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Preface

Theory in Numerical Analysis is never,
or should never be,
an end in itself.

P. Henrici

Motivation for the research project

Perturbation techniques for the solution of differential equations form an essential
ingredient of the tools of mathematics as applied to physics, engineering, finance
and other areas of applied mathematics. A natural extension would be to seek
perturbation-type solutions for discrete approximations of differential equations.

Objectives

The main objective of the research project was to develop a perturbation technique for
the solution of discrete equations. To achieve this we gave attention to the following:

1. Application of the technique to discrete approximations of relevant equations.

2. Comparisons of the developed theory with observed computed results.

3. Investigate deviations between perturbation solutions and computed solutions
and explain reasons.
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Thesis Overview

This thesis is divided up as follows:

Chapter 1 contains a short exposition of singular perturbation techniques, highlight-
ing in particular the method of multiple scales. These techniques are applied to the
solution of the Van der Pol, Korteweg-de Vries (KdV) and Regularized Long Wave
equations.

Chapter 2 contains the basic framework for the numerical methods we wish to exam-
ine, specifically finite difference methods. A number of different ways to derive finite
difference methods are detailed and we show the connection between central finite
difference methods and the pseudospeetral method.

In Chapter 3 we discuss a discrete multiple scales methodology as derived by Schoom-
bie [in]. We generalize the method for application to general finite difference ap-
proximations.

In Chapter 4 we apply the generalized discrete multiple scales analysis to the so-
lution of the discrete KdV equation. We shall show the consistency of the method
with the continuous analysis as the discretization parameters tend to zero. We show
that the discrete multiple scales technique is a powerful tool for the examination of
modulational properties of equations such as the KdV equation. We show that in the
case of certain modes of the carrier wave, the multiple scales analysis breaks down,
indicating that in these cases the numerical solution deviates in behavior from that
of the KdV equation. Several numerical experiments are performed to examine the
spurious behavior for different orders of approximation. We supplement the work of
Chapter 4 with a Benjamin-Feir instability analysis in Chapter 5.

In Chapter 6 we show the application of the discrete multiple scales analysis to the
solution of a specific discretization of the Van der Pol equation. We also discuss
related work.

A short discussion on the work performed in this study, as well as a list of possible
extensions and ideas for future research, is given in Chapter 7.
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Chapter 1

Perturbation Techniques

A mathematician, like a painter or a poet, is a master of pattern.

G. H. Hardy

In this chapter we present some essential ideas used in the solution of singular pertur-
bation problems. It is not intended to be a complete survey of the literature on the
subject; even for the examples given and discussed here no attempt has been made
to make the references complete. It is not a survey of results or techniques - for this
the reader is referred to Nayfeh [93, 94], Ames [4] and Mason [83] amongst others.

Our main aim is to discuss the fundamental heuristic ideas which underlie certain
analytical techniques with the aim of expanding the techniques towards the analysis
of finite difference approximations to ordinary and partial differential equations.

We shall introduce the well-known method of multiple scales and show its use for the
solution of the Korteweg-de Vries (KdV) and Van der Pol equations. We shall also
demonstrate the use of an alternative multiple scales technique as applied to the KdV
and Regularized Long Wave (RLW) equations. In particular, for the KdV and RLW
equations the analysis shows that the envelopes of modulated waves are governed by
the nonlinear Schrëdinger (NLS) equation. The alternative multiple scales technique
presents an ideal framework from which we shall devise a discrete multiple scales

analysis methodology.



2 CHAPTER 1. PERTURBATION TECHNIQUES

1.1 Multiple Scales - An Introduction

Consider the Cauchy problem for the parabolic equation

where 8
p
denotes partial differentiation with respect to p. The equation is to be

solved on the domain -00 < x < 00, t > 0 subject to initial data

u(x, t) = f(x), -00 < x < 00.

Equation (1.1) is used as a model equation for heat conduction in a rod in which
there is a heat loss due to radiation on the surface. The radiative effect gives rise to
the EU term in (1.1). (See [146], for example.)

Changing to a new dependent variable by means of the transformation

u(x, t) = e-Etv(x, t),

yields the classical heat equation [15],

Thus the solution to (1.1) is given by the Cauchy problem for (1.4).

We shall now apply a simple perturbation method [9] to find an approximate solution
to (1.1). For that purpose we use the expansion

00

u(x, t) = L un(x, t)en.
n=O

Substituting (1.5) into (1.1) we have

8tUo + e8tUl + .,.
+e[uo + EUI + ...]
= 8;Uo + e8;u} + ...

Equating the coefficients of like power in e in (1.6) we have

Luo = 0,

for the coefficient of eO and

(1.1)

(1.2)

(1.3)

(1.4)

(1.5)

(1.6)

(1.7)

(1.8)



1.1. MULTIPLE SCALES - AN INTRODUCTION

for the coefficient of el. The linear operator, L, is given by

L = at-a;. (1.9)

The initial conditions are given by

UO(x,O) = f(x),

UI(X,O) = O.
(1.10)

Solving (1.7) and (1.8) we find

u(x, t) = v(x, t) - etv(x, t) + 0(e2), (1.11)

where v(x, t) is the solution to the heat equation (1.4).

On comparison with the exact solution (1.3) we conclude that (1.11) serves as a
good approximate solution for Et « 1. However, if Et = 0(1) we find that the first
perturbation term eUI = -etv(x, t) is of the same order of magnitude as the leading
term Uo. Consequently, no matter how small e there exists a finite time at which all
terms in the perturbation series are of the same order in e and cannot be neglected
on the basis that they constitute small corrections for small e. The result is that the
perturbation solution (1.11) is not uniformly valid for all times. Terms of the form
etv(x, t) are referred to as secular terms.

If we complete the full perturbation solution we obtain

(1.12)

with the initial conditions
(1.13)Un(x,O) = O.

Making use of Duhamel's principle [15, 146] it is readily shown that

Un(x, t) = [(-tt 1nl] v(x, t),

which, upon substitution into (1.5), leads to the following well-known convergent
infinite series expansion for the exponential function

00 (-et)n
u(x, t) = L -,-v(x, t)

n=O n.

Therefore, the result obtained from the simple perturbation method with an infinite
number of terms is identical to the result (1.3) obtained by means of the continuous

3

(1.14)

(1.15)



4 CHAPTER 1. PERTURBATION TECHNIQUES

change of variables approach. However, in practice only a few terms in the expansion
(1.15) are retained which will lead to an invalid approximation to the initial problem
at some stage as illustrated above.

There are a number of methods in the literature for remedying the problems caused
by secular terms - the textbooks by Nayfeh [93] and [94], for example, cover the area
with a significant number of examples and studies. Also of interest is the more recent
work by [38, 77, 92]. Our focus in this work will be concentrated on multiple scales
type methods, as described below briefly for equation (1.1).

As shown by the solution (1.3) to (1.1) the problem involves a slow time scale Et and
a comparatively fast time scale t. Therefore, it seems reasonable to look for a solution
to (1.1) of the form u(x, To,Tl) where To = t and Tl = Et.

By making use of the chain rule for derivatives we can write

(1.16)

which leads to
Orou+ E(On u + u) = 8;u,

upon substitution into (1.1). Employing a perturbation series expansion

yields the recursive system

as well as
OroUn- 8;un = -[Orl Un-l + Un-tl·

From (1.19) with the initial conditions given by (1.10) we find

uo(x, To,Tt) = e(TI)v(x, To),

with vex, To) defined as before and e(Tt) an arbitrary function of Tl that satisfies the
condition e(O) = 1 (since t = 0 implies that Tl = Et vanishes). Substitution of (1.21)
into (1.20) with n = 1 yields

de
OroUI- 8;UI = -[Orl ua + ua] = -[dTI + e]v(x, To). (1.22)

Because e(TI) and its first derivative are constants as far as the operator on the left
of (1.22) is concerned, we obtain the solution as

de
UI(X, To, Tt) = -t[dT

I
+ e]v(x, To) + d(TI),

(1.17)

(1.18)

(1.19)

(1.20)

(1.21)

(1.23)
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where d(Tt) is an arbitrary function that vanishes at T, = O. Inspection of (1.23)
reveals that we obtain a solution that grows with t. To remove such secular terms we
require that

dc
dT

t
+c= O.

Making use of the initial condition c(O) = 1 gives

c(Tt) = e-d,

(1.24)

(1.25)

as the solution of (1.24). It is important to note that we also set d(T)) = O. Otherwise
further secular terms would arise at the next level of approximation. Consequently,
Ut = 0 and therefore Un = 0 for all n > 1. The perturbation solution (1.18) terminates
after the first term and yields the exact solution as given by (1.3).

In Nayfeh [93J, the comment is made that it is the rule rather than the exception that
expansions of the form (1.5) are not uniformly valid and the approximations break
down in regions called regions of non-uniformity [74], as shown earlier. As shown
above the method of multiple scales provides a mechanism to render the solution uni-
formly valid. Nayfeh [93J provides a list of various applications in physics, engineering
and applied mathematics.

In the following sections we shall show the application of the method of multiple
scales to some ordinary and partial differential equations occuring in mathematical
physics.

1.2 Van der Pol Equation

1.2.1 Introduction

We consider the Van der Pol differential equation in the form

d2x 2 dx 2
dt2 - f3€(1 - x ) dt +W x = 0, (1.26)

with
(0 < € « 1), f3 > 0, (1.27)

and w constant.

This equation was first described by Van der Pol [135J in 1922 in the context of
electronic circuits containing vacuum tubes. The Van der Pol equation is used to
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describe damped oscillations, the damping dependent on the factor (1 - x2). For
ixi < 1 the damping is negative implying an expanding solution of (1.26) while for
[z] > 1 the damping is positive indicating a contracting solution. Since trajectories
near the origin expand, trajectories from the outer regions contract, and the only
equilibrium point is at (0,0), there must be a limit cycle encircling the origin [98]. If
that were not the case the trajectory, constrained to lie on the plane, would intersect
itself (a result of the Poincaré-Bendixson theorem only possible for a plane [101]).

The nonlinear Van der Pal differential equation serves as an important model equa-
tion for one-dimensional dynamic systems having a single, stable limit-cycle and is
frequently used as a model equation in the study of differential equations.

More recent research on the Van der Pal equation focus on generalized equations. As
an example, Moremedi and Mason [90] consider the generalized case where (1 - x2)
is replaced by (1 - x2n) with n any positive integer. Another case of interest is that
where a forcing term of the form K cos(ext), with K and ex constant, is introduced to
the right hand side of (1.26); see [32] and the references cited therein.

In the next section we discuss a multiple scales analysis of (1.26) in the manner of
Nayfeh [93].

1.2.2 Multiple Scales Analysis

Following [83, 93] we assume the following multiple scales solution for (1.26)

x = x(To,TI,E)

xo(To, Tl) + EX1(To,Tl) + O(E2
), (1.28)

where we have introduced the independent variables To and Tl defined as

To = t, (1.29)

By making use of the chain rule for differentiation we can once more write d/dt in
terms of &ra and &r,. Therefore

ddi = &ra + E&r, , (1.30)
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and
(1.31)

Substitution of (1.28), (1.30) and (1.31) into the differential equation (1.26) we obtain

(afD + 2EOroOrl )(XO + EXI)

-,&(1 - (xo + EXI)2)(Oro + EOrI)(XO + EX!) (1.32)

By equating coefficients of like power in E we obtain a system of two partial differential
equations in the two variables To and TI for Xo and Xl, namely

Lx« = 0, (1.33)

and
(1.34)

where L is defined by
(1.35)

The general solution of (1.33) is given by

xo(To, TI) = A(TJ)eiwTo + CC.

Substitution of (1.36) into (1.34) yields

LXI = _iweiwTO(20rIA - (3A + (3AJAJ2)

(1.36)

_iwéiwTo + CC. (1.37)

To eliminate secular terms in Xl we require the coefficients of eiwTo in (1.37) to vanish.
Thus

OrIA = ~(A - AJAJ2).

To solve (1.38) we follow [10, 93J. Let

A = ~a(TI' T2)é/>(TI,T2)

(1.38)

(1.39)

After substitution of (1.39) into (1.38) and separation of real and imaginary parts in
(1.38), we obtain the logistic-type equation

(3 a2
Orla = "2(1- 4)a, (1.40)

7



8 CHAPTER 1. PERTURBATION TECHNIQUES

and
0r,</J=O. (1.41) .

Making use of the initial condition

a(O) = aa, (1.42)

we obtain
a2 = 4

[1+ (4/a5 - 1)e-1mr

Consequently, in terms of (1.36), we have

(1.43)

2cos(wt + </J)
Xo = ----r=====~==J(1 + (4/a5 - l)e-I3<t)'

(1.44)

Therefore in terms of (1.28) we have

x(t, E) x(To, TI,E)

xo(To, TI) + O(E)

2cos(wt + </J) + O(E).J(1 + (4/aij - l)e-P<L)
(1.45)

We can proceed to find multiple scales solutions to the Van der Pol equation valid
to higher orders of E by using the methodology illustrated above as in Nayfeh [93J.
However, for the purpose of our numerical investigation the presentation up to 0(10)
given in (1.45) will be adequate.

1.3 Korteweg-de Vries Equation

The KdV equation is a nonlinear PDE arising in a number of different physical sys-
tems, e.g., water waves and elastic rods [68, 91J. It describes the long time evolution
of small but finite amplitude dispersive waves. From detailed studies of properties
of the equation and its solutions, the concept of solitons was introduced and the
method for exact solution of the initial-value problem using inverse scattering theory
was developed [36, 91J. In section 1.3.2 we show multiple scales analyses of the KdV
equation.



1.3. KORTEWEG-DE VRIES EQUATION

1.3.1 Introduction

Consider the KdV equation in the form

8tu + 1]8xu + (u8xu + 'Ya;_u = 0, (1.46)

where 8p denotes partial differentiation with respect to p and ry, (and 'Y are constants,
with 'Y =I O.

Furthermore, for the purposes of our study, consider the following initial data

u(x, D) = éf(x), f(x) = 0(1), (1.47)

where é is a small, real, positive number. In addition, the following periodicity
conditions are imposed on solutions of the KdV equation

u(x ± L, t) = u(x, t), f(x ± L) = f(x), t > 0, x E ~. (1.48)

The KdV equation provides a useful model for describing the long-time evolution
of wave phenomena in which the steepening effect of the nonlinear term u8xu is
counterbalanced by dispersion [36]. For the KdV equation, the effect of dispersion is
to prevent the formation of discontinuities [72]. The KdV equation was first derived
by Korteweg and de Vries [71] to describe the propagation of unidirectional shallow
water waves. For this specific case Vliegenthart [136] formulates the KdV equation
in the form

(1.49)

where u(x, t) denotes the local wave-height above the undisturbed depth ho, x the
coordinate along the horizontal bottom, t the time and 9 the gravitational accelera-
tion.

The KdV equation has been used to account adequately for observable phenomena
such as the interaction of solitary waves and dissipationless, undular shocks. A soli-
ton is defined as a localized or solitary entity that propagates at a uniform speed
and preserves its structure (or shape) and speed in an interaction with another such
solitary entity [61, 143]. In fact, Zabusky and Kruskai [144] discovered the concept of
solitons while studying the results of a numerical computation (describing an anhar-
monic lattice) on the KdV equation [36]. The Zabusky-Kruskal (ZK) discretization
of (1.46) will be described in greater detail later in this work.

The one-soliton solution of (1.46), for example, is given by [81]

12'Yf32
u(x, t) = -( -sech2(f3(x -1]t - 'Yf32t - xo)), (1.50)

9
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where (3and Xo are free parameters and Xo determines the initial position of the soli-
ton. The one-soliton solution is a hump with height 12"((32/( and width proportional
to 1/(3, traveling to the right with velocity r] + "((32 Consequently, the larger (in
height) a soliton is, the thinner it is and the faster it travels to the right with respect
to smaller solitons. The size of the coefficient of the convection term r] merely adds
velocity to all solitons.

The more complex two-soli ton solution is given by [36, 81J:

12"( A
u(x, t) = T[s],

where

A = ((3UI + (3ih + 2((31- (32)2flh

+(~~ ~ ~~)2((3Udi + (3ihm,

and

Furthermore

fl = exp((3I(x - nt. - xl) - "((3~t),

h = exp((32(X- r]t - X2) - "((3gt),

and the (3nand Xn determine height and position of the n-th soliton.

The KdV equation has also been used as a model for ion acoustic waves in plasma;
magneto hydrodynamic waves in plasma; the anharmonic lattice; longitudinal disper-
sive waves in elastic rods; pressure waves in liquid-gas mixtures; rotating flow down
a tube and thermally exited phonon packets in low temperature nonlinear crystals.
A number of these applications are described in [68J and [91J.

It is also of interest to note that we can rewrite the KdV (1.46) in the conservation

form

where T = u and X = r]U + (u2/2 + "(o~u.Assuming u is periodic in x or that u and
its derivatives vanish sufficiently fast towards ±oo, integrating the conservation law
yields

at J Tdx = 0,

(1.51)

(1.52)

(1.53)
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where the limits of integration are ±oo or two ends of a period in x. A second
conservation law can be derived by multiplying (1.46) by u, with the result that
T = u2/2 and X = 7]u2/2+(u3/3+i·(uE/;u- (8xu)2/2)). The KdV is known to have
an infinite number of polynomial conservation laws of the form (1.52) [14, 91].

Considering the large number of applications of the KdV equation as well as its
historical importance in the study of solutions to nonlinear equations of evolution,
it is impossible to do justice to the existing literature in our references. We do not,
for example, make any reference to its historical significance in the development of
the Inverse Scattering Transform theory [36, 61]. Therefore, only a small number of
references relevant to this study are provided, these being [11, 14, 16, 31, 36, 43, 64,
68, 69, 70, 71, 72, 82, 91, 110, 127, 136, 139, 140, 143, 144] and [145].

1.3.2 Continuous Multiple Scales Analysis

For the purpose of a conventional multiple scales approach it is assumed that the
solution u(x, t) to (1.46) can be expanded in the following form [36, 110]

00

u(x,t) = I:>nu(n)(XO'Xl,To,Tl,T2)'
n=l

(1.54)

where
Xk = éx, k = 0,1,

and

Equations (1.55) and (1.56) are the spatial and time scales respectively. For k = ° we
have the fast scales in space and time and for higher values of k we have progressively
longer space and slower time scales.

To proceed with the analysis the chain rule for derivatives is used with the result that
the spatial derivative is transformed to

The time derivative is written as

11

(1.55)

(1.56)

(1.57)

(1.58)



12 CHAPTER 1. PERTURBATION TECHNIQUES
\

Themultiple scales analysis would ensue by substituting equations (1.54) through
(1.58) into (1.46) and equating different orders of E to zero. Thereby a hierarchy of
perturbation equations is generated, the first three members of which are given by

Lu(l) = 0, (1.59)

and

and

8r
I
U(2) - 8r2u(l) - ry8Xlu(2)

([8xo(u(l)U(2») + 1/28xl (u(l»)2]

3'Y(8k
0
8xl u(2) + 8x08kl u(1»), (1.61)

where L is the linear operator

(1.62)

The solution to (1.59) is considered in the following form

U(l) = A(X1, Tl, T2)eiO + CC,

where the phase variable, (J, is given by

(J = kXo -wTo,

with the carrier wave number k related to w, the carrier wave frequency, by the linear
dispersion relation [14, 140]

To satisfy the periodicity conditions given in (1.48), we have to restrict the wave
number k to the following values

k = km = 21rm/ L, m = 1,2, ....

