IEEE Access

Multidisciplinary Rapid Review : Open Access Journal

Received February 23, 2022, accepted March 29, 2022, date of publication April 7, 2022, date of current version April 18, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3165616

Embedding Tamper-Resistant, Publicly Verifiable
Random Number Seeds in Permissionless
Blockchain Systems

RIAAN BEZUIDENHOUT !, WYNAND NEL"“'!, AND JACQUES M. MARITZ"2

IDepartmf:nt of Computer Science and Informatics, University of the Free State, Bloemfontein 9301, South Africa
2Department of Engineering Sciences, University of the Free State, Bloemfontein 9301, South Africa

Corresponding author: Riaan Bezuidenhout (bezuidenhoutr @ufs.ac.za)

ABSTRACT Many blockchain processes require pseudo-random numbers. This is especially true of
blockchain consensus mechanisms that aim to fairly distribute the opportunity to propose new blocks
between the participants in the system. The starting point for these processes is a source of randomness
that participants cannot manipulate. This paper proposes two methods for embedding random number seeds
in a blockchain data structure to serve as inputs to pseudo-random number generators. Because the output of
a pseudo-random number generator depends deterministically on its seed, the properties of the seed are
critical to the quality of the eventual pseudo-random number produced. Our protocol, B-Rand, embeds
random number seeds that are confidential, tamper-resistant, unpredictable, collision-resistant, and publicly
verifiable as part of every transaction. These seeds may then be used by transaction owners to participate in
processes in the blockchain system that require pseudo-random numbers. Both the Single Secret and Double
Secret B-Rand protocols are highly scalable with low space and computational cost, and the worst case is
linear in the number of transactions per block.

INDEX TERMS B-Rand, blockchain, consensus algorithm, homomorphic encryption, pseudo-random

number generation, random number seeds.

I. INTRODUCTION

When Satoshi Nakamoto introduced the concept of peer-
to-peer transactions using a blockchain system in 2008 [1],
it is reasonable to assume that he did not intend for its
electricity consumption to reach current levels. Because
Bitcoin miners keep details about their operations secret,
it is not possible to make a direct attempt to determine
the electricity consumption of the Bitcoin network [2].
De Vries [2] does, however, make an indirect estimate
of the lower bound of the electricity use by the Bitcoin
network of 2.55 Gigawatt. This was done by estimating
the average number of hash calculations per second (from
the block target parameter) multiplied by the electricity use
of the most efficient mining hardware. Using this same
method on 15 September 2021, it is noted that the current
lower bound on electricity consumption is 12.9 Gigawatt

The associate editor coordinating the review of this manuscript and

approving it for publication was Mehdi Sookhak

or 113.2TWh per year. According to the U.S. Energy
Information Administration, this is on par with the electricity
consumption of the Netherlands [3]. While these estimates
are the lower bounds and do not account for miners using
less efficient hardware or related electricity use, notably
the cooling requirements of mining operations, it goes a
long way to highlight the problem. It is unknown how
Satoshi envisaged the long-term future of his idea, but it
seems reasonable to these authors that the intention was
for stakeholders who engage with the Bitcoin blockchain
maintenance process on the same basis as they would in
creating transactions, by existing hardware and without
additional investment in computational or electrical supply
infrastructure.

Ma, Gans and Tourky [4] established that the Bitcoin
energy consumption problem stemmed from the proof-
of-work (PoW) consensus algorithm used by the Bitcoin
network. In any blockchain system, the consensus algorithm
is critical in establishing agreement over the final correct ver-

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

39912 For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME 10, 2022

https://orcid.org/0000-0002-5412-7512
https://orcid.org/0000-0001-5579-6411
https://orcid.org/0000-0003-1556-8523
https://orcid.org/0000-0001-5822-3432

R. Bezuidenhout et al.: Embedding Tamper-Resistant, Publicly Verifiable Random Number Seeds

IEEE Access

sion of the blockchain. PoW is also the consensus algorithm
used by Ethereum [5]. Ma, Gans and Tourky [4] postulated
that the solution to Bitcoin’s energy use lies in reducing
the number of competing miners that attempt to solve each
block of transactions as it is appended to the blockchain.
The process of devising alternative blockchain consensus
algorithms is ongoing, and new ideas are constantly coming
to light [6].

Some alternatives, such as proof-of-stake (PoS) and proof-
of-importance, exhibit the possibility for the consensus
mechanism to be skewed in the direction of a minority
of stakeholders in the blockchain network [7], [8]. Proof-
of-elapsed time, proof-of-luck, and proof-of-responsibility,
on the other hand, require intervention by a centralised
authority, which opposes the primary ethos of a peer-to-
peer transaction system [9]—[11]. Another strategy is to shift
the use of energy to another resource, such as PoW with
a cuckoo hash function (random access memory), proof-of-
space (data storage capacity), and proof-of-burn (blockchain
tokens) [12]-[14]. There have even been attempts to save
resources by sacrificing automation in favour of increased
stakeholder involvement. Examples of these are delegated
proof-of-stake (DPoS) and proof-of-human work [15], [16].
Despite all these attempts, and the list above is certainly
not exhaustive, PoW remains the most important blockchain
consensus algorithm. This is given by the fact that more
than 82% of the top ten cryptocurrency market capitalisations
(US$1.4 trillion) belong to cryptocurrencies that utilise the
PoW consensus mechanism [17].

Currently, the most promising alternative to PoW is the
family of PoS and DPoS consensus protocols. They select
block proposers based on their stake (value of assets/number
of coins). This may lead to a minority of participants
exercising control over the system. Since each participant
has a weighted (non-equal) probability of participation, some
protocols allow smaller stakeholders to delegate their ‘voting
right’ to a pool. This allows broader participation but also
opens the door for collusion by groups of stakeholders to
the exclusion of others [7]. PoS type systems also require
that the value of digital assets is objectively comparable, i.e.,
comparing the number of coins.

The above synopsis begs the question of whether it is
possible to design a more practical, less wasteful, permission-
less blockchain system. While this paper does not provide
a complete solution, the question provides a fundamental
perspective on one of the elements that will surely be part
of the solution. A critical starting point is to take a step back
and consider the primary purpose of blockchain consensus
algorithms. Glaser [18] summarised it well when he said that
the purpose of blockchain consensus algorithms is to select
the party that adds a block to the blockchain at random.
En-route to putting Glaser’s advice into practice (selecting a
party at random), the problem of generating pseudo-random
numbers must be solved.

Pseudo-random numbers, produced by pseudo-random
number generators, also known as deterministic random

VOLUME 10, 2022

number generators, require seed values as input. Each seed
produces the same pseudo-random number when used as
an input in the same pseudo-random number generator
[19]. It stands to reason that the first step in selecting
the party that adds a block to the blockchain at random
requires a seed. Specifically, for use in a blockchain
consensus algorithm, the seed must be tamper-resistant and
publicly verifiable. Tamper-resistant, in this case, refers to
tampering, first by any would-be proposer of a new block
and second by any stakeholder who may wish to assist
or hinder that proposer. Furthermore, because the block
addition process in any permissionless blockchain is subject
to verification by all stakeholders, the seed must be publicly
verifiable.

The use of tamper-resistant, publicly verifiable random
number seeds may also be used elsewhere on the blockchain.
This may include input values for smart contracts (determin-
ing the ordering of future events), operation of distributed
applications (gaming, for example), or for the construction
of entirely new blockchain applications (such as publicly
verifiable distributed random number generators).

In this paper, we propose a confidential, tamper-resistant,
unpredictable, collision-resistant, publicly verifiable, and
scalable protocol (B-Rand) to assign random number seeds to
transaction owners for use in blockchain applications where
the use of pseudo-random numbers may be required. It is
a mechanism that allows participants to produce provable
pseudo-random numbers for participation in, for example,
block proposer selection that is randomly distributed among
all participants and where the value of digital assets may
not be objectively comparable, for example, supply chain or
intellectual property records.

In addition to the characteristics above, B-Rand is also self-
contained within the blockchain system and does not require
the use of any outside oracle or services. The protocol has
two variants, the first, Single Secret B-Rand, which requires
only two parties to implement, namely the transaction owner
where the seed is embedded and the verifier. The second
variant, Double Secret B-Rand, requires three parties: the
transaction owner of the transaction where the seed is
embedded, the proposer (in some blockchain systems referred
to as the miner) of the block where the transaction is recorded,
and the verifier. In both cases, no party can employ any
meaningful strategy to manipulate the seed. B-Rand adds
exceedingly low computational complexity to the blockchain
system and space complexity to the data structure.

