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Abstract 

It is shown that the wide binary system and short white dwarf spin period of AE 

Aquarii (AE Aqr), i.e. P,p;n.1 - 33 s , is perfectly reconcilable with a high mass 

accretion history of the white dwarf. The long orbital period P,,,b - 9 .88 hr of AE Aqr 

implies that the binary separation is large enough to accommodate a well-developed 

accretion disc. The rotation period l',p;n.i - 33 s implies that AE Aqr most possibly 

evolved through a high mass transfer/ accretion phase, where the white dwarf has 

been spun-up by accretion torques, possibly by an accretion disc. It has also been 

suggested that in the past AE Aqr could have been a significant X-ray source and 

possibly even a super soft X-ray source (SSS). 

This thesis proposes an investigation of the possible connection between high mass 

transfer and possible SSS properties. Extending the model calculations related to AE 

Aqr or cataclysmic variables in general show that the evolved (or slightly evolved), 

secondary stars filling (or nearly filling) their Roche lobe in systems with large orbital 

period will drive the highest mass transfer rate, implicitly increasing the probability of 

potential SSS occurrence. In this situation, the most positive aspect is that the SSS 

phenomena can be satisfied significantly below the Eddington limit for all filling 

factors and for all orbital period P,,,b <: 9 hrs . 

Concerning the spin-up history of AE Aqr, the results suggest that the spin-up time­

scale, rather that the mass transfer time-scale will determine the allowed duration of 

the run-away mass transfer phase. The model calculations seem also to confirm the 

magnetic field strength of the white dwarf B, ~ few x 106 G , which is believed to be 

the limiting value of the field strength in AE Aqr. 

These model calculations readily agree with our conjecture that AE Aqr evolved 

through a relative brief but violent high mass accretion phase, where the white dwarf 

has been spun-up to periods l',ptn.I ~ 33 sec, during which period the accretion onto the 

compact white dwarf readily could have sustained stable nuclear burning. In this 

phase, AE Aqr could have been an extremely bright X-ray source, or SSS. This may 

be a common phase in the evolution of cataclysmic variables in general. 
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Chapter 1 

Introduction 

1.1 Motivation for this study 

Recent developments concerning the evolution of close binaries, in particular the 

cataclysmic variable AE Aquarii (AE Aqr), seem to suggest that this enigmatic 

system may have evolved from a high mass transfer (high mass accretion) phase in 

its past (e.g. Meintjes 2002; Schenker et al. 2002). One consequence of this evolution 

is that AE Aqr could have been a very luminous Super Soft X-ray Source (SSS) 

during the high mass accretion phase. It also suggests that this evolution is probably 

not restricted to AE Aqr alone, but may be common to most cataclysmic variable 

binary systems. This implies that some SSSs may be, in a way, pre-cataclysmic 

variable systems. The end-state of each system will depend on the particular initial 

conditions. This hypothesis will be investigated in detail in this study, especially with 

respect to AE Aqr. 

In order to put this study concerning binary evolution in context, a general 

introductory discussion concerning the general properties of close binaries will be 

presented, with emphasis on cataclysmic variables. 
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1.2 Close Binaries 

1.2.1 Binary Separation 

Cataclysmic variable (CV) systems consist of two stars: a normal main sequence star 

of mass M 2 (the secondary star), orbiting a compact companion star of mass M1 (the 

primary star) around the system barycentre (or centre-of-mass i.e. CM). The orbital 

period (P,,,b) for these systems is usually of the order of P,,,b -few hours. Applying 

Kepler's law of orbital motion (e.g. Frank, King & Raine 1992, p.47), i.e. 

(I.I) 

orbital periods of few hours imply a binary separation a which is (e.g. Frank, King & 

Raine 1992, p.4 7) 

(1.2) 

In this expression, P
0
,b is the orbital period in hours and q = m2 I m1 represents the 

mass ratio of two stars, with m1 and mz representing the primary and secondary mass 

respectively, in solar mass units (Me "'2x 1033 g; i.e. m1 = M1 I Me, m2 = M 2 I Me). 

For typical one solar mass stars, binary orbital period P,,,b - few hours, the ratio of the 

binary separation with respect to the diameter of the sun (De "' 1.4x1011 cm) is 

a 
-,.;0.7' 
De 

(1.3) 

Hence most of these systems can easily fit into the sun. This results in a significant 

gravitational interaction between the two stars. This gravitational interaction, in 

principle, is the driving force behind the peculiar transient emission (outbursts or 

flares) these systems display, and will be discussed briefly. 
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1.2.2 Gravitational interaction in close binaries: Roche Geometry 

A detailed analysis of the geometry of orbiting stars is complex and requires detailed 

computer modelling. However, the problem of the gravitational interaction can be 

simplified (along the lines picneered by Edouard Roche in the nineteenth century) by 

assuming that tidal forces have forced the stars into a circular orbit and that the mass 

of each star can be considered to be concentrated in the star's centre (both of which 

are reasonable approximations). In terms of the Roche description, the gravitational 

potential field can be considered as nested potential wells, bounded by surfaces of 

equal effective gravitational potential energy, i.e. so-called equipotential surfaces (see 

Figure 1.1 ). It can be seen that the innermost equipotentials are approximately circular, 

but on scales comparable to the binary separation the tidal force distorts the outer 

wells considerably. 

We can write the Roche gravitational potential <!> at any point specified by the vector 

r as the sum of the potentials of the two stars (with masses M1 and M 2 located at Fi 
and r, respectively) and a third term due to the centrifugal furce. Tue Roche potential 

function with respect to CM is (e.g. Frank, King & Raine 1992, p.48) 

<l>=- GM1 _ GM2 _.!_(Q xi"2 (1.4) 
Ir -Fil Ir -;;;I 2 °"' '' 

where n
0
,b is the orbital angular frequency and the first two terms represent the 

gravitational potential of the primary and secondary star respectively. Tue third term 

represents the centrifugal effect of the binary orbiting its centre-of-mass (CM). 
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2 

Fig 1.1 A plot of equipotentials of binary stars (Frank, King & Raine 1992, p.49) 

I 

The equipotentials for several values of <l> are plotted in Fig 1.1. The innermost 

critical equipotential surface is called the Roche lobe. The point at which they touc~ is 

the inner Lagrangian point, or L1. (There are other Lagrangian points of l~ss 

significance). The L1 Lagrangian point defines a point between the two stars, 

considered as point masses, where the gravity of the two stars, together with the 

centrifugal force, exactly balances, defining a region of zero effective gravity. I If 
neither star fills its Roche lobe, the binary is described as detached. If one star fillsiits 

Roche lobe the binary is described as semi-detached (all cataclysmic variables ~e 
semi-detached systems). If both stars fill or overfill their Roche lobes, the binary is 

' 

said to be a contact binary (e.g. W UMa stars) (Hellier 2001, p.22). 

The Roche geometry is completely specified by the mass ratio q ( = m2 I 1ni ) and \he 

binary separation a (obtained from Kepler's law). However, it does not lead to simple 

formulae for quantities such as the distance to L1, etc. Instead, one has to model the 

full Roche geometry numerically, and distil the results empirically into formulae t~at 
I 

are accurate to -1% (see Warner 1995 for a detailed account). 
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The distance of the L1 point froni the centre of the primary is given by (e.g. Frank, 

King, Raine 2002, p.54) 

Ri1 =a(0.500-0.2271ogq) for 0.l<q<lO. (1.5) 

This basically defines the dimension of the Roche lobe of the primary star, shown to 

be a significant fraction of the orbital separation for most systems. 

1.2.3 Roche gravity field 

Isolated single stars are spherical, pulled into the most compact configuration possible 

by gravity. Similarly, stars in a wide binary, where the separation is much greater than 

their physical sizes, are also approximately spherical. In a close binary, where the 

primary is a compact star, the same can be said of the compact primary star, but not of 

the much larger secondary star. Instead, the Jess dense secondary is distorted by the 

gravity of its close compact companion, which pulls at the fluffy outer layers. If the 

two stars are close, the secondary becomes increasingly distorted until the material 

nearest the primary, close to the L1 region, experiences a greater gravitational 

attraction towards the compact object than the material at the back of the star. Thus 

the secondary star is distorted into a teardrop shape, which will have important 

consequences for the material in the envelope, close to L1, as will be discussed later. 

By using the effective Roche potential ( eqn 1.4), the effective gravitational 

acceleration anywhere in the binary can be estimated by 

g,ff =-Y'<l>R, 

resulting in 

GM2 _ GM1 _ ,..., 2 R-
g,ff = 2e2+ 2e1+ ... ,i, • IPi - rl Ir; - rl 

(1.6) 

(1.7) 

Here r;, fi and i' represent the coordinate vectors from the centre of mass of the 

system to the centre of the primary, the secondary and an arbitrary point (P) in the 

gravity field, respectively. In this expression, R represents the horizontal component 

of i' in the equatorial plane. The unit vectors e, and e2 point from P to the centres of 

the primary and secondary stars respectively. The coordinate system can be chosen 

such that the y-axis is directed along the line-of-centres between the two stars (the 
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positive y-axis extends from the CM of the binary to the centre of the secondary star). 

As an example we consider only the effective gravitational acceleration along the line 

of centres between the two stars, i.e. (x, z) = 0. Here the effective gravity profile can 

be written as follows (e.g. Meintjes 2004) 

GM
2 

_ GM1 - ,....2 -
gy•ff = 2 ey2 + 2 eyl +><o,,yey 

' (Y2 - Y) , (Y1 - Y) , 

(1.8) 

where y1, y
2 

and y represent the distances from the CM to the centres of the primary, 

secondary and Py (projection of Pon y-axis), respectively, and where ey,i, ey,2 and eY 

represent the unit vectors pointing from P, to the centres of the primary (negative y­

axis) and secondary (positive y-axis) stars, as well as to the CM on the line of the 

centres. 

This can be parameterized in terms of binary parameters (see Meintjes 2004), i.e. the 

binary separation a ( eqn 1.2) and the size of the Roche lobe radius Ru ( eqn 1.5). This 

gives the effective gravity at any arbitrary point on the line of the centres as (Meintjes 

2004) 

GM2 _ GM1 - ,....2 ( R )-= e + e +•• -a e gy,<Jf ( _ R )' y,2 ( R )2 y,1 o,b Yi LI y 
a a LI a LI 

(1.9) 

with a representing the fractional distance of the point Py with respect to the distance 

between the centre of the compact object and the L1 point, i.e. Ru, and a representing 

the binary separation (see Fig 1.2) (Note that a= 1 corresponds to the L1 point). 
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, 
•• 

1' 
I \, I 

'· .... , ,. .. t- Ru-« 
"" ... _ - - - ,. .. 1---Y---+1--11 

a.Ru 

Fig 1.2 The parameters of the binary (with mass ratio q >I) 

For illustration purposes, a binary with orbital period!',,,, =9.88hr, M, =0.87M0 

and mass ratio of q = 0.69 is selected. The resultant effective gravitational 

acceleration that material will experience at various points along the line of centres 

between the two stars are displayed in Table !. 

a 

I 

0.9 

0.8 

0.7 

0 

60 

110 

190 

Table 1: Effective gravity 

It can be seen that the effective gravity at L1 (i.e. a= I) approaches zero. This has 

important consequences. Thermal motion of particles in the tenuous envelope of 

secondary star, in the vicinity of L1, will result in a stream of particles crossing Li, 
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resulting in mass transfer from the secondary to the primary. The stream crosses the 

funnel at L1 with the speed of sound, i.e. c, -10 km s·1
• After crossing Li, the stream 

will rapidly accelerate into the potential well of the white dwarf(WD) (e.g. Table 1). 

However, since the stream squirts over L1 from a moving platform (e.g. with velocity 

of v;.u -lOOOkms·1 across Li in the binary plane) (e.g. Frank, King & Raine 1992, 

p.54) the material will follow a ballistic trajectory, passing the white dwarf with a 

free-fall velocity v ff -105 km s·1
, and will follow a trajectory that conserves its initial 

orbital angular momentum. 

1.2.4 Mass transfer through L1 

Before the fate of the stream passing the white dwarf is discussed, it is appropriate to 

highlight some important aspects surrounding the mass transfer throughLi. As a result 

of the tidal distortion of the secondary star, its tenuous envelope may be close to the 

Li region. Pushed from behind by the pressure of the stellar atmosphere, the material 

squirts through the LI funnel at roughly the speed of sound. 

The mass transfer rate - M 2 through the Lagrangian point Li (e.g. Plavec et al. 1973; 

Lubow and Shu 1975; Meyer and Meyer-Hofmeister 1983; Pringle 1985; D' Antona et 

al. 1989) can be estimated by employing energy conservation arguments, resulting in 

· 1 3 2 -I 
-M2 "'-puc,P,,,b gs , 

411' 
(l. l 0) 

where PLt is the density of the gas flow at Li, c, is the isothermal sound speed, 

and P,,,b is the orbital period of the system. It has been shown that the density PLi of 

the gas in the secondary star's atmosphere scales as (e.g. Ritter 1988) 

1 -(RL2 -Rp2) -3 
Pu= ~ Pphot exp g cm , 

-ve HP 
(1. ll) 

where p phot is the photospheric density of the late type star and is of the order of 

Pphot -10-" g cm-3 (e.g. Frank, King, Raine 2002, p.353). Here RL2 , RP2 , 

HP(= c;R;2 1 GM2 ) represent the Roche lobe radius, the photospheric radius of the 
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secondary star, and the stellar scale height respectively (e.g. D' Antona et al. 1989; 

Meintjes 2004). For typical secondary stars with surface temperature r; - 4000 K, 

the isothermal sound speed is (e.g. Frank, King & Raine 1992, p.13; Meintjes 2004) 

c "'6xl05 (~r"'( T, )112 ems-' 
' 1 4000K 

(1.12) 

where s represents the mean molecular mass of the gas and T2 is the surface 

temperature of the secondary star. 

It can be seen that the mass transfer process depends rather sensitively on the scale 

height of the secondary star's atmosphere, J = ( RL, - R p>) I HP . This parameter is of 

fundamental importance in determining the magnitude of the mass transfer from the 

secondary to the primary star. The mass transfer from the secondary to the primary 

star on the other hand, in conjunction with angular momentum losses, determine the 

binary evolution, which in turn feed back to influence the scale height and mass 

transfer. This intricate feed-back loop is intimately tied to the overall evolution of the 

binary system and will be discussed in detail in Chapter 3. 

1.2.5 Accretion of mass 

After the brief discussion of the mass transfer through L1, the ultimate fate of the 

ballistic stream accelerated into the Roche lobe of the primary star needs to be 

considered. In cataclysmic variables there are several vital parameters influencing the 

ultimate mode of mass accretion onto the compact object, the most important of 

which are the physical size of the binary, and the magnetosphere of the primary. The 

physical size of the binary determines the initial specific angular momentum with 

which material is injected across L1, i.e. 

(1.13) 

where RLI-J(q)a [with f(q)=0.5-0.2271ogq q=m,lm, ] and 

binaries v;.Li -lOOOkms-1 and RLI -fewxl010 cm, resulting in enormous initial 

angular momentum, e.g. 
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(1.14) 

Accretion of gas onto the white dwarf will only be possible after the material rids 

itself of this enormous load of angular momentum. The other parameter influencing 

the mode of interaction of the gas stream with the compact white dwarf is the physical 

extent of the magnetosphere. The quantity determining the extent of the 

magnetosphere is the magnetic moment(µ) of the white dwarf, i.e. 

(1.15) 

where B 1 and R1 represent respectively the average surface magnetic field strength 

and the radius of the white dwarf. For cataclysmic variables consisting of a compact 

white dwarf with size R1 -109 cm and magnetic field ranging from B1 -104 -107 G, 

the magnetic moments range between 

10l1 Geml 5.µ 5.10l4 Geml. (1.16) 

This range of a factor - 1000 in magnetic dipole moment has an enormous influence 

on the various modes of interaction of the stream with the white dwarf and 

magnetosphere. A stream of material with angular momentum J -1018 cm2 s·1 

approaching a white dwarf with magnetic dipole moment µl 1 -1 (in unit of 

1031 G cm3
) will be able to pass by relatively unhindered, following a path depicted in 

Fig 1.3 a. Conserving angular momentum, it will eventually settle in a circular orbit at 

the so-called circularization radius. On the other hand, if the white dwarf has a 

magnetic moment ofµ - l ol• G cm3 the stream will most probably ram directly into 

the magnetosphere, resulting in a mode of accretion inferred from the so-called polars 

(discussed in Chapter 2). 

A physically instructive estimate of the circularization radius is obtained through 

conservation of the angular momentum of the stream across L1. The specific angular 

momentum of material at the L1 point is RL1 x v;.Lt • where the velocity v;,Lt at RL1 is 

27l'RL, IP., •. The specific angular momentum after circularization is Re,~ x v,.P, where 

the Keplerian velocity vk<p = (GM1 )1'2 
_ Equating the expression for angular 

Re ire 

momentum then gives (e.g. Hellier 2001 p.24) 
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~---------------------------------------

R _ 4ir
2
Rt1 

cl.-c - GM p2 . 
I orb 

(1.17) 

Using Kepler's law of orbital motion (eqn 1.1), this expression can be written as (e.g. 

