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Abstract

The improvement of quality has become a very important part of any manufacturing

process. Since variation observed in a process is a function of the quality of the man-

ufactured items, estimating variance components and tolerance intervals present a

method for evaluating process variation. As apposed to confidence intervals that pro-

vide information concerning an unknown population parameter, tolerance intervals

provide information on the entire population, and, therefore address the statistical

problem of inference about quantiles and other contents of a probability distribution

that is assumed to adequately describe a process. According to Wolfinger (1998),

the three kinds of commonly used tolerance intervals are, the (α, δ) tolerance inter-

val (where α is the content and δ is the confidence), the α - expectation tolerance

interval (where α is the expected coverage of the interval) and the fixed - in - ad-

vance tolerance interval in which the interval is held fixed and the proportion of pro-

cess measurements it contains, is estimated. Wolfinger (1998) presented a simulation

based approach for determining Bayesian tolerance intervals in the case of the bal-

anced one - way random effects model. In this thesis, the Bayesian simulation method

for determining the three kinds of tolerance intervals as proposed by Wolfinger (1998)

is applied for the estimation of tolerance intervals in a balanced univariate normal

model, a balanced one - way random effects model with standard N(0, σ2
ε) measure-

ment errors, a balanced one - way random effects model with student t - distributed

measurement errors and a balanced two - factor nested random effects model. The

proposed models will be applied to data sets from a variety of fields including flatness
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measurements measured on ceramic parts, measuring the amount of active ingredi-

ent found in medicinal tablets manufactured in small batches, measurements of iron

concentration in parts per million determined by emission spectroscopy and a South

- African data set collected at SANS Fibres (Pty.) Ltd. concerned with measuring the

percentage increase in length before breaking of continuous filament polyester. In

addition, methods are proposed for comparing two or more α quantiles in the case

of the balanced univariate normal model. Also, the Bayesian simulation method pro-

posed by Wolfinger (1998) for the balanced one - way random effects model will be

extended to include the estimation of tolerance intervals for averages of observations

from new or unknown batches. The Bayesian simulation method proposed for deter-

mining tolerance intervals for the balanced one - way random effects model with stu-

dent t - distributed measurement errors will also be used for the detection of possible

outlying part measurements. One of the main advantages of the proposed Bayesian

approach, is that it allows explicit use of prior information. The use of prior information

for a Bayesian analysis is however widely criticized, since common non - informative

prior distributions such as a Jeffreys’ prior can have an unexpected dramatic effect on

the posterior distribution. In recognition of this problem, it will also be shown that the

proposed non - informative prior distributions for the α quantiles and content of fixed

- in - advance tolerance intervals in the cases of the univariate normal model, the

proposed random effects model for averages of observations from new or unknown

batches and the balanced two - factor nested random effects model, are reference

priors (as proposed by Berger and Bernardo (1992c)) as well as probability matching

priors (as proposed by Datta and Ghosh (1995)). The unique and flexible features of

the Bayesian simulation method were illustrated since all mentioned models performed

well for the determination of tolerance intervals.

Key Words: Bayesian Procedure, Random Effects, Variance Components, Tolerance In-

tervals, Reference Priors, Probability Matching Priors, Monte Carlo Simulation, Weighted

Monte Carlo Method, Student t - Distributed Measurements Errors, Gibbs Sampling.
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Opsomming

In enige vervaardigings proses, het die verbetering van gehalte essensieel geword.

Aangesien die waargenome variasie in ’n proses ’n funksie van die gehalte van die

vervaardigde items is, bied die beraming van variansie komponente en toleransie in-

tervalle, ’n metode waardeur die waargenome proses variasie geëvalueer kan word.

In teenstelling met vertrouens intervalle wat slegs inligting rakende ’n onbekende po-

pulasie parameter bied, bied toleransie intervalle inligting rakende die populasie in sy

geheel. Die statistiese probleem met betrekking tot die afleiding van gevolgtrekkings

uit kwantiele van waarskynlikheids verdelings wat veronderstel is om ’n proses ge-

noegsaam te beskryf, word dus deur toleransie intervalle aangespreek. Luidens Wolfin-

ger (1998), is die (α, δ) toleransie interval (waar α die inhoud en δ die vertroue van die

interval is), die α - verwagtings toleransie interval (waar α die verwagte oordekking

van die interval is) en die vooraf vasgestelde toleransie interval (waar die interval

reeds vasgestel is en die persentasie proses waarnemings wat hierin voorkom, beraam

word), die drie toleransie intervalle wat meestal gebruik word. In die geval van die

gebalanseerde een rigting toevallige effekte model, het Wolfinger (1998) ’n simulasie

gebaseerde beskouing vir die bepaling van Bayesiaanse toleransie intervalle voorge-

stel. In hierdie proefskrif, word Wolfinger (1998) se voorgestelde Bayesiaanse simulasie

metode vir die bepaling van die drie algemene toleransie intervalle, toegepas vir die

beraming van toleransie intervalle in die gevalle van die gebalanseerde enkelveran-

derlike normaal model, die gebalanseerde een rigting toevallige effekte model met

N(0, σ2
ε) verdeelde foute, die gebalanseerde een rigting toevallige effekte model met

student t - verdeelde foute en die gebalanseerde geneste toevallige effekte model.
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Die voorgestelde modelle sal toegepas word op data stelle afkomstig uit verskillende

terreine. Dit sluit data stelle in aangaande gelykheids mates gemeet op keramiek

parte, die hoeveelheid aktiewe bestandeel teenwoordig in klein gegroepeerde stelle

medisinale tablette, die hoeveelheid yster konsentraat in deeltjies per miljoen teen-

woordig, bepaal deur emissie spektroskopie, en ’n eg Suid - Afrikaanse data stel aan-

gaande die persentasie toename in lengte van ’n aaneenlopende poliëster vesel

voordat dit breek. Die Suid - Afrikaanse data stel is deur Prof. Nico Laubscher by

SANS Fibres (Pty.) Ltd. versamel. Daarbenewens word metodes vir die vergelyking

van twee of meer α kwantiele, in die geval van die gebalanseerde enkelveranderlike

normaal model, voorgestel. Bykomend, word Wolfinger (1998) se simulasie metode

aangepas om die beraming van toleransie intervalle in die geval van die gemiddeld

van waarnemings uit nuwe of onbekende gegroepeerde stelle in te sluit. Deur van die

Bayesiaanse simulasie metode gebruik te maak vir die voorgestelde toevallige effekte

model met student t - verdeelde foute, word die identifisering van moontlike uitskieters

ook geïllustreer. Die gebruik van spesifieke prior inligting is een van die voordele van

die voorgestelde Bayesiaanse simulasie metode. Dit is egter juis die gebruik van hierdie

prior inligting wat wyd veroordeel word, aangesien algemene nie - inligtende prior

verdelings, soos ’n Jeffreys’ prior, ’n dramatiese onverwagte uitwerking op die poste-

rior verdeling tot gevolg kan hê as meer as een parameter ter sprake is. Ter erkenning

van die probleem, word daar gewys dat die nie - inligtende prior verdelings, voorge-

stel vir die α kwantiele en inhoud van die vooraf vasgestelde toleransie intervalle in die

gevalle van die enkelveranderlike normaal model, die voorgestelde toevallige effekte

model vir die gemiddeld van waarnemings uit onbekende of nuwe gegroepeerde

stelle en die gebalanseerde geneste twee rigting toevallige effekte model, beide ver-

wysings priors (soos voorgestel deur Berger en Bernardo (1992c)) en waarskynlikheids

ooreenstemmende priors (soos voorgestel deur Datta en Ghosh (1995)), is. Aange-

sien al die voorgestelde modelle goed gevaar het vir die bepaling van toleransie in-

tervalle, is die unieke en buigsame kenmerke van die Bayesiaanse simulasie metode

geïllustreer.
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Chapter 1

General Introduction

1.1 Introduction

The practice of quality engineering in the manufacturing environment is changing

rapidly, with many companies facing higher demands with the introduction of new

systems and new products. There is furthermore an increased pressure for quality en-

gineers as well as other manufacturing activities to support the economic objectives

and profitability of the firm. More tools are needed by quality engineers to cope with

these changes and to meet the intense international competition (Black Nembhard

and Valverde - Ventura, 2003).

Manufacturers are thus frequently required to verify that products meet certain specifi-

cations (Hahn, 1982). A standard approach to the problem is to compare for example

measurements from a sample of parts, to a certain specification. Inferences can then

be made from results obtained about the entire population of parts (Wilson, Hamada

and Xu, 2004). Situations however sometimes arise when for example it my seem that

specifications are not being met, when in fact they are. These situations usually occur

when the available data are subject to measurement error (Hahn, 1982). It is there-

fore important to account for the measurement system being used to characterize

production performance (Wilson, Hamanda and Xu, 2004).

1
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The eventual aim of any manufacturing process should be to have a process that

produces data according to the model

yij = µ0

where the measurement takes on a fixed preset value without any statistical variation.

Also, i = 1, . . . , b and j = 1, . . . , k (Laubscher, 1996).

Variation however, exists in every aspect of our lives and can be observed everywhere

(Tsiamyrtzis, 2000). As an example, people have different heights, weights, attitudes,

ideas etc., all characteristics that vary (Tsiamyrtzis, 2000). While sociological variation is

a blessing (imagine everyone looking the same or having the same attitudes or ideas),

variation in industry is blamed as the major cause of bad quality (Tsiamyrtzis, 2000). In

an industrial setting, a quality characteristic is measured on a product after manufac-

ture (Tsiamyrtzis, 2000). This manufactured product, will have some ideal target value

for the quality characteristic being measured (Tsiamyrtzis, 2000). In a dream world, a

manufacturing process could produce perfect products with no variation at all, i.e.

all products are manufactured at the ideal target value for the quality characteristic

being measured (Tsiamyrtzis, 2000).

As with sociological variation that can be observed in people, statistical variation is

a fact of life in any manufacturing process. Several variation generating components

may lurk in any manufacturing process, for example, sampling variation or sample -

to - sample variation (Laubscher, 1996). There may also be variation as a result of

experimental error (Laubscher, 1996). It is therefore important that sources of variation

such as these, be incorporated into a suitable model (Laubscher, 1996). Finding and

fitting the simplest model incorporating the relevant sources of variation should thus

form part of the continuous improvement program in the life of any manufacturing

process (Laubscher, 1996).

Variance component models are appropriate in settings where variability and multi-

ple sources of variability occur (Wolfinger, 1998). These suitable variance component
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models are frequently used in quality control, since these models adequately handle

multiple sources of variability (Wolfinger, 1998).

Once a suitable variance component model is selected, a key response that con-

veys information about the quality of a product can be measured. These measure-

ments are then used to estimate model parameters, either by a single number (point

estimate) or by a range of scores (interval estimate). Statistical intervals properly cal-

culated from sample data, are likely to be substantially more informative to decision

makers than obtaining a point estimate alone, and, are usually a great deal more

meaningful than statistical significance or hypothesis tests. These statistical intervals

are therefore of paramount interest to practitioners and thus management (Van der

Merwe and Hugo, 2007).

Statistical intervals computed based on a random sample have wide applicability,

since uncertainty about a scalar quantity associated with a sampled population can

be quantified (Krishnamoorthy and Mathew, 2009). Since there are three types of

commonly used intervals, the type of interval to be computed, will strongly depend

on the underlying problem or application (Krishnamoorthy and Mathew, 2009). Bounds

for an unknown scalar population parameter, such as the population mean or popula-

tion standard deviation, are estimated using a confidence interval which is calculated

using a random sample obtained from this population (Krishnamoorthy and Mathew,

2009). If for example a 95% confidence interval has to be estimated for a population

mean, it can be interpreted as follows: If the 95% confidence interval is computed re-

peatedly from independent samples from this population, then in the long run, 95% of

the computed intervals will contain the true value of µ (Krishnamoorthy and Mathew,

2009). If bounds for one or more future observations from a univariate sampled pop-

ulation are required, a prediction interval based on a random sample is used (Krish-

namoorthy and Mathew, 2009). A prediction interval has an interpretation similar to

that of a confidence interval, but is meant to provide information concerning a single

value only (Krishnamoorthy and Mathew, 2009). Suppose now a selected sample is to
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be used to conclude whether or not, for example, 95% of a population are below a

specified threshold. Neither confidence - nor prediction intervals can be used to an-

swer this question, since confidence intervals are concerned with, for example means,

and prediction intervals with single values only (Krishnamoorthy and Mathew, 2009). In

cases like this, tolerance intervals, and to be more specific to this case, an upper tol-

erance limit based on a random sample, is required (Krishnamoorthy and Mathew,

2009). These tolerance intervals, are intervals which are expected to contain a spec-

ified proportion (or more) of the sampled population (Krishnamoorthy and Mathew,

2009). Therefore, in contrast to confidence intervals which provide information about

an unknown population parameter, a tolerance interval provides information on the

entire population (Krishnamoorthy and Mathew, 2009). To be more specific, for a given

confidence level, a tolerance interval is expected to capture a certain proportion or

more (the content) of the population (Krishnamoorthy and Mathew, 2009). In order to

obtain a tolerance interval, it is therefore required that the content and confidence

level be specified (Krishnamoorthy and Mathew, 2009).

In any production process, designers will specify tolerances or externally determined

specification limits. These tolerances or externally determined specification limits are

specified for various characteristics. These characteristics are based on considera-

tions of requirements for fit, or function, in use, or in subsequent levels of assembly.

The dimensions within which a produced part should fall in order to be acceptable,

is a typical example (Easterling, Johnson, Bement and Nachtsheim, 1991). To protect

against measurement error and to keep the production facility on its toes, designers

sometimes specify tolerance limits with an interval width less than the width of the true

required tolerance limits. Since these ad hoc tolerances may impose undue costs due

to scrap or rework, it is desirable to take a more systematic look at the determination

of tolerances, taking measurement error as well as other sources of variation into ac-

count (Easterling, Johnson, Bement and Nachtsheim, 1991). Three important research

questions should therefore be asked. These questions as proposed by Wolfinger (1998)
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are as follows:

1. Assuming the manufacturing process is in control, can a limit t be found such

that 90% of future measurements are greater than t with 95% probability?

2. Can an interval (t`, tu) be constructed so that a new observation from one

of the original parts will fall in (t`, tu) with 95% probability?

3. What fraction of the process measurements lie above some preselected

specification limit s, and how much uncertainty is associated with this esti-

mated fraction?

The three research questions proposed by Wolfinger (1998), and many similar ones,

can be addressed by the use of either classical Shewhart variable control charts or

tolerance intervals. A classical Shewhart variable control chart harnesses information

about the quality of a product by means of a pair of control charts. Both of these

charts, one for the average and one for the variation, have its own 3σ control limits

(Laubscher, 1996). This methodology was developed by Walter A. Shewhart (1931)

and further developed by many other later researchers. These include Duncan (1974),

Ryan (1989), Cryer and Ryan (1990) as well as Roes, Does and Schurink (1993).

A Shewhart variable control chart is based on the following model

yij = µ+ εij

where

yij represents the jth item sampled on the ith period, µ represents a fixed target value,

εij denotes random variation about zero, i = 1, . . . , b and j = 1, . . . , k (Laubscher, 1996).

From this model, natural process limits (also called natural tolerance limits) can easily

be obtained by determining µ±3σ for normal populations. These natural process limits

will then include a stated fraction of the individual parts in a population and are then



CHAPTER 1. GENERAL INTRODUCTION 6

compared to the specification limits determined externally to see if a manufacturing

process is in control (Nazar and Shwartz, 2010). Standard Shewhart control charts un-

fortunately only allow for within sample variation (Nazar and Shwartz, 2010). As a result,

different models allowing for more sources of variation may provide more satisfactory

results.

Tolerance intervals on the other hand, can also be used to address the three research

questions as proposed by Wolfinger (1998). These tolerance intervals can be deter-

mined for variance component models, thus allowing for the inclusion of more sources

of variation. The construction of tolerance intervals has a rich history dating back over

half a century (Wolfinger, 1998). For reviews on this research see Wilks (1941), Wald

(1942), Guttman (1970), Zacks (1971), Mee and Owen (1983), Mee (1984a and b),

Miller (1989), Hahn and Meeker (1991), Bhaumik and Kulkarni (1991, 1996) and Vangel

(1992). More recently, Wolfinger (1998) proposed the estimation of tolerance intervals

using a one - way variance component model and Bayesian simulation. Wolfinger

(1998) also pointed out that the frequentist analysis of tolerance intervals can become

quite complex, even for balanced one - way random effects models. Furthermore, the

frequentist analysis differs depending on the kind of tolerance interval and particular

model under consideration. Also, based on work done by Weerahandi (1993) (see

also Weerahandi, 1995), Krishnamoorthy and Mathew (2004) introduced one - sided

tolerance limits for balanced and unbalanced one - way random models using the

generalized confidence interval approach.

Three kinds of commonly used tolerance intervals address the three research questions

proposed by Wolfinger (1998) respectively. These are:

1. The (α, δ) tolerance interval, where α represents the content (the proportion

of the population to be contained by the interval) and δ represents the

confidence (the reliability of the interval). Both α and δ lie between 0 and 1

and are typically assigned values of 0.90, 0.95 or 0.99 (Wolfinger, 1998).
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2. The α - expectation tolerance interval, where α represents the expected

coverage of the interval. Again, α is measured on a probability scale and is

typically set to a value close to 1. In contrast to the (α, δ) tolerance intervals,

the α - expectation tolerance interval focuses on prediction of one or a few

future observations from the process and consequently tend to be narrower

than the corresponding (α, δ) intervals (Wolfinger, 1998).

3. The fixed - in - advance tolerance interval, in which the interval is constant

and one wishes to estimate the proportion of process measurements it con-

tains. Fixed - in - advance intervals invert the prediction problem by consid-

ering the content of predetermined bounds (Wolfinger, 1998).

All three kinds of tolerance intervals can take the following forms: lower limit (t`,∞), an

upper limit (∞, tu), or a two - sided limit (t`, tu). For further details about confidence

intervals and tolerance limits see Hahn and Meeker (1991) and Wolfinger (1998). These

tolerance intervals will address the statistical problem of inference about the quantiles

of a probability distribution that is assumed to adequately describe a process (van der

Merwe and Hugo, 2007 and Wolfinger, 1998).

As mentioned earlier, variance component models allowing for various sources of vari-

ation are needed to estimate the tolerance intervals mentioned. These variance com-

ponent models are needed to assess the manufacturing process’s performance when

the measurement error variance depends on the true characteristics of for example

the parts being measured, and are frequently used in quality control (Wilson, Hamada

and Xu, 2004). Variances are usually estimated for balanced data using the mini-

mum variance unbiased estimators (MVUE’s). These MVUE’s are based on the sums

of squares appearing in the analysis of variance (ANOVA) table. MVUE’s however do

not exist for unbalanced data, since the sums of squares from the ANOVA table are

not sufficient statistics (Chaloner, 1987). Searle (1979) presented various other estima-

tors. For example, maximum likelihood estimators (MLE’s), restricted maximum likeli-

hood estimators (REML’s), minimum norm quadratic unbiased estimators (MINQUE’s),
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minimum variance quadratic unbiased estimators (MIVQUE’s), as well as several more

variations of these approaches. The analysis of variance (ANOVA) estimators that are

obtained by equating mean squares to their expected values is also another common

approach (Chaloner, 1987). The Bayesian methodology can also be used to assess a

manufacturing process’s performance and thus provides a flexible alternative to pro-

cess assessment through variance component and interval estimation.

For variance component models, most authors assume that the production or part

measurements, xi (i = 1, . . . , b), follow independent N(µ, σ2
p) distributions, and that εij

(i = 1, . . . , b and j = 1, . . . , k) also follow independent N(0, σ2
ε) distributions. This model

has been considered in a variety of contexts. Hahn (1982) estimated the proportion

of parts that meet specification under the assumption that the residual variance σ2
ε

was known. Jaech (1984) also considered the case where the error variance σ2
ε was

known. Tolerance intervals for the proportion of parts meeting specification were then

estimated. Mee (1984b) also estimated tolerance intervals, but considered the cases

where σ2
ε was known, the ratio of σ2

ε/σ2
p was known and the case where the ratio of

the variances was estimated through repeated measurements. More complicated

models for the parts distribution (e.g. random effects, random coefficients and mixed

effects) were considered by Wang and Iyer (1994). They also calculated tolerance

intervals. Note also that these authors all used a frequentist perspective to approach

the variance components problem.

In industry, prior information about the manufacturing process is usually available in

abundance (Tsiamyrtzis, 2000). The Bayesian approach therefore serves as an ap-

pealing alternative to the classical approach of variance component and tolerance

interval estimation, since careful use of this prior information is available only through

a Bayesian scheme (Tsiamyrtzis, 2000).

In a letter dated 1763, Mr. Richard Price sent an essay which he found amongst the

papers of the late Rev. Mr. Thomas Bayes to a Mr. John Canton. The essay was

published in 1763 in the Philosophical Transactions of the Royal Society of London and
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was titled “An Essay Towards Solving a Problem in the Doctrine of Chance” (Bellhouse,

2004). In this essay, Mr. Bayes explained how to make statistical inferences that build

upon earlier understanding and information of a phenomenon, and how to properly

join that understanding to update the degree of belief with the use of current data.

The past understanding was called the “prior belief” and the new results were known

as the “posterior belief” (Bayes, 1763). This updating process is called Bayesian Infer-

ence. In addition to Bayes’s publications, the work of Jeffreys (1939), James and Stein

(1961) and the introduction of the Gibbs sampling method by Geman and Geman

(1984), just to name a few, have led to an increase in the use of Bayesian statistics.

The goal of a Bayesian analysis is to derive the posterior distribution of a specific pa-

rameter (θ) given the data (y), written as p(θ|y). Bayes’s theorem is a conditional

probability statement which proves that p(θ|y) is proportional to the sampling distribu-

tion for the data, p(y|θ), multiplied by an independent probability distribution for the

parameter, p(θ) (independent, in this case, of the specific data, y) (Wade, 2000).

In this relationship, Bayesians have named p(θ) the prior distribution for the parameter θ

and p(θ|y) the posterior distribution for the parameter θ (in the sense that it summarizes

what is known about θ prior and posterior to the examination of the data y). In this con-

text, the sampling distribution for the data, p(y|θ), is often referred to as the likelihood

function (Wade, 2000). The likelihood function of a set of observations Y1, Y2, . . . , Yn, is

their joint probability density function when viewed as a function of the unknown pa-

rameter, say θ, which indexes the distribution from which the Y ′i s were generated. The

likelihood function is denoted by L(θ|y1, . . . , yn) = L(θ|y), and the probability density

function is represented by f(y|θ).

The Bayes rule for continuous random variables is then expressed as:

p(θ|y) =
f(y|θ)p(θ)
f(y)

where f(y) represents the marginal distribution of Y .



CHAPTER 1. GENERAL INTRODUCTION 10

If y = {y1, . . . , yn} represents a sample from the conditional distribution of the variable

Y , then f(y|θ) = L(θ|y), and the Bayes Rule can be expressed as:

p(θ|y) =
f(y|θ)p(θ)
f(y)

∝ f(y|θ)p(θ)

In more formal terms,

p(θ|y) = cL(θ|y)p(θ)

where c represents the normalization constant.

To calculate c, one needs to calculate the entire distribution of f(y|θ)×p(θ), so one au-

tomatically calculates the entire distribution for p(θ|y) as well (Wade, 2000). Therefore,

one usually speaks in terms of the posterior and prior distributions. All statistical infer-

ence is then based on the posterior distribution. The mean of the posterior distribution

can serve as a point estimate for the parameter. Uncertainty in the point estimate is

expressed directly in the posterior distribution and can be summarized either as per-

centiles of the posterior distribution or as what is termed the highest posterior density

interval (Wade, 2000).

To calculate the posterior distribution, one has to integrate the product of the prior

distribution and the likelihood function. In some simple cases, the integral can be

calculated directly (in these cases it is said to have an analytical or “closed - form” so-

lution). If no analytical solution is available, the integration can be done by numerical

methods (Wade, 2000).

In layman’s terms, conventional statistical analyses (also called frequentist or classi-

cal statistics) calculate the probability of observing data given a specific value for a

parameter, such as the value of a parameter in the case of a null hypothesis (Wade,

2000). Classical statistical methods therefore use sampling distributions to calculate

probabilities of observing data given specific values of parameters, and as a result,

use these sampling distributions directly (Wade, 2000). This can be illustrated using a p

- value. The p - value represents the probability of observing data as extreme or more

extreme than the data that were observed, given that the null hypothesis is true, on
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repeated sampling of the data (Wade, 2000). The sampling distribution can also be

used to estimate a frequentist parameter by calculating the likelihood function (Wade,

2000). This likelihood function is formed by calculating the probability of observing the

data for every possible value of the parameter (Wade, 2000). In frequentist or classical

statistics, this function is then interpreted to represent the relative likelihood of differ-

ent parameter values and not the probability of different parameter values (Wade,

2000). This relative likelihood of different parameter values represents the probability

of observing the data given these different parameter values (a maximum likelihood

estimate is the value of the parameter that maximizes the probability of the observed

data i.e. the peak of the likelihood function) (Wade, 2000).

In contrast to classical statistics, Bayesian methods calculate the probability of the

value of a parameter given the observed data (Wade, 2000). In simple terms, what is

known is the data, the value of the parameter is unknown. Therefore, Bayesian infer-

ence focuses on what the data reveals about this unknown parameter (Lindley, 1986).

As with classical statistics, Bayesian methods also make use of the likelihood function,

but utilize it in a different way (Wade, 2000). Given a prior distribution for the unknown

parameter, a posterior probability distribution for this unknown parameter is calculated

as the integral of the product of the likelihood function with the given prior distribution

(Wade, 2000). The given prior distribution represents the probability distribution of the

unknown parameter before consideration of the data, while the posterior distribution

represents the probability distribution of this parameter after taking the data into con-

sideration (Wade, 2000). This can be illustrated by the following schematic representa-

tion of this process (Van Boekel et.al., 2004).
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All statistical inference about the unknown parameter is then made from the posterior

distribution (Wade, 2000).

For the construction of tolerance intervals in particular, Wolfinger (1998) examined the

differences between the Bayesian and frequentist approaches. These are summarized

as follows:

The first feature involves the analysis of the intervals. The Bayesian method expresses all

uncertainty about model parameters in terms of probability densities, with probability

statements representing a degree of certainty (Wolfinger, 1998). In contrast, the fre-

quentist approach directly regards some parameters as fixed and unknown quantities,

and the confidence statements about them are typically interpreted in terms of long

- run frequencies (Wolfinger, 1998).

• This difference is particularly apparent in the interpretation of δ in the (α, δ) toler-

ance interval. Taking the lower limit case as an illustration, both the Bayesian and

the frequentist methods envision a true (1− α)th quantile and attempt to place a

lower limit on it with confidence δ. The frequentist approach constructs a 100(δ)%

lower confidence limit for the (1−α)th quantile, and surmises that confidence lim-

its constructed in a similar manner will be greater than the true quantile 100(δ)%

of the time. The Bayesian method, in contrast, constructs the posterior density of
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the (1−α)th quantile conditional on the observed data and any prior information.

Using this posterior density, the Bayesian constructs an interval containing the true

(1− α)th quantile with subjective probability δ (Wolfinger, 1998).

• For α - expectation tolerance intervals, the Bayesian interpretation states that

the interval actually obtained will contain the future observation with subjective

conditional probability α. In contrast, the frequentist interpretation states that the

constructed intervals will include the future observations with relative frequency

α (Wolfinger, 1998).

The second distinction involves the use of prior information. The Bayesian approach

formally incorporates prior information about model parameters in terms of prior den-

sity functions. Frequentist methods provide no such mechanism. Therefore, when prior

information exists, the Bayesian method seems more reasonable (Wolfinger, 1998).

The third distinction is a practical one. The frequentist analysis of tolerance intervals for

variance component models can become quite complex even for the balanced one

- way random effects model. Frequentist analyses differ depending on the kind of tol-

erance interval and particular model under consideration. In contrast, the simulation -

based Bayesian method can easily be applied to models with several variance com-

ponents. The same analysis strategy can also be used for all three kinds of tolerance

intervals (Wolfinger, 1998).

The advantages of the Bayesian approach over the frequentist approach are:

1. The Bayesian practitioner does not need to only use point estimates of vari-

ance components and other parameter values, since credibility and pre-

diction intervals are easily obtained (Hugo, van der Merwe and Viljoen,

1997).
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2. The indecision regarding the true values of the variance components is in-

corporated into the investigation through the use of an appropriate prior

distribution (Hugo, van der Merwe and Viljoen, 1997).

3. The Bayesian approach provides a set of widely applicable mathematically

tractable tools that are often more tailored to the requirements of users than

the frequentist tools (Jandrell and van der Merwe, 2007).

4. Fewer mathematical problems with less proofs and theorems are associated

with Bayesian methods (Jandrell and van der Merwe, 2007).

The problems involved with the implementation and use of the Bayesian method are:

1. The Bayesian methodology is computer intensive since integration in several

dimensions is required to obtain the posterior distribution. The development

of increasing computer power and numerical - integration techniques (such

as Markov chain Monte Carlo methods), facilitate the use of a full analysis

(Hugo, van der Merwe and Viljoen, 1997). However, the burden of proof

rests on the monitoring of stochastic convergence and the mixing of the

Markov chain (Jandrell and van der Merwe, 2007).

2. A prior belief about the unknown parameters needs to be set out in the form

of a probability distribution. This step in any Bayesian analysis is often difficult

to execute and is very controversial. This represents one of the reason for

using non - informative priors in practical cases (Hugo, van der Merwe and

Viljoen, 1997).

From the first problem mentioned with the implementation and use of the Bayesian

methodology, one can see that to make appropriate inferences in a Bayesian anal-

ysis, the marginal posterior distributions and predictive densities are needed. Due to

the complexity of the joint posterior distribution however, it is impossible to obtain these
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marginal posterior densities analytically. It is also very difficult to obtain these marginal

posterior densities numerically, due to the high number of unknowns (van der Merwe,

Pretorius and Meyer, 2003). It is therefore recommended that a Monte Carlo simulation

procedure be used to estimate these marginal posterior densities of the unknown pa-

rameters and predictive densities of future observations. A brief overview and some

history of Markov chain Monte Carlo simulation will now be provided.

In recent years, statisticians have been increasingly drawn to Markov chain Monte

Carlo (MCMC) simulation to examine more complex systems than would otherwise be

possible (Chib and Greenberg, 1995). To explain Markov chain Monte Carlo simula-

tion, suppose that we wish to generate a sample from a posterior distribution p (θ|y)

for yε<k but cannot do this directly. The key to Markov chain simulation is to create a

Markov process whose stationary distribution is a specified p (θ|y), and run the simula-

tion long enough so that the distribution of the current draws is close enough to the

stationary distribution. Once the simulation algorithm has been implemented, it should

be iterated until convergence has been approximated. Remember however that the

draws are only regarded as a sample from the posterior distribution p (θ|y) once the ef-

fect of the fixed starting value is so small that it can be ignored (Chib and Greenberg,

1995).

Credit for inventing the Monte Carlo method often goes to Stanislaw Ulam, a Polish

born Mathematician who worked for John von Newmann on the United States’ Man-

hattan Project during World War II (Ulam is primarily known for inventing the hydrogen

bomb in 1951 with Edward Teller). Although Ulam did not invent statistical sampling, he

did however invent the Monte Carlo method in 1946 while pondering the probabilities

of winning a card game of solitaire (Eckhardt, 1987).

As mentioned, Ulam did not invent statistical sampling. Statistical sampling had been

employed before to solve quantitative problems with physical processes such as dice

tosses and card draws, and W.S. Gossett, who published under the penn name “Stu-

dent”, also randomly sampled from height and middle finger measurements of 3000
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criminals to simulate two correlated normal distributions (obtained from the Internet

website: http:/www.contingencyanalysis.com). Ulam did however recognize the po-

tential for the newly invented electronic computer to automate such sampling. He

developed algorithms for computer implementations and explored means of trans-

forming non - random problems into random forms that would facilitate their solution

via statistical sampling. This work was done while Ulam was working with John von

Newmann and Nicholas Metropolis. Their work transformed statistical sampling from a

mathematical curiosity into a formal methodology that would be applicable to a wide

variety of problems. This new methodology was named after the casinos of Monte

Carlo by Metropolis and the first paper on the Monte Carlo method was published by

Metropolis and Ulam in 1949 (information for this paragraph was obtained from the In-

ternet website: http:/www.contingencyanalysis.com and Metropolis and Ulam, 1949).

Metropolis continued his work, and together with Rosenbluth, Rosenbluth , Teller and

Teller (1953), developed the Metropolis-Hastings (M-H) algorithm which was later gen-

eralized by Hastings (1970) (Chib and Greenberg, 1995). Although the M-H algorithm

has been used extensively in physics, it was little known to statisticians until recently,

despite the paper by Hastings (1970) (Chib and Greenberg, 1995). The Metropolis-

Hastings algorithm is extremely useful and versatile and applications are steadily ap-

pearing in literature (Chib and Greenberg, 1995).

The Gibbs sampling algorithm, a special case of the Metropolis-Hastings algorithm, is

one of the best known Markov chain Monte Carlo methods (Chib and Greenberg,

1995) and will be discussed in chapter 5.

As can be seen from the second problem mentioned with the implementation and use

of the Bayesian method, an integral part of traditional Bayesian analysis is the assign-

ment of prior distributions to the unknown parameters in the model (van der Merwe,

Pretorius, Hugo and Zellner, 2001). A Prior probability or distribution can be viewed

as a description of what is in fact known about a parameter in the absence of data

(Jandrell and van der Merwe, 2007). The choice of a prior distribution is a very difficult
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and controversial step in any Bayesian analysis, since the information contained in the

prior distribution, which is supposed to represent what is known about the unknown

parameters before the data is available, is combined with the information supplied

by the data, through the likelihood function, to form the joint posterior distribution of

the parameters given the data (Box and Tiao, 1973 and Gianola and Fernando, 1986).

It must however be stated that according to Box and Tiao (1973) some prior knowl-

edge is employed in all inferential systems. Box and Tiao (1973) used a simple example

to explain this statement. “For example , a sampling theory analysis, using statistical

methods in scientific investigation is made, as is a Bayesian analysis, as if it were be-

lieved a priori that the probability distribution of the data was exactly normal, and that

each observation had exactly the same variance, and was distributed exactly inde-

pendently of every other observation. But after a study of residuals had suggested

model inadequacy, it might be desirable to reanalyze the data in relation to a less

restrictive model into which the initial model was embedded. If non - normality was

suspected, for example, it might be sensible to postulate that the sample came from

a wider class of parent distributions of which the normal was a member. The conse-

quential analysis could be difficult via sampling theory, but is readily accomplished in

a Bayesian framework. Such an analysis allows evidence from the data to be taken

into account about the form of the parent distribution besides making it possible to

assess to what extent the prior assumption of exact normality is justified.”

Two types of prior information are distinguished: Data based and non - data based.

Data based prior information is obtained in a scientific manner from prior experimenta-

tion, while non - data based prior information is based on subjective personal opinions

or beliefs and theoretical considerations. It seems to be the use of non - data based

prior information to which orthodox frequentists object (Carriquiry, 1989).

As just mentioned, the main criticism and controversy surrounding the choice of a prior

distribution, and as a result the whole Bayesian approach, is build on the principle of

subjectivity, since one persons prior belief about an unknown parameter, before any
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data is observed, is different from another person’s (Van Boekel, et.al., 2004). Different

prior beliefs about a parameter will therefore naturally lead to different posterior distri-

butions which will be used for subsequent analyses. Subjectivity however, is actually a

strength of the Bayesian methodology, since it allows for an examination of a range of

posterior distributions (Van Boekel, et.al., 2004).

Even though the choice of a prior distribution might have been, and still is, a contro-

versial and much criticized step in a Bayesian analysis, continuous research into the

specification of prior distributions has assisted in reducing much of the controversy sur-

rounding this topic (Van Boekel, et.al., 2004). The use of non - informative -, reference

-, and probability matching priors have also greatly assisted in eliminating some of the

controversy and criticism surrounding the choice of a prior distribution to be used for

a Bayesian analysis. Non - informative prior distributions, as the name suggests, are

prior distributions that play a minimal role in the posterior distribution. If prior informa-

tion is vague and unsubstantial, the prior information will carry negligible weight and

the posterior distribution will in effect be based entirely on information contained in

the data as expressed in the likelihood function (Van Boekel, et.al., 2004). Non - in-

formative prior distributions can be developed through the use of reference priors or

probability matching priors (Jandrell and van der Merwe, 2007).

Conceptual and theoretical methods devoted to the identification of appropriate

procedures for the formulation of objective prior distributions, have been studied ex-

tensively (Berger, Bernardo and Sun, 2009). One of the most utilized approaches to

developing objective prior distributions, has been reference analysis introduced by

Bernardo (1979) and further developed by Berger and Bernardo (1989, 1992a, 1992b,

1992c) and Sun and Berger (1998). Objective Bayesian inference is produced by ref-

erence analysis, in the sense that inferential statements depend only on the assumed

model and the available data. Therefore, in a certain information - theoretic sense,

the prior distribution used to make an inference is least informative (Berger, Bernardo

and Sun, 2009). Informative - theoretical concepts are used in reference analysis to
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make precise the idea of an objective prior which should be maximally dominated

by the data, in the sense of maximizing the missing information about the parameter

(Berger, Bernardo and Sun, 2009). The idea behind reference priors is therefore to for-

malize a function that maximizes some measure of distance between the prior and

the posterior as data observations are made. By maximizing the distance, the data

is allowed to have the maximum effect on the posterior estimates. More formally, the

idea is to maximize the expected divergence of the posterior distribution relative to

the prior. The expected posterior information about θ is therefore maximized when the

prior density is p(θ). In some sense this implies therefore that p(θ) is the least informative

prior about θ. The reference prior is defined in the asymptotic limit, i.e. the limit of

the priors are considered as the data points approach infinity (Berger and Bernardo,

2009).

There is growing evidence, mainly through examples, suggesting that the reference

prior algorithm by Berger and Bernardo (1992c) provides sensible answers from a Bayesian

point of view (van der Merwe, 2000). More limited evidence also suggests that fre-

quentist properties from reference posteriors are asymptotically “reasonable” (van der

Merwe, 2000). As mentioned, the reference prior is motivated by an asymptotic argu-

ment, that of maximizing asymptotic missing information (van der Merwe, 2000). In

other words, the concept behind the use of reference prior distributions is that it max-

imizes the expected posterior information about θ when the prior density is p(θ). In

the case of scalar parameters, the Jeffreys’ prior which has the feature of providing

accurate frequentist inference, is used as reference prior (van der Merwe, 2000). For

multiparameter settings the situation is much less clear and relatively complicated,

since the reference prior algorithm depends on the ordering of the parameters and

how the parameter vector is divided into sub - vectors (van der Merwe, 2000). Berger

and Bernardo (1992c) however suggested that this problem can be overcome if one

allows multiple groups “ordered” in terms of inferential importance (van der Merwe,

2000). The reference prior for the implied conditional problem is then determined
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through a succession of analyses (van der Merwe, 2000). In particular, Berger and

Bernardo (1992c) recommended that the reference prior be based on having each

parameter in its own group (van der Merwe, 2000). In doing so, each conditional ref-

erence prior will be only one - dimensional (van der Merwe, 2000). In order to obtain a

reference prior for a certain ordering of the parameters, the Fisher information matrix

must first be obtained. For more information as well as a formal definition of reference

priors, see Berger and Bernardo (2009).

Probability matching priors, on the other hand, are priors for which the posterior prob-

abilities of certain aspects are exactly or approximately equal to their coverage prob-

abilities (Sweeting, 2005) and was found to be appealing to both frequentists and

Bayesians alike (Ghosh et.al., 2008). A probability matching prior is therefore a prior

distribution under which the posterior probabilities of certain regions co-inside either

exactly or approximately with their coverage probabilities (Datta and Sweeting, 2005).

As a simple example, consider an observation X from a N(θ, 1) distribution where the

parameter θ is unknown. If an improper uniform prior π is taken over the real line of θ,

then the posterior distribution of Z = θ −X is exactly the same as its sampling distribu-

tion. This implies that prπ{θ ≤ θα(X)|X} = prθ{θ ≤ θα(X)} = α, where θα(X) = X + Zα

and Zα represents the α quantile of a standard normal distribution. This implies that ev-

ery credible interval based on the pivotal quantity Z with posterior probability α, is also

a confidence interval with confidence level α. The uniform distribution therefore repre-

sents a probability matching prior. The use of probability matching priors will therefore

ensure exact or approximate frequentist validity of Bayesian credible regions (Datta

and Sweeting, 2005). For a parametric function t(θ), Datta and Ghosh (1995) derived

the differential equation that a prior must satisfy in order for the posterior probability of

a one - sided credibility interval and its frequentist probability to agree up to the or-

der number O(n−1), where n represents the sample size (Jandrell and van der Merwe,

2007). According to Datta and Ghosh (1995), this equation is identical to Stein’s equa-

tion for a slightly different problem (see Stein, 1985). To illustrate the method for more
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complex examples, suppose X1, ..., Xn are independently and identically distributed

with density f(x). Also suppose that θ represents a p - dimensional parameter vector

given by θ = (θ1, ..., θp) (Datta and Ghosh, 1995). For θ, also consider a prior density

p(θ) which has the following property of matching frequentist and posterior probability

for a real - valued twice continuously differentiable parametric function t(θ):

Then

Pθ

[√
n{t(θ)− t(θ̂)}√

b
≤ Z

]
= Pp(θ)

[√
n{t(θ)− t(θ̂)}√

b
≤ Z |X

]
+Op(n

−1) (1.1.1)

for all values of Z. In equation 1.1.1, θ̂ represents the posterior mode or maximum like-

lihood estimator of θ and b represents the asymptotic posterior variance of
√
n{t(θ) −

t(θ̂)} up to Op(n−
1
2 ), Pθ(.) represents the joint probability measure of X = [X1, ..., Xn]

′

under θ, and, Pp(θ)(.|X) represents the posterior probability measure of θ under p(θ)

(Datta and Ghosh, 1995). Priors such as p(θ) may be sought in an attempt to rec-

oncile a frequentist and Bayesian approach (Peers, 1965), to find or validate a non

- informative prior distribution (Berger and Barnardo, 1989) or to construct frequentist

confidence sets (Stein, 1985) (Datta and Ghosh, 1995). To be more specific, Datta and

Ghosh (1995) proved that the agreement between the posterior probability and the

frequentist probability i.e. equation 1.1.1 holds if and only if the differential equation

m∑
α=1

∂

∂θα
{ηα(θ)p(θ)} = 0

where p(θ) represents the probability matching prior for the vector of unknown param-

eters, θ.

Furthermore, let

∇t =
[
∂

∂θ1
t(θ), · · · , ∂

∂θm
t(θ)

]′
and

η(θ) =

 F−1(θ)∇t(θ)√
∇′t(θ)F−1(θ)∇t(θ)

 = [η1(θ), . . . , ηm(θ)]
′
.
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From the above, it is clear that η
′
(θ)F (θ)η(θ) = 1 for all θ where F−1(θ) represents the

inverse of F (θ). The mentioned F (θ) represents the Fisher information matrix of θ and

t(θ) a continuously differentiable function of the parameter θ. (Jandrell and van der

Merwe, 2007, and van der Merwe, 2000). Unlike uniform priors, a very important prop-

erty of probability matching priors is that these priors always remain invariant under

any one - to - one transformation of the parameters (van der Merwe, 2000). This prob-

ability matching criterion amounts to the requirement that the coverage probability

of a Bayesian credible region is asymptotically equivalent to the coverage probability

of the frequentist confidence region up to a certain order (Ghosh, et.al., 2008). Sev-

eral probability matching criteria exist and are accomplished through either posterior

quantiles, distribution functions, highest posterior density (HPD) regions or inversion of

certain test statistics (Ghosh, et.al., 2008). As shown above, probability matching pri-

ors are obtained by solving certain differential equations (Ghosh, et.al., 2008). It must

however be noted that probability matching priors based on posterior quantiles, distri-

bution functions, HPD regions or inversion of certain test statistics need not always be

identical (Ghosh, et.al., 2008). It may also happen that no prior exists which satisfies

all four criteria (Ghosh, et.al., 2008). For the remainder of this study, reference priors as

well as probability matching priors will be derived and used for some of the different

models which will be discussed. For further information regarded probability matching

priors, see Datta and Ghosh (1995).

The Bayesian approach to variance component estimation has been studied exten-

sively for balanced data were εij ∼ N(0, σ2
ε) (for i = 1, . . . , b and j = 1, . . . , k). The

Bayesian approach for balanced data was successfully implemented by Tiao and Tan

(1965) and Box and Tiao (1973). These authors obtained some approximations for pos-

terior densities of variance components and also derived some closed - form estima-

tors for these components of variance. Hill (1977) developed exact and approximate

Bayesian solutions for inference about variance components. The sampling properties

of Bayesian and other estimators were investigated by Klotz, Milton and Zacks (1969).
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Skene (1983) provided computational methods for obtaining marginal posterior densi-

ties of variance components for crossed - and nested models.

There is however little difference between the balanced and unbalanced case in a

Bayesian context (Chaloner, 1987). Hill (1965) obtained exact and approximate pos-

terior distributions for variance components in the balanced and unbalanced case.

Hill (1965) also discussed and provided the necessary integrations. Chaloner (1987)

provided a basic Bayesian approach for the unbalanced one - way variance com-

ponents model using a non - informative prior distribution that is uniform on the intra-

class correlation. Chaloner (1987) also illustrated that although the ANOVA estimators

can easily be calculated by hand, the Bayesian estimators are generally much more

efficient than these ANOVA estimators. In addition to these, Chaloner (1987) also pro-

vided a simulation study for the estimation of the ratio of the variance components

and investigated the sampling properties of the highest posterior density regions for

this ratio. It was also pointed out by the author that although these highest posterior

density regions do not have the coverage probabilities of confidence intervals, they

do lead to sensible interval estimates that are never empty. Analytical results for the

estimation of a production process was provided by Hahn and Raghunathan (1988).

The Bayesian approach to variance component estimation was revisited after the

development of Markov chain Monte Carlo methods by authors like Gelfand et.al.

(1990), Sun et.al. (1996), Wolfinger (1998), Wolfinger and Kass (2000) and more recently

Wilson et.al. (2004). Sun et.al. (1996) demonstrated that with the advent of powerful

techniques such as importance sampling, Markov chain iterations and modern usage

of Laplacian approximations, it became possible to provide detailed finite sample in-

ference for many variance component models. Also, since the computations could

be handled more efficiently, importance sampling, Laplacian approximations and the

Gibbs sampler permitted the consideration of models and prior assumptions of high

complexity. Sun et.al. (1996) also showed that the Bayesian estimates of the first stage

parameters have excellent frequentist properties when uniform priors are assumed for
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variance components. The authors also mentioned that if prior knowledge was avail-

able, these estimates could further be improved in a subjective sense, through the use

of inverted chi - square distributions for the variance components. Interval estimates

and posterior probabilities were also readily available.

Wolfinger (1998) used Markov chain Monte Carlo simulation techniques to generate

a random sample from the joint posterior distribution of the mean and the variance

parameters to construct a sample from other relevant posterior distributions. Wolfinger

(1998) also presented a simulation based approach for determining Bayesian toler-

ance intervals in variance component models and illustrated that different kinds of

tolerance intervals could be determined in a straightforward way. It was also pointed

out that this methodology could easily be tailored to particular applications. Wolfinger

and Kass (2000) indicated that although Gibbs sampling is easy to implement for bal-

anced data using conjugate priors, simulating from full conditional posterior densities

can become difficult for the analysis of unbalanced data with possibly non - conju-

gate priors. The authors therefore considered alternative Markov chain Monte Carlo

methods and proposed and investigated a method for posterior simulation for a vari-

ance component model based on an independence chain. A default reference prior

(Jeffreys’ prior based on the restricted likelihood) was used (Wolfinger and Kass, 2000).

1.2 Outline of the Research

The purpose of this research study is to provide full Bayesian solutions to variance com-

ponent and tolerance interval estimation for various variance component models.

Reference priors as well as probability matching priors will be derived and then used

for determining joint posterior distributions.

To make appropriate inference in Bayesian analyses however, marginal posterior dis-

tributions and predictive densities are needed. Due to the complexity of the joint
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posterior distribution, it is impossible to obtain these marginal posterior densities and

predictive densities analytically. Markov chain Monte Carlo (MCMC) simulation pro-

cedures will therefore be used to estimate these marginal posterior densities of the

unknown parameters and predictive densities of future observations or averages of

future observations. In some cases a well known Markov chain Monte Carlo simula-

tion method known as the Gibbs sampler will be employed, while a weighted Monte

Carlo simulation method will be proposed for the determination of fixed - in - advance

tolerance intervals if probability matching prior distributions are used as prior for the

content of these fixed - in - advance tolerance intervals.

In chapter 2, tolerance intervals will be determined for a simple linear model (univari-

ate normal model) with one variance component. The usual univariate normal model

given by

yi = µ+ εi

will therefore be considered which postulates that a quantitative observation con-

sists of a constant target value µ, plus random variation about this fixed target value

(Laubscher, 1996). As mentioned, µ represents the fixed target value, yi represents a

single measurement of the response variable made on the ith item (i = 1, . . . , n where

n represents the sample size) and εi denotes random variation about zero (Laubscher,

1996). It is usually assumed that the ε′is are independently normally distributed with

unknown constant variance σ2
ε , i.e. εi ∼ N(0, σ2

ε) (Laubscher, 1996). If in this case the

tolerance limits are defined as those limits that contain 100(α)% of the distribution of the

quality characteristic, then the one - sided tolerance limit is simply the δth percentile of

the quantile q of the N(µ, σ2
ε) distribution given by

q = µ+ zασε

where zα represents a standard normal (N(0, 1)) value for which the probability greater

than zα (p(Z ≥ zα)) is at most equals to α.
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It will also be shown that the Jeffreys’ independence prior distribution given by

p(µ, σ2) ∝ σ−2
ε

is both a reference prior and a probability matching prior for this quantile.

In addition to the above, unconditional central moments for

q = µ+ zασε

will also be determined. This will be followed by the derivation of the posterior density

and unconditional central moments for the difference between two quantiles used

to determine the (α, δ) tolerance intervals. Multiple comparisons procedures for dif-

ferences between more than two quantiles will also be provided and illustrated using

summary data obtained from Hubele, et.al. (2005).

Chapter 3 will outline the methodology and methods used by Wolfinger (1998) for

determining tolerance intervals for one - way random effects models using a non -

informative prior. Since a random effects model will be discussed, two variance com-

ponents will be considered. The method will be illustrated using a medicinal tablet

manufacturing example.

In Chapter 4, the theory and methods proposed by Wolfinger (1998) will be extended

to include tolerance intervals for averages of observations from new or unknown batches

in the case of a random effects model. Reference and probability matching priors will

be derived for the αth quantile of the distribution of averages of observations from

new or unknown batches. It will also be shown that a proposed prior distribution for

the content of the fixed - in - advance tolerance interval, is a probability matching

prior as well. The Bayesian simulation method will be illustrated using the same medici-

nal tablet manufacturing example as used in Chapter 3. A numerical experiment will

be performed to investigate the frequentist properties of the Bayesian interval for the

αth quantile under the probability matching prior.

Chapter 5 will propose and discuss the estimation of Bayesian tolerance intervals for a

balanced one - way random effects model with student t - distributed measurement
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errors. A one - way random effects model with non - standard measurement errors

will therefore be considered. For the estimation of the tolerance intervals, it was de-

cided to use non - informative prior distributions for the parameters of interest, and a

truncated exponential distribution as prior for the degrees of freedom ν. The proce-

dure will be illustrated using an example obtained from Wilson, et.al. (2004). Given the

nature of the problem, a well known Markov chain Monte Carlo simulation method

known as the Gibbs sampler will be employed for the simulation process. In addition,

since the assumption of Gaussian errors will be relaxed in the direction of the student

t - family to accommodate for the possibility of outlying part measurements, it will be

illustrated how the Bayesian method proposed for this specific case can be used to

identify possible outlying part measurements.

In Chapter 6, tolerance intervals will be determined for a balanced two - factor nested

random effects model. It will also be shown that the prior distributions proposed for the

αth quantile of the distribution of averages of k packages with r samples per package

from any new or unknown day, and the content of the fixed - in - advance tolerance

interval, are both probability matching priors. This Bayesian method will be illustrated

using an example obtained from the Bellville works of SANS Fibres (Pty.) Ltd. in South

Africa. The data was collected by Prof. Nico F. Laubscher, company statistician at the

time of data collection at SANS Fibres.

Chapter 7 will conclude with a summary of the Bayesian methods used. Recommen-

dations and suggestions for further research will also be provided.

The software package MATHWORKS MATLAB will be used to perform all calculations

and simulations. Unless otherwise stated, and in section headings, all vectors in math-

ematical equations will be indicated by lower case letters typed in bold face, for ex-

ample the vector a compared to the non - vector a.



Chapter 2

Simple Linear Model - Univariate Normal

Model

In this chapter, tolerance intervals will be determined for the univariate normal model

using two Bayesian simulation methods. Exact and estimated marginal posterior dis-

tributions will be provided for the location - and variance parameters. It will also be

shown that the proposed Jeffreys’ independence prior is a reference prior as well as a

probability matching prior for the αth quantile of a N(µ, σ2
ε) distribution. Similarly it will

be shown that a prior distribution for the content of the fixed - in - advance tolerance

interval, is also a probability matching prior. The posterior distribution of this content of

the fixed - in - advance tolerance interval, can also be obtained using two illustrated

Bayesian simulation methods. In addition, exact moments of the αth quantile and the

difference between two α quantiles will be derived. This will be followed by two pro-

posed methods for comparing more than two α quantiles. A Bayesian simulation study

will follow to investigate the frequentist properties of these two proposed methods for

comparing more than two α quantiles.

28
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2.1 Introduction

The estimation of variation or variance components serve as an integral part of the

evaluation of measurement variation that is required for a variety of fields. To effec-

tively understand these measurements, decision makers require both point and inter-

val estimates (van der Rijst, 2006). Much research concerning the development of

confidence intervals for variance components have been conducted for fixed effects

-, random effects - and mixed models (van der Rijst, 2006).

The univariate normal model is by far the most developed linear model. It is interesting

to note that R.A. Fisher (1924) developed a procedure for analyzing the fixed effects

model (if sampling takes place from d = 1, . . . , g normal populations with means µd

and equal variances σ2
d and the focus is on making inferences about µd) and called

this procedure the “analysis of variance”. The procedure included optimum methods

for point estimation, confidence intervals and hypothesis tests (van der Rijst, 2006).

During the 1930’s, 1940’s and 1950’s a tremendous amount of work were done which

generalized this model (van der Rijst, 2006). In a classical paper Kolodziejczyk (1935)

provided general theory for linear models which also included the fixed effect model

(van der Rijst, 2006). Most papers on variance components during the 1930’s and

1940’s were however concerned with point estimation (van der Rijst, 2006). During the

1940’s and throughout the 1950’s much work were done on procedures for obtaining

approximate confidence intervals for variance components and also for linear combi-

nations of variance components (van der Rijst, 2006). This work included contributions

by Satterthwaite (1941, 1946), Crump (1951), Green (1954), Huitson (1955), Moriguti

(1954), Welch (1956) and Bulmer (1957). Most of the work on variance components

during this period were based on the analysis of variance as if the model was a fixed

effect model (van der Rijst, 2006).

During the 1960’s and 1970’s, point estimation of variance components received a

great deal of attention (van der Rijst, 2006). Graybill and Hultquist (1961) provided
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conditions for obtaining optimum point estimates for linear combinations of variance

components. Searle (1971) also provided a summary of research done concerning

point estimation of variance components, while papers concerning confidence inter-

vals for variance components started appearing in the late 1970’s (van der Rijst, 2006).

Burdick and Graybill (1988) reviewed this research and reported the present status of

confidence intervals for functions of variance components (van der Rijst, 2006). It must

be noted that up to that time, most of the results concerning confidence intervals

on functions of variance components have been considered for balanced variance

components models (van der Rijst, 2006). Searle (1988) however reviewed some of the

history and results obtained for unbalanced and mixed models (van der Rijst, 2006).

As was mentioned, to see if a manufacturing process was in control by answering the

three research questions as proposed by Wolfinger (1998) and provided in Chapter 1,

three kinds of commonly used tolerance intervals can be determined.

The purpose of the remainder of this chapter is to provide a full Bayesian solution to

the problem of variance component and tolerance interval estimation for a one -

way fixed effect model with one variance component (the univariate normal model).

It will also be shown that the proposed prior distribution to obtain the (α, δ) tolerance

intervals is a reference prior as well as a probability matching prior. These proposed

methods will be illustrated using summary data from flatness measurements obtained

from Hubele et. al. (2005).

2.2 The Normal Linear Model with One Variance Component

To illustrate how the Bayesian approach to variance component and tolerance inter-

val estimation for the fixed effect model can be employed, consider the usual normal

linear model given by

yi = µ+ εi (2.2.1)
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which as mentioned in Chapter 1, postulates that a quantitative observation consists

of a constant target value µ, plus random variation about this fixed target value (Laub-

scher, 1996). Also as mentioned, µ represents the fixed target value, yi represents a

single measurement of the response variable made on the ith item (i = 1, . . . , n where

n represents the sample size) and εi denotes random variation about zero (Laubscher,

1996). It is usually assumed that the ε′is are independently normally distributed with

mean equal to zero and unknown constant variance σ2
ε , i.e. εi ∼ N(0, σ2

ε) (Laubscher,

1996).

2.3 The Prior Distribution

As was mentioned in Chapter 1, the choice of a prior distribution is a very difficult and

controversial step in any Bayesian analysis, since a prior distribution can be viewed as

a description of what is in fact known about a parameter before the data is observed

(Box and Tiao, 1973, Gianola and Fernando, 1986, and Jandrell and van der Merwe,

2007).

For the univariate normal model given in equation 2.2.1, suppose that yi (i = 1, . . . , n)

follow independent and identically distributed normal distributions with mean µ and

variance σ2
ε . For a prior distribution, we assume that the information is diffuse or vague

(van der Merwe and Hugo, 2008). The following non - informative prior distribution also

called the Jeffreys’ independence prior is therefore proposed for the model given in

equation 2.2.1.

p(µ, σ2
ε) ∝ σ−2

ε (2.3.1)

The determination of reasonable, non - informative priors in multiparameter problems

is not easy; common non - informative priors, such as a Jeffreys’ prior, can have fea-

tures that have an unexpected dramatic effect on the posterior. In recognition of this

problem, Berger and Bernardo (1992c) proposed the reference prior approach to the
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development of non - informative priors. This approach has the key feature of a pos-

sible dependence between the reference prior on the specification of parameters of

interest and nuisance parameters. As mentioned, the solution however depends on

the ordering of the parameters and how the parameter vector is divided into sub -

vectors. In spite of these difficulties, there is growing evidence, that reference priors

provide sensible answers from a Bayesian point of view.

As in the case of the Jeffreys’ prior, the reference prior method is derived from the

Fisher information matrix. To obtain the Fisher information matrix, the expected values

of the second derivatives of the log likelihood must be calculated. As mentioned,

since reference priors depend on the group ordering of the parameters, Berger and

Bernardo (1992c) in particular recommended that the reference prior be based on

having each parameter in its own group. This will have the effect that each conditional

reference prior is one - dimensional.

It will now be examined to see if the Jeffreys’ independence prior distribution proposed

in equation 2.3.1 is in fact a reference prior distribution for the quantile given by

q = µ+ zασε. (2.3.2)

where zα denotes the αth quantile of a standard normal distribution. Equation 2.3.2 is

as mentioned in Chapter 1, the αth quantile of N(µ, σ2
ε).

Theorem 2.3.1

For the univariate normal model, the Jeffreys’ independence prior distribution p(µ, σ2
ε) ∝

σ−2
ε (i.e. equation 2.3.1) is a reference prior for the αth quantile of N(µ, σ2

ε) given by

q = µ+ zασε ,

which will be used to determine the (α, δ) tolerance intervals.
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Proof

The proof of Theorem 2.3.1 is given in Appendix A.

The reference prior is but one - way to obtain useful non - informative priors. Datta

and Ghosh (1995), on the other hand, derived the differential equation which a prior

must satisfy if the posterior probability of a one - sided credibility interval (Bayesian

confidence interval) for a parametric function and its frequentist probability agree up

to O(n−1), where n represents the sample size.

To see if the non - informative prior given in equation 2.3.1 satisfies the probability

matching criteria for the quantile given in equation 2.3.2, the following theorem will

now be proved.

Theorem 2.3.2

For the univariate normal model, the Jeffreys’ independence prior distribution p(µ, σ2
ε) ∝

σ−2
ε (i.e. equation 2.3.1) is a probability matching prior for the αth quantile of N(µ, σ2

ε)

given by

q = µ+ zασε .

Proof

The proof of Theorem 2.3.2 is given in Appendix A.

2.4 The Posterior Distribution

A Bayesian analysis typically begins with the assignment of probability distributions to

all unknown parameters associated with some parametric model of interest (Jandrell

and van der Merwe, 2007 and Wolfinger, 1998). Once data have been observed,
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inference is based on the posterior density of the parameters (Jandrell and van der

Merwe, 2007). Using Bayes’s theorem, the posterior distribution is computed in unnor-

malized form by multiplying the likelihood function of the data with the prior density of

the unknown parameters (Jandrell and van der Merwe, 2007 and Wolfinger, 1998).

For the simple linear model given in equation 2.2.1, the likelihood function of the un-

known parameters, µ and σ2
ε , is given by

L(µ, σ2
ε | y) ∝ (σ2

ε)
− 1

2
nexp

{
−1

2

[
n(µ−y)2

σ2
ε

+ (n−1)s2

σ2
ε

]}
.

As was mentioned , the joint posterior distribution of µ and σ2
ε is then obtained by

multiplying the likelihood function with the prior distribution given in equation 2.3.1.

The joint posterior distribution is then given by

p(µ, σ2
ε | y) ∝ (σ2

ε)
− 1

2
(n+2)exp

{
−1

2

[
n(µ−y)2

σ2
ε

+ (n−1)s2

σ2
ε

]}
.

From the posterior distribution it is easy to show that the conditional posterior distribu-

tion of µ (conditional on σ2
ε ) is given by

µ|σ2
ε ,y ∼ N(y,

σ2
ε

n
). (2.4.1)

It also follows easily from the joint posterior distribution that the marginal posterior dis-

tribution of the variance component, σ2
ε , is given by

p(σ2
ε |y) = K̃(σ2

ε)
− 1

2
(ν+2)exp

{
−1

2

(n− 1)s2

σ2
ε

}
∀ σ2 > 0 (2.4.2)

where ν = n− 1. Equation 2.4.2 is in the general form of an inverse gamma distribution

where

y = [y1, y2, . . . , yn]
′

represents the data vector,

y = 1
n

n∑
i=1

yi represents the sample mean,

s2 = 1
n−1

n∑
i=1

(yi − y)2 represents the sample variance,
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K̃ represents a normalization constant,

n represents the sample size, and as mentioned ν = n− 1.

From equation 2.4.2 it can also easily be shown that the normalization constant K̃ is

given by

K̃ =
{

(n−1)s2

2

} 1
2

(n−1)

· 1
Γ(n−1

2
)

.

2.5 Bayesian Simulation

The Bayesian method proposed for the univariate normal model given in equation

2.2.1 will now be illustrated using the following summary data of flatness measurements

obtained from Example 1 in Hubele, et.al. (2005).

Summary data from Example 1 was obtained from two industrial processes used to

make ceramic parts and represents summary statistics from actual flatness measure-

ments (Hubele, et.al., 2005). The actual data used to obtain the summary statistics,

were collected from stable processes and passed goodness - of - fit tests for normality

(Hubele, et.al., 2005). The summary statistics from Example 1 obtained from Hubele,

et.al. (2005) is provided in Table 2.1 (unfortunately the unit of measurement is not given

in the article by Hubele, et.al., 2005).

Table 2.1: Example 1: Summary Data of Actual Flatness Measurements Obtained from

Two Industrial Processes.

d nd xd sd

1 36 0.0070 0.000986

2 27 0.0058 0.000981
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The univariate normal model given in equation 2.2.1 has only two unknown parame-

ters, i.e. µ and σ2
ε , and as such is not that complex. Therefore, the marginal posterior

distributions of µ and σ2
ε can be obtained analytically for each of the two populations.

As was mentioned, the marginal posterior distribution of the variance component, σ2
ε ,

is in the general form of an inverse gamma distribution and is given by equation 2.4.2. It

was also mentioned that the conditional posterior distribution of the target value µ. i.e.

p(µ|σ2
ε ,y) was in the general form of a normal distribution with mean y and variance

σ2
ε
n , and, is given in equation 2.4.1. The marginal posterior distribution of µ, i.e. p(µ|y)

will now be determined.

It can easily be shown that the marginal posterior distribution of the target value µ for

the univariate normal model given in equation 2.2.1 is given by

p(µ|y) =
Γ(ν+1

2
)

Γ(ν
2
)
·
√
n√

πνs2
·
[
n(µ− y)2

νs2
+ 1

]− 1
2
n

(2.5.1)

which is in the general form of a student t - distribution with ν = n − 1 degrees of

freedom,

E(µ|y) = y and

V ar(µ|y) = E
(

1
n
σ2
ε

)
= E

(
1
n
νs2

χ2
ν

)
= νs2

n
E
(

1
χ2
ν

)
= (n−1)s2

n

(
1

ν−2

)
= 1

n

(
n−1
n−3

)
s2.

The marginal posterior distribution of the target value µ for the first sample given in

Table 2.1, i.e., p(µ|y) is given in Figure 2.5.1.

The 95% equal tail credibility interval for p(µ|y) is given by [0.0067 , 0.0073]. Also, the

marginal posterior distribution of σ2
ε , i.e. p(σ2

ε |y), for the first sample given in Table 2.1, is

given in Figure 2.5.2.

For the marginal posterior distribution of the error variance, i.e. p(σ2
ε |y), the 95% equal

tail credibility interval is given by
[
6.4042× 10−7 , 1.6451× 10−6

]
.
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Figure 2.5.1: Marginal Posterior Distribution of µ (using the Student t - Distribution).

Figure 2.5.2: Marginal Posterior Distribution of σ2
ε (using the Inverse Gamma

Distribution).
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Markov chain Monte Carlo (MCMC) simulation can also be used to obtain random

samples from the joint posterior density of the unknown model parameters by using a

computer random number generator1 (Wolfinger, 1998 and Wilson et. al., 2004).

Since the selected sample is dependent on the random number seed, different seeds

will produce different samples (Wolfinger, 1998). It is however important that selected

samples be large enough (Wolfinger, 1998). Differences between inferences from dif-

ferent samples will then be small (Wolfinger, 1998).

As was mentioned, estimated posterior distributions and predictive densities for the

variance component model given in equation 2.2.1 can be obtained by using MCMC

procedures (Jandrell and van der Merwe, 2007). These unconditional posterior distribu-

tions can be obtained through Monte Carlo simulations where independent samples

from the joint posterior distribution of the unknown parameters are simulated. These

simulated samples will represent samples from the marginal posterior distribution of the

unknown parameter σ2
ε , i.e., p(σ2

ε |y), and conditional posterior distribution of the un-

known parameter µ, i.e. p(µ|σ2
ε ,y).

Unconditional posterior distributions for the unknown parameters µ, and σ2
ε are simu-

lated as follows:

a.) Simulation of σ2
ε

Simulate ˜̀= 10000 independent values for σ2
ε . Using equation 2.4.2, if ν = n − 1, it can

easily be shown that

νs2

σ2
ε

=

n∑
i=1

(yi−y)2

σ2
ε

∼ χ2
ν

1Computer - generated numbers are not really random, since computers are deterministic. But given a number
to start with, generally called a random number seed - a number of mathematical operations can be performed on
the seed so as to generate unrelated (pseudo random) numbers. If the same random number seed is used more
than once identical random numbers will be generated every time. Using a different seed, would produce a different
number.
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which follows a chi - square distribution with ν degrees of freedom.

From this it follows that the unknown variance component σ2
ε can easily be simulated

from this χ2
ν distribution by obtaining

σ2
ε =

n∑
i=1

(yi−y)2

χ2
ν

.

The ˜̀ = 10000 simulated values for σ2
ε can then be used to draw a histogram of the

estimated marginal posterior distribution p(σ2
ε |y). For the summary data given in Table

2.1, the histogram of the estimated marginal posterior distribution of σ2
ε is given in Figure

2.5.3.

b.) Simulation of µ

The simulation of µ involves substituting each of the ˜̀ = 10000 simulated values for

σ2
ε into the conditional posterior distribution of µ given by p(µ|σ2

ε ,y). This conditional

posterior distribution of µ is given in equation 2.4.1. For each of the ˜̀= 10000 simulated

values for σ2
ε , a value for µ will therefore be drawn from this normal distribution given

in equation 2.4.1. The resulting set of ˜̀ = 10000 simulated values for µ can then be

plotted in a histogram representing the estimated marginal posterior distribution of µ.

This histogram is provided in Figure 2.5.4 for the summary data given in Table 2.1.

The marginal posterior distribution of µ can also be obtained using the Rao Blackwell

method (Gelfand and Smith, 1990). Substitute each of the simulated values for σ2
ε into

the normal distribution given in equation 2.4.1. For each of the ˜̀ = 10000 simulated

σ2
ε values, plot the posterior distribution of µ conditional on σ2

εi ∀ i = 1, . . . , 10000. The

10000 conditional posterior distribution
(
p(µ|σ2

ε ,y)
)

curves are then overlaid and the

average distribution of these 10000 conditional posterior distributions are obtained. This

average distribution is given in Figure 2.5.5 and represents the estimated unconditional

or marginal posterior distribution of µ, i.e. p(µ|y) which was determined for the first

sample given in Table 2.1. This distribution will be similar to a student t - distribution with

ν degrees of freedom.
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Figure 2.5.3: Histogram of the Estimated Marginal Posterior Distribution of σ2
ε .

From Figure 2.5.3 we can see that the histogram is not extremely skew. This is due to

the relatively high number of degrees of freedom. Remember that the sample size

n = 36 for sample 1 given in Table 2.1, thus making the degrees of freedom necessary

for simulating the error variance σ2
ε equal to ν = n− 1 = 35. By comparing Figures 2.5.2

and 2.5.3, it is also clear that the shape of the histogram is almost identical to the shape

of the marginal posterior distribution of σ2
ε plotted using the inverse gamma distribution.

This indicates that the two methods used for obtaining p(σ2
ε |y) are equivalent. The 95%

credibility intervals are also for all practical purpose the same.

As mentioned, Figures 2.5.4 and 2.5.5 represent respectively the histogram of the es-

timated marginal posterior distribution p(µ|y), and, the estimated marginal posterior

distribution p(µ|y), obtained using the Rao Blackwell method. From Figures 2.5.4 and

2.5.5 it can be seen that the shapes of both the histogram and the plot of p(µ|σ2
ε) are

for all practical purposes identical to Figure 2.5.1 which was obtained by plotting the

student t - distribution. Although not given here, the same can also be said for the 95%
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Figure 2.5.4: Histogram of the Estimated Marginal Posterior Distribution of µ.

Figure 2.5.5: Estimated Marginal Posterior Distribution of µ (using the Rao Blackwell
Method).
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credibility intervals.

Since both unknown parameters (µ and σ2
ε ) have been simulated, we can now pro-

ceed and answer the three research questions proposed by Wolfinger (1998) and

given in Chapter 1. This will be done using the three tolerance intervals also proposed

by Wolfinger (1998).

2.6 Tolerance Intervals

According to Krishnamoorthy and Mathew (2009), a tolerance interval can be defined

if the content and confidence levels are specified. The content will be denoted by α

while the confidence level will be denoted by δ. An (α, δ) tolerance interval will there-

fore simply be defined as a 100(δ)% confidence interval constructed using a random

sample, and, is required to contain a proportion α (content) or more of the sampled

population (Krishnamoorthy and Mathew, 2009). Simply put, a tolerance interval there-

fore represents a confidence interval of the content of some population.

As mentioned, statistical tolerance intervals (or limits) are determined using sample

data obtained from some process (Jandrell and van der Merwe, 2007). The variation

visible in the process are quantified by these tolerance intervals (Jandrell and van der

Merwe, 2007). Based on sample data, the potential of the process is identified by

specifying minimum and maximum values (Jandrell and van der Merwe, 2007). These

minimum and maximum values bound a region that will probably (with probability δ)

contain more than a certain proportion, α, of the total population (Jandrell and van

der Merwe, 2007). It is however accepted that with the complimentary probability,

the bound region will contain less than the proportion α (Jandrell and van der Merwe,

2007).

The problem of determining tolerance intervals for a distribution based in observed

sample data have been investigated for a variety of applications by many authors
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(Wang and Iyer, 1994). Some of the earliest work in the subject was performed by Wilks

(1941, 1942), Wald (1942, 1943) and Wald and Wolfowitch (1946). The problem of es-

timating tolerance limits for a univariate distribution F , consists of finding two sample

statistics, gL and gU , such that with a certain level of confidence, δ, it can be stated

that at least a proportion of the population, α, is contained in the interval [gL, gU ]

(Wang and Iyer, 1994). This estimated two - sided α - content, δ - confidence ((α, δ)

for short) interval, is referred to as a tolerance interval for the distribution F (Wang

and Iyer, 1994). Problems like the one mentioned, have been studied extensively in

the case of a normal distribution with unknown mean (µ) and unknown variance (σ2)

(Wang and Iyer, 1994). To put it more generally, the two - sided (α, δ) tolerance inter-

val problem has been studied extensively for the case of the univariate normal model

(Wang and Iyer, 1994). For further discussions on the topic, see for example Odeh and

Owen (1980) and Hahn and Meeker (1991).

As was mentioned in Chapter 1, Wolfinger (1998) described three commonly used

tolerance intervals. These are the (α, δ) one - and two - sided tolerance intervals, the

α - expectation tolerance interval and the fixed - in - advance tolerance interval.

The remainder of this chapter will be dedicated to the Bayesian approach for estimat-

ing the three commonly used tolerance intervals as proposed by Wolfinger (1998) for

the univariate normal model given in equation 2.2.1. The Bayesian method will be illus-

trated for the first sample given in Table 2.1 and obtained from Hubele et.al. (2005). In

addition, the central moments for the quantile q = µ+zασε and the difference between

two quantiles will also be provided. The proposed Bayesian method for the differences

between two quantiles and the subsequent tolerance interval will be illustrated using

both samples 1 and 2 given in Table 2.1 and obtained from Hubele et.al. (2005). This will

be followed by two proposed Bayesian methods for comparing more than two quan-

tiles. These two proposed methods will also be demonstrated using summary data

from flatness measurements obtained from Hubele et.al. (2005) and given in Table 2.2.

For the data given in Table 2.2, a simulation study will follow to check the frequen-
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tist performance of the two proposed Bayesian multiple comparisons procedures, for

differences between more than two quantiles.

Table 2.2: Example 2: Summary Data of Actual Flatness Measurements Obtained from

Three Industrial Processes.

d nd xd Sd

1 20 0.00045 0.00012

2 20 0.00045 0.00009

3 20 0.00073 0.00010

As was mentioned for Table 2.1, the summary statistics provided in Table 2.2 were ob-

tained from three stable industrial processes used to make aluminium parts (Hubele

et.al., 2005). The summary statistics were obtained from actual flatness measurements

which passed goodness - of - fit tests for normality (Hubele, et.al., 2005). Similar to Table

2.1, the unit of measurement is unfortunately not given in the article by Hubele, et. al.

(2005).

The Bayesian simulation procedure for obtaining the three commonly used tolerance

intervals proposed by Wolfinger (1998) will now be illustrated using the first sample of

Example 1 given in Table 2.1.

2.6.1 One - Sided (α, δ) Tolerance Interval

As mentioned in Chapter 1, a (α, δ) upper (lower) tolerance limit is a statistic for which

at least 100(α)% of a population of an underlying random variable is less than (greater

than) the tolerance limit with 100(δ)% confidence (Jandrell and van der Merwe, 2007).

These mentioned (α, δ) tolerance intervals are typically applied in cases requiring long

- run forecasts about several observations from a process assumed to be in a state of
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statistical control (Jandrell and van der Merwe, 2007). In cases such as this, inference is

required about the actual quantiles of the assumed underlying probability distribution

(Jandrell and van der Merwe, 2007). Based on an available sample of measurements,

manufactures therefore use (α, δ) tolerance intervals to predict the future performance

of a manufactured product (Jandrell and van der Merwe, 2007).

According to Wolfinger (1998), the upper (α, δ) one - sided tolerance limit for the uni-

variate normal model given in equation 2.2.1 represents the δth sample quantile ob-

tained from the marginal posterior distribution of the αth quantile q of a N(µ, σ2
ε) distri-

bution (i.e. a quantile of a quantile), where q is given by

q = µ+ zασε (2.6.1)

and zα denotes the αth quantile of a standard normal distribution. Therefore, to con-

struct an upper one - sided (α, δ) tolerance interval, the estimated marginal posterior

distribution of q must be obtained, which in this case represents the αth quantile of the

N(µ, σ2
ε) distribution. The estimated marginal posterior distribution of q can easily be

obtained using two methods, both utilizing Bayesian simulation.

Method 1

i.) Simulate the variance component σ2
ε using the Bayesian simulation method

described in section 2.5.

ii.) Given the simulated variance component σ2
ε , simulate a value for µ using

equation 2.4.1.

iii.) Substitute these simulated values for σ2
ε and µ into equation 2.6.1 and cal-

culate q.

iv.) Repeat step i.) to iii.) for example ˜̀= 10000 times and plot a histogram for q.
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Figure 2.6.1.1: Histogram of the Estimated Marginal Posterior Distribution of the 0.95th
Quantile of N(µ, σ2

ε) for the First Sample Given in Table 2.1.

95% Equal Tail Credibility Interval: [0.0082 , 0.0092]
(0.95, 0.95) Upper One - Sided Tolerance Limit: 0.0091

The consequent plotted histogram represents the estimated marginal or unconditional

posterior distribution of q|y.

Using method 1, the resulting histogram representing the estimated marginal posterior

distribution of q|y for the first sample given in Table 2.1, is given in Figure 2.6.1.1. The

one - sided (α = 0.95, δ = 0.95) upper tolerance limit can also easily be determined by

ranking the simulated q values in order of magnitude (from small to large) and finding

the 100(0.95)th percentile of the ranked simulated values.

A second method can also be used to simulate the marginal posterior distribution of

q, i.e. p(q|y). This method can be performed as follows:
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Method 2

i.) Given equation 2.6.1 and the marginal posterior distribution of the variance

component σ2
ε given in equation 2.4.2, it follows that the conditional poste-

rior distribution of q|σ2
ε ,y is given by

p(q|σ2
ε ,y) ∼ N(y + zασε,

σ2
ε

n
). (2.6.2)

ii.) Simulate a variance component σ2
ε using the Bayesian simulation method

described in section 2.5.

iii.) Substitute σ2
ε and σε into equation 2.6.2 and draw the normal distribution.

iv.) Repeat steps ii.) and iii.) for example ˜̀= 10000 times.

v.) Using the Rao Blackwell method described in section 2.5, determine the

estimated marginal posterior distribution of q|y.

Using method 2, the estimated marginal posterior distribution of the quantile q given

by

q = µ+ z0.95σε = µ+ 1.645σε (2.6.3)

was determined for the first sample given in Table 2.1. The estimated marginal posterior

distribution of q is represented in Figure 2.6.1.2.

The 95% equal tail credibility interval for the estimated marginal posterior distribution

of q|y represented in Figure 2.6.1.2 is also equal to [0.0082 , 0.0092]. For the first sample

given in Table 2.1, the 95th percentile of the estimated marginal posterior distribution

of the quantile q given in equation 2.6.3 is equal to 0.0091, thus indicating the value of

which 95% of future unknown flatness measurements will be less than with probability

0.95. This therefore represents the Bayesian (0.95, 0.95) upper tolerance limit.
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Figure 2.6.1.2: Estimated Marginal Posterior Distribution of the 0.95th Quantile of
N(µ, σ2

ε) for the First Sample Given in Table 2.1.