V,le restrict k to nonzero values only as the trivial case k = 0 requires special treatment
and is of little interest. Substituting (1.63) into (1.60) we find that we have to remove
secular terms in order to obtain a bounded solution u(2) by imposing the condition

8rIA + Cg8xIA = 0,

where we define
dw 2Cg := dk = ry - 3'Yk ,

(1.63)

(1.64)

(1.65)

(1.66)

(1.67)

(1.68)
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to be the group velocity associated with the operator L.

We find that (1.60) has a solution of the form

u(2) = [(/(6')'k2)][A2e2iO + A*2e-2iO] + B(X[, Tl, T2), (1.69)

where B is a function yet to be determined.

Substituting (1.69) and (1.63) into (1.61) we have to impose the following conditions
in order to remove secular terms

Or,B + 1]8x, B + (8x,IA12= 0, (1.70)

and
Or2A + i[(2/(6')'k)]AIAI2 + i(kBA + 3i')'k8t A = O. (1.71)

Equations (1.67), (1.70) and (1.71) yield the required modulation equations, describ-
ing the behavior of the envelope A.

If we assume, on a physically reasonable basis, that B satisfies (1.67), i.e.,

(1.72)

it follows upon substitution that

(1.73)

Therefore, (1.70) has a solution

(1.74)

Consequently, (1.71) can be rewritten as

Or2A + 3i/k8t A - [i(2/(6')'k)]AIAI2 = 0, (1.75)

the nonlinear (or cubic) Schródinger (NLS) equation in the variables Xl and T2. The
name nonlinear Schrodinqer has been coined precisely because its structure is that of
the Schrodinger equation of quantum mechanics with IAI2as a potential, although for
most of the situations in which it occurs it has no relationship with the real quantum
Schrodinger equation other than in name. The NLS equation serves as a model
equation in its own right. This ubiquitous nonlinear wave problem of mathematical
physics finds applications in such diverse fields as water waves, plasma physics and
nonlinear optics [5, 36, 125, 138]. As the example illustrated above shows, it plays
a significant role in the theory of the propagation of the envelopes of wave trains in
many stable dispersive physical systems in which no dissipation occurs.
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It is well known, for instance Zakharov and Kusnetsov [145J and Dodd et al. [36J
that the nonlinear modulation properties of certain low amplitude periodic solutions.
of the KdV equation are described by a form of the non linear (or cubic) Schródinger
equation as given in (1.75).

It is important to note that (1.67) describes a linear modulation property of (1.46),
whereas (1.75) gives information about the modulation effects of the nonlinear terms
in (1.46).

In the numerical work that follows in a subsequent chapter we shall show that by using
an exact discrete analogue of the continuous multiple scales techniques, a discrete
version of the NLS is derived from the numerical scheme for the KdV, which should
tell us something about the modulation of the numerical solution of the KdV equation,
and therefore also point out any deviations from the behavior of the corresponding
solution of the KdV (i.e. spurious behavior). In fact, it will be shown that this
discrete version of the NLS is consistent with the continuous NLS obtained by the
continuous multiple scales analysis, and could be viewed as a valid numerical scheme
for the NLS as well.

1.3.3 Alternate Multiple Scales Expansion

The primary focus of this work will be the analysis of discretised equations by means
of perturbation techniques. To that end, the following multiple scales method used
by Tracy et al. [127J as well as Zakharov and Kusnetsov [145J is particularly suited
for adaptation to the discrete case as illustrated by Schaambie [Ll.O, in] and Maré
and Schaambie [80, 112J.

Consider the expansion

00

u(x,t) = L u,.(Xl,TI,T2,E)eiT8,
T:;::-OO

(1.76)

with e given by (1.64) and k given by (1.66) as defined above. Then following Tracy
et al. [127] as well as Zakharov and Kusnetsov [145] we use

(1.77)

with
(1.78)80 = 2, 8T = IrJ,
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and

Vo VO(XI, Tl, T2),

VI(Xl, Tl, T2).

(1.79)

(1.80)

When r > 1 we have
00

Vr = Vr(XI, Tl, T2) + I>:s+1-rwrs(XI, Tl, T2)'
s=r

(1.81)

To enable a multiple scales analysis of (1.46), we use the expansions

(1.82)

and
(1.83)Ox = irk + EOx"

instead of the more general (1.57) and (1.58).

We now substitute (1.76) into the KdV equation (1.46) while making use of the
expansions of the derivatives in (1.82) and (1.83). Putting the coefficient of each eir9

equal to zero, we find that (1.46) is equivalent to the following infinite set of equations
for Ur

=iriou; + EOr, Ur + E20rzUr + irnku; + 'f}EOx, Ur
00 (1.84)

+')'[irk + EOx,13Ur + ( L [iksus + ox,wslur-s = O.
s=-oo

To proceed with the multiple scales analysis, we now wish to have (1.46), and therefore
(1.84) satisfied for each r up to terms 0(E3).

We commence by putting r = 0 in (1.84). By equating the 0(E3
) term (the lowest

order term in E) to zero we obtain

(1.85)

Next, put r = 1 in (1.84). Equating the O(E) terms to zero reproduces the linear
dispersion relation (1.65). Similarly the 0(E2) and 0(E3) terms yield the following
equations respectively

and

15
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where
C dw 2

g ;= dk = TI- 3,k ,

is the linear group velocity (as obtained in (1.68)).

(1.88)

When we use r = 2 we obtain from the O(E2) terms

V2 = (V1
2 f(6,k2),

by making use of the linear dispersion relation (1.65).

(1.89)

By making the physically meaningful assumption that Voalso satisfies (1.86), that is

ar,Vo+ Cg8x, Vo = 0, (1.90)

with Cg as defined above, we obtain from (1.85) that

Vo = -((/3~/e)lVd2 (1.91)

We rewrite (1.87) by making use of (1.91) and (1.89). The result

ar,VI - i[(2 f(6,k)]VI (lVd2)+ 3i,k 8l,v1 = 0, (1.92)

is the nonlinear Schródinger equation in the variables T2 and XI as obtained in the
previous section, equation (1.75).

In terms of the expansion (1.76) as a solution of (1.46) it follows that

u(x, t) = E(Vte-i8 + Vlei8) - E2((f6,k2)1V112 + O(E3
), (1.93)

which can in turn be approximated by
u(x, t) ~ E(Vte-i8 + Vlei8), (1.94)

since E is small. Thus Vl can be considered to be a small, variable amplitude of a
monochromatic wave.

On the time scale TI, (1.86) tells us that the modulation envelope VI moves at linear
group velocity without changing its shape. On the time scale T2, however, the enve-
lope does change its shape, according to (1.87). Thus (1.86) describes the linear, and
(1.92) describes the non linear modulation properties of the KdV equation.

If we identify VI in the above analysis with A in the previous analysis and corre-
spondingly Vo with B we observe that (1.85) and (1.86) is the same as (1.70) and
(1.67) respectively. Furthermore, combining (1.87) and (1.89) we obtain (1.71). Thus
exactly the same results are obtained as described in the previous section.

In the next section we shall illustrate the use of the alternative method of scales as
illustrated above for the KdV equation for the Regularized Long Wave equation.
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1.4 Regularized Long Wave (RLW) Equation

The RLW equation describes wave motion to the same order of approximation as the
KdV equation (1.46) and could equally well model all of the applications of the KdV
equation on the same formal basis of justification for both equations. Indeed [17],
when the initial datum of both equations is restricted to conform to that arising in
many physical applications, it can be shown that essentially the same solutions are
obtained over a non-trivial time scale.

1.4.1 Introduction

We consider the Regularized Long Wave (RLW) equation in the form

Btu + 1)Bxu + (uBxu - 'YB~Btu = 0,

where 1), ( and 'Y are constants with 'Y # O. Similar to the boundary and initial
conditions for the KdV equation we assume

u(x, D) = €f(x), f(x) = 0(1),

where € is a small positive constant and

u(x ± L, t) = u(x, t), f(x ± L) = f(x), t > 0, x E ~. (1.97)

The RLW equation was first put forward by Peregrine [100] to describe the temporal
development of an undular bore.

Benjamin et al. [11] contend that "the RLW equation is in important respects the
preferable model, obviating certain problematical aspects of the KdV equation and
generally having more expedient mathematical properties" .

The conditions for existence, stability and uniqueness of solutions of the IVP (1.95)
to (1.97) was shown by Benjamin et al. [11]. Of some interest is the fact that the
RLW has only three conservation laws as opposed to an infinite set of conservation
laws for the KdV equation [17, 54, 116].

1.4.2 Continuous Multiple Scales Analysis

The perturbation approach we shall perform on the RLW equation (1.95) is the same
as the alternate multiple scales analysis described for the KdV equation (1.46) in
equations (1.76) through (1.94).

17
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We start with the now familiar expansion [111, 127, 145J,

00

u(x, t) = L u,.(XI, Tl, T2, e)eire,
r=-(X)

(1.98)

where as in (1.76), (1.77) through (1.81)

with
Óo = 2, ÓT = Irl, (1.100)

and

VI

VO(XI,Tl, T2),

VI(XI, TI, T2).

(1.101)

(1.102)

ve

When r > 1 we have
00

Vr = Vr(XI, Tl, T2) + LeS+I-rWTs(XI, TI, T2).
s=r

(1.103)

Furthermore B is given by
B= kXo -wTo, (1.104)

where
7Jk

w = "(k2 + i: (1.105)

subject to
(1.106)

As before we also use
(1.107)

and
(1.108)

We use the chain rule for derivatives equivalent equations given by (1.82) and (1.83).
We substitute equations (1.98) through (1.108) into (1.95) and equate coefficients of
eire to zero. This procedure yields the following system of equations:

-"([irk + e8xlj2[-irw + e8r, + e28r2Jur
+( L:~_oo[iksus + 8x,EUsJUr-s = O.

(1.109)
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We now wish to have (1.95), and therefore (1.109) satisfied for each T up to terms
O(E3).

We start with T = 0 in (1.109). The lowest order term in E is O(E3) which yields the
following equation upon equating the coefficient of O(E3) to zero

(1.110)

Next, we use r = 1. Equating the O(E2) term to zero we obtain

(1.111)

where
(1.112)

is the linear group velocity associated with the linearized RLW equation. The equa-
tion associated with setting the coefficient of the O(E3) term to zero is (r = 1)

(1.113)

Note that we can rewrite

(1.114)

by making use of (1.105), (1.111) and (1.112).

By making use of T = 2 we find upon equating the O( E2) term to zero and making
use of the linear dispersion relation (1.105) that

(1.115)

To determine an expression for 'lo we make the reasonable assumption that it satisfies
(1.111). Combining with (1.112) leads to the following expression

(1.116)

Using (1.110) we find after algebraic manipulation that we can express Vo in terms
of V[ as follows:

(1.117)
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subject to
(1.118)

and k -# O.

\Ne are now in a position to combine equations (1.114), (1.115) and (1.117) in (1.113).
The resulting equation

(1.119)

makes use of the fact that

rPw 8rrpk3
dk2 = [('yk2 + 1)2

(1.120)

Equation (1.119) is the nonlinear Schródinger equation in the variables T2 and Xl as
obtained in the previous section for the KdV equation (1.75).

This result is interesting for a number of reasons. Firstly, it shows that envelopes of
modulated waves for the RLW equation are governed by the NLS equation, similar
to the KdV equation. This confirms a result by Dodd et al. [36] namely, that for a
class of partial differential equations

where L, M, N, P, Q, and R are scalar differential operators in ax and at, envelopes
of modulated waves are governed by the NLS equation

where l( -iw, ik) describes the dispersion relation of L. Secondly, the result was
obtained by making use of the alternative multiple scales analysis.
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Chapter 2

Numerical Methods

"Can you do addition?" the White Queen asked.
"What's one and one and one and one and one and one and one and one and one

and one?"
"I don't know," said Alice. "I lost count."

Through the Looking Glass. Lewis Carrell

Although this may seem a paradox, all exact science is dominated by the idea of
approximation.

- Bertrand Russeil (1872 - 1970)

While the multiple scales solutions to the equations in the previous chapter are ele-
gant, detailed and accurate solutions are available only by making use of numerical
methods. Our primary aim in this thesis is to investigate numerical solutions of the
KdV equation (1.46) and the Van der Pol equation (1.26), specifically confining our
attention to finite difference approximations.

In the next chapter we shall show that it is possible to use multiple scales techniques
analogous to those described in Chapter 1 to analyze numerical approximations of
the abovementioned differential equations. We shall particularly concentrate on a
discrete multiple scales methodology applied by Schoombie [11lJ to the analysis of
the Zabusky-Kruskal (ZK) approximation of the KdV equation. By comparing the
results of the perturbation solutions to those of the corresponding analyses of the dif-
ferential equations, spurious behavior in the numerical schemes can often be identified
immediately as will be shown in subsequent chapters.
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In this chapter we shall discuss finite difference methods. We shall devote the first
two sections to preliminaries and notation, followed by a general derivation of finite
difference formulae using the method of undetermined coefficients. This is followed
by sections where we present an efficient methodology to compute finite difference
coefficients on general grids and an analysis illustrating the accuracy of various or-
ders of finite difference approximations focusing primarily on equi-spaced or regular
grids. We also introduce the pseudospeetral method and highlight the connection
between central difference approximations of increasing orders of accuracy and the
pseudospeetral method.

2.1 Zabusky-Kruskal KdV Approximation

An example of a finite difference approximation to the KdV equation (1.46) is the
ZK [144J explicit LF central finite difference scheme

~('1] + ~(ui+l + ui + ui-I)) (Ui+l - ui-I)

We use the symbol uj to denote the solution of a difference scheme at x = hj, t = rti
where j and n are given integers, i.e.,

ui = u(hj, m).

The parameters hand Tare discretization parameters to be defined below.

In the next section we shall provide operator notation for the analysis of finite differ-
ence approximations such as (2.1).

2.2 Preliminaries and Notation

To enable ourselves to analyze discretizations of the continuous differential equations
we need to introduce some notation. Traditionally, but mostly for the sake of conve-
nience, finite difference methods are considered on equally spaced grids. We therefore
consider an equally spaced grid defined around the point Xo

xo, Xo ± h, ... ,Xo ± kh, ...

(2.1)

(2.2)

(2.3)
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where h, a positive real number, is the grid spacing. In general, we are interested in
grids defined on the plane (x, t). Therefore, by introducing a time step T, we consider
a grid defined by

for arbitrary integers j and n. We shall usually be interested in the solution of an
initial value problem over some time period t E [0,TJ. The temporal discretization, T,

is typically given by T/N for some positive integer N, or determined by the specific
time integration method.

On this grid we shall use the notation u'J = u(hj, m) as introduced in (2.2).

We define the following spatial shift operator ([18, 86, 111, 130J, for example) for a
general function f = f(x, t):

Exf(x, t) := f(x + h, t),

and similarly a temporal shift operator, namely

Etf(x, t) := f(x, t + T).

Therefore using the notation defined in (2.2) above, we can write

and

for a function u(x, t).

Making use of the shift operators, we next define divided difference operators on the
grid defined above (2.3) as in the references [18, 57, 78, 86, 87, 103, 111J:

6.x .- (Ex - l)/h, (2.9)

\1x (1- E:;l)/h, (2.10)

from which follows

Ó,. .- (Ex - E;1)/2h

- (6.x + \1x)/2. (2.11)

Similarly

6.t (Et -1)/T, (2.12)

\1t .- (1- Et1)/T, (2.13)

s, (6.t + \1t)/2. (2.14)
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(2.4)

(2.5)

(2.6)

(2.7)

(2.8)
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The operators could be defined for more arbitrary grids than (2.3), however, for the
purpose of most of our work we shall consider equi-spaced grids. Since all of the above
operators depend on hor T a more complete notation would be to use ll.x(h), \lx(h)
and ox(h). Using the operator Ox defined in equation (2.11), as an example, the
symbol ox(2h) would be defined by

1
ox(2h) Uj = '2(ll.x(2h) + \lx(2h)) Uj

4~ (E; - E;2) Uj

1
4h (Ui+2 - Uj-2)'

In subsequent formulas we shall only show the more complete notation when needed.
These operators will be especially useful in later sections and generally to denote
difference schemes for the numerical solution of ODEs and PDEs.

2.2.1 Order of Approximation

The operators introduced above are well-known in the literature. Consider the prob-
lem of evaluating du/dx at a grid point x = Xo when u is defined only at the equally
spaced grid points in (2.3). By making use of a Taylor series expansion [23, 62, 76]
we have

( () '() h
2

"( ) h
3

III( )U Xo + h) = u Xo + hu Xo + '2!u Xo + 3Tu ~l,

and

, ) h
2

"( ) h
3

III( )u(xo - h) = u(xo) - hu (xo + '2!u Xo - 3! u 6,

where ~l E (xo, Xo + h) and ~2 E (xo - h, xo).

Applying the operator Ox defined in (2.11) to u(x) and making use of a Taylor series
expansion of u(x) above we have

1
oxu(xo) = 2h [u(xo + h) + u(xo - h)]

'( ) h
2

1II(t:)
U Xo + 3Tu ." (2.15)
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where ~ E (xo - h; Xo + h). The approximation shown here would be exact for second
degree polynomials. This leads us to define the order of approximation of a finite
difference expression as follows:

Definition 1 f49, 99} f(h) = O(g(h)) as h --> 0 if there exists constants C > 0 and
ho > 0 such that If(h)1 S Cg(h) for all h S bo. Provided g(h) # 0 this means that
If(h)l/g(h) is bounded from above for all sufficiently small h.

From the above definition the operator Óx defined in (2.11) results in an 0(h2
) ap-

proximation to the first derivative of a function as shown in (2.15).

2.2.2 Zabusky-Kruskal Approximation Revisited

To illustrate the use of the operators defined above we rewrite the ZK approximation
(2.1) to the KdV equation in operator form, thus [iu]

(2.16)

To complete the discrete initial value analogue to the continuous problem (1.46) to
(1.48) we have to impose periodic boundary conditions [l l l]

(2.17)

as well as prescribe initial data of the form

(2.18)

with
(2.19)fj = 0(1), fj±N = t;

where e is a small, real, positive parameter as before. This now constitutes an example
of the type of discrete initial boundary value problem that we wish to study. The
initial conditions stated above could be more general; however, numerical studies in
a later chapter will frequently use the above type of initial conditions.

It is important to note that the ZK approximation is consistent with the continuous
KdV equation (1.46) with a truncation error of order (0(h2

) + 0(r2)).

We shall in particular consider the modulation properties of solutions of the discrete
approximation techniques. For the purpose of our analysis we shall frequently use
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the Method of Lines (MOL) to circumvent temporal discretization. As an example,
using the MOL, the ZK discretization becomes

We wish to study more general finite difference approximations to the KdV equation
than that given by the ZK discretization above. In the next two sections we shall show
how to derive difference expressions to prescribed order of accuracy for derivatives
of sufficiently smooth functions. Using these expressions would lead to higher order,
more general, difference approximations of the KdV equation.

2.3 General Derivation of Finite Differences

The ZK approximation (2.16) to the KdV equation (1.46) was obtained by replacing
continuous partial derivatives with second order accurate difference operators. In this
section we shall consider the derivation of difference operators with higher orders of
accuracy using the method of undetermined coefficients.

We wish to show that the derivative dk/dxk for a sufficiently smooth function u(x),
of arbitrary order k, can be replaced by a difference expression such that the error
induced by this replacement will be of any prescribed order, p, i.e., O(hP

).

Following Godunovand Ryabenkii [57Jwe write an equation of the form,

dku(x) s,
=i:r: = h-k L asESu(x) + O(hP),
dx S=-SI

(2.20)

based on the grid defined in (2.3) as well as the shift operator E defined in equation
(2.5). The limits of summation can be chosen arbitrarily provided that the order of
the difference equation satisfies the inequality, Sl + S2 :::::k + p - 1 where si , S2 :::::o.
By making use of a Taylor series expansion we have

S du(x) (Sh)2 d2u(x)
E u(x) = u(x) + sh~ + ~---;ix2 + ...

