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Abstract

This thesis 1s concerned with objective Bayesian analysis (primarily estimation
hypothesis testing and confidence statements) of data that are lognormally distributed.
The lognormal distribution is currently used extensively to describe the distribution of
positive random variables that are right-skewed. This is especially the case with data

pertaining to occupational health and other biological data.

In Chapter 1 we begin with inference on the products of means and medians as discussed
in Menzefricke (1991). Exposure risk modeling is a particular application of this setting.
Exact posterior moments are derived and compared to the Monte Carlo simulation

techniques.

Chapters 2 to 4 are concerned with inference on the mean of the lognormal distributtions
in various settings. Other authors, namely Zou, Taleban and Huo (2009), have proposed
procedures involving the so-called “method of variance estimates recovery” (MOVER),
while an alternative approach based on simulation is the so-called generalized confidence
interval, discussed by Krishnamoorthy and Mathew (2003). In this thesis we compare the
performance of the MOVER-based confidence interval estimates and the generalized
confidence interval procedure to coverage of credibility intervals obtained using Bayesian
methodology using a variety of different prior distributions to estimate the
appropriateness of each. An extensive simulation study is conducted to evaluate the
coverage accuracy and interval width of the proposed methods. For the Bayesian
approach both the equal-tailed and highest posterior density (HPD) credibility intervals
are presented. Various prior distributions (independence Jeffreys' prior, the Jeffreys-rule
prior, namely, the square root of the determinant of the Fisher Information matrix,
Reference and Probability-Matching priors) are evaluated and compared to determine
which give the best coverage with the most efficient interval width. The simulation
studies show that the constructed Bayesian confidence intervals have satisfying coverage
probabilities and in some cases outperform the MOVER and generalized confidence

interval results. The Bayesian inference procedures (hypothesis tests and confidence
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intervals) are also extended to the difference between two lognormal means as well as to

the case of zero-valued observations and confidence intervals for the lognormal variance.

In Chapter 5, the variance of the lognormal distribution is the central focus. Similarly to

previous chapters, various prior distributions are tested in different applications.

In the 6™ chapter of this thesis the bivariate lognormal distribution is discussed and
Bayesian confidence intervals are obtained for the difference between two correlated
lognormal means as well as for the ratio of lognormal variances, using nine different

priors.

Chapters 7 and 8 are an investigation into Bayesian methods for analysing the one-way
random effects model. Chapter 7 presents the Bayesian framework and results for the
balanced model and Chapter 8 is an extension of this setting for the unbalanced model. A

new prior distribution, namely Gelman’s prior (Gelman, 2006), is introduced.

Keywords:  Bayesian procedure; Lognormal; Highest Posterior Density; MOVER,;
Credibility intervals; Coverage probabilities; Zero-valued observations;
Bivariate Lognormal; Lognormal variance; One-way Random Effects

Model
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INTRODUCTION

As suggested by the title, this work is concerned with inference on the lognormal
distribution. Lognormal data are found in many different settings and complexities
unique to each of these settings are the focus. In each setting though, the aim is to
present a Bayesian perspective or analysis method to deal with the setting. Various prior
distributions are tested within each chapter and compared to each as well as to frequentist
methods developed in the literature. The prior distributions primarily used throughout
this work are the Independence Jeffreys prior, the Jeffreys Rule prior, the Reference prior
and the Probability-Matching prior. In most chapters the effectiveness of the method is
evaluated by performing simulation studies and assessing the coverage and interval
lengths (primarily). Furthermore, these methods are then applied to practical examples

used in literature.

In Chapter 1 we begin by developing the Bayesian framework for the analysis of the
product of means and medians from a lognormal distribution. In this chapter the
methodology for the derivation of the Probability-Matching prior in particular is

presented in detail.

Chapter 2 is concerned with inference on the mean of a single sample from a lognormal
population. The priors are developed and this chapter lays much of the foundation for the
analyses following in Chapters 3 and 4. The Independence Jeffreys and Jeffreys Rule

priors are developed and applied.
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Where Chapter 2 was concerned with a single sample, Chapter 3 looks at the analysis of

two samples, and in particular the ratio of two population means.

In Chapter 4, the situation in Chapter 3 is extended to include the situation where there
are potential zero values, but the non-zero valued observations are lognormally

distributed.

The next chapter deals with inference regarding the variance of the lognormal
distribution. In previous chapters only the means or medians were considered. The
difference as well as ratio between variances of two populations are analysed as well as

the possibility of zero values.

Chapter 6 deals with the bivariate lognormal distribution.

Chapters 7 and 8 present the Bayesian perspective on the one way random effects model.

In Chapter 7 we focus on a completely balanced model and in Chapter 8 the unbalanced

case is considered. Various prior distributions are derived and tested in this section and

the effectiveness of each is considered.




CHAPTER 1

Product of Means and Medians

Introduction
Consider k random variables X;,j = 1,2, ..., k such that ¥; = InX; is normally distributed

with mean g and variance ajz. We are concerned with inferences (mainly estimation and

confidence statements) about the product of their medians or means. As in Menzefricke
(1991) this chapter addresses itself to obtain the posterior distribution of these

parameters .

Mezenfricke succeeded in deriving the posterior distributions for the special case
of=gi=-= ot = 0% and 0 unknown. In this chapter, more general results will

be given for sz unknown, but not necessarily equal. Although it is difficult to derive the

exact posterior distributions in the case of the Behrens-Fisher problem (variances not
necessarily equal), the exact moments will be derived. By calculating the first four
moments and by comparing Pearson curves to Monte Carlo simulation experiments it will

be shown that good approximations of the true distributions can be obtained.

Berger and Bernardo (1989) addressed a similar problem. They gave an elegant analysis
of the posterior distribution of the product of two means from a normal distribution. As
mentioned by them, this problem arises, most obviously, in situations of determining area
based on measurements of length and width. It also arises in other practical contexts,
however, for instance in gypsy moth studies the hatching rate of larvae per unit area can

be estimated as the product of the mean of egg masses per unit area times the mean
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number of larvae hatching per egg mass. Approximately independent samples can be

obtained for each mean (see Southwood (1978)).

Another example application occurs in the assessment of risk due to exposure to radiation
of various pollutants. It can be assumed that the dose per unit time, the units of time per
day and the number of days during which an individual is exposed are three random
variables each with an unknown mean and variance. If these variables are independently
distributed then the total exposure is an estimate of the product of the means. For further

details see Sun and Ye (1995) and Yfantis and Flatman (1991).

As mentioned the analysis in this chapter is restricted to variables X; which are known to
be positive. It was pointed out by Menzefricke (1991) that when the coefficients of
variation are large it will be difficult to distinguish if they follow a normal or lognormal
distribution. The latter approach was chosen since it appears to result in simpler

analytical solutions.

In what follows both the terminology and layout of this chapter will be along the same
lines as those given by Menzefricke (1991). Whereas he paid attention to exact

distributional aspects, our exposition will place more emphasis on approximations.

Section 2 of this chapter deals with the easier case of the product of the medians, section

3 considers the case of the product of the means and in section 4 the problem of

constructing a prior that is informative for a single parameter (the product of means




parameter) is considered. The prior is constructed in such a way that the resulting one-
sided credibility interval has accurate frequentist coverage. Section 5 contains numerical

examples.

k
1.1 The Product of Medians: S =exp u,
=

Let {X;;,i =1,2,..,n;} be a random sample of size n; from the j-th log-normal

jr
population with parameters p; and ajz (j=1,2,..,k). The first step in a Bayesian
approach is to select some prior distribution. If one has little prior information, Jeffreys

independence prior,

k

2 2 -2
Py, o) Uiy OF oo, OF ) X | | a;
j=1

(1.1)
is appropriate. See Zellner (1971) and Box and Tiao (1973) for further discussion.
Combining the prior density (1.1) with the likelihood function, the joint posterior density
function is given by:
(U1 ooor Ui G2, ..., 02 |data) = p(uy, ..., pxl0Z, ..., o, data) x p(o?, ..., of|data)

1 2
1 2\"zvi71 _Yid
b o e 2]

l_[ <w’ 2512> e j

2

(1.2)
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where:
Vj = le -1
yij = Inx;

vs? = 5,0y — 7))

— 1 Ny

Vi = wLisa Vi
The median of X; is equal to e/ and the product of these medians is denoted by  where

B is such that:

k
mp =
=

If ajz, j=1,2,..,k is known it follows from (1.2) that the posterior distribution of S is
lognormal, i.e.

ol

)

k
InB|o2, ..., o2, data ~ N M,Z
]

j=1

=

(1.3)

where M = ¥¥_. 3.
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= ¢? and ¢? unknown, the posterior

— 2
e = o'k |

For the special case of = o2

distribution of Inf is a t-distribution with v = Zj‘ﬂnj — k degrees of freedom, mean M

2
. s
and variance parameter > where

)
2 _ Lj=1ViS)

S %
Zj=1vi

1

k 1
Zf=1nj

N =

If the crjz (j = 1, ..., k) are unknown and not necessarily equal, the posterior distribution

of the u; are t-distributions with v; degrees of freedom, mean ¥;, and variance parameter

2
2. The distribution of InB is difficult to derive in general but when k =2

nj
approximations to the Behrens-Fisher distribution are discussed in Box and Tiao (1973,

page 107).

As remarked in the introductory paragraph more general results will be given in this
section as those derived by Menzefricke (1991). Our proposed solution is based on
Monte Carlo simulations and approximations via Pearson curves. These approximations

will be achieved by first deriving the exact posterior moments of Infi. The following

results are of importance:




Theorem 1.1
The mean, variance and third and fourth central posterior moments of {nf8 for unknown

of (j = 1, ..., k) are given by:

Wig =M
(1.4)
Z + (v - ;/j)(Jv, +1)
(1.5)
Hag =0
(1.6)

hep = 3 Z Z (vjsjz) (vis?)
Y -1(vj—2)(v —4)(v]+1) (- - D+ D+ D)

k
]J=

1.7)
Proof:

From (1.2) the unconditional posterior moments about zero can easily be obtained and
using the relationships between moments about the origin and central moments, the proof

follows.

Having calculated the moments it is possible to derive the Pearson curve density of Inf3

from which an approximation of the posterior distribution of 8 can be obtained.




The Monte Carlo simulation procedure to estimate the posterior distribution of § can be

performed in the following way:

1 2
—Svi-1 viss
a}g) 2 exp[— IZJ]
e ard
J 2

. yis\avi
a. From (1.2) it follows that p(ajz |data) = (#)

(1.8)
is an inverted Gamma Distribution and can therefore be generated in the
following way:

: 2
1. Drawu; ~ Xv; and

ii. Caleulate g = 2L j=12,.,k

b. Given o,..,0? the conditional posterior distribution of B is lognormal, i.e.

1
—(lnB - M 2
D(BIo2, .07 data) = ———expd 2F )/

' 2
o5
B Z}‘___I#Zn:

c. Repeat steps (a) and (b) [(= 1000 or 10000) times.

2
k 9
j=17,.
J n;

Using the Rao-Blackwell argument (see Gelfand and Smith (1991)) a density estimate of
the unconditional posterior distribution of S can be obtained by averaging

p(Blo?, ..., a2, data) over the [ repetitions.
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k
1.2 The Product of Means: & = epo(,uj +%a/2,)
=

Since X; is lognormally distributed with parameters u; and o'jz, j=1,2,..,k, the mean of

X] 1S
E(X ) = +io? i =12,..,k
jlupof) =exp\pj+507)  J=12 ..,

(1.9)

and so the product of the means is §, where 6 is such that

k 1,
Iné = ijl (uj +§Jj )

(1.10)

If the sz are known, it follows from (1.2) that the posterior distribution of é is lognormal,

i.e.

1 of
Iné|oZ,...,0f,data~N| M + Ez of ,ZL

(1.11)
According to Menzefricke (1991) this distribution will be close to (1.3) if the values of

the coefficients of variation are small.

For the special case 62 = 0% =+ = 67 = ¢ and o° unknown, Menzefricke (1991)

derived for even v, the exact posterior distribution of Ind, which is:
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(v+2) (E vsz)

G

where M, N, s2, v are defined as before and

ss = vs? + N(Ind — M)?

If v is odd the posterior distribution for Iné has a more complicated form. Menzefricke,

[ however, did not treat the more general case, i.e. 67 unknown and not necessarily equal.

As was done in the previous section with the product of medians, more general results

will be given here. This will again be achieved by using Monte Carlo simulation (similar

to that described in the previous section) and Pearson curve approximations. In Theorem

1.2 the moments of In§ = X, (1; + 307 ) will be derived.

Theorem 1.2

The mean, variance, third and fourth central moments for the posterior distribution of

Iné = Z] 1(#1 + - 0; )areglvenby

Vis
—M Z J]
+2 (VJ_Z)




Vi 1 1 \ (VJ }2)2
Z(v - 2)(y +1) 'Z'Z (v - 2)°(v, - )

(1.14)

2 k 3

-2)* (v +1)(v —4) Z ~2)° (v} _4)(V ~6)

H3s = 32 o

=\ =
(1.15)
k (V 2
Uas =3 J ]
® Z( +1)°(y - 2)(y - %)
+ 3 k (Vijz) (vlslz)
(v - 2)m -y + D + 1)
+3 k (vs7)’ (v +2)
T +1) (v- 2)3(";‘ — 4)(v; - 6)
+ 3§k: ) (Vjsjz)z("lszz)
j= (v - 2)" (v —4) (v + (v - 2)
+ Ezk: (VJSJ )4("1 +10)
4]= (v = 2) (v —4)(v - 6)(v; - 8)
_3 C ) s (v -vi- 2)
8 j#l (v - 2)2("1 = 2)2(v; = 4)(v = 4)
(1.16)

Proof:

The proof is given in the appendix to this chapter.
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Corollary to Theorem 1.2

For the special case 02 = 0 = - = ¢ = o the mean, variance, third and fourth

central moments of the posterior distribution of In§* = Zle (u ;+ %02) are given by:

2

, ~ 1 VS
HWasr =M+ -Z_k(v—Z)
(1.17)
1w 1 (vs?)?
be =N T IV T =8
(1.18)
_ (vs?)? (vs")°
hag = 3kN(v ) Er e + 2k3 (v—23w-4)(v-6)
(1.19)
_ (vs?)? (vs®)3(v +2)
beo = 30— oB T N -2 - D=6
3 (ws)*(v +10)
T 0 - D0 -0 -9
(1.20)

Having calculated the moments, the Pearson curve approximation of ind or § can easily
be obtained. For further details of how to determine the parameters of a Pearson curve,
given the values of its moments, see for example Elderton (1953) or Elderton and

Johnson (1969).
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1.3  Non-informative Priors for &
For making Bayesian inferences about p; and sz in the case of the lognormal distribution

the obvious prior is (1.1). In the previous section it was necessary to make inferences
about a function of the parameters, i.e. § = exp (Zﬁl (y it %ajz)). It was observed by

Efron (1986) that the correct objective prior seems to depend on which parameters we
want to estimate. Berger and Bernardo (1989) also mentioned that a good non-
informative prior for the full parameter space need not be good for lower dimensional

functions of it.

Datta and Ghosh (1995) derived the differential equation that a prior must satisfy if the
posterior probability of a one-sided credibility interval for a parameter function and its

frequentist probability agree up to o(n~') where n is the sample size. They showed that
if exp (u + iaz) is the parameter of interest for a lognormal distribution with

parameters u and o2, then the Probability-Matching prior is:

pup,0%) %(H —2—)

(1.21)
Probability-Matching priors often lead to procedures with good frequency validity while
retaining the Bayesian flavor. The fact that the resulting Bayesian confidence intervals of
level 1 — a are also good frequentist confidence intervals at the same level is a very

desirable situation. See also Bayarri and Berger (2004) and Severine, Mukerjee and

Ghosh (2002) for a general discussion.




By extending the results of Datta and Ghosh (1995) the following theorem can be proved:
Theorem 1.3

Let ¥;,j = 1,2, ..., k, be independently distributed as lognormal with parameter vector

[uj,ajz]'. Suppose the parameter of interest is t(6) = & = exp (Zj;l (u]- +%aj2))

where 8’ = [y, ..., iy, 02, ..., 02 = [91, ...,Bp] then the Probability-Matching prior is

given by:

k 2 k
71'(0) = ﬂ(#l,...,#k,alz, e )0( 20} <1+ 0' ) 1—10)_4

(1.22)
The proof is given in the appendix to this chapter.
For k = 1, (1.22) becomes equation (1.21).
Combining the prior distribution (1.22) and the likelihood function, the joint posterior

distribution can be written as:

gy, ., iy, 62, ..., o |data) = q(us, ..., ux| 0%, ..., 02, data)q(o?, ..., of|data)

(1.23)
where
q(uq, ..., |02, ..., o, data) = nqj(ujkrjz,data)
j=1
and
2no?\ 2 n; (1 — ;)
_ j i \Hj Y
qj(#jlajz‘data)— ( n > exp{—?—ajz__
(1.24)
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Also,

1

2 k

1 Lo, v;s?
q(o?, .., o?|data) « Z af (1 + Eajz) (0?) 20vi+4) exp (— #)
=1 j=1 %
ajz >0
(1.25)

Equation (1.23) is quite complex. This has the implication that it is quite difficult to
derive the exact posterior distribution for §. It is an equally difficult task to derive the
moments of the distribution. Significant advances in numerical integration techniques
have however, assisted in simulating from such complex distributions, but there are still
limitations associated with these techniques. Gelfand and Smith (1991), Gelfand et al
(1990), Carlin and Polson (1991), Casella and George (1992), Carlin et al (1992),
Gelfand et al (1992) and Wakefield et al (1994) used the Gibbs sampler quite effectively
though in these kinds of situations and this has been shown to be helpful in simulations of
Bayesian inference in a broad variety of statistical problems. The technique has also
been used by Hastings (1970) and has also been applied by Geman and Geman (1984) in
the field of image processing. The Gibbs sampler is a specific application of an adaptive

Monte Carlo integration technique.

From the joint posterior distribution q(cZ,...,0¢|data) the conditional distributions
q1(c?|0%, ...,0f|data), q,(c%|0Z, 0%, ..,0%|data),..., q,(c?|of, 0%, ..., 0f_,|data)
can easily be obtained. These conditional distributions are not in closed form, hence we

only have the kernels of their densities. Random numbers can however, be generated by
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using Gibbs sampling or the weighted bootstrap (Monte Carlo) method as, for example,
discussed in Smith and Gelfand (1992), Stephens and Smith (1992), Guttman and
Menzefricke (2003), Kim (2006) and Li (2007) or the rejection method as given in Rice

(1995).

By repeating the process until m cycles have been performed and m pairs of parameter
estimates have been obtained and using a Rao-Blackwell argument (see Gelfand and
Smith (1991)) a density estimate of the unconditional posterior distribution of § can be

obtained by averaging the conditional distributions over the m repetitions., 1.€.

m
1
S|dat =—Z 51620, .., c2® dat
p(éldata) ml—lp( loy o, ,da a)

(1.26)
where
1 1 (ns - u(”)z
5
p(6|012(l), ...,a,f(l),data) = —exXpi T
2(1) 2 520
8 jo5 21 s
(1.27)
1 K
o _ 2(D
=Mt 3
j=1
(1.28)
and
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k 2

20) _ g;
0= )

j=1

(1.29)
1.4 Numerical Examples
Our first problem in this section is the example given by Menzefricke (1991) and it
involves the measurement of the area of a rectangle, with measurement uncertainty being

similar for length and width.

The length measurements (in cm) are 106, 92, 100 and 106 and the width measurements
are 97, 111, 102 and 104. If X; = length and X, = width then the means of the logged
data are ¥, = 4.6135 and ¥, = 4.6384. Menzefricke assumed that 0f = 07 = o%. A

pooled estimate of o2 is therefore, given by s = 0.0038 and v = 6.

The exact posterior distribution of the product of means § = exp (Zf=1 (u i+ %ajz)) (for

the equal variance case) can easily be derived from equation (1.12). By using a Monte
Carlo simulation procedure similar to that described in section 2 earlier in this chapter, an
estimate of the exact posterior density of § can be obtained. These two densities are

illustrated in Figure 1:
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Figure 1: Posterior Distributions for the Product of Means — The Equal Variance Case

Exact Posterior (blue) vs Simulated Posterior (red)
T T T

Exact Posterior = Blue; Simulated Posterior = Red.
"Mean (simulated) = 10498.74; Mean (exact) = 10497.77.
"Confidence Interval (simulated) = [9449; 11715]; Confidence Interval (exact) = [9453; 11703).

From the figure it can be seen that the simulated distribution is quite accurate and it fits
the true density extremely well. The means, modes and credibility intervals are for all
practical purposes the same. Since v = 6, the third and fourth central moments (u35+ and
Uas+ defined in (1.19) and (1.20)) do not exist, with the result that the Pearson curve

approximations could not be obtained.

In Figure 2 the exact posterior distribution of the product of medians f = exp Z§=1 Hj
for the same example is given. As mentioned in the section on the product of medians

the exact distribution Inf (for the equal variance case) is a t-distribution with v = 6
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degrees of freedom. Also illustrated in Figure 2 is an estimation of the true density of 8

which is obtained by using Monte Carlo simulation. It is again clear that the simulated
density is quite accurate because it fits the true density extremely well. A comparison of
the means, modes and credibility intervals calculated from Figures 1 and 2 show that the
posterior distributions of f and & are quite similar. The reason for this is that the

coefficient of variation is quite small. The posterior distributions of # and é can however

differ quite a lot in other examples.

Figure 2: Posterior Distributions for the Product of Medians

Exact Posterior (blue) vs Simulated Postedior (red)

:Exact Posterior = Blue; Simulated Posterior = Red.
Mean (simulated) = 10438.26; Mean {exact) = 10438.55.
Confidence Interval (simulated) = [9348; 11579]; Confidence Interval (exact) = [9372; 11594].
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Our next example is an illustration of the Behrens-Fisher problem (unequal variances).

To obtain sample data the parameters u; = 2,4, = 4,43 = 6,06f = 0.04,07 =

0.16,062 = 0.4 were selected and sample sizes of n, = 12,n, = 14,n3 = 16 were
randomly drawn from the lognormal distribution. The sample statistics for the logged
values were ¥, = 2.0404,%, = 4.0307,¥; = 5.9967,s? = 0.0363,s2 = 0.2154,s% =
0.3786. By calculating u'ys, Uos, s and pus (defined in (1.13) — (1.16)) a type 1

S . e 1
Pearson curve approximation for the posterior distribution of Iné = Z;’-’zl (u j +;0j2)

could be derived. The expression for the density function of § is given by p(d]data) =

né )14.2520 ( né )48.637

1% 165.6056 (1 +
') 1.0440 3.5630

as illustrated in Figure 3. For

details of how to determine the parameters of a Pearson curve given the values of the
moments, see for example Elderton (1953) or Elderton and Johnson (1969). Also given
in Figure 3 is the simulated posterior density. A comparison of the two densities shows
that they are very much the same and therefore good approximations of the true density.
Since ajz (j = 1,2,3) are known to be unequal, the posterior distribution for § for the

equal variances case (equation (1.12)) could not be used for inferential purposes.

-36 -




Figure 3: Posterior (Jeffreys) Distribution and Pearson Curve Approximation to the Behrens-Fisher
Problem

Jefireys (red) vs Pearson Curve (blue)
T ~ T

Pearson Curve = Blue; Jeffreys Prior = Red.
‘Mean (Jeffreys) = 258208.62; Mean (Pearson) = 249969.58.
Confidence Interval (Jeffreys) = [161000; 425000]; Confidence Interval (Pearson) = [160256; 398127].

In our next example the posterior densities of § for two different priors are compared.
These are the Independence Jeffreys prior in equation (1.1) and the Probability-Matching
prior derived in equation (1.22), which is an extension of the result obtained by Datta and
Ghosh (1995). The same values for the parameters u and o2 selected for the first two
populations in the previous example were again used. Samples of sizes n; = 20 (j =
1,2) were randomly drawn from the lognormal populations and the sample statistics were

calculated as y, = 1.9810, ¥, = 3.8745,s? = 0.0416,s% = 0.1838.
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In Figure 4 the Jeffreys and Probability-Matching posterior densities are displayed.
These densities were obtained by conducting Monte Carlo simulation and Gibbs

sampling procedures.

Figure 4: Posterior Distributions for the Jeffreys and Probability-Matching Priors — Sample Size n =
20

Jefireys (red) vs Probability Matching (biue) prior
| g N P T

Probability-Matching Prior = Blue; Jeffreys Prior = Red.
:Mean (Jeffreys) = 398.62; Mean (PMP) = 395.27.
Confidence Interval (Jeffreys) = [318; 507]; Confidence Interval (PMP) = [318; 498.5].

It is clear from the figure that there is not much difference in the comparable posterior
central values. The posterior using the Jeffreys prior is however slightly less peaked than
the one obtained using the Probability-Matching prior with the consequence that the
standard deviation of the former is larger and the 95% credibility interval will be wider.

As mentioned before the Probability-Matching prior is derived such that the posterior
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probability of a one-sided credibility interval for § and its frequentist probability agree up

to o(n~1) where n is the sample size.

In our last example a comparison is again made between the Jeffreys and Probability-
Matching priors. The parameters selected are identical to those of the previous example,
but in this case samples of size n; = 50 (j = 1,2) were randomly drawn from the
lognormal distributions. The resulting posteriors are illustrated in Figure 5 and although
the priors provide less information than in the previous example (the sample sizes are
larger), the Jeffreys posterior is still somewhat less peaked with the consequence that the
95% credibility interval for the Probability-Matching posterior will be slightly narrower.

For practical purposes the intervals are however equal.




Figure 5: Posterior Distributions for the Jeffreys and Probability-Matching Priors — Sample size n =
50

Jefireys (red) vs Probability Matching (biue) prior
= B ——— T

“Probability-Matching Prior = Blue; Jeffreys Prior = Red.
"Mean (Jeffreys) = 393.56; Mean (PMP) = 392.25.
"Confidence Interval (Jeffreys) = [343; 454]; Confidence Interval (PMP) = [342; 451].
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Appendix to Chapter 1

Proof of Theorem 1.2
In order to prove equations (1.13) — (1.16) the following results will be used:
Lemma A.1

The r — th moment about zero for the posterior distribution of ajz defined in equation

(1.8) is given by:

(3vs) rGu-7)
r(zv)

B((¢) \data) =

(A1)
Proof:

The proof follows easily; see for example Zellner (1971).

Lemma A.2

For the posterior distributions p(67, 0%, ..., o |data) defined in equation (1.2) it follows

that
k k
E ]Z:;ajzmata Z ._2)
(A.2)
(Yo zldata =§ ()’ Z (vs?)vis)
=t S-2)(y-4 LF-2)w-2)
(A.3)

-41 -

o




B . (vj (VJ }) (visi
B Z( i —2)(v; — 4)(y; —6) Z(v -2)(vj—4)(v,—2)

j#l

k
(V] ] )(Vlslz)(vmsm)
* Z (v = 2)(v, = 2) (v = 2)

JElgm
(A4)
4
E o? | |data
i (VJ Sj 4
2,0 = 20 - 90— 9% —9)
(v;s?) wis?)
4
* ; (v —2)(y —4) (v —6)(vi - 2)
k 2
(Vjsjz) (V1512)2
3
’ ; (v = 2)(y -9 -2)(v - 4)
v;s?)” (vis?) (VmsE)
iSi
’ 6,;m (v - 2)(v, — 4)(v; = 2)(Vp, — 2)
AR S T3 [CI I M)
jzlzm#o (Vj - 2)(vl —2)(vp, —2) (v, — 2)
(A5)

Proof:

It is well known (see for example Mood, Graybill and Boes (1974)) that
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B\ 2] =E T l_[@fz)”

j=1
(A.6)
where the summation is over all the nonnegative integers 14,75, ..., 7% Which sum to 7.
Substituting (A.1) for r = 1,2,3,4 the expected values (A.2) — (A.5) follow, from which
the expressions for the first fours moments about zero can be derived. Using the
relationship between moments about zero and central moments, equations (1.13) — (1.16)

follow.

Proof of Theorem 1.3
Datta and Ghosh (1995) proved that the agreement between the posterior probability and
frequentist probability holds if and only if

p
0
Z 55 0a(O)n(©)) = 0

(A.7)

where 7(0) is the Probability-Matching prior for 8, the vector of unknown parameters.

Also

V.(6) = [z0-t(6),.. t(e)]
1 P
(A.8)

where, as mentioned, t(8) = § = exp (ZJ -1 (u] + a )) and
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17(6)Vv.(0) ,
= = 9 ) reny 0
0 O = e~ 1@ @)

(A.9)
It is clear that V;(68)I(8)V.(8) =1 for all @ and I~1(8) is the inverse of the Fisher

information matrix of @ per unit observation.

For this example

172(0) = diag[c}, 0%, ...,0%,20¢, 207, ..., 203¢]

(A.10)
@ =ew Y (1+50)[1h ot g
£(0) = exp j=1</1j [ L3503
(A.11)
1 1 2 2 2 4 4 477
I~ (O)Vt(G)—expz (u]+ o; )[01,02,...,ak,al,az,...,ak]
(A.12)
and
1
1 k 1 2
{vi(e)i- 1(0)Vt(0)}2 = expz (#; + 50 )[Z ajz (1+50j2)]
j=1
(A.13)
Therefore,

1

[Sheaof (1+297))

2 2 2 4 4 47
lof,0%,...,0¢,01,05, ..., 0%]

p(8) = {(P1(9), ...,(pp(o)}l =

1
2

(A.14)

The Probability-Matching equation (A.7) is therefore given by:




k k 4
d o? d o
2.3 ] @)+ ) 5 ] A
e O 1 5 = i 1 5
=1 j=1 k 2 = 2
! [Zha o7 (1+297)] [Zheao? (14797
(A.15)
which has a solution given by
1 g
2 2 A 15\ -4
n(0) = w(Uy, .o, Ui, OF s e, O ) = 2:1%(1+§%) I]@
Jj= :
j=1
(A.16)
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CHAPTER 2

Inference on the Mean: Single Sample

Introduction
As in Chapter 1, this chapter is primarily concerned with the analysis of lognormal data.

The specification is that the populations of interest contain only non-zero, lognormally
distributed observations. This is a simpler setting than the setting that will be proposed in
Chapter 4, but it is convenient for highlighting certain aspects of the analysis of

lognormal data.

We begin the chapter with a concise description of the setting as proposed by
Krishnamoorthy and Mathew (2003). Given this background we proceed with a
simulation study to compare the choice of various prior distributions for a single

lognormal observation.

2.1  The Case of No Zero-Valued Observations
Inferences on the means of lognormal distributions using generalized p-values and

generalized confidence intervals were proposed by Krishnamoorthy and Mathew (2003).

The situation was as follows: suppose X follows a lognormal distribution, such that

Y =In(X) ~ N(u,c?), then the mean of X is defined by: E(X)= E(exp(Y)) =exp(77),

2 ,
where 7 = y-{-%. Now, let X, X,,...,X, be a random sample from this distribution.

Many of the functions of interest with lognormal distributions are functions of both s

ando’. For example, the mean of the lognormal distribution is, as previously stated:
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2

E(X) = E(exp(Y) =exp(y) , wheren = y+—.

Thus, we can see that computations and confidence intervals for the mean of X are

comparable to calculations and confidence intervals for the quantity 7. Furthermore, we

define the following sufficient statistics:
1 _
A=Y==)Y and6* =S5’ =LZ(Y.—Y)
L= j

where ¥ and s* denote the observed values.

Krishnamoorthy and Mathew defined some of the following goals:

1. Obtain exact tests and confidence intervals for 7 using generalized p-values and

generalized confidence intervals, with particular application to small samples.
Generalized p-values and confidence intervals were developed by Tsui and
Weerhandi (1989) and Weerhandi (1993) respectively. These references should

be consulted for a detailed description of the methods involved.

2. Testing hypotheses and constructing confidence intervals for 7, —7, were also

discussed, where the two quantities are from independent lognormal populations

with means exp(r,) and exp(n,). It is important to note that confidence
intervals for 77, —7, are essentially confidence intervals for the ratio of the means

from two lognormally distributed populations.

The tests on the mean values and the confidence intervals were based on the so-called

generalized test variable T,. For the relevant conditions and criterion for this variable the




interested reader is referred to the original text of Krishnamoorthy and Mathew (2003).

This variable was defined as follows:

P )_,_/Js 0-2 2
- _ 2.1
" y /\/n+2S2S g @1
\/n

where

This can further be written as:

LA I (2.2)

_ Z
Y_U—'__ )
/\/n—lJZ v (n-1

]}:

where
Z= \/;()7 —,u)/O' ~ N(0,1) independently of U* = (7’1—1)52/0'2 ~ .
Furthermore, the results obtained by Krishnamoorthy and Mathew (2003) were compared

to those obtained by Angus (1994), where a parametric bootstrap method was used.

The first part of this chapter focuses on obtaining confidence intervals for 7, except that

a Bayesian perspective is considered, ie. credibility intervals. Specifically, the
construction of credibility intervals for the rﬁean of a lognormally distributed population
is considered and compared to the approach developed by Krishnamoorthy and Mathew
(2003). It is interesting to note that due to the aforementioned specification the Bayesian

procedure is “identical” to the method described by Krishnamoorthy and Mathew (2003)

when the Independence Jeffreys Prior, p(u,0)oc (®)™', is used. Therefore, we would




expect this choice of prior distribution to provide similar results as those attained by
Krishnamoorthy and Mathew (2003) and any potential differences can be considered to
be “random”. Various “ad hoc” priors were also assumed and confidence intervals and
their corresponding coverage were analysed and compared to both the generalized test

variable method and the parametric bootstrap method proposed in simulations by Angus

(1994).

The following table represents the results obtained by Krishnamoorthy and Mathew
(2003). The upper limits of the confidence intervals for n for the authors’ method (as
described briefly in the previous paragraphs and referred to as “KM?”) as well as results
obtained using Land’s (1971) formula and Angus’ (1994) parametric bootstrap method

are presented here for completeness.

Table 2: Upper Limits for 7

n Vel 95% limits 99% limits
KM Land Angus KM Land Angus
3 0.1 1.226 1.199 1.184 1.731 1.594 1.431
3 0.5 3.724 3.421 2.329 13.831 13.436 4.052
3 5 244.250 244.690 164.440 1242.41 1244.57 446.520
11 0.1 1.062 1.062 1.061 1.093 1.093 1.091
1 1 2.499 2.448 2.367 3.247 3.194 2.902
1 10 128.110 128.100 127.220 196.570 196.690 193.760
21 0.1 1.044 1.044 1.043 1.062 1.062 1.062
21 0.5 1.355 1.347 1.344 1.476 1.468 1.456
21 2 4.889 4.852 4.769 6.113 6.068 5.809
21 10 93.390 93.330 93.260 122.510 122.29 121.800
101 0.5 1218 1.217 1216 1.259 1.258 1.258
101 5 17.145 17.139 17.130 18.988 18.975 18.960
101 10 65.273 65.260 65.227 72.518 72.500 72.440
501 5 14.963 14.964 14.510 15.621 15.623 15.617
501 10 56.704 56,711 56.690 59.286 59.291 59.301
1001 5 14.510 14.510 14.510 14.951 14.954 14.953
1001 10 54.940 54.940 59.94 56.672 56.673 56.622

From the above table and as discussed by Krishnamoorthy and Mathew we can see that
the method they proposed (generalized confidence intervals) gave very similar results to

the confidence limits using Land’s formula. The algorithm proposed by Angus (1994)




had smaller limits than the other two methods for small sample sizes and large standard

deviation values.

2.2 Intervals Based on a Bayesian Procedure
The following setting was introduced in Chapter 1. However, in this section it is adapted

to the single sample case.

As in Chapter 1, let y =In(X) ~ N(u, o) then the likelihood function can be written as:

n n )2
L(,0%) o (07)7z exp {~HRZEA) 23)

202

2.3  The Independence Jeffreys Prior
Consider the first prior distribution:

p(u,0*) ()
Equation (2.3) is a location-scale model. Using the argument in Section 1.3.2 of Box and

Tiao (1973) it follows that p(u,c°) o (6)™.

Combining this prior distribution with the likelihood given by (2.3) results in the

following posterior distribution:

2 _% ~2 %v (O' 5
p(,u,0'2|data)=(2720- j e)(p{—zz-2 (ﬂ_ﬁ)z}x{"g } - o
' , ()

where
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It follows from the posterior distribution (2.4) that x has the following conditional

distribution:

2 . o
H|o",data~ N| 4, (2.5)

n
and the posterior density function for o> is an Inverted Gamma density function. More

specifically, the distribution can be written as:

)
2 -y(v+2) Vo
Yy | (07) 72 exp{— 20_2}

r(%)

A2
p(c? | data) = {V;- }

To obtain credibility intervals for this Bayesian procedure Monte Carlo simulation is

applied.

2.4  Simulation Procedure
From the preceding derivations and similarly to the methodology introduced in Chapter

1, the following ‘algorithm’, or method, was applied using the MATLAB® package.

For given &2, o and n the procedure is as follows:

1. Since o? is known, in accordance with Krishnamoorthy and Mathew (2003), set

=—-—0".
H 2

LAOTAFONTEIN

W UV - OFS

¢

| BLIOTEEK - LIBRARY|

\ o\ Q0% A




2. With these initial parameters we can simulate a sample of observations. From this

the following can be calculated:

Y and m=v6'2=Z(Y,.—)7)2,where v=n-1.

i=l
3. However, with respect to step 2, since we are only interested in the sufficient

statistics these can be simulated directly, namely:
— 2 m
Y ~N(,°/)and —~ 2}

() and =5~ 4

. 2 2
.-m=0 (Zv )
4. Given these calculated values we can simulate 2z and o out of their posterior

distributions (refer to previous section) as follows:

¢ n=piro?
- M=EH >
d. For this experiment/sample, simulate /=1000 values of 77.

5. Sort them in ascending order such that 77(*1) < 77('2) <..< 77(‘,) .

6. Let K,:{%l} and K2=Kl—%)li| where [a] denotes the largest

integer not greater than a.

7. {77(1,):77(12)} is then a 100(1— )% Bayesian confidence interval for 7.
8. Repeat the procedure for 1000 experiments.
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. . 2 . . .
Various values for n, o were considered, for y=- 5588 specified in the following

table:

Table 1: Parameter Scttings Used in the Simulation

n o
5 0.5
5 1
5 5
5 20
10 0.5
10 1
10

10 20
15 0.5
15 1
15

15 20
25 0.5
25 1
25 5
25 20
25 100

2.5  Other Prior Distributions
As previously mentioned, this procedure was repeated for three other prior distributions

as well. Obviously the form of the posterior distribution, similar to (2.4), will change for
each prior distribution. The simulation procedure is similar to that for posterior
distribution (2.4) except that (given the choice of prior distributions) o is distributed

from a central chi-squared distribution with the following degrees of freedom:

-53-




Table 2: Prior Distributions and Simulation Parameters

Name Specification Simulation

Prior2 plp,o?)eco” 2__m
o 2

l\"("l
Prior 3 p(u, ) oc Const PR

Z\%—Z
Pri0r4 p(/_l’o-z)qjo-—l 0_2 _ m
l2

vl

Prior 2 is the Jeffreys Rule prior, which is the square root of the determinant of the Fisher

Information matrix and Prior 3 is the uniform prior.

2.6  Results of Simulation Study — Single Variable

The following table compares the results obtained by Krishnamoorthy and Mathew

(2003), indicated by “KM” in the below tables, to the Bayesian credibility coverage

probabilities obtained for the various “ad hoc” priors (denoted by Prior 1 [o™2], Prior 2

[673], Prior 3 [Const] and Prior 4 [o~1]).
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Table 3: Results for a Single Mean

n o? Method Coverage Coverage n o? Method Coverage Coverage
Probability Probability Probability Probability

a =90% a=95% o =90% a =95%
5 0.5 KM 0.895 0.947 15 0.5 KM 0.899 0.948
Prior | 0.903 0.959 Prior 1 0.892 0.950
Prior 2 0.908 0.952 Prior 2 0.895 0.955
Prior 3 0.897 0.954 Prior 3 0.905 0.949
Prior 4 0.900 0.943 Prior 4 0.899 0.946
5 1 KM 0.880 0.949 15 1 KM 0.896 0.947
Prior 1 0.895 0.956 Prior 1 0.904 0.942
Prior 2 0.889 0.943 Prior 2 0.900 0.955
Prior 3 0.892 0.955 Prior 3 0.913 0.949
Prior 4 0.888 0.958 Prior 4 0.907 0.949
5 5 KM 0.893 0.948 15 5 KM 0.892 0.951
Prior 1 0.903 0.947 Prior 1 0917 0.946
Prior 2 0.903 0.950 Prior 2 0.896 0.948
Prior 3 0.888 0.949 Prior 3 0.902 0.961
Prior 4 0.903 0.953 Prior 4 0911 0.953
5 20 KM 0.897 0.948 N 20 KM 0.901 0.950
Prior 1 0.889 0.954 Prior | 0.904 0.947
Prior 2 0.906 0.945 Prior 2 0.890 0.949
Prior 3 0.894 0.947 Prior 3 0.900 0.944
Prior 4 0.897 0.941 Prior 4 0.904 0.941
10 05 KM 0.895 0.952 25 0.5 KM 0.904 0.950
Prior 1 0.919 0.951 Prior 1 0.898 0.951
Prior 2 0.894 0.949 Prior 2 0.885 0.947
Prior 3 0.889 0.945 Prior 3 0.900 0.944
Prior 4 0.902 0.955 Prior 4 0.877 0.937
10 1 KM 0.897 0.950 25 1 KM 0.895 0.946
Prior | 0.901 0.946 Prior 1 0.908 0.957
Prior 2 0.885 0.949 Prior 2 0.898 0.936
Prior 3 0.910 0.950 Prior 3 0.893 0.955
Prior 4 0.902 0.950 Prior 4 0.891 0.942
10 5 KM 0.899 0.950 25 5 KM 0.900 0.947
Prior 1 0.891 0.949 Prior 1 0.904 0.950
Prior 2 0.902 0.937 Prior 2 0.898 0.949
Prior 3 0.899 0.953 Prior 3 0.888 0.934
Prior 4 0.900 0.953 Prior 4 0.886 0.957
10 20 KM 0.901 0.949 25 20 KM 0.909 0.949
Prior | 0.891 0.965 Prior 1 0.898 0.957
Prior 2 0.899 0.946 Prior 2 0.904 0.950
Prior 3 0.884 0.954 Prior 3 0.906 0.948
Prior 4 0.896 0.943 Prior 4 0.910 0.948
25 100 KM 0.897 0.947
Prior | 0913 0.947
Prior 2 0.886 0.948
Prior 3 0.901 0.948
Prior 4 0.907 0.941

From these results we can see that the Bayesian procedures employed provide accurate

results that are comparable to those obtained by Krishnamoorthy and Mathew (2003)

using their technique of generalized p-values. In fact, the Bayesian results using the prior




p(u,6%) oc ()" should be exactly the same as those obtained by Krishnamoorthy and

Mathew (2003) using the technique of generalized p-values. However, there is not much
variation in the results for the choice of prior. The Bayesian methods provided no

distinction in results between the priors. In general, the methods were comparable.

To accurately distinguish between the prior distributions used, additional measures are
required. For example, the following characteristics were studied:
— coverage probabilities
— average interval lengths
- coverage error (target coverage — actual coverage),
— percentages of under-coverage on both sides (%BCI <8 and %BCI > ), where
BCI is the Bayesian Confidence Interval or Credibility Interval.

|%BCI < 0—%BCI > 6|
(%BCI < 6+%BCI > 6)’

— relative bias

Thus, the simulation results were run again and yielded the following results (for

a=0.05):
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Table 4: Aggr_egated Results for a Single Mean

n Method Coverage Coverage Average 9%CI <8 %CI >0 Relative
Probability Error Length Bias

Prior 1 0.951 -0.001 2.115 0.021 0.028 0.143

Prior 2 0.942 0.008 1.604 0.033 0.025 0.138

Prior 3 0.938 0.012 9.381 0.029 0.033 0.065

Prior 4 0.955 -0.005 3.464 0.020 0.025 0.111

Prior 1 0.947 0.003 4.366 0.023 0.030 0.132

Prior 2 0.956 -0.006 3.106 0.016 0.028 0.273

Prior 3 0.956 -0.006 20913 0.022 0.022 0.000

Prior 4 0.947 0.003 7.334 0.027 0.026 0.019

Prior | 0.951 -0.001 20.890 0.020 0.029 0.184

Prior 2 0.947 0.003 15.410 0.025 0.028 0.057

Prior 3 0.952 -0.002 97.644 0.027 0.021 0.125

Prior 4 0.962 -0.012 33.507 0.021 0.017 0.105

Prior 1 0.948 0.002 83.747 0.032 0.020 0.231

Prior 2 0.939 0.011 63.785 0.031 0.030 0.016

Prior 3 0.951 -0.001 385.677 0.027 0.022 0.102

Prior 4 0.942 0.008 147.256 0.031 0.027 0.069

Prior 1 0.957 -0.007 0.764 0.021 0.022 0.023

Prior 2 0.945 0.005 0.709 0.028 0.027 0.018

Prior 3 0.948 0.002 0.958 0.024 0.028 0.077

Prior 4 0.943 0.007 0.855 0.029 0.028 0.018

Prior | 0.952 -0.002 1.525 0.028 0.020 0.167

Prior 2 0.945 0.005 1.404 0.032 0.023 0.164

Prior 3 0.952 -0.002 1.966 0.024 0.024 0.000

Prior 4 0.956 -0.006 1.692 0.018 0.026 0.182

10 S Priorl 0.946 0.004 7.643 0.028 0.026 0.037
10 5  Prior2 0.941 0.009 7.072 0.029 0.030 0.017
10 5 Prior3 0.943 0.007 9.650 0.025 0.032 0.123
10 5 Prior4 0.952 -0.002 8.582 0.027 0.021 0.125
10 20 Prior] 0.942 0.008 29.944 0.030 0.028 0.034
10 20 Prior2 0.961 -0.011 27.576 0.019 0.020 0.026
10 20 Prior3 0.944 0.006 40.287 0.024 0.032 0.143
10 20  Prior4 0.959 -0.009 33.955 0.019 0.022 0.073
15 0.5 Priorl 0.952 -0.002 0.510 0.023 0.025 0.042
15 0.5 Prior2 0.948 0.002 0.479 0.026 0.026 0.000
15 0.5 Prior3 0.946 0.004 0.576 0.030 0.024 0.111
15 0.5 Prior4 0.954 -0.004 0.539 0.025 0.021 0.087
15 1 Prior 1 0.949 0.001 1.022 0.021 0.030 0.176
15 1 Prior2 0.954 -0.004 0.971 0.020 0.026 0.130
15 1 Prior3 0.949 0.001 1.154 0.025 0.026 0.020
15 1 Prior4 0.948 0.002 1.089 0.032 0.020 0.231
15 5 Prior | 0.956 -0.006 5.103 0.024 0.020 0.091
15 5 Prior2 0.961 -0.011 4.841 0.017 0.022 0.128
15 5  Prior3 0.936 0.014 5.773 0.030 0.034 0.063
15 5 Prior4 0.948 0.002 5.496 0.028 0.024 0.077
15 20 Prior 1 0.957 -0.007 20.794 0.026 0.017 0.209
15 20 Prior2 0.960 -0.010 19.204 0.019 0.021 0.050
15 20  Prior3 0.947 0.003 22.817 0.026 0.027 0.019
15 20  Prior4 0.955 -0.005 21.808 0.026 0.019 0.156

-57-




2 Method Coverage Coverage Average S4CI <8 %CI>¢ Relative

Probability  Error Length Bias
25 0.5 Priorl 0.945 0.005 0.342 0.030 0.025 0.091
25 0.5 Prior2 0.943 0.007 0.329 0.017 0.040 0.404
25 0.5 Prior3 0.937 0.013 0.364 0.036 0.027 0.143
25 0.5 Prior4 0.944 0.006 0.355 0.026 0.030 0.071
25 1 Prior 1 0.957 -0.007 0.687 0.022 0.021 0.023
25 1 Prior 2 0.958 -0.008 0.665 0.019 0.023 0.095
25 1 Prior 3 0.940 0.010 0.729 0.032 0.028 0.067
25 1  Prior4 0.948 0.002 0.713 0.025 0.027 0.038
25 5 Priorl 0.959 -0.009 3.405 0.019 0.022 0.073
25 S Prior2 0.948 0.002 3.341 0.022 0.030 0.154
25 5 Prior3 0.942 0.008 3.589 0.020 0.038 0.310
25 S Prior4 0.945 0.005 3.479 0.022 0.033 0.200
25 20 Priorl 0.952 -0.002 13.569 0.026 0.022 0.083
25 20  Prior2 0.951 -0.001 13.126 0.020 0.029 0.184
25 20 Prior3 0.957 -0.007 14.577 0.021 0.022 0.023
25 20 Prior4 0.953 -0.003 13.902 0.024 0.023 0.021
25 100  Prior ] 0.968 -0.018 67.982 0.017 0.015 0.063
25 100 Prior2 0.948 0.002 64913 0.025 0.027 0.038
25 100  Prior3 0.955 -0.005 71.396 0.014 0.031 0.378
25 100  Prior4 0.947 0.003 70.425 0.030 0.023 0.132

At this preliminary stage, we examine the overall results of the different choices of prior
distributions for a single mean from a lognormally distributed population. The table to
follow presents the summative results of Table 45 in order to compare the results for the
different prior distributions. Due to the results presented in Krishnamoorthy and Mathew
(2003) their results can only be compared for the coverage probability and none of the

other performance statistics.

Table 5: Summary Results for the Case of the Singlc Mean

Method Coverage Coverage Average %CI < @ % CI > 6 Relative
Probability  Error Length Bias

KM o =0.95 0.9487 N/A N/A N/A N/A N/A

Prior 1 0.9523 -0.0023 15.5534 0.0242 0.0235 0.1060

Prior 2 0.9498 0.0002 13.4432 0.0234 0.0268 0.1113

Prior 3 0.9466 0.0034 40.4383 0.0256 0.0277 0.1039

Prior 4 0.9505 -0.0005 20.8500 0.0253 0.0242 0.1009
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The results for Prior 1 and Prior 2 both seem to compare well with the results obtained by
Krishnamoorthy and Mathew (2003). For Prior 1 this is less surprising than what it is
necessary, since as explained earlier this prior essentially results in the same procedure as

used by Krishnamoorthy and Mathew (2003).

