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Abstract 
 

This dissertation proposes an application of stochastic modeling of 

groundwater flow in confined and leaky aquifers. We are estimating that 

aquifer parameters such as transmissivity, storativity and leakage factor vary, 

not constant, in space at different period especially in heterogeneous 

environment. Heterogeneous environment are known to be complex because 

of their uncertainty. Uncertainty referred in modeling includes errors in 

dataset, which might be bias or variance (under fitting/over fitting), low or not 

enough data, or unbalanced data, which all affect the model produced if not 

captured with appropriate model technique. The groundwater flow equation 

for confined and leaky aquifers derived by the latest version Atangana and 

Ramotsho, as well asAtangana and Mathobo, which all include scaling matrix of 

the soil, are considered and further modified to a new scheme of stochastic 

models for confined and leaky aquifer. We tried to achieve the capture 

statistical setting of aquifer parameters using the concept of stochastic 

modeling technique. The aquifer parameters are replaced by distribution for 

instance, Gaussian or normal distribution.Due to the complexity of the 

modified models, it is almost impossible to obtain the exact solution by using 

analytical solution, thus we opt to numerical analysis, in particular the Newton 

method used to derive the numerical solutions of the modified models. 

Detailed analysis of stability and convergences, we used method are presented 

for both models. Numerical simulations are depicted for different distributions. 
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                          CHAPTER 1: INTRODUCTION 
 

1.1 Background of the study 

Effective groundwater management is becoming a compulsory tool in almost 

every industry due to accelerating demand of groundwater resources resulting 

in its depletion and limitations. Groundwater has become extremely 

important, pushing governmental institutions and non‐governmental 

institutions to work together to set up legislations to manage groundwater 

resources sustainably. In the past, most industries relied on surface water due 

to its availability that time, but nowadays most surface water sources such as 

rivers, streams, canals, and springs are heavily polluted and depleted. This has 

pushed much demand on groundwater use. Driest countries like Namibia 

receives little rainfall annually (±400mm) to feed surface water basins such as 

rivers, streams and pans (Kumba, 2003), thus relies much on groundwater use, 

which needs to be well managed. The strategies used by water service 

providers in allocating groundwater quotas to the farmers and other bulk 

water users should consider the long‐term aquifer sustainability and potential 

effects of abstraction on the reliability of water supply. 

Groundwater occurs in the subsurface, and we cannot easily estimate its 

quantity and quality because we unable to see it physically. Scientists have 

come up with different modeling techniques to estimate hydraulic parameters 

in an aquifer, which helps to determine the occurrence of groundwater in a 

system. The parameters are usually obtained from aquifer pump tests data, 

which yield information about the specific aquifer’s transmissivity, storativity, 

leakage or hydraulic conductivity. The geological properties of the site also 

need to be identified as they can help the modeler to decide which applicable 

modeling technique will be suitable for such system. Some aquifers have 
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uniform geologic stratification which needs to be treated as homogenous, 

while some have complex geologic structures need to be treated as 

heterogeneous in groundwater modeling. But the challenge is often observed 

indifferent sedimentary basins with their geologic formations vary in space and 

time, which need to be treated as heterogeneity in modeling. Analyzing a 

heterogeneity environment is quite a challenge in terms of groundwater flow 

because heterogeneity occurs at all scales of the formation, and needs to be 

investigated with appropriate modeling technique. There are different 

approaches of modeling widely used by scientists to address problems to fit 

their needs. Empirical black box, probabilistic, deterministic and stochastic 

models are common model types used nowadays in groundwater flows to 

describe the flow behavior of groundwater systems (Adem and Batelaan, 

2006). 

Empirical black box models are obtained from experimental data supported 

with mathematical functions like law of Darcy. They are known to be good in 

simulating spatial variability of the subsurface. Black box models deliver a 

mathematical mapping between historical inputs and outputs without 

requiring physical information on the investigated system. In water sector, 

black box models are suitable for nonlinear, non‐Gaussian and non‐stationary 

processes relate to the research. Probabilistic models use statistics and 

elements which also accepted by stochastic models. One can start with a 

simple probabilistic distribution model type, but may end up with a 

complicated stochastic time dependent model.   

Deterministic models are based on fixed mathematical descriptions of natural 

processes. They are commonly used in groundwater flow investigations as they 

are easy to use and can predict a single outcome from a given set of 
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circumstances. In short, they represent the physical processes we observe in 

the real world resembling the subsurface flow. For deterministic modeling, 

model parameters should be at least known and uniquely determined in the 

model by its variables. 

Stochastic models are based on mathematical description of natural processes, 

but include statistical analysis (probabilistic). Generally, stochastic is originated 

from a Greek term σᴛόxo (stόkhos) which means guess (Renard, 2007). 

Stochastic models are described by random variables, which are usually 

guessed. In this dissertation, we use stochastic modeling to estimate 

transmissivity, storativity and leakage, which vary in confined and leaky 

aquifers. 

The techniques used to solve governing equations in modeling include Finite 

Difference (FD) and Finite Element (FE). We are applying Finite Difference in 

our work to solve numerically Partial Difference Equation (PDE) to obtain an 

exact solution, which will be used in our stochastic models for confined and 

leaky aquifers. The numerical model will provide approximate solutions to the 

governing equation via discretization of spatial (space) and temporal (time). 

We noticed that hydraulic parameters are not constant in space at a time; they 

keep changing, so we are treating them as distribution probabilities in a form 

of normal, log normal distribution etc. to find the exact form of distribution 

fitting each parameter. 

1.2 Problem statement 

On this dissertation, we used stochastic modeling to investigate hydraulic 

parameters such as transmissivity, storativity and leakage factor in confined 

and leaky aquifers. The strength of stochastic models that caught our interest 

is that we are able to address uncertainty in heterogeneous environment. 
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Uncertainties may arise from a lack of knowledge of the actual distribution of 

subsurface system, under or overestimation of discharge rate, recharge rates 

or hydraulic heads assigned during the calibration stage. It depends on the 

choice of the modeler to select the type or kind of model to use, but s/he must 

ensure that the model preferred should be well designed and adequately 

resemble the natural system it represents (Fetter, 2001). 

Groundwater flow models use elements described by equations representing 

the hydraulic parameters including the physics, properties, stresses and 

geometry of the aquifer system. The mathematical equations solved will 

provide the hydraulic parameters corresponding to the conceptual model used 

to simulate the aquifer. In this dissertation, a numeric type of stochastic 

approach with the use of partial differential equations will be used to capture 

the movement of subsurface water within confined and leaky aquifers. Most of 

the past groundwater modeling studies focused on spatial distribution of 

hydraulic conductivity, had used deterministic models which can be solved 

analytically or numerically, by using partial difference equations with finite 

differences methods (Dagan, 1989; Gelhar, 1993; Hsu, Zhang and Neuman, 

1996).  

1.3 Aims and objectives 

The aim of this research is to develop a stochastic model of groundwater flow 

in confined and leaky aquifers. 

The objectives: 

a) To capture statistical setting of aquifer parameters using the concept of 

stochastic modeling technique. 
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b) To modify the mathematical equation describing the flow of subsurface 

water within a confined and leaky aquifers by converting the constant 

aquifer parameters to probability distributions. 

c) To analyze numerically the modified models using a new scheme 

(Newton method). 

d) Use of stochastic models compared to other simulation methods such as 

deterministic models in groundwater flow systems. 

1.4 Research outline 

The dissertation has six chapters. Chapter 1 outline the introduction of the 

dissertation including the background of the proposed study, problem 

statement explaining the importance of such research needed to be carried 

out. The aims and objectives of the dissertation are also included in chapter 1. 

The following chapter 2 focused on confined and leaky aquifer in general. The 

Theis (1935) equation for unsteady state conditions and Thiem (1906) equation 

for steady state conditions in confined aquifers is included in this chapter. The 

mathematical equation for leaky aquifer developed by Hantush & Jacob (1955) 

is also included in this chapter. The existing model for groundwater flow in 

confined aquifer as derived by Theis (1935) is discussed and modified to a new 

equation we developed which included the soil matrix which was neglected in 

the previous model. The mathematical model for leaky aquifers is also 

described in this chapter. In Chapter 3, we discussed stochastic and 

deterministic models in general including literature review including their 

applications on groundwater flow within subsurface. Chapter 4 covers 

distribution probabilistic, explaining how hydraulic parameters such as 

transmissivity, storativity and leakage can be obtained through means of 

statistics and distribution methods. Chapter 5 entails the analysis of a new 
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stochastic model in confined and leaky aquifer. In Chapter 6, we introduce the 

new scheme of Newton method being applied to stochastic groundwater flow 

equation of confined and leaky aquifers obtained in the previous chapter 5. It 

also entails the conversion of 1st order derivative and 2nd order derivative and 

the concept of discretization for Partial Difference Equations into the newly 

formed equation. Stability for all numerical equations of confined and leaky 

aquifers is also discussed in this chapter. Thereafter, simulation for the models 

concluded this chapter. 
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1.5 Research framework 

The research framework used on this dissertation to achieve the aims and 

objectives is described in figure 1 below: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Figure 1: Illustrate of research framework covered in this dissertation 

 

Reviewing literature on deterministic and stochastic 

models of groundwater flow in confined and leaky 

aquifers 

Use of distribution probabilistic and statistical analyses for 

hydraulic parameters, which varies in space at a time 

Derivation and analysis of a new 

stochastic model for confined aquifers 

Derivation and analysis of a new 

stochastic model for leaky aquifers 

Derivation of Stochastic model in 

confined aquifers 

Derivation of Stochastic model in leaky 

aquifers 

Application of Newton method on 

stochastic leaky model 

Application of Newton method on 

stochastic Confined model 

Stability for the confined model Stability for the leaky model 

Simulation for the leaky model Simulation for the confined model 
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CHAPTER 2: CONFINED AND LEAKY AQUIFERS 
 

Groundwater is found beneath the earth surface, stored within the rock pores 

and fractures. When it rains, some part of the surface water infiltrate through 

soil and percolate into underground, becoming groundwater resource. 

Streams, springs and rivers can lose water (effluent) to the underground water 

to recharge the aquifer. Groundwater can stay safely beneath earth surface in 

units called aquifers for years and decades. Aquifers are grouped as confined, 

unconfined and leaky aquifers. In this dissertation, we only focus on confined 

and leaky aquifers. 

Generally, the aquifer can be characterized by the nature and distribution of its 

lithology, flow behavior and geological structures and their formations (Payne 

and Woessner, 2010). Lithology, which obtained through drilling of wells, 

describes the aquifer’s physical logs that consist of mineral composition, grain 

size, sorting and packing of geological features describing an aquifer system. 

Stratigraphy characterizes the geometry and age of formations of geological 

system. Geological structures refer to secondary features such as fractures, 

faults, folds that may occur after deposition. The response of aquifer is 

controlled by the hydraulic parameters namely permeability, hydraulic 

conductivity, transmissivity, storativity and leakage factor. The fluid materials 

(water) determine permeability, its ease for the water to move through the 

aquifer materials. Hydraulic conductivity is the ability of the aquifer materials 

to let water to pass through it. Transmissivity, storativity and leakage factor are 

the parameters of interest in this dissertation, and will be discussed in the 

following sections. 
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2.1 Confined aquifer 

In Fetter (2001), a confined aquifer is described as an aquifer that is layered 

below and above by impermeable rocks (aquitard) which limits the 

groundwater movement into or out of the aquifer. It means water found on 

this aquifer types is bounded within the aquifer, only leaves the aquifer by 

means of discharge through drilled wells. Confined aquifers are usually found 

deep underground. Groundwater in confined aquifers is often found to be 

under pressure, rising to the potentiometric level because of a layered 

aquitard. The aquitard is beneficial as it protects the aquifer from 

contamination because polluted water cannot easily enter the confined 

aquifer. The aquifer gets recharge at points where it is exposed to the surface 

by means of rain or loose streams, rivers and springs that cross the outcrops 

and deep underground tributaries. Water moves slowly along the dip of the 

strata below the overlying impermeable layer to the aquifer. The cone of 

depression caused by pumping in confined aquifers can be described as 

shallow but widely, extending at a fast speed and fill up at a slow rate. Thiem’s 

method (1906) (steady‐state flow) and Theis’s method (1935) (unsteady) are 

the solutions used to determine aquifer parameters in confined aquifers. 