(Sh)k+p-l dk+p-1u(x) (sh)k+P dk+pu(E)
... + (k + P - I)! dxk+p-l + (k + pj! dxk+p ,

where ~ E (x, x + sh).

(2.21)
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Substituting the above result into equation (2.20), in place of ESu(x), and collecting
like terms we obtain

dku(x) k du(x)
~=h- [u(x)Las+h~Lsas+ ...

hk+p-l dk+p-lU(x) k+p-l
... + (k + p-1)! dXk+p-1 LS as]

hP k+p dk+pu(~)
+ (k + pj! L S as dxk+p ,

(2.22)

where we have suppressed the subscripts of the summation for ease of notation.

By equating coefficients of like powers li", where S = -k, ... ,p - 1 on the left- and
right-hand sides of equation (2.22) we derive the following system of equations for
the as:

L:as = 0,

L:sas = 0,

L: sk-las = 0,

L:skas = k!,

L:sk+las = 0,

(2.23)

L:sk+P-1as = 0.

If SI + S2 = k + p - 1, the k + p equations in (2.23) form a linear system of the
same number of unknowns as. The determinant of this system is the well-known
Vandermonde determinant [55], and is different from zero [57, 132J. Therefore, there
exist a unique set of coefficients as satisfying (2.23). Should SI + S2 ~ k + p then
many such systems of coefficients would exist.

As an example of the application of this analysis we consider second-order difference
expressions of the form

(2.24)

as approximations to dui dx. Clearly there are infinitely many approximations to first
order in h (p = 1), however, only one solution is of second order accuracy. Solving
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the system of equations (2.23) in this case we find that

Therefore, a_I = -1/2, aD = 0, and al = 1/2 yielding

du
dx

u(X + h) ~ u(x - h) + O(h2)

as obtained in (2.15).

By making use of the methodology described above we are able to construct difference
schemes, by replacing the derivatives in a given differential equation with difference
expressions as given by (2.20), with any prescribed order of approximation.

Finite difference formulae for equi-spaced grids are readily available in tables and can
be obtained from symbolic manipulation of difference operators. In the next section
we show an algorithm to calculate general finite difference approximations to higher
order derivatives on arbitrary grids.

2.4 Polynomial Interpolation and FD Stencils

In this section we shall show an alternative methodology to determine weights in finite
difference formulas. The methodology is elegant and especially suited for efficient
computer implementation. The methodology can be implemented on arbitrary spaced
grids. Although we shall confine ourselves for most of this study to equi-spaced grids
we shall make an exception here in order to show the mathematical elegance of the

derivation.

The approach is to construct Lagrange interpolatory polynomials of a specified order
and subsequently evaluate the derivative of these polynomials at the grid points to
obtain the coefficients of the finite-difference stencil.

We consider a set of values Ui = U(Xi) at the locations Xi, i = 0,1, ... ,N which are
arbitrary, yet distinct points in)R. It is well-known from the literature [19, 23] that
there exists a unique polynomial P of degree at most N with the property that

P(Xi) = U(Xi)' for each i = 0,1, ... , N. (2.25)
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In general [19,23], one may fit any N + 1 points by a polynomial of N-th degree via
the Lagrange interpolation formula, namely

N

PN(X) = LU(Xi)L',N(x),
i=O

(2.26)

where the L,,,v(x) are defined by

N x-x'
L"N(x) = IT-_J•

j=O Xi - Xj
#i

(2.27)

The N factors of (x - xi) ensure that Li,N(X) vanishes at all the interpolation points
except Xi' The denominator forces Li(X) to equal I at the interpolation point X = Xi;
at that point every factor in the product is (Xi - Xi)/(Xi - Xi) = 1. Therefore

(2.28)

where 8i,i is the familiar Kronecker 8-function.

Theorem 1 Let u(x) have at least N + 1 derivatives on the interval of interest and
let PN(X) be its Lagrangian interpolant of degree N. Then

(2.29)

for some'; on the interval spanned by X and the interpolation points.

Proof: The proof of this theorem is well-known and contained in the text of [23], for
example. 0

From the theorem it is clear that interpolation for polynomials of degree N would
be exact. It is both interesting and useful to note that we can rewrite the Lagrange
polynomial. We denote

N
wN (x) = IT (x - xi)'

i=O
(2.30)

Evaluating

N

W:v(Xi) = IT(Xi - xi)'
i=Oi#i
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we have, as in [45],

L (x) = WN(X)
i,N (x - Xi)W~ (Xi)'

the analogue of (2.27). From (2.30) we find the following recursion relation

wN(x) = (x - XN)WN_1(X),

from which follows that

W~ (x) = (x - xN )W~_l (x) +WN_1 (x).

Therefore, using (2.31) and (2.33) we have for i < N

x-x
Li,N (x) = x. _ xN Li,N_l (x),

• N

and (for N > 1) with i = N

We shall now use the recursion relations (2.34) and (2.35) to generate finite difference
weights. For the sake of simplicity we seek to approximate derivatives of u(x) at x = O.
Considering Theorem 1 we shall approximate u(x) by PN(X) and consider derivatives
of PN(X) as approximations' to derivatives of u(x), i.e.,

where we define

dk Li,j(x) I = rk.
dxk x=Q - u""

By making use of Taylor's formula

~dkLi,j(x)1 xk
Li,i(X) = L d k x=Q k"

k=O X .

(2.31)

(2.32)

(2.33)

(2.34)

(2.35)

(2.36)

(2.37)

(2.38)



2.5. REGULAR GRIDS

Consequently, by using the definition for áL above it follows that

(2.39)

By substituting the expansion (2.39) into the recursion relations (2.34) and (2.35)
respectively, and by equating powers of x, we obtain the following recursion relations
between the weights [45, 47]:

(2.40)

and

(2.41)
i = n:

We could implement the recursion relations (2.40) and (2.41) in an algorithm. From
this single algorithm one could derive coefficients for centered, one-sided and more
general approximations to all kinds of derivatives.

The above method is particularly useful when dealing with adaptive methods where
the grid is adjusted as well as the order of the finite difference stencil. It is impor-
tant to realize that the above construction depends only on the grid points Xi· We
have illustrated the method as it provides a methodology to derive high order finite
difference approximations. In the next section we show finite difference coefficients
for higher orders than two for equi-spaced grids.

2.5 Regular Grids

The special case of regular or equi-spaced grids is of specific practical importance
as most practioners consider finite difference approximations to partial differential
equations on such grids.

In Table 2.1 we consider finite difference weights for centered approximations to the
first derivative of a function. The weights in the table correspond to the choice h = 1
for the grid spacing in (2.3). The weights are derived from the algorithm above but
could equally well be derived from equation (2.23). We show approximations with
orders of accuracy ranging from 2 to 10.
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I Order 1-5 1-4 1-3 I -2 I -1 lo! 1 ! 2 !3 !4 !5
2 T 0 ~

4
1 -2 0 2 -1
TI ""3 "3 12

6 -1 3 -3 0 3 -3 1

60 20 ""4 4 20 iïêi

8 1 -4 1 -4 0 4 -1 4 -1

280 105 "5 ""5 "5 ""5 105 280

10 -1 5 -5 5 -5 0 5 -5 5 -5 1

1260 504 84 2ï ""5 6 2ï 84 504 1260

Table 2.1: Finite difference weights for centered approximations to first order deriva-

tives.

Similarly, in Table 2.2 we show finite difference weights for centered approximations
to the second derivative of a function.

IOrder I -5 I -4 I -3 1-2 I-I! 0 ! 1 !2 !3 !4 ! 5 !
2 1 -2 1

4
-1 4 -5 -4 -1

12 "3 ""2 ""3 12

6 1 -3 3 -49 3 -3 1
go 20 "2 Is "2 20 go

8 -1 8 -1 8 -205 8 -1 8 -1

560 315 ""5 "5 72 "5 ""5 315 560

Table 2.2: Finite difference weights for centered approximations to second order

derivatives.

In Table 2.3 we show weights for the third derivative of a function. Note that we use
the anti-symmetry of the weights for odd-order derivatives (as demonstrated for the
first order derivative weights in Table 2.1) and consequently the weights are shown
for positive references only.

We focus specifically on regular grids for the purpose of this study. Let D2p denote
the discrete first order derivative spatial difference operator obtained by interpolating

f(Xi-p),' .. , f(xi+p) on the stencil

(2.42)

Xi + ah, a = 0, ±1, ±2," . ± p,

by a polynomial of degree 2p and then differentiating it once at xi'
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I Order I 0 11
33

12 I 3
2 0 -1 ~
4 0 -13 1 -1

8 8'

6 0 -61 169 -3 7
30 120 10 240

8 0 -1669 4369 -541 1261 -41
720 2520 Ti20 15120 6048

10 0 -1769 4469 -4969 643 -19 479
7iiO 2240 7560 4200 840 302400

Table 2.3: Finite difference weights for centered approximations to third order deriva-
tives.

Fornberg [44] derived the following explicit formula for arbitrary order of accuracy
2p for the calculation of the op,a for this special case:

(a!)2( _l)ct+1
op,a = 0' ¥ 0a(p + a)!(p - a)!' ,

(2.43)

and op,o = O. The Op,a could alternatively be read from Table 2.1.

In general we denote D2;. as the discrete m-th order spatial difference operator ob-
tained from interpolation of f(xj-p), ... , f(xj+p) by a polynomial of degree 2p and
then differentiating m times and use the notation:

(2.44)

where, as in Fornberg's paper [45],

(2.45)

with
F ct(x) = wp(x) .

p, w~(Xj + ah)(x - Xj - ah)'
(2.46)

and p

wp(x) = IT (X - Xj - (Jh).
(3=-p

(2.47)

Moreover,
p

p(x) = L Fp,ct(x)f(xj + ah),
a=-p

(2.48)
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if k = m

if k < m.
(2.54)

is the Lagrange interpolation polynomial of degree 2p on our finite difference stencil.

We note from Table 2.1 (and formula (2.43)) the anti-symmetry of the finite difference
coefficients, i.e.,

(2.49)

whenever the order of the spatial derivative is odd. Using this property and the shift
operator E defined in (2.5), we write the following expression for the finite difference
operator D2;, (m odd):

Dm - 1 f- óm (EO E-O)2p - hm L- 2p,0 - .
0=1

(2.50)

Later on we shall also have need of the following identities which we formulate in the
Theorem:

Theorem 2 Schaambie and Maré [112J: Let m be an odd integer, with 1 ::;m < 2p,
and let ó2;"o be defined as in equation (2.45). Then

p

L cló2;"o = 0 for 0 < k <m,
0=1

(2.51)

with k an integer, and
P m m m!

LO' Ó2p,n = 2'
a=1

(2.52)

Proof: The interpolation approximation in (2.48) is exact for f(x) a polynomial of
degree ::; 2p. Therefore it follows that

P

Xk = L Fp,o(x)(Xj + O'h)k,
o:=-p

(2.53)

with 0 < k ::;m an odd integer.

By differentiating the above expression m times with respect to x, and putting

X = Xj = jh,

we have that
p

L ó;'o(j + O')k
a=-p et=1
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Thus, for m = 1, the identity in (2.52) follows immediately. For m > 1, first let
k = 1 in equation (2.54). Then the identity (2.51) follows for k = 1. For k = 3 < m,
equation (2.54) becomes

p p

6iL 0'82;,,0 + 2 L 0'302;,,0 = O.
0=1 a=-p

The first term vanishes by virtue of (2.51) for k = 1, and what remains proves
equation (2.51) for k = 3. Proceeding in this fashion, equation (2.51) is proved for
any odd k such that 0 < k < m.

The identity (2.52) is proved similarly, putting k = m in (2.54) and removing super-
fluous terms by means of equation (2.51). 0

This theorem could also be proved as a consequence of equations (2.22) and (2.23).

2.6 Pseudospectral Methods

Given N > 0, we consider the set of points

21rj
Xj=N· (2.55)

The discrete Fourier coefficients of a complex-valued function u in [0, 21r] with respect
to these points are given by [25, 30, 46, 97]

(2.56)

with -N/2 ::; k ::; N/2 - 1. Due to the orthogonality relation [1]

1 N-l. {- L e1.pxj =
N j=O

1 ifp=Nm,m=0,±1,±2, ...
o otherwise,

we have the inversion formula

N/2-1
u(Xj) = F-1Uk = LUkeikxi,

k=-N/2

(2.57)

with j = 0, ... ,N - 1.
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The transformations in (2.56) and (2.57) can be performed efficiently by means of
the fast Fourier transform (FFT) algorithm [20, 46J.

Once we have calculated the discrete coefficients Uk, the approximate derivative uj
can be computed through

N/2-1
uj = L akeikx; ,

k=-N/2

(2.59)

(2.58)

where

a process requiring two FFTs.

We quote the following result from Canuto et al. [25J. If u is a 27r-periodic analytic
function in the strip 1~(z)1 < 110 then

II~:-u'IIL2 ~ C(11)Ne-NfI/2,

for all n such that 0 < 11 < 110. The error therefore decays essentially exponentially
in N [118J. It is also of interest to note that in the case of an analytic function,
the asymptotic rate of decay of the Fourier coefficients of the function u(x) is Uk =
O(exp( -l1lkl)) as Ikl -> 00, see e.g., Dieudonné [34J and also [30J.

2.7 Limiting Case

In this section wé shall consider the connection between finite difference and pseu-
dospeetral methods. In particular we consider the limiting case of the finite difference
method. (For ease of notation we consider an odd number of points, N = 2p + 1.)

1 -1 1 -1 1 -1
{... ,4'3' 2' -1,0,1, 2' 3'4'" .}/h. (2.61)

By considering equation (2.43) we find:

. (_1)"'+[
hmop",=---'p-ace I ct

(2.60)

which would yield an infinite stencil with coefficients
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Following Fornberg [44J, on a periodic grid the stencil above would collapse to a
stencil of width 2p + 1 with the coefficients

{/'p,_p, ... , /'p,-I, /'p,o, /'p,l, ... , /'p,p} / h, (2.62)

where

"[p.o
(_1)"'+1 f: (_1)k, O<a:Sp,

k;-oo Nk + a

( )0.+1 'if
-1 N' ("0.)'sm IT

(2.63)

We evaluate the sum in (2.63) by making use of contour integrals [33, 44J. Note
furthermore that /'p,o = 0 and /,P,(X = -/,P,(X'

We shall now consider the pseudospeetral method as discussed in Section 2.6. Con-
sider a function f( kh) defined at the grid points kh, k = -p, ... ,p. We use N = 2p+ 1,
hence the interpolating trigonometric polynomial, as defined before in equation (2.57),
is

p

f(x) = L j(w)eiwX,
w=-p

(2.64)

where

j(w) = *' t f(kh)e-iklu.J.
k;-p

(2.65)

We evaluate the derivative of (2.64) at x = ah, i.e.,

df
dx1x;(Xh

p

i L wj(w)eiwo.h
w=-p* i: f(kh) i: weiwh(o.-k)
k;-p w;-p

(2.66)

We wish to find a closed-form expression for (2.66). Note that

t -iwx _ sin(Nx/2) #
w;-p e - sin(x/2) , x O. (2.67)

Therefore

d p -iwx . (-l)o.N
d L e Ix;o.h;2;z.O = Z • ("0.)'
X w;-p 2sm IT

(2.68)
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Hence
2-;ri p • .
-2 L wf(w)e,woh
N w=-p

(_1)0+1-;r
N sinC'W)·

Note that (2.69) is identical to equation (2.63).

(2.69)

We have therefore shown that Fourier differencing can be viewed as a special centered
finite differencing based on an ever increasing number of periodic stencils [44, 123,
130], i.e.,

F = lim D2p.
p-->CO

(2.70)

2.8 Finite Difference FourierMode Analysis

Suppose we wish to approximate d/dx. For a specific mode eiwx we obtain the exact
answer d . .

dx elWX = uae":",

We wish to show the effect of finite difference discretizations applied to eiwx.

(2.71)

A second order finite difference approximation would yield
eiw(x+h) _ eiw(x-h)

2h
.sin(wh) iwx
2--

h
-e

_ if(2,h,w)eiwX.

(2.72)

(2.73)

In general for a 2p-th order approximation we would write

D2peiwx = if(2p,h,w)eiwX, (2.74)

subject to the difference coefficients derived in Section 2.5. In Table 2.4 we show
f(2p, h,w) for a range of values.

In Table 2.5 we show f(2p, h, w) for a range of wavenumbers (N = 128) and different
orders of approximation. For the second order approximation only a fraction of the
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I Order II
2

4

6

8

f(2p,h,w)

00 w

sin(wx)/h

H4 - cos(wx)) sin(wx)/h

(~ - ~ cos(wx) - ft sin2(wx)) sin(wx)/h

(¥S - ~ cos(wx) - [3025 sin2(wx) + f5 sin2(wx) cos(wx)) sin(wx)/h

Table 2.4: Multiplicative factors f(2p, h, w) arising from the 2p-th order FD approx-
imation to ieiwx.

Wavenumber
Order 2 4 8 16 32 48

2 1.9967 3.9743 7.7959 14.4051 20.3718 14.4051

4 1.9999 3.9998 7.9937 15.8114 27.1624 22.6021

6 2.0000 3.9999 7.9997 15.9762 29.8787 28.1993

8 2.0000 4.0000 7.9999 15.9969 31.0428 32.2944

00 2.0000 4.0000 8.0000 16.0000 32.0000 48.0000

Table 2.5: Values of f(2p, h, w) for various wavenumbers.

modes are treated correctly. For the higher order aproximations shown, a significant
increase in the accurate representation of modes is observed, although the very high
mode numbers are still not accurate, i.e., the convergence for higher orders to the
ideal line (the iw-factor in (2.71)) is slow - reminiscent of the convergence of a Taylor
series where derivatives of successively higher orders match at the origin.

As an example, we note the approximation of the sixth order scheme, which provides
very accurate approximations for mode numbers up to 16. It is also interesting
to note that approximation orders higher than six do not increase the accuracy of
representation of the lower mode numbers significantly.



Chapter 3

Discrete Perturbation Techniques

It is a mathematical fact that the casting of this pebble from my hand alters the
centre of gravity of the universe.

- Thomas Carlyle (1795 - 1881)

We described the method of multiple scales for continuous partial differential equa-
tions in great detail in Chapter 1. In Chapter 2 we provided a framework from which
finite difference approximations to partial differential equations could be derived.

Our aim in this work is to consider solutions of these finite difference approximations.
To this end we shall develop an analysis technique to extend the continuous multiple
scales methodology to discrete difference equations. We shall devote this chapter to
show this development as well as cover some other approaches in the literature.

In the first section we shall provide notation needed for our analysis. This notation
will build on the notation provided in Chapter 2. In the second section we shall
show a special difference identity which serves the same purpose as the chain rule for
derivatives of sufficiently regular functions.

3.1 Partial Difference Operators - Notation

Our aim in this section is to provide the framework to extend the continuous multiple
scales methodology to discrete difference equations. In analogy with the continuous
scales coordinates, for example (1.30), (1.55) and (1.56), we shall use the following
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discrete multiple scales coordinates in space, notably [110, 111, 112]

Xp = €phj, P = 0,1, ... ,

and for the temporal scales coordinates

(3.1)

Tp = €PTn, p = 0,1, .... (3.2)

We define the partial shift operators Ex. and Er. as follows:

Ex.f( ... , Xp, ... ) := f(···, Xp + €ph, ... ), (3.3)

in analogy with the definition of the spatial shift operator (2.5) and similarly

Er.f( ... ,Tp, ... ) := f(· .. ,Tp+ €PT,... ), (3.4)

in analogy with the temporal shift operator (2.6).