This paper is organised into six parts. The five parts to fol-
low start with a general background discussion of blockchain
systems, focusing on how transactions and transaction blocks
are created, before briefly reminding the reader of key aspects
of public-key cryptography, homomorphic encryption and
pseudo-random number generation (Section II). Distributed
random number generators are not a new idea, and the most
important work to date on the subject is given in Section III.
A description of the two B-Rand protocols is laid out in
Section IV, and in the analysis (Section V), the claims of the

39913

l E E E ACC@SS R. Bezuidenhout et al.: Embedding Tamper-Resistant, Publicly Verifiable Random Number Seeds

Step1 Step 2 Step 3
Construct transaction data Calculate hash of transaction data Sign hash of transaction data with user's

\ private key

AddressPubK ~\| AddressPubk
/ AddressPubK
| T] /
V .. othertx data .. \’
.. othertx data ..
.. othertx data ..
TxHash = hash (transaction data)

TxHash = hash (transaction data)

TxSign = sign(TxHash,AddrPrivK)

FIGURE 1. A generalised blockchain transaction construction process.

paper are revisited, and each one is addressed individually
regarding the details of the protocol.

Il. BACKGROUND

Permissionless blockchain systems are distributed systems
that employ a combination of technologies such as distributed
ledgers, cryptography, and consensus algorithms so that
untrusted parties can agree on the state of decentralised
transaction data [20]-[22]. One of the components of a
blockchain system is a distributed ledger or blockchain that
conforms to a cryptographically linked data structure, serving
as a sequential record of transactions. The characteristics of
the distributed ledger are designed to enable parties to agree
on a single correct version of the transaction record, without
having to trust each other and without the intervention or
oversight of a central authority [23], [24].

A blockchain system’s purpose is to record transactions
on a distributed ledger that are immutable and cannot
be repudiated, secure, transparent, and accessible [20],
[24]. Permissionless blockchain systems do not restrict the
participation of any stakeholder, and no central authority
exercises control over them. They function on a peer-to-peer
basis, and a decentralised consensus mechanism is required
for participants to reach an agreement on the ultimate correct
state of the blockchain [6], [20], [21].

Permissionless blockchain systems require ways to des-
ignate one participant with the right to act on behalf of
other participants [25]. A good example is the execution
of a consensus algorithm, such as PoW [1] or PoS [6].
In these instances, the designated participant is selected by
an algorithm based on a random process. Permissionless
blockchain systems allow participants to employ any strategy
allowed by the consensus algorithm and, as such, can act
with self-interest. This is currently the case with, for instance,
Bitcoin mining. These self-interest strategies may have
unintended or undesirable consequences, such as inefficient
resource use [26].

A. THE BLOCKCHAIN TRANSACTION CONSTRUCTION
PROCESS

Any stakeholder who desires to interact with a blockchain
system does so by initiating a transaction on the blockchain.

39914

The process starts by constructing a transaction for transmis-
sion to a blockchain network and can broadly be divided into
three steps (Fig. 1). Note that this study treats the mechanics
of permissionless blockchain systems in their most general
sense, as the research is independent of the specific intricacies
of any specific blockchain implementation.

Step 1 consists of constructing the transaction data. For
simplicity, it is useful to imagine that each transaction
contains a blockchain address of the user initiating the
transaction (the transaction owner, for brevity, referred to
as the owner). In practice, it may be that a transaction
contains multiple addresses belonging to the owner, but this
does not matter for illustration purposes. The address is the
owner’s public key in a public-key encryption scheme. Step
2 involves calculating the hash of the transaction data. This
hash, denoted as TxHash, is appended to the transaction
data and serves as a unique identifier for the transaction.
Step 3 requires that the user sign TxHash using their private
key. Again, the signature is appended to the transaction
data. The reason for this final step is to allow any party,
for example, a proposer, to verify that first, the transaction
was signed by the rightful owner of the address (AddrPubK)
and second, that the transaction data has not been tampered
with while in transit. Transactions are propagated across the
blockchain network, where they are eventually recorded on
the blockchain.

B. THE TRANSACTION BLOCK

Blockchain transactions are recorded on the blockchain in
a Merkle tree. In a Merkle tree, the leaf nodes contain the
transaction data, with each transaction identified by its hash
(TxHash), as illustrated in Fig. 2.

The leaf nodes are grouped into pairs (siblings), and the
TxHash of each sibling pair is hashed to produce a parent
hash. This process is repeated recursively until a single root
hash, the Merkle root, is produced [1], [27], [28].

C. THE BLOCKCHAIN BLOCK

Each block on a blockchain can be divided into two parts or
sub-blocks: the header block and the transaction block [29].

VOLUME 10, 2022

R. Bezuidenhout et al.: Embedding Tamper-Resistant, Publicly Verifiable Random Number Seeds

IEEE Access

Hash 1,2 and
3,4

Hash 1..8
(Merkle root)

Hash 5,6 and
7,8

T

’ Hash 7,8 ‘

‘ Hash 5,6

TxHash 5 TxHash 6 TxHash7 TxHash 8

Hash 1,2 Hash 3,4 ‘
TxHash 1 TxHash 2 TxHash 3 TxHash 4
Tx1data Tx 2 data Tx3 data Tx 4 data

FIGURE 2. Transaction Merkle tree.

BlockID
hash(Header block)

Block header fields

MerkleTreeRootHash

Transaction block
Transaction Merkle tree

Header block

FIGURE 3. A simple blockchain block.

For the explanations to follow, a very simple block
structure is shown in Fig. 3.

Each block in the blockchain carries a block identifier
(BlockID), which is calculated as the hash of the data in
the block header. Merkle root (MerkleTreeRootHash) was
included in this set of data. This construct effectively encodes
all the transaction data into the block hash, providing tamper
resistance across all the data in the block [30].

D. HOMOMORPHIC ENCRYPTION

RSA, Elgamal and Elliptic Curve Cryptography are public-
key cryptography schemes [31]. Public-key cryptography
provides five essential services for data and communication
security. These services are key generation, encryption,
decryption, message signature generation, and signature
verification [32]. Table 1 summarises the five public-key
cryptography services.

VOLUME 10, 2022

Tx 5 data Tx 6 data Tx 7 data Tx 8 data

S —

TABLE 1. Essential services of public-key cryptography.

Service Description
Key Cregtes a private and publ'ic key (Keypn»y, Keypuw) for

. use in the other four functions and provides protocols
Generation . .

for exchanging keys between parties

Encryption Messagecnerypied = Encrypt (Messageyin-exe With Keypu,)
Decryption Messageyain-ext = Decrypt (Messageencrypiea With Keypyiv)
Message Signature = Sign (Message,, with Keyiy)
si gnature plain-text priv.
Signature Verification = Verify (Messagepiin-rex, Signature with

verification Keypuw)

Encryption takes place with the public key; for instance,
Bob encrypts a message to Alice with Alice’s public key,
and Alice decrypts it with her private key. This allows Alice
and Bob to share information known only to them. Message
signing takes place with the private key; for instance, Alice
signs a message with her private key and sends both the
message and the signature to Bob. Bob can verify two
things using Alice’s public key. First, the message signature
originated from Alice (and not someone pretending to be
Alice), and the message was not changed or tampered with
in transit [31], [33].

The RSA and Elgamal cryptographic schemes are partially
homomorphic encryption schemes. Partially homomorphic
encryption schemes allow a single type of operation (addition
or multiplication) over encrypted data. For the B-Rand
protocol, homomorphic encryption means that messages
encrypted with the same public key can be summed to
give the encrypted sum of the unencrypted messages.
When decrypted, this sum yields the sum of unencrypted

39915

IEEE Access

R. Bezuidenhout et al.: Embedding Tamper-Resistant, Publicly Verifiable Random Number Seeds

messages (1) [33]:

If A = encrypt (a)
B = encrypt (b),

thenC = A+ B
= encrypt (a + b)
and
decrypt (C) = a—+b D

This is an important property that plays an instrumental
role in the Double Secret B-Rand protocol.