Frank, King & Raine 1992, p.56) 

Rc1,,,, =(l+q)(RL1)4. (l.18) 
a a 

For most realistic binary parameters (e.g. Frank, King & Raine 1992, p.56) 

Rci.-c ;::3.5x109 P:,;3 cm. (1.19) 

To understand what follows, three concepts must be kept in mind. First, material in a 

smaller orbit moves faster (from Kepler's law). Second, material in a smaller orbit has 

a lower specific angular momentum (the increase in speed is not enough to offset the 

decrease in radius required to conserve angular momentum). Third, by transferring 

into a smaller orbit, material liberates gravitational potential energy. Thus, within the 

ring of material orbiting at the circularization radius, blobs of material slightly nearer 

the primary will orbit slightly fruter, causing friction as they slide past blobs further 

out. The friction and turbulence heat the gas so that energy is radiated away, resulting 

in the material losing gravitational potential energy. This means that some of the 

material has to migrate to smaller orbits in the process. However, to conserve the 

overall angular momentum, other material must move to larger orbits. Thus overall, 

the ring spreads out into a thin disc (see Fig 13 c). The disc continues to spread until 

the inner edge meets the primary, in the case of a non-magnetic system, or the white 

dwarf magnetosphere. The inward ram pressure of the gas and magnetosphere 

pressure will constitute a boundary, i.e. the so-called Alfven radius. Material 

continually flows through the disc, spiralling inwards to ever smaller orbits, and may 

eventually accrete onto the white dwarf. Angular momentum flows outwards through 

the disc, enabling the inward flow of material and consequent release of energy. At 

the outer edge of the disc, tidal interactions with the secondary star transfer the 

angular momentum to the orbit of the secondary. This limits the outward spread of the 

disc. The disc is replenished by the mass-transfer stream from the secondary, which 

brings both fresh material and angular momentum that has to be processed. The thin 
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disc of circling material, destined to settle onto the compact star lurking at its centre, 

is called an accretion disc (Fig 1.3). 

• 

al Initial~ 
stream 

bl formation of 
rlng 

cl ring spreads 

di disk is formed 

d1 sid• view 

Fig 1.3 Illustration of the formation of the ring and subsequently the disc in a close 

binary. (Verbunt 1982). 

The alternative scenario of the stream interacting with a white dwarf of magnetic 

moment µ 34 - I results in a completely different scenario. In most scenarios the 

stream will be intersected by the magnetosphere, resulting in the material being 

channeled by the magnetic field onto the surface, which results in the liberation of 

gravitational potential energy into heat and radiation energy. Most of the general 
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properties ofCVs - in particular the object of interest, AE Aqr - will be revealed in the 

next chapter. 

1.3 Outline of this study 

This thesis will be structured as follows: 

In Chapter 2 the general properties of CV s and AE Aqr will be reviewed. 

In Chapter 3 the theoretical aspects influencing binary evolution will be reviewed, and 

will be used to highlight the model calculations, focusing on the object of interest, i.e. 

AEAqr. 

In Chapter 4 the model calculations and a brief discussion will be presented regarding 

the possible evolutionary scenarios applicable to the AE Aqr system. 

A brief conclusion will be presented in Chapter 5. 
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Chapter 2 

The magnetic cataclysmic variables: Introducing AE Aquarii 

Most of the transient emission features in the magnetic cataclysmic variables a-e 

driven by the very complex interaction between the mass transfer stream and the 

secondary star and white dwarf magnetic field. For example, it has been shown 

(Beardmore & Osborne 1997) that the shot noise behaviour of the X-ray emission in 

polars can be attributed to blob-like accretion. It has been shown (Meintjes 2004) that 

the mass transfer stream in the cataclysmic variables can be fragmented by the 

secondary star magnetic field, explaining the blob-like nature of the mass flow. To put 

all these in context, a brief theoretical overview of the most relevant 

magnetohydrodynamic processes will be presented. 

2.1 The magnetosphere-flow interaction 

Most astrophysical plasmas can be considered as highly conducting fluids. The fields 

in a highly conducting fluid ( u ----). oo) governed by low velocity v (i.e. v ----). 0) are 
c 

deduced from Maxwell's equations. In a reference frame co-moving with the fluid, 

Ohm's law states that the relation between the current density(}') and electric field is 
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J• = aE', (2.1) 

where the Coulomb conductivity a"' 3.2xl06T312 (esu). The fluids transform to the 

laboratory system as follows (symbols with • represent co-moving system with the 

fluid and symbols without• represent laboratory system): 

- - 1 -
E'=r(E+-(vxB)) and 

c 

-, - 1 - -
B =r(B--(vxE)). 

c 

For non-relativistic fluids f3=~<<1 ; we get r = 1 I ~l- f3 2 ~ 1 and 
c 

- - 1 -
E'=E+-(vxB) and 

c 

- - 1 -
B'=B--(vxE). 

c 

(2.2) 

(2.3) 

(2.4) 

(2.4) 

If the conductivity of the medium is very high (i.e. <1 ~ oo ), the E-field in the co­

moving reference frame E' ~ 0, hence 

- I -
E =--vxB. 

c 

Similarly for the B-field 

- - I -
B'=B--[vxE] 

c 
- 1 -= B +-2 [vx(vx B)] 

c 
- 1 - -= B +-[v(V·B)-B(V ·v)] c2 

= s-sc'!..y 
c 

- v 2 = B (neglecting (-) term). 
c 

(2.5) 

(2.6) 

If the characteristic scale of the field is L and the characteristic time of change in the 

fluid is -r = L, it follows from Ampere's law, i.e. 
v 

v x Jf = 471" J + }__ a"E , 
c c at 

(2.7) 

and 
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.---.-----------~---. -------- -

- - - v -
c(VxB) =4n;J +-E. 

L 

On dimensional grounds one can show, by using E = _!_(vxB), that 
c 

cB ,., 4n;J -(!'_ )2 cB . 
L c L 

(2.8) 

(2.9) 

Hence it is obvious that the LHS is cB and that the magnitude of the second term on 
L 

the RHS is ( ~ )2 cB , which can safely be ignored. Hence for a highly conducting fluid 
c L 

the BE term can be ignored and Ampere's law states 
Bt 

- - 411' -
VxB =-J [forcr~oo]. 

c 

From Ohm's law the current density in a fluid is 

]' =crE' , 

which for slow moving fluids results in 

J'=J=crE' 

- 1 -
=cr[E+-(vxB)] 

c 

- v -
= crE +cr(-x B). 

c 

Therefore, 

- J v -
E =--(-xB) 

er c 

c - - v -
=-(VxB)-(-xB). 

4ncr c 

Substituting in Maxwell's induction equation 

- - 1 BB 
VxE =---, 

c Bt 

gives 

BB - -
-=-c(VxE) 
Bt 

- c - - v -
=-c[Vx(-(VxB)--xB)] 

4ncr c 

= Vx (vx B)-Vx17(VxB), 
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(2.11) 

(2.12) 

(2.13) 

(2.14) 



where 

CZ 

T/ = 4m; (2.15) 

represents the coefficient of resistive diffusion. In the equation (2.14) the second term 

represents the diffusion of the magnetic field into or out of a fluid with conductivity u. 

From dimensional analysis it can be shown that the second term, i.e. the diffusion 

term, is smaller than the first term by the reciprocal of the so-called magnetic 

Reynolds number (e.g. Jackson 1975, p.473) 

RM= Lv = 4nLva, 
T/ CZ 

(2.16) 

which gives 

B vB T/B 
("'[-/! 

vB T/ vB 
=----

L Lv L 

vB 1 vB 
=----

L RM L 
(2.17) 

For highly conducting fluids, which applies to most astrophysical environments 

a ~ co, the coefficient of resistive diffusion 

c2 
T/=--~O. 

471"0" 
(2.18) 

Hence for a ~ co, the magnetic Reynolds number RM ~ co, which implies virtually 

no diffusion of magnetic field through a highly conducting fluid. Hence the field is 

frozen into the fluid, implying that the magnetic field and fluid are tied together. A 

magnetic field frozen into a moving fluid will be carried along by the fluid without 

resistance as long as the fluid ram pressure dominates the magnetic pressure. To 

illustrate this, a brief discussion of the basic principles of magnetic advection will be 

presented (e.g. Jackson 1975, p.475-479), which will provide a handy theoretical 

framework to explain the plasma-magnetosphere interaction in the magnetic 

cataclysmic variables. 

For simplicity, consider a non-permeable fluid described by matter density p(x, t), 

velocity v(x,t), pressure P(x,t), and conductivity a. Then the force equation of 

motion ofa fluid is given by (e.g. Jackson 1975, p.471) 
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av - 1---
p-=-VP+-(JxB)+ f,+pg 1 

dt c 
(2.19) 

which in addition to pressure and magnetic forces includes gravitational force, pg 

and the viscous force, f, given by 

f, =µkv2v, (2.20) 

in the case of an incompressible fluid, where µk represents the coefficient of 

kinematic viscosity. 

In CVs the effective gravity at the L1 region is zero. In this case the gravitational term 

in equation (2.19) can be neglected and for a steady state, i.e. av I dt = 0, it takes the 

form 

VP= !_(JxB)+ µk'1 2v. 
c 

(2.21) 

In the following discussion, consiOer an incompressible, viscous conducting fluid 

flowing in the x-direction between two non-conducting boundary surfaces at z = 0 

and z = L, representing the edges of the funnel across L1. Also assume a uniform 

magnetic field B0 in the z-direction, acting as a barrier for the flow along the x-

direction (see Fig 2.1). In this case the only non-vanishing component of J is given 

by (e.g. Jackson 1975, p.476) 

1 
Jy(z) = c;(E0 --B0v), 

c 
(2.22) 

where E0 is the only component of the electric field and is in the y-direction, and 

therefore must be constant. In the expression above v is the flow velocity in the x­

direction. The x-component of the equation of motion, eqn (2.21), is therefore given 

by 

oP = c;B0 (Eo _ B0 v)+ µk o
2
v. 

fu c c &2 (2.23) 

Assuming that the pressure gradient in the x-direction, i.e. oP I fu ~ 0 at a localized 

position (i.e. L1, if it is significantly removed from the photosphere), eqn (2.23) can be 

expressed in the form 
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Fig 2.1 Mass flows through L,. funnel (Pringle 1985) 

a'v 
az' 

aB'L' cE 0 0 

µ c'L' B k 0 

8
2
v -(Mn )'v =-(Mn )2 cE0 

8z2 L L B0 ' 

where Mn 

(2.24) 

(2.25) 

is the Hartmann number, i.e. the ratio of the magnetic viscosity to the fluid kinematic 

viscosity ( µ. ). If M H >> 1 , the flow will ram into a rigid magnetic obstructicn, 

resulting in the fluid experiencing severe effects of magnetic viscosity (e.g. Jackson 

1975, p.477), forcing it to decelerate across the field lines. 
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The solution to eqn (2.24), assuming boundary conditions v(O) = v1 and v(L) = v2 is 

readily found to be (e.g. Jackson 1975, p.477) 

v(z)= . V1 [MH(L-z)]+ . V2 <M"z) 
sinhMH L s1nhMH L 

+ cE0 [l- sinh[M"(L-z)/ L]+sinh(MHz IL)]. 
B0 sinhMH 

(2.26) 

Since the condition for magnetic viscosity to dominate the flow is M H >> 1, and since 

from the calculation it is found that M" > 1 , the limit of M H >> 1 will therefore be 

considered, in which case it is expected that the magnetic viscosity will dominate and 

the flow will be determined almost entirely by the Ex B drift. Since the flow is 

considered to be in the x-direction, the magnetic field in the x-direction B,(z) can be 

determined from eqn (2.l 0) and eqn (2.12), i.e. 

8B, = 4;ru (Eo _ B0 v). 
az c c 

(2.27) 

Substituting eqn (2.26) for velocity into eqn (2.27), it can be shown (e.g. Jackson 

1975, p.478) that 

B,(z) = Bo(4;ruL
2 

)( v, -v1 )[cosh(M" /2)-cosh(M" 12-M Hz IL)]. 
c2 2L M"sinh(M"/2) 

(2.28) 

From eqn (2.28) the term (v2 -v1)/2 is a typical velocity and L is a typical length. 

The dimensionless quantity in the square brackets can therefore be identified as the 

magnetic Reynolds number RM. Therefore eqn (2.28) reduces to (e.g. Jackson 1975, 

p.478) 

B,(r) RM MHr L-r --= -(1-[exp(--)+exp(-M" -)]) 
B0 MH L L 

for M" >> 1 (2.29) 

B,(r) = RM ~(l-~) 
B0 MH L L 

for M" << 1, (2.30) 

where the radial distance r = z. Expressing r as a fraction of the funnel width, i.e. r/L 

where L = H, the value of B,(r)I B0 can be calculated. From this values of the 

magnetic field at the various radial distances advected into the funnel with the fluid 

flow can be determined. A graph of B,(r)I B0 against r IL is shown in Figures 2.2 

and 2.3. 
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Figures 2.2 and 2.3 show the behavior of the lines of the forces for each of the two 

limits [M
8 

=0.1,10 (for RM -10) and M 8 =109 ,1010 (for RM -109
)]. For a given 

RM, the larger the Hartmann number (M8 >>1) the less transport (advection) of the 

magnetic field occurs. 

Within the framework of this discussion, the interaction of a conducting fluid, (i.e. the 

mass transfer flow from the secondary star) with the magnetosphere of the compact 

object (the white dwarf) can be evaluated. Since the dipole field of the compact object 

B = B1 (~ ) 3 (2.31) 

drops off as Bex: R-3 there will be virtually no magnetic resistance to the flow where 

the ram pressure of the bulk flow from the secondary star significantly exceeds the 

magnetospheric pressure. This will allow the flow to plunge through the 

magnetosphere relatively unaffected. In this regime the field will be dragged along by 

the flow since in the limit a~ oo there will be virtually no diffusion of the field 

relative to the flow (e.g. Fig 2.3 ). Closer to the white dwarf the field pressure may 

become significantly high, dominating the flow ram pressure. In this region, the 

structure of the magnetosphere field will dominate the flow, determining the path 

which the flow will follow onto the surface of the white d'OO!f. In this case, the field 

lines act as an immovable obstruction to flow ramming into it, the only alternative 

being flow along flux tubes towards the surface of the accreting star. 

The region where the magnetosphere and the flow pressures balance, i.e. the transition 

region, defines the extent of the magnetosphere of the compact object, i.e. the 

magnetosphere or Alfven radius. The basic properties of magnetic cataclysmic 

variables can then be explained in terms of the magnetic properties of the compact 

object. A brief discussion is presented in the following sections. Since the strength of 

a magnetic field declines rapidly with increasing distance, magnetic cataclysmic 

variables can often be regarded as having a weakly magnetized outer zone which has 

very little or no influence on the flow ( M 8 << 1 ), and a magnetically dominated 

magnetosphere surrounding the white dwarf, totally dominating the flow (M 8 >> 1) 
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toward the polar caps where the gravitational potential energy of the material is 

released in heat and radiation. 

The hard X-ray (> 0.5 keV) bremsstrahlung from polars is a characteristic that 

distinguishes them from non-magnetic CV s. Polars also are spectacular emitters of 

soft X-rays (< 0.5 keV) , originating from reprocessed bremsstrahlung, and 

thermalized subphotospheric deposition. (Warner 1995). 

Figure 2.4 shows the observed flux distribution of EF Eri in the 70 eV - 2 keV region 

(Beuermann, Thomas & Pietsch 1991). The dashed curve represents a blackbody 

spectrum with kT
88 

=19eV (T8 =2.lxl05 K) combined with a kT=20keV 

bremsstrahlung spectrum, both absorbed by interstellar absorption with 

NH = 1x1019 cm·2 • Because of the large uncertainties in most T88 , the values of the 

blackbody luminosity L88 are probably uncertain by factors -4. The estimate of T88 

are close to the maximum permitted by stability of a white dwarf atmosphere. 

10 

I 

"' "--' 1 
cu .... 
f 

.... 
§ 
0 
0 .1 

.05 

-- ... _ ... 
' ' 

so!ll soft2 

soft 

I 
I 
\ 
I 
I 
I 

' I 
I 
\ 
I 
\ 
I 
I 
I 

hard 

.1 .2 .5 1 

energy [keV] 
2 

Fig 2.4 X-ray flux distribution in EF Eri, obtained by ROSAT. (Beuermann et al. 

1991) 
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The relative role of the various emitting region5 can be judged from the parameters 

derived for ST LMi in Table 2.1 (Beuermann 1987). It is clear from this that the 

accretion luminosity is dominated by L88 , which gives L0 " - 3x1032 erg s·1 for polars 

and implies M-2.5xl015 gs·1 (Warner1995). 

Emitting area Luminosity 

1015 cm Fraction of WD (ergs"1
) 

Bremsstrahlung -0.04 -SxlO""° -5xl031 

Blackbody 0.04-8 Sx!O""° -9xl0_. 12-90xl031 

Cyclotron 4-32 5xl0""°-4x!0-3 -lxl031 

Table 2.1: Energy Budge in St LMi 

2.2 The magnetic cataclysmic variables (MCV) 

2.2.1 AM Her stars: Polars 

These systems are the magnetic cataclysmic variables (mcv) in which the white 

dwarfs have magnetic fields significantly exceeding 10 Mega Gauss (MG) (e.g. 