The coverage obtained by Prior 3 does not appear to be adequate. The poor coverage of
this prior is even further highlighted when one considers the average length of the
confidence intervals. We can see that Prior 3 is inefficient and results in wide intervals.
For this prior we can also see a tendency to over-cover on the right hand side of the
distribution. Also, by the same reasoning we note that even though Prior 4 results in
good coverage the interval length is too wide and thus indicates inefficiency. These two

priors will therefore not be discussed further in this setting.

Thus, we focus on Priors 1 and 2. We can see that Prior 1 (essentially the same as the
KM approach) results in good coverage of the interval. The same is true for Prior 2 and
despite “randomness” arising from the simulation procedure, we can regard these two
priors as having similar performance characteristics. No discernable difference was
observed. What is interesting, and perhaps surprising, is that Prior 2 (the Jeffreys Rule
prior) achieves this coverage while at the same time resulting in a noticeably smaller
interval width. The coverage probability and the Average Length can be regarded as the
primary distinguishing characteristics between these priors distributions and thus we

conclude that Prior 2 is a more appropriate distribution. The difference in Average




Length is more pronounced in situations of larger variance and even more so when a

larger sample size is considered.

2.7 Comparison to the MOVER
Instead of adapting a simulation approach for making inferences on the lognormal mean,

Zou, Taleban and Huo (2009a) proposed procedures involving the so-called “method of
variance estimates recovery” (MOVER). The MOVER method was designed in order to
apply to a general scenario and also to provide adequate coverage rates in estimation
procedures relating to lognormally distributed data. The advantage of the MOVER is
therefore that it is easily applicable to many different settings with little more than a basic

knowledge of introductory statistical text.

The object of the paper by Zou et al (2009a, page 3760) was to demonstrate the MOVER

in different scenarios, i.c. for a few different combinations of n and o2, where u =
—%02. The Bayesian confidence intervals and these will be compared to the results from

the MOVER method and generalized confidence interval procedure to evaluate the
performance of the Bayesian confidence intervals .for both the equal-tailed and HPD
(highest posterior density) intervals. The following characteristics are reported:

— coverage probabilities

— average interval lengths

A nominal significance level of a =0.05will be used for each parameter setting.
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The confidence limits for the MOVER, as given by Zou et al (2009a) on page 3758, are:

where Za A is the upper a/ 2 quantile of the standard normal distribution and y& /o is the

a /2 percentile of the chi-squared distribution with v degrees of freedom.

As mentioned in equation (2.2) the simulation procedure for the generalized confidence

interval method can be summarized as follows:

= InM* = *& 62
y =m —l'l'+ T*;+ 2T*
7 v

where

Z* ~N(0,1) and T* ~ 2, i.e. simulated values.
The following table presents the summary statistics of the results in both the Zou et al
(2009a) simulation study and the Bayesian simulation study using Jeffreys’ Independence

prior.

The same designs are used as considered by Zou et al (2009a), where (<, >)% refers to

the proportion of cases where the interval is below or above the true value respectively:




Table 6: Comparison of the MOVER and Independence Jeffreys’ Prior for Constructing Two-sided

1
95% Confidence Intervals for 4+ 5 o’

MOVER GCl Jeffreys’ (Equal-tail) Jeffreys' (HPD)
Cover (<, >)% Cover (<, >)% Width Cover (<, >)% Width Cover (<, >)% Width

93.47 (3.19, 3.34) 93.99 (2.00, 4.01) 2.69 94.31 (1.87,3.82) 2.68 95.67 (3.01, 1.32) 2.27
94.65 (2.75, 2.60) 93.98(1.92,4.10) 4.78 93.81(2.16,4.03) 4.73 95.69 (3.27, 1.04) 3.80
95.03 (2.92, 2.05) 94.15(2.07,3.78) 6.76 93.55 (2.09, 4.36) 6.75 95.83 (3.48, 0.69) 5.26
95.10 (2.99, 1.91) 93.77(2.36, 3.87) 8.82 94.13(2.11,3.76) 8.68 95.70 (3.66, 0.64) 6.64
95.30 (2.89, 1.81) 94.08 (2.38.3.54) 10.59 94.21 (2.14, 3.65) 10.82 95.84 (3.80, 0.36) 8.16
95.35 (2.60, 2.05) 93.90(2.09, 4.01) 12.74 94.35 (2.07, 3.58) 12.71 95.81 (3.68, 0.51) 9.50

94.24 (3.37, 2.39) 94.56 (2.35, 3.09) 0.76 94.56 (2.29, 3.15) 0.77 95.06 (3.00, 1.94) 0.75
95.19 (2.87, 1.94) 94.90 (2.17,2.93) 1.22 95.09 (1.88, 3.03) 1.22 95.76 (2.76, 1.48) 1.19
94.76 (3.04, 2.20) 94,36 (2.40, 3.24) 1.64 94.77 (2.26, 2.97) 1.65 95.32 (3.28, 1.40) 1.59
94.94 (2.89,2.17) X 94.39(2.39,3.22) 2.06 95.16 (2.30, 2.54) 2.05 95.77 (3.30,0.93) 1.96
95.24 (2.61, 2.15) ¥ 94.89 (2.14,2.97) 2.44 94.98 (2.27, 2.75) 2.54 95.40 (3.48, 1.12) 239
95.41 (2.82,1.77) 94.97 (2.37, 2.66) 2.87 95.59 (2.36. 3.05) 2.86 95.06 (3.62, 1.32) 2.71

In comparison to the MOVER confidence intervals, the equal-tailed intervals also seem
to compare reasonably well, with insignificant differences in both the proportion of
confidence intervals above and below the true parameter, but the width of the intervals
are larger than those of the MOVER. Naturally, as the sample size increases the width of
the interval tends to decrease. On the other hand, if the variance increases the width of

the intervals will also increase.

Thus, the equal-tailed intervals do not offer an improvement on the MOVER method.
However, when considering the HPD (highest posterior density) intervals, which are only
possible through the Bayesian framework in this setting, a large improvement on the
MOVER can be gained, particularly when n is small. Of particular interest to note is that
these HPD intervals result in considerable reductions in interval width. Also of note is
that the proportion of intervals above the true parameter is considerably less than both the

MOVER and the equal-tailed intervals.

So, the performance of the Independence Jeffreys prior is comparable (or improved for

HPD intervals) to the MOVER. However, in terms of the literature, Box and Tiao




(1973), this would be the natural choice of prior distribution in this setting and thus, its
accuracy is an expected result. In addition to the previously mentioned priors the

following prior distributions will also be tested:

1 2

Pl gl @)
1 2

= s

Prior distributions (2.7) and (2.8) are the Reference and Probability-Matching priors

respectively, the derivations of which will be discussed and provided in the appendix to

this chapter.

The table below represents the results of the Reference and Probability-Matching prior
distributions, once again compared to the MOVER. However, these were only performed
for the extreme values of o2 in Table 7. Also, only the coverage and interval widths are

presented.
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Table 7: Comparison of the MOVER and Other Prior Distributions for Constructing Two-sided 95%

1
Confidence Intervals for u +5 o’

Equal-Tailed / MOVER HPD Intervals
n ¢? Pror/Method Cover % Width Cover % Width
5 0.5 MOVER 93.47 2.54 N/A N/A
p(8) « o3 (Jcffreys Rule) 91.36 1.82 91.68 1.66
Reference Prior 94.79 3.36 96.76 2.79
Probability-Matching Prior 92,27 2.09 93.30 1.89
5 3 MOVER 95.35 12.72 N/A N/A
p(8) x o~3 (Jeffreys Rule) 91.54 7.68 91.23 6.27
Reference Prior 93.57 11.89 96.41 10.09
Probability-Matching Prior 92.76 8.68 93.35 7.37
200 05 MOVER 94.24 0.74 N/A N/A
p(8) o o3 (Jeffreys Rulc) 94.39 0.74 94.14 0.72
Reference Prior 94.88 0.77 95.26 0.76
Probability-Matching Prior 94.74 0.74 94.81 0.73
20 3 MOVER 95.41 2.86 N/A N/A
p(8) x o~ (Jeffreys Rulc) 94.59 2.66 94.21 2.54
Reference Prior 94.71 299 95.66 2.84
Probability-Matching Prior 94.78 2.78 94.95 2.65

It appears as though the coverage of the other priors is not as good as the Independence
Jeffreys’ prior, particularly for small sample sizes. However, as the sample size increases

the effect of the prior distribution seems to decrease and the results are comparable.

From Table 8 it is also clear that the Reference prior seems to have better coverage than
the Probability-Matching prior. It must be remembered that the Probability-Matching
prior is derived for one-sided credibility intervals. This might be the reason for

undercoverage if n is small.
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Appendix to Chapter 2

As mentioned before Probability-Matching and Reference priors often lead to procedures
with good frequency properties while retaining the Bayesian flavor. The fact that the
resulting posterior intervals of level 1 — a are also good frequentist intervals at the same

level is a very desirable situation.

The results of Datta and Ghosh (1995) will be briefly reviewed in the following theorem:

Theorem 1

152 .
For the mean, M = e**2”, of the lognormal distribution, the Probability-Matching

prior is given by:

1 2
pP(,u,O'Z)OC?-‘,l-}-?. (A1)

Equation (A.1) is a special case of Theorem 1.3 (from Chapter 1). If k = 1 is substituted

in (1.22) the result follows.

Multiplying (A.1) by the likelihood function (2.3) it follows that:

1o 2\2 Vi, 672
pe(oldata) o (o) Z+*? (“ —2) exp [_ 707 ]
o; 20

J
forj=1,2

(A.2)
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Simulation from (A.2) can be obtained using the rejection method. Simulation of u; and

6]- are as before.

12
The Reference prior for M = *™2°

The determination of reasonable, non-informative priors in multiparameter problems is
not easy; common non-informative priors, such as Jeffreys’ prior, can have features that
have an unexpectedly dramatic effect on the posterior distribution. In recognition of this
problem Berger and Bernardo (1992) proposed the Reference prior approach to the
development of non-informative priors. As in the case of the Jeffreys and Probability-
Matching priors, the Reference prior method is derived from the Fisher information
matrix. Reference priors depend on the group ordering of the parameters. Berger and
Bernardo (1992) suggested that multiple groups, ordered in terms of inferential
importance, are allowed, with the Reference prior being determined through a succession
of analyses for the implied conditional problems. They particularly recommend the
Reference prior based on having each parameter in its own group, i.e. having each

conditional Reference prior be only one dimensional.

As mentioned by Pearn and Wu (2005) the Reference prior maximises the difference in
information (entropy) about the parameter provided by the prior and posterior

distributions. In other words, the Reference prior is derived in such a way that it provides

as little as possible information about the parameter.




The following theorem can now be stated.

Theorem 2

152 e . .
For the mean, M = ¢e* 27 , of the lognormal distribution, the Reference prior relative

to the ordered parameterisation ( ,u,az) is given by:

pR(#,GZ)OCi— 1+§. (A3)

Proof:

The Fisher information matrix of 8 = [ y7 02] per unit observation is given by:

Jor O
° Voot

The parameter of interest is the mean of the lognormal distribution

F(0)=F<,u,0'2):

£HO) = e"*3% = M

Define A=M= %(0) _% .
o(r(6).0) | o 1

Hence, the Fisher information matrix under the reparameterisation (t (9). 02) 1s given

by

2t(0)0'Z 4o " 20°
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Following the notation of Berger and Bernardo (1992), the functions hj,( Jj =1,2), which
are needed to calculate the Reference prior for the group ordering (t(e),az), can be

obtained from F(t(&),az) as follows:

12(;)02 _[21(;;0—2 Jz(ml;z * 2;“ j_l

and

SNV
€ _[202(2+02J:‘ '

Therefore, the Reference prior relative to the ordered parameterisation (t (0),0’2) 1s

given by

In the ( M, 0'2) parameterisation this corresponds to

Pr (ﬂ,o‘z)ocﬁé‘,1+;27(t(9))oci"l+§.

This is the same result derived by Roman (2008).

The posterior distribution of g is now

1
pe(o7Idata) o (o7) 2 (1 +




CHAPTER 3

Inference on the Mean: Two Samples

Introduction

The problem setting for this chapter is similar to that of Chapter 2. We consider the same
type of data (i.e. lognormally distributed observations without zero observations) as well
as the same prior distributions. The point of departure in Chapter 3 from the previous
chapter is that we consider lognormally distributed observations from two different
populations. For analysis the ratio of the two means from the populations was the

statistic of choice.

Similar to Chapter 2 though, a simulation study was undertaken to examine the
effectiveness and efficiency of the various choices of prior distributions. This chapter
begins with a description of the problem setting, but full details of all procedures are not
necessarily supplied, since this setting is merely an extension of the setting found in the

previous chapter.

Finally, we end the chapter with practical examples. There is however, a point of
departure from the situation described by Krishnamoorthy and Mathew (2003) with
regards to the analysis of the data. Research (Fernandez, C. and Steel F.J.M. [1999],

Roman, L [2008] and Berger and Bernardo [1992]) suggests that when considering the

prediction of a future value (specifically from a lognormal distribution) then the median




and not the mean of the distributions is a more appropriate quantity of interest. This will
be examined by means of an example.

3.1 The Case of No Zero-Valued Observations — Ratio of Means

As mentioned in the introduction to this chapter, the ratio of means from two different
populations can also be examined. Due to the problem specification the ratio between
these two means can be written as: 7, —7,. Thus, it is an easy matter to extend the
simulation study applied earlier to this difference. Using the simulation methods
mentioned before, first one population mean is simulated, then the next and finally they
are subtracted from each other. The credibility intervals can then be calculated from this
“differenced” data. Thus, the applicable steps and procedures are not re-stated here.

3.2 Ratio of Means from Two Different Populations - Results

Several combinations of differing population sizes were simulated to analyse the
applicability of the method to both small and large samples of data. The following table

outlines these population size specifications:

Table 8: Sample Size Settings Used in the Simulation Study

n, n,
10 10
10 25
25 10
25 25
25 50
25 100
50 25
50 50
50 100
100 25
100 50
100 100
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Furthermore, for each of the four prior distributions mentioned in Sections 2.3 and 2.5

and for the above sample sizes, populations with different designs, that is, different
variances, o and o, were simulated and analysed. The following table represents

these designs chosen:

Table 9: Design Specification

Design o} o}
Design 1 3 1
Design 2 4 4
Design 3 2 0.5
Design 4 2 12
Design 5 30 4

Lastly, as was specified for the case of a single mean, the following was assumed for

each population: =~ O’% .
The results for each individual design are given in the appendix to this chapter as Tables
21 to 25.

As mentioned previously, one advantage of the Bayesian framework is the construction
of HPD intervals. This is the shortest interval that gives the required coverage. The

results for HPD intervals are again presented in the appendix as Tables 26 to 30.
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In Chapter 2 another method for constructing confidence intervals was introduced, called

the MOVER. In the case of the MOVER the (1 — a)100% confidence limits for

InM, — InM, are given by

L=26,-8,- J(él_ 11)2+ (uz— éZ)Z

U= 8- 8+ 0= L)+ (i 8,
where

~

6= 0+ 56

N =

and [; and u; (i = 1,2) are defined in Section 2.6. The results for the various designs are
given in the appendix to this chapter as Table 31. However, aggregated results are given

later in this section for the MOVER to aid comparison with the Bayesian methods.

Furthermore, certain parameter settings for the simulation study were suggested by
Krishnamoorthy and Mathew (2003). These settings were also simulated using the
Bayesian procedures and are referred to as “KM Orig” in the summary table. The results
for these designs are presented in the appendix to this chapter as Table 32, except that the

MOVER and HPD intervals will not be supplied for these parameter settings.

In the following table, we examine the overall results of the different choices of prior

distributions. It presents the summative results of Tables 21 to 32 (given in the appendix

to this chapter) in order to compare the results for the different prior distributions.




Table 10: Summary Results for the Case of the Ratios of Two Means — Equal Tail Intervals

Method Prior Coverage Coverage Average %CI < 6 %CI >0  Relative
Probability  Error Length Bias
Design 1 Prior1  0.9506 -0.0006 2.1963 0.0227 0.0268 0.1294
Prior2 0.9473 0.0028 2.0908 0.0218 0.0310 0.2361
Prior3  0.9528 -0.0028 2.4964 0.0204 0.0268 0.1390
Prior4  0.9498 0.0003 2.3439 0.0199 0.0303 0.2307
Design 2 Prior1 09513 -0.0013 4.1490 0.0223 0.0265 0.1244
Prior2  0.9492 0.0008 3.9165 0.0264 0.0244 0.1086
Prior3  0.9449 0.0051 4.7739 0.0257 0.0294 0.1637
Prior4  0.9503 -0.0003 4.4297 0.0238 0.0259 0.0750
Design 3 Prior1 09516 -0.0016 1.4060 0.0200 0.0284 0.1864
Prior2  0.9509 -0.0009 1.3396 0.0209 0.0282 0.2181
Prior3  0.9493 0.0008 1.6032 0.0208 0.0300 0.2297
Prior4 0.9510 -0.0010 1.5023 0.0207 0.0283 0.1862
Design 4 Prior1 09517 -0.0017 8.2989 0.0247 0.0237 0.1186
Prior2  0.9489 0.0011 7.8213 0.0297 0.0214 0.1772
Prior3  0.9455 0.0045 9.4078 0.0291 0.0254 0.1158
Prior4 0.9513 -0.0013 8.7498 0.0259 0.0228 0.1566
Design 5 Prior1  0.9492 0.0008 20.2126 0.0225 0.0283 0.1322
Prior2  0.9503 -0.0003 19.3125 0.0222 0.0276 0.1675
Prior3  0.9513 -0.0013 22.8317 0.0207 0.0281 0.1605
Prior4  0.9483 0.0018 21.5613 0.0220 0.0298 0.1606
KM Orig  Prior1  0.9502 -0.0002 14.2032 0.0248 0.0250 0.1536
Prior2 0.9525 -0.0025 10.9021 0.0242 0.0233 0.1442
Prior3 09519 -0.0019  553.3609 0.0238 0.0243 0.1750
Prior4 09518 -0.0018 27.6973 0.0244 0.0238 0.1674
Overall’ Prior1  0.9507 -0.0007 8.4110 0.0228 0.0264 0.1408
Prior2  0.9498 0.0002 7.5638 0.0242 0.0260 0.1753
Prior3  0.9493 0.0007 99.0790 0.0234 0.0273 0.1640
Prior4 0.9504 -0.0004 11.0474 0.0228 0.0268 0.1628

*Average results across all designs
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Table 11: Summary Results for the Case of the Ratios of Two Means — HPD Intervals

Method

Prior

Coverage
Probability

Coverage
Error

Average
Length

%CI <0

%CI >0

Relative
Bias

Design 1

Design 3

Design 4

Overall

Prior 1
Prior 2
Prior 3
Prior 4

Prior 1
Prior 2
Prior 3
Prior 4

Prior 1
Prior 2
Prior 3
Prior 4

Prior 1
Prior 2
Prior 3
Prior 4

Prior 1
Prior 2
Prior 3
Prior 4

Prior 1
Prior 2
Prior 3
Prior 4

0.9571
0.9443
0.9688
0.9634

0.9608
0.9514
0.9717
0.9661

0.9522
0.9396
0.9631
0.9603

0.9481
0.9414
0.9634
0.9540

0.9452
0.9386
0.9603
0.9563

0.9527
0.9431
0.9655
0.9600

-0.0071

0.0058
-0.0188
-0.0134

-0.0108
-0.0014
-0.0217
-0.0161

-0.0022

0.0104
-0.0131
-0.0103

0.0019
0.0086
-0.0134
-0.0040

0.0048
0.0114
-0.0103
-0.0063

-0.0027

0.0070
-0.0155
-0.0100

2.0556
1.8675
2.6828
23312

3.9526
3.5770
5.2558
4.4906

1.3183
1.1911
1.7007
1.4716

7.5209
6.8423
9.7194
8.4334

18.5868
16.8909
23.7619
20.8273

6.6868
6.0738
8.6241
7.5108

0.0329
0.0455
0.0193
0.0260

0.0200
0.0249
0.0136
0.0181

0.0364
0.0514
0.0238
0.0279

0.0121
0.0090
0.0140
0.0129

0.0432
0.0512
0.0241
0.0308

0.0289
0.0364
0.0190
0.0232

0.0100
0.0103
0.0119
0.0106

0.0192
0.0237
0.0148
0.0158

0.0114
0.0090
0.0131
0.0118

0.0398
0.0496
0.0226
0.0331

0.0117
0.0103
0.0156
0.0129

0.0184
0.0206
0.0156
0.0169

0.5383
0.6116
0.2576
0.4229

0.3200
0.3457
0.1145
0.2592

0.5079
0.6907
0.3324
0.4396

0.5492
0.6774
0.2428
0.4619

0.5847
0.6474
0.2370
0.4453

0.5000
0.5945
0.2368
0.4058




Table 12: Summary Results for the Case of the Ratios of Two Means —- MOVER Intervals

Method Coverage Coverage Average % CIl < @ %CI >6 Relative
Probability  Error Length Bias

Design 1 0.9497 0.0003 2.6343 0.0228 0.0275 0.1166
Design 2 0.9563 -0.0063 4.5983 0.0215 0.0222 0.1046
Design 3 0.9538  -0.0038 1.8260 0.0218 0.0244 0.1208
Design 4 0.9488 0.0012 8.4617 0.0287 0.0225 0.1454
Design 5 0.9552  -0.0052 20.1543 0.0216 0.0233 0.1374
Overall 09528  -0.0028 7.5349 0.0233 0.0240 0.1249

The above tables do little to enhance our understanding of the differences between the
prior distributions. It does highlight certain issues, but detailed examination of Table 32
reveals the full extent of these differences. Enough variation in the designs was allowed

for and thus it is possible to evaluate a few different scenarios.

Overall, when comparing the Bayesian results it appears that the HPD intervals results in
somewhat better coverage and in some cases a substantial reduction in the average
interval length. However, this additional coverage and reduction in interval length comes
at the expense of increased relative bias. Furthermore, the HPD results follow the same

pattern as the equal-tailed intervals which will be discussed in more detail further on.

The MOVER method results in adequate coverage for these designs and appears to be
efficient as well. It is similar in performance to the equal-tailed Bayesian intervals,

however, the HPD intervals discussed previously are still an improvement on the

MOVER, particularly with regards to the average interval length. As will be discussed in




further chapters, the MOVER is somewhat limited in the situations that it can be applied

to, for example the comparison of variances, as discussed in Chapter 6.

Similar to the case for the single lognormal variable, we see that the overall coverages of
Priors 1 [072] and 2 [0 3] are the best. Besides for a few lower decimals both give the

desired coverage, i.e. 95%.

Furthermore, we note that Priors 3 (uniform) and 4 [o~!] offer reasonable coverage, but
again the effectiveness and efficiency of the prior distributions is called into question.
Particularly with the uniform prior, the overall average interval length exceeds that of the
other distributions by almost 10 times. It seems that the uniform prior is especially not

suited to small sample sizes.

Prior 4 does not have the high average interval length of the uniform prior, but
nevertheless it does seem excessive and not useful in this situation. Coverage probability
and average interval length are the more important characteristics that we are interested

in here.

Surprisingly though, between Priors 1 and 2 it seems once again that Prior 2 is the more
appropriate choice. As mentioned earlier, both distributions resulted in similar and
adequate coverage probabilities, but the additional measure of average interval length

seems to indicate that Prior 2 is marginally more efficient than Prior 1. This is a slightly
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unexpected result, but nevertheless motivates the use of the Jeffreys Rule prior in

applications.

From Table 32 we see the following tendencies in the results:
1. We see that the Bayesian methods are perhaps not particularly well adapted to
situations of small sample sizes. The tendency of all four prior distributions is to
over-cover, especially on the right hand side when small sample sizes and unequal

population variances are considered. However, by “small sample sizes” we imply

that », and n, are both less than or equal to 10. Particularly Prior 3 results in

excessive over-coverage. Thus, the Bayesian techniques may not be efficient for
small sample sizes. However, this is by no means conclusive.

2. Once the sample sizes increase to at least 10 for each population then the stability
and efficiency of all choices of prior distribution increase dramatically, but
particularly so for Prior 3. The tendency to over-cover is still present, but not as
prevalent as for small sample sizes. However, throughout all the designs
examined it is apparent that this prior distribution (Prior 3) is less efficient than

the others, particularly with regards to the interval length.

Thus, we would suggest the use of the Bayesian methods for larger sample situations, and

even then we would suggest the use of only Prior distributions 1 and 2. The methods also

seem to be more accurate when the population means are relatively close together.
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3.3 Examples
As mentioned in the Introduction to this chapter, the examples in Krishnamoorthy and

Mathew (2003) are analysed here according to the Bayesian methodology developed in
the simulation study. Due to their performance in the simulation studies, it was decided
to analyse the data from these real-life situations using only Priors 1 and 2. In addition
the literature on the subject, in particular research by (Fernandez, C. and Steel F.J.M.
[1999], Roman, L [2008] and Berger and Bernardo [1992]) suggests that when
considering the prediction of a future value (specifically from a lognormal distribution)
then the median and not the mean of the distributions is a more appropriate quantity of
interest. It was decided thus to incorporate the analysis of the ratio of the medians from
two different populations. The same prior distributions as used for the analysis of the

means were also used for the analysis of the medians, namely Priors 1 and 2. According

to the literature, the choice of the median as the parameter of interest is justified by the
adequate coverage properties of the resulting posterior predictive distributions. The

theory is particularly illustrated by Roman, L (2008).

The differences to the methods described previously are relatively minor. For the most

part, the procedures are similar except for the following: instead of obtaining the means

2
of the posterior distributions ( E(X) = E(exp(Y))=exp(rn), where 7= u+ %_ ) and

taking the ratios thereof it is only necessary to obtain the ratio of the median, namely

Me(X) =exp(n), where n = .




3.3.1 Probability-Matching and Reference Priors — Lognormal Distribution

In addition to using the prior distributions (Priors 1 and 2) obtained from the simulation
study in the previous sections the Probability-Matching prior and Reference prior

distributions were applied for the analysis of both examples.

In this section we will only use the method described by Datta and Ghosh (1995) (as
discussed in Chapter 2) to obtain Probability-Matching priors for the parameters of the

lognormal distribution. The following theorems can be stated:

Theorem 3.1

, 1o T . .
For the mean, M, = e’”AG , of the lognormal distribution, the Reference prior relative to

the ordered parameterisation ( ,u,az) is given by:

Pr (,u,oz)océ,/l+§.

Proof: The proof is given in Chapter 2.

Theorem 3.2

For the mean, M, =¢" J%az, of the lognormal distribution, the Probability-Matching
prior is given by:

pp(y,az)oc% 1+;_27.

Proof: Refer to Chapter 1 for more details regarding the derivation of this prior.




Corollary 1: The Reference prior is not a Probability-Matching prior for the mean.

Theorem 3.3

For the mode, M, =e""’2, of the lognormal distribution, the Reference prior relative to

the ordered parameterisation ( M, 0'2) is given by:

g (,u,oz)océ 1+2i7.

Proof: The proof is given in the appendix to this chapter.

Theorem 3.4

For the mode, M, =" , of the lognormal distribution, the Probability-Matching prior

is given by:

ﬂp<y,02)oc%,/1+2i7.

Proof: The proof is given in the appendix to this chapter.

Corollary 2: The Reference prior is not a Probability-Matching prior for the mode of the

lognormal distribution.

It is easy to prove that for the median, M, =e”, the Probability-Matching and Reference

priors are the same, that is:




4 (10 =4 (.0%) .

3.4 Procedure for Analysis of Data
The data obtained were in the form of readings (in different settings) from two

populations. Let us denote the original readings as: X, where i=1,2. Denote the log-

transformed data once again by Y, =log(X;). From this log-transformed data the

following statistics are calculated:

Using these calculated statistics, the simulation procedure was similar to the procedures
described in Chapters 1 and 2. However, the simulation procedure is adjusted so as to
simulate from two different populations and then the difference is calculated in each case.

This difference results in the simulated values.

Probability-matching and Reference Prior Distributions

The aforementioned simulation procedure remains unchanged except for step la in
Section 1.1. This step implicitly assumes the posterior distribution resulting from the

prior distributions mentioned before (Priors 1 and 2). As will be shown here the form of

the derived prior distributions only affects the posterior distribution of o,>. The




conditional distribution 4 |o®, as mentioned in step 1b in Section 1.1 remains

unchanged.

Using the form of the likelihood derived in Chapter 2 the following posterior

distributions are (for the Probability-Matching and Reference prior distributions

respectively):
1 L
2 1 2 \[ 2702 )2 n, 1) Vs
P(u,o0’ | data) = — 1+= I expl——L(u.-0) || —= | exp| -—<LL
(1,07 | data) 1,_,[ [fo aj][ " ] p{ 20}(;:, ) }[a}} p( 207
3.1
. 1 &
where g, =—>y,,
nj] i=1
v,=n; -1 and
A2 1 & ~ N2
6 =—2. =)
le i=]
From (3.1) the following is evident:
o’
yj|0'2,data~N(,&j,—’] (3.2)
n,

and for O‘f , the posterior density function is as follows:

1
5("/‘1*‘2) v 6‘2
P(o'2.|data)= 1+__2? Lz exp| - Jl 21 (3.3)
’ O-j O-j 2O—j

for the Probability-Matching prior distribution and

Lo
5 2 V.62
P(c; |data) = 1+i2 —l—z- exp| -2 3.4
o\ 0; 20;




for the Reference prior distribution. Since both (3.3) and (3.4) are non-standard

distributions the simulation procedure described in step la in Section 1.1 was adapted so
as to use the rejection method to simulate O'Jz- observations from these posterior

distributions.

3.5 Results
Due to the definition of the ratio(s) above we expect « to be centered around 0 (or the

exponent of « to be centered around 1) if the data from two different samples are equal.
If the credibility interval (95%) does not contain O (or 1 alternatively) then it is unlikely

that the data came from the same population.

3.5.1 Refinery Data

The example is the same as used in Krishnamoorthy and Mathew (2003). An oil refinery
located at the northeast of San Francisco conducted a series of 31 daily measurements of
the carbon monoxide levels arising from one of their stacks between April 16 and May 16
1993. The measurements were submitted as evidence for establishing a baseline to the
Bay Area Air Quality Management District (BAAQMD). BAAQMD personnel also
made 9 independent measurements of the carbon monoxide concentration from the same
stack over the period September 11, 1990 to March 30, 1993. It appears that the refinery
had an incentive to overestimate carbon monoxide emissions, and it was this assertion

that was tested by Krishnamoorthy and Mathew (2003). The original measurements were

as follows:




Table 13: Refinery Data

Source Measurements Obtained

Refinery 45; 30; 38; 42; 63; 43; 102; 86; 99; 63, 58;
34; 37; 55; 58; 153; 75; 58; 36; 59; 43;
102; 52; 30; 21; 40; 141; 85; 161; 86; 71

BAAQMD 13; 20; 4; 20; 25; 170, 15; 20; 15

The log transformed measurements collected by the refinery can be summarised as

follows:
n, =31
¥y, =4.0743
s, =0.5021

The log transformed measurements from the second sample can be summarised by:

n,=9
¥, =2.963
s, =0.974

Krishnamoorthy and Mathew (2003) reached the conclusion that the data do not provide

sufficient evidence to indicate that the mean measurement by the refinery is greater than

that of BAAQMD, which was contrary to the speculation.

As mentioned earlier in this section we approached the problem from a Bayesian

perspective and in addition to this, not only was the ratio of the means investigated, but

also the ratio of the medians. It should be remembered that since the method proposed by

Krishnamoorthy and Mathew (2003) is technically the same as the use of Prior 1, we

expect Prior 1 once again to give the same results as obtained by these authors.




According to the methodology presented in Section 3.2, the following results were

obtained:

Table 14: Summary Results for Refinery Data

Quantity Prior @ exp(w)
Mean Prior 1 [-0.65853 : 1.07467] [0.51761 : 2.92903]
Prior 2 [-0.27764 : 1.08427] [0.75757 : 2.95728]
Median Prior 1 [0.78108 : 1.44468] [2.18382 :4.24049]
Prior 2 [0.82579 : 1.39271] [2.28369 : 4.02575]

These results indicate that for Priors 1 and 2 the same conclusions were obtained as were
obtained by Krishnamoorthy and Mathew (2003) for the means. It does not appear that
the means of the populations differ with any meaningful level of credibility. Thus, we
cannot say that the means from the two populations are different, but we can also not say
that they are not. It appears as though the ratio of the means is relatively skewed to the
left. Due to the definitions (the mean of the refinery data is the numerator in the ratio) it
appears as though there may be cause to suspect that the measurements do differ, but no
conclusive results can be obtained. The histograms below indicate this situation (notice
the skewed distribution). The first set of histograms represents the 100000 « and

exp(w) data points obtained for Prior 1. The second set of histograms represent this

situation for Prior 2.
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Figure 7: Histograms for Prior 2 (Means)
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As suggested by the literature, different results were obtained when analysing the
medians rather than the means of the data. Although different results are to be expected
to those for the mean (since the lognormal distribution is not a symmetric distribution)
the results indicate that the medians of the different samples are indeed not equal. This

tends to support the supposition that the refinery measurements are excessive.

From the credibility intervals in the text it is evident that there is more than a 0.95
probability that the median refinery measurement is indeed larger than the median of the
BAAQMD data. The following two sets of histograms indicate this situation for

Priors 1 and 2.




Figure 8: Histograms for Prior 1 (Medians)
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Figure 9: Histograms for Prior 2 (Medians)
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Probability-matching and Reference Prior Distribution Results

As mentioned before, a similar analysis was conducted using the derived Probability-

Matching and Reference prior distributions. The following results were obtained:

Table 15: Results for Refinery Data: Probability-Matching and Reference Priors

Quantity Prior o} exp(w)
Mean PMP [-0.37879 : 1.08436] [0.68469 : 2.95754]
Ref [-0.79154 : 1.07592] [0.45314 : 2.93268]
Median PMP [0.79618 : 1.41430] [2.21704 : 4.11361]
Ref [0.74299 : 1.48256] [2.10222 : 4.40422]

So we can see that by using these two prior distributions identical conclusions were
reached as those obtained using Priors 1 and 2. The following histograms represent this

situation:
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Figure 10: Histograms for Probability-matching Prior (Means)
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Figure 11: Histograms for Reference Prior (Means)

Histogram of Simulated Log Transformed Ratio of Means
T T

i

e

R I Ty L




Hisiogram of Simulated Log Transformed Ratic of Medians
T T

Hisiagram of Simulated Lognomai Retio of Medians
¥




Figure 13: Histograms for Reference Prior (Medians)
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We can see from the above results that the Reference prior tends to result in wider

credibility intervals than the Probability-Matching prior in this setting for both the means

and the medians of the population. Overall, Prior 2 results in the best results, in terms of

interval length.
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3.5.2 Cloud Seeding Data

The following example is conceptually similar to the previous example. It was also one
of the sets of data analysed by Krishnamoorthy and Mathew (2003). The same procedure
was used to determine the Bayesian credibility intervals. Thus, for the purposes of

brevity the methodology and specification will not be presented again.

The data on the amount of rainfall (in acre-feet) from 52 clouds, 26 of which were chosen
at random and seeded with silver nitrate, were obtained. Probability plots indicated that
the lognormal distribution was a better fit than the normal distribution. The

measurements were given as follows:

Table 16: Cloud Sceding Data

Source Measurements Obtained

Unseeded 1202.6; 830.1; 372.4; 345.5; 321.2; 244.3;
163.0; 147.8; 95.0; 87.0; 81.2; 68.5; 47.3;
41.1; 36.6; 29.0; 28.6; 26.3; 26.1;, 24.4;

21.7,17.3;11.5;4.9;49;1.0

Seeded 2745.6; 1697.8; 1656.0; 978.0; 703.4;
489.1; 430.0; 334.1; 302.8; 274.7; 274.7,
255.0; 242.5; 200.7; 198.6; 129.6; 119.0;
118.3; 115.3; 92.4; 40.6; 32.7; 31.4; 17.5;

7.7, 4.1
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The log transformed measurements collected from the unseeded clouds can be

summarised as follows:

n, =26
¥, =3.990
s, =1.642

The log transformed measurements for the seeded clouds can be summarised by:

n, =26
¥y, =5.134
s, =1.600

Naturally, we would like to test whether the seeding had a positive effect on the rainfall
measured. Krishnamoorthy and Mathew’s (2003) generalized confidence limit method
indicated that there was insufficient data to be able to ascertain whether 7, >7,. The
generalized p-value turned out to be 0.078. However, application of the two-sample t-test
resulted in a p-value of 0.007, indicating that there is perhaps a difference between the
rainfall from seeded and unseeded clouds. A third test, the Z-score test, yielded similar

conclusions as the generalized p-value.

Using the Bayesian methodology, the following results were obtained:

Table 17: Results for Cloud Sceding Data

Quantity Prior @ exp(w)
Mean Prior 1 [-2.36083 : 0.28328] [0.09434 : 1.32748]
Prior 2 [-2.28273 : 0.17100] [0.10201 : 1.18650]
Median Prior 1 [-1.46804 : -0.82284] [0.23038 : 0.43918]
Prior 2 [-1.44920 : -0.82870] [0.23476 : 0.43662]

As with the previous example it appears as though the conclusions obtained from the
means of the two populations agree with the conclusions reached by Krishnamoorthy and

Mathew (2003). From the data we find that there is not enough evidence to be able to say
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with any certainty that the means of the distributions are different. However, once again
we see that there is a high degree of probability that the medians of the two populations
do indeed differ. Due to the definition of the variables under analysis there is more than a
0.95 probability that the medians differ for unseeded and seeded observations for both

choices of prior distributions.

The following histograms once again illustrate the situation graphically for the different

prior distributions as well as for the different quantities of interest:
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Figure 14: Histograms for Prior 1 (Means)
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Figure 15: Histograms for Prior 2 (Means)
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Figure 17: Histograms for Prior 2 (Medians)
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Probability-matching and Reference Prior Distribution Results

As for the previous example, the Probability-Matching and Reference prior distributions

were also used to analyse the data. This was done according to the same methodology

described earlier. The results were as follows:

Table 18: Cloud Secding Data Results - Probabilitv-Matching and Reference Priors

Quantity Prior I exp(w)
Mean PMP [-2.30325:0.23930] [0.09993 : 1.27036]
Ref [-2.39517:0.31731] [0.09116 : 1.37343]
Median PMP [-1.45412 : -0.81964] [0.23361 : 0.44059]
Ref [-1.47673 : -0.81758] [0.22838 : 0.44150]
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Once again, the same conclusions that were reached by using the Priors 1 and 2 were also
obtained using the Probability-Matching and Reference prior distributions. The

following histograms graphically represent these results:

“Hisiogram of Simulaied Lognormsl Ratio of Means
T T
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Figure 19: Histograms for Reference Prior (Means)
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Figure 20: Histograms for Probability-Matching Prior (Medians)
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Fiure 21: Histograms forReference Prior (Medians)
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It is therefore clear that the results obtained from the different prior distributions are for

all practical purposes the same.

3.5.3 Diabetes Data Example

On page 3761 of Zou et al (2009a) the following example was given (as referenced in
Zhou et al (1997b)): the effect of race on the cost of medical care for type I diabetes was
investigated using MOVER. Log transformed cost data for 119 black patients and 106

white patients. For the black patients the following log-transformed data was available:

Ay = ¥, = 9.06694 and 62 = s? = 1.82426. For the white patients this was fi, =
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y, = 8.69306 and 62 = s? = 2.69186. For the MOVER the following results were

obtained and this is compared to results obtained from the Bayes methods:

Table 19: Diabetes Results

Probability-
Jeffreys Independence Reference Matching
MOVER Rule Jeffreys Prior Prior

Black Patients
Lower Limit (equal-tailed) 15806.00 15970.19 15882.58 16021.01 15906.92
Upper Limit (equal-tailed) 31388.77 31759.23 31752.94 32025.42 31557.68

Lower Limit (HPD) 15708.48‘ 15626.14 15753.04 15671.29
Upper Limit (HPD) 31063.21 31121.86 31351.21 30982.03

White Patients
Lower Limit (equal-tailed) 14842.03 15097.15 15039.52 15081.46 14962.31
Upper Limit (equal-tailed) 39722.09 40079.56 40156.06 40483.85 40019.03

Lower Limit (HPD) 14744.94 1466891  14765.88 14461.04
Upper Limit (HPD) 38799.26 38847.41  39404.13 38289.58

Difference
Lower Limit (equal-tailed) -19112.18 -19156.98 -19241.18 -19812.57 -19169.17
Upper Limit (equal-tailed) 11371.14 11229.07 11381.24 11457.97 11361.90

Lower Limit (HPD) -19161.99 -19254.62 -19820.21 -19170.15
Upper Limit (HPD) 11225.65 11367.43 11446.41 11360.83

Since the sample sizes are large the interval lengths for the different procedures are more
or less the same. It is however, clear that the HPD intervals for the Independence
Jeffreys’ prior are somewhat shorter for black and white patients than those of the

MOVER.

Derivation of the Central Moments of 6= v, — v,

As an alternative to the simulation study discussed in previous sections, another method
is available to determine a confidence interval for the ratio of the means from two
lognormal populations. This method requires the derivation of the first four central

moments from the original problem specification.




The next section describes the derivation of the required central moments for the ratio of
means from two lognormally distributed populations. This is performed for the sefting
described in previous sections of this chapter, i.e. populations without zero observations.
Only the main results are given in the next section and the interested reader is referred to

the appendices to this chapter for a more complete discussion of the derivation.

3.6 First Four Central Moments:

First let us restate and re-define the problem setting as follows: consider a random
variable X ; that has a lognormal distribution and let 4, and o’ ; denote the mean and
variance respectively of In(X;) such that Y=ln(Xj)~N(/tj,O'j2), for j=1,2. The
mean of the particular lognormal distribution is defined as:
M, =exp(y; +lajz.).
2

Furthermore, define:

M, 1 1
o= log(VLJ=(M +§o’12j_[/12 +50-22)
—{. — Lo o a\_
=(t-w)+5 (07 =a3)=r-7,
We are interested in the mean and variance, as well as the third and fourth central

moments of the posterior distribution of 6. If the same prior distributions as in Section

2.2 are used, then:

2
~ O .
K, | o2, data~ N(i1;, %) for (j=1,2)




Zx,

_, i=|
Furthermore, the posterior distribution of o’ ; 1s an Inverse Gamma distribution and can

be written as:

p(ajz. | data) = K(O'f )_%(Vﬁz) exp {_%vj_s;}’ ;>0

where
1,
2 Vi
[ K:(””Jz L,
2 F(lv.j
2 J
v, =nj.—1 and

jll

We are now ready to state the following theorem:

Theorem 3.5

The mean and variance and the third and fourth central moments of the posterior

distribution of § are respectively given by:

2 2
E(6|data) = (7, —yz.)+—1-[ﬂ2—”—“‘22), (3.8)
1

2\v, -2 v, -

2

18 (v)
Var(5 | data) IZ]E_—:I_)(V—_z)+ 2]2]: (VJ 2) (V _4) (39)

_ 3 3 (vs, )2 _ (vas; )2
E{[§ E(J)] ] data} - 3{"1 (V1 _2)2 (Vl _4) n, (VZ _2)2(V2 _4)
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+2{ (vs,) (v,s,) }(3_10)

=2’V D1 —6) (v, -2 (v, —4)(v, -6)
and

o))

j#i njni(vj - 2)(Vi -2)

E{[5-E(8)] | data} = 33 ()

= njz. (v, =-2)v, - 4)

+3i (% +2)(v5) )3 +322: (v;53 )2 (vis?)

nj(vj—2)3(vj—4)(vj—6) ni(vj—2)(vj—4)(v,.—2)

Jj=1 J#i

2 (vj+10)(vjsj?)4

n,(v,~2) (v, —4)v, - 6)(v, ~8)

Jj=1 j

N3

3
+_
4

(3.11)

%i (v5t) (vs?)

(v, =2)'(v, = 2)*(v, (v, - 4)

J#i

Proof: The proof is given in the appendix to this chapter.




Appendix to Chapter 3
Proof of Theorem 3.3

The parameter of interest in the mode of the lognormal distribution is
M,=1t(6)= e

Define

o 2w) e Y|

o(t(8).0°) | o 1

Hence, the Fisher information matrix under the reparameterisation (t (0),0’2) is given by

1
' () 1(8)o’
F(t(e),az)zAF(,u,az)A= . I

Therefore, the Reference prior relative to the ordered parameterisation (t(é?),crz) is

given by

Ty (I(Q),az)oc%— 1+

In the ( M, o_z) parameterisation this corresponds to




11 1
ﬁk(u,az)ocm; 1+20_2 (z(B))oc—— 1+20_2.

This is the same result derived by Roman (2008).

Proof of Theorem 3.4

1%} 2 2
t(g) :ell—a' and at(gz) — H=O
ou o
Also
: oe) o) o
vV (8)= =e"7 (1 -1
(0|20 2D e
and
v,/ (8)F" (8)=¢"7[0> -20*]
vV, (6)F'(8)v,(6)= P (0’2 + 20'4)
and
Therefore

v, (6)F(6)

, _ I S
y(e)_\/v,'(e)F—l(o)v,(e) i(0) 70 Joi+20°

I:o‘2 —204].

For a prior p,(68)=p, (,u,az) to be a Probability-Matching prior, the differential

equation
2 15(0) 2, (6)]+ =25 [7:(0) 4 (8)] =0
a/l ao_Z 2 P

must be satisfied. If we take
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ﬂp(y,az)oc%,,l+2—;-3

then the differential equation will be satisfied.

Proof of Theorem 3.5

From the posterior distribution of x; (conditionally normally distributed) and o’ ; we

know that

E{yjlaf,data}zfj, ' (A.1)

: , (A.2)
r(3)
V. 2 data}=E 5 Vo2, data) = & A3
ar{,ujlaj, ata}— (,uj—yj) |} ,data _—117 (A.3)
V3, 2
E{(yj—yj) laj,data}=0 and (A.4)
o2\
—\4 2 i
E{(,uj—yj) laj,data}:3[n—;J . (A.5)

Now, the following equations represent the relationships between the moments around
the origin, 4, 44,44 and u, and the central moments, 4,4, 1, and u,, where u =y,
are given by:

1=+ (1), (A.6)

L= 1, +3ﬂz/11'+(/‘1')3 and (A7)

py = sty + gt +6(p) 1, + (24’
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The above relationships were derived by expanding the definitions of the central

moments, i.e. expanding = E{[X—,u]']r} and 4 = E{X’}.

Proof of (3.8)

From the definition and posterior distribution of § we know the following:
- - 1
E(5 | O-IZDGZZDdata) = (ylo _y20)+5(o-|2 _O-;')

and using (A.2) above and taking the expectation with respect to each 0'12. , we find that

the unconditional expectation can be written as

1{ vist  v,s)
E(JS|d =(y,. -V il B bt PR e A9
(01dute) =5, -5, )+ 5 225 - 25 9

Proof of (3.9)

To find the unconditional variance, note that
1 2
5 ={ (- sm)+3(e1 o)}

= 4 =2 + 45 +(:u| _/'[2)(0-]2 _0-22)'*'%(012 _0_3)2.