95% Equal Tail Credibility Interval: [0.0082 , 0.0092]
(0.95, 0.95) Upper One - Sided Tolerance Limit: 0.0091

Similarly (using both methods 1 and 2), to construct a lower one - sided (α = 0.95, δ =

0.95) tolerance interval, the estimated marginal posterior distribution of ql must be ob-

tained, which in this case represents the (1− 0.95)th quantile of the N(µ, σ2
ε) distribution

with ql given by

ql = µ− z0.95σε = µ− 1.645σε (2.6.4)

where z0.95 = 1.645 represents the 0.95th quantile of a standard normal distribution.

Using method 1, the histogram of the estimated marginal posterior distribution of ql was

obtained for the first sample given in Table 2.1. This histogram is given in Figure 2.6.1.3,

while the estimated marginal posterior distribution of ql|y determined using method 2,

is provided in Figure 2.6.1.4.
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Figure 2.6.1.3: Histogram of the Estimated Marginal Posterior Distribution of the
(1− 0.95)th Quantile of N(µ, σ2

ε) for the First Sample Given in Table 2.1.

95% Equal Tail Credibility Interval: [0.0048 , 0.0058]
(0.95, 0.95) Lower One - Sided Tolerance Limit: 0.0049

The 95% equal tail credibility interval for the estimated marginal posterior distribution

of ql|y, represented in Figure 2.6.1.4, is equal to [0.0048 , 0.0058]. The lower one - sided

(0.95, 0.95) tolerance limit is equal to 0.0049. This represents the 100(1− 0.95)th percentile

of the estimated marginal posterior distribution of equation 2.6.4, thus indicating the

value of which 95% of future unknown flatness measurements will be greater than with

probability 0.95. This therefore represents the Bayesian “B - basis”, (α = 0.95, δ = 0.95)

lower tolerance limit (Wolfinger, 1998).

The Exact Moments of q|y

The exact moments of q|y will now be determined.

For the quantile q given in equation 2.6.1, i.e. q = µ+ zασε, it is known that

µ ∼ N(y, σ
2

n
) and νs2

σ2
ε
∼ χ2

ν where ν = n− 1.
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Figure 2.6.1.4: Estimated Marginal Posterior Distribution of the (1− 0.95)th Quantile of
N(µ, σ2

ε) for the First Sample Given in Table 2.1.

95% Equal Tail Credibility Interval: [0.0048 , 0.0058]
(0.95, 0.95) Lower One - Sided Tolerance Limit: 0.0049

It is therefore also known that

q = y + z σε√
n

+ zασε where z ∼ N(0, 1)

= y + σε{ z√
n

+ zα}

= y + (νs
2

χ2
ν

)
1
2{ z√

n
+ zα} .

The moments of the χ2
ν distribution will now be determined.

In general, the rth moment about the origin of ( 1
χ2
ν
)

1
2 is given by

E( 1
x
)
r
2 = 1

2
ν
2 Γ( ν

2
)

´∞
0
x

1
2

(ν−r)−1e−
1
2
xdx .

Since

´∞
0
x

1
2

(ν−r)−1e−
1
2
xdx = 2

1
2

(ν−r)Γ(ν−r
2

) ,
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it follows that

E( 1
x
)
r
2 =

2
1
2 (ν−r)Γ( ν−r

2
)

2
ν
2 Γ( ν

2
)

=
2

1
2 ν2−

r
2 Γ( ν−r

2
)

2
ν
2 Γ( ν

2
)

=
Γ( ν−r

2
)

2
r
2 Γ( ν

2
)

.

Note, for notational purposes, the first four moments about the origin of the conditional

distribution of q (conditional on σ2
ε ) is given by µ

′
1, µ

′
2, µ

′
3 and µ

′
4. Also, the central

moments of q given σ2
ε , is given by µ2, µ3 and µ4. Note also that the unconditional

moments about the origin of q is given by m
′
1, m

′
2, m

′
3 and m

′
4, while, the unconditional

central moments of q is given by m2, m3 and m4. We therefore have

µ
′
1 = y + zασε,

µ2 = σ2
ε

n
,

µ3 = 0,

µ4 = 3
(
σ2
ε

n

)2

.

Theorem 2.6.1.1

a.) For the univariate normal model given in equation 2.2.1, the mean (first mo-

ment about zero) of the marginal posterior distribution of q, i.e. p(q|y) is given

by

E(q|y) = y + zα(νs2)
1
2

Γ( ν−1
2

)

2
1
2 Γ( ν

2
)

.

b.) For the univariate normal model given in equation 2.2.1, the second central

moment of the marginal posterior distribution of q, i.e. p(q|y) is given by

V ar(q|y) = (νs2)
{

1
ν−2

[
z2
α + 1

n

]
− z2

α
Γ2( ν−1

2
)

2Γ2( ν
2

)

}
.

c.) For the univariate normal model given in equation 2.2.1, the third central

moment of the marginal posterior distribution of q, i.e. p(q|y) is given by

m3 = (νs2)
3
2

Γ( ν−3
2

)zα

2
3
2 Γ( ν

2
)

{[
1

(ν−2)

(
3
n
− z2

α(2ν − 7)
)]

+ z2
α(ν − 3)

Γ2( ν−1
2

)

Γ2( ν
2

)

}
.
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d.) For the univariate normal model given in equation 2.2.1, the fourth central

moment of the marginal posterior distribution of q, i.e. p(q|y) is given by

m4 =
(

3
n2 + 6z2

α

n
+ z4

α

)
(νs2)2

(ν−2)(ν−4)
− 3z4

α(νs2)2Γ4( ν−1
2

)

22Γ4( ν
2

)
− 6(ν−1)z2

α(νs2)2Γ( ν−3
2

)Γ( ν−1
2

)

22n(ν−2)Γ2( ν
2

)

+
2(ν−5)z4

α(νs2)2Γ( ν−3
2

)Γ( ν−1
2

)

22(ν−2)Γ2( ν
2

)
.

Proof

The proof of Theorem 2.6.1.1 is given in Appendix A.

2.6.2 Two - Sided (α, δ) Tolerance Interval

Wolfinger (1998) suggested that a two - sided (α, δ) tolerance interval can also be con-

structed. This two - sided interval needs to be one - dimensional and symmetric about

the posterior mean or some other form of central tendency (Wolfinger, 1998). Wolfin-

ger (1998) also mentioned that the construction of these two - sided (α, δ) tolerance

intervals are slightly more complex, since the simple procedure of computing upper

and lower limits separately and then combining them is not precisely valid. The reason

for this is that the two quantiles, i.e. q` and qu, do not have a posterior correlation equal

to 1 (Wolfinger, 1998).

Wolfinger (1998) therefore suggested that one way of constructing a valid two - sided

(α, δ) tolerance interval, is to begin by computing the two quantities, q` and qu given

by

1. q` = µ− zα
2
σε, and

2. qu = µ+ zα
2
σε.

These (q`, qu) pairs then form a sample from the bivariate posterior distribution of the

[ (1−α)
2

]th and [ (1+α)
2

]th quantiles (Wolfinger, 1998). Bayesian confidence regions for these
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Figure 2.6.2.1: Constructing a Two - Sided (0.95, 0.95) Tolerance Interval for the First
Sample Given in Table 2.1.

bivariate samples can be obtained, but are difficult to use in practice, since they are

two - dimensional ellipsoids. Wolfinger (1998) however succeeded in constructing a

two - sided (α, δ) tolerance interval that is one - dimensional and symmetric about the

mean. To obtain such an interval, Wolfinger (1998) suggested to first form a scatter plot

of q` versus qu, with q` on the vertical axis. A reference line given by

q` = −qu + 2y..

then needs to be constructed. Two additional lines then have to be drawn, one par-

allel to each axis and intersecting on the reference line. This intersection point is then

slid along the reference line until 100(1 − δ)% of the (q`, qu) pairs are contained in the

half rectangle opening towards the lower right portion of the graph (Wolfinger, 1998).

The coordinates of the resulting intersection point form a two - sided (α, δ) tolerance

interval of the desired form (Wolfinger, 1998). This procedure is graphically illustrated

for the first sample given in Table 2.1, in Figure 2.6.2.1.
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The scatterplot and subsequent two - sided (0.95, 0.95) tolerance interval depicted in

Figure 2.6.2.1 was determined in the following way:

i.) Simulate the variance component σ2
ε using the Bayesian simulation method

described in section 2.5.

ii.) Given the simulated variance component σ2
ε , simulate a value for µ using

equation 2.4.1.

iii.) For a two - sided (0.95, 0.95) tolerance interval, calculate the simulated val-

ues for q` = µ− 1.96σε and qu = µ+ 1.96σε by using the simulated values for

σ2
ε and µ.

iv.) Repeat steps i) - iii) for example ˜̀= 10000 times, draw the scatterplot and

use the method proposed by Wolfinger (1998) which was discussed earlier

in this section to obtain the two - sided (α = 0.95, δ = 0.95) tolerance interval.

For the first sample given in Table 2.1, the two - sided (0.95, 0.95) tolerance interval given

by [0.0047 , 0.0093] can be interpreted as follows: If ceramic parts are manufactured

using industrial process 1, 95% of the actual flatness measurements will fall in the interval

[0.0047 , 0.0093] with probability 0.95.

2.6.3 α - Expectation Tolerance Interval

The tolerance intervals discussed thus far, were α - content δ - confidence tolerance

intervals. Another type of tolerance interval investigated in literature is referred to as an

α - expectation tolerance interval. An α - expectation tolerance interval is an interval

such that the average content of the interval is α (Krishnamoorthy and Mathew, 2009).

According to Wolfinger (1998), the α - expectation tolerance interval addresses re-

search question 2 (mentioned in Chapter 1) and focus on prediction of one or a
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few future observations from a process. These α - expectation tolerance intervals are

therefore also prediction intervals for future observations (Krishnamoorthy and Mathew,

2009). Wolfinger (1998) also mentioned that since these α - expectation tolerance in-

tervals focus on prediction of one or a few future observations from a process, these

intervals tend to be narrower than corresponding (α, δ) tolerance intervals.

To construct α - expectation tolerance intervals, Wolfinger (1998) suggested that simu-

lations be conducted from an appropriate predictive density p(yf |y) where yf repre-

sents a future observation.

For the univariate normal model given in equation 2.2.1, the unconditional predictive

density of a future measurement from a process, i.e. p(yf |y) can analytically be ob-

tained.

Theorem 2.6.3.1

For the univariate normal model given in equation 2.2.1 the unconditional predictive

density of a future measurement from a process follows a student t - distribution with

ν = n− 1 degrees of freedom with,

E(yf |y) = y , and

V ar(yf |y) = (n+1)
n

(
n−1
n−3

)
s2 .

Proof

The proof of Theorem 2.6.3.1 is given in Appendix A.

The unconditional predictive distribution of yf , i.e. p(yf |y) can also be estimated using

Monte Carlo simulation. The three methods used to estimate the predictive distribution

of a future observation will now be described.
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Method 1

As was mentioned in the prove of Theorem 2.6.3.1, it is known that the conditional

predictive density of yf given µ and σ2
ε , is given by

yf |µ, σ2
ε ∼ N(µ, σ2

ε). (2.6.5)

i.) Simulate the variance component σ2
ε using the Bayesian simulation method

described in section 2.5.

ii.) Given the simulated variance component σ2
ε , simulate a value for µ using

equation 2.4.1.

iii.) Substitute these simulated values for σ2
ε and µ into equation 2.6.5 and draw

the normal distribution.

iv.) Repeat steps i.) to iii.) for example ˜̀= 10000 times.

v.) Using the Rao Blackwell method described in section 2.5, determine the

estimated unconditional predictive distribution of yf |y .

The estimated unconditional predictive distribution of yf |y, for the first sample given in

Table 2.1, constructed using method 1, is depicted in Figure 2.6.3.1.

Method 2

It was also mentioned in the proof of Theorem 2.6.3.1, that the conditional predictive

distribution of yf given σ2
ε , is given by

yf |σ2
ε ,y ∼ N

(
y,

(n+ 1)σ2
ε

n

)
. (2.6.6)

i.) Simulate the variance component σ2
ε using the Bayesian simulation method

described in section 2.5.
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Figure 2.6.3.1: Estimated Unconditional Predictive Distribution for the First Sample
Given in Table 2.1. Constructed using Method 1.

95% Equal Tail Credibility Interval or 0.95 - Expectation Tolerance Interval:
[0.0050 , 0.0090]

ii.) Substitute the value for the sample mean, y, obtained from the data, and

the simulated value for σ2
ε into equation 2.6.6 and draw the normal distribu-

tion.

iii.) Repeat steps i.) and ii.) for example ˜̀= 10000 times.

iv.) Using the Rao Blackwell method described in section 2.5, determine the

estimated unconditional predictive distribution of yf |y .

For illustrative purposes, the estimated unconditional predictive distribution of yf |y, for

the first sample given in Table 2.1, constructed using method 2, is provided in Figure

2.6.3.2.
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Figure 2.6.3.2: Estimated Unconditional Predictive Distribution for the First Sample
Given in Table 2.1. Constructed using Method 2.

95% Equal Tail Credibility Interval or 0.95 - Expectation Tolerance Interval:
[0.0050 , 0.0090]

Method 3

It was mentioned earlier that for the simple linear model given in equation 2.2.1, the un-

conditional predictive density of future measurements from a process can analytically

be obtained.

It was therefore proved in Theorem 2.6.3.1 that the unconditional predictive density,

i.e. p(yf |y) follows a student t - distribution with ν = n− 1 degrees of freedom given by

p(yf |y) =

{
νs2

2

} 1
2

(n−1)

Γ(ν
2
)

· n
1
2

√
2π(n+ 1)

1
2

· Γ(
n

2
) ·

[
2

n
(n+1)

(yf − y)2 + νs2

] 1
2
n

. (2.6.7)

i.) Calculate both the sample mean y, and variance s2, using the sample data.

ii.) Substitute both the sample mean and variance calculated from the sample

data into equation 2.6.7 (derived in the prove of Theorem 2.6.3.1) and draw

the student t - distribution.
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Figure 2.6.3.3: Unconditional Predictive Distribution p(yf |y) for the First Sample Given
in Table 2.1. Constructed using Method 3.

Using method 3, the unconditional predictive distribution, p(yf |y), for the first sample

given in Table 2.1, is depicted in Figure 2.6.3.3.

From Figures 2.6.1.1 to 2.6.3.3 it is clear that all three methods for constructing the

predictive distribution p(yf |y) are equivalent, since all three figures are for all practical

purposes the same.

To determine a two - sided α - expectation tolerance interval using methods 1 to 3, ob-

tain the (1−α
2 )th and (1+α

2 )th quantiles of the estimated unconditional - or unconditional

predictive densities.

For the first sample given in Table 2.1, this two - sided 0.95 - expectation tolerance

interval is given by [0.0050 , 0.0090] with posterior mean equals to 0.007. From this 0.95 -

expectation tolerance interval it follows that the process will be in control if 95% or more

future flatness measurements obtained from manufactured ceramic parts (manufac-

tured using industrial process 1) will fall in the interval [0.0050 , 0.0090].
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2.6.4 Fixed - in - Advance Tolerance Intervals

According to Wolfinger (1998), fixed - in - advance tolerance intervals answer research

question 3 mentioned in Chapter 1. These fixed - in - advance tolerance intervals

invert the prediction problem by considering the content of predetermined bounds

(Wolfinger, 1998).

To determine the content of a fixed - in - advance tolerance interval using the Bayesian

approach, the posterior density of the content has to be determined (Wolfinger, 1998).

If an upper fixed - in - advance limit, s, is specified for a sample with data assumed to

arise from the univariate normal model given in equation 2.2.1, then the content c of

the interval [s,∞] for each observation in the simulated sample is determined by

c = 1− Φ

[
s− µ
σε

]
(2.6.8)

where Φ [·] represents a standard normal cumulative distribution function (Wolfinger,

1998). The content c of the interval [s,∞] represents the fraction of process measure-

ments that lie above the fixed - in - advance preselected specification limit s. If the

content c is therefore found for each observation in the simulated sample, these cal-

culated c values form a sample from the posterior density of the content above a

preselected specification limit s (Wolfinger, 1998).

To determine a fixed - in - advance tolerance interval for the content of the interval

[s,∞], the following steps can be followed:

i.) Simulate the variance component σ2
ε using the Bayesian simulation method

explained in section 2.5.

ii.) Given the simulated variance component σ2
ε , simulate a value for µ using

equation 2.4.1.

iii.) Substitute the simulated values for σ2
ε and µ into equation 2.6.8 and deter-

mine the content c of the interval [s,∞].
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iv.) Repeat steps i.) to iii.) for example ˜̀= 10000 times to form a sample from

the posterior density of the content above the fixed - in - advance upper

specification limit s.

This sample of c values from the posterior density of the content can then be used to

draw a histogram. Wolfinger (1998) also mentioned that this sample of content values

can be used to determine estimates of the posterior mean, variance, quantiles or the

entire density of the content. A 100(α)% equal tail credibility interval can also easily

be obtained for the content of the interval [s,∞] by ranking the sample of c values in

order of magnitude and then finding the 100(1−α
2 )th and 100(1+α

2 )th percentiles of the

ranked simulated c values.

Using the method of Datta and Ghosh (1995), a probability matching prior for the

content c given in equation 2.6.8 can also be derived. This is given in the following

theorem.

Theorem 2.6.4.1

For the balanced univariate normal model given in equation 2.2.1, the prior distribution

πm(θ) ∝ σ−1
ε

[
1 +

(s− µ)2

2σ2
ε

] 1
2

(2.6.9)

is a probability matching prior for the content of the interval [s,∞] given by

c = 1− Φ
[
s−µ
σε

]

where Φ
[
s−µ
σε

]
represents a standard normal cumulative distribution function. The prior

distribution given by

πm(θ) ∝ σ−3

{
1 +

(s− µ)2

2σ2
ε

}− 1
2

(2.6.10)

is also a probability matching prior for the content c.
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Proof

The proof of Theorem 2.6.4.1 is given in Appendix A.

Equations 2.6.9 and 2.6.10 are also probability matching priors for the content c∗ given

by

c∗ = Φ
[
s−µ
σε

]

if s is a lower specification limit.

For the probability matching prior given in equation 2.6.10, the weighted Monte Carlo

method will be used to simulate from the posterior distribution. The method proposed

by Chen and Shao (1999) (See also Kim (2006)) does not require knowing the closed

form of the marginal posterior distribution of c, only the Kernel of the posterior distribu-

tion of (µ, σ2
ε) is needed. This weighted Monte Carlo method (sampling - importance

resampling (SIR)) is especially suitable for computing Bayesian confidence intervals.

The weighted Monte Carlo algorithm aims at drawing a random sample from a target

distribution π by first drawing a sample from a proposal distribution q. From this, a

smaller sample is drawn with sample probabilities proportional to the importance ratios

π
q
. In the case of the credibility intervals it is not even necessary to draw the smaller

sample. The weights (sample probabilities) are however important.

For the Jeffreys’ independence prior distribution given in equation 2.3.1,

p(µ, σ2
ε) ∝ σ−2

ε ,

the joint posterior of the parameters µ and σ2
ε is

PR(µ, σ2
ε |y) ∝ (σ2

ε)
− 1

2
(ν+2)exp

{
−1

2

[
n(µ− y)2

σ2
ε

+
(n− 1)s2

σ2
ε

]}
. (2.6.11)

Equation 2.6.11 represents the proposal distribution q.



CHAPTER 2. SIMPLE LINEAR MODEL - UNIVARIATE NORMAL MODEL 63

In the case of the probability matching prior given in equation 2.6.10, the joint posterior

distribution of the parameters is

PM(µ, σ2
ε |y) ∝ (σ2

ε)
− 1

2
(ν+3)

[
1 +

(s− µ)2

2σ2
ε

]− 1
2

exp

{
−1

2

[
n(µ− y)2

σ2
ε

+
(n− 1)s2

σ2
ε

]}
.

(2.6.12)

Equation 2.6.12 represents the target distribution π. It is important that q is a good

approximation of π, i.e. that it does not have tails that are too thin. The sample prob-

abilities are therefore proportional to

π
q

= PM (µ,σ2
ε)

PR(µ,σ2
ε)

= σ−1
ε

[
1 + (s−µ)2

2σ2
ε

]− 1
2

and the normalized weights for l = 1, 2, . . . , ˜̀can be determined by

w(l) =
σ
−1(l)
ε

[
1 + (s−µ(l))2

2σ
2(l)
ε

]− 1
2

˜̀∑
l=1

σ
−1(l)
ε

[
1 + (s−µ(l))2

2σ
2(l)
ε

]− 1
2

. (2.6.13)

Using the weighted Monte Carlo method (sampling - importance resampling method),

the fixed - in - advance tolerance interval for the probability matching prior given in

equation 2.6.10 can be obtained as follows:

i.) Simulate variance components σ2
ε using the Bayesian simulation method de-

scribed in section 2.5, and, for the simulated variance components, simulate

values for the mean µ using equation 2.4.1. This is done to obtain a Monte

Carlo sample {µ(l), σ2(l)
ε for l = 1 . . . ˜̀} from the proposal distribution q and to

calculate cl = 1− Φ

[
s−µ(l)√
σ

2(l)
ε

]
for (l = 1, 2, . . . ˜̀).

ii.) Sort
{
cl, l = 1, 2, . . . , ˜̀} to obtain the ordered values c(1) ≤ c(2) ≤ c(3) ≤ . . . ≤

c
(˜̀).

iii.) Compute the weighted function w(l) given in equation 2.6.13 associated

with the lth ordered c(l) value, since each simulated cl value has an associ-

ated weight.
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Figure 2.6.4.1: Histogram of the Estimated Posterior Distribution of the Content of the
Interval [0.009,∞], i.e. the Fraction of Process Measurements that Lie Above the Fixed -
in - Advance Upper Specification Limit s = 0.009 for the First Sample Given in Table 2.1.

95% Fixed - in - Advance Tolerance Interval: [0.004559 , 0.071053]

iv.) Sum the weights associated with each c(l) value from left to right (small to

large) until
k1∑
l=1

w(l) = 1−α
2

. Write down the corresponding c(k1) value and de-

note it as c
1−α

2 . Also, obtain the sum of the weights associated with each

c(l) value from left to right until you get
k2∑
l=1

w(l) = 1+α
2

. Write down the corre-

sponding ordered value c(k2) and denote it as c
1+α

2 .

v.) The 100(α)% fixed - in - advance tolerance interval is then given by
[
c

1−α
2 , c

1+α
2

]
.

For illustrative purposes, a fixed - in - advance upper specification limit s = 0.009 was

selected for the first sample given in Table 2.1. The histogram of ˜̀= 10000 simulated

values for the posterior content c given in equation 2.6.8 of the interval [0.009,∞], ob-

tained using ordinary Monte Carlo simulation, is depicted in Figure 2.6.4.1.

From Figure 2.6.4.1 it can be seen that the estimated posterior distribution of the con-

tent c for the interval [0.009,∞] is positively skewed with a posterior median equals to
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0.0219.

The results in Table 2.3 also represent the fixed - in - advance tolerance intervals for

the first sample given in Table 2.1 with an upper specification limit of s = 0.009. The two

fixed - in - advance tolerance intervals were obtained using both the classical Bayesian

simulation method (ordinary Monte Carlo simulation) and the weighted Monte Carlo

(sampling - importance resampling) method.

Table 2.3: Fixed - in - Advance Tolerance Intervals for the First Sample Given in Table

2.1 for an Upper Specification Limit s = 0.009.

Monte Carlo Method Weighted Monte Carlo Method

Lower Limit Upper Limit Lower Limit Upper Limit

Observation Number 250 9750 250 9747

Sum of Weights − − 0.024891 0.974936

95% Credibility Interval 0.004559 0.071053 0.004559 0.070902

From Table 2.3 it can be seen that the ordinary Monte Carlo method and the weighted

Monte Carlo method (used for the probability matching prior given in equation 2.6.10)

provide fixed - in - advance tolerance intervals which are for all practical purposes

the same for an upper specification limit s = 0.009. Using the results obtained from

the weighted Monte Carlo method for illustrative purposes, the 95% (α = 0.95) equal

tail credibility interval for the posterior content of the interval [0.009,∞] is given by

[0.0046 , 0.0709]. This means that between 0.46% and 7.09% of future ceramic parts

manufactured by process 1, will have flatness measurements above s = 0.009 with

probability 0.95. As was mentioned, the above fixed - in - advance upper specification

limit s = 0.009 was solely selected for illustrative purposes. In practice, these fixed - in -

advance upper or lower specification limits are often determined from engineering or

regulatory considerations.
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2.6.5 Tolerance Intervals for the Difference Between Quantiles

When determining tolerance intervals for processes used in the manufacturing of prod-

ucts, the situation sometimes arise when the quantiles need to be compared. This

difference between the two α quantiles is then given by

γ = q1 − q2 = (µ1 + zασε1)− (µ2 + zασε2) = (µ1 − µ2) + zα(σε1 − σε2) (2.6.14)

where

µ1|σ2
ε1
,y1 ∼ N(y1,

σ2
ε1

n1
),

µ2|σ2
ε2
,y2 ∼ N(y2,

σ2
ε2

n2
),

σ2
1 =

ν1s21
χ2
ν1

,

σ2
2 =

ν2s22
χ2
ν2

,

ν1 = n1 − 1,

ν2 = n2 − 1,

zα represents the 100(α)th percentile of a standard normal distribution, and n1 and n2

represent the samples sizes.

It is also clear that the conditional posterior distribution for (µ1 − µ2) will be given by

(µ1 − µ2)|σ2
ε1
, σ2

ε2
,y1,y2 ∼ N

(
y1 − y2,

σ2
ε1

n1

+
σ2
ε2

n2

)
. (2.6.15)

The marginal posterior distribution for the difference between the two means (µ1−µ2)|y

can then be obtained as follows:

i.) Simulate the variance components for the two processes σ2
ε1 = ν1s21

χ2
ν1

, and

σ2
ε2 = ν2s22

χ2
ν2

using the Bayesian simulation method described in section 2.5.
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Figure 2.6.5.1: Estimated Marginal Posterior Distribution of the Difference Between Two
Process Population Means (µ1 − µ2)|y1,y2 for the Summary Data Given in Table 2.1.

95% Equal Tail Credibility Interval: [0.000704 , 0.0017]

ii.) Substitute the simulated values σ2
ε1 and σ2

ε2 as well as the two sample means

y1 and y2 into the conditional posterior distribution given in equation 2.6.15

and draw the normal distribution.

iii.) Repeat steps i.) and ii.) for example ˜̀= 10000 times.

iv.) Using the Rao Blackwell method described in section 2.5, determine the es-

timated unconditional posterior distribution for the difference between the

two population process means (µ1 − µ2).

The estimated marginal posterior distribution of the difference between the average

flatness measurements of ceramic parts produced by the two processes given in Table

2.1, is depicted in Figure 2.6.5.1.

For the estimated marginal posterior distribution given in Figure 2.6.5.1, the posterior

mean of the difference (µ1−µ2) is equal to 0, 0012 with 95% equal tail credibility interval
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given by [0.000704 , 0.0017]. Since zero does not fall in the 95% credibility interval, it can

be concluded that the average flatness measurements of ceramic parts produced by

the two processes given in Table 2.1, differ significantly with probability 0.95.

Since the conditional posterior distribution of the quantile q = µ + zασε is given by

equation 2.6.2, i.e.

p(q|σ2
ε ,y) ∼ N(y + zασε,

σ2
ε

n
),

it is clear that the conditional posterior distribution of the difference between two α

quantiles is given by

γ|σ2
ε1
, σ2

ε2
,y1,y2 ∼ N

{
(y1 − y2) + zα(σε1 − σε2),

σ2
ε1

n1

+
σ2
ε2

n2

}
(2.6.16)

where γ = (q1 − q2).

The estimated marginal posterior distribution of the difference between the quantiles

γ = (q1 − q2) can then be obtained in two ways using Bayesian simulation.

Method 1

i.) Simulate the variance components for the two processes, i.e. σ2
ε1 and σ2

ε2

using the Bayesian simulation method described in section 2.5.

ii.) For the simulated variance components, simulate a value for each mean

using µ1|σ2
ε ,y1 ∼ N(y1,

σ2
ε1
n1

), and µ2|σ2
ε ,y2 ∼ N(y2,

σ2
ε2
n2

).

iii.) Substitute the simulated values for σ2
ε1 , σ2

ε2 , µ1 and µ2 into q1 = µ1 +zασε1 , and

q2 = µ2 + zασε2 and calculated (q1− q2), or substitute the simulated values for

σ2
ε1 , σ2

ε2 , µ1 and µ2 into equation 2.6.14 to obtain (q1 − q2).

iv.) Repeat steps i.) to iii.) for example ˜̀= 10000 times and draw a histogram.

This histogram then represents the estimated marginal posterior distribution of the dif-

ference between the two α quantiles given by γ = (q1−q2). The upper one - sided (α, δ)
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Figure 2.6.5.2: Histogram of the Estimated Marginal Posterior Distribution of the
Difference Between the Two 0.95 Quantiles γ = (q1 − q2) for the Data Given in Table 2.1.

95% Equal Tail Credibility Interval: [0.00036 , 0.0020]

tolerance limit can then be obtained as the 100(δ)th percentile of the ranked simulated

γ values.

The histogram of the estimated marginal posterior distribution of the difference be-

tween the two 0.95 quantiles γ = (q1 − q2) is illustrated in Figure 2.6.5.2 for the summary

data of the two processes given in Table 2.1.

Method 2

i.) Simulate the variance components, σ2
ε1 and σ2

ε2 using the same method as

described in method 1.

ii.) Substitute the simulated values for σ2
ε1 and σ2

ε2 , as well as the two sample

means y1 and y2 into equation 2.6.16 and draw the normal distribution.

iii.) Repeat steps i.) and ii.) for example ˜̀= 10000 times.
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Figure 2.6.5.3: Estimated Marginal Posterior Distribution of the Difference Between the
Two 0.95 Quantiles for the Summary Data Given in Table 2.1.

95% Equal Tail Credibility Interval: [0.00038 , 0.0020]

iv.) Using the Rao Blackwell method described in section 2.5, determine the

estimated marginal posterior distribution for the difference between the two

α quantiles.

Using method 2, the estimated marginal posterior distribution for the difference be-

tween the two 0.95 quantiles obtained for the summary data given in Table 2.1, is de-

picted in Figure 2.6.5.3.

For the summary data given in Table 2.1, the estimated marginal posterior distribution

of the difference between the two 0.95 quantiles i.e. γ = (q1 − q2) given by equation

2.6.16, has a posterior mean equals to 0.0012 and a 95% equal tail credibility interval

equals to [0.00038 , 0.0020]. From both Figures 2.6.5.2 and 2.6.5.3 and the respective

95% credibility intervals, it can be seen that the two 0.95 quantiles of the flatness mea-

surements of ceramic parts produced by the two processes given in Table 2.1, differ

significantly, since zero does not fall in the 95% equal tail credibility intervals.
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Note also that both methods 1 and 2 produced equivalent estimated marginal pos-

terior distributions with 95% equal tail credibility intervals that were for all practical pur-

poses the same.

The exact moments of the difference between two α quantiles i.e. γ = (q1 − q2) can

also be determined. By applying these central moments to Pearson curves or Cornish

- Fisher expansions, approximations of the exact marginal posterior distribution of (q1 −

q2)|y1,y2 can be obtained.

The Exact Moments of γ = q1 − q2

The following theorem will now be proved (for notational purposes note that the first

four moments about the origin of the conditional distribution of (q1 − q2) (conditional

on σ2
ε1

and σ2
ε2

) is given by µ
′
1, µ

′
2, µ

′
3 and µ

′
4. Also, the central moments of (q1 − q2)

given σ2
ε1

and σ2
ε2

, is given by µ2, µ3 and µ4. Note also that the unconditional moments

about the origin of (q1 − q2) is given by m
′
1, m

′
2, m

′
3 and m

′
4, while the unconditional

central moments of (q1 − q2) is given by m2, m3 and m4).

Theorem 2.6.5.1

a.) For the univariate normal model given in equation 2.2.1, the mean (first mo-

ment about zero) of the marginal posterior distribution of the difference be-

tween two α quantiles, i.e. (q1 − q2)|y1,y2 is given by

E[γ|y1,y2] = (y1 − y2) + zα

{
(ν1s

2
1)

1
2

Γ(
ν1−1

2
)

2
1
2 Γ(

ν1
2

)
− (ν2s

2
2)

1
2

Γ(
ν2−1

2
)

2
1
2 Γ(

ν2
2

)

}
where γ = (q1 − q2).

b.) For the univariate normal model given in equation 2.2.1, the second central

moment of the marginal posterior distribution of the difference between two

α quantiles, i.e. (q1 − q2)|y1,y2 is given by
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V ar(γ|y1,y2) = (ν1s
2
1)

{
( 1
ν1−2

)
[
z2
α + 1

n1

]
− z2

αΓ2(
ν1−1

2
)

2Γ2(
ν1
2

)

}
−(ν2s

2
2)

{
( 1
ν2−2

)
[
z2
α + 1

n2

]
− z2

αΓ2(
ν2−1

2
)

2Γ2(
ν2
2

)

}
where γ = (q1 − q2).

c.) For the univariate normal model given in equation 2.2.1, the third central

moment of the marginal posterior distributions of the difference between

two α quantiles, i.e. (q1 − q2)|y1,y2 is given by

m3 =
zα(ν1s21)

3
2 Γ(

ν1−3
2

)

2
3
2 Γ(

ν1
2

)

{
( 1
ν1−2

)
[

3
n1
− z2

α(2ν1 − 7)
]

+
(ν1−3)z2

αΓ2(
ν1−1

2
)

Γ2(
ν1
2

)

}
− zα(ν2s22)

3
2 Γ(

ν2−3
2

)

2
3
2 Γ(

ν2
2

)

{
1

(ν2−2)

[
3
n2
− z2

α(2ν2 − 7)
]

+
(ν2−3)z2

αΓ2(
ν2−1

2
)

Γ2(
ν2
2

)

}
.

d.) For the univariate normal model given in equation 2.2.1, the fourth central

moment of the marginal posterior distribution of the difference between two

α quantiles, i.e. (q1 − q2)|y1,y2 is given by

m4 =
2∑
d=1

{
(νds

2
d)

(νd−2)(νd−4)

(
3
n2
d

+ 6z2
α

nd
+ z4

α

)
− 6z2

α(νd−1)(νds
2
d)2Γ(

νd−1

2
)Γ(

νd−3

2
)

22ndΓ2(
νd
2

)(νd−2)

+
2(νd−5)z4

α(νds
2
d)2Γ(

νd−1

2
)Γ(

νd−3

2
)

22Γ2(
νd
2

)(νd−2)
− 3z4

α(νds
2
d)2Γ4(

νd−1

2
)

22Γ4(
νd
2

)

}

+6(ν1s
2
1)(ν2s

2
2)

{
1

(ν1−2)(ν2−2)

[
1

n1n2
+ z2

α

n1
+ z2

α

n2
+ z4

α

]
−z4

α
Γ2(

ν1−1
2

)

2Γ2(
ν1
2

)(ν2−2)
−z4

α
Γ2(

ν2−1
2

)

2Γ2(
ν2
2

)(ν1−2)

−z2
α

Γ2(
ν1−1

2
)

2Γ2(
ν1
2

)n2(ν2−2)
−z2

α
Γ2(

ν2−1
2

)

2Γ2(
ν2
2

)n1(ν1−2)
+z4

α
Γ2(

ν1−1
2

)Γ2(
ν2−1

2
)

2Γ2(
ν1
2

)Γ2(
ν2
2

)

}
.

Proof

The proof of Theorem 2.6.5.1 is given in Appendix A.
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2.6.6 Differences Between More Than Two α Quantiles

As was mentioned for the difference between two α quantiles, the situation may also

arise when more than two α quantiles need to be compared.

Bayesian significance testing and multiple comparisons for Markov chain Monte Carlo

outputs have been proposed by Hoshino (2008), while Ganesh (2009) proposed simul-

taneous credible intervals for small area estimation problems. Two methods as pro-

posed by Ganesh (2009) have been adapted for multiple comparisons of more than

two α quantiles and will be discussed for the univariate normal model given in equation

2.2.1. The first method is based on simultaneous contrasts, while the second method

is based on pairwise comparisons of more than two α quantiles. The rationale behind

using simultaneous contrasts and the proposed pairwise comparisons method can be

explained as follows: Suppose the probability of making a Type I error is α. If a series

of confidence intervals are constructed, each with a probability α of indicating a dif-

ference between a pair of α quantiles if no difference exists, then the risk of making at

least one Type I error in the series of inferences will be larger that the value of α spec-

ified for a single interval (Mendenhall and Sincich, 2003). Consequently, the selected

value α is referred to as an experiment-wise error rate, rather than a comparison-wise

error rate (Mendenhall and Sincich, 2003).

2.6.6.1 Multiple Comparisons Using Simultaneous Contrasts

For Bayesian multiple comparisons using simultaneous contrasts, the main focus will

be on the construction of simultaneous 100(α)% credible intervals for all pairwise com-

parisons of α quantiles (Ganesh, 2009), where these pairwise comparisons represent

special cases of general contrasts (Mendenhall and Sincich, 2003).

For the univariate normal model given in equation 2.2.1, it is known that the αth quantile

of the normal distribution N(µ, σ2
ε) is given by
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q = µ+ zασε

with conditional posterior distribution given by equation 2.6.2. The α quantiles qd is

therefore given by

qd = µd + zασεd (d = 1, . . . , g)

with conditional posterior distributions given by

qd|σ2
εd
,yd ∼ N(yd + zασεd ,

σ2
εd

nd
) (d = 1, . . . , g) (2.6.17)

It was also proved in Theorem 2.6.1.1 a.) that

E(qd|yd) = yd + zα(νds
2
d)

1
2

Γ(νd−1
2

)

2
1
2 Γ(νd

2
)

(d = 1, . . . , g) (2.6.18)

and in Theorem 2.6.1.1 b.) that

V ar(qd|yd) = z2
α

{
(νds

2
d)

[
1

(νd − 2)
−

Γ2(νd−1
2

)

2Γ2(νd
2

)

]}
+

1

nd
(νds

2
d)

1

(νd − 2)
(d = 1, . . . , g)

(2.6.19)

For each of the g processes, simulate a qd value by first simulating a variance σ2
εd

using

the Bayesian simulation method described in section 2.5. Substitute the simulated σ2
εd

value into equation 2.6.17, determine qd and call it q∗d. Then use the g simulated q∗d

(d = 1, . . . , g) values to form a vector

q∗ =



q∗1

q∗2
...

q∗g


and for the g processes also determine the E(qd|yd) and V ar(qd|yd) (d = 1, . . . , g) using

equations 2.6.18 and 2.6.19 respectively.

The g expected values and variances of qd|yd (d = 1, . . . , g) are then used to set up a

vector of expected values E(q|y) given by
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E(q|y) =



E(q1|y1)

E(q2|y2)

...

E(qg|yg)


,

and a covariance matrix V ar(q|y) given by

V ar(q|y) =



V ar(q1|y1) 0 0 · · · 0

0 V ar(q2|y2) 0 · · · 0

...
...

...
...

0 0 0 · · · V ar(qg|yg)


Proceed by setting up g − 1 pairwise contrasts `

′
each with dimension (1× g) such that

g∑
d=1

`d = 0. These contrasts are for example given by

`
′

1 =

[
1 −1 0 0 · · · 0

]
`
′

2 =

[
0 1 −1 0 · · · 0

]
...

`
′

g−1 =

[
0 0 0 · · · 1 −1

]
which is then used to determine

T (3) = max
`1,`2,...,`g−1

{[
`
′
1(q∗−E(q|y))

]2
`
′
1var(q|y)`1

;

[
`
′
2(q∗−E(q|y))

]2
`
′
2var(q|y)`2

, · · · ,
[
`
′
g−1(q∗−E(q|y))

]2
`
′
g−1var(q|y)`g−1

}
.

Repeat the process for example ˜̀= 10000 times to obtain 10000 T (3) values and sort the

obtained T (3) values in order of magnitude. From the sorted T (3) values, obtain T
(3)
α ,

the 100(α)th percentile of the sorted T (3) values.

For each of the g − 1 contrasts, then determine 100(α)% simultaneous Bayesian cred-

ibility intervals using T
(3)
α . This can be done as follows using the contrasts mentioned

above:
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1.) `
′

1E(q|y)T (2) ±
{
`
′

1var(q|y)`1T
(3)
α

} 1
2

2.) `
′

2E(q|y)±
{
`
′

2var(q|y)`2T
(3)
α

} 1
2

...

g − 1.) `
′

g−1E(q|y)±
{
`
′

g−1var(q|y)`g−1T
(3)
α

} 1
2

If for example the first 100(α)% Bayesian credibility interval does contain zero, it can

be interpreted that the two α quantiles of the first two processes, i.e. q1 and q2 do

not differ significantly. Similarly, if for example the second 100(α)% Bayesian credibility

interval does not contain zero, it can be interpreted that the two α quantiles of the

second and third processes, i.e. q2 and q3 do differ significantly. All remaining 100(α)%

Bayesian credibility intervals (from 3 to g − 1) are interpreted in the same way.

2.6.6.2 Multiple Comparisons Using Pairwise Differences

For Bayesian multiple comparisons using pairwise differences, the focus is essentially on

determining a critical value T
(2)
α , i.e. the 100(α)th percentile of the estimated posterior

distribution of T (2), where

T (2) = max
d

{[
qd − E(qd|yd)

]
|yd
}
− min

d

{[
qd − E(qd|yd)

]
|yd
}

for d = 1 . . . g.

As was mentioned for the proposed method of multiple comparisons using simulta-

neous contrasts for the univariate normal model given in equation 2.2.1, it is known

that the d = 1, . . . , g conditional posterior distributions of the α quantiles qd are given

by equation 2.6.17. It was also proved in Theorem 2.6.1.1 a.) that the unconditional

expected values E(qd|yd) for the d = 1, . . . , g processes are given by equation 2.6.18.

Simulate a qd (d = 1, . . . , g) value for each of the g processes by first simulating a vari-

ance σ2
εd

using the Bayesian simulation method described in section 2.5. Substitute the
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simulated σ2
εd

value into equation 2.6.17 and determine qd (d = 1, . . . , g). For each of

the g processes, determine [qd − E(qd|yd)]|yd (d = 1, . . . , g).

Sort the g [qd − E(qd|yd)]|yd (d = 1, . . . , g) values determined in order of magnitude,

and, by using a Bayesian version of Tukey’s method for constructing simultaneous con-

fidence intervals, determine

T (2) = max
d
{[qd − E(qd|yd)]|yd}−min

d
{[qd − E(qd|yd)]|yd} (d = 1, . . . , g) (Ganesh, 2009).

The logic behind using T (2) for this multiple comparisons procedure is that if a crit-

ical value is determined for the difference between two α quantiles as max
d

{[
qd −

E(qd|yd)
]
|yd
}
− min

d

{[
qd−E(qd|yd)

]
|yd
}

(this critical value implies a difference in the

respective α quantiles), then any other pair of α quantiles that differ by as much as

or more than this critical value would also imply a difference in the corresponding α

quantiles (Mendenhall and Sincich, 2003).

Repeat the process for example ˜̀= 10000 times to obtain 10000 T (2) values. Sort the

T (2) values in order of magnitude and determine T
(2)
α , the 100(α)th percentile of the

sorted T (2) values.

Determine |E(qd|yd)− E(qh|yh)| where d = 1, . . . , g, h = 1, . . . , g and d < h for each

pairwise comparison of the α quantiles qd (d = 1, . . . , g) for the g processes. Remember

these E(qd|yd)′s (d = 1, . . . , g) are determined using equation 2.6.18.

Two quantiles qd and qh (d = 1, . . . , g, h = 1, . . . , d, d < h) differ significantly if

|E(qd|yd)− E(qh|yh)| ≥ T
(2)
α ,

and do not differ significantly if

|E(qd|yd)− E(qh|yh)| < T
(2)
α .
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2.6.6.3 An Example

The two multiple comparisons procedures for comparing more than two α quantiles

qd (d = 1, . . . , g) will be illustrated using the summary data of flatness measurements

obtained from aluminium parts manufactured by three processes. As mentioned, this

summary data given in Table 2.2 was obtained from Hubele, et.al. (2005).

For this example, g = 3. For all three manufacturing processes given in Table 2.2, ˜̀=

10000 variances σ2
εd

(d = 1, 2, 3) were simulated using the Bayesian simulation procedure

described in section 2.5. For each of the 10000 simulated σ2
εd

(d = 1, 2, 3) values, 10000 qd

(d = 1, 2, 3) values were simulated using equation 2.6.17. The expected values E(qd|yd)

(d = 1, 2, 3) and variances V ar(qd|yd) (d = 1, 2, 3) were also determined using equations

2.6.18 and 2.6.19 respectively.

Results obtained from the two multiple comparisons procedure are given in Table 2.4.

Table 2.4: Results Obtained for Comparing g = 3 0.95 Quantiles qd (d = 1, 2, 3) using

Simultaneous Contrasts and Pairwise Differences for the Summary Data Given in Table

2.2.

Simultaneous Contrasts Pairwise Differences

T
(3)
0.95 = 5.3108 T

(2)
0.95 = 1.38× 10−4

95% Credibility Intervals obtained by Absolute Differences |E(qd|yd)− E(qh|yh)|

`
′
dE(q|y)±

{
`
′
dV ar(q|y)`dT

(3)
α

} 1
2 for d = 1, 2 obtained for d = 1, 2, 3, h = 1, 2, 3 and d < h.

For Lower Limit Upper Limit For |E(qd|yd)− E(qh|yh)|

q1 − q2 −7.95× 10−5 1.82× 10−4 q1 − q2 5.14× 10−5 < 1.38× 10−4

q2 − q3 −4.15× 10−4 −1.80× 10−4 q1 − q3 0.0002457 > 1.38× 10−4 ∗

q2 − q3 0.0002971 > 1.38× 10−4 ∗

Using the method of simultaneous contrasts, it can be seen from Table 2.4 that the

0.95th quantile q1 determined for flatness measurements obtained from aluminium parts
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produced by process one does not differ significantly from the 0.95th quantile q2 deter-

mined for manufacturing process two, since zero is contained in the 95% credibility

interval. There is however a significant difference between the 0.95th quantile q2 and

the 0.95th quantile q3 determined for manufacturing processes two and three, since

zero is not contained in the 95% credibility interval. Using the method of pairwise differ-

ences, it can be seen from Table 2.4 that the 0.95th quantile q1 and the 0.95th quantile

q2 determined for processes one and two respectively do not differ significantly since

|E(q1|y1)− E(q2|y2)| < T
(2)
0.95. Similarly, it can be seen that the 0.95th quantile q3 deter-

mined for manufacturing process three differ significantly from both the 0.95th quantile

q1 and the 0.95th quantile q2 determined for manufacturing processes one and two,

since in both cases

|E(q1|y1)− E(q3|y3)| > T
(2)
0.95 and

|E(q2|y2)− E(q3|y3)| > T
(2)
0.95 .

A simulation study was also performed to check the frequentist properties of the two

Bayesian multiple comparisons procedures for differences between more than two α

quantiles qd (d = 1, . . . , g). The investigation was started by simulating ˜̀= 10000 data sets

for each of the three manufacturing processes given in Table 2.2. For the simulation of

the data, the summary statistics given for population 1 were taken as the population

parameters given by µ1 = µ2 = µ3 = 0.00045 and σ2
1 = σ2

2 = σ2
3 = 0.00012, with the

sample sizes for all three processes considered equal, i.e. n1 = n2 = n3 = 20. For each

of the 10000 data sets simulated per process, 1000 Bayesian simulations were performed

using equation 2.6.17 to obtain 1000 simulated qd values. For each of the 10000 data

sets, these 1000 simulated qd values were then used to obtain the T
(3)
0.95 and T

(2)
0.95 values,

and in the case of the multiple comparisons procedure using simultaneous contrasts,

also the two 95% Bayesian credibility intervals. For the 10000 data sets, all significant

differences indicated between the 0.95 quantiles qd (d = 1, 2, 3) were then counted for

each of the two proposed methods. Since the population parameters for all three

manufacturing processes were considered the same, frequentist properties were met
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if approximately 100(1 − 0.95)% of the 95% credibility intervals for the two contrasts (in

the case of the simultaneous contrasts method), and approximately 100(1 − 0.95)% of

the absolute differences (for the pairwise differences method), indicated differences

between the 0.95 quantiles qd (d = 1, 2, 3). The process was also repeated for sample

sizes equal to 50 and 100. Results from the simulation study are reported in Table 2.5.

Table 2.5: Results from the Simulation Study Performed to Investigate the Frequentist

Properties of the Two Bayesian Multiple Comparisons Procedures.

Sample Simultaneous Contrasts Pairwise Differences

Sizes Percentage Differences Indicated Percentage Differences Indicated

20 4.0 3.4

50 4.7 4.1

100 5.1 5.0

From Table 2.5 it is clear that the frequentist properties of the two proposed Bayesian

multiple comparisons procedures for comparing more than two 0.95 quantiles qd (d =

1, 2, 3) are for all practical purposes met across the range of selected sample sizes,

since the percentage differences, indicated for both method are approximately 5%.

This is visible especially for larger sample sizes, although also acceptable for smaller

sample sizes.
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2.7 Appendix A

Proof of Theorem 2.3.1

Let t(θ) = µ+ zασε.

Transform µ to t(θ) and obtain the derivatives with respect to t(θ) and σ2
ε .

Therefore

µ = t(θ)− zασε

with

∂µ
∂t(θ)

= 1 ∂µ
∂σ2
ε

= −1
2
zα
σε

∂σ2
ε

∂t(θ)
= 0 ∂σ2

ε

∂σ2
ε

= 1

Therefore

A =

 ∂µ
∂t(θ)

∂µ
∂σ2
ε

∂σ2
ε

∂t(θ)
∂σ2
ε

∂σ2
ε

 =

 1 −1
2
zα
σε

0 1

 .

Now

F (t(θ), σ2
ε) = A

′
F (µ, σ2

ε)A

=

 1 −1
2
zα
σε

0 1


 n

σ2
ε

0

0 n
2
( 1
σ2
ε
)2


 1 −1

2
zα
σε

0 1



=

 n
σ2
ε

0

− zαn
2σ3
ε

n
2
( 1
σ2
ε
)2


 1 − zα

2σε

0 1



=

 n
σ2
ε

−nzα
2σ3
ε

− zαn
2σ3
ε

z2
αn

4σ4
ε

+ n
2σ4
ε
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∴ F (t(θ), σ2
ε) =

 n
σ2
ε

−nzα
2σ3
ε

− zαn
2σ3
ε

z2
αn

4σ4
ε

+ n
2σ4
ε

 =

 F11 F12

F21 F22

 .

The determinant of F (t(θ), σ2
ε) is given by

n2z2
α

4σ6
ε

+ n2

2σ6
ε
− n2z2

α

4σ6
ε

= n2

2σ6
ε

.

Therefore

F−1(θ) =

 F 11 F 12

F 21 F 22

 = 2σ6
ε

n2

 n
2σ4
ε
( z

2
α

2
+ 1) nzα

2σ3
ε

nzα
2σ3
ε

n
σ2
ε

 .

Therefore

F 11 = σ2
ε

n

(
z2
α

2
+ 1
)

and (F 11)−1 = n
σ2
ε

(
z2
α

2
+ 1
)−1

and

p(t(θ)) ∝ h
1
2
11 which is a constant since it does not contain t(θ).

Also, h22 = n
2σ4
ε

(
z2
α

2
+ 1
)

= F22 .

and

p(σ2
ε |t(θ) ∝ h

1
2
22 ∝ σ−2

ε .

Therefore, the reference prior for the ordering

{t(θ), σ2
ε} = p(t(θ), σ2

ε) = p(t(θ)) · p(σ2
ε |t(θ)) ∝ σ−2

ε .

In the (µ, σ2
ε) parameterization this corresponds to

p(µ, σ2
ε) = p(t(θ), σ2

ε)
∣∣∣∂t(θ)
∂µ

∣∣∣ .

where
∥∥∥∂t(θ)

∂µ

∥∥∥ represents the jacobian of the transformation from t(θ) to µ.

Since
∣∣∣∂t(θ)
∂µ

∣∣∣ = 1, it follows that p(µ, σ2
ε) ∝ σ−2

ε .
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Proof of Theorem 2.3.2

Let t(θ) = µ+ zασε.

Therefore ∂t(θ)
∂µ

= 1, and

∂t(θ)
∂σ2
ε

= zα
2σε

.

Therefore ∇′t(θ)F−1(θ)

=

[
1 zα

2σε

] σ2
ε

n
0

0 2(σ2
ε)2

n


=

[
σ2
ε

n
zα
2σε
· 2
n

(σ2
ε)

2

]

=

[
σ2
ε

n
zασ3

ε

n

]
.

Now

∇′t(θ)F−1(θ)∇t(θ) =

[
σ2

n
zασ2

ε

n

] 1

zα
2σε


= σ2

ε

n
+ z2

ασ
2
ε

2n

= σ2
ε

n

[
1 + z2

α

2

]
.

Also

γ(θ) =
∇′t(θ)F−1(θ)√
∇′t(θ)F−1(θ)∇t(θ)

=

[
γ1(θ) γ2(θ)

]

=

[
σ2
ε

n
zασ3

ε

n

]
√
σ2
ε
n

[
1+

z2α
2

]

=

[
σ2
ε
n[

σ2
ε
n

[
1+

z2α
2

]] 1
2

zασ
3
ε

n[
σ2
ε
n

[
1+

z2α
2

]] 1
2

]
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=

[
σ2
ε
n

σε√
n

[
1+

z2α
2

] 1
2

zασ
3
ε

n

σε√
n

[
1+

z2α
2

] 1
2

]

=

[
σ2
ε

n

√
n
σε

[
1 + z2

α

2

]− 1
2 zασ2

ε

n

√
n
σε

[
1 + z2

α

2

]− 1
2

]

=

[
σε√
n

[
1 + z2

α

2

]− 1
2 zασ2

ε√
n

[
1 + z2

α

2

]− 1
2

]
.

If p(µ, σ2
ε) ∝ σ−2

ε is considered, then

∂
∂µ
{γ1(θ)p(µ, σ2

ε)}+ ∂
∂σ2
ε
{γ2(θ)p(µ, σ2

ε)} = 0 ,

since

γ1(θ) · p(µ, σ2
ε) = σε√

n

[
1 + z2

α

2

]− 1
2 · σ−2

ε γ1(θ) · p(µ, σ2
ε)

= σε√
n

[
1 + z2

α

2

]− 1
2 · σ−2

ε

= σ−1
ε√
n

[
1 + z2

α

2

]− 1
2

= σ−1
ε√
n

[
1 + z2

α

2

]− 1
2
,

and, therefore ∂
∂µ

{
σ−1
ε√
n

[
1 + z2

α

2

]− 1
2

}
= 0.

Also

γ2(θ) · p(µ, σ2
ε) = zασ2

ε√
n

[
1 + z2

α

2

]− 1
2 · σ−2

ε

= zα√
n

[
1 + z2

α

2

]− 1
2
,

and, therefore ∂
∂σ2
ε

{
zα√
n

[
1 + z2

α

2

]− 1
2

}
= 0.

Therefore

p(µ, σ2
ε) ∝ σ−2

ε is a probability matching prior for the αth quantile q = µ+ zασε.
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Proof of Theorem 2.6.1.1

a.) The first moment about the origin of ( 1
χ2
ν
)

1
2 is obtained by considering r = 1,

therefore

E( 1
x
)

1
2 =

Γ( ν−1
2

)

2
1
2 Γ( ν

2
)

and therefore

E( 1
χ2
ν
)

1
2 =

Γ( ν−1
2

)

2
1
2 Γ( ν

2
)

.

Since it is known that the first moment about the origin of ( 1
χ2
ν
)

1
2 is given by

E
(

1
χ2
ν

) 1
2

=
Γ( ν−1

2
)

2
1
2 Γ( ν

2
)

, and,

it is known that

q = y +
(
ν2
s

χ2
ν

) 1
2
{

z√
n

+ zα

}
,

it can be shown that the mean (first moment about zero) of the marginal posterior

distribution of q is given by

E(q|y) = E
[
y + (νs

2

χ2
ν

)
1
2{ z√

n
+ zα}

]
= E

[
y + z σε√

n
+ zασε

]
= E [y] + E [z]E

[
σε√
n

]
+ E [zα]E [σε]

= y + 0 + zαE [σε] since E [z] = 0 .

= y + zα(νs2)
1
2E

[(
1
χ2
ν

) 1
2

]
= y + zα(νs2)

1
2

Γ( ν−1
2

)

2
1
2 Γ( ν

2
)

.
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b.) The second moment about the origin of ( 1
χ2
ν
)

1
2 is obtained by considering r = 2,

therefore

E( 1
χ2
ν
)

1
2 =

Γ( ν−2
2

)

2Γ( ν
2

)
=

Γ( ν−2
2

)

2( ν−2
2

)Γ( ν−2
2

)
= 1

ν−2
.

By considering the conditional posterior distribution of q (conditional on σ2
ε ), the

E(q|σ2
ε ,y) = y + zασε

and

V ar(q|σ2
ε ,y) = σ2

ε

n
.

It is therefore known that the conditional posterior distribution of q is given by

p(q|σ2
ε ,y) ∼ N

(
y + zασε,

σ2
ε

n

)
.

Therefore

q|χ2
ν ,y ∼ N

(
y + zα

(
νs2

χ2
ν

) 1
2
, 1
n
νs2

χ2
ν

)
.

Therefore

V ar(q|y) = V ar

{
y + zα

(
νs2

χ2
ν

) 1
2

}
+ Eχ2

ν

{
1
n
νs2

χ2
ν

}
.

Now,

V arχ2
ν

{
y + zα

(
νs2

χ2
ν

) 1
2

}
= V arχ2

ν
{y}+ V arχ2

ν

{
zα

(
νs2

χ2
ν

) 1
2

}

= V arχ2
ν

{
zα

(
νs2

χ2
ν

) 1
2

}

= z2
α(νs2)V arχ2

ν

(
1
χ2
ν

) 1
2

.

It can also be shown that

V arχ2
ν

(
1
χ2
ν

) 1
2

= E
[

1
χ2
ν

]
−
{
E
[

1
χ2
ν

] 1
2

}2

.
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Since

E( 1
χ2
ν
) = 1

(ν−2)

and

E( 1
χ2
ν
)

1
2 =

Γ( ν−1
2

)

2
1
2 Γ( ν

2
)

, the

V ar
(

1
χ2
ν

) 1
2

= 1
ν−2
−
{

Γ( ν−1
2

)

2
1
2 Γ( ν

2
)

}2

= 1
ν−2
− Γ2( ν−1

2
)

2Γ2( ν
2

)
.

It can therefore be shown that

V arχ2
ν

[
y + zα

(
vs2

χ2
ν

) 1
2

]
= z2

α(vs2)
{

1
(ν−2)

− Γ2( ν−1
2

)

2Γ2( ν
2

)

}
.

Also,

Eχ2
ν

[
1
n
νs2

χ2
ν

]
= 1

n
vs2Eχ2

ν

[
1
χ2
ν

]
= νs2

n
( 1
ν−2

) .

It is therefore clear that the variance of the unconditional posterior distribution of q (the

second central moment of the unconditional posterior distribution of q) is given by

V ar(q|y) = z2
α(νs2)

{
1

ν−2
− Γ2( ν−1

2
)

2Γ2( ν
2

)

}
+ νs2

n

(
1

ν−2

)
= (νs2)

{
z2
α

[
1

ν−2 −
Γ2( ν−1

2
)

2Γ2( ν
2

)

]
+ 1

n

(
1

ν−2

)}

= (νs2)
{

z2
α

ν−2 −
z2
αΓ2( ν−1

2
)

2Γ2( ν
2

)
+ 1

n

(
1

ν−2

)}

= (νs2)
[

1
ν−2

(
z2
α + 1

n

)
− z2

αΓ2( ν−1
2

)

2Γ2( ν
2

)

]
.
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c.) The third moment about the origin of ( 1
χ2
ν
)

1
2 is obtained by considering r = 3,

therefore E( 1
χ2
ν
)

3
2 =

Γ( ν−3
2

)

2
3
2 Γ( ν

2
)

.

It is therefore also known that

E( 1
χ2
ν
)

3
2 =

Γ( ν−3
2

)

2
3
2 Γ( ν

2
)
.

The third moment about the origin of the conditional posterior distribution of q (condi-

tional on σ2
ε ) can in general be written as

µ
′
3 = µ3 + 3µ2µ

′
1 + (µ

′
1)3.

By substituting µ
′
1, µ2 and µ3 into the equation for µ

′
3, the third moment about the origin

of q|σ2
ε ,y, is given by

µ
′
3 = 0 + 3(σ

2
ε

n
)(y + zασε) + (y + zασε)

3

= 3yσ2
ε

n
+ 3zασ3

ε

n
+ y3 + 3y2zασε + 3yz2

ασ
2
ε + z3

ασ
3
ε

= y3 + 3y2zασε + 3y
(

1
n

+ z2
α

)
σ2
ε +

(
3zα
n

+ z3
α

)
σ3
ε

= y3 + 3y2zα(νs
2

χ2
ν

)
1
2 + 3y

(
1
n

+ z2
α

)
(νs

2

χ2
ν

) +
(

3zα
n

+ z3
α

)
(νs

2

χ2
ν

)
3
2 .

It was already shown that

m
′
1 = E(q|y) = y+(νs2)

1
2 zα

Γ( ν−1
2

)

2
1
2 Γ( ν

2
)

andm2 = V ar(q|y) = (νs2)

[
1

ν−2

(
z2
α+ 1

n

)
−z2

α
Γ2( ν−1

2
)

2Γ2( ν
2

)

]
.

Also,

m
′
3 = E(µ

′
3) = E

[
y3 + 3y2zα(νs

2

χ2
ν

)
1
2 + 3y( 1

n
+ z2

α)(νs
2

χ2
ν

) + (3zα
n

+ z3
α)(νs

2

χ2
ν

)
3
2

]
= E(y3)+3y2zα(νs2)

1
2E
[
( 1
χ2
ν
)

1
2

]
+3y( 1

n
+z2

α)(νs2)E
[

1
χ2
ν

]
+(3zα

n
+z3

α)(νs2)
3
2E
[
( 1
χ2
ν
)

3
2

]
= y3 + 3y2zα(νs2)

1
2

Γ( ν−1
2

)

2
1
2 Γ( ν

2
)

+ 3y( 1
n

+ z2
α)(νs2)

[
1

ν−2

]
+ (3zα

n
+ z3

α)(νs2)
3
2

Γ( ν−3
2

)

2
3
2 Γ( ν

2
)
.

It is also known that the third unconditional central moment of q is given by
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m3 = m
′
3 − 3m2m

′
1 − (m

′
1)3

=

{
y3 + 3y2zα(νs2)

1
2

Γ( ν−1
2

)

2
1
2 Γ( ν

2
)

+ 3y
(

1
n

+ z2
α

)(
νs2

ν−2

)
+
(

3zα
n

+ z3
α

)
(νs2)

3
2

Γ( ν−3
2

)

2
3
2 Γ( ν

2
)

}

−3

{
(νs2)

[
1

ν−2

(
z2
α+ 1

n

)
−z2

α
Γ2( ν−1

2
)

2Γ2( ν
2

)

]}{
y+(νs2)

1
2 zα

Γ( ν−1
2

)

2
1
2 Γ( ν

2
)

}
−
{
y+(νs2)

1
2 zα

Γ( ν−1
2

)

2
1
2 Γ( ν

2
)

}3

= y3 + 3y2zα(νs2)
1
2

Γ( ν−1
2

)

2
1
2 Γ( ν

2
)

+ 3y
(

1
n

+ z2
α

)
( νs

2

ν−2
) +

(
3zα
n

+ z3
α

)
(νs2)

3
2

Γ( ν−3
2

)

2
3
2 Γ( ν

2
)

−
{

3(νs2)
ν−2

(
z2
α+ 1

n

)
−3(νs2)z2

α
Γ2( ν−1

2
)

2Γ2( ν
2

)

}{
y+(νs2)

1
2 zα

Γ( ν−1
2

)

2
1
2 Γ( ν

2
)

}
−
{
y+(νs2)

1
2 zα

Γ( ν−1
2

)

2
1
2 Γ( ν

2
)

}3

= y3 + 3y2zα(νs2)
1
2

Γ( ν−1
2

)

2
1
2 Γ( ν

2
)

+ 3y
(

1
n

+ z2
α

)
(νs2)

(
1

ν−2

)
+
(

3zα
n

+ z3
α

)
(νs2)

3
2

Γ( ν−3
2

)

2
3
2 Γ( ν

2
)

−
{

3(νs2)
ν−2

(
z2
α+ 1

n

)
y+ 3zα(νs2)

3
2

ν−2

(
z2
α+ 1

n

)
Γ( ν−1

2
)

2
1
2 Γ( ν

2
)
−3z2

α(νs2)
Γ2( ν−1

2
)

2Γ2( ν
2

)
y−3z3

α(νs2)
3
2

Γ3( ν−1
2

)

2
3
2 Γ3( ν

2
)

}

−
{
y3 + 3y(νs2)

1
2 zα

Γ( ν−1
2

)

2
1
2 Γ( ν

2
)

+ 3y(νs2)z2
α

Γ2( ν−1
2

)

2Γ2( ν
2

)
+ (νs2)

3
2 z3
α

Γ3( ν−1
2

)

2
3
2 Γ3( ν

2
)

}

= y3 + 3y2zα(νs2)
1
2

Γ( ν−1
2

)

2
1
2 Γ( ν

2
)

+ 3y( 1
n

+ z2
α)(νs2)( 1

ν−2
) + (3zα

n
+ z3

α)(νs2)
3
2

Γ( ν−3
2

)

2
3
2 Γ( ν

2
)

−3(νs2)
ν−2

(
z2
α + 1

n

)
y− 3zα(νs2)

3
2

ν−2

(
z2
α + 1

n

)
Γ( ν−1

2
)

2
1
2 Γ( ν

2
)

+ 3z2
α(νs2)

Γ2( ν−1
2

)

2Γ2( ν
2

)
y + 3z3

α(νs2)
3
2

Γ3( ν−1
2

)

2
3
2 Γ3( ν

2
)

−y3 − 3y(νs2)
1
2 zα

Γ( ν−1
2

)

2
1
2 Γ( ν

2
)
− 3y(νs2)z2

α
Γ2( ν−1

2
)

2Γ2( ν
2

)
− (νs2)

3
2 z3
α

Γ3( ν−1
2

)

2
3
2 Γ3( ν

2
)

.

Consider the terms that contain y3:

y3 − y3 = 0.

Consider the terms that contain y2:

3y2zα(νs2)
1
2

Γ( ν−1
2

)

2
1
2 Γ( ν

2
)
− 3y2zα(νs2)

1
2

Γ( ν−1
2

)

2
1
2 Γ( ν

2
)

= 0.
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Consider the terms that contain y:

3y
(

1
n

+z2
α

)
(νs2)

(
1

ν−2

)
−3y

(
1
n

+z2
α

)
(νs2)

(
1

ν−2

)
+3(νs2)z2

α
Γ2( ν−1

2
)

2Γ( ν
2

)
y−3y(νs2)z2

α
Γ2( ν−1

2
)

2Γ( ν
2

)
= 0.

Therefore

m3 =
(

3zα
n

+z3
α

)
(νs2)

3
2

Γ( ν−3
2

)

2
3
2 Γ( ν

2
)
−3(νs2)

3
2

ν−2

(
1
n
+z2

α

)
zα

Γ( ν−1
2

)

2
1
2 Γ( ν

2
)
+3(νs2)

3
2 z3
α

Γ3( ν−1
2

)

2
3
2 Γ3( ν

2
)
−(νs2)

3
2 z3
α

Γ3( ν−1
2

)

2
3
2 Γ3( ν

2
)

=
(

3zα
n

+ z3
α

)
(νs2)

3
2

Γ( ν−3
2

)

2
3
2 Γ( ν

2
)
− 3(νs2)

3
2

ν−2

(
1
n

+ z2
α

)
zα

Γ( ν−1
2

)

2
1
2 Γ( ν

2
)

+ 2(νs2)
3
2 z3
α

Γ3( ν−1
2

)

2
3
2 Γ3( ν

2
)

=
3zα(νs2)

3
2 Γ( ν−3

2
)

n2
3
2 Γ( ν

2
)

+
z3
α(νs2)

3
2 Γ( ν−3

2
)

2
3
2 Γ( ν

2
)

− 3zα(νs2)
3
2 Γ( ν−1

2
)

n(ν−2)2
1
2 Γ( ν

2
)
− 3z3

α(νs2)
3
2 Γ( ν−1

2
)

(ν−2)2
1
2 Γ( ν

2
)

+
2(νs2)

3
2 z3
αΓ3( ν−1

2
)

2
3
2 Γ3( ν

2
)

=
3zα(νs2)

3
2 Γ( ν−3

2
)

n2
3
2 Γ( ν

2
)

+
z3
α(νs2)

3
2 Γ( ν−3

2
)

2
3
2 Γ( ν

2
)

− 3zα(νs2)
3
2 (ν−3)Γ( ν−3

2
)

n(ν−2)2
3
2 Γ( ν

2
)
− 3z3

α(νs2)
3
2 (ν−3)Γ( ν−3

2
)

(ν−2)2
3
2 Γ( ν

2
)

+
(νs2)

3
2 z3
α(ν−3)Γ( ν−3

2
)Γ2( ν−1

2
)

2
3
2 Γ3( ν

2
)

from Γ( ν−1
2 ) = ( ν−3

2 )Γ( ν−3
2 )

=
3zα(νs2)

3
2 (ν−2)Γ( ν−3

2
)

n(ν−2)2
3
2 Γ( ν

2
)

+
z3
α(νs2)

3
2 (ν−2)Γ( ν−3

2
)

(ν−2)2
3
2 Γ( ν

2
)

− 3zα(νs2)
3
2 (ν−3)Γ( ν−3

2
)

n(ν−2)2
3
2 Γ( ν

2
)
− 3z3

α(νs2)
3
2 (ν−3)Γ( ν−3

2
)

(ν−2)2
3
2 Γ( ν

2
)

+
(νs2)

3
2 z3
α(ν−3)Γ( ν−3

2
)Γ2( ν−1

2
)

2
3
2 Γ3( ν

2
)

=
3zα(νs2)

3
2 Γ( ν−3

2
)

n(ν−2)2
3
2 Γ( ν

2
)

[
(ν−2)−(ν−3)

]
+
z3
α(νs2)

3
2 Γ( ν−3

2
)

(ν−2)2
3
2 Γ( ν

2
)

[
(ν−2)−3(ν−3)

]
+

(νs2)
3
2 z3
α(ν−3)Γ( ν−3

2
)Γ2( ν−1

2
)

2
3
2 Γ3( ν

2
)

=
3zα(νs2)

3
2 Γ( ν−3

2
)

n(ν−2)2
3
2 Γ( ν

2
)
− (2ν−7)z3

α(νs2)
3
2 Γ( ν−3

2
)

(ν−2)2
3
2 Γ( ν

2
)

+
(νs2)

3
2 z3
α(ν−3)Γ( ν−3

2
)Γ2( ν−1

2
)

2
3
2 Γ3( ν

2
)

=
zα(νs2)

3
2 Γ( ν−3

2
)

2
3
2 Γ( ν

2
)

[
3

n(ν−2)
− z2

α(2ν−7)
(ν−2)

+
z2
α(ν−3)Γ2( ν−1

2
)

Γ2( ν
2

)

]

=
zα(νs2)

3
2 Γ( ν−3

2
)

2
3
2 Γ( ν

2
)

{[
1

(ν−2)

(
3
n
− z2

α(2ν − 7)
)]

+
z2
α(ν−3)Γ2( ν−1

2
)

Γ2( ν
2

)

}
.
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d.) The fourth moment about the origin of
(

1
χ2
ν

) 1
2

is obtained by considering r = 4,

therefore

E( 1
χ2
ν
)

4
2 =

Γ( ν−4
2

)

2
4
2 Γ( ν

2
)

=
Γ( ν−4

2
)

22Γ( ν−2
2

)Γ( ν−2
2

)

=
Γ( ν−4

2
)

2·2( ν−2
2

)( ν−4
2

)Γ( ν−4
2

)

= 1
(ν−2)(ν−4)

.

It is therefore also known that

E
(

1
χ2
ν

) 4
2

= E
(

1
χ2
ν

)2

= 1
(ν−2)(ν−4)

.

The fourth moment about the origin of the conditional posterior distribution of q (con-

ditional on σ2
ε ) can in general be written as

µ
′
4 = µ4 + 4µ

′
1µ3 + 6(µ

′
1)2µ2 + (µ

′
1)4

= 3
(
σ2
ε

n

)2

+ 0 + 6(y + zασε)
2
(
σ2
ε

n

)
+ (y + zασε)

4

= 3σ
4
ε

n2 + 6(y2 + 2yzασε + z2
ασ

2
ε)
(
σ2
ε

n

)
+ y4 + 4y3zασε + 6y2z2

ασ
2
ε + 4yz3

ασ
3
ε + z4

ασ
4
ε

= 3σ
4
ε

n2 + 6y2 σ
2
ε

n
+ 12yzα

σ3
ε

n
+ 6z2

α
σ4
ε

n
+ y4 + 4y3zασε + 6y2z2

ασ
2
ε + 4yz3

ασ
3
ε + z4

ασ
4
ε

= y4 + 4y3zασε + 6y2σ2
ε

(
1
n

+ z2
α

)
+ 4yzασ

3
ε

(
3
n

+ z2
α

)
+ σ4

ε

(
3
n2 + 6z2

α

n
+ z4

α

)

= y4 + 4y3zα(νs2)
1
2 ( 1

χ2
ν
)

1
2 + 6y2(νs2)( 1

χ2
ν
)
(

1
n

+ z2
α

)
+ 4yzα(νs2)

3
2 ( 1

χ2
ν
)

3
2

(
3
n

+ z2
α

)
+(νs2)2( 1

χ2
ν
)2
(

3
n2 + 6z2

α

n
+ z4

α

)
.
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Now

m
′
4 = E(µ

′
4).

Therefore

m
′
4 = E(y4) + 4y3zα(νs2)

1
2E
[
( 1
χ2
ν
)

1
2

]
+ 6y2(νs2)

(
1
n

+ z2
α

)
E
[
( 1
χ2
ν
)
]

+4yzα(νs2)
3
2

(
3
n

+ z2
α

)
E
[
( 1
χ2
ν
)

3
2

]
+ (νs2)2

(
3
n2 + 6z2

α

n
+ z4

α

)
E
[
( 1
χ2
ν
)2
]

= y4 + 4y3zα(νs2)
1
2

Γ( ν−1
2

)

2
1
2 Γ( ν

2
)

+ 6y2(νs2)
(

1
n

+ z2
α

)
( 1
ν−2

)

+4yzα(νs2)
3
2

(
3
n

+ z2
α

) Γ( ν−3
2

)

2
3
2 Γ( ν

2
)

+ (νs2)2
(

3
n2 + 6z2

α

n
+ z4

α

)[
1

(ν−2)(ν−4)

]
.

It is known that the fourth unconditional central moment of q is given by

m4 = m
′
4 − 4m

′
1m3 − 6(m

′
1)2m2 − (m

′
1)4.

Now in the equation m4 = m
′
4 − 4m

′
1m3 − 6(m

′
1)2m2 − (m

′
1)4, consider the following

terms:

m
′
4

= y4 + 4y3zα(νs2)
1
2

Γ( ν−1
2

)

2
1
2 Γ( ν

2
)

+ 6y2(νs2)
(

1
n

+ z2
α

)
( 1
ν−2

) + 4yzα(νs2)
3
2

(
3
n

+ z2
α

) Γ( ν−3
2

)

2
3
2 Γ( ν

2
)

+(νs2)2
(

3
n2 + 6z2

α

n
+ z4

α

)[
1

(ν−2)(ν−4)

]

= y4 +
4y3zα(νs2)

1
2 Γ( ν−1

2
)

2
1
2 Γ( ν

2
)

+ 6y2(νs2)
n(ν−2)

+ 6y2z2
α(νs2)
ν−2

+
12yzα(νs2)

3
2 Γ( ν−3

2
)

n2
3
2 Γ( ν

2
)

+
4yz3

α(νs2)
3
2 Γ( ν−3

2
)

2
3
2 Γ( ν

2
)

+
(

3
n2 + 6z2

α

n
+ z4

α

)
(νs2)2

(ν−2)(ν−4)
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−4m
′
1m3

= −4

[
y + zα(νs2)

1
2

Γ( ν−1
2

)

2
1
2 Γ( ν

2
)

]
(νs2)

3
2 zα

Γ( ν−3
2

)

2
3
2 Γ( ν

2
)

{[
1

(ν−2)

(
3
n
− z2

α(2ν − 7)
)]

+ z2
α(ν − 3)

Γ2( ν−1
2

)

Γ2( ν
2

)

}

= −4

[
y+

zα(νs2)
1
2 Γ( ν−1

2
)

2
1
2 Γ( ν

2
)

]{
3zα(νs2)

3
2 Γ( ν−3

2
)

n(ν−2)2
3
2 Γ( ν

2
)
− z3

α(νs2)
3
2 (2ν−7)Γ( ν−3

2
)

(ν−2)2
3
2 Γ( ν

2
)

+
z3
α(νs2)

3
2 (ν−3)Γ2( ν−1

2
)Γ( ν−3

2
)

2
3
2 Γ3( ν

2
)

}

= −4

[
y +

zα(νs2)
1
2 Γ( ν−1

2
)

2
1
2 Γ( ν

2
)

]{
3zα(νs2)

3
2 Γ( ν−3

2
)

n(ν−2)2
3
2 Γ( ν

2
)
− z3

α(νs2)
3
2 (2ν−7)Γ( ν−3

2
)

(ν−2)2
3
2 Γ( ν

2
)

+
2z3
α(νs2)

3
2 Γ3( ν−1

2
)

2Γ3( ν
2

)

}

from (ν − 3)Γ( ν−3
2 ) = 2Γ( ν−1

2 )

= −12yzα(νs2)
3
2 Γ( ν−3

2
)

n(ν−2)2
3
2 Γ( ν

2
)

+
4yz3

α(2ν−7)(νs2)
3
2 Γ( ν−3

2
)

(ν−2)2
3
2 Γ( ν

2
)

− 8yz3
α(νs2)

3
2 Γ3( ν−1

2
)

2
3
2 Γ3( ν

2
)

−12z2
α(νs2)2Γ( ν−1

2
)Γ( ν−3

2
)

n(ν−2)22Γ2( ν
2

)
+

4z4
α(2ν−7)(νs2)2Γ( ν−1

2
)Γ( ν−3

2
)

(ν−2)22Γ2( ν
2

)
− 8z4

α(νs2)2Γ4( ν−1
2

)

22Γ4( ν
2

)

−6(m
′
1)2m2

= −6(νs2)

[
y2 + 2yzα(νs2)

1
2

Γ( ν−1
2

)

2
1
2 Γ( ν

2
)

+ z2
α(νs2)

Γ2( ν−1
2

)

2Γ2( ν
2

)

][
1

(ν−2)

(
1
n

+ z2
α

)
− z2

α
Γ2( ν−1

2
)

2Γ2( ν
2

)

]

= −6(νs2)

[
y2 +

2yzα(νs2)
1
2 Γ( ν−1

2
)

2
1
2 Γ( ν

2
)

+
z2
α(νs2)Γ2( ν−1

2
)

2Γ2( ν
2

)

][
1

n(ν−2)
+ z2

α

(ν−2)
− z2

αΓ2( ν−1
2

)

2Γ2( ν
2

)

]

= −6(νs2)

{
y2

n(ν−2)
+ y2z2

α

(ν−2)
− y2z2

αΓ2( ν−1
2

)

2Γ2( ν
2

)
+

2yzα(νs2)
1
2 Γ( ν−1

2
)

n(ν−2)2
1
2 Γ( ν

2
)

+
2yz3

α(νs2)
1
2 Γ( ν−1

2
)

(ν−2)2
1
2 Γ( ν

2
)
− 2yz3

α(νs2)
1
2 Γ3( ν−1

2
)

2
3
2 Γ3( ν

2
)

+
z2
α(νs2)Γ2( ν−1

2
)

n(ν−2)2Γ2( ν
2

)
+

z4
α(νs2)Γ2( ν−1

2
)

(ν−2)2Γ2( ν
2

)
− z4

α(νs2)Γ4( ν−1
2

)

22Γ4( ν
2

)

}

= −6y2(νs2)
n(ν−2)

−6y2z2
α(νs2)

(ν−2)
+

6y2z2
α(νs2)Γ2( ν−1

2
)

2Γ2( ν
2

)
−12yzα(νs2)

3
2 Γ( ν−1

2
)

n(ν−2)2
1
2 Γ( ν

2
)
−12yz3

α(νs2)
3
2 Γ( ν−1

2
)

(ν−2)2
1
2 Γ( ν

2
)

+
12yz3

α(νs2)
3
2 Γ3( ν−1

2
)

2
3
2 Γ3( ν

2
)

−6z2
α(νs2)2Γ2( ν−1

2
)

n(ν−2)2Γ2( ν
2

)
− 6z4

α(νs2)2Γ2( ν−1
2

)

(ν−2)2Γ2( ν
2

)
+

6z4
α(νs2)2Γ4( ν−1

2
)

22Γ4( ν
2

)
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(m
′
1)4

= −
[
y + zα(νs2)

1
2

Γ( ν−1
2

)

2
1
2 Γ( ν

2
)

]4

= −y4 − 4y3zα(νs2)
1
2 Γ( ν−1

2
)

2
1
2 Γ( ν

2
)

− 6y2z2
α(νs2)Γ2( ν−1

2
)

2Γ2( ν
2

)
− 4yz3

α(νs2)
3
2 Γ3( ν−1

2
)

2
3
2 Γ3( ν

2
)

− z4
α(νs2)2Γ4( ν−1

2
)

22Γ4( ν
2

)
.

