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This article is located within the literature arguing for attention to Big Ideas in 
teaching and learning mathematics for understanding. The focus is on surveying the 
literature of Big Ideas and clarifying what might constitute Big Ideas in the primary 
Mathematics Curriculum based on both theoretical and pragmatic considerations. 
This is complemented by an analysis of the evidence for two Big Ideas in South Africa’s 
Curriculum and Assessment Policy Statements for Foundation- and Intermediate-
Phase Mathematics. This analysis reveals that, while there is some evidence of 
implicit attention to Big Ideas in the Curriculum, without more explicit attention to 
these, teachers and, consequently, learners are not likely to develop understanding of 
Big Ideas and how they connect aspects of mathematics together.
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Introduction

It is accepted that learning Mathematics is richer, deeper and longer lasting when 
children make connections between different mathematical ideas (see, for example, 
Hiebert et al., 1997). Some even argue that “the degree of understanding is 
determined by the number and strength of the connections” (Hiebert & Carpenter, 
1992: 67). Learners connecting different mathematical ideas could be said to be 
engaged in developing networks of Big Ideas.

While writers argue for a focus on ‘Big Ideas’ in learning and teaching mathematics 
(see, for example, Charles, 2005; Siemon, Bleckly & Neal, 2012), there is no agreement 
about what actually constitutes a Big Idea.

This article surveys the literature on Big Ideas and argues for a definition that 
encompasses ideas being both mathematically and conceptually ‘big’, and embraces 
pragmatic and pedagogical considerations. The South African Curriculum Assessment 
and Policy Statements for Foundation Phase and Intermediate Phase (Department 
for Basic Education, 2011a; Department for Basic Education, 2011b, henceforth 
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referred to as CAPS FP and CAPS IP) are examined for evidence, explicit and implicit, 
of two specific Big Ideas. On the basis of this analysis, I argue that a lack of explicit 
attention to Big Ideas in these South African curriculum documents is a limitation 
that could contribute to a fragmented knowledge of mathematics and, consequently, 
be a factor in the continued low attainment in mathematics in South Africa. Finally, 
I consider some teaching consequences for developing Big Ideas in mathematics in 
primary school.

What is a Big Idea in mathematics education?

Siemon (2006) argues that without developing Big Ideas, students’ mathematical 
progress may be limited as Big Ideas provide organising structures that support 
further learning and generalisations. Writing about Big Ideas in the Australian 
curriculum, Siemon, Bleckly and Neal (2012) suggest that Big Ideas cannot be clearly 
defined, but can be observed in activity. However, I am of the opinion that we, the 
mathematics education research community, should be able to reach agreement on 
defining Big Ideas and then describe what these might be in practice.

Schifter & Fosnot (1993: 35) locate Big Ideas within the discipline of mathematics 
by defining them as “the central, organizing ideas of mathematics – principles that 
define mathematical order”. Attempts to frame curricula around the Big Ideas 
of mathematics can be traced back to the 1960s, when, for example, the ‘new 
mathematics’ movement in the UK (and elsewhere) encouraged emphasis on set 
theory in school mathematics. Although mathematicians may have found set theory 
important in their work, the evidence is that it did not engage teachers or learners in 
the same way (Kline, 1974).

Similarly, locating Big Ideas primarily within the mathematics discipline and 
referring to them as “fundamental ideas in mathematics”, Schweiger (2006) 
suggests ideas from different mathematical dimensions (history, content, difficulty 
and location) that include algorithm, characterisation, combining, designing, 
exhaustion/approximation, explaining, function, geometrisation, infinity, invariance, 
linearisation, locating, measuring, modelling, number/counting, optimality, playing, 
probability, and shaping.

While it helps to have examples, the variation among these ideas is problematic 
in terms of teaching implications. In what sense are verbs such as ‘combining’ or 
‘locating’ Big Ideas, and how do they compare with mathematical objects such as 
‘algorithm’? How does one square off an idea such as ‘invariance’ with something 
equally broad but very natural such as ‘playing’? I agree with Charles’ observation that 
while “Big Ideas need to be big enough that it is relatively easy to articulate several 
related ideas, [… they also] need to be useful to teachers, curriculum developers, test 
developers, and to those responsible for developing state and district standards.” 
(Charles, 2005: 11).