Taking the expectation

+(F =7 ) (07 ~02) 4~ (0? ~02) (A.10)
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Once again, taking the expectation of (A.10) with respect to each O'lz. using relationship

(A.2) we can calculate the following:

o Lyt o, 1
E(67|data) = 2 +——21- 23, 5, + Vi +——2L
n v, = n, v, =2
2 2
v,S V,S
+{(yv, -7V i T272
G yz'){v,—z vZ—Z}
2 2
1 (Vlslz) 3 VSt V,S 3 (stzz)

41(v,=2)(v,-4) vi-2v,=-2 (v,-2)(v,-4) 10

Lastly, combining (A.11) and squaring (A.9) we can find the unconditional variance of &

with respect to the following relationship:

Var(5 | data) = E(52 | data) —{E(§ | data)}2

_~ Il 1 L (stfz‘)z
53 e (A12)

Proof of (3.10)

2 2
Since &|o?,07,data ~ N{(fl, —5).2.)"'%(0"2 _0-22);_O-'_+ﬁ}, or equivalently in a
CINC

condensed notation & | 0'12,0’22 ,data~ N { s kb 5} , and similarly to (A.4) and (A.5)

ol o} ’
s =0 and g, =3} —+—

noon

then relationship (A.7) can be written as:
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E(53 lo7, O'f,data) = s +31bsk05 + (s )3

2 2
nooon
+(on "yz.)3 +—

+3(-3.) (o -02) +5(o7 -02)

3

Taking the expectation of (A.14) with respect to O'jz. we obtain

2
E 53 d ' =3 VISI V2s2 5 T
( l ata) [(Vl _Z)nl + (V2 —2)}’12 (ylo y20)

| (vlsf)3 3(v,s,2)2(v2s§) . 3(v,s,2)(v2sf)2 ) (vzsz’)3
-2 -4)(n-6) (1-20-4)(-2) (-2)(-404-2) (1,-2)(n,-4)(v,-6)

(A.15)

Once again, using a relationship similar to (A.7) we know that
E{[5-£(5)] | data} = E(8° | data)~3Var (6| data) E(5 | data) ~{E (6| data)}’

and using (A.9), (A.12) and (A.15) this simplifies to:




Eﬂa—E@nT“mM}:{ (wiy ) }

n(v,-2) (v,-4) n (\/2—2)2 (v,—-4)

" (vs?) ) (vos2)
(v, -—2)3 (vi-4)(v,-6) (v, —2)3 (v,—4)(v,-6)

(A.16)
Proof of (3.11)
o oY
Since 5 = 3(—' + —zj we can re-write this relationship as
noon
4 4 2 2
s = 3(“—‘2+°'—§J+ 6(9'—)(ﬁJ (A.17)
noom n n,
From relationship (A.8):

E(54 | alz,azz,data) = Has + A5 155 + 6( 145 )2 Has (145 )4

=3 cr_,“+a_;‘ +6 o e +0+6{(‘ -7, )+l(02_02)}2 G—'Z+G—ZZ
nlz nzz n n, Yo ™ Vae 2 1 2 nl n2

Now, re-writing and taking the expectation of (A.18) with respect to o it is possible to

derive the following using (A.9):

* | data) = (V'S'Z)z + (VZSZZ)Z
E(5*|da )_3{}112(%_2)(%_4) n;(vz—2)(v2—4)}
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2
+()’,l. -}72.)4 +2()_’,. ‘yz-)3 {%_%}

+3

(-2(5-2)(-4) (n-2)(n,-4)(1,-6)

(Vlslz )4 4 (Vlslz)3 (stj)

(v, -2)(1/1 —4)(vI —6)(vI —8) (v, —2)(1/, —4)(1/l -6)(v2 —2)

P 5 R (3 1

16 (v,-2)(v,—4)(v2—2)(v2—4) (v,—2)(v2—2)(v2-4)(v2—6)
()

(1 =2)(v,~4)(v,-6)(»,-8)

+

(A.19)

Using a relationship similar to (A.8) we know that
E{[5— E(é‘)]4 | data} = E(54 | data) - 4E(5 | data)E{[é’—E(5):|3 | data}
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-6 {E(é‘ | data)}2 Var{5| data} —|:E{5 | data}]4

(A.20)
Therefore, using the previous results obtained, namely (A.9), (A.12), (A.16) and (A.19),

substituting these into (A.20) and simplifying, we arrive at the desired result:

E{[&—E(a)]“|daza}=3i i () 3y (v57) (%))

=t 1 (V,- _2)(Vi _4) izj W1, (Vi _2)(Vj —2)

2 (Vi+2)(visi2 )3 3 2 (Visi2 )2 (VJ'SJZ')
n(v,=2) (v,-4)(v-6) nj(v,.—2)2(v,.—4)(vj—2)
e bald)  ae (s

G - -9 27 (-] -

+3

(A21)
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Table 20: Results for Design 1 — Equal-Tailed Intervals

n n Method Coverag.e Coverage Average 9%ClI <8 %CI>86 Rglative
Probability Error Length Bias
10 10 Prior | 0.942 0.008 5.050 0.025 0.033 0.138
Prior 2 0.944 0.006 4.731 0.021 0.035 0.250
Prior 3 0.951 -0.001 6.661  0.022 0.027 0.102
Prior 4 0.955 -0.005 5.861 0.020 0.025 0.111
10 25 Prior 1 0.950 0.000 4753  0.024 0.026 0.040
Prior 2 0.955 -0.005 4.198 0.016 0.029 0.289
Prior 3 0.938 0.012 5.848 0.031 0.031 0.000
Prior 4 0.946 0.004 5.189  0.020 0.034 0.259
25 10 Prior 1 0.964 -0.014 2.809 0.014 0.022 0.222
Prior 2 0.949 0.001 2666 0.018 0.033 0.294
Prior 3 0.953 -0.003 3.196 0.019 0.028 0.191
Prior 4 0.949 0.001 3.000 0.014 0.037 0.451
25 25 Prior 1 0.947 0.003 2213 0.018 0.035 0.32]
Prior 2 0.948 0.002 2.135 0.017 0.035 0.346
Prior 3 0.966 -0.016 2352 0.017 0.017 0.000
Prior 4 0.957 -0.007 2304 0.022 0.021 0.023
25 50 Prior 1 0.955 -0.005 2.100 0.018 0.027 0.200
Prior 2 0.954 -0.004 2.089 0.031 0.015 0.348
Prior 3 0.948 0.002 2.239  0.024 0.028 0.077
Prior 4 0.948 0.002 2.189 0.017 0.035 0.346
25 100 Prior | 0.951 -0.001 2.107 0.029 0.020 0.184
Prior 2 0.942 0.008 2032 0.027 0.031 0.069
Prior 3 0.954 -0.004 2,181  0.021 0.025 0.087
Prior 4 0.954 -0.004 2.147 0.023 0.023 0.000
50 25 Prior 1 0.948 0.002 1.521 0.028 0.024 0.077
Prior 2 0.945 0.005 1.495 0.019 0.036 0.309
Prior 3 0.950 0.000 1.569 0.018 0.032 0.280
Prior 4 0.951 -0.001 1.554 0.017 0.032 0.306
50 50 Prior 1 0.958 -0.008 1.387 0.019 0.023 0.095
Prior 2 0.948 0.002 1.378  0.027 0.025 0.038
Prior 3 0.960 -0.010 1.414  0.021 0.019 0.050
Prior 4 0.951 -0.001 1.400 0.014 0.035 0.429
50 100 Prior 1 0.947 0.003 1.344  0.023 0.030 0.132
Prior 2 0.947 0.003 1.329 0.019 0.034 0.283
Prior 3 0.947 0.003 1.370  0.015 0.038 0.434
Prior 4 0.941 0.009 1373 0.028 0.031 0.051
100 25 Prior 1 0.949 0.001 1.147  0.025 0.026 0.020
Prior 2 0.946 0.004 1.134¢  0.019 0.035 0.296
Prior 3 0.958 -0.008 1.183  0.017 0.025 0.190
Prior 4 0.943 0.007 1.176  0.011 0.046 0.614
100 50 Prior 1 0.953 -0.003 0.992 0.021 0.026 0.106
Prior 2 0.943 0.007 0.984 0.026 0.031 0.088
Prior 3 0.942 0.008 1.007  0.025 0.033 0.138
Prior 4 0.958 -0.008 1.004 0.024 0.018 0.143
100 100 Prior 1 0.943 0.007 0.933 0.028 0.029 0.018
Prior 2 0.946 0.004 0918 0.021 0.033 0.222
Prior 3 0.966 -0.016 0.937 0.015 0.019 0.118
Prior 4 0.944 0.006 0.931 0.029 0.027 0.036
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Table 21: Results for Design 2 — Equal-Tailed Intervals

n, n, Method Covera_g; Coverage Average 9,C/ <8 %CI>0 Rf:lative
Probability Error Length Bias
10 10 Prior | 0.955 -0.005 9.840 0.020 0.025 0.111
Prior 2 0.947 0.003 8.944 0.024 0.029 0.094
Prior 3 0.937 0.013 12.758 0.026 0.037 0.175
Prior 4 0.960 -0.010 11.378  0.018 0.022 0.100
10 25 Prior | 0.949 0.001 7121 0.017 0.034 0.333
Prior 2 0.941 0.009 6.540 0.031 0.028 0.051
Prior 3 0.944 0.006 8.981 0.032 0.024 0.143
Prior 4 0.945 0.005 7.852  0.029 0.026 0.055
25 10 Prior 1 0.962 -0.012 7.329 0.020 0.018 0.053
Prior 2 0.956 -0.006 6.479  0.021 0.023 0.045
Prior 3 0.952 -0.002 8936 0.025 0.023 0.042
Prior 4 0.955 -0.005 7.867 0.021 0.024 0.067
25 25 Prior 1 0.953 -0.003 4119  0.02i 0.026 0.106
Prior 2 0.953 -0.003 3.997 0.023 0.024 0.021
Prior 3 0.949 0.001 4396 0.0l6 0.035 0.373
Prior 4 0.951 -0.001 4316 0.026 0.023 0.061
25 50 Prior 1 0.950 0.000 3.333  0.020 0.030 0.200
Prior 2 0.952 -0.002 3.299 0.022 0.026 0.083
Prior 3 0.944 0.006 3.576  0.025 0.031 0.107
Prior 4 0.961 -0.011 3.421  0.020 0.019 0.026
25 100 Prior | 0.950 0.000 3.062  0.025 0.025 0.000
Prior 2 0.950 0.000 2984  0.022 0.028 0.120
Prior 3 0.955 -0.005 3.167 0.017 0.028 0.244
Prior 4 0.960 -0.010 3.119  0.020 0.020 0.000
50 25 Prior 1 0.937 0.013 3401 0.030 0.033 0.048
Prior 2 0.947 0.003 3.335  0.028 0.025 0.057
Prior 3 0.947 0.003 3.557 0.023 0.030 0.132
Prior 4 0.944 0.006 3463 0.029 0.027 0.036
50 50 Prior | 0.957 -0.007 2.546 0.019 0.024 0.116
Prior 2 0.953 -0.003 2.523  0.022 0.025 0.064
Prior 3 0.927 0.023 2.614 0.035 0.038 0.041
Prior 4 0.953 -0.003 2579 0.022 0.025 0.064
50 100 Prior | 0.946 0.004 2.130 0.024 0.030 0.111
Prior 2 0.955 -0.005 2,123  0.029 0.016 0.289
Prior 3 0.942 0.008 2,179 0.033 0.025 0.138
Prior 4 0.944 0.006 2.148  0.020 0.036 0.286
100 25 Prior | 0.954 -0.004 3.090 0.0i9 0.027 0.174
Prior 2 0.943 0.007 2961 0.034 0.023 0.193
Prior 3 0.959 -0.009 3.227 0.019 0.022 0.073
Prior 4 0.944 0.006 3.163  0.029 0.027 0.036
100 50 Prior | 0.953 -0.003 2.137  0.022 0.025 0.064
Prior 2 0.945 0.005 2.131  0.029 0.026 0.055
Prior 3 0.934 0.016 2.190  0.025 0.041 0.242
Prior 4 0.946 0.004 2.170  0.026 0.028 0.037
100 100 Prior | 0.949 0.001 1.680 0.030 0.021 0.176
Prior 2 0.948 0.002 1.680 0.032 0.020 0.231
Prior 3 0.949 0.001 1.707  0.032 0.019 0.255
Prior 4 0.940 0.010 1.682  0.026 0.034 0.133
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Table 22: Results for Design 3 — Equal-Tailed Intervals

n, n, Method Coverag; Coverage Average 9%CI<@ %CI>8 Rf:lative
Probability Error Length Bias
10 10 Prior | 0.952 -0.002 3273 0014 0.034 0417
Prior 2 0.957 -0.007 2992 0.015 0.028 0.302
Prior 3 0.956 -0.006 4.142 0011 0.033 0.500
Prior 4 0.955 -0.005 3.764  0.023 0.022 0.022
10 25 Prior | 0.950 0.000 3.065 0.020 0.030 0.200
Prior 2 0.949 0.001 2.791  0.022 0.029 0.137
Prior 3 0.948 0.002 3.989 0.024 0.028 0.077
Prior 4 0.946 0.004 3.439  0.030 0.024 0.111
25 10 Prior 1 0.957 -0.007 1.718 0.018 0.025 0.163
Prior 2 0.944 0.006 1.580 0.013 0.043 0.536
Prior 3 0.962 -0.012 1.922  0.015 0.023 0.211
Prior 4 0.959 -0.009 1.789 0.013 0.028 0.366
25 25 Prior 1 0.948 0.002 1.413  0.021 0.031 0.192
Prior 2 0.967 -0.017 1.391  0.009 0.024 0.455
Prior 3 0.961 -0.011 1.509 0.017 0.022 0.128
Prior 4 0.952 -0.002 1.501  0.022 0.026 0.083
25 50 Prior { 0.967 -0.017 1361  0.011 0.022 0.333
Prior 2 0.952 -0.002 1.353  0.018 0.030 0.250
Prior 3 0.951 -0.001 1.478  0.020 0.029 0.184
Prior 4 0.955 -0.005 1.411  0.023 0.022 0.022
25 100 Prior 1 0.952 -0.002 1.387 0.025 0.023 0.042
Prior 2 0.959 -0.009 1.344 0.014 0.027 0.317
Prior 3 0.949 0.001 1.433  0.019 0.032 0.255
Prior 4 0.957 -0.007 1.416 0.020 0.023 0.070
50 25 Prior 1 0.939 0.011 0.952  0.025 0.036 0.180
Prior 2 0.939 0.011 0943 0.023 0.038 0.246
Prior 3 0.942 0.008 0.978 0.020 0.038 0310
Prior 4 0.943 0.007 0.966 0.025 0.032 0.123
50 50 Prior 1 0.964 -0.014 0.898 0.014 0.022 0.222
Prior 2 0.949 0.001 0.896 0.025 0.026 0.020
Prior 3 0.934 0.016 0.925 0.029 0.037 0.121
Prior 4 0.952 -0.002 0915 0.018 0.030 0.250
50 100 Prior 1 0.945 0.005 0.876 0.02] 0.034 0.236
Prior 2 0.946 0.004 0.873  0.032 0.022 0.185
Prior 3 0.946 0.004 0.901 0.03) 0.023 0.148
Prior 4 0.950 0.000 0.885 0.016 0.034 0.360
100 25 Prior | 0.951 -0.001 0.698 0.021 0.028 0.143
Prior 2 0.950 0.000 0.685 0.026 0.024 0.040
Prior 3 0.955 -0.005 0.715 0.014 0.031 0.378
Prior 4 0.948 0.002 0.706 0.018 0.034 0.308
100 50 Prior | 0.943 0.007 0.626 0.026 0.031 0.088
Prior 2 0.944 0.006 0.625 0.031 0.025 0.107
Prior 3 0.944 0.006 0.631 0.018 0.038 0.357
Prior 4 0.947 0.003 0.634 0.027 0.026 0.019
100 100 Prior 1 0.951 -0.001 0.604 0.024 0.025 0.020
Prior 2 0.955 -0.005 0.603  0.023 0.022 0.022
Prior 3 0.943 0.007 0.615 0.031 0.026 0.088
Prior 4 0.948 0.002 0.602 0.013 0.039 0.500
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Table 23: Results for Design 4 — Equal-Tailed Intervals

Method Coverage Coverage Average 9%CI<€ %CI>@ Relative
Probability Error Length Bias
Prior | 0.942 0.008 5.050 0.025 0.033 0.138
Prior 2 0.944 0.006 4,731 0.02] 0.035 0.250
Prior 3 0.951 -0.001 6.661 0.022 0.027 0.102
Prior 4 0.955 -0.005 5.861  0.020 0.025 0.111
Prior | 0.950 0.000 4753 0.024 0.026 0.040
Prior 2 0.955 -0.005 4.198 0.016 0.029 0.289
Prior 3 0.938 0.012 5.848 0.031 0.031 0.000
Prior 4 0.946 0.004 5.189  0.020 0.034 0.259
Prior | 0.964 -0.014 2.809 0.014 0.022 0.222
Prior 2 0.949 0.001 2.666 0.018 0.033 0.294
Prior 3 0.953 -0.003 3.196 0.019 0.028 0.191
Prior 4 0.949 0.001 3.000 0.014 0.037 0.451
Prior | 0.947 0.003 2213 0.018 0.035 0.321
Prior 2 0.948 0.002 2,135  0.017 0.035 0.346
Prior 3 0.966 -0.016 2352 0.017 0.017 0.000
Prior 4 0.957 -0.007 2304 0.022 0.021 0.023
25 50 Prior | 0.955 -0.005 2,100 0.018 0.027 0.200
Prior 2 0.954 -0.004 2.089 0.03] 0.015 0.348
Prior 3 0.948 0.002 2239 0.024 0.028 0.077
Prior 4 0.948 0.002 2.189 0.017 0.035 0.346
25 100 Prior 1 0.951 -0.001 2.107 0.029 0.020 0.184
’ Prior 2 0.942 0.008 2.032 0.027 0.03i 0.069
’ Prior 3 0.954 -0.004 2.181 0.021 0.025 0.087
Prior 4 0.954 -0.004 2.147  0.023 0.023 0.000
50 25 Prior 1 0.948 0.002 1.521  0.028 0.024 0.077
Prior 2 0.945 0.005 1.495 0.019 0.036 0.309
Prior 3 0.950 0.000 1.569 0.018 0.032 0.280
Prior 4 0.951 -0.001 1.554 0.017 0.032 0.306
50 50 Prior | 0.958 -0.008 1.387 0.019 0.023 0.095
Prior 2 0.948 0.002 1.378 0.027 0.025 0.038
Prior 3 0.960 -0.010 1.414 0.021 0.019 0.050
Prior 4 0.951 -0.001 1.400 0.014 0.035 0.429
50 100 Prior 1 0.947 0.003 1.344  0.023 0.030 0.132
Prior 2 0.947 0.003 1.329 0.019 0.034 0.283
Prior 3 0.947 0.003 1.370 0.015 0.038 0.434
Prior 4 0.941 0.009 1.373  0.028 0.031 0.051
100 25 Prior 1 0.949 0.001 1.147  0.025 0.026 0.020
Prior 2 0.946 0.004 1.134  0.019 0.035 0.296
Prior 3 0.958 -0.008 1183 0.017 0.025 0.190
Prior 4 0.943 0.007 1.176  0.0t1 0.046 0.614
100 50 Prior ] 0.953 -0.003 0992 0.021 0.026 0.106
Prior 2 0.943 0.007 0984 0.026 0.031 0.088
Prior 3 0.942 0.008 1.007 0.025 0.033 0.138
Prior 4 0.958 -0.008 1.004  0.024 0.018 0.143
100 100 Prior 1 0.943 0.007 0.933 0.028 0.029 0.018
Prior 2 0.946 0.004 0918 0.021 0.033 0.222
Prior 3 0.966 -0.016 0.937 0.015 0.019 0.118

Prior 4 0.944 0.006 0.931  0.029 0.027 0.036




Table 24: Results for Design 5 — Equal-Tailed Intervals

n, n, Method Covera_g.e Coverage Average 9%CI<@ %CI>6 Rf:lative
Probability Error Length Bias
10 10 Prior 1 0.954 -0.004 46.710 0.015 0.031 0.348
Prior 2 0.953 -0.003 42,795 0.018 0.029 0.234
Prior 3 0.947 0.003 59.779 0.024 0.029 0.094
Prior 4 0.952 -0.002 53.149 0.023 0.025 0.042
10 25 Prior | 0.950 0.000 45454 0.018 0.032 0.280
Prior 2 0.953 -0.003 41.351 0.02] 0.026 0.106
Prior 3 0.935 0.015 57.378 0.029 0.036 0.108
Prior 4 0.945 0.005 50.807 0.025 0.030 0.091
25 10 Prior | 0.954 -0.004 22.581 0.022 0.024 0.043
Prior 2 0.944 0.006 21.121 0.016 0.040 0.429
Prior 3 0.962 -0.012 23718 0.012 0.026 0.368
Prior 4 0.953 -0.003 23.047 0.015 0.032 0.362
25 25 Prior | 0.947 0.003 20.485 0.026 0.027 0.019
Prior 2 0.964 -0.014 20.193  0.013 0.023 0.278
Prior 3 0.962 -0.012 21.958 0.018 0.020 0.053
Prior 4 0.960 -0.010 21.614 0.021 0.019 0.050
25 50 Prior 1 0.966 -0.016 20.147 0.012 0.022 0.294
Prior 2 0.952 -0.002 20.031 0.018 0.030 0.250
Prior 3 0.947 0.003 21.801 0.028 0.025 0.057
Prior 4 0.938 0.012 21.308 0.025 0.037 0.194
25 100 Prior | 0.953 -0.003 20.689 0.024 0.023 0.021
Prior 2 0.956 -0.006 20.043  0.017 0.027 0.227
Prior 3 0.954 -0.004 21.562 0.023 0.023 0.000
Prior 4 0.949 0.001 21.240 0.026 0.025 0.020
50 25 Prior 1 0.936 0.014 13.351 0.027 0.037 0.156
Prior 2 0.934 0.016 13.275 0.030 0.036 0.091
Prior 3 0.951 -0.001 13.692 0.020 0.029 0.184
Prior 4 0.946 0.004 13.699  0.023 0.031 0.148
50 50 Prior | 0.958 -0.008 13.107 0.018 0.024 0.143
Prior 2 0.948 0.002 13.081  0.025 0.027 0.038
Prior 3 0.958 -0.008 13.373  0.021 0.021 0.000
Prior 4 0.952 -0.002 13.251 0.016 0.032 0.333
50 100 Prior 1 0.944 0.006 12.984 0.022 0.034 0214
Prior 2 0.945 0.005 12936 0.035 0.020 0.273
Prior 3 0.940 0.010 13.361  0.022 0.038 0.267
Prior 4 0.938 0.012 13.398  0.029 0.033 0.065
100 25 Prior | 0.947 0.003 9.276  0.026 0.027 0.019
Prior 2 0.950 0.000 9.191 0.025 0.025 0.000
Prior 3 0.949 0.001 9.402 0.017 0.034 0.333
Prior 4 0.945 0.005 9.325 0.014 0.041 0.491
100 50 Prior 1 0.934 0.016 8911 0.034 0.032 0.030
Prior 2 0.948 0.002 8910 0.025 0.027 0.038
Prior 3 0.946 0.004 9.031 0.019 0.035 0.296
Prior 4 0.955 -0.005 9.052  0.023 0.022 0.022
100 100 Prior | 0.947 0.003 8.856 0.026 0.027 0.019
Prior 2 0.956 -0.006 8.822 0.023 0.021 0.045
Prior 3 0.964 -0.014 8925 0.015 0.021 0.167
Prior 4 0.946 0.004 8.845 0.024 0.030 0.111
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Table 25: Results for Design 1 — HPD Intervals

n, n, Method Coverag§ Coverage Average 9%CI<8@ %CI >80 Rf:lative
Probability Error Length Bias

10 10 Prior 1 0.9760 -0.0260 4.6714 0.0220 0.0020 0.8333
Prior 2 0.9330 0.0170 39112 0.0610 0.0060 0.8209

Prior 3 0.9900 -0.0400 7.8038 0.0050 0.0050 0.0000

Prior 4 0.9840 -0.0340 6.1121 0.0100 0.0060 0.2500

10 25 Prior | 0.9560 -0.0060 4.0985 0.0380 0.0060 0.7273
Prior 2 0.9300 0.0200 3.4780 0.0670 0.0030 0.9143

Prior 3 0.9880 -0.0380 6.2292 0.0080 0.0040 0.3333

Prior 4 0.9720 -0.0220 5.0025 0.0260 0.0020 0.8571

25 10 Prior |l 0.9770 -0.0270 2.7080 0.0180 0.0050 0.5652
Prior 2 0.9630 -0.0130 24075 0.0300 0.0070 0.6216

Prior 3 0.9870 -0.0370 3.6598 0.0090 0.0040 0.3846

Prior 4 0.9750 -0.0250 3.0990 0.0130 0.0120 0.0400

25 25  Prior ] 0.9600 -0.0100 2.1201 0.0340 0.0060 0.7000
Prior 2 0.9380 0.0120 1.9625 0.0580 0.0040 0.8710

Prior 3 0.9710 -0.0210 24125 0.0190 0.0100 0.3103

Prior 4 0.9740 -0.0240 22689 0.0210 0.0050 0.6154

25 50 Prior | 0.9530 -0.0030 1.9881 0.0380 0.0090 0.6170
Prior 2 © 0.9440 0.0060 1.8703 0.0460 0.0100 0.6429

Prior 3 0.9690 -0.0190 2.2726 0.0190 0.0120 0.2258

Prior 4 0.9610 -0.0110 2.1003 0.0320 0.0070 0.6410

25 100 Prior | 0.9380 0.0120 1.9518 0.0530 0.0090 0.7097
Prior 2 0.9480 0.0020 1.8397 0.0470 0.0050 0.8077

Prior 3 0.9600 -0.0100 22142 0.0280 0.0120 0.4000

Prior 4 0.9580 -0.0080 2.0520 0.0330 0.0090 0.5714

50 25 Prior | 0.9700 -0.0200 1.4832 0.0190 0.0110 0.2667
Prior 2 0.9550 -0.0050 1.4320 0.0310 0.0140 0.3778

Prior 3 0.9690 -0.0190 1.6328 0.0190 0.0120 0.2258

Prior 4 0.9650 -0.0150 1.5487 0.0250 0.0100 0.4286

50 50 Prior | 0.9460 0.0040 1.3362 0.0440 0.0100 0.6296
Prior 2 0.9480 0.0020 1.3092 0.0390 0.0130 0.5000

Prior 3 0.9550 -0.0050 1.4186 0.0340 0.0110 0.5111

Prior 4 0.9590 -0.00%90 1.3943 0.0290 0.0120 0.4146

50 100 Prior | 0.9550 -0.0050 1.2993 0.0340 0.0t10 05111
Prior 2 0.9410 0.0090 1.2539 0.0520 0.0070 0.7627

Prior 3 0.9560 -0.0060 1.3795 0.0280 0.0160 0.2727

Prior 4 0.9520 -0.0020 1.3239 0.0300 0.0180 0.2500

100 25 Prior 1 0.9590 -0.0090 1.1295 0.0290 0.0120 0.4146
Prior 2 0.9530 -0.0030 1.1080 0.0260 0.0210 0.1064

Prior 3 0.9640 -0.0140 1.2220 0.0160 0.0200 0.1111

Prior 4 0.9620 -0.0120 1.1678 0.0250 0.0130 0.3158

100 50  Prior ] 0.9510 -0.0010 0.9769 0.0250 0.0240 0.0204
Prior 2 0.9420 0.0080 0.9508 0.0410 0.0170 0.4138

Prior 3 0.9580 -0.0080 1.0176 0.0200 0.0220 0.0476

Prior 4 0.9500 0.0000 0.9920 0.0310 0.0190 0.2400

100 100 Prior | 0.9440 0.0060 0.9040 0.0410 0.0150 0.4643
Prior 2 0.9360 0.0140 0.8862 0.0480 0.0160 0.5000

Prior 3 0.9590 -0.0090 09314 0.0260 0.0150 0.2683

Prior 4 0.9450 0.0010 0.9134 0.0370 0.0140 0.4510
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Table 26: Results for Design 2 — HPD Intervals

Prior 1
Prior 2
Prior 3
Prior 4

25 10 Prior |
Prior 2
Prior 3
Prior 4

25 25  Prior |
Prior 2
Prior 3
Prior 4

25 50  Priorl
Prior 2
Prior 3
Prior 4

25 100 Prior 1
Prior 2
Prior 3
Prior 4

50 25 Priorl
Prior 2
Prior 3
Prior 4

50 50 Priorl
Prior 2
Prior 3
Prior 4

50 100  Prior |
Prior 2
Prior 3
Prior 4

100 25  Prior ]
Prior 2
Prior 3
Prior 4

100 50  Prior 1
Prior 2
Prior 3
Prior 4

100 100  Prior 1
Prior 2
Prior 3
Prior 4

0.9690
0.9400
0.9820
0.9780

0.9760
0.9580
0.9880
0.9780

0.9630
0.9640
0.9710
0.9650

0.9650
0.9540
0.9730
0.9600

0.9500
0.9270
0.9680
0.9680

0.9610
0.9540
0.9670
0.9650

0.9560
0.9550
0.9620
0.9660

0.9520
0.9540
0.9670
0.9490

0.9540
0.9390
0.9730
0.9700

0.9530
0.9480
0.9590
0.9500

0.9490
0.9630
0.9570
0.9570

-0.0190

0.0100
-0.0320
-0.0280

-0.0260
-0.0080
-0.0380
-0.0280

-0.0130
-0.0140
-0.0210
-0.0150

-0.0150
-0.0040
-0.0230
-0.0100

0.0000
0.0230
-0.0180
-0.0180

-0.0110
-0.0040
-0.0170
-0.0150

-0.0060
-0.0050
-0.0120
-0.0160

-0.0020
-0.0040
-0.0170

0.0010

-0.0040

0.0110
-0.0230
-0.0200

-0.0030
0.0020
-0.0090
0.0000

0.0010
-0.0130
-0.0070
-0.0070

6.7261
5.6835
9.9831
7.9336

6.5254
5.7126
9.8738
7.9985

4.0543
3.7452
4.6650
4.3494

3.3085
3.1009
3.7214
3.4990

2.9260
2.7509
3.2681
3.0667

3.3002
3.0951
3.6903
3.4972

2.4863
24199
2.6901
2.5985

21122
2.0420
2.2120
2.1598

29148
2.7753
3.2536
3.0908

2.1013
2.0358
22198
2.1721

1.6486
1.6293
1.7112
1.6839

0.0260
0.0490
0.0100
0.0200

0.0040
0.0080
0.0060
0.0050

0.0200
0.0170
0.0130
0.0180

0.0190
0.0250
0.0130
0.0240

0.0340
0.0580
0.0180
0.0230

0.0120
0.0190
0.0180
0.0140

0.0220
0.0240
0.0190
0.0180

0.0290
0.0280
0.0150
0.0330

0.0080
0.0100
0.0070
0.0150

0.0220
0.0130
0.0180
0.0220

0.0310
0.0180
0.0230
0.0210

n, n, Method Coveragg Coverage Average 9%CI<@ %CI>60 R_elatlve
Probability Error Length Bias

10 10 Prior | 0.9820 -0.0320 9.3278 0.0130 0.0050 0.4444

Prior 2 0.9610 -0.0110 7.9338 0.0260 0.0130 0.3333

Prior 3 0.9930 -0.0430 15.7816 0.0030 0.0040 0.1429

Prior 4 0.9870 -0.0370 11.8379 0.0040 0.0090 0.3846

0.0050
0.0110
0.0080
0.0020

0.0200
0.0340
0.0060
0.0170

0.0170
0.0190
0.0160
0.0170

0.0160
0.0170
0.0140
0.0160

0.0160
0.0150
0.0140
0.0090

0.0270
0.0270
0.0150
0.0210

0.0220
0.0210
0.0190
0.0160

0.0190
0.0180
0.0180
0.0180

0.0380
0.0510
0.0200
0.0150

0.0250
0.0390
0.0230
0.0280

0.0200
0.0190
0.0200
0.0220

0.6774
0.6333
0.1111
0.8182

0.6667
0.6190
0.0000
0.5455

0.0811
0.0556
0.1034
0.0286

0.0857
0.2609
0.0370
0.2000

0.3600
0.5890
0.1250
0.4375

0.3846
0.1739
0.0909
0.2000

0.0000
0.0667
0.0000
0.0588

0.2083
0.2174
0.0909
0.2941

0.6522
0.6721
0.4815
0.0000

0.0638
0.5000
0.1220
0.1200

0.2157
0.0270
0.0698
0.0233




Table 27: Results for Design 3 — HPD Intervals

n, n, Method Covcragf: Coverage Average 9%CI<@ %CI>408 Rglative
Probability Error Length Bias

10 10 Prior | 0.9680 -0.0180 3.0344 0.0250 0.0070 0.5625

Prior 2 0.9250 0.0210 24629 0.0690 0.0020 0.9437

Prior 3 0.9900 -0.0400 4.8140 0.0080 0.0020 0.6000

Prior 4 0.9880 -0.0380 3.7254 0.0110 0.0010 0.8333

10 25  Prior ! 0.9440 0.0060 2.6485 0.0530 0.0030 0.8929

Prior 2 0.9240 0.0260 2.2143 0.0720 0.0040 0.8947

Prior 3 0.9870 -0.0370 4.0992 0.0100 0.0030 0.5385

Prior 4 0.9720 -0.0220 3.1898 0.0240 0.0040 0.7143

25 10 Prior | 0.9660 -0.0160 1.6454 0.0240 0.0100 04118

Prior 2 0.9520 -0.0020 1.4892 0.0430 0.0050 0.7917

Prior 3 0.9790 -0.0290 2.1353 0.0160 0.0050 0.5238

Prior 4 0.9770 -0.0270 1.8380 0.0150 0.0080 0.3043

25 25  Prior | 0.9550 -0.0050 1.3565 0.0340 0.0110 0.5111

Prior 2 0.9370 0.0130 1.2499 0.0600 0.0030 0.9048

Prior 3 0.9680 -0.0180 1.5686 0.0220 0.0100 0.3750

Prior 4 0.9580 -0.0080 1.4458 0.0350 0.0070 0.6667

25 50  Prior ] 0.9460 0.0040 1.3121 0.0460 0.0080 0.7037

Prior 2 0.9490 0.0010 1.2373 0.0420 0.0090 0.6471

Prior 3 0.9550 -0.0050 1.4862 0.0280 0.0170 0.2444

Prior 4 0.9600 -0.0100 1.4164 0.0260 0.0140 0.3000

25 100 Prior | 0.9430 0.0070 1.2835 0.0510 0.0060 0.7895

Prior 2 0.9420 0.0080 1.2297 0.0500 0.0080 0.7241

Prior 3 0.9560 -0.0060 1.4801 0.0260 0.0180 0.1818

Prior 4 0.9520 -0.0020 1.3784 0.0340 0.0140 0.4167

50 25 Prior ] 0.9580 -0.0080 0.9239 0.0250 0.0170 0.1905

Prior 2 0.9490 0.0010 0.8973 0.0420 0.0090 0.6471

Prior 3 0.9500 0.0000 1.0177 0.0260 0.0240 0.0400

Prior 4 0.9590 -0.0090 0.9647 0.0320 0.0090 0.5610

50 50  Prior | 0.9510 -0.0010 0.8672 0.0370 0.0120 0.5102

Prior 2 0.9280 0.0220 0.8470 0.0570 0.0150 0.5833

Prior 3 0.9530 -0.0030 0.9257 0.0320 0.0150 0.3617

Prior 4 0.9430 0.0070 0.8991 0.0390 0.0180 0.3684

50 100 Prior | 0.9430 0.0070 0.8465 0.0430 0.0140 0.5088

Prior 2 0.9310 0.0190 0.8198 0.0630 0.0060 0.8261

Prior 3 0.9570 -0.0070 0.9048 0.0270 0.0160 0.2558

Prior 4 0.9410 0.0090 0.8749 0.0360 0.0230 0.2203

100 25 Prior | 0.9490 0.0010 0.6865 0.0330 0.0180 0.2941

Prior 2 0.9480 0.0020 0.6613 0.0380 0.0140 0.4615

Prior 3 0.9640 -0.0140 0.7319 0.0240 0.0120 0.3333

Prior 4 0.9630 -0.0130 0.7002 0.0210 0.0160 0.1351

100 50 Priorl 0.9540 -0.0040 0.6172 0.0310 0.0150 0.3478

Prior 2 0.9510 -0.0010 0.6056 0.0370 0.0120 0.5102

Prior 3 0.9380 0.0120 0.6363 0.0460 0.0160 0.4839

Prior 4 0.9550 -0.0050 0.6325 0.0290 0.0160 0.2889

100 100 Prior | 0.9450 0.0010 0.5973 0.0350 0.0160 0.3725

Prior 2 0.9350 0.0150 0.5785 0.0440 0.0210 0.3538

Prior 3 0.9600 -0.0100 0.6086 0.0210 0.0190 0.0500

Prior 4 0.9550 -0.0050 0.5945 0.0330 0.0120 0.4667
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Table 28: Results for Design 4 — HPD Intervals

n, n, Method Covera.gf: Coverage Average 9%CI<€@ %CI>@ Rf:lative
Probability Error Length Bias
10 10 Prior | 0.9520 -0.0020 16.6503 0.0080 0.0400 0.6667
10 10 Prior2 0.9270 0.0230 13.7130 0.0060 0.0670 0.8356
10 10 Prior3 0.9870 -0.0370 26.8994 0.0050 0.0080 0.2308
10 10 Prior 4 0.9760 -0.0260 21.0004 0.0040 0.0200 0.6667
10 25 Prior 1 0.9640 -0.0140 8.7842 0.0060 0.0300 0.6667
10 25  Prior2 0.9530 -0.0030 8.0792 0.0080 0.0390 0.6596
10 25 Prior3 0.9820 -0.0320 11.1447 0.0060 0.0120 0.3333
10 25 Prior4 0.9700 -0.0200 9.7959 0.0070 0.0230 0.5333
25 10 Prior | 0.9560 -0.0060 15.5453 0.0010 0.0430 0.9545
25 10 Prior2 0.9420 0.0080 13.1742 0.0020 0.0560 0.9310
25 10 Prior3 0.9790 -0.0290 24.3382 0.0080 0.0130 0.2381
25 10 Prior 4 0.9580 -0.0080 18.6804 0.0050 0.0370 0.7619
25 25  Prior | 0.9590 -0.0090 79776 0.0090 0.0320 0.5610
25 25  Prior2 0.9380 0.0120 7.3406 0.0050 0.0570 0.8387
25 25 Prior3 0.9650 -0.0150 9.0611 0.0150 0.0200 0.1429
25 25 Prior4 0.9540 -0.0040 8.4699 0.0150 0.0310 0.3478
25 50 Prior | 0.9450 0.0050 5.3021 0.0100 0.0450 0.6364
25 50 Prior2 0.9400 0.0100 5.0620 0.0120 0.0480 0.6000
25 50 Prior3 0.9700 -0.0200 5.7817 0.0120 0.0180 0.2000
25 50 Prior4 0.9510 -0.0010 5.4223 0.0100 0.0390 0.5918
25 100 Prior | 0.9430 0.0070 3.7434 0.0250 0.0320 0.1228
25 100 Prior2 0.9470 0.0030 3.6532 0.0150 0.0380 0.4340
25 100 Prior3 0.9570 -0.0070 3.9511 0.0130 0.0300 0.3953
25 100  Prior4 0.9470 0.0030 3.8299 0.0190 0.0340 0.2830
50 25  Prior | 0.9420 0.0080 7.5669 0.0090 0.0490 0.6897
50 25  Prior2 0.9230 0.0270 7.1903 0.0050 0.0720 0.8701
50 25 Prior3 0.9550 -0.0050 8.7226 0.0210 0.0240 0.0667
50 25 Prior4 0.9440 0.0060 8.3323 0.0200 0.0360 0.2857
50 50  Prior | 0.9460 0.0040 5.1445 0.0160 0.0380 0.4074
50 50 Prior2 0.9500 0.0000 4.9229 0.0070 0.0430 0.7200
50 50 Prior3 0.9490 0.0010 5.4288 0.0180 0.0330 0.2941
50 50 Prior4 0.9530 -0.0030 5.2266 0.0110 0.0360 0.5319
50 100  Prior t 0.9490 0.0010 3.5357 0.0200 0.0310 0.2157
50 100 Prior2 0.9460 0.0040 3.4618 0.0150 0.0390 0.4444
50 100 Prior3 0.9620 -0.0120 3.6634 0.0120 0.0260 0.3684
50 100  Prior 4 0.9510 -0.0010 3.5936 0.0190 0.0300 0.2245
100 25  Prior 0.9440 0.0060 7.5310 0.0120 0.0440 0.5714
100 25  Prior2 0.9360 0.0140 7.2025 0.0080 0.0560 0.7500
100 25  Prior3 0.9570 -0.0070 8.7510 0.0180 0.0250 0.1628
100 25 Prior4 0.9660 -0.0160 8.1663 0.0080 0.0260 0.5294
100 50  Prior | 0.9470 0.0030 5.0141 0.0080 0.0450 0.6981
100 50 Prior2 0.9470 0.0030 4.9041 0.0090 0.0440 0.6604
100 50 Prior3 0.9590 -0.0090 5.3207 0.0130 0.0280 0.3659
100 50 Prior4 0.9390 0.0110 5.1859 0.0220 0.0390 0.2787
100 100 Prior 1 0.9300 0.0200 3.4553 0.0210 0.0490 0.4000
100 100 Prior2 0.9480 0.0020 3.4038 0.0160 0.0360 0.3846
100 100  Prior3 0.9390 0.0110 3.5704 0.0270 0.0340 0.1148
100 100  Prior 4 0.9390 0.0110 3.4976 0.0150 0.0460 0.5082
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Table 29: Results for Design 5 — HPD Intervals

n, n, Method g Coverage Average 9%CI<@ %CI>8 Rglative
Probability Error Length Bias

10 10 Prior | 0.9610 -0.0110 42.0286 0.0370 0.0020 0.8974

Prior 2 09170 0.0330 33.1307 0.0800 0.0030 0.9277

Prior 3 0.9840 -0.0340 65.0471 0.0110 0.0050 0.3750

Prior 4 0.9780 -0.0280 51.3259 0.0190 0.0030 0.7273

10 25 Priorl 0.9400 0.0100 37.9984 0.0530 0.0070 0.7667

Prior 2 0.9320 0.0180 32.4749 0.0650 0.0030 09118

Prior 3 0.9800 -0.0300 59.9525 0.0140 0.0060 0.4000

Prior 4 0.9640 -0.0140 47.7541 0.0290 0.0070 0.6111

25 10 Prior ] 0.9500 0.0000 21.0905 0.0400 0.0100 0.6000

Prior 2 0.9430 0.0070 19.6784 0.0530 0.0040 0.8596

Prior 3 0.9730 -0.0230 26.4142 0.0170 0.0100 0.2593

Prior 4 0.9630 -0.0130 23.2377 0.0350 0.0020 0.8919

25 25 Priorl 0.9480 0.0020 19.7136 0.0440 0.0080 0.6923

Prior 2 0.9410 0.0090 18.4556 0.0520 0.0070 0.7627

Prior 3 0.9600 -0.0100 22.3421 0.0270 0.0130 0.3500

Prior 4 0.9580 -0.0080 20.5554 0.0310 0.0110 0.4762

25 50 Prior! 0.9340 0.0160 18.9412 0.0530 0.0130 0.6061

Prior 2 0.9340 0.0160 18.1917 0.0560 0.0100 0.6970

Prior 3 0.9470 0.0030 21.6797 0.0330 0.0200 0.2453

Prior 4 0.9620 -0.0120 20.5223 0.0270 0.0110 04211

25 100 Prior 1 0.9400 0.0100 18.8515 0.0510 0.0090 0.7000

Prior 2 0.9570 -0.0070 17.8733 0.0400 0.0030 0.8605

Prior 3 0.9580 -0.0080 21.5753 0.0220 0.0200 0.0476

Prior 4 0.9670 -0.0170 20.1917 0.0250 0.0080 0.5152

50 25  Priorl 0.9450 0.0050 12.9297 0.0380 0.0170 0.3818

Prior 2 0.9330 0.0170 12.4521 0.0550 0.0120 0.6418

Prior 3 0.9630 -0.0130 13.9230 0.0230 0.0140 0.2432

Prior 4 0.9550 -0.0050 13.4322 0.0270 0.0180 0.2000

50 50  Prior i 0.9410 0.0090 12.5595 0.0450 0.0140 0.5254

Prior 2 0.9310 0.0190 12.3670 0.0560 0.0130 0.6232

Prior 3 0.9650 -0.0150 13.5397 0.0210 0.0140 0.2000

Prior 4 0.9430 0.0070 12.9614 0.0380 0.0190 0.3333

50 100  Prior 1 0.9460 0.0040 12,5178 0.0410 0.0130 0.5185

Prior 2 0.9310 0.0190 12.0836 0.0580 0.0110 0.6812

Prior 3 0.9510 -0.0010 13.2897 0.0240 0.0250 0.0204

Prior 4 0.9520 -0.0020 12.9590 0.0310 0.0170 0.2917

100 25  Prior | 0.9570 -0.0070 9.0946 0.0350 0.0080 0.6279

Prior 2 0.9470 0.0030 8.9296 0.0280 0.0250 0.0566

Prior 3 0.9580 -0.0080 9.5105 0.0270 0.0150 0.2857

Prior 4 0.9490 0.0010 9.3470 0.0350 0.0160 0.3725

100 50  Prior | 0.9400 0.0100 8.7045 0.0400 0.0200 0.3333

Prior 2 0.9420 0.0080 8.5888 0.0410 0.0170 0.4138

Prior 3 0.9380 0.0120 9.0115 0.0410 0.0210 0.3226

Prior 4 0.9380 0.0120 8.8689 0.0420 0.0200 0.3548

100 100  Prior | 0.9400 0.0100 8.6111 0.0410 0.0190 0.3667

Prior 2 0.9550 -0.0050 8.4654 0.0300 0.0150 0.3333

Prior 3 0.9470 0.0030 8.8573 0.0290 0.0240 0.0943

Prior 4 0.9460 0.0040 8.7723 0.0310 0.0230 0.1481
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Table 30: Results for MOVER

Design n, n Coverage Coverage Average %CI <8 %CI>@ Relative
Probability Error Length Bias

1 10 10 0.9570 -0.0070 5.7067 0.0190 0.0240 0.1163
10 25 0.9620 -0.0120 5.1626 0.0150 0.0230 0.2105
25 10 0.9490 0.0010 3.3341 0.0240 0.0270 0.0588
25 25 0.9430 0.0070 2.7284 0.0250 0.0320 0.1228
25 50 0.9430 0.0070 2.6016 0.0250 0.0320 0.1228
25 100 0.9420 0.0080 2.5145 0.0250 0.0330 0.1379
50 25 0.9500 0.0000 1.9672 0.0240 0.0260 0.0400
50 50 0.9490 0.0010 1.7973 0.0280 0.0230 0.0980
50 100 0.9420 0.0080 1.6969 0.0220 0.0360 0.2414
100 25 0.9550 -0.0050 1.5629 0.0240 0.0210 0.0667
100 50 0.9430 0.0070 1.3263 0.0240 0.0330 0.1579
100 100 0.9610 -0.0110 1.2132 0.0190 0.0200 0.0256
2 10 10 0.9620 -0.0120 10.3330 0.0230 0.0150 0.2105
10 25 0.9580 -0.0080 7.6838 0.0200 0.0220 0.0476
25 10 0.9660 -0.0160 7.6931 0.0190 0.0150 0.1176
25 25 0.9530 -0.0030 4.6819 0.0240 0.0230 0.0213
25 50 0.9570 -0.0070 3.8461 0.0230 0.0200 0.0698
25 100 0.9550 -0.0050 3.5033 0.0250 0.0200 0.1111
50 25 0.9480 0.0020 3.8768 0.0220 0.0300 0.1538
50 50 0.9480 0.0020 2.9944 0.0250 0.0270 0.0385
50 100 0.9600 -0.0100 2.5252 0.0190 0.0210 0.0500
100 25 0.9580 -0.0080 3.5003 0.0220 0.0200 0.0476
100 50 0.9580 -0.0080 2.5334 0.0160 0.0260 0.2381
100 100 0.9530 -0.0030 2.0085 0.0200 0.0270 0.1489
3 10 10 0.9550 -0.0050 3.8553 0.0210 0.0240 0.0667
10 25 0.9620 -0.0120 3.6153 0.0140 0.0240 0.2632
25 10 0.9630 -0.0130 2.2257 0.0210 0.0160 0.1351
25 25 0.9460 0.0040 1.9074 0.0200 0.0340 0.2593
25 50 0.9560 -0.0060 1.8269 0.0250 0.0190 0.1364
25 100 0.9490 0.0010 1.8019 0.0210 0.0300 0.1765
50 25 0.9580 -0.0080 1.3582 0.0200 0.0220 0.0476
50 50 0.9580 -0.0080 1.2582 0.0240 0.0180 0.1429
50 100 0.9470 0.0030 1.2180 0.0260 0.0270 0.0189
100 25 0.9520 -0.0020 1.0491 0.0220 0.0260 0.0833
100 50 0.9500 0.0000 0.9279 0.0220 0.0280 0.1200
100 100 0.9500 0.0000 0.8681 0.0250 0.0250 0.0000
4 10 10 0.9580 -0.0080 18.6512 0.0290 0.0130 0.3810
10 25 0.9680 -0.0180 9.7632 0.0140 0.0180 0.1250
25 10 0.9480 0.0020 18.3130 0.0310 0.0210 0.1923
25 25 0.9500 0.0000 8.6657 0.0360 0.0140 0.4400
25 50 0.9470 0.0030 5.8718 0.0310 0.0220 0.1698
25 100 0.9390 0.0110 4.2069 0.0300 0.0310 0.0164
50 25 0.9500 0.0000 8.5461 0.0260 0.0240 0.0400
50 50 0.9390 0.0110 5.6246 0.0340 0.0270 0.1148
50 100 0.9510 -0.0010 3.9296 0.0260 0.0230 0.0612
100 25 0.9430 0.0070 8.5884 0.0300 0.0270 0.0526
100 50 0.9550 -0.0050 5.5608 0.0220 0.0230 0.0222
100 100 0.9380 0.0120 3.8197 0.0350 0.0270 0.1290
5 10 10 0.9590 -0.0090 45.2531 0.0180 0.0230 0.1220
10 25 0.9580 -0.0080 43.8887 0.0220 0.0200 0.0476
25 10 0.9530 -0.0030 22.2846 0.0150 0.0320 0.3617
25 25 0.9640 -0.0140 20.7190 0.0150 0.0210 0.1667
25 50 0.9570 -0.0070 20.7546 0.0230 0.0200 0.0698
25 100 0.9480 0.0020 20.6499 0.0300 0.0220 0.1538
50 25 0.9500 0.0000 13.7947 0.0240 0.0260 0.0400
50 50 0.9530 -0.0030 13.3402 0.0190 0.0280 0.1915
50 100 0.9550 -0.0050 13.2087 0.0210 0.0240 0.0667
100 25 0.9610 -0.0110 9.6378 0.0260 0.0130 0.3333
100 50 0.9580 -0.0080 9.2326 0.0190 0.0230 0.0952
100 100 0.9460 0.0040 9.0882 0.0270 0.0270 0.0000
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Table 31: Results for Parameter Settings used by Krishnamoorthy & Mathew(2003)
Method 2 2 Coverage Coverage Average 0, () > Relative
g ny H H o o, Probability ~ Error Length HCI <6 %CI>6 Bias

4 4 0 0 Prior 1 3 3 0.960 -0.010 39.906 0.018 0.022 0.100
4 4 0 0 Prior 2 3 3 0.968 -0.018 23.592 0.013 0.019 0.188
4 4 0 0 Prior 3 3 3 0.980 -0.030 3092.565 0.006 0.014 0.400
4 4 0 0 Prior 4 3 3 0.972 -0.022 115.391 0.008 0.020 0.429
4 4 0 0 Prior 1 12 4 0.969 -0.019 114.652 0.004 0.027 0.742
4 4 0 0 Prior 2 12 4 0.964 -0.014 63.259 0.008 0.028 0.556
4 4 0 0 Prior 3 12 4 0.971 -0.021 8016.133 0.003 0.026 0.793
4 4 0 0 Prior 4 12 4 0.964 -0.014 296.915 0.004 0.032 0.778
4 4 0 0 Prior | 12 12 0.972 -0.022 159.340 0.016 0.012 0.143
4 4 0 0 Prior 2 12 12 0.970 -0.020 95.730 0014 0.016 0.067
4 4 0 0 Prior 3 12 12 0.976 -0.026 11611.268 0.010 0.014 0.167
4 4 0 0 Prior 4 12 12 0.973 -0.023 468.521 0.014 0.013 0.037
4 4 0 0 Prior | 20 4 0.961 -0.011 162.943 0.004 0.035 0.795
4 4 0 0 Prior 2 20 4 0.973 -0.023 97.742 0.005 0.022 0.630
4 4 0 0 Prior 3 20 4 0.969 -0.019 11687.968 0.002 0.029 0.871
4 4 0 0 Prior 4 20 4 0.962 -0.012 428.705 0.006 0.032 0.684
4 4 1 0 Prior 1 2 4 0.975 -0.025 41.581 0.017 0.008 0.360
4 4 1 0 Prior 2 2 4 0.970 -0.020 24.411 0.025 0.005 0.667
4 4 1 0 Prior 3 2 4 0.967 -0.017 3021.916 0.023 0.010 0.394
4 4 1 0 Prior 4 2 4 0.972 -0.022 113.749 0.022 0.006 0.571
4 4 3 0 Prior 1 2 4 0.970 -0.020 41.782 0.022 0.008 0.467
4 4 3 0 Prior 2 2 4 0.973 -0.023 23.527 0.021 0.006 0.556
4 4 3 0 Prior 3 2 4 0.981 -0.031 3245.080 0.012 0.007 0.263
4 4 3 0 Prior 4 2 4 0.976 -0.026 117.672 0.023 0.001 0917
4 4 4 0 Prior | ] 1 0.967 -0.017 13.012 0.014 0.019 0.152
4 4 4 0 Prior 2 1 ! 0.973 -0.023 7.841 0.014 0.013 0.037
4 4 4 0 Prior 3 ! I 0.985 -0.035 981.994 0.006 0.009 0.200
4 4 4 0 Prior 4 1 1 0.970 -0.020 38.3i2 0.012 0.018 0.200