E. PSEUDO-RANDOM NUMBER GENERATION

The reader is reminded that this paper proposes a method for
embedding a seed for pseudo-random number generation and
does not suggest how the eventual pseudo-random number
is ultimately calculated. This detail is left to be determined
by the details of whatever blockchain implementation is
required. However, pseudo-random number generators are
deterministic and depend on the value of the seed to produce
a pseudo-random number algorithmically. It is therefore
necessary that the method for producing seed values must
exhibit a high degree of entropy and that they are produced
using a true random number generator [19]. Schindler (2009)
suggested the construction of a non-physical true random
number generator from non-deterministic system sources
such as system time, cursor position, thread numbers, and
the hash over a specified RAM area, to produce a raw bit
string that may be post-processed via a hash function to a
fixed length. B-Rand uses this idea as the basis for producing
embedded seed values.

lIl. RELATED WORK

The problem of producing publicly verifiable random num-
bers, also referred to as beacons or random beacons, has been
studied in a range of applications [33]. Andrychowicz and
Dziembowski [34] devised a protocol that uses the properties
of cryptographic hash functions in PoW blockchain systems
to produce an unpredictable public beacon in a peer-to-
peer environment. This beacon can be used in multi-party
computation to produce genesis blocks for new blockchain
systems or enhance security in cryptocurrencies. It differs
from the B-Rand protocol in that it provides the same beacon
to all parties. They proposed a post-process method for
differentiating random numbers between parties, but raised
concerns that this method could be open to manipulation.
PoW algorithms complete in non-deterministic polynomial
time and scale particularly badly.

Scrape [35] is a protocol that uses a distributed ledger
and publicly verifiable secret sharing [36] to enable a set
of participants to generate a random beacon. Again, the
beacon is the same for all participants during each round as
opposed to B-Rand, which provides individualised seeds for
individualised random numbers. In their work, [35] identify
that Scrape does not scale well with cubic computational
complexity.

39916

RandHound and RandHerd are two protocols by [37].
RandHound provides individualised, publicly verifiable ran-
dom numbers to requesting clients, using a commit/reveal
scheme, publicly verifiable secret sharing [36], and threshold
signatures [38]. RandHerd extends the RandHound protocol
to produce a stream of publicly verifiable random numbers
which are not individualised. Both RandHound and Rand-
Herd have been reported by the authors to exhibit quadratic
computational complexity. RandHound and RandHerd were
not intended to produce random numbers for blockchain
systems specifically, but they required multiple participants
(aclient or requester and multiple servers) to operate. B-Rand
requires only two participants in a blockchain system, namely
the transaction owner or requester, and the block proposer,
to produce an individualised random number seed.

HydRand [39] is a protocol aimed at permissioned envi-
ronments where the number of participants is fixed. It also
employs publicly verifiable secret sharing and consecutive
rounds of random leader selection to produce a continuous
publicly verifiable random beacon. HydRand claims to
guarantee randomness, even in the presence of unreliable
participants. The protocol has a quadratic computational
complexity [39]. HydRand differs from B-Rand in its
requirement for a permissioned environment.

Dfinity [40] is a blockchain consensus protocol with a
built-in pseudo-random number generator that forms the basis
for selecting new block proposers. It uses distributed key
generation and a threshold signature scheme [41] based on
Boneh-Lynn-Shacham signatures [42] to produce a random
beacon. Dfinity allows participants to freely join or leave
the network but does require that for each epoch (a fixed
number of consecutive block additions), all the participants
are identified. This is achieved with a special opening block
for each epoch containing transactions where participants
register their intention to participate or leave. This is an
interesting idea because it creates a semi-permissionless
blockchain system that utilises the security advantages of
permissioned blockchain systems while striving for the
open participation of permissionless blockchain systems. The
distributed key generation protocol at the beginning of each
epoch requires quadratic computation [43], but the repeated
signing process for generating random numbers during the
epoch is linear [40]. B-Rand differs from Dfinity in that it
is not a blockchain consensus algorithm per se, but it may
be used as a source of randomness for one. Furthermore, B-
Rand operates in a completely decentralised manner, without
the need for participants to be identified before participating.
Since B-Rand is designed to function within permissionless
blockchain systems, the term decentralised means that it
operates between disintermediated parties [44], [45] over a
peer-to-peer network and relies solely on algorithmic trust
[46], [47] to decide the validity of claims. For example, the
value of a random number calculated by a participant for use
in a blockchain process can be checked by any verifier from
publically available information encoded on the blockchain
and computation alone.

VOLUME 10, 2022

R. Bezuidenhout et al.: Embedding Tamper-Resistant, Publicly Verifiable Random Number Seeds

IEEE Access

Randao [48] is a commit-reveal type random beacon
that utilises the Ethereum blockchain to enable public
verifiability. Participants share the hash values of their locally
generated seeds on the blockchain, and once all seed hashes
have been registered, participants reveal their seeds, which
are combined to produce a random value. Randao has linear
computational complexity but is vulnerable to look-ahead
attacks. B-Rand utilises the idea of registering the hash of
a locally generated secret on a blockchain so that the secret
itself becomes publicly verifiable in the future.

Ginar [49] allows individual participants to request a
random number in cooperation with a set of disintermedi-
ated participants on a blockchain system. Each participant
establishes their eligibility to participate in a request by
using a verifiable random function [50] to determine their
eligibility threshold. Eligible participants then encrypt a
secret value with the requester’s public key and submit it to
the blockchain. Using the homomorphic property of Elgamal
encryption (Section II D), the requester can decrypt the sum
of all the encrypted secrets on the blockchain to receive its
random number. The computational complexity of Ginar is
linear [33]. The innovative use of homomorphic encryption
described in [33] was used in the B-Rand protocol.

Single Secret Leader Election (SSLE) is a protocol
devised by [51] to enable the selection of a random
block proposer (leader) in a blockchain system. SSLE uses
threshold fully homomorphic encryption [52] to obfuscate
the leader (only the leader knows that it is the leader) until
it reveals itself. This protects against a denial-of-service
attack by a malicious party on the leader. SSLE relies on
public randomness beacons, the choice of which is left
to the designer of the final SSLE implementation. SSLE
requires participants to register to participate in the election
process during the setup phase, where repeated elections are
possible until there is a change in participants [51]. Time
complexity has not been reported by the authors, but they
state that most of the computational load goes into registering
the participants during the setup phase, presumably with
quadratic complexity. This initial setup investment is then
amortised over many election rounds. The random number
seeds provided by B-Rand may provide a useful source of
randomness for SSLE. B-Rand continues the convenient n-
secret naming convention in [51].

Verifiable Delay Functions (VDF’s) [53] address the
problem inherent in multi-party commit/reveal schemes
where an adversary or group of adversaries attempt to
manipulate the outcome of a pseudo-random output or force
a failure of the process by not revealing their secrets. It uses
an evaluation algorithm that requires an arbitrary number of
steps to calculate the output, of which the correctness can
be verified easily. The sequential nature of the calculation
means that an adversary cannot speed up the result through
parallelisation. VDF’s consist of three algorithms, namely,
the setup algorithm, which determines the environment
in which the VDF will be evaluated. The evaluation
algorithm consists of sequentially computing the output

and proof of its correctness, and the verification algorithm
VOLUME 10, 2022

allows a verifier to confirm that the prover completed
the evaluation algorithm correctly. Through simulation of
VDF performance, [54] has found that VDF evaluation
algorithms are linear in the security parameter specifying
the bit-length of the output and verification algorithms
exhibit constant time complexity. VDF’s show promise as
a source of randomness for blockchain consensus, but it
is not clear how to run the setup algorithm efficiently
in a distributed manner. Setup may therefore require a
trusted source that does not participate in the consensus
process [54].

IV. PROPOSED APPROACH

The B-Rand protocol proposes a method whereby a seed
for random number generation can be appended to each
transaction when a proposer adds the transaction to the
blockchain. Note that the seed, once recorded on the
blockchain as part of a transaction, is known to and intended
for use by, each transaction owner. The owner decides when
to use the seed. If the seed is intended for selecting a new
block proposer, the owner must decide the opportune time to
employ the seed (for example, when it maximises its chances
of success). This is made clearer in the example in Section IV
C. Each seed has five important properties.

The seed is confidential, meaning that it is known only to
the owner of the transaction until the time that they choose to
expose it.

