
 

1 
 

Experimental and computational study of S 

segregation in Fe  

 

by 

Pieter Egbert Barnard 

B.Sc Hons 

 

A thesis presented in fulfilment of the requirements of the degree 

 

MAGISTER SCIENTIAE 

 

in the Department of Physics 

at the University of the Free State 

Republic of South Africa 

 

Supervisor: J.J. Terblans 

Co-supervisor: H.C. Swart 

Co-supervisor: M.J.H. Hoffman 

 

June 2012 



 

2 
 

 

 

 

 

 



 

3 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

All glory and honour to my heavenly Father 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

4 
 

 

 

 

 

 



 

5 
 

Acknowledgements 

 

 

 

 

I would like to thank the following people: 

 Prof. J.J. Terblans as my promoter for his help and guidance during this study. 

 Prof. H.C. Swart for his help and guidance during this study. 

 Prof. M.J.H. Hoffman for useful discussions. 

 Dr. B.G. Anderson and his research group at Sasol for their advice and help. 

 My mother, Hester Barnard, whom have given me the greatest support during this 

study. 

 The personnel at the department of electronics for their assistance with the 

apparatus. 

 The personnel at the department of instrumentation for their assistant with the 

apparatus. 

 The personnel at the Physics Department for the useful discussions and interest they 

have shown during this study. 

 To the students in my group for useful discussions during group meetings. 

 

 

 

 

 

 

 

 

 



 

6 
 

 

 

 

 

 

 

 

 

 

 

 



7 

 

Keywords 
 

 

 

Activation energy 

Auger Electron Spectroscopy (AES) 

Binding energy 

Density Functional Theory (DFT) 

Diffusion mechanism 

Fe(100) 

Fe(110) 

Fe(111) 

Fick`s model 

Guttmann`s  model 

Iron (Fe) 

Lattice strain 

Linear heating 

Migration energy 

Pre-exponential factor 

Quantum ESPRESSO 

Segregation energy 

Sulfur (S) 

Surface stability 

Vacancy formation energy  

X-Ray Diffraction 

 

 

 

 

 

 

 

 

 



8 
 

 

 

 

 

 

 



 

9 
 

Abstract 

 

 

 

 

A systematic study was conducted to investigate the diffusion and segregation of S in bcc Fe using 

(i) DFT modelling and (ii) the experimental techniques Auger Electron Spectroscopy (AES) and X-

Ray diffraction (XRD). The aim of this study was to obtain the activation energies for the 

segregation of sulfur (S) in bcc iron (Fe), both computationally and experimentally in order to 

explain the diffusion mechanism of S in bcc Fe as well as the influence the surface orientation has 

on surface segregation. 

 

The Quantum ESPRESSO code which performs plane wave pseudopotential Density Functional 

Theory (DFT) calculations was used to conduct a theoretical study on the segregation of S in bcc 

Fe. To determine the equilibrium lattice sites of S in bcc Fe, the tetrahedral-interstitial, octahedral-

interstitial and substitutional lattice sites were considered. Their respective binding energies were 

calculated as -1.464 eV, -1.660 eV and -3.605 eV, indicating that the most stable lattice site for S in 

bcc Fe is the substitutional lattice site. The following mechanisms were considered for the diffusion 

of S in bcc Fe: tetrahedral-interstitial, octahedral-interstitial, nearest neighbour (nn) substitutional 

and next nearest neighbour (nnn) substitutional with migration energies, Em, of respectively 4.438 

kJ/mol (0.046 eV), 22.48 kJ/mol (0.233 eV), 9.938±6.754 kJ/mol (0.103±0.007 eV) and 

96.49±0.579 kJ/mol (1.000±0.006 eV). According to the binding and migration energy calculations, 

S will diffuse via a substitutional mechanism with a migration energy of 9.938±6.754 kJ/mol 

(0.103±0.007 eV). 

 

The three low-index planes of bcc Fe were investigated to determine the stability, the vacancy 

formation energy and the activation energy for each surface. Structural relaxation calculations 

showed that the surfaces in order of decreasing stability are: Fe(110)>Fe(100)>Fe(111) which is in 

agreement with surface energy calculations obtained from literature. The formation of a vacancy in 

bcc Fe was modelled as the formation of a Schottky defect in the lattice. Using this mechanism, the 

vacancy formation energies, Evac, for the Fe(110), Fe(100) and Fe(111) surfaces were respectively 

calculated as 267.4 kJ/mol (2.772 eV), 256.8 kJ/mol (2.662 eV) and 178.2 kJ/mol (1.847 eV). The 

activation energy, Q, of S diffusing via the substitutional mechanism for the Fe(100), Fe(110) and 

Fe(111) surfaces were respectively calculated as 277.4 kJ/mol (2.875 eV), 266.8 kJ/mol (2.765 eV) 

and 188.1 kJ/mol (1.950 eV). Thus it was found that the vacancy formation energy is dependent on 

the surface orientation and thus the structural stability of the Fe crystal. Experimental values for the 
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activation energy of S in bcc Fe (232 kJ/mol (2.40 eV) and 205 kJ/mol (2.13 eV)) were obtained 

from literature confirming the nearest neighbour substitutional diffusion mechanism of S in bcc Fe. 

No indication is given regarding the orientation of the crystal in which the value of 232 kJ/mol 

(2.40 eV) was obtained while the value of 205 kJ/mol (2.13 eV) is for a Fe(111) crystal orientation. 

  

For the experimental investigation of the Fe/S system polycrystalline bcc Fe samples were studied. 

These samples were prepared by a new doping method by which elemental S is diffused into Fe. In 

order to prepare the samples by this method a new system was designed and build. Auger depth 

profile analysis confirms the successful doping of Fe with S using the newly proposed doping 

method. It was found that the S concentration was increased by 89.38 % when the doping time was 

doubled from 25 s to 50 s. An Fe sample doped for 50 s was annealed at 1073 K for 40 days after 

which the effects induced by S and the annealing of the sample were investigated by Secondary 

Electron Detector (SED) imaging. Results showed a 36±11 % decrease in the grain sizes of the 

polycrystalline Fe sample due to the presence of S. It was found that the re-crystallization rate of Fe 

is increased due to the presence of S. 

 

Using XRD, the Fe (100), Fe(211), Fe(110), Fe(310) and Fe(111) orientations were detected for 

both the un-doped and the annealed S doped Fe samples. The annealed sample showed the 

following percentage changes in the concentrations of the respective orientations compared to the 

un-doped sample: -5.180, +2.030, +16.41, +0.400, -13.66. Taking the calculated trend in surface 

stability for the three low-index orientations of Fe into consideration, it was found that the more 

stable Fe(110) orientation had increased in concentration during annealing, while the less stable 

Fe(100) and unstable Fe(111) orientations had decreased in concentration during annealing.  

 

AES measurements on the two samples were performed using the linear programmed heating 

method. The segregation parameters of S for the un-doped Fe sample are: D0=4.90×10
-2

 m
2
/s,      

Q=190.8 kJ/mol (1.978 eV), ΔG=-134 kJ/mol (-1.39 eV) and ΩFe/S=20 kJ/mol (0.21 eV). The 

segregation parameters of P obtained for the un-doped Fe sample are: D0=0.129 m
2
/s, Q=226.5 

kJ/mol (2.348 eV). For the S doped Fe sample the segregation parameters of S were determined as: 

D0=1.79×10
-2

 m
2
/s and Q=228.7 kJ/mol (2.370 eV), ΔG=-145 kJ/mol (-1.50 eV) and             

ΩFe/S=8 kJ/mol (0.08 eV). These results showed that for the doped sample, with an increased 

concentration in the stable Fe(110) and a decreased concentration in the less stable Fe(100) and 

unstable Fe(111) orientations, a higher activation energy was obtained. Comparing the measured 

activation energies to the calculated values indicates that the diffusion of S occurs via a vacancy 

mechanism, where the S atom occupies a substitutional lattice site. Despite the fact that 

polycrystalline samples were analysed, the activation energies are still in the same order as the 
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calculated activation energies of the single crystals. This confirms the theoretical prediction of a 

substitutional diffusion mechanism of S in bcc Fe. 

 

During this study the diffusion mechanism of S was determined as the substitutional diffusion 

mechanism whereby a S atom would diffuse from a substitutional lattice site to a nearest neighbour 

vacancy. The different Fe orientations considered in the calculations can be arranged from highest 

to lowest activation energy as Fe(110)>Fe(100)>Fe(111). These calculations are in agreement with 

the AES results which showed an increased activation energy for the doped sample having a higher 

Fe(110) concentration and lower Fe(111) and Fe(100) concentrations.  
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Chapter 1: Introduction 
 

 

 

 

The movement of atoms in materials can be used to design new materials that are very specific in 

use. This is especially important for metals, which are used in industrial processes such as catalysis 

and steel making. Under high temperatures, movement of atoms becomes rapid and atoms can 

move out of the bulk and occupy positions on the surface or in the grain boundaries of the metal. 

This movement of atoms onto the surface or grain boundaries is known as segregation. Segregation 

of atoms in metals can be beneficial to the function of the metal, but more often the segregated 

atoms have negative effects on the function of the metal. This is true for iron (Fe) which is used as 

a catalyst in the Fischer-Tropsch process for the production of hydrocarbons [1]. The presence of 

sulfur (S) impurities on the Fe surface causes the Fe catalyst to be deactivated [2]. S also has a 

negative effect on the mechanical strength of industrial steels by causing the Fe to become brittle 

due to the presence of S in the grain boundaries [3; 4; 5; 6]. 

 

 

 

 

1.1. Aim of this study 
 

 

 

 

This study aims to investigate the diffusion of S in Fe by:  

 

1. Performing theoretical calculation to determine the diffusion mechanism and the bulk 

activation energy of diffusion for S in bcc Fe(100), Fe(110) and Fe(111). 

2. Developing a new method for the preparation of S doped Fe samples which can be 

used to confirm the findings obtained by the theoretical calculations. 

3. Conducting AES measurements on the prepared samples to determine the diffusion 

parameters of S in bcc polycrystalline Fe. 
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1.2. Layout of this thesis 
 

 

 

 

This thesis consists of 10 chapters and two appendixes, A and B, at the back of the thesis. Below is 

a short description of each chapter. 

 

Chapter 2: This chapter gives a literature review of previous work that has been done on the Fe/S 

system.  

 

Chapter 3: The basic concepts of diffusion are given in this chapter. The two laws of Fick are 

derived and the mechanisms of diffusion for various systems are discussed. 

 

Chapter 4: Fick`s model describing the kinetics of surface segregation and Guttmann`s model 

describing the equilibrium of surface segregation are discussed. It is shown how these two models 

can be used in combination to obtain all the segregation parameters from Auger electron 

spectroscopy data. 

 

Chapter 5: The important concepts needed to perform the Density Functional Theory calculations 

presented in this study are discussed. The chapter is focussed on providing a practical 

understanding of the technique and is not focussed on the detailed mathematics of DFT.  

 

Chapter 6: The newly proposed method and preparation chamber for the doping of Fe using S is 

described. The experimental procedure, used to prepare the samples analysed in this study, is 

described. 

 

Chapter 7: Auger electron spectroscopy and X-Ray diffraction, the two experimental techniques 

used to obtain data for the Fe/S system in this study are discussed. The apparatus used to obtain the 

data is shown along with a description of the apparatus. It is also shown how elemental 

concentrations can be obtained from Auger data using one of three quantification methods.  

 

Chapter 8: Experimental results obtained for the diffusion and segregation of S in bcc Fe are 

presented in this chapter.  

 

Chapter 9: The computational results obtained using DFT are presented in this chapter. 

 

Chapter 10: A conclusion of the study is given in this chapter along with a scope on future work 

that is planned. 
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Chapter 2: Literature review 
 

 

 

 

The study presented in this thesis is motivated by the use of iron (Fe) as a catalytic converter for 

the production of hydrocarbons in the Fischer-Tropsch process used by Sasol. This process has 

been in use at Sasol since 1955, when only the fixed bed reactors were used until 1993 when the 

first slurry phase reactor (SPR) was commissioned [1]. In the work of Adesina [1] conducted in 

1996, South Africa was considered as one of the largest Fischer-Tropsch synthesis countries with a 

total of 4 thousand tons of production capacity per year from the three Sasol plants. The largest Fe 

based catalyst fixed bed reactor is in use by Sasol in Sasolburg South Africa, while Shell in 

Malaysia is running the largest cobalt (Co) based catalyst fixed bed reactor according to the work 

of Espinoza et. al. [2]. It is well known that the presence of sulfur (S) causes the Fe catalyst to be 

deactivated [3]. According to literature the S impurities originates from the synthesis gas [4; 5]. 

Also there is a large tendency for S to bind to metallic species and thus there is always a certain 

concentration of S in the Fe even before exposure to the synthesis gas. The exact mechanism of the 

Fischer-Tropsch process is unclear with the possibility of both a carbon (C) and a oxygen (O) 

mechanism that can be responsible for hydrogen production [6]. The key point to be noticed here is 

that irrespective of the mechanism for the Fischer-Tropsch process, the fact remains that the 

presence of S impurities on the Fe catalyst surface prevents the binding of the active molecules in 

the synthesis gas to the catalyst surface.  

 

Apart from the unwanted effect of catalytic poisoning caused by S impurities in the Fischer-

Tropsch process. The presence of S in Fe also causes the unwanted effect of grain boundary 

embrittlement [7; 8; 9]. Grain boundary embrittlement caused by the S impurities leads to the 

mechanical failure of machinery operated at high temperatures [10]. In order to prevent the 

negative influence S has on Fe, a thorough study on the segregation and diffusion of S in Fe is 

required. Such a study would provide the foundation for modifications to the system by which one 

can engineer the system in order to get the required properties of the material.  

 

The negative effects caused by S in Fe is primarily concerned with the surface, be it the free 

surface of the material or the grain boundaries. The use of surface sensitive techniques such as X-

Ray Photoelectron Spectroscopy (XPS) in the study of reaction rates on surfaces and properties of 

catalysts is discussed by Sinfelt [11]. The use of surface science techniques in combination to 

computational techniques such as Density Functional Theory (DFT) or ab initio calculations, 

kinetic Monte Carlo (kMC) and molecular dynamics (MD) simulations to study surface phenomena 
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with specific relevance to catalysis have been investigated by Stampfl et. al. [12]. A discussion of 

surface sensitive techniques such as Auger Electron Spectroscopy (AES), X-Ray Photoelectron 

Spectroscopy (XPS) and Low Energy Electron Diffraction (LEED) in the study of metal surfaces, 

with the focus on heterogeneous catalysis is given by Briggs and Seah [13]. Presented in the 

remainder of this chapter is a summary of experimental and theoretical research conducted on Fe 

and Fe containing S impurities.  

 

Previous studies in literature have been conducted on pure Fe surfaces to calculate properties such 

as lattice relaxations, surface energies, magnetic properties and work functions using DFT. 

Supercell structures are used consisting of a number of atomic layers, sufficient enough to allow for 

a bulk and a surface region of the structure under study. A vacuum spacing is used to allow the 

simulation of a surface and avoid the interaction of periodically repeated cells. The discussion here 

is limited to the three low-index planes of bcc Fe, namely the Fe(100), Fe(110) and Fe(111) 

surfaces. 

 

Calculations of the surface energies revealed that the physical stability of the three surfaces from 

most stable to least stable are: Fe(110)≥Fe(100)>Fe(111) [14; 15; 16]. This stability of the 

structures are also seen in the structural relaxation calculations. The relaxation of the three iron 

surfaces revealed that the most stable surface is the Fe(110) surface, which has geometrical 

parameters similar to the bulk [14; 15; 16]. The second most stable surface was found to be the 

Fe(100) surface and the Fe(111) surface was found to be the most unstable surface [14; 15; 16]. 

The values calculated by the different authors for the degree of lattice relaxation differed slightly, 

but the general trend of layers expanding and contracting remained the same. For the Fe(100) 

surface the following pattern was observed for the first four atomic layers: -, +, +, -, where + refers 

to the expansion of an atomic layer and - refers to the contraction of atomic layers [14; 15; 16]. For 

the first 3 atomic layers of the Fe(110) surface the pattern observed for lattice relaxations were:      

-, +, -. There were variations in the relaxation for the third atomic layer, with Błonski et. al.[15] 

claiming the expansion of the third layer. The unstable Fe(111) surface showed the following 

pattern for lattice relaxation: -, -, +, - [14; 15; 16]. An investigation of the work function of the 

three surfaces revealed that the Fe(100) surface had the smallest value, with the value of Fe(111) 

being only slightly larger and the Fe(110) surface having the largest value. For all three surfaces 

the magnetic character of Fe was found to increase at the surface due to the abrupt termination of 

the crystal and the reduced coordination of the surface atoms. Values indicated that the largest 

increase was observed in the Fe(100) surface and the smallest increase was found in the Fe(110) 

surface [14; 15; 16]. The results obtained above form a foundation for studies concerning the 

adsorption and also the segregation of impurities on Fe surfaces. Table 2.1 gives a summary of the 
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results found for the lattice relaxations, surface energies, magnetization and the work functions of 

the three low index Fe surfaces. 

 

 

 

 

 

 

 

 

 

 Fe(100) Fe(110) Fe(111) 

Lattice relaxation -, +, +, - [14; 15; 16] -, +, - [14; 16]/-, +, + [15] -, -, +, - [14; 15; 16] 

Surface energies 

(J/m
2
) 

2.27 [16]; 2.25 [15]; 

2.47 [14] 

2.29 [16]; 2.25 [15]; 

2.37 [14] 

2.52 [16]; 2.54 [15]; 

2.58 [14] 

Work function (eV) 3.86 [15]; 3.91 [14] 4.81 [15]; 4.76 [14] 3.90 [15]; 3.95[14] 

Magnetization (µB) 2.95 [14] 2.59 [14] 2.81 [14] 

 

 

 

For the adsorption of S onto the surface of Fe, the following observations were made. For Fe(100) 

the S adsorbs in a 0.5 monolayer c(2×2) structure on the surface with the hollow site being the most 

stable position for the S atom, the bridge and atop sites were calculated as a transition and a second 

order saddle point respectively [17]. Todorova et. al. [18] considered the formation of a p(2×2) S 

structure on Fe(100), with the hollow site being the most stable position for adsorbed S. The c(2×2) 

structure of adsorbed S agrees with experimental data obtained by LEED [19]. For the Fe(110) 

surface the adsorption of S was found to be most stable in the four fold hollow site [18; 20] 

forming a p(2×2) surface structure [21]. On the Fe(111) surface a p(1×1) structure was formed by 

segregated S [22]. Construction of charge density distribution plots for S adsorbed onto the Fe(100) 

and Fe(110) surfaces revealed that an increase in charge density is seen between the S atom and the 

Fe surface [17; 21]. An investigation of the magnetic properties indicated that there is an increase 

in the magnetization of the adsorbed S atom [23] and a decrease in the magnetization of the 

surfaces, indicating the formation of a Fe-S bond [17]. Todorova et. al. [18] also performed 

calculations to determine the diffusion parameters of S on the Fe(100) and Fe(110) surfaces. They 

found that S had an activation energy, Q, of 115 kJ/mol (1.20 eV) for the Fe(100) surface compared 

to the activation energy of 49.2 kJ/mol (0.51 eV) for the Fe(110) surface. The pre-exponential 

factors, D0, for the respective surfaces were calculated as 4.83×10
12

 s
-1

 and 3.84×10
12

 s
-1

. The 

diffusion parameters indicated that the diffusion of S on the Fe(110) surface would occur much 

faster compared to diffusion of S on the Fe(100) surface. 

Table 2.1: Summary of the properties for the Fe(100), Fe(110) and Fe(111) surfaces obtained 

from literature. 



26  
 

Briant [24] found that there exists competitive segregation between S and Phosphorus (P) at grain 

boundaries in bcc Fe. The grain boundary embrittlement due to S segregation has been reported [9]. 

The segregation of S and P to the tilt boundary of Fe(210) was also investigated by Braithwaite et. 

al. [7] who found that both impurities caused a decrease in the cohesion of Fe leading to grain 

boundary embrittlement. This is in agreement with the experimental findings of Heo [9] who 

observed grain boundary embrittlement in Fe due to the presence of S and P. Interstitial impurities 

C, and boron (B) have been shown to cause an increasing effect on cohesion in Fe. Rez et. al. [8] 

performed first principle calculations using full potential linearised augmented plane wave 

(FLAPW) and layer Korringa Kohn Rostoker (KLLR) codes to investigate the changes in the d 

states due to the impurities C, B, S and P. They determined that the interstitial impurities C and B 

caused a reduction in the d-band energy of the neighbouring Fe atoms, which led to fewer filled 

anti-bonding states resulting in an increased cohesion of the Fe atoms. The substitutional impurities 

S and P led to an increased energy of the d-bands which indicated that there are more filled anti-

bonding states present which led to a reduced cohesion of Fe.  

 

Tacikowski et. al. [9] conducted studies on polycrystalline Fe samples having different 

concentrations of S and C in order to determine the influence of non-metal impurity atom 

concentrations on grain boundary population. For the four different samples, pure Fe, Fe-C, Fe-S 

and Fe-C-S, the grain sizes of the samples decreased from pure Fe to Fe-C, with Fe-S having the 

smallest grain size despite the fact that the C concentration were three times higher than that of the 

S concentration. The grains in the Fe-C-S sample seemed to be closer in size to the Fe-C sample 

than to that of the Fe-S sample. They concluded that re-crystallization in the early stages is 

controlled by C and that the initial segregation of C to the grain boundaries is displaced by the 

segregation of S.  

 

Grabke et. al. [19] performed segregation studies on Fe(100) to investigate the segregation of non-

metal impurities. At temperatures below 923 K the impurities C and nitrogen (N) were observed to 

segregate, but at 923 K the segregation of S was observed to form a c(2×2) structure on the Fe(100) 

surface. At 1073 K a maximum surface concentration of S was observed independent of the S bulk 

concentration. They determined that the segregation of S in Fe(100) would be observed for bulk 

concentrations as low as 0.01 ppm, but that such measurements would not be time effective. They 

were able to determine the segregation energy of C in Fe(100) as -85 kJ/mol (-0.88 eV). 

 

G. Panzner and B. Egert [25] performed studies on α-iron and iron sulphide surfaces (FeS, FeS2) to 

determine the bonding state of S on the different surfaces. For the Fe(100) sample containing 3 wt. % 

silicon (Si) and 20 ppm S, the Si segregated first, but was replaced by S at 900 K to produce a 
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c(2×2) equilibrium surface structure. This replacement of the Si from the surface is explained by a 

high S segregation energy as compared to a smaller Si segregation energy. From core level analysis 

the electron binding energies of the S 2p peak are in the range 162.2-161.7 eV, which indicates that 

the S atoms are negatively charged as a result of the charge transfer of electrons from Fe to S. This 

charge transfer effect is more pronounced in FeS and FeS2 as observed by the increasing binding 

energy of the S 2s and S 2p core level going from FeS2 to FeS. From the S (LMM) Auger spectra 

the interactions involving the Fe 3d electrons can be analyzed. These peaks show a five peak 

structure indicating the interaction of S and Fe. For segregated S in Fe this effect is stronger as 

compared to the Fe sulfide surfaces. 

 

Fujita et. al. [26] studied the segregation of S in Fe(100) and the effect S has on the oxidation of the 

Fe crystal. They performed linear heating segregation measurements and observed the segregation 

of impurities C, O and S. C segregated at the lower temperatures of 573-673 K. At temperatures 

above 673 K S segregation became more dominant reaching full surface coverage at temperatures 

of 973-1073 K. They explained the initial segregation of C and the later segregation of S as being 

due to their respective activation energies. According to their literature values C has an activation 

energy of 123 kJ/mol (1.27 eV) compared to the value of 232 kJ/mol (2.40 eV) for S. Thus the C 

segregation process occurs much faster that the segregation of S in bcc Fe. To determine whether 

the segregated S can prevent the oxidation of Fe, they conducted three experiments. The first was 

to measure the oxidation of a sputter cleaned Fe sample. The second experiment was to observe the 

oxidation of an Fe sample that had segregated S on the surface, which was half sputter cleaned. The 

third experiment was the oxidation of an Fe sample containing segregated S at full coverage. They 

found that the presence of S on the Fe surface prevented the initial oxidation of the surface. Two 

models could be used to clarify this, the first was that the electronegative S atoms attract electrons 

from the metal substrate. This results in less unbound electrons at the surface, which may decrease 

surface reactivity and stabilize the surface. The second model was that the electronegative S atom 

on the surface becomes negative due to the transfer of electrons from the metal to the S atom. This 

causes each S atom to create an electric dipole perpendicular to the surface. Thus an electrostatic 

force is induced between two neighbouring dipoles resulting in a positive potential energy. This 

causes a repulsive interaction between segregants, forcing them to occupy the hollow sites on the 

surface. Thus the surface is fully saturated and the adsorption of other species cannot occur. 

 

M.M Eisl et. al. [27] conducted a study to determine the diffusion properties of S and N in 

polycrystalline bcc Fe by using the method of linear programmed heating described by         

Viljoen et. al. [28]. Pure Fe samples were heated from 373 K to 1123 K at a rate of 0.004 K/s and 

0.0075 K/s respectively. They found that N is the dominant segregant at temperatures in the range 
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523-673 K. From Scanning Auger Microscope (SAM) maps it was observed that a homogenous 

surface distribution was obtained for N on the surface. At temperatures above 673 K, S starts to 

segregate and displaces the N from the surface. They explained this effect by the segregation 

energies for Fe single crystals which is given by Grabke et. al. [29] as -190 kJ/mol (-1.97 eV) for S, 

and -110 kJ/mol (-1.14 eV) for N. The large energy decrease experienced by the crystal due to the 

segregation of S provides a structure that is energetically more stable and would thus be favoured 

over the segregation of N. In contrast to the segregation of N, the initial segregation of S does not 

produce a homogenous distribution on the surface, instead the S is observed as small spots and 

lines on the surface. From this they concluded that the segregation of N is primarily a result of bulk 

diffusion while the diffusion of S is of a more complex mechanism. Initially the S diffuses via grain 

boundaries causing the small spots and lines, at 873 K the S saturates the Fe surface with both grain 

boundary and bulk diffusion now taking place. They determined the activation energy, Q, of 

diffusion as 145 kJ/mol (1.50 eV) and the pre-exponential factor, D0, as 1.07×10
-6

 m
2
/s, performing 

a second run delivered different parameters with a D0 value of 0.16 m
2
/s and a Q value of 232 

kJ/mol (2.40 eV). They explained that the increase in the activation energy and the pre-exponential 

factor was the result of grain growth, since at high temperatures re-crystallisation of the Fe occurs.  

 

Arabczyk et. al. [22] performed segregation studies on a Fe(111) surface at constant temperatures 

in the temperature range of 770-1000 K. They measured an activation energy of 2.13 eV for the 

diffusion of S in bcc Fe. Other reported activation energies for S diffusion in bcc Fe single crystals 

are: 202 kJ/mol (2.09 eV), 232 kJ/mol (2.40 eV) and 222 kJ/mol (2.30 eV) [30]. 

 

Hong et. al. [31] performed calculations using molecular orbital theory to study the segregation of 

S in Fe(100) via a substitutional diffusion mechanism. They found that the inclusion of S in the 

calculation of the Fe coordination number causes a reduction in the spin polarization and produces 

binding energies close to experimental values. For S in a bulk substitutional site, the S 3s orbital 

interacts with occupied a-symmetry orbitals resulting in a closed shell repulsion. On the surface the 

S 3p orbitals are symmetrically allowed to mix with the S 3s orbital, reducing the repulsion. The 3s 

orbital is thus largely responsible for S binding more strongly to the surface than in the bulk of Fe, 

with a surface binding energy of -3.98 eV and a bulk binding energy of -3.10 eV. They calculated 

the vacancy formation energy in Fe as 76.2 kJ/mol (0.79 eV) and the segregation energy as -161 

kJ/mol (-1.67 eV). They contributed half of the segregation energy to the difference in surface and 

bulk binding energies of S and the other half to the vacancy formation energy of Fe. 

 

For the calculation of activation energies for substitutional diffusing elements it is important to 

obtain the vacancy formation energy of bcc Fe. Calculations have been performed by numerous 
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authors [32; 33; 34; 35; 36] with values in good agreement with experimental findings. Terblans 

[37; 38; 39; 40] proposed that the vacancy formation energy is dependent on the surface orientation 

by considering the formation of vacancies to occur via a Schottky defect mechanism. This method 

is different from the conventional method in which the vacancy formation energy is calculated, 

where the formation of vacancies were considered to be independent of the surface orientation. No 

literature, previous to the work of Terblans, could be obtained where the surface orientation of the 

crystal was taken into account for the calculation of the vacancy formation energy. Terblans was 

able to successfully calculate the vacancy formation energies in Cu and Al single crystals [37; 38]. 

For the Cu single crystals the vacancy formation energies are from largest to smallest: Cu(110)= 

148 kJ/mol (1.54 eV), Cu(100)=129 kJ/mol (1.34 eV), Cu(111)=103 kJ/mol (1.07 eV). For the low-

index planes of Aluminium the vacancy formation energies in order of the largest to smallest are: 

Al(110)=116 kJ/mol (1.20 eV), Al(100)=128 kJ/mol (1.33 eV), Al(111)=144 kJ/mol (1.49 eV). 

 

The literature study revealed that the segregation of impurities in bcc Fe segregate to the surface 

and grain boundaries at high temperatures. The interstitial impurities C and N are seen to segregate 

in the lower temperature range of 673-973 K for both polycrystalline and single crystals forming a 

c(2×2) structure on the Fe(100) surface. At higher temperatures the substitutional impurities S and 

P are seen to dominate the surface, especially S dominance on the surface is seen at high 

temperatures, 973-1073 K. It was determined that intersitital impurities such as C have activation 

energies which are smaller than those of substitutional impurities S and P resulting in the faster 

diffusion of interstitial species. The segregation of S on the Fe surface dominates the surface 

forming a c(2×2) structure on the Fe(100) surface, with little other impurities visible on the surface, 

this was explained by the large segregation energy (-190 kJ/mol (-1.97 eV)) of S in bcc Fe(100). 

From the computational literature information the stability of the different surfaces of Fe could be 

obtained. The influence of the crystal surface orientation on vacancy formation energies was also 

discussed by looking at Cu and Al, providing valuable information regarding substitutional 

diffusion in crystalline solids. 

