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Abstract 

USING SEASONAL CLIMATE OUTLOOK 

TO ADVISE ON SORGHUM PRODUCTION 

IN THE CENTRAL RIFT VALLEY OF ETHIOPIA 
by 

Girma Mamo Diga 

PhD in Agrometeorology at the University of the Free State 

December 2005 
 

Seasonal rainfall is an important source of water for rainfed farming in the semi-arid 

regions of the world, where rainfall is marginal and variable. However, as rains are 

unpredictable in terms of onset, amount and distribution, there is a need to 

understand the variability and other basic rainfall features in order to use the 

information in agricultural decision making. More specifically, combining the seasonal 

rainfall prediction with crop water requirement and soil water information is the core 

component to successful agriculture. The ultimate objective of this study was to 

characterize and obtain a better understanding of the most important rainfall features 

that form the basis for classifying the areas into homogenous rainfall zones and then 

to develop a seasonal rainfall prediction model for the Central Rift Valley (CRV) of 

Ethiopia. 

 

The source data for the analyses was primarily obtained from the National 

Meteorological Services Agency (NMSA) and partly from Melkassa Agricultural 

Research Centre (MARC) and the web site of the International Research Institute for 

Climate and Society (IRI). Rainfall variability and time series analyses were done using 

INSTAT 2.51 and coded time method, respectively. Rainfall onset and March-April-

May (MAM) rainfall totals are the two most variable features both at Miesso and 

Abomssa. For both stations, rainfall end date displays the least variability.  

 

Rainfall onset date at Miesso ranges from the lower quartile (25 percentile) of DOY 61 

to the upper quartile (75 percentile) of DOY 179 with a 42% coefficient of variation 

(cv). At Miesso, the main rainy season terminates during the last days of September 
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(DOY 272 - 274) once in four years and terminates before DOY 293 in three out of 

four years. At Abomssa, the c.v for the lower quartile (DOY 61) to the upper quartile 

(DOY 134) was found to be 40.5%. At both locations, planting earlier than 15 March 

(DOY 75) only proves successful once in every four years. Further, at Miesso this 

upper quartile statistic can extend up to the DOY 179, whereas at Abomssa planting 

earlier than 15 April (DOY 134) is possible in three out of four years (75 percentile). At 

Abomssa, rainfall terminates by DOY 286 and the end of October (DOY 305) for the 25 

and 75 percentile points respectively. From the time series analyses, there was no 

conclusive evidence for the existence of a trend for both Miesso and Abomssa, 

information which is useful for long-term research and development planning, as well 

as seasonal rainfall prediction for the study area. 

 

The classification study for the spatial rainfall pattern resulted in four homogenous 

rainfall zones that form distinct development and research units, using the FORTRAN-

90 based NAVORS2 program. The south facing Alem Tena-Langano zone has a better 

rainfall pattern than drier zones and thus formed zone 1. The southern, southwestern 

and southeastern area has formed the wet zone (zone 2), the northwestern to 

northeastern facing part (Debre-Zeit-Nazerth-Dera) that receives a higher rainfall 

amount than zone 1 has formed zone 3 and finally, the drier northeastern part 

constituted zone 4. Twenty seven seasonal rainfall prediction models with varied 

performance skills that can be used for the operational farming were developed for the 

March-September monthly rainfall using the Climate Predictability Tool (CPT v.4.01) 

from IRI. It was understood that with increased observing networks and data 

availability, useful operational climate prediction could be achieved for a smaller 

spatial unit and with a short lead-time.  

 

The tempo-spatial water requirement satisfaction pattern analyses were conducted 

using AGROMETSHELL v.1.0 of the FAO. Fourteen concurrent sorghum-growing 

seasons that give a general picture of crop water requirement satisfaction were 

mapped. The southern, southwestern and southeastern parts (zone 2) of the CRV 

constitute the most favourable location for growing a range of sorghum maturity 

groups. The northwestern and central (zone 3) parts constitute the next most suitable 

zone. The wide northeastern drylands (zone 4) of the study area, except the pocket 

area of Miesso-Assebot plain, does not warrant economic farming of sorghum under 

rainfed conditions.  
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From the growth stage-based Water Requirement Satisfaction Index (WRSI) analyses, 

mid-season / flowering stage of the sorghum cultivars was found to be three times 

more sensitive to changes in sorghum yields for both cultivars and experimental sites 

as compared to the WRSI from the rest of growth stages. The results from the water 

production function analyses (WPF) also indicated the potential of WRSI for prediction 

of the long-term sorghum yields.  

 

The cumulative density function (CDF) and stochastic dominance analyses for the 

120-day grain sorghum cultivar grown at Miesso show the June planting to be the 

most efficient set by first degree stochastic dominance (FSD), while May was found 

efficient for Melkassa. The CDF for Arsi Negele shows April planting date to be the 

best set. Therefore, these planting dates are to be preferred by farmers seeking ‘more’ 

yield at the respective locations, regardless of their attitude towards risk.  

 

The sensitivity analyses conducted using different levels of the seasonal rainfall 

related input variable combinations (sorghum planting date, maturity date, number of 

rainy days and WRSI) for Miesso, Melkassa and Arsi Negele provide useful 

information. By keeping input variables other than WRSI at the most preferred level 

(i.e. early planting date, extended maturity date, and greater number of rainy days) 

and only changing WRSI from 100% to 75% resulted in a 49.7% yield reduction in 

case of Miesso, 40.8% in case of Melkassa and 24.3% in case of Arsi Negele. Further, 

when WRSI was reduced down to 50%, there was a total crop failure in the case of 

Miesso and Melkassa, while the reduction was 48.6% for the Arsi Negele case. Similar 

results were found when WRSI was varied across other input level combinations.  

 

Visual Basic v.6.0 was used to write the algorithm for the decision support tool (DST) 

relating sorghum planting dates in CRV, to which the name ABBABOKA 1.0 was 

given. By using the rainfall prediction information from three different sources (the 

new prediction model developed in chapter 3, NMSA and ICPAC), ABBABOKA  

suggests the best possible planting alternatives for a given homogenous rainfall zone 

and planting season. When decision making under this predictive information alone is 

not sufficient, soil water parameters need to be consulted for more reliable decision 

making. This simple and briefly constructed ABBABOKA is expected to provide a suite 

of guidelines to the users. Certainly, this constitutes a significant departure from the 

fixed ‘best bet’ recommendations I learned from research systems in the past. 
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It is recommended that the time-space classification of agricultural areas into 

homogeneous zones needs to be extended to the rest of the country together with the 

tailored rainfall prediction information. Research needs to be geared towards crop 

water requirements, climate risks and simulation modelling aspects. A network of 

weather stations and soil database needs to be developed in order to promote the soil-

crop-climate research in Ethiopian agriculture. More importantly, the use of decision 

support tools and the well-established models (like APSIM) need to be included in  

agricultural research and development efforts. 
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Uittreksel 

 

DIE GEBRUIK VAN SEISOENALE KLIMAATSVOORUITSIG 

BY RAADGEWING VIR SORGUMPRODUKSIE 

IN DIE SENTRALE SKEURVALLEI IN ETHIOPIë 

deur 

Girma Mamo Diga 

PhD in Landbouweerkunde by die Universiteit van die Vrystaat 

Desember 2005 

 

Seisoenale reënval is ‘n belangrike bron van water vir droëlandboerdery in die semi-

ariede gebiede van die wêreld waar reënval beide marginaal en veranderlik is. 

Alhoewel reën minder voorspelbaar is in terme van aanvangstyd, hoeveelheid en 

verspreiding, is daar nogtans ‘n behoefte om die basiese eienskappe van die  reënval, 

en spesifiek die veranderlikheid daarvan, te verstaan ten einde hierdie inligting in 

landboukundige besluitneming te kan gebruik. Die kombinering van die seisoenale 

reënvalvoorspelling met gewas-waterbehoefte en grondwaterinligting is ‘n belangrike 

sleutel tot suksevolle landbou. Die uiteindelike doel van hierdie studie was om ‘n beter 

begrip te verkry van die belangrikste reënval-eienskappe wat die basis sou vorm vir 

die klassifisering van die Sentrale Skeurvallei (SSV) van Ethiopië in homogene 

reënvalsones, en om dan ‘n seisoenale reënvalvoorspellingsmodel vir hierdie gebied te 

ontwikkel. 

 

Die brondata vir die analise is vanaf die Nasionale Meteorologiese Dienste Agentskap 

(NMSA) en gedeeltelik vanaf Melkassa Navorsingsentrum (MARC) en die Internasionale 

Navorsingsinstituut vir Klimaatsvoorspelling (IRI) verkry. Reënval veranderlikheid en 

tydreeksanalise is respektiewelik deur INSTAT 2.51 en die gekodeerde tydsmetode 

verkry.  

Die begin- en einddatums van die reënval vir Maart-April-Mei (MAM) reënvaltotale is 

die twee mees veranderlike reënvalkenmerke van beide Miesso en Abomssa. Vir beide 

stasies toon die einddatum die minste veranderlikheid.  
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Die begindatum vir die reën by Miesso strek vanaf die onderste kwartiel (25 persentiel) 

van dag van die jaar (DVJ) 61 tot die boonste kwartiel (75 persentiel) van DVJ 179 met 

‘n variansiekoëffisiënt (vk) van 42%. By Miesso eindig die hoof reënseisoen gedurende 

die laaste dae van September (DVJ 272 - 274) een maal elke vier jaar en voor DVJ 293 

in drie uit vier jaar. By Abomssa is gevind dat ‘n vk van 40.5% die onderste kwartiel 

(DVJ 61) tot die boonste kwartiel (DVJ 134) beskryf. By albei plekke is gevind dat 

aanplanting voor 15 Maart (DVJ 75) in slegs een uit vier jaar sukses sal lewer. By 

Miesso kan hierdie boonste kwartiel statistiek tot by DVJ 179 verleng word, maar by 

Abomssa is aanplanting voor 15 April (DVJ 134) in drie uit elke vier jaar moontlik. By 

Abomssa staak die reën respektiewelik teen DVJ 286 en die einde van Oktober (DJV 

305) vir die 25 en 75 persentiel punte. Die tydreeksontledings het geen konkrete 

bewyse gelewer vir die bestaan van enige neigings by òf Miesso òf Abomssa nie –  

inligting wat nuttig is vir langtermyn navorsing- en ontwikkelingsbeplanning, sowel as 

die seisoenale reënvalvoorspelling vir die studiegebied.   

 

Die klassifikasie-studie vir die ruimtelike reënvalpatroon het gelei tot die 

totstandkoming van vier homogene reënvalsones met duidelike ontwikkelings- en 

navorsingseenhede. Die FORTRAN-90 gebaseerde program NAVORS2 is vir hierdie 

doel gebruik. So het die Alem Tena-Langano sone met ‘n suidelike aansig en beter 

reënvalpatrone as die droër sones, sone 1 gevorm. Die suidelike, suidwestelike en 

suidoostelike streek vorm die nat sone (sone 2), terwyl die Debre-Zeit-Nazerth-Dera 

area met sy noordwestelike tot noordoostelike aansig en ‘n hoër reënval as sone 1, 

sone 3 vorm. Die droër noordoostelike streek vorm sone 4. Sewe-en-twintig seisoenale 

reënvalvoorspellings-modelle met verskillende prestasievaardighede wat vir 

operasionele boerdery gebruik kan word, is ontwikkel vir die Maart-September 

maandelikse reënval met gebruik van die klimaat voorspelligshulpmiddel oftewel 

Climate Predictability Tool (CPT v.4.01) vanaf IRI. Dit het aan die lig gekom dat met 

verhoogde waarnemingsnetwerke en data beskikbaarheid dit moontlik is om 

bruikbare operasionele klimaatvoorspelling te behaal vir kleiner ruimtelike eenhede 

met ‘n korter voorgeetyd. 

 

Die tydelike-ruimtelike waterbehoefte vervullingspatroon-ontledings is met 

AGROMETSHELL v.1.0 van die FAO uitgevoer. Veertien opeenvolgende sorghum 

groeiseisoene wat ‘n algemene prentjie van gewaswaterbehoefte vervullingskets, is 
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gekarteer. Die suidelike, suidwestelike en suidoostelike dele (sone 2) van die SSV het 

die mees gunstige ligging vir die verbouing van ‘n reeks volwasse sorghumgroepe. Die 

noordwestelike en sentrale dele (sone 3) het die naasbeste klimaat. Die uitgestrekte 

droë lande van die noordooste van die studiegebied (sone 4) is, met die uitsondering 

van die Miesso-Assebot vlakte, nie gepas vir ekonomiese boerdery met sorghum onder 

droëlandtoestande nie.  

 

Met die groeistadiumgebaseerde waterbehoefte vervullingsindeks (WBVI) ontledings is 

gevind dat die middel-seisoen/blomstadium van die sorgum kultivars drie keer meer 

sensitief is vir veranderings in sorghum opbrengs vir beide kultivars en 

eksperimentele gebiede vergeleke met die WBVI van die ander groeistadiums. Die 

uitslae van die waterproduksiefunksie (WPF) ontledings het ook gedui op die 

potensiaal van WBVI om  langtermyn sorghum opbrengs te voorspel.  
 

Die kumulatiewe digtheidsfunksie (KDF) en stogastiese dominansie-analises vir die 

120-dag sorgum kultivar wat by Miesso verbou is, toon dat die Junie plantdatum die 

mees effektiewe stel is wat betref eerstegraad stogastiese dominansie (ESD), terwyl 

Mei die effektiefste vir Melkassa was. Die KDF vir Arsi Negele wys die April 

plantdatum as die beste stel aan. Dus word hierde plantdatums verkies deur boere 

wat ‘hoër’ opbrengste by die verskeie gebiede verlang, ongeag die houding teenoor 

risiko.  

 

Die sensitiwiteitsanalises wat uitgevoer is deur gebruik te maak van verskillede vlakke 

van seisoenale reënval en inset veranderlike kombinases (sorgum plantdatum, datum 

waarop volwasse stadium bereik word, aantal reëndae en WBVI) vir Miesso, Melkassa 

en Arsi Negele, verskaf bruikbare inligting. Deur inset veranderlikes, met die 

uitsondering van WBVI, op die verkieslike vlak te hou (d.w.s. vroeë plantdatum, 

verlengde volwasse stadium datum en ‘n groter aantal reëndae), en slegs WBVI te 

verander vanaf 100% tot 75%, het gelei tot ‘n 49.7% opbrengsverlaging by Miesso, 

40.8% by Melkassa en 24.3% by Arsi Negele. Verder is daar gevind dat ‘n verlaging 

van WBVI tot 50% sou lei tot ‘n totale gewasmislukking by Miesso en Melkassa, terwyl 

daar ‘n afname van 48.6% in die opbrengs by Arsi Negele sal voorkom. Soortgelyke 

resultate is verkry waar WBVI toegelaat is om oor ander insetvlak-kombinasies te 

varieer. 
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Visual Basic v.6.0 is gebruik om die algoritme vir die besluitneming 

ondersteuningshulpmiddel (BOH) te skryf wat sorgum plantdatums in die SSV 

bereken. Dié program is ABBABOKA 1.0 genoem. Deur gebruik te maak van die 

reënvalvoorspellingsinligting vanaf drie verskillende bronne (die nuwe 

voorspellingsmodel ontwikkel in hoofstuk 3, NMSA en ICPAC) stel ABBABOKA die 

beste moontlike plantdatum-alternatiewe vir ‘n gegewe homogene reënval sone en 

plantseisoen voor. Wanneer besluitneming met behulp van hierdie 

voorspellingsinligting alleen nie genoeg is nie, moet grondwater-eienskappe 

geraadpleeg word vir meer betroubare besluitneming. Dit word verwag dat die 

eenvoudige en kort gestruktueerde ABBABOKA ‘n hele klompie riglyne aan 

verbruikers sal verskaf. Dit dui verseker op ‘n noemenswaardige afwyking van die 

vaste “beste raai” aanbevelings wat deur navorsingstelsels tevore verskaf is.  

 

Daar word aanbeveel dat die tydelik-ruimtelike klassifikasie van landboukundige 

gebiede tot homogene sones tot die res van die land uitgebrei moet word tesame met 

die aangemete reënvalvoorspellingsinligting. Daar is ‘n behoefte vir navorsing wat 

gemik is op gewas-waterbehoeftes, klimaatrisikos en simulasie modelleringsaspekte. 

Die waarnemingsnetwerk en klimaat en gronddatabasisse behoort ontwikkel te word 

om grond-gewas-klimaatnavorsing in Ethiopië se landbou te bevorder. Wat van meer 

belang is, is dat die gebruik van besluitneming ondersteuningshulpmiddels asook 

gevestigde modelle (soos APSIM) by landboukundige navorsing en 

ontwikkelingsprojekte ingesluit behoort te word. 
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Chapter 1 

General Introduction 

1.1 Background 

The annual march of the earth around the sun provides a periodic solar forcing 

which acts as a strong pacemaker for the general circulation of the terrestrial 

climate. The resulting seasons are the complex non-linear response of the land-

atmosphere-ocean interactions that represent the most important variability of the 

climate system on a global scale (Pezzulli et al., 2003). Moreover, climate itself is a 

complex non-linear system having its own internal chaos and instabilities together 

with the dynamics that modulate the response to the solar forcing. 

 

General circulation model (GCM), which is described as the quasi permanent ocean-

atmosphere pattern, represents these giant phenomena, mainly through using the 

methods of classical physics applied to a continuous fluid on a rotating earth being 

heated more at the equator than at the poles (Jean et al., 2004; Landman and 

Goddard, 2002). El Niño and La Niña events are essential components of the ocean-

atmosphere interactions and therefore assume a particularly important position in 

seasonal rainfall prediction. Understanding of the influence of ENSO phases on 

climate variability and computation of the associated risks in crop production at a 

particular location and season is a developing aspect of the existing climate 

forecasting techniques.  

 

The current interest in ocean-atmosphere interactions was preceded by approaches 

such as response farming (Stewart, 1980), which is based on the empirical 

relationship between the relative earliness of a rainy season and the length and the 

amount of rainfall received. Easterling (1999) claimed that the ability to forecast 

rainfall variability based on ocean-atmosphere interaction is one of the premier 

advancements in the atmospheric sciences during the 20th century. Currently, 

climate (mainly rainfall and temperatures) variability is predicted using sea surface 

temperature and pressure anomalies. 
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The target of this thesis is to summarize existing seasonal rainfall prediction 

knowledge and experiences in order to apply them to the farm level tactical decision 

making. A detailed account of the existing scientific understandings, seasonal 

rainfall prediction and the underpinning factors is discussed, together with the 

rainfall and risks associated with sorghum production in Central Rift Valley of 

Ethiopia. 

1.2 Explanation of the terms El Niño, La Niña, SOI and Sea Surface 
Temperatures (SSTs) 

More than 100 years ago, the name El Niño was originally coined by Peruvian 

fishermen to describe the unusually warm waters that would occasionally form along 

the coast of Peru and Ecuador (eastern Pacific region), peaking near Christmas 

(Philander, 1985 & 1990; Trenberth, 1991).   

 

Under normal conditions the frictional effect of the trade winds causes warm surface 

waters to be pushed towards the western side of the Pacific Ocean, causing cold and 

nutrient rich waters from the trenches off South America (eastern Pacific) to be 

drawn up to the surface. In other words, as easterlies near the ocean surface travel 

from east to west across the Pacific, the warmest water is found in the western 

pacific (http://iri.columbia.edu/climate/ENSO/index.html). 

 

However, during an El Niño episode, the trade winds weaken and can even reverse 

(van Loon and Shea, 1985, 1987), resulting in trade winds becoming warmer and 

covering the wide central and eastern tropical pacific. As a result, the warmer waters 

of the western Pacific begin to flow back towards the eastern Pacific. This creates a 

large pool of the anomalously warm water that effectively cuts off the upwelling and 

water temperature rises (by approximately 0.5 ºC) on the eastern side. 

 

The earliest association to be linked with the El Niño phenomena was the large scale 

atmospheric pressure differences between the eastern and western side of the 

Pacific, i.e. sea level pressure tends to be lower at the eastern Pacific (Tahiti-French 

Polynesia) and higher in the western Pacific (Darwin-Australia) (Walker and Bliss, 

1932 & 1937; Bjerknes, 1969). This sea-saw (standing wave) in the atmospheric 

pressure between the eastern and western tropical Pacific is called the Southern 

Oscillation (SO). Sir Gilbert Walker (1923) was the one who made the landmark 
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studies on teleconnections and described the surface pressure ‘sea- saw’ in relation 

to rainfall and temperature fluctuations. Sir Gilbert Walker was also the first to coin 

the word ‘Southern Oscillation’ (Rasmusson and Carpenter, 1982). Subsequently, to 

stress the relationship between El Niño and SO, the term ENSO was coined 

(Bjerknes, 1969, Trenberth, 1991). 

 

On the other hand, La Niña is the counterpart to El Niño and is characterized by 

cooler than normal temperature across much of the equatorial eastern and central 

Pacific. During La Niña, the easterly winds are strengthened, cooler than normal 

water and extend westward to the central Pacific (Trenberth, 1991, Van Loon & 

Shea, 1985). At the same time, the warmer than normal water in the western Pacific 

is accompanied by above normal rainfall in areas which normally remain dry during 

that particular season. In general terms, La Niña follows an El Niño event and vice 

versa. The time between successive El Niño and La Niña events is irregular, but they 

typically tend to recur every 3 to 7 years, lasting 12-18 months once developed. 

 

Another measure of the ENSO phenomena (also used in this study) is the Sea 

Surface Temperature (SST) that more often is described in the form of its departure 

from the long-term average temperature (anomaly). Being important for monitoring 

and identifying El Niño and La Niña phenomena, several regions have been named in 

this context in the tropical Pacific Ocean. The most common ones are Niño 1.2, Niño 

3, Niño 3.4 and Niño 4. For a wide spread global climate variability, Niño 3.4 is 

generally preferred, because the SSTs variability in this region has been shown to 

have the strongest relationship with the shifting direction of rainfall pattern and this 

also greatly modifies the location of the heating that drives the majority of the global 

atmospheric circulation. (http://iri.columbia.edu/climate/ENSO/index.html). Apart 

from the Pacific Ocean SSTs, the SSTs of the Indian and Atlantic Oceans also occupy 

a significant position in the simulation of the global climate models. 

1.3 Application of ENSO information for food security and at farm level, 
for climate risk decision analyses 

Although a one to one correspondence does not exist, El Niño phenomena are 

usually followed by the La Niña condition. Generally, the two phenomena result in 

the great disruption of the usual precipitation pattern resulting in excessively dry or 

wet conditions. Presently, several research groups are working to develop and 
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finetune statistical and numerical models to predict ENSO-related SSTs (Barnston, 

1994; Landman and Goddard, 2002).  

 

There are different levels of resolution at which ENSO information could be used. 

These include: food security, national or regional development planning, 

agronomic/farm level, crop/livestock mix, household economic or business decisions  

(Jean et al., 2004). At the level of food security and related issues, ENSO information 

is now recognized as an important tool, particularly in the wake of extreme events 

(Mjelde et al., 1998; Pfaff et al., 1999; Broad and Aggrawala, 2000; Finan and Nilson, 

2001). Dilley (2000) reported on the consequences of the El Niño years like 

1991/1992, 1994/95 and 1997/98 in Southern Africa in which effective prediction 

prior to the arrival of El Niño years diverted the adverse consequences, through early 

warning information supplied to the relief agencies. Similarly, decision making at 

regional level could be guided by climate forecasts such as importing and 

distribution of inputs i.e. fertilizers, seeds, market capacity/crop price setting at 

planting or pre-harvesting, planning for storage and transportation needs (Bi et al., 

1998). 

 

Agronomic decisions guided by rainfall forecasts may involve selection of a long or 

short season cultivar, adjusting planting density and fertilizer application levels and 

allocation of area to a given crop. Heavier soils could be preferable if forecast is for 

dry conditions, or more freely draining soils if forecast is for the wetter condition. In 

many regions of the world, ENSO based skilful predictive information generated at 

the lead time from 1 to 12 months provides useful strategic and tactical decision aid 

to the farmers as well (Hansen, 1998). For example, Hansen classified the ENSO 

phases as El Niño, Neutral, and La Niña series, which served as a categorical 

measure of ENSO activity in the management of six economically important crops 

(tobacco, tomato, peanut, cotton, corn and soybean) in the U.S. The result suggested 

that SST had a strong influence on yields of the six crops in Florida (r = 0.871) and a 

weaker influence in South Carolina (r = 0.822).  

 

Studies have also demonstrated ENSO’s impact on maize yields in Zimbabwe (Cane 

et al., 1994; Phillips et al., 1998), rice production in Indonesia (Rosamond et al., 

2001), sorghum yields in Australia (Nicholls, 1986), soybean and maize  production 
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in southeastern Australia, field crops production in U.S (Legler et al., 1999) and 

wheat in Australia (Potgieter et al., 2003).  

 

The use of the SOI phases has also been found to improve risk management and 

profitability in Australian wheat (Stone et al., 1996; Hammer et al., 1996) and 

peanuts in Australia (Meinke et al., 1996; Stone and Aulciems, 1992). The tactical 

responses include selection of cultivar maturity group and N-fertilizer strategy based 

on seasonal rainfall prediction. In simulation studies Phillps et al. (1998) emphasized 

the relative importance of rainfall prediction of favourable seasons and managing for 

enhanced maize productivity as compared to forecasting adverse seasons in 

Zimbabwe. There is also a potential to anticipate the risk associated with some crop 

pests based on weather forecasting. Maelzer and Zalucki (2000) for instance reported 

a good correlation of Helicoverpa species infestation with SOI from up to 6 to 15 

months in advance. 

 

In crop/livestock systems, decisions may relate to planning for future stocking rates 

and management of a particular forage crop for grazing. In some instances grain 

harvest, intensity and timing of grazing on different areas, the need for supplemental 

feed and to guide purchase, sale or movement of animals based on the anticipated 

forage/feed availability (Jean et al., 2004) could be related to ENSO phenomena. 

.  

At the household resolution level, business decisions could include marketing or 

hedging based on climate forecast in the local area as well as in major global 

production areas for a particular crop. Forecast of unfavourable seasons might lead 

to the decision to diversify farm enterprises. In some cases, climate predictions 

might influence decisions about the need for off-farm income relative to the need for 

on-farm labour and food security (Jean et al., 2004).  

 

For application at farm level decision making, it is important to know how climate at 

a given location relates to the prediction product. Interpretation needs to be made 

relative to the local normal, rather than the regional or national normal climate 

(Letson et al., 2001). A critical early step in the process is engaging the user 

community to determine their understanding of climate forecasting and to find out 

how they want to apply climate prediction to their operational system. 
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1.4 Linking rainfall prediction to soil water content information 

Rainfall prediction provides information about the likely amount of crop water use, 

which is usually related to large impacts on yield. Due to the variation in amount 

and distribution of growing season’s rainfall, there is a negative relationship between 

crop yield and soil water content. Since soil water depletion has a major influence on 

crop water use and is highly variable in many regions, particularly at planting time, 

opportunities to integrate measurement of soil water content at planting with use of 

climate prediction need to be investigated (Stewart and Steiner, 1990). Carberry et 

al., (2002) have worked with Australian farmers who have had some successes in 

using seasonal rainfall prediction in farm-level decision making. Their system 

(FARMSCAPE) combined soil water monitoring and simulation with the climate 

prediction and involved farmers, advisors and researchers working closely together. 

Their experience indicated that seasonal climate prediction without the other tools 

provided little benefit.  

1.5 Application of seasonal rainfall prediction knowledge to farming 
decisions 

In the Ethiopian context, experiences from the previous droughts and the frequent 

rainfall anomalies suggest that the return period of drought is 3-5 years in the 

northern and 6-8 years over the whole country (Haile, 1988). Haile (1988) underlines  

the fact that the combined effect of El Niño and southern oscillation, along with 

SSTAs in the southern Atlantic and Indian oceans, are the major causes for the 

Ethiopian drought. Attia and Abulahoda (1992) reported that El Niño episodes are 

negatively teleconnected with the floods of the Blue Nile and Atbara River that 

originated in Ethiopia. Glantz et al. (1991) also reports the existence of strong 

association between droughts in Ethiopia and the atmospheric teleconnections. 

 

In this study, seasonal rainfall prediction using the sea surface temperature 

anomaly (SSTAs) of the global oceans were conducted with a view to applying the 

existing seasonal rainfall prediction knowledge into farm level decision making in 

Central Rift Valley of Ethiopia (more details are given in chapter 3). 
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1.6 Types of seasonal prediction models 

The likelihood of the occurrence El Niño conditions is monitored by measured SOI 

phases or modelled SSTAs. There are two general types of these models. The first 

type is a dynamical or numerical model, which consists of a series of mathematical 

expressions that represent the physical laws underpinning how the ocean-

atmosphere system performs. To make a prediction, dynamical models are subjected 

to the current conditions in the ocean-atmosphere and then the GCM determines 

what the future conditions (Landman and Goddard, 2002) would be. 

 

The second type of prediction model is the ‘statistical’ one, to which uses correlations 

between past conditions to make predictions of the future. The data are of the same 

kind that would be used as input for dynamical models, but extending back in time 

by as much as 30 to 50 years. Statistical models are ‘trained’ on the long history of 

these precursor events so that, given the current observations, the likelihood of 

various possible ENSO conditions could be predicted. In contrast to dynamical 

models, the mechanisms underpinning the ENSO changes remain unknown in 

statistical models, as the model simply predicts on the basis of a regression 

equation. 

 

In both kinds of climate forecasting techniques, any of the three equi-probable 

events i.e. below normal (B / El Niño), near normal (N / neutral condition) or above 

normal (A / La Niña) rainfall anomalies could occur. Without any forecast clues, the 

probability that any of the 3 outcomes will occur is equal i.e. 33.3 : 33.3 : 33.3. This 

is referred to as tercile values or climatological values or simply climatology, which 

means that if situations could be “re-run” many times, each outcome would occur 

once out of 3 times. However, given the forecast clues, such as the presence of El 

Niño or La Niña event, the probabilities of the terciles would no longer be equal, so 

that the probability of one or (two) of them would be greater than 33.3% and the 

remaining one or two of them less than 33.3%.  

 

The use of tericle probabilities provides both the direction and dimension of the 

forecast relative to ‘climatology’, as well as uncertainty of the forecast. For example, 

if a forecast states the precipitation probabilities of 20% below normal, 35% near 

normal and 45% above normal, then since the wet tercile is ‘biased’ to above normal 
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and the dry is below 33.3%, this forecast suggests that above normal precipitation is 

more likely as compared to the climatology. One can visualize, however, that 

uncertainty present in the forecast (i.e. even though it is in the direction of the above 

normal precipitation) the probability for the above normal is still less than 50%. And 

the probability of below normal is 20%, implying that, still in one time out of 5 cases, 

the below normal precipitation event could occur. In general terms, even though a 

forecast may show a tilt of the odds towards wetness or dryness relative to the 

climatology, because of the degree of uncertainty in the outlook, there is a possibility 

that the other categories in the forecast, which were not anticipated, could occur 

(http://iri.columbia.edu/climate/ENSO/index.html). 

1.7 Description of the study region 

1.7.1 Ethiopia 

Ethiopia forms part of the Greater Horn of Africa (Fig 1.1). In terms of topography, 

the country has the largest proportion of elevated landmass in Africa, sometimes 

appropriately described as the “roof of East Africa” (Addis Ababa University, 2001). 

Accordingly, seasonal and spatial rainfall variability is so high over short distances 

and time steps. The basic features of the Ethiopian rainfall are summarized in Table 

1.1 (Mamo, 2003). 

 

Geomorphologically, the Horn of Africa has been strongly influenced by two major 

tectonic episodes in the earth’s history: the Arabo-Ethiopian swelling in the Eocene 

to early Oligocene and the major rift faulting movements through the whole of Africa 

rift system from the Miocene to the Quaternary, resulting in much of the present day 

macro-relief (Geological Survey of Ethiopia, 1972; FAO, 1984). These movements 

include subsidence and/or relative uplifting and tilting of large blocks in reaction to 

the destabilizing effects of the processes, which led to the formation of the Great Rift 

System. The Ethiopian Rift is part of the Great Rift System that extends from 

Palestine-Jordan in the north to Malawi-Mozambique in the south, a distance of 

about 7200 kms, of which 5600 km is in Africa and 1700 km in the Ethio-Eritrea 

(United States Geological Survey (USGS), 2005).  

 

On the land, the widest part of the Rift Valley is at the Afar Triangle (200-300 km),  
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the place where the three rift systems (The Red Sea, Gulf of Aden and the main 

Ethiopian Rift Valley) meet; also known as a triple junction. This northeast- 

southwest facing Great Rift System of Africa is an extensive graben, cluttered with 

 

 
Figure 1.1 Overview of the Great Rift System and the study area (Source: United States 
Geological Survey (USGS) http://publs.usgs.gov/publications/text/East_Africa.html). 
 

evidence of recent volcanism in the north and bounded by impressive stepped horsts 

of the plateaux on the west and south east margins, with major escarpments 

trending north and east respectively beyond the point of separation. The original 

landmass resulting from the enormous uplifted swell has thus been divided into two 

extensive plateau units by the Rift System i.e.the Ethiopian plateau to the west and 

the Somalia plateau to the east (FAO, 1984).   

1.7.2 Central Rift Valley of Ethiopia 

The Ethiopian Central Rift Valley constitutes the heart and corridor of the Ethiopian 

Rift that extends from the Afar Triangle in the north to the Chew Bahir in southern 

Ethiopia (FAO, 1984). It is part of the tectonically formed structural depression that 

has two major and parallel escarpments bounding it and splitting the Ethiopian 

highlands and lowlands into two (Addis Ababa University, 2001). The floor is dotted 

with mountains in many places, including Mount Ziquala, Fantale, Boset, Aletu 

(north of Lake Ziway) and Chebi (north of Lake Awasa). The prominent features 

STUDY AREA 
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however are the numerous lake basins that are characterized by their alkalinity 

(Addis Ababa University, 2001).  

 

Physiographyically, Central Rift Valley is characterized by almost level to gently 

sloping (reaching up to 1800 m.a.s.l) and a benched rift valley without sedimentary 

surface features. It has also volcanic lacustrine terraces formed in quaternary 

lacustrine siltstone, sand stone, inter-bedded pumice and stuffs, with fault 

topography bordering the major lakes plus parallels and low coastal ridges. It also 

has quaternary alluvial landforms, mostly bordering the main river valley or located 

at the foot of the higher plateaus, as alluvial colluvial cones (Markin et al., 1975; 

FAO, 1989). 

1.7.2.1 Soil types 

The soil types in the study area are related to the parent materials and their degree 

of weathering. The main parent materials are basalt, ignimbrite (consolidated ash 

flow), lava, volcanic ash and pumice, riverine and lacustrine alluvium that form the 

gently undulating plain characteristic of the area. Weathering varies from deeply 

weathered basalt in sub-humid highland areas to the recent un-weathered alluvial 

deposits in the drier part (Markin et al., 1975, FAO, 1989). 