Schmidt 1999), confirmed by Zeeman splitting and polarization measurements. The 

strong magnetic field of the primary interacts with the smaller magnetic field of the 

secondary, locking the two stars together into corotation. This has the following two 

implications: 

(i) Polars are synchronously rotating systems (P,01=Porb), with orbital periods 

lying between - 81 and 222 minutes (e.g. Chanmugam & Ray 1984). The 

phase locked interaction is caused by the strong magnetic interaction 

between the white dwarf and the low mass magnetic secondary. 

(ii) The formation of the disc is prevented (i.e. discless accretion), since the 

small orbital period (P :<;; 3 hours) implies small binary separation and an 

extended magnetosphere, resulting in the mass transfer stream ramming 

directly into the magnetosphere of the white dwarf. The stream punches 
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through the magnetosphere until the magnetospheric pressure starts to 

dominate. From this point the flow is chanrteled along the field onto one or 

both poles of the white dwarf. 

Evolutionary models (Warner & Wickramasinghe 1991) describe the condition for 

synchronization and discless accretion which are set by the ratio of the magnetic 

moment to the mass accretion rate of the white dwarf. For polar systems, the 

following condition must be satisfied (Warner & Wickramasinghe 1991) 

(2.32) 

where m1 is the mass of the white dwarf in solar mass units, µ 34 is the magnetic 

moment of the white dwarf in units of 1034 G cm3 
, and M18 represents the mass 

accretion rate in units of 1018 g s·1 
_ This condition implies that for orbital periods 

P s; 4 hours and mass accretion rates M18 -1 , synchronism can be achieved if 

0.4 s; µ 34 s; 7. This is in fact observed from most polars. For effective synchronization 

and discless accretion the ratio of the synchronization time-scale to spin-up time-scale 

must be of the order (e.g. Meintjes 1992) 

t 
--2!!.._ s; I. (2.33) 
f:rpln-up 

Close to the white dwarf surface, material falling in with supersonic velocities is 

decelerated and heated to approximately 108 K in a stand-off shock (e.g. Frank, King 

& Raine 1992, p.137) resulting in a release of gravitational potential energy in the 

accretion column (see Fig 2.5), (Kuijpers & Pringle 1982; Done, Osborne, Beardmore 

1995; Beardmore et al. 1995; Gansicke, Beuermann, de Martino 1995). The radiation 

is characterized by: 

(i) Strong polarized emission at optical/IR wavelengths. 

(ii) Intense soft, and in some cases, hard X-ray emission. 

(iii) An emission line spectrum of excitation which reflects the large streaming 

motion of accreted material in the magnetosphere of the white dwarf (see 

e.g. Beuermann 1988). 
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Fig 2.5 Schematic picture of a standard accretion column geometry for a magnetized 

white dwarf(Watson 1986) 

The polars will be presented according to the magnetic field strength of WD as 

follows: the AR UMa system with the strongest field known among CVs and the 

typical AM Her systems. The properties of these systems will be discussed briefly. 

2.2.1.1 The highest-field systems (i.e. the AR UMa systems) 

The white dwarf in AR UMa has the strongest field known among cataclysmic 

variables, measuring 230 MG at its surface (Schmidt et al 1996; Schmidt 1999; 

Hellier 2001, p.110). The 230 MG field is strong enough to dominate the flow from 

the L 1 point. In terms of the earlier discussion, M H >>I for the system, resulting in 

the accretion stream following field lines almost from the start. Thus to follow a field 

line, the stream must divert out of the orbital plane. The stream splits into two, one 

part heading towards the 'north' magnetic pole and the other towards the 'south pole' 

(see Fig 2.6). The field lines converge as they approach the white dwarf, squeezing 

the streams and funneling them onto tiny accretion spots near the poles. 
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Fig 2.6 The accretion stream in AR UMa (Schmidt 1999) 

Being channeled by the field, the stream moves almost radially towards the white 

dwarf, in virtual free-fall. The potential energy is converted to kinetic energy and the 

stream slams onto the white dwarf at roughly the 3000 km 81
• In the resulting 

accretion shock the kinetic energy is converted into X-rays and radiated away. 

Magnetic cataclysmic variables are thus stronger X-ray sources than their non­

magnetic counterparts, emitting most of their energy as X-rays and extreme­

ultraviolet photons. 

2.2.1.2 The typical AM Her stars 

Whereas AR UMa's 230 MG field controls the stream from the L1 point, in AM Her 

stars with more typical fields of 10-70 MG (e.g. Cropper 1990; Schmidt et al 1996), 

the stream is at first unaffected by the field, following a 'ballistic trajectory' until 

close to the white dwarf. Provided the magnetosphere extends out further than the 

circularization radius, the ballistic stream rams into the magnetosphere. As the stream 

approaches the white dwarf, the increasing magnetic pressure of the converging field 

lines first squeezes the stream, causing it to break up into dense blobs of material (see 

Fig 2.7). 
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Fig 2.7 The typical accretion flow of polar (Cropper 1990) 

The field cannot easily penetrate such blobs because of screening, so they continue 

ballistically towards the white dwarf surface. As the magnetic pressure increases the 

clumpy flow is compressed, resulting in collisions in the stream and shock formation. 

Material stripped from the surface of the blobs will flow along field lines and onto the 

white dwarf where the gravitational potential energy of the flow is converted into heat 

and radiation. 

2.2.2 Intermediate polars (IPs) 

In the majority of CV s the magnetic fields are sufficiently weak so that they can be 

ignored, whereas in AM Her stars they completely dominate the accretion flow. With 

a medium-strength field a CV can combine the characteristics of a non-magnetic 

system (in its outer regions) with those of an AM Her system (nearer to the white 

dwarf). The AM Her stars can be knocked out of synchronism if the field of the 

primary is a little too weak, or the stellar separation a little too large. Continuing this 

trend leads to systems which have lost synchronism entirely (e.g. a nova· outburst 

leading to desynchronisation, a good example is Vl500 Cyg, nova Cygni 1975, e.g. 

Schmidt et al. 1995), in which the white dwarf is spun up by the accretion of material, 

ending at rotation periods of typically a tenth of the orbital period (e.g. Warner 1995; 

King 1993; King & Lasota 1991). Such systems are called intermediate polars, to 

denote a status halfway between AM Her stars (polars) and the non-magnetic CVs. 

An interesting question to ponder is under what circumstances does the direct 

interaction of a stream with a magnetic field give way to the formation of a disc? An 

- 32 -



easy case to deal with is when the magnetosphere is smaller than the radius of 

minimum approach of the free-falling accretion stream (rmag < r min) • The stream could 

then orbit the white dwarf, ignoring the feeble magnetic field, spreading as a result of 

viscosity to form a disc. The disc would then spread inwards and outwards until the 

inward migration of its inner edge is stopped by the increasing magnetic pressure of 

the magnetosphere (see Fig 2.8). 

Accretion on to a campat:t object 

Fig 2.8 Accretion disc around the magnetic primary (Frank, King & Raine 1992, 

p.122) 

In the high mass transfer phase, a well-developed disc should be present that could 

facilitate mass accretion onto the white dwarf. By inverting the discless accretion 

argument (Wickramasinghe, Wu & Ferrario 1991; Warner 1995) during the initiation 

of the high mass transfer phase, an accretion disc will develop if the magnetic 

moment of the white dwarf does not exceed (e.g. Meintjes 1992) 

µ ~0.4 Y(Pa'b)71o(M1 )'/6 Gcm-3 
34 "\f1Vl1s 4 hr M 

0 

(2.34) 

2.2.3 DQ Herculis (DQ Her) systems 

The DQ Her binaries are a subset of the intermediate polars. They have short primary 

rotation periods ( P,01 <I 00 s) and lack hard X-ray emission. In terms of the standard 

model, the short rotation period P,,,1 << P0,b hints that these systems may be disc 

accretors. To put the pulsed emission of DQ Her, the prototype of this cl~s, into 

perspective, the oblique disc rotator model was developed by Bath, Evans & Pringle 
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(1974), which could be a representative model for all disc accreting mcvs (see Fig 

2.9). 

Fig 2.9 The supposed configuration of an oblique rotator (Patterson 1979, 1994) 

In this model the pulsed emission from disc accreting DQ Her stars, as well as the 

intermediate polars, is the direct result of the accretion of gas onto the exposed 

magnetic pole of a magnetized white dwarf, which is tilted with respect to the rctation 

axis (see Fig 2.8, 2.9). Rotation of the compact object will cause the pole heated by 

accretion to continually move into and out of the field of view of an observer, 

resulting in pulsed emission modulated with the spin period of the magnetized white 

dwar£ 

Traditionally, the subclass contains only three systems, AE Aquarii (AE Aqr), DQ 

Herculis (DQ Her) and V533 Herculis (V533 Her) as listed in Table 2.2. 

Name P0 ,.i, (hr) Pro, (min) • I Pro, I Pro, (yr- ) 

AEAqr 9.88 0.55 5.4xlo-• 

V533 Her 5.04 1.06 1.5x10-1 

DQHer 4.65 1.18 -3.6x!0-7 

Table 2.2: The characteristic periods of the three DQ Her systems. (Campbell 1997) 

These binaries played an extreme important role in the early pioneering work 

regarding the development of a general model for the CV s. AE Aqr was shown to be a 

spectrospic binary by Joy (1954) and was subsequently used by Crawford & Kraft 

(1956) towards deriving the basic model for the CVs. 
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Having discussed the various mcvs, with some of their most important properties, AE 

Aqr can now be considered. This system has a 9.88-hr long orbital period and a 33-s 

short spin period. The long orbital period and short white dwarf spin period implies 

that the binary separation is large enough to accommodate a well-developed accretion 

disc. However recent studies (e.g. Wynn, King & Home 1997; Meintjes & de Jager 

2000; Meintjes 2002) reveal that the AE Aqr system is quite unique since it is ejecting 

virtually 100% of the mass transfer from the secondary star. It is believed that AE Aqr 

went through a run-away mass transfer phase when the accretion rate probably was 

high enough to support surface nuclear burning on the white dwarf and the magnetic 

torque on the white dwarf, exerted by a well-developed accretion disc in that phase, 

spinning-up the white dwarf to the current short spin period. The conjecture that AE 

Aqr, and possibly other CVs went through a high mass accretion, and hence possibly 

a super soft X-ray source (SSS) phase (e.g. Schenker et al. 2002; Meintjes 2002), can 

be evaluated quantitatively by scrutinizing the possible evolutions of the system. This 

will be the topic of investigation in this study. However, it is important firstly to 

explain some of the properties of the SSS, and of AE Aqr in particular. 

2.3 The Super Soft X-ray Sources (SSS) 

The first of the luminous Super Soft X-ray Sources (SSS) in the Large Magellanic 

Cloud (LMC) was discovered around 1980 with the Einstein Observatory (Long et al. 

1981). After the discovery of SSSs with the Einstein Observatory observations and 

later with EXOSAT (Pakull et al. 1985), the detection of an orbital period established 

the close-binary nature of these sources (Smale et al. 1988). The real proof of their 

super soft nature was given by observations with ROSAT (Trumper et al. 1991; 

Greiner et al. 1991), which showed that SSS do not emit detectable X-ray radiation 

above -0.5 keV. Typical blackbody parameters of an SSS are temperatures of 

:z; -1 O' -106 K and a radius of R1 - (1-3) x 109 cm. This suggests that the emitting 

object has the size of a white dwarf and radiates at or above the Eddington limit 

(-1038 ergs-') ofa solar mass object (Heise et al 1994). 
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The ROSAT satellite with its PSPC detector ms discovered about four dozen new 

SSSs and has thus established luminous SSSs as a new class of object. The new class 

of soft X-ray IPs are discovered by ROSAT (dominated by a soft black body, e.g. 

Haber! & Motch). Although many different classes of objects emit super soft X-ray 

radiation (defined here as emission predominantly below 0.5 keV which corresponds 

to effective temperatures of the emitting objects of <50 eV), Greiner (2000) considers 

only sources with bolometric luminosities in the range lo'6 to 1038 erg s-1
• Optical 

observations have revealed the binary nature of several of these objects. 

The first thoughts about the nature of SSS included accretion onto black holes 

(Cowley et al. 1990; Smale et al. 1988) and neutron stars accreting above the 

Eddington rate (Greiner et al. 1991). Van den Heuvel et al. (1992) proposed as a 

possible explanation that the super soft X-ray emission was the result of steady 

nuclear burning of hydrogen accreted onto white dwarfs. Such a close binary system 

would be a strong source of soft X-rays. 

Instead of a hydrogen burning white dwarf, Iben & Tutukov (1993) proposed helium 

burning on a carbon-oxygen (CO) degenerate dwarf, which accretes helium from a 

companion that is burning helium shell above a CO core. However, the detection of 

the Ha line in emission in CAL 83 and CAL87 (e.g. Pakull et al. 1988) supports the 

scenario in which the mass-donor star in these systems is hydrogen rich. 

A white dwarf model, the so-called close-binary super soft source (CBSS) model, is 

perhaps the most promising (Kahabka & van den Heuvel 1997; Rappaport et al. 1994; 

van den Heuvel et al. 1992). It invokes steady-nuclear burning on the surface of an 

accreting white dwarf generating these systems' prodigious flux. Indeed, CBSS 

sources have temperatures and luminosities, derived from the X-ray data, suggesting 

an effective radius comparable to that of white dwarfs. Eight super soft X-ray sources 

have orbital periods between approximately 4-hr and 3.5-d (Greiner 2000). These are 

the candidates from the CBSS model. Mass transfer rates derived from the CBSS 

model are in the right range for steady nuclear burning of the accreted matter, which 

is (Prialnik 1986): 

M <:: 1019 ( M, )312 g s-1 

I(SNB) 0.9M 0 
(2.35) 

- 36 -



2.4 The AE Aquarii system 

Tue investigation of a possible relation between the AE Aqr system and the SSS 

justify a detailed discussion of the system in its current state. 

2.4.1 Properties of AE Aquarii 

Tue mcv AE Aqr is probably one of the best studied sources in the sky, with 

observations ranging from radio to Te V ganuna-rays. The highly variable binary is a 

member of the DQ Her type cataclysmic variables, and was discovered by Zinner 

(1938) on photographic plates and was first classified as a U Gem type variable. Since 

its discovery in the optical range on photographic plates, the rapidly varying 

cataclysmic variable AE Aqr has remained a source of continuous observational and 

theoretical study. 

Tue rapid variability of AE Aqr in the optical range was instrumental in stimulating 

extensive multi-wavelength (spanning 17 decades) interest. This subsequently led to 

its detection in frequencies other than the optical range, spanning radio to TeV 

ganuna-rays. Tue emission from AE Aqr, in both radio and TeV ganuna-rays is of 

non-thermal nature, and extensive reports on, and models of the nature of the non­

thermal radio and TeV ganuna-rays emission are presented by Bookbinder & Lamb 

(1987), Bastian, Dulk & Chanmugam (1988), Abada-Simon et al. (1993, 1995a, 1998); 

Abada-Simon et al. (1995b), Meintjes (1992), Meintjes et al. (1992, 1994), Bowden et 

al. (1992), de Jager (1994, 1995), de Jager & Meintjes (1993), Ikhsanov (1997, 1998, 

1999, 2000), Kuijpers et al. (1997) and Meintjes & de Jager (1995, 2000). An 

encyclopaedic summary of the overall multi-wavelength properties of the system, and 

cataclysmic variables in general, is given by Warner (1995). 

AE Aqr is one of the most distinctive CVs with a white dwarf primary and a K4-5 

type secondary. Tue secondary star is suspected to be an evolved late-type star. It was 

first classified as a K0-5 by Joy (1954) but subsequent studies of photometric 

variability, together with independent spectroscopic studies have shown that this was 
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too early and these studies support a spectral type in the range K3-K5 (Crawford & 

Kraft 1956; Tanzi, Chincarini & Tarenghi 1981; Wade 1982; Bruch 1991; Welsh, 

Home & Oke 1993; Welsh, Home & Gomer 1995). The analysis of the absorption 

features supports a K4 classification for the companion star, which contributes >95 

per cent of the total flux in the range 600-700nm (Casares et al. 1996). These studies 

classified AE Aquarii as a white dwarf that accretes matter from a late type K4-5 

secondary star with the two stars orbiting their common centre of mass every 9.88-hr. 

A 1978 optical photometric campaign revealed low-amplitude (0.1 - 0.2 percent), but 

persistent pulsations at 16.54 and 33.08-s, and transient quasi-periodic oscillation 

(QPOs), which appear to be connected to outbursts (Patterson 1979). The 33-s 

oscillations were explained in terms of an oblique rotator model (e.g. Bath, Evans & 

Pringle 1974) as the rotation period of the white dwarf caused by the released 

gravitational potential energy of gas that is accreted from an accretion disc onto the 

nearest pole of the white dwarf that sweeps through the line of sight every 33.08-s. 