 

To the best knowledge of the author no previous computational study was done to systematically 

investigate the diffusion of S in bcc Fe to determine the various diffusion paths and equilibrium 

lattice sites for S in bcc Fe. It is the aim of this study to compute the activation energy of diffusion 

for S in the low-index orientations of bcc Fe and the segregation energy of S in a bcc Fe(100). 

Experimental work, including AES, will also be performed in order to confirm the predictions 

made by DFT modelling. 
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Chapter 3: Diffusion theory 
 

 

 

 

3.1. Introduction 

 

 

 

 

A very general definition for solid state diffusion can be given as the transfer of atoms from one 

part of a system to another as a result of the random motion of the individual atoms in the system 

[1]. All the atoms in the system are constantly oscillating around their respective equilibrium 

positions. If sufficient energy is added to the system these oscillations become large enough to give 

rise to atomic jumps and the atoms are said to diffuse [2; 3]. A very basic example to explain the 

diffusion process is the mixing of iodine in water. At first when the iodine is poured into the water 

a large concentration of iodine is observed at the point of entry. As time evolves the iodine diffuses 

throughout the water and after sufficient time has passed a homogenous distribution of iodine is 

observed [1]. Although this example is given for two fluids, the same effect occurs in solids where 

a homogenous distribution is obtained if the process is allowed to take place at a high temperature 

for a sufficient amount of time. From the iodine example above it is convincing to believe that 

diffusion is caused by a concentration gradient between two or more solids or liquids. This is how 

the two laws of Fick [1; 2; 3; 4] describes diffusion, the first law describes the diffusion of atoms in 

terms of a concentration gradient alone, while the second law describes the change in concentration 

as a time evolving process. The two laws of Fick are derived in this chapter along with other basic 

concepts of the diffusion process. These include the diffusion mechanisms that are possible for a 

range of different systems. A short description is also given on the Arrhenius equation [4] which 

gives the relation between the diffusion coefficient, D, the pre-exponential factor, D0, and the 

activation energy, Q.  

 

 

 

 

 

 

 

 

 

 

 



36 
 

3.2. Fick`s first diffusion law 

 

 

 

 

Fick`s first law predicts the flow rate of atoms as a result of a concentration gradient between the 

different atoms in the system. In one-dimension Fick`s first law is given by equation 3.1 [2; 3; 4] 
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                                                                 (3.1) 

 

 

 

where J is the flux of atoms and, 
x

C




, the concentration gradient with C the concentration and x 

the position of atoms. For the derivation of equation 3.1, consider two atomic planes at positions x 

and x+Δx shown in figure 3.1, with Mx and Mx+Δx representing the number of atoms per unit area at 

the respective positions. The distance Δx represents the distance over which atoms can diffuse, the 

inter atomic distance. All the diffusing atoms are taken to be of the same type. 
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Figure 3.1: Diffusion between two atomic planes at positions x and x+Δx with Mx and Mx+Δx 

representing the number of atoms per unit area of the respective positions. From position x to 

position x+Δx there is a flux of Jx and in the opposite direction from x+Δx to x, there is a flux of 

Jx+Δx. 
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Assuming that atoms can only diffuse a distance equal to the inter atomic distance, the flux of 

atoms diffusing from x to x+Δx is given by equation 3.2 

 

 

 

xx MJ Γ
2

1
 .                                                                (3.2) 

 

 

 

Here,  , is the mean jump frequency giving the average number of times an atom changes lattice 

sites per second. The factor of a half arises due to the assumption that half of the atoms would 

diffuse to the right and the other half would diffuse to the left for the two dimensional case 

considered here [4]. In the opposite direction, from x+Δx to x, the flux is given by equation 3.3 

 

 

 

xxxx MJ   Γ
2

1
.                                                            (3.3) 

 

 

 

Subtracting equation 3.2 from equation 3.3 and multiplying by,
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the total flux, J 
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Using the relation, 
x

M
C




 , leads to equation 3.5 
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The diffusion coefficient, D, in equation 3.5 is given by equation 3.6 
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For the three-dimensional case equation 3.6 becomes  
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where the symbol, d, has been used for the inter atomic distance. The three dimensional diffusion 

coefficient is given by equation 3.8 
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The subscript, i, is used to indicate the crystal directions in each of the Cartesian coordinates x, y 

and z. Cubic solids are considered as isotropic and thus the diffusion coefficient in all three 

directions are the same i.e.  

 

 

 

zzyyxx DDD  .                                                            (3.9) 

 

 

 

Inserting equation 3.8 into equation 3.7 and taking the system to be isotropic leads to equation 3.10 

[2; 3; 4] 
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The following is important when Fick`s first law is considered 

 

 It is only valid for ideal solutions without any free energy gradients such as temperature, 

pressure, electrostatic or vibrational gradients. 

 It applies only to ideal solutions, thus the thermodynamic activity coefficient is unity for all 

concentrations. 

 D is independent of concentration [4]. 

 

 

 

 

3.3. Fick`s second diffusion law 

 

 

 

 

It is not always possible to determine the flux of atoms, for a gas in the presence of a solid the 

problem is relatively easy, but it becomes more complicated if two solids are considered. This is 

where it becomes more practical to make use of Fick`s second law generally known as the diffusion 

equation. Here time is included and the equation describes the kinetic behaviour of the system 
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under study. Thus the non-steady state for an isotropic material is studied using Fick`s second law, 

where the concentration is now both time and position dependant [4]. Fick’s second law is given by 

equation 3.11 [2; 3; 4; 5] 
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where t is the time of diffusion. Fick`s second law is derived as follow: consider the rectangular 

volume divided into two parts by a thin membrane of thickness δx and area A as shown in figure 

3.2.  

 

 

 

 

 

 

   

  

 

 

 

 

 

 

 

The number of atoms entering the membrane is given by J1Aδt and the number of atoms leaving the 

membrane by J2Aδt. Thus the change in the number of atoms, ΔN, is given by  
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 21  JJtδA  .                                                    (3.12) 

 

 

 

 

 

δx A 

J1 J2 

Figure 3.2: A rectangular volume, separated by a thin membrane of thickness δx and area A, used 

to illustrate a time dependant diffusion process as given by Fick`s second diffusion law. 
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The change in concentration of atoms inside the volume of the membrane is given by equation 3.13 
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Making use of equation 3.13 and dividing equation 3.12 by xAδ results in equation 3.14 
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Since the membrane is very thin the flux leaving the volume 2J can be expressed as  
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Substituting equation 3.15 into equation 3.14 results in the continuity equation, equation 3.16 
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Substituting Fick`s first law, equation 3.5, into equation 3.16 leads to Fick`s second law, given by 

equation 3.17 [5] 
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In three dimensions for an isotropic material equation 3.17 becomes equation 3.18 [2; 3; 4; 5] 

 

 

 

CD
t

C 2



.                                                             (3.18) 

 

 

 

This second order differential equation, equation 3.18, can be solved for different initial and 

boundary conditions, depending on the system under study. The semi-infinite solution to equation 

3.17 is described in chapter 4, Segregation theory. 

 

 

 

 

3.4. Diffusion mechanisms 

 

 

 

 

Fick’s second law from the preceding section, section 3.3, describes the diffusion process as a 

concentration gradient evolving in time. This allows information regarding the kinetics of the 

diffusion process to be obtained, giving information on how fast a certain diffusion process will 

occur but gives no direct information regarding the diffusion path of the atoms. Apart from 

knowing the rate of the diffusion process it is also important to know by which mechanism 

diffusion occurs. Different rates are expected for the different diffusion mechanisms as will be seen 

in this section. Information regarding the diffusion mechanism enables the researcher to modify a 

material in order to obtain certain desired properties.  

 

 

 

 

3.4.1. Interstitial mechanism 

 

 

 

 

The interstitial diffusion mechanism is commonly found in systems where the diffusing atom is 

much smaller in size compared to the matrix atoms [2; 3; 4]. The diffusion of C in α- and γ- iron [3] 

as well as the diffusion of the gases He, H2, N2 and O2 in pure metals are examples of the 
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interstitial diffusion mechanism [4]. Figure 3.3 gives a schematic representation of the interstitial 

diffusion process in crystalline solids. 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

In figure 3.3 the black atom represents the atom in the interstitial site of the lattice. This atom can 

diffuse to any empty nearest neighbour interstitial site. It is not limited to one atomic jump alone 

and can diffuse over large distances depending on the energy barrier and the energy available in the 

system. In order for the interstitial atom to diffuse the lattice needs to distort to allow a channel by 

which the atom can diffuse. Figure 3.4 illustrates this, atoms 1 and 2 needs to change position 

(indicated by the solid arrows) and in doing so they provide a channel by which the atom can jump 

from one interstitial site to a nearest neighbour interstitial site [2; 3; 4]. The presence of the 

surrounding atoms, especially atoms 1 and 2, causes an energy barrier between the initial and final 

positions of the atom. An amount of energy equal to this barrier, the migration energy, Em, is 

required by the atom to diffuse. Since it was not necessary to create an empty lattice site to which 

the interstitial atom can diffuse, the migration energy is equal to the activation energy of diffusion. 

If a vacancy first needed to be created to which the interstitial atom can diffuse, an additional 

energy term, Evac, the vacancy formation energy would have to be added to the migration energy 

term to get the total activation energy of diffusion [3]. 

 

 

 

 

 

 

 

 

 

 

Figure 3.3: Interstitial mechanism of diffusion, here the diffusing atom is smaller in size than that of 

the matrix atoms and the diffusing atom moves from one interstitial lattice site to a nearest neighbour 

empty interstitial lattice site as indicated by the arrow. 
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If the diffusing atom is large relative to the matrix atoms, the energy requirements for an interstitial 

diffusion process becomes too large and another diffusion mechanism becomes dominant [3]. The 

interstitial sites are those sites in the matrix lattice that are energetically favourable for the diffusing 

atom. For example in the bcc crystal structure the interstitial positions are either tetrahedral or 

octahedral positions as illustrated in figures 3.5(a) and 3.5(b) respectively [2]. 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

2 1 

(a) (b) 

Figure 3.4: Illustration of the interstitial diffusion mechanism. The diffusing atom, the atom in black, 

requires a certain amount of energy to overcome the energy barrier created by the surrounding 

lattice atoms, called the migration energy, Em. 

 

Figure 3.5: Energetically favourable sites for interstitial atoms in a bcc crystal structure: (a) 

tetrahedral site and (b) octahedral site.  
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The activation energy of diffusion for this mechanism is very small and atoms can diffuse over 

large distances before being trapped by crystal defects i.e. surfaces, grain boundaries, vacancies etc. 

Trapping of impurities at grain boundaries in sufficient numbers can lead to grain boundary 

embrittlement [4].  

 

 

 

 

3.4.2. Vacancy/Substitutional mechanism 

 

 

 

 

The substitutional mechanism of diffusion requires that a substitutional site be vacant in the nearest 

neighbour position of the diffusing atom. Thus before a substitutional atom can diffuse an empty 

lattice site or a vacancy needs to be created. This additional energy required for the creation of a 

vacancy, the vacancy formation energy Evac, is added to the migration energy of diffusion, Em, to 

get the total activation energy, Q, for the substitutional diffusion process. The fraction of vacancies 

at a specific temperature can be calculated using equation 3.19 [4; 6] 
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where, nv is the number of vacancies, no the number of lattice sites, Evac is the vacancy formation 

energy, T the temperature in Kelvin and R is the universal gas constant with a value of                    

8.314 J/K/mol. Equation 3.6, needs to be adapted to incorporate the probability, Xv, that a particular 

lattice site is vacant and thus becomes [4] 
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where Xv is given by equation 3.21 

 

 

 








 


RT

E

n

n
X vacv

v  exp
0

.                                                       (3.21) 

 

 

 

Similar to the interstitial diffusion mechanism, the lattice has to distort to allow the atom to diffuse 

into an empty lattice site. This is shown by the solid arrows in figure 3.6 which illustrates the 

substitutional diffusion mechanism.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This mechanism is commonly found in fcc metals, but has also been observed in bcc and hcp 

metals as well as in oxides and ionic compounds. In comparison with interstitial diffusion, the 

substitutional diffusion mechanism is slower due to the vacancy that needs to be created first before 

the atom can diffuse [3]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 

2 

1 

Figure 3.6: Substitutional diffusion mechanism for crystalline solids. For the atom in grey to diffuse 

into the adjacent vacancy, atoms 1 and 2 needs to change their positions (indicated by the two solid 

arrows) in order to allow the diffusing atom to pass into the vacancy. 
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3.4.3. Interstitialcy mechanism 

 

 

 

 

If an atom large in comparison to the atoms of the matrix, occupies an interstitial lattice site the 

interstitialcy diffusion mechanism can be expected to occur. Energy required by an atom to diffuse 

via the interstitial diffusion mechanism is too large and instead the interstitial atom will diffuse by 

displacing one of the nearest neighbour atoms. The displaced atom will then displace one of its 

nearest neighbour atoms continuing the diffusion process [2; 3], this is illustrated in figure 3.7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Interstitialcy diffusion has been observed for the AgBr system where the diffusing Ag atom is 

comparable in size to the Br atom and does not cause large distortion of the lattice by occupying an 

interstitial site [2; 3; 4]. Normally this mechanism is not expected, since the energy required for a 

large atom to be in an interstitial position is too high. For systems that have been exposed to 

radiation or high energy particle damage, where lattice defects are created, this mechanism is a 

strong possibility [2; 3]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7: Interstitialcy diffusion mechanism where the diffusing atom replaces one of its nearest 

neighbour atoms. 
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3.4.4. Interstitial-substitutional mechanism 

 

 

 

 

An atom located in a interstitial position diffuses through the crystal via an interstitial mechanism 

and can occasionally fill a vacancy or replace one of the lattice atoms. This mechanism of diffusion 

is known as an interstitial-substitutional diffusion mechanism. As mentioned above two 

possibilities exist; one is the filling of a vacancy and the other is the substitution of a matrix atom. 

They are respectively called the dissociative and the kick-out mechanisms as illustrated in figure 

3.8 and 3.9 [2]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Diffusion of Cu in Ge as well as diffusion of foreign metallic elements in Pb, Sn, Nb, Ti and Zr is 

due to the dissociative mechanism. Diffusion of Au, Pt and Zn in Si is a result of the kick-out 

mechanism. Fick`s diffusion equations need to be adapted to incorporate the reaction terms, since 

Figure 3.8: Dissociative interstitial-substitutional diffusion mechanism which explains the fast 

diffusion of Cu in Ge. 

 

Figure 3.9: Kick-out interstitial-substitutional diffusion mechanism responsible for the diffusion of 

Au, Pt and Zn in Si. 
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there are three species involved in this mechanism [2]. A discussion of this topic will not be done 

here, a detailed discussion thereof can be found in the references [7; 8]. 

 

 

 

 

3.5. Influence of temperature on diffusion 

 

 

 

 

The temperature dependence of diffusion can generally be described by the Arrhenius relation 

given by equation 3.22 [2; 4] 
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where, Q, is the activation energy of diffusion, 0D  is a temperature independent quantity called the   

pre-exponential factor. The activation energy, Q, is the sum of the vacancy formation energy and 

the migration energy, Em, given by equation 3.23. 
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For atoms diffusing via the interstitial diffusion mechanism, no vacancy is required and the 

activation energy is equal to the migration energy. The pre-exponential factor is given by equation 

3.24 
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where, ΔS is the entropy of diffusion and 
'D0  

is given by equation 3.25 [2; 3] 
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The term γ is a geometric factor, which is equal to 1 for substitutional diffusion, a is the interlattice 

parameter and,  is the vibrational frequency. Plotting ln D over 
T

1
 from equation 3.22 gives a 

straight line with a gradient of 
R

Q
and a y-intercept of ln 0D . This temperature dependence of the 

rate constant, D, implies that a energy barrier between the initial and the final states of diffusion is 

present and can be overcome by the addition of energy to the system, for example thermal energy 

[4]. The energy barrier between the initial and the final states is shown in figure 3.10. 
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Figure 3.10: The temperature dependence of diffusion, showing how energy is required to 

overcome the diffusion barrier. From an initial state, (a), to a final state, (c), where state (b) 

represents the transition state. 
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3.6. Summary 

 

 

 

 

This chapter described the basic theoretical concepts of diffusion. The two laws of Fick were 

derived in full due to their importance and use in later chapters. Fick`s first law described diffusion 

in terms of a concentration gradient, while Fick`s second law was able to give a description of a 

time evolving diffusion process. The second law of Fick can be solved for different initial and 

boundary conditions to describe the kinetics of diffusion and segregation. Various diffusion 

mechanism were discussed along with examples for each of the mechanisms. The Arrhenius 

equation which describes the rate of diffusion is explained in short to illustrate the presence of an 

energy barrier for a diffusion reaction. 
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Chapter 4: Segregation theory 

 

 

 

 

4.1. Introduction 

 

 

 

 

This chapter describes two models which can be used to extract the segregation parameters from 

AES data. For the kinetics of surface segregation a solution of Fick`s second law is derived for the 

case of linear programmed heating. The equilibrium of surface segregation is described by the 

model of Guttmann. The combination of these two models are used to obtain all the segregation 

parameters for the system under study. 

 

 

 

 

4.2. Kinetics of surface segregation 
 

 

 

 

The kinetics of surface segregation determines the rate at which atoms move to the surface of a 

material. For a description of the kinetics of surface segregation Fick`s second law can be solved 

for specific initial and boundary conditions. The initial condition is that the concentration, C, of the 

segregating specie is constant at time t=0. The boundary condition assumes that the rate of atomic 

movement is independent of the number of atoms on the surface and thus it is assumed that there is 

always a clean surface present. Mathematically these conditions are given by equation 4.1 

 

 

 

    
0                0               0  t,x,C  

 

 

   0                0              0  t,x,CC                                       (4.1) 

 

 

 

where x is the position in the sample and C0 is the initial concentration. Fick`s second law derived 

in chapter 3, Diffusion theory, is given by equation 4.2 
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where D is the diffusion coefficient. Solving Fick`s second law for the initial and boundary 

conditions given by equation 4.1 leads to equation 4.3 [1] 
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Equation 4.3 describes the concentration, C, of the segregating specie at position x in the material 

after time t. From equation 4.3 the flux of atoms moving through x=0 is given by equation 4.4 [1] 
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To obtain the total amount of the segregating specie which has left the crystal through an area A at 

x=0 in time t is found by integrating equation 4.5. 
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which results in equation 4.6.  

 

 

 

2

1

02 











Dt
ACM t .                                                    (4.6) 

 

 

 



CHAPTER 4: SEGREGATION THEORY 

 
 

55 
 

The surface concentration of the segregated layer of thickness d is found by dividing the total 

amount of the material which have diffused through an area A, equation 4.6, by the area times the 

thickness of the segregated layer. The concentration of the segregated layer, Cs, on the surface is 

thus given by equation 4.7 [1] 
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Since the surface concentration is independent of the flux of segregating atoms, any value can be 

added to the starting value of CS. The bulk concentration, CB, was added to CS resulting in the final 

expression for the semi-infinite solution, equation 4.8 [1] 
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An equation describing surface segregation where the temperature was increased linearly (linear 

programmed heating) can be derived starting from equation 4.8. An enrichment factor, β, 

independent of the bulk concentration is given by equation 4.9 [2]  
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The rate at which β is going to change is given by equation 4.10  
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where the increase in β is given as a function of tB and not t, since the temperature was linearly 

increased resulting in a varying diffusion coefficient. The term tB describes the amount of time 

required by the diffusion coefficient, D, to obtain the concentration profile for a linear temperature 

run given in terms of the number of atoms which have segregated to the surface. From equation 4.9 

the term tB is given by equation 4.11 
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To obtain a analytical solution of β, equation 4.11 is substituted into equation 4.10 to obtain 

equation 4.12 
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The temperature, T, is given by equation 4.13 

 

 

 

tTT  0                                                           (4.13) 

 

 

 

where α is the rate at which the temperature was increased. The well known Arrhenius equation [3], 

equation 4.14, gives the rate of a diffusion process at a specified temperature  
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where D0 is the pre-exponential factor given by equation 3.24 in chapter 3, Q the activation energy 

and R the universal gas constant with a value of 8.314 J/K/mol. Using equation 4.13 and 

substituting the Arrhenius equation, equation 4.14, into equation 4.12 results in the integral 

expression, equation 4.15 [2; 4] 
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The following approximation can be made to the integral in equation 4.15 
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resulting in equation 4.17 [4] 
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Equation 4.17 was fitted to the experimental data in chapter 8, Experimental results, in order to 

extract the values for the pre-exponential factor, D0, and the activation energy, Q. Figure 4.1 gives 

example fits of equation 4.17 for 4 different activation energies with a D0 value of 1.0×10
-4

 m
2
/s. 

Figure 4.2 provides example fits of equation 4.17 for a Q value of 120 kJ/mol (1.24 eV) for a range 

of D0 values. The values for the parameters used in the calculations are: d=3.68×10
-10

 m, CB=6×10
-6

 

fractional concentration and α=0.01 K/s. 
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Figure 4.1 illustrates the influence of the activation energy on the segregation profile. The smaller 

activation energies results in a faster diffusion process since less energy is required for the 

diffusion process to occur. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1: Example fits of Fick`s linear programmed heating model for four different activation 

energy values and a D0 value of 1.0×10
-4
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Figure 4.2 illustrates the influence the pre-exponential value has on the segregation profile. For 

larger values of D0 a faster diffusion rate is observed. Thus for a fast diffusion process, a large D0 

and a small Q value is required. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2: Example fits of Fick`s model for four different pre-exponential values and a 

activation energy of 120 kJ/mol (1.24 eV).  

400 450 500 550 600 650 700 750 800 850 900 950 1000
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

 

 

F
ra

ct
io

n
al

 S
u

rf
ac

e 
C

o
n

ce
n

tr
at

io
n

Temperature, T (K)

 D
0
 = 1.0  10

-4 
m

2
/s

 D
0
 = 1.0  10

-5 
m

2
/s

 D
0
 = 1.0  10

-6 
m

2
/s

 D
0
 = 1.0  10

-7 
m

2
/s

Q = 120 kJ/mol



60 
 

4.3. Equilibrium surface segregation 
 

 

 

 

4.3.1. Equilibruim conditions 

 

 

 

 

Equilibrium surface segregation of a closed system consisting of p phases can be considered as the 

lowering of the systems total energy, expressed by equation 4.18 [1; 5] 

 

 

 

  



p

n,V,S EE
i

1

0


                                                (4.18) 

 

 

 

The term 
E is given by equation 4.19 
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where T is the temperature, S the entropy, V the volume and P the pressure of phase υ. If the 

pressure and temperature is the same for all the phases (constant T and P), equation 4.19 becomes 

equation 4.20 
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This reduces equation 4.18 to  
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Thus the equilibrium segregation or the minimization of the total energy can be described in terms 

of the Gibbs free energy at constant P and T. Equation 4.22 gives the Gibbs free energy for a m 

component system in terms of the chemical potential µ 
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where 

in  is the number of moles of specie i in phase υ. Using the product rule of differentiation, 

the variation in the Gibbs free energy is given by equation 4.23 
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Thus the equilibrium condition of surface segregation in a closed system can be written in terms of 

the chemical potential given by equation 4.24 
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4.3.2. Surface-bulk equilibrium 
 

 

 

 

For the derivation of the surface bulk equilibrium a closed system of the two phases is considered 

for which the following assumptions are valid [5]. 

 

 The surface is considered as finite in size with a finite number of atoms. i.e. constantn  

 The bulk phase is considered infinite in size with an infinite number of atoms. i.e. Bn  

 Atoms can move freely between the bulk and surface phases 

 

For a system of two phases, the bulk (B) and surface phase ( ), equation 4.23 becomes equation 

4.25 
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The second square bracket is the well known Gibbs-Duhem [6] expression which is equal to zero 

and thus equation 4.25 reduces to equation 4.26 
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From the first assumption above stating that the number of atoms are constant, the following 

mathematical expression can be formulated  
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The physical meaning of equation 4.27 is that if an atom is removed from the surface another atom 

will fill its position and thus a constant number of atoms are maintained on the surface. The total 

change in the number of surface atoms is given by equation 4.28 
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The m
th
 term in equation 4.28 can be expressed in terms of all the other m-1 terms, equation 4.29 
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Substituting equation 4.29 into equation 4.26 and performing some mathematical manipulations 

delivers equation 4.30 
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Since m-1 terms are independent of 
 in , equation 4.30 can only be a valid mathematical statement 

if the inside bracket is equal to zero as expressed in equation 4.31 [1] 
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Equation 4.31 is the requirement for the surface bulk equilibrium expressed in terms of the 

chemical potential. 
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4.3.3. Equilibrium model for a ternary system 
 

 

 

 

From equation 4.31, the equilibrium conditions for a 3 component system is given by equations 

4.32 and 4.33 
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The solution of these expressions using the regular solution model are given in terms of the surface 

concentrations of components 1 and 2 by equation 4.34 and 4.35 respectively, a complete 

derivation can be found in the work of McMahon [7] 
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where 1G and 2G is respectively given by equation 4.36 and 4.37 
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The terms 

1G  and 


2G

 
are the standard segregation energies of components 1 and 2 and the 

term ijΩ is the interaction energy for the respective components. The term 
'Ω  is given by equation 

4.38 

 

 

 

231312 ΩΩΩΩ'  .                                                 (4.38) 

 

 

 

Figure 4.3 shows the fitting of the Guttmann model for a range of segregation energies maintaining 

a difference of 10 kJ/mol (0.1 eV) between the segregation energies of components 1 and 2. The 

interaction parameter between components 1 and 3 was chosen as 8 kJ/mol (0.08 eV) and between 

components 1 and 2 an interaction parameter of -5 kJ/mol (-0.05 eV) was chosen. For component 2 

and 3 a zero interaction parameter was chosen. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3: Fit of the Guttmann equilibrium segregation model for different segregation energies 

with the interaction parameter kept constant. 
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Figure 4.4 gives the interaction parameters -10, 0 and 10 kJ/mol (0.1 eV) for components 1 and 3 

with a constant interaction of -5 kJ/mol (-0.05 eV) for components 1 and 2. Constant segregation 

energies of 100 kJ/mol (1.04 eV) and -90 kJ/mol (-0.9 eV) for component 1 and 2 respectively 

were used in figure 4.4. 

 

 

 

 

 

 

 

 

 

 

 

 

From figures 4.3 and 4.4 it can be concluded that for smaller segregation energies and interaction 

parameters, the segregated atoms will desegregate into the bulk material at higher temperatures.  

 

 

 

 

 

 

 

 

 

Figure 4.4: Fit of the Guttmann equilibrium segregation model for different interaction 

parameters between the segregant and matrix atoms while the segregation energies were kept 

constant. 

500 550 600 650 700 750 800 850 900 950 1000
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

G
2
 = -90 kJ/mol

 

 

F
ra

ct
io

n
al

 S
u

rf
ac

e 
C

o
n

ce
n

tr
at

io
n

Temperature, T (K)

 
13

 = -10 kJ/mol


13

 = 0 kJ/mol

 
13

 = 10 kJ/mol

G
1
 = -100 kJ/mol


12

 = -5 kJ/mol



CHAPTER 4: SEGREGATION THEORY 

 
 

67 
 

4.4. Summary 
 

 

 

 

In this chapter the derivation of two models which can be used in combination to describe both the 

kinetic and equilibrium regions of surface segregation were performed. The linear programmed 

temperature version of the semi-infinite solution describes a theoretical model by which the pre-

exponential factor, D0, and the activation energy, Q, can be obtained simultaneously. From the 

conditions of surface bulk equilibrium, the Guttmann model can be derived which can be used to 

extract the energies of segregation and the interaction parameters for a ternary system. These two 

models were fitted on all experimental data presented in chapter 8, Experimental results, in order to 

obtain the segregation parameters of S and P in bcc polycrystalline Fe. 
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Chapter 5: Density functional theory 

(DFT) fundamentals. 

 

 

 

 

5.1. Introduction 
 

 

 

 

Electronic structure calculations has undergone a great deal of development since the first 

quantitative calculations of H. D. Hartree, who formulated the self-consistent field (SCF) theory [1; 

2]. Other great contributions in the field are those of Walter Kohn and John A. Pople who received 

the 1998 Noble Prize in chemistry [3]. Density functional theory (DFT), a more recent method of 

electronic structure calculations, uses the ground state electron density,   , rn  of the system under 

study to solve the Schrödinger-like Kohn-Sham equation [4] self consistently. This delivers 

properties such as the forces, energies, stresses etc. DFT is capable of providing accurate 

information on a range of material properties and has been used with great success to solve 

problems related to but not limited to catalysis, embrittlement of materials and the study of surface 

phenomena. 

 

Though the technique has been used with great success, it does have some drawbacks which needs 

to be taken into consideration. The biggest disadvantage of DFT compared to classical 

computational techniques, such as molecular dynamics and Monte Carlo, is the computational time 

that is needed by DFT calculations. Typically smaller systems is studied by DFT as compared to 

classical computational techniques. The extra time required by DFT calculations comes with an 

increased accuracy for some values as compared to classical computational techniques. Also it 

should be noted that DFT solves a Schrödinger-like equation to obtain the ground state electron 

density from which energies, forces etc. can be computed. It does not solve the Schrödinger 

equation itself which would provide the exact ground state of the system [1; 5]. This causes some 

uncertainty in the values being calculated and requires that calculations be confirmed by 

experimental results [5]. Another problem experienced is the calculation of excited states for which 

techniques like time dependant density functional theory (TD-DFT) has been developed [1; 5; 6]. 

Despite the drawbacks mentioned above, DFT is capable of providing accurate results of physical 

properties in complex materials [5].  
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This chapter aims to present the basic concepts of DFT in order to provide a good understanding of 

the technique and its implementation in practical calculations. The chapter does not attempt to give 

full mathematical explanations of DFT, but rather to provide a practical insight into the theoretical 

concepts of DFT. The explanation is based on the plane wave pseudopotential method (PWPP) as 

implemented in the Quantum ESPRESSO code [7]. Some of the most important theoretical 

concepts that will be discussed are: the use of plane waves and the k-point grid, the Hohenberg-

Kohn theorems which forms the foundation of DFT. The Schrödinger-like Kohn-Sham equation 

that simplified the many body problem into a system of independent particles. The use of the 

Nudged Elastic Band (NEB) and the Climbing Image Nudged Elastic Band (CI-NEB) methods for 

the calculation of minimum energy paths which describes the diffusion of atoms. 