It follows that for a discrete function u(Xo, Xl, X2), for example, we would have

(3.5)

In the previous chapter we used the spatial and temporal shift operators to define di-
vided difference operators, equations (2.9) to (2.14). Using the partial shift operators
(3.3) and (3.4) above we also define partial divided difference operators:

6.x• (Ex. - l)/(€ph), (3.6)

\l x • .- (1 - Ex!)/(€Ph), (3.7)

in Xp, and for Tp

6.T• .- (Er. - l)/(€PT), (3.8)

\lT• .- (1 - ET.1)/(€PT). (3.9)

The analogues of the central difference operators Óx and Ót, defined in equations (2.11)
and (2.14) respectively, follow similarly;

Óx. == (6.x• + \l x.)/2, (3.10)

and
(3.11)

We shall use the operators defined above in our discrete multiple scales analysis.
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3.2 Product Rule of Differences

It is also of interest to note the discrete analogue of the product rule of differentiation
for the respective operators, which we state in the following theorem.

Theorem 3 Consider V = V(X[) and W = W(X1). Then

óx, (VW) = (Ex, W)Óx, V + Vóx, W, (3.12)

and
(3.13)

Proof: Consider equation (3.12). From the definition of óx, (3.6) we have

Ex, (VW) - VW

Ex,VEx,W - VEx,W + VEx,W - VW

Ex, WEhóx, V + VEhóx, W.

The proof of (3.13) follows similarly.

Theorem 4 Consider V = V(X[) and W = W(Xt). Then

Óx, (VW) = Vóx, W + WÓx,V + EhÓX,VÓx,W,

and

Proof: Using Theorem 3 we write

Óx, (VW) - Vóx, W - We:,x.v

Ex,Ve:,x,W + We:,x,V - Ve:,x,W - We:,x,V

EhóX, Ve:,x,W.

The proof of (3.15) follows similarly.

Using the results of Theorem 4 we can find a corresponding product rule for óx,·

o

(3.14)

(3.15)

o



which again follows from repeated application of the definition. o

3.2. PRODUCT RULE OF DIFFERENCES

Theorem 5 Consider V = V(X1) and W = W(X1). Then

óx,(VW) = VÓx,W + WÓx, V +Eh(Llx,VÓx,W - V'x,Wóx,v). (3.16)
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Proof: From Theorem 4 we have

2óx, = (VLlx, W + W Llx, V + EhLlx, V Llx, W)

+(VV' x, W + WV'x, V - EhV'x,VV'x,W)

2Vóx, W + 2Wóx, V + Eh(Llx, VLlx, W - V'x, VV'x, W).

We could have ended the result here, but the required result follows by noting, from
the definition of óx, that Llx, W = 2óx, W - V'x, W. 0

We could also prove Theorem 5 by noting the following theorem:

Theorem 6 [lll} Consider V = V(X1) and W = W(XI). Then

óx, (VW) = (Ex, V)óx, W + (Ex: W)óx, V. (3.17)

Proof: Using the definition of óx, in equation (3.10) we expand óx, (VW)

2Ehóx, (VW) Ex,vEx, W - Ex:VEx:W

Ex, V(Ex, W - Ex;W) + Ex;W(Ex, V - Ex;V)

2Eh[(Ex, V)óx, W + (Ex: W)óx, v],

Using the result of Theorem 6 we could prove Theorem 5. We consider the sum

Óx,(VW) - Vóx,W - Wóx,v,

which, using (3.12), can be written as

[(Ex, - l)V]óx, W + [(Ex: - l)W]óx, V

= Eh(Llx, V óx, W - V'x, W óx, V),

by making use of the definitions (3.6) and (3.7) for Llx, and V'x, respectively.



Proof: We follow the elegant proof of Schoombie [111]. We shall only prove (3.20);
the rest of the relations are proved similarly. We note, as with the example given in
equation (3.5), that

(3.23)
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3.3 Discrete Chain Rule Expansion

By making use of the definitions in equations (3.1) through (3.11) we are now in a
position to state the following theorem proved by Schoombie [Ll l], which forms the
keystone to the discrete multiple scales analysis:

Theorem 7 Schoombie [t l t]:

Let for any function

f = f(Xo, XI,···, x.; To, TI,···, Tm), (3.18)

where

Xp = €phj, P = 0, 1, ... ,n,

and

Tp = €PTn, p = 0, 1, ... , m,

and [urihermore Exp and ETp defined as in (3.3) and (3.4). Then the divided differ-
ence operators defined by (2.9) through (2.13) satisfy the relations:

n

6.x = 6.xo +L €P6.xpExoExl ... Exp_I'
p=1

(3.19)

n
" "" p" E-IE-I E-Iv Xo + ~ € v x; Xo XI··· Xp-I·

p=1

(3.20)

Also
m

6.To +L €P6.TpEroErI ... ETp_I'

p=l

(3.21)

m
" "" p" E-IE-I E-IVTo + ~€ VTp To Tl··· Tp_l·

p=1

(3.22)
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Then
n

\1x. +L EP\1xpEx~Ex~ ... EX;_1
p=1

1hY - Ex~Ex~ ... Ex!J

1 -1h(l - Ex ) = \1z '

Theorem 7 provides us with the discrete counterparts of the continuous chain rules as
used in (1.57) and (1.58), for example. In the context of our analysis the case n = 1
will be of special significance:

Theorem 8 Subject to the conditions of Theorem 7

D.x. + ED.XlEx.,

s; +E\1xlEx~'

(3.24)

(3.25)

Proo]: The result is obtained by expanding the results of Theorem 7 for n = 1. 0

Schoombie [m] showed how (3.24) and (3.25) may be used to perform a multiple
scales analysis on the ZK discretization (2.16) of the KdV equation. In the next
section we shall provide a generalization of these equations that will be used to
analyze higher order finite difference schemes.

3.4 Generalization of Discrete Chain Rule

One should always generalize.

- Carl Jacobi

We shall now proceed to the following theorem which serves as a generalization of
Theorem 7:
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p

D2;, = D2;"o + :L:>r ~ ,
r=l

(3.26)

Theorem 9 Schoombie and Maré f112}: The difference approximation to any deriva-
tive of odd order m of a suitable function can be expanded into the following discrete
scales summation

where

(3.28)

D2;"o = h~ t c52;"o(Exo - Ex~),
et=1

(3.27)

and where the dr; are given by

with

( n ) = n! ( n ) = 1
p p!(n - p)!' 0 .

(3.29)

Proof: Consider the generalized central difference approximation given by (2.50)

D2;, = h~ i: c52;"o[E~ - E;O].
0:=1

(3.30)

By making use of (2.9) and (2.10) we can rewrite (3.30) in the following form

D2;, = ~m t c52;,,0[(1 + ht,xt - (1- h\1xt]·
Ct=1

(3.31)

Applying the Binomial theorem [13] to the terms involving powers of cr in (3.31) we
see that

(3.32)

~ ( j ) Er t,i-r s: ErL.. r Xo Xl XO'
r=O

(3.33)

Using Theorem 7 with n = 1 as shown in (3.24) and (3.25) and using the Binomial
theorem we have
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and similarly

t(j ) ET\li-T\lT E-T
T=O r Xo X, Xo'

By combining (3.33) and (3.34) with (3.32) we find that

hmDm - "p óm ,,0 (Q) hi
2p - L...a=l 2p,a L...i=l j X

("i (j) T[b"i-T b"T ET (l)i\li-T\lT E-T])L...T=O T E Xo X, Xo - - Xo X, Xo .

(3.34)

(3.35)

Equation (3.35) can now be rearranged in the form of (3.26), with

hmr1';.' = 2::~=1ó2;"a2::j=T ( ~ ) hi x

( (
j ) [b"i-T b"T ET _ (_l)i\li-T\lT E-T])r Xo X, Xo Xo X, Xo .

(3.36)

We can simplify equation (3.36) by noting that, since

(3.37)

we obtain

~ ( ~ ) hi ( j ) b"i-T ET~ J r ~ ~
i=r

(
Q ) ~ ( Q - r ) hi b"i-T ET
r ~ J - r Xo Xo

J=T

( ~ ) hT(l + MorT E'xo

(
Q ) hTEa
r Xo'

(3.38)

and likewise

~ ( ~ ) hi ( ; ) (-l)i\ltTEx~ = ( ~) hT(-lrEx~' (3.39)

Hence equation (3.28) follows. 0

47
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3.5 Discrete Multiple Scales

By making use of the results obtained in the previous sections we are now in a position
to proceed with the discrete multiple scales analysis technique in direct analogy with
the continuous scales analysis as detailed in Section 1.3.3.

We start with an expansion in the same type of form as in the continuous case (1.76).
In the discrete case, however, we have to take account of the effect of aliasing, i.e.,
only a finite number of modes can be resolved on a grid of discrete points.

Therefore, we obtain a discrete scales analysis by solving for an approximate solution
Uj(t) in the following form

11/21
Uj(t) = L c,.ur(X1, t, E)eir8,

r=-11/21
(3.40)

where () is defined as
()= khj - rit, (3.41)

with k now restricted to the following finite set of values due to aliasing, namely

k=27ïm/L, m=-N/2+1, ... ,N/2. (3.42)

Following the details described in Schaambie [111], 1 is obtained by using the integers
sand 1with least absolute magnitude such that

m s
N I' (3.43)

and

{
1/2

[1/2]= (I - 1)/2
if 1 even
if 1 odd.

(3.44)

We also use

c,.={
if Irl < 1/2
if Irl = 1/2.

1
1/2

(3.45)

Then (in direct analogy with the continuous case) we use

(3.46)

with
(3.47)80 = 2, 8r = Irl, Irl = 1, ... , [1/2],
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and

vo = Va(XI,TI,T2),

VI = VI(XI, Tl, T2).

(3.48)

(3.49)

When r = 2, ... , [l/2] we have
00

Vr = Vr(XI, Tl, T2, E) + :~::>s+I-rWrs(X], Tl, T2).
s=r

(3.50)

3.5.1 Second Order Analysis

We now wish to substitute the expansion (3.40) into the finite difference scheme to
be analyzed, equation (2.16), for example. In this process we shall need to evaluate
difference operators applied to (3.40). We apply the results of Theorems 7 and 9 to
(3.40).

Consider firstly the central difference operator 8",defined in (2.11) as a second order
accurate approximation to d/dx. Using Theorem 8 we can write up to terms O(E2

):

Theorem 10 Consider ureir9 as defined in equations (3.40) through (3.44)· Then

8",(Ureir9)

= [isin(rkh)/h + Ecos(rkh)8x1

+iE2hsin(rkh)D.xI 'ïlx)2]ureir9. (3.51)

Proo]: By using Theorem 8 we can expand 8",as

8", = 8xo + ~(D.xIExo + 'ïlxIEx~),

by making use of (3.24) and (3.25) respectively.

Considering 8Xo(UreirO)we have

(eirkh _ e-irkh) .":"'_ --'-u e,rO
2h r

.sin(rkh) irO
~--h-Ure .
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Furthermore, for the terms of OCEl:
(D.x,Exo + \7x,Ex!)(u,.eir6)

(D.x, + \7xJ cos(rkh)ureirO + (D.x, - \7 x,)i sin(rkh)u,.eir6

[28x, cos(rkh) + iEhD.x, \7 x, sin(rkh)]ureiro,

The last step follows by noting that

from which the theorem is proved.

If we consider equation (3.51) we find that in the limit h --> 0 we obtain the chain
rule derivative expansion (1.83) utilized for the continuous multiple scales analysis,
namely

If we proceed similarly and use the operators 8xD.x \7 x defined in (2.9) through (2.11)
as an approximation to d3/dx3 as shown in (3.40), for example, we can again write
up to terms 0(E2):

Theorem 11 Consider ureir6 as defined in equations (3.40) through (3·44)· Then

s.s; \7 x( u,.eirO)

= [(2i/h3) sin(rkh)(cos(rkh) - 1)

+(2E/h2)(cos(rkh) - 1)(2cos(rkh)8x,

+(iE2/h) sin(rkh)(4cos(rkh) - l)D.x, \7 x,]u,.eir6. (3.52)

The proof of the theorem follows along similar lines as the proof of Theorem 10 and
will not be shown here.

As before, in the limit h --> 0, we obtain from (3.52) that

8~= _ir3k3 - 3Er2k28x, + 3iE2rk8k"

which is to 0(E2) the same as expanding [irk + E8x,]3, the continuous multiple scales
third order derivative expansion.

o
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Therefore, as a result of Theorem 7 applied to the expression (3.40), we can find
discrete chain rule expansions for the derivative approximation operators (2.9) to
(2.11) and combinations thereof, as shown above for specific examples. We shall
generalize this result in the next section to facilitate analysis of generalized central
finite difference schemes.

3.5.2 General Analysis

In direct analogy with Section 3.5.1 we wish to substitute the expansion (3.40) into
the finite difference scheme to be analyzed. In this process the following generalized
result is of fundamental importance.

Theorem 12 We can write up to terms 0(f2)

(3.53)

where
p

uc=L 82;,,<.>sin(rkho)
0:=1

p

+ fhi-m L 082;,,<.>cos(rkha)8xl
0'=1

p

+ f2ih2-m L 0282;,,<.>sin(rkha)llxI "ilX"
a=l

(3.54)

Proof: The proof follows by applying (3.26) to (3.28) from Theorem 9 to (u,.eiTO).
The proof relies heavily on the ideas used in Theorem 10 and will not be repeated
hm~ 0

The results (3.51) and (3.52) are special examples of (3.54).

The discrete multiple scales technique ensues by substitution of the expansion (3.40)
as well as the derived discrete chain rule expansions into the discrete numerical ap-
proximation. The technique will be demonstrated in detail in Chapter 4 where gen-
eralized central finite difference approximations to the KdV equation are analyzed.

O~.'fi.o.1lI9LlOTa!~

)lb355~OI
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3.6 Discrete Perturbation Techniques - Literature

The analysis methodology presented above is convenient for discrete numerical ap-
proximation algorithms. The analysis was derived by Schoombie [111] and applied to
the ZK discretization of the KdV. We note, however, following Schoombie [110], that
we would be able to obtain similar results with an alternative expansion to (3.40),

namely

00

Uj(t) = LESUs(Xo, Xl, t),
s=l

(3.55)

with Xo and Xl defined by (3.1). In Chapter 6 we shall apply (3.55) to the pertur-
bation analysis of a discrete van der Pol equation. It is important to note the role of
Theorem 7 in this analysis, effectively yielding a discrete chain rule for derivatives.

Newell [96] used a more heuristic perturbation analysis to develop a theory to account
for the effect of finite amplitude perturbations on the stability of partial difference
equations. The technique does not, however, give a clear picture of the relationships
between partial differences with respect to the various time and space scales. Stu-
art [120] discussed Newell's approach for a nonlinear stability analysis of dissipative
schemes. Similarly, Cloot and Herbst [29] discussed stability of difference schemes
and used a multiple scales analysis to demonstrate instabilities caused by a resonance
effect introduced by discretization of the inviscid Burgers equation.

Huston [66] provided an extension of the now classical Krylov-Bogoliubov method
(see [83, 93]) to nonlinear difference equations. We quote from [66]: "Unfortunately
the extension of the Krylov-Bogoliubov method to difference equations is not straight-
forward. Indeed, some modifications must be made in the method. These include
changes in the Fourier series expansions, the averaging processes, and the solutions
of the resulting first order equations." Mickens [84] demonstrated that the approxi-
mate solutions arising from the averaged discrete equations are not uniformly valid

approximations.

Miekens [84, 85] demonstrated the use of a so-called multi-discrete variable procedure.
The approach ensues by defining two discrete-time variables k and s = Ek. We assume
a solution of the form

Yk - y(k, s, E)

Yo(k, s) + EYI(k, s) + O(E2
),

(3.56)
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where Yk is assumed to have at least a first partial derivative with respect to s. On
the basis of these assumptions, we have

Yk+l y(k + 1, s + e, e)

Yo(k + 1, s + e) + eYl(k + 1, s + e) + O(e2), (3.57)

and

y(k + 1, s + e) = Yo(k + 1, s) + e8sYo(k + 1, s) +O(e2), (3.58)

as well as

(3.59)

Furthermore

Yk+! = Yo(k + 1, s) + e[Yl (k + 1, s) + 8sYo(k + 1, s)] + O(e2), (3.60)

and

Yk-l = Yo(k - 1, s) + e[Yl(k - 1, s) - 8sYo(k - 1, s)] + O(e2). (3.61)

The technique would ensue by substituting (3.56), (3.60) and (3.61) into the difference
equation to be considered. This forms a reasonable approach with practical merit.



Chapter 4

KdV Discrete

Truth ... and if mine eyes
Can bear its blaze, and trace its symmetries,
Measure its distance, and its advent wait,

I am no prophet - I but calculate.

- Charles Mackay (1814 - 1889)

In this chapter we shall consider numerical approximation techniques to the solution
of the KdV equation. We shall specifically consider a generalized central difference
approximation technique to the KdV and we shall show, using the discrete multi-
ple scales analysis technique discussed in Chapter 3, conditions for the existence of
spurious numerical solutions.

4.1 Introduction

When analyzing the behavior of a numerical approximation technique to a given
partial differential equation, numerical analysts usually ask the following type of
questions. How accurate is the approximation [119], and is there consistency with
the original problem? How stable is the approximation for a given choice of initial
conditions? How efficient is the approximation technique? Fundamentally, does the
approximation technique actually converge to a unique solution as the discretization
parameters become arbitrarily small [87]?

In recent years researchers and practitioners have also paid more attention as regards

54
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consistency of the approximation with the original problem formulation. As an ex-
ample many physical models require conservation of energy and momentum - these
would typically be enforced in the numerical approximation [114, 134J. The KdV
equation (1.46), for example, is known to possess an infinite number of conservation
laws [91J as referred to in Chapter 1.

Numerical analysts are used to the fact that the solution of difference equations usu-
ally differ quantitatively from the solution of the partial differential equation which it
approximates. These solutions would usually be acceptable if the numerical scheme
can be shown to be convergent, in which case the solution can be obtained to desired
accuracy by a suitably small choice of discretization parameter(s). However, when
qualitative differences between the solution of the difference scheme and that of the
partial differential equation exist, the solution may be unacceptable (even if conser-
vation laws have been satisfied). For our purpose differences in qualitative behavior
will be referred to as spurious behasnor.

In this chapter we describe spurious numerical solutions that arise specifically as a
consequence of finite difference approximations to the KdV equation. One specific
example is the well-known Zabusky-Kruskal (ZK) [144J discretization illustrated in
operator form in equation (2.16). Using the discrete multiple scales technique illus-
trated earlier, Schoombie [UOJ analyzed the ZK discretization to show the occurrence
of spurious solutions. We shall consider more general central difference type approxi-
mations to the KdV. We shall apply the generalized multiple scales analysis explained
previously as an analysis tool to identify spurious modes.

In Section 4.2 we consider the finite difference treatment of the nonlinear term in the
KdV equation. This is followed by the generalized finite difference approximation to
the KdV equation with associated numerical experiments compared against analytical
results. In Section 4.5 we illustrate the discrete multiple scales methodology for the
generalized central finite difference approximations. This analysis is followed by a
theorem which proves consistency with the continuous case. In the last sections we
provide numerical experiments illustrating the spurious behavior of solutions of the
KdV equation as predicted by the analysis.