The 16.54-s pulse, in the context of the oblique rotator model, was explained as 

illumination of the disc inner edge by the second pole (Patterson 1979). In this context 

the outbursts (flares) seen on a regular basis are episodes of enhanced mass accretion 

onto the poles of the white dwarf. The QPOs associated with flares were explained as 

self-luminous blobs in the disc orbiting the white dwarf with Keplerian periods. This 

model placed AE Aqr in the same category as DQ Her. 

A detailed pulse timing analysis of the 33-s pulse, using a data set spanning nearly 15-

year, de Jager et al. (1994), showed that the white dwarf is spinning down at a rate of 

.P-5.64xlo-1• SS-I 

yielding a spin-down power of 

-/QQ = 6x 1033 150 erg s-1 (2.36) 

By adopting an orbital inclination of - 55° (Welsh, Home & Gomer 1995; also 

Warner 1995), and using the 15-year baseline of the arrival times of the 33-s 

oscillation, de Jager et al. (1994) put constraints on the binary parameters, for 

example, on the mass of the secondary and primary star 
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(2.37) 

( M 1 ) _ 0_87( _sini. f 3 

M 0 sm55 
(2.38) 

with i- 55' (e.g. Warner 1995) representing the inclination from which the source is 

observed above the binary plain. This is based upon the fact that no eclipsing of the 

compact object by the secondary star has ever been detected, and which results in a 

mass ratio q = (M
2 
I M

1
)- 0.69. These values are in excellent agreement with the q­

ratio value of q = (M
2 
I M

1
) - 0.64 obtained from a similar pulse timing analysis of 

two HST observations made in 1992 (by Eracleous et al. 1994), and an independent 

study of the absorption lines of the secondary (Welsh, Home & Gomer 1993, 1995; 

Casares et al. 1996, Meintjes 2002). 

2.4.2 Magnetic field of the white dwarf 

The orbital period of AE Aqr is P
0
,. - 9.88 hr (e.g. Welsh, Home & Gomer 1993, 

1998). This implies that the binary separation is large enough to accommodate a well­

developed accretion disc. Based upon the accretion torque theory of Ghosh & Lamb 

(1978, 1979a,b), a study of the spin-up and magnetic field in DQ Her stars (Lamb & 

Patterson 1983) revealed that the white dwarf may have a surface field of the order of 

B, -6xl04 G. However, first Cropper (1986) and later Beskrovnaya et al. (1995) 

reported circular polarization at the level of (0.05±0.01) and (0.10±0.03) per cent 

respectively in the optical wavelengths, which, if produced by cyclotron emission, 

may indicate a magnetic field in excess of B. -106 G (Chanmugam & Frank 1987). 

These levels of circular polarization are consistent with early upper limits of 0.06 % 

reported by Stockman et al. (1992), from AE Aqr, in a polarimetric survey of 

magnetic cataclysmic variables. To account for the low level of circular polarization 

( <l %) from certain cataclysmic variables, these authors placed an upper limit of 

B. < 5x106 G on the surface field strength of these white dwarfs (e.g. Meintjes & de 

Jager 2000). 
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The estimated magnetic moment ( eqn 2.34) is in excellent agreement with the 

magnetic moments (- µ 32 I 2 ) of the other intetmediate polars and DQ Her stars 

(Warner & Wickramasinghe 1991). This will allow an estimate of an upper limit of 

the surface magnetic field strength of the white dwarf B1 ::. µIR; , if its radius is 

known. By adopting the white dwarf mass-radius relation (e.g. Hamada & Salpeter 

1961; Eracleous & Home 1996; Meintjes 2002) 

R =5.3xl08 ( Mi )-0
·
8 cm 

I 0.9M., ' 
(2.39) 

resulting in a white dwarf surface field which is in the order of (Meintj es 2002) 

B
1

::. µIR;~ 2.4xl06(µ32 )(Rer3 G. 
3 RI 

(2.40) 

This is reconciled with an estimated magnetic field strength of B1 ~ few x 106 G , 

deduced from circulation polarization measurements (e.g. Cropper 1986; Chanmugam 

& Frank 1987; Stockman et al 1992; Beskrovnaya et al. 1995; Meintjes 2002). 

2.4.3 The propeller phase of AE Aquarii 

The system has a long orbital period 9.88 hr (Welsh, Home & Gomer 1993, 1998), 

and it also has the shortest spin period yet detected, i.e. 33.08 s of intermediate polars. 

This spin period has been detected over a wide range of frequencies, from the optical 

(Patterson 1979) to gamma-rays wavelengths (Meintjes et al. 1992). However a 

controversy on the origin of the 33 s pulsation remained until Welsh, Home & Gomer 

(1993, 1998) and also Reinsch & Beuermann (1994) showed that the Ha emission 

does not track the motion of the white dwarf. Eracleous et al. (1994) studied the 

double-peak profile of the UV pulses and proposed that they arise directly from the 

polar caps of the primary .. 

A 14-year study of the optical oscillation period (de Jager 1994) shows that the white 

dwarf is spinning down at an alarming rate. Something extracts rotational energy from 

the white dwarf at a rate E - JQQ -1034 erg s·1 
- I 000 times the accretion luminosity 

of the system derived from X-ray data (Eracleous, Patterson & Halpern 1991). It has 
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been shown (Wynn, King & Horne 1995, 1997; Eracleous & Horne 1996; Meintjes & 

de Jager 2000; Pearson et al. 2003) that the rapid variability and the spin-down rate of 

the white dwarf can be explained in terms of a magnetoshperic propeller process. The 

propeller process is the result of a low mass transfer rate from the secondary star, i.e. 

M2 <:4xl017 gs·1 (Eracleous & Horne 1996), interacting with the fast rotating 

magnetosphere. This results in the ejection of the mass flow from the secondary star 

before it can settle to form an accretion disc. The magnetic propeller efficiently 

extracts energy and angular momentum from the white dwarf and transports it via 

magnetic fields to gas stream material, which it ejects from the binary system. 

Detailed understanding of the magnetic propeller effects may therefore help us to 

unlock some of the secrets of magnetic viscosity in accretion flows. 
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Chapter 3 

Orbital and magnetic accretion disc evolution 

In this chapter a brief discussion is presented regarding the relevant phenomena that 

influence the mass transfer, mass accretion and hence the evolution of binary systems. 

The aim of this discussion is to put in context the model calculations that will be 

presented in the next chapter. 

3.1 Important time-scales for mass transfer 

If mass transfer from the secondary star to the primary star in a binary system occurs 

as a result of the secondary star filling its Roche surface, the mass transfer rate is 

determined by three important time-scales (e.g. Morton 1960; King 1988; Verbunt 

1993): 

(I) the nuclear time-scale 

Tn = 1010(~2 }(~0) yr 
e .,, 

in which the star expands as a result of hydrogen burning in its core 
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(2) the thermal time-scale 

r:,h =3.lxlO'(M2)2(R0)(L0)yr 
Ma R, £i 

(3.2) 

in which a star attempts to restore its perturbed thermal equilibrium, if its surface 

luminosity in not balanced by its nuclear energy generation rate, and 

(3) the dynamical time-scale (in days) 

r: =0.04(M9 )
112 (R, )312 d 

d Mi Ra 
(3.3) 

in which a star restores a perturbed hydrostatic equilibrium as a result of losing its 

surface layers during the mass transfer process. If a star deviates from hydrostatic 

equilibrium, that is, if the gravitational force is not balanced everywhere by the 

pressure force, it will periodically expand and contract a few times until equilibrium is 

established, provided that no external mechanism feeds energy into the star. 

Since the mass accretion onto a compact object has a significant influence on binary 

evolution, it is important to realize that it has a built-in control mechanism, i.e. a 

control value, which results in temporal shut-down in the mass accretion. This will 

obviously have an influence on the evolution of these systems. A qualitative 

discussion of this will now be presented. 

3.2 The Eddington limit 

The luminosity of an accreting system depends on the compactness, MIR , and the 

accretion rate. Under certain conditions, the radiation will push away the accreting 

material and this leads to the existence of a maximum luminosity for a given system 

which is called the "Eddington luminosity" and this condition is called the Eddington 

limit. 

Considering a steady spherically symmetrical accretion, we assume the accreting 

material to be mainly fully ionized hydrogen. Under these circumstances, the 

radiation exerts a force mainly on the free electrons through Thomson scattering since 

the scattering cross-section for photon-proton interactions is a factor 
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(m.lmp) 2 "'(5xl0-4)2 smaller. Ifs is the radiaiit energy flux (ergs·1 cm"2
) and 

O"r =6.7x10-2s cm2 is the Thomson cross-section, then the outward radial force on 

each electron equals the rate at which it absorbs momentum, i.e. O" ,SI c . The 

attractive electrostatic Coulomb force between the electrons and protons means that as 

the electrons move out, they drag the protons with them. In effect, the radiation 

pushes out electron-proton pairs against the total gravitational force 

GM1(mp +m,)lr2 "'GM1mP lr2
, 

acting on each pair at a radial distance r from the centre. If the luminosity of the 

accreting source is L (erg s·1
), we have S =LI 4nr2 by spherical symmetry, so the net 

force on the electron-proton pair (e.g. Frank, King & Raine 1992, p.3) is 

LO", 1 
(GM1mP ---)2· 

4m: r 
(3.4) 

There is a limiting luminosity for which the inward gravitational force is balanced by 

the outward force, i.e. the so-called Eddington luminosity, which is 

(3.5) 

At greater luminosities the outward pressure of radiation would exceed the inward 

gravitational attraction and accretion would be halted. If all the luminosity of the 

source were derived from accretion, the source would be 'switched off. However, if 

some, or all, of the luminosity exceeding the Eddington limit is produced by other 

means, for example nuclear burning, then the outer layers of the material would begin 

to be blown off by a strong radiation driven wind and the source would not be steady. 

For stars with a given mass-luminosity relation this argument yields a maximum 

stable mass. 

The Eddington limit is derived from the basic assumptions of the accretion flow being 

steady and spherically symmetric and the accretion material being largely fully 

ionized hydrogen. These assumptions may not always be true, however, but this can 

give us a good estimate of the magnitude of the luminosities and the accretion rate 

responsible for this effect. 
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For accretion powered objects the Eddington limit implies a limit on the steady 

accretion rate, M (gs-'). If all the kinetic energy of infalling matter is given up to 

radiation at the stellar surface, R, , then the accretion luminosity L,00 and M odd are: 

(3.6) 

Modd =7.Sxl020( L,dd )(Ml r'< R, )gs-1 
1038 erg s-1 M 0 109 cm 

(3.7) 

where M,M. is the Eddington accretion rate of the primary star. For stable accretion, 

M"' < M edd and hence L .. , < L,dd, which gives us the maximum accretion luminosity 

as well as the maximum accretion rate for a given primary mass-radius combination. 

3.3 Secular evolution of binaries 

3.3.1 Mass transfer and binary evolution 

To put into perspective the influence that mass transfer, mass accretion by the white 

dwarf, mass and orbital angular momentum loss from the system have on the 

subsequent orbital evolution of a binary system, logarithmic differentiation of the 

expression for the orbital angular momentum (e.g. King 1988), i.e. 

Ga 112 J.,b=M,M2(M) , 

results in (e.g. King 1988) 

a = 2 j.m +M _2 M", _2 M"2 • 

a Ja,b M M, M 2 

(3.8) 

(3.9) 

Since the Roche lobe radius of the secondary (RL 2 ) depends on the binary separation 

according to RL2 oc (a 3 M2 / M)113
, for q = m2 < 1, it can be shown that (e.g. Wynn & 

m, 

King 1995) 

RL2 = 2 jom +3. M _2 M, -~ M2 • 

RL2 Jo,b 3 M M 1 3 M2 

(3.10) 
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Mass transfer in the form of diamagnetic blobs (e.g. Kuijpers & Pringle 1982; Frank, 

King & Lasota 1988; King & Lasota 1991; King 1993; Wynn & King 1995) may 

result in a fraction (1/) of the transferred angular momentum across L1 being lost from 

the binary entirely (e.g. King 1993; Wynn & King 1995), resulting in 

(3.11) 

This contributes to the total orbital angular momentum loss of the system through 

other mechanisms 

(3.12) 

where X represents any other potential mechanism that may drain orbital angular 

momentum and j I J represents all other drains of orbital angular momentum. 

It can be shown that the mass loss from the system and the mass that is accreted by 

the white dwarf are related through (e.g. M < O;M2 < O;M1 > 0) 

(3.13 a,b,c) 

where a is the fraction of the mass overflow from the secondary that escapes from the 

system and /3 = (1- a) is the fraction of the mass accreted by primary star from the 

secondary. 

Applying eqns (3.11) and (3.13) to (3.10) gives the rate of change of the Roche lobe 

radius as 

(3.14) 

It can be shown that when a= 0(i.e./J=100%), 1J = 0 (e.g. King 1988; Frank, King, 

Raine 1992, p.52), the orbital evolution is determined by these two factors according 

to 

a j -M - = 2-+2(--2 )(1-q). 
a J M1 

(3.15) 
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It is evident that the binary will shrink for q > 1 and expand for q < 1, if the mass 

transfer rate from the secondary to the compact primary dominates the rate at which 

angular momentum is drained from the binary. 

Mass transfer via Roche Jobe overflow can be sustained if the Roche surface is kept 

close to the surface of the mass-donating star, i.e. within a few scale heights. This 

criterion can be evaluated by noting that the dynamical evolution of the Roche surface 

of the secondary star is determined by 

RL2 =Zj +Z(-M2)(~-q) 
RL2 J M1 6 

(3.16) 

which shows that for q > 5 I 6, and j #- 0, the Roche surface of the secondary star will 

probably shrink effectively enough through the atmosphere of the secondary star to 

drive a substantial mass transfer. For q <516, with the secondary still on the main 

sequence, mass transfer through Roche Jobe overflow can only occur if a very 

effective angular momentum loss mechanism is at work in the binary system. 

3.3.2 The response of the secondary star to mass loss 

From the equations above, it can be seen that the mass transfer plays a vital role i1 the 

secular evolution of these binary systems. However, the reaction of the star to the 

mass loss is of extreme importance to the mass transfer process and needs to be 

discussed briefly. The reaction of the star affects the mass transfer on time scales from 

the dynamical time scale (seconds) to the thermal time scale (107 yr). 

To evaluate the effect of mass Joss from a star, the way in which the star restores its 

perturbed hydrostatic equilibrium as a result of losing its surface layers during mass 

transfer needs to be evaluated. For example, a star with a convective envelope 

(usually low-mass stars) will respond in a different way in order to restore perturbed 

hydrostatic equilibrium as opposed a star with a radiative envelope (usually !ravier 

stars). The underlying reason for this is that a star with a convective envelope has a 
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constant entropy profile throughout the envelope, while a star with a radiative 

envelope has a steep entropy gradient near the surface (e.g. Hjellming & Webbink 

1987; King 1988). As mass is lost from the surface, the entropy profile of the gas 

envelope underneath the surface will determine the way in which the star will re­

adjust to restore its perturbed hydrostatic equilibrium. This occurs on the dynamical 

time-scale. To investigate this (Hjellming & Webbink 1987; King 1988), the 

secondary can be treated as a polytrope of index n and adiabatic index sad , which 

results in a response to mass loss of 

R, =-sad<-M2). 
R1 M1 

(3.17) 

Stars with convective and radiative envelopes have Sad < 0 (convective) and sad > 0 

(radiative) respectively, which implies that stars with convective and radiative 

envelopes respectively expand and contract, in an attempt to restore perturbed 

hydrostatic equilibrium following mass loss (Hjellming & Webbink 1987; King 1988). 

This has important consequences for the mass transfer process in these stars. 

The influence of surface expansion and angular momentum losses on the mass 

transfer rate in magnetic CVs can be illustrated in the case of AE Aqr (e.g. Meintjes 

2002). A brief discussion will be presented. 

The low-mass K4-5 secondary star in AE Aqr can be treated as an n = 3 I 2 polytrope 

with an adiabatic index Sad <0 (Hjellming & Webbink 1987; King 1988; Wynn, 

King & Home 1997). It has been shown (Hjellming & Webbink 1987) that for an 

n=3/2 polytrope the adiabatic index (sad) depends on the core mass. For a non­

evolved zero-age main-sequence star (ZAMS) and an evolved main-sequence star, the 

authors obtained 

ZAMS: m00re = 0 ~Sad = -0.33 

Evolved: m,are > 0 ~Sad = -0.2, 

respectively. Therefore, unless the Roche lobe expands with the star during mass loss, 

it can be envisaged that the expanding secondary can overflow its Roche surface, 

resulting in a run-away mass transfer to the white dwarf. The overflowing of the 

Roche surface can follow from an expanding secondary (resulting from mass loss) 
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accompanied by a shrinking (or too slow expanding) Roche lobe resulting from high 

angular momentum losses. In the quasi-conservative mass transfer case, this will only 

be prevented if q < qc,1r (Meintjes 2002). It can be shown that run-away mass transfer 

( -M2 I M 2 >> j I J) will probably proceed until the Roche lobe of the secondary 

(Ri2 ) expands further than the secondary star evolves (inflates) in the same time in 

response to high mass loss. In the case where ( - M2 IM 2 >> j I J) this occurs when 

some critical q-ratio is reached, determined by the condition 

(3.18) 

This gives 

(3.19) 

and it can be shown that q"11 - 2/3 (ZAMS secondary) and q"" - 0.73 (evolved 

secondary), respectively (e.g. Meintjes 2002). This estimate may play an important 

role in the evolution of the AE Aqr system and will be evaluated in the next chapter. 