 

The soil texture is mainly sandy loam with pH ranging from slightly acidic to very 

alkaline. Nearly all the soils of the area are exploited and losses by erosion at a rate 

much exceeding soil formation from the undergoing geological processes is high 

(Markin et al., 1975). Low organic matter, essential and trace nutrients, low water 

retention and infiltration capacity are the main characteristics of the soil. Toxic 

heavy metals are also prevalent in some places (Itanna, 2005). Adverse physical 

properties such as weak structure, high bulk density, surface crusting and hardpan 

formation are the obvious symptoms of the land degradation in the study area 

(Itanna, 2005).  

1.7.2.2 Rainfall pattern 

The broad characteristics of the climate, with its recurring wet and dry seasons, are 

determined largely by the annual movements across the country of equatorial low 

pressure zones. The dry northeasterly winds and the moist winds of southwesterly 

origin typify the dry and wet season climate pattern respectively (Markin et al., 1975; 
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Table 1.1 Rainfall characteristics, challenges and potential farming system strategies in Ethiopia (tropical climate) 

 Seasonal rainfall/evapotranspiration features 
 

Challenges/problems Possible strategies (thematic research areas) 

Total absence of rainfall/acute shortage/sub-
marginal  

<250 mm : Rain-fed farming impossible  Full irrigation, off season tillage and fallowing 

Low amount of rainfall  Cropping possible, rainfall insufficient to meet 
crop water requirement 

Selection of drought tolerant crop/varieties, soil 
water conservation  
Reduced seed rate/lower planting density 
Reduced fertilizer rate 
Split application of fertilizers 
Supplemental irrigation, increase length of growing 
period  

Low predictability of effective onset date/erratic  Difficult to adopt fixed recommendations (date of 
sowing, cultivars, planting density, fertilizer rates 
and time of application) 

Building prediction capacity 
Off season tillage to capture early rains  
Generation of crops and varieties of wider ecological 
plasticity 

Late onset date, early cessation (short duration) High yielding long cycle crops and cultivars 
cannot be grown successfully 

Generation of early and extra early crops and 
varieties 
In-field water harvesting to double soil water 
content and extend length of growing period 
Standardize fertilizer rates  
Adjust planting density  

Erratic distribution (high variability-intra-season 
and inter-annual) 

Water stress at critical crop growth stages  Generate cultivars with maximum water use 
efficiency 
Soil water conservation 
Split application of fertilizer  
Water harvesting  

Intermittent drought 
    Early stage (seedling establishment and  
    vegetative  stages) 
 
 
 
Mid season (flowering and fertilization stage) 
 
 

 
Reduced stand establishment 
Slow growth rate 
Premature switchover from vegetative to 
reproductive stage 
 
Shortened grain filling period, shrivelled grain 
 
 

 
Change crop or varieties according to the existing 
tradition and expected rainfall scenario 
Thinning down standing plants by certain 
percentage 
Soil water conservation, supplemental irrigation 
 
Harvesting for animal feed/fodder 

Cyclic  

Terminal stress (grain filling/maturity stages) Reduced yield or total crop failure Further thinning by certain percentage, weed 
removal, mulching techniques, repeated inter-
cultivation,(“hoes have water”)  
Protective irrigation 
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Table 1.1 continued  
 

High intensity index/torrential storms over a short 
period  

Rainfall exceeds infiltration capacity of the soil 
(considerable kinetic energy) 
 
Accelerated surface run off 
 
Soil erosion and increased sedimentation load 
 
Nutrient depletion /leaching/shallow soil depth 
and low water holding capacity 
 
Breakage of soil aggregates (weak structure and 
compaction of surface soil and sealing)  

Techniques to Increase opportunity time for 
concentration and infiltration  
Runoff water harvesting (inter row, inter plot, on 
farm pond)/dam 
 
Use sub-soilers/crust breakers 
 
Employ appropriate soil water conservation 
techniques (biological, physical, integrated) 

Evaporative demand exceeds rainfall amounts Quick soil water depletion, stiff competition for 
scarce water among crop stands, wilting  
 

Select drought tolerant crops and varieties  
(improved water use efficiency) 
Repeated intercultivation (soil mulching, residue 
and plastic mulches) 
Soil water conservation practices (biological, 
physical and integrated)  

 

Excess moisture/water logging Nutrient leaching, high erosivity, diseases and 
pest prevalence (damped environment) 

Fallowing, harvesting 
Growing crops on residual soil water 
Integrated surface and subsurface drainage (safe 
water ways) 
Devise appropriate diseases and pest control 
technologies 

Non- -
cyclic  
(trend) 

Climate change Irreversible shift and decline in rainfall start and 
end days, reduced rainfall totals, shortened crop 
growth periods 

Adjustment of research strategies (long term 
planning) according to the rainfall trend, 
reformulation of objectives, natural resources 
rehabilitation projects (eg, integrated watershed 
management) in the short term plan 

Adapted from Mamo (2003) 
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FAO, 1989).  During November to January, when northeasterly winds persist, long 

periods of dry winds are experienced, with little or no cloud and low relative humidity. 

Between March and May, the weather becomes unstable and convergence of moist 

southeasterly winds originating from Indian Ocean with the weakening northeasterly 

air stream causes rainfall to occur over most parts of this region. 

 

The area receives its first rain during the March-April-May season. This is the time 

when the high pressure cell (anticyclone) over South west Asia weakens or is in the 

process of disintegration and when the effect of the north east trade winds is 

considerably reduced. With the further progress of the season, air mass from the 

Indian Ocean invades the study area, as well as the western and southwestern plus 

northeastern parts of the country (NMSA, 1996a & b). 

 

On the other hand, the area receives rainfall during the June-July-August-September 

(JJAS) period, when the ITCZ migrates towards the northern Ethiopia on the Red Sea 

coast and Gulf of Aden side. During this season, both the Atlantic and Indian oceans 

contribute major rainfall to the region. The length of the rainy season varies from 

place to place, depending on the length and duration of the predominant winds 

(NMSA, 1996a & b).  

 

Despite the variability in rainfall and the prevalence of the long established spiral of 

land degradation in the region, there is considerable scope for raising the level of 

farmers’ returns through transfer of improved technologies (material and knowledge). 

The region consists of the most productive soils, such as the mid Meki-valley, which 

in combination with the micro irrigation and water harvesting techniques can form a 

base for an intensive cropping system. Moreover, many research and development 

institutions work in this region. These include Melkassa Agricultural Research Center 

(MARC), Debre Zeit Research Center, Adami Tulu Research Center, Awasa Research 

Center, Werer Research Center, Miesso and Arsi Negele sub-stations, Kulumsa 

Research Center, Wenji Sugar Estate, Metehara Sugar Estate, Upper Awash Agro 

Industries, Horticultural Crops Farm at Ziway, Adami Tulu Pest Control Plant, 

Abernosa Ranch as well as many private investors and processing plants.  
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1.8 Motivation 

It is a fact that agriculture provides a strong backbone to the overall Ethiopian 

economic welfare, employing over 85% of the population and accounting for 40 % of 

the GDP (Woldemariam, 1989). While the country has about 3 million hectare of 

irrigable land plus 110 billion cubic meter of surface water, the cropping system is 

almost totally carried out under the rainfed condition. 

 

Uses of low and traditional inputs, diversity of cultivated crops, poor yield and very 

limited use of improved soil water management or irrigation schemes are common 

features of this subsistence economy. A subsistence economy is one that provides 

sufficient food to last only from one harvest to the next. Therefore, a failure of one 

harvest means starvation for the ensuing year, shortage of seed for the next cropping 

season and loss of animal power to plough the fields (Abate, 1994). 

 

Recurrent droughts like those of 1970s, 1980s and 1990s, whether natural or man 

made, both exacerbate the adversaries and lead to increase in food price, increased 

imports of food, rural-urban exodus, and relocation of people to resettlement centres. 

Social and political strife and famine form part of the problem as well. 

 

Studies pertaining to seasonal rainfall prediction have been started in semi-arid 

subtropics, where there is a strong ‘signal to noise’ ratio and high coefficient of 

variation in the rainfall series. Accordingly, this has been successfully achieved at 

global and regional scales over the last two decades (Glantz, 1993; Dilley, 1997; 

Landman and Goddard, 2002). This has been possible, using global circulation 

models in which SSTs and SOI constitute the most important indices for seasonal 

climate outlook in combination with spatial and optimal mix of statistical analyses. 

 

Today, rainfall predictive information is available to farmers in many developed 

countries, while similar services are only in the beginning stage in developing nations. 

In view of the recurring impacts of drought and famine, seasonal rainfall prediction 

assumes a key position to maximise economic gains for the commercial farmers and is 

a matter of survival for the poor farmers.  

 

Moreover, since the balance between rainfall and evapotranspiration is a particularly 

useful indicator of the agricultural and hydrological potential of a given location, 
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proper understanding of the cropping system’s water requirement, climate risk and 

decision analyses assume priority position. It is this basic issue that justifies the 

unified study of the seasonal climate outlook, sorghum water requirement 

satisfaction, climate risk and decision analyses. The target users include the 

Ethiopian rainfed farmers, researchers and extension workers in general and the 

Central Rift Valley farmers in particular.  

 

Sorghum was used in this study with the aim of indicating the dimensions of crop 

yield variability in relation to climate variability in the study area. Sorghum is a C4 

plant and efficient user of soil water and adapted to the unreliable rainfall pattern, as 

well as to a range of soil types. Moreover, the reasonable performance of the crop 

under higher temperature ranges (30-35ºC) makes it a suitable crop for such studies, 

as well.  

 

The benefit from such an approach is expected to be high in the light of the exchange 

of improved material technologies (seeds) and decision aids (ideas) among the key 

actors, based on the seasonal rainfall prediction and soil water information.  

1.9 General objectives of this study 

To statistically characterize the seasonal rainfall variability in Central Rift Valley of 

Ethiopia; 

To develop homogenous rainfall zones using March- September monthly rainfall 

indices;   

To develop SSTs based seasonal rainfall predictive models for the Central Rift Valley of 

Ethiopia; 

To determine crop water requirement satisfaction index and risks associated with crop 

water needs under different planting windows; 

To develop a simple decision support tool to be used together with the seasonal and 

spatial rainfall predictive information in the study area. 

1.10 Organization of the chapters 

Overall, the study has addressed 12 specific objectives that are organized into the 

above 5 general objectives. The research chapters start from Chapter 2, which deals 

with a variability contained in the seasonal rainfall features (onset date, end date, 

duration, dry spell length and seasonal rainfall amounts) and very important for 
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operational farming. INSTAT [Interactive Statistical Processing Package (version 2.51, 

Stern and Coe, 2002) was used for these calculations. Chapter 3 deals with dividing 

the Central Rift Valley into homogeneous rainfall zones and developing seasonal 

rainfall prediction models for each zone using NAVORS2 and Climate Predictability 

Tool (CPT) of the International Research Institute for Climate and Society (IRI) 

respectively (http://iri.clolumbia.edu). This chapter forms the centrepiece of the 

study. 

 

Chapter 4 deals with the seasonal crop water requirement satisfaction patterns for 14 

possible and concurrent crop growing seasons (March-September) using the FAO crop 

water requirement satisfaction index model (WRSI) in AGROMETSHELL (Mukhala and 

Hoefsloot, 2004) and Ref-ET (Allen et al., 1998). From this, spatial and temporal 

sorghum suitability maps were drawn and water production function analyses were 

conducted. Chapter 5 analysed climatic risks related to sorghum planting windows in 

the study area. A stochastic dominance analysis (SDA) was done using SIMETAR 

software (SIMETAR Inc., 2004). Sensitivity analysis was done using Microsoft Excel 

2000, while APSIM (version 4.0) of the Agricultural Production Systems Research Unit 

(APSRU, 2005) was used for the crop simulation study.  

 

Chapter 6 deals with the climatic decision analysis for on-farm level decision making, 

which could be useful for smallholders and commercial farming alike. In this chapter, 

a short and simple tactical decision support tool (DST) that uses a wealth of 

information extracted from chapters 2 through chapter 5 was developed. Chapter 6 is 

therefore a binder of all the information generated in the preceding chapters and 

paves the way for the future more targeted research and development efforts in the 

study area. Chapter 7 comprises the summary, conclusion and recommendation of 

the whole document.  
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Chapter 2  

Statistical Analysis of Seasonal Variability and Prediction 
of Monthly Rainfall Amount Using Time Series Modelling 

2.1 Introduction  

Ethiopia has one of the most variable rainfall patterns that forms a natural part of 

farming in the world. A number of professionals and organizations have documented 

scientifically interesting reports on Ethiopian rainfall variability through classifying 

the country into various and a wider temporal and spatial rainfall categories (NMSA, 

1996a & b; FAO, 1984; FAO, 1989; Degefu, 1987; Gemechu, 1977; Ethiopian 

Delegation, 1984; Gonfa, 1996; NRRD/MOA, 2000) and many others. According to 

Haile (1986) drought occurs every 3-4 years in the northern and 6-8 years in other 

parts of Ethiopia. According to Kidson (1977) a steady downward trend of rainfall 

since the peaks of the 1950s has expanded more in 1980s covering almost the whole 

of Africa. In the Ethiopian context, opinions are also divergent regarding the arrival of 

the rainy season, which used to occur in March but is now gradually shifting to April 

through to July and, therefore, there is a progressive shortening of the growing 

periods and the corresponding seasonal rainfall totals.  

 

Owing to such a pronounced inter-annual and seasonal rainfall variability as well as 

extreme events, production risks and stresses to which the farming systems are 

exposed can arise from a wide variety of sources.  Evidences indicate that daily 

records of the past rainfall episodes can be examined and combined effectively so as 

to eventually reveal certain useful pattern pertaining to farm level strategic and 

tactical decision making (Landberg, 1960). Therefore, determining the possible ranges 

of rainfall onset date, end date, duration, seasonal totals and dry spell length, which 

together make up the overall rainfall features, can provide deep insight into 

translation of the ‘rainfall variability’ into the field level management options through 

proactive responses (Meinke, 2003).  

 

Substantial mechanisms exist to analyse variability in the above listed rainfall 

features, including probabilistic and deterministic ways applied over different spatial 

and seasonal scales. The cumulative rainfall departure (Xu and Tonder, 2001) and 
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time series analyses (Makridakis et al., 1983; Hoshmand, 1998; Sincich, 1993; 

Fleming, 2000) are a few among a variety of rainfall pattern expressions. Particularly 

the time series analysis technique serves two main purposes. Firstly, to decompose 

the series into the components (trend, cyclical, seasonal and random) that helps to 

examine whether there is a change in rainfall pattern over time and space. Secondly, 

in many practical applications, time series analyses is used to predict future values of 

the series, with the assumption that naturally the past and the future atmospheric 

phenomena are interrelated stochastically. Accordingly, the future values have a 

probability distribution which is conditioned by an intimate knowledge of the past 

rainfall behaviour (Green, 1966).  

 

While Ethiopia has more than 2000 manual ground weather observatory stations with 

limited records, the scientific advances in making use of this resource in agricultural 

research and the development arena is rather limited. Only few individuals (Mersha, 

2003; Simane and Struik, 1993; Reddy and Georgis, 1994, Tesfaye, 2004) reported 

general or crop specific climatic analyses and none of this information has been used 

in operational farm management decisions. Generally, the analyses of sensitivity 

thresholds that, if exceeded, could lead to a catastrophic effect have not been done in 

any detail and/or for any specific location. The impact is apparent; viz. whenever 

drought occurs, it is inevitably followed by an immediate famine and economic crisis, 

culminating in chronic reactive appeals for humanitarian assistance at government 

level. Meagre harvests, total crop failures and rapid decline in productivity, 

particularly in drought prone areas like the Central Rift Valley, are common 

characteristics. 

 

However, for the rainfed-based farming to be productive and profitable, the 

relationship between the two has to be decisively subjected to detail examination. For 

this, two prominent questions need an urgent reply. The first concerns the necessity 

of the study of the variability in various rainfall properties, including onset date, 

duration, end of the season and dry spell length.  Secondly, the accuracy with which 

these various rainfall properties can be predicted to allow advance decision on the 

possible proactive adaptation of specific categories of technologies to be used over a 

given temporal and spatial resolutions (Green, 1966). The latter can be answered 

through time series prediction model fitting. If these questions can receive appropriate 
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answers and if used together with the seasonal climate outlook guidance, this would 

mean a boon for Ethiopian agriculture. 

 

In Ethiopian agriculture it is this basic knowledge that is deficient and the weather-

based research has yet to receive sufficient attention. This could replace the current 

trial and error experimentation, which in the past has often been performed at high 

cost. In short, in rainfall climatology, water requirement of various crops and 

agriculturally significant rainfall patterns must be studied jointly. The recent 

statistical report of Tilahun (2005) on a monthly and annual rainfall and 

evapotranspiration variability basis at nine arid and semi-arid areas of Ethiopia is a 

useful example. Such detail analyses enable a proper understanding of the 

underpinning factors of drought and the associated famine that could develop and 

appropriate measures to be taken to mitigate the impact of the drought and famine 

syndrome.  

 

Therefore, this chapter presents a detail account of the rainfall variability statistics 

and time series model-based rainfall prediction results with a view to achieving the 

following three specific objectives for possible application to cropping system 

management in the Central Rift Valley of Ethiopia.   

 

a) To examine the unique rainfall features and inter-station variability using daily 

rainfall data of two weather stations 

b) To examine the trend, seasonal and cyclical components of the rainfall series 

c) To fit time series prediction models to the March-October rainfall of Miesso and 

Abomssa weather stations. 

 

This point statistics-based attempt, despite being far from adequate in addressing the 

agriculturally useful rainfall variability and prediction in the complex Ethiopian 

agriculture, can at least form a firm footing for drought related investigations at a 

specific spatial and temporal level. 

2.2 Materials and Methods 

Daily rainfall data from two weather stations having varied time series were used for 

these analyses. Abomssa, representing the adequate moisture situation and Miesso, 
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representing the inadequate rainfall farming zones were chosen, as they also 

represent the classic sorghum growing environments in the study area.  

2.2.1 Data acquisition and extraction  

The majority of daily rainfall data were obtained by courtesy of the National 

Meteorological Services Agency (NMSA) of Ethiopia, and partly from the archive of 

Melkassa Agricultural Research Center (MARC). Data were captured into Microsoft 

Excel 2000 spreadsheet following the days of year (DOY) entry format. In order to 

make the series amenable to further analyses, the missing values were patched using 

Markov chain simulation model of INSTAT (Stern et al., 2002). This statistical package 

fits a model to the past data and then generates similar time series for any number of 

desired years. The type of distribution/shape parameter used at this step was a 

gamma probability density function (Stern and Coe, 1984; Wilks, 1989). 

 

   
Where:    α = shape parameter 

     β  = scale parameter 

     Γ  = gamma function evaluated at  level  

        x = amount of rainfall.  

 

Data quality was checked using the single mass curve technique (Abate, 1994) in 

which a given station’s rainfall record is assigned in a cumulative way to the y-axis 

and years assigned to the x-axis. Since rainfall series show significant variations, the 

homogeneity test was done prior to performing the analyses. Data may lack 

homogeneity, because of many external factors like station relocation, change of 

observers, change in time of observation and recalibration of the instruments (Green, 

1966).  

2.2.2 Analytical methodology 

After patching and quality checking, daily rainfall datasets were subjected to detail 

analyses using sequences of statistical packages. At the outset, the box and whiskers 

plotting technique was used to illustrate the inter-seasonal spread of the series with 

respect to onset date, end date, duration, MAM and JJAS rainfall seasons. In a box 

and whiskers plotting, the box represents the middle 50% of the whole dataset, while 
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whiskers represent the magnitude of the spread of the rest of the dataset about the 

median or mean. Most of the rest of statistical analyses were done using INSTAT 

package version 2.51 (Stern et al., 2002). The results are tabulated and plotted 

graphically. 

 

Owing to the very broad perception that rainfall pattern in the study area exhibits a 

bimodal nature (short rain during MAM and long rains during JJAS), March 1st was 

picked as a potential planting date. Therefore, any rainfall amount occurring before 

the last day of February was excluded from the ensuing rainy season with the 

assumption that this season is dry, which is the basic rainfall characteristic of the 

study area. Then, the definition of effective onset date was employed in order to 

evaluate the historical rainfall series and to identify successful planting dates from 

the past records. In setting an onset date of the past records, many different criteria  

exist for different crops exhibiting different maturity plus drought tolerance levels and 

soil types. Here, the one with 20 mm of total rainfall received over three consecutive 

days that were not followed by greater than 10 days of dry spell length within 30 days 

from planting was adopted (Raman, 1974). Sivakumar (1988) also used similar 

criteria, except that he used 7 day dryspell length. These criteria are useful 

particularly in mitigating the seedling establishment related rainfall risk. The 

Ethiopian National Sorghum Improvement Program (ENSIP) also uses this, especially 

the first part of the onset definition.  

 

On the other hand, the end of the growing season is mainly dictated by the stored soil 

water and its availability to the crop after the rain stops. In this study, the end of the 

rainy season was defined as any day after the first of September, when the soil water 

balance reaches zero (Stern et. al, 1982). In determining the end date, a fixed 5 mm of 

evapotranspiration per day and 100 mm/meter of the plant available soil water were 

considered. In addition to the above onset date criteria, the probability of dry spells 

length exceeding 5, 7, 10 and 15 days within the next 30 days after planting was also 

calculated for every month with potential for planting (March-September). 

2.2.3 Time series analysis 

In a time series decomposition analysis, the critical task is to separate patterns (trend, 

seasonal and cycle-random components) and use the resulting information in 

planning for long term/future changes and for the current business decisions. ‘Trend’ 

represents a smooth and relatively slowly changing feature of the time series (Green, 
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1966, Shiskin et al., 1967; Makridakis et al., 1983; Pezzulli, et al., 2003), implying 

that the observations are not randomly distributed. This non-randomness could be 

the characteristics of any record in which the rainfall of consecutive years show a 

certain degree of persistence.  

 

As such, information on trend is of high significance in operational agriculture, 

because not only does it imply the constantly changing levels in the potential rainfall 

supply, but also, if it dominates the pattern, it might render the seasonal rainfall 

distribution and totals to be seriously deficient. In fact, owing to the large sampling 

errors and insufficiently long series, questions involving rainfall trend analyses have 

frequently been inconclusive (Landberg, 1960) and this is necessarily true for 

Ethiopia, where weather stations are sparse and have a very short recording history. 

 

The choice of which method to use in time series analyses depends on the theoretical 

considerations and historical patterns the data may have followed. In time series 

analyses, one can use different methods that make different underlying assumptions 

and reveal different aspects of seasonality, but the primary goal of all of them is to 

achieve the highest possible accuracy in predicting a given series value (Pezzulli, et al., 

2003). In this study, the monthly rainfall series was analysed for fractionation into the 

major components using a least square method of coded time (Hoshmand, 1998). It 

follows that if there is no rainfall trend and if the seasonal rainfall variation completes 

regularly in a cycle of one year, then the series could have optimal seasonal predictive 

utility (Hoshmand, 1998). Therefore, such a breakdown of the observations into the 

components could facilitate improved accuracy in predicting and aid better 

understanding of the behaviour of the series  

 

Using the coded time concept in the least square helps one not to deal with large 

numbers such as 1995, 1996, and so on. Furthermore, it simplifies the equations that 

are used in computing the intercept ( a ) and the slope of the trend line (b).  To code 

the time, the mean of the series was subtracted from the value of each of the sample 

times.  In this computation, the additive model was adopted as follows.  

 
Xt = Tt + St + CIt        (2.2)  

Where:   Xt  = observed monthly rainfall series (mm) 
      Tt  = trend component 

 St  = seasonal component 
   CIt = cyclic-irregular component  
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In order to compute the trend, one needs the coefficients ( a andb ). 

    a  = 
n

t∑X        (2.3)  

Where:    a  = average value (intercept) 
    =n  total number of observations (series) 
    Xt = observed monthly rainfall series as given in Eq. 2.2
  

b  = 
∑

∑
x

tx
2

X          (2.4) 

Where:   b = slope of the trend line  
=x  time code for the series.  

 

Thus the least square equation for the trend line is: 

 

Tt  = a + bx       (2.5) 

Likewise, the equation for the seasonal (S) component is: 

 

  St =  Xt - Tt - CIt       (2.6) 

Where:    CIt  = Cyclic-irregular component  

Finally, the cyclic-irregular component (CI) was computed by eliminating the seasonal 

component, as follows: 

 
CIt = Xt - Tt - St      (2.7) 

Where:    Xt, Tt and St are as defined above.  

 

The objective of this part of the analyses is therefore to examine whether the monthly 

rainfall series is in a declining or increasing direction as well as to determine the 

drought cycle. 

  

2.2.4 Time series prediction model fitting 

Following the decomposition analysis and finding that the data does not show a 

significant trend, harmonic regression models (7 models for Miesso and 8 models for 

Abomssa) were fitted to the monthly rainfall total. Owing to the fact that the 

amplitude of each month’s rainfall values (the magnitude of the peaks and the valleys) 

appears to vary with years (forming a wave-like pattern), a harmonic regression that 

combines time and trigonometric functions was found suitable for these analyses. 
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Harmonic regression is one of the commonest methods of describing periodic 

phenomena whose values are repeated at equal intervals of the independent variable 

(in this case, time) requiring the sine-cosine statistics (Makridakis, et al., 1983; 

SIMETAR Inc., 2004).  

 

In fitting the model, reducing the error component or increasing goodness of fit (how 

well the prediction model is able to reproduce the observed series) was the main target 

and therefore calibration (setting parameters that reduce the prediction error) was 

done for each model. Accordingly, in this time-dependent deterministic model fitting, a 

varying degree of polynomial regressions with the highest r2 values as well as, 

reasonable levels of error quantifier statistics including Durbin-Watson (DW), root 

mean squared error (RMSE) and mean absolute percentage error (MAPE) were used. 

The DW statistic is a significance test of a first order (lag = 1) autocorrelation (Eq. 

2.11). Since r1 ranges between –1 and 1, the DW statistics ranges between 0 and 4 

(Makridakis, el al., 1983). If after fitting the model, DW statistic is close to 2, then r1 

is close to 0; an indication of small autocorrelation among the random values, while 

the DW values of below 2 and above 2 indicate the existence of definite 

autocorrelation among the random series. Further, for better results, the RMSE and 

MAPE values should also be as low as possible.  These measures of prediction errors 

are available as outputs in SIMETAR. 

 

In these prediction models, the first-degree components were restricted/excluded from 

the resulting model, as the monthly series lacks linearity. Furthermore, each 

autoregressive model predicts the future values of the series with lag 1, which means, 

last year’s March rainfall (Xt-1) for instance is used to predict the value for the same 

month this year (Xt+1).  For Miesso 23 years data (1975-2003) were used to develop 

the model and the remaining 6 years data were used for cross validation. For 

Abomssa, 17 years data (1982-2003) were used to develop the model, while the 

remaining 5 years data were used for cross-validation. The model parameters 

development involve the following generic equation: 

( ) ( ) ( )CLPiTCosCLPiTSinCLPiTnbnTTbTbtXbtX /2/2/2332111 ±±±±±±−=+  (2.8)

                                                                        
Where:    Xt+1 = one step ahead predicted value  

   Xt-1 = previous value in the series (1 lag) 
              b1, b2 …….bn = model parameters   
                   T = Time (year 1, 2, 3…………year n) 
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            CL = number of polynomial degrees    1≥CL   
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Where:    RMSE = root mean squared error 
             T = time (year 1, 2, 3……..year n) 
                     N = number of observations  
                       e = error (observed minus predicted). 
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Where:   MAPE = Mean absolute percentage error  
          et = Residual value at time t 
           Xt =Observed value at time t 
 

)1(2
1
rDW −=

      (2.11) 
Where:   DW = Durbin Watson statistics 

    1
r

 = first order (lag =1) autocorrelation. 
 

2.3 Results and Discussion 

The distribution of the operationally useful rainfall features listed above formed a good 

starting point for examination of the series.  The lower (25 percentile), median (50 

percentile) and upper quartile (75 percentile) caps of the whiskers in Fig 2.1a and Fig 

2.1b provide a complete and useful explanation of the existing variability in the 

rainfall features. In Fig 2.1a, the variability in onset date for the two weather stations 

is high as compared to the rest of the rainfall features. For instance, for the onset date 

at Miesso, the respective lower and upper quartiles fall between 61 and 179 DOY (four 

months) with 42.0% c.v and between 61 and 134 DOY (two and a half months) with 

the 40.5% c.v for Abomssa. Therefore, at both locations planting earlier than 15 

March (75 DOY) is possible only once in every four years time (see Table 2.1 also). 

Further, at Miesso this upper quartile (75 percentile) statistic extends up to the 179 

DOY (last days of June) at Miesso and 15 April (134 DOY) at Abomssa.  

 

At Miesso, the main rainy season terminates during the last days of September (272 

DOY) once in four years time and terminates earlier than 293rd DOY (2nd week of 

October) in three out of four years. The same statistic for Abomssa was found to be 

286th DOY (12th October) and the end of October (305th DOY). Accordingly, the main 
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growing season would not extend beyond the second week of October in the case of 

Miesso and beyond the end of October for Abomssa. The lowest (4-6%) c.v and the 

much smaller box for the rainfall end date in Fig 2.1a indicate that the ending dates 

vary over a short time span at both places. Therefore, as less variability implies that 

patterns could be more understood, decisions pertaining to harvesting and storage  

could be made more easily than the decisions pertaining to planting at both locations. 

 

A further note could also be made from Table 2.1 and Fig 2.1a that rainfall duration is 

dependent mainly on the onset date. At Miesso, rainfall duration is lower than 102 

days in only 25 % of the years, while it is lower than 204 days in 75% of the years. 

Similarly, the lower quartile for rainfall duration at Abomssa is below 161 and below 

222 days in 75% of the years. The early onset date suggests that crop cultivars of the 

longer maturity type could do better with the late onset date (Stewart, 1988). The 

issue of rainfall duration deserves further attention, in that one needs to know the 

type and level of risks of yield loss associated with cultivars of different maturity 

categories, requiring different amounts of water during a sequence of growth stages. It 

is only then that one can confidently pinpoint the most suitable maturity cultivars to 

be planted in seasons with different onset date scenarios (Stewart, 1988).  According 

to Borrell et al. (2003), such weather information guided farming help in combining 

the genetic solutions into the management aspects, providing farmers with a range of 

viable options to combat drought. 

 

It is noted in Table 2.1 and Fig 2.1b, MAM season rainfall at Miesso is 0 and 125.5 

mm, while the same term is 0 mm in one out of four years with upper quartile value of 

147.7 mm in case of Abomssa.  During MAM season, Miesso records a maximum 

value of 280.6 mm rainfall and Abomssa records 323.8mm.The least box in Figure 

2.1b reflects how the MAM rainfall total is lower for the two stations. From the same 

table, it is noted that the median rainfall during MAM is much less than the 

corresponding averages for both the stations (for Miesso, the median is 19.8 mm and 

the average is 67.7 mm). For Abomssa, the median is 17.0 mm and average is 74.9 

mm. The MAM rainfall exhibits the highest variability for the two stations, with the 

standard deviation (s. d) of 86.3 mm for Miesso and 97 mm for Abomssa. The c.v. is 

127.5% and 129.9% for Miesso and Abomssa respectively. 
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Similarly, the bottom and upper quartiles of JJAS rainfall total for Miesso are 200.3 

mm and 688.9mm respectively and 418.7- 875.5 mm for Abomssa. Table 2.1 further 

elaborates that the median rainfall total of JJAS for Miesso is less than the average 

(551.9 mm vs 584.7 mm). For Abomssa these values are larger than the average of the 

season (median = 768. 0 mm; average = 712.3 mm).  The c.v of the JJAS rainfall for 

the two stations ranges from 29.1 to 37% for both stations.  

 

Overall, except for the magnitude, the two weather stations have similar patterns with 

respect to the rainfall variation. Given such a wide variation particularly in onset date, 

it is noticeable how planting decisions in rainfed farming would be critical to these 

farmers. It is this fundamental point that justifies the need for seasonal climate 

outlook information and various field level alternatives under semi arid conditions 

(Stewart and Hash, 1982; Jean et al., 2004). 

 

According to the traditional wisdom of farming in these zones, longer duration 

cultivars are preferred to the shorter maturity ones and therefore more desirable. This 

is in agreement with the scientific understanding that longer duration cultivars yield 

more biomass.  However, the delay in onset date is frequent particularly at Miesso, 

hindering planting of long duration cultivars. Hence, farmers have no choice but to 

opt for growing the lower yielding short duration cultivars with late arrival of rainfall. 

For these farmers, growing longer maturity cultivars could be rewarding, if supported 

by seasonal outlook information pertaining to rainfall distribution and appropriate soil 

water management techniques, as a means of knowing which level of input (intensive 

or low cost and low yield targeted cropping) to adopt in a given season. 

2.3.1 Rainfall bimodality 

As stated, the available body of literature and popular perceptions support the persistence of 

bimodal type of rainfall (NMSA, 1996a, b) in the study area. Given 1st of March to be the 

potential planting date, a search was made for a successful planting date from the 

past records that helped to ascertain whether there exists a true bimodal nature of 

the rainfall pattern in production terms. Fig 2.2 elaborates how the early onset date is 

associated with the increased rainfall totals at both Miesso and Abomssa. Early onset 

dates in this case imply the start of rainfall some time before June or before the end of 

MAM season. From the linear regression line, onset date explained 59% of the 



28 

variability in longer rain totals for Miesso and 45% for Abomssa. According to this 

linear regression, Miesso receives a maximum of 975 mm of rainfall and Abomssa  

 
Table 2.1 Descriptive statistics of important rainfall features for Miesso and Abomssa weather 
stations 

Minimum 

Quartile 1 

(25%ile) 

Quartile 2 

(Median) 

Quartile 3 

75%ile) Maximum Average 

S.D 

( ± ) 

C.V 

(%) Seasonal 

Rainfall features Miesso 

Onset date (DOY) 61 75 104 179 200 119 51 42 

End date (DOY) 245 272 282 293 345 283 18 6 

Duration (no. of days) 55 102 178 204 268 164 57 35 

MAM total (mm) 0 8.0 19.8 125.5 280.6 67.7 86.3 127.5 

JJAS total (mm) 200.3 424.3 551.9 688.9 1069.2 584.7 216.3 37.0 

Abomssa 

Onset date (DOY) 61 74 90 134 192 108 44 40.5 

End date (DOY) 274 286 294 307 331 297 15 5.1 

Duration (no. of days) 99 161 211 222 244 189 49 25.9 

MAM total (mm) 0 9.2 17 147.7 323.6 74.9 97 129.9 

JJAS total (mm) 418.7 506.6 768.1 875.5 111.7 712.3 207.5 29.1 
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Figure 2.1 Five agriculturally important seasonal rainfall features at Miesso (1974 - 2003) and 
Abomssa (1981- 2003), CRV of Ethiopia (a) rainfall onset date, end date and duration; (b) MAM 
and JJAS rainfall totals. 
 

(b) MAM & JJAS rainfall  

(a) Rainfall onset date
Rainfall end date 
Rainfall duration 
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reaching a maximum of 1063 mm, both of which reduce by the order of 3.2 mm for 

every day delay in rainfall onset. 

 

 
 

Figure 2.2: Rainfall onset date versus MAMJJAS rainfall total at Miesso (+) and Abomssa (▲) 
(the broken line represents Miesso and the solid trend line represents Abomssa). 
 