According to Kruseman, De Ridder, and Verweij (1970), the assumptions of 

confined aquifers for steady state flow (Thiem) conditions: 

1. At the beginning of pumping, the potentiometric surface is constant over 

the area affected by pumping; 

2. The aquifer is confined at the top and bottom with apparent infinite 

extent; 
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3. The aquifer is homogenous, isotropic, and of a uniform thickness over 

the area influenced by pumping; 

4. The well is pumped at a constant discharge rate; 

5. The well fully penetrates the aquifer’s thickness and water flows 

horizontally; 

6. The aquifer recharge through areas where it’s exposed to the surface 

and via leakage from other layers. 

Unsteady-state flow conditions (Theis, 1935): 

7. The aquifer can compress, and water is discharged immediately from the 

storage due to a drop in head; 

8. The well diameter is small so that well storage is negligible. 

Pumping in confined aquifers affects a large area (distance) of the aquifer, thus 

its cone of depression always extend far further away. Therefore, it is always 

advisable to place observation wells or piezometric tubes at reasonable 

distances from the pumped well to measure drawdown. In case of absence of 

observation well, for analytical analysis one has to accommodate an imaginary 

well together with a real well to get the hydraulic head correctly. The observed 

head will help to calculate aquifer parameters with the application of analytical 

solution or numerical solution which can be Theis (1935) or Thiem (1906) (Hu, 

Chen and Chen, 2011).  

The mathematical equation (1) commonly used for confined aquifer as derived 

by Theis (1935) for calculating hydraulic head in unsteady state flow conditions 

is as follows: 
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																			ℎ� − ℎ =
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(1) 

Integral can be replaced in this way as indicated in equation (2) below: 

�(�,�)=
�

4��
� (�) 

(2) 

 

where; 

h0: initial head 

h: head 

s(r,t): drawdown at distance (r) at time (t) after the start of pumping (L) 

Q: discharge rate (L/s), it shall be converted to m3 per day even the well is 

pumped for less than 24 hours 

T: transmissivity 

W(u): well function 

uobtained from equation (2) above can be solved with this formula in equation 

(3) below: 

� =
�²�

4�(� − ��)
 

(3) 

 

where; 

r: radial distance from pumping well (m) 

S: aquifer storativity (dimensionless) 

t: elapsed time since pumping began  
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t0: initial time pumping 

T: transmissivity 

Thiem (1906) applied equation (4) for steady state flow conditions for 

calculating hydraulic head: 

� =
2��� (�� − ��)

��	
��

��

 
(4) 

where; 

Q: well discharge 

KD: transmissivity of aquifer 

r1, r2: respective distances of the piezometers from pumping well (m) 

s1, s2: respective steady‐state drawdown in the piezometers (m) 

2.1.1 Groundwater flow in confined aquifer 

Groundwater flow equations are used to represent the properties of a system 

as they are assumed always constant. This is what is called Representative 

Elemental Volume (REV). In this dissertation, we are challenging this concept 

as the aquifer properties may not always constant in space at a time due to 

variability in spatial distribution which can relate to the inconsistent of 

geometry or pore sizes of aquifer system. There can be changes in aquifer’s 

geological structures, hydrologic cycles including precipitation to recharge, 

stream flow, and human induced activities such as over abstraction at a 

particular point of an aquifer. Nevertheless, most authors/modelers ignored 

this, so we are arguing that the aquifer parameters cannot be modeled as 

constant effectively. Also the drawdown used may only affect the pumped well 

and observation wells considered which only represent several points (part) of 
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the aquifer, not responding to the whole aquifer system, unless it’s a 

homogenous environment as most hydrologists and modelers concluded in 

their findings. 

As derived from Theis (1935), the groundwater flow equation (5) in confined 

aquifers described below determines the movement of groundwater in a radial 

distance of a system (space) at a particular time: 

�

�

�ℎ(�,�)

��
=
��ℎ(�,�)

���
+
1

�

�ℎ(�,�)

��
 

(5) 

where, S represents aquifer storativity (dimensionless), T for transmissivity 

(m²/d) in a radial distance (r), and (t) is the pumping time. 

The above equation does not take into account the structure of the geological 

formations; it considers only the transmissivity and the storativity of the 

aquifer, which in the normal situation cannot be representative as the water 

move slowly within the aquifer passing through each portion of the matrix soil. 

Thus neglecting the scaling effect will probably lead to misleading results. To 

solve this problem, Mathobo and Atangana (2018) suggested a revision of the 

Theis model starting from the Darcy´s law and using the mass balance 

equation, without neglecting any terms as was done by Theis. They suggested 

a modified equation (6), which is apparently more complex and more 

informative than the existing model. Their model includes the scaling effect of 

the matrix soil and is given as: 

�

�

�ℎ(�,�)

��
=
��ℎ(�,�)

���
�1 +

∆�

�
� +

�ℎ(�,�)

���
 

 

(6) 
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where, S represents aquifer storativity (dimensionless), T for transmissivity 

(m²/d) in a radial distance (r) at a time (t). 

In our work, we will consider the above equation and transform it to a 

stochastic model for further investigation. 

2.2 Leaky aquifer 

Leaky aquifers, known as, semi confined aquifers are those aquifers types 

partly bounded by aquitard (semi permeable) on its upper and lower 

boundaries, or in some cases the upper boundary can be aquitard while the 

lower boundary can be aquiclude. ŞEN (2000) also agreed that leaky aquifers 

are much complicated to investigate because additional water from upper 

aquitard may enter the aquifer any time nonstop. So modeling this aquifer 

type, one has to be vigilant with the effects of leakage factor. The geological 

materials that made up the overlying or underlying aquitard (confining layer) 

can be impervious but can compress/bend leading to a significant leakage 

through the layers, which in some cases ignored.  

As derived from Kruseman, de Rider and Verweij (1991), the following are 

assumptions of leaky aquifers in steady state flow conditions: 

1. The aquifer is leaky and has an seemingly infinite areal extent; 

2. The aquifer is bounded on top by aquitard; 

3. The aquitard is overlain by an unconfined aquifer called source bed; 

4. The water table in source bed is initially horizontal; 

5. The water table in the upper aquifer (source bed) does not drop during 

pumping of the aquifer as it receives water from outside source; 
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6. As pumping continues, water table in the upper aquifer will fall, as more 

of its water will be leaking through the aquitard into the pumped 

aquifer. 

7. Groundwater flow (leakage) in the aquitard is vertical; 

8. The aquitard is incompressible, so that no water is released from storage 

in the aquitard when the aquifer is pumped; 

9. The aquifer and the confining layer (aquitard) are homogenous, 

isotropic, and of uniform thickness over the area influenced by pumping; 

10. Prior to pumping, piezometric surface and water table remains 

horizontal over the area influenced by pumping; 

11. The drawdown in the unpumped aquifer or in the aquitard is negligible. 

12. The well is pumped at a constant rate; 

13. The well fully penetrate the aquifer thickness and receive water by 

horizontal flow; 

Unsteady-state flow conditions: 

14. The aquifer is compressible, and water released from storage in the 

aquifer and the water supplied by leakage from aquitard is discharged 

instantaneously with a decline in head; 

15. The well diameter is small so that well storage is negligible. 

The Hantush and Jacob (1955)developed mathematical analysis for leaky 

aquifer used to solve problems for fully penetrating well in leaky confined 

aquifer of infinite extent using the following equation (7): 
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Integral can be replaced and written as in equation (8) below: 
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where, 

b’: aquitard thickness (L) 

K’: vertical hydraulic conductivity of the aquitard (L/T) 

Q: pumping rate (L3/T) 

r: radical distance from pumping well to observation well (L) 

s: drawdown 

t: elapsed time since start of pumping (T) 

T: transmissivity (L2/T) 

S: storativity 

When pumping from a leaky aquifer, at the beginning the groundwater flow is 

assumed horizontal but as pumping goes on, the flow becomes vertical in 

underlying and overlying aquitard. When the flow becomes vertical, the well is 

now supplied by storage from aquitard. The drawdown considered here is a 

product of pumping rate, transmissivity and well function. The drawdown in a 

leaky aquifer is assumed proportional to the leakage rate from aquitard over 

the entire period of pumping. If there is sufficient leakage resulting from 
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overlying or underlying aquitard of a pumped aquifer, the drawdown will be 

minimal. The size of the aquitard whether it is thin or thick does matter as long 

it affect the aquifer’s compressibility. Thin aquitard accompanied with long 

pumping tests may result in low storativity when calculated with Hantush 

Jacob formula. Thick aquitard and short pumping durations may result in high 

storativity when Hantush formula is being used. Hantush and Jacob (1955) 

developed a solution to analyze the condition of thick aquitard using the 

equation (9) below: 

�

�
 (9) 

 

But this solution (9) did not take into account the storativity effects, and then 

later it was modified by Hantush (1960) to include the storativity ending up the 

solution gives zero as shown in equation (10) below. The solution has been 

criticized so far in leaky system as it is not always clear whether leakage comes 

from above the aquitard of the pumped aquifer or below aquitard. It takes to 

consideration that if there is only significant leakage or pump test did not last 

for long, the results will conclude: 

�

�
= 0 (10) 

 

It means that there is no leakage observed, but in reality there is significant 

leakage and it is usually ignored.  

For a better analysis of leakage factor, Neuman and Witherspoon (1969) 

developed a solution method, which needs an observation wells located in the 

aquitard below and above, and in the aquifer being pumped. The observed 

drawdown in the aquitard will be used in a ratio to that drawdown measured 
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in the pumped aquifer at the same time and same radial distance from 

pumping well to estimate hydraulic properties of an aquitard. 

For partially penetrating observation well in a leaky confined aquifer, the 

following equation (11) applies, as derived from Hantush (1960): 
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(11) 

where; 

b: aquifer thickness (L) 

d: depth to the top of pumping well screen (L) 

d’: depth to the top of observation well screen (L) 

Kr: radical (horizontal) hydraulic conductivity (L/T) 

Kz: vertical hydraulic conductivity (L/T) 

l: depth to the bottom of pumping well screen (L) 

l’: depth to the bottom of observation well screen (L) 

(u,B): the Hantush and Jacob well function for leaky confined aquifers 

(dimensionless) 

z: piezometer depth (L) 
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2.2.1 Groundwater flow equation in leaky aquifer 

In the last decade the groundwater flow model within a leaky aquifer was 

suggested by Hantush and Jacob (1955) used intensively to model such 

physical problem. The equation is derived based on the Theis model, which is 

also borrowed from the heat equation. The groundwater flow equation (12) in 

leaky aquifer derived from Hantush and Jacob (1955) model, when specific 

storage of confining unit is assumed negligible and the head in overlying 

aquifer is assumed unaffected: 
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(12) 

Hantush (1960) modified the equation (12) to include the specific storage of 

confining unit and derive the following equation (13): 
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where, B: dimensionless leakage parameter 

h: drawdown 

r: radial distance 

t: time 

z: vertical distance in confining layer 

Although the model has been used with great success in the last past years, 

one need to note that, some assumptions or modification and simplifications 

were done to obtain a simple model. Amanda and Atangana (2018) undertook 

an investigation of the groundwater flowing within a leaky aquifer; they reused 

the Darcy law and the mass balance concept to revisit the existing model. 
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Without neglecting any parameters and simplification of any terms, they 

produced a new mathematical model (14) if groundwater flowing within a 

leaky aquifer. The obtained mathematical model is given below as: 
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(14) 

where, S represent aquifer storativity (dimensionless), T for transmissivity 

(m²/d) in a radial distance at a time. 