4.2 Nonlinear Term

We consider the inviscid Burgers equation

(4.1)
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subject to the initial condition

u(x, D) = f(x). (4.2)

Equation (4.1) has for many years played a major role in the study of discretizations
of nonlinear conservation laws. It has been used amongst others as a model of the
type of nonlinearity occuring in the Navier-Stokes equations of viscous incompressible
flows.

u(x, t) = feZ), Z = x - u(x, t)t. (4.3)

Equation (4.1) does not necessarily have continuous solutions for all time. It has an
analytical solution which develops a mathematical shock for certain initial conditions.
Following [104] and [146], for example, its analytical solution is given by

From this solution we obtain by differentiation

f'(Z)
8xu = 1+ tf'(Z)

(4.4)

Therefore, for an initial condition such that 1 + tf'(Z) __, 0 for some t __,te. we
would have the shock

(4.5)

Such PDE solutions which are not differentiable are termed weak solutions as opposed
to genuine solutions. The shock joins two regions of genuine solutions.

As an example, using the cosine initial condition

u(x, t) = COS('if(X - ut)). (4.7)

u(x,O) = cos(nx), (4.6)

we obtain from (4.3) the implicit solution

As is well-known [68] this solution tends to steepen its shape and becomes multivalued
at x = 1/2 when te = l/n, the so-called breakdown time. Historically speaking,
Zabusky and Kruskai [144] used this initial condition in their numerical study of the
KdV equation, constituting the first example of an initial value problem for the KdV
equation solved numerically.

(4.8)

It is also known that solution of (4.1) can be continued beyond the time of the
breakdown as solutions in the integral sense of the conservation law
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These solutions in the integral sense contain discontinuities, the mathematical repre-
sentation of shock waves; they are uniquely determined by their initial data provided
that the discontinuities are constrained to satisfy an entropy condition.

(4.9)

It is known that solutions of dispersive approximations to equation (4.1) behave quite
differently. As an example of a dispersive approximation consider the following:

To see the dispersive nature of the approximation we use Taylor's expansion, namely

h2
ÓxUk = 8xu + 6~u + ...

which, upon substitution in the approximation (4.9) above yields

h2

8tu+ u8xu + 6u~u ""0,

an equation very much like the KdV equation (1.46)

8tu + u8xu + E2~u = 0, (4.10)

as long as u does not change sign.

Specifically it is known [56J that solutions u(x, t; E) of the KdV equation stated in
(4.10) behave as follows as E -+ O. As long as the solution of equation (4.1) sub-
ject to initial value (4.2) has a smooth solution, u(x, t; E) tends uniformly to that
solution. However, when t exceeds the time when the solution of (4.1) breaks down,
u(x, t; E) behaves in an oscillatory manner over some x-interval; as E tends to zero,
the amplitude of the oscillations remain bounded but does not tend to zero and the
wave length is of order E. Goodman et al. [56J showed the validity of the analogy
between equations (4.10) and (4.9), namely that solutions of (4.9) behave analogously
in their dependence on the discretization parameter h as solutions of (4.10) do in their
dependence on E.

We consider equation (4.1) as a model nonlinear equation, specifically owing to the
special numerical treatment that it should be allowed. In the rest of this section
we shall restrict ourselves to the problem of the nonlinear instability of some finite
difference discretizations to (4.1).

The description nonlinear instability refers to situations where linear stability the-
ory involving perturbation around a spatially fixed point may be inconclusive [58J.
Typically, numerical solutions may remain bounded over long time intervals before
showing a sudden catastrophic growth over a relatively short time interval [129J.
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Our primary objective is to seek an adequate numerical treatment of (4.1), in partic-
ular when we consider finite difference approximations. The numerical treatment of
(4.1) is by no means new in the literature. In this regard we note important work by
[6, 22, 28, 42, 46, 56, 58, 79, 87, 96, 106, 129, 133] and [137]. We make specific use of
the seminal research by Fornberg [42] and Briggs et al. [22].

Following Fornberg [42] we rewrite (4.1) as

8 () 2
tU + 28xu + (1 - ())u8xu = 0, (4.11)

where () is a parameter of arbitrary value to provide for general discretizations of
the nonlinear term. The choice e = 1, for example, would give rise to the product
approximation method as described by Christie et al. [27].

A second order central finite difference spatial approximation of (4.11) with a Leapfrog
discretization in time would be [6, 42]:

btuj + ~bx[ujj2 + (1 - ())ujbxuj = O. (4.12)

To draw the analogy with the ZK [144] finite difference approximation of the KdV
equation as shown in equation (2.1) we rewrite (4.12) without the operator formalism
thus:

uj+1 = uj-I - r/(2h)l()uj+l + 2(1 - ())uj + ()uj_l](uj+1 - Uj_l)' (4.13)

For comparative purposes when ()= 2/3 we can write equation (4.13) as

uti = uj-l - r/(3h) [uj+l + uj + uj_d(uj+l - Uj_l)' (4.14)

similar to the treatment of the nonlinear term used by Zabusky and Kruskal[l44] as
shown in equation (2.1).

Using the results of Briggs et al. [22] equation (4.13) has a one mode solution of the
form

uj = a(n)ei(21T/3)j + a*(n)e-i(2>r/3)j,

where a(n) is given by the following difference relation

(4.15)

.V3r ) *( )2a(n + 1) = a(n - 1) +~2h(2- 3() an. (4.16)

Following [22]we note the result of Fornberg [42] namely, that in the continuous limit
ia behaves in time like 1/ (to - t) for ()# 2/3. We thus have a solution for uj in (4.12)
which is nonlinearly unstable whenever ()# 2/3.
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Fornberg [42Jshowed that the condition ()= 2/3 is a necessary condition for stability.
Stability here means that the 12 norm of the difference approximation does not
increase faster in time than a fixed exponential function even if the mesh is refined.
Fornberg, [46J notes that with ()= 2/3 for all centered FD schemes in space and any
spatial period,

(4.17)

that is, spatially discrete solutions cannot grow in the £2 norm. We can also show
[22J, that

d- LU; = O.
dt i

(4.18)

The above equations correspond to conservation of energy and momentum respec-
tively. To provide for the temporal discretization one would use a variety of ODE
solvers. Shampine [114J, for example, discussed techniques for the temporal dis-
cretization of systems with conservation laws.

It is important to note that the condition () = 2/3 is only a necessary condition for
stability but not sufficient. As mentioned above, Fornberg [42J showed that ()= 2/3
is a necessary condition for stability of Leapfrog discretizations and necessary and
sufficient for stability of the Crank-Nicolson discretization. It is well known in the
literature ([6, 7, 28, 42, 106, 122, 133, 134J, for example) that Leapfrog discretizations
of PDEs may have unbounded solutions for any choice of mesh size (even for choices
satisfying the conditions for linear stability).

The result above shows that one needs to exercise caution in the discretization of
nonlinear terms by finite difference methods. The type of instability encountered
here is only a function of the spatial discretization of (4.1) and cannot be removed by
a suitable choice of temporal discretization [137J. Using the same reference we note,
interestingly, that should we choose a Galerkin method to provide for the spatial
discretization of (4.1), it would not be necessary to apply the ()= 2/3 rule [87J.

By making use of the above discussion we shall use the following central finite differ-
ence spatial approximation to (4.1) with a method of lines (MOL) for the temporal
discretization, namely

(4.19)

where Dp is given by (2.50). For the purposes of preventing numerical nonlinear
instability we shall generally make use of the () = 2/3 rule but we consider the
general case for the purpose of analysis.
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There are several methods available in the literature for time stepping of finite
difference methods. The MOL utilized in (4.19) above generally advances a sys-
tem that has been discretized in space by application of a "package" ODE solver.
The study of ODE solvers is extensive - we mention only the following references
[3, 19,23,46,60,75,87, 102, 122J and [141J.

The benefit of the method is that many ODE solution techniques have been thor-
oughly analyzed and convenient program packages developed. In its simplest form the
MOL could consist of a fixed time step and fixed-order implementation of a Leapfrog
of Runge-Kutta method that the user would incorporate in the code. The MOL
is particularly useful for the purpose of analysis as we specifically wish to examine
spatial difference techniques.

4.3 Numerical Approximations of the KdV

In this section we consider numerical solution techniques for the KdV equation. We
shall provide a brief survey of methods in the literature but due to the exhaustive
amount of literature available, as in the continuous case, we can only cite specific
relevant papers. Omissions are made purely on the basis that this is not a survey ar-
ticle. We discuss some methods specifically for their historical importance, numerical
intricacies or practical use and efficiency.

The KdV approximation most frequently referred to is surely the Zabusky and Kruskai
finite difference approximation illustrated in (2.1), and in operator form in (2.16). In
this approximation Zabusky and Kruskai [144J used a second order central difference
approximation in space and a Leapfrog discretization in time. Similar non-dissipative
(or conservative [52, 103]) type methods were followed by Greig and Morris [53], Sanz-
Sema and Christie [107J and Sanz-Serna [105J. Other less-known approaches include
those of Iskandar [67], El-Zoheiry et al. [39J and Feng and Mitsui [41J.

As an example, the Greig-Morris Hopscotch algorithm [2, 53, 126J proceeds as follows:

where j + n is even and

where j + n is odd. To implement the scheme we would employ equation (4.20) at
those grid points for which j + n is even and (4.21) otherwise. The scheme has a

(4.20)

(4.21)
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truncation error of order (O(r2) + O(h2)). In section 4.4.3 we shall briefly compare
the ZK and Hopscotch methods.

Furihata [51] applied a procedure to design difference schemes that inherit energy
conservation properties to the KdV. Zhen et al. [147] also proposed a scheme which
possesses the first four conserved quantities of the KdV. Huang [65]proposed a Hamil-
tonian approximation to the KdV to obtain conservation results (see also, van Beckum
and van Groesen [134]). De Frutos and Sanz-Serna [35] considered numerical inte-
gration techniques that preserve invariants with specific attention to the KdV.

Vliegenthart [136] examined the ZK discretization and suggested some dissipative
finite difference schemes. One such approximation is

t::..tu'] = t5xu'] + ~t5x(U'])2 - ~t::..x \J Au']

+;t::..x \Ju'] + r
2
( [t::..x\J z (U'])2]

2

+yr(l + (u'])(t::..;\J;)u'] + ~ t::..~\J~u'],

a second order accurate scheme which in our belief never gained popularity due to its
lack of simplicity as opposed to the ZK approximation.

Other dissipative methods include a variety of Petrov-Galerkin methods, e.g., Schoom-
bie [109].

Pen-Yu and Sanz-Serna [73] provided results concerning stability and convergence of
a family of methods which includes as particular cases some of the schemes mentioned
here.

In a series of articles Taha and Ablowitz [124, 125, 126] provided comparisons of
some different finite difference approximations, notably the ZK discretization [144],
the Hopscotch discretization [53] and some schemes based on the Inverse Scattering
Transform. They also compared results to the Pseudospeetral method considered by
Fornberg and Whitham [43] which reads as follows:

(4.22)

where Fu and F-1 denotes the discrete Fourier expansion and its inverse as defined
in equations (2.56) and (2.57) respectively.

In particular Fornberg and Whitham considered a modification to the last term in
(4.22); the approximation then reads:

(4.23)
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The difference between (4.22) and (4.23) is that the approximation to the linear KdV
equation is not subject to differencing errors in equation (4.23) with a subsequent re-
laxation of linear time-step stability requirements as well. Fundamentally, consistent
approximations to DEs are accurate for low wavenumbers but, in general, lose ac-
curacy for increasing wavenumbers, specifically applicable to equation (4.22). Chan
and Kerkhoven [26] considered a similar approach by modifying basis functions to
solve the linear dispersive part of the KdV equation. Nouri and Sloan [97) compared
a variety of pseudospeetral methods for the KdV equation. Cox and MortelI [31) ap-
plied the Fornberg-Whitham pseudospectral method to a forced KdV equation with
damping.

More recently Fornberg and Driscoll [48) presented an easily impiementabie time
stepping strategy for spatially discretized spectral numerical solutions. They com-
bine AB and AM methods for the time stepping of the nonlinear and stiff linear parts
respectively, for the KdV and NLS equations, adding the novel feature that differ-
ent methods are used in different wavenumber ranges with a result that combines
high temporal accuracy with good stability properties. The method compares very
Iavorably with the linearly exact method described above.

It is also interesting to note the application of a class of methods involving adaptive
spatial grid refinements to the solution of the KdV /NLS equations as described by
Fraga and Morris [50). These methods are specifically designed to cater for the evolu-
tionary nature of the KdV equation, for example, where moving waves are frequently
exhibited.

4.4 Central Difference Approximations

In this work we shall specifically consider a generalized central difference approxi-
mation for the spatial discretization of the KdV equation. Using (2.50) we write a
generalized central finite difference spatial approximation for the approximation of
the initial value problem of the KdV equation (1.46) to (1.48):

(4.24)

In direct analogy with equation (4.19), the approximation does not take account of
temporal discretization, i.e., we use a MOL approach for the time variable. For the
purposes of numerical experiments we shall frequently use the Leapfrog discretization
for temporal integration.
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An illustration of approximation (4.24) is given by the exemplary case:

ótl = ~

Ó~,l = -1

Ó~,2 = ~

e =~.
These values are contained in the first rows of Tables 2.1 and 2.3 respectively. Sub-
stituting the parameters for the exemplary case into the generalized finite difference
approximation (4.24) we obtain the spatial approximation for the KdV equation as
given by the ZK discretization (2.1).

(4.25)

4.4.1 Stability

In this section we shall consider linear stability constraints for the central difference
approximation (4.24) to the KdV equation as described above, with the temporal
variable approximated by a Leapfrog discretization. We perform the standard Von
Neumann analysis [103, 119J.

Consider first the linearized version of the ZK scheme (2.16)

(4.26)

where we note the use of the Leapfrog discretization for the temporal variable.

We put [103, 117, 122J
ui = rn exp (ikhj),

and substitute into (4.26). We find that

r2 - 1 + 2ria(kh)r = 0,

(4.27)

(4.28)

where

a(kh) = (TJsin(kh)/h + (2,/h3) sin(kh)(cos(kh) - 1)). (4.29)

Solving for r we find that the amplification factor is given by

r = -ira(kh) ± Jl - r2a(kh)2.

Therefore the requirement Irl ~ 1 for linear stability leads to

(4.30)

Ira(kh)1 s 1. (4.31)
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When the scheme is applied to the nonlinear KdV equation we require (4.31) to hold
for any 7] such that Umin :::; 7] :::; Umax, where Umin and Umax are the smallest values of
u(x, t) respectively. We assume Umin = O. Then the condition [105J

27,max {( -h3 ) sin(kh)(l - cos(kh))} < 1,
O~kh~~ -

(4.32)

is necessary if (4.31) is to hold for all relevant values of 7]. Since the maximum of
sin(kh)(l - cos(kh)) is 3.,[3/4 we can rewrite the condition as

(4.33)

The condition (4.33) is also sufficient if (4.31) is to hold provided that [105J

7 :::; h/7]. (4.34)

Because the pseudospectral method is the limiting method for finite difference ap-
proximations of increasing orders of accuracy it is important to consider stability
bounds for the pseudospeetral method as discussed in (4.22). We can perform a
similar analysis for the pseudospectral method as for the finite difference method
illustrated above - the result being that [26, 43],

showing that the linear stability restriction for the pseudospectral method (or for
higher order finite difference approximations) is more restrictive than for low order
approximations. However, the increased accuracy compensates for this restriction as
is well-known [25, 46J.

In Table 4.1 we present linear stability restrictions for central difference approxima-
tions of different orders (including the second order and pseudospeetral approximation
restrictions (4.33) and (4.35) respectively). The restrictions were also derived using
the analysis shown above applied to the generalized central difference approxima-
tion (4.24), using the finite difference weights provided in Tables 2.1 and 2.3, with a
Leapfrog temporal discretization.

Since we are considering higher order central difference approximations, the limit of
which is the pseudospectral method [44J,we shall for the purposes of our calculations
frequently use the stability restriction given by (4.35).

(4.35)
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Stability Restriction
Order Tlh"""'> <

2 0.3849 h
4 0.2171 h
6 0.1621 h
8 0.1347 h
10 0.1181 h

00 0.0323 h

Table 4.1: Linear stability restrictions on TI h3 for central difference approximations
to the KdV equation with increasing orders of accuracy. Temporal discretization by
LF.

In Table 4.2 we present maximum time steps allowable under the linear stability
bounds (4.33) and (4.35) for given values of h. We use 1= 0.000484 for illustrative
purposes - a value that we shall frequently use for further calculations corresponding
to the analysis performed by Zabusky and KruskaI [144], and others [8, 53, 105, 107J.

h Eq. (4.33) Eq. (4.35)
0.10 7.95(-1) 6.66(-2)

0.02 6.36(-3) 5.33(-4)

0.01 7.95(-4) 6.66(-5)

0.005 9.94(-5) 8.33(-6)

Table 4.2: Maximum time step for h given. (Notation: 6.36(-3) = 6.36 x 10-3.)
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4.4.2 Analytical Reference Solution

'vVeconsider the following parameters for the continuous KdV equation:

(=1

"y = 0.000484 = 0.0222 (4.36)

TJ= 0,

as used by [7, 8, 53, 105, 107, 144].

We shall consider the analytical I-soli ton solution of the KdV (refer to Section 1.3).
For the parameters (4.36) we use the same 1-soliton solution as [26, 53, 97, 105, 107,
144]. We therefore consider the initial condition

u(x,O) = 3csech2(bx + d), (4.37)

which has the theoretical solution

u(x, t) = 3csech2(bx - bet + d), (4.38)

where c = 0.3,

-«
and d = -b, representing a single soliton with amplitude 0.9 and speed 0.3.

We shall use equation (4.38) as an analytical benchmark against which to compare
numerical results.

4.4.3 Numerical Tests

As stated previously, we shall use the LF method to advance solutions of the type
(4.24) in time. The LF approximation to (4.24) reads:

dtuj + TJD~puj + ([8D~p[(uj)2 /2] + (1 - 8)uj D~puj] + "YD~quj = O. (4.39)

To use the LF discretization we need to supplement the initial condition u~= f(jh)
with a starting procedure to compute u}. This is usually performed via a standard
Euler starter [105, 126], i.e.,

(u} _ U~)/T + TJD~pu~+ ([8D~p[(u~)2 /2] + (1 - 8)u~D~pu~1 + "YD~qu~ = O. (4.40)
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In Table 4.3 we compare the ZK and Hopscotch approximations for two sets of dis-
cretization parameters subject to (4.36). From the results displayed we conclude that
the performances of the methods were comparable for 0 ::; t ::; 1.

Time ZK Hopscotch ZK Hopscotch
h=0.05 h=0.05 h=O.01 h=Il.Ol

T = 0.025 T = 0.025 T = 0.0005 T = 0.0005
0.25 1.94(-2) 3.27(-2) 2.05(-3) 1.11(-3)

0.50 6.35(-2) 6.74(-2) 4.22(-3) 2.14(-3)

0.75 1.22(-1) 9.93(-2) 6.36(-3) 3.54( -3)

1.00 1.61(-1) 1.42(-1) 8.13(-3) 4.91(-3)

Table 4.3: loo error of one-soli ton solutions of the KdV equation with ZK and Hop-
scotch approximations.

We shall consider three sets of discretization parameters for the solution of (4.24).
The first set is given by

N=50

h = 0.04

T = 0.0005.

(4.41)

The second set is given by
N = 100

h = 0.02

T = 0.0005,

(4.42)

while the third set is given by
N = 200

h = 0.01

T = 0.00005.

(4.43)

We shall use (J = 2/3 throughout our experiments.