The start of the main rain before June implies the merge of MAM and JJAS seasons 

that corresponds to the reduction in MAM rainfall totals. Particularly during such a 

merge of the two seasons, MAM rains cannot meet the amount of water required to 

sustain crop or cultivar of any shorter duration to reach maturity within the confines 

of the same season. Indications are, and particularly from the economic farming 

perspective, that the seasonal rainfall pattern in the study area does not have distinct 

bimodality and because of these characteristics, it could be concluded that there is an 

overlap between the two seasons (Fig 2.2). Gissila (2001) also reports that the break 

period between the two rainy seasons is brief over the central parts of Ethiopia, while 

it increases from southwest to the northward and eastward directions. 

2.3.2 Probability of dry spell length 

In rainfed farming, the intermittent dry spell becomes critical, particularly for the 

seedling establishment during the first 30 days or so after planting.  In fact, a dry 

spell of any length could occur at any stage of crop growth; however, it is  potentially 

damaging if it coincides with the most sensitive stages such as flowering and grain 

filling (Stern and Coe, 1984).  
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To provide a viable decision aid to various practitioners, different dry spell lengths 

were examined. Accordingly, given a condition that 1st of March is a potential planting 

date, the probability of dry spells longer than 5, 7, 10 and 15 days were analysed 

(Figure 2.3). This sheds insight into the risks related to a range of dry spell lengths 

during the entire rainy season.  Also, the reason behind including the ‘dry spell 

length’ conditions into the later months of the growing season is to provide a complete 

picture of how the dry spell length of various magnitudes are distributed during the 

entire growing season and to examine the associated risk at each location.  

 

The ‘parabolic-type’ curves in Fig 2.3 explain, for instance, the probability of dry spells 

longer than 15 days within the 30 days after planting on the first day of any month 

that forms part of the rainy season (March-September). For both Miesso and Abomssa 

stations, the probability of dry spells longer than 15 days in March is less than 10%, 

whereas it shows a certain degree of upward slope in April and May (note the mini 

peaks on the left arm of the curves) and descends down to 0 from the middle to end of 

June. The same Figure also demonstrates how the probability of 5 and 7 days of dry 

spell curves stays at the value of 1.0 during the earlier months. All the dry spell 

length probability curves converge to their minimum only during the peak rain period 

(July and August or DOY 180-244) for both stations and turn upward again around 

September (244-274 DOY), signalling the end of the growing season. 

 

Information on the probability of such a range of dry spell lengths is useful for 

different groups of farmers who work under different capability or resource 

endowments. For instance, farmer ‘A’ (a risk taker) who may have access to irrigation 

water or have a crop adapted to suspend its growth under a longer dry spell could 

decide to plant during the earliest /risky months of the growing season. In this way, 

one can maximize outputs by taking risks associated with such a long dry spell. On 

the other hand, a resource poor farmer ‘B’ (a risk averse) lacking water resources or 

other soil water management techniques or decision tools to manage any risk of dry 

spell longer than 5 or 7 days has to wait until the sufficient soil water accumulates. 

Since the two farmer groups do not utilize resources at the same level (time of 

planting, crop cultivars and other inputs), the expected yield level would not be 

similar for the two farmer categories. In any case, late onset is the least preferred 

situation, obviously because it shortens the available length of the crop growing 

period and the potential to satisfy the crop water requirement (Green, 1966). 
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Figure 2.3 Probability of dry spell longer than 5, 7, 10 and 15 days, given 1st of March as 
potential planting date at (a) Miesso and (b) Abomssa, Central Rift Valley of Ethiopia 
 

Overall, this information serves different farming groups working under different 

practical settings to help make tactical decisions and take appropriate actions within 

their own ‘real life’ farming circumstances and to combat or avoid drought conditions. 

2.3.3 Time series analysis output 

Fig 2.4a shows the monthly historical, trend, cyclic-irregular and seasonal 

components of the rainfall series of Miesso for the years 1970-2003 (n = 30).  Miesso, 

located at the northeastern flank of the study area is characterized by a variable 

rainfall pattern, receiving a long-term annual average of  (730) mm.  The linear trend 

line fitted reveals that, though the observed rainfall values oscillate along time, the 

corresponding monthly rainfall trend constantly varies about the mean monthly value 

of 62.6 mm. 

 

On the other hand, it can be noted from the curve that during 1974-1976 (3 years) the 

positive contribution of the cycle to the rainfall series was evident, while during 1977-

1983 (7 years) the contribution of the cyclic component to the system was positive. 

Further, the curve had also captured the 1984-1986 drought period, followed by the 

1987 wet and 1988 dry year. The next drought episode was in 1992, followed by the 

1996-97 wet year. In the recent years drought has taken place in 1998-99 and in the 

year 2002. Generally, the cyclic-irregular component of the monthly rainfall series at 

Miesso shows the irregular pattern that doesn’t show the clear-cut return period of 



32 

drought. However, as a first approximation it could be generalized that the drought 

cycle at Miesso ranges between 2 and 3 years and this result is consistent with the 

frequent crop failure experienced in the area.  

 

Among many others, the frequent crop failure could be attributed to the very high 

evaporative demand and the corresponding high crop water requirement, which could 

also be true for many regions situated close to the equator. For the research system to 

help with this complex problem and to arrive at the conclusive statements, detail 

studies including other local factors (soil and topography) are required.  

 

Similarly, the seasonal component with the wavy pattern (bottom curve in Fig 2.4) 

shows the periodicity of rainfall peaks and troughs (i.e. the peaks represent the 

positive contribution of the months to the rainfall producing system, while the troughs 

indicate the normally dry, as well as drought, months). In comparison, July and 

August months make highest contribution to the season’s rainfall total. However, with 

the possible high evaporative demand considered for the same time period, the 

contribution of July and August rainfall to the water balance is lower and therefore 

this could be one reason for the frequent crop failures at Miesso. This information 

could be used in seasonal rainfall prediction and soil water related research and 

development efforts. 

 

Fig 2.4b on the other hand examines the same time series components for Abomssa 

for the years 1981-2003 (n = 23). Abomssa, situated at the southeastern part of the 

study area and receiving an average annual rainfall of 895 mm is the major sorghum 

growing zone in the region. From Fig 2.4b and the linear regression fit, the monthly 

trend oscillates with almost constant monthly rainfall values of 75 mm and without a 

distinct decline or increase in direction. This implies that the rainfall of the area does 

not show any significant trend. Unlike the Miesso case, the cyclic-irregular component 

in the Abomssa series depicts both below and above average rainfall patterns. For 

instance, 1983- 1987 was a period of below average rainfall, while the 1988-1990 

period was above average. Therefore, as the sample size is not sufficient, a clear 

return period of drought could not be easily drawn.  
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Figure 2.4 Monthly observed/trend, cyclic-random and seasonal components of the rainfall (a) 
monthly observed and trend; (b) monthly cyclical-random component and (c) monthly seasonal 
component from the Miesso weather station 

 
 
 
 

a) Miesso: Monthly observed and trend rainfall
y = -0.0054x + 63.557
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b) Miesso: Cyclic-random component
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Abomssa: Monthly observed and trend rainfall y = 0.0034x + 74.386
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Figure 2.5 Monthly observed/trend, cyclic-random and seasonal components of the rainfall                
(a) monthly observed and trend component; (b) monthly cyclic-random component and (c) 
monthly seasonal component from the Abomssa weather station 
 

The seasonal component of the rainfall series at Abomssa also contributes positively 

to the season's rainfall, with July and August contributing the most. The June to 
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September component of the rainfall series of the year 2002 reveals above average  

contribution (43.3% to total of 291.9 mm rainfall that took place during these 

months). Generally, the seasonal component shows alternating patterns; peaks during 

the rainy months and troughs during the dry periods that make it predictable for use 

in the operational farming. However, as the data series is too short, more meaningful 

results have to be worked out in the future, as and when the dataset has accumulated 

sufficiently. 

  

In comparison with Abomssa, the observed and the trend line for Miesso is lower (Fig 

2.4a and Fig2.4b). As the series is too short, trend could not be detected, implying 

that rainfall variability is the natural part of the agroecosystem in these zones. In 

other words, this study did not find that drought is becoming a frequent phenomenon 

in the area. Therefore, time series prediction models could be fitted to both stations 

series. There is a need for the revision of the analyses with further accumulation of 

the necessary dataset.  

2.3.4 Time series prediction model fitting  

An examination of Table 2.2, Table 2.3, Fig 2.6 and Fig 2.7 underlines how the 

prediction models fitted to the seasonal series, behave. Table 2.2 and Fig 2.6 explain 

the time series-model relationship for rainfall at Miesso, the r2 value for March being 

0.845 (Eq. 2.12 in Table 2.3). For the rest of the growing season reasonable 

relationships were observed for all months under consideration, except May (r2 = 

0.620, see Eq. 2.14 in Table 2.2). Better relationships were noted particularly for July 

and August with r2 = 0.924 for July and 0.937 for August (Fig 2.6e and Fig 2.6f and 

Eq. 2.16 and Eq.2.17 in Table 2.2).  The relationships for April, June and September 

are also quite acceptable (Fig 2.6 b, d, g and Table 2.2) with r2 values ranging from 

0.818 to 0.86, indicating the models’ agreement with the monthly series of Miesso. 

 

From Fig 2.7a and equation 2.19 in Table 2.3 the model was able to capture the-non-

linear or wavy pattern of March rainfall series at Abomssa (r2  = 0.886; RMSE = 43.3; 

DW = 1.99 and MAPE = 105.8). Equation 2.20 in Table 2.3 shows a better fit of the 

April prediction model with r2 value of 0.918 with the other error quantifier statistics 

performing reasonably as well. On the other hand, with a closer look at the 1991,  
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Table 2.2 Time series prediction models for March to October rainy season for Miesso 
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Table 2.3 Time series prediction models for March to October rainy season for Abomssa   
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Figure 2.6 Observed and predicted March-September monthly rainfall totals at 
Miesso, CRV of Ethiopia 
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Figure 2.7 Observed and predicted March-October monthly rainfall totals at Abomssa, CRV of 
Ethiopia 
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1994, and 1995 October series, the corresponding model values at Abomssa could be 

judged differently. Fig 2.7h underlines how the two curves diverged, rendering the October 

series-model relationship relatively poor. The error quantifier statistics in Table 2.3 (Equ. 2. 

26) also give a similar explanation (r2= 0.767, RMSE = 64.4 and MAPE = 116.9%). Similar 

insight could be obtained for the 1991 May series-model relationship (r2 = 0.824; RMSE = 

41.6; DW = 1.70 and MAPE = 66.6). For the case of August (Eq. 2.24), the model performs 

well with r2 = 0.956; RMSE = 44.5; DW = 1.98 and MAPE = 20.2%) indicating the higher 

degree of agreement between the series and the model output. A similar useful trend holds 

for July and September as well (Fig 2.7g, equation 2.23 and 2.25 respectively in Table 2.3).  

One of the problems with time series prediction model is that it does not provide the factors 

underpinning future values. Moreover, because of the high possibility of a change in model 

structure, mainly due to climate change, the risk associated with predicting outside the 

observed range of the independent variable could be high (Sincich, 1993). Despite this 

difficulty, an overall evaluation shows that the models could provide a reasonable predictive 

utility for farm level decision making, particularly in conjunction with the other prediction 

tools. 

2.4 Conclusions 

 
The statistical analyses have collated essential numerical evidences for the existence of 

variability in important seasonal rainfall features in the study area, giving possibilities for 

monthly rainfall prediction using time series models. The first section of the chapter focused 

on capturing the variability in onset date, end date, duration and the seasonal rainfall 

totals. Of all the features, onset date and the MAM rainfall totals were found to vary 

considerably for both the two weather stations (c.v. for onset date and MAM rainfall total is 

42 % and 127.7% respectively at Miesso; 40% and 129.9% for Abomssa).  

 

The bimodality of rainfall pattern in the study area was also studied in relation to the onset 

date. The result shows that early onset (the start of rainfall any time between March and 

end of May) is associated with the overlap of the short and long rainfall seasons, as 

explained by the linear regression line for season total rainfall versus onset date at Miesso 

(r2 = 59% for Miesso and 45% for Abomssa). Therefore, the MAM rainfall totals, particularly 

during such a merge, cannot support the successful growth and development of any short 
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duration sorghum cultivars within the confines of the MAM period. Indications are, and 

particularly from the economic farming perspective, that no clear evidence exists for 

bimodal pattern of the rainfall, at least at the studied weather stations.  

 

Further, once the rainy season has commenced and planting actions have taken place, the 

risks related to the intermittent dry spell length comes into the picture. Probabilities 

pertaining to a range of dry spell lengths were also discussed in which values for longer 

than 15 days is less than 10% during the entire March-September period. This could be 

compared with the probabilities of 5, 7 and 10 days longer or any other intervals that carry 

useful information for both risk averse and risk taking farmers.  

 

The second part of the chapter dealt with the time series analyses and prediction model 

fitting to the monthly rainfall series. Important findings include the non-existence of trend 

for the stations. The trend lines fitted indicate the irregularity of the series with mean 

monthly values of 62 mm for Miesso and 74 mm for Abomssa. This is also useful 

information for long-term development planning, as well as attaching seasonal time series 

prediction models that could be used in reducing uncertainty and risks associated with 

rainfall and, therefore, sorghum planting dates in the study area. The seasonal components 

for the weather stations also reveal a certain degree of periodicity in which August and July 

contribute most to the system. The models developed for the two stations were able to 

capture the past and recent drought years, including that of year 2002, justifying the 

usefulness of the rainfall series in estimating its own future values. Accordingly, a total of 

15 time series prediction models (7 for Miesso and 8 for Abomssa ) were fitted to the months 

with potential for cropping in the region. March to September/ October season was 

considered for this purpose.  

 

Generally, the detail knowledge and understanding of such basic rainfall features and 

model fitting can lead to further improvements in risk management practices. It places the 

influences of current climate variability on the farming system in perspective. In order to 

identify the real cause of frequent crop failure at Miesso, focus should also be on detailed 

soil water balance studies that consider the evapotranspiration component, rather than 

dealing only with rainfall per se. When complemented with the other rigorously analyses 

done, the technique could be a useful decision support tool for farming in the study area. 
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Chapter 3  

Homogeneous Rainfall Zones and Seasonal Rainfall Prediction 

3.1 Introduction 

At the world scale, seasonal rainfall bearing weather features range from the local land-

sea breeze and thundercloud to the large-scale wave patterns that circumscribe the 

globe, all of which are part of the coupled ocean-atmospheric process of transport of 

energy and water vapor. This giant pattern, covering the entire planet earth, is 

appropriately explained by global circulation models (GCMs) that compactly represent 

the fact that the solar energy absorbed in the equatorial-tropical region is greater than 

the outgoing infrared radiation, while the opposite operates in Polar Regions (Seleshi, 

1996).  

 

The increasing concern about the socio-economic impacts of climate risks, both due to 

natural and anthropogenic reasons has led to a rapid model development and the 

increased urgency for climate prediction at the global scale (Kassahun, 1990). GCMs 

outputs are being used extensively in seasonal forecasting globally (Palmer and 

Anderson, 1994; Ji et al., 1994; Hunt, 1997; Mason et al., 1999; Landman and Mason, 

1999; Goddard et al., 2001; Landman and Goddard, 2002). 

 

Two approaches are currently used to determine the future behaviour of the ocean-

atmosphere system; namely a purely empirical statistical and a dynamical one. The 

advantages of the classical statistical forecasting models over the dynamical ones 

involve their capacity to converrt uncertainty values into probabilistic terms. This is in 

the sense that a particular set of predictors will always produce the same forecast for 

the predictand, once the forecast equation has been developed (Landman et. al., 2001). 

The use of probability elements in the forecast framework is advantageous, because it 

provides a large solution space (from 0 to 1) for the expression of the inherent 

uncertainty or state of knowledge about the future behavior of the predictand (Murphy, 

1977; Krzysztofowicz, 1983). 
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In order to attain maximum predictive utility in economic farming, however, there is a 

need to study spatial and temporal rainfall variability as well as its persistence that 

arise at a particular location due to external forcing. Sea surface temperatures (SSTs) 

are among such external forcing factors. The value of prediction lies in its ability to 

explain the unique pattern of drought at a specific location and season. In other words, 

the value of the forecast information, whether of good quality or not, can only be 

assessed if someone makes a decision and takes action based on that forecast 

information. This notably holds for agriculture, which is highly sensitive to the 

influence of weather and climate. Along this line, the study report of Jury et al. (1997) 

to the South African Water Research Commission emphasizes the potential possibility 

of downscaling seasonal rainfall prediction from the global to regional, national and 

district level. It is implied that there are possibilities of regionalizing the areas into 

further homogeneous rainfall zones, based on which specific rainfall prediction could 

possibly be practiced for each zone. 

 

The striking correspondence of the positive sea surface temperature anomalies (SSTAs)  

with the drought incidences in the 1960s, 1970s, 1980s and 1990s in the Sahel region 

is evident. Accordingly, there have been several recent studies (Kassahun, 1990) 

examining connections between GCMs outputs and Ethiopian rainfall variability, 

notably through SSTAs of the global oceans. This involves either warming or cooling of 

the ocean surface, mainly the eastern Pacific, Atlantic and Indian that have a 

substantial influence on the tropical climate system.  

 

For Ethiopia, the increasing central and equatorial Pacific SST (ENSO warm phase) 

results in a drought condition during the June-July-August-September (JJAS) rainfall 

season. In contrast to this event, the relative cooling of the central and equatorial 

Pacific “La Niña”, the cold ENSO phase, results in ‘below normal’ rainfall during the 

March-April-May (MAM) season but in ‘above normal’ rainfall during the JJAS season 

(Bethke 1976; Henricksen and Durkin, 1986; Ogallo et al., 1988; Ininda et al., 1987; 

Haile, 1986 & 1988; Kassahun, 1990; Babu, 1991; Glantz et al., 1991; Beltrando and 

Camberlin, 1993; Abate, 1994; Seleshi, 1996; Attia and Abulahoda, 1992; Koricha, 

1999, 2002a &b; Camberlin and Philipon, 2001; Lemma, 2003). 
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According to Folland et al. (1986) GCM experiments have shown a reduction of about 

30% in rainfall over the Sahel, as a function of the anomalies in the Global SSTAs 

pattern, showing it to be an important cause of drought in the region. Folland et al. 

(1986) maintained that the anomalous SST features of the north Indian Ocean have 

greater impact on the rainfall variation in Sudan and Ethiopia. Also, the SSTAs pattern 

over the South Atlantic shows their clear influence on the recurrence of drought in 

Ethiopia (Folland et al.1986). 

 

The subsequent studies by Palmer (1986) reflect that the Atlantic and Pacific Ocean 

SSTAs have a comparable effect in reducing the rainfall of the Sahel, while the Indian 

Ocean SSTAs bring an enhancement in rainfall, except over the north-eastern part of 

Africa where drought was simulated. The study made by Lamb (1978a & b) and 

Hastenrath (1985) show that the inter-annual climatic variability in the Sahelo-

Ethiopian zone is strongly affected by the global anomalies. A detailed account of ENSO 

related phenomena can be obtained from Rasmusson and Carpenter (1982), Philander 

(1990) and Glantz (2001).  

3.1.1 Seasonal climate prediction: Status in Ethiopia 

In its seasonal rainfall prediction and early warning information, the National 

Meteorological Services Agency (NMSA) of Ethiopia has been using ENSO phases since 

1987 (Taddese, 2000; Walker et al., 2003). Moreover, many reports have divided 

Ethiopia into different climatic, agroclimatic and agro-ecological zones, providing 

information that could form a solid foundation for rational planning of agricultural 

research and development (Bethke, 1976; Gemechu, 1977; FAO, 1984; Henricksen and 

Durkin, 1986; Tuker and Goward 1987; Haile 1988; FAO, 1989; Abate, 1994; Gonfa, 

1996; NMSA, 1996a & b; NNRD/MOA, 2000; Yeshanew, 2003).  

 

At present, NMSA issues seasonal rainfall outlook information for MAM, JJAS and 

October–November–December (OND) seasons. During the JJAS (long rainy season), 

most parts of the country receive substantial rains, except the southern and 

Southeastern lowlands, where MAM constitutes the main rainy season and OND forms 

the short rain season (Koricha, 1999). Accordingly, NMSA classifies Ethiopia in terms of 

seven homogeneous rainfall zones for JJAS (Koricha, 1999), eight zones for MAM 
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(Amedie, 2000; Koricha, 2002a) and eight for the OND seasons (Koricha, 2002b). During 

JJAS, the major rainfall producing systems are the northward progression and 

establishment of the Inter Tropical Convergence Zone (ITCZ), the formation of low level 

jet (LLJ), the strengthening of the Mascarene High pressure, the strengthening of St. 

Helena High pressure, the strengthening and frequent emergence of the Tropical 

Easterly Jet (TEJ) and the associated monsoon systems (NMSA, 1996a & b). 

 

During the MAM season, the rain producing mechanism is associated with the 

formation of a high-pressure centre over the Arabian Sea, as well as the formation of 

easterly/southeasterly moist winds towards the eastern and central parts from the 

north Indian Ocean, generated by the Arabian High (NMSA, 1996a). Moreover, the 

displacement of the extension of the Siberian ridge over Arabia by the eastward moving 

mid-latitude depression crossing the Mediterranean Sea is the major cause for the 

establishment of the high pressure centre over the Arabian sea (NMSA, 1996a & b). 

3.1.2 Seasonal climate prediction: Service provision, use and users in Ethiopia 

In Ethiopia, despite the availability of extensive climatic information, few advances have 

been made in view of promoting ‘tailored’ predictive information and utility at national, 

regional and small spatial level. Firstly, there is a lack of a drought policy and strategy 

that provides full inertia to including meteorological information into the national 

agricultural development agenda that can help farmers become self reliant, regardless 

of drought episodes of any magnitude. Secondly, a significant amount of climatic 

information is scattered among various agencies and therefore is difficult to access, 

constituting a major reason for the fragmented discontinuity and insufficient detail in 

analyses and experience in this field. Thirdly, the inadequacy of a client oriented 

meteorological information dissemination mechanism is another weakness. Such a 

targeted forecast service provision is essential, especially for the farming community 

with the aim of helping them make better decisions regarding input purchases and 

choosing the planting date according to the anticipated rainfall scenario. The best 

example could be the pilot forecast project undertaken for the power industry (Babu et 

al., 2004) that gives clear indications of the greater need for such a targeted seasonal 

prediction information service for the farming community as well. Fourthly, some of the 

findings are concerned with the complex scientific understanding, which implies that 
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the extraction and translation of the implications of the prediction information from 

such studies into a usable farm level product is an issue that has not been handled yet. 

These are critical at times, especially when the information communicated is important 

despite its complexity. Particularly those information aspects pertaining to the start of 

rainy season and therefore the choice of a cropping strategy at a specific location are 

very important. 

 

At the other end of the scale, the lack of preparedness from the user community to 

respond to the tailored forecast information is another shortcoming. For instance, 

agricultural research has been a scientific endeavour since the 1950s. However, the 

existing climate prediction knowledge has never been used in cropping decisions. This 

is a lost opportunity, as the knowledge has been available for the last 80 years (Walker, 

1923). Thus far, agricultural technology generation and transfer efforts for rainfed 

cropping have been conducted within the confines of trial and error experimentation 

with no quantitative account of the risks associated with a variable climate.  

 

The collective consequence is insufficient capacity to proactively respond to drought 

years (e.g. year 2002) and as a result all groups who have a stake in agriculture, 

ranging from the government down to the farming community, would be challenged 

whenever drought of any magnitude occurs. In principle, the term drought has no 

universal definition and its meaning varies for various societal groups. For instance, the 

1976 rainfall shortage in Great Britain was a severe drought in respect of urban water 

supply, whereas, Britain’s agriculture was hardly affected (cereal yield in 1976 was 

higher than that of 1950s); hence that year was not a drought year for these farmers 

(Sandford, 1978). 

3.1.3 Seasonal rainfall prediction: State of the art at the world and regional scale 

Throughout recorded history, fluctuation of weather has played a major role in human 

life (Seleshi, 1996) and attempts have always been made to predict how the future 

weather will behave. The earliest prediction is the biblical reference to Joseph’s 

interpretation of the Pharaoh’s dream: “Behold, there come seven years of great plenty 

throughout the land of Egypt and there shall arise after them seven years of famine” 

(Genesis 41: 29-30 King James Version). In fact, what Joseph forecast was the 
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fluctuation of the flow of the Nile River that comes from the Ethiopian highlands and is 

dependent on the rainfall of this area.  

 

Today, after a passage of over 4000 years since Joseph’s forecast, the issue of having a 

valuable rainfall forecast is still a challenge. However, with the advent of reliable 

instrumentation, monitoring of the oceans, space and the atmosphere, more 

information on basic characteristics of climate is becoming available. Particularly, in the 

second half of the 20th century, the spatial and temporal coverage of such information 

has expanded (Seleshi, 1996). 

 

Brunt (1968) stated that it is hardly necessary to comment on the validity to agriculture 

of a significant improvement in the reliability of the seasonal forecasting. John Von 

Neumann in the 1950s described the quantitative machinery of climate as “the most 

difficult and unsolved” problem that still confronts the scientific intellect of mankind (in 

Russel, 1991). Over a century ago, Todd (1893) stated that the importance to the 

farmer, the horticulturalist and pasturalists of knowing beforehand the probability of 

having a dry or wet season, and whether the rain will be early or late or both, has 

naturally led to a desire for seasonal prediction. According to Clements (1991), 

managers of agricultural systems in semi-arid regions have aspired to long-term rainfall 

predictors for more than 100 years. He claimed that it was only in the previous 10 years 

that the goal had appeared within reach. Clements’ observation of the century old 

aspiration to predict seasonal rainfall ahead is certainly still true today. 

 

One useful physical explanation for the possibility of seasonal rainfall prediction, 

particularly in the tropics, involves the fact that the oceanic field (e.g. SSTs) evolves 

more slowly (steadily) than the atmospheric perturbations themselves (Palmer and 

Anderson, 1994). The oceans serve as the source of moisture and, with an enormous 

heat capacity, they drive the whole atmospheric system (Landman et al., 2001; Indeje, 

2004). This asynchronous coupling makes the response of the atmosphere to this 

boundary/external forcing to be tractable and detectable well in advance, compared to 

the internal and seemingly random or chaotic variability in the atmosphere, which 

inherently depends on its initial state (Rowell, 1998; Indeje, 2004; Dilley, 1997). This 

detection is possible mainly through monitoring of the SSTs fields. Therefore, statistical 
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estimation of the evolution of SST anomalies potentially provides a means of generating 

prediction of seasonal average weather (Graham et al., 1987a & b). 

 

Presently, the scientific community is exerting all possible efforts to make climate 

prediction a routine part of the climate information system and efforts are made to 

downscale the information to farm level decision making. Accordingly, a widely used 

forecast of global and regional climate is made by the International Research Institute 

for Climate and Society (IRI) and the National Climate Prediction Centre (NCEP) of the 

National Oceanic and Atmospheric Administration (NOAA). 

 

There are also regional rainfall and drought monitoring centres, each of them providing 

the seasonal climate outlook for their respective regions. These include the IGAD 

Climate Prediction and Application Centre (ICPAC) in Nairobi, Kenya), Drought 

Monitoring Centre for the Southern African Development Countries (SADC-DMC), 

Harare, Zimbabwe European Center for Medium Range Weather Forecasting (ECMWF), 

the Long Range Forecasting Group of the South African Weather Service and the 

Research Group for Statistical Climate studies (RGSCS) in Pretoria. The Australian 

Commonwealth Scientific and Industrial Research Organization (CSIRO) releases 

seasonal climate forecasts for the Australian continent and for the rest of the world. 

Australian Bureau of Meteorology Research Centre (BOMRC) and CSIRO Marine 

Research (CMR) have also developed a state of the art coupled ocean-atmosphere 

seasonal prediction model known as POAMA (Predictive Ocean Atmosphere Model for 

Australia). This model has the capacity to represent the Madden-Julian Oscillation 

(MJO) and has a subroutine to produce forecasts for the intra-seasonal variability of 

rainfall (Alves et al., 2003).   

 

All of the above listed stakeholders invariably use the spatial and temporal analyses 

and provide a probability statement of a range of possible outcomes across a season, 

relative to the normal distribution of the climate for that particular region and season. 

Regardless of whether the prediction is ‘above or below normal’; any outcome within the 

probability distribution may be realized. Additionally, because of the high variability 

within a season, wet seasons may exhibit short term dry period or vice versa. Because 
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of the inherent uncertainty, economic values of prediction vary depending on what 

applications are made with the forecasts (Gadgil et al., 1995).  

 

When coupled with the predictive information from the national 

meteorological/hydrological institutions, this translates into more accurate information 

that could be channelled into the farming community. As such, without even going 

much beyond the present state of the art Glantz (1993) concluded that seasonal rainfall 

prediction is the science’s legacy to the 21st century. According to Dilley (1997), had it 

not been for the earthquakes, climate prediction could have been the last frontier in 

disaster early warning.  

 

This chapter therefore argues on the possibilities of statistical prediction of the rainfall 

anomalies using global SSTs information for the smaller spatial and short temporal 

units for monitoring of the rainfall performances. According to Jury et al. (1997) the 

one-month lead period of the seasonal rainfall prediction would be useful in such 

efforts, because, given enough time for decision making, alternative strategies can be 

implemented realistically. They reported that, sub-seasonal forecasts (e.g. early and late 

summer independently over a district of some 300km x 300km) are preferred and 

scientifically viable, despite the effects of local factors like ranges of mountains and 

land-sea breezes etc. Similarly Mutai and Ward (2000) concluded that a set of SST 

predictors in the light of the circulation anomalies associated with the East African 

rainfall give greater confidence in the potentials of the MAM season SST patterns to be 

connected to the East African rainfall. 

3.1.4 Seasonal rainfall prediction for Central Rift Valley of Ethiopia 

The current study focuses on a small geographical unit that constitutes the central part 

of Ethiopia- traditionally known as Central Rift Valley (CRV). This area has unique 

advantages and faces complex challenges in terms of agricultural production and the 

associated climate risks. According to previous studies, CRV falls into various ecological 

zones. For instance, according to NMSA’s prediction for JJAS, the region is defined into 

zone IV. According to Abate (1994) the Lakes Region of the CRV, though generally of a 

lower altitude, is elevated enough to share similar rainfall patterns with most of the 

Shewa plateau, while FAO (1984) defined both the Rift Valley Lakes, Shewan plateau 
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and the Afar Triangle under region E, where short rains in spring (MAM) merge with the 

long rains (JJAS). Similarly, Degefu (1987) grouped the study area with the Shewa 

plateau that receives 400-900 mm of annual rainfall. Bethke (1976) classified the area 

into group III (escarpment-rift) that consists of the eastern and western escarpments of 

the rift valley receiving summer rain and small rains with about 25% of its annual 

rainfall from MAM. 

 

In essence, every zone has its own distinct development opportunities and limitations, 

which should guide the determination of its future development priorities and 

strategies. In this regard, none of the above mentioned studies succeeded in properly 

drawing a map that can comfortably match each ecological sub-unit’s operational 

development need, particularly for farming purposes. This is partly because the studies 

were conducted on a larger spatial unit, in which the inherent sharp relief contrasts 

with small distances pose complex challenges in extending this information to farm 

level decision making. 

  

This study therefore is essentially a build on previous findings, but with a major focus 

on drawing detail information down to the specific location, an approach that has 

received little attention in the past. The first part of the study involves dividing the 

region into homogenous rainfall zones, while the second part deals with seasonal 

rainfall prediction for each month (March-September) as a function of the one-month-

lead from the Pacific, Indian and Atlantic oceans SSTs. The overall aim of this 

regionalization is to identify areas having similar rainfall patterns for the purpose of fine 

tuning the agricultural research and development efforts. Since previous findings show 

that the SST variability is the most important component that relates to the Ethiopian 

rainfall pattern, the focus is only on the SSTs. The objectives are:-  

 

 a) To categorize the Central Rift Valley of Ethiopia into homogeneous rainfall 

zones and generate monthly rainfall indices for use in the months March-September 

rainfall prediction in each homogeneous zone. 

 b) To determine whether the rainfall pattern in the study area depends both 

spatially and temporally on selected global and regional SSTs (predictors). 
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 c) To develop a 1-month lead rainfall prediction model for period March-

September for each homogeneous rainfall zone. 

 

Hypothesis:-  

The seasonal rainfall variability in the study area is strongly related to the global SSTs 

predictors that have teleconnection with the Ethiopian rainfall, so that rainfall 

prediction a month in advance using statistical techniques is possible.  

3.2 Materials and Methods 

3.2.1 Dataset used 

In order to perform a series of temporal and spatial analyses, 16 years (1988 to 2003) 

and concurrent monthly rainfall records of 25 weather stations situated in the CRV 

were used. As the requirement was for all the stations to have the same length of 

dataset, this short (n= 16 years) had to be selected. The weather stations provide a 

reasonable spatial coverage across the study area. The problem of missing data was 

overcome by using the INSTAT first order Markov-chain simulation model to patch the 

data. All the monthly rainfall data were derived from the daily series and contained less 

than 10% of the total as missing records. 

3.2.2 Development of rainfall indices  

Firstly, the structured monthly rainfall series was used as input to a FORTRAN 90 

based program (NAVORS2) for clustering the stations into homogeneous rainfall regions 

(Mason, 1998). An attempt was made to cluster the zones on the basis of the analytical 

results, as well as taking cognizance of local experience of topographic features in the 

area. A combination of the number of principal components (PCs) and zones were 

examined: 4 PCs for 2 zones, 4 PCs for 3 zones, 4 PCs for 4 zones, 6 PCs for 2 zones, 6 

PCs for 3 zones, 6 PCs for 4 zones, 10 PCs for 2 zones, 10 PCs for 3 zones and 10 PCs 

for 4 zones. Finally, the case with the closest relation to local rainfall features and with 

least noise was selected for the prediction study. This suggests that the delineation was 

not done on a pure correlation between monthly rainfall and predictors alone. The map 

was drawn using a 1: 25000 scale.  
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In sequence, monthly rainfall indices were computed in a manner similar to that of 

Mason (1998) for the chosen case of homogeneous rainfall zones. The indices were 

computed from the time series of the rainfall-standardized departure for the months 

March to September for each station within the prescribed climatically homogeneous 

area. 

3.3 Seasonal Rainfall Prediction using Canonical Correlation Analysis(CCA) 

A one month-lead statistical prediction model that relates the monthly SSTs values to 

the rainfall anomaly prediction was developed using the canonical correlation analysis 

(CCA) technique, a subroutine that is embedded in Climate Predictability Tool (CPT) of 

the International Research Institute for Climate Prediction and Society (IRI) (Mason and 

Tippet, 2005). One-month lead prediction implies the prediction would be made for the 

target month that begins 1 month after the end of the predictor’s month, for instance 

using January SSTs to predict rainfall of March and so on. CCA is an extension of a 

multiple regression technique to the case of the vector-valued predictor-predictand 

relationship (Landman and Goddard, 2002). 
 

The CCA approach identifies a sequence of pairs of patterns in two multivariate data 

sets and constructs sets of transformed variables by projecting the original data onto 

these canonical variates. In CCA, the patterns are chosen such that the new variables 

defined by projection of the two data sets onto these patterns exhibit maximum 

correlation, but are uncorrelated with the projections of the data onto any of the other 

identified patterns. This condition is known as empirical orthogonal function (EOF) 

(Barnston, 1994). In other words, CCA identifies new variables that correlate optimally 

such that the interrelationship between the two datasets could be maximized.  