The above equation has a new parameter, which takes into account the scaling 

of the geological formation, the model does not only depend on the 

transmissivity, storativity, leakage factor but it depends now on the scale of 

the geological formation. In this section we use the model suggested by 

Amanda and Atangana (2018), and further transform it to stochastic equation 

to be able to capture above the leaky and the scale factor, the heterogeneity 

associate to statistical setting of the aquifer parameters. 
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  CHAPTER 3: DETERMINISTIC AND STOCHASTIC MODELING 

Stochastic and deterministic approaches are modeling techniques that can be 

used to simplify physical structures of a real system about the quantity and 

quality of groundwater. These types of models help to understand the 

behavior of groundwater flow within the subsurface. The model requires data 

serving as input functions, which can be obtained from field pumping test data 

with the aim of getting hydraulic head to estimate transmissivity, hydraulic 

conductivity, storativity, leakage factor etc. The main difference between these 

approaches is the ability to handle errors in a dataset. The errors can be 

introduced in a dataset by means under fitting or over fitting, not enough or 

low quality data, bias and variance, and unbalanced data. All these error type 

will lead to poor quality model produced with not enough features to 

represent the actual system. Most of these errors arise from heterogeneous 

environment. Deterministic model cannot handle most of these errors, thus 

they are always applied to homogenous environment. Stochastic has the ability 

to handle most of the errors even in complex heterogeneous environment.  

Deterministic is a commonly used approach in most homogenous 

environments as it is simple to use and can predict a single outcome from a set 

of data, because it uses known variables. Its weakness lies on its limitations, as 

it is unable to address uncertainty in heterogeneous environment. 

Deterministic approaches have been used to model different scenarios 

because they are regarded as simple to use and not so complex when 

compared to stochastic.  

Groundwater models obtained in deterministic approach do not provide 

unique solutions as their combinations of variables may produce similar results 

(Renard, 2007).Therefore, stochastic models are more recommended in 
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quantitative research to run groundwater flow models because they are 

unique and their strength to take random values to solve errors in 

heterogeneous environments. Stochastic predicts multiple set of possible 

outcomes weighted by its likelihood or probabilities. In addition, the 

algorithms produced by stochastic models are independent representing 

random functions (van Leeuwen et al., 1998). The problem with stochastic 

modeling is that they are more complicated to use as they require a random 

number which needs to be obtained via simulation methods such as Monte 

Carlo, variance, kriging, and quasi‐Newton. According to modelers, they found 

out that it is difficult to use and time consuming. In terms of qualitative, 

studies reviewed by Wang, Ocampo‐Martinez and Puig (2016) shows better 

quality models obtained through stochastic modeling than those obtained in 

deterministic. The strength of stochastic groundwater flow models is that they 

are more realistic and non‐uniform. 

Deterministic and stochastic approaches use different interpolation methods 

depending on the project type and its needs. For deterministic, Inverse 

Distance Weighting (IDW), Minimum Curvature (MC) and Radial Basis Function 

(RBF) methods are used for interpolation. Interpolation methods used in 

stochastic includes Ordinary Kriging (OK), Universal Kriging (UK), and Delaunay 

triangulation kriging (DK) (Adhikary and Dash, 2017).Ordinary kriging can be 

used in fixed data sets to estimate the values of points.  OK assumes a random 

function with a constant unknown mean value, and their estimate depends on 

semivariogram. Universal kriging is used for irregular data taken at various 

points in space resulting in trends. UK uses algorithm estimation results, and 

requires the drift function and semivariogram of the residuals. DK uses 

Delaunay triangles to determine search neighborhood around the estimation 

point. Semivariogram works well with isotropical model like exponential, 
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gaussian, spherical, power law, linear and Spartan semivariogram models 

(Varouchakis and Hristopulos, 2013). When estimating values, for example 

transmissivity, at unsampled locations, one can also use both measured 

transmissivity and hydraulic head values or specific data capacity instead of 

only using transmissivity. Specific capacity and hydraulic head are always 

correlated, thus can be used together. 

3.1 Deterministic models 

Deterministic models are defined by differential equations with known number 

resulting in known output for well‐defined linear models with multiple outputs 

possible for non‐linear outputs as well. Equations are solved by numerical 

methods such as Finite Difference. Constructing a model through a 

deterministic technique proves to predict about what to expect in future and 

the influence of certain parameters in an aquifer system (Renard, 2007). 

Certain parameters such as transmissivity or storativity can vary at a point due 

to the geometry or geological structure of an aquifer as discussed on the 

previous chapter. The prediction about aquifer parameters from a (numerical 

model) is very necessary for hydrologists to understand groundwater flow 

within the aquifer. Koch and Arlai (2007) also agree that in deterministic 

models, the parameters used in the equation to represent the system are 

constant and even measured at several locations in aquifer system, resulting in 

errors which is usually goes unnoticed, and it is a challenge in heterogeneous 

environment.  For instance, concern raised in areas where data measurements 

were not completed as hydrologists treated the system as continuum and 

conclude that it is a homogenous environment, which is not always true, might 

be heterogeneous and they modeled it as deterministic. We should always 
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remember that a model found to be inaccurate will mislead the audience and 

decision makers and affect groundwater resource. 

3.2 Stochastic models 

Errors in a dataset results from poor data collection methods, unknown 

boundary barriers or geometry which all serve as input for the model and 

influence the quality of the model produced, if not well represented. This is 

exactly what affects deterministic models due to its inability to cover these 

types of errors. Wang, Ocampo‐Martinez and Puig (2016) stated that stochastic 

models are capable of combining all forms of uncertainty influencing the data 

by replacing them with random values representing the hydraulic parameters. 

Stochastic approach is a solution to model complicated environment, whereby 

the available data has to be averaged by means of statistical analysis and 

distribution probabilities, like what we are doing on this dissertation, to 

estimate effective aquifer properties that varies in an aquifer system. 

Heterogeneity environments are well represented by stochastic models 

because any uncertainty arising in the aquifer system can be captured. 

As like for deterministic models, stochastic processes can also assume the 

variation of a system in future, but most importantly, it allows the modeler to 

test the validity of the assumptions through statistical analysis and estimate 

the expected value of the future as well as the variation of that expected value 

(Sinha, and Prasad, 1979). It also allows one to monitor the hydraulic 

parameters predicted in a model within the range one would expect. 
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3.3 Literature review on applications of stochastic and deterministic 

models 

Different scenarios relate to the applications of stochastic models compared to 

deterministic are discussed below. 

Use of stochastic technique with Bayesian Inference 

Stochastic models use one or more elements, which can be solved analytically 

or numerical. Stochastic model based on Gaussian Processes (GP) addressed a 

fault tolerant problem using a Bayesian Inference theory when it was applied 

to the Barcelona drinking water network (Wang, Ocampo‐Martinez and Puig 

2016). Bayesian Inference is particularly useful in stochastic modeling 

technique especially when not enough data available and required to deliver 

accurate results in every area of predictive system. GP regression algorithms 

were combined with Double Seasonal Holt Winters (DSHW) to generate 

disturbance forecast uncertainty into the system in space and it yielded good 

results. The simulation for the model worked well, managed to handle 

infeasibility occurred in the system. 

Deterministic and Stochastic models on groundwater saline contamination 

In Bangkok, Koch and Arlai (2007) investigated a heavily stressed saline 

contamination of a multi aquifer system. They used both deterministic and 

stochastic techniques to find out which model provide better accurate results 

representing the real system. The multi aquifer consists of a topmost soft clay 

layer and eight water bearing layers, and it recharges at the basin flanks where 

2nd and 4th aquifer outcrops. Due to groundwater over abstraction on the 2nd, 

3rd and 4th aquifers, the water levels declined so badly in some areas creating a 

cone of depression, leading to land subsidence and salt water encroachment in 
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some places due to sea water intrusion or vertical seepage of saline connate 

from marine clay layer. They used pumping and piezometric head data to 

construct the model. When they used deterministic approach, piezometric 

head data could not be represented perfectly, leaving a non‐zero residual. This 

error occurred because piezometric and pumping data are not exactly 

measured and deterministic calibration parameters obtained only represent 

local instead of a global minimum piezometric surface response. This type of 

aquifer can be assumed to be heterogeneous, and it can only represented well 

by stochastic approach.  

When stochastic approach was performed by means of assigning random field 

data using logarithmic transmissivity Y=lnT field with various sets of 

variances	σγ2 and correlation lengths (��,��) for each layer which defines 

stochastic range in a multi‐layer aquifer system simulated. Stochastic modeling 

used Monte Carlo Modflow simulation to investigate how variance 

σY
2contributed to σH

2of observed head and residuals. The investigation results 

indicates that	σH
2and σY

2are related to each other asσH
2‐	σY

2 * λ2, just as 

stochastic theory predicted. So in this scenario, stochastic model yielded 

accurate results than the deterministic approach does. 

Stochastic model of slip spatial amplitude of the fault 

Another scenario of stochastic modelling, done by Lavalle´e and Archuleta 

(2003) investigated a heterogeneous spatial distribution of the slip or pre ‐

stress along the fault zone of the 1979 Imperial Valley earthquake in California, 

USA. They applied stochastic modeling based on Gaussian distributions and 

non‐Gaussian distributions. They estimated power spectrum (as random 

variables) and interpolate the slip distribution. Probability Density Function 

(PDF) associated with power spectrum was also estimated. Fourier transform 
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and Inverse were used to represent the slip amplitude and position of the 

strike. It resulted that stochastic model based on non‐Gaussian distributions 

described well the spatial variability of the slip amplitude over the fault. The 

stochastic model based on Gaussian distribution failed to reproduce the spatial 

variability observed in the original slip distribution. The results proved that non 

Gaussian distribution works better with stochastic models. 

Groundwater level in a sparsely monitored basin  

The study conducted by Varouchakis and Hristopulos (2013) compares the 

performance of stochastic and deterministic methods for mapping 

groundwater levels in a sparsely monitored basin. For deterministic, they used 

Inverse Distance Weighting (IDW) and Minimum Curvature (MC) as 

interpolation methods for groundwater level mapping. IDW is an exact, fast, 

straight forward and computationally non‐intensive. Its limitation is that it 

cannot handle uncertainty measure, and arbitrary choice of the weighting 

function. MC is based on reduction of the total square curvature of the surface 

subject to the data constraints.  Its weakness is that it suffers from oscillations 

caused by outliers in the data or very large gradients, especially in cases of 

small data. Deterministic methods use closed form mathematical formulas for 

IDW or solution of linear system of equations to interpolate data. Deterministic 

methods can either be exact or inexact interpolators. They don’t generate 

measures of estimate uncertainty.  

The stochastic interpolation methods used are Inverse Distance Weighting 

(IDW), Ordinary Kriging (OK), Universal Kriging (UK), and Delaunay Kriging (DK). 

Stochastic interpolation methods employed spatial correlations between 

values at neighboring points. The Kriging interpolation method used is 

regarded as the best linear unbiased estimator because its estimates are linear 
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combinations of the data with weights from non‐bias constraints. Kriging is 

computationally intensive when applied to large datasets, and it allows 

estimation of interpolation uncertainties. A semi‐variogram estimate was also 

used with isotropic models such as exponential, Gaussian, spherical, power 

law, linear, spartan and marten models. The results show that IDW presented 

more accurate for the basin than other values. DK provides the best cross‐

validation estimate for the extreme low value due to its localised nature of 

interpolation. 