 

 

 

 

5.2. Bloch theorem 
 

 

 

 

The Bloch theorem is discussed here to illustrate the concept of plane waves, lattice periodicity and 

the use of Fourier expansions, all of which are important in practical DFT calculations. For the 

derivation of the Bloch theorem the assumption is made that all the cells in the crystal are identical 

and thus the crystal is periodic. The wavefunction, ,  from one cell to the next will only differ by 

a phase factor pa, where a is the lattice parameter of the cell and
 
p is a constant. This periodicity of 

the crystal structure is expressed mathematically by equation 5.1  

 

 

 

    paki

kk
expax    .                                               (5.1) 

 

 

 

The subscript k  refers to the wave vector associated with a specific wavefunction. Equation 5.1 is 

Bloch`s theorem for a one dimensional case, for a three dimensional case equation 5.1 becomes 

equation 5.2 [1; 8] 
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where, ,R  is a lattice translation vector. Multiplying equation 5.2 on both sides by 
rkie 

and 

rearranging the terms results in equation 5.3  
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Equation 5.3 illustrates the periodicity of the Bloch function,  r
k

 , and since the cell function,  

 ru
k

, is also a periodic function [1; 8] .i.e. 
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Bloch`s wavefunction can also be written in the form given by equation 5.5 [1; 5; 8] 
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where  ru
k

 has the same periodicity as the lattice. The factor


1
 is introduced to ensure 

normalization of the wavefunction, where   is the volume of the crystal. Since  ru
k

 is periodic 

it can be represented by a Fourier sum as expressed in equation 5.6 [5; 8] 
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G
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where G is a reciprocal lattice vector. Substituting equation 5.6 into equation 5.5 leads to equation 

5.7 [5; 8] 
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which is equivalent to equation 5.5. Equation 5.7 is an expansion of plane waves of the form

  rGkie 
, with expansion coefficients  GkC

k
 . These Gk   vectors of the plane waves can be 

visualized in k-space as illustrated in figure 5.1 by the vector in red. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                      Arbitrary grid in k-space                              First brillouin zone        

 

                      Region containing the Gk  vectors in the cut-off region, Ecut. 

 

 

 

 

 

 

In practical DFT calculations plane waves, similar in form to equation 5.7, are used to simulate the 

atomic wavefunctions in a material. Equation 5.7 allows for the use of Fast Fourier Transforms 

yk  

xk  
Gk   k  

G  

cutE  

Figure 5.1: Grid in k-space for the plane waves,  ,r
k

  illustrating the Gk   wave vectors of 

the plane waves. The circle contains all the Gk   vectors in the cut-off region, Ecut. 
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(FFT) to solve the Kohn-Sham equation, which shortens computational time significantly. The 

solution of the Kohn-Sham equation is discussed in section 5.5.3. In practice contributions of the 

higher Fourier components can often be neglected depending on the amount of fine structure and 

oscillations in the wave function and thus a certain cut-off value, Ecut can be chosen as indicated by 

the circle in figure 5.1. The cut-off value is traditionally expressed in units of energy, Rydberg 

(Ry), and is obtained by performing a convergence test [1; 5]. Thus the Ecut region in k-space has to 

be large enough to include as many plane waves as possible but not too large where insignificant 

terms are included. Also the volume cannot be too small since this will exclude important 

information of the plane waves. For an example on how to choose the number of plane waves, Ecut, 

by means of a convergence test see Appendix B. 

 

 

 

 

5.3. Brillouin zone sampling  
 

 

 

 

Brillouin zone summation is used in the calculation of the electron density,  ,rn  which is used to 

obtain the total energy of the system under study. The charge density is calculated by equation 5.8 

[9]  
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where i refers to the occupied state (band) an k refers to the wave vector. The function  r
i,k

  is 

given by equation 5.7. Using the Born von Karman boundary condition, the function  r
i,k

  can 

be written as  
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where m  is a vector given the distance between two k-points and L is the number of k-points in 

the length of the unit cell. Thus the total number of allowed k-points for the three dimensional 

structure is given by equation 5.10 [9] 

 

 

 

321 LLLL                                                              (5.10) 

 

 

 

Instead of performing a sum over an infinite number of k-points, a few “special points” is chosen 

for brillouin zone summation. Two commonly used schemes for brillouin zone summation are the 

Chadi-Cohen [10] and the Monkhorst-Pack [11] schemes. The Monkhorst-Pack scheme is the more 

popular one of the two and is the scheme used in all calculations presented in this thesis. 

Monkhorst-Pack brillouin zone summation makes use of an evenly spaced grid in k-space of the 

first brillouin zone as illustrated in figure 5.2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                    First brillouin zone 

 

 

 

 

 

 

 

 

The grid can also be shifted in order to break symmetry and allow for faster convergence of the         

k-points. Shifting the grid by 1×1 will cause a displacement of half a k-point in each direction and 

thus breaking the symmetry. More k-points results in a more dense mesh which requires more 

Fourier components. It is thus desirable to obtain the minimum values of L1, L2 and L3, where L 
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Figure 5.2: Two dimensional 4×4 Monkhorts-Pack k-point grid in the first brillouin zone. 
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now represents the Monkhorst pack k-points, which provides the ground state energy of the system 

under study by means of a convergence test. 

 

The explanation on plane waves in section 5.2 and the above explanation on k-points is vital to any 

DFT calculation in order to optimize the system. The discussion is done in this chapter to 

emphasize the importance of these two parameters and also to aid in the understanding of topics 

that will be discussed later in this chapter. These two parameters are not the only optimization 

parameters that needs to be considered. The equilibrium lattice parameter, bulk modulus and size of 

the crystal cell are also important. If a metallic system is studied, optimization of the smearing 

scheme, the smearing width or the degauss factor and the magnetic state (starting magnetization) 

also needs to be optimized. Apart from metallic smearing which is discussed in section 5.4.4, the 

other parameters are not discussed in this thesis. In Appendix B examples of how to optimize a 

system with respect to each of these parameters are given. 

 

 

 

 

5.4. Hohenberg-Kohn theorems 
 

 

 

 

Hohenberg and Kohn formulated two theorems which form the foundation of density functional 

theory [1]. The theorems state that any property of a many body system can be represented as a 

functional of the ground state electron density  rn . Thus in principle a function of position,  rn , 

determines all the information of the many body wavefunction for the ground state and all excited 

states. The two theorems are valid for any system of interacting particles in an external potential 

where the Hamiltonian is given by equation 5.11 [1] 
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where, 
i
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em

2
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is the kinetic energy of the electrons, the second term, 

I,i Ii

I

Rr

eZ 2

, is the 

potential acting on the electrons due to the nuclei, the electron-electron interaction is given by 
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
 ji ji rr

e2

2

1
. Using the Born-Oppenheimer approximation, which states that the mass of the ions 

are large compared to the mass of the electrons and thus 
IM

1
 is a negligible quantity leading to a 

zero value for the fourth term. The final term, 
 JI II

JI

RR

eZZ 2

2

1
, is the classical nuclei-nuclei 

interaction term. Only a brief discussion of the two theorems will be given in this chapter, for a full 

derivation refer to appendix A. 

 

Theorem 1: For any system of interacting particles in an external potential,  ,rVext  the potential 

 ,rVext  is determined uniquely, except for a constant, by the ground state electron density  rn . 

 

Corollary 1: Since the Hamiltonian is thus fully determined, except for a constant shift in the 

energy, it follows that the many body wavefunction for all states (ground and excited) are 

determined. Therefore all properties of the system are completely determined given only the 

ground state electron density  rn . 

 

Theorem 2: A universal functional,   nEF  in terms of the energy,  ,nE  in terms of the electron 

density can be defined, valid for any external potential  .rVext  For any particular external potential, 

 ,rVext the exact ground state energy of the system is the global minimum value of this functional, 

  ,nEF  and the electron density  rn  that minimizes the functional is the exact ground state 

electron density  rn . 

 

Corollary 2: The functional   nEF  alone is sufficient to determine the exact ground state energy 

and electron density. In general, excited states of the electron must be determined by other means. 

Thermal equilibrium properties such as specific heat are determined directly by the free-energy 

functional of the electron density  

[1; 6; 9]. 

 

 

 

 

 

 



CHAPTER 5 : DENSITY FUNCTIONAL THEORY FUNDAMENTALS 

 
 

77 
 

5.5. The self-consistent loop for solving the     

Kohn-Sham equation. 

 

 

 

 

The Kohn-Sham equation is similar to the Schrödinger equation that is solved self-consistently for 

an effective potential,  ,rVeff


 in order to obtain properties such as the total energy, force, stress 

etc. This section presents the self-consistent loop by which the Kohn-Sham equation is solved. 

Figure 5.3 [1] gives the self-consistent loop used in order to solve the Kohn-Sham equation, see 

also the accompanying paragraph and the table of symbols, table 5.1. In subsection 5.5.1, 

calculation of the electron density is briefly discussed. Subsection 5.5.2 deals with the effective 

potential and the derivation of the Kohn-Sham equation. The solution of the Kohn-Sham equation 

for plane waves is discussed in subsection 5.5.3 and in subsection 5.5.4 metallic smearing is 

discussed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 rn

 

Electron density with spin up (  ) and spin down  

(  ) electrons.  

 rVeff


 

Effective potential of the Kohn-Sham equation, 

where σ refers to the spin of the electrons. 

 rVext  
External potential of electron-ion interactions. 

 nVHartree  

Hartree potential, that includes the electron-

electron interactions. 

  n,nVxc


 

Exchange-correlation potential. Deals with the 

exchange and correlation effects of electrons in 

the system. 

if  

Smearing scheme for metallic systems 

(Methfessel-Paxton, Fermi etc.) see Appendix B 

for examples of different schemes. 

Table 5.1: Symbols used in the Kohn-Sham loop of figure 5.3 
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     Initial guess 

    Calculate effective potential 

Solve KS equation 

      Calculate electron density 

     Self Consistent energy ? 

            Output quantities 

     Energy, stress, forces etc. 

No 

Yes 

(Sub section 5.5.1) 

(Sub section 5.5.2) 

(Sub section 5.5.3) 

(Sub section 5.5.1/5.5.4) 
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Figure 5.3: Schematic of the self-consistent Kohn-Sham loop used in Density Functional 

Theory to calculate the properties of materials. 
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An Initial guess is made for the electron density of spin up and spin down electrons. The effective 

potential, consisting of the external potential, the Hartree potential and the exchange-correlation 

potential is then calculated from the electron density. Both the Hartree potential and the exchange-

correlation potential are functionals of the electron density. The effective potential is then used to 

solve the Kohn-Sham equation in order to obtain the total energy of the system. Using a mixing 

scheme, a new electron density and thus effective potential is calculated from the total energy and 

the loop is repeated. When the energy converges to the specified convergence criteria, the system is 

said to be self-consistent.  

 

 

 

 

5.5.1. Mixing schemes to obtain the electron density 

 

 

 

 

An initial guess is made for an input value of the electron density. This value is then used to 

calculate the total energy of the system. If the total energy is not within a certain criteria for 

convergence the electron density is updated and the process is repeated until convergence is 

achieved. Various schemes exist for updating the electron density. The simplest is linear mixing 

which forms a linear combination of the input electron density, ,in

in  and the output electron 

density, ,out

in  to calculate a new input value, 
in

in 1 . Mathematically the linear mixing scheme is 

given by equation 5.12 [1] 
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i nnn  11                                                    (5.12) 

 

 

 

where α is the fractional component of the previous electron density, ,out

in  that is used to calculate 

the new electron density, 
in

in 1 . This scheme is effective and robust, but is more time consuming as 

compared to numerical methods [1]. Another mixing scheme is the numerical, Broyden scheme 

given by equation 5.13 [1] 
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With each iteration the Jacobian, J, is improved, making this mixing scheme less time consuming 

compared to the linear scheme. The linear scheme offers the advantage that little information on the 

system is needed to compute a new electron density [1]. For a more complete explanation of 

mixing schemes refer to the book, Electronic structure - Basic theory and applications [1]. 

 

 

 

 

5.5.2. The Kohn-Sham equation and the effective 

potential 

 

 

 

 

The difficult many body problem for a system of particles was simplified by Kohn and Sham by 

treating the system as independent particles. To account for the exchange and correlation effects of 

the many body system they included the exchange-correlation potential [4]. This section explains 

how the many body problem was simplified by Kohn and Sham by deriving the Kohn-Sham 

equation and obtaining an expression for the effective potential,  rVeff


. 

 

The many body problem has a Hamiltonian of the form given by equation 5.14 [1] 

 

 

 

IIextint EV̂V̂T̂Ĥ                                                  (5.14) 

 

 

 

where, T̂ is the kinetic energy operator, intV̂
 
is the internal potential operator, extV̂

 
is the external 

potential operator and IIE  is the ion-ion interaction energy term. For the system of independent 

particles the Hamiltonian is given by equation 5.15, where the subscript KS refers to the         

Kohn-Sham Hamiltonian [1] 

 

 

 

     rV̂rV̂rV̂Ĥ XCextHartreeKS 
.                                       (5.15) 
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The term  rV̂XC  
contains all the interactions of the many body system,  rV̂ext

 is as defined in 

table 5.1 and  rV̂Hartree
is given by equation 5.16 [1] 
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which is the interaction energy of the electrons. Two important assumptions were made to derive 

equation 5.15. The first assumption is that the exact ground state electron density can be 

represented by the ground state electron density of a system of non-interacting particles. The 

second assumption is that a Hamiltonian having the usual kinetic energy operator and a effective 

potential to account for the many body effects can be used. For a complete understanding of 

equation 5.15, the derivation thereof is done below. According to the second assumption made 

above, the Hamiltonian is given by equation 5.17 [1; 6; 9], where Hartree atomic units were used    

( 0/4  eme ) 
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For a system of N electrons having spin up and spin down states, there will be an electron in each 

orbital,  ri

 , of the ground state with the lowest eigenvalue of . i  The electron density for the 

system of independent particles is given by equation 5.18 [1; 6; 9] 
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The kinetic energy for the independent particles is given by equation 5.19 [1; 6; 9] 
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Using the Hohenberg-Kohn expression, given by equation 5.20, which described the energy as a 

functional of the electron density 
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3   .                            (5.20) 

 

 

 

The Kohn-Sham energy can be written as a functional of the electron density with the inclusion of 

the exchange-correlation energy to take into account the many body effects. 
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The last term in equation 5.21 is given by equation 5.22 
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Minimization of the Kohn-Sham independent particle energy expression, equation 5.22, will result 

in the Kohn-Sham equation. The minimization can be done with respect to the electron density or 

the effective potential. The minimization is done here with respect to the density using the chain 

rule of differentiation with respect to the wavefuncion, )(
*

ri

 , which results in equation 5.23 [1; 

9] 
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From equation 5.23 the following terms can be calculated individually by equations 5.24-5.27 [1; 

9] 
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Substitution of equations 5.24 – 5.27 into equation 5.23, results in equation 5.28 
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Written in terms of the potentials, equation 5.28 becomes [1; 9] 
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where the term in curly brackets is the KS or the effective potential, equation 5.29 can be reduced 

to equation 5.30 
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and in terms of the KS Hamiltonian equation 5.30 becomes equation 5.31 
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Solving equations 5.31, delivers the Kohn-Sham equation, equation 5.32 [1; 4; 6; 9] 
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5.5.3. Solving the Kohn-Sham equation 
 

 

 

 

The Schrödinger-like Kohn-Sham equation for independent particles with electrons moving in an 

effective potential,  rVeff , is given by equation 5.33 [1] 
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Since the eigenfunction is a periodic function it can be represented as a Fourier expansion given by 

equation 5.34. A similar expression is given by equation 5.5 in section 5.2, where Bloch`s theorem 

is discussed 
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where 

 

 

 

rqieq 




1
                                                      (5.35) 

 

 

 

and  
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'q,q                                                                     (5.36) 

 

 

 

Inserting the expression for the eigenfunction, equation 5.34, into the Schrödinger-like equation, 

equation 5.33, and by multiplying on both sides of the equation by 'q , results in equation 5.37 
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Taking only the matrix elements of the kinetic energy operator, equation 5.37 can be written as 
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The matrix elements for  rVeff  can be evaluated as follow, since  rVeff  is a periodic function it 

can also be expanded in Fourier components, thus 
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where mG is the reciprocal lattice vectors. The inverse of the above Fourier expansion, the Fourier 

expansion in terms of mG , can be written as 
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The matrix elements for the potential,  rVeff , becomes 
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The only non-zero components of the matrix elements is when q and 'q  differs by some 

reciprocal lattice vector ''mG as expressed in equation 5.42
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To accomplish this, the following relations needs to be defined 
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Inserting the expressions of equation 5.43 into equation 5.42, delivers equation 5.44 

 

 

 

''m'mm GGG'qq  .                                                 (5.44) 

 

 

 

Using equations 5.37 and 5.41, the Schrödinger equation, equation 5.33, for a given k can be 

written as 
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where the matrix Hamiltonian is given by equations 5.46 and 5.47 [1] 
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Thus the Kohn-Sham equation reduces to a matrix equation. For a more complete explanation of 

solving the Kohn-Sham equation in order to obtain an expression for the total energy, refer to the 

book Electronic structure - Basic theory and applications [1]. 

 

 

 

 

5.5.4. Metallic smearing/broadening 
 

 

 

 

For metallic systems the continuous distribution of electrons across the Fermi level needs to be 

taken into consideration, when summing over the k-point grid. Electrons can move across the 

Fermi level since there is no band gap present in metallic systems. To calculate the total energy in 

metallic systems, an fictitious electronic temperature is introduced, called metallic smearing or 
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broadening, into the system. The total energy of the system increases and the free energy of the 

system decreases with increasing smearing values. When both the total energy and the free energy 

is known for a specific smearing width, it is possible to calculate the true energy of the system. 

Figure 5.4 illustrates the use of smearing when performing calculations in metallic systems. The 

line given by TE is the total energy of the system, the free energy is given by FE and C gives the 

correction made to account for the continuous distribution of the electrons in metallic systems. 

 

 

 

 

 

 

 

 

 

See Appendix B for an example on how to choose a smearing scheme. For a more detailed 

discussion on the various distribution functions refer to the book Electronic structure - Basic theory 

and applications [1]. 

 

Figure 5.4: Illustration of the correction made in metallic system by the introduction of a 

fictitious electronic temperature to account for the discontinuous distribution of electrons in the 

system. 
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5.6. Exchange-Correlation energy functional 
 

 

 

 

Kohn and Sham reduced the difficult many body problem into an independent particle problem. To 

solve the Kohn-Sham equation the exchange-correlation energy functional is determined self 

consistently, since it is a functional of the density. Various functionals have been derived with great 

success, the most common of these are the LDA and the GGA functionals discussed in this section. 

 

 

 

 

5.6.1. Local Density Approximation (LDA) 
 

 

 

 

The LDA functional is based on the assumption that a solid has a charge density close to that of a 

homogeneous electron gas. For such a system the exchange and correlation effects are taken to be 

local in character. The functional is an integration over all space where the exchange correlation 

energy density is assumed to be the same as that found in a homogeneous electron gas with that 

density. The functional for a spin polarized system is given by equations 5.48 and 5.49 [1; 6; 9] 
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For a spin un-polarized system the following simplification can be made to equations 5.48 and 5.49  
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The functional has been used with great success in systems that closely resembles a homogenous 

electron gas, such as Au and Al. The functional however fails to include the self interaction term 
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and care should be taken when applying the functional to atoms where self interaction could lead to 

inaccurate results [1]. 

 

 

 

 

5.6.2. Generalized Gradient Approximation (GGA) 
 

 

 

 

The LDA served as the basis for the development of the GGA functional [1]; in this section the 

magnitude of the density gradient is included in the exchange-correlation energy. Equation 5.51 

gives the expression for the GGA functional where spin has been taken into consideration [1; 6; 9] 
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The term       n,n,rn,rnFXC
 can be divided into an exchange function, ,XF  and a 

correlation function, .CF
 
The exchange function is given by equation 5.52 [1], where the lower 

order terms were calculated analytically 
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ms  is given by [1]  
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Making use of equation 5.54 
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and taking the first gradient as m = 1, reduces equation 5.53 for s into equation 5.55 [1] 
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Different forms of 
XF  

have been proposed where s = s1. The three most widely used forms is that 

of Perdew and Wang (PW91) [12], Perdew, Burke and Enzerhof (PBE) [13] and Becke (B88) [14]. 

These three functions are illustrated in figure 5.5 [1]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5: Plot of the exchange functionals for the PW91, PBE and B88 pseudopotentials. 
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The correlation is more difficult to express in terms of a functional and generally the contribution 

of CF  is less than .XF  An expression for the correlation function FC is approximately given by 

equation 5.56 [1] 
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Figure 5.6 [1] shows the function CF for the PBE-GGA functional which is almost identical to that 

of the PW91-GGA functional.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Thus by looking at figures 5.5 and the fact that the correlation functional for the two 

pseudopotentials are very close below a certain s value [1] it can be concluded that the difference 

between the PW91 and the PBE functional are due to the difference in the functional .XF  For a 

Figure 5.6: Plot of the correlation function for different values of rs for the PBE 

pseudopotential. 
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more detailed discussion, refer to the book Electronic structure - Basic theory and applications [1] 

as well as the sources [13; 15; 16] . 

 

 

 

 

5.7. Pseudopotentials 
 

 

 

 

Pseudopotentials are used to replace the all electron potential and reduce the calculation time 

significantly. The validity of using pseudopotentials is that outside of the core region, rc, the form 

of the pseudopotential and the all electron potential are effectively the same, figure 5.7. This is true 

since it is only the valence electrons taking part in bond formation and thus these are the electrons 

of importance in electronic structure calculations [5]. Various pseudopotentials have been derived, 

which can be divided into two main groups, the “soft” or ultrasoft pseudopotentials or the “hard” 

potentials namely the norm-conserving pseudopotentials. The “soft” potentials are smoother and 

thus fewer components in the Fourier expansion are required [5], refer to section 5.2 for an 

explanation of the Fourier components in a plane wave. Whereas the “hard” potentials require more 

Fourier components [5], but could lead to improved results on the ultrasoft pseudopotentials in 

some cases. Figure 5.7 [17] shows a schematic representation of the pseudo wavefunction, pseudo , 

and pseudo potential, pseudoV , in red as compared to the all-electron wavefunction, electronall , and 

potential, electronallV  , in blue. It can be seen that outside the core region, cr , the two wavefunctions 

and potentials are effectively the same. 
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Figure 5.7: Schematic representation of the all-electron wavefunction and potential in blue as 

compared to the pseudo wavefunction and potential in red [17]. 

 

 

 

 

5.8. Nudged Elastic Band  
 

 

 

 

The diffusion rate is given by the Arrhenius relation which was discussed in chapter 3, it is given 

here for completeness by equation 5.57 
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where D is the diffusion rate and D0 is the pre-exponential factor. In the exponent, Evac is the 

vacancy formation energy and Em is the migration energy. R is the universal gas constant and T, the 

temperature in Kelvin. In order to calculate a value for Em, the nudged elastic band method is used 

in order to obtain the minimum energy path of a diffusing atom, see chapter 9 on computational 
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results. This section explains the Nudged Elastic Band (NEB) method and the modified Climbing 

Image Nudged Elastic Band (CI-NEB) method that was used to perform all migration energy 

calculation in this thesis. 

 

The NEB [18] is used to determine the minimum energy path (MEP), for a transition from one 

stable state to the next. A number of images are chosen along a path, called the elastic band, from 

the initial to the final state. The atom then moves along the path according to the coordinates given 

by the images and is optimized with respect to the NEB force, 
NEB

iF . Figure 5.8 [18] shows the 

initial and final positions of a diffusion process, with the NEB path and the MEP respectively. 

When the NEB force is optimized the NEB path will be equal to the minimum energy path. The 

inset shows the NEB force with its parallel and perpendicular components . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.8: Illustration of the NEB method for finding the minimum energy path of a diffusing 

atom, the NEB force, 
NEB

iF , with its parallel and perpendicular components are given in the inset 

[18]. 
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The NEB force is given by equation 5.58 [5; 18; 19] 

 

 

 
||S

ii

NEB

i FFF  
                                                     (5.58) 

 

 

 

where 


iF
 
is the force projected perpendicular to the elastic band between two images, and is 

called the true force. The true force is experienced by the atom as a result of the potential energy 

surface in which it is located and is given by equation 5.59 [5; 18; 19] 

 

 

 

     iiiii
ˆˆREREF 

.                                              (5.59) 

 

 

 

The force 
||S

iF
 
is the spring force, a force parallel to the elastic band which is experienced by the 

images as a result of the elastic band. Equation 5.60 gives the expression for the parallel spring 

force [5; 18; 19]  
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where
i̂  

is the unit vector along the direction, R , of the path from one image to a neighboring 

image of higher energy and k is the elastic constant. 

 

The elastic band is optimized in order to obtain the minimum energy path for the transition, this is 

done by minimizing the total force given by equation 5.58. The CI-NEB method [19] is further 

modified by allowing the image of highest energy, image l, to climb up the saddle point via a 

reflection in the force along the tangent 
l̂ . The force experienced by atom l is given by equation 

5.61 [19] 
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This image, l, expressed in equation 5.61 does not experience any spring forces and can climb 

freely along the saddle point.  

 

 

 

 

5.9. Summary 
 

 

 

 

This chapter provided the basic concepts that is needed to perform practical DFT calculations. The 

importance of lattice periodicity and plane waves were illustrated in the derivation of the Bloch 

theorem. The use of a k-point grid to simplify summation over k-space was explained using the 

method of Mohkhorst and Pack. It was shown how Kohn and Sham simplified the many body 

problem into a single particle problem by introducing an exchange-correlation term to account for 

the many body interactions. The Kohn-Sham self consistent loop was explained by investigating 

the various components in the loop including the solution of the Kohn-Sham equation. For the 

calculation of the minimum energy paths and diffusion barriers, the nudged elastic and climbing 

image nudged elastic band methods was explained. The chapter provided the necessary theoretical 

tools needed to perform the DFT calculations presented in chapter 9, Computational results. 
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Chapter 6: Sample preparation 

 

 

 

 

6.1. Introduction 

 

 

 

 

This chapter describes the method and equipment used in the preparation of S doped Fe samples 

(Fe-S). The preparation of Fe-S samples is commonly carried out by allowing a mixture of 

hydrogen and hydrogen sulfide gas (H2/H2S) to flow over the surface of an Fe sample [1; 2; 3; 4]. It 

has been reported that the presence of hydrogen can lead to grain boundary embrittlement in Fe [5; 

6; 7; 8]. Due to the negative effects caused by hydrogen and the inability of the experimental 

technique Auger electron spectroscopy to detect hydrogen, a new method for the preparation of  

Fe-S samples is proposed. This newly proposed doping method of Fe with elemental S was 

performed in the preparation chamber that was specifically built for the experiment. The various 

components of the preparation chamber are discussed. 

 

 

 

 

6.2. Doping methodology 
 

 

 

 

This section describes the methodology used in order to successfully prepare Fe-S samples by 

means of diffusing elemental S into Fe. Three conditions which had to be avoided during the 

doping process are stated below and discussed in this section. 

  

1. Formation of iron sulfide phases (FeS, FeS2) on the surface, which would result in sample 

damage. 

2. Temperatures, T, exceeding the bcc Fe phase region, T>912°C (1185 K). 

3. Concentration of S, CSulfur, exceeding the bcc Fe phase region, CSulfur>0.033 at. % (330 

ppm). 

 

The use of pure S instead of the H2/H2S mixture for the preparation of Fe-S samples will result in a 

cleaner Fe-S system. The side effects caused by the presence of hydrogen are eliminated and 
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ideally a binary system consisting of Fe and S can be obtained. There are also potential health and 

safety risks when working with the gases H2 and H2S, and special precautions need to be taken. 

However using S is not just a simple exchange of H2/H2S for the pure S. S has a very low melting 

point of 392 K [9], far below the temperature where S will diffuse into Fe within a reasonable time 

period. Another problem faced is that when the S is heated to the point of evaporation, the majority 

of the S will condensate against the inside of the preparation chamber. The S that is deposited onto 

the surface of the Fe will simply evaporate off the surface during annealing, with little S diffusing 

into the Fe. Taking this into account eliminates the conventional method of using electron beam 

deposition to prepare Fe-S samples. The poisoning effect of S in metallic systems also prevents the 

use of electron beam deposition, since the whole system would be contaminated by S making it 

unsuitable for deposition of any other materials in the future.  

 

Various tests were performed in order to find a valid method for the preparation of Fe-S samples 

using elemental S. It was found that the only method that did not result in damage of the Fe sample 

or complete evaporation of the S was to have a controlled process where the S is deposited onto a 

heated Fe surface. The process was carried out in an Ar gas atmosphere to ensure that no 

contamination of the sample occurred. The S source and Fe sample were heated separately at two 

different temperatures. The S was heated to above the boiling point (T>718 K) [9], while the Fe 

was kept at a high temperature (640 K) to ensure that the vapour making contact with the Fe 

surface can diffuse into Fe within a reasonable time period. Attempts were made to prepare Fe-S 

samples by simply placing a S flake onto the surface of the Fe sample and diffusing the S into Fe at 

a high temperature. Results indicated that an uneven distribution of S was obtained on the surface, 

with some areas of the surface completely free of S. The melted S, which remained on areas of the 

surface after doping, formed a thick layer which was difficult to remove and often resulted in 

sample damage. 

 

Deposition of S onto a heated Fe surface proved to be a very effective method for the preparation 

of Fe-S samples. The concentration of S can be controlled by varying the time for which the sample 

is exposed to the S vapour. It was also found that the Fe sample needed to be exposed to the S 

vapour in intervals in order to allow the deposited S to diffuse into the Fe before more S was 

deposited onto the Fe surface. If the sample was exposed to the S vapour for too long, formation of 

sulphide phases could cause the sample to become damaged and unsuitable for the study of 

diffusion and segregation. This is the first condition stated, the second and third conditions are to 

ensure that Fe remained in the bcc Fe structure, since at temperatures exceeding 912°C (1185 K) 

and concentrations exceeding 0.033 at. % (330 ppm), Fe would no longer be in the pure α-phase. 
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The second and third conditions are indicated in the phase diagram of figure 6.1 [10], with the 

second condition marked by point A and the third condition marked by point B. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The temperature of the Fe sample was measured by a type K thermocouple placed at the back of 

the Fe sample, between the sample and the heater. The temperature measured by the thermocouple 

was controlled by a operational amplifier temperature control unit. In chapter 7, Experimental 

results, the relationship between the temperature measured by the thermocouple at the back of the 

Fe sample and the surface temperature was established. It is shown that a polynomial fit of order 

six gave an good description of this temperature relationship. Using this polynomial model, the 

surface temperature of the Fe sample was determined from the temperature measured by the 

thermocouple at the back of the Fe sample. 

