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Chapter 1

Introduction

1.1 Overview

Reverend Thomas Bayes (1702 - 1761) is known for having formulated the well-known Bayes’ theo-
rem. This work was published after his death. In 1763 the following paper “An Essay Towards Solving
a Problem in the Doctrine of Chances” was published by the late Bayes (1763), communicated by
Richard Price in a letter to John Canton. This paper indicated how to make statistical inferences that
build upon earlier knowledge, and how to combine this earlier knowledge with current data in a way
that updates the degree of belief. This “earlier knowledge” is called the “prior belief” and this “updated
belief” is called the “posterior belief”. This updating process is called Bayesian inference. The Bayes
rule can be expressed as: posterior distribution ∝ likelihood function × prior distribution. When we
specify Bayesian models, we have to decide on prior distributions for unknown parameters. As men-
tioned by Robert (2001), the most critical and most criticised point of Bayesian analysis deals with the
choice of the prior distribution. Choosing the prior distribution is the key to Bayesian inference, but it
is also a very difficult part. Gill (2008) mentions that while it is coy to say “everyone is a Bayesian,
some of us know it,” most researchers tell us about their prior knowledge even if it is not put directly in
the form of a prior distribution. How do we choose a prior distribution? It depends on the information
given to you and also the decision of being subjective or objective in the information that you would
like to introduce to the problem.

One can use a conjugate prior, this is where the prior distribution and the posterior distribution both
belong to the same family of distributions. Conjugate prior distributions are usually associated with
a specific type of sampling distribution that always allows for their deviation. If no prior information
is available, we can have an objective viewpoint when choosing the prior distribution. Such priors
are known as noninformative priors, also known as objective, vague or flat priors. A noninformative
prior which is often used, is the uniform prior, Thomas Bayes used a uniform prior on the binomial
parameter. Some other noninformative priors are the Jeffreys prior, reference prior and the probability
matching prior. Berger (1985) states the following: "We should indeed argue that noninformative prior

1
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Bayesian analysis is the single most powerful method of statistical analysis."

1.2 Objectives

The main objectives of this thesis can be summarised as follows:

• to provide an overview of some noninformative priors;

• to derive the probability matching prior for the following cases: the product of different powers
of binomial proportions, a linear combination of binomial proportions, the product of different
powers of Poisson rates and linear functions of Poisson rates;

• to derive the reference prior in the case of the ratio of two Poisson rates;

• to compare the performance of the probability matching prior in the above mentioned cases to
other noninformative priors and to classical (frequentist) methods;

• to show the properness of the probability matching posterior for the following cases: the product
of different powers of binomial proportions and a linear combination of binomial proportions;

• to propose a Bayesian method for the estimation of binomial rates from pooled samples, and
compare the results to classical (frequentist) methods;

• to propose Bayesian methods for the p - chart and the c - chart, and compare the Bayesian results
to the results from the classical (frequentist) method;

• to investigate Bayesian tolerance intervals for the binomial and Poisson distributions.

1.3 Contributions

Given the objectives, we can summarise the contribution of the thesis in the field of objective Bayesian
statistics as the following:

• the derivation of the probability matching prior for the product of different powers of k bino-
mial proportions using the method by Datta & Ghosh (1995) and showing that the posterior
distribution is proper;

• the derivation of the probability matching prior for a linear combination of binomial proportions
using the method by Datta & Ghosh (1995) and showing that the posterior distribution is proper;

• the derivation of the probability matching prior for the product of different powers of k Poisson
rates, this has been derived by Kim (2006), but Kim used the method by Tibshirani (1989) where
we used the method by Datta & Ghosh (1995);
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• the derivation of the reference prior for the ratio of two Poisson rates using the method by Berger
& Bernardo (1992);

• the derivation of the probability matching prior for linear functions of Poisson rates using the
method by Datta & Ghosh (1995);

• the application of an objective Bayesian method for the estimation of binomial rates from pooled
samples;

• the application of objective Bayesian methods for the p - chart and the c - chart;

• the application of objective Bayesian methods for the construction of tolerance intervals for the
binomial and Poisson distributions.

1.4 Thesis outline

The probability matching prior will be derived for several different cases. We will use the method
imposed by Datta & Ghosh (1995) to derive the probability matching prior. Datta & Ghosh (1995)
derived the differential equation which a prior must satisfy if the posterior probability of a one sided
credibility interval for a parametric function and its frequentist probability agree up to O

(
n−1) where

n is the sample size. They proved that the agreement between the posterior probability and the fre-
quentist probability holds if and only if ∑k

i=1
∂

∂ pi

{
ηi
(

p
)

π
(

p
)}

= 0, where π
(

p
)

is the probability

matching prior for p, the vector of unknown parameters. Let ∇t
(

p
)
=
[

∂
∂ p1

t
(

p
)

· · · ∂
∂ pk

t
(

p
) ]′

,

then η
(

p
)
=

F−1(p)∇t(p)√
∇′

t(p)F−1(p)∇t(p)
=
[

η1
(

p
)

· · · ηk
(

p
) ]′

, where F−1 (p
)

is the inverse of F
(

p
)
,

the Fisher information matrix of p and t
(

p
)

is the parameter of interest. The above mentioned method
is in the case where we deal with the binomial distribution. When we deal with the Poisson distribu-
tion, the method is exactly the same. The only difference in the notation will be to replace each p with
λ .

In Chapter 2 we will look into Bayesian inference on the product of different powers of k binomial
parameters. The parameter of interest is ψ = ∏k

i=1 pai
i , and appears in applications to system reliability.

We will derive the probability matching prior for this case by using the method by Datta & Ghosh
(1995), and also evaluate the properness of the posterior distribution when the probability matching
prior is used. In this chapter we will compare the performance of the probability matching prior,
Jeffreys prior and uniform prior when ψ1 = p1 p2, ψ3 = p2

1 p2 and ψ4 = p1 p2
2, for different values of

p1, p2, n1 and n2. A comparison is also made between Bayesian and frequentist procedures using the
observed values from Harris (1971) for ψ1 = p1 p2 and ψ2 = p1 p2 p3. Another simulation study will
be considered for ψ1 = p1 p2, comparing the probability matching prior and the Jeffreys prior where
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the binomial distribution is used and where the Poisson approximation to the binomial distribution is
used.

In Chapter 3 Bayesian interval estimation for linear functions of binomial parameters will be
considered. The parameter of interest is θ = ∑k

i=1 ai pi. We will derive the probability matching prior
for this case by using the method by Datta & Ghosh (1995), and also evaluate the properness of the
posterior distribution when the probability matching prior is used. In this chapter we will compare
the performance of the probability matching prior, Jeffreys prior and uniform prior when θ = p1 − p2,
for different values of p1, p2, n1 and n2. The probability matching , Jeffreys and uniform priors will
be compared to some well known classical methods by Roths & Tebbs (2006) for the cases where
n1 = n2 = 10 and n1 = n2 = 20. The Jeffreys, uniform and probability matching priors will also be
applied to a real problem to assess if male and female insects transmit the Mal de Rio Cuarto virus to
susceptible maize plants at similar rates.

In Chapter 4 our interest is to make Bayesian inferences on nonlinear functions of Poisson rates.
Kim (2006) derived a noninformative (probability matching) prior for ξ = ∏k

i=1 λ ai
i , the product of

different powers of k Poisson rates, thereby obtaining approximate point estimates and Bayesian cred-
ibility intervals of the reliability of systems of k independent parallel components. We will derive the
probability matching prior for this case by using the method by Datta & Ghosh (1995). Kim (2006)
used the method by Tibshirani (1989) to derive the probability matching prior. Price & Bonett (2000)
used noninformative priors for small and large values of λi (i = 1,2) to construct credibility intervals
for ν = λ1/λ2, the ratio of two Poisson rates. Using the method of Berger & Bernardo (1992), the
reference prior for the ratio of two Poisson rates is also obtained. Simulation studies will be done
to compare the probability matching, Jeffreys and uniform priors in the cases where ξ1 = ∏k

i=1 λi,
ξ3 = λ 2

1 λ2 and ξ4 = λ 3
1 λ2. A simulation study will be done to compare the probability matching, Jef-

freys and uniform priors and three other priors in the case where ξ2 = λ1λ2, this can be applied to the
reliability of independent parallel components systems. In two sample situations it may be of interest
to test or to construct confidence intervals for the ratio of two Poisson rates. A further simulation study
will be done where we compare the uniform and Jeffreys (probability matching and reference) priors
when ν = λ1/λ2.

In Chapter 5 our interest is to make Bayesian inferences on linear functions of Poisson rates,
in general we can define such a linear contrast as δ = ∑k

i=1 aiλi, where ai is the known coefficient
value. Stamey & Hamilton (2006) considered four interval estimators for linear functions of Poisson
rates, a Wald interval, a t interval with Satterthwaite’s degrees of freedom and two Bayesian intervals
using noninformative priors. We will consider another Bayesian interval using a probability matching
prior. The probability matching prior will be derived by using the method proposed by Datta & Ghosh
(1995). Krishnamoorthy & Thomson (2004) addressed the problem of hypothesis testing about two
Poisson means. They compared the conditional test (C - test) to a test based on estimated p - values (E
- test). We will use four different Bayesian methods, the Jeffreys prior, the probability matching prior,
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a third prior which is proportional to λ− 1
4

1 λ− 1
4

2 and a fourth prior which is proportional to λ− 3
8

1 λ− 3
8

2 and
compare these to their results.

In Chapter 6 Bayesian estimation for binomial rates from pooled samples will be considered. The
performance of Bayesian credibility intervals for the difference of two binomial proportions estimated
from pooled samples will be investigated. These results will be compared to the results obtained by
Biggerstaff (2008). Biggerstaff (2008) used asymptotic methods to derive Wald, profile score and
profile likelihood ratio intervals.

Bayesian process control for the p - chart will be considered in Chapter 7. Control chart limits,
average run lengths and false alarm rates will be determined, and the results for the proposed Bayesian
method will be compared to the results obtained from the classical method. Chakraborti & Human
(2006) examined the effects of parameter estimation for the p - chart using the classical method, our
results will be compared to the results obtained by them.

In Chapter 8 we discuss Bayesian process control for the c - chart. Control chart limits, average
run lengths and false alarm rates will be determined, and the results for the proposed Bayesian method
will be compared to the results obtained from the classical method. Chakraborti & Human (2008)
studied the c - chart using the classical method, our results will be compared to the results obtained by
them.

Bayesian tolerance intervals for the binomial and Poisson distributions will be studied in Chapter
9. The Jeffreys prior will be used for the Bayesian tolerance intervals.

Chapter 10 contains the conclusions and this chapter concludes by looking at possible shortcom-
ings/ drawbacks of this thesis and at possible future research in this area.

The Appendices are found towards the end of this thesis. The Appendices contain additional theo-
rems and proofs which are well known, additional simulation results and some data, and MATLABr

code used for simulation. All simulation studies have been done in MATLABr, and all graphs were
constructed in MATLABr.

Appendix A contains the derivation of the inverse of the Fisher information matrix for k binomial
rates and MATLABr code for the simulation studies done in Chapter 2, Estimation for the Product of
Binomial Rates.

Appendix B contains the derivation of the maximum likelihood estimate (MLE) for pi, some addi-
tional simulation results and MATLABr code for the simulation studies done in Chapter 3, Estimation
for a Linear Function of Binomial Rates.

Appendix C contains the derivation of the inverse of the Fisher information matrix for k Poisson
rates and MATLABr code for the simulation studies done in Chapter 4, Estimation for the Ratio and
Product of Poisson Rates.

Appendix D contains MATLABr code for the simulation studies done in Chapter 5, Estimation
for Linear Functions of Poisson Rates.

Appendix E contains the derivation of the inverse of the Fisher information matrix for M indepen-
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dent binomial random variables from pooled samples, the data used in the example and MATLABr

code for the simulation studies done in Chapter 6, Estimation for Binomial Rates from Pooled Samples.
Appendix F contains MATLABr code for the calculations and simulation studies done in Chapters

7 and 8, Bayesian Process Control for the p - chart and Bayesian Process Control for the c - chart,
respectively. This appendix also contains the MATLABr code for the simulation studies done in
Chapter 9.

1.5 The Binomial and Poisson Distributions

The binomial distribution is an example of a discrete probability distribution, since the associated
binomial random variable can take on only discrete values. We will start by defining Bernoulli trials
and then show how we obtain a binomial random variable. Bernoulli trials are trials where: each
trial has two possible outcomes, a success or a failure; the probability of success for each trial is the
same, denoted by p and the probability of failure is denoted by 1− p; the trials are independent. A
binomial experiment is an experiment which consists of n independent Bernoulli trials. A binomial
random variable, X , counts the number of successes in n trials of a binomial experiment, where the
probability of success is p. The parameters of the binomial distribution are n and p, X ∼ Bin(n, p).

The average (mean) number of successes in n trials is given by µX = E(X) = np and the variance
for the number of successes is given by σ2

X = Var(X) = np(1− p). The probability function for the

binomial distribution is given by: P(X = x) =

(
n

x

)
px(1− p)n−x for x = 0,1,2 . . . ,n. Figure 1.1

shows binomial distribution bar graphs.
The Poisson distribution is another discrete probability distribution. It is appropriate when the

probability of an event occurring is very small. It is a useful model for the number of events per unit
time, or area, or volume. A Poisson random variable, X , has a Poisson distribution if it counts the
number of successes per unit time, area, distance, etc. The probability of success must be the same for
each unit of time, area, distance, etc. This probability is usually fairly small. The number of successes
in each unit of time, area, distance, etc., is independent of the number that occur in any other unit.
The Poisson distribution has a single parameter, λ , X ∼ P(λ ) . The mean and the variance of a Poisson
distribution are given by µX = E (X) = λ and σ2

X =Var (X) = λ , respectively. The probability function

of the Poisson distribution is given by: P(X = x) =λ xe−λ

x! for x= 0,1,2, . . .. Figure 1.2 shows Poisson
distribution bar graphs.
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Figure 1.2: Poisson distribution bar graphs.

1.5.1 Functions of Binomial Proportions

Assume that X1,X2, . . . ,Xk are independent binomial random variables with X i ∼ Bin(ni, pi) for i =

1,2, . . . ,k. Therefore P(Xi = xi) =

(
ni

xi

)
pxi

i (1− pi)
ni−xi for xi = 0,1, . . . ,ni.

The likelihood function is given by

L(p1, p2 . . . , pk |x1,x2 . . . ,xk ) = L
(

p |x1,x2 . . . ,xk
)

=
k

∏
i=1

(
ni

xi

)
pxi

i (1− pi)
ni−xi .

• Product of Binomial Proportions

The parameter ψ = ∏k
i=1 pai

i , the product of different powers of k binomial parameters, appears in
applications to system reliability. If a system consists of k components in parallel, then the probability
of system failure is ψ = ∏k

i=1 pi where pi is the probability that the ith component will fail. Also
if a system requires that at least one of each of k types of components must be employed and that
these components are needed in parallel, then the probability of failure of an m−component system is
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ψ = ∏k
i=1 pai

i , where k < m, ai is the number of components of type i and ∑k
i=1 ai = m. The product of

binomial proportions can thus be used to estimate the reliability of a parallel system.

• Linear Function of Binomial Proportions

The parameter of interest in this case is, θ = ∑k
i=1 ai pi a linear combination of binomial proportions.

Due to their important practical value, linear functions of binomial proportions have received some
attention recently (Price & Bonett, 2004; Tebbs & Roths, 2008). The difference between two binomial
proportions can appear in applications in epidemiology and medical research, just to mention two
areas. For example, if one wants to compare the proportions of households without health insurance in
two countries.

1.5.2 Functions of Poisson Parameters

Consider a sample from k Poisson populations. Let X i be an observation from population i. Then
X1,X2, . . . ,Xk will be independent Poisson distributions such that X i ∼ P(λi) , for i = 1,2, . . . ,k, where

λi is the expected number of events per unit sample. Therefore P(Xi = xi)=
λ xi

i e−λi

xi!
for xi = 0,1,2, . . ..

The likelihood function is given by

L(λ1,λ2 . . . ,λk |x1,x2 . . . ,xk ) = L(λ |x1,x2 . . . ,xk )

=
k

∏
i=1

λ xi
i e−λi

xi!
.

• Product and Ratio of Poisson Parameters

The parameter of interest in this case will be ξ = ∏k
i=1 λ ai

i , the product of different powers of k Poisson
rates. This appears in the reliability of systems of k independent parallel components. The parameter
ξ =∏k

i=1 λ ai
i , the product of different powers of k Poisson parameters appears in applications to system

reliability. If a system consists of k components in parallel, then the probability of system failure is
ψ = ∏k

i=1

(
λi
ni

)ai
where pi =

λi
ni

is the probability that the ith component will fail. Also if a system
requires that at least one of each of k types of components must be employed and that these components
are needed in parallel, then the probability of failure of an m- component system is ψ = ∏k

i=1

(
λi
ni

)ai

, where k < m, ai is the number of components of type i and ∑k
i=1 ai = m. Another function that will

be used is ν = λ1/λ2, the ratio of two Poisson rates. The ratio of two Poisson means can be used to
compare incident rates of a disease in a control group and a treatment group, where the product of
Poisson parameters can be used to estimate the reliability of a parallel system.

• Linear Contrast of Poisson Parameter

In this case the interest is in a linear combination of Poisson rates. In general we can define a linear
contrast as δ = ∑k

i=1 aiλi, where ai is the known coefficient value. In the case of a linear contrast of
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Poisson parameters ∑k
i=1 ai = 0. When ∑k

i=1 ai ̸= 0, we will consider the average of the Poisson rates. A
linear combination of Poisson parameters can be used to estimate the number of fatal vehicle accidents
driving while under the influence of alcohol on the different public holidays, and also to see if less (or
more) such accidents occur during the summer public holidays than during the winter public holidays.

1.6 Bayesian Methods

As mentioned in Section 1.1, the Bayes rule can be expressed as: posterior distribution ∝ likelihood
function × prior distribution. When we specify Bayesian models, we have to decide on prior distribu-
tions for unknown parameters. As mentioned by Robert (2001), the most critical and most criticised
point of Bayesian analysis deals with the choice of the prior distribution. Choosing the prior distribu-
tion is the key to Bayesian inference, but it is also a very difficult part. We will investigate a number of
noninformative priors. A noninformative prior is used when little or no prior information is available.
Noninformative priors are often improper, which means that the prior is not integrable. Some improper
priors are integrable, but not integrable to one, these priors are also regarded as improper since it will
be equal to a constant. This is not problematic, as long as the posterior distribution results into a proper
distribution.

1.6.1 The Probability Matching Prior

A probability matching prior is a prior distribution under which the posterior probabilities match their
coverage probabilities. The fact that the resulting Bayesian posterior intervals of level 1−α are also
good frequentist confidence intervals at the same level is a very desirable situation. As mentioned, we
will use the method by Datta & Ghosh (1995) to derive the probability matching prior in these cases.
Datta & Ghosh (1995) derived the differential equation which a prior must satisfy if the posterior
probability of a one sided credibility interval for a parametric function and its frequentist probability
agree up to O

(
n−1) where n is the sample size. In this thesis the probability matching prior will be

denoted by πPM.

1.6.2 The Jeffreys Prior

Jeffreys (1939) argued that if there is no prior information about the unknown parameter, then there
is also no information about any one-to-one transformation of the parameter, and therefore the rule
for determining a prior should give a similar result if it is applied to the transformed parameter. The
Jeffreys prior is proportional to the square root of the determinant of the Fisher information matrix and
is given by

πJ ∝ |F |
1
2 .
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1.6.3 The Uniform Prior

When using a uniform prior, one assigns a prior distribution to the unknown parameter on the interval
(a,b) using the uniform distribution. Bayes himself used a uniform prior on the binomial parameter.
In general the uniform prior is denoted as

πU ∝ constant.

1.6.4 The Reference Prior

The reference prior was introduced by Bernardo (1979) and Berger & Bernardo (1992). As mentioned
by Pearn & Wu (2005) the reference prior maximises the difference in information about the parameter
provided by the prior and posterior. The reference prior is derived in such a way that it provides as
little information as possible about the parameter. As in the case of the Jeffreys prior, the reference
prior method is derived from the Fisher information matrix. In this thesis the reference prior will be
denoted by πR.



Chapter 2

Estimation for the Product of Binomial Rates

2.1 Introduction

In this chapter the probability matching prior for the product of k binomial parameters will be de-
rived. In the case of two independently distributed binomial random variables, the Jeffreys, uniform
and probability matching priors for the product of the parameters are compared. This research is an
extension of the work by Kim (2006), who derived the probability matching prior for the product of k

independent Poisson rates.
Assume that X1,X2, . . . ,Xk are independent binomial random variables with X i ∼ Bin(ni, pi) for i=

1,2, . . . ,k, where the parameter of interest is ψ = ∏k
i=1 pai

i , ai∈(−∞,∞) . The parameter ψ = ∏k
i=1 pai

i ,
the product of different powers of k binomial parameters, appears in applications to system reliability.
If a system consists of k components in parallel, then the probability of system failure is ψ = ∏k

i=1 pi

where pi is the probability that the ith component will fail. Also if a system requires that at least one
of each of k types of components must be employed and that these components are needed in parallel,
then the probability of failure of an m−component system is ψ = ∏k

i=1 pai
i , where k < m, ai is the

number of components of type i and ∑k
i=1 ai = m. The probability of system failure is also studied in

cases where at least one of two types of components are required to be employed and where three
components in parallel are needed. The weighted Monte Carlo method is used for the simulation from
the posterior distribution in the case of the probability matching prior.

From a Bayesian perspective a prior is needed for the parameter ψ . Common noninformative
priors in multiparameter problems such as Jeffreys priors can have features that have an unexpectedly
dramatic effect on the posterior distribution. It is for this reason that the probability matching prior for
ψ will be derived in Theorem 2.1.

Datta & Ghosh (1995) derived the differential equation which a prior must satisfy if the posterior
probability of a one sided credibility interval for a parametric function and its frequentist probability
agree up to O

(
n−1) where n is the sample size. They proved that the agreement between the poste-

rior probability and the frequentist probability holds if and only if ∑k
i=1

∂
∂ pi

{
ηi
(

p
)

π
(

p
)}

= 0, where

12
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π
(

p
)

is the probability matching prior for p, the vector of unknown parameters.

Let ∇t
(

p
)
=
[

∂
∂ p1

t
(

p
)

· · · ∂
∂ pk

t
(

p
) ]′

, then η
(

p
)
=

F−1(p)∇t(p)√
∇′

t(p)F−1(p)∇t(p)
=
[

η1
(

p
)

· · · ηk
(

p
) ]′

,

where F
(

p
)

is the Fisher information matrix of p and F−1 (p
)

is the inverse of the Fisher information
matrix. Reasons for using the probability matching prior is that it provides a method of constructing
accurate frequentist intervals and it could also be useful for comparative purposes in Bayesian analy-
sis. From Wolpert (2004), Berger states that frequentist reasoning will play an important role in finally
obtaining good general priors for estimation and prediction. Some statisticians argue that frequency
calculations are an important part of applied Bayesian statistics (see Rubin, 1984). Rubin (1984) states
that the applied Bayesian statistician’s tool-kit should be more extensive and include tools that may be
usefully labeled frequency calculations. The applied statistician should be Bayesian in principle and
calibrated to the real world in practice - appropriate frequency calculations help to define such a tie
(Rubin, 1984).

2.2 Probability Matching Prior for the Product of Different Pow-
ers of k Binomial Parameters

A probability matching prior is a prior distribution under which the posterior probabilities match their
coverage probabilities. The fact that the resulting Bayesian posterior intervals of level 1−α are also
good frequentist confidence intervals at the same level is a very desirable situation. See also Severini
et al. (2002) and Bayarri & Berger (2004) for general discussion. By using the method of Datta &
Ghosh (1995) the following theorem is proved.

Theorem 2.1. The probability matching prior for ψ = ∏k
i=1 pai

i , the product of different powers of k

binomial parameters, is given by

πPM
(

p
)

= πPM (p1, p2, . . . , pk) ∝

{
k

∑
i=1

a2
i (1− pi)

pi

} 1
2 k

∏
i=1

(ai (1− pi))
−1 . (2.1)

Proof. Assume that X1,X2, . . . ,Xk are independent binomial random variables with X i ∼ Bin(ni, pi)

for i = 1,2, . . . ,k.

Therefore P(Xi = xi) =

(
ni

xi

)
pxi

i (1− pi)
ni−xi for xi = 0,1, . . .ni.

The likelihood function is given by
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L(p1, p2 . . . , pk |x1,x2 . . . ,xk ) = L
(

p |x1,x2 . . . ,xk
)

=
k

∏
i=1

(
ni

xi

)
pxi

i (1− pi)
ni−xi .

The derivation of the inverse of the Fisher information matrix is given in Appendix A in Theorem
A.1. The inverse of the Fisher information matrix is given by

F−1 (p
)

=


p1 (1− p1) · · · 0

...
...

0 · · · pk (1− pk)

 .
We are interested in a probability matching prior for t

(
p
)
= ψ = ∏k

i=1 pai
i , the product of different

powers of k binomial parameters.
Now

∇′
t
(

p
)

=
[

∂ t(p)
∂ p1

∂ t(p)
∂ p2

· · · ∂ t(p)
∂ pk

]
=

[
a1 pa1−1

1

k
∏
i̸=1

pai
i a2 pa2−1

2

k
∏
i ̸=2

pai
i · · · ak pak−1

k

k
∏
i̸=k

pai
i

]
=

[
a1
p1

k
∏
i=1

pai
i

a2
p2

k
∏
i=1

pai
i · · · ak

pk

k
∏
i=1

pai
i

]
=

[
a1
p1

a2
p2

· · · ak
pk

] k

∏
i=1

pai
i .

Also

∇′
t
(

p
)

F−1 (p
)

=

[
a1
p1

k
∏
i=1

pai
i

a2
p2

k
∏
i=1

pai
i · · · ak

pk

k
∏
i=1

pai
i

]

×


p1 (1− p1) · · · 0

...
...

0 · · · pk (1− pk)


=

[
a1 (1− p1)

k
∏
i=1

pai
i a2 (1− p2)

k
∏
i=1

pai
i · · · ak (1− pk)

k
∏
i=1

pai
i

]
=

[
a1 (1− p1) a2 (1− p2) · · · ak (1− pk)

] k

∏
i=1

pai
i

and
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∇′
t
(

p
)

F−1 (p
)

∇t
(

p
)

=

[
a1 (1− p1)

k
∏
i=1

pai
i a2 (1− p2)

k
∏
i=1

pai
i · · · ak (1− pk)

k
∏
i=1

pai
i

]

×



a1
p1

k
∏
i=1

pai
i

a2
p2

k
∏
i=1

pai
i

...
ak
pk

k
∏
i=1

pai
i


=

(
k

∏
i=1

pai
i

)2 k

∑
i=1

a2
i (1− pi)

pi
.

Define

η ′ (p
)

=
∇′

t
(

p
)

F−1 (p
)√

∇′
t
(

p
)

F−1
(

p
)

∇t
(

p
)

=

[
a1(1−p1)√

k
∑

i=1

a2
i (1−pi)

pi

a2(1−p2)√
k
∑

i=1

a2
i (1−pi)

pi

· · · ak(1−pk)√
k
∑

i=1

a2
i (1−pi)

pi

]
=

[
η1
(

p
)

η2
(

p
)

· · · ηk
(

p
) ]

.

The prior π
(

p
)

is a probability matching prior if and only if the differential equation
k
∑

i=1

∂
∂ pi

{
ηi
(

p
)

π
(

p
)}

= 0 is satisfied.

Let

π
(

p
)

=

{
k

∑
i=1

a2
i (1− pi)

pi

} 1
2 k

∏
i=1

(ai (1− pi))
−1

then

η1
(

p
)

π
(

p
)

= a1 (1− p1)
k

∏
i=1

(ai (1− pi))
−1

=
k

∏
i ̸=1

(ai (1− pi))
−1
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therefore

∂
∂ p1

{
η1
(

p
)

π
(

p
)}

=
∂

∂ p1

{
k

∏
i̸=1

(ai (1− pi))
−1

}
= 0

and

η2
(

p
)

π
(

p
)

= a2 (1− p2)
k

∏
i=1

(ai (1− pi))
−1

=
k

∏
i ̸=2

(ai (1− pi))
−1

therefore

∂
∂ p2

{
η2
(

p
)

π
(

p
)}

=
∂

∂ p2

{
k

∏
i̸=2

(ai (1− pi))
−1

}
= 0

and

ηk
(

p
)

π
(

p
)

= ak (1− pk)
k

∏
i=1

(ai (1− pi))
−1

=
k

∏
i ̸=k

(ai (1− pi))
−1

therefore

∂
∂ pk

{
ηk
(

p
)

π
(

p
)}

=
∂

∂ pk

{
k

∏
i ̸=k

(ai (1− pi))
−1

}
= 0.

We can therefore conclude that

k

∑
i=1

∂
∂ pi

{
ηi
(

p
)

π
(

p
)}

= 0.

The differential equation will be satisfied if π
(

p
)

is

πPM
(

p
)

∝

{
k

∑
i=1

a2
i (1− pi)

pi

} 1
2 k

∏
i=1

(ai (1− pi))
−1 for 0 ≤ pi ≤ 1.
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The joint posterior distribution when using the probability matching prior is given by

πPM
(

p |data
)

∝ πPM
(

p
)
×L

(
p |data

)
∝

{
k

∑
i=1

a2
i (1− pi)

pi

} 1
2 k

∏
i=1

(ai (1− pi))
−1 ×

k

∏
i=1

(
ni

xi

)
pxi

i (1− pi)
ni−xi

∴ πPM
(

p |data
)

∝

{
k

∑
i=1

a2
i (1− pi)

pi

} 1
2 k

∏
i=1

a−1
i pxi

i (1− pi)
ni−xi−1 for 0 ≤ pi ≤ 1. (2.2)

When ai = 1, the probability matching prior for ψ = ∏k
i=1 pi, will be

πPM
(

p
)

∝

{
k

∑
i=1

(1− pi)

pi

} 1
2 k

∏
i=1

(1− pi)
−1 . (2.3)

When ai = 1, for i = 1,2, . . . ,k, the posterior distribution in the case of the probability matching
prior is given by

πPM
(

p |data
)

∝

{
k

∑
i=1

(1− pi)

pi

} 1
2 k

∏
i=1

pxi
i (1− pi)

ni−xi−1 for 0 ≤ pi ≤ 1. (2.4)

When ai = 1 and k = 2 the probability matching prior for ψ = ∏2
i=1 pi, will be

πPM
(

p
)

∝

{
2

∑
i=1

(1− pi)

pi

} 1
2 2

∏
i=1

(1− pi)
−1

=

[
(1− p1)

p1
+

(1− p2)

p2

] 1
2

(1− p1)
−1 (1− p2)

−1 (2.5)

When ai = 1, for i = 1,2, the posterior distribution in the case of the probability matching prior is
given by

πPM
(

p |data
)

∝

{
2

∑
i=1

(1− pi)

pi

} 1
2 2

∏
i=1

pxi
i (1− pi)

ni−xi−1 for 0 ≤ pi ≤ 1. (2.6)



CHAPTER 2. ESTIMATION FOR THE PRODUCT OF BINOMIAL RATES 18

Theorem 2.2. πPM
(

p |data
)

is a proper posterior distribution if xi < ni, for i = 1,2, . . . ,k.

Proof.

k

∑
i=1

1− pi

pi
=

(
1−p1

p1

) k
∏
i=1

pi +
(

1−p2
p2

) k
∏
i=1

pi + · · ·+
(

1−pk
pk

) k
∏
i=1

pi

k
∏
i=1

pi

=

 k
∏
i=1

pi

p1
−

k
∏
i=1

pi

+

 k
∏
i=1

pi

p2
−

k
∏
i=1

pi

+ · · ·+

 k
∏
i=1

pi

pk
−

k
∏
i=1

pi


k
∏
i=1

pi

∴
k

∑
i=1

1− pi

pi
=

k
∑

i=1

 k
∏
i=1

pi

pi
−

k
∏
i=1

pi


k
∏
i=1

pi

=

k
∑

i=1

 k
∏
i=1

pi

pi


k
∏
i=1

pi

−

k
∑

i=1

(
k
∏
i=1

pi

)
k
∏
i=1

pi

=

k
∑

i=1

 k
∏
i=1

pi

pi


k
∏
i=1

pi

−
k
(

k
∏
i=1

pi

)
k
∏
i=1

pi

=

k
∑

i=1

 k
∏
i=1

pi

pi


k
∏
i=1

pi

− k.
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We can therefore conclude that

k
∑

i=1

 k
∏
i=1

pi

pi


k
∏
i=1

pi

− k <

k
∑

i=1

k
∏
i=1

pi

pi

k
∏
i=1

pi

since k is positive. We can thus conclude that

k

∑
i=1

1− pi

pi
<

k
∑

i=1

k
∏
i=1

pi

pi

k
∏
i=1

pi

<
k

k
∏
i=1

pi

.

Therefore

{
k

∑
i=1

(1− pi)

pi

} 1
2 k

∏
i=1

pxi
i (1− pi)

ni−xi−1 <


k

k
∏
i=1

pi


1
2

k

∏
i=1

pxi
i (1− pi)

ni−xi−1

∴
{

k

∑
i=1

(1− pi)

pi

} 1
2 k

∏
i=1

pxi
i (1− pi)

ni−xi−1 < k
1
2

k

∏
i=1

p
xi− 1

2
i (1− pi)

ni−xi−1

and each

ˆ 1

0
p

xi− 1
2

i (1− pi)
ni−xi−1 d pi = Beta

(
xi +

1
2
,ni − xi

)
converges if xi < ni for i = 1, . . . ,k. Therefore πPM

(
p |data

)
is a proper posterior distribution if xi < ni,

for i = 1,2, . . . ,k.
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2.3 The Jeffreys and Uniform Priors for the Product of k Bino-
mial Parameters

The Jeffreys prior, on the other hand, is proportional to the square root of the determinant of the Fisher
information matrix and is given by

πJ
(

p
)

∝
∣∣F (p

)∣∣ 1
2

=

(
k

∏
i=1

1
pi (1− pi)

) 1
2

. (2.7)

The joint posterior distribution when using the Jeffreys prior is given by

πJ
(

p |data
)

∝ πJ
(

p
)
×L

(
p |data

)
∝

(
k

∏
i=1

1
pi (1− pi)

) 1
2

×
k

∏
i=1

(
ni

xi

)
pxi

i (1− pi)
ni−xi

∴ πJ
(

p |data
)

∝
k

∏
i=1

p
xi− 1

2
i (1− pi)

ni−xi− 1
2 for 0 ≤ pi ≤ 1. (2.8)

The posterior distribution of p is thus the product of k independently distributed
Beta

(
xi +

1
2 ,ni − xi +

1
2

)
variates.

The reference prior for the bivariate binomial has been derived, from Yang & Berger (1997) the
reference prior for ψ = ∏2

i=1 pi is given by

πR
(

p
)

∝ (1− p1)
− 1

2 p
1
2
2 (1− p2)

− 1
2 (1− p1 p2)

− 1
2 . (2.9)

From Equation 2.5 the probability matching prior for this case was given by

πPM
(

p
)

∝
[
(1− p1)

p1
+

(1− p2)

p2

] 1
2

(1− p1)
−1 (1− p2)

−1 . (2.10)

From Equations 2.9 and 2.10 it can be seen that the probability matching prior is not the same as
the reference prior when considering the product of two binomial proportions.
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Theorem 2.3. If k = 1 and ai = 1, the probability matching prior in the case of the product of different
powers of k binomial parameters becomes the Jeffreys prior.

Proof. From Equation 2.1 the probability matching prior for ψ =
k
∏
i=1

pai
i , is given by

πPM
(

p
)

∝

{
k

∑
i=1

a2
i (1− pi)

pi

} 1
2 k

∏
i=1

(ai (1− pi))
−1 .

Let k = 1, pi = p and ai = 1, then the probability matching prior simplifies to

πPM (p) ∝
(1− p)

1
2

p
1
2

(1− p)−1

=
1

(1− p)
1
2 p

1
2

∝ πJ (p) .

Corollary 2.1. From Yang & Berger (1997) it can be seen that the Jeffreys prior is the same as the
reference prior for the one-dimensional case. We can therefore, from Theorem 2.3, conclude that
the Jeffreys prior, probability matching prior and the reference prior are all the same for the one-
dimensional case, i.e. when we have a single p.

The uniform prior is proportional to a constant and is given by

πU
(

p
)

∝ constant. (2.11)

The joint posterior is

πU
(

p |data
)

∝
k

∏
i=1

pxi
i (1− pi)

ni−xi for 0 ≤ pi ≤ 1. (2.12)

The joint posterior distribution of p is thus the product of k independently distributed
Beta(xi +1,ni − xi +1) variates.

2.4 The Weighted Monte Carlo Method in the Case of the Proba-
bility Matching Prior for ψ = ∏k

i=1 pai
i

In this section a weighted Monte Carlo method is described which will be used for simulation from the
posterior distribution in the case of the probability matching prior. This method is especially suitable



CHAPTER 2. ESTIMATION FOR THE PRODUCT OF BINOMIAL RATES 22

for computing Bayesian credible intervals. It does not require knowing the closed form of the marginal
posterior distribution of the parameter of interest, only the kernel of the posterior distribution of the
parameters is needed.

As mentioned by Smith & Gelfand (1992), Chen & Shao (1999), Guttman & Menzefricke (2003),
Skare et al. (2003), Kim (2006) and Li (2007) the weighted Monte Carlo (sampling - importance
re-sampling (SIR)) algorithm aims at drawing a random sample from a target distribution π, by first
drawing a sample from a proposal distribution q, and from this a smaller sample is drawn with sample
probabilities proportional to the importance ratios π/q. For the algorithm to be efficient, it is important
that q is a good approximation for π. This means that q should not have too light tails when compared
to π. In the case of credibility intervals it is not even necessary to draw the smaller sample. The weights
(sample probabilities) are, however, important.

If a uniform prior is put on p, using Equation 2.12, the posterior (proposal) distribution is

q
(

p |data
)

∝
k

∏
i=1

pxi
i (1− pi)

ni−xi 0 ≤ pi ≤ 1.

In the case of the probability matching prior, using Equation 2.2, the posterior (target) distribution
is

πPM
(

p |data
)

∝

{
k

∑
i=1

a2
i (1− pi)

pi

} 1
2
{

k

∏
i=1

(ai (1− pi))
−1

}{
k

∏
i=1

pxi
i (1− pi)

ni−xi

}
0 ≤ pi ≤ 1.

The sample probabilities are therefore proportional to

πPM
(

p |data
)

q
(

p |data
) =

{
k

∑
i=1

a2
i (1− pi)

pi

} 1
2
{

k

∏
i=1

(ai (1− pi))
−1

}
0 ≤ pi ≤ 1

and the normalised weights are

ωl =

{
k
∑

i=1

a2
i

(
1−p(l)i

)
p(l)i

} 1
2 { k

∏
i=1

a−1
i

(
1− p(l)i

)−1
}

n
∑

l=1

{ k
∑

i=1

a2
i

(
1−p(l)i

)
p(l)i

} 1
2 { k

∏
i=1

a−1
i

(
1− p(l)i

)−1
} l = 1,2, . . . ,n

where n is the number of simulations. A straightforward way of doing the weighted Monte Carlo
(WMC) method was proposed by Chen & Shao (1999).
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The Monte Carlo method:

• Step 1

Obtain a Monte Carlo sample
{(

p(l)1 , p(l)2 . . . , p(l)k

)
; l = 1,2, . . . ,n

}
from the proposal distribu-

tion q
(

p |data
)

and calculate ψ(l) =
k
∏
i=1

(
p(l)i

)ai
for l = 1,2, . . . ,n.

• Step 2

Sort
{

ψ(l),(l = 1,2, . . . ,n)
}

to obtain the ordered values ψ [1] ≤ ψ [2] ≤ ·· · ≤ ψ [n].

• Step 3

Each simulated ψ value has an associated weight. Therefore compute the weighted function ω(l)

associated with the lth ordered ψ [l] value.

• Step 4

Add the weights up from left to right (from the first on) until one obtains
n1
∑

l=1
ω(l) = α/2. Write

down the corresponding ψ [n1] value and denote it as ψ(α/2). Add the weights up from right to

left (from the last back) until one obtains
n
∑

l=n2

ω(l) = α/2. Write down the corresponding ψ [n2]

value and denote it as ψ(1−α/2).

• Step 5

The 100(1−α)% Bayesian credible interval is:
(
ψ(α/2),ψ(1−α/2)

)
.

2.5 Example and Simulation Studies

2.5.1 Example - Reliability of Independent Parallel Components System (Kim,
2006)

Consider the following example for the probability of failure of independent parallel components sys-
tem, using the observed data values from Harris (1971). One has to assume that the two systems consist
of two and three components in parallel, respectively. The respective probabilities of system failure
will then be ψ1 = p1 p2 and ψ2 = p1 p2 p3. ψ1 is the product of two binomial parameters, and ψ2 is
the product of three binomial parameters. When manufacturing the components system, one may be
interested in an upper bound of the confidence interval on the system failure. The upper bound of the
confidence interval, ψ(1−α), for each system failure, which is given by P

(
0 ≤ ψ j ≤ ψ(1−α)

)
= 1−α

will be estimated for j = 1,2. The estimate of ψ(1−α) is therefore the upper end point of a one-sided
(1−α)100% confidence interval for ψ j. The methods used to obtain the upper limit of the confidence
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interval are: the likelihood ratio method by Madansky (1965); randomised limit based method by Har-
ris (1971); Bayesian method by Kim (2006). The last two columns in Table 2.1 are obtained from the
probability matching prior and the Jeffreys prior for the product of k binomial parameters. Kim approx-
imated the binomial distribution by the Poisson distribution and obtained a probability matching prior
for θ̃ = ∏k

i=1 λi, the product of k Poisson rates. The prior is π (λ ) ∝
√

∑k
i=1 λ−1

i . A simulated value for
ψ is then obtained from the linear relationship between θ̃ and ψ, namely ψ = θ̃/∏k

i=1 ni. Comparisons
between these five estimates are made in Table 2.1. The values for Madansky’s and Harris’ methods
are from Harris (1971) and the values for the Bayesian method are from Kim (2006).

The effectiveness of the comparisons between the five methods in Table 2.1 is rather restricted,
since the five methods are all approximate and we do not have the exact confidence coefficient.

Table 2.1: Upper confidence limits for ∏k
i=1 pi with confidence coefficient 1−α = 0.9.

Sample Observed Madansky’s Harris’ Bayesian Probability Jeffreys
sizes x1,x2 Method Method Method Matching Prior
n1,n2 Prior

100, 100 3, 5 0.00433 0.00416 0.00406 0.00393 0.00355
100, 100 1, 4 0.00188 0.00184 0.00172 0.00167 0.00145
100, 100 2, 2 0.00168 0.00170 0.00157 0.00155 0.00131
150, 150 3, 3 0.00133 0.00128 0.00124 0.00120 0.00107

Sample Observed Madansky’s Harris’ Bayesian Probability Jeffreys
sizes x1,x2,x3 Method Method Method Matching Prior

n1,n2,n3 Prior
100, 100, 100 1, 2, 1 0.000019 0.000027 0.000021 0.000021 0.000013
100, 100, 100 2, 3, 5 0.000133 0.000145 0.000132 0.000129 0.000102

As mentioned the last two columns are added to Table 2 of Kim (2006) and give ψ(1−α) for the
probability matching prior and the Jeffreys prior of ψ1 = p1 p2 and ψ2 = p1 p2 p3. The values of ψ(1−α)

in the case of the probability matching prior compare well with those obtained by the other researchers
while it seems that the Jeffreys prior tends to somewhat under estimate the upper confidence limit.

2.5.2 Simulation Study I - Comparison of Four Priors for ψ1 = p1p2

In this section comparisons will be made between the following four priors:

1. πPM
(

p
)

∝
{

2
∑

i=1

(1−pi)
pi

} 1
2 2

∏
i=1

(1− pi)
−1 ;
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2. πJ
(

p
)

∝
(

2
∏
i=1

1
pi(1−pi)

) 1
2

;

3. πPM (λ ) ∝

√
2
∑

i=1
λ−1

i ;

4. πJ (λ ) ∝
(

2
∏
i=1

λi

)− 1
2

,

for the following binomial distributions:

1. n1 = 10, p1 = 0.4 and n2 = 12, p2 = 0.6;

2. n1 = 20, p1 = 0.4 and n2 = 24, p2 = 0.6;

3. n1 = 40, p1 = 0.4 and n2 = 48, p2 = 0.6.

The priors denoted by πPM (1 and 3) are probability matching priors while those denoted by πJ (2 and
4) are Jeffreys priors. The parameter of interest is ψ1 = p1 p2. The Poisson parameter is λi = ni pi,
i = 1,2. The two priors (3 and 4) using the Poisson approximation will be derived and discussed in
Chapter 4. The results are given in Tables 2.2 and 2.3, where the number of simulations is equal to 1
000 in both cases.

Table 2.2: Frequentist coverage probabilities for 0.95 posterior quantile of ψ1 = p1 p2.

Binomial Poisson
1−α = 0.95 1 2 3 1 2 3

n1 10 20 40 10 20 40
p1 0.4 0.4 0.4 0.4 0.4 0.4
λ1 4 8 16
n2 12 24 48 12 24 48
p2 0.6 0.6 0.6 0.6 0.6 0.6
λ2 7.2 14.4 28.8
λ0 [4 7.2] [8 14.4] [16 28.8]

# x vectors 1000 1000 1000 1000 1000 1000
# λ ′s 1000 1000 1000
πPM 0.953 0.954 0.95 0.933 0.933 0.949
πJ 0.926 0.944 0.946 0.913 0.917 0.949
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Table 2.3: Frequentist coverage probabilities for 0.05 posterior quantile of ψ1 = p1 p2.

Binomial Poisson
α = 0.05 1 2 3 1 2 3

n1 10 20 40 10 20 40
p1 0.4 0.4 0.4 0.4 0.4 0.4
λ1 4 8 16
n2 12 24 48 12 24 48
p2 0.6 0.6 0.6 0.6 0.6 0.6
λ2 7.2 14.4 28.8
λ0 [4 7.2] [8 14.4] [16 28.8]

# x vectors 1000 1000 1000 1000 1000 1000
# λ ′s 1000 1000 1000
πPM 0.048 0.047 0.052 0.048 0.055 0.064
πJ 0.027 0.031 0.042 0.038 0.043 0.054

From Tables 2.2 and 2.3 it is clear that the priors πPM are better than the Jeffreys priors, πJ , in
most of the situations. It is surprising that πPM (λ ) performs better than πJ

(
p
)

since πPM (λ ) is the
probability matching prior for the Poisson distribution. The latter will be a good approximation to the
binomial distribution if n is large and p is small. However the values used in Tables 2.2 and 2.3 are
p1 = 0.4 and p2 = 0.6, which are quite large. As expected and although this is a limited experiment it
seems that πPM

(
p
)

is the best prior of the four.

2.5.3 Simulation Study II - A comparison of the Jeffreys, Uniform and Proba-
bility Matching priors for ψ1 = p1p2

In this section a more extensive simulation study is done and coverage probabilities are obtained for
ψ1 = p1 p2, the product of two binomial parameters. For comparison purposes the following priors
will be used:

1. the Jeffreys prior: πJ
(

p
)

∝
2
∏
i=1

p
− 1

2
i (1− pi)

− 1
2 ;

2. the uniform prior: πU
(

p
)

∝ constant;

3. the probability matching prior: πPM
(

p
)

∝
{

2
∑

i=1
(1− pi) p−1

i

} 1
2 2

∏
i=1

(1− pi)
−1 .

The parameter values for the binomial distribution are n1 = n2 = 10, n1 = n2 = 20, n1 = n2 = 30 and
pi = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 (for i = 1,2) . The average length and standard deviation
of the intervals are also given. The number of X variates and the number of simulations are equal to
1000. The average length and standard deviation of the intervals are calculated by using the following
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formulas, where Ii is the interval length and n∗ the number of intervals:

average length =
1
n∗

n∗

∑
i=1

Ii

and

standard deviation =

√
1

n∗−1

n∗

∑
i=1

(
Ii − I

)2
,

Tables 2.4 to 2.6 contain coverage probabilities, mean lengths and standard deviations for the Jeffreys,
uniform and probability matching priors when n1 = n2 = 10, for several choices of p1 and p2. These
results will be summarised in Figures 2.1 to 2.3 where box plots are constructed. MATLABr was
used to construct the box plots in this chapter. On each box, the central mark is the median, the edges
of the box are the 25th and 75th percentiles, the whiskers extend to the most extreme data points the
algorithm considers not to be outliers, and the outliers are plotted individually.
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Figure 2.1: Box plot summarising the coverage rates of the 95% credibility intervals for ψ1 = p1 p2 for p1 =
0.1 : 0.1 : 0.9, using the Jeffreys prior; n1 = n2 = 10.
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Figure 2.2: Box plot summarising the coverage rates of the 95% credibility intervals for ψ1 = p1 p2 for p1 =
0.1 : 0.1 : 0.9, using the uniform prior; n1 = n2 = 10.

0.86

0.88

0.9

0.92

0.94

0.96

0.98

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
p

1

Boxplots showing the distribution of the coverage
rates when using the Probability matching prior; n

1
 = n

2
 = 10

C
ov

er
ag

e

Figure 2.3: Box plot summarising the coverage rates of the 95% credibility intervals for ψ1 = p1 p2 for p1 =
0.1 : 0.1 : 0.9, using the probability matching prior; n1 = n2 = 10.
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From Figure 2.1 we see that when the Jeffreys prior is used, the median coverage probability is
below 0.95 for all values of p1, apart from p1 = 0.1. When p1 = 0.1 the median coverage probability
is above 0.97. From Figure 2.2 we see that when the uniform prior is used, the median coverage
probability is above 0.95 for all values of p1, apart from p1 = 0.7. When p1 = 0.7 the median coverage
probability is equal to 0.95. From Figure 2.3 we see that when the probability matching prior is used,
the median coverage probability is above 0.95 for all values of p1, apart from p1 = 0.7. When p1 = 0.7
the median coverage probability is just below to 0.95. From these figures it seems that the performance
of the uniform and probability matching priors are very similar, where there is over coverage most of
the time. With the Jeffreys prior it seems that there is under coverage most of the time.
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Table 2.4: Coverage rate of the 95% credibility intervals for ψ1 = p1 p2 using the Jeffreys prior. (a) Exact
coverage probabilities, (b) mean lengths, (c) standard deviation for n1 = n2 = 10.

Jeffreys prior n1 = n2 = 10
↓ p2 p1

→
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 mean

0.1 (a) 0.9860 0.9440 0.9810 0.9630 0.9800 0.9790 0.9830 0.9800 0.9810 0.9752
(b) 0.0721 0.1073 0.1367 0.1631 0.1910 0.2187 0.2477 0.2745 0.3016 0.1903
(c) 0.0460 0.0614 0.0710 0.0780 0.0806 0.0848 0.0904 0.0935 0.0968 0.0781

0.2 (a) 0.9460 0.9110 0.9140 0.9370 0.9410 0.9470 0.9450 0.9490 0.9300 0.9356
(b) 0.1048 0.1507 0.1848 0.2231 0.2558 0.2931 0.3269 0.3526 0.3863 0.2531
(c) 0.0606 0.0771 0.0830 0.0882 0.0932 0.0940 0.0956 0.0940 0.0962 0.0869

0.3 (a) 0.9700 0.9400 0.9290 0.9260 0.9380 0.9320 0.9440 0.9530 0.9440 0.9418
(b) 0.1330 0.1850 0.2257 0.2702 0.3049 0.3409 0.3737 0.4086 0.4428 0.2983
(c) 0.0684 0.0790 0.0887 0.0903 0.0899 0.0879 0.0868 0.0838 0.0789 0.0837

0.4 (a) 0.9610 0.9360 0.9330 0.9190 0.9440 0.9460 0.9340 0.9500 0.9340 0.9397
(b) 0.1662 0.2230 0.2734 0.3169 0.3487 0.3886 0.4148 0.4496 0.4781 0.3399
(c) 0.0796 0.0880 0.0925 0.0905 0.0858 0.0835 0.0782 0.0675 0.0619 0.0808

0.5 (a) 0.9660 0.9350 0.9350 0.9440 0.9350 0.9510 0.9490 0.9480 0.9530 0.9462
(b) 0.1955 0.2613 0.3057 0.3473 0.3890 0.4238 0.4457 0.4733 0.4990 0.3712
(c) 0.0844 0.0935 0.0892 0.0841 0.0797 0.0713 0.0643 0.0542 0.0436 0.0738

0.6 (a) 0.9740 0.9430 0.9440 0.9430 0.9370 0.9450 0.9550 0.9440 0.9370 0.9469
(b) 0.2273 0.2845 0.3457 0.3886 0.4218 0.4493 0.4740 0.4917 0.5053 0.3987
(c) 0.0887 0.0957 0.0898 0.0831 0.0735 0.0603 0.0482 0.0408 0.0347 0.0683

0.7 (a) 0.9750 0.9380 0.9400 0.9480 0.9470 0.9540 0.9510 0.9380 0.9500 0.9490
(b) 0.2506 0.3219 0.3770 0.4189 0.4520 0.4741 0.4887 0.4972 0.5019 0.4203
(c) 0.0928 0.0961 0.0857 0.0761 0.0648 0.0494 0.0372 0.0333 0.0358 0.0635

0.8 (a) 0.9760 0.9540 0.9470 0.9500 0.9500 0.9400 0.9300 0.9490 0.9460 0.9491
(b) 0.2754 0.3585 0.4133 0.4515 0.4753 0.4909 0.4955 0.4932 0.4799 0.4371
(c) 0.0943 0.0941 0.0852 0.0691 0.0535 0.0426 0.0358 0.0392 0.0547 0.0632

0.9 (a) 0.9800 0.9430 0.9480 0.9530 0.9340 0.9400 0.9420 0.9470 0.9460 0.9481
(b) 0.3045 0.3813 0.4382 0.4809 0.4975 0.5039 0.5012 0.4815 0.4464 0.4484
(c) 0.0996 0.0988 0.0807 0.0591 0.0422 0.0332 0.0381 0.0492 0.0657 0.0630

mean (a) 0.9704 0.9382 0.9412 0.9426 0.9451 0.9482 0.9481 0.9509 0.9468 0.9480
(b) 0.1922 0.2526 0.3001 0.3401 0.3707 0.3981 0.4187 0.4358 0.4490 0.3508
(c) 0.0794 0.0871 0.0851 0.0798 0.0737 0.0674 0.0639 0.0617 0.0631 0.0735

From Table 2.4 the overall average for the coverage probabilities is equal to 0.9480, which is
slightly below the nominal level of 0.95. When p1 = 0.1 and p2 = 0.1 the coverage rate is equal to
0.9860, which is much higher than the nominal level, and when looking at p1 = 0.4 and p2 = 0.4 the
coverage rate is equal to 0.9190, which is much lower than the nominal level. When using the Jeffreys
prior, for ψ1 = p1 p2, we have under coverage except when one of the values of p is 0.1.
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Table 2.5: Coverage rate of the 95% credibility intervals for ψ1 = p1 p2 using the uniform prior. (a) Exact
coverage probabilities, (b) mean lengths, (c) standard deviation for n1 = n2 = 10.