Therefore

m4 = y4 +
4y3zα(νs2)

1
2 Γ( ν−1

2
)

2
1
2 Γ( ν

2
)

+ 6y2(νs2)
n(ν−2)

+ 6y2z2
α(νs2)
ν−2

+
12yzα(νs2)

3
2 Γ( ν−3

2
)

n2
3
2 Γ( ν

2
)

+
4yz3

α(νs2)
3
2 Γ( ν−3

2
)

2
3
2 Γ( ν

2
)

+
(

3
n2 + 6z2

α

n
+z4

α

)
(νs2)2

(ν−2)(ν−4)
− 12yzα(νs2)

3
2 Γ( ν−3

2
)

n(ν−2)2
3
2 Γ( ν

2
)

+
4yz3

α(2ν−7)(νs2)
3
2 Γ( ν−3

2
)

(ν−2)2
3
2 Γ( ν

2
)

− 8yz3
α(νs2)

3
2 Γ3( ν−1

2
)

2
3
2 Γ3( ν

2
)

−12z2
α(νs2)2Γ( ν−1

2
)Γ( ν−3

2
)

n(ν−2)22Γ2( ν
2

)
+

4z4
α(2ν−7)(νs2)2Γ( ν−1

2
)Γ( ν−3

2
)

(ν−2)22Γ2( ν
2

)
− 8z4

α(νs2)2Γ4( ν−1
2

)

22Γ4( ν
2

)

−6y2(νs2)
n(ν−2)

− 6y2z2
α(νs2)

(ν−2)
+

6y2z2
α(νs2)Γ2( ν−1

2
)

2Γ2( ν
2

)
− 12yzα(νs2)

3
2 Γ( ν−1

2
)

n(ν−2)2
1
2 Γ( ν

2
)
− 12yz3

α(νs2)
3
2 Γ( ν−1

2
)

(ν−2)2
1
2 Γ( ν

2
)

+
12yz3

α(νs2)
3
2 Γ3( ν−1

2
)

2
3
2 Γ3( ν

2
)

− 6z2
α(νs2)2Γ2( ν−1

2
)

n(ν−2)2Γ2( ν
2

)
− 6z4

α(νs2)2Γ2( ν−1
2

)

(ν−2)2Γ2( ν
2

)
+

6z4
α(νs2)2Γ4( ν−1

2
)

22Γ4( ν
2

)

−y4 − 4y3zα(νs2)
1
2 Γ( ν−1

2
)

2
1
2 Γ( ν

2
)

− 6y2z2
α(νs2)Γ2( ν−1

2
)

2Γ2( ν
2

)
− 4yz3

α(νs2)
3
2 Γ3( ν−1

2
)

2
3
2 Γ3( ν

2
)

− z4
α(νs2)2Γ4( ν−1

2
)

22Γ4( ν
2

)
.

Consider the terms that contain y4 :

y4 − y4 = 0

Consider the terms that contain y3 :

4y3zα(νs2)
1
2 Γ( ν−1

2
)

2
1
2 Γ( ν

2
)

− 4y3zα(νs2)
1
2 Γ( ν−1

2
)

2
1
2 Γ( ν

2
)

= 0

Consider the terms that contain y2 :

6y2(νs2)
n(ν−2)

+ 6y2z2
α(νs2)
ν−2

− 6y2(νs2)
n(ν−2)

− 6y2z2
α(νs2)

(ν−2)
+

6y2z2
α(νs2)Γ2( ν−1

2
)

2Γ2( ν
2

)
− 6y2z2

α(νs2)Γ2( ν−1
2

)

2Γ2( ν
2

)
= 0
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Consider the terms that contain y :

12yzα(νs2)
3
2 Γ( ν−3

2
)

n2
3
2 Γ( ν

2
)

+
4yz3

α(νs2)
3
2 Γ( ν−3

2
)

2
3
2 Γ( ν

2
)

− 12yzα(νs2)
3
2 Γ( ν−3

2
)

n(ν−2)2
3
2 Γ( ν

2
)

+
4yz3

α(2ν−7)(νs2)
3
2 Γ( ν−3

2
)

(ν−2)2
3
2 Γ( ν

2
)

− 8yz3
α(νs2)

3
2 Γ3( ν−1

2
)

2
3
2 Γ3( ν

2
)

−12yzα(νs2)
3
2 Γ( ν−1

2
)

n(ν−2)2
1
2 Γ( ν

2
)
− 12yz3

α(νs2)
3
2 Γ( ν−1

2
)

(ν−2)2
1
2 Γ( ν

2
)

+
12yz3

α(νs2)
3
2 Γ3( ν−1

2
)

2
3
2 Γ3( ν

2
)

− 4yz3
α(νs2)

3
2 Γ3( ν−1

2
)

2
3
2 Γ3( ν

2
)

From the terms containing y, consider the terms that contain both y and z3
α :

Therefore

4yz3
α(νs2)

3
2 Γ( ν−3

2
)

2
3
2 Γ( ν

2
)

+
4yz3

α(2ν−7)(νs2)
3
2 Γ( ν−3

2
)

(ν−2)2
3
2 Γ( ν

2
)

− 8yz3
α(νs2)

3
2 Γ3( ν−1

2
)

2
3
2 Γ3( ν

2
)

− 12yz3
α(νs2)

3
2 Γ( ν−1

2
)

(ν−2)2
1
2 Γ( ν

2
)

+
12yz3

α(νs2)
3
2 Γ3( ν−1

2
)

2
3
2 Γ3( ν

2
)

− 4yz3
α(νs2)

3
2 Γ3( ν−1

2
)

2
3
2 Γ3( ν

2
)

=
4yz3

α(νs2)
3
2 Γ( ν−3

2
)

2
3
2 Γ( ν

2
)

+
4yz3

α(2ν−7)(νs2)
3
2 Γ( ν−3

2
)

(ν−2)2
3
2 Γ( ν

2
)

− 12yz3
α(νs2)

3
2 Γ( ν−1

2
)

(ν−2)2
1
2 Γ( ν

2
)

=
4yz3

α(νs2)
3
2 Γ( ν−3

2
)

2
3
2 Γ( ν

2
)

+
4yz3

α(2ν−7)(νs2)
3
2 Γ( ν−3

2
)

(ν−2)2
3
2 Γ( ν

2
)

−12yz3
α(νs2)

3
2 (ν−3)Γ( ν−3

2
)

(ν−2)2
3
2 Γ( ν

2
)

from Γ( ν−1
2 ) = ( ν−3

2 )Γ( ν−3
2 )

=
4yz3

α(νs2)
3
2 (ν−2)Γ( ν−3

2
)

(ν−2)2
3
2 Γ( ν

2
)

+
4yz3

α(2ν−7)(νs2)
3
2 Γ( ν−3

2
)

(ν−2)2
3
2 Γ( ν

2
)

− 12yz3
α(νs2)

3
2 (ν−3)Γ( ν−3

2
)

(ν−2)2
3
2 Γ( ν

2
)

=
4yz3

α(νs2)
3
2 Γ( ν−3

2
)

(ν−2)2
3
2 Γ( ν

2
)

[
(ν − 2) + (2ν − 7)− 3(ν − 3)

]

= 0
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From the terms containing y, consider those terms that contain both y and zα :

Therefore

12yzα(νs2)
3
2 Γ( ν−3

2
)

n2
3
2 Γ( ν

2
)

− 12yzα(νs2)
3
2 Γ( ν−3

2
)

n(ν−2)2
3
2 Γ( ν

2
)
− 12yzα(νs2)

3
2 Γ( ν−1

2
)

n(ν−2)2
1
2 Γ( ν

2
)

=
12yzα(νs2)

3
2 Γ( ν−3

2
)

n2
3
2 Γ( ν

2
)

−12yzα(νs2)
3
2 Γ( ν−3

2
)

n(ν−2)2
3
2 Γ( ν

2
)
−12yzα(νs2)

3
2 (ν−3)Γ( ν−3

2
)

n(ν−2)2
3
2 Γ( ν

2
)

from Γ( ν−1
2 ) = ( ν−3

2 )Γ( ν−3
2 )

=
12yzα(νs2)

3
2 (ν−2)Γ( ν−3

2
)

(ν−2)n2
3
2 Γ( ν

2
)

− 12yzα(νs2)
3
2 Γ( ν−3

2
)

n(ν−2)2
3
2 Γ( ν

2
)
− 12yzα(νs2)

3
2 (ν−3)Γ( ν−3

2
)

n(ν−2)2
3
2 Γ( ν

2
)

=
12yzα(νs2)

3
2 Γ( ν−3

2
)

(ν−2)n2
3
2 Γ( ν

2
)

[
(ν − 2)− 1− (ν − 3)

]
= 0

The terms containing y all therefore become equal to zero.

The fourth central moment of the unconditional posterior distribution of q i.e. p(q|y) is

therefore given by

m4 =
(

3
n2 + 6z2

α

n
+ z4

α

)
(νs2)2

(ν−2)(ν−4)
− 12z2

α(νs2)2Γ( ν−1
2

)Γ( ν−3
2

)

n(ν−2)22Γ2( ν
2

)
+

4z4
α(2ν−7)(νs2)2Γ( ν−1

2
)Γ( ν−3

2
)

(ν−2)22Γ2( ν
2

)

−8z4
α(νs2)2Γ4( ν−1

2
)

22Γ4( ν
2

)
− 6z2

α(νs2)2Γ2( ν−1
2

)

n(ν−2)2Γ2( ν
2

)
− 6z4

α(νs2)2Γ2( ν−1
2

)

(ν−2)2Γ2( ν
2

)

+
6z4
α(νs2)2Γ4( ν−1

2
)

22Γ4( ν
2

)
− z4

α(νs2)2Γ4( ν−1
2

)

22Γ4( ν
2

)

=
(

3
n2 + 6z2

α

n
+ z4

α

)
(νs2)2

(ν−2)(ν−4)
− 12z2

α(νs2)2Γ( ν−1
2

)Γ( ν−3
2

)

n(ν−2)22Γ2( ν
2

)
+

4z4
α(2ν−7)(νs2)2Γ( ν−1

2
)Γ( ν−3

2
)

(ν−2)22Γ2( ν
2

)

−8z4
α(νs2)2Γ4( ν−1

2
)

22Γ4( ν
2

)
− 6z2

α(νs2)2(ν−3)Γ( ν−3
2

)Γ( ν−1
2

)

n(ν−2)22Γ2( ν
2

)
− 6z4

α(νs2)2(ν−3)Γ( ν−3
2

)Γ( ν−1
2

)

(ν−2)22Γ2( ν
2

)

+
6z4
α(νs2)2Γ4( ν−1

2
)

22Γ4( ν
2

)
− z4

α(νs2)2Γ4( ν−1
2

)

22Γ4( ν
2

)
from Γ( ν−1

2 ) = ( ν−3
2 )Γ( ν−3

2 )

=
(

3
n2 + 6z2

α

n
+ z4

α

)
(νs2)2

(ν−2)(ν−4)
+

z4
α(νs2)2Γ4( ν−1

2
)

22Γ4( ν
2

)

[
−8 + 6− 1

]
−6z2

α(νs2)2Γ( ν−3
2

)Γ( ν−1
2

)

n(ν−2)22Γ2( ν
2

)

[
2 + (ν − 3)

]
+

2z4
α(νs2)2Γ( ν−3

2
)Γ( ν−1

2
)

(ν−2)22Γ2( ν
2

)

[
2(2ν − 7)− 3(ν − 3)

]
.
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Therefore

m4 =
(

3
n2 +6z2

α

n
+z4

α

)
(νs2)2

(ν−2)(ν−4)
−3z4

α(νs2)2Γ4( ν−1
2

)

22Γ4( ν
2

)
−6(ν−1)z2

α(νs2)2Γ( ν−3
2

)Γ( ν−1
2

)

n(ν−2)22Γ2( ν
2

)
+

2(ν−5)z4
α(νs2)2Γ( ν−3

2
)Γ( ν−1

2
)

(ν−2)22Γ2( ν
2

)
.

Proof of Theorem 2.6.3.1

Let a future observation from a process be equal to yf which follows a normal distribu-

tion with mean equal to µ and variance equal to σ2
ε , i.e.

yf ∼ N(µ, σ2
ε) . (2.7.1)

Equation 2.7.1 can therefore be written as

f(yf |µ, σ2
ε) = 1

σε
√

2π
e
− 1

2

(yf−µ)2

σ2
ε .

Now

f(yf |σ2
ε ,y) =

´∞
−∞ f(yf |µ, σ2

ε) · p(µ|y)du .

Since

µ|y ∼ N(µ, σ
2
ε

n
), it follows that

f(yf |σ2
ε ,y) =

´∞
−∞

1
σε
√

2π
e
− 1

2

(yf−µ)2

σ2
ε · n

1
2

σε
√

2π
e
− n

2σ2
ε

(µ−y)2

du

= n
1
2

σ2
ε(2π)

´∞
−∞ e

− 1

2σ2
ε

(y2
f−2yfµ+µ2)− 1

2σ2
ε

(nµ2−2nµy+ny2)
du

= n
1
2

σ2
ε(2π)

[´∞
−∞ e

− 1

2σ2
ε
{(y2

f−2yfµ+µ2)+(nµ2−2nµy+ny2)}
du

]

= n
1
2

σ2
ε(2π)

[´∞
−∞ e

− 1

2σ2
ε
{(nµ2+µ2−2µyf−2nµy)+(y2

f+ny2)}
du

]
.
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Now only consider

(nµ2 + µ2 − 2µyf − 2nµy) + (y2
f + ny2)

= (n+ 1)
[
µ2 − 2µ(yf+ny)

n+1

]
+ (y2

f + ny2)

= (n+ 1)
[
µ− (yf+ny)

n+1

]2

+
[
y2
f + ny2 − (yf+ny)2

n+1

]
.

Therefore

f(yf |σ2
ε ,y) = n

1
2

σ2
ε(2π)

´∞
−∞ e

− 1

2σ2
ε

{
(n+1)

[
µ−

(yf+ny)

n+1

]2

+

[
y2
f+ny2−

(yf+ny)2

n+1

]}
du



= n
1
2

σ2
ε(2π)

[´∞
−∞ e

− (n+1)

2σ2
ε

[
µ−

(yf+ny)

n+1

]2

· e
− 1

2σ2
ε

[
y2
f+ny2−

(yf+ny)2

n+1

]
du

]

= n
1
2

σ2
ε(2π)

e
− 1

2σ2
ε

[
y2
f+ny2−

(yf+ny)2

n+1

]{´∞
−∞ e

− (n+1)

2σ2
ε

[
µ−

(yf+ny)

n+1

]2}
du .

Since

´∞
−∞ e

− (n+1)

2σ2
ε

[
µ−

(yf+ny)

n+1

]2

du = σε
√

2π

(n+1)
1
2

,

it follows that

f(yf |σ2
ε ,y) = n

1
2

σε
√

2π(n+1)
1
2
e
− 1

2σ2
ε

[
y2
f+ny2−

(yf+ny)2

n+1

]

= n
1
2

σ2
ε

√
2π(n+1)

1
2
e
− 1

2σ2
ε

[
(n+1)y2

f+n(n+1)y2−(yf+ny)2

n+1

]

= n
1
2

σ2
ε

√
2π(n+1)

1
2
e
− 1

2σ2
ε

[
ny2
f−2nyf y+ny2

n+1

]

= n
1
2

σ2
ε

√
2π(n+1)

1
2
e
− n

2(n+1)σ2
ε
[(yf−y)2] .
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Therefore

yf |σ2
ε ,y ∼ N

(
y,

(n+ 1)σ2
ε

n

)
. (2.7.2)

As already mentioned, since it is known from equation 2.7.1 that

yf |µ, σ2
ε ∼ N(µ, σ2

ε) and therefore

E [yf |µ, σ2
ε ] = µ , it can also be shown that

E [yf |σ2
ε ] = Ep(µ|σ2

ε ,y) {E [yf |µ, σ2
ε ]} = Ep(µ|σ2

ε ,y) [µ] = y , and,

Also

V ar(yf |σ2
ε) = V arp(µ|σ2

ε ,y) {E(yf |µ, σ2
ε)}+ Ep(µ|σ2

ε ,y) [V ar(yf |µ, σ2
ε)]

= V ar(µ) + E(σ2
ε)

= σ2
ε

n
+ σ2

ε

= (n+1
n

)σ2
ε .

It therefore follows that

yf |σ2
ε ,y ∼ N

(
y, (n+1

n
)σ2

ε

)
.
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To continue,

f(yf |y) =
´∞

0
f(yf |σ2

ε ,y)p(σ2
ε | y)dσ2

ε

=
´∞

0
n

1
2

σε
√

2π(n+1)
1
2
e
− n

2(n+1)σ2
ε

(yf−y)2

· k(σ2
ε)
− 1

2
(n+1)e

− 1
2

(n−1)s2

σ2
ε dσ2

ε

= kn
1
2

√
2π(n+1)

1
2

´∞
0

(σ2
ε)
− 1

2 exp
{
− n

2(n+1)σ2
ε
(yf − y)2

}
· (σ2

ε)
− 1

2
(n+1)exp

{
−1

2
(n−1)s2

σ2
ε

}
dσ2

ε

= kn
1
2

√
2π(n+1)

1
2

´∞
0

(σ2
ε)
− 1

2
(n+1)− 1

2 exp
{
−1

2
n

(n+1)σ2
ε
(yf − y)2 − 1

2
(n−1)s2

σ2
ε

}
dσ2

ε

= c
´∞

0
(σ2

ε)
− 1

2
[(n+1)+1]exp

{
− 1

2(n+1)σ2
ε

[n(yf − y)2 + (n+ 1)(n− 1)s2]
}
dσ2

ε

= c
´∞

0
(σ2

ε)
− 1

2
(n+2)exp

{
− 1

2(n+1)σ2
ε

[n(yf − y)2 + (n+ 1)(n− 1)s2]
}
dσ2

ε

= c
´∞

0
(σ2

ε)
− 1

2
n−1exp

{
− 1

2(n+1)σ2
ε

[n(yf − y)2 + (n+ 1)(n− 1)s2]
}
dσ2

ε .

It is also known that since

´∞
0
a

1
2
n−1exp

{
− a

2σ2

}
da = Γ(1

2
n)(2σ2)

1
2
n

it follows that

f(yf |y) = kn
1
2

√
2π(n+1)

1
2

Γ(1
2
n)
[

2(n+1)
n(yf−y)2+(n+1)(n−1)s2

] 1
2
n

= kn
1
2

√
2π(n+1)

1
2

Γ(n
2
)

[
2(n+1)

(n+1)[ n
(n+1)

(yf−y)2+(n+1)s2]

] 1
2
n

∀ −∞ ≤ yf ≤ ∞

= kn
1
2

√
2π(n+1)

1
2

Γ(n
2
)
[

2
n

(n+1)
(yf−y)2+νs2

] 1
2
n

∀ −∞ ≤ yf ≤ ∞

where ν = n− 1 and

k =

{
(n−1)s2

2

} 1
2 (n−1)

Γ(n−1
2

)
.
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Therefore, the unconditional predictive distribution p(yf | y) is given by

p(yf |y) =

{
νs2

2

} 1
2

(n−1)

Γ(ν
2
)

· n
1
2

√
2π(n+ 1)

1
2

Γ(
n

2
) ·

[
2

n
(n+1)

(yf − y)2 + νs2

] 1
2
n

(2.7.3)

=
Γ(n

2
)

Γ( ν
2

)
·

√
n

√
2π
√

(n+1)

[
νs2

2

] 1
2

(n−1) [
2

n
(n+1)

(yf−y)2+νs2

] 1
2
n

=
Γ( ν+1

2
)

Γ( ν
2

)
·

√
n

√
2π
√

(n+1)

[
νs2

2

] 1
2
n [

νs2

2

]− 1
2

[
n

(n+1)
(yf−y)2

2
+ νs2

2

]− 1
2
n

=
Γ( ν+1

2
)

Γ( ν
2

)
·

√
n

√
2π
√

(n+1)

[
2
νs2

]− 1
2
n [ 2

νs2

] 1
2

[
n

(n+1)
(yf−y)2

2
+ νs2

2

]− 1
2
n

=
Γ( ν+1

2
)

Γ( ν
2

)
·
[

n
2π(n+1)

· 2
νs2

] 1
2

[
2n

(n+1)
(yf−y)2

2νs2
+ νs2

2
· 2
νs2

]− 1
2
n

=
Γ( ν+1

2
)

Γ( ν
2

)
·
[

2n
2π(n+1)νs2

] 1
2

[
2n

(n+1)
(yf−y)2

2νs2
+ 1

]− 1
2
n

=
Γ( ν+1

2
)

Γ( ν
2

)
·
[

n
π(n+1)νs2

] 1
2
[
n(yf−y)2

(n+1)νs2
+ 1
]− 1

2
n

.

This unconditional predictive distribution p(yf |y) is in the general form of a student t -

distribution with ν = n− 1 degrees of freedom,

E(yf |y) = y and

V ar(yf |y) = E
[

(n+1)
n
σ2
]

= E
[

(n+1)
n

νs2

χ2
ν

]
= (n+1)νs2

n
E
[

1
χ2
ν

]
= (n+1)νs2

n
1

(ν−2)

= (n+1)(n−1)s2

n
1

(n−3)

= (n+1)
n

[
(n−1)
(n−3)

]
s2 .
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Proof of Theorem 2.6.4.1

The fixed - in - advance tolerance interval is defined as

c = 1− Φ
[
s−µ
σε

]
= 1− Φ(θ)

where Φ(θ) is the standard normal cumulative distribution function and θ = s−µ
σε

.

It is therefore known that

Φ( s−µ
σε

) =
´ s−µ

σε
−∞

1√
2π
e−

1
2
z2
dz

and

Φ(θ) =
´ θ
−∞

1√
2π
e−

1
2
z2
dz .

Now ∂c
∂µ

= −∂Φ(θ)
∂θ
· ∂θ
∂µ

= − e−
1
2 θ2

√
2π

(
1
σε

)
= 1

σε
· e
− 1

2 θ2

√
2π

= 1
σε
· e
− 1

2 (
s−µ
σε

)2

√
2π

.

Also ∂c
∂σ2
ε

= −∂Φ(θ)
∂θ
· ∂θ
∂σ2
ε

= − e−
1
2 θ2

√
2π

(−1
2
)(σ2

ε)
− 3

2 (s− µ)

= s−µ
2σ3
ε
· e
− 1

2 (
s−µ
σε

)2

√
2π

.

Therefore

∇′t(θ) =

[
∂c
∂µ

∂c
∂σ2
ε

]

=

[
1
σε
· e
− 1

2( s−µσε )2

√
2π

(s−µ)
2σ3
ε

e
− 1

2( s−µσε )2

√
2π

]

= z
[

1
σε

s−µ
2σ3
ε

]
where z = e

− 1
2( s−µσε )

2

√
2π

.
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Using the method of Datta and Ghosh (1995), it follows that since

F−1(θ) =

 σ2
ε

n
0

0 2(σ2
ε)2

n

, ∇′t(θ)F−1(θ) is given by

∇′t(θ)F−1(θ) = z
[

1
σε

s−µ
2σ3
ε

] σ2
ε

n
0

0 2(σ2
ε)2

n


= z

[
σε
n

(s−µ)σε
n

]

= σε
n

z
[

1 (s− µ)

]
.

Now

∇′t(θ)F−1(θ)∇t(θ) = zσε
n

[
1 (s− µ)

]
1
σε

z
[

1 (s−µ)
2σ2
ε

]
= z2 1

n

[
1 + (s−µ)

2σ2
ε

]
.

Therefore

√
∇′t(θ)F−1(θ)∇t(θ) = z 1√

n

(
1 + (s−µ)

2σ2
ε

) 1
2

.

Now

η(θ) =
∇′t(θ)F−1(θ)√
∇′t(θ)F−1(θ)∇t(θ)

=
zσε
n

[
1 (s− µ)

]

z 1√
n

[
1+

(s−µ)2

2σ2
ε

] 1
2

and therefore

η1(θ) =
σε√
n[

1+
(s−µ)2

2σ2
ε

] 1
2

and,

η2(θ) =
1√
n
σε(s−µ)[

1+
(s−µ)2

2σ2
ε

] 1
2

.
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Also

η1(θ)πm(θ) =
σε√
n[

1+
(s−µ)2

2σ2
ε

] 1
2
· σ−1

ε

[
1 + (s−µ)2

2σ2
ε

] 1
2

= 1√
n

, and

η2(θ)πm(θ) =
σε√
n

(s−µ)[
1+

(s−µ)2

2σ2
ε

] 1
2
· σ−1

ε

[
1 + (s−µ)2

2σ2
ε

] 1
2

= 1√
n
(s− µ) and it therefore follows that

∂
∂µ

[η1(θ)πm(θ)] + ∂
∂σ2
ε

[η2(θ)πm(θ)] = 0

since

∂
∂µ

[η1(θ)πm(θ)] = 0 , and ∂
∂σ2
ε

[η2(θ)πm(θ)] = 0 .

It therefore follows that equation 2.6.9 is a probability matching prior for the fixed - in -

advance tolerance interval given in equation 2.6.8.

It can also be shown that

πm(θ) ∝ σ−3
ε

[
1 + (s−µ)2

2σ2
ε

]− 1
2

is also a probability matching prior for the fixed - in - ad-

vance tolerance interval given in equation 2.6.8, since

η1(θ)πm(θ) =
σε√
n[

1+
(s−µ)2

2σ2
ε

] 1
2
· σ−3

ε

[
1 + (s−µ)2

2σ2
ε

]− 1
2

=
1√
n

σ2
ε

[
1+

(s−µ)2

2σ2
ε

] , and

η2(θ)πm(θ) =
σε√
n

(s−µ)[
1+

(s−µ)2

2σ2
ε

] 1
2
· σ−3

ε

[
1 + (s−µ)2

2σ2
ε

]− 1
2

=
1√
n

(s−µ)

σ2
ε

[
1+

(s−µ)2

2σ2
ε

] .
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It therefore follows that

∂
∂µ

[η1(θ)πm(θ)] =
1√
n

(s−µ)

σ2
ε

[
1+

(s−µ)2

2σ2
ε

]2

=
1√
n

(s−µ)

σ4
ε

[
1+

(s−µ)2

2σ2
ε

]2 , and

∂
∂σ2
ε

[η2(θ)πm(θ)] =
− 1√

n
(s−µ)

σ4
ε

[
1+

(s−µ)2

2σ2
ε

]2 with the result that

∂
∂µ

[η1(θ)πm(θ)] + ∂
∂σ2
ε

[η2(θ)πm(θ)] = 0 .

Proof of Theorem 2.6.5.1

a.) For two α quantiles qd (d = 1, 2) given by

q1 = µ1 + zασε1 and

q2 = µ2 + zασε2 ,

with

µ1 ∼ N(y1,
σ2
ε1

n1
), and µ2 ∼ N(y2,

σ2
ε2

n2
)

where

ν1s21
σ2
ε1

∼ χ2
ν1

, and ν2s22
σ2
ε2

∼ χ2
ν2

,

it is known that

(q1 − q2) =
[
y1 + z

σε1√
n1

+ zασε1

]
−
[
y2 + z

σε2√
n2

+ zασε2

]
where z ∼ N(0, 1)

= y1 − y2 + z
σε1√
n1
− z σε2√

n2
+ zασε1 − zασε2

= (y1 − y2) + σε1

[
z√
n1

+ zα

]
− σε2

[
z√
n2

+ zα

]
= (y1 − y2) +

(
ν1s21
χ2
ν1

) 1
2
[

z√
n1

+ zα

]
−
(
ν2s22
χ2
ν2

) 1
2
[

z√
n2

+ zα

]
.
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Since it is known from the proof of Theorem 2.6.1.1 a.) that

E
(

1
χ2
νd

) 1
2

=
Γ(
νd−1

2
)

2
1
2 Γ(

νd
2

)
(for d = 1, 2)

and it is also known that

(q1 − q2) = (y1 − y2) +
(
ν1s21
χ2
ν1

) 1
2
[

z√
n1

+ zα

]
−
(
ν2s22
χ2
ν2

) 1
2
[

z√
n2

+ zα

]
,

it can be shown that the mean (the first moment about zero) of the marginal posterior

distribution of (q1 − q2) is given by

E
[
(q1 − q2)|y1,y2

]
= E

[
(y1 − y2) +

(
ν1s21
χ2
ν1

) 1
2
[

z√
n1

+ zα

]
−
(
ν2s22
χ2
ν2

) 1
2
[

z√
n2

+ zα

]]

= E
[
(y1 − y2) + z

σε1√
n1

+ zασε1 − z
σε2√
n2
− zασε2

]

= E
[
(y1 − y2)

]
+ E

[
z
]
E
[
σε1√
n1

]
+ E

[
zα

]
E
[
σε1

]
−E
[
z
]
E
[
σε2√
n2

]
− E

[
zα

]
E
[
σε2

]

=
(
y1 − y2

)
+ 0 + zαE

[
σε1

]
− 0− zαE

[
σε2

]

=
(
y1 − y2

)
+ zα

{
E
[
σε1

]
− E

[
σε2

]}

=
(
y1 − y2

)
+ zα

{(
ν1s

2
1

) 1
2
E
(

1
χ2
ν1

) 1
2 −

(
ν2s

2
2

) 1
2
E
(

1
χ2
ν2

) 1
2

}
.

Therefore

E
[
(q1 − q2)|y1,y2

]
=
(
y1 − y2

)
+ zα

{(
ν1s

2
1

) 1
2E
(

1
χ2
ν1

) 1
2 −

(
ν2s

2
2

) 1
2E
(

1
χ2
ν2

) 1
2

}
.

Now, since E
(

1
χ2
ν

)
=

Γ( ν−2
2

)

2
1
2 Γ( ν

2
)
, it can easily be shown that

E
[
(q1 − q2)|y1,y2

]
=
(
y1 − y2

)
+ zα

{(
ν1s

2
1

) 1
2 Γ(

ν1−2
2

)

2
1
2 Γ(

ν1
2

)
−
(
ν2s

2
2

) 1
2 Γ(

ν2−2
2

)

2
1
2 Γ(

ν2
2

)

}
.
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b.) Following from the proof of Theorem 2.6.1.1 b.), it is known that

E
(

1
χ2
νd

)
=

Γ(
νd−2

2
)

2Γ(
νd
2

)
(for d = 1, 2)

=
Γ(
νd−2

2
)

2(
νd−2

2
)Γ(

νd−2

2
)

= 1
νd−2

.

By considering the conditional posterior distribution of (q1−q2) (conditional on both σ2
ε1

and σ2
ε2), it follows that

E
[
(q1 − q2)|σ2

ε1
, σ2

ε2
,y1,y2

]
= (y1 − y2) + zα(σε1 − σε2)

and

var
[
(q1 − q2)|σ2

ε1
, σ2

ε2
,y1,y2

]
=

σ2
ε1

n1
+

σ2
ε2

n2
.

It is therefore known that the conditional posterior distribution of (q1 − q2) is given by

(q1 − q2)|σ2
ε1
, σ2

ε2
,y1,y2 ∼ N

[
(y1 − y2) + zα(σε1 − σε2) ,

σ2
ε1

n1
+

σ2
ε2

n2

]
.

Therefore

(q1 − q2)|χ2
ν1
, χ2

ν2
,y1,y2 ∼ N

{
(y1 − y2) + zα

[(
ν1s21
χ2
ν1

) 1
2 −

(
ν2s22
χ2
ν2

) 1
2

]
, 1
n1

ν1s21
χ2
ν1

+ 1
n2

ν1s22
χ2
ν2

}

and

var [(q1 − q2)|y1,y2] = var

{
(y1− y2) + zα

[(
ν1s21
χ2
ν1

) 1
2 −

(
ν2s22
χ2
ν2

) 1
2

]}
+E

{
1
n1

ν1s21
χ2
ν1

+ 1
n2

ν2s22
χ2
ν2

}
.

Now var

{
(y1 − y2) + zα

[(
ν1s21
χ2
ν1

) 1
2 −

(
ν2s22
χ2
ν2

) 1
2

]}

= var
{

(y1 − y2)
}

+ var

{
zα

[(
ν1s21
χ2
ν1

) 1
2 −

(
ν2s22
χ2
ν2

) 1
2

]}

= var

{
zα

[(
ν1s21
χ2
ν1

) 1
2 −

(
ν2s22
χ2
ν2

) 1
2

]}
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= z2
α

{
var
(
ν1s21
χ2
ν1

) 1
2

+ var
(
ν2s22
χ2
ν2

) 1
2

}

= z2
α

{
(ν1s

2
1)var

(
1
χ2
ν1

) 1
2

+ (ν2s
2
2)var

(
1
χ2
ν2

) 1
2

}
.

It was also shown in Theorem 2.6.1.1 b.) that

varχ2
νd

(
1
χ2
νd

) 1
2

= E
[

1
χ2
νd

]
−
{
E
[

1
χ2
νd

]}2

(for d = 1, 2).

Since E
(

1
χ2
νd

)
= 1

(νd−2)
(d = 1, 2)

and

E
(

1
χ2
νd

) 1
2

=
Γ(
νd−1

2
)

2
1
2 Γ(

νd
2

)
(d = 1, 2),

it therefore follows that

var
(

1
χ2
νd

) 1
2

= 1
(νd−2)

−
{

Γ(
νd−1

2
)

2
1
2 Γ(

νd
2

)

}2

= 1
(νd−2)

− Γ2(
νd−1

2
)

2Γ2(
νd
2

)
(d = 1, 2).

It can therefore be shown that

varχ2
ν1,
χ2
ν2

{
(y1 − y2) + zα

[(
ν1s21
χ2
ν1

) 1
2 −

(
ν2s22
χ2
ν2

) 1
2

]}

= z2
α

{
(ν1s

2
1)

[
1

(ν1−2)
− Γ2(

ν1−1
2

)

2Γ2(
ν1
2

)

]
− (ν2s

2
2)

[
1

(ν2−2)
− Γ2(

ν2−1
2

)

2Γ2(
ν2
2

)

]}
.

Also

Eχ2
ν1
,χ2
ν2

[
1
n1

(
ν1s21
χ2
ν1

)
+ 1

n2

(
ν2s22
χ2
ν2

)]
= 1

n1
(ν1s

2
1)Eχ2

ν1

(
1
χ2
ν1

)
+ 1

n2
(ν2s

2
2)Eχ2

ν2

(
1
χ2
ν2

)
=

ν1s21
n1

(
1

ν1−2

)
+

ν2s22
n2

(
1

ν2−2

)
.
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It is therefore clear that the variance of the marginal posterior distribution of (q1 −

q2)|y1,y2 (the second central moment of the marginal posterior distribution of (q1−q2)),

is given by

var [(q1 − q2)|y1,y2]

= z2
α

{
(ν1s

2
1)
[

1
ν1−2
− Γ2(

ν1−1
2

)

2Γ2(
ν1
2

)

]}
− z2

α

{
(ν2s

2
2)
[

1
ν2−2
− Γ2(

ν2−1
2

)

2Γ2(
ν2
2

)

]}
+

ν1s21
n1

(
1

ν1−2

)
+

ν2s22
n2

(
1

ν2−2

)
= (ν1s

2
1)

{
z2
α

[
1

ν1−2
− Γ2(

ν1−1
2

)

2Γ2(
ν1
2

)

]
+ 1

n1

(
1

ν1−2

)}
− (ν2s

2
2)

{
z2
α

[
1

ν2−2
− Γ2(

ν2−1
2

)

2Γ2(
ν2
2

)

]
+ 1

n2

(
1

ν2−2

)}

= (ν1s
2
1)

{(
1

ν1−2

)[
z2
α + 1

n1

]
− z2

αΓ2(
ν1−1

2
)

2Γ2(
ν1
2

)

}
− (ν2s

2
2)

{(
1

ν2−2

)[
z2
α + 1

n2

]
− z2

αΓ2(
ν2−1

2
)

2Γ2(
ν2
2

)

}
.

c.) It was shown in Theorem 2.6.1.1 c.) that

E
(

1
χ2
νd

) 3
2

=
Γ(
νd−3

2
)

2
3
2 Γ(

νd
2

)
(for d = 1, 2).

The third moment about the origin of the conditional posterior distribution of (q1 −

q2)|σ2
ε1 , σ

2
ε2 ,y1,y2 can in general be written as

µ
′
3 = µ3 + 3µ2µ

′
1 + (µ

′
1)3 .

By substituting

µ
′
1 = (y1 − y2) + zα(σε1 − σε2),

µ2 =
σ2
ε1

n1
+

σ2
ε2

n2
, and

µ3 = 0

into the equation for µ
′
3, it follows that the third moment about the origin of (q1 −

q2)|σ2
ε1 , σ

2
ε2 ,y1,y2 is given by
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µ
′
3 = 0 + 3

(
σ2
ε1

n1
+

σ2
ε2

n2

){
(y1 − y2) + zα(σε1 − σε2)

}
+

{
(y1 − y2) + zα(σε1 − σε2)

}3

=
3σ2
ε1

n1

(
y1 − y2

)
+

3σ2
ε2

n2

(
y1 − y2

)
+ 3zα

(
σ2
ε1

n1
+

σ2
ε2

n2

)(
σε1 − σε2

)
+
(
y1 − y2

)3

+3
(
y1 − y2

)2

zα

(
σε1 − σε2

)
+ 3
(
y1 − y2

)
z2
α

(
σε1 − σε2

)2

+ z3
α

(
σε1 − σε2

)3

=
(
y1 − y2

)3

+ 3
(
y1 − y2

)2

zα

(
σε1 − σε2

)
+ 3
(
y1 − y2

){
σ2
ε1

n1
+

σ2
ε2

n2
+ z2

α

(
σε1 − σε2

)2
}

+3zα

(
σ2
ε1

n1
+

σ2
ε2

n2

)(
σε1 − σε2

)
+ z3

α

(
σε1 − σε2

)3

=
(
y1 − y2

)3

+ 3
(
y1 − y2

)2

zα

(
σε1 − σε2

)
+ 3
(
y1 − y2

)
σ2
ε1

n1
+ 3
(
y1 − y2

)
σ2
ε2

n2

+3
(
y1 − y2

)
z2
ασ

2
ε1
− 6
(
y1 − y2

)
z2
ασε1σε2 + 3

(
y1 − y2

)
z2
ασ

2
ε2

+ 3zα
σ3
ε1

n1
− 3zα

σ2
ε1
σε2
n1

+3zα
σε1σ

2
ε2

n2
− 3zα

σ3
ε2

n2
+ z3

ασ
3
ε1
− 3z3

ασ
2
ε1
σε2 + 3z3

ασε1σ
2
ε2
− z3

ασ
3
ε2

=
(
y1 − y2

)3

+ 3
(
y1 − y2

)2

zα

(
σε1 − σε2

)
+ 3
(
y1 − y2

){
σ2
ε1

n1
+

σ2
ε2

n2
+ z2

ασ
2
ε1

+ z2
ασ

2
ε2

}
+3zα

σ3
ε1

n1
+ z3

ασ
3
ε1
− 3zα

σ3
ε2

n2
− z3

ασ
3
ε2
− 6
(
y1 − y2

)
z2
ασε1σε2 + 3zα

σε1σ
2
ε2

n2
− 3zα

σ2
ε1
σε2
n1

−3z3
ασ

2
ε1
σε2 + 3z3

ασε1σ
2
ε2

=
(
y1−y2

)3

+3
(
y1−y2

)2

zα

(
σε1−σε2

)
+3
(
y1−y2

){
σ2
ε1

(
z2
α + 1

n1

)
+ σ2

ε2

(
z2
α + 1

n2

)}
+σ3

ε1

(
3zα
n1

+ z3
α

)
− σ3

ε2

(
3zα
n2

+ z3
α

)
− 6
(
y1 − y2

)
z2
ασε1σε2 − 3zασ

2
ε1
σε2

(
1
n1

+ z2
α

)
+3zασε1σ

2
ε2

(
1
n2

+ z2
α

)
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=
(
y1 − y2

)3

+ 3
(
y1 − y2

)2

zα

[(
ν1s21
χ2
ν1

) 1
2 −

(
ν2s22
χ2
ν2

) 1
2

]

+3
(
y1 − y2

){(
ν1s21
χ2
ν1

)(
z2
α + 1

n1

)
+
(
ν2s22
χ2
ν2

)(
z2
α + 1

n2

)}
+
(
ν1s21
χ2
ν1

) 3
2
(

3zα
n1

+ z3
α

)
−
(
ν2s22
χ2
ν2

) 3
2
(

3zα
n2

+ z3
α

)
− 6
(
y1− y2

)
z2
α

(
ν1s21
χ2
ν1

) 1
2
(
ν2s22
χ2
ν2

) 1
2 − 3zα

(
ν1s21
χ2
ν1

)(
ν2s22
χ2
ν2

) 1
2
(

1
n1

+ z2
α

)
+3zα

(
ν1s21
χ2
ν1

) 1
2
(
ν2s22
χ2
ν2

)(
1
n2

+ z2
α

)

Now m
′
3 = E(µ

′
3), therefore

m
′
3 =

(
y1 − y2

)3

+ 3
(
y1 − y2

)2

zα

[(
ν1s

2
1

) 1
2
E
(

1
χ2
ν1

) 1
2 −

(
ν2s

2
2

) 1
2
E
(

1
χ2
ν2

) 1
2

]

+3
(
y1 − y2

){
ν1s

2
1E
(

1
χ2
ν1

)(
z2
α + 1

n1

)
+ ν2s

2
2E
(

1
χ2
ν2

)(
z2
α + 1

n2

)}

+
(
ν1s

2
1

) 3
2
E
(

1
χ2
ν1

) 3
2
(

3zα
n1

+ z3
α

)
−
(
ν2s

2
2

) 3
2
E
(

1
χ2
ν2

) 3
2
(

3zα
n2

+ z3
α

)
−6
(
y1 − y2

)
z2
α

(
ν1s

2
1

) 1
2
E
(

1
χ2
ν1

) 1
2
(
ν2s

2
2

) 1
2
E
(

1
χ2
ν2

) 1
2

−3zα

(
ν1s

2
1

)
E
(

1
χ2
ν1

)(
ν2s

2
2

) 1
2
E
(

1
χ2
ν2

) 1
2
(

1
n1

+ z2
α

)
+3zα

(
ν1s

2
1

) 1
2
E
(

1
χ2
ν1

) 1
2
(
ν2s

2
2

)
E
(

1
χ2
ν2

)(
1
n2

+ z2
α

)

=
(
y1 − y2

)3

+ 3
(
y1 − y2

)2

zα

[(
ν1s

2
1

) 1
2 Γ(

ν1−1
2

)

2
1
2 Γ(

ν1
2

)
−
(
ν2s

2
2

) 1
2 Γ(

ν2−1
2

)

2
1
2 Γ(

ν2
2

)

]

+3
(
y1 − y2

){
(ν1s21)

(ν1−2)

(
z2
α + 1

n1

)
+

(ν2s22)

(ν2−2)

(
z2
α + 1

n2

)}
+
(
ν1s

2
1

) 3
2 Γ(

ν1−3
2

)

2
3
2 Γ(

ν1
2

)

[
3zα
n1

+ z3
α

]
−
(
ν2s

2
2

) 3
2 Γ(

ν2−3
2

)

2
3
2 Γ(

ν2
2

)

[
3zα
n2

+ z3
α

]
− 6
(
y1 − y2

)
z2
α

(
ν1s

2
1

) 1
2 Γ(

ν1−1
2

)

2
1
2 Γ(

ν1
2

)

(
ν2s

2
2

) 1
2 Γ(

ν2−1
2

)

2
1
2 Γ(

ν2
2

)

−3zα
(ν1s21)

(ν1−2)

(
ν2s

2
2

) 1
2 Γ(

ν2−1
2

)

2
1
2 Γ(

ν2
2

)

[
1
n1

+ z2
α

]
+ 3zα

(
ν1s

2
1

) 1
2 Γ(

ν1−1
2

)

2
1
2 Γ(

ν1
2

)

(ν2s22)

(ν2−2)

[
1
n2

+ z2
α

]
.
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It is also known that m3 = m
′
3 − 3m2m

′
1 − (m

′
1)3.

Therefore

m3 =
(
y1 − y2

)3

+ 3
(
y1 − y2

)2

zα

[(
ν1s

2
1

) 1
2 Γ(

ν1−1
2

)

2
1
2 Γ(

ν1
2

)
−
(
ν2s

2
2

) 1
2 Γ(

ν2−1
2

)

2
1
2 Γ(

ν2
2

)

]

+3
(
y1 − y2

){
(ν1s21)

(ν1−2)

(
z2
α + 1

n1

)
+

(ν2s22)

(ν2−2)

(
z2
α + 1

n2

)}
+
(
ν1s

2
1

) 3
2 Γ(

ν1−3
2

)

2
3
2 Γ(

ν1
2

)

[
3zα
n1

+ z3
α

]
−
(
ν2s

2
2

) 3
2 Γ(

ν2−3
2

)

2
3
2 Γ(

ν2
2

)

[
3zα
n2

+ z3
α

]
− 6
(
y1 − y2

)
z2
α

(
ν1s

2
1

) 1
2 Γ(

ν1−1
2

)

2
1
2 Γ(

ν1
2

)

(
ν2s

2
2

) 1
2 Γ(

ν2−1
2

)

2
1
2 Γ(

ν2
2

)

−3zα
(ν1s21)

(ν1−2)

(
ν2s

2
2

) 1
2 Γ(

ν2−1
2

)

2
1
2 Γ(

ν2
2

)

[
1
n1

+ z2
α

]
+ 3zα

(
ν1s

2
1

) 1
2 Γ(

ν1−1
2

)

2
1
2 Γ(

ν1
2

)

(ν2s22)

(ν2−2)

[
1
n2

+ z2
α

]

−3

{
z2
α

[(
ν1s

2
1

)(
1

ν1−2
− Γ2(

ν1−1
2

)

2Γ2(
ν1
2

)

)
+
(
ν2s

2
2

)(
1

ν2−2
− Γ2(

ν2−1
2

)

2Γ2(
ν2
2

)

)]
+

(ν1s21)

n1(ν1−2)
+

(ν2s22)

n2(ν2−2)

}

×

{(
y1 − y2

)
+ zα

[(
ν1s

2
1

) 1
2 Γ(

ν1−1
2

)

2
1
2 Γ(

ν1
2

)
−
(
ν2s

2
2

) 1
2 Γ(

ν2−1
2

)

2
1
2 Γ2(

ν2
2

)

]}

−

{(
y1 − y2

)
+ zα

[(
ν1s

2
1

) 1
2 Γ(

ν1−1
2

)

2
1
2 Γ(

ν1
2

)

)
−
(
ν2s

2
2

) 1
2 Γ(

ν2−1
2

)

2
1
2 Γ2(

ν2
2

)

]}3

.

Therefore

m3 =
(
y1 − y2

)3

+ 3
(
y1 − y2

)2

zα

[(
ν1s

2
1

) 1
2 Γ(

ν1−1
2

)

2
1
2 Γ(

ν1
2

)
−
(
ν2s

2
2

) 1
2 Γ(

ν2−1
2

)

2
1
2 Γ(

ν2
2

)

]

+3
(
y1 − y2

){
(ν1s21)

(ν1−2)

(
z2
α + 1

n1

)
+

(ν2s22)

(ν2−2)

(
z2
α + 1

n2

)}
+
(
ν1s

2
1

) 3
2 Γ(

ν1−3
2

)

2
3
2 Γ(

ν1
2

)

[
3zα
n1

+ z3
α

]
−
(
ν2s

2
2

) 3
2 Γ(

ν2−3
2

)

2
3
2 Γ(

ν2
2

)

[
3zα
n2

+ z3
α

]
− 6
(
y1 − y2

)
z2
α

(
ν1s

2
1

) 1
2 Γ(

ν1−1
2

)

2
1
2 Γ(

ν1
2

)

(
ν2s

2
2

) 1
2 Γ(

ν2−1
2

)

2
1
2 Γ(

ν2
2

)

−3zα
(ν1s21)

(ν1−2)

(
ν2s

2
2

) 1
2 Γ(

ν2−1
2

)

2
1
2 Γ(

ν2
2

)

[
1
n1

+ z2
α

]
+ 3zα

(
ν1s

2
1

) 1
2 Γ(

ν1−1
2

)

2
1
2 Γ(

ν1
2

)

(ν2s22)

(ν2−2)

[
1
n2

+ z2
α

]

−3

{
z2
α

[(
ν1s

2
1

)(
1

ν1−2
− Γ2(

ν1−1
2

)

2Γ2(
ν1
2

)

)
+
(
ν2s

2
2

)(
1

ν2−2
− Γ2(

ν2−1
2

)

2Γ2(
ν2
2

)

)]
+

(ν1s21)

n1(ν1−2)
+

(ν2s22)

n2(ν2−2)

}
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×
(
y1− y2

)
− 3

{
z2
α

[(
ν1s

2
1

)(
1

ν1−2
− Γ2(

ν1−1
2

)

2Γ2(
ν1
2

)

)
+
(
ν2s

2
2

)(
1

ν2−2
− Γ2(

ν2−1
2

)

2Γ2(
ν2
2

)

)]
+

(ν1s21)

n1(ν1−2)

+
(ν2s22)

n2(ν2−2)

}{
zα

[(
ν1s

2
1

) 1
2 Γ(

ν1−1
2

)

2
1
2 Γ(

ν1
2

)

)
−
(
ν2s

2
2

) 1
2 Γ(

ν2−1
2

)

2
1
2 Γ2(

ν2
2

)

]}

−
(
y1 − y2

)3

− 3
(
y1 − y2

)2

zα

[(
ν1s

2
1

) 1
2 Γ(

ν1−1
2

)

2
1
2 Γ(

ν1
2

)

)
−
(
ν2s

2
2

) 1
2 Γ(

ν2−1
2

)

2
1
2 Γ2(

ν2
2

)

]

−3
(
y1 − y2

)
z2
α

[(
ν1s

2
1

) 1
2 Γ(

ν1−1
2

)

2
1
2 Γ(

ν1
2

)

)
−
(
ν2s

2
2

) 1
2 Γ(

ν2−1
2

)

2
1
2 Γ2(
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2

)

]2

−z3
α

[(
ν1s

2
1

) 1
2 Γ(

ν1−1
2

)

2
1
2 Γ(

ν1
2

)

)
−
(
ν2s

2
2

) 1
2 Γ(

ν2−1
2

)

2
1
2 Γ2(
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2

)

]3

.

Now consider the terms that contain
(
y1 − y2

)3

(
y1 − y2

)3

−
(
y1 − y2

)3

= 0 .

Consider the terms that contain
(
y1 − y2

)2

3
(
y1 − y2

)2

zα

[(
ν1s

2
1

) 1
2 Γ(

ν1−1
2

)

2
1
2 Γ(

ν1
2

)
−
(
ν2s

2
2

) 1
2 Γ(

ν2−1
2

)

2
1
2 Γ(
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2

)

]

−3
(
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2
1
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2 Γ(
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2

)

2
1
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2

)
−
(
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2
2
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2

)

2
1
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2

)

]
= 0 .

Consider the terms that contain
(
y1 − y2

)
3
(
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){
(ν1s21)

(ν1−2)

(
z2
α+ 1

n1

)
+

(ν2s22)

(ν2−2)

(
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α+ 1
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)}
−6
(
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)
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α

(
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2
1
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2 Γ(
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2

)

2
1
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2

)

(
ν2s

2
2
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2 Γ(
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2

)

2
1
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2

)

−3

{
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α
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2
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1
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− Γ2(
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2

)
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2

)
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{
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α
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2
2
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1
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− Γ2(
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2

)
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[

1
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1
n2
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(
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)

2Γ2(
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]
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)
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2
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2 Γ(

ν1−1
2

)

2
1
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ν2−1
2

)

2
1
2 Γ(
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2
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)
Γ2(
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)

2Γ2(
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Therefore the terms containing
(
y1 − y2

)
become

3
(
y1 − y2

)
z2
α

(ν1s21)

(ν1−2)
+ 3
(
y1 − y2

)
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+ 3
(
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)
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α
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+ 3
(
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−6
(
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)
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(
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2
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2
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(
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)

2
1
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α

(
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α

(
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]
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(
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2
1
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ν2
2

)
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Therefore
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2
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]
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+
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+
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)
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(
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α
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)
− z3

α(ν1s21)
3
2 Γ3(

ν1−1
2

)

2
3
2 Γ(

ν1
2

)

+
3z3
α(ν1s21)(ν2s22)

1
2 Γ2(

ν1−1
2

)Γ(
ν2−1

2
)

2
3
2 Γ2(

ν1
2

)Γ(
ν2
2

)
− 3z3

α(ν1s21)
1
2 (ν2s22)Γ(

ν1−1
2

)Γ2(
ν2−1

2
)

2
3
2 Γ(

ν1
2

)Γ2(
ν2
2

)
+ z3

α(ν2s
2
2)

3
2

Γ3(
ν2−1

2
)

2
3
2 Γ3(

ν2
2

)
.

Now consider the terms containing
(
ν1s

2
1

)(
ν2s

2
2

) 1
2

−3zα(ν1s21)(ν2s22)
1
2 Γ(

ν2−1
2

)

n1(ν1−2)2
1
2 Γ(

ν2
2

)

)
− 3z3

α(ν1s21)(ν2s22)
1
2 Γ(

ν2−1
2

)

(ν1−2)2
1
2 Γ(

ν2
2

)
+

3z3
α(ν1s21)(ν2s22)

1
2 Γ(

ν2−1
2

)

(ν1−2)2
1
2 Γ(

ν2
2

)

−3z2
α(ν1s21)(ν2s22)

1
2 Γ2(

ν1−1
2

)Γ(
ν2−1

2
)

2
3
2 Γ2(

ν1
2

)Γ(
ν2
2

)
+

3zα(ν1s21)(ν2s22)
1
2 Γ(

ν2−1
2

)

n1(ν1−2)2
1
2 Γ(

ν2
2

)
+

3z3
α(ν1s21)(ν2s22)

1
2 Γ2(

ν1−1
2

)Γ(
ν2−1

2
)

2
3
2 Γ2(

ν1
2

)Γ(
ν2
2

)
.

= 0 .

Also, consider the terms containing
(
ν1s

2
1

) 1
2
(
ν2s

2
2

)
3zα(ν1s21)

1
2 (ν2s22)Γ(

ν1−1
2

)

n2(ν2−2)2
1
2 Γ(

ν1
2

)
+

3z3
α(ν1s21)

1
2 (ν2s22)Γ(

ν1−1
2

)

(ν2−2)2
1
2 Γ(

ν1
2

)
− 3z3

α(ν1s21)
1
2 (ν2s22)Γ(

ν1−1
2

)

(ν2−2)2
1
2 Γ(

ν1
2

)

+
3z3
α(ν1s21)

1
2 (ν2s22)Γ2(

ν2−1
2

)Γ(
ν1−1

2
)

2
3
2 Γ(

ν1
2

)Γ2(
ν2
2

)
− 3zα(ν1s21)

1
2 (ν2s22)Γ(

ν1−1
2

)

n2(ν2−2)2
1
2 Γ(

ν1
2

)
− 3z3

α(ν1s21)
1
2 (ν2s22)Γ(

ν1−1
2

)Γ2(
ν2−1

2
)

2
3
2 Γ(

ν1
2

)Γ2(
ν2
2

)

= 0 .

Therefore

m3 =
3zα(ν1s21)

3
2 Γ(

ν1−3
2

)

n12
3
2 Γ(

ν1
2

)
+

z3
α(ν1s21)

3
2 Γ(

ν1−3
2

)

2
3
2 Γ(

ν1
2

)
− 3zα(ν2s22)

3
2 Γ(

ν2−3
2

)

n22
3
2 Γ(

ν2
2

)
− z3

α(ν2s22)
3
2 Γ(

ν2−3
2

)

2
3
2 Γ(

ν2
2

)
− 3z3

α(ν1s21)
3
2 Γ(

ν1−1
2

)

(ν1−2)2
1
2 Γ(

ν1
2

)

+
3z3
α(ν1s21)

3
2 Γ3(

ν1−1
2

)

2
3
2 Γ3(

ν1
2

)
+

3z3
α(ν2s22)

3
2 Γ(

ν2−1
2

)

(ν2−2)2
1
2 Γ(

ν2
2

)
− 3z3

α(ν2s22)
3
2 Γ3(

ν2−1
2

)

2
3
2 Γ3(

ν2
2

)
− 3(ν1s21)

3
2 zαΓ(

ν1−1
2

)

n1(ν1−2)2
1
2 Γ(

ν1
2

)

+
3(ν2s22)

3
2 zαΓ(

ν2−1
2

)

n2(ν2−2)2
1
2 Γ(

ν2
2

)
− z3

α(ν1s21)
3
2 Γ3(

ν1−1
2

)

2
3
2 Γ3(

ν1
2

)
+

z3
α(ν2s22)

3
2 Γ3(

ν2−1
2

)

2
3
2 Γ3(

ν2
2

)
.
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Consider terms from the first sample only

3zα(ν1s21)
3
2 Γ(

ν1−3
2

)

n12
3
2 Γ(

ν1
2

)
+

z3
α(ν1s21)

3
2 Γ(

ν1−3
2

)

2
3
2 Γ(

ν1
2

)
− 3z3

α(ν1s21)
3
2 Γ(

ν1−1
2

)

(ν1−2)2
1
2 Γ(

ν1
2

)
+

3z3
α(ν1s21)

3
2 Γ3(

ν1−1
2

)

2
3
2 Γ3(

ν1
2

)

−3(ν1s21)
3
2 zαΓ(

ν1−1
2

)

n1(ν1−2)2
1
2 Γ(

ν1
2

)
− z3

α(ν1s21)
3
2 Γ3(

ν1−1
2

)

2
3
2 Γ3(

ν1
2

)

=
3zα(ν1s21)

3
2 Γ(

ν1−3
2

)

n12
3
2 Γ(

ν1
2

)
+

z3
α(ν1s21)

3
2 Γ(

ν1−3
2

)

2
3
2 Γ(

ν1
2

)
− 3z3

α(ν1s21)
3
2 Γ(

ν1−1
2

)

(ν1−2)2
1
2 Γ(

ν1
2

)
+

2z3
α(ν1s21)

3
2 Γ3(

ν1−1
2

)

2
3
2 Γ3(

ν1
2

)
− 3(ν1s21)

3
2 zαΓ(

ν1−1
2

)

n1(ν1−2)2
1
2 Γ(

ν1
2

)

=
3zα(ν1s21)

3
2 Γ(

ν1−3
2

)

n12
3
2 Γ(

ν1
2

)
+

z3
α(ν1s21)

3
2 Γ(

ν1−3
2

)

2
3
2 Γ(

ν1
2

)
− 3z3

α(ν1s21)
3
2 (ν1−3)Γ(

ν1−3
2

)

(ν1−2)2
3
2 Γ(

ν1
2

)
+

z3
α(ν1s21)

3
2 (ν1−3)Γ(

ν1−3
2

)Γ2(
ν1−1

2
)

2
3
2 Γ3(

ν1
2

)

−3(ν1s21)
3
2 zα(ν1−3)Γ(

ν1−3
2

)

n1(ν1−2)2
3
2 Γ(

ν1
2

)
from Γ(

ν1−1
2 ) = (

ν1−3
2 )Γ(

ν1−3
2 )

=
3zα(ν1−2)(ν1s21)

3
2 Γ(

ν1−3
2

)

n1(ν1−2)2
3
2 Γ(

ν1
2

)
+

z3
α(ν1−2)(ν1s21)

3
2 Γ(

ν1−3
2

)

(ν1−2)2
3
2 Γ(

ν1
2

)
− 3z3

α(ν1s21)
3
2 (ν1−3)Γ(

ν1−3
2

)

(ν1−2)2
3
2 Γ(

ν1
2

)

+
z3
α(ν1s21)

3
2 (ν1−3)Γ(

ν1−3
2

)Γ2(
ν1−1

2
)

2
3
2 Γ3(

ν1
2

)
− 3(ν1s21)

3
2 zα(ν1−3)Γ(

ν1−3
2

)

n1(ν1−2)2
3
2 Γ(

ν1
2

)

=

[
3zα(ν1s21)

3
2 Γ(

ν1−3
2

)

n1(ν1−2)2
3
2 Γ(

ν1
2

)

][
(ν1 − 2)− (ν1 − 3)

]
+

[
z3
α(ν1s21)

3
2 Γ(

ν1−3
2

)

(ν1−2)2
3
2 Γ(

ν1
2

)

][
(ν1 − 2)− 3(ν1 − 3)

]

+
z3
α(ν1s21)

3
2 (ν1−3)Γ(

ν1−3
2

)Γ2(
ν1−1

2
)

2
3
2 Γ3(

ν1
2

)

=
3zα(ν1s21)

3
2 Γ(

ν1−3
2

)

n1(ν1−2)2
3
2 Γ(

ν1
2

)
− (2ν1−7)z3

α(ν1s21)
3
2 Γ(

ν1−3
2

)

(ν1−2)2
3
2 Γ(

ν1
2

)
+

z3
α(ν1s21)

3
2 (ν1−3)Γ(

ν1−3
2

)Γ2(
ν1−1

2
)

2
3
2 Γ3(

ν1
2

)

=
zα(ν1s21)

3
2 Γ(

ν1−3
2

)

2
3
2 Γ(

ν1
2

)

{
3

n1(ν1−2)
− (2ν1−7)z2

α

(ν1−2)
+

z2
α(ν1−3)Γ2(

ν1−1
2

)

Γ2(
ν1
2

)

}

=
zα(ν1s21)

3
2 Γ(

ν1−3
2

)

2
3
2 Γ(

ν1
2

)

{
1

(ν1−2)

[
3
n1
− z2

α(2ν1 − 7)
]

+
z2
α(ν1−3)Γ2(

ν1−1
2

)

Γ2(
ν1
2

)

}
.
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Also, consider the terms for the second sample only

−3zα(ν2s22)
3
2 Γ(

ν2−3
2

)

n22
3
2 Γ(

ν2
2

)
− z3

α(ν2s22)
3
2 Γ(

ν2−3
2

)

2
3
2 Γ(

ν2
2

)
+

3z3
α(ν2s22)

3
2 Γ(

ν2−1
2

)

(ν2−2)2
1
2 Γ(

ν2
2

)
− 3z3

α(ν2s22)
3
2 Γ3(

ν2−1
2

)

2
3
2 Γ3(

ν2
2

)

+
3(ν2s22)

3
2 zαΓ(

ν2−1
2

)

n2(ν2−2)2
1
2 Γ(

ν2
2

)
+

z3
α(ν2s22)

3
2 Γ3(

ν2−1
2

)

2
3
2 Γ3(

ν2
2

)

= −3zα(ν2s22)
3
2 Γ(

ν2−3
2

)

n22
3
2 Γ(

ν2
2

)
− z3

α(ν2s22)
3
2 Γ(

ν2−3
2

)

2
3
2 Γ(

ν2
2

)
+

3z3
α(ν2s22)

3
2 Γ(

ν2−1
2

)

(ν2−2)2
1
2 Γ(

ν2
2

)
− 2z3

α(ν2s22)
3
2 Γ3(

ν2−1
2

)

2
3
2 Γ3(

ν2
2

)
+

3(ν2s22)
3
2 zαΓ(

ν2−1
2

)

n2(ν2−2)2
1
2 Γ(

ν2
2

)

= −3zα(ν2s22)
3
2 Γ(

ν2−3
2

)

n22
3
2 Γ(

ν2
2

)
− z3

α(ν2s22)
3
2 Γ(

ν2−3
2

)

2
3
2 Γ(

ν2
2

)
+

3z3
α(ν2s22)

3
2 (ν2−3)Γ(

ν2−3
2

)

(ν2−2)2
3
2 Γ(

ν2
2

)
− z3

α(ν2s22)
3
2 (ν2−3)Γ(

ν2−3
2

)Γ2(
ν2−1

2
)

2
3
2 Γ3(

ν2
2

)

+
3(ν2s22)

3
2 zα(ν2−3)Γ(

ν2−3
2

)

n2(ν2−2)2
3
2 Γ(

ν2
2

)
from Γ(

ν2−1
2 ) = (

ν2−3
2 )Γ(

ν2−3
2 )

= −3zα(ν2−2)(ν2s22)
3
2 Γ(

ν2−3
2

)

n2(ν2−2)2
3
2 Γ(

ν2
2

)
− z3

α(ν2−2)(ν2s22)
3
2 Γ(

ν2−3
2

)

(ν2−2)2
3
2 Γ(

ν2
2

)
+

3z3
α(ν2s22)

3
2 (ν2−3)Γ(

ν2−3
2

)

(ν2−2)2
3
2 Γ(

ν2
2

)

− z3
α(ν2s22)

3
2 (ν2−3)Γ(

ν2−3
2

)Γ2(
ν2−1

2
)

2
3
2 Γ3(

ν2
2

)
+

3(ν2s22)
3
2 zα(ν2−3)Γ(

ν2−3
2

)

n2(ν2−2)2
3
2 Γ(

ν2
2

)

=
[

3zα(ν2s22)
3
2 Γ(

ν2−3
2

)

n2(ν2−2)2
3
2 Γ(

ν2
2

)

][
−(ν2 − 2) + (ν2 − 3)

]
+
[
z3
α(ν2s22)

3
2 Γ(

ν2−3
2

)

(ν2−2)2
3
2 Γ(

ν2
2

)

][
−(ν2 − 2) + 3(ν2 − 3)

]
− z3

α(ν2s22)
3
2 (ν2−3)Γ(

ν2−3
2

)Γ2(
ν2−1

2
)

2
3
2 Γ3(

ν2
2

)

=
−3zα(ν2s22)

3
2 Γ(

ν2−3
2

)

n2(ν2−2)2
3
2 Γ(

ν2
2

)
+

(2ν2−7)z3
α(ν2s22)

3
2 Γ(

ν2−3
2

)

(ν2−2)2
3
2 Γ(

ν2
2

)
− z3

α(ν2s22)
3
2 (ν2−3)Γ(

ν2−3
2

)Γ2(
ν2−1

2
)

2
3
2 Γ3(

ν2
2

)

=
−zα(ν2s22)

3
2 Γ(

ν2−3
2

)

2
3
2 Γ(

ν2
2

)

{
3

n2(ν2−2)
− (2ν2−7)z2

α

(ν2−2)
+

z2
α(ν2−3)Γ2(

ν2−1
2

)

Γ2(
ν2
2

)

}

= − zα(ν2s22)
3
2 Γ(

ν2−3
2

)

2
3
2 Γ(

ν2
2

)

{
1

(ν2−2)

[
3
n2
− z2

α(2ν2 − 7)
]

+
z2
α(ν2−3)Γ2(

ν2−1
2

)

Γ2(
ν2
2

)

}
.

Therefore

m3 =
zα(ν1s21)

3
2 Γ(

ν1−3
2

)

2
3
2 Γ(

ν1
2

)

{
1

(ν1−2)

[
3
n1
− z2

α(2ν1 − 7)

]
+

z2
α(ν1−3)Γ2(

ν1−1
2

)

Γ2(
ν1
2

)

}

− zα(ν2s22)
3
2 Γ(

ν2−3
2

)

2
3
2 Γ(

ν2
2

)

{
1

(ν2−2)

[
3
n2
− z2

α(2ν2 − 7)

]
+

z2
α(ν2−3)Γ2(

ν2−2
2

)

Γ2(
ν2
2

)

}
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d.) It was shown in Theorem 2.6.1.1 d.) that the fourth moment about the origin of(
1
χ2
νd

) 1
2
(d = 1, 2) is given by

E
(

1
χ2
νd

) 4
2

= 1
(νd−2)(νd−4)

(d = 1, 2).

The fourth moment of the conditional posterior distribution of (q1 − q2)|σ2
ε1
, σ2

ε2
,y1,y2

can then in general be written as

µ
′
4 = µ4 + 4µ

′
1µ3 + 6(µ

′
1)2µ2 + (µ

′
1)4

= 3
(
σ2
ε1

n1
+

σ2
ε2

n2

)2

+ 4

{(
y1− y2

)
+ zα

(
σε1−σε2

)}
(0) + 6

{(
y1− y2

)
+ zα

(
σε1−σε2

)}2

×
(
σ2
ε1

n1
+

σ2
ε2

n2

)
+

{(
y1 − y2

)
+ zα

(
σε1 − σε2

)}4

= 3
(
σ4
ε1

n2
1

+2
σ2
ε1

n1
· σ

2
ε2

n2
+

σ4
ε2

n2
2

)
+6

{(
y1−y2

)2

+2
(
y1−y2

)
zα

(
σε1−σε2

)
+z2

α

(
σε1−σε2

)2
}

×
(
σ2
ε1

n1
+

σ2
ε2

n2

)
+
(
y1− y2

)4

+ 4
(
y1− y2

)3

zα

(
σε1−σε2

)
+ 6
(
y1− y2

)2

z2
α

(
σε1−σε2

)2

+4
(
y1 − y2

)
z3
α

(
σε1 − σε2

)3

+ z4
α

(
σε1 − σε2

)4

=
3σ4
ε1

n2
1

+
6σ2
ε1
σ2
ε2

n1n2
+

3σ4
ε2

n2
2

+6
(
y1−y2

)2(σ2
ε1

n1
+

σ2
ε2

n2

)
+12

(
y1−y2

)
zα

(
σε1−σε2

)(
σ2
ε1

n1
+

σ2
ε2

n2

)
+6z2

α

(
σ4
ε1

n1
+

σ2
ε1
σ2
ε2

n2
− 2σ3

ε1
σε2

n1
− 2σε1σ

3
ε2

n2
+

σ2
ε1
σ2
ε2

n1
+

σ4
ε2

n2

)
+ 4
(
y1 − y2

)3

zα

(
σε1 − σε2

)
+
(
y1 − y2

)4

+ 6
(
y1 − y2

)2

z2
α

[
σ2
ε1
− 2σε1σε2 + σ2

ε2

]
+4
(
y1 − y2

)
z3
α

[
σ3
ε1
− 3σ2

ε1
σε2 + 3σε1σ

2
ε2
− σ3

ε2

]
+z4

α

{
σ4
ε1
− 4σ3

ε1
σε2 + 6σ2

ε1
σ2
ε2
− 4σε1σ

3
ε2

+ σ4
ε2

}
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= σ4
ε1

{
3
n2

1
+ 6z2

α

n1
+ z4

α

}
+ σ4

ε2

{
3
n2

2
+ 6z2

α

n2
+ z4

α

}
+ σ2

ε1
σ2
ε2

{
6

n1n2
+ 6z2

α

n2
+ 6z2

α

n1
+ 6z4

α

}
−4σε1σ

3
ε2

{
3z2
α

n2
+ z4

α

}
− 4σ3

ε1
σε2

{
3z2
α

n1
+ z4

α

}
+
(
y1− y2

){
12zα

[
σ3
ε1

n1
+

σε1σ
2
ε2

n2
− σ2

ε1
σε2
n1
− σ3

ε2

n2

]
+ 4z3

α

[
σ3
ε1
− 3σ2

ε1
σε2 + 3σε1σ

2
ε2
−σ3

ε2

]}

+6
(
y1−y2

)2
{
z2
α

[
σ2
ε1
−2σε1σε2 +σ2

ε2

]
+
(
σ2
ε1

n1
+

σ2
ε2

n2

)}
+
(
y1−y2

)3
{

4zα

(
σε1−σε2

)}

+
(
y1 − y2

)4

= σ4
ε1

{
3
n2

1
+ 6z2

α

n1
+ z4

α

}
+ σ4

ε2

{
3
n2

2
+ 6z2

α

n2
+ z4

α

}
+ σ2

ε1
σ2
ε2

{
6

n1n2
+ 6z2

α

n2
+ 6z2

α

n1
+ 6z4

α

}
−4σε1σ

3
ε2

{
3z2
α

n2
+ z4

α

}
− 4σ3

ε1
σε2

{
3z2
α

n1
+ z4

α

}
+
(
y1−y2

){
4σ3

ε1

[
3zα
n1

+z3
α

]
−4σ3

ε2

[
3zα
n2

+z3
α

]
−12σ2

ε1
σε2

[
zα
n1

+z3
α

]
+12σε1σ

2
ε2

[
zα
n2

+z3
α

]}

+6
(
y1−y2

)2
{
σ2
ε1

[
1
n1

+z2
α

]
+σ2

ε2

[
1
n2

+z2
α

]
−2σε1σε2z

2
α

}
+
(
y1−y2

)3 {
4zα

(
σε1 − σε2

)}
+
(
y1 − y2

)4

.

Therefore µ
′
4 will be equal to

µ
′
4 =

(
ν1s21
χ2
ν1

)2{
3
n2

1
+ 6z2

α

n1
+z4

α

}
+
(
ν2s22
χ2
ν2

)4{
3
n2

2
+ 6z2

α

n2
+z4

α

}
+6
(
ν1s21
χ2
ν1

)(
ν2s22
χ2
ν2

){
1

n1n2
+ z2

α

n2
+ z2

α

n1
+z4

α

}
−4
(
ν1s21
χ2
ν1

) 1
2
(
ν2s22
χ2
ν2

) 3
2
{

3z2
α

n2
+ z4

α

}
− 4
(
ν1s21
χ2
ν1

) 3
2
(
ν2s22
χ2
ν2

) 1
2
{

3z2
α

n1
+ z4

α

}
+4
(
y1 − y2

)
zα

{(
ν1s21
χ2
ν1

) 3
2
[

3
n1

+ z2
α

]
−
(
ν2s22
χ2
ν2

) 3
2
[

3
n2

+ z2
α

]
− 3
(
ν1s21
χ2
ν1

)(
ν2s22
χ2
ν2

) 1
2
[

1
n1

+ z2
α

]

+3
(
ν1s21
χ2
ν1

) 1
2
(
ν2s22
χ2
ν2

)[
1
n2

+ z2
α

]}
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+6
(
y1 − y2

)2
{(

ν1s21
χ2
ν1

)[
1
n1

+ z2
α

]
+
(
ν2s22
χ2
ν2

)[
1
n2

+ z2
α

]
− 2
(
ν1s21
χ2
ν1

) 1
2
(
ν2s22
χ2
ν2

) 1
2
z2
α

}

+
(
y1 − y2

)3
{

4zα

[(
ν1s21
χ2
ν1

) 1
2 −

(
ν2s22
χ2
ν2

) 1
2

]}
+
(
y1 − y2

)4

.

Now m
′
4 = E(µ

′
4), therefore

m
′
4 =

(
y1 − y2

)4

+
(
y1 − y2

)3
{

4zα

[(
ν1s

2
1

) 1
2
E
(

1
χ2
ν1

) 1
2 −

(
ν2s

2
2

) 1
2
E
(

1
χ2
ν2

) 1
2

]}

+6
(
y1 − y2

)2
{(

ν1s
2
1

)
E
(

1
χ2
ν1

)[
1
n1

+ z2
α

]
+
(
ν2s

2
2

)
E
(

1
χ2
ν2

)[
1
n2

+ z2
α

]
−2
(
ν1s

2
1

) 1
2
(
ν2s

2
2

) 1
2
z2
αE
(

1
χ2
ν1

) 1
2
E
(

1
χ2
ν2

) 1
2

}

+4
(
y1 − y2

)
zα

{(
ν1s

2
1

) 3
2
E
(

1
χ2
ν1

) 3
2
[

3
n1

+ z2
α

]
−
(
ν2s

2
2

) 3
2
E
(

1
χ2
ν2

) 3
2
[

3
n2

+ z2
α

]
−3
(
ν1s

2
1

)(
ν2s

2
2

) 1
2
E
(

1
χ2
ν1

)
E
(

1
χ2
ν2

) 1
2
[

1
n1

+ z2
α

]
+3
(
ν1s

2
1

) 1
2
(
ν2s

2
2

)
E
(

1
χ2
ν1

) 1
2
E
(

1
χ2
ν2

)[
1
n2

+ z2
α

]}

−4
(
ν1s

2
1

) 3
2
(
ν2s

2
2

) 1
2
E
(

1
χ2
ν1

) 3
2
E
(

1
χ2
ν2

) 1
2
{

3z2
α

n1
+ z4

α

}

−4
(
ν1s

2
1

) 1
2
(
ν2s

2
2

) 3
2
E
(

1
χ2
ν1

) 1
2
E
(

1
χ2
ν2

) 3
2
{

3z2
α

n2
+ z4

α

}

+6
(
ν1s

2
1

)(
ν2s

2
2

)
E
(

1
χ2
ν1

)
E
(

1
χ2
ν2

){
1

n1n2
+ z2

α

n2
+ z2

α

n1
+ z4

α

}

+
(
ν1s

2
1

)2

E
(

1
χ2
ν1

)2{
3
n2

1
+ 6z2

α

n1
+ z4

α

}

+
(
ν2s

2
2

)2

E
(

1
χ2
ν2

)2{
3
n2

2
+ 6z2

α

n2
+ z4

α

}
.
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m
′
4 =

(
y1 − y2

)4

+
(
y1 − y2

)3
{

4zα

[(
ν1s

2
1

) 1
2 Γ(

ν1−1
2

)

2
1
2 Γ(

ν1
2

)
−
(
ν2s

2
2

) 1
2 Γ(

ν2−1
2

)

2
1
2 Γ(

ν2
2

)

]}

+6
(
y1−y2

)2
{

(ν1s21)

(ν1−2)

[
1
n1

+z2
α

]
+

(ν2s22)

(ν2−2)

[
1
n2

+z2
α

]
−2
(
ν1s

2
1

) 1
2
(
ν2s

2
2

) 1
2
z2
α

Γ(
ν1−1

2
)

2
1
2 Γ(

ν1
2

)

Γ(
ν2−1

2
)

2
1
2 Γ(

ν2
2

)

}

+4
(
y1 − y2

)
zα

{(
ν1s

2
1

) 3
2 Γ(

ν1−3
2

)

2
3
2 Γ(

ν1
2

)

[
3
n1

+ z2
α

]
−
(
ν2s

2
2

) 3
2 Γ(

ν2−3
2

)

2
3
2 Γ(

ν2
2

)

[
3
n2

+ z2
α

]
−3

(ν1s21)

(ν1−2)

(
ν2s

2
2

) 1
2 Γ(

ν2−1
2

)

2
1
2 Γ(

ν2
2

)

[
1
n1

+z2
α

]
+3
(
ν1s

2
1

) 1
2 Γ(

ν1−1
2

)

2
1
2 Γ(

ν1
2

)

(ν2s22)

(ν2−2)

[
1
n2

+z2
α

]}

−4z2
α

(
ν1s

2
1

) 3
2
(
ν2s

2
2

) 1
2 Γ(

ν1−3
2

)

2
3
2 Γ(

ν1
2

)

Γ(
ν2−1

2
)

2
1
2 Γ(

ν2
2

)

[
3
n1

+ z2
α

]

−4z2
α

(
ν1s

2
1

) 1
2
(
ν2s

2
2

) 3
2 Γ(

ν1−1
2

)

2
1
2 Γ(

.ν1
2

)

Γ(
ν1−3

2
)

2
3
2 Γ(

ν2
2

)

[
3
n2

+ z2
α

]

+
6(ν1s21)(ν2s22)

(ν1−2)(ν2−2)

[
1

n1n2
+ z2

α

n2
+ z2

α

n1
+ z4

α

]

+
(ν1s21)2

(ν1−2)(ν1−4)

[
3
n2

1
+ 6z2

α

n1
+ z4

α

]

+
(ν2s22)2

(ν2−2)(ν2−4)

[
3
n2

2
+ 6z2

α

n2
+ z4

α

]
.

