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Animal Breeding Theory and Mixed Model Methodology

CHAPTER 1

«Bayesian Statistics and Animal Breeding Theory»

Introductory words: Harville, (1990), (see also Gianola, (1990)) stated UAmore extensive use of Bayesian

ideas by animal breeders and other practitioners is desirable and is more feasible from a computational

standpoint than commonly thought. The Bayesian approach can be used to devise prediction procedures that

are more sensible - from both a Bayesian and Frequentist perspective - than those in current use ", The.

Bayesian approach is also conceptually more appealing than the Classical approach.

1.1 Prologue

Animal breeding theory deals with the formulation and validation of mathematical (primarily

statistical) models aimed at developing procedures for selecting and mating individuals so that

performance is optimal in some sense. The primary goal of such selection experiments in animal

breeding is to identify animals to use for producing the next generation of progeny in order to

maximize genetic progress with respect to traits of interest. Examples of traits that have been subject

to such selection experiments are milk yield in diary cows, rapid weight gain in pigs, and weaning

weights in lambs.

A bold improvement 111 genetic evaluation occurred when mixed model methodology was

introduced". Familial relationships between sires enhanced the accuracy at which breeding values
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Animal Breeding Theory and Mixed Model Methodology

were estimated because the effective separation of genetic merit from environment effects became

possible. In animal breeding experiments, the observed trait values, or phenotypes, are mode led as

the sum of a number of effects, including individual breeding values. Also, the breeding values are

mode led as correlated random effects, with the correlation arising due to known genetic relationships.

To maximize future progress of a population, the goal is to identify the animals with the highest

breeding values.

Genetic evaluation of South African flocks of sheep started with the analysis of the experimental

Merino flock at Klerefontein near Carnavon. This was followed by single flock evaluation as part of

a variety of postgraduate studies and the evaluation of progeny groups of rams for the industry (Van

Wyk, 1992). The Dormer sheep stud, started at the Elsenburg College of Agriculture in 1940, also

represents such a flock for animal breeding experiments. The main object in developing the Dormer

was the establishment of a mutton sheep breed which would be well adapted to the conditions

prevailing in the Western Cape (winter rainfall) and which could produce the desired type of ram for

crossbreeding purposes (Swart 1967).

Only a small example from this Dormer stud data was used. It was not our attention to reanalyze

the data from a genetic point of view; rather, we used it to illustrate how the Bayesian approach and

Gibbs sampling could be applied to real animal breeding problems. This data form an integrated part

of the statistical methods introduced in the thesis and can be found in APPENDIX B.
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1.2 The Mixed Model Methodology

1.2.1 Background

The mixed model methodology was first developed for animal genetics and breeding research. In

resent years, however, the mixed model has also been introduced in variety of other disciplines (e.g.

sociology and education) to analyze experiments with more complex data structures. These mixed

models are also called Hierarchical Models, Random Effects Models or Variance Components

Models. As the mixed model methodology is heavily based on matrix notation, it is important that a

clear notation is used in the development of the theory in the present thesis.

1.2.2 Notation

§ A matrix is always put in a bold letter, and a vector in a bold underlined letter, e.g. Y is the

matrix of observations, whereas Y presents the vector of observations. Greek letters are used

for ,the fixed and random effect vectors and the letters are not underlined, e.g. jJ is a vector of

fixed effects, and r the vector of random effects.

§ The transpose of a matrix X or vector Y is denoted by Xl or yl, respectively.

§ The inverse of a matrix X is denoted by X -I .

§ The generalized inverse of a matrix X is denoted by X-.

-3-
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Animal Breeding Theory and Mixed Model Methodology

The mixed linear model postulates that the observable random vector Y is a linear combination of

the fixed effects and random effects plus a random error (residual). In its simplest form the

univariate mixed linear model can be written in matrix notation as

X (n x l ) is a vector of observed values for the trait on which selection is desired. Only a single

trait per animal is considered for most of the analysis, although the model and analysis described can

be modified to accommodate multiple traits.

jJ Cp xl) is a vector of fixed effects uniquely defined so that the corresponding design matrix X

(n x p) has full column rank, p. Loosely speaking, a fixed effect, in a Bayesian sense, is a random

variable on which prior knowledge is diffuse or vague, i.e. a priori the investigator is indifferent to its

likely value.

Furthermore, y (q x 1) is a vector of unobservable random effects with y - N(Q,Acr:) and

design matrix Z (n x q). a/ is an unknown scalar and A (q x q) is called a relationship (genetic

covariance) matrix. Its elements reflect the genetic relationship among the sires. The random effects

in the present case, are the breeding values, which account for the variation in Y due to genetic merit.

Note that, in the case of a Sire Model, a breeding value refers to a sire's value as a parent in a

breeding program, and it is a measure of the animal's progeny performance relative to the mean value

of its breed. Genetic evaluation is heavily dependent on the genetic correlation among individuals,

both for higher accuracy and for unbiased results. Therefore, the genetic relationship among

individuals is of fundamental importance in the prediction of breeding values.
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For the unobservable vector of random errors s (n xl), statistical independent of r, it is common

to assume independent normal distributions with mean vector Q and variance-covariance matrix er/In

In. In represents an n x n identity matrix and er/ an unknown scalar.

As mentioned, er/ and er/ are unknown scalar-value parameters called variance components.

1.3 The Classical Solution

Data from animal breeding experiments are commonly analyzed using a mixed linear model in

order to estimate or predict the breeding values of individual animals. When the values of the

variance components of the model are not known, the Classical Approach to the problem of

predicting linear combinations of the different effects has been to estimate the variance components

and to proceed thereafter as if these estimates were the true values of the components.

Patterson and Thompson (1971) developed a method to derive unbiased estimates of the unknown

variance components based on the maximum likelihood principle; called the Restricted Maximum

Likelihood Estimation (REML). This method is based on the likelihood of a vector whose

components are independent linear combinations of the observations. The basic idea is to end up

with a random vector that contains all the information on the variance components but no longer

contains information on the fixed effects parameters. However, there are several problems with this

(classical) approach.

1. The properties of the predictors are hard to assess. This is particularly the case when

estimates of variance components are substituted for their true values.
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2. When the values of the variance components are estimated from the data, the sampling errors

are generally not taken into account in the subsequent analysis. Therefore, the variance of

the prediction error will generally be underestimated.

3. Depending upon the size and characteristics of the data, point estimates of the variance

components can be highly variable. For certain values of the components estimates, the

predictors obtained by substituting these values in the "Best Linear Unbiased Predictor" are

intuitively unappealing.

The classical frequentist solution of the mixed linear model (1.1) can be obtained from

Henderson's mixed model equations. Henderson, in Henderson et al. (1959), developed a set of

equations that simultaneously yielded best linear unbiased predictors of the random effects and best

linear unbiased estimators of the fixed effects. They were derived by maximizing the joint density of

Y and. r ,Le.

n

f(Y,y) = (2:,,;r exp{ - 2~;(Y:- Xp - Zy !(Y - Xp - Zy l}
( 1.2)

( 1 J~ _.!. {I }x -- JAJ2 exp --r'A-Ir.
2~a2 2a2

r r

Equating to zero the partial derivation of (1.2) with respect to elements, first of jJ and then of r
give the mixed model equations, written more compactly as

[
X'X
Z'X X' ~ ][/J] [XIY]

Z'Z+ :: A-I r = Z'Y , . (1.3)
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where jJ and r denote the solutions of jJ and y. By substituting the REML estimates of CT; and

CT: in equation (1.3) give the classical frequentist solution to the mixed linear model.

Hence, the objective is now to propose the Bayesian Approach as a conceptional strategy to solve

problems arising in animal breeding theory, to illustrate how well known results can be retrieved

from the Bayesian perspective, and to suggest possible areas of research in which Bayesian

Approach and Mixed Linear Model Methodology can lead to fruitful results.

1.4 The Traditional Bayesian Solution

Harville (1990), (see also Gianola, (1990)) stated, "A more extensive use of Bayesian ideas by

animal breeders and other practitioners is desirable and is more feasible from a computational

standpoint than commonly thought. The Bayesian approach can be used to devise prediction

procedures that are more sensible - from both a Bayesian and Frequentist perspective - than those in

current use". The Bayesian approach is also conceptually more appealing than the Classical

approach with the following advantages:

I. The Bayesian practitioner does not need to commit himself to a point estimate of the variance

components in order to obtain a point predictor for the variables of interest, and credibility

intervals can easily be obtained.

2. Uncertainty about the true values of the variancecomponents is formally incorporated into the

analysis through the choice of an appropriate prior distribution.
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3. .Given the data, the prior information about the unknown parameters, and a well-defined loss

function, there exists an optimal Bayes predictor.

4. All the available information about the random variable to be predicted is contained in the

posterior distribution of the random variable. Therefore, the practitioner can base all of his

inferences on this distribution.

5. The Bayesian approach is conceptually more appealing than the classical approach.

Critics of the Bayesian approach have most often cited the following points:

1. The Bayesian practitioner must formally express his prior beliefs about the unknown

parameters in the form of a probability distribution.

2. The Bayesian methodology is computer intensive. In many situations, integrations in

several dimensions are required to obtain the required posterior distributions.

These might have been valid criticisms in the past butby using (a) Non-Informative priors like

Jeffreys and Reference priors and (b) Numerical integration techniques like Markov Chain Monte

Carlo Methods and more specifically Gibbs Sampling, these problems can be overcome.

When analyzing the mixed linear model (or any model) using a Bayesian approach, it only matters

whether a specified quantity is observable or not. In equation (1.1), Y, X and Z are observable

whilst, fJ and rare unobservable. No further classifications are necessary.

-8-



Animal Breeding Theory and Mixed Model Methodology

In the classical approach to analysis of data using a mixed linear model the distinctions of fixed

versus random, known versus unknown, parameter versus statistic, are all-important. These

classifications dictate the type of estimation and inference that are possible. In Bayesian modeling

we treat /3, r and all the variance components in the same way: they are unobservable.

In many Bayesian problems, marginal posterior distributions are often needed to make appropriate

inferences. However, due to the complexity of the joint posterior distribution it is impossible to

obtain these marginal densities analytically and because of the many unknowns, very difficult to

calculate numerically. Instead, a Markov Chain Monte Carlo (MCMC) method, called Gibbs

Sampling, will be implemented to estimate the marginal posterior densities of the different

parameters.

Recently due to the work by Gelfand and Smith (1990), Gelfand et al. (1990), Carlin et al. (1992)

and Gelfand el al. (1992), the Gibbs Sampler has been shown as an useful tool for applied Bayesian

inference in a broad variety of statistical problems. The Gibbs sampler is implicit in the work of

Hastings (1970) and made popular in the image-processing context by Geman and Geman (1984).

The Gibbs sampler is an adaptive Monte Carlo integration technique. The typical objective of the

sampler is to collect a sufficiently large enough number of parameter realizations from conditional

posterior densities in order to obtain accurate estimates of the marginal posterior densities. The

principle requirement of the sampler is that all, conditional densities must be available, in the sense

that random variables can be generated from them. Once the marginal densities are obtained, it is

easy to calculate summary statistics from the posterior distributions.

-9-
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The method is of great appeal on account of its simple logical foundation and reasonable ease of

implementation. The next section elaborates the role of the sampler in relating conditional and

marginal distributions from animal breeding theory.

1.5 .Prlor Distributions

For modelling the hierarchy, the distribution of e gives the sampling distribution, which, in

classical statistics, is the distribution of the data conditional on all the parameters. In a Bayesian

analysis this distribution is called the likelihood function and it is always the first stage in a

traditional Bayesian analysis with prior distributions relegated to other stages.

From (1.1) it follows that the conditional distribution that generates the data (likelihood function)

IS

where In represents an n x n identity matrix and N(f.J ,£) denotes the n-dimensional multivariate

normal distribution with mean vector f.J and variance-covariance matrix E.

An integral part of Bayesian analysis is now the assignment of a prior distribution to the unknown

parameters in the model. The information contained in the prior distribution is combined with the

information supplied by the data, through the likelihood' function (if it is known), into the conditional

posterior distribution of the parameters given the data, which is known as the posterior distribution,

All inferences about the model parameters are based on the posterior distribution. In the above

-10-
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model, "flat" or uniform prior distributions are assigned to the vector of fixed effects and error

variance, as to represent lack of prior knowledge.

Therefore

p(j3, a/) = p(jJ) p(a/) cc constant. ( 1.5)

Further, the prior distribution of the vector r is given by

r I A , a/ ~ Nq( Q , Aa/ ). ( 1.6)

As mentioned in the case of the sire model the elements of the numerator relationship matrix A

describe the covariance of the sires due to shared genes, and r is the vector of breeding values. Also

. p ( d/ ) IX constant. (1. 7)

1.6 Joint and Full Conditional Posterior Distributions

The joint posterior distribution of the unknowns (jJ, r , a/ ,a/) is proportional to the product of

the likelihood function, and the joint prior distribution is given by

-11-
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n

p(f3,y,O'; ,O'~ I D) a: (~J~exp{- ~(y - Xf3 - Zy)' (Y - Xf3 - Zy)}
O'e 2O'e .

( 1.8)

(
1 J~ { 1 , -I }X -2 exp ---2 yl\. Y ,

O'y 2O'y

where D = (Y , X ) denotes the data.

The required full conditional for the fixed effects, is multivariate normal:

.' 2 2 ~ I -I 2fJ lY, Ue .a, 'D~ Np ( f3 ' (X X) a, ), ( 1.9)

where /3 = (XiX)" I X I (Y - Z y). Note that this distribution does not depend on u/.

The conditional distribution of y is also multivariate normal:

(1.1 0)

where

For the variance components, the conditionals are

n

2 2 ( 1 J2 { 1 , }P(O'e 1f3,y'O'r,D)=Ke -2 exp --2 (Y-Xf3-Zy)(Y-Xf3-Zy)
0'e 20' e

0'; > 0,

(1.11)
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an Inverse Gamma density where

n-2

= {(V - Xp - Zy)'(Y - Xp - ZY)}-2 1
K, 2 '2 r(~)

2

and

q ,

p(a; I ,B,y,a;,D) = K,(;; rex+ 2~;y\\-Iy}
a2>0r

(I.I2)

also an,Inverse Gamma where

Moreover, animal breeders are often interested 10 the posterior distributions of functions of

a2
varianc.e components like the intraclass correlation coefficient, p = Y and the variance ratio

a2 +a2
Y c

0'2
V = -T' The conditional posterior distributions of these parameters can be obtained by making use

ac

of transformation of random variables. For example, the conditional posterior distribution of p can

be obtained by using the transformation of 0'/ --f P in the conditional posterior density of 0'/,
equation (1.12).
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aa2 a2

Since the Jacobian of the transformation, __ r = --&-2 ' equation (1.12) can be written as
ap (l-p)

(
1 Jf-I(l)f q-4 {(l-P) I }p(pljJ,y,a;,D)=Kr a; p (l-p) 2 exp - 2a; y1\-ly (1.13)

O c o c I,

and for the variance ratio,

jJ 2 ( 1 Jf { 1 I -I }p(v I .r,o; ,D) = Kr -2 exp - --2 Y A r
va& 2va&

(1.14)

G c v c l .

It is clear from equations (1.9) - (1.l4) that account of the genetic covariance matrix has been taken

into the conditional posterior distributions.

1.7 The Gibbs Sampler

1.7.1 Background

The Gibbs sampler enjoyed an initial surge popularity starting in 1984 with Geman and Geman,

who studied image-processing models. Gelfand and Smith (1990) then put the sampler in a new

light, revealing its potential in a wide variety of conventional statistical problems. It is characterized

by always using full conditionals, however, other sets of conditionals may also be used, sets which

are also sufficient to determine joint distributions. The ultimate value of the Gibbs sampler lies in its

-14-
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practical potential. Now that the groundwork has been laid in pioneering research work, the present

research is focused on exploring and expanding the Gibbs sampler using mixed linear model

methodology to animal breeding problems.

The Gibbs sampler is a technique for generating random variables from a marginal distribution

indirectly, without having to calculate the density. In that which follows, it is easy to see that the

Gibbs sampler is iterative and based only on elementary properties of Markov chains. In this respect,

there are two issues of concern: convergence and uniqueness. However, Geman and Geman (1984)

showed that under mild regularity conditions, the Gibbs sampler converges uniquely to the

appropriate marginal distributions. CaselIa and George (1990) discuss numerical means to accelerate

convergence. Another way of speeding up convergence is to integrate out analytically some nuisance

parameters from the joint posterior distribution before running the Gibbs sampler.

1.7.2 Illustrating the Gibbs Sampler

Suppose we are given a joint density fïx.y hY2....• y,J and are interested in obtaining characteristics

of the marginal density

such as the mean or variance. Probably the most natural and straightforward approach would be to

calculate f(x) and use it to obtain the desired characteristic. However, there are many cases where the

integration in (1.14) is extremely difficult to perform, either analytically or numerically. In such

cases the Gibbs sampler provides an alternative method for obtainingj(x), i.e. to generate a Markov

-15-
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chain of random variables (also called a "Gibbs sequence") that converge to the distribution of

interestf(y) .

Rather than compute or approximate fïx) directly, the Gibbs sampler allows us effectively to

generate a sample XI, X2, ... , Xm - f(x) without requiring fïx). By simulating a large enough sample,

the mean, variance, or any other characteristic of f(x) can be calculated to the desired degree of

accuracy. It is important to note that, in effect, the end results of any calculations, although based on

simulations, are the population quantities. Thus by taking a large enough sample, any population

characteristic, even the density itself, can be obtained by averaging the final conditional densities

from each Gibbs sequence. These estimates are called Rao-Blackwell estimates (Gelfand & Smith,

1990). An alternative form of estimating the marginal posterior densities is by obtaining kernel

density estimators; however, the Rao-Blackwell estimates are more accurate.

To understand the working of the Gibbs sampler, we explore "it in the three-variable case. The

initial values y/O) = y/O), y/O) = yl) and y/O) = y/O) are specified and the rest of the Gibbs sequence of

random variables is obtained iteratively by alternately generating values in the following way:

Draw

then

also draw

and

This completes one iteration of the scheme. Thus, at the kth iteration we draw

-16-
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then

then

then

.Gernan and Geman (1984) have shown that under fairly general conditions, the distribution of X(k)

converges to fix) (the true marginal distribution of x) as k nears infinity. Thus, the value X(k) can be

regarded as a simulated observation fromfix) if k is large enough. By repeating the Gibbs sequence

m times, the Gibbs sampler generates m observations

If the repetitions are independent, using predetermined initial values y/O), y/O) and yl) for each

sequence, the final values will be independent. Thus, by simulating a large enough sample,

characteristics such as the mean and variance of fix) can be determined to the desired degree of

accuracy (Van der Merwe & Botha, 1993). Characteristics of./{y,), ./{yl) and ./{yl) can be obtained

in a similar way. It is important to remember that to generate m random variables with approximate

density fix), we have to generate (2k) x m random variables, where k is the length of each Gibbs

sequence (CaselIa & George, 1990).

In the light of the aforementioned, the Gibbs sampler can thus be thought of as a practical

implementation of the fact that knowledge of the conditional distributions is sufficient to determine a

joint distribution, if it exists. In the Markov Chain Monte Carlo procedure and more specifically

Gibbs sampling, we construct a stochastic process that has the desired posterior distribution as its

-17-
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stationary distribution and then simulate the process. Standard routines are used to generate random

numbers from these required distributions. Selective algorithms of the Gibbs sampler are given in

APPENDIX A.

In the case of the mixed linear model, we begin with a set of arbitrary starting values for the

model parameters, jJ (0), r (0), a/(O), a/ (0) and then successively generate values from the conditional

posterior distribution of each of the parameters, conditioning on the most recently generated values of

the other parameters of each step.

The Gibbs sampler for p(J3, r ,a/, a/ ID) is as follows:

(0) Select starting values for r (0) ,a/ (0) ,a/ (0) . Set i = O.

. (I) SamplejJ(iTl) from (1.9),

(2) Sample a/(i+I) from (1.11),

(3) Sample r"" from (1.10),

(4) Sample ay2(i+I) from (1.12),

(5) Seti=i+ 1 and return to (1).

MATLAB software has been developed to generate the samples that enabled us to obtain the

marginal posterior densities for the model parameter, using the Gibbs sampler. The full conditional

posteriors were updated after every iteration. We ran multiple chains, i.e. m=101 000 of the Gibbs

sampler to obtain draws from the posterior distributions of the model parameters given the data. The

first 1 000 draws of each chain were discarded, and then every 101h draw was saved. By saving every

io" draw, the chain yielded a posterior sample of 1 000 approximately uncorrelated draws. All

posterior analyses were based on these I 000 draws, giving us a full Bayesian solution to all the

mixed linear model parameters.
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1.8 An Example

1.8.1 The Data

This section describes the analysis of data from the Dormer Sheep Stud started at the Elsenburg

College of Agriculture near Stellenbosch. The main objective in developing the Dormer was the

establishment of a mutton sheep breed which would be well adapted to the conditions prevailing in

the Western Cape and which could produce the desired type of ram for crossbreeding purposes.

The origin of the Dormer Sheep breed can be traced back to December 1940 when four imported

Dorset Horn rams were each mated to fourteen registered and thirty-five grade German (presently

s.A. Mutton) Merino ewes. This was a direct consequence of a comprehensive series of

crossbreeding studies carried out at the Elsenburg Agricultural College from 1927 over a period in

excess of ten years. After the initial cross only the two rams with the best progeny results were used

in the next breeding season (December 1941). Each was mated to 20 registered German Merino

ewes. As no further crossbreeding between these parental breeds were practiced after 1941, only two

first-cross rams and 77 first-cross ewe lambs served as basic material for further development of the

new breed. It could therefore be concluded that the Dormer originated from a small number of

animals. From the parental side it descends from only four Dorset Horn rams and because of

selection only 31 registered and 40 high-grade German Merino ewes eventually contributed to the

development of the Dormer breed. Although the Dormer sheep stud originated from a small number

of animals, it can be assumed that, being a cross bet:ween two unrelated breeds; the inbreeding

coefficients of the base animals were zero (Van Wyk, 1992).
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Sheep used in the analysis were born in the period 1943 - 1950. Single sire mating was practiced

with 25 to 30 ewes allocated to each ram. A spring breeding season (6 weeks duration) was used

throughout the study. A total of n = 879 weaning weight records, from the progeny of q = 17 sires

were available after editing, and p = 17 fixed effects were included in the final model. The data can

be observed in APPENDIX B. The REML estimates were obtained by using the MTDFREML

program developed by Boldman et al. (1995).

The mixed linear model used for this data structure, is the sire model of section (1.2),

y = Xp + Zy + s , where Y (879 x I) vector of weaning weights. In this application, X is a

(879 x 17) design matrix of regressors, with one column corresponding to the overall mean weaning

weight, seven columns corresponding to the season of birth effects, six to the age of dam effects, one

to the sex of lambs effects, and two final columns corresponding to the birth status effects.

f3 (17 x l ) is the vector oï fixed effects. Using this notation, f30 is the average weaning weight of

female lambs born in 1950 if the age of the dam is 8 years or older, and the birth status "triplets".

f31 is the difference in average weaning weight between lambs born in 1943 and those born in 1950.

f32 is the difference in average weaning weight between lambs born in 1944 and those born in 1950.

Whilst f37 is the difference in average weaning weight between lambs born in 1949 and lambs born in

1950, f3s measures the difference in average weaning weight of lambs with dams 2 years of age and

those with dams 8 years and older of age. Further, f3/3 is the difference in average weaning weight of

lambs with dams 7 years of age and those with dams 8 years and older of age. The difference in

average weaning weight between male and female lambs is measured by f31. and f315 measures the

difference in average weaning weight between single births and triplets. Finally, f316 is the difference

in average weaning weight between twins and triplets.
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The design matrix Z (879 x 17) is a matrix identifying the random effects. Note that r is a

(17 x I) vector of random effects consisting of the breeding values for the 17 sires for which the data

are observed.

1.8.2 Analysis of Variance Components

For the classical analysis, the estimates of the variance components are found by maximizing the

likelihood function as developed by Patterson and Thompson (1971). Given these estimates, the Best

Linear Unbiased Predictions (BLUBs) for r and jJ are then obtained by solving Henderson's mixed

model ,equations (equation (l.3)). Posterior means, and modes of the Traditional Bayesian analysis,

95% credibility intervals, and the REML estimates (along with standard errors) are summarized in

Table l.I. The REML estimates of a/ and a/ are more similar to the modes of the posterior

distributions than the means. This is because the REML estimate represents the mode of the

marginal likelihood and thus might be better compared to the mode of the posterior distribution.

Table 1.1 REML and Traditional Bayesian Estimates (posterior values) for the Variance

Components, along with 95% Credibility Intervals.

REML Traditional Bayes 95% Credibility
Parameter Mean Mode Interval

2 2l.1096 2l.2595 2l.2619 19.3130; 23.2531a.
a2 3.08 4.9239 3.01 l.2461; 12.1343r
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Using the posterior densities for CF} and CF/, the marginal posterior densities are estimated as the

average of the conditional posterior densities, obtained from the Gibbs sampler, and are depicted in

Figures 1,1 and 1,2, Note that the distribution in Figure 1,2 is quite skew, resulting in a difference

between the posterior mean and posterior mode (quantities will not coincide),

Figure 1.1 Histogram and Estimated Marginal Posterior Density of the Variance Component,

CF} (Error variance),
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Figure 1.2 Estimated Marginal Posterior Density of the Variance Component (7/ (Sire

variance).

The posterior means and modes of the Traditional Bayesian analysis and 95% credibility intervals

(J2
of functions of variance components Iike the intraclass correlation coefficient, p = 2 r 2' and the
. ~+~

(J2

variance ratio, v = -T are summarized in Table 1.2. It is evident from this table that the credibility
(J.

interval for the intraclass correlation coefficient does not contain 0.5. This result corresponds well to

the statement made by Wang et al. (1992) namely that from a genetic point of view, an intraclass

correlation coefficient of 0.5 is not possible in a sire model.
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Table 1.2 Traditional Bayesian Estimates of Functions of the Variance Components, along

with 95% Credibility Intervals.

REML Traditional Bayes 95% Credibility
Parameter Mean Mode Interval

p 0.127 0.1789 0.133 0.0550; 0.3658
v 0.146 0.2326 0.140 0.0582 ; 0.5768

The posterior distributions of these functions are illustrated in Figure 1.3 below.

Figure 1.3 The Estimated Marginal Posterior Density of the (a) Intraclass Correlation

(j2 (j2

Coefficient, p = 2 y 2' and the (b) Variance Ratio, v = ---T .
(jy + (jc (jc
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We can conclude that a Bayesian approach to variance component estimation has several practical

advantages over a classical approach.

Firstly, although the estimate for a variance component is always positive, the REML estimate's

asymptotic distribution can generate interval estimates that include negative values. This potentially

embarrassing phenomenon is often overlooked in the discussions of likelihood-based methods. An

interval estimate such as a highest posterior density region will not include negative values.

Secondly, highest posterior density regions are never empty, whereas confidence intervals for the

ratio of two variances can be empty. One can also report the whole of the posterior probability

distribution, not just a single number, and report some measure of posterior precision. Finally,

classical estimators generally have intractable sampling distributions and standard errors are hard to

calculate (Van der Merwe & Botha, 1993)

1.8.3 Analysis of Random Effects

Table 1.3 contains the BLUPs (with the variance components fixed at the REML estimates) and

posterior means of the random effects (breeding values) for the 17 sires, along with the posterior

ranks of each animal based on its breeding value and 95% credibility intervals. To put these numbers

in perspective, progeny from sire 3 (ranked l" according to its Trad. Bayes and REML estimates)

with an estimated breeding value of 3.4858 will therefore have an estimated average weaning weight

of 3.4858 kilogram more than the progeny from the rest of the sires. The progeny from sire 10

(ranked l7'h according to its Trad. Bayes and REML estimates) on the other hand with an estimated

breeding value of -1.7983 will have an estimated average weaning weight of I.7983 kilogram less

than the average wean ing weight of lambs from the rest of the sires.
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Further inspection of the credibility intervals in Table 1.3 shows that the lower bound of the 95%

credibil ity interval for the breeding value of sire 3 is 1.2143 whilst the upper bound is 6.1194. Since

this interval does not contain zero, we can be reasonable sure that the average weaning weight of

lambs born from sire 3 will be between 1.21 and 6.12 kilogram more than the average weaning

weight of lambs born from the other sires. Furthermore, by comparing the 95% credibility intervals

of the preeding values in Table 1.3 it is clear that the upper limit of the interval in the case of sire 10

is smaller than the lower limit of the corresponding interval for sire 3. By implication this means that

sire 10 will never (very seldom) produce progeny with greater weaning weights than sire 3.
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Table 1.3 Estimated Breeding Values for 17 Sires from the Elsenburg Dormer Stud, Posterior

Rankings, 95% Credibility Intervals, and Standard Errors of REML Estimates.

Sire ID Trad. Bayes Rank 95% Credibility Interval REML Rank SE's

41037 0.7350 3 -1.4728; 3.4395 0.5781 3 1.06

41004 0.2478 6 -1.6531 ; 2.6977 0.1396 6 0.92

41019 3.4858 1 1.2143; 6.1194 3.33 1 0.99

43002 -1.1985 14 -3.7586; 1.3778 -1.181 14 1.18

44170 -0.0930 7 -2.7340; 2.7585 -0.17 7 1.18

44174 -0.6524 10 -3.9471 ; 2.3055 -0.5694 10 1.34

44042 -1.3053 15 -3.6029; 0.9157 -1.2565 16 0.95

45070 -1.1460 13 -3.6855; 1.1319 -0.9631 13 0.93

45135 -0.5301 9 -3.2348 ; 1.9326 -0.5371 9 1.1

46015 -1.7983 17 -4.4578; 0.3174 -1.7092 17 0.96

46037 -0.8524 Il ' -3.2205; 1.4669 -0.8423 Il 0.91

48014 -1.0059 12 -3.6639 ; 1.2705 -0.9537 12 0.97

48052 -0.4208 8 -2.8863; 1.9739 -0.3019 8 1

48148 -1.4307 16 -4.0524; 0.9945 -1.256 15 1.1

49053 0.5309 4 -2.6618; 3.7327 0.463 4 1.31

49134 0.9219 2 -2.0470; 4.1511 0.795 2 1.34

49046 . 0.4395 5 -2.9563 ; 3.7575 0.4059 5 1041

It is evident from the table that the Traditional Bayes estimated are quite close to the REML

estimates. This is not surprising to us, since as showed by Harville, (1974) (see also Searle, CaselIa

and McCulloch, (1992)) that when uniform or "tlat" priors are assigned to the vector offixed effects

and variance components, the modes of the marginal posterior distributions are very close to the

REML estimates.
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If on the other hand proper priors were assigned to the unknown parameters and if the sample size

was quite small, the differences between Bayesian and non-Bayesian results could have been quite

substantial. The assignment of a proper prior to a specific parameter must however be justifiable

from a practical point of view.

The marginal posterior densities for the breeding values of sire 3 and 10, and the difference in

breeding values for these two sires, are displayed in Figures 1.4 - 1.6 respectively.

Figure 1.4 The Estimated Marginal Posterior Density ofthe Breeding Value for Sire 3 (Y3),

ID41019.
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Figure 1.5 The Estimated Marginal Posterior Density of the Breeding Value for Sire 10 (YIO),

ID46015.
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Figure 1.6 The Estimated Marginal Posterior Density of the Difference In Breeding Value

between Sire 3 and Sire 10 (Y3 - YIO).

A key difference between REMLlBLUP predictions and Bayesian inference is the treatment of the

variance components. To obtain the BLUP estimates, the variance components are fixed at a single

value, ignoring uncertainty associated with estimating their values. The Bayesian analysis

incorporates this uncertainty by averaging over the plausible values of the variance components,

making it a more feasible method of analysis, since these components are very important in

evaluating the breeding potential of the sires in the model.
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1.8.4 Analysis of Fixed Effects

Duchateau et al. (1998) stated that the emphasis in breeding experiments is on the variance

components and on the prediction of particular random effects, but estimation of the fixed effects is

also important, thus Table 1.4 summarizes the estimated fixed effect for the mixed linear model

given the data along with selected joint marginal posterior densities presented in Figures 1.8 - 1.12

(obtained from the Gibbs sampler).

Table 1.4 Estimated Values of Selected Fixed Effects, 95% Credibility Intervals, and REML

Estimates.

Trad. 95% CredibilityFixed Effect Bayes Interval REML
/30 22.9655 19.2315 ; 26.9031 21.50
/37 5.3523 4.1515 ; 6.5310 5.25
/3u 3.6690 2.9835 ; 4.3353 3.54
/315 9.4874 7.1923; 11.7688 9.35
/316 2.9621 0.6574 ; 5.2308 2.88

As described in section (1.9.1), /30 is the average weaning weight of female lambs born in 1950 if

the age of the dam is 8 years or older, and the birth status "triplets". /37 measures the expected

difference in average weaning weight between lambs born in 1949 and lambs born in 1950. It is

therefore clear that lambs born in 1949 had an average weaning weight of 5.3523 kilogram more than

lambs born in 1950.
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Figure 1.8' Estimated Marginal Posterior Density of /30, the expected average weaning weight of

, female lambs born in 1950 if the age of the dam is 8 years or older, and the birth

status "triplets".

Figure 1.9 Estimated Marginal Posterior Density of /37, the expected difference in average

weaning weight between lambs born in 1949 and in 1950.
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/3/4 measures the expected difference in average weaning weight between male and female lambs.

It can therefore be concluded that male lambs will have an average weaning weight of 3.6690

kilogram more than female lambs. From the 95% credibility interval it can be seen that the

difference in average weaning weight between male and female lambs can be as large as 4.3353

kilogram.

Figure 1.10 Estimated Marginal Posterior Density of /314, the expected difference III average

weaning weight between male and female lambs.
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[JIJ measures the expected difference in average wean 109 weight between single births and

triplets. It can therefore be expected that single births will have an average weaning weight of

9.4874 kilogram more than triplets.

Figure 1.11 Estimated Marginal Posterior Density of [JH, the expected difference 10 average

weaning weight between single births and triplets.
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/3/6 measures the expected difference in average weaning weight between a pare of twins at birth

and triplets. Therefore, a pair of twins at birth will have an average weaning weight of 2.9621

kilogram more than triplets .. It is therefore clear that birth status can dramatically affect the expected

weaning weight of a sire's progeny, thus affecting its breeding value. According to van Wyk (1992)

single born lambs constitute only 36.02% of all lambs born whilst twins and triplets make up 59.93%

and 4.05% respectively.

Figure 1.12 Estimated Marginal Posterior Density of /3/6, the expected difference In average

weaning weight between a pare of twins at birth and triplets.

One appealing future of the Gibbs simulation approach to the Bayesian data analysis is that we

obtain an approximate sample from the joint distribution of all the unknown parameters given the

data. This sample provides adequate information to estimate any quantity of interest.
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1.9 Chapter Summary

The present chapter illustrated an extension of the Gibbs sampler to solve problems arising in

animal breeding theory. Formulae were derived and presented to implement the Gibbs sampler in a

more general mixed linear model. With this extension, a full Bayesian solution to the problem of

inference about variance components, functions thereof, and random effects in such a mixed linear

model was possible. Once the marginal densities were obtained from the Gibbs sampler, it was easy

to calculate summary statistics from the posterior distributions, e.g. posterior means, modes and

credibility intervals. Moreover, as mentioned before, the similarities between the Bayesian and

REML estimates were not surprising to us because of the assignment of uniform or "flat" priors to

the vector of fixed effects and variance components. If on the other hand proper priors were assigned

to the unknown parameters and if the sample size was quite small, the differences between Bayesian

and non-Bayesian results could have been more substantial.

Arguing from a Bayesian viewpoint, the Gibbs sampling turned an analytically intractable

multidimensional integration problem into a feasible numerical one, and IS conceptually more

appealing than the classical approach.

Since the Gibbs sampler is now established in animal breeding problems, the objective of the

thesis will be to extent some selected issues regarding The Mixed Linear Model in animal breeding,

e.g. The Bayesian Method of Moments (BMOM) approach to the full Bayesian solution, Reference -,

Probability-Matching -, and Oirichlet Process Priors for the random effects.

© Parts of this chapter have been published in the South African Statistical Journal.

(See Van der Merwe et al. 2000)
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CHAPTER2'

«Bayesian Method of Moments»

Introdll:ctory words: After reviewing the purposes and. basic principles of the BMOM approach previously

presented and applied by Zellner and eo-workers to multiple and multivariate regression models as well as

simultaneous equation problems, a new application of the approach is presented. In this section the BMOM

procedure is extended to the Mixed Linear Model with illustrative examples from the animal breeding theory.

2.1 Prologue

On the BMOM and the capability of comparing BMOM and Traditional Bayes models, Barnard

(1997) has written:

"And above all any method is welcome which, unlike nonparametrics, remains fully quantifiable without

paying obeisance to the model which one knows is false. And your proposal to compare BMOM results

with a model based one should achieve the best of both worlds. "

.In addition, Laskey (1997) comments:

"When prior knowledge about the form of the likelihood function is extremely weak, standard Bayesian

analysis can be 'brittle' in the sense of (l) producing absurd conclusions given not-obvious-absurd inputs

and (2) being extremely sensitive to minor variation in inputs. On the other hand, BMOM gives good



(see Zellner et al. (1999) for quotes)
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answers for the questions it addresses while not purporting to go beyond the information that is really there

in the prior and the data ...

Another view of BMOM is provided by Soofi (1997) in the following words:

"l consider the BMOM as an ingenious contribution to the entire field of statistics. The BMOM is elegant

and easily applicable because it is free from the strong UNVERIFIABLE assumptions that we usually make

just in order to enable us to handle a problem ."

In the. traditional likelihood and Bayesian approaches, it IS usually assumed that enough

information is available to formulate a likelihood function and, in the Bayesian approach, a prior

density for the parameters of the selected likelihood function. However, if not enough information is

available to specify a form for the likelihood function, then clearly there will be problems in both the

traditional likelihood and Bayesian approaches. In situations like this, some resort to non-likelihood

based methods is proposed, e.g. the Bayesian Method of Moments (BMOM), first introduced by

Arnold Zellner in 1994. Given the data, BMOM enables researchers to compute post data densities

for parameters and future observations if the form of the likelihood function is unknown. The

BMOM approach provides a solution to the famous inver~e problem proposed by Bayes (1763) and

hence the name Bayesian Method of Moments.
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As illustrated in Chapter 1, an essential element of the Bayesian approach is Bayes' theorem, also

referred to in the literature as the principle of inverse probability. In problems involving "inverse

probability" we have given data and from the information in the data try to infer what random

process generated them. On the other hand, in problems of "direct probability" we know the random

process, including values of its parameters and from this knowledge make probability statements
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about outcomes or data produced by the known random process. Problems of statistical estimation

are thus seen to be problems of "inverse probability", whereas many gambling problems are

problems in direct probability.

In the BMOM approach the posterior and predictive moments, based on a few relatively weak

assumptions are used to obtain maximum entropy densities for the parameters, realized error terms

and future values of the variables. Shannon (1948) defines entropy (or uncertainty) as

w = - Jp(y) log pry) dy (2.1)

where pry) is a probability density function. Maximizing W subject to various side conditions is well

known' in the literature as a method for deriving the forms of minimal information distributions.

Shannon (1948) has also indicated how maximum entropy (ME) distributions can be derived by a

straightforward application of calculus of variation techniques. In particular he has shown that the

ME distribution that maximizes entropy subject to a normalization condition is just the uniform

distribution. By adding additional side conditions given the first two moments of the distribution are

imposed, the ME distribution is the normal distribution. On the other hand if just the side conditions

on the zero" and first moments are utilized, the maxent density is an exponential density. For

discussion and application of maximum entropy, see for example Jaynes (1982, 1988); Shore and

Johns~n (1980); Cover and Thomas (1991); Zellner and Highfield (1988) and Zellner (1997).

In the sections to come, the theory and results derived by Zellner (1997) will be extended to the

mixed linear model, with an appropriate example from an animal breeding experiment. We will also

discuss coherent procedures of updating BMOM maxent post-data densities for parameters and future

observations.
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2.2 Review of the BMOM approach

In Table 2.1, the inputs and outputs of the Traditional Bayesian (TB) and the BMOM approaches

are summarized. In both approaches, given the data is an important input along with an entertained

model for the given data, say the mixed linear model. In the TB approach sampling assumptions for

the data or the model's error terms are introduced in order to obtain a likelihood function. This

likelihood function and the prior density for its parameters are inputs to Bayes' theorem and the

outputs are posterior and predictive densities for parameters, realized error terms and future

observations .

.It is evident that in the BMOM approach no sampling assumptions about the given observed data

are made. Rather certain assumptions are made about the realized error terms' properties. Given

these assumptions, posterior moments of the parameters are derived that incorporate the information

in the' given data. These moments are then used as side conditions in the derivation of maxent

probability density functions for the parameters, realized error terms and future observations.
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A. Traditional Bayesian Approach

Table 2.1 Inputs and Outputs of Traditional Bayesian and BMOM Approaches.

INPUTS OUTPUTS

1.

2.

3.

4.

5.

Data, D

Prior information, Il

Sampling Assumptions

Data Density & Likelihood Function

Prior Density

1.

2.

3.

4.

Posterior Density

Predictive Density

Point & Interval Estimates

Point and Interval Predictions .

6. Bayes' Theorem

B. BMOM Approach

INPUTS OUTPUTS

1.

2.

3.

Data, D

Prior Information, 12

Mathematical Form of the model

SAME AS ABOVE

. 4. . Moments of parameters and future values

5. Maxent Principle
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2.3 Extension of the BMOM tó the Mixed Linear Model

In section 1.2 the mixed linear model in its simples form was defined as

Y = XfJ + Zy + e . (2.2)

In the introductory paragraph it was stated that the BMOM approach is particular useful where there

is difficulty in formulating an appropriate likelihood function. Without a likelihood function, it is not

possible to pursue traditional likelihood and Bayesian approaches to estimation and hypothesis

testing. In the next section only the mathematical form of the model as defined in (2.2) will be used,

i.e. no specific distribution will be assigned to the vector B. The likelihood function will therefore be

considered as unknown. This is different 'from the assumption in the previous sections. Let us for

the time being assume that y is given, (2,2) can then be written as

y -Zy = XfJ+& (2.3)

i.e,

For given y, we will take Y * as our new dependent variable. Equation (2.3) is now the usual

multiple regression model. To assume that the model in (2.3) is adequate implies, among other

things, that there are no systematic elements in the realized error term vector e , correlated with

variables in X. This assumption is formalized as Assumption 1 in the BMOM approach as follows:
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Assumption 1:

X'E(&ID,y)=O

where E( BID, r) denotes the post-data mean of the realized error vector B, given the data and y;

that is, the given, unknown values of the elements of the realized error vector are considered

subjectively random, just as in Bayesian analysis of the realized error terms (Chaloner & Brant,

1988; Chaloner, 1994; Zellner & Moulton, 1985). Thus, the assumption indicates that the columns of

X are orthogonal to the vector E(& ID, y ), Further, from (2.4) by taking the posterior expectation, it

follows that

y* = XE(f31 D,y) + E(& I D,y) .

and Assumption I implies that the observation vector Y * is the sum of two orthogonal vectors. Note

also since the first column of X is a n x 1 vector of ones, denoted by l ,we have from the assumption,

(E(&ID,y)=O (2.5)

or

(2.6)

Thus, given that we assume that we have an appropriate form and an adequate number of terms

included in (2.4), the expectation of the mean of the realized error terms is assumed equal to zero,

i.e. there is no systematic component in the realized error vector.
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Proof:

Ifwe multiply both sides of(2.4) by (X/X)"1 x', we obtain

jJ = (X'X)-I X'y* = /3 + (X'X)-IX's . (2.7)

~
Now take the post-data expectation of both sides in (2.7), noting that E(/31 D) = /3 , we have

jJ = £(/31 D,y) + (X'Xrl X'E(s 1D,y) (2.8)

and from Assumption 1

E(/31 D,y) = jJ = (X'Xrl x'v *. (2.9)

That is, the post-data expectation of the regression coefficient vector is equal to the least squares

estimate. Further, the post data mean of the realized error vector in (2.4) is

where i is the least squares residual vector that satisfies X'i = o. Note also that from (2.7) and

(2.10),
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= (X'X)"I X'EKf3 - P)(f3 - P'I D,y}X(X'X)"1
= a; (X'X)"I

(2.13)

Bayesian Method of Moments and the Mixed Linear Model

e - & = Y * - Xf3 - (Y * -XP)
= Y * -Xf3 - {Y * -X(f3 + (X'Xrl X'e)}

= X(X'X)·I X' e

= X(X'X)"I X'(s - i)

(2.11)

where the last step follows from the orthogonality condition mentioned above, X'i = o. We can

thus write

. Var(e I D,y) = E{(e - i)(e - &)'1 D,y}
= X(X'X)"I X'E{(e - i)(e - i)' I D,y}X(X'X)"1 X'

(2.12)

which defines a functional equation that the post-data covariance matrix for e , Var(e I D,y) must

satisfy. Since there are only p free elements of s in the n equations in (2.4), Var(e I D,y) must be of

rank p. Thus we introduce the following assumption that fixes the form of the realized error vector

up to a multiplicative positive scalar multiplier.

Assumption 2:

Var(e Ia; ,D,y) = a;X(X'Xrl X'

where a/ is a variance parameter to be defined below. We use Assumption 2 to evaluate the post-

data eovariance matrix of jJ as follows
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2 1~ 2 1,
where ac = - L..,.£; = -££.

n ,=1 n

It is seen. that the parameter a/ is represented as an average of the sum of squared deviations of .

-
the realized error terms from their expected mean of zero, E( e ID, r) = 0 which follows from

Assumption 1.

Proof:

Using the definition of a/ we have

2 ·1·E(ac·1 D;y) = E -(£'£ I D,y)
n

= E.!_ {(V * -Xf3)'(Y * -Xf3) I D,y}
n

= E ±[ky * -XP) - (Xf3 - XP)} {(V * -XP) - (Xf3 - XP)}I D,y]

= E.!_ [kv * -XP)'(Y * -XP) - 2(Y * -XP)'(Xf3 - XP) + (13- P)(X'X)(f3 - P)}I D,y}
n

Since. the middle term is equal to zero, Y *, X - 13'X' X = 0, it follows that

E(o-; I D,y) = .!_[i'i + E{(f3 - P)'(X'X)(f3 - P) I D,y}]
n

=.!_ {i'i + pE(a; I D,y)}
n

=
n-p



~I~

? & & ?
That is, E(a; I D,y) = -- = s,

n-p
(2.14)

Bayesian Method of Moments and the Mixed Linear Model

Note that this post-data expectation differs from the post-data mean of <:5/ in a diffuse prior-

ks2 .

normal likelihood traditional Bayesian approach (TB), namely ETB(a; I D,y) = --. For small
k-2

values' of k = n - p, the last expression is much larger than i. As pointed out in Zellner (1996),

Tobias and Zellner (1999) and mentioned in the introduction, the proper maxent density for jJ given

<:5/, D and y can now be derived from the above assumptions.

Corollary 1: The proper maxent density for <:5/ using the first moment of <:5/ given in (2.14) is an

exponential density,

p(p,a; I D,y) = fN CP I a; ,D,y)heCa; I,D,y). (2.17)

(2.15)

which will be called BMOM 1.

Corollary 2: The proper maxent density for jJ given <:5/, D and y, using the first two moments is a

normal distribution

. (2.16)

From (2.15) and (2.16) it follows that
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for j = 1,2, ...... (2.19)
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Also, as shown in Tobias and Zellner (1999) and Zellner (1997), higher order post-data moments of

0/ can be evaluated and used as moment side conditions in deriving maxent densities.

Corollary 3: The proper maxent density for a/ using the first four moments of a/ can be

approximated by a Pearson density. This approach will be called BMOM 2

By extending the method of Tobias and Zellner (1999), these higher order post-data moments of

a/ can be obtained in the following way. From the definition of a/ it follows that

CJ; = _!_ e'e = _!_ (ks 2 + (fJ - jJ'(X'X)(fJ - jJ))
n n

= _!_ (ks 2 + CJ; Q)
n

(2.18)

. 1 ~ ~
and from (2.16) it follows that Q = -2 (fJ - fJ)'(X'X)(fJ - fJ) has a chi-square density with p

CJe

degrees of freedom.