Canonical correlation analysis may be defined using the singular value decomposition 

of a matrix C where: 
 

C= Ryy
-1Ryx Rxx –1Rxy

        (3.1) 

Where:   C =  matrix of singular value decomposition 
         Ryy = Correlations between Y variables  
     Ryx =  Correlations between Y and X variables  
     Rxx = Correlations between X variables  
     Rxy =  Corrleations between X and Y variables  
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C = U’ BU Λ'        (3.2) 

Where:    Λ = diagonal matrix of C, is made up of eigenvalues )(λ of C . 

λ i
of matrix of C = ri

2

     (3.3) 

Therefore,   ri = λ i         (3.4) 
 

The number of retained predictor (X) and predictand (Y) EOF modes of the fields or 

combination of fields, as well as CCA mode that produced the highest average cross-

validated correlation for March-September, was identified by feeding the maximum 

value into the CPT input window. Then, the CPT itself identified the optimum number of 

EOFs modes by using the chi-square goodness of index. The EOF and CCA modes 

combinations with the highest goodness of fit index were taken as the optimum number 

for both predictor and predictand variables. More details about CCA is found in Barnett 

and Preisendorfer (1987), Graham et al. (1987a & b), Barnston and Ropelewsky (1992) 

and Barnston (1994). 

3.3.1 SSTs data extraction  

The SSTs data were extracted from the IRI web site using a 2o x 2o grid resolution, 

whose measured values are known prior to the forecast time. Climlab2000 of IRI (Tanco 

and Berri, 2000) was used for identifying those oceanic areas having a strong 

relationship with the respective rainfall zones for a target month, in which a threshold 

correlation (r) value of 3.0≥  was taken into account, which amounts to a minimum 

10% of the variance being explained.  

3.3.2 Cross validation technique 

The cross validation technique is used as it helps to evaluate model performance when 

it is applied to data that was not used to develop its parameters (Efron, 1982, Efron and 

Gong, 1983, Michaelsen, 1987, Wilks, 1995). In this, the nth predictor and the 

corresponding predictand fields would be removed one at a time, while the remaining n-

1 partition is used to train or develop the model. This is known as a one-year-out-cross 

validation. This technique was employed for each of the 16 years (1988 to 2003) climate 
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period. In other words, 16 similar prediction models were developed, each computed 

without one of the observations of the predictand.  

 

Such a cross validation procedure is appropriate, especially to avoid the artificial 

forecast skill that could result from short records. Artificial prediction skill is the skill 

apparent in testing an empirical prediction technique on historical data, which does not 

survive in operational implementation because the apparent skill has arisen through 

capturing chance relationships amongst the historical data, and this could affect model 

stability (Wilks, 1995). Here the assumption is that once a sound forecast model has 

been developed and cross-validated, then it can be operationally used in forecasting 

future values of the predictand based on the future observations of the predictor 

variable. 

3.3.3 Prediction verification / Model performance evaluation 

Since our ultimate aim is to support better decision-making using the prediction model 

as a support tool, the developed model was subjected to skill verification/performance 

evaluation. Prediction skill evaluation is the process of determining the quality of 

forecasts. Any prediction evaluation method involves comparison between matched 

pairs of predicted and the observations to which they pertain. 
 

There are many different ways to evaluate the forecast skill or its accuracy. ‘Accuracy’ 

implies the degree of correspondence between individual forecasts and the events they 

predict. In such a skill evaluation scheme, 3 very basic prediction error quantifiers have 

been used. The first and the continuous forecast measure is the cross- validated 

correlation coefficient or the Pearson product-moment correlation coefficient (r). This 

shows the magnitude of the strength of the relationship between the observed and the 

forecast values. The second, but categorical forecast measure used is the hit score ( HS ) 

or the ‘proportion correct’ and is the most direct measure of the accuracy of categorical 

forecasts.  HS is simply a fraction of the n forecasting occasions when the categorical 

forecast correctly anticipated the subsequent event or non-event (Wilks, 1995, 

http://iri.columbia.edu/software/).  Table 3.1 demonstrates how HS can be calculated. 
 

HS =
p

iea ++
  *100      (3.5) 
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Where :    a = # of correct forecast of below normal rainfall (B) 

    e = # of correct forecast of near normal rainfall (N) 

    i = # of correct forecast of above normal rainfall (A) 

      b = # of observed 'near normal', when forecast 'below normal' 

    c= # of observed 'above normal', when forecast 'below normal' 

    d = # of observed 'below normal', when forecast 'near normal' 

    f = # of observed 'above normal',  when forecast 'near normal' 

      g= # of observed 'below normal', when forecast 'above normal' 

      h= # of observed ' near normal', when forecast 'above normal' 

      p = total count of forecasting occasions. 

 

HS receives the score of one for perfect prediction, while the forecasts equivalent to the 

reference forecast receives a zero score (Wilks, 1995). 
 

The third categorical forecast measure used is the hit skill score (HSS). HSS refers to 

how many more times the forecast was correct, compared to the reference forecast 

strategy, or it defines the percentage of times (beyond that expected by chance) the 

forecast categories correspond with the observed category (Oludhe, 2004).  The generic 

formula for HSS is written as: 

 

HSS= Number of correct forecasts – Number of forecast expected correct  (3.6) 
             Total number of forecasts - Number of forecasts expected correct 
             

HSS =

p
lonkmjp

p
lonkmjiea

++
−

++
−++ )(

     (3.6) 

Where:   j = total all forecasts but observed was 'below normal' 
    k = total all forecasts but observed was 'near normal' 
      l = total all forecasts but observed was 'above normal'. 
    m = total all observed when forecast was 'below normal'. 
    n = total all observed when forecast was 'near normal'. 
    o = total all observed when forecast was 'above normal'. 
 
Finally, based on the established skill evaluation values (r, HS and HSS) a separate 

attempt was made to predict rainfall pattern and classify it in terms of ‘below normal’, 

‘near normal’ and ‘above normal’, for months March-September and for each zone. 
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Table 3.1 Illustration of hit score (HS) and hit skill score (HSS) statistical computations for skill performance 

evaluation  

Observed  Forecast 
Below Normal 

(B) 
Near Normal 

(N) 
Above Normal 

(A) 
Total 

Below Normal (B) a  (hit) b (false alarm) 
c  (miss) m  

Near Normal (N) d (false alarm) 
e (hit) f  (miss) 

n  

Above Normal (A) g  (false alarm) h  (miss) i  (hit) o  
Total j  k  l  

p  
 

3.4 Result and Discussion 

The following sections provide detail accounts of classifying the study area into 

homogeneous rainfall zones and then the March-September season rainfall prediction. 

It is important to note that except for some disturbances, the study area shares the 

influence that SSTs pose on Ethiopian rainfall patterns and therefore any explanation 

emanating from the prediction study would be the ones valid for Ethiopia.  

3.4.1 Homogenous rainfall zones 

From the global oceans coarse scale of influence and particularly from the rainfall 

climatology point of view, it is often difficult to define such small areas into further 

homogeneous zones, without taking account of the interaction between the atmospheric 

circulation and detailed topography (Olsen et al., 1995; Dent et al., 1990). However, 

given the complexity of the climatic patterns in East Africa in general and Ethiopia in 

particular, it is not surprising to find large spatial variations in rainfall patterns in the 

study area.  

 

Fig. 3.1 effectively condenses an enormous amount of information that reflects a 

physically consistent pattern with the atmospheric processes within the study domain.  

This map was generated with close scrutiny of the various combinations of the principal 

components and zones. Out of nine such combinations, the 10 PCs for four zones case 

were selected, as the least noise involved in it. The stations whose monthly precipitation 

pattern is well correlated and in close proximity to each other tended to be clustered 

together forming 4 homogeneous rainfall zones. The help of Anna Bartman of the South 

African Weather Service in working out the map is fully acknowledged. 
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Accordingly, the central to south sloping part of the study area constituted zone 1. Zone 

1 encompasses a relatively low lying area that stretches from Alem Tena (middle) down 

to Langano in the south. In this area, there is a well-defined wet season between June 

and September, but with unreliable and longer dry spells being common. The annual 

rainfall is about 730-780 mm. The eastern part of this zone is dominated by the central 

section of the Meki valley which comprises a wide gently undulating plain and is 

drained to the north by the River Meki. Mareko ridges occupy the central part of the 

zone, while the extreme southwest is occupied by the northern part of Kolito plain 

(Markin et al., 1975).  

 

Zone 2 (Fig. 3.1) includes the southern flank of the study area: Arsi Negele, 

Shashamene and Awasa in the extreme south. Moreover, the extended Kela-Butajira-

Alaba Kolito-Shone -Bilate caldera in the extreme western side also forms part of this 

zone. On the other hand, the rifts bordering the highlands in the southeast including 

Kulumsa-Iteya-Gonde-Huruta plain northwards to Abomssa are also part of this zone. 

The zone receives quite a substantial amount of rainfall (800-1400 mm annually) that 

makes it different from the rest of the zones.  Lake Awasa as well as River Bilate and 

Guder are also part of this zone.  The western part of the zone comprises an extensive 

piedmont at the foot of the Guragie mountains, on which is situated the town of 

Butajira. Moreover, a belt of volcanic cones occupies the central part of the area 

immediately east of Butajira, including Koshe and Inseno. Much of the land is 

extensively cultivated to maize, peppers, haricot beans, peas, wheat, barley, sorghum 

and tef.  

 

Zone 3 (Fig. 3.1) includes the northwest to northeast stretching part, starting from 

Dukem / Debre Zeit through to Mojo, Koka, Nazreth, Wenji, Melkassa, Dera and Bofa. 

This zone receives annual rainfall ranging between 600-800 mm. In comparison to Zone 

1, this area is characterized by a wet condition, as 75% of the years can be expected to 

have larger amounts of annual rainfall (Abate, 1994) and seasonal drought severity in 

this zone is very high during the spring season (MAM). The fairly extensively used River 

Awash, as well as River Mojo form part of this zone. 
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The eastern arm of the study area constitutes zone 4. Zone 4 represents the plains, 

including the extensive Borchata-Kereyu land, Merti-Jeju, Nura Era, Awash-Fantale, 

Werer, Melka-Sedi until Asebot-Miesso plain that skirts the Chercher highland at the 

easternmost.edge of the CRV. The zone remains very hot, and dry conditions persist 

during most parts of the year. This could be explained by the fact that the normal rain 

triggers from the expected sources for the whole country perform poorly over this zone. 

Abate (1994) reported similar findings for this zone, with fairly dependable rainfall 

prevailing only during July-August. The areal average annual rainfall in the zone ranges 

from 500 to 600 mm.  

3.4.2 Seasonal rainfall prediction  

As stated, the March to September period marks the particularly relevant season for 

farmers in the study area.  Accordingly, the following section focuses on monthly 

rainfall prediction, using a one-month lead correlation of the global SSTs datasets. In 

the prediction, a comparison between matched pairs of observed rainfall anomaly and 

the cross-validated anomaly prediction values were used. It is assumed that, once 

sound a prediction model has been developed and cross-validated giving high forecast 

skill, then the candidate model can be operationally used in forecasting future values of 

the predictand, based on the future observations of the predictor variable (Wilks, 1995).  

As can be noted in Table 3.2, different oceans are responsible for the SSTs related to the 

rainfall patterns of the different months, as well as different zones. Pacific Ocean covers 

the largest share (75%), while Atlantic and Indian Oceans cover the remaining portion. 

For clarity, the prediction results would be discussed zone wise as follows 

3.4.2.1 Zone 1 (Alem Tena-Langano) 

The cross-validated correlation (r = 0.44) between the observed and forecast values of 

the March rainfall anomaly (Table 3.2 and Fig. 3.2a) was significant at 95% probability 

level.  This provides evidence of a useful relationship and the possibility to predict 

March rainfall to a certain extent from Pacific Ocean’s January SSTs (14ºN-26ºN and 

160ºW-178ºW) for this zone. However, the other prediction model skill evaluators, viz. 

hit score (HS = 46.7%) and hit skill score (HSS = 20%) are lower and did not show 

significance at 95% level of probability. With reference to the February SSTs-April 

rainfall relationship (14٥S-34٥S and 80٥W-112٥W) in Fig. 3.2b, the correlation between 



59 

the observed and the predicted rainfall anomalies increased (r = 0.51). In the case of 

March SSTs (42ºN- 52ºN and 28ºW-46ºW) used to predict May rainfall (Fig. 3.2c), r was 

0.48, both of which are significant at 95% probability level.  For April rainfall, HS and 

HSS remained at the same level as for March rainfall anomaly, while showing slight 

reduction for May rainfall (HS = 40% and HSS = 20%). 

 
Figure 3.1 Four homogeneous rainfall zones in Central Rift Valley of Ethiopia as defined by the 
principal component analyses (Zone 1 = Alem Tena-Langano; Zone 2 = Butajira-Awasa-Abomssa; 
Zone 3 = Debrezeit-Bofa; Zone 4 = Welenchiti-Miesso). 
 

With the progress of the season and particularly for the two next months (June and 

July) the prediction skill improved further (Table 3.2, Fig. 3.2d and Fig. 3.2e 

respectively) as reflected by the highly significant correlation of 0.73, as well as both HS 

and HSS ranging between 60-73.3%. In this correlation, Pacific Ocean’s April SSTs 

(14ºS-22ºS and 116ºW-144ºW) account for the June rainfall anomaly, while Atlantic 

Ocean’s May SSTs (4ºS-14ºS and 8ºW-10ºE) for July rainfall. Overall, such a high 

correlation is the manifestation of the effect that teleconnections could have on the 
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rainfall of the zone and is evidence that the SSTs forcing is a reasonable choice as a 

predictor in particular for these two months.  

 

For the remaining two months rainfall (August and September), the cross-validated 

correlation, HS and HSS showed a reduced range with the corresponding r values of 

0.49 and 0.57 (Table 3.2, Fig. 3.2f and Fig. 3.2g) respectively. Together with the 

respective HS and HSS values of 53.3% and 30% for both months it indicates that the 

influence of June and July SSTs on August-September rainfall performance in Zone 1 is 

much more than a random occurrence. Indian Ocean's June SST (0º-8ºS and 86ºE-

102ºE) is found to influence August rainfall, whereas Pacific Ocean’s July SST (8ºN-

22ºS and 104ºW-178ºW) is found to be related to September rainfall anomaly.  

3.4.2.2 Zone 2 (Southwestern, southern and southeastern highlands) 

In terms of mean annual rainfall, the higher rainfall penetrates from the mid-eastern side, 

predominantly along Kulumsa's latitude, where the Arsi highlands receive high rainfall totals 

(Koricha, 2005, personal communication).  In terms of the weather systems, the southern sector of 

the study area (zone 2) has distinct weather producing systems (strong low-level confluence, 

which establish across Arsi and Sidama mountainous channels). The cross-validated r for 

observed and forecast March rainfall anomaly using Indian Ocean's January SSTs 

(10ºN-20ºN and 150ºE-178ºE) does not carry operationally useful predictive information 

(r = 0.25 and HS of only 33.3%).  This could be attributed to the disturbing weather 

activities that take place frequently due to local factors like the Chilalo mountain range 

that could possibly weaken the SSTs-rainfall relationship (Table 3.2 and Fig. 3.3a). This 

in turn renders the skill performance to be poor. The predictability improves however 

with the progress of the season; for instance, the r values for the observed versus 

predicted rainfall anomaly for April was 0.49, which is significant at 95% probability 

level.  Pacific Ocean SSTs (16ºS-36ºS and 78ºW-112ºW) account for this relationship 

(Table 3.2 and Fig. 3.3b). It is also indicated in Table 3.2 and Fig. 3.3c that for May 

rainfall (from March Atlantic Ocean’s SSTs at 42ºN-52ºN and 28ºW-46ºW)  all the 

prediction model performance indicators are in the higher order and significant at 95% 

probability limit (r = 0.70, HS = 73.3% and HSS = 60%). Except for July, where a 

meaningful relationship could not be established from May SSTs at all, June, August  
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Table 3.2 Summary of the skill evaluators used in monthly rainfall predictions for each of the 
four homogenous rainfall zones, CRV of Ethiopia 

Oceanic area Months and zones Prediction error quantifiers Oceans 
SSTs Latitude Longitude Predictor 

 
Predicted 

 
Zone Correlation 

Coefficient (r) 
Hit 

Score 
(HS % ) 

Hit skill 
score 

(HSS %) 
Pacific 14oN-26oN 160oW-178oW January March 1 0.44* 46.7 NS 20 NS 
Indian 10oN-20oN 150oE-1780E “ “ 2 0.25 NS 33.3 - 
Pacific 16oN-42oN 134oW-158oW “ “ 3 0.59 60 40 
Pacific 14oN-26oN 160oW-178oW “ “ 4 0.60 53.3 30 
Pacific 14oS-34oS 80oW-112oW February April 1 0.51* 46.7 NS 20 NS 
Pacific  16oS-36oS 78oW-112oW “ “ 2 0.49* 53.3* 30 NS 
Pacific  16oS-36oS 78oW-112oW “ “ 3 0.79 73.3 60 
Pacific  16oS-36oS 78oW-112oW “ “ 4 0.72 66.7 50 
Atlantic 42oN-520N 28oW-46oW March May 1 0.48* 40NS 20 NS 
Atlantic 420N-52oN 28oW-46oW “ “ 2 0.70 73.3 60 
Atlantic 420N-52oN 28oW-46oW “ “ 3 0.49 53.3 30 
Atlantic 42oN-52oN 28oW-46oW “ “ 4 0.38 53.3 30 
Pacific 14oS-22oS 116oW-144oW April June 1 0.73* 66.7* 50* 
Pacific 22oS-34oS 132oW-164oW “ “ 2 0.54 53.3 30 
Pacific 22oS-34oS 132oW-164oW “ “ 3 0.46 53.3 30 
Pacific 14oS-22oS 1160W-1440W “ “ 4 0.65 73.3 60 
Atlantic 4oS-14oS 8oW-10oE May July 1 0.73* 73.3* 60* 

 - - “ “ 2 - - - 
Atlantic 42oN-52oN 18oW-42oW “ “ 3 0.40 66.7 50 
Atlantic 20oS-32oS 62oE-88oE “ “ 4 0.19 33.3 - 
Atlantic 0-8oS 86oE-102oE June August 1 0.49 60 40 
Atlantic 0-8oS 86oE-102oE “ “ 2 0.60 46.7 20 
Pacific 2oS-6oN 112oW-178oW “ “ 3 0.57 53.3 30 
Pacific 4oS-4oN 98oW-158oW “ “ 4 0.51 73.3 60 
Pacific 8oN-22oS 104oW-178oW July September 1 0.57 53.3 30 

Pacific 
Nino 3.4 

5oN-5oS 120oE- 170oW “ “ 2 0.77 66.7 50 

Pacific  10oN-34oN 124oW-148oW “ “ 3 0.47 66.7 50 
Pacific 

Nino 3.4 
5oN-5oS 120oE- 170oW “ “ 4 0.63 73.3 50 

 
 

and September predictions carry some useful information pertaining to this zone (Table 

3.2; Fig. 3.3 d, e, f). For June rainfall anomaly (from Pacific Ocean’s 22ºS-34ºS and 

132ºW-164ºW April SSTs), r (0.54) is significant at 95% probability level, with the 

corresponding 53.3% & 30% for HS and HSS values. The associated correlation skill 

reaches significantly higher values of 0.60 for August (from 0ºS-8ºS and 86ºE-102ºE 

Indian Ocean) and for September; r is 0.77 at 95% probability respectively. Both are 

significant at 95% probability limit.  It is important to note that Niño 3.4 region (5ºN-

5ºS and 120ºE-170ºW) is found to associate with September rainfall performance in this 

zone (Table 3.2), a relationship that can be monitored and used in a decision support 

tool for operational farming (chapter 6).  
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Figure 3.2: Observed and predicted March-September rainfall anomalies for zone 1 (a) March; (b) 
April; (c) May; (d) June; (e) July; (f) August and (g) September 
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Figure 3.3 Observed and predicted March-September rainfall anomalies in zone 2, CRV of 
Ethiopia (a) March; (b) April; (c) May; (d) June; (e) August and (f) Septmber. No model for July 
was obtained 
 

3.4.2.3 Zone 3 (Northwestern) 

In terms of weather systems, this middle sector usually receives good rains whenever 

squall lines develop across Hararghie highlands that propagate westward late in the 

evening (Koricha, 2005, personal communication).  Areas closer to Debre Zeit, Mojo, 
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Alem Tena and Nazreth are influenced by westerly systems as well as by the presence of 

surrounding mountains like Mount Ziquala, Mount Boset and Cheffe Donsa.  

 

For zone 3 (Table 3.2 and Fig 3.4a), the prediction skill of the model for the observed 

and forecast March rainfall anomaly (from Pacific Ocean’s 16oN-42oN and 134oW-158oW 

January SSTs) performance is 0.59 (significant at 95% probability limit) with HS of 60% 

and HSS of 40%.  In case of April rainfall (from Pacific Ocean’s SSTs 16oS-36oS and 

78oW-112oW, the same performance indicators are 0.79 for r, 73.3% for HS and 60% for 

HSS, all of which are highly significant at the 95% confidence limit (Table 3.2 and Fig. 

3.4b).  

 

With further advance of the growing season and with the exception of August (r = 0.57, 

HS = 53.3, and HSS = 30%), declining relationships were observed for the remaining 4 

months (May, June, July and September) with the respective r values of 0.49, 0.46, 

0.40 and 0.47 (Table 3.2 and Fig 3.4c, d, e, f). In fact, the r values are significant, except 

for May, while none of the months revealed significant HS and HSS. Pacific Ocean SSTs 

account for the June, August September, while Atlantic Ocean SSTs account for the 

May and July rainfall performance (Table 3.2). Overall, although the sample sizes were 

small it was noted that most of the models could provide useful information and 

contribute in enhancing the local level predictive utility in operational farming.  

 

3.4.2.4 Zone 4 (Welenchiti-Miesso) 

The cross-validated correlation for predicted March and April rainfall is in the higher 

range (r=0.60 for March and r = 0.72 for April) with the respective HS and HSS of 53.3-

66.7% and 30-40% Table 3.2, Fig. 3.5a and Fig. 3.5b).  For this dry zone, the least 

predictive potential was observed for two months (May and July) with the respective 

predictive skill (r values of 0.38 and 0.19) as indicated in Table 3.2, Fig. 3.5c and Fig. 

3.5d.  May is the time when the atmospheric circulation rapidly brings rainfall events, 

while July is the peak period for the same event for most parts of Ethiopia. This low 

skill may occur because the larger portion of the variability in climate of the zone is 

caused by synoptic scale disturbances and local factors rather than the influence of 

teleconnections from the SSTs. 
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Figure 3.4 Observed and predicted March-September rainfall anomalies in zone 3, CRV of 
Ethiopia (a) March; (b) April; (c) May; (d) June; (e) August and (f) September. No model for July 
was obtained 
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For June (Fig. 3.5d), August (Fig. 3.5f) and September (Fig. 3.5g) rainfall, a reliable skill 

estimate of the relationship was made.  In both cases, the performance indicators were 

found significantly higher at 95% probability level (r ranges 0.51 to 0.65, HS is 73.3%, 

while HSS is 60%). Such a relatively better prediction skill implies the usefulness of the 

models for forecasting rainfall or drought of the respective months in the zone (Table 

3.2). It is also important to note that Niño 3.4 (5ºN-5ºS and 120ºE-170ºW) has a strong 

association (r = 0.63) with the September rainfall anomaly in the zone. 

 

In comparison, rainfall of most months and zones are related to the common Pacific 

Ocean SSTs: for instance, March rainfall anomalies of zone 1 and 4 is related to the 

14oN-26oN and 160oW-178oW SSTs of the Pacific region. April rainfall of all the zones is 

associated with the SSTs of the 14ºS to 36ºS and 78ºW to 112ºW of the same ocean, 

whereas May rainfall of all zones is associated with the 42ºN-52ºN and 28ºW-46ºW  

SSTs of the Atlantic Ocean. August rainfall of zone 1 and 2 is more related to the 0º-8ºS 

and 86ºE to 102ºE SSTs of the same Ocean. On the other hand, June rainfall anomalies 

of all the zones are related to Pacific Ocean’s SSTs, while September rainfall of zone 2 

and 4 is related to Nino3.4. The rest of the months and zones are related individually 

either to the Pacific, Atlantic or Indian Ocean SSTs. This information helps for 

monitoring and use of the SSTs information in seasonal rainfall prediction.  

3.5 Conclusion  

Given the persistence of high rainfall variability, an attempt was made to cluster the 

stations into four homogenous rainfall zones.  Temporally, March rainfall is the least 

predictable (r = 0.25) for zone 2. Moreover, a model that can capture July rainfall 

pattern was not obtained at all for the same. Zone 2 is the one with a relatively early 

onset date (Chapter 2) and rainfed sorghum water requirement (chapter 4) could be 

reasonably satisfied even under a March planting date.  Except for zone 1, where r was 

0.73, July rainfall prediction skill is poor for the rest of the zones, particularly for zone 

4 (r = 0.19), followed by May for the same zone (r = 0.38).  The time series rainfall 

prediction model constructed for May at Miesso (the station representing zone 4) in 

chapter 2 (see Table 2.2, equation 2.14) revealed similar weak performance (r2 = 0.62) as 

compared to the other months. On the other hand, June and July rainfall patterns are  
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Figure 3.5 Observed and predicted March-September rainfall anomalies in zone 4, CRV of 
Ethiopia (a) March; (b) April; (c) May; (d) June; (e) July; (f) August and (g) September 
 
. 
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the most predictable for zone 1(r = 0.73). In case of zone 2, months including May (r = 

0.70), August (r = 0.54) and September (r = 0.77) have highly predictable rainfall 

anomaly patterns, while for zone 3 and zone 4 the April rainfall anomaly is highly 

predictable (r= 0.79 for zone 3 and 0.72 for zone 4).  

 

Forecasting rainfall in a terrain of complex topography poses serious difficulties 

particularly over tropical regions (Tapp and McNamara, 1989). A major impediment to 

predictive skill is derived from the primarily convective nature of tropical rainfall. The 

difficulties increase during the wet season when extreme rainfall events regularly occur 

on a localized basis (e.g. dry spell in middle of wet season). It is also recognized that 

rainfall prediction involving smaller scale convective processes presents a far greater 

prediction problem than those explained on a synoptic scale (Olsen et al., 1995).  

 

Therefore, a perfect model that can fully capture variability in the midst of such chaos 

cannot be easily achieved. Accordingly, most of the skill measures produced using CPT 

hindcast technique are inevitably not in the high range. These lower hindcast indicators 

can also be explained by the fact that the ocean observing systems have undergone 

fundamental improvements with time, such that the discrepancy can be wide when 

explaining observed values under different time scales (Barnston and Smith, 1996). 

Local factors like the windward or leeward facing mountains including Chilalo and 

Chercher highlands, Mount Fantale, Mount Boset and Mount Ziquala also pose 

significant influence on regional atmospheric circulation pattern.  

 

Apart from the above difficulties, a substantial understanding of climatic determinants 

of CRV’s March-September rainfall has resulted from this analysis. This study used 

historical rainfall records from 25 weather stations, with a concentration in the center 

of the area (Fig 3.1). The study suggests that, with an increased observing network and 

data availability, useful and operational rainfall prediction could be achieved for such a 

smaller spatial unit and with a shorter lead prediction time. To begin with, areas 

around Miesso, Abomssa and Arsi Negele, which currently produce sorghum on a 

significant scale, could be a communication target of the prediction information. Other 

areas could be targeted in a medium term plan to help them establish actual sorghum 

production systems.  
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Generally, the statistical relationships established here are intended as a good starting 

point towards the long-term goal of integrating the underlying ocean-atmosphere 

interaction into the Ethiopian agricultural research and development arena. Getting 

acquainted with the notion of bringing the prediction information into a common usage, 

together with the further assumption that the trend does not exist much, at least within 

a prediction period, has helped in addressing this problem. It is believed that, despite 

the above listed time-space difficulties, most of the models carry useful information that 

could be translated into farm level decision making and therefore can form part of a 

regional prediction formula to strengthen localized technology transfer and information 

exchange efforts.  

 

Since such seasonal forecasts are relatively new products and released to a new user 

group outside the traditional meteorology community, the differential effects to be 

brought by this approach are expected to be higher at least in the long-term. However, 

these models need to be verified and improved when a wider dataset becomes available 

in order to strengthen the knowledge base in this field. Further investigation for 

evidence of the relationships between the CRV seasonal rainfall and other predictor 

variables, like Southern Oscillation Index (SOI), outgoing long wave radiation (OLR), 

Geo-potential height (GPh) Quasi Biennial Oscillation (QBO) and Madden Julian 

Oscillation (MJO), which are supposed to have strong physical correlation with the 

tropical rainfall systems, should be pursued. 

 

Studies pertaining to the local factors affecting the region’s rainfall pattern, mainly 

topographical features and climate change aspects, should also receive due attention.  

This can increase the effort to enhance the economic value of weather forecasts together 

with the improvement in both the predictive products and user oriented services. The 

use of the newly emerging technologies such as satellite images for rainfall and 

resources estimation should also receive attention. In the medium term, this should 

involve monitoring the economic value of the seasonal rainfall forecast in relation to 

operational farming in the study area.  
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Chapter 4  

Water Requirement Satisfaction for Grain Sorghum 
Production 

4.1 Introduction 

4.1.1 Climate variability and cropping  

Climate variability is an unavoidable aspect of rainfed farming all over the world. 

However, it is not a unique problem that cannot be managed at least partially or may 

even be tuned to ones advantage, while at the same time being difficult to solve 

completely (Hayman, 2001). In terms of crop production therefore, it is not rainfall 

variability per se that poses a risk, but the adverse consequences. Presently, agriculture 

is in acute competition for water with the other economic sectors. Accordingly, 

agricultural scientists have been focusing on a variety of problems and prospects 

associated with the role of water in crop production, especially over the past century 

(Stewart and Hash, 1982).  

 

One of the outcomes of the earliest crop-water related investigations was the term 

“transpiration ratio” which was defined as the quotient of the amount of water 

transpired during crop growth and the dry mass of plants at maturity (De Wit, 1958). 

The classical works on this aspect are to Briggs and Shantz (1917), Kisselebach (1916) 

and Dilman (1931) who concluded that water requirement of plants is proportional to a 

water loss from the free water surface or reference evaporation (Eo). DeWit (1958) 

analyzed the findings of the early investigations and further identified factors that 

determine transpiration and yield under field conditions and concluded that the 

relationship between mass of yield (dry matter, Y) and transpiration (T) for arid and 

semi-arid regions of the world is as follows: 

 

Y= m (T/Eo)  
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where   m = coefficient accounting for integration of factors such as type of crops 

(and cultivars), availability of water and weather conditions not accounted for by Eo.  

 

Recently, research aimed at illuminating the relationship between yield and water use 

has often been guided implicitly by various notions of what constitutes a “required level” 

of water use. Three general definitions can be identified. Firstly, the work of 

agronomists and other production oriented scientists frequently focuses on the goal of 

establishing the level of water that is “optimum” to achieve maximum yield per unit 

area (Bidinger, 1978) which assumes that water does not become a production-limiting 

factor. The second view concerns maximum water use efficiency. Maximum water use 

efficiency (WUE) exists when the crop yield per unit of water input is maximized, which 

at plant level is a transpiration efficiency (dry weight change/ transpiration), at crop 

field level (yield/water use) and at farm level (production/rainfall plus irrigation) 

(Hayman, 2001). The third definition is advanced by economists who argue that for 

water to be used efficiently, it should be applied up to the point where the price of the 

last unit of water applied (marginal cost) is equal to the marginal revenue obtained 

because of its application (Botha et al., 2000).  

 

The concept of crop water requirements has emerged simultaneously with the above 

views that established a strong case for the hypothesis that the relationship between 

crop yield and evapotranspiration (ET) is linear with varied intercepts and slopes for 

various crops and localities (De Wit, 1958; Dorenboos and Kassam, 1979; Bucks et al., 

1985; Sharma et al., 1990; Sharatt, 1994). The other group of scientists (Grimes et al., 

1969; Musick et al., 1976; Stewart and Hagan, 1973; Hargreaves, 1975; Follett et al., 

1978; Kumar and Khepar, 1980; Sharma and Neto, 1986; Stone and Nofzicer, 1993) 

maintained that the functional relation between yield and seasonal irrigation depth is 

curvilinear, that could be expressed in the form of a quadratic, square root, parabolic 

and Mitscherlich function.  

 

The resulting scientific works have yielded many important insights into the 

relationship between crop plants and water. Virtually all of these insights have 

contributed towards the crucial understanding of the role of water in irrigated 

agriculture. Despite the quite impressive availability of knowledge and experience about 
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the water-agriculture relationship, the works done for rainfed cropping, particularly in 

east Africa, is limited (Dancette, 1978). Therefore, the study of crop water requirements, 

which takes account of soil, crop and climatic parameters such as solar radiation, 

temperature, relative humidity and wind speed is becoming a widely applicable area in 

operational farming.  

4.1.2 Definition of crop water requirement  

Crop water requirement is defined as the amount of water that is required to replenish 

the water lost through evaptranspiration (ET) processes. The cumulative seasonal 

values of the two terms (evapotranspiration and crop water requirement) are therefore 

identical except of opposite sign. In other words, knowing the amount of ET per unit 

time and space equals the amount of water that crop requires to grow and develop 

successfully. In most cases, crop water requirement studies need the daily or seasonal 

water balance information which should take account of the soil water stored from the 

foregoing season at planting time, followed by sequences of rainfall throughout the 

season (Bidinger, 1978, Ritchie, 1991).   

 

In this study, determination of ET has followed a standard procedure, using the FAO-

Penman-Monteith equation (Allen et al., 1998), which was developed for irrigated crops. 

However, as the principle involved is relevant to any soil-plant-atmosphere continuum 

(SPAC) the same procedure was employed for studying rain-fed grain sorghum water 

requirement for various planting dates in the CRV of Ethiopia. This presumes that the 

crop water requirement could be satisfied through either irrigation or other 

modifications like in situ or ex situ water harvesting to increase the amount of crop 

extractable soil water. Other crop management regimes include those that reduce the 

water requirements such as adjusting planting date or using varieties with lower water 

demand (Williams, et al., 1991).  

 

According to Smika (1990), to benefit from dryland farming one must understand the 

techniques of capturing and storage of soil water to cope with times of water deficit, 

which is universal in arid regions of the world. One popular misconception related to 

dryland farming involves the impossibility of making water available for farming under 

these conditions, as there is no control over the weather. Rimmington and Connor 
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(1991) asserted that maximum yields in a water-limited environment could come from 

improving the water use efficiency. For instance, dryland farming is responsible for 

changing what was named on maps as the Great American Desert in U.S.A to the Great 

Plains (Hayman, 2001). It was also largely responsible for the massive wind erosion of 

the ‘dirty thirties’ in U.S.A, where the subsequent stubble mulching and zero till 

emerged from dust mulching (Hayman, 2001). 