'\

Method 2 2 Coverage Coverage Average % CI < °%Cl > Relative

" 1y H Hy 0 0, Probability  Error Length 7C. & %C ¢ Bias
4 4 5 0 Prior 1 2 12 0.965 -0.015 99.475 0.030 0.005 0.714
4 4 5 0 Prior 2 2 12 0.963 -0.013 58.480 0.024 0.013 0.297
4 4 M) 0 Prior 3 2 12 0.972 -0.022 7478.827 0.026 0.002 0.857
4 4 5 0 Prior 4 2 12 0.964 -0.014 281.549 0.034 0.002 0.889
10 10 0 0 Prior 1 3 3 0.945 0.005 7.381 0.032 0.023 0.164
10 10 0 0 Prior 2 3 3 0.952 -0.002 6.760 0.026 0.022 0.083
10 10 0 0 Prior 3 3 3 0.959 -0.009 9.737 0.025 0.016 0.220
10 10 0 0 Prior 4 3 3 0.955 -0.005 8.249 0.030 0.015 0.333
10 10 0 0 Prior | 12 4 0.960 -0.010 20.426 0.014 0.026 0.300
10 10 0 0 Prior 2 12 4 0.963 -0.013 18.692 0.010 0.027 0.459
10 10 0 0 Prior 3 12 4 0.959 -0.009 26.399 0.010 0.031 0.512
10 10 0 0 Prior 4 12 4 0.962 -0.012 23.277 0.012 0.026 0.368
10 10 0 0 Prior | 12 12 0.958 -0.008 29.669 0.020 0.022 0.048
10 10 0 0 Prior 2 12 12 0.950 0.000 26.858 0.022 0.028 0.120
10 10 0 0 Prior 3 12 12 0.952 -0.002 38.851 0.018 0.030 0.250
10 10 0 0 Prior 4 12 12 0.944 0.006 33.006 0.025 0.031 0.107
10 10 0 0 Prior | 20 4 0.944 0.006 32.668 0.027 0.029 0.036
10 10 0 0 Prior 2 20 4 0.963 -0.013 29.969 0.019 0.018 0.027
10 10 0 0 Prior 3 20 4 0.955 -0.005 40.383 0.013 0.032 0.422
10 10 0 0 Prior 4 20 4 0.947 0.003 35.945 0.020 0.033 0.245
10 10 1 0 Prior | 2 4 0.955 -0.005 7.574 0.029 0.016 0.289
10 10 i 0 Prior 2 2 4 0.943 0.007 6.853 0.035 0.022 0.228
10 10 I 0 Prior 3 2 4 0.953 -0.003 10.180 0.026 0.021 0.106
10 10 1 0 Prior 4 2 4 0.951 -0.001 8.522 0.029 0.020 0.184
10 10 3 0 Prior | 2 4 0.945 0.005 7.562 0.028 0.027 0.018
10 10 3 0 Prior 2 2 4 0.957 -0.007 7.005 0.027 0.016 0.256
10 10 3 0 Prior 3 2 4 0.960 -0.010 10.004 0.028 0.012 0.400

3 0 Prior 4 2 4 0.957 -0.007 8.409 0.027 0.016 0.256




Method 2 2 Coverage Coverage Average 0 < [3) > Relative

" " A H 0 0, Probability ~ Error Length #CI <8 %CI>0 Bias

10 10 4 0 Prior | 1 1 0.954 -0.004 2.504 0.027 0.019 0.174
10 10 4 0 Prior 2 1 1 0.966 -0.016 2.229 0.012 0.022 0.294
10 10 4 0 Prior 3 1 1 0.933 0.017 3.283 0.023 0.044 0.313
10 10 4 0 Prior 4 1 1 0.952 -0.002 2.772 0.025 0.023 0.042
10 10 5 0 Prior | 2 12 0.948 0.002 19.054 0.036 0.016 0.385
10 10 5 0 Prior 2 2 12 0.953 -0.003 17.305 0.026 0.021 0.106
10 10 5 0 Prior 3 2 12 0.945 0.005 25.308 0.032 0.023 0.164
10 10 5 0 Prior 4 2 12 0.956 -0.006 21.584 0.023 0.021 0.045
25 25 0 0 Prior 1 1 1 0.942 0.008 1.029 0.027 0.031 0.069
25 25 0 0 Prior 2 1 1 0.955 -0.005 1.003 0.018 0.027 0.200
25 25 0 0 Prior 3 1 1 0.955 -0.005 1.100 0.022 0.023 0.022
25 25 0 0 Prior 4 1 1 0.949 0.001 1.073 0.025 0.026 0.020
25 25 0 0 Prior | 4 1 0.953 -0.003 2.876 0.027 0.020 0.149
25 25 0 0 Prior 2 4 ! 0.946 0.004 2.826 0.030 0.024 0.111
25 25 0 0 Prior 3 4 I 0.955 -0.005 3.046 0.019 0.026 0.156
25 25 0 0 Prior 4 4 1 0.949 0.001 2919 0.018 0.033 0.294
25 25 0 0 Prior | 4 2 0.944 0.006 3.171 0.027 0.029 0.036
25 25 0 0 Prior 2 4 2 0.958 -0.008 3.084 0.013 0.029 0.381
25 25 0 0 Prior 3 4 2 0.961 -0.041 3418 0.014 0.025 0.282
25 25 0 0 Prior 4 4 2 0.950 0.000 3.328 0.023 0.027 0.080
25 25 0 0 Prior 1 S 5 0.947 0.003 5.183 0.021 0.032 0.208
25 25 0 0 Prior 2 N 5 0.955 -0.005 5.042 0.024 0.021 0.067
25 25 0 0 Prior 3 5 5 0.953 -0.003 5.525 0.028 0.019 0.191
25 25 0 0 Prior 4 5 5 0.946 0.004 5.333 0.027 0.027 0.000
25 25 0 0 Prior | 9 7 0.953 -0.003 8.307 0.020 0.027 0.149
25 25 0 0 Prior 2 9 7 0.954 -0.004 8.023 0.022 0.024 0.043
25 25 0 0 Prior 3 9 7 0.947 0.003 8.709 0.019 0.034 0.283
25 25 0 0 Prior 4 9 7 0.937 0.013 8.590 0.029 0.034 0.079
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Method 2 2 Coverage Coverage Average 0% CT < o, > Relative
1, " H H 1 g, Probability  Error Length /oC. & %CI>0 Bias
25 25 0 0 Prior 1 10 10 0.946 0.004 10.382 0.031 0.023 0.148
25 25 0 0 Prior 2 10 10 0.957 -0.007 10.088 0.025 0.018 0.163
25 25 0 0 Prior 3 10 10 0.959 -0.009 10.874 0.019 0.022 0.073
25 25 0 0 Prior 4 10 10 0.951 -0.001 10.634 0.024 0.025 0.020
25 25 0 0 Prior | 100 100 0.954 -0.004 102.226 0.023 0.023 0.000
25 25 0 0 Prior 2 100 100 0.948 0.002 101.288 0.029 0.023 0.115
25 25 0 0 Prior 3 100 100 0.961 -0.011 109.839 0.023 0.016 0.179
25 25 0 0 Prior 4 100 100 0.951 -0.001 105.927 0.026 0.023 0.061
25 25 | 0 Prior | i 1 0.942 0.008 1.035 0.029 0.029 0.000
25 25 1 0 Prior 2 1 1 0.949 0.001 1.004 0.027 0.024 0.059
25 25 1 0 Prior 3 1 1 0.955 -0.005 1.095 0.027 0.018 0.200
25 25 1 0 Prior 4 1 1 0.943 0.007 1.049 0.031 0.026 0.088
25 25 1 0 Prior | 5 5 0.943 0.007 5.225 0.026 0.031 0.088
25 25 1 0 Prior 2 5 5 0.947 0.003 5.009 0.024 0.029 0.094
25 25 1 0 Prior 3 5 5 0.949 0.001 5.436 0.027 0.024 0.059
25 25 1 0 Prior 4 5 5 0.959 -0.009 5.306 0.023 0.018 0.122
25 25 1 0 Prior | 10 10 0.944 0.006 10.410 0.037 0.019 0.321
25 25 1 0 Prior 2 10 10 0.951 -0.001 10.103 0.031 0.018 0.265
25 25 1 0 Prior 3 10 10 0.950 0.000 11.014 0.029 0.021 0.160
25 25 1 0 Prior 4 10 10 0.941 0.009 10.654 0.031 0.028 0.051
25 25 2 0 Prior | 4 8 0.953 -0.003 6.348 0.029 0.018 0.234
25 25 2 0 Prior 2 4 8 0.962 -0.012 6.242 0.022 0.016 0.158
25 25 2 0 Prior 3 4 8 0.939 0.011 6.824 0.042 0.019 0.377
25 25 2 0 Prior 4 4 8 0.949 0.001 6.554 0.031 0.020 0.216
25 25 4 0 Prior | 8 16 0.957 -0.007 12.899 0.026 0.017 0.209
25 25 4 0 Prior 2 8 16 0.957 -0.007 12.433 0.022 0.021 0.023
25 25 4 0 Prior 3 8 16 0.954 -0.004 13.769 0.030 0.016 0.304
25 25 4 0 Prior 4 8 16 0.944 0.006 13.328 0.028 0.028 0.000
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Method 2 2 Coverage Coverage Average 0, < % Cl > Relative
g "y H H o o, Probability  Error Length NWCI <8 %CI>8 oo
25 40 0 0 Prior | 1 1 0.946 0.004 0.877 0.024 0.030 0.111
25 40 0 0 Prior 2 1 1 0.952 -0.002 0.870 0.020 0.028 0.167
25 40 0 0 Prior 3 1 I 0.956 -0.006 0.932 0.021 0.023 0.045
25 40 0 0 Prior 4 1 1 0.945 0.005 0911 0.024 0.031 0.127
25 40 0 0 Prior | 5 5 0.964 -0.014 4.449 0.017 0.019 0.056
25 40 0 0 Prior 2 5 5 0.947 0.003 4.389 0.031 0.022 0.170
25 40 0 0 Prior 3 S 5 0.954 -0.004 4.697 0.022 0.024 0.043
25 40 0 0 Prior 4 5 5 0.951 -0.001 4.612 0.026 0.023 0.061
25 40 0 0 Prior 1 10 10 0.938 0.012 8.940 0.032 0.030 0.032
25 40 0 0 Prior 2 10 10 0.950 0.000 8.639 0.028 0.022 0.120
25 40 0 0 Prior 3 10 10 0.951 -0.001 9.335 0.029 0.020 0.184
25 40 0 0 Prior 4 10 10 0.939 0.011 9.119 0.028 0.033 0.082
25 40 1 0 Prior | I 1 0.952 -0.002 0.894 0.027 0.021 0.125
25 40 1 0 Prior 2 1 1 0.946 0.004 0.868 0.023 0.031 0.148
25 40 1 0 Prior 3 1 1 0.951 -0.001 0.931 0.033 0.016 0.347
25 40 1 0 Prior 4 ! 1 0.941 0.009 0.905 0.029 0.030 0.017
25 40 t 0 Prior | 5 4 0.948 0.002 4.166 0.024 0.028 0.077
25 40 1 0 Prior 2 5 4 0.956 -0.006 4.098 0.025 0.019 0.136
25 40 1 0 Prior 3 5 4 0.938 0.012 4.384 0.030 0.032 0.032
25 40 1 0 Prior 4 S 4 0.954 -0.004 4.276 0.031 0.015 0.348
25 40 1 0 Prior | 5 5 0.939 0.011 4.455 0.027 0.034 0.115
25 40 1 0 Prior 2 5 5 0.955 -0.005 4337 0.022 0.023 0.022
25 40 1 0 Prior 3 5 5 0.932 0.018 4.617 0.030 0.038 0.118
25 40 1 0 Prior 4 5 5 0.948 0.002 4.546 0.030 0.022 0.154
25 40 I 0 Prior 1 10 9 0.940 0.010 8.596 0.029 0.031 0.033
25 40 1 0 Prior 2 10 9 0.957 -0.007 8.471 0.022 0.021 0.023
25 40 1 0 Prior 3 10 9 0.942 0.008 8.914 0.025 0.033 0.138
25 40 1 0 Prior 4 10 9 0.947 0.003 8.746 0.028 0.025 0.057
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Method 2 Coverage Coverage Average [ < 0 > Relative
" "y H Hy 0, 0, Probability Length #CL <8 %Cl>0 Bias
25 40 1 0 Prior 1 10 10 0.946 0.004 8.968 0.026 0.028 0.037
25 40 1 0 Prior 2 10 10 0.945 0.005 8.722 0.024 0.031 0.127
25 40 1 0 Prior 3 10 10 0.960 -0.010 9.302 0.015 0.025 0.250
25 40 1 0 Prior 4 10 10 0.946 0.004 9.181 0.026 0.028 0.037
25 40 5 0 Prior | 2 12 0.956 -0.006 6.236 0.027 0.017 0.227
25 40 5 0 Prior 2 2 12 0.943 0.007 6.016 0.029 0.028 0.018
25 40 5 0 Prior 3 2 12 0.953 -0.003 6.470 0.026 0.021 0.106
25 40 5 0 Prior 4 2 12 0.952 -0.002 6.320 0.031 0.017 0.292
25 100 0 0 Prior 1 1 I 0.946 0.004 0.759 0.031 0.023 0.148
25 100 0 0 Prior 2 1 1 0.946 0.004 0.743 0.031 0.023 0.148
25 100 0 0 Prior 3 1 I 0.934 0.016 0.800 0.030 0.036 0.091
25 100 0 0 Prior 4 1 1 0.954 -0.004 0.788 0.024 0.022 0.043
25 100 0 0 Prior 1 2 1 0.946 0.004 1.407 0.024 0.030 0.111
25 100 0 0 Prior 2 2 1 0.945 0.005 1.361 0.020 0.035 0.273
25 100 0 0 Prior 3 2 I 0.946 0.004 1.476 0.026 0.028 0.037
25 100 0 0 Prior 4 2 1 0.953 -0.003 1.426 0.024 0.023 0.021
25 100 0 0 Prior | 3 1 0.966 -0.016 2.055 0.010 0.024 0.412
25 100 0 0 Prior 2 3 1 0.959 -0.009 2.051 0.023 0.018 0.122
25 100 0 0 Prior 3 3 1 0.951 -0.001 2.193 0.028 0.021 0.143
25 100 0 0 Prior 4 3 1 0.955 -0.005 2.170 0.022 0.023 0.022
25 100 0 0 Prior 1 5 5 0.945 0.005 3.832 0.030 0.025 0.091
25 100 0 0 Prior 2 5 5 0.942 0.008 3.743 0.034 0.024 0.172
25 100 0 0 Prior 3 5 5 0.945 0.005 4.068 0.029 0.026 0.055
25 100 0 0 Prior 4 5 5 0.941 0.009 3.944 0.034 0.025 0.153
25 100 0 0 Prior 1 10 10 0.957 -0.007 7.550 0.024 0.019 0.116
25 100 0 0 Prior 2 10 10 0.948 0.002 7.488 0.024 0.028 0.077
25 100 0 0 Prior 3 10 10 0.952 -0.002 8.010 0.017 0.031 0.292
25 100 0 0 Prior 4 10 10 0.961 -0.011 7919 0.019 0.020 0.026
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Method 2 Coverage Coverage Average 0, < [y} > Relative

n "y A H g, o, Probability Length HCI <0 %CI>60 o8

25 100 I 0 Prior | 1 1 0.951 -0.001 0.759 0.024 0.025 0.020
25 100 ! 0 Prior 2 1 1 0.954 -0.004 0.748 0.025 0.021 0.087
25 100 1 0 Prior 3 1 1 0.944 0.006 0.798 0.029 0.027 0.036
25 100 1 0 Prior 4 1 1 0.955 -0.005 0.782 0.021 0.024 0.067
25 100 1 0 Prior 1 5 4 0.954 -0.004 3.662 0.024 0.022 0.043
25 100 1 0 Prior 2 5 4 0.952 -0.002 3.640 0.026 0.022 0.083
25 100 1 0 Prior 3 5 4 0.953 -0.003 3.903 0.024 0.023 0.021
25 100 1 0 Prior 4 5 4 0.956 -0.006 3.818 0.026 0.018 0.182
25 100 1 0 Prior 1 5 5 0.941 0.009 3.769 0.026 0.033 0.119
25 100 1 0 Prior 2 5 5 0.942 0.008 3.693 0.032 0.026 0.103
25 100 1 0 Prior 3 5 5 0.954 -0.004 3.968 0.027 0.019 0.174
25 100 1 0 Prior 4 5 5 0.951 -0.001 3.945 0.030 0.019 0.224
25 100 1 0 Prior 1 10 9 0.943 0.007 7.573 0.032 0.025 0.123
25 100 | 0 Prior 2 10 9 0.948 0.002 7.391 0.034 0.018 0.308
25 100 1 0 Prior 3 10 9 0.949 0.001 7.995 0.028 0.023 0.098
25 100 I 0 Prior 4 10 9 0.945 0.005 7.665 0.023 0.032 0.164
25 100 1 0 Prior | 10 10 0.948 0.002 7.656 0.029 0.023 0.115
25 100 1 0 Prior 2 10 10 0.948 0.002 7.523 0.032 0.020 0.231
25 100 | 0 Prior 3 10 10 0.949 0.001 7.995 0.028 0.023 0.098
25 100 1 0 Prior 4 10 10 0.953 -0.003 7877 0.023 0.024 0.021
25 100 13 0 Prior | 4 30 0.951 -0.001 9.325 0.020 0.029 0.184
25 100 13 0 Prior 2 4 30 0.963 -0.013 9.260 0.018 0.019 0.027
25 100 13 0 Prior 3 4 30 0.943 0.007 9.424 0.033 0.024 0.158
25 100 13 0 Prior 4 4 30 0.945 0.005 9.369 0.034 0.021 0.236
25 300 0.8 0 Prior | 12 12 0.947 0.003 8.563 0.022 0.031 0.170
25 300 0.8 0 Prior 2 12 12 0.940 0.010 8.269 0.038 0.022 0.267
25 300 0.8 0 Prior 3 12 12 0.942 0.008 8.922 0.024 0.034 0.172
25 300 0.8 0 Prior 4 12 12 0.947 0.003 8.719 0.027 0.026 0.019
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Method 2 2 Coverage Coverage Average %CI < % Cl > Relative
" ", H H 0, 0, Probability ~ Error Length #C. & %C. ¢ Bias
40 25 0 0 Prior | 1 1 0.952 -0.002 0.892 0.028 0.020 0.167
40 25 0 0 Prior 2 1 1 0.941 0.009 0.870 0.027 0.032 0.085
40 25 0 0 Prior 3 1 1 0.959 -0.009 0.946 0.022 0.019 0.073
40 25 0 0 Prior 4 1 1 0.953 -0.003 0.922 0.027 0.020 0.149
40 25 0 0 Prior | 5 5 0.946 0.004 4419 0.032 0.022 0.185
40 25 0 0 Prior 2 5 5 0.948 0.002 4.366 0.027 0.025 0.038
40 25 0 0 Prior 3 5 5 0.955 -0.005 4.662 0.025 0.020 0.111
40 25 0 0 Prior 4 5 5 0.959 -0.009 4.578 0.022 0.019 0.073
40 25 0 0 Prior | 10 10 0.941 0.009 8.849 0.025 0.034 0.153
40 25 0 0 Prior 2 10 10 0.958 -0.008 8.740 0.022 0.020 0.048
40 25 0 0 Prior 3 10 10 0.957 -0.007 9.349 0.022 0.021 0.023
40 25 0 0 Prior 4 10 10 0.949 0.00t 9.161 0.026 0.025 0.020
40 25 1 0 Prior | 1 1 0.950 0.000 0.896 0.035 0.015 0.400
40 25 1 0 Prior 2 1 1 0.953 -0.003 0.874 0.021 0.026 0.106
40 25 ! 0 Prior 3 1 1 0.944 0.006 0.942 0.025 0.031 0.107
40 25 1 0 Prior 4 1 1 0.941 0.009 0.919 0.025 0.034 0.153
40 25 1 0 Prior | 5 4 0.956 -0.006 3.941 0.024 0.020 0.091
40 25 1 0 Prior 2 5 4 0.947 0.003 3.796 0.026 0.027 0.019
40 25 1 0 Prior 3 5 4 0.941 0.009 4.135 0.029 0.030 0.017
40 25 1 0 Prior 4 5 4 0.950 0.000 4.009 0.024 0.026 0.040
40 25 1 0 Prior | 5 5 0.946 0.004 4411 0.026 0.028 0.037
40 25 1 0 Prior 2 5 5 0.952 -0.002 4.343 0.030 0.018 0.250
40 25 1 0 Prior 3 5 5 0.943 0.007 4.670 0.026 0.031 0.088
40 25 1 0 Prior 4 5 5 0.950 0.000 4.593 0.023 0.027 0.080
40 25 1 0 Prior | 10 9 0.945 0.005 8.378 0.023 0.032 0.164
40 25 1 0 Prior 2 10 9 0.948 0.002 8.224 0.022 0.030 0.154
40 25 1 0 Prior 3 10 9 0.952 -0.002 8.861 0.023 0.025 0.042
40 25 1 0 Prior 4 10 9 0.938 0.012 8.494 0.034 0.028 0.097
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Method 2 2 Coverage Coverage Average % CI < [5) > Relative
n "y H Hy o, o, Probability  Error Length 7oC. & %Cl>0 Bias
40 25 1 0 Prior | 10 10 0.947 0.003 8.816 0.021 0.032 0.208
40 25 1 0 Prior 2 10 10 0.960 -0.010 8.615 0.020 0.020 0.000
40 25 1 0 Prior 3 10 10 0.948 0.002 9.468 0.026 0.026 0.000
40 25 1 0 Prior 4 10 10 0.948 0.002 9.142 0.026 0.026 0.000
40 25 S 0 Prior | 2 12 0.952 -0.002 8.344 0.028 0.020 0.167
40 25 5 0 Prior 2 2 12 0.960 -0.010 8.163 0.022 0.018 0.100
40 25 5 0 Prior 3 2 12 0.947 0.003 8.840 0.027 0.026 0.019
40 25 5 0 Prior 4 2 12 0.949 0.001 8.602 0.027 0.024 0.059
40 40 8 0 Prior 1 4 20 0.958 -0.008 10.218 0.022 0.020 0.048
40 40 8 0 Prior 2 4 20 0.950 0.000 10.161 0.025 0.025 0.000
40 40 8 0 Prior 3 4 20 0.959 -0.009 10.579 0.018 0.023 0.122
40 40 8 0 Prior 4 4 20 0.948 0.002 10.287 0.034 0.018 0.308
40 40 14 0 Prior 1 4 32 0.947 0.003 16.126 0.028 0.025 0.057
40 40 14 0 Prior 2 4 32 0.958 -0.008 16.144 0.020 0.022 0.048
40 40 14 0 Prior 3 4 32 0.949 0.001 16.764 0.019 0.032 0.255
40 40 14 0 Prior 4 4 32 0.948 0.002 16.278 0.032 0.020 0.231
50 200 0 0 Prior | 1 1 0.950 0.000 0.484 0.025 0.025 0.000
50 200 0 0 Prior 2 1 1 0.958 -0.008 0.483 0.021 0.021 0.000
50 200 0 0 Prior 3 1 1 0.948 0.002 0.493 0.025 0.027 0.038
50 200 0 0 Prior 4 1 1 0.951 -0.001 0.491 0.030 0.019 0.224
50 200 0 0 Prior | 2 1 0.943 0.007 0.887 0.022 0.035 0.228
50 200 0 0 Prior 2 2 1 0.952 -0.002 0.885 0.025 0.023 0.042
50 200 0 0 Prior 3 2 1 0.948 0.002 0.927 0.028 0.024 0.077
50 200 0 0 Prior 4 2 1 0.956 -0.006 0.900 0.017 0.027 0.227
50 200 0 0 Prior 1 3 1 0.934 0.016 1.323 0.033 0.033 0.000
50 200 0 0 Prior 2 3 1 0.957 -0.007 1.317 0.027 0.016 0.256
50 200 0 0 Prior 3 3 1 0.934 0.016 1.329 0.027 0.039 0.182
50 200 0 0 Prior 4 3 1 0.954 -0.004 1.333 0.021 0.025 0.087
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n, n, 4, 1 Method O_lz 0_22 Coverage Coverage Average UCI <8 %CI > 6 gie;:hve

Probability Error Length
50 200 0 0 Prior | 5 5 0.954 -0.004 2.436 0.024 0.022 0.043
50 200 0 0 Prior 2 5 5 0.961 -0.011 2.413 0.020 0.019 0.026
50 200 0 0 Prior 3 5 5 0.938 0.012 2476 0.025 0.037 0.194
50 200 0 0 Prior 4 5 5 0.950 0.000 2.460 0.029 0.021 0.160
50 200 0 0 Prior | 10 10 0.953 -0.003 4.837 0.018 0.029 0.234
50 200 0 0 Prior 2 10 10 0.954 -0.004 4.854 0.028 0.018 0.217
50 200 0 0 Prior 3 10 10 0.964 -0.014 4.968 0.016 0.020 0.111
50 200 0 0 Prior 4 10 10 0.954 -0.004 4.904 0.019 0.027 0.174
50 200 1 0 Prior 1 1 1 0.957 -0.007 0.485 0.017 0.026 0.209
50 200 1 0 Prior 2 1 1 0.933 0.017 0.478 0.030 0.037 0.104
50 200 1 0 Prior 3 1 1 0.953 -0.003 0.496 0.026 0.021 0.106
50 200 1 0 Prior 4 1 1 0.953 -0.003 0.491 0.017 0.030 0.277
50 200 1 0 Prior | 5 5 0.941 0.009 2.407 0.029 0.030 0.017
50 200 1 0 Prior 2 5 5 0.939 0.011 2413 0.032 0.029 0.049
50 200 1 0 Prior 3 5 5 0.952 -0.002 2473 0.024 0.024 0.000
50 200 1 0 Prior 4 5 5 0.945 0.005 2.448 0.030 0.025 0.091
50 200 1 0 Prior 1 10 10 0.947 0.003 4.811 0.022 0.031 0.170
50 200 1 0 Prior 2 10 10 0.952 -0.002 4.828 0.023 0.025 0.042
50 200 1 0 Prior 3 10 10 0.955 -0.005 4.994 0.024 0.021 0.067
50 200 1 0 Prior 4 10 10 0.959 -0.009 4.927 0.017 0.024 0.171
100 25 0 0 Prior 1 | | 0.954 -0.004 0.759 0.024 0.022 0.043
100 25 0 0 Prior 2 1 1 0.940 0.010 0.742 0.031 0.029 0.033
100 25 0 0 Prior 3 1 1 0.944 0.006 0.790 0.032 0.024 0.143
100 25 0 0 Prior 4 ! 1 0.950 0.000 0.794 0.025 0.025 0.000
100 25 0 0 Prior | 2 1 0.945 0.005 0.943 0.025 0.030 0.091
100 25 0 0 Prior 2 2 1 0.944 0.006 0.929 0.022 0.034 0214
100 25 0 0 Prior 3 2 t 0.950 0.000 0.967 0.024 0.026 0.040
100 25 0 0 Prior 4 2 t 0.944 0.006 0.952 0.021 0.035 0.250




Method 2 2 Coverage Coverage Average [V o Relative
n, n, 7 75 log o, %CI <8 %CI >0 Bins

Probability Error Length
100 25 0 0 Prior 1 3 1 0.942 0.008 1.155 0.019 0.039 0.345
100 25 0 0 Prior 2 3 1 0.961 -0.011 1.146 0.018 0.021 0.077
100 25 0 0 Prior 3 3 1 0.935 0.015 1.186 0.026 0.03% 0.200
100 25 0 0 Prior 4 3 1 0.953 -0.003 1.173 0.018 0.029 0.234
100 25 0 0 Prior | 5 5 0.951 -0.001 3.880 0.021 0.028 0.143
100 25 0 0 Prior 2 5 5 0.957 -0.007 3.678 0.029 0.014 0.349
100 25 0 0 Prior 3 5 5 0.952 -0.002 3.996 0.027 0.021 0.125
100 25 0 0 Prior 4 5 5 0.953 -0.003 3.887 0.021 0.026 0.106
100 25 0 0 Prior | 10 10 0.950 0.000 7.802 0.021 0.029 0.160
100 25 0 0 Prior 2 10 10 0.948 0.002 7.522 0.022 0.030 0.154
100 25 0 0 Prior 3 10 10 0.955 -0.005 7.987 0.025 0.020 0.111
100 25 0 0 Prior 4 10 10 0.942 0.008 7.817 0.027 0.031 0.069
100 25 1 0 Prior | 1 1 0.942 0.008 0.767 0.027 0.031 0.069
100 25 1 0 Prior 2 1 1 0.938 0.012 0.750 0.034 0.028 0.097
100 25 ! 0 Prior 3 1 1 0.950 0.000 0.803 0.022 0.028 0.120
100 25 I 0 Prior 4 1 1 0.954 -0.004 0.783 0.024 0.022 0.043
100 25 I 0 Prior | 5 4 0.946 0.004 3.239 0.021 0.033 0.222
100 25 I 0 Prior 2 5 4 0.939 0.011 3.147 0.031 0.030 0.016
100 25 1 0 Prior 3 5 4 0.942 0.008 3.363 0.032 0.026 0.103
100 25 i 0 Prior 4 5 4 0.941 0.009 3.302 0.019 0.040 0.356
100 25 1 0 Prior | 5 5 0.949 0.001 3.837 0.028 0.023 0.098
100 25 1 0 Prior 2 5 5 0.953 -0.003 3.743 0.022 0.025 0.064
100 25 1 0 Prior 3 5 5 0.949 0.001 3.995 0.025 0.026 0.020
100 25 1 0 Prior 4 5 5 0.957 -0.007 3.889 0.023 0.020 0.070
100 25 1 0 Prior | 10 9 0.958 -0.008 7.006 0.022 0.020 0.048
100 25 1 0 Prior 2 10 9 0.950 0.000 6.857 0.024 0.026 0.040
100 25 1 0 Prior 3 10 9 0.961 -0.011 7.338 0.017 0.022 0.128
100 25 1 0 Prior 4 10 9 0.952 -0.002 7.127 0.025 0.023 0.042
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Method 2 Coverage Coverage Average 0, 1] > Relative

" ", A Hy O g, Probability Length %CI <6 %Cl>0 Bias

100 25 1 0 Prior | 10 10 0.938 0.012 7.607 0.035 0.027 0.129
100 25 1 0 Prior 2 10 10 0.942 0.008 7.583 0.027 0.031 0.069
100 25 | 0 Prior 3 10 10 0.945 0.005 8.037 0.030 0.025 0.091
100 25 1 0 Prior 4 10 10 0.961 -0.011 7.756 0.023 0.016 0.179
100 25 13 0 Prior | 4 30 0.945 0.005 20.665 0.026 0.029 0.055
100 25 13 0 Prior 2 4 30 0.949 0.001 20.114 0.025 0.026 0.020
100 25 13 0 Prior 3 4 30 0.948 0.002 21.831 0.031 0.021 0.192
100 25 13 0 Prior 4 4 30 0.946 0.004 21.078 0.026 0.028 0.037
100 100 13 0 Prior 1 4 30 0.936 0014 8.899 0.033 0.031 0.031
100 100 13 0 Prior 2 4 30 0.952 -0.002 8.806 0.028 0.020 0.167
100 100 13 0 Prior 3 4 30 0.948 0.002 8.952 0.025 0.027 0.038
100 100 13 0 Prior 4 4 30 0.948 0.002 8914 0.026 0.026 0.000
200 50 0 0 Prior | 1 1 0.948 0.002 0.491 0.025 0.027 0.038
200 50 0 0 Prior 2 1 1 0.944 0.006 0.484 0.030 0.026 0.071
200 50 0 0 Prior 3 1 1 0.956 -0.006 0.495 0.025 0.019 0.136
200 50 0 0 Prior 4 1 1 0.956 -0.006 0.488 0.030 0.014 0.364
200 50 0 0 Prior | 2 1 0.944 0.006 0.603 0.022 0.034 0.214
200 50 0 0 Prior 2 2 1 0.944 0.006 0.600 0.024 0.032 0.143
200 50 0 0 Prior 3 2 1 0.938 0.012 0.615 0.018 0.044 0.419
200 50 0 0 Prior 4 2 1 0.941 0.009 0.610 0.026 0.033 0.119
200 50 0 0 Prior | 3 1 0.960 -0.010 0.758 0.019 0.021 0.050
200 50 0 0 Prior 2 3 1 0.957 -0.007 0.752 0.018 0.025 0.163
200 50 0 0 Prior 3 3 1 0.957 -0.007 0.765 0.016 0.027 0.256
200 50 0 0 Prior 4 3 1 0.939 0.011 0.755 0.023 0.038 0.246
200 50 0 0 Prior | 5 5 0.940 0.010 2415 0.034 0.026 0.133
200 50 0 0 Prior 2 5 5 0.949 0.001 2.397 0.026 0.025 0.020
200 50 0 0 Prior 3 5 5 0.961 -0.011 2.479 0.017 0.022 0.128
200 50 0 0 Prior 4 5 5 0.954 -0.004 2.481 0.025 0.021 0.087
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Method 2 2 Coverage Coverage Average NCI <@ %CI> 6 Relative

n ) H H 0, 0, Probability  Error Length 7o /o Bias

200 50 0 0 Prior 1 10 10 0.940 0.010 4.857 0.029 0.031 0.033
200 50 0 0 Prior 2 10 10 0.959 -0.009 4.800 0.021 0.020 0.024
200 50 0 0 Prior 3 10 10 0.953 -0.003 4.929 0.027 0.020 0.149
200 50 0 0 Prior 4 10 10 0.963 -0.013 4.936 0.014 0.023 0.243
200 50 1 0 Prior 1 1 1 0.948 0.002 0.487 0.027 0.025 0.038
200 50 1 0 Prior 2 1 1 0.948 0.002 0.482 0.022 0.030 0.154
200 50 1 0 Prior 3 1 1 0.939 0.011 0.493 0.036 0.025 0.180
200 50 1 0 Prior 4 1 1 0.954 -0.004 0.492 0.024 0.022 0.043
200 50 t 0 Prior 1 5 5 0.954 -0.004 2.419 0.024 0.022 0.043
200 50 1 0 Prior 2 5 5 0.942 0.008 2.397 0.025 0.033 0.138
200 50 1 0 Prior 3 5 5 0.953 -0.003 2.484 0.023 0.024 0.021
200 50 1 0 Prior 4 5 5 0.953 -0.003 2.447 0.026 0.021 0.106
200 50 1 0 Prior | 10 10 0.943 0.007 4.869 0.035 0.022 0.228
200 50 1 0 Prior 2 10 10 0.958 -0.008 4819 0.022 0.020 0.048
200 50 1 0 Prior 3 10 10 0.939 0.011 4.955 0.033 0.028 0.082
200 50 1 0 Prior 4 10 10 0.956 -0.006 4913 0.025 0.019 0.136
200 200 24 0 Prior 1 12 60 0.956 -0.006 12.313 0.022 0.022 0.000
200 200 24 0 Prior 2 12 60 0.946 0.004 12.353 0.031 0.023 0.148
200 200 24 0 Prior 3 12 60 0.944 0.006 12.388 0.031 0.025 0.107
200 200 24 0 Prior 4 12 60 0.964 -0.014 12.378 0.019 0.017 0.056
200 200 40 0 Prior | 2 82 0.959 -0.009 16.441 0.022 0.019 0.073
200 200 40 0 Prior 2 2 82 0.944 0.006 16.404 0.031 0.025 0.107
200 200 40 0 Prior 3 2 82 0.955 -0.005 16.580 0.024 0.021 0.067
200 200 40 0 Prior 4 2 82 0.943 0.007 16.535 0.034 0.023 0.193
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CHAPTER 4

Inference on the Mean: Two Samples and Zero Valued
Observations

Introduction

In this chapter we shift our focus from the previous two chapters. Until now we have just
been concerned with strictly lognormally distributed data. However, the lognormal
distribution in itself does not allow for zero values to be included in the data. This
suggests an interesting setting, namely the analysis of data that contains both zero and

non-zero values, with the non-zero values being lognormally distributed.

The situation was analysed by Zhou and Tu (2000) with specific application to medical
diagnostic charges. These authors proposed both a maximum likelihood method and a
bootstrap method to analyse this form of data. This chapter may be viewed as the
Bayesian version of this work. Various prior distributions were specifically chosen and a

simulation study was performed to examine the effectiveness of these Bayesian methods.
In addition to this, it was noted in previous chapters that perhaps the Bayesian methods

are not particularly well suited to the situation of small sample sizes. This was not

considered by Zhou and Tu (2000) either, but will be presented for additional insight.
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The Case of Zero-Valued Observations

4.1 Model Formulation
From the specification of the problem in the Introduction we can assume that the

populations of interest contain both zero and non-zero (positive observations) and we

furthermore assume that the probability of obtaining a zero observation from the j-th

population (j = 1,2) is 6, where 0 <6, <1. Furthermore, we assume that the non-zero

observations are distributed lognormally with mean x; and variance O'f. Now, let

X

1j°

X,js-X,; be arandom sample from the ;" population and let M, =E(X;). From
this preliminary setting specification we wish to construct credibility intervals for the
ratio of the means, M, and M,, of the two populations. As in Zhou and Tu (2000) we

assume that in the ;j”sample the non-zero observations come first: X;>0, and

In(X;)|n, ~N(y,;,0;), for i=1,..,n In addition, X, =0, for i=n, +1,..,n, and

Jie
n,=n;,—n, ~Bin(n;,6,). From this it follows that the mean of the j" population,

J

which is a function of j,O'f and &, is given by:

1
M;=(1-6,)exp(y, +50'f).

To compare the two population means we will construct credibility intervals for the ratio

of the means:

1
M, (1—5,)6)(})([1,-*—50',2)
M,

= : .
(1-6,)exp(u, +EO-22)
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4.2  Intervals Based on a Bayesian Procedure

Denote y,=InX, and 6=[6, 4 o076, i, o,] then the likelihood function is

if
given by:
1

2 1j1
Nio ny z 1. o
L(0|data) < [ [{6;°(1-6,)" ]‘[(;7)2 exp[—
j= i=1 i

J l

Oy=a) 4.1)

The choice of prior to be used in this setting will be discussed in further sections. Given
the previous specification of the likelihood, the Fisher Information Matrix in our case can

be written as:

1(0)=-E {{-;—;ln L (0 | data)} ]

+1(6)=dag Ls, (1’1—] 5) . (10;25,) nl(zl;;‘gl) (52(1”j 5) nZ(lc;:z » HZ(zl;;(SZ)
(4.2)
4.2.1 Independence Jeffreys Prior:
Since @ is unknown the prior
p(6) f[a;za;yz (-5, (4.3)
j=l

will be specified for the unknown parameters. This is known as the independence

Jeffreys prior. In (4.3) we have assumed u; and O'jz., for j=1,2to be independently

distributed, a priori, with y; and log O'f each uniformly distributed. See Zellner (1971)

1 1
and Box and Tiao (1973) for further discussion. The prior p(6;)«d; *(1-6;) ? is the

one proposed by Jeffreys (1967) for the binomial parameter. Combining the likelihood
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function (4.1) and the prior density function (4.3) the joint posterior density function can

be written as:

1 i
1 5" 2(1-5)"
B(n,,+0.5;n,+0.5) !

0 2 ) Lw,42) leé'jz
P(@|data)=| | ek L | (6" “exp|-—++-
lj;[ 270} | 2 n, Lo |(vasi P 207

X exp| — (,uj - ,uj) N

n; 20‘12. 2

njl

where g,=—>y,,
j1 =1

&) =—2 (yy~i1;)" and

J1 =l

_ I(m+n)

B ) = o Tny

From (4.4) it follows that the posterior distribution of &;is a Beta distribution
(specifically B(nj0+%;nﬂ+%j) and ¢;is independently distributed of x; and O'j,

where the conditional posterior distribution of 4 is normal:

: .
H,;|o",data~ N ,uj,-’—?—— (4.5)
71

and for O'f , the posterior density function is an Inverted Gamma density, specifically:
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1 ~2

Lo 42 V.0

L, (of) 2 exp| L4
2 20

~2\5"N 2
P(0? | data) =| 22 ! (4.6)
r| Y
2

The method proposed here to find the Bayesian credibility intervals for

D=InM,-1InM,, the log of the ratio of the population means, is through Monte Carlo

2
lo
simulation. Since InM; =In(1-5))+ 4, +7’ (j = 1,2), standard routines can be used in

the simulation procedure.

4.2.2 Simulation Procedure:

The following simulation was obtained from the preceding theory using the MATLAB®

package:
1. Simulation of O'f can be obtained from (4.6) in the following way:
a. Simulate z';. from a Zf,—. distribution, as the sum of v, squared
independent normal random variables.
b. Calculate 0'12.' =4 'fj
%
2. Given O'jz.‘, simulate ,u; from (4.5).
3. A simulated value of &, (a Beta random variable), namely 5;, was

obtained using a MATLAB function.




4. Substitute the simulated values O'f‘, ,u; and 5; into the expression for D

to obtain D’, a simulated value for the log-ratio of the population means.
Once these values have been obtained, the simulation procedure is similar to those

discussed in previous chapters.

4.2.3 Alternate Prior Distributions — Jeffreys Rule Prior:

As mentioned in the Introduction to this thesis, one of the objectives was to compare the
Bayesian procedure for different choices of prior distributions for 4, the unknown
parameters. In the previous two sections we discussed the analysis methods using
Jeffreys’ non-informative prior and the resulting simulation technique. In this and
subsequent sections different choices of prior distributions will be discussed in an effort
to eventually compare the results. The choice of density applied in this section is the
square root of the determinant of the Fisher Information Matrix, which is an adaptation of

the Jeffreys’ rule used in the previous section.

Since @ is unknown this prior becomes

P(6) f[gfaj‘ h-5)" 4.7)

This was derived from |/(6) |%, which was defined in (4.2). In (4.6) we have assumed
#; and O';T , for j=1,2to be independently distributed, a priori, with u; and log 0'12. each

uniformly distributed. Combining the likelihood function (4.1) and the prior density

function (4.7) the joint posterior density function can be written as:
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1 1
1 572 (1-5)""
B(nyy+0.5n, +1.5) ’
2 L) (v.)6?
P(8|data) =] | N e (67) 7 exp| ==
| [ 270 ", . a2 | (Va)o; o
. exp| = st~ ) || 2L 1
n, 20 2 rf ¥ath
2
(4.8)

where 4, v

o o”-f. and B(m,n) are defined as before.

From (4.7) it follows that the posterior distribution of &;is a Beta distribution
ifically B Lip 42 S is i ly distributed of d o}
(specifically njo+-2—,njl +5 ) and 0;1s independently distributed of 4, and o,

where the conditional posterior distribution of 4, is normal:

: 2 I
u;lo",data~N| fi,,— (4.9)
n,

and for 0'12., the posterior density function (as before) is an Inverted Gamma density,

specifically:

A Vit V. 6'2
| @72 exp| - 0%
2 (V'I)O-' 2 20-]
P(o; |data) = #

r(wﬂ+nj
2

A similar simulation procedure to the one previously described can be used except that

(4.10)

we simulate T;. from a ;gf_” distribution, as the sum of v, +1 squared independent
i

normal random variables.




4.2.4 Alternate Prior Distributions — Constant (Uniform) Prior:
Since 4 is unknown this prior becomes

p(8) < const 4.11)

In (4.11) we have assumed M; and O'Jz., for j=1,2to be independently distributed, a

priori, with 4, and logO'f each uniformly distributed. Combining the likelihood

function (4.1) and the prior density function (4.11) the joint posterior density function can

be written as:

1
(-8
B(ny+Ln,+1) (1-5)

x2
m ~(Vj1)o-j

2 e
P(0|data) = - o \L2) (6?)? exp[ ]
11 X(Mof-} Zexp{_ﬁn_(#,_ ﬁ‘)z}[w)oijz ’ 20
SR F[MJ
2

(4.12)

with the symbols defined as before.

From (4.12) it follows that the posterior distribution of &;is a Beta distribution
(specifically B(n 0 tLlng, +1)) and ¢, is independently distributed of 4, and O'Jz- , where

the conditional posterior distribution of 4 is normal:

: . 9
u;lo”,data~N /Jj,n— (4.13)
1

and for O'f , the posterior density function is an Inverted Gamma density, specifically:
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] A2

-=(v;) (V< )O’

] 2y 27 NV
5n2) (O-j) exp[ 20_}; :|

r((vﬂ—2)j
2

(4.14)

P(O'JZ. | data) = ( v ]2)&; ]

A similar simulation procedure to the one previously described except that we simulate

Z';- from a zf‘l , distribution, as the sum of v, —2 squared independent normal random
e

variables.

4.3 Method of Variance Estimates Recovery (MOVER)

In addition to the Bayesian priors considered, the performance of the Bayesian prior
distributions was also compared to the MOVER in the case where zero values are
possible. Zou, Taleban and Huo (2009a) proposed procedures involving the so-called
“method of variance estimates recovery” (MOVER). The MOVER method was designed
in order to apply to a general scenario and also to provide adequate coverage rates in
estimation procedures relating to lognormally distributed data. The advantage of the
MOVER is therefore that it is easily applicable to many different settings with little more

than a basic knowledge of introductory statistical texts.

The (1 — a)100% confidence limits for 8; = p; + %aiz, i = 1,2, using the MOVER as

given by Zou et al (2009) on page 3758 are:




Furthermore, due to the presence of zero values the confidence limits for §; are given by:

& A Z‘%/z
6i(1 — 5{) + '4—nl-
Zé/
. 2 n;
: t Zni i Zg/z
1+ ===
n;
where
A n;
6= —
n;

It is then a simple matter to find the confidence limits for in(1 — §;), which will be
denoted by [; and i;, respectively.

Underlying these limits is the well known result that the (1 — a)100% confidence

Y Y
interval for ¢? is given by ViSi 2 ;V‘S‘ 2 where x is the “/ th
i X X4 /2. 2
1-%/5wi /2vi

percentile from the chi-squared distribution with v degrees of freedom where v; = n; —

1. Za A is the upper a/z th quantile of the standard normal distribution and f; = x; and

A2 1
0; = —=Sii.
i y L
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The (1 — a)100% confidence interval for In(1 — 6;) + w; + %aiz is therefore given

L= (1= 6)+ g+ 302~ [(in(1- §) = 1)+ (&~ L)’

1
U= ln(1—6)+,ul+20 \/(ul—ln(l—é‘))+(U—0)
4.4  Simulation Study

44.1 Results for a Single Sample with Zero Values
Zou et al (2009a) used the MOVER for what they termed the one sample A-distribution,
which is the same situation as the previously described setting except that only a single

population is considered. The following results were obtained:

Table 32: Comparison of the MOVER and GCI against Independence Jeffreys’ Prior for Zero

1
Values Included for Constructing Two-sided 95% Confidence Intervals for [n (1 —5) +(/1 + E o’ j

MOVER GCl Equal-Tailed HPD Intervals
) n a? Cover % Width  Cover % Width  Cover % Width Cover % Width

0.1 15 ! 95.03 (3.60, 1.37) 1.65 95.53(2.34,2.13) 1.72 95.03 (2.59,2.38) 1.66 95.36 (1.26, 3.38) 1.5%
2 95.22 (3.13, 1.65) 2.78 95.50(2.26, 2.24) 2.85 95.14 (2.62,2.24) 2.79 95.56 (0.91, 3.53) 2.62

3 94.87 (2.90, 2.23) 3.88 94.94 (2.35,2.71) 3.94 94.86 (2.73, 2.41) 3.89 95.42 (0.80, 3.78) 3.59

25 1 95.21 (3.09, 1.70) 1.17 95.95 (2.03,2.02) 1.22 95.75 (2.30, 2.45) 1.18 95.34 (1.34,3.32) 115

2 94.94 (2.87,2.19) 1.93 95.21 (2.19, 2.60) 1.97 95.00 (2.52, 2.48) 1.93 95.43 (1.22,3.35) 1.86

3 95.09 (2.80, 2.11) 2.67 95.31(2.26,2.43) 271 94.85 (2.60, 2.55) 2.66 95.22 (1.04, 3.74) 2.54

50 | 95.10 (3.02, 1.88) 0.78 95.79 (2.26, 1.95) 0.80 94.93 (2.47, 2.60) 0.78 94.98 (1.78, 3.24) 077

2 95.16 (2.87,1.97) 1.26 95.41(2.37,2.22) 1.29 95.28 (2.47,2.25)  1.27 95.56 (1.47,2.97) 1.24

3 94.86 (2.69, 2.45) 1.73 94.87 (2.43,2.70) 1.76 94.93 (2.68, 2.39) 1.73 95.13(1.53,3.34) 1.69

0.2 15 l 95.17 (3.30, 1.53) 1.87 95.99 (2.14, 1.87) 1.98 95.48 (2.44,2.08) 1.89 96.18 (1.08, 2.74) 1.80
2 95.41 (2.78, 1.81) 3.13 95.70 (2.02, 2.28) 3.23 94.98 (2.76, 2.26) 3.3 95.78 (0.88, 3.34) 2.91

3 94.97 (3.11,1.92) 438 94.93 (2.54,2.53) 4.47 94.60 (2.83,2.57) 4.37 95.10 (0.81, 4.09) 3.99

25 1 95.17(3.20, 1.63) 1.30 96.01 (2.14, 1.85) 1.36 95.32 (2.49, 2.19) 1.30 95.81 (1.45,2.74) 1,27

2 95.34 (2.79, 1.87) 2.10 95.70(2.11,2.19) 2,16 95.34 (2.47,2.19) 211 95.83 (1.08, 3.09) 2.03

3 95.27 (2.74,1.99) 2.91 95.57(2.17,2.26) 2.96 94.92 (2.48, 2.60) 2.90 95.26 (0.89, 3.85) 2.76

50 1 95.00 (2.99, 2.01) 0.85 95.56 (2.26, 2.18) 0.88 94.90 (2.62, 2.48) 0.86 95.20 (1.84, 2.96) 0.85

2 94.95 (2.92,2.13) 1.37 95.28 (2.36, 2.36) 1.39 95.09(2.74, 2.17) 1.37 95.20 (1.72, 3.08) 1.34

3 95.30 (2.58,2.12) 1.87 95.39 (2.24,2.37) 1.90 95.13 (2.77, 2.10) 1.87 95.46 (1.45, 3.09) 1.83

From the above it is evident that the interval lengths and coverage of the equal-tailed
intervals are very similar to those of MOVER, with the lengths being almost identical. It

1s interesting to note however, that proportion of intervals above and below the true value
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differ substantially. The Bayesian HPD intervals are therefore a large improvement on

the MOVER and generalized confidence intervals.