Uniform prior n1 = n2 = 10
↓ p2 p1

→
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 mean

0.1 (a) 0.9640 0.9720 0.9680 0.9660 0.9650 0.9740 0.9620 0.9620 0.9590 0.9658
(b) 0.0932 0.1252 0.1582 0.1827 0.2103 0.2391 0.2668 0.2936 0.3226 0.2102
(c) 0.0435 0.0551 0.0591 0.0689 0.0708 0.0724 0.0725 0.0750 0.0732 0.0656

0.2 (a) 0.9710 0.9600 0.9670 0.9720 0.9750 0.9730 0.9740 0.9730 0.9730 0.9709
(b) 0.1246 0.1651 0.1992 0.2274 0.2640 0.2893 0.3193 0.3543 0.3802 0.2582
(c) 0.0535 0.0663 0.0713 0.0748 0.0765 0.0776 0.0793 0.0787 0.0743 0.0725

0.3 (a) 0.9660 0.9620 0.9630 0.9610 0.9520 0.9530 0.9490 0.9640 0.9550 0.9583
(b) 0.1541 0.1992 0.2341 0.2715 0.3096 0.3361 0.3655 0.4000 0.4258 0.2995
(c) 0.0609 0.0720 0.0746 0.0786 0.0812 0.0775 0.0769 0.0687 0.0650 0.0728

0.4 (a) 0.9630 0.9650 0.9690 0.9570 0.9590 0.9640 0.9640 0.9580 0.9550 0.9616
(b) 0.1818 0.2309 0.2718 0.3084 0.3467 0.3782 0.4043 0.4298 0.4550 0.3341
(c) 0.0675 0.0756 0.0772 0.0771 0.0760 0.0678 0.0645 0.0605 0.0542 0.0689

0.5 (a) 0.9610 0.9680 0.9620 0.9560 0.9480 0.9620 0.9500 0.9560 0.9620 0.9583
(b) 0.2139 0.2586 0.3048 0.3438 0.3734 0.4059 0.4295 0.4551 0.4778 0.3625
(c) 0.0701 0.0774 0.0788 0.0773 0.0709 0.0635 0.0575 0.0457 0.0376 0.0643

0.6 (a) 0.9690 0.9650 0.9520 0.9540 0.9410 0.9510 0.9630 0.9350 0.9430 0.9526
(b) 0.2382 0.2926 0.3340 0.3744 0.4063 0.4341 0.4528 0.4705 0.4849 0.3875
(c) 0.0725 0.0778 0.0786 0.0722 0.0648 0.0556 0.0447 0.0399 0.0297 0.0596

0.7 (a) 0.9580 0.9840 0.9580 0.9670 0.9560 0.9350 0.9430 0.9360 0.9340 0.9523
(b) 0.2674 0.3242 0.3664 0.4013 0.4303 0.4492 0.4684 0.4789 0.4848 0.4079
(c) 0.0741 0.0770 0.0736 0.0658 0.0556 0.0494 0.0372 0.0296 0.0277 0.0545

0.8 (a) 0.9740 0.9760 0.9570 0.9590 0.9580 0.9380 0.9400 0.9150 0.9290 0.9496
(b) 0.2910 0.3503 0.3925 0.4296 0.4523 0.4706 0.4788 0.4808 0.4767 0.4247
(c) 0.0721 0.0795 0.0705 0.0601 0.0499 0.0381 0.0288 0.0252 0.0329 0.0508

0.9 (a) 0.9680 0.9760 0.9510 0.9520 0.9620 0.9430 0.9200 0.9370 0.8820 0.9434
(b) 0.3180 0.3764 0.4251 0.4574 0.4770 0.4853 0.4854 0.4764 0.4576 0.4398
(c) 0.0742 0.0772 0.0651 0.0518 0.0397 0.0307 0.0275 0.0321 0.0407 0.0488

mean (a) 0.9660 0.9698 0.9608 0.9604 0.9573 0.9548 0.9517 0.9484 0.9436 0.9570
(b) 0.2091 0.2580 0.2984 0.3329 0.3633 0.3875 0.4078 0.4266 0.4406 0.3472
(c) 0.0654 0.0731 0.0721 0.0696 0.0650 0.0592 0.0543 0.0506 0.0484 0.0620

From Table 2.5 the overall average for the coverage probabilities is equal to 0.9570, which is
slightly above the nominal level of 0.95. When p1 = 0.1 and p2 = 0.1 the coverage rate is equal
to 0.9640, which is higher than the nominal level, but this value is closer to the nominal level than
the coverage reached by the Jeffreys prior for this case. When looking at p1 = 0.4 and p2 = 0.4
the coverage rate is equal to 0.9570, which is almost equal to the nominal level, and this value is
greater than the coverage reached by the Jeffreys prior for this case. When using the uniform prior, for
ψ1 = p1 p2, we have over coverage except when p1 and p2 are both large.
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Table 2.6: Coverage rate of the 95% credibility intervals for ψ1 = p1 p2 using the probability matching prior. (a)
Exact coverage probabilities, (b) mean lengths, (c) standard deviation for n1 = n2 = 10.

Probability matching prior n1 = n2 = 10
↓ p2 p1

→
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 mean

0.1 (a) 0.9670 0.9540 0.9630 0.9720 0.9730 0.9630 0.9580 0.9650 0.9670 0.9647
(b) 0.0933 0.1304 0.1543 0.1789 0.2101 0.2428 0.2672 0.2941 0.3216 0.2103
(c) 0.0435 0.0558 0.0608 0.0636 0.0684 0.0716 0.0743 0.0722 0.0700 0.0645

0.2 (a) 0.9720 0.9720 0.9720 0.9690 0.9800 0.9720 0.9740 0.9780 0.9780 0.9741
(b) 0.1256 0.1645 0.1960 0.2342 0.2616 0.2895 0.3218 0.3490 0.3799 0.2580
(c) 0.0519 0.0656 0.0679 0.0759 0.0770 0.0779 0.0792 0.0788 0.0738 0.0720

0.3 (a) 0.9680 0.9630 0.9650 0.9580 0.9530 0.9630 0.9610 0.9610 0.9570 0.9610
(b) 0.1557 0.1994 0.2329 0.2696 0.3038 0.3351 0.3688 0.3958 0.4216 0.2981
(c) 0.0612 0.0719 0.0779 0.0773 0.0804 0.0744 0.0754 0.0697 0.0676 0.0729

0.4 (a) 0.9730 0.9790 0.9560 0.9510 0.9560 0.9590 0.9600 0.9640 0.9670 0.9628
(b) 0.1827 0.2317 0.2725 0.3112 0.3428 0.3720 0.4020 0.4329 0.4580 0.3340
(c) 0.0662 0.0762 0.0794 0.0805 0.0764 0.0705 0.0657 0.0568 0.0506 0.0691

0.5 (a) 0.9740 0.9700 0.9700 0.9470 0.9610 0.9490 0.9390 0.9580 0.9620 0.9589
(b) 0.2077 0.2617 0.3024 0.3448 0.3745 0.4000 0.4285 0.4548 0.4762 0.3612
(c) 0.0673 0.0787 0.0754 0.0787 0.0709 0.0680 0.0590 0.0473 0.0374 0.0647

0.6 (a) 0.9680 0.9660 0.9580 0.9610 0.9550 0.9560 0.9420 0.9550 0.9500 0.9568
(b) 0.2402 0.2930 0.3360 0.3786 0.4061 0.4305 0.4506 0.4717 0.4855 0.3880
(c) 0.0731 0.0793 0.0777 0.0699 0.0654 0.0560 0.0485 0.0344 0.0286 0.0592

0.7 (a) 0.9620 0.9800 0.9520 0.9570 0.9560 0.9430 0.9400 0.9460 0.9400 0.9529
(b) 0.2661 0.3231 0.3622 0.4062 0.4319 0.4520 0.4678 0.4795 0.4870 0.4084
(c) 0.0737 0.0790 0.0751 0.0662 0.0552 0.0452 0.0366 0.0294 0.0252 0.0540

0.8 (a) 0.9670 0.9770 0.9580 0.9540 0.9500 0.9370 0.9450 0.9130 0.9210 0.9469
(b) 0.2943 0.3512 0.4001 0.4290 0.4543 0.4699 0.4794 0.4831 0.4753 0.4263
(c) 0.0717 0.0781 0.0673 0.0594 0.0485 0.0378 0.0276 0.0246 0.0315 0.0496

0.9 (a) 0.9580 0.9680 0.9540 0.9670 0.9570 0.9420 0.9390 0.9270 0.8530 0.9406
(b) 0.3227 0.3841 0.4210 0.4588 0.4744 0.4852 0.4852 0.4768 0.4595 0.4409
(c) 0.0740 0.0744 0.0673 0.0504 0.0407 0.0287 0.0255 0.0309 0.0387 0.0478

mean (a) 0.9677 0.9699 0.9609 0.9596 0.9601 0.9538 0.9509 0.9519 0.9439 0.9576
(b) 0.2098 0.2599 0.2975 0.3346 0.3622 0.3863 0.4079 0.4264 0.4405 0.3472
(c) 0.0647 0.0732 0.0721 0.0691 0.0648 0.0589 0.0546 0.0493 0.0470 0.0615

From Table 2.6 the overall average for the coverage probabilities is equal to 0.9576, which is
slightly above the nominal level of 0.95 and a bit higher than the overall average when using the
uniform prior. When p1 = 0.1 and p2 = 0.1 the coverage rate is equal to 0.9670, which is a bit higher
than the nominal level, but this value is closer to the nominal level than the coverage reached by the
Jeffreys prior for this case and is almost exactly the same as the result from the uniform prior. When
looking at p1 = 0.4 and p2 = 0.4 the coverage rate is equal to 0.9510, which is almost equal to the
nominal level. When using the probability matching prior, for ψ1 = p1 p2, we have over coverage
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except for larger values of p1 and p2 where we have under coverage. For instance when p1 = 0.9 and
p2 = 0.9 the coverage rate is equal to 0.8530, which is way below the nominal level of 0.95.

In general, we can conclude that, when n1 = n2 = 10 and for different values of p1 and p2 the
Jeffreys prior produce coverage rates below the nominal level and that the uniform and probability
matching priors produce coverage rates above the nominal level. Where the overall average coverage
rate for the Jeffreys prior is equal to 0.9480, the overall average coverage rate for the uniform prior
is equal to 0.9570 and the overall average coverage rate for the probability matching prior is equal
to 0.9576. The average interval lengths of the Jeffreys prior are also generally larger than that of the
uniform and probability matching priors. The uniform and probability matching priors give smaller
standard deviation values for the interval lengths than the Jeffreys prior.
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Figure 2.4: Coverage rate of the 95% credibility intervals for ψ1 = p1 p2 against the interval length for the three
priors when n1 = n2 = 20.

Figure 2.4 shows line plots of the coverage rates obtained when using the Jeffreys, uniform and
probability matching priors for ψ1 = p1 p2 when n1 = n2 = 20. The values plotted are averages over
the nine possible values for p2. The Jeffreys prior underestimates the coverage probabilities while the
uniform prior and the probability matching prior tend to overestimate the coverage probabilities.
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Table 2.7: Coverage rate of the 95% credibility intervals for ψ1 = p1 p2 using the Jeffreys prior. (a) Exact
coverage probabilities, (b) mean lengths, (c) standard deviation for n1 = n2 = 20.

Jeffreys prior n1 = n2 = 20
↓ p2 p1

→
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 mean

0.1 (a) 0.9430 0.9570 0.9510 0.9450 0.9440 0.9500 0.9540 0.9620 0.9670 0.9526
(b) 0.0451 0.0714 0.0925 0.1141 0.1340 0.1578 0.1799 0.1962 0.2208 0.1346
(c) 0.0259 0.0323 0.0389 0.0436 0.0494 0.0536 0.0561 0.0602 0.0640 0.0471

0.2 (a) 0.9550 0.9370 0.9320 0.9390 0.9470 0.9360 0.9410 0.9500 0.9560 0.9437
(b) 0.0701 0.1018 0.1338 0.1623 0.1880 0.2134 0.2406 0.2653 0.2903 0.1851
(c) 0.0327 0.0392 0.0463 0.0481 0.0514 0.0548 0.0554 0.0547 0.0543 0.0485

0.3 (a) 0.9520 0.9470 0.9480 0.9590 0.9390 0.9570 0.9410 0.9500 0.9550 0.9498
(b) 0.0931 0.1315 0.1656 0.1994 0.2264 0.2548 0.2849 0.3104 0.3390 0.2228
(c) 0.0404 0.0450 0.0473 0.0481 0.0503 0.0485 0.0513 0.0469 0.0429 0.0467

0.4 (a) 0.9540 0.9440 0.9300 0.9470 0.9320 0.9640 0.9490 0.9430 0.9410 0.9449
(b) 0.1117 0.1603 0.1973 0.2339 0.2603 0.2913 0.3164 0.3410 0.3663 0.2532
(c) 0.0423 0.0495 0.0512 0.0506 0.0477 0.0437 0.0428 0.0391 0.0335 0.0445

0.5 (a) 0.9570 0.9410 0.9390 0.9630 0.9460 0.9360 0.9350 0.9460 0.9470 0.9456
(b) 0.1359 0.1883 0.2262 0.2644 0.2930 0.3190 0.3397 0.3618 0.3811 0.2788
(c) 0.0499 0.0526 0.0525 0.0460 0.0451 0.0404 0.0363 0.0289 0.0225 0.0416

0.6 (a) 0.9580 0.9470 0.9390 0.9350 0.9400 0.9520 0.9610 0.9430 0.9510 0.9473
(b) 0.1557 0.2134 0.2557 0.2879 0.3178 0.3394 0.3588 0.3725 0.3851 0.2985
(c) 0.0522 0.0524 0.0496 0.0463 0.0402 0.0339 0.0270 0.0213 0.0180 0.0379

0.7 (a) 0.9480 0.9400 0.9480 0.9360 0.9550 0.9370 0.9610 0.9440 0.9490 0.9464
(b) 0.1804 0.2401 0.2849 0.3159 0.3405 0.3586 0.3702 0.3758 0.3770 0.3159
(c) 0.0574 0.0549 0.0486 0.0420 0.0345 0.0283 0.0185 0.0180 0.0213 0.0359

0.8 (a) 0.9580 0.9460 0.9480 0.9470 0.9570 0.9450 0.9310 0.9400 0.9560 0.9476
(b) 0.1985 0.2687 0.3084 0.3426 0.3614 0.3734 0.3757 0.3706 0.3588 0.3287
(c) 0.0619 0.0560 0.0465 0.0379 0.0284 0.0206 0.0179 0.0232 0.0315 0.0360

0.9 (a) 0.9630 0.9490 0.9470 0.9570 0.9470 0.9470 0.9390 0.9530 0.9470 0.9499
(b) 0.2199 0.2918 0.3373 0.3664 0.3816 0.3846 0.3773 0.3577 0.3238 0.3378
(c) 0.0642 0.0568 0.0449 0.0326 0.0222 0.0173 0.0229 0.0345 0.0463 0.0380

mean (a) 0.9542 0.9453 0.9424 0.9476 0.9452 0.9471 0.9458 0.9479 0.9521 0.9475
(b) 0.1345 0.1853 0.2224 0.2541 0.2781 0.2991 0.3159 0.3279 0.3380 0.2617
(c) 0.0474 0.0487 0.0473 0.0439 0.0410 0.0379 0.0365 0.0363 0.0371 0.0418

From Table 2.7 the overall average for the coverage probabilities is equal to 0.9475, which is
slightly below the nominal level of 0.95. When p1 = 0.6 and p2 = 0.1 the coverage rate is equal to
0.9500, which is equal to nominal level, and when looking at p1 = 0.8 and p2 = 0.8 the coverage rate
is equal to 0.9400, which is below the nominal level. When using the Jeffreys prior, for ψ1 = p1 p2, we
have under coverage except when one of the values of p is 0.1. These results are similar to the results
obtained when n1 = n2 = 10.
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Table 2.8: Coverage rate of the 95% credibility intervals for ψ1 = p1 p2 using the uniform prior. (a) Exact
coverage probabilities, (b) mean lengths, (c) standard deviation for n1 = n2 = 20.

Uniform prior n1 = n2 = 20
↓ p2 p1

→
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 mean

0.1 (a) 0.9730 0.9650 0.9700 0.9650 0.9700 0.9740 0.9710 0.9770 0.9640 0.9699
(b) 0.0534 0.0790 0.0991 0.1220 0.1441 0.1677 0.1870 0.2073 0.2320 0.1435
(c) 0.0241 0.0311 0.0357 0.0403 0.0436 0.0452 0.0495 0.0503 0.0524 0.0413

0.2 (a) 0.9600 0.9500 0.9630 0.9490 0.9570 0.9660 0.9550 0.9650 0.9600 0.9583
(b) 0.0771 0.1103 0.1375 0.1635 0.1933 0.2154 0.2394 0.2637 0.2908 0.1879
(c) 0.0312 0.0389 0.0408 0.0465 0.0480 0.0483 0.0494 0.0503 0.0488 0.0447

0.3 (a) 0.9740 0.9510 0.9590 0.9560 0.9480 0.9460 0.9650 0.9590 0.9480 0.9562
(b) 0.1004 0.1405 0.1706 0.1980 0.2281 0.2546 0.2800 0.3045 0.3296 0.2229
(c) 0.0352 0.0428 0.0433 0.0469 0.0475 0.0481 0.0445 0.0414 0.0399 0.0433

0.4 (a) 0.9670 0.9470 0.9470 0.9570 0.9560 0.9460 0.9560 0.9580 0.9650 0.9554
(b) 0.1234 0.1647 0.2009 0.2277 0.2563 0.2834 0.3074 0.3327 0.3556 0.2502
(c) 0.0401 0.0454 0.0461 0.0452 0.0438 0.0426 0.0392 0.0351 0.0296 0.0408

0.5 (a) 0.9580 0.9640 0.9440 0.9360 0.9520 0.9460 0.9630 0.9500 0.9430 0.9507
(b) 0.1451 0.1909 0.2293 0.2583 0.2847 0.3103 0.3327 0.3529 0.3710 0.2750
(c) 0.0433 0.0465 0.0477 0.0472 0.0419 0.0388 0.0313 0.0264 0.0218 0.0383

0.6 (a) 0.9690 0.9610 0.9620 0.9560 0.9380 0.9380 0.9480 0.9470 0.9440 0.9514
(b) 0.1655 0.2162 0.2537 0.2828 0.3086 0.3283 0.3477 0.3636 0.3757 0.2936
(c) 0.0471 0.0472 0.0442 0.0424 0.0392 0.0338 0.0258 0.0210 0.0170 0.0353

0.7 (a) 0.9680 0.9580 0.9460 0.9510 0.9450 0.9560 0.9500 0.9420 0.9430 0.9510
(b) 0.1905 0.2435 0.2790 0.3091 0.3316 0.3489 0.3614 0.3686 0.3719 0.3116
(c) 0.0484 0.0477 0.0452 0.0395 0.0326 0.0255 0.0198 0.0154 0.0178 0.0324

0.8 (a) 0.9640 0.9540 0.9420 0.9600 0.9530 0.9510 0.9420 0.9270 0.9110 0.9449
(b) 0.2087 0.2674 0.3050 0.3326 0.3502 0.3632 0.3687 0.3663 0.3574 0.3244
(c) 0.0516 0.0482 0.0438 0.0348 0.0279 0.0205 0.0154 0.0166 0.0249 0.0315

0.9 (a) 0.9570 0.9620 0.9560 0.9610 0.9480 0.9430 0.9370 0.9270 0.9110 0.9447
(b) 0.2320 0.2880 0.3308 0.3551 0.3706 0.3756 0.3710 0.3572 0.3322 0.3347
(c) 0.0538 0.0487 0.0404 0.0306 0.0220 0.0163 0.0185 0.0246 0.0338 0.0321

mean (a) 0.9656 0.9569 0.9543 0.9546 0.9519 0.9518 0.9541 0.9502 0.9432 0.9536
(b) 0.1440 0.1890 0.2229 0.2499 0.2742 0.2941 0.3106 0.3241 0.3351 0.2604
(c) 0.0416 0.0441 0.0430 0.0415 0.0385 0.0355 0.0326 0.0312 0.0318 0.0378

From Table 2.8 the overall average for the coverage probabilities is equal to 0.9536, which is almost
equal to the nominal level of 0.95. When p1 = 0.6 and p2 = 0.1 the coverage rate is equal to 0.9740,
which is higher than the nominal level, and also higher than the coverage reached by the Jeffreys prior
for this case. When looking at p1 = 0.8 and p2 = 0.8 the coverage rate is equal to 0.9270, which is
below the nominal level, and this value is also smaller than the coverage reached by the Jeffreys prior
for this case. When using the uniform prior, for ψ1 = p1 p2, we have over coverage except for larger
values of p1 and p2 where we have under coverage. Similar results were obtained for n1 = n2 = 10.
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Table 2.9: Coverage rate of the 95% credibility intervals for ψ1 = p1 p2 using the probability matching prior. (a)
Exact coverage probabilities, (b) mean lengths, (c) standard deviation for n1 = n2 = 20.

Probability matching prior n1 = n2 = 20
↓ p2 p1

→
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 mean

0.1 (a) 0.9670 0.9550 0.9670 0.9740 0.9680 0.9780 0.9620 0.9730 0.9700 0.9682
(b) 0.0513 0.0776 0.0992 0.1224 0.1460 0.1663 0.1883 0.2082 0.2309 0.1433
(c) 0.0239 0.0315 0.0357 0.0395 0.0438 0.0471 0.0495 0.0494 0.0517 0.0413

0.2 (a) 0.9600 0.9560 0.9580 0.9620 0.9430 0.9570 0.9630 0.9560 0.9620 0.9574
(b) 0.0782 0.1083 0.1395 0.1612 0.1908 0.2179 0.2408 0.2623 0.2901 0.1877
(c) 0.0309 0.0385 0.0428 0.0445 0.0471 0.0480 0.0488 0.0505 0.0478 0.0443

0.3 (a) 0.9650 0.9670 0.9500 0.9630 0.9540 0.9640 0.9570 0.9720 0.9570 0.9610
(b) 0.0999 0.1378 0.1713 0.1985 0.2260 0.2560 0.2820 0.3038 0.3301 0.2228
(c) 0.0359 0.0407 0.0458 0.0459 0.0474 0.0452 0.0431 0.0412 0.0391 0.0427

0.4 (a) 0.9690 0.9580 0.9570 0.9590 0.9580 0.9600 0.9510 0.9470 0.9600 0.9577
(b) 0.1221 0.1652 0.2015 0.2298 0.2552 0.2849 0.3095 0.3317 0.3556 0.2506
(c) 0.0390 0.0445 0.0466 0.0451 0.0445 0.0415 0.0395 0.0348 0.0295 0.0405

0.5 (a) 0.9710 0.9550 0.9470 0.9590 0.9430 0.9410 0.9570 0.9610 0.9480 0.9536
(b) 0.1430 0.1915 0.2259 0.2593 0.2874 0.3090 0.3310 0.3514 0.3704 0.2743
(c) 0.0430 0.0473 0.0482 0.0436 0.0420 0.0387 0.0329 0.0276 0.0214 0.0383

0.6 (a) 0.9660 0.9530 0.9520 0.9440 0.9470 0.9500 0.9330 0.9500 0.9550 0.9500
(b) 0.1672 0.2152 0.2525 0.2834 0.3092 0.3302 0.3479 0.3638 0.3754 0.2939
(c) 0.0457 0.0477 0.0473 0.0433 0.0373 0.0332 0.0266 0.0196 0.0164 0.0352

0.7 (a) 0.9730 0.9560 0.9520 0.9390 0.9450 0.9520 0.9540 0.9460 0.9530 0.9522
(b) 0.1884 0.2420 0.2803 0.3102 0.3318 0.3493 0.3603 0.3685 0.3716 0.3114
(c) 0.0475 0.0492 0.0450 0.0403 0.0338 0.0260 0.0193 0.0152 0.0181 0.0327

0.8 (a) 0.9710 0.9560 0.9630 0.9430 0.9460 0.9530 0.9410 0.9390 0.9270 0.9488
(b) 0.2104 0.2635 0.3063 0.3311 0.3510 0.3639 0.3676 0.3657 0.3579 0.3241
(c) 0.0502 0.0494 0.0409 0.0362 0.0275 0.0208 0.0152 0.0171 0.0244 0.0313

0.9 (a) 0.9630 0.9770 0.9540 0.9620 0.9510 0.9410 0.9380 0.9260 0.9140 0.9473
(b) 0.2320 0.2889 0.3298 0.3561 0.3713 0.3756 0.3709 0.3570 0.3314 0.3348
(c) 0.0537 0.0479 0.0393 0.0297 0.0213 0.0172 0.0171 0.0243 0.0344 0.0317

mean (a) 0.9672 0.9592 0.9556 0.9561 0.9506 0.9551 0.9507 0.9522 0.9496 0.9551
(b) 0.1436 0.1878 0.2229 0.2502 0.2743 0.2948 0.3109 0.3236 0.3348 0.2603
(c) 0.0411 0.0441 0.0435 0.0409 0.0383 0.0353 0.0324 0.0311 0.0314 0.0376

From Table 2.9 the overall average for the coverage probabilities is equal to 0.9551, which is
slightly above the nominal level of 0.95 and a bit higher than the overall average when using the
uniform prior. When p1 = 0.6 and p2 = 0.1 the coverage rate is equal to 0.9780, which is higher
than the nominal level, and is almost exactly the same as the result from the uniform prior, where
the Jeffreys prior gave a coverage probability of 0.9500 in this case. When looking at p1 = 0.8 and
p2 = 0.8 the coverage rate is equal to 0.9390, which is almost the same as the coverage reached by
the Jeffreys prior for this case. When using the probability matching prior, for ψ1 = p1 p2, we have
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over coverage except for larger values of p1 and p2 where we have under coverage. For instance when
p1 = 0.9 and p2 = 0.9 the coverage rate is equal to 0.9140, which is way below the nominal level of
0.95, but much better than the value of 0.8530 which was obtained when n1 = n2 = 10.

The average interval lengths of the Jeffreys prior are also generally larger than that of the uniform
and probability matching priors. The uniform and probability matching priors give smaller standard
deviation values for the interval lengths than the Jeffreys prior.
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Figure 2.5: Histograms showing the distribution of the coverage rates of the 95% credibility intervals for ψ1 =
p1 p2 against the interval length for the three priors when n1 = n2 = 30, (a) the Jeffreys prior, (b) the
uniform prior, (c) the probability matching prior.
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Table 2.10: Coverage rate of the 95% credibility intervals for ψ1 = p1 p2 using the Jeffreys prior. (a) Exact
coverage probabilities, (b) mean lengths, (c) standard deviation for n1 = n2 = 30.

Jeffreys prior n1 = n2 = 30
↓ p2 p1

→
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 mean

0.1 (a) 0.9520 0.9450 0.9290 0.9350 0.9510 0.9400 0.9370 0.9440 0.9280 0.9401
(b) 0.0341 0.0537 0.0731 0.0912 0.1114 0.1275 0.1487 0.1668 0.1834 0.1100
(c) 0.0162 0.0216 0.0274 0.0311 0.0332 0.0374 0.0397 0.0419 0.0470 0.0328

0.2 (a) 0.9180 0.9500 0.9430 0.9390 0.9490 0.9470 0.9510 0.9430 0.9390 0.9421
(b) 0.0542 0.0827 0.1089 0.1300 0.1556 0.1764 0.1971 0.2248 0.2470 0.1530
(c) 0.0229 0.0265 0.0307 0.0342 0.0353 0.0373 0.0382 0.0381 0.0386 0.0335

0.3 (a) 0.9360 0.9460 0.9560 0.9430 0.9440 0.9520 0.9440 0.9480 0.9430 0.9458
(b) 0.0735 0.1075 0.1369 0.1617 0.1903 0.2124 0.2376 0.2605 0.2840 0.1849
(c) 0.0271 0.0308 0.0324 0.0352 0.0350 0.0344 0.0338 0.0318 0.0295 0.0322

0.4 (a) 0.9470 0.9520 0.9260 0.9460 0.9450 0.9380 0.9340 0.9480 0.9490 0.9428
(b) 0.0943 0.1293 0.1626 0.1918 0.2166 0.2437 0.2649 0.2865 0.3069 0.2107
(c) 0.0316 0.0331 0.0366 0.0332 0.0333 0.0322 0.0303 0.0261 0.0238 0.0311

0.5 (a) 0.9410 0.9350 0.9450 0.9400 0.9500 0.9390 0.9480 0.9490 0.9530 0.9444
(b) 0.1102 0.1549 0.1872 0.2166 0.2444 0.2637 0.2844 0.3029 0.3199 0.2316
(c) 0.0338 0.0364 0.0345 0.0332 0.0318 0.0286 0.0249 0.0204 0.0169 0.0289

0.6 (a) 0.9460 0.9520 0.9490 0.9440 0.9380 0.9510 0.9530 0.9470 0.9490 0.9477
(b) 0.1313 0.1782 0.2138 0.2426 0.2650 0.2838 0.3005 0.3118 0.3229 0.2500
(c) 0.0361 0.0364 0.0347 0.0307 0.0282 0.0233 0.0184 0.0144 0.0125 0.0261

0.7 (a) 0.9420 0.9600 0.9390 0.9570 0.9540 0.9540 0.9530 0.9470 0.9440 0.9500
(b) 0.1484 0.2014 0.2360 0.2648 0.2843 0.2988 0.3100 0.3147 0.3149 0.2637
(c) 0.0402 0.0360 0.0346 0.0292 0.0244 0.0193 0.0136 0.0123 0.0163 0.0251

0.8 (a) 0.9450 0.9430 0.9500 0.9490 0.9530 0.9470 0.9610 0.9390 0.9470 0.9482
(b) 0.1657 0.2230 0.2614 0.2866 0.3035 0.3129 0.3143 0.3094 0.2970 0.2749
(c) 0.0422 0.0390 0.0315 0.0266 0.0198 0.0147 0.0114 0.0158 0.0236 0.0250

0.9 (a) 0.9360 0.9410 0.9440 0.9490 0.9460 0.9530 0.9530 0.9510 0.9470 0.9467
(b) 0.1832 0.2448 0.2826 0.3078 0.3202 0.3223 0.3152 0.2973 0.2685 0.2824
(c) 0.0459 0.0401 0.0299 0.0222 0.0163 0.0129 0.0161 0.0233 0.0329 0.0266

mean (a) 0.9403 0.9471 0.9423 0.9447 0.9478 0.9468 0.9482 0.9462 0.9443 0.9453
(b) 0.1105 0.1528 0.1847 0.2103 0.2323 0.2491 0.2636 0.2750 0.2827 0.2179
(c) 0.0329 0.0333 0.0325 0.0306 0.0286 0.0267 0.0252 0.0249 0.0268 0.0290

From Table 2.10 the overall average for the coverage probabilities is equal to 0.9453, which is
slightly below the nominal level of 0.95. When p1 = 0.6 and p2 = 0.6 the coverage rate is equal
to 0.9510, which is almost equal to nominal level, and when looking at p1 = 0.3 and p2 = 0.1 the
coverage rate is equal to 0.9290, which is below the nominal level. When using the Jeffreys prior, for
ψ1 = p1 p2, we have under coverage most of time.
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Table 2.11: Coverage rate of the 95% credibility intervals for ψ1 = p1 p2 using the uniform prior. (a) Exact
coverage probabilities, (b) mean lengths, (c) standard deviation for n1 = n2 = 30.

Uniform prior n1 = n2 = 30
↓ p2 p1

→
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 mean

0.1 (a) 0.9590 0.9520 0.9560 0.9630 0.9560 0.9690 0.9640 0.9610 0.9630 0.9603
(b) 0.0398 0.0597 0.0786 0.0990 0.1168 0.1338 0.1533 0.1708 0.1906 0.1158
(c) 0.0172 0.0224 0.0258 0.0286 0.0316 0.0331 0.0351 0.0382 0.0389 0.0301

0.2 (a) 0.9410 0.9570 0.9510 0.9520 0.9470 0.9510 0.9630 0.9540 0.9570 0.9526
(b) 0.0588 0.0872 0.1116 0.1341 0.1573 0.1789 0.2013 0.2211 0.2442 0.1549
(c) 0.0228 0.0265 0.0297 0.0327 0.0334 0.0357 0.0360 0.0356 0.0358 0.0320

0.3 (a) 0.9630 0.9480 0.9400 0.9580 0.9470 0.9460 0.9480 0.9580 0.9670 0.9528
(b) 0.0784 0.1091 0.1392 0.1648 0.1901 0.2115 0.2347 0.2559 0.2805 0.1849
(c) 0.0258 0.0306 0.0321 0.0331 0.0333 0.0321 0.0330 0.0301 0.0268 0.0308

0.4 (a) 0.9500 0.9620 0.9490 0.9480 0.9450 0.9570 0.9480 0.9450 0.9450 0.9499
(b) 0.0994 0.1340 0.1647 0.1922 0.2143 0.2362 0.2607 0.2802 0.3015 0.2092
(c) 0.0292 0.0311 0.0332 0.0320 0.0335 0.0307 0.0287 0.0254 0.0218 0.0295

0.5 (a) 0.9640 0.9440 0.9610 0.9490 0.9330 0.9620 0.9530 0.9540 0.9690 0.9543
(b) 0.1155 0.1571 0.1902 0.2151 0.2381 0.2603 0.2791 0.2968 0.3142 0.2296
(c) 0.0319 0.0335 0.0322 0.0319 0.0315 0.0258 0.0226 0.0192 0.0146 0.0270

0.6 (a) 0.9610 0.9510 0.9400 0.9470 0.9550 0.9510 0.9430 0.9520 0.9590 0.9510
(b) 0.1358 0.1787 0.2111 0.2385 0.2605 0.2783 0.2931 0.3067 0.3173 0.2467
(c) 0.0340 0.0365 0.0343 0.0309 0.0271 0.0230 0.0192 0.0148 0.0122 0.0258

0.7 (a) 0.9610 0.9460 0.9620 0.9520 0.9420 0.9500 0.9260 0.9390 0.9380 0.9462
(b) 0.1545 0.2000 0.2341 0.2607 0.2786 0.2947 0.3028 0.3098 0.3117 0.2607
(c) 0.0357 0.0364 0.0314 0.0274 0.0239 0.0183 0.0144 0.0115 0.0144 0.0237

0.8 (a) 0.9580 0.9420 0.9460 0.9370 0.9480 0.9370 0.9460 0.9480 0.9520 0.9460
(b) 0.1707 0.2223 0.2576 0.2801 0.2961 0.3059 0.3095 0.3067 0.2977 0.2718
(c) 0.0384 0.0363 0.0304 0.0260 0.0197 0.0156 0.0116 0.0129 0.0191 0.0233

0.9 (a) 0.9650 0.9570 0.9540 0.9470 0.9500 0.9460 0.9410 0.9480 0.9240 0.9480
(b) 0.1898 0.2436 0.2791 0.3005 0.3137 0.3163 0.3126 0.2968 0.2713 0.2804
(c) 0.0390 0.0355 0.0286 0.0230 0.0157 0.0130 0.0136 0.0195 0.0269 0.0239

mean (a) 0.9580 0.9510 0.9510 0.9503 0.9470 0.9521 0.9480 0.9510 0.9527 0.9512
(b) 0.1159 0.1546 0.1851 0.2094 0.2295 0.2462 0.2608 0.2716 0.2810 0.2171
(c) 0.0304 0.0321 0.0308 0.0295 0.0277 0.0253 0.0238 0.0230 0.0234 0.0273

From Table 2.11 the overall average for the coverage probabilities is equal to 0.9512, which is
almost equal to the nominal level of 0.95. When p1 = 0.6 and p2 = 0.6 the coverage rate is equal to
0.9510, which is higher than the nominal level, but equal to the coverage reached by the Jeffreys prior
for this case. When looking at p1 = 0.3 and p2 = 0.1 the coverage rate is equal to 0.9560, which is
above the nominal level, and this value is also higher than the coverage reached by the Jeffreys prior
for this case. When using the uniform prior, for ψ1 = p1 p2, we have over coverage except for larger
values of p1 and p2.
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Table 2.12: Coverage rate of the 95% credibility intervals for ψ1 = p1 p2 using the probability matching prior.
(a) Exact coverage probabilities, (b) mean lengths, (c) standard deviation for n1 = n2 = 30.

Probability matching prior n1 = n2 = 30
↓ p2 p1

→
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 mean

0.1 (a) 0.9560 0.9670 0.9640 0.9520 0.9630 0.9580 0.9580 0.9590 0.9620 0.9599
(b) 0.0392 0.0595 0.0786 0.0986 0.1163 0.1352 0.1535 0.1712 0.1886 0.1156
(c) 0.0168 0.0204 0.0247 0.0292 0.0316 0.0352 0.0363 0.0387 0.0396 0.0303

0.2 (a) 0.9640 0.9470 0.9610 0.9470 0.9510 0.9640 0.9560 0.9480 0.9530 0.9546
(b) 0.0594 0.0864 0.1108 0.1350 0.1580 0.1778 0.2009 0.2226 0.2448 0.1551
(c) 0.0211 0.0263 0.0292 0.0316 0.0341 0.0345 0.0359 0.0366 0.0355 0.0317

0.3 (a) 0.9710 0.9530 0.9560 0.9570 0.9450 0.9470 0.9520 0.9560 0.9550 0.9547
(b) 0.0782 0.1099 0.1379 0.1643 0.1899 0.2118 0.2354 0.2558 0.2785 0.1846
(c) 0.0247 0.0293 0.0317 0.0324 0.0331 0.0344 0.0321 0.0309 0.0282 0.0308

0.4 (a) 0.9560 0.9450 0.9520 0.9490 0.9550 0.9330 0.9470 0.9550 0.9490 0.9490
(b) 0.0986 0.1347 0.1616 0.1902 0.2152 0.2359 0.2591 0.2812 0.3026 0.2088
(c) 0.0295 0.0321 0.0339 0.0334 0.0321 0.0318 0.0284 0.0248 0.0218 0.0298

0.5 (a) 0.9610 0.9430 0.9590 0.9520 0.9620 0.9480 0.9600 0.9550 0.9500 0.9544
(b) 0.1142 0.1589 0.1869 0.2160 0.2403 0.2596 0.2808 0.2979 0.3141 0.2298
(c) 0.0315 0.0331 0.0330 0.0326 0.0297 0.0271 0.0228 0.0196 0.0156 0.0272

0.6 (a) 0.9670 0.9490 0.9550 0.9570 0.9450 0.9460 0.9410 0.9530 0.9420 0.9506
(b) 0.1360 0.1779 0.2119 0.2388 0.2593 0.2791 0.2939 0.3068 0.3164 0.2467
(c) 0.0339 0.0350 0.0331 0.0300 0.0279 0.0227 0.0187 0.0141 0.0123 0.0253

0.7 (a) 0.9490 0.9460 0.9600 0.9490 0.9490 0.9390 0.9630 0.9470 0.9380 0.9489
(b) 0.1539 0.1994 0.2359 0.2606 0.2794 0.2939 0.3040 0.3098 0.3123 0.2610
(c) 0.0367 0.0353 0.0313 0.0282 0.0239 0.0189 0.0140 0.0111 0.0136 0.0237

0.8 (a) 0.9660 0.9630 0.9380 0.9500 0.9410 0.9470 0.9380 0.9450 0.9380 0.9473
(b) 0.1719 0.2228 0.2562 0.2798 0.2962 0.3059 0.3096 0.3064 0.2965 0.2717
(c) 0.0378 0.0336 0.0314 0.0257 0.0203 0.0140 0.0111 0.0130 0.0198 0.0230

0.9 (a) 0.9560 0.9590 0.9500 0.9510 0.9530 0.9540 0.9190 0.9490 0.9340 0.9472
(b) 0.1891 0.2444 0.2769 0.3000 0.3132 0.3176 0.3111 0.2977 0.2741 0.2804
(c) 0.0408 0.0357 0.0292 0.0212 0.0160 0.0117 0.0155 0.0190 0.0255 0.0239

mean (a) 0.9607 0.9524 0.9550 0.9516 0.9516 0.9484 0.9482 0.9519 0.9468 0.9518
(b) 0.1156 0.1549 0.1841 0.2093 0.2298 0.2463 0.2609 0.2722 0.2809 0.2171
(c) 0.0303 0.0312 0.0308 0.0294 0.0276 0.0256 0.0239 0.0231 0.0235 0.0273

From Table 2.12 the overall average for the coverage probabilities is equal to 0.9518, which is
slightly above the nominal level of 0.95 and almost equal to the overall average when using the uniform
prior. When p1 = 0.6 and p2 = 0.6 the coverage rate is equal to 0.9460, which is below the nominal
level, and less than the coverage obtained from the Jeffreys and uniform priors in this case. When
looking at p1 = 0.3 and p2 = 0.1 the coverage rate is equal to 0.9640, which is higher than the coverage
reached by the Jeffreys and uniform priors for this case. When using the probability matching prior,
for ψ1 = p1 p2, we have over coverage most of the time when one of the values of p is 0.1.
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The average interval lengths of the Jeffreys prior are also generally a bit larger than that of the
uniform and probability matching priors. The uniform and probability matching priors give smaller
standard deviation values for the interval lengths than the Jeffreys prior.

In Table 2.13 summary statistics (averages over the nine possible values of the parameter p2) are
given for the coverage probabilities, mean lengths and standard deviations for the 90% credibility
intervals of ψ1 = p1 p2.

Table 2.13: Coverage rate of the 90% credibility intervals for ψ1 = p1 p2. (a) Exact coverage probabilities, (b)
mean lengths, (c) standard deviation. The values in this table are averages over the nine possible
values of p2.

n1 = n2 = 10 n1 = n2 = 20
p1 Jeffreys Uniform Probability Jeffreys Uniform Probability

matching matching
0.1 (a) 0.936 0.932 0.935 0.874 0.926 0.923

(b) 0.156 0.175 0.174 0.111 0.119 0.120
(c) 0.069 0.057 0.057 0.040 0.036 0.036

0.2 (a) 0.882 0.931 0.933 0.890 0.913 0.919
(b) 0.210 0.217 0.218 0.155 0.157 0.158
(c) 0.075 0.063 0.063 0.042 0.038 0.037

0.3 (a) 0.887 0.920 0.916 0.892 0.906 0.907
(b) 0.251 0.252 0.252 0.188 0.187 0.187
(c) 0.074 0.063 0.063 0.041 0.037 0.037

0.4 (a) 0.897 0.914 0.910 0.888 0.914 0.906
(b) 0.288 0.282 0.284 0.214 0.212 0.211
(c) 0.070 0.060 0.060 0.038 0.035 0.035

0.5 (a) 0.894 0.917 0.909 0.891 0.907 0.902
(b) 0.315 0.309 0.307 0.236 0.232 0.232
(c) 0.065 0.056 0.057 0.036 0.033 0.033

0.6 (a) 0.903 0.913 0.910 0.887 0.906 0.901
(b) 0.338 0.329 0.329 0.252 0.249 0.249
(c) 0.060 0.051 0.052 0.033 0.030 0.030

0.7 (a) 0.893 0.909 0.905 0.890 0.906 0.902
(b) 0.357 0.348 0.347 0.267 0.264 0.263
(c) 0.056 0.047 0.048 0.031 0.028 0.028

0.8 (a) 0.897 0.902 0.898 0.887 0.900 0.902
(b) 0.372 0.363 0.363 0.278 0.275 0.275
(c) 0.056 0.044 0.045 0.030 0.027 0.027

0.9 (a) 0.899 0.896 0.900 0.888 0.901 0.898
(b) 0.381 0.375 0.376 0.286 0.284 0.284
(c) 0.057 0.043 0.042 0.033 0.027 0.027

Overall (a) 0.899 0.915 0.913 0.887 0.909 0.907
Mean (b) 0.296 0.295 0.294 0.221 0.220 0.220

(c) 0.065 0.054 0.054 0.036 0.032 0.032
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From Table 2.13 it seems that the coverage probabilities for the Jeffreys prior is, in general, some-
what smaller than 0.9 and that under coverage is larger for n1 = n2 = 20 than for n1 = n2 = 10. The
uniform and probability matching priors, on the other hand, tend to give coverage probabilities larger
than 0.9 and more so for the uniform prior. As can be expected the interval lengths and standard
deviations are smaller for larger n.

It also seems that the probability matching prior gives the best results for 0.3 ≤ pi ≤ 0.7, (i = 1,2) .
This also explains the good performance of the probability matching priors in Tables 2.2 and 2.3.

In Table 2.14 the overall averages are given for n1 = n2 = 10 and n1 = n2 = 20 for pi = 0.3, 0.4,
0.5, 0.6 and 0.7, (i = 1,2) .

Table 2.14: Average coverage probabilities for n1 = n2 = 10 and n1 = n2 = 20 for pi = 0.3, 0.4, 0.5, 0.6 and 0.7,
(i = 1,2) .

n1 = n2 = 10 n1 = n2 = 20
Jeffreys Uniform Probability Jeffreys Uniform Probability

matching matching
0.890 0.910 0.905 0.891 0.907 0.900

From Table 2.14 it can be seen that the probability matching prior is somewhat better than the
uniform and Jeffreys priors. We conclude that all three priors are satisfactory in attaining the nominal
coverage probabilities. In general the differences between the priors are quite small.

2.5.4 Simulation Study III - A comparison of the Jeffreys, Uniform and Proba-
bility Matching priors for ψ3 = p2

1p2 and ψ4 = p1p2
2

In this section a more extensive simulation study is done and coverage probabilities are obtained for
ψ3 = p2

1 p2 and ψ4 = p1 p2
2. Assume that a system requires that at least one of two types of components

be employed and that three components in parallel are needed. The probability of system failure will
be ψ3 = p2

1 p2 or ψ4 = p1 p2
2.

For comparison purposes the following priors will be used:

1. the Jeffreys prior: πJ
(

p
)

∝
2
∏
i=1

p
− 1

2
i (1− pi)

− 1
2 ;

2. the uniform prior: πU
(

p
)

∝ constant;

3. the probability matching prior: πPM
(

p
)

∝
{

2
∑

i=1
a2

i (1− pi) p−1
i

} 1
2 2

∏
i=1

a−1
i (1− pi)

−1 .

Figures 2.6 and 2.7 give line plots of the coverage rates obtained when using the Jeffreys, uniform
and probability matching priors for ψ3 = p2

1 p2 and ψ4 = p1 p2
2, respectively, when n1 = n2 = 20. The

values plotted are averages over the nine possible values for p1 and p2.
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Figure 2.6: Coverage rate of the 90% credibility intervals for ψ3 = p2
1 p2 against the interval length for the three

priors when n1 = n2 = 20.
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Figure 2.7: Coverage rate of the 90% credibility intervals for ψ4 = p1 p2
2 against the interval length for the three

priors when n1 = n2 = 20.

From Figures 2.6 and 2.7 it seems if the Jeffreys prior underestimates the coverage probabilities
while the uniform prior and the probability matching prior tend to overestimate the coverage probabil-
ities.
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2.6 Conclusion

In this chapter the probability matching prior for the product of different powers of k binomial parame-
ters, i.e. ψ = ∏k

i=1 pai
i , was derived. An example and a number of simulation studies were considered.

A weighted Monte Carlo was introduced, which was used for the simulation from the posterior distri-
bution in the case of the probability matching prior. The example that was considered dealt with the
probability of failure of independent parallel components system. Here the probability matching prior
compared well with the other results, but the Jeffreys prior under estimated the upper confidence limit.
In the first simulation study the probability matching prior, πPM

(
p
)
, performed the best of the four

priors.
In the second simulation study a comparison was made between the Jeffreys, uniform and probabil-

ity matching priors for the product of two binomial proportions. Different values of n1, n2, p1 and p2

were considered. The probability matching prior and the uniform prior gave similar results. In general,
we can conclude that the coverage probabilities for the Jeffreys prior is below the nominal level. The
uniform and probability matching priors, on the other hand, give coverage probabilities larger than the
nominal level and more so for the uniform prior. The average interval lengths and standard deviations
are smaller for larger values of n. In the last simulation study we compared the performance of the
Jeffreys, uniform and probability matching priors for ψ3 = p2

1 p2 and ψ4 = p1 p2
2. Where one needs two

types of components and three components in parallel are needed for a system to operate. Again the
Jeffreys prior gave coverage rates below the nominal level, and the uniform and probability matching
priors gave coverage rates above the nominal level.



Chapter 3

Estimation for a Linear Function of Binomial
Rates

3.1 Introduction

Due to its important practical value, confidence interval construction for a linear function of binomial
proportions has received some attention recently (Price & Bonett, 2004; Tebbs & Roths, 2008). In the
first part of this chapter the probability matching prior for a linear function of binomial proportions
will therefore be derived and in the latter part Bayesian credible intervals will be constructed for the
difference between two binomial proportions.

Estimating the difference between two binomial proportions is a problem that occurs regularly in
practice. There are some asymptotic procedures available for the construction of confidence intervals
for the difference. A number of authors have studied the performance of these asymptotic procedures in
circumstances where the samples are small. Some of them are Beal (1987), Newcombe (1998), Agresti
& Caffo (2000) and Zhou et al. (2004). According to Roths & Tebbs (2006) asymptotic intervals are
generally preferred to exact intervals. The reason for this, is that asymptotic intervals are often much
easier to calculate than exact intervals and they can also produce acceptable results without wasteful
conservatism. Roths & Tebbs (2006) showed how their intervals can be used adaptively in experiments
conducted in stages over time. They concentrated on samples that are small.

3.2 The Probability Matching Prior for a Linear Combination of
Binomial Proportions

The procedure of Datta & Ghosh (1995) will be used to derive the probability matching prior. The
following theorem is proved.

45
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Theorem 3.1. The probability matching prior for θ = ∑k
i=1 ai pi, a linear combination of binomial

proportions, is given by

πPM
(

p
)
= πPM (p1, p2, . . . , pk) ∝

{
k

∑
i=1

a2
i pi (1− pi)

} 1
2 k

∏
i=1

p−1
i (1− pi)

−1 . (3.1)

Proof. Assume that X1,X2, . . . ,Xk are independent binomial random variables with X i ∼ Bin(ni, pi)

for i = 1,2, . . . ,k.
It was shown in Appendix A in Theorem A.1 that the inverse of the Fisher information matrix for

n1 = n2 = . . .= nk is given by

F−1 (p
)

=


p1 (1− p1) · · · 0

...
...

0 · · · pk (1− pk)

 .
We are interested in a probability matching prior for t

(
p
)
= θ = ∑k

i=1 ai pi, a linear combination of
k binomial proportions.

Thus t
(

p
)
= a1 p1 +a2 p2 + . . .+ak pk.

Now

∂ t
(

p
)

∂ pi
= ai for i = 1,2, . . . ,k.

Further

∇′
t
(

p
)

=
[

∂ t(p)
∂ p1

∂ t(p)
∂ p2

· · · ∂ t(p)
∂ pk

]
=

[
a1 a2 · · · ak

]
.

Also

∇′
t
(

p
)

F−1 (p
)

=
[

a1 a2 · · · ak

]
p1 (1− p1) · · · 0

...
...

0 · · · pk (1− pk)


=

[
a1 p1 (1− p1) a2 p2 (1− p2) · · · ak pk (1− pk)

]
and
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∇′
t
(

p
)

F−1 (p
)

∇t
(

p
)

=
[

a1 p1 (1− p1) a2 p2 (1− p2) · · · ak pk (1− pk)
]

×


a1

a2
...

ak


=

k

∑
i=1

a2
i pi (1− pi) .

Define

η ′ (p
)

=
∇′

t
(

p
)

F−1 (p
)√

∇′
t
(

p
)

F−1
(

p
)

∇t
(

p
)

=

[
a1 p1(1−p1)√

k
∑

i=1
a2

i pi(1−pi)

a2 p2(1−p2)√
k
∑

i=1
a2

i pi(1−pi)

· · · ak pk(1−pk)√
k
∑

i=1
a2

i pi(1−pi)

]
=

[
η1
(

p
)

η2
(

p
)

· · · ηk
(

p
) ]

.

As before, the prior π
(

p
)

is a probability matching prior if and only if the differential equation
k
∑

i=1

∂
∂ pi

{
ηi
(

p
)

π
(

p
)}

= 0 is satisfied.

Let

π
(

p
)

=

{
k

∑
i=1

a2
i pi (1− pi)

} 1
2 k

∏
i=1

p−1
i (1− pi)

−1

then

η1
(

p
)

π
(

p
)

= a1 p1 (1− p1)
k

∏
i=1

p−1
i (1− pi)

−1

= a1

k

∏
i ̸=1

p−1
i (1− pi)

−1

therefore

∂
∂ p1

{
η1
(

p
)

π
(

p
)}

=
∂

∂ p1

{
a1

k

∏
i̸=1

p−1
i (1− pi)

−1

}
= 0
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and

η2
(

p
)

π
(

p
)

= a2 p2 (1− p2)
k

∏
i=1

p−1
i (1− pi)

−1

= a2

k

∏
i ̸=2

p−1
i (1− pi)

−1

therefore

∂
∂ p2

{
η2
(

p
)

π
(

p
)}

=
∂

∂ p2

{
a2

k

∏
i̸=2

p−1
i (1− pi)

−1

}
= 0

and

ηk
(

p
)

π
(

p
)

= ak pk (1− pk)
k

∏
i=1

p−1
i (1− pi)

−1

= ak

k

∏
i̸=k

p−1
i (1− pi)

−1

therefore

∂
∂ pk

{
ηk
(

p
)

π
(

p
)}

=
∂

∂ pk

{
ak

k

∏
i̸=k

p−1
i (1− pi)

−1

}
= 0.

We can therefore conclude that

k

∑
i=1

∂
∂ pi

{
ηi
(

p
)

π
(

p
)}

= 0.

The differential equation is satisfied if π
(

p
)

is

πPM
(

p
)

∝

{
k

∑
i=1

a2
i pi (1− pi)

} 1
2 k

∏
i=1

p−1
i (1− pi)

−1 for 0 ≤ pi ≤ 1.
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The joint posterior distribution when using the probability matching prior is given by

πPM
(

p |data
)

∝ πPM
(

p
)
×L

(
p |data

)
∝

{
k

∑
i=1

a2
i pi (1− pi)

} 1
2 k

∏
i=1

p−1
i (1− pi)

−1 ×
k

∏
i=1

(
ni

xi

)
pxi

i (1− pi)
ni−xi

∴ πPM
(

p |data
)

∝

{
k

∑
i=1

a2
i pi (1− pi)

} 1
2 k

∏
i=1

pxi−1
i (1− pi)

ni−xi−1 for 0 ≤ pi ≤ 1. (3.2)

If k = 2, a1 = 1, a2 =−1 and a3 = a4 = . . .= ak = 0, then θ1 = p1 − p2 and the prior will be

πPM (p1, p2) ∝

{
2

∑
i=1

pi (1− pi)

} 1
2 2

∏
i=1

p−1
i (1− pi)

−1 (3.3)

and the joint posterior distribution will be

πPM (p1, p2 |data) ∝

{
2

∑
i=1

pi (1− pi)

} 1
2 2

∏
i=1

pxi−1
i (1− pi)

ni−xi−1 for 0 ≤ pi ≤ 1. (3.4)

Theorem 3.2. The posterior distribution, πPM (p1, p2 |data), defined in Equation 3.4 is a proper distri-
bution if 0 < xi < ni.