In Tables 4.4, 4.5 and 4.6 we show the loo error of solutions of (4.24) for different
orders of discretization measured against the analytical l-soliton solution (4.38) for
the KdV equation for 0 s t s 1.
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Order
Time 2 4 6 8 10
0.25 5.21(-2) 1.04(-2) 6.69(-3) 5.07( -3) 3.93(-3)

0.50 8.83(-2) 1.77(-2) 7.06(-3) 3.75(-3) 2.21(-3)

0.75 1.17(-1) 2.29(-2) 6.62(-3) 5.97(-3) 2.45(-3)

1.00 1.43(-1) 2.66(-2) 7.38(-3) 5.87(-3) 3.18(-3)

Table 4.4: loo error of one-soli ton solutions of the KdV equation subject to parameters
in (4.36) with various order approximations. Discretization parameters (4.41).

Order
Time 2 4 6 8 10
0.25 1.25(-2) 1.15(-3) 3.12(-4) 1.02(-4) 3.11(-5)

0.50 1.94(-2) 1.31(-3) 2.48(-4) 8.31(-5) 3.14(-5)

0.75 3.01(-2) 1.19(-3) 3.03(-4) 7.21(-5) 3.80(-5)

1.00 3.62(-2) 1.74(-3) 4.24(-4) 1.27(-4) 5.05(-5)

Table 4.5: loo error of one-soliton solutions of the KdV equation subject to parameters
in (4.36) with various order approximations. Discretization parameters (4.42).

Order
Time 2 4 6 8 10
0.25 3.18(-3) 8.44(-5) 6.44(-6) 6.75(-7) 1.22(-7)

0.50 5.46( -3) 8.08(-5) 5.96(-6) 5.78(-7) 8.13(-8)

0.75 7.19( -3) 7.93(-5) 6.24(-6) 6.03(-7) 1.14(-7)

1.00 9.52(-3) 1.21(-4) 8.83(-6) 8.81(-7) 1.31(-7)

Table 4.6: loo error of one-soli ton solutions of the KdV equation subject to parameters
in (4.36) with various order approximations. Discretization parameters (4.43).

In Table 4.7 we show the speed of the numerical soliton solution. As mentioned in
Section 4.4.2 the analytical soliton speed is 0.3, a value which is relatively accurately
attained by most of the higher order methods. Herman and Knickerbocker [64] report
a numerically induced phase shift in the 1-soliton solution of the KdV equation for
the ZK approximation. The results shown here seem to indicate that the phase shift
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disappears for higher order approximations.

Soliton Speed
Order Eq. (4.41) Eq. (4.42) Eq. (4.43)
2 0.2905570 0.2997599 0.3002505

4 0.3029317 0.3004325 0.3000374

6 0.3017023 0.3001414 0.3000029

8 0.3015519 0.3000425 0.3000003

10 0.3006850 0.3000168 0.3000000

(4.44)

Table 4.7: Numerical solution soliton speed subject to (4.36) and the discretization
parameters (4.41), (4.42) and (4.43).

It is interesting to consider the stability of the KdV equation. We consider the
parameters given by (4.36). We examine a small perturbation E(X, t) on the solution
u(x, t) which leads to the perturbation equation [88J

Multiplying equation (4.44) by E and integrating over the intended interval and ap-
plying periodic boundary conditions we obtain

~IIE(t)"L +J E2(x,t)oxu(x, t)dx = O.

Note that when oxu < 0 we would have 1tIIE(t)IIL > 0, hence E(t) would be an
increasing function. It would therefore appear that a negative gradient in the initial
condition, for example, would trigger off an instability in the solution of the KdV
equation.

In Figure 4.1 we show the solution of the KdV equation at different times, subject to
the initial condition (4.6), namely u(x, 0) = COS(1TX),for which oxu < O. The solution
was obtained using the numerical discretization parameters in (4.42), with a tenth
order finite difference approximation. The results are qualitatively similar to that
reported in the original Zabusky and Kruskai paper [144J. Note the train of solitons
which have developed at time t = 1.15 from the shock-type profile at t = 0.325.

In the next section we shall apply the discrete multiple scales analysis developed
in Chapter 3 to the generalized central difference approximation (4.24) to the KdV
equation.
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Figure 4.1: Solution of the KdV subject to initial condition (4.6).

4.5 Discrete Multiple Scales Analysis

We shall now proceed with the discrete multiple scales analysis of the generalized
finite difference approximation (4.24) to the KdV equation. The analysis follows
along similar lines as in the continuous case. We obtain a discrete scales analysis by
solving for an approximate solution Uj(t) in the following form [80, 111, 112]

11/21
Uj(t) = L c,.ur(X1, t, E)eir9,

r=-11/21

subject to the definitions given in (3.40) to (3.50). Substitution of (4.45) into (4.24)
and making use of the discrete spatial derivative expansion (2.50) applied to eir9

(given in equations (3.53) and (3.54)) as well as the continuous time derivative (1.82)
we obtain

ér8tvr + EÓr7JQ;,pVr + "YérQ~,qVr

+(L[(l- e)(Q~,pVr)Vr-w + e/2Q~,p(Vrvr-w)]ér-w+Ów = 0,
w

(4.45)

(4.46)
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after setting coefficients of c,.eiT8 to zero. In analogy with the continuous case we now
study equation (4.46) up to terms O(e3). This leads us to consider r = 0,1, and 2.

If we put r = 0 in (4.46) the lowest order term in e is found to be O(e3), yielding the
following equation when equated to zero

p

Or,Vo + 1J8x, Vo + ([2(1 - e) I:a8~p,,,, cos(kah) + eJ8x,lVil2 = O. (4.47)
0:;;:1

It is straightforward to show that equation (4.47) becomes the continuous multiple
scales analogue (1.85) as h -> o. In deriving (4.47) we make use of Theorem 2 with
m = 1 and m = 3 respectively, i.e.,

p 1
I:Q(ï~p,,,,= "2'
0=1

and
p

I:a8~p,,,, = o.
0=1

If we substitute the Zabusky-Kruskal specific parameters as shown in (4.25) into
(4.47) we obtain

Or,Vo + 1J8x, Vo + ((/3)[cos(kh) + 2]8x, JVll2 = 0,
directly comparable with the result obtained by Schoombie [UO, UI].

By putting r = 1 in (4.46) and equating coefficients of the O(e) terms to zero we
obtain n p p

"2 = * I:ó~p,,,,sin(kha) + ~ I:ó~p,Ctsin(kha),
0'=1 0'=1

(4.48)

the discrete linear dispersion relation. (See Sei and Symes [U3] for an interesting
application of dispersion analysis to numerical wave propagation.)

For the Zabusky-Kruskal specific parameters (4.25) applied to (4.48) we obtain

n = * sin(kh) + ~~sin(kh)(cos(kh) - 1).

Subsequently, for r = 1, by equating the O(e2) terms to zero, the resulting equation
is found to be

(4.49)
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where
dO
dk

is the discrete linear group velocity. Trefethen [128, 129], demonstrated the use of
group velocity in the analysis of finite difference methods.

Finally, for T = 1 terms, the equation obtained by putting 0(£3) terms equal to zero
is found to be

P

Or2VI + TJihL 8~p,o(i sin(kha)tlx1 \1X, VI
0=1

. p

+~ L 8~p,oa2 sin(kha)tlxl \lXI VI
Ct=1

+2(i [(1 _ 8) t Ó~p,o(sin(2kha) - sin(kha))
h 0=1

p

+8 L Ó~p,osin(kha)JVt'V2 = o.
0=1

(4.51)

Using T = 2 we obtain terms 0(£2)

. p

+~~L Ó~p,osin(2akh)V2
0=1

p

+(1- 8) L Ó~p,osin(akh)V?l = 0,
0'=1

(4.52)

which can be rewritten, using 0 derived in (4.48), as

V2 = (AV?, (4.53)
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where

/1.=
i [e/2 I::~-l o~p,o sin(2akh) + (1 - e) I::~-l o~p,o sin(akh)]
h g(h, k, t)

(4.54)

and

g(h, k, t)
p*L Oip,.,(sin(2akh) - 2sin(akh))

0=1

p

+ :3LO~p,o(sin(2akh) - 2sin(akh)), (4.55)
0'=1

provided that
g(h, k, t) =f O. (4.56)

Should condition (4.56) be violated we would not be able to remove all the 0(£2)
terms in (4.46) with the result that the expansion (4.45) would only be valid to
terms 0(£). Condition (4.56) does not have a continuous counterpart, therefore its
violation should correspond to spurious behavior of the numerical scheme (4.24). We
shall return to this in Section 4.7.

Note that Vo is not uniquely defined by (4.47). As in the continuous analysis we make
the physically reasonable assumption that Vo must also satisfy (4.49), i.e.,

Or! Vo+ Vgox! Vo = O.

Hence, after combining equations (4.47) and (4.57) we find that

(4.57)

(4.58)

provided that
1J - Vg =f O.

Solution of (4.58) leads to the following relation for Vo

(4.59)

Vr _ ([2(1 - e) I::~=laoip,., cos(kah) + e] 2
o - - (1J _ Vg) Wd .

If we apply the special case (4.25) to equation (4.60) we find

(4.60)

Vr = ([cos(kh) + 2J 1\1, 12
o 3(Vg -1)) 1,

(4.61)

the same equation found by [111], also subject to (4.59).
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+ eL 8~p,osin(kha)lAVI\Vtl2 = 0.
0:=1

(4.64)
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As with equation (4.56) no continuous analogue exists for violation of condition (4.59).
Its violation could similarly lead to spurious behavior of the solution of (4.24). In
Section 4.7 we show that violation of condition (4.59) does indeed lead to spurious
numerical solutions.

It is interesting to investigate the meaning of violation of the condition (4.59). Should
7) = Vg we would have both VI and Vosatisfy the same difference equation, namely

Or,V + 7)8x, V = 0, (4.62)

with no specific implied relationship between VI and VooThe only conclusion being
that

(4.63)

Furthermore, VI and Vowill both represent a motion along the discrete grid with a
velocity 7).

Proceeding as in the continuous case, we can construct the discrete equivalent of the
NLS equation, i.e., we replace in (4.51) the solutions for Voobtained in (4.61) and V2
obtained in (4.53). The resulting equation is

p

Or.VI + i L(7)M~p,o + ~8~p,0)a2 sin(kha).6x, \lx, VI
0:=1

2(2' P+ _t[(l - e)L 8~p,0(sin(2kha) - sin(kha))
h 0=1

In the next section we shall show that equation (4.64) becomes the NLS equation in
the limit as the discretization parameter tends to zero.

In Section 4.7 we shall conduct numerical experiments that will serve to illustrate spu-
rious behavior of the solutions to the finite difference approximations when conditions
(4.56) (g -# 0) and (4.59) (7) -# Vg) are violated.
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4.6 Limiting Case
75

(4.65)

Here we shall show that the discrete multiple scales analysis yields the same results
as the continuous case in the limit as the discretization parameter tends to zero. To
that end we wish to obtain the limit case of equation (4.64) as h, kh -> O.

Theorem 13 In the limit as h -> 0, equation (4.64) becomes the nonlinear Schriidinger
equation

Proof" We consider the limit as h -> 0 of different parts of equation (4.64).

Firstly, the Li.X I 'ilX I term:

p

hÏ!!ó i 2)'/]hó~p,,, + ~8~p,,,)(i sin(kha)Li.xI 'ilXI ~
0:=1

p

= "{ik L a38~p,,,at VI
0=1

= 3i"{k at VI.
The last step follows by making use of Theorem 2 with m = 3, namely

(4.66)

p

L a38~p,a= 3.
0'=1

Secondly, we consider the various VdVI12 terms. From the discrete linear group
velocity Vg, detailed in equation (4.50), follows

li dO 3 k2hl!!ó dk = '/]- "( ,

by making use of Theorem 2 repeatedly. Therefore, in the limiting case

P P

2(2i L 8~p,asin(kha)[2(1 - 8) L a8ip,acos(kah) + 8J
lim a-I a-I VdVd2
h-O h('/] - Vg)

_(2

3"{k' (4.67)

----------------------------------------------------------
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Note the interesting fact that the limit is independent of 6.

Furthermore, by making use of the identities

I. sin(2kx) - 2sin(kx) 3
im 3 = -k ,
x-o X

and

I
' 2 sin(kx) - sin(2kx)
Hfl =0x-o X '

in equation (4.55), we observe that

. 1
lim A = 6 k2'h-O ,

Therefore, in the limit h ......0,

2Ci ph[(l - 6)'L ó~p.o(sin(2kha) - sin(kha))
a=l

p

+6 'L ó~P.osin(kha)]AVj 1V112
a=l

(2

......6,k'

By virtue of equation (4.66), and the sum of (4.67) and (4.68) we are led to conclude
that in the limit h ......0 equation (4.64) becomes (4.65), the continuous nonlinear
Schri:idinger equation as previously obtained in the continuous multiple scales analy-
sis, equation (1.92). 0

As an interesting by-product of our multiple scales analysis, we can view equation
(4.64) as a spatial finite difference approximation for the NLS equation as we have
demonstrated consistency with the continuous PDE in the analysis above.

4.7 Numerical Experiments

In this section we shall report the results of several numerical experiments. We are
especially interested in the the cases where the conditions (4.56) (9 =I 0) and (4.59)
(ry =I Vg) are violated, since in these cases the multiple scales analysis breaks down.

(4.68)



4.7. NUMERICAL EXPERIMENTS 77

From equation (4.45) and the analysis in Section 4.5 it follows that, since e is a small
number, we are essentially looking at solutions of the discretized KdV (4.24) of the
form

(4.69)

subject to the definitions in (3.40) to (3.50) and where Vi must satisfy equations
(4.49) and (4.64).

In the case of carrier wave numbers for which one or both of the conditions (4.56)
or (4.59) are violated, the higher order terms in e may become comparable to, or
even dominate, the first order terms to such an extent that (4.69) could no longer be
considered to be true.

For our numerical experiments we consider the following values of the parameters in
(4.24):

N= 128

L=2

T = 0.0005

1=0.000484

(=1.

(4.70)

Again, we shall use ()= 2/3 throughout our experiments.

We use the initial condition

uJ = e COS(h7Tj)cos(m1ïhj), (4.71)

where e is a small number, typically e = 0.01. Since we can write (4.71) in the form

uJ = (e/2) cos(7T(m+ l)hj) + (e/2) cos(7T(m- l)hj), (4.72)

there are initially only two modes with wave numbers (m-1)7T and (m+ 1)7Tpresent.
Therefore, when we consider the time evolution of Fourier modes of the solution of
(4.24), subject to the initial condition (4.71), nonlinear effects where the solution
deviates significantly from (4.69) would show up clearly.

We use the LF method as described in equation (4.39) with a Euler starter (4.40) to
advance (4.24) in time.
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4.7.1 Violation of condition 9 =I- 0 (4.56)

Using the parameters in (4.70) we solve for violation of equation (4.56) for various
values of ry subject to different mode numbers m and different orders of approximation.
We show the results of the calculation in Table 4.8.

Order of Approximation
m 2 4 6 8 10
20 -2.8883 -8.9082 -19.3247 -36.0562 -62.2975

25 0.3934 -1.4114 -4.0405 -7.3908 -11.5101

30 3.1115 3.2137 3.0383 2.7372 2.3489

35 4.9578 5.7895 6.3034 6.6640 6.9310

40 5.8383 6.8273 7.4161 7.7987 8.0603

45 5.8748 6.8749 7.4701 7.8553 8.1180

50 5.3563 6.5029 7.2779 7.8381 8.2578

55 4.6532 6.1484 7.2142 8.0026 8.6074

60 4.1144 5.9788 7.2510 8.1866 8.9124

Table 4.8: Values of ry which violate (4.56) for various orders of approximation and
different mode numbers (m) and subject to the parameters in (4.70).

We first consider spurious solutions of fourth order approximations. To illustrate the
behavior of the solution of (4.24) when g = 0 we consider a specific value of ry, as
obtained from Table 4.8, specifically

ry = 5.7895, (4.73)

which causes the 35th carrier mode i.e., k = 357f, for a fourth order approximation,
to violate (4.56).

Figures 4.2 through 4.6 show the time evolution of the Fourier modes of the fourth
order solution plotted as a three-dimensional graph. For modes m = 33 and m = 37
only two modes are distinctly present in the solution - any nonlinear effects here are
so small that they do not show up in the graphs.
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Figure 4.2: Time evolution of Fourier modes of the solution of the fourth order (4.24).
Initial data is (4.71), parameter values given by (4.70), e = 0.01, TI = 5.7895, and
m=33.

Figure 4.3: Time evolution of Fourier modes of the solution of the fourth order (4.24).
Initial data is (4.71), parameter values given by (4.70), € = 0.01, TI = 5.7895, and
m= 34.
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Figure 4.4: Time evolution of Fourier modes of the solution of the fourth order (4.24).
Initial data is (4.71), parameter values given by (4.70), E = 0.01, 17= 5.7895, and
m=35.

Figure 4.5: Time evolution of Fourier modes of the solution of the fourth order (4.24).
Initial data is (4.7l), parameter values given by (4.70), E = 0.01, 17= 5.7895, and
m= 36.
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Figure 4.6: Time evolution of Fourier modes of the solution of the fourth order (4.24).
Initial data is (4.71), parameter values given by (4.70), E = 0.01, TI = 5.7895, and
m= 37.

For m = 34,35, and 36, however, significant nonlinear activity is exhibited. As can
be seen from Figures 4.3 through 4.5 the 58th mode is excited in all the cases. It is
interesting and important to note that the 2(}term in (4.45) contains a carrier wave
which on a finer grid would have had a wave number of 7(m, which aliases to a mode
with wave number 587l'on our grid.

The spurious solutions discussed for the fourth-order approximation are also present
for higher order approximations. In Figures 4.7 through 4.9 we show solutions for
orders of approximation six, eight and ten respectively, with values of TI which cause
violation of (4.56) for m = 35.
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Figure 4.7: Sixth order solution subject to parameter values given by (4.70), € = 0.01,
TJ = 6.3034, with m = 35.

Figure 4.8: Eighth order solution subject to parameter values given by (4.70), e =
0.01, TJ = 6.6640, with m = 35.

It is interesting to note from Figures 4.7 through 4.9 that the absolute magnitude of
the spurious solutions tend to decrease for increasing orders of approximation.
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Figure 4.9: Tenth order solution subject to parameter values given by (4.70), € = 0.01,
TI = 6.9309, with m = 35.

In Table 4.9 we show the 12 and loo values of the amplitudes of the spurious modes
of (4.24) for various values of m and different orders of approximation, given the
values of TI which would violate (4.56) for the specific mode, all calculations subject
to parameters (4.70).

m 30 40 50 60
Order 12 loo h loo 12 loo 12 loo
2 2.8(-2) 5.2(-3) 8.8(-4) 1.8(-4) 1.6(-3) 3.1(-4) 2.0(-3) 4.0(-4)
4 l.l( -2) 2.2(-3) 2.2(-3) 4.3(-4) 5.2(-4) 1.0(-4) 3.3(-4) 6.5(-5)
6 8.3( -3) 1.6(-3) 5.2(-3) 9.9(-4) 7.4(-5) 1.5(-5) 1.9(-4) 3.8(-5)
8 7.9(-3) 1.6(-3) 2.0(-3) 4.0(-4) 1.2(-4) 2.3(-5) 2.4(-4) 4.8(-5)
10 2.2(-3) 4.3(-4) 2.5(-4) 5.0(-5) 2.4(-4) 4.9(-5) 3.3(-4) 6.5(-5)

Table 4.9: Amplitudes of the spurious mode for various values of m and various orders
of approximation. (Notation: 2.8(-2) = 2.8 x 10-2)

As can be seen from Table 4.9, the magnitude of spurious solutions tend to decrease
for higher order approximations relative to lower order approximations.

We also performed numerical experiments using the pseudospeetral method to exam-
ine whether spurious effects are detected. No spurious effects were found using the
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present form of analysis.