Figure 6.1: Phase diagram of the Fe-S system, showing that for bcc Fe the maximum 

temperature is 912°C (1185 K), point A, and the maximum S concentration is 0.033 at. %        

(330 ppm), point B. 

B 
A 
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Calculations were performed in order to obtain an estimated time for which the sample should be 

doped for in order to obtain the desired S concentration. This was done by solving Fick`s second 

law for a finite sample with an infinite diffusion source, equation 6.1  
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where L is the thickness of the sample, x the depth into the sample, t the time of diffusion and D the 

diffusion coefficient of S in the polycrystalline Fe sample. C0 is the initial concentration of S which 

was taken to be a fraction of 1. Values for the diffusion parameters obtained from the work of 

Reichl et. al .[11] were used to calculate a value for D at a temperature of 640 K using the 

Arrhenius equation, equation 3.22, in chapter 3, Diffusion theory. Figure 6.2 shows examples of the 

diffusion profiles for S in Fe, calculated using equation 6.1.  

 

 

 

 

 

 
Figure 6.2: Solutions to Fick`s second law for a finite system containing an infinite diffusion 

source, calculated for three different time periods at 640 K.  

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

 

 

F
ra

c
ti

o
n

a
l 

C
o

n
c
e
n

tr
a
ti

o
n

Depth, d (m)

 50 seconds

 1 hour

 1 day

D
0
= 1.0710

-6
 m

2
/s

Q = 145 kJ/mol

T = 640 K



CHAPTER 6: SAMPLE PREPARATION 

 
 

105 
 

After the successful doping of an Fe sample with the required amount of S, the sample needs to be 

annealed in order to obtain a homogeneous distribution of S in Fe. To determine the amount of time 

that is needed, Fick`s second law is solved for a finite sample with a limited diffusion source, 

equation 6.2 [12]. 
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where h is the thickness of the diffusion source. For a complete derivation of both equation 6.1 and 

6.2 refer to the book: The mathematics of diffusion [12]. Figure 6.3 shows the variation of the S 

concentration with a variation in depth, calculated for three different time periods at a temperature 

of 1073 K. 

 

 

 

 

 

 

 

 

Figure 6.3: Solution to Fick`s second law for a finite system with a limited diffusion source. The 

calculations were performed for three different time periods at a temperature of 1073 K. 
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From figure 6.3, the amount of time needed in order to obtain a homogenous distribution for S in 

Fe was calculated as 40 days at a temperature of 1073 K. The fractional concentration at the front 

end of the sample is given by C0 and the concentration at the back of the sample, of thickness L, is 

given by CL. Taking the ratio 
0C

CL gives a value for the fractional homogeneity of S in the Fe 

sample. Equation 6.2 was solved for different time periods (number of days) with the results shown 

in figure 6.4. Two curves are shown in figure 6.4, one for a diffusion distance of 0.5 mm and one 

for a diffusion distance of 1.0 mm. The value of 0.5 mm is the thickness of the Fe sample, while the 

value of 1.0 mm is the distance at the edges of the sample which was not deposited with S during 

doping. During doping the cap of the heater, keeping the sample in place on the heater, prevented S 

from being deposited onto the edges (~1.0 mm) of the sample as shown in figure 6.5. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.4: Solution to Fick`s second law for a finite system with a limited diffusion source. The 

calculations were performed for different time periods (number of days), at a temperature of    

1073 K.  
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From figure 6.4, an annealing time of 40 days would result in a 100 % homogeneity for the 

thickness of the sample, with a 84 % homogeneity along the edges of the sample. Figure 6.5 shows 

the area of the sample deposited with S in grey, with the outer edges not deposited with S in white. 

It is important to note that the 84 % homogeneity will only be on the outer edge of the sample, this 

value will increase to 100 % closer to the region deposited with S. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In order to dope Fe with S using the method described here, a preparation chamber had to be built 

that can effectively be used for the preparation of Fe-S samples. The remainder of this chapter 

describes this preparation chamber and how a controlled process was carried out in order to 

successfully prepare Fe-S samples. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

S doped area of the Fe sample 

with a 100 % homogeneity after 

annealing 

Edge of sample with a 84 % 

homogeneity after annealing 

Figure 6.5: Schematic showing the homogeneity of the two different regions of the Fe-S 

sample after being annealed for 40 days at a temperature of 1073 K. 
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6.3. Experimental setup 

 

 

 

 

The experimental set-up used for the preparation of Fe-S samples by means of diffusing elemental 

S into Fe is shown in figures 6.6 and 6.7. Figure 6.6 shows the newly built preparation chamber 

from the outside while figure 6.7 shows an inside view of the preparation chamber. The various 

components of the system are discussed in this section and are also indicated in the figures. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.6: The newly designed and built Fe-S preparation chamber used for the preparation 

of Fe-S samples by diffusing elemental S into Fe. The components indicated in the figure are 

listed in the text. 
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The system shown in figure 6.6 consists of the following components: 

 

1. Rotary vane pump and turbo molecular pump combination, capable of reaching 

pressures down to 10
-8

 Torr 

2. Turbo molecular pump control unit. 

3. Cold cathode pressure gauge, capable of measuring pressures in the range 10
-3

-10
-8

 Torr. 

4. Control unit for the cold cathode pressure gauge. 

5. 2 Heaters consisting of a tungsten filament each. 

6. Power supply for heating of the S heater. 

7. Type K thermocouple placed at the back of the sample to measure temperature. 

8. Thermocouple reference display unit. 

9. Operational amplifier control unit for controlling the temperature. 

10. Ammeter to measure the current supplied to the sample heater.  

11. A stainless steel cup into which the S flakes are placed. 

12. Toggle stick with which the Fe sample can be manipulated inside the chamber. 

13. Analogue pressure gauge for measuring pressures in the range 750-1500 Torr. 

14. Fans to prevent the system from overheating. 

 

 

 

Figure 6.7 shows the internal components of the preparation chamber not visible in figure 6.6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.7: Internal view of the preparation chamber, showing the connections made for the 

sample and S heaters. The components indicated in the figure are listed in the text. 

 

 

12 

7 

11 

5 



110 
 

Figures 6.8 gives a schematic, showing the set-up of the two heaters inside the preparation chamber. 

The sample mounted onto the sample heater can be exposed to the S vapour in intervals. This is 

done by manipulating the toggle stick, illustrated in figure 6.8. The toggle stick is moved forward 

(solid arrow) in order to position the sample over the S vapour. To remove the sample from the S 

vapour, the toggle stick is pulled back (dashed arrow).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Once the required S concentration was successfully diffused into the Fe sample, the sample was 

annealed for 40 days in the annealing system shown in figure 6.9.  

 

 

 

Toggle stick 

Sample heater 

   Sulfur Heater 

Sulfur containing cup 

Figure 6.8: Schematic showing the set-up of the two heaters used respectively for the Fe sample 

and the S source. The directions in which the toggle stick can be moved in order to expose or 

remove the Fe sample from the S vapour are indicated by the solid and dashed arrows 

respectively. (not drawn to scale). 
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The annealing oven in figure 6.9 consists of the following components: 

 

1. Rotary and turbo molecular pump combination (not shown in figure 6.9). 

2. Turbo molecular pump control unit (not shown in figure 6.9). 

3. Thermocouple pressure gauge capable of measuring pressures in the range 760-10
-3

 

Torr  

4. Thermocouple pressure gauge control unit (not shown in figure 6.9). 

5. Lindberg annealing oven. 

6. Lindberg temperature control unit. 

7. Thermocouple for temperature measurement. 

8. Quartz tube into which the sample is placed. 

9. Digital pressure gauge for pressures above atmosphere. 

10. Fans for cooling the fittings of the quartz tube. 

 

 

 

 

 

Figure 6.9: Annealing system used to obtain a homogenous distribution of S in Fe when 

annealed at a temperature of 1073 K for a time period of 40 days. The components indicated in 

the figure are listed in the text. 
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6.4. Experimental procedure 
 

 

 

 

6.4.1. Doping of Fe with S 
 

 

 

 

1. Samples were polished using silicon carbide (SiC) paper of grain size 15 µm and 

subsequently cleaned in an ultrasonic ethanol bath. This creates an even surface onto which 

S can evaporate. Surfaces smoother than 15 µm were found insufficient for the sticking of 

S to Fe. 

2. The Fe sample was mounted onto the heating stage and the S flakes placed in the cup 

mounted onto the bottom heater. 

3. The system was closed and allowed to pump down for a few days to remove the impurity 

gasses from the system. 

4. The system was backfilled with Ar gas to a pressure of 1500 Torr and pumped out 

afterwards. 

5. Step 3 was repeated 10 times to ensure that all impurity gasses were properly washed out 

from the system. 

6. The system was once again backfilled with Ar gas to a pressure of 1500 Torr. 

7. The heater containing the Fe sample was heated to 640 K. This temperature allows 

diffusion of S into Fe within a reasonable time period. Higher temperatures were avoided 

to prevent overheating of the glass windows of the preparation chamber. 

8. The system was allowed to stabilize for 10 minutes, to ensure that the Fe sample was 

properly heated and that a stable temperature was obtained. 

9. During the 10 min preheating of the Fe sample, the S was slowly heated to ensure that a 

total of two minutes is spent preheating the S flakes at a low temperature <393 K. 

10. The Fe sample was exposed to the S vapour (T>718 K) at intervals of 2 seconds with a 5 

seconds resting period, for a total of 50 seconds. The process was monitored via the glass 

window at the top of the chamber (figure 6.7). 

11. The electrical current to the two filaments were switched of immediately and the system 

pumped down to prevent over exposure of the Fe sample. 

12. The sample was removed from the preparation chamber after it was allowed to cool to 

room temperature, and cleaned in an ultrasonic bath of ethanol. 
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6.4.2. Annealing of the Fe-S sample 

 

 

 

 

1. The quartz tube of the annealing system was pumped out for 24 hours to remove any 

impurity gases. 

2. The quartz tube was backfilled with Ar gas to a pressure of 1200 Torr. 

3. The temperature of the annealing oven was slowly increased to a temperature of 1173 K to 

avoid drastic temperature changes that can cause damage to the quartz tube. 

4. The quartz tube was cleaned by pumping out the impurity gasses and then backfilled with 

Ar gas. This procedure was repeated a number of times while the system was kept at a 

constant temperature of 1173 K for a period of 30 days. This was done to ensure that any 

contamination that might have been introduced into the quartz tube by previous users are 

completely removed.  

5. After the 30 day time period, the annealing oven was slowly cooled to avoid damage to the 

quartz tube. 

6. The quartz tube was opened and the doped sample was placed in the annealing oven along 

with 4 titanium (Ti) plates. The Ti plates were placed on either side of the Fe-S sample in 

an attempt to prevent oxidation of the sample. 

7. The quartz tube was pumped out for a few hours to remove impurity gasses. 

8. The quartz tube was backfilled with Ar gas to a pressure of 1200 Torr and again pumped 

out. This procedure was repeated 10 times to ensure that all impurity gasses were properly 

washed out from the system. 

9. The temperature was slowly increased to a value of 373 K, where it remained for a total of 

24 hours. 

10. The temperature was slowly increased by 20 K, where it remained for a period of 24 hours. 

11. Step 10 was repeated until a temperature of 453 K was reached. This was to ensure that the 

S diffuses into Fe and not evaporate into the quartz tube. 

12. The temperature was slowly increased to a final temperature of 1073 K, where it remained 

constant for a total period of 40 days. 

13. During annealing of the sample, the pressure in the quartz tube was kept at a value of 1200 

Torr. 

14. After 40 days the quartz tube was slowly cooled and the sample was removed from the 

system, ready for analysis. 
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The results for samples prepared using the experimental procedures described here are given in 

chapter 8, Experimental results. 

 

 

 

 

6.5. Summary 
 

 

 

 

The new method and equipment used for the preparation of Fe-S samples by means of diffusing 

elemental S into Fe was described in this chapter. It was found that the most effective method by 

which S can be diffused into the Fe sample was to deposit S onto a heated Fe surface. The 

equipment used and the experimental procedure that was carried out, are explained in detail. This 

method and the equipment can also be used for other low melting point materials such as indium 

(In). The advantage of preparing samples by this method is that the material gets diffused into the 

matrix material and thus when the sample is annealed, the probability for the material to evaporate 

from the matrix is reduced.  
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Chapter 7: Experimental techniques  
 

 

 

 

7.1. Introduction 

 

 

 

 

In this chapter the use of the experimental techniques AES and XRD are discussed. AES was used 

to study the diffusion and segregation of S in bcc polycrystalline Fe while XRD was used to study 

the influence S had on the crystal structure of the polycrystalline Fe samples. The principle of 

operation of each technique, the apparatus and the optimized experimental parameters used in the 

experiments are discussed. In order to obtain the elemental concentrations of the elements analysed, 

Auger quantification is also discussed in detail. 

 

 

 

 

7.2. X-Ray Diffraction (XRD) 
 

 

 

 

X-Ray diffraction was used to determine the crystal orientations present in the polycrystalline Fe 

samples. The results obtained using XRD are presented in chapter 8, Experimental results. The 

remainder of this section provides the basic concepts of XRD, with the focus on the diffractometer 

and the experimental parameters used to obtain the results. 

 

 

 

 

7.2.1. Principle of operation 
 

 

 

 

A short description is given here to explain the principle of operation behind XRD. This includes 

the derivation of Bragg`s Law. XRD makes use of high energy X-Rays (up to 40 kV), diffracted by 

a crystal to obtain information regarding the periodicity of the crystal structure. For diffracted      

X-Rays differing with a whole number of wavelengths, the waves are said to be in phase and 
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constructive interference will occur. This will result in a strong XRD peak caused by a wave with 

an amplitude equal to the sum of the two diffracted wave amplitudes. If the diffracted X-Rays are 

out of phase, destructive interference will result in a zero amplitude of the two diffracted X-Rays 

and thus no peak is observed [1].  

 

Consider the parallel atomic planes given in figure 7.1, showing the incident and diffracted X-Rays. 

The angle of incidence is given by θ, where the angle 2θ, gives the experimentally measured angle. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From figure 7.1, the total path difference, x, between the X-Rays marked 1 and 2 when they arrive 

at point A and B respectively is given by equation 7.1  

 

 

 

θsin 2 'dx  .                                                         (7.1) 

 

 

 

For constructive interference to occur, the path difference has to be equal to a whole number of 

wavelengths, nλ, where n is a whole number. Inserting this condition into equation 7.1 results in 

equation 7.2 [1] 

 

 

 

sinθ 2 'dn     n = 1, 2, 3 …                                          (7.2) 

d´ θ θ 

2θ 

1 

2 

A 

B 

Figure 7.1: Schematic showing the diffraction of X-rays from two parallel crystal planes in 

order to illustrate the principle of operation behind the technique X-Ray Diffraction (XRD). 



CHAPTER 7: EXPERIMENTAL TECHNIQUES 

 
 

119 
 

Equation 7.2 is Bragg`s Law, which is the condition required for diffraction to occur. To ensure 

that different values of n, results in the same d value it is more convenient to make use of equation 

7.3 [1] 

 

 

 

sinθ 2d                                                             (7.3) 

 

 

 

where  

 

 

 

n

d
d

'

                                                                 (7.4) 

 

 

 

Equation 7.3 was used in chapter 8, Experimental results, in order to determine the periodicity of 

the different grains detected in the polycrystalline Fe samples measured. 
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7.2.2. Apparatus 
 

 

 

The D8 ADVANCE X-Ray diffractometer used in the analyses of the polycrystalline Fe samples is 

shown in figure 7.2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The D8 ADVANCE diffractometer consists of the following components: 

 

1. Copper (Cu) X-Ray source  

2. LynxEye powder diffraction detector 

3. Goniometer 

4. Ni filter of 0.02 mm thickness 

5. Rotating sample stage 

6. Fixed slit of width 0.6 mm and rotary absorber 

Figure 7.2: The D8 ADVANCE X-Ray diffractometer used for the determination of the crystal 

orientations present in polycrystalline Fe samples. 
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The experimental set-up of the sample relative to the X-Ray source and detector is shown in figure 

7.3. The various components listed above are indicated in figure 7.3 [2]. 

 

 

 

 
 

 

 

 

 

 

 

 

 

7.2.3. System settings 
 

 

 

 

In order to obtain the maximum peak intensities of the crystal orientations present in the Fe 

samples and to minimize the background, a number of tests were performed to optimize the 

experimental parameters. The optimized parameters used in all the measurements conducted in this 

study are given in table 7.1. Figure 7.4 gives the XRD spectra obtained for an un-doped Fe sample 

using the experimental parameters given in table 7.1. 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.3: Experimental set-up used for X-Ray diffraction, showing the position of the X-Ray 

source and detector relative to the sample being analysed. 
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 Parameter Value 

X-Ray source Voltage  40 kV 

 Current  40 mA 

 Slit width 0.6 mm 

 Rotary absorber On 

Detector  Filter Nickel (Ni) 0.02 mm 

Measurement settings Time per step 1 s
 

 Step size  0.0085 ° 

 Mode  Coupled two theta 

 Rotation On 

 

 

 

 

 

 

 

 

 

Table 7.1: Optimized parameters of the D8 ADVANCE X-Ray diffractometer used to determine 

the crystal orientations present in the Fe samples. 
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Figure 7.4: XRD spectra of a polycrystalline Fe sample measured using the experimental 

parameters given in table 7.1 
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From figure 7.4, XRD peaks are seen to form a doublet, this is especially noticeable at the higher 

values of 2θ. This doublet is due to the presence of both the Kα1 and Kα2 copper X-Rays which have 

wavelengths of respectively 1.540 Å and 1.544 Å [1]. These wavelengths are so close to one 

another that they are indistinguishable by the Ni filter.  

 

 

 

 

7.3. Auger Electron Spectroscopy (AES) 
 

 

 

 

Auger electron spectroscopy was used to obtain both qualitative and quantitative information on 

the Fe samples analysed. The diffusion of S in Fe was investigated by means of depth profile 

analysis and the effect S has on the grain sizes were investigated by obtaining SED images of the 

sample surface. Surface segregation of the non-metal impurities in polycrystalline bcc Fe were also 

studied using AES. The basic principle of operation for Auger electron spectroscopy, along with 

the two different spectrometers used and their respective experimental parameters are described in 

this section. 

 

 

 

 

7.3.1. Principle of operation 
 

 

 

 

Auger electron spectroscopy is the bombardment of a sample with high energy (3-25 keV) 

electrons, resulting in the ionization of a core energy level in the atoms. An electron from a higher 

energy level within the atom fills the ionized level and in doing so emits an amount of energy equal 

to the difference between the two energy levels. This emitted energy is transferred to a third 

electron, which is emitted as an Auger electron. The Auger process is illustrated in figure 7.5 [3; 4; 

5]. 
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Energy = up to ~2400 eV 

Figure 7.5: Illustration of the 3 steps for the emission of an Auger electron in order to explain 

the principle of operation for the technique Auger Electron Spectroscopy (AES). 
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It is evident from figure 7.5 that the energy of the Auger electron is independent of the primary 

electron beam energy and is only dependant on the energy difference between the ionized energy 

level and the energy level from which the electron, replacing the emitted electron, comes from. 

This energy difference is unique for each element and thus by analysing the energy of the Auger 

electron, the element being analysed can be identified. It should also be noticed that the Auger 

process requires 3 electrons, which is the reason Auger electron spectroscopy cannot be used to 

analyse samples containing H or He [5].  

 

 

 

 

7.3.2. Apparatus 
 

 

 

 

This section describes the equipment and the experimental set-up used in Auger analysis of the Fe 

samples. Two different systems were used, the SAM 590 Auger system was used to study surface 

segregation, while the PHI 700 Auger Nanoprobe was used in depth profile analysis, elemental 

mapping and SED imaging. Both systems were manufactured by the Physical Electronics Company. 

Each system is specifically suited for its purpose, the SAM 590 Auger system is equipped with a 

heating stage and a PID control unit for temperature studies. The PHI 700 Auger Nanoprobe has a 

small beam diameter provided by the field emission tip of the electron gun which makes this 

system ideal for SED imaging. Figure 7.6 shows an image of the SAM 590 Auger system used to 

study the surface segregation of non-metal impurities in bcc Fe. 

 

 

 



126 

 

 

 

 

 

 

 

 

 

 

The SAM 590 consists of the following components: 

 Rotary and turbo molecular fore pumping combination 

 Ion pump capable of reaching pressures down to ~10
-9

 Torr 

 Physical electronics electron gun equipped with a LaB6 filament (Model: 18-085) 

 Single pass cylindrical mirror analyser, CMA (Model: 25-110) 

 Physical electronics Auger system control (Model: 11-055) 

 Physical electronics electron multiplier supply (Model: 20-075) 

 Physical electronics lock-in amplifier (Model: 32-010) 

 Perkin-Elmer ion gun (Model: 11-065) 

 A heating stage fitted onto the sample stage for segregation studies  

 Software package for controlling the voltages on the CMA plates via the control unit, and 

for data capturing 

 

 

The PHI 700 Nanonprobe used in the study of depth profile analysis, elemental mapping and grain 

growth is shown in figure 7.7 [6]. 

Figure 7.6: The SAM 590 Auger system used in the study of non-metal impurity surface 

segregation in polycrystalline bcc Fe. 
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The PHI 700 Auger Nanoprobe consists of the following components: 

 

 Rotary and turbo molecular fore pumping combination 

 Ion pump capable of reaching pressures down to ~10
-9

 Torr 

 ULVAC PHI electron beam power supply (Model 18-197) 

 ULVAC PHI electron gun control for the field emission tip (Model 20-630) 

 Single pass cylindrical mirror analyser, CMA (Model: 25-140) 

 ULVAC PHI ion gun control (Model 11-066) 

 Smartsoft-AES version 4.1.3.2 software package for controlling the system and recording 

of data. 

 

 

Figure 7.8 shows a schematic representation of the sample position relative to the electron and ion 

gun. The set-up is similar for the SAM 590 and PHI 700 Auger Nanoprobe with the sample in both 

systems positioned at an angle of 30 degrees relative to the ion and electrons guns. The only 

difference in set-up between the two systems is the position of the electron gun. For the SAM 590 

Figure 7.7: The PHI 700 Auger Nanoprobe used for obtaining depth profiles, elemental maps 

and SED images of the polycrystalline bcc Fe samples. 
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Auger system the electron gun is positioned horizontally, while the electron gun of the PHI 700 

Auger Nanoprobe is positioned vertically.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7.3.3. System configuration and calibration 

 

 

 

 

The systems were switched on and allowed to stand for a couple of hours to ensure that the 

electronic components are warmed up before measurements were started. If the electronic 

components of the system are not properly warmed up before being used, the Auger signal starts to 

drift during measurements due to a temperature change of the electronic components. The electrical 

current of both the electron gun and ion gun filaments were slowly increased to allow the filaments 

to degas. Once they reached the required electrical current the filaments remained at that current for 

one hour to ensure stability of the filaments before measurements were started. This procedure of 

filament degassing was only carried out for the SAM 590, since the filaments of the PHI 700 

system is always kept on. Once the systems were ready, the 66 eV and 922 eV Auger peaks of a 

copper (Cu) standard were used to calibrate the energy scale for the respective systems. A number 

Figure 7.8: Schematic of the sample position relative to the ion and electron gun in the AES 

systems. For both the SAM 590 and the PHI 700 Auger Nanoprobe spectrometers the sample 

was positioned at an angle of 30 degrees with respect to the ion and electron guns. 
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of test were done in order to determine the optimum parameters for the Auger systems, ensuring 

that the maximum peak-to-peak heights were obtained and that the signal noise was reduced to a 

minimum. Table 7.2 contains the optimized parameters used in all measurements conducted on the 

SAM 590.  

 

 

 

 

 

 

 

 

 

 Parameter Value 

Electron gun settings Primary beam voltage  5 keV 

 Primary beam voltage (elastic peak) 2 keV 

 Emission current 0.15 mA 

 Beam current 0.95 µA 

 Beam diameter 163.5 µm 

Ion gun settings Argon beam voltage 2 kV 

 Beam current 65 nA 

 Beam current (with raster on) 12.5 nA 

 Emission current 25 mA 

 Pressure  2 mPa 

 Raster size 2×2 mm 

Measurement settings Scan rate 5 eV/s
 

 Modulation voltage 2 eV 

 Sensitivity 100 

 Time constant (measurements) 0.1 s 

 Time constant (elastic peak) 0.03 s 

 Photomultiplier voltage (measurements) 2.350 keV 

 Photomultiplier voltage (elastic peak) 1.850 keV 

 

 

 

The settings used on the PHI 700 Auger Nanoprobe are tabulated in table 7.3. 

 

 

 

 

 

 

Table 7.2: Optimized settings used on the SAM 590 system to ensure that the maximum Auger 

peak-to-peak heights are obtained and that the signal noise is reduced to a minimum. 
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 Parameter Value 

Electron gun Primary beam voltage  25 keV 

 Primary beam voltage (elastic peak) 1 keV 

 Emission current 280 µA 

 Beam current 0.5 nA 

 Beam diameter 20 nm  

Ion gun Argon beam voltage 2 kV 

 Beam current 2 µA 

 Beam current (with raster on) 2 µA 

 Emission current 12.5 mA 

 Pressure  15 mPa 

 Raster size 1×1 mm 

 Sputter rate  27 nm/min 

Measurement settings Energy per step 1 eV
 

 Time per step 50 ms 

 Number of differentiation points 13 

 Photomultiplier voltage (measurements) 2.2 keV 

 Photomultiplier voltage (elastic peak) 2.2 keV 

 

 

 

 

7.3.4. Electron beam size determination 

 

 

 

 

The beam diameter determines the area on the sample from which the Auger electrons will be 

generated. For surface segregation studies a larger beam diameter is required in order to obtain 

information over a larger area on the sample. For the study of polycrystalline samples where 

different grain orientations are present it is important to obtain Auger information over a larger area 

to avoid local effects such as grain boundaries. The diameter of the electron beam for each of the 

systems used was determined by placing the electron beam in the centre of the Faraday cup and 

Table 7.3: Optimized settings used on the PHI 700 Auger Nanoprobe to ensure that the 

maximum Auger peak-to-peak heights are obtained and that the signal noise is reduced to a 

minimum. 

 



CHAPTER 7: EXPERIMENTAL TECHNIQUES 

 
 

131 
 

scanning it across the side of the cup. This provides information of the electron beam current 

intensity as a function of distance, shown in figure 7.9 for the electron beam of the SAM 590. 

 

 

 

 

 

 

 

 

 

 

 

The data obtained for the electron beam current intensity as a function of distance scanned, was 

smoothened by applying the Savitzky-Golay filter of grade 2 and width 6. This ensured that a 

smooth curve was obtained which can be differentiated without the occurrence of spikes. 

Differentiation of the Savitzky-Golay curve in figure 7.9 resulted in a graph, figure 7.10, from 

which the beam diameter can be calculated using the full width half maximum method (FWHM).  

 

 

 

 

 

 

 

 

Figure 7.9: Electron beam current intensity as a function of distance scanned on the Faraday 

cup. 
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The above method was used to determine the beam sizes of both Auger spectrometers used in this 

study. For the SAM 590 Auger system a beam diameter of 163.5 µm was obtained using the 

settings described in table 7.2. For the PHI 700 Auger Nanoprobe a beam diameter of 20 nm was 

obtained using the settings described in table 7.3.  

 

 

 

 

7.3.5. Temperature measurements 

 

 

 

 

In the study of surface segregation, the Fe samples were mounted onto a heating stage located onto 

the sample stage of the SAM 590 Auger system. The required temperature was obtained by 

applying a high electrical current to the tungsten filament of the heating stage. The temperature was 

measured by a type K thermocouple located underneath the sample, between the sample and the 

Figure 7.10: Differentiated electron beam current intensity as a function of distance scanned 

on the Faraday cup. 
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heater, and controlled using a PID control unit. This thermocouple does not give an accurate value 

for the temperature of segregation. Large amounts of heat are lost through the Fe surface due to 

radiation. Considering that the segregated atoms come from the near surface layers, it is more 

correct to use the surface temperature as the temperature for segregation. Thus the temperature 

measured by the computer during data capturing needs to be scaled to obtain the true segregation 

temperature. In order to obtain the relationship between the measured temperature at the back of 

the sample and the segregation temperature (surface temperature), a type K thermocouple was spot 

welded to the surface of a test sample. Figure 7.11 illustrates the thermocouples connected beneath 

the sample and on the surface of the test sample respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The relationship between the surface temperature and the temperature measured by the 

thermocouple beneath the sample is given in figure 7.12. 

 

 

 

 

 

 

 

 

Figure 7.11: (a) Thermocouple placed beneath the sample to measure the temperature during 

surface segregation experiments. (b) A thermocouple spot welded to the surface of a test 

sample. 

 

(a) (b) 
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Fitting of a 6
th
 degree polynomial gave an accurate descriptions of the relationship between the 

surface temperature and the temperature beneath the sample. This polynomial model was used to 

obtain the segregation temperature (surface temperature) for all the segregation experiments 

performed in this study. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.12: Relationship between the surface temperature and the temperature beneath the 

Fe sample mounted onto the heating stage of the SAM 590. 
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7.4. Auger quantification 

 

 

 

 

In order to obtain the atomic concentrations of the elements in the system under study, the 

measured Auger peak-to-peak heights (APPH) need to be quantified. Depending on the system 

under study, various quantification methods exist. Three different methods of Auger quantification 

will be discussed here: the basic Palmberg method, the quantification of atoms segregated onto a 

surface using the layer approach and the quantification of depth profiles using the method for 

homogeneous samples. 

 

 

 

 

7.4.1. Palmberg method 
 

 

 

 

The method of Palmberg is the most basic form of Auger quantification. Equation 7.5 gives the 

mathematical expression for the Palmberg quantification formula [3; 4] 
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where Ii is the Auger intensity, 
*

iI is the sensitivity factor and Ci is the fractional concentration of 

element i. The denominator in equation 7.5 performs a summation over all n elements in the system. 