The seed is ramper-resistant and unpredictable because no
party, including the owner and block proposer, can employ
any meaningful strategy to manipulate it.

Seeds are made collision-resistant by using suitable
cryptographic hash functions. Suitable in this context refers to
a hash function that complies with current standards, such as
the SHA-2 family of hash functions specified by the Internet
Engineering Task Force (IETF) for TLS protocol 1.3 [55].

The seeds are publicly verifiable. Once an owner utilises
the seed in a public process, any party can verify that the seed
was not manipulated.

The seed generation process is scalable as it adds little
computational and space complexity to the operation of the
blockchain system. The B-Rand protocol has two variants:
Single Secret and Double Secret B-Rand. These two variants
are discussed in Sections IV A and IV B, respectively.

A. SINGLE SECRET B-RAND

Single Secret B-Rand requires that the transaction owner
insert a secret into the transaction at the time of creation
which, once confirmed on the blockchain, serves as an
immutable and publicly verifiable seed generator in the
future. The protocol consists of three sub-protocols: transac-
tion construction, seed retrieval, and verification.

1) SINGLE SECRET B-RAND TRANSACTION CONSTRUCTION
The Single Secret B-Rand transaction construction consists
of three steps. These three steps, executed by each owner

during transaction creation, are listed in Table 2.
39917

IEEE Access

R. Bezuidenhout et al.: Embedding Tamper-Resistant, Publicly Verifiable Random Number Seeds

TABLE 2. Steps in Single Secret B-Rand transaction creation.

Step Operation

1 OwnerSeed = Locally generated pseudo-random output by
transaction owner

2 OwnerSeedHash = hash (OwnerSeed)

3 Append to transaction data: OwnerSeedHash

The owner creates a high-quality pseudo-random num-
ber (OwnerSeed) using the technique of Schindler (2009),
or more practically, the built-in cryptographic service avail-
able in some programming languages. An example of such a
service is the cryptographic service available in.Net [56]. The
owner then appends the hash of OwnerSeed to the transaction
data. Because OwnerSeedHash is part of the transaction data,
it is included in TxHash. Fig. 4. shows the structure of the
transaction created by the owner.

Transaction structure

OwnerSeed
Transaction
owner generates AddressPubk
pseudo-random
number
—li .. othertx data ..
Additional fields
OwnerSeedHash
hash(OwnerSeed) —®» OwnerSeedHash = hash(OwnerSeed)
TxHash = hash (tx data + Add fields)

TxSign = sign(TxHash, AddressPrivK)

FIGURE 4. Single Secret B-Rand transaction construction.

Transaction construction can be performed by each owner
in constant time and adds a linear space requirement to the
block (O(n), where n is the number of transactions in the
block).

2) SINGLE SECRET B-RAND SEED RETRIEVAL PROTOCOL
When the transaction is recorded on the blockchain, the

owner retrieves FinalSeed using the steps in Table 3.

TABLE 3. Steps in Single Secret B-Rand seed retrieval.

Step Operation

1 MerkleSeed = hash (MerkleTreeRootHash, TxHash)
2 FinalSeed = hash (OwnerSeed, MerkleSeed)

Seed retrieval allows the owner to generate a pseudo-
random number for use in a blockchain process, for example,
block proposal, an input to a smart contract, or any functional-
ity that requires tamper-resistant, publicly verifiable random
numbers.

39918

FinalSeed
Hash OwnerSeed,
MerkleSeed

_- ~
- \\
— ~

(0]
wnersSeed MerkleSeed
(Known only to the
. Hash Merkle root,
owner of transaction 7 TxHash?
in the Merkle tree)
- - \
- \
Hash 1..8
TxHash 7
(Merkle root) xnas *
Hash 1,2 and Hash 5,6 and
3,4 7,8
Hash 1,2 ‘ Hash 3,4 Hash 5,6 Hash 7,8 ‘

‘ TxHash 2 TxHash 7

TxHash 1 TxHash 5

TxHash 8

TxHash 3

TxHash 6

TxHash 4

FIGURE 5. Single Secret B-Rand seed retrieval from the transaction
Merkle tree.

The owner first calculates a second seed (MerkleSeed)
from the transaction Merkle tree data. This requires hashing
the Merkle root (MerkleTreeRootHash) with a transaction
identifier (TxHash). Second, the owner calculates the hash
of OwnerSeed and MerkleSeed to produce FinalSeed.
Fig. 5 illustrates the hypothetical situation in which the owner
of transaction number seven calculates their MerkleSeed (The
original Merkle tree is shown in grey).

The motivation for the MerkleSeed calculation is five-
fold. First, the Merkle root contributes the entropy of all the
transactions in the transaction block. Second, the TxHash
differentiates each owner’s Merkle seed from all the other
owners in the block. Third, the calculation is efficient as the
seed can be retrieved by the owner in constant time. Fourth,
since the proposer does not know the value of OwnerSeed,
it cannot manipulate the block data in any meaningful way to
influence FinalSeed, provided that the owner and the proposer
are not the same entity. Finally, MerkleSeed is publicly
verifiable from data on the blockchain.

3) SINGLE SECRET B-RAND VERIFICATION PROTOCOL
When the owner uses FinalSeed in a process that requires
public verification, they must expose both OwnerSeed and
FinalSeed (Fig. 6).

This may be required where the owner, for example,
proposed a new block based on the authority of the random
number generated from the FinalSeed. In this case, all the

VOLUME 10, 2022

R. Bezuidenhout et al.: Embedding Tamper-Resistant, Publicly Verifiable Random Number Seeds

IEEE Access

Block structure

Header block
Block header fields

MerkleSeed
Transaction owner calculates 94— MerkleTreeRootHash
hash(MerkleTreeRootHash, TxHash)

Transaction block

Transaction Merkle tree

1) DOUBLE SECRET B-RAND TRANSACTION

CONSTRUCTION PROTOCOL

When an owner constructs a new transaction under the
Double Secret B-Rand protocol, they add a small amount of
additional detail to the transaction. Table 5 summarises the
process to create the additional details.

TABLE 5. Steps in Double Secret B-Rand transaction creation.

Step Operation

A4

Transaction structure

FinalSeed
Transaction owner calculates AddressPubK
hash(OwnerSeed, MerkleSeed)
.. othertx data ..

Additional fields
OwnerSeedHash = hash(OwnerSeed)

L1 TxHash = hash (tx data,Add fields)

TxSign = sign(TxHash, AddrPrivK)

FIGURE 6. Single Secret B-Rand seed retrieval.

nodes in the network verify the validity of the random
number, and thus the authority of the proposer. The steps of
the verification process are presented in Table 4.

TABLE 4. Steps in Single Secret B-Rand verification.

Step Operation

1 Verifier checks: hash (OwnerSeed) = OwnerSeedHash

2 Verifier checks: FinalSeed = hash (OwnerSeed, MerkleSeed)
3 Verification pass if both 1 and 2 are TRUE, else verification
fails

A verifier first checks if OwnerSeedHash is indeed the
hash of OwnerSeed, and then if FinalSeed is the hash
of OwnerSeed and MerkleSeed (Fig. 7). The verification
process can be performed in linear time by any verifier.

The Single Secret B-Rand protocol places a part of the
information for generating the seed, namely the MerkleSeed,
in the public domain. Therefore, only the OwnerSeed portion
remains secret until exposed by the owner. The confidentiality
of seed information can be further enhanced by the Double
Secret B-Rand protocol, discussed in the next section.

B. DOUBLE SECRET B-RAND

While the OwnerSeed is private in the Single Secret
B-Rand protocol, the MerkleSeed part is in the public
domain. The privacy of the FinalSeed generation process
can be further enhanced using the Double Secret B-Rand
protocol. Double Secret B-Rand requires four sub-protocols:
transaction construction, block construction, seed retrieval,
and verification.

VOLUME 10, 2022

1 OwnerSeed = Locally generated pseudo-random output by
transaction owner

2 OwnerPubK, OwnerPrivK = Public-private key pair from a
partially homomorphic encryption scheme

3 OwnerSeedEncr = encrypt (OwnerSeed with OwnerPubK)

4 Append to transaction data: OwnerSeedEncr, OwnerPubK

The owner creates a high-quality pseudo-random num-
ber (OwnerSeed) in the same manner as described in
Single Secret B-Rand. The owner then generates a new
public-private key pair (OwnerPubK and OwnerPivK) using
a partially homomorphic encryption scheme and, using
OwnerPubK, encrypts OwnerSeed to produce OwnerSee-
dEncr. Two fields are now appended to the transaction:
OwnerSecretEncr and OwnerPubK. Additional fields added
during the transaction construction process are shown in
Fig. 8.