7

Big Ideas in primary mathematics: Issues and directions | Mike Askew

Charles (2005: 10) offers the definition that “A Big Idea is a statement of an idea 
that is central to the learning of mathematics, one that links numerous mathematical 
understandings into a coherent whole”, shifting the emphasis from the discipline 
of mathematics to encompass learning. He offers, as a starting point, 21 Big 
Mathematical Ideas for primary and middle-school mathematics, but again, the scale 
of ‘big’ varies, in the sense of how encompassing a Big Idea might be.

EQUIVALENCE: Any number, measure, numerical expression, algebraic 
expression, or equation can be represented in an infinite number of ways that 
have the same value.

PROPERTIES: For a given set of numbers there are relationships that are 
always true, and these are the rules that govern arithmetic and algebra.

ESTIMATION: Numerical calculations can be approximated by replacing 
numbers with other numbers that are close and easy to compute with 
mentally. Measurements can be approximated using known referents as the 
unit in the measurement process. 

VARIABLE: Mathematical situations and structures can be translated and 
represented abstractly using variables, expressions, and equations. (Charles, 
2005: 12-18)

Building on her work with Schifter, Fosnot (with Dolk) argues that Big Ideas also mark 
a shift in learners’ reasoning, with shifts in learners’ reasoning being analogous to 
the development of the discipline of mathematics, in that shifts in the history of 
mathematics are “characterized by paradigmatic shifts in reasoning”, just as learners’ 
reasoning also shifts through Big Ideas (Fosnot & Dolk, 2001: 11).

Likewise, Davis and Simmt (2006), taking a complexity stance with respect to 
learning, argue for broadening our view of learning by moving from treating learning 
as something that only happens in the heads of individuals, to regarding the discipline 
of mathematics as having learned over the course of its history. Through this wider 
view, both the individual and the discipline learning have much in common, although 
a key distinguishing feature is the time scale of the learning.

Towards a definition of Big Ideas
Drawing on this writing, I suggest the following criteria to frame whether or not 
something counts as a Big Idea in mathematics education. I agree that a Big Idea 
should be both culturally, that is mathematically, significant as well as individually and 
conceptually significant, as suggested by Fosnot and others. However, I also suggest 
that, in putting together a collection of Big Ideas, there are pragmatic considerations 
that address pedagogical issues over and above theoretical ones.

Pragmatically, an idea must be big enough to connect together seemingly 
disparate aspects of mathematics, but not so big that it is unwieldy. For example, 
‘mathematics is about modelling’ is a Big Idea and it may be helpful in broad terms 
for framing the curriculum. Indeed, the Dutch Realistic Mathematics Education 
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programme of research and curriculum development is built around this big idea 
(Gravemeijer, 1997), but it may be rather too big to be helpful in guiding pedagogy 
and focusing specific classroom actions.

On the other hand, an idea such as ‘fractions, decimals and percentages all present 
different ways to represent a multiplicative relationship between two quantities’ is 
a Big Idea that links together aspects of the curriculum often treated distinctly, and 
it is small enough to be thought about in terms of practical actions to bring such 
connections into being in classrooms.

A second pragmatic consideration is that the idea must have currency across all 
the years of primary schooling, because then children get to revisit Big Ideas across 
the year groups (Small, 2012). Over time, collectively and individually, the ideas will 
grow and develop, building on a core of similarity within and across the years. Thus, 
all children can be engaged in thinking about the Big Idea at different developmental 
levels. Working with Big Ideas becomes a means of dealing with classroom diversity 
and promoting inclusion.

Examples of Big Ideas
I now examine a small number of Big Ideas that might form part of a core collection 
for primary mathematics. I owe much to Charles’ (2005) work in this instance, and 
while these Big Ideas are neither exhaustive of the number of Big Ideas that children 
need to meet, nor necessarily the most important of the Big Ideas, they are ideas 
that research and my experience suggest would improve learning if explicit attention 
were paid to them. 

