difference between neighbouring intensity values by dividing over the square of the total number of discrete
intensity values. The homogeneity features are more sensitive to the presence of near diagonal elements in the
GLCM. Idm has maximum value when all elements in the image are same. GLCM contrast and homogeneity
are strongly, but inversely, correlated in terms of equivalent distribution in the pixel pairs population. It means
homogeneity decreases if contrast increases while energy is kept constant. In this study Idm had values that are

between 0.72 * 0.02 and 0.85 = 0.01.

Fig 41 illustrated the behaviour of texture features joint average, sum average and Id along the treatment period.
The joint and sum average features estimate the mean intensity level in the image. The joint and sum average
features displayed in Fig 41 can be classified in the category of features that describe the
randomness/disordetliness of texture in images. It was obsetrved that joint and sum average features took the
same shape/trends that entropy features, contrast, vatiance feature and Imc2 feature followed. Tumours D and
F shown in Fig 41 showed a gradual decrease of the joint average and sum average features from the start of

treatment to the subsequent treatment weeks.

In general tumours are known to be heterogeneous in nature and the heterogeneity of tumours vary from one
tumour (e.g. tumour A differed from tumour B etc.) to another in the same patient or between patients. A
radio-genomics article by van Timmeren et al. (van Timmeren et al., 2017) demonstrated that across metastatic
tumour sites within a single patient, the tumours genomic heterogeneity could be the major cause of
radiotherapy treatment resistance and therefore leading to treatment failure. The tumour texture variability was
explored because the variability measure assists in understanding the tumour heterogeneity and its effects on
tumour response to radiotherapy treatment. In this study, a relative gradual decrease of tumour heterogeneity
along treatment time was observed. This suggested better tumour treatment response. The phenomenon was

observed clearly on tumours D and F through the cervical tumour study.

Table 14 displayed the results of the shape features extracted in the clinical data set. Identical spherical shape
ROIs of the same size placed at different positions in the tumour were used. These ROIs produced identical
shape features as illustrated by the same values between tumours. In the phantom study when the CT

acquisition parameters were varied only the slice thickness affected the number of voxels in the ROI. Slice
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thickness and FOV affects the width of voxels in such that the number of voxels changes from one image to
the other. In the patient part of this study, an identical imaging protocol was employed. Therefore, it is
presumed that the observations made regarding the cetrvical cancer results relied mainly on the tumour

biological response to treatment.

The evolution of cancerous cells in a tumour is not the same in all tumours even in the same patient. Individual
tumours undergo cloning from the initial cancerous cell to fast-growing cancerous cells that respond variably
to the environment in which they are growing. Differential mutations (sub-clonal and clonal) bring about spatial
heterogeneity among different tumours in patients (Bozic et al,, 2016). Tumours respond differently to
treatment, some will be resistant to radiotherapy treatment. Other tumours will be sensitive enough to be
eradicated by the treatment (Jarosz-Biej et al., 2019; Rockwell et al., 2010). Variable radiation treatment response
was expected due to the different micro or macroscopic structure, biochemistry and gene expression within the
malignant tumours of this study. The manner with which the tumours (A, B, C, D, E and F) responded to
fractionated radiotherapy treatment was a complex matter. The trends of the texture features displayed by Fig
38 to Fig 41 was patient specific. As was deduced from Fig 38 to Fig 41 some similarities in trends between
tumours texture features response to radiation treatment existed. In this study tumours A and C radiomic
texture features had comparable paths of response to radiotherapy treatment whilst tumours B, D, E and F

followed their own identical patterns.

There exist at least four ‘time factors’ that make up the cell cycle. The ‘time factors’ influence tumours and
normal tissues response to fractionated irradiation (Withers, 1975). For standard radiotherapy treatments, for
example cervical cancer treatment, cell death and cell recovery are affected by the reoxygenation, repair,
repopulation and redistribution processes of the irradiated cells. The cell repair and redistribution take place
over relatively shorter time intervals in the cell cycle. Studies have observed that it is most probable that the
repair and redistribution processes approximately end by the end of the therapy daily fractionation intervals
(Schattler and Ledzewicz, 2015; Gasinska et al., 2009). Contrary to the repair and redistribution ‘time factor’
processes, the reoxygenation and repopulation happen over more prolonged times. Because the reoxygenation
and repopulation are affected by several factors that include the position and environment in which the tumour
is situated and the variation in treatment schedules from 1 patient to another. Large time differences between
treatments affects the repopulation process, short time intervals between fractions is considered effective in
tumour eradication (Gasinska et al., 2009; Withers, 1975). As a result there were less chances for the robust
radiomic features extracted between tumours of this study to have the exact feature values at each treatment
fraction day between patients. The patterns with which the robust features increased or decreased during the
duration of radiotherapy treatment could have been similar between tumours, or be completely different as

observed in these study results.
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6.1 Conclusion and final considerations