Geostatistical technique in modeling uncertainties 

Geostatistics is an interpolation method used to estimate parameter values in 

space where there are no available data. It uses methods like kriging, co‐

kriging, variogram and trends to estimate parameters. Lin et al. (2017) applied 

geostatistical approach and Modflow to generate spatial distribution of 

hydraulic conductivities of a multiple aquifer in Pingtung, Taiwan. Geo‐statistic 

and stochastic elements work extremely together. This fact was discovered in 

its applications on many earth science studies. However, not all stochastic 

models are linked to geo‐statistics, leading to spatio‐stochastic modeling. 

Spatio‐stochastic models predict the behavior of complex systems with explicit 

knowledge of limited parameters relates to spatial relationships among 

locations in a system (Fortin et al., 2003). 

Geo‐statistics uses simulation techniques such as Lower Upper (LU) 

decomposition, turning bands, Sequential Gaussian (SG) and Simulated 

Annealing (SA) to model uncertainty of a regional variable e.g. hydraulic 

conductivity. Lin et al. (2017) used Simulated Annealing simulation to disturb 

pixel grid over the numerical iterations until pixel values reach the given 

histogram and semi‐variogram model. 
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They also combined Generalized Likelihood Uncertainty Estimation (GLUE), 

semi‐variogram model and simulation algorithm to generate random function 

model. GLUE is a kind of extended Monte Carlo random simulation that 

quantifies uncertainty. GLUE estimate likelihood of all possible outcomes for a 

specific distribution of inputs and determines behavioral parameter sets of a 

model. However, there have been critics of GLUE method for not being 

formally Bayesian. The weakness of geo‐statistical technique is that only a 

limited number of realizations can be generated making it difficult to 

characterize spatial uncertainty. 

Inverse method for unknown Boundary Conditions (BC) 

In case of unknown boundary conditions, a study carried by Irsa and Zhang 

(2012) proved that through the new inverse method, boundary conditions are 

not always needed for estimating aquifer parameters such as hydraulic 

conductivity. The Inverse method with a set of hybrid formulations was applied 

to the systems with problems of regular and irregular geometries, different 

heterogeneity patterns, variances and error magnitudes, and yielded 

successful results. BC are generally unknown in real aquifers and when wrong 

parameters are assigned, the parameter results estimated will be inaccurate 

and non‐unique leading to poor quality models. Such cases usually occurred 

when data used contain errors. 

Extended Kalman Filter (EKF) for parameter estimation in leaky aquifer 

Yeh and Huang (2005) used EKF method to identify hydraulic parameters in 

leaky aquifers systems both with and without considering aquifer storage. 

They found out that Kalman Filter is suitable for estimating parameters in a 

linear system; whilst Extended Kalman Filter is suitable for estimating hydraulic 

parameters in a nonlinear system. 
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Sequential Successive Linear Estimator (SSLE) 

SSLE technique was applied in a confined aquifer to solve transient and steady 

flow problems. SSLE inverse particularly solve transient flow problems, whilst 

Quasi Linear Bayesian Geostatic inverse method improve the distribution of 

depth averaged hydraulic conductivity. SSLE has been recognized as 

computational efficient, because the pumping or injection events are 

calculated separately and integrated by inner iteration loops, thus reducing the 

sizes of matrices for stochastic simulations (Yeh and Liu, 2000). 
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CHAPTER 4:  DISTRIBUTION 
 

Distribution in general can be defined as a relationship for a sample space 

representing all possible outcomes of a random variable being observed in a 

particular system. The sample space meant here could be a set of real 

numbers, higher dimensional vector space or list of numerical or non‐

numerical values. Distributions are described in terms of their density or 

density functions. Density functions referred to how the proportion of data or 

likelihood of the proportion of observations changes over the range of the 

distribution. This kind of observation changes can be one of the reasons for 

applying distribution methods in estimating the hydraulic parameters 

stochastically. 

For density functions, the data should be classified as Probability Density 

Function (PDF), which calculates the probability of observing a given value, or 

Cumulative Density Function (CDF), which calculates the probability of an 

observation equal, or less than a value (Maus and Nijhawan, 2008). PDF and 

CDF are continuous, but the equivalent of a PDF for discrete distribution is 

termed as Probability Mass Function (PMF).Continuous distribution focuses on 

a set of ranges in a continuous way. Discrete is described by a set of values of a 

random variable. 

Walck (2007) stated that when analyzing raw data and fit the right distribution 

to the data, first figure out whether the distribution method and data can take 

discrete or continuous value, as some data may be restricted to discrete or 

continuous. In addition, it is advised to look at symmetry of the data and if 

there is asymmetry in which direction it lies if positive or negative outliers, 

equally likely or more likely than other. Analyze if there are upper or lower 

limits on the data because some data values can be less than zero while others 
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can exceed 100. The likelihood of observing extreme values in the distribution 

that may occur very infrequently or occur more often should be analyzed as 

well. 

It is often a challenge to choose the best distribution method suitable to 

estimate aquifer parameters, but in this investigation, we used mean, standard 

deviation, variance, tendency, skewness and kurtosis to estimate our aquifer 

parameters. It helps to figure out which distribution method better fits each 

specific parameter. Various distributions such as normal, log normal, Weibull, 

and others will be used to find the potential values for parameters, which are 

estimated to vary in space. 

4.1 Statistical data analysis 

Statistical analysis describes the relationship between the data and their 

parameters by linking them in a statistical form. There are some hydraulic 

parameters e.g. storativity, leakage or transmissivity, which are sensitive, may 

not be known accurately. In this study, they are represented as randomly, 

sorted out by means of mean, variance, standard deviation, skewness, and 

kurtosis. The statistics of random variables will be solved by numerical 

equations. 

4.1.1 Mean 

Mean can be arithmetic or geometric average mean of a dataset. Arithmetic 

mean can be defined as the sum of the values in a data set, divided by the 

count of number of data points. Calculating values using arithmetic mean is 

often regarded the best because it takes random variables and its 

independent, does not get affected by any poor performance of other values 

(Walck, 2007). The formula (15) for arithmetic mean: 
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Geometric mean can be calculated using equation (16) whereby you adds one 

to each value in a dataset to avoid problems that may arise from value with 

negative, and then multiply all the values together and raise the values to the 

power one (root square) by dividing by the count of number of values in a 

dataset. Geometric mean is best when calculating percentage changes in a 

datasets as it provide accurate measurements. The geometric mean formula: 
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4.1.2 Variance 

Variance is calculated from the mean value whereby one has to first figure out 

the differences between the mean and average of the sample data, and square 

the values obtained from the sample differences to obtain the variance value.  

4.1.3 Standard deviation 

It measure the amount of dispersion or variation of a sampled data. Here, one 

has to square root the value obtained in variance to obtain standard deviation. 

For the hydraulic parameters that may fit gaussian/normal distribution will be 

using standard deviation. The standard deviation formula (17) used to 

calculate sampled data: 
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4.1.4 Skewness 

When data plotted on a graph is not centered (asymmetry), as like for normal 

distribution, but skewed to the left or right, resulting in one tail longer than the 

other, its skewness. Skewness can be calculated by using the average mean or 

standard deviation. A positive value of skewness indicates that mode is to the 

left of the mean and the longest tail is to the right of the bell shaped curve. 

Whilst a negative skewness shows that mode is to the right side of the mean, 

and longest tail of the bell shaped curve align to left side. When skewness is 

zero, the distribution is regarded as symmetry. 

4.1.5 Kurtosis 

Kurtosis characterizes the tails of a distribution. The tail in a distribution with 

more extreme data values can be fatter indicating a positive kurtosis. When 

the tail is thinner due to less data values, the distribution will show a negative 

kurtosis. A distribution with zero kurtosis has the same outlier character as a 

normal distribution. 

4.2Density distributions 

Probability density distribution is a function of a random variable taken from 

general sets of data, which falls within a particular range of a parameter values 

(Maus and Nijhawan, 2008). Any data that follows a probability density 

distribution is valuable and should be identified to which distribution it follows. 

There is no standard way of fitting data for distribution, we usually use 
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histograms to plot the data and then we analyze to which shape the histogram 

resembles, it can be Gaussian/normal, beta, or gamma distribution. This is 

because the rate of a function represent on the data in a form of physical 

quantities can change anytime. 

The aquifer parameters considered on this dissertation, all have distribution 

range values in aquifer; for example, transmissivity has a range value of 1 ‐ 

100,000m2/d. For distribution, probability density function of a random 

variable can be either discrete or continuous, as discussed above. Continuous 

random variable is suitable for uniform distribution as it takes values in a 

continuous way. Non‐uniform distribution associates with discrete values. On 

this dissertation, we will analyze the data statistically to calculate the mean, 

variance, standard deviation, etc. to obtain average parameter values. The 

values obtained will be plotted on histogram and variogram graphs to 

determine which best probability distribution the data followed to estimate 

the aquifer parameters. Statistical software and manual plots can also help to 

plot the data on the graphs. The plots shows when the data follows a straight 

line on the graphs which indicates that the data follows the particular 

distribution, if it doesn’t fit, other distribution methods can used to assess the 

data. 

4.2.1 Normal /Gaussian distribution 

Normal distribution, which is also known as Gaussian distribution is a kind of 

distribution which follows a symmetric shape. It can be obtained from the 

mean (µ) and standard deviation (�) or (s) of the distribution. So whenever the 

values of mean and standard deviation are changed, so does the positions and 

shapes of the distributions changes. 
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In a data set, we will identify which data follow a normal distribution or not. 

On a graph, normal distributions are characterized when plotting data, half of 

the values align to the left of the center and the other half to the right; the 

total area under the curve is 1; and the curve of the distribution is bell‐shaped 

and symmetrical. It’s easy to estimate the parameters on this kind of 

distribution (Maus and Nijhawan, 2008). 

The formula (18) used to calculate normal distribution: 
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Probabilities from different normal distribution can be converted to one 

probability involving the standard normal distribution in a process called 

standardization. 

4.2.2 Binomial distribution 

It measures the probabilities of the number of success over a given number of 

chances tried with a specified probability of success in each try. Binomial 

distribution has only two possible outcomes: success and failure. The 

parameters of a binomial distribution are total number of samples and 

probability of success in each sample (Gleeson et al., 2016). 

4.2.3 Lognormal distribution 

The lognormal distribution is the kind of distribution that shows asymmetrical 

and positive skewed shape. It does not take negative values in a dataset, only 

positive values. 
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4.2.4 Binomial–Exponential 2 distribution 

Bakouch et al. (2017) describes binomial exponential 2 as a distribution of a 

random sum of independent exponential random variables when sample size 

has a zero truncated binomial distribution. Stochastic models that 

accommodate zero value use this distribution type to observe different 

measures such as average, maximum and minimum in estimating distribution 

parameters. 

4.2.5 Poisson distribution 

Gleeson et al. (2016) indicates that Poisson distribution measures the 

likelihood of a number of events occur in a given time interval to get the key 

parameter which is the average number of events in the given interval. It 

focuses on the number of occurrences of the event. Poisson distribution can be 

applied to estimate parameters in modeling homogenous type aquifers. 

Poisson distribution can represent the flow rate per time, which can vary. 

4.2.6 Geometric distribution 

It focuses on the number of success in the number of trials by assuming that 

you were measuring the likelihood of when the first success will occur. The 

geometric distribution can be applied to water quality samples conducting the 

allowable parameters for human consumption from a certain water supplies. 

For aquifer pumping tests, geometric distribution can also be applied when 

conducting more than one‐step tests to determine the ideal discharge rate of a 

well (Freeze, 1975). 
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4.2.7 Exponential distribution 

Itis the probability distribution that describes the time between 

events.Exponential distribution focuses on the interval of time. During 

pumping test of a well, the time between when the pump was switched off, 

and the time when the groundwater water level recovered to its original static 

level (Freeze, 1975). 

4.2.8 Generalized exponential distribution 

It shows an increasing or decreasing hazard rate depending on the shape 

parameter on a graph. It has many properties that are quite similar to those of 

the gamma distribution, but it has a distribution function like that of the 

Weibull distribution, which can be computed simply. The generalized 

exponential family has likelihood ratio ordering on the shape parameter; so it 

is possible to construct a uniformly most powerful test for testing a one‐sided 

hypothesis on the shape parameter when the scale and location parameters 

are known. 