Proof. Since

{
2

∑
i=1

pi (1− pi)

} 1
2

<
2

∑
i=1

p
1
2
i (1− pi)

1
2

it follows that

{
2

∑
i=1

pi (1− pi)

} 1
2 2

∏
i=1

pxi−1
i (1− pi)

ni−xi−1 <

{
2

∑
i=1

p
1
2
i (1− pi)

1
2

}
2

∏
i=1

pxi−1
i (1− pi)

ni−xi−1 .

Now

ˆ 1

0

ˆ 1

0

{
2

∑
i=1

p
1
2
i (1− pi)

1
2

}{
2

∏
i=1

pxi−1
i (1− pi)

ni−xi−1

}
d p1d p2

will converge if xi > 0 and xi < ni ,(i = 1,2) .
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3.3 The Jeffreys and Uniform Priors for a Linear Combination of
Binomial Proportions

The Jeffreys prior, on the other hand, is proportional to the square root of the determinant of the Fisher
information matrix and is given by

πJ
(

p
)

∝
∣∣F (p

)∣∣ 1
2

=

(
k

∏
i=1

1
pi (1− pi)

) 1
2

. (3.5)

The joint posterior distribution when using the Jeffreys prior is given by

πJ
(

p |data
)

∝ πJ
(

p
)
×L

(
p |data

)
∝

(
k

∏
i=1

1
pi (1− pi)

) 1
2

×
k

∏
i=1

(
ni

xi

)
pxi

i (1− pi)
ni−xi

∴ πJ
(

p |data
)

∝
k

∏
i=1

p
xi− 1

2
i (1− pi)

ni−xi− 1
2 for 0 ≤ pi ≤ 1. (3.6)

The joint posterior distribution of p is thus the product of k independently distributed
Beta

(
xi +

1
2 ,ni − xi +

1
2

)
variates.

If k = 1 and ai = 1, πPM (p) becomes the Jeffreys prior. This will be shown in Theorem 3.3.

Theorem 3.3. If k = 1 and ai = 1, the probability matching prior in the case of a linear combination
of k binomial parameters becomes the Jeffreys prior.

Proof. From Equation 3.1 the probability matching prior for θ =
k
∑

i=1
ai pi, is given by

πPM
(

p
)

∝

{
k

∑
i=1

a2
i pi (1− pi)

} 1
2 k

∏
i=1

p−1
i (1− pi)

−1 .

Let k = 1, pi = p and ai = 1, then the probability matching prior simplifies to

πPM (p) ∝
(1− p)

1
2

p
1
2

(1− p)−1

=
1

(1− p)
1
2 p

1
2

∝ πJ (p) .
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The uniform prior is proportional to a constant and is given by

πU
(

p
)

∝ constant. (3.7)

The joint posterior is

πU
(

p |data
)

∝
k

∏
i=1

pxi
i (1− pi)

ni−xi for 0 ≤ pi ≤ 1. (3.8)

The joint posterior distribution of p is thus the product of k independently distributed
Beta(xi +1,ni − xi +1) variates.

3.4 Other Methods

Roths & Tebbs (2006) constructed confidence intervals for the difference between two binomial propor-
tions, by first considering the Wald interval and the adjustment to the Wald interval proposed by Agresti
& Caffo (2000). Then they focused on the intervals from Beal (1987) and the Haldane and Jeffreys-
Perks intervals.

Assume that X1 and X2 are independent binomial random variables with X i ∼ Bin(ni, pi) for i =

1,2. For x1 = 0,1, . . . ,n1 and x2 = 0,1, . . . ,n2, the maximum likelihood estimate (MLE) of p1 − p2 is
equal to p̂1 − p̂2, where p̂i = xi/ni. The derivation of the MLE, p̂i = xi/ni, is given in Appendix B in
Theorem B.1.

The statistic p̂1 − p̂2, when properly scaled and centered, converges to a standard Normal distribu-
tion,

(p̂1 − p̂2)− (p1 − p2)√
Var (p̂1 − p̂2)

d→ N (0,1)

where

Var (p̂1 − p̂2) =
p1 (1− p1)

n1
+

p2 (1− p2)

n2

is the asymptotic variance of p̂1 − p̂2.
A large-sample 100(1−α)% confidence interval for p1 − p2 is the well known Wald interval

(p̂1 − p̂2) ± zα/2

√
p̂1 (1− p̂1)

n1
+

p̂2 (1− p̂2)

n2
,
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where zα/2 is the upper α/2 quantile of the standard normal distribution.
Agresti & Caffo (2000) suggested an adjustment to the Wald interval to improve the coverage

probability in small-sample situations. They suggested adding two pseudo-observations, one failure
and one success, to each sample. Thereafter they computed the Wald limits based on the new data.
To obtain the Agresti-Caffo interval, they replaced ni with n∗i = ni +2 and p̂i with p̂∗i = (xi+1)/n∗i . The
Agresti-Caffo interval can then be obtained as

(p̂∗1 − p̂∗2) ± zα/2

√
p̂∗1
(
1− p̂∗1

)
n∗1

+
p̂∗2
(
1− p̂∗2

)
n∗2

.

The class of intervals from Beal (1987) is developed by assuming that the population proportions
follow independent symmetric prior distributions. This leads to a family of intervals indexed by the
hyperparameter of the prior. The well-known Haldane and Jeffreys-Perks intervals are special cases in
this family (Roths & Tebbs, 2006).

Roths & Tebbs (2006) proposed data-driven Beal procedures, where prior hyperparameters are
estimated using a parametric empirical Bayesian approach.

3.5 The Weighted Monte Carlo Method in the Case of the Proba-
bility Matching Prior for θ = ∑k

i=1 aipi

This method has been introduced in Section 2.4.
If a uniform prior is put on p, using Equation 3.8, the posterior (proposal) distribution is

q
(

p |data
)

∝
k

∏
i=1

pxi
i (1− pi)

ni−xi 0 ≤ pi ≤ 1.

In the case of the probability matching prior, using Equation 3.2, the posterior (target) distribution
is

πPM
(

p |data
)

∝

{
k

∑
i=1

a2
i pi (1− pi)

} 1
2 k

∏
i=1

pxi−1
i (1− pi)

ni−xi−1 0 ≤ pi ≤ 1.

The sample probabilities are therefore proportional to

πPM
(

p |data
)

q
(

p |data
) =

{
k

∑
i=1

a2
i pi (1− pi)

} 1
2
{

k

∏
i=1

p−1
i (1− pi)

−1

}
0 ≤ pi ≤ 1

and the normalised weights are
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ωl =

{
k
∑

i=1
a2

i p(l)i

(
1− p(l)i

)} 1
2
{

k
∏
i=1

(
p(l)i

)−1(
1− p(l)i

)−1
}

n
∑

l=1

[{
k
∑

i=1
a2

i p(l)i

(
1− p(l)i

)} 1
2
{

k
∏
i=1

(
p(l)i

)−1(
1− p(l)i

)−1
}] l = 1,2, . . . ,n

where n is the number of simulations.
The Monte Carlo method:

• Step 1

Obtain a Monte Carlo sample
{(

p(l)1 , p(l)2 . . . , p(l)k

)
; l = 1,2, . . . ,n

}
from the proposal distribu-

tion q
(

p |data
)

and calculate θ (l) =
k
∑

i=1
ai p

(l)
i for l = 1,2, . . . ,n.

• Step 2

Sort
{

θ (l),(l = 1,2, . . . ,n)
}

to obtain the ordered values θ [1] ≤ θ [2] ≤ ·· · ≤ θ [n].

• Step 3

Each simulated θ value has an associated weight. Therefore compute the weighted function ω(l)

associated with the lth ordered θ [l] value.

• Step 4

Add the weights up from left to right (from the first on) until one obtains
n1
∑

l=1
ω(l) = α/2. Write

down the corresponding θ [n1] value and denote it as θ(α/2). Add the weights up from right to left

(from the last back) until one obtains
n
∑

l=n2

ω(l) = α/2. Write down the corresponding θ [n2] value

and denote it as θ(1−α/2).

• Step 5

The 100(1−α)% Bayesian credible interval is:
(
θ(α/2),θ(1−α/2)

)
.
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3.6 Example and Simulation Studies

3.6.1 Simulation Study I - A comparison of Eight Methods for θ = p1 − p2

In this section an extensive simulation study will be done and coverage probabilities will be obtained
for θ = p1 − p2. The two Bayesian methods, when using the Jeffreys and probability matching priors,
will be compared with known classical procedures. The prior distribution and posterior distribution
when using the probability matching prior are given in Equations 3.3 and 3.4, respectively. The prior
distribution and posterior distribution when using the Jeffreys prior are given in Equations 3.5 and 3.6,
respectively, where k = 2.

The Bayesian credible intervals for the probability matching prior are obtained by using the weighted
Monte Carlo method as described in Section 3.5. The number of X variates and the number of simula-
tions are equal to 1 000.

Tables 3.1 and 3.2 contain coverage probabilities, mean lengths and conditional mean length ratios
for the six intervals discussed by Roths & Tebbs (2006) as well as the full (real) Bayesian procedures,
by using Jeffreys prior (Bayes (Jef)) and the probability matching prior (Bayes (PMP)), when n1 = n2 =

10 and n1 = n2 = 20, respectively, for a number of choices for p1 and p2. The nominal confidence level
is 1−α = 0.95. The conditional mean length ratio is the ratio of the mean lengths for cases where the
differences are covered and when they are not covered. A small value of the conditional mean length
ratio is desirable.
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Table 3.1: (a) Exact coverage probabilities, (b) mean lengths, and (c) conditional mean length ratios for n1 =
n2 = 10. The nominal level is 0.95. WAL, Wald; AGC, Agresti-Caffo; HAL, Haldane; JFP, Jeffreys-
Perks; MLE, Beal-MLE; MOM, Beal-MOM; Bayes (Jef), Bayesian procedure using the Jeffreys
prior; Bayes (PMP), Bayesian procedure using the probability matching prior.

p1 p2 WAL AGC HAL JFP MLE MOM Bayes Bayes
(Jef) (PMP)

0.1 0.1 (a) 0.95000 0.99100 0.99100 0.99100 0.99100 0.99100 0.97000 0.99100
(b) 0.45600 0.57800 0.41900 0.52300 0.47700 0.41900 0.53600 0.56840
(c) 0.77500 0.90000 0.72700 0.86100 0.78200 0.72700 0.93200 0.94473

0.1 0.3 (a) 0.93900 0.96800 0.94300 0.94300 0.94600 0.94300 0.95000 0.97300
(b) 0.63200 0.65700 0.58500 0.62600 0.63600 0.58500 0.63200 0.63854
(c) 1.34800 1.10000 1.35800 1.18300 1.42000 1.35700 1.11900 1.11850

0.1 0.5 (a) 0.91100 0.96300 0.91500 0.93000 0.94900 0.91500 0.93900 0.95400
(b) 0.67800 0.68200 0.64000 0.65700 0.66800 0.64000 0.65300 0.65098
(c) 1.27300 1.02800 1.16900 1.09100 1.10400 1.16500 1.11000 1.01310

0.1 0.7 (a) 0.91500 0.94500 0.94500 0.94500 0.96000 0.94500 0.95600 0.91700
(b) 0.61900 0.65600 0.61800 0.62400 0.62700 0.61900 0.61400 0.61652
(c) 1.74100 0.99000 0.99000 0.99000 0.97600 0.98100 0.95100 0.87559

0.1 0.9 (a) 0.87000 0.95700 0.94900 0.95700 0.95700 0.94900 0.94600 0.87000
(b) 0.41500 0.56800 0.51600 0.51800 0.51800 0.51700 0.48900 0.52713
(c) 9.76600 0.77500 0.73700 0.71900 0.71300 0.73800 0.70900 0.80078

0.3 0.3 (a) 0.90500 0.96300 0.96300 0.96300 0.96300 0.96300 0.90900 0.95400
(b) 0.75600 0.72700 0.69600 0.71400 0.73900 0.69600 0.71900 0.69898
(c) 1.11500 1.08900 1.11800 1.11600 1.15800 1.10800 1.13400 1.11780

0.3 0.5 (a) 0.92200 0.96400 0.94900 0.94900 0.95800 0.94900 0.95400 0.95700
(b) 0.79400 0.75000 0.73400 0.74100 0.75700 0.73500 0.73900 0.71538
(c) 1.16200 1.09000 1.11700 1.11100 1.14700 1.11600 1.13600 1.07780

0.3 0.7 (a) 0.93200 0.95500 0.94100 0.94100 0.95700 0.94100 0.93500 0.95000
(b) 0.75400 0.72700 0.71000 0.71300 0.72000 0.71000 0.70700 0.68957
(c) 1.37700 0.99500 1.06300 1.06000 1.11900 1.06100 1.09700 0.96325

0.5 0.5 (a) 0.91200 0.95800 0.95800 0.95800 0.95800 0.95800 0.94400 0.96100
(b) 0.83000 0.77100 0.76400 0.76800 0.78000 0.76500 0.76300 0.73764
(c) 1.12900 1.10400 1.13300 1.13200 1.14600 1.13400 1.11700 1.11680

Overall (a) 0.917 0.963 0.950 0.953 0.960 0.950 0.945 0.948
Mean (b) 0.659 0.680 0.631 0.654 0.658 0.632 0.650 0.649

(c) 1.211 1.008 1.046 1.029 1.063 1.043 1.034 1.003

From Table 3.1 we see that the Wald interval only reaches the nominal level once, that is when
p1 = p2 = 0.1. For all other values of p1 and p2 the coverage is below the nominal level. The Jeffreys
and probability matching priors compare relatively well with the other methods, with overall average
coverage of 0.945 and 0.948, respectively. Note that the overall average value for the conditional mean
length ratio for the probability matching prior is equal to 1.003, which is the smallest value if compared
with the other methods.
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Table 3.2: (a) Exact coverage probabilities, (b) mean lengths, and (c) conditional mean length ratios for n1 =
n2 = 20. The nominal level is 0.95. WAL, Wald; AGC, Agresti-Caffo; HAL, Haldane; JFP, Jeffreys-
Perks; MLE, Beal-MLE; MOM, Beal-MOM; Bayes (Jef), Bayesian procedure using the Jeffreys
prior; Bayes (PMP), Bayesian procedure using the probability matching prior.

p1 p2 WAL AGC HAL JFP MLE MOM Bayes Bayes
(Jef) (PMP)

0.1 0.1 (a) 0.96000 0.98800 0.96100 0.98300 0.96100 0.96100 0.94800 0.97400
(b) 0.35200 0.39600 0.33600 0.37000 0.36700 0.33600 0.38000 0.39128
(c) 0.92200 0.93300 0.92500 0.89000 0.96900 0.92500 1.01300 0.96505

0.1 0.3 (a) 0.93500 0.96000 0.95200 0.95200 0.95200 0.95200 0.94100 0.96000
(b) 0.46400 0.47300 0.44600 0.46000 0.46900 0.44600 0.46200 0.46414
(c) 1.08400 1.05400 1.10400 1.08600 1.07200 1.10400 1.05700 1.07410

0.1 0.5 (a) 0.93700 0.95400 0.94300 0.95000 0.95000 0.94300 0.95200 0.95000
(b) 0.49600 0.49600 0.48000 0.48600 0.49200 0.48000 0.48200 0.48345
(c) 1.09900 1.03800 1.04200 1.05300 1.04200 1.03800 1.06500 0.98793

0.1 0.7 (a) 0.91300 0.95500 0.93300 0.93300 0.93700 0.93300 0.94500 0.94200
(b) 0.46400 0.47300 0.45700 0.45900 0.46100 0.45900 0.45700 0.45785
(c) 1.25200 0.93200 1.02000 1.01900 1.00300 1.02300 1.02900 0.90632

0.1 0.9 (a) 0.91300 0.95800 0.94300 0.94300 0.94300 0.94300 0.94100 0.90900
(b) 0.34200 0.39400 0.36800 0.36900 0.36900 0.36900 0.36100 0.37578
(c) 2.41900 0.78100 0.89900 0.89900 0.89800 0.89900 0.87900 0.80140

0.3 0.3 (a) 0.93100 0.95000 0.94700 0.94700 0.95500 0.94700 0.93800 0.94800
(b) 0.55200 0.53800 0.52800 0.53400 0.55000 0.52800 0.53400 0.52510
(c) 1.05900 1.04000 1.05500 1.05300 1.08300 1.05500 1.06600 1.04840

0.3 0.5 (a) 0.94200 0.95200 0.94600 0.94600 0.95100 0.94600 0.94900 0.95800
(b) 0.57900 0.55900 0.55500 0.55600 0.56500 0.55500 0.55600 0.54606
(c) 1.07900 1.04300 1.05500 1.05400 1.06600 1.05500 1.06300 1.03000

0.3 0.7 (a) 0.92800 0.94400 0.94400 0.94400 0.94400 0.94400 0.95000 0.94800
(b) 0.55200 0.53800 0.53300 0.53300 0.53600 0.53300 0.52900 0.52428
(c) 1.15400 1.03300 1.03900 1.03900 1.03700 1.03900 1.01900 1.03680

0.5 0.5 (a) 0.91900 0.95700 0.95700 0.95700 0.96100 0.95700 0.93800 0.95600
(b) 0.60400 0.57800 0.57800 0.57800 0.58300 0.57800 0.57700 0.56406
(c) 1.05600 1.06000 1.06800 1.06800 1.07200 1.06800 1.07300 1.06860

Overall (a) 0.931 0.958 0.947 0.951 0.950 0.947 0.945 0.949
Mean (b) 0.489 0.494 0.476 0.483 0.488 0.476 0.482 0.481

(c) 1.236 0.990 1.023 1.018 1.027 1.023 1.029 0.991

From Table 3.2 we see that the Wald interval never reaches the nominal level, except when p1 =

p2 = 0.1 the coverage probability obtained is equal to 0.96. For all other values of p1 and p2 the
coverage is below the nominal level. The Jeffreys and probability matching priors compare relatively
well with the other methods, with overall average coverage of 0.945 and 0.949, respectively. Note that
the overall average value for the conditional mean length ratio for the probability matching prior is
equal to 0.991, which is just larger than the smallest value of 0.990 obtained from the Agresti-Caffo
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interval.
The differences among all the intervals are not too large, the only exception to this is the Wald

interval. The results from the Bayesian procedures compare well with the other methods.

3.6.2 Simulation Study II - A comparison of the Jeffreys, Uniform and Proba-
bility Matching priors for θ1 = p1 − p2

In this section a more extensive simulation study is done and coverage probabilities are obtained for
θ 1 = p1− p2, the difference between two binomial proportions. For comparison purposes the following
priors will be used:

1. the Jeffreys prior: πJ
(

p
)

∝
2
∏
i=1

p
− 1

2
i (1− pi)

− 1
2 ;

2. the uniform prior: πU
(

p
)

∝ constant;

3. the probability matching prior: πPM
(

p
)

∝
{

2
∑

i=1
pi (1− pi)

} 1
2 2

∏
i=1

p−1
i (1− pi)

−1 .

The parameter values for the binomial distribution are n1 = n2 = 10, n1 = n2 = 20, n1 = n2 = 30 and
pi = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 (for i = 1,2) . The average length and standard deviation
of the intervals are also given. The number of X variates and the number of simulations are equal to
1 000. The average length and standard deviation of the intervals are calculated using the following
formulas, where Ii is the interval length and n∗ the number of intervals:

average length =
1
n∗

n∗

∑
i=1

Ii

and

standard deviation =

√
1

n∗−1

n∗

∑
i=1

(
Ii − I

)2
.

Tables 3.3 to 3.5 contain coverage probabilities, mean lengths and standard deviations for the Jef-
freys, uniform and probability matching priors when n1 = n2 = 10, for several choices of p1 and p2.
These results will be summarised in Figures 3.1 to 3.3. As in Chapter 2, MATLABr was used to
construct the box plots in this chapter. On each box, the central mark is the median, the edges of the
box are the 25th and 75th percentiles, the whiskers extend to the most extreme data points the algorithm
considers not to be outliers, and the outliers are plotted individually.
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Figure 3.1: Box plot summarising the coverage rates of the 95% credibility intervals for θ 1 = p1 − p2 for p1 =
0.1 : 0.1 : 0.9, using the Jeffreys prior; n1 = n2 = 10.
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Figure 3.2: Box plot summarising the coverage rates of the 95% credibility intervals for θ 1 = p1 − p2 for p1 =
0.1 : 0.1 : 0.9, using the uniform prior; n1 = n2 = 10.



CHAPTER 3. ESTIMATION FOR A LINEAR FUNCTION OF BINOMIAL RATES 59

0.88

0.9

0.92

0.94

0.96

0.98

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
p

1

Boxplots showing the distribution of the coverage
rates when using the Probability matching prior; n

1
 = n

2
 = 10

C
ov

er
ag

e

Figure 3.3: Box plot summarising the coverage rates of the 95% credibility intervals for θ 1 = p1 − p2 for p1 =
0.1 : 0.1 : 0.9, using the probability matching prior; n1 = n2 = 10.

From Figure 3.1 we see that when the Jeffreys prior is used, the median coverage probability is
below 0.95 for all values of p1. When p1 = 0.5 and p1 = 0.6 the median coverage probability is
just above 0.94. From Figure 3.2 we see that when the uniform prior is used, the median coverage
probability is at or above 0.95 for all values of p1. When p1 = 0.5 and p1 = 0.6 the median coverage
probability is equal to 0.95. From Figure 3.3 we see that when the probability matching prior is used,
the median coverage probability is at or above 0.95 for all values of p1. When p1 = 0.5 the median
coverage probability is just below 0.96 and when p1 = 0.6 the median coverage probability is equal to
0.96. From these figures it seems that the performance of the uniform and probability matching priors
are very similar, where there is over coverage most of the time. With the Jeffreys prior it seems that
there is under coverage most of the time.
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Table 3.3: Coverage rate of the 95% credibility intervals for θ 1 = p1 − p2 using the Jeffreys prior. (a) Exact
coverage probabilities, (b) mean lengths, (c) standard deviation for n1 = n2 = 10.

Jeffreys prior n1 = n2 = 10
↓ p2 p1

→
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 mean

0.1 (a) 0.9670 0.9450 0.9550 0.9470 0.9330 0.9460 0.9490 0.9480 0.9560 0.9496
(b) 0.5415 0.5938 0.6326 0.6502 0.6556 0.6393 0.6055 0.5669 0.4963 0.5980
(c) 0.9368 1.0399 1.1387 1.0696 1.0763 1.0859 0.9883 0.8115 0.7016 0.9832

0.2 (a) 0.9600 0.9370 0.9270 0.9290 0.9320 0.9270 0.9410 0.9590 0.9410 0.9392
(b) 0.5926 0.6451 0.6846 0.6969 0.7027 0.6925 0.6688 0.6230 0.5695 0.6528
(c) 1.0557 1.0933 1.1157 1.1097 1.0698 1.0907 0.9995 0.9142 0.8829 1.0368

0.3 (a) 0.9410 0.9460 0.9370 0.9440 0.9350 0.9370 0.9350 0.9360 0.9560 0.9408
(b) 0.6339 0.6803 0.7168 0.7350 0.7393 0.7280 0.7055 0.6706 0.6148 0.6916
(c) 1.1290 1.0902 1.1193 1.1231 1.0969 1.1200 1.0863 1.0515 0.9718 1.0876

0.4 (a) 0.9370 0.9440 0.9500 0.9420 0.9540 0.9570 0.9340 0.9390 0.9460 0.9448
(b) 0.6500 0.7008 0.7351 0.7544 0.7587 0.7494 0.7273 0.6925 0.6403 0.7121
(c) 1.1079 1.0963 1.1426 1.1500 1.1153 1.1457 1.0888 1.1126 1.0571 1.1129

0.5 (a) 0.9440 0.9430 0.9530 0.9480 0.9560 0.9380 0.9440 0.9380 0.9440 0.9453
(b) 0.6536 0.7068 0.7380 0.7580 0.7634 0.7597 0.7377 0.7055 0.6539 0.7196
(c) 1.1347 1.1006 1.1233 1.1078 1.1342 1.1410 1.0968 1.1343 1.0999 1.1192

0.6 (a) 0.9440 0.9350 0.9370 0.9480 0.9470 0.9410 0.9330 0.9510 0.9510 0.9430
(b) 0.6440 0.6962 0.7311 0.7470 0.7586 0.7547 0.7351 0.6964 0.6499 0.7126
(c) 1.0200 1.0627 1.1391 1.0958 1.1403 1.1444 1.1454 1.1007 1.0567 1.1006

0.7 (a) 0.9450 0.9260 0.9350 0.9490 0.9450 0.9510 0.9440 0.9530 0.9460 0.9438
(b) 0.6168 0.6726 0.7067 0.7281 0.7389 0.7388 0.7173 0.6803 0.6339 0.6926
(c) 0.9411 0.9973 1.0336 1.1030 1.1130 1.1365 1.1301 1.0928 1.1476 1.0772

0.8 (a) 0.9500 0.9580 0.9230 0.9210 0.9410 0.9410 0.9450 0.9400 0.9680 0.9430
(b) 0.5643 0.6231 0.6668 0.6963 0.7032 0.6972 0.6848 0.6416 0.5922 0.6522
(c) 0.8503 1.0873 1.0342 1.0193 1.0984 1.1307 1.1151 1.0598 1.0159 1.0457

0.9 (a) 0.9650 0.9430 0.9490 0.9490 0.9410 0.9560 0.9370 0.9520 0.9490 0.9490
(b) 0.4946 0.5617 0.6169 0.6444 0.6539 0.6511 0.6298 0.6004 0.5366 0.5988
(c) 0.7225 0.8060 0.9725 1.1036 1.0818 1.1244 1.1535 1.0474 0.9304 0.9936

mean (a) 0.9503 0.9419 0.9407 0.9419 0.9427 0.9438 0.9402 0.9462 0.9508 0.9443
(b) 0.5990 0.6534 0.6921 0.7123 0.7194 0.7123 0.6902 0.6530 0.5986 0.6700
(c) 0.9887 1.0415 1.0910 1.0980 1.1029 1.1244 1.0893 1.0361 0.9849 1.0619

From Table 3.3 the overall average for the coverage probabilities is equal to 0.9443, which is below
the nominal level of 0.95. When p1 = 0.1 and p2 = 0.9 the coverage rate is equal to 0.9650, which is
higher than the nominal level, and when looking at p1 = 0.4 and p2 = 0.8 the coverage rate is equal to
0.9210, which is much lower than the nominal level. When using the Jeffreys prior, for θ 1 = p1 − p2,
we have under coverage most of the time (60 out of the 81 values are below 0.95).
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Table 3.4: Coverage rate of the 95% credibility intervals for θ 1 = p1 − p2 using the uniform Prior. (a) Exact
coverage probabilities, (b) mean lengths, (c) standard deviation for n1 = n2 = 10.

Uniform prior n1 = n2 = 10
↓ p2 p1

→
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 mean

0.1 (a) 0.9900 0.9830 0.9590 0.9620 0.9580 0.9340 0.9420 0.9270 0.8700 0.9472
(b) 0.5693 0.6090 0.6374 0.6486 0.6514 0.6415 0.6179 0.5843 0.5247 0.6093
(c) 0.9331 1.0296 1.0799 1.0573 0.9973 0.9560 0.8905 0.8349 0.7980 0.9529

0.2 (a) 0.9830 0.9660 0.9650 0.9680 0.9540 0.9460 0.9580 0.9340 0.9470 0.9579
(b) 0.6113 0.6460 0.6728 0.6873 0.6890 0.6818 0.6568 0.6269 0.5815 0.6504
(c) 1.0224 1.0461 1.0888 1.0861 1.0240 0.9754 0.9406 0.8735 0.8246 0.9868

0.3 (a) 0.9690 0.9480 0.9530 0.9620 0.9410 0.9510 0.9460 0.9560 0.9490 0.9528
(b) 0.6372 0.6753 0.6994 0.7153 0.7161 0.7134 0.6939 0.6577 0.6196 0.6809
(c) 1.0678 1.0700 1.0941 1.0981 1.0738 1.0462 0.9661 0.9199 0.8842 1.0245

0.4 (a) 0.9540 0.9620 0.9630 0.9630 0.9480 0.9570 0.9490 0.9610 0.9420 0.9554
(b) 0.6515 0.6894 0.7151 0.7297 0.7334 0.7271 0.7075 0.6801 0.6438 0.6975
(c) 1.1109 1.0712 1.0911 1.1128 1.1065 1.0802 1.0240 0.9605 0.9755 1.0592

0.5 (a) 0.9590 0.9580 0.9500 0.9520 0.9500 0.9560 0.9710 0.9640 0.9550 0.9572
(b) 0.6516 0.6917 0.7184 0.7339 0.7400 0.7345 0.7189 0.6888 0.6508 0.7032
(c) 1.0000 1.0559 1.0845 1.1021 1.1131 1.1106 1.0918 1.0435 0.9892 1.0657

0.6 (a) 0.9400 0.9530 0.9480 0.9590 0.9500 0.9480 0.9530 0.9550 0.9590 0.9517
(b) 0.6417 0.6796 0.7105 0.7271 0.7339 0.7286 0.7159 0.6886 0.6515 0.6975
(c) 0.9571 0.9915 1.0415 1.1303 1.1197 1.1069 1.1046 1.0470 1.0633 1.0624

0.7 (a) 0.9350 0.9530 0.9400 0.9470 0.9620 0.9610 0.9620 0.9630 0.9610 0.9538
(b) 0.6180 0.6608 0.6901 0.7126 0.7182 0.7154 0.6982 0.6761 0.6372 0.6807
(c) 0.8833 0.9079 0.9615 1.0321 1.0708 1.0889 1.0741 1.0691 1.0717 1.0177

0.8 (a) 0.9190 0.9380 0.9580 0.9570 0.9510 0.9440 0.9670 0.9670 0.9790 0.9533
(b) 0.5819 0.6280 0.6626 0.6825 0.6897 0.6875 0.6723 0.6493 0.6068 0.6512
(c) 0.8284 0.8571 0.9447 0.9782 1.0005 1.0599 1.0719 1.0477 1.0397 0.9809

0.9 (a) 0.8720 0.9410 0.9210 0.9380 0.9540 0.9540 0.9630 0.9850 0.9860 0.9460
(b) 0.5298 0.5844 0.6181 0.6411 0.6535 0.6497 0.6386 0.6116 0.5719 0.6110
(c) 0.7985 0.8364 0.8866 0.9696 1.0444 1.0839 1.0636 1.0431 0.9463 0.9636

mean (a) 0.9468 0.9558 0.9508 0.9564 0.9520 0.9501 0.9568 0.9569 0.9498 0.9528
(b) 0.6103 0.6516 0.6805 0.6976 0.7028 0.6977 0.6800 0.6515 0.6098 0.6646
(c) 0.9557 0.9851 1.0303 1.0630 1.0611 1.0564 1.0252 0.9821 0.9547 1.0126

From Table 3.4 the overall average for the coverage probabilities is equal to 0.9528, which is
slightly above the nominal level of 0.95. When p1 = 0.1 and p2 = 0.9 the coverage rate is equal to
0.8720, which is way below the nominal level, and when looking at p1 = 0.4 and p2 = 0.8 the coverage
rate is equal to 0.9570, which is almost equal to the nominal level. When using the uniform prior, for
θ 1 = p1 − p2, we have over coverage when p1 and p2 are both small.
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Table 3.5: Coverage rate of the 95% credibility intervals for θ 1 = p1 − p2 using the probability matching prior.
(a) Exact coverage probabilities, (b) mean lengths, (c) standard deviation for n1 = n2 = 10.

Probability matching prior n1 = n2 = 10
↓ p2 p1

→
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 mean

0.1 (a) 0.9880 0.9780 0.9570 0.9640 0.9610 0.9610 0.9410 0.9160 0.8960 0.9513
(b) 0.5681 0.6059 0.6368 0.6511 0.6526 0.6424 0.6162 0.5761 0.5264 0.6084
(c) 0.9302 1.0146 1.0357 1.0538 1.0440 0.9885 0.8893 0.8159 0.8028 0.9527

0.2 (a) 0.9720 0.9730 0.9640 0.9530 0.9620 0.9650 0.9460 0.9390 0.9280 0.9558
(b) 0.6108 0.6488 0.6742 0.6859 0.6873 0.6796 0.6596 0.6244 0.5782 0.6499
(c) 1.0279 1.0389 1.0699 1.0483 1.0176 0.9749 0.9142 0.8598 0.8279 0.9755

0.3 (a) 0.9720 0.9640 0.9680 0.9610 0.9480 0.9410 0.9520 0.9600 0.9360 0.9558
(b) 0.6363 0.6733 0.6985 0.7157 0.7191 0.7081 0.6911 0.6570 0.6183 0.6797
(c) 1.0720 1.0656 1.0834 1.1163 1.0738 1.0270 0.9869 0.9399 0.8846 1.0277

0.4 (a) 0.9640 0.9550 0.9480 0.9520 0.9560 0.9580 0.9530 0.9520 0.9510 0.9543
(b) 0.6514 0.6860 0.7150 0.7287 0.7348 0.7280 0.7100 0.6823 0.6418 0.6975
(c) 1.0392 1.0708 1.0914 1.1063 1.1060 1.0919 1.0443 0.9901 0.9649 1.0561

0.5 (a) 0.9550 0.9610 0.9560 0.9480 0.9600 0.9580 0.9530 0.9570 0.9510 0.9554
(b) 0.6535 0.6886 0.7137 0.7358 0.7407 0.7339 0.7172 0.6895 0.6481 0.7023
(c) 1.0330 1.0088 1.0427 1.1077 1.1096 1.1102 1.0603 1.0764 1.0301 1.0643

0.6 (a) 0.9530 0.9580 0.9510 0.9560 0.9480 0.9650 0.9540 0.9630 0.9590 0.9563
(b) 0.6428 0.6834 0.7085 0.7289 0.7350 0.7309 0.7141 0.6882 0.6527 0.6983
(c) 1.0047 0.9945 1.0555 1.0739 1.1195 1.0891 1.1026 1.0662 1.0403 1.0607

0.7 (a) 0.9370 0.9460 0.9430 0.9420 0.9460 0.9540 0.9620 0.9700 0.9620 0.9513
(b) 0.6171 0.6624 0.6904 0.7100 0.7184 0.7154 0.7007 0.6751 0.6355 0.6806
(c) 0.8882 0.9252 1.0032 1.0333 1.0895 1.1240 1.1103 1.1032 1.1009 1.0420

0.8 (a) 0.9180 0.9450 0.9570 0.9410 0.9550 0.9650 0.9610 0.9730 0.9820 0.9552
(b) 0.5872 0.6276 0.6601 0.6784 0.6904 0.6893 0.6767 0.6510 0.6097 0.6523
(c) 0.8377 0.8562 0.9251 0.9796 1.0134 1.0793 1.0951 1.0636 1.0081 0.9842

0.9 (a) 0.8800 0.9440 0.9310 0.9560 0.9390 0.9600 0.9670 0.9800 0.9960 0.9503
(b) 0.5279 0.5806 0.6176 0.6421 0.6550 0.6499 0.6369 0.6053 0.5739 0.6099
(c) 0.7974 0.8363 0.8789 0.9664 0.9887 1.0489 1.0843 0.9935 0.9611 0.9506

mean (a) 0.9488 0.9582 0.9528 0.9526 0.9528 0.9586 0.9543 0.9567 0.9512 0.9540
(b) 0.6106 0.6507 0.6794 0.6974 0.7037 0.6975 0.6803 0.6499 0.6094 0.6643
(c) 0.9589 0.9790 1.0207 1.0540 1.0624 1.0593 1.0319 0.9898 0.9579 1.0127

From Table 3.5 the overall average for the coverage probabilities is equal to 0.9540, which is
slightly above the nominal level of 0.95 and a bit higher than the overall average when using the
uniform prior. When p1 = 0.1 and p2 = 0.9 the coverage rate is equal to 0.8800, which is way below
the nominal level, this value is almost the same as the one obtained from the uniform prior. When
looking at p1 = 0.4 and p2 = 0.8 the coverage rate is equal to 0.9410, which is below the nominal level
of 0.95. When using the probability matching prior, for θ 1 = p1 − p2, we have over coverage when p1

and p2 are both small.
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In general, we can conclude that, when n1 = n2 = 10 and for different values of p1 and p2 the
Jeffreys prior produce coverage rates below the nominal level and that the uniform and probability
matching priors produce coverage rates above the nominal level, more so for the probability matching
prior. Where the overall average coverage rate for the Jeffreys prior is equal to 0.9443, the overall
average coverage rate for the uniform prior is equal to 0.9528 and the overall average coverage rate
for the probability matching prior is equal to 0.9540. The average interval lengths of the Jeffreys prior
are also generally larger than that of the uniform and probability matching priors. The uniform and
probability matching priors give smaller standard deviation values for the interval lengths than the
Jeffreys prior.
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Figure 3.4: Coverage rate of the 95% credibility intervals for θ 1 = p1 − p2 against the interval length for the
three priors when n1 = n2 = 20.

Scatter plots are given in Figure 3.4 of the coverage rates obtained when using the Jeffreys, uniform
and probability matching priors for θ 1 = p1 − p2 when n1 = n2 = 20. The values plotted are averages
over all possible values for p1 and p2. The Jeffreys prior underestimates the coverage probabilities
while the uniform prior and the probability matching prior tends to overestimate the coverage probabili-
ties. The actual simulation results are given in Appendix B in Tables B.1, B.2 and B.3.

Tables 3.6 to 3.8 contain coverage probabilities, mean lengths and standard deviations for the Jef-
freys, uniform and probability matching priors when n1 = n2 = 30, for several choices of p1 and p2.
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Table 3.6: Coverage rate of the 95% credibility intervals for θ 1 = p1 − p2 using the Jeffreys prior. (a) Exact
coverage probabilities, (b) mean lengths, (c) standard deviation for n1 = n2 = 30.

Jeffreys prior n1 = n2 = 30
↓ p2 p1

→
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 mean

0.1 (a) 0.9480 0.9660 0.9540 0.9490 0.9560 0.9540 0.9520 0.9620 0.9530 0.9549
(b) 0.3058 0.3531 0.3811 0.3965 0.4039 0.3952 0.3779 0.3441 0.2977 0.3617
(c) 1.0454 1.0559 1.0389 1.0498 1.0228 1.0145 0.9989 0.9586 0.9429 1.0142

0.2 (a) 0.9530 0.9440 0.9270 0.9470 0.9560 0.9490 0.9470 0.9440 0.9400 0.9452
(b) 0.3552 0.3918 0.4203 0.4351 0.4383 0.4335 0.4160 0.3889 0.3467 0.4029
(c) 1.1206 1.0211 1.0339 1.0364 1.0151 1.0357 1.0207 0.9635 1.0566 1.0337

0.3 (a) 0.9500 0.9390 0.9520 0.9530 0.9500 0.9390 0.9490 0.9570 0.9450 0.9482
(b) 0.3820 0.4181 0.4443 0.4590 0.4636 0.4584 0.4428 0.4199 0.3761 0.4293
(c) 1.0687 1.0454 1.0437 1.0540 1.0293 1.0368 1.0631 1.0079 1.0096 1.0398

0.4 (a) 0.9530 0.9540 0.9520 0.9450 0.9460 0.9440 0.9330 0.9490 0.9460 0.9469
(b) 0.3995 0.4356 0.4593 0.4734 0.4773 0.4726 0.4574 0.4322 0.3966 0.4449
(c) 1.0802 1.0449 1.0398 1.0477 1.0299 1.0301 1.0194 1.0248 1.0101 1.0363

0.5 (a) 0.9360 0.9380 0.9470 0.9490 0.9420 0.9500 0.9570 0.9350 0.9510 0.9450
(b) 0.4020 0.4387 0.4639 0.4773 0.4808 0.4769 0.4618 0.4382 0.4028 0.4492
(c) 1.0378 1.0503 1.0445 1.0456 1.0449 1.0478 1.0521 1.0297 1.0300 1.0425

0.6 (a) 0.9560 0.9470 0.9550 0.9380 0.9450 0.9480 0.9460 0.9370 0.9520 0.9471
(b) 0.3967 0.4324 0.4568 0.4722 0.4768 0.4720 0.4591 0.4345 0.3988 0.4444
(c) 1.0140 1.0574 1.0280 1.0392 1.0352 1.0455 1.0568 1.0308 1.0421 1.0388

0.7 (a) 0.9410 0.9400 0.9410 0.9490 0.9510 0.9540 0.9650 0.9500 0.9360 0.9474
(b) 0.3783 0.4179 0.4422 0.4571 0.4643 0.4593 0.4427 0.4204 0.3823 0.4294
(c) 1.0063 1.0198 1.0360 1.0248 1.0383 1.0363 1.0334 1.0749 1.0435 1.0348

0.8 (a) 0.9570 0.9560 0.9410 0.9210 0.9450 0.9460 0.9520 0.9460 0.9410 0.9450
(b) 0.3474 0.3901 0.4183 0.4337 0.4381 0.4344 0.4190 0.3941 0.3524 0.4031
(c) 1.0137 1.0567 1.0497 1.0385 1.0343 1.0266 1.0228 1.0578 1.0633 1.0404

0.9 (a) 0.9530 0.9600 0.9510 0.9400 0.9520 0.9520 0.9400 0.9410 0.9350 0.9471
(b) 0.2969 0.3465 0.3781 0.3966 0.4037 0.3996 0.3830 0.3526 0.3074 0.3627
(c) 0.8401 0.9393 1.0102 1.0373 1.0221 1.0377 1.0349 1.0367 1.0519 1.0011

mean (a) 0.9497 0.9493 0.9467 0.9434 0.9492 0.9484 0.9490 0.9468 0.9443 0.9474
(b) 0.3626 0.4027 0.4294 0.4445 0.4496 0.4447 0.4289 0.4028 0.3623 0.4142
(c) 1.0252 1.0323 1.0361 1.0415 1.0302 1.0346 1.0336 1.0205 1.0278 1.0313

From Table 3.6 the overall average for the coverage probabilities is equal to 0.9474, which is below
the nominal level of 0.95. When p1 = 0.1 and p2 = 0.3 the coverage rate is equal to 0.9500, which is
equal to the nominal level, and when looking at p1 = 0.4 and p2 = 0.8 the coverage rate is equal to
0.9210, which is much lower than the nominal level and exactly the same as the value obtained for this
case when n1 = n2 = 10.
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Table 3.7: Coverage rate of the 95% credibility intervals for θ 1 = p1 − p2 using the uniform prior. (a) Exact
coverage probabilities, (b) mean lengths, (c) standard deviation for n1 = n2 = 30.

Uniform prior n1 = n2 = 30
↓ p2 p1

→
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 mean

0.1 (a) 0.9540 0.9670 0.9640 0.9550 0.9640 0.9350 0.9490 0.9390 0.9240 0.9501
(b) 0.3174 0.3572 0.3840 0.3980 0.4004 0.3966 0.3788 0.3480 0.3052 0.3651
(c) 0.9941 1.0171 1.0599 1.0263 1.0269 0.9997 0.9512 0.8940 0.8219 0.9768

0.2 (a) 0.9560 0.9560 0.9630 0.9520 0.9560 0.9500 0.9580 0.9570 0.9530 0.9557
(b) 0.3583 0.3940 0.4181 0.4305 0.4349 0.4298 0.4138 0.3889 0.3487 0.4019
(c) 1.0201 1.0444 1.0400 1.0234 1.0345 1.0283 0.9836 0.9854 0.8938 1.0059

0.3 (a) 0.9490 0.9670 0.9490 0.9520 0.9460 0.9480 0.9670 0.9440 0.9420 0.9516
(b) 0.3846 0.4188 0.4415 0.4526 0.4570 0.4522 0.4395 0.4144 0.3788 0.4266
(c) 1.0337 1.0323 1.0429 1.0583 1.0408 1.0191 1.0590 0.9828 0.9701 1.0266

0.4 (a) 0.9570 0.9500 0.9480 0.9420 0.9380 0.9450 0.9530 0.9530 0.9460 0.9480
(b) 0.3984 0.4306 0.4528 0.4658 0.4701 0.4666 0.4542 0.4287 0.3961 0.4404
(c) 1.0154 1.0152 1.0347 1.0385 1.0386 1.0473 1.0106 0.9856 0.9916 1.0197

0.5 (a) 0.9620 0.9510 0.9500 0.9570 0.9550 0.9580 0.9420 0.9520 0.9420 0.9521
(b) 0.4035 0.4354 0.4569 0.4704 0.4744 0.4705 0.4569 0.4344 0.4026 0.4450
(c) 1.0162 1.0233 1.0228 1.0395 1.0376 1.0346 1.0344 1.0169 1.0113 1.0263

0.6 (a) 0.9350 0.9490 0.9550 0.9470 0.9440 0.9620 0.9480 0.9420 0.9540 0.9484
(b) 0.3952 0.4292 0.4524 0.4659 0.4702 0.4661 0.4529 0.4321 0.3962 0.4400
(c) 0.9964 0.9837 0.9992 1.0288 1.0362 1.0433 1.0324 1.0466 1.0326 1.0221

0.7 (a) 0.9470 0.9400 0.9480 0.9470 0.9410 0.9550 0.9500 0.9510 0.9540 0.9481
(b) 0.3792 0.4147 0.4393 0.4528 0.4573 0.4547 0.4410 0.4194 0.3824 0.4268
(c) 0.9218 0.9819 1.0014 1.0260 1.0383 1.0484 1.0478 1.0602 1.0450 1.0190

0.8 (a) 0.9340 0.9440 0.9650 0.9430 0.9590 0.9460 0.9500 0.9370 0.9450 0.9470
(b) 0.3484 0.3873 0.4133 0.4304 0.4354 0.4308 0.4182 0.3939 0.3595 0.4019
(c) 0.9080 0.9294 1.0159 0.9864 1.0418 1.0367 1.0505 1.0412 1.0545 1.0072

0.9 (a) 0.9480 0.9300 0.9370 0.9430 0.9500 0.9510 0.9540 0.9520 0.9650 0.9478
(b) 0.3040 0.3505 0.3773 0.3954 0.4017 0.3983 0.3838 0.3558 0.3205 0.3653
(c) 0.7935 0.8981 0.9474 1.0129 1.0005 1.0388 1.0705 1.0527 1.0002 0.9794

mean (a) 0.9491 0.9504 0.9532 0.9487 0.9503 0.9500 0.9523 0.9474 0.9472 0.9499
(b) 0.3654 0.4020 0.4262 0.4402 0.4446 0.4406 0.4266 0.4017 0.3656 0.4125
(c) 0.9666 0.9917 1.0183 1.0267 1.0328 1.0329 1.0267 1.0073 0.9801 1.0092

From Table 3.7 the overall average for the coverage probabilities is equal to 0.9499, which is just
below the nominal level of 0.95. When p1 = 0.1 and p2 = 0.3 the coverage rate is equal to 0.9490,
which is below the nominal level, where the Jeffreys prior obtained a coverage value equal to the
nominal level for this case. When looking at p1 = 0.4 and p2 = 0.8 the coverage rate is equal to
0.9430, which is lower than the nominal level and lower than the value obtained for this case when
n1 = n2 = 10.
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Table 3.8: Coverage rate of the 95% credibility intervals for θ 1 = p1 − p2 using the probability matching prior.
(a) Exact coverage probabilities, (b) mean lengths, (c) standard deviation for n1 = n2 = 30.

Probability matching prior n1 = n2 = 30
↓ p2 p1

→
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 mean

0.1 (a) 0.9630 0.9590 0.9470 0.9460 0.9590 0.9490 0.9430 0.9380 0.9440 0.9498
(b) 0.3197 0.3574 0.3825 0.3984 0.4010 0.3955 0.3792 0.3501 0.3049 0.3654
(c) 1.0060 1.0377 1.0308 1.0218 1.0058 0.9920 0.9288 0.8810 0.8212 0.9695

0.2 (a) 0.9550 0.9630 0.9560 0.9540 0.9530 0.9500 0.9590 0.9460 0.9370 0.9526
(b) 0.3588 0.3942 0.4176 0.4303 0.4360 0.4294 0.4140 0.3878 0.3499 0.4020
(c) 1.0431 1.0507 1.0553 1.0489 1.0287 1.0043 0.9865 0.9461 0.8762 1.0044

0.3 (a) 0.9480 0.9540 0.9490 0.9490 0.9530 0.9510 0.9470 0.9370 0.9580 0.9496
(b) 0.3842 0.4193 0.4414 0.4531 0.4576 0.4510 0.4378 0.4140 0.3787 0.4263
(c) 1.0551 1.0441 1.0567 1.0456 1.0393 1.0158 0.9925 0.9771 0.9282 1.0172

0.4 (a) 0.9540 0.9610 0.9580 0.9440 0.9520 0.9390 0.9510 0.9650 0.9570 0.9534
(b) 0.3962 0.4318 0.4543 0.4662 0.4694 0.4663 0.4528 0.4297 0.3953 0.4402
(c) 1.0502 1.0244 1.0330 1.0432 1.0335 1.0550 1.0445 1.0008 0.9791 1.0293

0.5 (a) 0.9410 0.9490 0.9610 0.9540 0.9500 0.9600 0.9380 0.9470 0.9550 0.9506
(b) 0.4035 0.4348 0.4573 0.4707 0.4741 0.4704 0.4579 0.4354 0.4018 0.4451
(c) 1.0265 1.0098 1.0264 1.0513 1.0398 1.0392 1.0379 1.0379 1.0203 1.0321

0.6 (a) 0.9500 0.9350 0.9480 0.9480 0.9540 0.9500 0.9380 0.9460 0.9460 0.9461
(b) 0.3973 0.4287 0.4526 0.4669 0.4714 0.4661 0.4535 0.4313 0.3963 0.4405
(c) 1.0090 0.9957 1.0466 1.0402 1.0429 1.0408 1.0408 1.0412 1.0431 1.0334

0.7 (a) 0.9440 0.9510 0.9580 0.9510 0.9580 0.9570 0.9430 0.9580 0.9710 0.9546
(b) 0.3786 0.4133 0.4361 0.4533 0.4582 0.4521 0.4407 0.4182 0.3845 0.4261
(c) 0.9329 0.9496 1.0117 1.0246 1.0316 1.0391 1.0348 1.0424 1.0354 1.0113

0.8 (a) 0.9330 0.9490 0.9490 0.9470 0.9550 0.9550 0.9450 0.9450 0.9590 0.9486
(b) 0.3516 0.3898 0.4161 0.4298 0.4340 0.4321 0.4182 0.3940 0.3572 0.4025
(c) 0.8936 0.9594 0.9613 1.0085 0.9878 1.0389 1.0411 1.0387 1.0576 0.9985

0.9 (a) 0.9260 0.9310 0.9460 0.9420 0.9410 0.9460 0.9500 0.9530 0.9550 0.9433
(b) 0.3030 0.3483 0.3802 0.3959 0.4011 0.3967 0.3830 0.3579 0.3159 0.3647
(c) 0.7942 0.9001 0.9737 0.9978 1.0304 1.0285 1.0368 1.0442 1.0239 0.9811

mean (a) 0.9460 0.9502 0.9524 0.9483 0.9528 0.9508 0.9460 0.9483 0.9536 0.9498
(b) 0.3659 0.4020 0.4265 0.4405 0.4448 0.4399 0.4263 0.4020 0.3649 0.4125
(c) 0.9790 0.9968 1.0217 1.0313 1.0266 1.0282 1.0160 1.0010 0.9761 1.0085

From Table 3.8 the overall average for the coverage probabilities is equal to 0.9498, which is just
below the nominal level of 0.95 and almost equal to the overall average when the uniform prior was
used. When p1 = 0.1 and p2 = 0.3 the coverage rate is equal to 0.9480, which is below the nominal
level, where the Jeffreys prior obtained a coverage value equal to the nominal level for this case. When
looking at p1 = 0.4 and p2 = 0.8 the coverage rate is equal to 0.9470, which is lower than the nominal
level and a bit higher than the value obtained for this case when n1 = n2 = 10.
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3.6.3 Example - Mal de Rio Cuarto Virus

In this section the adaptability of the intervals are shown in situations where data are collected in
multiple stages. To illustrate this consider the data from Ornaghi et al. (1999) given in Table 3.9. The
stages correspond to different dates on which insects were collected during maize planting season in
Argentina (from October to November). The goal of this experiment was to assess if male and female
insects transmit the Mal de Rio Cuarto virus to susceptible maize plants at similar rates.

Table 3.9: Number of test plants and numbers of virus-infected plants collected on five different dates during
the maize plant season.

Stage Gender Number of test plants Number infected
1 M 29 9

F 31 5
2 M 57 4

F 57 7
3 M 57 8

F 57 16
4 M 24 2

F 24 3
5 M 24 3

F 24 2

Assume that, at a specific stage, the researchers want to estimate the difference p1 − p2, where
p1 is equal to the proportion infected plants for male insects and p2 is the proportion infected plants
for female insects. In Table 3.10 the 95% confidence intervals for θ1 = p1 − p2 are given for the six
methods described by Roths & Tebbs (2006) and in Table 3.11 the 95% Bayesian credible intervals are
given for the Jeffreys, uniform and probability matching priors.
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Table 3.10: 95% confidence intervals for the difference in disease transmission probabilities among male and
female insects.

Stage Interval Lower limit Upper limit Length
1 WAL -0.063 0.361 0.425

AGC -0.070 0.351 0.421
HAL -0.065 0.347 0.412
JFP -0.067 0.350 0.417
MLE -0.072 0.354 0.427
MOM -0.065 0.347 0.412

2 WAL -0.161 0.055 0.216
AGC -0.163 0.062 0.225
HAL -0.157 0.055 0.212
JFP -0.160 0.059 0.219
MLE -0.163 0.061 0.224
MOM -0.157 0.055 0.212

3 WAL -0.288 0.007 0.295
AGC -0.283 0.012 0.295
HAL -0.281 0.009 0.290
JFP -0.282 0.011 0.293
MLE -0.283 0.012 0.295
MOM -0.281 0.009 0.290

According to Roths & Tebbs (2006) if suitable computing facilities are available, they would rec-
ommend either the Jeffreys-Perks or Beal-MLE interval, because their coverage probabilities are closer
to the nominal level than those for the Haldane and Beal-MOM intervals and are not as conservative as
the Agresti-Caffo interval. Roths & Tebbs (2006) only considered the first three stages, they compared
the performance of the six intervals only for these stages, where the results are given in Table 3.10. We
considered all five stages, and compared Bayesian methods for all five stages, these results are given
in Table 3.11.
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Table 3.11: 95% Bayesian credible intervals for the difference in disease transmission probabilities among male
and female insects. Using the Jeffreys prior, uniform prior and probability matching prior.