3.4 The binary separation, the radius of the secondary and the orbital period 

An invaluable tool for the study of orbital evolution of binary systems is the Roche 

lobe dynamics, which determine the properties of lobe-filling stars, which in turn 

determine the mass transfer. A brief, qualitative discussion, is now presented. 

By analyzing data of the radius of the secondary R2 , the binary separation a and the 

mass ratio q, Eggleton (1983) derived an empirical expression for the ratio of the 

secondary star's Roche lobe to the binary separation, for all mass ratios, which is 

0.49q213 

R la= . 2 0.6q213 +In(!+ q113
} 

For 0.1~q~0.8 the equation above can be written (Paczynski 1971) 

R2 I a= 0.462(-q-)113
• 

l+q 
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To drive stable, long-lived mass transfer, the secondary star must fill, or closely fill, 

its Roche lobe (e.g. Kopal 1959). The scale of the Roche geometry is determined by 

the binary separation a, and the shapes of the equipotentials by the mass ratio 

q = M2 IM, . For lobe-filling secondary stars a reasonable assumption is the 

R2 I a"" RL2 I a, where RL2 represents the Roche-lobe radius of the secondary star. 

An interesting case for q :s; 0.8 is that the mean density j5 of a lobe-filling star is 

determined solely by the binary period (e.g. Frank King & Raine 1992, p.51) 

__ 3m2M 0 _ 115p-2 -3 
P- 3 0,bgcm, 

41rR2 
(3.22) 

where we have used eqn (1.1) to eliminate the binary separation a in eqn (3.21). This 

equation shows that for binary periods of a few hours, stars with mean densities 

typical of the lower main sequence (p -1-100 g cm"3
) can fill their Roche lobes. For 

example, if we assume that the lobe-filling star is close to the lower main sequence we 

know that its radius and the mass-radius relation determines that (e.g. King 1988; 

Kippenhann & Weigert 1990). 

M 2 "" .!!i => mi "" .!!i (in solar mass units) . 
Me Re Re 

Thus 

_ 3m2Me 
p = 41rR3 

2 

3Me 1 1.4 _3 ---=-gem 
4nR~ mi mi 

(3.23) 

(3.24) 

where the solar mean density Pe = 1.4 g cm_, has been used. This relation, substituted 

into eqn (3 .22) results in a period-mass relation, which is 

(3.25) 

and a corresponding period-radius relation (e.g. Frank, King & Raine 1992, p.51), 

which is 

(3.26) 

These expressions are handy paramerizations, allowing reasonably accurate estimates 

of important binary parameters which are required for modelling the mass transfer and 

evolution of binary systems. 
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3.5 Accretion onto the magnetic cataclysmic variables 

In the preceding discussions the influence of mass transfer has been explained in the 

binary system's evolution. However, it has been shown that the fraction /3 = (1-a) 

of the mass transfer accreted by the primary star also plays an influential role in the 

binary evolution, as does the fraction T/ of the angular momentum across the L1 point 

being lost by the binary. To discuss these effects more quantitatively, the focus now 

shifts to the accreting compact object to explain the possible accretion modes and 

their influence on the evolution of the binary system. 

It has been suggested (Wynn, King & Home 1997) and shown (Meintjes 2002) that 

the accretion history of AE Aqr is characterized by disc and discless accretion. 

However, AE Aqr is currently in a propeller phase where the white dwarf accretes 

hardly any material. These various modes of accretion have different influences on 

the binary evolution, which will be discussed briefly. 

3.5.1 Discless 

It has been suggested (e.g. King 1993) that the relative short spin periods of accreting 

white dwarf in the intermediate polars, i.e. P,P'" < P.,b , may be the result of the 

accretion of large diamagnetic blobs in the accretion stream. It has been mentioned 

earlier that the conservation of angular momentum of the stream requires that blobs 

orbit the compact object initially at the so-called circularization radius. If the 

circularization radius is inside the corotation radius of the magnetized white dwarf, 

the white dwarf accretes the angular momentum from the circulating stream, resulting 

in a gradual spin-up to periods P,P., <P,,,.,, (e.g. King 1993; Wynn, King & Home 

1995). (Apart from AE Aqr,) There is currently only one confirmed discless IP, 

namely V2400 Oph (Buckley et al. 1997). However, the short spin period of AE Aqr, 

i.e. P,p1n - 33 s, suggests that AE Aqr has evolved through a very rapid spin-up phase, 

possibly via an accretion disc. -~,, -,, ........ 
v• - ...,, '2 

I -51 -
-,· =-'. I ·, ·.:;;, • :.·· ~-t',~Yj . • ..,, . • "...-.1 • 
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3.5.2 Accretion disc 

The short spin period P,p1n << P,,,b of the white dwarf in AE Aqr suggests that the 

white dwarf accreted from an accretion disc at some stage of its evolution, resulting in 

a subsequent spin-up to a short period (e.g. Meintjes 2002). In the disc-accretion 

phase the accretion process onto the white dwarf was probably much more efficient 

(a = 0 ), and tidal interaction between the disc and the secondary resulted in very little 

angular momentum flowing across L1 escaping from the system. i.e. 77 ~ 0. The 

evolution during the accretion disc phase is then quasi-conservative (a= O; 77 = 0) and 

the spin-up phases for such systems will involve very rapid, dynamically unstable 

mass transfer, and accordingly be very short-lived (e.g. Wynn & King 1995). Since it 

is believed that the so-called SSS phase of AE Aqr, and possibly other cataclysmic 

variables, is facilitated by a disc-accreting process, a more quantitative discussion will 

be presented in section 3. 6. 

3.5.3 Propeller outflow 

In the disc accreting phase (a= O; 77 = 0 ), the magnetic white dwarf is spun-up to a 

period of the order of P,pt• - 33 s, i.e. it becomes a very fast rotator. The estimated 

mass transfer rate driven by magnetic braking (Verbunt & Zwaan 1981; King 1988; 

Meintjes 2002) is of the order of -M2 -4xl017
( P,,,b )'" gs-1 and is in excellent 
9.88 hr 

agreement with the estimated current mass transfer rates that are in the range (Wynn, 

King & Home 1997) - M2 - (1-5) x 1017 g s-1 
• The low mass transfer will result in 

the inner disc (inside corotation radius) being eroded by accretion onto the white 

dwarf; resulting in the fast rotating magnetosphere interacting with the disc residue 

outside the corotation radius. This results in a subsequent decrease in the mass 

accretion onto the white dwarf. Since the fast rotating magnetosphere will interact 

with the slower rotating disc or accretion flow outside the corotaion radius, a 

significant mass ejection will occur as the gas is centrifugally driven from the system 

by the fast rotating magnetosphere, resulting in a spin-down torque that will erode the 

rotational kinetic energy of the white dwarf with time (e.g. Meintjes 2002). 
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3.6 The consequences of disc accretion 

The short rotation period of AE Aqr can only be reconciled with a period of 

significant accretion via an accretion disc. As mentioned in section 2.2.2, during the 

high mass transfer phase, a well-developed disc should be present that can facilitate 

mass accretion onto the white dwarf if the condition of eqn (2.34) is satisfied. It is 

under these circumstances that the interaction of a stream with a magnetic field will 

give way to the formation of a disc. 

3.6.l Magnetic accretion flow 

Let us first consider the much simpler case in which the stellar magnetic field disrupts 

the accretion flow which is quasi-spherical far from the star. For a dipole-like 

magnetic field, the field strength B varies roughly as B - ~ at radial distance r from 
r 

the star of radius R1 ; hence µ1 = B1 R~ is a constant magnetic moment specified by the 

surface field strength B1 at r = R1 • Thus, there is a magnetic pressure (Frank, King & 

Raine 1992, p.121) 

p_ = (471') B' = (471' )L 
mag µo 871' µo 8717'6 

(3.27) 

increasing steeply as the matter approaches the stellar surface. This magnetic pressure 

will begin to control the matter flow and thus disrupt the spherically sym=tric infall 

at a radius r M where it first exceeds the ram and gas pressures of the matter (see 

Figure 3.1). For highly supersonic accretion, it is the ram pressure term pv' which is 

important, with the velocity v close to the free-fall values v ff = (2GM1 I r)' 12 and 

IP vi given in terms of the accretion rate M1 , i.e. 

M IPvl=-12 • 
4nr 
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Disc Disc 

Fig 3.1 The accretion flow of a magnetized neutron or white dwarf (Frank, King & 

Raine 1992, p.123) 

Thus setting Pm
0
.(rM) = pv2

[ we find (e.g. Frank, King & Raine 1992, p.122) 
'M 

47r µ 2 (2GM )"2 M 
( ) 

_ I I 

- g---.- 4 5/2 ' 
µ. 7lr Jlr~y 

(3.29) 

from which the magnetosphere, or pressure balancing radius, can be determined, i.e. 

(3.30) 

1n this expression M16 is the mass accretion rate of the white dwarf in units of 

1016 g s-1
, µ30 is magnetic moment of the white dwarf in units of!030 G cm3 and R1 

is the radius of the white dwarf, adopting a white dwarf mas&-radius relation, i.e. 

M -R1 =5.3xl08
( 

1 
) 

0
·" cm (e.g. Hamada & Salpeter 1961; Eracleous & Horne 

0.9M0 

1996; Meintjes 2002). It is often convenient to replace M in terms of the accretion 

luminosity, which is more directly related to the observational quantities, especially 

for X-ray sources, which results in 

(3.31) 
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The quantity rM is known as the Alfven radius. Within the Alfven radius the matter is 

expected to flow along field lines. Although derived for spherically symmetric 

accretion, a good order of magnitude estimate for the inner edge of an accretion disc, 

supported by the magnetospheric pressure of a magnetized compact objects is (e.g. 

Frank, King & Raine 1992, p.122): 

(3.32) 

3.6.2 The spin-up and spin-down of the white dwarf 

By adopting the basic framework of the Ghosh & Lamb (1979b) model, but using a 

different approach to calculate the toroidal magnetic fields induced in the accretion 

disc, Wang (1987) derived expressions for the spin-up and spin-down torques on a 

disc-accreting compact object. The spin-up results from angular momentum flux of 

the accreted matter, and magnetic stresses inside the corotation radius that are 

transmitted to the compact object, while the spin-down torque results from magnetic 

stresses outside the corotation radius that are attempting to force disc plasma into 

corotation with the rotating accreting star. The net torque (N) on the accreting star as a 

result of spin-up ( N > 0) and spin-down ( N < 0) torques is (Wang 1987) 

N = M, (GM,RJ 112 f(x0 ) (3.33) 

where the dimensionless function /(x0) is given by 

2 9/4 

f(x ) = x"2 + -x'11so[l-x"2 _ X0 ] 
o o 9 o o (l-x~'2)112 

(3.34) 

where x0 =(Ro I Rc). Here Ro and Rc represent respectively the radial distance where 

the gas flow is guided by field lines to the accreting object and the corotation radius. 

Here Ro - 0.5rM and Rc is 

R = (GM1 ) 113 h {""\ = _l:!!__ c 2 w ere ::."1 , 

QI E'.rp1n,s 
(3.35 a,b) 

where the P,P'"·' is the spin period of the white dwarf in seconds. 
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It has been shown (Wang 1987) that the dimensionless function f(x0 ) varies slowly 

between 0 < f(x0 ) < 0.794 (which is a maximwn when x0 - 0.62 ), while it decreases 

sharply below zero for x0 > 0.971, e.g. see Fig 3.2. 

0.8 

0.4 

0.0 ---···········-······-----··----------···-··----·-------··· 

..0.4 

..0.8 

.1.2 

·1.S +.~,....,-,........,...,.. ........ ...,....,~~....-~"T""""~..,...,~.......-~ ......... ~~....,..........., 
0.0 0.1 02 0.3 0.4 0.5 o.s 0.7 0.8 0.9 1.0 

XO 

Fig 3.2 Plot of the function f(x0 ) 

It can be seen that f(x0 ) > 0 for all x0 < 0.971, implying a positive net torque and 

subsequent spin-up of the compact object. Also f(x0 ) < 0 for all x0 > 0.971 , 

implying a spin down torque that is applied to the compact object. 

The total rate of change of the rotation period of the accreting compact object as a 

result of the total torque is (Wang 1987) 

- fa. = !!_ "'~ M1 (Re )2 f(xo) s-1, 
Pi JQI 2 M1 RI 

(3.36) 

where N is the total torque on the compact object, I= 2M1R1
2 I 5 is the compact 

object's moment of inertia, which is assumed to stay more or less constant. The total 

spin time-scale in which the spin period of the compact object evolves is t,. - Pi I fa., 
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which is 

Pi 2 Ml (RI 2/ -I 
fsu "'---,- = --.- -) (x0) S. 

Pi SMI R, 
(3.37) 

3.6.3 The break-up and equilibrium period 

The minimum period to which the white dwarf can be spun-up by disc torques before 

it obliterates itself under the intense centrifugal forces, is the break-up period 

P,, "' 6( R, )312 ( M1 f112 s . 
• Sxl08 cm 0.9M0 

(3.38) 

Using the model of Wang (1987), it can shown that, for a given mass accretion rate 

and magnetic moment, the equilibrium period of the rotating compact object, where 

the period of the rotating compact object equals the Keplerian period at R, , is 

(Meintjes 2002) 

P ., 3_5<s31 )1••1211< M, r'•"'2"< £1, r96/211 s 
'" 2 0.9M0 1020 g s-1 

(3.39) 

In the above equation s = (y I q)11'(17µ/ a 3120
) (Wang 1987), with 77- 0.2 a screening 

coefficient (Ghosh & Lamb 1979a), and where q - 0.1-1 determines the rate of 

annihilation of disc-generated toroidal fields via reconnection with ambient fields on 

the disc surface, by either diffusing [-0.1 (e.g. Priest 1981)] through disc surface, or 

rising as a result of buoyancy [-1 (e.g. Wang 1987)]. The symbolsµ and a represent 

the magnetic moment of the white dwarf and the Shakura & Sunyaev (1973) disc a­

parameter, respectively. Since the equilibrium period can never be reached before the 

star breaks up, it shows that the white dwarf and accretion disc are spinning far out of 

equilibrium, which suggests that spin-up of the white dwarf occurs for x0 << x,q. For 

these x0 values, the average value of the dimensionless function is less than the 

maximum value 0.794, i.e. the average of f(x0 )- 0.57 (Wang 1987). A resultant 

spin-up for x0 ~ 0 will result in /(x0) ~ 0 and since tru oc /-1(x0 ) the spin-up time­

scale will increase noticeably as a result of the slow momentum transfer from the 

accretion disc to the white dwarf. This can be attributed to the short lever arm 

suggested by an accretion disc of which the inner edge is in the vicinity x0 << x,q. 
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Therefore, a sustained high mass transfer and accretion is required over periods long 

enough for effective spin-up to short rotation periods. 

By using the Wang (1987) model, different mass transfer and accretion rate scenarios 

have been investigated in order to determine the possible spin-up history of the white 

dwarf in AE Aqr to a period of P,ptn - 33 s. The results will be presented in Chapter 4. 

3. 7 Orbital angular momentum loss and mass transfer mechanisms 

To end the discussion related to the various aspects that determine the evolution of 

binary systems, a brief discussion of the main angular momentum loss mechanisms 

responsible for mass transfer in a binary system will be presented. There are two 

dominant mechanisms by which cataclysmic binaries lose angular momentum; i.e. 

gravitational radiation and magnetic braking. 

3.7.1 Gravitational radiation 

In accordance with the theory of general relativity, matter causes space-time to curve. 

The repetitive orbiting of two stars causes a rhythmic warping of space which ripples 

outwards in a periodic wave. This is called gravitational radiation. The energy which 

generates the wave is extracted from the binary orbit, causing a slow inward spiraling. 

It can be shown that gravitational radiation results in a rate of change of the binary 

angular momentum (j), which is (Kraft, Mathews & Greenstein 1962; Landau, 

Lifchitz 1975) 

j M 1M 2M 
- oc 4 . 
J a 

(3.40) 

Here M1 ,M2 ,M and a represent respectively the mass of the primary, secondary, 

binary and orbital separation. It can be seen that j I J oc a-4 , resulting in gravitational 
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radiation being effective for compact binaries (small a), i.e. the short period systems, 

typically for the close binaries below the period gap, i.e. P0 , 6 < 2 - 3 hrs. It can be 

shown that for systems below the period gap, gravi1ational radiation can drive mass 

transfer rates of the order of M2 -1016 g s-1 which corresponds well with the inferred 

mass transfer rates in these systems. 