In simulations based on samples without zero values the equal-tailed Bayesian intervals

using the Jeffreys’ prior p(u, 0?) o g2

are identical to the generalized confidence
intervals. This will not be the case in Table 33. The reason for this is the simulation of

6. In the Bayesian case (using the Independence Jeffreys prior) the posterior distribution
of & is the Beta, B (n0 + 2y + %) distribution while Zou et al (2009a) (see also Tian
(2005)) used two pivotal quantities, B(ny + 1,n,) and B(ny,ny + 1) for &, which are
combined with the pivotal quantity of the lognormal mean to simulate InM =
In(1-6 )+ (/1 + %02 ) From Table 33 it is also clear that the Bayesian equal-tailed

intervals are shorter than those of the generalized confidence interval procedure with just

as good or better coverage probabilities.

Tian and Wu (2006) also considered an approach based on the adjusted log-likelihood
ratio statistics for constructing a confidence interval for the mean of lognormally
distributed data with excess zeros. Because of different parameter values only a few
results could be compared. It does seem, however, that the procedures described in Table

33 result in better results than the adjusted log likelihood method.

Once again, other prior distributions were also evaluated, but only for the case of
6 = 0.1. In addition, the proportion of intervals above and below the true parameter

values was also not recorded.
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Table 33: Comparison of the MOVER and Other Prior Distributions for Constructing Two-sided

1
95% Confidence Intervals for ln(l —5) +| u+ 5 o’

Equal-Tailed / MOVER HPD Intervals
n ¢% Prior/Method Cover % Width Cover % Width
15 1 MOVER 95.03 1.65
p(8) x o735~ '2(1 - 8)'2 94.35 1.53 94.10 1.48
Reference Prior 95.45 1.75 96.35 1.67
Probability-Matching Prior 96.25 1.67 94.41 1.59
2 MOVER 95.22 2.78
p(9) = 0-387 (1 - &)~ 94.06 2.52 93.93 239
Reference Prior 95.01 3.02 96.10 2.81
Probability-Matching Prior 94.76 2.68 94,79 1.59
3 MOVER 94.87 3.88
p(8) « 0-35-1/2(1 - 8 94.47 345 94.02 3.23
Reference Prior 95.26 4.27 96.48 3.90
Probability-Matching Prior 94.22 3.76 94.45 3.49
25 1 MOVER 95.21 1.1
p(8) x a7367"2(1 - §)'2 94.12 1.1 94.18 1.10
Reference Prior 95.03 1.19 95.46 1.17
Probability-Matching Prior 94.82 1.1 94.81 1.12
2 MOVER 94.94 1.93
p(8) x a=387"2(1 - &)z 94.65 1.82 94.47 1.76
Reference Prior 94.96 1.99 95.89 1.92
Probability-Matching Prior 95.14 1.88 95.20 1.82
3 MOVER 95.09 267
p(8) x 0736 2(1 - &2 94.82 2.51 94.33 2.41
Reference Prior 95.01 2.78 95.82 2.64
Probability-Matching Prior 94.44 2.60 94.35 2.49
50 1 MOVER 95.10 0.78
p(B) x 0736 2(1 - &' 94.79 0.76 94.72 0.76
Reference Prior 94.93 0.79 94.95 0.79
Probability-Matching Prior 94.80 0.77 94.85 0.76
2 MOVER 95.16 2
p(8) x o35 2(1 - &' 94.37 1.23 94.25 1.21
Reference Prior 95.34 1.28 95.78 1.26
Probability-Matching Prior 94.79 1.25 95.00 1.23
3 MOVER 94.86 1.73
p(B) x 736~ 2(1 - §)2 95.03 1.68 94.51 1.65
Reference Prior 95.11 1.77 95.53 1.72
Probability-Matching Prior 94.65 1.72 94.66 1.68

In this instance it appears as though the Probability-Matching prior, p(a) x
1 1 2\ ) ~ 1

5§~ 2(1 — 8) 2072 (1 + ;) , and the Jeffreys’ Rule prior (p(e) o 07367 /2(1 —

8) Y 2) tend to give coverage probabilities slightly less than 0.95. The Reference prior,

~ 1/
p(@) X 6‘1/2(1 - 6)_1/20'1 (1 + %) ? on the other hand gives the correct coverage

probabilities, but the intervals are wider than that of the MOVER.




Example 2: Two-sided 95% Confidence Intervals for(1 — &§)exp (,u + %az)

On page 3761 of Zou et al (2009a) the following example was given (as referenced in
Zhou and Tu (2000)): diagnostic test charges on 40 patients were investigated. Among
them, 10 patients had no diagnostic test charges and the charges for the remaining
patients were approximated using a lognormal distribution. On the log scale the

following values were observed: ¥ = 6.8535 and s2 = 1.8696.

For the MOVER the following interval was obtained and this is compared to results

obtained from the Bayes and GCI methods:

Table 34: Results of Diagnostic Test Charge Data

Probability-
Jeffreys Independence Reference  Matching
MOVER GCI Rule Jeffreys Prior Prior

Lower Limit (equal- 955.50 970.81
tailed) 1002.18 975.03 996.10 982.41
Upper Limit (equal-  4491.55 4687.37
tailed) 4690.34 4310.66 4802.44 4519.89
Lower Limit (HPD) 958.05 906.87 931.60 926.10
Upper Limit (HPD) 4345.73 3932.04 4356.93 4111.21

From the table it is clear that the intervals do not differ much. The intervals for the
MOVER and the Probability-Matching prior are for all practical purposes the same. The
shortest intervals are obtained from the Independence Jeffreys’ and Probability-Matching
prior. As mentioned before, the equal-tailed Independence Jeffreys interval and the GCI

interval will not be the same because of the difference in the simulation of 4.
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4.4.2 Results for the Ratio Between Two Samples with Zero Values

As was done in Zhou and Tu (2000) we will use computer simulations to study the
operating characteristics of the proposed Bayesian confidence interval procedure in finite
sample sizes. Random sample sizes containing both zero and lognormal observations are

generated using the following different sample sizes:

Table 35: Sample Sizes Analysed by Monte Carlo Simulation Techniques

n, n,
10 10
25 25
50 50
100 100
10 25
25 10
25 50

Zero proportions with different skewness coefficients are also considered. Based on
these generated samples the credibility intervals (or Bayesian confidence intervals
[BCI’s]) are constructed. The following additional characteristics are reported:

— coverage probabilities

— average interval lengths

— coverage error (target coverage — actual coverage),

— percentages of under-coverage on both sides (%BCI <8 and %BCI > 8)

| %BCI <68—-%BCI > 6|
(%BCI < 6+%BCI > 6)’

— relative bias

As was in Zhou and Tu (2000) the nominal significance level of a =0.05will be used
and for each parameter setting, C =10000 random samples are simulated to ensure that
the margin of error is less than 0.005 with 95% confidence. [ is taken to be 1000.

In the following table the parameter settings used in the simulation study are presented:
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Table 36: Parameter Settings used in the Simulation Study

Design o} ol d, o, %\ 7

1 3.0 1.0 0.0 0.0 96.4851 6.1849
2 4.0 4.0 0.0 0.0 414.3593  414.3593
3 3.0 1.0 0.1 0.1 100.9809 6.1763
4 2.0 0.5 0.0 0.1 23.7323 2.6848
5 2.0 0.5 0.1 0.2 24,5572 2.5806

Tables 49 to 53 represent the results of the simulation study for designs one to five,
respectively, for equal-tailed Bayesian confidence intervals only. The results from the
simulation study performed by Zhou and Tu (2000) for the Maximum Likelihood and
Bootstrap methods have been supplied as well for the purposes of comparison. The
results for individual designs are presented in the appendix to this chapter as Tables 49 to
53. Only summary results will be presented in the discussion in the main body of text in

this chapter.

As described in previous chapters, an advantage of the Bayesian approach is the
construction of HPD intervals. Tables 54 to 58 represent the HPD interval results from
these simulation studies. Table 59 is given for the same designs for the MOVER and is
also given in the appendix to this chapter. Only summarised results will be presented and

discussed here.
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4.5 Discussion of Results for the Simulation Studies
As mentioned, Zhou and Tu (2000) presented the results for the ML and Bootstrap

methods and compared only these. They ascertained that when the two population
skewness coefficients are the same the ML-based method results in better coverage
probabilities in comparison with the stated nominal level. However, it is found that the
ML-based method is more biased than the bootstrap method, as evidenced by a larger
relative bias. This was particularly evident when the sample sizes were not the same.
The ML method tends to cover too many observations on the left and too few on the

right.

When the two skewness coefficients are not the same the results indicate better coverage
accuracy for the bootstrap method. This method is also less biased than the ML-based

method.

However, the objective of this chapter was to compare these results against results
obtained from a Bayesian-based simulation study using a specifically chosen set of prior
distributions and to evaluate the performance of each prior distribution against both the

other distributions and the results obtained by Zhou and Tu (2000), overall.

The following table presents the summary statistics of the results in both the Zhou and Tu
(2000) simulation study and the Bayesian simulation study. Both HPD and equal-tailed
confidence intervals are presented for the Bayesian confidence intervals. The MOVER

results have been added for reference.
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Table 37: Summary Results for Simulation Studies

Design Method Coverage Coverage Average %CI <8 %CI >8 Relative
Probability Error Length Bias
i Bootstrap 0.9266 0.0234 2.6252 0.0393 0.0341 0.0857
ML 0.9285 0.0215 2.3625 0.0636 0.0080 0.6678
MOVER 0.9584 -0.0084 3.2313 0.0161 0.0254 0.2171
Prior | 0.9550 -0.0050 3.2020 0.0234 0.0216 0.1126
Prior 1 - HPD 0.9596 -0.0096 2.5737 0.0304 0.0100 0.4851
Prior 2 0.9473 0.0027 2.8889 0.0226 0.0301 0.2028
Prior 2 - HPD 0.9484 0.0016 2.2595 0.0430 0.0086 0.5974
Prior 3 0.9603 -0.0103 4.3057 0.0280 0.0117 0.4019
Prior 3 - HPD 0.9716 -0.0216 3.5341 0.0183 0.0101 0.3478
2 Bootstrap 0.9369 0.0131 3.9506 0.0324 0.0307 0.0287
ML 0.9476 0.0024 3.8491 0.0278 0.0246 0.3417
MOVER 0.9580 -0.0080 5.6237 0.0227 0.0193 0.1166
Prior 1 0.9494 0.0006 5.4961 0.0249 0.0257 0.1409
Prior | - HPD 0.9644 -0.0144 49120 0.0183 0.0173 0.2659
Prior 2 0.9429 0.0071 4.8849 0.0271 0.0300 0.1506
Prior 2 - HPD 0.9593 -0.0093 43118 0.0234 0.0173 0.3452
Prior 3 0.9590 -0.0090 7.6650 0.0207 0.0460 0.2535
Prior 3 - HPD 0.9766 -0.0266 6.9142 0.0133 0.0101] 0.3087
3 Bootstrap 0.9298 0.0202 2.7003 0.0393 0.0308 0.1269
ML 0.9237 0.0263 2.5127 0.0675 0.0088 0.7266
MOVER 0.9536 -0.0036 3.5978 0.0227 0.0237 0.1983
Prior 1 0.9486 0.0014 3.5759 0.0257 0.0514 0.1422
Prior 1 - HPD 0.9569 -0.0069 2.8775 0.0341 0.0090 0.5919
Prior 2 0.9446 0.0093 3.1424 0.0227 0.0327 0.2508
Prior 2 - HPD 0.9461 0.0039 2.4856 0.0440 0.0099 0.6056
Prior 3 0.9569 -0.0069 7.3283 0.0289 0.0143 0.3953
Prior 3 - HPD 0.9721 -0.0221 44808 0.0166 0.0113 0.1725
4 Bootstrap 0.9294 0.0206 1.8569 0.0380 0.0326 0.0716
ML 0.9274 0.0226 1.7269 0.0624 0.0102 0.6828
MOVER 0.9637 -0.0137 2.2705 0.0164 0.0199 0.1357
Prior 1 0.9564 -0.0064 2.2691 0.0211 0.0224 0.0608
Prior 1 - HPD 0.9513 -0.0013 1.6996 0.0391 0.0096 0.6104
Prior 2 0.9513 -0.0013 2.0566 0.0206 0.0268 0.1699
Prior 2 - HPD 0.9446 0.0054 1.5012 0.0463 0.0091 0.6292
Prior 3 0.9619 -0.0157 3.0409 0.0224 0.0119 0.3122
Prior 3 - HPD 0.9724 -(0.0224 2.4051 0.0174 0.0101 0.3272
5 Bootstrap 0.9346 0.0154 1.9795 0.0349 0.0305 0.0596
ML 0.9274 0.0226 1.8666 0.0619 0.0108 0.6650
MOVER 0.9570 -0.0070 2.5871 0.0199 0.0231 0.1718
Prior 1 0.9524 -0.0024 2.5810 0.0241 0.0234 0.1119
Prior 1 - HPD 0.9549 -0.0049 1.9568 0.0346 0.0106 0.5139
Prior 2 0.9450 0.0050 2.2786 0.0243 0.0307 0.1356
Prior 2 - HPD 0.9437 0.0063 1.6839 0.0459 0.0104 0.6040
Prior 3 0.9627 -0.0127 4.6573 0.0250 0.0123 0.4981
Prior 3 - HPD 0.9740 -0.0240 3.4718 0.0169 0.0091 0.3673
Overall Bootstrap 0.9315 0.0185 2.6225 0.0368 0.0317 0.0745
ML 0.9309 0.0191 2.4636 0.0566 0.0125 0.6168
MOVER 0.9581 -0.0081 3.4621 0.0196 0.0223 0.1679
Prior 1 0.9524 -0.0024 3.4248 0.0239 0.0289 0.1137
Prior | - HPD 0.9574 -0.0074 2.8039 0.0313 0.0113 0.4934
Prior 2 0.9462 0.0046 3.0503 0.0235 0.0301 0.1819
Prior 2 - HPD 0.9484 0.0016 2.4484 0.0405 0.0111 0.5563
Prior 3 0.9601 -0.0109 5.3994 0.0250 0.0192 0.3722
Prior 3 - HPD 09733 -0.0233 41612 0.0165 0.0102 0.3047




From the overall summary statistics we see that the choices of prior distributions have
better coverage than both the ML-based and bootstrap methods. However, this does not

provide the full picture.

Coverage Probabilities

As evident from the above summary table, it is apparent that the ML and Bootstrap
methods are comparable in terms of the coverage probability. The ML method, as noted
by Zhou and Tu (2000), gives better coverage for designs 1, 2 and 3, ie., when the
skewness coefficients of the two populations are the same. Otherwise the Bootstrap
method offers superior coverage. However, the coverage probabilities overall for the ML

and Bootstrap methods were 0.9309 and 0.9315 respectively.

The three Bayesian methods considered here all provide better coverage than the ML and
Bootstrap methods proposed. However, at least one of the Bayesian methods, the method
of the constant or uniform prior distribution, results in over-coverage, with an overall
coverage ratio of 0.9601. Naturally, this will imply a larger coverage error when
compared with the other prior distributions used, which is ultimately due to a larger

average interval length. But this will be discussed further in later sections.

Overall, the best prior distribution to be used in terms of coverage probability was the

independence Jeffreys prior. In terms of the literature, Box and Tiao (1973), this would

be the natural choice of prior distribution in this setting and thus, its accuracy compared




to the other prior distributions should be expected. The overall coverage probability was

0.9524 compared to 0.9462 for the Jeffreys Rule prior described previously.

However, the Jeffreys Rule appears to be nearly as good as the Independence Jeffreys
prior. The prior tends to undercover, but not by much at all. What is particularly positive
is that even though there is slight under coverage, the average interval length is shorter

for the Jeffreys Rule prior.

A point of interest is that the coverage of the Bayesian methods does not appear to be

affected by the skewness coefficients of the different designs.

The better coverage probabilities are as a direct result of the increased average interval
lengths for the Bayesian methods. However, this is discussed in more comprehensively

in subsequent sections.

The MOVER appears to provide adequate coverage. The performance of the MOVER is
matched quite well to the coverage of Prior 1 (i.e. the independence Jeffreys’ prior).
However, the advantage of the Bayesian method is evident when regarding the HPD
intervals, which result in slightly better coverage, but increased efficiency in terms of the

average interval length.
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Coverage Error
Overall, the coverage error for the Bootstrap method is better than if compared to the ML
method. The only possible exception to this overall figure is perhaps the case when the

population skewness coefficients are similar. However, this is by no means concrete.

For the Bayesian methods the overall coverage error was better for all choices of prior
distributions, as opposed to the ML and Bootstrap methods. For the independence
Jeffreys prior the coverage error appears smallest, thereby reinforcing the observation of
the better coverage probability. This error for the uniform prior appears to increase when

the population skewness coefficients are different.

Average Length

Firstly, results by Zhou and Tu (2000) indicate that the Bootstrap method results in
intervals with longer interval lengths. Overall, the interval length for the Bootstrap
method was 2.6225 compared to the 2.4636 of the ML method. As previously
mentioned, coverage probability and average interval length are related. Thus, we would
expect the average interval length for the Bootstrap method to be greater since it provides
better probability of coverage. However, the average interval length for both these
methods appears to be related to the population skewness coefficients in the following
way: when the coefficients are the same (designs 1, 2 and 3) the average interval lengths

are distinctly larger for the Bootstrap method, particularly when sample sizes are small.
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Overall, when analyzing the results from the Bayesian methods it is apparent that the
interval lengths are larger. Once again this would be expected due to the previously
mentioned relationship between the coverage probabilities and the interval length. As
with the methods proposed by Zhou and Tu (2000), the average interval length decreases
when the population skewness coefficients are different. The Independence Jeffreys prior
and the Jeffreys Rule prior produced average interval lengths of 3.4248 and 3.0503

respectively.

Lastly, as was mentioned previously, the constant or uniform prior tends to over-cover.

This inefficiency is accurately portrayed by the average interval length, namely: 5.3994.

The HPD intervals are an improvement on both the equal-tailed intervals as well as the

MOVER in terms of interval length.

Coverage on Left and Right and Bias

As mentioned in previous sections, the results obtained by Zhou and Tu (2000) indicate
that the ML method covers too many observation on the left and too many on the right.
The only exception to this is Design 2. Overall, the Bootstrap method had a better

spread.

The Bayesian methods employed indicate a much more equal spread of observations

above and below. The uniform prior is the only possible exception. Thus, although the

average interval lengths are greater for the Bayesian case the spread of the interval
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appears better, i.e., the Bayesian methods overall tend to cover as many observations on

the right as on the left.

The MOVER is comparable to independence Jeffreys prior. In particular, the HPD
intervals result in increased relative bias compared to the equal-tailed intervals and the

MOVER.

4.6 Example — Rainfall Data

For the purposes of comparison of the different methods, an example was chosen using
raw data obtained from the South African Weather Service. The data consisted of the
monthly rainfall totals for the cities of Bloemfontein and Kimberley, two South African
cities, over a period of 69 to 70 years of measurement. However, these two cities are
both located in relatively arid regions and are characterised by mainly summer rainfall.
For that reason, the winter months do contain some rainfall data, but also contain many
years where the total monthly rainfall data were zero. Based on past studies it is evident
that rainfall data can be modeled according to a lognormal distribution. The data can be

summarised as follows:
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Table 38: Summary of the Rainfall Data

City Parameter Value

Bloemfontein  Number of Years of Available Data 70
Number of Zero Valued Observations 18
Mean of Log-Transformed Data 1.9578
Variance of Log-Transformed Data 2.1265

Kimberley Number of Years of Available Data 69
Number of Zero Valued Observations 10
Mean of Log-Transformed Data 1.0526
Variance of Log-Transformed Data 3.1589

In order to compare the results, both the Maximum Likelihood and Bootstrap methods of
Zhou and Tu (2000) were applied to the data. The Maximum Likelihood method is
sufficient in its simplicity and can be referred to the text of Zhou and Tu (2000). The

bootstrap method was applied as follows:

1. From the data delta was calculated as follows: & = i)

h;

2. The mean ( ,[tj) and variance (6’12.) of the log-transformed observations were
calculated (i.e. the non-zero log-transformed observations).
3. The following steps were then repeated 100000 times:
a. Binomial samples were generated using the estimates obtained in 1)

above, which will for simplicity be called 7 0+ Using these we calculate

b. We then generate 7, N ( £, "Jz) observations (since the log-transformed

data is normally distributed).




~

. n. A% ~
c. Calculate 5, = —2 from these data as well as /I ; as the mean of the 7

h;

observations and o”’f‘ as the standard deviation.
d. Calculate: log MJ =log(1- 5}) + [lj + o"f‘ /2.

e. Calculate se’ according to the formula given by Zhou and Tu (2000).

log M, —log M, —log M, +log M,
se

f. Calculate the T™ =

4. From these simulated T" observations calculate the following:

a. If @=0.05, then k; =(1-2/)x100000 and k; =(%/)x100000

b. Then the upper and lower limits (respectively) of the bootstrap confidence

intervals for the log transformed data are Upper =log M, —log M, + Tk'. xse’
and Lower =log M, —log M, +T . xse".

c. To obtain the confidence intervals of the original log-normal data take the

anti-log.

In addition to the maximum likelihood and bootstrap confidence intervals the confidence
intervals were obtained using the Bayesian methods described in the preceding text and
for the following priors: Independence Jeffreys Prior (Prior .l in the table), the Jeffreys
Rule Prior (Prior 2), the constant prior (Prior 3) , the Reference Prior (Prior 4) and the

Probability-Matching Prior (Prior 5). The results are presented in the following table:
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Téble 39: Summary of Results for the Rainfall Data

Probability-
Maximum Reference Matching
Likelihood Bootstrap Prior 1 Prior 2 Prior 3 Prior Prior
Lower Limit of -0.6914 -0.6404 -0.8019  -0.7942 -0.8624  -0.8188 -0.7794
Logged Data
Upper Limit of 1.1880 1.2444 1.2013 1.1954 1.2248 1.2104 1.1982
Logged Data
Lower Limit 0.5009 0.5271 0.4485  0.4520 0.4221] 0.4410 0.4587
Upper Limit 3.2805 3.4710 3.3245  3.3048 3.4035 3.3548 33141

In terms of interval width it is worth noting that Prior 2 and the Probability-Matching

prior were efficient in this situation. However, the above results do not indicate coverage

and this is where the Jeffreys-based priors are superior to the other methods (as observed

from the previous simulation study results).

The following graphs also illustrate these results:




Figure 22: Results for Prior 1
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Figure 23: Results for Prior 2
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4.7 Example: Shock Research Unit
The situation of lognormally distributed observations where there is also the presence of

zero-value observations has also been examined by numerous other authors. A specific

example was presented in Tian and Wu (2006) where these authors were analyzing a
situation presented by Afifi and Azen (1979). A study was performed at the Shock
Research Unit at the University of Southern California, Los Angeles, California. In a

group of 113 critically ill patients a number of different physiological variables were

measured at different time-points. Among these data there was a subset of patients that
can be described as follows: 59 males of which 17 were dead at the end of the study and
42 were alive at the end of the study. For each of these two groups (“Dead” or “Alive”)
the urinary output (UO) at Baseline was measured. It was furthermore found that many
zero-valued observations were included in each group (15 for the “Alive” group and 8 for
the “Dead” group). The remaining non-zero observations could be described by a
lognormal distribution and Tian and Wu (2006) calculated the p-values from
Kolmogorov-Smirnov tests for normality of the logarithm of the non-zero observations as
0.454 and 0.574 for the “Alive” and “Dead” groups respectively. So it is evident that this
practical setting mirrors the proposed theoretical setting that has been described in earlier
sections of this Chapter. The following table represents the key features of the sample
(all measures of location and dispersion are given for the logarithm of the non-zero

observations for each group respectively):
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Table 40: Summary of the Urinary Qutput Data

Group Parameter Value

Alive Number of Patients 42
Number of Zero Valued Observations 15
Mean of Log-Transformed Data 343
Variance of Log-Transformed Data 3.4586

Dead Number of Patients 17
Number of Zero Valued Observations 8
Mean of Log-Transformed Data 242
Variance of Log-Transformed Data 4.3292

The analysis objective as studied by Tian and Wu (2006) was somewhat different to the
situation considered here. They considered confidence intervals for each group
separately, whereas the objective of this Chapter is to examine the ratio of the means,
which essentially tests whether the mean UO of the “Alive” group is the same as the
mean for the “Dead” group. As in the previous example, the situation will be analysed

from a Bayesian perspective using the methodology developed in previous sections.

The following table represents the results of the analysis for a comparison of the different
methods (ML, Bootstrap, Independence Jeffreys Prior (Prior 1 in the table), the Jeffreys
Rule Prior (Prior 2), the constant prior (Prior 3) , the Reference Prior (Prior 4) and the

Probability-Matching Prior (Prior 5). The results are presented in the following table:
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Table 41: Summary of Results for the Urinary Output Data

Probability-

Maximum Reference Matching
Likelihood Bootstrap Prior]  Prior2 Prior 3 Prior Prior
Lower Limit of
Logged Data -1.9592 -1.3160 -5.2459 -3.8440 -10.4773 -7.0417 -4.8931
Upper Limit of
Logged Data 3.4969 4,7800 32195 3.1501 3.1654 3.1725 3.1984
Lower Limit 0.1410 0.2682 0.0053 0.0214 0.0000 0.0009 0.0075
Upper Limit 33.0136 119.0985 25.0156 23.3395 23.6972 23.8667 24.4935

The above table again indicates that in terms of interval width alone Prior 2 and the

Probability-Matching prior are most efficient. In this particular setting the maximum

likelihood method falls short and the Bootstrap method results in intervals widths that are

too wide.

The following graphs also illustrate these results:
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Figure 28: Results for Prior 1
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Figure 30: Results for Prior 3
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Figure 31: Results for the Reference Prior
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4.8 Small Sample Application

As mentioned in the Introduction to this chapter, the situation as described in the previous
chapters was applied to smaller samples. Although not specifically tested by Zhou and
Tu (2000), when analysing data for the case where there are no zero observations, as
described by Krishnamoorthy and Mathew (2003), smaller sample sizes (less than 10

observations per sample) were investigated by the authors. It was found that the

coverage was still acceptable under these smaller sample constraints, but that the average
interval length required to offer the required degree of credibility was much larger than

for the situation of the sample sizes above 10 observations per sample.

Unfortunately, the situation was not specifically analysed by Zhou and Tu (2000), so we
do not have a clear picture as to whether the average interval length is “excessive” or not.
Also, although Krishnamoorthy and Mathew (2003) did analyse small samples the
average interval length was not one of the factors that were considered in determining the
efficacy of the particular method. Thus, in previous chapters we found that the Bayesian
methods are perhaps not very well suited to the small sample situation, but without

comparison to other methods this is by no means a definitive statement.

It was therefore decided to analyse the situation where there are potentially zero values
included in the data from a Bayesian perspective. However, from previous sections it
was found that the constant or uniform prior distributions (as well as the “ad hoc” prior
proposed in Chapter 2) are definitely not efficient, particularly when analysing the

average length in addition to the coverage. Thus, we suspect that the same would follow




for the case of the inclusion of zero-valued observations. For that reason only the two
Jeffreys prior distributions (Independence Jeffreys Prior and the Jeffreys Rule Prior) were
used in the below analysis. The same techniques as described in earlier sections of this

chapter were followed, the only exception being that smaller sample sizes were used.

The following table represents that sample sizes that were used in the simulation study:

Table 42: Small Sample Sizes Analysed by Monte Carlo Simulation Techniques

n n,

AN OO0 N O
0 00 ~1 AN

These sample sizes were analysed for the same designs as specified in Table 36.

4.8.1 Simulation Study: Results for Jeffreys Prior Distributions
As mentioned earlier, the same Monte Carlo simulation technique, as mentioned in
Section 4.2.2 was applied to these smaller sample sizes. The same designs and parameter

settings were applied.

The following table represents the results of this simulation study.




Table 43: Results for Simulation Study — Small Sample

Design ( 7, Method Coverage Coverage Average %CI <8 “%CI>¢@ Relative
Probability Error Length Bias

& n,)

Design 1
6 6 Priorl 0.9740 -0.0240 10.9766 0.0080 0.0180 0.3846
7 7 0.9610 -0.0110 8.4701 0.0140 0.0250 0.2821
8 8 0.9470 0.0030 7.1725 0.0240 0.0290 0.0943
6 8 0.9620 -0.0120 10.2292 0.0200 0.0180 0.0526
6 6 Prior2 0.9480 0.0020 7.5417 0.0090 0.0430 0.6538
7 7 0.9400 0.0100 6.3774 0.0160 0.0440 0.4667
8 8 0.9390 0.0110 5.6805 0.0210 0.0400 0.3115
6 8 0.9450 0.0050 7.1669 0.0160 0.0390 0.4182

Design 2
6 6 Prior | 0.9550 -0.0050 20.3295 0.0240 0.0210 0.0667
7 7 0.9630 -0.0130 15.7294 0.0160 0.0210 0.1351
8 8 0.9610 -0.0110 13.1721 0.0240 0.0150 0.2308
6 8 0.9630 -0.0130 16.7904 0.0200 0.0170 0.0811
6 6 Prior2 0.9320 0.0180 13.4673 0.0350 0.0330 0.0294
7 7 0.9440 0.0060 11.4623 0.0240 0.0320 0.1429
8 8 0.9490 0.0010 10.1460 0.0350 0.0160 0.3725
6 8 0.9390 0.0110 11.9156 0.0290 0.0320 0.0492

Design 3 _
6 6 Prior | 0.9690 -0.0190 15.1784 0.0140 0.0170 0.0968
7 7 0.9630 -0.0130 10.9404 0.0160 0.0210 0.1351
8 8 0.9540 -0.0040 8.8139 0.0230 0.0230 0.0000
6 8 0.9670 -0.0170 13.6443 0.0120 0.0210 0.2727
6 6  Prior2 0.9410 0.0090 8.8024 0.0150 0.0440 0.4915
7 7 0.9480 0.0020 7.3555 0.0190 0.0330 0.2692
8 8 0.9390 0.0110 6.4876 0.0250 0.0360 0.1803
6 8 0.9380 0.0120 8.1097 0.0140 0.0480 0.5484

Design 4
6 6 Prior | 0.9680 -0.0180 7.7355 0.0170 0.0150 0.0625
7 7 0.9600 -0.0100 6.0932 0.0160 0.0240 0.2000
8 8 0.9500 0.0000 5.1013 0.0240 0.0260 0.0400
6 8 0.9590 -0.0090 7.0047 0.0180 0.0230 0.1220
6 6 Prior2 0.9480 0.0020 5.2435 0.0180 0.0340 0.3077
7 7 0.9490 0.0010 4.5593 0.0170 0.0340 0.3333
8 8 0.9330 0.0170 4.0483 0.0240 0.0430 0.2836
6 8 0.9340 0.0160 4.9760 0.0190 0.0470 0.4242

Design 5
6 6 Prior | 0.9720 -0.0220 18.3263 0.0150 0.0130 0.0714
7 7 0.9650 -0.0150 9.5105 0.0170 0.0180 0.0286
8 8 0.9570 -0.0070 9.0032 0.0170 0.0260 0.2093
6 8 0.9740 -0.0240 10.3328 0.0140 0.0120 0.0769
6 6 Prior2 0.9570 -0.0070 5.9971 0.0120 0.0310 0.4419
7 7 0.9400 0.0100 52233 0.0190 0.0410 0.3667
8 8 0.9420 0.0080 4.6606 0.0170 0.0410 0.4138
6 8 0.9480 0.0020 6.0476 0.0130 0.0390 0.5000
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4.8.2 Discussion of Results— Jeffreys Prior Distributions
The results of the simulation study highlight certain interesting differences between the
two types of Jeffreys prior distributions, the mostly obvious are the following:

1. The independence Jeffreys prior seems to over cover and the Jeffreys Rule prior
seems to undercover. From the specification of the situation and of the analysis
and due to the methods implemented, we expect each interval above to contain the
true population parameter with 0.95 probability (Bayesian credibility intervals).
However, the probability of covering the true parameter for the independence
Jeffreys prior interval exceeds 0.95, while being below 0.95 for the Jeffreys Rule
Prior.

2. The following may be related to the previous point to some degree: the average
interval length for the independence Jeffreys prior is higher than for the Jeffreys

Rule prior. |
Since these are the two characteristics of primary importance it is difficult to rank these
two choices of prior distributions based solely on these two criterion, as they tend to

“cancel out.”

The following table is a summary of the situation described above:
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Table 44: Summary Results — Small Sample

Design Method Coverage Coverage Average 9%CI<8 %CI>@ Relative
Probability Error Length Bias
Design | Prior | 09610 -0.0110 9.2121 0.0165 0.0225 0.2034
Prior 2 0.9430 0.0070 6.6916 0.0155 0.0415 0.4625
Design 2 Prior | 0.9605 -0.0105 16.5054 0.0210 0.0185 0.1284
Prior 2 0.9410 0.0090 11.7478 0.0308 0.0283 0.1485
Design 3 Prior 1 0.9633 -0.0133 12.1442 0.0163 0.0205 0.1262
Prior 2 0.9415 0.0085 7.6888 0.0183 0.0403 0.3724
Design 4 Prior 1 0.9593 -0.0093 6.4837 0.0188 0.0220 0.1061
Prior 2 0.9410 0.0050 4.7068 0.0195 0.0395 0.3372
Design 5 Prior 1 0.9670 -0.0170 11.7932 0.0158 0.0173 0.0966
Prior 2 0.9468 0.0033 5.4821 0.0153 0.0380 0.4306
Overall Prior 1 0.9622 -0.0122 11.2277 0.0177 0.0202 0.1321
Prior 2 0.9427 0.0074 7.2634 0.0199 0.0375 0.3502

We can see from the above the situation that was described earlier. Overall, the
independence Jeffreys prior resulted in credibility intervals that had a 0.9622 probability
of containing the true parameter, whereas the same probability for the Jeffreys rule prior
was 0.9407. The difference is particularly evident in Design 5. This design was
characterised by small (yet distinctly unequal) population variances and non-negative (yet

differing probabilities) of obtaining zero-valued observations in the sample.

Regarding the average interval length, Design 4 resulted in the least disparity, while
Design 2 resulted in the largest difference. Design 4 is similar to Design 4 (described
above) whereas Design 2 is characterised by large(r) population variances and matching

(zero) probabilities of obtaining a zero-valued observation in the sample.

Thus, the previous situation describes some of the (potential) areas where the Bayesian

credibility interval method may not be particularly effective for small samples [however,
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as mentioned before, the comparison with methods proposed by Krishnamoorthy and

Mathew (2003) and Zhou and Tu (2000) was not possible to provide as reference].

In conclusion, both prior distributions have their positive and negative characteristics.
The analysis of the Relative Bias may indicate then that perhaps the independence

Jeffreys prior is better suited to the analysis of small samples than the Jeffreys Rule prior.

4.8.3 Other Prior Distributions

In addition to the Jeffreys prior distributions mentioned earlier, it was decided to analyse
the case of small sample sizes using two other prior distributions. These were the
Probability-Matching Prior distribution and the Reference Prior distribution. These have
been derived and discussed in previous chapters and thus derivations of the priors are not

repeated here.

Probability-matching Prior Distribution

As mentioned earlier, the analysis of small sample data was extended so as to include

Probability-Matching and Reference prior distributions. Define:

1 5
1+—G
4 2

y=e )
given the situation described in earlier parts of this chapter. Then, as in Chapter 1, the

following prior distribution was found:

Pp(%"z)“% l+— (4.15)

This resulted in the following posterior distribution:
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with the parameters as previously defined.

(4.16)

From (4.16) it follows that the posterior distribution of &;is a Beta distribution
£ 1 1 Sis i istributed of 4 o2
(specifically B| n, +5,er.l +E ) and §;is independently distributed of 4; and o7},

where the conditional posterior distribution of 4; is normal:

0_2
/lj|0'2,data~N[,[tj,n—’ 4.17)
i1

and for 0'12. , the posterior density function is as follows:

S(vj+2)
2+ V.62
P(c? | data) = 1+2| L exp| - |. (4.18)
/ 0'!2. 0'12. 20;

Since 4.18 is a non-standard distribution the simulation procedure described in

Section 4.2.2 was adapted so as to use the rejection method to simulate 0'12. observations

from the posterior distribution.

The following table gives the simulation results for the small sample situation described

in previous sections (using the same designs).
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Table 45: Results for Simulation Study — Small Sample using the Probability-Matching Prior

Design ( 7, Method Coverage Coverage Average %CI <8 %CI > @ Relative
Probability Error Length Bias
& n,)
Design 1
6 6 PMP 0.8860 0.0640 8.3088 0.0730 0.0410 0.2807
7 7 0.8970 0.0530 6.8487 0.0560 0.0470 0.0874
8 8 0.8920 0.0580 6.0430 0.0700 0.0380 0.2963
6 8 0.8700 0.0800 7.7802 0.0830 0.0470 0.2769
8 6 0.9080 0.0420 6.5609 0.0630 0.0290 0.3696
Design 2
6 6 PMP 0.9180 0.0320 13.6107 0.0370 0.0450 0.0976
7 7 0.9150 0.0350 11.4752 0.0350 0.0500 0.1765
8 8 0.9040 0.0460 9.9376 0.0520 0.0440 0.0833
6 8 0.9140 0.0360 12.0036 0.0460 0.0400 0.0698
8 6 0.9210 0.0290 11.9525 0.0410 0.0380 0.0380
Design 3
6 6 PMP 0.8740 0.0760 9.9885 0.0830 0.0430 0.3175
7 7 0.8790 0.0710 8.0840 0.0790 0.0420 0.3058
8 8 0.8980 0.0520 6.8948 0.0630 0.0390 0.2353
6 8 0.8890 0.0610 9.0930 0.0680 0.0430 0.2252
8 6 0.9030 0.0470 7.7391 0.0550 0.0420 0.1340
Design 4
6 6 PMP 0.8680 0.0820 5.9284 0.0820 0.0500 0.2424
7 7 0.8890 0.0610 48517 0.0770 0.0340 0.3874
8 8 0.8830 0.0670 4.1719 0.0740 0.0430 0.2650
6 8 0.8630 0.0870 5.6938 0.1050 0.0320 0.5328
8 6 0.8840 0.0660 4.6066 0.0720 0.0440 0.2414
Design S
6 6 PMP 0.8970 0.0530 7.7622 0.0630 0.0400 0.2233
7 7 0.8800 0.0700 6.0044 0.0810 0.0390 0.3500
8 8 0.8770 0.0730 4.9045 0.0860 0.0370 0.3984
6 8 0.8740 0.0760 6.8774 0.0940 0.0320 0.4921
8 6 09110 0.0390 5.8825 0.0610 0.0280 0.3708

Reference Prior Distribution

In addition to the Probability-Matching prior, the Reference prior distribution was also
determined and analysed in a similar way for small samples. The following derivations

were made:

1 [ 2
Pa(m0?)oc— I (4.19)

This Reference prior distribution resulted in the following posterior distribution:
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and for O'f , the posterior density function is as follows:

, 2 (1 0D v,G?
P(O’IZ. |data)y= {1+ — (?J exp {_ 21'10_2/ } ,
J J j

(1-6)""

1 .
R EK v,
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J

Zj
5 /)

(4.20)

(4.21)

Thus, the simulation procedure for the case of small sample was much the same, and the

following results were obtained:




Table 46: Results for Simulation Study — Small Sample using the Reference Prior

Design ( 7, Method Coverage Coverage Average 9%CI<@ %CI>6 Relative
Probability Error Length Bias
& n,)
Design 1
6 6 Reference 0.9430 0.0070 11.5800 0.0450 0.0120 0.5789
7 7 0.9210 0.0290 9.0672 0.0580 0.0210 0.4684
8 8 0.9100 0.0400 73771 0.0630 0.0270 0.4000
6 8 0.9020 0.0480 10.2335 0.0820 0.0160 0.6735
8 6 0.9390 0.0110 8.6540 0.0420 0.0190 0.3770
Design 2
6 6  Reference 0.9520 -0.0020 17.0831 0.0240 0.0240 0.0000
7 7 0.9490 0.0010 13.9435 0.0160 0.0350 0.3725
8 8 0.9440 0.0060 11.7032 0.0290 0.0270 0.0357
6 8 0.9520 -0.0020 14.6619 0.0290 0.0190 0.2083
8 6 0.9450 0.0050 14.5962 0.0230 0.0320 0.1636
Design 3
6 6  Reference 0.9330 0.0170 14.5905 0.0470 0.0200 0.4030
7 7 0.9290 0.0210 11.2982 0.0450 0.0260 0.2676
8 8 0.9250 0.0250 9.0506 0.0530 0.0220 0.4133
6 8 0.9140 0.0360 12.6436 0.0630 0.0230 0.4651
8 6 0.9490 0.0010 11.0166 0.0300 0.0210 0.1765
Design 4
6 6 Reference 0.9300 0.0200 9.1304 0.0490 0.0210 0.4000
7 7 0.8950 0.0550 6.9607 0.0840 0.0210 0.6000
8 8 0.9090 0.0410 5.3835 0.0800 0.0110 0.7582
6 8 0.9050 0.0450 8.0477 0.0830 0.0120 0.7474
8 6 0.9120 0.0380 6.7466 0.0510 0.0370 0.1591
Design §
6 6  Reference 0.9480 0.0020 12.8853 0.0410 0.0110 0.5769
7 7 0.9230 0.0270 9.1517 0.0620 0.0150 0.6104
8 8 0.9170 0.0330 7.0684 0.0640 0.0190 0.5422
6 8 0.9110 0.0390 10.5350 0.0750 0.0140 0.6854
8 6 0.9390 0.0110 9.3918 0.0390 0.0220 0.2787

The following is a summary of both the Probability-Matching and Reference priors:

- 190 -




Table 47: Results for Simulation Study — Other Prior Distributions

Design Method Coverage Coverage Average 9%CI<@ %CI>¢ Relative
Probability Error Length Bias

Design 1

PMP 0.8906 0.0594 7.1083 0.0690 0.0404 0.2622

Reference 0.9230 0.0270 9.3825 0.0580 0.0190 0.4996
Design 2

PMP 0.9144 0.0356 11.7959 0.0422 0.0434 0.0930

Reference 0.9484 0.0016 14.3976 0.0242 0.0274 0.1560
Design 3

PMP 0.8886 0.0614 8.3599 0.0696 0.0418 0.2436

Reference 0.9300 0.0200 11.7199 0.0476 0.0224 0.3451
Design 4

PMP 0.8774 0.0726 5.0505 0.0820 0.0406 0.3338

Reference 0.9102 0.0398 7.2538 0.0694 0.0204 0.5329
Design 5

PMP 0.8878 0.0622 6.2862 0.0770 0.0352 0.3669

Reference 0.9276 0.0224 9.8064 0.0562 0.0162 0.5387
Overall

PMP 0.8918 0.0582 7.7202 0.0680 0.0403 0.2599

Reference 0.9278 0.0222 10.5120 0.0511 0.0211 0.4145

Results and Conclusions

Tables 46 to 48 represent 95% credibility intervals. The coverage is not adequate as is
evident from the results. Given the aforementioned results it appears evident that neither
the Probability-Matching or the Reference prior distributions offer significant benefit

over the Jeffreys prior distributions.

The Probability-Matching prior was particular not suited to the small sample situation
offering an average coverage probability of only 0.8918. One possible explanation for
the performance of this prior distribution is that it was derived for one-sided Bayesian
confidence intervals and may not be particular well-suited to two-sided intervals. The
Reference prior distribution performed only slightly better. What is surprising though is

that the Reference prior performed best in Design 2. Design 2 is characterised by large
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equal variances between the population. This could offer some insight into the potential
usefulness of this prior distribution in applications. However, the necessity for equal
variances is a significant constraint.

No other advantages in terms of the average interval length was observed. The Jeffreys
prior distributions offer similar average interval lengths to those given in Table 48, but

without the desired benefit of more accurate coverage probability.

In conclusion, given the setting, the Jeffreys prior distributions appear more applicable to

the setting, particularly under small sample considerations.
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Appendix to Chapter 4

-9y )e +—02)
Derivation of the Probability-Matching Prior for (o) M (-2) xp(u' 2!

M, (l-éz)cxp ™ +la§
2

In this section the derivation of the Probability-Matching prior for the situation described
by Zhou and Tu (2000) is presented. Summarizing the previous sections, we are
interested in interval estimation for the ratio of means from two different lognormally
distributed populations, with the added complication that zero values could possibly be
included. The Probability-Matching prior was derived for the above-mentioned quantity

in contrast to deriving the prior for simply the mean of the lognormal distribution (see

Chapter 1), but simulation results were not included since these did not improve on the

performance of the simple priors. For completeness the derivation is stated here.

As previously, we are interested in:
1,
Mj = (1_5j)exp(/uj +'2'Uj)
and in particular, in a credibility interval for the following relationship:

1
Ml (1—5])6)(})(/1, +Eo_|2)
M,

! .
(1=8,)exp(u, +5022)

As previously, let y, =InW, and @=[6, 4 o076, p, o0;]. Then the likelihood

UJ

function is given by:

2 nig "y 1 % (yij _tuj)z
L(6|datayoc [ [{67°(1-6)"] [(=)? expl-—L—=1}
j=1 =l O 20'j
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Given the previous specification of the likelihood, the Fisher Information Matrix is
required. Although the derivation of this matrix is not repeated here in detail the
information matrix is defined as the variance of the score. Therefore, the matrix can be
written as the second moment of the score, which is the derivative of the log of the
likelihood function with respect to 8. Equivalently, the Fisher Information Matrix can be

defined as:

1(0)=-E {{-a% InL(6] data)} ]

n, n(l-9) n(1-9) n, n(1-6,) n(l1-5,)
6(1-6)) 0'12 20} 6,(1-6,) 0'22 20,

= 10) = diag{

The inverse of the Fisher Information Matrix can then be calculated as:

6(1-6) oy 20} 6,(1-5,) o3 20,
m(1-6)) n(1-4) n, n(1-6,) n(-6,)

I"(8) = diag[ ]

Now, following from the definitions of the quantity of interest defined above

1
M, (=8)exp(u+=07)

1(@)y=—"~=
Mo (-8 explu +5 %)
_{=%) il g
—(1_52)€XP{#1 #0703}

The Probability-Matching prior is derived from the inverse of the Fisher information

matrix. Now




- - . 1-6,) n(1-46) n n,(1-6,) n,(1-9,)
17(0)=1"(u,06%)=d n n( A ) | 2 73 2 2 3
( ) (,u c ) zag{é‘l(l—é‘]) 0'12 20‘]“ 0,(1-96,) 0‘22 20';
Now, t(B) is defined as above from which it follows that

o) _ -1 oL

25, = -5, exp{4, ﬂ2+2(01 0,)}

oo 1-6 1

_a(/:)’ =El——53€Xp{'u' —H, +5(O'|2 _0-22)}

orl) (1-9) 3 1 5

50']2 = 2(1-6,) exp{s, — 1, + 5 (o7 —0,)}

o) (1-6) 1

25, = (1_521)2 exp{u, — i, +E(O'12 _O-j)}

o) -(-46) T P

o (15, expity =+~ (07 —03)}

ol _-(1-6) N P

80'22 = 2(1-5,) expi{y — 4, + 5 (o7 —03)}
Also, define

v, (6)= o(@) o(e) or(e) or(8) o(8) or(8)
N es, by 6o 88,  bu,  dor |
which gives
1-9) -1 1 1 1
V. (8)= +— 1 - -1 —=
@)= a 52)CXP{:“1 Hy (Gn ~03)}x [(1 5) 2 (-6, 2]

Furthermore,

! -1 ( l)
V. (0)=—=
Or'©)==5

=9,

n
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expim — i, ""2"(O'|2 —0-22)}

2 2
O, 0, 6, —0,
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n(1=8) n(-46) 2n(-6) n(-6) n(1-6,) 2nm(1-5,)

Now, agreement between the posterior probability and the frequentist probability holds if

and only if the differential equation

> =g 1 (6)p(8)}=0

a=|
is satisfied, where p(ﬁ) is the Probability-Matching prior distribution for 8, the vector

of unknown parameters.

By definition,

_[71 s ’}/m :l"

It is clear that ¥'(6)1(6)y(8)=1 for all § where I'(8) is the inverse of I(6). I(8)

is the Fisher information matrix of 8 and t(@) 1s the parameter of interest.