The formula neglects the matrix factors of the system under study and cannot be used to provide a 

final answer for the elemental concentrations. It is frequently used as a first approximation to the 

quantification of Auger data, as is done in this study.  
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7.4.2. Segregated layer/monolayer quantification 

 

 

 

 

For the quantification of elements segregated to the surface of a material, the system can be 

considered as an infinite number of layers. This enables the quantification of elements as a function 

of their escape depth in the sample. This is called the layer approach and is described by du Plessis 

[7]. 

 

The Auger yield for element A is given by equation 7.6 [4; 7] 
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Where I0 is the primary electron beam current, T(EA) is the transmission efficiency of the electron 

spectrometer and D(EA) is the efficiency of the electron detector. The ionization cross section of 

the core level responsible for the Auger transition with an electron energy of Ep, is given by σA(Ep). 

To account for the backscattering of electrons the term RA is included. The atomic density of 

element A at a distance of nd from the surface is given by the symbol NA(nd), with d as the layer 

thickness and n the atomic layer of interest. The distance travelled by an Auger electron from 

where it is generated in the material to the surface of the material is given by 
A cos θ, where λA is 

the inelastic mean free path and θ is the angle of emission relative to the surface normal. For the 

pure element A, the Auger intensity is given by equation 7.7 
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where the symbol * is used to indicate the use of a pure element. The primary electron beam 

current, the transmission efficiency of the spectrometer and the efficiency of the electron detector 

were taken as constants (const) in equation 7.7. The Auger yield for element A in the alloy is given 

by equation 7.8 
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where 

AX  is the surface concentration of element A and bulkX A
is the bulk concentration of element 

A in the alloy. Solving equation 7.7 for σA and substituting the result into equation 7.8 delivers 

equation 7.9 
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For element B a similar expression is obtained, given by equation 7.10 
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Taking the ratio of the Auger yields for the two elements in the alloy, results in equation 7.11 
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The first term of equation 7.11 is defined by equation 7.12 

 

 

 

 

 
















0

AA

0

BB

AABB

BBAA
AB

θ cosexp

θ cosexp

n

**

n

**

M*M*

M*M*

/nd

/nd

NRRI

NRRI





 .                                (7.12) 

 

 

 

The sensitivity factors 
*IA  and 

*IB were determined for the spectrometer using elemental standards. 

For the exponential expressions in the second term, the symbols A and B can be defined as 

given by equations 7.13 and 7.14 
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Substituting equations 7.12-7.14 into equation 7.11 results in the final expression, equation 7.15 
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Equation 7.15 is not limited to a binary system and can be expanded to m-1 expressions in 
X  for 

a system consisting of m components.  
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The backscattering coefficients, R, were calculated using the expression of Shimizu [3; 8], equation 

7.16 

 

 

 

    1.05 1.15  0.7770.4621 0.200.320.20   ZUZR .                   (7.16) 

 

 

 

where Z is the atomic number for the element of interest and U is the ratio of the primary electron 

beam voltage over the binding energy of the core electron responsible for the Auger transition. The 

layer thickness, d, for each element was calculated as the sum of the atomic diameter for the 

respective elements plus the atomic diameter of Fe. The value of the atomic diameter, ,a  was 

calculated using equation 7.17  
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where ρ is the density, NA is Avogadro’s number with a value of 6.022×10
23

 [9] and M is the atomic 

mass for the element of interest.  

 

For the calculation of the inelastic mean free path the TPP-2 method proposed by Tanuma, Powell 

and Penn [10], equation 7.18, was used 
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where E is the electron energy and Ep is the free-electron plasmon energy. Each of the symbols 

used in equation 7.18 are defined by the expressions given below  
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 4107.39
0.944

0.0216 
pE

 

 

 
0.500.191    
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N
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UC  0.911.97  

 

 

UD  20.8  53.4   

 

 

 

In the above equations Nv is the number of valance electrons of an element. The values for the 

matrix, denoted by the superscript M are calculated as a weighed sum of the elements in the matrix. 

For an alloy consisting of n elements the matrix values are calculated by: 
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The atomic density, N, were taken to be the same for all elements, since 95 % of Auger electrons 

originates from the first three atomic layers [5] where the atomic density of the segregating element 

and the matrix are assumed to be equal. 
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To illustrate the Palmberg and the layer approach of quantification, a segregation profile was 

quantified using both methods. The segregation profile giving the APPH vs. temperature is shown 

in figure 7.13. The respective spectrums for the Palmberg and layer quantification methods are 

given in figures 7.14 (a) and 7.14 (b). 
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Figure 7.13: Auger data of a linear programmed heating segregation experiment performed 

on the polycrystalline Fe sample 
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Figure 7.14: Fractional concentration of segregated atoms on the bcc polycrystalline Fe 

surface as determined by (a) the Palmberg and (b) the layer approach of quantification. 
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Comparing figures 7.14(a) and 7.14(b) shows that using the Palmberg method to quantify Auger 

data can result in differences of more than 14 % in the concentration for S. This is due to the 

neglect of the matrix factors in the Palmberg method. The layer approach is used throughout this 

study for the quantification of surface segregation data. 

 

 

 

 

7.4.3. Quantification of homogenous samples 
 

 

 

 

For an alloy consisting of elements which are distributed homogeneously throughout the matrix, 

the method described in this section can be used. This applies to the depth profiles performed in 

chapter 8, Experimental results. Equation 7.2 gives the Auger yield for element A, a similar 

expression can be obtained for the Auger yield of element B. To derive an expression with which 

the Auger data for a homogenous solid can be quantified, two assumptions are made. The first 

assumption is that the atomic density in the matrix is constant throughout resulting in equation 7.6 

becoming equation 7.19 [4] 
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and for the pure element A, the Auger yield is give by equation 7.20 
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Solving  PEA for equation 7.19 and substituting the result in equation 7.20, results in equation 

7.21 
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A similar expression can be derived for element B, and by taking the ratio of these two equations 

results in equation 7.22 [4] 
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Using equation 7.23 [4] 

 

 

 
3

B

A

BA

AB











B

A

*

*

a

a

X

X

NN

NN
                                                 (7.23) 

 

 

 

Where a  is given by equation 7.17. Equation 7.23 can be written as  
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where the term, AB , is given by equation 7.25 
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Equation 7.24 was derived here for components A and B, but is not limited to a binary system. If a 

multi-component system is studied consisting of m elements, m-1 equations can be obtained in X. 

For the calculation of the backscattering coefficients, R, the method of Shimizu, given by equation 
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7.16, described earlier was used and for the calculation of the inelastic mean free path, λ, the TPP-2 

method was used. 

 

For the quantification methods described in sections 7.4.2 and 7.4.3, the Nelder-Meads 

optimization method was used to solve the system of linear equations. The Palmberg method was 

used to provide initial values for the optimization process. 

 

To illustrate the quantification of Auger data using the method described here for homogenous 

samples, the depth profile of S diffused into Fe in figure 7.15 was quantified using both the 

Palmberg method and the method for homogenous samples. The results are respectively given by 

figures 7.16(a) and 7.16(b). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.15: Depth profiles of a S doped Fe sample given as the Auger peak-to-peak height as 

a function of depth ( 
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Figure 7.16: Depth profile of the S doped Fe sample, showing the concentration of 

elements as determined by the quantification method for (a) Palmberg and (b) homogenous 

samples. 
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Comparing the depth profiles given by figure 7.16(a) and figure 7.16(b), shows that by neglecting 

the matrix factors results in concentration differences of up to 30 % for O and 7 % for S. The use of 

Palmberg to describe the elemental concentrations of segregated atoms results in larger differences 

compared to the quantification of homogenous samples. The method described here for 

homogenous samples were used to quantify the depth profiles of the Fe samples in chapter 8, 

Experimental results. 

 

 

 

 

7.5. Experimental procedure for segregation 

measurements 

 

 

 

The segregation of non-metal impurities in bcc Fe was studied by increasing the temperature 

linearly in the range 410-975 K in increments of 0.01 K/s. 

 

1. Before measurements were performed on the crystal for the first time, the sample was 

annealed for 24 hours at 915 K to ensure that no depletion regions were present in the 

sample. 

2. After the 24 hour annealing process the sample was allowed to cool to 488 K at a rate of     

-0.05 K/s. Thereafter the sample was allowed to cool uncontrolled to room temperature  

(298 K). 

3. For segregation measurements the sample was preheated to 410 K, until the heating unit 

reached a stable temperature. 

4. The sample was then sputter cleaned for 10 min using Ar
+
 ions to remove any surface 

contaminants. 

5. After sputter cleaning the surface, the recording of data was started immediately. The Ar 

gas in the system was pumped out. 

6. Segregation profiles were recorded while the temperature was linearly increased at a rate of 

0.01 K/s 

7. Once the sample reached its maximum temperature of 975 K, the sample was linearly 

cooled to 488 K at a rate of -0.05 K/s and then cooled to room temperature uncontrolled. 
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8. The sample was then annealed at 915 K for 12 hours to ensure that depletion regions that 

occurred during the previous segregation run were restored. After the 12 hours the sample 

was linearly cooled to 488 K at a rate of -0.05 K/s. It was then allowed to cool to room 

temperature at an uncontrolled rate. 

9. Steps 3-8 were repeated for the next segregation run 

 

The results obtained using the above experimental procedure are given in chapter 8, Experimental 

results. 

 

 

 

 

7.6. Summary 

 

 

 

 

This chapter described the experimental techniques used in this study with the emphasis on the 

equipment used. For XRD measurements the D8 ADVANCE diffractometer from BRUKER is 

described. Auger Spectroscopy was the primary experimental technique used throughout this study 

and was performed by the PHI 700 Auger Nanoprobe and the SAM 590 from the Physical 

Electronics Company. To obtain elemental concentrations from Auger data, Auger quantification 

was described in detail. 
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Chapter 8: Experimental results 

 

 

 

 

8.1. Introduction 
 

 

 

 

This chapter presents the experimental findings for the study of S segregation and diffusion in 

polycrystalline bcc Fe. Results for the preparation of Fe-S samples, using the method described in 

chapter 6, Sample preparation, are presented here which confirms the successful doping of Fe with 

S using the newly proposed doping method and experimental set-up. The segregation of the non-

metal impurities O, N, C, B, S and P in polycrystalline bcc Fe are discussed. Using the model of 

Fick for the case of linear programmed heating and the model of Guttmann which describes 

equilibrium segregation in ternary alloys, the segregation parameters of S and P in polycrystalline 

bcc Fe were extracted.  

 

 

 

 

8.2. Sample composition 
 

 

 

 

All the experimental results were performed on polycrystalline bcc Fe samples of purity 99.99+ %, 

supplied by the Goodfellows company in the U.K. The composition of the samples as specified by 

the manufacturer is given in table 8.1. 
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The concentration of S was determined as <6 ppm by set-point laboratories using LECO analysis 

and a concentration value of 6 ppm was used for S during this study. 

 

 

Element Concentration, C (ppm) 

Aluminium (Al) 1.60 

Arsenic (As) 0.12 

Boron (B) 2.30 

Carbon (C) 12.0 

Cobalt (Co) 15.0 

Chromium (Cr) 3.20 

Copper (Cu) 2.00 

Gallium (Ga) 0.29 

Germanium (Ge) 5.90 

Potassium (K) 0.23 

Manganese (Mn) 0.87 

Molybdenum (Mo) 0.28 

Oxygen (O) 60.0 

Phosphorus (P) 10.0 

Sodium (Na) 0.25 

Nitrogen (N) 10.0 

Niobium (Nb) <0.10 

Nickel (Ni) 16.0 

Silicon (Si) 36.0 

Sulfur (S) 6.00 

Tantalum (Ta) <10.0 

Titanium (Ti) 0.41 

Vanadium (V) 0.49 

Tungsten (W) 0.18 

Zinc (Zn) 0.19 

Table 8.1: Composition of the polycrystalline bcc Fe samples used in all experiments 

performed in this study. 
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8.3. Doping of Fe with S 
 

 

 

 

This section gives the experimental findings obtained by the PHI 700 Auger Nanoprobe for the 

diffusion of S into Fe during the doping procedure. A polycrystalline Fe sample was doped for 50 s 

using the method described in chapter 6, Sample preparation. When the electrical current to the 

heater filaments was switched off and the sample allowed to cool, some S vapour were deposited 

onto the Fe surface forming a thin S layer. During annealing some of this thin S layer was observed 

to have evaporated off the Fe surface and into the quartz tube of the annealing oven. This statement 

is valid, considering that there is an amount of S deposited onto the Fe surface with a melting point 

of 393 K [1]. 

 

The doped sample, after removal from the doping chamber is shown in figure 8.1, with figure 8.2 

showing a SED image of the structure of the deposited S layer on the Fe surface.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.1: Polycrystalline bcc Fe sample after being doped with S for a period of 50 seconds. 

10 mm 



156 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The cap of the heater used to keep the sample in place prevented S from being deposited onto the 

outer ring of the sample shown in figure 8.1. The fraction of the Fe sample deposited with S was 

calculated by measuring the respective diameters of the Fe and S areas in figure 8.1. It was 

Figure 8.2: SED image showing the structure of the deposited S layer on the Fe sample 

surface, after the sample was doped with S for 50 seconds. (a) 10 µm field of view (b) 310 µm 

field of view. 

(a) 

(b) 
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calculated that a fraction of 0.65 was deposited with S during the doping process. This value along 

with the sample thickness of 0.38 mm is used later in this section to calculate the total S 

concentration of two differently doped Fe samples.  

 

To establish this doping method as a viable method for the doping of Fe with S, two requirements 

had to be met. The first requirement was that experimental evidence for the diffusion of S into Fe 

had to be obtained and secondly it had to be shown that the concentration of S can be doubled by 

doubling the doping time. To achieve this, two samples were doped for respectively 25 s and 50 s. 

Auger depth profiling was performed on each of the samples to determine the diffusion profile of S 

in Fe. To avoid obtaining information from a local area such as a grain boundary, two areas of        

4 µm
2
 each were selected at a distance of 22 µm apart as shown in the SED image of figure 8.3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The samples were eroded with Ar
+
 ions in intervals of 2 min at a rate of 27 nm/min for a total of 75 

minutes. The results of the depth profiles performed on the two areas of the samples doped 

respectively for 25 s and 50 s are given by figures 8.4 and 8.5. Quantification of the depth profiles 

were performed using the method for homogeneous samples described in chapter 7, Experimental 

techniques. 

Figure 8.3: SED image showing the two areas selected for Auger depth profile analysis with 

dimensions of 4 µm
2
 each, separated by a distance of 22 µm. 
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Figure 8.4: Auger depth profiles of the Fe sample doped with S for 25 seconds, showing the 

diffusion of S to a depth of 1026 nm (1.026 µm). (a) Area 1 (b) Area 2. 
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Figure 8.5: Auger depth profiles of the Fe sample doped with S for 50 seconds, showing the 

diffusion of S to a depth of 1242 nm (1.242 µm). (a) Area 1 (b) Area 2. 
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Figure 8.4 and 8.5 confirms that S has diffused into Fe to a total depth of 1026 nm (1.026 µm) for 

the sample doped for 25 s and to a depth of 1242 nm (1.242 µm) for the sample doped for 50 s. The 

presence of C were detected as a surface contaminant with a layer of thickness <50 nm, which were 

quickly removed by Ar
+
 ion sputtering. As the S concentration decreased with depth into the 

sample some C were once again observed at a depth of ~1300 nm (1.300 µm) for the sample doped 

for 25 s and at a depth of ~1100 nm (1.100 µm) for the sample doped for 50 s. This C region is a 

result of C that were present on the Fe surface before S doping, which diffused into the Fe sample 

during the preheating step of the doping process. 

 

A strong O presence was observed in the samples which illustrates the ability of O to bind to Fe 

despite the fact that the samples were doped under clean conditions. The total thickness of the O 

layer for the two samples are 1350 nm (1.350 µm) for the sample doped for 25 s and 1134 nm 

(1.134 µm) for the sample doped for 50 s. Thus for the sample containing more S, less O was 

observed and it is concluded that the presence of S prevents the adsorption of O onto the Fe surface. 

This is in agreement with the observations made by Fujita et. al. [2], whom observed that the 

segregation of S to the Fe surface prevents the initial oxidation of Fe. The amount of O can be 

decreased by fitting a titanium (Ti) filament into the preparation chamber which can absorb the O 

impurities. The use of Ti as an absorber for O was employed during sample annealing which has 

shown to decrease the effect of sample oxidation. Figure 8.6 shows the average value of the two 

areas measured on the two samples doped for respectively 25 s and 50 s. 
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The concentrations of the two differently doped Fe samples were calculated by integrating each of 

the S profiles in figure 8.6 which provided the total S area in the respective samples. Dividing this 

area by the total area of the Fe sample and multiplying this result by the fraction of the sample 

deposited with S (0.65), calculated earlier, resulted in the total S concentration of each sample. For 

the sample doped for 25 s a concentration of 37.86 ppm was calculated and for the sample doped 

for 50 s a concentration of 71.70 ppm was calculated. This proves that the new method of doping 

Fe with S proposed in chapter 6, Sample preparation, can be repeated for different time periods 

resulting in almost double (89.38 %) the S concentration. Table 8.2 contains all the values used in 

the calculation of the S concentration for the respective samples. 

 

 

 

 

 

 

 

 

Figure 8.6: Comparison between the S diffusion profiles obtained during depth profile analysis 

of the Fe samples doped for 25 s and 50 s respectively.  
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 S area, AS 

(Fractional 

concentration.nm) 

Fe area, AFe 

(Fractional 

concentration.nm) 

Fraction of 

sample 

deposited with S 

Concentration, 

C (ppm) 

25 s 22.13 380000.00 0.65 37.86 

50 s 41.92 380000.00 0.65 71.70 

 

 

 

 

8.4. Grain growth and surface effects of 

polycrystalline Fe 

 

 

 

 

This section covers the effects observed on the surface of a S doped Fe sample after being annealed 

for 40 days at a temperature of 1073 K. Figure 8.7 shows the image of the S doped Fe sample after 

being removed from the annealing oven. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.7: The S doped Fe sample after being annealed for 40 days at a temperature of 

1073 K.  

Table 8.2: Values used in the calculation of the total S concentration which have diffused into 

the Fe samples doped at respectively 25 seconds and 50 seconds. 

 



CHAPTER 8: EXPERIMENTAL RESULTS 

 

163 
 

On careful inspection two different regions can be seen on the surface of the sample shown in 

figure 8.7, the region deposited with S (region A) and the outer ring of the sample not deposited 

with S (region B). The sample was placed in the PHI 700 Auger Nanoprobe to investigate the 

influence of S on the size of the Fe grains. An SED image of the sample is shown in figure 8.8, 

where the two regions of different grain sizes can be seen. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The two regions of the sample, region A and B can respectively be seen in figures 8.9 and 8.10. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.8: SED image of the S doped Fe sample after being annealed for 40 days at a 

temperature of 1073 K. Two regions can be identified on the Fe surface, the region deposited 

with S, region A, and the outer ring of the Fe sample not deposited with S, region B. 

A 

B 



164 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.9: SED image of the S deposited region, region A, on the Fe sample after being 

annealed for 40 days at 1073 K. 

Figure 8.10: SED image of the region on the Fe sample not deposited with S, region B, after 

being annealed for 40 days at 1073 K. 
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From images 8.8-8.10 it is clear that region A have grains which are smaller in size compared to 

the grains found in region B. An area (~1×1 mm) was selected in each of the two regions in order 

to determine the grain sizes. Line segments were constructed across these areas and the number of 

grains in the length of each of the line segment were counted. The average grain size for grains 

along the line segments were determined. To obtain an average value for the grain sizes of the 

respective areas on the sample, ten such line segments were constructed for each area. The average 

grain size of region B was calculated as 140±8 µm, while a average grain size of 90±8 µm was 

calculated for region A. Thus from the calculated grain sizes it can be concluded that the presence 

of S in bcc polycrystalline Fe caused a 36±11 % decrease in the grain sizes of Fe.  

 

The initial stages of annealing consists of three steps [3], the first step is rapid recovery which 

eliminates the residual stresses on the metal and leads to the formation of a polygonised dislocation 

structure. The second step is nucleation which results in the formation of new grains at the grain 

boundaries which formed during recovery. During nucleation the majority of the dislocations in the 

material are eliminated leading to a material with low strength but high ductility [3]. The third step 

is grain growth where the more favoured grains will consume the smaller grains. All three of the 

above stages of annealing were observed in the region of the Fe sample deposited with S.  

 

Both the S deposited region and region not deposited with S are observed to have a polygonised 

structure where sub grains have formed. The S layer (figure 8.2) on the Fe surface leads to the 

formation of FeS in small areas on the Fe surface during annealing. The FeS phase was identified 

by the plateau region in the Auger depth profile of the S doped Fe sample shown in figure 8.24. 

These FeS areas in the S deposited region acts as a tracer, which makes it easy to identify the 

second and third steps of the annealing process. The second step, nucleation, is marked by the 

grains which are completely free from FeS, indicating that these grains are the newly formed grains. 

The third step in the annealing process, grain growth, is marked by the grains which only contain 

FeS in the centre of the grain. The regions close to the grain boundary where the FeS is absent are 

the newly grown regions of the grains. 

 

It is concluded that the large S concentration in the area of the Fe sample deposited with S causes a 

decrease in the thermal energy required by the three annealing steps, resulting in the effects of 

annealing being more dramatic in this region. The observed decrease in grain sizes of the S 

deposited region is in agreement with the experimental findings of Tacikowski et. al. [4], whom 

observed grain size decrease of Fe samples containing S. This observed effect of grain size 

decrease will result in a decrease of the mechanical strength and an increased ductility of the Fe 

sample [3].  
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To determine which crystal orientations of Fe were present in the S doped polycrystalline Fe 

sample, the sample was analysed using XRD. The results obtained for the doped sample were 

compared to results of an un-doped Fe sample of the same batch that was used in segregation 

measurements. The results for the un-doped Fe sample are shown in figure 8.11 with the results of 

the doped sample shown in figure 8.12. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.11: XRD spectra of the un-doped polycrystalline bcc Fe sample measured after 

surface segregation measurements were performed at temperatures in the range 400-975 K. 
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Figures 8.11 and 8.12 show the various orientations of Fe that were detected for the un-doped and 

doped Fe samples. The presence of doublet peaks are seen and are especially visible for the higher 

diffraction angles. These doublet peaks are due to the presence of both the Kα1 and the Kα2 Cu      

X-Rays with wavelengths of respectively 1.541 Å and 1.544 Å. 

 

The following orientations were detected in both the un-doped and doped Fe samples: Fe(110), 

Fe(200), Fe(211), Fe(220) Fe(310) and Fe(222). The Fe(220) peaks are due to diffraction occurring 

from the Fe(110) crystal planes. This effect is caused by the constructive interference of X-Rays 

with different whole number of wavelengths, see chapter 7. The effect also occurs for the Fe(200) 

and Fe(100) orientations as well as for the Fe(222) and Fe(111) orientations.  

 

Equation 8.1, was used to calculate the fractional concentration, C, of each orientation in the 

polycrystalline Fe samples. Since the Fe(220) and Fe(110) peaks describe the same crystal plane, 

only the Fe(220) peak intensities were used to quantify the Fe samples. Similarly for the Fe(100) 

and Fe(111) peaks only the Fe(200) and Fe(222) peak intensities were used for quantification. 

Figure 8.12: XRD spectra of the doped polycrystalline bcc Fe sample after being annealed 

for 40 days at a temperature of 1073 K. 
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where Ii is the XRD intensity of orientation i and 


iI is the calculated XRD relative integrated 

intensity for orientation i. The denominator in equation 8.1 performs a summation over all n 

orientations in the system. The expression used for the calculation of the relative integrated 

intensity is given by equation 8.2 [5] 
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where F, is the structure factor given by equation 8.3 for the bcc crystal structure 

 

 

 

fF 2 .                                                              (8.3) 

 

 

 

In equation 8.2, p is the multiplicity factor, θ the angle between the X-Ray source and the detector 

and exp
-2M

 is the temperature factor. The term M in the temperature factor is given by equation 8.4 

[5] 
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where h is Planck’s constant, T is the absolute temperature in Kelvin, m the mass of the vibrating 

atom, k is Boltzmann`s constant, Θ is the Debye characteristic temperature of the substance in 

Kelvin and λ is the wavelength with a value of 1.541 Å (Kα1) for the copper X-Ray source used. 

The peaks which were generated by the Kα1 X-Rays of the Cu source resulted in the largest peak 
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intensities and was thus used for the quantification of the Fe samples. The symbol x is given by 

equation 8.5 

 

 

 

T
x


  .                                                              (8.5) 

 

 

 

Values for the function 




 x  , along with values of p and f were obtained from the book: Elements 

of X-Ray diffraction [5]. For completeness these values are given in table 8.3. 

 

 

 

 

 

 

 

 

 

 




x   p f 

Fe(200) 1.42 6 14.36 

Fe(211) 1.42 24 12.69 

Fe(220) 1.42 12 11.60 

Fe(310) 1.42 24 10.80 

Fe(222) 1.42 8 10.15 

 

 

 

Tables 8.4 gives the weighted fractional values of the peak intensities for the un-doped and doped 

Fe samples, along with the weighted calculated relative integrated intensities.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 8.3: Values of , 




 x  p and f used for the calculation of the relative integrated intensity 

for the orientations present in the polycrystalline Fe samples. 
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The percentage of each orientation present in the un-doped and doped samples are given in table 

8.5, along with the percentage difference between the different orientations of the two samples. 

 

 

 

 

 

 

 

 

Orientation % Un-doped sample % Doped sample % Difference 

Fe(100) 26.25 21.07 -5.180 

Fe(211) 22.74 24.77 +2.030 

Fe(110) 4.748 21.16 +16.41 

Fe(310) 4.825 5.221 +0.396 

Fe(111) 41.45 27.78 -13.67 

 

 

 

From table 8.5, the biggest decrease is observed for the Fe(111) crystal orientation with a value of  

-13.67 % while the Fe(100) crystal orientation showed a -5.180 % decrease. The largest increase 

was observed for the Fe(110) crystal orientations with a value of 16.41 %. From the results 

presented in table 8.5 it can be concluded that the more favoured crystal orientations of Fe(110), 

Fe(211) and Fe(310) have grown during annealing and have consumed the less favourite Fe(111) 

and Fe (100) crystal orientations. 

 

Orientation Weighed intensity 

of un-doped 

sample 

Weighed 

intensity of 

Doped sample 

Weighed calculated relative 

integrated intensity 

Fe(100) 0.24 0.18 0.17 

Fe(211) 0.42 0.44 0.34 

Fe(110) 0.03 0.14 0.12 

Fe(310) 0.06 0.06 0.25 

Fe(111) 0.25 0.17 0.11 

Table 8.4: Weighted values for the measured X-Ray diffraction intensities of the Fe un-doped 

and doped samples. The last column contains the weighed calculated relative integrated 

intensities for the different orientations. 

Table 8.5: Quantified data giving the percentage of each orientation in the un-doped and 

doped Fe samples, with the percentage difference given in the last column. 
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In chapter 9 calculations were performed for the Fe(100), Fe(110) and Fe(111) surfaces to 

determine the surface stability of each surface. Results showed that the most stable surface is that 

of the Fe(110) crystal orientation, with Fe(100) being the second most stable surface and Fe(111) 

being the most unstable surface. It was shown that the most stable surface of Fe(110) was bulk 

terminated with no lattice relaxation occurring. The Fe(111) surface was shown to relax the most 

with little relaxation occurring in the Fe(100) surface. The stability of the surfaces are also seen in 

the experimental results presented in table 8.5. The unstable crystal orientations Fe(100) and 

Fe(111) have decreased, while the stable Fe(110) crystal orientation have increased in 

concentration. Thus it can be concluded that a stable surface structure is expected for the Fe(211) 

and Fe(310) crystal orientations. The different crystal orientations of the polycrystalline Fe samples 

can thus be arranged in order from most stable to unstable as Fe(110)>Fe(211)>Fe(310)> 

Fe(100)>Fe(111).  

 

An investigation of the S doped Fe surface was performed in order to determine which elements are 

present on a selected area of the sample. Figure 8.14 shows an SED image of the area on the 

sample chosen for elemental mapping analysis. The elemental maps of the 4 elements S, C, O and 

Fe are shown in figures 8.15-8.18. The combined elemental maps of Fe, S and C are shown in 

figure 8.19 and the combined elemental maps of Fe, S and O are shown in figure 8.20. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.14: SED image of the area on the S doped Fe sample selected for elemental 

mapping. 
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Figure 8.16: Elemental map of C on the surface of the annealed Fe sample. 

Figure 8.15: Elemental map of S on the surface of the annealed Fe sample. 
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Figure 8.17: Elemental map of Fe on the surface of the annealed Fe sample 

Figure 8.18: Elemental map of O on the surface of the annealed Fe sample 
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Figure 8.19: Elemental map of the three elements S, C and Fe on the surface of the 

annealed Fe sample 

Figure 8.20: Elemental map of the elements O, S and Fe on the surface of the annealed Fe 

sample 
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The elemental maps of figures 8.15-8.20 shows the S doped Fe surface to be dominated by Fe, with 

the exception of a number of areas where FeS has formed on the surface, referred to as FeS blobs 

from here on. Small quantities of both C and O can also be seen as surface contaminants. S has 

been observed to rapidly segregate via the grain boundaries [6], but looking at the elemental map of 

S in figure 8.15, no S is observed in the grain boundaries. This is explained by performing model 

calculations using the Guttmann model described in chapter 4, Segregation theory. Figure 8.21 

shows the segregation curves of S and P with segregation energies of respectively -60 kJ/mol (0.6 

eV) and -50 kJ/mol (0.5 eV). The interaction parameter for Fe/S was chosen as 8 kJ/mol (0.08 eV) 

which was obtained for the segregation of S in the doped Fe sample of section 8.5. For Fe and P a 0 

kJ/mol interaction parameter was chosen and for S and P an interaction parameter of 5 kJ/mol (0.05 

eV) was chosen. This was a valid choice since a positive interaction parameter is expected between 

S and P as concluded from the surface segregation measurements in section 8.5. The maximum 

surface concentration for the calculations were chosen as 34 % for S and 1 % for P. Little P is seen 

in the equilibrium segregation region of the segregation profiles shown in figure 8.26, section 8.5, 

making the low concentration of P chosen here a valid choice. 