As shown by Tobias and Zellner (1979) this fact can be employed to evaluate the moments of a/ as

illustrated below. From (2.18) it follows that

By using the binomial expansion and known moments of X/, the following recursive formulae can

be derived:
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(ks2)J + f(~'l(ks2 )J-I E(cr;i I D)[P(p + 2) ...... (p + 2(i -1))]
E(cr;J I D,y) = I=I} . (2.20)

n - [Pep + 2) ...... (p + 2(J -1))]

Thus, from expression (2.20) the first two moments above zero and the variance of cr/ are given by

E(cr4 ID) = S4 (k
2
+ 2kp)

e ,y 2 ( 2)'. n - p p+

2 . 4( 2p 1Var(cr& I D,y) = S 2 •
n - pep + 2)

(2.21 )

A similar approach as just described can be used to obtain the post-data densities of y and cr/.

For the mixed linear model defined in (2.2) we can also assume that jJ instead of y is known.

Equation (2.2) can then be written as

y -xp = Zy+&

i.e.

X=Zy+&. (2.22)
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PN(Y I ,8,0"; ,O";,D - N, {r,( Z'Z + A -i~ir0"; }

where r = ( Z'Z +A -t :1rZ'(Y - X,8).

(2.24)

Bayesian Method of Moments and the Mi.xed Linear Model

Using the same arguments as given in (2.7) - (2.16) it follows that the maxent density for r is

• A (Z'Z)-I Z'Y- d . -2 (z,z)-I? . I Inormal. with mean, r = _ an vananee ay = a;. To Imp ement the norma

prior for r (which is an integral part of mixed linear model analysis) the likelihood of r given a/

and jJ 'is considered to be proportional to the maxent density.

Multiplying the likelihood with the prior (1.6) gives

exp{- ~ (r - r)' (Z' Z)(r - r)} x exp{- .'. r' A -Ir}
2a E 2ay

(2.23)

which implies that the posterior distribution of r is normal with density

Equation (2.24) is identical to the conditional posterior derived in the traditional Bayesian case

(equation (1.10)). Also, the conditional posterior density for a/ in the BMOM case is identical to

equation (1.12), this follows from the normal prior density (equation (1.6)).
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0< a; < 00 (see also equation (2.16»
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Finally, we note that the post-data moments for Cf/ can be employed to compute post-data

densities for the realized error terms and functions of the realized errors that are often useful for

diagnostic purposes as has been recognized in the traditional Bayesian analysis; see Chapter I.

Having derived a range of post-data densities for the mixed linear model and indicating how

BMOM analysis can be performed, we now turn to implement the Gibbs sampler to obtain the

posterior densities for the model parameters.

2.4 The Gibbs Sampler

The Gibbs sampler is once again employed to obtain finite sample post-data parameter densities

as described for the traditional Bayesian approach (Chapter I) with one exemption that in the BMOM

case, Cf/ would be sampled from different maxent densities, i.e.

for the BMOM I, using one moment, and for BMOM 2 using the recursive equation

(ks2)i + Ï(~J(ks2)j-i E(a;i I D)[P(p + 2) ......(p + 2(i -1))]
E( a;i I D,r) = ,_=1-'----'-_. ----;:-r _----------:;-] ----

nl -tp(P.-!- 2)......(p + 2(j -1))

(see also equation (2.20»

and a Pearson curve approximation with four moments.

-51- Lt '1 I



Bayesian Method of Moments and the Mixed Linear Model

Thus, the Gibbs sampler for p(jJ, r. <7/, <7/ I D) IS:

(0) Select starting values for y (0) ,<7/ (0) ,<7/ (0) . Set i = O.

(I) Sample jJ (i-/) from (1.9),

(2) Sample <7/ (i-/) from (2.16; 2.20 or other densities),

(3) Sample y(i-I) from (1.10),

(4) Sample c;y2 {ir l] from (1.12),

, (5) Seti=i+l and return to (I).

2.5 Another Bayesian Method of Moments Approach for the Mixed Linear Model

In this section another approach to the BMOM analysis will be given which is "more distribution

free" or "less likelihood" than the previous one.

As in section 2.3 the proper maxent densities of jJ and <7/ will be obtained by using Assumptions

1 and 2. These densities are given in equations (2.15) and (2.16). Higher order post-data moments of

<7/ can also be calculated and used as moment side conditions in deriving other maxent densities.

The derivations that follow will however be different from those given in equations (2.22) and (2.24).

Substitute starting values y(O) and 13(0) in equation (2.2), to calculate

&(0) = X - Xp(O) _ Zy(O). (2,25)

Also for given y(O), draw a;(I) and 13(1) from (2.15) and (2.16). A new y which will be called
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&(1) = Y - XjJ(l) - Zr(l)_ pflor (2.28)
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(I) = (Z'Z)-I Z,(V - xs» - &(0))r post (2.26)

can now be calculated as well as

2(1) _ 1 ( (I)' -I (I) )
ar - q r post A r post (2.27)

where "post" means "posterior". To implement the normal prior assumption for r (equation (1.6»

draw a Y~~st from the normal distribution N(Q, a:(I) A) and calculate

to complete the first iteration. After k iterations in which the conditional distributions were updated

at each iteration, the Gibbs sampler has generated the values jJ(k), r~:~t'a;(k) and a:(k). The

process is then repeated m times.

For our practical problem the BMOM posterior densities using in this section and those derived

from the previous section were for all purposes the same. It is therefore clear that in the case of the

BMOM analysis the posterior moments, based on a few relatively weak assumptions can be used to

obtain post data densities (maximum entropy densities) for parameters and realized error terms

without the use of the likelihood function or prior den~ity. The assumption of no prior information

has as consequence different types of derivations (post data densities) that differ from those obtained

using the traditional Bayesian approach where prior information was assigned to the unknown

parameters jJ , r , a; and a:.
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As mentioned no pnor densities are necessary for the BMOM procedure but if some prior

information is available it can be built into the BMOM procedure. Since the assumption of a normal

prior for the random effects r is an integral part of the mixed linear model, the prior density

r ~N(Q,a}A) is also used in the BMOM analysis.

2.6 An Example

2.6.1 The Data

Consider the Dormer sheep stud of Elsenburg (see section 1.8.1). Recall that the sheep used in

the analysis were born in the period 1943 -;-1950. A total of n = 879 weaning weight records, from

the progeny of q = 17 sires were available after editing, and p = 17 fixed effects were included in the

final model.

The mixed linear model used for this data structure, is the sire model of section (l.2),

X = Xp + Zy + s , where Y (879 xl) vector of weaning weights. fJ (17 xl) is the vector of fixed

effects, and X a (879 x 17) design matrix of regressors, with one column corresponding to the overall

mean weaning weight, seven columns corresponding to the season of birth effects, six to the age of

dam effects, one to the sex of lambs effects, and two final columns corresponding to the birth status

effects. Furthermore, Z is a (879 x 17) matrix identifying the (17 x 1) vector of random effects r
consisting of the breeding values for the 17 sires for which the data are observed.
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Finally, s is an unobservable vector of random residuals (879 xl) such that the distribution of e

is assumed to be independent normal with mean vector Q and varianee-co variance matrix a/ In. In

represents an identity matrix (879 x 879).

MATLAB software has once again been developed to generate the samples that enabled us to

obtain "the finite sample post-data parameter densities, using the Gibbs sampler. The full conditional

posteriors are updated after every iteration. The first I 000 draws of each chain are discarded, and

then every to" draw is saved. By saving every io" draw, the chain yielded a posterior sample of

1 000 approximately uncorrelated draws. All posterior analyses are based on these m = 1 000 draws.

2.6.2 Analysis of Variance Components

Posterior modes of the Traditional Bayesian analysis from Chapter 1, post-data estimates obtained

from the BMOM approach, drawing first from an exponential distribution (BMOM 1) and then from

a Pearson Type 4 curve (BMOM 2), as well as the 95% credibility intervals for the variance

components are summarized in Table 2.1. Functions of the variance components (p and v) are given

in Table 2.2. The post-data densities for the variance components are provided in Figures 2.1 and

2.2, and for p and v in Figure 2.3.

Table 2.1 Traditional Bayesian Estimates (posterior modes) and Estimates from the BMOM

Analysis of the Variance Components, along with 95% Credibility Intervals.

" "

95 % Credibility 95 % Credibility
Parameters Trad. Bayes BMOMl Interval (BMOM1) BMOM2 Interval(BM()~\

a/ 21.2595 21.1125 0.0000 ; 64.5875 20.2873 19.9979; 20.6214

a/ 3.01 3.86 1.5651 ; 14.3427 3.16 1.2464; 13.1652
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From Table 2.1 it is evident that there is not much difference between the traditional Bayesian

estimates and the BMOM estimates for the error variance, 0-/. However, the 95% credibility

interval for 0-/ in the case of the BMOM1 differs substantially from the corresponding interval for

BMOM 2 (and the Traditional Bayes). This is as expected because the exponential density is quite

skewed. By imposing additional side conditions in the case of BMOM 2 and thus reducing entropy,

the Pearson Type 4 curve is more informative than the exponential density. Note that the distribution

in Figure 2.2 is quite skewed, resulting once again in a difference between the posterior means and·

posterior modes and discrepancies in credibility intervals.

Figure 2.1 Estimated Marginal Post-data Densities for 0-/ in the case of BMOM 1 (a) and

BMOM 2 (b). Note that BMOM I is a proper maxent density (exponential)

which has mean E(a/) = i, while BMOM 2 is a proper Pearson type 4 curve

density.
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Figure 2.2 Estimated Marginal Post-data Densities for a/ in the case of BMOM 1 (short

dashed line), Mean = 5.6778; BMOM 2 (long dashed line), Mean = 5.0361 and

the Traditional Bayesian Density (solid line), Mean = 4.9239.

We also observed the same type of parameter behavior for functions of the variance components in

Table 2.2.
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Table 2.2 Traditional Bayesian Estimates (posterior modes) and Estimates from the BMOM

Analysis of Functions of the Variance Components, along with 95% Credibility

Intervals.

95 % Credibility 95 % Credibility
Parameters Trad. Bayes BMOMl Interval (BMOMP BMOM2 Interval (BMOM2\

p 0.133 0.102 0.0417 ; 0.8351 . 0.155 0.0577 ; 0.3944
v 0.140 0.082 0.0435; 10.2976 0.162 0.0613; 0.6513

Except for BMOM 1, the 95% credibility interval for the intraclass correlation coefficient does

not contain 0.5. This result corresponds to the statement made by Wang, et al. (1993), namely that

from a genetic point of view, an intraclass correlation of 0.5 is not possible in a sire model.

Moreover, the 95% credibility of p in the case of BMOM 1 differs substantially from the

corresponding intervals for BMOM 2 and Traditional Bayes. This was expected because the

exponential density (the maxent using only one moment) is quite skewed. In practice usually two or

more moments are available. The credibility intervals for BMOM 2 and Traditional Bayes on the

other hand are for all purposes the same. Indeed, if proper priors were assigned to the variance

components, and if the sample size was quite small, the difference between the BMOM and

Traditional Bayes results could have been quite substantial. The assignment of a proper prior to the

variance components must however be justifiable from a practical point of view. In some animal

breeding experiments for example it is known that a2 < !ae
2
• This information can, if necessary,. r 3

be use? to formulate a proper prior on the interval [0;!]' for the variance ratio v = a~..
3 ac
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Figure 2.3 The Estimated Marginal Post-data Density of the (a) Intraclass Correlation

(J2 (J2

Coefficient, p = 2 Y 2' and the (b) Variance Ratio, v = -T.
(Jy + (Je (Je

2.6.3 Analysis of Random Effects

The posterior distributions of the random effects can be obtained directly from the Gibbs sampler.

Table 2.3 contains the post-data means and corresponding post-data rankings based on the mean

values of the random effects (breeding values) for the 17 sires. It is evident from the table that the

estimates using the different procedures are quite close to each other. The Traditional Bayes and

BMOM 2 estimates are for all practical purposes the same.
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Rather than to comment on results for all 17 sires, we will focus our discussion on the two

animals ranked highest using the Traditional Bayes and BMOM analysis.

Table ,2.3. .Estimated Breeding Values for 17 Sires from the Elsenburg Donner Stud, and Post-data

Rankings using BMOM and Traditional Bayesian approaches. REML estimates along

with Standard Errors are also included.

Sire ID Trad Bayes Rank BMOM I Rank BMOM2 Rank REML Rank SE's

41037 0.7350 3 0.8889 3 0.7098 3 0.5781 3 1.06

41004 0.2478 6 0.3397 6 0.2415 6 0.1396 6 0,92

41019 3.4858 1 3.6370 1 3.4931 1 3.3300 1 0.99

43002 -1.1985 14 -1.3089 14 -1.246 14 -1.1810 14 1.18

44170 -0,0930 7 -0.0387 7 -0.0943 7 -0.1700 7 1.18

44174 -0.6524 10 -0.7942 10 -0.6847 10 -0.5694 10 1.34

44042 -1.3053 15 -IJ338 15 -1.356 15 -1.2565 16 0.95

45070 -1.1460 13 -1.1793 13 -1.1833 13 -0.9631 13 0.93

45135 -0.5301 9 -0.5069 9 -0.5984 9 -0.5371 9 1.10

46015 -1.7983 17 -1.8758 17 -1.8861 17 -1.7092 17 0.96

46037 -0.8524 Il -0.8960 II -0.9098 II -0.8423 11 0.91

48014 -1.0059 12 -1.100 I 12 -1.0759 12 -0.9537 12 0.97

48052 -0.4208 8 -0.4541 8 -0.4708 8 -0.3019 8 1.00

48148 -1.4307 16 -1.5019 16 -1.475 16 -1.2560 15 1.10

49053 0.5309 4 0.8152 4 0.4479 4 0.4630 4 1.31

49134 0.9219 2 1.3176 2 0.9641 2 0.7950 2 1.34

49046 0.4395 5 0.6804 5 0.3379 5 0.4059 5 1.41

The post-data densities for the top three sires and the sire ranked lowest (ID460 15) are included in

Figures 2.4 - 2.7
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Consider the results of the BMOM. 2 analysis for the discussion. As might be expected, the best

two sires from the two analysis overlap, with the progeny from Sire 3 ranked 1st according to its

Traditional Bayes, BMOM and REML estimates. With an estimated breeding value of 3.4931, the

progeny from this sire will therefore have an estimated average weaning weight of 3.49 kilogram

more than the progeny from the rest of the sires. Also, the progeny from Sire 16 (ID49l34 and

ranked 2nd
), with an estimated breeding value of 0.7950 will have an estimated average weaning

weight of 0.8 kilogram more than the average weaning weight of lambs from the rest of the sires.

The rest of the estimates can be interpreted in the same fashion.

Another appealing feature of the proposed simulation approaches to BMOM and Traditional

Bayes data analysis is that there are only minor disagreements on post-data rankings in the next

fifteen sires. In comparing the REML and BMOM estimates, the only difference in posterior

rankings is reported for Sire 7 (ID44042) and Sire 14 (ID48148). In the REML analysis, Sire 17 is

ranked 16th and Sire 14 ranked is", whereas a visa versa ranking is evident from the Traditional

Bayes and BMOM analysis. Once again this is not surprising to us, since as showed by Harville,

(1974) (see .also Searle, CaselIa and McCulloch, (1992» that when uniform or "flat" priors are

assigned to the vector of fixed effects and variance components and normal priors for the random

effects, the modes of the marginal posterior distributions are very close to the Traditional Bayes

estimates.

Thus, this sample provides adequate information to estimate any other quantities of interest, e.g.

we can also address the question of how well we can detect the best animal, as well as probability

distributions of rank positions for the top sires in the stud. Indeed, the estimates in Table 2.3 indicate

that there is minor uncertainty about the exact breeding value of individual sires, and it likely

indicates considerable certainty about the best selection.
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Figure 2.4

Figure 2.5

Estimated Marginal Post-data Densities for Sire 3 (ID41 019) ranked 1st according to

Traditional Bayes, BMOM and REML Estimates.

Estimated Marginal Post-data Densities for Sire 16 (ID49134) ranked 2nd according

to Traditional Bayes, BMOM and REML Estimates.
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Figure 2.6

Figure 2.7

Estimated Marginal Post-data Densities for Sire 1 (LD41037) ranked 3rd according to

Traditional Bayes, BMOM and REML Estimates.

Estimated Marginal Post-data Densities for Sire 10 (1046015) ranked 17'h according

to Traditional Bayes, BMOM and REML Estimates.
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2.6.4 Analysis of Fixed Effects

The object of interest in this present section may not only be the values of the fixed effects,

Table 2.4a - c, but also the post-data densities thereof. With respect to the values of the estimates,

we have previously demonstrated how these values must be interpreted numerically. Following the

results of the Traditional Bayes and BMOM analysis, we now focus upon the post-data densities of

the fixed effects that are depicted in Figures 2.8 - 2.11.

Table 2.4 Traditional Bayesian Estimates (a), Estimates from the BMOM 1 (b) and Estimated

from the BMOM 2 analysis (c).

(a)

Fixed Effect Trad. 95% Credibility
Bayes Interval

f30 22.9655 19.2315 ; 26.9031

f37 5.3523 4.1515; 6.5310

f3u 3.6690 2.9835 ; 4.3353

f3J5 9.4874 7.1923; 11.7688

f3J6 2.9621 0.6574; 5.2308

Fixed Effect BMOMl 95% Credibility
Interval

f30 23.0226 19.1496; 27.0333

f37 5.2995 4.1210; 6.3710

f3u 3.6757 3.0873 ; 4.3134

f3J5 9.5505 7.5584; 11.6362

f3J6 3.0469 1.0836; 5.0166
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(c)

Fixed Effect BMOM2 95% Credibility
Interval

/30 22.947 19.3359 ; 26.6482

/37 5.3037 4.1175 ; 6.4561

/3/. 3.6854 3.0037 ; 4.2923

/3/5 9.4580 7.2886 ; 11.5086

/3/6 2.9574 0.7831 ; 5.0853

An inspection of the post-data densities of the selected fixed effects shows that the difference

between traditional Bayesian and BMOM results can be quite substantial, especially in the case of

BMOM I. 'Since no likelihood was assumed for the BMOM analysis, these post-data densities

depended on the form of the maxent densities that in turn depended on the number of moments used.

We observed that by imposing only one side condition (exponential density with one moment), the

post-data density for BMOM I is more "spiked" than for traditional Bayes or BMOM 2. The double

exponential effect of the marginal post-data densities of the fixed effects in the case of BMOM I can

easily be recognized from Figures 2.8 - 2.11 below.
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Figure 2.8

Figure 2.9

Estimated Marginal Post-data Densities for the Expected Difference in Average

Weaning Weight between lambs born in 1949 and in 1950 as measured by {J7-

Estimated Marginal Post-data Densities for the Expected Difference 111 Average

Weaning Weight between male and female lambs as measured by {JI.-
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Figure 2.10

Figure 2.11

Estimated Marginal Post-data Densities for the Expected Difference In Average

Weaning Weight between single births and triplets as measured by /315.

Estimated Marginal Post-data Densities for the Expected Difference in Average

Weaning Weight between a pare of twins at birth and triplets as measured by /316'
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2.7 Chapter Summary

In this chapter we have indicated how to apply the Bayesian Method of Moments procedure in the

analysis of the mixed linear model when information in not available to formulate a likelihood

function. On introducing and proving simple assumptions relating to the moments of the realized

error terms and the future, as yet unobserved error terms, we derived post-data moments of

parameters and future values of the dependent variable. Using these moments as side conditions,

proper maxent densities for the model parameters were derived and could easily be computed for the

Dormer data set.

Further, it was evident that in the proposed BMOM approach, no sampling assumptions about the

given observed data were made. Rather certain assumptions were made about the realized error

terms' properties. Given these assumptions, posterior moments of the parameters were derived that

incorporated the information in the given data. These moments were then used as side conditions in

the derivation of maxent probability density functions for the parameters, realized error terms and

future observations.

It was also shown that in the computed example, where use is made of the Gibbs sampler to

compute finite sample post-data parameter densities, some BMOM maxent densities are very similar

to the traditional Bayesian densities, whilst others are not. As mentioned several times before, this is

expected, since as showed by Harville, (1974) (see also Searle, CaselIa and McCulloch, (1992)) that

when uniform or "flat" priors are assigned to the vectol: of fixed effects and variance components and

normal priors for the random effects, the modes of the marginal posterior distributions are very close

to the Traditional Bayes estimates.
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From the aforementioned, it should be appreciated that the BMOM approach yields useful inverse

inferences without using assurried likelihood functions, prior densities for their parameters and

Bayes' theorem. Hence, it is the case that the BMOM techniques extended in the present thesis to the

mixed linear model provide valuable and significant solutions in applying traditional likelihood or .

Bayesian analysis in animal breeding problems.

"Finally, the BMOM is elegant and easily applicable because it is free from the strong

UNVERIFIABLE assumptions that we usually make just in order to enable us to handle a problem."

© Parts of this chapter have been published in the South African Statistical Journal.

(See Van der Merwe et al. 2000)

© Parts of this chapter have been accepted for publication in the 'Collection of Refereed Articles' -ISBA20001•

(See Van der Merwe and Pretorius 200 I)

I International Society for Bayesian Analysis
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CHAPTER3

«The Dirichlet Process»

Introductory 'words: It is very important to accurately model the distribution of the random effects when

predictions of future observations from a given subject are desired. From the Bayesian perspective, inferential

interest in the present chapter focuses on the posterior distribution of the random effects. Allowing

distributions other than the normal for the random effects may more accurately model our prior beliefs, or it

may allow us to better express our uncertainty about the true distribution of the random effects.

3.1 .Prologue

In his '1972 review of Bayesian statistics, Dennis Lindley identified as a success story for

Bayesian ideas the advances made in problems of many parameters and the growth of what is now

referred to as Bayesian Hierarchical Modeling. He also identified non-parametries as an area

notable for lack of Bayesian progress, bemoaning the fact that non-parametric statistics was a

'subject about which the Bayesian method is embarrassingly silent'. However, it is undoubtedly the

case that the wide application of hierarchical models is one of the major success stories of modern

Bayesian statistics since the early nineties, with tremendous growth and substantial contributions via

Markov chain simulations on problems usually referred to as Non-Parametric Density Estimation.

Simultaneously, these computational methods allow development and application of data and prior

models that significantly extend the scope for closer representation of real-world problems.
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Mixture priors, especially Dirichlet Mixtures have opened the way to serious Bayesian

developments in (so-called) Non-parametric Modeling and Density Estimation. It is my purpose in

this chapter to exhibit the Mixed Linear Model for non-parametric modeling and density estimation,

to show how posterior computations via Gibbs sampling simulations can be routinely applied, and to

provide illustrative examples from animal breeding problems. There has been some work towards

this end in the classical setting. In the Bayesian paradigm, it has been accomplished for the repeated

measures (West, Muller, & Escobar, 1994) and for the randomized complete block design (Bush &

MacEachern, 1996).

We provide a general framework for Bayesian analysis of mixed linear models in which a non-.

parametric Dirichlet process prior is specified for the random effects. Only recently have tools

allowing Bayesian analysis to become computationally feasible; here we provide a detailed

exploration of an animal breeding application of interest (see also Kleinman and Ibrahim, (1998)).

3.2 The Classical Perspective

From the classical perspective, the distribution of the random effects has an important effect on

some quantities of interest. Changing the distribution of the random effects will change the estimated

random effect for each individual. This point is important because there are many applications in

which an estimate of the random effect itself is desired. For example, in Tsiatis, DeGruttola, and

Wulfsohn (1995), the estimated random effects are used alternatively as covariates themselves in a

Cox regression model or to create values for time-varying covariates in such a model.
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Similarly, Mori, Woodworth, and Woolson (1992), De Gruttola and Tu (1994), and Wu and

Carroll (1988) all present complex models in which the random effects are both estimated and used

in predicting other pieces of the model. In such applications, unbiased estimation of the random

effects is crucial and the assumption of normality may introduce bias (Kleinmann & Ibrahim, 1998).

Classical non-parametric and semi-parametric methods have a measure of popularity, e.g. the

Kaplan-Meier estimator, kernel density estimation, and Cox regression. No population distributional

assumptions are made in any of these cases, except for the proportional hazards assumption in the

case of Cox regression. We argue that a state of no knowledge at all is hardly, if ever, realistic: we

would typically at least have some ideas concerning location and spread. Such information can· be

incorporated into a Bayesian non-parametric prior.

3.3 The Bayesian Perspective

From the Bayesian perspective, inferential interest focuses on the posterior distribution of the

random and fixed effects. Allowing distributions other than the normal for the random effects, may

more accurately model our prior beliefs, or it may allow us to better express out uncertainty about the

true distribution of the random effects. It is also very important to accurately model the distribution

of the random effects when prediction for a future observation from a given subject is desired.

Another situation in which it would be desirable to relax the assumption of normality is when

inference is to be made about the distribution of the random effects itself.

Another attraction of our approach is that it allows exact Bayesian inference, even in small sample

sizes. This is accomplished through the use of the Gibbs sampler. Computational tools are
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developed and demonstrated how the Gibbs sampler can be implemented for the mixed linear model.

It is also showed how to make Bayesian inference for all of the model parameters in the model.

3.4 The Mixture of Dirichlet Process (MDP)

3.4.1 Background

MDP models have become increasingly popular for modeling when conventional parametric

models would impose unreasonably stiff constraints on the distributional assumptions. Examples

include empirical Bayes problems (Escobar, 1994), non-parametric regression (Muller, Erkanli &

West, 1996), density estimation (Escobar & West, 1995; Gasparini, 1996), hierarchical modeling

(MacEachern, 1994; West, Muller & Escobar, 1994) etc. Despite this large variety of applications,

the core of MDP models can basically be thought of as a simple Bayes model given by the likelihood

and prior.

Mixture of Dirichlet process priors can be of great importance in animal breeding experiments

especially in the case of undeclared preferential treatment of animals. As long as genetic evaluation

systems lack information about such preferential treatment, predictions of breeding values of favored

animals obtained with mixed Gaussian models are inflated whereas those of other animals are

deflated. So far, this problem has not yet been solved satisfactorily. Prof. Gianola, well-known

animal breeder, suggested a "robust" mixed effect linear model based on the t - distribution for

"preferential treatment problems". The t - distribution however does not cover departure form

symmetry whilst the Dirichlet process prior will be able to do so.
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3.4.2 The Model Structure

As mentioned before, an appropriate mixed linear model for a problem arising from animal

breeding experiments is given by

y. is a n, x I vector of weaning weights for the progeny of the lh sire; f3 (p x I) is a vector of fixed
-I

effects uniquely defined so that the corresponding design matrix X; tn, x p) has full column rank, p.

Also, z, is a vector of n, elements I, y; is the unobservable random effect of sire i, and for the

unobservable vector of random residuals, G; (n, x I), it is common to assume a multivariate normal

distribution with mean vector Q and variance-covariance matrix a/In, where In, represents a n, x n,

identity matrix and a/ an unknown scalar (error variance) .

However, for Y, (q x I), the vector of unobservable random effects which is usually taken to be

normally distributed with mean zero, the normal prior is replaced with a non-parametric prior,

followed by a Dirichlet process prior on the general distribution. In the section to come, it is

illustrated how to apply the Mixture of Dirichlet Process Prior to the mixed linear model.
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3.4.3 The Dirichlet Process Prior in the case of the Mixed Linear Model

As in Kleinman and Ibrahim (1998) we will present a mixed linear model for which the random

effects have a non-parametric distribution. The non-parametric Bayesian approach for the random

effects is to specify a prior distribution on the space of all possible distribution functions. This prior

for the mixed linear model is applied to the general prior of the distribution of the random effects.

This can be accomplished with a Dirichlet process prior distribution. This means that the usual

normal prior on the random effects is replaced with a non-parametric prior, followed by a Oirichlet

prior on the general distribution. The foundation of this technology is discussed in Ferguson (1973),

where the Dirichlet process and its usefulness as a prior distribution are discussed. The practical

application of such models, using Gibbs sampling, has been pioneered by several researchers, e.g.

Doss (1994), MacEachem (1994), Escobar (1996), Lui (1996) and West et al. (1994).

Assume that G is sampled from a Dirichlet process with parameter Go and M, where Go is a

probability measure and M is a positive real constant, i.e.

The parameter Go , often called the base prior, is a location parameter for the Oirichlet process

prior and it approximates the true non-parametric shape of G. Thus, it is the best guess at what G is

believed to be and E(G) = Go. The role of Go for the Oirichlet process prior is similar to the role that

the median and mean play in the typical prior distribution; it is the location parameter. It is thus our

best guess of where the true values are. Therefore, if there are prior subjective beliefs, prior expert

opinions, or theoretical considerations that G belongs to a small, finite set of possible distributions,

then the prior distribution of Go should have support on this set. If the set of distributions is not
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finite, then. a finite subset of "typical" distributions that belong to this set could be chosen that

represents the larger set (Escobar, 1994). Because the algorithms developed in the present thesis will

average over the posterior distribution of Go, a natural smoothing occurs. Also, this Dirichlet process

prior is a third-stage prior in a hierarchical Bayesian structure. When estimating normal means, it is

common to assume that G is a normal distribution with unknown mean and variance. We will let Go

be a normal distribution and use the data to estimate the model parameters.

The parameter M, a type of dispersion parameter for the Dirichlet process prior, is a measure of

the strength in the belief that G is Go. Although it may be hard to quantify, M is a positive scalar that

is related to how "clumpy" the data are (often called a precision parameter). Clumpy data occur

when the different sires are concentrated into a few clusters. In practice it is difficult to select

appropriate values for this parameter. Instead, it is suggested to place a prior distribution on this

parameter, and simulate it given the data. West (1992) assumed that M - Gaïa.b) a gamma prior

with a > 0 and scale b > O. We may extend this idea to include a reference prior (uniform for

log(M) by letting a~ 0 and b~ O. In the final section of the chapter we use the latter, which means

that p(M) cx M-I and M> O.

To simplify the use of the Dirichlet process prior, note that when G is integrated over its prior

distribution, the sequence of Yi follows a general Polya urn scheme; that is

(3.3)(i = }, ...,q),

= r , with probability
M +q-lr, I YI""'Yq-1 (3.4)

M-G with probability
0 M+q-l
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From (3.4) it is easy to sample a sequence of Yl, Y2, ... , Yq given Go and M. There are two special

cases in which the mixture ofDirichlet process models lead to the fully parametric case. As M ~ co,

G ~ Go so that the base prior is the prior distribution of the random effects. Also, if Yi == Yj for

all i, the same is true. When G is fully parametric, the joint posterior can easily be found. For the

implementation of the Dirichlet process prior, the different Yi 's must be considered separately. We

find that the conditional posterior of Yi is given by

q

P(Yi 1j3,a;,a:'Y_i,M)oc I~(~iI Xij3+ziYj,a;In)·5Yj

+ {M ljl(L IXJ3 +z,y"a;I")jl(y, IQ,a;)dY,}

x ~(Yi I O,a: )p(L I Yi,j3,a; ,~))

(3.5)

with mean J..i and variance d. Also, Y -i denotes the vector of random effects for the sires excluding

sire i and 5.\. is a degenerated distribution with point mass at s.

Consider the integral

00

Ai =M J ~(~i IXij3+ziYi,a;Ini~(Yi IO,a:)dYi
-00

[ 1 J~ { Yi
2

}'--2- exp ---2 dYi'
2ay" z«;
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2

1 ~ )~,) r,The exponent of the integral is -2 Y - X,/3 - ZiYi Y - X,/3 - ZiYi + -2 ' This can be writtena 1 1 a
c r

as

2
1 _ ,- 2 1 -, 1 2, r ,= -, Y Y - -2 Y ZiYi + -2 r, Zi z, +-2

.0'.; _I _I a" _I ac ar

where

y =Y -XJ3.
-I _I

Following usual algebra routes, i.e. completing the square with respect to Yi' we find

( )
-~(I+II ) ( 2 )-~ ( 2 )_!l {I }[ 1 1 ]-~ ~=M 2;r 2 i ar 2 ac 2 exp -2 (y -X,/J)'(/>i(Y -XJ3) -2 (Zi'Z;)+-, (2;r)2

. 20' _I -, a a-
eer

(3.7)

where
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Thus, after implementing the results in (3.7) into (3;6), we get

1 1 n

M nl (a:)-ï (a; t"t x r!J(y, I O,a: )p(~; I r.. ,13, a;, L)·

(3.8)

In the above specification, each summand in the conditional posterior of y; is separated into two

elements. The first element is a mixing probability, and the second is a distribution to be mixed. So

with probability proportional to

(3.9)
q

A; + Lr!J(L I X,p + z;y};a;In)
}=I;}'1';

we select y; from distribution bYl' which means that we set y; = y}. Also, with probability

proportional to

(3.10)
q

A; + Lr!J(~; IX;p + z;y};a;In)
}=I;}'1';

we select y; from
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Thus, we sample Y, from its full conditional posterior,

This results in a mixture distribution where one piece is a normal distribution and all of the others are

point masses. There is some plausible intuition behind this above mixture scheme. If the breeding

value, Y i of sire i has a relatively large residual using sire j's breeding value, then Y j is relatively

less likely to be chosen as the breeding value of sire i. Conversely, if the breeding value of sire i has

a relatively small residual using sire j's breeding value, then the random effect Y j is relatively more

likely to be chosen as the breeding value of sire i. On the other hand, the greater the residual for sire

i, the greater the probability that sire iwill get a new value from pc· , .) in (3.12).

This scheme results in what MacEachem (1994) calls a cluster structure among the different sires.

This cluster structure partitions the q different sires into k groups, where 0 < k ~ q. Thus, all the sires

in .a specific cluster will have identical breeding values and sires in different clusters will have

different breeding values. This may sound farfetched, but since the Gibbs sampler is repeated several

times, the algorithm leads to reduced variation and hence faster convergence of the estimated random

effects- to ·their true values. The average of the simulated values for each breeding value is then

computed, thus every sire will have its own unique breeding value.

The fully conditional posterior density for each of the other unknowns is obtained by regarding all

other parameters in the joint posterior as known.
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3.4.4 The Uniform Prior for pand a/

The full conditionals for jJ and CY,} in the non-parametric model (3.1) are the same as in the

paramétric model. Thus, an uniform prior distribution is assigned to jJ and CY/ as to represent lack of

prior knowledge about the vector of fixed effects and error variance. Therefore

p(jJ ,CY,}) = p(j3) p (cy,}) cc constant. (3.13)

The required full conditional for the fixed effects, is multivariate normal:

(3.14)

For the variance component, CY/ the conditional posterior is

n,

pea; I p,y,"f_ ) = KcI)(;2J2 exp{- 2~2 ("f_;-X;P-Z;Y)'("f_; -X;/J-Z;Y)}
. I-I c c

(3.15)

an Inverse Gamma density where
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K =e

qI(~, -X;/3-Z,Y)'(L -X;/3-z;y)

n-2
2

q

Also, y=(YI,Y2, ···,Yq), Y = (y ',y ', ...,y ')' and In; = n, the sample size.
_ _I _2 -q

;=1

3.4.5 Prior for a/

Typically, the variance a/ in the base measure of the Dirichlet process in (3.2) is unknown and

therefore a suitable prior distribution must be specified for it. Note that, once this has been

accomplished the base measure is no longer marginally normal. For convenience, suppose

p (a/ ) cx. constant

to present lack of prior knowledge about a/. After choosing random effects for each of the sires, the

sires will be grouped into clusters (groups) in which the sires have equal y; 'so That is, after

selecting a new y; for each sire i in the sample, there will be some number k, 0 < k ~ q, of unique

values among the random Y; 'So Denote these unique values by A/ , 1=1, ... ,k. Additionally let 1

represent the set of sires with common random effect ,.1,/.
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Thus

(3.16)

an Inverse Gamma density where

k-2

K, ~{ ;[~;[}' r(T J

and

Bush and MacEachern (1996) and Kleinman and Ibrahim (1998) recommended one additional

piece of the model as an aid to convergence for the Gibbs sampler. To speed mixing over the entire

parameter space, they suggest moving around the A's after determining how the Yi 's are grouped.

Thus, in addition, a conditional posterior density is derived for the A's, i.e.

p(A, I /],O';,o':,~) o: rjJ(A,IO,O':)Ilp(~i 1/],0';)
id

(3.17)

which implies that
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where'

(3.19)

This additional piece is now incorporated into the final Gibbs sampler. Before the Gibbs sampler

is presented, we first address the simulation of the precision parameter, M. In the preceding section

we assumed that this parameter for the Oirichlet process prior was fixed. In practice it is difficult to

select appropriate values for M. Instead, a prior distribution is placed on M and a posterior

distribution is derived. Because this parameter has an important influence on the estimation, special

care is going into the selection of a broad range of values for M and into the simulation thereof.

3.4.6 Simulation of the Precision Parameter M

When defining a Oirichlet process prior, recall that M represents the weight of our believe that G

is the distribution of Go. This parameter thus determines. the prior distribution of k, the number of

additional normal components in the mixture, and is a critical smoothing parameter of the mixed

linear model. M is also, as mentioned before, related to how "clumpy" the data are. When there are

only a few clusters among the sires in the model, the estimate of the normal means from the Oirichlet

process prior will be similar to the non-parametric Bayes estimator. When there are almost q

(random effects) different clusters, the estimator from the Oirichlet process prior will be similar to

the parametric Bayes estimator. Thus, the parameter M adjusts this estimator to behave like either a

parametric estimator, which uses the data in a global manner, or a non-parametric estimator, which
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uses the data in a local manner. In Antoniak (1974) it is shown that the prior distribution of k, the

number of clusters, may be written as

pek I M,q) = cq(k)q!Mk reM)
reM +q)

k = 1,2,...,q (3.20)

and clk) = p{k I M = l.q), not involving M. West (1992) mentioned that if required, the factors cq{k)

can easily be computed using recurrence formulae for Stirling numbers. It is also shown that the

conditional posterior distribution of M is given by

p(M I k,fJ,r,a; ,a: ,y) = p(M I k) a: p(M)p(k IM) (3.21 )

where p(M) is the prior and the likelihood function is defined in (3.20). West (1992) also assumed

M - Gaïa.b), a Gamma prior with shape a > 0 and scale b > 0 (which we may extend to include a

reference prior, Uniform for 10g(M), by letting a 4 0 and b 4 O. In this section we will use the

latter, which means that

p(M) cc M-I M>O. (3.22)

Equation (3.21) can be expressed as a mixture of two gamma posteriors, and the conditional

distribution of the mixing parameter, x given M and k is a simple beta. This can be illustrated as

follows. For M> 0, the gamma functions in (3.20)can·be written as
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where Bee,.) is the usual beta function. Then in (3.21) and for any k= 1,2, ... ,q the posterior of M for

k, is

p(M I k) cx: p(M)Mk-I(M +q)Be(M +I,q)
I

cx: Mk-2(M + q) JXM(1- X)q-Idx,
o

(3.24)

using the definition of the beta function.

From (3.24) it also follows that the joint posterior density of M and x is

p(M,x I k) cx: Mk-2(M + qix" (1- xtl, 0< M, 0 < x < 1

and the conditional posteriors p(M I x,k) and p(x I M,k) can be determined as follows.

Firstly

p(M I x,k) cx: Mk-2 (M + q)exp{- M(log(x))},

cx: Mk-I exp{-M(log(x))}+qMk-2 exp{-M(-log(x)} M> 0 (3.25)

which reduces easily to a mixture of two gamma densities, viz.

with weights 1[x defined by ~ = k -1 . Also note that log(x) = logÁx) = In(x).
I-1r... q(-log(x))
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Secondly

p(x I M,k) o: XM (1- X)q-I 0< x < 1 (3.27)

M+1
so that x] M,k - Be(M+ I.q), a beta distribution with mean ----

M+q+1

It should now be clear how M could be sampled at each stage of the simulation. Hence, at each

Gibbs iteration, the currently sampled values of M and k allow us to draw a new value of M by first

sampling an x value from the simple beta distribution in (3.27), conditional on M and k, both fixed at

the most recent values; then M is sampled from the mixture of gammas in (3.26) based on the same k

and the x value just generated. On completion of the simulation, we will have a series of sampled

values of M, k, x and all the other parameters. Note that only the sampled values k and x are needed

in estimating the posterior p(M ly) via the usual Monte Carlo average of conditional posteriors,

VIZ.

where the summands are simply the conditional gamma mixtures in (3.26).

To calculate the posterior distribution of all the model parameters, we developed an important

Gibbs sampler algorithm for simulation. On completion of the simulation, we will have a series of

sampled values for all the model parameters. The next section illustrates an application of the most

recent developed Gibbs sampler for an animal breeding experiment.
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3.4.7 The Gibbs Sampler

Markov chain Monte Carlo methods, particularly Gibbs sampling, are now very often used in the

thesis and once again the model described in paragraph 3.4.2 can be implemented through this

sampling technique. As usual in Gibbs sampling, we identify collections of complete conditional

posterior distributions that determine the marginal posteriors for all the parameters. Hence, the Gibbs

sampler for pep, a; ,y, a: ,M ! ~) can be described as follows.

(0) Select starting values for r'" and a;(i) . Set i = 0

(1) Sample,8 (i./) from p(P I r'" ,a;(i) ,~) according to (3.14)

(2) Sample a;(i+I) from p( a; ! p(i+ll, r'" ,~) according to (3.15)

(3 .1) Sample {i+l] ti (! /3(i+I) 2(i+l) 2 (i) M) d' (3.9) orYl rom P Yl .o; ,ar'Y-I' ,~ accor mg to

(3.10)

(3.2)

S I {i+l] ti (I /3(i+l) 2(i+l) 2 (i) M) di 9(3.q) ampe Yq rompYq .a; ,ar,y_q, ,y accormgto(3.)or

(3.10)

(4.2)

(4.k) Sample "A)H) from peAk ! /3(i+I),a;(i+I), a:(iO ,y) according to (3.18)

(5) Sample a: fromp(a: !A(i+I),y) accordingto(3.16)

(6.1) Sample X(i+l) from p(x Iu», kei») according to (3.27)

(6.2) Sample M(i+I) from p(M I X(i+I), kei») according to (3.26)

(7) Seti=i+l andretumto(l)
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3.5 An Example

3.5.1 The Data

The example used for illustrative purposes are based on an experiment undertaken at the

International Livestock Research Institute (!LR!) at the University of Nairobi, Kenya in the early

90's (Duchateau, et al., 1998). The data are shown in APPENDIX C. The goal of the research was

to select for improved Helminth resistance in sheep .

.The female sheep used in the experiment are from three different breeds, whereas the males are

from two breeds. In each of the six crosses, there are at least 25 and at most 42 different sires, and

each sire within a crossbreed has on average offspring of 6.4 lambs. The weaning weight is

measured for each lamb. The age at which lambs are weaned may differ from animal to animal, and

therefore, a variable expressing the age of the animal at weaning is included as a fixed effect as well

as the sex of the lambs. Finally, the sires are included as random effects.

Although the same sire is mated to ewes from different breeds, the sire nested in breed is taken as

a single random effect Yi and it is assumed that these random effects are independent. A total of

n = 1277 weaning weight records, from the progeny of q = 200 sires are available after editing, and

breed, sex and age are included as fixed effects in the final model.
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The mixed linear model used for this data structure, is the SIre model of section (1.2),

Y = XfJ + Zy + e , where y (1277 x l ) vector of weaning weights. jJ (8 xl) is the vector of fixed

effects, and the design matrix Z, a (1277 x 200) matrix identifying the (200 x I) vector of random

effects consisting of the breeding values for the 200 sires for which the data is observed, X a

(1277 x 8) matrix of full rank.

MATLAB software has once again been developed to generate the samples that enable us to

obtain the finite sample post-data parameter densities, using the Gibbs sampler. The full conditional

posteriors are updated after every iteration. The first 1 000 draws of each chain are discarded, and

then every 10th draw is saved. By saving every to" draw, the chain yielded a posterior sample of

1 000 approximately uncorrelated draws. All posterior analyses are based on these m = I 000 draws.

3.5.2 Analysis of Variance Components

Posterior modes of the Traditional Bayesian analysis, 95% credibility intervals, and the REML

estimates are summarized in Table 3.1. Note that the REML point estimates of a/ and a/ and the

posterior modes obtained from the Gibbs sampler (Traditional Bayes) do not differ much. This was

because we assigned uniform or "flat" priors to the vector of fixed effects and variance components,

and a normal prior to the vector of random effects (Harville, 1974; Searle, CaselIa & McCulloch,

1992).
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Table 3.1 REML and Traditional Bayesian Estimates (posterior modes) of the Variance

Components, along with 95% Credibility Intervals.

95 % Credibility
Parameters REML Trad. Bayes Interval

a/ 4.8639 4.8885 4.4617 ; 5.3059

a2 0.6802 0.7211 0.4312; 1.0496r

In practice it is difficult to select appropriate values for the parameter, M Recall that M is a

positive scalar that is related to how "clumpy" the data are (often called a precision parameter), and

clumpy data occur when the different sires are concentrated into a few clusters. Because the

parameter value has an important influence on the estimation, a broad range of possible fixed values

for M is chosen, i.e. M = 5, 50, 100 and 1000. Furthermore, a prior distribution is placed on M and

values from the estimated posterior distribution of M are used in the simulations. The results are

summarized in Tables 3.2 and 3.3 below.

Table 3.2 Posterior Estimates of the Error Variance Component, a/ (different values of M),

along with 95% Credibility Intervals.

M Posterior 95 % Credibility

Mode Interval

5 4.9183 4.4788; 5.3612

50 4.8907 4.4649; 5.3286

100 4.8615 4.4192 ; 5.2731

1000 4.8743 4.4480; 5.3107

SimM 4.8667 4.4527; 5.2810
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Table 3.2 Posterior Estimates of the Model Variance Component, er} (different values of M),

along with 95% Credibility Intervals.

M Posterior Posterior 95 % Credibility.
Mode Mean Interval

5 0.6310 0.8835 0.4213 ; 1.7733

50 0.6090 0.8659 0.4407 ; 1.0276

100 0.6290 0.8859 0.4407 ; 1.0276

1000 0.7275 0.7320 0.4213; 1.0476

SimM 0.6340 0.6532 0.3790; 1.0026

For large values of M, the "Oirichiet" estimates coincide with the Traditional Bayes and REML

estimates. In these cases there are almost 200 different clusters/groups among the different sires,

resulting in a similar behaviour of the estimates from the Oirichlet process prior and the Traditional

Bayes procedure.

Using the posterior densities for er/ and er/, the marginal posterior densities are estimated as the

average of the posterior densities and are displayed in Figures 3.1 and 3.2. Also, the distributions in

Figure 3.2 are quite skew, resulting in a difference between the posterior means and posterior modes.

The density for M = 100 is omitted from figure 3.1 since the estimated marginal density for this value

of M and the density obtained from the Traditional Bayes analysis are basically the same.

-92-



-. - Trad. Bayes
- SimM

The Dirichlet Process and Non-parametric Modelling in Animal Breeding Experiments

- - Trad. Bayes
- SimM

Figure 3.1· Estimated Marginal Posterior Densities of the Variance Component, a/ for different

cases of M, (Sim M); Traditional Bayes and when Mis fixed at M= 5.

Figure 3.2 Estimated Marginal Posterior Densities of the Variance Component (7/ .
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The similarity of the a/ results in Tables 3.1 and 3.2 is an indication, for this data set, that the

results are not sensitive to the choice of the precision parameter, M From the marginal posterior

densities of a/ in Figure 3.1 the effect of changing M on the distribution of the random effects is also

minimal. These densities are virtually identical, and it is clear that there is no uncertainty about the

exact location and height in the different densities. However, the posterior density for a/ when M is

fixed at 5 (Figure 3.2) shows some uncertainty in the shape of the density. This can be expected

because M is part of the prior for the random effects and will therefore influence a/ much more than

a/. This may also be related to the large variation in the importance sampling weights for smaller

values of M The other densities have similar shapes with only noticeable shifts in the posterior

modes.

The posterior means and modes of the Traditional Bayesian analysis; different values for M, and

95% credibility intervals of functions of variance components like the intraclass correlation

a2 a2

coefficient, p = " 2' and the variance ratio, v = _, are summarized in Tables 3.3 and 3.4.
a; +aó a;

Once again it is evident from this table that the credibility interval for the intraclass correlation

coefficient does not contain 0.5. This result corresponds well with the statement made by Wang et

al. (1992) namely that from a genetic point of view, an intraclass correlation coefficient of 0.5 is not

possible in a sire model.