Now,
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This differential equation mentioned earlier will be satisfied if:

p@=p u 0'1252 H 0'22)

n(1=6) m(-6) 2m1-5) m-6) m(-8,) 2m(-6,)

2 4 2 4
\/ 5 o g " S, % . 9%
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r
6,0, 0,0,

This 1s known as the Probability-Matching Prior.
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Results of Simulation Studies for Individual Designs

Table 48: Results for Design 1 — Equal-Tailed Bayesian Credibility Intervals

n, n, Method Covera_ge Coverage Average 9%CI <@ °%CI>6 Rglative
Probability Error Length Bias
10 10 ML 0.9059 0.0441 3.4669 0.0883 0.0058 0.8767
Bootstrap 0.9069 0.0431 4.0458 0.0509 0.0422 0.0934
Prior 1 0.9590 -0.0090 5.6082 0.0230 0.0180 0.1220
Prior 2 0.9470 0.0030 4.7554 0.0210 0.0320 0.2076
Prior 3 0.9710 -0.0210 8.7990 0.0220 0.0070 0.5172
25 25 ML 0.9340 0.0160 2.2798 0.0589 0.0071 0.7848
Bootstrap 0.9261 0.0239 2.4284 0.0393 0.0346 0.0636
Prior 1 0.9550 -0.0050 2.7427 0.0210 0.0240 0.0667
Prior 2 0.9490 0.0010 2.6049 0.0200 0.0310 0.2157
Prior 3 0.9600 -0.0100 3.0862 0.0270 0.0130 0.3500
50 50 ML 0.9411 0.0089 1.6375 0.0489 0.0100 0.6604
Bootstrap 0.9374 0.0126 1.6877 0.0330 0.0296 0.0543
Prior 1 0.9520 -0.0020 1.7693 0.0240 0.0240 0.0000
Prior 2 0.9480 0.0020 1.7282 0.0210 0.0310 0.1923
Prior 3 0.9550 -0.0050 1.8613 0.0290 0.0160 0.2889
100 100 ML 0.9468 0.0032 1.1678 0.0411 0.0121 0.0545
Bootstrap 0.9451 0.0049 1.1735 0.0279 0.0270 0.0164
Prior 1 0.9550 -0.0050 1.2215 0.0290 0.0160 0.2889
Prior 2 0.9530 -0.0030 1.2105 0.0300 0.0170 0.2766
Prior 3 0.9550 -0.0050 1.2492 0.0310 0.0140 0.3778
10 25 ML 0.8939 0.0561 3.2666 0.1042 0.0019 0.9642
Bootstrap 0.9097 0.0403 4.0089 0.0577 0.0326 0.2780
Prior 1 0.9500 0.0000 5.1595 0.0230 0.0270 0.0800
Prior 2 0.9350 0.0150 44142 0.0160 0.0490 0.5077
Prior 3 0.9560 -0.0060 7.9412 0.0360 0.0080 0.6364
25 10 ML 0.9463 0.0037 2.5361 0.0394 0.0143 0.4674
Bootstrap 0.9232 0.0268 2.6510 0.0373 0.0395 0.0286
Prior 1 0.9620 -0.0120 3.3218 0.0170 0.0210 0.1053
Prior 2 0.9490 0.0010 3.0425 0.0250 0.0260 0.0196
Prior 3 0.9710 -0.0210 4.3101 0.0140 0.0150 0.0345
25 50 ML 0.9312 0.0188 2.1828 0.0642 0.0046 0.8663
Bootstrap 0.9377 0.0123 2.3810 0.0291 0.0332 0.0658
Prior 1 0.9520 -0.0020 2.5907 0.0270 0.0210 0.1250
Prior 2 0.9500 0.0000 2.4663 0.0250 0.0250 0.0000
Prior 3 0.9540 -0.0040 2.8929 0.0370 0.0090 0.6087
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Table 49: Results for Design 2 — Equal-Tailed Bayesian Credibility Intervals

non Method Coverag§ Coverage Average 9%CI<@ %CI>8 Rglative
Probability Error Length Bias
10 10 ML 0.9521 -0.0021 5.7248 0.0226 0.0253 0.0564
Bootstrap 0.9205 0.0295 6.0589 0.0396 0.0399  0.0004
Prior 1 0.9470 0.0030  10.0370 0.0230 0.0300  0.1321
Prior 2 0.9310 0.0190 8.3373 0.0290 0.0400  0.15%4
Prior 3 0.9700 -0.0200  16.4340 0.0150 0.0150  0.0000
25 25 ML 0.9563 -0.0063 3.7488 0.0219 0.0218  0.0023
Bootstrap 0.9376 0.0124 3.7540 0.0313 0.0311 0.0032
Prior 1 0.9560 -0.0060 4.6371 0.0220 0.0220  0.0000
Prior 2 0.9490 0.0010 4.3947 0.0290 0.0220  0.1373
Prior 3 0.9620 -0.0120 5.2733 0.0220 0.0160  0.1579
50 50 ML 0.9538 -0.0038 2.6800 0.0234 0.0228  0.0130
Bootstrap 0.9385 0.0115 2.6727 0.0309 0.0306  0.0049
Prior 1 0.9500 0.0000 2.9760 0.0240 0.0260  0.0400
Prior 2 0.9530 -0.0030 2.9023 0.0210 0.0260  0.1064
Prior 3 0.9600 -0.0100 3.1470 0.0200 0.0200  0.0000
100 100 ML 0.9524 -0.0024 1.9096 0.0240 0.0236  0.0083
Bootstrap 0.9501 -0.0001 1.9038 0.0251 0.0248  0.0060
Prior 1 0.9540 -0.0040 2.0100 0.0290 0.0170  0.2609
Prior 2 0.9530 -0.0030 1.9789 0.0300 0.0170  0.2766
Prior 3 0.9650 -0.0150 2.0618 0.0200 0.0150  0.1429
10 25 ML 0.9368 0.0132 4.8149 0.0581 0.0051 0.8368
Bootstrap 0.9359 0.014] 4.9238 0.0363 0.0278  0.1326
Prior 1 0.9560 -0.0060 7.4354 0.0270 0.0170  0.2273
Prior 2 0.9450 0.0050 6.4141 0.0270 0.0280  0.0182
Prior 3 0.9550 -0.0050  11.1520 0.0350 0.0100  0.5556
25 100 ML 0.9320 0.0180 4.8104 0.0043 0.0637  0.8735
Bootstrap 0.9344 0.0156 4.9631 0.0344 0.0312  0.0488
Prior 1 0.9420 0.0080 7.5502 0.0220 0.0360  0.2414
Prior 2 0.9310 0.0190 6.5120 0.0300 0.0390  0.1304
Prior 3 0.9480 0.0020 11.3410 0.0060 0.0460  0.7692
25 50 ML 0.9498 0.0002 3.2550 0.0402 0.0100  0.6016
Bootstrap 0.9413 0.0087 3.3780 0.0292 0.0295 0.0051
Prior 1 0.9410 0.0090 3.8268 0.0270 0.0320  0.0847
Prior 2 0.9380 0.0120 3.6553 0.0240 0.0380  0.2258
Prior 3 0.9530 -0.0030 4.2456 0.0270 0.2000  0.1489
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Table 50: Results for Design 3 — Equal-Tailed Bayesian Credibility Intervals
non Method Covera_g; Coverage Average 9%CI<@ %CI>486 Rf:lative
Probability Error Length Bias

10 10 ML 0.9046 0.0454 3.6808 0.0906 0.0048 0.8993
Bootstrap 0.9210 0.0290 4.2114 0.0465 0.0325 0.1772
Prior 1 0.9500 0.0000 6.3804 0.0220 0.0280 0.1200
Prior 2 0.9370 0.0130 5.1994 0.0210 0.0420 0.3333
Prior 3 0.9790 -0.0290  14.7330 0.0170 0.0040 0.6191

25 25 ML 0.9275 0.0225 2.4315 0.0652 0.0073 0.7986
Bootstrap 0.9300 0.0200 2.5564 0.0413 0.0287 0.1800
Prior 1 0.9580 -0.0080 2.9558 0.0160 0.0260 0.2381
Prior 2 0.9530 -0.0030 2.7899 0.0130 0.0340 0.4468
Prior 3 0.9590 -0.0090 3.3615 0.0210 0.0200 0.0244

50 50 ML 0.9400 0.0100 1.7453 0.0496 0.0104 0.6533
Bootstrap 0.9412 0.0088 1.7499 0.0347 0.0241 0.1803
Prior 1 0.9520 -0.0020 1.9132 0.0220 0.0260 0.0833
Prior 2 0.9480 0.0020 1.8667 0.0230 0.0290 0.1154
Prior 3 0.9530 -0.0030 2.0207 0.0270 0.0200 0.1489

100 100 ML 0.9460 0.0040 1.2447 0.0391 0.0149 0.4481
Bootstrap 0.9492 0.0008 1.2244 0.0278 0.0230 0.0945
Prior 1 0.9370 0.0130 1.3059 0.0380 0.0250 0.2064
Prior 2 0.9420 0.0080 1.2895 0.0340 0.0240 0.1724
Prior 3 0.9420 0.0080 1.3385 0.0390 0.0190 0.3448

10 25 ML 0.8845 0.0655 3.4497 0.1134 0.0021 0.9636
Bootstrap 0.9011 0.0489 3.9343 0.0513 0.0476 0.0374
Prior 1 0.9370 0.0130 5.9428 0.0320 0.0310 0.0159
Prior 2 0.9320 0.0180 4.8762 0.0200 0.0480 0.4118
Prior 3 0.9460 0.0040  21.2630 0.0450 0.0090 0.6667

25 10 ML 0.9377 0.0123 2.7183 0.0450 0.0173 0.4446
Bootstrap 0.9370 0.0130 2.7412 0.0375 0.0255 0.1905
Prior 1 0.9570 -0.0070 3.7529 0.0190 0.0240 0.1163
Prior 2 0.9470 0.0300 3.3444 0.0220 0.0310 0.1698
Prior 3 0.9730 -0.0230 5.4339 0.0090 0.0180 0.3333

ML 0.9258 0.0242 2.3188 0.0697 0.0045 0.8787
Bootstrap 0.9294 0.0206 2.4843 0.0363 0.0343 0.0283
Prior 1 0.9490 0.0010 2.7803 0.0310 0.0200 0.2157
Prior 2 0.9530 -0.0030 2.6305 0.0260 0.0210 0.1064
Prior 3 0.9460 0.0040 3.1472 0.0440 0.0100 0.6296




Table 51: Results for Design 4 — Equal-Tailed Bayesian Credibility Intervals

n, n, Method Covera_gg Coverage Average %WCI <8 %CI>6@ Rf:lative
Probability Error Length Bias
10 10 ML 0.9079 0.0421 2.5265 0.0843 0.0078 0.8306
Bootstrap 0.9108 0.0392 3.0611 0.0493 0.0399 0.1046
Prior 1 0.9620 -0.0120 39119 0.0180 0.0200 0.0526
Prior 2 0.9490 0.0010 3.3242 0.0150 0.0.60 04118
Prior 3 0.9580 -0.0350 6.1603 0.0100 0.0050 0.3333
25 25 ML 0.9329 0.0171 1.6702 0.0563 0.0108 0.7065
Bootstrap 0.9331 0.0169 1.7039 0.0371 0.0298 0.1091
Prior 1 0.9570 -0.0070 1.9227 0.0210 0.0220 0.0233
Prior 2 0.9530 -0.0030 1.8370 0.0220 0.0250 0.0638
Prior 3 0.9600 -0.0100 2.1406 0.0250 0.0150 0.2500
50 50 ML 0.9422 0.0078 1.1973 0.0460 0.0118 0.5917
Bootstrap 0.9397 0.0103 1.2556 0.0321 0.0282 0.0647
Prior 1 0.9390 0.0110 1.2980 0.0330 0.0280 0.0820
Prior 2 0.9400 0.0100 1.2739 0.0310 0.0290 0.0333
Prior 3 0.9490 0.0010 1.3610 0.0350 0.0160 0.3726
100 100 ML 0.9499 0.0001 0.8538 0.0362 0.0139 0.4451
Bootstrap 0.9470 0.0030 0.8820 0.0268 0.0262 0.0113
Prior 1 0.9640 -0.0140 0.8823 0.0170 0.0190 0.0556
Prior 2 0.9640 -0.0140 0.8732 0.0150 0.0210 0.1667
Prior 3 0.9660 -0.0160 0.9014 0.0210 0.0130 0.2353
10 25 ML 0.8898 0.0602 2.3841 0.1055 0.0047 0.9147
Bootstrap 0.9041 0.0459 2.5504 0.0521 0.0438 0.0865
Prior 1 0.9530 -0.0030 3.6296 0.0230 0.0240 0.0213
Prior 2 0.9450 0.0050 3.1407 0.0250 0.0300 0.0909
Prior 3 0.9560 -0.0060 5.4701 0.0350 0.0090 0.5909
25 10 ML 0.9385 0.0115 1.8614 0.0445 0.0170 0.4472
Bootstrap 0.9298 0.0202 1.9356 0.0387 0.0315 0.1026
Prior 1 0.9620 -0.0120 2.3899 0.0190 0.0190 0.0000
Prior 2 0.9580 -0.0080 2.1812 0.0180 0.0240 0.1429
Prior 3 0.9770 -0.0270 3.2064 0.0100 0.0130 0.1304
25 50 ML 0.9308 0.0192 1.5949 0.0638 0.0054 0.8439
Bootstrap 0.9411 0.0089 1.6100 0.0301 0.0288 0.0221
Prior 1 0.9580 -0.0080 1.8496 0.0170 0.0250 0.1905
Prior 2 0.9500 0.0000 1.7658 0.0180 0.0320 0.2800

Prior 3 0.9670 -0.0170 2.0465 0.0210 0.0120 0.2727




Table 52: Results for Design 5 — Equal-Tailed Bayesian Credibility Intervals

noon Method Coverag.e Coverage Average 9%CI<8 %CI>6 Rglative
Probability Error Length Bias
10 10 ML 0.9062 0.0438 2.7395 0.0852 0.0086 0.8166
Bootstrap 0.9211 0.0289 29173 0.0423 0.0366 0.0640
Prior 1 0.9660 -0.0160 4.6583 0.0160 0.0180 0.0588
Prior 2 0.9510 -0.0010 3.8112 0.0220 0.0270 0.1020
Prior 3 0.9870 -0.0370  11.3360 0.0120 0.0010 0.8462
25 25 ML 0.9348 0.0152 1.8030 0.0561 0.0091 0.7209
Bootstrap 0.9331] 0.0169 2.0132 0.0350 0.0319 0.0463
Prior 1 0.9520 -0.0020 2.1272 0.0300 0.0180 0.2500
Prior 2 0.9530 -0.0030 2.0187 0.0260 0.0210 0.1064
Prior 3 0.9580 -0.0080 2.3997 0.0310 0.0110 0.4762
50 50 ML 0.9451 0.0049 1.2941 0.0429 0.0120 0.5628
Bootstrap 0.9434 0.0066 1.2911 0.0297 0.0269 0.0495
Prior 1 0.9510 -0.0010 1.3950 0.0270 0.0220 0.1020
Prior 2 0.9500 0.0000 1.3654 0.0240 0.0260 0.0400
Prior 3 0.9540 -0.0040 1.4658 0.0310 0.0150 0.3478
100 100 ML 0.9465 0.0035 0.9196 0.0401 0.0134 0.4991
Bootstrap 0.9477 0.0023 0.9503 0.0266 0.0257 0.0173
Prior | 0.9510 -0.0010 0.9530 0.0210 0.0280 0.1429
Prior 2 0.9470 0.0030 0.9437 0.0210 0.0320 0.2076
Prior 3 0.9550 -0.0050 0.9775 0.0240 0.0210 0.0667
10 25 ML 0.8911 0.0589 2.5576 0.1043 0.0046 0.9155
Bootstrap 0.9154 0.0346 2.7803 0.0501 0.0345 0.1844
Prior 1 0.9480 0.0020 4.2069 0.0270 0.0250 0.0385
Prior 2 0.9320 0.0180 3.4904 0.0230 0.0450 0.3235
Prior 3 0.9600 -0.0100 7.3017 0.0360 0.0040 0.8000
25 10 ML 0.9376 0.0124 2.0337 0.0421 0.0203 0.3494
Bootstrap 0.9393 0.0107 2.2042 0.0311 0.0296 0.0247
Prior 1 0.9550 -0.0050 2.6866 0.0190 0.0260 0.1556
Prior 2 0.9410 0.0090 2.3820 0.0260 0.0330 0.1186
Prior 3 0.9770 -0.0270 6.8346 0.0050 0.0180 0.5652
25 50 ML 0.9303 0.0197 1.7188 0.0624 0.0073 0.7905
Bootstrap 0.9422 0.0078 1.6998 0.0298 0.0280 0.0311
Prior 1 0.9440 0.0060 2.0401 0.0290 0.0270 0.0357
Prior 2 0.9410 0.0090 1.9391 0.0280 0.0310 0.0508
Prior 3 0.9480 0.0020 2.2861 0.0360 0.0160 0.3846
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Table 53: Results for Design 1 — HPD Bayesian Credibility Intervals

Method Coverage Coverage Average 9%CI <6 %CI> 6@ Relative
Probability Error Length Bias

Prior 1 0.9570 -0.0070 4.8347 0.0320 0.0110 0.4884

Prior 2 0.9530 -0.0030 3.9066 0.0450 0.0020 0.9149

Prior 3 0.9920 -0.0420 7.7611 0.0060 0.0020 0.5000

10 25 Priorl 0.9660 -0.0160 4.1246 0.0310 0.0030 0.8235
Prior 2 0.9330 0.0170 3.4356 0.0660 0.0010 0.9701

Prior 3 0.9840 -0.0340 6.2847 0.0140 0.0020 0.7500

25 10 Priorl 0.9720 -0.0220 2.7055 0.0150 0.0130 0.0714
Prior 2 0.9840 -0.0340 2.4298 0.0080 0.0080 0.0000

Prior 3 0.9860 -0.0360 3.6555 0.0080 0.0060 0.1429

25 25 Priorl 0.9650 -0.0150 2.1047 0.0260 0.0090 0.4857
Prior 2 0.9450 0.0050 1.9682 0.0460 0.0090 0.6727

Prior 3 0.9720 -0.0220 2.4207 0.0190 0.0090 0.3571

25 50 Priorl 0.9480 0.0020 1.9860 0.0420 0.0100 0.6154
Prior 2 0.9390 0.0110 1.8776 0.0530 0.0080 0.7377

Prior 3 0.9630 -0.0130 2.2322 0.0250 0.0120 0.3514

50 50 Priorl 0.9580 -0.0080 1.3599 0.0260 0.0160 0.2381
Prior 2 0.9410 0.0090 1.3029 0.0430 0.0160 0.4576

Prior 3 0.9520 -0.0020 1.4535 0.0280 0.0200 0.1667

100 100 Priorl 0.9510 -0.0010 0.9005 0.0410 0.0080 0.6735
Prior 2 0.9440 0.0060 0.8960 0.0400 0.0160 0.4286

Prior 3 0.9520 -0.0020 0.9312 0.0280 0.0200 0.1667
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Table S4: Results for Design 2 — HPD Bayesian Credibility Intervals

n, n, Method Coverag; Coverage Average 9%CI<8@ °%CI>6 Rglative
Probability Error Length Bias

10 10 Prior 1 0.9810 -0.0310 9.4602 0.0050 0.0140 0.4737
Prior 2 0.9730 -0.0230 7.8847 0.0130 0.0140 0.0370

Prior 3 0.9930 -0.0430  15.6870 0.0020 0.0050 0.4286

10 25 Priorl 0.9630 -0.0130 6.6368 0.0300 0.0070 0.6216
Prior 2 0.9430 0.0070 5.7021 0.0530 0.0040 0.8596

Prior 3 0.9860 -0.0360 9.9837 0.0130 0.0010 0.8571

25 10 Priorl 0.9650 -0.0150 6.7691 0.0090 0.0260 0.4857
Prior 2 0.9640 -0.0140 5.6596 0.0050 0.0310 0.7222

Prior 3 0.9910 -0.0410 9.9329 0.0050 0.0040 0.1111

25 25 Priorl 0.9670 -0.0170 4.0537 0.0160 0.0170 0.0303
Prior 2 0.9640 -0.0140 3.7854 0.0160 0.0200 0.1111

Prior 3 0.9770 -0.0270 4.7098 0.0090 0.0140 0.2174

25 50 Priorl 0.9650 -0.0150 3.2799 0.0180 0.0170 0.0286
Prior 2 0.9520 -0.0020 3.1131 0.0360 0.0120 0.5000

Prior 3 0.9660 -0.0160 3.6776 0.0250 0.0090 0.4706

50 50 Prior! 0.9540 -0.0040 2.5321 0.0260 0.0200 0.1304
Prior 2 0.9510 -0.0010 2.4161 0.0230 0.0260 0.0612

Prior 3 0.9650 -0.0150 2.6956 0.0170 0.0180 0.0286

100 100 Priorl 0.9560 -0.0060 1.6519 0.0240 0.0200 0.0909
Prior 2 0.9680 -0.0180 1.6220 0.0180 0.0140 0.1250

Prior 3 0.9580 -0.0080 1.7129 0.0220 0.0200 0.0476
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Table 55: Results for Design 3 - HPD Bayesian Credibility Intervals

n, n, Method Covera.gf: Coverage Average 9%(CI<6 %CI>6 Rf:lative
B Probability Error Length Bias

10 10 Prior 1 0.9670 -0.0170 5.5532 0.0290 0.0040 0.7576
Prior 2 0.9400 0.0100 43116 0.0530 0.0070 0.7667

Prior 3 0.9930 -0.0430  10.4133 0.0040 0.0030 0.1429

10 25 Priorl 0.9550 -0.0050 4.6276 0.0390 0.0060 0.7333
Prior 2 0.9380 0.0120 3.8159 0.0580 0.0040 0.8710

Prior 3 0.9820 -0.0320 8.5058 0.0100 0.0080 0.1111

25 10 Prior 1 0.9710 -0.0210 3.0150 0.0200 0.0090 0.3793
Prior 2 0.9560 -0.0060 2.6912 0.0260 0.0180 0.1818

Prior 3 0.9880 -0.0380 4.5997 0.0070 0.0050 0.1667

25 25 Priorl 0.9570 -0.0070 2.3320 0.0360 0.0070 0.6744
Prior 2 0.9430 0.0070 2.1450 0.0480 0.0090 0.6842

Prior 3 0.9610 -0.0110 2.7197 0.0240 0.0150 0.2308

25 50 Prior1l 0.9550 -0.0050 2.1745 0.0380 0.0070 0.6889
Prior 2 0.9380 0.0120 2.0464 0.0570 0.0050 0.8387

Prior 3 0.9610 -0.0110 2.5241 0.0200 0.0190 0.0256

50 50 Priorl 0.9540 -0.0040 1.4611 0.0360 0.0100 0.5652
Prior 2 0.9620 -0.0120 1.4252 0.0290 0.0090 0.5263

Prior 3 0.9630 -0.0130 1.5931 0.0210 0.0160 0.1351

100 100 Prior1 0.9390 0.0110 0.9791 0.0410 0.0200 0.3443
Prior 2 0.9460 0.0040 0.9636 0.0370 0.0170 0.3704

Prior 3 0.9570 -0.0070 1.0100 0.0300 0.0130 0.3953
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Table 56: Results for Design 4 — HPD Bayesian Credibility Intervals

n, n, Method Coverag; Coverage Average %NCI <8 %CI>68 Rf:lative
Probability Error Length Bias

10 10 Priorl 0.9570 -0.0070 3.1202 0.0390 0.0040 0.8140
Prior 2 0.9460 0.0040 2.5807 0.0490 0.0050 0.8148

Prior 3 0.9930 -0.0430 5.3104 0.0060 0.0010 0.7143

10 25 Priorl 0.9560 -0.0060 2.7157 0.0430 0.0010 0.9545
Prior 2 0.9350 0.0150 2.2919 0.0650 0.0000 1.0000

Prior 3 0.9850 -0.0350 4.2682 0.0100 0.0050 0.3333

25 10 Prior1 0.9650 -0.0150 1.8114 0.0220 0.0130 0.2571
Prior 2 0.9670 -0.0170 1.5772 0.0210 0.0120 0.2727

Prior 3 0.9890 -0.0390 2.5082 0.0070 0.0040 0.2727

25 25 Priorl 0.9480 0.0020 1.4107 0.0460 0.0060 0.7692
Prior 2 0.9290 0.0210 1.3249 0.0610 0.0100 0.7183

Prior 3 0.9720 -0.0220 1.6280 0.0180 0.0100 0.2857

25 50 Priorl 0.9460 0.0040 1.3228 0.0490 0.0050 0.8148
Prior 2 0.9380 0.0120 1.2580 0.0580 0.0040 0.8710

Prior 3 0.9580 -0.0080 1.5289 0.0250 0.0170 0.1905

50 50 Prior1 0.9490 0.0010 0.9066 0.0350 0.0160 0.3725
Prior 2 0.9500 0.0000 0.8767 0.0380 0.0120 0.5200

Prior 3 0.9580 -0.0080 0.9652 0.0270 0.0150 0.2857

100 100 Prior1 0.9380 0.0120 0.6097 0.0400 0.0220 0.2903
Prior 2 0.9470 0.0030 0.5989 0.0320 0.0210 0.2075

Prior 3 0.9520 -0.0020 0.6270 0.0290 0.0190  0.2083




Table 57: Results for Design 5 — HPD Bayesian Credibility Intervals

n, n, Method Coveragg Coverage Average 9% CI <8 %CI>8 Rf:lative
- Probability Error Length Bias
10 10 Prior1 0.9700 -0.0200 3.6830 0.0260 0.0040 0.7333
10 10 Prior2 0.9570 -0.0070 2.8799 0.0390 0.0040 0.8140
10 10 Prior3 0.9930 -0.0430 8.6341 0.0040 0.0030 0.1429
10 25 Priorl 0.9560 -0.0060 3.2310 0.0360 0.0080 0.6364
10 25 Prior2 0.9250 0.0250 2.5733 0.0700 0.0050 0.8667
10 25 Prior3 0.9820 -0.0320 5.3696 0.0120 0.0060 0.3333
25 10 Priorl 0.9670 -0.0170 2.0684 0.0220 0.0110 0.3333
25 10 Prior2 0.9530 -0.0030 1.8358 0.0270 0.0200 0.1489
25 10 Prior3 0.9910 -0.0410 4.9927 0.0080 0.0010 0.7778
25 25 Priorl 0.9500 0.0000 1.5694 0.0380 0.0120 0.5200
25 25 Prior2 0.9470 0.0030 1.4507 0.0400 0.0130 0.5094
25 25 Prior3 0.9770 -0.0270 1.8212 0.0190 0.0040 0.6522
25 50 Priorl 0.9340 0.0160 1.4741 0.0570 0.0090 0.7273
25 50 Prior2 0.9320 0.0180 1.3773 0.0600 0.0080 0.7647
25 50 Prior3 0.9700 -0.0200 1.7286 0.0200 0.0100  0.3333
50 50 Priorl 0.9610 -0.0110 1.0050 0.0220 0.0170  0.1282
50 50 Prior2 0.9420 0.0080 0.9634 0.0500 0.0080  0.7241
50 50 Prior3 0.9560 -0.0060 1.0625 0.0280 0.0160  0.2727
100 100 Priorl 0.9460 0.0040 0.6669 0.0410 0.0130  0.5185
100 100 Prior2 0.9500 0.0000 0.6671 0.0350 0.0150  0.4000

100 100 Prior3 0.9490 0.0010 0.6942 0.0270 0.0240  0.0588




Table 58: Results for MOVER

Design n, n, Coverage Coverage Average 9%CI <6 %CI>6@ Relative
B Probability  Error Length Bias

1 10 10 0.9620 -0.0120 5.7026 0.0170 0.0210 0.1053

10 25 0.9550 -0.0050 5.2727 0.0190 0.0260 0.1556

25 10 0.9610 -0.0110 3.3565 0.0160 0.0230 0.1795

25 25 0.9580 -0.0080 2.6984 0.0180 0.0240 0.1429

25 50 0.9560 -0.0060 2.5970 0.0160 0.0280 0.2727

50 50 0.9510 -0.0010 1.7782 0.0140 0.0350 0.4286

100 100 0.9660 -0.0160 1.2138 0.0130 0.0210 0.2353

2 10 10 0.9700 -0.0200  10.4234 0.0180 0.0120 0.2000

10 25 0.9650 -0.0150 7.6625 0.0200 0.0150 0.1429

25 10 0.9460 0.0040 7.6824 0.0290 0.0250 0.0741

25 25 0.9610 -0.0110 4.6886 0.0180 0.0210 0.0769

25 50 0.9490 0.0010 3.9023 0.0250 0.0260 0.0196

50 50 0.9650 -0.0150 2.9862 0.0200 0.0150 0.1429

100 100 0.9500 0.0000 2.0205 0.0290 0.0210 0.1600

3 10 10 0.9770 -0.0270 6.5483 0.0040 0.0190 0.6522

10 25 0.9460 0.0040 5.9409 0.0250 0.0290 0.0741

25 10 0.9530 -0.0030 3.7494 0.0230 0.0240 0.0213

25 25 0.9510 -0.0010 2.9558 0.0320 0.0170 0.3061

25 50 0.9460 0.0040 2.7663 0.0230 0.0310 0.1481

50 50 0.9400 0.0100 1.9191 0.0340 0.0260 0.1333

100 100 0.9620 -0.0120 1.3048 0.0180 0.0200 0.0526

4 10 10 0.9700 -0.0200 3.9909 0.0140 0.0160 0.0667

10 25 0.9670 -0.0170 3.5649 0.0090 0.0240 0.4545

25 10 0.9640 -0.0140 2.3665 0.0200 0.0160 0.1111

25 25 0.9690 -0.0190 1.9358 0.0130 0.0180 0.1613

25 50 0.9670 -0.0170 1.8579 0.0150 0.0180 0.0909

50 50 0.9550 -0.0050 1.2905 0.0220 0.0230 0.0222

100 100 0.9540 -0.0040 0.8871 0.0220 0.0240 0.0435

5 10 10 0.9640 -0.0140 4.7565 0.0190 0.0170 0.0556

10 25 0.9430 0.0070 4.1594 0.0230 0.0340 0.1930

25 10 0.9660 -0.0160 2.7002 0.0120 0.0220 0.2941

25 25 0.9660 -0.0160 2.1226 0.0130 0.0210 0.2353

25 50 0.9480 0.0020 2.0177 0.0220 0.0300 0.1538

50 50 0.9530 -0.0030 1.4002 0.0270 0.0200 0.1489

100 100 0.9590 -0.0090 0.9532 0.0230 0.0180 0.1220




CHAPTER §
Inference on the Variance: One and Two Sample Approach

Introduction

From Chapter 2 a Bayesian methodology was developed and introduced for lognormally
distributed data. Credibility intervals were calculated for the mean of the distribution
where no zero values were included in the data and the performance of these credibility
intervals was compared for different choices of prior distributions, including the
Independence Jeffreys prior, the Jeffreys Rule prior as well as a constant prior, Reference

prior and Probability-Matching prior.

In this next chapter we look at a similar situation in terms of the distribution of the data.
In this case we are primarily concerned with Bayesian inference for the variance of the
distribution as opposed to the mean of the distribution. Similarly to previous chapters,
credibility intervals (Bayesian confidence intervals) will be developed based on different
choices of prior distributions. Again, the Probability-Matching prior and Reference prior
for the variance will be derived. The relative performance of these various prior

distributions will be compared similarly to previous chapters.

The comparison of the variances together with appropriate confidence intervals becomes
necessary when we need to compare variability amongst measurements. According to
Krishnamoorthy, Mathew and Ramachandran (2006) there are no readily available

procedures available for computing confidence intervals for the variance. They proposed
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methods based on generalized p-values and generalized confidence intervals for
addressing this problem. The authors in particular applied the procedures they developed
to address situations involving patient and worker exposure data. This chapter presents
an alternative method based on Bayesian confidence intervals to address the same
problem. As mentioned previously, the effectiveness of a variety of non-informative

prior distributions is of primary importance.

5.1 Intervals Based on a Bayesian Procedure
Let y =1In(X)~ N(u,0o?) then the likelihood function can be written as:

1
1 us? n o\3 n(u — y)?

Lno®) = o) Femp {3 () e | -2
L(u,02) o« L(o?)L(u|o?) (5.1
where

n
1
y= ;‘ Vi

=1

vs?= Y (y; — ¥)?and

v=n-—1

We are interested in credibility intervals for the variance of the distribution, namely:

Var(X) = expRu + o®){exp(c?) — 1} = t(u, 0?)

5.2 The Independence Jeffreys Prior
Consider the first prior distribution:

p(u,0*)oc(o?)
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As mentioned and according to Box and Tiao (1973) it is usually appropriate to take

location parameters to be distributed independently of scale parameters.

Using the

argument in Section 1.3.2 of Box and Tiao (1973) it follows that p(u,c*) o« (67)™.

Combining this prior distribution with the likelihood given by (5.1) results in the

following posterior distribution:
p(u,0*|data) = p,(c®|data)p(u|o?, data)

where

1
vs?\2' 1 1 vs?

pi(o?|data) = <T> v (62) 722 exp {_2 2}

r(z) ?

for 02 > 0, which is an Inverse Gamma distribution, and
2 1.,
ulo“,data ~ N (y,;t-a )

From (5.2) it follows that

vs? 5
—— ~X
g v

To obtain credibility intervals for this Bayesian procedure Monte Carlo simulation is

applied.

5.3 Simulation Procedure

The simulation of the required data can be performed in a similar way to that described in

previous chapters, particularly in Chapters 1 and 2. Using these methods we can simulate

u# and o out of their posterior distribution. Using these values we can simulate a
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10000 values of t(u,02) = exp(2u + 6?){exp(c?) —1}. These are sorted and
credibility intervals are obtained in a similar manner as in the previously referred to

chapters.

5.4  Other Prior Distributions.
As previously mentioned, this procedure was repeated for other prior distributions as

well.  Obviously the form of the posterior distribution will change for each prior
distribution. The simulation procedure is similar to that for posterior distribution (5.2)
except that (given the choice of prior distributions) o is distributed from a central chi-

squared distribution with the degrees of freedom changing based on the form of (5.2).

The Jeffreys Rule prior, which is the square root of the determinant of the Fisher

Information matrix namely, p(c2) o ¢ 3.

5.4.1 Probability-Matching Prior Distribution
In addition to the two previously mentioned priors by Jeffreys, both the Reference and
Probability-Matching prior distributions were derived. The Probability-Matching prior

for t(u, 0%) = Var(X) is given by:

_, [2{exp(0?) —1}?
pm(u,0%) < o 3\/{Zexp(02) 1y + o2

(5.3)

The derivation is given in the appendix to this chapter.

From (5.1) it follows that if we multiply (5.1) by (5.3)




pu(u, 0%|data) « py(o?|data) x py(ulo?, data)

where

1
ulo?, data ~ N (y,;az)
and

pu(o?|data) « L(6?) x py(u,a?)

(5.4)

Using these results one is able to simulate from the posterior distribution by first
simulating 02 from (5.4). A similar procedure to that described in section 5.3 can be

used to simulate values of t(u, 02).

5.4.2 Reference Prior Distribution

In the same way the Reference prior for t(u, 62) = Var(X) is given by:

2
pr(u, 0%) « a‘lj{—_zexP(az) _ 1} + 2z

exp(o?) —1 o?

(5.5)

The derivation is available in the appendix to this chapter.

A similar procedure to that described in Section 5.4.1 can be used to simulate
observations from t(u, a2) = Var(X).

5.5 Simulation Study — Example 1 - Single Sample
In this example the following was done:

1. Take the following initial values: n = 10,vs? =6,y = 1
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2. Simulate the posterior distributions of:
a. p;(u, o°|data)
b. pu(w 0?*|data)

C. Dr (“l 02 |data)

The above posterior distributions are obtained by multiplying the prior
with the likelihood.
3. Normalise the posterior distributions so that the area under the curve is equal to 1
4. Simulate t(u, 02) = Var(X) for a), b) and c) above.

5. Calculate 95% credibility intervals.

The results were as follows:

Table 59: Results for Various Priors

Prior Equal -tail Intervals HPD Intervals
Lower | Upper | Length | Lower | Upper Length
Ind Jeffreys 3.7246 554.497 550.772 1.5494 229.647 228.097
Jeffreys Rule 33337 | 253.727 | 250394 | 1.5496 | 120.675 119.125
Probability-Matching | 28121 | 85472 82.660 1.4988 | 50.461 48.962
Reference 32913 | 322.017 | 318.725 1.5394 | 146.464 144.925

In terms of interval length, we can see from the above results that the prior distribution
that performs the best is the Jeffrey’s Rule prior. The Probability-Matching prior appears
to have the shortest interval length, however, as will be shown in later results this prior

distribution suffers from insufficient coverage.
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Figure 34: Posterior distributions of o under different choices of priors

Posterior Distribution of o2

13 T 14 13

pJ1(c52|data)

= pR(cr2|data)

) |

In the above figure, p;; and p,, refer to the Independence Jeffreys prior and Jeffreys Rule
prior respectively, whereas pg and py, refer to the Reference and Probability-matching

priors respectively. The form of these posteriors is given by the following:

ik 1 us
-
() o een(-2)

T

Y T,
<
SN—r
[ K
qI
N =
~
<
+
<
()
=
=
I
|G
N

Pj2 X D
r(z)
Us
- _%v Y i 2exp(0?) — 1 : N 2
Rpeie = o |° exp(o?) — 1 o?
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7\, [2lewp(@®) -1z
7 [Cexp@?) - 11

Figure 35: Posterior Distributions of Var(X) = exp(2,u +o? ){exp(az)—l} using the Jeffreys

prior distributions
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Histogram of Var(X}) - Independence Jefireys Prior
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i
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‘Histogram of Var(X) - Jefireys Rule Prior
T T

S g~ W
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Figure 36: Posterior Distributions of Var (X) = exp(z,u +o’ ) {exp(o‘2 ) - l} using the Reference

ad Probabilitymtching prio dstributions

Histogram of Vai(X) - Probabiity Matching Prior.
T T

Histogram of Var(X) - Reférence Prior
T

In addition to the above analyses the simulations were performed for a wider range of

parameter settings:

Table 60: Paramcter Values

Parameters Parameter Values Chosen
U 0;03;0.7;1;1.3;1.5;1.7;2
o? 0.25;1;2.25
n 10, 15, 20

The following results were obtained: i
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Table 61: Results for the Independence Jeffreys prior

0% =0.25 Equal-tail Intervals HPD Intervals
n 10 15 20 10 15 20
=0 Coverage 94.70 94.92 94.76 94.87 95.05 94.94
Length 5.4988 1.8618 1.1972 2.8917 1.3380 09517
=103 Coverage 94.93 95.27 95.35 94.76 95.53 95.30
’ Length 10.055 3.3917 2.1720 5.2938 2.4396 1.7286
=07 Coverage 94.90 94.65 95.37 94.95 95.19 95.67
’ Length 21.834 7.5889 4.8576 11.539 5.4555 3.8654
=1 Coverage 94.96 94.56 94.90 95.06 94.86 95.24
Length 43.266 13.684 8.8105 22.056 9.8541 7.0135
=13 Coverage 94.76 95.08 95.01 94.62 94.93 95.19
’ Length 71.389 24.710 16.024 38.059 17.838 12.751
p=15 Coverage 94.50 95.14 95.04 9483 95.36 95.00
’ Length 110.80 37.235 23.766 58.258 26.807 18.923
p=17 Coverage 94.94 95.29 95.25 94.66 95.33 95.48
’ Length 164.73 55.104 35.903 85.752 39.733 28.561
=2 Coverage 95.32 94.92 94.55 95.03 95.12 95.06
"= Length 296.02 101.04 64.801 156.59 72.773 51.526
gt =1 Equal-tail Intervals HPD Intervals
n 10 15 20 10 15 20
_ Coverage 94.86 94.64 95.01 95.09 95.00 95.13
p=20 Length 2.51e7 2965.7 27745 2.56¢e5 57427 112.98
_ Coverage 95.24 94.94 95.42 95.04 95.35 95.07
n=03 Length | 4329 84082  475.52 122¢7 12598 19457
_ Coverage 94.88 95.01 95.63 94.98 95.02 95.18
#=07 Length 3.15¢7 1.26¢4 1134.5 5.65¢€5 2181.2 457.82
_ Coverage 94.98 94.76 95.01 95.01 94.97 95.05
p=1 Length 1.16e9 2.89¢4 2412.7 8.77¢6 5054.2 904.33
_ Coverage 94.87 95.02 95.39 94.87 95.08 95.30
p=13 Length 44168 294e4 40783 4.46¢6 64023 1588.6
_ Coverage 94.97 95.14 94.74 95.07 95.17 95.15
p=1s Length 3198  6.56e4  6047.4 3.03e6 125¢4 24257
_ Coverage 94.73 95.02 94.65 94.62 95.20 94.85
p=17 Length 9.99¢8 2.34e5 8392.4 1.09e7 3274 3390.2
_ Coverage 94.91 95.21 95.08 94.87 95.08 95.30
p=2 Length_ 3.94e8 2.70e5  1.44ed 6.91¢6 4.22¢4 6036.8

.25

Equal-tail Intervals

HPD Intervals

n

15

20

15

20

Coverage
Length
Coverage
Length
Coverage
Length
Coverage
Length
Coverage
Length
Coverage
Length
Coverage
Length
Coverage
Length

94.68
1.3ell
95.04
8.2ell
95.38
5.3el2
95.01
9.9¢10
95.14
1.4el3
95.13
3.3ell
94.94
1.1el3
94.97
6.1el2

95.26
3.5¢8
94.94

5.89¢7
94.80
2.31e8
94.91
3.73e8
95.38
3.98¢8
94.92
1.87¢9
95.13
6.31e8
95.15

2.89¢9

94.61
1.26¢9
95.13
5.24¢9
95.14
2.2el0
95.16
1.54¢9
94.88
7.8¢10
94,98
4.07¢9
95.18
8.6¢10
95.32

3.5¢10

95.33
8.91e6
95.08
3.85e6
94.50
1.19¢7
95.10
2.05¢7
95.43
2.69¢7
95.03
7.85¢e7
94.97
4.14¢7
94.90
1.26e8




Table 62: Results for the Jeffreys Rule prior

a2 =0.25 Equal-tail Intervals HPD Iatervals
n 10 15 20 10 15 20
p=0 Coverage 93.78 94.45 94.49 91.27 92.83 93.50
Length 3.0271 1.4520 1.0168 1.8300 1.0822 0.8239
p=03 Coverage 93.56 94.60 94.11 91.07 92.68 93.10
’ Length 5.3989 2.5880 1.8660 3.2736 1.9388 1.5113
p=07 Coverage 94.09 94.06 94.11 91.87 92.77 92.63
’ Length 12.272 5.8462 4.0922 7.4596 43715 33182
p=1 Coverage 93.64 93.93 94.17 91.72 92.18 93.04
Length 22.975 10.779 7.4761 13.846 8.0435 6.0590
u=13 Coverage 93.83 94.41 94.18 91.66 92.27 93.16
’ Length 40.136 18.946 13.711 24.438 14.203 11.106
g=15 Coverage 93.50 94.57 94.05 91.79 92.88 93.13
’ Length 63.707 28.462 20.689 38.185 21.325 16.757
=17 Coverage 93.56 94.53 94.32 91.43 92.88 93.04
: Length 93.302 43.324 30.054 55.946 32.391 24.381
=2 Coverage 94.13 94.21] 94.78 91.77 92.66 93.31
r= Length 16294 79336  55.543 99.071 59270 45029
at=1 Equal-tail Intervals HPD Intervals
n 10 15 20 10 15 20
g=0 Coverage 94.04 94.30 94.32 91.77 92.75 92.61
Length 4.29¢6 1061.9 181.91 5.56¢4 266.77 78.534
p=03 Coverage 93.92 94.26 94.36 91.56 92.56 93.23
’ Length 5.69¢5 1688.9 563.75 1.92¢4 44497 186.26
p=0.7 Covcrage 93.65 94.31 94.81 91.10 92.25 92.96
: Length 1.60¢6 3938.4 647.31 4.66e4 1006.5 289.00
=1 Coverage 93.66 94.27 94.62 91.53 92.40 93.39
k= Length 5.45¢6 63189 13743 1.68¢5 1749.8 590.46
p=13 Coverage 93.70 94.25 94.55 91.66 92.62 93.54
' Length 5.83e6 1.23¢4 2288.2 1.91e5 3191.2 1024.6
=15 Coverage 93.57 94.55 94.47 91.38 93.07 92.96
’ Length 2.44¢6 2.96¢4 33497 1.25¢5 6300.4 1516.4
p=17 Coverage 93.86 94.45 94.74 91.43 92.69 93.19
' Length 3.95¢7 2.99¢4 4591.0 9.04e5 7647.0 2130.1
-2 Coverage 94.i8 94.48 94.31 92.16 92.51 92.84
B = Length 174e8  7.64e4 87958 2.16¢6 1.67e4  4008.6
02 =225 Equal-tail Intervals HPD Intervals
n 10 15 20 10 15 20
-0 Coverage 93.47 94.67 94.19 90.93 92.53 92.86
r= Length 13el6 5.38¢8 1.24¢7 3.tel2 1.64e7 9.66e5
u=03 Coverage 93.91 94.06 93.98 91.78 92.53 92.48
! Length 5.9¢16 5.97¢9 8.89¢6 2.0e13 1.19e8 7.38e5
g=07 Coverage 93.76 94.07 94.24 91.61 92.02 92.79
‘ Length 7.4el5 1.2e10 2.15e8 3.9¢e12 2.93e8 1.37¢7
=1 Coverage 93.94 94.45 94.29 91.74 92.13 92.78
B= Length 1.1el7 3.2el1 2.35¢9 4.9¢e13 3.53¢9 7.33e7
p=13 Coverage 93.55 94.46 94.12 91.44 92.69 92.81
: Length 3.8¢18 9.56¢9 2.15¢8 8.3e14 2.30e8 1.64e7
g=15 Coverage 93.57 94.69 94 .42 91.33 92.61 92.80
’ Length 3.8¢18 4.0e10 2.09e8 7.2e14 8.32¢8 1.46¢7
p=17 Coverage 94.05 94.23 94.81 91.76 92.21 93.03
! Length 1.3¢19 8.8ell 2.04e8 1.4ei5 7.69¢9 1.49¢7
-2 Coverage 94.08 94,29 94.34 91.74 92.75 92.57
* Length 2.6e21 2.8ell 5.48¢9 9.6¢16 5.51¢9 2.94¢8
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Table 63: Results for the Reference prior

o’ =0.25 Equal-tail Intervals HPD Intervals
n 10 15 20 10 15 20
-0 Coverage 92.48 93.50 93.84 89.20 91.40 92.10
r= Length 3.0992 13826  1.0063 1.7988 1.0293 0.8107
u=03 Coverage | 92.72 93.60 93.55 89.40 91.02 91,67
: Length 5.9863 26106 1.8098 3.4336 1.9355 1.4591
p= 0.7 Coverage | 9240 93.62 93.87 89.32 91.37 9230
: Length 12.742 58852 4.0598 7.4066 4.3492 3.2737
-1 Coverage | 92.32 93.47 94.00 89.70 91.55 92.00
k= Length 25025 10.659 72417 14.029 7.8707 5.8474
=13 Coverage | 92.60 93.60 93.55 89.50 91.02 91.67
p==x Length 44237 19289 13372 25.379 14301 10.781
g=15 Coverage | 9240 93.62 93.87 89.32 91.37 9230
: Length 63.113  29.149  20.108 36.685 21.541 16.214
- 17 Coverage | 9232 93.50 94.00 89.70 91.40 92.00
B== Length 10148 41429  29.366 56.892 30.841 23712
2 Coverage | 9260 93.60 93.55 89.50 91.02 91.67
r= Length 17939 78223 54228 102.91 57.994 43.720
o?=1 Equal-tail Intervals HPD Intervals
n 10 15 20 10 15 20
-0 Coverage | 93.17 94.15 94.55 91.45 92.67 93.37
. Length 1.92e4  1551.8 221.92 4033.5 418.66 95.296
_ Coverage | 93.07 94.07 94.77 91.30 92.92 93.02
# =03 Length 395¢4  3425.6 333.48 8818.3 901.26 148.03
_ Coverage | 93.50 94,00 93.77 91.70 92.57 92.72
p=107 Length 8.59e4 47827 877.24 1.91ed 1368.3 375.18
_ Coverage | 93.17 94.15 94.55 91.45 92.67 93.37
p=1 Length 1425 1.15¢4 16398 2.98¢4 3093.2 704.14
_ Coverage | 93.07 94.07 94.77 91.30 92.92 93.02
p=13 Length 292¢5  2.53cd 2464.2 6.52¢4 6659.4 1093.8
_ Coverage | 93.50 94.00 93.77 91,70 92.57 92.72
#=15 Length 42665 2.37¢4 43450 9.46c4 67779 1858.3
_ Coverage | 93.17 94.15 94.55 91.45 92.67 93.37
p=17 Length 5.77¢5  4.65¢4 6649.9 121e5  1.25¢4 2855.5
Coverage | 93.07 94.20 94.67 91.30 92.40 93.65
p=2 Length 1.18¢6  5.29¢4 1.25¢4 264e5  1.51c4 5090.2
0% =2.25 Equal-tail Intervals HPD Intervals
n 10 15 20 10 15 20
_ Coverage | 94.65 93.52 94.12 92.95 92.80 93.72
p=0 Length 1426 4895  1.88eS 4.90¢5 1.84e5  7.04e4
=03 Coverage | 94.65 94.52 95.17 92.65 93.75 94.37
p=79 Length 2.39%6 8.44e5  3.35¢5 8.13¢5 3.07¢5 1.24¢5
_ Coverage | 94.02 94.62 94.80 92.95 93.52 94.30
n=07 Length | 6046  1.74e6  7.07¢5 214¢6  6.11e5  2.56e5
_ Coverage | 9430 94.72 94.82 92.62 94.05 94.12
p=1 Length 977¢6  3.28¢6  1.396 3.28¢6 1.19¢6 5.15¢5
_ Coverage | 9440 94.22 94.97 9277 93.77 93.97
p=13 Length 1807 603e6  2.26¢6 6.13¢6  2.18¢6  7.88€S
_ Coverage | 9442 94.55 94.17 93.17 93.50 93.57
p=15 Length 273¢7  9.24¢6  3.62¢6 9.47¢6 336e6  1.32¢6
_ Coverage | 94.37 94.75 94.90 92.77 93.75 94.00
#=17 Length 4.07¢7  143¢7 5.55¢6 1.40¢7 5.25¢6 2.04e6
_ Coverage | 94.22 94.62 94.80 92.67 93.52 94.30
p=2 Length 7.75¢7  234e7 9.52¢6 2.69¢7 8.23¢6 3.44¢6
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Table 64: Results for the Probability-Matching prior

o? =0.25 Equal-tail Intervals HPD Intervals
n 10 15 20 10 15 20
_ Coverage 87.76 90.62 91.58 81.56 86.02 87.98
p=20 Length 1.3341 0.9336 0.7757 0.9462 0.7381 0.6447
_ Coverage 87.82 90.32 91.32 81.65 85.57 87.52
p=03 Length 25004 17519 13944 17656 13809 11610
= 0.7 Coverage §7.30 90.30 91.75 81.80 85.82 87.92
p=70 Length 5.4664 3.9323 3.1360 3.8705 3.0938 2.6040
-1 Coverage 87.87 90.70 91.92 81.60 86.15 87.97
r= Length 10.228 7.1017 5.5984 7.1983 5.5991 4.6635
=113 Coverage 87.88 90.32 91.32 81.72 85.57 87.52
B==% Length 18.552 12.945 10.303 13.053 10.203 8.5784
=15 Coverage 87.30 90.30 91.75 81.80 85.82 87.92
p=1 Length 27.075 19.476 15.532 19.170 15.323 12.897
_ Coverage 87.87 90.62 91.92 81.60 86.02 87.97
p=17 Length 41.478 27.973 22.702 29.190 22.115 18.911
=2 Coverage 87.87 90.32 91.32 81.72 85.57 87.52
k= Length 75.232 52.494 41.782 52.936 41377 34,787

o2 =1 Equal-tail Intervals HPD Intervals
n 10 15 20 10 15 20
=0 Coverage 86.72 90.07 91.55 80.72 85.27 87.12
k= Length 840.11 173.72 66.074 209.73 70.038 35.665
- 03 Coverage 87.20 90.40 91.45 80.95 85.52 86.72
=9 Length 2566.0 369.34 105.71 691.37 145.04 58.835
_ Coverage 87.55 90.10 91.30 80.92 85.07 86.80
#=07 Length 4898.3 610.57 258.24 1156.2 256.62 141.15
=1 Coverage 86.72 90.07 91.55 80.72 85.27 87.12
r= Length 6211.2 1284.3 488.26 1542.7 517.37 263.58
_ Coverage 87.20 90.40 91.45 80.95 85.52 86.72
p=13 Length 1.90e4 2729.1 781.16 5115.6 1071.7 434.72
- 15 Coverage 87.55 90.10 91.30 80.92 85.07 86.80
#=1 Length 2.42¢4 3024.6 1279.1 5735.0 1271.2 699.23
- Coverage 86.72 90.07 91.55 80.72 85.27 87.12
p=17 Length 2.52¢4 5206.3 1979.8 6255.3 2098.5 1069.7
_ Coverage 87.20 90.32 92.07 80.95 85.05 87.20
p=2 Length 7894 69354  3503.4 207e4 20126 1886.6

o? =225 Equal-tail Intervals HPD Intervals
n 10 15 20 10 15 20
=0 Coverage 87.62 89.60 91.00 81.55 84.07 86.77
k= Length 2.94e5 1.24e5 5.12e4 8.98e4 4.29¢4 1.87e4
_ Coverage 87.95 89.80 91.40 81.07 84.55 87.02
p=103 Length 4715 2.05e5 8974 l44eS  690es  3.24ed
_ Coverage 87.45 90.15 91.87 80.27 84.65 87.02
p=107 Length 1396 3.79¢5  1.80eS 4575 1215 6.17ed
_ Coverage 87.22 90.65 91.77 80.85 84.95 87.50
p=1 Length 190e6  7.77e5  3.66e5 5725 2.52¢5 133¢5
_ Coverage 87.45 90.00 91.27 81.37 84.90 86.22
p=1s Length | 36266 14266 529¢5 1126 46leS  1.76e5
_ Coverage 87.22 89.82 91.02 80.60 84.72 86.60
#=15 Length 59le6  2.19¢6  9.17e5 1.87¢6  7.18¢5  3.19S
_ Coverage 86.37 90.02 91.52 80.22 85.17 86.70
n=17 Length 8.41e6 3.52¢6 1.47e6 2.61e6 1.19¢6. 5.05¢e5
_ Coverage 86.97 90.15 91.87 80.57 84.65 87.02
p=2 Length 167¢7 51066 2.42e6 524¢6 1636 83ieS
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Furthermore, all four prior distributions were compared for a larger sample size of 70.