Stage Interval Lower limit Upper limit Length
1 Jeffreys -0.073 0.366 0.439

Uniform -0.057 0.348 0.405
PMP -0.078 0.346 0.423

2 Jeffreys -0.175 0.056 0.231
Uniform -0.177 0.071 0.248
PMP -0.163 0.071 0.234

3 Jeffreys -0.293 0.004 0.297
Uniform -0.267 0.016 0.284
PMP -0.280 0.011 0.290

4 Jeffreys -0.227 0.138 0.365
Uniform -0.225 0.156 0.381
PMP -0.219 0.144 0.363

5 Jeffreys -0.138 0.223 0.361
Uniform -0.136 0.232 0.369
PMP -0.141 0.228 0.368

From Table 3.11 it can be seen that the Bayesian credible intervals when using the Jeffreys prior
compares well with the other methods. The lower limits of the intervals are however, in general,
somewhat smaller and the interval lengths somewhat larger than those of the methods suggested by
Roths & Tebbs (2006). From our simulation studies (Tables 3.1 and 3.2) it was clear that there is not
much to choose between the Jeffreys and probability matching priors.

3.7 Conclusion

In this chapter the probability matching prior for a linear combination of binomial proportions, i.e.
θ = ∑k

i=1 ai pi, was derived. An example and two simulation studies were considered. A weighted
Monte Carlo method was used for the simulation from the posterior distribution when the probability
matching prior was used. The goal of this experiment, in the example, was to assess if male and female
insects transmit the Mal de Rio Cuarto virus to susceptible maize plants at similar rates. In the first
simulation study a comparison was made between the six intervals from Roths & Tebbs (2006) and
two Bayesian intervals. For the two Bayesian intervals we used the Jeffreys and probability matching
priors. In the second simulation study a comparison was made between the Jeffreys, uniform and
probability matching priors for the difference between two binomial proportions. Different values of
n1, n2, p1 and p2 were considered. The probability matching prior and the uniform prior gave similar
results. In general, we can conclude that the coverage probabilities for the Jeffreys prior is below the
nominal level. Limited simulation studies have shown that the probability matching prior achieves its
sample frequentist coverage results somewhat better than in the case of the Jeffreys prior.



Chapter 4

Estimation for the Ratio and Product of
Poisson Rates

4.1 Introduction

The Poisson distribution is often used as a probability model to describe the occurrence of rare events.
For example the number of defects in items randomly selected from a production process may follow
a Poisson distribution. Also the number of misprints counted on the first four pages of an early draft
of a scientific paper. Events may also occur over time such as the number of radio-active decays in a
fixed time interval, the number of injuries during a rugby match and the number of overseas telephone
calls per hour. Research has been done improving statistical inferences on Poisson data. Methods for
computing point and interval estimates of a single Poisson rate are, for example, discussed in Hald
(1952), Guenther (1965) and Agresti & Coull (1998). Barker (2002) also made an attempt to find
approximate confidence intervals for a single Poisson rate.

Our interest is to make Bayesian inferences on nonlinear functions of Poisson rates. Kim (2006)
derived a noninformative (probability matching) prior for ξ =∏k

i=1 λ ai
i , the product of different powers

of k Poisson rates, thereby obtaining approximate point and Bayesian credible intervals of the reliability
of systems of k independent parallel components. The parameter ξ = ∏k

i=1 λ ai
i , the product of different

powers of k Poisson parameters appears in applications to system reliability. If a system consists of
k components in parallel, then the probability of system failure is ψ = ∏k

i=1

(
λi
ni

)ai
where pi =

λi
ni

is

the probability that the ith component will fail. Also if a system requires that at least one of each
of k types of components must be employed and that these components are needed in parallel, then
the probability of failure of an m- component system is ψ = ∏k

i=1

(
λi
ni

)ai
, where k < m, ai is the

number of components of type i and ∑k
i=1 ai = m. In two sample situations it may be of interest to

test or to construct credibility intervals for the ratio of two Poisson rates. Price & Bonett (2000) used
noninformative priors for small and large values of λi (i = 1,2) to construct credibility intervals for

70
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ν = λ1/λ2, the ratio of two Poisson rates. According to them these improper priors worked well. Our
main purpose of this chapter is to obtain probability matching priors for nonlinear functions of Poisson
rates. The reference prior for the ratio of two Poisson rates will also be derived.

The parameter ψ = ξ/(∏k
i=1 nai

i ) where ξ = ∏k
i=1 λ ai

i is the product of different powers of k Pois-
son rates and appears in applications to system reliability. The probability matching prior for ξ will
therefore be derived as well as the reference prior for the ratio λ1/λ2.

Datta & Ghosh (1995) derived the differential equation which a prior must satisfy if the posterior
probability of a one sided credibility interval for a parametric function and its frequentist probabil-
ity agree up to O

(
n−1) , where n is the sample size. They proved that the agreement between the

posterior probability and the frequentist probability holds if and only if ∑k
i=1

∂
∂λi

{ηi (λ )π (λ )} = 0,

where π (λ ) is the probability matching prior for λ = [λ1 λ2 . . .λk]
′
, the vector of unknown parameters.

Let ∇t (λ ) =
[

∂
∂λ1

t (λ ) · · · ∂
∂λk

t (λ )
]′
, where t (λ ) is a nonlinear function of Poisson parameters,

then η (λ ) = F−1(λ )∇t(λ )√
∇′

t (λ )F−1(λ )∇t(λ )
=
[

η1 (λ ) · · · ηk (λ )
]′
, where F−1 (λ ) is the inverse of F (λ ) , the

Fisher information matrix of λ .

4.2 Probability Matching Prior for the Product of Different Pow-
ers of k Poisson Rates

In this section we will derive the probability matching prior for the general case where the parameter
of interest is ξ = ∏k

i=1 λ ai
i . Kim (2006) derived the probability matching prior for the case where

ξ = ∏k
i=1 λ ai

i . Kim, however, used a different method to derive the probability matching prior. Kim’s
proof is based on the method of Tibshirani (1989), whilst our proof is based on the procedure of Datta
& Ghosh (1995).

Consider a sample from k Poisson populations. Let X i be an observation from population i. Then
X1,X2, . . . ,Xk will be independent Poisson distributions such that X i ∼ P(λi) , for i = 1,2, . . . ,k, where
λi is the expected number of events per unit sample.

Theorem 4.1. The probability matching prior for ξ = ∏k
i=1 λ ai

i , the product of different powers of k

Poisson rates, is given by

πPM (λ ) = πPM (λ1,λ2, . . . ,λk) ∝

{
k

∑
i=1

a2
i λ−1

i

} 1
2

. (4.1)

Proof. Assume that X1,X2, . . . ,Xk are independent Poisson random variables with X i ∼ P(λi) , for
i = 1,2, . . . ,k.

Therefore P(Xi = xi) =
λ xi

i e−λi

xi!
for xi = 0,1,2, . . ..
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The likelihood function is given by

L(λ1,λ2 . . . ,λk |x1,x2 . . . ,xk ) = L(λ |x1,x2 . . . ,xk )

=
k

∏
i=1

λ xi
i e−λi

xi!
.

The derivation of the inverse of the Fisher information matrix is given in Appendix C in Theorem
C.1. The inverse of the Fisher information matrix is given by

F−1 (λ ) =


λ1 · · · 0
...

...
0 · · · λk

 .
We are interested in a probability matching prior for t (λ ) = ξ = ∏k

i=1 λ ai
i , the product of different

powers of k Poisson rates.
Now

∇′
t (λ ) =

[
∂ t(λ )
∂λ1

∂ t(λ )
∂λ2

· · · ∂ t(λ )
∂λk

]
=

[
a1λ a1−1

1

k
∏
i ̸=1

λ ai
i a2λ a2−1

2

k
∏
i ̸=2

λ ai
i · · · akλ ak−1

k

k
∏
i ̸=k

λ ai
i

]
=

[
a1
λ1

k
∏
i=1

λ ai
i

a2
λ2

k
∏
i=1

λ ai
i · · · ak

λk

k
∏
i=1

λ ai
i

]
=

[
a1
λ1

a2
λ2

· · · ak
λk

] k

∏
i=1

λ ai
i .

Also

∇′
t (λ )F−1 (λ ) =

[
a1
λ1

k
∏
i=1

λ ai
i

a2
λ2

k
∏
i=1

λ ai
i · · · ak

λk

k
∏
i=1

λ ai
i

]

×


λ1 · · · 0
...

...
0 · · · λk


=

[
a1

k
∏
i=1

λ ai
i a2

k
∏
i=1

λ ai
i · · · ak

k
∏
i=1

λ ai
i

]
=

[
a1 a2 · · · ak

] k

∏
i=1

λ ai
i
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and

∇′
t (λ )F−1 (λ )∇t (λ ) =

[
a1

k
∏
i=1

λ ai
i a2

k
∏
i=1

λ ai
i · · · ak

k
∏
i=1

λ ai
i

]

×



a1
λ1

k
∏
i=1

λ ai
i

a2
λ2

k
∏
i=1

λ ai
i

...
ak
λk

k
∏
i=1

λ ai
i


=

(
k

∏
i=1

λ ai
i

)2 k

∑
i=1

a2
i λ−1

i .

Define

η ′ (λ ) =
∇′

t (λ )F−1 (λ )√
∇′

t (λ )F−1 (λ )∇t (λ )

=

[
a1√

k
∑

i=1
a2

i λ−1
i

a2√
k
∑

i=1
a2

i λ−1
i

· · · ak√
k
∑

i=1
a2

i λ−1
i

]
=

[
η1 (λ ) η2 (λ ) · · · ηk (λ )

]
.

The prior π (λ ) is a probability matching prior if and only if the differential equation
k
∑

i=1

∂
∂λi

{ηi (λ )π (λ )}= 0 is satisfied.

Let

π (λ ) =

{
k

∑
i=1

a2
i λ−1

i

} 1
2

then

η1 (λ )π (λ ) =
a1√

k
∑

i=1
a2

i λ−1
i

{
k

∑
i=1

a2
i λ−1

i

} 1
2

= a1

therefore

∂
∂λ1

{η1 (λ )π (λ )} =
∂

∂λ1
{a1}= 0
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and

η2 (λ )π (λ ) =
a2√

k
∑

i=1
a2

i λ−1
i

{
k

∑
i=1

a2
i λ−1

i

} 1
2

= a2

therefore

∂
∂λ2

{η2 (λ )π (λ )} =
∂

∂λ2
{a2}= 0

and

ηk (λ )π (λ ) =
ak√

k
∑

i=1
a2

i λ−1
i

{
k

∑
i=1

a2
i λ−1

i

} 1
2

= ak

therefore

∂
∂λk

{ηk (λ )π (λ )} =
∂

∂λk
{ak}= 0.

We can therefore conclude that

k

∑
i=1

∂
∂λi

{ηi (λ )π (λ )} = 0.

The differential equation will be satisfied if π (λ ) is

πPM (λ ) ∝

{
k

∑
i=1

a2
i λ−1

i

} 1
2

.
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The joint posterior distribution when using the probability matching prior is given by

πPM (λ |data) ∝ πPM (λ )×L(λ |data)

∝

{
k

∑
i=1

a2
i λ−1

i

} 1
2

×
k

∏
i=1

λ xi
i e−λi

xi!

∴ πPM (λ |data) ∝

{
k

∑
i=1

a2
i λ−1

i

} 1
2 k

∏
i=1

λ xi
i e−λi. (4.2)

When ai = 1, the probability matching prior for ξ =
k
∏
i=1

λi, will be

πPM (λ ) ∝

{
k

∑
i=1

λ−1
i

} 1
2

. (4.3)

The prior in Equation 4.3 was used in the simulation study in Section 2.5.2, where k = 2.
For ai = 1, (i = 1,2, . . . ,k) , the posterior distribution in the case of the probability matching prior

is given by

πPM (λ |data) ∝

{
k

∑
i=1

λ−1
i

} 1
2 k

∏
i=1

λ xi
i e−λi. (4.4)

Kim (2006) showed that the posterior distribution, πPM (λ |data), from Equation 4.2 is a proper
distribution.

Theorem 4.2. The posterior distribution for the ratio ν = λ1/λ2 when using the probability matching
prior is given by

πPM (ν |x1,x2 ) ∝
1

B
(
x1 +

1
2 ,x2 +

1
2

)νx1− 1
2

(
1

ν +1

)x1+x2+1

for ν > 0 (4.5)

which is a beta distribution of the second kind.

Proof. If a1 = 1, a2 = −1 and a3 = a4 = . . . = ak = 0, it easily follows from Equation 4.1 that the
probability matching prior in the case of ν = λ1/λ2 is given by

πPM (λ1,λ2) ∝
(λ1 +λ2)

1
2

λ
1
2

1 λ
1
2

2

. (4.6)
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Using Equation 4.2, the joint posterior distribution of λ1 and λ2 is given by

πPM (λ1,λ2 |x1,x2 ) ∝
(λ1 +λ2)

1
2

λ
1
2

1 λ
1
2

2

e−(λ1+λ2)λ x1
1 λ x2

2 .

Let ν = λ1/λ2, thus λ1 = νλ2 and dλ1 = λ2dν , then

πPM (ν ,λ2 |x1,x2 ) ∝ (νλ2 +λ2)
1
2 e−(νλ2+λ2) (νλ2)

x1− 1
2 λ x2− 1

2
2 λ2

= λ
1
2

2 (ν +1)
1
2 e−λ2(ν+1)νx1− 1

2 λ x1− 1
2

2 λ x2− 1
2

2 λ2

= νx1− 1
2 (1+ν)

1
2 λ x1+x2+

1
2

2 e−λ2(1+ν)

and

πPM (ν |x1,x2 ) =

∞̂

0

πPM (ν ,λ2 |x1,x2 )dλ2

= νx1− 1
2 (1+ν)

1
2

∞̂

0

λ x1+x2+
1
2

2 e−λ2(1+ν)dλ2︸ ︷︷ ︸
Gamma(α=x1+x2+1 1

2 ,β=1+ν)

∝ νx1− 1
2 (1+ν)

1
2

(
(1+ν)x1+x2+1 1

2

Γ
(
x1 + x2 +11

2

))−1

∝ Cνx1− 1
2 (1+ν)−x1−x2−1 for ν > 0 (4.7)

which is a beta distribution of the second kind and C = 1
B(x1+

1
2 ,x2+

1
2)

.

4.3 The Jeffreys and Uniform Priors for the Product of Different
Powers of k Poisson Rates

The Jeffreys prior is given by

πJ (λ ) ∝ |F (λ )|
1
2 =

(
k

∏
i=1

λi

)− 1
2

(4.8)

where F (λ ) is the Fisher information matrix connected with the likelihood function. The prior in
Equation 4.8 was used in the simulation study in Section 2.5.2, where k = 2.
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When using the Jeffreys prior, the joint posterior distribution of λ is given by

πJ (λ |data) ∝ πJ (λ )×L(λ |data)

∝

(
k

∏
i=1

λi

)− 1
2 k

∏
i=1

λ xi
i e−λi

∴ πJ (λ |data) ∝
k

∏
i=1

λ xi− 1
2

i e−λi. (4.9)

The posterior distribution of λ is thus the product of k independently distributed Gamma
(
xi +

1
2 ,1
)

variates.

Theorem 4.3. The posterior distribution for the ratio ν = λ1/λ2 when using the Jeffreys prior is given
by

πJ (ν |x1,x2 ) ∝
1

B
(
x1 +

1
2 ,x2 +

1
2

)νx1− 1
2

(
1

ν +1

)x1+x2+1

for ν > 0 (4.10)

which is a beta distribution of the second kind.

Proof. If k = 2, it easily follows from Equation 4.8 that the Jeffreys prior is given by

πJ (λ1,λ2) ∝

(
2

∏
i=1

λi

)− 1
2

. (4.11)

Using Equation 4.9, the joint posterior distribution of λ1 and λ2 is given by

πJ (λ1,λ2 |x1,x2 ) ∝ e−(λ1+λ2)λ x1− 1
2

1 λ x2− 1
2

2 .

Let ν = λ1/λ2, thus λ1 = νλ2 and dλ1 = λ2dν , then

πJ (ν ,λ2 |x1,x2 ) ∝ e−(νλ2+λ2) (νλ2)
x1− 1

2 λ x2− 1
2

2 λ2

= e−λ2(ν+1)νx1− 1
2 λ x1− 1

2
2 λ x2− 1

2
2 λ2

= νx1− 1
2 λ x1+x2

2 e−λ2(1+ν)
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and

πJ (ν |x1,x2 ) =

∞̂

0

πJ (ν ,λ2 |x1,x2 )dλ2

= νx1− 1
2

∞̂

0

λ x1+x2
2 e−λ2(1+ν)dλ2︸ ︷︷ ︸

Gamma(α=x1+x2+1,β=1+ν)

∝ νx1− 1
2

(
(ν +1)x1+x2+1

Γ(x1 + x2 +1)

)−1

∝ Cνx1− 1
2 (1+ν)−x1−x2−1 for ν > 0 (4.12)

which is a beta distribution of the second kind and C = 1
B(x1+

1
2 ,x2+

1
2)

.

The uniform prior is given by
πU (λ ) ∝ constant. (4.13)

When using the uniform prior, the joint posterior distribution of λ is given by

πU (λ |data) ∝
k

∏
i=1

λ xi
i e−λi. (4.14)

The posterior distribution of λ is thus the product of k independently distributed Gamma(xi +1,1)
variates.

Theorem 4.4. The posterior distribution for the ratio ν = λ1/λ2 when using the uniform prior is given
by

πU (ν |x1,x2 ) ∝
1

B(x1 +1,x2 +1)
νx1

(
1

ν +1

)x1+x2+2

for ν > 0 (4.15)

which is a beta distribution of the second kind.

Proof. If k = 2 it easily follows from Equation 4.13 that the uniform prior in the case of ν = λ1/λ2 is
given by

πU (λ1,λ2) ∝ constant. (4.16)

Using Equation 4.14, the joint posterior distribution of λ1 and λ2 is given by

πU (λ1,λ2 |x1,x2 ) ∝ e−(λ1+λ2)λ x1
1 λ x2

2 .
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Let ν = λ1/λ2, thus λ1 = νλ2 and dλ1 = λ2dν , then

πU (ν ,λ2 |x1,x2 ) ∝ e−(νλ2+λ2) (νλ2)
x1 λ x2

2 λ2

= e−λ2(ν+1)νx1λ x1
2 λ x2

2 λ2

= νx1λ x1+x2+1
2 e−λ2(1+ν)

and

πU (ν |x1,x2 ) =

∞̂

0

πU (ν ,λ2 |x1,x2 )dλ2

= νx1

∞̂

0

λ x1+x2+1
2 e−λ2(1+ν)dλ2︸ ︷︷ ︸

Gamma(α=x1+x2+2,β=1+ν)

∝ νx1

(
(ν +1)x1+x2+2

Γ(x1 + x2 +2)

)−1

∝ Cνx1 (1+ν)−x1−x2−2 for ν > 0 (4.17)

which is a beta distribution of the second kind and C = 1
B(x1+1,x2+1) .

Corollary 4.1. The Jeffreys and probability matching priors for ν = λ1/λ2 have the same posterior
distribution. As will be seen in the next section, the reference prior of ν = λ1/λ2 also has the same
posterior distribution as the Jeffreys and probability matching priors.

4.4 The Reference Prior

As mentioned, the Jeffreys prior is not always suitable for multiparameter problems. In recognition of
this problem, Bernardo (1979) and Berger & Bernardo (1992) proposed the reference prior approach
to the development of noninformative priors, the key feature of which was a possible dependence of
the reference prior on specification of parameters of interest and nuisance parameters. As mentioned
by Pearn & Wu (2005) the reference prior maximises the difference in information about the parameter
provided by the prior and posterior. The reference prior is derived in such a way that it provides as little
information as possible about the parameter. In this section the reference prior of Berger & Bernardo
(1992) will be derived for the ratio of two Poisson rates. As in the case of the Jeffreys prior, the
reference prior method is derived from the Fisher information matrix. Reference priors depend on the
group ordering of the parameters. Berger & Bernardo (1992) recommended the reference prior which
is based on having each parameter in its own group, i.e. having each conditional reference prior to be
one dimensional.
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Theorem 4.5. The reference prior of ν = λ1/λ2 for the group ordering {λ1,λ2} is given by

πR (λ1,λ2) ∝
{

1
λ1λ2 (λ1 +λ2)

} 1
2

. (4.18)

Proof. By making a transformation we will, first derive the reference prior, πR (ν ,λ2). The Fisher
information matrix F (ν ,λ2) = A

′
F (λ1,λ2)A where

A =
∂ (λ1,λ2)

∂ (ν ,λ2)
=

[
λ2 ν
0 1

]
.

Therefore

F (ν ,λ2) =

[
λ2 0
ν 1

][
1

νλ2
0

0 1
λ2

][
λ2 ν
0 1

]

=

[
λ2
ν 1

1 (ν+1)
λ2

]
.

Now

h1 =

∣∣∣∣λ2

ν
− λ2

(ν +1)

∣∣∣∣= λ2

(
1

ν (ν +1)

)
and

πR (ν) = |h1|
1
2 ∝

1

ν
1
2 (ν +1)

1
2

h2 =

∣∣∣∣ 1
λ2

(ν +1)
∣∣∣∣ .

Therefore

πR (λ2 |ν ) = |h2|
1
2 ∝

(
1
λ2

) 1
2

.

The joint prior for the group ordering {ν ,λ2} is given by

πR (ν ,λ2) = πR (ν)πR (λ2 |ν ) ∝
(

1
λ2

) 1
2
(

1
ν (ν +1)

) 1
2
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and the joint reference prior for the group ordering {λ1,λ2} is given by

πR (λ1,λ2) ∝
{

1
λ1λ2 (λ1 +λ2)

} 1
2

.

The reference prior is also a probability matching prior.

Theorem 4.6. The posterior distribution for the ratio ν = λ1/λ2 when using the reference prior is given
by

πR (ν |x1,x2 ) ∝
1

B
(
x1 +

1
2 ,x2 +

1
2

)νx1− 1
2

(
1

ν +1

)x1+x2+1

for ν > 0 (4.19)

which is a beta distribution of the second kind.

Proof. From Equation 4.18 the reference prior is given by

πR (λ1,λ2) ∝
{

1
λ1λ2 (λ1 +λ2)

} 1
2

. (4.20)

The joint posterior distribution of λ1 and λ2 is given by

πR (λ1,λ2 |x1,x2 ) ∝ (λ1 +λ2)
− 1

2 e−(λ1+λ2)λ x1− 1
2

1 λ x2− 1
2

2 .

Let ν = λ1/λ2, thus λ1 = νλ2 and dλ1 = λ2dν , then

πR (ν ,λ2 |x1,x2 ) ∝ (νλ2 +λ2)
− 1

2 e−(νλ2+λ2) (νλ2)
x1− 1

2 λ x2− 1
2

2 λ2

= λ− 1
2

2 (ν +1)−
1
2 e−λ2(ν+1)νx1− 1

2 λ x1− 1
2

2 λ x2− 1
2

2 λ2

= νx1− 1
2 (ν +1)−

1
2 λ x1+x2− 1

2
2 e−λ2(1+ν)



CHAPTER 4. ESTIMATION FOR THE RATIO AND PRODUCT OF POISSON RATES 82

and

πR (ν |x1,x2 ) =

∞̂

0

πR (ν ,λ2 |x1,x2 )dλ2

= νx1− 1
2 (ν +1)−

1
2

∞̂

0

λ x1+x2− 1
2

2 e−λ2(1+ν)dλ2︸ ︷︷ ︸
Gamma(α=x1+x2+

1
2 ,β=1+ν)

∝ νx1− 1
2 (ν +1)−

1
2

(
(ν +1)x1+x2+

1
2

Γ
(
x1 + x2 +

1
2

))−1

∝ Cνx1− 1
2 (1+ν)−x1−x2−1 for ν > 0 (4.21)

which is a beta distribution of the second kind and C = 1
B(x1+

1
2 ,x2+

1
2)

.

Corollary 4.2. The Jeffreys, probability matching and reference priors for ν = λ1/λ2 have the same
posterior distribution.

4.5 The Weighted Monte Carlo Method in the Case of the Proba-
bility Matching Prior for ξ = ∏k

i=1 λ ai
i

This method has been introduced in Section 2.4.
If a uniform prior is put on λ , using Equation 4.14, the posterior (proposal) distribution is

q(λ |data) ∝
k

∏
i=1

λ xi
i e−λi.

In the case of the probability matching prior, using Equation 4.2, the posterior (target) distribution
is

πPM (λ |data) ∝

{
k

∑
i=1

a2
i λ−1

i

} 1
2 k

∏
i=1

λ xi
i e−λi.

The sample probabilities are therefore proportional to

πPM (λ |data)
q(λ |data)

=

{
k

∑
i=1

a2
i λ−1

i

} 1
2
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and the normalised weights are

ωl =

{
k
∑

i=1

(
a2

i λ−1
i
)(l)} 1

2

n
∑

l=1

{
k
∑

i=1

(
a2

i λ−1
i
)(l)} 1

2
l = 1,2, . . . ,n

where n is the number of simulations.
The Monte Carlo method:

• Step 1

Obtain a Monte Carlo sample
{(

λ (l)
1 ,λ (l)

2 . . . ,λ (l)
k

)
; l = 1,2, . . . ,n

}
from the proposal distribu-

tion q(λ |data) and calculate ξ (l) =
k
∏
i=1

(
λ (l)

i

)ai
for l = 1,2, . . . ,n.

• Step 2

Sort
{

ξ (l),(l = 1,2, . . . ,n)
}

to obtain the ordered values ξ [1] ≤ ξ [2] ≤ ·· · ≤ ξ [n].

• Step 3

Each simulated ξ value has an associated weight. Therefore compute the weighted function ω(l)

associated with the lth ordered ξ [l] value.

• Step 4

Add the weights up from left to right (from the first on) until one obtains
n1
∑

l=1
ω(l) = α/2. Write

down the corresponding ξ [n1] value and denote it as ξ(α/2). Add the weights up from right to left

(from the last back) until one obtains
n
∑

l=n2

ω(l) = α/2. Write down the corresponding ξ [n2] value

and denote it as ξ(1−α/2).

• Step 5

The 100(1−α)% Bayesian credible interval is:
(
ξ(α/2),ξ(1−α/2)

)
.

4.6 Simulation Studies

As mentioned, the parameter ξ = ∏k
i=1 λ ai

i , the product of different powers of k Poisson parameters
appears in applications to system reliability. If a system consists of k components in parallel, then the
probability of system failure is ψ = ∏k

i=1

(
λi
ni

)ai
where pi =

λi
ni

is the probability that the ith component
will fail. Also if a system requires that at least one of each of k types of components must be employed
and that these components are needed in parallel, then the probability of failure of an m- component
system is ψ = ∏k

i=1

(
λi
ni

)ai
, where k < m, ai is the number of components of type i and ∑k

i=1 ai = m.
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4.6.1 Simulation Study I - Comparison of the Jeffreys, Uniform and Probability
Matching Priors for ξ1 = ∏k

i=1 λi

In Table 4.1 the frequentist coverage probabilities are given for ξ1 = ∏k
i=1 λi in the case of:

1. the Jeffreys prior, πJ (λ ) ∝
(

k
∏
i=1

λi

)− 1
2

;

2. the uniform prior, πU (λ ) ∝ constant;

3. the probability matching prior, πPM (λ ) ∝
{

k
∑

i=1
λ−1

i

} 1
2

;

50 000 samples were generated and from each sample 10 000 parameter values were simulated to
obtain the Bayesian credible intervals in the case of the Jeffreys and uniform priors. For the probability
matching prior only 20 000 samples were generated.

Table 4.1: Frequentist coverage probabilities for 5% and 95% posterior quantiles of ξ1 = ∏k
i=1 λi.

Jeffreys Uniform Prob. Matching
λ ξ1 5% 95% 5% 95% 5% 95%

[1 1 1] 1 0.0223 0.9512 0.1037 1.0000 0.0551 1.0000
[1 2 3] 6 0.0270 0.9133 0.0849 0.9975 0.0514 0.9819
[2 2 2] 8 0.0243 0.9142 0.0775 1.0000 0.0491 0.9674
[1 5 10] 50 0.0346 0.9576 0.0876 0.9967 0.0532 0.9862
[5 5 5] 125 0.0352 0.9069 0.0612 0.9650 0.0484 0.9417

[10 10 10] 1 000 0.0325 0.9253 0.0588 0.9625 0.0462 0.9490
[1 2 3 4 5] 120 0.0192 0.8861 0.0806 0.9922 0.0500 0.9742
[2 2 3 4 5] 240 0.0194 0.8657 0.0721 0.9847 0.0518 0.9586
[3 3 3 4 5] 540 0.0198 0.8647 0.0666 0.9753 0.0482 0.9499

[1 2 3 4 5 6 7 8] 40 320 0.0141 0.8560 0.0756 0.9877 0.0503 0.9704
[1 2 3 4 5 5 5 5] 15 000 0.0131 0.8442 0.0704 0.9870 0.0514 0.9693
[5 5 5 5 5 5 5 5] 390 625 0.0164 0.8466 0.0591 0.9614 0.0477 0.9458
[5 5 5 5 6 7 8 9] 1 890 000 0.0178 0.8617 0.0587 0.9614 0.0499 0.9455

[5 5 5 5 10 10 10 10] 6 250 000 0.0179 0.8729 0.0582 0.9627 0.0472 0.9472
[10 10 10 10 10 10 10 10] 108 0.0184 0.8880 0.0534 0.9546 0.0492 0.9507

From the simulation results in Table 4.1 it is clear that the probability matching prior performs
better than the Jeffreys and uniform priors in most of the situations. As mentioned by Kim (2006) if
each co-ordinate of the parameter vector λ is large, the frequentist coverage percentages obtained from
using the probability matching prior is close to the desired level.

The simulation results are displayed in Figures 4.1 and 4.2. The inability of the Jeffreys and uniform
priors to give good coverage probabilities is even more clear from these graphs.
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Figure 4.1: Illustration of the 5% quantiles of ξ1 = ∏k
i=1 λi in the same order as given in Table 4.1.
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Figure 4.2: Illustration of the 95% quantiles of ξ1 = ∏k
i=1 λi in the same order as given in Table 4.1.
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4.6.2 Simulation Study II - Comparing Six Priors for ξ2 = λ1λ2 - Reliability of
Independent Parallel Components System

In this example a simulation study is done for ξ2 = λ1λ2, the product of two Poisson rates. The
parameter values for the Poisson distributions are λi =2, 3, 4, 5, 6, 7, 8, 9, 10 (for i = 1,2).

The priors that will be compared are:

1. the uniform prior: πU (λ1,λ2) ∝ constant;

2. the Jeffreys prior: πJ (λ1,λ2) ∝ ∏2
i=1 λ− 1

2
i ;

3. the probability matching prior: πPM (λ1,λ2) ∝
{

∑2
i=1 λ−1

i
} 1

2 ;

4. πA (λ1,λ2) ∝ ∏2
i=1 λ− 1

8
i ;

5. πB (λ1,λ2) ∝ ∏2
i=1 λ− 1

4
i ;

6. πC (λ1,λ2) ∝ ∏2
i=1 λ− 3

8
i .

We know from experience (and this is also clear from Table 4.1) that the Jeffreys prior under covers
while the uniform prior tends to over cover in the case of the product of Poisson rates. Priors (4),
(5) and (6) are in between priors for (1) and (2) and it is for this reason that they are included in this
simulation study. In general we will define these in between priors by π (λ1,λ2) ∝ ∏2

i=1 λ−a
i , such that

a = 1
8 for prior (4), a = 1

4 for prior (5) and a = 3
8 for prior (6).

The frequentist coverage percentages of the 95% HPD (highest posterior density) intervals and the
interval lengths are displayed in Figure 4.3. The graphs are averages over λ1 for λ2 = 2 to 10. The
coverage percentage of the probability matching prior is much better than those of the Jeffreys and
uniform priors. It is also not impossible that other priors with a = 1

5 or a = 1
6 will give a very good

coverage.
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Figure 4.3: Illustration of the coverage percentages of the 95% HPD Intervals of ξ2 = λ1λ2.

4.6.3 Simulation Study III - Comparing Priors for ξ3 = λ 2
1 λ2 and ξ4 = λ 3

1 λ2 -
Reliability of Repeated Components System

Assume a system needs three components in parallel and at least one of each of two types of compo-
nents must be used. If the first component is replicated, then the probability of failure is ψ3 = p2

1 p2.
Also if four components are needed and the first component is replicated three times, then the prob-
ability of failure is ψ4 = p3

1 p2 where pi =
λi
ni

(i = 1,2) . For further details see Kim (2006). In this
simulation study the coverage probabilities of these different priors for the parameters ξ3 = λ 2

1 λ2 and
ξ4 = λ 3

1 λ2 will therefore be looked at. The parameter values for the Poisson distribution are as in
Section 4.6.2, i.e. λi =2, 3, 4, 5, 6, 7, 8, 9, 10 (for i = 1,2) and the priors that will be compared are:

1. the uniform prior: πU (λ1,λ2) ∝ constant;

2. the Jeffreys prior: πJ (λ1,λ2) ∝ ∏2
i=1 λ− 1

2
i ;

3. the probability matching prior: πPM (λ1,λ2) ∝
{

∑2
i=1 a2

i λ−1
i
} 1

2 .

The frequentist coverage probabilities as well as the interval lengths of the 95% Bayesian credible
intervals for the above priors in the case of ξ3 = λ 2

1 λ2 are given in Figure 4.4 and in Figure 4.5 the
same graphs are given for ξ4 = λ 3

1 λ2. The graphs are averages over λ1 for λ2 = 2 to 10.
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The same patterns as in Figure 4.3 emerge from Figures 4.4 and 4.5, i.e. the Jeffreys prior un-
derestimates the coverage probabilities while the uniform prior tends to overestimate the coverage
probabilities. In general the probability matching prior seems to give the best coverage probabilities.
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Figure 4.4: Illustration of the coverage probabilities of the 95% Bayesian credible intervals for ξ3 = λ 2
1 λ2.
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Figure 4.5: Illustration of the Coverage Probabilities of the 95% Bayesian credible intervals for ξ4 = λ 3
1 λ2.
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4.6.4 Simulation Study IV - Comparison of the Jeffreys, Uniform, Reference
and Probability Matching Priors for ν = λ1/λ2

The comparison of Poisson rates is of great interest in biological, agricultural and medical research. In
two sample situations it may be of interest to test or to construct confidence intervals for the ratio of
two Poisson rates. Gu et al. (2008) compared the properties of four approaches for testing the ratio of
two Poisson rates. They considered asymptotically normal tests, tests based on approximate p - values,
exact conditional tests and a likelihood ratio test.

Price & Bonett (2000), on the other hand, computed the exact coverage probabilities of the inter-
vals of six classical methods and that of the Bayesian interval, using the Jeffreys prior, for small and
large values of λi (i = 1,2) . They also looked at other plausible noninformative priors for λi such as
π (λi) ∝ λ−1

i and π (λi) ∝ constant and mentioned that these priors work almost as well as the Jef-

freys prior (π (λi) ∝ λ− 1
2

i ). According to them the Jeffreys prior has the advantage of adding 0.5 to
the sample data which would avoid the problem of sampling zeros. From their simulation studies they
concluded that the noninformative Bayesian intervals (using the Jeffreys prior) is reasonable under
classical evaluation. We, however, tend to differ from them, since we came to the conclusion that the
Jeffreys prior cannot be used for testing the ratio ν = λ1/λ2 or obtaining confidence intervals, especially
if λ2 is small. A prior that can be used for these purposes is the uniform prior. This will become clear
from the following simulation study.

It was shown that the posterior distribution of ν = λ1/λ2 in the case of the Jeffreys, probability
matching and reference priors is a beta distribution of the second kind. This distribution can easily
be transformed to an F−distribution with 2x1 + 1 and 2x2 + 1 degrees of freedom. In a similar way
the posterior distribution of ν , using the uniform prior can be transformed to an F−distribution with
2x1 + 2 and 2x2 + 2 degrees of freedom. Bayesian credible intervals and coverage probabilities for ν
can therefore be calculated exactly.

In this example a simulation study is done for ν = λ1/λ2 , the ratio of two Poisson rates. The
parameter values for the Poisson distributions are λ1 =2, 5 and 10 and λ2 =2, 3, 4, 5, 6, 7, 8, 9, 10.
The priors that will be compared are:

1. the uniform prior: πU (λ1,λ2) ∝ constant;

2. the Jeffreys (reference and probability matching) prior: πJ (λ1,λ2) ∝ ∏2
i=1 λ− 1

2
i .

In Table 4.2 the coverage percentages are given for the 95% Bayesian equal-tail and HPD intervals in
the case of the Jeffreys prior and in Table 4.3 the coverage percentages are given for the 95% Bayesian
equal-tail and HPD intervals in the case of the uniform prior. Ten thousand samples were generated
for each parameter combination.
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Table 4.2: Coverage percentages of the 95% Bayesian credible intervals for ν = λ1/λ2 in the case of the Jeffreys
prior. (a) Coverage percentage, (b) mean length and (c) variance of interval length.

Equal-tail intervals
↓λ1 λ2 → 2 3 4 5 6 7 8 9 10

(a) 95.92 94.16 94.46 94.72 95.24 95.20 95.60 95.72 95.30
2 (b) 599.98 250.08 102.77 41.956 8.0429 3.7614 4.8311 1.5405 0.8661

(c) 3.3E+6 1.5E+6 6.1E+5 2.5E+5 32752 8470 24634 1261.9 0.4405
(a) 95.40 94.08 94.38 94.94 94.76 94.30 94.32 95.06 94.40

5 (b) 1381.8 599.82 208.86 87.282 23.004 13.445 6.6475 1.8303 1.5217
(c) 1.5E+7 7.2E+6 2.5E+6 1.0E+6 2.4E+5 1.1E+5 46513 4.5629 1.5058
(a) 95.40 94.56 94.76 94.16 93.82 94.32 94.92 94.80 95.20

10 (b) 2886.3 1054.9 3912.1 1727.3 58.639 13.765 10.434 11.167 2.4904
(c) 5.7E+7 2.3E+7 8.9E+6 3.5E+6 1.2E+6 2.3E+5 2.1E+5 3.2E+5 3.5445

HPD intervals
↓λ1 λ2 → 2 3 4 5 6 7 8 9 10

(a) 94.70 94.08 94.60 94.44 94.52 93.90 94.48 93.86 94.24
2 (b) 154.31 65.525 27.853 12.064 3.1596 1.8068 1.9247 0.9932 0.7294

(c) 2.0E+5 94 520 38 760 15 880 2 270.1 467.92 1 605.1 90.013 0.2881
(a) 95.18 94.80 95.28 94.08 94.84 94.84 94.86 95.26 94.36

5 (b) 354.20 156.11 56.186 24.835 8.2267 4.9627 3.0205 1.5732 1.3301
(c) 9.5E+5 4.5E+5 1.5E+5 62 546 17 057 6 322.3 2 888.1 2.2182 0.9420
(a) 94.92 94.88 95.20 95.00 94.74 94.88 95.18 95.62 95.32

10 (b) 741.52 276.47 104.83 48.109 19.005 6.2733 4.7505 4.4775 2.2129
(c) 3.6E+5 1.4E+5 5.5E+5 2.1E+5 78 638 11 609 1 071.7 15.581 2.2795

From Table 4.2 it is clear that the coverage percentages of the Jeffreys (reference and probability
matching) priors are reasonably good (slight under coverage in some cases) but the mean lengths and
variances of the Bayesian credible intervals are much too large. This is especially true if λ2 is small.
The uniform prior, on the other hand, also gives reasonably good coverage (slight over coverage) but
the mean lengths and variances of the credibility intervals are much smaller.
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Table 4.3: Coverage percentages of the 95% Bayesian credible intervals for ν = λ1/λ2 in the case of the uniform
prior. (a) Coverage percentage, (b) mean length and (c) variance of interval length.

Equal-tail intervals
↓λ1 λ2 → 2 3 4 5 6 7 8 9 10

(a) 98.16 97.34 96.58 96.38 96.80 96.82 96.06 96.18 96.22
2 (b) 21.572 10.130 5.4558 3.2781 2.1531 1.6649 1.3948 1.0562 0.9313

(c) 1901.0 688.59 278.14 107.50 34.622 21.250 22.322 0.9839 3.4559
(a) 95.86 96.46 95.70 95.62 95.92 95.68 95.56 96.26 95.94

5 (b) 42.687 20.474 10.341 6.1223 3.6942 2.7507 2.2019 1.7188 1.4644
(c) 6813.1 2935.1 1075.7 415.72 83.159 38.849 38.722 2.0315 1.1217
(a) 96.22 95.76 96.00 95.76 94.84 95.28 95.54 95.90 95.44

10 (b) 83.653 38.105 18.813 10.916 6.8133 4.9464 3.6860 3.0692 2.3601
(c) 23576 9702.6 3713.5 1481.8 570.94 233.67 96.470 158.94 3.2491

HPD intervals
↓λ1 λ2 → 2 3 4 5 6 7 8 9 10

(a) 97.84 97.32 98.42 98.28 98.58 98.46 98.62 98.70 98.68
2 (b) 11.973 6.1556 3.6194 2.3565 1.6559 1.3211 1.1222 0.8942 0.7874

(c) 451.92 165.09 70.507 26.729 9.3764 5.6677 5.6862 0.5540 1.0442
(a) 93.76 94.96 94.92 96.34 96.04 96.10 96.12 96.22 96.30

5 (b) 23.666 12.28 6.8340 4.4143 2.9397 2.2680 1.8536 1.5016 1.2941
(c) 1 603.5 706.45 267.98 105.99 24.740 11.811 11.087 1.2281 0.7298
(a) 93.48 94.44 94.96 94.84 94.62 94.64 95.42 96.36 95.92

10 (b) 45.898 22.734 12.391 7.7628 5.2379 3.9842 3.1191 2.6106 2.1101
(c) 5 557.1 2 337.2 923.02 377.39 147.07 61.495 27.084 37.362 2.0345

4.7 Conclusion

In this chapter the probability matching prior for the product of different powers of k Poisson rates,
ξ = ∏k

i=1 λ ai
i , was derived. The reference prior for the ratio of two Poisson rates was also derived.

We considered a number of simulation studies. If one is interested in obtaining point estimates and
Bayesian credible intervals for ξ = ∏k

i=1 λ ai
i , the product of different powers Poisson rates and if

ai ≥ 0 (i = 1,2, . . . ,k), then the probability matching prior is the best. If, on the other hand, one wants
to obtain point estimates, credibility intervals or do hypothesis testing about ν = λ1/λ2, the ratio of two
Poisson rates, then the uniform prior should be used.

Price & Bonett (2000) mentioned that the Jeffreys prior has the advantage of adding 0.5 to the
sample data which will avoid sampling zeros. From our research it seems that adding 1 to the sample
data (using the uniform prior) gives better results for ν = λ1/λ2.



Chapter 5

Estimation for Linear Functions of Poisson
Rates

5.1 Introduction

Research has been done on improving confidence intervals for discrete data. Barker (2002) made an
attempt to find approximate confidence intervals for a single Poisson rate. Stamey & Hamilton (2006)
considered four interval estimators for linear functions of Poisson rates, a Wald interval, a t interval
with Satterthwaite’s degrees of freedom and two Bayesian intervals using noninformative priors. We
will consider another Bayesian interval using a probability matching prior. The probability matching
prior will be derived by using the method proposed by Datta & Ghosh (1995).

Krishnamoorthy & Thomson (2004) addressed the problem of hypothesis testing about two Pois-
son means. They compared the conditional test (C - test) to a test based on estimated p - values (E -
test). Krishnamoorthy & Thomson (2004) considered the size and the power of these tests. We will use
Bayesian methods, using the Jeffreys prior, the probability matching prior and two other priors. The re-
sults obtained from the Bayesian methods will be compared to the results obtained by Krishnamoorthy
& Thomson (2004).

The probability matching prior for a linear contrast of Poisson parameters is derived. This prior
will be extended in such a way that it can be used as the probability matching prior for the average
of Poisson parameters. A weighted Monte Carlo simulation method will be used to obtain Bayesian
credible intervals in the case of the probability matching prior. An example and simulation studies will
be considered.

92
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5.2 Probability Matching Prior for a Linear Contrast of Poisson
Parameters

Consider a sample from k Poisson populations. Let X i be an observation from population i. Then
X1,X2, . . . ,Xk will be independent Poisson distributions such that X i ∼ P(λi) , for i = 1,2, . . . ,k. Where
λi is the expected number of events per unit sample. We assume that the interest is in a linear com-
bination of Poisson rates. In general, we can define such a linear function of Poisson parameters as
δ = ∑k

i=1 aiλi, where ai is the known coefficient value.

Theorem 5.1. The probability matching prior for δ =∑k
i=1 aiλi, a linear contrast of Poisson parameters

(i.e. ∑k
i=1 ai = 0), is given by

πPM (λ ) = πPM (λ1,λ2, . . . ,λk) ∝

{
k

∑
i=1

a2
i λi

} 1
2

. (5.1)

Proof. Assume that X1,X2, . . . ,Xk are independent Poisson random variables with X i ∼ P(λi). The
likelihood function is given by

L(λ |x1,x2, . . . ,xk ) =
k

∏
i=1

e−λi
λ xi

i
xi!

.

It was shown in Appendix C in Theorem C.1 that the inverse of the Fisher information matrix is
given by

F−1 (λ ) =


λ1 · · · 0
...

...
0 · · · λk

 .
We are interested in a probability matching prior for t (λ ) = δ = ∑k

i=1 aiλi, a linear contrast of
Poisson parameters, where ∑k

i=1 ai = 0.
Now

∇′
t (λ ) =

[
∂ t(λ )
∂λ1

∂ t(λ )
∂λ2

· · · ∂ t(λ )
∂λk

]
=

[
a1 a2 · · · ak

]
.

Also
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∇′
t (λ )F−1 (λ ) =

[
a1 a2 · · · ak

]
λ1 · · · 0
...

...
0 · · · λk


=

[
a1λ1 a2λ2 · · · akλk

]
and

∇′
t (λ )F−1 (λ )∇t (λ ) =

[
a1λ1 a2λ2 · · · akλk

]

×


a1

a2
...

ak


=

k

∑
i=1

a2
i λi.

Define

η ′ (λ ) =
∇′

t (λ )F−1 (λ )√
∇′

t (λ )F−1 (λ )∇t (λ )

=

[
a1λ1√
k
∑

i=1
a2

i λi

a2λ2√
k
∑

i=1
a2

i λi

· · · akλk√
k
∑

i=1
a2

i λi

]
=

[
η1 (λ ) η2 (λ ) · · · ηk (λ )

]
.

As before the prior π (λ ) is a probability matching prior if and only if the differential equation
k
∑

i=1

∂
∂λi

{ηi (λ )π (λ )}= 0 is satisfied.

Let

π (λ ) =

{
k

∑
i=1

a2
i λi

} 1
2
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then

η1 (λ )π (λ ) =
a1λ1√
k
∑

i=1
a2

i λi

{
k

∑
i=1

a2
i λi

} 1
2

= a1λ1

therefore

∂
∂λ1

{η1 (λ )π (λ )} =
∂

∂λ1
{a1λ1}= a1

and

η2 (λ )π (λ ) =
a2λ2√
k
∑

i=1
a2

i λi

{
k

∑
i=1

a2
i λi

} 1
2

= a2λ2

therefore

∂
∂λ2

{η2 (λ )π (λ )} =
∂

∂λ2
{a2λ2}= a2

and

ηk (λ )π (λ ) =
akλk√
k
∑

i=1
a2

i λi

{
k

∑
i=1

a2
i λi

} 1
2

= akλk

therefore

∂
∂λk

{ηk (λ )π (λ )} =
∂

∂λk
{akλk}= ak.

We can therefore conclude that

k

∑
i=1

∂
∂λi

{ηi (λ )π (λ )} = a1 +a2 + . . .+ak = 0
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since we are dealing with a linear contrast, i.e.
k
∑

i=1
ai = 0.

The differential equation will be satisfied if π (λ ) is

πPM (λ ) ∝

{
k

∑
i=1

a2
i λi

} 1
2

.

When using the probability matching prior, the joint posterior distribution of λ is given by

πPM (λ |data) ∝ πPM (λ )×L(λ |data)

∝

{
k

∑
i=1

a2
i λi

} 1
2

×
k

∏
i=1

λ xi
i e−λi

xi!

∴ πPM (λ |data) ∝

{
k

∑
i=1

a2
i λi

} 1
2 k

∏
i=1

λ xi
i e−λi. (5.2)

Corollary 5.1. If ∑k
i=1 ai ̸= 0, the following equation can be used for a probability matching prior

πPM∗ (λ ) ∝

{
k

∑
i=1

a2
i λi

} 1
2 k

∏
i=1

λ−1
i (5.3)

and the posterior distribution of λ will be

πPM∗ (λ |data) ∝

{
k

∑
i=1

a2
i λi

} 1
2 k

∏
i=1

λ xi−1
i e−λi. (5.4)

The Jeffreys prior is given by

πJ (λ ) ∝ |F (λ )|
1
2 =

(
k

∏
i=1

λi

)− 1
2

(5.5)

where F (λ ) is the Fisher information matrix connected with the likelihood function.
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When using the Jeffreys prior, the posterior distribution of λ is given by

πJ (λ |data) ∝ πJ (λ )×L(λ |data)

∝

(
k

∏
i=1

λi

)− 1
2 k

∏
i=1

λ xi
i e−λi

∴ πJ (λ |data) ∝
k

∏
i=1

λ xi− 1
2

i e−λi. (5.6)

The posterior distribution of λ is thus the product of k independently distributed Gamma
(
xi +

1
2 ,1
)

variates.
In some cases the exact posterior distribution of δ = ∑k

i=1 aiλi can be derived. For example if
a1 = a2 = . . .= ak =

1
k . The following theorem can now be proved.

Theorem 5.2. If πJ (λ |data) =
k
∏
i=1

e−λi λ
xi−

1
2

i
Γ(xi+

1
2)

, then the posterior distribution of δ̃ = 1
k

k
∑

i=1
λi is

πJ

(
δ̃ |data

)
=

k∑k
i=1 xi+

k
2

Γ
(
∑k

i=1 xi +
k
2

) δ̃ ∑k
i=1 xi+

k
2−1e−kδ̃ . (5.7)

Proof. δ =
k
∑

i=1
aiλi. The moment generating function of δ is

Mδ (t) = E
(

eδ t
)
= E

e
t

k
∑

i=1
aiλi


=

{
k

∏
i=1

1
Γ
(
xi +

1
2

)}ˆ ∞

0
· · ·
ˆ ∞

0
e

t
k
∑

i=1
aiλi k

∏
i=1

{
e−λiλ xi+

1
2−1

i

}
dλ1 . . .dλk

= C
(ˆ ∞

0
eta1λ1e−λ1λ x1+

1
2−1

1 dλ1

)
· · ·
(ˆ ∞

0
etakλke−λkλ xk+

1
2−1

k dλk

)
where

C =

{
k

∏
i=1

1
Γ
(
xi +

1
2

)} .

Consider

I =

ˆ ∞

0
etaiλie−λiλ xi+

1
2−1

i dλi

=

ˆ ∞

0
e−λi(1−ait)λ xi+

1
2−1

i dλi.
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Let λi (1−ait) = y, ∴ λi =
(

1
1−ait

)
y and dλi =

(
1

1−ait

)
dy.

∴ I =

ˆ ∞

0
e−y
(

1
1−ait

)xi+
1
2−1

yxi+
1
2−1
(

1
1−ait

)
dy

=

(
1

1−ait

)xi+
1
2
ˆ ∞

0
e−yyxi+

1
2−1dy

=

(
1

1−ait

)xi+
1
2

Γ
(

xi +
1
2

)
.

Therefore Mδ (t) =
k
∏
i=1

(
1

1−ait

)xi+
1
2
.

If a1 = a2 = . . .= ak =
1
k , then

Mδ̃ (t) =
( k

k−t

)∑k
i=1 xi+

k
2 , which is the moment generating function of a Gamma distribution.

Therefore

πJ

(
δ̃ |data

)
=

k∑k
i=1 xi+

k
2

Γ
(
∑k

i=1 xi +
k
2

) δ̃ ∑k
i=1 xi+

k
2−1e−kδ̃ 0 < δ̃ < ∞.

5.3 The Weighted Monte Carlo Method in the Case of the Proba-
bility Matching Prior for δ = ∑k

i=1 aiλi

This method has been introduced in Section 2.4.
If a uniform prior is put on λ , the posterior (proposal) distribution is

q(λ |data) ∝
k

∏
i=1

λ xi
i e−λi.

In the case of the probability matching prior, using Equations 5.2 and 5.4, the posterior (target)
distribution is

πPM (λ |data) ∝
(

k
∑

i=1
a2

i λi

) 1
2 k

∏
i=1

λ xi
i e−λi , if ∑k

i=1 ai = 0,
or

πPM∗ (λ |data) ∝
(

k
∑

i=1
a2

i λi

) 1
2 k

∏
i=1

λ xi−1
i e−λi , if ∑k

i=1 ai ̸= 0.
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The sample probabilities are therefore proportional to

πPM (λ |data)
q(λ |data)

=

(
k

∑
i=1

a2
i λi

) 1
2

if ∑k
i=1 ai = 0,

or

πPM∗ (λ |data)
q(λ |data)

=

(
k

∑
i=1

a2
i λi

) 1
2 k

∏
i=1

λ−1
i if ∑k

i=1 ai ̸= 0.

The normalised weights are

ωl =

{
k
∑

i=1

(
a2

i λi
)(l)} 1

2

n
∑

l=1

[{
k
∑

i=1

(
a2

i λi
)(l)} 1

2
] if ∑k

i=1 ai = 0 for l = 1,2, . . . ,n,

or

ωl =

{
k
∑

i=1

(
a2

i λi
)(l)} 1

2 k
∏
i=1

(
λ−1

i
)(l)

n
∑

l=1

[{
k
∑

i=1

(
a2

i λi
)(l)} 1

2 k
∏
i=1

(
λ−1

i
)(l)] if ∑k

i=1 ai ̸= 0 for l = 1,2, . . . ,n

where n is the number of simulations.
The Monte Carlo method:

• Step 1

Obtain a Monte Carlo sample
{(

λ (l)
1 ,λ (l)

2 . . . ,λ (l)
k

)
; l = 1,2, . . . ,n

}
from the proposal distribu-

tion q(λ |data) and calculate δ (l) =
k
∑

i=1
aiλ

(l)
i for l = 1,2, . . . ,n.