 

 

 

 

 

 

 

Figure 8.21: Model calculations of S and P equilibrium segregation using the Guttmann 

model. 
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Using the same interaction parameters, profiles for a range of segregation energies for S and P were 

calculated. From literature the segregation energies of S and P in Fe(100) differed by a value of 10 

kJ/mol [7], this difference was maintained between the segregation energies of S and P for all the 

calculations performed here. Figure 8.22 shows only the S profiles calculated using the Guttmann 

model. The P profiles were omitted since the concentration of P in the equilibrium region is 

negligible. 

 

 

 

 

 

 

 

 

 

 

 

From figure 8.22 it is observed that very little S will be present in the grain boundaries at the 

annealing temperature of 1073 K for a segregation energy >-60 kJ/mol (0.6 eV). Thus it is 

concluded that the absence of S in the grain boundaries of figure 8.15 is due to a low grain 

boundary segregation energy of -60 kJ/mol (0.6 eV) at least 

 

No specific pattern is observed for the position of the FeS blobs on the Fe surface in figures 8.9 and 

8.14. It was calculated that the FeS blobs are approximately 5.5 µm in diameter. This was done by 

Figure 8.22: Model calculations for equilibrium surface segregation of S using the Guttmann 

model. 
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constructing a line segment both horizontally and vertically across 10 blobs to obtain an average 

value for the diameter of the blobs. To determine the thickness of one such blob, Auger depth 

profile analysis was performed. The surface was sputtered in intervals of 2 min at a rate of            

27 nm/min for a total of 114 min. Point 1 in figure 8.23 shows the point on the blob chosen for 

depth profile analysis and point 2 shows the point on an area of the clean Fe surface chosen for 

depth profile analysis. Point 2 was chosen to obtain experimental evidence that S has diffused 

homogeneously throughout the sample.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The results of the depth profile performed on point 1 is shown in figures 8.24. 

 

 

 

 

 

 

 

 

 

Figure 8.23: SED image of the surface area chosen for depth profile analysis. Point 1 shows 

the FeS blob chosen for depth analysis. Point 2 was chosen to confirm that S has diffused 

homogeneously throughout the sample. 
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From figure 8.24 it is observed that C and O with a layer thickness of <50 nm are present as surface 

contaminants which were easily removed by Ar
+
 ion sputter cleaning. From 50 nm the 

concentration of S is seen to decrease until the FeS phase region is entered. The plateau region of 

both the elements S and Fe indicates that a Fe-S phase has formed on the surface, and by noting 

that they both have a ~50 % concentration in this region it can be concluded that a FeS (50 % Fe, 

50 % S) phase has formed. The FeS blob was found to be 2268 nm (2.268 µm) in thickness. The 

results of the depth profile performed on point 2 is shown in figures 8.25. 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.24: Depth profile of the FeS blob which have formed during the annealing of the S 

doped Fe sample. 
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The Auger depth profile on the clean area of the S doped Fe surface, point 2, in figure 8.25 shows 

that C and O are present as contaminants on the surface. No S were detected, indicating that a 

homogeneous distribution of S in Fe was obtained during annealing.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.25: Auger depth profile on the clean area of the S doped Fe sample after the sample 

was annealed for 40 days at a temperature of 1073 K. 
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8.5. Surface segregation measurements 
 

 

 

 

The surface segregation results of the non-metal impurities O, N, B, C, S and P in polycrystalline 

bcc Fe obtained using the SAM 590 Auger system are presented in this section. The experimental 

procedure described in chapter 7, Experimental techniques, was used to obtain all the segregation 

profiles presented here. Two samples were analysed, the first is a pure polycrystalline Fe sample 

without any added S. The second sample measured was doped with 71.70 ppm S, using the method 

described in chapter 6, Sample preparation. In order to obtain the elemental concentrations of the 

segregated elements, the segregation profiles were quantified using the method for thin layers 

described in chapter 7, Experimental techniques.  

 

Fick`s linear programmed heating and Guttmann`s equilibrium models described in chapter 4, 

Segregation theory, were used to extract the segregation parameters for S and P. The linear 

programmed heating segregation profile of the un-doped and doped samples heated at a rate of  

0.0078 K/s are given in figure 8.26. 
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Figure 8.26: Segregation profiles of the elements O, N, C, B, S and P in polycrystalline bcc 

Fe samples heated linearly at a rate of 0.0078 K/s.(a) Un-doped sample (b) Doped sample. 
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Figure 8.26 shows the segregation of 6 non-metal impurities from the polycrystalline bcc Fe 

samples. For the un-doped sample the presence of O on the surface is not due to segregation alone, 

but due to O from the surroundings adsorbed onto the heated Fe surface. It is not possible from the 

results presented here to determine the respective amounts of O adsorbed and O segregated onto 

the surface. At 500 K a maximum surface concentration of 40 % is seen for O in both samples. 

Above 500 K O starts to desegregate due to the segregation of N which obtains a maximum surface 

concentration of 28 % at a temperature of 640 K. Above 550 K B and C is observed to be in 

competition to segregate to the surface. In the un-doped sample, B is the dominant element of the 

two and is observed to rapidly segregate at temperatures above 700 K. In the doped sample C 

seems to be the dominant element and segregates to a maximum surface concentration of 22 % at a 

temperature of 750 K. In both samples it is observed that the segregation of C causes N to 

desegregate. For the un-doped sample, the desegregation of C leads to the rapid segregation of B to 

reach a maximum surface concentration of 57 % at a temperature of 760 K. 

 

S is observed to start segregating very slowly in both samples at a temperature of 600 K, at 750 K 

in the un-doped sample the segregation of S causes B to desegregate. Both C and B is seen to 

desegregate due to the segregation of S in the doped sample. Very little P is seen to segregate in the 

un-doped sample at temperatures above 770 K reaching a maximum surface concentration of 4 % 

at 850 K before S causes the P to desegregate. This effect of S being able to dominate the Fe 

surface leading to the desegregation of all other impurity elements suggest that S has the largest 

segregation energy. The elements can be arranged from the first to the last to segregate as: O, N, 

B/C, S, P with S dominating the surface. The segregation of N is in good agreement with the 

observations by M.M. Eisl et. al. [8] and E.C. Viljoen et. al. [9] who observed N to segregate in the 

temperature region 523-673 K. Fujita et. al. [2] observed the segregation of C in the temperature 

range 573-673 K in Fe(100) and the segregation of S to occur at temperatures above 673 K. 

 

The dominance of an element on the surface is determined by the segregation energy of that 

element. The segregation energy is the amount of energy by which the total energy of the crystal is 

lowered when an atom is removed from the subsurface of the material and placed onto the surface. 

This is confirmed by the dominance of S, with a segregation energy of -134 kJ/mol (1.39 eV) for 

the un-doped sample, on the Fe surface. Thus the segregation of S resulted in the lowering of the Fe 

structures total energy by -134 kJ/mol (1.39 eV). Table 8.6 gives literature values for the 

segregation energies of some non-metal impurities considered here, obtained from Fe single 

crystals. 
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The fitting of Fick`s linear programmed heating model to the segregation profile of S obtained for 

the un-doped Fe sample is shown in figure 8.27, resulting in a pre-exponential factor, D0, of                   

4.90×10
-2

 m
2
/s and an activation energy, Q, of 190.8 kJ/mol (1.978 eV).  

 

 

 

 

 

 

 

 

 

Element Segregation energy, ΔG (kJ/mol) 

N -110 [7] 

C -85 [7] 

P -180 [7] 

S -190 [7] 

Figure 8.27: Fit of Fick`s linear programmed heating model to the segregation profile of S, 

resulting in a pre-exponential factor, D0, of 4.90×10
-2

 m
2
/s and an activation energy, Q, of 

190.8 kJ/mol (1.978 eV). 

Table 8.6: Segregation energies of the non-metal impurities N, C, S and P in Fe single 

crystals as obtained from literature. 
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In figure 8.27, two discrepancies between the model of Fick and the experimental data is observed, 

the first occurs in the temperature range ~725-785 K and the second occurs between the 

temperatures 825-900 K. Looking at figure 8.26(a), the deviations between the model of Fick and 

the experimental data can be explained by a strong interaction occurring between S and one of the 

other segregating elements. At temperatures below 725 K the segregation curve of S can be 

described by Fick` model, but above 700 K B segregates rapidly causing the segregation curve of S 

to deviate from Fick`s model. The experimental data has a lower segregation rate as what is 

predicted by the model of Fick, caused by a positive interaction energy leading to a repulsive force 

between S and B. Similarly the second discrepancy in the temperature range ~825-900 K can be 

explained by the interaction of S and P. Here the segregation of P causes the segregation rate of S 

to decrease as a result of a positive interaction parameter leading to a repulsive force between S and 

P. Thus the presence of other elements in the Fe causes local changes in the segregation rate of S 

and thus the fit shown in figure 8.27 provides an average segregation rate for S in the un-doped Fe 

sample. 

 

To provide a description of the equilibrium segregation region the model of Guttmann was fitted to 

the segregation profiles of the elements S, P and Fe. Figure 8.28 shows the fitting of the Guttmann 

model to the experimental data of S. Since the concentration of P is ~0 in the equilibrium region 

the fit for P is omitted from figure 8.28. For S a segregation energy, ΔG, of -134 kJ/mol (-1.39 eV) 

and a interaction parameter, ΩFe/S, of 20 kJ/mol (0.2 eV) was obtained. 
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Figure 8.29 shows the combination of Fick`s linear programmed heating model describing the 

kinetics of surface segregation and Guttmann`s model describing the equilibrium region of surface 

segregation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.28: Fit of Guttmann`s model describing the equilibrium region of the S segregation 

profile. A segregation energy of -134 kJ/mol (1.39 eV) and a interaction parameter of 20 

kJ/mol (0.2 eV), describing the interaction between Fe and S, was obtained. 
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Figure 8.29 provides a complete picture of the two models used to respectively describe the 

kinetics and equilibrium regions of surface segregation. The circles in image 8.29 indicates the 

regions where the S segregation profile deviates from Fick`s model due to a positive interaction 

parameter between S and B and S and P respectively. 

 

Fitting of Fick`s linear programmed heating model to the segregation profile of P is shown in figure 

8.30. The pre-exponential factor, D0, and activation energy, Q, were respectively determined as               

0.129 m
2
/s and 226.5 kJ/mol (2.348 eV). 
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Figure 8.29: Combination of Fick`s linear programmed heating model and Guttmann’s 

model to the segregation profile of S in a un-doped polycrystalline bcc Fe sample. The circles 

indicate the regions in which Fick`s model failed to describe the kinetics of S segregation due 

to a positive interaction parameter between S and B and S and P respectively. 
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A good description of the experimental data is given by the model of Fick with no deviations 

observed between the experimental data and the fitting of Fick`s model. 

 

The results obtained for the segregation of S in the doped Fe sample are presented in the remainder 

of this section. The fitting of Fick`s linear programmed heating model to the doped sample having 

a total S concentration of 77.70 ppm is shown in figure 8.31. The sample had an initial S 

concentration of 6 ppm, together with the amount with which the sample was doped, 71.70 ppm, 

resulted in a total S concentration of 77.70 ppm. 

 

 

 

 

 

 

 

 

Figure 8.30: Fit of Fick`s linear programmed heating model to the segregation profile of P 

for the un-doped Fe sample which delivered a pre-exponential factor, D0, of 0.129 m
2
/s and a 

activation energy, Q, of 226.5 kJ/mol (2.348 eV). 
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Similar behaviour for the kinetics of segregation is observed for the doped sample as was observed 

for the un-doped sample presented in figure 8.27. Due to the increased bulk S concentration very 

little P is observed to segregate, nevertheless a kink in the S segregation profile can be seen due to 

the interaction of S and P at temperatures above 875 K. A large interaction between C and S is also 

observed, which is evident in the large kink of the S segregation profile at a temperature of 830 K. 

The results obtained by fitting Fick`s model to the segregation curve of S resulted in a pre-

exponential factor, D0, of 1.79×10
-2

 m
2
/s and an activation energy, Q, of 228.7 kJ/mol (2.370 eV). 

Literature values of D0=0.16 m
2
/s and Q=231 kJ/mol (2.39 eV) was obtained by Reichl et. al. [6] 

and a good agreement is seen between the literature and experimental values measured in the two 

samples. 

 

Figure 8.32 shows the fitting of the Guttmann model to the equilibrium region of the segregation 

profile. The values for the segregation energy, ΔG, and the interaction parameter, Ω, obtained are 

respectively -145 kJ/mol (-1.50 eV) and 8 kJ/mol (0.08 eV). 

Figure 8.31: Fit of Fick`s linear programmed heating model to the segregation profile of S 

for the doped Fe sample, resulting in a pre-exponential factor, D0, of 1.79×10
-2

 m
2
/s and a 

activation energy, Q, of 228.7 kJ/mol (2.370 eV). 
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Comparing the segregation energy and interaction parameter of S obtained for the un-doped sample 

to the values obtained for the doped sample, differences are seen to occur. These differences are 

caused by the difference in the crystal orientations of the samples measured. The segregation 

energy is calculated as the difference in the binding energy of a impurity atom in the subsurface 

layer minus the binding energy of that atom on the surface of the material. Since S will have 

different surface binding energy values for different surface orientations, different segregation 

energies are expected. In chapter 9, section 9.4.3 the segregation energy of S in Fe(100) was 

calculated using this method with a value of -179.4 kJ/mol (-1.859 eV) compared to the 

experimental value of -190.0 kJ/mol (-1.969 eV) obtained by Grabke and Viefhaus [10]. The 

mathematical expression for the interaction parameter is given by equation 8.6 [11]. 
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Figure 8.32: Fit of Guttmann`s model to the equilibrium region of the segregation profile of 

S for the doped Fe sample which delivered a segregation energy of -145 kJ/mol (-1.50 eV) 

and a interaction parameter of 8 kJ/mol (0.08 eV).  
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where   is the binding energy for the elements of interest and Z is the number of nearest neighbour 

atoms. The binding energy of Fe, 11  is not expected to change, but for different surface 

orientations different binding energies of S, 22  and S to Fe, 12  is expected. This is caused by the 

different positions in which the S atoms will bind onto the Fe surface. This statement is confirmed 

by the literature information which shows that S will form a c(2×2) structure on the Fe(100) 

surface and a p(1×1) structure on the Fe(111) surface. Thus the decrease in the interaction 

parameter is due to different surface orientations for the un-doped and doped Fe samples. 

 

The combined fits of Fick`s linear programmed heating and Guttmann`s model on the segregation 

profile for the doped Fe sample is shown in figure 8.33. 

 

 

 

 

 

 

 

 

 

 

 

The circle in figure 8.33 indicates the deviations in the experimental data and the model of Fick, 

caused by the interaction of S and P. 
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Figure 8.33: Combined fit of Fick`s linear programmed heating model and Guttmann`s 

model on the segregation profile of S obtained for the doped Fe sample. 
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Figure 8.34 shows the plot of the segregation profiles of S for both the un-doped and the doped Fe 

samples with the model of Fick fitted to the data.  

 

 

 

 

 

 

 

 

 

 

The initial segregation of S in the two samples are the same up to a temperature of 700 K where the 

profiles start to follow different paths. Another confirmation that the crystal orientations of the 

samples measured are different is given by the difference in the two profiles for temperatures above 

700 K. Different crystal orientations will have different activation energies as was shown in the 

calculation of chapter 9. In section 8.4 it was determined that the two samples, the un-doped and 

doped samples have different concentrations of the different crystal orientations. The increase in 

concentration of the stable Fe(110) surface with a theoretical activation energy of 277.4 kJ/mol 

(2.875 eV) and a decrease of the Fe(100) and Fe(111) orientations with theoretical activation 

energies of respectively 266.8 kJ/mol (2.765 eV) and 188.1 kJ/mol (1.950 eV) contributed to the 

activation energy of the doped sample to increase. The above theoretical values for the activation 

energies were obtained from chapter 9, Computational results. 

Figure 8.34: Combined plot of the S segregation profiles for the un-doped and doped 

samples of Fe along with the fits of Fick`s linear programmed heating model. 
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8.6. Summary 

 

 

 

 

Auger depth profile analysis performed on two differently doped Fe samples confirmed the 

successful doping of Fe with S using the newly proposed method and experimental set-up. It was 

found that by doubling the diffusion time, resulted in a 89.38 % increase of the S concentration. 

SED images of the annealed sample surface revealed that the presence of S caused a 36±11% 

decrease in the grain sizes of the Fe sample. It was concluded that the presence of S caused an 

increased rate in the 3 steps of annealing: recovery, nucleation and grain growth.      

 

X-ray diffraction revealed the following crystal orientations for the un-doped Fe sample and the Fe 

sample doped with 71.70 ppm S: Fe(100), Fe(211), Fe(110) Fe(310) and Fe(111). The percentage 

of each crystal orientation present in the samples and their differences are summarized in the table 

below. 

 

 

 

Orientation % Un-doped sample % Doped sample % Difference 

Fe(100) 26.25 21.07 -5.180 

Fe(211) 22.74 24.77 +2.030 

Fe(110) 4.748 21.16 +16.41 

Fe(310) 4.825 5.221 +0.396 

Fe(111) 41.45 27.78 -13.67 

 

 

 

The largest percentage changes in concentration for the S doped Fe sample was observed for the 

three low-index planes of Fe. In order from largest to smallest concentration change, the three 

orientations can be arranged as: Fe(110)>Fe(100)>Fe(111). The activation energies for the three 

low-index orientations of Fe, calculated in chapter 9, can be arranged from most stable to least 

stable as: Fe(110)>Fe(100)>Fe(111). Thus it can be concluded that the more stable surfaces have 

grown during annealing, consuming the unstable orientation of Fe. Thus two effects were observed 

to have occurred in the S doped Fe sample when annealed, the first is the decrease in grain sizes 

caused by the presence of S in the sample. Secondly is the grain growth of the more stable 

orientations of Fe which consumed the more unstable orientations of Fe. 
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Elemental mapping of the Fe-S surface revealed the presence of C and O as surface contaminants 

and the presence of FeS phase areas which have formed on the surface. No S was observed in the 

grain boundaries due to a low grain boundary segregation energy of -60 kJ/mol (0.6 eV) at least, at 

which the S would desegregate into the bulk. The formation of FeS blobs were observed in certain 

areas on the Fe surface with a diameter of 5.5 µm and a thickness of 2.268 µm. The thickness of 

the FeS phase was measured by Auger depth profile analysis, from which the formation of a FeS 

phase could be identified. 

 

Results for the segregation of S in the un-doped polycrystalline bcc Fe delivered the following 

segregation parameters: D0=4.90×10
-2

 m
2
/s, Q=190.8 kJ/mol (1.978 eV), ΔG=-134 kJ/mol (-1.39 

eV) and ΩFe/S=20 kJ/mol (0.2 eV). For the segregation of P in the un-doped Fe sample a D0 value of 

0.129 m
2
/s and a Q value of 226.5 kJ/mol (2.348 eV) were obtained. For the segregation 

measurements on the doped Fe sample, the segregation parameters of S was determined as: 

D0=1.79×10
-2

 m
2
/s, Q=228.7 kJ/mol (2.370 eV), ΔG=-145 kJ/mol (-1.50 eV) and ΩFe/S=8 kJ/mol 

(0.08 eV). The difference in the activation energies, segregation energies and interaction parameter 

values were explained at the hand of different crystal orientations of the un-doped and doped Fe 

samples. 
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Chapter 9: Computational results 
 

 

 

 

9.1. Introduction 
 

 

 

 

The computational results for the diffusion and segregation of sulfur (S) in bcc iron (Fe) are 

presented in this chapter. The bulk binding energies were calculated for pure Fe and for the 

substitutional, octahedral interstitial and the tetrahedral interstitial sites of S in bcc Fe. Using the 

optimized lattice positions, the climbing image nudged elastic band (CI-NEB) method was used to 

calculate the migration energy for the diffusion of S in the respective lattice sites. Considering the 

formation of vacancies as the formation of a Schottky defect in the lattice, vacancy formation 

energies were calculated for the three low-index planes, Fe(100), Fe(110) and Fe(111), of bcc Fe. 

The activation energy for the respective surfaces for each of the diffusion mechanism were 

calculated and compared to literature values. It was found that S diffuses throughout bcc Fe via a 

nearest neighbour substitutional diffusion mechanism. For the Fe(100) surface the equilibrium 

position of segregated S was determined as the hollow site with a segregation energy which was 

found to be in good agreement with the literature value. 

 

 

 

 

9.2. Computational details 
 

 

 

 

All calculations were performed using the QUANTUM Espresso code [2], which performs fully 

self-consistent DFT calculations to solve the Kohn–Sham equations [3]. The Kohn-Sham equations 

were solved for the generalized-gradient approximation (GGA), using the functional of Perdew and 

Wang (PW91) [1]. The electronic wave functions were expanded as linear combinations of plane 

waves, truncated to include only plane waves with kinetic energies below the energy cut-off, Ecut, 

of 381 eV. Core electrons were replaced by ultrasoft pseudopotentials (USPP) [4] in order to 

increase the efficiency of the calculations. k-space sampling was performed using a Monkhorst-

Pack mesh [5] of dimension 8×8×8 for all single unit cell (1×1×1) calculations and a mesh of 

dimension 3×3×3 for all calculations on the 3×3×3 bulk supercell. For all surface calculations, the 
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size of the k-point mesh was reduced to 3×3×1, where the smaller dimension is in the direction of 

the surface. For metallic smearing, the scheme of Methfessel and Paxton [6] with a smearing width 

of 0.54 eV was used. A fractional spin up state of 0.4 was used for the starting magnetization which 

resulted in the ground state energy of the system. To ensure that the calculations for the supercells 

are reliable, the total energy have been converged to 4.23×10
-4

 eV/atom with respect to the 

computational parameters. The ground state properties of bcc Fe for a (1×1×1) unit cell are 

summarized in table 9.1. 

 

 

 

 

 

 

 

 

 

 

 

For all structural relaxation calculations the total energy was converged to 1×10
-3

 eV and the forces 

have been converged to 1×10
-2

 eV/Å. For all surface structures a vacuum spacing of 14.81 Å was 

used, which was determined efficient to avoid the interaction of periodically repeated cells. This 

value corresponds well to literature values of 10-14 Å [8; 9; 10; 11; 12; 13]. All surfaces consisted 

of 9 atomic layers, with 4 atomic layers to simulate the surface and 5 atomic layers, that were kept 

frozen, to represent the bulk of the material. The choice for using nine atomic layers was based on 

literature information, where depending on the information required structures of 4-17 atomic 

layers have been used [8; 9; 10; 11; 12; 13]. The climbing image nudged elastic band (CI-NEB) [14] 

method was used to calculate the minimum energy paths (MEP) and migration energy barriers for 

the diffusion of S in bcc Fe. To ensure that the CI-NEB calculations are fully optimized, the 

Broyden optimization scheme was used to relax all images to <0.05 eV/atom. To ensure that a high 

resolution is obtained at the transition state, a variable elastic constant was used in all CI-NEB 

calculations. A minimum elastic constant value of 0.017 N/Å and a maximum value of 1.166 N/Å 

was used. These values were determined by the software as the most appropriate values that would 

allow the elastic band to relaxed unconstrained. The detailed calculations of the parameter 

optimizations are given in Appendix B. 

 

Parameter This work Experimental [7] Theory (PW91) [8] 

Lattice parameter, a (Å) 2.861 2.866  2.869 

Bulk modulus, B0 (GPa) 149.5 168.0 140.0 

Magnetic moment, B (µB) 2.48 2.22 2.37 

Table 9.1: Ground state properties of bcc Fe, calculated using the GGA functional of Perdew 

and Wang (PW91) [1]. 
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9.3. Bulk Fe calculations 
 

 

 

 

9.3.1. Binding energy  
 

 

 

 

In order to establish by which mechanism S diffuses in bcc Fe, the lattice site where S bonds most 

strongly and the corresponding binding energy of that lattice site is needed. To determine the 

equilibrium lattice site of S, the damped dynamics structural relaxation algorithm was used to relax 

all crystal structures. A substitutional lattice site and the two interstitial sites, the tetrahedral and 

octahedral sites were considered as equilibrium positions for S in the bcc Fe lattice. The binding 

energy of pure bcc Fe was also calculated to serve as a reference value for binding energies 

calculated using the computational parameters specified in section 9.2. The binding energy, ,BE  

for an atom in the 3×3×3 bcc Fe structure was calculated using equation 9.1 [15; 16] 

 

 

 

N

NEE
E FeAtomFe

B


                                                     (9.1) 

 

 

 

where, EFe, is the total energy of the 3×3×3 bcc Fe supercell structure, N is the number of Fe atoms 

in the supercell and EFeAtom is the energy of a single Fe atom in the gas phase. EFeAtom was calculated 

by performing a total energy calculation for a single Fe atom in a 14.81 Å cubic cell. Equation 9.1 

gives an average value for the binding energy of an Fe atom, but since the cell is symmetrical the 

value accurately describes the binding energy of any one atom in the 3×3×3 Fe structure. The value 

calculated was -4.878 eV/atom which is in good agreement with the calculated value of                   

-4.89 eV/atom found in literature [17], see table 9.2. From literature, the experimental binding 

energy -4.28 eV/atom [18], differing with the value calculated in this work by 0.60 eV or 12.26 %. 

This difference is acceptable considering that binding energies are overestimated by DFT [19]. 

 

For the S atom to diffuse via a substitutional mechanism a vacant lattice site is required. The 

energy needed to accommodate this vacant site in the lattice is termed Edefect, where the vacant site 

is considered as a defect in the lattice. It should be noted that this energy term, Edefect is not the 

amount of energy that is needed to create a vacancy in a perfect bcc Fe crystal structure, it is only 
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the amount of energy that is needed by the Fe lattice to accommodate a vacant lattice site. Equation 

9.2 is used to calculate the energy of the defect, Edefect, in the pure bcc Fe crystal 

 

 

 

 BFeAtomvacancyFeFedefect EEEEE                                       (9.2) 

 

 

 

where EFe+vacancy is the total energy of the 3×3×3 bcc Fe supercell structure containing one vacant 

lattice site. This statement is in contradiction to literature, where it is believed that the vacancy 

formation energy is indeed given by the term Edefect [20; 21; 22]. The difference arises due to the 

approach used in this work to calculate the vacancy formation energy as opposed to how it is 

commonly done in literature. According to literature, the formation of a vacancy is seen as the 

removal of an atom from the system, thus an atom is placed in the gas phase. This is unlikely to 

occur at temperatures below the melting point of bcc Fe. In this work, the formation of a vacancy is 

considered as the formation of a Schottky defect [23] in the crystal. An atom is removed from the 

bulk of the crystal and placed on top of the surface leaving a vacant site in the bulk material. This is 

the approach followed by Terblans [24; 25], whom was able to successfully calculate the formation 

of vacancies in both aluminium (Al) and copper (Cu) single crystals. A complete discussion on 

how vacancy formation energies are calculated using the method proposed by Terblans is done in 

section 9.4.2. 

 

The term in brackets of equation 9.2 is calculated by dividing the total energy of the 3×3×3 bcc Fe 

structure by the number of Fe atoms, N, in order to get an average energy per Fe atom, equation 9.3. 

This value includes the energy of the Fe atom itself (an Fe atom in the gas phase) as well as the 

average binding energy of an Fe atom in the lattice 

 

 

 

 
N

E
EE Fe

BFeAtom  .                                                 (9.3) 

 

 

 

Equation 9.4 which is similar to equation 9.2 is used to calculate the binding energy of the 

substitutional S atom in the Fe lattice  

 

 

 

defectSvacancyFeSFeB EEEEE   .                                     (9.4) 
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where EFe-S is the total energy of the Fe-S structure and ES is the total energy for a single S atom in 

the gas phase. The value of ES was calculated for a single S atom in a 14.81 Å cubic box. The value 

of Edefect is the value calculated using equation 9.2. A binding energy of -3.605 eV was calculated 

for S, which is in good agreement with the calculated literature value of -3.10 eV [26]. Figure 9.1, 

shows the optimized position of S (purple atom) in the substitutional lattice site of the 3×3×3 bcc 

Fe crystal. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The binding energy, EB, for the tetrahedral and octahedral interstitial positions of S were calculated 

using equation 9.5 

 

 

 

SFeSFeB EEEE   .                                                  (9.5) 

 

 

 

The calculation of the binding energy for the octahedral site resulted in a value of -1.660 eV, while 

a value of -1.464 eV was found for the tetrahedral lattice site of S. Thus if the S atom is to occupy 

an interstitial lattice site in the Fe lattice, then the octahedral site with a higher binding energy 

resulting in a lower total energy of the structure would be favoured. The octahedral interstitial 

position of S (purple atom) in bcc Fe is illustrated in figure 9.2 and figure 9.3 illustrates the 

Figure 9.1: Substitutional position of S (purple atom) in a 3×3×3 bulk bcc Fe crystal 

structure.  
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tetrahedral interstitial position of S in bcc Fe. For illustration purposes the crystal cells were cut in 

half in order to display the position of the S atom inside the respective Fe lattices. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.2: Octahedral interstitial position of S (purple atom) in bulk bcc Fe. For illustration 

purposes the front view of a Fe cell cut in half is displayed in order to provide a clear view of 

the S atoms’ position. 

Figure 9.3: Tetrahedral interstitial position of S (purple atom) in bulk bcc Fe. For illustration 

purposes the front view of a Fe cell cut in half is displayed in order to provide a clear view of 

the S atoms’ position. 
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Table 9.2 summarizes the binding energy values for the bulk Fe, Fe-S (substitutional S), Fe-S 

(octahedral interstitial S) and Fe-S (tetrahedral interstitial S) structures. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

9.3.2. Lattice strain 
 

 

 

 

Looking at figures 9.2 and 9.3, it is evident that the interstitial S atom causes the Fe lattice to 

become distorted, due to the strain caused on the lattice by the presence of the S atom. To 

determine the amount of lattice strain caused by the S atom in the respective substitutional and 

interstitial positions, equation 9.6 [27] was used  

 

 

 

Fe

FeSFe

a

aa 
                                                             (9.6) 

 

 

 

where aFe is the equilibrium lattice parameter of the Fe 3×3×3 supercell and aFe-S is the lattice 

parameter of the 3×3×3 supercell of Fe containing a S atom. Table 9.3 gives the values for the 

percentage strain experienced by the Fe lattice due to the presence of the S atom in the respective 

interstitial and substitutional lattice sites. 