4.1.3 Crop water requirement research in Ethiopian dryland farming  

In Ethiopian dryland farming, research on improved soil water management practices 

has been one of the scientific focuses over the last few decades (Reddy and Georgis, 

1994).  ‘Tied ridge’ is a proven technology in conserving in situ soil water and increasing 

the depth of wet soil (Reddy and Georgis, 1994). The postulated premise is grounded on 

the fact that ridges linked at certain intervals increases the capture of rainwater in the 

field through reducing runoff loss from certain soil types. 

 

The stored soil water due to tie ridging, seasonal rainfall amounts and the observed 

total biomass was linearly and positively related to yield during poor rain seasons 

(Reddy and Georgis, 1994, Mesfin, 2004) while this technology could negatively 

influence stand establishment during the heavy storms, as explained by water logging 

and the associated lack of aeration. Under Ethiopian conditions, the progress in 

enhancing soil water use by crop plants through alternative techniques of water 

harvesting is limited, as improved soil water management techniques have not been 

studied in detail. This in turn constrained the optimal use of the available water for 

crop yield optimisation under Ethiopian semi-arid regions (Kibret, 2003).  

 

Sorghum, ‘the camel of the crop world’ is the major food crop of the rural community in 

semi arid regions of the world (Borrell et al., 2003). In Ethiopia, sorghum production 

covers about one million hectare and it contributes about 20% of the annual food 

production (EARO, 2000). As sorghum is mostly grown with sub-optimal inputs, the 

productivity of this crop is low and its potential is usually not reached. The national 

average productivity of sorghum is of the order of 1.2 t ha-1. In the Central Rift Valley, 

grain sorghum production is limited to the Asebot-Miesso plain, Abomssa, Arsi Negele 

and small areas of Iteya-Gonde valley. 
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Except for heavy losses from Quella quella, the region should be efficient for sorghum 

production. Therefore, in view of its actual and potential benefits to national food 

security, especially in drought prone areas, water requirement information should be 

made available to promote successful sorghum cropping. This information could help in 

changing or modifying one or more key crop and soil management decisions at various 

growth stages. The sequential aim to be achieved is multi-faceted: (1) to ensure food 

security, (2) to produce more food, (3) to increase crop productivity, and (4) to improve 

sustainability through maintaining production, despite natural variability in climate. 

 

A critical point to be raised is that rainfed farmers, researchers and decision makers in 

Ethiopia are limited by lack of crop water requirement information and procedures for 

using it to make choices related to successful cropping. The belief however is that there 

exists sufficient knowledge to determine the water requirements for any crop during all 

growth stages at any location. This information can be used to effectively evaluate the 

gap and promote alternate crop and soil water management techniques that can meet 

crop water needs when the forecast probability is high for any of the probabilities. For 

agro-meteorology as a discipline, it appears to be a sensible strategy to dwell on models 

for handling risk and decision analyses related to soil, crop and climate variability 

(Hayman, 2001). 

4.1.4 Water Requirement Satisfaction Index (WRSI)  

The water requirement satisfaction index (WRSI) is calculated using a water stress 

index calculation scheme that helps determining whether an agricultural season has 

performed well and a given crop has had sufficient water to achieve potential yield 

(Hoefsloot, 2004). WRSI was mainly developed for monitoring seasonal crop 

performance through its growth and development to final yield prediction well in 

advance. WRSI indicates the extent to which the water requirements of a given crop 

have been satisfied in a cumulative way at any growth stage (Mukhala, 2002). FAO 

studies (Doorenbos and Pruitt, 1977) have shown that WRSI can be meaningfully 

related to crop production in semi-arid regions, using a linear-yield reduction function 

specific to a crop. More recently Senay et al. (2001) have reported a GIS-based WRSI in 

northwestern Ethiopia, while Verdin and Klaver (2001) have also demonstrated a 
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regional implementation of WRSI in a grid-cell based modelling environment and found 

useful results. Awoke (1991) also studied WRSI for maize production in central Ethiopia 

and found useful relationships between maize yield and WRSI.  

 

A number of inputs are required to calculate WRSI over the course of a growing season. 

These include the start of the growing season (SOS), end of the growing season and 

length of the growing season (LGS). Among the soil factors, water holding capacity and 

water balance are essential. Meteorological parameters include rainfall and potential 

evapotranspiration, while crop coefficients (Kc) that define the water requirements of a 

specific crop at the different growth stages are also important. WRSI starts with a value 

of 100% at SOS, while water deficits and excesses above the soil water holding capacity 

have a negative impact on the crop performance and therefore decrease the value in 

proportion to the degree of water deficit or water excess (Mukhala, 2002). 

4.1.5 Water Production Function (WPF)  

In order to apply any water based yield optimisation technique, an understanding of the 

functional form of the relationship between yield and some measure of water use by 

crop plants, is necessary. The information is usually obtained by calculations using 

different climate elements (Stewart, 1972, Stewart et al., 1974). Regression analyses of 

field experiments in which water or its surrogates, including WRSI, are taken as 

predictor variables is one way of integrating such relations. This functional relationship 

is called crop-water production function (WPF) (Monteith and Virmani, 1991). 

 

Crop water production functions can be used to estimate the impacts on the yield 

expected from insufficient rainfall (Stewart, 1972; Stewart et al., and Hagan 

1973).Dorenboos and Kassam, (1979) and Abate (1994) have also used the concept of 

yield reduction to classify their study areas into suitable sorghum and maize production 

zones as given in the following equation.  

 

( )ETmETaKYYmYa /1()/1 −=−       (4.1) 

Where:   Ya = actual yield 
    Ym = maximum yield 
    KY = yield response factor 
    ETa = actual evapotranspiration 
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    ETm = maximum evapotranspiration  
In rainfed cropping, water production function analyses have been widely used in 

dealing with the issue of physiology and agronomics of crop-water relations.  Moreover, 

it is useful in modeling the yield response of crops to different ET values and 

maximizing the knowledge of how to optimize the ‘desirable level of water use’ under a 

variable climate.  The specific objectives of this chapter are:  

 

a) To map tempo-spatial patterns of the seasonal total sorghum crop water requirement 

satisfaction index (WRSI) for various sorghum maturity groups under different planting 

dates in Central Rift Valley of Ethiopia. 

b) To develop a long-term yield prediction equation from experimental yields of two 

maturity group sorghum cultivars grown at Miesso, Melkassa and Arsi Negele, under 

experimental conditions. 

4.2 Materials and Methods  

4.2.1 Seasonal crop water requirement 

The seasonal crop water requirement was calculated for 5 possible planting dates 

(March, April, May, June and July) combined with the 4 possible cultivars maturity 

groups (90 day, 120 day, 150 day and 180-day duration).  Accordingly, there are 5 

chances to grow a 90-day cultivar, 4 in case of 120-day cultivar, 3 for a 150-day 

cultivar and 2 for a 180-day cultivar, all together forming 14 possible concurrent 

growing seasons. The formula for the crop water requirement (CWR) computation is :- 
        d=n.. 

CWR = Seasonal ETc = Σ Kc *ETo      (4.2) 
        d=1 

Where:   CWR = Crop water requirement for the season (mm season-1) 
ETc = Total season crop water requirement (mm season-1) 
ETo  = daily reference crop evapotranspiration (mm day-1) 
Kc = Crop water requirement coefficient (dimensionless) 
d=1---d=n = day 1 to last day at the end of the season. 

 

ETo is defined as the water loss from the hypothetical extensive surface of green, well-

watered, actively growing grass of 0.12 m height with a fixed surface resistance of 70 s 

m-1 and albedo of 0.23 (Allen et al., 1998). ETo represents the evaporative demand of 
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the atmosphere and as such, it is independent of the crop type, crop development and 

soil as well as management practices. Being a climatic parameter, ETo values can be 

calculated either from weather data or can be obtained from lysimeter experiments, or 

by aerodynamic or by energy balance measurements over grass (Kaihla, 1983, 

Doorenbos and Pruitt, 1977). 

 

In this study, the grass ETo was computed using the observed daily historical climatic 

data namely minimum and maximum temperature, relative humidity and wind speed at 

2 meter height. Alfalfa is used as a reference grass, because of the many aerodynamic 

and surface resistance studies done on it. The solar radiation was estimated from the 

minimum and maximum temperature following a series of standard procedures given in 

a REF-ET program (Allen, 2002).   

The generic formula to compute ETo is  

ETo = 
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Where ETo = Reference evapotranspiration (mm d-1) 
  Δ = slope of vapour pressure curve at mean air temperature (kPa ºC-1) 
 Rn = net radiation at the crop surface (MJ m-2 day-1) 
  G = soil heat flux density (MJ m-2 day-1) 
 γ = psychrometric constant (kPa ºC-1) 
 T = mean daily air temperature at 2 m height (ºC) 
 u2 = wind speed at 2 m height (m s-1) 
 es = saturation vapour pressure (kPa) 
 ea = actual vapour pressure (kPa)  
 es - ea = saturation vapour pressure deficit (kPa) 

 

Crop evapotranspiration (ETc) is calculated from ETo and Kc (crop coefficient) under 

standard conditions that represent the water loss from a disease free, well fertilized 

crop, grown in a large field which,under optimum soil water conditions, achieves full 

production potential under a given climatic condition (Allen et al., 1998). For practical 

purposes, ETc can then be considered as a maximum crop water requirement, which is 

determined by the genetic code, and to which the crop grown under water stress could 

be compared (Bidinger, 1978).  

 

The grass ETo and crop ET (ETc) are integrated through the single crop water 

requirement coefficient (Kc). In the single crop coefficient approach, ETc is calculated by 
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multiplying ETo by Kc. Since most of the effects of weather conditions are incorporated 

into the ETo estimate, and ETo is an index of climatic demand, Kc varies predominately 

with the specific crop characteristics and only to a limited extent with climate 

variations. The Kc integrates the effects of characteristics that distinguish a typical field 

crop from the reference grass, which has a constant appearance and complete ground 

cover. Consequently, different crops would have different Kc values. Moreover, the 

changing characteristics of the crop growth through the growing season as well as the 

changes in evaporation from the soil influence the Kc.  

 

Accordingly, ETc and therefore seasonal crop water requirement was computed, which 

was used in the computation of the crop water requirement satisfaction index (WRSI). 

The Kc values and the proportionate duration of each of the growth stages of various 

maturity categories in sorghum cultivars in this study are summarized in Table 4.1. 

 

Table 4.1 Summary of Kc values and duration of stages (number of days) for various sorghum 
cultivars with different length of growing season 
 

Duration of the growth stage   (days) Sorghum 

Varietal 

Group 

Initial stage 
(Kc= 0.30) 

Developmental 
stage 

(Kc=0.3-1.05) 

Grain filling stage 

(Kc = 1.05) 

Late season stage  

(Kc = 0.55) 

90-day 15 25 35 15 

120-day 20 35 45 20 

150-day 25 45 55 25 

180-day 30 55 65 30 

 Source: Allen et al., (1998), Doorenbos and Kassam (1979). 

 

Total seasonal WRSI was then computed from the corresponding crop water 

requirement values and soil water balance for various grain sorghum cultivars. In this 

study, a value of 100 mm per meter depth of available soil water (PAW) is used. WRSI 

for a season is calculated as the ratio between total seasonal water deficit or excess, 

and the seasonal crop water requirement (CWR). For the excess rainfall, WRSI 

decreases by 3% for every 100 mm excess water (Mukhala, 2002). 

 

The soil water balance is calculated through a simple mass balance equation where the 

water content is monitored in a bucket defined by the water holding capacity of the 

specific soil. Therefore, if the seasonal rainfall total exceeds the crop water requirement, 
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any excess amount would be retained by the soil. On the other hand, any amount of 

rainfall above the soil water holding capacity would be considered superfluous and 

therefore poses negative influence on the crop performance by 3% for each 100 mm of 

excess water. Since the purpose of these analyses is to establish a gross feature of the 

potential of rainfall behavior for cropping in the study area, losses from surface runoff 

and deep percolation are not taken into account. 

 

This analysis supposes that if the index falls below 50%, essentially there is a total crop 

failure i.e. it is unsuitable for crop production during that particular season. The WRSI 

values from 51 to 75% are considered as moderately suitable, while WRSI values larger 

than 75% indicates adequately available water for a sorghum grown at a given location 

during that particular season.  

4.2.2 WRSI by growth stages and water production function 

In addition to the total seasonal WRSI computed for the different seasons as discussed 

above, a more detailed WRSIs were also studied across a series of sorghum growth 

stages under contrasting environments in the study area where sorghum variety trials 

have been regularly conducted. These are Miesso and Melkassa for the 120-day 

cultivars (76-T1#23 and Gambella-1107) under inadequate rainfall conditions and Arsi 

Negele for the 180-day cultivar (ETS-2752) that represents adequate rainfall conditions. 

The growth stages considered are initial, developmental, mid-season and late part of the 

growing season, as defined for Kc.  

 

The sorghum water production function (WPF) was also computed for the same stations 

and sorghum cultivars using long-term climatic data and measured 

historical/experimental grain yield productivity (kg ha-1) data for the above listed 

released sorghum cultivars. The historical yield data of these cultivars were partly 

obtained from the published reports and partly from the data archive of the sorghum-

breeding program at Melkassa Agricultural Research Centre (MARC).   

 

The weighted average WRSI from the 4 growth stages of the 120 day maturity cultivar 

grown during June-September period was used as an independent variable for 

computing sorghum-water production function at Miesso and Melkassa. In the case of 
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Arsi Negele, the same procedure was used for the 180-day cultivar grown during May to 

October season.  

 

In the computation of the WPF, the weighted average WRSI values were used instead of 

using WRSI of the individual growth stage, on the principle ground that the final yield is 

a function of not only WRSI of a given growth stage, but is a result of the combined 

contribution from each of the growth stages. In fact, WRSI from any growth stages could 

largely influence the final yield expression. Under this condition, that particular growth 

stage would be given more weight as compared to the WRSI from the rest of the growth 

stages. 

 

In finding the best equation, 11 logical alternatives were attempted for each station (for 

details see appendices A, B and C). Then, the one having the best linear association 

with the grain yield of the respective cultivars and locations was considered for detailed 

analyses for each station. Table 4.2 presents basic information pertaining to the two 

sorghum cultivars used in the water production function analyses. 

 
Table 4.2 Summary of the sorghum cultivars used for water production function construction for 
different locations (Data source: MARC ) 

 
Location Sorghum 

cultivar 

Maturity 

category 

Historical 

yield records 

Growing season 

Melkassa 76-T1#23 120-day 16 years (1983-2000) June-September 

Miesso 76-T1#23 120-day 8 years (1990-2000) June-September 

Arsi Negele ETS-2752 180-day 10 years (1988-2000) May-October 

4.3 Results and Discussion 

The following sections present detail accounts of the results and discussion pertaining 

to the sorghum water requirement satisfaction and water production functions. The 

figures provide the schematic view of spatial differences and similarities of varying 

maturity groups for grain sorghum water requirement satisfaction computed for early 

March to September in the study area. From the maps, one can note widely differing 

sequences of the spatial scenario of water availability in sorghum fields and the 

amounts of water required over the 7 month period.  
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4.3.1 WRSI and various grain sorghum cultivars 

4.3.1.1 WRSI for a 90-day cultivar  

The analyses show that it is hard to meet the 75% level of the water required for a 90-

day cultivar planted in March (Fig. 4.1a) with the exception in the extreme southern 

part of the Central Rift Valley. For the southeastern parts (like Kulumsa and Abomsa 

areas) about 60 % of the sorghum water requirement is met during this same season. 

Fig. 4.1b shows the increased spatial coverage of the April to June rainfall across 

Langano and Ziway from the southern direction along the northwestern borders until 

Debre Zeit. During April-June period, these areas experience a WRSI value of the order 

of 59 to 64% for the same 90-day sorghum.  

 

For a 90-day sorghum cultivar planted during May, both the southern (except Adami 

Tulu) and central parts, as well as Kulumsa areas in the south eastern meet 75 to 100 

% of the sorghum water requirement (Fig. 4.1c). However, the northeastern part of the 

study area (zone 4) including areas extending until Miesso (extreme northeast) still 

remains under a risky situation with WRSI less than 50%. For June and July planting 

dates, approximately half the Central Rift Valley gets rainfall giving 75 to 100% WRSI. 

This shows that the cultivation of a 90-day sorghum cultivar can be practiced during 

these two concurrent seasons (Fig. 4.1d and Fig. 4.1e). During these two seasons, the 

southern, western and central parts of the study area provide 94-100% of the 90-day 

sorghum water requirements.  In the northeast, Miesso receives 83% WRSI for JJA and 

98% for JAS seasons. The rest of the eastern part in zone 4 (Metehara, Werer, and Nura 

Era) cannot support growing a 90-day sorghum under rainfed cropping. 

 

From comparisons, JJA and JAS seasons are found more conducive to growing a 90-

day sorghum over the entire study area, except sections of zone 4 (Metehara, Werer, 

and Nura Era). March planting is least preferred, except for areas like Awasa, Arsi 

Negele and to a certain extent for Abomssa and Kulumssa. April and May planting are 

moderately suitable for planting a 90-day sorghum in the southern, southeastern and 

central parts of the study area. 
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Figure 4.1 Seasonal crop Water Requirement Satisfaction Index (WRSI) for a 90-day grain 
sorghum cultivar grown under CRV climate, Ethiopia (a) March-May; (b) April-June; (c) May-
July; (d) June-August and (e) July-September 

4.3.1.2 WRSI for a 120-day cultivar 

The WRSI for a 120-day sorghum planted between March and June period shows that a 

larger area has less than 50% indices (Fig 4.2a). For April, May and June planting dates 

this area is shown to be smaller and limited to the northeastern section (Fig. 4.2b.and 

Fig. 4.2c). As indicated in Fig. 4.2a, the WRSI performance for the March-June season 

is satisfactory in the South at Arsi Negele and Awasa (80 to 100%), while moderate at 

Abomsa, Kulumsa and Ziway (58 to 60%). For Langano, this value is 54%; essentially 

sorghum would not experience a total failure every year. The WRSI value for Miesso is 

a) March 

b) April

c) May 

d) June 

e) July 
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49.1%, indicating a high chance of total failure for a 120-day sorghum grown under 

rainfed. Over the rest of the study area, March-June season rain cannot ensure 

comfortable growth and development of a 120-day sorghum. 

 

The degree of WRSI for a 120-day sorghum during the April-July season (Fig. 4.2b) 

shows that Awassa, Arsi Negele, Abomsa, Kulumsa, Debre Zeit and Mojo areas ensures 

a WRSI value of above 75%. Areas like Langano, Adami Tulu and Ziway from the 

southern part receive a WRSI value between 63% and 73%. The central parts, Alem 

Tena, Dera, Melkassa, Nazreth, Wenji and Koka areas maintain WRSI values ranging 

from 57 to 73%. This shows in general that much of the CRV would be able to support 

growing a 120-day sorghum cultivar.  

 

The third scenario examines the possibility of growing a 120-day sorghum during the 

May-August season (Fig. 4.2c). During this season, almost all of the southern, 

southeastern, central and western part maintains WRSI value of greater than 75%. 

From the economic production point of view, the northeastern part does not provide 

useful rainfall amount, except Miesso, which meets 68% WRSI. The final possible 

season for growing a 120-day sorghum is the June-September period (Fig. 4.2d), where 

except for the northeastern part (excluding Miesso-Assebot plain) the whole area 

receives adequate rainfall, so that growers can generally use a 120-day sorghum during 

this season.  

 

From comparison of different planting dates, March planting date is difficult for a 120-

day cultivar almost all over the study area, except for the southern, southwestern and 

southeastern, where water requirement could be moderately met. In April, there is a 

gradual enhancement of the rainfall performance towards the central and northwestern.  

May and June are almost equally suitable all over the area, except the northeastern.  
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Figure 4.2 Seasonal crop Water Requirement Satisfaction Index (WRSI) for a 120-day grain 
sorghum cultivar grown under CRV climate, Ethiopia (a) March-June; (b) April-July; (c) May-
August and (d) June-September  
 

4.3.1.3 WRSI for a 150-day cultivar 

Another sorghum cultivar considered in this study is one that needs a 150-day period 

from planting to maturity. Based on the premise of planting grain sorghum on a 

monthly time step from March, this cultivar group has 3 possible concurrent seasons. 

These are March to July, April to August and May to September (Fig. 4.2a, b, c). 

 

As in the preceding cases, during March to July planting (Fig. 4.3a) the southern 

(Awasa, Arsi Negele), south eastern (Abomsa and Kulumsa) and the northern-central 

sections of the study area (Debre Zeit, and Mojo) ensure the WRSI values well above 

a) March
b) April 

c) May 

d) June 
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75%. On the other hand, areas extending from Adami Tulu through Meki-Ziway valley 

to Koka, as well as the Nazreth, Melkassa, Dera and Wenji belts receive WRSI values 

from 55 to 70%. In the extreme northeast, Miesso maintains 60% of WRSI, often enough 

not to threaten total crop failure. The rest of the areas in the eastern sub-region receive 

much less than this value and cannot support successful growth of a150-day sorghum 

during this season under rainfed condition. 

 

The second and third opportunities to grow a 150-day grain sorghum are April-August 

(Fig. 4.3b) and May-September seasons (Fig. 4.3c). During these seasons, with the 

exception of the eastern sub-region (excluding Miesso), the remaining parts receive 

adequate rain (with WRSI between 76.and 100% for April-August and 80 to 100% for 

May-September. Miesso maintains WRSI of 76% and 73% during April-August and 

May-September respectively. Generally, April-August and May-September seasons are 

adequate for growing of a 150-day sorghum rather than March-July season. For all the 

planting dates, the northeastern part, except Miesso, cannot support growing a 150-day 

sorghum cultivar. 

 
Figure 4.3 Seasonal crop Water Requirement Satisfaction Index (WRSI) for a 150-day grain 
sorghum cultivar grown under CRV climate, Ethiopia (a) March-July; (b) April-August and (c) 
May September  
 

a) March 

b) April
c) May 
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4.3.1.4 WRSI for a 180-day cultivar 

The WRSI values for a 180-day grain sorghum grown either during March-August or 

during April- September seasons (Fig. 4.4a and Fig. 4.4b) indicates that more than 75% 

of the sorghum water requirement could be met at Arsi Negele, Awasa, Debre Zeit, 

Kulumsa, Mojo, Nazreth, Wenji and Ziway during both seasons. Typically, the longer 

season receives more rainfall and so, as long duration cultivars also need higher 

amounts of water, this is a useful matching. It is reasonable to expect higher yields 

from long duration sorghum groups, provided factors other than soil water do not vary 

substantually. Generally, growing a 180-day sorghum cultivar can be planned for 

March planting in the southern and southeastern, while April planting could be 

planned for the rest of the areas, except the northeastern part. 

 

 
Figure 4.4 Seasonal crop Water Requirement Satisfaction Index (WRSI) for a 180-day grain 
sorghum cultivar grown under CRV climate, Ethiopia (a) March-August and (b) April-September   
 

4.3.2 WRSI analysis by sorghum growth stages 

The purpose of the above WRSI analyses in a cumulative way (season total) was to 

characterize the study area in terms of the overall space-time rainfall potential and 

constraints in growing a range of grain sorghum cultivars. While the seasonal WRSI 

provides a gross picture for long-term research and development planning, it cannot 

give detailed information on the timing of the growth stages and rainfall adequacy or 

a) March

b) April 
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deficit. Most crops are more sensitive to water stress during the mid-season or flowering 

stage, as compared to the vegetative stage. Therefore, water stress during flowering 

could result in significant yield reduction or total crop failure, even if there was 

adequate rainfall during the vegetative stage. 

 

The knowledge of the variation in crop water requirement over a series of critical crop 

growth phases can help in this discussion. Therefore, a 120-day grain sorghum crop 

grown at Melkassa and Miesso and a 180-day grain sorghum grown at Arsi Negele will 

illustrate the performance in relation to the prevailing water requirement satisfaction 

across a sequence of growth stages. 

4.3.2.1 WRSI of a 120 day sorghum cultivar grown at Melkassa (zone 3) 

At Melkassa, no risk free sub-growing seasons or growth stages exist (Fig 4.5a). March-

June planting does not ensure adequate water for any of the growth stages. This 

means, growing a 120-day sorghum during March-June season is practically difficult 

under rainfed without supplementary irrigation. However, with the subsequent three 

growing seasons, cropping a 120-day sorghum is possible, but appropriate soil water 

and other crop management practices need to be employed almost through all the 

growth stages. Particular focus on the development stage of April-July and May-August 

seasons, as well as the mid-season stage of the April-July period is very important. On 

the other hand, with June-September cropping both the development and final stages 

would be satisfied with the water requirement, while the initial stage and the mid-

season stage faces water shortage of the order of 40 to 60%. 

 

The point of interest given this variability in crop water requirement satisfaction index, 

is how it is possible to respond appropriately to utilise opportunities and minimize 

losses. Overall, a minimum package of useful soil water and other crop management 

technologies should be in place, so as to pick only the winning combinations as deemed 

necessary during any of the growing seasons. A good example is a practice in the 

Liverpool Plains of the North Eastern region of Australia, where in-crop rainfall is rarely 

adequate and evaporation is high and a wheat-10 months fallow-sorghum-15 months 

fallow-wheat cropping sequence is widely adopted. With this practice, farmers ensure 

maximum water use efficiency and paying returns from farming (Hayman, 2001). Botha 
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et al. (1999) employed an in-field water harvesting technique at Glen, Free State  of 

South Africa, making use of a ‘tram line’ row spacing (1 m by 2 m), whereby in-field 

runoff from the 2 m strips between the plant rows is captured in micro basins. 

4.3.2.2 WRSI of a 120-day sorghum cultivar grown at Miesso (zone 4). 

The analytical result of the March-June and April-July seasons sorghum water 

requirement for a 120-day sorghum grown at Miesso would be satisfied for the initial 

(seedling establishment) and the final stage (leaf senescence and maturity phase), each 

of which span about 20 days (Fig 4.5b). Similarly, the critical growth stages 

(developmental and the mid-season) that correspond to pre-flowering and flowering 

stages would be under severe stress, as reflected in a reduced sorghum productivity. 

With May-August cropping, the mid-season WRSI reduces further to the order of 60% 

followed by another decrease to 52% for June to September mid-season. Likewise, the 

developmental (60% satisfaction) and mid-season (63% satisfaction) phases of the same 

season pose a moderate level of risk in a sequence of the crop growth and development. 

In the case of May-August, the worst-case scenario is during the developmental stage, 

which experiences a water deficit of the order of 80%. The point of interest is how the 

standing crop plants survive this severe dry spell until the relief period (the stress is 

relieved to the extent of 64.8% during the mid-season and 80% by the final stage). 

 

Generally, it is important to note that by the time of the developmental and mid-season 

stages, quite a significant portion of the growing period has been lapsed and the crop 

plants have undergone fundamental changes in terms of biomass production and cycle 

completion. At these stages it is too late to make decisions like ‘quit farming’. Thus, 

proposed alternative advice is to make use of the risk management tools (see details 

chapter 5 and chapter 6). More specifically, the control over the future by managing 

stored soil water would be good. If accurate seasonal climate forecasts go a step ahead 

and indicate whether the rainfall performance of the pursuing season would be risky or 

not, this will provide synergy for the impact of modern field level management. In the 

Miesso case, this reflects that growing a 120-day sorghum during the specified seasons 

is possible, but specialized field level crop and soil water management actions should be 

taken at all the risky growth stages. 
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4.3.2.3 WRSI of a 180- day sorghum cultivar grown at Arsi Negele (Zone 2) 

The other sorghum growing zone covered here was Arsi Negele. Since this zone benefits 

from the southward exiting inter-tropical convergence zone (ITCZ) during September 

and October months, there is a longer duration of rainfall. A more reasonably timed 

rainfall pattern through the season is the main characteristic of this zone. Accordingly, 

farmers grow the preferred long duration (180-day and longer) grain sorghums. Fig. 

4.5c further depicts that Arsi Negele, besides having the advantage of longer rains, has 

growing seasons facing only minor deficits of water. Viewing different aspects of WRSI at 

various growth stages indicates that only the mid-season (flowering stage) of the grain 

sorghum grown during all the planting seasons face a relative water shortage. The rest 

of the growth stages across the possible growing seasons meet a 75% and above level of 

water requirement. One may judge, how it would be possible to boost yield with the 

available opportunities of the good seasons in this zone. 

 

In comparing the seasonal total and the growth stages based WRSI one can realize the 

existence of difference in outputs. For instance, in the case of a 120-day cultivar grown 

at Melkassa during June-September season, the result from the seasonal WRSI 

analyses states that the crop water requirement is met satisfactorily (Fig 4.2d). 

However, the calculation of WRSI at various growth stage components detects the 

existence of water deficit at flowering (mid-season), while the rest of the growth stages 

receive an adequate amount (> 75% WRSI). The same problem prevails at Miesso and 

Arsi Negele, in which the mid-season stage suffers from water scarcity. 

 

Therefore, the need is to learn precisely what the risks of crop water requirement or 

crop loss are with cultivars of different maturities requiring different amounts of water 

in different growth sequences. It is worth noting that maybe different growth stages 

actually have different levels of sensitivity to water stress. Detail understanding of the 

system and building experience on how to take advantage of the potentials embodied in 

the season, crop and place is vital. It is this basic difference that warrants the need for 

detailed WRSI analyses rather than the whole season total. This is also important for 

the water production function analyses, which establish association between the water 

used and the corresponding crop yield. It is only then that one can confidently pinpoint 
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the most suitable season out of the range to select the most suitable crop maturity 

group for any one time. 
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Figure 4.5 Growth stages based Water Requirement Satisfaction Index (WRSI) for a grain 
sorghum cultivar  grown during March to October season in CRV of Ethiopia  (a) Melkassa; (b) 
Miesso and (c) Arsi Negele 
 

4.3.3 Sorghum water production function  

Sorghum production in Ethiopia is rather a function of the climate variability than 

technological changes (Awoke; 1991, Yehualawork, 1989). The water production 

function (WPF) shows the functional relationship between water use and grain yield. 

The following section presents the water production function curves to show yield 
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estimation from the weighted average WRSI equations for 2 cultivars grown at 3 

experimental sites (Table 4.3, Fig. 4.6a & b). These regression equations were chosen 

from among the constructed weighted average WRSIs (Appendices A, B and C). 

 

The weighted average WRSI for Miesso reveals that grain yield is three times more 

sensitive to the mid-season / flowering stage than the WRSI of the other growth stages 

(Equation 4.4 in Table 4.3). The prediction error quantifiers given in Table 4.3 and the 

1:1 line in Fig. 4.7 also highlights a reasonable level of agreement (D-index = 0.945) 

with the overall RMSE of 551.8, RMSEs of 352.7 and RMSEu of 424.4. 

 

Similarly, the slope (b value) for Melkssa (Equation 4.3 in Table 4.3) shows that the 

weighted average WRSI during the mid-season/ flowering stage (WRSI 3) is more 

sensitive to yields of June-September grown cultivar 76-T1#23 by a factor of three or 

more than as compared to WRSIs from the other growth stages. Similar results were 

obtained for Arsi Negele as well (Equation 4.5 in Table 4.3). Fig 4.6 elaborates the 

observed yields as a function of the weighted average WRSI for the cultivar 76-T1#23 at 

Melkassa and Miesso planted in June and ETS-2752 planted in May at Arsi Negele. 

 

For Melkassa, the agreement index (D-index) and the RMSE components given in Table 

4.3 and Fig. 4.7 demonstrate how the observed yield was fairly well approximated by 

the predicted yield (D-index = 0.954 with RMSE = 530.6, RMSEs = 226.4 and RMSEu = 

479.9). The systematic component of the RMSE (RMSEs) together with the 1:1 line (Fig. 

4.7) also shows the extent to which the model has slightly overestimated yields at the 

lower tail and underestimated at the upper tail in the entire distribution. The lower the 

RMSEs and the closer the RMSEu are to the total RMSE indicates the existence of 

better agreement between the observed and predicted yields. 

 

Fig. 4.7 also compares the observed and predicted grain yield of ETS-2752 grown at 

Arsi Negele. The statistics (D-index = 0.91 close to 1:1 line; RMSEu = 873.1 

approaching RMSE = 1044.2; RMSEs = 572.2) show good agreement between predicted 

and observed yields for Arsi Negele. This is reflected in the over-estimation of the lower 

parts of the data series and under-estimation of the upper parts of the series. While the 
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RMSEu represents the true magnitude of random error, knowing the RMSEs values 

helps improve the predictive accuracy of the model (Wilmott, 1981 & 1982). 

 
Table 4.3: Summary of the best linear regression equations for the Water Production Functions 

Weight for 
each growth stages 
(WRSI 1, 2, 3 & 4)* 

Liner regression 
coefficient 

 

Prediction error quantifiers 

Site & 

sorghum 

cultivar 

used 
1 2 3 4 a b 

 

Eq. 

# 

 

 

Sample 

size r2 D-

index 

RMSE 

(kg/ha) 

RMSEs 

(kg/ ha) 

RMSEu 

(kg/ha) 

Melkassa 

76-T1#23 

1 1 3 1 -7834.7 117.53 4.3 16 0.834 0.954 530.6 226.4 377.5 

Miesso: 

76-T1#23 

1 1 3 1 -4303.1 68.9 4.4 8 0.776 0.945 551.8 352.7 424.4 

A. Negele 

ETS-2752 

1 1 3 1 -17879 250.98 4.5 10 0.699 0.910 1044.0 572.6 873.1 

* WRSI 1 to 4 represents initial, developmental, mid- and late-season growth stages respectively  

Arsi Negele y = 250.98x - 17879

         r2 = 0.699

   Melkassa  y = 117.53x - 7834.7

        r2 = 0.834

Miesso   y =  68.901x - 3403.1

  r2 = 0.776
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Figure 4.6 Water production function (WPF) for sorghum cultivars - 76-T1#23 planted during 
June at (▲) Melkassa and (X) Miesso and ETS-2752 planted in May at (o) Arsi Negele in CRV of 
Ethiopia 
 

From these diagnostic measures pertaining to Fig. 4.7, the most probable explanation 

for the disagreements between the observed and predicted yields involve the slight 

difference in planting dates and the corresponding growth stages experienced during 

those growing seasons. Zere (2003) provides a similar explanation for a weak 

relationship between observed and predicted maize yields data series at Glen in the Free 

State province of South Africa. 
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Further, the available historical yield records are so limited that it would be difficult to 

achieve a prediction equation closer to certainty. Moreover, because of the simplification 

in formulation and possible data measurement errors, such data cannot be perfectly 

used in yield prediction. Under such circumstances, one must recognize how the 

rainfall pattern behaves and then choose the crop and practices best suited to that 

pattern. 

 

Overall, it can be summarized that the developed water production functions have 

demonstrated the potential usefulness of the historical climate data for long-term yield 

prediction at a specific location that can be improved when data accumulates 

sufficiently. This in turn enables useful evaluation of sorghum productivity for the 

stated locations and quantifying the production risks under a variable climate. 
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Figure 4.7 Predicted vs observed productivity of grain sorghum at three experimental stations in 
Central Rift Valley of Ethiopia  

4.4 Conclusions 

This chapter presented detailed accounts of the tempo-spatial sorghum water 

requirement satisfaction pattern (seasonal and growth stage based) and water 

production functions in the variable climate of the study area. For the seasonal WRSI, 

14 concurrent sorghum growing seasons were mapped, while the growth stage based 

WRSI and water production function analyses were computed for 3 experimental sites. 
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Spatially, the southern and southeastern parts have relatively more favourable seasonal 

climate for growing the range of sorghum maturity groups considered in this study (90-

day, 120-day, 150-day and 180-day cultivars). The northwestern and central parts 

constitute the next suitable climate for the above listed sorghum cultivars. On the other 

hand, the wide northeastern dryland plains of the study area, except the pocket section 

of Miesso-Assebot plain, does not warrant the economic farming of sorghum under 

rainfed condition. Miesso, although categorized under zone 4, mainly because of its 

proximity to the areas categorized into dry zone in chapter 3, also experiences a 

relatively better rainfall condition, most probably because of the influences from the 

nearest Cherecher highland that can influence the synoptic scale circulation. 