Note that since the two fields (OwnerSeedEncr and
OwnerPubK) appended to the transaction are now part of
the transaction data, the TxHash and TxSign. Recall from
Section IT A that TxSign is the signature of TxHash where the
private key corresponds to the owner’s address (AddressPub-
Key). The Double Secret B-Rand transaction construction
protocol can be executed by the owner in constant time,
adding constant space complexity to each transaction and
linear space complexity (number of transactions) to the
transaction block.

2) DOUBLE SECRET B-RAND BLOCK CONSTRUCTION
PROTOCOL

When a block proposer incorporates the transaction into a
transaction block, it follows the four steps listed in Table 6.

TABLE 6. Steps in Double Secret B-Rand block creation.

Step Operation

1 ProposerSeed = Locally generated pseudo-random output by
the block proposer

2 ProposerSeedEncr = Encrypt (ProposerSeed with
OwnerPubK)

3 SumEncr = OwnerSeedEncr + ProposerSeedEncr

4 Append to transaction data: SumEncr

For each transaction, the block proposer produces a
high-quality pseudo-random number (ProposerSeed) in the

39919

IEEE Access

R. Bezuidenhout et al.: Embedding Tamper-Resistant, Publicly Verifiable Random Number Seeds

Transaction owner exposes
OwnerSeed and FinalSeed

Verifier calculates MerkleSeed
hash(MerkleTreeRootHash, <
TxHash)

Block structure

Header block

S

Verifier checks
hash(OwnerSeed) \ _/
\)wnerSeedHaV

No

AddressPubK
v
Verification fail ‘ ’ Verification pass .. othertxdata ..

/\ﬁ er checks-

hash(OwnerSeed,
MerkleSeed)

\\ F|naISee(/

Block header fields

— MerkleTreeRootHash

o Transaction block

-

Transaction Merkle tree

Transaction structure

FIGURE 7. Single Secret B-Rand seed verification.

Additional fields
OwnerSeedHash = hash(OwnerSeed)

L TxHash = hash (tx data + Add fields)

TxSign = sign(TxHash, AddrPrivK)

Transaction structure

AddressPubK
OwnerSeed
Transaction owner generates pseudo-
random number .. othertx data ..
OwnerSeedEncr
encrypt (OwnerSeed with
OwnerPubk) Additional fields

OwnerPrivK, OwnerPubK

A OwnerSeedEncr =

Transaction owner generates public-

encrypt(OwnerSeed, OwnerPubk)
OwnerPubK

private key pair from partial
homomorphic encryption scheme

FIGURE 8. Double Secret B-Rand transaction construction.

same manner as described for Single Secret B-Rand.
It then encrypts ProposerSeed with the owner’s public key
(OwnerPubK, the same key used to encrypt OwnerSeed),
denoted as ProposerSeedEncr. The proposer then calculates
the sum of OwnerSeedEncr and ProposerSeedEncr, denoted
as SumEncr. Finally, the proposer appends SumEncr to the
transaction.

The computational and space complexity is O(1) for each
transaction and O(n) for the transaction block. Fig. 9 shows

39920

TxHash = hash (tx data + Add fields)

TxSign = sign(TxHash,AddressPrivK)

how the final transaction structure is stored in the blockchain
by the block proposer.

Note that the SumEncr field is situated outside of the
TxHash data. This means that these fields are not included in
the Merkle tree hash process and therefore do not affect the
eventual block hash. There is more than one way to overcome
this problem. All the SumEncr fields may be hashed together
in a new SumEncrHash field in the block header, or the
SumEncr fields may be stored in a separate Merkle tree with

VOLUME 10, 2022

R. Bezuidenhout et al.: Embedding Tamper-Resistant, Publicly Verifiable Random Number Seeds

IEEE Access

Transaction structure

AddressPubK
ProposerSeed
Block proposer generates pseudo-random . othertx data ..
number
l Additional fields
SumEncr OwnerSeedEncr =
ProposerSeedEnrc OwnerSeedEncr . encrypt(OwnerSeed,OwnerPubk)
encrypt (ProposerSeed with OwnerPubK) +
ProposerSeedEncr 7 Dok

T

TxHash = hash (tx data + Add fields)

TxSign = sign(TxHash, AddrPrivK)

FIGURE 9. Double Secret B-Rand final transaction structure.

Transaction structure

AddressPubK

.. othertxdata ..

Additional fields

OwnerSeedEncr =
encrypt(OwnerSeed, OwnerPubkK)

OwnerPubK

TxHash = hash (tx data + Add fields)

TxSign = sign(TxHash, AddrPrivK)

FinalSeed
decrypt ¢ SumEncr= (OwnerSeedEncr +
ProposerSeedEncr)

(SumEncr with OwnerPrivK)

FIGURE 10. Double Secret B-Rand seed retrieval.

a root hash. The individual design of a blockchain system
dictates the ultimate solution.

3) DOUBLE SECRET B-RAND SEED RETRIEVAL PROTOCOL
Once a transaction is recorded on the blockchain, each owner
can retrieve its seed (FinalSeed), which is the decrypted
value of SumEncr using the owner’s private key (refer to
Table 1 for a summary of encryption/decryption services).
Table 7 summarises the FinalSeed retrieval process.

TABLE 7. Steps in Double Secret B-Rand seed retrieval.

Step Operation

1 FinalSeed = decrypt(SumEncr with OwnerPrivK)

The homomorphic property of the encryption scheme
makes it possible for the owner to calculate the sum of

VOLUME 10, 2022

SumEncr = (OwnerSeedEncr +
ProposerSeedEncr)

Transaction owner exposes

Transaction structure
FinalSeed
AddressPubkK
.. othertxdata ..
rifier chec

encrypt(FinalSeed
with OwnerPubk)

SumEnc/

Additional fields
OwnerSeedEncr =
encrypt(OwnerSed, OwnerPubk)

- OwnerPubK

No Yes
1 TxHash = hash (tx data + Add fields)
TxSign = sign(TxHash,AddrPrivK)
Verification Verification
fail pass | SumEncr = (OwnerSeedEncr +

ProposerSeedEncr)

FIGURE 11. Double Secret B-Rand seed verification.

OwnerSeed and ProposerSeed by decrypting SumEncr with
OwnerPrivK to yield FinalSeed (2).

SumEncr = OwnerSeedEncr + ProposerSeedEncr

= encrypt (OwnerSeed)
+encrypt (ProposerSeed)
and
FinalSeed = decrypt (SumEncr)
= OwnerSeed + ProposerSeed 2)

The seed retrieval process is shown in Fig. 10 and can be
achieved in constant time.

4) DOUBLE SECRET B-RAND VERIFICATION PROTOCOL

When the owner decides to use FinalSeed, for example,
to generate a random number for participating in the block
proposal process or as input required by a smart contract,

39921

IEEE Access

R. Bezuidenhout et al.: Embedding Tamper-Resistant, Publicly Verifiable Random Number Seeds

BlockiD
hash(Header block)

Header block
Block header fields

Ticket
OwnerSeed (Single Secret B-Rand only)

FinalSeed

MerkleTreeRootHash

Transaction block

Transaction Merkle tree

FIGURE 12. Candidate block.

FinalSeed must be exposed. A verifier can then check the
validity of FinalSeed in the two steps listed in Table 8.

TABLE 8. Steps in Double Secret B-Rand verification.

Step Operation

1 Verifier checks: encrypt (FinalSeed with OwnerPubK) =
SumEncr

2 Verification pass if TRUE, else verification fails

The verifier encrypts the FinalSeed provided by the owner
with OwnerPubK on the blockchain and compares it with
SumEncr. The verification process is shown in Fig. 11, and
it is possible to calculate in linear time.

C. EXAMPLE

We illustrate the use of B-Rand through a simple example
where a new block proposer is selected by way of a lottery.
This can be done where candidate proposers generate a lottery
ticket (Ticket) from their B-Rand random number seeds. Each
candidate proposer then constructs a new transaction block
and publishes its ticket information in the block header. The
network then follows the consensus rule of accepting the
block with the largest ticket as the next valid block to extend
the blockchain.