3.7.2 Magnetic braking 

Secondary stars in close binaries have convective envelopes (Campbell 1997) which 

explains the magnetic nature of these stars in terms of internal dymum processes. The 

short orbital period of these systems ( P
0

, 6 - few hours) implies that the secondaries, 

which are tidally locked to the orbital period, are rapid rotators. This implies that the 

thermal plasma with velocity exceeding the escape velocity will be centrifugally 

expelled along the field lines, into the so-called wind zone. Inside the Alfven surface, 

where the magnetic pressure exceeds the wind gas pressure, the magnetic field will 

enforce corotation. The magnetic torque imparts angular momentum to the flowing 

material, at the expense of the stellar angular momentum, causing a braking torque on 

the star. The open field lines, constituting the wind zone, accounts for the main loss of 

stellar angular momentum. A magnetic wind from a lobe-filling secondary star in a 

binary system leads to a loss of orbital angular momentum. The mechanism 

responsible for angular momentum losses is the load on the field lines outside the 

Alfven surface which attempts to maintain corotation of the wind with the corotating 

field. This results in a braking torque being exerted on the star. The loss of angular 

momentum is intimately tied to the size of the Roche lobe of he secondary (Frank, 

King & Raine 1992, p.53). Angular momentum losses result in the Roche lobe of the 

secondary shrinking along with the binary orbit (e.g. Frank, King & Raine 1992,p.53 

for a discussion). This process ensures that the L1 point staying close to the stellar 

surface, resulting in a steady mass transfer being maintained. This process dominates 

the mass transfer in binaries for most system with P
0

, 6 ::?: 3 hrs . 
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The theory of a steady axisymrnetric magnetic wind was developed by Mestel (1967, 

1968) and Weber and Davis (1967). Further work was done by many authors, 

including Pnuman and Kopp (1971), Okamoto (1974) and Sakurai (1985). The 

braking of the late-type stars was considered by Mestel and Spruit (1987), including 

the fast rotator secondary star in binaries. 

The above mentioned magnetic braking mechanism can provide a way of removing 

orbital angular momentum fast enough to explain the higher values of M2 in many 

binaries. Verbunt and Zwaan (1981) estimated the magnetic braking torque by using 

the Skumanich (1972) spin-down law for single stars, assumed to be due to magnetic 

braking. 

Campbell (1997) applied magnetic braking theory to find expressions for M2 • The 

above mentioned fast rotator theory is relevant here, which applies for n, <:: l 00 Q 0 

i.e. for P :S: 7 hr , where Q0 is solar angular velocity. Firstly the effect of orbital 

evolution on the magnetic braking rate must be considered. If the secondary is kept in 

close orbital corotation by tidal forces then L
0
,b = j applies, where j is the loss rate 

of stellar angular momentum via magnetic braking. The tidal torque is dissipative and 

so will only be finite when there is some asynchronism. For a turbulent viscosity the 

tidal torque can be comparable to the braking torque at small degrees of asynchronism, 

so n, can be taken to be essentially the same as the orbital angular velocity. This 

mechanism can typically result in mass transfer rates of the order of M2 -1017 g s·1 

(P,,,b;::: 3- 7 hr). 

The purpose of this discussion is to provide the theoretical framework for the model 

calculations that will be presented in the next chapter. The main focus of the 

theoretical investigation is the so-called high mass transfer/ accretion history of AE 

Aqr and its consequence for possible SSS properties the system could have exhibited. 

This may then constrain the possible range in orbital perbd of cataclysmic variables 

which may have entered the SSS phase, as well as other observational features, such 

as a systematic spin-up of the compact object during this, supposedly, disc accreting 

phase. 

- 60 -



Chapter4 

A Possible Evolution for AE Aqr 

A possible connection between high mass transfer and possible SSS properties is 

intimately tied to the mass accretion history of the compact object It has been shown 

(e.g. Chapter 3) that the Roche lobe and orbital dynamics, which are both linked to the 

mass transfer and accretion process, are determined by the parameters a = M JIM 2 I 

(mass-loss from binary), /J=M1 /l.M2l=Cl-a) (mass accreted by compact object) 

and q = M 2 I M 1 (mass ratio). Therefore these parameters and various additional 

constraints which lead to the appearance of the binary as an SSS during its high mass 

accretion phase, need to be investigated. 

4.1 The constraints 

This SSS conjecture will be investigated more quantitatively and the results are 

presented in the next two sections. However, first, the following constraints must be 

satisfied in order to confirm whether AE Aqr was an SSS in the past. These 

constraints are: 
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l. The minimum requirement for stable nuclear burning M 1(SNB) , on the surface of an 

accreting white dwarf (Prialnik 1986), i.e. M 1(SNBl"'5.4xl018 (M/0.6M0 )
312

gs-
1

• 

Therefore, the requirement for the possible SSS scenarios is M1 ~ M 1(sNB) . 

In order to find the relationship between this and the mass accretion fraction /3, both 

sides of the above equation are divided by IM-21 which results in 

M1 tlM-21 ~ M 1(sNB) tjM-J This results in the first constraint, which is: /3 ~ r, where 

r = M,,sNB> tlM-21 · 

2. Since the primary accretes from the secondary star, the mass transfer rate from the 

secondary star should be equal or higher than the mass accretion rate onto the primary, 

i.e. IM-21 ~ M1 • Both sides are divided by IM-21, resulting in /3'>,1. In addition to the 

first constraint, this results in the following condition that has to be satisfied, i.e. the 

second constraint r '>, /3 '>, 1 . 

3. The mass of the white dwarf should not exceed the upper-limit of the mass of the 

white dwarf, i.e. the so-called Chandrasekhar limit Mc - I AM 0 • This results in the 

third constraint, which is M 1 '>, l .4M 0 . 

4. For a stable mass transfer at a sustained rate that can drive thermal nuclear burning, 

the system must avoid the delayed dynamical instabilities (DDI) (e.g. Schenker et al. 

2002; King et al. 2001; Hjellming 1989; Webbink 1977), which occurs when the 

initial mass ratio q1 > 2.9. Therefore, for sustained stable thermal time-scale mass 

transfer, the following condition has to be satisfied, i.e. the fourth constraint, which is 

the initial mass ratio q, '>, 2.9. 
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4.2 The SSS conjecture: An investigation 

In order to find the possible SSS scenarios applicable to AE Aqr in the past, the first 

constraint /3 2'. r , i.e. M1 2'. M1csNBJ , must be satisfied; therefore we need to find the 

mass accretion rate M1 and the minimum requirement for stable nuclear burning 

M1csNBJ (Prialnik 1986). 

However, the mass accretion rate M1 is directly dependent on the mass transfer rate 

from the secondary [M2 [ (e.g. Frank, King & Raine 2002, p.352), i.e. 

(4.1) 

M. 1 3p2 -I 
- 2 ""-pllc, orb g S ' 

471' 
(4.2) 

where (e.g. Campbell 1997, p.56-58) 

1 -(RL2 - Rp2) -3 
PL1 = r Pphot exp g cm 

-ve HP 
(4.3) 

C, = (k:T phot )112 (4.4) 
limn 

Here p phot - 10-6 g cm-3 represents the photospheric density (e.g. Frank, King, Raine 

2002, p.353), Rl2 and RP2 the Roche lobe and photospheric radius of the secondary, 

HP -(c;R;
2 

/GM2 ) the photospheric scale height of the secondary, the photospheric 

temperature Tphot and orbital period P.rb (e.g. Campbell 1997, p. 56-58), respectively. 

Copeland et al. (1970) showed that the photospheric temperature (T2) of the mass 

transferring secondary stars is a complicated function of the mean molecular mass E 

and the mass of the secondary star M2 • Assuming a solar composition for the 

secondary, i.e. E = 0.75 (Meintjes 2004), the photospheric temperature can be 

obtained for secondaries with various masses, i.e. Table 2 (Copeland et al. 1970). 

It has been shown (Meintjes 2002) that secondary stars with convective envelopes can 

transfer mass at a rapid rate (close to dynamical time-scale) for all q <: qcrtt "'0.73, 
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after which the mass transfer will proceed at a more gentle rate, over the time-scale 

comparable to the thermal time-scale. In the present phase, the mass of white dwarf 

M, .. o.87M0 (e.g. Welsh, Home & Gomer 1995; Warner 1995 and Meintjes 2002) 

and AE Aqr most probably occupied the propeller phase (/3- 0) (e.g. Meintjes 2002; 

Schenker et al. 2002) for the last -r -107 years (e.g. de Jager et al. 1994; Meintjes 

2002). Therefore the secondary star's mass at the initial stage of the lower mass 

transfer phase can be determined from q"" "'0.73. This results in the secondary star's 

mass at the end of run-away mass transfer phase being 

M 2 =qc,11M 1 "'0.73x0.87M0 "'0.635M0 , (4.5) 

assuming f3 - 0 during the entire spin-down propeller phase. 

This is well reconciled with a mass estimate involving the present propeller spin­

down period phase lasting -r - 10 7 yr, assuming a constant mass loss rate of the 

secondary star IM"2I- 4x 1017 g s-1 (e.g. Eracleous & Home 1996). This results in the 

mass loss in the propeller phase of 1~21- 0.06M0 • Therefore, the mass of secondary 

star at the phase qcrli "'0.73 is approximately M 1.crli -(0.6+0.06)M0 = 0.66M0 , 

where M 2 "'0.6M 0 represents the current inferred mass of the secondary (e.g. 

Meintjes 2002). 

Since /3- 0 (e.g. Meintjes 2002; Schenker et al. 2002) during the propeller phase, the 

primary star virtually accreted nothing since q s; qcrli "'0.73, resulting in the mass of 

white dwarf to remain at M, "'0.87 M 0 for the past T -107 yr. This may be an 

underestimate, but it simplifies the calculations somewhat. 

Therefore, the average accretion fraction onto the surface of the white dwarf during 

the high mass transfer/ accretion phase can be estimated by taking the ratio of the 

mass accumulation onto the surface of the white dwarf (~1 =Ml/ -M11 ) to the 

mass loss by the secondary star <1~2 1 =-~2 =M21 -M,1 ) i.e. 

/3 
~, 

=1~21 
0.87-mu 

m2, -0.635' 
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where Mlf "'0.87 M 0 and M 21 "'0.635M0 (see our earlier discussion). 

Using the expression for the mass transfer !.M2! ac Pi1c!P0;b, combined with the main 

sequence period-mass relation for lobe filling secondary stars, i.e. m2 = 0.1 lP,,,b * (e.g. 

Frank, King & Raine 1992, p.51 ), orbital period-mass combinations have been 

selected for q
1 
< 2.9 satisfying IM"2I > M,(SNBJ. In this calculation several values for 

o = (Ri
2 
-R,

2
)/ H, have been selected o =3.5, 2, !, 0, -1, -2, representing several 

possible evolutionary scenarios related to the secondary, i.e. o > 0 corresponding to a 

secondary slightly underfilling its Roche lobe and o < 0 corresponding to a secondary 

overflowing its Roche lobe (for comparison). The photospheric density was kept at 

Ppho• -10-6 g cm-3 (e.g. Frank, King, Raine 2002, p.353) and the photospheric 

temperature for a given secondary star mass was obtained from Copeland H. et al. 

(1970). It should be mentioned that the condition q, < 2.9 depends on the initial mass 

of the white dwarf in the high mass accretion phase, which obviously depends on the 

accretion fraction ( fJ) 

mli = 0.87 -/J(m21 -0.635). (4.7) 

The values of fJ satisfying q1 < 2.9 and the constraint y ~ fJ ~ 1 may result in 

possible SSS scenarios. 

*Note: Here, the P,,,b -m relation is derived from eqn (3.21) which is in general applied to q ~ 0.8 

(e.g. Frank, King & Raine 1992). For a more accurate analysis, eqn (3.20) should be used instead. The 

difference between these two equations increases when q increases, however, we find that for the 

maximum q = 2.9, the maximum difference is approximately 13%, which is quite acceptable for the 

current investigation. Therefore, for simplicity, we use the P0 ,b - m relation for all the mass ratio q, 

even for q > 0.8 . 
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4.3 The results & the discussion: AE Aqr Possible SSS Scenarios 

The results are displayed as follows: 

For each o=(RL2 -RP2 )/HP (8=3.5, 2, 1, 0, -1 and -2), the values of y 

( = M1csNB) JIM 2 I ) are plotted as a function of fJ ( = M1 JIM 2 I) and the allowed 

parameters, satisfying stable nuclear burning on the primary (i.e. y ~ fJ ~ 1 ), are 

indicated by the hatched area in Figs. 4.1, 4.2a, 4.3a, 4.4a, 4.5a and 4.6a, respectively. 

The data is presented as follows: A glossary explaining the relevant parameters 

associated with the modelling is displayed in Table 4.1. The results associated with 

the investigation of the SSS conjecture for the filling factor o = 3.5 is presented in 

Table 4.2. However, to streamline the presentation, the results associated with o = 2, 

1, 0, -1 and -2 are presented in the Appendix, i.e. Table Al-AS, respectively, and the 

possible SSS scenarios are highlighted in each Tables. 

Additionally for each o , for the fJ values satisfying the SSS criteria (i.e. the fJ 

values for which the points lie in the shaded area of Figs. 4.1, 42a-4.6a), the 

associated values of K = M, I M,dd and fJ are plotted as a function of orbital period 

in Figs. 4.2b-4.6b and Figs. 4.2c-4.6c, respectively. This may allow the identification 

of the orbital period range where AE Aqr could have been an SSS in its high mass 

accretion history. For sustained accretion onto the surface of the white dwarf, it is also 

required that /( = Ml I Medd < 1 in conjunction with r !> fJ ~ 1. 

For each of the scenarios listed, the spin-up time-scale of the white dwarf, assuming 

an accretion disc being present, has been determined. By adopting the parameters 

B, = 106 G (e.g. Cropper 1986; Beskrovnaya et al. 1995; Chanmugam & Frank 1987; 

Meintjes 2002), P,P'"·' = 3600 s (e.g. Wynn, King & Home 1995; 1997), the spin-up 

time-scale is obtained from (eqn 3.7; Wang 1987) (see Section 3.6.2 for a detailed 

discussion). 

Pi 2 M, <R, 2 -I 
f,u ,,,_ P, =SM R) f(x0 ) s, 

I I c 
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For each o, the values oft,. are plotted as a function of orbital period in Figs. 4.7 a-e. 

For each of the scenarios listed, the mass transfer time-scale of the system, assuming a 

constant mass transfer rate, has been determined by the following: 

(4.8) 

For each o, the values oft,,, are plotted as a function of t.,1 in Figs. 4.8 a-e. This is 

done mainly to compare the disc spin-up time-scale with the inferred mass transfer 

time-scale. 

To summarize, the results of our model calculations are presented as follows: 

0=3.5 Table4.2 Figure 4.1 

0=2.0 Table Al Figure 4.2a, b, c Figure 4.7a Figure 4.8a 

o=I.O TableA2 Figure 4.3a, b, c Figure 4.7b Figure 4.8b 

0=0 TableA3 Figure 4.4a, b, c Figure 4.7c Figure 4.8c 

0=-1.0 TableA4 Figure 4.5a, b, c Figure 4.7d Figure 4.8d 

o=-2.0 TableA5 Figure 4.6a, b, c Figure 4.7e Figure 4.8e 

In order to find the possible reconciliation of mass transfer time-scale t mr and spin-up 

time-scale t,,,, the mass of secondary star M 21 = I.OM0 and o = -1 are chosen for 

different parameter combinations of P,P"'·', B1 . This is done mainly to illustrate the 

role of initial spin period and magnetic field strength on the spin-up time-scale. The 

results of A.= 1 .. 1 It,. as a function of P,prn.t and B1 are presented as follows. To 

streamline the presentation, only the first Table (P,P'"·' = 3600 s, B1 =I 05 G) is 

displayed here and the rest are displayed in Appendix: 

P,p1n,t = 3600 s, B1 = 105 G Table 4.3 Figure 4.9a 

P,pm,t = 3600s, B1 =104 G TableA6 Figure 4.9a 

P,P'"·' = 1000s, B, = 10
5 

G TableA7 Figure 4.9b 

P,p1n.; = 1000 s, B1 = 104 G TableA8 Figure 4.9b 

P,pln.I = 500 s , B, = I 05 G TableA9 Figure 4.9c 

P,P'"·' =500s, B1 =10
4 

G TableAIO Figure 4.9c 
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a filling factor, i.e. the ratio of the distance between the 
O=(Ri2 -RP2 )/HP surface and Li region with respect to the pressure scale 

height of the secondarv star 
the initial mass of the secondary before the high mass-

Mu CMe) transfer phase, ranging between 2 and 1 solar mass, in steps 
of0.2 solar mass 

.B=M1tlA12I 
the accretion fraction, ranging between 0 and 1 in steps of 
0.1 

Mu CMe) 
the value of the initial mass of the WD (in solar unit) before 
the high mass-accretion phase (see Section 4.2) 

q, =M2 1 M1 the value of the initial mass ratio of the binary 

T, (K) 
the photospheric temperature of the secondary (in Kelvin) 
(see Section 4.2, from Copeland et al. 1970) 

B1 (106 G) the magnetic field strength of the WD (in unit of 106 G) 
the orbital period (in unit of hours) of the system before the 

P0 ,b (hr) high mass-transfer phase, as deduced from period relation 
for secondarv stars (see Section 4.2). 