 

It was also found that, while the seasonal map satisfactorily displayed the spatial 

pattern of WRSI with the progress of the season, it is the growth stage based WRSI that 

truly detected the existence of water scarcity during the same season. This could be 

exemplified by the detailed WRSI analyses done for a 120-day sorghum cultivar grown 

during June-September period at Melkassa. At Melkassa, the seasonal WRSI highlights 

the adequacy of the water satisfaction for the 120 day sorghum cultivars, but the 

growth stage based WRSI detected the true risk of water scarcity at the flowering stage. 

Similar information was obtained for Miesso and Arsi Negele as well. 

 

Temporally, as it is hard to attain the crop water requirement, March planting is the 

least preferred season for all the sorghum cultivars in the study area, except for the 

southern and southeastern portions. The study area is well known for its climatic 

variability, and the risk at various critical crop growth stages for March planting is 

considerable even for the relatively suitable section. Therefore, the availability and use 

of an alternative soil water and crop management technique according to the prevailing 

risk level is crucial. 

 

It was also understood that rainfall performance in terms of spatial coverage and 

amount improves gradually through April, May and June with a notable peak in July 

and August. In September, the crop water requirement can be partially met; however, 

although the level and dimension could vary across the study area, development or 

introduction of improved technologies still needs serious attention. The water 
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production function analyses for the three experimental sites also revealed a reasonable 

level of accuracy in estimating long-term yields, provided the possibility of achieving a 

reliable model as and when sufficient data sets accumulate in the future. 

 

Therefore, for Miesso and Melkassa, growing a 120-day grain sorghum under improved 

soil water and crop management practices, together with the area specific rainfall 

prediction aid, may be rewarding to ensure high yields during the wet season. Likewise, 

food security for family sustenance may be achieved during below average rainfall 

years. On the other hand, a focus could be made on specific and potential areas where 

both the seasons and the crop are efficient that could be combined for the purpose of 

optimizing yield benefits. Arsi Negele proves the best example for such an effort. These 

basic differences underscore the need for area specific crop water requirement 

satisfaction and water production function analyses and for improved decisions in 

sorghum cropping. Overall, it can be concluded that this chapter’s objectives on tempo-

spatial mapping of the crop water requirement satisfaction levels of a range of sorghum 

cultivar maturity group and fitting the water production function have been achieved. 
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Chapter 5 

Risk Analysis for Various Sorghum Planting Windows under 
Variable Rainfall 

5.1 Introduction 

Farming is a risky business. Anderson (1974) cited that while farm businesses face the 

same cost and price risks as any other sectors of the economy, climatic variability 

makes it turbulent. The main impact of this turbulence is on production risk, though 

this has far-reaching implications on financial and farm input suppliers’ risks as well. 

The notion of climate variability and defining crop water requirement and satisfaction 

related risk is more than an academic exercise. Therefore, as it is open to multiple 

interpretations, finding a clear definition is not that easy (White, 1994). For rainfed 

agriculture, risk represents the probability of a defined climatic hazard affecting the 

livelihood of the producers. 

 

At the outset, the risk definition used in this thesis is the one reported by Powell (1994), 

which is “uncertainty with consequences”. This emphasizes that rainfall variability at a 

given location is a natural phenomenon and does not imply risk in itself, but when 

coupled with the possible adverse consequences it becomes a real source of risk. Powell 

(1994) also noted that risk should be considered as a source of opportunity rather than 

something that should necessarily be avoided. 

 

A more fundamental definition of risk involves a distinction made by Knight (1921) and 

Heady (1952) between risk and uncertainty situations. Risk refers to a probability that 

can be estimated from prior information, while uncertainty applies to a situation in 

which probability cannot be estimated. Abadi et al. (1996) used a similar distinction in 

the context of introducing chickpeas to the farmers in the Western Australia wheat belt. 

They defined risk as an environmental or economic variability so that if farmers knew 

the true probability distribution of yield for chickpea they would be making a purely 

risky decision. On the other hand, uncertainty was taken as being due to the ignorance 

of the producers. They postulated that, as farmers gained experience with a new crop, 
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the uncertainty would decrease and the true distribution, i.e. the risk, would be 

apparent. Therefore, what is chance for the ignorant is not a chance for an educated 

person (Bernstein, 1996). 

 

Bernstein (1996) further provided the origin of the word ‘risk’ as being the early Italian 

risicare, which means ‘to dare’ and emphasizes choice, opportunities, and the desire to 

avoid or minimize adverse consequences. Anderson (1991) pointed out that, were it not 

for risk aversion, there would be no need to study variability except for its role in 

establishing the mean. He added that, if farmers were risk neutral, they would be 

unconcerned about the degree of variability. Common definitions of risk that emphasize 

the uncertainty of outcomes are ‘the dispersion of actual from expected results’ or ‘the 

probability of any outcome different from the expected’ (Vaughan, 1986). 

 

However, the concept of risk is derived in recognition of future uncertainty, i.e ones 

inability to see into the future, indicating the degree of uncertainty that is significant 

enough to notice it. A risk analysis has the capacity to generate the whole probability 

distribution of uncertain outputs such as yield quickly. Therefore, it offers a decision 

maker with opportunities to make timely comparisons of not only just the means of 

alternative strategies but also the lower, risk-laden tails of the probability distributions. 

Anderson (1974) describes this as ‘risk oriented research’, in distinguishing it from the 

‘average oriented research’ which focuses on only treatment means and does not show 

the expected impact of uncertainty of a given input variable, rainfall for instance, on a 

key output variable such as yield. 

5.1.1 Goal of risk analysis 

In risk analysis, the procedure extends at least to include the ‘worst-case, expected and 

best-case’ scenarios, giving an opportunity to the decision maker to know whether the 

expected values and the best-case scenario outweigh the worst-case scenario (Hardaker, 

et al., 1998). At best, risk analysis includes the probability distribution that provides a 

solution of more than just filling only the worst–case, expected and the best-case 

values. In other words, a risk analysis determines a correct and a possible range of 

target output values that are more correct than the worst, expected and best- case 

range (Hardaker et al., 1998). It also shows the likelihood of occurrence of achieving 
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specific values, which is very useful for the targeted yield analyses, helping to determine 

the types and levels of inputs employed to achieve a given target yield. 

 

In general, the primary goal of risk analysis is to support the decision makers who farm 

at various levels to choose a course of action, given a better understanding of the 

possible outcomes that could occur. The hypothesis in this chapter is that rainfall 

variability poses significant risks in farming and emphasizes the need for one or 

another form of risk analysis. Risk is a chance of loss in the physical scientists’ 

terminology and its analysis guides the rational decision maker to the best choice based 

on preferences providing a safety ‘rationale’ in terms of the axioms of the theory 

(Hayman, 2001). 

 

There is ample evidence from psychology that the unaided human intellect has 

difficulties dealing with risk and hence human beings are prone to make poor risk 

assessment. Bernstein (1996) equated risk management with modernity, pointing out 

that in the distant past, the world had mathematicians, inventors and technologists but 

no concept of risk. “The revolutionary idea that defines the boundary between modern 

times and the past is the mastery of risk: the notion that the future is more than a 

whim of the gods and that men and women are not passive before nature” (Bernstein, 

1996). Until human beings discovered a way across that boundary, the future was a 

mirror of the past or the murky domain of oracles and soothsayers who held a 

monopoly over knowledge of anticipated events (Hayman, 2001). McCown et al. (1991a) 

pointed out that given the fact that agronomists spend most of their time conducting 

experiments, running models and giving advice on resource allocation decisions, it is 

surprising that most agricultural scientists were quite unfamiliar with risk analyses. 

 

Parry and Carter (1988) argued that the climate impact studies which dominated the 

literature until mid-1970s treated agriculture as a passive exposure unit and they 

called for a system approach in order to demonstrate the capacity of agriculture to 

interact with and adapt to a variable climate. Over a third of a century ago, Trewartha 

(1968) warned against treating climate as ‘constant’. While emphasizing that climate 

study in general could be handed over to the norm (average); but it should be noted that 

departures, variations and extremes are also important. 
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Bawden Richard (1990) likened the process of agricultural science in general and the 

activities of the scientists in particular to a symphony orchestra, “if you enjoy what you 

do, and can get someone to pay you, good luck to you; but don’t confuse this with 

intervening and improving the situation of farmers”. Taylor (1994) underlined that the 

information and tools for risk management have not been readily available to farmers 

and that this was a valid role for federal and state governments. Stehr and vonStarch 

(1995) contrasted the neoclassical economic treatment of climate variability in which a 

perfectly informed society adopts optimal strategies, with the social construct theory of 

climate. In such a society, climate risk study is no longer new, it has become an 

essential ingredient in adopting optimal strategies. For such a society, questions of how 

the climate science should influence a farming system and appropriate ways of 

analysing, intervening and improving a given farming system have become a focal point.  

5.1.2 Climate variability and Ethiopian farmers’ risk management 

Throughout history, climate was widely understood to be controlled supernaturally and 

extraordinary events are taken as a sign of God’s wrath (Stehr and vonStarch, 1995). 

This holds true under Ethiopian agriculture, making the problem more of a social 

construct than natural. In fact, this problem is global in nature and not unique to 

Ethiopia. For instance, in recent more secular times, the media and even many 

scientists were quick to attribute any extreme weather event as a proof of climate 

change and evidence of the irony of the so called ‘human progress’ (Hayman, 2001). 

 

Bernstein (1996) was critical of the association of risk with fate or luck. If everything 

was a matter of luck, then risk management is a meaningless exercise. He states, 

“invoking luck obscures the truth, because it separates an event from its cause 

shunning the progress” and this is a deep-rooted part of social construct theory of 

climate.  In essence however, these days’ insights are more likely to come by keeping 

the edges sharp and being clear when moving from one framework to the other and it’s 

likely that such problems could be properly understood and managed in the future 

(Hayman, 2001). 

 

The traditional Ethiopian farmers’ wisdom for climatic variability and risk management 

involves conservative farming systems. Farmers choose crop cultivars and practices not 
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for producing high yields during good years, but to produce adequate food on a 

sustainable basis to supply the family needs. The most likely explanation could be that 

memories of losses during drought years in particular, inflate farmers’ estimate of the 

riskiness of their farming environment. The gains that are foregone during the good 

seasons place the longer-term sustainability of many farmers at risk (Donnelly 1997) 

and make them uncompetitive. Donnelly (1997) concluded that the harsh reality, 

however, is that the majority of farmers could immediately increase their productivity 

and efficiency simply by adopting less conservative management practices. According to 

Uehara and Tsuji (1991), although technology adoption is widely believed to be 

necessary to improve farm performance, there is also a wide spread agreement that risk 

aversion is a major deterrent to technology adoption. 

 

This chapter focuses therefore on the concept that a variable rainfall makes Ethiopian 

agriculture riskier, not only for the farmers but also for the national decision makers. In 

an Ethiopian context, this statement is commonly taken as obvious and either stated as 

fact or in passing reference to as ‘Ethiopia, a land of drought and famine’. However, 

given the potential of the existing natural resources, both farmers and the decision 

makers have to decisively come to terms with the ‘true state’ of the risks associated 

mainly with climatic variability. It means climatic risk analysis provides sound 

management, enabling the decision maker to trade off upside and downside in reducing 

risks. Wood and Harper (1993) noted that phrases such as “better technical 

information” leads to better decisions and all the societal groups need ‘more 

information’ that relates to risk and risky prospects embedded in farming. 

 

In Ethiopian dryland farming context, this signifies the need for technically sound 

intervention in terms of in-field water harvesting to accumulate crop root zone soil 

water content, as well as provision of timely and updated short and long-range rainfall 

prediction information, particularly for planting related decisions. The updated 

information on the performance of the season with the lapse of time and growth stages 

is also vital. 



101 

5.1.3 Classic risk analyses techniques  

Appropriate ways of measuring risk are still being debated. For example, Mumey et al. 

(1992) measured risk for Canadian producers as root mean square of error (RMSE) of 

actual and forecast or budgeted income.  Wylie (1996) questioned the use of probability 

in communicating climate risk with farmers and asserted that information from 

seasonal forecasts needed to be user friendly and not in the form of risk or probability 

distribution. Malcolm (2000) noted that while the probabilistic way of thinking was 

useful in farm management, there is ambiguity about the role of probability theory due 

to the paucity of the necessary information. The following sections present the risk 

analyses techniques used in this chapter. 

5.1.3.1 Cumulative Density Functions (CDFs) and Stochastic Dominance (SD) Analyses 

According to Anderson and Dillon (1992) a cumulative density function (CDF) is likely to 

be the first and most understandable graph of the distribution, in which it is possible to 

compare the dynamic values of random variables. If two CDFs are identical, one can 

use a 1:1 line to estimate risk for instance, values above the 1:1 line suggesting an over-

estimation and those below a 1:1 line representing under-estimation. 

 

The stochastic dominance (SD) technique that encompasses first degree stochastic 

dominance (FSD), second degree stochastic dominance (SSD) and third degree or higher 

order stochastic dominance is also a method used to analyze CDFs. FSD means the 

cumulative density function (CDF) of the best alternative must always lie below and to 

the right of the CDFs of the other distribution curves. Fig. 5.1 illustrates that CDFs ‘B’ 

and ‘C’ are dominant relative to CDF ‘A’ in the FSD sense. This means that for every 

risk percentile point on the Y axis, a farmer gets at least x amount more yield from CDF 

'B' or  'C' as compared to the yield obtained from CDF 'A'. In the FSD, the dominating 

variable would be preferred by any decision maker who prefers “more” to “less”, 

regardless of the attitude towards risk. The FSD analysis requires the pair wise 

comparison of all the pairs of distributions with the provision that once an alternative 

has been found to be dominated by another, then the dominated one can be dismissed 

from all further considerations (Hardaker et al., 1998). 
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Figure 5.1 Hypothetical data to illustrate first degree and second degree stochastic dominance 
analyses  
 

On the other hand, decisions are more difficult to resolve when the CDFs interact 

(cross-over) as shown by CDF ‘B’ and ‘C’. Under such circumstances, neither of them 

totally dominates in the sense of FSD, indicating the limited discriminatory power of the 

FSD (McCarl, 1996). Cross-over implies that one strategy could dominate the other at 

the lower points (bottom tail) of the distribution, but could be dominated at the upper 

values (top tail) in the distribution or vice versa (see CDF ‘B’ and ’C’ in Fig 5.1). In this 

curve, CDF ’C’ lies to the left of CDF ‘B’ at the lower level of the data series, meaning 

that the ‘B’ alternative is better choice in this range of the data distribution, while CDF 

‘B’ lies to the left of CDF ‘C’ at the upper tail of the series, meaning that ‘C’is a better 

and less risky choice in the upper range of the series. 

 

The cross-over between CDF ‘B’ and CDF ‘C’ implies that curves meet the requirements 

for SSD and the comparison should be handled using the higher order stochastic 

dominance techniques. By comparison, the total area under the CDF of ‘C’ is bigger 

than CDF ‘B’ at upper percentile points and therefore ‘C’ is to be the first choice 

(McCarl, 1996). McCarl (1996) points to this early cross-over as the main problem with 

SSD, as distribution may show a vast advantage over all points in the distribution, but 

the lowest one. As seen in the figure, CDF ‘C’ falls left of ‘B’ at the lower points, 

therefore rendering decision making more complicated to the farmers. Procedurally, the 

SSD analysis involves comparison between the areas below and above the cross-over 

point for the two CDFs. The implication is that all the decision makers (risk averse, risk 

neutral and risk takers) will have to choose the curve with the best outcome, according 

to their attitude towards risk. In this case, the risk averse (conservative farmer) prefers 
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CDF ‘B’ to ‘C’, because his or her priority concern is to ensure better than lowest yield 

for the family sustenance. On the other hand, a risk taker always targets the highest 

possible outcome (not worried about the downside risk) and therefore, prefer CDF ‘C’ to 

‘B’, giving more weight to the upside risks. 

 

The Kolmogorov-Smirnov test (K-S) also determines if the CDFs differ significantly in 

terms of the maximum vertical distance between the two CDFs. The K-S has the 

advantage of making no assumption about the distribution data (it is non-parametric 

and distribution free). In this test of the distance between two CDFs, p-value would be 

used to decide whether the difference between the two CDFs is significant. If the 

reported p is ‘small’, then the null hypothesis would be rejected, meaning there is 

significant difference between the two. 

5.1.3.2 Sensitivity Analyses   

Another risk analysis technique used in this chapter involves the sensitivity analysis, 

which is a useful way of determining to which input variable or group of input variables 

the output is most vulnerable. Sensitivity analysis is the process of varying model input 

parameters over a reasonable range (range of uncertainty in values of model 

parameters) and examining the relative change in model responses. It is important to 

recognize that the output of almost any model is sensitive only to a small number of 

parameters (Penning de Vries and Spitters, 1991). 

 

Regression and correlation techniques are the best ways of analysing sensitivity of the 

outputs to the input levels. By keeping other variables constant, and varying only a 

specific variable of interest, sensitivity analysis explains partition of the full risk 

distribution into good and poor seasons (Hardaker et al., 1998). 

5.1.3.3 Crop weather simulation modelling for risk analysis 

Simulation of crop growth using dynamic models, which depend on daily weather, is 

generally an accepted method for assessing the effects of climatic variability on crop 

production (Hutchinson, 1991). Simulation models are used to estimate potential yield 

in new areas (Buringh et al., 1975; Patron and Jones, 1989; Aggarwal and Penning de 

Vries, 1989), to forecast yields before harvest (Duchon, 1986), to estimate sensitivity of 

crop production to climate change (Parry and Carter, 1988) and to compare 
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management options (van Keulen and Wolf, 1986) and technology levels (Horie, 1987). A 

dynamic simulation model that includes a combination of mathematics and logic is 

used to conceptually represent a simplified crop yield that reflects sufficient detail of the 

system. This brings agronomic sciences into the information age (Ritchie, 1991). 

 

According to Penning de Vries and Spitters (1991) simulated output is more consistent 

across environments and more complete than those data obtained from empirical 

experiments. Consequences of subtle changes in crops or environmental conditions can 

therefore be simulated better than obtained with measured data (such as trends in 

weather, modification of crop or soil features and gradients of biological constraints). 

According to Ritchie (1991), the minimum requisite for a crop simulation model that 

could be used for climatic risk assessment is the simulation of a daily soil water 

balance, duration of crop growth, biomass growth rate and partition into harvestable 

yield. Sinclair and Seligman (1996) suggested that crop simulation modelling was 

entering a long and productive mature phase, having overcome the confusion and 

excessive confidence of adolescence. They pointed out that in modern agriculture, field 

experimentation had not only dominated research but also the extension message. They 

argued that the complexity of management alternatives and a variable climate had led 

to limitations in field experimentation which simulation modelling could help overcome. 

 

In crop growth simulation, four levels of crop production are usually distinguished. 

These are: potential yield, water-limited yield, nitrogen-limited yield and nutrient-

limited yield. Key processes for simulation are photosynthesis, respiration, 

assismilation, partitioning, leaf area growth and phenological development (APSRU, 

2005). Several advanced models simulate these processes, with daily or hourly time 

intervals and considerable details (Loomis et al., 1979; Penning de Vries et al., 1983; 

Whistler et al., 1986; Wisiol and Hesketh, 1987). Models for research and instruction 

emphasize integration of process level knowledge, while models for application 

emphasize extrapolation into new conditions. For research, better model structures lead 

to improved yield simulation under different conditions. For applications, the answer to 

whether improvements in models help to improve crop yield simulation is less 

straightforward. Lack of sufficient field data has limited the full use of models for many 

years and in many areas (Jeffers, 1976). 
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On the other hand, there are many complaints about simulation modelling in that 

simulated numbers are too easily derived and do not represent the real situation. 

Passioura (1973, 1996) states that biological simulation should be considered primarily 

as a work of art rather than science, because it usually fails to meet biologists’ 

expectations. Passioura (1996) also gave a bleak assessment of mechanistic simulation 

models helping farm management, arguing that, if the aim was accurate prediction on 

which to base sound advice, then delivering this advice with models based on guesses 

about “essential structures” was like the behaviour of a ‘snake’ oil salesmen. Similarly, 

De Wit (1982) argued that crop simulation models are not simplified representations of 

the conceptual ideas of biologists and warned agronomic modellers that “fools rush in 

where wise men fear to tread” and “this rushing into simulation in biology is done by 

agronomists, perhaps because they are fools, and also may be that they deal with 

systems in which the technical aspects overrule more and more the biological aspects”. 

Dillon (1971) raised a similar criticism in his three laws of simulation: first, you can 

prove anything with simulation; second, you can prove nothing with simulation; and 

third, simulation will continue until the money runs out. 

 

Given the above contradictory views of scientists, our aim was to use agrometeorology 

in the context of simulation modelling in climate risk analysis and produce a series of 

model outputs for June planting dates at two sorghum experimental sites (Melkassa 

and Miesso) in the Central Rift Valley of Ethiopia. This agrees with the idea of McCown 

et al. (1991a) that the option of running a field experiment to analyse climate risk is 

problematic and at the same time, climatic risk can only be adequately quantified by 

linking crop simulation models to long-term weather data. The issue of appropriate 

resolution (farm level or regional planning) in simulation models that are to be used for 

management should be critically considered, as well. 

 

The focus of this chapter is on the production aspect using climate risk analysis in 

sorghum farming in the Central Rift Valley of Ethiopia (assuming a fixed price). To deal 

with these analyses, the following three basic research questions were formulated: 

 1) Which planting window/s or rule/s significantly reduce/s rainfall risk and give  

efficient yields? 



106 

 2) In terms of sorghum productivity, which rainfall parameter is most sensitive 

as an indicator?  

 3) Does the proposed model simulate the observed sorghum yield well enough? 

 

Accordingly, the following specific objectives were set:- 

 a) To determine the most risk efficient planting season/window; 

 b) To determine the most sensitive rainwater related input variable/s for 

sorghum productivity; 

 c) To evaluate the observed sorghum yields against the simulated output and 

analyse the reasons for the difference. 

5.2 Materials and Methods  

In determining risk efficient planting window/s, the linear form of the water production 

function (WPF) using WRSI-grain yield equations that were developed in chapter 4 are 

used for the three sorghum experimental sites (Miesso, Melkassa and Arsi Negele). For 

Miesso and Arsi Negele, the linear regression equations developed using weighted 

average WRSI for a 120-day cultivars are used. For Arsi Negele, the same procedure was 

employed for a 180-day sorghum cultivar. 

 

For Miesso and Melkassa there were no observed yield data for seasons with planting 

date before June. Therefore, the June-September growing season WPF with weighted 

average WRSI was used to simulate yields. For Arsi Negele too, there was no yield data 

for seasons with planting date before May. Therefore, the WPF with weighted average 

WRSI for the May-October growing season was used to simulate sorghum yield for 

March-August and April-September growing seasons. The assumption in using the 

predictor WRSI is that it is a dimensionless value that signals ‘total crop failure’ if it’s 

value is less than 50% and ‘good performance’ if its value is greater than 75%, despite 

the seasons differences in terms of rainfall distribution or amount.  
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5.2.1 Analytical techniques  

5.2.1.1 CDFs and Stochastic Dominance 

To begin with, the probability distribution of yields for each planting window using CDF 

was drawn. These were compared using either the first degree stochastic dominance 

(FSD) or second degree stochastic dominance (SSD), whichever was appropriate, for the 

particular cultivar and/or location. The K-S statistics were also employed to determine 

whether there is a significant difference between yields from different planting dates 

used at Miesso, Melkassa and Arsi Negele. 

5.2.1.2 Sensitivity Analyses 

The sensitivity analysis was carried out for the 120-day sorghum cultivars planted in 

June at Miesso and Melkassa and the 180-day sorghum cultivar planted in May at Arsi 

Negele. Arsi Negele represents the high rainfall area as well as areas supporting longer 

duration sorghum cultivars that give high yields. Since the rainfall starts early in this 

zone, farmers prefer to grow a long duration sorghum cultivars. Accordingly, three 

concurrent planting seasons (planting in March, April and May) were evaluated in terms 

of productivity.  

 

The input variables include planting date (P), maturity date (M), number of rainy days 

(R, count of days on which rainfall was recorded), rainfall duration (D, difference 

between planting date and end of the growing season), crop water requirement (CWR, 

mm) and WRSI (%). Prior to executing multiple regressions, these six input variables 

were submitted to the stepwise regression procedure with the aim of avoiding 

multicolinearity problems and selecting only those variables having significant yield 

explanatory power. 

 

Further, because data on planting date and maturity date were available in days of year 

(DOY), these were first categorized into dummy variables (Table 5.1); for instance, 

planting date was classified into early (PE), medium (PM) and late (PL), while maturity 

date was classified into extended (ME), intermediate (MM) and short (MS). Number of 

rainy days (R) in a season was also categorized into longer number of rainy days (RL), 

intermediate number of rainy days (RM) and short number of rainy days (RS). 
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Subsequently, these were represented by dummy variables; e.g. 2 was assigned to 

represent the early (early June) planting date or 150-160 DOY for the 120-day cultivar 

planted at Meisso and Melkassa, as well as for the 120-130 DOY (early May) in case of 

the 180-day sorghum cultivar planted at Arsi Negele (see Table 5.1). From the previous 

findings it was found that early planting date is the most preferred one and that is why 

the largest weight of 2 was assigned to it, as compared to ‘0’ that was assigned for the 

late planting date scenario and therefore least preferred. Similar cases hold for maturity 

date too. The multiple regression equation is: 

Y = P + M + D + R + CWR + WRSI     (5.1) 

Where:   Y = sorghum yield (kg ha-1) in a given year 

    P = planting date (DOY range 

    M = maturity date (DOY range) 

    D = rainfall duration in a given year  

    R = number of rainy days in a given year  

    CWR = crop water requirement  

    WRSI = water requirement satisfaction index. 

 

Sequentially, all variables with the largest coefficient of regression and the least 

multicolinearity were retained as the most critical input (most sensitive) in detecting 

percentage changes to sorghum yields and constituted the multiple linear equations for 

the respective cultivars and locations. 

 

Table 5.1 Summary of dummy variables used in multiple regression for a 120-day sorghum 
cultivar planted in June at Meisso and Melkassa and 180-day grain sorghum cultivar planted in 
May at Arsi Negele 

Planting date (P) 
(DOY) 

Maturity date (M) 
(DOY) 

Number of rainy days 
(R) (Number) 

PE 
2 

PM 
1 

PL 
0 

ME 
2 

MM 
1 

MS 
0 

RL 
2 

RM 
1 

RS 
0 

 
Experi 
mental 
Station 

best better good best Better good best better good 
Miesso & 
Melkassa 

151-160 161-170 171-180 >280 271-280 261-270 >40 31-40 20-30 

Arsi 
Negele 

120-130 131-140 141-150 >300 291-300 280-290 >70 61-70 50-60 

P = Planting date (PE = early planting date; PM = medium planting date; PL = late planting date);  
M = Maturity date (ME  = extended maturity date, MM = medium maturity date, MS = short maturity date);  
R = Number of rain days (RL = longer number of rain days in a season, RM = intermediate number of rain 
days, RS = short number of rain days).  
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5.2.1.3 Simulation modelling 

To achieve this objective, the Agricultural Productivity Simulator (APSIM version 4.0) 

was used. APSIM is a dynamic model that takes into account different growth and 

development processes of a given crop or cropping system. Central to this analysis is 

that differences between the observed and simulated water-limited yield in any test year 

could, as an approximation, be used to establish a yield pattern that prevails in 

response to the seasonally variable climate and soil factors in the study area. The 

difference between the observed and simulated yields was then assumed to be a 

management gap that may attract attention from breeders, physiologists and 

agronomists in adjusting research strategies in the wake of optimising the resource use 

in the study area. Also, it can be quite useful to the farmers in making improved on-

farm level tactical decisions. 

 

As there was no data for the other growth and yield components like biomass and leaf 

area, only sorghum grain yield data was recorded during simulation. The daily climate 

records that were used include: maximum and minimum temperatures, solar radiation 

and rainfall. The measured soil variables like depth (D), bulk density (BD), drainage 

upper limit (DUL), saturation water content (SAT), lower limit (LL), plant available water 

capacity (PAWC), organic carbon and pH were obtained by courtesy of Worku 

Atlabatchew (currently a PhD student at the University of the Free State, Republic of 

South Africa). 

 

The other essential soil parameters like air dry water content, whole drainage 

coefficients (SWCO), nitrate level (N03), ammonium (NH4), humic fraction (FBiom), inert 

fraction (FInert), initial stage evaporation coefficient (u) and soil reflectivity/albedo (salb) 

were adopted from the APSIM’s default values, which were set for sorghum under 

similar soil characteristics in Australia. Sorghum crop parameters including root water 

extraction constant (Kl) were adopted from the same source. Subsequently, the model 

was run, resulting in a harvestable grain yield, which was eventually integrated into a 

hectare-based product for each year. 

 

Guided by the fact that most planting dates for the observed yields were concentrated 

around the early days of June, sowing date was set at the first of June for both the 
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experimental sites. Other factors, including the nitrogen fertilizer, are kept non-limiting  

(because the cultivars have been grown under a no-fertilizer limited condition) and only 

climate over the growing periods was different. The rainfall amount at planting was 20 

mm received over three consecutive days under which the cultivar has been regularly 

planted for years at the two experimental sites. The sorghum plant density was set at 

6.6 plants m-2 (0.75 meter space between rows by 0.20 m space between plants) that 

represents the field experimental situation (Georgis, 1999). 

 

Following the calibration, diagnostic indices (Wilmott, 1981, 1982) including index of 

agreement (D-index), total root mean squared error (RMSE) and its partitions i.e 

systematic (RMSEs) and unsystematic (RMSEu) were employed. These help to evaluate 

how the observed and simulated yields are in agreement. The dimensionless D-index 

ranges from 0 to 1, with 1 indicating perfect agreement between the observed and 

simulated, while 0 represents strong disagreement. The latter 3 error quantifiers 

describe the magnitudes of the major errors. For acceptable agreement between the 

observed and simulated outputs, the total RMSE should be as low as possible. At the 

same time, the systematic component of the RMSE i.e. RMSEs is expected to be 

minimized, while the RMSEu should approach the total RMSE value. The equations are 

given below:-. 

D = ( [ ]2
1 1

/2)(∑
=

∑
=

−−
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N
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iOi iOiPP     0 ≤D≤ 1   (5.2) 

Where:   D = agreement index 
    Pi  = predicted values  
     Oi  = observed values 

N = number of observations  

RMSE = N-1 ∑
=

N

i 1
[( iOiP − )2 ]     (5.3) 

RMSEs = √ MSEa + MSEp + MSEi  
 

Where:   RMSE = root mean squared error 
RMSEs = systematic root mean squared error 
MSEa = a2  = additive systematic error 

MSEp = (b –1) 2   [N-1  ∑
=

N

i 1
 (Oi)2 ] = proportional systematic error   
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 MSEi  = ( )Oba 12 − = interdependence factor for proportional and 
additive components 

a = intercept 
b = slope  
Oi  = ith observed yield (kg ha-1) 
N = total number of observation  
O = Mean observed yield  

    RMSEu  = sMSEMSE −  

Where:    RMSEu = unsystematic component of RMSE 
    MSEs  = mean squared error 
 
Moreover, the regression equations and 1:1 line were used to determine whether the 

observed yields were accurately estimated by the simulated yields. In these multiple 

sequences of risk analyses, it is believed that the adopted procedures are reasonable, 

which could be optimised as and when data become sufficiently available.  

5.3 Results and Discussion 

5.3.1 Stochastic dominance analysis 

The CDFs and stochastic dominance analyses output for March, April, May and June 

planting of two 120-day sorghum cultivars (76-T1#23 and Gambella-1107) for Melkassa 

reveal that May planting window was dominant in FSD sense in both cultivars, giving a 

yield of 3900-4000 kg ha-1 at 85th percentile point (Table 5.2 and Fig. 5.2). The 

performance of the two cultivars under the various planting dates reveals a similar 

pattern in that there is no significant difference between May and June planting dates 

(Table 5.2), while there are significant differences for instance among April and June 

planting dates. In other words, as May and June curves converged at the upper tail, but 

did not cross over (for both 76-T1#23 and Gambella-1107), an alternate advantage 

expected from June planting date over May case may not be justified (D = 0.38 and 

p=0.07). It means, all decision makers at Melkassa may prefer May planting date, as it 

gives the highest outcome as compared to the rest of the planting dates. However, soil 

water management is important to mitigate the risks associated with a May planting 

date. 
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c) Miesso: 76-T1#23
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d) Arsi Negele: ETS-2752
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Figure 5.2  Cumulative probability density function of three sorghum cultivars planted in March, 
April, May and June at (a) Melkassa for cultivar 76-T1#23, (b) Melkassa for cultivar Gambella-
1107, (c) Miesso for cultivar 76-T1#23 and (d) Arsi Negele for cultivar ETS-2752 
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Table 5.2 Kolmogorov-Smirnov test statistics for different sorghum planting dates at Miesso, 
Melkassa and Arsi Negele in the Central Rift Valley of Ethiopia 

Melkassa Miesso 
76-T1#23 

Arsi Negele Plant 
ing 
date April May June April May June April May 

 D p D p D p D p D p D p D p D p 
March 0.4167 0.18 0.58 0.019 0.07 0.005 0.56 0.007 0.94 0.00 0.87 0.00 0.40 0.03 0.40 0.31 

April   0.50 0.066 0.58 0.019   0.68 0.00 0.56 0.007   0.60 0.03 

May     0.25 0.786           

 Gambella-1107  

March       0.57 0.001 0.90 0.00 0.85 0.00     
April         0.67 0.00 0.52 0.004     
May           0.38 0.07     

D = maximum vertical distance between two CDFs; p = level of significance  
 
It can also be deduced from the same curve that, a farmer targeting 4000 kg ha-1 from 

May and June cropping seasons could achieve the desired quantity, but the associated 

risk level is of the highest order (85%). In such a targeted yield analyses; any decision 

maker should therefore be able to increase the soil water content and crop water use 

efficiency. The same curve shows that the March planting date mostly gives yields of 

zero order, except that 15% of the time 2000 kg ha-1 could be achieved ( %85≥p ). 

 
At Miesso (zone 4), an area where sorghum is known to be the staple food, the crop is 

produced under not only highly variable, but also a risky rainfall pattern. Fig 5.2c 

evaluates the CDFs of the predicted yield of cultivar 76-T1#23 for March, April, May 

and June plantings. Table 5.2 and Fig 5.2c highlight that the March planting date 

apparently gives a yield of zero order for 50% of the time and therefore, planting 

sorghum under these conditions is practically impossible. There is a significant 

difference between the planting dates with the progress of the rainfall season. For 

instance, the yield level between March and April is non-significant but the yield 

differences between March and the rest of planting dates are significant. Like the 

Melkassa case, the difference between May and June planting dates is statistically not 

significant. However, given that the rainfall pattern at Miesso is lower compared to 

Melkassa, alternative soil water management techniques should be considered before 

making planting decisions in May. April planting is also possible, but the risk is much 

higher than even the May case, particularly from the poor farmers’ perspective. 