• Step 2

Sort
{

δ (l),(l = 1,2, . . . ,n)
}

to obtain the ordered values δ [1] ≤ δ [2] ≤ ·· · ≤ δ [n].

• Step 3

Each simulated δ value has an associated weight. Therefore compute the weighted function ω(l)

associated with the lth ordered δ [l] value.
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• Step 4

Add the weights up from left to right (from the first on) until one obtains
n1
∑

l=1
ω(l) = α/2. Write

down the corresponding δ [n1] value and denote it as δ(α/2). Add the weights up from right to left

(from the last back) until one obtains
n
∑

l=n2

ω(l) = α/2. Write down the corresponding δ [n2] value

and denote it as δ(1−α/2).

• Step 5

The 100(1−α)% Bayesian credible interval is:
(
δ(α/2),δ(1−α/2)

)
.

5.4 Example and Simulation Studies

5.4.1 Example

Stamey & Hamilton (2006) considered an example where they compared four intervals. We are going
to compare two Bayesian intervals, using the Jeffreys prior and a probability matching prior, with the
four intervals from Stamey & Hamilton (2006). They considered the number of fatal motor vehicle
accidents involving driving while intoxicated (DWI) during six major holidays for the year 2000. They
obtained the data from the Crash Records Bureau of the Texas Department of Public Safety. The data
are given in Table 5.1.

Stamey & Hamilton (2006) used the following methods: a Wald interval, a t interval with Satterth-
waite’s degrees of freedom, and two Bayesian intervals using noninformative priors. In Table 5.2 the
four methods used by Stamey & Hamilton (2006) to obtain 95% confidence intervals can be seen, as
well as the two Bayesian methods that we considered. The purpose of this experiment was to estimate
the number of DWI involved fatal accidents per holiday, and also to see if less accidents occur during
the summer holidays than during the winter holidays. Please note that the data are taken from the
Crash Records Bureau of the Texas Department of Public Safety, the summer holidays are therefore
Memorial Day, July 4 and Labour Day, and the winter holidays are Thanksgiving, Christmas and New
Year’s Eve. Table 5.2 indicates the 95% confidence intervals for the two linear functions.

Table 5.1: Number of DWI involved fatal motor vehicle accidents during six major holidays (2000).

Holiday No. of Accidents
Memorial Day 0
July 4 5
Labour Day 2
Thanksgiving 11
Christmas 8
New Year’s Eve 9
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Table 5.2: 95% confidence intervals for the contrasts for DWI - involved fatal motor vehicle accidents.

Contrast Wald Student’s Bayes Bayes
t with t

Average number of DWI
accidents per holiday (3.9,7.77) (3.87,7.80) (4.31,8.35) (4.29,8.38)
a = (1/6,1/6,1/6,1/6,1/6,1/6)

Winter vs. Summer
a = (−1/3,−1/3,−1/3,1/3,1/3,1/3) (3.13,10.87) (3.07,10.93) (2.97,11.03) (2.91,11.09)

Contrast Bayes Bayes Bayes
Jef PMP PMP*

Average number of DWI
accidents per holiday (4.48,8.48) (4.21,8.09)
a = (1/6,1/6,1/6,1/6,1/6,1/6)

Winter vs. Summer
a = (−1/3,−1/3,−1/3,1/3,1/3,1/3) (3.14,11.20) (3.19,11.34) (3.17,11.07)

From Table 5.2 it can be seen that the Wald interval and the Student’s t interval imply the average
number of DWI - involved fatal accidents per holiday do not exceed four, while the Bayesian intervals
imply that the average number exceeds four. The upper limits of the Bayesian methods exceed eight,
while the Wald and Student’s t upper limits are less than eight. For the contrast between the summer
holidays and the winter holidays, it is noted that all the intervals are considerably greater than zero,
which indicates that fatal accidents were more common in winter than in the summer. This was also
noted by Stamey & Hamilton (2006). The Bayesian methods that we suggested compare well with the
other intervals.

5.4.2 Simulation Study I

In this section we will look into the expected widths and the coverage probabilities of six methods for
constructing confidence intervals. To examine the coverage percentages the following simulation pro-
cedure was proposed by Stamey & Hamilton (2006). They first created Poisson means λi, i = 1, . . . ,k,
from a uniform distribution on the interval (0 , 5) , for a given number of theoretical populations k.

They then simulated X i ∼ P(λi) , i = 1, . . . ,k, and compared the confidence intervals for each of the
four methods based on the drawn observations and on the specified contrast coefficients ai, i = 1, . . . ,k.
To obtain the coverage probabilities the percentages of times over 100000 draws that each confidence
interval contains the true value of the contrast δ = ∑k

i=1 aiλi were calculated and to obtain the expected
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widths, the average width of each interval was calculated.

Table 5.3: (a) Average coverage probabilities and (b) average widths for contrasts where λi ∈ (0 , 5) .

Contrast Wald Student’s Bayes Bayes Bayes Bayes Bayes
t with t Jef PMP PMP*

k = 2
(1,−1) (a) 91.1% 98.3% 96.9% 99.1% 96.1% 95.66% 95.32%

(b) 8.40 10.09 9.28 11.27 9.44 10.16 9.59(1
2 ,

1
2

)
(a) 91.2% 97.8% 96.7% 99.2% 95.6% 96.22%
(b) 4.12 5.08 4.64 5.63 4.53 4.46

k = 3(
1,−1

2 ,−
1
2

)
(a) 93.5% 96.4% 96.5% 98.2% 95.9% 96.06% 95.19%
(b) 7.24 8.31 8.05 9.32 8.20 8.68 8.16(1

3 ,
1
3 ,

1
3

)
(a) 91.6% 95.7% 96.7% 98.3% 94.8% 95.61%
(b) 3.46 3.85 3.83 4.28 3.80 3.64

k = 4(1
2 ,

1
2 ,−

1
2 ,−

1
2

)
(a) 94.8% 96.7% 97.1% 98.2% 95.5% 96.16% 95.49%
(b) 6.05 6.51 6.68 7.20 6.81 7.05 6.59(

1,−1
3 ,−

1
3 ,−

1
3

)
(a) 92.2% 94.8% 95.9% 97.5% 95.5% 96.44% 95.76%
(b) 6.74 7.78 7.55 8.73 7.73 8.15 7.65(1

4 ,
1
4 ,

1
4 ,

1
4

)
(a) 92.7% 95.1% 96.1% 97.4% 93.4% 95.73%
(b) 3.02 3.25 3.38 3.60 3.33 3.14

k = 5(1
5 ,

1
5 ,

1
5 ,

1
5 ,

1
5

)
(a) 93.1% 94.8% 95.5% 96.6% 93.7% 95.52%
(b) 2.72 2.87 3.00 3.17 2.99 2.82(

1,−1
4 ,−

1
4 ,−

1
4 ,−

1
4

)
(a) 91.2% 93.8% 95.4% 97.1% 94.6% 96.88% 95.85%
(b) 6.48 7.56 7.28 8.50 7.39 7.80 7.34(1

3 ,
1
3 ,

1
3 ,−

1
2 ,−

1
2

)
(a) 94.6% 96.1% 96.9% 97.8% 96.7% 96.21% 95.56%
(b) 5.53 5.89 6.10 6.51 6.21 6.38 5.99

From Table 5.3 it can be seen that the Wald interval is overall the poorest performer when all the
Poisson rates are expected to be small, because the coverage never reached 95%. Stamey & Hamilton
(2006) used the t distribution, to widen the intervals, but also did not get completely satisfactory results.
When using the student’s t distribution, they still got coverage results that are below nominal, but in
most cases they were close to nominal, except for the case where k = 5. According to Stamey &
Hamilton (2006) the Bayesian procedure based on the Jeffreys noninformative prior performed the
best for the small-rate cases. The coverage is above or at nominal for every case. The interval is also
in many cases narrower on average than the interval based on the student’s t. The interval based on
student’s t using the Bayesian prior estimator also has coverage above nominal in every case, but is
wider than the Bayesian interval using the standard normal coefficient. The interval procedures using
the Jeffreys and probability matching priors, the last three columns from Table 5.3, compare well with
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the other procedures. The average widths also compare well with the other procedures. In Table 5.3,

the column Bayes PMP gives the results when the prior, πPM (λ ) ∝
{

∑k
i=1 a2

i λi
} 1

2 , is used and the

column Bayes PMP* gives the results when the prior, πPM∗ (λ ) ∝
{

∑k
i=1 a2

i λi
} 1

2 ∏k
i=1 λ−1

i , is used.
Stamey & Hamilton (2006) also considered another simulation study, to see what impact larger

expected counts would have on the intervals. They used exactly the same methods as in the previ-
ous simulation study, the only difference is that in this case the Poisson rates were generated from a
uniform distribution on the interval (5 , 10) . In the previous simulation study the Poisson rates were
generated from a uniform distribution on the interval (0 , 5) . The results (coverage percentages and
interval widths) calculated by them are given in the first four columns of Table 5.4. In the last three
columns the results are given when using the Jeffreys and probability matching priors. In Table 5.4, the

column Bayes PMP gives the results when the prior, πPM (λ ) ∝
{

∑k
i=1 a2

i λi
} 1

2 , is used and the column

Bayes PMP* gives the results when the prior, πPM∗ (λ ) ∝
{

∑k
i=1 a2

i λi
} 1

2 ∏k
i=1 λ−1

i , is used.

Table 5.4: (a) Average coverage probabilities and (b) average widths for contrasts where λi ∈ (5 , 10).

Contrast Wald Student’s Bayes Bayes Bayes Bayes Bayes
t with t Jef PMP PMP*

k = 2
(1,−1) (a) 95.1% 96.1% 95.9% 96.7% 94.8% 94.76% 93.48%

(b) 15.01 15.68 15.53 16.22 15.69 16.24 15.66(1
2 ,

1
2

)
(a) 93.4% 94.6% 95.3% 96.5% 94.2% 95.09%
(b) 7.51 7.84 7.76 8.11 7.70 7.58

k = 3(
1,−1

2 ,−
1
2

)
(a) 94.5% 95.5% 95.4% 96.3% 95.6% 95.02% 93.88%
(b) 13.00 13.55 13.44 14.03 13.43 13.87 13.39(1

3 ,
1
3 ,

1
3

)
(a) 93.9% 94.7% 95.5% 96.1% 95.9% 95.06%
(b) 6.46 6.33 6.36 6.54 6.28 6.20

k = 4(1
2 ,

1
2 ,−

1
2 ,−

1
2

)
(a) 95.1% 95.6% 95.8% 96.3% 95.5% 95.00% 94.52%
(b) 10.68 10.91 11.04 11.26 11.12 11.27 10.91(

1,−1
3 ,−

1
3 ,−

1
3

)
(a) 94.0% 95.1% 94.7% 95.8% 94.1% 95.00% 94.66%
(b) 12.24 12.85 12.67 13.29 12.80 13.06 12.60(1

4 ,
1
4 ,

1
4 ,

1
4

)
(a) 94.2% 94.8% 95.4% 95.9% 94.8% 94.71%
(b) 5.34 5.45 5.52 5.63 5.50 5.36

k = 5(1
5 ,

1
5 ,

1
5 ,

1
5 ,

1
5

)
(a) 94.4% 94.8% 95.2% 95.6% 94.2% 94.74%
(b) 4.78 4.86 4.94 5.02 4.91 4.76(

1,−1
4 ,−

1
4 ,−

1
4 ,−

1
4

)
(a) 93.6% 95.0% 94.5% 95.7% 95.5% 95.46% 94.64%
(b) 11.83 12.49 12.24 12.92 12.19 12.55 12.15(1

3 ,
1
3 ,

1
3 ,−

1
2 ,−

1
2

)
(a) 95.0% 95.4% 95.7% 96.2% 95.3% 95.35% 94.42%
(b) 9.75 9.94 10.08 10.28 10.1 10.27 9.93
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As in the previous simulation study the Wald interval is again overall the poorest performer. Stamey
& Hamilton (2006) could not clearly state whether the interval based on the Bayesian or the interval
based on the student’s t performed the best in this case. Both have coverages that are slightly below
nominal for some contrasts, but in most cases the coverage is usually quite close to nominal. From
the second last column of Table 5.4, the probability matching prior, compares well with the other
procedures in the cases where there is a linear contrast of Poisson parameters. This results in coverage
at or just above nominal level in each case. The interval widths also compare well with the other
procedures used.

5.4.3 Simulation Study II - Comparing Two Poisson Means

Krishnamoorthy & Thomson (2004) considered the problem of hypothesis testing for two Poisson
means. They compared the usual conditional test (C - test) to a test based on estimated p - values
(E - test). The C - test is due to Przyborowski & Wilenski (1940) and it is based on the conditional
distribution of X1 given X1 +X2, which follows a binomial distribution whose success probability is a
function of the ratio λ 1/λ 2.

Here

X1 =
n1

∑
i=1

X1i ∼ P(n1λ1) ,

independently distributed of

X2 =
n2

∑
i=1

X2i ∼ P(n2λ2) (5.8)

where X11,X12, . . . ,X1n1 and X21,X22, . . . ,X2n2 are independent samples, respectively from P(λ1)

and P(λ2) distributions. Let k1 and k2 be the observed values of X1 and X2, respectively.
The p -value for testing

H0 : λ1 −λ2 ≤ d vs Ha : λ1 −λ2 > d (5.9)

is P
(
TX1,X2 ≥ Tk1,k2 |H0

)
which involves the unknown parameter λ2, and where d ≥ 0 is a given

number and

TX1,X2 =
X1/n1 − X2/n2 −d√

X1/n1
n1

+
X2/n2

n2

is the pivot statistic for the testing problem given n1,k1,n2 and k2.
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The observed value of the pivot statistic is given by

Tk1,k2 =
k1/n1 − k2/n2 −d√

k1/n1
n1

+
k2/n2

n2

.

Krishnamoorthy & Thomson (2004) give the following estimate for λ 2

λ̂2k =
k1 + k2

n1 +n2
− dn1

n1 +n2
.

Using this λ̂2k, Krishnamoorthy & Thomson (2004) estimated the p - value by

P
(
TX1,X2 ≥ Tk1,k2 |H0

)
=

∞

∑
x1=0

∞

∑
x2=0

e−n1(λ̂2k+d)
[
n1

(
λ̂2k +d

)]x1

x1!

e−n2λ̂2k

(
n2λ̂2k

)x2

x2!
×

I
[
TX1,X2 ≥ Tk1,k2

]
where I [·] denotes the indicator function. For given nominal level α , the test rule is to reject H0 in
Equation 5.9 whenever the estimated p - value is less than α . In view of Equation 5.8, without loss of
generality, we can take n1 = n2 = 1.

Krishnamoorthy & Thomson (2004) compared the C - and E - tests by looking at the size and the
power of the tests at different nominal levels and also at different values for λ1 and λ2. They found that
the E - test is almost exact and that it is more powerful than the C - test. We will compare Bayesian
procedures to the tests used in Krishnamoorthy & Thomson (2004). For the Bayesian procedures we

will use the Jeffreys prior, the probability matching prior, a third prior: πA (λ ) ∝ λ− 1
4

1 λ− 1
4

2 and a fourth

prior: πB (λ ) ∝ λ− 3
8

1 λ− 3
8

2 .
From Theorem 5.1, the probability matching prior is given by

πPM (λ1,λ2) ∝
{

2
∑

i=1
a2

i λi

} 1
2

=
√

λ1 +λ2.

When using the probability matching prior, the posterior distribution of λ1,λ2 is given by

πPM (λ1,λ2 |x1,x2 ) ∝

{
2

∑
i=1

a2
i λi

} 1
2 2

∏
i=1

λ xi
i e−λi.

The Jeffreys prior, πJ, is given by

πJ (λ1,λ2) ∝ |F (λ1,λ2)|
1
2 =

(
2

∏
i=1

λi

)− 1
2

= λ− 1
2

1 λ− 1
2

2

where F (λ1,λ2) is the Fisher information matrix connected with the likelihood function.
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When using the Jeffreys prior, the posterior distribution of λ1,λ2 is given by

πJ (λ1,λ2 |x1,x2 ) ∝

(
2

∏
i=1

λi

)− 1
2 2

∏
i=1

λ xi
i e−λi =

2

∏
i=1

λ xi− 1
2

i e−λi.

The posterior distribution of λ1,λ2 is thus the product of 2 independently distributed
Gamma

(
xi +

1
2 ,1
)

variates.
The third prior, πA, is given by

πA (λ1,λ2) ∝ λ− 1
4

1 λ− 1
4

2 .

When using this prior, the posterior distribution of λ1,λ2 is given by

πA (λ1,λ2 |x1,x2 ) ∝

(
2

∏
i=1

λi

)− 1
4 2

∏
i=1

λ xi
i e−λi =

2

∏
i=1

λ xi− 1
4

i e−λi.

The posterior distribution of λ1,λ2 is thus the product of 2 independently distributed
Gamma

(
xi +

3
4 ,1
)

variates.
The fourth prior, πB, is given by

πB (λ1,λ2) ∝ λ− 3
8

1 λ− 3
8

2 .

When using this prior, the posterior distribution of λ1,λ2 is given by

πB (λ1,λ2 |x1,x2 ) ∝

(
2

∏
i=1

λi

)− 3
8 2

∏
i=1

λ xi
i e−λi =

2

∏
i=1

λ xi− 3
8

i e−λi.

The posterior distribution of λ1,λ2 is thus the product of 2 independently distributed
Gamma

(
xi +

5
8 ,1
)

variates.
Rice (1995) gives the following definition for the size of a test, which is also known as a type I

error:
H0 may be rejected when it is true. Such an error is called a type I error, and its probability is

denoted by α .
In Figures 5.1 - 5.3, we compare the size of the tests using Bayesian procedures to the two tests from

Krishnamoorthy & Thomson (2004). The Bayesian simulation procedure in the case of the probability
matching prior is as discussed in Section 5.3. The size of the tests as a function of λ = λ1 = λ2 at the
three different nominal level under the null hypothesis H0 : λ1−λ2 = 0 are given in Figures 5.1 to 5.3.
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Figure 5.1: Size of the tests at the 5% nominal level.

From Figure 5.1 it can be seen that the prior, πA ∝ λ− 1
4

1 λ− 1
4

2 , reaches the nominal level when
λ1 = λ2 = 5 and from there onwards it attains this level. Whereas the Jeffreys and probability matching
priors reach the nominal level at λ1 = λ2 = 2, and then only at λ1 = λ2 = 10 again, from there onwards it

attains this level. The prior, πB ∝ λ− 3
8

1 λ− 3
8

2 , is an improvement on the Jeffreys and probability matching
priors. From Krishnamoorthy & Thomson (2004) the C - test never reaches the nominal level, and the
E - test reaches the nominal level only at λ1 = λ2 = 10. We must, however, mention that the graphs for
the E - and C - tests are scanned in using a MATLABr program. This means that some small technical
errors may occur in the graphs. In general one can say that the Jeffreys and probability matching priors
tend to give type I error rates that are somewhat larger than the chosen alpha. The error rates of the

priors πA ∝ λ− 1
4

1 λ− 1
4

2 and πB ∝ λ− 3
8

1 λ− 3
8

2 seem to be more accurate.
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Figure 5.2: Size of the tests at the 10% nominal level.

From Figure 5.2 it can be seen that the prior, πA ∝ λ− 1
4

1 λ− 1
4

2 , reaches the nominal level when
λ1 = λ2 = 4 and from here onwards it attains this level. Whereas the Jeffreys prior and the prior,

πB ∝ λ− 3
8

1 λ− 3
8

2 , reach the nominal level at λ1 = λ2 = 1, and then only at λ1 = λ2 = 5 again, from there
onwards it attains this level. The probability matching prior follows a similar pattern, but it reaches the
nominal level at λ1 = λ2 = 1, and then only at λ1 = λ2 = 10 again, from there onwards it attains this
level. From Krishnamoorthy & Thomson (2004) the C - test never reaches the nominal level, and the E

- test reaches the nominal level λ1 = λ2 = 1, and then only at λ1 = λ2 = 13 again, from there onwards
it attains this level.
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Figure 5.3: Size of the tests at the 1% nominal level.

From Figure 5.3 it can be seen that the prior, πA ∝ λ− 1
4

1 λ− 1
4

2 , reaches the nominal level when λ1 =

λ2 = 4.5 and from here onwards it attains this level. Whereas the Jeffreys and probability matching
priors never stay constant at the nominal level, it fluctuates most of the time above the nominal level.

The prior, πB ∝ λ− 3
8

1 λ− 3
8

2 , follows a similar pattern but for a lesser extent than that of the Jeffreys and
probability matching priors. Figure 5.3, however, enlarges the fluctuation of the observed error rate.
A more direct comparison is to plot the error rate on the same scale. In terms of absolute deviations
the Jeffreys and probability matching priors are not performing more poorly as α decreases. In fact
the mean deviations for the Jeffreys prior from the nominal α values 0.01, 0.005 and 0.001 are 0.009,
0.0014 and 0.000412 respectively. From Krishnamoorthy & Thomson (2004) the C - test never reaches
the nominal level, and the E - test also reaches the nominal level at λ1 = λ2 = 3, and then at λ1 = λ2 = 5
again, from there onwards it attains this level.

From Figures 5.1 to 5.3, it can be seen that the Bayesian procedures compare relatively well with
the E - test from Krishnamoorthy & Thomson (2004). Out of the four Bayesian procedures, the proce-

dures using the priors πA ∝ λ− 1
4

1 λ− 1
4

2 and πB ∝ λ− 3
8

1 λ− 3
8

2 give the best results. The C - test is the poorest
performer.
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In Figures 5.4 to 5.6, we compare the power of the tests using Bayesian procedures to the two tests
from Krishnamoorthy & Thomson (2004). The power of the tests as a function of λ1 at the nominal
level α = 0.05 under the alternative hypothesis Ha : λ1 −λ2 > 0 are given in Figures 5.4 to 5.6.

Rice (1995) gives the following definition for a type II error:
H0 may be accepted when it is false. Such an error is called a type II error, and its probability is

denoted by β .
The probability that H0 is rejected when it is false is called the power of the test, the power equals

1−β .
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Figure 5.4: Power of the test as a function of λ1 when λ2 = 0.1.

From Figure 5.4 it can be seen that the power of the test when using the prior, πA ∝ λ− 1
4

1 λ− 1
4

2 , is
smaller than the power of the tests when using the Jeffreys prior, probability matching prior and the

prior, πB ∝ λ− 3
8

1 λ− 3
8

2 . The Jeffreys prior, probability matching prior and the prior, πB ∝ λ− 3
8

1 λ− 3
8

2 , and
the E- test give almost exactly the same results. From Krishnamoorthy & Thomson (2004) the power
of the E- test is larger than the power of the C - test.
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Figure 5.5: Power of the test as a function of λ1 when λ2 = 2.

From Figure 5.5 it can be seen that the power of the test when using the prior, πA ∝ λ− 1
4

1 λ− 1
4

2 , is
still a bit smaller than the power of the tests when using the Jeffreys prior, probability matching prior

and the prior, πB ∝ λ− 3
8

1 λ− 3
8

2 . The Jeffreys and probability matching priors give almost exactly the

same results. The prior, πA ∝ λ− 1
4

1 λ− 1
4

2 , and the E- test give almost exactly the same results. From
Krishnamoorthy & Thomson (2004) the power of the E - test is larger than the power of the C - test.
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Figure 5.6: Power of the test as a function of λ1 when λ2 = 10.

From Figure 5.6 it can be seen that the power of the test when using the prior, πA ∝ λ− 1
4

1 λ− 1
4

2 , is
almost the same as the power of the tests when using the Jeffreys prior, probability matching prior

and the prior, πB ∝ λ− 3
8

1 λ− 3
8

2 . From Krishnamoorthy & Thomson (2004) the power of the E - test is
still larger than the power of the C - test, but they are almost equal to each other. The four tests using
Bayesian methods and the E - test all give almost exactly the same results. We can conclude from the
Bayesian procedures and from the methods by Krishnamoorthy & Thomson (2004), that as the sample
sizes increase, i.e. as the values of λ1 and λ2 increase, the powers of the tests are increasing. Also, as
the values of λ1 and λ2 increase, the difference between the powers of the different tests are smaller.
The Bayesian procedures compare well with the procedures by Krishnamoorthy & Thomson (2004).
From Figures 5.4 - 5.6 it is also clear that the powers of Jeffreys and probability matching priors are
larger than those of the E - test. This could be expected because the type I error rates of these two
priors are usually somewhat larger that the chosen alpha value.
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5.5 Conclusion

In this chapter the probability matching prior for a linear contrast of Poisson parameters, δ =∑k
i=1 aiλi,

(i.e. ∑k
i=1 ai = 0) was derived. We also indicated what the probability matching prior should be when

∑k
i=1 ai ̸= 0. We compared the four approximate confidence intervals for linear contrasts of Poisson

rates proposed by Stamey & Hamilton (2006) to confidence intervals using Bayesian procedures, when
using the probability matching prior. Simulation studies have shown that the Wald interval performs
the poorest. The probability matching prior also performs satisfactory. We then addressed the prob-
lem of hypothesis testing about two Poisson means, by looking at the size and power of different
tests. We compared four Bayesian procedures to two procedures used by Krishnamoorthy & Thomson
(2004). We used the Jeffreys prior, the probability matching prior, a third prior which is proportional to

λ− 1
4

1 λ− 1
4

2 and a fourth prior which is proportional to λ− 3
8

1 λ− 3
8

2 and compared them to their results. The
Bayesian procedures compared well with the procedures used by Krishnamoorthy & Thomson (2004).
The C - test performed most poorly of the six tests.



Chapter 6

Estimation for Binomial Rates from Pooled
Samples

6.1 Introduction

In this chapter we will look into confidence intervals for linear functions of binomial rates from pooled
samples. We will investigate the performance of Bayesian credibility intervals for a single proportion
as well as the difference of two binomial proportions estimated from pooled samples. In previous
chapter we considered equal tail Bayesian credible intervals, in this chapter HPD intervals will be con-
sidered. Where the HPD interval will have a shorter interval length than the equal tail interval. Group
testing has been used in many fields of study, as individual testing can be too time consuming and
pooled testing is more cost-effective. Group testing is where units are pooled together and tested as
a group rather than individually. Biggerstaff (2008) used asymptotic methods to derive Wald, profile
score and profile likelihood ratio intervals. Biggerstaff (2008) also adapted the Wilson score-based
interval of Newcombe. Tu et al. (1995) investigated the maximum likelihood estimator for equal pool
sizes. Hepworth (1996) considered the sequential testing of groups of different sizes, by constructing
exact confidence intervals for problems involving unequal sized groups. Hepworth (2005) also con-
sidered asymptotic interval estimation methods where groups are of different sizes. Hepworth (2005)
investigated four methods, two based on the distribution of the maximum likelihood estimate (MLE),
one on the score statistic and one on the likelihood ratio. Hepworth (2005) recommended the method
based on the score statistic with a correction for skewness.

114
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6.2 Prior Distribution for Binomial Proportions from Pooled Sam-
ples

Assume that the proportion of successes in a given population is p. We will refer to an infected
individual as a success in a binomial trial. Using the notation from Biggerstaff (2008), let N individuals
be sampled independently from the population, and then be grouped into pools. The size of a pool will
be indicated by mi, for i= 1,2, . . . ,M, where M is the number of distinct pool sizes, let ni be the number
of pools of size mi, and let X i be the number of the ni pools that is positive. Assume that X1,X2, . . . ,XM

are independent binomial random variables with X i ∼ Bin(ni,1− (1− p)mi) .

The likelihood function is given by

L(p |x1,x2, . . . ,xM ) ∝
M

∏
i=1

{
[1− (1− p)mi ]xi [(1− p)mi ]ni−xi

}
.

The derivation of the Fisher information is given in Appendix E in Theorem E.1, derived by Walter
et al. (1980). The Fisher information is given by

F (p) =
M

∑
i=1

{
m2

i ni (1− p)mi−2

[1− (1− p)mi]

}
.

As mentioned in previous chapters, the Jeffreys prior is proportional to the square root of the
determinant of the Fisher information and is given by

πJ (p) ∝ |F (p)|
1
2

=

(
M

∑
i=1

{
m2

i ni (1− p)mi−2

[1− (1− p)mi]

}) 1
2

. (6.1)

The joint posterior distribution when using the Jeffreys prior is given by

πJ (p |data) ∝ πJ (p)×L(p |data)

∝

(
M

∑
i=1

{
m2

i ni (1− p)mi−2

[1− (1− p)mi]

}) 1
2

×
M

∏
i=1

{
[1− (1− p)mi]xi [(1− p)mi ]ni−xi

}
for 0 ≤ p ≤ 1. (6.2)

Theorem 6.1. The prior distribution

πJ (p |data) ∝

(
M

∑
i=1

{
m2

i ni (1− p)mi−2

[1− (1− p)mi]

}) 1
2 M

∏
i=1

{
[1− (1− p)mi]xi [(1− p)mi ]ni−xi

}
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converges and exists if at least one xi > 0. Where xi ∈ {0,1, . . . ,ni} and 0 < p ≤ 1.

Proof. Let at least one xi > 0, say x1 > 0, then

πJ (p |data) ∝

(
M

∑
i=1

{
m2

i ni (1− p)mi−2

[1− (1− p)mi]

}) 1
2 M

∏
i=1

{
[1− (1− p)mi]xi [(1− p)mi ]ni−xi

}
= [(1− p)m1]n1−x1

M

∏
i=2

{
[1− (1− p)mi]xi [(1− p)mi ]ni−xi

}

×

[
M

∑
i=1

{
[1− (1− p)m1 ]2x1 m2

i ni (1− p)mi−2

[1− (1− p)mi]

}] 1
2

The first term (i= 1) of the sum in the square brackets has the form [1− (1− p)m1]2x1−1 m2
1n1 (1− p)m1−2.

lim
p→0+

[1− (1− p)m1]2x1−1 m2
1n1 (1− p)m1−2 = 0.

The other term (i > 1) has the form

[1− (1− p)m1]2x1 m2
i ni (1− p)mi−2

[1− (1− p)mi]

and

lim
p→0+

[1− (1− p)m1]2x1 m2
i ni (1− p)mi−2

[1− (1− p)mi ]
= 0.

Thus, πJ (p |data)→ 0 as p → 0+. We can therefore conclude that πJ (p |data) is limited to (0,1] and
therefore

´ 1
0 πJ (p |data)d p exists.

Theorem 6.2. The prior distribution

πJ (p |data) ∝

(
M

∑
i=1

{
m2

i ni (1− p)mi−2

[1− (1− p)mi]

}) 1
2 M

∏
i=1

{
[1− (1− p)mi]xi [(1− p)mi ]ni−xi

}
converges and exists if all xi = 0. Where xi ∈ {0,1, . . . ,ni} and 0 < p ≤ 1.

Proof. Consider two functions, g(p) and h(p).
Let

g(p) =
1
√

p
for 0 < p ≤ 1
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and

h(p) = [(1− p)m1]n1−x1
M

∏
i=2

{
[1− (1− p)mi]xi [(1− p)mi ]ni−xi

}

×

[
M

∑
i=1

{
[1− (1− p)m1]2x1 m2

i ni (1− p)mi−2

[1− (1− p)mi]

}] 1
2

Then

h(p)
g(p)

=
√

ph(p)

=
M

∏
i=1

(1− p)mini ×

[
M

∑
i=1

{
m2

i ni p(1− p)mi−2

[1− (1− p)mi]

}] 1
2

For each i = 1,2, . . . ,M we have.

lim
p→0+

p(1− p)mi−2

1− (1− p)mi = lim
p→0+

(1− p)mi−2 − p(mi −2)(1− p)mi−3

mi (1− p)mi−1

=
1
mi

.

Thus

lim
p→0+

h(p)
g(p)

=

√
M

∑
i=1

mini > 0

Since
´ 1

0 g(p)d p converges,
´ 1

0 h(p)d p will also converge and we can conclude that
´ 1

0 πJ (p |data)d p

exists and converges.

If M = 1, m1 = m, n1 = n and x1 = x, it follows from Equation 6.1 that

πJ (p) ∝

{
m2n(1− p)m−2

[1− (1− p)m]

} 1
2

∝ [(1− p)m]
1
2−

1
m [1− (1− p)m]−

1
2 . (6.3)

The posterior distribution when using the Jeffreys prior is given by

πJ (p |data) ∝ [(1− p)m]n−x+ 1
2−

1
m [1− (1− p)m]x−

1
2 for 0 ≤ p ≤ 1. (6.4)
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Theorem 6.3. When θ = (1− p)m, the posterior distribution of θ will be Beta
(
x+ 1

2 ,n− x+ 1
2

)
, i.e.

πJ (θ |data) ∝ (1−θ)n−x− 1
2 θ x− 1

2 . (6.5)

Proof. From Equation 6.4, the posterior distribution is given as

πJ (p |data) ∝ [(1− p)m]n−x+ 1
2−

1
m [1− (1− p)m]x−

1
2 for 0 ≤ p ≤ 1.

Let θ = (1− p)m, then p = 1−θ
1
m , and∣∣∣∣d p

dθ

∣∣∣∣ =
1
m

θ
1
m−1

πJ (θ |data) ∝
[(

1−
(

1−θ
1
m

))m]n−x+ 1
2−

1
m
[
1−
(

1−
(

1−θ
1
m

))m]x− 1
2 1

m
θ

1
m−1

=
[(

θ
1
m

)m]n−x+ 1
2−

1
m
[
1−
(

θ
1
m

)m]x− 1
2 1

m
θ

1
m−1

= θ n−x+ 1
2−

1
m (1−θ)x− 1

2
1
m

θ
1
m−1

=
1
m

θ n−x+ 1
2−

1
m+ 1

m−1 (1−θ)x− 1
2

∴ πJ (θ |data) ∝ (1−θ)x− 1
2 θ n−x− 1

2 . (6.6)

Using Equation 6.6 and transformation, the posterior distribution for p= 1−θ
1
m can be determined,

where
∣∣∣dθ

d p

∣∣∣= m(1− p)m−1.

∴ πJ (p |data) =
m

B
(
x+ 1

2 ,n− x+ 1
2

) [(1− p)m]n−x+ 1
2−

1
m [1− (1− p)m]x−

1
2 . (6.7)
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6.3 Example and Simulation Studies

6.3.1 Simulation Study I - Single Proportion

In this section we will consider a simulation study for proportions from pooled samples. A single
proportion will be considered where M = 1, M = 2, M = 3 and M = 4. We will look at coverage, left
noncoverage, right noncoverage, symmetry and interval length. Biggerstaff (2008) defines noncover-
age symmetry as the difference in proportional noncoverage, i.e.

Symmetry =
P [Left noncoverage]−P [Right noncoverage]
P [Left noncoverage]+P [Right noncoverage]

with a negative value indicating mostly right noncoverage and a positive value indicating mostly left
noncoverage. A value of zero for symmetry indicates symmetric noncoverage.

6.3.1.1 Single proportion: M = 1

The posterior distribution is given in Equation 6.7 when the Jeffreys prior is used. So for 200 pools
each of size 5, n = 200 and m = 5. The posterior distribution will be

πJ (p |data) =
5

B
(
x+ 1

2 ,200.5− x
) [(1− p)5

]200.3−x [
1− (1− p)5

]x− 1
2
.

The simulation results are given in Table 6.1. The average length and the mean of the expected
value, as well as the mode can also be found by averaging the posterior measures over all values of
X for a given p. This is given in Table 6.1 for p = 0.001, 0.0015, 0.002, 0.005 and 0.01, where the
coverage is for the 95% HPD interval. Range X refers to the range of X values for which the posterior
HPD interval contains the true value of p.

Table 6.1: Simulation results when M = 1, n = 200 and m = 5, for different values of p.

p Range X Coverage Left Right Symmetry Length Mean Mode
non- non-

coverage coverage
0.0010 0 - 4 0.9965 0.0035 0 1 0.0038 0.0015 0.0007
0.0015 0 - 5 0.9958 0.0042 0 1 0.0045 0.0020 0.0011
0.0020 0 - 5 0.9842 0.0158 0 1 0.0052 0.0025 0.0016
0.0050 2 - 10 0.9478 0.0405 0.0118 0.549 0.0084 0.0055 0.0045
0.0100 5 - 16 0.9497 0.0302 0.0201 0.200 0.0120 0.0105 0.0095

Now consider the case where we have 20 pools each of size 50, that is n = 20 and m = 50. The
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posterior distribution will be

πJ (p |data) =
50

B
(
x+ 1

2 ,20.5− x
) [(1− p)50

]20.48−x [
1− (1− p)50

]x− 1
2
.

The simulation results are given in Table 6.2. The average length and the mean of the expected
value, as well as the mode can also be found by averaging the posterior measures over all values of
X for a given p. This is given in Table 6.2 for p = 0.001, 0.0015, 0.002, 0.005 and 0.01, where the
coverage is for the 95% HPD interval. Range X refers to the range of X values for which the posterior
HPD interval contains the true value of p.

Table 6.2: Simulation results when M = 1, n = 20 and m = 50, for different values of p.

p Range X Coverage Left Right Symmetry Length Mean Mode
non- non- ×1 000 ×1 000 ×1 000

coverage coverage
0.0010 0 - 3 0.9854 0.0146 0 1 3.888 1.513 0.689
0.0015 0 - 4 0.9878 0.0122 0 1 4.655 2.026 1.118
0.0020 0 - 5 0.9911 0.0089 0 1 5.389 2.540 1.575
0.0050 2 - 8 0.9359 0.0195 0.0446 -0.392 9.024 5.631 4.516
0.0100 5 - 12 0.9254 0.0188 0.0558 -0.496 13.919 10.815 9.521

6.3.1.2 Single proportion: M = 2

Let M = 2, where m1 = 5, m2 = 10, n1 = 100 and n2 = 50, that is 100 pools of size 5 and 50 pools
of size 10. The posterior distribution is given in Equation 6.2 when the Jeffreys prior is used. The
posterior distribution will therefore be

πJ (p |data) ∝

 2500(1− p)3[
1− (1− p)5

] + 5000(1− p)8[
1− (1− p)10

]
 1

2

×
[
1− (1− p)5

]x1
[
1− (1− p)10

]x2
(1− p)1000−5x1−10x2 . (6.8)

We can calculate the 95% HPD interval, mean, mode and interval length of the posterior for all combi-
nations of X = [x1 x2] and find all those values of X which yield an interval that contains the true value
of p.

The simulation results are given in Table 6.3, where the coverage is for the 95% HPD interval. The
range is omitted as it involves a large number of combinations.
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Table 6.3: Simulation results when M = 2, m1 = 5, m2 = 10, n1 = 100 and n2 = 50, for different values of p.

p Coverage Left Right Symmetry Length Mean Mode
noncoverage noncoverage

0.0010 0.9817 0.0183 0 1 0.0034 0.0015 0.0007
0.0015 0.9824 0.0176 0 1 0.0051 0.0020 0.0011
0.0020 0.8496 0.0153 0.1351 -0.797 0.0056 0.0025 0.0016
0.0050 0.9486 0.0107 0.0407 -0.583 0.0085 0.0055 0.0045
0.0100 0.9520 0.0168 0.0321 -0.301 0.0123 0.0105 0.0095

Notice that the length, mean and mode are similar to the case when M = 1 in Table 6.1. Also, the
coverage probability when p = 0.002 is very low compared to M = 1. That is because in the first case,
p = 0.002 falls just inside the credibility interval when x = 0 which has a relatively high probability,
while in the second case, it just misses the interval when x = [0 0] .

6.3.1.3 Single proportion: M = 3

Let M = 3, where m1 = 10, m2 = 25, m3 = 50, n1 = 20, n2 = 8 and n3 = 12, that is 20 pools of size
10, 8 pools of size 25 and 12 pools of size 50. The posterior distribution is given in Equation 6.2 when
the Jeffreys prior is used. The posterior distribution will therefore be

πJ (p |data) ∝

 2000(1− p)8[
1− (1− p)10

] + 5000(1− p)23[
1− (1− p)25

] + 30000(1− p)48[
1− (1− p)50

]
 1

2

×
[
1− (1− p)10

]x1
[
1− (1− p)25

]x2

×
[
1− (1− p)50

]x3
(1− p)1000−10x1−25x2−50x3 .

We calculate the 95% HPD interval, mean, mode and interval length of the posterior for all combina-
tions of X = [x1 x2 x3] and find all those values of X which yield an interval that contains the true value
of p.

The simulation results are given in Table 6.4, where the coverage is for the 95% HPD interval. The
range is omitted as it involves a large number of combinations.
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Table 6.4: Simulation results when M = 3, m1 = 10, m2 = 25, m3 = 50, n1 = 20, n2 = 8 and n3 = 12, for different
values of p.

p Coverage Left Right Symmetry Length Mean Mode
noncoverage noncoverage ×1 000 ×1 000 ×1 000

0.0010 0.9842 0.0157 0 1 3.9119 1.5146 0.6877
0.0015 0.9862 0.0138 0 1 4.6881 2.0231 1.1163
0.0020 0.9892 0.0108 0 1 5.4009 2.5321 1.5731
0.0050 0.9458 0.0108 0.0434 -0.5999 8.8797 5.5911 4.5121
0.0100 0.9357 0.0176 0.0467 -0.4538 13.3565 10.7042 9.5117

6.3.1.4 Single proportion: M = 4

Let M = 4, where m1 = 5, m2 = 10, m3 = 25, m4 = 50, n1 = 20, n2 = 40, n3 = 12 and n4 = 4, that
is 20 pools of size 5, 40 pools of size 10, 12 pools of size 25 and 4 pools of size 50. The posterior
distribution is given in Equation 6.2 when the Jeffreys prior is used. The posterior distribution will
therefore be

πJ (p |data) ∝

 500(1− p)3[
1− (1− p)5

] + 4000(1− p)8[
1− (1− p)10

] + 7500(1− p)23[
1− (1− p)25

] + 10000(1− p)48[
1− (1− p)50

]
 1

2

×
[
1− (1− p)5

]x1
[
1− (1− p)10

]x2
[
1− (1− p)25

]x3

×
[
1− (1− p)50

]x4
(1− p)1000−5x1−10x2−25x3−50x4 .

We calculate the 95% HPD interval, mean, mode and interval length of the posterior for all combina-
tions of X = [x1 x2 x3 x4] and find all those values of X which yield an interval that contains the true
value of p.

The simulation results are given in Table 6.5, where the coverage is for the 95% HPD interval. The
range is omitted as it involves a large number of combinations.

Table 6.5: Simulation results when M = 4, m1 = 5, m2 = 10, m3 = 25, m4 = 50, n1 = 20, n2 = 40, n3 = 12 and
n4 = 4, for different values of p.

p Coverage Left Right Symmetry Length Mean Mode
noncoverage noncoverage ×1 000 ×1 000 ×1 000

0.0010 0.9829 0.0171 0 1 3.8933 1.5084 0.6858
0.0015 0.9843 0.0157 0 1 4.6541 2.0128 1.1143
0.0020 0.8519 0.0130 0.1351 -0.8245 5.3496 2.5175 1.5712
0.0050 0.9411 0.0170 0.0419 -0.4242 8.6859 5.5480 4.5101
0.0100 0.9458 0.0161 0.0381 -0.4043 12.7852 10.6019 9.5091
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6.3.1.5 Single proportion: Averages

Results over all combinations are very similar, except that the coverage probabilities for p = 0.002 at
M = 2 and M = 4 are very low, 0.8496 and 0.8519 respectively. The interval length increases with p,
but stays reasonably constant when M increases. Table 6.6 gives the averages over p for the various
pool combinations while Table 6.7 gives the averages over combinations for given value of p. Table
6.8 gives the overall averages.

Table 6.6: Averages over all values of p.

M n m Coverage Left Right Symmetry Length
noncoverage noncoverage ×1 000

1 200 5 0.9748 0.0188 0.0064 0.7498 6.724
20 50 0.9651 0.0148 0.0201 0.4225 7.377

2 [100 50] [5 10] 0.9429 0.0157 0.0414 0.0639 6.981
3 [20 8 12] [10 25 50] 0.9682 0.0138 0.0180 0.3893 7.247
4 [20 40 12 4] [5 10 25 50] 0.9412 0.0158 0.0430 0.0694 7.074

Table 6.7: Averages over all pool combinations.

p Coverage Left Right Symmetry Length
noncoverage noncoverage ×1 000

0.0010 0.9862 0.0138 0 1 3.747
0.0015 0.9873 0.0127 0 1 4.707
0.0020 0.9332 0.0128 0.0540 0.2757 5.280
0.0050 0.9438 0.0197 0.0365 -0.2899 8.710
0.0100 0.9317 0.0199 0.0384 -0.2909 12.8861

Table 6.8: Overall averages.

Coverage Left Right Symmetry Length
noncoverage noncoverage ×1 000

0.9584 0.0158 0.0258 0.3390 7.0659

We considered the different pool size combinations which was used by Biggerstaff (2008). Table
6.9 gives the results from Biggerstaff (2008) and the results obtained by us using the Bayesian method.
The first five intervals in Table 6.9 are from Biggerstaff (2008).
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Table 6.9: Overall averages of coverage rates, noncoverages, symmetry and average lengths. Nominal coverage
is 95%.

Interval Coverage Left Right Symmetry Length
noncoverage noncoverage ×1 000

MIR 0.8070 0.0010 0.1920 -0.99 6.0000
Wald 0.8140 0.0027 0.1830 -0.97 6.5000
Likelihood ratio (LRT) 0.9660 0.0188 0.0150 0.11 7.6000
Profile score 0.9480 0.0476 0.0040 0.84 8.0000
Skewness corrected score 0.9660 0.0205 0.0136 0.20 7.8000
Bayesian 0.9584 0.0158 0.0258 0.34 7.0659

From Table 6.9 we see that the coverage rates obtained by the MIR and Wald intervals are far
below the nominal level of 0.95, this was also stated by Biggerstaff (2008). The other four intervals
give coverages close to the nominal level, with the profile score and the Bayesian intervals performing
slightly better. The results obtained from the Bayesian method by us compare well with the results
obtained from the other researcher. As mentioned, a value of zero symmetry indicates symmetric
noncoverage, the symmetry observed from the Bayesian method is equal to 0.34 which indicates mostly
left noncoverage.

6.3.2 Simulation Study II - Two Proportions

In this section we will consider a simulation study for proportions from pooled samples, for the dif-
ference between two proportions. We will consider two cases, M1 = M2 = 1 and M1 = M2 = 2. We
will look at coverage, distal noncoverage, mesial noncoverage, symmetry and interval length. Left
noncoverage is interpretable as distal noncoverage probability and right noncoverage is interpretable
as mesial noncoverage. It is desirable that these should be equal.

6.3.2.1 Difference between two proportions: M1 = M2 = 1

We use simulation to determine the properties of the posterior distribution of the difference according
to the following steps, for given values of p1 and p2, and for all possible values of x1 and x2:

• Step 1

Calculate the probabilities of outcomes x1 and x2 using the binomial distribution, and thus
P(x1,x2) = P(x1)P(x2).

• Step 2

Simulate a sample of 100 000 from each of the two marginal posteriors of p1 and p2, using the
beta distribution, using Equation 6.7.
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• Step 3

Now construct a sample of 100 000 differences, p1 − p2, and sort them.

• Step 4

Stepwise search the sorted sample for the shortest interval containing 95% of the observations,
and record the interval, length and mean of the sample.

• Step 5

This is now available for every combination of x1 and x2, as well as the probability. So for the
given values of p1 and p2, find all the intervals that cover the true value of p1 − p2 and sum all
the corresponding probabilities. This will give the coverage probability. In the same way we find
the distal and mesial probabilities and the average length.

Table 6.10 gives results for m1 = m2 = 50 and n1 = n2 = 20. Other simulations with different number
of pools and pool sizes gave very similar results.

Table 6.10: Coverage rates, distal, mesial, symmetry and average lengths for p1 − p2 when M1 = M2 = 1, m1 =
m2 = 50 and n1 = n2 = 20. Nominal coverage is 95%.

p1 − p2 Coverage Distal Mesial Symmetry Length
0.0015−0.0010 0.9794 0.0160 0.0046 -0.5504 0.0075
0.0020−0.0010 0.9857 0.0103 0.0040 -0.4431 0.0081
0.0050−0.0010 0.9520 0.0383 0.0096 -0.5991 0.0108
0.0100−0.0010 0.9468 0.0430 0.0101 -0.6192 0.0151
0.0020−0.0015 0.9673 0.0240 0.0087 -0.4696 0.0086
0.0050−0.0015 0.9646 0.0287 0.0067 -0.6194 0.0113
0.0100−0.0015 0.9568 0.0354 0.0078 -0.6396 0.0155
0.0050−0.0020 0.9537 0.0327 0.0135 -0.4146 0.0118
0.0100−0.0020 0.9536 0.0322 0.0143 -0.3858 0.0158
0.0100−0.0050 0.9547 0.0290 0.0162 -0.2825 0.0177

The coverage rates given in Table 6.10 are all above the nominal level of 0.95, except for the case
where we have p1 − p2 = 0.0100−0.0010. In this case the coverage rate is equal to 0.9468, which is
close to the nominal level. For all the cases, we have negative values for symmetry, which indicates
mostly right noncoverage.
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6.3.2.2 Difference between two proportions: M1 = M2 = 2

The problem here is more complex and there are simply too many combinations of outcomes when M

is larger than one. Also we cannot use the beta distribution to simulate from the marginal posteriors of
the values of p.

We use the following steps:

• Step 1

For a specific data set, say x = [x11 x12 x21 x22], we know the form of the marginal posteriors of
p1 and p2 as given in Equation 6.8, so we discretise them by calculating their values at small
intervals (0.0001) and then normalise them.

• Step 2

Now we have a probability for every discrete outcome of p1 and p2. Forming all possible com-
binations of p1 and p2 and their associated probabilities by using a grid, we have a distribution
for p1 − p2 for the given x.

• Step 3

After sorting, we can now search for the shortest 95% interval for p1 − p2 , using the associated
probabilities and also calculate the mean.

• Step 4

Steps 1 to 3 should be done for all possible values of x. The probability of x is the product of the
individual binomial probabilities for given p1 and p2 .

• Step 5

For the given p1 and p2, we find all the values of x which yielded an interval that covers the true
value of p1− p2, and sum their probabilities. This will give the coverage probability. In the same
way we find the distal and mesial probabilities and the average length.

This simulation was carried out for only one combination of pool sizes. They are: n11 = 100, m11 = 5,
n12 = 50, m12 = 10; n21 = 50, m21 = 10, n22 = 20, m22 = 25. Since the values of p are small, it is
not necessary to calculate steps 1 to 3 for all combinations of the x values. The probabilities for a
large number of positive outcomes can be regarded as negligibly small. For example, for 100 pools
(n = 100) of size 5 each (m = 5) and p = 0.001, the probability of more than 7 successes is less than
10−6. And then it must still be multiplied with the probabilities of the other pools outcomes. Results
are given in Table 6.11.
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Table 6.11: Coverage rates, distal, mesial, symmetry and average lengths for p1− p2 when M1 = M2 = 2, n11 =
100, m11 = 5, n12 = 50, m12 = 10; n21 = 50, m21 = 10, n22 = 20, m22 = 25. Nominal coverage is
95%.

p1 − p2 Coverage Distal Mesial Symmetry Length
0.0015−0.0010 0.9942 0.0043 0.0015 -0.4869 0.00848
0.0020−0.0010 0.9849 0.0108 0.0043 -0.4363 0.00892
0.0050−0.0010 0.9707 0.0207 0.0086 -0.4148 0.01215
0.0100−0.0010 0.9606 0.0299 0.0095 -0.5266 0.01442
0.0020−0.0015 0.9868 0.0098 0.0034 -0.4735 0.00935
0.0050−0.0015 0.9646 0.0266 0.0088 -0.5028 0.01160
0.0100−0.0015 0.9607 0.0268 0.0125 -0.3639 0.01474
0.0050−0.0020 0.9688 0.0216 0.0096 -0.3860 0.01196
0.0100−0.0020 0.9614 0.0271 0.0115 -0.4041 0.01504
0.0100−0.0050 0.9581 0.0270 0.0149 -0.2888 0.01666

The coverage rates given in Table 6.11 are all above the nominal level of 0.95. For p1 − p2 =

0.0100−0.0050, the coverage rate is equal to 0.9581 which is the closest to the nominal value for the
cases in the table. For all the cases we have negative values for symmetry, which indicates mostly right
noncoverage, the same was observed in Table 6.10.

6.3.3 Example - West Nile Virus

Biggerstaff (2008) considered an example where a comparison is made between West Nile virus
(WNV) infection prevalences in field collected Culex nigripalpus mosquitoes trapped at different
heights. Biggerstaff (2008) derived asymptotic confidence intervals for the difference between two pro-
portions estimated from pooled samples, where the sizes of the pools are not equal. Biggerstaff (2008)
considered seven confidence intervals: an interval based on the minimum infection rate (MIR), the
Wald interval, the profile score interval, the skewness corrected score interval, the bias- and skewness-
corrected score interval, square-and-add Walter (SAW) interval and the profile likelihood interval.
Table 6.12 summarises the data given in Table E.1 from Biggerstaff (2008).

Table 6.12: Summary of Culex nigripalpus mosquitoes trapped at different heights of 6m and 1.5m.

Sample 1 Sample 2
height = 6m height = 1.5m

Total 2 021 1 324
Number of pools 53 31
Average pool size 38.1321 42.7097
Minimum pool size 1 5
Maximum pool size 50 100
Number of positive pools 7 1
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We used the Jeffreys prior to construct a 95% Bayesian (HPD) interval for each sample. The results
are shown in Table 6.13. Figure 6.1 shows a plot of the posterior distribution, using the posterior
distribution defined in Equation 6.7, for the two samples.

Table 6.13: 95% intervals and interval lengths for the proportions (per 1 000) of the two samples.

95% HPD Interval Length 95% Confidence Interval Length
(Biggerstaff, 2008)

Sample 1 (1.444 , 6.959) 5.515 (1.653 , 7.408) 5.755
height = 6m

Sample 2 (0.019 , 3.002) 2.983 (0.044 , 3.670) 3.626
height = 1.5m

From Table 6.13 the Bayesian intervals are shorter than those obtained by Biggerstaff (2008).
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Figure 6.1: Posterior distribution of p.

For the mosquito data we draw random samples of 100 000 from each of the two posteriors men-
tioned above and calculate the difference between the two proportions. The histogram of the difference
between the two proportions is then an approximation to the posterior distribution. We used the Jef-
freys prior to construct a 95% Bayesian (HPD) interval for the difference between the two proportions.
The results are shown in Table 6.14, the results for the first seven intervals are from Biggerstaff (2008).
In Table 6.14 we see that zero is just included in the 95% Bayesian (HPD) Interval.
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Table 6.14: 95% intervals and interval lengths for the difference between the two proportions (per 1 000).