P,P'"·' (s) the initial spin period of the WD (in unit of seconds) 

M,dd (1020 g s·t) the value of the Eddington limit (in unit of 1020 g s·1) (see 

Section 3 .2) 

-M21 (lots gs.1) 
the value of the mass transfer rate from the secondary star 
(in unit of 1018 g s·1) (see Section 4.2) 

Mu (101' g s·t) 
the value of the mass accretion rate onto the WD (in unit of 
1017 g s"1) (see Section 4.2) 

the value of the minimum requirement of stable nuclear 
' 18 I burning on the surface of the white dwarf(in unit of M11(SNBJ (10 gs· ) 

1018 g s·1) (see Section 4.1) 

r = M1csNB) 1jM"2I the ratio of M11(SNBJ against jJ\121 j 

K=M1I M,dd the ratio of M1 against M,dd 

X 0 =R0 /Rc the ratio of R0 against Re (see Section 3.6.2) 

f(xo) 
the value of the dimensionless function scaling the disc 
inner edge (see Section 3.6.2) 

t,. (1 o• yr) the spin-up time-scale (in unit of 104 yr) (see Section 3.6.2) 

6 • the mass transfer time-scale (in unit of 106 yr) (see Section 
tm, (10 yr)= i'!.M2 I M21 

4.3) 

A. =tm, lt,0 the time-scale ratio of t mi against t'" 

Table 4.1: The glossary of the symbols of the model calculations 
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M2i M1i T2 Porb Mtdd -M. Mu M;i(SNB: t,,, !mt 
fJ qi r 

(Me) (Me) (K) (hr) (I020 g s"1
) (IO" g s"1

) (10 17 gs') (10" g s"1
) (104 yr) (107 yr) 

2.0 0 0.87 2.30 10080 18.2 5.44 8.32 0 9.50 I.I -
2.0 0.1 0.73 2.73 10080 18.2 6.24 8.32 8.32 7.36 0.88 2.82 1.04 

1.8 0 0.87 2.07 9330 16.4 5.44 6.02 0 9.50 1.6 -
1.8 0.1 0.75 2.39 9330 16.4 6.11 6.02 6.02 7.66 1.3 3.69 1.22 

1.8 0.2 0.64 2.83 9330 16.4 6.99 6.02 12.04 5.96 0.99 2.17 1.22 

1.6 0 0.87 1.84 8530 14.5 5.44 4.11 0 9.50 2.3 -
1.6 0.1 0.77 2.07 8530 14.5 5.98 4.11 4.11 7.97 1.9 5.08 1.48 

1.6 0.2 0.67 2.36 8530 14.5 6.65 4.11 8.23 6.52 1.6 2.94 1.48 

1.6 0.3 0.58 2.76 8530 14.5 7.53 4.11 12.34 5.18 1.3 2.20 1.48 

1.4 0 0.87 1.61 7650 12.7 5.44 2.68 0 9.50 3.5 -
1.4 0.1 0.79 1.76 7650 12.7 5.86 2.68 2.68 8.28 3.1 7.29 1.80 

1.4 0.2 0.72 1.95 7650 12.7 6.36 2.68 5.36 7.11 2.7 4.17 1.80 

1.4 0.3 0.64 2.19 7650 12.7 6.96 2.68 8.04 6.00 2.2 3.07 1.80 

1.4 0.4 0.56 2.48 7650 12.7 7.70 2.68 10.72 4.96 1.9 2.52 1.80 

1.4 0.5 0.49 2.87 7650 12.7 8.65 2.68 13.40 3.99 1.5 2.20 1.80 

1.2 0 0.87 1.38 6780 10.9 5.44 1.65 0 9.50 5.8 -
L2 0.1 0.81 1.48 6780 10.9 5.75 1.65 1.65 8.59 5.2 I I.OJ 2.17 

1.2 0.2 0.76 1.59 6780 10.9 6.09 1.65 3.29 7.71 4.7 6.22 2.17 

1.2 0.3 0.70 1.71 6780 10.9 6.48 1.65 4.94 6.87 4.2 4.51 2.17 

1.2 0.4 0.64 1.86 6780 10.9 6.93 1.65 6.59 6.05 3.7 3.64 2.17 

1.2 0.5 0.59 2.04 6780 10.9 7.45 1.65 8.24 5.27 3.2 3.11 2.17 

1.2 0.6 0.53 2.26 6780 10.9 8.08 1.65 9.88 4.53 2.8 2.77 2.17 

1.2 0.7 0.48 2.53 6780 10.9 8.84 1.65 11.53 3.83 2.3 2.54 2.17 

1.2 0.8 0.42 2.87 6780 10.9 9.79 1.65 13.18 3.17 1.9 2.38 2.17 

1.0 0 0.87 1.15 6030 9.1 5.44 0.96 0 9.50 9.9 -
1.0 0.1 0.83 1.20 6030 9.1 5.63 0.96 0.96 8.91 9.3 17.36 2.39 

1.0 0.2 0.80 1.25 6030 9.1 5.84 0.96 1.93 8.33 8.7 9.69 2.39 

1.0 0.3 0.76 1.31 6030 9.1 6.06 0.96 2.89 7.77 8.1 6.95 2.39 

1.0 0.4 0.72 1.38 6030 9.1 6.31 0.96 3.85 7.22 7.5 5.53 2.39 

1.0 0.5 0.69 1.45 6030 9.1 6.57 0.96 4.81 6.68 6.9 4.65 2.39 

1.0 0.6 0.65 1.54 6030 9.1 6.87 0.96 5.78 6.15 6.4 4.06 2.39 

1.0 0.7 0.62 1.63 6030 9.1 7.19 0.96 6.74 5.64 5.9 3.64 2.39 

1.0 0.8 0.58 1.73 6030 9.1 7.55 0.96 7.70 5.15 5.3 3.32 2.39 

1.0 0.9 0.54 1.85 6030 9.1 7.96 0.96 8.67 4.67 4.8 3.08 2.39 

1.0 1.0 0.51 1.98 6030 9.1 8.41 0.96 9.63 4.20 4.4 2.89 2.39 

Table 4.2: The results of the SSS investigation (8 = 3.5) 
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Mentjies (2004) suggested that the ratio of secondary atmosphere scale height o = 3.5 

for the current propeller phase with orbital period P0 ,b "' 9 .88 hr . The inferred values 

of l.M 2 I , associated with o = 3 .5 , corresponds with the minimum inferred mass 

transfer rate for the current propeller phase (i.e. l.M21;e:4xl017 gs·'; Eracleous & 

Home 1996). 

Close inspection of the Table 4.2, for a given value of accretion fraction /3 (e.g. I 0% ), 

shows the systems with large secondary mass (which implies large orbital period and 

high photospheric temperature) will drive a higher mass transfer rate M2 (since 

l.M2I ac c;P,,;b ac r:£?.P.;b) and a higher mass accretion rate onto the white dwarf M1 

(since M, = /3IM2I ac l.M2I ). On the other hand, the systems with smaller mass of white 

dwarfs result in a lower the minimum requirement for stable nuclear burning on the 

surface of the white dwarf M1CSNBJ (since Ml(SNB) ac Mi' 2 
). This results in the plotted 

curves (in Fig 4.1 and Figs. 4.2a - 4.6a as well) of the systems with large secondary 

mass being closer to the hatched area (where the requirement of SSS is satisfied). 

However, from Table 4.2 (for o = 3.5 ), it can be seen that M1 is of the order of 

1017 g s·1 while M 1csNBJ is of the order of 1018 g s·1
, for all values of /3. Therefore, it 

can be seen (Fig 4.1) that the mass accretion rate onto the white dwarf MI> for all 

values of /3, never satisfies the minimum requirement for stable nuclear burning on 

the surface of the white dwarf M 1csNB) (i.e. M, < M 1csNnJ or /3 < r ). Therefore, for the 

current state of lobe-filling of the secondary star and accompanying mass transfer, the 

system will never exhibit SSS properties. This may also apply to semi-detached 

binaries like the intermediate polars. 
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From Table Al (and Tables A2-A5 as well), for a given value of the mass of the white 

dwarf M1 , it can be seen that, the minimum requirement for stable nuclear burning on 

the surface of the white dwarf M1csNB) remains the same and is independent of the 

value of o. 

For a given value of /3, since M1 = /3\M21, M1 increases with increasing IM"2I. Also, 

since JA12J cc pL1c;P,,;b and pll cc Pphot exp-•, the decrease of o will result in the 

increase of IA12I and hence M1 • This can be understood that, the secondary comes 

closer to fill the Roche lobe with decreasing o, which results in the increase of the 

stream density pL1 at L. point, subsequently the mass transfer rate IA12 J and hence 

the mass accretion rate M1 • 

Therefore, this results in that, in Fig 4.2a (for o = 2 ), there are some allowed 

parameters in the hatched area (and these are highlighted in Tables Al in Appendix), 

which satisfy the SSS criteria (i.e. the second constraint y:,; /3:,; l ). 

This is further supported by Fig 4.2b (for o = 2) (only those /3 values satisfying the 

SSS criteria are plotted), and it can be seen that the values of K = M, I M,.i,i are less 

than 0.008, resulting in the accretion rate onto the WD being much less than the 

Eddington accretion rate (i.e. M1 <<M""" ). This is a very positive result which 

implies that these possible SSS scenarios can be achieved below the Eddington limit. 

The Fig 4.2c indicates the possible orbital periods, satisfying the SSS requirement, 

which may lie in the range between 15 hour and 9 hour. 
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From Figs. 4.3a and 4.4a, for 8 =I (the secondary star slightly underfilling the Roche 

lobe) and 8 = 0 (the secondary star just filling the Roche lobe) respectively, it can be 

seen that the nwnber of the possible scenarios satisfying the SSS criteria increase 

significantly. 

From Figs. 4.3b and 4.4b, it can seen that the value of x: = M1 I M,dd gradually 

increases with the increased Roche lobe filling of the secondary star; however, x: is 

still less than 0.06, i.e. M1 << M,dd. This means the SSS criteria can be achieved, 

when the mass accretion rate onto the WD is significantly below the Eddington limit. 

The Figs. 4.3c and 4.4c show that the possible SSS scenarios seem to be found for the 

orbital period P
0
,b in the range of 9 hour to 18 hour. 
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From Figs. 4.5a and 4.6a, for o = -1 and o = -2 (the secondary star overflowing the 

Roche lobe) respectively, it can be seen that the number of the possible scenarios, 

satisfying the SSS criteria, increase even more. A close inspection of these figures 

shows that the SSS requirement can be achieved, almost for all the values of /3 

(except f3 = 0 ), even if /3 is only 0.1. This is a very exciting result, because it 

implies that once the secondary (slightly) overflows the Roche lobe, the possible SSS 

activity can inevitably be achieved, even if the average accretion rate /3 is the quite 

small (i.e. even /3 is very small ~ 10% ). 

Table AS shows that, for extreme overfilling of the secondary's Roche lobe (8 = -2 ), 

the mass transfer rate from the secondary is of the same order as the Eddignton limit 

(i.e. JA12J- Modd ). For this reason, o = -2 respects the cut-off value of our model 

calculations. 

From Figs. 4.5b and 4.6b, for these possible SSS scenarios, we can see that the value 

of K = M1 I M,dd gradually increases with the decrease of o; however K is still less 

than 0.45, i.e. M1 is still smaller than Modd. This is also a very positive result which 

means the possible SSS scenarios can be achieved, even if the mass accretion rate 

onto the WD is much less than the Eddington limit. 

The Figs. 4.5c and 4.6c suggest that the possible SSS scenarios for AE Aqr seem to be 

found for the orbital period J>.,,, in the range between 9 hour and 18 hour. Extending 

of these model calculations, which may apply to other pre-intermediate polar systems, 

results in interesting observable consequences, where the possible SSS scenarios 

could be found with the certain range of the orbital period, if the constraint 1 ~ f3 ~ r 
can be satisfied and the high mass accretion rate can be sustained for a period of time. 

An important constrain for the duration of the high mass accretion phase is the spin­

up time-scale t,. of the white dwarf. By adopting the parameters B, = 106 G (e.g. 

Cropper 1986; Beskrovnaya et al. 1995; Chanmugam & Frank 1987; Meintjes 2002), 
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P,p1n,; = 3600 s (e.g. Wynn, King & Home 1995; 1997), the spin-up time-scales, for all 

scenarios satisfying the SSS constraints, have been plotted as a function of orbital 

period, i.e. Figs. 4.7a - e. 
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For the given values of M 2 , f3 (hence M, ), it can be seen that when the secondary 

star gradually overflows the Roche lobe (i.e. o gradually decreases), the spin-up 

time-scale t,. decreases (from - 8,000 yr to - 200 yr) significantly. This is because a 

gradual decrease in o results in a significant increase of M2 , and subsequently 

M, (from -1018 g s·1 to -1021 gs·' ). However t,. ex: (M,r' , which results in a 

significant decrease of t, •. 

It can be seen that for all filling factors the spin-up time-scales are noticeably short, 

i.e. 200 yr< t,. < 8,000 yr. Meintjes (2002) showed that the white dwarf in AE Aqr 

could have been spun-up to a rotation period within a time-scale t,. -104 yr for mass 

transfer rate JA12 J-1020 gs·'. However, it has to be mentioned that Meintjes (2002) 

considered an inflationary bottom-up (short~ long orbital period) evolution where 

the high run-away mass transfer was initiated at P0 , 6 1 "' 9 hrs . The current study 

considers a more conventional top-down (long~ short orbital period) evolution. 

The current study confirms earlier results (Meintjes 2002; Schenker et al. 2002) that 

AE Aqr most possibly evolved through a high mass transfer/ accretion phase, where 

the white dwarf has been spun-up by accretion torques, possibly by an accretion disc. 

In the high mass accretion phase, the WD is spun-up out of equilibrium (i.e. 

x0 = R0 IR, ~ 0, significantly below x,. "'0.971, see Table Al-AS for details) and 

the spin-up time-scales are significantly short, suggesting that the possible SSS 

activity may, for AE Aqr, be restricted to orbital periods P
0

, 6 <: 9 hrs (when a well 

developed disc was presented). This confirms the notion that SSS activity being 

associated with a pre-cataclysmic variable phase, or alternatively, for young CVs with 

orbital periods f'.,6 <: 9 hrs. 

In order to compare the spin-up time-scale t,. and the mass transfer time-scale tm,, 

t,. is plotted as a function of tm, in Figs. 4.8 a-e, for each i5 = 2, 1, 0, -1 and 2 

respectively. 
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As the previous discussion, the t,. decreases with decreasing t5 . Meanwhile, the 

decrease of t5 results in the increase of the M2 and hence the decrease of tm, (since 

tm, oc CM2f1 
). 

It can be seen that the spin-up time-scale ( 200 yr < t,. < 8,000 yr) is much shorter than 

the mass transfer time-scale ( 4x 104 yr< tm, < 540x 104 yr). These results (Figs. 4.8 a­

e) seem to suggest that the spin-up time-scale, rather that the mass transfer time-scale 

will determine the allowed duration of the run-away mass transfer phase. This is 

evident from the fact that t,. << tm, for most initial conditions. 

However, in order for the WD to survive (i.e. to avoid the WD will be spun-up too 

fast and obliterate itself under intense centrifugal forces), it is necessary to find the 

possible reconciliation of the mass transfer time-scale t mt and the spin-up time-scale 

t,,, . This is investigated by considering different initial conditions concerning the 

initial white dwarf spin period P,ptn.i and magnetic field B1 • The mass of secondary 

star M2, = l.OM9 and t5 = -1 are chosen for different parameter combinations of 

initial spin period P,p1ni=3600s,!000sand500s) and the magnetic field strength of 

the white dwarf B1(=104 G,105 G and 106 G). The results of A.= tm, It,. as a function 

of P,ptn.i and B1 are plotted in Figs. 4.9a-c. 
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fJ 
Mu _Mli(SNB) y Xo f(Xo) tsu tmt 

(lo' yr) (10' yr) 

0 0.87 1.15 5.44 0.87 0 9.50 0.11 

Table 4.7a: The time-scale ratio A-=tm1 /t,. for mu =1.0, o=-1.0, P,p;n,; =3600s 

and B1 =105 G 
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It can be seen that for all these various magnetic field values, i.e. B1 - 104 G , l 05 G 

or l 06 G , the white dwarf is spun-up out of equilibrium, i.e. x0 = R0 I Rc ~ 0 and 

From Figs. 4.9 a-c, for various initial periods, it can be seen that the disc spin-up time­

scale decreases with increasing magnetic field strength. This can be understood in 

context of a strong magnetosphere field resulting in an increasing moment arm 

facilitating angular momentum transport to the compact object from the disc. 

This is evident from these figures that .A.=tm1 /t,,, >>l for B1 >104 G. This seems to 

suggest that the spin-up time-scale for B1 >> l MG will be unacceptably short, which 

cast doubt whether the surface field strength of the white dwarf in AE Aqr exceeds 

B1 -1 MG. Therefore, the model calculations seem to confirm B1 ::;; few x l 06 G (see 

Section 2.4.2 for details), which is believed to be the upper limiting value of the field 

strength in AE Aqr (e.g. Meintjes & de Jager 2000). 