 

Therefore, except that the curves converged at the upper tail of the distribution (>2600 

kg ha-1), Fig 5.2c shows that June planting reveals slightly better output than the May 
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planting date in FSD sense. Hence, June planting date is to be chosen by any decision 

maker who seeks higher yields for the cultivar under consideration, regardless of the 

attitude towards risk. From the same curve, one can also note that 9 years out of 10, 

the sorghum productivity does not exceed 2600-2700 kg/ha, showing what the 

potential yields are under the Miesso climate for all the planting dates. 

 

Fig. 5.2d highlights the CDFs of yield distribution for the 180-day cultivar (ETS-2752) 

under alternative planting windows at Arsi Negele (zone 2). From the CDFs curve, there 

is significant difference among the three planting dates at 5% probability level. April 

planting is found to have the best risk efficient set, yielding up to 7220 kg ha-1 in 4 out 

of 5 years i.e. for Arsi Negele farmers seeking more payoff this planting date should be 

the one preferred most in the FSD sense. In examining planting dates vis-à-vis attitude 

of farmers towards risk, CDFs in Fig. 5.2d show that both risk averse, risk neutral and 

risk taker farmers invariably prefer the April planting date, as it gives better yields in 

the FSD sense. With further comparison of March and May planting dates, risk averse 

prefer May planting, as it yields better at the lowest tail of the series and since the risk 

averse always worry about the downside risk. 

5.3.2 Sensitivity analysis 

The equations reflecting four cardinal rainfall related input variables retained after 

running the stepwise regression which formed the basis for the sensitivity analyses 

results are summarized in Table 5.2 and discussed in the subsequent sections. For 

both stations, the rejected input variables were seasonal rainfall duration and crop 

water requirement. 

 

Table 5.4 and Fig. 5.3 highlight that the productivity of the released sorghum cultivars 

are more sensitive to the changes in WRSI levels than to any of the other equation 

components. For instance, with the ‘best combination’ of inputs (i.e. at early planting 

date (PE), extended maturity date (ME), longer rain days (RL) and 100% WRSI), both 

cultivars invariably display the highest (3422 - 5148 kg ha-1) productivity in the case of  

Miesso and Melkassa, while the same was 6469 kg ha-1 in case of Arsi Negele. The 

relative changes in yield (from the yield obtained under the best combinations of inputs) 



115 

vary from 21.4 to 100% in case of Miesso, 10.7 to 100% in case of Melkassa and 0.40 to 

57.1% for Arsi Negele. 

 

Table 5.3 Multiple regression equation for sensitivity analyses of the important rainfall variables 
at Miesso, Melkassa and Arsi Negele experimental sites, (CRV of Ethiopia) using planting date 
(P), maturity date (M), number of rainy days (R) and water requirement satisfaction index (WRSI) 
as input variables 

Regression coefficients Experiment 
Site 

Cultivar # 
records 

(n) 

Con-
stant 

() 
 
P 

 
M 

 
R 

 
WRSI 

r2 F-
Test 

Eq. 
# 
5.4 

Miesso 76-T1#23 13 -3295 271 79 51 71 0.80 15.5 a 
Melkassa Gambella1107 21 -5458 516 700 114 84 0.85 19.3 b 

Arsi Negele ETS-2752 11 -367 1590 215 1530 63 0.93 22.2 c 
 

From Table 5.4 it could be noted that keeping the other inputs at the best level and 

changing only WRSI from 100% to 75%, resulted in 49.7 % in the case of Miesso, 40.8% 

for Melkassa and 24.3% in the case of Arsi Negele. Similarly, keeping the other input 

variables at the best level, but changing WRSI further down to 50%, resulted in total 

crop failure at Miesso and Melkassa, while it resulted in 52.8% yield reduction at Arsi 

Negele.  

 

A similar analysis was done by changing the other input variables from their best level 

combination to the ‘medium’ scenario (see Table 5.1). These are: medium planting date, 

medium maturity date and intermediate number of rainy days. In this case too, the 

yield level under 100% WRSI was 3056 kg ha-1 for Miesso, 4047 kg ha-1 for Melkassa 

and 6195 kg ha-1 for Arsi Negele. A change in WRSI from 100% to 75% (keeping the 

other variables at ‘better’ level) resulted in 62.2%, 60.8% and 28.5% yield reduction at 

Miesso, Melkassa and Arsi Negele respectively. A further change in WRSI down to 50% 

resulted in total crop failure at Miesso and Melkassa and 52.8% reduction at Arsi 

Negele. 

 

The third scenario in combining different levels of inputs involved late planting date 

(end of June), short maturity date and short number of rainy days (see Table 5.1) 

together with different WRSI levels (Table 5.4). The result from these scenario analyses 

(when WRSI is changed to 75%) indicates that yields decline by over 80% at Miesso, 

71.1% at Melkassa and 32.8% at Arsi Negele. With a further change in WRSI to 50% , 

sorghum productivity was abruptly dropped to zero for cultivar 76-T1#23 at Miesso and 
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Gambella-1107 at Melkassa (Table 5.4 and Fig 5. 3). On the other hand, the yield 

reduction with the same treatment combination was 57.1% at Arsi Negele. The 

percentage change in yield (Fig 5.3) is in relation to the best level treatment 

combination. 

 

The implication is that, while the optimum combination of yield determining factors is 

desirable for successful cropping, one factor could be much more important than the 

others. The large standard errors in Fig 5.3 show how the variability in yield is higher at 

both experimental sites. However, this sensitivity analyses revealed how WRSI is the 

most important determinant of yield, as the change in WRSI from 100 through to 50% 

resulted in significant changes in yield at different experimental sites. 

 

In comparison, while WRSI is most important both at Miesso and Melkassa, in relative 

terms, sorghum yield response to the change in WRSI is more obvious at Miesso than at 

Melkassa. The response of sorghum cultivars to a change in WRSI level is lower at Arsi 

Negele. 

 

Table 5.4 Sensitivity of sorghum cultivars to changes in the levels of input variables at three 
experimental stations 

Miesso Melkassa Arsi Negele Input variables 
combination Predicted 

yield 
kg.ha-1 

Relative 
% 

change 

Predicted 
yield 

kg.ha-1 

Relative 
% 

change 

Predicted 
yield 

kg.ha-1 

Relative 
% 

change 
PE+ME+RL+100% W  3422  5148  6469  
PE+ME+RL+75%W 1720 -40.8 3047 -49.7 4897 -24.3 
PE+ME+RL+50% W 200 -94.1 947 -81.6 3325 -48.6 
PM+MM+RM+100% W 3056 -21.4 4047 -10.7 6195 -0.4 
PM+MM+RM +75% W 1334 -62.2 1946 -60.8 4623 -28.5 
PM+MM+RM +50% W 0 -100.0 0 -100.0 3051 -52.8 
PL+MS+RS+100% W 2690 -42.8 2945 -21.4 5920 -8.5 
PL+MS+RS+75% W 989 -83.6 844 -71.1 4348 -32.8 
PL+MS+RS+50% W 0 -100.0 0 -100.0 2776 -57.1 
PE = early planting date; ME = extended maturity date; RL = longer # rain days;  
PM = intermediate planting date; MM = medium maturity date; RM = intermediate # rain days;  
PL = late planting date; MS = short maturity date; RS = short number rain days;   
W = water requirement satisfaction index. 
 

From the sensitivity graph (Fig. 5.3), one useful research question could be advanced 

with regard to the 100% WRSI. That is, water being an expensive commodity and other 

factors being kept constant (no negative influence), the expected yields from the use of 
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adequate WRSI level (>75%) should be in the highest possible range. The question then 

arises “is it worth using a sorghum cultivar that yields a maximum of 5 t ha-1 under a 

higher range of WRSI ?” or, put differently, “should potentially high yielding cultivars be 

searched for the benefit of these farmers?” 
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Figure 5.3 Percentage change in yield of sorghum cultivars planted in June at Miesso and 
Melkassa and in May at Arsi Negele in Central Rift valley of Ethiopia 
                                    

As explained earlier, farming in the study area is carried out under a highly variable 

climate. Assuming that farmers always prefer to get more payoffs and can adopt those 

decision aids and material technologies that are helpful in improving their traditional 

wisdom of crop management, high yielding cultivars are certainly desirable to them. 

Therefore, given the timely rainfall prediction information and other decision aids that 

also contribute to the increased likelihood of WRSI, research targeting high yielding 

cultivars could be an attractive strategy. However, without decision aids and improved 

material technologies, as well as for farmers who do not use inputs, stable yielding 

cultivars and the balanced crop water use information should be targeted.  
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5.3.3 Simulation modelling  

In this section, the relative yield of APSIM simulation output is evaluated against the 

relative observed yield obtained from sorghum cultivar (75-T1#23) grown in June at 

Miesso and Melkassa, using Wilmott's (1981, 1982) statistical indices (Fig. 5.4). At 

Miesso, sorghum yield was over-estimated (75 % of data points appeared above the 1:1 

line) with the D-index of 0.82.  
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Figure 5.4 Relative observed and relative simulated yield (kg ha-1) of sorghum cultivar (76-T1#23) 
planted in June at (a) Miesso and (b) Melkassa , CRV of Ethiopia.  
 
At Melkassa, the relative simulated output has over-estimated sorghum yields with the 

D-index of 0.81, as could be noted from the 1:1 line in Fig 5. 4b with the RMSE of 

1148.4 kg ha-1 and the corresponding RMSEs and RMSEu of 621.3 and 965.7 kg ha-1. 

The high RMSEs, reflects a wider difference between the observed and simulated 

outputs. In accordance with our current argument, possible explanations could be 

forwarded for the model over-estimated yields. Firstly, the sample size of the observed 

records used for the simulation was relatively low (n = 8 for Miesso and 15 for 

Melkassa) and secondly, many crop growth and development related and essential 

inputs (like leaf area, total dry matter and others) required for the simulation of growth 

and development processes were missing. This must have contributed to the lack of 

strong disagreement between the observed and simulated yields. 

 

It is equally important also to note that even with an availability of a sufficiently large  

sample and a good understanding of the underlying processes, the link between 

understanding and realistic simulation in such a complex biological-climate system is 
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problematic and it is difficult to establish perfect reasoning for such a low scale 

association all at once (Hutchinson, 1991; Monteith, 1996). 

 

Generally, the result from the current simulation run did not produce scientifically 

useful results at this stage. Nevertheless, new insight and deeper understanding of how 

the rainfall risk that could form a good ground for the future simulation work has been 

gained. 

5.4 Conclusions 

 
The risk analyses conducted in this chapter provided a framework for using climate risk 

information pertaining to sorghum productivity at three experimental sites (Miesso, 

Melkassa and Arsi Negele) in the CRV of Ethiopia.  Two 120-day cultivars (76-T1#23 

and Gambella-1107) were used for March-September growing season at Miesso and 

Melkassa, while a 180-day cultivar (ETS-2752) was used for March-October in the case 

of Arsi Negele. 

 

At Miesso, the stochastic dominance analysis shows that June planting date was the 

dominant set in FSD sense over the rest of the planting windows. The simulation 

analysis for a 120-day cultivar planted in June at Miesso shows that APSIM has 

overestimated the observed yield with an average of 2906 kg ha-1 as compared to the 

1782 kg ha-1 observed average yields with the D-index of 0.82. 

 

At Melkassa, the result from the stochastic dominance analysis (SDA) shows that May 

planting date was dominant in FSD sense for both cultivars, yielding between 3900-

4000 kg ha-1 at 85th percentile risk level.  The sensitivity analysis conducted for 

Melkassa using four cardinal rainfall related input variables (planting date, maturity 

date, number of rainy days and water requirement satisfaction index) shows that yields 

of Gambella-1107 planted in June was found to be much more sensitive to WRSI than 

the rest of the input variables. For instance, by keeping other input variables at a given 

level of combination, and changing WRSI from 100% to 75%, yield was reduced by 

40.8%, while further change in WRSI down to 50% resulted in total crop failure. The 

simulation modelling result for Melkassa also shows that most of the data points 
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appeared above the 1:1 line which means APSIM has overestimated the observed yields 

(D-index was 0.81) and this may be useful research information that could be of 

interest to the sorghum breeders and agronomists working in the study area. Further 

study is required to arrive at a definitive conclusion. 

 

For Arsi Negele, the CDFs of a 180-day cultivar planted in April was found more risk 

efficient and this could be adopted by the farmers preferring 'more' payoff to 'less'. The 

sensitivity analyses conducted for cultivar ETS-2752 planted in May shows that the 

relative reduction in grain yield due to a change in WRSI from 100% to 75% was only 

24.3%.  Compared to the Miesso and Melkassa cases however, further reduction in 

WRSI down to 50% did not result in complete crop failure (2777 kg ha-1 could still be 

realized). Further comparison shows that the response of ETS-2752 to the change in 

WRSI levels (keeping other variables constant) is lower compared to the Miesso and 

Melkassa cases. This shows how WRSI is the most important input variable under 

inadequate rainfall compared to that under adequate rainfall areas. 

 

Overall, although there was a limitation in data that rendered the results not to provide 

a definite conclusion, this chapter has brought several risk related research questions 

to the fore and proposed possible solution statements. These need to be taken up as a 

useful research topic on the way forward. 

 

 



121 

Chapter 6  

Tactical Decision Support Tool for Sorghum Production 
under Variable Rainfall 

6.1 Introduction 

The fact that agricultural science is only offering marginal information and material 

technologies, particularly to help dryland farmers who live with a highly variable 

climate, is no doubt disappointing. Indeed, the much cited quip of Charles Dudley 

Walker “everybody talks about the weather but nobody does anything about it” 

emphasizes the need for re-engineered coping mechanisms and solutions for a variable 

climate. Russel (1950) observed the arid and erratic rainfall of Australia and stated “I 

am almost unable to believe that it is beyond the power of science to remedy this …. 

why should we sit down under such circumstances. If science teaches us anything, it 

teaches us that there are few circumstances in which we should sit down passively.” 

 

As a step towards a solution, Russel (1950) suggested, “if I could control Australian 

policy, I should establish a college of highly skilled scientists of various sorts, 

meteorologists, agronomists, nuclear physists to be engaged in a theoretical 

investigation of what is necessary to increase the fertile area of Australia”. He also 

added, “the people involved should be young, temperamentally hopeful and respected 

because of their capacity. The same skill that shows us how to exterminate the human 

race can also help to make the desert bloom like the rose”. 

 

As agriculture is in acute competition with the other economic sectors for resources, the 

need for agricultural science in teaching about better decision making is becoming more 

crucial (Hayman, 2004). Recent soil-plant-climate-informatics interfaced developments 

provide an unprecedented opportunity to design and implement improved crop 

management systems, via what is now known as decision analysis. Goodwin and Write 

(1991) emphasized the term ‘analysis’, which originated from the Greek word “to 

loosen”. Analysis involves going deeper into the smaller parts, while synthesis is the 
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process of putting the decisions and problem situation back together as a whole, but 

with new understanding. 

 

According to Anderson et al. (1977) decision analysis (the classic approach to risky 

decisions) has been applied to diverse aspects for a long time but has been used 

elegantly in research on climate risk (Katz et al., 1982; McCown et al., 1991a; Keating et 

al., 1993; Marshall et al., 1996; Hammer et al., 1996). Decision analysis is vital, 

because there is a specific time when the crop must either be sown or the land left 

fallow; and when the crop is sown, there is an optimal rate of fertilizer that should be 

applied under defined planting density and available soil water (Ackoff, 1981). Likewise, 

decision theory was applied to businesses in 1960s by Howard Raiffa and Robert 

Schlaifer of Harvard University’s Business School as a way of dealing with uncertainty 

in decisions (Philips, 1982). This implies that a decision (Greek word means cut-off 

point) that can be considered as an irrevocable allocation of resources must be made at 

the right time for the specific farmland. 

6.1.1 Decision analysis: Definition and approaches 

Barnard (1938) defined decision analysis as a logical process of discrimination and then 

choice. The three recently redefined stages in decision analysis involve:  

First, the sequence of restructuring a problem (establishing a context), allocation of 

probabilities and making choice from among alternative courses of actions. Structuring 

the decision situation is a form of system diagnosis or situation description. While there 

is no argument that system diagnosis is important, there are vast numbers of 

arguments to be considered, including the appropriate resolution and the choice of 

methodology. This has led some professionals to the extent of even dismissing decision 

analysis as an artifact with little relevance to the context of the decision maker. For 

example, Checkland (1988) suggested that decision analysis is only suitable for those 

who enjoy playing around with the logic of a situation. 

 

Secondly, by definition tactical decisions are difficult commodities to package and 

transfer to the farmers, because they are highly uncertain. Therefore, a rule of decision 

analysis is that all uncertainty can be represented through appropriate use of 

probability, which is used to express their future behaviour. Norris and Kramer (1990) 
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defined subjective probabilities as “the beliefs held by individuals that reflect their 

uncertainty about some idea, event or proposition”. They maintained that subjective 

probabilities are successfully used in fields as diverse as psychology, management 

science, investment analyses, meteorology and agriculture. Anderson and Dillon (1992) 

claimed that the use of subjective probabilities further emphasizes the sovereignty of 

the decision maker. 

 

The third and final stage involves systematically presenting the choices, chances and 

consequences associated with a particular decision, in which the best choice often 

becomes either obvious (i. e. one choice has much better outcomes than all the others), 

or marginal (i.e. little difference between the projected outcomes). Hayman (2004) calls 

such a sequence of approaches to the uncertain and therefore risky decisions, a 

‘decision support system’ (DSS) or ‘decision support tool’ (DST). 

 

Hochman (1995) described a DST as any structured method of using data, information 

or knowledge to help people reach objective management decisions. Arinze (1992) noted 

a trend for the term DSS to be applied to problem solving rather than the specific 

technology of computers. For instance, Nykanen et al. (1991) defined DST as “the 

exploitation of the extended human mind and computer related technologies to improve 

creatively decisions that really matter”. For the purposes of this study, a DST is 

understood to be a computer based, interactive system which offers both information 

and decision making procedures, and is designed to support a specific set of decisions 

(Sage, 1991). This implies that once the goal is properly established there could be more 

than one way to reach it. 

 

According to Sprague (1980), a DST has always had its greatest value in uncertain 

environments dealing with missing information. He noted that while many other 

applications use historical data, a DST is forward-looking in perspective and involves 

not only data, but also procedures for judgment about future uncertain events. Simon 

(1983) agrees that the underlying theories of decision analyses are a beautiful object, 

deserving a prominent place in the world of ideas, but claimed that there exist many 

uncertainties that make it difficult to employ them in any literal way to making actual 

human decisions. Woods et al. (1993) made a point that while most agricultural DSTs 
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have a potential to improve farmers’ decisions, the means by which these can occur is 

not clearly established or thoroughly evaluated.  

 

As it is impossible to deal with risks all at once, much of the success of decision 

analyses has been attributed to the ‘divide and conquer’ orientation in the sense of 

using diagrams such as decision trees to disaggregate (analyse) a decision problem 

(Keeny, 1982). Setting boundaries and hierarchies for a particular problem consistent 

with time and other resources available is therefore vital. The promise of DST is a 

means of organizing data into information or knowledge that can be readily used. For 

example, Hamilton et al. (1991) stated “never before have we been able to analyze so 

much data relating to a specific situation, and arrive at a solution to a complex 

problem”. According to Gaffney (1996) decision analysis is what one has to do when 

situations become difficult to manage. 

 

As pointed out by Hardaker and Gill (1994) and Hardaker et al.  (1998), there is little 

new about decision analyses. Bernouli recognized risk aversion in 1738, while von 

Neuman and Mongestern developed the central hypotheses of decision analyses in 1947 

and Savage wrote a text on subjective probabilities in 1954. On the other hand, Scanlon 

and McKeon (1993) claimed that the discipline of computerized DST in agriculture is in 

its infancy and hence it was too early to judge its value. Similarly, White et al. (1993) 

noted the emerging role of DST in agriculture, while it has been used more than 20 

years in other industries. 

6.1.1.1 Decision analyses: State of the art in developed and developing nations 

In developed nations, DST has been a significant way in which agricultural scientists 

seek to intervene and improve the way farmers manage their enterprises. Although 

there have always been some diverging ideas, DST is held as a promising means to 

transfer scientific information and farm management procedures to farmers for instance 

in America and Australia (Hayman, 2004). This notion has however been challenged 

with the recognition of the existence of the important pools of knowledge with farmers, 

extension workers, scientists and others (Rölling, 1988). In their study on the potential 

of DST in dryland farming of Australia, Hamilton et al. (1991) saw a promising future 

for DST once computers became more common and providing that developers took a 
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team approach and considered end-users. They concluded “computer based decision 

aids have not been oversold, but have just been underdeveloped”. 

 

What are the implications in relation to farming in developing nations? No doubt, for 

these nations too, decision analysis represents a useful interface between scientists 

studying the farming system and farmers managing the systems (Hayman, 2001). 

However, the relationship between the two has always been a complex one. The 

Ethiopian research system for instance has an overall objective of developing material 

technologies (e.g. varieties, fertilizers etc.) and decision aids (ideas, agronomic, 

resources) to assist farmers deal with crop and livestock production decisions that are 

greatly affected by climatic risks. It follows from this claim that Ethiopian farms are 

currently not profitable, but farmers are reliant on food aid and adopt less sustainable 

agricultural practices not only due to climate variability, but also to the fact that they 

lack information and procedures for decision-making. 

 

For the Ethiopian research system, this makes a case for a challenging environment in 

the course of technology ‘exchange’. Technology ‘exchange’ presumes that material 

technologies and knowledge are expected to be created and transformed into useful 

information by research and farmers teams in a participatory way. This emphasizes 

that, as the loop needs to be closed, technology ‘exchange’ also assumes the preference 

of co-learning and technology sharing among the stakeholders as opposed to the flow of 

technologies and ideas from one direction only. 

 

Hochman (1995) noted that farm management is becoming more complex and to deal 

with the complexity one needs more advanced decision aids. In the case of developing 

countries, the overwhelming majority of small-scale farmers do not and cannot own 

computers in the near future. Therefore, whatever computer DST one is referring to can 

be targeted only at the third party (researchers, extension workers and consultants) and 

not directly at the farmers themselves. That is not to say that a farmer today who wants 

access to a DST cannot find one. To bring the DST utility to the level of small-scale 

farmers however, enormous capacity building needs to be promoted in terms of 

financial resources and adult learning schemes. 
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6.1.2 DST and the Ethiopian farmer 

This chapter accepts that a climate referenced DST is a valid contribution to the 

Ethiopian research system, but at the same time exploring the most useful kind of 

information expected from the analyses needs crucial thinking. For this purpose, 

decision-making can be conveniently categorized into three sequential groups: strategic, 

tactical and operational (Russel, 1991). By ‘strategic’ is meant management practices, 

which are followed every year in the expectation that it will give maximum benefits over 

the long-term. On the other hand, ‘tactical’ application means changing management 

practices in response to the state of environmental or biological systems (Angus, 1991). 

This involves decisions pertaining to planting (such as which cultivar to sow and when, 

determining fertilizer rate, plant population to use, enhancing soil water storage). In 

contrast, ‘operational’ or action decisions involve the real time operational work done in 

the fields (sowing, weeding, spraying and the like) almost as they occur in real time. 

 

Of the three categories, this chapter targets tactical decisions that are characterized by 

responding to the state of the rainfall (prediction aspect) and soil physical constants. 

With regard to rainfall prediction, the emerging understanding of the relationship 

between SSTs and rainfall is expected to improve decision making according to the state 

of the atmosphere and oceans (Chapter 3). On the other hand, soil properties (drained 

upper limit, lower limit and plant available water) are the core of the successful 

cropping system. Robinson and Butler (2002) found that pre-plant soil water content 

information provided the best prediction of dryland crop yields in the northern 

Australian grain belt, but relatively few farmers accurately measure soil water content 

prior to planting. 

 

There are many sources of risk in rainfed farming, but the components of the tactical 

decisions in the current chapter involve only five: date of sowing, cultivar choice, 

fertilizer levels, planting density and soil water storage. The main reason for focusing on 

these proposed components of the tactical decisions is that these involve greater 

uncertainty and possibilities for change and therefore risky decisions by farm managers 

in dealing with the a variable climate. Moreover, as they are sensitive to changes in 

weather patterns and input levels, they are more critical and yield limiting factors. As 

such, they represent the most important control levels on the farming system and have 
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an impact not only on the current farm business, but also on the sustainable resource 

management. Therefore, serious attention has to be paid to these factors. 

6.1.3 Determination of the drained upper limit, lower limit and estimation of the 
soil water content of the target month 

In order to estimate PAW for the target month, information on soil drained upper limit 

(DUL), lower limit (LL) and the measured soil water content of the predictor month (one 

month lead) are required. Moreover, the statistically predicted rainfall total and long-

term average evapotranspiration data for the month preceding the target month are 

essential. Meinke et al. (1993) defined PAW as the sum of the difference between the 

volumetric water content at drained upper limit (DUL) and lower limit (LL) of plant 

available water, for all layers within the plant rooting depth. 

LLETERFSWCPAW −−+=        (6.1) 

where:    PAW = plant available water content (mm) of target month 
    SWC = measured soil water content (mm) of predictor month 
    ERF = estimated rainfall (mm) for month before target month 
    ET = Long-term ET (mm) for month preceding target month 
    LL = Lower limit (mm m-1) 
 

LLDULPAWC −=        (6.2) 

where:    PAWC= Plant available water capacity (mm m-1) 
DUL = Drained Upper Limit (mm m-1) 

 

Plant available soil water (PAW) can now be evaluated as either less than, equal to or 

greater than half the PAWC. Alternatively PAW can also be estimated as follows. 

PAW = θ - LL        (6.3) 

where:    θ = on-site measured soil water content of predictor month. 

 

6.1.3.1 Measuring and estimating the drained upper limit (DUL) 

Ratliff et al. (1983) defined DUL as the highest field measured water content of a soil 

after it has been thoroughly wetted and allowed to drain until drainage becomes 

practically negligible i.e. when the reduction in profile water content is about 0.1 to 

0.2% of the water content per day. The drained upper limit, as defined here is 

exclusively controlled by the water holding properties of the soil profile within a defined 

depth. DUL therefore depends on the soil texture, porosity, organic matter content and 
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thickness of each horizon in a soil profile, which constitute the specified rooting depth 

(Boedt and Laker, 1985). 

 

In practice, DUL is measured in the field by thoroughly wetting a plot of 3m x 3m, and 

measuring the water content throughout the root zone at time intervals until the 

reduction in water content becomes negligible. Evaporation loss from the plot is 

prevented by covering the plot with a plastic sheet (Hensley et al., 1993). This is a huge 

amount of work and one needs the necessary instrumentation.  

 

Alternatively, efforts have been made to develop empirical regression equations to 

estimate DUL, based on other soil properties like texture classes and bulk density. 

Examples of such equations as thoroughly calculated and discussed by Zere (2003) 

using ten South African soils are given below:- 

 

a) Hutson (1983) developed Equation 6.4 based from water retention data for a large 

range of South African soils:- 

 θ-10 = 0.0558 + 0.0037 Cl + 0.0055 Si + 0.0303 BD  (6.4) 

where: θ-10 = volumetric soil water content (m3 m-3) at a soil water 
potential of –10 kPa, to represent “field water capacity”  

  Cl = clay content (%) 
  Si = silt content (%) 
  BD = soil bulk density (g cm-3) 
 

b) Bennie et al. (1994) developed Equation 6.5 based on measurements of different 

soils in South Africa, mainly fairly coarse textured soils in the Free State:- 

  θ = 0.0037 (Si + Cl) + 0.139  (6.5) 

where:  θ = volumetric soil water content (m3 m-3),  
 Si and Cl are as defined for Equation 6.4 

 

c) Ritchie et al. (1999) developed the DUL equation 6.6 from 312 soils in the USA:- 

 θm = 0.186 (Sa/Cl)-0.141  (6.6) 

where:  θm = gravimetric soil water content (kg kg-1) at DUL for a 
particular horizon 

    Sa =  sand content (%)  
    Cl = clay content (%). 
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Ritchie et al. (1999) used Equation 6.7 to determine the volumetric water content (θ, m3 

m-3) at DUL for the specified layer:- 

 θ = θm BD/ρw  (6.7) 

where:    ρw = density of water (Mg m-3),  
    and other symbols remain as defined belore. 
 

Streuderst (1985) developed Equation 6.8 to estimate DUL for freely drained medium 

textured soils:- 

   Y= 0.1243 + 0.0053 x1 – 0.0098 √x2     (6.8) 

where:     Y = volumetric soil water content (m3 m-3) 
    x1 = cation exchange capacity (cmolc kg-1) plus clay % 
    x2 = very fine sand plus silt content (%). 
 

6.1.3.2 Measuring and estimating the lower limit of plant available water (LL) 

The soil water content at a matric suction of –1500 kPa has long been considered by 

many agricultural scientists to represent the lower limit of plant available water (e.g. 

Green, 1985).  This assumption has provided the foundation for a number of equations 

for predicting LL. The lower limit of plant available water (LL) has been defined as the 

lowest field-measured water content of a soil, after plants have stopped extracting water 

and are at or near premature death or became dormant due to water stress (Ratliff et 

al., 1983).  In dryland crop production, where one cannot “refill” the profile at will, this 

definition of the lower limit is appropriate. LL depends on the atmospheric evaporative 

demand, depth and density of root ramification, drought resistance of the crop and the 

unsaturated hydraulic conductivity and water retention properties of each soil horizon 

within the rooting zone (Hensley and De Jager, 1982). Several attempts have also been 

made to estimate LL using empirical regression equations. The following equations as 

reviewed by Zere (2003) are given below:- 

(a) Hutson (1983): 

 θ-1500 = 0.0602 + 0.0032 Cl + 0.0031 Si - 0.026 BD  (6.9) 

where:   θ-1500 = volumetric soil water content (m3 m-3) at a soil water 
potential of –1500 kPa 

    BD = bulk density (g cm-3) 
    Cl = clay content (%) 
    Si = silt content (%) 
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(b) Bennie et al. (1998):  

  LL = ∑(0.00385 (Si + Cl)i + 0.013) zi   (6.10) 

where:   LL = lower limit of plant available water (mm) 
  (Si + Cl)i = silt plus clay content of layer i (%) 
  zi = thickness or depth of layer i (mm) 

(c) Ritchie et al. (1999): 

LL is estimated as the difference between θ (Equation 6.7) and PAW, where 

PAW is defined as follows: 

 PAW =  0.132 – 2.5 * 10-6 exp (0.105 Sa)  (6.11) 

where:  PAW = plant extractable water (m3 m-3)  
  Sa = sand content (%) 

 
The equations discussed above are useful in getting insight about the need for soil 

water content information for practical purposes, mainly when measured soil water 

content data are not readily available. 

 

This chapter argues therefore that the variable climate in the Central Rift Valley of 

Ethiopia makes farm management decisions not only challenging, but also leads to 

decisions that are inappropriate or at least unwise. This could be explained from the 

perspective of the persistently low yields and land degradation in the study area. The 

farmer’s decision-making is most limited by lack of information on the effective start of 

the rainy season and preferred planting dates and therefore a DST could help by 

presenting viable options.  

 

The objective of this chapter is therefore to develop a simple, but conceptually strong, 

reflective and potentially innovative ‘what if’ and ‘seasonal climate’ centered DST that 

could be activated as required. The tool is expected to provide a good starting 

framework for answering many of the practical farm questions for CRV farmers, 

researchers and extension workers alike. 

6.2 Materials and Methods 

The basic structure of the new decision support tool is summarized in Fig 6.1. The 

monthly (March-September) rainfall prediction output (in the form of ‘below normal’ = 

B, ‘near normal = N’ or ‘above normal = A’) as obtained from the chapter 3 prediction 
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model would be used as part of the inputs. During the development stage the name 

“MARCMET” was used for this DST, derived from Melkassa Agricultural Research 

Center and the Agromet Research Group of EARO, but the name “ABBABOKA 1.0” was 

decided on so as to honour of the traditional rainfall predictors.   

 

In the construction of ABBABOKA, monthly (March-September) rainfall data from 25 

weather stations situated in the study area were used. However, since the long-range 

rainfall prediction is full of uncertainties, it was necessary to include the predictive 

information from the national (NMSA) and regional (ICPAC) centres in the DST. 

Moreover, as rainfall is only a single aspect of the overall soil water budget, the plant 

available soil water capacity (PAWC) and the plant available water (PAW) are included as 

variables. 

 

In Fig 6.1, three groups of logical combinations of the predictive information from 

different sources (i.e. the newly developed prediction model, NMSA and ICPAC models) 

are used in a 3 letter code. The first decision box (from top) in the figure shows, for 

instance if the newly developed prediction model states ‘A’ and if this information is 

complemented with the ‘N’ or ‘A’ from NMSA (i.e. AN or AA), then ABBABOKA displays 

details of planting decisions that could be advised to the target user, even if the ICPAC 

prediction model returns ‘B’ and regardless of the soil water content information. One 

exception is, if ICPAC gives a ‘B’, then one must consult the PAW. The second decision 

box (middle, Fig 6.1) shows that if all the 3 models return ‘below normal’ i.e. ‘BBB’ or if 

either of them returns ‘A’ or ‘N’ together with the other 2 giving ‘B’, then ABBABOKA 

displays a ‘keep on fallowing’ decision aid, regardless of the outcome of the soil water 

content information. 

 

The bottom decision box in Fig 6.1 highlights three different conditions under which 

ABBABOKA displays a ‘go for planting’ decision. These conditions are:-  

 1) when any one of the models returns ‘B’ and when other 2 give ‘A’ or ‘N’  or  

 2) when both the three models release ‘NNN’ or  

 3) when the new model and NMSA produce ‘NN’  followed by ‘A’ from ICPAC.  

However, for the ABBABOKA to display a ‘go on planting’ decision under the above three 

conditions, the fact that the estimated PAW of the target month is either equal to or 
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exceeding half of the PAWC is a necessary precondition, as this information helps in 

making a reliable decision. ABBABOKA is useful for monthly-based planting related 

decisions, with the assumption that, once the effective rainfall onset date has passed, 

monitoring the subsequent rainfall recieved is possible using other weather-forecasting 

and application models (e.g. EUMETSAT and AGROMETSHELL).  

 

Start

Is it   

AAN    NAA   ANN 

ANA   AAA    AAB

NAN ?

Is it    

BBB    BBN       NBB   ABB     

BBA    BAB      BNB    ?

Is it 

ABA & PAW ≥ 1/2 PAWC    NNA & PAW ≥ 1/2PAWC
ABN & PAW ≥ 1/2PAWC       NAB & PAW ≥ 1/2PAWC
ANB & PAW ≥ 1/2 PAWC       NBN & PAW ≥ 1/2PAWC
BAA & PAW ≥ 1/2PAWC        NBA & PAW ≥ 1/2 PAWC
BNA & PAW ≥ 1/2PAWC       NNN & PAW ≥ 1/2PAWC                                                        

BAN & PAW ≥ 1/2PAWC 
NNB & PAW ≥ 1/2PAWC

BNN & PAW  ≥ 1/2PAWC ?