Table 65: Comparison of the 4 prior distributions

n=70,u=20 Equal-tail Interval HPD Interval
Prior 62 = 0.25 o2 =1 02 =2.25 02 =0.25 62 =1 o2 = 2.25
Coverage 94,99 95.37 94.78 95.38 95.85 95.00
Ind. Jeffreys Length 0.3899 13.650 1280.0 0.3668 11.352 808.10
Coverage 95.01 94.70 95.01 94.59 94.24 93.99
Jeffreys Rule

Length 0.3747 12.709 1065.0 0.3530 10.620 682.84
. Coverage 93.95 93.37 93.97 92.10 91.50 92.20

Matching
Length 0.3527 10.843 862.03 0.3279 9.1612 564.27
Coverage 94.42 94.72 94.80 93.67 93.95 94.65

Reference
Length 0.3729 12.717 1274.5 0.3463 10.601 804.05

Based on the above results we can see that the two Jeffreys priors perform the best. The
Reference prior results in slight undercoverage, while the Probability-Matching prior
results in poor coverage. The Independence Jeffreys prior distribution achieves the best
results although the interval lengths are somewhat longer than the Jeffreys rule prior.
HPD intervals result in a reduced interval lengths. The results of the Independence
Jeffreys prior agree with the results obtained by Krishnamoorthy, Mathew and
Ramachandran (2006).
5.6 Example - Two Samples
A similar methodology was repeated for two samples from the described distribution.
The objective is to calculate credibility intervals for the difference between the sample
variances or the ratio between the sample variances. In so doing one is actually testing
the hypothesis that the variances are equal. In this example the following was done:

1. Take the following initial values: n, = 10, v;s% = 6, ¥; = 1 and for the second

sample n, = 30,v,55 =8,y, = 1
2. Using the prior distributions described previously simulate the posterior

distribution of:
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o

__ Var(Xy)
T var(Xp)

b. 8, = Var(X,) — Var(X,)
The results were as follows:

Var(Xl)

Var(Xz)

Prior ] Equal -tail Intervals [ HPD Intervals
Lower Upper Length Lower Upper Length

Ind Jeffreys 0.8834  181.918  181.035  0.1828  74.491 74.308

Jeffreys 0.8313  87.565  86.733  0.1694  42.670  42.500

Rule
Probability- 07599 32773 32013 02277 19478 19250

Matching
Reference 0.8412 113.374 112.553 0.1748 49.976 49.801

Table 66: 95% Credibility Intervals for the Ratio: &, =

Table 67: 95% Credibility Interval for the difference: &, =Var (X, )—Var(X,)

Prior Equal -tail Intervals HPD Intervals
Lower Upper Length Lower Upper Length
Ind Jeffreys -0.5419  568.080  568.622 -9.1488 225357  234.506
Jeffreys -0.8138  256.634  257.448  -6.2640  123.744  130.008
Rule
Probability- -1.0809  82.061 83.142 42851  49.650  53.936

. Matching
Reference  -0.7407 322310  323.051 -7.8606 141330  149.191

The following histograms graphically show the posterior distributions (note: “Jeffreys 1”
refers to the Independence Jeffreys Prior and “Jeffreys 2” refer to the Jeffreys Rule

Prior™):
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using the Jeffreys Priors
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Figure 37: Posterior Distribution of Var(Xl ) /Var (Xz )

Histogram of Var(X1

YVarPQ) - independence Jefireys Prior
T T T

Histogram of Var(X1}Var(Q) - Jeﬂrays Rule Prior
T T




Figure 38: Posterior Distribution of Var(Xl)/Var(XZ) using the Probability-Matching and

Reference Priors

PRI TSN

Histogram of Var(X1)/Var(X2) - Probabilty Maiching Prior
T T T

Histogram of VarfX1yVar(R) - Reference Prior
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Figure 39: Posterior Distribution of Var(Xl ) —Var (Xz) using the Jeffreys Priors

Hislogram of Var(X1) - Vat0Q) - Independence Jefiroys Prior
T T T

“Histogram of Var(X1) - Var(iQ) - Jefreys Rule Prior
T T

T T
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Figure 40: Posterior Distribution of Var(Xl)—Var(Xz) using the Probability-Matching and

Reference Priors

Histogram of Var{X1) - Vai()X2) - Probability Matching Prior
T T T

Histogram-of Vas(X1) - Var{X2) - Refarence Prior
T T T

From the above results we can observe that both for the ratio and difference of two
variances the Independence Jeffreys prior (Jeffreys 1) results in the narrowest credibility
intervals.  The Reference and Probability-Matching priors results in posterior
distributions with a higher degree of variance, which is certainly evident for the
Probability-Matching prior. Once again, this may be due to the fact that the Probability-

Matching prior was developed for use in one-sided credibility intervals.

5.7  Zero Values
For the assessment of the extent of variability among health care costs or among exposure

measurements, confidence intervals or tests concerning the variance 62 of lognormally

distributed data with zero-valued observations becomes necessary. Krishnamoorthy,
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Mathew and Ramachandran (2006) made inference about the lognormal variance, while

Bebu and Mathew (2008) obtained confidence intervals for the ratio of variances in the
case of the bivariate lognormal distribution. However, as far as we know no procedures

are known for computing confidence intervals for 52.

Non-zero observations are assumed to follow a lognormal distribution, but the inclusion
of the possibility of zero values necessitates the addition of a binomial parameter to
model this possibility. The Jeffreys Independence and Jeffreys Rule prior distributions
were once again analysed in this situation. What follows is a brief description of the

setting and then the corresponding results.

Let

1) forx =20
f) = (1-6) ax/;—ﬁx exp (- “————(lm;;#y) forx >0
Then,

E(x)= (1 —8)exp (,u + %02)

E(x?) = (1 —-8)exp(2(u+ 0?))

and

Var(k) = (1-8exp(2(u+ o?)){exp(c?) — (1-6)}

The following prior distributions were taken:

Jeffreys Independence Prior:
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1 1
pr(&)p(,0%) « §72(1—8)"2072

Jeffreys Rule Prior:

1 1
pp(8)pp(,0?) x §72(1 - 8)2073

Using the simulation methodology described in this and previous chapters (with
particular reference to Chapter 4 concerning the modeling of the possibility of zero
values using a Beta distribution) credibility intervals were calculated for a single sample.
Both equal-tailed and highest posterior density (HPD) intervals were calculated. These

were calculated for various combinations of the four parameters, as follows:

Table 68: Parameter Settings for the Simulation Study

Parameters Parameter Values Chosen
o) 0.1;0.2;0.3
U 0;1;2
o? 0.25;1;2.25
n 10, 15, 20, 50

The following results were obtained:
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Table 69: 95% Credibility Intervals for Var(X) with Zero values included using the Independence
Jeffreys Prior — Setting 1

6= 0.1 Equal-tail Interval HPD Interval
n u 02 =025 o'=1 ¢* =225 o¢*=025 o*=1 o® =225
0 Coverage 95.07 95.05 9534 95.43 95.05 95.45
Length 82.874 1.4e16 3.3e35 7.0863 3.3el0 2.4¢24
Coverage 95.41 95.11 94.95 95.66 94.94 94.99
10 1 Length 40334 1.7e14 5.5e53 411.00 3.18¢e9 4.5¢34
Coverage 95.06 94.86 94.93 95.47 94.65 95.29
2 Length 1371.9 2.7¢16 2¢180 303.44 1.9el1 1.6e88
0 Coverage 95.46 94.90 95.20 95.41 94.81 95.45
Length 2.7576 5.79¢4 8.8¢el13 1.8573 3317.7 9.9¢10
Coverage 95.14 95.04 94.68 95.44 95.04 95.16
15 ! Length 20.724 4.53e5 2.8¢l4 13.870 2.47¢4 7.7ell
Coverage 95.00 94.83 95.08 95.27 94.38 94.86
2 Length 155.78 2.90e8 4.4el7 104.12 3.71e6 1.5e13
0 Coverage 95.12 94.53 95.05 95.59 95.12 95.50
Length 1.6494 1465.4 1.64e9 1.2664 330.75 4.26e7
Coverage 95.21 94.92 95.32 95.80 95.16 95.08
20 ! Length 12.069 6765.9 2.1el0 9.2813 1897.6 4.18e8
Coverage 95.30 95.23 95.52 95.80 94.95 95.63
2 Length 90.337 2.02e5 2.5ell 69.396 2.70e4 2.79¢9
Coverage 94.99 95.00 95.33 95.37 94.92 95.45
0 Length 0.6237 27.362 6647.4 0.5691 20.024 2964.5
Coverage 95.28 95.07 94.95 95.47 95.32 9488
50 1 Length 4.6485 203.27 4.98e4 4.2399 148.77 221ed
Coverage 95.03 95.05 94.51 95.49 94.85 94.71
2 Length 34.284 1460.6 4.16e5 31.267 1070.3 1.82e5
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Table 70: 95% Credibility Intervals for Var(X) with Zero values included using the Independence
Jeffreys Prior — Setting 2

6d=10.2 Equal-tail Interval HPD Interval
n u ag? = 0.25 =1 ¢* =225 o%=0.25 ot =1 g = 2.25
0 Coverage 95.12 95.07 95.06 95.04 94.75 95.32
Length 9.9el15 6.4e45 le105 6.83e5 6.9€26 6.8¢64
Coverage 95.46 95.05 95.41 95.05 94.65 95.36
10 1 Length 3.3¢7 lel34 6e137 268.72 5.2e65 1.2¢60
Coverage 95.60 95.29 94.77 94.81 95.06 95.36
2 Length le182 9.9e52 1e291 1.3¢49 6.1e30 6e129
0 Coverage 94.89 9491 95.16 95.07 94.73 95.13
Length 4.0079 3.27¢6 6.6e23 2.3347 4.08¢4 3.0e17
Coverage 95.10 95.19 94.86 95.21 95.29 95.19
15 ! Length 32.146 1.53e7 8.6e25 17.190 1.57e5 1.1€20
Coverage 95.39 95.08 95.13 95.29 94.94 95.10
2 Length 238.12 1.3ell 8.5e26 129.84 2.17¢8 1.0e20
0 Coverage 95.57 94.91 95.10 95.67 94.64 95.35
Length 1.9881 2729.8 1.5¢14 1.4438 469.51 1.6ell
Coverage 95.24 94.91 95.13 94.92 95.17 94.86
20 1 Length 14.248 3.87e4 6.4¢13 10.462 5093.6 1.4ell
Coverage 94.80 94.67 95.05 95.00 94.79 95.10
2 Length 104.79 3.03e5 1.3e18 77.277 3.61¢4 1.7¢14
Coverage 95.22 94.74 95.12 95.50 9509  95.08
0 Length 0.6706 30.764 1.15e4 0.6082 21.597 4463.1
Coverage 95.17 94.97 95.06 95.47 95.24 95.28
50 ! Length 49141 227.52 8.18e4 4.4581 159.78 3.22¢4
Coverage 95.15 95.39 95.32 95.25 95.25 95.45
2 Length 36.603 1640.7 6.32e5 33.195 1152.3 2.46e5




Table 71: 95% Credibility Intervals for Var(X) with Zero values included using the Independence
Jeffreys Prior — Setting 3

6= 0.3 Equal-tail Interval HPD Interval
n U gt = 0.25 g2 =1 o? =225 o =025 ot =1 ¢t = 2.25
0 Coverage 95.30 94.94 94.73 95.05 94.67 95.04
Length 6.7¢14 Inf lel32 2.64e4 1.6e223 1.4e63
Coverage 95.24 94.70 94 .91 9486 9522 95.31
15 1 Length 4.01e4 2el91 1.0e75 54.324 1.1e47 4.6e45
Coverage 95.24 95.02 95.09 94.49 95.37 94.96
2 Length 3.88e6 3.3e25 3.4e39 926.96 2.8el6 1.2e29
0 Coverage 95.22 95.04 94.87 94.56 95.08 95.19
Length 2.4084 6.41e4 2.7¢21 1.6433 3010.5 5.4e14
Coverage 95.52 95.11 94.95 94.73 95.09 95.22
20 ! Length 17.271 1.15¢7 1.5¢19 11.875 1.05e5 1.4e14
Coverage 95.39 95.18 94.79 95.14 95.13 95.11
2 Length 133.20 2.21e7 1.8e27 89.537 3.27e5 1.2e19
Coverage 95.36 95.24 95.09 95.50 95.19 95.04
0 Length 0.7194 36.287 3.76e4 0.6443 24.004 1.03e4
Coverage 95.38 9522 94.88 95.19 94.99 95.12
50 1 Length 5.2838 269.33 2.8%e5 4.7321 177.32 7.74e4
Coverage 95.22 94.69 95.03 95.31 94.88 95.13
2 Length 39.303 2029.4 2.39¢6 35.201 1337.2 6.36e5
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Table 72: 95% Credibility Intervals for Var(X) with Zero values included using the Jeffreys Rule
Prior — Setting 1

6§=10.1 Equal-tail Interval HPD Interval
n u 02=025 ¢*=1 o0*=225 ¢2=1025 ‘=1 o =225
0 Coverage 94.35 93.53 93.50 92.20 91.60 91.20
Length 10.157 3.6e10 5.1e39 3.1912 7.95¢7 7.5e27
Coverage 94.18 93.93 93.84 92.47 91.98 91.75
10 1 Length 44.682 2.5¢el14 8.2e22 21.453 4.22e9 1.2el7
Coverage 93.97 93.98 93.47 9243 91.97 90.84
2 Length 296.05 4.12e10 5.1e29 152.70 6.78e7 3.8e22
0 Coverage 94.26 94.43 94.26 93.46 92.72 92.63
Length 2.1081 32465 1.2e17 1.4935 572.16 4.7¢13
Coverage 94.62 94.27 94.46 93.46 92.31 93.04
15 ! Length 15.047 3.724 43el4 10.742 4778.1 9.7¢10
Coverage 94.50 94.23 94.11 93.39 92.44 92.38
2 Length 113.04 2.52¢5 6.3el4 80.677 3.78¢4 1.7e12
o Coverage 94.72 94.52 94.32 93.82 93.00 92.92
Length 1.3685 358.68 1.57¢8 1.0811 128.53 6.89¢6
Coverage 94.93 94.65 94.17 93.81 92.92 92.84
20 1 Length 10.131 2965.3 1.56e8 7.9939 998.52 9.69¢6
Coverage 94.50 94.38 94.70 93.45 93.13 93.10
2 Length 75.407 1.95¢4 9.28¢9 59.404 7074.4 3.74¢8
Coverage 95.28 94.93 94.74 94.92 94.20 93.77
0 Length 0.5968 24,152 4975.8 0.5461 17.910 2335.9
Coverage 94.76 94.42 94.65 94.36 93.65 93.68
50 1 Length 4.4163 182.89 4.98e4 4.0421 135.16 1.87¢4
Coverage 95.10 94.83 94.70 94.69 93.99 93.75
2 Length 32.456 1337.3 2.67e5 29.715 990.61 1.25e5
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Table 73: 95% Credibility Intervals for Var (X) with Zero values included using the Jeffreys Rule
Prior - Sctting 2

6=10.2 Equal-tail Interval HPD Interval
n u a’ = 0.25 62 =1 o2 =225 o=0.25 gt=1 o =225
0 Coverage 93.48 93.11 93.40 91.16 90.76 91.28
Length 50.229 1.5¢18 1.1e43 4.6232 1.5¢11 4.4e28
Coverage 93.67 93.69 93.42 91.09 91.53 9147
10 1 Length 7.48¢e4 3.8e21 3.7e46 33.528 4.6el1 2.2e29
Coverage 94.02 93.47 93.50 91.85 91.67 91.52
2 Length 7.40e4 1.4e25 4.1e41 367.61 5.2el5 3.4e28
0 Coverage 94.46 93.94 93.97 92.83 92.42 91.98
Length 2.5312 2.10e4 6.0el15 1.7007 1787.8 3.8e12
Coverage 93.96 93.83 94.09 92.48 92.20 92.05
15 1 Length 19.235 2.7¢10 1.7e17 12.524 4.02¢7 2.2el3
r 5 Coverage 94.37 94.25 94.11 92.45 92.33 92.02
Length 133.85 2.52¢7 1.7€20 90.152 3.46e5 2.1el4
0 Coverage 94.72 94.53 94.54 93.00 92.88 92.98
Length 1.5595 1328.8 1.0ell 1.1967 277.11 8.13¢8
Coverage 94.24 94.22 94.34 93.27 92.86 92.99
20 1 Length 11.415 8321.6 1.9¢ell 8.7722 1949.0 2.3%9¢9
Coverage 94.15 94.24 94.09 92.76 9297 9247
2 Length 83.826 8.69¢4 7.4ell 64.478 1.61e4 6.24e9
Coverage 95.05 94.88 95.12 94.63 93.95 94.06
0 Length 0.6314 26.433 8758.9 0.5754 18.887 3418.2
Coverage 94.57 95.00 94.51 94.40 93.93 93.59
50 ! Length 4.7305 196.88 2.50e5 4.3058 140.68 1.25e5
Coverage 94.65 94.90 94.61 94.07 93.93 93.68
2 Length 34.668 1428.0 4.46e5 31.576 1021.5 1.84¢5
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Table 74: 95% Credibility Intervals for Var(X) with Zero values included using the Jeffreys Rule
Prior — Setting 3

d=10.3 Equal-tail Interval HPD Interval
n " a2 = 0.25 a2 =1 0? =225 o% =0.25 ot =1 ot =225
Coverage 93.82 93.84 93.84 91.72 92.37 92.28
0 Length 3.7986 6.2¢e12 3.8¢27 2.0463 1.75¢9 3.4e20
Coverage 93.99 93.37 93.68 91.90 91.94 91.87
15 1 Length 49.165 8.90e8 1.9¢23 15.620 1.57¢6 1.1e16
Coverage 94.11 93.93 93.47 92.24 9231 91.66
2 Length 184.47 2.6e53 8.4e26 108.84 6.2¢34 1.0e20
Coverage 94.15 94.29 94.12 92.94 92.78 92.69
0 Length 1.7678 5833.8 2.7¢13 1.3041 688.14 4.1e10
Coverage 94.43 94.80 94.10 92.85 93.26 92.67
20 1 Length 13.168 1.23¢5 2.6e13 9.6657 4652.3 3.5e10
Coverage 94.52 93.86 94.34 92.83 92.83 92.74
2 Length 100.49 5.00e6 3.6el7 72.478 1.80e5 1.2e13
Coverage 94.53 94.67 94.76 94.07 93.88 94.03
0 Length 0.6673 30.933 1.97e4 0.6015 20.863 6224.7
Coverage 94.18 94.79 94.60 93.40 94.18 93.63
50 ! Length 4.9536 229.04 1.54e5 4.4631 154.89 5.03e4
. Coverage 94.75 94.68 94.84 94.49 94.35 94.01
2 Length 36.775 1738.8 9.99¢5 33.132 1171.6 3.28e5

From the above results it is clear that with both priors the HPD intervals are a
considerable improvement, particularly in terms of interval length, on the standard equal-
tailed intervals. Thus, the flexibility of a Bayesian approach to handling these situations

is evident.

The results do not clearly define which prior distribution is better suited. In small sample
size situations with small o2 values the Independence Jeffreys prior, while offering better
coverage, does so at the expense of wide interval widths. As the values of 2 increases
this tendency reverses with regards to the interval width, with the Independence Jeffreys
prior still offering the better coverage. As the proportion of zero-valued observations

increases the width of the credibility intervals also increase. Thus, with respect to
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coverage, the Independence Jeffreys prior seems better suited to the situation and with

regards to interval width the prominence is evident, except in small sample size settings.
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Appendix to Chapter 5

Derivation of the Probability-Matching Prior Distribution for the Variance of a
Lognormal Distribution

Define:

t(0) = exp(2u + o*){exp(c?) — 13

Now,
%:) = 2exp(2p + o*){exp(c?) — 1}

a;f,? = exp(2u + o){exp(0?) — 1} + exp(2u + o*)exp(a?)

o = (52 T2 expu+ otemnion -1 22

Using the results for the Fisher Information Matrix obtained in the appendix to Chapter 3,
I -1 _ 1 2 1 0
V(OF () = Vi(8)o?[; ]

202(2exp(c?) — 1)
exp(o?) -1

= g?expu + o*){exp(c?) — 1} [2

V:(0)F~1(8)V, (6)

20%{2exp(c?) — 1)?
{exp(0?) — 1}°

=ﬁwmw+2ﬁxwmﬁrﬂFP+

Wi O)F-1(0)V; ()"

c%{2exp(c?) — 1}2]1/2
2{exp(0?) — 1}*

= gexpu+ o*){exp(c?) —1} 2 [1 +




V.(0)F1(8) _ 20

o?{2exp(c?) — 1}

) _ Y, 2 2y _ 1121 [ exp(c?) — 1
V.(8)F-1(6)V, (6 o?{2exp(c?) — 1}?] 2 p
THOFR@R @} 2f1e IR

Therefore,
0(6) = ad _ LD - 1)
21 + o2{2exp(a?) — 1}? /2 exp(a?) — 1
1+ eneh o
_ c3{2exp(a?) — 1} 1
2{exp(0?) — 112 + o?{2exp(o?) — 1}2] /2 exp(0?) =1
[ 2{exp(c?) — 1}?
_ o3{2exp(c?) — 1}W2
{2{exp(0?) — 1) + 02{2exp(a?) — 1)2}'/2
Therefore,
1
_s [2(exp(a?) — 1)? /2
pm(e) x g3 {{Zexp(az) — 1}2 + 0-2}

Derivation of the Reference Prior Distribution for the Variance of a Lognormal
Distribution

Define:
t(0) = expu + o?){exp(c?) — 1}

= In(t(8)) = (Qu+ 02) + Infexp(a?) — 1}

+ b= 5 In(t(®) ~ 307 ~ 3 Infexp(6?) — 1}

ou 1
at(@)  2t(8)

op 1 1 exp(d®) _ 1 . exp(0?) \ _ 1(2exp(c?) -1
o2 2 Eexp(az) -1 _§< + exp(c?) —1) _E( exp(o?) — 1>
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du du 5
o(u, o?) 9t(8) do? B | 1 _1<M>]

A= W =| 552 802 2t(8) 2\ exp(c?) -1
at@) so2l L0 !
—1 0
2t(0 11 0
F(t(6),0%) = AF(oh)A=| 4 2extz§(c22) ~1 ?[0 2_12 f
_E< exp(az)—1> ! 7
i 1
1 2600) 0 1 _E(Zexp(orz) - 1)
= 527| 1/2exp(e®) -1\ 1 |[2t(®) 2\ exp(s?) -1
_§< exp(c?) -1 > 202 0 !
1 1/ 2exp(c?) -1
1 4t2(8) _Z< exp(az)—1>
T o2 1 2exp(c?) —1 1/ 2exp(c?) -1 2 1
_Z( exp(az)—1> _Z< exp(az)—1> 207

_ 1 1 [1{2exp(c?)—1\* 1
..pR(t(g),O’z) (0@ @;\/2< ) + 252

exp(o?) —1
(o) 1 1 [1/2exp(c®) -1\ 1
ou Zt(e)@ ;\/Z< exp(o?)—1 > + 20°

exp(a?) — 1 o2

2
« pr(t(0),0%) %\/%(Zexp(az) - 1) . 21
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CHAPTER 6
Bivariate Lognormal Distribution

Introduction

As mentioned before, lognormally distributed data presents itself in a number of
scientific fields. According to Limpert et al. (2001), the distribution may be used to
approximate right skewed data that arises in a wide variety of scientific settings.
Particularly in the area of health costs the log distribution has been extensively used by
other authors and numerous statistical methods have been developed. In previous
chapters the application to health costs has been firmly studied. However, in each case
the setting was that of either a single population mean or the ratio of two means from
independent samples. This chapter proposes a slightly different setting, that of dependent
samples from two lognormal distributions. However, in this chapter the possibility of

zero values 1s not considered.

As mentioned by Bebu and Mathew (2008) the bivariate (and multivariate) lognormal
distribution is also particularly suited for the study of the size distribution of aerosol
particles and airborne fibres. The distribution of asbestos fibre sizes generated by
grinding bulk material or mechanically releasing particles into the air often results in a
two-dimensional (bivariate) lognormal distribution. For more details see Schneider and

Holst (1983) and Ramachandran, Werner and Vincent (1996).
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Hawkins (2002) on the other hand used the bivariate lognormal distribution on a

quantitative assay problem dealing with 56 assay pairs for cyclosporin from blood
samples of organ transplant recipients obtained by a standard method and an alternative

radio-immunoassay method.

In this chapter the Bayesian model that has been developed and discussed in previous
chapters will be applied to the bivariate lognormal distribution. The purpose of this study
is therefore to develop Bayesian procedures for computing confidence (credibility)
intervals for the ratio of the means of the bivariate lognormal distribution. The same

procedures can also be used to obtain credibility intervals for the ratio of variances.

The choice of prior distributions is the factor of interest. Specifically the choice of
different prior distributions in different parameters setting and the appropriateness of

each is of primary importance.

The credibility intervals will be compared with the generalized confidence intervals
approach (GCI) used by Bebu and Mathew (2008) and the “method of variance estimates
recovery” (MOVER) proposed by Zou et al (2009a). Berger and Sun (2006, 2008) also
proved that the GCI approach is a Bayesian procedure if the right-Haar prior is used. The
MOVER was designed in order to apply to a general scenario and also to provide
adequate coverage rates in estimation procedures relating to lognormally distributed data.
The advantage of the MOVER method is that it can easily be applied to many different

settings with little more than a basic knowledge of introductory statistical texts.
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In the next section we begin with a formulation of the model and a specification of all

parameters and distributions of interest. In further sections we compare the performance
of the method for different prior distributions by conducting a simulation study to assess
some quantities of the proposed credibility intervals in pre-defined finite sample sizes

(the same as those used by Bebu and Mathew (2008)).

6.1 Notation and Description of the Setting
Let [X; X;]" follow a bivariate lognormal  distribution so  that

Y7 Yz)' = [InX; [nX;] follows a bivariate normal distribution with mean parameters

2
. ) o 0,0 ) )
= ,U>]" and covariate matrix X = 1 0102 , where is the correlation
u Hy) U2 2 p
pO102 )

between X; and X,.

Thus

1
E(Y,) = exp (ui + EUL'Z): i=1,2

Bayesian confidence intervals for the parameters
~ 1, )
0= (u— p) + 5(01 - 03)
will be constructed in order to compare the ratio of the lognormal means. Note that 9 is

the log ratio of the population means.

For the ratio of the variances Bayesian confidence intervals for

5= Var(ry) _ exp(Zg){

Var(Y,)

exp(of) — 1
o en 1)
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will be obtained.

Let [Xyx, Xox]', k =1,2,...,n denote a random sample from the bivariate lognormal

distribution and let Y, = [V, Yor ]l = [InXq,, InX5,])'.  The sufficient statistics (for

S11 V511522

n=>3)are Y=1[Y,V] and S= Y?_ (Y, -YV)(Y,-Y) =
) Ir [1 2] k—l( k )( k ) rm 522

where
= 1
Yi = ;Z;(lzl Yika
sij = p=1 (Y — Y1) (Vi — ;) and
;= S12
V811V S22
Also

RAL N( 12)
1,12 ”in
S ~Wo(Z,n—1)

the bivariate Wishart distribution with scale matrix X and degrees of freedom n — 1.

Since S ~ W, (Z,n — 1) we shall use the following properties of the Wishart distribution
(see Berger and Sun (2006 & 2008) and Bebu and Mathew (2008)) to construct the
generalized pivot statistics:

S11
T _ ~X2
1 -1
ol n

(6.1)
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S22(1 — 7’2)

T, = 21D ~ Xn-2
(6.2)
/2 r\/s_ po:
Ty = [ 2(1_ 2)] [ Z 012]=z~1v(0,1)
(6.3)

Here Z is a standard normal random variable and y2_; and x2_, are chi-squared random

variables with the indicated degrees of freedom.

From (6.1) to (6.3) it follows that

S11 = g2
X%*—1 !
(6.4)
2
1 1 z* T
of" = §5,(1 M= ~ < )
¢ o { PZ Wi
(6.5)
p= (V)
(6.6)
where
- Y+
oY) =
147
and
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. -z N Vxit, or

Y* =
N N R

(6.7)
The asterisk is used to represent a random realized observation from the implied
distribution. Equations (6.4) to (6.6) are similar to R,,, Ry, and Ry; defined on page
2687 of Bebu and Mathew (2008) except that p is simulated in (6.4) to (6.6), while Bebu

and Mathew simulated the covariance a;,.

According to Berger and Sun (2006, 2008) there is no reference in the literature to the
fact that the fiducial distributions of p (equations (6.6) and (6.7)) and derived by Fisher
(1930) are exact frequentist matching (proved in Theorem 5 of their paper). They also
mentioned that standard statistical software utilises various approximations to arrive at
frequentist confidence sets for p, missing the fact that a simple exact confidence set

exists.

The question is whether the fiducial distributions ((6.6) and (6.7)) can be derived in a

Bayesian fashion. Berger and Sun (2006, 2008) proved that the answer is yes.
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6.2 Prior and Posterior Distributions

Berger and Sun (2006 & 2008) considered the following important class of prior densities
(a subclass of the generalized Wishart distribution of Brown et al (1994)):

1

03030 (1— p)> s

Tap (U1, H2, 01,02, p) X

(6.8)
They also mentioned the use of certain prior densities depending on what the parameter

of interest is.

Let us examine a few special cases of this general prior distribution.

If we take a = 1 and b = 0 then we have the following prior distribution

1
afof (1~ p?)?

Mo =7T1(#1,#2,U1'02:P) x

(6.9)
which is Jeffreys’ dependence prior.
Then if a = 1 and b = 1 then prior distribution is
B 1
Ty = Tro (M1, U2, 01,02, p) & 2o, (1— p2)3/2
(6.10)

The independence Jeffreys’ prior
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1
0y, 0, (1— P2)3/2

21 =7le(#1'/12'01’02:/3) x
(6.11)
follows from using a constant prior for the means and then the Jeffreys’ prior for the

covariance matrix with means given.

For the general prior distribution (6.8) Berger and Sun (2006, 2008) proved that the

constructive posterior distribution of (6, 62, p), given the data, can be expressed as

S11 2%
=0
X3a
(6.12)
2
1 1 z* T
02" = s5,(1— 1?) + ( - >
o X2y XEa\JyZr, Vi-r?
(6.13)
p* = o(¥r)
(6.14)
where, as before,
- Y*
o(7") = =
14Y*2
and
v = —Z + Xﬁib 4
\/X%*—a \/sztia \/1 - r?
(6.15)
Furthermore
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o= O-]?* po’l*az*
poy ay” a3
(6.16)
Once Z* is simulated we know that given the data
v.1 1
e (Ey
(6.17)

As mentioned, the asterisk represents a random draw from the implied distribution. Thus
p* will represent a random draw from its posterior distribution, Z* represents a draw from
the standard normal distribution and y2 , and y2*, will be independently drawn random

variables from the chi-squared distribution with the indicated degrees of freedom.

Itis clear that if a = 1 and b = 2 the posterior distributions defined in equations (6.12) to
(6.13) will be the same as the fiducial distributions given in equations (6.4) to (6.7) and

on page 2688 of Bebu and Mathew (2008).

The resulting priorifa =1and b =2 is

My = M1zl Ha) 01,02, p) & m

(6.18)
the right-Haar prior.

From equation (6.17) it follows that
~ 1 1
12", data ~ N{(5: = %) + 5 (0" = 0302 (oF" + oF" = 2p0,°0,")}

(6.19)
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where, as before

~ 1
0= (U — 1) + 5(012_ 0%)

In our simulation experiment of 8, using (6.19), the following nine priors will be
compared with respect to coverage probabilities and interval lengths:
My =My % o7 toy (1 - Pz)_g/2
Mo X 07°0;°(1— p*)7
my  of2(1— p?)7
M1 = Mpo % 07207 (1— p?)7?
Tus % oftoyt(1— p?)7 V2
mrp % 07 'yt (1— pP)7t

Ty X oyloy?t

Tre % 14 p2o7loyi(1— p?)7t
firy % o7to5 (11— p?)TU(2 — p?)7 V2
According to Berger and Sun the independence Jeffreys prior, mp; = 7y, is virtually
never optimal, while the dependence Jeffreys prior, my, is very often optimal in
contradiction to the common perception that independence Jeffreys prior is better than the
Jeffreys prior. my, is useful for certain parameters. The right-Haar prior, m,, = 7y, is
exact Probability-Matching for at least seven parameters including p and |Z|. Berger and
Sun (2006 & 2008) recommend mgp as a “general purpose” objective prior. The prior

mrs Will be suggested for use with inferences concerning 0,,. The motivation that is

often given for g is that it is “standard” to use ;! as the prior for the standard deviation

while —1 < p <1 is on a bounded set and so one can use a constant prior in p. A




related prior is 7y whose power of (1 — p?) is between mg and mgp. For further

details see Berger and Sun (2006, 2008).

6.3

Marginal Posterior Distributions

For the class of prior densities 7, (44, U2, 01, 02, p) independent samples can easily be

obtained from the marginal posterior ® (0, 05, p|data) (see equations (6.12) — (6.15)).

In the case of priors mgp, Mgy, gy, Ms and Ty simulations can also easily be obtained

by the following acceptance-rejection algorithm (Berger and Sun (2006, 2008)):

1.

Simulation step: Generate (03,05, p) from the independence Jeffreys posterior

n;; (04, 05, p|data) and independently sample U~Uniform(0,1).

Rejection step: Suppose M = sup(q, q,,0) % < oo, If U<

n (oy, az,p)/[MTr,](al,az,p)], report (0y,0,,p) otherwise go back to the

simulation step.

In Table 76 (Table 5 in Berger and Sun) it is shown that the rejection algorithm is quite

efficient for sampling these posteriors.
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T
Table 75: Ratio — upper bound M, rejection step and acceptance probability for p=0.8,0.95 and
Ty

0.99 for 7Tpp s Ty s g, s g and Ty

Prior Ratio Bound M Rejection Acceptance Probability

Step

p=1038 p=095 p=099

Trp T 1 i=dio 06000 03122 0.1410

Tpo T 1 usyT=p 07684 04307  0.1985

fopg — 1 _ficz 07276 04215 01975
2- p? V2 NI

g (1- pz)% 1 ws(-p: 0.2160 0.0304 0.0028

s 1-p? 1 us1l-p*  (.3600 0.0975 0.0199

6.4 Method of Variance Estimates Recovery (MOVER)

Instead of adapting a simulation approach for making inferences on 8 = (u; — py) +
%(012 — 02), Zou, Taliban and Huo (2009a) proposed procedures involving the so-called
“method of variance estimates recovery” (MOVER). The MOVER method was designed
in order to apply to a general scenario and also to provide adequate coverage rates in
estimation procedures relating to lognormally distributed data. As mentioned, the
advantage of the MOVER is therefore that it is easily applicable to many different

settings with little more than a basic knowledge of introductory statistical texts.
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The (1 — a)100% confidence limits for u; + -;-aiz, [ = 1,2, using the MOVER as given

by Zou et al (2009a) on page 3758 are:

A2 22 (~ 2
L. = ll + g; ZZ g; }0; 1 Vi
= —— f —_ —
L 2 2 / nl 2 Xf‘“/z:vl
2
U= gt Zu |z, LN _Y »
= g, Ll L -
i T f2n; | 2 Xé/Z'Vl

Underlying these limits is the well known result that the (1 — a)100% confidence

, 2 v;s? v;s? 2 : a

interval for g/ is given by t/ 5 : /2 where ya, . is the /,th
Xl—a/z,vi Xa/zﬂ’i 2vi

percentile from the chi-squared distribution with v degrees of freedom where v; = n — 1.

Za /, is the upper a/2 th quantile of the standard normal distribution and f; = X; and

~2 1
O'. = —S...
i v o

The (1 — a)100% confidence interval for @ is therefore given by:

L= 91 - 52 - \/(91 - Zl)z + (Uz - 92)2 —2r (gl - Zl)(UZ - 92)

U=8,- 8+ (8- L) + (Ui - 8 —2r (6, - L)(0: - 6,)

where
~ ) 1, ]
6= fi+ 567 (i=12)
and
;= S12
V511V S22
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6.5 Comparison of Variances

The Bayesian simulation procedure described above can easily be used to obtain
credibility intervals for any scalar function of g and . For example, to compare the
variances of the bivariate lognormal distribution we can construct credibility intervals for

the ratio of the variances, say §, given by

< Var(t)) ~ (exp(cd) — 1
6= Var(Y,) exp(26) {exp(ozz) — 1}

(see Bebu and Mathew (2008)) for any of the nine prior distributions defined in Section

6.2.

As far as we know, it is not possible to use the MOVER to construct a confidence interval

for §.

6.6 Results from Simulation Studies

Based on the methodology previously described a simulation study was performed using
the same designs as those proposed by Bebu and Mathew (2008). The results from
individual parameter setting are given in Tables 80 to 89. For the sake of brevity these
have been presented in the appendix to this chapter. Aggregated results are given below
(aggregation was performed excluding value of “Inf” for average interval length for the
variance). The simulation study was performed to evaluate credibility intervals of both 8

and §. As mentioned previously, the MOVER could not be presented for the latter case,
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to the best of our knowledge. Thus a comparison of the MOVER will be made only for

the ratio of means and not for the ratio of variances.

Table 76: Results by Sample Size

‘] [
Method n Cover Length Cover Length Cover Length Cover (HPD) Length (HPD)
(HPD) (HPD)

MOVER 5 94.0678 26.9783
My, 94.2578 55.4800 98.1156  41.1144 93,5489 1.25E+159 91.7333 3.33E4+276
Ty 93.0000 25.2844 95.5978 20.2322  92.0822 1.11E+214 92.8200 1.11E+150
Typ 94.7411 32.5488 97.3300 27.2381 939511 1.50E+135 96.3733 1.29E+84
Tro 93.7956 26.9144 96.1956  22.0011 93.0289 1.11E+277 94.6044 3.33E+178
My 95.7544 26.5189 97.3089 22.2567 95.6589 1.25E+71 95.7978 3.33E+209
Trp 95.3578 33.1967 97.8133 26,7178  95.0000 1.11E+252 944178 3.33E+158
g 95.9333 24.6289 96.7889 21.0100 96.1856 2.22E+231 96.9478 6.67E+155
Mo 95.3678 34,5844 98.1344 27.7144  94.8211 2.22E+291 94.0944 1.11E+192
frg 95.3511 34.5833  98.0511 27.6844 94,8844 1.11E+298 94.0978 3.33E+182

MOVER 10 94.6078 10.6871
Ty, 94.8511 12.1234  97.1533 10.8180 945156 3.33E+70 93.1311 6.67E+54
Mo 94.4533 9.8200 95.7022 8.8960 94.1178 2.22E+38 94.4156 1.11E+3]
Ty, 94,7467 10.5210  96.0222 9.5938 94.4511 2.22E+64 95.6844 1.1 1E+49
o 94,5911 10.0373  95.8822 9.1216 94.3400  4.44E+44 94,8844 1.11E+34
Mys 95.2367 9.9548 96.3678 9.0937 952633 2.22E+45 95.3856 5.56E+34
Tirp 94,9733 10.7874  96.7533 9.7636  94.9533 4.44E+56 94.5178 1.11E+44
g 95.2800 9.3731 95.6433 8.6132 955100 2.22E+51 96.1800 8.89E+39
Mre 95.1467 10.9351  96.9400 9.8853  95.0200 6.67E+47 94.2600 4.44E+36
TR 95.0800 10.9809  96.9956 9.9244 949689 1.11E+60 94.2022 2.22E+47

MOVER 20  95.4089 6.0731
Myq 95.0000 6.0153  96.2000 57101 94.8444 1.11E+16 93.9444 1.11E+13
1o 94.6311 5.5602 95.5222 52979 945956 8.89E+15 94.5911 3.33E+13
Ty 95.0422 5.7659 95.6556 54981 94.8800 1.11E+21 95.5933 3.33E+17
g 94,8267 5.6294 95.5511 5.3669 94.8244 1.11E+17 95.0222 3.33E+14
Mys 94.9844 5.5978 95.5600 5.3469  95.0044 2.22E+19 95.1378 7.78E+15
Trp 95.2911 5.7830 96.1667 5.5156 95.1333 5.56E+14 94,7689 1.11E+12
g 94.9122 5.4377  95.2022 5.1983  95.0322 1.00E+15 95.5322 1.11E+12
Mro 95.0689 5.8067 96.1689 5.5379  95.0333 1.11E+18 94.4267 5.56E+14
fpg 95.1511 5.8232 96.0289 5.5526 95.0444 3.33E+17 94.4600 2.22E+14

The results indicate that in the small sample

size situation the MOVER performs well

when comparing the ratio of the means. Efficiency in terms of average interval length

does improve as the sample size increases. The same trend is evident for the coverage

probability as well. In the small sample situation it is surprising that the Jeffreys prior

achieves the desired coverage, but with an increased average interval length. The

independence Jeffreys prior, on the other hand, results in a greater efficiency, but at a

somewhat worse level of coverage in the confidence interval.

As seen in previous

chapters, the advantage of the Bayesian framework is the construction of HPD intervals.
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For all choices of prior distributions both the coverage and the average interval length are
improved with the HPD intervals. In most cases the tendency is towards overcoverage.
It 1s with regards to the HPD intervals that the Bayesian framework is proven to have
acceptable and increased performance. Adequate coverage is achieved with the largest

reduction in efficiency.

With regards to coverage alone some choices of prior distributions performed admirably,
given that the intention was not specifically for application to the ratio of means from two
populations, but more towards the variance. It is clear that ngp, g, , gy, Ts and Ty
all achieve better coverage than the Independence Jeffreys prior and in particular, g
achieves this with an average interval length that is better than both the MOVER and all

Jeffreys priors.

As the sample size increases the distinctions between the different prior distributions
begins to decrease. We see better coverage probabilities and an improvement in the
average interval length. The Jeffreys rule prior achieves the most accurate coverage, yet
the interval length is only a slight improvement on the MOVER. The MOVER itself in
the larger samples seems to be the most inefficient of methods. The best performing
prior distributions are the independence Jeffreys prior and again the mg prior. As with
the small sample scenario HPD intervals improve both the coverage and the interval

length, which further illustrates the usefulness of the Bayesian approach to the situation.
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When considering the situation of the ratio of variances it is no longer possible to
compare the results to the MOVER. So the usefulness of the Bayesian framework is even
further enhanced not only in performance, but in the applicability to a wider variety of

settings.

With regards to the small sample setting we see that both Jeffreys priors result in
substantial undercoverage and average interval width. The performance does improve as
the sample size increases, though the tendency to undercover still remains, even when
considering the HPD intervals, which are an improvement on equal-tailed intervals. The
priors s and mys seem to be the most practical choices, with the latter giving better
coverage and the former resulting in a better average interval width. The interval lengths

for the ratio of variances are large, but nevertheless the choice of these two as the natural

choice of prior distribution for the ratio of variances is evident.




Table 77: Results by Correlation

4 4
Method p Cover Length Cover Length Cover Length Cover (HPD) Length (HPD)
(HPD) (HPD)

MOVER -0.9 97.754 16.748
Ty, 94.836 23.267  96.958 18.073  94.609 2.22E+148 92.820 1.11E+93
1o 94.536 13309  95.540 11.352 94264  3.33E+74 94.171 5.56E+50
Ty, 94.910 14265  96.008 12379 94.880 1.03E+17 95.516 1.25E+77
Tro 94.736 13.589  95.713 11.649  94.633 1.11E+84 94.929 1.11E+53
Tys 95.129 11935  95.680 10.567  95.628 1.00E+67 96.000 2.22E+45
Tpp 95.169 14.650  96.444 12446 95371 1.00E+93 94.804 2.22E+61
g 94.871 10.931 94,789 9.816  95.772 1.11E+76 96.801 7.78E+38
My 95.273 14.947  96.689 12.670  95.282  2.22E+83 94.629 3.33E+52
M ra 95.364 15.022  96.733 12720 95307  4.44E+85 94.469 1.00E+55

MOVER 0.1 94.539 14.744
Ty 94.784 28.826  97.333 23352 94.164  3.7SE+70 93.151 3.33E+276
Mg 93.607 15.810  95.767 13.622  92.907 1.11E+214 93.578 1.11E+150
Ty 94.424 21120 96.618 18.529  93.616 7.50E+i30 96.236 1.25E+72
o 94.000 17.045  96.002 14965 93342 1.11E+277 94.896 3.33E+178
Tus 94.914 19.590  97.152 17.051 94370  2.50E+45 94.081 3.33E+209
Trp 94.940 21984  97.396 18.770 94420 1.11E+252 93.907 3.33E+158
s 94.912 18.780  97.037 16463  94.608 2.22E+231 94.326 6.67E+155
o 94.824 23.002  97.398 19.524 94216 2.22E+29] 93.584 1.11E+192
e 94.907 22915  97.324 19.445 94349 1.11E+298 93.720 3.33E+182

MOVER 0.9 91.791 12.246
o 94.489 21.525  97.178 16218 94.136 1.11E+159 92.838 7.78E+99
Ty 93.942 11.545 95.516 9452  93.624 1.11E+98 94.078 6.67E+63
Tz 95.196 13.451 96.382 11422 94787 1.00E+135 95.900 1.00E+84
Mo 94.478 11.947 95913 9.875 94.218  7.78E+91 94.687 1.I1E+63
Tys 95.932 10.546  96.404 9.079  95.929 L11E+71 96.240 4.44E+44
Tgp 95.513 13.133  96.893 10.781 95.296  4.44E+88 94.993 4.44E+57
g 96.342 9.729  95.809 8.543  96.348 L.11E+61 97.533 7.78E+39
Mo 95.486 13378  97.157 10.944  95.377 1.11E+90 94.568 3.33E+59
fipg 95.311 13.451 97.018 10997 95242 1.11E+10S 94.571 6.67E+67

From the above results it is apparent that in situations of both high negative and positive

correlations the MOVER results in substantial overcoverage for the ratio of two means,

even though the interval width is markedly less than the Jeffreys rule prior. The

independence Jeffreys prior and the right-Haar prior are both improvements on both the

MOVER and the Jeffreys rule prior with regards to the ratio of the two means. The trend

is again seen when comparing the HPD intervals.