4.2.9Bernoulli distribution 

It is a discrete probability distribution that indicates a result from experiment 

or sampled data of what expected and actual outcome of the data results 

(Maus and Nijhawan, 2008). Just like binomial, there are also two possible 

outcomes for a Bernoulli distribution: success or failure. Binomial and Bernoulli 

have independent trails. An example of Bernoulli is investigating an aquifer to 

determine the allowable pumping rate, from a trial of random rates, of a well. 

http://www.statisticshowto.com/discrete-probability-distribution/
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4.2.10 Weibull distribution 

The hydraulic parameters values in our work changes over time and Weibull 

distribution can handle this type of data. It is often preferred for analysing 

lifetime data in presence of censoring because it is much easier to handle than 

gamma distribution and it fits very well in many datasets as stated by Freeze 

(1975). We are using probability of Weibull distribution to help us to 

understand the groundwater flow behaviour at a time in space. The challenge 

is that the distribution of the sum of independent and identically distributed 

Weibull random variables is not simple to obtain. Therefore, the distribution of 

the mean of a random sample from a Weibull distribution is not easy to 

compute. 

4.2.11 Beta distribution 

It is a continuous probability distribution having two parameters. It is applied 

mostly to random variables with limited ranges e.g. a – b, or 1-2. One of its 

most common uses is to model one's uncertainty about the probability of 

success of an experiment (Gleeson et al., 2016). 

4.2.12 Gamma distribution 

It describesright‐skewed, continuous probability distributions. Its shape 

parameter is not confined to integer values. The gamma distribution starts at 

the origin and has a flexible shape. It is easy to estimate parameters by 

matching moments. 

http://www.statisticshowto.com/probability-and-statistics/skewed-distribution/
http://www.statisticshowto.com/continuous-probability-distribution/
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4.2.13 Rayleigh distribution 

Just like exponential distribution, Rayleigh also time dependent but it function 

linearly. Its reliability function decreases at a much higher rate than that of 

exponential distribution (Dey, Raheem and Mukherjee, 2017). 

4.1.14 Cauchy distribution 

It has a probability distribution shape with much heavier tails than normal 

distribution. Its probability density is symmetric and unimodal. 

4.1.15 Chi-squared distribution 

The chi‐squared distribution is obtained by adding up the squares of a number 

of normal variates (e.g. x2). Its distribution is used to test the goodness of fit 

between the observed data points and the predicted values by the model, 

which relate to the differences being normally distributed (Freeze, 1975). 

4.1.16 Empirical distribution 

The empirical distribution is estimated directed from sample data without 

assuming the underlying algebraic form of the distribution model. 

4.1.18 Pareto distribution 

The Perato distribution is a kind of distribution used to describe observed data. 

It is often model the tail of another distribution, either skewed to the other 

direction (Freeze, 1975). 

4.1.19 Mittag-leffler distribution 

Mittag‐Leffler can take random values, which may be in a set of non‐negative 

or positive integers. It varies in shapes like a constant with unique mode at 
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zero, unimodal with one or two zero modes. Its distribution can be under, over 

or equi‐dispersed (Gleeson et al., 2016). 

4.3 Estimation methods 

Below is the list of estimation methods used to estimate parameters in 

statistics (Bakouch et al., 2017): 

1. Maximum Likelihood Estimation (MLE) is good in terms of consistency, 

efficiency, invariance and has good theoretical properties, but don’t 

perform well in small samples (Dey, Moala and Kumar, 2018) 

2. Method of Moment estimation (MME) is obtained by comparing the 

first two theoretical moments with the sample moments. It is easily 

applicable and in some cases gives explicit forms for estimation of 

unknown parameters, but not for parameters of Weibull and Gompertz 

distributions. It also does not perform well in small samples. 

3. Moments and pseudo-moments compares the first two theoretical 

moments of one with the sample moments. 

4. Modified moments use the sample mean and variance. 

5. Least-squares estimation (LSE) estimates the parameters of Beta 

distributions.  Two variants of least squares methods can be used with 

the expectations and variances. 

6. Percentile estimation (PE) can be used for cases like if the data come 

from a distribution function, which has a closed form, and the unknown 

parameters can be estimated by fitting straight line to the theoretical 

points obtained from the distribution function and the sample percentile 
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points. This method performs well in Weibull distribution and 

generalized exponential distribution. 

7. L-Moments estimation (LME) compares the first two samples L‐

Moments with the corresponding population L‐Moments. This method 

has been used to estimate unknown parameters of generalized 

exponential distribution based on linear combination of order statistics. 

LME method is relatively strong to the effect of outliers whenever the 

mean of the distribution exists, as some higher moments might not 

exists making it more accurate in small samples. LME is efficient, 

compared to other estimation methods like MLE for normal distribution. 

8. Maximum Product of spacing (MPS) and minimum spacing distance is 

an alternative to MLE for the estimation of parameters of continuous 

univariate distribution. 

 

4.4 Hydraulic parameters 

The parameters of interest in this study are transmissivity, storativity and 

leakage factor. Many modelers treated these parameters as constant all time 

in a system, but it is not always valid due to variability of aquifer materials over 

time to time. We consider all these parameters being inconstant in aquifer 

system at a period. Transmissivity is obtained when hydraulic conductivity and 

thickness of a particular aquifer is known. Obtaining the hydraulic parameter 

values of an aquifer is usually sensitive because data used from observation 

wells at various distances taken at any location within the aquifer for example 

to estimate storativity, some people usually conclude it as the storativity of the 

whole domain of aquifer, which is inaccurate.  
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Not all aquifers are used for fresh water consumptions; some underground 

aquifers are used for disposal of wastewater and other hazardous liquids 

(Dagan and Neuman, 2005). Thus, it is very important to continuously monitor 

any leakage possibilities between aquifers for the best safety of groundwater 

resource. 

4.4.1 Transmissivity 

Transmissivity (T) measures the rate of flow under a hydraulic gradient per unit 

through a cross section per unit width over the completely saturated thickness 

of a water‐bearing layer. It is expressed in m2/d. Transmissivity values are 

obtained from pumping test data with the use of Theis equation especially in 

confined aquifers, and Hantush Jacob in leaky aquifers. In situations when 

pumping test data are difficult and expensive to obtain, transmissivity can be 

derived from specific capacity data. Specific capacity data can be provided by 

drillers from step drawdown tests, which describe the performance of the well. 

The pumping rate, and discharge rate divided by drawdown is often used to 

get specific capacity data. Transmissivity affect the shape of drawdown on a 

cone of depression. If transmissivity is high, the drawdown will be broad and 

shallow, but when transmissivity is low, the cone of depression will indicate a 

narrow and deep drawdown shape. Estimation of transmissivity values is 

improved when using both pumping test (Theis) and specific capacity data 

(Theis, 1963). 

Transmissivity is calculated by using formula (19) integrating hydraulic 

conductivity over aquifer thickness. 

� = ��  (19) 
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In confined aquifer, for steady state flow Thiem equation (20) is used to 

calculate transmissivity: 

� =
�

2�(ℎ� − ℎ�)
���

��
��
� 

(20) 

 

For unsteady state flow, equation (21) can be used: 

� =
�

4�(ℎ� − ℎ)
	� (�) 

(21) 

 

For confined aquifers, distance drawdown, Cooper Jacob method (22) is used, 

as per one logarithmic cycle: 

� =
2.30�

4�∆�
 

(22) 

 

Transmissivity depends on hydraulic conductivity and aquifer thickness making 

its values varies in different aquifers and in different places in the same 

aquifer. Among all hydraulic parameters, transmissivity is considered as higher 

than other parameters which varies in space, thus it should not be estimated 

as constant at all (van Leeuwen et al., 1998). Values estimated in principal 

aquifers ranges from less than 1 m2/d while in fractured aquifers ranges up to 

100,000 m2/d for cavernous limestone and lava flows. 

In leaky aquifers, Hantush‐Jacob equation (23) calculates transmissivity: 

� =
�

4��
� ��,

�

�
� 

(23) 

 

For storativity, equation (24) can be used: 
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� =
4���

�²
 

(24) 

 

where, 

Q: Pumping rate (m3/d) 

t: time since pumping began(days) 

r: distance from pumping well to observation well (m) 

B: leakage factor (m) 

4.4.2 Storativity 

The capacity of how the water bearing materials are able to pass through and 

store water is termed as storativity. In confined aquifers, storativity occurs 

during compressibility of the water and the aquifer structure changes. During 

pumping, water comes from decompression of water and sediments. The 

aquifer materials are not drained as it remains saturated. Storativity is 

generally dimensionless, in confined aquifer it is the effect of specific storage 

and aquifer thickness. The equation (25) below used for calculating storativity 

in which units in the numerator and denominator cancel each other: 

� =
������	��	�����

(����	����)(����	ℎ���	�ℎ����)
= 	

��

(��)(�)
 

(25) 

 

For confined aquifers, Cooper‐Jacob equation (26) for distance drawdown 

method calculates storativity as: 

� =
2.25��

��
�  

(26) 
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The estimated value of storativity depends on whether the aquifer is confined, 

leaky or unconfined. Storativity values range from 1x10‐5 to 1x10‐3(0.001‐ 

0.00001) for confined aquifers. The lower value of storativity indicates the 

deep drawdown expected. The higher value of storativity indicates that the 

drawdown will be minimal. 

4.4.3 Leakage factor 

Leakage is a vertical transfer of water directed upward or downward through 

aquitard from overlying or underlying aquifers. Confined aquifers discharge 

water by leakage through its aquitard with a low hydraulic head. It’s very 

important to monitor and measure leakage to get the drawdown caused by 

pumping in an aquifer. Because some underground aquifers might be used for 

disposal of wastewater and other hazardous liquids or contamination from 

percolation of surface water.  It is very important to continue monitoring any 

leakage possibility for the best safety of groundwater resource (Wang et al., 

2018). Another reason for including leakage in groundwater monitoring is the 

permeability, which might change after earthquakes incident affecting the 

geologic fractures. Permeability in this case will likely to move not only in 

horizontal direction but also in vertical direction, as preexisting fractures are 

likely to be randomly oriented. The possibilities of leakage also exist at points 

where aquitard discontinued within subsurface. 

Leakage in an aquifer can be accessed with observation wells placed at 

reasonable location and depth to monitor drawdown. The changes in water 

level and recovery should also be monitored in a sufficient period. The 

drawdown data should be carefully corrected by means of tidal corrections or 

other methods applicable for analyzing the data to estimate leakage. When the 
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drawdown data has been corrected, it can analyzed with appropriate solution 

such as Hantush and Jacob (1955) solution, Boulton (1973) solution, Hunt and 

Scott (2007) solution, Zhan and Zlotnik (2002) solution, and Hunt stream (2003) 

and Hunt spring depletion (2004) solutions. 

Leakage factor determines the distribution of leakage through one or two 

aquitards into a leaky aquifer. The formula (27) is used to calculate leakage is: 

� = √KHc (27) 

Formula (27) above can also be derived to the following (28): 

� = �
m′mK

K�
 

(28) 

The leakage has the dimension of length, usually expressed in meters as its 

influence is distributed over the area where leakage takes place. When 

analyzing the data, the large value of leakage factor shows a low leakage rate 

through the aquitard, whereas the small values indicates high leakage rate. 