Using again the conditional posterior densities for these functions of the variance components, the

marginal posterior densities are estimated as the average of the conditional posterior densities and are

displayed in Figures 3.3 and 3.4.
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M Posterior Posterior 95% Credibility
Mode Mean Interval

5 0.114 0.1497 0.0765 ; 0.2677

100 0.115 0.1189 0.0696 ; 0.1706

SimM 0.120 0.1179 0.0710; 0.1723

Trad. Bayes 0.130 0.1282 0.0779 ; 0.1807

The Dirichlet Process and Non-parametric Modelling in Animal Breeding Experiments

Table 3.3
(J2

Estimates of p = 2 y 2' the Intraclass Correlation Coefficient for different cases
(Jy + (J&

of M, Simulated M and Traditional Bayes Results, along with 95% Credibility

Intervals.

;.::", ..'->,
jo:': '.

-- Trad Bayes
- SimM

Figure 3.3 The Estimated Marginal Posterior Density of the Intraclass Correlation

(J2

Coefficient, p = 2 Y 2.
(Jy + (J&
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Table 3.4
a2

Estimates of v = ---T' a Function of the Variance Components, along with 95%
aE

Credibility Intervals.

M Posterior Posterior 95% Credibility
Mode Mean Interval

5 0.130 0.1803 0.0829 ; 0.3655
100 0,135 0.l359 0.0748; 0.2057

SimM 0.135 0.l347 0.0765 ; 0.2082

Trad. Bayes 0.l45 0.1481 0.0844 ; 0.2205

-- Trad. Bayes
- SimM

Figure 3.4
a2

The Estimated Marginal Posterior Density of the Variance Ratio, v = ---T .
aE
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The same conclusion can be drawn for the posterior distributions of the intraclass correlation

coefficient, p and variance ratio, v (which are functions of the variance components) as for the

variance components, i.e. more or less identical marginal posterior densities except for small values

of M.

Another commonly derived statistic, the heritability (h2
) of the trait, which is also function of the

two variance components is calculated and reported in Table 3.5. This statistic describes the

proportion of the total variation in the environment of the study attributable to genetics. In this

2 4a: 2formula h = 2 2 ' ay is multiplied by 4 in the numerator to account for the fact that lambs
ay +ac

from the same sire are half siblings and the sire accounts for half of the inherited genetic component,

and a: +a; is the phenotypic variance. The higher the heritability, which lies between 0 and 1,

the higher the proportion of the total variation that can be assumed to be genetic in origin.. . .

Table 3.4
4a2

REML and Bayesian Estimates of h2 = 2 Y 2 ,the heritability of the trait.
ay +ac

REML Trad Bayes M=5 M=100 SimM

0.49 0.5127 0.4756 0.5179 0.5097
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Some caution is needed in variance component problems in genetics. For example, some genetic

models dictate bounds for a particular variable. If one employs the Sire model, as in the case of the

present thesis, the intraclass correlation coefficient must lie inside the [0, .!.. ] interval, because
4
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. a2
. 1

heritability is between 0 and I. This implies that the variance ratio v = -T IS between [0, -], and
aE 3

a2

that 0 ~ a: ~ _E • These profound concerns are evident in the above example, except for the results
3

of the variance components and functions thereof when M is set to small values (M = 5), but this is

due to some uncertainty about the real distribution of the posterior densities.

3.5~3 Analysis of Random Effects

As mentioned before (see section 3.4) the non-parametric Bayesian approach for the random

effects is to specify a prior distribution on the space of all possible distribution functions. This prior

for the mixed linear model is applied for the general prior of the distribution of the random effects.

This can be accomplished with a Dirichlet process prior distribution. This means that the usual

normal prior on the random effects is replaced with a non-parametric prior, followed by a Dirichlet

prior with precision parameter M, on the general distribution. Because this precision parameter value

has an. important influence on the estimation, a broad range of possible fixed values for Mis chosen

(M = 5, 50, 100 and 1000) to reflect small, moderate and large departures from normality in the case

of the random effects. Furthermore, a prior distribution is placed on M and the conditional posterior

distribution of M becomes part of the Gibbs sampler.

Rather than report results for all 200 sires, we focus our discussion on the first 10 sires in the

analysis, The tables referred to in this section contain only these 10 animals. The rest of the results

are summarized in APPENDIX E.' Since animal breeders might be interested in the breeding value of

specific sires in order to determine which sires should be retained for future selection, we used these

breeding values to find the REML-, Traditional Bayes-, and Dirichlet process ranks of the different
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sires. The results are summarized in Table 3.4 and 3.5, along with 95% credibility intervals.

Moreover, the REML estimates represent the mode of the marginal likelihood and thus might be

better compared to the modes of the posterior distributions of the random effects. These modes

(breeding values) are provided in the aforementioned tables.

Table 3.4 REML Estimates and their Standard Errors (SE's), Traditional Bayes Estimates along

with 95% Credibility Intervals and Posterior Rankings of the first 100f the 200 Sires.

REML Posterior Trad. Bayes 95% Credibility Posterior

SIRE_ID Estimate SE Rank Estimate Interval Rank

1971 -0.1061 0.6654 9 -0.1024 -1.4569 , l.l898 9
1972 0.5241 0.5349 5 0.5689 -0.4500 , 1.5455 5
1973 0.3888 0.6399 ·6 0.4464 -0.9447 , 1.6482 6
1974 1.9339 0.5486 1 1.9627 0.7862 ; 3.1311 1
1980 0.9299 0.5975 3 0.9635 -0.2615 , 2.1269 4
1991 0.3611 0.6396 7 0.3741 -1.0761 , 1.6095 7
1999 0.9266 0.6654 4 0.9939 -0.2873 , 2.2231 3
4907 0.2289 0.5790 8 0.2676 -0.8033 , 1.4348 8
4908 1.6614 0.4921 2 1.6662 0.5431 ; 2.8049 2
4909 -0.7628 0.6653 10 -0.7645 -2.1227 ; 0.4956 10
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Note that the REML estimates and the posterior means (see Pretorius and Van der Merwe, 2000;

APPENDIX E) obtained from the Gibbs sampler for M = 5 are quite different. There are two factors

to keep in mind when examining this difference. Firstly, there is considerable uncertainty about the

distribution and central values of the breeding values when M = 5. Secondly, as mentioned earlier,

the REML estimate of the breeding value is more similar to the mode of the posterior distribution

than the mean. Figures 3.5 - 3.16 show the posterior distributions of the first 3 sires in the data set,

where it is evident that the posterior modes obtained from the Gibbs sampler are in fact similar to the

REML estimates of the breeding values.
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Table 3.5 Oirichlet Process Estimates for different values of M, along with 95% Credibility

Intervals and Posterior Rankings of the first lOof the 200 Sires.

M=5 95% Credibility Posterior SimM 95% Credibility Posterior
SIRE ID Modes interval Rank Modes Interval Rank

1971 -0.0125 -1.3874 , 1.2378 9 -0.1097 -1.4280 , 1.160 I 9
1972 0.2510 -1.3396 , 1.4029 7 0.5081 -0.5712 ; 1.5426 5
1973 0.3580 -1.3874 , 1.5452 4 0.3934 -0.9254 ; 1.7685 6
1974 1.4265 0.3051 ; 2.6513 I 1.9026 0.8062 ; 3.1085 I
1980 1.0350 -1.2272 ; 2.1293 3 0.9193 -0.2371 , 2.1947 3
1991 0.3420 -1.3396; 1.4029 5 0.3438 -0.8887 , 1.6423 7
1999 0.3224 -1.2685 ; 2.4430 6 0.8936 -0.4606 , 2.2582 4
4907 0.1910 -1.3874 ; 1.2378 8 0.2293 -0.8966 , 1.3925 8
490:8 1.1420 0.2435 ; 2.6513 2 1.6490 0.6079 ; 2.7037 2
4909 -1.2825 -1.8916 ; 0.3827 10 -0.7711 -1.9938 ; 0.4418 10

Uncertainty in the values of the breeding values when M equals 5 is indicated in the large

posterior credibility intervals. Thus a wide range of values for the breeding values is quite possible.

However, as might be expected, the best sires from the REML, Traditional Bayes, and Oirichlet

process analyses (Sim M) overlap, with a minor disagreement between rankings of SireID 1980 and

Sirell) 1999 (ranked visa versa in the Traditional Bayes analysis).

Beyond the top three sires (according to the Oirichlet process when M was fixed at 5), there are

major differences in the order of the best to the worst sire. This is because of the great deal of

uncertainty about the values of the breeding values. This uncertainty is also reflected in the wide

credibility intervals. Note that the estimated breeding values take account of the variability in the sire

variance, a/ depicted in Figure 3.2.
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Taking account of this variability can be important in evaluating the breeding potential of the

animals. This is a clear example of why it is important to correctly model the distribution of the

random effects; very different results may be obtained as a result of changing the precision

parameter, M.

To -further illustrate the uncertainty in some of the posterior densities, we have calculated the

marginal posterior densities of the breeding values for the first 3 sires in Figures 3.5 - 3.16.

(SireIDI972, SireIDl973 and SireIDI974). In these figures we plotted: the densities when M is

fixed at 5 and 50, the densities obtained from the Traditional Bayes analysis, and densities when M is

...., simulated from a mixture of distributions in the Oirichlet process, given the data. We noted that

j
,,~

these posterior densities have many features of interest.

The' next section is devoted to the overriding influence of the precision parameter M on the
~.

j\fJ posterior densities of the 200 breeding values of the different sires. M is, as mentioned before,
~

related to how "clurnpy" the data are. When there are only a few Clusters among the sires in the

model, the estimate of the normal means from the Oirichlet process prior will be similar to the non-

parametric Bayes estimator. When there are almost 200 different clusters, the estimator from the

Oirichlet process prior will be similar to the parametric Bayes estimator.
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Figure 3.5 The Estimated Marginal Posterior Density of the Breeding Value for Sire ID 1971·

(Yl) when M= 5 in the Dirichlet Process.
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Figure ·3.6 The Estimated Marginal Posterior Density of the Breeding Value for Sire ID1971

(Yl) when M= 50 in the Dirichlet Process.
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Figur~ 3.7 The Estimated Marginal Posterior Density of the Breeding Value for Sire ID1971

(Yl) from the Traditional Bayes Analysis.
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Figure 3.8 The Estimated Marginal Posterior Density of the Breeding Value for Sire lD1971

(Yl) when M is Simulated in the Dirichlet Process.
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Figure 3.9 The Estimated Marginal Posterior Density of the Breeding Value for Sire ID 1972

(Y2) when M = 5 in the Dirichlet Process.
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Figure 3.10 The Estimated Marginal Posterior Density of the Breeding Value for Sire ID1972

(Y2) when M = 50 in the Dirichlet Process.
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Figure 3.11 The Estimated Marginal Posterior Density of the Breeding Value for Sire ID 1972

(Y2) from the Traditional Bayes Analysis.
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Figure 3.12 The Estimated Marginal Posterior Density of the Breeding Value for Sire ID1972

(Y2) when M is simulated in the Dirichlet Process.

-105-



The Dirichlet Process and Non-parametric Modelling in Animal Breeding Experiments

Figure 3.13

Figure 3.14
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The Estimated Marginal Posterior Density of the Breeding Value for Sire ID1973

(Y3) when M = 5 in the Dirichlet Process.
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The Estimated Marginal Posterior Density of the Breeding Value for Sire ID1973

(13) when M = 50 in the Dirichlet Process.
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Figure 3.15 The Estimated Marginal Posterior Density of the Breeding Value for Sire ID1973

(r3) from the Traditional Bayes Analysis.
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Figure 3.16 The Estimated Marginal Posterior Density of the Breeding Value for Sire ID1973

(r3) when M is Simulated in the Dirichlet Process.
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Unlike the densities of the fixed effects, the values of Mhave a large effect on the posterior

densities of the random effects, since the random effects are directly affected by the relaxation of the

normal assumption when M is set equal to 5 and 50. While for M = 50 it is clear that there are some

uncertainty about the shape and boundaries of the densities. This is even more pronounced with

M = 5, and may be related to the larger variation in the importance sampling weights for smaller M.

We also note from these first two densities that as M increases, the shapes of the densities tend to

become more bell-shaped and symmetrical. Thus, a value of M = 5 reflects a large departure from

normality in the posterior density of the breeding value.

For smaller values of M the sires are grouped into less clusters, with the average number ·of

clusters, k = 124 when M = 5. Furthermore, a value of M = 50 reflects a moderate to small

departure from normality, with k = 145. Thus, for small values of M, the estimates of the normal

means. from the Dirichlet process prior are similar to the values of the non-parametric Bayes

estimates.

However, when M = 1000 the estimator from the Dirichlet process prior is similar to the

parametric Bayes estimator and the density reveals no departure from normality (Figures 3.7, 3.11

and 3.15), with k = 196. The estimated marginal posterior density for M given k = 196 is

presented in Figure 3.1 7.
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Figure 3.17 Estimated Marginal Posterior Density of M with k = 196, and Posterior Mode

M; = 820.

When M is simulated, given the data, the average number of clusters, k = 140 with M = 220.

The estimated marginal posterior density and the unconditional marginal posterior density for the

simulated Mvalues are displayed in Figures 3.18 and 3.19. Finally, the observed histograms for the

number of clusters, k for different values of M are presented in Figures 3.20 - 3.22.
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Figure 3.18

Figure 3.19

Estimated Marginal Posterior Density of M with k = 140, M= 220 and Posterior

Mode M; = 200.

Estimated Unconditional Marginal Posterior Density of M with k = 140,

M = 220 and Posterior Mode M; = 320.
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Figure 3.20

Figure 3.21

Observed Histogram for the Number of Clusters, k when M= 5;

k = 124

Observed Histogram for the Number of Clusters, k when M = 1000;

k =196

-111-



The Dirichlet Process and Non-parametric Modelling in Animal Breeding Experiments

Figure 3.22 Observed Histogram for the Number of Clusters, k when M is Simulated from a

Mixture of Distributions, given the Data; k = 140 .

A substantial statistical issue that remains to be tackled is the great discrepancy between pictures

of the posterior densities of the random effects as the value of M changes. Indeed, if data are very

sparse and not very clumpy, then non-parametric maximum likelihood methods may not work very

well. But if the data are very clumpy, with modes that are spread out, then standard parametric

Bayes methods do not work very well, and non-parametric Bayes methods work quite well. The

question can be asked "why non-parametrics?" According to Walker et al., (1999), the answer

depends on the particular problem and the procedure under consideration, but many, if not most

statisticians appear to feel that it is desirable in many contexts to make fewer assumptions about the

underlying population from whichthe data are obtained than are required from a parametric analysis.

Also, the mixture of Dirichlet process priors will cover departures from symmetry and cases where

the assumptions of unimodality do not hold for the random effects in the mixed linear model.
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3.5.4 Analysis of Fixed Effeets

The estimates for the different fixed effects are summarized in Tables 3.6 and 3.7. The results

obtained when M is fixed at 5 and 500, along with 95% credibility intervals are given in Table 3.6.

The REML estimates, estimates from the Traditional Bayes analysis, and estimates when M is

simulated from the data, are presented in Table 3.7. From these tables it is clear that the changing of

the va.ues of M have a minor effect on the posterior estimates of the fixed effects. These minor

differences are attributable to the little mass of the Dirichlet process prior on the fixed effects.

To put these estimates into perspective, we focus our discussion only on the results of the analy.sis

when M is simulated given the data (Sim. M column). As might be expected, there is a significant

effect of sex with female lambs weighing 'on average 0.7057 kg (C10.95 = [0.4575 ; 0.9523]) less at

weaning than males. Furthermore, there is a significant effect of age at weaning with weaning

weights increasing by 0.0464 kg per daily increase in age (C10.95 = [0.0400 ; 0.0532]). There are also

significant differences among breeds, with breeds 1 - 4 having significant higher weaning weights

than breeds 5 - 6.
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Table 3.6 Estimated Values of the Fixed Effects for M = 5 and 500, as well as the 95%

Credibility Intervals.

M=5 95% Credibility M=500 95% Credibility
Interval Interval

f30 (Intercept) 4.7406 5.3418 ; 6.1000 4.8115 3.5054; 6.0282

/3/ (Breed I) 1.5575 0.7430; 2.3669 1.5898 0.6819; 2.2147

/32 (Breed 2) 1.4068 0.5691 ; 2.1645 1.4941 0.7420; 2.2386

/33 (Breed 3) 1.3466 0.6641 ; 2.0364 1.3960 0.6406 ; 2.1626

/3. (Breed 4) 0.9581 0.2810; 1.5885 0.9337 0.1968 ; 1.6439
/3j (Breed 5) -0.4066 -1.2002 ; 0.3532 -0.3256 -1.2729 ; 0.4002

/36 (Sex) 0.699 0.4375; 0.9576 0.7092 0.4755; 0.9681

/37 (Age) 0.0461 0.0399 ; 0.0529 0.0457 0.0398 ; 0.0526

Table 3.7 REML estimates and SE's, Traditional Bayes Estimates with 95% Credibility

Intervals, and Dirichlet Process Prior Estimates when M is simulated given the data.

REML SE for Trad. Bayes 95% Credibility SimM 95% Credibility
REML Interval Interval

f30 (Intercept) 5.0030 0.537 4.3439 3.2871 ;,5.3149 4.3267 3.2806; 5.4281

/3/ (Breed I) 1.6820 0.376 1.6706 0.9035 ; 2.3790 1.6760 0.8870 ; 2.4189

/32 (Breed 2) . ·1.5150 0.383 1.5017 0.8259 ; 2.2473 1.5043 0.7582 ; 2.2397

/33 (Breed 3) 1.4360 0.357 1.4326 0.7821 ; 2.0731 1.4267 0.7189; 2.1200

/3. (Breed 4) 0.9480 0.357 0.9278 0.2524 ; 1.5857 0.9381 0.2249 ; 1.6617

/3j (Breed 5) -0.4060 0.393 -0.4258 -1.2394 ; 0.3043 -0.4079 -1.1983; 0.3194

/36 (Sex) 0.7040 0.128 0.7046 0.4648 ; 0.9461 0.7057 0.4575 ; 0.9523

/37 (Age) 0.0465 0.003· 0.0463 0.OJ98 ; 0.0529 0.0464 0.0400 ; 0.0532
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The estimated marginal posterior densities are now been calculated and depicted in Figures

3.23 - 3.30. Note once again that the posterior densities are only calculated for the fixed effects

when M is simulated, given the data. These figures also show the minor effect of changing M on the

posterior distributions of the fixed effects. Unlike the densities for the random effects, the plots are,

as expected, bell-shaped and symmetrical since the fixed effects are not directly affected by the

relaxation of the normal assumptions (when M is small).

-115-

Figure 3.23 Estimated Marginal Posterior Density of Po , the Intercept.
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Figure 3.24 Estimated Marginal Posterior Density of p" the Expected Difference in

Average Weaning Weight between lambs of Breed 1 and Breed 6.

Figure 3.25 Estimated Marginal Posterior Density of P2, the Expected Difference in Average

Weaning Weight between lambs of Breed 2 and Breed 6.
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Figure 3.26

Figure 3.27

Estimated Marginal Posterior Density of PJ, the Expected Difference in Average

Weaning Weight between lambs of Breed 3 and Breed 6.

Estimated Marginal Posterior Density of P., the Expected Difference in Average

Weaning Weight between lambs of Breed 4 and Breed 6.
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Figure 3.28

Figure 3.29

Estimated Marginal Posterior Density of /3j, the Expected Difference in Average

Weaning Weight between lambs of Breed 5 and Breed 6.

Estimated Marginal Posterior Density of /36, the Expected Difference in Average

Weaning Weight between Male and Female lambs.
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Figure 3.30 Estimated Marginal Posterior Density of /37, the Average Increase m Weaning

Weight per Daily Increase in Age.

3.6 An Experimental Design - Model Validation

Much of the current research focused on the distributional properties of Bayesian models

compared to classical models. At present one would suggest the results of these models should be

compared by means of partial F-tests, residual analysis, cross validation (data-splitting) or tests of

overal! model adequacy. However, model validation involves an assessment of how the fitted

models will perform in practice, i.e. how successful it will be when applied to new or future data. An

experiment will thus be conducted where all the genetic parameters in the mixed linear model are

known, and the dependent variable will be built. These parameters, using REML and Bayesian

methods (Dirichiet process) will then be estimated.
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Again, consider the following mixed linear model

where 'Si - N(O; d ó1n) and for which the random effects have a non-parametric Dirichlet process prior

distribution, i.e. Yi - G where G - DP(M . Go). The parameters of the Dirichlet process are

Gu= N(O, dy) , a probability measure, and M = 100. The values for the variance components are

dó= 4.88 and dy= 0.7211. The only fixed effect in the model is sex (/31 = 0.705). Thus, the male

lambs weigh on average 0.705 kg more than female lambs. A total of 200 sires are added as random

sire effects to the model. For each sire, 10male and 10 female weaning weights are generated using

the Dirichlet process.

Table 3.8 reports the estimated variance components used for the experimental data set. A small

difference between the estimates and the actual values of these variance components are observed,

indicating that the Bayesian approach using the Gibbs sampler is certainly valuable and worthwhile

in the context of animal breeding and selection.

Table 3.9 contains the estimated breeding values of the first 10 sires in the data set along with

their rankings. The second column (EXP) in the table is the actual breeding values of the sires. The

fourth and sixth columns contain the results when a Dirichlet process is implemented in the Gibbs

sampler. For the fourth column, the precision parameter M is set equal to the true value, i.e. 100,

whereas the six column contains results when this parameter is simulated given the data
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Table 3.8 Estimated Variance Components for the Experimental Data using the Dirichlet

Process Prior and REML Analysis.

MDP,M=100 MDP, Sim M REML
1 0.765 0.768 0.772(fr

cic 4.932 4.935 4.929

Note that the true values for the variance components are, for cle = 4.88 and clr = 0.7211.

Table 3.9 Estimated Breeding Values of 100fthe 200 Sires for the Experimental Data along

with their Posterior Rankings.

Rank EXP Sire ID MDP,M= 100 Sire ID MDP,SimM Sire ID REML Sire ID

1 1.4702 9 1.413 9 1.4188 9 1.44597 9

2 .1.3975 2 1.3183 2 1.3239 2 1.32166 2

3 0.381 5 0.913 10 0.8727 10 0.87709 10

4 0.2997 I 0.2711 5 0.256 5 0.26953 6

5 0.146 10 0.2381 6 0.2142 6 0.2679 5

6 -0.082 6 -0.0503 7 -0.1292 7 -0.02923 7

7 -0.2163 8 -0.1544 3 -0.2231 3 -0.15932 3

8 -0.2835 II -0.2535 1 -0.2281 I -0.16895 I

9 -0.3977 4 -0.2812 II -0.3324 II -0.26275 II

10 -0.4936 7 -0.4713 8 -0.4889 8 -0.44905 8
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From the table we can show that the Oirichlet process in Bayesian inference regarding breeding

experiments is a very promising method. According to the experimental data, it is known that sires

9,2,5,1 and 10 are ranked as the five best sires in the model. The Oirichlet process ranked sires

9,2,10,5 and 6 as the best animals. This is an 80% success rate in the ranking procedure.

Sires 9,2,10,6 and 5 are also ranked as the best sires by the REML analysis. In the next section

dealing with the model adequacy, the SSE (sum square errors) is calculated and reported in Table

3.10 below:

Table 3.10 The Calculated Sum Square Errors for the different Analysis.

REML MDP,M= 100 MDP,SimM

I SSE 46.145 46.44 "44.833

From the results, it is believed that the Bayesian non-parametries, using the Gibbs sampler, have

as much to 'offer as the REML analysis. Since the posterior densities resulting from the Gibbs

sampler can easily be used to construct confidence intervals for the model parameters, the potential

mathematical consequences of the tooikit that is explored here in the world of the animal breeder is

evident.
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3.7 Chapter Summary

The important contribution of this chapter revolves around the non-parametric modelling of the

random effects. We have applied a general technique for Bayesian non-parametries to this important

class of models, the mixed linear model for animal breeding experiments.

Our technique involved specifying a non-parametric prior for thé distribution of the random

effects and a Oirichlet process prior on the space of prior distributions for that non-parametric prior.

The mixed linear model was then fitted with a Gibbs sampler, which turned an analytical intractable

multidimensional integration problem into a feasible numerical one, overcoming most of the

computational difficulties usually experience with the Dirichlet process. This proposed procedure

also represents a new application of the mixture of Oirichlet process model to problems arising from

animal breeding experiments. The application to and discussion of the breeding experiment from

Kenya is helpful for understanding the importance and utility of the Oirichlet process, and inference

for all the mixed linear model parameters.

As far as non-parametric versus parametric analysis are concerned, in relatively 'well-behaved'

cases, where a parametric analysis would have coped, we typically obtain similar forms of posterior

inference, particularly posterior modes, but with appropriately greater range of uncertainty in

posterior means, as indicated in the case when the precision parameter is relatively small. When the

appropriate form of the posterior should be 'badly behaved', the non-parametric analyses will reflect

this, whereas most parametric analyses would not reveal. this fact.
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However, as mentioned before, a substantial statistical issue that still remains to be tackled is the

great discrepancy between resulting posterior densities of the random effects as the value of the

precision parameter, M changes. The work in this area is ongoing and needs a careful understanding,

especially where inferences may be sensitive to the distributional assumption on the random effects.

We believe that Bayesian non-parametries have much to offer, and can be applied to a wide range

of statistical procedures. As far as Bayesian versus Classical approaches are concerned, we note the

very real advantage of being able to input broad prior ideas of characteristics such as location, scale

and shape. Moreover, the much richer and more tractable forms of inference that are presented as a

consequence of the Gibbs simulation-based approach to computation are quite profound.

© Parts of this chapter (simulation study) have been published in the South African Journal of Animal Science.

(See Pretorius & Van der Merwe, 2000)

© Parts of this chapter (Dirichlet process results) are submitted and in press in Genetics, Selection and

Evolution.

(See Van der Merwe and Pretorius, 2000 (in press))

© Parts of this chapter (Dirichiet process results) have been accepted for publication in 'Collection of Refereed

Articles' -ISBA2000'.

(See Pretorius and Van der Merwe, 2001)

, International Society for Bayesian Analysis
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CHAPTER4

«The Dirichlet Process in Veterinary Medicine Research»

Introductory words: In the present thesis, parallel developments of mixed linear models have also taken place

in veterinary medicine research. The aim of the present chapter is to expand the Dirichlet process prior to a

veterinary medicine problem in which the observations are correlated with each other.

4.1 Prologue

.As mentioned in the previous chapter, Mixture priors, especially Dirichlet Mixtures have opened

the way to serious Bayesian developments in Non-parametric Modeling and Density Estimation.

Moreover, mixtures of Dirichlet process models (MDP) have become increasingly popular for

mode ling when conventional parametric models would impose unreasonably stiff constraints on the

distributional assumptions. There has been some work towards this end in the classical setting,

however in the Bayesian paradigm, non-parametric mode ling is still very scant and introductory.

As mentioned in Chapter 3, from the Bayesian perspective, inferential interest focuses on the

posterior distribution of the random and fixed effects .. Allowing distributions other than the normal

for the random effects' may more accurately model our prior beliefs, or it may allow us to better

express out uncertainty about the true distribution of the random effects. However, one major

question arising in Bayesian analysis concerns the sensitivity of the results to the chosen prior
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In the next sections, we describe how the MOP model can be applied to the mixed linear model.

We show the full conditional distributions and how the Gibbs sampling can be implemented for both

the conjugate (section 4.3) and non-conjugate case (section 4.4). Indeed, if we assume the sampling

distribution for y. to be normal, then a normal base measure for the random effects completes a
-I

conjugate MOP model. If on the other hand, the base measure is specified as a multivariate t -

distribution (i.e. a scale mixture of the multivariate normal distribution), then the base measure for

the random effects completes a non-conjugate MOP model.

We .provide a detailed exploration of a veterinary medicine application of interest in an

experiment where the mixed linear model is appropriate. Finally, we present an extension of the

work to a non-conjugate mixture of Dirichlet process model, and compare the results of this analysis

to that of the conjugate MDP model.

4.2 The Experiment and Model Structure

.An important assumption In the use of mixed linear models is that the observations are

independent from each other. In many practical situations this assumption does not hold. The most

common situation is where different measurements are taken on the same individual, leading to what

is known as a repeated measures design. Often these measurements are taken periodically over time.

Alternatively, observations may be spatially collected in which case those closest together may be

most alike. To demonstrate how the mixed linear model can be used for repeated measures design,

the following experiment is analyzed.
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The aim of the study was to see whether there are differences in the change in pev between the

two breeds of cattle, N'Dama and Boran, following a trypanosome infection'. A variable often

measured to evaluate the severity of the diseases is packed cell volume (peV), which is the

percentage of the volume of the blood serum taken up by the red blood cells. Low pev corresponds

to anaemia and can indicate infection with the disease.

Depending on the design of the experiment, different models could be fitted to the data, but it

will be shown that the mixed linear model framework provides a unified way to investigate the

changes over time of pev in the case of the two different breeds. Moreover, the Gibbs sampler

developed in the previous chapter can also be useful here to show how posterior computations via

Gibbs sampling simulations can be routinely applied to the experiment. The data are shown in

APPENDIX D.

The appropriate mixed linear model for the experiment is given by

y. is a n, x 1 vector of pev measurements for the lh animal; fJ(P x I) is a vector of uniquely defined
_I

fixed effects and that the corresponding design matrix Xi is tn, x p). For the present example, we fit

the average slopes and intercepts for the two breeds as the fixed effects.

I Parasitic disease transmitted by Tse-tse flies
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Also, Zi (n, x v) is a matrix of covariates for the v x 1 vector of random effects. Further, Yi is the

unobservable random effect, and for the unobservable vector of random errors, e, (n, x 1), it is

common to assume independent nonnal distributions.

For 'r, (v x 1), the vector of unobservable random effects which is usually taken to be normally

distributed, the normal prior is replaced with a non-parametric prior, followed by a Oirichlet process

prior on the general distribution. For the present example, it is also assumed that each animal has a

random slope and intercept, and that this random slope and intercept are normally distributed. Thus,

the intercept and slope parameters describing the linear relationship between PCV and breed contain

both fixed and random effects.

Considering the above model structure, the covariates for the fixed effects are

Xo: Intercept

. XI: Time in days

{
I if N' Darna breed

o if Boran breed

X3 : XI X2 - the time by treatment interaction,

and the covariates for the random effects are (with v = 2)

Zo: Intercept

Z, : Time in days

-128-



-129-

The Dirichlet Process with an Application in Veterinary Medicine Research

Further

Y - Intercept for the /h individualOl -

YII = Slope for the /h individual,

and

/30 = Intercept for pev measurements on Boran breed,

/31= Slope for pev measurements over time on Boranbreed,

/32 = Difference between the intercepts of the N'Dama and Boran breeds, and

/33::; Difference between the slopes of the N'Dama and Boran breeds.

Therefore we have

Xo XI x2 x3 21 22
0 0 0 1 0

2 0 0 1 2
1 4 0 0 1 4
1 7 0 0 1 7

9 0 0 1 9
1 14 0 0 /30 J 14

XI/3= 1 17 0 0 /31
ZiYi = 1 17 [ro;]

1 18 0 0 /32 1 18 YIi

21 0 0 /33 21
1 23 0 0 23
1 25 0 0 1 25
1 29 0 0 1 29

31 0 0 31
1 35 0 0 35

with XI = X2 = ... = ~, and
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xo x, x2 x3
0 0
2 2
4 4

7 7

9 9
14 14

/30

X7/3 = 17 17
/3,

18 18
/32

21 21 /33
23 23

25 25

1 29 29

1 31 1 31

1 35 1 35

with X7 = Xg = ... = X'2'

and

Further

~, =

36.2
35.9

21.3

17.8

y =_7

24.5

22.6
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As in the previous chapter we will present a mixed linear model for which the vector of random

effects have a non-parametric distribution. The non-parametric Bayesian approach for the random

effects is to specify a prior distribution on the space of all possible distribution functions. This prior

for the mixed linear model is applied to the general prior of the distribution of the random effects.

Indeed, as shown before, this can be accomplished with a Dirichlet process prior distribution.

This means that the usual normal prior on the random effects is replaced with a non-parametric prior,

followed by a Dirichlet prior on the general distribution .

.In the next section the required conditional posterior distributions for the model parameters are

given .. Note that although the detailed derivations of these distributions can be seen in Chapter 3,

some extra derivations will be given in the present chapter. Only minor changes are made to the

Gibbs sampler because of the correlated observations (repeated design).

4.3 Priors and Conditional Posterior Distributions for the Conjugate MDP Model

4.3.1 The Uniform Prior for jJ and a/

The full conditionals for fJ and a/ for the conjugate MDP model in the case of repeated measures,

are the same as in Chapter 3, i.e. an uniform prior distribution for both fJ and a/ as to represent lack

of prior knowledge about the vector of fixed effects and error variance. Therefore
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The required full conditional for the fixed effects, is multivariate normal:

(4.3)

For the variance component, (7/ the conditional is

n,

pea; If3,Y,y_ ) = x,I1(~)2 exp{- ~(L - X;f3 - Z;y;)'(y_; - X;f3 - Z;YJ}
1=1 ac. ac

(4.4)

an Inverse Gamma density where

K =e

q

I(y_ - X;f3 - Z;y;)'(y_ - X;f3 - Z;y;)

n-2
2

2
;=1

Also, Y =(n,YJ, ... , Yq), Y = (y ',y ', ...,y ')', in; = n the sample size, and Y; = [YO;]
- _I _2 -q ;=1 Yl;

where Y Oi = Intercept for the jth individual and h= Slope for the ;th individual, as defined before.
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4.3.2 Prior for D

The variance covariance matrix D in the base measure of the Dirichlet process is unknown and

therefore a suitable prior distribution must be specified for it, i.e.

P (D) oc constant

to present lack of prior knowledge about D. After choosing random effects for each subject, the

different subjects will be grouped into clusters (groups) in which the subjects have equal Yi 's (equal

intercepts and equal slopes). That is, after selecting a new Yi for each subject i in the sample, there

will be some number r;, 0 < r; ~ q, of uriique values among the random Yi's. Denote these unique

values by ,.1,/, 1= 1 ... r;. Additionally let 1 represent the set of subjects with common random effect ,.1,/.

Note that knowing the random effects is equivalent to knowing r; , all of the Yi 's and the cluster

membership I. Then for the purpose of calculating the full conditional of D, the A/ are r; independent

observations from N(O,D).

Thus

an Inverse Wishart distribution where
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See Chapter 3 for more details on the additional piece of the model to be added as an aid to

convergence for the Gibbs sampler (equations (3.17) with a: = D). This additional piece is

incorporated into the final Gibbs sampler. The simulation procedure of the precision parameter, M

remains the same as in Chapter 3, and an algorithm (1.3) for simulating from a Wishart distribution is

given in APPENDIX A. Simulation from the Wishart distribution can also easily be done by using

the algorithm of Odell and Feiveson (1966).

4.3.3 Dirichlet Process Prior for n

As mentioned in the previous chapter the mixture of Dirichlet Process Prior is simplified in

practice by the Polya urn representation, using the fact that marginally, the Yi are distributed as the. .

base measure along with the added property that p(y i = Y j' i '* j) > 0 .

Therefore

(i = 1, ... ,q), (4.6)

- Go with probability

M+q-l
M (4.7)

= Y j with probability

M +q-l

We find that the conditional posterior of Yi is given by ..
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q

P(Yi I fJ,CJ; ,D'Y_i,M) o: L~(~i I XifJ + Z,yJ,CJ;ln,)' bYl
J"'"

+ {M _[~(LIXJ3 + Z,y,,(Y;I •.)~(y, IO,D)dY,}

x~(y, IO,D)p(y I Yi'fJ,CJ;,y)
-, -J

(4.8)

.'? 2 2 .
where p(y IY i' fJ, CJ; ,Y ) = ~(y I XfJ + Z iY i' CJJ n ) and ~(·I JL, CJ ) denotes the normal density

-I -J -I I

with mean f.1. and variance cl . Also, Y -i denotes the vector of random effects for the subjects

excluding subject i and b" is a degenerate distribution with point mass at s.

Consider again the integral

'"s, = M J ~(LIXifJ + ZiYi,a;IIl; )t/J(Yi IO,D)dYi
-'"

n;

~ M12;:"r ex+ 2~;(l', - X,fI- Z'Y')'(l', - X,fI- Z,y,+

v

(2~)2 IDI-~ exp{ - ~Yi' D-1 r. }dYi.

Following the usual algebraic routes, i.e. completing the square with respect to Yi' it follows from

(4.9) that

(4.10)

where

o, ~[ ;: (Z,' Z,) +D-'T' and '1', ~ ( ;: z,n,z,'- I.,)
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Proof:

The exponent of the integral is ~~ -XJ3-ZiYi)'~ -XJ3-Ziy,)+y,'D-IYi' This can be
a

e
' ,

written as

1 - ,- 2 1 - 'z 1 2Z 'z· 'D-l= -2 Y Y - -J y. .r, + -J r, i i + r, r,a
e

-, -, a; -, a;

where

y =y -XJ].
-I _I

Following the usual algebraic routes, i.e. completing the square with respect to Yi where Yi is a

v x I vector, it follows from (4.9) that
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From the above expression it follows,

and we find

Therefore

where
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Thus, as explained in Chapter 3, each summand in the conditional posterior distribution of y,

(equation (4.8)) is separated into two elements. The first element is a mixing probability, and the

second is a distribution to be mixed. So with probability

(4.11 )
q

Ai + I~(L I XJ3 + Ziyj;a;In)
i=i.) ..i

we select from distribution (\ ' which means that we set Yi = Yj. Also, with probability

we select from

P(Yi I [J,a; ,D,y) oc ~(Yi IO,D)p(y I Yi,[J,a; ,y .i,-, -,-}
(4.13)

meaning we sample Yi from its full conditional,

(4.14)

Before applying the conjugate MDP model to a veterinary medicine experiment, we first turn to

the non-conjugate MDP model, and show how to apply this model structure to our mixed linear

model.
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4.4 Priors and Conditional Posterior Distributions for the Non-Conjugate MDP

Model (Modified MDP Model)

As mentioned before, samples of the Yi from a modified distribution can be obtained by

specifying the base measure as a multivariate normal scale mixture. The multivariate I - distribution

can be obtained as a scale mixture of the multivariate normal distribution as follows. If

then the marginal distribution of x is St p (s, jl, "f.) , where St p (s, jl, "f.) is ap - dimensional Student

I - distribution with s degrees of freedom, mean jl, and dispersion matrix "f.. Also ga = Gamma

distribution. From a sampling perspective, sampling from

and then from

is equivalent to sampling from St p (s, jl, "f.). Thus, marginally, the distribution of x is multivariate I,

with 'I being integrated out. This representation is often used in the Gibbs sampling literature

(Kleinman & Ibrahim, 1998; also see Wakefield et al., 1995 and the references therein). Note that

with a common 'I for all i, we generate dependent samples for the Yi'S. To obtain independent

samples for the Yi 's, we must specify a separate 'Ii for each Yi and take the 'li'S to be i.i.d. gamma

variates. The specifications for the modified MDP model are as follows.
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4.4.1 The Uniform Prior for jJ and a/

The full conditionals for jJ and (7,/ for the multivariate t model (non-conjugate MDP model) are

the same as in the conjugate MDP model, i.e. a uniform prior distribution for both jJ and (7,/ as to

represent lack of prior knowledge about the vector of fixed effects and error variance (see equations

(3.13) and (4.2)). Thus the required full conditional for the fixed effects, jJ is again multivariate

norma! (see equations (3.14) and (4.3)), and for the variance component, (7,/ an Inverse Gamma

density (see equations (3.15) and (4.4)).

4.4.2 Prior and Conditional Posterior for TJ

From the discussion in section (4.4) we will specify for TJi the prior

(p p) .. TJ - ga -, - , I.e.
2 2

Cp) ~ TJ~-I exp{ - -T}
p(TJ) = e ( )

22[ P
2

(4.16)

In the example that follows, we will use p = 4, which means that instead of using a normal prior as

base measure, we will use a t - distribution with 4 degrees of freedom for Go.

The conditional posterior distribution for TJ is given by
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which leads to

(4.18)

a Gamma distribution. Hence, from a sampling perspective, 'if - X:k+P' i.e. " is sampled from a

Chi-square distribution with vk+p degrees offreedom and" can be calculated as

(4.19)

Equations (4.17), (4.18) and (4.19) also follow from the fact that after selecting a new Y i for each

subject i in the sample, there will be some nurnber Z, 0 < ; ~ q, of unique values A" I = 1,... ,;

among the random Yi 's (see also section (4.3.2) for more details on ;). Thus, for the modified

MDP model an additional piece is added to the Gibbs sampler. Also, note that we use a somewhat

simpler generation of the multivariate t than is usually found in applications of the Gibbs sampler.
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4.4.3 Prior for D

As in the normal case, section (4.3 .2) we specify for D the prior

p(D) cc constant

to present lack of prior knowledge for D. For given 17 the posterior is therefore given by

(4.20)

Further, as shown in Chapter 3, to speed mixing over the entire parameter space, it is suggested to

move around the A's after determining how the Yi 's are grouped. Thus, in addition, a posterior

density is derived for the A's, i.e,

p().;, I j3,a;, 17,D,~) cc </JUt, 10,17-1 D)Il P(~i 113,0";)
id

(4.21)

which implies that

(4.22)
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where

(4.23)

4.4.4 Dirichlet Process Prior for n

From the discussion of the conjugate MDP model in section (4.3), we find that he conditional

posterior of y; is given by

q

p(y; I (J,er;, 17, D,y -i' M) cx. I~(~;I X;(J + Z;Yj ,er; 1/1)' 5y}

.+ {M_1~(L IX,fJ + Z,y"a;I")~(y, IO,~-' D)dY,}

x~(y; IO,17-'D)P(y ly;,(J,er;,y )
. . _I _J

(4.24)

where p(y ly; ,f3,er;,y ) =~(y IX(J + Z;Yi'er; In) and ~(-I ,u,er2) denotes the normal density
-I -J _I I .

with mean J.i and variance cl . Also, Y _; denotes the vector of random effects for the subjects

excluding subject i and 5s is a degenerate distribution with point mass at s. Consider again the

integral

00

Ai = M f ~(~; I X;(J + Z;y;,er;In, ~(y; IO,17-'D)dy;
-00

. R 1 J7 { 1 . '. }=M -2- exp --2 (y -X;(J-Z;y;)'(y -X;(J-Z;y;) x (4.25)2er :r 2er _I _I
-00 & &

v

(2~)'11(' DI-iex+~y,'~"'D"'y, }dY,
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Completing the square with respect to Y; where Y; is a v x 1 vector, it follows from (4.25) that

A"1 =M(21r t~ITJ-J DI-~1Q.71~(an-~exp{_l-J (y - X;/3)''t';'' (y - X;/3)}2a- -I -I
C

where

Thus, as explained in Chapter 3, each summand in the conditional posterior distribution of Y;

(equation 4.24) is separated into two elements. The first element is a mixing probability, and the

second is a distribution to be mixed. So with probability

(4.27)q

A; + IqJ(~; I X;/3+Z;Yj;a;In,)
i=ï.!»!

we select from distribution 5r} , which means that we set Y; = Yj' Also, with probability

N'I (4.28)q

A; + IqJ(~; I X;/3+Z;Yj;a;In,)
l=ï.!»!

we select from

(4.29)
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meaning we sample Yi from its full conditional,

(4.30)

Since all the necessary conditional posterior densities are derived and given, we illustrate our

methodology with an experiment from veterinary medicine research.

4.5. AVeterinary Medicine Example

As mentioned in the introductory sections of the chapter, the aim of the study was to see whether

there are differences in the change in pev between the two breeds following a trypanosomal

infection. The estimates are obtained from the Gibbs sampler, in which the full conditional

posteriors are updated after every iteration. All posterior analyses are based on I 000 draws, giving

us a full non-parametric Bayesian solution to all the mixed linear model parameters.

4.5.1 REML Solution

The following REML results are taken from Duchateau, et al. (1998). The variance components

of the random effects can be obtained from Table 1. The first line in this table, named 'd(l, I)',

corresponds to the variability of the intercepts within breed, the second line, named' d(2, 1)', to the

covariance between the intercept and the slope, and the third line, 'd(2,2)', to the variability of the

slopes within breed, and 'Residual' to a/. The variance of the intercepts is the largest component
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and much larger than the variance of the slopes. There is a negative covariance of -0.2551 between

the slope and the intercepts, implying that the higher the initial PCV the greater it's subsequent fall.

The intercept and slope parameters describing the linear relationship between PCV and breed

contain both fixed and random effects. Average fixed intercepts and slopes are assumed for each

breed, and each animal has a random slope and intercept.

Table 4.1 Covariance Parameter Estimates obtained from the REML Analysis.

CovParm Estimate
d(1,I) 12.4646

d(2,I) -0.2551
d(2,i) 0.0058

a2 4.3531
E:

The average linear relationship for each breed can be obtained from Table 4.2 below.

Table 4.2 REML Solution for the Estimates of the Fixed Effects.

Effect Breed Estimate SE DF t Pr> ItI
Intercept 35.06 1.501 10 23.35 0.0001

Breed BO -0.842 2.123 144 -0.4 0.692

Breed NO 0

Time*Breed BO -0.413 0.0374 144 -11.04 0.0001

Time*Breed NO -0.276 ·0.0375 144 -7.37 0.0001

From this table, the linear regression equation for the two breeds can be obtained as
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BO: PCV = 34.00':'" 0.4131

ND: PCV= 35.06 - 0.2761

Both the intercept and slope of the fitted relationship is thus different from animal to animal. .

IndividuaIregression lines for each animal can be obtained from Table 4.3.

Table 4.3 Individual Intercepts and Slopes for the Different Animals (random effects) obtained

from the REML Analysis.

Effect Anim ID Estimate SE DF t Pr> ItI

Intercept 80241 -1.836 1.638 144 -1.12 0.264

Time 80241 0.0563 0.0417 144 1.35 0.179

. Intercept 80322 -4.014 1.638 144 -2.45 0.0154

Time 80322 0.084 0.0417 144 2.03 0.044

Intercept B0326 -3.53 1.638 144 -2.16 0.032

Time 80326 0.0676 0.0417 144 1.62 0.107

Intercept B0209 4.698 1.638 144 2.87 0.0047

Time B0209 -0.095 0.0417 144 -2.28 0.024

Intercept B037 0.8398 1.638 144 0.51 0.608

Time B037 -0.0359 0.0417 144 -0.86 0.39

Intercept BOl 3.841 1.638 144 2.35 0.02

Time BOl -0.0777 0.0417 144 -1.86 0.064

Intercept ND60 -2.1658 1.638 144 -1.32 0.188

Time ND60 0.0338 0.0417 144 0.81 0.418

Intercept ND66 3.3628 1.638 144 2.05 0.041

Time ND66 -0.0512 0.0417 144 -1.23 0.222

Intercept ND72 -2.688 1.638 144 -1.64 0.102

Time ND72 0.057 0.0417 144 1.37 0.174

Intercept ND73 0.2487 1.638 144 0.15 0.879

Time ND73 -0.0248 0.0417 144 -0.60 0.552

Intercept ND74 -2.8312 1.638 144 -1.73 0.086

Time ND74 0.06 0.0417 144 1.44 0.152

Intercept ND75 4.073 1.638 144 2.49 0.014

Time ND75 -0.0749 0.0417 144 -1.80 0.0747
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For instance, for the first animal, B0241, the fitted relationship is

B0241: PCV = (34.22 - 1.836)+( -0.413 + 0.0563) t

= 32.38 - 0.357 t

These .regression lines are determined for each animal and are presented in Figure 4.1. This figure

demonstrates that PCV tend to decrease more rapidly the higher the initial PCV. This illustrates the

negative covariance between slope and intercept observed in the fitting of the model and Table 4.1.

37
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:::::::........ 32 :::::::. ::::::.ti. -::::...