Big Idea: Place value. Our number system is built on ten digits, groups of ten and 
digits in specific places.

With only 26 letters in English, our alphabet allows us to express our ideas. 
Mathematics is more efficient – infinitely many numerical ideas can be expressed 
with only 10 digits – 0 to 9. Mathematically, place value is a Big Idea: the development 
of the history of mathematics would have been very different if no one had come up 
with the idea of place value as scaling up or down by factors of ten. It is also a Big 
Idea conceptually – it helps learners come to understand mathematics as a network 
of interconnected ideas, not a series of separate ones. For example, decimals come 
to be understood as an extension of the place value system through thinking of the 
values of digits being successively scaled down by factors of ten: ones scaled down 
to one tenth of their size, giving rise to the first decimal place, that, in turn, can be 
scaled down by a factor of ten, giving hundredths, and so on.

Awareness of place value as a Big Idea has the potential to alter how it is taught. 
Currently, place value is commonly treated as an additive process – exchanging 10 
units for one ten, and 10 tens for one hundred (in preparation for the standard 
algorithms for multi-digit addition and subtraction). Were learners to meet the Big 
Idea of place value as a multiplicative scaling process based on the powers of ten, 
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then later difficulties with ideas such as decimals and standard notation for numbers 
might be reduced.

Big Idea: Position on the number line. The numbers in the primary curriculum 
- counting, fractional and negative - all have a unique position on the number line. 
The idea that numbers are uniquely positioned is also conceptually important, as 
illustrated by these two problems:

A bar of chocolate is cut up into four equal pieces and Hamsa eats three of the 
pieces. How much of the chocolate does Hamsa get to eat?

Hamsa and three friends share three bars of chocolate equally. How much of 
the chocolate does Hamsa get to eat?

The answer in each case is three quarters of a bar, but as each arises from different 
situations, it may not be obvious to the learner that the quantity is the same in both 
instances. Modelling this on a number line shows that the answers are equal: the 
point on the line arrived at by marking three quarters of one unit turns out to be the 
same point reached by taking three units on the line and finding one quarter of that 
total length.

Conceptually, this Big Idea also introduces learners to notions of infinity: the 
counting numbers extend infinitely; there are an infinite number of fractions between 
any two numbers on the line and so forth.

Big Idea: Equivalence. There are infinitely many ways to represent numbers, 
measures and number sentences.

Mathematically, equivalence is a Big Idea because representations that seem 
different can all be linked to the same underlying idea. For example, 1/2, 50% and 
0.5 are all equivalent representations of the idea of a half. Which representation we 
choose to use is linked to the context within which it arises; for example, fractions 
are often used in the solution to division problems with non-whole number answers; 
percentages to express probabilities, and decimals in the context of measures. But 
the underlying mathematics does not essentially change: two people equally sharing 
a pizza will get 1/2 each; my coin is likely to land on heads half the number of times I 
toss it; one metre of fabric cut into two equal pieces results in 0.5m.

Conceptually, equivalence is a Big Idea for several reasons. First, because it means 
that numbers and measures can be expressed in an infinite number of equivalent 
ways by different partitionings and factorisings, with different representations 
highlighting different properties. Take, for example, the number 64. We can express 
this as:
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	 8 x 8
	 60 + 4
	 43

	 70 − 6
	 2 x 2 x 2 x 2 x 2 x 2
	 164 − 100
	 128 ÷ 2
	 100 – 36.
These different representations emphasise different things. From 2 x 2 x 2 x 2 x 2 x 
2, we know that 3 is not a factor of 64, while 8 x 8 reveals that 64 is a perfect square 
and 43 that it is a perfect cube. Listing different equivalent expressions for 63 and 65 
can illustrate just how different these are from 64, making all three more interesting 
than simply being three consecutive numbers in the sixties.