Candidate proposers are those owners who have previously
embedded the hash of its OwnerSeed (OwnerSeedHash)
in a transaction. Since OwnerSeed is locally produced,
the network cannot control how each owner produces it.
In practice, the Rivest method for producing a pseudo-
random number from a hash function should be sufficient for
honest participants, as hash functions are a good source of
pseudo-randomness [57]. Owners who follow an insecure
method for producing the owner seed, for example, by hash-
ing a predictable value, compromise the confidentiality of
their own seed, but it has no impact on the seeds of other
honest owners. OwnerSeed creation is shown in Table 9.

39922

TABLE 9. Creating OwnerSeed locally.

Step Operation

1 Roll a die with many sides (i.e 10 sides), many times (i.e. 100
times) to generate a random string S

2 Calculate OwnerSeed = Hash(S,t), where t is the Unix
timestamp when OwnerSeed is created

The transaction can now be constructed using the B-Rand
transaction creation protocols. Double Secret B-Rand
requires an additional step during block creation. It requires
the block proposer to generate ProposerSeed for each
transaction, which can be done by an honest proposer in
the same way as described in Table 9. Proposers that use
insecure methods to produce ProposerSeed do not impact
the Owner’s FinalSeed as long as OwnerSeed has not been
compromised. Once recorded on the blockchain, the owner
can retrieve its FinalSeed using the B-Rand seed retrieval
protocols.

Candidate proposers generate a lottery ticket at the time it
constructs a new candidate block. The Ticket for proposer i,
T; is the hash of OwnerSeed; and the hash of the preceding
block (Hy—1).

T; = hash(OwnerSeed;, H,—1) 3)

Each candidate proposer records Ticket, OwnerSeed and
FinalSeed in the case of Single Secret B-Rand or Ticket and
FinalSeed in the case of Double Secret B-Rand by adding
the fields to the proposed block’s header. Each node in
the blockchain network evaluates each candidate block to
ascertain the validity of OwnerSeed, FinalSeed and Ticket
and accepts the valid candidate block with the largest Ticket
as the new block. Since the Ticket is tied to the previous
block hash, each new block round will produce a new ticket
for each owner. The consensus algorithm can be adapted
to place restrictions on the age of seeds that may be used,
for example, a seed may need to be buried by a minimum
number of blocks or must be used within a certain number
of block rounds. The layout of a candidate block is shown
in Fig. 12.

V. ANALYSIS

In the introduction, the authors claimed that the B-Rand
protocol encodes random number seeds on a permissionless
blockchain system that is confidential, tamper-resistant,
unpredictable, collision-resistant, publicly verifiable, and
scalable.Each of these aspects is now addressed individually.

A. CONFIDENTIAL

The information required to complete the construction of
each seed is available only once the transaction is recorded
on the blockchain. At this point, the owner is the only party
that possesses all the required information to know the seed.
It is only when the owner makes the seed known that it comes
into the public domain.

VOLUME 10, 2022

R. Bezuidenhout et al.: Embedding Tamper-Resistant, Publicly Verifiable Random Number Seeds

IEEE Access

B. TAMPER-RESISTANT AND UNPREDICTABLE

Since the owner has no information about the MerkleSeed
(Single Secret B-Rand) or ProposerSeed (Double Secret B-
Rand) before the block is published, it has no information
about how its choice of the OwnerSeed will ultimately
influence its FinalSeed. Likewise, since the block proposer
where the transaction is recorded does not know the value
of the OwnerSeed, it cannot know how its choice of the
ProposerSeed (Double Secret B-Rand) will affect the final
value of the seed.

However, this does not preclude a situation in which the
owner and block proposer collude or are the same entity.
Therefore, it may be necessary to harden FinalSeed with
additional information at the time of use. For example,
if the seed is used in a pseudo-random number generator to
determine the owner’s eligibility to propose a new block, the
pseudo-random number generator may combine the owner’s
seed with the previous block hash of the proposed new
block. The choice of this type of seed hardening is entirely
dependent on its type of use in the blockchain system.

C. COLLISION-RESISTANT

Enforcing the requirement that the initial random numbers
OwnerSeed and ProposerSeed, are the outputs from crypto-
graphic hash functions (suitable hash functions are described
in Section IV), negates the probability that two transactions
share the same seed. This provides the possibility that
unique selection criteria can be constructed for participants in
blockchain functions controlled by pseudo-random number
generation.

D. PUBLICLY VERIFIABLE

The verification protocols established for both Single and
Double Secret B-Rand make it impossible for owners to
alter their choice of the OwnerSeed once the transaction is
recorded on the blockchain. By designing the blockchain
system in a manner that forces the owner to publicly expose
the OwnerSeed and FinalSeed (Single Secret B-Rand) or the
FinalSeed (Double Secret B-Rand) as is the current case with,
for instance, the nonce value in proof-of-work [1], enables
unambiguous public verification.

E. SCALABLE

The B-Rand protocol adds minimal additional computational
and space complexity to the blockchain system. The compu-
tational and space complexities associated with B-Rand are
summarised in Table 10.

F. NOVELTY, COMPETITIVENESS AND OPEN QUESTIONS
The example in Section IV-C, set out a simple method
whereby B-Rand can be used as part of a consensus algorithm
for new block selection. It must be noted that the example
is not meant to demonstrate a new full-scale consensus
algorithm, as it is not the purpose of the paper. Several aspects
must still be investigated in this regard.

VOLUME 10, 2022

TABLE 10. Computational and space complexity of B-Rand protocols.

Protocol Type of Singe Secret Double Secret

complexity B-Rand B-Rand
Transaction Computation o(1) o(1)
construction Space o(1) o(1)
Block Computation n/a O(n)
construction Space O(n)* O(n)*

Computation o(1) o(1)
Seed retrieval

Space n/a n/a

Computation O(n)* O(n)*
Verification

Space n/a n/a

* n =transactions per block

First, by evaluating the history (mean and standard
deviation) of previously successful tickets, owners may
decide on opportune rounds to propose candidate blocks. The
same applies to nodes that receive and then propagate new
blocks to the network. A probabilistic extinction model is
still needed to evaluate the tradeoff between limiting network
traffic and ensuring timely block addition.

Second, it may be necessary to restrict FinalSeed until it is
buried under a minimum number of blocks and also limit its
lifespan to a maximum number of blocks. These parameters
must still be determined.

The block selection example is, however, useful in
evaluating the novelty and competitiveness of a B-Rand based
application. Since the maximum computational complexity
of B-Rand is O(n) where n represents the number of
transaction per block. This suggests that candidate blocks can
be produced and evaluated at a very low cost. This improves
on Randao [48] and Ginar [33], of which Ginar is the
only protocol designed to be self-contained in a blockchain
system. Randao requires the use of an outside service on the
Ethereum network.

A particularly novel aspect of B-Rand in the context of
block selection is that it does not require the assets on the
blockchain to be objectively comparable. For example, the
PoS consensus model compares the value of assets owned by
stakeholders to decide which party has the right to produce a
new block [7]. If the blockchain were to contain other types of
assets, for example, intellectual property rights or logistical
information instead of a cryptocurrency, this type of value
comparison may not be possible, but it will not impact the
B-Rand protocol.

G. THREATS

There are four main security risks related to the B-Rand
protocol. First, since participation is computationally cheap,
it may result in the network being flooded with information,
for example, when it is used in the construction of candidate
blocks during each block round. This poses the risk of a denial
of service attack on the network. Mitigation strategies such

39923

IEEE Access

R. Bezuidenhout et al.: Embedding Tamper-Resistant, Publicly Verifiable Random Number Seeds

as probabilistic extinction models may be useful in the block
addition example (Section IV C), where each node evaluates
the probability of a candidate’s success based on the historical
distribution of successful blocks.

Second, proposers may withhold potentially successful
blocks in an attempt to later launch a long-range, post-hoc
fork on the blockchain by submitting the withheld blocks
later. This vulnerability has been identified in PoS type
blockchain systems where a majority of stakeholders who
have already divested from the blockchain attempt to rewrite
a large portion of the blockchain history [53].