'~- ,,~
> -...:::..",.,_
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0 27Il..
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1ime(days)

Figure 4.1 Change of PCV in Time for Individual Animals based on the REML Analysis. (This

figure is taken from Duchateau et al. (1998».
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4.5,2 Non-Parametric Bayesian Solution

The covariance parameter estimates (modes of the posterior distributions) for the conjugate MDP

model and the modified MDP model are displayed in Table 4.4 below. The reason for determining

the posterior modes and not the posterior means is because the REML estimate is more similar to the

mode of the posterior distribution than the mean. Also, it is well known that the REML estimate is

the mode of the marginal likelihood.

Table 4.4 Covariance Parameter Estimates (modes of the posterior distributions) from the,

Conjugate MDP and Non-conjugate MDP Model as obtained by the Non-parametric

Bayesian Analysis.

Cov Parm Conjugate MDP 95% Credibility Non-Conjugate MDP 95% Credibility
Estimate Interval Estimate Interval

D(l,l) 13.50 7.4122; 209.5653 15.75 5.2152; 225.2366

D(2,l) -0.28 -4.6765 ; -0.0643 -0.31 -5.4513 ;-0.0788

D(2,2) 0.0076 0.0024 ; 0.1198 0.01 0.0008; 0.1357

a2 4.610 3.8070;7.172 4.690 3.7915; 8.007
E

The main difference between the results of the conjugate MDP model and the non-conjugate MDP

model is that the 95% credibility intervals for the variance components are wider under the modified

base measure (non-conjugate MDP model). This is to be expected, as the variance covariance matrix

D is directly affected by the relaxation of the normal assumption. Moreover, the similarity of the

results for the a; indicates that this variance parameter is not sensitive to the choice of one ofthese
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two base measures, Furthermore, as evident from the above tables it is also clear that the Bayesian

estimates coincide well with the REML estimates. The observed histogram for a/ from the

conjugate MDP model is given in Figure 4.2. Using the conditional posterior densities for d(l,l) and

d(2,2) the marginal posterior densities are estimated as the average of the posterior densities and are

displayed in Figures 4.3 - 4.4. The attenuation of the width of the 95% credibility intervals is also

evident on Figures 4.3 and 4.4.

Figure 4.2 Histogram of the Posterior Distribution of a/ (Error Variance) with Mean = 6.032

and Mode = 4.610 (Conjugate MOP Model).

-150-



The Dirichlet Process with an Application in Veterinary Medicine Research

Figure 4.3

Figure 4.4

Posterior Density of the Intercept Variance: p(dJ/I D) for the Conjugate MOP Model,

Mode = 13.50; and for the Non-conjugate MOP Model, Mode = 15.75.

- Non-conjuqate MOP model
- - - Conjugate MOP model

Posterior Density of the Slope Variance: p(dnl D) for the Conjugate MOP Model,

Mode = 0.0076; and for the Non-conjugate MDP Model, Mode = 0.01.
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Only the results of the conjugate MDP model will be reported in the next sections. The average

linear relationship for each breed can be obtained from Table 4.5 along with 95% credibility

intervals. According to the proposed model, /30 is the intercept of the Boran breed and /3, the slope of

the Boran breed. /32measures the difference between intercepts for N'Dama and Boran breeds, and

/33 the difference between slopes for these two breeds.

Table 4.5 Bayesian Solution and 95% Credibility Intervals for the Estimates of the Fixed

Effects from the Conjugate MDP Model.

Effect Breed Estimate 95% Credibility Interval

/30 BO 35.397 30.9278 ; 39.2172

/3, BO -0.43 -0.5492 ; -0.3325

/32 ND-BO 0.9851 -4.0721 ; 5.9692

/33 ND-BO 0.1345 -0.0019; 0.2641

If one considers /33, the difference in the rate of decrease of PCV measurement between N'Dama and

Boran breeds it follows from the 95% credibility interval (-0.0019 ; 0.2641) that there is no

difference in the rate since this interval includes zero. However, a 90% credibility interval does not

include: zero meaning that there is a significant difference in the rate of decrease of PCV

measurements between the two breeds at a 0.1 level of significance. This conclusion can also be

drawn 'from Figure 4.8.

Further, also from this table, the linear regression equation for the two breeds can be obtained as

BO: pcv= 35.39 - 0.43 I {PCV = /30+/3, I}

ND: PCV = 36.38 - 0.30 I {PCV =(/30 + /32) + (/3, +/33) I}
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Both the intercept and slope of the fitted relationship are again different from animal to animal.

Using the 'conditional posterior densities for the above parameters and Gibbs sampling, the marginal

posterior densities are then estimated and displayed in Figures 4.5 - 4.8.

Figure 4.5 Posterior Density of the Intercept for Boran: p(f30 ID), Mean = 35.3971.
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Figure 4.6 Posterior Density of the Slope for Boran: p(/3, I D), Mean = -0.4373.
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Figure 4.7 Posterior Density of the Difference between Intercepts for N'Dama and Boran

Breeds: pUhI D), Mean = 0.9851.
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Figure 4.8 Posterior Density of the Difference in the Rate of Decrease of pev Measurement

between N'Dama and Boran Breeds: p(/3J1 D), Mean = 0.1345.
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Individual regression lines for each animal can be obtained from Table 6.

Table 6 Individual Intercepts and Slopes for the Different Animals (random effects) obtained

from the Dirichlet Process.

Effect Anim ID Estimate

Intercept 80241 -2.6158

Time 80241 0.0759

Intercept 80322 -4.5198

Time 80322 0.0982

Intercept 80326 -4.2742

Time 80326 0.0857

Intercept 80209 3.3598

Time 80209 -0.0685

Intercept 8037 -0.1336

Time 8037 -0.0246

Intercept 801 1.2138

Time 801 -0.0235

Intercept ND60 -3.1529

Time ND60 0.0512

Intercept ND66 1.8883

Time ND66 -0.0194

Intercept ND72 -3.5944

Time ND72 0.0748

Iritercept ND73 -0.9109

Time ND73 -0.0127

Intercept ND74 -3.7435

Time ND74 0.0793

Intercept ND75 1.694

Time ND75 -0.0223

-157-



The Dirichlet Process with an Application in Veterinary Medicine Research

As in the REML analysis, these regression lines can be determined for each animal and are

presented in Figure 4.9. This figure also complements the REML results, i.e. that PCY tends to

decrease more rapidly the higher the initial PCY, and once again illustrates the negative covariance

between slope and intercept observed in the fitting of the model. Moreover, there seems to be a

difference between the N'Dama and Boran breeds.

Figure 4.9 Change of PCY in Time for Individual Animals based on the Bayesian Non-

Parametric Mixed Model. (Dashed = N'Dama; Solid = Boran). The lines are

numbered from top to bottom.
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Let us now turn to the important parameter of the Oirichlet process, M. Recall that the parameter

M, a type of dispersion parameter for the Oirichlet process prior, is a measure of the strength in the

belief that G is Go. Although it may be hard to quantify, M is a positive scalar that is related to how

"clumpy" the data are (often called a precision parameter). Clumpy data occur when the different

subjects are concentrated into a few clusters. In practice it is difficult to select appropriate values for

this parameter. Instead, it is suggested to place a prior distribution on this parameter, and simulate it

given the data. West (1992), assumed that M - Gaïa.b) a gamma prior with a > 0 and scale b > O.

We may extend this idea to include a reference prior (uniform for log(M)) for the repeated measure

design by letting a-? 0 and b-? O.

.Moreover, when defining a Oirichlet process prior, recall that M determines the prior distribution

of ; , the number of additional normal components in the mixture, and it is a critical smoothing

parameter of the mixed linear model. When there are only a few clusters among the animals in the

model, the estimate of the normal means from the Oirichlet process prior will be similar to the non-

parametric Bayes estimator, and when there are almost q = 12 (total number of random effects)

different clusters, the estimator from the Oirichlet process prior will be similar to the parametric

Bayes estimator.

-
.When M is simulated, given the data, the average number of clusters, ; = 9 with mode

Mo = 16.1 0 . The estimated marginal posterior density and the unconditional marginal posterior

density for the simulated Mvaluesare displayed in Figures 4.10 and 4.11.
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Figure 4.10

Figure 4.11

-
Estimated Marginal Posterior Density of M with ~ = 9 , and Posterior Mode

M; = 10.0.

Estimated Unconditional Marginal Posterior Density of M with Posterior Mode

Mo=16.10.
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Finally, the observed histogram for the number of clusters, ~ for the simulated values of M is

presented in Figure 4.12.

Figure 4.12 Observed Histogram for the Number of Clusters, ~ when M is simulated;

According to the above figure, the different animals for the two breeds are grouped into 9 different

clusters. Figure 4.9 also supports this conclusion. In this figure it is clear that the lines for animals

4,5 and 6 of the N'Dama breed are very similar. Hence these three animals are grouped into one

cluster, having the same slope and intercept. Moreover, the same conclusion can also be drawn for

animals 5 and 6 from the Boran breed. Thus, with these different animals forming two groups, we

have an average of 9 groups/clusters among the twelve different animals.
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4.6 Chapter Summary

In this chapter, we have applied a general technique for Bayesian non-parametries to the mixed

linear model. Our technique involved specifying a non-parametric prior for the distribution of the

random effects and a Oirichlet process prior on the space of prior distributions for the non-parametric

prior. Moreover, we also present the use of a modified MOP model. The resulting model was fitted

with a Gibbs sampler. The modified MOP model is a new generalization, as is the computational

imputation of this model.

The application to and discussion of an interesting data set from veterinary medicine research was

helpful for understanding the importance and utility of these two MDP models, and the Bayesian

mixed linear model framework provided a unified way to investigate the changes over time of pev

in the two different breeds. Future work suggested by researchers (Kleinman & Ibrahim, 1998),

includes allowing a different 17;for each i in the modified base measure and perhaps more

complicated base measures. The MOP model for the random effects would be particularly useful in

these kinds of models since they depend heavily on the random effects, which are greatly affected by

the MOP model.
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CHAPTERS

«Reference and Probability-Matching Priors»

Introductory words: Besides the intrinsic interest of developing good non-informative priors for the variance

components problem (mixed /inear model), a number of theoretically interesting issues arise in application of

the proposed procedures. For example, in animal breeding experiments, interest may be in making inferences

about ratios of variance components or functions thereof, rather than about individual variance components

themselves. This important aspect is explored in the present chapter.

5.1 . Prologue

Box and Tiao (1973) wrote: "The sampling theory approach to the variance component problem

encounters a number of snags. These have bothered statisticians for many years, as is evident by the

great variety of attempts which have been made to resolve the problems". Determination of

reasonable non-informative priors in multiparameter problems is not easy; common non-informative

priors, such as Jeffrey's prior, can have features that have an unexpectedly dramatic effect on the

posterior. In recognition of this problem, Bemardo (1979), proposed the Reference Prior approach

to the development of non-informative priors, the key feature of which was a possible dependence of

the reference prior on specification of parameters of interest and nuisance parameters.
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In this chapter the reference prior of Berger and Bemardo (1992) is derived for the mixed linear

model and the solution depends on the ordering of the parameters and how the parameter vector is

divided into sub-vectors. In spite of these difficulties iere is growing evidence, mainly through

examples that reference priors provide "sensible" answers from a Bayesian point of view and some

more limited evidence that frequentist properties of inference from reference posteriors are

asymptotically "reasonable". We will also examine whether the reference priors satisfy the

probability-matching criterion.

5.2 The Mixed Linear Model

From section 1.2, we again have the mixed linear model, which postulates that the observable

random vector Y is a linear combination of the fixed effects and random effects plus a random error

term. In its simplest form the univariate mixed linear model can be written in matrix notation as

As before, Y (n xl) is a vector of observed values for the trait on which selection is desired,

jJ (p xl) is a vector of fixed effects uniquely defined so that the corresponding design matrix X

(n x p) has full column rank, p. Also, y (q x 1) is a vector of unobservable random effects with

y - N(Q,Aa}) and design matrix Z (n x q). a/ is an unknown scalar and A (q x q) is called a

relationship (genetic covariance) matrix.
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for the unobservable vector of random errors terms, e (n xl), it is common to assume

independent normal distributions with mean vector Q and variance-covariance matrix cr/ In where In

represents a n x n identity matrix and G/ an unknown scalar.

As before, cr/ and cr/ are the variance components.

Lemma 1

In model (5.1) y is a random parameter vector whilst /3, cr/ and a/ are population parameters.

Therefore the likelihood function depends only on /3, cr/ and a/,

Since Yl p,y,a; - N(Xp + Zy,a;IJ and y - N(Q,Aa:) it follows that the marginal

distribution of Y is

(5.2)

Proof:

Since

E(Y I p,y,a;) = Xp + Zy and

E(Y 1,0,0';) = Xp because

y - N(Q,Iq).

(5.3)

(5.4)
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Further,

I (J
2 2Var(Y ,y,a.) = aJn

E(YY'I (J,y,a;) = Var(Y I (J,y,a;) + E(Y I (J,y,a; )E(Y'I (J,y,a;)

=a;Jn +(X(J+Zy)(X(J+Zy)' and

= a;Jn + X(J(J'X'+Zy(J'X'+X(Jy'Z'+Zyy'Z'. (5.5)

Therefore,

E(YY'I (J,a;) = a;Jn + X(J(J'X'+a:ZAZ' which follows from the fact that

E(y) = 0,

and

E(yy') = E(yy') - £(y)£(y') = Var(y) = a:A.

Also

= a;Jn + X(J(J'X'+a:ZAZ'-X(J(J'X'

(5.7)

Thus, we have from (5.3) and (5.7) that

Therefore, the integrated likelihood function ignoring the constant (see also Chen (1994» is given by
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5.3 . Reference and Probability-Matching Priors

5.3.1 Background

Prior distributions are needed to complete the Bayesian specification of the mixed linear model.

In the following section the reference prior algorithm of Berger and Bemardo will be used to obtain

the reference prior. The prior is motivated by an asymptotic argument i.e. of maximizing asymptotic

missing information. In the case of a scalar parameter the reference prior is the Jeffreys prior, which

does h.ave.the feature of providing accurate frequentist inference. In the multiparameter setting the

situation is much less clear. The reference prior algorithm is relatively complicated and as mentioned

the solution depends on the ordering of the parameters and how the parameter vector is divided into

sub-vectors.

5.3.2 The Fisher Information Matrix

In the case of the mixed linear model, we are concerned with inferences of jJ, a/ and a/. This is

a typical situation where reference priors had been shown to be very promising (Yang & Chen,

a2

1995). It is sometimes reasonable to consider the parameters (jJ, a/ , v), where v = -T rather than
ae

(jJ, a/ ,a/) (Box & Tiao, 1973). The reason for this is that the between group variance parameter,
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(J/ can always be written as a function of v in Henderson's mixed model equations (Ye, 1994).

Using v instead of (J/ will facilitate the calculations considerable.

From (5.8) the log-likelihood is obtained:

(5.9)

As in the case of the Jeffreys prior, the reference prior method is derived from the Fisher information

matrix. To obtain the Fisher information matrix the expected values of the second derivatives must

be calculated, i.e.

(" a21 l' ( a
2
1 1 (a

2

1] (a
2
1]E 2 2 ' E 2 ' E -) and E for example, must be obtained.a(aE) aaJ)v av- af3(af3)'

Thus,

(5.10)

and
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Taking the expectation of 5.11) with respect to Y, it follows that

n ( ,)-, (, )-3 I ( , \r= - 0'; - -lr 0'; (vZAZ'+Inf 0'; }yZAZ'+Jn)2

n ( 2 )-2 (2 )-2= - 0'& - 0'& trl ;
2

_ n ( 2 )-2- -- 0'2 & '

and

Next, differentiate I with respect to a/ and v

(5.13)

and

a::~= -key - XP)'(O'; t\vZAZ'+Infl(ZAZ')(vZAZ'+Infl(y -XP)·
e

(5.14)

(See Searle, CaselIa and McCulloch, (1992) P 456)
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If we now take the expectation of (5.14), we have

-E( af J = !tr(O"; r (vZAZ'+Inrl (ZAZ')(vZAZ'+IJ-1 (0"; )(vZAZ'+In)aO";8v 2

= !tr(O"; t (vZAZ'+In r'(ZAZ')2
1 ,

=-I(O";,v).
2

(5.15)

Differentiate twice with respect to vand consider I in two parts, first

then

~ = ++ZAZ'+IY a(VZ~'+IJ}

= -±tr{(VZAZ'+In r' (ZAZ')}
and

a
2

/21 = !tr~vZAZ'+IJ-1 (ZAZ')(vZAZ'+IJ-1 (ZAZ')}
av 2

= _!_tr~vZAZ '+ In ti (ZAZ ')Y.
2

(5.16)

Therefore, from (5. I6) it follows that

(5.17)
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a{cvZAZ'+ln )(ZAZ'rl (vZAZ'+IIl)}x-

av
x (vZAZ'+ln r'(ZAZ')(vZAZ'+ln rl (X - Xf3) (5.18)
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Consider now the second part of /, i.e.

and

~ = ~«();rl(X - Xf3)'(vZAZ'+lnrl (ZAZ')(vZAZ'+lnrl (Y - Xf3),

= -~«();rl(Y - Xf3)'(vZAZ'+lnrl (ZAZ')(vZAZ'+lnrl

x 2(vZAZ'+lnrl (vZAZ'+ln rl (ZAZ')(vZAZ'+lnrl (Y - Xf3).

a2[
Thus, taking the expectation of the above -+ we have

av

- E( a;:i ) = trKvZAZ'+I"f'(ZAZ'l}'. (5.19)

If we now combine the results in (5.17) and (5.19), we have

_E(~) = -E(~ + a2
[2)

av2 av2 av2

= .!.tr{(vZAZ'+lnrl(ZAZ')Y
2

1= -/(v).
2

(5.20)
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Finally, if we differentiate I with respect to jJ, we have

The expected values of the other second order derivates are equal to zero. The Fisher information

matrix. is therefore given by

lUl) o. 0

l(jJ,O";, v) = 0' I.I(O";) 1 2
(5.22)- I(O"c, v)

2 2
0' 1 2 1

-1(v,O"c) -lev)
2 2

Although the Jeffreys prior is invariant under reparameterization and as mentioned, has been

proven to be a successful non-informative prior for one-dimensional parameter problems, Jeffreys

himself had noticed difficulties in multi-dimensional parameter problems, especially when nuisance

parameters are present. In the following section the reference priors for jJ, 0/ and v are derived.

Note that the reference priors depend on the "group ordering" of the parameters.

5.3.3 Reference Prior for jJ, 0"/ and v

Berger and Bemardo suggested that one allows multiple groups "ordered" in terms of inferential

importance, with the reference prior being determined through a succession of analyses for the

implied conditional problems. They particularly recommended the reference prior based on having
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each parameter in its own group, i.e. having each conditional reference prior be only one-

dimen~ion~l. Notations such as {jJ, er/, v} will be used to specify the groups and the importance of

the parameters; {jJ, er/, v} means that there are three groups, with jJ being the most important, and v

the least.

Lemma2

For .the mixed linear model X = Xj3 + Zy +8 the reference prior for the group ordering

{jJ, er/, v} is given by

Note that only the reference prior for the ordering {jJ, er/, v} will be derived, since the reference

priors for the orderings, {er/, jJ, v} and {er/. v. jJ} can be computed in a similar fashion. These priors

are the same as the one for {jJ, er/, v } given in (5.23).

Proof: .

Following the notations in Berger and Bernardo (1992), (see also Yang and Chen, (1995) and Ye,

(1994)) the functions hj, which are needed to calculate the reference prior for the group ordering

{jJ, er/, v} are obtained from I(j3,a;, v), see equation (5.22):
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Thus,

To obtain hl. calculate the following matrix

and consider the (2,2) element, then

h = !J(a2)_! J2(a;,v)
2 2 E 2 J(v)

'=~{'_n__ ¥r(vZAZ'+Jnt(ZAZ')Y}
2 (0";)2 (0";)2

= ~(a;r2 ~_ ¥r (vZAZ'+ In t (ZAZ')Y }.

(5.25)

Also

(5.26)

The conditional prior of v given,8 and a/ is

(5.27)
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Hence, E[loge Ih211 jJ, 0';] = -loge 0'; + C. SO the conditional prior of vand 0'; given jJ is

It implies that E[loge Ihlll jJ] = c and therefore, for the mixed linear model Y = XjJ + Zy + e the

reference prior for the group ordering {jJ, a/, v} is given by

Lemma3

For ·the mixed linear model Y = XjJ + Zy + e the reference prior for the group ordering

{jJ, v,a/} is given by

I

1rR (P,v,u;) acu;' {tr[(vZAZ'+ Jy (ZAZ')J - ~ HvZAZ'+ I.r'(ZAZ')l } '.

As will be proved later, this prior is also a probability-matching prior for v.

Proof:

Once again, the functions hj (j= I ,2,3), which are needed to calculate the reference prior for the

group ordering {jJ, v,a/}, are obtained. The Fisher information matrix for this ordering is given by
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-lev)
2

1 ?
-l(a;, v)
2

o
1 .?

-l(v,a;)
2
.!_ l(a;)
2

(5.29)
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Also,

(5.30)

From the Fisher information matrix in (5.29), h2 follows by calculating the following matrix

[
1(jJ) Q] { 1 }-I [ Q ][ 1 ]

Q' ~1(V) - "21(a;) ~1(a;,V) Q: "21(a;,v)

and the (2,2) element is

. h =.!_ lev) _ 1 l\a;, v)
2 2 2 l(a;)

= .!_{tr{(vZAZ'+lnt (ZAZ')Y _ (a;)2 ~r(vZA~'~Int (ZAZ')Y}
2 (ac) n

~~HVZAZ'+ I" t' (ZAZ'))' -; Vr(vzAi '+ I" r' (ZAZ'))' }

(5.31 )

Also

(5.32)

Now·

because it does not contain f3
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I

?l( V I jJ) <XC (h,) : {trKvZAZ'+ ly (zAz')l' - ~ HvZAZ'+ IJ-I(zAz')l' } ï ,

and

I

;r(a; I v,,B) cx: (hJ)2 = (a;rl.

Therefore we have

I

<XC a;'{tr[(VZAZ'+IJ-'(ZAZ')j -~~(VZAZ'+I"t'(ZAZ,)j V.

Interesting, the priors in Lemmas 2 and 3 are not dependent on any Iimits of the compact subsets,

nor do they yield improper posterior distributions. Therefore, it is more convenient to deal for

example with the reparameterization {jJ, a/, v}, providing of course that a/ is not of independent

interest. Note also that (5.33) is also the reference prior for the group orderings {v, jJ, a/} and

{v ,a/, jJ}. Additionally, one can also consider the following priors for the different group orderings,

namely

• ;r(a; ,v) = constant, and

• ;r(a;, v) cx: a;

In the second case we have an uniform or "flat" prior on a; and a: ' in other words

• ;r(a;,a:) = constant.
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5.3.4 Reference Prior for the Intraclass Correlation Coefficient, p

There are two main reasons for considering intraclass correlation coefficients instead of variance

components. First of all, the interest might center on them due to the nature of the study. Animal

breeding provides an excellent example, where making inferences about heritability requires

modeling the intraclass correlation coefficients. However, even if that is not the case, it may be

easier to elicit priors using intraclass correlation coefficients since they are defined on the unit

hypercube, as apposed to variance components which take values on the product span of the positive

half of the real line. For more details see Gënen (2000).

Frequentists analysis of data often results in a negative estimate of the variance component as well

as a confidence interval for the intraclass correlation coefficient that covers the entire parameter span.

In contrast the Bayesian method produces sensible answers with different prior densities. Hence

these methods and likelihood based methods leave a lot to be desired, a void which Bayesian analysis

can fill and as mentioned before a Bayesian approach is intuitively appealing as well, since the

parameter space is naturally restricted.

(J'2
The reference prior for the intraclass correlation coefficient p = 2 Y 2 can also be derived for

(J'y + a;

different group orderings of p, f3 and a/. Only the reference prior for the group ordering {p, IJ. a/}

will be derived since, as mentioned before, the reference priors for the other group orderings can be

computed in a similar way.
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Lemma4

For the mixed linear model Y = XjJ + Zy + e the reference pnor for the group ordering

{p, jJ, a/} is given by

I

TrIl.(p,jJ;a;)oc a;2 2 {tr[(_P_ZAZ'+In)-I(ZAz,)]2 _![tr(_P_ZAZ'+In)-I(ZAZ,)]2}ï
(l-p) 1-p n 1-p .

(5.34)

Proof'

According to Ye (1994), the Fisher information matrix I(p, jJ, a/) can be derived from

I(v, jJ, a/) by making the transformation

I(p,jJ,a;) = P'I(v,jJ,u;)P (5.35)

a2

where 'v = ----T = _p_ and
a. 1-p

1
0' 0

P = B(v,jJ,a;) = (1- p)2
0 I 0

B(p,jJ,a;)
0 0 I

From equation (5.35) it follows that
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1 Ol 1 J-l(p) -l(p,a;)
2 2

l(p,j3,a;) = 0 1(j3) 0 (5.36)
1 J Ol _!_ 1(0';)- 1(0';, p)
2 2

where

•_!_l(p) = 1 4 tr[(ZAZI)(_f!_ZAZI+lnJ-I]2,
2 2(1-p) I-p,

_!_I(p,a;) = _!_l(a;,p) = 2 1 2 tr[(ZAZI)(_f!_ZAZI+lnJ-I],
2 2 20's (1- p) 1- P

and

.1(j3) = (a; rXI(_f!_ ZAZI+ln J-IX.
1- p

From (5.36) it follows that
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Calculate the following matrix

and consider the (2,2) element of this matrix, then

Now

;rep) cx: (hl)~ = 1 2 [tr{(ZAZ')(_P_ZAZ'+In)-I}~
(l-p) I-p

I

- Mtr(ZAZ')C ~ p ZAZ'+/" rrr
and

I

;r(/) lp) cx: (h2) 2 = 1 because it does not contain /), and

I

;rea; I p,/) cx: (h)2 = a;2 .

Therefore we have
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7r1l (jJ, a;, p) cx. a;2 2 {tr[(__f!_ ZAZ'+/n J-I (ZAZ,)]2}ï
(l-p) I-p

(5.37)
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and thus the reference prior for the group ordering {p, fJ, a/} is given by

1

JrR (p, jJ, cr;) o: 0';2 2 {tr[(__p_ ZAZ'+J n )-1 (ZAZ,)]2 _ .!.[tr(__P_ ZAZ'+J
n

)-1 (ZAZ,)]2}ï
. (l-p) I-p n I-p

Corollary 1

Equation (5.34) is also the reference prior for the group ordering {fJ, p , o-/} and {p, 0-/, jJ}. Also,

in a similarly way, it follows that the reference prior for the group orderings {fJ, 0-/, p},

{o-/, fJ, :p} and {o-/, p, m is given by

5.3.5 Probability-Matching Priors

In this section we will derive the probability-matching priors for the parameters of the mixed

linear model and see whether they include some of the reference priors developed in the previous

sections.

Recently Datta and Ghosh (1995) derived the differential equation that a prior must satisfy if the

posterior probability of an one-sided credibility interval for a parametric function and its frequentist
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I-{1](B)n(B)} = 0
a=1 aBa

(5.38)
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probability agree up to O(n-') where n is the sample size. They proved that the agreement between

the posterior probability and the frequentist probability holds if and only if

where 'n(e) is the probability-matching prior for Bthe vector of unknown parameters.

Also

11( = [~t(B), ...,~t(B)llaBI eo; (5.39)

and

(5.40)

It is clear that 1]'(B)1(B)1](B) = 1 for all B where /"1(6) is the inverse of 1(8), the Fisher information

matrix of Band t( 8) the parameter of interest. The following lemma can now be stated.
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Lemma 5

eY2

For the mixed linear model Y = Xp + Zy + e the probability-matching prior for v = -T is
eYG

given by

,
. "M (v,/3,rT;) = rT;'[trkvZAZ'+JJ-'(ZAZ'l/ - ~ Vr(vZAZ'+J"t'(ZAZ'l/ J'.

Proof:'

From the equation (5.22) it follows that the inverse if the Fisher information matrix is given by

r' (/]) 0 0
1 1 2-/(v) --/(eY v)

r' (/],eY;, v) = 0' 2 2 G'

H H
1 2 !/(eY;)--/(veY )

0'
2 'G 2

H H

1 1
whereH = - l(eY;)/(v) - - 12 (eY;, v).4 4

Now

t(B) = v ate B) = 0 ate B) = 0, ap -' aeY;
St (B) = [Q' Q 1]

and ate B) = 1
acv)
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and

1 )
- -l(er v)2 E'

H

.ll(a;)
Also 11', (B)rl (B)I1(B) = 2 Hand

: 'l( B) = rl (B)I1, (B) = 0

~ 11', (B)rl (B)I1, (B)

~~ J(a;l' ['II (B)]
--'----1- = '12 (B) .

H2 rh (B)

The prior JrM (B) = JrM ([J, a;,v) must be chosen in such a manner that the differential equation

(5.38) is satisfied, i.e. that

(5.42)

I

Hence, if we choose Jr( B) = JrM (B) = JrM ([J, a; ,v) = H ï then (5.42) is true and

I

JrM([J,a;,v) =[I(a;)I(v)-12(a;,v)]ï

I

=[ n2 2 .ltr{(vZAZ+IJ-I(ZAz)}2 _(.l)2 (a;r2~r(vZAZ+lnt(ZAZ)}2]ï.
2(a&) 2 2
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Therefore

I

."M (V,fl,u;) = u;'[ trKvZAZ'+IJ'(ZAZ')1' - ~~r(VZAZ'+IY (ZAZ'))' r
(5.43)

Corollary 2

Since equation (5.43) is exactly the same as (5.28) it follows that the probability-matching prior

JrM (V, j3,a;) is also a reference prior for the group orderings {jJ, v, a/ }, {v, jJ, a/} and {v, a/, jJ}.

A very important property of probability-matching priors is that, unlike uniform priors, they

always remain invariant under any one-to-one transformation of parameters. Therefore, since

jJ' av 1
v = -- and - = the probability-matching prior for the intraclass correlation

1- p ap (1- py

coefficient, p,i.e. JrM(p,j3,a;) is given by (5.37).

5.4 Reference Posterior Distributions

5.4.1 Background

Applications of reference priors III the case of the mixed linear model with two variance

components complicate the Gibbs sampling procedure somewhat. However, for more than two

variance components the algorithm becomes quite difficult to apply. The reason for this is that the
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a2

conditional posterior distribution of a: or v = -T 10 our case IS not the well-known Inverse
aE:

Gamma density anymore, but an unknown distribution from which it is difficult to simulate.

One: way to overcome this problem is to replace the Gibbs sampling procedure as discussed in

Chapter I with ordinary Monte Carlo simulations. Therefore, instead of using the well-known

conditional posterior densities p(jJ I r,a; ,a:, Y), p(r I jJ,a; ,a:, V), pea; I r,a: ,jJ, Y) and

pea: IjJ,a;,r,Y), posterior densities of the form p(jJlv,a;,Y)p(a; Iv,Y)p(vIY) and

p(r I v,a;, Y)p(a; I v, Y)p(v I Y) will be used to simulate joint and marginal posterior densities.

From Searle et al. (1992) (p 359) it follows after some algebraic manipulations that

(5.44)

where

E(jJ I v,a;, Y)= [X'(vZAZ'+IJ-1 x]" X'(vZAZ'+IJ-1 Y, (5.45)

and

..
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Also from Searle et al., (1992) it can be shown that

where

: E(y I v,O';, V)= vAZ'(vZAZ'+Int'{V -E(fJ I v,O';, V)} (5.48)

and

Var(y I v,a;, V)= 0'; {vA- vAZ'[(vZAZ'+I,,)-1 -

(vZAZ'+IlItl X(X'(vZAZ'+Int' x]" X'(vZAZ'+Int ]ZAV}

(5.49)

E(fJ I v,O';, V) is defined in equation (5.45).

Further, to facilitate the calculations we will make use of the fact that

where G = v-lA -I + Z'Z.

Therefore, instead of calculating the inverse of a n - dimensional matrix, the results can be

obtained from the inverse of a q - dimensional matrix. Equations (5.44 - 5.49) are true whether the

uniform ("tlat"), or reference priors are used in the simulation procedure because the parameters fJ

or r do not occur in the priors.
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5.4.2 Calculation of the Posterior Density p(cr;, v IX)

From equation (5.8) (see also equation (5.9)) it follows that the likelihood function

L(P, o-~,v) oe(o-:t~ IvZAZ'+ I" I-i x ex~ - 2~; (Y - xp)' (vZAZ'+ IJ' (Y - X,B)}

and the marginal likelihood

L(cr;, v)= fL(,a,cr;, v}i,a.
f3

By completing the square with respect to ,a it follows that

(vZAZ'+In t X{X'(vZAZ'+In t x]" X'(vZAZ'+In t ]y .
(5.50)

By multiplying L(cr; , v) with the prior :r(cr; , v), the joint posterior

follows.
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5.4.3 Calculation of the Posterior Density pea:; I v, Y)

In the case of the reference priors

J ( )-~{n-p+ J) {Y' r Ip(O'; I v, Y) = KlO'; 2 - X exp - 20'; l(vZAZ'+In r -

(vZAZ'+In r'X{X'(vZAZ'+In t x]" X'(vZAZ'+In t~},
(5.51)

an Inverse Gamma density where

n-p

K, = k[(VZAZ'+IS' -(vZAZ'+/J-'X(X'(vZAZ'+IS'X)' X'(vZAz'+IYkr {~-(-') }
f-(n-p)

2

(5.52)

The posterior distribution p(O'; I v,Y) using "(0';, v) = constant (uniform prior on 0'; and v)

can easily be derived by substituting p - 2 for p in (5.51). On the other hand, if a uniform prior is

used o~ 0'; and 0':, then p(O'; I v,Y) can also be obtained from (5.51) by substituting p - 2 for

p + 2.
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5.4.4 Calculation of the Posterior Density p(v IY)

(I) For the reference prior (see also equation (5.23»

the reference posterior density of v is given by

~tlI -(n-p)

(vZAZ'+In r'X(X'(vZAZ'+In r'xt X'(vZAZ'+In r' 2 X

(I~ For-the reference prior (see also equation (5.28»

I

Jr R (v,p,(j;) cx: (j;2{tr[(VZAZ'+In t (ZAZ,)]2_:~ ~r(vZAZ'+Int (ZAZ')j }2

the reference posterior density is given by
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~}

I
I --(n-p)

(vZAZ'+In t X(X'(vZAZ'+In ti xt X'(vZAZ'+In t 2 X

I

{tr[(VZAZ'+In t (ZAZ')Y - ~~r(VZAZ'+In t (ZAZ')J}"2.

(III) For the reference prior Tre (v, jJ, a; ) cc constant, the posterior density is given by

I I

Pc (v,1 Y) o: lX' (vZAZ'+In yl xl-"2lvZAZ'+InP x {X [(vZAZ'+In t -

( )

I Lt-.!.(n-p-2)
(vZAZ'+In t X X'(vZAZ'+In ti X - X'(vZAZ'+In ti JXf 2 .

(5.55)

(IV): For the prior Tr K (jJ,a: ,a;)oc constant, the posterior density is given by

. I I

PK (v.] Y) = 1X'(vZAZ'+In r'XI-"2lvZAZ'+InP X {X'[(vZAZ'+In t -

(5.56)
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5.4.5 Posterior Distribution of e = Xp + Zy and Predictive Distribution of

Yf =x~P+z~y+&f

In this section the posterior density of e = Xp + Zy as well as the predictive density of a future

observation Yf =x~f3+z~y+&f will be derived. Here jy is(lxl),xf is (pxl), zf is (qxl) and

ef - N( 0, a; ). These densities will enable us to estimate or predict the weaning weights of lambs

for the different sires. Also the year, age of dam, sex of the lamb and birth status effects will be

taken into account. However, the following lemma must first be proved.

Lemma 6.

The conditional posterior mean and variance of e = Xp + Zy are given by

E(e 1 v,a;, Y)= XE(f31 a~. v,xl- vZAZ'(vZAZ'+Int {Y- XE(f31 v,a;, V)},
(5.57)

where

E(PI a;, v, Y)= (X'(vZAZ'+Int x}' X'(vZAZ'+IJ-Iy,

and

Var(e 1 v,a;, Y)= a;Z'(v-1A -I +zz}' Z'+[In - vZAZ'(vZAZ'+Int]x x

Var(f31 a;, v, Y)X.'[In - vZAZ'(vZAZ'+IJ-1
],

(5.58)
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where

Var(jJl 0';, v,Y)= 0'; (X'{vZAZ'+In tix]" .

Proof'

Equation (5.57) follows from equations (5.45) and (5.48).

Further,

Var(B I jJ, Y,O';, v)= Var{(XjJ + Zy I jJ, Y,O'; , v)

= Var{Zy I jJl Y,O'; '}= O';Z(v-IA -I +zz)" Z'

his follows from Searle, et al., (1992), P 357, equation (40).

Also, the unconditional variance of B is given by
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where

Corollary 3

Since e = Xf3 + Zy is a linear combination of normally distributed random variables, the

posterior distribution of e is also normal for given v and er; . Therefore

Further, the conditional predictive density óf a future observation

is normal with mean

E(y J I er;, v,V)= x~E(f31 er;, v,V)+ vz~AZ'(vZAZ'+IJ-1 {y - XE(f31 v, er; ,V)},
(5.60)

and variance

:Var(y J Ier;, v,X) = er; ~ + z , (V-IA -I + Z' Z t' Z J + ~~ - vz~AZ'(vZAZ'+In t' X}x

{X'(vZAZ'+Int'Xr ~~ -vz~AZ'(vZAZ'+Int' X}}.
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The unconditional posterior predictive distribution of an unobserved observation p(y f IY) , has

therefore two components of uncertainty: (1) the fundamental variability of the model, represented

by the variance a; in Yr not accounted for by x~j3 and z~y; and (2) the posterior uncertainty in

j3,y,a; and a: (or v) due to the finite sample size of Y. According to Geisser (1975) the

prediction of observables or potential observables is of much greater relevance than the estimation of

what are often artificial constructed parameters.

5.5 An Example

5.5.1 The Data

Consider again the Donner sheep stud of Elsenburg (see section (1.8.1)). A total of n = 879

weaning weight records, from the progeny of q = 17 sires were available after editing, and p = 17

fixed effects were included in the final model.

As before the mixed linear model used for this data structure, is the sire model

X = Xj3 + Zy + e , where Y (879 x I) vector of weaning weights. jJ (17 x I) is the vector of fixed

effects, X a (879 x 17) incident matrix, and the design matrix Z, a (879 x 17) matrix identifying the

(17 xl) vector of random effects including the breeding values for the 17 sires for which the data are

observed.

In this section estimation of fixed and random effects as well as prediction of future weaning

weights will be obtained for the Donner sheep stud using reference and uniform priors.
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5.5.2 Estimation and Prediction using Uniform and Reference Priors

In the example that follows, the following reference priors will be considered for the model

parameters. For the group ordering {jJ, a/, v}:

1

Ref2: 1Z"R(P, v,O";) cc 0";2 {tr[(VZAZ'+IJ-1 (ZAZ')Y - ~ ~r(vZAZ'+In t (ZAZ·)j y,
and uniform prior in section (IV) page 192.

5.5:3 Analysis of Variance Components

Posterior modes for the uniform prior, 95% credibility intervals, and the estimates obtained when

the different reference priors (Reference estimates) are used, are summarized in Table 5.1.

Table 5.1 Point - and Reference Estimates (posterior modes) and 95% Credibility Intervals

for the Variance Components.

Analysis Estimate 95% Credibility
Interval

Uniform 21.2620 19.2579; 23.3612

Refl 21.2028 19.2887; 23.3191

Ref2 21.2015 19.2847; 23.2233
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Using the conditional posterior densities for a/ , and Monte Carlo simulations the marginal

posterior densities are estimated as the average of the posterior densities and are displayed in

Figure 5.1. Considering the results in the above table and the figure below, we conclude that for our

practical problem the posterior densities using the first reference prior (Refl), those derived from the

second reference prior (Ref2) and when the uniform prior (Uniform) is used, are for all purposes the

same. This comes as no surprise since the posterior density of the error variance component a/ is

not directly influenced by the different reference priors.

Figure 5.1 Estimated Marginal Posterior Densities of the Variance Component, a/ .
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P = r and the
(]'2 + (]'2r &
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However, as mentioned in paragraph (5.3.4) researchers are often more interested in functions of

the variance components. This is due to the nature of their study, e.g. in breeding experiments,

animal breeders are making inferences about heritability, which requires modeling the intraclass

correlation coefficients.

(]'2
variance ratio v = -T' The 95% credibility intervals are also reported in this table. Note that the

(]'&

reference priors for the group ordering, {po [J. o/} and {[J. a/, p} are used in the analysis and will be

called Refl and Rej2. The results yield that the estimates from the two reference prior analysis are

very much the same. Hence, the main result of the different reference priors on the sire variance is

attenuation of the width of the 95% credibility intervals. Note that these intervals are wider under the

uniform prior than the different reference priors.

Also, the 95% credibility intervals for the intraclass correlation coefficients do not contain 0.5.

As mentioned before, this result corresponds well to the statement made by Wang et al., (1992)

namely that from a genetic point of view, an intraclass correlation of 0.5 is not possible in a sire

modei. The marginal posterior densities are also estimated and displayed in Figures 5.2 and 5.3. The

wider intervals are quite evident in the shape of the marginal posterior densities displayed in the

figures.
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Table 5.2 Estimates (posterior modes) using the Uniform and Reference Priors of Functions of

the Variance Components, along with 95% Credibility Intervals

95 % Credibility 95 % Credibility

Parameters Uniform Refl Interval Ref2 Interval

p 0.133 0.120 0.0338; 0.3031 0.115 0.0340 ; 0.3030

v 0.140 0.120 0.0350; 0.4350 0.110 0.0355 ; 0.4350

Uniform

Figure 5.2
(J2

The Estimated Marginal Posterior Density of the Variance Ratio, v = --T .
(Jc
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- Uniform

Figure 5.3 The Estimated Marginal Posterior Density of the Intraclass Correlation Coefficient,
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5.5.4 Analysis of Random Effects

In Table 5.3 the estimated breeding values (posterior modes) of the 17 sires and the 95%

credibility intervals are given. The marginal posterior densities for the breeding values of sire 3 and

10 are displayed in Figures 5.4 and 5.5 respectively. In all three analyses, the results of the estimates

are very much the same, with minor differences in the width of the 95% credibility intervals.

Table 5.3 Estimated Breeding Values for 17 Sires from the Elsenburg Dormer Stud, and 95%

Credibility Intervals.

Sire1D Refl 95% Credibility Interval Ref2 95% Credibility Interval

41037 0.6538 -1.3640; 3.0539 0.6575 -1.4208; 2.9119

41004 0.1900 -1.6150; 2.3719 0.1906 -1.6480; 2.3881

41019 3.3282 1.3131; 5.7251 3.3314 1.3208 ; 5.8563

43002 -1.1093 -3.5516; 1.3940 -1.1046 -3.5189; 1.2828

44170 -0.0857 -2.5505 ; 2.4474 -0.0926 -2.5478; 2.3214

44174 -0.5709 -3.2919; 2.0173 -0.5661 -3.3822 ; 2.1433

44042 -1.1895 -3.2556; 0.7401 -1.1858 -3.1829; 0.6891

45070 -1.0288 -3.2473 ; 0.7452 -1.0189 -3.1385; 0.8123

451J5 -0.5068 -2.8742 ; 1.8211 -0.499 -2.8643 ; 1.7676

46015 -1.6490 -3.9451 ; 0.2502 -1.6401 -3.7808; 0.2536

46037 -0.7021 -2.8284; 1.0831 -0.6912 -2.7557; 1.1339

48014 -0.8675 -3.0533 ; 1.l59~ -0.8557 -3.0533 ; 1.0817

48052 -0.3462 -2.6278 ; 1.7172 -0.3328 -2.5345; 1.7411

48148 -1.2589 -3.7277 ; 1.0333 -1.2445 -3.5498 ; 0.9884

49053 0.4203 -2.5061 ; 3.5098 0.4302 -2.4457; 3.4350

49134 0.7776 -1.9565; 3.6495 0.8125 -1.9465; 3.8679

49046 0.4152 -2.6140; 3.2126 0.4230 -2.6800 ; 3.6002
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Figure 5.4 The Estimated Marginal Posterior Density of the Breeding Value for Sire 3

(ID41019) (Y3).

J

. :~Qt~,~;
:~"-, ,

0:1'

Figure 5.5 The Estimated Marginal Posterior Density of the Breeding Value for Sire 10

(ID46015) (YIO).
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The similarity of the results indicates that, for this example, the results are not that sensitive to the

choice of either the two reference priors or the uniform or "flat" prior. However, the application to

and discussion of the example is helpful for understanding the implementation of the different priors

via the Gibbs sampler. For smaller sample sizes the differences can be quite substantial (large).

5.5.5 Analysis of Fixed Effects

Table 5.4 summarizes the estimated fixed effects. Selected parameters in the case of the mixed

linear model with corresponding joint marginal posterior densities are presented in Figures 5.6 -

5.10.

Table 5.4 Estimated Values of Selected Fixed Effects, 95% Credibility Intervals, and

Reference Estimates.

Parameter Refl 95% Credibility Ref2 95% Credibility
Interval Interval

/30 22.8796 18.9515 ; 26.5691 22.8927 18.9515; 26.5691

/37 5.2692 4.1121; 6.3856 5.2680 4.1003 ; 6.3796

/3J. 3.6501 3.0255 ; 4.2836 3.6494 3.0256; 4.2851

/3J5 9.5337 7.3747; 11.6265 9.5340 7.4161 ; 11.6158

/3J6 3.0345 0.8671 ; 5.1672 3.0339 0.8988; 5.1642

As expected, the estimates of the fixed effects using the different priors are for all practical

purposes thesame, and in particular the results from the two reference priors. There is one factors to

keep in mind when examining this similarity in the results, i.e. that the different priors do not directly

influence the posterior densities of the fixed effects to the same extend as in the case of the random

effects.
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Figure 5.6 Estimated Marginal Posterior Density of {Jo, the average weaning weight of female

lambs born in 1950 if the age of the dam is 8 years or older, and the birth status

"triplets" .

- Uniform

~;,~,

Figure 5.7 Estimated Marginal Posterior Density of {J7, the expected difference III average

weaning weight between lambs born in 1949 and in 1950.
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Figure 5.8 Estimated Marginal Posterior Density of fJN , the expected difference in average

weaning weight between male and female lambs .

.. ;1;1'105'

Figure 5.9 Estimated Marginal Posterior Density of Pl5 , the expected difference in average

weaning weight between single births and triplets.

-206-



Reference and Probability-Matching Priors for the Mixed Linear Model

Figure 5.10 Estimated Marginal Posterior Density of /3/6 , the expected difference in average

weaning weight between a pare of twins at birth and triplets.

5.5.6 Predictive Density of a Future Observation

The densities derived in Lemma 6 and Corollary 3 will now enable us to estimate or predict the

weaning wei~hts of lambs for the different sires. Also the year, age of dam, sex of the lamb and birth

status effects will be taken into account. Using the notation in Chapter 1, the weaning weight of a

female lamb born in 1950 if the age of the dam is 8 years or older, and the birth status "triplets", will

be predicted. Figure 5.11 displays such a predictive density if Sire 15 (1049053) is used to

impregnate the dam.
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Figure 5.11 Predictive Density of the Expected Weaning Weight of a Female Lamb born in 1950

if the Age of the Dam is 8 years or older, and the Birth Status "Triplets".

The Posterior Modes are Uniform = 25.10; Refl = 23.90; Ref2 = 23.85.

The respective 95% Bayesian predictive intervals for the three analyses under the different prior

specification are Uniform = [12.56 ; 37.01], Refl = [15.98 ; 34.17] and Ref2 = [16.01 ; 34.12]

respectively. Thus, the analyses for our Dormer data result in predictive densities that are close to

each other which can be observed both in the predictive density and in the posterior modes and

credibility intervals. In the derivations of the reference priors it was mentioned that the second

reference prior (Ref2) is also a probability-matching prior, which means that its credibility intervals

will have the correct coverage probability from a frequentist point of view.
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5.6 Priors for the Mixed Linear Model in the Case of Three Variance Components

5.6.1 Reference Prior for the Three Variance Components

In this section, the reference priors for the mixed linear model in the case of three variance

comporients will be derived. The application to and discussion of an example conforming to a mixed

linear model with unbalanced data concludes the chapter. A uniform prior ("flat") and a proper prior

(also see Theobaid, Fivat and Thompson, (1997) for more details) are considered for the example.