It is also known that m4 is given by

m4 = m
′
4 − 4m

′
1m3 − 6(m

′
1)2m2 − (m

′
1)4.
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Consider m
′
4 only, therefore

(
y1 − y2

)4

+
(
y1 − y2

)3
{

4zα

[(
ν1s

2
1

) 1
2 Γ(

ν1−1
2

)

2
1
2 Γ(

ν1
2

)
−
(
ν2s

2
2

) 1
2 Γ(

ν2−1
2

)

2
1
2 Γ(

ν2
2

)

]}

+6
(
y1 − y2

)2
{

(ν1s21)

(ν1−2)

[
1
n1

+ z2
α

]
+

(ν2s22)

(ν2−2)

[
1
n2

+ z2
α

]
− 2
(
ν1s

2
1

) 1
2
(
ν2s

2
2

) 1
2
z2
α

Γ(
ν1−1

2
)

2
1
2 Γ(

ν1
2

)

Γ(
ν2−1

2
)

2
1
2 Γ(

ν2
2

)

}

+4
(
y1 − y2

)
zα

{(
ν1s

2
1

) 3
2 Γ(

ν1−3
2

)

2
3
2 Γ(

ν1
2

)

[
3
n1

+ z2
α

]
−
(
ν2s

2
2

) 3
2 Γ(

ν2−3
2

)

2
3
2 Γ(

ν2
2

)

[
3
n2

+ z2
α

]

−3
(ν1s21)

(ν1−2)

(
ν2s

2
2

) 1
2 Γ(

ν2−1
2

)

2
1
2 Γ(

ν2
2

)

[
1
n1

+ z2
α

]
+ 3
(
ν1s

2
1

) 1
2 Γ(

ν1−1
2

)

2
1
2 Γ(

ν1
2

)

(ν2s22)

(ν2−2)

[
1
n2

+ z2
α

]}

−4z2
α

(
ν1s

2
1

) 3
2
(
ν2s

2
2

) 1
2 Γ(

ν1−3
2

)Γ(
ν2−1

2
)

2
3
2 Γ(

ν1
2

)2
1
2 Γ(

ν2
2

)

[
3
n1

+ z2
α

]
−4z2

α

(
ν1s

2
1

) 1
2
(
ν2s

2
2

) 3
2 Γ(

ν1−1
2

)Γ(
ν1−3

2
)

2
1
2 Γ(

.ν1
2

)2
3
2 Γ(

ν2
2

)

[
3
n2

+ z2
α

]
+

6(ν1s21)(ν2s22)

(ν1−2)(ν2−2)

[
1

n1n2
+ z2

α

n2
+ z2

α

n1
+ z4

α

]
+

(ν1s21)2

(ν1−2)(ν1−4)

[
3
n2

1
+ 6z2

α

n1
+ z4

α

]
+

(ν2s22)2

(ν2−2)(ν2−4)

[
3
n2

2
+ 6z2

α

n2
+ z4

α

]

=
(
y1 − y2

)4

+ 4
(
y1 − y2

)3

zα

(
ν1s

2
1

) 1
2 Γ(

ν1−1
2

)

2
1
2 Γ(

ν1
2

)
− 4
(
y1 − y2

)3

zα

(
ν2s

2
2

) 1
2 Γ(

ν2−1
2

)

2
1
2 Γ(

ν2
2

)

+6
(
y1 − y2

)2
(ν1s21)

(ν1−2)

[
1
n1

+ z2
α

]
+ 6
(
y1 − y2

)2
(ν2s22)

(ν2−2)

[
1
n2

+ z2
α

]
−12

(
y1−y2

)2

z2
α

(
ν1s

2
1

) 1
2
(
ν2s

2
2

) 1
2 Γ(

ν1−1
2

)

2
1
2 Γ(

ν1
2

)

Γ(
ν2−1

2
)

2
1
2 Γ(

ν2
2

)
+4
(
y1−y2

)
zα

(
ν1s

2
1

) 3
2 Γ(

ν1−3
2

)

2
3
2 Γ(

ν1
2

)

[
3
n1

+z2
α

]
−4
(
y1−y2

)
zα

(
ν2s

2
2

) 3
2 Γ(

ν2−3
2

)

2
3
2 Γ(

ν2
2

)

[
3
n2

+z2
α

]
−12

(
y1−y2

)
zα

(ν1s21)

(ν1−2)

(
ν2s

2
2

) 1
2 Γ(

ν2−1
2

)

2
1
2 Γ(

ν2
2

)

[
1
n1

+z2
α

]
+12

(
y1 − y2

)
zα

(
ν1s

2
1

) 1
2 Γ(

ν1−1
2

)

2
1
2 Γ(

ν1
2

)

(ν2s22)

(ν2−2)

[
1
n2

+ z2
α

]
−4z2

α

(
ν1s

2
1

) 3
2
(
ν2s

2
2

) 1
2 Γ(

ν1−3
2

)Γ(
ν2−1

2
)

2
3
2 Γ(

ν1
2

)2
1
2 Γ(

ν2
2

)

[
3
n1

+ z2
α

]
−4z2

α

(
ν1s

2
1

) 1
2
(
ν2s

2
2

) 3
2 Γ(

ν1−1
2

)Γ(
ν1−3

2
)

2
1
2 Γ(

.ν1
2

)2
3
2 Γ(

ν2
2

)

[
3
n2

+ z2
α

]
+

6(ν1s21)(ν2s22)

(ν1−2)(ν2−2)

[
1

n1n2
+ z2

α

n2
+ z2

α

n1
+z4

α

]
+

(ν1s21)2

(ν1−2)(ν1−4)

[
3
n2

1
+ 6z2

α

n1
+z4

α

]
+

(ν2s22)2

(ν2−2)(ν2−4)

[
3
n2

2
+ 6z2

α

n2
+z4

α

]
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= (y1 − y2)4 +
4(y1−y2)3zα(ν1s21)

1
2 Γ(

ν1−1
2

)

2
1
2 Γ(

ν1
2

)
− 4(y1−y2)3zα(ν2s22)

1
2 Γ(

ν2−1
2

)

2
1
2 Γ(

ν2
2

)
+

6(y1−y2)2(ν1s21)

n1(ν1−2)

+
6(y1−y2)2z2

α(ν1s21)

(ν1−2)
+

6(y1−y2)2(ν2s22)

n2(ν2−2)
+

6(y1−y2)2z2
α(ν2s22)

(ν2−2)
− 12(y1−y2)2z2

α(ν1s21)
1
2 (ν2s22)

1
2 Γ(

ν1−1
2

)Γ(
ν2−1

2
)

2Γ(
ν1
2

)Γ(
ν2
2

)

+
12(y1−y2)zα(ν1s21)

3
2 Γ(

ν1−3
2

)

n12
3
2 Γ(

ν1
2

)
+

4(y1−y2)z3
α(ν1s21)

3
2 Γ(

ν1−3
2

)

2
3
2 Γ(

ν1
2

)
−12(y1−y2)zα(ν2s22)

3
2 Γ(

ν2−3
2

)

n22
3
2 Γ(

ν2
2

)
−4(y1−y2)z3

α(ν2s22)
3
2 Γ(

ν2−3
2

)

2
3
2 Γ(

ν2
2

)

−12(y−y2)zα(ν1s21)(ν2s22)
1
2 Γ(

ν2−1
2

)

n1(ν1−2)2
1
2 Γ(

ν2
2

)
− 12(y1−y2)z3

α(ν1s21)(ν2s22)
1
2 Γ(
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2

)

(ν1−2)2
1
2 Γ(

ν2
2

)
+

12(y1−y2)zα(ν1s21)
1
2 (ν2s22)Γ(

ν1−1
2

)

n2(ν2−2)2
1
2 Γ(

ν1
2

)

+
12(y1−y2)z3

α(ν1s21)
1
2 (ν2s22)Γ(

ν1−1
2

)

(ν2−2)2
1
2 Γ(

ν1
2

)
−12z2

α(ν1s21)
3
2 (ν2s22)

1
2 Γ(

ν1−3
2

)Γ(
ν2−1

2
)

n122Γ(
ν1
2

)Γ(
ν2
2

)
−4z4

α(ν1s21)
3
2 (ν2s22)

1
2 Γ(

ν1−3
2

)Γ(
ν2−1

2
)

22Γ(
ν1
2

)Γ(
ν2
2

)

−12z2
α(ν1s21)

1
2 (ν2s22)

3
2 Γ(

ν1−1
2

)Γ(
ν1−3

2
)

n222Γ(
.ν1
2

)Γ(
ν2
2

)
− 4z4

α(ν1s21)
1
2 (ν2s22)

3
2 Γ(

ν1−1
2

)Γ(
ν1−3

2
)

22Γ(
.ν1
2

)Γ(
ν2
2

)

+
6(ν1s21)(ν2s22)

(ν1−2)(ν2−2)

[
1

n1n2
+ z2

α

n2
+ z2

α

n1
+z4

α

]
+

(ν1s21)2

(ν1−2)(ν1−4)

[
3
n2

1
+ 6z2

α

n1
+z4

α

]
+

(ν2s22)2

(ν2−2)(ν2−4)

[
3
n2

2
+ 6z2

α

n2
+z4

α

]
.

Consider −4m
′
1m3 only, therefore

−4

{(
y1 − y2

)
+ zα

[(
ν1s

2
1

) 1
2 Γ(

ν1−1
2

)

2
1
2 Γ(

ν1
2

)
−
(
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2
2

) 1
2 Γ(

ν2−1
2

)

2
1
2 Γ(

ν2
2

)
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×

{
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3
2 Γ(

ν1−3
2

)

2
3
2 Γ(

ν1
2

)

[
1
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(
3
n1
− z2
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)

+
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2

)

Γ2(
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2

)

]
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2 Γ(
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2

)

2
3
2 Γ(
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2

)

[
1
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(
3
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)
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2

)

Γ2(
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2

)
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.

Suppose

a =
(
y1 − y2

)
; b1 =

(
ν1s

2
1

) 1
2 Γ(

ν1−1
2

)

2
1
2 Γ(

ν1
2

)
; b2 =

(
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2
2

) 1
2 Γ(

ν2−1
2

)

2
1
2 Γ(
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2

)
; c1 =
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3
2 Γ(

ν1−3
2

)

2
3
2 Γ(

ν1
2

)
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zα(ν2s22)

3
2 Γ(
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2

)

2
3
2 Γ(

ν2
2

)
; d1 =

z2
α(ν1−3)Γ2(

ν1−1
2

)

Γ2(
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2

)
; d2 =
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α(ν2−3)Γ2(
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2

)

Γ2(
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2

)
,
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it therefore follows that −4m
′
1m3 is given by

−4

{
a+zα

[
b1−b2

]}{
c1

[
1

(ν1−2)

(
3
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−z2
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)
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]
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[
1
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(
3
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)
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=
(
−4a− 4zαb1 + 4zαb2

){
c1

[
1

(ν1−2)

(
3
n1
− z2

α(2ν1 − 7)
)

+ d1

]

−c2

[
1

(ν2−2)

(
3
n2
− z2

α(2ν2 − 7)
)

+ d2

]}

= −4ac1

[
1

(ν1−2)

(
3
n1
− z2

α(2ν1 − 7)
)

+ d1

]
+ 4ac2

[
1

(ν2−2)

(
3
n2
− z2

α(2ν2 − 7)
)

+ d2

]

−4zαb1c1

[
1

(ν1−2)

(
3
n1
− z2

α(2ν1 − 7)
)

+ d1

]
+ 4zαb1c2

[
1

(ν2−2)

(
3
n2
− z2

α(2ν2 − 7)
)

+ d2

]

+4zαb2c1

[
1

(ν1−2)

(
3
n1
− z2

α(2ν1 − 7)
)

+ d1

]
− 4zαb2c2

[
1

(ν2−2)

(
3
n2
− z2

α(2ν2 − 7)
)

+ d2

]

= − 12a
n1(ν1−2)

c1 + 4az2
α(2ν1−7)
(ν1−2)

c1 − 4ac1d1 + 12a
n2(ν2−2)

c2 − 4az2
α(2ν2−7)
(ν2−2)

c2 + 4ac2d2

− 12zα
n1(ν1−2)

b1c1 + 4z3
α(2ν1−7)
(ν1−2)

b1c1 − 4zαb1c1d1 + 12zα
n2(ν2−2)

b1c2 − 4z3
α(2ν2−7)
(ν2−2)

b1c2 + 4zαb1c2d2

+ 12zα
n1(ν1−2)

b2c1 − 4z3
α(2ν1−7)
(ν1−2)

b2c1 + 4zαb2c1d1 − 12zα
n2(ν2−2)

b2c2 + 4z3
α(2ν2−7)
(ν2−2)

b2c2 − 4zαb2c2d2.

By substituting a, b1, b2, c1, c2, d1 and d2 back, it follows that −4m
′
1m3 is given by

= −12(y1−y2)
n1(ν1−2)

(
zα(ν1s21)

3
2 Γ(

ν1−3
2

)

2
3
2 Γ(

ν1
2

)

)
+ 4(y1−y2)z2

α(2ν1−7)
(ν1−2)

(
zα(ν1s21)

3
2 Γ(

ν1−3
2

)

2
3
2 Γ(

ν1
2

)

)
−4(y1 − y2)

(
zα(ν1s21)

3
2 Γ(

ν1−3
2

)

2
3
2 Γ(

ν1
2

)

)(
z2
α(ν1−3)Γ2(

ν1−1
2

)

Γ2(
ν1
2

)

)
+ 12(y1−y2)

n2(ν2−2)

(
zα(ν2s22)

3
2 Γ(

ν2−3
2

)

2
3
2 Γ(

ν2
2

)

)
−4(y1−y2)z2

α(2ν2−7)
(ν2−2)

(
zα(ν2s22)

3
2 Γ(

ν2−3
2

)

2
3
2 Γ(

ν2
2

)

)
+ 4(y1 − y2)

(
zα(ν2s22)

3
2 Γ(

ν2−3
2

)

2
3
2 Γ(

ν2
2

)

)(
z2
α(ν2−3)Γ2(

ν2−1
2

)

Γ2(
ν2
2

)

)
− 12zα
n1(ν1−2)

(
(ν1s

2
1)

1
2

Γ(
ν1−1

2
)

2
1
2 Γ(

ν1
2

)

)(
zα(ν1s21)

3
2 Γ(

ν1−3
2

)

2
3
2 Γ(

ν1
2

)

)
+4z3

α(2ν1−7)
(ν1−2)

(
(ν1s

2
1)

1
2

Γ(
ν1−1

2
)

2
1
2 Γ(

ν1
2

)

)(
zα(ν1s21)

3
2 Γ(

ν1−3
2

)

2
3
2 Γ(

ν1
2

)

)



CHAPTER 2. SIMPLE LINEAR MODEL - UNIVARIATE NORMAL MODEL 125

−4zα

(
(ν1s

2
1)

1
2

Γ(
ν1−1

2
)

2
1
2 Γ(

ν1
2

)

)(
zα(ν1s21)

3
2 Γ(

ν1−3
2

)

2
3
2 Γ(

ν1
2

)

)(
z2
α(ν1−3)Γ2(

ν1−1
2

)

Γ2(
ν1
2

)

)
+ 12zα
n2(ν2−2)

(
(ν1s

2
1)

1
2

Γ(
ν1−1

2
)

2
1
2 Γ(

ν1
2

)

)(
zα(ν2s22)

3
2 Γ(

ν2−3
2

)

2
3
2 Γ(

ν2
2

)

)
−4z3

α(2ν2−7)
(ν2−2)

(
(ν1s

2
1)

1
2

Γ(
ν1−1

2
)

2
1
2 Γ(

ν1
2

)

)(
zα(ν2s22)

3
2 Γ(

ν2−3
2

)

2
3
2 Γ(

ν2
2

)

)
+4zα

(
(ν1s

2
1)

1
2

Γ(
ν1−1

2
)

2
1
2 Γ(

ν1
2

)

)(
zα(ν2s22)

3
2 Γ(

ν2−3
2

)

2
3
2 Γ(

ν2
2

)

)(
z2
α(ν2−3)Γ2(

ν2−1
2

)

Γ2(
ν2
2

)

)
+ 12zα
n1(ν1−2)

(
(ν2s

2
2)

1
2

Γ(
ν2−1

2
)

2
1
2 Γ(

ν2
2

)

)(
zα(ν1s21)

3
2 Γ(

ν1−3
2

)

2
3
2 Γ(

ν1
2

)

)
−4z3

α(2ν1−7)
(ν1−2)

(
(ν2s

2
2)

1
2

Γ(
ν2−1

2
)

2
1
2 Γ(

ν2
2

)

)(
zα(ν1s21)

3
2 Γ(

ν1−3
2

)

2
3
2 Γ(

ν1
2

)

)
+4zα

(
(ν2s

2
2)

1
2

Γ(
ν2−1

2
)

2
1
2 Γ(

ν2
2

)

)(
zα(ν1s21)

3
2 Γ(

ν1−3
2

)

2
3
2 Γ(

ν1
2

)

)(
z2
α(ν1−3)Γ2(

ν1−1
2

)

Γ2(
ν1
2

)

)
− 12zα
n2(ν2−2)

(
(ν2s

2
2)

1
2

Γ(
ν2−1

2
)

2
1
2 Γ(

ν2
2

)

)(
zα(ν2s22)

3
2 Γ(

ν2−3
2

)

2
3
2 Γ(

ν2
2

)

)
+4z3

α(2ν2−7)
(ν2−2)

(
(ν2s

2
2)

1
2

Γ(
ν2−1

2
)

2
1
2 Γ(

ν2
2

)

)(
zα(ν2s22)

3
2 Γ(

ν2−3
2

)

2
3
2 Γ(

ν2
2

)

)
−4zα

(
(ν2s

2
2)

1
2

Γ(
ν2−1

2
)

2
1
2 Γ(

ν2
2

)

)(
zα(ν2s22)

3
2 Γ(

ν2−3
2

)

2
3
2 Γ(

ν2
2

)

)(
z2
α(ν2−3)Γ2(

ν2−1
2

)

Γ2(
ν2
2

)

)

= −12(y1−y2)zα(ν1s21)
3
2 Γ(

ν1−3
2

)

n1(ν1−2)2
3
2 Γ(

ν1
2

)
+

4(y1−y2)z3
α(ν1s21)

3
2 (2ν1−7)Γ(

ν1−3
2

)

(ν1−2)2
3
2 Γ(

ν1
2

)
−4(y1−y2)z3

α(ν1s21)
3
2 (ν1−3)Γ2(

ν1−1
2

)Γ(
ν1−3

2
)

2
3
2 Γ3(

ν1
2

)

+
12(y1−y2)zα(ν2s22)

3
2 Γ(

ν2−3
2

)

n2(ν2−2)2
3
2 Γ(

ν2
2

)
−4(y1−y2)z3

α(ν2s22)
3
2 (2ν2−7)Γ(

ν2−3
2

)

(ν2−2)2
3
2 Γ(

ν2
2

)
+

4(y1−y2)z3
α(ν2s22)

3
2 (ν2−3)Γ2(

ν2−1
2

)Γ(
ν2−3

2
)

2
3
2 Γ3(

ν2
2

)

−12z2
α(ν1s21)2Γ(

ν1−1
2

)Γ(
ν1−3

2
)

n1(ν1−2)22Γ2(
ν1
2

)
+

4z4
α(ν1s21)2(2ν1−7)Γ(

ν1−1
2

)Γ(
ν1−3

2
)

(ν1−2)22Γ2(
ν1
2

)
− 4z4

α(ν1s21)2(ν1−3)Γ3(
ν1−1

2
)Γ(

ν1−3
2

)

22Γ4(
ν1
2

)

+
12z2

α(ν1s21)
1
2 (ν2s22)

3
2 Γ(

ν1−1
2

)Γ(
ν2−3

2
)

n2(ν2−2)22Γ(
ν1
2

)Γ(
ν2
2

)
− 4z4

α(ν1s21)
1
2 (ν2s22)

3
2 (2ν2−7)Γ(

ν1−1
2

)Γ(
ν2−3

2
)

(ν2−2)22Γ(
ν1
2

)Γ(
ν2
2

)

+
4z4
α(ν1s21)

1
2 (ν2s22)

3
2 (ν2−3)Γ(

ν1−1
2

)Γ2(
ν2−1

2
)Γ(

ν2−3
2

)

22Γ(
ν1
2

)Γ3(
ν2
2

)
+

12z2
α(ν1s21)

3
2 (ν2s22)

1
2 Γ(

ν1−3
2

)Γ(
ν2−1

2
)

n1(ν1−2)22Γ(
ν1
2

)Γ(
ν2
2

)

−4z4
α(ν1s21)

3
2 (ν2s22)

1
2 (2ν1−7)Γ(

ν1−3
2

)Γ(
ν2−1

2
)

(ν1−2)22Γ(
ν1
2

)Γ(
ν2
2

)
+

4z4
α(ν1s21)

3
2 (ν2s22)

1
2 (ν1−3)Γ2(

ν1−1
2

)Γ(
ν1−3

2
)Γ(

ν2−1
2

)

22Γ3(
ν1
2

)Γ(
ν2
2

)

−12z2
α(ν2s22)2Γ(

ν2−1
2

)Γ(
ν2−3

2
)

n2(ν2−2)22Γ2(
ν2
2

)
+

4z4
α(ν2s22)2(2ν2−7)Γ(

ν2−1
2

)Γ(
ν2−3

2
)

(ν2−2)22Γ2(
ν2
2

)
− 4z4

α(ν2s22)2(ν2−3)Γ3(
ν2−1

2
)Γ(

ν2−3
2

)

22Γ4(
ν2
2

)
.
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Also consider −6(m
′
1)2m2 only, therefore

−6

{(
y1 − y2

)
+ zα

[(
ν1s

2
1

) 1
2 Γ(

ν1−1
2

)

2
1
2 Γ(

ν1
2

)
−
(
ν2s

2
2

) 1
2 Γ(

ν2−1
2

)

2
1
2 Γ(

ν2
2

)

]}2

×

{
z2
α

[(
ν1s

2
1

)[
1

ν1−2
− Γ2(

ν1−1
2

)

2Γ2(
ν1
2

)

]
+
(
ν2s

2
2

)[
1

ν2−2
− Γ2(

ν2−1
2

)

2Γ2(
ν2
2

)

]]
+

(ν1s21)

n1(ν1−2)
+

(ν2s22)

n2(ν2−2)

}
.

Suppose

a =
(
y1 − y2

)
; b1 =

(
ν1s

2
1

) 1
2 Γ(

ν1−1
2

)

2
1
2 Γ(

ν1
2

)
; b2 =

(
ν2s

2
2

) 1
2 Γ(

ν2−1
2

)

2
1
2 Γ(

ν2
2

)

e1 =
(ν1s21)

n1(ν1−2)
; e2 =

(ν2s22)

n2(ν2−2)
,

it therefore follows that −6(m
′
1)2m2 is given by

−6

{
a+ zα

[
b1 − b2

]}2
{
z2
α

[[
(ν1s21)

ν1−2
− b2

1

]
+
[

(ν2s22)

ν2−2
− b2

2

]]
+ e1 + e2

}

= −6

{
a2 + 2azα

[
b1 − b2

]
+ z2

α

[
b1 − b2

]2
}{

z2
α

(ν1s21)

ν1−2
− z2

αb
2
1 + z2

α
(ν2s22)

ν2−2
− z2

αb
2
2 + e1 + e2

}

= −6

{
a2 +2azα

[
b1−b2

]
+z2

α

[
b2

1−2b1b2 +b2
2

]}{
z2
α

(ν1s21)

ν1−2
−z2

αb
2
1 +z2

α
(ν2s22)

ν2−2
−z2

αb
2
2 +e1 +e2

}

= −6

{
a2+2azαb1−2azαb2+z2

αb
2
1−2z2

αb1b2+z2
αb

2
2

}{
z2
α

(ν1s21)

ν1−2
−z2

αb
2
1+z2

α
(ν2s22)

ν2−2
−z2

αb
2
2+e1+e2

}

= −6a2

{
z2
α

(ν1s21)

ν1−2
− z2

αb
2
1 + z2

α
(ν2s22)

ν2−2
− z2

αb
2
2 + e1 + e2

}

−12azαb1

{
z2
α

(ν1s21)

ν1−2
− z2

αb
2
1 + z2

α
(ν2s22)

ν2−2
− z2

αb
2
2 + e1 + e2

}

+12azαb2

{
z2
α

(ν1s21)

ν1−2
− z2

αb
2
1 + z2

α
(ν2s22)

ν2−2
− z2

αb
2
2 + e1 + e2

}
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−6z2
αb

2
1

{
z2
α

(ν1s21)

ν1−2
− z2

αb
2
1 + z2

α
(ν2s22)

ν2−2
− z2

αb
2
2 + e1 + e2

}

+12z2
αb1b2

{
z2
α

(ν1s21)

ν1−2
− z2

αb
2
1 + z2

α
(ν2s22)

ν2−2
− z2

αb
2
2 + e1 + e2

}

−6z2
αb

2
2

{
z2
α

(ν1s21)

ν1−2
− z2

αb
2
1 + z2

α
(ν2s22)

ν2−2
− z2

αb
2
2 + e1 + e2

}

= −6a2z2
α

(ν1s21)

ν1−2
+ 6a2z2

αb
2
1 − 6a2z2

α
(ν2s22)

ν2−2
+ 6a2z2

αb
2
2 − 6a2e1 − 6a2e2

−12az3
αb1

(ν1s21)

ν1−2
+ 12az3

αb
3
1 − 12az3

αb1
(ν2s22)

ν2−2
+ 12az3

αb1b
2
2 − 12azαb1e1 − 12azαb1e2

+12az3
αb2

(ν1s21)

ν1−2
− 12az3

αb
2
1b2 + 12az3

αb2
(ν2s22)

ν2−2
− 12az3

αb
3
2 + 12azαb2e1 + 12azαb2e2

−6z4
αb

2
1

(ν1s21)

ν1−2
+ 6z4

αb
4
1 − 6z4

αb
2
1

(ν2s22)

ν2−2
+ 6z4

αb
2
1b

2
2 − 6z2

αb
2
1e1 − 6z2

αb
2
1e2

+12z4
αb1b2

(ν1s21)

ν1−2
− 12z4

αb
3
1b2 + 12z4

αb1b2
(ν2s22)

ν2−2
− 12z4

αb1b
3
2 + 12z2

αb1b2e1 + 12z2
αb1b2e2

−6z4
αb

2
2

(ν1s21)

ν1−2
+ 6z4

αb
2
1b

2
2 − 6z4

αb
2
2

(ν2s22)

ν2−2
+ 6z4

αb
4
2 − 6z2

αb
2
2e1 − 6z2

αb
2
2e2.

By substituting a, b1, b2, e1 and e2 back, it follows that −6(m
′
1)2m2 is given by

= −6(y1 − y2)2z2
α

(ν1s21)

ν1−2
+ 6(y1 − y2)2z2

α

(
(ν1s

2
1)

Γ2(
ν1−1

2
)

2Γ2(
ν1
2

)

)
− 6(y1 − y2)2z2

α
(ν2s22)

ν2−2

+6(y1 − y2)2z2
α

(
(ν2s

2
2)

Γ2(
ν2−1

2
)

2Γ2(
ν2
2

)

)
− 6(y1 − y2)2

(
(ν1s21)

n1(ν1−2)

)
− 6(y1 − y2)2

(
(ν2s22)

n2(ν2−2)

)
−12(y1 − y2)z3

α

(
(ν1s

2
1)

1
2

Γ(
ν1−1

2
)

2
1
2 Γ(

ν1
2

)

)
(ν1s21)

ν1−2
+ 12(y1 − y2)z3

α

(
(ν1s

2
1)

3
2

Γ3(
ν1−1

2
)

2
3
2 Γ3(

ν1
2

)

)
−12(y1−y2)z3

α

(
(ν1s

2
1)

1
2

Γ(
ν1−1

2
)

2
1
2 Γ(

ν1
2

)

)
(ν2s22)

ν2−2
+12(y1−y2)z3

α

(
(ν1s

2
1)

1
2

Γ(
ν1−1

2
)

2
1
2 Γ(

ν1
2

)

)(
(ν2s

2
2)

Γ2(
ν2−1

2
)

2Γ2(
ν2
2

)

)
−12(y1− y2)zα

(
(ν1s

2
1)

1
2

Γ(
ν1−1

2
)

2
1
2 Γ(

ν1
2

)

)(
(ν1s21)

n1(ν1−2)

)
− 12(y1− y2)zα

(
(ν1s

2
1)

1
2

Γ(
ν1−1

2
)

2
1
2 Γ(

ν1
2

)

)(
(ν2s22)

n2(ν2−2)

)
+12(y1−y2)z3

α

(
(ν2s

2
2)

1
2

Γ(
ν2−1

2
)

2
1
2 Γ(

ν2
2

)

)
(ν1s21)

ν1−2
−12(y1−y2)z3

α

(
(ν1s

2
1)

Γ2(
ν1−1

2
)

2Γ2(
ν1
2

)

)(
(ν2s

2
2)

1
2

Γ(
ν2−1

2
)

2
1
2 Γ(

ν2
2

)

)
+12(y1 − y2)z3

α

(
(ν2s

2
2)

1
2

Γ(
ν2−1

2
)

2
1
2 Γ(

ν2
2

)

)
(ν2s22)

ν2−2
− 12(y1 − y2)z3

α

(
(ν2s

2
2)

3
2

Γ3(
ν2−1

2
)

2
3
2 Γ3(

ν2
2

)

)
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+12(y1− y2)zα

(
(ν2s

2
2)

1
2

Γ(
ν2−1

2
)

2
1
2 Γ(

ν2
2

)

)(
(ν1s21)

n1(ν1−2)

)
+ 12(y1− y2)zα

(
(ν2s

2
2)

1
2

Γ(
ν2−1

2
)

2
1
2 Γ(

ν2
2

)

)(
(ν2s22)

n2(ν2−2)

)
−6z4

α

(
(ν1s

2
1)

Γ2(
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ν1
2

)

)(
(ν2s

2
2)

1
2

Γ(
ν2−1

2
)

2
1
2 Γ(

ν2
2

)

)
+12z4

α

(
(ν1s

2
1)

1
2

Γ(
ν1−1

2
)

2
1
2 Γ(

ν1
2

)

)(
(ν2s

2
2)

1
2

Γ(
ν2−1

2
)

2
1
2 Γ(
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+
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+
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+
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+
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ν1−1
2

)

n2(ν2−2)2
1
2 Γ(
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+
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ν2
2

)
− 6z4

α(ν1s21)2Γ2(
ν1−1

2
)

(ν1−2)2Γ2(
ν1
2

)
+
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ν1−1
2

)Γ2(
ν2−1

2
)

22Γ2(
ν1
2

)Γ2(
ν2
2

)
− 6z2

α(ν1s21)2Γ2(
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ν1−1
2

)Γ(
ν2−1

2
)

22Γ3(
ν1
2

)Γ(
ν2
2

)
+

12z4
α(ν1s21)
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+
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+
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+
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+
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ν2−1
2

)

n1(ν1−2)2Γ2(
ν2
2

)
− 6z2

α(ν2s22)2Γ2(
ν2−1

2
)

n2(ν2−2)2Γ2(
ν2
2

)
.

Consider −(m
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1)4 only, therefore
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.

Now, suppose that
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(
ν2s

2
2

) 1
2 Γ(
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it therefore follows that −(m
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]
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Substitute a, b1 and b2 back, therefore −(m
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1)4 is given by
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3
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+
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α
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α
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+
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α
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+
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α
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+
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2 Γ(
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+
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1
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+
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ν1−1
2

)Γ(
ν1−3

2
)Γ(
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+
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+
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+
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ν2−1
2

)

2Γ2(
ν2
2

)

−6(y1−y2)2(ν1s21)
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+
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+
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+
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+
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+
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ν1−1

2
)

n2(ν2−2)2Γ2(
ν1
2

)

+
12z4

α(ν1s21)
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ν1−1
2

)Γ(
ν2−1

2
)

22Γ3(
ν1
2

)Γ(
ν2
2

)
+
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3
2 Γ(
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+
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Consider the terms that contain (y1 − y2)4

(y1 − y2)4 − (y1 − y2)4 = 0.

Consider the terms that contain (y1 − y2)3
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ν2−1
2

)

2
1
2 Γ(
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Consider the terms that contain (y1 − y2)2
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1
2 Γ2(

ν1−1
2

)Γ(
ν2−1

2
)

2
3
2 Γ2(

ν1
2

)Γ(
ν2
2

)

−12(y1−y2)z3
α(ν1s21)

1
2 (ν2s22)Γ(

ν1−1
2

)Γ2(
ν2−1

2
)

2
3
2 Γ(

ν1
2

)Γ2(
ν2
2

)
+

4(y1−y2)z3
α(ν2s22)

3
2 Γ3(

ν2−1
2

)

2
3
2 Γ3(

ν2
2

)
.
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From the terms containing (y1−y2), consider the terms that contain both (y1−y2) and

z3
α, therefore

4(y1−y2)z3
α(ν1s21)

3
2 Γ(

ν1−3
2

)

2
3
2 Γ(

ν1
2

)
− 4(y1−y2)z3

α(ν2s22)
3
2 Γ(

ν2−3
2

)

2
3
2 Γ(

ν2
2

)
− 12(y1−y2)z3

α(ν1s21)(ν2s22)
1
2 Γ(

ν2−1
2

)

(ν1−2)2
1
2 Γ(

ν2
2

)

+
12(y1−y2)z3

α(ν1s21)
1
2 (ν2s22)Γ(

ν1−1
2

)

(ν2−2)2
1
2 Γ(

ν1
2

)
+

4(y1−y2)z3
α(ν1s21)

3
2 (2ν1−7)Γ(

ν1−3
2

)

(ν1−2)2
3
2 Γ(

ν1
2

)
−4(y1−y2)z3

α(ν1s21)
3
2 (ν1−3)Γ2(

ν1−1
2

)Γ(
ν1−3

2
)

2
3
2 Γ3(

ν1
2

)

−4(y1−y2)z3
α(ν2s22)

3
2 (2ν2−7)Γ(

ν2−3
2

)

(ν2−2)2
3
2 Γ(

ν2
2

)
+

4(y1−y2)z3
α(ν2s22)

3
2 (ν2−3)Γ2(

ν2−1
2

)Γ(
ν2−3

2
)

2
3
2 Γ3(

ν2
2

)
− 12(y1−y2)z3

α(ν1s21)
3
2 Γ(

ν1−1
2

)

(ν1−2)2
1
2 Γ(

ν1
2

)

+
12(y1−y2)z3

α(ν1s21)
3
2 Γ3(

ν1−1
2

)

2
3
2 Γ3(

ν1
2

)
− 12(y1−y2)z3

α(ν1s21)
1
2 (ν2s22)Γ(

ν1−1
2

)

(ν2−2)2
1
2 Γ(

ν1
2

)
+

12(y1−y2)z3
α(ν1s21)

1
2 (ν2s22)Γ(

ν1−1
2

)Γ2(
ν2−1

2
)

2
3
2 Γ(

ν1
2

)Γ2(
ν2
2

)

+
12(y1−y2)z3

α(ν1s21)(ν2s22)
1
2 Γ(

ν2−1
2

)

(ν1−2)2
1
2 Γ(

ν2
2

)
− 12(y1−y2)z3

α(ν1s21)(ν2s22)
1
2 Γ2(

ν1−1
2

)Γ(
ν2−1

2
)

2
3
2 Γ2(

ν1
2

)Γ(
ν2
2

)
+

12(y1−y2)z3
α(ν2s22)

3
2 Γ(

ν2−1
2

)

(ν2−2)2
1
2 Γ(

ν2
2

)

−12(y1−y2)z3
α(ν2s22)

3
2 Γ3(

ν2−1
2

)

2
3
2 Γ3(

ν2
2

)
− 4(y1−y2)z3

α(ν1s21)
3
2 Γ3(

ν1−1
2

)

2
3
2 Γ3(

ν1
2

)
+

12(y1−y2)z3
α(ν1s21)(ν2s22)

1
2 Γ2(

ν1−1
2

)Γ(
ν2−1

2
)

2
3
2 Γ2(

ν1
2

)Γ(
ν2
2

)

−12(y1−y2)z3
α(ν1s21)

1
2 (ν2s22)Γ(

ν1−1
2

)Γ2(
ν2−1

2
)

2
3
2 Γ(

ν1
2

)Γ2(
ν2
2

)
+

4(y1−y2)z3
α(ν2s22)

3
2 Γ3(

ν2−1
2

)

2
3
2 Γ3(

ν2
2

)

=
4(y1−y2)z3

α(ν1s21)
3
2 Γ(

ν1−3
2

)

2
3
2 Γ(

ν1
2

)
+

4(y1−y2)z3
α(ν1s21)

3
2 (2ν1−7)Γ(

ν1−3
2

)

(ν1−2)2
3
2 Γ(

ν1
2

)
− 12(y1−y2)z3

α(ν1s21)
3
2 Γ(

ν1−1
2

)

(ν1−2)2
1
2 Γ(

ν1
2

)

+
12(y1−y2)z3

α(ν1s21)
1
2 (ν2s22)Γ(

ν1−1
2

)

(ν2−2)2
1
2 Γ(

ν1
2

)
− 12(y1−y2)z3

α(ν1s21)
1
2 (ν2s22)Γ(

ν1−1
2

)

(ν2−2)2
1
2 Γ(

ν1
2

)
− 4(y1−y2)z3

α(ν1s21)
3
2 Γ3(

ν1−1
2

)

2
3
2 Γ3(

ν1
2

)

−4(y1−y2)z3
α(ν1s21)

3
2 (ν1−3)Γ2(

ν1−1
2

)Γ(
ν1−3

2
)

2
3
2 Γ3(

ν1
2

)
+

12(y1−y2)z3
α(ν1s21)

3
2 Γ3(

ν1−1
2

)

2
3
2 Γ3(

ν1
2

)
− 4(y1−y2)z3

α(ν2s22)
3
2 Γ(

ν2−3
2

)

2
3
2 Γ(

ν2
2

)

−12(y1−y2)z3
α(ν1s21)(ν2s22)

1
2 Γ(

ν2−1
2

)

(ν1−2)2
1
2 Γ(

ν2
2

)
+

12(y1−y2)z3
α(ν1s21)(ν2s22)

1
2 Γ(

ν2−1
2

)

(ν1−2)2
1
2 Γ(

ν2
2

)
−4(y1−y2)z3

α(ν2s22)
3
2 (2ν2−7)Γ(

ν2−3
2

)

(ν2−2)2
3
2 Γ(

ν2
2

)

+
12(y1−y2)z3

α(ν2s22)
3
2 Γ(

ν2−1
2

)

(ν2−2)2
1
2 Γ(

ν2
2

)
+

4(y1−y2)z3
α(ν2s22)

3
2 (ν2−3)Γ2(

ν2−1
2

)Γ(
ν2−3

2
)

2
3
2 Γ3(

ν2
2

)
− 12(y1−y2)z3

α(ν2s22)
3
2 Γ3(

ν2−1
2

)

2
3
2 Γ3(

ν2
2

)

+
4(y1−y2)z3

α(ν2s22)
3
2 Γ3(

ν2−1
2

)

2
3
2 Γ3(

ν2
2

)
+

12(y1−y2)z3
α(ν1s21)

1
2 (ν2s22)Γ(

ν1−1
2

)Γ2(
ν2−1

2
)

2
3
2 Γ(

ν1
2

)Γ2(
ν2
2

)
−12(y1−y2)z3

α(ν1s21)
1
2 (ν2s22)Γ(

ν1−1
2

)Γ2(
ν2−1

2
)

2
3
2 Γ(

ν1
2

)Γ2(
ν2
2

)

−12(y1−y2)z3
α(ν1s21)(ν2s22)

1
2 Γ2(

ν1−1
2

)Γ(
ν2−1

2
)

2
3
2 Γ2(

ν1
2

)Γ(
ν2
2

)
+

12(y1−y2)z3
α(ν1s21)(ν2s22)

1
2 Γ2(

ν1−1
2

)Γ(
ν2−1

2
)

2
3
2 Γ2(

ν1
2

)Γ(
ν2
2

)
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=
4(y1−y2)z3

α(ν1s21)
3
2 Γ(

ν1−3
2

)

2
3
2 Γ(

ν1
2

)
+

4(y1−y2)z3
α(ν1s21)

3
2 (2ν1−7)Γ(

ν1−3
2

)

(ν1−2)2
3
2 Γ(

ν1
2

)
− 12(y1−y2)z3

α(ν1s21)
3
2 Γ(

ν1−1
2

)

(ν1−2)2
1
2 Γ(

ν1
2

)

−4(y1−y2)z3
α(ν1s21)

3
2 Γ3(

ν1−1
2

)

2
3
2 Γ3(

ν1
2

)
− 4(y1−y2)z3

α(ν1s21)
3
2 (ν1−3)Γ2(

ν1−1
2

)Γ(
ν1−3

2
)

2
3
2 Γ3(

ν1
2

)
+

12(y1−y2)z3
α(ν1s21)

3
2 Γ3(

ν1−1
2

)

2
3
2 Γ3(

ν1
2

)

−4(y1−y2)z3
α(ν2s22)

3
2 Γ(

ν2−3
2

)

2
3
2 Γ(

ν2
2

)
− 4(y1−y2)z3

α(ν2s22)
3
2 (2ν2−7)Γ(

ν2−3
2

)

(ν2−2)2
3
2 Γ(

ν2
2

)
+

12(y1−y2)z3
α(ν2s22)

3
2 Γ(

ν2−1
2

)

(ν2−2)2
1
2 Γ(

ν2
2

)

+
4(y1−y2)z3

α(ν2s22)
3
2 (ν2−3)Γ2(

ν2−1
2

)Γ(
ν2−3

2
)

2
3
2 Γ3(

ν2
2

)
−12(y1−y2)z3

α(ν2s22)
3
2 Γ3(

ν2−1
2

)

2
3
2 Γ3(

ν2
2

)
+

4(y1−y2)z3
α(ν2s22)

3
2 Γ3(

ν2−1
2

)

2
3
2 Γ3(

ν2
2

)

=
4(y1−y2)z3

α(ν1s21)
3
2 Γ(

ν1−3
2

)

2
3
2 Γ(

ν1
2

)
+

4(y1−y2)z3
α(ν1s21)

3
2 (2ν1−7)Γ(

ν1−3
2

)

(ν1−2)2
3
2 Γ(

ν1
2

)
− 12(y1−y2)z3

α(ν1s21)
3
2 Γ(

ν1−1
2

)

(ν1−2)2
1
2 Γ(

ν1
2

)

−4(y1−y2)z3
α(ν1s21)

3
2 Γ3(

ν1−1
2

)

2
3
2 Γ3(

ν1
2

)
−8(y1−y2)z3

α(ν1s21)
3
2 Γ3(

ν1−1
2

)

2
3
2 Γ3(

ν1
2

)
from (ν1−3)Γ(

ν1−3
2 ) = 2Γ(

ν1−1
2 )

+
12(y1−y2)z3

α(ν1s21)
3
2 Γ3(

ν1−1
2

)

2
3
2 Γ3(

ν1
2

)
− 4(y1−y2)z3

α(ν2s22)
3
2 Γ(

ν2−3
2

)

2
3
2 Γ(

ν2
2

)
− 4(y1−y2)z3

α(ν2s22)
3
2 (2ν2−7)Γ(

ν2−3
2

)

(ν2−2)2
3
2 Γ(

ν2
2

)

+
12(y1−y2)z3

α(ν2s22)
3
2 Γ(

ν2−1
2

)

(ν2−2)2
1
2 Γ(

ν2
2

)
+

8(y1−y2)z3
α(ν2s22)

3
2 Γ3(

ν2−1
2

)

2
3
2 Γ3(

ν2
2

)
from (ν2−3)Γ(

ν2−3
2 ) = 2Γ(

ν2−1
2 )

−12(y1−y2)z3
α(ν2s22)

3
2 Γ3(

ν2−1
2

)

2
3
2 Γ3(

ν2
2

)
+

4(y1−y2)z3
α(ν2s22)

3
2 Γ3(

ν2−1
2

)

2
3
2 Γ3(

ν2
2

)

=
4(y1−y2)z3

α(ν1s21)
3
2 Γ(

ν1−3
2

)

2
3
2 Γ(

ν1
2

)
+

4(y1−y2)z3
α(ν1s21)

3
2 (2ν1−7)Γ(

ν1−3
2

)

(ν1−2)2
3
2 Γ(

ν1
2

)
− 12(y1−y2)z3

α(ν1s21)
3
2 Γ(

ν1−1
2

)

(ν1−2)2
1
2 Γ(

ν1
2

)

−4(y1−y2)z3
α(ν2s22)

3
2 Γ(

ν2−3
2

)

2
3
2 Γ(

ν2
2

)
− 4(y1−y2)z3

α(ν2s22)
3
2 (2ν2−7)Γ(

ν2−3
2

)

(ν2−2)2
3
2 Γ(

ν2
2

)
+

12(y1−y2)z3
α(ν2s22)

3
2 Γ(

ν2−1
2

)

(ν2−2)2
1
2 Γ(

ν2
2

)

=
4(y1−y2)z3

α(ν1s21)
3
2 Γ(

ν1−3
2

)

2
3
2 Γ(

ν1
2

)
+

4(y1−y2)z3
α(ν1s21)

3
2 (2ν1−7)Γ(

ν1−3
2

)

(ν1−2)2
3
2 Γ(

ν1
2

)

−12(y1−y2)z3
α(ν1s21)

3
2 (ν1−3)Γ(

ν1−3
2

)

(ν1−2)2
3
2 Γ(

ν1
2

)
from Γ(

ν1−1
2 ) = (

ν1−3
2 )Γ(

ν1−3
2 )

−4(y1−y2)z3
α(ν2s22)

3
2 Γ(

ν2−3
2

)

2
3
2 Γ(

ν2
2

)
− 4(y1−y2)z3

α(ν2s22)
3
2 (2ν2−7)Γ(

ν2−3
2

)

(ν2−2)2
3
2 Γ(

ν2
2

)

+
12(y1−y2)z3

α(ν2s22)
3
2 (ν2−3)Γ(

ν2−3
2

)

(ν2−2)2
3
2 Γ(

ν2
2

)
from Γ(

ν2−1
2 ) = (

ν2−3
2 )Γ(

ν2−3
2 )
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=
4(y1−y2)z3

α(ν1s21)
3
2 (ν1−2)Γ(

ν1−3
2

)

(ν1−2)2
3
2 Γ(

ν1
2

)
+

4(y1−y2)z3
α(ν1s21)

3
2 (2ν1−7)Γ(

ν1−3
2

)

(ν1−2)2
3
2 Γ(

ν1
2

)
− 12(y1−y2)z3

α(ν1s21)
3
2 (ν1−3)Γ(
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2

)

(ν1−2)2
3
2 Γ(

ν1
2

)
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2 Γ(
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2 Γ(
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+
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2 Γ(
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2 Γ(
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2
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2 Γ(
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)
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3
2 Γ(
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2

)

(ν2−2)2
3
2 Γ(
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2

)

[
(ν2 − 2) + (2ν2 − 7)− 3(ν2 − 3)

]

= 0.

From the terms containing (y1−y2), consider the terms that contain both (y1−y2) and

zα, therefore
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2
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=
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+
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+
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+
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Consider the terms that contain (ν1s
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+
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=
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The terms containing (y1−y2)4, (y1−y2)3, (y1−y2)2, (y1−y2), (ν1s
2
1)

3
2 (ν2s

2
2)

1
2 , (ν1s

2
1)

1
2 (ν2s

2
2)

3
2

all therefore become equal to zero.

The fourth central moment of the marginal posterior distribution of q1 − q2 i.e. p
(

(q1 −

q2)|y1,y2

)
is therefore given by
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Therefore, the fourth central moment of the marginal posterior distribution of (q1 −

q2)|y1,y2 is equal to

m4 =
2∑
d=1

{
(νds

2
d)2

(νd−2)(νd−4)

[
3
n2
d

+ 6z2
α

nd
+ z4

α

]
− 6z2

α(νd−1)(νds
2
d)2Γ(

νd−1

2
)Γ(

νd−3

2
)

22nd(νd−2)Γ2(
νd
2

)

+
2(νd−5)z4

α(νds
2
d)2Γ(

νd−1

2
)Γ(

νd−3

2
)

22(νd−2)Γ2(
νd
2

)
− 3z4

α(νds
2
d)2Γ4(

νd−1

2
)

22Γ4(
νd
2

)

}

+6
(
ν1s

2
1

)(
ν2s

2
2

){
1

(ν1−2)(ν2−2)

[
1

n1n2
+ z2

α

n2
+ z2

α

n1
+ z4

α

]
− z4

αΓ2(
ν1−1

2
)

2(ν2−2)Γ2(
ν1
2

)
− z4

αΓ2(
ν2−1

2
)

2(ν1−2)Γ2(
ν2
2

)

− z2
αΓ2(

ν1−1
2

)

2n2(ν2−2)Γ2(
ν1
2

)
− z2

αΓ(
ν2−1

2
)

2n1(ν1−2)Γ2(
ν2
2

)
+

z4
αΓ2(

ν1−1
2

)Γ2(
ν2−1

2
)

22Γ2(
ν1
2

)Γ2(
ν2
2

)

}
.



Chapter 3

The One - Way Random Effects Model

In this chapter, the Bayesian simulation method for determining variance components

and tolerance intervals for a one - way random effects model using a non - informative

Jeffreys’ prior distribution will be reviewed. The method was originally proposed by

Wolfinger (1998). In addition to the simulation method proposed by Wolfinger (1998)

for obtaining Bayesian tolerance intervals, an alternative Bayesian simulation method

for obtaining the mentioned Bayesian tolerance intervals will also be discussed. The

method proposed by Wolfinger (1998) and the alternative method will be illustrated

using a process for the manufacturing of medicinal tablets in small batches.

3.1 Introduction

When discussing point estimation for the percentiles of yij when sampling takes place

from various batches of some material, Fertig and Mahn (1974) provided a motivation

for deriving one - sided tolerance limits for the one - way random effects model given

by

yij = µ+ ai + εij (3.1.1)

146
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where

i = 1, . . . , b,

j = 1, . . . k,

µ is a fixed target value,

ai ∼ N(0, σ2
a) and

εij ∼ N(0, σ2
ε).

It however appears that Lemon (1977) was the first to attempt to formally derive a

lower tolerance limit for the distribution of yij ∼ N(µ, σ2
a + σ2

ε) and thus the random

effects model given in equation 3.1.1 (Krishnamoorthy and Mathew, 2009). Mee and

Owen (1983) pointed out that the tolerance limit determined by Lemon (1977) was

quite conservative and proceeded to derive a less conservative tolerance limit using

the Satterthwaite approximation. Avoiding the Satterthwaite approximation, Vangel

(1992) succeeded in determining a less conservative tolerance limit compared to the

tolerance limit proposed by Mee and Owen (1983). Later on, Krishnamoorthy and

Mathew (2004) derived a lower tolerance limit for yij ∼ N(µ, σ2
a + σ2

ε). Krishnamoorthy

and Mathew (2004) first defined a generalized pivotal quantity which is a function of

the underlying random variables and the corresponding observed values, and then

determined the lower tolerance limit using the generalized confidence interval idea

(Krishnamoorthy and Mathew, 2009). Chen and Harris (2006) more recently computed

tolerance intervals using a proposed numerical approach.

Mee (1984a) extended the Mee and Owen (1983) approach for determining a one -

sided tolerance limit for the random effects model given in equation 3.1.1 to also arrive

at a two - sided tolerance interval for yij ∼ N(µ, σ2
a + σ2

ε), also using the Satterthwaite

approximation. Bechman and Tietjen (1989) also derived a two - sided tolerance inter-

val after replacing some unknown parameter by some upper bound (Krishnamoorthy

and Mathew, 2009). Using the generalized confidence interval idea, Liao and Iyer
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(2004) and Liao, Lin and Iyer (2005) derived approximate two - sided tolerance inter-

vals after deriving two slightly different margin of error statistics. The approximation

used in Liao, Lin and Iyer (2005) seems to be an improvement over the approximation

proposed by Liao and Iyer (2004) (Krishnamoorthy and Mathew, 2009). Krishnamoor-

thy and Mathew (2009) also mentioned that even though Liao, Lin and Iyer (2005)

succeeded in eventually using generalized confidence intervals for a suitable linear

combination of the variance components σ2
a and σ2

ε , the proposed approach is not a

straightforward application of the generalized confidence interval idea, since the two

- sided tolerance interval problem does not reduce to a confidence interval problem

concerning percentiles.

As was mentioned in Chapter 1, an α - expectation tolerance interval is an interval

where α represents the expected coverage of the interval and is also a prediction

interval for a future observation. Wilks (1941), Paulson (1943) and Guttman (1970) de-

rived such intervals for univariate normal distributions (Krishnamoorthy and Mathew,

2009). Mee (1984a) derived an α - expectation tolerance interval for the balanced

random effects model in a similar manner as the derivation of the (α, δ) one - sided tol-

erance interval proposed by Mee and Owen (1983). Like Mee and Owen (1983), Mee

(1984a) also used the Satterthwaite approximation for deriving this α - expectation tol-

erance interval (Krishnamoorthy and Mathew, 2009). Lin and Liao (2006) also derived

α - expectation tolerance intervals for a general mixed model with balanced data

which can also be adopted for the random effects model given in equation 3.1.1. For

a general random effects model with balanced data, Lin and Liao (2008) also derived

simultaneous prediction intervals (Krishnamoorthy and Mathew, 2009).

The above authors have considered the derivation of tolerance intervals for the ran-

dom effects model from a frequentist perspective. For the one - way random effects

model given in equation 3.1.1, tolerance intervals can also be determined using the

Bayesian approach.
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3.2 The Bayesian Approach

When prior information is used on a parameter space, the term Bayesian is used to

describe the approach. In the investigation of a statistical quandary, Bayes’s theorem

can consequently improvise the situation through the use of this prior information. If,

however, the use of prior information is rejected (as in the “objectivist” school), then

the term frequentist describes the approach. In this case, probability is interpreted ex-

clusively related to comparative frequencies in major reproduction (Aitchison, 1964).

As argued by Aitchison (1964), the frequentist assertion is an intricate one, with nu-

merous mathematical complexities. According to Aitchison (1964), the associated

frequentist interpretation concerning tolerance regions is commonly misunderstood.

Bayesian formulations are straightforward and seem more appropriate for use in tol-

erance regions. See Aitchison (1964) for an in - depth comparative discussion on the

two approaches, with an accompanying illustrative example.

As mentioned, contrary to the frequentist method, Bayesian formulation requires the

additional notion of a prior probability density p(θ) on the parameter space. The

prior density signifies the user’s prior beliefs (based on experience) or a suitable, ra-

tional form of weighting over the feasible parameters. Aitchison (1964) states that the

Bayesian then bases his subsequent actions exclusively on the posterior distribution

(obtained using the prior density and the likelihood) and the resulting consequences.

The methodology for determining Bayesian tolerance intervals for the one - way ran-

dom effects model has originally been proposed by Wolfinger (1998) using both infor-

mative and non - informative prior distributions. Wolfinger (1998) also provided rela-

tionships with frequentist methodologies.

For the remainder of this chapter, the Bayesian method as proposed by Wolfinger

(1998) for determining tolerance intervals for the one - way random effects model

using a non - informative prior distribution will be discussed. The methodology pro-
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posed by Wolfinger (1998) will be illustrated using an example for the manufacturing of

medical tablets.

3.3 The Variance Component Model

Minimum variance unbiased estimators (MVUE’s) are used to estimate variances when

balanced data is considered. For unbalanced data, however, such estimators do not

exist. Unbalanced data could be a result of spoiled samples, missing data, different

batches having different sampling costs or poorly designed experiments (Chaloner,

1987). A variety of estimators, such as maximum likelihood estimators (MLE’s), min-

imum norm quadratic unbiased estimators (MINQUE’s) and numerous variations to

these methods (see Searle (1979)), have been suggested. These estimators were stud-

ied by Swallow and Monahan (1984), but the Bayesian estimators were not considered

as an alternative until the comparative study by Chaloner (1987).

Chaloner (1987) also reasoned that the Bayesian approach had several advantages

over the classical methods. These advantages include always finding non - negative

estimates for variances, non - empty highest posterior density regions and the entire

posterior probability distribution can be reported at any one time.

The Bayesian method proposed by Wolfinger (1998) for estimating variance compo-

nents and tolerance intervals for a one - way random effects model can be illustrated

using the random effects model given in equation 3.1.1 and represented by

yij = µ+ ai + εij

where yij refers to jth measurement for the ith batch (i = 1, . . . , b, j = 1, . . . , k), the

overall mean is modeled by µ, ai denotes the random effects factor and finally εij is

the experimental error involved in the process. The random effects parameter and the

error component both follow normal distributions with means equal to 0 and variances

σ2
a and σ2

ε respectively.
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3.4 The Prior Distribution

In Chapter 1 it was mentioned that the choice of a prior distribution is a controver-

sial and much criticized step in any Bayesian analysis, since the prior distribution p(θ)

is specified by the analyst. For the one - way random effects model given in equa-

tion 3.1.1, it was therefore decided to follow Wolfinger (1998) and also use the non -

informative Jeffreys’ reference prior given by

p(µ, σ2
a, σ

2
ε) ∝ σ−2

ε (σ2
ε + kσ2

a)
−1 (3.4.1)

This non - informative prior distribution is constructed to be invariant to reparameteri-

zation of the variance components (Wolfinger, 1998). More general discussions on non

- informative prior distributions for the one - way random effects model can be found

in Box and Tiao (1973) and Chaloner (1987).

3.5 The Posterior Distribution

Using Bayes’s theorem, the posterior distribution of the unknown parameters is ob-

tained by multiplying the likelihood function with the prior distribution given in equation

3.4.1. For the balanced one - way random effects model given in equation 3.1.1, the

likelihood function of the unknown parameters, µ, σ2
a, σ

2
ε and ai (i = 1, . . . , b) is given by

L(µ, σ2
a, σ

2
ε , ai|y) ∝

( 1

σ2
ε

) 1
2
bk

exp

{
− 1

2σ2
ε

k∑
j=1

b∑
i=1

(yij − µ− ai)2

}

×
( 1

σ2
a

) 1
2
b

exp

{
− 1

2σ2
a

b∑
i=1

a2
i

}
. (3.5.1)

After multiplying the likelihood function with the prior distribution, the joint posterior

distribution of the unknown parameters µ, σ2
a, σ

2
ε and ai is given by
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p(µ, σ2
a, σ

2
ε , ai|y) ∝

( 1

σ2
ε

) 1
2
bk

exp

{
− 1

2σ2
ε

k∑
j=1

b∑
i=1

(yij − µ− ai)2

}

×
( 1

σ2
a

) 1
2
b

exp

{
− 1

2σ2
a

b∑
i=1

a2
i

}
σ−2
ε (σ2

ε + kσ2
a)
−1 (3.5.2)

To obtain the posterior distribution of µ, σ2
a and σ2

ε , equation 3.5.2 is integrated with

respect to ai. In other words,

p(µ, σ2
a, σ

2
ε |y) =

ˆ ∞
−∞

p(µ, σ2
a, σ

2
ε , ai|y)da

where

a =

[
a1 a2 . . . ab

]′
.

After integrating equation 3.5.2 with respect to a and completing the square, the joint

posterior distribution of µ, σ2
a and σ2

ε is given by

p(µ, σ2
a, σ

2
ε |y) ∝

(
σ2
ε

)− 1
2

(ν1+2)(
σ2
ε + kσ2

a

)− 1
2

(ν2+3)

× exp

{
−1

2

[
bk(y.. − µ)2

σ2
ε + kσ2

a

+
ν2m2

σ2
ε + kσ2

a

+
ν1m1

σ2
ε

]}
(3.5.3)

where

σ2
a > 0,

σ2
ε > 0,

ν1 = b(k − 1),

ν2 = b− 1,

ν1m1 =
b∑
i=1

k∑
j=1

(yij − yi.)2, and

ν2m2 =
b

k
∑
i=1

(yi. − y..)2
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where y. =
k∑
j=1

yij
k

and y.. =
b∑
i=1

k∑
j=1

yij
bk

. Also, ν1m1 represents the observed sum of squares

within batches (SSE), while ν2m2 represents the observed sum of squares between

batches (SSA).

From the joint posterior distribution given in equation 3.5.2 and the joint posterior dis-

tribution given in equation 3.5.3, the following conditional posterior distributions of the

unknown parameters can also be obtained.

Theorem 3.5.1

For the balanced random effects model given in equation 3.1.1, the conditional pos-

terior distribution of µ, given the variance components, is normal with mean

E(µ|σ2
a, σ

2
ε ,y) = y..

and variance

V ar(µ|σ2
a, σ

2
ε ,y) = 1

bk
(σ2

ε + kσ2
a) .

Therefore

p(µ|σ2
a, σ

2
ε ,y) ∼ N

(
y..,

1

bk
(σ2

ε + kσ2
a)
)
. (3.5.4)

Theorem 3.5.2

The joint posterior distribution of the variance components for the balanced random

effects model given in equation 3.1.1, is given by

p(σ2
a, σ

2
ε |y) ∼

(
σ2
ε

)− 1
2

(ν1+2)(
σ2
ε + kσ2

a

)− 1
2

(ν2+2)

× exp

{
−1

2

[
ν2m2

σ2
ε + kσ2

a

+
ν1m1

σ2
ε

]}
(3.5.5)

where σ2
ε > 0, σ2

a > 0.
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Theorem 3.5.3

Given the variance components, the posterior distribution of the random effects ai

(i = 1, . . . , b) for the balanced random effects model given in equation 3.1.1, is given

by

p(ai|σ2
a, σ

2
ε ,y) ∼ N

([
kσ2

a

σ2
ε + kσ2

a

]
(yi. − y..) ,

σ2
εσ

2
a

σ2
ε + kσ2

a

[
σ2
ε +

kσ2
a

b

])
for i = 1, . . . , b .

(3.5.6)

The proves of Theorems 3.5.1 - 3.5.3 have been derived previously. For more details per-

taining these mathematical expressions, see Box and Tiao (1973) and Searle, Casella

and McCullough (1992).

3.6 Bayesian Simulation

It was mentioned in Chapter 2, that for the balanced univariate normal model, the

unconditional posterior distributions of the unknown parameters can be obtained an-

alytically, since the derivations were not that complex . Wolfinger (1998) mentioned

however that for the balanced one - way random effects model, the analytical deriva-

tions of unconditional posterior densities for the unknown parameters µ, σ2
a, σ

2
ε , ai

(i = 1, . . . , b) and posterior densities of quantiles in order to construct tolerance lim-

its, appear to be formidable.

It was therefore decided to follow Wolfinger (1998) and also use a straightforward,

flexible and economical Bayesian simulation method to obtain these unconditional

posterior densities and to construct approximate tolerance intervals of varying types.

The Bayesian method proposed for the balanced one - way random effects model

given in equation 3.1.1 will now be illustrated using the following simulated data set

pertaining to the manufacturing of pills (medicinal tablets).
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The simulated data in Table 3.1 represents the amount of milligrams of active drug per

manufactured tablet from a factory manufacturing tablets in very small batches. A

small batch in this instance is likely to represent a weekly or monthly intake of tablets

for an individual patient. The data are assumed to arise from a normal distribution

with unknown parameters, but it has more structure than a simple random sample,

because it is clustered in fifteen batches and each batch contains ten tablets. A

lower specification limit s = 150.30 mg is specified for the medicinal tablets data given

in Table 3.1.

Table 3.1: Amount of Active Drug per Tablet Measured in Milligrams.

Batch Measurements

1 150.52 150.39 150.31 150.49 150.47 150.67 150.17 150.45 150.42 150.37

2 150.35 150.47 150.72 150.56 150.53 150.62 150.60 150.52 150.51 150.63

3 150.48 150.79 150.63 150.46 150.71 150.67 150.70 150.48 150.48 150.58

4 150.41 150.45 150.40 150.33 150.24 150.39 150.28 150.36 150.27 150.33

5 150.58 150.54 150.30 150.54 150.50 150.32 150.58 150.46 150.41 150.49

6 150.49 150.83 150.66 150.63 150.72 150.79 150.64 150.62 150.71 150.73

7 150.33 150.44 150.48 150.34 150.50 150.42 150.37 150.54 150.39 150.52

8 150.39 150.52 150.35 150.52 150.47 150.54 150.51 150.37 150.54 150.53

9 150.64 150.78 150.51 150.69 150.51 150.47 150.60 150.50 150.69 150.72

10 150.61 150.49 150.60 150.50 150.68 150.56 150.59 150.73 150.62 150.62

11 150.48 150.25 150.49 150.43 150.40 150.44 150.31 150.36 150.30 150.40

12 150.35 150.41 150.36 150.39 150.34 150.37 150.51 150.32 150.25 150.32

13 150.54 150.67 150.57 150.45 150.57 150.48 150.39 150.38 150.67 150.42

14 150.41 150.54 150.57 150.73 150.47 150.72 150.72 150.49 150.66 150.58

15 150.60 150.45 150.66 150.72 150.45 150.51 150.69 150.62 150.55 150.45

The selected lower specification limit s = 150.30 mg can for example indicate the min-

imum amount of active ingredient that has to be taken per dose to render the medi-

cation effective. The data and above limit are selected solely for illustrative purposes.
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In practice, fixed - in - advance limits are often determined from medical or regulatory

considerations. See for example Wolfinger (1998). Based on the data, the quantities

needed for the simulation procedure are b = 15, k = 10, ν1 = b(k − 1) = 135, ν2 = b− 1 =

14, y.. = 150.5076, ν1m1 =
b∑
i=1

k∑
j=1

(yij − y..)2 = 1.26552 and ν2m2 = k
b∑
i=1

(yi. − y..)2 = 1.469816.

Similar to what was illustrated in Chapter 2, Markov chain Monte Carlo (MCMC) simu-

lation will also be used to obtain random samples from the joint posterior distribution of

the unknown model parameters using a computer random number generator. These

simulated samples will represent samples from the conditional posterior distribution of

the unknown parameter µ, i.e. p(µ|σ2
ε , σ

2
a,y), the joint posterior distribution of the un-

known variance components σ2
a and σ2

ε , i.e. p(σ2
a, σ

2
ε |y) and the conditional posterior

distribution of the random effects parameter ai (i = 1, . . . , b), i.e. p(ai|σ2
a, σ

2
ε ,y).

Estimated marginal posterior distributions for the unknown parameters σ2
ε , σ

2
a, µ and ai

are simulated as follows:

a.) Simulation of σ2
ε and σ2

a

For the balanced one - way random effects model under the Jeffreys’ non - informative

prior given in equation 3.4.1, Wolfinger (1998) mentioned that p(σ2
a, σ

2
ε |y) can be written

directly as the product of two inverted gamma distributions given by

p(σ2
a, σ

2
ε |y) ∝ IG

[
σ2
ε + kσ2

a

∣∣∣∣b− 1

2
,
k

2

b∑
j=1

(yi. − y..)2

]
×IG

[
σ2
ε

∣∣∣∣b(k − 1)

2
,
1

2

b∑
i=1

k∑
j=1

(yij − yi.)2

]

where b refers to the number of batches, k denotes the number of observations con-

tained within each batch, yi. represents the average of the ith batch and y.. refers to

the overall mean of the entire sample. Wolfinger (1998) therefore mentioned that one

independently draws
(
σ2
ε + kσ2

a

)
and σ2

ε from the inverted gamma densities to sample

from p(σ2
a, σ

2
ε |y). Therefore, ν1m1

σ2
ε

follows a chi - square distribution with ν1 = b(k − 1)

degrees of freedom, i.e. ν1m1
σ2
ε
∼ χ2

ν1
where ν1m1 =

b∑
i=1

k∑
j=1

(yij − yi.)2.
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From this it follows that the unknown variance component σ2
ε can easily be simulated

using the χ2
ν1

1 distribution by obtaining

σ2
ε = ν1m1

χ2
ν1

.

To simulate
(
σ2
ε + kσ2

a

)
we also know that ν2m2

σ2
ε+kσ2

a
follows a chi - square distribution with

ν2 = b− 1 degrees of freedom. It is therefore known that

ν2m2

σ2
ε+kσ2

a
∼ χ2

ν2

where ν2m2 = k
b∑
i=1

(yi. − y..)2.

A simulated value of
(
σ2
ε + kσ2

a

)
can therefore be obtained from the relationship

(σ2
ε + kσ2

a) ∼ ν2m2

χ2
ν2

.

To obtain σ2
a, one therefore has to calculate

σ2
a = (σ2

ε+kσ2
a)−σ2

ε

k
.

To ensure that only positive values for the variance components are obtained, the

simulated variance components are kept only if

σ2
a = (σ2

ε+kσ2
a)−σ2

ε

k
> 0, or,

in other words, if

σ2
12 = (σ2

ε + kσ2
a) > σ2

ε .

Repeat the process for example ˜̀= 10000 times, retain only the positive pairs of vari-

ance components, and draw histograms of σ2
a and σ2

ε . The histograms will represent

the estimated marginal posterior distributions p(σ2
a|y) and p(σ2

ε |y).

For the data given in Table 3.1, the histograms of the estimated marginal posterior dis-

tributions of the unknown variance components i.e. p(σ2
a|y) and p(σ2

ε |y) are depicted

in Figures 3.6.1 and 3.6.2 respectively.

1χ2
ν1

=
ν1∑̀
=1

z2
` where z` ∼ N(0, 1)
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Figure 3.6.1: Histogram of the Estimated Marginal Posterior Distribution of σ2
a for the

Data Given in Table 3.1.

From Figure 3.6.1 it can be seen that the histogram of the estimated marginal poste-

rior distribution of the batch variance component σ2
a is relatively skew due to the low

number of degrees of freedom ν2 = 15 − 1 = 14 associated with σ2
a. The 95% equal

tail credibility interval of σ2
a can also be determined by ranking the retained simulated

values for σ2
a and obtaining the 2.5th and 97.5th percentiles of the ranked simulated val-

ues. For the data given in Table 3.1, the 95% equal tail credibility interval of the batch

variance component σ2
a is given by [0.0046 , 0.0249].

It can be seen from Figure 3.6.2 that the histogram of the estimated marginal posterior

distribution of the residual variance component for the medicinal tablets data given

in Table 3.1 is fairly symmetrical. This is due to the high number of degrees of freedom

associated with σ2
ε . Remember that for the medicinal tablets data given in Table 3.1,

there were 15 batches with observations from 10 tablets per batch. The number of

degrees of freedom ν1 is therefore equal to ν1 = 15(10 − 1) = 135. The 95% equal tail

credibility interval is determined in the same way as for the batch variance compo-



CHAPTER 3. THE ONE - WAY RANDOM EFFECTS MODEL 159

Figure 3.6.2: Histogram of the Estimated Marginal Posterior Distribution of the Residual
Variance Component σ2

ε for the Data Given in Table 3.1.

nent and is equal to [0.0075 , 0.0121].

b.) Simulation of the target value µ

By substituting each of the simulated and retained pairs of variance components, i.e.

σ2
a and σ2

ε into equation 3.5.4 and then drawing a value µ from the normal distribu-

tion given in equation 3.5.4, values of the target value µ can be simulated. There will

therefore be one simulated value µ for each pair of retained simulated variance com-

ponents. The resulting set of simulated µ values can then be displayed in a histogram.

This histogram will represent the estimated marginal posterior distribution of the target

value µ.

The estimated marginal posterior distribution of µ can also be determined using the

Rao Blackwell method described in section 2.5. For each pair of simulated variance

components, the normal distribution given in equation 3.5.4 is therefore drawn. As

mentioned, this process is repeated for example ˜̀ times, i.e. once for each pair of
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Figure 3.6.3: Histogram of - and Estimated Marginal Posterior Distribution of the Target
Value µ for the Medicinal Tablets Data Given in Table 3.1.

simulated retained variance components. The average distribution of these ˜̀normal

distributions will then represent the estimated unconditional posterior distribution of µ,

i.e. p(µ|y).

For the medicinal tablets data given in Table 3.1, the histogram of the estimated

marginal posterior distribution of the target value µ is illustrated in Figure 3.6.3. Also

depicted in Figure 3.6.3 is the estimated marginal posterior distribution of µ obtained

using the Rao Blackwell method described in section 2.5. This estimated marginal pos-

terior distribution p(µ|y) is represented by the solid line.

The 95% equal tail credibility interval for the estimated marginal posterior distribution

of the fixed target value µ is [150.4516 , 150.5640] for the medicinal tablets data given

in Table 3.1. This 95% credibility interval is also obtained by finding the 2.5th and 97.5th

percentiles of the ranked simulated µ values.
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c.) Simulation of the random (batch) effects ai (i = 1, . . . , b)

To obtain the posterior distribution of ai (i = 1, . . . , b) given the variance components

σ2
a and σ2

ε , ai (i = 1, . . . , b) values can be simulated from the normal distribution given in

equation 3.5.6. Equation 3.5.6 can also easily be rewritten as follows: Wolfinger (1998)

and others have shown that the conditional posterior density of ai (conditional on µ,

σ2
a, σ

2
ε and the data) follows a normal distribution with

E (ai|σ2
a, σ

2
ε , µ,y) =

[
kσ2
a

σ2
ε+kσ2

a

]
(yi. − µ) (i = 1, . . . , b)

and

V ar (ai|σ2
a, σ

2
ε , µ,y) = σ2

εσ
2
a

σ2
ε+kσ2

a
(i = 1, . . . , b).

It is also known from equation 3.5.4 that

p(µ|σ2
a, σ

2
ε ,y) ∼ N

(
y..,

1
bk

(σ2
ε + kσ2

a)
)

.

It therefore follows that

E(ai|σ2
a, σ

2
ε ,y) =

[
kσ2
a

σ2
ε+kσ2

a

]
(yi. − y..) (i = 1, . . . , b)

and for i = 1, . . . , b

V ar(ai|σ2
a, σ

2
ε ,y) = Eµ

[
V ar

(
ai|σ2

a, σ
2
ε , µ,y

)]
+ V arµ

[
E
(
ai|σ2

a, σ
2
ε , µ,y

)]

= σ2
εσ

2
a

σ2
ε+kσ2

a
+
[

kσ2
a

σ2
ε+kσ2

a

]2
(σ2
ε+kσ2

a)
bk

= σ2
εσ

2
a

σ2
ε+kσ2

a
+ k(σ2

a)2

b

(
1

σ2
ε+kσ2

a

)
= σ2

a

σ2
ε+kσ2

a

[
σ2
ε + kσ2

a

b

]
.

For i = 1, . . . , b, the posterior distribution of ai is therefore given by

p(ai|σ2
ε , σ

2
a,y) ∼ N

([
kσ2

a

σ2
ε + kσ2

a

]
(yi. − y..) ,

σ2
a

σ2
ε + kσ2

a

[
σ2
ε +

kσ2
a

b

])
. (3.6.1)
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Figure 3.6.4: Estimated Marginal Posterior Distributions p(ai|y) (i = 1, . . . , 15) of the
Random (Batch) Effects for the Medicinal Tablets Data Given in Table 3.1.

The estimated marginal posterior distributions of the random (batch) effects p(ai|y)

(i = 1, . . . , b) can then be simulated using equation 3.6.1 as follows:

i.) For each of the ˜̀pairs of retained, simulated variance components σ2
ε and

σ2
a, draw the conditional posterior normal distributions given in equation

3.6.1.

ii.) Using the Rao Blackwell argument described in section 2.5, the estimated

marginal posterior distributions of the random effects ai (i = 1, . . . , b), i.e.

p(ai|y) are then obtained as the average distributions of the ˜̀conditional

posterior distributions.

For the medicinal tablets data given in Table 3.1, the estimated marginal posterior

distributions of the random effects parameters ai (i = 1, . . . , 15) are depicted in Figure

3.6.4.
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3.7 Tolerance Intervals

As was mentioned in Chapters 1 and 2, tolerance intervals address the statistical prob-

lem of inference about the quantiles of a probability distribution assumed to ade-

quately describe a process (Wolfinger, 1998).

There is a profound record of more that 70 years in constructing tolerance intervals

( see for example Wilks (1941) and Wald (1942)). In - depth reviews are available by

Guttman (1970), Zacks (1971), Miller (1989) and Hahn and Meeker (1991). Even though

significant progress has been made on studies concerning tolerance intervals, most

of the previous work cannot be applied directly to the medicinal tablets data given

in Table 3.1, since the medicinal tablets data display variability between and within

batches of manufactured tablets (Wolfinger, 1998). The random effects model given

in equation 3.1.1 will therefore also be used to estimate the three commonly used

tolerance intervals proposed by Wolfinger (1998) and described in detail in Chapter 1.

The three initial questions posed by Wolfinger (1998) and given in Chapter 1 are an-

swered by these three types of tolerance intervals respectively. Cases that entail long

- run prediction classically make use of (α, δ) tolerance intervals, where inference is

made on the genuine quantiles of the assumed principal distribution. Given a sam-

ple of measurements, manufacturers are able to apply the (α, δ) tolerance interval

method to forecast future performance of produced products. Taking α = 0.90 and

δ = 0.95 for the medicinal tablets data, a lower (α, δ) tolerance limit called the Bayesian

“B - basis” interval, is obtained (Wolfinger, 1998). Wolfinger (1998) also stated that this

interval of interest can classically be interpreted as a lower 95% confidence limit on

the tenth percentile of the population of medicinal tablet measurements.

In comparison, α - expectation tolerance intervals have a tendency to be more con-

stricted, since these intervals focus on prediction of future observations. As an exam-

ple, Wolfinger (1998) explains that an aircraft manufacturer would be able to construct
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a 0.95 - expectation interval for the next component used by analyzing measurements

made on previous components.

Setting predetermined bounds and regarding the content therein, inverts the predic-

tion problem. These intervals refer to the fixed - in - advance tolerance intervals men-

tioned and can be applied in the evaluation of the amount of active ingredient in

manufactured medicinal tablets.

3.7.1 One - Sided (α, δ) Tolerance Intervals

A lower (α, δ) one - sided tolerance limit is a limit such that 100(α)% of a population of

an underlying random variable is greater than the lower (α, δ) one - sided tolerance

limit with 100(δ)% confidence (Jandrell and van der Merwe, 2007). As mentioned, α

therefore represents the content (the proportion to be contained by the interval) and

δ represents the confidence (reliability of the interval).

According to Wolfinger (1998), the lower (α, δ) one - sided tolerance limit for the ran-

dom effects model given in equation 3.1.1 represents the (1− δ)th sample quantile ob-

tained from the marginal posterior distribution of the (1−αth) quantile q of aN(µ, σ2
ε+σ2

a)

distribution (i.e. a quantile of a quantile), where q is given by

q = µ− zα(σ2
ε + σ2

a)
1
2 (3.7.1)

and zα denotes the αth quantile of the standard normal distribution.