High transmissivity values of the aquifer as well as high hydraulic resistance 

values of the aquitard leads to large values of leakage. Copty, Sarioglu and 

Findikakis (2006) assessed the impact of leakage on the transmissivity of the 

equivalent homogeneous leaky aquifer system using the value estimated for 

transmissivity as for arithmetic and geometric mean. As they relied on the 

assumption that head in un‐pumped aquifer cannot be affected by pumping as 

in pumped aquifer. It turned that the head in the un‐pumped aquifer 

unaffected by leakage results in larger estimate of transmissivity. 
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CHAPTER 5: ANALYSIS OF STOCHASTIC MODELS OF 

GROUNDWATER FLOW: CONFINED AND LEAKY AQUIFERS 
 

Stochastic approaches have been used in many fields of science, technology 

and engineering in the last decade with great success, as they are able to 

capture heterogeneities that cannot be described with normal deterministic 

approach. It is worth noting that several physical occurrences display statistical 

properties and this cannot be handled with normal deterministic equations as 

all the input parameters are assumed to be constant. In normal natural 

problems, one observed in normal situations that input parameters are 

stochastic not constant. This is the same situation with aquifer parameters 

including the transmissivity, storativity and hydraulic conductivity, they are 

geological dependent parameters and more importantly to the discharge rate 

which is the force applied by human.   

For instance, transmissivity cannot always statistically independent in the 

formation (space). The value of each specific parameter in space is 

independent as geological materials vary from one point to another depending 

on the fracture type. Fractures are made up of void space in rocks, which affect 

the flow properties and physical properties of a rock. Hydraulic parameters 

cannot be stationary in an entirely formation, like transmissivity can only be 

stationary at a sub unit of a geological formation in space, but not in the 

entirely formation.  

Boundaries, which might extend far away in some large‐scale aquifers, cannot 

be modeled well because of limited knowledge about them, so they should be 

treated as stochastic. If these variations are being neglected, it might lead to 

inaccurate results from the model produced misleading results to the decision 

makers to make recommendations for the future and it have negative impact 
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on the assessment of groundwater quantity e.g. average discharge or 

groundwater availability in an aquifer. It is very important to assess any 

uncertainty that may arise from the system. 

In this dissertation therefore, to be more representative, we shall consider the 

latest version of groundwater flow model within a confined and leaky aquifer 

proposed by Mathobo and Atangana (2018), and Amanda and Atangana 

(2018). The input parameters will be transformed into the stochastic one by 

assigning each parameter as a distribution. Without any doubt the 

transmissivity, leakage and storativity of the aquifer are not constant as we 

explained earlier, since one does not have a fixed function or law that these 

aquifer parameters follow, one will rely on stochastic approach to represent 

them. We shall start here with confined aquifer then leaky aquifer later. 

 

5.1 Analysis of stochastic model of groundwater flow: Confined 

aquifers 

We analyzed the stochastic model for groundwater flow equation (29) in 

confined aquifer: 

�
��(�,�)

��
= 	
�

�

��(�,�)

��
+ �

�²�(�,�)

��²
 

(29) 

 

where, T represents aquifer transmissivity, S for aquifer storativity in a (r) 

radial distance at a (t) time. 

T is considered as constant in Theis model. However, in reality T changes as a 

function of s (drawdown) as we argued above, in this case: 

� ∈ (��,��,��,��,⋯,��) 
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Drawdown data can be analyzed by using statistical methods such as 

arithmetic mean or geometric mean to obtain an accurate value represented 

by distribution probability techniques assigned in a stochastic model. 

With arithmetic mean, use equation (30):  

����� =
1

�
���

�

���

 
(30) 

Therefore geometric mean, we have the following (31): 

����� = ����

�

���

�

�

�

= ������� ⋯��
�  

(31) 

 

We consider0	˂	� ≤ 1, we call it stochastic parameter. 

We consider ��as a distribution associated to	�. 

��	can be normal, log normal, Pareto, Poisson, Mittag‐Leffler distribution, etc. 

We replace � by T� to obtain (32) 

�� = 	�� + 	�	��      (32) 

Following the same approach, we obtained (33): 

�̅ = 	 �̅ + 	�	��      (33) 

 

Now our stochastic groundwater flow model in confined aquifer is given as 

equation (34): 
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��
��(�,�)

��
= ��

��(�,�)

���
+	��

�²�(�,�)

��²
 

    (34) 

 

The rate of drawdown changes in time per radial distance due to velocity or 

dispersion of water when distributed in a confined aquifer. This condition 

occurred during pumping at different discharge rates, the confining layers will 

moves down causing the aquifer to compress. The pumped water comes from 

storage within the aquifer at the beginning of pumping and drawdown 

increases resulting in unsteady state flow condition until such a time a well 

indicate a small change in drawdown (steady state) as storativity increases 

with the aquifer’s thickness. 

5.2 Analysis of stochastic model of groundwater flow: Leaky 

aquifers 

Analyzing hydraulic parameters in leaky aquifers, it’s a matter of radial 

distance of a pumped well and observation well which needs to be placed 

farthest away apart to measure significant leakage in aquitard. Theoretically, at 

the beginning, the well is being supplied by the aquifer storage but at a later 

stage, the well will be supplied by storage from aquitard. The effect of leakage 

at this point will be minimal but needs to be considered as it also contributes 

to the drawdown. The value for leakage factor should be determined from 

drawdown of the pumped well and observation wells. Transmissivity and 

storativity values should be obtained using the drawdown data from pumped 

well only because effect of leakage is not significant and not influencing 

drawdown. The classical equation (35) commonly used in the literature is given 

below as: 
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�
�ℎ

��
= �	

�

��
�
�ℎ

��
� �1 +	

∆�

�
� + �	

1

�

�ℎ

��
+ 	�

ℎ(�,�)

ƛ²
 

 

  (35) 

Following the discussion presented for the case of confined aquifer, the above 

equation can be converted to the following equation (36) but with a new 

parameter introduced representing leakage factor: 

 

��
�ℎ

��
= ��

�

��
�
�ℎ

��
� �1 +	

∆�

�
� + ��

1

�

�ℎ

��
+	��

ℎ(�,�)

ƛ²
 

  (36) 

Both stochastic models cannot be solved using classical analytical methods as 

they become nonlinear due to stochastic coefficients. Therefore, where the 

analytical method failed, numerical methods can be used to provide an 

approximated solution. This will be presented in detail in the next chapter. 
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CHAPTER 6: APPLICATION OF NEWTON METHOD ON 

STOCHASTIC GROUNDWATER FLOW MODELS FOR 

CONFINED AND LEAKY AQUIFERS 
 

The Newton method has been regarded as the very efficient in solving 

nonlinear equations (Burden and Faires, 2005) such as Partial Differential 

Equations (PDE) mostly used in this dissertation. Differential equations, which 

can be partial or ordinary, describe the relationship between the physical 

quantities and their rate of change, which in this case known as derivative. The 

rule of Newton method for initial guess to solve equation is	�(�)= 0. In 

general, it is used to approximate and solve equations numerically by using 

iteration method, discretization, Taylor series or Jacobian method. Solving 

equations by using iterative process, you have to repeat the procedure 

repeatedly to find the root of an equation. Taylor series is achieved by 

performing a series of expansion on a function of that point. In this chapter, we 

are using Finite Difference to solve PDE using discretization to reduce data size, 

which corresponds with temporal (time) and spatial (space) and applying the 

Newton’s method to approximate an exact solution of the parameters, which 

will be assigned in a model of Theis stochastic for confined aquifers and 

Hantush stochastic for leaky aquifers. Transmissivity is measured at a time, and 

storativity is measured per radial distance in space, which all varies. 

Unlike Ordinary Difference Equation (ODE) which only requires certain ordinary 

information (one variable), for PDE which make up most of the equation used 

on this dissertation, we need to know initial values which may contain multiple 

variables and extra information about the behavior of the solution at temporal 

and spatial domain. We noticed that the best way to achieve all that we can 

use the process of discretization to get the exact approximate for the solution. 
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We begin with the basic of derivatives with their functions, mainly the 1storder 

derivative of a function, the 2nd order derivative of a function, and Crank‐

Nicholson to prove their accuracy so that we can apply them into our model. 

We also include the forward, backward and central difference techniques to 

approximate the derivative of functions. 

For 1storder derivative with functions with one or two variables is given as 

equation (37) and (38): 

�′(�)= lim
�→�

�(� + ℎ)− �(�)

ℎ
 

(37) 

 

��(�)=
�

��
�(�)= lim

�→�

�(� + ℎ)− �(�)

ℎ
 

(38) 

 

For 2ndorder derivative with functions of one or two variables is given as 

equation (39) and (40): 

���(�)= �′(�)� =
���(�)

���
= lim

�→�

��(� + ℎ)− ��(�)

ℎ

=
lim		
�→�

�(���)��(�)

�
−
�(�)��(���)

�

ℎ
 

(39) 

 

�′′(�)= lim
�→�

�(� + ℎ)− 2�(�)+ �(� − ℎ)

ℎ²
 

 

(40) 

Forward and backward difference for approximating derivative of functions 

with one and multiple variables indicated on equation (41) to (43): 

��(��)=
�(����)− �(��)

∆�
 

  (41) 
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��(��)=
�(��)− �(����	)

∆�
 

 

��(��,��)

��
=
�(��,����)− �(��,��)

∆�
 

(42) 

 

��(��,��)

��
=
�(��,��)− �(��,����)

∆�
 

 (43) 

 

In case where there is a recharge to the aquifer, a sum of Forward and 

Backward difference is obtained to get what is called Central difference in 

equation (44): 

�′(��)=
�(����)− �(����)

∆�
 

 (44) 

where, 

∆�: step site 

��: point of interest 

����: point of interest plus one 

����: point of interest minus one 

 

Approximate of a solution with2ndorder derivative for a function with one and 

two variables using forward, backward and central difference method from 

equation (45) to (46): 
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�′′(�ᵢ)=
�(����)− 2�(��)+ �(����)

∆�²
 

(45) 

 

�²�(��,��)

��²
=
�(����,��)− 2�(��,��)+ �(����,��)

(∆�)²
 

(46) 

 

Crank Nicholson (equation 47): 

�²�(��,��)

��²
=

1

(∆�)²
[�(����,����)− 2�(��,����)+ �(����,����)

+ �(����,��)− 2�(��,��)+ �(��,��)] 

(47) 

 

Introducing the Newton method, we find the following starting from equation 

(48 to (52) : 

��(�)

��
= �[�,�(�)] 

(48) 

 

�(����)− �(��)

∆�
=
1

2
[�(��,�(��))+ �(����,�

���)] 
(49) 

 

���� − ��

∆�
=
1

2
[�(��,�

�)+ �(����,�
���)] 

(50) 

 

���� = �� +
∆�

2
[�(��,�

� + �(����,�
���)] 

(51) 

 

���� − �� −
1

2
∆�[�(��,�

�)+ �(����,�
���)] = 0 

 (52) 
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From equation described above, now we replace���� = �, and �� = �(�) 

equation (53) to (58): 

� − �(�)−
∆�

2
[�(��,�

�)+ �(����,�)] = 0 
(53) 

 

�(�)= � − �� −
∆�

2
[�(��,�

�)+ �(����,�)] = 0 
(54) 

 

�′(�)=
�(�)

��
= 1 −

∆�

2

��(����,�)

��
 

(55) 

 

�′(�)= 1 −
∆�

2

��(����,�)¹

��
 

(56) 

 

���� = �� −
�(��)
��(��)

��

 
(57) 

 

���� = �� −
�� −

∆�

�
[�(��,�

�)+ �(����,�
���)]

1 −
∆�

�

��(����,�
���)

��

 
(58) 

 

In the next section, we approximate the solution for stochastic confined and 

leaky aquifer models using PDE by means of discretization of time and space. 

We first start with confined aquifer, and thereafter leaky aquifer as derived in 

the previous chapter. 