Equivalence is also conceptually important as when calculating it may be easier 
to answer an equivalent calculation than the one actually given. Figuring out, say, 49 
x 4, one could reason that ‘40 times four is 160, nine times four is 36, so the answer 
is 160 plus 36, that’s 196’. Alternatively ‘50 times four is two hundred, so the answer 
must be four less, that’s 196’. As equivalent equations the reasoning goes:

	 49 x 4 = (50 − 1) x 4 = (50 x 4) - (1 x 4) = 200 − 4 = 196

Big Idea: Meanings and symbols. The same symbols or number sentences can be used 
to model different realistic situations, and different symbols or number sentences 
can be used to model the same realistic situation.

The Cockcroft Report’s (1982) claim that mathematics provides an unambiguous 
means of communication echoes a popularly held belief that there is a simple one-
to-one match between a realistic situation and the mathematical sentence that can 
be used to model that problem. Take, for example, ‘My niece was born in January 
1998. How old was she on her birthday in 2013?’

One mathematical sentence to go with this is 2013 − 1998 = [   ]. But this situation 
can also be modelled with 1998 + [  ] = 2013, or 2013 - [  ]  = 1998 and, mentally, it is 
easier to say ‘What do I add to 1998 to make 2013?’ than it is to try and ‘take away’ 
1998 from 2013.

In reverse, the same number sentence can be used to model different realistic 
problems. As the work of Carpenter and colleagues (1999) has shown, there are several 
distinct ‘root’ problems for each of addition and subtraction, and multiplication and 
division. The relationship between symbols and situations is not a simple one-to-one 
mapping, but a many-to-many mapping.

Mathematically, the many-to-many relationship between symbols and situations 
is a Big Idea, because it means a small number of symbols can be used to serve a 
whole host of problems. Conceptually, it is a Big Idea, because it means that thinking 
about how to represent a problem can affect the ease of arriving at an answer. Given 
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a calculation, the sort of ‘real-world’ situation learners try and link with it can make a 
big difference. Anghileri (2000) demonstrated this when asking upper primary pupils 
what they thought would be the answer to 12 ÷ ½. Many tried to fit the symbols to 
a ‘sharing’ situation, but when they could not work out what a sensible meaning for 
12 ‘shared’ between a half, they interpreted the symbols as meaning ‘what is half of 
twelve?’. Had they been able to fit the symbols to a division-as-repeated-subtraction 
situation – how many half pizzas can be served up from 12 pizzas? – then they might 
have arrived at the correct answer of 24 rather than 6.

Big Idea: There is a distinction between quantities and numerals.

Visiting a classroom many years ago, I overheard a conversation between a teacher 
and a pupil about carrying out a subtraction, say, 264 – 178, that went along the lines 
of:

	 T: Can we take eight from four?

	 P: No.

	 T: So what do we do?

	 P: We cross out the six and put five and put a little one by the four.

	 T: No, we borrow ten from the sixty to leave fifty and add it to the four to 	
	 make fourteen.

The teacher ‘correcting’ the learner suggests that the learner was ‘wrong’, when in 
fact she and the teacher were talking about different things. The pupil’s explanation 
was at the level of what was literally done – those were the actions being carried out 
on the numerals. The teacher was talking about the actions that would be carried 
out on the actual quantities – which, in this particular instance, only existed in the 
teacher’s head. Of course, once you have come to understand 264 as two 100s and 6 
tens and 4 ones, it is easy to slip back and forth between quantity talk and numeral 
talk – but that ease takes some time to acquire. The distinction between quantities 
(amounts) and numerals (how we represent amounts) is one that teachers need to 
bear clearly in mind, else confusion can arise.

Big Ideas in CAPS
I now turn to where and how Big Ideas might be positioned in the CAPS FP and CAPS 
IP documents. It is beyond the scope of this article to examine a wide range of Big 
Ideas in these documents, so I focus on two: Equivalence and Meanings and symbols.

I chose these two Big Ideas, because they are slightly different in their orientation 
towards either the mathematical (discipline) or the conceptual (learner). Equivalence 
is a key Big Idea in mathematics as a discipline and any mathematics education not 
specifically attended to exploring and developing the Big Idea of equivalence would 
be lacking. Meanings and symbols, while mathematically important, is pedagogically 
important, as teaching for understanding this Big Idea would mean being alert both 
to how situations can be mathematically modelled in different ways and to how 
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learners might be expected to express things mathematically in different ways rather 
than in one expected fashion.