The Gibbs sampler is once again used to implement the different priors and to obtain marginal

posterior densities for the different variance components.

Consider the following mixed linear model:

where Y(nxl), X(nxp),j3(pxl),Z;(nxq;) andy;(q;xl) wherei=1,2.

Also,

Therefore as before, the likelihood function is given by

1 .

L(p,a; ,a:, ,a:,) cc ta:.Z,A,Z,' +Cf;I, -, ex+~(Y - XfJ!( ta:,Z,AZ,'+Cf;I,f (Y- XP)}
(5.62)

-209-



(5.63)

Reference and Probability-Matching Priors for the Mixed Linear Model

(Y

As in (5.) we wi Il use the transformation Vi = ---4- (i = 1,2), then
• (Ye

Here as in the case of the previous sections, the reference priors will be derived from the Fisher

information matrix. To obtain the Fisher information matrix, the expected values of the second order

derivatives must be calculated. These can be found as follows:

Differentiate equation (5.63) twice with respect to jJ, then

(5.64)

Differentiate equation (5.63) twice with respect to a/:

and
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Therefore

Hence, differentiate equation (5.63) with respect to .(7/ and Vi:

Thus, taking the expected value, we have that

i=1 i=1

(5.66)

If we differentiate equation (5.63) twice with respect to Vi:
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( 2/ J {2 } 2all . _I •
E -2 = +tr (Lv,Z,A,Z, + In) (Z,A,Z,)av, 2 ,=1

Now consider

where

and
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0
2
/2 1 ,( 2)-1 ~ '-I( '\,~ '-I-Ovj2 = -2 cx - XP) (l'e Cf:( VjZjAjZj + In) ZjAjZj "f:( vjZjAjZj + IJ X

a{Ct. v,z, A,Z; + I" )(Z,A,ZJ'Ct. v,Z,A, z, + I") }
----'---- --- X

êv,

ct vjZjAjZj' + IJ-I (ZjAjZj' xt vjZjAjZj' + IIIr CX - XP)
j=1 1=1

2

CLVjZjAjZj' +IlIrlCx -XP),
j=1

Thus

Combining the above results, we have

1
:=--ICvj).

2

(5,67)
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Finally,

(5.68)

As before the expected values of the other second order derivatives are equal to zero. The Fisher

information matrix is therefore given by

1(/3) 0 0 0

0 _!_ 1(0';) 1 2 1 2-/(ae,v,) -/(ae,v2)2 2 2
1(/3,0';, v" v2) = 1 . 2 1 1 (5.69)0 -/(v"ae) - I(v,) - I(v" v2)2 2 2

0 1 2 1 1-/(v2,ae) -/(v2,v,) - l(v2)2 2 2

The following lemma can now be stated:

Lemma 7

For the mixed linear model X = Xp + Z,y, + Z2Y 2 + e the reference prior for the group

. ,
"II {B,a;, (v, v2)} = (0'; r{/(v, )/(v2) - 12 (v" v2 )}ï
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where l(vl)' l(v2) andl(vl,v2) aredefinedineq~ations(5.67)and(5.68).

Proof: .

The reference prior for the group ordering {B,CY;, (VI' V2)} is obtained from the Fisher

information matrix l(f3,cy;, VI' v2) (equation 5.69) by calculating the functions h/j = 1,2,3). Now

.!.l(a;) 1 2 1 2

[~]-1(ac'vl) - l(a
6
., V?)

hl = Iep) - [Q Q]
2 2 2 -

0 1 2 1 1-1(vl,CYc) -1(vl) -1(v"v2)2 2 2
1 2 1 1- l(v2 ,ac) -l(v?,vl) -1(v2)2 2 - 2

= 1(f3)
;rep) = constant.

To calculate hl. consider the matrix

then
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multiply with terms that do not contain a;2 ,and therefore

Further

and

, ,
7Z"( v" v2 IjJ, a;) och} = {I (v,)1 (v2) - 12 (v" v2)}ï 0

The reference prior for the group ordering {f3,a; , (v, , V 2 )} is thus given by

. ,
. 7Z"~ {p,a;, (v, v2)} = (a;t' {levi )/(v2) - 12 (v" v2 )}ï.

5.6.2 Proper Prior for the Variance Components (Theobald et al. (1997)

Consider the following proper priors for the different variance components, i.e.

(I) i = 1,2. (5.70)

where k;2 can be interpreted as the prior expectation of a;2 .
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(In ( ) ) (2 )-.!_(v, +2) J Vy k; }p a- I V , k a: a v 2' , exp - _' _, . ,
p r, Y, y,,, 20'2

L r,

i = 1,2.

where, as before, k;,2 can be interpreted as the prior expectation of 0';,2 .

5.7 Joint and Conditional Posterior Densities for the Mixed Linear Model in the

:Case of Three Variance Components'

(a: rT exp{- _1 2 Yt' Yt} x (ay
2 tT exp{- _1_2 Y 2' Y 2}'

I 20' 1 20'
: y, Yl

(5.72)

(I) Uniform Prior

The conditional posterior distributions for the variance components when the uniform or "flat"

prior is used, i.e.

are given by
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n

K ( _1__J2 exp{- _1_ (Y - Xp - Z r - Z r )'(Y - Xp - Z r - Z r )}e 2 22- 1122_ 112).ae ae

?a; > 0,

(5.73)

an Inverse Gamma density where

and

P.( cr;, lP,r, cr; ,Y)~K r, [ crlJ~ex+ 2~;,r:r,}
a

2
> °r,

(5.74)

also an Inverse Gamma where i= 1,2 and

Further, for the proper priors in equations (5.70) and (5.71) we have
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(10 Proper Prior

The conditional posterior distributions for the variance components a; and a:, where i = 1,2,

are given by

pp(a; I p'YI 'Y2 ,a:, ,a:" Y) =
(n+vc+2)

x, (--;-)-2 - exp{- _1_2[CY- Xp - ZIYI - Z2Y2)'CY - Xp - ZIYI - Z2Y2) + V£kJ}ac 2ac ,

a; > 0,

an Inverse Gamma density where

and firially

q;+vr;+2

P,(CT;, I P,y"CT;, Y) ~ K" ( ;;,]-'-2 - ex+ 2~;, b, +v"k" l}
a2 >0r.

(5.76)

also an Inverse Gamma where

The conditional posterior densities for the random and fixed effects are give in Chapter 1 where Zy
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5.8 An Example

5.8.1 The Data

As an example conforming to a model of random effects only, with unbalanced data, consider

age-adjusted milk production records (305 days) obtained in the same year and herd from cows

whose' sires and dams were considered randomly representative of a large population. The example

consists of 44 production records (in kg) of full-sib daughters and is shown in APPENDIX F. The

model for this example is (see also equation (5.61)),

where ,Y(44xl), X(44xl),,8(1xl),Z;(44xq;) andy;(q; x l) where ï e l.Z.

Further,

r, - N(Q,Ip:i),

e - N(Q,Ina;),

ql = 4 and q2 = 20.

Thus, the study includes 4 sires, 20 dams and 44 milk production records from the daughters. Also,

there is .only one fixed effect included in the final model. For further details see Gill (1978).
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5.8.2 Analysis of Variance Components

Bayesian analyses of the data set are given using uniform priors and proper priors from Theobald

et al., (1997) (see equations (5.70) and (5.71)) with

v. =vY =1, k
Y1

=151380, k
Y1

=126735 and k , =859997

the variance components where ky1' k
Y1

and kc are the ANOVA estimates for a:
1
, a:

1
and a;

respectively.

The prior distribution for the variance components is proper and leads to a proper joint posterior

distribution, but the small values chosen for Vc and vY correspond to a very dispersed distribution;

this is intended to reveal any problems with convergence of the Gibbs sampler algorithm. The

sample data provide little information about the variance components, as the number of observations

is only 44, the number of sires 4, and the number of dames 20.

Ta.ble 5.5 contains the posterior modes of the estimates obtained under the uniform or "flat" prior

specification, and the posterior modes of the estimates obtained using the proper priors for the

variance components. The respective 95% credibility intervals are also displayed in the table, as well

as the ANOV A estimates and ANOV A-based 95% confidence intervals based on a Safterthwaite

(1946) approximation to the distribution of a linear combination of X 2 random variables (see Gill

(1978)). This table reveals little difference between the implementations in the marginal



Parameter ANOVA 95% Confidence Uniform 95% Credibility Proper 95% Credibility
Estimates Intervals Estimates Intervals Estimates Intervals

a/ 859997 524335 ; I 664376 830 OIO 533060; I 481 9000 801200 551240; 1432500
a/(sires) 151380 28812; 144751070 174126 60207; 104020011 140250 30 145 ; 13793000
a/(dams) 126735 16683; 83814925 195 148 9 878 ; 11 100 200 87850 12910; 728 040

Reference and Probability-Matching Priors for the Mixed Linear Model

posterior modes for the model variance, (J"; , except for a tendency of the 95% credibility interval to

be wider under the uniform prior specification. This is observed both in the table and the marginal

posterior density of (J";, displayed in Figure 5.12. The estimated marginal posterior densities of

? ?(J";I and a;, under the different prior specifications are also calculated and shown in Figures 5.13

and5.14.

Table 5.5 Marginal Posterior Modes of the Variance Component under Uniform and Proper

specifications and 95% Credibility Intervals. Also, ANOV A Estimates and 95%

Approximated ConfidenceIntervals. Note that a: (sires) = a:
l
, and a: (Dams) =
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Figure 5.12 Estimated Marginal Posterior Densities of CT; using Uniform and Proper Priors for

this Variance Component.

Uniform Prior
- Proper Prior

3

2

. 1.5

0.5 '"- - - ...- ....

2

Figure 5.13 Estimated Marginal Posterior Densities of CT:, using Uniform and Proper Priors for

this Variance Component.
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Figure 5.14. Estimated Marginal Posterior Densities of 0-:
2
using Uniform and Proper Priors for

this Variance Component.

These figures reveal quite a difference in the marginal posterior densities of O-y2 and 0-2 under
I Y2

the uniform prior and proper prior specifications. Not only are there differences between the

posterior modes, but also the length and values covered in the 95% credibility intervals differ quite

substantially. The proper prior also results in posterior densities with more mass close to zero,

whereas the posterior densities using the uniform prior yield much more uncertainty about the true

posterior distribution of the variance components.

Fro~ Table 5.5 it is also clear that the 95% confidence intervals obtained from the X 2

approximations are in general wider than the corresponding Bayesian intervals. According to

Hamada and Weerahandi (2000) the coverage of the ANOVA-based confidence intervals could in

certain cases be drastically different than the nominal values.
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5.9 Chapter Summary

For many Bayesians finding an appropriate prior distribution, when faced with a specific decision

problem, can be quite difficult. It is often recommended to choose conjugate priors whenever

possible because they are so computationally convenient. However, this is quite a limited family and

there are many instances where they should not be used.

Another possibility is to approximate our prior beliefs by developing non-informative priors

especi~lIy for the parameters of the mixed linear model via the Reference Prior algorithm. At the

very least, this algorithm can be thought of as a method for generating interesting candidate non-

informative priors, either for sensitivity studies of for investigation of their performances. As stated

in Bernardo (1979) the motivation and idea for the reference prior is basically to choose the prior,

which in a certain asymptotic sense maximizes the information in the posterior that is provided by the

data. From the different lemmas it is evident that the group orderings of the model parameters are

very important since different orderings wi II frequently result in different reference priors. This

dependence of the reference prior on the group chosen and their ordering is unavoidable. Berger and

Bernardo (1992) stated that many examples exist which illustrate that no single non-informative prior

will work well for all functions of a given high dimensional parameter. As mentioned and more fully

discussed in Berger and Bernardo (1989b) it is suggested to use the reference prior corresponding to

single element groups, with the group ordered according to the inferential importance of the

parameters. That different orderings of the nuisance parameters can yield different answers even has

positive aspects; one can then conduct a sensitivity study over the choice if the non-informative prior.

Whilst our feeling is that study of performance of reference priors is certainly to be encouraged, we

have found it to be generally high satisfactory. Indeed, we would feel reasonably confident in using

them in situations in which further study is impossible.
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CHAPTER6

«Conclusion and Summary»

6.1 Conclusion

Arguing from a Bayesian viewpoint, the Gibbs Sampling Algorithms presented in the thesis

turned analytically intractable multidimensional integration problems arising from animal breeding

theory, into' feasible and appealing numerical problems. It is clear from the analyses that the

Bayesian practitioner does not need to commit him to a point estimate of the variance components in

order to obtain a point predictor for the variables of interest. Also, all the available information about

the random variables to be predicted is contained in the posterior distributions of the random

variables. Therefore, the practitioner can base all of his inferences on these distributions.

We believe that BMOM and Bayesian Non-parametries have much to offer. In the case of

BMOM, if not enough information is available to specify a form for the likelihood function, then

clearly there will be problems in both the traditional likelihood and Bayesian approaches. In

situations like this, some resort to non-likelihood based methods is proposed, e.g. the Bayesian

Method of Moments (BMOM), first introduced by Arnold Zellner. Given the data, BMOM then

enables researchers to compute post data densities for parameters and future observations if the form

of the likelihood function is unknown, and provides a solution to the famous inverse problem

proposed by Bayes (1763).
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As far as Bayesian parametric versus nonparametrie analyses are concerned, in relatively 'welI-

behaved' cases, where a parametric analysis would have coped, we typically obtain similar forms of

posterior inference, particularly posterior densities. When the appropriate forms of posterior

inference should be 'badly behaved' the nonparametrie analysis will reflect this, whereas most·

parametric analyses would not reveal this fact.

A further question that arises is the ever known" ... Bayesian or Classical. .. ?" We now note the

very real advantage of being able to input broad prior ideas of different characteristics such as

location, scale and shape. The much richer and more tractable forms of inference that are presented

as a consequence of the Gibbs simulation-based approach to computation are quite profound and

significant.

Finally, it is evident that a full Bayesian solution to the problem of inference about variance

components, functions thereof, and random effects in the Mixed Linear Model is possible, and

contribute significantly to the theory of animal breeding.

With that in mind, we would like to conclude this thesis with the inspiring words of Daniel Gianola

(1986):

.....fn navigating through the waters of prediction of breeding values,

estimation of genetic parameters and of inferences about populations

undergoing selection or assortative mating, we found that the Bayesian

inference brought us to familiar harbors or to new exiting lands.

However, a great deal of exploration remains ahead .....
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6.2 Summary

Chapter 1 illustrated an extension of the Gibbs sampler to solve problems arising in animal

breeding theory. Formulae were derived and presented to implement the Gibbs sampler where-after

marginal densities, posterior means, modes and credibility intervals were obtained from the Gibbs

sampler.

In the Bayesian Method of Moment chapter we have illustrated how this approach, based on a few

relatively weak assumptions, is used to obtain maximum entropy densities, realized error terms and

future values of the parameters for the mixed linear model. Given the data, it enables researchers to

compute post data densities for parameters and future observations if the form of the likelihood

function is unknown. On introducing and proving simple assumptions relating to the moments of the

realized error terms and the future, as yet unobserved error terms, we derived post-data moments of

parameters and future values of the dependent variable. Using these moments as side conditions,

proper maxent densities for the model parameters were derived and could easily be computed. It was

also shown that in the computed example, where use was made of the Gibbs sampler to compute

finite sample post-data parameter densities, some BMOM maxent densities were very similar to the

traditional Bayesian densities, whilst others were not.

It should be appreciated that the BMOM approach yielded useful inverse inferences without using

assumed likelihood functions, prior densities for their parameters and Bayes' theorem, also it was the

case that the BMOM techniques extended in the present thesis to the mixed linear model provided

valuable and significant solutions in applying traditional likelihood or Bayesian analysis in animal

breeding problems.
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The important contribution of Charter 3 and 4 revolved around the nonparametrie modeling of the

random effects. We have applied a general technique for Bayesian nonparametries to this important

class of models, the mixed linear model for animal breeding experiments. Our technique involved

specifying a nonparametric prior for the distribution of the random effects and a Dirichlet process

prior on the space of prior distributions for that nonparametric prior. The mixed linear model was

then fitted with a Gibbs sampler, which turned an analytical intractable multidimensional integration

problem into a feasible numerical one, overcoming most of the computational difficulties usually

experience with the Dirichlet process.

This proposed procedure also represented a new application of the mixture of Dirichlet process

model to problems arising from animal breeding experiment. The application to and discussion of

the breeding experiment from Kenya was helpful for understanding the importance and utility of the

Dirichlet process, and inference for all the mixed linear model parameters. However, as mentioned

before, a substantial statistical issue that still remains to be tackled is the great discrepancy between

resulting posterior densities of the random effects as the value of the precision parameter, M changes.

We believe that Bayesian nonparametries have much to offer, and can be applied to a wide range of

statistical procedures. In addition to the Dirichlet Process Prior, we will look in the future at other

nonparametric priors like the Pólya tree priors and Bernoulli trips.

Whilst our feeling in the final chapter was that study of performance of non-informative was

certainly to be encouraged, we have found the group reference priors to generally be high

satisfactory, and felt reasonably confident in using them in situations in which further study was

impossible. Results from the different theorems yielded that the group orderings of the mixed model
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Conclusion and Summary

parameters are very important since different orderings will frequently result in different reference

priors. This dependencél of the reference prior on the group chosen and their ordering was

unavoidable. Our motivation and idea for the reference prior was basically to choose the prior, which

in a certain asymptotic sense maximized the information in the posterior that was provided by the

data.

The thesis has surveyed a range of current research in the area of Bayesian parametric and

nonparametrie inference in animal science. The work is ongoing and several problems remain

unresolved. In particular, more work is required in the following areas: a full Bayesian

nonparametrie analysis involving covariate information; multivariate priors based on stochastic

processes; multivariate error models involving Pólya trees; developing exchangeable processes to

cover a larger class of problems and nonparametric sensitivity analysis.
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APPENDIX A

«Selective Algorithms for the Gibbs Sampler»

1.1 Algorithm for the Traditional Bayes Analysis

%%Load data with X, Y and Z matrices

%%Initialize the different variables
N the sample size;
SimTot= the simulation total;
Gibbs save every ..th sampled value in the Gibbs sampler;

q the number of random e~fects;
p the number of fixed effects;

%%The Random Effects

UVec=[0.13957685
3.32999015
0.57818853

0.79500881); A qx1 ve~tor of starting values for the Gibbs
sampler (Random effects)

%%Calculate initial values to be used, e.g.

InvXtX=inv(X'*X);
Yster=Y-Z*UVec;
BetaHat=invXtX*(X'*Yster);
e=Yster-X*BetaHat;

%%The Gibbs Sampler
for i=l:SimTot

for j=l:Gibbs

%%Simtilate 0'; from an Inverse Gamma
%%Specify the degree of freedom. Note that a Gamma distribution is the
%%sum of df squared random numbers, i.e.
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df=N-2i
x=(randn(df,l) )2i
v=sum(Xx) i

%%Calculate

numvec=(Y-X*BetaVec-Z*UVec) '*(Y-X*BetaVec-Z*UVec)i
02e=numvec/vi

%%where BetaVec is the pxl vector of fixed effects

%%Simulate BetaVec from a Normal distribution.
%%Calculate

muB=BetaHati
sigmaB=sqrtm(invXtX*o2e)i

BetaVec=sigmaB*randn(p,l)+muB;

%%Simulate CJ: from an Inverse Gamma distribution
%%Calculate

df=q-2i
x=(randn(df,1))2i
v=sum(Xx) i

Ainv=inv (A);

o2u=(UVec'*Ainv*UVec)/v;

%%Simulate UVec from a Normal distribution
%%Calculate

muU=[inv((Z'*Z+(o2e/o2u)*Ainv) ))* [Z'*(Y-X*BetaVec));
sigmaU=sqrtm(02e*inv(Z'*Z + (o2e/o2u) * Ainv));
x=randn(q,l)i

UVec=sigmaU*x+muU;

End %% Update the different model parameters

END .%%'Program

%%Calculate and display the averages of the different model parameters

%%SAVE results.
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1.2 Algorithm for Simulating a y; with a certain Probability (see Di:richlet process)

%%Specify the vector with the different probabilities
y1~ProbVec %%e.g. ProbVec = [0.25 0.25 0.45 0.05) with sum(ProbVec)=l

%%Specify the vector to choose from
sires= %%e.g. [12 3 4}, thus sire i can be set equal to sire 2 with

%%probability 0.25, sire 3 with probability 0.45 etc.

%%Then calculate

Oppv= sum(1*y1);
y1=y1./0ppv;
CumSumY=cumsum(y1') ';
kwh=l*csY;
tr=rand (l, 1);
kla=(kwh-tr);
kl=abs(kwh-tr);
klein=min(abs(kwh-tr));
IN=find(kl==klein);
s=size (IN);
if s(l,l»l

.IN=IN(l,l);
end
kleina=kla (IN);
if kleina < 0
ID=I.N+1;

else
ID=IN;

end

.pp=sires(ID);

%%Thus, sire i will have the same breeding value as the sire in the
%%position ID of the vector 'sires'.
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1.3 Algorithm for Simulating the Variance-covariance Matrix D from an Inverse

Wishart

[" ' )-1%%First, simulate A from a Wishart (\LA,A, ,k-v-l,v) distribution

%%Simulate l:.l,l2 , '" ,lk-v-l form Nv(Q, Iv), i.e. (k-v-1) vectors each of
%%order (vx1) from a multivariate normal distribution

loop=k-v-l

H=[] t-
for q=l:loop

H=[H randn(v,l)];
end

%%Define H
I I

[ll,l2'" ·,lk-v-d, then calculate A=(IA,A;tïHH'(IA,A;tï
for i=O:k

sta=i*2+1;
sto=(i+1)*2;
u=UVec(sta:sto);
utu=u*u';
UtU=UtU+utu;

end

mat=sqrtm(inv(UtU) );
A=mat*H*H'*mat;

D=inv (A) ; ,

%%Then 0 = A-I is from an Inverse Wishart distribution. Simulation from
the Wishart distribution can also easily be done by using the algorithm of
Odell and Feiveson (1966) in A Numerical procedure to generate a sample
Covariance matrix, Journal of American Statistical Association, 61, 198 -
203.
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1.4 Algorithm for Simulating the Precision Parameter, M (see Dirichlet process)

%%This algorithm illustrates the simulation of the parameter M and mixing
%%parameter X in the Dirichlet process prior. Gr is the number of
%%groups/clusters for the analysis

%% Initialize starting values for X

XVar=O.S;

%%Simulate two values 21 and 22 from two Chi-square distributions where
%%df= degrees of freedom i.e.

%%Simulate u
df=2*GR;
x=(randn(l,df) )2;
u=sum(x);
2l=u/(-2*log(Xvar));

%%Simulate v
df=2*(GR-l);
x=(randn(l,df) )2;
v=sum(x);
22=v/(-2*log(Xvar) );

%%Set the value of M to any of 21 or 22 with probability 0.5 for each
%%See the algorithm in 1.2

%%Simulate another two values 23 and 24 from two éhi-square distributions,
%%given M

df=2* (M+l);
x=(randn(1,df))2;
v=sum(x) ;
23=v/(2*(M+l));

df=2*.k; .. %%Number of sires k=200;
x=(randn(1,df))2;
v=sum (x);
24=v/(2*k) ;

%%Calculate the following

y=23/24;

Xl=y*(M+l)/k;
X2=1+(y*(M+l)/k);

XVar=Xl/X2;
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1.5 Algorithm for Plotting the Unconditional Posterior Density of the Precision

Parameter, M (see Dirichlet process)

%%Loid the results

%%Specify the interval for the parameter

M=[lO:lOOO);

%%Calculate the value of the conditional posterior distribution at each M
%%SimTot is the number of simulations, and Gr the vector of resulting
%%groups/clusters from the analysis

for j=l:SimTot
k=Gr (1,j) ;

for i=l:l
m=M (1,i);
y=(mA(k/2)*(m+q)*beta(m+1,q) )*(mA(k/2-2));
Y=[Y yl;

end

YY=YY+Y;
end

%%Calculate the marginal posterior as the average of all the conditional
%%posterior densities

Y=YY/SimTot;

plot(M,Y);
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1.6 Setup Algorithm for an Animal Breeding Experiment (Chapter 3, § 3.6)

%%Initialize the specifications of the experiment, i.e. the number of
%%observations to sample for each sire for each fixed effect

n=20;

%%Per sire, i.e. n/2 male and n/2 female if sex is included as a fixed
%%effect

%%Number of Sires,
k=200;

%%Total number of observations,
NN=n*k;

%%Specify the true values of the variance components and fixed
%%effect (s), /3i

? ?
0";=4.88; 0";=0.7211; /30 = 0.705,

%%Construct a vector Y (Nxl) of observations distributed N(O,l)
Y=randn(NN,l);

%%Simulate the different random effects according to the Polya Urn scheme
%%and add it to the vectors Y of observations (see Chapter 3, §3.4.3)

%%Add a random residual to each observation

for i=l:k
2e=randn (n,1)*sqrt (O"c ) ;

Y=[Y (U(i,l)+e));
end

%%Add an overall mean to each observation

Y=Y+12;

%%Add.the effect of the fixed effect to each observation

Y(l: (n/2), :)=Y(l: (n/2), :)+0.705;

%%Con.st:r:uctthe different matrices corresponding to the experiment, i.e. X
%%and Z

%%SAVE the experimental data.
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APPENDIXB.

In this APPENDIX we present the Dormer stud sample used in estimating the breeding values and·

variance components. It refers to 879 weaning weight records from the progeny of 17 sires from the

Elsenburg Dormer sheep stud near Stellenbosch. The sheep used in the analysis were born in the

period 1943 - 1950. The animal ID, sire ID, year (season of birth), age of dam, sex birth status and

weaning weight are presented in this table.

Animal ID refers to the ID of the lamb that was born.

Sire ID and dam ID refers to the parents of the lamb.

Year (season of birth) refers to the year in which the lamb was born. Here 1943 is denoted by 43 and

1944 by 44, ect.

Age of dam refers to the age of the dam used in producing the progeny. Here age 2 is denoted by 2

and age 3 is denoted by 3, eet.

Sex refers to the sex of the lamb. Here male is denoted by I and female by 2.

Birth status refers to the birth status of the lamb. Here single births are denoted by 1, twins are

denoted by 2 and triplets are denoted by 3.

Weaning weight refers to the weaning weight of the lambs in kilogram.
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ANIMAL ID SIRE ID DAM ID SEASON AGE OF SEX BIRTH WEANING

DAM STATUS WEIGHTS

43002 41037 41076 43 2 I
,.

34.2

43003 41037 41130 43 2 2 I 33.1

43004 41037 41029 43 2 I I 40.1

43005 41004 41134 43 2 I I 32

43006 41037 41096 43 2 I 2 33.6

43008 41037 41007 43 2 I I 38.5

43009 41037 41167 43 2 I I 37.9

43010 41037 41031 43 2 2 I 37.8

43011 41004 41040 43 2 I I 30.6

43012 41004 41165 43 2 2 2 21

43013 41004 41165 43 2 I 2 27. I

43014 41037 41028 43 2 2 I 38.2

43015 41004 41001 43 2 I I 359

43018 41004 41023 43 2 2 I 283

43019 41004 41104 43 2 I 2 252

43020 41004 41104 43 2 2 2 252

43021 41004 41112 43 2 I I 36

43022 41004 41181 43 2 2 2 26.8

43023 41004 41181 43 2 I 2 26.8

43024 41004 41187 43 2 2 I 36.3

43025 41004 41068 43 2 2 I 31.8

43026 41004 41061 43 2 2 2 26.7

43027 41004 41061 43 2 I 2 27.4

43028 41004 41033 43 2 I I 36.5

43029 41037 41051 43 2 2 I 34.6

43030 41004 41034 43 2 I I 32.1

43032 41004 4105 43 2 2 2 29.1

43033 41004 4105 43 2 2 2 25.9

43035 41037 41087 43 2 1 I 37.1

43037 41004 41046 43 2 2 I 27.9

43038 41004 41074 43 2 I 2 36.2

43039 41004 41074 43 2 I 2 30.7

43043 41037 41018 43 2 I I 37.9

43044 41004 41171 43 2 I 1 44.8

43045 41004 41047 43 2 2 I 39.3

43049 41004 41080 43 2 2 I 24.7

43053 41037 41172 43 2 2 I 33.6

43058 41037 41069 43 2 I I 41.9

43061 41037 41041 43 2 I I 37.6

43062 41004 41074 43 2 I 2 38.2

43063 41004 41074 43 2 2 2 30.1

43064 41037 41139 43 2 I I 36.6

43067 41004 41163 43 2 I 2 29.6

43068 41004 41163 43 2 I 2 29.6

4307Ó 41004 .41175 43 2 2 I 34.9

43071 41037 41042 43 2 I I 34

43072 41037 41015 43 2 2 I. 35.3

43077 41037 41115 43 2 I I 30.6

43081 41037 41093 43 2 2 1 35.5

43083 41037 41053 43 2 2 1 34.5

43084 41004 41030 43 2 2 1 33.8

43085 41004 41013 43 2 1 1 41.1

43086 41004 41010 43 2 2 1 34.2

43087 41037 41053 43 2 2 1 34.5

43088 41037 41058 43 2 2 1 32.1

43089 41004 41055 43 2 2 1 36.6

43093 41004 41023 43 2 1 1 37.7

43094 41004 41077 43 2 1 2 34.5

43095 41004 41077 43 2 2 2 23.6

43098 41037 41088 43 2 2 1 35

43100 41037 41096 43 2 2 2 27.7

43101 41004 41050 43 2 I 1 39

43102 41037 41138 43 2 1 1 39.4

43104 41037 41151 43 2 I 1 36.4

43110 41037 41044 43 2 2 2 31.8

43111 41037 41060 43 2 2 1 21.4

43117 41037 41057 43 2 2 1 31.8

43118 41037 41035 43 2 I 1 38.2

43136 41004 41174 43 2 2 I 30.2

44002 41037 41040 44 3 2 1 29.8

44003 41004 41130 44 3 2 1 26.6

44007 41037 41096 44 3 1 2 34.4

44012 41004 41068 44 3 1 1 41.7

44013 41004 41003 44 3 2 1 37.1

44022 41004 41171 44 3 2 2 36.1

44026 41004 42080 44 2 2 1 35

44027 41037 41031 44 3 2 1 33.5

44028 41037 41008 44 3 2 1 38

44033 41004 41025 44 3 1 2 36.9

44034 41004 41025 44 3 1 2 33.8

44040 41004 41165 44 3 2 1 35

44041 41037 42071 44 2 1 1 35.1

44042 41004 41187 44 3 2 1 37.7

44043 41004 41187 44 3 2 2 29.4

44050 41004 41144 44 3 2 1 32.8

44052 41037 41029 44 3 1 2 33.9

44053 41037 41029 44 3 1 2 31.5
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44054 41004 41135 44 3 1 2 30.5

44055 41004 41135 44 3 1 2 33

44063 41004 41181 44 3 1 2 42.5

44064 .. 41004 41047 44 3 2 2 . 30

44066 41004 41047 44 3 1 2 27.2

44072 41037 41167 44 3 2 1 37.3

44076 41037 41029 44 3 1 2 29.4

44077 41037 41029 44 3 2 2 28.8

44082 41004 41015 44 3 2 1 36.4

44083 41004 41087 44 3 2 1 38.7

44084 41004 41035 44 3 1 1 38.1

44093 41004 41051 44 3 2 2 30

44094 41004 41051 44 3 2 2 29.1

44096 41037 41096 44 3 1 2 32.2

44098 41037 41105 44 3 2 2 34.1

44110 41037 41099 44 3 2 1 37.4

44115 41004 41023 44 3 2 1 32.8

44121 41004 42071 44 2 2 2 23.1

44122 41004 42071 44 2 2 2 19.7

44123 41004 41122 44 3 1 1 34.6

44125 .41037 41058 44 3 1 1 39.8

44127 41004 41042 44 3 1 2 26.4

44128 41004 41042 44 3 1 2 30.3

44129 41004 41139 44 3 1 1 37.6

44130 41004 41172 44 3 2 1 35.5

44134 41037 42115 44 2 2 1 32

44147 41004 42060 44 2 2 2 35.8

44149 41004 41061 44 2 1 1 41

44157 41037 41028 44 3 1 2 33.6

44158 41037 41028 44 3 2 2 29.3

44162 41004 41034 44 3 1 2 30.3

44163 41004 41034 44 3 2 2 25.9

44165 41037 41033 44 3 2 2 29.6

44166 41037 41001 44 3 2 1 38.6

44167 41004 41074 44 3 1 2 26.1

44168 41004 41074 44 3 2 3 20.7

44169 41004 41136 44 3 1 1 38.6

44170 41004 41077 44 3 1 1 34.8

44172 41037 42065 44 3 1 2 23.4

44173 41037 41063 44 3 2 2 22.8

44174 41004 41010 44 3 1 1 33.2

44178 41004 41115 44 3 1 1 38.5

44179 .41037 42071 44 2 1 1 39.8

44183 41004 41083 44 3 1 1 32.6

44184 41037 41023 44 3 2 1 35.2

44191 41037 42065 44 -- 2 1 1 29

44192 41004 41043 44 3 1 1 32.1

44198 41004 41138 44 3 2 1 38.9

44204 41037 41093 44 3 1 1 38.8

44205 41037. 41041 44 3 2 1 379

44210 41004 42069 44 2 1 2 37.8

44212 41037 41174 44 3 1 1 31.2

44213 41004 41005 44 3 2 1 31.8

44217 41004 41175 44 3 2 1 35.9

44220 41037 41104 44 3 2 2 30.8

44222 41037 41013 44 3 2 1 38.9

44224 41037 41055 44 3 2 2 34.4

44228 41037 41018 44 3 2 1 35

44230 41037 41131 44 3 2 1 37.2

44232 41004 41053 44 3 2 1 36.8

44236 41037 42062 44 2 2 1 34.7

44244 41037 42071 44 2 1 2 30.4

44245 41037 42071 44 2 2 2 27.8

44250 41037 41057 44 3 2 ~ 38.9

44252 41037 41050 44 3 2 2 33

44253 41037 41050 44 3 2 2 31.2

45001 41004 41015 45 4 2 2 23.4

45002 41004 41015 45 4 1 2 28.5

45003 41004 41122 45 4 2 2 31.9

45004 11004 41122 45 4 1 2 34.4

45005 43002 43136 45 2 1 1 38.4

45006 43002 43029 45 2 1 1 35.5

45007 41019 41040 45 4 1 1 41

45008 41004 43003 45 2 1 1 36.9

45009 43002 43045 45 2 1 1 27.5 I
45010 41019 41057 45 4 1 2 30.4 ,

45011 41019 41057 45 4 2 2 30

45015 41004 41010 45 4 2 1 39.9

45019 41004 43100 45 2 1 2 33.4

45020 41004 43100 45 2 2 2 23.9

45022 43002 43024 45 2 2 2 21.2

45026 43002 43095 45 2 2 1 30.8

45027 43002 43049 45 2 2 1 28.8

45031 41019 42071 45 3 2 1 33.5

45032 43002 43026 45 2 2 1 20.3

45033 43002 43063 45 2 1 2 32.6

45034 43002 43063 45 2 2 2 24.9

45036 41019 42115 45 3 1 2 44.3

45040 41019 41028 45 4 1 1 48.1

45042 41019 41031 45 4 2 2 37.8

45044 43002 43033 45 2 1 1 39.9

45045 41004 41135 45 ~ 1 2 31.6
--
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45046 41004 41135 45 4 2 2 25.5

'45047 41004 41013 45 4 1 1 47.6

45048 43002 43089 45 2 2 2 28.4

45049 43002 43089 45 2 2 2 29

45050 41019 41105 45 4 1 2 41.3

45051 41019 41105 45 4 2 2 38

45053 41004 42069 45 3 2 2 28.6

45054 41004 42069 45 3 2 2 31.8

45055 41004 41025 45 4 2 2 35

45056 41004 41025 45 4 2 2 35.3

45059 41019 41008 45 4 2 1 35.8

45061 41019 4100 45 4 2 2 34.1

45062 41019 4100 45 4 2 2 26.9

45063 41019 41041 45 4 2 1 40.6

45064 41004 41138 45 4 1 1 51.5

45066 41004 41069 45 4 1 1 39.5

45069 41004 43088 45 2 2 2 23.2

45070 41004 41044 45 4 1 2 46.3

45071 41004 41044 45 4 2 2 31.1

45072 43002 43018 45 2 1 1 36.7

45073 43002 43084 45 2 2 1 35.3

45074 41004 42071 45 3 2 2 26.6

45075 41004 42071 45 3 1 2 26.2

45076 41004 41034 45 4 1 2 37.4

45077 41004 41034 45 4 2 2 34.6

45081 41019 41018 45 4 1 1 38

45082 41004 41051 45 4 2 2 26.2

45083 41004 41051 45 4 1 2 30.6

45084 41004 41074 45 4 2 3 22.2

45085 41004 41074 45 4 1 3 30

45086 41004 41074 45 4 1 3 29.2

45094 41004 41172 45 4 2 1 40

45096 41004 42087 45 3 2 1 36.3

45098 41019 41001 45 4 2 1 47.2

45101 41019 41167 45 4 1 1 49.3

45102 41019 42065 45 3 2 1 40.8

45103 43002 43086 45 2 2 1 36.4

45111 41004 41083 45 4 1 2 38.9

45112 41004 41083 45 4 2 2 31.2

45113 43002 43072 45 2 2 2 28.2

45114 43002 43072 45 2 1 2 34.4

45115 41004 43014 45 2 2 1 33.9

45116 41019 41093 45 4 2 1 . 41.2

45118 41004 43081 45 2 1 2 30.8

45119 41004 43081 45 2 2 2 26.2

45121 41004 41136 45 4 2 2 27.1
-

45122 41004 41136 45 4 1 2 308 I

45123 41019 41055 45 4 1 1 496

45126 41004 41144 45 4 1 1 475

.45127 41019 42062 45 3 1 2 . 425

45129 41019 42062 45 3 2 2 393

45132 41019 41133 45 4 2 1 41.5

45133 41004 41047 45 4 1 2 408 .

45134 41004 41047 45 4 2 2 273

45135 43002 43117 45 2 1 1 343

45153 41004 41043 45 4 2 1 426

45155 43002 43037 45 2 1 2 393

45156 41019 41023 45 4 2 1 38.6

45190 41004 41171 45 4 2 1 474

45205 41004 42060 45 3 1 1 352

45207 41004 41087 45 4 2 1 32.8

45208 41004 42080 45 3 2 1 42 1

45211 41004 41115 45 4 2 1 465

46001 41019 41040 46 5 1 1 417

46002 41004 41044 46 5 1 2 35.2

46003 41004 41044 46 5 1 2 28.4

46004 41004 41122 46 5 2 1 37.8

46005 41004 41015 46 5 2 2 26.8

46006 41004 41015 46 5 2 2 29.3

46007 41019 41057 46 5 1 1 39.6

46008 41004 41135 46 5 2 1 376

46009 44170 43084 46 3 2 2 29.2

46010 44170 43084 46 3 2 2 26.3

46012 41004 41139 46 5 1 2 32.2

46013 41004 41139 46 5 2 2 301

46014 41004 41043 46 5 1 I' 41.9

46015 41004 42087 46 4 1 1 41.1

46020 41004 41034 46 5 2 2 22.4

46021 41004 41034 46 5 1 2 32.3

46022 44170 43018 46 3 2 1 31.3

46023 41004 41069 46 5 2 2 29.4

46024 41004 41069 46 5 2 2 30.3
,

46025 41004 41138 46 5 2 1 33.2

46026 41019 42071 46 4 2 1 30.4

46031 41019 41167 46 5 1 1 47.6

46032 41004 41172 46 5 1 1 215

46033 41004 41171 46 5 1 2 30.6

46034 41004 41171 46 5 2 2 24.7
"

46037 44170 44228 46 2 1 1 40. t

46040 44170 43045 46 3 1 1 31.9

46041 41019 41033 46 5 1 2 35.6

46042 41019 41033 46 5 1 2 26.1 I
-
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46044 41004 42080 46 4 1 1 40

46045 41019 42115 46 4 1· 2 34.9

46046 41019 42115 46 4 2 2 32.4

46047 41004 42060 46 4 .. 2 1 37.3

46048 41019 41041 46 5 2 2 35.8

46050 44170 43033 46 3 1 1 44.1

46054 44170 44158 46 2 2 1 34.6

46055 44170 44098 46 2 1 1 26.4

46057 41004 41051 46 5 1 1 28

46058 41004 41010 46 5 1 1 23.6

46063 44170 44072 46 2 1 1 27.7

46064 41004 41061 46 5 2 2 32.2

46065 41004 41061 46 5 1 2 33.6

46070 41004 4100 46 5 1 2 20.9

46072 41004 41144 46 5 2 1 36.2

46073 41004 41025 46 5 2 1 36.5

46076 41019 41008 46 5 1 2 38

46086 44170 44184 46 2 1 1 26.1

46087 41004 41136 46 5 2 2 23.8

46088 41004 41136 46 5 1 2 33.1

46095 41004 41074 46 5 2 2 24

46096 41004 41074 46 5 1 2 29

46097 41004 41083 46 5 1 2 26.6

46098 41004 41083 46 5 1 2 28

46102 41019 42062 46 4 2 1 33.6

46125 41019 42065 46 4 1 1 42.7

46131 41019 41023 46 5 1 2 30.6

46132 41019 41023 46 5 1 2 31.7

46133 41019 41031 46 5 2 2 31.3

46134 41019 41031 46 5 2 2 31.4

46135 44170 44224 46 2 1 1 34.7

46136 44170 44222 46 2 1 1 36.6

46137 44170 44165 46 2 1 1 23.2

46147 41019 41093 46 5 2 1 36.5

46149 41004 41047 46 5 1 1 38.8

46163 44170 44205 46 2 2 1 34.6

46170 41004 42074 46 4 2 1 30.5

46175 41004 41115 46 5 2 1 29.2

46177 41019 41001 46 5 2 1 44.5

46181 44174 44166 46 2 1 2 28

46182 44174 44166 46 2 2 2 24

46189 44174 43086 46 3 1 1 23.9

46198 44042 44083 46 2 1 1 26.9

46199 44042 43110 46 3 1 1 31.1

46205 44042 43100 46 3 2 1 27.8

46206 44042 44013 46 2 1 1 33.6

-- ----
46208 44174 43063 46 3 1 2 22.7

46209 44174 43063 46 3 2 2 23

46210 44042 44063 46 2 2 1 23.1

46214 44042 43081 46 3 2 2 22.6

46215 44042 43081 46 3 2 2 23.5

46217 44042 44082 46 2 1 1 29.1

46222 44042 44121 46 2 1 1 29.8

46224 44174 44134 46 2 2 1 38.3

46227 44042 44252 46 2 1 1 28.6

46228 44042 44093 46 2 2 1 31

47001 45070 45073 47 2 2 2 21.8

47002 45070 45073 47 2 1 2 246

47003 45070 45049 47 2 1 2 23.2

47004 45135 45211 47 2 1 2 22.1

47006 41019 41040 47 6 1 1 30.9

47007 44042 43003 47 4 1 1 29.2

47008 45135 45054 47 2 2 2 20.9

47009 45135 45054 47 2 1 2 24.7

47010 45135 43018 47 4 1 2 26

47011 45135 44205 47 3 1 2 26.3

47012 45135 44205 47 3 1 2 28.5

47014 45135 43033 47 4 2 1 29:4

47015 44042 44013 47 3 2 1 28.6

47016 41004 41025 47 6 1 2 37.1

47017 45135 44222 47 3 2 2 17.6

47018 45135 44222 47 3 1 2 28.1

47019 45135 44134 47 3 1 1 38.5

47020 45135 44098 47 3 1 1 33.4

47022 45070 45115 47 2 2 1 29.3

47023 41019 41031 47 6 1 2 32.2

47024 41019 41031 47 6 2 2 27.6

47026 45135 44158 47 3 2 1 28.6

47028 41004 41010 47 6 1 1 35

47029 41004 41015 47 6 2 1 25.4

47030 41004 41015 47 6 1 1 23

47033 45135 45077 47 2 1 1 35.4

47034 44042 44217 47 3 2 1 25

47035 45135 45082 47 2 1 2 21

47036 45135 45082 47 2 1 2 22.2

47037 41004 4100 47 6 1 1 37.4

47040 45135 44165 47 3 1 1 32.4

47042 41004 41047 47 6 1 2 36.2

47043 44042 44082 47 3 2 1 28.2

47049 41004 41135 47 6 1 2 28.5

47051 45135 45053 47 2 1 1 30.4

~55 44042 43110 47 4 1 2 24
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47056 44042 43110 47 4 2 2 24.1

47060 44042 44063 47 3 2 2 17.2

47064 41004 42060 47 5 1 1 33.3

47067 41004 42087 47 5 1 2 33

47068 41004 42087 47 5 2 2 23.2

47074 44042 44213 47 3 2 1 27.6

47076 41019 41008 47 6 2 2 25

47077 41019 41008 47 6 2 2 29.8

47078 45135 45121 47 2 2 2 11.5

47080 45135 45190 47 2 1 2 26.8

47083 45135 44184 47 3 2 1 25.6

47087 45135 45015 47 2 2 1 25.7

47091 41004 41083 47 6 1 1 27.1

47092 41004 41051 47 6 2 2 16.4

47094 44042 44022 47 3 2 2 18.2

47095 44042 44022 47 3 2 2 22.8

47096 44042 45102 47 2 1 2 24.2

47097 44042 45102 47 2 2 2 23.2

47098 41019 41033 47 6 1 1 37.7

47101 41004 42071 47 5 2 2 17.1

47102 41004 42071 47 5 1 2 21.1

47105 45135 44072 47 3 2 1 26.8

47108 41004 41138 47 6 1 2 28.1

47109 41004 41138 47 6 2 2 26.2

47111 41004 45026 47 2 1 2 12.4

47112 41019 42071 47 5 2 2 21.2

47113 41019 42071 47 5 2 2 21

47114 45135 44224 47 3 1 2 26.4

47115 45135 44224 47 3 2 2 23.9

47117 41004 41144 47 6 1 1 28.4

47118 41004 41136 47 6 1 2 27.9

47119 41004 41136 47 6 2 2 22.3

47120 45135 45055 47 2 2 1 26.9

47121 41004 41043 47 6 1 2 38.8

47123 41019 41028 47 6 1 2 28.2 I

47124 41019 41028 47 6 2 2 31.1

47126 41019 41023 47 6 1 2 22.7

47127 41019 41023 47 6 1 2 26.6

47130 45135 43037 47 4 2 2 22.6

47131 45135 43037 47 4 1 2 30.8

47132 44042 45098 47 2 2 1 30.8

47133 44042 45098 47 2 2 1 30.8

47134 41019 42065 47 5 1 2 38

47135 41019 41057 47 6 1 2 31.4

47136 44042 45061 47 2 1 1 33.3

47139 45135 43088 47 4 1 1 28.3

47140 44042 43029 47 4 2 2 24.9

47141 44042 43029 47 4' 2 2 25.2

47147 45135 43063 47 4 2 2 23.9

47148 45135 43063 47 .. 4 2 2 21.6

47150 45135 45056 47 2 2 2 22.1

47151 45135 45056 47 2 2 2 18.7

47161 44042 44253 47 3 1 2 31.9

47167 45070 45048 47 2 2 2 25.2

47169 45070 45048 47 2 1 2 22.1

47170 45135 43012 47 4 1 1 30.6

47174 45135 45094 47 2 2 1 34

47184 44042 43100 47 4 1 1 22.3

47188 45135 43024 47 4 2 1 27.3

47189 44042 44252 47 3 1 1 32.9

47204 41004 41044 47 6 1 1 32.6

47208 41019 41041 47 6 2 2 30.6

47210 44042 45063 47 2 1 1 23

47211 44042 44064 47 3 1 1 32.6

47212 45135 43020 47 4 2 1 24.9

47213 45135 44027 47 3 1 1 32.2

47215 41004 41061 47 6 2 2 26.1

47216 41004 41061 47 6 1 2 26

48001 46015 45049 48 3 2 2 22.1

48002 46015 45049 48 3 2 2 25.4

48003 41004 41031 48 7 2 2 22.6

48004 41004 41031 48 7 1 2 33.6-----
48006 44042 41040 48 7 1 2 33.8

48007 41004 41144 48 7 1 2 24.4

48008 41004 41144 48 7 2 2 24.6

48009 46037 44083 48 4 1 1 39.5

48010 46037 45054 48 3 2 1 35.2

48011 44042 45115 48 3 1 2 20.9

48012 44042 45115 48 3 1 2 29.1

48013 41004 42080 48 6 2 1 42.7

48014 45070 45116 48 3 1 1 42.5

48015 46037 44022 48 4 1 1 39.3

48016 46037 46170 48 2 1 1 33.6

48017 46015 44205 48 4 2 2 27.7

48018 46015 44205 48 4 1 2 32.4

48023 44042 41028 48 7 1 2 37.4

48027 41004 46134 48 2 1 1 40

48028 41004 41122 48 7 1 2 28.9

48029 41004 41122 48 7 2 2 23.8

48030 41004 46177 48 2 2 2 31.1

48031 41004 46177 48 2 2 2 30.9

48032 41004 45036 ~_f!_ __ L. 3 2 2 29.9
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48034 41004 41001 48 7 2 2 32.9