Get prediction information
from: new model, NMSA, ICPAC

Plant
Fallow

Display information

yes

no

no

yes

no yes

 
Figure 6.1 Key input variables used in the construction of ABBABOKA 1.0 a decision support for 
sorghum planting in CRV of Ethiopia 
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In the construction of ABBABOKA, the Ritchie et al. (1999) DUL Equation (6.6 and 6.7) 

and Equation 6.11 for LL were adapted, mainly because these equations were developed 

based on the large sample size collected from a range of soil characteristics. Moreover, it 

has shown a better relationship with DUL measured from the clay soil, which can be 

useful information for the CRV case. The equation was adapted as follows:- 

DUL= (θmBD/ρw)*Zi       (6.12) 

Where:   DUL = Drained upper limit (mm m-1) 
Zi  = soil depth (mm) and others are defined as before. 

The PAW from Equation 6.11 was used to calculate LL (Ritchie et al. 1999).  

6.3 Results and Discussion 

This chapter illustrates how decision analyses help using simple examples drawn from 

the application of ABBABOKA. The interface in Fig 6.2 shows 27 physically possible of 

planting or fallowing related decisions. An example in Fig 6.2 shows if the new model 

and the ICPAC predictive products give ‘above normal’, and NMSA releases ‘below 

normal’ rainfall probability information (i.e. ABA), for March planting (using January as 

predictor) for zone 1 that ABBABOKA provides suites of decision aids. The decision 

states “go on planting a grain sorghum cultivar which needs more than 180-day to 

mature”. It also advises to use 100 kg ha-1 DAP (basal), 50 kg ha-1 urea (N side dressing) 

and 33,000 plants ha-1. As the evaluated area is a semi-arid region, ABBABOKA 

emphasize the importance of enhancing root zone water storage through possible water 

harvesting techniques, be it traditional or improved or in situ or ex situ. 

 
On the contrary, if the rainfall predictive information from all three sources states 

“below normal’ (BBB), it could be noted from Fig 6.3 that ABBABOKA unconditionally 

(regardless of soil water information) releases a ‘keep fallow’ statement.  In other words, 

the available information does not support March planting of any maturity group of 

grain sorghum in zone 1. 

 

ABBABOKA also computes the plant available water capacity (PAWC) (Fig 6.4), which is 

a reference point to which the estimated plant available water (PAW) for the target 

month is compared for decision making as deemed necessary. As stated, whenever the 

soil water information is required in planting related decisions, PAW should be either 

equal  
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Figure 6.2 ABBABOKA decision aids, when the rainfall predictive information from the new model and the two other institutions 
(NMSA and ICPAC) states ‘above normal’, ‘below normal’ and ‘above normal’ (ABA) respectively for the month of March in zone 1 
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Figure 6.3 ABBABOKA decision aid when the rainfall predictive information from the new model and the other two institutions (NMSA 
and ICPAC) states ‘below normal’ (BBB) for March planting in zone 1. 
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Figure 6.4 Estimation of the available water (PAW) for a given target rainfall month to support sorghum planting decisions in 
ABBABOKA  
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Figure 6.5 Seasonal crop water requirement satisfaction index (WRSI) for a 90-day sorghum cultivar grown (left hand panel) during 
March-May and a 120-day sorghum cultivar grown (right hand panel) during March-June in zone 1 
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Figure 6.6 Seasonal water requirement satisfaction index (WRSI) for a 150-day sorghum cultivar grown (left hand panel) during March-
July and a 180-day sorghum cultivar planted (right hand panel) during March-August in zone 1 
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to or greater than half the PAWC. Fig 6.4 shows how ABBABOKA is used to compute 

PAW, which should be compared with PAWC and evaluated for being equal to or greater 

than half the PAWC, as information which is required to complement the predictive 

information for planting related decision making, particularly when decision making is 

difficult from the prediction models alone. Fig 6.5 and Fig 6.6 provide a general 

impression and first order information regarding the sorghum water requirement 

satisfaction during given months before the user starts interacting with the DST. This 

also helps in making improved and final decisions. 

6.4 Conclusions 

This chapter has discussed the benefits of the decision support tools in the modern field 

/ farm management system in general and the principle ground on which ABBABOKA 

was developed and the steps used in its development for possible application in the 

CRV. 

 

The result from 27 decision options (clustered into 3 like groups) shows that flexible 

planting decisions could be adopted by using the rainfall outlooks and soil water 

information as input into the appropriate interface. For instance, if the prediction 

output from the new model and NMSA recommend “above normal’’ (AA), then regardless 

of the kind of predictive information from ICPAC model, ABBABOKA advises “continue 

planting a sorghum cultivar group of interest under the prescribed management 

practices during a given month in a zone”. There are also cases when the rainfall 

information alone is not sufficient and in which soil water parameters are required for 

decision making. For instance, when the new model output realizes ‘above normal’ 

probability, while the NMSA probability statement is in favor of ‘below normal’, then this 

makes a decision difficult. Therefore, in order for ABBABOKA to declare ‘go ahead with 

sorghum planting’, supporting information on either ‘above normal’ or ‘near normal’ 

probability from ICPAC, as well as that PAW exceeding ½ PAWC is vital.  

 

In this way, the simple and briefly constructed ABBABOKA is expected to provide a 

suite of planting decision options to the users. Certainly, this constitutes a significant 

leap over the fixed ‘best bet’ recommendations given from the research systems in the 

past and demonstrates the potential of the internal rigor of ABBABOKA for further 

development. 
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If productivity from the rainfed farming is to be improved, it is important that crop yield 

be increased during the average and above average rainfall years. In the Ethiopian CRV, 

the magnitude of both the climate and crop yield variability represent a major 

constraint to increased productivity. In practice, it is also not easy to generate 

technologies and decision aids for every part of the climate variability spectrum. 

Therefore, by classifying the historical rainfall records into tercile probabilities 

expressed in portions of the years (worst one third = below normal, average one third = 

near normal and wet one third = above normal), the best decision aid, together with the 

existing improved material technologies corresponding to a given rainfall scenario, can 

be used for a recommendation. Although the chances to improve yield during 'below 

normal' rainfall years are marginal, technologies that perform well under the one third 

driest years could be researched. Further investigated into possible techniques for the 

average and above average years can also be profitable. 

 

Overall, although climate variability makes the outcome of the decision uncertain and 

risky, this thesis endorses that decision analyses are potentially useful for combining 

the understanding of the risks associated with climate and prediction of the future 

rainfall behaviour.  Therefore, developing and delivering scientific knowledge in a way 

that supports farmers’ decision making seems a job worth doing. In this regard, the 

potential use of ABBABOKA, particularly when linked with the climate database is 

expected to form a strong base for the future co-learning and generation of conversation 

among its users. However, as a useful tool of co-learning amongst farmers and 

researchers, it needs to be expanded with time.  Agroclimatology, by using the available 

DSTs and in collaboration with the related disciplines, is expected to supply such 

decision support tools in order to influence decision making under risky and uncertain 

rainfall conditions of Ethiopia. 
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Chapter 7 

Summary, Conclusions and Recommendations 

7.1 Summary and Conclusions 

Rainfall is an important source of water for crop production in the tropics, especially in 

sub-Saharan Africa. However rains are unpredictable in terms of onset, amount and 

distribution and therefore there is a need to understand the basic features of rainfall, 

prediction for operational farming, crop water requirement, risk and decision analysis 

using the decision support tools. The above rainfall related issues formed a framework 

for this thesis, as the knowledge helps to improve productivity over time and space.  

 

The statistical analyses in chapter one have collated essential numerical evidence for 

the existence of variability in important rainfall features (onset date, end date, duration 

and the seasonal totals), each of which poses its own specific risk. Of all the rainfall 

features, onset date and the MAM rainfall total were found to vary for the two weather 

stations (c.v = 40% for onset date at Abomssa and 42.0% for Miesso; and c.v was 

129.9% for Abomssa and 127.7% for Miesso in case of MAM rainfall). 

 

Under rainfed farming, the occurrence of the intermittent dry spells also becomes 

critical particularly for seedling establishment during the first 30 days after planting. In 

fact, a dry spell of any length could occur at any stage of crop growth; however, there is 

higher potential for damage when it coincides with the most sensitive stages such as 

flowering and grain filling.  For the two stations, the probability of dry spells of longer 

than 15 days from March until the end of the season was found to be less than 10%. 

This carries useful information for planting decisions by risk taking farmers who work 

under different capability or resource endowments. For instance, farmer ‘A’ (risk taker) 

who may have access to irrigation water or have a crop adapted to suspend its growth 

under a longer dry spell could decide to plant during the earliest months of the growing 

season. In this way, one can maximize outputs due to taking risks associated with such 

a long dry spell. On the other hand, a resource poor farmer ‘B’ (risk averse) lacking 

water resources or other soil water management techniques and decision aid to manage 
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any risk of dry spell length greater than 5 or 7 days, has to wait until there would be  

sufficient water in the soil. 

 

The bimodality of rainfall in the study area was also studied in relation to the onset 

date. The result shows that early onset (the start of rainfall any time before June) is 

associated with an increased seasonal rainfall total. The linear regression line for onset 

date versus season total rainfall at Abomssa indicates that 45% of the variability in 

rainfall total is explained by onset date, while 59% is explained for Miesso. As the early 

start of the rain implies the contribution from the rainfall events occurring before June, 

this corresponds to a reduction in MAM rainfall totals. Particularly during such a merge 

of the two seasons, MAM rains cannot meet the amount of water required to sustain a 

crop or cultivar of any shorter duration to maturity within MAM time. Indications are, 

and particularly from the economic farming perspective, that the seasonal rainfall 

pattern in the study area does not have distinct bimodality. 

 

The second part of chapter two dealt with the time series analyses and prediction model 

fitting to the observed monthly rainfall series. The trend line fitted for both the series 

indicates the fluctuation of the series with the monthly mean and trend values of 74.4 

mm for Abomssa and 62.6 mm for Miesso, indicating the absence of the long-term 

changes in rainfall pattern. In other words, this study did not find evidence for 

persistent increase or decrease, particularly for Abomssa. In case of Miesso there is a 

slight declining tendency. This information is useful for long-term research and 

development planning. The non-existence of trends for both Abomssa and Miesso 

formed the basis for the prediction model fitting. Following this premise, a total of 15 

time series prediction models (8 for Abomssa and 7 for Miesso) were fitted to March- 

September/October monthly rainfall totals. 

 

For Abomssa, the time series prediction model shows how the model was reasonably 

able to capture the-non linear or wavy pattern of March rainfall series (r2 = 0.886). 

There is also a better fit for the April prediction model with r2 value of 0.918 and with 

the other error quantifier statistics performing reasonably. In case of October, the 

series-model curves diverge from each other, particularly during 1991, 1994, and 1995, 

which resulted in the model poorly capturing the pattern during certain years ((r2 = 
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0.767). Similar insight could be obtained for the May series-model relationship where 

association is poor (r2 = 0.824), particularly during the year 1991. In case of August, the 

model was found to overestimate the series only during the year 1986 (r2 = 0.956), 

indicating a higher degree of agreement between the series and the model. Similar 

useful trends hold for July and September. 

 

For Miesso also good levels of relationship between the observed and the model were 

observed for all the months under consideration, except May (r2 = 0.62). Better 

relationships were noted particularly for July and August with r2 = 0.924 and 0.937 

respectively. The relationships for March, April, June and September are also quite 

acceptable with r2 values ranging from 0.818 to 0.867, indicating the models’ agreement 

with the monthly series of Miesso. 

 

One of the constraints with time series prediction models is that they do not provide the 

factors underpinning future values. Moreover, because of the high possibility of a 

change in model structure, the risk associated with predicting outside the observed 

range of the independent variable could be high. Generally however, the knowledge and 

understanding of such basic rainfall features and model fitting can further lead to 

improvements in rainfall risk management practices, by placing into perspective the 

influences of the current climate variability and sequences on farming system 

outcomes.  

 

Chapter 3 dealt with the homogenous rainfall zonation and seasonal/temporal 

prediction using CPT of the IRI. Zonation schemes as one of the most common ways of 

understanding climate have been employed, which helped to define the study area on 

the basis of separate research and development units. Accordingly, the area was divided 

into four homogenous rainfall zones, with the southeastern parts (zone 2) being wet and 

the northeastern part (zone 4) being drier. The middle parts of the study area were also 

separated into two with the northwest–northeastern stretching (Debre Zeit-Nazerth-

Dera) part receiving a higher amount of rainfall (zone 3) than the south facing Alem 

Tena-Langano zone (zone 1).  

 

One of the problems with the zonation scheme includes its emphasis on the spatial  
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rather than temporal variability, which leads to the understanding that a location is 

either arid or semi-arid or humid, rather than sub-humid one year and arid the next. 

This is a serious deficiency, since locations with similar plant growth response patterns 

can have very different probabilities of cropping success during the wet season of one 

year and dry season of the next year. In fact, emphasis on temporal climatic variability 

was started after the Sahel drought of the 1970s and attracted wide attention. 

  

Temporally, March rainfall is the least predictable (r=0.25) for zone 2. Moreover, a 

model that can capture July rainfall pattern was not obtained at all for the same zone. 

Zone 2 is one with a relatively early onset date and rainfed sorghum water requirement 

could be reasonably satisfied even with a March planting (chapter 4). Except for zone 1, 

where r was 0.73, July rainfall prediction is the most problematic for the rest of the 

zones, followed by another problematic month (May) for zone 4 (r = 0.38). On the other 

hand, June and July rainfall anomalies are the most predictable for zone 1 (r = 0.73). In 

case of zone 2, months including May (r = 0.70), August (r = 0.54) and September (r = 

0.77) have highly predictable rainfall anomaly patterns, while for zone 3 and zone 4, the 

April rainfall anomaly is highly predictable (r = 0.79 for zone 3 and 0.72 for zone 4).  

 

Forecasting rainfall in a terrain of complex topography poses serious difficulty 

particularly over tropical regions.  A major impediment to predictive skill is derived from 

the primarily convective nature of tropical rainfall. The difficulties increase during the 

wet season when extreme rainfall events (for example dry spell in the middle of the wet 

season) regularly occur on a localized basis. It is also recognized that rainfall prediction 

involving smaller scale convective processes presents a far greater prediction problem 

than the ones explained by the synoptic scale systems.  

 

Therefore, a perfect model that can fully capture variability in the midst of such chaos 

cannot be achieved at ease. Accordingly, the skill measures produced using CPT 

hindcast technique are inevitably not of a very high range. The efficiency of these lower 

hindcast measuring indicators can also be attributed to the fact that the ocean 

observing instruments have been changed over time such that the discrepancy between 

the earliest observations and the recent ones could be wide in explaining the values 

observed under different time scales. Local factors like the windward or leeward facing 
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mountains including Chilalo and Chercher highlands, Mount Fantale, Mount Boset and 

Mount Ziquala could also significantly influence the regional atmospheric circulation 

pattern.  

 

In this study, useful understanding of the climatic determinants of Central Rift Valley’s 

March-September rainfall has been gained. The study disclosed that, with the increased 

observing networks and data availability, operational climate prediction of definite 

utility could be achieved for such a smaller spatial and with a short lead prediction 

scheme. To begin with, areas around Miesso, Abomssa and Arsi Negele, which currently 

produce sorghum on a significant scale, could represent a good starting point for 

extension of the prediction information. Other areas could be targeted in a medium 

term plan to help them establish sorghum production schemes.  

 

Generally, the statistical relationships established here are intended as a good starting 

point towards the long-term goal of integrating the teleconnections with underlying 

oceanic phenomena into the background of the Ethiopian agriculture research and 

development arena.  It is believed, despite the above listed time-space difficulties, that 

most of the models carry useful information that could be translated into farm level 

decision making and can therefore form part of the operational national or regional 

prediction formula.  

 

In chapter 4, a detailed account of the tempo-spatial water requirement satisfaction 

pattern and sorghum water production function in the variable climate was studied. For 

the seasonal WRSI, 14 concurrent sorghum growing seasons were calculated and 

mapped, while the growth stage based WRSI and water production function analyses 

were computed only for 3 sorghum experimental sites.  

 

Spatially, the southern and southeastern parts constitute the most favourable seasonal 

climate for growing ranges of sorghum maturity groups considered in this study (90-

day, 120-day, 150-day and 180-day cultivars). The northwestern and central parts 

constitute the next most suitable zone. However, the wide northeastern drylands of the 

study area, except the pocket of Miesso-Assebot plain, does not warrant economic 

farming of sorghum under rainfed condition. 
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It was also found that, while the seasonal WRSI gives a reasonable picture, it is the 

growth stage based WRSI that truly detects the existence of water scarcity in a growing 

season. This could be exemplified by the detailed WRSI analyses done for a 120-day 

sorghum cultivar grown during June-September period at Melkassa. At Melkassa, the 

seasonal WRSI highlights the adequacy of the water satisfaction for the 120-day 

sorghum cultivars, but the growth stage based WRSI detected the true risk at the 

flowering stage. Similar information holds for Miesso and Arsi Negele as well.  

 

Temporally, March planting is the least preferred season for all the sorghum cultivars in 

the study area except the southern and southeastern parts. The study area is well 

known for climatic variability and even for those relatively favourable sections the risk 

at the crop critical growth stages for March planting is considerable. Therefore, the 

availability and use of alternative soil water and crop management techniques in 

accordance with the prevailing risk level is crucial.  

 

It was also understood that rainfall totals and spatial coverage gradually improve 

through April, May and June with a notable peak in July and August. In September, 

the crop water requirement can be partially met; nonetheless, since the level and 

dimension could vary across the study area, the use of improved technologies still 

needs serious attention.  

 

The water production function analyses for the three experimental sites did not reveal a 

high level of accuracy in estimating long-term yields. Nevertheless, it was found that 

WRSI at the flowering stage influences the expected yield by 3 times more than WRSI 

during the rest of growth stages.  The low level accuracy could be due to the differences 

in sorghum planting dates, inadequate sample size and the inevitable measurement 

errors. Nevertheless, the generated yield prediction models for the 3 experimental 

stations demonstrate the potential for achieving a reliable model as and when sufficient 

data sets are acquired in the future. 

 

Therefore, for Melkassa and Miesso, growing a 120-day grain sorghum cutlivar under 

improved soil water and other crop management practices, together with the area 
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specific rainfall prediction information, could ensure high yields during a good rainy 

season (wet years). Likewise, food for family sustenance could also be ensured during a 

poor rainy season (below average rainfall years). On the other hand, a focus could be 

made on areas like Arsi Negele, where during all the seasons and with a variety of crops 

its efficiency is evident and this could be combined to synergise the yield benefits or 

optimise production from such areas. This basic difference underscores the need for 

area specific crop water requirement satisfaction and water production function studies 

to enable one to improve decisions for the sorghum cropping in the study area. 

 

Chapter 5 covers the risk aspect of the climate variability in the study area. The risk 

analysis provided significant climate and soil information pertaining to sorghum 

productivity at three experimental sites (Melkassa, Mieso, and Arsi Negele). Two 120-

day cultivars (76-T1#23 and Gambella 1107) were used for the June-September season 

at Melkassa and Miesso, while a 180-day cultivar (ETS-2752) was used for the May-

October season at Arsi Negele. 

 

At Melkassa, the result from the stochastic dominance (SD) analysis shows that May 

planting date was dominant in first degree dominance sense for both cultivars, yielding 

between 3900-4000 kg ha-1 at 85th percentile risk level. The sensitivity analysis 

conducted for sorghum grown at Melkassa using four cardinal rainfall related input 

variables (planting date, maturity date, number of rainy days and water requirement 

satisfaction index (WRSI)) shows that yields of Gambella-1107 planted in June was 

more sensitive to WRSI than the rest of the input variables. For instance, by keeping the 

early planting date constant, but changing WRSI from 100% to 75%, yield was reduced 

by 46.2%, while a further change in WRSI down to 50% or below, resulted in total crop 

failure. The simulation modelling result for Melkassa also shows that the data points 

appeared 100% above the 1:1 line which means APSIM had overestimated the observed 

yields (D-index was 0.81) with an average observed yield of 2500 kg ha-1 as compared to 

an average simulated yield of 3410 kg ha-1. This has yielded useful research information 

for sorghum breeders, agronomists and physiologist working in the study area. 

 

At Miesso, a similar scenario holds. The stochastic dominance analysis shows that June 

planting date was the dominant set in the first degree dominance sense over the rest of 
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the planting windows, but the risk level is high when compared to the Melkassa case. 

The simulation analysis for a 120-day cultivar planted in June at Miesso shows that 

APSIM has overestimated the observed yield; the model average was 2029.5 kg ha-1 

compared to an average of 1781.9 kg ha-1 observed yields with the D-index of 0.82. 

 

For Arsi Negele, the CDFs of a 180-day cultivar shows the April planting to be risk 

efficient and therefore could be adopted by the farmers preferring 'more' payoff to 'less'. 

For the same station, the sensitivity analyses conducted for cultivar ETS-2752 planted 

in May shows that the relative yield reduction in grain yields due to a change in WRSI 

from 100% to 75% was 46.1%.  Compared to Melkassa and Miesso's cases however, 

further reduction in WRSI down to 50% did not result in complete crop failure (456.7 kg 

ha-1 could be realized).  Further comparison shows that the response of ETS-2752 to 

the early planting date, in combination with the 100% WRSI, short maturity date and 

few rainy days, was not as sensitive as it was for Melkassa and Miesso for the same 

level of inputs combination. The yield level for these input combinations in Arsi Negele 

case was 2050 kg ha-1, while it ranged between 3109 and 3272 kg ha-1 for Melkassa and 

Miesso. This shows how WRSI is the most important indicator of the adequacy of crop 

water requirement. 

 

Chapter 6 assembles all the necessary information generated in chapter 3 through to 

chapter 5. In this chapter, the decision support tool known as ABBABOKA 1.0 was 

introduced. It captures the most important climatic and soil water related risk factors 

for sorghum farming in the study area. The result from 27 physically possible decision 

options (clustered into 3 like groups) shows that by using the probability of rainfall 

status (either above normal, near normal or below normal) and soil water information 

as input data for the prediction output for the interface, flexible planting decisions 

could be advised. For instance, if prediction output from the newly developed prediction 

model (chapter 3) and NMSA both say 'above normal’ (AA), then ABBABOKA advises 

“continue planting a sorghum cultivar group of interest (90, 120, 150 or 180-day 

sorghum cultivar) under the prescribed crop management practices during a given 

month and in a given zone”. 
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There can also be a scenario where the rainfall information alone does not suffice, a 

case in which soil water parameters need to be consulted for decision making. For 

instance, when the new model realizes ‘above normal’ probability, while the NMSA 

probability statement is in favor of ‘below normal’, it makes decisions difficult. 

Therefore, supportive information of either ‘above normal’ or ‘near normal’ probability 

from ICPAC, as well as PAW exceeding ½ PAWC, should be obtained in order for 

ABBABOKA to declare ‘go ahead with sorghum planting’ in a given zone. In this way, 

the simple and briefly constructed ABBABOKA is expected to provide a suite of planting 

decision options to the users. Certainly, this constitutes a significant departure from 

the fixed best bet recommendations given from the research system in the past and the 

potential of ABBABOKA for further development. 

 

If productivity is to be increased, it is important that crop yield be increased during the 

average and above average years. The magnitude of both the crop yield and the rainfall 

variability represents a major constraint to increased productivity and in practice it is 

not possible to generate technologies and decision aids that fit every section of the 

variability spectrum. Therefore, one can classify the historical rainfall records into a 

tercile probabilities (one third worst-case scenario/ below normal, one third average / 

near average and one third wet / above average) years that help to fit the best decision 

aid and material technologies that correspond to a given rainfall category. Although 

chances are marginal to improve yield during ‘below average’ rainfall years, technologies 

that perform well under the one third driest years could also be researched as done for 

the average and above average years separately.  

 

While climate variability may make the outcomes of decisions more uncertain, this 

thesis endorses that developing and delivering scientific knowledge in a way that 

supports farmers decision making, seems to be a job worth doing. Therefore, the start of 

ABBABOKA is good news that forms useful ground for the future co-learning and 

generation of conversation among the users for water risks solving purposes. However, 

as a tool of co-learning among farmers and researchers, the internal rigor of 

ABBABOKA, particularly linking it to the national climate and soil database, needs to 

be done with time. 
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7.2 Recommendations 

This thesis endorses the fact that for agricultural sciences to continue intervening in 

the management of climate risk in Ethiopian agriculture, the most important factors 

must be given due attention, mainly the soil and climate aspects. Moreover, as it is 

inappropriate to mitigate soil water related problems in rainfed cropping systems from 

one angle alone (unless the problem is solved elsewhere in the system), it is essential to 

build on past efforts, while encouraging a multidisciplinary approach among soil, crop 

and climate researchers. This paves the way for technically sound and cooperative 

problem-solving projects to be developed. In agricultural research (crop cultivar choice / 

agronomy / soils / entomological/pathological) the final results are always linked to 

some effect of water availability. In this regard, a focus needs to be made on the 

following research aspects:- 

(i) To extend the classifying of agricultural areas into spatial and temporal homogeneous 

rainfall zones mainly as it suits agricultural production and research.  

(ii) To develop tailored rainfall prediction to help in tactical decision making. 

(iii) To employ newly emerging technologies, including satellite imagery. In the medium 

term, this will enable assessing the economic value of the seasonal rainfall forecast in 

relation to operational farming in the study area. 

(iv) To perform focused research on climate risks, crop water requirements and 

simulation modelling since these approaches provide a deeper understanding of the 

underlying factors of a cropping system and increased possibilities for solving water-

related farming constraints.  

(v) To build a network of weather stations and a soil database in order to promote soil-

crop-climate research in Ethiopian agriculture. 

(vi) To perform detail studies pertaining to the local factors, mainly ecotopes 

(homogenous soil, topography, and climate pattern) that affect the soil water balance.  

(vii) To expand the use of decision support tools and well established models (eg. APSIM) 

in the agricultural research and development effort. 

Finally, it is recommended that strengthening an inter-institutional partnership, mainly 

between EARO and NMSA, needs to be brought to an operational level. This would 

enable a more meaningful assessment of the impact of seasonal climate prediction on 

agriculture and form a strong foundation for the future strengthening of the value of 

climate forecasting in economic farming and climate change studies. 
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Appendices 

 
 
Appendix A Weighted Average WRSI of a 120-day sorghum cultivar grown in May at Miesso, CRV of Ethiopia 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

WRSI at various growth stages Weighted WRSI (composite from different  growth stages) 

Year 

Observed 
grain 
yield 

(kg/ha) 
Initial 
stage 

Development
stage 

Mid 
season

End of 
season 1111 1121 1131 1141 1232 1242 1244 1344 1444 2444 3444

1990 605.6 28.0 51.5 90.8 100.0 67.6 72.2 75.3 77.5 75.4 77.1 81.3 78.8 76.7 73.2 70.2 
1993 605.6 6.0 33.9 58.5 100.0 49.6 51.4 52.5 53.4 56.2 56.4 64.3 61.8 59.7 55.8 52.5 
1994 1429.8 0 100 84.5 100 67.5 70.9 73.2 74.8 81.7 78.8 82.7 82.9 83.1 77.2 72.0 
1996 4187.9 100.0 100.0 95.6 97.8 98.3 97.8 97.4 97.1 97.8 97.5 97.6 97.8 97.9 98.1 98.2 
1997 622.2 54.1 75.5 55.6 27.3 53.1 53.6 54.0 54.2 53.3 53.6 48.8 51.0 52.9 53.0 53.1 
1998 2323.2 57.5 51.3 100.0 100.0 77.2 81.8 84.8 87.0 82.5 84.4 87.3 84.3 81.7 80.0 78.5 
1999 3153.9 46.1 89.8 100.0 100.0 84.0 87.2 89.3 90.9 90.7 91.8 93.3 93.0 92.7 89.4 86.5 
2000 2629.2 86.9 79.6 100.0 100.0 91.6 93.3 94.4 95.2 93.3 94.0 95.1 93.8 92.7 92.3 91.9 

r2 0.757 0.681 0.775 0.744 0.756 0.756 0.648 0.704 0.742 0.81 0.748 
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Appendix B Weighted average WRSI and their correlation with the grain yield of a 120-day sorghum grown In June at Melkassa  Research Centre, CRV of 
Ethiopia 
 

WRSI at various growth stages Weighted average WRSI 

Year 

Observed 
grain yield 
(kg/ha) 

Initial  
stage 

Development
stage 

Mid 
season

End of 
season 1111 1121 1131 1141 1232 1242 1244 1344 1444 2444

1983 1471.1 64.6 83.0 95.5 86.3 82.3 85.0 86.7 88.0 86.2 87.2 87.1 86.7 86.4 84.9 
1984 1190.5 100.0 100.0 55.5 90.2 86.4 80.2 76.1 73.2 80.9 78.0 80.3 81.9 83.3 84.5 
1985 1977.8 58.6 77.5 100 77.2 78.3 82.7 85.5 87.6 83.5 85.3 83.9 83.3 82.9 81.1 
1987 4070.4 100 100.0 100 78.4 94.6 95.7 96.4 96.9 94.6 95.2 92.1 92.8 93.3 93.8 
1988 977.8 0 61.8 100 100.0 65.4 72.4 77.0 80.3 77.9 80.4 84.0 82.1 80.5 74.8 
1989 325.3 27.5 88.0 100.0 23.1 59.6 67.7 73.1 76.9 68.7 72.2 63.3 65.3 67.1 64.2 
1990 4238.2 100 100 100 100 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 
1992 2601.0 95.0 100.0 98.8 64.2 89.5 91.4 92.6 93.5 90.0 91.0 86.1 87.3 88.2 88.7 
1993 3044.4 100.0 97.5 100.0 100.0 99.4 99.5 99.6 99.6 99.4 99.5 99.6 99.4 99.2 99.3 
1994 4940.8 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 
1995 3666.1 95.0 100.0 97.0 100.0 98.0 97.8 97.7 97.6 98.3 98.1 98.5 98.6 98.7 98.4 
1996 3303.1 100.0 84.8 100.0 100.0 96.2 97.0 97.5 97.8 96.2 96.6 97.2 96.2 95.3 95.7 
1997 2873.8 100.0 99.0 88.4 62.6 87.5 87.7 87.8 87.9 86.1 86.3 82.0 83.4 84.6 85.7 
1998 2666.7 100 100 87.1 42.8 82.5 83.4 84.0 84.5 80.9 81.6 74.5 76.6 78.4 80.0 
1999 604.4 34.8 42.3 89.1 53.3 54.9 61.7 66.3 69.5 61.6 64.7 62.6 60.9 59.5 57.7 
2000 2045.3 19.5 100.0 100.0 100.0 79.9 83.9 86.6 88.5 89.9 91.1 92.7 93.3 93.8 88.5 
r2      0.784 0.83 0.834 0.792 0.772 0.769 0.637 0.667 0.681 0.753 
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Appendix C Weighted Average WRSI of a 180-day sorghum cultivar grown in May at Arsi Negele, CRV of Ethiopia 

 

WRSI of various growth stages Weighted Average WRSI 

Year 

Observed 
grain yield 
(kg ha-1) 

Initial 
stage 

Development
stage 

Mid 
season

End of 
season 1111 1121 1131 1141 1232 1242 1244 1344 1444 2444 3444 

1988 4550.6 100 100 91.5 100 97.9 96.6 95.8 95.2 96.8 96.2 96.9 97.2 97.4 90.4 97.7 
1989 2677.8 100 71.2 80.4 69.2 80.2 80.3 80.3 80.3 77.8 78.1 76.4 76.0 75.6 70.2 78.9 
1990 3433.3 100 100 88.8 28.5 79.3 81.2 82.5 83.4 77.9 79.1 69.9 72.4 74.6 69.2 78.0 
1992 8392.6 100 100 100.0 86.3 99.6 97.3 97.7 98.0 96.6 97.0 95.0 95.4 95.8 89.0 96.4 
1993 8466.5 100 100 100.0 98.2 98.3 99.6 99.7 99.7 99.6 99.6 99.4 99.4 99.5 92.4 99.5 
1994 6214.3 100 100 93.0 100.0 90.8 97.2 96.5 96.0 97.4 96.9 97.5 97.7 97.9 90.9 98.1 
1995 4790.5 63.3 100 100.0 100.0 89.7 92.7 93.9 94.8 95.4 95.9 96.7 96.9 97.2 90.2 92.7 
1996 4073.0 100.0 100 100.0 58.9 93.8 91.8 93.2 94.1 89.7 90.9 85.1 86.3 87.4 81.1 89.0 
1999 4370.4 100.0 100.0 75.2 100.0 80.1 90.1 87.6 85.9 90.7 89.0 91.0 91.7 92.4 85.8 93.4 
2000 3612.7 100.0 74.4 100.0 46.0 ? 84.1 86.7 88.6 80.1 82.3 75.7 75.6 75.5 70.1 78.8 

r2      0.598 0.689 0.699 0.657 0.609 0.635 0.520 0.530 0.530 0.535 0.584 
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Appendix D User Manual for ABBABOKA 1.0 Decision support tool (DST) 
 
To obtain decisions regarding plant varieties to be planted and the technology thereby 

employed, data for four important facets concerning the area under consideration need 

to be provided. These are: specific zone in which the area is situated, soil-water data, 

Meteorological information and (target) planting date. If any of this data is not supplied, 

the model will not be able to provide any decision aid. Should any data be omitted the 

system will request the user to supply (fill-in) all the required data by displaying a 

message box. 

 

Having provided all the necessary data, pressing the "show decision" button will reveal a 

recommendable decision, i.e., either to "keep on fallowing" or to "go ahead and plant". If 

the recommended decision is "keep on fallowing", the program will display a very brief 

message box stating the decision. If the recommended decision is to "go ahead and 

plant", the most suitable planting specifications as well as other planting options (if 

applicable) will be displayed in another ensuing form.  The most suitable planting 

option will be displayed on the top of the form and the remaining option(s) will be 

enumerated below. Clicking the radio buttons showing the enumerated options will 

reveal the planting technology that goes with it. 

 

In cases where the required data is not provided on the entry field/s the program will 

display a message box requesting the missing entry/ies/ to be displayed. Furthermore, 

the model assumes a limited planting time for the area under consideration and thereby 

provides a decision support system for the months between March and September, on 

monthly time interval basis. If the target month lies out of this range, the system will 

display a message box letting the user know that it is only designed for this specific 

planting season. 

 

To quit the program click on the "File" menu and choose "Exit". 

 

Computations 

In the main menu, "Computations" provides the user with opportunity to calculate 

PAWC, DUL, LL and PAW, given some soil values.  The user is required to fill-in all the 

soil related values and then press the button to display the result. The system provides 
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some default values on the entry points just to show the user what kind of data is 

required to enter. 

 

Maps 

Choosing "Maps" from the main menu will enable the user to see the general map and 

seasonal water requirement satisfaction index (WRSI) maps of the area under study, by 

clicking on one of the sub menus. Once the "Maps” form appears on the screen, the 

user can switch from general map to the seasonal ones by clicking on the "Switch to" 

menu. The seasonal WRSI maps provide radio buttons to enable the user to choose a 

specific cultivar and time. The maps can be further magnified by double clicking on the 

map. 