 

 This work Theory Experimental % Deviation 

Pure bcc Fe -4.878 -4.89 [17] -4.28 [18] 12.26 

Substitutional -3.605 -3.10 [26] - - 

Interstitial (octa) -1.660 - - - 

Interstitial (tetra) -1.464 - - - 

Table 9.2: Calculated binding energy values in units of electron volts per atom for Fe and the 

substitutional and interstitial positions of S in bcc Fe. Also the experimental binding energy 

value of Fe obtained from literature is given. The last column contains the percentage deviation 

in the values calculated in this work as compared to the experimental values found in literature. 
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The results in table 9.3 indicates that the interstitial positions of S in bcc Fe causes the Fe structure 

to become strained. This will cause the total energy of the structure to increase by a value of 

approximately 1.945-2.141 eV; the difference in binding energy between the substitutional and 

interstitial sites of S. Under normal circumstances this energy increase would be an unlikely event. 

Thus taking into consideration the weak binding energy of S in the interstitial positions and the 

strain caused by the S atom in the interstitial positions, the most probable position for S in bcc Fe 

would be a substitutional position. 

 

 

 

 

9.3.3. Charge density  
 

 

 

 

To obtain a deeper understanding regarding the behaviour of the S impurity in the different lattice 

sites, charge density plots of the respective structures were constructed. In figure 9.4(a) the S 

impurity is shown in the substitutional lattice site of bcc Fe with the corresponding charge density 

plot given in figure 9.4(b). It is seen in figure 9.4(b) how the delocalized charge of the metal is 

drawn towards the electronegative S atom, which has a value of 2.58 on the Pauling scale [28]. Due 

to the accumulation of charge on the S atom, a S ion is formed with an ionic radius larger than that 

of the neutral S atom. From the current calculations it is not possible to give the exact ionic state of 

the S ion and further analysis is required. The charge accumulation on the S atom causes a charge 

poor or a charge depleted region on the outside of the S ion. Charge transfer effects due to the 

presence of S in Fe was also observed by Nelson et al.[11]. They investigated the change in the 

work function of the Fe(100) surface upon adsorption of S and found an increase in the work 

function due to the electronegative S atom withdrawing charge from the surface. Panzner et. al. 

conducted XPS measurements and found from core level analysis that the electron binding energies 

S atom position % Strain 

Interstitial (octahedral) 1.818 

Interstitial (tetrahedral) 1.818 

Substitutional 0 

Table 9.3: Percentage strain experienced by the bcc Fe 3×3×3 supercell structure due to the 

presence of S in the respective interstitial and substitutional lattice sites. 
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of the S 2p peak are in the range 162.2 eV to 161.7 eV, which indicates that the S atoms are 

negatively charged as a result of the charge transfer from Fe to S.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The same charge effects as seen for the substitutional position of S in bcc Fe is observed for the 

interstitial positions of S in bcc Fe, shown in the charge density plots of figures 9.5(b) and 9.6(b). 

Figures 9.5(a) and 9.6(a) shows the respective octahedral and tetrahedral interstitial sites of S in 

bcc Fe. As before the S atom is observed to increase in size due to the accumulation of charge on 

the S atom, which leads to the formation of a S ion with a larger ionic radius as compared to the 

Figure 9.4: (a) Substitutional position of S (purple atom) in bulk bcc Fe. (b) The charge 

density plot in the x-plane of the Fe-S crystal structure. An increase in the size of the S atom is 

observed as a result of charge accumulating on the electronegative S atom. 
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neutral S atom. Unlike the case of a substitutional S atom, no depletion region is observed outside 

of the S ion for either of the two interstitial S structures. This can be contributed to the structures 

being strained resulting in a larger bulk modulus and thus a more confined space is observed for the 

S ion in the interstitial sites. Rather than a depletion region around the S ion, bonding between the 

S atom and the Fe atoms is observed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.5: (a) Octahedral interstitial position of S (purple atom) in bulk bcc Fe. (b) The 

charge density plot in the x-plane of the crystal structure. The increased size of the S atom as a 

result of the electronegative character of S is evident. 
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The larger ionic radius of the S ion agrees with the binding energy findings which indicates that the 

most stable position for the S atom would be in a substitutional lattice site. This section provided 

information regarding the binding of S in the three possible lattice sites of a bcc Fe crystal. The 

more favourable site was determined to be the substitutional site due to a larger binding energy 

value and the fact that for a substitutional S atom there is no strain on the crystal. The strain for the 

interstitial positions of S is caused by the large ionic radius of S resulting from the transfer of 

charge from the Fe structure to the S atom. This section states that if a substitutional position is 

available in the lattice, the probability of S occupying that position is higher than the probability of 

S occupying an interstitial position. This does not mean that S will never occupy an interstitial 

Figure 9.6: (a) Tetrahedral interstitial position of S (purple atom) in bulk bcc Fe. (b) The 

charge density plot in the x-plane of the crystal structure. The increased size of the S atom as 

a result of the electronegative character of S is evident. 
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lattice site, only that the probability of that occurring is smaller compared to a substitutional 

position and that such an event is unlikely to occur. The next section looks at the energy 

requirements for the migration of S in bcc Fe. 

 

 

 

 

9.3.4. Reaction pathways and activation energy 

calculations 

 

 

 

 

The different diffusion paths of S in bulk bcc Fe are studied in this section by employing the 

climbing image nudged elastic band (CI-NEB) method. The minimum energy paths and 

corresponding migration energy barriers for the different diffusion mechanisms of S in bcc Fe are 

presented. According to the binding energy calculations from a previous section, section 9.3.1, S 

prefers to bind in a substitutional lattice site within the bcc Fe lattice. For this site, two possible 

diffusion mechanisms are considered, namely a nearest neighbour (nn) substitutional diffusion 

mechanism and a next nearest neighbour (nnn) substitutional diffusion mechanism. Despite the 

small probability that exist for S to occupy an interstitial lattice site due to the small binding energy 

and the strain it causes on the Fe lattice, both octahedral and tetrahedral interstitial diffusion 

mechanisms are also investigated. 

 

Figure 9.7 illustrates the nn substitutional diffusion mechanism of S (purple atom) in bcc Fe, here S 

diffuses from a substitutional lattice site to a nearest neighbour substitutional vacancy in the crystal. 

For illustration purposes the crystal cells were cut diagonally in order to provide a clear view of the 

diffusion process, this is illustrated in the first image of figure 9.7. The CI-NEB method with a 14 

image linear path was used in the calculation in order to provide a high resolution of the migration 

energy barrier. The climbing image was automatically determined by the software as image 8, see 

figure 9.8. Due to the small distance over which the S atom needs to diffuse and the configuration 

and symmetry of the atoms, the possibility of a non-linear path was not considered. In figure 9.8, 

the first image is positioned at a reaction coordinate of 0 and the last image is located at a reaction 

coordinate of 1. To give a complete energy profile of the substitutional diffusion process, the 

migration energy barrier was extrapolated to higher and lower reaction coordinates. It can be seen 

from the images in figure 9.7 that a very open structure is formed by the presence of the vacancy, 

making the diffusion of S via this mechanism energetically favourable. This is evident in the low 

migration energy barrier of 0.103 eV shown in figure 9.8. 
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Figure 9.7: Illustration of the nearest neighbour substitutional diffusion of S in bcc Fe. The S 

atom (purple atom) diffuses from one substitutional lattice site to a nearest neighbour vacancy 

site. 
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Image 11 Image 14 
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Figure 9.8 shows that there exist a relatively large area in the Fe crystal were the S atom is located 

in a minimum energy position, which is separated by the small energy barrier of 0.103 ±0.007 eV. 

The small energy difference in the initial and final images, images 1 and 14, results in the error of 

0.007 eV for the migration energy barrier.  

 

In section 9.4.2 the vacancy formation energy is calculated, and it is proposed that the vacancy 

formation energy is dependent on the surface orientation of the crystal. For completeness the 

vacancy formation energy results are also given in table 9.4 

 

 

 

 

 

 

 

 

 

Figure 9.8: Migration energy barrier for the diffusion of S via the nearest neighbour 

substitutional diffusion mechanism, whereby a substitutional S atom diffuses into a nearest 

neighbour vacancy. 

-0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.00

0.02

0.04

0.06

0.08

0.10

0.12

 

 

 Images

 Interpolation

 

M
ig

ra
ti

o
n

 e
n

er
g

y
, 

E
m
 (

eV
)

Reaction coordinates

    E
m
 = 0.103  0.007 eV 

1

4

8

11

14



CHAPTER 9: COMPUTATIONAL RESULTS 

 

209 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The assumption was made that the migration energy barrier of S is predominantly determined by 

the bulk of a material and thus would be the same for the three crystal orientations Fe(100), Fe(110) 

and Fe(111). Equation 9.7 is used to determine the activation energy, Q, for the substitutional 

diffusion of S  

 

 

 

vacm EEQ  .                                                          (9.7) 

 

 

 

The activation energy is calculated as the sum of the migration energy barrier, Em, and the vacancy 

formation energy, Evac. Table 9.5 gives the activation energies of the three low-index Fe 

orientations for the nn substitutional diffusion mechanism. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As previously mentioned a vacancy is required for S to diffuse via a substitutional mechanism. 

From the results of the substitutional diffusion mechanism it is seen that the presence of a vacancy 

Crystal orientation Calculated vacancy formation energy, Evac (eV) 

Fe(100) 2.662 

Fe(110) 2.772 

Fe(111) 1.847 

Crystal orientation Calculated activation energy, Q (eV) 

Fe(100) 2.765 

Fe(110) 2.875 

Fe(111) 1.950 

Table 9.4: Calculated vacancy formation energies of the three low-index Fe surfaces, Fe(100), 

Fe(110) and Fe(111). 

Table 9.5: Calculated activation energies for the nearest neighbour substitutional diffusion of S 

in the three Fe surfaces: Fe(100), Fe(110), Fe(111).  
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in a nearest neighbour lattice site provides a low migration energy path for S diffusion. It is 

important to also consider the case where the vacancy is not located in the nearest neighbour (nn) 

lattice site, but in the next nearest neighbour (nnn) lattice site. Thus if the S atom follows this 

diffusion path it will need to diffuse from a substitutional lattice site through a interstitial 

(octahedral) lattice site and into the nnn vacancy site. This nnn substitutional diffusion mechanism 

of S was studied using the CI-NEB method with a 10 image linear path as an initial guess. The 

calculation was also performed for a non-linear path of 10 images to ensure that the symmetry of 

the cell did not contribute to the MEP. The image of highest energy, the climbing image, was 

automatically determined by the software as image 5. The diffusion process is illustrated in figure 

9.10, with the migration energy barrier shown in figure 9.9.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.9: Migration energy barrier for the diffusion of S via the next nearest neighbour 

substitutional diffusion mechanism, whereby a S atom diffuses into a next nearest neighbour 

vacancy.  
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Unlike the substitutional mechanism where the presence of the vacancy provided a open structure, 

here an amount of energy is required to distort the lattice in order to provide a channel by which the 

S atom can diffuse. Using the vacancy formation energies provided in table 9.4 together with 

equation 9.7, the activation energy for each of the three surfaces were calculated and are tabulated 

in table 9.6. 

 

 

Figure 9.10: Illustration of the next nearest neighbour substitutional diffusion mechanism of S 

(purple atom) in bcc Fe. 
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The large migration energy for this mechanism makes it very unlikely to occur. Considering that 

the self-diffusion of Fe has a calculated migration energy barrier of 0.558-0.83 eV [29; 30]. Thus 

the more likely process to occur if a nearest neighbour vacancy is not present for substitutional 

diffusion is for the Fe atoms in the crystal to self-diffuse until a nearest neighbour vacancy 

becomes available to the S atom. 

 

Although the interstitial diffusion of S in bcc Fe is an unlikely event due to the strain caused by an 

interstitial S atom in the Fe lattice and also due to the weak bonding of the S atom in either of the 

two interstitial sites. There is a certain probability, however small, that such an event can occur and 

thus the migration energy for these processes needs to be considered. The CI-NEB algorithm with a 

32 image linear path was chosen in order to provide a high resolution of the migration energy path. 

Due to the complex migration energy path of this mechanism, the climbing images were manually 

chosen as images 5, 15 and 28. For the interstitial diffusion of S, the atom was allowed to diffuse 

from one octahedral to a nearest neighbour octahedral site. Figure 9.11 illustrates some images of 

the CI-NEB calculation with the activation energy barrier given in figure 9.12. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Crystal orientation Calculated activation energy, Q (eV) 

Fe(100) 3.662 

Fe(110) 3.772 

Fe(111) 2.847 

Table 9.6: Calculated activation energies for S diffusing via the next nearest neighbour 

substitutional diffusion mechanism in the three bcc Fe surfaces, Fe(100), Fe(110) and Fe(111). 



CHAPTER 9: COMPUTATIONAL RESULTS 

 

213 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Image 1 Image 3 Image 5 

Image 9 Image 15 Image 17 

Image 24 Image 28 

Figure 9.11: Illustration of the interstitial diffusion mechanism of S in bcc Fe. The S atom 

diffuses from a octahedral interstitial site to a nearest neighbour octahedral interstitial site via 

the tetrahedral interstitial sites. 

Image 30 
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The interstitial diffusion of S can be separed into two individual processes, the diffusion of S from 

an octahedral site to a tetrahedral site and the diffusion of S from one tetrahedral site to the nearest 

neighbour tetrahedral site. Using the activation energy profile in figure 9.12, the activation energy 

for the diffusion of S from a octahedral site to an tetrahedral site was calculated as 0.208 eV. For 

the diffusion of S from one tetrahedral site to the nearest neighbour tetrahedral site an activation 

energy of 0.046 eV was obtained. 

 

All the possible diffusion mechanisms for S in bcc Fe have been considered in this section. From 

the binding energy calculations in section 9.3.1 it is most probable that S will occupy a 

substitutional lattice site. The two possible diffusion mechanisms for this site have been 

investigated, the nn substitutional diffusion and the nnn substitutional diffusion mechanisms. The 

nn substitutional diffusion path was found to be the most likely diffusion mechanism. For the 

interstitial diffusion mechanism both the octahedral and tetrahedral sites of S in bcc Fe were 

considered and a activation energy of 0.233±0.0002 eV was found for the diffusion of S from one 

Figure 9.12: Activation energy barrier for the diffusion of S via the interstitial diffusion 

mechanism, whereby a S atom diffuses from one octahedral interstitial site through the 

tetrahedral sites to a nearest neighbour octahedral site.  
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octahedral site to the next. Unlike the substutional diffusion mechanism, no vacancy is required for 

interstitial diffusion and thus the migration energy is equal to the activation energy of diffusion. 

The activation energies of diffusion for the different mechanisms that were considered are 

summarized in table 9.7 

 

 

 

 

 

 

 

 

 

To summarize the results presented up to this stage, figure 9.13 shows a schematic of the energy 

profile for the diffusion of S via the substitutional and the interstititial (octahedral to octahedral site) 

diffusion mechanisms. The solid black lines represent the equilibrium lattice sites of S in bcc Fe, 

while the red curves give the energy required for activation of the diffusion process. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Mechanism Calculated activation energy,Q (eV) 

Interstitial (octa-tetra) 0.208 

Interstitial (tetra-tetra) 0.046 

Interstitial (octa-octa) 0.233 

Next nearest neighbour Substitutional Fe(100) 3.662 

Nearest neighbour Substitutional Fe(100) 2.765 

Table 9.7: Activation energies for all the possible diffusion mechanisms of S in bbc Fe. 



216 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From figure 9.13 the possibility of an interstitial mechanism looks plausible with 1.945 eV which is 

required by a substitutionally bonded S atom to jump into a octahedral interstitial site. This is lower 

that the energy required to form a vacancy in both the Fe(100) and Fe(110) crystal orientations. 

However if the concentration of the S atoms in the crystal is taken into account, a very small 

amount of events for the movement of a substitutional S atom to an tetrahedral interstitial site is 

observed. The remainder of the S atoms will be available to diffuse substitutionally. All of the Fe 

atoms are evenly probable to take part in the formation of a vacancy and thus the substitutional 

mechanism remains the dominant mechanism. This is illustrated in figure 9.14, where the 

probability for the respective processes, including the formation of vacancies in Fe(111), was 

calculated by equation 9.8 

Figure 9.13: Energy diagram showing the equilibrium binding sites (solid black lines) of the 

interstitial and substitutional atoms in bcc Fe along with the activation energies of diffusion, 

indicated by the red lines.  

0.208 eV 

2.765 eV 

0.046 eV 

1.945 eV 

2.662 eV (Vacancy formation energy for Fe(100)) 
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where E is the energy in J/mol required for the respective processes, X is the number of atoms 

which can undergo the specified process, R is the universal gas constant and T the temperature in K. 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

From literature the activation energy required for the diffusion of S in bcc Fe is reported as 2.40 eV 

[31], no indication is given to the crystal structure in which this value was obtained. Arabczyk et. al. 

[32] obtained a activation energy of 2.13 eV for S diffusion to the Fe(111) crystal orientation. 

Comparing these literature values to the calculated values shows good agreement between the 

values calculated for the nn subsitutional mechanism and the literature values. No experimental 

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300
-1.0x10

-6

0.0

1.0x10
-6

2.0x10
-6

3.0x10
-6

4.0x10
-6

5.0x10
-6

6.0x10
-6

7.0x10
-6

8.0x10
-6

9.0x10
-6

1.0x10
-5

 

 

N
u

m
b

er
 o

f 
ev

en
ts

Temperature, T (K)

 Vacancy formation Fe(100)

 Vacancy formation Fe(110)

 Vacancy formation Fe(111)

 Interstitial migration

Figure 9.14: Number of substitutional S atoms that will jump into a octahedral interstitial 

position along with the number of vacancies being created in each of the low index 

orientations of Fe.  
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evidence could be obtained that indicates different values for the activation energies of diffusion 

for different crystal orientations. 

 

 

 

 

9.4. Fe(100), Fe(110) and Fe(111) surface 

calculations. 

 

 

 

 

The previous sections focused on the bulk properties of bcc Fe and Fe-S, the remainder of this 

chapter will focus on properties related to the surfaces of bcc Fe. The three low-index surfaces of 

bcc Fe, Fe(100), Fe(110) and Fe(111) were chosen for the calculation of surface relaxation and 

vacancy formation energies. The equilibrium positions of segregated S on Fe(100) was determined 

and compared to experimental results obtained from literature. Using the equilibrium position of 

the segregated S atom, the segregation energy of S in Fe(100) was calculated. 

 

The surface supercells for the 3 low-index surfaces of Fe used in all surface calculations are shown 

in figures 9.15, 9.16 and 9.17.  
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Figure 9.15: (a) Side view of the Fe(100) supercell structure. (b) Top view of the Fe(100) 

surface. 

(a) (b) 
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Figure 9.16: (a) Side view of the Fe(110) supercell structure. (b) Top view of the Fe(110) 

surface. 

(a) 

(b) 
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From figure 9.17 it can be seen how corregated the Fe(111) surface is as opposed to the flat 

surfaces of Fe(100) and Fe(110). The Fe(111) surface has an almost step-like structure. 

 

 

 

 

Figure 9.17: (a) Side view of the Fe(111) surface showing the step-like character of the 

surface. (b) Top view of the Fe(111) surface. 

(a) 

(b) 
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9.4.1. Relaxation of pure Fe surfaces 
 

 

 

 

The relaxation of the first 4 atomic layers of the three low-index surfaces of Fe, Fe(100), Fe(110) 

and Fe(111) were carried out by means of damped dynamics structural relaxation calculations. 

Tables 9.8, 9.9 and 9.10 contain the results for the respective surfaces, the tables also include 

values calculated by other authors and experimentally determined values found in the literature. 

The relaxation of the surfaces are well documented in literature and the calculations were repeated 

here to ensure that the structures used in calculations to follow are accurate. Equation 9.9 was used 

to calculate the relaxation of all surfaces [9; 13] 

 

 

 

  d/ddijij  100                                                          (9.9) 

 

 

 

where dij is the inter lattice spacing between the layers of interest and d is the inter lattice spacing 

of the bulk material. 

 

 

 

 

 

 

Fe(100) Δ12 Δ23 Δ34 Δ45  

 -2.921 +3.068 +0.299 -0.438 This work 

 -3.09 +2.83 +1.93 - Theory [9] 

 -1.89 +2.59 +0.21 -0.56 Theory[10] 

 -3.6 +2.3 +0.4 -0.4 Theory [13] 

 -5±2 +5±2     Experiment (LEED) [33] 

 -1.4±3       Experiment (LEED) [34] 

 

 

 

The results obtained in this study compares well to values calculated by other authors. In 

comparison to the experimental values, obtained by LEED experiments, deviations are observed to 

be more significant, but still in an acceptable range of the calculated values. Of importance is the 

trend observed in all the calculated and experimental values for the contraction and expansion of 

the inter atomic layers. For the first inter atomic layer a contraction is observed, the second and 

Table 9.8: Surface relaxation data for the first 4 atomic layers of the Fe(100) surface. 
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third inter atomic layers are observed to expand while the fourth inter atomic layer contracts. Thus 

the trend in surface relaxation of the Fe(100) surface can be summarized as -, +, +, -, where + refers 

to the expansion of inter atomic layers and – refers to the contraction of inter atomic layers . 

 

 

 

 

 

 

 

Fe(110) Δ12 Δ23 Δ34 Δ45  

 0 +0 0 0 This work 

 -0.11 +1.16 +1.14 - Theory [9] 

 -0.13 +0.197 -0.06 - Theory [10] 

 -0.1 +0.3 -0.5 -0.2 Theory [13] 

 +1±2 +0.5±2   Experiment (MEIS) [35] 

 

 

 

Looking at the literature values of table 9.9 it can be seen that very little relaxation occurs for the 

Fe(110) surface, indicating that this surface is extremely stable. This is also the findings of this 

study, where the Fe(110) structure was observed not to relax at all with geometrical parameters the 

same as that of the bulk. The stability of the Fe(110) structure is also confirmed by experimental 

data obtained from MEIS experiments. Unlike the Fe(100) surface, no definitive pattern is 

observed for the expansion and relaxation of inter atomic layers. Although from the theoretical 

values it seems like the first and third inter atomic layers are always contracting, while the second 

inter atomic layer is expanding, giving a -, +, - pattern. 

 

 

 

 

 

 

 

Fe(111) Δ12 Δ23 Δ34 Δ45  

 -1.722 -8.726 9.256 -1.989 This work 

 -6.74 -16.89 12.4 - Theory [9] 

 -13.3 -3.6 13.3 -1.2 Theory[10] 

 -17.7 -8.4 11.0 -1.0 Theory [13] 

 -16.9±3 -9.8±3 4.2±3.6 -2.2±3.6 Experiment (LEED) [36] 

Table 9.9: Surface relaxation data for the first 4 atomic layers of the Fe(110) surface. 

Table 9.10: Surface relaxation data for the first 4 atomic layers of the Fe(111) surface. 
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The Fe(111) shows large values for both the contraction and expansion of inter atomic layers, 

indicating that this surface is very unstable compared to the stable Fe(110) and Fe(100) surfaces. 

Here a definite trend is once again seen in the expansion and contraction of the inter atomic layers, 

it is -, -, +, -. Based on the relaxation data, the three surfaces can be arranged from most stable to 

least stable: Fe(110)>Fe(100)>Fe(111). This stability of the surfaces are in agreement with the 

surface energy calculations of Błonski et. al. [9] and Spencer et. al. [10]. 

 

 

 

 

9.4.2. Vacancy formation energy, Evac  
 
 

 

 

The amount of vacancies in the crystal structure is very important when it comes to the 

substitutional diffusion of impurities, since the S atom can only diffuse if a vacancy is available in 

the lattice. The activation energy, Q, for substitutional diffusion comprises out of the vacancy 

formation energy, Evac, in the Fe lattice plus the migration energy barrier, Em. Thus the well known 

Arrhenius relation [27] can be written in terms of these two energy terms, equation 9.10 
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0  exp .                                                  (9.10) 

 

 

 

Two possible mechanisms exist by which a vacancy in a crystal can be formed, namely the Frenkel 

defect [23] and the Schottky defect [23] mechanisms. Figure 9.18 illustrates the formation of a 

vacancy by these two respective mechanisms. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



CHAPTER 9: COMPUTATIONAL RESULTS 

 

225 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The Frenkel mechanism requires a large amount of energy, due to the large distortion of the lattice 

caused by a interstitial atom. The energy requirements of the Frenkel mechanism is significantly 

larger than that of the Schottky defect mechanism. The Schottky mechanism can be considered as a 

multistep process, whereby the atom in the surface layer is placed on top of the surface and the 

empty site created in the surface layer is filled by an atom from the atomic layer below. This 

process continues until eventually a bulk vacancy is created in the material. As a simplification, the 

mechanism can be seen as the removal of an atom from the bulk of the material and the placing of 

that atom onto the surface. Thus the vacancy formation energy can be seen as the difference in 

binding energy of an atom on the surface of the material minus the binding energy of an atom in 

the bulk of a material [37]. Mathematically it is given by equation 9.11  

 

 

 

   BulkBSurfBvac EEE  .                                               (9.11) 

 

 

 

Inserting this expression into equation 9.10 results in the Arrhenius expression for substitutional 

diffusion, equation 9.12 
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Figure 9.18: Illustration of vacancy formation in crystals via (a) the Frenkel defect 

mechanism and (b) the Schottky defect mechanism. 

(a) (b) 
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Considering the formation of vacancies by this mechanism where the surface binding energy comes 

into consideration, makes this mechanism surface orientation dependant. Thus for the three 

different orientations of Fe considered in this work, different vacancy formation energies were 

calculated and the results are given in table 9.11.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For the calculation of the vacancy formation energy the equilibrium position of the Fe atom placed 

on top of the surface was determined by performing structural relaxation calculations using the 

damped dynamics algorithm. For the Fe(100) and Fe(111) surfaces the Fe atom placed onto the 

surface was found to be most stable in a hollow site on the surface, while the atom on the Fe(110) 

surface was most stable in the long bridge site. Figures 9.19, 9.20 and 9.21 shows the atom on the 

Fe surfaces which was removed from the bulk to form the vacancy. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Crystal orientation Calculated vacancy formation energy, Evac (eV) 

Fe(100) 2.662 

Fe(110) 2.772 

Fe(111) 1.847 

Table 9.11: Vacancy formation energy values calculated for the three low-index surfaces of Fe, 

by considering the formation of vacancies to occur via a Schottky defect mechanism. 
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Figure 9.19: (a) Side view of the Fe(100) surface showing the position of the Fe atom (placed 

on the surface which was removed from the bulk material to create a vacancy. (b) Top view 

showing the Fe atom in the hollow site of the Fe(100) surface. 

(a) (b) 
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Figure 9.20: (a) Side view of the Fe atom placed in the long bridge site of the Fe(110) 

surface. (b) Top view showing the Fe atom in the long bridge site on the surface of Fe(110). 

(a) 

(b) 
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From the results presented in table 9.11 a more rapid diffusion of S in Fe(111) is expected as 

compared to the other two surfaces based on the small value for the vacancy formation energy of 

this surface. Thus the conclusion can be made that the orientation of the crystal determines the 

stability of the structure and for the low-index surfaces of Fe, that the more stable structures have 

Figure 9.21: (a) Side view of the Fe atom placed in the hollow position of the Fe(111) 

surface. (b) Top view illustrating the position of the Fe atom placed in the hollow site of the 

Fe(111) surface. 

(a) 

(b) 
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higher vacancy formation energies. This is expected since the more unstable a surface is, the less 

energy is required to remove a surface atom which is the initial step in the formation of vacancies. 

 

No literature data could be found where the orientation of the surface was taken into account for 

the calculation of the vacancy formation energies in bcc Fe as was done in this study. Calculated 

values found in literature was determined for bulk structures, where the orientation of the surface 

was not taken into account. Experimental data from literature also neglected to taken into account 

the influence of the surface orientation on the formation of vacancies. Table 9.12 summarizes the 

values calculated here and those found in literature. 

 

 

 

 

 

 

 

 

 

 

 

 

9.4.3. Segregation energy of Fe(100) 

 

 

 

 

In section 9.3.4, the diffusion mechanism of S in bcc Fe was found to be the nn substitutional 

mechanism, where a S atom diffuses from a substitutional lattice site to a nearest neighbour 

vacancy. Thus in principle if the S atom is located just beneath the surface and a vacancy becomes 

available in the surface layer, the S atom should diffuse into that vacancy. The question is whether 

this would be the most stable position for the S atom or whether the S atom would diffuse onto the 

surface. To determine the most stable position for a segregated S atom in the Fe(100) surface, a 

position in the surface and the hollow site on the Fe(100) surface was considered as the two 

 Fe(100) Fe(110) Fe(111) Bulk 

This work 2.662 2.772 1.847  

Theory(ab- initio)     2.17 [38] 

Theory (molecular dynamics)     1.863 [20] 

Theory (ab- initio)     2.16 [39] 

Experimental     1.8-2.0 [40] 

Experimental     2.0±0.2 [41] 

Table 9.12: Summary of vacancy formation energies calculated in this work and values found 

in literature. All energies are given in units of electron volts per atom (eV/atom). 
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possible equilibrium positions. From literature the most stable position for adsorbed S on the 

Fe(100) surface is found to be the hollow site [11; 12]. Figure 9.22 shows the initial and final 

positions if the final position of the segregated atom is taken to be in the surface layer. Figure 9.23 

shows the initial and final positions of the S atom if the final position is taken to be in the hollow 

site of the Fe(100) surface. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.22: Images showing the (a) initial and (b) final position of the segregation process if 

the final position is taken to be in the surface layer of the material. The purple atom represents 

the S atom. 

(a) (b) 
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The segregation energies were calculated as the energy difference between the binding energy of a 

S atom in the final position minus the binding energy of the S atom in the initial position. The 

results indicated that the diffusion of a S atom from beneath the surface to a position in the surface 

layer would result in a segregation energy of -0.643 eV (62.04 kJ/mol). If the atom diffuses to the 

hollow site onto the Fe surface a segregation energy of -1.859 eV (-179.4 kJ/mol) is obtained. The 

value of -1.859 eV (179.4 kJ/mol) is in good agreement with the experimental value of -1.969 eV  

(-190.0 kJ/mol) reported by Grabke and Viefhaus [42] with a 5.58 % deviation. Thus the most 

stable position of a segregated S atom in Fe(100) would be in the hollow site onto the surface. 