48035 41004 41001 48 7 2 2 32.8

48036 41004 41010 48 7 2 1 39.9

48039 .46015 45027 48 3 1 1 32.1

48042 46037 45211 48 3 2 2 27.1

48043 46037 45211 48 3 1 2 30.4

48045 45070 46006 48 2 1 1 47.3

48046 46015 46064 48 2 1 1 42.6

48047 45070 45063 48 3 2 2 35.6

48049 46037 45082 48 3 1 2 20

48050 46037 45082 48 3 2 2 27.2

48051 41004 46048 48 2 2 1 27.7

48052 44042 41074 48 7 1 3 25.6

48054 44042 41074 48 7 2 3 22.5

48056 45070 43033 48 5 2 2 26.2

48057 45070 43033 48 5 2 2 29.6

48058 41004 42060 48 6 2 1 37

48060 45070 44121 48 4 2 1 381

48062 46037 46076 48 2 1 1 453

48064 46015 46004 48 2 1 2 252

48065 46015 46004 48 2 2 2 255

48066 44042 45073 48 3 2 2 29.5

48067 44042 45073 48 3 2 2 27.6

48068 46015 46175 48 2 2 2 25

48069 46015 46175 48 2 2 2 26.1

48070 44042 45102 48 3 1 2 27.8

48071 44042 45102 48 3 2 2 29.6

48072 45070 43084 48 5 1 1 39.3

48076 44042 43063 48 5 1 2 25.4

48077 44042 43063 48 5 1 2 25.8

48078 44042 41093 48 7 1 2 23.3

48079 44042 41093 48 7 2 2 25.4 i

48080 41004 42065 48 6 1 1 45.7

48082 41004 41044 48 7 1 1 43

48084 41004 41057 48 7 1 1 44

48085 46037 45077 48 3 1 1 46.1

48086 46037 45056 48 3 1 1 35.2 I
48087 44042 43029 48 5 1 2 33.6

48088 44042 43029 48 5 1 2 28.1

48089 44042 44082 48 4 2 1 36.6

48090 46015 44072 48 4 2 1 38.3

48091 46037 45003 48 3 1 1 47.2

48092 45070 46005 48 2 1 1 39.8

48093 46037 43086 48 5 2 1 38.9

48095 44042 44253 48 4 1 2 38.7

48097 45070 43014 48 5_ 2 1 38.5

48098 46037 44115 48 4 1 1 44.5

48100 44042 41023· 48 7 2 2 36.4

48102 44042 44163 48 4 1 2 30.3

48i03 44042 44163 48 4 2 2 24.4

48104 45070 43100 48 5 1 1 36 I

48107 46037 44217 48 4 1 1· 35

48110 46037 43089 48 5 1 3 33.2

48111 46037 43089 48 5 1 3 19.7

48112 46037 43089 48 5 2 3 21.8

48113 45070 46209 48 2 1 2 19.3

48114 45070 46209 48 2 2 2 20.7

48116 45070 43026 48 5 1 1 36.8

48117 45070 45094 48 3 2 1 31.1

481Hi 46015 44098 48 4 2 2 28.8

48119 46015 44098 48 4 1 2 29.2

48120 46015 46008 48 2 1 2 23.3 I

48121 46015 46008 48 2 2 2 21.7 I

48122 44042 41105 48 7 1 2 34.7

48123 44042 41105 48 7 1 2 31.1

48124 45070 45156 48 3 2 2 20.9

48125 45070 45156 48 3 1 2 25.7

48126 46015 46072 48 2 2 2 25.2

48127 46015 46072 48 2 1 2 27.6

48129 45070 43020 48 5 2 1 27.8

48130 46037 44064 48 4 1 1 37.5
,

48131 46037 45015 48 3 2 2 24.2 I

48132 46037 45015 48 3 2 2 25.5

48133 46015 44228 48 4 1 2 30.9

48134 46015 44228 48 4 2 2 25.3

48136 46037 46047 48 2 1 1 33.2

48137 44042 43072 48 5 1 2 29.6

48138 44042 43072 48 5 1 2 31.5

48139 44042 41083 48 7 2 1 28

48140 46015 44184 48 4 1 1 37.6

48141 46015 44224 48 4 1 2 29.7

48142 46015 44224 48 4 1 2 29

48143 46015 46023 48 2 2 2 24.6

48144 46015 46023 48 2 2 2 23.6

48145 41004 46147 48 2 2 1 36.4

48146 45070 43003 48 5 1 1 32.9

48147 46037 44013 48 4 2 1 33.6

48150 45070 45153 48 3 2 2 30.8

48151 45070 45153 48 3 1 2 28.4

48152 45070 45061 48 3 2 1 28.2

48155 45070 46102 48 2 2 1 30.4

48156 44042 43083 48 5 1 1 37.5
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48158 46015 46025 48 2 2 1 32.9

'48159 45070 43018 48 5 2 1 23.8

48160 44042 43110 48 5 2 2 26.4

48161 44042 43110 48 5 1 2 33.1

48162 45070 41047 48 7 2 1 31.6

48164 46037 44213 48 4 1 1 39.8

48166 46015 4622 48 2 2 2 23

48167 46015 4622 48 2 2 2 25.2

48170 41004 41043 48 7 1 2 39.7

48171 44042 44252 48 4 2 2 31

48172 44042 44252 48 4 1 2 33.1

48173 46015 46205 48 2 2 1 27.3

48174 45070 46026 48 2 2 1 29.1

48175 45070 45103 48 3 1 1 26.7

48177 46037 45208 48 3 2 1 32.2

48179 44042 44158 48 4 2 1 37.5

48181 44042 41033 48 7 2 1 33.5

48184 45070 43025 48 5 1 1 31.3

48185 46037 45053 48 3 1 1 35.9

48186 46037 44220 48 4 2 1 35

48187 45070 43024 48 5 2 1 33.8

48188 45070 46224 48 2 2 1 33.7

48204 46037 45096 48 3 2 1 22.1

48205 4)004 41135 48 7 2 2 30.6

48206 41004 41135 48 7 2 2 28.5

48218 45070 45132 48 3 2 1 35.6

49001 45070 47208 49 2 1 2 34.3

49002 45070 45027 49 4 2 2 28.1

49003 45070 45027 49 4 2 2 27

49004 48014 47076 49 2 2 2 18

49005 46037 43089 49 6 2 2 25.1

49006 46037 43089 49 6 2 2 29

49008 46015 44064 49 5 2 1 31

49011 48014 47022 49 2 2 1 35.6

49012 48014 47148 49 2 1 1 38.8

49013 48014 47092 49 2 2 1 36.2

49014 46015 44217 49 5 2 1 33.7

49017 45070 45102 49 4 2 2 26.6

49018 45070 45102 49 4 2 2 27.4

49019 48052 45103 49 4 2 1 39.8

49020 46037 43086 49 6 2 1 39

49021 46037 44184 49 5 2 1 37.7

49022 45070 44224 49 5 2 1 41.9

49023 46037 44082 49 5 2 1 34

49024 46037 45054 49 4 1 2 36.3

49025 46037 45054 49 4 2 2 29.6

.._-----
49026 48014 47034 49 2 1 1 41.9

49029 45070 41031 49 8 2 2 17.3

49030 45070 41031 49 8 2 2 23.6

. 49032 46037 46013 49 3 1 2. 30.6

49033 45070 46147 49 3 2 2 39.5

49034 45070 46147 49 3 2 2 28.9

49035 48014 47102 49 2 2 1 348

49036 45070 45156 49 4 2 2 29.7

49037 45070 45156 49 4 1 2 16.8

49038 48052 47008 49 2 1 1 39.8

49039 46037 43063 49 6 1 2 28

49040 46037 43063 49 6 1 2 26.5

49041 46037 44098 49 5 2 1 37.2

49042 45070 44072 49 5 2 1 42

49043 45070 45116 49 4 1 2 41.4

49044 45070 45116 49 4 1 2 35.9

49045 48052 47029 49 2 1 1 32.3

49046 48052 47068 49 2 1 2 38.3

49047 45070 46048 49 3 2 2 33.5

49048 45070 46048 49 3 2 2 34.5

49049 46037 44121 49 5 2 1 38.8

49050 46037 47151 49 2 2 1 37.6

49051 48052 41093 49 8 1 2 32.6

49052 45070 41093 49 8 2 2 24

49053 48014 47141 49 2 1 2 50.3

49054 48014 47"141 49 2 2 2 22.8

49055 45070 41047 49 8 2 2 36.8

49056 45070 41047 49 8 2 2 33.2

49057 48014 46010 49 3 1 1 39.3

49058 46037 43084 49 6 1 1 44.9

49059 45070 46177 49 3 1 1 45.7

49060 46037 45004 49 4 2 2 38.6

49062 48052 45073 49 4 1 1 37.8

49063 48014 47074 49 2 2 1 35.6

49064 48014 44228 49 5 1 1 42.9

49065 48014 47112 49 2 1 1 43.8

49067 45070 41033 49 8 2 1 37

49068 46015 45115 49 4 1 3 33.8

49069 46015 45115 49 4 2 3 27.1

49070 46015 45115 49 4 2 3 28

49071 48014 47147 49 2 2 2 29.8

49072 48014 47147 49 2 2 2 34.4

49073 48052 47124 49 2 1 2 36.5

49074 48052 47124 49 2 2 2 30.4

49075 45070 46134 49 3 1 1 49.4

49076 48014 46073 49 3 1 1 44.6
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49077 46015 46072 49 3 2 1 34.7

49076 45070 44252 49 5 2 2 41

49079 45070 44252 49 5 1 2 36.4

49060 46037 45056' 49 4 2 2 32.4

49061 46037 45056 49 4 1 2 37.9

49062 46037 44115 49 5 2 1 43.6

49063 48014 46005 49 3 1 2 35

49084 48014 46005 49 3 1 2 29.2

49085 46037 42065 49 7 2 2 40.8

49088 45070 45063 49 4 1 2 36.8

49089 45070 45063 49 4 2 2 30.5

49090 46015 46175 49 3 2 2 29.3

49091 46015 46175 49 3 1 2 34.4

49092 46037 45055 49 4 2 1 37.2

49094 48014 47043 49 2 2 1 36.6

49095 46015 46004 49 3 2 1 38.8

49097 46037 44022 49 5 1 1 46

49099 45070 46026 49 3 2 2 30.7

49100 45070 46026 49 3 2 2 29.9

49101 46015 45077 49 4 2 1 38.5

49103 48052 44156 49 5 2 1 42

49104 48052 47174 49 2 1 1 43.5

49106 46037 45015 49 4 1 2 33.3

49107 46037 45015 49 4 1 2 33.9

49108 46037 46006 49 3 1 2 44.5

49109 46037 46006 49 3 2 2 30.1

49110 48052 47119 49 2 1 2 35.3

49111 48052 47119 49 2 2 2 27.8

49112 46015 43100 49 6 1 1 32.1

49113 48014 47094 49 2 2 2 26.7

49115 45070 41055 49 8 2 1 45

49117 46015 45211 49 4 2 1 37

49118 46015 43014 49 6 2 1 35.1

49119 48052 47215 49 2 1 1 31.6

49121 46015 43003 49 6 2 1 32.6

49122 46015 43029 49 6 1 1 45

49123 48052 47080 49 2 2 1 32.2

49125 46037 44163 49 5 1 1 41.8

49126 46015 43020 49 6 1 1 36.5

49127 46037 46023 49 3 1 2 37

49126 46037 46023 49 3 2 2 26.6

49129 46015 44220 49 5 2 1 40.5

49132 45070 42060 49 7 1 1 43.1

49134 46037 45082 49 4 1 1 43.9

49135 46015 44013 49 5 2 1 39.1

49136 48014 47056 49 2 2 1 35.5
-

49139 45070 44253 49 5 1 3 . 40.5

49141 46015 4622 49 3 1 2 35.1

49142 46015 4622 49 3 2 2 30.9

49143 45070 41083 49 B 2 2 27.4

49144 45070 41063 49 B 1 2 33

49145 46037 45153 49 4 2 2 33.1

49146 46037 45153 49 4 2 2 33.5

49149 46015 46025 49 3 1 2 38.7

49150 46015 46025 49 3 1 2 23.6

49151 48014 46009 49 3 1 2 27.1

49152 48014 46009 49 3 2 2 27.3

49154 46015 43110 49 6 2 1 33.2

49155 46015 44205 49 5 2 1 36.3

49156 48014 47113 49 2 1 2 26.3

49157 48014 47113 49 2 2 2 26.1

49158 48014 47132 49 2 1 2 35.4

49159 48014 47132 49 2 1 2 34.2

49160 46037 45053 49 4 2 2 27.3

49161 46037 45053 49 4 2 2 31.4

49162 45070 41026 49 6 1 2 37.6

49163 45070 41028 49 8 1 2 35.1

49167 45070 41043 49 8 1 2 28.5

49168 45070 41043 49 8 1 2 29.7

49169 46015 46064 49 3 2 1 43.4

49171 46015 43072 49 6 1 1 44.4

49172 46015 47120 49 2 2 1 39.1

49175 46052 47167 49 2 1 ~ 28

49177 46037 45208 49 4 1 1 45.8

49183 48052 47001 49 2 1 1 38.4

49187 48014 47188 49 2 2 2 26

49188 46014 47188 49 2 2 2 19.2

49193 46037 44213 49 5 1 1 47.1

49196 48014 47014 49 2 1 1 41.6

49197 46015 46205 49 3 2 1 35.7

49198 46037 43033 49 6 1 1 39

49201 46015 47115 49 2 2 1 39

49202 46015 47130 49 2 2 1 32.7

49206 46015 43026 49 6 1 1 45.1

49208 48052 47087 49 2 2 1 35

49212 45070 45132 49 4 2 1 39.7

49216 46037 46224 49 3 1 3 37

49219 46037 46224 49 3 ? 3 23.4

49220 46037 46224 49 3 2 3 33

49225 48014 47140 49 2 1 3 40.7

49227 48014 47015 49 2 1 3 26.2

_ 49228 46037 46024 49 6 2 2 33.4



-271- -272-

Appendix IJ: Dormer Stud Data; Elsenburg Cullege of Agriculture Appendix H: Dormer Stud /Jata; J:Jsl!nhurx ('ollexe of Agncutture

49229 46037 43024 49 6 2 2 34.9

49231 45070 41057 49 8 1 1 45.7

50005 48014 45208 50 5 1 2 21.1

50006 48014 45208 50 .5- 2 2 32.1

50007 48014 45103 50 5 1 1 36.5

50010 45070 42060 50 8 2 1 33.5

50011 48140 47008 50 3 2 3 22.2

50012 48140 47008 50 3 2 3 25.3

50014 48014 48118 50 2 1 2 21.9

50015 48014 48118 50 2 2 2 25.1

50018 48014 43033 50 7 1 2 25.3

50019 48014 43033 50 7 2 2 22.1

50021 48140 47087 50 3 2 1 20.3

50023 48140 48160 50 2 1 2 29.9

50024 48140 48160 50 2 2 2 25.2

50027 48140 47141 50 3 2 1 28.6

50028 48014 47140 50 3 2 1 34.2

50030 48014 48144 50 2 1 1 33.1

50031 48140 47080 50 3 1 2 29.1

50032 48140 47080 50 3 2 2 21.2 I

50033 48140 48089 50 2 1 1 29.4

50034 48014 47056 50 3 2 1 31.1

50036 45070 42065 50 8 2 1 31.6

50040 49053 48054 50 2 2 2 36.1 i

50042 48140 48079· 50 2 1 1 38

50043 48014 43089 50 7 1 2 27.4

50044 48014 43089 50 7 2 2 26.5

50045 48014 44064 50 6 2 ·1 29

50047 48140 47148 50 3 1 2 29.3

50048 48140 47148 50 3 2 2 21.2

50052 48140 43014 50 7 1 1 38.3

50053 48140 47105 50 3 1 1 37.8

50054 45070 44098 50 6 1 1 34.7

50055 48014 45056 50 5 1 1 35.4

50056 46037 46170 50 4 2 1 22.9

50057 46037 44013 50 6 1 2 32.8

50058 46037 44013 50 6 1 2 25.9

50060 46037 45003 50 5 2 1 36.4

50061 48014 48001 50 2 1 2 31.1

50062 48014 48001 50 2 1 2 27.6

50063 48014 45094 50 5 2 1 37.1

50065 45070 45132 50 5 2 1 37.1

50066 46037 46006 50 4 2 2 31.9

50067 46037 46006 50 4 2 2 28.1

50068 46037 45116 50 5 2 1 31.6

50069 46037 45077 50 5 2 1 33.3

50070 48140 47130 50 3 2 1 34.1

50072 49053 48165 50 2 2 2 20.5

50074 45070 44205 50 6 2 1 34.1

50075 45070 44072 50 6 2 1 35.7

50076 46037 44022 50 6 2 1 30.6

50077 48014 48068 50 2 2 1 28.7

50078 48052 44217 50 6 2 1 3D"

50079 49053 48058 50 2 1 1 36.7

50080 48052 48060 50 2 1 1 34.5

50081 48014 46205 50 4 2 1 34"
50083 45070 47077 50 3 2 1 15.8

50084 46037 43018 50 7 2 1 26.3

50087 48014 48134 50 2 2 1 30.2

50088 49134 48036 50 2 1 2 33.6

50089 49134 48036 50 2 2 2 24.5

50090 48014 47097 50 3 2 2 23.4

50091 48014 47097 50 3 2 2 15.4

50093 46037 46004 50 4 1 2 30.4

50094 46037 46004 50 4 1 2 35.6

50095 48052 48047 50 2 2 1 32.6

50096 48014 48143 50 2 2 2 29.1

50098 45070 47112 50 3 1 1 37.2

50099 48014 47132 50 3 1 2 31.8

50100 48014 47132 50 3 2 2 30.6

50101 48140 48171 50 2 1 2 20.9

50102 48140 48171 50 2 2 2 24.9

50103 48052 48162 50 2 2 2 21.2

50104 48052 48162 50 2 2 2 22.5

50105 48014 47043 50 3 2 1 28.2

50106 48140 43110 50 7 2 1 18.9

50108 46037 47215 50 3 2 1 31.1

50109 49053 48158 50 2 1 2 29.6

50110 49053 48158 50 2 2 2 23.1

50111 48014 4622 50 4 1 2 30.5

50112 48014 4622 50 4 2 2 32.9

50113 49053 48166 50 2 1 2 33.3

50114 49053 48166 50 2 2 2 26.7

50115 46037 45015 50 5 2 1 32

50116 48140 47113 50 3 2 1 24.7

50117 46037 46064 50 4 2 1 37.3

50118 48014 46009 50 4 2 1 34.5

50119 49134 48030 50 2 1 1 40

50120 48014 48090 50 2 1 2 21.7

50121 48014 48090 50 2 2 2 28.3

50122 46037 45153 50 5 2 2 29.7

50123 46037 45153 50 5 2 2 23.1
---------
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Appendix B: Dormer Stud Duw; Hlsenburg College of Agriculture Appendix JJ: /Jurmer Stud Data; Elsenburg ('ullege of Agriculture

50124 48052 46026 50 4 1 2 31.7

50125 48052 46026 ·50 4 2 2 27.6

50128 46037 43003 50 7 2 2 23

50129 46037 46013 50 4 2 2 20.7

50130 46037 46073 50 4 1 2 25.4

50131 46037 46025 50 4 1 1 36.1

50132 48140 44224 50 6 2 1 33.5

50133 48052 48002 50 2 1 1 31.6

50134 46037 43086 50 7 1 2 32.2

50135 46037 43086 50 7 1 2 36.5

50138 48014 48069 50 2 2 1 25.6

50139 49134 48179 50 2 2 1 40.8

50140 48140 47115 50 3 2 2 35.9

50142 46037 45211 50 5 2 1 Jo
50143 49134 48003 50 2 1 2 28.1

50144 49134 48003 50 2 2 2 21.1

50145 48014 ~&121 50 2 I 2 28.1

50146 48014 48121 50 2 2 2 25.6

50149 48140 48139 50 2 2 1 25.9

50150 46037 44121 50 6 2 I 32.4

50151 49053 48051 50 2 1 I 34.1

50152 46037 44163 50 6 2 2 20.5

50153 46037 44163 50 6 2 2 19.6

50154 48052 48017 50 2 2 2 17.2

50155 48052 48017 50 2 2 2 21.6

50158 46037 44082 50 6 1 2 28.7

50159 46037 44083 50 6 2 2 23.9

50160 49046 48050 50 2 2 I 34.4

50163 48140 48100 50 2 2 I 35.3

50164 48052 46048 50 4 1 2 38.7

50167 46037 46175 50 4 2 I 31.1

50168 46037 47119 50 3 2 I 28.9

50169 48052 48056 50 2 2 2 26.7

50170 48052 48056 50 2 2 2 23.1

50171 48140 47014 50 3 2 I 30

50172 48140 48067 50 2 2 1 35.1

50173 48140 46224 50 4 2 1 37.4

50174 48140 48177 50 2 1 I 32.8

50175 49046 48167 50 2 2 2 27.6

50176 49046 48167 50 2 2 2 25.7

50178 48052 44228 50 6 I 2 33

50179 48052 44228 50 6 2 2 32.9

50185 49046 48173 50 2 1 I 34.2

50186 48052 44115 50 6 2 1 38.6

50188 48052 47022 50 3 2 I 28.3

50191 46037 43026 50 7 I 1 36.7

- ------
50192 48052 47174 50 3 2 2 25.1

50193 48052 47174 50 3 2 2 31.9

50194 48014 44184 50 6 2 2 26.9
-

50195 48014 44184 .50 6 2 2 25.7

50196 48052 43024 50 7 I 1 38.9

50197 48052 48187 50 2 2 I 27.3

50200 48052 44213 50 6 I I 50.6

50201 48052 43072 50 7 I 1 42.7

50202 46037 41028 50 9 1 2 36.6

50203 46037 41028 50 9 1 2 30.1
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Appendix C: Datasetfrom Duchateau, et al., 1998; International Livestock Research Institute (ILRI), Kenya

APPENDIX C

The example used for illustrative purposes are based on an experiment undertaken at the

International Livestock Research Institute (ILRI) at the University of Nairobi, Kenya in the early

90's (Duchateau, et al., 1998). The goal of the research was to select for improved helminth

resistance in sheep.

The female sheep used in the experiment are from three different breeds (br), whereas the males

are from two breeds. In each of the six crosses, there are at least 25 and at most 42 different sires,
. .~"

and each sire within a crossbreed has on average offspring of 6.4 lambs. ''Fhe weaning weight is
"..........

measured for each lamb (YWW), '...'_

Although the same sire is mated to ewes from different breeds, the sire nested in breed is taken as

a single random effect and it is assumed that these random effects are independent. A total of

n = 1277 weaning weight records, from the progeny of q = 200 sires are available after editing, and

breed, sex and age are included as fixed effects in the final model.



~---------------------------------------------------------------------------,
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Appendix C: Dataset/rom Duchateau, et al .. 199'1: Internottonat Livestock Research Institute (ILR/). Kenya Appendix C: Datoset from Duchcueou, et al., 191)X; Iruernanonal Livestock Research lnstit ute (fLUJ), Kenya

Brl Br2 Br3 Br4 Br5 Br6 Age

Breed Sire 10 Sex1B6) Age YIWW) Sex Sire_Nr BO Bl B2 B3 54 es B6 B7

1 1971 F 145 11.2 0 1 I 1 0 0 0 0 0 145

1 1971 F 140 15.4 0 1 1 1 0 0 0 0 0 140

1 1971 F 140 10.9 0 1 1 1 0 0 0 0 0 140

1 1971 M 122 11.4 1 1 1 1 0 0 0 0 1 122

1 1972 F 152 16 0 2 1 1 0 0 0 0 0 152

1 1972 M 151 13.2 1 2 1 1 0 0 0 0 1 151

1 1972 F 146 14.9 0 2 1 1 0 0 0 0 0 146

1 1972 F 139 7.9 0 2 1 1 0 0 0 0 0 139

1 1972 M 132 15.7 1 2 1 1 0 0 0 0 1 132

1 1972 F 131 13.1 0 2 I 1 0 0 0 0 0 131

I 1972 F 128 12.5 0 2 1 1 0 0 0 0 0 128

1 1972 M 124 12.2 I 2 1 1 0 0 0 0 I 124

1 1972 M 122 14.6 1 2 1 1 0 0 0 0 1 122

1 1972 F 115 13.6 0 2 1 1 0 0 0 0 0 lIS

1 1972 M 110 12.6 1 2 1 1 0 0 0 0 1 110

1 1973 F 157 11.9 0 3 1 1 0 0 0 0 0 157

1 1973 M 157 20 1 3 1 I 0 0 0 0 1 157

1 1973 M 156 17.1 I 3 1 1 0 0 0 0 1 156

1 1973 M 143 10.8 1 3 1 1 0 0 0 0 I 143

1 1973 M 136 12.5 I 3 1 1 0 0 0 0 1 136

1 1974 M 159 15.8 1 4 1 1 0 0 0 0 1 159

1 1974 F 156 12.8 0 4 1 I 0 0 0 0 0 156

1 1974 F 156 20.2 0 4 1 1 0 0 0 0 0 156

1 1974 M 155 18.7 1 4 1 1 0 0 0 0 1 155

1 1974 M 144 18.5 1 4 1 1 0 0 0 0 1 144

1 1974 M 143 18.8 I 4 1 1 0 0 0 0 1 143

1 1974 F 136 11.1 0 4 1 I 0 0 0 0 0 136

1 1974 M 135 16.8 1 4 1 1 0 0 0 0 1 135

I 1974 M 134 17.5 1 4 1 1 0 0 0 0 1 134

1 1974 F 126 14.2 0 4 1 1 0 0 0 0 0 126

1 1980 M 175 18.5 1 5 1 1 0 0 0 0 1 175

1 1980 M 155 17.9 1 5 1 1 0 0 0 0 1 155

1 1980 M 151 12.7 1 5 I I 0 0 0 0 1 151

1 1980 F 148 13.4 0 5 I 1 0 0 0 0 0 148

1 1980 M 145 12.7 1 5 1 1 0 0 0 0 1 145

1 1980 M 141 19 1 5 1 1 0 0 0 0 1 141

1 1980 M 124 13.4 1 5 1 1 0 0 0 0 1 124

1 1991 F 134 10.6 0 6 I 1 0 0 0 0 0 134

1 1991 M 128 13.1 1 6 1 1 0 0 0 0 1 128

1 1991 F 121 14.3 0 6 1 I 0 0 0 0 0 121

1 1991 M 112 15.6 1 6 1 1 0 0 0 0 1 112

1 1991 M 98 10.4 I 6 1 1 0 0 0 0 1 98

1 1999 M 149 14 1 7 1 1 0 0 0 0 1 149 I
1 1999 F 144 18.3 0 7 1 1 0 0 0 0 0 144

1 1999 M 141 17.3 1 7 1 1 0 0 0 0 1 141

1 .1999 M 134 13.2 1 7 1 1 0 Ó 0 0 1 134

1 4907 M 155 18 1 8 1 1 0 0 0 0 1 155

1 4907 F 153 13.1 0 8 1 1 0 0 0 0 0 153

1 4907 F 152 13.1 0 8 1 1 0 0 0 0 0 152

1 4907 M 152 9.5 1 8 1 1 0 0 0 0 1 152

1 4907 M 135 13.8 1 8 1 1 0 0 0 0 1 135

I 4907 M 132 15.7 1 8 1 1 0 0 0 0 1 132

1 4907 M 129 12.6 1 8 1 1 0 0 0 0 1 129

1 4907 M 115 12 1 8 1 1 0 0 0 0 1 115

1 4908 F 162 19 0 9 1 1 0 0 0 0 0 162

1 4908 M 148 15.3 1 9 1 1 0 0 0 0 1 148

1 4908 M 147 18.8 1 9 1 1 0 0 0 0 1 147

I 4908 F 139 15.1 0 9 1 1 0 0 0 0 0 139

1 4908 M 134 16.1 1 9 1 1 0 0 0 0 1 134

1 4908 F 118 13.2 0 9 1 1 0 0 0 0 0 118

1 4908 M 132 14.2 1 9 1 1 0 0 0 0 1 132

1 4908 F 126 13.5 0 9 1 1 0 0 0 0 0 126

1 4908 M 125 13.8 1 9 1 1 0 0 0 0 1 125

1 4908 F 125 14.2 0 9 1 1 0 0 0 0 0 125

1 4908 F 122 18.9 0 9 1 1 0 0 0 0 0 122

1 4908 F 122 12.7 0 9 1 1 0 0 0 0 0 122

1 4908 M 94 11.4 1 9 1 1 0 0 0 0 1 94

1 4908 F 169 12.8 0 9 1 1 0 0 0 0 0 169

1 4908 M 156 16.4 1 9 1 1 0 0 0 0 1 156

1 4909 F 145 6.3 0 10 1 1 0 0 0 0 0 145

1 4909 M 140 11.5 1 10 1 1 0 0 0 0 1 140

1 4909 F 124 13.2 0 10 1 1 0 0 0 0 0 124

1 4909 F 117 9.6 0 10 1 1 0 0 0 0 0 117

1 4910 F 157 12.1 0 11 1 1 0 0 0 0 0 157

1 4910 F 154 13 0 11 1 1 0 0 0 0 0 154

1 4910 M 150 13.2 1 11 1 1 0 0 0 0 1 150

1 4910 F 143 19.1 0 11 1 1 0 0 0 0 0 143

1 4910 F 121 12.3· 0 11 1 1 0 0 0 0 0 121

1 4910 F 129 9.3 0 11 1 1 0 0 0 0 0 129

1 4910 F 129 14.3 0 11 1 1 0 0 0 0 0 129

1 4910 F 127 15 0 11 1 1 0 0 0 0 0 127

1 4910 M 121 11.4 1 11 1 1 0 0 0 0 1 121

1 4910 F 115 12.4 0 11 1 1 0 0 0 0 0 115

1 4910 M 102 14.3 1 11 1 1 0 0 0 0 1 102

1 4910 F ·84 10.2 0 11 1 1 0 0 0 0 0 84

1 4910 M 97 9.1 1 11 1 1 0 0 0 0 1 97

1 4911 M 158 17.3 1 12 1 1 0 0 0 0 1 158

1 4911 F 156 17.3 0 12 1 1 0 0 0 0 0 156



Appendix (': Duwsetfrom Duohateau. et uI., 1998; lruernanonal Livestock Research institute (IL/U), Kenya Appendix C: Dataset from Duohuteau. et ul., 19YH; tntemononot Livestock Research lnstu ute (ILIU), Kenya

1 4911 M 155 12.4 1 12 1 1 0 0 0 0 1 155

1 4911 M 141 11.5 1 12 1 1 0 0 0 0 1 141

1 4911 M 141 16.5 1 12 1 1 0 0 0 0 1 141

.1 4911 M 144 16.9 1 12 1 1 0 0 0 O. 1 144

1 4911 F 138 12 0 12 1 1 0 0 0 0 0 138

1 4911 M 131 13.3 1 12 1 1 0 0 0 0 1 131

1 4912 F 155 11 0 13 1 1 0 0 0 O· 0 155

1 4912 M 144 10.8 1 13 1 1 0 0 0 0 1 144

1 4912 F 140 8.1 0 13 1 1 0 0 0 0 0 140

1 4912 F 131 11.3 0 13 1 1 0 0 0 0 0 131

1 4915 F 128 10.1 0 14 1 1 0 0 0 0 0 128

1 4915 F 121 14.2 0 14 1 1 0 0 0 0 0 121

1 4915 M 113 15.6 1 14 1 1 0 0 0 0 1 113

1 4915 M 101 9.6 1 14 1 1 0 0 0 0 1 101

1 4916 F 112 10.4 0 15 1 1 0 0 0 0 0 112

1 4916 M 98 10.2 1 15 1 1 0 0 0 0 1 98

1 4916 M . 111 10.1 1 15 1 1 O· 0 0 0 1 111

1 4916 F 109 13.2 0 15 1 1 0 0 0 0 0 109

1 5001 F 119 1 0 16 1 1 0 0 0 0 0 119

1 5001 F 172 15 0 16 1 1 0 0 0 0 0 112

1 5002 M 113 13.4 1 11 1 1 0 0 0 0 1 113

1 5002 F 101 11.1 0 11 1 1 0 0 0 0 0 101

1 5002 F 100 1.9 0 11 1 1 0 0 0 0 0 100

1 S002 F 99 10.5 0 11 1 1 0 0 0 0 0 99

1 5002 M 152 9.2 1 11 1 1 0 0 0 0 1 152

1 5003 M 134 15.1 1 18 1 1 0 0 0 0 1 134

1 S003 F 121 12.4 0 18 1 1 0 0 0 0 0 121

1 5004 M 111 15.5 1 19 1 1 0 0 0 0 1 111

1 5004 M 110 13.2 1 19 1 1 0 0 0 0 1 110

1 5004 F 108 10.4 0 19 1 1 0 0 0 0 0 108

1 5004 F 101 10.1 0 19 1 1 0 0 0 0 0 101

1 5004 F 106 14.8 0 19 1 1 0 0 0 0 0 106

1 5005 M 130 13.1 1 20 1 1 0 0 0 0 1 130

1 5005 M 104 11.6 1 20 1 1 0 0 0 0 1 104

1 5005 F 91 9.5 0 20 1 1 0 0 0 0 0 91

1 5005 F 88 15.1 0 20 1 1 0 0 0 0 0 88

1 5005 F 163 9.3 0 20 1 1 0 0 0 0 0 163

1 5001 M 113 11.1 1 21 1 1 0 0 0 0 1 113

1 5001 F 166 12.5 0 21 1 1 0 0 0 0 0 166

1 5001 M 163 16.5 1 21 1 1 0 0 0 0 1 163

1 S007 F 121 6.1 0 21 1 1 0 0 0 0 0 121

1 5007 M 115 10.1 1 21 1 1 0 0 0 0 1 115

1 5008 F 115 13.8 0 22 1 1 0 0 0 0 0 175

1 5008 F 158 10.8 0 22 1 1 0 0 0 0 0 158

1 5008 M lSO 8.1 1 22 1 1 0 0 0 0 1 150

1 5008 M 111 14.1 1 22 1 1 0 0 0 0 1 111

1 5009 M 115 13.4 1 23 1 1 0 0 0 0 1 115

1 5009 M 110 9.8 1 23 1 1 0 0 0 0 1 110

1 5010 F 169 13.5 0 24 1 1 0 0 0 0 0 169

1 5010 M 143 15.6 1 24 1 1 0 ei 0 0 1 143

1 5010 F 140 11.6 0 24 1 1 0 0 0 0 0 140

1 SOll M 175 10.5 1 25 1 1 0 0 0 0 1 175

1 5011 F 166 11.9 0 25 1 1 0 0 0 0 0 166

1 S011 F 112 10.9 0 25 1 1 0 0 0 0 0 112

1 5012 M 168 17 1 26 1 1 0 0 0 0 1 168

1 S012 M 156 12.6 1 26 1 1 0 0 0 0 1 156

1 S013 M 172 13.7 1 27 1 1 0 0 0 0 1 172

1 S013 F 168 13.5 0 27 1 1 0 0 0 0 0 168

1 S013 F 157 11.5 0 27 1 1 0 0 0 0 0 157

1 S071 F 116 9.7 0 28 1 1 0 0 0 0 0 116

1 S011 F 110 12.7 0 28 1 1 0 0 0 0 0 110

1 S071 M 133 16 1 28 1 1 0 0 0 0 1 133

1 S071 F 132 13.1 0 28 1 1 0 0 0 0 0 132

1 S073 M 90 8.9 1 29 1 1 0 0 0 O. 1 90

1 5016 M 117 11 1 30 1 1 0 0 0 0 1 117

1 5205 F 108 1.5 0 31 1 1 0 0 0 0 0 108

1 5324 F 136 6.2 0 32 1 1 0 0 0 0 0 136

1 5326 F 93 8.5 0 33 1 1 0 0 0 0 0 93

1 5326 M 135 10.2 1 33 1 1 0 0 0 0 1 135

1 5328 M 126 13.9 1 34 1 1 0 0 0 0 1 126

1 5328 F 121 10.7 0 34 1 1 0 0 0 0 0 121

1 5328 M 118 7.4 1 34 1 1 0 0 0 0 1 118

1 5328 F 138 14 0 34 1 1 0 0 0 0 0 138

1 5328 M 135 12.8 1 34 1 1 0 0 0 0 1 135

1 5329 F 122 12.4 0 35 1 1 0 0 0 0 0 122

1 5329 F 98 6.2 0 35 1 1 0 0 (] 0 0 98

1 5329 M 137 12.6 1 35 1 1 0 0 0 0 1 131

1 5329 F 132 11.3 0 35 1 1 0 0 0 0 0 132

1 5329 M 132 9.1 1 35 1 1 0 0 0 0 1 132

1 5329 F 128 13 0 35 1 1 0 0 0 0 0 128

1 5330 F 122 8.8 0 36 1 1 0 0 0 0 0 122

1 5330 M 141 8.3 1 36 1 1 0 0 0 0 1 141

1 5330 F 139 7.9 0 36 1 1 0 0 0 0 0 139

1 5330 F 131 8.3 0 36 1 1 0 0 0 0 0 131

1 5330 M 115 10.5 1 36 1 1 0 0 0 0 1 115

1 5331 F 129 10.3 0 37 1 1 0 0 0 0 0 129

1 5337 M 127 12.5 1 37 1 1 0 0 0 0 1 127

1 5331 M 116 10.9 1 37 1 1 0 0 0 0 1 116

1 5337 F 115 7.8 0 37 1 1 0 0 0 0 0 115

1 5338 M 121 9.2 1 38 1 1 0 0 0 0 1 121

1 5338 F 139 11 0 38 1 1 0 0 0 0 0 139

1 5338 M 112 10.1 1 38 1 1 0 0 0 0 1 112
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Appendix C: Datasetfrom Duohateau. et ul., /998; International Livestock Research Institute (JL/U). Kenya Appendix C: Dataset/rom Duohuteau. et al .. 1998; tnternationat Ltvestock Research Institute (IL/U), Kenya

2 1975 F 147 11.2 0 39 1 0 1 0 0 0 0 147

2 1975 M 145 12.8 1 39 1 0 1 0 0 0 1 145

2 1975 M 136 12.5 1 39 1 0 1 0 0 0 1 136

.2 1975 M 134 12.4 1 39 1 Ó 1 0 0 .0. 1 134

2 1975 M 133 16.6 1 39 1 0 1 0 0 0 1 133

2 1975 F 126 8.9 0 39 1 0 1 0 0 0 0 '26

2 1976 M 154 '5.5 1 40 , 0 , 0 0 0 , 154

2 1976 F 147 9.5 0 40 , 0 , 0 0 0 0 '47

2 1976 F '42 15.3 0 40 , 0 , 0 0 0 0 '42

2 1976 M '39 '6.2 , 40 , 0 , 0 0 0 , '39

2 1976 F '23 1'.7 0 40 1 0 , 0 0 0 0 '23

2 '979 M 153 16.3 1 41 , 0 , 0 0 0 1 '53

2 '979 F '53 15.9 0 4' 1 0 1 0 0 0 0 '53

2 1979 F 152 18.7 0 41 1 0 , 0 0 0 0 152

2 1979 F 148 15.7 0 41 1 0 1 0 0 0 0 148

2 1979 F 146 13.1 0 41 1 0 1 0 0 0 0 146

2 1979 M 146 15 1 41 1 0 ,. 0 0 0 1 146

2 1979 F 132 12.5 0 41 1 0 1 0 0 0 0 132

2 1979 F 120 11 0 41 1 0 1 0 0 0 0 120

2 1979 M 111 10.3 1 41 1 0 1 0 0 0 1 111

2 1979 M 109 10.8 1 41 1 0 1 0 0 0 1 109

2 1981 M 157 15.6 1 42 1 0 1 0 0 0 1 157

2 1981 F 153 16.2 0 42 1 0 1 0 0 0 0 153

2 1981 F 153 11.6 0 42 1 0 1 0 0 0 0 153

2 1981 M 140 11 1 42 1 0 1 0 0 0 1 140

2 1981 M 136 12.2 1 42 1 0 1 0 0 0 1 136

2 1981 M 135 11.9 1 42 1 0 1 0 0 0 1 135

2 1981 M 131 12.5 1 42 1 0 1 0. 0 0 1 '31

2 1981 M 117 14.5 1 42 1 0 1 0 0 0 1 117

2 1982 M 130 8.1 1 43 1 0 1 0 0 0 1 130

2 1982 M 125 14.6 1 43 1 0 1 0 0 0 1 125

2 1982 M 118 10.6 1 43 1 0 1 0 0 0 1 118

2 1982 F 84 10.1 0 43 1 0 1 0 0 0 0 84

2 1983 M 156 18.1 1 44 1 0 1 0 0 0 1 156

2 1983 F 156 17.1 0 44 1 0 1 0 0 0 0 156

2 1983 F '53 15.9 0 44 1 0 1 0 0 0 0 153

2 1983 F 152 15 0 44 1 0 1 0 0 0 0 152

2 1983 F 147 17.2 0 44 1 0 1 0 0 0 0 147

2 1984 F 151 16.9 0 45 1 0 1 0 0 0 0 151

2 1984 F 150 12.1 0 45 1 0 1 0 0 0 0 150

2 1984 F 147 8.2 0 45 1 0 1 0 0 0 0 147 :

2 1984 M 145 15.2 1 45 1 0 1 0 0 0 1 145 I

2 1984 M 141 15.3 1 45 1 0 1 0 0 0 1 141

2 1984 F 135 13.5 0 45 1 0 1 0 0 0 0 135

2 1986 M 124 15.7 1 46 1 0 1 0 0 0 1 124

2 1986 M 121 9.9 1 46 1 0 1 0 0 0 1 121
--

2 1988 F 145 13.4 0 47 1 0 1 0 0 0 0 145

2 1988 'F 141 16.9 0 47 1 0 1 0 0 0 0 141

2 1988 M 139 17.1 1 47 1 0 1 0 0 0 1 139

2 .1988 F 137 13.2 0 47 1 0 1 Ó 0 0 0 .137

2 4901 F 153 17.2 0 48 1 0 1 0 0 0 0 153

2 4901 F 139 15.7 0 48 1 0 1 0 0 0 0 139

2 4901 F 139 10.8 0 48 1 0 1 0 0 0 0 139

2 4901 M 139 9.8 1 48 1 0 1 0 0 0 1 139

2 4901 F 135 13.5 0 48 1 0 1 0 0 0 0 135

2 4901 M 131 13.3 1 48 1 0 1 0 0 0 1 131

2 4901 M 123 15.8 1 48 1 0 1 0 0 0 1 123

2 4901 M 122 14.8 1 48 1 0 1 0 0 0 1 122

2 4901 F 120 10.7 0 48 1 0 1 0 0 0 0 120

2 4901 M 81 11.2 1 48 1 0 1 0 0 0 r 81

2 4902 M 148 17.5 1 49 1 0 1 0 0 0 1 148

2 4902 M 147 14.5 1 49 1 0 1 0 0 0 1 147

2 4902 M 146 17.1 1 49 1 0 1 0 0 0 1 146

2 4902 M 145 14.4 1 49 1 0 1 0 0 0 1 145

2 4902 M 139 8.8 1 49 1 0 1 0 0 0 1 139

2 4902 M 139 15.5 1 49 1 0 1 0 0 0 1 139

2 4902 M 132 14.3 1 49 1 0 1 0 0 0 1 132

2 4902 M 125 9.3 1 49 1 0 1 0 0 0 1 125

2 4902 F 119 12 0 49 1 0 1 0 0 0 0 119

2 4902 M 116 10.4 1 49 1 0 1 0 0 0 1 116

2 4903 F 150 15.4 0 50 1 0 1 0 0 0 0 150

2 4903 F 146 12.1 0 50 1 0 1 0 0 0 0 146

2 4903 M 144 15.5 1 50 1 0 1 0 0 0 1 144 i

2 4903 F 141 16.8 0 50 1 0 1 0 0 0 0 141 I

2 4903 F 137 13.9 0 50 1 0 1 0 0 0 0 137

2 4903 F 135 12.7 0 50 1 0 1 0 0 0 0 135

2 4903 M 125 13 1 50 1 0 1 0 0 0 1 125

2 4903 M 115 8.5 1 50 1 0 1 0 0 0 1 115

2 4903 M 114 7.1 1 50 1 0 1 0 0 0 1 114

2 4903 F 113 8.5 0 50 1 0 1 0 0 0 0 113

2 4903 M 107 12.2 1 50 1 0 1 0 0 0 1 107

2 4903 M 100 12.3 1 50 1 0 1 0 0 0 1 100

2 4905 M 155 17.2 1 51 1 0 1 0 0 0 1 155

2 4905 M 149 16.4 1 51 1 0 1 0 0 0 1 149

2 4905 M 143 10.1 1 51 1 0 1 0 0 0 1 143

2 4905 M 138 10.2 1 51 1 0 1 0 0 0 1 138

2 4905 M 134 15.3 1 51 1 0 1 0 0 0 1 134

2 4905 F 125 10.9 0 51 1 0 1 0 0 0 0 125

2 4905 M 127 13.1 1 51 1 0 1 0 0 0 1 127

2 4905 M 121 13.7 1 51 1 0 1 0 0 0 1 121

2 4905 M 117 7.6 1 51 1 0 1 0 0 0 1 117

2 4905 F 117 14 0 51 1 0 1 0 0 o_ o _~--
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Appendix C: Datasetfrom Duchateau, et at., 1998; lnternauonol Livestock Research Institute (11.lU), Kenya Appendix C: Datasetfrom Duohoteau. et ol., IY9N; Imemauonal l.ivestock Research Insnnne (JL/lj). A('''YD
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2 4905 F 114 15.2 0 51 1 0 1 0 0 0 0 114