The aim of the study was to identify radiomic features that are not dependent on the CT scan parameters (mAs,
kV and slice thickness) using a phantom study and mathematical equation estimations. The results were in
agreement with the studies performed by Mackin et al., Larue et al. and Shafig-ul-Hassan (Mackin et al., 2018;
Shafig-ul-Hassan et al., 2018; Ruben T H M Larue et al., 2017) that tested the impact of exposutre parameters
and other image characteristics such as the discretisation of the grey level. The exposure parameters investigated
influenced most of the radiomic texture features that was examined. There exist some radiomic features such
as the first order statistics’ kurtosis, skewness, uniformity, total energy and entropy that were deduced to be less
dependent on the mAs, kV and slice thickness parameters. GLCM texture features energy, inverse variance,
inverse difference moments, maximum probability, homogeneity, Imc1, Imc2 and entropy were also less
influenced by the mAs, kV and slice thickness changes. It can thus be concluded that the texture features
described the randomness or ordetliness with which the voxel/pixel intensities changed within the ROI of

analysis when the mAs, kV and slice thickness was changed hence they were less influenced.

Changes to the exposure parameters, mAs, kV and slice thickness, influenced the image noise and pixel intensity
values. It was observed and concluded that the systematic variation in image noise within a ROI had less or no
influence on the texture patterns. Radiomic texture feature algorithms that estimated feature values based on
the texture arrangements within the ROI had less dependence on changes caused by noise. On repeated
estimations the features demonstrated COV < 10% to their values across a changed parameter (e.g. mAs)

whilst the other parameters were kept constant.

It was established that when the kV was increased, the normalised feature difference values approach zero
(either from positive or negative y-axis). The use of high kV (100 kV and above) considerably increased
robustness of texture features. When the kV was increased the x-ray quantity in the beam increased and the
quality of the x-rays also increased. This demonstrated that at high kV the radiation attenuated signal detected
at the CT detector was higher reducing noise effects in the image. The effect of noise reduction as result of
increased kV is an improved the signal-to-noise ratio (SNR). The image contrast is adversely affected by the
increase in kV but this is largely over-compensated by the associated decrease in noise. Therefore use of higher
kV the better the contrast-to-noise ratio (CNR). It was therefore deduced that textures features become more
stable at higher kV (100 kV and above). More useful information on images was formed on the CT machine

detector as compared to images acquired at low kV.

The study demonstrated that there exist an indirect relationship between the kV and image noise, a complex
direct relationship between kV and CNR detail. In theory CT images are substantially affected by kV increase

in that higher kVs produces better CNR due to decrease in noise(Nagel, 2007). It was established that radiomic
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texture features extracted from materials with texture details such as the natural cork, sycamore wood and all
the four ABS inserts had normalised robust feature values that approached zero. It was deduce that the texture
feature magnitude of dependence on kV was influenced by the material of the phantom insert from which they
were extracted. Textured materials produced considerably stable radiomic texture features when compared to

homogenous materials.

All the shape features were robust, they were minimally and in most cases not at all influenced by image quality
changes that result from CT acquisition parameter changes. The reason being identical ROIs were used for the

phantom and cervical cancer part of this study.

There has been an increased volume of published articles that present evidence of the potential of correlating
tumour texture and the treatment outcome. Panth et al. found that ‘the feature value for slow-growing tumours
(gene-induced) was higher than for faster-growing tumours (no gene-induced group) upon combination with
radiotherapy’. They concluded that there is a relationship between the genetic tumour changes and early effects
of radiation treatment (Panth et al., 2015). In this study, it was shown that robust radiomic features could be
used to investigate the impact of radiotherapy treatment. By applying the quantitative radiomics algorithms on
the weekly fraction CBCT images obtained during radiotherapy treatment. Tumour radiation-induced changes
was observed through texture feature changes along treatment period. The trends of the texture features,
entropy, Id, Idm, Idmn and energy extracted from the cervical cancer tumour environments was patient
specific. In this study tumours A and C had similar path of response to radiotherapy treatment whilst tumours
B, D, E and F followed their own specific (individual) pattern. The treatment outcome could not be conclusively
deduced as patient follow-up information was not available. Never the less the clinical implication of this study
was achieved. Radiomics texture features that were less dependent on the CT acquisition parameters in textured
inserts of the CCR phantom were used to show changes in tumour heterogeneity. This fulfilled the objective

of this study that identified robust radiomic texture features be use on a clinical data set.