Third, is the possibility of owners and block proposers
colluding to manipulate random number seeds (For the sake
of the example in IV-C, it was assumed that all parties
are honest). This threat can be addressed by hardening the
FinalSeed with new information on the blockchain when it is
used to generate a pseudo-random number. In the example,
the seed was hardened with the previous block hash to
produce the Ticket.

Last, owners or block proposers may also generate trivial
OwnerSeed or ProposerSeed values by, for example, hashing
empty strings. It is not known how these actions may impact
the robustness of the solution.

VI. CONCLUSION

In this study, the authors proposed two methods for embed-
ding random number seeds in permissionless blockchain
systems. The Single Secret B-Rand protocol is simpler to
implement than the Double Secret B-Rand protocol but leaves
a portion of the seed information in the public domain.
While more complicated, the Double Secret B-Rand protocol
provides enhanced seed confidentiality. In both cases, B-
Rand provides an efficient way to prepare a blockchain
system for future participation by stakeholders based on
random selection. It does so by seeding the blockchain
with confidential, tamper-resistant, unpredictable, collision-
resistant, publicly verifiable random number seeds in a
way that scales efficiently. The paper illustrates the use of
B-Rand random number seeds in an example of a block
addition lottery, but how each blockchain designer chooses
to implement functionality that utilises random number seeds
is up to them. Exploring these opportunities provides many
avenues for future research, and the detailed description
provided for each of the two variants of B-Rand should
simplify the task for interested investigators.

In addition to studying the utilisation of B-Rand random
number seeds, there are also other open questions. The
most notable of these is the possible attack vector on
seed generation where the transaction owner and block
proposer collude or are the same entity. This may require
the development of additional rules about, for example, seed
hardening, seed expiry and seed maturation. These rules do
not have to be static and dictated by the B-Rand protocol
but may be adapted to suit individual implementation
requirements.

39924

As the use of blockchain systems continues to grow
and more blockchain systems come into existence, the
requirement for a better foundational blockchain infrastruc-
ture becomes paramount. B-Rand aims to strengthen these
foundations to enable the imagining of newer and better
permissionless blockchain systems.

REFERENCES

[1] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” Decen-
tralized Bus. Rev., p. 21260, Oct. 2008.

[2] A. de Vries, “Bitcoin’s growing energy problem,” Joule, vol. 2, no. 5,
pp. 801-805, May 2018.

[3] U.S. Energy Information Administration. (2019). International Electricity
Consumption. [Online]. Available: https://www.eia.gov

[4] J. Ma, J. S. Gans, and R. Tourky, ‘“Market structure in bitcoin mining,”

Nat. Bur. Econ. Res., Cambridge, MA, USA, Tech. Rep., 24242, 2018.

V. Buterin, “A next generation smart contract & decentralized application

platform,” Ethereum Found., White Paper, 2013.

[6] Z. Zheng, S. Xie, H. Dai, X. Chen, and H. Wang, “An overview

of blockchain technology: Architecture, consensus, and future trends,”

in Proc. IEEE Int. Congr. Big Data (BigData Congress), Jun. 2017,

pp. 557-564.

1. Bentov, A. Gabizon, and A. Mizrahi, “Cryptocurrencies without proof

of work,” in Proc. Int. Conf. Financial Cryptogr. Data Secur., 2016,

pp. 142-157.

[8] NEM. (2018). Proof-of-Importance. NEM Technical
Reference. Accessed: Nov. 12, 2019. [Online]. Available:
https://nemplatform.com/wp-content/uploads/2020/05/NEM_techRef.pdf

[91 A. Hasib. (2018). 101 Blockchains. Accessed: Nov. 12, 2019.
[Online]. Available: https://101blockchains.com/consensus-algorithms-
blockchain/#6

[10] M. Milutinovic, W. He, H. Wu, and M. Kanwal, “Proof of luck:
An efficient blockchain consensus protocol,” in Proc. 1st Workshop Syst.
Softw. Trusted Execution, 2016, pp. 1-6.

[11] Coinspace.com. (2019). Electroneum’s Revolutionary Proof of
Responsibility Blockchain is Now Live. [Online]. Available:
https://coinspace.com/news/ altcoin-news/electroneums-revolutionary-
proof-responsibility-blockchain-now-live

[12] J. Tromp. (2014). Cuckoo Cycle: A Memory Bound Graph-Theoretic
Proof-of-Work. Accessed: Nov. 14, 2019. [Online]. Available:
https://eprint.iacr.org/2014/059.pdf

[13] Slimcoin: A Peer-to-Peer Crypto-Currency With Proof-of-Burn, Titan,
Bengaluru, India, 2014.

[14] S. Dziembowski, S. Faust, V. Kolmogorov, and K. Pietrzak, “Proofs of
space,” in Proc. Int. Cryptol. Conf., 2015, pp. 585-605.

[15] J. Blocki and H.-S. Zhou, “Designing proof of human-work puzzles
for cryptocurrency and beyond,” in Theory of Cryptography. Cham,
Switzerland: Springer, 2016, pp. 517-546.

[16] BitShares Blockchain Foundation. Delegated Proof-of-Stake
Consensus. Accessed: Aug. 11, 2019. [Online]. Available:
https://bitshares.org/technology/delegated-proof-of-stake-consensus/

[17] Binance Capital Mgmt. (2021). CoinMarketCap. [Online]. Available:
https://coinmarketcap.com/

[18] F. Glaser, ““Pervasive decentralisation of digital infrastructures: A frame-
work for blockchain enabled system and use case analysis,” in Proc. 50th
Hawaii Int. Conf. Syst. Sci., 2017, pp. 1-10.

[19] W. Schindler, “Random number generators for cryptographic applica-
tions,” in Cryptographic Engineering, C. K. Kog, Ed. Boston, MA, USA:
Springer, 2009, pp. 5-23.

[20] P. Tasca and C. J. Tessone, “A taxonomy of blockchain technologies:
Principles of identification and classification,” 2019, arXiv:1708.04872.

[21] F. Glaser and L. Bezzenberger, ‘“Beyond cryptocurrencies—A taxonomy
of decentralized consensus systems,” in Proc. 23rd Eur. Conf. Inf. Syst.
(ECIS), 2015, pp. 1-19.

[22] M. Saad, J. Spaulding, L. Njilla, C. Kamhoua, S. Shetty, D. Nyang,
and D. Mohaisen, “Exploring the attack surface of blockchain: A
comprehensive survey,” IEEE Commun. Surveys Tuts., vol. 22, no. 3,
pp. 1977-2008, 3rd Quart., 2020.

[23] M. Nofer, P. Gomber, O. Hinz, and D. Schiereck, “Blockchain,” Bus. Inf.
Syst. Eng., vol. 59, no. 3, pp. 183-187, 2017.

[24] X. Xu, I. Weber, M. Staples, L. Zhu, J. Bosch, L. Bass, C. Pautasso,
and P. Rimba, “A taxonomy of blockchain-based systems for architecture
design,” in Proc. IEEE 6th Int. Congr. Softw. Archit., Apr. 2017,
pp. 243-252.

[5

[7

—

VOLUME 10, 2022

R. Bezuidenhout et al.: Embedding Tamper-Resistant, Publicly Verifiable Random Number Seeds

IEEE Access

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

G.-T. Nguyen and K. Kim, ““A survey about consensus algorithms used in
blockchain,” J. Inf. Process. Syst., vol. 14, no. 1, pp. 101-128, 2018.

R. Bezuidenhout, W. Nel, and A. Burger, “Nonlinear proof-of-work:
Improving the energy efficiency of Bitcoin mining,” J. Construct. Project
Manage. Innov., vol. 10, no. 1, pp. 20-32, Sep. 2020.

R. Dahlberg, T. Pulls, and R. Peeters, “Efficient sparse Merkle trees
caching strategies and secure (non-)membership proofs,” in Proc. 21st
Nordic Workshop Secure Comput. Syst., 2016, pp. 1-16.

H. Massias, X. S. Avila, and J.-J. Quisquater, “Design of a secure
timestamping service with minimal trust requirement,” in Proc. 20th Symp.
Inf. Theory Benelux, 2002, pp. 1-8.

B. O. Muldr, “Blockchain technology in the enterprise environment,”
M.S. thesis, Dept. Inform., Masaryk Univ., Brno, Czechia, 2018.