95% Interval Length
MIR (−0.250 , 5.667) 5.920
Wald (−0.165 , 6.182) 6.347
Profile score (−0.746 , 6.935) 7.681
Skewness corrected score (−0.572 , 6.824) 7.396
Bias- and skewness-corrected score (−0.570 , 6.825) 7.395
Profile likelihood (−0.355 , 6.729) 7.084
Square-and-add Walter (−0.861 , 6.852) 7.713
Bayesian (−0.403 , 6.528) 6.931

The Bayesian interval compares relatively well with the others, all the intervals include 0. The
MIR, Wald and Bayesian intervals give shorter interval lengths than the other intervals. The MIR and
Wald intervals are known for giving poor coverage. So if we compare the Bayesian interval to the other
five intervals, the Bayesian interval is the shortest one.

A normal approximation is fitted to the posterior in Figure 6.2. It seems that the posterior is slightly
skew, the fit is thus not very good.
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Figure 6.2: Posterior distribution of p1 − p2.
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6.3.4 Simulation Study III

6.3.4.1 Coverage

Using the sample and pool sizes as given in Biggerstaff (2008) where M1 = 19, with p1 = 0.004,
we simulated 10 000 outcomes of the 19×1 vector x1. This was done by simulating 19 binomial
observations, each with a sample size and a different probability, since the pool sizes differ.

For each outcome of x1 the posterior distribution

πJ (p1 |data) ∝

(
M1

∑
i=1

{
m2

i ni (1− p1)
mi−2

[1− (1− p1)
mi]

}) 1
2

×
M1

∏
i=1

{
[1− (1− p1)

mi ]xi [(1− p1)
mi]ni−xi

}
is calculated over the range p1 = 0.0001:0.0001:0.015 and normalised. Then the shortest 95% interval
is calculated, as well as the mean and mode. This was done for the 10 000 samples and the percentages
of coverage and noncoverage observed.

The same was done with the second sample where M2 = 16, with p2 = 0.001. The results are given
in Table 6.15, where the mean, mode and length (×1000) are the averages over all posteriors.

Table 6.15: Simulation results when M1 = 19 with p1 = 0.004 and M2 = 16 with p2 = 0.001, with samples of
10 000.

p Coverage Left Right Symmetry Mean Mode Length
noncoverage noncoverage ×1 000 ×1 000 ×1 000

0.004 0.9285 0.0260 0.0455 -0.2727 4.2890 3.7546 5.5848
0.001 0.9870 0.0130 0 1 1.3706 0.7527 3.1931

Notice that when p= 0.001, (with M2 = 16) there can be no right noncoverage. The lowest possible
upper limit of the 95% credibility interval (when all values of x are zero) is 0.00131, which still covers
the true value.

We cannot simulate from the posterior distribution of the difference between the two values of p,
but we can look at the difference between the means of the 10 000 posteriors of the two individual
values of p.

The mean difference between the posterior means is p1 − p2 = 0.0029184 (where the true differ-
ence between the values of p is 0.003), and the shortest 95% interval is (−0.000457; 0.006283), which
still includes zero.

A histogram of the differences between means is shown in Figure 6.3.
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Figure 6.3: Histogram of p1 − p2.

This simulation was repeated, but now with samples of 20 000, the original 10 000 plus an addi-
tional 10 000. The results are given in Table 6.16, where the mean, mode and length (×1000) are the
averages over all posteriors.

Table 6.16: Simulation results when M1 = 19 with p1 = 0.004 and M2 = 16 with p2 = 0.001, with samples of
20 000.

p Coverage Left Right Symmetry Mean Mode Length
noncoverage noncoverage ×1 000 ×1 000 ×1 000

0.004 0.9294 0.0248 0.0458 -0.2975 4.3013 3.7666 5.5944
0.001 0.9871 0.0129 0 1 1.3690 0.7516 3.1903

The results changed slightly. The mean, mode and length (×1000) are the averages over all poste-
riors.

6.3.4.2 Bayes factor

In this section we will briefly look at the Bayes factor and apply it to an example. Robert (2001) gives
the following definition for the Bayes factor: The Bayes factor is the ratio of the posterior probabilities
of the null and the alternative hypotheses over the ratio of the prior probabilities at the null and the
alternative hypotheses.
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Again using the sample and pool sizes of Biggerstaff (2008) with p1 = 0.004 and p2 = 0.001, we
simulated 10 000 outcomes of the vectors x1 and x2. Here we used the Beta(1/2,1/2) prior for the values
of p, so that under model M0: p1 = p2 = p, we have

L(p |x,M0 ) =
2

∏
i=1

Mi

∏
j=1

[1− (1− p)mi j ]xi j [(1− p)mi j ]ni j−xi j .

The marginal likelihood is then

f (x |M0 ) =
1
π

ˆ 1

0
p−

1
2 (1− p)−

1
2 L(p |x,M0 )d p.

Under the model M1 : p1 ̸= p2 we have

L(p1, p2 |x1,x2,M1 ) =
2

∏
i=1

Mi

∏
j=1

[1− (1− pi)
mi j ]xi j [(1− pi)

mi j ]ni j−xi j ,

and

f (x1,x2 |M1 ) =
1

π2

ˆ 1

0

ˆ 1

0
p
− 1

2
i (1− pi)

− 1
2 L(p1, p2 |x1,x2,M1 )d p1d p2.

The Bayes factor in favour of M0 is then

B01 =
f (x |M0 )

f (x1,x2 |M1 )

with

P(M0 |x) =

(
1+

1
B01

)−1

.

Using numerical integration, the Bayes factors and posterior probabilities were calculated and the
histograms are shown in Figure 6.4.
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Figure 6.4: Histograms of the Bayes factor and posterior probabilities.

The mean of B01 is 3.6241 and the mean posterior probability is 0.6202, still favouring a single p

slightly.
It is interesting to note that 626 of the 10 000 simulations gave the same result as the Biggerstaff

(2008) data, 7 positives from the samples with p1 and one positive from the samples with p2, although
not necessarily from samples with the same pool sizes. The range of posterior probabilities for the
626 simulations is (0.6925 , 0.7208), with mean of 0.7030. So the pools from which the positive
observations come do not have a large affect on the posterior.

We find the Bayes factor a bit unsatisfactory. We would have liked it to have performed better in
discriminating between the two groups. For example, when we have 11 against 2 positives for the two
groups, the posterior probability of M0 is still 0.5696.

The Bayes factor is a summary of the evidence provided by the data in favour of one scientific
theory, represented by a statistical model, as opposed to another (Kass & Raftery, 1995).

Kass & Raftery (1995) gave the following categories for interpreting the Bayes factor, B10:
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log10 (B10) B10 Evidence against H0

0 to 0.5 1 to 3.2 Not worth more than a bare mention
0.5 to 1 3.2 to 10 Substantial
1 to 2 10 to 100 Strong
> 2 > 100 Decisive

Using these scales and categories to judge the evidence against M0 for B01, we obtain the following
results:

• 85.12% of the time, the evidence was poor;

• 9.06% of the time, it was substantial;

• 5.49% of the time, it was strong;

• 0.33% of the time, it was decisive.

6.4 Conclusion

In this chapter we compared the proposed Bayesian method to results obtained by Biggerstaff (2008).
The Jeffreys prior was used for the Bayesian method. Simulation studies were considered as well as an
example. The Bayesian method compared well with the other results, and gave much better results that
the Wald and minimum infection rate intervals. The Wald and the minimum infection rate intervals
performed the poorest. We gave a brief overview of the Bayes factor, and applied it to an example. A
Beta(1/2,1/2) prior was used for the Bayes factor. We found the Bayes factor a bit unsatisfactory. We
would have liked it to have performed better in discriminating between the two groups.



Chapter 7

Bayesian Process Control for the p - chart

7.1 Introduction

Quality control is a process which is used to maintain the standards of products produced or services
delivered. The binomial distribution is often used in quality control. The proportion, p, denotes the
proportion of defective items in the population. The number of defective items in a random sample
of size n, is denoted by x. The sample proportion of defectives items will then be p̂ = x/n, where
X ∼ Bin(n, p). The number of nonconformities refers to the number of defectives and the number of
conformities refers to the number of nondefectives.

There are three widely used attributes control charts, from Montgomery (1996):

• the control chart for the proportion of nonconforming or defective product produced by a process,
and is called the p - chart;

• the control chart for nonconformities, or the c - chart deals with the number of defects or non-
conformities observed;

• the control chart for nonconformities per unit, or the u - chart.

In this chapter we will look at the p - chart. Control chart limits, average run lengths and false alarm
rates will be determined by using a Bayesian method. These results will be compared to the results
obtained when using the classical (frequentist) method. Calabrese (1995) states that attributes control
techniques, such as p - charts, plot statistics related to defective items and call for corrective action if the
number of defectives becomes too large. The goal is to decide on the basis of the sample data whether
the production process has shifted from an in-control state to an out-of-control state. If the production
process shifted to an out-of-control state, the process should be inspected and repaired. Chakraborti
& Human (2006) examined the effects of parameter estimation for the p - chart. Calabrese (1995)
considered a Bayesian process control procedure with fixed samples sizes and sampling intervals where
the proportion of defectives is the quality variable of interest.

135
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Let X i follow a binomial distribution with parameters n and p. Therefore

P(Xi = xi) =

(
n

xi

)
pxi (1− p)n−xi for xi = 0,1,2, . . . ,n. From Montgomery (1996) a control chart

for the proportion of nonconformities with 3-sigma limits is defined as:

UCL = p+3

√
p(1− p)

n
Centre line = p

LCL = p−3

√
p(1− p)

n
.

The above mentioned control chart is when the value for p is known. This case is also referred to as
the “standard given” case. If there is no standard given value, then p should be estimated from the
observed sample data. The proportion of nonconforming items from sample i is defined as

p̂i =
Xi

n
i = 1,2, . . . ,m

and then p is calculated, where p is the average of the sample proportions and is defined as

p =

m
∑

i=1
p̂i

m
.

Where n is the size of each sample, and m is the number of samples. Again from Montgomery (1996)
the control chart will be defined as:

UCL = p+3

√
p(1− p)

n
Centre line = p

LCL = p−3

√
p(1− p)

n
.

The above mentioned control chart is when the value for p is unknown. This case is also referred
to as the “no standard given” case. Chakraborti & Human (2006) state that when p is unknown, the
common practice is to estimate the proportion in phase I of the study when the process is thought to be
in-control. The size of each sample, n, is assumed to be equal, which is not always the case in practice.
Chakraborti & Human (2006) give the following definition for phase I of the study: “Retrospective
analysis used to obtain reference data; estimate any parameters”. The control chart limits can then
be used for future process monitoring in phase II. The following definition is given by Chakraborti
& Human (2006) for phase II of the study: “Prospective monitoring of a process”. The control chart
limits will be used to determine average run lengths and false alarm rates. The mentioned control
limits are 3-sigma limits and based on the assumption that the normal approximation to the binomial
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distribution holds. We will introduce a Bayesian approach for the p - chart. For the Bayesian method,
the predictive density will be used to determine the control chart. From a Bayesian point, we have to
decide on a prior for this unknown value of p. This will be discussed in Section 7.2.

7.2 Prior Distribution, Posterior Distribution and Predictive den-
sity, f (T |data)

Menzefricke (2002) proposed a Bayesian approach to obtain control charts when there is parameter
uncertainty, using a predictive distribution based on a Bayesian approach to derive the rejection region.
Menzefricke (2002) assumed that the prior information on p, the proportion of defective items in the
population, is a beta distribution and then the posterior distribution on p will also be a beta distribution.
We will consider the Jeffreys prior.

In Chapters 2 and 3 we introduced noninformative priors which could be used in the case of the
product of different powers of k binomial proportions and linear combinations of k binomial propor-
tions, respectively. The performance of the Jeffreys, probability matching and uniform priors were
evaluated in these two cases. In this section we will first evaluate the performance of the above men-
tioned priors in the case of a single proportion, and then we will choose a prior which will be used for
process control for the p - chart.

From Theorems 2.1 and 3.1 the probability matching prior for p is given by

πPM (p) ∝ p−
1
2 (1− p)−

1
2 . (7.1)

The Jeffreys prior, on the other hand, is proportional to the square root of the determinant of the
Fisher information matrix and is given by

πJ (p) ∝ p−
1
2 (1− p)−

1
2 . (7.2)

From Equations 7.1 and 7.2 it is clear that the Jeffreys prior and the probability matching prior
yield the same prior.

The uniform prior is proportional to a constant and is given by

πU (p) ∝ constant. (7.3)

In Table 7.1, average coverage probabilities, mean lengths and standard deviations are given for
n = 10, 20, 30 and 40. The averages are taken over values for p = 0.1 : 0.1 : 0.9.
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Table 7.1: Coverage rate of the 95% credibility intervals for p using the Jeffreys and uniform priors. (a) Exact
coverage probabilities, (b) mean lengths, (c) standard deviation for n = 10, 20, 30 and 40. Results
are averages over values for p = 0.1 : 0.1 : 0.9.

n = 10 n = 20 n = 30 n = 40
Jeffreys (a) 0.9557 0.9550 0.9451 0.9515

(b) 0.4532 0.3424 0.2864 0.2511
(c) 0.0756 0.0427 0.0293 0.0224

Uniform (a) 0.9532 0.9595 0.9605 0.9489
(b) 0.4557 0.3429 0.2865 0.2512
(c) 0.0569 0.0364 0.0262 0.0204

The performances of the priors are very similar, and therefore we decided to use the Jeffreys prior
which is also the probability matching prior in this case. Ghosh (2011) states that the uniform prior
has often been criticised due to its lack of invariance under one-to-one reparameterisation, and that the
Jeffreys prior is invariant under one-to-one reparameterisation of parameters. We will therefore use the
Jeffreys prior for the remainder of this chapter.

For the p - chart the likelihood follows as

L(p |data) ∝ p

m
∑

i=1
xi
(1− p)

mn−
m
∑

i=1
xi

(7.4)

and as mentioned the Jeffreys prior will be used, which is given by

πJ (p) ∝ p−
1
2 (1− p)−

1
2 . (7.5)

Combining Equations 7.4 and 7.5 it follows that the posterior distribution of p is a

Beta
(

m
∑

i=1
xi +

1
2 ,mn−

m
∑

i=1
xi +

1
2

)
distribution, i.e.

πJ (p |data) =
1

B
(

m
∑

i=1
xi +

1
2 ,mn−

m
∑

i=1
xi +

1
2

) p

m
∑

i=1
xi− 1

2
(1− p)

mn−
m
∑

i=1
xi− 1

2
. (7.6)

If the process remains stable, the control chart limits for a future sample of n Bernoulli trials
which results in T successes can be derived. Given n and p, the distribution of T is binomial, and the
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unconditional prediction distribution of T is

f (T |data) =

ˆ 1

0
f (T |p)πJ (p |data)d p

=

ˆ 1

0

(
n

T

)
pT (1− p)n−T 1

B
(

m
∑

i=1
xi +

1
2 ,mn−

m
∑

i=1
xi +

1
2

) p

m
∑

i=1
xi− 1

2
(1− p)

mn−
m
∑

i=1
xi− 1

2 d p

=

(
n

T

)

B
(

m
∑

i=1
xi +

1
2 ,mn−

m
∑

i=1
xi +

1
2

) ˆ 1

0
p

T+
m
∑

i=1
xi− 1

2
(1− p)

n−T+mn−
m
∑

i=1
xi− 1

2 d p

=

(
n

T

) B
(

m
∑

i=1
xi +

1
2 +T,mn−

m
∑

i=1
xi +

1
2 +n−T

)
B
(

m
∑

i=1
xi +

1
2 ,mn−

m
∑

i=1
xi +

1
2

) 0 ≤ T ≤ n (7.7)

which is a beta-binomial distribution whose mean and standard deviation are easily derived. It is
known as a beta-binomial distribution, because it is generated by the mixture of beta and binomial
distributions. It is assumed that the sample size is the same for the posterior distribution and the future
sample. The predictive distribution in Equation 7.7 can be used to obtain the control chart limits. The
size of the rejection region, R⋆ (α), is then defined as

α = ∑
R⋆(α)

f (T |data) . (7.8)

7.3 False Alarm Rates and Average Run lengths

If a point falls within the lower and upper control limits, the process is in-control, and if a point falls
outside or on the lower or upper control limit, the process is out-of-control. When the process is
out-of-control, an alarm is given. Let β denote the probability that a point plots in-control, i.e.

β = P(LCL < p̂ < UCL |p)

= P(nLCL < Xi < nUCL |p)

= P(Xi < nUCL |p)−P(Xi ≤ nLCL |p) . (7.9)

The probability that a point plots out-of-control will therefore be 1−β , i.e.

1−β = 1−P(nLCL < Xi < nUCL |p)

= P(Xi ≥ nUCL |p)+P(Xi ≤ nLCL |p) . (7.10)
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If the process is in-control, the probability that a point plots out-of-control is also known as the false
alarm rate (FAR).

The probability that a point plots in-control is used to derive the run length distribution. The average
run length (ARL) is calculated as:

ARL =
1

P(sample point plots out of control)

=
1

P(Xi ≥ nUCL |p)+P(Xi ≤ nLCL |p)
. (7.11)

Montgomery (1996) defines the average run length as the average number of points that must be plotted
before a point indicates an out-of-control condition. If the process is in-control, the expected nominal
value for the false alarm rate is 0.0027 and the expected nominal value for the average run length is
(0.0027)−1 = 370.3704. That means even if the process remains in control, an out-of-control signal
will be generated every 370 samples, on average.

7.4 Example and Simulation Studies

7.4.1 Simulation Study I

In this simulation study the unconditional average run length and unconditional false alarm rate will
be compared using the classical (frequentist) method and the proposed Bayesian method. Two cases
will be considered, one where m = 4 and n = 5 and the other case will be when m = 2 and n = 10. The
values for m and n are the same as the values used by Chakraborti & Human (2006). Lower and upper
control limits will be calculated for the two situations, and the unconditional average run length and
unconditional false alarm rate will be determined for the two situations. The results will be given in
Tables 7.2 to 7.5.

Using the control chart limits stated in in Section 7.1 we can determine the np control chart limits
for the frequentist method:

nUCL = np+3
√

np(1− p)

nLCL = np−3
√

np(1− p)

with

p =

m
∑

i=1
p̂i

m
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where

p̂i =
Xi

n
i = 1,2, . . . ,m.

The predictive density given in Equation 7.7 will be used to obtain the control chart limits when the
Bayesian approach is used. The predictive density is a beta-binomial distribution with parameters

∑m
i=1 xi +

1
2 and mn−∑m

i=1 xi +
1
2 . The mean of the predictive density will therefore be

E (T |data) =

n
(

m
∑

i=1
xi +

1
2

)
mn+1

and the variance will be

Var (T |data) =

n
(

m
∑

i=1
xi +

1
2

)(
mn−

m
∑

i=1
xi +

1
2

)
(mn+1+n)

(mn+1)2 (mn+2)
.

Using the Bayesian method, the control chart limits are calculated as

nUCL =

n
(

m
∑

i=1
xi +

1
2

)
mn+1

+3

√√√√√n
(

m
∑

i=1
xi +

1
2

)(
mn−

m
∑

i=1
xi +

1
2

)
(mn+1+n)

(mn+1)2 (mn+2)

nLCL =

n
(

m
∑

i=1
xi +

1
2

)
mn+1

−3

√√√√√n
(

m
∑

i=1
xi +

1
2

)(
mn−

m
∑

i=1
xi +

1
2

)
(mn+1+n)

(mn+1)2 (mn+2)
.

The values for nLCL and nUCL which will be used to calculate the average run length and the false
alarm rate should be integer values, since we are working with the binomial distribution. Chakraborti
& Human (2006) state that the following values should be used for nLCL and nUCL in calculations:

A = max{0, [nLCL]}

and

B =

{
min{nUCL−1,n} if nUCL is an integer
min{[nUCL] ,n} if nUCL is not an integer

where [nUCL] denotes the largest integer not exceeding nUCL and [nLCL] denotes the largest integer
not exceeding nLCL.

Using Equations 7.9, 7.10 and 7.11 we can determine the average run length and the false alarm
rate. After obtaining the control limits, the conditional false alarm rate (CFAR) has to be calculated
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and then one can determine the conditional average run length (CARL) for each possible value of

∑m
i=1 Xi. After obtaining the values for CFAR and CARL, the unconditional false alarm rate and the

unconditional average run length can be calculated. The false alarm rate will be calculated as 1−β ,
where β is calculated as

β =

{
P(Xi ≤ B) if nLCL is negative

P(Xi ≤ B)−P(Xi ≤ A) if nLCL is positive

and the in-control conditional average run length is calculated as

ICARL =

(
1

1−β

)
×P

(
m

∑
i=1

Xi =
m

∑
i=1

xi

)

where

P

(
m

∑
i=1

Xi =
m

∑
i=1

xi

)
=

 mn
m
∑

i=1
xi

0.5
m
∑

i=1
xi

0.5
mn−

m
∑

i=1
xi
.

The unconditional false alarm rate will be determined by

UFAR =
mn

∑
j=0

[
(1−β )×P

(
m

∑
i=1

Xi =
m

∑
i=1

xi

)]
j

(7.12)

and the unconditional average run length will be determined by

UARL =
mn

∑
j=0

[ICARL] j . (7.13)

For the first study we have m = 4 and n = 5, where m is the number of samples and n is the sample size.
This was also considered by Chakraborti & Human (2006), where they assumed that p0 = p1 = 0.5,
where p0 is the known value of the proportion of nonconforming items and p1 is the true proportion
of nonconforming items in phase II. Table 7.2 gives the result for the classical method, which was
also obtained by Chakraborti & Human (2006). Table 7.3 gives the results for the Bayesian method,
proposed by us.
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Table 7.2: Control limits, false alarm rate and average run length for p - chart when m = 4 and n = 5, using the
classical (frequentist) method.

m
∑

i=1
Xi p nLCL nUCL A B CFAR ICARL

0 0.00 0.0000 0.0000 0 0 1.00000 9.5367E-07
1 0.05 -1.2120 1.7120 0 1 0.81250 2.3475E-05
2 0.10 -1.5125 2.5125 0 2 0.50000 0.0003624
3 0.15 -1.6453 3.1453 0 3 0.18750 0.0057983
4 0.20 -1.6833 3.6833 0 3 0.18750 0.0246430
5 0.25 -1.6547 4.1547 0 4 0.03125 0.4731400
6 0.30 -1.5741 4.5741 0 4 0.03125 1.1829000
7 0.35 -1.4496 4.9496 0 4 0.03125 2.3657000
8 0.40 -1.2863 5.2863 0 5 0.00000 ∞
9 0.45 -1.0873 5.5873 0 5 0.00000 ∞
10 0.50 -0.8541 5.8541 0 5 0.00000 ∞
11 0.55 -0.5873 6.0873 0 5 0.00000 ∞
12 0.60 -0.2863 6.2863 0 5 0.00000 ∞
13 0.65 0.0504 6.4496 0 5 0.03125 2.3657000
14 0.70 0.4259 6.5741 0 5 0.03125 1.1829000
15 0.75 0.8453 6.6547 0 5 0.03125 0.4731400
16 0.80 1.3167 6.6833 1 5 0.18750 0.0246430
17 0.85 1.8547 6.6453 1 5 0.18750 0.0057983
18 0.90 2.4875 6.5125 2 5 0.50000 0.0003624
19 0.95 3.2880 6.2120 3 5 0.81250 2.3475E-05
20 1.00 5.0000 5.0000 5 5 1.00000 9.5367E-07

UFAR = 0.010209
UARL = ∞
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Table 7.3: Control limits, false alarm rate and average run length for p - chart when m = 4 and n = 5, using the
Bayesian method.

m
∑

i=1
Xi nLCL nUCL A B CFAR ICARL

0 -0.9928 1.2308 0 1 0.81250 1.1738E-06
1 -1.5210 2.2353 0 2 0.50000 3.8147E-05
2 -1.7664 2.9569 0 2 0.50000 0.0003624
3 -1.8845 3.5511 0 3 0.18750 0.0057983
4 -1.9209 4.0638 0 4 0.03125 0.1478600
5 -1.8968 4.5159 0 4 0.03125 0.4731400
6 -1.8237 4.9190 0 4 0.03125 1.1829000
7 -1.7086 5.2800 0 5 0.00000 ∞
8 -1.5557 5.6033 0 5 0.00000 ∞
9 -1.3678 5.8916 0 5 0.00000 ∞
10 -1.1463 6.1463 0 5 0.00000 ∞
11 -0.8916 6.3678 0 5 0.00000 ∞
12 -0.6034 6.5557 0 5 0.00000 ∞
13 -0.2800 6.7086 0 5 0.00000 ∞
14 0.08104 6.8237 0 5 0.03125 1.1829000
15 0.4841 6.8968 0 5 0.03125 0.4731400
16 0.9362 6.9209 0 5 0.03125 0.1478600
17 1.4489 6.8845 1 5 0.18750 0.0057983
18 2.0431 6.7664 2 5 0.50000 0.0003624
19 2.7647 6.5210 2 5 0.50000 3.8147E-05
20 3.7692 5.9927 3 5 0.81250 1.1738E-06

UFAR = 0.0041327
UARL = ∞

From Table 7.2, we see that the unconditional false alarm rate, using the classical method, is equal
to 0.010209 and is much higher than the nominal value of 0.0027. From Table 7.3 the unconditional
false alarm rate, using the Bayesian method, is equal to 0.004132. This value is still higher than the
nominal value of 0.0027, but it is much closer to the nominal value than the value obtained from the
classical method. The unconditional average run length is equal to infinity when using the classical
and the Bayesian method, which seems unrealistic. For values of ∑m

i=1 Xi = 0 and ∑m
i=1 Xi = 20 the

frequentist method yields conditional false alarm rates of 1, with the Bayesian method one never has
conditional false alarm rates of 1 in this case. The intervals are generally a bit wider when using the
Bayesian method. Chakraborti & Human (2006) also state that even though one typically wants a high
value for the average run length, infinity is not a practical choice. Thus 4 samples of size 5 each is not
sufficient to control the false alarm rate.
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For the second study we have m = 2 and n = 10. This was also considered by Chakraborti &
Human (2006), where they assumed that p0 = p1 = 0.5, where p0 is the known value of the proportion
of nonconforming items and p1 is the true proportion of nonconforming items in phase II. Table 7.4
gives the result for the classical method, which was also obtained by Chakraborti & Human (2006),
Table 7.5 gives the results for the Bayesian method, proposed by us.

Table 7.4: Control limits, false alarm rate and average run length for p - chart when m = 2 and n = 10, using the
classical (frequentist) method.

m
∑

i=1
Xi p nLCL nUCL A B CFAR ICARL

0 0.00 0.0000 0.000 0 0 1.00000 9.5367E-07
1 0.05 -1.5676 2.5676 0 2 0.94531 2.0177E-05
2 0.10 -1.8460 3.8460 0 3 0.82812 0.0002188
3 0.15 -1.8875 4.8875 0 4 0.62305 0.0017450
4 0.20 -1.7947 5.7947 0 5 0.37695 0.0122580
5 0.25 -1.6079 6.6079 0 6 0.17187 0.0860260
6 0.30 -1.3474 7.3474 0 7 0.05469 0.6759200
7 0.35 -1.0249 8.0249 0 8 0.01074 6.8821000
8 0.40 -0.6476 8.6476 0 8 0.01074 11.1830000
9 0.45 -0.2196 9.2196 0 9 0.00098 164.020000
10 0.50 0.2566 9.7434 0 9 0.00195 90.2130000
11 0.55 0.7804 10.2200 0 10 0.00098 164.020000
12 0.60 1.3524 10.6480 1 10 0.01074 11.1830000
13 0.65 1.9751 11.0250 1 10 0.01074 6.8821000
14 0.70 2.6526 11.3470 2 10 0.05469 0.6759200
15 0.75 3.3921 11.6080 3 10 0.17188 0.0860260
16 0.80 4.2053 11.7950 4 10 0.37695 0.0122580
17 0.85 5.1125 11.8870 5 10 0.62305 0.0017450
18 0.90 6.1540 11.8460 6 10 0.82813 0.0002188
19 0.95 7.4324 11.5680 7 10 0.94531 2.0177E-05
20 1.00 10.0000 10.0000 10 10 1.00000 9.5367E-07

UFAR = 0.019128
UARL = 455.9432
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Table 7.5: Control limits, false alarm rate and average run length for p - chart when m = 2 and n = 10, using the
Bayesian method.

m
∑

i=1
Xi nLCL nUCL A B CFAR ICARL

0 -1.4788 1.9549 0 1 0.98926 9.6403E-07
1 -2.1860 3.6145 0 3 0.82812 2.3032E-05
2 -2.4565 4.8374 0 4 0.62305 0.0002908
3 -2.5302 5.8635 0 5 0.37695 0.0028841
4 -2.4780 6.7637 0 6 0.17187 0.0268830
5 -2.3322 7.5703 0 7 0.05469 0.2703700
6 -2.1109 8.3013 0 8 0.01074 3.4411000
7 -1.8245 8.9674 0 8 0.01074 6.8821000
8 -1.4800 9.5752 0 9 0.00098 123.02000
9 -1.0813 10.1290 0 10 0.00000 ∞
10 -0.6307 10.6310 0 10 0.00000 ∞
11 -0.1289 11.0810 0 10 0.00000 ∞
12 0.4248 11.4800 0 10 0.00098 123.02000
13 1.0326 11.8250 1 10 0.01074 6.8821000
14 1.6987 12.1110 1 10 0.01074 3.4411000
15 2.4297 12.3320 2 10 0.05469 0.2703700
16 3.2363 12.4780 3 10 0.17188 0.0268830
17 4.1365 12.5300 4 10 0.37695 0.0028841
18 5.1626 12.4560 5 10 0.62305 0.0002908
19 6.3855 12.1860 6 10 0.82813 2.3032E-05
20 8.0451 11.4790 8 10 0.98926 9.6403E-07

UFAR = 0.0069015
UARL = ∞

From Table 7.4, we see that the unconditional false alarm rate, using the classical method, is equal
to 0.019128 and is much higher than the nominal value of 0.0027. From Table 7.5 the unconditional
false alarm rate, using the Bayesian method, is equal to 0.0069015. This value is still higher than the
nominal value of 0.0027, but it is much closer to the nominal value than the value obtained from the
classical method. The unconditional average run length is equal to infinity when using the Bayesian
method, which seems unrealistic. Whereas the unconditional average run length is equal to 455.9432
when using the classical method, which is more realistic and practical. For values of ∑m

i=1 Xi = 0 and

∑m
i=1 Xi = 20 the frequentist method yields conditional false alarm rates of 1, with the Bayesian method

one never has conditional false alarm rates of 1 in this case. The intervals are generally slightly wider
when using the Bayesian method.
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7.4.2 Simulation Study II

We consider another study where different values for m and n are given. Since mn is rather large for
each case, we only give the unconditional false alarm rate and the unconditional average run length
for each case. Using the same methods that was used to obtain the results in Tables 7.2 to 7.5 and
Equations 7.12 and 7.13 in Section 7.4.1, the unconditional false alarm rate and the unconditional
average run length can be determined. The results are given in Table 7.6.

Table 7.6: Unconditional false alarm rates (UFAR) and unconditional average run lengths (UARL) for the p -
chart for different values of m and n when p0 = p1 = 0.5.

Frequentist Bayesian
m n mn UFAR UARL UFAR UARL
25 20 500 0.002577 470.7250 0.002137 548.9617
20 25 500 0.002905 379.2967 0.002875 567.4341
30 20 600 0.002482 478.4399 0.002120 545.2668
20 30 600 0.002976 413.9184 0.002299 519.5687
35 30 1 050 0.002658 445.4722 0.002283 516.1604
30 35 1 050 0.002753 410.7182 0.002352 465.0252
40 30 1 200 0.002608 453.1612 0.002277 517.4981
30 40 1 200 0.002841 378.6987 0.002371 473.6618

From Table 7.6, we conclude that for every combination of m and n the unconditional false alarm
rate is smaller when using the Bayesian method, and that the unconditional average run length is larger
when using the Bayesian method. Typically, one wants a smaller false alarm rate and a larger average
run length. When using the frequentist method for m = 30 and n = 35 the false alarm rate is equal to
0.002753, this value is almost equal to the nominal value of 0.0027. When using the Bayesian method
the false alarm rate is below the nominal value of 0.0027 for all combinations of m and n, except for
m = 20 and n = 25.

7.4.3 Example

Consider the following example from Montgomery (1996), Example 6-1 on page 255. Chakraborti
& Human (2006) also considered this example. Frozen orange juice concentrate is packed in 6-oz
cardboard cans. These cans are formed on a machine by spinning them from cardboard stock and
attaching a metal bottom panel. By inspection of a can, we may determine whether, when filled, it
could possibly leak either on the side seam or around the bottom joint. Such a nonconforming can
has an improper seal on either the side seam or the bottom panel. We wish to set up a control chart
to improve the proportion of nonconforming cans produced by this machine. To establish the control
chart, 30 samples of n = 50 cans each were selected at half-hour intervals over a three-shift period in
which the machine was in continuous operation. Once the control chart was established, samples 15
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and 23 were found to be out-of-control, and eliminated after further investigation. Revised limits were
calculated using the remaining samples, with m = 28 and n = 50. Based on the revised control limits,
sample 21 was found to be out-of-control. Since further investigations regarding sample 21 did not
produce any reasonable or logical assignable cause, it was not discarded.

For this given data set ∑28
i=1 xi = 301, the total number of nonconforming cans after discarding

samples 15 and 23, is observed. Considering this example, we have, n = 50, m = 28 and ∑m
i=1 xi = 301.

As mentioned, we will use the Jeffreys prior for p, πJ (p) ∝ p−
1
2 (1− p)−

1
2 . This will result in a beta

posterior, Beta
(
∑m

i=1 xi +
1
2 ,mn−∑m

i=1 xi +
1
2

)
. For this example the posterior distribution of p will be

a Beta(301.5,1099.5). Figure 7.1 shows the posterior distribution of p.
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Figure 7.1: Posterior distribution of p, when n = 50, m = 28 and ∑m
i=1 xi = 301.

Summary statistics for p:
mean = 0.2152 standard deviation = 0.0110 median = 0.2150
95% credibility interval = (0.1940; 0.2371).

Figure 7.2 shows a bar graph of the predictive density function, f (T |data) , where T is the number
of nonconformities in a future sample. The predictive density will be used to obtain the control chart
limits.
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Figure 7.2: Bar graph of the predictive density of f (T |data) .

For the observed value, ∑m
i=1 xi = 301, the chart’s performance will be investigated by looking at the

conditional average run length (CARL) and the conditional false alarm rate (CFAR). The control chart
limits, conditional average run length and conditional average false alarm rate will be calculated using
the classical (frequentist) method and using the proposed Bayesian method. Chakraborti & Human
(2006) determined these values using the classical method, the results are given in Table 7.7. We used
the proposed Bayesian method to determine these values, the results are also given in Table 7.7.

Calculations used to obtain the frequentist control limits:

nUCL = np+3
√

np(1− p)

= 50
(

301
1400

)
+3

√
50
(

301
1400

)(
1− 301

1400

)
= 19.4649

nLCL = np−3
√

np(1− p)

= 50
(

301
1400

)
−3

√
50
(

301
1400

)(
1− 301

1400

)
= 2.0351
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A = max{0, [2.0351]}

= max{0,2}= 2

B = min{[19.4649] ,50}

= min{19,50}= 19.

Calculations used to obtain the Bayesian control limits:

nUCL =

n
(

m
∑

i=1
xi +

1
2

)
mn+1

+3

√√√√√n
(

m
∑

i=1
xi +

1
2

)(
mn−

m
∑

i=1
xi +

1
2

)
(mn+1+n)

(mn+1)2 (mn+2)

=
50
(
301+ 1

2

)
1400+1

+3

√
50
(
301+ 1

2

)(
1400−301+ 1

2

)
(1400+1+50)

(1400+1)2 (1400+2)
= 19.6291

nLCL =

n
(

m
∑

i=1
xi +

1
2

)
mn+1

−3

√√√√√n
(

m
∑

i=1
xi +

1
2

)(
mn−

m
∑

i=1
xi +

1
2

)
(mn+1+n)

(mn+1)2 (mn+2)

=
50
(
301+ 1

2

)
1400+1

−3

√
50
(
301+ 1

2

)(
1400−301+ 1

2

)
(1400+1+50)

(1400+1)2 (1400+2)
= 1.8913

A = max{0, [1.8913]}

= max{0,1}= 1

B = min{[19.6291] ,50}

= min{19,50}= 19.

Calculations used to obtain the average run lengths and false alarm rates:

CFAR = 1− [P(Xi ≤ B |p = 0.2)−P(Xi ≤ A |p = 0.2)]

CARL =
1

CFAR
.
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Table 7.7: Lower control limits, upper control limits, conditional average run lengths (CARL) and conditional
false alarm rates (CFAR) for n = 50, m = 28 and ∑m

i=1 xi = 301.

Frequentist
nLCL nUCL A B CARL CFAR
2.0351 19.4649 2 19 450.8868 0.0022179

Bayesian
nLCL nUCL A B CARL CFAR
1.8913 19.6291 1 19 888.7981 0.0011251

From Table 7.7, we see that the Bayesian method gives a wider interval than the classical method.
This results in a larger value for CARL and a smaller value for CFAR. The conditional false alarm rates
(CFAR) obtained from both methods yield values smaller than the expected nominal value of 0.0027.

Using the same method as given in the simulation study in Section 7.4.1 the unconditional average
run length and the unconditional false alarm rate can be determined. These results are given in Table
7.8.

Table 7.8: Unconditional average run lengths (UARL) and unconditional false alarm rates (UFAR) using the
classical method and the Bayesian method.

Frequentist Bayesian
UARL UFAR UARL UFAR

401.5103 0.0035 473.6610 0.0030

From Table 7.8, we see that the false alarm rate obtained from the Bayesian method is smaller than
the false alarm rate obtained from the classical method. A smaller value for the false alarm rate is
desired, since the false alarm rate is the probability of a signal being given by the control chart when
the process is actually in-control. The average run length obtained from the Bayesian method is larger
than the average run length obtained from the classical method. A larger value for the average run
length is desired.

In Section 7.4 the mean and the variance of the predictive density was used to construct the 3-sigma
limits. This method gave smaller values for the false alarm rate and larger values for the average run
length, but for certain values average run lengths of infinity was observed, which is not satisfactory.
This problem can be solved if the rejection region of size α is defined as the equal-tailed intervals of
the predictive density where α = 0.0027. This will be investigated in future research.
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7.5 Conclusion

The usual operation of the p - chart was extended by introducing a Bayesian approach for the p - chart.
The Jeffreys prior was used. We conclude that the proposed Bayesian method gives wider control
limits than those obtained from the classical method. The Bayesian method gives larger values for the
average run length and smaller values for the false alarm rate. A smaller value for the false alarm rate
is desired.



Chapter 8

Bayesian Process Control for the c - chart

8.1 Introduction

In this chapter the c - chart will be studied. Control chart limits, average run lengths and false alarm
rates will be determined by using a Bayesian method. These results will be compared to the results
obtained when using the classical (frequentist) method.

The c - chart or the control chart for nonconformities is designed for the case where one deals with
the number of defects or nonconformities observed. A control chart can be developed for the total or
average number of nonconformities per unit, which is well modelled by the Poisson distribution. In
most of the standard textbooks on Quality Control, see for example Montgomery (1996), the Poisson
parameter is indicated by c. To be consistent with the text in this thesis, we will use λ to indicate the
Poisson parameter. The inspection unit should be the same for each sample. Let X i follow a Poisson

distribution with parameter λ . Therefore P(Xi = xi) =
λ xie−λ

xi!
for xi = 0,1,2, . . ..

From Montgomery (1996) a control chart for nonconformities with 3-sigma limits is defined as:

UCL = λ +3
√

λ

Centre line = λ

LCL = λ −3
√

λ .

The above mentioned control chart is when the value of λ is known. This case is also referred to
as the “standard given” case. If there is no standard given value, then λ should be estimated as the
average number of nonconformities in an initial sample. This average number of nonconformities will

153
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be indicated by λ . Again from Montgomery (1996) the control chart will be defined as:

UCL = λ +3
√

λ

Centre line = λ

LCL = λ −3
√

λ .

The above mentioned control chart is when the value of λ is unknown. This case is also referred to
as the “no standard given” case. As mentioned in Chapter 7, when the parameter is unknown, the
common practice is to estimate the parameter from phase I of the study. Where phase I is as defined
in Chapter 7. The mentioned control limits are 3-sigma limits and based on the assumption that the
normal approximation to the Poisson distribution holds. As stated by Montgomery (1996), if the value
obtained for the LCL is negative, one should set the lower control limit equal to zero. Once the control
chart is set, independent inspection units are selected, and the number of nonconformities in the each
inspection unit is determined and plotted on the chart. If a point falls within the lower and upper control
limit, the process is in-control. If a point falls outside or on the lower or upper control limit, the process
is out-of-control. When this happens, an alarm or a signal is given.

Bayarri & García-Donato (2005) highlight the following concerns with using the classical ap-
proach:

• The Poisson model is often a very poor fit to this type of data;

• there is quite a long period in which the process is not controlled at all, namely the one used to
estimate the parameter (i.e. phase I);

• previous information cannot be incorporated in any way.

Bayarri & García-Donato (2005) extended the usual operation of the u - chart, by introducing an
empirical Bayesian model and a Bayesian sequential approach. We will introduce a Bayesian approach
for the c - chart. From a Bayesian point, we have to decide on a prior distribution for this unknown
value of λ . This will be discussed in Section 8.2.

8.2 Prior Distribution, Posterior Distribution and Predictive den-
sity, f (x f |data)

In Chapters 4 and 5 we introduced noninformative priors which could be used in the case of the
product of different powers of k Poisson rates and linear functions of k Poisson rates, respectively.
The performance of the Jeffreys, probability matching and uniform priors were evaluated in these two
chapters. In this section we will first evaluate the performance of the above mentioned priors in the
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case of a single Poisson rate, and then we will choose a prior which will be used for process control
for the c - chart.

From Theorems 4.1 and 5.1 and Corollary 5.1 the probability matching prior for λ is given by

πPM (λ ) ∝ λ− 1
2 . (8.1)

The Jeffreys prior, on the other hand, is proportional to the square root of the determinant of the
Fisher information matrix and is given by

πJ (λ ) ∝ λ− 1
2 . (8.2)

From Equations 8.1 and 8.2 it is clear that the Jeffreys prior and the probability matching prior
yield the same prior.

The uniform prior is proportional to a constant and is given by

πU (λ ) ∝ constant. (8.3)

In Table 8.1, average coverage probabilities, mean lengths and standard deviations are given for
λ = 2 : 1 : 10, λ = 5 : 2 : 59 and λ = 0.1 : 0.1 : 20. The averages are taken over the different values of
λ .

Table 8.1: Coverage rate of the 95% credibility intervals for λ using the Jeffreys and uniform priors. (a) Exact
coverage probabilities, (b) mean lengths, (c) standard deviation, the results are averages over the
different values of λ .

λ = 2 : 1 : 10 λ = 5 : 2 : 59 λ = 0.1 : 0.1 : 20
Jeffreys (a) 0.9494 0.9489 0.9502

(b) 9.4265 21.3418 11.8281
(c) 1.9434 1.9757 1.9176

Uniform (a) 0.9503 0.95077 0.9491
(b) 9.8728 21.5496 12.2147
(c) 1.8482 1.9458 1.8368

The performances of the priors are very similar, and therefore we decided to use the Jeffreys prior
which is also the probability matching prior in this case. As mentioned in Chapter 7, Ghosh (2011)
states that the uniform prior has often been criticised due to its lack of invariance under one-to-one
reparameterisation and that the Jeffreys prior is invariant under one-to-one reparameterisation of para-
meters. We will therefore use the Jeffreys prior for the remainder of this chapter.

As for the binomial case, in Chapter 7, the predictive density will be used to obtain the control chart.
If independent inspection units are randomly selected at equally spaced time intervals, the number of
nonconformities in the ith inspection will follow a Poisson distribution with parameter λ . Therefore
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P(Xi = xi) =
λ xie−λ

xi!
for xi = 0,1,2, . . . and i = 1, . . . ,m . The likelihood function will thus be

L(λ |data) ∝ e−mλ λ
m
∑

i=1
xi
. (8.4)

As mentioned the Jeffreys prior will be used, which is given by

πJ (λ ) ∝ λ− 1
2 . (8.5)

Combining Equations 8.4 and 8.5 it follows that the posterior distribution of λ is a

Gamma
(

m
∑

i=1
xi +

1
2 ,m

)
distribution, i.e.

πJ (λ |data) =
m

m
∑

i=1
xi+

1
2

Γ
(

m
∑

i=1
xi +

1
2

)e−mλ λ
m
∑

i=1
xi− 1

2 λ > 0. (8.6)

Denote the number of nonconformities in a future inspection unit by x f , then the predictive density
(if λ is known) is

f
(
x f |λ

)
= e−λ λ x f

x f !
x f = 0,1, . . . ,∞ (8.7)

and the unconditional predictive density is

f
(
x f |data

)
=

ˆ ∞

0
f
(
x f |λ

)
πJ (λ |data)dλ

=

ˆ ∞

0
e−λ λ x f

x f !
m

m
∑

i=1
xi+

1
2

Γ
(

m
∑

i=1
xi +

1
2

)e−mλ λ
m
∑

i=1
xi− 1

2 dλ

=
m

m
∑

i=1
xi+

1
2

Γ
(

m
∑

i=1
xi +

1
2

)
x f !

ˆ ∞

0
e−(m+1)λ λ

x f+
m
∑

i=1
xi− 1

2 dλ

=
m

m
∑

i=1
xi+

1
2

Γ
(

m
∑

i=1
xi +

1
2

)
x f !

Γ
(

x f +
m
∑

i=1
xi +

1
2

)
(m+1)

x f+
m
∑

i=1
xi+

1
2

x f = 0,1, . . . ,∞ (8.8)

which is a Poisson-gamma distribution whose mean and standard deviation are easily derived. It is
known as a Poisson-gamma distribution, because it is generated by the mixture of Poisson and gamma
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distributions. As before the predictive distribution in Equation 8.8 can be used to obtain the control
chart limits. The size of the rejection region, R⋆ (α), is then defined as

α = ∑
R⋆(α)

f
(
x f |data

)
. (8.9)

8.3 False Alarm Rates and Average Run Lengths

If a point falls within the lower and upper control limit, the process is in-control. If a point falls outside
or on the lower or upper control limit, the process is out-of-control. When this happens, an alarm or
a signal is given. Let β denote the probability of a “no-signal”, i.e. the probability that a point plots
in-control. The probability of a “no-signal” will thus be

β = P(LCL< Xi < UCL|λ )

= P(Xi < UCL|λ )−P(X i ≤ LCL|λ ) . (8.10)

The probability of a “signal” when the process is in-control, also known as the false alarm rate (FAR),
will thus be

1−β = 1−P(LCL< Xi < UCL|λ )

= P(Xi ≥ UCL|λ )+P(X i ≤ LCL|λ ) . (8.11)

Chakraborti & Human (2008) state that the performance of a control chart is usually judged on the
basis of its run length distribution. Chakraborti & Human (2008) give the following definition for
the run length distribution: “The run length distribution is the probability distribution of the random
variable, say N, which denotes the number of inspection units that must be sampled before the first
signal is observed on the chart”.

Assuming that the process remains stable, the predictive distribution can be used to derive the
distribution of the run lengths. Given λ and a stable process, the distribution of the run length r⋆

is geometric with parameter 1− β , the probability of a “signal”. The average run length (ARL) is
calculated as:

ARL =
1

P(sample point plots out of control)

=
1

P(Xi ≥ UCL|λ )+P(X i ≤ LCL|λ )
. (8.12)

If the process is in-control, the expected nominal value for the false alarm rate is 0.0027 and the
expected nominal value for the average run length is (0.0027)−1 = 370.3704.
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8.4 Example and Simulation Study

8.4.1 Simulation Study

Our aim in this simulation study is to compare the unconditional average run lengths and unconditional
false alarm rates using the frequentist method and a Bayesian method. Lower and upper control limits
will be calculated for given m and λ values. The values used for m and λ are the same as the values
used by Chakraborti & Human (2008).

As mentioned in Section 8.1 the control chart limits, using the frequentist method, are calculated
as follow

UCL = λ +3
√

λ

LCL = λ −3
√

λ (8.13)

with the average number of nonconformities

λ =

m
∑

i=1
xi

m
.

These are usually referred to as 3-sigma control limits.
The predictive density given in Equation 8.8 will be used to obtain the control chart limits when

using the Bayesian approach. The predictive density is a Poisson-gamma distribution with parameters

∑m
i=1 xi +

1
2 and m. The mean of the predictive density will therefore be

E
(
x f |data

)
=

m
∑

i=1
xi +

1
2

m
(8.14)

and the variance will be

Var
(
x f |data

)
=

(
m
∑

i=1
xi +

1
2

)
(m+1)

m2 . (8.15)
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Using the Bayesian method, the control chart limits are calculated as:

UCL =

m
∑

i=1
xi +

1
2

m
+3

√√√√√
(

m
∑

i=1
xi +

1
2

)
(m+1)

m2

LCL =

m
∑

i=1
xi +

1
2

m
−3

√√√√√
(

m
∑

i=1
xi +

1
2

)
(m+1)

m2 . (8.16)

Since we are working with the Poisson distribution, which is a discrete distribution, the values for
LCL and UCL which will be used to calculate average run lengths and false alarm rates should be
integer values. Chakraborti & Human (2008) state that the following values should be used for LCL
and UCL in calculations:

C = max{0, [LCL]}

and

D =

{
[UCL−1] if UCL is an integer
[UCL] if UCL is not an integer

where [UCL] denotes the largest integer not exceeding UCL and [LCL] denotes the largest integer not
exceeding LCL.

Using Equations 8.10, 8.11 and 8.12 we can determine the average run length and the false alarm
rate. After obtaining the control limits, the conditional false alarm rate (CFAR) and the conditional
average run length (CARL) can be calculated. The false alarm rate will be calculated as 1−β , where
β is calculated as

β = P(Xi ≤ D)−P(X i ≤C)

and the in-control conditional average run length is calculated as

CARL =
1

1−β
.

The unconditional false alarm rate will be determined by

UFAR =
∞

∑
j=0

[
(1−β )× e−mλ (mλ ) j

j!

]
(8.17)
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and the unconditional average run length will be determined by

UARL =
∞

∑
j=0

[
1

(1−β )
× e−mλ (mλ ) j

j!

]
. (8.18)

Consider the following simulation study where λ =1, 2, 4, 6, 8, 10, 20, 50 and m =5, 10, 15, 20, 25,
30, 50, 100, 200, 300, 500, 1 000. Chakraborti & Human (2008) considered these values and used
the classical (frequentist) method to obtain the unconditional false alarm rates and the unconditional
average run lengths. We will consider these values and apply the proposed Bayesian method to obtain
the unconditional false alarm rates and the unconditional average run lengths. The results for the given
m and λ values, using the classical and the Bayesian methods, are given in Tables 8.2 to 8.4.

Table 8.2: Unconditional average run lengths and unconditional false alarm rates for m = 5, 10, 15, 20 and
different values of λ .

m = 5 m = 10
Frequentist Bayesian Frequentist Bayesian

λ UARL UFAR UARL UFAR UARL UFAR UARL UFAR
1 2.5045 0.40659 2.6232 0.38329 2.576 0.39043 2.6339 0.3808
2 6.5614 0.15938 6.9533 0.14566 6.8228 0.14847 6.9858 0.14393
4 38.595 0.032368 44.535 0.025926 40.389 0.027249 43.769 0.02463
6 167.59 0.013607 219.49 0.0085607 162.67 0.0096356 192.1 0.0077817
8 434.37 0.010584 792.49 0.0058451 370.43 0.0068362 512.95 0.0048803
10 399.14 0.0094211 1466.1 0.0047268 377.16 0.0063311 673.51 0.0043535
20 302.21 0.0079546 856.78 0.0038292 329 0.0052386 541.61 0.0034856
50 254.62 0.0068141 690.97 0.0031555 294.52 0.0046165 481.9 0.0030082

m = 15 m = 20
Frequentist Bayesian Frequentist Bayesian

λ UARL UFAR UARL UFAR UARL UFAR UARL UFAR
1 2.608 0.38428 2.6418 0.3791 2.6185 0.38248 2.6443 0.37857
2 6.8754 0.14634 6.9853 0.14379 6.9361 0.14474 6.9953 0.14341
4 40.988 0.026006 43.523 0.024085 41.349 0.025274 43.218 0.024016
6 158.67 0.0087727 179.59 0.0076308 158.39 0.0081963 174.85 0.0072704
8 328.94 0.005955 425.7 0.0046938 310.69 0.005453 371.96 0.0045611
10 356.4 0.0053731 523.55 0.0040201 351.58 0.0047652 457.62 0.0038822
20 330.94 0.0045562 462.81 0.0033816 340 0.0041014 428.89 0.0033418
50 312.94 0.0039543 433.92 0.0029409 318.06 0.0037464 407.61 0.0029827

A smaller value for the false alarm rate is desired, since the false alarm rate is the probability of a
signal being given by the control chart when the process is actually in-control. The Bayesian method
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gives for all the values of λ smaller false alarm rates. When λ = 50 and m = 5 it can be seen from
Table 8.2 that the false alarm rate (using the Bayesian method) is equal to 0.0031555 is much closer to
the nominal value than the false alarm rate attained from using the frequentist method which is equal
to 0.0068141. When λ = 50 and m = 20 that the false alarm rate (using the Bayesian method) is equal
to 0.0029827 is much closer to the nominal value than the false alarm rate attained from using the
frequentist method which is equal to 0.0037464.

Table 8.3: Unconditional average run lengths and unconditional false alarm rates for m = 25, 30, 50, 100 and
different values of λ .

m = 25 m = 30
Frequentist Bayesian Frequentist Bayesian

λ UARL UFAR UARL UFAR UARL UFAR UARL UFAR
1 2.6254 0.38127 2.6464 0.37816 2.6287 0.3807 2.6462 0.37813
2 6.9315 0.14473 7.0057 0.14311 6.9658 0.14388 7.0027 0.14308
4 41.759 0.024808 43.335 0.023791 41.752 0.024684 43.233 0.023735
6 155.09 0.0080105 170.87 0.0071288 155.84 0.0077513 168.62 0.0070453
8 302.03 0.0052127 350.97 0.0044467 290.85 0.0050244 333.77 0.0044389
10 339.39 0.0046143 424.55 0.003924 333.01 0.004441 399.47 0.0038335
20 336.52 0.0039022 406.22 0.0032668 334.42 0.0037541 392.9 0.0032327
50 325.11 0.0035391 395.25 0.0029413 332.14 0.00338 391.65 0.0028875

m = 50 m = 100
Frequentist Bayesian Frequentist Bayesian

λ UARL UFAR UARL UFAR UARL UFAR UARL UFAR
1 2.6336 0.3799 2.6454 0.37819 2.6358 0.37954 2.6439 0.37839
2 6.988 0.14334 7.0282 0.14247 7.0331 0.14234 7.0556 0.14187
4 42.265 0.024105 43.176 0.023563 42.413 0.023885 43.015 0.023545
6 153.99 0.0073598 161.85 0.0069654 154.5 0.006958 158.1 0.006767
8 276.64 0.0046847 296.54 0.0043625 259.83 0.0044108 269.01 0.0042669
10 324 0.0040172 357.45 0.0036986 307.44 0.0038292 318.65 0.0036879
20 335.22 0.0034987 368.61 0.0032003 334.5 0.0033069 351.06 0.0031687
50 338.53 0.0031895 372.43 0.0029041 344.74 0.0030371 361.71 0.0028942

From Table 8.3, we see that the Bayesian method gives for all values of λ smaller false alarm rates
than the classical method. The average run lengths are also larger for the Bayesian method. When
λ = 1 and m = 30 it can be seen from Table 8.3 that the false alarm rate when using the Bayesian
method equals 0.37813, this value is almost the same as the value of 0.3807 from the classical method.
Looking at a larger value of λ , say λ = 50 and m = 30, the false alarm rate is 0.0028875 when using
the Bayesian method, and when using the classical method the false alarm rate is equal to 0.00338.
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The value from the Bayesian method is much closer to the nominal level of 0.0027 than that of the
classical method. For this case the UFAR from the Bayesian method is almost 7% higher than the
nominal value of 0.0027, whereas the UFAR from the classical method is almost 25% higher than the
nominal value.