The impact of this radiomic texture study established the tumours heterogeneity varied between them. This
agreed with clinical studies that showed that tumours exhibit some extensive genetic and phenotypic variations.
The use of texture features, such as contrast and entropy, which exhibited stability to CT exposure parameters
to estimate tumour heterogeneity was a major success in this study. The methods used in this study were based
on image information obtained through non-invasive and retrospective means. The non-invasive approach
reduces the risks that can be caused by surgery and biopsy methods in extracting information from patients.
The use of retrospective data (cervical cancer CBCT images data set) was convenient and did not add any

radiation dose to patients.

97 | Page



This means the aim of the study was fulfilled in that the influence of CT acquisition parameters was determined.
The first objective was also fulfilled in that radiomics texture features that were less dependent on CT technique
parameters were identified. Also the results from the GE and Toshiba machines showed similar trends of the
CT technique parameter influence on radiomic texture features. Thus the inter-scanner variability of texture

features between CT scanners was comparable.

6.2 Limitations and Recommendations

The use of a phantom provided limitations in that the constituent materials did not perfectly substitute for
human tissue. This might create further challenges in that some features that appear to be robust might not fit
the human tissue feature value distributions. Many radiomic features in this study showed great dependence on
the imaging parameters on a different scale depending on the phantom insert material. The experimental
phantom study results suggest that materials used in constructing radiomics phantoms might have influence on
the changes that radiomic texture features might present during investigations. The use of radiomic phantoms
that would have suitable inserts with similar properties to human tissues is suggested. This might contribute

further to the understanding of radiomics studies from a human tissue texture point of view.

Further tests that include both radiomic biomarkers and sophisticated genomic analyses need to be performed.
This might help in identifying standard radiomic texture features that relate to a particular biological change.
To predict disease prognosis, treatment outcomes, survival rate or even recurrences, radiomics classifiers would

need to be compared to known existing prognostic factors to identify correlations.

This study has established that any change in the size of ROI used to sample radiomic feature data resulted in
gradual changes in the radiomic feature values. Size of ROI has influence on the radiomic feature values. It is
recommended that caution be exercised in interpreting non-shape features if or when studies use variable size

ROIs due to tumour size change during radiotherapy treatment.

The cervical cancer patient data used in this study were limited. No information about follow-up of the
radiotherapy treatment was available for patients. If patient CT images taken during follow-ups after the
treatment completion was available, further inferences from the radiomic features about the treatment outcome
could have been established. The clinical significance of radiomic feature studies should be tested further in

various clinical situations.

The tumour histology data of the patient cohort investigated was not available. In future, such information

should be sourced so as to test radiomic feature variations against the tumour histology.
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APPENDICES

A. CCR phantom image sample used for manual calculations as demonstrated in Chapter 2

Table 15: 8x8 Image Intensity matrix sample from Acrylic insert centre shice

GE Machine Image acquired at 80 kV
1127 1130 1126 1130 1134 1130 1130 1130
1121 1123 1128 1134 1132 1135 1134 1129
1133 1122 1127 1137 1128 1129 1133 1128
1131 1127 1123 1128 1128 1128 1129 1123
1124 1127 1125 1121 1127 1131 1132 1131
1131 1130 1132 1130 1128 1129 1128 1132
1129 1133 1130 1127 1132 1133 1128 1125
1124 1132 1130 1118 1126 1139 1135 1126

Table 16: 8x8 Image Intensity matrix sample from Acrylic insert centre slice

GE Machine Image acquired at 100 kV
1138 1143 1142 1142 1145 1145 1145 1145
1141 1142 1140 1141 1143 1148 1150 1146
1142 1143 1143 1143 1147 1151 1145 1145
1142 1143 1138 1137 1144 1147 1144 1146
1143 1143 1141 1141 1142 1143 1145 1144
1147 1144 1147 1147 1142 1142 1145 1145
1146 1145 1143 1142 1142 1140 1142 1146
1142 1146 1145 1141 1148 1144 1141 1142
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Table 17: 8x8 Image Intensity matrix sample from Acrylic insert centre slice