Therefore, in order to construct the lower one - sided (α, δ) tolerance limit for the bal-

anced random effects model given in equation 3.1.1, the marginal posterior distribu-

tion of q, which represents the (1 − α)th quantile of the N(µ, σ2
ε + σ2

a) distribution, must

be estimated. Two methods, both utilizing Bayesian simulation, can be used to obtain

the mentioned marginal posterior density of q. Method 1 was proposed by Wolfinger

(1998).
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Method 1

i.) Simulate a pair of variance components (σ2
a, σ

2
ε) subject to the condition

that (σ2
ε + kσ2

a) > σ2
ε using the Bayesian simulation method described in sec-

tion 3.6.

ii.) If the condition stated in i.) is met, substitute the simulated pair of variance

components into equation 3.5.4 and simulate µ using equation 3.5.4.

iii.) Use the simulated variance components σ2
a and σ2

ε , as well as the simulated

target value µ, and calculate q = µ − zα(σ2
a + σ2

ε)
1
2 where zα represents the

αth quantile of a standard normal distribution.

iv.) Repeat steps i.) - iii.) for example ˜̀= 10000 times and draw the histogram of

the simulated q values. This histogram will represent the estimated marginal

posterior density of q, i.e. p(q|y).

To illustrate the use of method 1, the lower (α = 0.90, δ = 0.95) one - sided tolerance

limit was determined for the medicinal tablets data given in Table 3.1, with z0.9 = 1.282.

This resulting histogram representing the estimated marginal posterior distribution of the

(1− 0.9)th quantile of the N(µ, σ2
ε + σ2

a) distribution is depicted in Figure 3.7.1.

According to Wolfinger (1998) the histogram illustrated in Figure 3.7.1 portrays data on

the amount of active ingredient present in medicinal tablets manufactured in future

batches. The Bayesian, “B - basis”, lower (α = 0.90, δ = 0.95) one - sided tolerance

limit equal to 150.2588 mg is indicated by the vertical reference line and marks the 5th

percentile of the estimated marginal posterior distribution of q. Using method 1, this

Bayesian, “B - basis” lower tolerance limit which is equal to 150.2588 mg represents the

value of which 90% of unknown future amounts of active ingredient will be greater

than with probability 0.95.
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Figure 3.7.1: Histogram of the Estimated Marginal Posterior Distribution of the
(1− 0.9)th Quantile of N(µ, σ2

ε + σ2
a) for the Medicinal Tablets Data Given in Table 3.1.

Obtained using Method 1 as Proposed by Wolfinger (1998).

Lower (0.90, 0.95) One - Sided Tolerance Limit: 150.2588

Method 2

Since it is known that

µ|σ2
ε , σ

2
a,y ∼ N

(
y.. ,

σ2
ε + kσ2

a

bk

)
it follows that

q|σ2
ε , σ

2
a,y ∼ N

(
y.. − zα

(
σ2
ε + σ2

a

) 1
2 ,

σ2
ε + kσ2

a

bk

)
(3.7.2)

where zα represents the αth quantile of a standard normal distribution.

The estimated marginal posterior density of q, i.e. p(q|y) can therefore be simulated as

follows:

i.) Simulate a pair of variance components (σ2
a, σ

2
ε) using the Bayesian simula-

tion method described in section 3.6 and check that the condition (σ2
ε +

kσ2
a) > σ2

ε is being met.
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ii.) If the condition stated in i.) is met, substitute the simulated pair of variance

components into equation 3.7.2 and simulate a value q from this normal

distribution.

iii.) Repeat steps i.) and ii.) for example ˜̀= 10000 times and draw the histogram

representing the estimated marginal posterior distribution of q.

As an alternative to simulating q from equation 3.7.2 mentioned in step ii.), the normal

distribution given in equation 3.7.2 can also be drawn after substitution of the sim-

ulated variance components. Step i.) and the alternative to step ii.) can also be

repeated for example ˜̀= 10000 times. Using the Rao Blackwell argument described in

section 2.5, the estimated marginal posterior distribution of q can then be determined

by averaging the ˜̀conditional posterior distributions of q given in equation 3.7.2.

Using method 2, the lower (α = 0.90, δ = 0.95) one - sided tolerance limit was deter-

mined for the medicinal tablets data given in Table 3.1. Figure 3.7.2 represents the

histogram of the estimated marginal posterior distribution of q, the (1 − 0.9)th quantile

of the N(µ, σ2
ε + σ2

a) distribution, while the estimated marginal posterior distribution of q,

i.e. p(q|y) obtained using the alternative to step ii.), is depicted in Figure 3.7.3.

Similar to Figure 3.7.1, the histogram and estimated marginal posterior distribution dis-

played in Figures 3.7.2 and 3.7.3 respectively also represent data on the amount of

active ingredient present in medicinal tablets manufactured in future batches. Using

method 2, the Bayesian “B - basis” lower (α = 0.90, δ = 0.95) one - sided tolerance limit is

equal to 150.2583 mg. This lower (α = 0.90, δ = 0.95) one - sided tolerance limit also rep-

resents the 5th percentile of the estimated marginal posterior distribution of q, and, is

indicated by the vertical reference line depicted in Figure 3.7.2. The Bayesian “B - ba-

sis” lower (α = 0.90, δ = 0.95) one - sided tolerance limit obtained using method 2, is for

all practical purposes the same as the lower (α = 0.90, δ = 0.95) one - sided tolerance

limit obtained using method 1 as proposed by Wolfinger (1998). The interpretation is

also the same.
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Figure 3.7.2: Histogram of the Estimated Marginal Posterior Distribution of the
(1− 0.9)th Quantile of N(µ, σ2

ε + σ2
a) for the Medicinal Tablets Data Given in Table 3.1.

Obtained using Method 2.

Lower (0.90, 0.95) One - Sided Tolerance Limit: 150.2583

Although not given here, the upper (α, δ) one - sided tolerance interval can also be

determined easily for the balanced one - way random effects model given in equation

3.1.1. This is done by replacing equation 3.7.1 with

q = µ+ zα
(
σ2
ε + σ2

a

) 1
2

for method 1, and replacing equation 3.7.2 with

q|σ2
ε , σ

2
a,y ∼ N

(
y.. + zα

(
σ2
ε + σ2

a

) 1
2
,
σ2
ε + kσ2

a

bk

)

for method 2. Both methods 1 and 2 are then applied in the same way as already

discussed. It must be noted also that the interpretation for the upper (α, δ) one - sided

tolerance limit is slightly different. In this case, the upper (α, δ) one - sided tolerance

limit will represent the value of which 100(α)% of unknown future measurements will be

less than with probability δ.
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Figure 3.7.3: Estimated Marginal Posterior Distribution of the (1− 0.9)th Quantile of
N(µ, σ2

ε + σ2
a) for the Medicinal Tablets Data Given in Table 3.1. Obtained using the

Alternative to Step ii.) of Method 2.

Lower (0.90, 0.95) One - Sided Tolerance Limit: 150.2583

3.7.2 Two - Sided (α, δ) Tolerance Interval

Similar to the univariate normal model discussed in Chapter 2, two - sided (α, δ) tol-

erance intervals can also be constructed for the balanced one - way random ef-

fects model given in equation 3.1.1. Wolfinger (1998), as well as Krishnamoorthy and

Mathew (2009), mentioned that the Bayesian approach for the computation of these

two - sided (α, δ) tolerance intervals is not that straightforward, but can numerically be

obtained by performing Bayesian simulation.

For the construction of these two - sided (α, δ) tolerance intervals, Wolfinger (1998)

suggested to still begin by computing the two quantiles q` and qu given by
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1. q` = µ− z 1+α
2

(σ2
ε + σ2

a)
1
2 , and

2. qu = µ+ z 1+α
2

(σ2
ε + σ2

a)
1
2

where z 1+α
2

represents the (1+α
2 )th quantile of a standard normal distribution. These

(q`, qu) pairs form a sample from the bivariate posterior distribution of the
[

(1−α)
2

]th
and[

(1+α)
2

]th
quantiles (Wolfinger, 1998). According to Lee (1997), the Bayesian confidence

regions for these bivariate samples usually take the form of highest posterior density re-

gions, which according to Wolfinger (1998), are difficult to use in practice, since these

regions are typically two - dimensional ellipsoids. Wolfinger (1998) also mentioned that

the simple procedure of computing upper and lower limits separately on then just

combining them is not valid, since the two quantiles do not have a posterior correla-

tion equal to 1.

Wolfinger (1998) therefore suggested that a valid two - sided (α, δ) tolerance interval

be constructed as follows:

i.) Simulate the variance components σ2
ε and σ2

a using the Bayesian simulation

method explained in section 3.6, subject to the condition that (σ2
ε + kσ2

a) >

σ2
ε .

ii.) If the condition stated in i.) is met, substitute the simulated retained pair of

variance components into equation 3.5.4 to simulate a value for the target

value µ.

iii.) Using the retained simulated pair of variance components and the target

value µ, simulate values for q` = µ−z 1+α
2

(
σ2
ε + σ2

a

) 1
2 and qu = µ+z 1+α

2

(
σ2
ε + σ2

a

) 1
2 .

iv.) Repeat steps i.) to iii.) for example ˜̀= 10000 times and plot a scatterplot of

the q` and qu simulated values with q` plotted on the vertical axis.

v.) For the simulated q` and qu values, construct a reference line given by q` =

−qu + 2y.. and draw the reference line on the scatterplot. Two additional
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Figure 3.7.4: Constructing a Two - Sided (0.90, 0.95) Tolerance Interval for the
Medicinal Tablets Data Given in Table 3.1.

lines also have to be drawn, one parallel to each axis and intersecting on

the reference line.

vi.) Slide the intersection point along the reference line until 100(1 − δ)% of the

(q`, qu) pairs are contained in the half rectangle opening towards the lower

right portion of the graph. The coordinates of the resulting intersection point

then form a two - sided (α, δ) tolerance interval of the desired form.

In Figure 3.7.4, this procedure as proposed by Wolfinger (1998) is graphically illustrated

for a two - sided (α = 0.90, δ = 0.95) tolerance interval, determined for the medicinal

tablets data given in Table 3.1, where z 1+0.90
2

used for determining the q` and qu values,

was equal to 1.645.

For the medicinal tablets data given in Table 3.1, the two - sided (α = 0.90, δ = 0.95) tol-

erance interval can be interpreted as follows: If medicinal tablets are manufactured,
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90% of the amount of active ingredient present in the manufactured medicinal tablets

will have a weight between 150.2404 mg and 150.7743 mg with probability 0.95.

The one - and two - sided (α, δ) tolerance intervals covered thus far, apply to obser-

vations from new batches only. Although not covered here, Wolfinger (1998) also indi-

cated that if inference is required from the ith (i = 1, . . . , b) batch, µ can be replaced

with µ + ai as the normal mean when computing quantiles. Similarly, Wolfinger (1998)

suggested that σ2
ε + σ2

a should be replaced with either σ2
ε or σ2

a if inference is required

for hypothetical measurements involving just either the between - or within batch vari-

ance.

3.7.3 α - Expectation Tolerance Interval

It was mentioned in Chapter 2, that according to Wolfinger (1998), α - expectation

tolerance intervals focus on the prediction of one or a few future observations from

a process. Krishnamoorthy and Mathew (2009) therefore also call these α - expec-

tation tolerance intervals prediction intervals of future observations, and, mentioned

that these intervals are intervals such that their average content is α. Since these α

- expectation tolerance intervals focus on prediction of one or a few future observa-

tions from a process, Wolfinger (1998) indicated that these intervals will be narrower

than corresponding (α, δ) tolerance intervals.

To construct an α - expectation tolerance interval for the balanced one - way random

effects model given in equation 3.1.1, Wolfinger (1998) suggested that simulations be

conducted from an appropriate predictive distribution p(yf |y) where yf represents a

future observation from a new or unknown batch.

Two methods, both utilizing Bayesian simulation, can be used to construct these α -

expectation tolerance intervals. Method 1 was proposed by Wolfinger (1998).
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Method 1

i.) Simulate a pair of variance components (σ2
a, σ

2
ε) subject to the condition

that (σ2
ε + kσ2

a) > σ2
ε using the Bayesian simulation method described in sec-

tion 3.6.

ii.) If the condition stated in i.) is met, substitute the simulated retained pair of

variance components into the normal distribution given in equation 3.5.4

and simulate a value µ from this normal distribution.

iii.) Substitute the simulated variance components σ2
a and σ2

ε , as well as the sim-

ulated value for µ into the conditional posterior of yf |µ, σ2
a, σ

2
ε , which ac-

cording to Wolfinger (1998), is given by yf |µ, σ2
a, σ

2
ε ∼ N(µ, σ2

a + σ2
ε). Simulate

a future observation from a new or unknown batch yf from this normal dis-

tribution.

iv.) Repeat steps i.) to iii.) for example ˜̀= 10000 times and draw a histogram of

the simulated yf values. This histogram represents an estimate of the uncon-

ditional predictive distribution p(yf |y).

Using method 1 as proposed by Wolfinger (1998), the histogram of the estimated

unconditional predictive distribution was determined for the medicinal tablets data

given in Table 3.1 and is provided in Figure 3.7.5. Wolfinger (1998) used a smoothing

procedure to obtain the smooth curve also depicted in Figure 3.7.5. The two verti-

cal reference lines indicate the 2.5th and 97.5th percentiles which also represents the

estimated Bayesian α = 0.95 - expectation tolerance interval.

This 95% equal tail credibility interval representing the α = 0.95 - expectation tolerance

interval for the medicinal tablets data given in Table 3.1, is equal to [150.2179 , 150.7993]

and can easily be determined by ranking the simulated yf values in order of magni-

tude and then finding the 2.5th and 97.5th percentiles of the ranked simulated yf values.
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Figure 3.7.5: Histogram and Smooth Curve of the Estimated Unconditional Predictive
Distribution for the Medicinal Tablets Data Given in Table 3.1. Obtained using Method

1.

0.95 - Expectation Tolerance Interval: [150.2179 , 150.7993]

Method 2

It was mentioned earlier that in order to obtain the α - expectation tolerance interval,

the predictive density of a future observation from a new or unknown batch needs to

be determined.

According to Wolfinger (1998), the conditional predictive density is given by

yf |µ, σ2
ε , σ

2
a ∼ N(µ, σ2

ε + σ2
a) .

It was also given in equation 3.5.4 that the conditional posterior distribution of the tar-

get value µ is given by

µ|σ2
ε , σ

2
a,y ∼ N(y..,

σ2
ε+kσ2

a

bk
) .
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Now

E(yfi|µ, ai, σ2
a, σ

2
ε) = µ+ ai

and

V ar(yfi |µ, ai, σ2
a, σ

2
ε) = σ2

ε .

Since

E(ai) = 0 (ai = N(0, σ2
a))

it follows that

E(yf |µ, σ2
a, σ

2
ε) = µ+ E(ai) = µ

and

V ar(yf |µ, σ2
a, σ

2
ε) = Eai

[
V ar(yfi |µ, ai, σ2

ε , σ
2
a)

]
+ V arai

[
E(yfi |µ, ai, σ2

ε , σ
2
a)

]
= σ2

ε + σ2
a .

Also,

E(yf |σ2
a, σ

2
ε ,y) = E(µ|σ2

ε , σ
2
a,y) = y..

and

V ar(yf |σ2
a, σ

2
ε ,y) = Eµ

[
V ar(yfi |µ, σ2

ε , σ
2
a)

]
+ V arµ

[
E(yfi |µ, σ2

ε , σ
2
a)

]
= σ2

ε + σ2
a + (σ2

ε+kσ2
a)

bk
.

Therefore, the conditional predictive density of yf is given by

yf |σ2
a, σ

2
ε ,y ∼ N

(
y.. , σ

2
a + σ2

ε +
(σ2

ε + kσ2
a)

bk

)
. (3.7.3)

To simulate the estimated unconditional predictive distribution p(yf |y), and, hence de-

termine the α - expectation tolerance interval, the following steps should be followed.
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Figure 3.7.6: Estimated Unconditional Predictive Distribution p(yf |y) for the Medicinal
Tablets Data Given in Table 3.1. Obtained using Method 2.

0.95 - Expectation Tolerance Interval: [150.2174 , 150.7962]

i.) Simulate a pair of variance components (σ2
a, σ

2
ε) subject to the condition

that (σ2
ε + kσ2

a) > σ2
ε using the Bayesian simulation procedure discussed in

section 3.6.

ii.) If the condition stated in i.) is met, substitute the simulated retained pair

of variance components σ2
a and σ2

ε , as well as the sample mean y.. into

equation 3.7.3, simulate a value yf , and draw the normal distribution.

iii.) Repeat steps i.) and ii.) for example ˜̀= 10000 times and obtain the aver-

age density curve using the Rao Blackwell argument described in section

2.5. This average density curve represents an estimate of the unconditional

predictive distribution p(yf |y).

The estimated unconditional predictive distribution was determined for the medicinal

tablets data given in Table 3.1 using method 2, and is depicted in Figure 3.7.6.
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From both Figures 3.7.5 and 3.7.6 it can be seen that methods 1 and 2 are equivalent

methods for estimating the unconditional predictive distribution p(yf | y), since the two

figures are for all practical purposes the same. The 95% equal tail credibility interval was

also obtained for the estimated unconditional predictive density given in Figure 3.7.6.

The two vertical reference lines depicted in Figure 3.7.6 represents the 2.5th and 97.5th

percentiles or mentioned 95% equal tail credibility interval. This 95% equal tail credibility

interval is in fact the α = 0.95 - expectation tolerance interval and is obtained in a

similar way as the α = 0.95 - expectation tolerance interval obtained using method

1. Using method 2, the α = 0.95 - expectation tolerance interval was determined

for the medicinal tablets data given in Table 3.1, and is equal to [150.2174 , 150.7962].

This estimated α = 0.95 - expectation tolerance interval is for all practical purposes the

same as the interval estimated using method 1, and, can be interpreted as follows: The

process manufacturing the small batches of medicinal tablets will be in control if 95%

or more future medicinal tablets manufactured have an amount of active ingredient

weighing between 150.2174 mg and 150.7962 mg.

Since Wolfinger (1998) mentioned that the α = 0.95 - expectation tolerance interval

focus on prediction of one or a few future observations from a process, and as a result,

tend to be narrower than the corresponding (α, δ) tolerance intervals, the (α = 0.95, δ =

0.95) two - sided tolerance interval, (α = 0.95, δ = 0.95) one - sided lower tolerance limit

and the lower one - sided α = 0.95 - expectation tolerance limit were determined

for the medicinal tablets data given in Table 3.1. These results are for comparative

purposes given in Table 3.2.

Table 3.2: Comparative Results Between (0.95, 0.95) Tolerance Intervals and 0.95 -

Expectation Tolerance Intervals for the Medicinal Tablets Data Given in Table 3.1.

(α = 0.95, δ = 0.95) α = 0.95

Tolerance Intervals Expectation Tolerance Intervals

Two Sided 150.1873− 150.8291 150.2174− 150.7962

One - Sided (Lower limit) 150.2585 150.2670
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From Table 3.2 it is clear that the one - sided lower α = 0.95 - expectation tolerance

limit is larger than the corresponding one - sided (α = 0.95, δ = 0.95) lower tolerance

limit. It can also be seen that the two - sided α = 0.95 - expectation tolerance interval

is narrower than the corresponding (α = 0.95, δ = 0.95) two - sided tolerance interval.

It is therefore evident that α - expectation tolerance intervals are narrower than the

corresponding (α, δ) tolerance intervals.

Although not given here, Wolfinger (1998) also indicated that similar to the (α, δ) toler-

ance intervals, different predictive densities can also be analyzed in the same way by

simply adjusting the expressions used for the mean and variance parameters during

the calculations.

3.7.4 Fixed - in - Advance Tolerance Intervals

According to Wolfinger (1998), fixed - in - advance tolerance intervals invert the pre-

diction problem by considering the content of predetermined bounds. These fixed -

in - advance tolerance intervals therefore answer research question 3 as proposed by

Wolfinger (1998) and given in Chapter 1.

To determine the content of a fixed - in - advance tolerance interval using the Bayesian

approach, the posterior density of the content has to be determined (Wolfinger, 1998).

If a lower fixed - in - advance limit, s, is specified for a sample with data assumed to

arise from the balanced one - way random effects model given in equation 3.1.1,

the content c of the interval [s,∞] for each observation in the sample of simulated

parameters (µ, σ2
ε , σ

2
a) is determined by

c = 1− Φ

[
s−µ

(σ2
a+σ2

ε)
1
2

]
.

Since a lower fixed - in - advance limit s is selected, the main focus will be on the

content of the interval [−∞, s], and thus, the content less than the specified lower
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specification limit s. The content of the interval [−∞, s] can therefore be determined

by calculating

c∗ = Φ

[
s−µ

(σ2
a+σ2

ε)
1
2

]

where Φ [·] represents a standard normal cumulative distribution function (Wolfinger,

1998). As just mentioned, remember, the content c∗ of the interval [−∞, s] represents

the fraction of process measurements that lie below a preselected fixed - in - advance

lower specification limit s. If the content c∗ is therefore found for each observation in

the sample of simulated parameters, these calculated c∗ values form a sample from

the posterior density of the content below the preselected specification limit s (Wolfin-

ger, 1998).

To determine a fixed - in - advance tolerance interval for the content of the interval

[−∞, s], the following steps can be followed:

i.) Simulate a pair of variance components (σ2
a and σ2

ε ) using the Bayesian sim-

ulation method discussed in section 3.6. Retain only those pairs of variance

components that meet the condition stating that (σ2
ε + kσ2

a) > σ2
ε .

ii.) If the condition stated in i.) is met, substitute the simulated retained pair of

variance components into the normal distribution given in equation 3.5.4

and simulate a value µ from this normal distribution.

iii.) Substitute the simulated variance components σ2
a and σ2

ε , as well as the sim-

ulated value for µ, into the formula for the content of the interval [−∞, s]

given by c∗ = Φ
[

s−µ
(σ2
a+σ2

ε)
1
2

]
=
´ s−µ

(σ2
a+σ2

ε)
1
2

−∞
1√
2π
e−

1
2
z2
dz .

iv.) Repeat the simulation process explained in steps i.) to iii.) for example˜̀ = 10000 times and draw a histogram representing the estimated poste-

rior distribution of the content c∗ below the preselected specification limit

s.



CHAPTER 3. THE ONE - WAY RANDOM EFFECTS MODEL 180

Figure 3.7.7: Histogram of the Estimated Posterior Distribution of the Content of the
Interval [−∞, 150.30 mg], i.e. the Fraction of Medicinal Tablets Containing an Amount

of Active Ingredient Less than the Preselected Fixed - in - Advance Lower
Specification Limit s = 150.30 mg for the Data Given in Table 3.1.

95% Fixed - in - Advance Tolerance Interval: [0.0262 , 0.1754]

A 100(α)% equal tail credibility interval can also easily be determined for the content of

the interval [−∞, s] by ranking the sample of c∗ values in order of magnitude and then

finding the 100(1−α
2 )th and 100(1+α

2 )th percentiles of the ranked simulated c∗ values.

This 100(α)% equal tail credibility interval represents the fixed - in - advance tolerance

interval of the content below a preselected specification limit s.

For illustrative purposes, a fixed - in - advance lower specification limit s = 150.30 mg

was selected for the medicinal tablets data given in Table 3.1. The selected lower

specification limit s = 150.30 mg can for example indicate the minimum amount of ac-

tive ingredient that has to be taken per dose to render the medication effective. The

histogram of the sample of ˜̀= 10000 simulated c∗ values from the posterior distribution

of the content of the interval [−∞, s] obtained using ordinary Monte Carlo simulation,

is depicted in Figure 3.7.7.
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From Figure 3.7.7 it can be seen that the posterior content of the interval [−∞, s] is

positively skewed. Also, the 95% equal tail credibility interval or fixed - in - advance

tolerance interval of the posterior content of the interval [−∞, s = 150.30] is equal to

[0.0262 , 0.1754]. This means that between 2.62% and 17.54% of medicinal tablets man-

ufactured in future batches, will contain an amount of active ingredient less than the

specified preselected limit s = 150.30 mg. In other words, of future medicinal tablets

manufactured in small batches, between 2.62% and 17.54% of the tablets will be inef-

fective as treatment.

Remember, this preselected lower specification limit s = 150.30 mg was selected for

illustrative purposes only.



Chapter 4

The Balanced One - Way Random Effects

Model Continued

In this chapter, the Bayesian simulation method for determining tolerance intervals

originally proposed by Wolfinger (1998) and discussed in Chapter 3, will be extended

to include Bayesian tolerance intervals for averages of observations from new or un-

known batches in the case of the balanced one - way random effects model. It

will also be shown, that although the non - informative Jeffreys’ prior used in Chap-

ter 3 is not a reference - nor probability matching prior for the αth quantile q of the

N(µ, σ2
ε + σ2

a) distribution, it is however both a reference - and probability matching

prior for the αth quantile q̃ of the distribution of averages of observations from new or

unknown batches. An extensive simulation study using two methods will follow to in-

vestigate what kind of frequentist properties the Bayesian interval for q̃ have under the

mentioned probability matching prior. For both these simulation methods, the mean

and variance of the posterior distribution of q̃ will also be derived theoretically. In addi-

tion, it will also be shown that a proposed prior distribution for the content of the fixed

- in - advance tolerance interval, is a probability matching prior. For this proposed

probability matching prior, the posterior distribution of the content and subsequent

fixed - in - advance tolerance interval will be determined using the weighted Monte

Carlo method. The Bayesian simulation method for obtaining tolerance intervals for

182
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averages of observation from new or unknown batches will be illustrated using the

simulated medicinal tablets data presented in Chapter 3.

Parts of this chapter have been published as a technical report. For more details, see

van der Merwe and Hugo (2008).

4.1 Introduction

In the previous chapter, a simulation based approach originally proposed by Wolfinger

(1998), was presented for determining Bayesian tolerance intervals in the case of a

balanced one - way random effects model. In this chapter, the Bayesian simulation

method will be extended to include tolerance intervals for averages of observations

from new or unknown batches or groups. A reference prior and a probability matching

prior will also be derived for the αth quantile, while a probability matching prior will be

derived for the content of the interval [s,∞].

To illustrate how and when these tolerance intervals will be used, consider a factory

which manufactures medicinal tablets in very small batches. As mentioned in Chapter

3, a small batch in this instance is likely to be a weekly or monthly intake of tablets for an

individual patient. The interest is in whether the patient gets on average the required

dosage of the active ingredient from the batch in the specified time, given that each

patient must get an average dosage of at least s. The question therefore is whether

the process is capable of producing to this specification.
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4.2 Non - Informative Priors in the Case of Averages of Observations from

New or Unknown Batches for the Balanced One - Way Random Effects

Model

As before, the one - way random effects model can be described as follows:

yij = µ+ ai + εij

where (i = 1, . . . , b and j = 1, . . . , k). Also, yij , µ, ai (i = 1, . . . , b) and εij are defined

as given in section 3.3, and the ai’s and εij’s are mutually independent normally dis-

tributed random variables with E(ai) = E(εij) = 0 and variances σ2
a and σ2

ε respectively.

It can easily be shown that the predictive density of the average of k future observa-

tions yf1, yf2, . . . , yfk from a new or unknown batch, given the variance components, is

normally distributed with mean

E
(
yf.|µ, σ2

ε , σ
2
a

)
= µ

and variance

V ar
(
yf.|µ, σ2

ε , σ
2
a

)
= σ2

ε+kσ2
a

k

where yf. = 1
k

k∑
j=1

yfj .

In what follows, non - informative priors for

q̃ = µ+ zα

√
σ2
ε + kσ2

a

k
(4.2.1)

will be considered where zα denotes the 100(α)th percentile of a standard normal dis-

tribution. Equation 4.2.1 denotes the αth quantile of the distribution for the average of

future data from new or unknown batches.

To obtain the posterior distribution of q̃, the non - informative prior distribution given by

p
(
µ, σ2

ε , σ
2
a

)
∝ σ−2

ε

(
σ2
ε + kσ2

a

)−1 (4.2.2)



CHAPTER 4. THE BALANCED ONE - WAY RANDOM EFFECTS MODEL CONTINUED 185

will be used. In the next section (Theorem 4.3.1) it will be proved that equation 4.2.2 is

a probability matching prior as well as a reference prior for the parameter q̃.

Wolfinger (1998) also used this non - informative prior to obtain posterior distributions

of variance components and tolerance intervals for individual observations. Equation

4.2.2 is however not a probability matching prior or a reference prior for the parameter

q = µ+ zα
√
σ2
ε + σ2

a

which represents the αth quantile of the distribution for a single (individual) observation

from a new or unknown batch.

4.3 Reference and Probability Matching Priors

It will now be proved that the non - informative prior distribution given in equation 4.2.2

is a probability matching prior as well as a reference prior for the αth quantile q̃ given

in equation 4.2.1.

Theorem 4.3.1

For the balanced one - way random effects model given in equation 3.1.1, the prior

distribution p
(
µ, σ2

ε , σ
2
a

)
∝ σ−2

ε

(
σ2
ε + kσ2

a

)−1 is a probability matching prior as well as a

reference prior for the αth quantile given by

q̃ = µ+ zα

√
σ2
ε+kσ2

a

k

of the distribution of the average of future data from new or unknown batches.

Proof

The proof of Theorem 4.3.1 is given in Appendix B.
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4.4 Calculation of the Tabulated Values (Coverage, Interval Length and

Standard Deviation)

The question also arises as to what kind of frequentist coverage probabilities the Bayesian

Interval for q̃ under the non - informative prior given in equation 4.2.2 will have. Exten-

sive numerical computations will be conducted in order to evaluate the procedure.

The layout used will be similar to that of Krishnamoorthy and Mathew (2004) and Chen

and Harris (2006). Data will be generated from the balanced one - way normal ran-

dom effects model. Each design will be specified by the number of groups (batches)

(b), the sample size per group (k), as well as the intraclass correlation coefficient

ρ = σ2
a

σ2
a+σ2

ε
.

To simplify the designs, it was decided to use µ = 0 and σ2
a + σ2

ε = 1.

Recall from Theorem 3.5.2 that, under the non - informative prior distribution given in

equation 4.2.2, the joint posterior distribution of the variance components is given by

p
(
σ2
a, σ

2
ε |y
)
∝
(
σ2
ε

)− 1
2

(ν1+2) (
σ2
ε + kσ2

a

)− 1
2

(ν1+2)
exp

{
−1

2

[
ν2m2

σ2
ε + kσ2

a

+
ν1m1

σ2
ε

]}
(4.4.1)

where ν1, ν2, ν1m1, ν2m2, yi. and y.. are defined as given in equation 3.5.3 and

y = [y11, y12, . . . , y1k, y21, . . . , ybk]
′
.

Also recall from Theorem 3.5.1 that the target value µ, given the variance components,

follows a normal distribution given by

µ|σ2
a, σ

2
ε ,y ∼ N

(
y..,

σ2
ε + kσ2

a

kb

)
. (4.4.2)

Two simulation methods can now be used to obtain the 95% equal tail credibility inter-

val of the parameter q̃.
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Method 1

i.) Since the variance component parameter in q̃ given in equation 4.2.1 is

of the form σ2
ε + kσ2

a, it follows from section 3.6, that given the data, σ2
ε +

kσ2
a = ν2m2

δ where δ ∼ χ2
ν2

. This therefore implies that σ2
ε + kσ2

a can easily be

simulated using the mentioned χ2
ν2

distribution.1

ii.) Given the simulated function of variance components, the target value µ

can be simulated easily using equation 4.4.2.

iii.) Substitute the simulated function of variance components (σ2
ε + kσ2

a) as well

as the simulated target value µ into equation 4.2.1 and obtain q̃.

Method 2

From equation 4.4.1 it is clear that

i.) σ2
ε can be simulated using a χ2

ν1
distribution since σ2

ε = ν1m1
τ where τ ∼ χ2

ν1
.

This was described in more detail in section 3.6.

ii.) Simulate σ2
a by first simulating (σ2

ε + kσ2
a) using step i.) explained in method 1.

iii.) Calculate σ2
a = (σ2

ε+kσ2
a)−σ2

ε
k . The two simulated variance components σ2

ε and

σ2
a are only retained if (σ2

ε + kσ2
a) > σ2

ε .

iv.) Substitute the retained simulated variance components into equation 4.4.2

and simulate a value µ.

v.) Substitute the simulated retained variance components σ2
ε and σ2

a, as well

as the simulated target value µ, into equation 4.2.1 and obtain q̃.

1Since we are simulating a function of the two variance components (σ2
ε + kσ2

a), it is not necessary to check the
condition stating that (σ2

ε + kσ2
a) > σ2

ε mentioned in Chapter 3, section 3.6.
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For each design, a data set consisting of 1000 entries will be generated. For each

data set with each different intraclass correlation ρ, 1000 Bayesian simulations will be

conducted to obtain the posterior distribution of q̃ and the estimated 95% credibility

interval. The estimated coverage rate will be the proportion of the 1000 credibility

intervals that contain the true parameter q̃ obtained using µ = 0 and ρ given for each

design. For the simulation study, since it is considered that σ2
a + σ2

ε = 1, it follows that

the intraclass correlation coefficient ρ = σ2
a, and, σ2

ε = 1 − σ2
a. It therefore follows that

the true population parameter q̃ which will be used, be equal to q̃ = zα

√
(1−ρ)+kρ

k since

µ = 0. It is expected however that method 2 will produce conservative results for low

values of ρ. This particularly means that it is expected that method 2 will produce wider

95% equal tail credibility intervals for q̃ than that of method 1, resulting in coverage

probabilities above the nominal confidence of 0.95. One possible reason for this stems

from the fact that for method 2, the condition stating that (σ2
ε + kσ2

a) > σ2
ε has to be

met. If this condition is not met, the particular pair of variance components σ2
a and σ2

ε

is disregarded, resulting in a possible artificial inflation of the posterior variance of q̃.

The simulation results for the two methods are presented in Table 4.1 for the 90th per-

centile (i.e. zα = 1.282) and for a nominal confidence level of 0.95. The upper tabulated

value represents the estimated coverage rate, while the two lower values represent

the average length and standard deviation of the credibility intervals.
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Table 4.1: Coverage Rate of the 95% Credibility Intervals for q̃ using the Two Described

Methods and Different Values of ρ, b and k.

(b, k) ρ Method1 Method 2 (b, k) ρ Method 1 Method 2

(3, 2) 0 0.9560 1.000 (7, 2) 0 0.9330 0.9920

4.9512 7.5516 1.8345 2.1936

2.9817 4.1246 0.5743 0.4654

0.1 0.9460 0.9980 0.1 0.9520 0.9960

5.2808 7.2942 1.9241 2.2070

4.9360 4.0865 0.5576 0.4708

0.25 0.9560 0.9970 0.25 0.9470 0.9920

5.3993 7.2430 2.0170 2.2512

3.3787 3.5971 0.5970 0.5294

0.5 0.9500 0.9940 0.5 0.9430 0.9870

6.2127 7.1352 2.2446 2.3554

4.0415 3.5635 0.6671 0.5942

0.75 0.9510 0.9920 0.75 0.9570 0.9620

6.3714 7.2404 2.4854 2.4568

3.9205 3.8395 0.7422 0.7079

0.85 0.9510 0.9820 0.85 0.9610 0.9570

6.7922 7.0404 2.5253 2.5611

3.9560 3.9252 0.7491 0.7300

0.95 0.9600 0.9590 0.95 0.9500 0.9500

6.8116 7.0063 2.5655 2.5425

3.9474 4.6171 0.7699 0.7563
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Table 4.1: Continued

(b, k) ρ Method 1 Method 2 (b, k) ρ Method 1 Method 2

(10, 2) 0 0.9390 0.9950 (3, 4) 0 0.9600 0.9990

1.4270 1.6515 3.5400 5.0689

0.3578 0.3012 2.1935 1.8342

0.1 0.9490 0.9910 0.1 0.9480 0.9990

1.5268 1.6911 4.0333 5.1480

0.3675 0.3287 2.6066 1.7524

0.25 0.9430 0.9850 0.25 0.9510 0.9990

1.6051 1.7286 4.4768 5.3855

0.3949 0.3530 2.4970 2.2549

0.5 0.9500 0.9570 0.5 0.9480 0.9970

1.8022 1.8137 5.4321 5.8633

0.4273 0.4010 3.0408 3.1380

0.75 0.9430 0.9480 0.75 0.9650 0.9920

1.9088 1.9021 6.4419 7.2404

0.4823 0.4631 3.6868 3.8395

0.85 0.9440 0.9410 0.85 0.9420 0.9820

1.9708 1.9487 6.5257 7.0404

0.4885 0.4699 3.7835 3.9252

0.95 0.9500 0.9460 0.95 0.9600 0.9530

2.0415 2.0017 6.8116 6.9577

0.5110 0.5043 3.9474 5.13
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Table 4.1: Continued

(b, k) ρ Method 1 Method 2 (b, k) ρ Method 1 Method 2

(6, 4) 0 0.9440 0.9990 (4, 5) 0 0.9460 0.9990

1.4615 1.7739 1.9690 2.5668

0.5096 0.3559 0.8921 0.6087

0.1 0.9470 0.9980 0.1 0.9430 0.9980

1.6422 1.8684 2.2805 2.7247

0.5358 0.4035 1.0199 0.7596

0.25 0.9410 0.9890 0.25 0.9570 0.9950

1.8996 2.0388 2.7712 3.0131

0.6377 0.5720 1.2115 1.0652

0.5 0.9390 0.9690 0.5 0.9510 0.9850

2.2494 2.3492 3.3704 3.5433

0.7513 0.7241 1.4375 1.3886

0.75 0.9530 0.9620 0.75 0.9530 0.9580

2.6595 2.6400 3.9224 3.9334

0.9053 0.8514 1.6332 1.7647

0.85 0.9440 0.9460 0.85 0.9540 0.9530

2.7523 2.7207 3.9953 4.0710

0.9193 0.9247 1.8138 1.7110

0.95 0.9450 0.9650 0.95 0.9600 0.9430

2.8461 2.9055 4.2436 4.2687

0.9785 0.9357 1.7574 1.8578
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Table 4.1: Continued

(b, k) ρ Method 1 Method 2 (b, k) ρ Method 1 Method 2

(5, 6) 0 0.9480 1.0000 (3, 10) 0 0.9520 1.0000

1.4116 1.7451 2.2078 3.1410

0.5566 0.3435 1.3741 0.9813

0.1 0.9430 0.9960 0.1 0.9490 1.0000

1.6980 1.8980 3.0747 3.5913

0.6650 0.4983 1.7360 1.5233

0.25 0.9420 0.9810 0.25 0.9300 1.0000

2.1139 2.1739 4.0571 4.4777

0.7846 0.6887 5.3558 7.6003

0.5 0.9340 0.9670 0.5 0.9490 0.9870

2.6072 2.6372 5.0036 5.2867

1.0219 0.8954 2.9980 3.1010

0.75 0.9510 0.9480 0.75 0.9480 0.9670

3.0011 3.0279 3.0180 6.1292

1.0851 1.0989 3.5878 6.4635

0.85 0.9470 0.9530 0.85 0.9440 0.9580

3.2044 3.2437 6.3749 6.5916

1.1928 1.1577 4.1076 3.7769

0.95 0.9470 0.9380 0.95 0.9510 0.9440

3.3422 3.3378 6.9328 6.7823

1.2384 1.1952 3.9474 4.0250
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Table 4.1: Continued

(b, k) ρ Method 1 Method 2 (b, k) ρ Method 1 Method 2

(10, 10) 0 0.9480 0.9950 (15, 10) 0 0.9450 0.9990

0.6583 0.7268 0.5105 0.5571

0.1590 0.1069 0.1001 0.0765

0.1 0.9550 0.9840 0.1 0.9460 0.9670

0.8846 0.9120 0.7025 0.7140

0.2094 0.1969 0.1428 0.1308

0.25 0.9400 0.9550 0.25 0.9510 0.9630

1.1709 1.1747 0.9250 0.9232

0.2871 0.2853 0.1781 0.1811

0.5 0.9420 0.9510 0.5 0.9410 0.9460

1.5250 1.5259 1.2045 1.1262

0.3813 0.3716 0.2365 0.2460

0.75 0.9500 0.9460 0.75 0.9510 0.9530

1.7995 1.8091 1.4288 1.4445

0.4335 0.4652 0.2952 0.2782

0.85 0.9550 0.9550 0.85 0.9470 0.9500

1.9214 1.8994 1.5071 1.5216

0.4788 0.4712 0.2964 0.3100

0.95 0.9500 0.9510 0.95 0.9520 0.9390

1.9886 2.0223 1.5707 1.5834

0.5099 0.4900 0.3038 0.3150
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Table 4.1: Continued

(b, k) ρ Method 1 Method 2 (b, k) ρ Method 1 Method 2

(35, 25) 0 0.9440 0.9910 (3, 200) 0 0.9530 1.0000

0.2100 0.2100 0.4901 0.7007

0.0288 0.0235 0.3095 0.2214

0.1 0.9400 0.9370 0.1 0.9370 0.9390

0.3877 0.3839 2.3148 2.2731

0.0527 0.0518 1.4280 1.3512

0.25 0.9630 0.9450 0.25 0.9370 0.9490

0.5539 0.5554 3.4424 3.5190

0.0741 0.0775 2.0432 2.5949

0.5 0.9450 0.9450 0.5 0.9420 0.9430

0.7551 0.7546 4.9074 4.9722

0.1049 0.0998 3.1825 3.2106

0.75 0.9450 0.9490 0.75 0.9490 0.9530

0.9139 0.9146 5.8988 6.1695

0.1210 0.1208 3.4861 3.9086

0.85 0.9460 0.9500 0.85 0.9440 0.9450

0.9721 0.9683 6.3450 6.5919

0.1289 0.1291 3.8942 4.8099

0.95 0.9450 0.9500 0.95 0.9430 0.9510

1.0191 1.0171 6.7827 6.7776

0.1348 0.1360 4.6001 4.8793
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Table 4.1: Continued

(b, k) ρ Method 1 Method 2

(10, 200) 0 0.9580 0.9970

0.1446 0.1639

0.0356 0.0230

0.1 0.9500 0.9610

0.6676 0.6625

0.1624 0.1573

0.25 0.9440 0.9520

1.0295 1.0477

0.2610 0.2520

0.5 0.9610 0.9470

1.4495 1.4437

0.3465 0.3479

0.75 0.9500 0.9590

1.7727 1.7639

0.4157 0.4461

0.85 0.9390 0.9420

1.8588 1.8786

0.4785 0.4817

0.95 0.9540 0.9460

1.9746 2.0076

0.4989 0.4917

The simulation results substantiate what was expected. The second method is con-

servative for low values of ρ, with large average interval lenghts, particularly for small

values of b and k. It is clear that the coverage of the first method is near the nomi-

nal confidence of 0.95 uniformly across the range of selected values for ρ, b and k .

Note that the coverage probabilities, interval widths and standard deviations for the

two methods are close to each other for large values of ρ. In the next section more

theoretical results of the distribution of q̃ will be derived.
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4.5 Theoretical Results for the Posterior Distribution of q̃

It was stated in Chapter 2 that Wolfinger (1998) mentioned that the analytical deriva-

tions of exact unconditional posterior densities for the unknown parameters µ, σ2
a, σ

2
ε ,

ai (i = 1, . . . , b) and exact posterior densities of quantiles to construct tolerance inter-

vals for the balanced one - way random effects model appeared to be formidable.

The same can be said about the analytical derivations of the quantiles in the case of

averages of observations from new or unknown batches for the random effects model

given in equation 3.1.1.

It is however possible to obtain exact moments for the quantiles in the case of aver-

ages of observations from new or unknown batches. In what follows, the exact first

moment about zero and second central moment, i.e. the mean and variance, of

the posterior distribution of q̃ = µ + zα

√
σ2
ε+kσ2

a
k will be determined analytically for both

methods 1 and 2.

Theorem 4.5.1

i.) The mean and variance of the posterior distribution of q̃ = µ+ zα

√
σ2
ε+kσ2

a

k
in

the case of method 1, is

E(q̃|y) = y.. + zα
1

k
1
2

(ν2m2)
1
2

Γ( ν2−1
2 )

√
2Γ( ν22 )

and

V ar(q̃|y) = ν2m2

bk(ν2−2)
+ z2

αν2m2

k

{
1

ν2−2
− Γ2( ν2−1

2 )
2Γ2( ν22 )

}
.

ii.) The mean and the variance for the posterior distribution of q̃ = µ+zα

√
σ2
ε+kσ2

a

k

in the case of method 2 is

E(q̃|y) = y.. + zα
(
ν2m2

2k

) 1
2

Γ( ν2−1
2 )

√
2Γ( ν22 )

Pr
{
Fν2−1,ν1<

ν2
ν2−1

m2
m1

}
Pr
{
Fν2,ν1<

m2
m1

} and

V ar(q̃|y) = ν2m2

bk(ν2−2)

Pr
{
Fν2−1,ν1<

ν2
ν2−1

m2
m1

}
Pr
{
Fν2,ν1<

m2
m1

}

+ z2
αν2m2

k

{
1

ν2−2
−

Pr
{
Fν2−1,ν1<

ν2
ν2−1

m2
m1

}
2Γ2( ν22 )

− [Γ( ν2−1
2 )]

2

[Γ( ν22 )]
2

Pr
{
Fν2−1,ν1<

ν2
ν2−1

m2
m1

}
Pr
{
Fν2,ν1<

m2
m1

}
}
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where Fν2,ν1 represents an F - distribution with ν2 and ν1 degrees of freedom.

Pr stands for probability.

Proof

The proof of Theorem 4.5.1 is given in Appendix B.

The third and fourth central moments of q̃ can also be derived although it is not given

here. By applying these moments to Pearson curves or Cornish - Fisher expansions,

approximations of the exact posterior distribution of q̃ can be obtained. In section

4.6, the two Bayesian simulation methods for obtaining posterior distributions of q̃ =

µ+ zα

√
σ2
ε+kσ2

a
k will be applied to a real problem.

4.6 An Example

The data used for the example is the same data set used to illustrate the methods

proposed by Wolfinger (1998) for determining Bayesian tolerance intervals for the bal-

anced one - way random effects model discussed in Chapter 3. The data was origi-

nally presented in Table 3.1. Recall that the data are assumed to arise from a normal

distribution with unknown parameters, but it has more structure than a simple random

sample because it is clustered in fifteen batches and each batch contains ten tablets.

As mentioned, the random effects model given in equation 3.1.1 will also be used and

is given by

yij = µ+ ai + εij

i = 1, . . . , b and j = 1, . . . , k

where yij , µ, ai and εij are defined as in Chapter 3.
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4.6.1 One - Sided (α, δ) Tolerance Intervals

It was already mentioned in section 4.2 that the αth quantile of the average of obser-

vations from new or unknown batches in the case of the balanced one - way random

effects model, is given by

q̃ = µ+ zα

√
(σ2

ε + kσ2
a)

k

where zα represents the 100(α)th percentile of a standard normal distribution (see equa-

tion 4.2.1.

It was also mentioned in section 4.4 that the q̃ values can be simulated using two

Bayesian simulation procedures. Method 1, directly simulated (σ2
ε +kσ2

a), while method

2, simulated first σ2
ε and then σ2

a. For the second method, the condition that (σ2
ε+kσ2

a) >

σ2
ε had to be met in order to retain the two simulated variance components. If this con-

dition was not met, the two simulated variance components were disregarded and a

new pair simulated under the same condition. For both methods the simulation pro-

cedure was repeated for example ˜̀= 10000 times. Also, for both methods, histograms

depicting the estimated marginal posterior distributions p(q̃|y), can be produced. Sim-

ilarly, a one - sided lower (α, δ) tolerance interval can also be constructed using both

methods.

In order to construct a lower one - sided (α, δ) tolerance limit, Wolfinger (1998) sug-

gested that the marginal posterior distribution of q̃, which represents the (1−α)th quan-

tile of the distribution of averages of observations from new or unknown batches, be

estimated. For the construction of the lower one - sided (α, δ) tolerance limit, q̃ is given

by

q̃ = µ− zα

√
(σ2

ε + kσ2
a)

k

where zα represents the 100(α)th percentile of a standard normal distribution. Methods

1 and 2 can be applied in the following way:
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i.) For method 1, simulate (σ2
ε + kσ2

a) using the Bayesian simulation procedure

described in method 1. For method 2, simulate a pair of variance compo-

nents σ2
ε and σ2

ε using the Bayesian simulation procedure discussed in section

3.6 of Chapter 3, ensuring that the condition stating that (σ2
ε + kσ2

a) > σ2
ε , is

met.

ii.) Given either (σ2
ε + kσ2

a) as simulated using method 1 or the pair of vari-

ance components σ2
ε and σ2

a simulated using method 2, the conditional

posterior distribution of q̃ can be simulated from a normal distribution with

mean equals to E(q̃|σ2
a, σ

2
ε ,y) = y.. − zα

√
(σ2
ε+kσ2

a)
k and variance given by

V ar(q̃|σ2
a, σ

2
ε ,y) = (σ2

ε+kσ2
a)

bk .

iii.) Substitute the variance components and sample mean of the data, y.., into

the normal distribution given in step ii.) above, and, draw the normal distri-

bution.

iv.) Repeat steps i.) to iii.) for example ˜̀= 10000 times, each time drawing the

normal distribution.

v.) Using the Rao Blackwell argument explained in section 2.5, the estimated

marginal posterior distribution of q̃, i.e. p(q̃|y) can be obtained by averaging

the p(q̃|σ2
a, σ

2
ε ,y) distributions over the ˜̀ repetitions.

The two estimated marginal posterior distributions of q̃ = µ − z0.95

√
σ2
ε+kσ2

a
k obtained

using methods 1 and 2, are displayed in Figures 4.6.1 and 4.6.2 respectively. For both

figures z0.95 = 1.645 and ˜̀= 10000 simulations were run.

Also, for both methods, the one - sided (α = 0.95, δ = 0.95) lower tolerance limits can be

determined easily by ranking the simulated q̃ values in order of magnitude, and finding

the 100(1−0.95)th percentile of the ranked simulated q̃ values. For both methods 1 and

2, the lower one - sided (α = 0.95, δ = 0.95) tolerance limits were equal to 150.3931 mg.
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Figure 4.6.1: Estimated Marginal Posterior Distribution of the (1− 0.95)th Quantile q̃ for
the Distribution of the Average of Observations from New or Unknown Batches for the

Medicinal Tablets Data Given in Table 3.1. Method 1 was used.

Lower One - Sided (0.95, 0.95) Tolerance Limit: 150.3931

The one - sided (α = 0.95, δ = 0.95) lower tolerance limits for both methods equal to

150.3931 mg represents the milligrams of active ingredient of which 95% of unknown fu-

ture averages of manufactured batches of tablets will be greater than with probability

0.95.

From both Figures 4.6.1 and 4.6.2, as well as the two one - sided (α = 0.95, δ = 0.95)

lower tolerance limits obtained, it is clear that there is not much to choose between

the two methods for obtaining the posterior distribution of

q̃ = µ− z0.95

√
σ2
ε+kσ2

a

k
.

This can be explained using the results obtained from the simulation study conducted

in section 4.4 and given in Table 4.1. For the medicinal tablets data given in Table 3.1,
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Figure 4.6.2: Estimated Marginal Posterior Distribution of the (1− 0.95)th Quantile q̃ for
the Distribution of the Average of Observations from New or Unknown Batches for the

Medicinal Tablets Data Given in Table 3.1. Method 2 was used.

Lower One - Sided (0.95, 0.95) Tolerance Limit: 150.3931

the estimated intraclass correlation coefficient is equal to

ρ̂ =
σ̂2
a

σ̂2
a + σ̂2

ε

= 0.5049

which is quite large. The above results were thus expected.

4.6.2 Two - sided (α, δ) Tolerance Interval

In order to construct a two - sided (α, δ) tolerance interval for the average of observa-

tions from new or unknown batches in the case of the balanced one - way random

effects model, the two quantiles q̃` and q̃u need to be determined. The two quantiles

q̃` and q̃u are determined by calculating
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1. q̃u = µ+ z 1+α
2

√
σ2
ε+kσ2

a

k
, and

2. q̃` = µ− z 1+α
2

√
σ2
ε+kσ2

a

k

where z 1+α
2

represents the 100(1+α
2 )th percentile of a standard normal distribution. Re-

member, as Wolfinger (1998) indicated, these (q̃`, q̃u) pairs form a sample from the

bivariate posterior distribution of the
[

(1−α)
2

]th
and

[
(1+α)

2

]th
quantiles, with the highest

posterior density region typically forming a two - dimensional ellipsoid, since the two

quantiles q̃` and q̃u do not have a posterior correlation equal to 1.

Following Wolfinger (1998), it is therefore suggested that a valid two - sided (α, δ) tol-

erance interval for the average of observations from new or unknown batches in the

case of the balanced one - way random effects model be constructed as follows:

i.) Simulate (σ2
ε+kσ

2
a) using the Bayesian simulation method described in method

1, or using method 2, simulate a pair of variance components σ2
a and σ2

ε us-

ing the Bayesian simulation technique explained in section 3.6, ensuring that

the condition stating that (σ2
ε + kσ2

a) > σ2
ε is met. It should be remembered

that if the above condition is not met, the simulated pair of variance com-

ponents be disregarded and a new pair be simulated.

ii.) Substitute the retained simulated pair of variance components or (σ2
ε + kσ2

a)

into equation 4.4.2 to simulate a value for the target value µ.

iii.) Using the simulated retained pair of variance components σ2
a and σ2

ε or (σ2
ε+

kσ2
a) and the target value µ, simulate the values for q̃` = µ−z 1+α

2

√
σ2
ε+kσ2

a
k and

q̃u = µ+ z 1+α
2

√
σ2
ε+kσ2

a
k .

iv.) Repeat steps i.) to iii.) for example ˜̀= 10000 times and plot a scatterplot of

the q̃` and q̃u simulated values with q̃` plotted on the vertical axis.

v.) For the simulated q̃` and q̃u values, construct a reference line given by q̃` =

−q̃u + 2y.. and draw the reference line on the scatterplot.
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Figure 4.6.3: Construction of a Two - Sided (0.95, 0.95) Tolerance Interval for the
Average of Observations from New or Unknown Batches for the Medicinal Tablets

Data Given in Table 3.1.

vi.) Construct two additional lines, one parallel to each axis and intersecting on

the reference line. This intersection point is then slid along the reference line

until 100(1−δ)% of the (q̃`, q̃u) pairs are contained in the half rectangle open-

ing towards the lower right portion of the graph. The resulting coordinates

of this intersection point will then form a two - sided (α, δ) tolerance interval

of the desired form.

This procedure as proposed by Wolfinger (1998) is graphically illustrated in Figure 4.6.3

for a two - sided (α = 0.95, δ = 0.95) tolerance interval constructed for the medicinal

tablets data given in Table 3.1, where z 1+0.95
2

used for determining the q̃` and q̃u values,

is equal to 1.96.

The two - sided (α = 0.95, δ = 0.95) tolerance interval for the average of observations

from new or unknown batches is equal to [150.2424 , 150.7723] and, can be interpreted

as follows: If medicinal tablets are manufactured, 95% of the average weights of the
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active ingredient present in new or unknown batches will fall between 150.2424 mg

and 150.7723 mg with probability 0.95.

4.6.3 α - Expectation Tolerance Interval

It was already mentioned in section 4.2 that the predictive distribution of the average

of k future observations yf1 . . . yfk from a new or unknown batch, given the variance

components, follows a normal distribution given by

p(yf.|σ2
a, σ

2
ε ,y) ∼ N

(
µ,
σ2
ε + kσ2

a

k

)

where yf. = 1
k

k∑
j=1

yfj .

In order to construct an α - expectation tolerance interval for the average of fu-

ture observations from new or unknown batches in the case of the random effects

model, simulations need to be conducted from an appropriate predictive distribution

p(yf.|y), where yf. represents the average of future observations from new or unknown

batches. Following Wolfinger (1998), the Bayesian simulation procedure proposed is as

follows:

i.) Simulate (σ2
ε+kσ

2
a) using the Bayesian simulation method described in method

1, or simulate a pair of variance components σ2
a and σ2

ε subject to the condi-

tion stating that (σ2
ε +kσ2

a) > σ2
ε as explained in section 3.6. This condition will

ensure that σ2
a is positive. If this condition is not met, disregard the simulated

pair of variance components and simulate a new pair.

ii.) Substitute either the retained pair of variance components σ2
a and σ2

ε ob-

tained using method 2 discussed in section 4.4, or (σ2
ε + kσ2

a) simulated using

method 1 also discussed in section 4.4, into equation 4.4.2 to simulate a tar-

get value µ.
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iii.) Substitute the simulated variance components σ2
a and σ2

ε or (σ2
ε + kσ2

a), as

well as the target value µ, into the predictive distribution of the average

of future observations from new or unknown batches given above and in

section 4.2. Simulate a yf. value from this normal distribution, and draw the

normal distribution given above.

iv.) Repeat steps i.) to iii.) for example ˜̀ = 10000 times and obtain the aver-

age conditional predictive distribution using the Rao Blackwell argument

discussed in section 2.5. This average distribution represents an estimate of

the unconditional predictive distribution of the average of future observa-

tions from new or unknown batches p(yf.|y).

Using method 1 discussed in section 4.4, the estimated unconditional predictive distri-

bution of the average of future measurements from new or unknown batches p(yf.|y)

was determined for the medicinal tablets data given in Table 3.1, and, is depicted in

Figure 4.6.4. The two vertical lines also depicted in Figure 4.6.4 represents the 2.5th and

97.5th percentiles of the estimated unconditional predictive distribution of the average

of future observations from new or unknown batches, and in fact, represent the esti-

mated α = 0.95 - expectation tolerance interval for this average of future observations

from new or unknown batches.

The estimated α = 0.95 - expectation tolerance interval is equal to [150.2775 , 150.7361]

for the medicinal tablets data given in Table 3.1 and can be interpreted as follows: The

process used for manufacturing the small batches of medicinal tablets will be in control

if 95% of the average weights of the active ingredient present in tablets manufactured

in new or unknown batches, is between 150.2775 mg and 150.7361 mg.
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Figure 4.6.4: Estimated Unconditional Predictive Distribution of the Average Weights
of the Amount of Active Ingredient Present in Newly Manufactured or Unknown

Batches for the Medicinal Tablets Data Given in Table 3.1. Obtained using Method 1.

0.95 - Expectation Tolerance Interval: [150.2775 , 150.7361]

4.6.4 Probability Matching Prior for the Content c of the Fixed - in - Advance

Tolerance Interval

Wolfinger (1998) mentioned that the content of a Bayesian fixed - in - advance toler-

ance interval is determined by constructing the posterior distribution of this content. As

an example, suppose that an upper fixed - in - advance limit s is specified for averages

of data assuming to arise from new batches. Then

c = 1− Φ

 s− µ√
σ2
ε+kσ2

a

k


must be computed, where as mentioned, Φ[·] represents a standard normal cumula-

tive distribution function.
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The following theorem can now be proved.

Theorem 4.6.1

For the balanced one - way random effect model, the prior distribution

π(µ, σ2
ε , σ

2
a) ∝ σ−2

ε

(
σ2
ε + kσ2

a

)− 3
2

{
1 +

k(s− µ)2

2(σ2
ε + kσ2

a)

}− 1
2

(4.6.1)

is a probability matching prior for the content c given by

c = 1− Φ

 s− µ√
σ2
ε+kσ2

a

k



of a fixed - in - advance tolerance interval, where Φ

[
s−µ√
σ2
ε+kσ2

a
k

]
represents the standard

normal cumulative distribution function.

Proof

The proof of Theorem 4.6.1 is given in Appendix B.

Equation 4.6.1 is also a probability matching prior for 1 − Φ

[
µ−s√
σ2
ε+kσ2

a
k

]
if s is a lower

specification limit.

4.6.4.1 The Weighted Monte Carlo Method

In this section a weighted Monte Carlo method is described which will be used to

simulate from the posterior distribution in the case of the probability matching prior

given in equation 4.6.1. As mentioned, this method is especially suitable for computing

Bayesian confidence intervals. Chen and Shao’s (1999) method (See also Kim (2006))

does not require knowing the closed form of the marginal posterior distribution of c,

only the kernel of the posterior distribution of (µ, σ2
a, σ

2
ε) is needed.
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The weighted Monte Carlo (sampling - importance resampling (SIR)) algorithm aims

at drawing a random sample from a target distribution π by first drawing a sample

from a proposal distribution γ, and from this a smaller sample is drawn with sample

probabilities proportional to the importance ratios π
γ . As also mentioned before, in the

case of the credibility intervals it is not even necessary to draw the smaller sample. The

weights (sample probabilities) are however important.

For the non - informative prior distribution given in equation 4.2.2, i.e.

pR(µ, σ2
a, σ

2
ε) ∝ σ−2

ε (σ2
ε + kσ2

a)
−1,

the joint posterior distribution of the unknown parameters µ, σ2
a and σ2

ε is given by

pR(µ, σ2
a, σ

2
ε |y) ∝ (σ2

ε)
− 1

2
(ν1+2)

(σ2
ε + kσ2

a)
− 1

2
(ν2+3)

× exp
{
−1

2

[
kb(µ− y)2

σ2
ε + kσ2

a

+
ν1m1

σ2
ε

+
ν2m2

σ2
ε + kσ2

a

]}
. (4.6.2)

Equation 4.6.2 represents the proposal distribution γ.

In the case of the probability matching prior given by

pM(µ, σ2
a, σ

2
ε) ∝ σ−2

ε

(
σ2
ε + kσ2

a

)− 3
2

{
1 +

k(s− µ)2

2(σ2
ε + kσ2

a)

}
and provided in equation 4.6.1, the joint posterior distribution of the unknown param-

eters µ, σ2
a and σ2

ε is given by

pM(µ, σ2
a, σ

2
ε |y) ∝ (σ2

ε)
− 1

2
(ν1+2)

(σ2
ε + kσ2

a)
− 1

2
(ν2+4) ×

{
1 + k(s−µ)2

2(σ2
ε+kσ2

a)

}− 1
2

× exp
{
−1

2

[
kb(µ− y)2

σ2
ε + kσ2

a

+
ν1m1

σ2
ε

+
ν2m2

σ2
ε + kσ2

a

]}
. (4.6.3)

Equation 4.6.3 represents the target distribution π. It is important that γ is a good ap-

proximation of π, i.e. that it does not have tails that are too thin. The sample probabili-

ties are therefore proportional to

π

γ
=
pM(µ, σ2

a, σ
2
ε)

pR(µ, σ2
a, σ

2
ε)

=
(
σ2
ε + kσ2

a

)− 1
2

{
1 +

k(s− µ)2

2(σ2
ε + kσ2

a)

}− 1
2
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with the resulting normalized weights for l = 1, 2, . . . , ˜̀given by

wl =

(
σ

2(l)
ε + kσ

2(l)
a

)− 1
2

{
1 +

k(s−µ(l))
2

2
(
σ

2(l)
ε +kσ

2(l)
a

)
}− 1

2

˜̀∑
l=1

(
σ

2(l)
ε + kσ

2(l)
a

)− 1
2

{
1 +

k(s−µ(l))
2

2
(
σ

2(l)
ε +kσ

2(l)
a

)
}− 1

2

. (4.6.4)

Using the weighted Monte Carlo method (sampling - importance resampling method),

the fixed - in - advance tolerance interval for the probability matching prior given in

equation 4.6.1 can be obtained as follows:

Step 1

Using the Bayesian simulation method described in method 1 given in section 4.4, ob-

tain a Monte Carlo sample
{

(µ(l), (σ2
ε + σ2

a)
(l), l = 1, . . . , ˜̀} from the proposal distribu-

tion γ and calculate the content c∗ of the interval [−∞, s] given by

c∗ = Φ

 s−µ(l)√
(σ2
ε+kσ2

a)(l)

k

 (for l = 1, 2, . . . , ˜̀),
since the main focus will be on the content less than the specified lower specification

limit s.

Step 2

Sort the ˜̀{c∗l , l = 1, 2, . . . , ˜̀} values to obtain the ordered values

c∗(1) ≤ c
∗
(2) ≤ . . . ≤ c

∗
(˜̀).

Step 3

Each simulated c∗l (l = 1, 2, . . . , ˜̀) value has an associated weight. Therefore compute

the weighted function w(l) associated with each of the lth ordered c∗(l) values using

equation 4.6.4.
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Step 4

Sum the weights associated with each c∗(l)value from left to right (small to large) until
k1∑
l=1

w(l) = 1−α
2 . Write down the corresponding ordered c∗(k1) value and denote it as c∗

1−α
2 .

Also, obtain the sum of the weights associated with each c∗(l) value from left to right

until you get
k2∑
l=1

w(l) = 1+α
2 . Write down the corresponding ordered value c∗(k2) and

denote it as c∗
1+α

2 .

Step 5

The 100(α)% Bayesian confidence interval or 100(α)% Bayesian fixed - in - advance

tolerance interval is then given by
[
c∗

1−α
2 , c∗

1+α
2

]
.

As mentioned, for the medicinal tablets data given in Table 3.1, the lower specification

limit selected was s = 150.30 mg. Since we consider a lower specification limit, the

fixed - in - advance tolerance interval in this case estimates the proportion of batches

not meeting the minimum average dose specification. This therefore represents the

proportion of batches with an average weight of the active ingredient that is below

the minimum specified limit of 150.30 mg. Since the average content of these batches

is below the minimum, this proportion of batches will not be effective as treatment. The

posterior distribution of the content of the interval [−∞, s = 150.30] was determined for

the medicinal tablets data given in Table 3.1 and is depicted in Figure 4.6.5.

From Figure 4.6.5 it can be seen that the posterior distribution of the content of the

interval [−∞, s = 150.30 mg] is positively skewed. Also, for illustrative purposes, using

the results obtained from the weighted Monte Carlo method, the 95% equal tail cred-

ibility interval of the posterior distribution of the content of the interval [−∞, s = 150.30

mg] obtained for the average active ingredient weight of manufactured tablets from

new or unknown batches, is given by [0.001736 , 0.13337]. This 95% equal tail credibility

interval, also represents the 95% fixed - in - advance tolerance interval.
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Figure 4.6.5: Histogram of the Posterior Distribution of the Content of the Interval
[−∞, 150.30], i.e. the Proportion of Batches with an Average Active Ingredient Weight

that is Below the Specified Fixed - in - Advance Lower Limit s = 150.30 mg for the
Medicinal Tablets Data Given in Table 3.1.

95% Fixed - in - Advance Tolerance Interval: [0.001768 , 0.135048]

Comparative results obtained using the ordinary Monte Carlo method and weighted

Monte Carlo method for obtaining the fixed - in - advance tolerance interval for av-

erages of observations from new or unknown batches using a lower specification limit

s = 150.30 mg, is provided in Table 4.2.

Table 4.2: Fixed - in - Advanced Tolerance Intervals for Averages of Observations from

New or Unknown Batches for a Lower Specification Limit s = 150.30 mg.

Monte Carlo Method Weighted Monte Carlo Method

Lower Limit Upper Limit Lower Limit Upper Limit

Observation Number 250 9750 246 9737

Sum of Weights − − 0.02495 0.97498

95% Credibility Interval 0.001768 0.135048 0.001736 0.13337
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From Table 4.2 it can be seen that the ordinary Monte Carlo method and the weighted

Monte Carlo method provide similar fixed - in - advanced tolerance intervals for a

lower specification limit s = 150.30 mg. Using results obtained for the weighted Monte

Carlo method, it can therefore be interpreted that with 95% confidence, between

0.1736% and 13.337% of the batches manufactured will on average not contain suffi-

cient active ingredient to render the drug effective. As mentioned, this lower specifi-

cation limit s = 150.30 mg was selected for illustrative purposes only.
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4.7 Appendix B

Proof of Theorem 4.3.1

Probability Matching Prior

It is well known that for the balanced random effects model, the Fisher information

matrix for the parameters µ, σ2
a and σ2

ε is given by

F (µ, σ2
a, σ

2
ε) = F (µ̃) =


bk

σ2
ε+kσ2

a
0 0

0 bk2

2(σ2
ε+kσ2

a)
bk

2(σ2
ε+kσ2

a)2

0 bk
2(σ2

ε+kσ2
a)2

b(k−1)

2(σ2
ε)2 + b

2(σ2
ε+kσ2

a)2

 (4.7.1)

with its inverse given by

F−1(µ, σ2
a, σ

2
ε) = F−1(µ̃) =


σ2
ε+kσ2

a

bk
0 0

0
2
{

(k−1)(σ2
ε+kσ2

a)
2
+(σ2

ε)
2
}

bk2(k−1)

−2(σ2
ε)

2

bk(k−1)

0
−2(σ2

ε)
2

bk(k−1)

−2(σ2
ε)

2

b(k−1)

 . (4.7.2)

Define t(µ̃) = q̃ = µ+ zα

√
σ2
ε+kσ2

a

k
.

Now,

∂t(µ̃)
∂µ

= 1 ,

∂t(µ̃)
∂σ2
a

= zα(k)
1
2

1
2

(σ2
ε + kσ2

a)
− 1

2 ,

∂t(µ̃)
∂σ2
ε

= zα( 1
k
)

1
2

1
2

(σ2
ε + kσ2

a)
− 1

2 ,

and

∇′t(µ̃) =

[
1 zα(k)

1
2

1
2

(σ2
ε + kσ2

a)
− 1

2 zα( 1
k
)

1
2

1
2

(σ2
ε + kσ2

a)
− 1

2

]
.

Further

∇′t(µ̃)F−1(µ̃) =

[
σ2
ε+kσ2

a

bk

(σ2
ε+kσ2

a)
3
2

bk
3
2

0

]
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and

∇′t(µ̃)F−1(µ̃)∇t(µ̃) = σ2
ε+kσ2

a

bk

(
1 + 1

2
z2
α

)
.

Also

η(µ̃) =
∇′t(µ̃)F−1(µ̃)√
∇′t(µ̃)F−1(µ̃)∇t(µ̃)

=

[
η1(µ̃) η2(µ̃) η3(µ̃)

]
where

η1(µ̃) =
(σ2
ε+kσ2

a)
1
2

(bk)
1
2

(
1 + 1

2
z2
α

)− 1
2 ,

η2(µ̃) =
(σ2
ε+kσ2

a)
b

1
2 k

(
1 + 1

2
z2
α

)− 1
2 , and

η3(µ̃) = 0 .

The prior distribution p(µ̃) = p (µ, σ2
a, σ

2
ε) is a probability matching prior if the following

differential equation is satisfied:

∂{η1(µ̃)p(µ̃)}
∂µ

+ ∂{η2(µ̃)p(µ̃)}
∂σ2
a

+ ∂{η3(µ̃)p(µ̃)}
∂σ2
ε

= 0 .

Now, take p(µ̃) ∝ σ−2x
ε (σ2

ε + kσ2
a)
−1 , then

a) ∂{η1(µ̃)p(µ̃)}
∂µ

= 0,

b) ∂{η2(µ̃)p(µ̃)}
∂σ2
a

= 0,

and

c) ∂{η3(µ̃)p(µ̃)}
∂σ2
ε

= 0.

It therefore follows that

∂{η1(µ̃)p(µ̃)}
∂µ

+ ∂{η2(µ̃)p(µ̃)}
∂σ2
a

+ ∂{η3(µ̃)p(µ̃)}
∂σ2
ε

= 0 .

If we take x = 1, then p(µ, σ2
a, σ

2
ε) ∝ σ−2

ε (σ2
ε + kσ2

a)
−1 is a probability - matching prior for

the parameter q̃ = µ+ zα

√
σ2
ε+kσ2

a
k .
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Reference Prior

In the case of the reference prior, the Fisher information matrix for the parameters t(µ̃),

ν and σ2
ε , where ν = σ2

a
σ2
ε

and t(µ̃) = q̃ = µ+ zα

√
σ2
ε+kσ2

a
k must first be obtained. This will be

done in two stages. In the first stage the Fisher information matrix for µ, ν and σ2
ε will be

derived and in the second stage, it will be derived for t(µ̃), ν and σ2
ε .

Let

A = ∂(µ,σ2
a,σ

2
ε)

∂(µ,ν,σ2
ε)

where ν = σ2
a

σ2
ε

and σ2
a = νσ2

ε ,

then

A =


1 0 0

0 σ2
ε ν

0 0 1

, A
′
=


1 0 0

0 σ2
ε 0

0 ν 1


and

F (µ, ν, σ2
ε) = A

′
F (µ, σ2

a, σ
2
ε)A .

For the Fisher information matrix, F (µ, ν, σ2
ε), as defined in equation 4.7.2, σ2

a must be

substituted by νσ2
ε .

Therefore

F (µ, ν, σ2
ε) =


1 0 0

0 σ2
ε ν

0 0 1




bk
σ2
ε(1+kν)

0 0

0 bk2

2(σ2
ε)2(1+kν)2

bk
2(σ2

ε)2(1+kν)2

0 bk
2(σ2

ε)2(1+kν)2

b(k−1)
2(σ2

ε)2 + b
2(σ2

ε)2(1+kν)2




1 0 0

0 σ2
ε 0

0 ν 1



=


bk

σ2
ε(1+kν)

0 0

0 bk2

2(1+kν)2
bk

2(σ2
ε)(1+kν)

0 bk
2(σ2

ε)(1+kν)
b

2(σ2
ε)2

.
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Now

t(µ̃) = µ+ zα

√
σ2
ε(1+kν)
k

and

µ = t(µ̃)− zα
√

σ2
ε(1+kν)
k

.

Also

∂µ
∂t(µ̃)

= 1,

∂µ
∂ν

= −1
2
zα (σ2

ε)
1
2 k

1
2 (1 + kν)−

1
2 ,

∂µ
∂σ2
ε

= −1
2
zα (σ2

ε)
− 1

2 k−
1
2 (1 + kν)

1
2 ,

and

Ã =


∂µ
∂t(µ̃)

∂µ
∂ν

∂µ
∂σ2
ε

0 1 0

0 0 1

.

The Fisher information matrix for the parameters t(µ̃), ν, σ2
ε is therefore given by

F (t(µ̃, ν, σ2
ε) = Ã

′
F (µ, ν, σ2

ε)Ã =


F11 F12 F13

F21 F22 F23

F31 F32 F33


where

F11 = bk
σ2
ε(1+kν)

,

F12 = F22 = −1
2
zα (σ2

ε)
− 1

2 bk
3
2 (1 + kν)−

3
2 ,

F13 = F31 = −1
2
zα (σ2

ε)
− 3

2 bk
1
2 (1 + kν)−

1
2 ,

F23 = F32 = 1
2
bk2 (σ2

ε)
−1

(1 + kν)−1
(

1
2
z2
α + 1

)
,
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F22 = 1
2
bk2(1 + kν)−2

(
1
2
z2
α + 1

)
and

F33 = 1
2
b(σ2

ε)
−2
(

1
2
z2
α + k

)
.

Consider the submatrix

F̃ =

 F22 F23

F32 F33

 .

The inverse of this submatrix is

F̃−1 =

 2(k+ 1
2
z2
α)(1+kν)2

bk2(k−1)( 1
2
z2
α+1)

−2(σ2
ε)(1+kν)

bk(k−1)

−2(σ2
ε)(1+kν)

bk(k−1)
2(σ2

ε)2

b(k−1)

 .

Now

h1 = F11.2 = F11 −
[
F12 F13

]
F̃−1

 F21

F31



= bk
σ2
ε(1+kν)

−
[

(1+kν)
1
2

(σ2
ε)

1
2 k

1
2 (k−1)

{
z2
α −

(k+ 1
2
z2
α)

( 1
2
z2
α+1)

}
0

] F21

F31


= bk

σ2
ε(1+kν)

−

{
1 + 1

2(k−1)

[
z2
α −

(k+ 1
2
z2
α)

( 1
2
z2
α+1)

]}
.

Note, h1 does not contain t(µ̃).

Also

H =

 F 11 F 12

F 21 F 22


−1

=

 H11 H12

H21 H22



=

 F11 F12

F21 F22

− 1
F33

 F13

F23

[ F31 F32

]
.
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Therefore

H22 =
bk2( 1

2
z2
α+1)

2(1+kν)2 − 2(σ2
ε)2

b(k+ 1
2
z2
α)

b2k2( 1
2
z2
α+1)2

4(σ2
ε)2(1+kν)2

=
bk2( 1

2
z2
α+1)

2(1+kν)2

{
1− ( 1

2
z2
α+1)2

(k+ 1
2
z2
α)

}
= h2 ,

and

h3 = 1
2
b(σ2

ε)
−2(k + 1

2
z2
α) .

From this it follows that

p(t(µ̃)) ∝ h
1
2
1 = 1 (because h1 does not contain t(µ̃)),

p(ν|t(µ̃)) ∝ h
1
2
2 = (1 + kν)−1 ,

and

p(σ2
ε |t(µ̃), ν) ∝ h

1
2
3 = (σ2

ε)
−1 .

The reference prior relative to the ordered parameterization (t(µ̃), ν, σ2
ε ) is therefore

given by

p(t(µ̃), ν, σ2
ε) = p(t(µ̃))p(ν|t(µ̃))p(σ2

ε |t(µ̃), ν)

∝ (1 + kν)−1σ−2
ε .

Now,

t(µ̃) = µ+ zα

√
σ2
ε(1+kν)
k

,

∂t(µ̃)
∂µ

= 1, ν = σ2
a

σ2
ε

and ∂ν
∂σ2
a

= 1
σ2
ε

.
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From this it follows that the reference prior of the (t(µ̃), σ2
a, σ

2
ε) parameterization is given

by

p(t(µ̃), σ2
a, σ

2
ε) ∝ (1 + kν)−1σ−2

ε (σ−2
ε ) (4.7.3)

=
(
σ2
ε + k σ

2
a

σ2
ε
· σ2

ε

)−1

(σ−2
ε ) .

= (σ2
ε + kσ2

a)
−1
σ−2
ε .

In a similar manner it can also be shown that equation 4.7.3 is also a reference prior for

the ordered parameterization (µ, σ2
a, σ

2
ε).

Proof of Theorem 4.5.1

For Method 1

Since µ|σ2
ε , σ

2
a,y ∼ N(y.. ;

σ2
ε+kσ2

a

kb
), the posterior distribution of q̃ = µ+ zα

√
σ2
ε+kσ2

a

k

conditional on σ2
ε and σ2

a, is normal with mean y.. + zα

√
σ2
ε+kσ2

a

k
and variance σ2

ε+kσ2
a

kb
.

Since

ν2m2

σ2
ε+kσ2

a
∼ χ2

ν2
and

E

{(
χ2
ν2

)}r
=

2rΓ( ν2 +r)
Γ( ν22 )

, it follows that

E(q̃|y) = y.. + zα
1

k
1
2

(ν2m2)
1
2E
(

1
χ2
ν2

) 1
2

= y.. + zα
1

k
1
2

(ν2m2)
1
2

Γ( ν2−1
2 )

2
1
2 Γ( ν22 )

.

Also

V ar(q̃|y, σ2
ε + kσ2

a) = σ2
ε+kσ2

a

kb

and
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V ar(q̃|y) = E {V ar(q̃|y, σ2
ε + kσ2

a}+ V ar {E(q̃|y, σ2
ε + kσ2

a)} .

Now

E {V ar(q̃|y, σ2
ε + kσ2

a)} = 1
bk
E(σ2

ε + kσ2
a)

= 1
bk
E
(
ν2m2

χ2
ν2

)
= ν2m2

bk(ν2−2)

and

V ar {E(q̃|y, σ2
ε + kσ2

a)} = V ar

{
y.. + zα

√
σ2
ε+kσ2

a

k

}
= z2

α

k
V ar

{√
σ2
ε + kσ2

a

}
.

Further

V ar
{√

σ2
ε + kσ2

a

}
= E

{(√
σ2
ε + kσ2

a

)2
}
−
{
E
(√

σ2
ε + kσ2

a

)}2

.

Now

E

{(√
σ2
ε + kσ2

a

)2
}

= E {(σ2
ε + kσ2

a)}

= E
(
ν2m2

χ2
ν2

)
= ν2m2

ν2−2

and

E
{(√

σ2
ε + kσ2

a

)}2

=

{
(ν2m2)

1
2 Γ(

ν2−1
2

)√
2Γ(

ν2
2

)

}2

=
(ν2m2)Γ2(

ν2−1
2

)

2Γ(
ν2
2

)
.