4.7.2 Violation of condition 7] =I- Vg (4.59)

Using the parameters in (4.70) we solve for violation of equation (4.59) for various
values of 1) subject to different mode numbers m and different orders of approximation.
The results are shown in Table 4.10 below.

Order of Approximation
m 2 4 6 8 10

30 -4.7422 -14.7081 -35.0227 -76.3982 -162.9125

35 -2.8014 -8.3028 -17.6485 -33.0786 -58.1964

40 -0.9303 -3.5427 -7.6685 -13.6316 -21.9750

45 0.7589 0.0803 -1.3437 -3.3956 -6.0873

50 2.1649 2.7803 2.8264 2.5358 2.0030

55 3.2036 4.6410 5.4872 6.0217 6.3656

60 3.8126 5.6894 6.9223 7.8165 8.5014

Table 4.10: Values of 1) which violate (4.59) for various orders of approximation and
different mode numbers (m) and subject to the parameters in (4.70).

As before we made use of the initial condition (4.71) with E = 0.01 and ran the scheme
(4.24) for various orders of approximation. In Figure 4.10 we show the time evolution
of Fourier modes of the second order solution plotted as a three-dimensional graph,
subject to 1) = 1.6423 which violates (4.59) for m = 48. In this case a solution with
a spurious low wave number mode is obtained.

Similarly, in Figure 4.11 we ran a fourth order solution with 1) = 1.8038, again
violating (4.59) for m = 48. Figure 4.12 shows the Fourier evolution of modes of the
sixth order scheme with 1) = 1.3643 violating (4.59) for m = 48.
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Figure 4.10: Second order solution subject to parameter values given by (4.70), e ==

0.01, ry == 1.6423, with m == 48.

Figure 4.11: Fourth order solution subject to parameter values given by (4.70), ~ ==

0.01, ry == 1.8038, with m == 48.

85
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Figure 4.12: Sixth order solution subject to parameter values given by (4.70), E =
0.01,7]= 1.3643, with m = 48.

4.8 Spurious Solution Discussion

The discrete multiple scales analysis described in Section 4.5 is a powerful tool for the
examination of of the modulation properties of equations such as the KdV equation.
We showed how the technique could identify modes of the carrier wave of the enve-
lope of a small modulated harmonic wave, for which the solution of the numerical
approximation deviates sharply from that of the continuous KdV equation.

In Sections 4.7.1 and 4.7.2 we have demonstrated spurious solutions to the KdV
equation that arise from central difference approximations of various orders with
a Leapfrog discretization in time. The spurious solutions were predicted from the
discrete multiple scales analysis performed in Section 4.5. It is important to note
that the spurious behaviour occurs as a function of the spatial discretization. The
spurious behaviour tends to dissipate for higher order approximations but still forms
a substantial part of the approximation.

Spurious solutions arising from discretizations to PDEs is a subject of intense interest.
We cite some interesting references from the literature, namely [7, 21, 22, 37, 58, 81,
82, 89, 108J. Schreiber and Keiler [108], for example, remark that for the solution of
the steady Navier-Stokes equations, "there is at present no good theory to determine
when a solution of the approximating problem is spurious and when it is legitimate".
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Parasitic or non physical waves occuring in the numerical solution of certain wave
equations can be due to several causes. In some cases such spurious waves are caused
by the use of high order difference methods and they can often be filtered out by
use of suitable difference operators applied to the initial data. In other cases the
parasitic waves are observed in the numerical solution when discontinuities in the co-
efficients of the differential equation or the initial data are present. In these cases such
waves correspond to high wave numbers and are the effect of numerical dispersion, as
discussed by Trefethen [128], who considers the numerical solution of non-dispersive,
linear wave equations - hence the only dispersion introduced would be that introduced
by discretization.

Maritz and Schoombie [82Jshowed that with rectangular pulse intial data, discretized
versions of the KdV and MKdV equations have high wave number components in
their solutions which are not present in the analytical solutions of these equations. In
particular they reported the occurence of small amplitude, saw toothed wave packets
when using the ZK approximation to the KdV equation with rectangular pulse initial
data. Sloan [115Jalso considered the ZK approximation to the KdV equation showing
that the presence of the dispersive term causes modulational instabilities. In the
precursor to the present work, Schoombie [111J illustrated spurious solutions which
occur for specific choices of parameters in the solution of the KdV equation by the
ZK method.

An important question that needs to be asked is how to suppress or prevent the
spurious solution behaviour. We performed all our numerical experiments using the
pseudospeetral method with the same parameters that caused spurious solutions for
the central difference approximations - no spurious solutions were found. Indeed,
from the experiments we concluded that the effect of the spurious solutions becomes
smaller for higher order approximations, cf. Table 4.9. As the pseudospeetral method
is the limiting method of central difference approximations of increasing orders we
would postulate that the specific spurious solutions examined here would not be
present in pseudospeetral solutions. Adaptive methods [40, 50J or methods involving
grid-changes [21J would also prevent perpetuation of the spurious solutions.



Chapter 5

Benjamin-Feir Analysis

I wish these calculations had been executed by steam.

Charles Babbage (1792 - 1871)

Do not worry about your difficulties in mathematics, I assure you that mine are
greater.

Albert Einstein (1879 - 1955)

We have endeavored to illustrate the application of perturbation methods for the
analysis of numerical approximation techniques, in particular finite difference meth-
ods. We provided a discussion on perturbation techniques as applied to continuous
problems. We showed specifically that for the KdV and RLW equations the envelopes
of modulated waves are governed by the nonlinear Schrodinger (NLS) equation.

The specific multiple scales technique that we used was shown to be extendable to
a discrete multiple scales analysis. \hie showed the application of the discrete mul-
tiple scales analysis technique to the analysis of generalized central finite difference
approximations to the KdV equation. Of specific importance the discrete multiple
scales analysis was shown to be able to identify spurious behavior of the numerical
approximations. The spurious behavior was shown in several numerical case studies.
We also obtained a discrete version of the NLS equation which described the modula-
tion properties of solutions of the generalized central finite difference approximations
to the KdV equation in Section 4.5. In Section 4.6 we showed that in the limit as
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h -> 0 the discrete NLS equation tends to the continuous equation, hence the dis-
crete version can be considered to be a valid approximation to the continuous NLS
equation also.

In this chapter we consider a so-called Benjamin-Feir [12, 138J analysis of the con-
tinuous and discrete NLS equations. The purpose of the analysis would be to define
regions of instability (subject to parameters or discretization) of the NLS equation.

In the first section we show the methodology applied to the NLS in simple form
followed by an application to the NLS obtained in Section 1.3.2. In the third section
we consider the analysis for the discrete NLS from Section 4.5.

5.1 Benjamin-Feir Instability Analysis - NLS

In this section we consider an instability analysis of the NLS equation. For this
purpose we use the canonical form of the NLS, to wit

assuming periodic boundary conditions

u(x, t) = u(x ± L, t),

throughout.

Considering the special case q = 0, the linear dispersion equation

has solutions of the form

u(x, t) = aexp[i(kx - wt)],

where a is a complex constant and w satisfies the dispersion relationship

The NLS equation (5.1) also has solutions of the form (5.4) where the dispersion
relationship is given by

89

(5.1)

(5.2)

(5.3)

(5.4)

(5.5)
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Our purpose is to investigate the stability of the solution (5.4). We therefore perturb
this solution to

u(x, t) aexp[i(kx - wt)](1 + ~(x, t))

Ao(1 +~),

where II~II« 1.

Noting that

and using the fact that Ao is a solution of (5.1) we obtain
\

iOt(Ao~) + a; (AOE) + qlAol2 Ao(2E + e") = o.

Developing the derivatives in the equation and noting that oxAo = ikAo, we have

Following [138J we assume e to be periodic in the interval [- L/2, L/2J and express it
as the Fourier series

00

~(x, t) = L Ên(t) exp(ifLnx),
n=-oo

with wave numbers

·21fn
p«= L'

leading to the following system of ODEs upon substitution into (5.8)

where n = -00, ...,00 but n # O.

The characteristic polynomial [55J of the matrix C; is given by

(5.6)

(5.7)

(5.8)

(5.9)

(5.10)

(5.11)

(5.12)
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the roots of which are the eigenvalues

(5.13)

One of the eigenvalues will be negative imaginary and accordingly the IÊnl would grow
exponentially should

o < f.J.~< 2qlal2, (5.14)

subject to q > O. This is the so-called Benjamin-Feir [12, 121, 138J region of instability.

We note, as in [63J, that the analysis would only be valid for a small time period
while the perturbation E is small. The long time behavior of the solution would be
determined by various conservation laws such as

d JOO 2-d lu(x, t)1 dx = 0,t -00

and

~l:(18"u(x, tW - ~Iu(x, t)14)dx = O.

5.2 KdV Modulational Stability Analysis

In Chapter 1 we showed that the NLS equation, written in the form (1.75)

0:r2A + 3i')'k81,A - [i(2/(6I'k)JAIAI2 = 0,

describes nonlinear modulation properties of the KdV equation (1.46). We now wish
to apply the results of Section 5.1 to this version of the NLS. We rewrite the NLS as

(5.15)

To avoid confusion of notation we shall here consider solutions of the form

u(x, t) = aexp[i(lx - wt)J.

Applying the methodology we find the growth matrices Gn as previously defined in
equation (5.11) to be given by

c; = ((2IaI2/(6I'k) + 6l'klf.J.n + 3~fkf.J.~ (2IaI2/(6I'k) ) 5 16
-(2IaI2/(6I'k) -(2IaI2/(6I'k) + 6l'klf.Ln - 3,kf.L~ ,(. )



the eigenvalues of which are given by

.An = 6,klJ.Ln ± J.LnJ9J.L~,2k2 + (2JaJ2, (5.17)
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and are real. Therefore, no Benjamin-Feir region of instability exists for the NLS
equation in (5.15).

In the next section we shall perform the analysis on the discrete version of (5.15) as
obtained in Section 4.5.

5.3 Benjamin-Feir Analysis - Discrete

Our purpose in this section in to extend the Benjamin-Feir analysis conducted in
Section 5.1 for the continuous NLS equation to a discrete version of the NLS. We
consider the discrete NLS equation (4.64) obtained from the discrete multiple scales
analysis of the ZK approximation to the KdV equation, namely

éJ.r, VI + i(h2/2)[~ sin(kh) + ~~(2sin(2kh) - sin(kh))J6.xl V x, VI

+/ Si;~kh) (os~:~: 2 +A(1 + 2 cos(kh))JVdVd2 = 0, (5.18)

where Vg and A follows from equations (4.50) and (4.54) respectively, subject to the
ZK-specific parameters given by (4.25).

Following from equation (5.4) we consider solutions of (5.19) of the form

VI = aexp[i(KXI - wt)], (5.22)

We write equation (5.18) as follows:

éJ.r2VI + iA6.Xl V x,VI + iBVdVd2 = 0, (5.19)

where we define

A := (h2/2)[~ sin(kh) + ~~(2 sin(2kh) - sin(kh))J, (5.20)

and

B := (2 sin(kh) [cos(kh) + 2 + A(l + 2 cos(kh))],
3h Vg-17

(5.21)

from equation (5.18).
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where the discrete dispersion relationship is given by

In the derivation of (5.23) we use the following result:

6.X,'ilXYI = )h2[cos(KEh) -l]aexp[i(KXI -wt)]

2
E2h2[cos(KEh) -l]VI.

Note in the limit as Eh -> 0 we regain the analogous continuous nonlinear dispersion
relationship (5.5) from (5.23). The discrete dispersion relationship is O(h2

) accurate.

As before, we consider the stability of the solution (5.22). Our approach shall be to
perturb the solution by ~(XI, t), subject to 1~12« 1, i.e., we write

where VI is

VI = aexp[i(KXI - wt)].

Noting that

and

we find upon substitution in equation (5.19) that

We proceed by expanding

6.x, 'ilx, (VI~)

1 -I -
E2h2[Ex, - 2 + Ex, ](VI~)

E2~2[cos(KEh){Ex,~ + Ex~~} + isin(KEh){Ex,~ - Ex~~} - 2~]VI,
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(5.23)

(5.24)

(5.25)

(5.26)

(5.27)

(5.28)
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from which follows that

.6.XI \7 x, (VIL:)

E2~2[2(cos(K Eh) - 1)L: + E2h2 COS(KEh).6.XI \7 x, L: + 2iEhsin(K Eh)óXI L:]Vl'
(5.30)

upon making use of the definitions of ÓX" .6.XI and \7 x, as defined in equations (3.10),
(3.6) and (3.7) respectively, i.e.,

EXI + Ex: = 2 + E2h2.6.XI \7 x"
and

Noting also equation(5.24) we can rewrite (5.29) in the form

&r2L: + i ~ [Ehcos(K Eh).6.XI \7 X, L: + 2isin(K Eh)óXI L:] + i(2 BlaI2(L: + L:*) = 0,

(5.31)

Expansion of L: in the discrete Fourier series
N/2

L:(x, t) = I:: tn(t) exp(iltnXl), (5.32)
n=-N/2

with
27fn

Itn =L'
leads to the following system of ODEs upon substitution into (5.8)

d ( tn ) 'C (tn)di t:'n = Z n t:'n

where

Cu ~2~~[COS(KEh)(COS(JLnEh) - 1) - sin(KEh) sin(ltnEh)] - Blal2,

_BlaI2,

2A2 [COS(KEh)(cos(j.tnEh) - 1) + sin(K Eh) sin(JLnEh)] + Blal2,(2h

Blal2.
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The characteristic polynomial of Gn is given by

(.A - e~~2sin(K eh) sin(J.Lneh))2

2A-(e
2
h
2
(cos(Keh)(cos(J.Lneh) -1) + Bla12)2+ (BlaI2)2 = 0, (5.34)

the roots of which produce the eigenvalues of Gn.

Based on the characteristic polynomial, the eigenvalues of Gn would have negative
imaginary parts, and hence allow exponential growth in the side-band amplitudes
Itnl, whenever

Considering the special (but important) case K = 0, condition (5.35) becomes

8A . 2 1 {2A . 2 2}e2h2 Sill (J.Lneh 2) e2h2 Sill (J.Lneh/2) - Blal < O.

Therefore, if A > 0 we would have instability when

2A . 2 2
e2h2 Sill (J.Lneh/2) < Blal ,

implying that for B < 0 we would have no unstable modes, but for B > 0 all modes
would be unstable whenever

e2h2 Blal2 > 2A.

Similarly, if A < 0 we would have instability when

2A . 2( 2e2h2 Sill J.Lneh/2) > Blal ,
implying that for B > 0 we would have no unstable modes, but for B < 0 all modes
would be unstable whenever condition (5.38) holds.

For consistency with the results of Section 5.2 we consider the limit case h -> O. Then

L~A = 3,k,

and
. _(2
hmB= -6 k:'h_O ,

implying that in the limit AB = _(2/2 < 0; hence the continuous equation would be
stable, the result obtained in Section 5.2.
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(5.36)

(5.37)

(5.38)

(5.39)



Chapter ({)

Van der Pol Discrete

I have a theory that whenever you want to get in trouble with a method,
look for the Van der Pol equation.

P. E. Zadunaisky

In this chapter we shall analyze some numerical approximations to the Van der Pal
equation (1.26). In [90], for example, IMSL routines DIVPRK and DIVPAG are used
to solve for limit cycles of the generalized Van der Pal equation. The IMSL routines
DIVPRK [102], efficient for non-stiff systems, uses RK formulae of order five and
six whereas DIVPAG utilizes the implicit Adams method up to order twelve as well
as Geer's stiff method. A similar approach is followed in [60] where the results of
extrapolation based codes (with stepsize control) and Runge-Kutta-Nystriim codes
are compared. Details of these methods are described in [75] and [141], for example.

The specific method examined in this chapter follows the work described in Cai et al.
[24] where a Leapfrog scheme is applied to the solution of the Van der Pal equation.
The specific method is interesting because it leads to spurious solution behavior. We
apply a basic discrete multiple scales method to this equation as originally performed
by Schaambie [110] for the KdV equation. We shall show details of the numerical
solution as well as an interpretation of the inherent faults in the method as identified
by the multiple scales solution of the numerical technique.

96



6.1. LEAPFROG SCHEME

6.1 Leapfrog Scheme

We rewrite the Van der Pol equation (1.26) for the sake of convenience

d2x 2 dx 2
dt2 - {3E(l- x) dt +w x = 0, (6.1)

subject to the conditions {3> 0 and w a constant. We assume that E satisfies

(0 < E « 1).

Also, for ease of reference, we repeat the perturbation solution to O(E) as given by
equation (1.45):

( ) _ 2cos(wt + r!» O( )
X t,« - + E.

J(l + (4/a6 - l)e-.lid)

For the purpose of derivation of the numerical method we rewrite the Van der Pal
equation in the form of a system of simultaneous first order ODEs, namely [24, 60]

dx
dt

dy
dt

y,

Following the approach by Cai et al. [24] we employ the central difference approx-
imation (2.14) as an approximation to the differential operators in (6.4) and (6.5).
We use the notation from Chapter 2 namely, x" = x(n7) and yn = y(n7) where 7 is
a fixed time step. We therefore obtain the following system of difference equations:

By substituting (6.6) into (6.7) and using the basic definitions (2.6) and (2.14) we
obtain

(E2 - 2 + E-2)xn/(472)

-{3E(l- (xn)2)(E - E-1)xn/(27) +w2xn = o.
To write (6.8) in operator form, we note that

(E2 - 2 + E-2)/(472)

= [(1 + 7~t)2 - 2 + (1 + 7\71)2]/(472)

= [~t \7t + 72/4~r\7r]·
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(6.2)

(6.3)

(6.4)

(6.5)

(6.6)

(6.7)

(6.8)

(6.9)
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Therefore, by virtue of (6.9) we rewrite (6.8) as

[~t\7t + 72 /4~F\7Flxn - ,BE(1 - (Xn)2)OtXn +W2Xn = O. (6.10) .

In Figure 6.1 we show z" obtained from equations (6.6) and (6.7) for E = 0.025 and
7 = 0.2. Initial values are given by xO = 0 and yO = 0.5. The Xl and yl are calculated
by making use of an Euler starter with time increment 7.

25,---------------------------------------------------------'

, 5

05

....

_25L_ ~
see 400

40 00 '20 '60 200 240 200 320

Figure 6.1: Solution of the Van der Pol equation using the Leapfrog scheme (6.6) and
(6.7) with E = 0.025,7 = 0.2. Initial conditions are XO = 0 and yO = 0.5.

From Figure 6.1 it is quite clear that the numerical solution deviates significantly from
the perturbation solution (6.3). Of particular significance is the failure to obtain the
asymptotic solution behavior discussed in Section 1.2, namely

Iim x(t) = 2cos(t + lP) + O(E).
t-oo

The numerical solution becomes meaningless for times t > 100. This is a good
example of spurious behavior of numerical solutions to ODEs where the spurious
nature renders the solution meaningless.

Also of interest, the solution pattern starts repeating itself as time increases. This
behavior is illustrated in Figure 6.2.



6.1. LEAPFROG SCHEME

25,----------------------------------------------------------,

.2.L---------------------------------------------------------~
ao reo 2.0 320 400 560 "0

Figure 6.2: Solution of the Van der Pol equation using the Leapfrog scheme (6.6) and
(6.7) with e = 0.025, T = 0.2 over a longer time period. Initial conditions are xO = 0
and yO = 0.5.

2'

t e

o •
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.,.
·2
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'20 "0 ree

Figure 6.3: Solution of the Van der Pol equation using the Leapfrog scheme (6.6) and
(6.7) with € = 0.025, T = 0.2 - solution magnified between times t = 120 and t = 160.
Initial conditions are XO = 0 and yO = 0.5.
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In Figure 6.3 we show z" for tE [120,160]. The figure shows the onset of the spurious
solution behavior.