The overall aims for the mathematics curriculum, overarching both the FP and 
the IP, include the aims that learners should develop, namely, appreciation for the 
beauty and elegance of mathematics, and deep conceptual understanding in order 
to make sense of mathematics (CAPS FP: 62).

Such aims can be read as in line with teaching for Big Ideas. The elegance of 
mathematics comes, in part, from the way in which Big Ideas link seeming disparate 
content, while, as argued earlier, deep conceptual understanding is linked to the 
growth of Big Ideas.

How does this play out in the details? The language of Big Ideas is not explicitly used 
in the CAPS documents. Therefore, I am seeking evidence of an acknowledgement 
of the importance of Big Ideas permeating the curriculum in the details of the 
documents.

Equivalence as a Big Idea in CAPS
The CAPS FP does not make explicit use of the term ‘equivalence’ at all. The word 
‘equivalent’ is, however, used and related to three ideas:

•	 Equivalent fractions, for example; 

that 1 half and 2 quarters are equivalent (CAPS FP: 474).

•	 The introduction of multiplication as repeated addition;

Repeated addition is often introduced to learners as groups of equivalent 
numbers. Initially learners can be introduced to everyday equivalent groupings 
(CAPS FP: 136).

•	 Equivalent representations;

During this term the focus is showing equivalent representations for the same 
number. Twenty should be described as 2 tens (using the bundles or groups of 
objects) or 2 groups of tens. It is important to show learners that 20 can look 
different (CAPS FP: 217).

Say which number is equivalent to or the same as:

•	 6 tens

•	 Nine tens and three ones

•	 Five tens and nine ones (CAPS FP: 13)

The idea of ‘equivalent representations’ is close to Equivalence, but as these examples 
show (and there are only a small number of such examples in the document), 
Equivalence is restricted, in this instance, to place value; learners should notice 20 
as two groups of ten, but there is no suggestion of other equivalences such as four 
groups of five or as 19 plus one.
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Searching on ‘equal’ or ‘equals’ within the document brings up only references to 
the equals sign, for example, “can record their calculations using the plus (+), minus 
(-) and equals (=) sign” (CAPS FP: 340). There is no discussion or exemplification of 
the use of the equals sign to link equivalent representations.

The CAPS IP also refers to equivalence in relation to fractions, both in terms of 
equivalent fractions and different representations, for example:

•	 Equivalent forms:

Recognize equivalence between common fraction and decimal fraction forms 
of the same number.

Recognize equivalence between common fraction, decimal fraction and 
percentage forms of the same number (CAPS IP: 17).

This idea of ‘Equivalent forms’ also occurs with reference to numeric patterns and 
how these might be expressed in different ways:

•	 Determine equivalence of different descriptions of the same relationship 
or rule presented

•	 verbally
•	 in a flow diagram
•	 in a table
•	 by a number sentence (CAPS IP: 19).

There is increasing emphasis on equivalence in number sentences, although the 
messages concerning this are mixed. For example, in relation to Grade 4, the advice 
is that:

Number sentences are also a way of showing equivalence. It seems obvious 
that what is written on the one side of the equal sign is equal to what is 
written on the other side. However but (sic) learners need to be trained to 
understand the equivalence. In the Intermediate Phase it is useful to use 
number sentences as statements of equivalence (CAPS IP: 39).

The idea that learners can be ‘trained to understand’ seems to be a contradiction in 
terms, and there is no explanation of what such ‘training’ might constitute. In the 
move to Grade 5, the advice includes:

As before, number sentences are used to develop the concept of equivalence. 
But they can also relate to all aspects of number work covered during the 
year. During the second part of the year you can give learners practice in 
answering multiple choice questions, which is a common format in national 
systemic tests (CAPS IP: 100).