Table 8.4: Unconditional average run lengths and unconditional false alarm rates for m = 200, 300, 500, 1 000
and different values of λ .

m = 200 m = 300
Frequentist Bayesian Frequentist Bayesian

λ UARL UFAR UARL UFAR UARL UFAR UARL UFAR
1 2.637 0.37937 2.6425 0.37858 2.6364 0.37946 2.6413 0.37875
2 7.0834 0.14127 7.089 0.14116 7.1067 0.14078 7.1102 0.1407
4 42.406 0.023876 42.824 0.023642 42.484 0.023833 42.837 0.023635
6 157.2 0.0066063 158.14 0.0065496 158.87 0.0064507 159.56 0.006406
8 252.13 0.0042008 255.61 0.0041436 248.14 0.0041381 249.75 0.0041097
10 294.93 0.0036522 299.73 0.0035914 289.59 0.0035884 292.14 0.003557
20 332.82 0.0031869 340.52 0.0031251 333.08 0.0031247 337.38 0.0030858
50 349.65 0.0029445 358.07 0.0028745 351.57 0.0029139 357.36 0.0028663

m = 500 m = 1000
Frequentist Bayesian Frequentist Bayesian

λ UARL UFAR UARL UFAR UARL UFAR UARL UFAR
1 2.6369 0.37938 2.6408 0.37883 2.6377 0.37927 2.6402 0.37891
2 7.1298 0.14029 7.1314 0.14026 7.1473 0.13992 7.1477 0.13991
4 42.559 0.023791 42.789 0.023662 42.53 0.023807 42.709 0.023707
6 161.72 0.0062466 161.93 0.0062325 163.6 0.0061171 163.61 0.0061161
8 246.69 0.0040728 246.95 0.004069 246.69 0.0040539 246.69 0.0040539
10 286.42 0.0035221 286.81 0.0035167 285.82 0.0034996 285.82 0.0034996
20 334.18 0.0030545 335.71 0.0030381 337.94 0.0029702 338.13 0.0029677
50 356.42 0.002864 360.25 0.0028328 367.59 0.0027677 369.54 0.0027515

From Table 8.4, we see that the Bayesian method gives for all values of λ smaller false alarm rates
than the classical method. The average run lengths are also larger for the Bayesian method. When
λ = 8 and m = 500 it can be seen from Table 8.4 that the false alarm rate using the Bayesian method
equals 0.004069, this value is almost the same as the value of 0.0040728 from the classical method.
Looking at a larger value of λ = 50 and m = 1000, the false alarm rate is 0.0027515 when using the
Bayesian method, and when using the classical method the false alarm rate is equal to 0.0027677.
These two values are almost the same, and nearly equal to the nominal value.
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From this simulation study we conclude that the Bayesian method give larger average run lengths
and smaller false alarm rates than the classical method. This is true for smaller values of m. For
m = 500 and m = 1000 the two methods yield almost the same results. According to Chakraborti &
Human (2008) it appears that, for the classical method, one needs at least 300 to 500 inspection units
to estimate the unknown standard to ensure that the c - chart performs as well when the standard is in
fact known. For the Bayesian method the false alarm rates are smaller and the average run lengths are
larger than for the classical method.

8.4.2 Example

Consider the following example from Montgomery (1996), Example 6-3 on page 277. Chakraborti &
Human (2008) also considered this example. This example deals with the number of nonconformities
observed in 26 successive samples of 100 printed circuit boards. The inspection unit is defined as 100
boards. The 26 samples contained 516 nonconformities, and λ is estimated by

λ =
516
26

= 19.85.

It was found that units 6 and 20 were out-of-control, and they were eliminated after further investiga-
tion. Revised limits were calculated using the remaining samples, with m = 24 and ∑m

i=1 xi = 472. The
average number of nonconformities per inspection unit was recalculated as

λ =
472
24

= 19.67.

Considering this example, we have m = 24 and ∑m
i=1 xi = 472. As mentioned, we will use the

Jeffreys prior for λ , πJ (λ ) ∝ λ− 1
2 . This will result in a gamma posterior, Gamma

(
∑m

i=1 xi +
1
2 ,m

)
. For

this example the posterior distribution of λ will be a Gamma(472.5,24). Figure 8.1 shows the posterior
distribution of λ . Figure 8.2 shows a bar graph of the predictive density function, f

(
x f |data

)
, where

x f is the number of nonconformities in a future inspection unit. The predictive density will be used to
obtain the control chart limits.

Summary statistics for the posterior distribution of λ :
mean = 19.69 standard deviation = 0.9057 median = 19.67
95% credibility interval = (17.95; 21.50).
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Figure 8.1: Posterior distribution of λ , when m = 24 and ∑m
i=1 xi = 472.
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Figure 8.2: Bar graph of the predictive density of f (x f |data) .
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For the observed value, ∑m
i=1 = 472, the chart’s performance will be investigated by looking at

the conditional average run length (CARL) and the conditional false alarm rate (CFAR). The control
chart limits, conditional average run length and conditional average false alarm rate will be calculated
using the classical (frequentist) method and using a Bayesian method. Chakraborti & Human (2008)
determined these values using the classical method, the results are given in Table 8.5. We used a
Bayesian method to determine these values, the results are also given in Table 8.5. Chakraborti &
Human (2008) determined the lower and upper control limits by using the limits given in Equation
8.13, we used the limits from Equation 8.16 to determine the lower and upper control limits. From
Chakraborti & Human (2008), we use λ = 20 to calculate CARL and CFAR.

Calculations used to obtain the frequentist control limits:

UCL = λ +3
√

λ

=
472
24

+3

√
472
24

= 32.9708

LCL = λ −3
√

λ

=
472
24

−3

√
472
24

= 6.3625

C = max{0, [6.3625]}

= max{0,6}= 6

D = [32.9708] = 32.

Calculations used to obtain the Bayesian control limits:

UCL =

m
∑

i=1
xi +

1
2

m
+3

√√√√√
(

m
∑

i=1
xi +

1
2

)
(m+1)

m2

=
472+ 1

2
24

+3

√(
472+ 1

2

)
(24+1)

242

= 33.2632
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LCL =

m
∑

i=1
xi +

1
2

m
−3

√√√√√
(

m
∑

i=1
xi +

1
2

)
(m+1)

m2

=
472+ 1

2
24

−3

√(
472+ 1

2

)
(24+1)

242

= 6.1018

C = max{0, [6.1018]}

= max{0,6}= 6

D = [33.2632] = 33.

Calculations used to obtain the average run lengths and false alarm rates:

CFAR = 1− [P(Xi ≤ D|λ = 20)−P(X i ≤C|λ = 20)]

CARL =
1

CFAR
.

Table 8.5: Lower control limits, upper control limits, conditional average run lengths (CARL) and conditional
false alarm rates (CFAR) for m = 24 and ∑m

i=1 = 472.

Frequentist
LCL UCL C D CARL CFAR

6.3625 32.9708 6 32 200.7 0.0049825
Bayesian

LCL UCL C D CARL CFAR
6.1018 33.2632 6 33 339.72 0.0029436

From Table 8.5, we see that the Bayesian method gives a wider interval than the classical method,
this results in a larger value for CARL and a smaller value for CFAR. The conditional false alarm rate
(CFAR) when the Bayesian method is used, is equal to 0.0029436. This value is much closer to the
nominal value of 0.0027, than the conditional false alarm rate (CFAR) of 0.0049825 obtained from the
classical method.

In Section 8.4 the mean and the variance of the predictive density was used to construct the 3-sigma
limits. This method gave smaller values for the false alarm rate and larger values for the average run
length. The problem for small values of λ can be solved if the rejection region of size α is defined
as the equal-tailed intervals of the predictive density where α = 0.0027. This will be investigated in
future research.
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8.5 Conclusion

The usual operation of the c - chart was extended by introducing a Bayesian approach for the c -
chart. From an extended simulation study, using different values of λ and number of inspection units,
we conclude that the suggested Bayesian approach gives larger values for the average run length and
smaller values for the false alarm rate. A smaller value for the false alarm rate is desired, since the
false alarm rate is the probability of a signal being given by the control chart when the process is
actually in-control. The false alarm rates obtained from the Bayesian method were generally closer to
the expected nominal value for the false alarm rate, 0.0027. The Bayesian method generally had wider
control limits.

Bayarri & García-Donato (2005) give the following reasons for recommending a Bayesian analysis:

• Control charts are based on future observations, and Bayesian methods are very natural for pre-
diction;

• uncertainty in the estimation of the unknown parameters is adequately handled;

• implementation with complicated models and in a sequential scenario poses no methodological
difficulty, the numerical difficulties are easily handled via Monte Carlo methods;

• objective Bayesian analysis is possible without introduction of external information other than
the model, but any kind of prior information can be incorporated into the analysis, if desired.



Chapter 9

Tolerance Intervals

9.1 Introduction

In this chapter we will introduce Bayesian tolerance intervals for the binomial and Poisson distribu-
tions. Tolerance intervals could be of interest in quality control. Wang & Tsung (2009) state the
following: “The construction of tolerance intervals to measure discrete quality characteristics has been
one of the major tasks in developing quality control systems used in manufacturing and pharmaceutical
sectors”. A tolerance interval gives information about a certain proportion or more of the population,
with a given confidence level. This proportion is also referred to as the content of a tolerance interval.
Whereas a confidence interval gives information about an unknown parameter. The goal of a tolerance
interval is to contain at least a specified proportion of the population with a specified degree of confi-
dence. In this chapter π will indicate the content, and 1−α the confidence level. There are three main
types of tolerance intervals. Van der Merwe & Hugo (2007) state the following three types:

• the (π,1−α) tolerance interval, where π is the content and 1−α the confidence level;

• the π-expectation tolerance interval, where π is the expected coverage of the interval. The π -
expectation intervals focus on the prediction of one or a few future observations from the process;

• the fixed-in-advance tolerance interval, where the interval is constant and one wishes to estimate
the proportion of process measurements it contains.

The above mentioned intervals can be one-sided or two-sided tolerance intervals. The one-sided in-
terval can take the form (−∞,U) or (L,∞), where U is called a one-sided upper tolerance limit and L

a one-sided lower tolerance limit. The two-sided interval can take on two different types. From Kr-
ishnamoorthy & Mathew (2009) the one is constructed such that it would contain at least a proportion
π of the population with confidence level 1−α , and the other type is constructed such that it would
contain at least a proportion π of the centre of the population with confidence level 1−α . The latter
is referred to as an equal-tailed tolerance interval. Our interest is to investigate Bayesian tolerance

168
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limits and intervals for the binomial and Poisson distributions. The Jeffreys prior will be used for the
Bayesian method.

9.2 Tolerance Intervals for the Binomial Distribution

Suppose we know that the distribution is a binomial distribution, but the value of the p is unknown.
In the case of the binomial distribution, when using the Jeffreys prior from Equation 7.2, the posterior
distribution will be

πJ (p |data) ∝ px− 1
2 (1− p)n−x− 1

2 . (9.1)

The posterior distribution given in Equation 9.1 can now be used to obtain the required tolerance
interval. In the simulation study we will consider confidence intervals for P95, the 95th percentile. A
confidence interval for a percentile is called a tolerance interval.

9.2.1 Simulation Study - Tolerance Intervals for the Binomial Distribution

In this simulation study we consider tolerance intervals where the content is 0.95 and the level of
confidence is 0.95. The binomial distribution is considered for n = 10, 20 and 30. The results for the
two-sided and one-sided coverage are given in Tables 9.1 to 9.3.

Table 9.1: Interval estimation of the 95th percentile of the binomial distribution for n = 10.

p P95 P [X ≤ P95] Two-sided coverage One-sided coverage
0.1 3 0.9872 0.9872 1.0000
0.2 4 0.9672 0.9672 1.0000
0.3 5 0.9527 0.9894 0.9718
0.4 7 0.9877 0.9413 0.9536
0.5 8 0.9893 0.9785 0.9453
0.6 8 0.9536 0.9520 0.9877
0.7 9 0.9718 0.9612 0.9894
0.8 10 1.0000 0.9936 0.9936
0.9 10 1.0000 0.9999 0.9999
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Table 9.2: Interval estimation of the 95th percentile of the binomial distribution for n = 20.

p P95 P [X ≤ P95] Two-sided coverage One-sided coverage
0.1 4 0.9568 0.9568 1.0000
0.2 7 0.9679 0.9785 0.9885
0.3 9 0.9520 0.9752 0.9645
0.4 12 0.9790 0.9776 0.9490
0.5 14 0.9793 0.9734 0.9423
0.6 16 0.9840 0.9754 0.9435
0.7 17 0.9645 0.9872 0.9829
0.8 19 0.9885 0.9785 0.9679
0.9 20 1.0000 0.9976 0.9887

Table 9.3: Interval estimation of the 95th percentile of the binomial distribution for n = 30.

p P95 P [X ≤ P95] Two-sided coverage One-sided coverage
0.1 6 0.9742 0.9498 0.9576
0.2 10 0.9744 0.9800 0.9558
0.3 13 0.9599 0.9737 0.9698
0.4 16 0.9519 0.9616 0.9828
0.5 19 0.9506 0.9706 0.9786
0.6 22 0.9565 0.9745 0.9788
0.7 25 0.9698 0.9737 0.9599
0.8 27 0.9558 0.9864 0.9905
0.9 29 0.9576 0.9556 0.9922

When n = 10, we see from Table 9.1 that the two-sided coverage is above 0.95 for all values of
p, except when p = 0.4. The one-sided coverage is also above 0.95 for all values of p, except when
p = 0.5. When n = 20, we see from Table 9.2 that the two-sided coverage is above 0.95 for all values
of p. The one-sided coverage is above 0.95 for most values of p, except when p = 0.4, 0.5 and 0.6.
When n = 30, we see from Table 9.3 that the two-sided coverage is above 0.95 for all values of p,
except when p = 0.1. The one-sided coverage is also above 0.95 for all values of p.

9.3 Tolerance Intervals for the Poisson Distribution

Suppose we know that the distribution is a Poisson distribution, but we do not know what the value
of λ is. In the case of the Poisson distribution, when using the Jeffreys prior from Equation 8.2, the
posterior distribution will be

πJ (λ |data) ∝ e−λ λ x− 1
2 λ > 0. (9.2)
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The predictive density for a future observation, x f , will then be

f
(
x f |data

)
=

ˆ ∞

0
f
(
x f |λ

)
π (λ |x)dλ

=

ˆ ∞

0
e−λ λ x f

x f !
1

Γ
(
x+ 1

2

)λ x− 1
2 e−λ dλ

=
Γ
(
x f + x+ 1

2

)
Γ
(
x+ 1

2

)
x f !

1

2x f+x+ 1
2

x f = 0,1, . . . ,∞ (9.3)

which is a Poisson-gamma distribution, similar to the expression obtained in Equation 8.8. This pre-
dictive density can be used to construct the second type of tolerance interval mentioned in Section 9.1,
the π−expectation tolerance interval. As mentioned, the π−expectation tolerance intervals focus on
the prediction of one or a few future observations from the process. The posterior distribution given in
Equation 9.2 can now be used to obtain the required tolerance interval.

9.3.1 Simulation Study - Tolerance Intervals for the Poisson Distribution

Consider the following study for the interval estimation of the 95th percentile of the Poisson distribu-
tion. For given x, x = 0,1, . . .50, 10 000 values are simulated from the posterior distribution of λ . For
each value of λ , the corresponding 95th percentile (P95) of the Poisson distribution is found. From the
sorted 10 000 values of P95 the lower limit (2.5%) and upper limit (97.5%) is found in the case of the
two-sided interval. For given λ , λ = 1, . . . ,15, the probabilities for all values of x which yielded an
interval which contains the true λ are added to obtain the coverage probability. The results are given
in Table 9.4 and plotted in Figures 9.1 and 9.2.
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Table 9.4: Interval estimation of the 95th percentile of the Poisson distribution.

Two-sided One-sided
λ P95 P(X ≤ P95) coverage coverage

1.0 3 0.9810 0.9963 1.0000
1.5 4 0.9814 0.9955 1.0000
2.0 5 0.9834 0.9955 1.0000
2.5 5 0.9580 0.9858 1.0000
3.0 6 0.9665 0.9383 0.9502
3.5 7 0.9733 0.9599 0.9698
4.0 8 0.9786 0.9736 0.9084
4.5 8 0.9597 0.9718 0.9389
5.0 9 0.9682 0.9796 0.9596
5.5 10 0.9747 0.9624 0.9734
6.0 10 0.9574 0.9626 0.9826
6.5 11 0.9661 0.9727 0.9570
7.0 12 0.9730 0.9576 0.9704
7.5 12 0.9573 0.9582 0.9797
8.0 13 0.9658 0.9690 0.9576
8.5 14 0.9726 0.9561 0.9256
9.0 14 0.9585 0.9567 0.9450
9.5 15 0.9665 0.9674 0.9597
10.0 15 0.9513 0.9626 0.9707
10.5 16 0.9604 0.9570 0.9496
11.0 17 0.9678 0.9672 0.9625
11.5 17 0.9542 0.9631 0.9723
12.0 18 0.9626 0.9584 0.9542
12.5 19 0.9694 0.9481 0.9654
13.0 19 0.9573 0.9491 0.9741
13.5 20 0.9649 0.9693 0.9585
14.0 20 0.9521 0.9691 0.9684
14.5 21 0.9604 0.9524 0.9516
15.0 21 0.9673 0.9625 0.9626

From Table 9.4 and Figures 9.1 and 9.2 it can be seen that the coverage rates are most of the time
at or above the nominal value of 0.95. When λ = 3, 12.5 and 13 the coverage rates are below 0.95
for the two-sided case, and when λ = 4, 4.5, 8.5, 9 and 10.5 the coverage rates are below 0.95 for the
one-sided case.
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Figure 9.1: Coverage of two-sided 95% interval for P95.
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Figure 9.2: Coverage of one-sided 95% interval for P95.
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9.3.2 Example - Tolerance Intervals for the Poisson Distribution

Consider the example from Section 8.4.2. Recall that for this example, we had m= 24 and
m
∑

i=1
xi = 472.

We construct the (π,1−α) tolerance interval for this example, where π = 0.95 and 1−α = 0.95. The
results gave the lower tolerance limit equal to 25, the upper tolerance limit equal to 29 and the coverage
equal to 0.9772. Figure 9.3 shows the histogram of P95.
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Figure 9.3: Histogram of P95.

9.4 Conclusion

Bayesian tolerance intervals for the binomial and Poisson distributions were introduced, and from the
simulation studies it was seen that the coverage rates obtained for one-sided and two-sided intervals
were relatively good. For the two-sided and one-sided intervals the coverage rates were most of the
time at or above 0.95, except in a few cases. We introduced tolerance intervals here, to show that
tolerance intervals could be useful for applications in quality control.



Chapter 10

Conclusion

This chapter concludes with a summary of the conclusions of the chapters in the thesis, possible short-
comings and/or drawbacks of this thesis and possible future research in this area.

10.1 Summary of Conclusions

This thesis focused on the objective part of Bayesian statistics, by looking at a number of noninfor-
mative priors. A noninformative prior is used when no prior information is available. If no prior
information is available it is impossible to justify the choice of a prior distribution on a subjective
basis, in such a case a noninformative prior should be used.

In Chapter 2 the probability matching prior for the product of different powers of k binomial pa-
rameters, ψ = ∏k

i=1 pai
i , was derived. It was also shown that when the probability matching prior is

used, the resulting posterior distribution is proper. The performance of the probability matching prior
was evaluated. The probability matching prior was compared to the Jeffreys and uniform priors. For
simulation purposes it is much easier to simulate from the Jeffreys posterior or the uniform posterior,
since the posterior distributions are known distributions for these two posteriors. This is not the case for
the probability matching prior, we therefore introduced a weighted Monte Carlo method for simulation
from the probability matching posterior. An example on the probability of failure of independent par-
allel components system was considered. The probability matching and Jeffreys priors were compared
to other methods, where the probability matching prior compared well with the other results, but the
Jeffreys prior under estimated the upper confidence limit. Three simulation studies were considered.
In the first simulation study we compared four priors for the product of two binomial proportions.
Two of the priors were probability matching priors, one of the two was a Poisson approximation to
the binomial distribution, the other two priors were Jeffreys priors, where one of the two was also a
Poisson approximation to the binomial distribution. The probability matching prior for the binomial
distribution performed the best of the four priors. In the second simulation study a comparison was
made between the Jeffreys, uniform and probability matching priors for the product of two binomial
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proportions. Different values of n1, n2, p1 and p2 were considered. The probability matching prior
and the uniform prior gave similar results. In general, we can conclude that the coverage probabilities
for the Jeffreys prior is below the nominal level. The uniform and probability matching priors, on the
other hand, give coverage probabilities larger than the nominal level and more so for the uniform prior.
The average interval lengths and standard deviations are smaller for larger values of n. In the last sim-
ulation study we compared the performance of the Jeffreys, uniform and probability matching priors
where one needs two types of components and three components in parallel are needed for a system
to operate. Again the Jeffreys prior gave coverage rates below the nominal level, and the uniform and
probability matching priors gave coverage rates above the nominal level.

The probability matching prior for a linear combination of binomial proportions, θ = ∑k
i=1 ai pi,

was derived in Chapter 3 and the properness of this posterior was shown. The weighted Monte Carlo
method was again used for simulation from the probability matching posterior. In the example that was
considered, the probability matching prior compared well with the other results. In the first simulation
study a comparison was made between six other intervals and the Jeffreys and probability matching
priors. In this study the results from the two Bayesian procedures compared well with the others,
where the difference between the intervals were not too large except for the Wald interval. In the sec-
ond simulation study a comparison was made between the Jeffreys, uniform and probability matching
priors for the difference between two binomial proportions. Different values of n1, n2, p1 and p2 were
considered. The probability matching prior and the uniform prior gave similar results. In general, we
can conclude that the coverage probabilities for the Jeffreys prior is below the nominal level. Lim-
ited simulation studies have shown that the probability matching prior achieves its sample frequentist
coverage results somewhat better than in the case of the Jeffreys prior.

In Chapter 4 the probability matching prior was derived for ξ = ∏k
i=1 λ ai

i , the product of different
powers of k Poisson rates. This has been derived before by Kim (2006), but Kim used the method by
Tibshirani (1989) where we used the method by Datta & Ghosh (1995). We derived the reference prior
for the ratio of two Poisson rates. We considered a number of simulation studies in this chapter. If one
is interested in obtaining point estimates and Bayesian credible intervals for the product of different
powers of Poisson rates the probability matching prior is the best. It was shown in this chapter that
the Jeffreys, probability matching and reference priors for the ratio of two Poisson rates have the same
posterior distribution. From the simulation study we came to the conclusion that if one wants to obtain
point estimates, credibility intervals or do hypothesis testing about the ratio of two Poisson rates, then
the uniform prior should be used.

The probability matching prior for a linear contrast of Poisson parameters, δ = ∑k
i=1 aiλi, (i.e.

∑k
i=1 ai = 0) was derived in Chapter 5 and it was also shown when ∑k

i=1 ai ̸= 0 what the probability
matching prior should be. In a simulation study we compared the four approximate confidence intervals
for linear contrasts of Poisson rates proposed by Stamey & Hamilton (2006) to confidence intervals
using Bayesian procedures. The probability matching prior also performed satisfactory, where the
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Wald interval was the poorest performer. We also addressed the problem of hypothesis testing about
two Poisson means, by looking at the size and power of different tests. We compared four Bayesian
procedures to two procedures used by Krishnamoorthy & Thomson (2004). We used the Jeffreys prior,

the probability matching prior, a third prior which is proportional to λ− 1
4

1 λ− 1
4

2 and a fourth prior which

is proportional to λ− 3
8

1 λ− 3
8

2 and compared them to their results. The Bayesian procedures compared
well with the E - test. The C - test performed the poorest of the six tests.

In Chapter 6 we proposed a Bayesian method for the estimation of binomial proportions from
pooled samples, where the Jeffreys prior was used. Simulation studies were considered as well as an
example. The Bayesian method compared well with the other results, and gave much better results than
the Wald and minimum infection rate intervals. The Wald and the minimum infection rate intervals
performed the poorest. We considered the Bayes factor, but we found the results from the Bayes factor
a bit unsatisfactory.

We considered Bayesian process control for the p - chart and the c - chart in Chapters 7 and 8,
respectively. The Jeffreys prior was used for the proposed Bayesian method and we derived the pre-
dictive density for both cases. The predictive density was used to obtained the control chart limits for
the Bayesian method. In both these chapters we compared the results from the Bayesian procedure
to the classical (frequentist) method. We compared the average run lengths and the false alarm rates.
The Bayesian method gave smaller false alarm rates and larger average run lengths than the classical
method. Smaller values for the false alarm rate are desired, and large values for the average run length.

In Chapter 9, Bayesian tolerance intervals for the binomial and Poisson distributions were intro-
duced. From the simulation studies it was seen that the coverage rates obtained for one-sided and
two-sided intervals were relatively good. Bayesian tolerance intervals were introduced to show that
tolerance intervals could be useful for applications in quality control.

10.2 Shortcomings of the Thesis

One of the shortcomings is the limitation of the simulation studies. For the binomial case, we only
considered certain values for ni, mainly small samples. The largest value considered was n1 = n2 = 30.

Another shortcoming of this thesis is the applied side of the work done. Because of the theoretical
nature of the thesis, simulation studies were used to compare the results, there was no room to apply
the findings to an actual data set. It would have been interesting to apply some of the results to an
actual real life problem.

In Chapters 6, 7, 8 and 9, the Jeffreys prior was the only prior used. Would other priors give similar
results? The practical aspect of the work done was on quality control. Would a subjective approach
not have been more interesting? This can only happen if one is actually involved with an actual case
study in process control.
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10.3 Possible Future Research

Possible further studies would be to investigate the reference prior in more detail. The reference prior
was only derived and evaluated for the ratio for two Poisson rates. A possibility is to derive the
reference prior for the product of different powers of k binomial rates and Poisson rates. The reference
prior has been derived for the product of two binomial rates, and is given in Yang & Berger (1997).
The performance of the reference prior will be compared to the other priors used in the thesis for
the different cases in future research. Another area is to extend the Bayesian process control, and to
investigate other priors. The Bayes factor could also be used in the studies considered.
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Appendix A - Estimation for the Product of
Binomial Rates

A.1 Additional Theorem and Proof

Theorem A.1. The inverse of the Fisher information matrix for k binomial rates when n1 = n2 = . . .=

nk, is given by

F−1 (p
)

= F−1 (p1, p2, . . . , pk)

=


p1 (1− p1) · · · 0

...
...

0 · · · pk (1− pk)


Proof. Assume that X1,X2, . . . ,Xk are independent binomial random variables with X i ∼ Bin(ni, pi)

for i = 1,2, . . . ,k.

Therefore P(Xi = xi) =

(
ni

xi

)
pxi

i (1− pi)
ni−xi (xi = 0,1, . . .ni) .

The likelihood function is given by

L(p1, p2 . . . , pk |x1,x2 . . . ,xk ) = L
(

p |x1,x2 . . . ,xk
)

=
k

∏
i=1

(
ni

xi

)
pxi

i (1− pi)
ni−xi .

To obtain the Fisher information matrix we take the logarithm of the likelihood function and dif-
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ferentiate twice with respect to the unknown parameters.

logL = constant+
k

∑
i=1

xilog(pi)+
k

∑
i=1

(ni − xi) log(1− pi) .

logL ∝
k

∑
i=1

xilog(pi)+
k

∑
i=1

(ni − xi) log(1− pi) .

∂ logL
∂ pi

=
xi

pi
− ni − xi

1− pi

∂ 2logL

(∂ pi)
2 =

−xi

p2
i
− (ni − xi)

(1− pi)
2

∂ 2logL
∂ pi∂ p j

= 0 (i ̸= j) .

Therefore

−E

(
∂ 2logL

(∂ pi)
2

)
=

ni pi

p2
i
+

ni (1− pi)

(1− pi)
2

=
ni

pi
+

ni

(1− pi)

=
ni

pi (1− pi)
(i = 1, . . . ,k) ,

−E
(

∂ 2logL
∂ pi∂ p j

)
= 0 (i ̸= j) .

The Fisher information matrix is then given by

F
(

p
)

= F (p1, p2, . . . , pk)

=


−E
(

∂ 2logL
(∂ p1)

2

)
· · · −E

(
∂ 2logL
∂ p1∂ pk

)
...

...

−E
(

∂ 2logL
∂ pk∂ p1

)
· · · −E

(
∂ 2logL
(∂ pk)

2

)


=


n1

p1(1−p1)
· · · 0

...
...

0 · · · nk
pk(1−pk)

 .
If n1 = n2 = . . .= nk, n can be ignored for all practical purposes (i.e. n = 1) and the inverse of the

Fisher Information matrix is then given by
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F−1 (p
)

= F−1 (p1, p2, . . . , pk)

=


1

p1(1−p1)
· · · 0

...
...

0 · · · 1
pk(1−pk)


−1

=


p1 (1− p1) · · · 0

...
...

0 · · · pk (1− pk)

 .

A.2 MATLABr Code

MATLABr code for the simulation studies considered for the product of binomial rates

%Jeffreys and uniform prior for the product of binomial proportions

clc;

clear;

p1 = 0.1:0.1:0.9;

p2 = 0.1:0.1:0.9;

n1 = 20;

n2 = 20;

theta0 = (p1)’*(p2);

matrix = [];

for i = 1:9

SI = [];

AVG = [];

COUNT = [];

for j = 1:9

count = 0;

Ii = [];

THETA = [];

for k = 1:1000

x1 = binornd(n1,p1(i));

x2 = binornd(n2,p2(j));
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%p_1 = betarnd(x1+1,n1-x1+1,1,1000); %uniform prior

%p_2 = betarnd(x2+1,n2-x2+1,1,1000); %uniform prior

p_1 = betarnd(x1+0.5,n1-x1+0.5,1,1000); %Jeffreys prior

p_2 = betarnd(x2+0.5,n2-x2+0.5,1,1000); %Jeffreys prior

theta = (p_1).*(p_2);

THETA = [theta];

temp = sort(THETA);

lower = temp(50);

upper = temp(950);

leng = upper - lower;

Ii = [Ii leng];

if lower < theta0(i,j)

if upper >theta0(i,j)

count = count + 1;

end

end

end

avg = sum(Ii)/1000;

si = sqrt(1/999*(sum(Ii.^2) - (sum(Ii))^2/1000));

SI = [SI si];

AVG = [AVG avg];

COUNT = [COUNT count];

end

matrix = [matrix; COUNT./1000; AVG; SI;];

end

%Probability Matching prior for the product of binomial proportions

clc

clear

p1 = 0.1:0.1:0.9;

p2 = 0.1:0.1:0.9;

n1 = 20;

n2 = 20;

theta0 = (p1.^2)’*(p2);

%change theta0 to (p1)’*(p2) for diff sim (same for PMP)
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matrix = [];

for i = 1:9

SI = [];

AVG = [];

COUNT = [];

for j = 1:9

count = 0;

Ii = [];

THETA = [];

vectors = [];

CHOSEN = [];

chosen = [];

for k = 1:1000

x1 = binornd(n1,p1(i));

x2 = binornd(n2,p2(j));

p_1 = betarnd(x1+1,n1-x1+1,1,1000);

p_2 = betarnd(x2+1,n2-x2+1,1,1000);

theta = (p_1.^2).*(p_2);

pp1 = p_1.^(-0.5);

pp2 = p_2.^(-0.5);

ppp1 = (1-p_1).^(-1);

ppp2 = (1-p_2).^(-1);

pppp1 = 1-p_1;

pppp2 = 1-p_2;

PMP = pp1.* pp2.* ppp1.* ppp2.* sqrt((2*p_2.*(1 - p_1))

+ (p_1.*(1 - p_2)));

vectors = [PMP];

total =sum(vectors);

weights = vectors/total;

vectorweight = [theta; weights]’;

sorteds = sortrows(vectorweight);

CHOSEN = [sorteds];

temp = sort(CHOSEN);

lower = temp(round(0.05*length(CHOSEN)));

upper = temp(round(0.95*length(CHOSEN)));

leng = upper - lower;

Ii = [Ii leng];
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if lower < theta0(i,j)

if upper >theta0(i,j)

count = count + 1;

end

end

end

avg = sum(Ii)/1000;

si = sqrt(1/999*(sum(Ii.^2) - (sum(Ii))^2/1000));

SI = [SI si];

AVG = [AVG avg];

COUNT = [COUNT count];

end

matrix = [matrix; COUNT./1000; AVG; SI;];

end



Appendix B - Estimation for a Linear
Function of Binomial Rates

B.1 Additional Theorem and Proof

Theorem B.1. The maximum likelihood estimate (MLE) of pi is equal to p̂i = xi/ni.

Proof. Assume that X1,X2 are independent binomial random variables with X i ∼ Bin(ni, pi) for i =

1,2. Therefore P(Xi = xi) =

(
ni

xi

)
pxi

i (1− pi)
ni−xi for xi = 0,1, . . . ,ni.

The likelihood function is given by

L(p1, p2 |x1,x2 ) = L
(

p |x1,x2
)

=
2

∏
i=1

(
ni

xi

)
pxi

i (1− pi)
ni−xi .

We take the logarithm of the likelihood function and differentiate with respect to the unknown
parameter.

logL =
2

∑
i=1

log

(
ni

xi

)
+

2

∑
i=1

xilog(pi)+
2

∑
i=1

(ni − xi) log(1− pi)

∝
2

∑
i=1

xilog(pi)+
2

∑
i=1

(ni − xi) log(1− pi)

∂ logL
∂ pi

=
xi

pi
− ni − xi

1− pi
(i = 1,2) .

Now set the differential equal to zero and solve the unknown parameter.
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∂ logL
∂ pi

= 0

∴ xi

pi
− ni − xi

1− pi
= 0

xi

pi
=

ni − xi

1− pi
1− pi

pi
=

ni − xi

xi
1
pi
−1 =

ni − xi

xi
1
pi

=
ni − xi + xi

xi
=

ni

xi

∴ p̂i =
xi

ni
.
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B.2 Additional Simulation Results

Tables B.1 to B.3 contain coverage probabilities, mean lengths and standard deviations for the Jeffreys,
uniform and probability matching priors when n1 = n2 = 20, for several choices of p1 and p2. These
results are summarised in Figure 3.4.

Table B.1: Coverage rate of the 95% credibility intervals for θ 1 = p1 − p2 using the Jeffreys prior. (a) Exact
coverage probabilities, (b) mean lengths, (c) standard deviation for n1 = n2 = 20.

Jeffreys prior n1 = n2 = 20
↓ p2 p1

→
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 mean

0.1 (a) 0.9420 0.9330 0.9470 0.9580 0.9560 0.9280 0.9560 0.9690 0.9530 0.9491
(b) 0.3784 0.4296 0.4642 0.4811 0.4851 0.4768 0.4522 0.4180 0.3622 0.4386
(c) 1.0463 1.0607 1.0773 1.0640 1.0689 1.0502 1.0724 0.8912 0.9360 1.0297

0.2 (a) 0.9500 0.9290 0.9480 0.9460 0.9430 0.9490 0.9550 0.9460 0.9560 0.9469
(b) 0.4285 0.4775 0.5048 0.5245 0.5285 0.5193 0.4988 0.4652 0.4167 0.4849
(c) 1.1025 1.0747 1.0413 1.0477 1.0903 1.0591 1.0426 1.0112 0.9047 1.0416

0.3 (a) 0.9570 0.9330 0.9400 0.9430 0.9430 0.9430 0.9470 0.9440 0.9520 0.9447
(b) 0.4633 0.5068 0.5337 0.5529 0.5543 0.5490 0.5293 0.4989 0.4541 0.5158
(c) 1.0923 1.0690 1.0713 1.0655 1.0616 1.0725 1.0336 1.0248 1.0463 1.0597

0.4 (a) 0.9360 0.9490 0.9470 0.9480 0.9420 0.9460 0.9340 0.9480 0.9520 0.9447
(b) 0.4781 0.5243 0.5511 0.5660 0.5706 0.5657 0.5494 0.5197 0.4776 0.5336
(c) 1.0482 1.0333 1.0556 1.0566 1.0548 1.0504 1.0708 1.0570 1.0530 1.0533

0.5 (a) 0.9410 0.9310 0.9480 0.9510 0.9500 0.9590 0.9390 0.9400 0.9440 0.9448
(b) 0.4839 0.5267 0.5560 0.5716 0.5763 0.5701 0.5555 0.5249 0.4831 0.5387
(c) 1.0449 1.0627 1.0716 1.0528 1.0563 1.0705 1.0599 1.0764 1.0385 1.0593

0.6 (a) 0.9530 0.9490 0.9500 0.9270 0.9490 0.9450 0.9310 0.9470 0.9500 0.9446
(b) 0.4752 0.5181 0.5495 0.5653 0.5700 0.5658 0.5517 0.5217 0.4815 0.5332
(c) 1.0430 1.0527 1.0551 1.0865 1.0789 1.0621 1.0557 1.0775 1.0538 1.0628

0.7 (a) 0.9480 0.9550 0.9420 0.9380 0.9400 0.9490 0.9350 0.9470 0.9460 0.9444
(b) 0.4558 0.4992 0.5324 0.5480 0.5555 0.5502 0.5340 0.5054 0.4617 0.5158
(c) 1.0308 1.0517 1.0405 1.0651 1.0491 1.0670 1.0639 1.0633 1.0710 1.0558

0.8 (a) 0.9570 0.9410 0.9530 0.9420 0.9380 0.9490 0.9490 0.9440 0.9460 0.9466
(b) 0.4189 0.4683 0.5003 0.5176 0.5270 0.5222 0.5044 0.4763 0.4280 0.4848
(c) 0.9592 0.9823 0.9977 1.0228 1.0479 1.0390 1.0817 1.0486 1.0968 1.0307

0.9 (a) 0.9400 0.9690 0.9480 0.9450 0.9330 0.9490 0.9610 0.9550 0.9630 0.9514
(b) 0.3640 0.4189 0.4572 0.4755 0.4831 0.4798 0.4638 0.4326 0.3792 0.4393
(c) 0.8765 0.9540 0.9961 0.9955 1.0547 1.0284 1.0775 1.1014 1.0311 1.0128

mean (a) 0.9471 0.9432 0.9470 0.9442 0.9438 0.9463 0.9452 0.9489 0.9513 0.9463
(b) 0.4384 0.4855 0.5166 0.5336 0.5389 0.5332 0.5155 0.4848 0.4382 0.4983
(c) 1.0271 1.0379 1.0452 1.0507 1.0625 1.0555 1.0620 1.0390 1.0257 1.0451
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Table B.2: Coverage rate of the 95% credibility intervals for θ 1 = p1 − p2 using the uniform prior. (a) Exact
coverage probabilities, (b) mean lengths, (c) standard deviation for n1 = n2 = 20.

Uniform prior n1 = n2 = 20
↓ p2 p1

→
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 mean

0.1 (a) 0.9740 0.9690 0.9580 0.9490 0.9480 0.9460 0.9430 0.9440 0.9240 0.9506
(b) 0.3923 0.4367 0.4629 0.4803 0.4842 0.4741 0.4536 0.4209 0.3758 0.4423
(c) 0.9676 1.0371 1.0449 1.0394 0.9921 1.0366 0.9311 0.8651 0.8070 0.9690

0.2 (a) 0.9560 0.9490 0.9620 0.9490 0.9540 0.9490 0.9470 0.9620 0.9340 0.9513
(b) 0.4380 0.4780 0.5019 0.5155 0.5188 0.5129 0.4941 0.4644 0.4204 0.4827
(c) 1.0686 1.0450 1.0534 1.0389 1.0343 0.9982 0.9565 0.8844 0.8552 0.9927

0.3 (a) 0.9590 0.9670 0.9550 0.9570 0.9450 0.9540 0.9500 0.9380 0.9430 0.9520
(b) 0.4642 0.5017 0.5275 0.5413 0.5451 0.5406 0.5240 0.4985 0.4560 0.5110
(c) 1.0504 1.0524 1.0555 1.0522 1.0490 1.0321 1.0122 0.9810 0.9126 1.0220

0.4 (a) 0.9590 0.9510 0.9490 0.9530 0.9610 0.9630 0.9600 0.9590 0.9510 0.9562
(b) 0.4813 0.5158 0.5425 0.5548 0.5585 0.5549 0.5392 0.5164 0.4760 0.5266
(c) 1.0587 1.0463 1.0555 1.0557 1.0508 1.0202 1.0263 1.0081 0.9741 1.0328

0.5 (a) 0.9480 0.9420 0.9440 0.9640 0.9530 0.9540 0.9610 0.9560 0.9430 0.9517
(b) 0.4813 0.5214 0.5450 0.5588 0.5648 0.5590 0.5451 0.5199 0.4838 0.5310
(c) 1.0049 1.0330 1.0348 1.0496 1.0637 1.0567 1.0222 1.0392 1.0415 1.0384

0.6 (a) 0.9480 0.9570 0.9480 0.9500 0.9580 0.9550 0.9520 0.9600 0.9550 0.9537
(b) 0.4773 0.5129 0.5390 0.5540 0.5596 0.5553 0.5429 0.5155 0.4807 0.5264
(c) 0.9608 0.9647 1.0097 1.0322 1.0686 1.0582 1.0594 1.0365 1.0546 1.0272

0.7 (a) 0.9410 0.9510 0.9640 0.9500 0.9640 0.9470 0.9600 0.9570 0.9480 0.9536
(b) 0.4581 0.4976 0.5250 0.5389 0.5460 0.5431 0.5270 0.5032 0.4634 0.5114
(c) 0.9340 0.9465 0.9942 1.0320 1.0596 1.0622 1.0752 1.0599 1.0371 1.0223

0.8 (a) 0.9280 0.9520 0.9460 0.9450 0.9500 0.9520 0.9460 0.9370 0.9560 0.9458
(b) 0.4221 0.4689 0.4959 0.5133 0.5208 0.5172 0.5011 0.4754 0.4362 0.4834
(c) 0.8567 0.9191 0.9841 0.9774 1.0114 1.0454 1.0586 1.0481 1.0691 0.9967

0.9 (a) 0.8970 0.9400 0.9390 0.9500 0.9550 0.9560 0.9520 0.9660 0.9730 0.9476
(b) 0.3745 0.4247 0.4571 0.4755 0.4843 0.4789 0.4666 0.4353 0.3924 0.4432
(c) 0.7940 0.8525 0.9315 0.9697 1.0191 1.0431 1.0759 1.0611 0.9870 0.9704

mean (a) 0.9456 0.9531 0.9517 0.9519 0.9542 0.9529 0.9523 0.9532 0.9474 0.9514
(b) 0.4432 0.4842 0.5108 0.5258 0.5313 0.5262 0.5104 0.4833 0.4427 0.4953
(c) 0.9662 0.9885 1.0182 1.0275 1.0387 1.0392 1.0242 0.9982 0.9709 1.0079
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Table B.3: Coverage rate of the 95% credibility intervals for θ 1 = p1 − p2 using the probability matching prior.
(a) Exact coverage probabilities, (b) mean lengths, (c) standard deviation for n1 = n2 = 20.

Probability Matching prior n1 = n2 = 20
↓ p2 p1

→
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 mean

0.1 (a) 0.9630 0.9600 0.9540 0.9490 0.9490 0.9450 0.9470 0.9380 0.9210 0.9473
(b) 0.3940 0.4400 0.4623 0.4784 0.4842 0.4764 0.4576 0.4237 0.3733 0.4433
(c) 0.9729 1.0888 1.0505 1.0453 1.0162 0.9944 0.9348 0.8591 0.7910 0.9725

0.2 (a) 0.9670 0.9590 0.9440 0.9490 0.9470 0.9500 0.9310 0.9460 0.9430 0.9484
(b) 0.4358 0.4761 0.5020 0.5148 0.5183 0.5147 0.4951 0.4684 0.4191 0.4827
(c) 1.0401 1.0614 1.0439 1.0409 1.0099 1.0014 1.0306 0.8976 0.8504 0.9974

0.3 (a) 0.9570 0.9490 0.9570 0.9620 0.9400 0.9510 0.9510 0.9320 0.9320 0.9479
(b) 0.4638 0.5016 0.5279 0.5424 0.5449 0.5400 0.5225 0.4958 0.4572 0.5107
(c) 1.0612 1.0450 1.0621 1.0613 1.0372 1.0345 0.9886 0.9970 0.9534 1.0267

0.4 (a) 0.9400 0.9580 0.9430 0.9470 0.9630 0.9590 0.9560 0.9580 0.9490 0.9526
(b) 0.4813 0.5162 0.5409 0.5549 0.5595 0.5546 0.5395 0.5140 0.4751 0.5262
(c) 1.0318 1.0549 1.0565 1.0658 1.0606 1.0658 1.0058 1.0030 0.9951 1.0377

0.5 (a) 0.9640 0.9500 0.9550 0.9560 0.9580 0.9490 0.9500 0.9520 0.9510 0.9539
(b) 0.4826 0.5216 0.5466 0.5584 0.5638 0.5599 0.5455 0.5176 0.4825 0.5310
(c) 0.9931 1.0173 1.0424 1.0410 1.0617 1.0655 1.0425 1.0271 0.9915 1.0313

0.6 (a) 0.9550 0.9400 0.9380 0.9470 0.9590 0.9560 0.9600 0.9600 0.9530 0.9520
(b) 0.4772 0.5123 0.5391 0.5542 0.5595 0.5547 0.5411 0.5170 0.4808 0.5262
(c) 0.9836 0.9856 1.0179 1.0382 1.0616 1.0641 1.0534 1.0362 1.0462 1.0319

0.7 (a) 0.9410 0.9530 0.9560 0.9560 0.9470 0.9580 0.9560 0.9540 0.9530 0.9527
(b) 0.4586 0.4967 0.5218 0.5402 0.5470 0.5410 0.5270 0.5008 0.4664 0.5111
(c) 0.9659 0.9950 1.0194 1.0329 1.0607 1.0519 1.0560 1.0532 1.0385 1.0304

0.8 (a) 0.9370 0.9420 0.9510 0.9520 0.9470 0.9590 0.9580 0.9460 0.9680 0.9511
(b) 0.4236 0.4694 0.4955 0.5150 0.5211 0.5146 0.5012 0.4766 0.4385 0.4839
(c) 0.8743 0.9548 0.9642 1.0096 1.0216 1.0249 1.0509 1.0385 1.1034 1.0047

0.9 (a) 0.9260 0.9390 0.9500 0.9600 0.9500 0.9490 0.9560 0.9610 0.9800 0.9523
(b) 0.3742 0.4221 0.4559 0.4765 0.4851 0.4818 0.4675 0.4354 0.3952 0.4437
(c) 0.7965 0.8482 0.9648 0.9627 1.0463 1.0665 1.0775 1.0881 0.9740 0.9805

mean (a) 0.9500 0.9500 0.9498 0.9531 0.9511 0.9529 0.9517 0.9497 0.9500 0.9509
(b) 0.4435 0.4840 0.5102 0.5261 0.5315 0.5264 0.5108 0.4832 0.4431 0.4954
(c) 0.9688 1.0057 1.0246 1.0331 1.0418 1.0410 1.0267 1.0000 0.9715 1.0126
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B.3 MATLABr Code

MATLABr code for the simulation studies considered for the difference between binomial rates

%Jeffreys and uniform prior for the difference between binomial proportions

clc;

clear;

p1 = 0.1:0.1:0.9;

p2 = 0.1:0.1:0.9;

n1 = 26;

n2 = 20;

matrix = [];

for i = 1:9

AVG2 = [];

AVG = [];

COUNT = [];

for j = 1:9

count = 0;

li = [];

li2 = [];

THETA = [];

for k = 1:1000

x1 = binornd(n1,p1(i));

x2 = binornd(n2,p2(j));

%p_1 = betarnd(x1+1,n1-x1+1,1,1000); %uniform prior

%p_2 = betarnd(x2+1,n2-x2+1,1,1000); %uniform prior

p_1 = betarnd(x1+0.5,n1-x1+0.5,1,1000); %Jeffreys prior

p_2 = betarnd(x2+0.5,n2-x2+0.5,1,1000); %Jeffreys prior

theta = p_1-p_2;

THETA = [theta];

temp = sort(THETA);

lower = temp(25);

upper = temp(975);

leng = upper - lower;

theta0 = p1(i) - p2(j);

if lower < theta0
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if upper >theta0

count = count + 1;

li = [li leng];

else

li2 = [li2 leng];

end

else

li2 = [li2 leng];

end

end

avg = sum(li)/length(li);

AVG = [AVG avg];

avg2 = sum(li2)/length(li2);

AVG2 = [AVG2 avg/avg2];

COUNT = [COUNT count];

end

matrix = [matrix; COUNT./1000; AVG; AVG2;];

end

%Probability matching prior for the difference between binomial proportions

clc;

clear;

p1 = 0.1:0.1:0.9;

p2 = 0.1:0.1:0.9;

n1 = 10;

n2 = 30;

matrix = [];

for i = 1:9

AVG2 = [];

AVG = [];

COUNT = [];

for j = 1:9

count = 0;

li = [];
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li2 = [];

THETA = [];

vectors = [];

CHOSEN = [];

chosen = [];

for k = 1:1000

x1 = binornd(n1,p1(i));

x2 = binornd(n2,p2(j));

p_1 = betarnd(x1+1,n1-x1+1,1,1000);

p_2 = betarnd(x2+1,n2-x2+1,1,1000);

theta = p_1-p_2;

pp1 = p_1.^(-1);

pp2 = p_2.^(-1);

ppp1 = (1-p_1).^(-1);

ppp2 = (1-p_2).^(-1);

pppp1 = 1-p_1;

pppp2 = 1-p_2;

PMP = pp1.* pp2.* ppp1.* ppp2.* sqrt((p_1.*(1 - p_1))

+ (p_2.*(1 - p_2)));

vectors = [PMP];

total =sum(vectors);

weights = vectors/total;

vectorweight = [theta; weights]’;

sorteds = sortrows(vectorweight);

CHOSEN = [sorteds];

temp = sort(CHOSEN);

lower = temp(round(0.025*length(CHOSEN)));

upper = temp(round(0.975*length(CHOSEN)));

leng = upper - lower;

theta0 = p1(i) - p2(j);

if lower < theta0

if upper >theta0

count = count + 1;

li = [li leng];

else

li2 = [li2 leng];

end
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else

li2 = [li2 leng];

end

end

avg = sum(li)/length(li);

AVG = [AVG avg];

avg2 = sum(li2)/length(li2);

AVG2 = [AVG2 avg/avg2];

COUNT = [COUNT count];

end

matrix = [matrix; COUNT./1000; AVG; AVG2;];

end

The code can be adapted to be used for the example on the Mal de Rio Cuarto Virus.



Appendix C - Estimation for the Ratio and
Product of Poisson Rates

C.1 Additional Theorem and Proof

Theorem C.1. The inverse of the Fisher information matrix for k Poisson is given by

F−1 (λ ) = F−1 (λ1,λ2, . . . ,λk)

=


λ1 · · · 0
...

...
0 · · · λk

 .
Proof. Assume that X1,X2, . . . ,Xk are independent Poisson random variables with X i ∼ P(λi) , for
i = 1,2, . . . ,k.

Therefore P(Xi = xi) =
λ xi

i e−λi

xi!
(xi = 0,1,2, . . .).

The likelihood function is given by

L(λ1,λ2 . . . ,λk |x1,x2 . . . ,xk ) = L(λ |x1,x2 . . . ,xk )

=
k

∏
i=1

λ xi
i e−λi

xi!
.

To obtain the Fisher information matrix we take the logarithm of the likelihood function and dif-
ferentiate twice with repsect to the unknown parameters.

199



APPENDIX C - ESTIMATION FOR THE RATIO AND PRODUCT OF POISSON RATES 200

logL = constant+
k

∑
i=1

xilog(λi)−
k

∑
i=1

λi

logL ∝
k

∑
i=1

xilog(λi)−
k

∑
i=1

λi

∂ logL
∂λi

=
xi

λi
−1

∂ 2logL

(∂λi)
2 =

−xi

λ 2
i

∂ 2logL
∂λi∂λ j

= 0 (i ̸= j) .

(i = 1, . . . ,k)
Therefore

−E

(
∂ 2logL

(∂λi)
2

)
=

λi

λ 2
i
=

1
λi

(i = 1, . . . ,k) ,

−E
(

∂ 2logL
∂λi∂λ j

)
= 0 (i ̸= j.)

The Fisher information matrix is then given by

F (λ ) = F (λ1,λ2, . . . ,λk)

=


−E
(

∂ 2logL
(∂λ1)

2

)
· · · −E

(
∂ 2logL
∂λ1∂λk

)
...

...

−E
(

∂ 2logL
∂λk∂λ1

)
· · · −E

(
∂ 2logL
(∂λk)

2

)


=


1
λ1

· · · 0
...

...
0 · · · 1

λk

 .
The inverse of the Fisher information matrix is then given by
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F−1 (λ ) = F−1 (λ1,λ2, . . . ,λk)

=


1
λ1

· · · 0
...

...
0 · · · 1

λk


−1

=


λ1 · · · 0
...

...
0 · · · λk

 .