2 4905 F 161 13 0 51 1 0 1 0 0 0 0 161

2 4905 F 150 10 0 51 1 0 1 0 0 0 0 150

2 4905 F 149 12.1 0 51 1 0 1 0 IJ 0 0 149

2 4905 F 146 8.3 0 51 1 0 1 0 0 0 0 146

2 4906 F 145 12 0 52 1 0 1 0 0 0 0 145

2 4906 M 143 16.2 1 52 1 0 1 0 0 0 1 143

2 4906 F 140 13.7 0 52 1 0 1 0 0 0 0 140

2 4906 F 138 15.9 0 52 1 0 1 0 0 0 0 138

2 4906 M 115 11.9 1 52 1 0 1 0 0 0 1 115

2 4906 M 112 13.8 1 52 1 0 1 0 0 0 1 112

2 4906 F 117 10.7 0 52 1 0 1 0 0 0 0 117

2 4906 M 107 14.2 1 52 1 0 1 0 0 0 1 107

2 4906 M 96 12.2 1 52 1 0 1 0 0 0 1 96

2 4906 F 163 14.7 0 52 1 0 1 0 0 0 0 163

2 4906 M 161 11.5 1 52 1 0 1 0 0 0 1 161

2 4906 F 151 11.7 0 52 1 0 1 0 0 0 0 151

2 4906 F 148 13 0 52 1 0 1 0 0 0 0 148

2 4906 M 146 15.4 1 52 1 0 1 0 0 0 1 146

2 4913 F 130 14.1 0 53 1 0 1 0 0 0 0 130

2 4913 F 120 11.7 0 53 1 0 1 0 0 0 0 120

2 4913 F 117 11.6 0 53 1 0 1 0 0 0 0 117

2 4913 F 111 10.3 0 53 1 0 1 0 0 0 0 111

2 4914 M 129 14.3 1 54 1 0 1 0 0 0 1 129

2 4914 F 126 6.8 0 54 1 0 1 0 0 0 0 126

2 4914 F 117 10.5 0 54 1 0 1 0 0 0 0 117

2 4914 M 168 15.1 1 54 1 0 1 0 0 0 1 168

2 4914 F 164 10.5 0 54 1 0 1 0 0 0 0 164

2 4914 F 151 7 0 54 1 0 1 0 0 0 0 151

2 4914 F 150 10.1 0 54 1 0 1 0 0 0 0 150

2 4914 F 122 10.1 0 54 1 0 1 0 0 0 0 122

2 4918 M 129 18.8 1 55 1 0 1 0 0 0 1 129

2 4918 M 110 11.2 1 55 1 0 1 0 0 0 1 110

2 4918 M 107 12.8 1 55 1 0 1 0 0 0 1 107

2 4919 M 170 10.6 1 56 1 0 1 0 0 0 1 170

2 4919 M 168 12.2 1 56 1 0 1 0 0 0 1 168

2 4919 F 165 10.5 0 56 1 0 1 0 0 0 0 165

2 4919 F 161 11.7 0 56 1 0 1 0 0 0 0 161

2 4921 M 118 9.7 1 57 1 0 1 0 0 0 1 118

2 4921 F 113 13.6 0 57 1 0 1 0 0 0 0 113

2 4921 F 112 9 0 57 1 0 1 0 0 0 0 112

2 4921 M 108 7.3 1 57 1 0 1 0 0 0 1 108

2 4921 M 97 13.5 1 57 1 0 1 0 0 0 1 97

2 4921 M 168 12 1 57 1 0 1 0 0 0 1 168

2 4921 F 159 13.9 0 57 1 0 1 0 0 0 0 159

2 4921 F 159 10.3 0 57 1 0 1 0 0 0 0 159

2 4921 M 156 11.3 1 57 1 0 1 0 0 0 1 156

2 4923· M 126 11.7 1 58 1 0 1 0 0 0 1 126

2 4923 M 113 14.5 1 58 1 0 1 0 0 0 1 113

2. 4923 M 106 12.7 1 58 1 0 1 0 0 0 .1 106

2 4923 F 102 10.7 0 58 1 0 1 0 0 0 0 102

2 4923 M 168 11.8 1 58 1 0 1 0 0 0 1 168

2 4923 M 163 14.5 1 58 1 0 1 0 0 0 1 163

2 4923 M 159 10.6 1 58 1 0 1 0 0 0 1 159

2 5015 M 167 14 1 59 1 0 1 0 0 0 1 167

2 5015 M 166 14.8 1 59 1 0 1 0 0 0 1 166

2 5015 F 161 12.1 0 59 1 0 1 0 0 0 0 161

2 5015 M 139 12.6 1 59 1 0 1 0 0 0 1 139

2 5015 M 128 14.9 1 59 1 0 1 0 0 0 1 128

2 5016 F 175 11.6 0 60 1 0 1 0 0 0 0 175

2 5016 M 161 11.1 1 60 1 0 1 0 0 0 1 161

2 5016 M 160 13 1 60 1 0 1 0 0 0 1 160
2 5016 M 156 12 1 60 1 0 1 0 0 0 1 156

2 5016 F 147 13.2 0 60 1 0 1 0 0 0 0 147

2 5016 M 102 7.4 1 60 1 0 1 0 0 0 1 102

2 5017 F 171 11.1 0 61 1 0 1 0 0 0 0 171

2 5017 M 162 16.6 1 61 1 0 1 0 0 0 1 162

2 5017 F 161 12 0 61 1 0 1 0 0 0 0 161

2 5017 M 156 10.4 1 61 1 0 1 0 0 0 1 156

2 5017 F 117 6.1 0 61 1 0 1 0 0 0 0 117

2 5017 F 126 6.5 0 61 1 0 1 0 0 0 0 126

2 5018 M 166 12.3 1 62 1 0 1 0 0 0 1 166

2 5018 F 113 11.1 0 62 1 0 1 0 0 0 0 113

2 5019 F 168 17.2 0 63 1 0 1 0 0 0 0 168

2 5019 M 162 13.6 1 63 1 0 1 0 0 0 1 162

2 5019 F 159 10.5 0 63 1 0 1 0 0 0 0 159

2 5019 M 159 9.2 1 63 1 0 1 0 0 0 1 159

2 5019 F 134 11.9 0 63 1 0 1 0 0 0 0 134

2 5019 M 118 8.7 1 63 1 0 1 0 0 0 1 118

2 5019 F 98 11.3 0 63 1 0 1 0 0 0 0 98

2 5020 F 164 12.5 0 64 1 0 1 0 0 0 0 164

2 5020 M 161 16.9 1 64 1 0 1 0 0 0 1 161

2 5020 M 159 10.5 1 64 1 0 1 0 0 0 1 159

2 5020 M 154 13.3 1 64 1 0 1 0 0 0 1 154

2 5020 F 132 11.4 0 64 1 0 1 0 0 0 0 132

2 5204 F 109 9 0 65 1 0 1 0 0 0 0 109

2 5207 F 121 10.2 0 66 1 0 1 0 0 0 0 121 i

2 5331 F 121 11.3 0 67 1 0 1 0 0 0 0 121

2 5334 F 125 9.3 0 68 1 0 1 0 0 0 0 125

2 5336 F 129 12.8 0 69 1 0 1 0 0 0 0 129

2 5336 M 122 8.9 1 69 1 0 1 0 0 0 1 122

3 1971 M 160 14.5 1 70 1 0 0 1 0 0 1 160 ;
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3 '97' F '59 '2.' 0 70 , 0 0 , 0 0 0 '59

·3 '97' M '54 '3.9 , 70 , 0 0 , 0 ·0 , '54
3 '97' F '5' '0.5 0 70 , 0 0 , 0 0 0 '5'

3 '97' F '48 11.7 0 7Ó , 0 O. , 0 0 0 '48

3 '97' F '48 '2.6 0 7Q , 0 0 , 0 0 0 '48

3 '97' M '47 8.7 , 70 , 0 0 , 0 0 , '47

3 '97' F '44 6.5 0 70 , 0 0 , 0 0 0 '44

3 '97' M '39 17.2 , 70 , 0 0 , 0 0 , '39

3 '972 M '52 '8.6 , 7' , 0 0 , 0 0 ., '52

3 '972 M '49 '5.2 , 7' , 0 0 , 0 0 , '49

3 '972 F '49 '6 0 7' , 0 0 , 0 0 0 '49

3 '972 M '48 '6.' , 7' , 0 0 , 0 0 , '48

3 '972 F '45 8.3 0 7' , 0 0 , 0 0 0 '45

3 '972 M '43 '5.7 , 7' , 0 0 , 0 0 , '43

3 '972 F '26 '6.7 0 7' , 0 0 , 0 0 0 '26

3 '972 F '22 10.5 0 71 , 0 0 1 0 0 0 122

3 1972 F 122 18.1 0 71 1 0 0 1 0 0 0 122

3 1972 F 119 8.8 0 71 1 0 0 , 0 0 0 119

3 1972 F 114 12.8 0 71 1 0 0 1 0 0 0 11.

3 '972 F 110 8.8 0 71 1 0 0 , 0 0 0 110

3 1972 F 107 11.7 0 71 1 0 0 1 0 0 0 '07

3 1973 M 152 12.5 1 72 1 0 0 1 0 0 , '52

3 1973 F 150 15.4 0 72 1 0 0 1 0 0 0 '50
3 '973 M 149 2'.2 , 72 , 0 0 , 0 0 , '49

3 '973 F '44 9.9 0 72 , 0 0 , 0 0 0 '44

3 '973 F '40 '3.3 0 72 , 0 0 , 0 0 0 '40

3 '973 F '27 '4.4 0 72 1 0 0 1 0 0 0 '27

3 '974 F 159 11.6 0 73 1 0 0 , 0 0 0 '59

3 '974 F '52 '5.2 0 73 , 0 0 , 0 0 0 '52

3 '974 M 141 11.5 1 73 1 0 0 , 0 0 ,
'4'

3 '974 M 140 12.1 1 73 1 0 0 1 0 0 1 140

3 '980 M 158 15.2 1 74 1 0 0 1 0 0 1 158

3 1980 F 153 8.8 0 74 1 0 0 1 0 0 0 153

3 1980 M 151 18.6 1 74 1 0 0 1 0 0 1 151

3 1980 M 147 16.3 1 74 1 0 0 1 0 0 1 147

3 '980 M 138 14.2 1 74 1 0 0 1 0 0 1 138

3 1980 M 126 9.2 1 74 1 0 0 1 0 0 1 126

3 '991 M 128 15.4 1 75 1 0 0 1 0 0 1 128

3 1991 F 122 15.1 0 75 1 0 0 1 0 0 0 122

3 1991 F 118 11.8 0 75 1 0 0 1 0 0 0 118

3 1991 F 113 8.4 0 75 1 0 0 1 0 0 0 113

3 '991 F 92 10.9 0 75 1 0 0 1 0 0 0 92

3 1999 M 155 14.7 1 76 1 0 0 1 0 0 1 155

3 1999 F 136 11.5 0 76 1 0 0 1 0 0 0 136

3 1999 M 136 16 1 76 1 0 0 1 0 0 1 136

3 '999 F '24 ,1.7 0 76 , 0 0 , 0 0 0 '24

3 4907 M '48 11.7 , 77 , 0 0 , 0 0 , '48

3 ·4907 F '46 11.6 0 77 , 0 0 , 0 0 0 '46

3 4907 M '3' '2.8 , 77 , 0 0 , 0 0 ,
'3'

3 4907 M 127 '3.9 , 77 , 0 0 , 0 0 , '27

3 4907 M '32 11.6 , 77 , 0 0 , 0 0 , '32

3 4907 F '24 '3.7 0 77 , 0 0 , 0 0 0 '24

3 4907 F '20 '3.8 0 77 , 0 0 , 0 0 0 '20

3 4907 M 112 9.9 , 77 , 0 0 , 0 0 , 112

3 4907 M '08 11.7 , 77 , 0 0 , 0 0 , 'OB

3 4907 F '06 '2.4 0 77 , 0 0 , 0 0 0 '06
3 4908 M '43 '5 , 78 , 0 0 , 0 0 , '43

3 4908 F '39 '2.6 0 78 , 0 0 , 0 0 0 '39

3 4908 F '38 '5.4 0 78 , 0 0 , 0 0 0 '38

3 4908 F '33 '5.9 0 78 , 0 0 , 0 0 0 '33

3 4908 M '28 11.3 , 78 , 0 0 , 0 0 , '28

3 4908 F '32 '2.6 0 78 , 0 0 1 0 0 0 '32

3 4908 M 129 '2.4 , 78 , 0 0 , 0 0 , '29,___
3 4908 M '29 '5.4 , 78 , 0 0 , 0 0 , '29

3 4908 F 118 '2.' 0 78 , 0 0 , 0 0 0 118

3 4908 M 9' '5.4 , 78 , 0 0 , 0 0 , 9'.-
3 4908 M 173 '3.2 , 78 , 0 0 , 0 0 , '73

3 4908 F 170 '3.9 0 78 , 0 0 , 0 0 0 17~

3 4908 M '59 '2.9 , 78 , 0 0 , 0 0 1 159

3 4908 F '58 15.2 0 78 , 0 0 1 0 0 0 '58

3 4908 F '46 '2.' 0 78 , 0 0 , 0 0 0 '46

3 4908 F '36 10.' 0 78 , 0 0 , 0 0 0 '36

3 4909 F '53 14.9 0 79 , 0 0 , 0 0 0 153

3 4909 F '52 17.3 0 79 1 0 0 1 0 0 0 '52

3 4909 M '52 '5.6 , 79 , 0 0 , 0 0 , '52

3 4909 F '52 '6.7 0 79 , 0 0 , 0 0 0 '52

3 4909 F '49 8.7 0 79 , 0 0 , 0 0 0 '49

3 4909 F '48 11.5 0 79 , 0 0 , 0 0 0 148

3 4909 F 144 '2.6 0 79 1 0 0 , 0 0 0 '44

3 4909 M '44 '4.3 , 79 , 0 0 , 0 0 , '44

3 4909 F '38 13.5 0 79 , 0 0 , 0 0 0 '38

3 49'0 F '49 '4.9 0 80 , 0 0 , 0 0 0 149

3 49'0 M '40 '3.4 , 80 , 0 0 , 0 0 , '40

3 49'0 F '40 11.9 0 80 , 0 0 , 0 0 0 '40

3 49'0 F '28 '3.' 0 80 , 0 0 , 0 0 0 128

3 49'0 F '25 '2.5 0 80 , 0 0 , 0 0 0 '25

3 49'0 M '24 9.2 , 80 , 0 0 , 0 0 1 124

3 49'0 M '24 7 , 80 , 0 0 , 0 0 , '24

3 49'0 M 119 '4.3 , 80 , 0 0 , 0 0 , 119

3 4910 M 117 '4 , 80 , 0 0 , 0 0 , 117

3 49'0 M '06 11.6 , 80 , 0 0 , 0 0 , '06
3 49'0 M 99 ,0.3 , 80 _ , ._(l_ O , 0 ~--.i,,___!l!l__
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3 4910 F 93 7.3 0 80 1 0 0 1 0 0 0 93

3 4911 M 155 18.1 1 81 1 0 0 1 '0 0 1 155

3 4911 M 155 12.9 1 81 1 0 0 1 0 0 1 155

3 4911 M 155 17 1 81 1 O. 0 1 0 0 1 155

3 4911 F 150 16.7 0 81 1 0 0 1 0 0 0 150

3 4911 F 149 12.7 0 81 1 0 0 1 0 0 0 149

3 4912 F 156 16.8 0 82 1 0 0 1 0 0 0 156

3 4912 M 155 13.9 1 82 1 0 0 1 0 0 1 155

3 4912 M 155 17.9 1 82 1 0 0 1 0 0 1 155

3 4912 F 153 14.3 0 82 1 0 0 1 0 0 0 153

3 4912 M 150 11.4 1 82 1 0 0 1 0 0 1 150

3 4912 M 144 10.5 1 82 1 0 0 1 0 0 1 144

3 4912 F 144 11.9 0 82 1 0 0 1 0 0 0 144

3 4912 F 143 12.8 0 82 1 0 0 1 0 0 0 143

3 4912 F 140 16 0 82 1 0 0 1 0 0 0 140

3 4912 F 126 12.3 0 82 1 0 0 1 0 0 0 126

3 4912 M 115 15.1 1 82 1 0 0 1 0 0 1 115

3 4915 F 119 8.4 0 83 1 0 0 1 0 0 0 119

3 4915 M 112 8.1 1 83 1 0 0 1 0 0 1 112

3 4915 F 110 12.5 0 83 1 0 0 1 0 0 0 110

3 4915 F 120 10.3 0 83 1 0 0 1 0 0 0 120

3 4915 F 109 11.9 0 83 1 0 0 1 0 0 0 109

3 4915 F 99 7.6 0 83 1 0 0 1 0 0 0 99

3 49)6 M 127 16.4 1 84 1 0 0 1 0 0 1 127

3 4916 F 126 12.8 0 84 1 0 0 1 0 0 0 126

3 4916 F 125 6.8 0 84 1 0 0 1 0 0 0 125

3 4916 F 121 12.7 0 84 1 0 0 1 0 0 0 121

3 4916 M 114 12.3 1 84 1 0 0 1 0 0 1 114

3 4916 M 111 10.7 1 84 1 0 0 1 0 0 1 111

3 4916 M 99 10.7 1 84 1 0 0 1 0 0 1 99

3 4916 M 98 12.2 1 84 1 0 0 1 0 0 1 98

3 4916 M 113 12 1 84 1 0 0 1 0 0 1 113

3 4916 M 110 6.7 1 84 1 0 0 1 0 0 1 110

3 4916 F 87 12.2 0 84 1 0 0 1 0 0 0 87

3 5001 F 167 15.5 0 85 1 0 0 1 0 0 0 167

3 5001 F 166 15.6 0 85 1 0 0 1 0 0 0 166

3 5001 M 165 13.8 1 85 1 0 0 1 0 0 1 165

3 5001 M 159 12.2 1 85 1 0 0 1 0 0 1 159

3 5001 F 154 11.2 0 85 1 0 0 1 0 0 0 154

3 5002 M 120 11.9 1 86 1 0 0 1 0 0 1 120

3 5002 F 111 15.2 0 86 1 0 0 1 0 0 0 111

3 5002 F 109 11 0 86 1 0 0 1 0 0 0 109

3 5002 F 104 12.8 0 86 1 0 0 1 0 0 0 104

3 5002 M 102 10.6 1 86 1 0 0 1 0 0 1 102

3 5002 M 97 12.1 1 86 1 0 0 1 0 0 1 97

3 5002 M 97 9~_1 86 1 0 0 1 0 0 1 97

3 5002 M 172 11.9 1 86 1 0 0 1 0 0 1 172

3 5002 M 170 14.8 1 86 1 0 0 1 0 0 '1 170

3 5002 F 166 12.9 0 86 1 0 0 1 0 0 0 166

3 5003 F 131 16.7 0 87 1 0 0 1 0 0 0 131

3 5003 M 126 14.9 1 87 1 0 0 1 0 0 1 126

3 5003 F 119 12.6 0 87 1 0 0 1 0 0 0 119

3 5003 M 95 13.5 1 87 1 0 0 1 0 0 1 95

3 5003 M 92 11.7 1 87 1 0 0 1 0 0 1 92

3 5003 F 83 11.3 0 87 1 0 0 1 0 0 0 83

3 5003 F 170 15.1 0 87 1 0 0 1 0 0 0 170

3 5003 M 166 14.6 1 87 1 0 0 1 0 0 1 166

3 5003 M 159 10.3 1 87 1 0 0 1 0 0 1 159

3 5003 F 151 13.6 0 87 1 0 0 1 0 0 0 151

3 5004 F 114 15.2 0 88 1 0 0 1 0 0 0 114

3 5004 F 111 6.4 0 88 1 0 0 1 0 0 0 111

3 5004 M 110 12.7 1 88 1 0 0 1 0 0 1 110

3 5004 F 106 8.6 0 88 1 0 0 1 0 0 0 106

3 5004 F 105 11.3 0 88 1 0 0 1 0 0 0 105

3 5004 M 94 12 1 88 1 0 0 1 0 0 1 94

3 5005 F 118 12.4 0 89 1 0 0 1 0 0 0 118

3 5005 F 108 16.4 0 89 1 0 0 1 0 0 0 108

3 5005 M 102 9.9 1 89 1 0 0 1 0 0 1 102

3 5005 F 96 12.6 0 89 1 0 0 1 0 0 0 96

3 5005 F 83 12.9 0 89 1 0 0 1 0 0 0 83

3 5005 F 83 11.8 0 89 1 0 0 1 0 0 0 83

3 5005 F 171 14 0 89 1 0 0 1 0 0 0 171

3 5005 M 163 16.5 1 89 1 0 0 1 0 0 1 163

3 5005 M 162 13.7 1 89 1 0 0 1 0 0 1 162

3 5005 ,F 159 9.2 0 89 1 0 0 1 0 0 0 159

3 5005 M 138 12.2 1 89 1 0 0 1 0 0 1 138

3 5006 M 124 12 1 90 1 0 0 1 0 0 1 124

3 5007 M 170 7.6 1 91 1 0 0 1 0 0 1 170

3 5007 F 169 15.2 0 91 1 0 0 1 0 0 0 169

3 5007 F 161 13.2 0 91 1 0 0 1 0 0 0 161

3 5007 F 157 12 0 91 1 0 0 1 0 0 0 157

3 5007 M 151 14.1 1 91 1 0 0 1 0 0 1 151

3 5007 M 141 10.8 1 91 1 0 0 1 0 0 1 141

3 5007 M 113 9.5 1 91 1 0 0 1 0 0 1 113

3 5007 M 110 8.5 1 91 1 0 0 1 0 0 1 110

3 5007 M 107 12.6 1 91 1 0 0 1 0 0 1 107

3 5008 F 170 14.8 0 92 1 0 0 1 0 0 0 170

3 5008 M 164 16.1 1 92 1 0 0 1 0 0 1 164

3 5008 F 162 12.3 0 92 1 0 0 1 0 0 0 162

3 5008 M 160 14 1 92 1 0 0 1 0 0 1 160

3 5008 F 110 10.5 0 92 1 0 0 1 0 0 0 110

3 5008 M 99 7.5 1 92 1 0 0 1 0 0 1 99
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3 500B M 96 12.1 1 92 1 0 0 1 0 0 1 96

• 3 500B M 92 7.4 1 92 1 0 0 1 0 0 1 92

3 5009 M 172 17.2 1 93 1 0 0 1 0 0 1 172

3 5009 F 16B 10.6 0 93 1 0 D 1 0 0 0 16B

3 5009 M 165 13.6 1 93 1 0 0 1 0 0 1 165

3 5009 M 161 10.2 1 93 1 0 0 1 0 0 1 161

3 5009 M 115 B.6 1 93 1 0 0 1 0 0 1 115

3 5009 F 109 14.3 0 93 1 0 0 1 0 0 0 109

3 5009 M 9B B.9 1 93 1 0 0 1 0 0 1 9B

3 5009 F 93 9 0 93 1 0 0 1 0 0 0 93

3 5010 F 165 15.2 0 94 1 0 0 1 0 0 0 165

3 5010 M 163 12.4 1 94 1 0 0 1 0 0 1 163

3 5010 F 160 15 0 94 1 0 0 1 0 0 0 160

3 5011 F 172 12.4 0 95 1 0 0 1 0 0 0 172

3 5011 F 168 13.4 0 95 1 0 0 1 0 0 0 16B

3 5011 F 162 11.4 0 95 1 0 0 1 0 0 0 162

3 5011 M 159 12.2 1 95 1 0 O· 1 0 0 1 159

3 5011 F 159 13.3 0 95 1 0 0 1 0 0 0 159

3 5011 M 15B 14.6 1 95 1 0 0 1 0 0 1 15B

3 5011 F 146 11.6 0 95 1 0 0 1 0 0 0 146

3 5011 F 117 14.1 0 95 1 0 0 1 0 0 0 117

3 5011 M 115 11.5 1 95 1 0 0 1 0 0 1 115

3 5011 F 114 7.B 0 95 1 0 0 1 0 0 0 114

3 5011 M 111 9.9 1 95 1 0 0 1 0 0 1 111

3 5011 M 111 9.2 1 95 1 0 0 1 0 0 1 111

3 5012 M 169 17.6 1 96 1 0 0 1 0 0 1 169

3 5012 F 166 14.5 0 96 1 0 0 1 0 0 0 166

3 5012 F 159 13.1 0 96 1 0 0 1 0 0 0 159

3 5013 M 16B 11.6 1 97 1 0 0 1 0 0 1 16B

3 5013 F 162 10.7 0 97 1 0 0 1 0 0 0 162

3 5013 M 154 13.1 1 97 1 0 0 1 0 0 1 154

3 5013 M 150 9.4 1 97 1 0 0 1 0 0 1 150

3 5013 F 14B 11.9 0 97 1 0 0 1 0 0 0 148

3 5071 F 111 10.3 0 98 1 0 0 1 0 0 0 111

3 5071 F 104 12.8 0 98 1 0 0 1 0 0 0 104

3 5071 F 96 12.5 0 98 1 0 0 1 0 0 0 96

3 5071 F 93 5.8 0 98 1 0 0 1 0 0 0 93

3 5071 F 85 10.2 0 98 1 0 0 1 0 0 0 85

3 5071 F 132 10.7 0 98 1 0 0 1 0 0 0 132

3 5071 F 125 9.4 0 98 1 0 0 1 0 0 0 125

3 5071 F 122 11.7 0 98 1 0 0 1 0 0 0 122

3 5071 M 121 11.7 1 98 1 0 0 1 0 0 1 121

3 5071 F 120 14 0 98 1 0 0 1 0 0 0 '120

3 5073 M lIB ".B 1 99 1 0 0 1 0 0 1 lIB

3 5076 F 105 11.7 0 100 1 0 0 1 0 0 0 105

3 5205 F 121 9.3 0 101 1 0 0 1 0 0 0 121

3 5205 M 121 11.7 1 101 1 0 0 1 o 0 1 121

3 5205 M 111 13.B 1 101 1 0 0 1 0 0 1 111

3 5205 M lO. 7 1 101 1 0 0 1 0 0 1 lO.

3 5206 F 120 12.1 0 102 1 0 0 1 D 0 0 120

3 5206 F 120 10.2 0 102 1 0 0 1 0 0 0 120

3 5206 M 117 15.7 1 102 1 0 0 1 0 0 1 117

3 5206 M 116 11 1 102 1 0 0 1 0 0 1 116

3 5206 M 109 9.6 1 102 1 0 0 1 0 0 1 109

3 5206 F 105 9.1 0 102 1 0 0 1 0 0 0 105

3 5206 M 102 12.9 1 102 1 0 0 1 0 0 1 102

3 5321 F 139 10.9 0 103 1 0 0 1 0 0 0 139

3 5321 M 136 15.3 1 103 1 0 0 1 0 0 1 136

3 5322 M 121 9.1 1 104 1 0 0 1 0 0 1 121

3 5322 M 121 10.1 1 104 1 0 0 1 0 0 1 121

3 5322 M 119 "" 1 104 1 0 0 1 0 0 1 119

3 5322 M 117 11.7 1 104 1 0 0 1 0 0 1 117

3 5322 F 113 7.7 0 104 1 0 0 1 0 0 0 113

3 5322 F 103 8.7 0 104 1 0 0 1 0 O. 0 103

3 532. F 110 11.7 0 105 1 0 0 1 0 0 0 110

3 5324 F 106 ".B 0 105 1 0 0 1 0 0 0 106

3 5326 M 116 12 1 106 1 0 0 1 0 0 1 116

3 5326 M 132 9.2 1 106 1 0 0 1 0 0 1 132

3 5326 M 127 11 1 106 1 0 0 1 0 O. 1 127

3 5328 M 129 11.3 1 107 1 0 0 1 0 0 1 129

3 5328 M 127 12.5 1 107 1 0 0 1 0 0 1 127

3 532B F 121 13.4 0 107 1 0 0 1 0 0 0 121

3 532B M 117 B.' 1 107 1 0 0 1 0 0 1 117

3 532B M 113 7 1 107 1 0 0 1 0 0 1 113

3 532B M ,.3 13.6 1 107 1 0 0 1 0 0 1 ,.3

3 532B M 127 11.1 1 107 1 0 0 1 0 0 1. 127

3 5329 M 103 8.1 1 108 1 0 0 1 0 0 1 103

3 5329 F 100 11.5 0 108 1 0 0 1 0 0 0 100

3 5329 F 100 8.3 0 lOB 1 0 0 1 0 0 0 100

3 5329 M 99 7.' 1 108 1 0 0 1 0 0 1 99

3 5329 F 94 11.1 0 lOB 1 0 0 1 0 0 0 9.

3 5329 F 144 5.5 0 108 1 0 0 1 0 0 0 144

3 5329 F 140 13.4 0 108 1 0 0 1 0 0 0 140

3 5329 F 136 13.4 0 108 1 0 0 1 0 0 0 136

3 5329 M 133 12 1 lOB 1 0 0 1 0 0 1 133

3 5329 F 120 9.1 0 108 1 0 0 1 0 0 0 120

3 5330 F 129 10.2 0 109 1 0 0 1 0 0 0 129

3 5330 M 128 8 1 109 1 0 0 1 0 0 1 12B

3 5330 M 120 6.7 1 109 1 0 0 1 0 0 1 120

3 5330 M 116 12.1 1 109 1 0 0 1 0 0 1 116

3 5330 M 137 12.2 1 109 1 0 0 1 0 0 1 137

3 5330 F 137 9.7 0 109 1 0 0 1 0 0 0 137
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3 5330 F 135 10.7 0 109 1 0 0 1 0 0 0 135

3" 5330 F 134 13.4 0 109 1 0 0 1 0 O' 0 134

3 5330 F 129 6.9 0 109 1 0 0 1 0 0 0 129

3 5337 M 134 8.7 1 110 1 0 0 .1. 0 0 1 134

3 5337 F 119 16.2 0 110 1 0 0 1 0 0 0 119

3 5337 F 117 11.2 0 110 1 0 0 1 0 0 0 117

3 5337 F 121 13 0 110 1 0 0 1 0 0 0 121

3 5337 F 116 9.8 0 110 1 0 0 1 0 0 0 116

3 5338 F 129 10.7 0 111 1 0 0 1 0 0 0 129

3 5338 M 121 10.6 1 111 1 0 0 1 0 0 1 121

3 5338 M 121 9.7 1 111 1 0 0 1 0 0 1 121

3 5338 M 117 9.2 1 111 1 0 0 1 0 0 1 117

3 5338 M 116 15.1 1 111 1 0 0 1 0 0 1 116

3 5338 M 115 8.5 1 111 1 0 0 1 0 0 1 115

3 5338 F 143 12.8 0 111 1 0 0 1 0 0 0 143

3 5338 M 142 13.4 1 111 1 0 0 1 0 0 1 142

3 5338 F 141 10.3 0 111 1 0 0 1 0 0 0 141

3 5338 M 139 15.1 1 111 1 0 0 1 0 0 1 139

3 5338 F 136 9.5 0 111 1 0 0 1 0 0 0 136

3 5338 M 123 12.7 1 111 1 0 0 1 0 0 1 123

4 1975 F 153 14.4 0 112 1 0 0 0 1 0 0 153

4 1975 F 153 15.9 0 112 1 0 0 0 1 0 0 153

4 1975 M 151 12.4 1 112 1 0 0 0 1 0 1 151

4 1975 M 142 16.4 1 112 1 0 0 0 1 0 1 142

4 1975 M 142 14.1 1 112 1 0 0 0 1 0 1 142

4 1975 M 141 14.8 1 112 1 0 0 0 1 0 1 141

4 1975 F 141 15 0 112 1 0 0 0 1 0 0 141

4 1975 M 128 11.9 1 112 1 0 0 O· 1 0 1 128

4 1975 M 127 12.8 1 112 1 0 0 0 1 0 1 127

4 1975 F 126 14.9 0 112 1 0 0 0 1 0 0 126

4 1975 F 125 9 0 112 1 0 0 0 1 0 0 125

4 1975 M 121 13.5 1 112 1 0 0 0 1 0 1 121

4 1975 M 114 5.9 1 112 1 0 0 0 1 0 1 114

4 1976 F 151 12.7 0 113 1 0 0 0 1 0 0 151

4 1976 M 151 14.9 1 113 1 0 0 0 1 0 1 151

4 1976 M 151 10.7 1 113 1 0 0 0 1 0 1 151

4 1976 M 146 17.8 1 113 1 0 0 0 1 0 1 146

4 1976 M 145 15 1 113 1 0 0 0 1 0 1 145

4 1976 M 144 17 1 113 1 0 0 0 1 0 1 144

4 1979 M 154 15.5 1 114 1 0 0 0 1 0 1 154

4 1979 M 149 8.8 1 114 1 0 0 0 1 0 1 149

4 1979 M 147 6.6 1 114 1 0 0 0 1 0 1 147

4 1979 F 145 12.7 0 114 1 0 0 0 1 0 0 145

4 1979 F 144 13.2 0 114 1 0 0 0 1 0 0 144

4 1979 M 143 14.5 1 114 1 0 0 0 1 0 1 143

4 1979 M 135 12.8 1 114 1 0 0 0 1 0 1 135

4 1979 M 132 10 1 114 1 0 0 0 1 0 1 132

4 1979 M 123 9.1 1 114 1 0 0 0 1 0 1 123

4 1979 M 114 11.3 1 114 1 0 0 0 1 0 1 114

.A 1979 M 119 12 1 114 1 Ó 0 0 1 O. 1 119

4 1979 F 116 12.5 0 114 1 0 0 0 1 0 0 116

4 1979 M 99 8.5 1 114 1 0 0 0 1 0 1 99

4 1981 M 154 18.2 1 115 1 0 0 0 1 0 1 154

4 1981 F 148 9 0 115 1 0 0 0 1 0 0 148

4 1981 F 147 12.3 0 115 1 0 0 0 1 0 0 147

4 1981 F 145 13.4 0 115 1 0 0 0 1 0 0 145

4 1981 F 144 15 0 115 1 0 0 0 1 0 0 144

4 1981 M 136 11.9 1 115 1 0 0 0 1 0 1 136

4 1982 F 121 10.3 0 116 1 0 0 0 1 0 0 121

4 1983 F 156 12.7 0 117 1 0 0 0 1 0 0 156

4 1983 F 144 12 0 117 1 0 0 0 1 0 0 144

4 1983 F 143 11.7 0 117 1 0 0 0 1 0 0 143

4 1983 M 142 11.6 1 117 1 0 0 0 1 0 1 142

4 1983 M 136 12.8 1 117 1 0 0 0 1 0 1 136

4 1983 M 133 11.6 1 117 1 0 0 0 1 0 1 133

4 1983 F 120 13.2 0 117 1 0 0 0 1 0 0 120

4 1984 M 150 15.2 1 118 1 0 0 0 1 0 1 150

4 1984 M 147 16.3 1 118 1 0 0 0 1 0 1 147

4 1984 F 147 11.3 0 118 1 0 0 0 1 0 0 147

4 1984 F 146 12.5 0 118 1 0 0 0 1 0 0 146

4 1984 M 145 16.3 1 118 1 0 0 0 1 0 1 145

4 1984 F 140 17.8 0 118 1 0 0 0 1 0 0 140

4 1984 F 139 14.1 0 118 1 0 0 0 1 0 0 139

4 1984 F 133 6.8 0 118 1 0 0 0 1 0 0 133

4 1986 M 128 11.9 1 119 1 0 0 0 1 0 1 128

4 1986 M ;26 16.5 1 119 1 0 0 0 1 0 1 126

4 1986 M 123 11.5 1 119 1 0 0 0 1 0 1 123

4 1986 M 122 12.6 1 119 1 0 0 0 1 0 1 122

4 1986 F 119 10.8 0 119 1 0 0 0 1 0 0 119

4 1988 F 156 14.9 0 120 1 0 0 0 1 0 0 156

4 1988 F 153 11.5 0 120 1 0 o 0 1 0 0 153

4 1988 F 150 12.4 0 120 1 0 0 0 1 0 0 150

4 1988 F 148 11.2 0 120 1 0 0 0 1 0 0 148

4 1988 F 143 12.3 0 120 1 0 0 0 1 0 0 143

4 1988 F 138 13.5 0 120 1 0 0 0 1 0 0 138

4 1988 M 131 10.3 1 120 1 0 0 0 1 0 1 131

4 1988 F 127 6.5 0 120 1 0 0 0 1 0 0 127

4 1988 M 127 9.9 1 120 1 0 0 0 1 0 1 127

4 4901 M 155 14.4 1 121 1 0 0 0 1 0 1 155

4 4901 M 151 15.1 1 121 1 0 0 0 1 0 1 151

4 4901 M 150 16.9 1 121 1 0 0 0 1 0 1 150

4 4901 F 141 13.3 0 121 1 0 0 0 1 0 0 141
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Appendix (.': Dataset from Duohateau. et al. 199H;International Livestock Research Institute (ILRJ), Kenya
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Appendix C: Datoset from Duchuteau, et at, 19YN;lnternationul Livestock Research Institute (ILIU). Kenya

4 4901 M 137 13.6 1 121 1 0 0 0 1 0 1 137

4 ·4901 F 133 12.8 0 121 1 0 0 0 1 0 0 133

4 4901 F 127 10.5 0 121 1 0 0 0 1 0 0 127

4 4901 M 130 12.6 1 121 1 0 0 0 1 .0 1 130

4 4901 F 130 13.3 0 121 1 0 0 0 1 0 0 130

4 4901 M 128 16.8 1 121 1 0 0 0 1 0 1 128

4 4901 F 128 7.6 0 121 1 0 0 0 1 0 0 128

4 4901 M 125 10.1 1 121 1 0 0 0 1 0 1 125

4 4901 F 119 12.8 0 121 1 0 0 0 1 0 0 119

4 4901 M 113 13 1 121 1 0 0 0 1 0 1 113

4 4902 F 150 14 0 122 1 0 0 0 1 0 0 150

4 4902 M 146 10.6 1 122 1 0 0 0 1 0 1 146

4 4902 F 146 11.7 0 122 1 0 0 0 1 0 0 146

4 4902 F 138 11.2 0 122 1 Ó 0 0 1 0 0 138

4 4902 F 137 12 0 122 1 0 0 0 1 0 0 137

4 4902 M 137 12.8 1 122 1 0 0 0 1 0 1 137

4 4902 F 134 12.8 0 122 1 0 O· 0 1 0 0 134

4 4902 F 127 12.5 0 122 1 0 0 0 1 0 0 127

4 4902 M 124 7.6 1 122 1 0 0 0 1 0 1 124

4 4902 M 123 15.2 1 122 1 0 0 0 1 0 1 123

4 4902 M 113 10 1 122 1 0 0 0 1 0 1 113

4 4902 M 113 13.1 1 122 1 0 0 0 1 0 1 113

4 4902 F 142 6.6 0 122 1 0 0 0 1 0 0 142

4 4902 M 140 12.5 1 122 1 0 0 0 1 0 1 140

4 4902 F 134 10.5 0 122 1 0 0 0 1 0 0 134

4 4902 F 131 9.1 0 122 1 0 0 0 1 0 0 131

4 4902 M 127 13.4 1 122 1 0 0 0 1 0 1 127

4 4902 F 127 11.3 0 122 1 0 0 0 1 0 0 127

4 4902 M 125 10.3 1 122 1 0 0 0 1 0 1 125

4 4902 M 118 12.2 1 122 1 0 0 0 1 0 1 118

4 4902 M 109 11.9 1 122 1 0 0 0 1 0 1 109

4 4903 M 154 15.4 1 123 1 0 0 0 1 0 1 154

4 4903 M 148 13.8 1 123 1 0 0 0 1 0 1 148

4 4903 M 147 16.3 1 123 1 0 0 0 1 0 1 147

4 4903 M 145 14.9 1 123 1 0 0 0 1 0 1 145

4 4903 M 145 13.1 1 123 1 0 0 0 1 0 1 145

4 4903 F 142 13.6 0 123 1 0 0 0 1 0 0 142

4 4903 M 123 14 1 123 1 0 0 0 1 0 1 123

4 4903 F 121 12.6 0 123 1 0 0 0 1 0 0 121

4 4903 F 118 11.3 0 123 1 0 0 0 1 0 0 118

4 4903 F 116 13.1 0 123 1 0 0 0 1 0 0 116

4 4903 F 112 13.2 0 123 1 0 0 0 1 0 0 112

4 4905 M 157 6.6 1 124 1 0 0 0 1 0 1 157

4 4905 F 151 12.6 0 124 1 0 0 0 1 0 0 151

4 4905 F 148 9.5 0 124 1 0 0 0 1 0 0 148

4 4905 M 148 14.5 1 124 1 0 0 0 1 0 1 148
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4 4905 M 146 14.2 1 124 1 0 0 0 1 0 1 146

4 4905 M 142 11.6 1 124 1 0 0 0 1 0 1 142

4 4905 M 140 11.6 1 124 1 0 0 0 1 0 1 140

4 .4905 F 123 11.6 0 124 1 0 0 0 1 0 O.. 123

4 4905 F 117 15.4 0 124 1 0 0 0 1 0 0 117

4 4905 M 106 10.3 1 124 1 0 0 0 1 0 1 106

4 4905 M 173 14.2 1 124 1 0 0 0 1 0 1 173

4 4905 M 168 12.6 1 124 1 0 0 0 1 0 1 168

4 4905 F 165 10.4 0 124 1 0 0 0 1 0 0 165

4 4905 M 165 13.1 1 124 1 0 0 0 1 0 1 165

4 4905 M 159 13.4 1 124 1 0 0 0 1 0 1 159

4 4905 M 157 14.3 1 124 1 0 0 0 1 0 1 157

4 4905 F 154 12.8 0 124 1 0 0 0 1 0 0 154

4 4905 F 153 14 0 124 1 0 0 0 1 0 0 153

4 4906 M 153 14.4 1 125 1 0 0 0 1 0 1 153

4 4906 M 144 11.2 1 125 1 0 0 0 1 0 1 144

4 4906 F 144 13.1 0 125 1 0 0 0 1 0 0 144

4 4906 M 138 10.1 1 125 1 0 0 0 1 0 1 138

4 4906 F 136 13.9 0 125 1 0 0 0 1 0 0 136

4 4906 F 136 13.4 0 125 1 0 0 0 1 0 0 136

4 4906 M 132 12.7 1 125 1 0 0 0 1 0 1 132

4 4906 M 129 13.1 1 125 1 0 0 0 1 0 1 129

4 4906 F 121 12.8 0 125 1 0 0 0 1 0 0 121

4 4906 M 83 11.4 1 125 1 0 0 0 1 0 1 83

4 4906 F 167 14.3 0 125 1 0 0 0 1 0 0 167

4 4906 M 165 16.3 1 125 1 0 0 0 1 0 1 165

4 4906 F 148 10.8 0 125 1 0 0 0 1 0 0 148

4 4906 F 139 9.4 0 125 1 0 0 0 1 0 0 139

4 4906 M 137 9.7 1 125 1 0 0 0 1 0 1 137

4 4913 M 124 14 1 126 1 0 0 o . 1 0 1 124

4 4913 M 124 12.4 1 126 1 0 0 0 1 0 1 124

4 4913 M 116 12.3 1 126 1 0 0 0 1 0 1 116

4 4913 M 116 11.1 1 126 1 0 0 0 1 0 1 116

4 4913 M 114 9.9 1 126 1 0 0 0 1 0 1 114

4 4913 M 113 15.1 1 126 1 0 0 0 1 0 1 113

4 4913 F 106 8.6 0 126 1 0 0 0 1 0 0 106

4 4913 M 100 10.1 1 126 1 0 0 0 1 0 1 100

4 4914 F 127 13.4 0 127 1 0 0 0 1 0 0 127

4 4914 M 124 16.8 1 127 1 0 0 0 1 0 1 124

4 4914 F 123 14 0 127 1 0 0 0 1 0 0 123

4 4914 F 119 15.9 0 127 1 0 0 0 1 0 0 119

4 4914 M 112 10.2 1 127 1 0 0 0 1 0 1 112

173 14.7 0
1---

4 4914 F 127 1 0 0 0 1 0 o 173

4 4914 M 168 17 1 127 1 0 0 0 1 0 1 168.-
4 4914 F 162 11.8 0 127 1 0 0 0 1 0 0 162

4 4914 M 159 10.3 1 127 1 0 0 0 1 0 1 ï591
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Appendix C: Datasecfrom Duchateau, et ot., 1998; International Livestock Research Institute (ILIU), Kenya Appendix (.': Datosetfrom Duchateou. ef al., lC)t)I( Internunonul Livestock tteseurch JnSII/Ule (II.IU), Kenya

4 4914 M 157 12 1 127 1 0 0 0 1 0 1 157

4 4914 M 155 15.1 1 127 1 0 0 0 1 0 1 155

4 4914 F 154 12.6 0 127 1 0 0 0 1 0 0 154

. 4 4914 F 124 7.6 0 127 1 Ó 0 0 1 D. 0 124

4 4914 M 123 12.4 1 127 1 0 0 0 1 0 1 123

4 4914 M 122 12.7 1 127 1 0 0 0 1 0 1 122

4 4914 M 119 11.1 1 127 1 0 0 0 1 0 1 119

4 4914 M 118 12.4 1 127 1 0 0 0 1 0 1 118

4 4914 M 117 11.6 1 127 1 0 0 0 1 0 1 117

4 4914 F 114 7.7 0 127 1 0 0 0 1 0 0 114

4 4914 F 143 13.3 0 127 1 0 0 0 1 0 0 143

4 4914 F 128 11.1 0 127 1 0 0 0 1 0 0 128

4 4914 M 126 11.2 1 127 1 0 0 0 1 0 1 126

4 4918 F 114 12.7 0 128 1 0 0 0 1 0 0 114

4 4918 F 111 9.6 0 128 1 0 0 0 1 0 0 111

4 4918 M 108 14.1 1 128 1 0 0 0 1 0 1 108

4 4918 M 106 9.7 1 128 1 0 0 0 1 0 1 106

4 4918 M 106 10.7 1 128 1 0 0 0 1 0 1 106

4 4918 F 104 9.8 0 128 1 0 0 0 1 0 0 104 I

4 4918 F 96 10.3 0 128 1 0 0 0 1 0 0 96:
4 4918 F 120 13 0 128 1 0 0 0 1 0 0 120 I

4 4918 M 119 12.1 1 128 1 0 0 0 1 0 1 119

4 4918 F 110 11.8 0 128 1 0 0 0 1 0 0 110

4 4918 M 101 7.2 1 128 1 0 0 0 1 0 1 101

4 4918 F 98 9.4 0 128 1 0 0 0 1 0 0 98

4 4919 F 168 12.2 0 129 1 0 0 0 1 0 0 168

4 4919 F 167 10.6 0 129 1 0 0 0 1 0 0 167

4 4919 F 167 13.2 0 129 1 0 0 0 1 0 0 167

4 4919 F 164 10.8 0 129 1 0 0 0 1 0 0 164

4 4919 F 155 10.2 0 129 1 0 0 0 1 0 0 155

4 4919 F 154 9 0 129 1 0 0 0 1 0 0 154

4 4919 M 151 9.1 1 129 1 0 0 0 1 0 1 151

4 4919 F 121 8.7 0 129 1 0 0 0 1 0 0 121

4 4919 F 114 9.3 0 129 1 0 0 0 1 0 0 114

4 4919 M 103 9.7 1 129 1 0 0 0 1 0 1 103

4 4919 F 133 8.8 0 129 1 0 0 0 1 0 0 133

4 4919 M 129 12.3 1 129 1 0 0 0 1 0 1 129

4 4919 M 117 9.1 1 129 1 0 0 0 1 0 1 117

4 4919 M 116 13.2 1 129 1 0 0 0 1 0 1 116

4 4919 F 144 8.8 0 129 1 0 0 0 1 0 0 144

4 4919 F 141 13.9 0 129 1 0 0 0 1 0 0 141

4 4919 F 136 13 0 129 1 0 0 0 1 0 0 136

4 4919 M 133 9.8 1 129 1 0 0 0 1 0 1 133

4 4919 F 130 11.8 0 129 1 0 0 0 1 0 0 130

4 4919 F 129 11.6 0 129 1 0 0 0 1 0 0 129

4 4919 M 115 7.6 1 129 1 0 0 0 1 0 1 115
_.