GE Machine Image acquired at 120 kV

1148 1149 1152 1153 1151 1152 1153 1149
1146 1149 1154 1153 1151 1151 1150 1151
1151 1152 1153 1153 1156 1153 1149 1151
1152 1155 1152 1151 1155 1154 1150 1148
1151 1153 1152 1150 1151 1153 1151 1149
1147 1148 1150 1148 1150 1151 1148 1148
1139 1142 1146 1151 1153 1150 1148 1151
1148 1147 1149 1153 1154 1153 1152 1155
Table 18: 8x8 Image Intensity matrix sample from Acrylic insert centre slice
GE Machine Image acquired at 140 kV
1155 1153 1155 1155 1157 1151 1150 1154
1155 1157 1154 1155 1155 1152 1154 1156
1157 1157 1155 1155 1157 1156 1155 1157
1160 1159 1156 1155 1157 1157 1155 1155
1158 1158 1153 1151 1154 1157 1157 1154
1153 1151 1152 1152 1154 1156 1154 1156
1155 1152 1152 1152 1155 1156 1155 1156
1155 1152 1151 1152 1156 1159 1158 1158

Table 19: 8x8 Image Intensity matrix: sample from Sycamore Wood centre slice

GE Machine Image acquired at Slice Thickness 0.625 mm

460 463 462 465 467 470 466 460
468 461 450 455 457 459 459 459
482 479 456 451 452 456 464 467
509 504 493 477 468 472 474 474
526 522 519 511 501 500 499 498
539 541 537 536 526 524 524 521
546 552 551 547 547 541 541 539
563 563 560 558 555 551 551 554
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Table 20: 8x8 Image Intensity matrix sample from Sycamore Wood centre slice

GE Machine Image acquired at Slice Thickness 1.25 mm

570 574 571 567 564 561 562 561
563 566 564 557 557 555 559 562
564 567 564 557 557 561 565 567
563 567 565 562 562 563 566 565
560 561 558 559 559 558 562 558
566 561 556 557 560 560 557 550
566 560 555 556 559 562 559 553
562 558 556 559 563 559 559 560

Table 21: 8x8 Image Intensity matrix sample from Sycamore Wood centre slice

GE Machine Image acquired at Slice Thickness 2.5 mm

567 565 567 565 563 562 558 558
566 569 569 565 561 562 559 561
563 569 568 566 562 562 561 564
561 563 564 566 564 561 559 559
559 560 561 563 563 561 558 555
560 561 562 560 561 561 558 557
565 564 562 561 562 561 559 561
566 563 559 559 561 562 563 562

Table 22: 858 Image Intensity matrix: sample from Sycamore Wood centre slice

GE Machine Image acquired at Slice Thickness 3.75 mm

567 566 563 562 561 560 558 555
570 567 566 567 567 563 561 560
567 565 565 567 566 564 562 560
563 560 566 568 563 561 560 557
562 561 565 567 565 563 560 558
566 566 566 565 565 564 563 562
568 567 566 562 562 565 564 562
567 565 564 563 562 564 565 562
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Table 23: 8x8 Image Intensity matrix sample from Sycamore Wood centre slice

GE Machine Image acquired at Slice Thickness 5 mm
562 565 566 564 562 562 562 560
564 565 567 565 566 566 565 563
568 566 566 567 567 567 566 564
567 566 566 567 567 567 566 564
565 566 567 568 567 566 566 564
563 564 566 565 566 564 563 563
560 563 565 564 564 560 561 562
559 563 562 562 561 559 559 561

B. Sample graphs of Tumour Sensitivity to radiotherapy treatment

Fig 43 to Fig 48 below shows the patient tumour response to radiotherapy fractionated treatment. The graphs
are plotted using the average of the tumour feature values and the normalised to the bladder features of the
specific patient. The y-axis of the graphs as labelled represents the tumour feature values of a specific patient
(e.g. patient A or patient B etc.) and the x-axis represents the day the radiotherapy treatment fraction was

delivered.

The plotted feature values show an oscillating response to the treatment fractions. The sinusoidal response of
a tumour to treatment shows unequal peaks at different treatment fraction points. This means these features

exhibits a personalised tumour sensitive to radiation treatment

There exist tumours that response to radiotherapy treatments in the same manner whilst other tumour’s
response is unrelated to other tumours. Fig 44, Fig 46, Fig 47 and Fig 48 shows that tumours B, D, E and F
followed similar response to radiotherapy treatment. The values of the plots point on point do not have exact
feature values for each treatment fraction sampled but they followed the same trend from one fraction point

to the other. Fig 49 and Fig 50 shows Toshiba Aquillion tube current variation heat maps.
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C. Toshiba Aquillion Large bore CT unit tube current heat maps sample
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Fig 49. Tube current heat maps that represent the patient normalised first order statistics and GLRLM feature values of 5

cartridges that make up the CCR phantom, and the images used were acquired nsing a Toshiba Aquillion CT machine.
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Fig 50. Tube current heat maps that represent the patient normalised GLDM, GLCM, GLSZM and NGTM feature values
of 5 cartridges that make up the CCR phantom, and the images used were acquired using a Toshiba Aquillion CT machine.
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