Therefore, it follows that

V ar {E(q̃|y, σ2
ε + kσ2

a)} = z2
α

k

{
ν2m2

ν2−2
− (ν2m2)Γ2(

ν2−1
2

)

2Γ2(
ν2
2

)

}
and

V ar(q̃|y) = ν2m2

bk(ν2−2)
+ z2

αν2m2

k

{
1

ν2−2
− Γ2(

ν2−1
2

)

2Γ2(
ν2
2

)

}
.



CHAPTER 4. THE BALANCED ONE - WAY RANDOM EFFECTS MODEL CONTINUED 221

For Method 2

In Box and Tiao (1973) it is proved that for method 2

E
{(

1
σ2
ε+kσ2

a

)r}
=
(

2
ν2m2

)r Γ(
ν2
2

+r)

Γ(
ν2
2

)

Pr
{
Fν2+2r,ν1<

ν2
ν2+2r

m2
m1

}
Pr
{
Fν2,ν1<

m2
m1

}
where Fν2,ν1 represents an F - distribution with ν2 and ν1 degrees of freedom.

From this it follows that

E
(√

σ2
ε + kσ2

a

)
=
(
ν2m2

2

) 1
2 Γ(

ν2−1
2

)

Γ(
ν2
2

)

Pr
{
Fν2−1,ν1<

ν2
ν2−1

m2
m1

}
Pr
{
Fν2,ν1<

m2
m1

}
and

E(σ2
ε + kσ2

a) =
(
ν2m2

ν2−2

) 1
2 Pr

{
Fν2−1,ν1<

ν2
ν2−1

m2
m1

}
Pr
{
Fν2,ν1<

m2
m1

} .

Also

E(q̃|y) = y.. + zα
(
ν2m2

2k

) 1
2 Γ(

ν2−1
2

)

Γ(
ν2
2

)

Pr
{
Fν2−1,ν1<

ν2
ν2−1

m2
m1

}
Pr
{
Fν2,ν1<

m2
m1

}
and

V ar(q̃|y) = ν2m2

bk(ν2−2)

Pr
{
Fν2−1,ν1<

ν2
ν2−1

m2
m1

}
Pr
{
Fν2,ν1<

m2
m1

}

+ z2
αν2m2

k

{
1

(ν2−2)

Pr
{
Fν2−1,ν1<

ν2
ν2−1

m2
m1

}
Pr
{
Fν2,ν1<

m2
m1

} − Γ2(
ν2−1

2
)

2Γ2(
ν2
2

)

[
Pr
{
Fν2−1,ν1<

ν2
ν2−1

m2
m1

}]2
Pr
{
Fν2,ν1<

m2
m1

}
}

.

Proof of Theorem 4.6.1

The content c of the interval [s,∞] is defined as

c = 1− Φ

[
s−µ√
σ2
ε+kσ2

a
k

]
= 1− Φ(θ)

where Φ

[
s−µ√
σ2
ε+kσ2

a
k

]
represents the standard normal cumulative distribution function.

Now
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∂c
∂µ

= e−
1
2 θ

2

√
2π
k

1
2 (σ2

ε + kσ2
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−

1
2 ,

∂c
∂σ2
ε

= e−
1
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2

√
2π

1
2
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ε + kσ2
a)
−

3
2
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∂σ2
a

= e−
1
2 θ

2

√
2π

1
2
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1
2 (σ2

ε + kσ2
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−

3
2 .

Therefore

∇′t(θ) =

[
∂c
∂µ

∂c
∂σ2
a

∂c
∂σ2
ε

]

= e−
1
2 θ

2

√
2π
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1
2 (σ2

ε + kσ2
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− 1

2
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1 1
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(s− µ)k(σ2
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−1 1

2
(s− µ)(σ2
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−1

]

= f
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1 1
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(s− µ)k(σ2
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a)
−1 1

2
(s− µ)(σ2

ε + kσ2
a)
−1

]
where

f = e−
1
2 θ

2

√
2π
k

1
2 (σ2

ε + kσ2
a)
− 1

2 .

Using the method of Datta and Ghosh (1995), it follows that

∇′t(θ)F−1(µ, σ2
a, σ

2
ε) = f

[
σ2
ε+kσ2

a

bk
(s−µ)(σ2

ε+kσ2
a)

bk
0

]
and

{
∇′t(θ)F−1(µ, σ2

a, σ
2
ε)∇t(θ)

} 1
2 = f

{
σ2
ε+kσ2

a

bk
+ (s−µ)2

2b

} 1
2

where F−1(µ, σ2
a, σ

2
ε) is given in equation 4.7.2.

Therefore

η(θ) =
∇′t(θ)F−1(µ,σ2

a,σ
2
ε)∇t(θ)

{∇′t(θ)F−1(µ,σ2
a,σ

2
ε)∇t(θ)}

1
2

=

[
η1(θ) η2(θ) η3(θ)

]
where

η1(θ) = σ2
ε+kσ2

a

bk

{
σ2
ε+kσ2

a

bk
+ (s−µ)2

2b

}− 1
2

,
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η2(θ) = (s−µ)(σ2
ε+kσ2
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bk
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ε+kσ2
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bk
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2b

}− 1
2

,

and

η3(θ) = 0 .
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is a probability matching prior since
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}
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{
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Also
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Therefore
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Chapter 5

Student t - Distributed Measurement Error

Model

In Chapter 5, the simulation of variance components and quantiles used for the esti-

mation of tolerance intervals will be considered for the balanced one - way random

effects model with errors not of the usual N(0, σ2
ε) form. Rather, the assumption of

Gaussian errors will be relaxed in the direction of the student t - distribution family. A

non - informative prior distribution is proposed for the location and variance parame-

ters while a normal prior distribution is proposed for the random effects parameter. It

was also decided to use a truncated exponential prior distribution for the degrees of

freedom. A prior distribution proportional to a gamma distribution was also proposed

for λij . For iron data originally presented by Wilson Hamada and Xu (2004), the Gibbs

sampler will be used to obtain marginal posterior distributions for the unknown param-

eters using different degrees of freedom. This is followed by the determination of the

three kinds of tolerance intervals originally proposed by Wolfinger (1998). In addition,

the student t - distributed measurement error model will be used for the detection of

possible outlying part measurements, using the scale parameter log10(λij).

Parts of this chapter have been published in the South - African Statistical Journal. For

more details see Hugo and van der Merwe (2009).

224
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5.1 Introduction

It was mentioned in Chapter 1 that manufacturers are frequently required to verify that

products meet certain specifications (Hahn, 1982). A standard approach to the prob-

lem would then be to compare for example measurements from a sample of parts,

to a certain specification. Inferences can then be made from these results about the

entire population of parts (Wilson, Hamada and Xu, 2004). The situation may however

sometimes arise when for example it may seem that specifications are not being met,

when in fact they are. This usually occurs when the available data is subject to mea-

surement error (Hahn, 1982). It is therefore important to account for the measurement

system being used to characterize production performance based on, for example,

this available sample of parts (Wilson, Hamada and Xu, 2004).

Wilson, Hamada and Xu (2004) recently investigated such a case by considering the

assessment of a manufacturing process’s performance when the sample of parts pro-

duced by the process was measured with error, and as a result, would generate mea-

surement errors not of the standard N(0, σ2
ε) form. Wilson et. al. (2004) firstly provided

the standard Bayesian formulation of the one - way variance component model using

a normal prior on µ, an inverse gamma (IG) prior on σ2
ε , and the uniform shrinkage

prior proposed by Daniels (1999), on σ2
a given σ2

ε . The authors also illustrated a model

where the error variance was assumed to be proportional to the true part value. They

modeled the measurements as N(xi, (ρxi)2), with ρ unknown. The priors proposed for

µ and σ2
a were normal and inverse gamma (IG) respectively, while the prior distribu-

tion assumed for ρ, was a gamma distribution. The authors then illustrated a model

where the measurement errors followed a log - normal distribution. For this model the

authors used the same prior distributions as for the standard Bayesian model men-

tioned above. In addition to these, the authors showed how to handle censored data

using a truncated normal distribution, calculated tolerance intervals for the parts distri-

bution to assess the manufacturing process’s performance, and, determined release

specifications based on the producer’s risk (probability of rejecting a good part) and
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consumer’s risk (probability of accepting a bad part).

To illustrate how a process’s performance can be assessed when a sample of parts

produced by a process is measured with error, consider the following example from

a new manufacturing process. The data in Table 5.1 was obtained from a new man-

ufacturing process and represents measurements of iron concentration in parts per

million (ppm) (Wilson, Hamanda and Xu, 2004). Each row of Table 5.1 represents two

measurements of the same part determined by emission spectroscopy. According to

Wilson, Hamada and Xu (2004), a part is considered to be acceptable if it has under

225 ppm (parts per million) of iron. The engineers involved in the process are inter-

ested in understanding production characteristics while the chemists, who measure

the parts, are interested in understanding the measurements system (Wilson, Hamada

and Xu, 2004).
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Table 5.1: Measurements of Iron in Parts per Million (ppm) Determined by Emission

Spectroscopy. (A Part with Under 225 ppm of Iron is Acceptable).

Part Measurement 1 Measurement 2

1 206 258

2 181 197

3 185 162

4 195 195

5 170.5 143.8

6 193.8 224.8

7 244.8 217

8 191.5 196.8

9 209.3 189.5

10 134.5 143.8

11 223.8 198.5

12 103 129.3

13 99.7 201.8

14 137.5 119.8

15 144.5 130

16 159 166.5

17 140.5 138

18 207 230

19 195.5 190.5

20 142.3 163.8

21 74.3 86.5

22 439.5 211.5

23 130.3 114

24 99.7 201.8

Wilson, Hamada and Xu (2004) suggested that a one - way model be used which is

mathematically given by

yij = xi + εij (5.1.1)



CHAPTER 5. STUDENT T - DISTRIBUTED MEASUREMENT ERROR MODEL 228

where yij represents the jth measurement on the ith part, xi is the true value for the

ith part and εij is the measurement error associated with the jth measurement of the

ith part. The real interest is in xi and εij separately, but what is observed, are the

y
′
ijs. A variety of issues can be addressed if it is possible to estimate the distributions

of xi and εij . These include many of the common ways of characterizing production

performance. Specifically, Wilson, Hamada and Xu (2004) mentioned some of these

common ways, if for example parts with an upper specification limit U are considered.

These include the proportion of parts meeting the specification, as one measure of

production performance. Another measure of production performance uses particu-

lar quantiles which summarizes the whole production distribution (i.e. the distribution

of x) (Wilson, Hamada and Xu, 2004). According to Wilson et. al. (2004) a related

issue is the setting of release or test specifications. For example, in deciding to ac-

cept a part or not, one needs to account for the measurement error. According to

Wilson et. al. (2004), a typical approach is to tighten the specification U , to a release

specification Ur, where the selection of Ur depends on the trade off that needs to be

made between two types of errors, a good part can be rejected or a bad part can

be accepted. The probabilities of these events are known as the producer’s - and

consumer’s risks respectively, and are given by

P (x ≤ U |y > Ur) and P (x > U |y ≤ Ur)

(Wilson, Hamada and Xu, 2004).

The novel features of the above example arise because the measurement system can-

not be characterized in the traditional way, i.e., as following a N(0, σ2
ε) distribution for

εij . Rather, the measurement system may not be normally distributed and may have

for example a multiplicative (or different) structure for the variance (Wilson, Hamada

and Xu, 2004). The remainder of this chapter will be dedicated to the characteriza-

tion of the measurement system in Table 5.1 using a student t - distribution. To be more

specific the principle purpose of the rest of this chapter is to specify a Bayesian model
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for the data given in Table 5.1, and, to study the effect of departure from the usual

model which assumes that εij ∼ N(0, σ2
ε). This is followed by the computational meth-

ods for implementing the Bayesian approach. The Bayesian method is then applied to

the data given in Table 5.1, and to conclude, Bayesian tolerance intervals in the case

where the residuals follow a student t - distribution will then be provided.

5.2 A Bayesian Procedure for the Student t - Distributed Measurement Error

Model

Casual inspection of the residuals obtained for the iron data given in Table 5.1, has

revealed that the underlying distribution is symmetrical, but with heavy tails. It is there-

fore feasible to replace the normal distribution with some other distribution which is

also symmetric, behaves like the normal distribution in the central area, but has heav-

ier tails (Bernardo and Smith, 1994 and Tsiamyrtzis, 2000). Therefore, to accommodate

for the possibility of outlying measurements, the assumption of Gaussian errors will be

relaxed in the direction of the student t - distributed family.

Consider the series of independent errors εij |σ2
ε , λij ∼ N(0, σ

2
ε

λij
) for i = 1, . . . , b and j =

1, . . . , k. By placing a prior distribution on λij , enables a wide variety of model error

densities f(εij |σ2
ε) to emerge as scale mixtures of normal distributions, i.e. f(εij |σ2

ε) =
´∞

0 p(εij |σ2
ε , λij)p(λij)dλij (Andrews and Mallows (1974), Carlin and Polson (1991) and

Wakefield et. al. (1994)). The following theorems can now be proved.

Theorem 5.2.1

If the errors for the one - way variance component model given by equation 5.1.1 are

assumed to be independently student t - distributed, and if

(εij|λij, σ2
ε) ∼ N(0, σ

2
ε

λij
) for i = 1, . . . , b, j = 1, . . . , k and where νλij ∼ χ2

ν ,
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then

f(εij|λij, σ2
ε) =

( 1

2πσ2
ε

) 1
2
λ

1
2
ijexp

[ 1

σ2
ε

λijε
2
ij

]
. (5.2.1)

Also, if we define

ε =

[
ε11 ε12 · · · ε1k ε21 ε22 · · · εbk

]′
and

λ =

[
λ11 λ12 · · · λ1k λ21 λ22 · · · λbk

]′
,

then

f(ε|λ, σ2
ε) =

( 1

2πσ2
ε

) bk
2

b∏
i=1

k∏
j=1

λ
1
2
ijexp

[
1

σ2
ε

b∑
i=1

k∑
j=1

λijε
2
ij

]
. (5.2.2)

Proof

The proof of Theorem 5.2.1 is given in Appendix C.

Theorem 5.2.2

If it is supposed that νλij ∼ χ2
ν for i = 1, . . . , b and j = 1, . . . , k then

p(λij) =
ν

1
2
ν

2
1
2
νΓ(ν

2
)
λ

1
2
ν−1

ij e−
1
2
νλij for λij > 0. (5.2.3)

Proof

The proof of Theorem 5.2.2 is given in Appendix C.

Theorem 5.2.3

If the conditional density of εij |λij , σ2
ε is given as in equation 5.2.1, the conditional den-

sity of ε|λ, σ2
ε is given as in equation 5.2.2 and the density of λij is given as in equation

5.2.3, then the conditional density of εij |σ2
ε is represented by a univariate t - distribution

with ν degrees of freedom given by

p(εij|σ2
ε) =

ν
1
2
νΓ
[

1
2
(ν + 1)

]
( 1
σ2
ε
)

1
2

π
1
2 Γ(ν

2
)

{
ν +

1

σ2
ε

ε2
ij

}− 1
2

(ν+1)

(5.2.4)
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and the joint density of ε|σ2
ε follows a multivariate t - distribution given by

p(ε|σ2
ε) =

ν
1
2
νbk

{
Γ
[

1
2
(ν + 1)

]}bk
(πσ2

ε)
1
2
bk
[
Γ(ν

2
)
]bk b∏

i=1

k∏
j=1

{
ν +

1

σ2
ε

ε2
ij

}− 1
2

(ν+1)

. (5.2.5)

Proof

The proof of Theorem 5.2.3 is given in Appendix C.

Now, reconsider equation 5.2.2 and define

H =



λ11 0 0 · · · 0

0 λ12 0 · · · 0

0 0 λ13 · · · 0

...
...

...
...

0 0 0 . . . λbk


.

We can therefore write equation 5.2.2 in matrix notation as follows:

p(ε|λ, σ2
ε) =

(
1

2πσ2
ε

) bk
2 ∣∣∣H∣∣∣ 1

2
exp

[
1

σ2
ε

ε
′
Hε

]
. (5.2.6)

For this example, it is assumed that νλij ∼ χ2
ν so that εij |σ2

ε ∼ tν(0, σ2
ε), i.e. representing

a student t - distribution with mean 0, variance σ2
ε and degrees of freedom ν.

Now, the random effects model defined in equation 5.1.1 can be written as

yij = µ+ ai + εij for i = 1, . . . , b, j = 1, . . . , k (5.2.7)

where yij represents the jth measured value on the ithpart, µ is the overall mean, ai

represents the row or part effect (random effect) where ai|σ2
a ∼ N(0, σ2

a), and, εij repre-

sents the measurement error for the jth measurements on the ith part, where as men-

tioned,

εij|λij, σ2
ε ∼ N(0, σ

2
ε

λij
) with νλij ∼ χ2

ν .
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In matrix notation the random effects model given in equation 5.2.7 can be written as

y = µj + Za+ ε (5.2.8)

where

j =

[
1 1 1 · · · 1

]′
with dimension (bk × 1),

a =

[
a1 a2 a3 · · · ab

]′
and a ∼ N(0, σ2

aIb),

y =

[
y11 y12 · · · y1k y21 y22 · · · ybk

]′
and for the example given in Table 5.1, b = 24 and k = 2.

Also,

ν1 = b(k − 1), ν2 = b− 1,

ν1m1 =
b∑
i=1

k∑
j=1

(yij − yi.)2, and,

ν2m2 = k
b∑
i=1

(yi. − y..)2

where

yi. = 1
k

k∑
j=1

yij , and

y.. = 1
bk

b∑
i=1

k∑
j=1

yij .

Also

Z = Ib ⊗ j

where Ib⊗ j denotes the Kronecker product of the matrices Ib and j with Ib represent-

ing a (b× b) identity matrix and j a (k × 1) vector of ones.
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Z is therefore equal to

Z =



1 0 0 · · · 0

1 0 0 · · · 0

0 1 0 · · · 0

0 1 0 · · · 0

0 0 0 · · · 1

0 0 0 · · · 1



.

Now, since ε = y−µj−Za and the jacobian of the transformation form ε to y is
∣∣∣∣ ∂ε∂y ∣∣∣∣ = 1,

it follows from equation 5.2.6 that the distribution of y is given by

L(y|µ,a,λ, σ2
ε) =

(
1

2πσ2
ε

) 1
2
bk∣∣∣H∣∣∣ 1

2
exp
{
− 1

2σ2
ε

(y−µj−Za)
′
H(y−µj−Za)

}
. (5.2.9)

Equation 5.2.9 is known as the likelihood function, and, can be regarded as the func-

tion through which the data y modifies prior knowledge of the unknown parameters

(Box and Tiao, 1973).

5.3 The Prior Distribution

It was mentioned in Chapter 1, that an integral part of traditional Bayesian analy-

sis is the assignment of prior distributions to the unknown parameters in the model

(van der Merwe, Pretorius, Hugo and Zellner, 2001). The choice of a prior distribution

is a very difficult and controversial step in any Bayesian analysis, since the information

contained in the prior distribution, which is supposed to represent what is known about

the unknown parameters before the data is available, is combined with the informa-

tion supplied by the data, through the likelihood function, to form the joint posterior

distribution of the parameters given the data (Box and Tiao, 1973 and Gianola and

Fernando, 1986).
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It must also be reiterated that two types of prior information are distinguished: Data

based and non - data based. Data based prior information is obtained in a scientific

manner from prior experimentation, while non - data based prior information is based

on subjective personal opinions or beliefs and theoretical considerations. It seems to

be the use of non - data based prior information to which orthodox frequentists object

(Carriquiry, 1989).

The choice of a prior distribution can either express prior ignorance or prior belief.

One can therefore either choose a non - informative prior distribution, having a “flat”

probability density function, or a prior distribution assigning probability one to a single

value (Carriquiry, 1989). In problems of scientific inference it is usually better, if at all

possible, to let the data “speak for itself”. Box and Tiao (1973) therefore pointed out

that it is usually better to conduct the analysis as if a state of relative ignorance existed,

and thus recommended the use of non - informative prior distributions.

For the prior distribution of the parameters µ, σ2
a, σ

2
ε , it is assumed that little is known

about these parameters initially. It was decided to use non - informative prior distribu-

tion to represent these parameters i.e.

p(µ, σ2
a, σ

2
ε) ∝ σ−1

a σ−2
ε .

Since p(σ2
a) ∝ σ−2

a will result in improper posterior distributions, it was suggested by Gel-

man (2006) to use a uniform density on σa which is equivalent to p(σ2
a) ∝ σ−1

a . This

density can be interpreted as a limit of the half t - family on σa, when the scale ap-

proaches infinity (and any value of the degrees of freedom).

Another non - informative prior distribution sometimes proposed in Bayesian literature,

is uniform on σ2
a. According to Gelman (2006), this is not recommended as it seems

to have a miscalibration towards higher values, and, also requires b ≥ 4 groups for a

proper posterior distribution.
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For the random effects a, a normal prior distribution given by

p(a) =

(
1

2πσ2
a

) 1
2
b

exp
(
− 1

2σ2
a
a
′
a
)

will be used.

It was also decided that the prior distribution of the parameters λij for i = 1, . . . , b and

j = 1, . . . , k be taken as

p(λij) = ν
1
2 ν

2
ν
2 Γ( ν

2
)
λ

1
2
ν−1

ij exp(−1
2
λijν), where νλij follows a gamma distribution.

Since p(λ) =
b∏
i=1

k∏
j=1

p(λij), the prior distribution of λ is therefore given as

p(λ) =
b∏
i=1

k∏
j=1

ν
1
2 ν

2 ν
2

Γ( ν
2

)
λ

1
2
ν−1

ij exp(−1
2
λijν)

= ν
1
2 νbk

2
ν
2 bk

[
Γ( ν

2
)

]bk b∏
i=1

k∏
j=1

λ
1
2
ν−1

ij exp(−1
2
ν

b∑
i=1

k∑
j=1

λij) .

The joint prior distribution of the parameters (µ, σ2
a, σ

2
ε , a and λ) is then given by

p(µ, σ2
a, σ

2
ε ,a,λ) ∝ σ−2

ε

(
1

2πσ2
a

) 1
2
b

exp

(
− 1

2πσ2
a
a
′
a

)
ν

1
2
νbk

2
ν
2
bk
[
Γ(ν

2
)
]bk b∏

i=1

k∏
j=1

λ
1
2
ν−1

ij exp(−1

2
ν

b∑
i=1

k∑
j=1

λij) . (5.3.1)

This completes the prior specification for the random effects model given in equation

5.2.7, if the degrees of freedom ν is held fixed. A prior distribution for ν will later be

selected and ν will also be simulated.
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5.4 The Posterior Distribution

Given the likelihood function and the prior distributions, the joint posterior density of

the unknown parameters can always be determined.

Bayes’s theorem states that for data y and unknowns γ,

p(γ|y) ∝ L(y|γ)p(γ).

This implies that the prior information about γ, as described by the prior density p(γ),

is updated by the information contained in the data, as described by the likelihood

or the joint density of the data L(y|γ), to yield the joint posterior of γ given by p(γ|y)

(Wilson et. al., 2004).

For this problem, γ = (µ, σ2
a, σ

2
ε ,a,λ) and the joint posterior density of γ is therefore given

by

p(µ, σ2
a, σ

2
ε ,a,λ) ∝ Likelihood function × Prior distributions

∝
(

1
2πσ2

ε

) 1
2
bk∣∣∣H∣∣∣ 1

2
exp
{
− 1

2σ2
ε
(y − µj − Za)

′
H(y − µj − Za)

}
σ−2
ε(

1

2πσ2
a

) 1
2
b

exp

(
− 1

2πσ2
a

a
′
a

)
ν

1
2
νbk

2
ν
2
bk
[
Γ(ν

2
)
]bk b∏

i=1

k∏
j=1

λ
1
2
ν−1

ij exp
(
−1

2
ν

b∑
i=1

k∑
j=1

λij

)
(5.4.1)

where H is defined as in equation 5.2.6 and y, j, a and Z defined as in equation 5.2.8.

From the joint posterior distribution given in equation 5.4.1 the conditional densities can

be determined.
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5.5 Bayesian Computation

To make appropriate inferences in a Bayesian analysis, the marginal posterior distribu-

tions and predictive densities are needed. Due to the complexity of the joint posterior

distribution however, it is impossible to obtain these marginal posterior densities ana-

lytically. It is also very difficult to obtain these marginal posterior densities numerically,

due to the high number of unknowns (van der Merwe, Pretorius and Meyer, 2003). It

is therefore recommended that a Monte Carlo simulation procedure be used to es-

timate these marginal posterior densities of the unknown parameters and predictive

densities of future observations.

In recent years, statisticians have been increasingly drawn to Markov chain Monte

Carlo (MCMC) simulation to examine more complex systems than would otherwise be

possible (Chib and Greenberg, 1995).

It was mentioned in Chapter 1, that to explain Markov chain Monte Carlo simulation,

suppose a sample needs to be generated from a posterior distribution p(µ|y) for µ ∈

τ ⊂ <k, but it cannot be done directly. The key to Markov chain simulation is then to

create a Markov process whose stationary distribution is a specified p(µ|y) and run the

simulation long enough so that the distribution of the current draws is close enough

to the stationary distribution. Once the simulation algorithm has been implemented,

sufficient iterations should be performed until convergence has been approximated.

It was also mentioned in Chapter 1, that Metropolis together with Rosenbluth, Rosen-

bluth, Teller and Teller (1953), developed the Metropolis-Hastings (M-H) algorithm which

was later generalized by Hastings (1970). Although the M-H algorithm has been used

extensively in physics, it was little known to statisticians until recently, despite the pa-

per by Hastings (Chib and Greenberg, 1995). The Metropolis-Hastings algorithm is ex-

tremely useful and versatile and applications are steadily appearing in literature (Chib

and Greenberg, 1995).
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The Gibbs sampling algorithm, a special case of the Metropolis-Hastings algorithm, is

one of the best known Markov chain Monte Carlo methods (Chib and Greenberg,

1995) and will be discussed in the following section.

5.5.1 The Gibbs Sampler

Gibbs sampling is a numerical integration method for generating random variables

from a (marginal) distribution indirectly, without having to calculate the density. This

technique is based only on elementary properties of Markov chains (Casella and

George, 1990).

Consider the following example: Suppose we are given a joint density function f(w, x, y, z)

and we want to obtain the characteristics, such as the mean and variance, of the

marginal density

f(w) =
´ ´ ´

f(w, x, y, z)dxdydz.

The most natural approach would be to calculate f(w) analytically or even numeri-

cally, and then use this result to obtain the desired characteristics such as the mean

and variance. However, there are some cases where the marginal distribution f(w)

of the density function f(w, x, y, z) cannot be readily calculated. In these cases an

alternative approach is provided by Gibbs sampling.

The Gibbs sampler allows us to effectively simulate a random sample

w1, . . . , wn ∼ f(w)

without requiring f(w). By simulating a large enough sample, the mean, variance or

any other characteristics of f(w) can be calculated to any desired degree of accu-

racy.
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This characteristic can easily be proved by the fact that

lim
n→∞

1
n

n∑
i=1

w1 =
´∞
−∞wf(w)dw = E(w).

Thus, by taking the sample size (n) large enough, any degree of accuracy can be

obtained.

The Gibbs sampler is therefore a method for generating a sample from f(w) in an indi-

rect way, by sampling from the conditional distributions f(w|x, y, z), f(x|w, y, z), f(y|w, x, z)

and f(z|w, x, y) which are often known in linear statistical models. It is therefore possi-

ble to generate samples from these conditional distributions given the specified values

of the conditioning variables (Casella and George, 1990).

The Gibbs sampler generates a random sample indirectly as follows:

The initial values X(0) = x(0), Y (0) = y(0), Z(0) = z(0) are specified and the rest of the

Gibbs sequence of random variables are obtained iteratively by alternately generat-

ing values in the following way:

Draw

w(1) from f(w|x(0), y(0), z(0))

then

x(1) from f(x|w(1), y(0), z(0)),

also draw

y(1) from f(y|w(1), x(1), z(0))

and lastly

z(1) from f(z|w(1), x(1), y(1))

to complete one iteration of the scheme. At the pth iteration we draw
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w(p) from f(w|x(p−1), y(p−1), z(p−1))

then

x(p) from f(x|w(p), y(p−1), z(p−1)),

then

y(p) from f(y|w(p), x(p), z(p−1))

and lastly

z(p) from f(z|w(p), x(p), y(p)).

Geman and Geman (1984) have shown that under fairly general conditions, the distri-

bution of w(p) converges to f(w) (the true marginal distribution of w) as p approaches

infinity. Thus, the value w(p) can be regarded as a simulated observation from f(w)

if p is large enough. By repeating the Gibbs sequence np times, the Gibbs sampler

generates n observations

w
(p)
1 , . . . , w

(p)
n .

Therefore, the Gibbs sampler can generate n realized values of the random variable

w(p) if the Gibbs sequence is repeated n times. If the repetitions are independent, us-

ing predetermined initial values x(0), y(0) and z(0) for each sequence, the final values

will be independent. Thus, by simulating a large enough sample, characteristics such

as the mean and variance of f(w) can be determined to any desired degree of ac-

curacy (van der Merwe and Botha, 1993). Characteristics of f(x), f(y) and f(z) can

be obtained in a similar way.

By looking at the above statements, one can see that the Gibbs sampler is relatively

easy to implement and subsequently has had an immense impact on Bayesian statis-

tics.
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For the random effects model given in equation 5.2.7 and the data given in Table 5.1,

the Gibbs sampler will succeed, because the problem of dealing simultaneously with

a large number of intricately related unknown parameters is reduced into a much

simpler problem of dealing with one unknown quantity at a time, sampling each from

its full conditional posterior distribution (Gilks, Thomas and Spiegelhalter, 1994).

As was mentioned above, one issue however with Gibbs sampling, referred to as the

convergence of the Gibbs sampler, is whether the draws are approximately a ran-

dom sample from the posterior distribution (Wilson, Hamada and Xu, 2004). By running

the Gibbs sampler however a number of times and then discarding the draws ob-

tained, also known as the burn - in period, the impact of initially chosen values are

decreased. Also, by retaining every pth draw, dependence between draws can be

reduced (Wilson, Hamada and Xu, 2004). The Gibbs sampler on the other hand also

has an advantage when calculating quality characteristics, since an approximate

randomly selected sample from the posterior densities of the unknown parameters is

obtained after running the Gibbs sampler np times. This sample can then be used in

a straightforward way to calculate a distribution for a particular characteristic (Wilson,

Hamada and Xu, 2004).

5.6 Conditional Posterior Distributions

As mentioned, to implement the Gibbs sampler, the full conditional posterior distribu-

tions of the unknown parameters are needed.

The following theorems can now be proved.



CHAPTER 5. STUDENT T - DISTRIBUTED MEASUREMENT ERROR MODEL 242

Theorem 5.6.1

For the random effects model given in equation 5.2.7 with joint posterior distribution

given by equation 5.4.1, the conditional posterior distribution of µ is given by

p(µ|y, σ2
ε , H,a) ∼ N

(( 1

σ2
ε

j
′
Hj
)−1 1

σ2
ε

j
′
H(y − Za) , σ2

ε(j
′
Hj
)−1
)

(5.6.1)

where H is defined as in equation 5.2.6 and y, a and Z defined as in equation 5.2.8.

Proof

The proof of Theorem 5.6.1 is given in Appendix C.

Theorem 5.6.2

For the random effects model given in equation 5.2.7 with joint posterior distribution

given by equation 5.4.1, the conditional posterior distribution of the vector of random

effects a is given by

p(a|µ, σ2
ε , σ

2
a, H,y) ∼ N

(( 1

σ2
ε

Z
′
HZ +

1

σ2
a

Ib

)−1( 1

σ2
ε

Z
′
Hy∗

)
,
( 1

σ2
ε

Z
′
HZ +

1

σ2
a

Ib

)−1
)

(5.6.2)

where y∗ = y − µj, H is defined as in equation 5.2.6 and a, y and Z defined as in

equation 5.2.8.

Proof

The proof of Theorem 5.6.2 is given in Appendix C.
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Theorem 5.6.3

The conditional posterior distribution of σ2
ε for the random effects model given by equa-

tion 5.2.7 with joint posterior distribution given by equation 5.4.1, is given by

p(σ2
ε |µ,a, σ2

a, H,y) ∝ (σ2
ε)
− 1

2
(bk+2)exp

{
− 1

2σ2
ε

(y − µj − Za)
′
H(y − µj − Za)

}
(5.6.3)

which is in the general form of an inverse gamma distribution where H is defined as in

equation 5.2.6 and a, y and Z defined as in equation 5.2.8.

Proof

The proof of Theorem 5.6.3 is given in Appendix C.

Theorem 5.6.4

For the random effects model given in equation 5.2.7 with joint posterior distribution

given by equation 5.4.1, the conditional posterior distribution of σ2
a is given by

p(σ2
a|a,y) ∝ (σ2

a)
− 1

2
bexp

{
− 1

2σ2
a

a
′
a
}

(5.6.4)

which is in the general form of an inverse gamma distribution where a is defined as in

equation 5.2.8.

Proof

The proof of Theorem 5.6.4 is given in Appendix C.
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Theorem 5.6.5

For the random effects model given in equation 5.2.7 with joint posterior distribution

given by equation 5.4.1, the conditional posterior distribution of λij is given by

p(λij|y,a, µ, σ2
ε , σ

2
a) ∝ λ

1
2

(ν+1)−1

ij exp

{
−1

2
λij

[
ν +

1

σ2
ε

(yij − µ− ai)2
]}

(5.6.5)

which is in the general form of a gamma distribution where y and a are defined as in

equation 5.2.8, i = 1, . . . , b and j = 1, . . . , k.

Proof

The proof of Theorem 5.6.5 is given in Appendix C.

5.7 Marginal Posterior Distributions

As mentioned, Markov chain Monte Carlo simulation methods can be used to ob-

tain the random samples from the joint posterior distribution. It was also mentioned

that one of the best known MCMC methods, is the Gibbs sampler, which consists of

repeated cycles of draws from the full conditional posterior distribution. The Gibbs

sampler however has a principle requirement that all conditional posterior densities

must be available in the sense that random variates can be generated from them.

To implement the Gibbs sampling procedure, random numbers have to be generated

from the required posterior distributions. The Gibbs sampling procedure for the random

effects model given in equation 5.2.7 can be implemented as follows:

i.) Start the iterative process for the burn - in period by specifying initial values

for ν (which is held fixed), σ2(0)
ε , σ2(0)

p , a(0) and λ(0). These preselected values

and vectors are then used to draw µ(1), the first value of µ, from a normal

distribution given by µ|y, σ2
ε ,a, H ∼ N

(
(j
′
Hj)−1j

′
H(y − Za) , σ2

ε(j
′
Hj)−1

)
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where H is defined as in equation 5.2.6.1

ii.) The preselected values σ2(0)
a , a(0) and λ(0) are then used together with the

first simulated value for µ i.e. µ(1), to draw σ
2(1)
ε from the conditional posterior

density of σ2
ε |µ,a, H,y by simulating τ = (y−µj−Za)

′
H(y−µj−Za)
σ2
ε

from a chi -

square distribution with bk degrees of freedom, and, then by calculating

σ2
ε = (y−µj−Za)

′
H(y−µj−Za)
τ where τ ∼ χ2

bk as mentioned.

iii.) By now, using the preselected values for a and λ, together with the first simu-

lated values µ(1)and σ
2(1)
ε , σ2(1)

a can be drawn from the conditional posterior

density of σ2
a|µ, σ2

ε ,a, H,y by simulating θ = a
′
a

σ2
a

from a chi - square distribu-

tion with b − 1 degrees of freedom, and, then by obtaining σ2
a = a

′
a
θ where,

as mentioned, θ ∼ χ2
b−1.

iv.) If the preselected values for λ are now used together with the first simulated

values µ(1), σ2(1)
ε and σ

2(1)
a , the vector a(1)can be drawn using the normal

distribution given by

p(a|µ, σ2
ε , σ

2
a, H,y) ∼ N

[(
1
σ2
ε
Z
′
HZ + 1

σ2
a
Ib

)−1(
1
σ2
ε
Z
′
Hy∗

)
,
(

1
σ2
ε
Z
′
HZ + 1

σ2
a
Ib

)−1
]

derived in Theorem 5.6.2.

v.) These simulated values µ(1), σ2(1)
ε , σ2(1)

a and the vector a(1) are then used

to draw the λ
(1)
ij (i = 1, . . . , b, j = 1, . . . , k) values used to set up the matrix

H defined in equation 5.2.6. These λ
(1)
ij values can be simulated using the

conditional posterior density p(λij |µ, σ2
ε , σ

2
a,a, H,y) by simulating w = λij

[
ν +

1
σ2
ε
(yij−µ−ai)2

]
from a chi - square distribution with ν+1 degrees of freedom,

and, then by obtaining λij = w[
ν+ 1

σ2
ε

(yij−µ−ai)2

] where w ∼ χ2
ν+1 as mentioned.

This completes one iteration of the Gibbs sampler, and as a result, the first simulated

values for µ, σ2
ε , σ

2
a, a and λ or in other words, µ(1), σ2(1)

ε , σ2(1)
a , a(1) and λ(1) respectively

were obtained. These values are then used as initial values for the second iteration of
1Remember all the λijvalues (i = 1, . . . , b, j = 1, . . . , k) down the main diagonal of H can for example be taken

as chi - square random values with ν = 5 degrees of freedom.
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the Gibbs sampling algorithm. For the burn - in period, np values are simulated and

every pth value retained, meaning that we will have n retained, simulated values. Of

these, the first n − 1 retained values are disregarded, and the values simulated and

retained on the npth iteration are used as starting values for the Gibbs sampler which

is used to simulate the random effects and variance components. The Gibbs sampler

is then run ˜̀p times to obtain the estimated marginal posterior densities (estimated

unconditional posterior densities) (µ|y), (σ2
ε |y), (σ2

a|y), (a|y) and (λ|y) using the same

method as described above.

5.8 A Prior Distribution for the Degrees of Freedom ν

In the previous sections, the Bayesian approach to variance component - and random

effects estimation for the random effects model given in equation 5.2.7 was considered

for the case where the degrees of freedom ν was taken as a fixed value, and, prior

distributions were defined for µ, σ2
ε , σ

2
a, a and λ to obtain the joint prior distribution given

in equation 5.3.1.

The random effects model given in equation 5.2.7 will now be reconsidered for the

case where the degrees of freedom ν is not held fixed. This implies that a prior distribu-

tion for the degrees of freedom ν will also have to be specified.

As prior distribution for the degrees of freedom ν, it was suggested by Sahu, Dey and

Branco (2003) that a truncated (ν > 2) exponential distribution given by

p(ν) = ξexp(−ξν) for ν > 2 (5.8.1)

be used with parameter ξ = 0.1. This truncation ensures the finiteness of the mean and

variance of the associated t - error distribution. For further details on this, see Sahu,

Dey and Branco (2003).
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Also, since the parameter ξ = 0.1, it implies that the expected value of ν is given by

E(ν) = 1
ξ

= 10.

The joint prior distribution of the parameters (µ, σ2
ε , σ

2
a,a,λ, ν) is then obtained by mul-

tiplying the joint prior distribution of the parameters (µ, σ2
ε , σ

2
a,a,λ) given by equation

5.3.1 with the prior distribution of ν given by equation 5.8.1. The joint prior distribution

of the parameters (µ, σ2
ε , σ

2
a,a,λ, ν) is then given by

p(µ, σ2
ε , σ

2
a,a,λ, ν) ∝ σ−2

ε

(
1

2πσ2
a

) 1
2
b

exp

(
1

2πσ2
a
a
′
a

)
ν

1
2
νbk

2
ν
2
bk
[
Γ(ν

2
)
]bk b∏

i=1

k∏
j=1

λ
1
2
ν−1

ij exp

(
−1

2
ν

b∑
i=1

k∑
j=1

λij

)
ξexp(−ξν) . (5.8.2)

To obtain the joint posterior distribution, as mentioned, the likelihood function given by

equation 5.2.9 has to be multiplied with the joint prior distribution given by equation

5.8.2. The joint posterior density is then given by

p(µ, σ2
ε , σ

2
a,a,λ, ν|y) ∝(

1
2πσ2

ε

) 1
2
bk∣∣∣H∣∣∣ 1

2
exp

{
1

2πσ2
ε
(y − µj − Za)

′
H(y − µj − Za)

}
σ−2
ε

(
1

2πσ2
a

) 1
2
b

exp

{
1

2πσ2
a
a
′
a

}
ν

1
2
νbk

2
ν
2
bk
[
Γ(ν

2
)
]bk{ b∏

i=1

k∏
j=1

λ
1
2
ν−1

ij

}
exp

(
−1

2
ν

b∑
i=1

k∑
j=1

λij

)
ξexp(−ξν) (5.8.3)

where H is defined as in equation 5.2.6 and y, j, u and Z defined as in equation 5.2.8.

From the joint posterior distribution given in equation 5.8.3, the conditional posterior

distribution of ν can now be obtained.
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Theorem 5.8.1

For the joint posterior distribution given in equation 5.8.3 the conditional posterior dis-

tribution of ν|y, λij is given by

p(ν|y, λij) ∝
ν

1
2
νbk

2
ν
2
bk
[
Γ(ν

2
)
]bk b∏

i=1

k∏
j=1

λ
1
2
ν

ij exp

{
ν

(
−1

2

b∑
i=1

k∑
j=1

λij + ξ

)}
for ν > 2 (5.8.4)

where y is defined as in equation 5.2.8.

The conditional posterior distribution of ν|y, λij , is not in the general form of a known

continuous distribution, and as a result, cannot be simulated directly.

Proof

The proof of Theorem 5.8.1 is given in Appendix C.

As mentioned, equation 5.8.4 does not correspond to any common distribution, hence

only the kernel of the density is available. Geweke (2005) used a metropolis within

Gibbs step to generate random numbers from equation 5.8.4. As candidate density

he used a univariate normal distribution, with mean at the mode ν̂ of p(ν|y,λ) and

precision equal to −d2log p(ν|y,λ)
∣∣∣dν2

∣∣∣ν = ν̂. This method is also used in the Bayesian

Analysis Computation and Communication (BACC) software for models with student

t - distributions. It is however recommended that the rejection sampling method as

discussed by Rice (1995) be used whereby a known distribution is fitted over the un-

known distribution given in equation 5.8.4. In order for the rejection method to be

computationally efficient, it was decided to use as candidate function also a normal

distribution. As will be seen later, the normal distribution fitted p(ν|y,λ) so well that ν

could be simulate directly from it.

Remember, to simulate ν from this normal distribution, the Gibbs sampling procedure

is run in the same way as described earlier, with the only difference being that ν is now

also drawn using this mentioned normal distribution. It must be noted however, that
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since the posterior density of ν is now continuous, a drawn value of ν may not always

be a whole number. Since ν represents the degrees of freedom, the simulated value

for ν therefore has to be rounded off to the nearest whole number before substitution

into the Gibbs sampling algorithm discussed earlier. Also, remember to start the burn

- in period by still specifying an initial value for the degrees of freedom ν, as men-

tioned in step i.) of the Gibbs sampling algorithm, on the first iteration. The degrees of

freedom is then simulated using the normal distribution mentioned in the next section.

This simulated degrees of freedom value ν then simply replaces the fixed degrees of

freedom value ν in step i.) of the Gibbs sampling algorithm from the second iteration

onwards.

5.9 Results and Discussions

Recall that the data provided in Table 5.1 comes from a new manufacturing process

and each row of Table 5.1 represents two measurements of iron concentration. Also

recall that the two iron concentrations measured on the same part were determined

by emission spectroscopy. If a part had a measurement of under 225 ppm of iron, it

was considered to be acceptable (Wilson, Hamada and Xu, 2004).

Since the full conditional posterior distributions of the unknown parameters have been

determined, the Gibbs sampler can now be implemented to obtain the estimated

marginal posterior distributions of the random effects and variance components. MATH-

WORKS MATLAB will be used to do the simulations for the Gibbs sampler.

The iteration process for the burn - in period was started by specifying initial values for

σ
2(0)
ε = m1 = 1721.3285 and σ

2(0)
a = 1

k (m2 −m1) = 1693.6653. Also, with these preselected

values, a(0) was determined as follows: For part 1, the average were obtained for

measurement 1 and measurement 2. The average of all the observations, µ(0), were

then subtracted from this average. Therefore a1 for example was determined as a1 =
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(
206+258

2

)
− 175.37 = 56.63. This was also repeated for the remaining 23 parts. The

preselected values used for a(0) were determined and is given by

a(0) =
[

56.63 13.63 −1.87 19.63 −18.22 33.93 55.53 18.78 24.03 −36.22 35.78

−59.22 −24.62 −46.72 −38.12 −12.62 −36.12 43.13 17.63 −22.32 −94.97

150.13 −53.22 −24.62
]′

.

Also, λ was taken as a vector of 48 chi - square random values with ν = 5 degrees

of freedom each. These preselected values were substituted into the full conditional

posterior densities of the unknown parameters to draw ν(1) (if ν was simulated2), µ(1),

σ
2(1)
ε , σ2(1)

a , a(1) and λ(1). The full conditional posterior distributions were updated after

every iteration. The results from the burn - in period were obtained after running the

procedure 30000 times. Every 10th value for ν, µ, σ2
ε , σ

2
a, a and λ were stored, mean-

ing that 3000 values were stored for each of the unknown parameters. Of these 3000

stored combinations, the first 2999 stored combinations were disregarded and the val-

ues stored on the 30000th iteration, i.e. ν(3000), µ(3000), σ2(3000)
ε , σ2(3000)

a , a(3000) and λ(3000),

were used as starting values for the Gibbs sampling procedure.

The new starting values obtained from the burn - in period were then substituted into

the full conditional posterior distributions and the Gibbs sampling procedure was run˜̀p = 100000 times. Again, every p = 10th sample was saved, meaning that the total

number of samples saved was ˜̀= 10000. Also, the full conditional posterior distributions

were updated after every iteration. These results obtained from the Gibbs sampler

were then used to obtain the histograms of the estimated marginal posterior distri-

butions p(ν|y), p(µ|y), p(σ2
ε |y), p(σ2

a|y) and for example p(λ20|y)3. Estimates from the

marginal posterior densities of functions of the variance components such as the to-

tal variance σ2
ε + σ2

a and variance ratio σ2
ε

(σ2
ε+σ2

a)
could also easily be obtained. These

estimated marginal posterior distributions are displayed in Figures 5.9.2 - 5.9.7.
2ν was not simulated in the case of the joint posterior distribution given by equation 5.4.1. The Gibbs sampler was

then run using fixed values for ν, for example ν = 5 or ν = 10 etc.
3The marginal posterior distributions for p(λi|y) ∀ i = 1, . . . , 24 can also easily be obtained. i = 20 was selected for

illustrative purpose only.
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Figure 5.9.1: Unknown Conditional Posterior Distribution of the Degrees of Freedom ν
and a Normal Distribution.

Different starting values for the variance components were also considered for the

iteration process for the burn - in period. For example, for σ2(0)
ε , 500 and 2500 were

used, while 400 and 2400 were used for σ2(0)
a . Also, instead of simulating 48 different

χ2
5 values for λij (i = 1, . . . , 24, j = 1, 2), all λ′ijs were considered to be equal to 5, the

expected value of this χ2
5 distribution. The estimated marginal posterior distributions

obtained from the Gibbs sampler were however for all practical purposes the same as

those illustrated.

From Figure 5.9.1 it can be seen that the conditional posterior distribution of ν ap-

pears to be symmetrical and bell shaped. As mentioned, it was decided to fit a nor-

mal distribution over it, with mean and variance equal to E(ν|λ,y) and V ar(ν|λ,y) =

E
[
(ν|λ,y)2

]
−E

[
(ν|λ,y)

]2
respectively. Remember also, that as mentioned, this normal

distribution (illustrated by the solid line in Figure 5.9.1) fitted p(ν|y,λ) so well, that as a

result, the rejection sampling method as proposed by Rice (1995) was not used and ν

was simulated directly from this normal distribution.
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Figure 5.9.2: Histogram of the Estimated Marginal Posterior Distribution of µ.

From Figure 5.9.1 it is clear that the posterior mode is equal to 3, indicating that the

most frequently used degrees of freedom to simulate the variance components and

random effects with, was 3. The low number of degrees of freedom is also an indication

that a student t - distribution will fit the measurement errors better than the normal

distribution.

As expected, the histogram of the estimated marginal posterior distribution of µ (Figure

5.9.2), obtained using the student t - measurement error model, is symmetrical due

to the fact that the conditional posterior distribution of µ (equation 5.6.1) is normal.

Figure 5.9.2 also compares well with the posterior distributions of the production mean

obtained using the normal multiplicative measurement error model, the log - normal

measurement error model and the censored data multiplicative measurement error

model which were illustrated in Figure 2 of Wilson et. al. (2004).

It should be noted that the histogram of the estimated marginal posterior distribution

of σ2
ε is usually symmetrical or fairly symmetrical due to the high number of degrees
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Figure 5.9.3: Histogram of the Estimated Marginal Posterior Distribution of σ2
ε .

Figure 5.9.4: Histogram of the Estimated Marginal Posterior Distribution of σ2
a.
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Figure 5.9.5: Histogram of the Estimated Marginal Posterior Distribution of (σ2
ε + σ2

a).

Figure 5.9.6: Histogram of the Estimated Marginal Posterior Distribution of σ2
ε

(σ2
ε+σ2

a)
.
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Figure 5.9.7: Histogram of the Estimated Marginal Posterior Distribution of λ for the 20th
Day.

of freedom associated with σ2
ε . If Figure 5.9.3 is however considered, it can be seen

that the histogram is relatively positively skewed. The reason for this is the low number

of degrees of freedom associated with σ2
ε i.e. b(k − 1) = 24 which is due to the small

number of 24 selected parts with only 2 measurement per part.

The histogram of the estimated marginal posterior distribution of σ2
a depicted in Figure

5.9.4 is similar to the graphs of the posterior distributions of the production variance

displayed by Wilson et. al. (2004) (Figure 2) for the normal -, multiplicative -, and log -

normal measurement error cases.

For comparative purposes the above simulations were also repeated for cases where

the degrees of freedom were held fixed at 3, 5, 10, 15, 20, 25 and 30 and for the case

where the residuals were considered to be random N(0, σ2
ε) variables. In Table 5.2

the estimated posterior median values for the variance components, functions of the

variance components and λ20 are given.
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Table 5.2: Estimated Posterior Median Values for Variance Components, Functions of

Variance Components and λ20.

Posterior Median for ν Simulated ν = 3 ν = 5 ν = 10 ν = 15

µ 174.9342 175.1402 175.0101 175.1528 175.2785

σ2
ε 2394.9 2393.5 2168.9 2024.5 1935.9

σ2
a 1678.4 1676.4 1666.9 1699.3 1720.5

σ2
ε + σ2

a 4272.4 4310.1 4011.3 3863.4 3802.5
σ2
ε

(σ2
ε+σ2

a)
0.5849 0.5855 0.5598 0.5390 0.5228

λ20 0.9930 1.0052 0.9865 0.9936 0.9953

Posterior Median for ν = 20 ν = 25 ν = 30 εij ∼ N(0, σ2
ε)

µ 175.3668 175.4160 175.1960 175.1925

σ2
ε 1911.7 1893.5 1902.2 1823.3

σ2
a 1716.1 1720.2 1719.8 1730.7

σ2
ε + σ2

a 3739.5 3728.0 3720.9 3659.7
σ2
ε

(σ2
ε+σ2

a)
0.5218 0.5171 0.5172 0.5071

λ20 0.9954 0.9976 0.9996 −

Comparing the results presented in Table 5.2 reveal that the target value µ, remains

more or less constant for all cases mentioned. The same applies to the variance com-

ponent measuring the between parts variation, σ2
a. This would be expected since

neither µ nor σ2
a directly depends on the degrees of freedom ν. Even though the simu-

lation of λij (i = 1, . . . , b, j = 1, . . . , k) depends on the degrees of freedom, the posterior

median values for λ20, remained approximately the same for all the cases mentioned

in Table 5.2. Also, recall that when ν was simulated, the estimated posterior mode

of the estimated marginal posterior distribution of ν was equal to 3, indicating that

the most frequently used degrees of freedom was 3. From Table 5.2 it is therefore ev-

ident that as the degrees of freedom increase and the student t - distributions thus
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approaches a normal distribution, the estimated posterior median values for σ2
ε de-

crease and approach the estimated posterior median value of σ2
ε for the case where

neither ν nor λ is present i.e. where it is assumed that the residuals follow a N(0, σ2
ε)

distribution. The same can be seen for the estimated posterior median values for the

total variance, (σ2
ε + σ2

a), and the variance ratio, σ2
ε

(σ2
ε+σ2

a)
. This is also expected since

both these quantities are functions of the error variance component, σ2
ε .

By considering Table 5.3, it can be seen that the estimated interval width for the lo-

cation parameter µ decreases generally as the degrees of freedom increase and the

student t - distribution thus approach a normal distribution. This is to be expected since

the student t - distribution has heavier tails than a normal distribution. The same can

be seen for σ2
ε , (σ2

ε + σ2
a),

σ2
ε

(σ2
ε+σ2

a)
and λ20. Although the interval width also decrease

slightly for σ2
a, this decrease is not as dramatic as for σ2

ε .

Table 5.3: 95% Equal Tail Credibility Intervals and Interval Widths of Quantities of
Interest.

Quantity of ν - simulated ν = 3 ν = 5
Interest 95% CI Width 95% CI Width 95% CI Width

149.6802 150.8202 150.919
µ − − −

200.6703 50.99 200.0941 49.2738 199.0883 48.1693
1035.0 1080.3 1031.8

σ2
ε − − −

5338.7 4303.7 5587.4 4507.1 4542.1 3510.3
536.5785 298.4185 543.4245

σ2
a − − −

5298.0 4761.42 4662.8 4364.4 5105.8 4562.38
2467.6 2334.2 2424.2

σ2
ε + σ2

a − − −
8622.6 6155 8141.0 5806.8 7820.6 5396.4
0.2434 0.2650 0.2376

σ2
ε

σ2
ε+σ2

a
− − −

0.8661 0.6227 0.9268 0.6618 0.8557 0.6181
0.1288 0.1453 0.2289

λ20 − − −
3.4817 3.3529 3.4058 3.2604 2.7097 2.4808
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Quantity of ν = 10 ν = 15 ν = 20
Interest 95% CI Width 95% CI Width 95% CI Width

151.5970 152.217 152.0222
µ − − −

198.7091 47.1121 197.9371 45.72 197.8950 45.873
1021.7 1038.09 1036.1

σ2
ε − − −

3905.2 2883.5 3688.0 2649.1 3558.4 2522.3
556.6503 568.2349 567.6030

σ2
a − − −

4984.9 4428.3 4965.0 4396.8 5039.9 4472.297
2422.4 2449.1 2444.7

σ2
ε + σ2

a − −
7209.7 4787.3 7036.9 4587.8 7062.6 4617.9
0.2341 0.2302 0.2319

σ2
ε

σ2
ε+σ2

a
− − −

0.8407 0.6066 0.8303 0.6 0.8336 0.6017
0.3652 0.4468 0.5026

λ20 − − −
2.1343 1.7691 1.8771 1.4303 1.7338 1.2312

Quantity of ν = 25 ν = 30 εij ∼ N(0, σ2
ε)

Interest 95% CI Width 95% CI Width 95% CI Width
152.3915 151.5411 152.69

µ − − −
198.48 46.09 197.669 46.13 198.099 45.41
1050.1 1039.6 1058.9

σ2
ε − − −

3528.0 2477.9 3467.5 2427.9 3292.3 2233.4
553.369 581.535 574.825

σ2
a − − −

4860.2 4306.831 4971.8 4390.27 4790.7 4215.88
2463.4 2475.6 2475.1

σ2
ε + σ2

a − − −
6962.3 4498.9 7027.2 4551.6 6773.9 4298.8
0.232 0.2274 0.2325

σ2
ε

σ2
ε+σ2

a
− − −

0.83 0.5980 0.8367 0.5993 0.8224 0.5899
0.5432 0.5729 −

λ20 − − −
1.6625 1.1193 1.6027 1.0598 − −
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In the next section, tolerance intervals will be determined for the balanced one - way

random effects model with student t - distributed measurement errors.

5.10 Tolerance Intervals

It was mentioned in previous chapters that in any production process, designers will

specify tolerances for various characteristics. These characteristics are based on con-

siderations of requirements for fit or function, in use, or in subsequent levels of assembly.

The dimensions within which a produced part should fall in order to be acceptable,

is a typical example (Easterling, Johnson, Bement and Nachtsheim, 1991). To protect

against measurement error and to keep the production facility on its toes, designers

sometimes specify tolerance limits with an interval width less than the width of the true

required tolerance limits. Since these ad hoc tolerances may impose undue costs due

to scrap or rework, it is desirable to take a more systematic look at the determination

of tolerances, taking measurement error into account (Easterling, Johnson, Bement

and Nachtsheim, 1991).

Based on this information, and, since the Bayesian model has been specified and the

variance components and random effects have been determined, the three impor-

tant research questions proposed by Wolfinger (1998) and stated in Chapter 1, can

now be investigated for the data given in Table 5.1.

These three questions, and many similar ones, can be addressed by the three Bayesian

tolerance intervals proposed by Wolfinger (1998) which allow inference about the

quantiles of a probability distribution that is assumed to adequately describe a pro-

cess (Wolfinger, 1998).

To reiterate, all three kinds of tolerance intervals can take the following forms: lower

limit (t`,∞), an upper limit (∞, tu), or a two - sided limit (t`, tu). For further details about
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confidence intervals and tolerance limits, see previous chapters as well as Hahn and

Meeker (1991) and Wolfinger (1998).

A simulation based approach will now be presented for determining Bayesian toler-

ance intervals for the one - way variance component model given in equation 5.2.8

with student t - distributed measurement errors. The procedure will then be applied

to the data given in Table 5.1. Since theorems proved for determining the α - expec-

tation tolerance interval will also be used for the determination of the (α, δ) tolerance

intervals, the α - expectation tolerance interval will be discussed first.

5.10.1 α - Expectation Tolerance Intervals

According to Wolfinger (1998), the α - expectation tolerance interval addresses re-

search question 2 and focuses on prediction of one or a few future observations from

the process.

By using the results given in equations 5.6.1 - 5.6.5, as well as equation 5.8.4, the follow-

ing theorems can now be proved.

Theorem 5.10.1.1

The predictive distribution of the average of k∗ future measurements (yf1, yf2 . . . , yfk∗)

for a new or unknown part, given the variance components σ2
ε and σ2

a, λfj∗ (j∗ =

1, . . . , k∗) and µ, is normally distributed with mean

E(yf |µ, σ2
ε , σ

2
a, λf1, . . . , λfk∗) = µ (5.10.1)

and variance

V ar(yf |µ, σ2
ε , σ

2
a, λf1, . . . , λfk∗) =

σ2
ε

k∗2

k∗∑
j∗=1

1

λfj∗
+ σ2

a (5.10.2)
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Proof

The proof of Theorem 5.10.1.1 is given in Appendix C.

Theorem 5.10.1.2

The predictive distribution of the average of k∗ future measurements (ỹi1, ỹi2, . . . , ỹik∗)

for a specific part (ith part) or a new part similar to the given specific part, given the

variance components σ2
ε and σ2

a, and, λi11, λi12, . . . , λi1k∗ λi21, λi22, . . . , λi2k∗ as well as µ,

is normally distributed with mean

E(ỹi·|µ, ai, λi11, . . . , λi2k∗ , σ
2
ε , σ

2
a) = µ+ ai (5.10.3)

and variance

V ar(ỹi·|µ, ai, λi11, . . . , λi2k∗ , σ
2
ε , σ

2
a) =

σ2
ε

k∗2

{
p
k∗∑
j∗=1

1

λi1j∗
+ (1− p)

k∗∑
j∗=1

1

λi2j∗

}
(5.10.4)

where p = 0.5.

Proof

The proof of Theorem 5.10.1.2 is given in Appendix C.

To be able to provide comparative results with results obtained by Wilson et. al. (2004),

all future posterior distributions and tolerance intervals will be based on a N(µ, σ2
a) dis-

tribution which represents the variation amongst the parts. Figure 5.10.1 represents

the unconditional predictive parts distribution x, which conditional on µ, σ2
ε , σ

2
a and

indirectly conditional on a and λ, is distributed N(µ, σ2
a).

The Bayesian simulation procedure used for obtaining Figure 5.10.1 was performed in

the following way.

i.) By using the Gibbs sampling procedure discussed in section 5.7, the vari-

ance components and random effects were generated from the joint pos-

terior distribution in the case where the degrees of freedom was simulated.
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Figure 5.10.1: Estimated Unconditional Predictive Part Distribution, x, if ν is Simulated.
Determined for the Iron Data Given in Table 5.1.

95% Upper Prediction Limit: 254.5517

This was also done for the cases where the degrees of freedom were held

fixed.

ii.) For each of the ˜̀ = 10000 sets of simulated values for µ, σ2
ε , σ

2
a, a, λ and ν

(if ν is also simulated), the conditional predictive part distribution, which is

normally distributed with mean µ and variance σ2
a, was determined.

iii.) Using the Rao Blackwell argument discussed in section 2.5 (see Gelfand and

Smith, 1991), the unconditional predictive part distribution was obtained by

averaging the conditional predictive part distributions over the ˜̀ = 10000

repetitions.

For comparative purposes, the median values and 95% upper prediction limits for the

predictive part distribution, for ν = 3, ν = 5, ν = 10, ν = 15, ν = 20, ν = 25, ν = 30, ν

simulated and the case where εij ∼ N(0, σ2
ε) are given in Table 5.4.
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Table 5.4: Median Values and 95% Upper Prediction Limits of the Predictive Part

Distribution Determined for the Iron Data Given in Table 5.1.

Degrees of Freedom Median 95% Upper Prediction Limit

ν simulated 174.5121 254.5517

ν = 3 175.3703 253.7655

ν = 5 175.1837 252.9174

ν = 10 175.9202 253.4124

ν = 15 175.1280 252.7596

ν = 20 175.0276 252.6984

ν = 25 175.4042 253.3415

ν = 30 175.8456 254.0012

εij ∼ N(0, σ2
ε ) 175.0278 254.8190

For illustrative purposes, using results obtained if the degrees of freedom ν is simulated,

it follows that the process is in control if 95% or more of the parts have iron concentra-

tion measurements that fall below 254.5517 ppm.

5.10.2 One - Sided (α, δ) Tolerance Intervals

Assuming that a process is in a state of control, research question 1 can be addressed

by the (α, δ) tolerance intervals. As mentioned, these (α, δ) tolerance intervals are

typically applied in cases requiring long - run prediction about numerous observations

from this in - control process, and, inference is based on the actual quantiles of the

assumed underlying probability distribution (Wolfinger, 1998). Based on an available

sample of measurements, manufacturers often use these (α, δ) tolerance intervals to

predict the future performance of a product (Wolfinger, 1998).
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To construct one - sided (α, δ) tolerance intervals, the estimated marginal posterior

distribution of q∗ must be obtained. In this case, it represents the estimated marginal

posterior distribution of the (1− α)th quantile of the

N

{
(µ+ ai) ,

σ2
ε

k∗2

[
p
k∗∑
j∗=1

1
λi1j∗

+ (1− p)
k∗∑
j∗=1

1
λi2j∗

]}
distribution derived in Theorem 5.10.1.2.

The average of future data of the ith part or a part similar to the ith part is described

by this distribution. The Bayesian simulation procedure for obtaining the posterior distri-

bution of q∗ can be performed as follows:

i.) Use the Gibbs sampling procedure described in section 5.7 to generate the

variance components σ2
ε and σ2

a, µ, λ and the random effects a (as well as

ν if ν is simulated) from the joint posterior distribution for the cases where ν

were held fixed and for the case where ν was simulated.

ii.) For the retained Gibbs simulated values of µ, σ2
ε , σ

2
a, λ and a (as well as ν if ν

is simulated), determine

q∗ = (µ+ ai)− zα

{
σ2
ε

k∗2

[
p
k∗∑
j∗=1

1
λi1j∗

+ (1− p)
k∗∑
j∗=1

1
λi2j∗

]} 1
2

.

Remember, since k = 2 measurements were taken on the same part, q∗

needs to be determined twice, once for each λij for j = 1, 2.

iii.) Repeat steps i.) and ii.) ˜̀= 10000 times to obtain the histogram of the esti-

mated marginal posterior distribution of the (1− α)th quantile of the normal

distribution derived in Theorem 5.10.1.2.

For comparative purposes, the histogram of the estimated marginal posterior distribu-

tion of the 0.95th quantile of the part distribution, is displayed in Figure 5.10.2 for the

data given in Table 5.1. The histogram displayed in Figure 5.10.2 was obtained for the

case where ν was simulated, by calculating

q∗p = µ+ 1.645σa
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using the Gibbs sampled values for µ and σ2
a. The (0.95, 0.95) one - sided upper toler-

ance bound can then easily be obtained by ranking the simulated q∗p values in order

of magnitude and obtaining the 95th percentile of these ranked simulated values. The

(0.95, 0.95) one - sided upper tolerance bounds for ν = 3, ν = 5, ν = 10, ν = 15, ν = 20,

ν = 25, ν = 30, ν simulated and the case where εij ∼ N(0, σ2
ε), are given for compara-

tive purposes in Table 5.5.

Table 5.5: 95% Upper Credibility Limits of the 0.95th Quantiles of the Part Distributions

Determined for the Iron Data Given in Table 5.1.

Case Upper Credibility Limits

ν simulated 291.9719

ν = 3 291.4412

ν = 5 290.0369

ν = 10 289.5633

ν = 15 288.5418

ν = 20 289.1931

ν = 25 288.7837

ν = 30 287.7826

εij ∼ N(0, σ2
ε) 287.8199

From Table 5.5 it can be seen that the upper 95% credibility limit for the normally dis-

tributed errors is only somewhat smaller than the corresponding 95% credibility limits for

the student t - distributed measurement errors with simulated degrees of freedom and

degrees of freedom less than 25. Also, the histogram depicted in Figure 5.10.2 com-

pares well with the posterior distributions of the 0.95 quantile of the part distribution

(especially the normal and log - normal measurement error models) given in Figure 3

on page 200 of Wilson et. al. (2004). According to Wilson, Hamada and Xu (2004),

the 95% upper tolerance bound to contain 95% of the population is 286.7 for the nor-

mal model, 277.6 for the log - normal model and 305.3 for the censored normal model.
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Figure 5.10.2: Histogram of the Estimated Marginal Posterior Distribution of the 0.95th
Quantile of the Part Distribution for the Data Given in Table 5.1.

Upper (0.95, 0.95) One - Sided Tolerance Limit: 291.9719

These authors also mentioned that the upper tolerance bound for the censored nor-

mal model will be higher, since the distribution for this model is somewhat wider due

to the additional uncertainty introduced when exact measurements are not made.

If the upper one - sided (0.95, 0.95) tolerance limits for the true part measurement are

compared to these results obtained by Wilson, Hamada and Xu (2004), it can be seen

that for the case assuming that ν is simulated, 291.9719 compares well with the above

mentioned results by Wilson, et.al. (2004). Also, by considering Table 5.5, it can be seen

that the results obtained for the different degrees of freedom used, also compare well

with these results. For illustrative purposes using the case where ν was simulated, the

upper one - sided (0.95, 0.95) tolerance limit equals to 291.9719 can be interpreted as

follows: 95% of true emission spectroscopy values of iron in parts per million will fall

below 291.9719 with probability 0.95.
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Also, the histograms of the estimated marginal posterior distributions of

1. q∗` = (µ+ ai)− 1.96

{
σ2
ε

k∗2

[
p
k∗∑
j∗=1

1
λi1j∗

+ (1− p)
k∗∑
j∗=1

1
λi2j∗

]} 1
2

and

2. q∗u = (µ+ ai) + 1.96

{
σ2
ε

k∗2

[
p
k∗∑
j∗=1

1
λi1j∗

+ (1− p)
k∗∑
j∗=1

1
λi2j∗

]} 1
2

,

which in this case represent the
[

(1±0.95)
2

]th
quantiles of theN

{
(µ+ai) ,

σ2
ε

k∗2

[
p
k∗∑
j∗=1

1
λi1j∗

+

(1− p)
k∗∑
j∗=1

1
λi2j∗

]}
distribution derived in Theorem 5.10.2, as well as

3. q∗` = µ− 1.96
{

σ2
ε

k∗2

k∗∑
j∗=1

1
λfj∗

+ σ2
a

} 1
2

and

4. q∗u = µ+ 1.96
{

σ2
ε

k∗2

k∗∑
j∗=1

1
λfj∗

+ σ2
a

} 1
2

,

which in this case represent the
[

1±0.95
2

]th
quantiles of the N

(
µ , σ2

ε

k∗2

k∗∑
j∗=1

1
λfj∗

+ σ2
a

)
dis-

tribution derived in Theorem 5.10.1.1, can also easily be determined by using steps i.)

to iii.) described for the simulation procedure. Remember that for 1. and 2. above, q∗`

and q∗u need to be determined twice, once for each λij for j = 1, 2. Also, for 3. and 4.

above, λfj∗ (j∗ = 1, . . . , k∗) are simulated from the prior distribution of λ, since a future

observation for any new or unknown part is simulated.

For illustrative purposes, Figure 5.10.3, displays the histograms of the estimated marginal

posterior distributions of 5. and 6. below, where

5. q∗` = µ− 1.96

{
σ2
a

} 1
2

and

6. q∗u = µ+ 1.96

{
σ2
a

} 1
2

,
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Figure 5.10.3: Histograms of the Estimated Marginal Posterior Distributions of the[
(1±0.95)

2

]th
Quantiles of the Part Distribution for the Data Given in Table 5.1.

which in this case represent respectively the (1−0.95
2 )th and (1+0.95

2 )th quantiles of the

part distribution for the iron data given in Table 5.1.

5.10.3 Two - Sided (α, δ) Tolerance Intervals

It was already mentioned that the construction of two - sided (α, δ) tolerance intervals

are more complex than the construction of one - sided (α, δ) tolerance intervals. Since

the posterior correlation between q∗` and q∗u determined in section 5.10.2 is not equal

to 1, the q∗` and q∗u values can also not just be combined for determining a valid two -

sided (α, δ) tolerance interval for the student t - distributed measurement error model.

Instead, the method as proposed by Wolfinger (1998) should also be used.

It is therefore suggested (see Wolfinger, 1998) that a valid two - sided (α, δ) tolerance
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interval for the student t - distributed measurement error model can be determined by

computing the two quantiles

q∗` = µ− z 1+α
2

{
σ2
a

} 1
2

and

q∗u = µ+ z 1+α
2

{
σ2
a

} 1
2

.

These (q∗` , q
∗
u) pairs then form a sample from the bivariate posterior distribution of the[

(1−α)
2

]th
and

[
(1+α)

2

]th
quantiles of the true part distribution.

In order to obtain a valid two - sided (α, δ) tolerance interval that is one - dimensional

and symmetric about the posterior mean, Wolfinger (1998) suggested to first form a

scatter plot of q∗` versus q∗u, with q∗` plotted on the vertical axis. Then as mentioned

previously, proceed by constructing the reference line given by

q∗` = −q∗u + 2y.. .

Two additional lines are then drawn, one parallel to each axis and intersecting on the

reference line. This intersecting point is then slid along the reference line until 100(1−δ)%

of the (q∗` , q
∗
u) pairs are contained in the half - rectangle opening towards the lower

right portion of the graph. The coordinates of the resulting intersection point form a

two - sided (α, δ) tolerance interval of the desired form. In Figure 5.10.4 this procedure

is graphically illustrated for the construction of a valid two - sided (0.90, 0.95) tolerance

interval for the part distribution of the data given in Table 5.1 for the case where ν was

simulated.

In Table 5.6, the two - sided (0.90, 0.95) tolerance intervals determined for the part dis-

tribution of the data given in Table 5.1, are given for ν = 3, ν = 5, ν = 10, ν = 15, ν = 20,

ν = 25, ν = 30, ν simulated and the case where εij ∼ N(0, σ2
ε).
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Figure 5.10.4: Constructing a Two - Sided (0.90, 0.95) Tolerance Interval for the Part
Distribution of the Data Given in Table 5.1.

Table 5.6: Two - Sided (0.90, 0.95) Tolerance Intervals for Different Cases for the Data

Given in Table 5.1.

Case Average of q Unknown or Future Parts Interval Width

ν simulated 74.5261 − 275.6618 201.1357

ν = 3 75.5734 − 274.4092 198.8358

ν = 5 75.5011 − 274.2497 198.7486

ν = 10 76.5824 − 273.9850 197.4025

ν = 15 76.8208 − 274.1172 197.2964

ν = 20 76.8048 − 273.4648 196.6600

ν = 25 77.5064 − 273.2710 195.7646

ν = 30 76.6002 − 273.2897 196.6895

εij ∼ N(0, σ2
ε) 78.4079− 272.0621 193.6542

For illustrative purposes, the two - sided (0.90, 0.95) tolerance interval for the part dis-
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tribution with ν simulated, given by [74.5261 − 275.6618], can be interpreted as follows:

90% of emission spectroscopy true values of iron in parts per million will fall in the interval

[74.5261 , 275.6618] with probability 0.95.

Although not given here, two - sided (0.90, 0.95) tolerance intervals can also be con-

structed for the quantiles of the N

(
(µ + ai) ,

σ2
ε

k∗2

[
p
k∗∑
j∗=1

1
λi1j∗

+ (1 − p)
k∗∑
j∗=1

1
λi2j∗

])
distri-

bution derived in Theorem 5.10.1.2 using 1. and 2. in section 5.10.2, or for the quantiles

of the N

(
µ , σ2

ε

k∗2

k∗∑
j∗=1

1
λfj∗

+ σ2
a

)
distribution derived in Theorem 5.10.1.1 using 3. and 4.

given in section 5.10.2.

5.10.4 Fixed - in - Advanced Tolerance Intervals

As mentioned before, fixed - in - advance tolerance intervals invert the prediction

problem by considering the content of predetermined bounds, and according to

Wolfinger (1998), answer research question 3 mentioned in Chapter 1.

To determine the content of a fixed - in - advance tolerance interval, the posterior

distribution of the content has to be determined. For example, suppose an upper

fixed - in - advance limit s is specified for data assumed to arise from a new batch.

Then for the average of k∗ future measurements on the ith part or future part similar to

the ith part, compute

c∗ = 1− Φ

 s− (µ+ ai)√
σ2
ε

k∗2

[
p
k∗∑
j∗=1

1
λi1j∗

+ (1− p)
k∗∑
j∗=1

1
λi2j∗

]
 (5.10.5)

where c∗ has to be determined k times, once for each λij for j = 1, . . . , k. Also, for the

true part measurements, compute

c∗ = 1− Φ

[
s− µ√
σ2
a

]
. (5.10.6)
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It must be noted that for both of the above cases, Φ[·] represents the standard nor-

mal cumulative distribution function. As mentioned previously, the simulated c∗ values

represent a sample from the posterior distributions of the content of the interval [s,∞].

To illustrate, suppose that a lower fixed - in - advance limit of s = 225 ppm is speci-

fied for the data given in Table 5.1. This limit is selected, since according to Wilson,

Hamada and Xu (2004), a part is considered to be acceptable if it has under 225 ppm

of iron. By selecting s = 225 as lower fixed - in - advance limit, the content of the inter-

val (225,∞) is determined for each observation in the sample of simulated parameter

values. In other words, the posterior distribution of the proportion of parts produced by

the process that is not acceptable, is estimated.

Using equations 5.10.6, the histogram of the sample of simulated c∗ values from the

posterior distribution of the content of the interval [225,∞] for the part distribution, with

ν simulated, is displayed in Figure 5.10.5. Figure 5.10.5 therefore represents the esti-

mated posterior distribution of the content above the preselected specification limit

s = 225 ppm.

From Figure 5.10.5 it can be seen that the posterior contents are positively skewed

and has a posterior median equals to 0.1268. This means that if the degrees of free-

dom ν is simulated, on average 12.68% unacceptable parts will be produced by the

manufacturing process with probability 0.95.

For comparative purposes, the posterior median values and 95% equal tail credibility

intervals for the content of the interval [225,∞] for a fixed - in - advance lower limit

s = 225 ppm of iron, for the part distribution are given in Table 5.7 for the cases where

ν = 3, ν = 5, ν = 10, ν = 15, ν = 20, ν = 25, ν = 30, ν simulated and the case where

εij ∼ N(0, σ2
ε).



CHAPTER 5. STUDENT T - DISTRIBUTED MEASUREMENT ERROR MODEL 273

Figure 5.10.5: Histogram of the Estimated Posterior Distribution of the Content of the
Interval [225,∞] for a Fixed - in - Advance Lower Limit s = 225 ppm of Iron for the Part

Distribution with ν Simulated. Determined for the Data Given in Table 5.1.

Table 5.7: Posterior Median Values and 95% Equal Tail Credibility Intervals of the

Content of the Interval [225,∞] for a Fixed - in - Advanced Lower Limit s = 225 ppm of

Iron for Different Cases for the Data Given in Table 5.1.

Case Median 95% Equal Tail Credibility Interval Interval Width

ν simulated 0.1268 0.0106 − 0.3237 0.3131

ν = 3 0.1264 0.0091 − 0.3236 0.3145

ν = 5 0.1267 0.0099 − 0.3146 0.3047

ν = 10 0.1283 0.0122 − 0.3160 0.3039

ν = 15 0.1303 0.0138 − 0.3104 0.2967

ν = 20 0.1290 0.0133 − 0.3133 0.3001

ν = 25 0.12.96 0.0134 − 0.3144 0.3011

ν = 30 0.1279 0.0148 − 0.3077 0.2928

εij ∼ N(0, σ2
ε) 0.1286 0.0123 − 0.3096 0.2973
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From Table 5.7 it can be seen that the 95% credibility intervals of the content of the

interval [225,∞] for a fixed - in - advance lower limit s = 225 ppm of iron for the part

distribution tend to be narrower and the posterior median values appear to be slightly

higher as the degrees of freedom increase. Although these mentioned median values

given in Table 5.7 generally appear to increase as the degrees of freedom increase,

they are also for all practical purposes the same. Also, using equation 5.10.5, the

fixed - in - advance tolerance interval for the content of the interval [225,∞] for the

average of k∗ measurements on the ith part or a similar future part can be determined,

although it in not given here.

5.11 Checking for Outliers

In the previous sections, the assumption of Gaussian errors was relaxed in the direc-

tion of the student t - family to accommodate for the possibility of outlying part mea-

surements. If present, these possible outlying part measurements generated by the

balanced one - way random effects model given in equation 5.2.7 will have unex-

pectedly large random errors (ε′ijs), and as a result, are thus considered outliers, since

Chaloner and Brant (1988) defined outliers in linear models as observations with sur-

prisingly large realized absolute errors.

The identification of outliers is an important problem, since according to Barnett and

Lewis (1994), in almost every real data set observations will be found which differ so

much from the other observations that some abnormal source of error, not contem-

plated in the theory, can be inferred. Although surveys from 18th century statistical

literature have indicated awareness of the outlier problem, it was not until the 1850’s

that first attempts to develop statistically objective methods for dealing with outliers

were reported (Meiring, van der Merwe and Viljoen, 1998). Even though since then

there were many contributors investigating the topic, it was not until the early 1960’s
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that the first mathematical attempts to treat the outlier problem were published by

Srikantan (1961) and Ferguson (1961).

Later on, authors such as Box and Tiao (1968), Abraham and Box (1978), Guttman, Dut-

ter and Freeman (1978) and Freeman (1980) defined outliers as arising from a separate,

expanded model. These authors all employed a Bayesian approach to outlier detec-

tion. The method proposed by Chaloner and Brant (1988) however defined outliers

as arising form the model under consideration, rather than arising from an expanded

model as previously proposed.