Here again, the messages are mixed. Rather than emphasising equivalence as a 
Big Idea in mathematics in its own right, the reader is left with the impression that 
equivalence may be important because of the form of national assessments. However, 
the examples provided do give a sense of equivalence in number sentences:
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Which of the statements below is equivalent to 15 x (4 x 9)?

(a) (15 x 4) x 9 

(b) 15 x 2 x 2 x 3 x 3 

(c) (15 x 4) + (15 x 9)

(d) (10 – 1)(15 x 4) (CAPS IP: 205).

Which statement below is equivalent to: (26 x 39) + (26 x 1)?

a) 26 x 27

b) 400

c) 26 x 4

d) 26 x 40 (CAPS IP: 286).

In summary, there is some attention to equivalence as a Big Idea as the curriculum 
develops from Foundation Phase to the latter years of the Intermediate Phase, 
but there could be more consistency across the years. Unless a teacher brings 
awareness of this Big Idea, the curriculum document is unlikely to engage teachers 
and, consequently, learners with the Big Idea of Equivalence. Young learners can, for 
example, explore equivalences such as 7 + 8 + 3 = 7 + 3 + 8, leading not only to an 
informal understanding of equivalence, but also to using the equivalence to seek out 
effective and efficient calculation strategies.

Meanings and symbols as a Big Idea in CAPS

As argued earlier, the Big Idea that there is a many-to-many mapping between 
meanings and symbols is not only mathematically significant, but also conceptually 
important for learners to explore. Finding evidence for attention to such an idea in 
the curriculum documents is subtler than seeking references to equivalence, as there 
are less obvious key terms to seek. The approach taken was to look for examples 
and advice that might help teachers address this Big Idea in some form or another, 
particularly with respect to problem-solving and how different mathematical models 
might be set up.

In the CAPS Foundation Phase document, there are explicit references to problem 
types, the structure of these much in line with the typology of root problems 
developed by Carpenter, Fennema, Franke, Levi and Empson (1999). For example, 
across Grades 1 to 3, addition and subtraction problems are classified into change, 
combine and compare problems. In their analysis of such problems, Carpenter and 
colleagues emphasise how the position of the unknown in a problem can affect the 
level of difficulty, a point that is noted in the CAPS document. For example, the advice 
for Grade 3 includes:

Problems have to be posed in different ways. For example, both of these are 
change problems, but the “unknowns” are in different places in the problem: 
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The shop had packets of mealie meal and ordered 55 more. Now there are 
170 packets of mealie meal. How many packets were there in the beginning?

The shop had 500 packets of sugar. After selling some packets, they had 324 
packets of sugar left. 

How many packets did they sell? (CAPS FP: 77).

The guidance falls short, however, of the analysis provided by Carpenter and colleagues 
in two respects. First, their research shows that learners are likely to find the first of 
these problems – an example of a ‘start unknown’ problem – considerably harder 
than the second problem – a change unknown problem. Secondly, with respect to 
the Big Idea of meanings and symbols, there is no discussion of the different symbolic 
models that could be set up. For example, the first problem can be expressed as 

[  ] + 55 = 170 or 170 − 55 = [  ] or 170 - [  ] = 55.

Which of these representations the learner chooses can alter the strategy used to 
carry out the calculation and the learner’s likelihood of success.

At the end of the CAPS FP classification, the reader is advised to:

Note that learners often use different ways of solving a problem that may not 
be what the teacher expects. For example, a division problem may be solved 
by repeated subtraction, addition or multiplication. Learners’ methods will 
change in the course of the year as their understanding of and familiarity with 
the problem types grow, and as their number concept develops (CAPS FP: 77).

Whilst the spirit of this advice is laudable, the reader is left unclear as to whether or 
not different ways of solving a problem are to be welcomed, or whether, over time, 
the expectation is that learners will come to solve such problems in the way that the 
teacher does expect.

The CAPS IP provides similar examples of problem types. For instance, a grade 4 
‘calculate the change’ problem given is:

A salesman earned R4 328 during November. During December, the amount 
increased to R7 435. How much more money did he earn during December 
than in November? (CAPS IP: 120).