66 
 

6.1 Application of Newton method on stochastic Theis’s confined 

aquifer 
 

To apply Newton method, we reformulate the groundwater flow equation in 

confined aquifer to achieve a stochastic model, which covers the rate of 

change in transmissivity at a time, and storativity per radial distance as follow 

in equation (59): 

��

��

��(�,�)

���
+
��

��

�²�(�,�)

��²
= �(�,�,�(�,�)) 

(59) 

 

At the points of (��,��), werearrange to obtain equation (60) until (61) : 

�(��,����)− �(��,��)

∆�

=
1

2
[�(��,��,�(��,��))+ �(��,����),�(��,����)] 

(60) 

 

��
��� − ��

� =
∆�

2
[�(��,��,��

�)+ �(��,����,��
���)] 

(61) 

 

From the previous equation, we then set ��
��� = ��	���	��

� = 	��
� to get the 

root of the function and it gives us the following equation (62), (63): 

�� = ��
(�)
+
∆�

2
[�(��,��,��

�)+ �(��,����,��)] 
(62) 

 

�� − ��
� −

∆�

2
[�(��,��,��

�)+ �(��,����,��)] = 0 
(63) 
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According to the Newton method, it should be expressed as equation (64) to 

(66): 

�(��)= �� − ��
� −

∆�

2
[�(��,��,��

�)+ �(��,����,��)] 
(64) 

 

��(��)

���
= 1 −

∆�

2
�
��(��,����,��)

���
� 

= 1 −
∆�

2

��(��,����,��)

���
 

(65) 

 

��
��� − ��

� =
��
� −

∆�

�
����,����,��

���� −
∆�

�
�(��,��,��

�)

1 −
∆�

�

��(��,����,��)

���

 
(66) 

 

To further discretize the domain, we recall that equation (67) to (70): 

�(��,��,�(�,�))=
��

��
�
��(�,�)

���
+
���(�,�)

���
� 

(67) 

 

����,��,�(��,��)� =
��

��
�
1

��

����
� − ����

�

∆�
+
����
� − 2��

� + ����
�

(∆�)²
� 

 (68) 

 

�(��,����,�(��,����))=
��

��
�
1

��

����
��� − ����

���

∆�
+
����
��� − 2��

��� + ����
���

(∆�)�
� 

 (69) 

 

��(��,����,��)

���
=
��

��
�−

2

(∆�)�
� = −

2��

��(∆�)�
 

 (70) 

 



68 
 

And the final product after all the steps above, our groundwater flow 

stochastic equation for confined aquifer with the application of new scheme 

provided the following solution, equation (71). The solution proves that the 

rate of drawdown changes per radial distance in respect of dispersion of 

water at a time in an aquifer. The discharge rate at which the well is being 

pumped also affects the drawdown. 

 

��
���

= ��
�

−
∆�

2

��
�

��

����
� �����

�

∆�
+
����
� ����

������
�

(∆�)²
� + �

�

��

����
��������

���

∆�
+
����
�������

��������
���

(∆�)�
��

1 −
∆�

�
�
����

��(∆�)�
�

 

 

 

 

 

(71) 
 

 

 

6.2: Application of Newton method on stochastic Hantush’s leaky 

aquifer 

In order to achieve the groundwater flow stochastic model for leaky aquifer, 

we also applying the Newton method just like the similar procedure we did for 

confined aquifer. We therefore reformulate groundwater flow equation of 

leaky aquifer, and apply the Newton method to approximate the solution (72): 

 

��

��

��

���
+
��

��

�²�(�,�)

��²
+
�(�,�)

ƛ²
= �(�,�,�(�,�)) 

(72) 

 

At the points of (��,��), we obtain (73) and (74): 
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��
��� − ��

�

∆�
=
1

2
[�(��,��,��

�)+ �(��,����)] 
(73) 

 

��
��� − ��

� =
∆�

2
[�(��,��,��

�)+ �(��,����,��
���)] 

(74) 

 

Since ��
��� = ��and	if��

�=	��
�, then the solution will be (75) and (76): 

 

�� = ��
(�)
+
∆�

2
[�(��,��,��

�)+ �(��,����,��)] 
(75) 

 

�� − ��
� −

∆�

2
[�(��,��,��

�)+ �(��,����,��)] = 0 
(76) 

 

By generalizing the above equation, we apply the Newton method helps us to 

obtain the following (77), (78) and (79): 

�(��)= �� − ��
� −

∆�

2
[�(��,��,��

�)+ �(��,����,��)] 
(77) 

 

 

This implies that:                                                                                                   (78) 

��(��)

���
= 1 −

∆�

2
�
��(��,����,��)

���
� 

 

= 1 −
∆�

2

��(��,����,��)

���
−
��

ƛ²
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��
��� − ��

� =
��
� −

∆�

�
����,����,��

���� −
∆�

�
�(��,��,��

�)

1 −
∆�

�

��(��,����,��)

���

 
(79) 

 

We remember the previous equation, and we get solution (80), (81), (82) and                          

(83): 

�(��,��,�(�,�))=
��

��
�
��(�,�)

���
+
���(�,�)

���
� 

(80) 

 

����,��,�(��
�)� =

��

��
�
1

��

����
� − ����

�

∆�
+
�(��,��)

ƛ²
+
����
� − 2��

� + ����
�

(∆�)²
� 

(81) 

 

����,����,�(��
���)�

=
��

��
�
1

��

����
��� − ����

���

∆�
+
�(��,����)

ƛ�

+
����
��� − 2��

��� + ����
���

(∆�)²
� 

(82) 

 

��(��,����,��)

���
=
��

��
�−

2

(∆�)�
� = −

2��

��(∆�)�
 

(83) 

 

After we discretized the stochastic groundwater flow for leaky equation with 

the steps specified above, unlike for confined aquifer’s equation, here we now 
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adding a new parameter	ƛ� representing leakage factor in an aquifer in 

equation (84), where: 

��
���

= ��
�

−
∆�

2

��
�

��

����
� �����

�

∆�
+
����
� ����

������
�

(∆�)²
� + �

�

��

����
��������

���

∆�
+
����
�������

��������
���

(∆�)�
� +

��
���

ƛ�
�

1 −
∆�

�
�
����

��(∆�)�
+

�

ƛ�
�

 

(84) 

 

  
 

 

The new parameter is known as leakage factor, which shall be now considered 

even though its effects on drawdown are negligible. Therefore, the modified 

new scheme is made up of certain parameters in a leaky aquifer such as 

transmissivity, storativity, leakage factor and drawdown. Leakage factor has 

been ignored in Hantush – Jacob’s equation, thus we then modified it and 

include the leakage factor, which contribute to the storativity of the aquifer 

irrespective of the thickness of the aquitard. The fact that leakage factor 

should be recognized further balance the steady condition when the water 

leaking through the aquitard into the aquifer ideal for recharging the aquifer. 

6.3 Stability for the stochastic confined aquifer equation 

Stabilizing the model means that most of the objects used in the model will be 

stable over time and will not need changes. The model is considered accurate 

when it reaches stability convergence and there is little difference between 

exact and approximate of a solution when fitting the dataset. If the model’s 

parameters are different during the forecast period than they were during the 

construction period, then the model estimated will not be very useful 

regardless of how well it was estimated (Sinha and Prasad, 1979). If the 
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model’s parameters were unstable over the construction period, then the 

model was not even a good representation of how the parameters actually 

occur within groundwater flow in the aquifer at a time. We analyzed our model 

for any inconsistency by means of stability before the predictions can be 

applied on a real system. 

We are now doing stability confined aquifer as stipulated in equation (85), (86) 

(87) to obtain (88) and (89):  

��
��� �1 +

2

(∆�)� �1 −
∆���

��(∆�)�
�
�

= ��
� �1 −

∆�

(∆�)� �1 −
∆���

��(∆�)�
�
�

+ ����
��� ��

−∆�

2��∆�
+

1

(∆�)�
�

1

1 +
∆���

��(∆�)�

�

+ ����
��� �

∆�

2∆�
+

1

(∆�)�
�

1

1 +
∆���

��(∆�)�

+ ����
� �

− ∆�

2��
−

∆�

2(∆�)�
�

1

1 +
∆���

��(∆�)�

+ ����
� �

− ∆�

2��
−

∆�

2(∆�)�
�

1

1 +
∆���

��(∆�)�

 

 

(85) 

 

If	��
� = ���

����,then����
��� = �����

���(��∆�) 
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�����
���� �1 +

2

(∆�)� �1 −
∆���

��(∆�)�
�
�

= �� �1 −
∆�

(∆�)� �1 +
∆���

��(∆�)�
�
�

+ �����
���(��∆�)

⎝

⎛�
−∆�

2��∆�
+

1

(∆�)�
�

1

1 +
∆���

��(∆�)�⎠

⎞

+ �����
���(��∆�)

⎝

⎛�
∆�

2∆�
+

1

(∆�)�
�

1

1 +
∆���

��(∆�)�⎠

⎞

+ ���
���(��∆�)

⎝

⎛�
−∆�

2��
−

∆�

2(∆�)�
�

1

1 +
∆���

��(∆�)�⎠

⎞

+ ���
���(��∆�)

⎝

⎛�
−∆�

2��
−

∆�

2(∆�)�
�

1

1 +
∆���

��(∆�)�⎠

⎞ 

 

(86) 

 

We further convert: 

����(��∆�) = �����. �����∆�  

����(��∆�) = �����. ����∆� 

 

And add it to the solution to get: 
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�����
���� �1 +

2

(∆�)� �1 −
∆���

��(∆�)�
�
�

= ���
���� �1 −

∆�

(∆�)� �1 −
∆���

��(∆�)�
�
�

+ �����
����. ����∆�

⎝
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2��∆�
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1
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�

1
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⎞
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⎝
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∆�

2∆�
+

1

(∆�)�
�

1

1 +
∆���

��(∆�)�⎠

⎞

+ ���
����. ����∆�

⎝

⎛�
−∆�

2��
−

∆�

2(∆�)�
�

1

1 +
∆���

��(∆�)�⎠

⎞

+ ���
����. �����∆�

⎝

⎛�
−∆�

2��
−

∆�

2(∆�)�
�

1

1 +
∆���

��(∆�)�⎠

⎞ 

 

 

(87) 

After simplification, we obtained: 



75 
 

 

���� �1 +
2

(∆�)� �1 −
∆���

��(∆�)�
�
�

= �� �1 −
∆�

(∆�)� �1 −
∆���

��(∆�)�
�
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+ �����
���∆�

⎝

⎛�
−∆�

2��∆�
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1

(∆�)�
�

1
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⎞

+ �����
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⎝

⎛�
∆�

2∆�
+

1

(∆�)�
�

1
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⎞
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⎝
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−∆�

2��
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∆�
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1
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⎝

⎛�
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�

1
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(88) 
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���� ���1 +
2

(∆�)� �1 −
∆���

��(∆�)�
�
� − ����∆� �1 −
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�
�

+ �����∆� ��
− ∆�

2��∆�
+

1

(∆�)�
�

1

�1 +
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��(∆�)�
�
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= �� ��
∆�

2∆�
+

1

(∆�)�
�

1

�1 +
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��(∆�)�
�

+ ����∆�

⎝

⎛�
−∆�

2��
−

∆�

2(∆�)�
�

1

�1 +
∆���

��(∆�)�
�
⎠

⎞

+ �����∆�

⎝
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−∆�
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−
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�

1

�1 +
∆���

��(∆�)�
�
⎠

⎞� 

 

(89) 

 

For simplicity, we put the following in equation (90) to get the outputs in 

equation (91), (92) and (93): 
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�� = 1 +
2

(∆�)� �1 −
∆���

��(∆�)�
�

 

�� = 1 −
∆�

(∆�)� �1 +
∆���

��(∆�)�
�

 

�� = �
−∆�

2��∆�
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1

(∆�)�
�

1

�1 +
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��(∆�)�
�
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2∆�
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1

(∆�)�
�

1
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�
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−∆�
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�

1
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��(∆�)�
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(90) 
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(∆�)� �1 +
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2��∆�
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�
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�1 +
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−
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�

1

�1 +
∆���

��(∆�)�
�

 

Our equation now becomes as: 
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������a� − �
���∆��� + ���

����∆��� = ���a� + �
���∆��� + �

����∆���� (91) 

 

����[�� + ��(cos��∆�

+ � sin(��∆�))+ ��(cos ��∆� − � sin ��∆�)]

= ��[�� + 2�� cos(��∆�)] 

(92) 

 

����[�� + �� cos(��∆�)

+ �� cos(��∆�)

+ � sin(��∆�)(�� − ��)= ��(�� + 2�� cos(��∆�))] 

(93) 

 

Factorizing the previous equation (93) to get equation (94): 

����[�� + (�� + ��)cos(��∆�)+ � sin(��∆�)(�� − ��)]

= ��[(�� + 2�� cos(��∆�))] 

(94) 

 

Every model is regarded stable when it converges this way: 

�
����
��

� < 1 
 

The approximate and exact solution for the real and imaginary system proved 

that our model is stable as it resulted in a solution gives< 1, which is accurate 

as theoretical predicted as proved in equation (95), (96), (97) and (98): 

����
��

=
�� + 2�� cos(��∆�)

�� + (�� + ��)cos(��∆�)+ � sin(��∆�)(�� − ��)
 

(95) 

 

�
����
��

� = �
�� + 2�� cos(��∆�)

�� + (�� + ��)cos(��∆�)+ � sin(��∆�)(�� − ��)
� 

(96) 



79 
 

 

����
��

=
|�� + 2�� cos(��∆�)|

�(�� + (�� + ��)cos(��∆�))
� + (sin(��∆�)(�� − ��))

�

< 1 

(97) 

 

|�� + 2�� cos(��∆�)|

< �(�� + (�� + ��)cos(��∆�))
� + (sin(��∆�)(�� − ��))

� 

(98) 

 

The numerical analysis for our stochastic equation in confined aquifer 

converges with the actual analysis of a system. The parameters assigned to 

construct the models meets with what theoretical predicted. When we arrived 

at this stage, it shows that our model will perform well and can be relied on to 

make prediction in the future. Therefore, in the next part of simulation, we 

should expect these parameters to be similar to the simulated ones. 

6.4 Stability for the stochastic leaky aquifer equation 

Referring to the leaky equation, we follow the similar approach, as done for 

the confined aquifer, for stability. We should take note that for the leaky 

aquifer equation, there is an additional parameter known as leakage factor, 

which compromise the leaky’s aquitard, but not common in confined aquifer. 

This can be checked in equation (99) (100) (101) to obtain (102) and (103): 
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(99) 

 

If��
� = ���

����,then����
��� = �����

���(��∆�) 
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(100) 

 

We further convert: 

����(��∆�) = �����. �����∆�  

����(��∆�) = �����. ����∆� 

Moreover, add it to the solution to get: 
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(101) 

After simplification, we obtained the following: 



83 
 

 

���� �1 +
1

ƛ�
2

(∆�)� �1 −
∆���

��(∆�)�
+

�

ƛ�
�
�

= �� �1 −
∆�

(∆�)� �1 −
∆���

��(∆�)�
+

�

ƛ�
�
�

+ �����
���∆�

⎝

⎛�
−∆�

2��∆�
+

1

(∆�)�
�

1

1 +
∆���

��(∆�)�
+

�

ƛ�⎠

⎞

+ �����
����∆�

⎝

⎛�
∆�

2∆�
+

1

(∆�)�
�

1

1 +
∆���

��(∆�)�
+

�

ƛ�⎠

⎞

+ ���
���∆�

⎝

⎛�
−∆�

2��
−

∆�

2(∆�)�
�

1

1 +
∆���

��(∆�)�
+

�

ƛ�⎠

⎞

+ ���
����∆�

⎝

⎛�
−∆�

2��
−

∆�

2(∆�)�
�

1

1 +
∆���

��(∆�)�
+

�

ƛ�⎠

⎞ 

 

 

 

(102) 

 



84 
 

���� ���1 +
1

ƛ�
2

(∆�)� �1 −
∆���

��(∆�)�
+

�

ƛ�
�
�

− ����∆� �1 −
∆�

(∆�)� �1 +
∆���

��(∆�)�
+

�

ƛ�
�
�

+ �����∆� ��
− ∆�

2��∆�
+

1

(∆�)�
�

1

�1 +
∆���

��(∆�)�
+

�

ƛ�
�

���

= �� ��
∆�

2∆�
+

1

(∆�)�
�

1

�1 +
∆���

��(∆�)�
+

�

ƛ�
�

+ ����∆�

⎝

⎛�
−∆�

2��
−

∆�

2(∆�)�
�

1

�1 +
∆���

��(∆�)�
+

�

ƛ�
�
⎠

⎞

+ �����∆�

⎝

⎛�
−∆�

2��
−

∆�

2(∆�)�
�

1

�1 +
∆���

��(∆�)�
+

�

ƛ�
�
⎠

⎞� 

 

(103) 

For simplicity, we put the following parameters to obtain equation (104): 
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Our equation now becomes as equation (105), (06) and (107): 

 

������a� − �
���∆��� + ���

����∆��� = ���a� + �
���∆��� + �

����∆���� (105) 

 

����[�� + ��(cos��∆�

+ � sin(��∆�))+ ��(cos ��∆� − � sin ��∆�)]

= ��[�� + 2�� cos(��∆�)] 

(106) 

 

����[�� + �� cos(��∆�)

+ �� cos(��∆�)

+ � sin(��∆�)(�� − ��)= ��(�� + 2�� cos(��∆�))] 

(107) 

Factorizing the previous equation (107) to get (108): 

����[�� + (�� + ��)cos(��∆�)+ � sin(��∆�)(�� − ��)]

= ��[(�� + 2�� cos(��∆�))] 

(108) 

The model is regarded stable when it converges this way, following the steps 

from equation (109 until last step (112) : 

�
����
��

� < 1 
 

 

����
��

=
�� + 2�� cos(��∆�)

�� + (�� + ��)cos(��∆�)+ � sin(��∆�)(�� − ��)
 

(109) 
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|�� + 2�� cos(��∆�)|

< �(�� + (�� + ��)cos(��∆�))
� + (sin(��∆�)(�� − ��))

� 

(112) 

 

The numerical analysis for our stochastic equation in leaky aquifer converges 

with the actual analysis of a system. It means that the model parameters 

assigned during construction meets exactly with the theoretical predicted. On 

the next section of simulation, we should expect the model to perform well so 

that it can be used for predictions in the future. 

6.5 Simulation 

After we developed our stochastic groundwater flow models in confined and 

leaky aquifers, the next step was to run the model via simulation to obtain the 

actual representative of the behavior of the system. Simulation helps to test 

the system and its condition being investigated which may be difficult to 

imitate in the real world. For complex systems, simulation provide valuable 

solutions by giving clear insights which is necessary for prediction or 

forecasting the future behavior of a system and also determine what can be 

done to influence that future behavior. Below are the images obtained after 
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the completion of simulation representing the groundwater flow behavior in 

confined and leaky aquifer. We consider a theoretical sample of storativity and 

transmissivity, we compute harmonic, geometric and arithmetic mean and we 

consider the normal distribution in this case. Numerical simulation are 

depicted in figure 2, 3 ,4, 5, 6,7, 8,9 and 10 including contour plots for confined 

case. The drawdown is plotted for this case. 

 

Figure 6.1 Numerical solution with harmonic mean for transmissivity and storativity 
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Figure 6.2: Contour plot for harmonic mean 
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Figure 6.3: Numerical simulation with arithmetic mean 

 

Figure 6.4: Contour plot with arithmetic mean 
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Figure 6.5: Numerical solution with geometric 

 

Figure 6.6: Contour plot of geometric mean 
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Figure 6.7: Numerical solution with geometric mean 

 

Figure 6.8: Contour plot with geometric mean 
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Figure 6.9: Numerical simulation with arithmetic mean 

 

Figure 6.10: Contour plot with arithmetic mean 



93 
 

Here we present the reduction of water level for the leaky case, numerical 

simulation are depicted in figure 11, 12, 13, 14, 15, 16, 17, 18. 

 

Figure 6.11: Numerical simulation for harmonic mean 

 

Figure 6.12: Contour plot with harmonic mean 
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Figure 6.13: Numerical simulation with harmonic mean 

 

Figure 6.14: Contour plot with harmonic mean 
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Figure 6.15: Numerical simulation for arithmetic mean 

 

Figure 6.16: Contour plot for arithmetic mean 
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Figure 6.17: Numerical simulation for geometric mean 

 

Figure 6.18: Contour plot with geometric mean 
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The numerical simulation show that, modelling with stochastic approach is 

more suitable as one may have many possibilities to capture heterogeneities.  

One of the most important finding in this work is the fact that the well‐known 

arithmetic mean that is widely used in the field of Geohydrology provides 

exaggerated information. This exaggeration can be well explained with the 

concept of salaries, the richest man leaving in same room with a poor man, if 

one asks what the average salary in this room is obviously one will conclude 

that each person in the room is rich if the average is arithmetic. Another 

illustrative example is that of quantity of water within an aquifer, one will drill 

four bore wells and get the quantity of water in each and then use the 

arithmetic average to say the average water within the portion is X for 

instance, while there can be some place within that system with no water.  On 

the other hand, one will see that modelling using the harmonic mean will lead 

to underestimated results; however, one could get moderate results using the 

geometric mean, which is comprised between arithmetic mean and harmonic 

mean.  While we suggest the use of stochastic models in Geohydrology to 

capture more heterogeneity, we should point out that, deterministic could be 

useful if the situation is purely homogeneous, of course this situation is very 

hard to be found in real life.  
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                                         CONCLUSION 

The aquifers are being described by their lithology, geometry, flow behavior, 

and fractures. Confined and leaky are the aquifers considered on this 

dissertation. It is important to recall that, the flow of subsurface water is 

affected by the geometry of the aquifer within which the flow takes place. 

Therefore, assess the effect these aquifers to the groundwater flow, we 

estimated the aquifer parameters of which we assumed vary in space at a 

time. The aquifer parameters help to understand the behavior groundwater 

flow within the subsurface, and this can only be achieved by means of 

modeling. The modeling techniques such as stochastic and deterministic are 

commonly used to estimate aquifer parameters in groundwater flow system. 

Deterministic techniques can be used for small scale projects like in 

homogenous environment because they predict a single outcome. Stochastic 

technique can handle complicated projects in both homogenous and 

heterogeneous environment as ignored earlier. The latest version (Atangana 

and Ramatsho) is then modified to a new scheme indicating that aquifer 

parameters changes in time at a point in a system. 

Based on the latest version equation of Atangana and Ramatsho, and also 

Atangana and Mathobo, the mathematical equation was modified further to 

capture the statistical analysis setting of aquifer parameters such 

transmissivity, storativity and leakage factor. The statistical analysis including 

the mean, variance, skewness and standard deviation were used in the 

modified equation to estimate aquifer parameters. The numerical analysis of 

stochastic models for the confined and leaky equation was solved with 

application of the Newton method by means of discretization. Different 

methods of probability distribution were applied on the models to describe 
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appropriate better fit for each parameter. The model results show a good 

balance which means that stochastic technique captured well prediction of the 

system. When comparing with other simulation methods such as deterministic 

models done in groundwater system their strength relies on capturing any 

uncertainty, arise in any environment. Stochastic models produced in this 

dissertation contain PDE equations with functions of one and multiple 

variables which are analyzed numerically. The existing models of Theis, and 

Hantush and Jacob were reviewed and modified to a new version (Atangana 

and Ramatsho) that includes the geological matrix, which was, stochastic 

models for confined and leaky aquifers obtained for this dissertation are 

unique, accurate and good quality, ready to be used for current and future 

predictions. The numerical simulation suggests the use of stochastic while the 

geometric mean is perform.  
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