Guttman (1973) also presented a Bayesian approach to the identification of a sin-

gle outlier in multivariate normal distributions, while Weisberg (1985) utilized standard-

ized residuals based on a student t - distribution. Weisberg (1985) used the Bonfer-

roni inequality to provide critical values. Geisser (1987) on the other hand, suggested

a Bayesian predictive method based on the predictive distribution p(yi|y(i)) which

he recommended for regression problems where p(yi|y(i)) had different scale factors.

Geisser (1987) showed algebraically that in the case of linear models using non - infor-

mative prior distributions, his proposed predictive discordancy diagnostics were closely

related to standardized residuals. He obtained p - values from the outlier tests based on

comparing these external standardized residuals to their student t - distribution, without

using the Bonferroni inequality. Other related more general conditional predictive dis-

cordancy diagnostics were also suggested and discussed by Geisser (1987). For more

information, see Geisser (1980), (1987), (1988a) and (1988b). Kass and Raftery (1995)

also proposed a Bayesian method for outlier detection based on prior and posterior

odds, while Varbanov (1996), used Markov chain Monte Carlo simulation to obtain

posterior probabilities used for declaring the ith observation an outlier.

As was mentioned, the principle aim of the remainder of this section is the detection

of outlying part measurements utilizing the mentioned student t - distributed measure-

ment error model.
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According to Wakefield et. al. (1994) the scale parameter λij or log10(λij) serve as

a good indicator to detect outlying part measurements, since there is a λij for each

measurement on each part. The prior expectation of log10(λij) is 0, so that a log10(λij)-

value substantially below zero, indicates that the jth measurement on the ith part

is likely to be an outlier (van der Merwe and du Plessis, 1996). Interval estimates of

log10(λij) can also easily be constructed.

In Tables 5.8 and 5.9 the 90% equal tail credibility intervals of λij and log10(λij) (for

j = 1, 2) are given for the jth measurement on the ith part for the case where ν was

simulated. By considering both Tables 5.8 and 5.9, it can be seen that the first mea-

surement of part 22 can be considered an outlying observation, since both the upper

and lower limits of the 90% equal tail credibility interval of log10(λi=22j=1) is below zero.

As a result, zero is therefore not contained in the interval. This is to be expected since

the first measurements of part 22 i.e. 439.5, is substantially larger than the rest of the ob-

servations given in Table 5.1. All other 90% equal tail credibility intervals for log10(λij) (for

j = 1, 2) covered zero, resulting in none of the other measurements to be considered

as possible outliers.
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Table 5.8: 90% Equal Tail Credibility Intervals for λi1 and log10(λi1) for the Case where ν

was Simulated for the First Measurement of the Data Given in Table 5.1.

Part Number λi1 log10(λi1)

1 0.2104− 2.9213 −0.677− 0.4656

2 0.2140− 2.9630 −0.6696− 0.4717

3 0.2047− 3.0019 −0.6889− 0.4774

4 0.1998− 2.971 −0.6994− 0.4729

5 0.2041− 2.9791 −0.6902− 0.4741

6 0.2091− 3.0294 −0.6796− 0.4814

7 0.1704− 2.6145 −0.7685− 0.4174

8 0.2034− 2.9875 −0.6916− 0.4753

9 0.1987− 2.8872 −0.7018− 0.4605

10 0.2053− 2.9108 −0.6876− 0.464

11 0.1782− 2.751 −0.7491− 0.4395

12 0.1786− 2.577 −0.7481− 0.4111

13 0.1248− 2.1969 −0.9038− 0.3418

14 0.1984− 2.9595 −0.7025− 0.4712

15 0.2047− 2.9528 −0.6889− 0.4702

16 0.2095− 2.9632 −0.6788− 0.4718

17 0.1985− 2.9585 −0.7022− 0.4711

18 0.2024− 3.0077 −0.6938− 0.4782

19 0.2079− 2.9697 −0.6821− 0.4727

20 0.1934− 2.8861 −0.7135− 0.4603

21 0.1584− 2.5484 −0.8002− 0.4063

22 0.0337− 0.8379 −1.4724−−0.0768

23 0.191− 2.928 −0.719− 0.4666

24 0.1383− 2.3124 −0.8592− 0.3641



CHAPTER 5. STUDENT T - DISTRIBUTED MEASUREMENT ERROR MODEL 278

Table 5.9: 90% Equal Tail Credibility Intervals for λi2 and log10(λi2) for the Case where ν

was Simulated for the Second Measurement of the Data Given in Table 5.1.

Part Number λi2 log10(λi2)

1 0.14726− 2.5009 −0.8309− 0.3981

2 0.2109− 2.9867 −0.6759− 0.4752

3 0.2046− 3.0226 −0.6891− 0.4804

4 0.2045− 3.0174 −0.6893− 0.4796

5 0.2000− 2.8625 −0.699− 0.4567

6 0.1834− 2.7852 −0.7366− 0.4449

7 0.1942− 2.9645 −0.7118− 0.4704

8 0.2072− 2.9645 −0.6836− 0.472

9 0.2124− 3.0061 −0.6728− 0.478

10 0.2037− 2.9831 −0.691− 0.4747

11 0.2073− 2.8716 −0.6834− 0.4581

12 0.2115− 2.8525 −0.6747− 0.4552

13 0.1623− 2.7152 −0.7897− 0.4338

14 0.1847− 2.8386 −0.7335− 0.4531

15 0.1951− 2.8532 −0.7097− 0.4553

16 0.2081− 3.0224 −0.6817− 0.4809

17 0.1996− 2.9745 −0.6998− 0.4734

18 0.1896− 2.8209 −0.7222− 0.4504

19 0.1993− 2.9732 −0.7005− 0.4732

20 0.2183− 2.9522 −0.6609− 0.4701

21 0.1686− 2.6414 −0.7731− 0.4218

22 0.1292− 2.5478 −0.8887− 0.4062

23 0.1767− 2.6822 −0.7528− 0.4285

24 0.1571− 2.6094 −0.8038− 0.4156
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5.12 Appendix C

Definition of the Student t - Distribution

Let Z be a standard normal random variable and let χ2
ν be an independent chi -

square random variable with ν degrees of freedom. The random variable

t = Z√
χ2
ν
ν

is then said to follow a student t - distribution with ν degrees of freedom and density

function given by:

f(t) =
Γ[ ν+1

2 ]
Γ( ν2 )

√
πν

(
1 + t2

ν

)− ν+1
2

for −∞ < t <∞.

(Milton and Arnold, 1990)

Proof of Theorem 5.2.1

If x ∼ N(µ, σ2) then it follows from a normal density that

f(x) =
(

1
2πσ2

) 1
2
exp

[
−1

2

(
x−µ
σ

)2
]

.

Therefore, if ε ∼ N(0, σ2
ε) it follows that

f(ε|σ2
ε) =

(
1

2πσ2
ε

) 1
2
exp

[
−1

2

(
ε
σε

)2
]

and

f(ε|σ2
ε) =

b∏
i=1

k∏
j=1

(
1

2πσ2
ε

) 1
2
exp

[
−1

2

(
εij
σε

)2
]

=
(

1
2πσ2

ε

) bk
2
exp

[
−1

2

b∑
i=1

k∑
j=1

(
εij
σε

)2
]

=
(

1
2πσ2

ε

) bk
2
exp

[
− 1

2σ2
ε

b∑
i=1

k∑
j=1

ε2
ij

]
.

Now, if εij ∼ N(0, σ
2
ε

λij
),
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then

f(εij|σ2
ε , λij) =

(
1

2π
σ2
ε

λij

) 1
2

exp

[
−1

2

(
εij
σε√
λij

)2
]

=
(

1
2πσ2

ε

) 1
2
λ

1
2
ijexp

[
− 1

2σ2
ε
λijε

2
ij

]
and

f(ε|λ, σ2
ε) =

b∏
i=1

k∏
j=1

(
λij

2πσ2
ε

) 1
2
exp

[
−1

2

(
εij
σε√
λij

)2
]

=
(

1
2πσ2

ε

) bk
2

b∏
i=1

k∏
j=1

λ
1
2
ijexp

[
−1

2

b∑
i=1

k∑
j=1

(
εij
√
λij

σε

)2
]

=
(

1
2πσ2

ε

) bk
2

b∏
i=1

k∏
j=1

λ
1
2
ijexp

[
− 1

2σ2
ε

b∑
i=1

k∑
j=1

λijε
2
ij

]
.

Proof of Theorem 5.2.2

Since it is assumed that νλij ∼ χ2
ν it is known that

p(νλij) = 1

2
ν
2 Γ( ν2 )

(νλij)
1
2
ν−1e−

1
2
νλij .

Let y = νλij , then

p(y) =
1

2
ν
2 Γ
(
ν
2

)y 1
2
ν−1e−

1
2
y for y > 0, x > 0 . (5.12.1)

Also, let x = y
ν
,

then y = νx .

To obtain the distribution of x, the following transformation from y to x has to be made.

To do the transformation, first obtain the jacobian of the transformation from y to x

which is given by
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J(y → x) = ∂y
∂x

= ν,

therefore

p(x) = 1

2
ν
2 Γ( ν2 )

νx
1
2
ν−1e−

1
2
νx
∣∣∣J(y → x)

∣∣∣
= ν

ν
2−1

2
ν
2 Γ( ν2 )

x
1
2
ν−1e−

1
2
νxν

= ν
1
2 (ν−2)ν

2
ν
2 Γ( ν2 )

x
1
2
ν−1e−

1
2
νx

= ν
1
2 (ν−2+2)

2
ν
2 Γ( ν2 )

x
1
2
ν−1e−

1
2
νx

=
ν

1
2
ν

2
ν
2 Γ
(
ν
2

)x 1
2
ν−1e−

1
2
νx for x > 0. (5.12.2)

Since x = y
ν

and y = νλij ,

it can easily be shown that

x =
νλij
ν

= λij .

Therefore, substitute x = λij in 5.12.2 and get

p(λij) = ν
1
2 ν

2
ν
2 Γ( ν2 )

λ
1
2
ν−1

ij e−
1
2
νλij for λij > 0 .

Proof of Theorem 5.2.3

From equation 5.2.1, the conditional density of εij |λij , σ2
ε is given by

p(εij|λij, σ2
ε) =

(
1

2πσ2
ε

) 1
2
λ

1
2
ijexp

{
− 1

2σ2
ε
λijε

2
ij

}
.

Now, the conditional density of εij |σ2
ε can be written as

p(εij|σ2
ε) =

´∞
0
p(εij|λijσ2

ε)p(λij)∂λij .

From equation 5.2.3, it follows that p(λij) = v
1
2 ν

2
ν
2 Γ( ν2 )

x
1
2
ν−1e−

1
2
νλij .
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Therefore

p(εij|σ2
ε) =

´∞
0

(
1

2πσ2
ε

) 1
2
λ

1
2
ijexp

(
− 1

2σ2
ε
λijε

2
ij

)
ν

1
2 ν

2
ν
2 Γ( ν2 )

λ
1
2
ν−1

ij e−
1
2
νλij∂λij

=
(

1
2πσ2

ε

) 1
2 ν

1
2 ν

2
ν
2 Γ( ν2 )

´∞
0
λ

1
2
ijexp

(
− 1

2σ2
ε
λijε

2
ij

)
λ

1
2
ν−1

ij e−
1
2
νλij∂λij

=
(

1
2πσ2

ε

) 1
2 ν

1
2 ν

2
ν
2 Γ( ν2 )

´∞
0
λ

1
2

+ 1
2
ν−1

ij exp
(
− 1

2σ2
ε
λijε

2
ij − 1

2
νλij

)
∂λij

=
(

1
2πσ2

ε

) 1
2 ν

1
2 ν

2
ν
2 Γ( ν2 )

´∞
0
λ

1
2

(ν+1)−1

ij exp

[
−1

2

(
1
σ2
ε
λijε

2
ij + νλij

)]
∂λij

=
(

1
2πσ2

ε

) 1
2 ν

1
2 ν

2
ν
2 Γ( ν2 )

´∞
0
λ

1
2

(ν+1)−1

ij exp

[
−1

2
λij

(
ε2ij
σ2
ε

+ ν
)]
∂λij .

Consider the integral

´∞
0
λ

1
2

(ν+1)−1

ij exp

[
−1

2
λij

(
ν +

ε2ij
σ2
ε

)]
∂λij , and,

let y = 1
2
λij

(
ν +

ε2ij
σ2
ε

)
.

It then follows that

λij = 2y
(
ν +

ε2ij
σ2
ε

)−1

.

The jacobian of the transformation from λij to y is

J(λij → y) =
∂λij
∂y

= 2
(
ν +

ε2ij
σ2
ε

)−1

, and

the integral can therefore be written as

´∞
0

[
2y
(
ν +

ε2ij
σ2
ε

)−1
] 1

2
(ν+1)−1

exp

[
−y
(
ν +

ε2ij
σ2
ε

)−1(
ν +

ε2ij
σ2
ε

)]
· 2
(
ν +

ε2ij
σ2
ε

)−1

∂y

=

[
2
(
ν +

ε2
ij

σ2
ε

)−1
] 1

2
(ν+1)−1

· 2
(
ν +

ε2
ij

σ2
ε

)−1
ˆ ∞

0

y
1
2

(ν+1)−1e−y∂y. (5.12.3)
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Since
´∞

0
y

1
2

(ν+1)−1e−y∂y = Γ
[

1
2
(ν + 1)

]
, equation 5.12.3 can be written as

[
2
(
ν +

ε2ij
σ2
ε

)−1
] 1

2
(ν+1)−1

· 2
(
ν +

ε2ij
σ2
ε

)−1

Γ
[

1
2
(ν + 1)

]

=

[
2
(
ν +

ε2ij
σ2
ε

)−1
] 1

2
(ν+1)

Γ
[

1
2
(ν + 1)

]
= 2

1
2

(1+ν)
(
ν +

ε2ij
σ2
ε

)− 1
2

(ν+1)

Γ
[

1
2
(ν + 1)

]
.

Therefore, the conditional density of εij |σ2
ε is given by

p(εij|σ2
ε) =

(
1

2πσ2
ε

) 1
2 ν

1
2 ν

2
ν
2 Γ( ν2 )

2
1
2

(ν+1)
(
ν +

ε2ij
σ2
ε

)− 1
2

(ν+1)

Γ
[

1
2
(ν + 1)

]
= ν

1
2
νΓ
[

1
2
(ν + 1)

](
1

2πσ2
ε

) 1
2 1

2
ν
2 Γ( ν2 )

2
1
2

(ν+1)
(
ν +

ε2ij
σ2
ε

)− 1
2

(ν+1)

= ν
1
2
ν · Γ

[
1
2
(ν + 1)

]
·
(

1
2

) 1
2 ·
(

1
πσ2

ε

) 1
2 · 1

2
ν
2
· 1

Γ( ν2 )
· 2 1

2 · 2 ν
2 ·
(
ν +

ε2ij
σ2
ε

)− 1
2

(ν+1)

=
ν

1
2 νΓ

[
1
2

(ν+1)

]
(πσ2

ε)
1
2 Γ( ν2 )

(
ν +

ε2ij
σ2
ε

)− 1
2

(ν+1)

for −∞ < εij <∞ .

To show that equation 5.2.4 is in the general form of a univariate t - distribution, consider

the following:

Since (εij|λij, σ2
ε) ∼ N(0, σ

2
ε

λij
), and if the standardized case where σ2

ε = 1 (See definition

of student t - distribution) is considered, then

(εij|λij, 1) ∼ N(0, 1
λij

) .

Therefore

p(εij|σ2
ε = 1) =

ν
1
2 νΓ

[
1
2

(ν+1)

]
(π·1)

1
2 Γ( ν2 )

(
ν +

ε2ij
1

)− 1
2

(ν+1)

=
ν

1
2 νΓ

[
1
2

(ν+1)

]
(π)

1
2 Γ( ν2 )

(
ν + ε2

ij

)− 1
2

(ν+1)
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=
ν

1
2 νΓ

[
1
2

(ν+1)

]
(π)

1
2 Γ( ν2 )

[
(1 +

ε2ij
ν

)ν
]− 1

2
(ν+1)

=
ν

1
2 νΓ

[
1
2

(ν+1)

]
(π)

1
2 Γ( ν2 )

[
1 +

ε2ij
ν

]− 1
2

(ν+1)

ν−
1
2

(ν+1)

=
Γ

[
1
2

(ν+1)

]
(πν)

1
2 Γ( ν2 )

[
1 +

ε2ij
ν

]− 1
2

(ν+1)

for −∞ < εij <∞

which is in the standardized form of a univariate t - distribution (See definition of the

student t - distribution).

The joint density of the errors is therefore given by

p(ε|σ2
ε) =

b∏
i=1

k∏
j=1

p(εij|σ2
ε)

=
b∏
i=1

k∏
j=1

ν
1
2 νΓ

[
1
2

(ν+1)

]
(πσ2

ε)
1
2 Γ( ν2 )

b∏
i=1

k∏
j=1

(
ν +

ε2ij
σ2
ε

)− 1
2

(ν+1)

=

ν
1
2 νbk

{
Γ[ 1

2
(ν+1)]

}bk

(πσ2
ε)

1
2 bk

[
Γ( ν

2
)

]bk b∏
i=1

k∏
j=1

{
ν + 1

σ2
ε
ε2
ij

}− 1
2

(ν+1)

which is in the general form of a multivariate t - distribution.

Proof of Theorem 5.6.1

To obtain the conditional posterior distribution of µ, only consider the parts in the joint

posterior distribution given in equation 5.4.1 that contains µ, and then complete the

square with respect to µ.

Therefore consider

1
σ2
ε
(y − µj − Za)

′
H(y − µj − Za)

= 1
σ2
ε
(ỹ − µj)

′
H(ỹ − µj) where ỹ = y − Za
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= 1
σ2
ε

(
ỹ
′
Hỹ − ỹ

′
Hµj − (µj)

′
Hỹ + (µj)

′
Hµj

)
= 1

σ2
ε

(
ỹ
′
Hỹ − 2µj

′
Hỹ + µ2j

′
Hj
)

.

Now consider

1
σ2
ε
j
′
Hjµ2 − 2µ 1

σ2
ε
j
′
H(y − Za)

=

[
µ−

(
1
σ2
ε
j
′
Hj
)−1

1
σ2
ε
j
′
H(y − Za)

]′
1
σ2
ε
j
′
Hjµ2

[
µ−

(
1
σ2
ε
j
′
Hj
)−1

1
σ2
ε
j
′
H(y − Za)

]

−
[

1
σ2
ε
j
′
H(y − Za)

]′(
1
σ2
ε
j
′
Hj
)−1[

1
σ2
ε
j
′
H(y − Za)

]

=

[
µ−

(
1
σ2
ε
j
′
Hj
)−1

1
σ2
ε
j
′
H(y − Za)

]′
1
σ2
ε
j
′
Hj

[
µ−

(
1
σ2
ε
j
′
Hj
)−1

1
σ2
ε
j
′
H(y − Za)

]

−
[

1
σ2
ε
j
′
H(y − Za)

]2(
1
σ2
ε
j
′
Hj
)−1

since
[

1
σ2
ε
j
′
H(y − Za)

]
is a scalar.

It therefore follows that since

[
µ−

(
1
σ2
ε
j
′
Hj
)−1

1
σ2
ε
j
′
H(y − Za)

]
is also a scalar,

[
µ−

(
1
σ2
ε
j
′
Hj
)−1

1
σ2
ε
j
′
H(y − Za)

]′
1
σ2
ε
j
′
Hj

[
µ−

(
1
σ2
ε
j
′
Hj
)−1

1
σ2
ε
j
′
H(y − Za)

]

−
[

1
σ2
ε
j
′
H(y − Za)

]2(
1
σ2
ε
j
′
Hj
)−1

=

[
µ−

(
1
σ2
ε
j
′
Hj
)−1

1
σ2
ε
j
′
H(y − Za)

]2
1
σ2
ε
j
′
Hj −

(
1
σ2
ε
j
′
Hj
)−1[

1
σ2
ε
j
′
H(y − Za)

]2

.

From this it thus follows that the conditional posterior distribution of µ is given by

p(µ|y, σ2
ε , H,a) ∼ N

((
1
σ2
ε
j
′
Hj
)−1

1
σ2
ε
j
′
H(y − Za) , σ2

ε(j
′
Hj)−1

)
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Proof of Theorem 5.6.2

To obtain the conditional posterior distribution of the vector of random effects a, only

consider the parts in the joint posterior distribution given in equation 5.4.1 that contains

a, and, then complete the square with respect to a.

Therefore consider

1
σ2
ε
(y − µj − Za)

′
H(y − µj − Za) + 1

σ2
a
a
′
a

= 1
σ2
ε
(y∗ − Za)

′
H(y∗ − Za) + 1

σ2
a
a
′
a where y∗ = y − µj

= 1
σ2
ε
(y∗

′
Hy∗ − y∗′HZa− a′Z ′Hy∗ + a

′
Z
′
HZa) + 1

σ2
a
a
′
a

= 1
σ2
ε
y∗
′
Hy∗ − 1

σ2
ε
y∗
′
HZa− 1

σ2
ε
a
′
Z
′
HZy∗ + 1

σ2
ε
a
′
Z
′
HZa+ 1

σ2
a
a
′
a

= 1
σ2
ε
y∗
′
Hy∗ − 2 1

σ2
ε
a
′
Z
′
H y∗+ 1

σ2
ε
a
′
Z
′
HZa+ 1

σ2
a
a
′
a

= a
′
(

1
σ2
ε
Z
′
HZ + 1

σ2
a
Ib

)
a− 2 1

σ2
ε
a
′
Z
′
H y∗+ 1

σ2
ε
y∗
′
Hy∗

=

[
a−
(

1
σ2
ε
Z
′
HZ+ 1

σ2
a
Ib

)−1(
1
σ2
ε
Z
′
Hy∗

)]′(
1
σ2
ε
Z
′
HZ+ 1

σ2
a
Ib

)[
a−
(

1
σ2
ε
Z
′
HZ+ 1

σ2
a
Ib

)−1(
1
σ2
ε
Z
′
Hy∗

)]
.

From the above, it follows that the conditional posterior distribution of a is given by:

p(a|µ, σ2
ε , σ

2
a, H,y) ∼ N

((
1
σ2
ε
Z
′
HZ + 1

σ2
a
Ib

)−1(
1
σ2
ε
Z
′
Hy∗

)
,
(

1
σ2
ε
Z
′
HZ + 1

σ2
a
Ib

)−1
)
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Proof of Theorem 5.6.3

To obtain the conditional posterior distribution of the error variance component σ2
ε ,

only consider the parts in the joint posterior distribution given in equation 5.4.1 that

contains σ2
ε .

Therefore, the conditional posterior distribution of σ2
ε is given by:

p(σ2
ε |µ,a, σ2

a, H,y) ∝
(

1
σ2
ε

) 1
2
bk

σ−2
ε exp

(
− 1

2σ2
ε
(y − µj − Za)

′
H(y − µj − Za)

)
=
(

1
σ2
ε

) 1
2
bk+1

exp
(
− 1

2σ2
ε
(y − µj − Za)

′
H(y − µj − Za)

)
=
(

1
σ2
ε

) 1
2

(bk+2)

exp
(
− 1

2σ2
ε
(y − µj − Za)

′
H(y − µj − Za)

)
This is in the general form of an inverse gamma distribution

Proof of Theorem 5.6.4

To obtain the conditional posterior distribution of the parts variance component σ2
a,

only consider the parts in the joint posterior distribution given in equation 5.4.1 that

contains σ2
a.

Therefore the conditional posterior distribution of σ2
a is given by:

p(σ2
a|a,y) ∝ (σ2

a)
− 1

2
bexp

(
− 1

2σ2
a
a
′
a
)

This conditional posterior density of σ2
a is also in the general form of an inverse gamma

distribution.
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Proof of Theorem 5.6.5

The conditional posterior distribution of λij (for i = 1, . . . , b, j = 1, . . . , k) is given by:

p(λij|y,a, µ, σ2
ε , σ

2
a) ∝ λ

1
2
ijexp

(
− 1

2σ2
ε
λij(yij − µ− ai)2

)
λ

1
2
ν−1

ij exp
(
−1

2
νλij

)
= λ

1
2
ijλ

1
2
ν−1

ij exp
(
− 1

2σ2
ε
λij(yij − µ− ai)2 − 1

2
νλij

)
= λ

1
2
ijλ

1
2
ν−1

ij exp

{
−1

2
λij

[
ν + 1

σ2
ε
(yij − µ− ai)2

]}

= λ
1
2
ν−1+ 1

2
ij exp

{
−1

2
λij

[
ν + 1

σ2
ε
(yij − µ− ai)2

]}

= λ
1
2
ν− 1

2
ij exp

{
−1

2
λij

[
ν + 1

σ2
ε
(yij − µ− ai)2

]}

= λ
1
2

(ν+1)−1

ij exp

{
−1

2
λij

[
ν + 1

σ2
ε
(yij − µ− ai)2

]}
.

This conditional posterior distribution of λij is in the general form of a gamma distribu-

tion.

Proof of Theorem 5.8.1

To obtain the conditional posterior distribution of ν, only consider the parts in the joint

posterior distribution given in equation 5.8.3 that contains ν. Therefore, the conditional

posterior distribution of ν, is given by

p(ν|y, λij) ∝ ν
1
2 ν

2
1
2 ν

[
Γ( ν2 )

]λ 1
2
ν−1

ij exp
{
−1

2
νλij

}
· ξexp(−ξν)

= ν
1
2 ν

2
1
2 ν

[
Γ( ν2 )

]ξλ 1
2
ν−1

ij exp
{
−1

2
νλij − ξν

}

= ν
1
2 νξ

2
1
2 ν

[
Γ( ν2 )

]λ 1
2
ν−1

ij exp

{
ν
(
−1

2
λij − ξ

)}
.
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Therefore

p(ν|y,λ) ∝
b∏
i=1

k∏
j=1

ν
1
2 νξ

2
1
2 ν

[
Γ( ν2 )

]λ 1
2
ν−1

ij exp

{
−ν
(

1
2
λij + ξ

)}

= ν
1
2 νbk

2
1
2 νbk

[
Γ( ν2 )

]bk b∏
i=1

k∏
j=1

ξλ
1
2
ν−1

ij exp

{
−ν
(

1
2

b∑
i=1

k∑
j=1

λij + ξ
)}

= ν
1
2 νbk

2
1
2 νbk

[
Γ( ν2 )

]bk b∏
i=1

k∏
j=1

ξλ
1
2
ν

ij λ
−1
ij exp

{
−ν
(

1
2

b∑
i=1

k∑
j=1

λij + ξ
)}

∝ ν
1
2 νbk

2
1
2 νbk

[
Γ( ν2 )

]bk b∏
i=1

k∏
j=1

λ
1
2
ν

ij exp

{
−ν
(

1
2

b∑
i=1

k∑
j=1

λij + ξ
)}

which is in the general form of an unknown distribution.

Proof of Theorem 5.10.1.1

Future measurements are generate by the same model as defined in equation 5.2.7,

i.e.

yfj = µ+ af + εfj∗ for j∗ = 1, 2, . . . , k∗

when εij|λfj∗ ∼ N(0, σ2
ε

λfj∗
) .

From this, it follows that yf · =
1
k∗

k∗∑
j=1

yfj∗ is normally distributed with mean

E(yf |µ, af , σ2
ε , σ

2
a, λf1, . . . , λfk∗) = µ+ af

and

V ar(yf |µ, af , σ2
ε , σ

2
a, λf1, . . . , λfk∗) = 1

k∗2

k∗∑
j=1

V ar(yfj∗)

= 1

k∗2

k∗∑
j∗=1

σ2
ε

λfj∗

= σ2
ε

k∗2

k∗∑
j∗=1

1
λfj∗

.
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Since af ∼ N(0, σ2
a) it follows that

E(yf |µ, af , σ2
ε , σ

2
a, λf1, . . . , λfk∗) = µ

and

V ar(yf |µ, σ2
ε , σ

2
a, λf1, . . . , λfk∗) = σ2

ε

k∗2

k∗∑
j=1

1
λfj∗

+ σ2
a

when

p(λfj∗) = ν
1
2 ν

2
ν
2
λ

1
2
ν−1

fj∗ exp(−1
2
λfj∗ν) (See the prior distribution of λij in section 5.3).

Proof of Theorem 5.10.1.2

Future measurements for the ith part are generated by the model

ỹij∗ = µ+ ai + εij∗ for j∗ = 1, . . . , k∗

where

εij∗ ∼ pN(0, σ2
ε

λi1j∗
) + (1− p)N(0, σ2

ε

λi2j∗
) for j∗ = 1, . . . , k∗ .

From this if follows that ỹi = 1
k∗

k∗∑
j∗=1

ỹij∗ is normally distributed with mean

E(ỹi·|µ, ai, λi11, . . . , λi2k∗ , σ
2
ε , σ

2
a) = µ+ ai

and variance

V ar(ỹi·|µ, ai, λi11, . . . , λi2k∗ , σ
2
ε , σ

2
a) = σ2

ε

k∗2

{
p
k∗∑
j∗=1

1
λi1j∗

+ (1− p)
k∗∑
j∗=1

1
λi2j∗

}
.

For this specific case p = 1
2 , therefore

V ar(ỹi·|µ, ai, λi11, . . . , λi2k∗ , σ
2
ε , σ

2
a) = σ2

ε

2k∗2

{
k∗∑
j∗=1

1
λi1j∗

+
k∗∑
j∗=1

1
λi2j∗

}
.
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Also

p(λi1|y,a, µ, σ2
ε , σ

2
a) ∝ λ

1
2

(ν+1)−1

i1 exp
{
−1

2
λi1

[
ν + 1

σ2
ε
(yi1 − µ− ai)2

]}
and

p(λi2|y,a, µ, σ2
ε , σ

2
a) ∝ λ

1
2

(ν+1)−1

i2 exp
{
−1

2
λi2

[
ν + 1

σ2
ε
(yi2 − µ− ai)2

]}
.

See equation 5.6.5.



Chapter 6

Two - Factor Nested Random Effects Model

In this chapter, the unique and flexible Bayesian simulation method for determining

tolerance intervals originally proposed by Wolfinger (1998) and discussed in Chapters

3 and 4 will be adapted to derive Bayesian tolerance intervals for a balanced two -

factor nested random effects model. The proposed Bayesian method will be illustrated

using data obtained from Laubscher (1996), originally collected at SANS Fibres (Pty.)

Ltd. South - Africa. In addition, it will also be shown that the proposed non - informative

prior distribution is a probability matching prior for the αth quantile of the distribution of

averages of k future packages with r samples per packages from any new or unknown

day. It will also be shown that a proposed prior distribution for the content of the fixed

- in - advance tolerance interval, is also a probability matching prior.

Parts of this chapter have been published in Test. For more details see van der Merwe

and Hugo (2007). The example and proposed model have also been adopted for

use by Krishnamoorthy and Mathew (2009) for publication in their book on statistical

tolerance regions. For more details see Krishnamoorthy and Mathew (2009), Chapter

11, sections 11.3 and 11.4.

292
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6.1 Introduction

It was mentioned in Chapter 1 that in order to support the economic objectives and

profitability of a firm, more tools are needed by quality engineers to cope with the

rapidly changing manufacturing environment and to meet the intense international

competition (Black Nembhard and Valverde - Ventura, 2003). Statistical quality con-

trol has therefore become the new fashion and a very important requirement of mod-

ern process improvement techniques (http://www.quality-one.com). As a result, well

known companies such as Motorola, Allied Signal and General Electric have moved to

make use of for example, the six sigma (6σ) quality improvement strategy (http://www.quality-

one.com).

The logic behind the six sigma principle is relatively simple, since it is known that a

large group of any population (process, analysis, etc.) cluster around the middle and

form what is referred to as a bell shaped curve. Six sigma represents six standard

deviations (sigma is the Greek letter used to represent the population standard devia-

tion) from the middle of this bell shaped curve, three standard deviations above and

three standard deviations below the middle. Also, from the empirical rule of statis-

tics it is well known that six standard deviations, three each side of the mean, cover

approximately 99.73% of the population (http://www.freequality.org/documents/six-

Sigma/and http://www. en.wikipedia.org/wiki/69-95-99.7_rule).

Six sigma is a term coined by Motorola and emphasizes the improvement of a pro-

cess for the purpose of reducing variability and thus making general improvements

(http://www.quality-one.com). In general, the six sigma methodology provides the

techniques and tools to improve the capability and reduce the defects in any process

and is instrumental in the construction of control charts, a primary tool of statistical

process control (http://www.sixsigmatutorial.com/Six-Sigma/Six-Sigma-Tutorial.aspx).

Statistical process control (SPC) is one of the most powerful tools used for a continu-

ous process improvement scheme (Reneau and Kinsel, 2001). Statistical techniques
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are used in SPC to measure and analyze the variation in a process by means of as

mentioned in chapter 1, a pair of control charts - one for the average and one for

the variation, each with its own 3σ control limits (Laubscher, 1996). Since these stan-

dard Shewhart variable control charts only allow for within sample variation, different

models allowing for more sources of variation may provide more satisfactory results.

Since the quality of a manufactured item is a function of the sources of variation in

the manufacturing process, estimating variance components can present a method

for evaluating the observed process variation. In this chapter, a situation is therefore

analyzed where replicate observations are obtained from a number of random sam-

ples taken daily from a process. This allows for substantial day - to - day and within day

variation.

According to Laubscher (1996), a typical observations (the tth where t = 1, . . . , r) from

the jth (j = 1, . . . , k) package sampled on day i (i = 1, . . . , b) using the sampling pro-

cedure described above, is denoted by yijt. Laubscher (1996) also suggested that a

classical analysis of variance model providing for an overall target value, for main and

possibly interaction effects as well as some unexplained residual variation, could be

used to explain the variation observed in a response such as yijt. Both “packages”

and “days” can be considered random factors with packages hierarchically nested

within days (Laubscher, 1996). A two - way nested ANOVA is therefore suggested,

since this model allows for day - to - day and package - to - package variation (Neter,

Wasserman and Kutner, 1985, and Laubscher, 1996).

Once the appropriate variance components model has been specified, the manufac-

turing process’s performance can be assessed in order to identify possible problems.

The identification of these possible problems is in line with the principles of sound data

analysis, since further progress on the path of continuous quality improvement can

only be expected once these problems have been identified (Laubscher, 1996). The

procedure for evaluating the appropriateness of the selected variance components

model and its subsequents application for statistical process control using Shewhart
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variable control charts, is summarized in Laubscher (1996). For more details see Laub-

scher (1996). As mentioned in Chapter 1, the Bayesian approach however also serves

as a possible alternative approach to be utilized for statistical process control by an-

swering the three research questions proposed by Wolfinger (1998).

For both conceptual and practical reasons, hierarchical models are central to modern

Bayesian statistics and full Bayesian analyses of hierarchical models have been con-

sidered by various authors including Hill (1965), Tiao and Tan (1965), Stone and Springer

(1965), Portnoy (1971), Box and Tiao (1973), Carlin and Louis (1996),van Dyk and Meng

(2001), Gelman et. al. (2003) and Browne and Draper (2006) (Gelman, 2006). The

three research questions proposed by Wolfinger (1998) can be answered by obtaining

the three different Bayesian tolerance intervals, also proposed by Wolfinger (1998) and

described in Chapter 1. These tolerance intervals thus provide a full Bayesian solution

to quality management using statistical process control.

Although some research have been done, there do not appear to be many papers

on quality control from a Bayesian point of view. The Bayesian approach to control-

ling processes for the production of only small numbers of items has been developed

by Woodward and Naylor (1993), while Arnold (1990), developed an economic X -

chart for the joint control of the means of independent quality characteristics (van der

Merwe and Hugo, 2007). The first application of the Bayesian paradigm to tolerance

intervals specifically, was due to Aitchison (1964, 1966) and Aitchison and Dunsmore

(1975). These authors also presented arguments in favour of the Bayesian approach

as apposed to classical frequentist methods (van der Merwe and Hugo, 2007).

In the subsequent sections, the Bayesian approach to variance component and tol-

erance interval estimation will be discussed for the balanced two - factor nested ran-

dom effects model. The proposed methods will be illustrated using a data set originally

presented in a paper by Prof. Nico F. Laubscher (see Laubscher, 1996) and is from a

continuous process for sampling spun yarn at SANS Fibers (Pty.) Ltd. South Africa. For

the data, variance components, credibility intervals, (α, δ) one - and two - sided toler-
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ance intervals, α - expectation tolerance intervals and fixed - in - advance tolerance

intervals will be determined.

6.2 The Data

In 1995 certain statistical process control procedures had to be set up in a new plant

of the Bellville works of SANS Fibres (Pty.) Ltd. South Africa, a company manufacturing

continuous filament polyester and nylon yarns. It was a continuous process on which

various physical properties of the continuously manufactured synthetic yarn had to be

monitored. Daily samples of k = 8 packages of yarn were sampled per machine and

various physical properties of the yarn were replicated in the laboratory by analyzing

r = 5 samples per package. For illustrative purposes, a section of the data is provided

in Table 6.1. The data given in Table 6.1 represents the yarn property of extension (the

percentage increase in length before breaking). The complete data set is given in

Table D1 in Appendix D. Packages with yarn sampled for the first b = 15 days of January

1995 were selected as review data to determine statistical process control limits for

future use in monitoring the process. The data used have been made available by

Prof. Nico F. Laubscher, Company Statistician at the time of data collection at SANS

Fibres (Pty.) Ltd., with permission of SANS Fibres (Pty.) Ltd.
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Table 6.1: The Physical Property of “Extension” of a Synthetic Yarn, Measured over the

First 15 Consecutive Days of January 1995.

Daily Daily

Day Packages Extension Average Day Packages Extension Average

1 1 20.30 ∗ 10 5 19.31

1 2 20.06 10 6 19.86

1 3 20.48 10 7 19.00

1 4 19.22 10 8 19.81 19.85 ∗∗

1 5 19.16 . . .

1 6 19.94 . . .

1 7 20.69 . . .

1 8 19.02 19.86 15 1 22.48

. . . 15 2 21.65

. . . 15 3 22.00

. . . 15 4 22.71

10 1 20.99 15 5 22.28

10 2 20.53 15 6 21.38

10 3 19.37 15 7 21.35

10 4 19.93 15 8 22.43 22.04
∗ Average of 5 samples selected from the first packages of day 1.
∗∗ Daily average of 8 packages for day 10.

It is clear from the example that the variation observed could possibly be explained

by several components such as a “between” days (day - to - day) component, a

“within” days (packages - to - packages) component and a residual component. The

latter may consist of several lurking components such as sampling variation as well as

sample - to - sample (within packages) variation and experimental error (Laubscher,

1996). These sources of variation should be incorporated into a suitable model. In this

chapter, the emphasis will be placed on the proper analysis of a feasible model for

the situation where nested sampling occurs. The results can readily be extended to
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more complicated analysis of variance type of models within this context (e.g. more

factors with more involved nesting).

To start analyzing the data it is important to know what it means when it is said that

a process is in control. In this respect, Laubscher (1996) quoted Shewhart (1931) as

follows: “... a phenomenon will be said to be controlled when, through the use of

past experience, we can predict, at least within limits, how the phenomenon may be

expected to vary in future. Here it is understood that prediction within limits means that

we can state, at least approximately, the probability that the observed phenomenon

will fall within the given limits.”

How does one use “past experience” to be in a position to claim (with associated

probability) that a process response is within predicted limits? This in only possible by

using past data as guidance on the selection of a model and to derive the prediction

formula and the associated probability for predictions from that model (Laubscher,

1996). This means that the choice of model for process control is vital and without it

no serious statistical analysis can be undertaken (Laubscher, 1996). Since the pack-

ages were nested within days, the model chosen was as mentioned previously, the

balanced two - factor nested random effects model.

The flexibility and unique features of the Bayesian simulation method for the construc-

tion of tolerance intervals, originally proposed by Wolfinger (1998), will in the subse-

quent sections be extended for determining Bayesian tolerance intervals in the case

of this mentioned balanced two - factor nested random effects model.
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6.3 The Balanced Two - Factor Nested Random Effects Model

As mentioned, since the data given in Table 6.1 constitute replicate observations ob-

tained from a number of random packages of spun yarn sampled daily per machine,

with the random factor “packages” hierarchically nested within the random factor

“days”, it was suggested by Laubscher (1996) that a balanced two - factor nested

random effects model be used to analyze the data. This balanced two - factor nested

random effects model is given by

yijt = µ+ di + pij + εijt (6.3.1)

where (i = 1, . . . , b), (j = 1, . . . , k), (t = 1, . . . , r), yijt represents the observations (per-

centage increase in length of synthetic yarn before breaking), µ is a common loca-

tion parameter (the grand mean), di, pij and εijt are three different kinds of random

effects (days, packages within days and residual). It is further assumed that the ran-

dom effects (di, pij , εijt) are all independent and that di ∼ N(0, σ2
d), pij ∼ N(0, σ2

p) and

εijt ∼ N(0, σ2
ε). The three different random effects can be interpreted as follows: di (for

i = 1, . . . , b) represents the days effect, pij (for i = 1, . . . , b, j = 1, . . . , k) represents the

packages within days effects and εijt (for i = 1, . . . , b, j = 1, . . . , k, t = 1, . . . , r) represents

the measurement error of the tth measurement on the jth package sampled on day i.

The balanced two - factor nested random effects model given in equation 6.3.1 can

also be written in matrix notation as follows:

y = µX + Z1u1 + Z2u2 + ε (6.3.2)
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where

y =

[
y111 · · · y11r y121 · · · y12r · · · y1kr · · · ybkr

]′
,

X =

[
1 1 · · · 1

]′
(1× bkr) ,

µ represents the grand mean,

u1 =

[
d1 d2 · · · db

]′
(1× b) ,

u2 =

[
p11 p12 · · · p1k · · · pbk

]′
(1× bk) ,

ε =

[
ε11 · · · ε11r ε121 · · · ε12r · · · ε1kr · · · εbkr

]′
(1× bkr) ,

Z1

(bkr×b) =



1 0 · · · 0

1 0 · · · 0

...
...

...

1(kr) 0(kr) · · · 0

0 1 · · · 0

0 1 · · · 0

...
...

...

0 1(kr) · · · 0

0 0 · · · 1

0 0 · · · 1

...
...

...

0 0 · · · 1(kr)



, and
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Z2

(bkr×bk)
=



1 0 0 · · · 0

1 0 0 · · · 0

...
...

...
...

1(r) 0 0 · · · 0

0 1 0 · · · 0

0 1 0 · · · 0

...
...

...
...

0 1(r) 0 · · · 0

0 0 1 · · · 0

...
...

...
...

0 0 1(r) · · · 0

0 0 0 · · · 0

...
...

...
...

0 0 0 · · · 0

0 0 0 · · · 1

...
...

...
...

0 0 0 · · · 1(r)



.

Also

ν1 = bk(r − 1), ν2 = b(k − 1), ν3 = (b− 1),

yij. =
r∑
t=1

yijt, yi.. =
k∑
j=1

r∑
t=1

yijt,

y... =
b∑
i=1

k∑
j=1

r∑
t=1

yijt, yij. = 1
r
yij.,

yi.. = 1
kr
yi.., y... = 1

bkr
y...,

ν1m1 =
r∑
t=1

k∑
j=1

b∑
i=1

(yijt − yij.)2 =
r∑
t=1

k∑
j=1

b∑
i=1

y2
ijt − 1

r

b∑
i=1

k∑
j=1

y2
ij. ,

ν2m2 = r
b∑
i=1

k∑
j=1

(yij. − yi..)2 = 1
r

b∑
i=1

k∑
j=1

y2
ij. − 1

rk

b∑
i=1

y2
i.. , and
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ν3m3 = 1
rk

b∑
i=1

y2
i.. − 1

bkr
y2
... = rk

b∑
i=1

(yi.. − y...)2 .

Remember also, ν1m1 represents the sum of squares for error (SSE), ν2m2 represents

the sum of squares of packages within days (SSP ) and ν3m3 represents the sum of

squares for days (SSD).

Consider again the balanced two - factor nested random effects model given in

equation 6.3.2, i.e.

y = µX + Z1u1 + Z2u2 + ε

where ε, u2 and u1 are independently normally distributed as ε ∼ N(0, σ2
εIbkr), u2 ∼

N(0, σ2
pIbk) and u1 ∼ N(0, σ2

dIb).

6.4 The Bayesian Method

Since the balanced two - factor nested random effects model given in equation 6.3.2

has been specified, the Bayesian method for variance component estimation will now

be discussed.

6.4.1 The Likelihood Function

In matrix notation, the likelihood function of the balanced two - factor nested random

effects model given in equation 6.3.2, is given by

L(µ, σ2
ε , σ

2
p, σ

2
d,u1,u2|y)

∝ (σ2
ε)
− 1

2
bkrexp

{
− 1

2σ2
ε

(
y−µX−Z1u1−Z2u2

)′(
y−µX−Z1u1−Z2u2

)}
(σ2

p)
− 1

2
bkexp

{
− 1

2σ2
p

u
′

2u2

}
(σ2

d)
− 1

2
bexp

{
− 1

2σ2
d

u
′

1u1

}
. (6.4.1)
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Equation 6.4.1, as mentioned, is known as the likelihood function and can be regarded

as the function through which the data y modifies prior knowledge of the unknown

parameters (Box and Tiao, 1973).

Now, by using the results given in Box and Tiao (1973), the integrated likelihood function

is given by

L(µ, σ2
ε , σ

2
p, σ

2
d|y)

∝ (σ2
ε)
− 1

2
ν1(σ2

ε+rσ
2
p)
− 1

2
ν2(σ2

ε+rσ
2
p+krσ

2
d)
− 1

2
(ν3+1)exp

{
−1

2

[
kr

b∑
i=1

(yi..−µ)2

(σ2
ε+rσ2

p+krσ2
d)

+ ν2m2

(σ2
ε+rσ2

p)
+ν1m1

σ2
ε

]}

∝ (σ2
ε)
− 1

2
ν1(σ2

ε + rσ2
p)
− 1

2
ν2(σ2

ε + rσ2
p + krσ2

d)
− 1

2
(ν3+1)

exp

{
−1

2

[ bkr(y... − µ)2

(σ2
ε + rσ2

p + krσ2
d)

+
ν3m3

(σ2
ε + rσ2

p + krσ2
d)

+
ν2m2

(σ2
ε + rσ2

p)
+
ν1m1

σ2
ε

]}
. (6.4.2)

The parameters θ0 = σ2
ε + rσ2

p + krσ2
d, θ1 = σ2

ε + rσ2
p and θ2 = σ2

ε , are subject to the

constraint

C : 0 < θ2 < θ1 < θ0 <∞

to ensure that only positive variance components are obtained.

6.4.2 The Prior Distribution

It was mentioned in Chapters 1 and 2 that the determination of reasonable non -

informative priors in multiparameter problems are not easy. The determination of rea-

sonable non - informative prior distributions is however important, since the use of prior

information is one of the main advantages of the Bayesian approach.

For parameters about which not much is known beyond the data included in the anal-

ysis, non - informative prior distributions intend to allow Bayesian inference (Gelman,
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2006). Over the years, various justifications and interpretations of non - informative

prior distribution have been proposed (Gelman, 2006). Some of these mentioned by

Gelman (2006), included invariance (Jeffreys’, 1961), maximum entropy (Jaynes, 1983)

and agreement with classical estimators (Box and Tiao, 1973 and Meng and Zaslavsky,

2002). Bernardo (1979) also considered non - informative priors as reference models to

be used in place of proper, informative prior distributions as a standard of comparison

or starting point (Gelman, 2006).

In a study reviewing the extensive literature in the course of comparing Bayesian and

non - Bayesian inference for hierarchical models, Browne and Draper (2006) also con-

sidered different prior distributions for the concerned variance parameters (see also

Gelman, 2006). For a simple two - level model with group level effects aj where

aj ∼ N(0, σ2
a) for j = 1, . . . , k, Gelman (2006) mentioned that various non - informa-

tive prior distributions have been suggested for the parameter σ2
a. Some of these in-

clude an improper uniform density on σa (Gelman et.al., 2003), proper distributions

such as p(σ2
a) ∼ IG(0.001, 0.001) (Spiegelhalter et.al. 1994, 2003), and distributions that

depended on the data - level variance (Box and Tiao, 1973). It is important to note

also that Gelman (2006) mentioned that especially for models where the number of

groups k is small, or where the group - level variance σ2
a is close to zero, the choice

of a non - informative prior distribution can have a dramatic effect on the inference.

Various other prior distributions have also been suggested which do not form part of

the scope of this research. For more information, see Gelman (2006).

For the balanced two - factor nested random effects model given in equation 6.3.1,

it was decided to follow Box and Tiao (1973) and also use the non - informative prior

distribution given by

p(µ, σ2
ε , σ

2
p, σ

2
d) ∝ σ−2

ε (σ2
ε + rσ2

p)
−1(σ2

ε + rσ2
p + krσ2

d)
−1 . (6.4.3)

In a later section it will be shown that the predictive density of the average of k∗ fu-

ture packages with r∗ samples per package from a new or unknown day, given the
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variance components, follows a normal distribution given by

y∗f |µ, σ2
ε , σ

2
p, σ

2
d ∼ N

(
µ,

σ2
ε+r∗σ2

p+k∗r∗σ2
d

k∗r∗

)

where y∗fjt represents a new observation generated by the model y∗fjt = µ + df +

pij + εfjt with f representing a new or unknown day, j = 1, . . . , k∗ and t = 1, . . . , r∗,

y∗fj. = 1
r∗

r∗∑
t=1

yfjt and y∗f.. = 1
k∗

k∗∑
j=1

y∗fj..

If k∗ = k and r∗ = r as defined in equation 6.3.1, it follows that the αth quantile of the

above normal distribution given by

yf..|µ, σ2
ε , σ

2
p, σ

2
d ∼ N

(
µ,

σ2
ε+rσ2

p+krσ2
d

kr

)

can be written as

q = µ+ zα

√
σ2
ε + rσ2

p + krσ2
d

kr
(6.4.4)

where zα denotes the 100(α)th percentile of a standard normal distribution. It will now

be proved that the non - informative prior distribution given in equation 6.4.3 is also a

probability matching prior for the αth quantile given in equation 6.4.4.

Theorem 6.4.2.1

For the balanced two - factor nested random effects model given in equation 6.3.1,

the non - informative prior distribution given by

p(µ, σ2
ε , σ

2
p, σ

2
d) ∝ σ−2

ε (σ2
ε + rσ2

p)
−1(σ2

ε + rσ2
p + krσ2

d)
−1

is a probability matching prior for

q = µ+ zα

√
σ2
ε+rσ2

p+krσ2
d

kr
,
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the αth quantile of the normal distribution given by

yf..|µ, σ2
ε , σ

2
p, σ

2
d ∼ N

(
µ,

σ2
ε+rσ2

p+krσ2
d

kr

)
.

Proof

The proof of Theorem 6.4.2.1 is given in Appendix D.

6.4.3 The Joint Posterior Distribution

The joint posterior distribution for the balanced two - factor nested random effects

model given in equation 6.3.1 can be determined by multiplying the likelihood function

given in equation 6.4.1 with the non - informative prior distribution given in equation

6.4.3. The joint posterior distribution for the unknown parameters is then given by

p(µ, σ2
ε , σ

2
p, σ

2
d,u1,u2|y)

∝ L(µ, σ2
ε , σ

2
p, σ

2
d,u1,u2|y)p(µ, σ2

ε , σ
2
p, σ

2
d)

∝ (σ2
ε)
− 1

2
bkrexp

{
− 1

2σ2
ε
(y−µX−Z1u1−Z2u2)

′
(y−µX−Z1u1−Z2u2)

}
×
(

1
σ2
p

)− 1
2
bk

exp
{
− 1

2σ2
p
u
′
2u2

}
×
( 1

σ2
d

)− 1
2
b

exp
{
− 1

2σ2
d

u
′

1u1

}
× (σ2

ε)
−1(σ2

ε + rσ2
p)
−1(σ2

ε + rσ2
p + krσ2

d)
−1 (6.4.5)

where y, X, µ, u1, u2, ε, Z1, Z2 are defined as given in equation 6.3.2. Also, remember

u1 ∼ N(0, σ2
dIb), u2 ∼ N(0, σ2

pIbk) and ε ∼ N(0, σ2
εIbkr).

From the joint posterior distribution given in equation 6.4.5, the conditional posterior

distributions of the unknown parameters and variance components can now be de-

termined.
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6.4.4 The Conditional Posterior Distributions

Since the joint posterior distribution of the unknown parameters and variance compo-

nents has been determined, the following theorems can now be proved.

Theorem 6.4.4.1

For the two - factor nested random effects model given in equation 6.3.2, the condi-

tional posterior distribution of u2|µ, σ2
ε , σ

2
p, σ

2
d,u1,y is normally distributed with

E(u2|µ, σ2
ε , σ

2
p, σ

2
d,u1,y) = D−1C, and

V ar(u2|µ, σ2
ε , σ

2
p, σ

2
d,u1,y) = D−1

where

D−1 =
(

σ2
εσ

2
p

σ2
ε+rσ2

p

)
Ibk ,

C = Z
′
2ỹ where ỹ = y − µX − Z1u1, and, where y, X, u1, u2, Z1 and Z2 are defined

as in 6.3.2.

Proof

The proof of Theorem 6.4.4.1 is given in Appendix D.

Theorem 6.4.4.2

The conditional posterior distribution of di|σ2
ε , σ

2
p, σ

2
d,y (for i = 1, . . . , b) for the balanced

two - factor nested random effects model follows a normal distribution with

E(di|σ2
ε , σ

2
p, σ

2
d,y) =

rkσ2
d

σ2
ε+rσ2

p+krσ2
d
yi..

and

V ar(di|σ2
ε , σ

2
p, σ

2
d,y) =

σ2
d(σ2

ε+rσ2
p)

σ2
ε+rσ2

p+krσ2
d

.
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It therefore follows that

p(di|σ2
ε , σ

2
p, σ

2
d,y) ∼ N

(
rkσ2

d

σ2
ε + rσ2

p + krσ2
d

yi..,
σ2
d(σ

2
ε + rσ2

p)

σ2
ε + rσ2

p + krσ2
d

)
for i = 1, . . . , b.

(6.4.6)

Proof

The proof of Theorem 6.4.4.2 is given in Appendix D.

Theorem 6.4.4.3

For the balanced two - factor nested random effects model given in equation 6.3.2,

the conditional posterior distribution of µ|σ2
ε , σ

2
p, σ

2
d,y is normally distributed with

E(µ|σ2
ε , σ

2
p, σ

2
d,y) = y...

and variance

V ar(µ|σ2
ε , σ

2
p, σ

2
d,y) =

σ2
ε+rσ2

p+krσ2
d

bkr

i.e.

p(µ|σ2
ε , σ

2
p, σ

2
d,y) ∼ N

(
y...,

σ2
ε + rσ2

p + krσ2
d

bkr

)
. (6.4.7)

Proof

The proof of Theorem 6.4.4.3 is given in Appendix D.

Theorem 6.4.4.4

The joint posterior distribution of the variance components σ2
ε , σ

2
p, σ

2
d, for the balanced

two - factor nested random effects model given in equation 6.3.2, is given by

p(σ2
ε , σ

2
p, σ

2
d|y) ∝ (σ2

ε)
− 1

2
(ν1+2)(σ2

ε + rσ2
p)
− 1

2
(ν2+2)(σ2

ε + rσ2
p + krσ2

d)
− 1

2
(ν3+2)

× exp

{
−1

2

[ ν3m3

(σ2
ε + rσ2

p + krσ2
d)

+
ν2m2

(σ2
ε + rσ2

p)
+
v1m1

σ2
ε

]}
(6.4.8)
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subject to the constraint stating that

0 < θ2 < θ1 < θ0 <∞ (6.4.9)

where θ2 = σ2
ε , θ1 = σ2

ε + rσ2
p, and θ0 = σ2

ε + rσ2
p + krσ2

d .

Proof

The proof of Theorem 6.4.4.4 is given in Appendix D.

Theorem 6.4.4.5

For the balanced two - factor nested random effects model given in equation 6.3.2,

the conditional posterior distribution of (µ + di)|σ2
ε , σ

2
p, σ

2
d,y (for i = 1, . . . , b) is normally

distributed with mean given by

E
{

(µ+ di)|σ2
ε , σ

2
p, σ

2
d,y
}

=
krσ2

d

σ2
ε+rσ2

p+krσ2
d
yi.. +

σ2
ε+rσ2

p

σ2
ε+rσ2

p+krσ2
d
y...

and variance given by

V ar
{

(µ+ di)|σ2
ε , σ

2
p, σ

2
d,y
}

=
σ2
ε+rσ2

p

σ2
ε+rσ2

p+krσ2
d

[
σ2
ε+rσ2

p+bkrσ2
d

bkr

]
.

Therefore,

p
(

(µ+di)|σ2
ε , σ

2
p, σ

2
d,y
)
∼

N

(
krσ2

d

σ2
ε + rσ2

p + krσ2
d

yi.. +
σ2
ε + rσ2

p

σ2
ε + rσ2

p + krσ2
d

y... ,
σ2
ε + rσ2

p

σ2
ε + rσ2

p + krσ2
d

[σ2
ε + rσ2

p + bkrσ2
d

bkr

])
.

(6.4.10)

Proof

The proof of Theorem 6.4.4.5 is given in Appendix D.
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6.4.5 Marginal Posterior Distributions

Similar to the balanced one - way random effects model discussed in Chapter 3, an-

alytical derivations of unconditional posterior densities of the unknown parameters µ,

σ2
ε , σ

2
p, σ

2
d, u1, u2 and posterior densities of quantiles in order to construct tolerance

intervals, appear to be a daunting task, due to the complexity of the balanced two -

factor nested random effects model. It was therefore decided to extend the straight-

forward Bayesian simulation method proposed by Wolfinger (1998) for the balanced

one - way random effects model, in order to also estimate marginal posterior distri-

butions of unknown parameters and quantiles for the balanced two - factor nested

random effects model. The proposed Bayesian method will be illustrated for the bal-

anced two - factor nested random effects model using the data provided in Table 6.1

(the complete data set is provided in Table D1 as part of Appendix D.)

Similar to what was illustrated in Chapters 2, 3 and 4, Markov chain Monte Carlo

(MCMC) simulation will also be used to obtain random samples from the joint poste-

rior distribution of the unknown model parameters using a computer random number

generator. Remember, these simulated samples will also represent samples from the

marginal posterior distributions of the unknown model parameters and variance com-

ponents, equivalent to what was indicated in Chapter 3.

Estimated marginal posterior distributions of the unknown parameters σ2
ε , σ

2
p, σ

2
d and µ,

are simulated as follows:

a.) Simulation of the variance components σ2
ε , σ2

p and σ2
d.

If the constraint given in equation 6.4.9 did not apply, the posterior distributions of

θ2 = σ2
ε , θ1 = σ2

ε+rσ2
p and θ0 = σ2

ε+rσ2
p+krσ2

d would be independent, each proportional

to an inverse gamma distribution. That is

p(θ2|y) ∝ (θ2)−
1
2

(ν1+2)exp
(
−1

2
ν1m1

θ2

)
,

p(θ1|y) ∝ (θ1)−
1
2

(ν2+2)exp
(
−1

2
ν2m2

θ2

)
, and
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p(θ0|y) ∝ (θ0)−
1
2

(ν3+2)exp
(
−1

2
ν3m3

3

)
where ν1m1

θ2
∼ χ2

ν1
,

ν2m2
θ1
∼ χ2

ν2
, and

ν3m3
θ0
∼ χ2

ν3
,

with the joint posterior distribution of θ2, θ1 and θ0, being the product of these three

inverse gamma distributions. Note however that the restrictions given in equation 6.4.9

do apply. Nevertheless, using a rejection sampling procedure (see Guttman and Men-

zefricke, 2003), it is straight forward to generate samples from the joint posterior distri-

bution of σ2
ε , σ

2
p and σ2

d. This is done as follows:

i.) Simulate ν1m1
θ2

from a chi - square distribution with ν1 degrees of freedom.

Then determine σ2
ε by calculating θ2 = σ2

ε = ν1m1
χ
ν2
1

, where for the data given

in Table 6.1, b = 15, k = 8, r = 5 and ν1 = bk(r − 1) = 480. Also

ν1m1 =
r∑
t=1

k∑
j=1

b∑
i=1

(yijt − yij.)2 = 390.6720.

ii.) Simulate ν2m2
θ1

from a chi - square distribution with ν2 degrees of freedom

and determine θ1 = (σ2
ε + rσ2

p) = ν2m2
χ2
ν2

, where for the data given in Table 6.1,

ν2 = b(k − 1) = 105 and ν2m2 = r
b∑
i=1

k∑
j=1

(yij. − yi..)2 = 132.6570.

Then determine σ2
p = (θ1−σ2

ε)
r .

iii.) Simulate ν3m3
θ0

from a chi - square distribution with ν3 degrees of freedom

and determine θ0 = (σ2
ε + rσ2

p + krσ2
d) = ν3m3

χ2
ν3

, where ν3 = (b− 1) = 14,

ν3m3 = rk
b∑
i=1

(yi..−y...)2 = 5(8)[(19.86−20.96)2 + . . .+(22.04−20.96)2] = 395.4342

and y... = 1
bkr

r∑
t=1

k∑
j=1

b∑
i=1
yijt = 20.96 for the data provided in Table 6.1.

Then determine σ2
d = (θ0−σ2

ε−rσ2
p)

kr .
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iv.) If the constraint given in equation 6.4.9 is met, retain the set of simulated

variance components. A set of variance components not obeying the re-

stricted parameter space given in equation 6.4.9, should be disregarded as

some of the simulated variance components may be negative.

v.) Repeat steps i.) to iv.) for example ˜̀= 10000 times, retaining only the per-

missible sets of variance components. Steps i.) to iv.) can also be repeated

until for example ˜̀= 10000 permissible sets of variance components are ob-

tained.

In Figures 6.4.1, 6.4.2 and 6.4.3, histograms of the estimated marginal posterior distribu-

tions of the variance components p(σ2
ε |y), p(σ2

p|y) and p(σ2
d|y), are illustrated. Posterior

medians and 95% equal tail credibility intervals are also given.

As is often the case, the posterior distributions of σ2
ε is symmetrical or fairly symmetrical.

The reason for this is the large number of degrees of freedom ν1 = bk(r− 1) = 480 asso-

ciated with the residual (error) variance. This is also the case for σ2
p where ν2 = b(k−1) =

105. The posterior distribution of σ2
d on the other hand, is quite skew, and, the 95% credi-

bility interval wide, which is a definite indication of the uncertainty associated with the

between - days variance. From Figure 6.4.3 it is also clear that there is large “day -

to - day” (between - days variation). The number of degrees of freedom associated

with σ2
d is also quite small (ν3 = b − 1 = 14). The 95% equal tail credibility intervals for

the variance components σ2
ε , σ

2
p and σ2

d were obtained by finding the 2.5th and 97.5th

percentiles of the respective ranked simulated variance component values.
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Figure 6.4.1: Histogram of the Estimated Marginal Posterior Distribution of σ2
ε - Error

Variance.

Median: 0.8156
95% Credibility Interval: [0.7212 , 0.9229]

b.) Simulation of the target value µ.

The estimated marginal posterior distribution of the target value µ can be simulated as

follows:

Substitute each of the simulated and retained sets of variance components σ2
ε , σ

2
p

and σ2
d into equation 6.4.7. Then draw a value µ from this normal distribution given in

equation 6.4.7. There will therefore be one simulated µ value for each set of retained

simulated variance components. This resulting set of simulated µ values can then be

used to plot a histogram. This histogram will represent the estimated marginal posterior

distribution of µ|y.

Values for the target value µ can also be determined by only simulating θ0 = (σ2
ε +rσ2

p+

krσ2
d) and substituting the simulated θ0 values into equation 6.4.7. For each simulated

θ0, a value µ is then simulated from equation 6.4.7. As was seen in Chapter 4, this would
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Figure 6.4.2: Histogram of the Estimated Marginal Posterior Distribution of σ2
p -

Variance Between Packages Within Days.

Median: 0.0903
95% Credibility Interval: [0.0303 , 0.1761]

be the preferred method, since only θ0 is simulated, and as a result, it is not necessary to

disregard simulated sets of variance components not satisfying the constraint stated in

equation 6.4.9. Although not given here, the marginal posterior distribution of µ|y can

also be determined using the Rao Blackwell method described in section 2.5. For each

simulated θ0, the normal distribution given in equation 6.4.7 is drawn. If this process is

for example repeated ˜̀= 10000 times, the estimated marginal posterior distribution of

µ|y would be represented by the average distribution of these ˜̀= 10000 conditional

posterior distributions of µ|σ2
ε , σ

2
p, σ

2
d,y.

In Figure 6.4.4 the histogram of the estimated marginal posterior distribution of µ|y is

depicted for the data given in Table 6.1 with y... = 20.96 as mentioned. The posterior

mean and 95% equal tail credibility interval is also given. The 95% credibility interval

was obtained by determining the 2.5th and 97.5th percentiles of the ranked simulated

µ values.
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Figure 6.4.3: Histogram of the Estimated Marginal Posterior Distribution of σ2
d -

Variance Between Days.

Median: 0.7097
95% Credibility Interval: [0.3496 , 1.7298]

Although not given here, the estimated marginal posterior distributions of the day ef-

fects di (for i = 1, . . . , b) can also easily be obtained. This can be done by simulating the

separate variance components σ2
ε , σ

2
p and σ2

d, and only retaining the sets satisfying the

constraint stated in equation 6.4.9. The simulated retained sets of variance compo-

nents are then substituted into equation 6.4.6 and then a normal distribution is drawn

for each di (i = 1, . . . , b). If the process is for example repeated ˜̀ = 10000 times, the

marginal posterior distribution of each di (i = 1, . . . , b) can easily be obtained using the

Rao Blackwell method discussed in section 2.5.
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Figure 6.4.4: Histogram of the Estimated Marginal Posterior Distribution of µ.

Mean: 20.9602
95% Credibility Interval: [20.6346 , 21.2926]

6.5 Tolerance Intervals

The tolerance interval problem has been well investigated in the case of the one -

way random effects model (Fonseca et. al., 2007). Limited results are however avail-

able for more general mixed and random effects models (Fonseca, et. al., 2007).

Assuming that the variance components were known, Bagui, Bhaumik and Parnes

(1996) attempted to construct upper one - sided tolerance limits for general unbal-

anced random effects models with more than two variance components (see also

Krishnamoorthy and Mathew, 2009). It was however pointed out by Smith (2002) and

Krishnamoorthy and Mathew (2009) that these resulting tolerance limits have actual

confidence levels quite different from the assumed nominal level. Under a two - way

crossed classification model with interaction, random effects and with unbalanced
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data, Smith (2002) also addressed the computation of one - sided tolerance limits (see

also Krishnamoorthy and Mathew, 2009). Fonseca et. al. (2007), also derived toler-

ance intervals for the two - way nested model with mixed effects or random effects.

These authors used the generalized confidence interval idea by Krishnamoorthy and

Mathew (2004) and the tolerance interval idea by Weerahandi (1993) in order to de-

velop their mentioned tolerance intervals. Krishnamoorthy and Mathew (2009) also

derived one - sided and two - sided tolerance intervals in a very general setting appli-

cable to mixed and random effects models with balanced data.

The purpose of the remainder of this chapter is to present Bayesian tolerance intervals

for the balanced two - factor nested random effects model given in equation 6.3.2.

Using Bayesian simulation, the procedure will be applied to the data given in Table

6.1. Since theorems proved for determining the α - expectation tolerance interval will

also be used for determining the one - and two - sided (α, δ) tolerance intervals, the α

- expectation tolerance interval will be discussed first.

6.5.1 α - Expectation Tolerance Intervals

As mentioned, according to Wolfinger (1998), research question 2 mentioned in Chap-

ter 1 is addressed by the α - expectation tolerance interval, since these intervals focus

on prediction of one or a few future observations from a process.

By using the results proved in Theorems 6.4.4.2, 6.4.4.3 and 6.4.4.5, the following theo-

rems can now be proved.
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Theorem 6.5.1.1

The predictive density of the average of k∗ future packages with r∗ samples per pack-

ages from a specific day (ith day) given the variance components, is normally dis-

tributed with mean

E(y∗i..|y, σ2
d, σ

2
p, σ

2
ε) =

krσ2
d

σ2
ε + rσ2

p + krσ2
d

yi.. +
σ2
ε + rσ2

p

σ2
ε + rσ2

p + krσ2
d

y... (6.5.1)

and variance

V ar(y∗i..|y, σ2
d, σ

2
p, σ

2
ε) =

σ2
ε + r∗σ2

p

k∗r∗
+

σ2
ε + rσ2

p

σ2
ε + rσ2

p + krσ2
d

{
σ2
ε + rσ2

p + bkrσ2
d

bkr

}
. (6.5.2)

Proof

The proof of Theorem 6.5.1.1 is given in Appendix D.

Theorem 6.5.1.2

The predictive density of the average of k∗ future packages with r∗ samples per pack-

age from a new unknown day, given the variance components, is normally distributed

with mean

E(y∗f..|y, σ2
d, σ

2
p, σ

2
ε) = y... (6.5.3)

and variance

V ar(y∗f..|y, σ2
d, σ

2
p, σ

2
ε) =

σ2
ε + r∗σ2

p + k∗r∗σ2
d

k∗r∗
+
σ2
ε + rσ2

p + krσ2
d

bkr
. (6.5.4)

Proof

The proof of Theorem 6.5.1.2 is given in Appendix D.
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Figure 6.5.1: Estimated Unconditional Predictive Distributions:

.... Estimated Unconditional Predictive Distribution of the Average of k∗ Pack-
ages, r∗ Replicates of Any Future Day p(y∗f..|y). For k∗ = 8 and r∗ = 5.

___ Estimated Unconditional Predictive Distribution of the Average of k∗ Pack-
ages, r∗ Replicates of the ith Day (Specific Day - 10th Day). For k∗ = 8, r∗ = 5
and i = 10.

95% Credibility Interval for p(y∗i..|y): [19.41 , 20.40]
95% Credibility Interval for p(y∗f..|y): [19.09 , 22.82]

For illustrative purposes, the estimated unconditional predictive distributions of y∗i.. (i =

10) i.e. for the tenth day, and y∗f.. i.e. a new or unknown day, for k∗ = 8 packages

per day and r∗ = 5 samples per package are depicted in Figure 6.5.1. The 95% equal

tail credibility intervals are given in Table 6.2 and are the so called Bayesian 0.95 -

expectation tolerance limits. Figure 6.5.1 was obtained for the spun yarn data given in

Table 6.1.
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The Bayesian simulation procedure for obtaining Figure 6.5.1 was performed in the fol-

lowing way:

i.) By using the rejection sampling procedure as described in section 6.4.5, the

variance components were generated from their joint posterior distribution.

ii.) For each set of simulated values (σ2
ε , σ

2
p, σ

2
d), the conditional predictive distri-

butions p(y∗i..|σ2
d, σ

2
p, σ

2
ε ,y) and p(y∗f..|σ2

d, σ
2
p, σ

2
ε ,y) are normally distributed (see

Theorems 6.5.1.1 and 6.5.1.2). Substitute the simulated set of variance com-

ponents into the two normal distributions given in Theorems 6.5.1.1 and 6.5.1.2,

and, draw the two normal distributions.

iii.) Steps i.) and ii.) were repeated ˜̀ times. As mentioned for this example,˜̀was taken as 10000. Using the Rao Blackwell argument (see Gelfand and

Smith 1991), the estimated unconditional predictive distributions p(y∗i..|y) and

p(y∗f..|y) were obtained by averaging the conditional predictive distributions

over the ˜̀ repetitions.

As described above, the predictive distributions were obtained through Monte Carlo

simulations where independent samples were obtained from the joint posterior distri-

bution.

For comparative purposes, the estimated mean values and 95% equal tail credibility

intervals for both p(y∗i..|y) (for i = 10) and p(y∗f..|y) are given in Table 6.2.
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Table 6.2: Estimated Mean Values and 95% Equal Tail Credibility Intervals for the Two

Estimated Unconditional Predictive Distributions Depicted in Figure 6.5.1. Obtained for

the Spun Yarn Data Given in Table 6.1.

95% Equal Tail

Day Mean Credibility Interval

p(y∗i..|y)

(for i = 10) 19.90 [19.41 , 20.40]

p(y∗f..|y) 20.96 [19.09 , 22.82]

Remember, as mentioned, the 95% equal tail credibility intervals given in Table 6.2, re-

spectively represent the Bayesian 0.95 - expectation tolerance intervals for both p(y∗i..|y)

(for i = 10) and p(y∗f..|y).

The Bayesian 0.95 - expectation tolerance interval (95% credibility interval) for y∗f.., the

average of k∗ = 8 future packages with r∗ = 5 samples per package, sampled on any

unknown or future day, is equal to [19.09 , 22.82]. Laubscher (1996) calculated

Sy∗f.. =

√
1
b−1

b∑
i=1

(yi.. − y...)2 =
√

m3
k∗r∗ = 0.8403

and used a bias correcting constant C4 = 0.9823. The classical 95% limits are given by

y...±t0.025;b−1

(
Sy∗f..
C4

)
. Now t0.025;14 = 2.145, y... = 20.96 and the classical limits are therefore

equal to [19.12 , 22.79], which are for all practical purposes equal to the Bayesian 0.95 -

expectation tolerance limits.

Since the 95% Bayesian prediction interval for the 10th day is [19.41 , 20.40], it follows that

if further sample means are obtained for the 10th day or for any future day similar to

the 10th day from, k∗ = 8 packages and r∗ = 5 samples per packages, the process is in

control if 95% or more of these sample means fall within these specified Bayesian 0.95 -

expectation tolerance interval limits.

From this comparison, the question may also arise as to what kind of frequentist cov-

erage properties the Bayesian interval under the probability matching prior given in
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equation 6.4.3 will have. This was investigated briefly by simulating 1000 data sets with

the same structure as the spun yard data given in Table 6.1. The estimated confidence

coefficient was calculated as the percentage of intervals that contained the true pre-

dictive value. The coverage percentage in the case of the 95% prediction interval was

95.2%. For the simulation study, y∗f.. was simulated from the following normal distribution:

y∗f..|µ, σ2
ε , σ

2
p, σ

2
d,y ∼ N(20.96 , 0.706085)

where

y∗f..|µ, σ2
ε , σ

2
p, σ

2
d,y ∼ N(µ , σ2

ε

k∗r∗
+

σ2
p

k∗
+ σ2

d)

with k∗ = 8, r∗ = 5 and since the 1000 simulated data sets have the same structure as

the data given in Table 6.1, σ2
ε = 0.8139, σ2

p = 0.0899, σ2
d = 0.6745 and µ = 20.96.

These values for σ2
ε , σ

2
p and σ2

d can be calculated as follows: In section 6.4.5 it was

shown that ν1m1 = 390.6720, ν2m2 = 132.6570 and ν3m3 = 395.4343.

Also, since ν1 = bk(r − 1) = 15(8)(5 − 1) = 480, ν2 = b(k − 1) = 15(8 − 1) = 105 and

ν3 = (b− 1) = 15− 1 = 14 it can therefore be shown that

m1 = ν1m1
ν1

= 390.6720
480 = 0.8139,

m2 = ν2m2
ν2

= 132.6570
105 = 1.2634, and

m3 = ν3m3
ν3

= 395.4343
14 = 28.2453.

Now, E(m1) = θ2 = σ2
ε (see Laubscher, 1996) and therefore σ2

ε was taken to be equal

to 0.8139. Similarly

E(m2) = θ1 = (σ2
ε + rσ2

p) = 1.2634.

Therefore

σ2
p = 1

r (θ1 − σ2
ε) = 1

5(1.2634− 0.8139) = 0.0899.
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Also, E(m3) = θ0 = (σ2
ε + rσ2

p + krσ2
d) = 28.2453.

Therefore

σ2
d = 1

kr (θ0 − σ2
ε − rσ2

p) = 1
8(5) [28.2453− 0.8139− 5(0.0899)] = 1

40 [28.2453− 0.8139− 0.4495] =

0.6745.

6.5.2 One - Sided (α, δ) Tolerance Intervals

Since it was proved in Theorem 6.5.1.2 that

y∗f..|µ, σ2
ε , σ

2
p, σ

2
d,y ∼ N

(
µ,

σ2
ε+r∗σ2

p+k∗r∗σ2
d

k∗r∗

)
,

for the construction of lower one - sided (α, δ) tolerance limits, the estimated marginal

posterior density of q∗ must therefore be obtained, which in this case represents the

(1− α)thquantile of the N
(
µ,

σ2
ε+r∗σ2

p+k∗r∗σ2
d

k∗r∗

)
distribution.

This distribution describes the averages of future data from new or unknown days.

The Bayesian simulation procedure for obtaining the posterior distribution of q∗ can be

performed in the following way:

i.) The rejection sampling procedure described in section 6.4.5 can be used

to generate the variance components. In Chapter 4 it was however also

mentioned that if the separate variance components are not needed, it

is preferable to simulate functions of the variance components. For the

balanced two - way nested random effects model given in equation 6.3.2,

it is not necessary to check that the constraint given in equation 6.4.9 is

met. The implication of this is that no set of simulated variance components

will be disregarded. For the balanced two - factor nested random effects

model given in equation 6.3.2, θ0 = (σ2
ε + rσ2

p + krσ2
d) can therefore be simu-

lated directly using the method described in section 6.4.5.
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ii.) Substitute the simulated θ0 = (σ2
ε + rσ2

p + krσ2
d) into the normal distribution

given by

µ|σ2
ε , σ

2
p, σ

2
d,y ∼ N

(
y...,

σ2
ε+rσ2

p+krσ2
d

bkr

)
and simulate a value for µ.

iii.) If k∗ = k and r∗ = r, then substitute the simulated values for µ and θ0 into the

equation for q given by

q = µ− zα
{
σ2
ε+rσ2

p+krσ2
d

kr

}
where zαrepresents the αth quantile of a standard normal distribution.

If either k∗ 6= k or r∗ 6= r or both k∗ 6= k and r∗ 6= r, then simulate the

separate variance components and µ as described in section 6.4.5 ensuring

that the constraint given in equation 6.4.9 is met. If this constraint is not met,

disregard this simulated set of variance components and µ. Substitute the

retained simulated variance components σ2
ε , σ

2
p and σ2

d together with the

simulated target value µ into the equation for q∗given by

q∗ = µ− zα
{
σ2
ε+r∗σ2

p+k∗r∗σ2
d

k∗r∗

}
where zα represents the αth quantile of a standard normal distribution.

iv.) Repeat steps i.) to iii.) for example ˜̀= 10000 times and draw the histogram.

This histogram represents the estimated marginal posterior distribution of q|y.

Although not given here, the Rao Blackwell method described in section 2.5 can also

be used to obtain the estimated marginal posterior distributions of the (1−α)th quantile

of the N
(
µ,

σ2
ε+r∗σ2

p+k∗r∗σ2
d

k∗r∗

)
distribution. It must also be noted that upper one - sided

(α, δ) tolerance limits can also be constructed for q∗u or qu by first determining estimated

marginal posterior distributions for

q∗u = µ+ zα

{
σ2
ε+r∗σ2

p+k∗r∗σ2
d

k∗r∗

}
and qu = µ+ zα

{
σ2
ε+rσ2

p+krσ2
d

kr

}
,
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Figure 6.5.2: Histogram of the Estimated Marginal Posterior Distribution of the
(1− 0.90)th Quantile q.

(0.90, 0.95) Lower One - Sided Tolerance Limit: 19.2311

where q∗u and qu represent the αth quantiles of theN
(
µ,

σ2
ε+r∗σ2

p+k∗r∗σ2
d

k∗r∗

)
andN

(
µ,

σ2
ε+rσ2

p+krσ2
d

kr

)
distributions respectively.

Figure 6.5.2 plots the histogram of the estimated marginal posterior distribution of q,

which in this case represents the (1−0.90)th quantile (or tenth percentile) of the normal

distribution given by N
(
µ,

σ2
ε+rσ2

p+krσ2
d

kr

)
.