A. Narayanan, J. Bonneau, E. Felten, A. Miller, and S. Goldfeder, Bitcoin
and Cryptocurrency Technologies. Princeton, NJ, USA: Princeton Univ.
Press, 2016.

K. Rabah, “Elliptic curve ElGamal encryption and signature schemes,”
Inf. Technol. J., vol. 4, no. 3, pp. 299-306, Jun. 2005.

C. Paar and J. Petzl, Understanding Cryptography. Heidelberg, Germany:
Springer, 2010.

T. Nguyen-Van, T. Nguyen-Anh, T.-D. Le, M.-P. Nguyen-Ho,
T. Nguyen-Van, N.-Q. Le, and K. Nguyen-An, “Scalable distributed
random number generation based on homomorphic encryption,” in Proc.
IEEE Int. Conf. Blockchain (Blockchain), Jul. 2019, pp. 572-579.

M. Andrychowicz and S. Dziembowski, “Distributed cryptography based
on the proofs of work,” IACR Cryptol. ePrint Arch., vol. 2014, p. 796,
Dec. 2014.

I. Cascudo and B. David, “SCRAPE: Scalable randomness attested by
public entities,” in Proc. Int. Conf. Appl. Cryptogr. Netw. Secur., 2017,
pp. 537-556.

B. Schoenmakers, “A simple publicly verifiable secret sharing scheme and
its application to electronic voting,” in Proc. Annu. Int. Cryptol. Conf.,
1999, pp. 148-164.

E. Syta, P. Jovanovic, E. K. Kogias, N. Gailly, L. Gasser, I. Khoffi,
M. J. Fischer, and B. Ford, ‘“Scalable bias-resistant distributed random-
ness,” in Proc. IEEE Symp. Secur. Privacy (SP), May 2017, pp. 444-460.
D. Stinson and R. Strobl, “‘Provably secure distributed Schnorr signatures
and a (¢, n) threshold scheme for implicit certificates,” in Proc. 6th
Australas. Conf. Inf. Secur. Privacy, 2001, pp. 417-434.

P. Schindler, A. Judmayer, N. Stifter, and E. Weippl, “HydRand:
Practical continuous distributed randomness,” JACR Cryptol. ePrint Arch.,
vol. 2018, p. 319, Aug. 2018.

T. Hanke, M. Movahedi, and D. Williams, “DFINITY technology
overview series, consensus system,” 2018, arXiv:1805.04548.

B. Libert, M. Joye, and M. Yung, “Born and raised distributively: Fully
distributed non-interactive adaptively-secure threshold signatures with
short shares,” in Proc. Annu. ACM Symp. Princ. Distrib. Comput., 2014,
pp. 303-312.

D. Boneh, B. Lynn, and H. Shacham, “Short signatures from the Weil
pairing,” in Advances in Cryptology—ASIACRYPT. Cham, Switzerland:
Springer, 2001, pp. 514-532.

R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin, “Secure distributed
key generation for discrete-log based cryptosystems,” in Proc. 17th Int.
Conf. Theory Appl. Cryptograph. Techn., 2005, pp. 925-963.

C. Holotescu, “Understanding blockchain technology and how to get
involved,” in Proc. 14th Int. Sci. Conf. eLearn. Softw. Educ., Bucharest,
Romania, Apr. 2018, pp. 1-22.

I.-C. Lin and T.-C. Liao, “A survey of blockchain security issues and
challenges,” Int. J. Netw. Secur., vol. 19, no. 5, pp. 653-659, Sep. 2017.
R. Rueda, E. Saljic, and D. Tomi¢, “The institutional landscape of
blockchain governance. A taxonomy for incorporation at the nation state,”
TEM J., vol. 9, no. 1, pp. 181-187, 2020.

C. Cachin and M. Vukolic, “Blockchains consensus protocols in the wild,”
in Proc. 31st Int. Symp. Distrib. Comput., Oct. 2017, pp. 1-1-1-16.

M. Alturki and G. Rosu, “Statistical model checking of RANDAO’s
resilience to pre-computed reveal strategies,” in Formal Methods. FM 2019
International Workshops, G. Goos J. Hartmanis, Eds. Princeton, NJ, USA:
Springer, 2020, pp. 337-349.

T. Nguyen-Van, T.-D. Le, T. Nguyen-Anh, M.-P. Nguyen-Ho,
T. Nguyen-Van, M.-Q. Le-Tran, Q. N. Le, H. Pham, and K. Nguyen-An,
“A system for scalable decentralized random number generation,” in
Proc. IEEE 23rd Int. Enterprise Distrib. Object Comput. Workshop
(EDOCW), Oct. 2019, pp. 100-103.

Y. Dodis and A. Yampolskiy, “A verifiable random function with short
proofs and keys,” in Proc. 8th Int. Workshop Public Key Cryptogr.,
vol. 3386, 1970, pp. 416-431.

VOLUME 10, 2022

(51]

[52]

(53]

[54]

[55]

[56]

(571

D. Boneh, S. Eskandarian, L. Hanzlik, and N. Greco, ““Single secret leader
election,” in Proc. 2nd ACM Conf. Adv. Financial Technol., Oct. 2020,
pp. 12-24.

D. Bonehy, R. Gennaro, S. Goldfeder, A.
P. M. R. Rasmussen, and A. Sahai, “Threshold cryptosystems
from threshold fully homomorphic encryption,” Advances in
Cryptology—CRYPTO (Lecture Notes in Computer Science), vol. 10991.
Cham, Switzerland: Springer, 2018, pp. 565-596.

D. Boneh, J. Bonneau, B. Biinz, and B. Fisch, *“Verifiable delay functions,”
in Advances in Cryptology—CRYPTO. Cham, Switzerland: Springer, 2018,
pp. 757-788.

V. Fuchs-Attias, L. Vigneri, and V. Dimitrov, “Implementation study
of two verifiable delay functions,” in Tokenomics. Wadern, Germany:
Dagstuhl, 2020, 2021.

The Transport Layer Security (TLS) Protocol Version 1.3, Internet
Engineering Steering Group, Internet Eng. Task Force, Fremont, CA, USA,
2018.
Microsoft.

Jain, S. Kim,

(2021). Cryptographic ~ Services. [Online]. Available:

https://docs.microsoft.com/en-us/dotnet/standard/security/cryptographic-
services

P. B. Stark and K. Ottoboni,
imperfect,”

“Random sampling: Practice makes
2018, arXiv:1810.10985.

RIAAN BEZUIDENHOUT was born in King
William’s Town, South Africa, in 1970. He
received the B.Com. degree, the B.Com. degree
(Hons.) in statistics, the B.Com. degree (Hons.)
in business management, the M.B.A. degree, and
the B.Sc. (Hons.) and M.Sc. degrees in computer
science and informatics from the University of the
Free State, Bloemfontein, South Africa, in 1993,
1996, 1999, 2003, 2018, and 2020, respectively,
where he is currently pursuing the Ph.D. degree

with the Department of Computer Science and Informatics.

He is also an Assistant Researcher with the Department of Computer
Science and Informatics, University of the Free State. He worked in
management consulting, until 2012, before returning to university, in 2013,
to study computer science. His research interest includes blockchain
consensus algorithms.

WYNAND NEL was born in Humansdorp, South
Africa, in 1980. He received the B.Com. degree
in information technology, in 2001, the B.Com.
degree (Hons.) in computer science and infor-
matics, in 2002, the M.Com. degree in computer
science and informatics, in 2007, and the Ph.D.
degree from the University of the Free State,
Bloemfontein, South Africa, in 2019.

From 2002 to 2005, he was a Junior Lecturer
in computer science with Technicon Free State,

Bloemfontein, South Africa. From 2005 to 2006, he was a Lecturer in
computer science with the Central University of Technology, Free State,
Bloemfontein. Since 2007, he has been a Lecturer with the Computer Science
and Informatics Department, University of the Free State, Bloemfontein.
He has also been involved in the private sector with software, web, and
app development, since 2002. His research interests include blockchain
technology, cyber security, and human—computer interaction.

JACQUES M. MARITZ received the master’s
degree in physics and the Ph.D. degree in astro-
physics from the University of the Free State,
South Africa, in 2014 and 2017, respectively. He
has been a Lecturer in engineering sciences at
the University of the Free State, since 2017. His
research interests include physics, astrophysics,
energy modeling, energy analytics, energy Al, and
power systems.

39925