4 4921 F 129 9.7 0 130 1 0 0 0 1 0 0 129

4 4921 ·F 121 9.1 0 130 1 0 0 0 1 0 0 121

4 4921 M 119 8.7 1 130 1 0 0 0 1 0 1 119

4 .4921 M 117 10 1 130 1 0 0 Ó 1 0 1 .117

4 4921 F 114 9.3 0 130 1 0 0 0 1 0 0 114

4 4921 M 109 13.3 1 130 1 0 0 0 .1 0 1 109

4 4921 M 107 12.3 1 130 1 0 0 0 1 0 1 107

4 4921 M 106 12.1 1 130 1 0 0 0 1 0 1 106

4 4921 M 93 11.5 1 130 1 0 0 0 1 0 1 93

4 4921 M 171 10.7 1 130 1 0 0 0 1 0 1 171

4 4921 F 168 13.1 0 130 1 0 0 0 1 0 0 168

4 4921 F 160 10.8 0 130 1 0 0 0 1 0 0 160

4 4921 M 160 10.3 1 130 1 0 0 0 1 0 1 160

4 4921 M 155 11.4 1 130 1 0 0 0 1 0 1 155

4 4921 M 155 11.6 1 130 1 0 0 0 1 0 1 155

4 4923 M 128 12.9 1 131 1 0 0 0 1 0 1 128

4 4923 F 122 10.9 0 131 1 0 0 0 1 0 0 122

4 4923 M 120 11.8 1 131 1 0 0 0 1 0 1 120

4 4923 M 119 13.8 1 131 1 0 0 0 1 0 1 119

4 4923 F 98 10.4 0 131 1 0 0 0 1 0 0 98

4 4923 M 93 9.4 1 131 1 0 0 0 1 0 1 93

4 4923 M 172 16.1 1 131 1 0 0 0 1 0 1 172

4 4923 F 165 13.5 0 131 1 0 0 0 1 0 0 165

4 4923 M 164 16 1 131 1 0 0 0 1 0 1 164

4 4923 F 162 13.5 0 131 1 0 0 0 1 0 0 162

4 4923 M 159 9.7 1 131 1 0 0 0 1 0 1 159

4 4923 M 159 13 1 131 1 0 0 0 1 0 1 159

4 4923 F 156 10.7 0 131 1 0 0 0 1 0 0 156

4 4923 M 154 12.3 1 131 1 0 0 0 1 0 1 154

4 5015 M 174 16.1 1 132 1 0 0 0 1 0 1 174

4 5015 F 164 9.7 0 132 1 0 0 0 1 0 0 164

4 5015 F 158 12.8 0 132 1 0 0 0 1 0 0 158

4 5015 M 155 13.5 1 132 1 0 0 0 1 0 1 155

4 5015 F 154 12.1 0 132 1 0 0 0 1 0 0 154

4 5015 M 151 12.5 1 132 1 0 0 0 1 0 1 151

4 5015 M 146 16 1 132 1 0 0 0 1 0 1 146

4 5015 F 139 6 0 132 1 0 0 0 1 0 0 139

4 5015 M 135 10 1 132 1 0 0 0 1 0 1 135

4 5015 F 122 10.7 0 132 1 0 0 0 1 0 0 122

4 5015 F 120 13.4 0 132 1 0 0 0 1 0 0 120

4 5016 M 172 11.5 1 133 1 0 0 0 1 0 1 172

4 5016 F 168 10.5 0 133 1 0 0 0 1 0 0 168

4 5016 M 168 12.7 1 133 1 0 0 0 1 0 1 168

4 5016 M 163 13.5 1 133 1 0 0 0 1 0 1 163

4 5016 M 119 6.1 1 133 1 0 0 0 1 0 1 119

4 5016 F 118 9.3 0 133 1 0 0 0 1 0 0 118j
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Appendix C: Datoset from Duchateou, et ot., 19Y8; International Livestock Research Institute (ILIU), Kenya Appendix C: Datosetfrom Duchoteau, et al., I(jYH:International Livestock Research Insnnue (II.IU), Kenya

4 5016 M 117 13.7 1 133 1 0 0 0 1 0 1 117

4 5016 F 108 8.5 0 133 1 0 0 0 1 0 0 108

4 5016 F 104 12.3 0 133 1 0 0 0 1 0 0 104

.. 4 5017 F 163 13.8 0 134 1 0 0 0 1 D 0 163

4 5017 F 162 13.5 0 134 1 0 0 0 1 0 0 162

4 5017 F 161 11.5 0 134 1 0 0 0 1 0 0 161

4 5017 F 157 12 0 134 1 0 0 0 1 0 0 157

4 5017 M 152 14.2 1 134 1 0 0 0 1 0 1 152

4 5017 F 151 13.1 0 134 1 0 0 0 1 0 0 151

4 5017 F 108 11.5 0 134 1 0 0 0 1 0 0 108

4 5017 M 106 8.3 1 134 1 0 0 0 1 0 1 106

4 5017 F 142 9.4 0 134 1 0 0 0 1 0 0 142 ,

4 5017 M 142 15.1 1 134 1 0 0 0 1 0 1 142

4 5017 M 136 9.3 1 134 1 0 0 0 1 0 1 136

4 5017 F 133 10.5 0 134 1 0 0 0 1 0 0 133

4 5017 M 117 10.2 1 134 1 0 0 0 1 0 1 117

4 5017 M 100 12.9 1 134 1 0 0 0 1 0 1 100

4 5018 M 167 16 1 135 1 0 0 0 1 0 1 167 i

4 5018 F 166 14.2 0 135 1 0 0 0 1 0 0 166

4 5018 F 164 8.6 0 135 1 0 0 0 1 0 0 164

4 5018 F 162 13 0 135 1 0 0 0 1 0 0 162

4 5018 M 158 12.1 1 135 1 0 0 0 1 0 1 15~

4 5018 F 146 14.5 0 135 1 0 0 0 1 0 0 146

4 5018 F 115 12.1 0 135 1 0 0 0 1 0 0 115

4 5018 F 114 7.8 0 135 1 0 0 0 1 0 0 114

4 5018 F 110 11.9 0 135 1 0 0 0 1 0 0 110

4 5018 F 110 12 0 135 1 0 0 0 1 0 0 110 I

4 5018 M 98 8.5 1 135 1 0 0 0 1 0 1 98

4 5019 F 168 12.7 0 136 1 0 0 0 1 0 0 168

4 5019 F 166 14.6 0 136 1 0 0 0 1 0 0 166

4 5019 F 166 13.5 0 136 1 0 0 0 1 0 0 166

4 5019 M 152 7.5 1 136 1 0 0 0 1 0 1 152

4 5019 F 146 12.7 0 136 1 0 0 0 1 0 0 146 I

4 5019 M 140 14.2 1 136 1 0 0 0 1 0 1 140

4 5019 M 139 10.4 1 136 1 0 0 0 1 0 1 139

4 5019 F 121 13.6 0 136 1 0 0 0 1 0 0 121

4 5019 F 114 9.1 0 136 1 0 0 0 1 0 0 114

4 5019 F 109 10.4 0 136 1 0 0 0 1 0 0 109

4 5019 F 108 7.8 0 136 1 0 0 0 1 0 0 108

4 5019 M 108 7.9 1 136 1 0 0 0 1 0 1 108

4 5019 M 140 14.5 1 136 1 0 0 0 1 0 1 140 I
4 5019 F 129 9.3 0 136 1 0 0 0 1 0 0 129 '

4 5019 F 129 9.5 0 136 1 0 0 0 1 0 0 129

4 5020 F 167 16.1 0 137 1 0 0 0 1 0 0 167

4 5020 M 167 12.5 1 137 1 0 0 0 1 0 1 167

4 5020 M 165 12.6 1 137 1 0 0 0 1 0 1 165
-- -_.-

4 5020 F 165 14.5 0 137 1 0 0 0 1 0 0 165

4 5020 M 162 12.7 1 137 1 0 0 0 1 0 1 162

4 5020 F 157 11.7 0 137 1 0 0 0 1 0 0 157

4 .. 5020 F 153 10.8 0 137 1 0 0 0 1 0 0 l53

4 5020 M 152 12.1 1 137 1 0 0 0 1 0 1 152

4 5020 F 118 13.2 0 137 1 0 0 0 1 0 0 118

4 5020 M 106 7.6 1 137 1 0 0 0 1 0 1 106

4 5020 F 102 8.5 0 137 1 0 0 0 1 0 0 102

4 5020 F 102 10.8 0 137 1 0 0 0 1 0 0 102

4 5020 M 140 14.4 1 137 1 0 0 0 1 0 1 140

4 5020 M 137 11.4 1 137 1 0 0 0 1 0 1 137

4 5020 F 133 11.3 0 137 1 0 0 0 1 0 0 133

4 5020 M 132 8.9 1 137 1 0 0 0 1 0 1 132

4 5020 F 132 11.1 0 137 1 0 0 0 1 0 0 132

4 5020 M 113 6.7 1 137 1 0 0 0 1 0 1 113

4 5204 M 118 12.2 1 138 1 0 0 0 1 0 1 118

4 5204 M 115 10.2 1 138 1 0 0 0 1 0 1 115

4 5204 M 113 10.1 1 138 1 0 0 0 1 0 1 113

4 5204 F 110 9 0 138 1 0 0 0 1 0 0 110

4 5204 F 103 6.2 0 138 1 0 0 0 1 0 0 103

4 5207 M 116 9 1 139 1 0 0 0 1 0 1 116

4 5207 F 114 11.6 0 139 1 0 0 0 1 0 0 114

4 5207 M 110 10.1 1 139 1 0 0 0 1 0 1 110

4 5207 M 108 8.6 1 139 1 0 0 0 1 0 1 108

4 5208 M 110 12.1 1 140 1 0 0 0 1 0 1 110

4 5208 M 110 9.4 1 140 1 0 0 0 1 0 1 110

4 5208 F 106 8.3 0 140 1 0 0 0 1 0 0 106

4 5208 F 105 7.6 0 140 1 0 0 0 1 0 0 105

4 5331 .M 128 13.5 1 141 1 0 0 0 1 0 1 128

4 5331 M 121 9.8 1 141 1 0 0 0 1 0 1 121

4 5331 F 120 9.5 0 141 1 0 0 0 1 0 0 120

4 5331 F 118 8.9 0 141 1 0 0 0 1 0 0 118

4 5331 M 114 7.7 1 141 1 0 0 0 1 0 1 114

4 5331 M 96 11 1 141 1 0 0 0 1 0 1 96

4 5331 F 116 13.2 0 141 1 0 0 0 1 0 0 116

4 5331 M 115 8.7 1 141 1 0 0 0 1 0 1 115

4 5331 F 114 10.4 0 141 1 0 0 0 1 0 0 114

4 5331 M 108 12.2 1 141 1 0 0 0 1 0 1 108

4 5331 F 97 11.2 0 141 1 0 0 0 1 0 0 97

4 5332 M 129 11.8 1 142 1 0 0 0 1 0 1 129

4 5332 M 122 10.1 1 142 1 0 0 0 1 0 1 122

4 5332 M 119 9.9 1 142 1 0 0 0 1 0 1 119

4 5332 F 118 8.2 0 142 1 0 0 0 1 0 0 118

4 5332 F 116 11.2 0 142 1 0 0 0 1 0 0 116

4 5332 F 112 8.9 0 142 1 0 0 0 1 0 0 112

4 5332 M 140 11.4 1 142 1 0 0 0 1 0 1 140
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Appendix C: Datasetfrom Duchuteau, et al .. 199X: International Livestock Research Institute (JL/U), Kenya Appendix C: Dataset from Duchoteau. et al .. /99X: lnternanonul Ltvestuck Research Instnute (ILIU), Kenya

4 5332 M 135 13.2 1 142 1 0 0 0 1 0 1 135

4 5332 F 134 13.5 0 142 1 0 0 0 1 0 O' 134

4 5332 F 126 10.4 0 142 1 0 0 0 1 0 0 126

4 5332 M 113 8.4 1 142 '1 0 0 0 .t 0 1 113

4 5333 M 125 11 1 143 1 0 0 0 1 0 1 125

4 5333 F 122 11.6 0 143 1 0 0 0 1 0 0 122

4 5333 M 121 10.7 1 143 1 0 0 0 1 0 1 121

4 5333 M 119 7.8 1 143 1 0 0 0 1 0 1 119

4 5333 F 110 7.9 0 143 1 0 0 0 1 0 0 110

4 5333 F 108 10 0 143 1 0 0 0 1 0 0 108

4 5333 F 107 9.9 0 143 1 0 0 0 1 0 0 107

4 5334 M 121 9.1 1 144 1 0 0 0 1 0 1 121

4 5334 F 121 9.9 0 144 1 0 0 0 1 0 0 121

4 5334 .F 118 11.6 0 144 1 0 0 0 1 0 0 118

4 5334 F 106 13.8 0 144 1 0 0 0 1 0 0 106

4 5334 F 100 10.4 0 144 1 0 0 0 1 0 0 100

4 5336 F '134 12.2 0 145 1 0 O· 0 1 0 0 134

4 5336 F 131 9.4 0 145 1 0 0 0 1 0 0 131

4 5336 F 128 11.6 0 145 1 0 0 0 1 0 0 128

4 5336 F 126 9.7 0 145 1 0 0 0 1 0 0 12.6

4 5336 M 121 11.6 1 145 1 0 0 0 1 0 1 121

4 5336 M 120 13.9 1 145 1 0 0 0 1 0 1 120

4 5336 M 120 8.6 1 145 1 0 0 0 1 0 1 120

4 5336 M 118 11.4 1 145 1 0 0 0 1 0 1 118

4 5336 F 139 9.6 0 145 1 0 0 0 1 0 0 139

4 5336 F 129 10.6 0 145 1 0 0 0 1 0 0 129

4 5336 F 127 13.9 0 145 1 0 0 0 1 0 0 127

4 5336 M 118 15.2 1 145 1 0 0 0 1 0 1 118

4 5336 F 109 11.6 0 145 1 0 0 0 1 0 0 109

5 1975 M 120 11.3 1 146 1 0 0 0 0 1 1 120

5 1975 M 118 10.1 1 146 1 0 0 0 0 1 1 118

5 1975 M 114 6.6 1 146 1 0 0 0 0 1 1 114

5 1975 F 113 6.9 0 146 1 0 0 0 0 1 0 113

5 1975 F 99 7.3 0 146 1 0 0 0 0 1 0 99

5 1975 M 97 5.3 1 146 1 0 0 0 0 1 1 97

5 1979 F 119 5.3 0 147 1 0 0 0 0 1 0 119

5 1979 M 117 10.3 1 147 1 0 0 0 0 1 1 117

5 1979 M 114 8.7 1 147 1 0 0 0 0 1 1 114

5 1979 F 111 8.1 0 147 1 0 0 0 0 1 0 111

5 1979 M 102 9.4 1 147 1 0 0 0 0 1 1 102

5 1982 F 118 11.4 0 148 1 0 0 0 0 1 0 118

5 4902 F 130 9.9 0 149 1 0 0 0 0 1 0 130

5 4902 M 138 12.3 1 149 1 0 0 0 0 1 1 138
5 4902 M 137 13 1 149 1 0 0 0 0 1 1 137

5 4902 M 134 11.7 1 149 1 0 0 0 0 1 1 134

5 4902 M 132 11.7 1 149 1 0 0 0 0 1 1 132
-

5 4902 F 132 11.5 0 149 1 0 0 0 0 1 0 132

5 4902 M 132 11.4 1 149 1 0 0 0 0 1 1 132

5 4902 F 131 10.2 0 149 1 0 0 0 0 1 0 131

5 4905 M 123 11.2 1 150 1 0 0 0 0 1 . t 123

5 4905 F 146 10.9 0 150 1 0 0 0 0 1 0 146

5 4906 F 109 9.7 0 151 1 0 0 0 0 1 0 109

5 4906 M 166 8 1 151 1 0 0 0 0 1 1 166

5 4906 F 164 10.4 0 151 1 0 0 0 0 1 0 164

5 4906 M 137 9 1 151 1 0 0 0 0 1 1 137

5 4914 F 122 12.1 0 152 1 0 0 0 0 1 0 122

5 4914 M 165 9.5 1 152 1 0 0 0 0 1 1 165

5 4914 F 162 12 0 152 1 0 0 0 0 1 0 162

5 4914 F 127 11.2 0 152 1 0 0 0 0 1 0 127

5 4914 F 123 10.2 0 152 1 0 0 0 0 1 0 123

5 4914 F 121 7.3 0 152 1 0 0 0 0 1 0 121

5 4914 M 119 10.4 1 152 1 0 0 0 0 1 1 119

5 4914 M 116 9.6 1 152 1 0 0 0 0 1 1 116

5 4914 M 115 10.5 1 152 1 0 0 0 0 1 1 115

5 4914 F 140 12.3 0 152 1 0 0 0 0 1 0 140

5 4914 M 139 13.4 1 152 1 0 0 0 0 1 1 139

5 4914 F 139 10 0 152 1 0 0 0 0 1 0 139

5 4914 F 134 11.6 0 152 1 0 0 0 0 1 0 134

5 4914 F 131 11.1 0 152 1 0 0 0 0 1 0 131

5 4918 F 125 9 0 153 1 0 0 0 0 1 0 125

5 4918 F 119 8.6 0 153 1 0 0 0 0 1 0 119

5 4918 F 118 6.8 0 153 1 0 0 0 0 1 0 118

5 4918 F 115 9.3 0 153 1 0 0 0 0 1 0 115

5 4919 M 164 10 1 154 1 0 0 0 0 1 1 164

5 4919 F 163 10.2 0 154 1 0 0 0 0 1 0 163

5 4919 F 153 9.8 0 154 1 0 0 0 O' 1 0 153

5 4919 M 113 9.4 1 154 1 0 0 0 0 1 1 113

5 4919 M 109 5.2 1 154 1 0 0 0 0 1 1 '09

5 4919 F 101 8.7 0 154 1 0 0 0 0 1 0 101

5 4919 F 129 9.2 0 154 1 0 0 0 0 1 0 129

5 4919 M 126 8.2 1 154 1 0 0 0 0 1 1 126

5 4919 F 123 7.7 0 154 1 0 0 0 0 1 0 123

5 4919 M 119 8.9 1 154 1 0 0 0 0 1 1 119

5 4919 M 118 10.6 1 154 1 0 0 0 0 1 1 118

5 4919 F 117 10.1 0 154 1 0 0 0 0 1 0 117

5 4919 M 114 7.2 1 154 1 0 0 0 0 1 1 114

5 4919 M 134 12 1 154 1 0 0 0 0 1 1 134

5 4919 M 132 12.5 1 154 1 0 0 0 0 1 1 132

5 4919 F 125 9.8 0 154 1 0 0 0 0 1 0 125

5 4921 M 125 9.3 1 155 1 0 0 0 0 1 1 125

5 4921 M 164 11.8 1 155 1 0 0 0 0 1 1 164

5 4921 M 143 9.4 1 155 1 0 0 0 0 1 1 143
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5 4921 F 142 9.3 0 155 1 0 0 0 0 1 0 142

5· 4923 M 160 12.7 1 156 1 0 0 0 0 1 1 160

5 4923 M 136 9.6 1 156 1 0 0 0 0 1 1 136

5 5015 M 161 9 1 157 1 0 0 O. 0 1 1 161

5 5015 M 155 13.4 1 157 1 0 0 0 0 1 1 155

5 5015 F 153 12.6 0 157 1 0 0 0 0 1 0 153

5 5015 F 131 11.6 0 157 1 0 0 0 0 1 0 131

5 5015 M 123 6.6 1 157 1 0 0 0 0 1 1 123

5 5015 M 121 9.1 1 157 1 0 0 0 0 1 1 121

5 5015 F 120 9.4 0 157 1 0 0 0 0 1 0 120

5 5015 F 94 6.6 0 157 1 0 0 0 0 1 0 94

5 5016 F 116 10.6 0 156 1 0 0 0 0 1 0 116

5 5016 F 115 6.5 0 156 1 0 0 0 0 1 0 115

5 5016 M 114 10.1 1 156 1 0 0 0 0 1 1 114

5 5016 F 112 9 0 156 1 0 0 0 0 1 0 112

5 5017 M 166 11.9 1 159 1 0 0 0 0 1 1 166

5 5017 M 163 11.3 1 159 1 0 O· 0 0 1 1 163

5 5017 M 119 6.4 1 159 1 0 0 0 0 1 1 119

5 5017 M 112 10.7 1 159 1 0 0 0 0 1 1 112

5 5017 F 141 12.3 0 159 1 0 0 0 0 1 0 141

5 5017 M 137 9.6 1 159 1 0 0 0 0 1 1 137

5 5017 M 137 10.2 1 159 1 0 0 0 0 1 1 137

5 5017 M 116 10.6 1 159 1 0 0 0 0 1 1 116

5 5016 F 164 10.6 0 160 1 0 0 0 0 1 0 164

5 5016 M 136 11.6 1 160 1 0 0 0 0 1 1 136

5 5016 F 119 10.1 0 160 1 0 0 0 0 1 0 119

5 5016 F 116 6 0 160 1 0 0 0 0 1 0 116

5 5016 F 113 7.4 0 160 1 0 0 0 0 1 0 113

5 5016 M 112 9 1 160 1 0 0 0 0 1 1 112

5 5019 F 152 14.5 0 161 1 0 0 0 0 1 0 152

5 5019 M 119 13.5 1 161 1 0 0 0 0 1 1 119

5 5019 F 99 10.7 0 161 1 0 0 0 0 1 0 99

5 5019 F 135 7.9 0 161 1 0 0 0 0 1 0 135

5 5019 M 135 13.6 I 161 1 0 0 0 0 I I 135

5. 5019 M 133 6.6 I 161 1 0 0 0 0 1 1 133

5 5019 M 131 10.9 1 161 1 0 0 0 0 1 I 131

5 5019 F 123 8.9 0 161 1 0 0 0 0 1 0 123

5 5020 F 166 11.1 0 162 1 0 0 0 0 I 0 166

5 5020 F 165 12.2 0 162 I 0 0 0 0 I 0 165

5 5020 F 159 10 0 162 1 0 0 0 0 1 0 159

5 5020 M 116 12.8 I 162 1 0 0 0 0 1 I 118

5 5020 F 106 7.9 0 162 1 0 0 0 0 1 0 106

5 5020 M 65 6.7 I 162 I 0 0 0 0 I 1 65

5 5020 F 138 9.7 0 162 I 0 0 0 0 1 0 136

5 5020 M 135 9.3 1 162 1 0 0 0 0 I 1 135

5 5020 F 135 6.1 0 162 1 0 0 0 0 I 0 135

5 5020 M 126 10.9 1 162 1 0 0 0 0 1 1 126

5 5020 F 116 9.2 0 162 1 0 0 0 0 I 0 116

5 5020 M 116 10.6 1 162 1 0 0 0 0 1 1 116

.5 5020 M 116 11.5 1 162 1 0 0 0 0 1. 1 116

5 5204 M 116 12.6 1 163 1 0 0 0 0 1 1 116

5 5204 M 115 9.7 1 163 1 0 0 0 0 1 1 115

5 5204 M 114 11.5 1 163 1 0 0 0 0 1 I 114

5 5204 M 112 9.1 1 163 1 0 0 0 0 1 1 112

5 5204 F lOl 6 0 163 1 0 0 0 0 I 0 lOl

5 5207 M 121 11.4 1 164 I 0 0 0 0 1 1 121

5 5207 M 115 12.3 1 164 1 0 0 0 0 1 1 115

5 5207 M 114 11.9 1 164 1 0 0 0 0 1 1 114

5 5207 F 96 9.6 0 164 1 0 0 0 0 1 0 96

5 5206 M 116 16.4 1 165 1 0 0 0 0 1 1 116

5 5206 M 112 12 1 165 1 0 0 0 0 1 1 112

5 5206 F 106 10.5 0 165 1 0 0 0 0 1 0 106

5 5331 F 132 7 0 166 1 0 0 0 0 1 0 132

5 5331 M 115 9.7 1 166 1 0 0 0 0 1. 1 115

5 5331 M 102 6.5 1 166 1 0 0 0 0 1 1 102

5 5331 M 139 11.4 1 166 1 0 0 0 0 1 1 139

5 5331 F 127 6.6 0 166 1 0 0 0 0 1 0 127

5 5331 F 119 10.8 0 166 1 0 0 0 0 1 0 119

5 5331 M 116 9.3 I 166 1 0 0 0 0 I 1 116

5 5331 M III 9.7 1 166 1 0 0 0 0 1 1 III

5 5332 M 118 II 1 167 1 0 0 0 0 1 1 116

5 5332 M 117 11.9 1 167 1 0 0 0 0 1 1 117

5 5332 F 116 9.4 0 167 1 0 0 0 0 1 0 116

5 5332 M 115 9.1 1 167 1 0 0 0 0 I 1 115

5 5332 F 133 6.3 0 167 1 0 0 0 0 1 0 133

5 5332 F 133 10.5 0 167 1 0 0 0 0 1 0 133

5 5332 F 130 9.9 0 167 1 0 0 0 0 1 0 130

5 5332 F 127 8.7 0 167 1 0 0 0 0 1 0 127

5 5332 M 126 7.9 1 167 1 0 0 0 0 1 1 126

5 5332 F 125 12.1 0 167 1 0 0 0 0 I 0 125

5 5332 M 116 11.3 1 167 1 0 0 0 0 1 1 116

5 5333 M 134 12.3 1 166 1 0 0 0 0 1 1 134

5 5333 M 125 12.4 1 168 I 0 0 0 0 1 1 125

5 5333 M 124 7.7 1 166 1 0 0 0 0 1 1 124

5 5333 M 119 13.3 1 168 1 0 0 0 0 I 1 119

5 5334 M 133 10.9 1 169 1 0 0 0 0 1 1 133

5 5334 F 128 9.9 0 169 1 0 0 0 0 1 0 128

5 5334 F 122 11.2 0 169 1 0 0 0 0 I 0 122

5 5334 F 114 10.6 0 169 1 0 0 0 0 1 0 114

5 5334 F 114 7.4 0 169 1 0 0 0 0 1 0 114

5 5334 M 107 11.7 1 169 I 0 0 0 0 I 1 107

5 5334 F 96 6.6 0 169 1 0 0 0 0 1 0 96
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5 5336 M 135 9.6 1 170 1 0 0 0 0 1 1 135

5 5336 M 119 11.9 1 170 1 0 0 0 0 i : 1 119

5 5336 M 116 11.5 1 170 1 0 0 0 0 1 1 116

5 5336 F 103 7 0 170 1 0 0 .0 0 1 0 103

5 5336 F 141 12.2 0 170 1 0 0 0 0 1 0 141

5 5336 F 137 7.9 0 170 1 0 0 0 0 1 0 137

5 5336 M 134 11.3 1 170 1 0 0 0 0 1 1 134

5 5336 M 114 12.7 1 170 1 0 0 0 0 1 1 114

5 5336 F 98 10.4 0 170 1 0 0 0 0 1 0 98

6 1972 M 101 4.7 1 171 1 0 0 0 0 0 1 101

6 1991 F 121 8.9 0 172 1 0 0 0 0 0 0 121

6 4908 F 166 11.5 0 173 1 0 0 0 0 0 0 166

6 4908 F 156 11 0 173 1 0 0 0 0 0 0 156

6 4910 F 125 10.2 0 174 1 0 0 0 0 0 0 125

6 4910 M 98 10.1 1 174 1 0 0 0 0 0 1 98

6 4915 M 110 10.1 1 175 1 0 0 0 0 0 1 110

6 4915 M 104 10 1 175 1 0 0 0 0 0 1 104

6 5001 F 169 11.2 0 176 1 0 0 0 0 0 0 169

6 5002 F 170 11.5 0 177 1 0 0 0 0 0 0 170

6 5002 F 165 10.3 0 177 1 0 0 0 0 0 0 165

6 5003 M 119 7.5 1 178 1 0 0 0 0 0 1 119

6 5003 F 158 9.3 0 178 1 0 0 0 0 0 0 158

6 5004 F 102 7.2 0 179 1 0 0 0 0 0 0 102

6 5005 M 154 9.7 1 180 1 0 0 0 0 0 1 154

6 5007 F 168 12.1 0 181 1 0 0 0 0 0 0 168

6 5007 M 167 11.6 1 181 1 0 0 0 0 0 1 167

6 5007 F 161 11.3 0 181 1 0 0 0 0 0 0 161

6 5007 M 149 10.4 1 181 1 0 0 0 0 0 1 149

6 5007 M 120 13.9 1 181 1 0 0 0 0 0 1 120

6 5008 M 172 12.7 1 182 1 0 0 0 0 0 1 172

6 5008 F 142 10.8 0 182 1 0 0 0 0 0 0 142

6 5008 M 112 11.8 1 182 1 0 0 0 0 0 1 112

6 5008 M 108 8.5 1 182 1 0 0 0 0 0 1 108

6 5008 F 96 5.6 0 182 1 0 0 0 0 0 0 96

6 5009 F 174 11.8 0 183 1 0 0 0 0 0 0 174 I

6 5009 M 167 12 1 183 1 0 0 0 0 0 1 167

6 5009 F 158 10.8 0 183 1 0 0 0 0 0 0 158

6 5010 F 165 10.8 0 184 1 0 0 0 0 0 0 165

6 5010 M 164 14.4 1 184 1 0 0 0 0 0 1 164

6 5010 M 146 12.2 1 184 1 0 0 0 0 0 1 146

6 5011 F 164 12.6 0 185 1 0 0 0 0 0 0 164

6 5011 F 159 11.6 0 185 1 0 0 0 0 0 0 159

6 5011 M 157 11.1 1 185 1 0 0 0 0 0 1 157

6 5011 M 121 12.3 1 185 1 0 0 0 0 0 1 121

6 5011 F 107 8.1 0 185 1 0 0 0 0 0 0 107

6 5012 M 166 15.2 1 186 1 0 0 0 0 0 1 166

6 5012 M 162 16.2 1 186 1 0 0 0 0 0 1 162

6 5013 F 148 12.9 0 187 1 0 0 0 0 0 0 148

6 5071 M 104 9.6 1 188 1 0 0 0 0 0 1 104

. .6 5073 M 113 13.8 1 189 1 Ó 0 0 0 .0 1 113

6 5076 M 112 11.1 1 190 1 0 0 0 0 0 1 112

6 5205 M 120 12.2 1 191 1 0 0 0 0 0 1 120

6 5205 F 110 6.2 0 191 1 0 0 0 0 0 0 110

6 5206 M 119 14.2 1 192 1 0 0 0 0 0 1 119

6 5206 F 117 11.2 0 192 1 0 0 0 0 0 0 117

6 5322 F 115 11.5 0 193 1 0 0 0 0 0 0 115

6 5322 F 98 8.7 0 193 1 0 0 0 0 0 0 98

6 5324 M 130 11.8 1 194 1 0 0 0 0 0 1 130

6 5324 F 128 7.9 0 194 1 0 0 0 0 0 0 128

6 5324 M 111 13 1 194 1 0 0 0 0 0 1 111

6 5324 F 106 10.3 0 194 1 0 0 0 0 0 0 106

6 5326 M 100 9.8 1 195 1 0 0 0 0 0 1 100

6 5326 F 139 11.5 0 195 1 0 0 0 0 0 0 139

6 5326 F 131 9.9 0 195 1 0 0 0 0 O. 0 131

6 5328 M 130 14.8 1 196 1 0 0 0 0 0 1 130

6 5328 F 140 11.2 0 196 1 0 0 0 0 0 0 140

6 5328 F 130 11.3 0 196 1 0 0 0 0 0 0 130

6 5328 F 127 7.3 0 196 1 0 0 0 0 0 0 127

6 5329 M 123 9.9 1 197 1 0 0 0 0 0 1 123

6 5329 M 118 7.5 1 197 1 0 0 0 0 0 1 118

6 5329 F 146 14.4 0 197 1 0 0 0 0 0 0 146

6 5329 F 133 7 0 197 1 0 0 0 0 0 0 133

6 5329 F 130 9.7 0 197 1 0 0 0 0 0 0 130

6 5329 F 100 11.5 0 197 1 0 0 0 0 0 0 100

6 5330 M 123 10.9 1 198 1 0 0 0 0 0 1 123

6 5330 F 137 10.1 0 198 1 0 0 0 0 0 0 137

6 5330 F 134 11.8 0 198 1 0 0 0 0 0 0 134

6 5337 F 129 11.3 0 199 1 0 0 0 0 0 0 129

6 5337 M 125 13.5 1 199 1 0 0 0 0 0 1 125

6 5337 M 119 9.7 1 199 1 0 0 0 0 0 1 119

6 5337 M 116 9.6 1 199 1 0 0 0 0 0 1 116

6 5337 F 103 8.3 0 199 1 0 0 0 0 0 0 103

6 5338 F 127 11.4 0 200 1 0 0 0 0 0 0 127

6 5338 M 123 10 1 200 1 0 0 0 0 0 1 123

6 5338 F 137 12.9 0 200 1 0 0 0 0 0 0 137
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APPENDIXD

Two drugs against trypanosomosis (parasitic disease transmitted by tsetse flies), Berenil and,

Samorin, are studied in a situation where there is widespread evidence of high levels of drug

resistance. Herds of N'Dama breeds are randomly assigned to Berenil and herds of Boran breeds to

Samorin treatment. The aim of the study was then to see whether there are differences in the change

in pev between the two breeds following a trypanosome infection.

pev is a variable often measured to evaluate the severity of the diseases is packed cell volume

(peV), which is the percentage of the volume of the blood serum taken up by the red blood cells.

Low pev corresponds to anaemia and can indicate infection with the disease. That determined at the

time of treatment was designated pevo, that a month later following treatment was designated

peV35 (with 14 measurements in between), Animals belonging to a herd to which Berenil has been

assigned, however, are randomly assigned to receive a high or a low dose of Berenil when detected

parasitaemicwith trypanosomes.
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Animal

Breed Days 1 2 3 4 5 6

Boran 0 36.2 35.9 29.5 28.5 30.4 337

2 35.9 38.5 33.3 27.6 29.5 36.2

4 35.3 35.9 29.2 27.9 28.8 33.3

7 35.4 36 29.9 27.7 28.7 32.2

9 35.4 36.3 29 29.3 28.7 30.9

14 31.5 36.3 29.9 26.7 27.1 29.6

17 25.5 25.2 21.3 21.3 20.7 22.6

18 34.4 31.5 27.4 26.7 25.2 30.3

21 34.1 30.6 25.5 25.2 22.9 28.3

23 25.8 28.7 .25.5 23.6 23.2 25.8

25 28.7 29 24.8 23.6 22.9 24.5

29 21.6 23.9 23.6 20 20.7 21.6

31 21.3 21.3 22.6 19.4 19.1 17.5

35 17.8 18.1 20.4 17.2 18.5 15.9

N'Dama 0 30.4 37.5 32.4 34.3 30.4 40.4

2 33 37.8 30.4 33 32.1 37.5

4 33.3 36.5 31.7 37.5 32.1 38.8

7 31.9 35.7 31.2 36.3 30.9 37

9 30.6 35.7 31.5 34.1 30.6 38.9

14 31.2 33.8 27.7 30.6 . 29.6 31.9

17 27.7 33.4 27.1 27.7 23.6 27.1

18 28 31.5 27.4 29.9 29 31.5

21 28.3 32.5 29 28 29.6 31.2

23 27.7 34.7 28 27.1 28.7 33.1

25 25.8 30.6 27.4 26.7 27.1 35.4

29 26.1 31.5 28.3 28.7 25.8 30.6

31 24.5 25.2 26.1 23.9 26.1 28,7

35 22.6 28.7 22.9 22.6 24.2 26.1

% pev measured at 0,2,4, ..,35 days following infection



APPENDIXE

Appendix E: Estimated Breeding Values for the Data Setfrom Duchateau, et al., 1998;

Estimated breeding values for the complete data set used in Chapter 3.

DPP = Dirichlet Process when M is simulated given the data

t
r

I

REML Trad. Bayes DPP
SIRE ID BREED Estimate SE Estimate SimM

1971 I -0.1061 0.6654 -0.1024 -0.1097
1972 1 0.5241 0.5349 0.5689 0.5081
1973 1 0.3888 0.6399 0.4464 0.3934
1974 1 1.9339 0.5486 1.9627 1.9026
1980 1 0.9299 0.5975 0.9635 0.9193
1991 1 0.3611 0.6396 0.3741 0.3438
1999 I 0.9266 0.6654 0.9939 0.8936
4907 1 0.2289 0.5790 0.2676 0.2293
4908 1 1.6614 0.4921 1.6662 1.649
4909 1 -0.7628 0.6653 -0.7645 -0.7711
4910 1 0.4627 0.5123 0.4396 0.4511
4911 1 0.6681 0.5795 0.6867 0.653
4912 1 -0.3258 0.6655 -0.3581 -0.3125
4915 1 0.2351 0.6655 0.1955 0.224
4916 I -0.1544 0.6658 -0.1383 -0.1681
5001 I -0.3829 0.7309 -0.3286 -0.3592
5002 I -0.4267 0.6398 -0.4600 -0.4385
5003 1 0.2938 0.7307 0.2753 0.2474
5004 I 0.6637 0.6401 0.6546 0.6468
5005 1 0.1155 0.6397 0.1555 0.0971
5007 I -0.7786 0.6396 -0.7543 -0.7531
5008 I -0.4999 0.6655 -0.5137 -0.5016
5009 1 -0.0700 0.7309 -0.0531 -0.0297
5010 1 0.1004 0.6956 0.1027 0.0818
5011 1 -0.6332 0.6956 -0.6175 -0.5763
5012 1 0.1259 0.7311 0.1063 0.1
5013 1 -0.3030 0.6961 -0.2939 -0.3329
5071 I 0.3608 0.6655 0.3945 0.3812
5073 I -0.2421 0.7732 -0.2776 -0.2338
5076 1 -0.1386 0.7730 -0.1264 -0.1087
5205 1 -0.4303 0.7731 -0.4454 -0.3821
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5324 1 -0.7496 0.7730 -0.7590 -0.7039
5326 1 :0.5001 0.7308 -0.5171 -0.4887
5328 1 -0.2392 0.6393 -0.2737 -0.232
5329 1 -0.5741 0.6167 -0.6062 -0.5698
5330 1 -1.4541 0.6393 -1.4747 -1.3737
5337 1 -0.5825 0.6654 -0.5811 -0.5837
5338 1 -0.6268 0.6954 -0.6131 -0.5882
1975 2 -0.1147 0.6173 -0.0893 -0.0912
1976 2 0.4043 0.6399 0.4477 0.3964
1979 2 0.8504 0.5495 0.8168 0.8382
1981 2 0.1681 0.5799 0.1769 0.1699
1982 2 -0.2903 0.6663 -0.2016 -0.3346
1983 2 1.4790 0.6404 1:5350 1.4576
1984 2 0.3396 0.6175 0.4279 0.3094
1986 2 0.1270 0.7310 0.1526 0.142
1988 2 0.9403 0.6658 0.9514 0.98
4901 2 0.6692 0.5497 0.6900 0.6585
4902 2 0.3625 0.5502 0.3446 0.3446
4903 2 0.1536 0.5249 0.1349 0.1255
4905 2 -0.0434 0.4942 -0.0279 -0.0769
4906 2 0.6141 0.5035 0.6523 0.5717
4913 2 0.1971 0.6664 0.2227 0.2353
4914 2 -1.0541 0.5800 -1.1073 -1.0039
4918 2 0.7037 0.6962 0.6847 0.6331
4919 2 -0.9475 0.6666 -0.9576 -0.9186
4921 2 -0.6580 0.5638 -0.6768 -0.6184
4923 2 -0.1434 0.5978 -0.1706 -0.1427
5015 2 0.0903 0.6404 0.0550 0.0552
5016 2 -0.8617 0.6177 -0.8988 -0.8042
5017 2 -1.1521 0.6176 -1.1860 -1.1127
5018 2 -0.2094 0.7308 -0.2098 -0.2311
5019 2 -0.4845 0.5975 -0.4910 -0.458
5020 2 -0.1989 0.6403 . -0.2144 -0.1768
5204 .2 -0.2315 0.7732 -0.2585 -0.2016
5207 2 -0.1528 0.7731 -0.1341 -0.1835
5331 2 -0.0178 0.7731 -0.0770 -0.0006
5334 2 -0.2860 0.7731 -0.2829 -0.2741
5336 2 -0.2528 0.7309 -0.2626 -0.2231
1971 3 -0.5916 0.5597 -0.6159 -0.5838
1972 3 1.0193 0.5062 1.0300 1.0054
1973 3 0.8188 0.6145 0.8021 0.8213
1974 3 -0.1343 0.6642 -0.1161 -0.1457
1980 3 0.2847 0.6149 0.2463 0.314
1991 3 0.4573 0.6380 0.4638 0.4214
1999 3 0.3507 0.6639 0.3162 0.3172
4907 3 0.1848 0.5438 0.1809 0.1652

Appendix E: Estimated Breeding Values for the Data Set from Duchateau, et al., 1998;

r
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Appendix E: Estimated Breeding Values for the Data Setfrom Duchateau, et al., /998;

4908 3 0.6656 0.4767 0.6633 0.6427
4909 3 0.6248 0.5598 0.6198 0.6078
4910 3 -0.1241 0.5179 -0.1408 -0.1418
4911 3 0.9102 0.6381 0.9922 0.8869
4912 3 0.7009 0.5306 0.6865 0.6699
4915 3 -0.5662 0.6152 -0.6052 -0.5554
4916 3 0.0111 0.5315 0.0232 0.007
5001 3 0.0392 0.6388 0.0851 0.0638
5002 3 0.20 Il 0.5439 0.2123 0.1804
5003 3 0.7758 0.5437 0.7462 0.7322
5004 3 0.0456 0.6154 0.0304 0.0351
5005 3 0.6248 0.5302 0.6826 0.5889
5006 3 -0.0257 0.7729 -0.0039 -0.0546
5007 3 -0.7342 0.5592 -0.7001 -0.7081
5008 3 -0.2444 0.5753 -0.2629 -0.2602
5009 3 -0.4822 0.5753 -0.4978 -0.4396
5010 3 0.1952 0.6951 0.2524 0.1997
5011 3 -0.5054 0.5179 -0.5245 -0.5325
5012 3 0.4238 0.6952 0.3924 0.4272
5013 3 -0.8623 0.6384 -0.8832 -0.8186
5071 3 -0.0328 0.5459 -0.0596 -0.0237
5073 3 -0.0160 0.7729 -0.0171 -0.0068
5076 3 0.1324 0.7730 0.1270 0.1257
5205 3 -0.4053 0.6643 -0.3947 -0.3858
5206 3 0.0652 0.5944 0.0957 0.0482
5321 3 0.1343 0.7302 0.1409 0.1009
5322 3 -0.8229 0.6147 -0.8742 -0.7943
5324 3 0.2162 0.7306 0.2634 0.2084
5326 3 -0.4500 0.6947 -0.5162 -0.4068
5328 3 -0.5569 0.5941 -0.5849 -0.5516
5329 3 -0.8199 0.5446 -0.8603 -0.7923
5330 3 -1.1606 0.5587 -1.2002 -1.0854
5337 3 0.1048 0.6377 0.1210 0.1019
5338 3 -0.4520 0.5177 -0.4651 -0.4289
1975 4 0.7474 0.5061 0.7256 0.7081
1976 4 0.8951 0.6149 0.9307 0.8653
1979 4 -0.3871 0.5064 -0.3926 -0.3982
1981 4 0.4741 0.6146 0.4465 0.4463
1982 4 -0.0710 0.7729 -0.0575 -0.0396
1983 4 0.1010 0.5937 0.1088 0:1 157
1984 4 0.8469 0.5756 0.8823 0.805
1986 4 0.4516 0.6376 0.4461 0.4418
1988 4 -0.3328 0.5592 -0.3485 -0.3107
4901 4 0.7953 0.4953 0.8141 0.7761
4902 4 -0.1491 0.4385 -0.1395 -0.1696
4903 4 1.1514 0.5300 1.2001 1.1224

-308-



r
I

4905 4 -0.1528 0.4615 -0.1144 -0.1808
4906 4 0.2633 0.4856 0.2961 0.2459
4913 4 0.2709 0.5765 0.2676 0.2398
4914 4 0.4437 0.4323 0.4366 0.4123
4918 4 0.1952 0.5199 0.2266 0.1741
4919 4 -0.9511 0.4390 -0.9531 -0.8958
4921 4 -0.6402 0.4856 -0.6476 -0.6073
4923 4 0.1171 0.4958 0.1508 0.0728
5015 4 -0.2059 0.5308 -0.1867 -0.2039
5016 4 -0.6323 0.5587 -0.5925 -0.6073
5017 4 -0.1042 0.4955 -0.1211 -0.1358
5018 4 0.0329 0.5304 0.0047 0.035
5019 4 -0.4168 0.4857 -0.3861 -0.4184
5020 4 -0.3328 0.4600 -0.3295 -0.3613
5204 4 -0.5484 0.6380 -0.5679 -0.5169
5207 4 -0.4170 0.6644 -0.3610 -0.3791
5208 4 -0.4533 0.6645 -0.4677 -0.4507
5331 4 -0.2136 0.5312 -0.2106 -0.2016
5332 4 -0.4640 0.5302 -0.4453 -0.4668
5333 4 -0.5464 0.5941 -0.5769 -0.5264
5334 4 0.1250 0.6381 0.0967 0.0945
5336 4 0.1079 0.5063 0.1247 0.0842
1975 5 -0.7175 0.6191 -0.7509 -0.7053
1979 5 -0.4920 0.6411 -0.4991 -0.5028
1982 5 0.2473 0.7732 0.2446 0.2412
4902 5 0.4902 0.5818 0.5047 0.4392
4905 5 0.1193 0.7311 0.1769 0.1122
4906 5 -0.5996 0.6668 -0.6063 -0.5691
4914 5 0.3284 0.5074 0.3184 0.3123
4918 5 -0.3650 0.6670 -0.3851 -0.3673
4919 5 -0.6073 0.4894 -0.6402 -0.5904
4921 5 -0.4122 0.6669 -0.4361 -0.4205
4923 5 -0.0513 0.7314 -0.0619 -0.0329
5015 5 -0.0328 0.5817 -0.0313 -0.019
5016 5 0.0768 0.6667 0.0967 0.0806
5017 5 -0.1279 0.5823 -0.1145 -0.1349
5018 5 -0.4122 0.6187 -0.4317 -0.3841
5019 5 0.4651 0.5816 0.4822 0.4183
5020 5 -0.0474 0.5169 -0.0868 -0.0788
5204 5 0.0700 0.6413 0.0693 0.0713
5207 5 0.6159 0.6667 0.6394 0.5962
5208 5 1.0117 0.6963 1.0674 1.0026
5331 5 -0.4083 0.5817 -0.3608 -0.3985
5332 5 -0.0742 0.5391 -0.1131 -0.0521
5333 5 0.3543 0.6668 0.3541 0.3415
5334 5 0.2657 0.5994 0.2868 0.2627

Appendix E: Estimated Breeding Values for the Data Set from Duchateau, et al., 1998;
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Appendix E: Estimated Breeding Values for the Data Setfrom Duchateau, et al., 1998;

5336 5 0.3029 0.5660 0.3 118 0.2618
1972 6 70.6139 0.7735 -0.6616 -0.6009
1991 6 -0.1264 0.7734 -0.1488 -0.119
4908 6 -0.1184 0.7325 -0.0705 -0.0998
4910 6 0.0678 0.7322 0.0918 0.0199
4915 6 0.0147 0.7325 -0.0133 -0.0129
5001 6 -0.1183 0.7736 -0.1402 -0.0864
5002 6 -0.2610 0.7326 -0.2281 -0.2262
5003 6 -0.5894 0.7321 -0.6160 -0.5468
5004 6 -0.2265 0.7735 -0.2923 -0.2258
5005 6 -0.3030 0.7735 -0.3106 -0.2561
5007 6 0.0075 0.6456 0.0763 0.0034
5008 6 -0.2902 0.6450 -0.3131 -0.3151
5009 6 -0.2190 0.6988 ~0.1699 -0.234
5010 6 0.0975 0.6985 0.1176 0.0747
5011 6 -0.0125 0.6451 -0.0613 -0.0067
5012 6 0.6699 0.7326 0.7915 0.6654
5013 6 0.2102 0.7735 0.1985 0.2045
5071 6 -0.0298 0.7735 -0.0459 -0.0133
5073 6 0.4341 0.7735 0.5039 0.4147
5076 6 0.1085 0.7735 0.0970 0.1196
5205 6 -0.1755 0.7322 -0.1493 -0.1477
5206 6 0.5590 0.7322 0.6348 0.5343
5322 6 0.1846 0.7325 0.1772 0.1723
5324 6 0.2054 0.6696 0.2060 0.2179
5326 6 0.0374 0.6981 0.0459 0.0101
5328 6 0.1950 0.6695 0.2470 0.1955
5329 6 -0.1601 0.6239 -0.1136 -0.1856
5330 6 0.0850 0.6980 0.0255 0.0713
5337 6 0.1022 0.6452 0.0809 0.104
5338 6 0.2649 0.6981 0.2788 0.2485



4379 6560
2 5560 7733 7198
3 4637 5639 8072
4 5726 5576
5 4968 4574

2 6 5355 7057 7052
7 4605 4180
8 4393 4530

3 9 5195
10 6137 4748 7351
11 6253
12 5553 6026 6666

4 13 6268 7575 7024
14 7112
15 5840 7316 6382
16 6246 5595
17 5400 6440
18 7301 6615
19 5453
20 7374 6693 6592

Appendix F' Milk production records, kg (305 days) of full-sib daughters

APPENDIXF

The data set consists of 44 age-adjusted milk production record (305 days) obtained in the same

year and herd from cows whose sires and dams were considered randomly representative of a large

population. The records were taken from full-sib daughters.

Sires Dams Production Records
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