In the following two sections we shall provide a discrete multiple scales solution of
(6.10) and for comparison the results of a linear analysis as performed by Cai et al.
[24].

6.2 Discrete Scales Solution

To perform a multiple scales analysis of (6.10) we shall work in direct analogy with
the continuous multiple scales analysis performed for the Van der Pol equation. We
shall use two discrete time scales, namely

Tp = ePn7, p = 0,1,

and consider the expansion [110]

u" = Uo(To, Tl) + EUI(To, Tl) + O(e2).

By making use of Theorem 7 we note the discrete multiple scales expansion of the
differential approximations 6.t and \It, (as shown previously in equations (3.24) and
(3.25) )

6.t 6.To + e6.TJYI'o'

\lTo + e\lT.Ei{

Substitution of (6.13) and (6.14) into (6.9) has the following result:

s,\l t + 72 / 46.~\lr

= 6.To\l To+ 7
2
/ 46.fo\lfo

+e (6.To6.T• + \lTo \lT. + 72 /26.fo \lTo6.T• + 7
2 /2\lfo6.To \lT.).

We introduce the following notation in (6.15)

£-roTo= 6.To\lTo + 7
2 /46.fo \lfo

£-roT. = 6.To6.T• + \lTo \lT. + 72 /26.fo \lTo6.T. + 7
2 /2\lfo6.To \lT.·

By making use of the definition of 8t in (2.14) and substitution of (6.13) and (6.14)
therein, we also obtain that

(6.11)

(6.12)

(6.13)

(6.14)

(6.15)

(6.16)

(6.17)
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Now, when substituting (6.12), (6.15) as well as (6.17) into (6.10) and collecting
terms with equal powers of £ we generate a set of equations (similar to the continuous
equations (1.33) to (1.35)) given by

relevant to 0(1) and for 0(£)

UroToUI + W2Ul + UroT, Uo - f3(1 - U~)OTOUo = 0,

with UroTo and UroT, defined in (6.16).

Equation (6.18) has a solution of the form

Uo(To, Tl) = A(TI)eil1Tn+ CC.

We observe that

(6.18)

LTOTOA(TI)élTTl

= (t.To \lTo + T2j4t.fo \lfo)A(TI)eil1nT

= (COS(20T) - 1)j(2T2)A(TI)eil1nT,

and therefore the relationship between 0 and w is obtained by substitution of (6.20)
into (6.18) and making use of (6.21):
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(6.19)

(6.20)

(6.21)

(6.22)

By virtue of the familiar Maclaurin power series expansion of cos(·) [IJ we have that

(6.23)02 = w2 + 0(T2).

To proceed we substitute (6.20) in (6.19). We note that

(t.Tot.T, + \lTo Y'TJA(TI)ei!lTTl

= (£t.T, \IT, A(TI) (COS(OT)- 1) + 2ioT, A (Tt) sin(OT)jT)é1Tn.

Furthermore

T3t.fo \lTot.T, A(Tt) eiflnT

= [2(COS(OT)- 1)2+ 2isin(OT)(cos(OT) - l)Jt.T,A(Tt)emnT,

and similarly

T3\lfot.To \IT, A(TI)eiflnT

= [-2(COS(OT) - 1)2 + 2isin(OT)(cos(OT) -l)J\lT,A(Tt)emnT.

(6.24)

(6.25)

(6.26)
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Combining (6.25) and (6.26) results in

T3[t.}O\lTOt.n + \lht.To \lTt JA(T!)emnr

= [4isin(nT)(cos(nT) -1)J8TtA(Tl)emnr + O(€).
(6.27)

We also find that

,6(1 - u5)8ToUo
= ,6isin(nT)/T(A - IAI2A)é1nr - A3émnr + CC.

Therefore, by combining (6.24), (6.27) and (6.28) in (6.19) we have that

(6.28)

= isin(2nT)/T8TtAemnr - ,6isin(nT)/T(A _IAI2A)emnr (6.29)

_A3e3mnr + CC.

From (6.29) we find that in order to obtain bounded solutions for u! we need to
remove secular terms by imposing the following requirement:

sin(2nT)8TtA - ,6sin(nT)(A -IAI2A) = O. (6.30)

Based on the condition that sin(nT) # 0 (which we exclude for all practical purposes)
we obtain the discrete analogue of (1.38) from (6.30), i.e.,

As in the continuous case we assume a solution of (6.31) in the form

from which we obtain

and

after substitution into (6.31) and separation of real and imaginary parts. We rewrite

(6.33) as

where we define a as ,6€
a=---·

COS(nT)

(6.31)

(6.32)

(6.33)

(6.34)

(6.35)

(6.36)
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Note that we shall in practice use an EuJer-type starter

al = aO+ aTa0(1 _ (aO)2), (6.37)

given the initial value aO.

an aY = 0,

an al = 2,

an a2 = -2.

(6.43)

(6.44)

(6.45)

We shall first examine the fixed points of a continuous version of (6.33), similar to
equation (1.40), namely

da
dt = aa(l - a2/4) = as(a). (6.38)

The fixed-points of this equation are roots of a(l - a2/2); it has three fixed-points
a = 0, a = 2 and a = -2. To study the stability of these fixed-points we perturb the
fixed-point with a disturbance ~ to obtain the perturbed equation

~ = as (a +O. (6.39)

Following [142] we expand S(a +~) into a Taylor series around a, so that
~ _ dS
dt = a[S(a) +~da Iii + ...]. (6.40)

Stability is normally obtained by examining a small neighborhood of the fixed-point
provided for a given value of a we have that

dS
a da of O. (6.41)

Using this condition and neglecting successive powers of ~ we obtain the linear per-
turbed equation

~ dS
dt /~ = a da Iii' (6.42)

The fixed point a is asymptotically stable if the right side of (6.42) is negative and
unstable if it is positive. Higher order perturbations are needed if the right side of
(6.42) equals O.

Perturbing the Logistic-type equation (6.38) around its fixed points we find that a = 0
is unstable whereas a = 2 and a = -2 respectively are stable. Note that the latter
two would correspond to a stable limit cycle.

Considering the actual discrete problem on the other hand, we note that (6.33) has
three constant solutions or fixed-points. They are
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To investigate the stability of an = 0.0 we set [85]

an = 0.0 + ,n, I,nl« 1, (6.46)

substitute this into (6.33) and neglect all but the linear terms. Doing this gives

(6.47)

The solution to the above second-order difference equation is

(6.48)

where A and B are arbitrary constants, and

(6.49)

From (6.49) it can be concluded that the first term on the right of (6.48) is exponen-
tially increasing, while the second term oscillates with an exponentially decreasing
amplitude.

Similarly, we represent small perturbations to the fixed-point al by

(6.50)

which results in a linear perturbation equation

(6.51)

whose solution is
(6.52)7)n = C(s+t + D(s_t,

where C and D are small arbitrary constants and

(6.53)

Therefore, the first term on the right-side of (6.49) exponentially decreases and the
second term oscillates with exponentially increasing amplitude.

The same result holds for the fixed-point 0.2

Putting these results together it follows that the central difference scheme (6.35) has
exactly the same three fixed-points as the Logistic-type equation (6.38). However,
while a(t) = 0 is (linearly) unstable and a(t) = ±2 is (linearly) stable for the differ-
ential equation all the fixed-points are linearly unstable for the difference scheme.
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We also give a short account of the phase plane solution of (6.35). Following a
technique of Sanz-Serna [106] we put:

(6.59)

{
vn/2

an = w(n-l)/2
if neven
if n odd.

(6.54)

Therefore, we can express the scheme (6.35) as the augmented system [88, 106, 131]

vn+1 _ vn = <YTWn(l _ (Wn)2/4),

Wn+1 _ Wn = cnVn(l - (Vn)2/4).

(6.55)

(6.56)

The dynamics of the above system can be understood by taking the continuous limit
and forming the following system:

atV = aw(l - w2/4),

atw = av(l - v2/4).

(6.57)

(6.58)

The phase solution of this system is obtained by integration and is given by

where K is a constant of the integration.

In fact, the above system is a Hamiltonian system [59], which has only saddles and
centers as equilibrium points. The equilibrium points (0,0), (-2,-2), (-2,2), (2,-2) and
(2,2) correspond to saddles while (-2,0), (0,-2), (0,2) and (2,0) would be classified as
centers. The full computer generated phase diagram is shown in Figure 6.4.

We can explain the mechanics of the Leapfrog solution of the nonlinear Logistic-type
equation (6.35) as follows: The solution would follow one of the orbits in the phase
plane. In the ideal situation the solution should follow the line v = w. However,
as a result of errors in the relation between the initial condition and the next value
provided by the Euler-type starter, or due to numerical round-off, it does not follow
this orbit, but follows one close to it. Consequently, for initial conditions uO E (0,2)
it would follow one of the closed loops, approximating the line v = w well for some
time and then displaying large discrepancies between odd and even levels for some
time as it returns to its initial state. For initial conditions uO > 2 it would follow an
infinite orbit - the solution would follow the line v = w closely but would deviate
away from it as it approaches the fixed point an = 2 and would eventually move off
to infinity, i.e., blow-up.
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Figure 6.4: Phase diagram for an in equation (6.35).

6.3 Linear Analysis

In the manner of Cai et al. [24] a linear version of (6.10) is obtained by replacing the
nonIinear term (1- (xn)2) with (1 - X2) where X is a constant. Therefore

[b.t'V t + 72 /4b.~V'nxn - t3£(1 - X2)8txn + w2xn = 0, (6.60)

which has a solution of the form e;nr, where

v

4

(6.61)
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or alternatively

The general solution of (6.60) is therefore given as

z" = e(.B/2)(l-X2)<nT[A cos(qmr) + B sin(</lnT)]

+( _lte-(.B/2)(I-X2)<nT[C cos(</Jnr) + D sin(</lnr)], (6.63)

where

(6.64)

and A, B, C, and D are constants.

The second term of equation (6.63) represents a computational mode which would
become unstable when

lXI> 1.
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Chapter '7

EpHogue

Euclid taught me that without assumptions there is no proof
Therefore, in any argument, examine the assumptions.

Eric Temple Bell (1883 - 1960)

When asked how soon he expected to reach certain mathematical conclusions,
Gauss replied that he had them long ago,

all he was worrying about was how to reach them!

René J. Dubos

The main objective of the research project was to develop a perturbation technique
for the solution of discrete equations. Furthermore we wished to apply the technique
to discrete approximations of relevant equations, compare the theory with observed
computed results and investigate deviations between the perturbation solutions and
computed results with suitable explanations.

We discussed perturbation techniques in Chapter 1, specifically concentrating on an
alternative multiple scales expansion [111, 127, 145]. Applying the technique we
showed that for the KdV and RLW equations the envelopes of modulated waves are
governed by the NLS equation, confirming a result of [36]. Our aim was to show that
the alternative multiple scales methodology could be used for the analysis of more
general PDEs than the KdV equation, the RLW being an example.

The alternative multiple scales analysis was chosen specifically for its ease of adap-
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tation to the discrete case. In fact, Schaambie [111] demonstrated the use of the
extension of the continuous methodology to perform a discrete multiple scales analy-
sis of the ZK approximation to the KdV. We extended this analysis to cater for more
general discrete approximation techniques.

To obtain his analysis, Schaambie [110, 111] derived a discrete analogue of the chain
rule for differentiation. We showed how this result would be generalized for central
difference schemes of arbitrary finite orders of approximation in Chapter 3 following
from a detailed exposition on how these methods could be derived in Chapter 2.

In Chapter 4 we applied the discrete multiple scales analysis to the numerical solution
of the KdV when discretized using generalized central finite differences. We demon-
strated the consistency of the method with the continuous perturbation analysis as
the discretization parameters tend to zero.

The discrete multiple scales technique is a powerful tool for the examination of mod-
ulational properties of the KdV equation. In the case of certain modes of the carrier
wave, the discrete multiple scales analysis breaks down, indicating that the numeri-
cal solution deviates in behavior from that of the KdV equation. Several numerical
experiments were performed to examine the spurious behavior for different orders
of approximation. The spurious behavior, predicted theoretically, was shown to be
present experimentally, independent of temporal discretization.

We showed that for the higher order approximations the spurious behavior tends
to have a smaller effect on numerical solutions. For the pseudospeetral method no
spurious solutions were observed - we have not yet extended the analysis technique to
cater for the pseudospeetral method although we emphasized the result that Fourier
differencing can be viewed as special centered finite differencing based on an ever
increasing number of periodic stencils in Chapter 2. This represents an area which
should be researched further both theoretically and experimentally.

An open question remains how to rid computations of the spurious behavior. We
mentioned adaptive grids [40, 50] as a possibility, however, the spurious nature would
remain, albeit locally. An exciting area of future research would be automatic recog-
nition of conditions that would generate spurious solutions for a given PDE using a
symbolic manipulation language.

We also detailed some comparisons of central difference solutions to the KdV equation.
The results show a clear benefit of higher order central difference relative to lower
order methods. The benefit of the central difference methodology would also extend
to more general regions over which we would solve PDEs.
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Although we placed specific emphasis on the KdV equation in this thesis we believe
that the analyses are sufficiently general to be extended to other nonlinear wave
equations. However, it is important to note that it is characteristic of nonlinear
problems that each displays its own important features. Suitable numerical methods
would generally be designed around those special features sometimes resulting in ad
hoc methods. Accordingly it was not the aim of this thesis to identify best numerical
methods for all nonIinear wave problems - we believe such a method probably does
not exist.

The discrete scales method of analysis illustrated in this thesis can be applied to
discretizations of other dispersive wave equations such as the MKdV equation or
could be useful when dealing with models which are discrete to start with. This is
an area where further research would prove fruitful.

Utilizing the discrete multiple scales analysis we also obtained a discrete version
of the NLS equation which describes the modulation properties of solutions of the
generalized central finite difference approximations to the KdV equation. We also
showed that in the limit as h -> 0 the discrete NLS tends to the continuous equation,
hence the discrete version can be considered to be a valid approximation to the
continuous NLS equation as well. We supplemented this work of Chapter 4 with a
Benjamin-Feir instability analysis for the ZK approximation to the KdV equation in
Chapter 5. We note, as in [63], that the analysis would only be valid for a small time
period while the perturbation is small. The long time behavior of the solution would
ultimately be determined by various conservation laws. This analysis demands further
numerical experimentation and could also be extended to higher order difference
schemes.

We applied the discrete scales methodology to a particular discretization of the Van
der Pal ODE. We demonstrated the mechanism by which numerical instability is
created. This is also an area in which substantial future research work could be
performed.

To conclude we quote from Richard Feynman's 1966 Nobel Lecture: "\Ve have a
habit in writing articles published in scientific journals to make the work as finished
as possible, to cover up all the tracks, to not worry about the blind alleys or describe
how you had the wrong idea first, and so on. So there isn't any place to publish, in
a dignified manner, what you actually did in order to get to do the work." We wrote
this thesis with this quote in mind, trying to show to the reader the process involved
in obtaining the stated results.
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Summary

Keywords: Perturbation techniques, Multiple scales, Korteweg-de Vries equation,
Regularized Long Wave equation, Van der Pol equation, Finite difference approxima-
tion, Numerical solution, Discrete multiple scales.

Perturbation techniques for the solution of differential equations form an essential
ingredient of the tools of mathematics as applied to physics, engineering, finance
and other areas of applied mathematics. A natural extension would be to seek
perturbation-type solutions for discrete approximations of differential equations.

The main objective of the research project is to develop a perturbation technique for
the solution of discrete equations.

We discuss the well-known method of multiple scales and show its use for the solution
of the Korteweg-de Vries (KdV), Regularized Long Wave (RLW) and Van der Pol
equations. In particular, for the KdV and RLW equations the analysis shows that
the envelopes of modulated waves are governed by the nonlinear Schri:idinger equa-
tion. We present a variation of the multiple scales technique which presents an ideal
framework from which we devise a discrete multiple scales analysis methodology.

We discuss a discrete multiple scales methodology derived by Schoombie [111], as
applied to the Zabusky-Kruskal approximation of the KdV equation. This discrete
multiple scales analysis methodology is generalized and applied to the solution of a
generalized finite difference approximation of the KdV equation. We show the con-
sistency of the method with the continuous analysis as the discretization parameters
tend to zero.

The discrete multiple scales technique is a powerful tool for the examination of mod-
ulational properties of the KdV equation. In the case of certain modes of the carrier
wave, the discrete multiple scales analysis breaks down, indicating that the numeri-
cal solution deviates in behavior from that of the KdV equation. Several numerical
experiments are performed to examine the spurious behavior for different orders of
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approximation. The spurious behavior, predicted theoretically, is shown to be present
experimentally, independent of temporal discretization.

We also detail some comparisons of central difference solutions of different orders
of approximation to the KdV equation. The results show a clear benefit of higher
order central differences relative to lower order methods. The benefit of the central
difference methodology would also extend to more general regions over which we
would solve partial differential equations.

We also show that the method of multiple scales can provide an adequate explanation
for spurious behavior in a difference scheme for the Van der Pal equation.



Opsomming

Perturbasie tegnieke vorm 'n integrale deel van die gereedskap van wiskundige teg-
nieke om differensiaal vergelykings op te los in fisika, ingenieurswese, finansiële en
verwante areas in toegepaste wiskunde. Dit is gevolglik 'n natuurlike uitbreiding om
perturbasie oplossings te soek vir die numeriese benaderings van differensiaal verge-
lykings.

Die hoofdoel van dié navorsingsprojek is om perturbasie tegnieke te vind vir die
oplossing van diskrete vergelykings.

Ons bespreek die bekende veelvuldige skale tegniek en toon die gebruik daarvan aan
vir die oplossing van die Korteweg-de Vries (KdV), RLW en Van der Pol vergelykings.
Vir die KdV en RLW vergelykings is 'n gevolg van die analise dat die omhulsel van
gemoduleerde golwe beheer word deur die nie-lineêre Schródinger vergelyking. Ons
bespreek 'n spesifieke veelvuldige skale tegniek wat 'n ideale raamwerk bied om 'n
diskrete tegniek te skep.

Ons ondersoek 'n diskrete veelvuldige skale tegniek soos deur Schoombie [Ll l] on-
twikkel en toegepas op die Zabusky-Kruskal benadering van die KdV vergelyking.
Die tegniek word veralgemeen en toegepas op 'n algemene sentraal verskil benadering
van die KdV vergelyking. Ons toon aan dat die diskrete metode konsistent is met
die kontinue geval as die diskretiserings parameters na nul neig.

Die diskrete skale tegniek is 'n geskikte tegniek vir die ondersoek van modulasie eien-
skappe van die KdV vergelyking. Vir spesifieke modes van die draer golf word oploss-
ings van die diskrete skale tegniek onwenslik wat aandui dat die numeriese oplossing
wat ons ondersoek verskil van die oplossing van die KdV vergelyking. Verskeie nu-
meriese eksperimente word uitgevoer om die vals oplossings te ondersoek. Die vals
oplossings, soos teoreties voorspel, word eksperimenteel aangetoon, onafhanklik van
die diskretisasie tegniek in tyd.

Ons benadruk ook oplossings van sentraal verskil benaderings met verskillende ordes
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van akkuraatheid vir die KdV vergelyking. Die resultate toon 'n duidelike voordeel
aan van hoër orde metodes teenoor laer orde metodes. Die voordeel van die sentraal
verskil vergelykings is dat ons dit op 'n veralgemeende gebied kan gebruik vir die
oplossing van parsiële differensiaal vergelykings.

Ons beskou ook 'n eindige verskil benadering van die Van der Pol vergelyking en
toon aan dat die diskrete skale tegniek 'n bevredigende verduideliking bied vir vals
oplossings veroorsaak deur die spesifieke metode.
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