(Similar problems are provided for Grades 5 and 6, but involving larger numbers). 
Unlike the Foundation Phase document, no advice is given as to what to expect when 
learners engage with such problems, presumably on the assumption that setting up 
mathematical models for problems is not problematic in these Grades. This suggests, 
in turn, that these are not really problems to solve, but simply practice calculations 
wrapped up in words.

The CAPS IP comes closer to acknowledging the complexity of the relationship 
between meaning and symbols in its discussion of teaching fractions. For example, 
advice given includes the acknowledgement that:
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Different diagrams or apparatus develop different ways of thinking about 
fractions:

• Region or area models develop the concept of fractions as part of a whole. 
If used in particular ways they can also develop the concept of a fraction as a 
measure. …

• Length or measurement models can be used to develop the concept of 
fractions as part of a whole and if used in particular ways also fraction as a 
measure. …

• Set models develop the concept of a fraction of a collection of objects and 
can lay the basis for thinking about a fraction of a number e.g. 1/3 of 12.

Learners should not only work with one kind of model, because this can limit 
their understanding of fractions (CAPS IP: 71-72).

The strong message is that no one model or symbolic system for representing 
fractions is best. The relationship emphasised, however, is in the direction of 
establishing meaning through learners encountering a range of different symbolic 
representations. It falls short of examining the importance of the reverse relationship: 
that when given a fraction in symbolic form, choice of interpretation – region, length 
or set – can alter the ease with which the individual makes sense of the symbolic.

Again, the impression is that a reader with a sensibility towards Big Ideas will 
be able to find resonances within the document. But the reader less tuned-in to Big 
Ideas is unlikely to gain a sense of them when working with these documents.

Conclusion

I have argued that attending to Big Ideas in teaching and learning in primary schools 
can help learners develop a rich connected understanding of mathematics. On the 
basis of an albeit limited analysis of Big Ideas in the CAPS documents, I suggest that a 
lack of explicit attention to Big Ideas in the South African curriculum landscape could 
contribute to learners continuing to develop fragmented mathematical knowledge 
and, consequently, be a factor in the continued low attainment in mathematics.

Finally, I review some pedagogical considerations by returning to the work of 
Davis, Sumara and Luce-Kaplar and the idea that learning should not be thought 
of only as something that individuals do. They note that collectives can learn, 
raising another view on ‘Big Ideas’, namely that a collective may ‘have’ more sense 
of a Big Idea than any individual within a collective. As Davis and Simmt (2006) 
have demonstrated, teachers collectively exploring a topic such as ‘multiplication’ 
reveals a richness of understanding across a group that is more than the sum of 
the parts of the individual group members’ understanding. Big Ideas can, therefore, 
be worked with and developed through the collective bringing together of their 
individual understandings whereby “collectives of persons are capable of actions 
and understandings that transcend the capabilities of the individuals on their own” 
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(Davis, Sumara & Luce-Kaplar, 2000: 68). I suggest that this applies to learners as 
much as it does to teachers.

This view of Big Ideas as collective ideas presents a challenge to the prevalent 
discourse, in primary mathematics education, of having to differentiate teaching to 
meet individual needs, which often results in pedagogies that lead to a reduction in 
collective activity and group sense-making. A pedagogy built around the collective 
understanding and how the collective could build on, extend and develop Big Ideas 
brings a different view of classroom relationships and norms into being, one that 

focuses on conversation patterns, relational dynamics, and collective 
characters. Cognition, in this frame, is always collective; embedded in, enabled 
by, and constrained by the social phenomenon of language, caught up in 
layers of history and tradition and confined by well-established boundaries of 
acceptability (Davis, Sumara & Luce-Kaplar, 2000: 65)

Hence we can think of the Big Ideas of mathematics, as developed through history 
and tradition, as what mathematicians have defined and determined as acceptable. 
School learning is then constituted through dialogue and relationships and collective 
determining of what is acceptable, and meeting the needs of the individual learner 
comes about through that learner engaging with these ideas in dialogue and co-action 
with others. Big Ideas become Collectively Big.
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