For the histogram depicted in Figure 6.5.2, the lower one - sided (0.90, 0.95) tolerance

limit is equal to 19.2311. The value 19.2311 therefore represents the estimated (1−0.95)th

quantile (or fifth percentile) of the marginal posterior distribution of q, thus indicating

the Bayesian “B - basis” (0.90, 0.95) lower tolerance limit. The Bayesian “B - basis” lower

(0.90, 0.95) tolerance limit equals to 19.2311 represents the extension value of which 90%

of the average extensions of k = 8 future packages with r = 5 samples per package

from a new or unknown day will be greater than with probability 0.95.
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Figure 6.5.3: Histograms of the Estimated Marginal Posterior Distributions of the[
(1±0.90)

2

]th
Quantiles ql and qu for the Data Given in Table 6.1.

In Figure 6.5.3 the histograms of the estimated marginal posterior distributions of

a.) ql = µ− 1.645
{
σ2
ε+rσ2

p+krσ2
d

kr

} 1
2 and

b.) qu = µ+ 1.645
{
σ2
ε+rσ2

p+krσ2
d

kr

} 1
2 ,

representing the
[

(1±0.90)
2

]th
quantiles, are displayed.

The 95% credibility interval of the estimated marginal posterior distribution of q` is equal

to [18.6112 , 20.0924], while the 95% credibility interval of the estimated marginal poste-

rior distribution of qu is equal to [21.8179 , 23.3036].
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6.5.3 Two - Sided (α, δ) Tolerance Intervals

As mentioned by Wolfinger (1998) and also in the previous chapters, the construction

of two - sided (α, δ) tolerance intervals is slightly more complex. The simple procedure

of computing upper and lower limits separately and then combining them is not pre-

cisely valid, since as mentioned, the two quantiles do not have a posterior correlation

of 1. According to Wolfinger (1998), one way of constructing a valid two - sided (α, δ)

tolerance interval, is to begin by computing the two quantiles q̃∗` and q̃∗u given by

q̃∗l = µ− z[(1+α)/2]

{σ2
ε + r∗σ2

p + k∗r∗σ2
d

k∗r∗

} 1
2
, (6.5.5)

and

q̃∗u = µ+ z[(1+α)/2]

{σ2
ε + r∗σ2

p + k∗r∗σ2
d

k∗r∗

} 1
2
, (6.5.6)

where z 1+α
2

represents the
(

1+α
2

)th
quantile of a standard normal distribution.

For the balanced two - factor nested random effects model given in equation 6.3.2,

the pairs (q̃∗l , q̃
∗
u) form a sample from the bivariate posterior distribution of the (1−α

2 )th

and (1+α
2 )th quantiles (Wolfinger, 1998). Bayesian confidence regions can be obtained

for these bivariate samples, but as mentioned, are difficult to use in practice since

they are two - dimensional ellipsoids. It was already mentioned that Wolfinger (1998)

succeeded in constructing a two - sided interval that is one - dimensional and sym-

metric about the mean. To obtain such an interval, first form a scatterplot of q̃∗l versus

q̃∗u, with q̃∗l plotted on the vertical axis, and q̃∗u plotted on the horizontal axis. Then, as

mentioned, construct the reference line given by q̃∗l = −q̃∗u + 2y..., and draw two ad-

ditional lines, one parallel to each axis and intersecting on the reference line. Slide

this intersection point along the reference line until 100(1− δ)% of the observations are

contained in the half - rectangle opening towards the lower right portion of the graph.

The coordinates of the resulting intersection point form a two - sided tolerance interval

of the desired form. This procedure is illustrated graphically in Figure 6.5.4 for the spun

yarn data given in Table 6.1.
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Figure 6.5.4: Construction of a Two - Sided (0.90, 0.95) Tolerance Interval in the Case of
y∗f.. for the Spun Yarn Data Given in Table 6.1.

The (1−α
2 )th and (1+α

2 )th quantiles given by q̃∗l and q̃∗u respectively, which are needed for

the construction of the scatter plot and subsequent two - sided (0.90, 0.95) tolerance

interval depicted in Figure 6.5.4, can be determined as follows:

i.) Simulate the variance components σ2
ε , σ

2
p and σ2

d as well as the target value

µ, or, simulate θ0 and the target value µ using the method described for

simulating q∗or q for the one - sided (α, δ) tolerance limit described in section

6.5.2.

ii.) Substitute either the simulated variance components and the target value

µ or the simulated θ0 and target value µ into both equations 6.5.5 and 6.5.6

to obtain a (q̃∗l , q̃
∗
u) pair.
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iii.) Repeat steps i.) and ii.) for example ˜̀= 10000 times and draw the scatter

plot. Proceed to construct the two - sided (0.90, 0.95) tolerance interval using

the method described above.

From Figure 6.5.4 it can be seen that the estimated two - sided (0.90, 0.95) tolerance

interval is equal to [19.1246 , 22.7894]. This estimated Bayesian two - sided (0.90, 0.95)

tolerance interval can be interpreted as follows: If k = 8 future packages of spun yarn

with r = 5 samples per packages from a new or unknown day are selected, 90% of the

average extensions will fall in the interval [19.1246 , 22.7894] with probability 0.95.

The one - and two - sided (α, δ) tolerance intervals described above, apply to aver-

ages of observations from new or unknown days. If inference is desired for the average

of future observations from a specific day, say the ith day, then the marginal posterior

distribution of the (1 − α)th quantiles of the N
(
µ + di,

σ2
ε+r∗σ2

p

k∗r∗

)
distribution must be es-

timated. Remember also that it was shown in Theorem 6.4.4.5 that the conditional

posterior distribution of (µ+di), given the variance components, is normally distributed

with mean equals to

E
(

(µ+ di)|y, σ2
ε , σ

2
p, σ

2
d

)
=

krσ2
d

σ2
ε+rσ2

p+krσ2
d
yi.. +

σ2
ε+rσ2

p

σ2
ε+rσ2

p+krσ2
d
y...

and variance equals to

V ar
(

(µ+ di)|y, σ2
ε , σ

2
p, σ

2
d

)
=

σ2
ε+rσ2

p

σ2
ε+rσ2

p+krσ2
d

{
σ2
ε+rσ2

p+bkrσ2
d

bkr

}
.

6.5.4 Fixed - in - Advance Tolerance Intervals

Finally, to determine the content of a fixed - in - advance tolerance interval, the pos-

terior distribution of this content has to be determined. For example, suppose that a

lower fixed - in - advance limit of s is specified for data assumed to arise from a new
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batch. Therefore, for the balanced two - factor nested random effects model given in

equation 6.3.2, compute the content c∗ of the interval [s,∞] given by

c∗ = 1− Φ
[ (s− µ)(k∗r∗)

1
2

(σ2
ε + r∗σ2

p + k∗r∗σ2
d)

1
2

]
(6.5.7)

where Φ[·] represents the standard normal cumulative distribution function which is

given by

Φ(s∗) =
´ s∗
−∞( 1

2π )
1
2 exp(−1

2z
2)dz

where

s∗ = (s− µ)
{

(σ2
ε+r∗σ2

p+k∗r∗σ2
d)

(k∗r∗)

}− 1
2 .

Thus, a content c∗ is found for each average of future observations from a new or un-

known day, and these c∗ values therefore form a sample from the posterior distribution

of this content.

To determine a fixed - in - advance tolerance interval for the content c∗ of the interval

[s,∞], the following steps can be followed.

i.) Simulate the variance components σ2
ε , σ

2
p and σ2

d as well as the target value

µ, or, simulate θ0 and the target value µ using the method described for

simulating q∗or q for the one - sided (α, δ) tolerance interval described in

section 6.5.2.

ii.) Depending on the situations mentioned in section 6.5.2, either substitute the

simulated variance components and the target value µ, or the simulated θ0

and the target value µ, into equation 6.5.7 to obtain a content c∗.

iii.) Repeat steps i.) and ii.) for example ˜̀= 10000 times and draw a histogram.

This histogram represents the estimated posterior distribution of the content

c∗ above the preselected specification limit s.
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Figure 6.5.5: Histogram of the Estimated Posterior Content of the Interval [19.0,∞] in
the Case of y∗f.., Determined for the Spun Yarn Data Given in Table 6.1.

95% Fixed - in - Advance Tolerance Interval: [0.9083 , 0.9995]

A 100(α)% equal tail credibility interval can also easily be determined for the content c∗

of the interval [s,∞] by ranking the sample of c∗ values in order of magnitude and then

finding the 100(1−α
2 )th and 100(1+α

2 )th percentiles of the ranked simulated c∗ values. Re-

member, this 100(α)% equal tail credibility interval represents the fixed - in - advance

tolerance interval for the content of the interval [s,∞] i.e. the content above a prese-

lected specification limit s.

For illustrative purposes, the histogram of the estimated posterior content of the interval

[19.0,∞] for a fixed - in - advance lower specification limit s = 19.0, is given in Figure

6.5.5 for the spun yarn data given in Table 6.1. It must be mentioned that this lower

specification limit s = 19.0 was selected solely for illustrative purposes.

From Figure 6.5.5 it can be seen that the histogram of the estimated posterior contents

c∗ of the interval [19.0,∞] is negatively skewed and varies from 0.7 to 1 with a median

equals to 0.9885. The 100(0.95)% Bayesian fixed - in - advance tolerance interval, is
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equal to [0.9083 , 0.9995] and can be interpreted as follows: For the spun yarn data

given in Table 6.1, if k∗ = k = 8 packages with r∗ = r = 5 samples per package

from a new or unknown day are selected, between 90.83% and 99.95% of the average

extensions will fall in the interval [19.0,∞] with probability 0.95.

In section 4.6.4, a probability matching prior was proposed for the fixed - in - advance

tolerance interval for averages of observations from new or unknown batches in the

case of the balanced one - way random effects model. If k∗ = k and r∗ = r (as defined

in equations 6.3.1 and 6.3.2), it can also be shown that for the average of k packages

with r samples per packages from a new or unknown day, the prior distributions

πa(µ, σ
2
ε , σ

2
p, σ

2
d) ∝ σ−2

ε (σ2
ε + rσ2

p)
−1(σ2

ε + rσ2
p + krσ2

d)
− 1

2

{
1 + (s−µ)2kr

2(σ2
ε+rσ2

p+krσ2
d)

} 1
2

and

πb(µ, σ
2
ε , σ

2
p, σ

2
d) ∝ σ−2

ε (σ2
ε + rσ2

p)
−1(σ2

ε + rσ2
p + krσ2

d)
− 3

2

{
1 + (s−µ)2kr

2(σ2
ε+rσ2

p+krσ2
d)

}− 1
2

are probability matching priors for the contents c of the interval [s,∞] where c is given

by

c = 1− Φ
[

(s−µ)(kr)
1
2

(σ2
ε+rσ2

p+krσ2
d)

1
2

]
and

Φ[·] represents a standard normal cumulative distribution function.

The following theorem can now be proved.

Theorem 6.5.4.1

For the average of k∗ = k packages with r∗ = r samples per package from a new or

unknown day, the prior distributions given by

πa(µ, σ
2
ε , σ

2
p, σ

2
d) ∝ σ−2

ε (σ2
ε+rσ

2
p)
−1(σ2

ε+rσ
2
p+krσ

2
d)
− 1

2

{
1+

(s− µ)2kr

2(σ2
ε + rσ2

p + krσ2
d)

} 1
2

(6.5.8)

and

πb(µ, σ
2
ε , σ

2
p, σ

2
d) ∝ σ−2

ε (σ2
ε + rσ2

p)
−1(σ2

ε + rσ2
p + krσ2

d)
− 3

2

{
1 +

(s− µ)2kr

2(σ2
ε + rσ2

p + krσ2
d)

}− 1
2

(6.5.9)
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are probability matching priors for the contents c of the interval [s,∞] given by

c = 1− Φ
[ (s− µ)(kr)

1
2

(σ2
ε + rσ2

p + krσ2
d)

1
2

]
, (6.5.10)

where Φ[·] represents a standard normal cumulative distribution function.

Proof

The proof of Theorem 6.5.4.1 is given in Appendix D.

Although not given here, for the probability matching prior given in equation 6.5.9

for example, the fixed - in - advance tolerance interval can also be determined for

the content c given in equation 6.5.10 using the weighted Monte Carlo (sampling -

importance resampling) method.

For this probability matching prior given in equation 6.5.9, the proposal distribution is

therefore given by

PR(µ, σ2
ε , σ

2
p, σ

2
d|y) ∝ (σ2

ε)
− 1

2
(ν1+2)(σ2

ε + rσ2
p)
− 1

2
(ν2+2)(σ2

ε + rσ2
p + krσ2

d)
− 1

2
(ν3+3)

exp

{
−1

2

[
bkr(y...−µ)2

(σ2
ε+rσ2

p+krσ2
d)

+ ν3m3

(σ2
ε+rσ2

p+krσ2
d)

+ ν2m2

(σ2
ε+rσ2

p)
+ ν1m1

σ2
ε

]}
,

while the target distribution is given by

Pm(µ, σ2
ε , σ

2
p, σ

2
d|y) ∝ (σ2

ε)
− 1

2
(ν1+2)(σ2

ε+rσ
2
p)
− 1

2
(ν2+2)(σ2

ε+rσ
2
p+krσ

2
d)
− 1

2
(ν3+4)

{
1+ (s−µ)2kr

2(σ2
ε+rσ2

p+krσ2
d)

}− 1
2

exp

{
−1

2

[
bkr(y...−µ)2

(σ2
ε+rσ2

p+krσ2
d)

+ ν3m3

(σ2
ε+rσ2

p+krσ2
d)

+ ν2m2

(σ2
ε+rσ2

p)
+ ν1m1

σ2
ε

]}
.

Also, the resulting normalized weights for l = 1, 2, . . . , ˜̀ is given by

Wl =
(σ

2(`)
ε +rσ

2(`)
p +krσ

2(`)
d )−

1
2

{
1+

(s−µ(`))2kr

2(σ
2(`)
ε +rσ

2(`)
p +krσ

2(`)
d

)

}− 1
2

˜̀∑
l=1

(σ
2(`)
ε +rσ

2(`)
p +krσ

2(`)
d )−

1
2

{
1+

(s−µ(`))2kr

2(σ
2(`)
ε +rσ

2(`)
p +krσ

2(`)
d

)

}− 1
2

.

The simulation procedure is further similarly applied to the weighted Monte Carlo (sam-

pling - importance resampling) methods described in both sections 2.6.4 and 4.6.4.1.
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The situation is somewhat more complex for unbalanced mixed linear models. Given

the variance components, the fixed effects, random effects and predictive densities

are still normally distributed. It is therefore recommended that the best way to derive

a joint prior for the variance components is to use the method of Wolfinger and Kass

(2000). These authors calculated the square root of the determinant of the Fisher infor-

mation matrix, i.e. Jeffreys’ rule, where the calculations are based on the likelihood of

the variance components alone. The resulting prior therefore becomes a special case

of that of Berger and Bernardo (1992c).

Since the posterior distribution of the variance components will not be proportional

to the product of inverse gamma distribution, MCMC procedures should be used to

generate samples from the joint posterior of the variance components. The indepen-

dence chain algorithm (Tierney, 1994) is one such procedure that can be used.
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6.6 Appendix D

Table D1: The Physical Property of “Extension” of a Synthetic Yarn, Measured over 15

Consecutive Days of January, 1995. Eight Packages of Yarn were Sampled Each Day

and Each Measurement Represents the Average of Five Replicate Samples per

Package. Data Collected by Prof. N.F. Laubscher at SANS Fibres (Pty.) Ltd.

Daily

Day Package Extension Average

1 1 20.30

1 2 20.06

1 3 20.48

1 4 19.22

1 5 19.16

1 6 19.94

1 7 20.69

1 8 19.02 19.86

2 1 21.91

2 2 21.68

2 3 22.09

2 4 22.39

2 5 21.56

2 6 22.38

2 7 21.82

2 8 21.90 21.97

3 1 22.29

3 2 21.19

3 3 21.90

3 4 21.70

3 5 21.69

3 6 21.65

3 7 21.85

3 8 21.50 21.72
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Table D1: Continued

Daily

Day Package Extension Average

4 1 20.86

4 2 21.12

4 3 20.20

4 4 20.36

4 5 20.64

4 6 19.85

4 7 19.72

4 8 20.33 20.39

5 1 20.48

5 2 20.43

5 3 20.07

5 4 19.69

5 5 20.60

5 6 20.49

5 7 20.46

5 8 19.74 20.25

6 1 21.79

6 2 21.65

6 3 21.75

6 4 21.94

6 5 21.77

6 6 22.17

6 7 21.67

6 8 21.51 21.78
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Table D1: Continued

Daily

Day Package Extension Average

7 1 21.52

7 2 20.44

7 3 20.88

7 4 20.13

7 5 20.64

7 6 20.58

7 7 20.50

7 8 20.71 20.68

8 1 22.09

8 2 20.71

8 3 20.68

8 4 20.67

8 5 20.67

8 6 20.98

8 7 20.94

8 8 21.13 20.98

9 1 19.19

9 2 19.84

9 3 19.95

9 4 20.25

9 5 21.60

9 6 19.65

9 7 20.77

9 8 20.37 20.20
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Table D1: Continued

Daily

Day Package Extension Average

10 1 20.99

10 2 20.53

10 3 19.37

10 4 19.93

10 5 19.31

10 6 19.86

10 7 19.00

10 8 19.81 19.85

11 1 21.47

11 2 20.42

11 3 20.61

11 4 19.91

11 5 19.86

11 6 20.57

11 7 20.61

11 8 19.37 20.35

12 1 19.22

12 2 20.59

12 3 20.68

12 4 20.23

12 5 20.93

12 6 20.98

12 7 20.69

12 8 20.46 20.47
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Table D1: Continued

Daily

Day Package Extension Average

13 1 21.58

13 2 22.27

13 3 21.52

13 4 22.62

13 5 21.73

13 6 21.80

13 7 22.00

13 8 21.53 21.88

14 1 22.31

14 2 21.84

14 3 22.29

14 4 22.38

14 5 22.40

14 6 21.60

14 7 22.14

14 8 20.94 21.99

15 1 22.48

15 2 21.65

15 3 22.00

15 4 22.71

15 5 22.28

15 6 21.38

15 7 21.35

15 8 22.43 22.04
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Proof of Theorem 6.4.2.1

Firstly we will briefly review the theory of the probability matching prior. Datta and

Ghosh (1995) derived the differential equation that a prior must satisfy it the posterior

probability of a one sided credibility interval for a parametric function and its frequen-

tist probability agree up to O(n−1) where n is the sample size. They proved that the

agreement between the posterior probability and the frequentist probability holds if

and only if

m∑
α=1

∂
∂θα
{ηα(θ)π(θ)} = 0 ,

where p(θ) is the probability matching prior for θ, the vector of unknown parameters.

Also

∇t =

[
∂

∂θ1

t(θ), . . . ,
∂

∂θm
t(θ)

]′

and

η(θ) = F−1(θ)∇t(θ)√
∇′t(θ)F−1(θ)∇t(θ)

= [η1(θ), . . . , ηm(θ)]
′
.

It is clear that η
′
(θ)F (θ)η(θ) = 1 for all θ where F−1(θ) is the inverse of F (θ), the Fisher

Information matrix of θ. Also, t(θ) is the parameter of interest.

For the balanced two - factor nested random effects model given in equation 6.3.1, it

was mentioned that the integrated likelihood function was given by

L(µ, σ2
ε , σ

2
p, σ

2
d|y) ∝ (σ2

ε)
− 1

2
ν1(σ2

ε + σ2
p)
− 1

2
ν2(σ2

ε + rσ2
p + krσ2

d)
− 1

2
(ν3+1)

exp

{
−1

2

[
kr

b∑
i=1

(yi..−µ)2

(σ2
ε+rσ2

p+krσ2
d)

+ ν2m2

(σ2
ε+rσ2

p)
+ ν1m1

σ2
ε

]}
.

Now
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ln(L) = −ν1

2
ln(σ2

ε)− ν2

2
ln(σ2

ε + rσ2
p)−

(ν3+1)
2

ln(σ2
ε + rσ2

p + krσ2
d)−

kr
b∑
i=1

(yi..−µ)2

2(σ2
ε+rσ2

p+krσ2
d)

− ν2m2

2(σ2
ε+rσ2

p)
− ν1m1

2σ2
ε

.

For the two - factor nested random effects model, the Fisher Information matrix is given

by

F (θ, σ2
ε , σ

2
p, σ

2
d) =



F11 F12 F13 F14

F21 F22 F23 F24

F31 F32 F33 F34

F41 F42 F43 F44


where

∂ln(L)
∂µ

=
2kr

b∑
i=1

(yi..−µ)

2(σ2
ε+rσ2

p+krσ2
d)

=
2kr

b∑
i=1

yi..−2krbµ

2(σ2
ε+rσ2

p+krσ2
d)

.

Also

∂2ln(L)
(∂µ)2 = −2krb

2(σ2
ε+rσ2

p+krσ2
d)

.

Therefore F11 = −E
{
∂2ln(L)
(∂µ)2

}
= bkr

(σ2
ε+rσ2

p+krσ2
d)

= (ν3+1)kr
(σ2
ε+rσ2

p+krσ2
d)

.

Similarly
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∂σ2
ε

= − ν1

2σ2
ε
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2(σ2
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Therefore
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(∂σ2
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2
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1
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ε
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2
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1
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b∑
i=1

(yi..−µ)2
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F22 is therefore equals to

F22 = −E
[
∂2ln(L)
(∂σ2

ε)2

]

= − ν1

2(σ2
ε)2 − ν2

2(σ2
ε+rσ2
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1
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(kr)( 1

kr
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d)

(σ2
ε+rσ2

p+krσ2
d)2 − ν2(σ2

ε+rσ2
p)

(σ2
ε+rσ2

p)3 − ν1σ2
ε

(σ2
ε)3 .

Therefore F22 = 1
2

{
ν1

(σ2
ε)2 + ν2

(σ2
ε+rσ2

p)2 + (ν3+1)

(σ2
ε+rσ2

p+krσ2
d)2

}
,

and

∂ln(L)
∂σ2
p

= −ν2

2
r

(σ2
ε+rσ2

p)
− (ν3+1)

2
r

(σ2
ε+rσ2

p+krσ2
d)

+
kr2

b∑
i=1

(yi..−µ)2

2(σ2
ε+rσ2

p+krσ2
d)2 + rν2m2

2(σ2
ε+rσ2

p)2 .

Therefore

∂2ln(L)
(∂σ2

p)2 = ν2

2
r2

(σ2
ε+rσ2

p)2 + (ν3+1)
2

r2

(σ2
ε+rσ2

p+krσ2
d)2 −

kr3
b∑
i=1

(yi..−µ)2

(σ2
ε+rσ2

p+krσ2
d)3 − r2ν2m2

(σ2
ε+rσ2

p)3 .

Now

F33 = −E
[
∂2ln(L)
(∂σ2

p)2

]
= −ν2

2
r2

(σ2
ε+rσ2

p)2 − (ν3+1)
2

r2

(σ2
ε+rσ2

p+krσ2
d)2 +

kr3b( 1
kr

)(σ2
ε+rσ2

p+krσ2
d)

(σ2
ε+rσ2

p+krσ2
d)2 +

r2ν2(σ2
ε+rσ2

p)

(σ2
ε+rσ2

p)3 , and

therefore F33 = ν2r2

2(σ2
ε+rσ2

p)2 + (ν3+1)r2

2(σ2
ε+rσ2

p+krσ2
d)2 .

Similarly

∂ln(L)

∂σ2
d

= − rk(ν3+1)

2(σ2
ε+rσ2

p+krσ2
d)

+
(kr)2

b∑
i=1

(yi..−µ)2

2(σ2
ε+rσ2

p+krσ2
d)2 .

Therefore

∂2ln(L)

(∂σ2
d)2 = (ν3+1)(kr)2

2(σ2
ε+rσ2

p+krσ2
d)2 −

(kr)3
b∑
i=1

(yi..−µ)2

(σ2
ε+rσ2

p+krσ2
d)3 .

Now
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F44 = −E
[
∂2ln(L)

(∂σ2
d)2

]
= − (ν3+1)(kr)2

2(σ2
ε+rσ2

p+krσ2
d)2 +

(kr)3b( 1
kr

)(σ2
ε+rσ2

p+krσ2
d)

(σ2
ε+rσ2

p+krσ2
d)3

= (ν3+1)(kr)2

2(σ2
ε+rσ2

p+krσ2
d)2 .

Also F12 = F21 = 0, F13 = F31 = 0, and F14 = F41 = 0.

Now

∂2ln(L)
∂σ2
p∂σ

2
ε

= ν2

2
r

(σ2
ε+rσ2

p)2 + (ν3+1)r

2(σ2
ε+rσ2

p+krσ2
d)2 −

kr2
b∑
i=1

(yi..−µ)2

(σ2
ε+rσ2

p+krσ2
d)3 − rν2m2

(σ2
ε+rσ2

p)3 .

Therefore

F32 = −E
[
∂2ln(L)
∂σ2
p∂σ

2
ε

]
= − ν2r

2(σ2
ε+rσ2

p)2 − (ν3+1)r

2(σ2
ε+rσ2

p+krσ2
d)2 +

rb(σ2
ε+rσ2

p+krσ2
d)2

(σ2
ε+rσ2

p+krσ2
d)3 +

rν2(σ2
ε+rσ2

p)

(σ2
ε+rσ2

p)3

= rν2

2(σ2
ε+rσ2

p)2 + (ν3+1)r

2(σ2
ε+rσ2

p+krσ2
d)2 = F23 .

Also

∂2ln(L)

∂σ2
d∂σ

2
ε

= (ν3+1)(kr)

2(σ2
ε+rσ2

p+krσ2
d)2 −

(kr)2
b∑
i=1

(yi..−µ)2

(σ2
ε+rσ2

p+krσ2
d)3 .

Therefore

F42 = −E
[
∂2ln(L)

∂σ2
d∂σ

2
ε

]
= (ν3+1)(kr)

2(σ2
ε+rσ2

p+krσ2
d)2 = F24 , and

similarly

F43 = −E
[
∂2ln(L)

∂σ2
d∂σ

2
p

]
= (ν3+1)kr2

2(σ2
ε+rσ2

p+krσ2
d)2 = F34 .

Therefore, the Fisher information matrix can be written as

F =



F11 0 0 0

0 F22 F23 F24

0 F32 F33 F34

0 F42 F43 F44
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with F ∗ =


F22 F23 F24

F32 F33 F34

F42 F43 F44

 .

Now, it is clear that F−1 =



F 11 0 0 0

0 F 22 F 23 F 24

0 F 32 F 33 F 34

0 F 42 F 43 F 44


with F 11 = (F11)−1 =

σ2
ε+rσ2

p+krσ2
d

(ν3+1)kr

=
σ2
ε+rσ2

p+krσ2
d

bkr

Also, F ∗−1 = 1
|F ∗|


F22 F23 F24

F32 F33 F34

F42 F43 F44


where |F ∗|

= (−1)1+1
[
F33F44 − F 2

43

]
+ (−1)1+2

[
F32F44 − F42F34

]
+ (−1)1+3

[
F32F43 − F42F33

]

=

{[
ν2r2

2(σ2
ε+rσ2

p)2 + (ν3+1)r2

2(σ2
ε+rσ2

p+krσ2
d)2

][
(ν3+1)(kr)2

2(σ2
ε+rσ2

p+krσ2
d)2

]
−
[

(ν3+1)kr2

2(σ2
ε+rσ2

p+krσ2
d)2

]2
}

−
{[

rν2

2(σ2
ε+rσ2

p)2 + (ν3+1)r

2(σ2
ε+rσ2

p+krσ2
d)2

][
(ν3+1)(kr)2

2(σ2
ε+rσ2

p+krσ2
d)2

]
−
[

(ν3+1)(kr)

2(σ2
ε+rσ2

p+krσ2
d)2

][
(ν3+1)kr2

2(σ2
ε+rσ2

p+krσ2
d)2

]}

+

{[
rν2

2(σ2
ε+rσ2

p)2 + (ν3+1)r

2(σ2
ε+rσ2

p+krσ2
d)2

][
(ν3+1)kr2

2(σ2
ε+rσ2

p+krσ2
d)2

]
−
[

(ν3+1)(kr)

2(σ2
ε+rσ2

p+krσ2
d)2

][
ν2r2

2(σ2
ε+rσ2

p)2 + (ν3+1)r2

2(σ2
ε+rσ2

p+krσ2
d)2

]}

= ν1ν2(ν3+1)k2r4

8(σ2
ε)2(σ2

ε+rσ2
p)2(σ2

ε+rσ2
p+krσ2

d)2 .

Also
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f22 = (−1)1+1
[
F33F44 − F 2

43

]
=
[

ν2r2

2(σ2
ε+rσ2

p)2 + (ν3+1)r2

2(σ2
ε+rσ2

p+krσ2
d)2

][
(ν3+1)(kr)2

2(σ2
ε+rσ2

p+krσ2
d)2

]
−
[

(ν3+1)kr2

2(σ2
ε+rσ2

p+krσ2
d)2

]2

= ν2(ν3+1)k2r4

4(σ2
ε+rσ2

p)2(σ2
ε+rσ2

p+krσ2
d)2 .

f23 = (−1)1+2
[
F32F44 − F42F34

]
= −

{[
rν2

2(σ2
ε+rσ2

p)2 + (ν3+1)r

2(σ2
ε+rσ2

p+krσ2
d)2

][
(ν3+1)(kr)2

2(σ2
ε+rσ2

p+krσ2
d)2

]
−
[

(ν3+1)(kr)

2(σ2
ε+rσ2

p+krσ2
d)2

][
(ν3+1)kr2

2(σ2
ε+rσ2

p+krσ2
d)2

]}
= − k2r3ν2(ν3+1)

4(σ2
ε+rσ2

p)2(σ2
ε+rσ2

p+krσ2
d)2 .

f24 = (−1)1+3
[
F32F43 − F42F33

]
=
[

rν2

2(σ2
ε+rσ2

p)2 + (ν3+1)r

2(σ2
ε+rσ2

p+krσ2
d)2

][
(ν3+1)kr2

2(σ2
ε+rσ2

p+krσ2
d)2

]
−
[

(ν3+1)(kr)

2(σ2
ε+rσ2

p+krσ2
d)2

][
ν2r2

2(σ2
ε+rσ2

p)2 + (ν3+1)r2

2(σ2
ε+rσ2

p+krσ2
d)2

]
= 0

f33 = (−1)2+2
[
F22F44 − F 2

42

]
=
[

ν1

2(σ2
ε)2 + ν2

2(σ2
ε+rσ2

p)2 + (ν3+1)

2(σ2
ε+rσ2

p+krσ2
d)2

][
(ν3+1)(kr)2

2(σ2
ε+rσ2

p+krσ2
d)2

]
−
[

(ν3+1)2(kr)2

4(σ2
ε+rσ2

p+krσ2
d)4

]
= ν1(ν3+1)k2r2

4(σ2
ε)2(σ2

ε+rσ2
p+krσ2

d)2 + ν2(ν3+1)k2r2

4(σ2
ε+rσ2

p)2(σ2
ε+rσ2

p+krσ2
d)2 .

f34 = (−1)2+3
[
F22F43 − F42F23

]
= −

{[
ν1

2(σ2
ε)2 + ν2

2(σ2
ε+rσ2

p)2 + (ν3+1)

2(σ2
ε+rσ2

p+krσ2
d)2

][
(ν3+1)kr2

2(σ2
ε+rσ2

p+krσ2
d)2

]
−
[

(ν3+1)(kr)

2(σ2
ε+rσ2

p+krσ2
d)2

][
rν2

2(σ2
ε+rσ2

p)2 + (ν3+1)r

2(σ2
ε+rσ2

p+krσ2
d)2

]}

= − ν1(ν3+1)kr2

4(σ2
ε)2(σ2

ε+rσ2
p+krσ2

d)2 .
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f44 = (−1)3+3
[
F22F33 − F 2

32

]
=
[

ν1

2(σ2
ε)2 + ν2

2(σ2
ε+rσ2

p)2 + (ν3+1)

2(σ2
ε+rσ2

p+krσ2
d)2

][
ν2r2

2(σ2
ε+rσ2

p)2 + (ν3+1)r2

2(σ2
ε+rσ2

p+krσ2
d)2

]
−
[

rν2

2(σ2
ε+rσ2

p)2 + (ν3+1)r

2(σ2
ε+rσ2

p+krσ2
d)2

]2

= ν1ν2r2

4(σ2
ε)2(σ2

ε+rσ2
p)2 + ν1(ν3+1)r2

4(σ2
ε)2(σ2

ε+rσ2
p+krσ2

d)2 .

Therefore

F 11 =
(σ2
ε+rσ2

p+krσ2
d)

bkr
.

F 22 = f22

|F ∗| = 2(σ2
ε)2

ν1
= 2(σ2

ε)2

bk(r−1)
.

F 23 = f23

|F ∗| = −2(σ2
ε)2

ν1r
= −2(σ2

ε)2

bkr(r−1)
.

F 24 = F 12 = 0 .

F 33 = f33

|F ∗| =
−2

{
ν1(σ2

ε+rσ2
p)2+ν2(σ2

ε)2

}
ν1ν2r2 .

F 34 = f34

|F ∗| =
−2(σ2

ε+rσ2
p)2

ν2kr2 .

F 44 = f44

|F ∗| =
−2

{
ν2(σ2

ε+rσ2
p+krσ2

d)2+(ν3+1)(σ2
ε+rσ2

p)2

}
ν2(ν3+1)k2r2 .

Now define t(θ) = µ+ zα

√
σ2
ε+rσ2

p+krσ2
d

kr
,

therefore t(θ) = µ+ zα( 1
kr

)
1
2 (σ2

ε + rσ2
p + krσ2

d)
1
2 .

It therefore follows that

∂t(θ)
∂µ

= 1 ,

∂t(θ)
∂σ2
ε

= zα( 1
kr

)
1
2 (1

2
)(σ2

ε + rσ2
p + krσ2

d)
− 1

2 ,

∂t(θ)
∂σ2
p

= zα( r
k
)

1
2 (1

2
)(σ2

ε + rσ2
p + krσ2

d)
− 1

2 , and
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∂t(θ)

∂σ2
d

= zα(kr)
1
2 (1

2
)(σ2

ε + rσ2
p + krσ2

d)
− 1

2 .

Now

∇′t(θ) =
[

∂t(θ)
∂µ

∂t(θ)
∂σ2
ε

∂t(θ)
∂σ2
p

∂t(θ)

∂σ2
d

]
and

∇′t(θ)F−1(θ) =

{
∂t(θ)
∂µ

F 11
[
∂t(θ)
∂σ2
ε
F 22 + ∂t(θ)

∂σ2
p
F 32
][

∂t(θ)
∂σ2
ε
F 23 + ∂t(θ)

∂σ2
p
F 33 + ∂t(θ)

∂σ2
d
F 43
]

[
∂t(θ)
∂σ2
p
F 34 + ∂t(θ)

∂σ2
d
F 44
]}

.

Also

∂t(θ)
∂µ

F 11 =
σ2
ε+rσ2

p+krσ2
d

bkr
, and

∂t(θ)
∂σ2
ε
F 22 + ∂t(θ)

∂σ2
p
F 32

= zα( 1
kr

)
1
2 (1

2
)(σ2

ε + rσ2
p + krσ2

d)
− 1

2

(
2(σ2

ε)2

bk(r−1)

)
+ zα( r

k
)

1
2 (1

2
)(σ2

ε + rσ2
p + krσ2

d)
− 1

2

(
−2(σ2

ε)2

bkr(r−1)

)
= 0 .

Now ∂t(θ)
∂σ2
ε
F 23 + ∂t(θ)

∂σ2
p
F 33 + ∂t(θ)

∂σ2
d
F 43

= zα( 1
kr

)
1
2 (1

2
)(σ2

ε+rσ
2
p+krσ

2
d)
− 1

2

(
−2(σ2

ε)2

bkr(r−1)

)
+zα( r

k
)

1
2 (1

2
)(σ2

ε+rσ
2
p+krσ

2
d)
− 1

2

(
−2
{
ν1(σ2

ε+rσ2
p)2+ν2(σ2

ε)2
}

ν1ν2r2

)
+zα(kr)

1
2 (1

2
)(σ2

ε + rσ2
p + krσ2

d)
− 1

2

(
−2(σ2

ε+rσ2
p)2

ν2kr2

)

= zα(σ2
ε + rσ2

p + krσ2
d)
−1
{
−b(k−1)(σ2

ε)+bk(r−1)(σ2
ε+rσ2

p)

b2k
3
2 r

3
2 (k−1)(r−1)

+
b(k−1)(σ2

ε)−bk(r−1)(σ2
ε+rσ2

p)

b2k
3
2 r

3
2 (k−1)(r−1)

}
= 0 .
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And

∂t(θ)
∂σ2
p
F 34 + ∂t(θ)

∂σ2
d
F 44

= zα( r
k
)

1
2 (1

2
)(σ2

ε + rσ2
p + krσ2

d)
− 1

2

(
−2(σ2

ε+rσ2
p)2

ν2kr2

)
+zα(rk)

1
2 (1

2
)(σ2

ε + rσ2
p + krσ2

d)
− 1

2

(
2
{
ν2(σ2

ε+rσ2
p+krσ2

d)2+(ν3+1)(σ2
ε+rσ2

p)2
}

ν2(ν3+1)k2r2

)

= zα(rk)
1
2 (1

2
)(σ2

ε + rσ2
p + krσ2

d)
− 1

2

(
(σ2
ε+rσ2

p+krσ2
d)2

(ν3+1)k2r2

)

=
zα(σ2

ε+rσ2
p+krσ2

d)
3
2

bk
3
2 r

3
2

.

Therefore

∇′t(θ)F−1(θ) =
[

σ2
ε+rσ2

p+krσ2
d

bkr
0 0

zα(σ2
ε+rσ2

p+krσ2
d)

3
2

bk
3
2 r

3
2

]
and

∇′t(θ)F−1(θ)∇t(θ) =
σ2
ε+rσ2

p+krσ2
d

bkr
+ z2

α
(σ2
ε+rσ2

p+krσ2
d)

2bkr

=
σ2
ε+rσ2

p+krσ2
d

bkr

[
1 + 1

2
z2
α

]
.

Therefore

√
∇′t(θ)F−1(θ)∇t(θ) =

(σ2
ε+rσ2

p+krσ2
d)

1
2

(bkr)
1
2

[
1 + 1

2
z2
α

] 1
2

.

Now

η
′
(θ) =

∇′t(θ)F−1(θ)√
∇′t(θ)F−1(θ)∇t(θ)

=
[
η1(θ) η2(θ) η3(θ) η4(θ)

]
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where

η1(θ) =
(σ2
ε+rσ2

p+krσ2
d)

(bkr)

(σ2
ε+rσ2

p+krσ2
d

)
1
2

(bkr)
1
2

[
1+ 1

2
z2
α

] 1
2

=
(σ2
ε+rσ2

p+krσ2
d)

1
2

(bkr)
1
2

[
1 + 1

2
z2
α

]− 1
2
,

η2(θ) = η3(θ) = 0, and

η4(θ) =

zα(σ2
ε+rσ2

p+krσ2
d)

3
2

bk
3
2 r

3
2

(σ2
ε+rσ2

p+krσ2
d

)
1
2

b
1
2 k

1
2 r

1
2

[
1+ 1

2
z2
α

] 1
2

=
zα(σ2

ε+rσ2
p+krσ2

d)

b
1
2 kr

[
1 + 1

2
z2
α

]− 1
2

.

The prior distribution p(θ) = p(µ, σ2
ε , σ

2
p, σ

2
d) is a probability matching prior if the following

differential equation is satisfied:

∂{η1(θ)p(θ)}
∂µ

+ ∂{η2(θ)p(θ)}
∂σ2
ε

+ ∂{η3(θ)p(θ)}
∂σ2
p

+ ∂{η3(θ)p(θ)}
∂σ2
d

= 0 .

Now if p(θ) ∝ σ−2
ε (σ2

ε + rσ2
p)
−1(σ2

ε + rσ2
p + krσ2

d)
−1

then

∂{η1(θ)p(θ)}
∂µ

= 0 (since it does not contain µ)

∂{η2(θ)p(θ)}
∂σ2
ε

= 0 (since η2(θ) = 0),

∂{η3(θ)p(θ)}
∂σ2
p

= 0 (since η3(θ) = 0), and

∂{η4(θ)p(θ)}
∂σ2
d

=

∂

{
zασ
−2
ε (σ2

ε+rσ2
p)−1

b
1
2 kr

[
1+ 1

2
z2
α

]− 1
2

}
∂σ2
d

= 0 (since it does not contain σ2
d).

It therefore follows that the prior distribution

p(µ, σ2
ε , σ

2
p, σ

2
d) ∝ σ−2

ε (σ2
ε + rσ2

p)
−1(σ2

ε + rσ2
p + krσ2

d)
−1
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given by equation 6.4.3 is a probability matching prior for

q = µ+ zα

√
(σ2
ε+rσ2

p+krσ2
d)

kr
,

the αth quantile of the normal distribution given by

yf..|µ, σ2
ε , σ

2
p, σ

2
d ∼ N

(
µ,

(σ2
ε+rσ2

p+krσ2
d)

kr

)
.

Proof of Theorem 6.4.4.1

To determine the conditional posterior distribution of u2|µ, σ2
ε , σ

2
p, σ

2
d,u1, only consider

the terms in the joint posterior distribution given in equation 6.4.5 that contain u2, there-

fore only consider the exponent

exp

{
−1

2

[
1
σ2
ε
(y − µX − Z1u1 − Z2u2)

′
(y − µX − Z1u1 − Z2u2) + 1

σ2
p
u
′
2u2

]}
.

Now complete the square with respect to u2.

Therefore

s = 1
σ2
ε
(y − µX − Z1u1 − Z2u2)

′
(y − µX − Z1u1 − Z2u2) + 1

σ2
p
u
′
2u2

= 1
σ2
ε
(ỹ − Z2u2)

′
(ỹ − Z2u2) + 1

σ2
p
u
′
2u2

where ỹ = y − µX − Z1u1 .

Therefore

s = 1
σ2
ε
(ỹ
′
ỹ − 2u

′
2Z2ỹ + u

′
2Z
′
2Z2u2) + 1

σ2
p
u
′
2u2

Now consider

s̃ = 1
σ2
ε

[
u
′
2Z
′
2Z2u2 − 2u

′
2Z
′
2ỹ
]

+ 1
σ2
p
u
′
2u2
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= u
′
2

[
1
σ2
ε
Z
′
2Z2 − 1

σ2
p
Ibk

]
u2 − 2u

′
2

1
σ2
ε
Z
′
2ỹ

= u
′
2Du2 − 2u

′
2C

where D =
[

1
σ2
ε
Z
′
2Z2 + 1

σ2
p
Ibk

]
, C = 1

σ2
ε
Z
′
2ỹ, and ỹ = y − µX − Z1u1 .

Therefore

s̃ = (u2 −D−1C)
′
D(u2 −D−1C)−CD−1C .

From s̃ it therefore follows that

u2|µ, σ2
ε , σ

2
p, σ

2
d,u1 ∼ N(D−1C, D−1)

where

D−1 =
[

1
σ2
ε
Z
′
2Z2 + 1

σ2
p
Ibk

]−1

=
[
r
σ2
ε
Ibk + 1

σ2
p
Ibk

]−1

=
[
r
σ2
ε

+ 1
σ2
p

]−1

Ibk

=
[
rσ2
p+σ2

ε

σ2
εσ

2
p

]−1

Ibk

=
[

σ2
εσ

2
p

rσ2
p+σ2

ε

]
Ibk .

Also

D−1C =
[

σ2
εσ

2
p

σ2
ε+rσ2

p

]
1
σ2
ε
Z
′
2[y − µX − Z1u1]

=
[

rσ2
p

σ2
ε+rσ2

p

]{


y11.

y12.

...

ybk.


− (µX + 1

k
Z
′
2Z1u1)

}
,

and
∣∣∣D∣∣∣− 1

2
=
(

σ2
εσ

2
p

σ2
ε+rσ2

p

) 1
2
bk

.
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Proof of Theorem 6.4.4.2

In order to obtain the conditional posterior distribution of u1|µ, σ2
ε , σ

2
p, σ

2
d, the joint pos-

terior distribution has to be integrated with respect to u2 (i.e. integrate u2 out of the

joint posterior distribution), therefore

p(µ, σ2
ε , σ

2
p, σ

2
d,u1|y) ∝

´∞
−∞ exp

{
−1

2

[
u2 −

(
1
σ2
ε
Z
′
2Z2 + 1

σ2
p
Ibk

)−1
1
σ2
ε
Z
′
2ỹ

]′[
1
σ2
ε
Z
′
2Z2 + 1

σ2
p
Ibk

]
[
u2 −

(
1
σ2
ε
Z
′
2Z2 + 1

σ2
p
Ibk

)−1
1
σ2
ε
Z
′
2ỹ

]}
du2

∝
∣∣∣D∣∣∣− 1

2
exp

{
−1

2

[
1
σ2
ε
ỹ
′
ỹ −C ′D−1C

]}
where D, ỹ, C is defined as in Theorem 6.4.4.1.

Therefore, after integrating u2 out, the joint posterior distribution p(µ, σ2
ε , σ

2
p, σ

2
d,u1|y) can

be written as

p(µ, σ2
ε , σ

2
p, σ

2
d,u1|y) ∝ (σ2

ε)
− 1

2
bk(r−1)

(
1
σ3
p

) 1
2
b(

1
σ2
ε+rσ2

p

) 1
2
bk

(σ2
ε)
−1(σ2

ε + rσ2
p)
−1

(σ2
ε + rσ2

p + krσ2
d)
−1 × exp

{
− 1

2σ2
ε

ỹ
′
ỹ +

1

2
C
′
D−1C − 1

2σ2
d

u
′

1u1

}
.

(6.6.1)

By only considering the parts in the joint posterior distribution that contains u1, the

conditional posterior distribution of u1 given µ, and the variance components, can be

written as

p(u1|µ, σ2
ε , σ

2
p, σ

2
d,y) ∝ exp

{
−1

2

[
1
σ2
ε
ỹ
′
ỹ + 1

σ2
d
u
′
1u1 −C

′
D−1C

]}
.

Now, complete the square with respect to u1 in the exponent. Therefore, first consider

1
2
C
′
D−1C = 1

2

(
1
σ2
ε

)2

ỹZ2

(
σ2
εσ

2
p

σ2
ε+rσ2

p

)
Z
′
2ỹ

=
σ2
p

2σ2
ε(σ2

ε+rσ2
p)
ỹ
′
Z2Z

′
2ỹ .
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Also, ỹ = y − µX − Z1u1 = ˜̃y − Z1u1

where ˜̃y = y − µX .

Now consider the exponent

− 1
2σ2
ε
ỹ
′
ỹ + 1

2
C
′
D−1C − 1

2σ2
d
u
′
1u1

= − 1
2σ2
ε
(˜̃y − Z1u1)

′
[
Ibkr −

σ2
p

(σ2
ε+rσ2

p)
Z2Z

′
2

]
(˜̃y − Z1u1)− u

′
1u1

2σ2
d

= − 1
2σ2
ε

{˜̃y′[Ibkr − σ2
p

(σ2
ε+rσ2

p)
Z2Z

′
2

]˜̃y − 2u
′
1Z
′
1

[
Ibkr −

σ2
p

(σ2
ε+rσ2

p)
Z2Z

′
2

]˜̃y
+u

′
1Z
′
1

[
Ibkr −

σ2
p

(σ2
ε+rσ2

p)
Z2Z

′
2

]
Z1u1

}
− 1

2σ2
d
u
′
1u1 .

Let S = u
′
1

{
1
σ2
ε
Z
′
1

(
Ibkr −

σ2
p

(σ2
ε+rσ2

p)
Z2Z

′
2

)
Z1 + 1

2σ2
d
Ib

}
u1− 2u

′
1

1
σ2
ε
Z
′
1

(
Ibkr −

σ2
p

(σ2
ε+rσ2

p)
Z2Z

′
2

)˜̃y .

Also, let D = 1
σ2
ε
Z
′
1Z1 − 1

σ2
ε

[
σ2
p

(σ2
ε+rσ2

p)

]
Z
′
1Z2Z

′
2Z1 + 1

σ2
d
Ib , and

C = 1
σ2
ε
Z
′
1

(
Ibkr −

σ2
p

(σ2
ε+rσ2

p)
Z2Z

′
2

)˜̃y .

Therefore

s = (u1 −D−1C)
′
D(u1 −D−1C)−C ′D−1C .

Now

D = rk
σ2
ε
Ib − kr2

σ2
ε

σ2
p

(σ2
ε+rσ2

p)
Ib + 1

σ2
d
Ib .

Therefore

D =
(
rk
σ2
ε
− kr2σ2

p

σ2
ε(σ2

ε+rσ2
p)

+ 1
σ2
d

)
Ib

=
(
rk(σ2

ε+rσ2
p)σ2

d−kr
2σ2
pσ

2
d+σ2

ε(σ2
ε+rσ2

p)

σ2
ε(σ2

ε+rσ2
p)σ2

d

)
Ib
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=
(
rkσ2

εσ
2
d+r2kσ2

pσ
2
d−kr

2σ2
pσ

2
d+(σ2

ε)2+rσ2
εσ

2
p)

σ2
ε(σ2

ε+rσ2
p)σ2

d

)
Ib

=
(
rkσ2

εσ
2
d+(σ2

ε)2+rσ2
εσ

2
p)

σ2
ε(σ2

ε+rσ2
p)σ2

d

)
Ib

=
σ2
ε(σ2

ε+rσ2
p+krσ2

d)

σ2
ε(σ2

ε+rσ2
p)σ2

d
Ib

=
(σ2
ε+rσ2

p+krσ2
d)

σ2
d(σ2

ε+rσ2
p)

Ib .

Therefore

V ar(u1|µ, σ2
ε , σ

2
p, σ

2
d) = D−1 =

σ2
d(σ2

ε+rσ2
p)

(σ2
ε+rσ2

p+krσ2
d)
Ib .

Also

C = 1
σ2
ε
Z
′
1

(
Ibkr −

σ2
p

σ2
ε+rσ2

p
Z2Z

′
2

)˜̃y
= 1

σ2
ε
Z
′
1
˜̃y − σ2

p

σ2
ε(σ2

ε+rσ2
p)
Z
′
1Z2Z

′
2
˜̃y

= 1
σ2
ε
Z
′
1(y − µX)− σ2

p

σ2
ε(σ2

ε+rσ2
p)


r r r · · · 0 0 0

...
...

... · · · ...
...

...

0 0 0 · · · r r r


(b×bk)

· Z ′2(y − µX)

= 1
σ2
ε

{


y1..

y2..

...

yb..


−rkµX

}
− σ2

p

σ2
ε(σ2

ε+rσ2
p)


r r r · · · 0 0 0
...

...
... · · ·

...
...

...

0 0 0 · · · r r r


(b×bk)

·

{


y11.

y12.

...

ybk.


−rµX

}

= rk
σ2
ε

{


y1..

y2..

...

yb..


− µX

}
− σ2

pr
2k

σ2
ε(σ2

ε+rσ2
p)

{


y1..

y2..

...

yb..


− µX

}
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= rk
σ2
ε+rσ2

p



y1.. − µ

y2.. − µ
...

yb.. − µ


.

Therefore

E(u1|µ, σ2
ε , σ

2
p, σ

2
d,y) = D−1C

=
rkσ2

d

σ2
ε+rσ2

p+krσ2
d



y1.. − µ

y2.. − µ
...

yb.. − µ


.

Since u1 =

[
d1 d2 · · · db

]′
it follows that

E(di|σ2
ε , σ

2
p, σ

2
d,y) =

rkσ2
d

σ2
ε+rσ2

p+krσ2
d
yi.. (since E(µ) = 0), and

V ar(di|σ2
ε , σ

2
p, σ

2
d,y) =

σ2
d(σ2

ε+rσ2
p)

σ2
ε+rσ2

p+krσ2
d

.

Proof of Theorem 6.4.4.3

To obtain the conditional posterior distribution of µ given the variance components,

first integrate u1 out of the joint posterior distribution given in equation 6.6.1. It can be

shown that after integrating u1 out of equation 6.6.1, the joint posterior distribution can

be written as

p(µ, σ2
ε , σ

2
p, σ

2
d|y) ∝ (σ2

ε)
− 1

2
ν1−1(σ2

ε + rσ2
p)
− 1

2
ν2−1(σ2

ε + rσ2
p + krσ2

d)
− 1

2
(ν3+1)−1

×exp

{
−1

2

[ bkr(y... − µ)2

(σ2
ε + rσ2

p + krσ2
d)

+
ν3m3

(σ2
ε + rσ2

p + krσ2
d)

+
ν2m2

(σ2
ε + rσ2

p)
+
v1m1

σ2
ε

]}
(6.6.2)

(See also Box and Tiao p.278).
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From equation 6.6.2, it immediately follows that

E(µ|σ2
ε , σ

2
p, σ

2
d,y) = y..., and

V ar(µ|σ2
ε , σ

2
p, σ

2
d,y) =

(σ2
ε+rσ2

p+krσ2
d)

bkr
.

Proof of Theorem 6.4.4.4

To obtain the joint posterior distribution of the variance components, integrate µ out

of equation 6.6.2.

Therefore

p(σ2
ε , σ

2
p, σ

2
d|y) =

´∞
−∞ p(µ, σ

2
ε , σ

2
p, σ

2
d|y)dµ

∝ (σ2
ε)
− 1

2
(ν1+2)(σ2

ε + rσ2
p)
− 1

2
(ν2+2)(σ2

ε + rσ2
p + krσ2

d)
− 1

2
(ν3+2)

×exp

{
−1

2

[
ν3m3

(σ2
ε+rσ2

p+krσ2
d)

+ ν2m2

(σ2
ε+rσ2

p)
+ v1m1

σ2
ε

]}
.

Proof of Theorem 6.4.4.5

In Theorem 6.4.4.2 it was proved that

di|µ, σ2
ε , σ

2
p, σ

2
d,y followed a normal distribution with mean

E(di|µ, σ2
ε , σ

2
p, σ

2
d,y) =

krσ2
d

(σ2
ε+rσ2

p+krσ2
d)

(yi.. − µ)

and variance

V ar(di|µ, σ2
ε , σ

2
p, σ

2
d,y) =

σ2
d(σ2

ε+rσ2
p)

(σ2
ε+rσ2

p+krσ2
d)

.
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Therefore

E
{

(µ+ di)|µ, σ2
ε , σ

2
p, σ

2
d,y
}

=
krσ2

d

(σ2
ε+rσ2

p+krσ2
d)

(yi.. − µ) + µ

=
krσ2

d

(σ2
ε+rσ2

p+krσ2
d)
yi.. +

σ2
ε+rσ2

p

(σ2
ε+rσ2

p+krσ2
d)
µ

and

V ar
{

(µ+ di)|µ, σ2
ε , σ

2
p, σ

2
d,y
}

=
σ2
d(σ2

ε+rσ2
p)

(σ2
ε+rσ2

p+krσ2
d)

.

Also, (µ+ di)|µ, σ2
ε , σ

2
p, σ

2
d,y follows a normal distribution.

Since µ|σ2
ε , σ

2
p, σ

2
d,y is normally distributed with mean

E(µ|σ2
ε , σ

2
p, σ

2
d,y) = y... , and

variance

V ar(µ|σ2
ε , σ

2
p, σ

2
d,y) =

σ2
ε+rσ2

p+krσ2
d

bkr
,

it follows that (µ+ di)|σ2
ε , σ

2
p, σ

2
d,y is also normally distributed with mean equals to

E
{

(µ+ di)|σ2
ε , σ

2
p, σ

2
d,y
}

=
rkσ2

d

(σ2
ε+rσ2

p+krσ2
d)
yi.. +

σ2
ε+rσ2

p

(σ2
ε+rσ2

p+krσ2
d)
y...

and variance

V ar
{

(µ+ di)|σ2
ε , σ

2
p, σ

2
d,y
}

=
σ2
d(σ2

ε+rσ2
p)

(σ2
ε+rσ2

p+krσ2
d)

+
(σ2
ε+rσ2

p)2

(σ2
ε+rσ2

p+krσ2
d)2V ar(µ|σ2

ε , σ
2
p, σ

2
d,y)

=
σ2
d(σ2

ε+rσ2
p)

(σ2
ε+rσ2

p+krσ2
d)

+
(σ2
ε+rσ2

p)2

(σ2
ε+rσ2

p+krσ2
d)2

(σ2
ε+rσ2

p+krσ2
d)

bkr

=
σ2
d(σ2

ε+rσ2
p)

(σ2
ε+rσ2

p+krσ2
d)

+
(σ2
ε+rσ2

p)2

bkr(σ2
ε+rσ2

p+krσ2
d)

=
(σ2
ε+rσ2

p)

σ2
ε+rσ2

p+krσ2
d

[
σ2
d +

(σ2
ε+rσ2

p)

bkr

]
=

(σ2
ε+rσ2

p)

σ2
ε+rσ2

p+krσ2
d

[
σ2
ε+rσ2

p+bkrσ2
d

bkr

]
.
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Proof of Theorem 6.5.1.1

The new observations are generated by the model y∗ijt = µ+ di + pij + εijt, j = 1, . . . , k∗

and t = 1, . . . , r∗

where di ∼ N(0, σ2
d), pij ∼ N(0, σ2

p) and εijt ∼ N(0, σ2
ε) .

Now y∗ij. = 1
r∗

r∗∑
t=1

y∗ijt and y∗ij.|µ, di, pij, σ2
ε ∼ N(θ + di + pij,

σ2
ε

r∗
) .

Also y∗ij.|µ, di, σ2
ε , σ

2
p ∼ N(µ+ di,

σ2
ε

r∗
+ σ2

p) , since pij ∼ N(0, σ2
p).

Further, y∗i.. = 1
k∗

k∗∑
j=1

y∗ij., and, therefore

y∗ij.|µ, di, σ2
ε , σ

2
p ∼ N(µ+ di,

σ2
ε

k∗r∗
+

σ2
p

k∗
).

It was shown in Theorem 6.4.4.5 that the posterior distribution of (µ + di)|σ2
ε , σ

2
p, σ

2
d,y

followed a normal distribution with mean

E
{

(µ+ di)|σ2
ε , σ

2
p, σ

2
d,y
}

=
krσ2

d

(σ2
ε+rσ2

p+krσ2
d)
yi.. +

(σ2
ε+rσ2

p)

(σ2
ε+rσ2

p+krσ2
d)
y...

and variance

V ar
{

(µ+ di)|σ2
ε , σ

2
p, σ

2
d,y
}

=
(σ2
ε+rσ2

p)

(σ2
ε+rσ2

p+krσ2
d)

{
(σ2
ε+rσ2

p+bkrσ2
d)

bkr

}
.

It therefore follows that

y∗i..|σ2
ε , σ

2
p, σ

2
d,y is normally distributed with mean

E
(
y∗i..|σ2

ε , σ
2
p, σ

2
d,y
)

=
krσ2

d

(σ2
ε+rσ2

p+krσ2
d)
yi.. +

(σ2
ε+rσ2

p)

(σ2
ε+rσ2

p+krσ2
d)
y...

and variance

V ar
(
y∗i..|σ2

ε , σ
2
p, σ

2
d,y
)

=
σ2
ε+r∗σ2

p

k∗r∗
+

(σ2
ε+rσ2

p)

(σ2
ε+rσ2

p+krσ2
d)

{
σ2
ε+rσ2

p+bkrσ2
d

bkr

}
.
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Proof of Theorem 6.5.1.2

In Theorem 6.5.1.1 it was assumed that di is known and it was therefore shown that

p(y∗i..|µ, σ2
ε , σ

2
p, σ

2
d,y) ∼ N

(
µ+ di ,

σ2
ε

k∗r∗
+

σ2
p

k∗

)
.

Also, di ∼ N(0, σ2
d) .

Since di is not known (the day is unknown), it has to be integrated out. Also, the

unknown day will be denoted by f .

Therefore

p(y∗f..|µ, σ2
ε , σ

2
p, σ

2
d,y) ∼ N

(
µ , σ2

ε

k∗r∗
+

σ2
p

k∗
+ σ2

d

)
.

According to Theorem 6.4.4.3, the posterior distribution of µ given the variance com-

ponents is normally distributed with mean

E(µ|σ2
ε , σ

2
p, σ

2
d,y) = y...

and variance

V ar(µ|σ2
ε , σ

2
p, σ

2
d,y) =

σ2
ε+rσ2

p+krσ2
d

bkr
.

It therefore follows that the predictive distribution of the mean of k∗ future packages

with r∗observations per package from a new or unknown day, is normally distributed

with mean

E(y∗f..|σ2
ε , σ

2
p, σ

2
d,y) = y...

and variance

V ar(y∗f..|σ2
ε , σ

2
p, σ

2
d,y) = σ2

ε

k∗r∗
+

σ2
p

k∗
+ σ2

d +
σ2
ε+rσ2

p+krσ2
d

bkr

=
σ2
ε+r∗σ2

p+k∗r∗σ2
d

k∗r∗
+

σ2
ε+rσ2

p+krσ2
d

bkr
.
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Proof of Theorem 6.5.4.1

a.) For the prior distribution given in equation 6.5.8

For the prior distribution given by

πa(µ, σ
2
ε , σ

2
p, σ

2
d) ∝ σ−2

ε (σ2
ε + rσ2

p)
−1(σ2

ε + rσ2
p + krσ2

d)
− 1

2

{
1 + (s−µ)2kr

2(σ2
ε+rσ2

p+krσ2
d)

} 1
2

for the balanced two - factor nested random effects model given in equation 6.3.1,

determine the Fisher information matrix and its inverse using the method described in

the proof of Theorem 6.4.2.1.

Now, define

t(θ) = c = 1− Φ

[
(s−µ)(kr)

1
2

(σ2
ε+rσ2

p+krσ2
d)

1
2

]
= 1− Φ

[
θ

]
where

Φ

[
θ

]
= Φ

[
(s−µ)(kr)

1
2

(σ2
ε+rσ2

p+krσ2
d)

1
2

]
.

Further

∂t(θ)
∂µ

= f(θ) (kr)
1
2

(σ2
ε+rσ2

p+krσ2
d)

1
2

,

∂t(θ)
∂σ2
ε

= f(θ)(kr
2

)
1
2 (σ2

ε + rσ2
p + krσ2

d)
− 3

2 (s− µ) ,

∂t(θ)
∂σ2
p

= f(θ)
(
k

1
2 r

3
2

2

)
(σ2

ε + rσ2
p + krσ2

d)
− 3

2 (s− µ) , and

∂t(θ)

∂σ2
d

= f(θ) (kr)
3
2

2
(σ2

ε + rσ2
p + krσ2

d)
− 3

2 (s− µ)

where

f(θ) = e−
1
2µ

2

√
2π

.

Now

∇′t(θ) =

[
∂t(θ)
∂µ

∂t(θ)
∂σ2
ε

∂t(θ)
∂σ2
p

∂t(θ)

∂σ2
d

]
and
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∇′t(θ)F−1(θ)

=

[
∂t(θ)
∂µ

F 11
{
∂t(θ)
∂σ2
ε
F 22 + ∂t(θ)

∂σ2
p
F 32
}{

∂t(θ)
∂σ2
ε
F 23 + ∂t(θ)

∂σ2
p
F 33 + ∂t(θ)

∂σ2
d
F 43
}{

∂t(θ)
∂σ2
p
F 34 + ∂t(θ)

∂σ2
d
F 44
}]

where

F 11 =
σ2
ε+rσ2

p+krσ2
d

(ν3+1)kr
=

σ2
ε+rσ2

p+krσ2
d

bkr
,

F 22 = 2(σ2
ε)2

ν1
= 2(σ2

ε)2

bk(r−1)
,

F 32 = −2(σ2
ε)2

ν1k
= −2(σ2

ε)2

bkr(r−1)
,

F 33 =
2
{
ν1(σ2

ε+rσ2
p)2+ν2(σ2

ε)2
}

ν1ν2r2 ,

F 34 =
−2(σ2

ε+rσ2
p)2

ν2kr2 ,

F 44 =
2
{
ν2(σ2

ε+rσ2
p+krσ2

d)2+(ν3+1)(σ2
ε+rσ2

p)2
}

ν2(ν3+1)k2r2 , and

F 12 = F 21 = 0, F 13 = F 31 = 0, F 14 = F 41 = 0, F 24 = F 42 = 0 .

Also,

∂t(θ)
∂µ

F 11 = f(θ) (kr)
1
2

(σ2
ε+rσ2

p+krσ2
d)

1
2

(σ2
ε+rσ2

p+krσ2
d)

bkr

= f(θ)
(σ2
ε+rσ2

p+krσ2
d)

1
2

b(kr)
1
2

, and

∂t(θ)
∂σ2
ε
F 22 + ∂t(θ)

∂σ2
p
F 32

= f(θ) (kr)
1
2

2

(
σ2
ε+rσ2

p+krσ2
d

)− 3
2
(s−µ) 2(σ2

ε)2

bk(r−1)
−f(θ)k

1
2 r

3
2

2

(
σ2
ε+rσ2

p+krσ2
d

)− 3
2
(s−µ) 2(σ2

ε)2

bkr(r−1)

= 0 .
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Also,

∂t(θ)
∂σ2
ε
F 23 + ∂t(θ)

∂σ2
p
F 33 + ∂t(θ)

∂σ2
d
F 43

= −f(θ) (kr)
1
2

2

(
σ2
ε + rσ2

p + krσ2
d

)− 3
2
(s− µ) 2(σ2

ε)2

bkr(r−1)

+f(θ)k
1
2 r

3
2

2

(
σ2
ε + rσ2

p + krσ2
d

)− 3
2
(s− µ)

2
{
ν1(σ2

ε+rσ2
p)2+ν2(σ2

ε)2
}

ν1ν2r2

−f(θ) (kr)
3
2

2

(
σ2
ε + rσ2

p + krσ2
d

)− 3
2
(s− µ)

2(σ2
ε+rσ2

p)2

ν2kr2

= f(θ)(kr)
1
2

(
σ2
ε + rσ2

p + krσ2
d

)− 3
2
(s− µ)

{
−(σ2

ε)2

bkr(r−1)
+

ν1(σ2
ε+rσ2

p)2+ν2(σ2
ε)2

ν1ν2r
− (σ2

ε+rσ2
p)2

ν2r

}

= f(θ)(kr)
1
2

(
σ2
ε + rσ2

p + krσ2
d

)− 3
2
(s− µ)

{
−(σ2

ε)2

ν1r
+

ν1(σ2
ε+rσ2

p)2+ν2(σ2
ε)2

ν1ν2r
− (σ2

ε+rσ2
p)2

ν2r

}

= f(θ)(kr)
1
2

(
σ2
ε + rσ2

p + krσ2
d

)− 3
2

{
−ν2(σ2

ε)2+ν1(σ2
ε+rσ2

p)2+ν2(σ2
ε)2−ν1(σ2

ε+rσ2
p)2

ν1ν2r

}
= 0 .

Now, ∂t(θ)
∂σ2
p
F 34 + ∂t(θ)

∂σ2
d
F 44

= f(θ)k
1
2 r

3
2

2

(
σ2
ε + rσ2

p + krσ2
d

)− 3
2
(s− µ)

{
−2(σ2

ε+rσ2
p)2

ν2kr2

}
+f(θ) (kr)

3
2

2

(
σ2
ε + rσ2

p + krσ2
d

)− 3
2
(s− µ)

{
2
[
ν2(σ2

ε+rσ2
p+krσ2

d)2+b(σ2
ε+rσ2

p)2
]

ν2bk2r2

}

= −f(θ)
(σ2
ε+rσ2

p+krσ2
d)−

3
2 (s−µ)(σ2

ε+rσ2
p)2

ν2k
1
2 r

1
2

+f(θ)
(σ2
ε+rσ2

p+krσ2
d)−

3
2 (s−µ)

{
ν2(σ2

ε+rσ2
p+krσ2

d)2+b(σ2
ε+rσ2

p)2
}

ν2bk
1
2 r

1
2

= f(θ)
(σ2
ε+rσ2

p+krσ2
d)

1
2 (s−µ)

bk
1
2 r

1
2

.

Therefore

∇′t(θ)F−1(θ) = f(θ)

[
(σ2
ε+rσ2

p+krσ2
d)

1
2

b(kr)
1
2

0 0
(σ2
ε+rσ2

p+krσ2
d)

1
2 (s−µ)

b(kr)
1
2

]
.

From this, it follows that
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∇′t(θ)F−1(θ)∇t(θ) = f 2(θ)

{
1
b

+ kr(s−µ)2

2b(σ2
ε+rσ2

p+krσ2
d)

}
.

Therefore

√
∇′t(θ)F−1(θ)∇t(θ) = f(θ) 1

b
1
2

{
1 + (s−µ)2kr

2(σ2
ε+rσ2

p+krσ2
d)

} 1
2

.

Now

η(θ) =
∇′t(θ)F−1(θ)√
∇′t(θ)F−1(θ)∇t(θ)

=

[
η1(θ) η2(θ) η3(θ) η4(θ)

]
where

η1(θ) =
(σ2
ε+rσ2

p+krσ2
d)

1
2

(bkr)
1
2

{
1+

(s−µ)2kr

2(σ2
ε+rσ2

p+krσ2
d

)

} 1
2

,

η2(θ) = η3(θ) = 0, and

η4(θ) =
(σ2
ε+rσ2

p+krσ2
d)

1
2 (s−µ)

(bkr)
1
2

{
1+

(s−µ)2kr

2(σ2
ε+rσ2

p+krσ2
d

)

} 1
2

.

For the prior distribution πa(θ) to be a probability matching prior, the differential equa-

tion

∂

∂µ

{
η1(θ)π(θ)

}
+

∂

∂σ2
ε

{
η2(θ)π(θ)

}
+

∂

∂σ2
p

{
η3(θ)π(θ)

}
+

∂

∂σ2
d

{
η4(θ)π(θ)

}
= 0 (6.6.3)

must be satisfied.

Therefore, the prior distribution

πa(θ) = πa(µ, σ
2
ε , σ

2
p, σ

2
d) ∝ σ−2

ε (σ2
ε + rσ2

p)
−1(σ2

ε + rσ2
p + krσ2

d)
− 1

2

[
1 + (s−µ)kr

2(σ2
ε+rσ2

p+krσ2
d)

] 1
2

will be a probability matching prior since

∂
∂µ

{
η1(θ)πa(θ)

}
= 0 ,

∂
∂σ2
ε

{
η2(θ)πa(θ)

}
= 0 ,

∂
∂σ2
p

{
η3(θ)πa(θ)

}
= 0 , and
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∂
∂σ2
d

{
η4(θ)πa(θ)

}
= 0 .

The differential equation 6.6.3 is therefore satisfied.

b.) For the prior distribution given in equation 6.5.9

The prior distribution

πb(θ) = πb(µ, σ
2
ε , σ

2
p, σ

2
d) ∝ σ−2

ε (σ2
ε + rσ2

p)
−1(σ2

ε + rσ2
p + krσ2
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− 3

2
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2(σ2
ε+rσ2

p+krσ2
d)

]− 1
2

will also be a probability matching prior, since

η1(θ)πb(θ)

=
(σ2
ε+rσ2

p+krσ2
d)

1
2
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1
2
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1+
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.

Also,

∂
∂µ

{
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}
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−1(σ2
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p+krσ2
d)

]−2
2(s−µ)

2(σ2
ε+rσ2

p+krσ2
d)

= σ−2
ε (σ2

ε +rσ2
p)
−1(σ2

ε +rσ2
p +krσ2

d)
−2(bkr)−

1
2

[
1+

(s− µ)2kr

2(σ2
ε + rσ2

p + krσ2
d)

]−2

(s−µ)kr .

(6.6.4)

Now, η4(θ)πb(θ)
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Also

∂
∂σ2
d
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}
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(6.6.5)

Furthermore η2(θ) = η3(θ) = 0 .

Now, although equation 6.6.5 is negative, both equations 6.6.4 and 6.6.5 have the

same absolute value. The differential equation given in equation 6.6.3 will there also

be satisfied indicating that

πb(θ) = πb(µ, σ
2
ε , σ

2
p, σ

2
d) ∝ σ−2

ε (σ2
ε + rσ2

p)
−1(σ2

ε + rσ2
p + krσ2

d)
− 3

2

[
1 + (s−µ)2kr

2(σ2
ε+rσ2

p+krσ2
d)

]− 1
2

is also a probability matching prior for the contents c of the interval [s,∞].



Chapter 7

Conclusions and Future Research

7.1 Conclusions

In this thesis, a full Bayesian solution to variance component and tolerance interval

estimation were provided for various variance component models. By applying the

simulation based approach originally presented by Wolfinger (1998) for determining

Bayesian tolerance intervals, the flexible and unique features of the Bayesian simula-

tion method were illustrated, since it could easily be applied to models with one or

several variance components.

More specifically, in Chapter 2, exact and estimated marginal posterior distributions

were provided for the location and variance parameters of a univariate normal model.

In addition, exact moments were also derived for the αth quantile q of a N(µ, σ2
ε) distri-

bution and the difference between two α quantiles. For this model, tolerance intervals

were determined using two Bayesian simulation methods. It was also shown that the

Jeffreys’ independence prior was both a reference - and probability matching prior

for the αth quantile q of a N(µ, σ2
ε) distribution, and, that the proposed prior distribution

for the content of the fixed - in - advance tolerance interval was also a probability

matching prior. The posterior density of the content could easily be obtained using

366
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two Bayesian simulation methods which provided equivalent results. For the univari-

ate normal model, it was shown that two or more α quantiles could be compared

with relative ease. A simulation study also revealed that the two Bayesian multiple

comparisons procedures for comparing more than two 0.95 quantiles performed well

across the range of selected sample sizes, since the percentage differences indicated

for both methods (for each sample size) were approximately 5%, thereby meeting the

frequentist property.

In Chapter 3, the Bayesian simulation method for obtaining estimated marginal poste-

rior distributions of unknown model parameters and quantiles for obtaining tolerance

intervals originally proposed by Wolfinger (1998) for the balanced one - way random

effects model, were reviewed. The specific model reviewed used a non - informative

prior distribution and was successfully implemented using an example where medic-

inal tablets were manufactured in small batches. Following Chapter 3, the theory

and results originally presented by Wolfinger (1998) were extended in Chapter 4, to

include the estimation of marginal posterior distributions of quantiles and subsequent

tolerance intervals for averages of observations from new or unknown batches. A ref-

erence - and probability matching prior have been derived for the αth quantile of the

distribution of averages of observations from new or unknown batches, which is then

used to obtain the (α, δ) one - and two - sided tolerance intervals. Also, a probability

matching prior has been derived for the content of the fixed - in - advance tolerance

interval. Using two simulation methods (method 1 simulated a function of the variance

components i.e. (σ2
ε + kσ2

a) while method 2 simulated the variance components sepa-

rately and retained only the simulated pairs that met the condition (σ2
ε + kσ2

a) > σ2
ε ) an

extensive numerical experiment was performed to investigate the frequentist proper-

ties of Bayesian inference based on the non - informative priors. The simulation results

substantiated what was expected. The second method was conservative for low val-

ues of the intraclass correlation ρ, with large average interval lenghts, particularly for

small values of b and k. The coverage of the first method on the other hand was near
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the nominal confidence of 0.95 uniformly across the range of ρ, b and k values. For

large values of ρ, the coverage probabilities, average interval lengths and standard

deviations of the two methods were close to each other. As in Chapter 3, the medici-

nal tablets data was used to illustrate the unique features and flexibility of the Bayesian

simulation method for obtaining variance components and tolerance intervals.

Although the standard one - way variance components model has been studied

widely, few authors have investigated the model in cases where the measurement

error model do not have the standard N(0, σ2
ε) form. In Chapter 5 it was shown that

the balanced one - way random effects model can be extended to the case where

the measurement error model has a student t - distributional form. The Bayesian ap-

proach had several advantages for this type of problem, since a prior distribution could

for example either not be specified, or be specified for the degrees of freedom. This

provided the flexibility to fit non - standard measurement system models and gener-

ate analyses quickly, using in this case an adaptive Monte Carlo technique known as

the Gibbs sampler. Similar to ordinary Monte Carlo techniques, the Gibbs sampler is

notable for its ease of implementation to a wide variety of models. The conceptional

simplicity of the approach, together with the use of MATHWORKS MATLAB, made it

easy to write or change the necessary programs to handle different estimating prob-

lems. Competitive results when compared to results obtained by Wilson, Hamada

and Xu (2004), could therefore be obtained easily for tolerance intervals using the iron

data given in Table 5.1, without using sophisticated numerical techniques. The ultimate

value of the Gibbs sampler can therefore be found in its practical potential. Although

it was pointed out that Gibbs sampling produce dependent draws from the joint pos-

terior density, Wilson, Hamada and Xu (2004) and others indicated that dependence

between draws can be reduced by only retaining every pth draw. For the data given

in Table 5.1, every 10th draw was retained. Following the estimation of the tolerance in-

tervals, the student - t distributed measurement error model was also successfully used

in the identification of a possible outlying observation. In this chapter, the flexibility of
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Bayesian simulation methods for estimating variance components and tolerance inter-

vals were therefore illustrated for the balanced one - way random effects model with

student t - distributed measurement errors.

In Chapter 6, the simulation - based approach for determining Bayesian tolerance in-

tervals originally presented by Wolfinger (1998) for the balanced one - way random ef-

fects model, were extended from the two variance component random effects model

to the three variance component balanced two - way nested random effects model.

If k∗ = k and r∗ = r, a probability matching prior has also successfully been derived

for the αth quantiles of the distribution of the average of k∗ future packages with r∗

samples per package from a new or unknown day. Similarly, if k∗ = k and r∗ = r, it was

shown that two prior distributions proposed for the content of a fixed - in - advance

tolerance interval for the distribution of the average of k∗ packages with r∗samples

per package from a new or unknown day, were both also meeting the probability

matching criteria. It was also shown that the Bayesian 0.95 - expectation tolerance

interval obtained for the spun yarn data given in Table 6.1, were for all practical pur-

poses equal to the classical 95% interval limits determined by Laubscher (1996). Under

the probability matching prior given in equation 6.4.3, the frequentist coverage prop-

erties for the 95% prediction interval were also met, since the coverage percentage for

the Bayesian 95% predictions interval was equal to 95.2%. For the above balanced two

- factor nested random effects model, variance components and tolerance intervals

were obtained using Monte Carlo simulation.

On a general note, it was also illustrated that the use of the Bayesian simulation method

for obtaining posterior distributions of quantiles and subsequent tolerance intervals,

provided final results in terms of common statistics and histograms, thus providing a

straightforward means of communication to investigators. Also notable is the fact that

the same analysis strategy can be used for the estimation of all three kinds of tolerance

intervals. In contrast, the frequentist analysis, as pointed out by Wolfinger (1998), dif-

fers depending on the kind of tolerance interval and model under consideration, and,
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can become quite complex, even for balanced one - way random effects models.

7.2 Future Research

In this thesis, the estimation of variance components and tolerance intervals have

been discussed for the balanced univariate normal model, the balanced one - way

random effects model with standard and non - standard measurement errors and the

balanced two - factor nested random effects model. For some models, reference and

probability matching priors have also been derived for quantiles and the content of

predetermined bounds. The work is ongoing and several problems still need to be

addressed. For example, the Bayesian simulation method discussed for the balanced

two - factor nested random effects model can be extended to include models with

more random effects and interaction as well as higher order models with unbalanced

data sets. Tolerance intervals can in future research also be estimated for higher or-

der models with non - standard measurement errors. Further work also needs to be

done on the development of procedures for comparing two or more α quantiles using

models with non - standard measurement errors or higher order models. According

to Krishnamoorthy and Mathew (2009), the problem of constructing tolerance inter-

vals for discrete distributions have not received much attention, and as a result, the

construction of Bayesian tolerance intervals based on discrete distributions, such as

binomial or poisson distributions, also provide a topic for future research. The Dirichlet

process priors can in future research also be used to provide non - parametric Bayes

estimates for the random effects and variance components. As also suggested by

Wolfinger (1998), applying the Bayesian simulation method to process capability anal-

ysis, by considering for example process capability indexes in mixed model settings,

also provide a promising topic for future research.

It is hoped that the Bayesian simulation methods and other information provided in

this thesis will significantly contribute towards variance component estimation and the
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determination of tolerance intervals, since it is an important ingredient in the design

and production of high quality, high reliability production processes.
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