A scenario may be depicted where periods of enhanced run-away mass transfer is 

followed by a mass transfer at more gentle rate, upon which x0 = Ro I Rc ~ 1 and 

f(x0 ) < 0. This will result in a more significant contribution from the spin-down 

torque, which may significantly increase the net spin-up time-scale. 

It should be emphasized that the lower boundary of the mass transfer tim~scale is 

determined by q "" "' 0. 73 . This constraint is mainly attributed to the fact that real 

stars are modelled using idealized fluid models of certain polytropic index n = 3 I 2 

(Hjellming & Webbink 1987; King 1988). Real stars may behave differently. 

This model calculations readily agree with our conjecture that AE Aqr evolved 

through a relative brief but violent high mass accretion phase (with f'.,.. > 9 hrs ) 

where the white dwarf has been spun-up to periods P,P'" ::;; 33 sec, during which period 

the accretion onto the compact white dwarf readily could have sustained stable 

nuclear burning. In this phase, AE Aqr could have been an extremely bright X-ray 
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source, or SSS. The fact that SSS activity is mainly restricted to P0 , 6 > 9 hrs seems to 

confirm the notion that SSS activity may be associated with very young evolving IPs 

or pre-cataclysmic variables. 
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Chapter 5 

Conclusions 

It has been shown that the wide binary system and short white dwarf spin period of 

AE Aqr, i.e. P,P,•.I ""33 s, is perfectly reconciled with a high mass accretion history of 

the white dwarf. It has also been suggested that in that phase AE Aqr had been a 

significant X-ray source (its close proximity of d -100 pc) and possibly even an SSS. 

This seems to be confirmed by this study, when P
0
,b ""9-18 hrs and the mass ratio of 

the binary q > 1. 

The results presented in this study, albeit somewhat simplistic, showed that the SSS 

phenomena in AE Aqr (and possibly CVs in general), as expected, is intimately tied to 

the 

i) mass transfer rate from the secondary star, and 

ii) the mass accretion rate onto the surface of a white dwarf, presuml'bly in a disc 

accreting phase. This is however not a requirement for all systems and probably 

depends on the magnetosphere strength of the white dwarf as well as the orbital 

separation and mass transfer rate. 

These two conditions can be summarized in a single constraint, namely r :<> /3 :<>I. 
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It has been shown in chapter 3, for the mass ratio q > 1 and angular momentum loss 

j "' 0 , the Roche lobe will shrink, resulting in the secondary star overflowing its 

Roche lobe (R2 ~ RL2), thus triggering a run-away mass transfer phase. In other 

words, for q > 1, R2 ~ RL2 resulting in scale height o = (RL 2 -RP2 )/ HP :5 0. 

This is reconciled with the fact that the secondary star of AE Aqr is a somewhat 

evolved late K4-5 star (e.g. Casares et al. 1996). Since the secondary star had already 

somewhat evolved, it inflated ck, ~ 0) upon mass loss for q > 1, which is amplified 

by angular momentum loss j
0
,b < 0, resulting in RL2 :5 0. This process results in the 

secondary star probably overflowing its Roche lobe surface, RL2 :5 R2 , (i.e. o < 0 ). 

This will trigger a run-away mass transfer which will also be associated with 

enhanced accretion onto the surface of the white dwarf. 

Such phenomena will definitely result in interesting observable consequences, 

especially if it occurs over an extended period of time. The only limiting factor that 

will determine whether sustained nuclear burning can be achieved is whether the mass 

accretion exceeds the minimum requirement for stable nuclear burning, and whether it 

is below the Eddington limit. 

For example, Table 4.6 shows that, even for extreme overfilling of the secondary's 

Roche lobe ( o = -2 ), the mass transfer rate from the secondary is of the same order as 

the Eddington limit (i.e. [M2[- M,dd ). However, for most of the parameters, the 

average accretion fraction, P, is :5 0.5 , resulting in the initial mass accretion rate 

onto WD being less than the Eddington mass accretion rate ( K = M1 I Medd < 0.45 and 

hence M11 < M,dd ). 

These results are extremely positive, since it shows that the SSS phenomena in AE 

Aqr can be driven effectively even if the limit where the effectivity of the accretion 

process onto the surface of the white dwarf P :5 0.5 . This implies a process of 

significant mass loss from the binary system, when the secondary star enters a phase 
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of run-away mass transfer. This may be the result of mass outflow from an accretion 

disc. 

The long orbital period P,,,;, - 9.88 hr of AE Aqr implies that the binary separation is 

large enough to accommodate a well-developed accretion disc. The rotation period 

P,p;n - 33 s implies that AE Aqr most possibly evolved through a high mass 1ransfer/ 

accretion phase, where the white dwarf has been spun-up by accretion torques (e.g. 

Meintjes 2002), possibly by an accretion disc. This seems to be confirmed by the 

model calculations performed, which suggest that possible SSS activity may, for AE 

Aqr, be restricted to orbital periods P,,,b <::: 9 hrs. The most positive aspect is that the 

SSS phenomena can be satisfied significantly below the Eddington limit for all filling 

factors and for all orbital period P
0
,b ;::: 9 hrs. These seems to confirm the notion that 

SSS activity being associated with pr1>-cataclysmic variables, or very young systems 

with orbital periods P,,,b <: 9 hrs . 

Concerning the spin-up history, as the primary star of AE Aqr is a magnetic WD, the 

deduced results from circular polarization measurements shows the magnetic field 

strength of the white dwarf B, -106 G (e.g. Cropper 1986; Beskrovnaya et al. 1995; 

Chanmugam & Frank 1987; Meintjes 2002). In order for the white dwarf to survive, 

t,. << tmt should be avoided; otherwise the white dwarf would be spun-up too fast, 

obliterating itself eventually under the intense centrifugal forces. Tables ( 4.1-4.6) 

show that the disc spin-up time-scale t,. "" 104 -102 yrs , in contrast to the mass 

transfer time-scale t mt "" 106 -104 yrs . Here, the mass transfer tim<>-scale t mt , for 

various filling factors, places an upper limit on the allowed duration of the high mass 

transfer phase. The results (Fig 4.8 a-e) seem to suggest that the spin-up time-scale, 

rather that the mass transfer tim1>-scale will determine the allowed duration of the run-

away mass transfer phase. This is evident from the fact that t,. << tmt for most initial 

conditions. However, these results are in general consistent with earlier findings 

(Meintjes 2002) predicting a brief but furious mass accretion phase which resulted in 

a rapid spin-up of the white dwarf to periods of P,pln - 33 sec. 
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To conclude, it has been shown that a relative brief high mass transfer/ accretion 

phase, where the white dwarf accreted from a well developed disc can indeed explain 

the peculiar x = l',pln I P,,,b "' 10-3 ratio of AE Aqr. Most of the scenarios considered 

show that in the high mass transfer/ accreticn phase, AE Aqr could have been an SSS. 

This may in fact also apply to other pre-intermediate polar systems, with the 

exception that white dwarfs with magnetic moment µ 34 ;?: 1 would probably inhibit the 

development of an accretion disc for a range in orbital periods, preventing too rapid 

spin-up. However, for significant accretion onto the white dwarf, the SSS conjecture 

may be satisfied for these systems as well. 
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Appendix 

To streamline the presentation, each 8 = (Ri2 - RP2 ) I HP , the allowed parameters, 

satisfying the SSS criteria, are highlighted. Some Tables of our model calculations are 

displayed in Appendix as the followings: 

The results of our model calculations are presented as follows: 

8 = 2.0 Table Al 

8=1.0 TableA2 

8=0 TableA3 

8 = -1.0 Table A4 

8 = -2.0 Table AS 

The results of A.= tm, It,. as a function of P,p1n.• and B, are presented as follows: 

P,P'"·' = 3600 s, B, = 10
4 

G 

P,pln,I = 1000s, B, = 105 G 

P,p1n,1 =1000s, B, =104 G 

P,pln.I = 500 S , B1 = 105 G 

P,pln.I = 500 s, B, = 104 G 

- 95 -

TableA6 

Table A7 

Table AS 

TableA9 
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------------------------------ -



p . 
orb Medd 

(hr) (lo''gs"') 

M21 Mu 
(Me) fJ (Me) qi 

2.0 O 0.87 2.30 10080 18.2 5.44 

2.0 0.1 0.73 2.73 10080 18.2 6.24 

1.8 0 0.87 2.07 9330 16.4 5.44 

1.8 0.1 0.75 2.39 9330 16.4 6.11 

1.8 0.2 0.64 2.83 9330 16.4 6.99 

1.6 0 0.87 1.84 8530 14.5 5.44 

1.6 0.1 0.77 2.07 8530 14.5 5.98 

1.6 0.2 0.67 2.36 8530 14.5 6.65 

1.4 0 0.87 1.61 7650 12.7 5.44 

1.4 0.1 0.79 1.76 7650 12.7 5.86 

1.4 0.2 0.72 1.95 7650 12.7 6.36 

1.4 0.3 0.64 2.19 7650 12.7 6.96 

1.4 0.4 0.56 2.48 7650 12.7 7.70 

1.2 0 0.87 1.38 6780 10.9 5.44 

1.2 0.1 0.81 1.48 6780 10.9 5.75 

1.2 0.2 0.76 1.59 6780 10.9 6.09 

1.2 0.3 0.70 1.71 6780 10.9 6.48 

1.2 0.4 0.64 1.86 6780 I 0.9 6.93 

1.2 0.5 0.59 2.04 6780 I 0.9 7.45 

1.2 0.6 0.53 2.26 6780 10.9 8.08 

1.0 0 0.87 1.15 6030 9.1 5.44 

1.0 0.1 0.83 1.20 6030 9.1 5.63 

1.0 0.2 0.80 1.25 6030 9.1 5.84 

1.0 0.3 0.76 1.31 6030 9.1 6.06 

1.0 0.4 0.72 1.38 6030 9.1 6.31 

1.0 0.5 0.69 1.45 6030 9.1 6.57 

1.0 0.6 0.65 1.54 6030 9.1 6.87 

1.0 0.7 0.62 1.63 6030 9.1 7.19 

1.0 0.8 0.58 1.73 6030 9.1 7.55 

1.0 0.9 0.54 1.85 6030 9.1 7.96 

3.73 

3.73 

2.70 

2.70 

2.70 

1.84 

1.84 

1.84 

1.20 

1.20 

1.20 

1.20 

1.20 

0.74 

0.74 

0.74 

0.74 

0.74 

0.74 

0.74 

0.43 

0.43 

0.43 

0.43 

0.43 

0.43 

0.43 

0.43 

0.43 

0.43 

M1,csNB1 r f(Xo) tsu tmt 

0 

3.73 

0 

2.70 

5.40 

0 

1.84 

3.69 

0 

1.20 

2.40 

3.60 

4.80 

0.74 

1.48 

2.21 

2.95 

3.69 

4.43 

0 

0.43 

0.86 

1.30 

1.73 

2.16 

2.59 

9.50 

7.36 

9.50 

7.66 

5.96 

9.50 

7.97 

6.52 

8.28 

7.11 

6.00 

4.96 

8.59 

7.71 

6.87 

6.05 

5.27 

4.53 

9.50 

8.91 

8.33 

7.77 

7.22 

6.68 

6.15 

3.02 5.64 

3.45 5.15 

3.88 4.67 

(IO' yr) (IO' yr) 

0.25 

0.20 0.036 0.250 7.69 2.31 

0.35 

0.28 0.037 0.255 10.08 2.73 

0.22 0.042 0.269 5.91 2. 73 

0.52 

0.43 0.040 0.262 13.86 3.30 

0.35 0.042 0.268 8.02 3.30 

0.79 

0.69 0.043 0.271 19.89 4.02 

0.59 0.042 0.270 11.36 4.02 

0.50 0.046 0.282 8.37 4.02 

0.41 0.054 0.303 6.86 4.02 

1.3 

1.2 0.047 0.284 30.01 4.83 

1.0 0.044 0.275 16.95 4.83 

0.93 0.045 0.279 12.31 4.83 

0.82 0.049 0.288 9.92 4.83 

0.71 0.054 0.303 8.48 4.83 

0.61 0.062 0.323 7.55 4.83 

2.2 

2.1 0.052 0.298 47.32 5.34 

1.9 0.047 0.283 26.43 5.34 

1.8 0.045 0.279 18.96 5.34 

1.7 0.046 0.280 15.07 5.34 

1.5 0.047 0.284 12.68 5.34 

1.4 0.049 0.291 11.07 5.34 

1.3 0.053 0.299 9.91 5.34 

1.2 0.057 0.310 9.05 5.34 

0.062 0.323 8.39 5.34 
il;::ari:=t;;;-.;m.--,,,..1:=:ir-1"'""7-+i<,-..,.,,....~="lri'4=.3r . 

. '' ~ l'it:: 
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Porb M. -M· M. 
edd 2i II 

2.0 0 0.87 2.30 10080 18.2 5.44 

0.87 

1.4 0.1 0.79 

1.4 

1.2 0.1 0.81 1.48 6780 10.9 5.75 

1.2 0.2 0.76 1.59 6780 10.9 6.09 

1.2 0.3 0.70 1.71 6780 

1.0 0.1 0.83 1.20 6030 9.1 5.63 

1.0 0.2 0.80 1.25 6030 9.1 5.84 

1.0 0.3 0.76 1.31 6030 9.1 6.06 

1.0 0.4 0.72 1.38 6030 9.1 6.31 

1.0 0.5 0.69 1.45 6030 9.1 6.57 

10.14 0 

2.01 

2.01 

1.17 

1.17 

1.17 

1.17 

1.17 

1.17 

2.35 

3.52 

4.69 

5.87 
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Mli(SNB> r 
X-0 f(X-O) t.u tmt 

9.50 

8.59 

7.71 

8.91 

8.33 

7.77 

7.22 

6.68 

(103 yr) (10' yr) 

0.094 

0.43 0.035 0.248 12.63 1.78 

0.38 0.033 0.241 7.13 1.78 

0.034 0.244 5.18 1.78 

0.76 0.039 0.261 19.90 1.96 

0.71 0.035 0.247 11.12 1.96 

0.66 0.034 0.244 7.98 1.96 

0.62 0.034 0.245 6.34 1.96 

0.57 0.035 0.249 5.33 



M21 Mu 
(Me) fl (Me) qi (K) 

Porb M
0 

-M· M
0 

odd 21 11 Xo f(Xo) t.u tmt 
(103 yr) (10' yr) 

2.0 0 0.87 27.56 0 0.034 
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Mu 
q; 

(Me) (K} 

2.0 0 0.87 2.30 10080 18.2 5.44 7.49 0 
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M,,csNBi r f(x,,) 
tsu tmt 

(I 02 yr) (Io' yr) 

9.50 



M" f3 
(Me) 

2.0 

Mu 
q; 

(Me) (K) 

0.87 2.30 10080 

Porb M
0 

edd r f( X-0) tsu lmt 

(102 yr) (104 yr) 

0 9.50 0.005 

- 100 -



Poro M
0 

edd M11 p 
(Me) (hr) (IO'°gs"1) (IO'°gs"1

) (1020 gs"1
) (10 11 gs"1) 

2.0 0 0.87 2.30 10080 18.2 5.44 20.37 0 9.50 

- 100 -

r Xo f(Xo) tsu tmt 

(IO' yr) (IO' yr) 

0.005 



fJ 
(10" g s 1) (to" g s 1

) (IO" gs"') (IO" g s"1) 

r f(Xo) 
lsu tmt 

(to' yr) ( 103 yr) 
Xo 

0 0.87 0.87 0 9.50 0.11 

Table A6: The time-scale ratio A. = tm, It,., for m21 = 1.0, o = -1.0, P,P'"" = 3600 s and 

fJ 
c10"gs·1) (IO"'gs') (IO"gs') (to"gs1) 

r f(x,,) tsu tmt 

(103 yr) (I 03 yr) 
Xo 

0 0.87 l.15 5.44 0.87 0 9.50 0.11 

Ir.~ 
~ ' I 

Table A 7: The time-scale ratio A.= f mt It,. for m21 = 1.0, o = -1.0, P,P'"·' = 1000 s and 

JJ.. =105 G 
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p Mu Mli(SNB) r 
(l020 gs") (lO'°gs1

) (lO"gs·•i (l011 gs·•i 

0 0.87 1.15 5.44 0.87 0 9.50 0.11 

p Mli Mli(SNB) y 

(10" g s"1) (IO'° gs") (10" g s"1) (1011 gs") 

0 0.87 1.15 5.44 9.50 0.11 

f(Xo) tsu tmt A 
(lO' yr) (lo' yr) 

f(Xo) tsu 
(IO' yr) 

tmt 
(lO' yr) 

for m21 = 1.0, o = -1.0, P,pln.I = 500 s and 
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f(Xo) tsu tmt 

(1020 gs"') (!020 gs') (!019 g ,-•) (!O" g s"1) (10' yr) (lO' yr) 

0.87 1.15 5.44 0.87 0 9.50 0.11 

Tab!eAlO: The time-scale ratio A.=tm1/t,. for m21 =LO, 0=-1.0, P,P'"·' =500s and 
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