C.2 MATLABr Code

MATLABr code for the simulation studies considered for the product of Poisson rates

%PRODUCT OF TWO POISSON PARAMETERS, PROB MATCHING PRIOR

clc;

clear;

%Lambda2 runs from 2 to 10

L2=[2:10];

RESULTS1=[];

RESULTS2=[];

for u=1:9

%Set the value of Lambda1

l1=10;

l2=L2(u);

L=[l1;l2];

%Set a1, a2 equal to 0.5, 1 or (1,-1) for product, square-root or ratio

a1=1;

a2=1;

true=(l1^a1)*(l2^a2);

m=500;

Lo=[];

Up=[];

Leng=[];

HPDlo=[];
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HPDup=[];

HPDleng=[];

for i=1:m

x=poissrnd(L);

k=1000;

r=ones(1,k);

la=gamrnd((x+1)*r,1);

w=sqrt((a1^2)./la(1,:)+(a2^2)./la(2,:));

W=w/sum(w);

theta=(la(1,:).^a1).*(la(2,:).^a2);

[Y,I]=sort(theta);

%Weighted Monte Carlo Method

W2=W(I);

C=cumsum(W2);

J1=min(find(C>=0.024));

J2=min(find(C>=0.975));

lo=Y(J1);

up=Y(J2);

P=C(J2)-C(J1);

leng=up-lo;

Lo=[Lo;lo];

Up=[Up;up];

Leng=[Leng;leng];

H=[];

Y11=[];

Y22=[];

for j=0.01:0.001:0.04

K1=min(find(C>=j));

K2=min(find(C>=0.95+j));

Y1=Y(K1);

Y2=Y(K2);

Y11=[Y11;Y1];

Y22=[Y22;Y2];

h=Y2-Y1;

H=[H;h];

end

hpdleng=min(H);
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HPDleng=[HPDleng;hpdleng];

Q=find(H==min(H));

hpdlo=Y11(Q);

hpdup=Y22(Q);

HPDlo=[HPDlo;hpdlo];

HPDup=[HPDup;hpdup];

end

cover=length(find(Lo<=true & Up>=true))*100/m;

LENG=mean(Leng);

VAR=cov(Leng);

HPDcover=length(find(HPDlo<=true & HPDup>=true))*100/m;

HPDLENG=mean(HPDleng);

HPDVAR=cov(HPDleng);

u+1

results1=[cover;LENG;VAR];

results2=[HPDcover;HPDLENG;HPDVAR];

RESULTS1=[RESULTS1 results1]; %RESULTS1 is for equal-tail

RESULTS2=[RESULTS2 results2]; %RESULTS2 is for shortest interval

end

%PRODUCT OF POISSON PARAMETERS FOR JEFFREYS TYPE PRIORS

clc;

clear;

%Lambda2 runs from 2 to 10

L2=[2:10];

RESULTS1=[];

RESULTS2=[];

for j=1:9

%Set the value of Lambda1

l1=2;

l2=L2(j);

L=[l1;l2];

%Set a1, a2 equal to 0.5, 1 or (1,-1) for product, square-root or ratio

a1=0.5;

a2=0.5;
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true=(l1^a1)*(l2^a2);

m=5000;

Lo=[];

Up=[];

HPDlo=[];

HPDup=[];

Leng=[];

HPDleng=[];

for i=1:m

x=poissrnd(L);

k=10000;

w=ones(1,k);

%Parameter in gamrnd depends on prior used

la=gamrnd((x+1)*w,1);

theta=(la(1,:).^a1).*(la(2,:).^a2);

st=sort(theta);

lo=st(0.025*k);

up=st(0.975*k);

leng=up-lo;

Lo=[Lo;lo];

Up=[Up;up];

Sl=[];

for w=1:499

sl=st(10000-w)-st(500-w);

Sl=[Sl;sl];

end

hpdleng=min(Sl);

Leng=[Leng;leng];

HPDleng=[HPDleng;hpdleng];

J=find(Sl==min(Sl));

hpdlo=st(500-J);

hpdup=st(10000-J);

HPDlo=[HPDlo;hpdlo];

HPDup=[HPDup;hpdup];

end

cover=length(find(Lo<=true & Up>=true))*100/m;

LENG=mean(Leng);
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HPDcover=length(find(HPDlo<=true & HPDup>=true))*100/m;

HPDLENG=mean(HPDleng);

VAR=cov(Leng);

HPDVAR=cov(HPDleng);

j+1

results1=[cover;LENG;VAR];

results2=[HPDcover;HPDLENG;HPDVAR];

RESULTS1=[RESULTS1 results1]; %RESULTS1 is for equal-tail

RESULTS2=[RESULTS2 results2]; %RESULTS2 is for shortest interval

end

MATLABr code for the simulation studies considered for the ratio of Poisson rates

%RATIO OF POISSON PARAMETERS USING THE F-DISTRIBUTION

%ONLY FOR RATIO

clc;

clear;

L2=[2:10];

RESULTS1=[];

RESULTS2=[];

for j=1:9

l1=10;

l2=L2(j);

L=[l1;l2];

true=l1/l2;

m=5000;

Lo=[];

Up=[];

HPDlo=[];

HPDup=[];

Leng=[];

HPDleng=[];

for i=1:m

x=poissrnd(L);

k=10000;

%c=2 for uniform prior

%c=1 for Jeffreys prior
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%c=0 for Prob Matching prior (Does not work if any x=0)

c=2;

a=(x(1)+c)/(x(2)+c);

theta=a*frnd(2*x(1)+c,2*x(2)+c,k,1);

st=sort(theta);

lo=st(0.025*k);

up=st(0.975*k);

leng=up-lo;

Lo=[Lo;lo];

Up=[Up;up];

Sl=[];

for w=1:499

sl=st(10000-w)-st(500-w);

Sl=[Sl;sl];

end

hpdleng=min(Sl);

Leng=[Leng;leng];

HPDleng=[HPDleng;hpdleng];

J=find(Sl==min(Sl));

hpdlo=st(500-J);

hpdup=st(10000-J);

HPDlo=[HPDlo;hpdlo];

HPDup=[HPDup;hpdup];

end

cover=length(find(Lo<=true & Up>=true))*100/m;

LENG=mean(Leng);

HPDcover=length(find(HPDlo<=true & HPDup>=true))*100/m;

HPDLENG=mean(HPDleng);

VAR=cov(Leng);

HPDVAR=cov(HPDleng);

j+3

results1=[cover;LENG;VAR];

results2=[HPDcover;HPDLENG;HPDVAR];

RESULTS1=[RESULTS1 results1]; %RESULTS1 is for equal-tail

RESULTS2=[RESULTS2 results2]; %RESULTS2 is for shortest interval

end



APPENDIX C - ESTIMATION FOR THE RATIO AND PRODUCT OF POISSON RATES 207

%Uniform and Jeffreys priors (ratio)

clc;

clear;

lambda1 = 2:1:10;

lambda2 = 2:1:10;

lambda11 = 1./lambda1;

lambda2a = 1./lambda2;

theta0 = lambda1’*lambda2a;

%theta0 = lambda11’*lambda2;

matrix = [];

for i = 1:9

SI = [];

AVG = [];

COUNT = [];

for j = 1:9

count = 0;

Ii = [];

THETA = [];

for k = 1:1000

x1 = poissrnd(lambda1(i));

x2 = poissrnd(lambda2(j));

%lambda_1 = gamrnd(x1+1,1,1,1000); %Uniform prior

%lambda_2 = gamrnd(x2+1,1,1,1000); %Uniform prior

lambda_1 = gamrnd(x1+0.5,1,1,1000); %Jeffreys prior

lambda_2 = gamrnd(x2+0.5,1,1,1000); %Jeffreys prior

theta = lambda_1./lambda_2;

THETA = [theta];

temp = sort(THETA);

lower = temp(25);

upper = temp(975);

leng = upper - lower;

Ii = [Ii leng];

if lower < theta0(i,j)

if upper > theta0(i,j)

count = count + 1;

end
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end

end

avg = sum(Ii)/1000;

si = sqrt(1/999*(sum(Ii.^2) - (sum(Ii))^2/1000));

SI = [SI si];

AVG = [AVG avg];

COUNT = [COUNT count];

end

matrix = [matrix; COUNT./1000; AVG; SI;];

end



Appendix D - Estimation for Linear
Functions of Poisson Rates

D.1 MATLABr Code for Linear Combination - coverage

MATLABr code for the example considered in this chapter

%Probability matching prior (DWI)

clc;

clear;

%DATA FOR PMP I

X=[0;5;2;11;8;9];

%DATA FOR PMPII

%X=[0.5;5;2;11;8;9];

Z=[];

W=[];

GG=[];

for i=1:10000

%FOR PMPI

G=gamrnd(X+0.5,1);

%FOR PMPII

%G=gamrnd(X,1);

w=sqrt(sum(G));

GG=[GG G];

%FOR MEAN (can only use PMP II)

%z=mean(G);

%FOR DIFF BETWEEN WINTER AND SUMMER

z=mean(G(4:6))-mean(G(1:3));

W=[W;w];

Z=[Z;z];

209
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end

W=W/sum(W);

[Y,I]=sort(Z);

Wi=W(I);

cW=cumsum(Wi);

J1=max(find(cW<=0.025));

J2=min(find(cW>=0.975));

lo=Y(J1);

up=Y(J2);

leng=up-lo;

K1=[];

K2=[];

L=[];

Hpdlo=[];

Hpdup=[];

for j=0.01:0.001:0.04

k1=max(find(cW<=j));

k2=min(find(cW>=0.95+j));

hpdlo=Y(k1);

hpdup=Y(k2);

l=hpdup-hpdlo;

K1=[K1;k1];

K2=[K2;k2];

L=[L;l];

Hpdlo=[Hpdlo;hpdlo];

Hpdup=[Hpdup;hpdup];

end

hpdl=min(L);

q=find(L==hpdl);

HPDlo=Hpdlo(q);

HPDup=Hpdup(q);

J=[0.01:0.001:0.04];

TAILS=[J(q) 0.95+J(q)];

COVER=[lo up leng cW(J1) cW(J2)]

HPDCOVER=[HPDlo HPDup hpdl TAILS]
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%Jeffreys prior (DWI)

clc;

clear;

X=[0;5;2;11;8;9];

Z=[];

for i=1:100000

G=gamrnd(X+0.5,1);

%FOR MEAN

%z=mean(G);

%FOR DIFF BETWEEN WINTER AND SUMMER

z=mean(G(4:6))-mean(G(1:3));

Z=[Z;z];

end

sZ=sort(Z);

lo=sZ(0.025*i);

up=sZ(0.975*i);

leng=up-lo;

HPDleng=[];

L=[];

U=[];

for j=0.01:0.001:0.04

l=sZ(round(j*i));

u=sZ(round(0.95*i+j*i));

hpdleng=u-l;

HPDleng=[HPDleng;hpdleng];

L=[L;l];

U=[U;u];

end

minleng=min(HPDleng);

K=find(HPDleng==minleng);

HPDLo=L(K);

HPDUp=U(K);

J=[0.01:0.001:0.04];

TAILS=[J(K) 0.95+J(K)];

COVER=[lo up leng]

HPDCOVER=[HPDLo HPDUp minleng TAILS]
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MATLABr code for the simulation studies considered for linear combinations of Poisson rates

%Jeffreys prior (linear comb Poiss)

clc;

clear;

RESULTS=[];

for i=1:10

k=5;

n=1000;

lamb=5+rand(k,n)*5;

true=lamb(1,:)-lamb(2,:)/4-lamb(3,:)/4-lamb(4,:)/4-lamb(5,:)/4;

%true=lamb(1,:)/2+lamb(2,:)/2-lamb(3,:)/2-lamb(4,:)/2;

%true=lamb(1,:)-0.5*lamb(2,:)-0.5*lamb(3,:);

%true=mean(lamb);

%true=lamb(1,:)-lamb(2,:);

x=poissrnd(lamb);

m=10000;

G1=gamrnd(ones(m,1)*(x(1,:)+0.5),1);

G2=gamrnd(ones(m,1)*(x(2,:)+0.5),1);

G3=gamrnd(ones(m,1)*(x(3,:)+0.5),1);

G4=gamrnd(ones(m,1)*(x(4,:)+0.5),1);

G5=gamrnd(ones(m,1)*(x(5,:)+0.5),1);

G=G1-G2/4-G3/4-G4/4-G5/4;

%G=G1/2+G2/2-G3/2-G4/2;

clear G1 G2 G3 G4 G5

sG=sort(G);

lo=sG(0.025*m,:);

up=sG(0.975*m,:);

leng=mean(up-lo);

p=100*length(find(lo<=true & up>=true))/n;

Hl=[];

K2=[];

K1=[];

for j=0.01:0.001:0.04

k1=sG(round(j*m),:);

k2=sG(round((0.95+j)*m),:);

hl=k2-k1;



APPENDIX D - ESTIMATION FOR LINEAR FUNCTIONS OF POISSON RATES 213

Hl=[Hl;hl];

K1=[K1;k1];

K2=[K2;k2];

end

[Y,I]=min(Hl);

hpdlo=diag(K1(I,:))’;

hpdup=diag(K2(I,:))’;

hpdleng=mean(Y);

hp=100*length(find(hpdlo<=true & hpdup>=true))/n;

RESULTS=[RESULTS;[p leng hp hpdleng]];

end

mean(RESULTS)

%Probability matching prior (linear comb Poiss)

clc;

clear;

RESULTS=[];

for u=1:200

k=2;

n=10;

lamb=5+rand(k,n)*5;

%true=lamb(1,:)-lamb(2,:)/4-lamb(3,:)/4-lamb(4,:)/4-lamb(5,:)/4;

%true=lamb(1,:)/2+lamb(2,:)/2-lamb(3,:)/2-lamb(4,:)/2;

%true=lamb(1,:)-0.5*lamb(2,:)-0.5*lamb(3,:);

%true=mean(lamb);

true=lamb(1,:)-lamb(2,:);

x=poissrnd(lamb);

for v=1:k

I=find(x(v,:)==0);

x(v,I)=0.5;

end

Z=[];

W=[];

GG=[];

m=4000;
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for i=1:m

%G=gamrnd(x+0.5,1);

G=gamrnd(x,1);

w=sqrt(G(1,:)+G(2,:));

GG=[GG G];

z=(G(1,:)-G(2,:));

%z=mean(G);

W=[W;w];

Z=[Z;z];

end

clear GG

W=W./(ones(m,1)*sum(W));

[Y,I]=sort(Z);

for j=1:n

Wi(:,j)=W(I(:,j),j);

end

cW=cumsum(Wi);

for j=1:n

J1(j)=max(find(cW(:,j)<=0.025));

J2(j)=max(find(cW(:,j)<=0.975));

lo(j)=Y(J1(j),j);

up(j)=Y(J2(j),j);

end

leng=mean(up-lo);

p=100*length(find(lo<=true & up>=true))/n;

K1=[];

K2=[];

L=[];

Hpdlo=[];

Hpdup=[];

for j=0.01:0.001:0.04

for t=1:n

k1(t)=max(find(cW(:,t)<=j));

k2(t)=max(find(cW(:,t)<=0.95+j));

hpdlo(t)=Y(k1(t),t);

hpdup(t)=Y(k2(t),t);
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l(t)=hpdup(t)-hpdlo(t);

end

K1=[K1;k1];

K2=[K2;k2];

L=[L;l];

Hpdlo=[Hpdlo;hpdlo];

Hpdup=[Hpdup;hpdup];

end

for t=1:n

hpdl(t)=min(L(:,t));

q(t)=min(find(L(:,t)==hpdl(t)));

HPDlo(t)=Hpdlo(q(t),t);

HPDup(t)=Hpdup(q(t),t);

end

hl=mean(HPDup-HPDlo);

hp=100*length(find(HPDlo<=true & HPDup>=true))/n;

RESULTS=[RESULTS;[leng p hl hp]];

end

mean(RESULTS)

D.2 MATLABr Code for the Power and Size of Tests

MATLABr code for the simulation studies considered for the size of the tests

%Probability matching prior (size)

%FIRST OR SECOND PM PRIOR %ONE-SIDED TESTS

clc;

clear;

RESULTS=[];

for u=1:10

k=2;

n=1000;

lamb=35;

true = 0;

alpha = 0.01;

x=poissrnd(lamb,k,n);
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%FOR PMP II

%for v=1:k

% I=find(x(v,:)==0);

% x(v,I)=0.5;

%end

Z=[];

W=[];

GG=[];

m=5000;

for i=1:m

%FOR PMP I

G=gamrnd(x+0.5,1);

%FOR PMP II

%G=gamrnd(x,1);

w=sqrt(G(1,:)+G(2,:));

GG=[GG G];

z=(G(1,:)-G(2,:));

%z=mean(G);

W=[W;w];

Z=[Z;z];

end

clear GG

W=W./(ones(m,1)*sum(W));

[Y,I]=sort(Z);

for j=1:n

Wi(:,j)=W(I(:,j),j);

end

cW=cumsum(Wi);

for j=1:n

J(j)=max(find(cW(:,j)<=(1-alpha)));

up(j)=Y(J(j),j);

end

leng=mean(up);

p=100*length(find(up>=true))/n;

RESULTS=[RESULTS;[lamb 100-p leng]];

end
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mean(RESULTS)

%Jeffreys and other two priors (size)

%ONE-SIDED TESTS

clc;

clear;

RESULTS=[];

for i=1:10

k=2;

n=1000;

lamb=35;

true=0;

alpha = 0.001;

x=poissrnd(lamb,k,n);

m=5000;

%G1=gamrnd(ones(m,1)*(x(1,:)+0.625),1); %for prior 3/8

%G2=gamrnd(ones(m,1)*(x(2,:)+0.625),1); %for prior 3/8

%G1=gamrnd(ones(m,1)*(x(1,:)+0.75),1); %for prior 1/4

%G2=gamrnd(ones(m,1)*(x(2,:)+0.74),1); %for prior 1/4

G1=gamrnd(ones(m,1)*(x(1,:)+0.5),1);

G2=gamrnd(ones(m,1)*(x(2,:)+0.5),1);

G=G1-G2;

clear G1 G2

sG=sort(G);

up=sG((1-alpha)*m,:);

leng=mean(up);

p=100*length(find(up>=true))/n;

RESULTS=[RESULTS;[lamb 100-p leng]];

end

mean(RESULTS)
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MATLABr code for the simulation studies considered for the power of the tests

%Probability matching prior (power)

clc;

clear;

R=[];

lamb2=2;

for lamb1=1:20

RESULTS=[];

for i=1:10

n=1000;

true=lamb1-lamb2;

x1=poissrnd(lamb1,1,n);

x2=poissrnd(lamb2,1,n);

%FOR PMP II

%I1=find(x1==0);

%x1(I1)=0.5;

%I2=find(x2==0);

%x2(I2)=0.5;

Z=[];

W=[];

GG=[];

m=5000;

for j=1:m

%FOR PMP I

G1=gamrnd((x1+0.5),1);

G2=gamrnd((x2+0.5),1);

%FOR PMP II

%G1=gamrnd((x1),1);

%G2=gamrnd((x2),1);

z=G1-G2;

w=sqrt(G1+G2);

W=[W;w];

Z=[Z;z];

clear G1 G2

end

W=W./(ones(m,1)*sum(W));
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[Y,I]=sort(Z);

for j=1:n

Wi(:,j)=W(I(:,j),j);

end

cW=cumsum(Wi);

for j=1:n

J(j)=max(find(cW(:,j)<=0.05));

lo(j)=Y(J(j),j);

end

power=100*length(find(lo>=0))/n;

RESULTS=[RESULTS;[lamb1 power]];

end

M=mean(RESULTS);

R=[R;M];

end

%Jeffreys and other two priors (power)

%ONE-SIDED TESTS

clc;

clear;

R=[];

lamb2=20;

for lamb1=10:0.5:55

RESULTS=[];

for i=1:10

n=1000;

true=lamb1-lamb2;

x1=poissrnd(lamb1,1,n);

x2=poissrnd(lamb2,1,n);

m=5000;

%G1=gamrnd(ones(m,1)*(x(1,:)+0.625),1); %for prior 3/8

%G2=gamrnd(ones(m,1)*(x(2,:)+0.625),1); %for prior 3/8

%G1=gamrnd(ones(m,1)*(x(1,:)+0.75),1); %for prior 1/4

%G2=gamrnd(ones(m,1)*(x(2,:)+0.74),1); %for prior 1/4
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G1=gamrnd(ones(m,1)*(x1+0.5),1);

G2=gamrnd(ones(m,1)*(x2+0.5),1);

G=G1-G2;

clear G1 G2

sG=sort(G);

lo=sG(0.05*m,:);

power=100*length(find(lo>=0))/n;

RESULTS=[RESULTS;[lamb1 power]];

end

M=mean(RESULTS);

R=[R;M];

end



Appendix E - Estimation for Binomial Rates
from Pooled Samples

E.1 Additional Theorem and Proof

Theorem E.1. The Fisher information, derived by Walter et al. (1980), in the case of M independent
binomial random variables, X i ∼ Bin(ni,1− (1− p)mi) , is given by

F (p) =
M

∑
i=1

m2
i ni (1− p)mi−2

[1− (1− p)mi]

Proof. Assume that X1,X2, . . . ,XM are independent binomial random variables with X i ∼Bin(ni,1− (1− p)mi) .

The likelihood function is given by

L(p |x1,x2, . . . ,xM ) ∝
M

∏
i=1

{
[1− (1− p)mi ]xi [(1− p)mi ]ni−xi

}
.

To obtain the Fisher information we take the logarithm of the likelihood function and differentiate
twice with respect to the unknown parameter.

logL = constant+∑M
i=1 {xilog[1− (1− p)mi ]}+∑M

i=1 mi (ni − xi) log(1− p)

∝
M

∑
i=1

{xilog[1− (1− p)mi]}+
M

∑
i=1

mi (ni − xi) log(1− p)

=
M

∑
i=1

{xilog[1− (1− p)mi]}+ log(1− p)
M

∑
i=1

mi (ni − xi)

221
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∂ logL
∂ p

=
M

∑
i=1

ximi (1− p)mi−1

[1− (1− p)mi ]
− 1

(1− p)

M

∑
i=1

mi (ni − xi)

=
1

(1− p)

M

∑
i=1

{
ximi (1− p)mi

[1− (1− p)mi ]
−mi (ni − xi)

}
=

1
(1− p)

M

∑
i=1

{
ximi (1− p)mi −mi (ni − xi) [1− (1− p)mi ]

[1− (1− p)mi ]

}
=

1
(1− p)

M

∑
i=1

{
ximi (1− p)mi −mini +mixi +mini (1− p)mi −mixi (1− p)mi

[1− (1− p)mi ]

}
=

1
(1− p)

M

∑
i=1

{
−mini +mixi +mini (1− p)mi

[1− (1− p)mi]

}
=

1
(1− p)

M

∑
i=1

{
mixi

[1− (1− p)mi ]
−mini

}

∂ 2logL
∂ p2 =

1

(1− p)2

M

∑
i=1

{
mixi

[1− (1− p)mi]
−mini

}
− 1
(1− p)

M

∑
i=1

{
miximi (1− p)mi−1

[1− (1− p)mi]2

}

∴−E
(

∂ 2logL
∂ p2

)
= − 1

(1− p)2

M

∑
i=1

{
mini [1− (1− p)mi]

[1− (1− p)mi]
−mini

}
+

1
(1− p)

M

∑
i=1

{
m2

i ni [1− (1− p)mi ] (1− p)mi−1

[1− (1− p)mi]2

}

=
1

(1− p)

M

∑
i=1

{
m2

i ni (1− p)mi−1

[1− (1− p)mi]

}

∴ F (p) =−E
(

∂ 2logL
∂ p2

)
=

M

∑
i=1

{
m2

i ni (1− p)mi−2

[1− (1− p)mi ]

}
.
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E.2 Data

Table E.1 contains the data used by Biggerstaff (2008) of Culex nigripalpus mosquitoes trapped at
heights of 6m and 1.5m. Where mi is the pool size for i = 1,2, . . . ,M, and M indicates the number of
distinct pool sizes. Where ni is the number of pools of size mi and X i indicates the number of the ni

pools that is positive.

Table E.1: Biggerstaff (2008) Example Data

Sample 1 Sample 2
height = 6m height = 1.5m
m1 n1 x1 m2 n2 x2
50 22 6 100 1 0
49 7 0 50 12 0
48 3 0 49 2 0
47 2 0 48 3 0
46 1 0 46 1 0
42 1 0 45 1 1
41 1 0 42 1 0
35 2 0 41 2 0
32 1 1 40 1 0
27 1 0 36 1 0
20 1 0 35 1 0
17 1 0 22 1 0
9 1 0 13 1 0
8 1 0 10 1 0
7 2 0 6 1 0
6 1 0 5 1 0
3 1 0
2 1 0
1 3 0
M1 = 19 M2 = 16
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E.3 MATLABr Code

E.3.1 MATLABr Code for Biggerstaff (2008) Example

clear;

clc;

%BIGGERSTAFF DATA

m1=[50 49 48 47 46 42 41 35 32 27 20 17 9 8 7 6 3 2 1];

n1=[22 7 3 2 1 1 1 2 1 1 1 1 1 1 2 1 1 1 3];

x1=[6 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0];

m2=[100 50 49 48 46 45 42 41 40 36 35 22 13 10 6 5];

n2=[1 12 2 3 1 1 1 2 1 1 1 1 1 1 1 1];

x2=[0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0];

M1=19;

M2=16;

%Plot of posteriors

for p1 = 0.000001:0.000001:0.015

A1 = prod((((1-(1-p1).^m1)).^x1).*(((1-p1).^m1).^(n1-x1)));

B1 = sqrt(sum((m1.^2).*n1.*((1-p1).^(m1-2))./(1-(1-p1).^m1)));

f1 = A1*B1;

F1 = [F1;[p1 f1]];

end

S1 = sum(0.000001*F1(:,2));

Fp1 = [F1(:,1),F1(:,2)/S1];

plot(Fp1(:,1),Fp1(:,2),’b’,’LineWidth’,2)

title(’Posterior distribution of \it{p}’,’Fontsize’,12)

xlabel(’\it{p}’,’Fontsize’,12)

ylabel(’posterior’,’Fontsize’,12)

grid

hold on

F2 = [];

for p2 = 0.000001:0.000001:0.015

A2 = prod((((1-(1-p2).^m2)).^x2).*(((1-p2).^m2).^(n2-x2)));

B2 = sqrt(sum((m2.^2).*n2.*((1-p2).^(m2-2))./(1-(1-p2).^m2)));

f2 = A2*B2;

F2 = [F2;[p2 f2]];

end

S2 = sum(0.000001*F2(:,2));
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Fp2 = [F2(:,1),F2(:,2)/S2];

plot(Fp2(:,1),Fp2(:,2),’g’,’LineWidth’,2)

hold off

axis([0 0.01 0 700])

legend(’Sample 1’, ’Sample 2’)

%SET M=M1 etc. FOR SAMPLE 1 AND M=M2 etc. FOR SAMPLE 2

M=M1;

m=m1;

n=n1;

x=x1;

F=[];

h=0.000001;

for p=0.000001:h:0.015

A=prod((((1-(1-p).^m)).^x).*(((1-p).^m).^(n-x)));

B=sqrt(sum((m.^2).*n.*((1-p).^(m-2))./(1-(1-p).^m)));

f=A*B;

F=[F;[p f]];

end

S=sum(h*F(:,2));

Fp=[F(:,1),F(:,2)/S];

sF=sum(Fp(:,2));

av=Fp(:,1)’*Fp(:,2)/sF;

T=find(Fp(:,2)==max(Fp(:,2)));

Mo=Fp(T,1);

CS=h*cumsum(Fp(:,2));

L=[];

LL=[];

for i=0.003:0.000001:0.047

l1=max(find(CS<=i));

l2=min(find(CS>=0.95+i));

l=l2-l1;

LL=[LL;[l1 l2]];

L=[L;l];

end

Q=max(find(L==min(L)));

R=LL(Q,:);

Lo=Fp(R(1),1);
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Up=Fp(R(2),1);

Le=Up-Lo;

%T=[LOWER LIMIT UPPER LIMIT MEAN MODE LENGHT]

T=[Lo Up av Mo Le]

E.3.2 MATLABr Code for Simulation Studies

The programs given here is for M = 2, that is, two samples n = [n1 n2], with pool sizes m = [m1 m2].
There are three programs that must run in sequence. The results of the first two must be saved in

.mat files. The first program calculates the probabilities of all combined outcomes, x = [x1 x2] for a
given p.

The second program calculates the posterior density of p, its mean, mode, 95% HPD Interval and
length of interval for each of the possible outcomes x = [x1 x2] used in program 1.

The third program combines the results of the first two for given p. For example, it adds up the
probabilities of all outcomes x = [x1 x2] that yield a 95% HPD Interval that contains the given p. This
gives the coverage probability. Also right and left non-coverage, expected mean, mode and length.

• Changing p: Change p in parts 1 and 3. The ranges of x1 and x2 must also be changed (in parts
1 and 2) to ensure that we include all reasonable values, so that the sum of the probabilities is
close to 1, say 1.0000 to the nearest 4 decimals (S in part 1). It is impractical and unnecessary to
try and run x from 0 to n.

• Changing n and m: Change the entries of n and m in parts 1 and 2. Again the ranges of x1 and x2

(in parts 1 and 2) must be checked and probably changed.

• Changing M: If we want M =3, we must add values to the entries of n and m and add another
‘for’ loop for x3 in parts 1 and 2. Other changes in part 1 are that:

x = [x1 x2 x3];

S = sum(Px(:,4));

The same for part 2. Remember that RESULT in part 2 now has an extra column. So in part 3
the column numbers of RESULT must be changed. Similarly for M > 3. For M = 1, just do the
opposite. For M > 3 the running time would get very high, especially if the ranges of the x’s
have to be relatively wide.

%PART 1:

%BINOMIAL PROBABILITIES FOR MULTIPLE SAMPLES

clear;

clc;
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%Change M, n, m and the number of x’s as required

M=2;

n=[100 50];

m=[5 10];

%Choose p

p=0.002;

t=1-(1-p).^m;

Px=[];

for x1=0:7

for x2=0:7

x=[x1 x2];

lnK=gammaln(n+1)-gammaln(x+1)-gammaln(n-x+1);

px=exp(lnK).*(t.^x).*((1-t).^(n-x));

ppx=prod(px);

Px=[Px;[x ppx]];

end

end

S=sum(Px(:,3))

%Choose the upper values for x1 and x2 as small as possible

%but so that S = 1. It depends on p. For example, if p = 0.001

%we can use 5 and 5, but if p = 0.01, we must have at least

%17 and 14.

%Now save the result.

save C:/- - - -/prob2002.mat Px

%PART 2:

%HPD INTERVAL OF p FOR MULTIPLE SAMPLES M FOR ALL X

clear;

clc;

%Change M, n, m and the number of x’s as required

M=2;

m=[5 10];

n=[100 50];

RESULT=[];

Px=[];

%Use the same values for x1 and x2 as in onesamplecoverage1
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for x1=0:7

for x2=0:7

x=[x1 x2];

F=[];

%If sum(x)=0 we need more accurate and slightly different calculations

if sum(x)==0

h=0.0000001;

for p=0.00000001:h:0.002

A=prod((((1-(1-p).^m)).^x).*(((1-p).^m).^(n-x)));

B=sqrt(sum((m.^2).*n.*((1-p).^(m-2))./(1-(1-p).^m)));

f=A*B;

F=[F;[p f]];

end

else

h=0.00001;

for p=0.00001:h:0.035

A=prod((((1-(1-p).^m)).^x).*(((1-p).^m).^(n-x)));

B=sqrt(sum((m.^2).*n.*((1-p).^(m-2))./(1-(1-p).^m)));

f=A*B;

F=[F;[p f]];

end

end

S=sum(h*F(:,2));

Fp=[F(:,1),F(:,2)/S];

%Check the plots to see if the range used for p is enough.

%plot(Fp(:,1),Fp(:,2))

%grid

%pause

sF=sum(Fp(:,2));

av=Fp(:,1)’*Fp(:,2)/sF;

T=find(Fp(:,2)==max(Fp(:,2)));

Mo=Fp(T,1);

CS=h*cumsum(Fp(:,2));

L=[];
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LL=[];

if sum(x)==0;

l2=min(find(CS>=0.95));

Lo=0; Up=Fp(l2);

Le=Up;

Mo=0;

else

for i=0.01:0.0001:0.04

l1=max(find(CS<=i));

l2=min(find(CS>=0.95+i));

l=l2-l1;

LL=[LL;[l1 l2]];

L=[L;l];

end

Q=max(find(L==min(L)));

R=LL(Q,:);

Lo=Fp(R(1),1);

Up=Fp(R(2),1);

Le=Up-Lo;

end

T=[Lo Up av Mo Le];

RESULT=[RESULT;[x T]];

end

end

%RESULT stores [x1 x2 Lowerlimit Upperlimit Mean Mode Intervallength]

%Now save the results

save C:/- - - -/R2002.mat RESULT

%PART3:

%CALCULATE COVERAGE PROBABILITIES FOR GIVEN P

%Using the saved results from onesamplecoverage1 and 2

clear;

clc;

load R2002;

load prob2002;

%Below put in the right column number, depending on the number of x’s.
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lo=RESULT(:,3);

hi=RESULT(:,4);

ml=RESULT(:,7);

me=RESULT(:,5);

mo=RESULT(:,6);

whd=Px(:,3);

p=0.002;

q=find(lo<=p & hi>=p);

prob=sum(whd(q));

l=find(lo>p);

r=find(hi<p);

right=sum(whd(r));

left=1-prob-right;

sym=(left-right)/(right+left);

ML=whd’*ml;

ME=whd’*me;

MO=whd’*mo;

A=[p prob left right sym ML ME MO]

The following code was used for the third simulation study, to determine the coverage and Bayes factor.

%PART 1 - Coverage

%SIMULATE USING BIGGERSTAFF SAMPLE SIZES - INDIVIDUAL SAMPLES

clear;

clc

p1=0.004;

p2=0.001;

m1=[50 49 48 47 46 42 41 35 32 27 20 17 9 8 7 6 3 2 1];

n1=[22 7 3 2 1 1 1 2 1 1 1 1 1 1 2 1 1 1 3];

m2=[100 50 49 48 46 45 42 41 40 36 35 22 13 10 6 5];

n2=[1 12 2 3 1 1 1 2 1 1 1 1 1 1 1 1];

M1=19;

M2=16;

t1=(1-p1).^m1;

t2=(1-p2).^m2;

%SET M=M1 etc. FOR SAMPLE 1 AND M=M2 etc. FOR SAMPLE 2

M=M2;

m=m2;
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n=n2;

pp=p2;

t=t2;

W=[];

c=10000;

for j=1:c

X=[];

for i=1:length(m)

x=0:n(i);

fx=(gamma(n(i)+1)./gamma(x+1)./gamma(n(i)-x+1)).*((1-t(i)).^x).*(t(i)

.^(n(i)-x));

Fx=cumsum(fx);

r=rand(1,1);

I=min(find(Fx>=r));

x1=x(I);

X=[X x1];

end

y=sum(X);

%break

x=X;

F=[];

h=0.0001;

for p=0.00001:h:0.015

A=prod((((1-(1-p).^m)).^x).*(((1-p).^m).^(n-x)));

B=sqrt(sum((m.^2).*n.*((1-p).^(m-2))./(1-(1-p).^m)));

f=A*B;

F=[F;[p f]];

end

S=sum(h*F(:,2));

Fp=[F(:,1),F(:,2)/S];

%plot(Fp(:,1),Fp(:,2))

%grid

%pause

sF=sum(Fp(:,2));

av=Fp(:,1)’*Fp(:,2)/sF;

T=find(Fp(:,2)==max(Fp(:,2)));
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Mo=Fp(T,1);

CS=h*cumsum(Fp(:,2));

Me=F(min(find(CS>=0.5)),1);

L=[];

LL=[];

if y==0 Lo=0;

l2=min(find(CS>=0.95));

Up=Fp(l2,1);

Le=Up;

else

for i=0.004:0.00001:0.03

l1=min(find(CS>=i));

l2=min(find(CS>=0.95+i));

l=l2-l1;

LL=[LL;[l1 l2]]; L=[L;l];

end

Q=max(find(L==min(L)));

R=LL(Q,:);

Lo=Fp(R(1),1);

Up=Fp(R(2),1);

Le=Up-Lo;

end

%T=[LOWER LIMIT UPPER LIMIT MEAN MODE MEDIAN LENGHT]

T=[Lo Up av Mo Me Le];

W=[W;[y T]];

end

J=find(W(:,2)<=pp & W(:,3)>=pp);

COVER=length(J)/c

J1=find(W(:,2)>pp);

J2=find(W(:,3)<pp);

LEFT=length(J1)/c;

RIGHT=length(J2)/c;

W22=W;

%PART 2 - Bayes factor

%BIGGERSTAFF SIMULATIONS OF BAYES FACTOR %NUMERICAL INTEGRATION
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%NO CONSTANTS

%BETA(0.5,0.5) PRIOR ON P

clear;

clc;

p1=0.004;

p2=0.001;

m1=[50 49 48 47 46 42 41 35 32 27 20 17 9 8 7 6 3 2 1];

n1=[22 7 3 2 1 1 1 2 1 1 1 1 1 1 2 1 1 1 3];

m2=[100 50 49 48 46 45 42 41 40 36 35 22 13 10 6 5];

n2=[1 12 2 3 1 1 1 2 1 1 1 1 1 1 1 1];

M1=19;

M2=16;

t1=(1-p1).^m1; t2=(1-p2).^m2;

W=[];

c=10000;

for j=1:c

x1=[];

for i=1:length(m1)

x=0:n1(i);

fx1=(gamma(n1(i)+1)./gamma(x+1)./gamma(n1(i)-x+1)).*((1-t1(i)).^x).*(t1(i)

.^(n1(i)-x));

Fx1=cumsum(fx1);

r1=rand(1,1);

I1=min(find(Fx1>=r1));

x11=x(I1);

x1=[x1 x11];

end

y1=sum(x1);

x2=[];

for i=1:length(m2)

x=0:n2(i);

fx2=(gamma(n2(i)+1)./gamma(x+1)./gamma(n2(i)-x+1)).*((1-t2(i)).^x).*(t2(i)

.^(n2(i)-x));

Fx2=cumsum(fx2);

r2=rand(1,1);

I2=min(find(Fx2>=r2));
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x22=x(I2);

x2=[x2 x22];

end

y2=sum(x2);

%UNDER M0

m=[m1 m2];

n=[n1 n2];

x=[x1 x2];

h=0.0001;

L0=[];

for p=0.0001:h:0.012

lnL0=-0.5*(log(p)+log(1-p))+sum(x.*log((1-(1-p).^m)))+log(1-p).*sum(m.*(n-x));

L0=[L0;exp(lnL0)];

end

p=0.00001:h:0.012;

%plot(p,L0)

%grid

%pause

f0=h*sum(L0);

%UNDER M1

f1=0;

for p1=0.0001:h:0.012

for p2=0.0001:h:0.012

A1=-0.5*(log(p1)+log(1-p1))+sum(x1.*log((1-(1-p1).^m1)))+log(1-p1)

.*sum(m1.*(n1-x1));

A2=-0.5*(log(p2)+log(1-p2))+sum(x2.*log((1-(1-p2).^m2)))+log(1-p2)

.*sum(m2.*(n2-x2));

lnL1=A1+A2;

f1=f1+h*h*exp(lnL1);

end

end

B01=f0/pi/f1;

P=(1+1./B01).^(-1);

W=[W;[y1 y2 B01 P]];

end



Appendix F - Bayesian Process Control and
Tolerance Intervals

F.1 MATLABr Code for the p - chart

MATLABr code for the p - chart

%Binomial control chart

%Frequentist method

clc;

clear;

m = 30;

n = 40;

T = m*n;

p0 = 0.5;

p1 = 0.5;

u = 0:T;

p_hat = u/T;

%freq

nUCL = n*p_hat + 3*sqrt(n.*p_hat.*(1-p_hat));

nLCL = n*p_hat - 3*sqrt(n.*p_hat.*(1-p_hat));

c = fix(nLCL);

c(c==-1) = 0;

d = min(floor(nUCL),n);

neg = (nLCL(:) < 0);

beta = zeros(length(d),1);

beta(neg) = binocdf(d(neg),n,p0);

beta(~neg) = binocdf(d(~neg),n,p0)-binocdf(c(~neg),n,p0);

CFAR = 1-beta;

pU_u = binopdf(u,T,p0);

235
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PU_U = pU_u;

FAR1 = CFAR’.*PU_U;

ICARL = PU_U./CFAR’;

matrix = [u; p_hat; nLCL; nUCL; c; d; beta’; CFAR’; PU_U; FAR1; ICARL]’;

FAR = sum(FAR1(:))

ARL0 = sum(ICARL(:))

%Binomial control chart

%Bayes method

clc;

clear;

m = 30;

n = 40;

T = m*n;

p0 = 0.5;

p1 = 0.5;

u = 0:T;

alpha = u + 0.5;

beta = m*n - u + 0.5;

aveBB = (n.*alpha)./(alpha+beta);

varianceBB = ((n.*alpha.*beta).*(alpha+beta+n))

./(((alpha+beta).^2).*(alpha+beta+1));

nUCL = aveBB + 3*sqrt(varianceBB);

nLCL = aveBB - 3*sqrt(varianceBB);

c = fix(nLCL);

c(c==-1) = 0;

c(c==-2) = 0;

d = min(floor(nUCL),n);

neg = (nLCL(:) < 0);

beta = zeros(length(d),1);

beta(neg) = binocdf(d(neg),n,p0);

beta(~neg) = binocdf(d(~neg),n,p0)-binocdf(c(~neg),n,p0);

CFAR = 1-beta;

pU_u = binopdf(u,T,p0);

PU_U = pU_u;

FAR1 = CFAR’.*PU_U;
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ICARL = PU_U./CFAR’;

matrix = [u; nLCL; nUCL; c; d; beta’; CFAR’; PU_U; FAR1; ICARL]’;

FAR = sum(FAR1(:))

ARL0 = sum(ICARL(:))

F.2 MATLABr Code for the c - chart

MATLABr code for the c - chart

%Poisson control chart simulation

clc;

clear;

l = [1 2 4 6 8 10 20 50];

MMRUN = [];

MMPHI = [];

MMMED = [];

MMPHIM = [];

MMRUNb = [];

MMPHIb = [];

MMMEDb = [];

MMPHIMb = [];

for j = 1:length(l)

lamb = l(j);

m = 5; %change value of m

Mrun = [];

PHI = [];

Mrunb = [];

PHIb = [];

for i = 1:10000

z = poissrnd(lamb,m,1);

x = sum(z);

%frequentists limits

c = x/m;

lo = c- 3*sqrt(c);

up = c + 3*sqrt(c);

if lo <= 0;

lo = 0;
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end

if up == floor(up)

up = up - 1;

else

up = up;

end

TL = floor(lo);

TU = floor(up);

%Bayes limits

ave = (x + 0.5)/(m);

var = ((x + 0.5)*(m+1))/(m^2);

lob = ave -3*sqrt(var);

upb = ave +3*sqrt(var);

if lob <= 0;

lob = 0;

end

if upb == floor(upb)

upb = upb - 1;

else

upb = upb;

end

TLb = floor(lob);

TUb = floor(upb);

%Freq

t = TL+1:TU;

phi = 1-sum(poisspdf(t,lamb));

PHI = [PHI;phi];

meanrun = 1/phi;

Mrun = [Mrun;meanrun];

%Bayes

tb = TLb+1:TUb;

phib = 1-sum(poisspdf(tb,lamb));

PHIb = [PHIb;phib];

meanrunb = 1/phib;

Mrunb = [Mrunb;meanrunb];

end
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%Freq

MRUN = mean(Mrun);

MMED = median(Mrun);

MPHI = mean(PHI);

MPHIM = median(PHI);

MMRUN = [MMRUN;MRUN]; %average run length

MMPHI = [MMPHI;MPHI]; %false alarm rate (FAR)

MMMED = [MMMED;MMED]; %median run length

MMPHIM = [MMPHIM;MPHIM];

%Bayes

MRUNb = mean(Mrunb);

MMEDb = median(Mrunb);

MPHIb = mean(PHIb);

MPHIMb = median(PHIb);

MMRUNb = [MMRUNb;MRUNb];

MMPHIb = [MMPHIb;MPHIb];

MMMEDb = [MMMEDb;MMEDb];

MMPHIMb = [MMPHIMb;MPHIMb];

end

%results = [Freq; Bayes]

results = [MMRUN MMMED MMPHI MMPHIM;

MMRUNb MMMEDb MMPHIb MMPHIMb];

F.3 MATLABr Code for Tolerance Intervals

MATLABr code for the Binomial Tolerance Intervals

%TOLERANCE INTERVALS FOR BINOMIAL

clc;

clear;

LIMITS=[];

N=10;

for x=0:N

x

X95=[];

n=10000;

for i=1:n
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p=betarnd(x+1,N-x+1);

y=0:N;

z=binocdf(y,N,p);

x95=min(find(z>=0.95))-1;

X95=[X95;x95];

end

H=[min(X95):max(X95)];

M=hist(X95,H);

hist(X95,H)

grid

cN=cumsum(M);

I1=min(find(cN>=0.025*n));

I2=min(find(cN>=0.975*n));

I=min(find(cN>=0.95*n));

lo=H(I1);

up=H(I2);

Up=H(I);

cover=length(find(X95>=lo & X95<=up))/n;

cover2=length(find(X95<=Up))/n;

LIMITS=[LIMITS;[x lo up cover Up cover2]];

end

%Using the results obtained in the code above and let LIMITS = ZZ9,

to obtain the coverage

N=10;

x=[0:N];

COVER=[];

for p=0.01:0.1:0.99

cx=binocdf(x,N,p);

x95=min(find(cx>=0.95))-1;

prob=cx(x95+1);

J=find(ZZ9(:,2)<=x95 & ZZ9(:,3)>=x95);

J2=find(ZZ9(:,5)>=x95);

px=binopdf(x,N,p);

cover1=sum(px(J));

cover2=sum(px(J2));

COVER=[COVER;[p x95 prob cover1 cover2]];
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end

MATLABr code for the Poisson Tolerance Intervals

%TOLERANCE INTERVALS

clc;

clear;

LIMITS=[];

x=472;

m=24;

%for x=51:100

% x

X95=[];

n=10000;

for i=1:n

lam=gamrnd(x+0.5,1/m);

y=0:100;

z=poisscdf(y,lam);

x95=min(find(z>=0.95))-1;

X95=[X95;x95];

end

H=[min(X95):max(X95)];

N=hist(X95,H);

hist(X95,H)

grid

cN=cumsum(N);

I1=min(find(cN>=0.025*n));

I2=min(find(cN>=0.975*n));

%I=min(find(cN>=0.95*n));

lo=H(I1);

up=H(I2);

%Lo=H(I);

cover=length(find(X95>=lo & X95<=up))/n;

LIMITS=[LIMITS;[x lo up cover]];

%end

%COVERAGE OF TOLERANCE LIMIT INTERVAL

clc;
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clear;

%0.9626 at 10

%0.9541 at 5

lam=5;

true=10;

y=0:100;

LIMITS=[];

for x= 0:20

x

px=poisspdf(x,lam);

X95=[];

n=10000;

for i=1:n

lam2=gamrnd(x+0.5,1);

z=poisscdf(y,lam2);

x95=min(find(z>=0.95))-1;

X95=[X95;x95];

end

H=[min(X95):max(X95)];

N=hist(X95,H);

cN=cumsum(N);

I1=min(find(cN>=0.025*n));

I2=min(find(cN>=0.975*n));

lo=H(I1);

up=H(I2);

LIMITS=[LIMITS;[x px lo up]];

end

J=find(LIMITS(:,3)<=true & LIMITS(:,4)>=true);

COVER=sum(LIMITS(J,2))

%Using the results obtained in the code above and let LIMITS = Z or Z2,

to obtain the coverage

x=[0:100];

COVER=[];

for lam=1:0.5:15

cx=poisscdf(x,lam);

x95=min(find(cx>=0.95))-1;
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p=cx(x95+1);

%J=find(Z(:,2)<=x95 & Z(:,3)>=x95);

J=find(Z2(:,2)>=x95);

px=poisspdf(x,lam);

cover=sum(px(J));

COVER=[COVER;[lam x95 p cover]];

end



Abstract

This thesis focuses on objective Bayesian statistics, by evaluating a number of noninformative priors.
Choosing the prior distribution is the key to Bayesian inference. The probability matching prior for
the product of different powers of k binomial parameters is derived in Chapter 2. In the case of two
and three independently distributed binomial variables, the Jeffreys, uniform and probability matching
priors for the product of the parameters are compared. This research is an extension of the work by
Kim (2006), who derived the probability matching prior for the product of k independent Poisson
rates. In Chapter 3 we derive the probability matching prior for a linear combination of binomial
parameters. The construction of Bayesian credible intervals for the difference of two independent
binomial parameters is discussed.

The probability matching prior for the product of different powers of k Poisson rates is derived in
Chapter 4. This is achieved by using the differential equation procedure of Datta & Ghosh (1995). The
reference prior for the ratio of two Poisson rates is also obtained. Simulation studies are done to com-
pare different methods for constructing Bayesian credible intervals. It seems that if one is interested
in making Bayesian inference on the product of different powers of k Poisson rates, the probability
matching prior is the best. On the other hand, if we want to obtain point estimates, credibility intervals
or do hypothesis testing for the ratio of two Poisson rates, the uniform prior should be used.

In Chapter 5 the probability matching prior for a linear contrast of Poisson parameters is derived,
this prior is extended in such a way that it is also the probability matching prior for the average of
Poisson parameters. This research is an extension of the work done by Stamey & Hamilton (2006). A
comparison is made between the confidence intervals obtained by Stamey & Hamilton (2006) and the
intervals derived by us when using the Jeffreys and probability matching priors. A weighted Monte
Carlo method is used for the computation of the Bayesian credible intervals, in the case of the proba-
bility matching prior. In the last section of this chapter hypothesis testing for two means is considered.
The power and size of the test, using Bayesian methods, are compared to tests used by Krishnamoorthy
& Thomson (2004). For the Bayesian methods the Jeffreys prior, probability matching prior and two
other priors are used.

Bayesian estimation for binomial rates from pooled samples are considered in Chapter 6, where
the Jeffreys prior is used. Bayesian credibility intervals for a single proportion and the difference of
two binomial proportions estimated from pooled samples are considered. The results are compared
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to those from other methods. In Chapters 7 and 8, Bayesian process control for the p - chart and the
c - chart are considered. The Jeffreys prior is used for the Bayesian methods. Control chart limits,
average run lengths and false alarm rates are determined. The results from the Bayesian method are
compared to the results obtained from the classical (frequentist) method. Bayesian tolerance intervals
for the binomial and Poisson distributions are studied in Chapter 9, where the Jeffreys prior is used.

Keywords: Bayesian intervals; Binomial distribution; c - chart; Coverage probabilities (rates);
Jeffreys prior; p - chart; Poisson distribution; Power of test; Size of test; Probability matching prior;
Reference prior; Uniform prior; Weighted Monte Carlo method.



Opsomming

Hierdie tesis sal op objektiewe Bayes-statistiek fokus, deur ’n aantal nie-informatiewe priors te eval-
ueer. Die waarskynlikheidsafparings prior sal in Hoofstuk 2 afgelei word vir die produk van verskil-
lende magte van k binomiaal parameters. In die geval van twee en drie onafhanklik verdeelde bino-
miaalveranderlikes, sal die Jeffreys, uniforme en waarskynlikheidsafparings priors vir die produk van
die parameters vergelyk word. Hierdie navorsing is ’n verlenging van die werk deur Kim (2006), wat
die waarskynlikheidsafparings prior vir die produk van k onafhanklike Poisson parameters afgelei het.
In Hoofstuk 3 sal ons die waarskynlikheidsafparings prior vir ’n lineêre kombinasie van binomiaal pa-
rameters aflei. Die samestelling van Bayes-vertrouensintervalle vir die verskil van twee onafhanklike
binomiaal parameters word bespreek.

Die waarskynlikheidsafparings prior vir die produk van verskillende magte van k Poisson param-
eters word in Hoofstuk 4 afgelei. Dit word gedoen deur die differensiaalvergelyking prosedure van
Datta & Ghosh (1995) te gebruik. Die verwysings prior word ook afgelei vir die verhouding van twee
Poisson parameters. Simulasie studies word gedoen om die verskillende metodes vir die samestelling
van Bayes-vertrouensintervalle te vergelyk. Dit blyk dat indien ’n mens geïnteresseerd is in Bayes-
inferensie vir die produk van verskillende magte van k Poisson parameters, die waarskynlikheidsaf-
parings prior die beste is. Aan die anderkant, indien ons puntberamers, geloofwaardigheidsintervalle
of hipotesetoetsing wil doen vir die verhouding van twee Poisson parameters, moet die uniforme prior
gebruik word.

In Hoofstuk 5 word die waarskynlikheidsafparings prior vir ’n lineêre kontras van Poisson param-
eters afgelei, hierdie prior word uitgebrei sodat dit ook die waarskynlikheidsafparings prior is vir die
gemiddelde van Poisson parameters. Hierdie navorsing is ’n uitbreiding van die werk gedoen deur
Stamey & Hamilton (2006). ’n Vergelyking word gemaak tussen die vertrouensintervalle verkry deur
Stamey & Hamilton (2006) en die intervalle afgelei deur ons waneer die Jeffreys en waarskynlikhei-
dsafparings priors gebruik word. ’n Geweegde Monte Carlo-metode word gebruik vir die bereken-
ing van die Bayes-vertrouensintervalle, in die geval van die waarskynlikheidsafparings prior. In die
laaste afdeling van die hoofstuk word hipotesetoetsing vir twee gemiddeldes oorweeg. Die onder-
skeidingsvermoë en toetsgrootte, waar Bayes metodes gebruik word, sal vergelyk word met die toetse
gebruik deur Krishnamoorthy & Thomson (2004). Die Jeffreys prior, waarskynlikheidsafparings prior
en twee ander priors word vir die Bayes metodes gebruik.
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Bayes-beraming vir binomiaal parameters van saamgevoegde steekproewe sal in Hoofstuk 6 oor-
weeg word, die Jeffreys prior sal hier gebruik word. Bayes-geloofwaardigheidsintervalle vir ’n enkele
proporsie en die verskil tussen twee binomiaal proporsies beraam vanaf saamgevoegde steekproewe
sal oorweeg word. Die resultate sal vergelyk word met die van ander metodes. In Hoofstukke 7 en
8, word Bayes proseskontrole vir die p - kaart en c - kaart bestudeer. Die Jeffreys prior sal gebruik
word vir die Bayes metodes. Kontrolekaart grense, gemiddelde lopielengte en vals alarm koerse sal
bereken word. Die resultate van die Bayes metode sal vergelyk word met die resultate van die klassieke
(frekwentistiese) metode. Bayes toleransie-intervalle vir die binomiaal en Poisson verdelings word in
Hoofstuk 9 bestudeer, waar die Jeffreys prior gebruik word.

Sleutelwoorde: Bayes intervalle; Binomiaalverdeling; c - kaart; Oordekkingswaarskynlikhede (ko-
erse); Jeffreys prior; p - kaart; Poisson-verdeling; Onderskeidingsvermoë van toets; Toetsgrootte;
Waarskynlikheidsafparings prior; Verwysings prior; Uniforme prior; Geweegde Monte Carlo-metodes.