 

 

 

Figure 9.23: Images showing the (a) initial and (b) final position of the segregation process if 

the final position is taken to be in the hollow site of the Fe(100) surface. The purple atom 

represents the S atom. 

(a) (b) 
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9.5. Summary 
 

 

 

 

A systematic study was conducted to investigate the diffusion of S in the low-index surfaces of bcc 

Fe namely the Fe(100), Fe(110) and Fe(111) surfaces. Calculations of the binding energies 

revealed that the S atom would bind most favourably in a substitutional lattice site with a binding 

energy of -3.605 eV as opposed to the interstitial binding energies of -1.660 eV and -1.464 eV for 

the octahedral and tetrahedral sites respectively. Charge density plots were constructed to 

investigate the effect of charge transfer in the Fe-S system due to the presence of the 

electronegative S atom. Results indicated that charge accumulated onto the S atom causing it to 

increase in size. The S ion with an atomic radius larger than that of the neutral S atom confirmed 

the strain calculations which showed that the larger S ion in the interstitial sites causes the Fe 

lattice to become strained.  

 

From the CI-NEB calculations the diffusion mechanism of S was determined to be the nn 

substitutional mechanism with a migration energy barrier of 0.103 eV, whereby the substitutional S 

atom diffuses into a nearest neighbour vacancy. If a nearest neighbour vacancy is not available to 

the S atom, self-diffusion of Fe with an migration energy barrier of 0.558-0.83 eV as obtained from 

literature, will occur as opposed to the S atom diffusing to a next nearest neighbour vacancy. The 

vacancy formation energy was calculated by considering the formation of vacancies to occur via 

the Schottky defect mechanism. For Fe(100) a vacancy formation energy of 2.662 eV             

(256.8 kJ/mol) was calculated, while Fe(110) and Fe(111) have vacancy formation energies of 

2.772 eV (267.4 kJ/mol) and 1.847 eV (178.2 kJ/mol) respectively. The migration energy was 

considered to be surface independent and the activation energies were calculated as 2.765 eV 

(277.4 kJ/mol) for Fe(100), 2.875 eV (266.8 kJ/mol) for Fe(110) and 1.950 eV (188.1 kJ/mol) for 

Fe(111). Experimental values for the activation energy of S in bcc Fe was given as 2.40 eV     

(231.6 kJ/mol) [31] for an unknown crystal orientation and 2.13 eV (205.5 kJ/mol) [32] for Fe(111), 

which is in good agreement with the activation energies calculated here. These values confirm a nn 

substitutional diffusion mechanism for S in bcc Fe. 

 

It was found that the stability of the surfaces from most to least stable are: Fe(110)> 

Fe(100)>Fe(111). It was concluded that the more unstable surfaces have the lowest vacancy 

formation energy and thus the lowest activation energy. The segregation of S in the Fe(100) surface 

was investigated and it was found that the most stable position of a segregated S atom is located in 

the hollow site on the surface and not in the surface layer of the material. Results revealed a 
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segregation energy of -1.859 eV (-179.4 kJ/mol) which is in good agreement with the experimental 

value of -1.969 eV (-190.0 kJ/mol) found in literature. 
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Chapter 10: Conclusion 

 

 

 

 

During this study the diffusion mechanism of S in bcc Fe was determined as the nearest neighbour 

substitutional diffusion mechanism, whereby a S atom would diffuse from a substitutional lattice 

site to a nearest neighbour vacancy. The influence of the surface orientation on the vacancy 

formation and thus the activation energy of diffusion were investigated by performing calculations 

on the three low-index orientations of Fe: Fe(100), Fe(110) and Fe(111). The different Fe 

orientations considered can be arranged from highest to lowest vacancy formation energy as 

Fe(110)>Fe(100)>Fe(111), with activation energies of 277.4 kJ/mol (2.875 eV), 266.8 kJ/mol 

(2.765 eV) and 188.1 kJ/mol (1.950 eV) respectively. Structural relaxation calculations revealed 

that the Fe(110) surface is the most stable surface of Fe, with Fe(100) being the second most stable 

surface and Fe(111) being the most unstable surface. For the Fe(100) orientation a segregation 

energy of -1.859 eV (-179.4 kJ/mol) was calculated comparing well to the literature value of -190.0 

kJ/mol (-1.969 eV). Experimental values for the activation energy of S in bcc Fe (232 kJ/mol (2.40 

eV) and 205 kJ/mol (2.13 eV)) were obtained from literature confirming the nearest neighbour 

substitutional diffusion mechanism of S in bcc Fe. No indication is given regarding the orientation 

of the crystals in which these experimental values were measured. 

 

For the experimental confirmation of the above results which shows different activation energies 

for different orientations, a new method for doping Fe with S was developed. A new doping system 

was build for the experiment which was used successfully in the preparation of Fe-S samples. It 

was shown that the S concentration in the Fe sample was increased by 47.20 % when the doping 

time was doubled from 25s to 50s.  

 

The calculated trend in activation energies for the low-index planes of Fe are in agreement with the 

AES results which showed that the activation energy of the polycrystalline samples increased when 

the grains consisting of the stable orientations increased and the grains consisting of unstable 

orientations in the samples decreased. For the un-doped polycrystalline sample the segregation 

parameters are; D0=4.90×10
-2

 m
2
/s, Q=190.8 kJ/mol (1.978 eV), ΔG=-134 kJ/mol (-1.39 eV) and 

ΩFe/S=20 kJ/mol (0.20 eV). The segregation parameters of P obtained for the un-doped Fe sample 

are: D0=0.129 m
2
/s, Q=2.348 eV (226.5 kJ/mol). The sample doped with S and annealed for 40 

days at 1073 K had diffusion parameters of; D0=1.79×10
-2

 m
2
/s and Q=228.7 kJ/mol (2.370 eV) ), 
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ΔG=-145 kJ/mol (-1.50 eV) and ΩFe/S=8 kJ/mol (0.08 eV). The table below gives the concentrations 

of the different crystal orientations in the two samples. 

 

 

 

Orientation % Un-doped sample % Doped sample 

Fe(100) 26.25 21.07 

Fe(211) 22.74 24.77 

Fe(110) 4.748 21.16 

Fe(310) 4.825 5.221 

Fe(111) 41.45 27.78 

 

 

 

Experimental results showed that the more stable Fe(110) orientation have grown during annealing 

and consumed the less stable Fe(100) and unstable Fe(111) orientations. It can be concluded that 

the stability of a crystal orientation determines the activation energy of diffusion as well as the 

energy required for that orientation to grow during high temperature annealing of the crystal.  

 

 

 

 

Future work 

 

 

 

 

The study presented here forms the foundation for future work on S diffusion and segregation in 

bcc Fe. The segregation behaviour of S was established by this study and future work will focus on 

finding an element that can inhibit the segregation of S in bcc Fe. This will include the 

experimental techniques AES, XPS and SIMS, the doping chamber developed in this study will be 

modified to combat the effects of oxidation. Future work will aslo include the computational 

techniques DFT, kMC and the Darken rate equations. A Darken model capable of solving a 7 

component system will be developed with a large emphasis on increasing the speed of the Darken 

model. 
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Appendix A: Density Functional Theory 

 

 

 

 

A.1.  Introduction 

 

 

 

 

The aim of this appendix is to present theoretical concepts supplementary to chapter 5, density 

functional theory fundamentals. The Hohenberg-Kohn theorems are stated in chapter 5, here the 

full derivation of these two theorems are given. Also the derivation of the Hellmann-Feynman 

force theorem is given, in order to explain how forces are calculated in DFT. 

 

 

 

 

A.2.  Hohenberg-Kohn theorems 

 

 

 

 

Theorem 1: For any system of interacting particles in an external potential  rVext , the potential 

 rVext  is determined uniquely, except for a constant, by the ground state electron density  rn . 

 

Corollary 1: Since the Hamiltonian is thus fully determined, except for a constant shift in the 

energy, it follows that the many body wave function for all states (ground and excited) are 

determined. Therefore all properties of the system are completely determined given only the 

ground state electron density  rn  [1]. 

 

Proof of theorem 1: Suppose that the two potentials  rV ext, 1  and  rV ext, 2  differing by more than 

a constant lead to the same ground state electron density  rn . Thus each potential will have its 

own Hamiltonian and its own wave function according to Schrödinger’s equation, equation A.1 

 

 

 

 EĤ 
                                                          

 (A.1) 
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The Hamiltonian in equation A.1 is given by equation A.2  

 

 

 


 








JI II

JI

I

I

Iji jiI,i Ii

I

i

i

e

i
RR

eZZ

Mrr

e

Rr

eZ

m
Ĥ
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where, 
i

i

em

2
2

2


is the kinetic energy of the electrons and can be represented by the kinetic 

energy operator T̂ . The second term, 
I,i Ii

I

Rr

eZ 2

, is the potential acting on the electrons due to 

the nuclei which can be represented by the operator extV̂ . The electron-electron interaction is given 

by 
 ji ji rr

e2

2

1
, which can be represented by the operator intV̂ . Using the Born-Oppenheimer 

approximation, which states that the mass of the ions are large compared to the mass of the 

electrons and thus 
IM

1
 is a negligible quantity leading to a zero value for the fourth term. The 

final term, 
 JI II

JI

RR

eZZ 2

2

1
, is the classical nuclei-nuclei interaction given by 

IIE . Each of the two 

external potentials,  rV ext, 1  and  , 2 rV ext,  lead to a Hamiltonian and a wave function associated 

with it as given by equation A.3 

 

 

 

 
                                                                

  11 1  ĤrV ext,  
 

 

                                         
  22 2  ĤrV ext, .                                                 (A.3)

 
 

 

 

The wave functions are hypothesized to have the same ground state electron density, but the two 

wave functions are not equal to one another. Since 
2  is not the ground state for 

1Ĥ  it follows that  

 

 

 

2121111  ĤĤE 
.                                         

 (A.4) 
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For a non-degenerate ground state, the second term in equation A.4 can be expanded as  

 

 

 

2212222212  ĤĤĤĤ                               (A.5) 

 

 

 

with the last term in equation A.5 given by equation A.6 
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Using the Hamiltonian in equation A.2, the difference in the two Hamiltonians, 
1Ĥ  and ,2Ĥ is 

given by equation A.7 
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Substituting equation A.7 into equation A.6 results in equation A.8  
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Substituting equation A.8 into equation A.5 results in equation A.9 

 

 

 

        rdrnrVrVEĤ iext,iext,

3

 2 12212     .                           (A.9)    

 

 

 

Inserting equation A.9 into equation A.4 leads to equation A.10 

 

 

 

        rdrnrVrVEE iext,iext,

3

 2 121    .                                (A.10) 

 

 

 

Following the same procedure starting with equation A.4, but with indices 1 and 2 exchanged it can 

be proven that 

 

 

 

        rdrnrVrVEE iext,iext,

3

 1 212    .                                (A.11) 

 

 

 

The sum of equation A.10 and A.11 leads to equation A.12 [1; 2; 3] 

 

 

 

                                                                  
1221 EEEE  .                                                  (A.12) 

 

 

 

Equation A.12 cannot be a valid statement, therefore there cannot be two different external 

potentials giving rise to the same ground state electron density. The electron density uniquely 

determines the external potential and thus also the Hamiltonian. From this the corollary follows, if 

the Hamiltonian is known then the wave function can be obtained by solving Schrödinger’s 

equation, equation A.1 [1].  

 

Theorem 2: A universal functional in terms of the energy  nE  in terms of the density can be 

defined, valid for any external potential  rVext . For any particular  rVext  the exact ground state 

energy of the system is the global minimum value of this functional, and the density  rn  that 

minimizes the functional is the exact ground state electron density  rn . 
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Corollary 2: The functional  nE  alone is sufficient to determine the exact ground state energy 

and electron density. In general, excited states of the electron must be determined by other means. 

Thermal equilibrium properties such as specific heat are determined directly by the free-energy 

functional of the density [1]. 

 

Proof of theorem 2: The original proof is restricted to densities  rn  which are ground state 

densities of the electron Hamiltonian with some external potential,  rVext . This defines a space of 

possible densities in which functionals of the density can be constructed. Since all properties can be 

determined if the electron density is known (theorem 1), all properties can be given as a functional 

of the electron density. The total energy as a functional of the density is given by equation A.13 [1] 

 

 

 

          IIextinHK ErdrnrVnEnTnE  
3                              (A.13) 

 

 

 

where the subscript HK refers to the Hohenberg-Kohn. The first term in equation A.13 represents 

the kinetic energy of the electrons. The second term represents the interaction potential between 

electrons, the third term is the external potential between electrons and ions and the fourth term is 

the ion-ion interaction energy term. The total energy can be written in terms of the functional, 

 nFHK  as given by equation A.14  

 

 

 

        II

3

extHKHK ErdrnrVnFnE                                      (A.14) 

 

 

 

where the functional in equation A.14 is given by equation A.15                

 

 

 

     nEnTnF inHK  .                                                (A.15) 
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Consider now a ground state electron density  rn1
 with an associated wave function given by 

1   

 

 

 

  11111  ĤnEE HK  .                                            (A.16) 

 

 

 

Thus for a different density  rn2
 corresponding to a wave function, ,2  equation A.17 follows 

[1] 

 

 

 

22121111 EĤĤE   .                                   (A.17) 

 

 

 

Thus
2E  is greater than 

1E , if the functional  nFHK
 is minimized by varying the density, the exact 

ground state energy and electron density would be obtained. This is only valid for the ground state 

properties and no information is obtained for the excited states [1]. 

 

 

 

 

A.3.  Hellman-Feynmann force theorem 
 

 

 

 

The total force and total energy acting on a system needs to be minimized in order to obtain the 

equilibrium positions of atoms in the system. The starting point is the expression for the force, F , 

experienced by an atom, given by equation A.18 

 

 

 

R

E
F




                                                            (A.18) 

 

 

 

where, E , is the energy and R  the position vector of the nucleus. The energy can be written in 

terms of the energy operator, .Ĥ  
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

 Ĥ
E  .                                                              (A.19) 

 

 

 

Using the Hamiltonian given by equation A.2 leads to the fundamental expressions of the 

Hamiltonian which is central to the theory of electronic structure. 

 

 

 

IIintext EV̂V̂T̂Ĥ                                                  (A.20)    

 

 

 

Each of the terms in equation A.2 have been presented in operator form in equation A.20. Equation 

A.20 remains valid if the nuclear coulomb interactions are replaced by a pseudopotential. Equation 

A.19 can also be written in terms of the electron density  rn , resulting in equation A.21. 
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 Making use of a normalized wave function i.e.   

 

 

 

1                                                           (A.22) 

 

 

 

equation A.18 can be written as 
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Equation A.23 can be simplified into equation A.24 
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Making use of equation A.22 for a normalized wave function reduces equation A.24 into equation 

A.25 
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Inserting equation A.21 into equation A.25 results in the Hellmann-Feynman theorem, equation 

A.26 [1; 2] 
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Any structure is optimized when equation A.26 is approximately equal to zero for all the atomic 

positions in the system. This means that all the energy is drained from the system and that all atoms 

are in their equilibrium lattice positions. 
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Appendix B: Optimization of 

computational parameters 

 

 

 

 

B.1.   Introduction 

 

 

 

 

For the accurate calculation of material properties such as the binding energy, migration energy etc. 

the system under study needs to be optimized with respect to the various computational parameters. 

These parameters include the energy cut-off, Ecut, which determines how many plane-waves will be 

used in the calculation and the k-point grid size over which brillouin zone summation will be 

performed. Using the optimized values for the above two mentioned parameters, an equilibrium 

lattice parameter, a, and corresponding bulk modulus, B0, is calculated. These values needs to be 

compared to experimental values to evaluate the correct ground state of the system.  

 

For metallic systems, optimization also needs to be performed with respect to the smearing scheme, 

the smearing width or degauss value and the magnetization of the system. Electrons are free to 

move across the Fermi surface in metals causing a continuous distribution of electrons. To account 

for this effect, the total energy of the system is computed by incorporating a distribution function 

for electrons across the Fermi surface, called the smearing scheme. Different schemes exist and the 

scheme`s convergence with respect to the degauss value needs to be determined. The width of 

smearing or the degauss value is determined by converging the total energy of the system with 

respect to the number of k-points for different degauss values. The spin of electrons, which is the 

cause of the magnetic character for the metallic system, needs to be determined for the ground state 

of the system. An initial value is needed to break the symmetry of the system and start the 

calculation. To determine the optimum value for magnetization, convergence of the total energy is 

performed with respect to different values for the starting magnetization. 

 

It is important that all of the above mentioned parameters are determined as accurately as possible, 

since the accuracy of all other calculations depend upon them. However there is always a trade-off 
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between accuracy and computational time, and thus these parameters needs to be as accurate as 

allowed by the computational resources available. 

 

 

 

 

B.2.   Overview of computational parameters 

 

 

 

 

Table B.1 gives a summary of the optimized parameters for the bcc Fe system. All calculations 

performed here were done on a 1×1×1 unit cell of bcc Fe. The interaction between the valence 

electrons and ionic cores were represented by ultrasoft pseudopotentials (USPP) [1]. Two 

generalized gradient spin approximation (GGSA) pseudopotentials were considered for the system, 

the PW91 [2] and PBE [3] pseudopotentials. Both pseudopotetials have shown to give an accurate 

description of the Fe, FeS and FeS2 systems [4; 5; 6; 7; 8]. 

 

 

 

 

 

 

 

 

 

 

 

Property PW91 

 

PBE 

 

Experimental 

Values [9] 

Literature 

Values 

(PW91) [8] 

Cut-off energy, E-cut (eV) 381 585     

k-point grid size 8×8×8 9×9×9     

Lattice parameter, a (Å) 2.861 2.855 2.866 2.869 

Bulk modulus, B0 (GPa) 149.5 156.1 168 140 

Magnetic moment, B (µB) 2.48 2.45 2.22 2.37 

Metallic smearing scheme Methfessel- 

Paxton 

Methfessel- 

Paxton 

    

Degauss/smearing width (eV) 0.54 0.54     

Starting magnetization 

(fraction) 

0.40 0.20     

Table B.1: Ground state properties of bulk bcc Fe as calculated by the PW91 and PBE 

pseudopotentials respectively. Experimental and calculated values from literature are also given 

for comparison.  
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Both pseudopotentials gave an accurate description of the ground state properties of bcc Fe with a 

4.23 % difference in the bulk modulus of the two pseudopotentials. The three parameters that 

defines the ground state, the lattice parameter, bulk modulus and magnetic moment of the two 

pseudopotentials also compares well to experimental values. The last column in table B.1 contains 

values calculated by other authors using the PW91 pseudopotential, which compares well to the 

values calculated in this study. In comparison to the experimental values in column 3, there was 

found to be a difference of 0.17 % in the lattice parameter, 11.01 % in bulk modulus and 10.48 % 

difference in the magnetic moment values calculated for the PW91 pseudopotential. For the PBE 

pseudopotential a deviation of 0.38 % for the lattice parameter was found. While the deviation for 

the bulk modulus was 7.08 % and the magnetic moment deviated by 9.39 %. Since both 

pseudopotential give an accurate description of the ground state properties and considering that the 

PBE pseudopotential would be more expensive computationally. The PW91 functional was chosen 

to perform all subsequent calculations in order to shorten computational time. To illustrate how the 

system was optimized, optimization with respect to each of the parameters mentioned above are 

performed in this chapter.  

 

 

 

 

B.3.   Optimization of a single unit cell 

 

 

 

 

The procedure followed for the optimization of the ground state parameters was to perform a first 

estimate optimization for all the parameters of a single unit cell. Once all the values were obtained 

the cut-off energy was once again optimized using the optimized values of all other parameters to 

determine the energy convergence of the total energy with respect to the chosen parameters. 
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B.3.1.   Convergence of the total energy with respect to the 

energy cut-off Ecut 

 

 

 

 

This section shows how the convergence of the total energy with respect to the energy cut-off was 

performed for the PW91 pseuopotential. The mathematical expression for the plane waves used in 

DFT calculations is given by equation B.1 
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In order to determine the amount of Fourier components,  GkC
k

 , that are required for the 

plane waves. The cut off value for the Gk   vectors were determined by converging the Fe 

structures total energy with respect to the energy cut-off where the expression for Ecut is given by 

equation B.2.  
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Figure B.1 shows the convergence of the total energy with respect to Ecut. The graph was 

constructed using the optimized values of all other parameters. The total energy of the Fe unit cell 

converged to 381 eV with a convergence criteria of 4.23×10
-4

 eV/atom. From figure B.1 it can be 

seen that the total energy is always decreasing for an increase in the energy cut-off value. The 

energy cut-off value of 381 eV was obtained from the initial convergence of the energy cut-off and 

was used in all subsequent calculations. 
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B.3.2.   Convergence of the total energy with respect to the 

k-point grid size 

 

 

 

 

Summation over the Brillouin zone is performed for a number of special points in k-space in order 

to calculate the electron density and thus the total energy of the structure under study. The 

summation is performed over a number of special point, since summation over the whole of          

k-space would mean a summation over an infinite number of values for k. The Monkhorst-Pack 

scheme [10] was used to identify these special points. To determine the density of these special 

points, the convergence of the total energy with respect to the k-point grid size was determined and 

is shown in figure B.2.  

 

Figure B.1: Convergence of the total energy with respect to the energy cut-off value. For the 

Fe system the cut-off value was determined as 381 eV, were the total energy has converged to    

4.23×10
-4 

eV/atom. 
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While the total energy is always descreasing with respect to the energy cut-off, for the k-point grid 

size the total energy can either increase or decrease, but will eventually converge to below the 

specified convergence criteria. The appropriate k-point grid for the Fe sytem was determined as a 

8×8×8 grid with the total energy being converged to 1.38×10
-3

 eV/atom. For all subsequent 

calculations, the k-point grid size of 8×8×8 was used. 

 

 

 

 

B.3.3.    Determination of the magnetic state  
 

 

 

 

To incorporate the ferromagnetic properties of Fe, both spin up and spin down states were taken 

into account. To ensure that the symmetry is broken, as a starting point for the calculations, an 

Figure B.2: Convergence of the total energy with respect to the size of the Monkhorst-Pack       

k-point grid used for summation over the brilluoin zone (BZ). For the Fe system it was 

determined that a 8×8×8 grid is sufficient with the total energy converged to 1.38×10
 -3 

eV/atom 

is sufficient. 
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initial fraction of electrons are allocated a spin up state. To determine this fraction, the total energy 

was calculated for different fractions of spin up states, with the lowest energy describing the 

ground state of the system. The total energy as a function of the fraction of spin up states are shown 

in figure B.3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The ground state of the system was found at a fractional spin up state of 0.4. This value is used in 

all subsequent calculations in order to break the symmetry and start the calculations. 

 

 

 

 

 

 

Figure B.3: Convergence of the total energy with respect to the fraction of spin up states. It 

was determined that the ground state energy is obtained at a fractional spin up of 0.4. This 

value is used for the starting magnetization in order to break the symmetry and start the 

calculation. 
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B.3.4.   Determination of the smearing scheme for metallic 

systems 

 

 

 

 

In order to account for the continuous distribution of electrons across the Fermi level a fictitious 

electronic temperature is introduced, called metallic smearing. Different schemes have been 

devised, each capable of describing different systems. In order to obtain a smearing scheme that 

best describes the Fe system, different schemes were tested. This was done by plotting the total 

energy of the structure as a function of the different degauss values for each of the schemes as 

shown in figure B.4. 

 

 

 

 

 

 

 

 

 

 

 

Figure B.4: The Methfessel-Paxton smearing scheme was determined as the most accurate 

scheme to account for the occupation of electrons in metals. Compared to the other schemes 

the Methfessel-Paxton scheme is the most stable with increasing degauss value. 
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The Gaussian distribution function follows the free energy of the system while the Marzari-

Vanderbijl function follows the total energy of the system. The Methfessel-Paxton [11] scheme 

remained constant for a range of degauss values before following the total energy of the system. 

Thus to account for the continues distribution of electrons across the Fermi level, the Methfessel-

Paxton scheme was used. 

 

 

 

 

B.3.5.    Determination of the smearing width          

(degauss value) 

 

 

 

 

To determine the degree of smearing that is required by the Methfessel-Paxton smearing scheme 

different values were tested. This was done by converging the total energy for each of the degauss 

values with respect to the k-point grid size. Figure B.5 shows the convergence of the total energy 

with respect to the k-point grid for four different degauss values. The 0.54 eV value converged to 

<1.38×10
-3

 eV/atom for a k-point grid size of 8×8×8 which was the choice made earlier for the k-

point grid size.  
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B.3.6.    Determination of the equilibrium lattice parameter 

and bulk modulus 

 

 

 

 

The last two parameters to be determined is the lattice parameter and the bulk modulus. This was 

done by calculating the total energy for a range of lattice parameter values and then fitting the 

Murnaghan equation of state to the data. It is important to note that both these values needs to be in 

agreement with experimental values, to ensure that there is no strain on the system and that the 

system is at its ground state. Figure B.6 gives the Murnaghan equation of state fitted to the 

calculated values.  

Figure B.5: The degree of smearing or the smearing width for the Methfessel-Paxton scheme 

was determined as 0.54 eV for a k-point grid size of 8×8×8 with the total energy converged to 

<1.38×10
-3

eV/atom. 
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The equilibrium lattice parameter was determined as 2.861 Å, and the bulk modulus as 149.5 GPa. 

The total energy values on the y-axis in figure B.6 differs from the total energy of the other 

parameters, since a bravais lattice of 3 was used for the lattice parameter optimization, as compared 

to the other parameters where atomic positions were assigned manually (a cell of two atoms in the 

bbc lattice was used). 

 

 

 

 

 

 

 

 

 

 

Figure B.6: A lattice parameter of 2.861 Å and a bulk modulus value of 149.5 GPa was 

obtained for bulk bcc Fe by fitting of the Murnaghan equation of state to the data. 
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B.4.   Optimization parameters for Supercell 

Calculations 

 

 

 

 

In addition to the optimization parameters that were discussed in the previous sections, more 

parameters needs to be consider if a supercell structure is studied. Supercells are used when large 

bulk cell structures or surface structures are studied. If a bulk structure is considered, the cell has to 

be large enough to avoid interaction of the impurity atom in one cell with its periodic repetition in 

the next cell. If a surface supercell is studied, the number of atomic layers and the size of the 

vacuum spacing needs to be optimized. The number of atomic layers used, have to be large enough 

to give an accurate description of a surface with some atomic layers to represent the bulk of the 

structure. A vacuum spacing is introduced to simulate a surface and has to be large enough to 

prevent interactions between periodically repeated cells. The parameters mentioned above are 

optimized with respect to some physical property of the system. In the case of bulk supercells, the 

cell size is optimized with respect to the binding energy of an atom. For surface structures, the 

number of atomic layers are optimized by converging the surface energy with respect to the 

number of atomic layers. To optimize the vacuum spacing, a binding energy curve is constructed to 

determine the minimum distance of interaction between the atoms under consideration. This 

section presents the results for the optimization of a bulk Fe supercell and for the supercells of the 

three Fe surfaces, Fe(100), Fe(110) and Fe(111). 

 

 

 

 

B.4.1.    Cell size determination 
 

 

 

 

The binding energy of S in different lattice sites were calculated and compared in order to obtain 

the most stable position of S in bbc Fe. The details of how the binding energies were calculated are 

not discussed in this section, only the final results are used here to determine the optimum cell size. 

The binding energy calculations are done in chapter 9, Computational results. The equilibrium 

lattice positions of S in a substitutional, octahedral interstitial and tetrahedral interstitial lattice site 

were calculated by allowing a 3×3×3 supercell to relax according to the damped dynamics 

structural relaxation algorithm. Due to the low symmetry of the cell, the calculations were done for 
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the whole brillouin zone (BZ) and not reduced to the irreducible brillouin zone (IBZ) as is 

commonly done in DFT calculations. For the substitutional position of S a binding energy of -3.605 

eV was calculated, compared to the octahedral interstitial binding energy of -1.660 eV and the 

tetrahedral interstitial binding energy of -1.464. This indicated that S favours a substitutional lattice 

site over an interstitial lattice site. To ensure that the size of the supercell does not contribute to the 

value of the binding energy, calculations on a larger cell were done. The binding energy of S in a 

4×4×4 cell was calculated as -3.556 eV. Table B.2 summarizes the results and also contains the 

approximate time it took to complete the calculation for each of the cell sizes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The 3×3×3 cell gives a value which compares well to the literature value of -3.10 eV [12] and a 

very small increase in binding energy, 1.36 %, is observed when a 4×4×4 cell is used. Considering 

the small increase in accuracy as opposed to the large increase, 47.96 %, in computational time, a 

3×3×3 cell was used for all calculations. Figure B.7 illustrates the 3×3×3 cell containing a S atom 

in a substitutional lattice site 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cell size Binding energy, Eb (eV) Approximate CPU 

time of calculation 

(hours) 

3×3×3 -3.605  50.76 

4×4×4 -3.556  97.55 

Table B.2: Binding energies of substitutional S for a 3×3×3 and a 4×4×4 cell. The estimated 

time of the calculations are included to show the increase in computational time as the cell is 

increased from a 3×3×3 to a 4×4×4 supercell. 
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B.4.2.  Calculation of the required vacuum spacing for 

surface structures 

 

 

 

 

When performing surface calculations a certain vacuum spacing is required to simulate the surface 

of the material. This vacuum spacing needs to be large enough to prevent the interaction between 

periodically repeated cells, while effectively simulating the surface. To determine the minimum 

distance required to prevent the interaction of two Fe layers, a large unit cell of dimensions           

10.58 Å ×10.58 Å ×42.32 Å was constructed with only two atoms inside. Initially the atoms were 

separated by a distance of 21.16 Å and then brought closer in increments of 0.53 Å to a final 

distance of 5.29 Å. From this data, plotted in figure B.7, the minimum distance required to avoid 

interaction between two Fe atoms were determined as 14.81 Å 

 

 

 

 

 

 

 

 

Figure B.7: Substitutional position of S (purple atom) in a 3×3×3 bulk bcc Fe supercell.  
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As an example of a surface supercell, figure B.9 illustrates the Fe(100) surface where a 14.81 Å. 

vacuum spacing was used. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B.8: Binding energy curve of two Fe atoms in the gas phase in a 10.58×10.58×42.32 Å 

cell. From this curve the minimum distance to avoid interaction of two atoms/layers were 

determined as 14.81 Å. 
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