Of particular interest again is the

performance of the mg prior, which results in the best coverage as well as the most

efficient intervals in terms of average length.
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Furthermore, in situations of low correlation between the two means the MOVER
appears to perform rather well. The only improvement on the MOVER is the HPD
interval for the independence Jeffreys prior. Thus, both the MOVER and the

independence Jeffreys prior are particularly well suited to situations of small correlation.

When comparing the two variances we once again see that HPD intervals are an
improvement on the standard equal-tailed intervals with regards to both coverage and
interval length. Both of the Jeffreys priors result in undercoverage. As expected again,
the g prior results in the required coverage as well as the best interval length, further re-
inforcing it as a natural choice of prior when there is a high degree of correlation between
the variables when analysing variances in the bivariate lognormal distribution model we
have presented in previous sections of this chapter. However, when there is not a high

degree of correlation it seems that the right-Haar prior is the most likely choice.

The following table presents the overall aggregated results of the different prior
distributions. Overall, it would appear as though the right-Haar prior is the best choice,
rather than mg. This statement needs some qualification. The right-Haar prior is only
adequate in situations of low correlation. In settings with high correlation the interval
widths were exceptionally wide, resulting in values tending towards infinitely large,
which were excluded for practical reasons and may thus give a skewed impression in the

below table. Refer to the appendices to this chapter for the complete analyses.
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Table 78: Overall Results

(2 &
Method Cover Length Cover Length Cover Length Cover (HPD) Length (HPD)
(HPD) (HPD)

MOVER 94.695 14.580
Ty 94.703 24540  97.156 19214 94303 3.70E+158 92.936 1.11E+276
TTyo 94.028 13.555  95.607 11475 93,599  3.70E+213 93.942 3.70E+149
Ty 94.843 16279  96.336 14.110 94427 3.33E+134 95.884 3.33E+83
Tro 94.404 14.194 95.876 12.163 94.064 3.70E+276 94.837 1.11E+178
Ty 95.325 14.024 96.412 12.232 95.309 3.70E+70 95.440 1.11E+209
Trp 95.207 16.589 96911 13.999  95.029 3.70E+251 94.568 1.11E+158
s 95.375 13.147 95878 11.607 95576 7.41E+230 96.220 2.22E+155
Tre 95.194 17.109  97.081 14379 94958 7.41E+290 94.260 3.70E+191
TTre 95.194 17.129  97.025 14387  94.966 3.70E+297 94.253 1.11E+182
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Appendix to Chapter 6

Results of Simulation Studies

Table 79: Results for MOVER

Z]

[

n p gy, 0y, Cover Length

Cover
(HPD)

Length
(HPD)

Cover

Length

Cover (HPD)

Length (HPD)

5 -0.9 1 5 96.69 20.47
5 5 98.26 33.22
1 10 95.99 36.32

0.1 1 5 94.55 18.29
5 5 95.06 29.44
1 10 94.50 34.12

0.9 1 5 90.07 15.27
5 5 98.87 25.56
1 10 82.62 30.14

10 -0.9 1 5 97.41 8.88
5 5 99.09 14.04

1 10 97.27 15.23

0.1 1 5 94.30 7.43

5 5 94.33 11.19

1 10 94.63 13.81

0.9 I 5 85.84 5.69
5 5 97.92 7.82
1 10 90.68 12.09

20 -09 ! 5 97.92 529
5 5 99.63 8.29
I 10 97.53 9.01

0.1 1 5 94.54 433
5 S 93.82 6.13
! 10 95.12 7.97
0.9 1 5 91.09 3.26
5 5 96.01 3.44
1 10 93.02 6.95
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Table 80: Results for 7,

g )
n p 011 Gy Cover Length Cover Length Cover Length Cover (HPD) Length (HPD)
(HPD)  (HPD)
5 -09 1 5 94.70 39.29 98.10 27.71 94.56 2.00E+10 90.78 5.00E+04
5 5 96.18 30.46 98.64 27.39 94.56  2.00E+149 94.62 1.00E+94
1 10 9322 85.36 97.40 57.71 93.70 7.00E+05 89.72 4.29E+03
0.1 1 S 95.72 44.78 98.42 34.05 94.18 4.00E+62 92.08 9.00E+37
5 5 93.22 62.10 98.50 54.71 91.68 Inf 92.82 3.00E+277
1 10 9432 89.14 98.00 62.98 94.24 1.00E+57 91.54 1.00E+33
0.9 1 5 94.00 38.01 97.74 25.98 93.66 2.50E+09 90.96 1.50E+04
S 5 92.82 27.16 98.74 23.96 91.22  1.00E+160 92.32 7.00E+100
1 10 94.14 83.02 97.50 55.48 94.14 4.00E+04 90.76 4.38E+01
10 -09 1 S 94.62 9.12 96.78 8.16 94.52 1.70E+00 91.98 8.88E-01
5 5 95.38 8.74 96.84 8.59 95.04 7.00E+20 94.78 3.00E+16
1 10 9458 17.93 97.02 15.41 94.60 1.98E+00 92.00 1.21E+00
0.1 1 5 95.28 9.94 97.66 8.90 94.70 3.00E+06 93.12 3.60E-+04
5 S 94.84 13.88 98.04 13.46 93.84 3.00E+71 94.34 6.00E+55
1 10 94.68 18.81 96.98 16.19 94.58 1.40E+05 92.62 2.56E+03
0.9 I 5 95.28 7.97 96.76 6.79 95.18 1.54E-01 92.76 9.27E-02
5 5 94.26 5.94 97.90 5.75 93.38 1.00E+28 93.88 2.00E+21
1 10 9474 16.78 96.40 14.12 94.80 2.78E-02 92.70 1.60E-02
20 -09 1 5 94.76 4.76 95.98 4.55 94.58 9.88E-02 92.84 6.16E-02
5 S 95.28 498 95.80 4.95 95.02 7.00E+06 94.80 4.00E+05
1 10 94.80 8.76 96.06 8.19 94.90 3.70E-03 93.86 2.10E-03
0.1 1 5 95.38 4.88 96.34 4.63 95.10 1.32E+00 94.36 5.54E-01
5 5 94.62 6.79 96.46 6.71 94.28 1.00E+17 94.22 1.00E+14
1 10 95.00 9.13 95.60 8.49 94.88 4.61E-02 93.26 1.98E-02
0.9 1 5 95.54 3.82 96.42 3.54 95.42 2.34E-02 94.30 1.65E-02
5 5 94.64 2.85 96.96 2.82 94.38 1.00E+07 94.58 3.00E+05
1 10 9498 8.18 96.18 7.52 95.04 9.00E-04 93.28 5.00E-04
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Table 81: Results for 7,

] 5
n p 0,7 0y, Cover  Length Cover Length Cover Length Cover (HPD) Length (HPD)
(HPD) (HPD)
5 09 1 5 93.32 18.48 95.28 14.60 93.78 8.41E+02 92.94 8.39E+01
5 5 93.60 16.17 95.96 15.18 91.56 3.00E+75 92.90 5.00E+51
1 10 9458 3824 95.36 28.70 94.62 1.01E+03 93.74 2.68E+02
0.1 1 5 93.70 20.52 96.12 16.64 92.38 1.00E+27 93.52 1.00E+17
5 5 90.04 28.40 96.16 25.76 87.36  1.00E+215 89.20 1.00E+151
1 10 93.66 40.04 95.34 30.62 93.28 1.00E+23 93.96 6.00E+13
0.9 1 5 94.14 16.90 95.10 12.66 94.34 1.55E+03 94.60 2.52E+01
5 5 89.64 12.26 96.42 11.11 87.10 1.00E+99 89.70 6.00E+64
1 10 9432 36.55 94.64 26.82 94.32 8.53E+00 94.82 1.86E+00
10 -09 1 5 95.10 7.54 95.82 6.89 94.82 1.57E+00 94.72 8.71E-01
5 5 94.98 7.63 96.20 7.53 93.98 1.00E+15 94.66 9.00E+11
1 10 94.80 14.45 94.92 12.69 95.16 5.05E-01 94.92 2.78E-01
0.1 1 5 94.58 8.07 95.70 7.33 93.86 6.50E+05 94.54 8.50E+03
5 5 93.18 11.08 96.76 10.76 92.40 2.00E+39 92.78 1.00E+32
1 10 9452 15.03 95.14 13.17 94.42 3.04E+02 95.08 2.72E+01
0.9 1 5 94.68 6.32 94.70 5.50 94.74 1.58E-01 95.24 1.01E-01
S 5 93.32 4.74 97.32 4.60 92.72 6.00E+14 92.92 1.00E+11
] 10 9492 13.52 94.76 11.60 94.96 2.96E-02 94.88 1.82E-02
20 -09 1 5 94.78 443 95.62 4.25 95.02 9.95E-02 94.50 6.38E-02
5 5 94.98 4.73 95.42 4,70 94.52 4.00E+07 94.72 2.00E+06
1 10 94.68 8.12 95.28 7.62 94.92 5.70E-03 94.44 3.20E-03
0.1 1 5 94.20 4.54 95.46 432 94.24 7.91E-01 94.22 3.66E-01
5 5 94.04 6.25 96.00 6.18 93.70 8.00E+16 94.20 3.00E+14
1 10 9454 8.36 95.22 7.81 94.52 1.47E-01 94.70 6.41E-02
0.9 1 5 94.76 3.54 94.96 3.30 94.70 2.66E-02 95.16 1.92E-02
5 5 94.56 2.61 96.60 2.58 94.44 5.00E+05 94.08 3.00E+04
1 10 9514 7.47 95.14 6.90 95.30 1.10E-03 95.30 7.00E-04
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Table 82: Results for 7,

[ [
n p 0y, 0y Cover Length Cover Length Cover Length Cover (HPD) Length (HPD)
(HPD) (HPD)
5 -0.9 1 5 95.01 18.92 96.53 15.82 95.06 1.00E+16 95.62 1.00E+09
5 5 95.46 23.05 98.12 21.08 94.32 1.00E+137 97.40 1.00E+78
1 10 94.54 38.71 96.34 30.02 95.04 2.00E+16 94.94 5.00E+07
0.1 1 5 93.90 25.48 97.24 23.19 9270  6.00E+116 96.62 5.00E+68
5 5 92.12 63.65 98.40 52.00 89.60 Inf 96.58 Inf
1 10 95.18 43.8] 96.96 38.07 94.72  6.00E+131 96.86 1.00E+73
0.9 1 5 95.38 22.36 96.68 18.67 94.96 1.00E+30 96.44 1.00E+16
5 5 95.02 20.20 99.08 18.16 93.34  9.00E+135 96.96 9.00E+84
1 10 96.06 36.75 96.62 28.15 95.82 2.00E+10 95.94 7.00E+04
10 -09 1 5 94.48 7.64 95.38 7.00 94.76 3.06E+00 94.82 1.51E+00
5 S 95.40 8.12 96.52 8.00 94.92 7.00E+17 96.60 1.00E+14
1 10 94,54 14.52 95.12 12.77 94.90 3.84E-01 94.42 1.96E-01
0.1 1 5 95.14 8.29 96.40 7.71 94.08 6.00E+06 96.24 3.00E+04
5 5 93.80 13.83 97.56 13.30 92.88 2.00E+65 96.60 1.00E+50
1 10 94.54 15.29 95.30 13.59 94.54 7.00E+06 95.58 2.00E+04
0.9 1 5 94.78 8.03 94.90 7.05 94.76 1.55E+00 95.78 4.64E-0]
5 5 95.14 5.48 98.00 533 94.50 1.00E+21 96.16 2.00E+16
1 10 94.90 13.49 95.02 11.59 94.72 4.42E-02 94.96 2.33E-02
20 -09 1 5 94.80 4.44 95.20 4.27 94.90 1.35E-0t 94,98 8.63E-02
5 5 95.28 4.82 95.76 4.80 95.02 2.00E+07 95.96 2.00E+06
1 10 94.68 8.16 95.10 7.66 95.00 7.20E-03 94.90 4.10E-03
0.1 1 5 95.20 4.55 95.60 4.36 94.62 4.14E+00 95.72 1.31E+00
5 5 94.96 6.78 96.98 6.69 94.46 1.00E+22 96.84 3.00E+18
1 10 94,98 8.39 95.12 7.86 94.94 8.73E-02 95.08 3.38E-02
09 1 5 95.30 4.48 95.12 418 95.18 2.44E-02 95.56 1.57E-02
5 5 95.24 2.80 97.04 2.77 95.02 2.00E+06 96.12 1.00E+0S
1 10 94,94 7.48 94.98 6.91 94.78 1.20E-03 95.18 7.00E-04
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Table 83: Results for 7,

8 [
n p 0y, 0, Cover Length Cover Length Cover Length Cover (HPD) Length (HPD)
(HPD) (HPD)
5 09 1 5 93.94 18.56 95.52 14.85 93.92 5.00E+05 94.30 2.30E+03
5 5 94.50 17.81 96.94 16.73 92.84 1.00E+85 94.60 1.00E+54
1 10 94.72 38.60 95.74 29.15 95.06 3.00E+04 94.94 2.15E+02
0.1 1 5 93.60 21.53 96.26 18.37 92.26 1.00E+54 94.86 7.00E+34
N 5 92.26 37.12 97.86 33.25 90.06  1.00E+278 93.86 3.00E+179
1 10 93.50 39.90 94.94 31.87 93.10 1.00E+44 95.16 1.00E+26
0.9 1 5 93.94 16.92 95.08 12.94 94.18 7.00E+04 95.28 2.23E+02
5 5 92.74 14.30 97.92 13.11 90.72 7.00E+92 93.70 1.00E+64
1 10 94.96 37.49 95.50 27.74 95.12 5.40E+04 94.74 2.85E+02
10 -09 1 5 94,72 7.59 95.78 6.94 95.02 1.98E+00 94.84 1.06E+00
5 5 95.32 7.82 96.02 7.71 94.78 4.00E+21 95.56 2.00E+16
1 10 9470 14.53 95.18 12.76 94.80 1.21E+00 94.82 6.46E-01
0.1 1 5 94.64 8.14 95.76 747 94.02 4.00E+06 94.64 4.00E+04
5 5 93.42 12.20 97.28 11.82 92.50 4.00E+45 95.02 1.00E+35
1 10 9442 15.01 94.88 13.23 94.56 5.04E+03 95.32 1.23E+02
0.9 1 N 94.80 6.44 95.68 5.61 94.56 1.82E-01 94.44 1.12E-01
5 S 94.24 5.05 97.50 4.91 93.46 4.00E+19 94.20 6.00E+14
1 10 95.06 13.56 94.86 11.64 95.36 3.96E-02 95.12 2.37E-02
20 -0.9 1 5 95.26 443 95.74 4.26 95.42 1.06E-01 95.10 6.71E-02
5 5 94.94 4.78 95.36 4.75 95.20 9.00E+06 95.74 5.00E+05
1 10 94.52 8.18 95.14 7.69 94.66 5.90E-03 94.46 3.30E-03
0.1 1 5 95.10 4.55 95.68 4.34 95.12 1.33E+00 95.52 5.57E-01
5 5 94.36 6.52 96.32 6.45 93.92 1.00E+18 94.94 3.00E+15
1 10 9470 8.44 95.04 7.90 94.54 3.92E-02 94.74 1.67E-02
09 1 S 95.06 3.54 95.08 3.30 95.24 2.66E-02 95.00 1.90E-02
5 5 94.20 2.70 96.30 2.67 94.00 1.00E+06 94.54 6.00E+04
1 10 95.30 7.52 95.30 6.95 95.32 1.30E-03 95.16 8.00E-04
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Table 84: Results for s

] )
n p 0y, 0y, Cover Length Cover Length Cover Length Cover (HPD) Length (HPD)
(HPD) (HPD)
5 09 i S 94,96 15.41 96.35 12.93 96.00  3.20E+04 96.33 3.94E+02
5 5 96.27 17.79 97.47 17.23 96.71 9.00E+67 96.67 2.00E+46
1 10 95.42 29.91 95.85 23.31 96.11 1.90E+04 97.09 1.30E+02
0.1 1 5 95.11 26.47 97.77 21.98 94.07  2.00E+38 94.05 4.00E+23
5 S 94.19 4047 98.69 37.68 92.79 Inf 93.09 3.00E+210
1 10 95.15 49.94 97.47 38.56 94.71 4.00E+41 94.21 5.00E+25
0.9 1 5 96.63 14.29 96.85 11.61 96.83  5.60E+04 97.47 6.02E+01
5 5 98.25 15.71 99.71 15.15 97.74 1.00E+72 95.97 4.00E+45
i 10 95.81 28.68 95.62 21.86 95.97  3.90E+04 97.30 1.78E+02
10 -0.9 1 5 94.82 6.97 95.38 6.45 95.42 1.97E+00 95.80 1.01E+00
5 5 95.59 7.60 96.27 7.51 96.17 1.00E+17 95.73 1.00E+13
1 10 94.98 13.00 95.42 11.56 95.38 6.07E-01 95.84 2.99E-01
0.] 1 5 94.90 9.06 97.08 8.24 94.62 1.10E+07 94.06 1.10E+05
5 5 94.70 13.11 97.80 12.78 94.00  2.00E+46 94.74 5.00E+35
1 10 95.04 16.84 96.66 14.68 94.64 1.73E+03 94.24 4.65E+01
0.9 1 5 95.42 5.79 95.44 5.12 95.54 2.14E-01 96.08 1.23E-01
5 5 96.53 5.19 98.65 5.09 96.17  7.00E+14 95.37 3.00E+11
| 10 95.15 12.03 94.61 10.42 95.43 3.61E-02 96.61 1.97E-02
20 -09 1 S 94.78 426 94,38 4.10 95.04 1.20E-01 95.86 7.58E-02
5 5 94.76 4.71 95.36 4.68 95.12 1.00E+07 95.20 7.00E+05
1 10 94.58 1.77 94.64 7.33 94.70  4.70E-03 95.48 2.60E-03
0.1 1 5 95.42 481 96.54 4.58 95.16 1.13E+00 94.26 4.32E-01
5 5 94.78 6.72 96.42 6.66 94.54  2.00E+20 94.46 7.00E+16
1 10 94.94 8.90 95.94 8.31 94.80  4.51E-02 93.62 1.79E-02
0.9 1 5 94.88 3.38 94.76 3.16 95.20 2.85E-02 95.98 2.01E-02
5 5 95.48 2.73 97.20 2.70 95.26 1.20E+05 95.62 1.20E+04
1 10 95.24 7.11 94.80 6.60 95.22 1.30E-03 95.76 8.00E-04
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Table 85: Results for 7.,

6 [
n p 0y, 023 Cover  Length Cover Length Cover Length Cover (HPD) Length (HPD)
(HPD) (HPD)
5 09 1 5 94.76 20.91 96.88 16.49 95.54 5.00E+05 94.18 1.37E+03
5 S 96.00 20.70 98.12 19.72 95.68 9.00E+93 95.80 2.00E+62
1 10 9540 42.02 97.00 30.88 95.72 1.10E+04 94.78 3.15E+02
0.1 1 5 95.68 31.32 98.52 25.39 94.82 5.00E+45 93.66 5.00E+27
5 5 93.86 45.92 98.66 42.20 92.10  1.00E+253 93.20 3.00E+159
1 10 9492 59.58 97.72 44.77 94.52 3.00E+37 93.22 1.00E+22
0.9 1 5 95.94 19.35 97.56 14.67 95.98 5.00E+05 95.18 2.07E+02
5 5 95.60 17.55 98.74 16.56 94.46 4.00E+89 94.92 4.00E+58
1 10 96.06 41.42 97.12 29.78 96.18 3.97E+02 94.82 5.79E+00
10 -09 1 5 94.82 7.84 96.22 7.16 95.02 3.92E+00 94.26 1.63E+00
5 5 95.02 8.07 96.46 7.97 95.16 2.00E+22 95.22 7.00E+17
1 10 95.08 14.82 96.12 12.98 95.42 4.14E-01 94.48 2.09E-01
0.1 1 5 94.96 9.41 97.04 8.51 94.92 7.10E+04 94.20 1.07E+03
5 5 94.80 13.49 97.86 13.15 94.22 4.00E+57 94.28 1.00E+45
1 10 94.00 17.55 96.86 15.22 94.10 3.28E+03 93.20 1.49E+02
0.9 1 5 95.18 6.61 96.14 5.75 95.06 2.18E-01 94.58 1.26E-01
5 5 95.46 5.40 98.16 5.28 94.98 6.00E+20 95.02 1.00E+16
1 10 9544 13.89 95.92 11.85 95.70 3.00E-02 95.42 1.76E-02
20 09 ] 5 94.76 4.48 95.64 431 95.20 1.06E-01 94.20 6.62E-02
5 5 95.54 4.80 95.94 4.78 95.32 1.50E+06 95.44 1.30E+05
1 10 95.14 8.21 95.62 7.72 95.28 8.20E-03 94.88 4.70E-03
0.1 1 5 95.28 4.84 96.28 4.62 94.96 1.43E+00 93.98 5.50E-01
5 5 95.60 6.73 97.50 6.68 95.00  5.00E+15 95.30 1.00E+13
1 10 9536 9.00 96.12 8.40 95.14 9.41E-02 94.12 4.03E-02
0.9 1 5 95.34 3.60 95.72 3.36 95.62 2.60E-02 95.40 1.82E-02
5 5 95.16 2.78 96.86 2.76 94.50  4.20E+05 94.82 3.00E+04
1 10 9544 7.60 95.82 7.03 95.18 1.10E-03 94.78 6.00E-04
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Table 86: Results for 7

[ )
n p 0y, 0y Cover Length Cover Length Cover Length Cover (HPD) Length (HPD)
(HPD) (HPD)
5 -0.9 I 5 94.51 13.66 94.77 11.68 96.24 S.10E+04 97.90 5.19E+02
5 5 95.85 17.87 97.01 17.36 97.40 1.00E+77 97.03 7.00E+39
1 10 95.64 25.77 94.80 20.50 96.47 1.30E+06 98.15 2.51E+03
0.1 1 5 95.46 25.13 97.87 21.04 94.82 1.00E+38 94.54 2.00E+24
5 5 94.62 38.18 98.81 35.76 93.94  2.00E+232 94.60 6.00E+156
1 10 94.67 47.00 97.07 36.70 94.49 3.00E+31 94.61 3.40E+20
0.9 1 5 97.10 12.72 96.22 10.67 97.34 1.50E+05 98.96 1.18E+02
5 5 99.43 16.32 99.84 15.82 98.70 1.00E+62 98.48 7.00E+40
1 10 96.12 25.01 94.71 19.56 96.27 3.80E+04 98.26 4.32E+01
10 -09 1 5 94.20 6.36 94.27 5.93 95.19 2.55E+00 96.52 1.32E+00
5 5 95.00 7.21 95.55 7.13 96.16 5.00E+20 96.19 6.00E+16
i 10 95.06 11.53 93.95 10.36 95.65 3.29E-01 97.84 1.66E-01
0.1 ] 5 95.02 8.88 96.66 8.09 94.42 4.90E+05 94.24 7.15E+03
5 5 95.38 12.84 98.08 12.54 94.98 2.00E+52 94.48 8.00E+40
1 10 94.62 16.66 96.40 14.56 94.74 1.09E+03 93.84 2.28E+01
09 1 5 95.49 522 93.79 4.66 95.61 4.05E-01 97.99 2.06E-01
5 5 97.78 5.05 99.03 496 97.58 1.00E+13 96.76 1.00E+10
1 10 94.97 10.62 93.06 9.30 95.26 4.58E-02 97.76 2.49E-02
20 -0.9 1 5 94.83 4.08 94.41 3.94 94.93 1.29E-01 96.24 8.19E-02
5 5 93.99 4.58 94.30 4.55 94.97 4.80E+05 94.73 5.10E+04
1 10 94.76 7.31 94.04 6.91 94.94 5.80E-03 96.61 3.20E-03
0.1 1 5 94.52 4.78 95.76 4.56 94.54 1.11E+00 94.02 4.72E-01
5 5 95.00 6.71 96.96 6.65 94.54 9.00E+15 94.54 1.00E+13
1 10 94.92 8.85 95.72 8.27 95.00 5.53E-02 94.06 2.56E-02
09 t 5 95.04 3.24 93.98 3.03 95.00 3.07E-02 96.97 2.16E-02
5 5 96.15 2.70 97.51 2.66 96.23 9.50E+04 95.45 8.64E+03
1 10 95.00 6.70 94.14 6.22 95.14 1.20E-03 97.17 8.00E-04
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Table 87: Results for 7,

g §
n p 0, 0,, Cover  Length Cover Length Cover Length Cover (HPD) Length (HPD)
(HPD)  (HPD)
5 -09 1 5 95.00 21.27 97.36 16.74 95.14 2.10E+05 94.12 5.63E+02
5 5 96.34 20.94 98.26 19.96 95.68 2.00E+84 95.58 3.00E+53
1 10 9550 43.74 97.96 32.08 95.56  3.20E+06 94.14 4.74E+03
0.1 1 5 95.16 32.86 98.32 26.47 94.00 8.00E+51 92.98 2.00E+32
5 5 93.72 48.78 98.48 44.72 91.80  2.00E+292 93.06 1.00E+193
1 10 94.80 63.73 98.00 47.49 94.42 8.00E+42 92.60 2.00E+25
0.9 1 5 96.17 19.64 98.01 14.80 96.41 4.10E+04 95.35 6.79E+01
5 5 95.40 17.61 99.12 16.60 94.46 1.00E+91 94.64 3.00E+60
1 10 9622 42.69 97.70 30.57 95.92  4.80E+07 94.38 5.07E+03
10 -09 ] 5 95.28 7.90 96.50 7.21 95.38 1.64E+00 94.10 8.51E-01
5 5 94.92 8.12 96.30 8.02 94.72 1.00E+19 95.02 6.00E+14
1 10 94.96 14.97 96.24 13.12 95.52 4.76E-01 94.28 2.50E-01
0.1 ! 5 95.48 9.51 97.50 8.58 94.72 1.00E+06 93.74 1.10E+04
5 5 94.88 13.56 97.88 13.19 93.92 6.00E+48 94.40 4.00E+37
1 10 94.82 17.93 97.16 15.52 94.88 8.28E+03 93.30 1.01E+02
0.9 1 5 95.06 6.75 96.30 5.86 95.40 1.94E-01 94.26 1.12E-01
5 5 95.22 5.46 98.30 5.33 94.88 2.00E+20 94.62 2.00E+15
1 10 9570 14.23 96.28 12.14 95.76 3.71E-02 94.62 2.19E-02
20 -0.9 1 5 94.82 4.53 95.94 435 94.92 1.27E-01 94.40 7.97E-02
5 5 95.64 4.85 96.08 4.83 95.40 1.30E+06 95.06 1.00E+05
1 10 95.00 8.22 95.56 7.73 95.22 4.30E-03 94.96 2.40E-03
0.1 1 S 94.44 4.88 96.02 4.65 94.36 1.35E+00 93.88 5.48E-01
5 5 95.22 6.76 97.06 6.70 94.86 1.00E+19 95.00 5.00E+15
1 10 94.90 9.01 96.16 8.40 94.98 4.55E-02 93.30 1.96E-02
0.9 1 5 95.20 3.63 96.34 3.39 95.54 2.43E-02 94.54 1.70E-02
5 5 95.62 2.78 97.14 2.76 95.18 1.20E+05 94.42 1.10E+04
1 10 94.78 7.62 95.22 7.05 94.84 9.00E-04 94.28 5.00E-04

- 268 -




Table 88: Results for 7,

g 5
n p 011 0y Cover Length Cover Length Cover Length Cover (HPD) Length (HPD)
(HPD) (HPD)
5 -09 i S 95.44 21.55 97.74 16.93 95.66 3.10E+06 94.10 7.29E+03
5 5 96.18 20.83 98.20 19.83 95.64 4.00E+86 95.34 9.00E+55
1 10 95.00 43.92 97.50 32.17 95.28 2.30E+03 94.02 1.65E+02
0.1 1 5 95.02 32.72 98.14 26.37 94.04 1.00E+46 93.60 6.00E+26
S 5 94.14 48.48 98.66 4437 92.48  1.00E+299 93.44 3.00E+183
1 10 95.32 63.35 97.90 47.18 94.74 4.00E+38 93.26 4.00E+23
0.9 i 5 96.06 20.08 97.58 15.11 96.08 1.70E+07 94.98 1.71E+03
5 5 95.22 17.90 99.02 16.85 93.86  1.00E+106 93.74 6.00E+68
1 10 95.78 42.42 97.72 30.35 96.18 4.19E+03 94.40 2.98E+01
10 -09 1 5 95.10 7.88 96.52 7.19 94.90 1.82E+00 94.20 8.90E-01
S 5 95.44 8.17 96.54 8.08 95.56 7.00E+21 95.34 2.00E+16
1 10 94.98 15.14 96.50 13.26 95.10 7.98E-01 93.82 3.97E-01
0.1 1 S 95.10 9.59 97.30 8.66 94.76 3.30E+07 93.56 3.60E+04
5 S 94.54 13.56 97.72 13.20 93.66 1.00E+61 93.98 2.00E+48
1 10 95.20 17.83 97.28 15.43 95.16 4.80E+02 93.38 1.87E+01]
0.9 1 5 95.56 6.73 96.92 5.85 95.74 1.75E-01 94.50 1.03E-01
5 5 95.00 5.44 97.98 5.32 94.66 1.00E+25 95.20 4.00E+19
1 10 94.80 14.48 96.20 12.34 95.18 2.67E-02 93.84 1.42E-02
20 -0.9 1 5 95.46 4.54 95.88 4.36 94.70 9.66E-02 93.66 5.99E-02
5 5 95.46 4.84 95.96 4.82 95.50 2.80E+06 95.46 1.70E+05
1 10 95.22 8.33 95.76 7.83 95.42 4.80E-03 94.28 2.70E-03
0.1 1 5 94.96 4.87 96.02 4.64 94.72 1.29E+00 94.24 5.18E-01
5 5 95.18 6.76 96.92 6.71 94.66 3.00E+18 94.72 2.00E+15
1 10 94.70 9.07 95.98 8.45 94.92 3.70E-02 93.30 1.52E-02
0.9 1 5 95.10 3.61 95.12 3.37 95.34 2.65E-02 94.80 1.86E-02
5 S 95.72 2.79 97.62 2.76 95.40 2.80E+06 95.14 1.80E+05
1 10 94.56 7.61 95.00 7.04 94.74 1.10E-03 94.54 7.00E-04

- 269 -




CHAPTER 7
Random Effect Model: Balanced Case

Introduction

Lognormally distributed data are found in many settings including occupational health. It
is not just confidence intervals that one is interested in though. Many standard statistical

models can be adapted to facilitate the use of lognormal data.

One such setting has been proposed by Krishnamoorthy and Mathew (2002), whereby
they applied a one-way random effects model to balanced lognormally distributed data.
This was done as a means to assess occupational exposure. The parameter of interest in
these cases was the occupational exposure limit (OEL). The reader is referred to the
original articles by Krishnamoorthy and Mathew (2002) for a more complete description
of the medical applications of this method as well as the texts by Rappaport, Kromhout
and Symanski (1993), Heederik and Hurley (1994) and Lyles, Kupper and Rappaport

(1997).

Krishnamoorthy and Mathew (2002), in almost an extension of their other work on
lognormally distributed data, attempted to analyse the data using generalized confidence
intervals and generalized p-values in order to test hypotheses by means of confidence
intervals on the overall mean exposure limits. The intention here is not to further
describe the application to medical exposure limits (although a brief description of the

setting will be given in sections that follow, as well as offering other potential settings
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that relate to the field of finance), but merely to develop a similar method using Bayesian
methodology in order to improve the method and to determine the performance of
different prior distributions for the data. All prior distributions will be non-informative,

since we have no subjective prior opinion as to the distribution of the data.

The application of other non-informative priors, particularly the Reference prior (as
developed by Berger) and Probability-Matching priors can be applied to the geometric
mean and not just the arithmetic mean of the exposure data. In many instances the
geometric mean can minimize the influence of outliers in the data and in this specific
case also has implications for the computational simplicity of the procedures. A

derivation of these prior distributions is also given in the appendix to the chapter.

7.1  Description of the Setting

As mentioned in the Introduction to this chapter, there have been several authors that
have proposed the use of random effects models to model the exposure levels of workers
to potential workplace contaminants. One of these methods proposed has been this
model to the log-transformed shift-long exposures and it attempts to incorporate the
between- and within-worker sources of variability. In this case we are interested in

workers or groups of workers for whom the long-term exposure levels exceed the specific

OEL.

We are in this section also looking at specifically the balanced case where the exposure

levels for each worker are lognormally distributed. The analysis of problems in this area

-271 -




is rather different from the traditional problems associated with the analysis of mixed
models. Deriving exact tests is perhaps a slightly more complicated procedure since the
analysis involves all the regular parameters of the traditional mixed model analysis,
namely the mean, as well as the two variance components, that is the within- and

between-subject variability.

As mentioned in the Introduction, Krishnamoorthy and Mathew proposed a generalized
confidence interval and generalized p-value method to the analysis of these problems.
Lyles et al. (1997) proposed large sample tests, such as Wald, likelihood ratio and score-

type tests.

To represent this data situation refer to the following diagrammatic representation:

Table 89: Representation of Shift Exposure Data

Shift-Long Exposure Measurcments
Workers 1 2 n Worker Means
1 X1 X2 X1n X;.
2 X329 X329 Xon X,
k Xpq Xyz Xin X

Therefore, there are essentially n measurements per worker. The overall mean of all the
data can be represented as X. The X; j are lognormally distributed and therefore Y;; =
ln(X ; j) is distributed normally. The assumed one-way random effects model is:
Yij=pu+ 1+ e i=1..,kj=1,..,n
(7.1)
where u is the general mean, 7; ~ N(0,0¢) and e;; ~ N(0,02). All the random variables
are independent of each other and here 7; represents the random effect due to the i-th

worker.
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According to Krishnamoorthy and Mathew (2002) let
= E(X;|t)) = E(exp[Y; = o/
wy, = E(Xijl7) = E(explYylln) = exp{u+ 7+ 7¢/,

(7.2)
and py, is the mean exposure for the i-th worker. Let 6 denote the probability that 1,

exceeds the OEL. Thus,

2
In(0EL) — u— %/,

6 = P(uy, > OFL) = P (In(u,) > In(0EL)) =1 — & p
(7.3)
where ®(.) denotes the c.d.f. of the standard normal distribution. The kinds of
hypothesis that are going to be considered here are:
Hy:80 2 AvsHi: 0 < A
where A is a specific quantity that is usually small, according to Krishnamoorthy and

Mathew (2002).

As mentioned previously, Krishnamoorthy and Mathew (2002) apply a technique based
on generalized confidence limits and generalized p-values in order to test the above
hypothesis. In this chapter we will apply a Bayesian methodology to the problem as well
as evaluating the performance of other prior distributions on a geometric mean.

The following is an example data set of simulated “styrene exposures” that will serve as a
basis for discussion in this chapter and will help us define and illustrate the objectives of

the chapter:
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Table 90: Simulated “Styrene Exposures”

Worker

Observations / Measurements

1 2 3 4 5 6 7 8 9 10

1 95.58 | 64.72 | 50.91 87.36 | 8227 | 14990 | 3345 | 7748 | 70.81% 60.95
2| 5740 | 8227 | 174.16 107.77 | 98.49 | 129.02 | 121.51 95.58 | 92.76 | 132.95
3| 8477 | 21486 | 132.95 79.84 | 169.02 | 149.90 | 164.02 | 84.77 | 84.77 | 114.43
4| 6872 | 77.48 | 66.69 | 54.05 4126 | 6472 | 4653 | 59.15 | 4515 | 54.05
5111443 | 101.49 | 49.40 | 101.49 | 90.02 | 52.46 114.43 | 7984 | 68.72 | 87.36
6| 87.36 | 242.26 | 145.47 | 132.95 | 174.16 214.86 | 137.00 | 129.02 | 169.02 | 179.47
7| 5405| 7519 | 8477 55.70 | 90.02 | 70.81 60.95 { 101.49 | 64.72 | 95.58
81 6472 | 9558 | 57.40 9558 | 8227 | 10149 | 9276 | 60.95 | 101.49 | 98.49
9| 137.00 | 208.51 9276 | 159.17 | 92.76 | 82.27 | 121.51 90.02 | 159.17 | 174.16
10| 12521 87.36 | 121.51 90.02 | 154.47 | 107.77 | 117.92 | 179.47 | 129.02 | 129.02
L 84.77 | 4252 | 8736 | 7297 | 66.69 | 7519 | 50.91 59.15 | 4940 | 66.69
12| 5740 | 68.72 59.15 | 64.72 | 5570 | 6095 | 9276 | 5246 | 4252 | 52.46
13 | 101.49 | 149.90 | 111.05 | 77.48 111.05 | 84.77 | 64.72 [ 62.80 | 149.90 | 70.81
141 6872 | 101.49 | 111.05 | 179.47 8227 | 17416 | 174.16 | 87.36 | 14547 | 114.43
15 | 121.51 77.48 | 14547 [ 17416 | 77.48 | 92.76 | 159.17 | 129.02 | 104.58 | 77.48

The above table represents the X;; data points and the following table represents the

corresponding ¥;; = In(X;;):
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Table 91: Log of Simulated “Styrene Exposures”
Observations / Measurements

Worker 1 2 3 4 5 6 7 8 9 10
Tl as6| 417| 393| a47| a41| s01| 351 | 435| 426 411
2| 405| 441| 516| 468 459| 486 48| 456 453 489
3| 444 | 537| a89| 438| 513| 501 5.1 444 | 444| 474
41 423| a3 42| 399 | 372| 4417| 384] 408| 381| 399
S| a7a| 462 39| 462 45| 396 474| 438| 423| 447
6| 447| 549| 498| 489| 516| 537| 49| 48| 513| 519
7| 399| 432| 444| 402 45| 426| 41| as2| a17| 456
81 447| a456| 405| 456 441| 462| 453| 411| 4e2| 459
9\ 492| 534| 453| s507| 453 441 48 45| 507| 516

10 483 447 4.8 45| 504| 468| 477 | s519| 486 | 486
11 444 | 375| 44a7| 429 42| 432| 393| 408 3.9 4.2
21 405| 423 408| 417| 402| 411| 453| 39| 375| 396
8| 462| s501| 471| a35| a71| 444| a17| 4s14| s501| 426
14| 423| 462| 471| 519| 441| s516| 516| 447| 498| 474
15 48| 435| 498| s516| 435| 453| s507| 486| 465| 435

From these data we have the following definitions and associated results:

k=15;n=10

vy=knh-1);v,=k-1

_ 1 1

Yi-=£Yi-=;l'. Yij =
j=1

[4.28 4.65 4.79 4.04 4.42 5.05 4.29 4.42 4.83 4.80 4.16 4.09 4.54 4.77 4.71]’

1 k n
7= EZZ Y, = 45228
i=1j=1
k
§85; = vom, = nZ()_’i. — ¥.)?2 = 13.2283 = "between workers sum of squares"
i=1
k n
= \2
SSe = vymy = ZZ(YU - %) = 11.3897
i=1 j=1

= "within workers sum of squares"
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7.2. Bayesian Methodology

As mentioned previously, the basis for analyzing any situation from a Bayesian
perspective is the following result:

Posterior « Likelihood X Prior
Due to the setting we already know what the likelihood function looks like (in matrix
form):

1
Ekn

1
L(w 02,02, ul¥) « (;) (Y — 61— Zw)'(Y — 61 —Zu)}

e

{522

1\ T,
X (a'_-?) exp {_ﬁ uu}
(7.4)

where Y is a vector of the data, u ~ N(0, /6?) and the other vectors and matrices are as

follows:
1 0 0
10 0
1 0 0
0 1 0
0 1 0 71
Z is the kn X k matrix: O 1 0 , 11is a kn X 1 vector of ones, u = 'z , and
0 0 Ty
: 0
1
0 0 1

e~ N(0,Ic2).
Before looking at the Reference and Probability-Matching priors we will begin our

discussion by choosing the following non-informative prior distribution:
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1 1

2 2N\ 2 2 .
p(,u, ar;ae) - p(l"l')p(o-'t'o.e) x o-_eZ (0-22 + no‘_’__z)

(7.5)
The above prior distribution is the non-informative distribution that has been discussed at

length by Box and Tiao (1973) a full criticism can be found in this text.

By combining (7.4) and (7.5) we arrive at the posterior distribution of , 62, 62 and u:

2kn
1
L(u, 02,02, ulY) (ﬁ) exp {— 53 (Y-01-Zuw)'(Y — 61 — Zu)}
e e
1)2k 1, 1 1
X (?) exp {‘27.? ““} X Z (oZ+ nod)

(7.6)
This can then be integrated over u by completing the square with respect to u.

Therefore, the joint posterior density function of (u, 02, 62) can be written as:
p(u, 02,021 Y)

1 1
o (62)2%* D (02 + noF) I

1[kn(Y. — p)? v,m, vymy
Xexpy =51 = 2 2 ;2
2| 0f + nof of + nof o¢

(7.7)
Now, to obtain the joint posterior distribution of (¢, 02) we integrate (7.7) with respect

to u and arrive at the desired result:

1 1 1 v,m vym
2 .2 2y—5(v1+2)r 2 25—=(vo+ 2) 21t2 177y
p(ct,a2|Y) x (62)7 21" ¥ (62 + no?) 2" xexp{—-z-[ae2+ n012+ oz ]}

(7.8)

It is important to notice as well that g2 > 0.




7.3. Simulation Study

A simulation study was performed using the results obtained in the previous section.
However, there was a departure from the analysis that Krishnamoorthy and Mathew
(2002) performed. In particular Krishnamoorthy and Mathew applied to the generalized

confidence limits and p-values to the following quantity:

2
Oe

[1+‘L"+—)
/"xi = e( ‘ 2

which is the mean exposure of the i-th worker. As it turns out, their “mean exposure for
the i-th worker” did not include the actual row mean (mean for that specific worker)
anywhere in the simulation, but rather the simulation was based only on the overall mean
and distribution of 7;. So in actual fact, Krishnamoorthy and Matthew had more a
“general” or “overall” mean exposure for each worker. In this section though we suggest
an enhancement of this technique, whereby the mean for the i-th worker is estimated
(from a Bayesian ideology) whereby the actual row means also influence the mean
exposure level for that specific worker. So this section in fact presents various simulation
studies in the following order:
1. Mean exposure of the i-th worker accounting for the row mean (enhancement on
Krishnamoorthy and Mathew technique).
2. Mean exposure of the i-th worker not accounting for the row mean (comparable
technique).

3. Overall mean exposure.
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7.3.1 Simulation 1

The following is a description of this simulation study:
The intention is to simulate the mean exposure per worker from the posterior distribution

using the prior mentioned by Box and Tiao (1973).

Let

2
of
u+r'+——)
Py, = e< vz

represent the mean exposure level of the i-th worker. For each worker the probability
that the mean exposure exceeds a certain pre-defined limit can be simulated from the
posterior distribution as follows:

1. Simulate A from a x2 , distribution where v; = k(n — 1) and using this calculate:

SSE
ol ==

2. Simulate § from a X12/2 distribution where v, = k — 1 and using this calculate:

SSt
o2 +not = 7_0122
0i2—0dé

3. Calculate g2 = This implies that we have simulated 62 and ¢? from

their joint posterior distribution as given in (7.8).

4. If a negative value is obtained in step 3 we disregard both ¢2 and 62 and repeat
steps 1 - 3 until we find a pair where both are positive. This is somewhat different
to Krishnamoorthy and Mathew’s technique, whereby in their method negative

estimates were simply set equal to zero and not totally disregarded.
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5. For each pair of (62,02) simulate {* ~ N(I,II) (the posterior distribution of

2
u+ 1+ 02—“’ given the variance components has this normal distribution) where

2 — _
"V + 52—V 4+ Zand

oZ+no? og2+no?

Oe

b 1= % (% 52
) aZ+no? lnk Ty

2
The posterior distribution of u + 7; + % given the variance components

no? a? a2 2
Lot {n—‘;+ ar}). For

o2+no? 'oZ+na?

follows from the fact that u + 7|62, 02, Y ~ N(

further details see van der Merwe and Bekker (2007).
6. Calculate py, = e
7. Repeat steps 1 - 6 | (= 1000 or 10000) times for each of the 15 workers. The
result isa 15 X [ matrix of simulated observations.
Using the data from steps 1 - 7 above the following can be calculated:
1. For each worker (i.e. each row of the 15 X | matrix of simulated observations
mentioned in step 7 above):

a. Draw up a histogram

# Simulated Values > OEL
l

b. Calculate P(uxi > OEL) = where OEL is a pre-

defined value of “clinical” interest.
Assume, for the purposes of illustration that OEL = 130 and furthermore take [ =

10000. Histograms of individual worker simulations are presented in the appendix to

this chapter as Figures 48 to 62.
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From the above simulations the following descriptive statistics and Bayesian credibility

intervals (CI) were calculated:

Table 92: Simulation Summary Results — Simulation 1

Worker Plfterporare > 130) 90% CI 95%C1 Mean _ Median  Mode
Low High Low High

Worker | 0.0000 6642293 88.76973 64.51248 91.44171  77.12465  76.74997 76.25
Worker 2 00185 9385262 125052 91.19376 128.7124  108.6394  108.2715 108.25
Worker 3 02553 106.1538 142.1947 103.1265 146.5288 1233331  122.7541 121.25
Worker 4 0.0000 53.34025 7193241 51.90571  74.2143  62.13377  61.80065 60.25
Worker 5 0.0000 7536018  100.801 7330483 103.7646 87.52919  87.11573 86.25
Worker 6 09717 133.1064 179.1255 1293266 184.1964 155433  154.9561 150.25
Worker 7 0.0000 67.60246 91.04797 6574694 93.72037  78.78893  78.39056 77.25
Worker 8 0.0000 7596121 101.4618 73.82028 104.4091 88.01604  87.59079 87.25
Worker 9 0.4020 1104973 147.6873 107.3347 152.1216 127.9384  127.2589 124.25
Worker 10 02824 1068612 143.1709 103.6013 147.4745 1241411 1236203 125.25
Worker 11 0.0000 59.44985 79.83156 57.78559 81.94631  69.18085  68.89727 68.75
Worker 12 00000 5573752 74.84502 54.06075 76.96428 64.90277  64.66764 63.75
Worker 13 00010 84.68986 113.1525 82.36906 116.6028  98.1874  97.81163 98.25
Worker 14 0.1787 103.6231 138.6366 100.8463 1425568  120.4003  119.8748 118.75
Worker 15 0.0698 9845825 131.9492 9561997 1361275 1144943  113.9588 110.75

As mentioned previously, the results here are rather different from the results obtained
Krishnamoorthy and Mathew (2002). Using their method it seems not to be possible to
investigate the mean exposure levels of individual workers. For this reason, they found
the probability (or tested the hypothesis) that (100 X A)% of these workers had exposure
levels in excess of a certain pre-defined threshold. However, using the Bayesian
methodology as presented above, it is clear that one can examine the probability that a
specific worker’s exposure levels exceed a pre-defined threshold. The above table also
provides credibility intervals for each worker’s mean exposure levels. For example, it is
evident that the mean exposure level for Worker 6, specifically, is considerably higher
than that of his/her fellow workers and the probability that his/her exposure levels are in
excess of 130 is in excess of 90%. So using this Bayesian framework we are able to

examine the exposure of each worker.
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7.3.2 Simulation 2

As mentioned previously, the method given by Krishnamoorthy and Mathew is an overall
representation of the mean exposure level for each worker and since it does not
incorporate the actual row means from the data it is somewhat different to the simulation
mentioned previously, which offers the opportunity to look specifically at an individual
worker. In this simulation the Bayesian equivalent of this “overall” method is described:

The quantity we are interested in simulating is again

2

Oe
u+ 1'-+—)
:uxi = e( ! 2

- 0-2
1. LetA=pu+ 1; + 7'3
2. The conditional distribution of 1 is as follows: A|Y,71;, 02,02 ~N(}7.. + T, +

0% 0%+ no? )

2’ nk

3. To simulate a value from the unconditional distribution, A]¥, we do the following:
a. Simulate a pair of (62, 02) values from their joint posterior distribution as
follows:

i. Simulate A from a ¥ , distribution where v; = k(n — 1) and using

SSE

this calculate: o5 = =

ii. Simulate § from a X12/2 distribution where v, = k — 1 and using
this calculate: 62 + no? = = = g3,

2 a%,—a}
iii. Calculate o7 = =—
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iv. If a negative value is obtained in step (iii) we disregard both o2

and o2 and repeat steps (i) - (iii) until we find a pair where both
are positive.

b. Simulate a 7; observation. Since 7; ~ N(0, %) this distribution will be the
same for all the workers and therefore we have a “general” mean exposure
over all workers, as in Krishnamoorthy and Mathew (2002).

2 .2

c. Using the values simulated in a) and b), ie. 1,0, 07, simulate an
observation (4) from the normal distribution described in Step 2..

d. Calculate pu,, = e,

e. Repeat #a to #d I (= 1000 or 10000) times. So now we will have a
1 X | matrix representing an overall picture for all workers.

4. For the data (i.e. the 1 X | matrix of simulated observations mentioned in sub-
step e) above):
a. Draw up a histogram - so there will be only a single histogram

representing an overall picture for all workers.

# Simulated Values > OEL
L

b. Calculate P(u,, > OEL) =

Assume, for the purposes of illustration that OEL = 130 and furthermore take [ =

10000. In this case, the following results were obtained:
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Figure 41: Overall Mean Exposure per Worker
o —
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*Probability that mean exposure > OEL (130) = 0.1762
'90% Bayesian Confidence Interval: [56.5422; 166.8839]
'95% Bayesian Confidence Interval: [49.8624; 189.4470]
"Mean = 102.2833; Median = 96.4365; Mode = 83.25

The following table represents the results from the above graph:

Table 93: Simulation Summary Results — Simulation 2

Worker P(Uexposure > 130) 90% CI 95%Cl1 Mean Median  Mode
Low High Low High

All Workers 0.1762  56.5422 1668839  49.8624 189.4470  102.2833 96.4365 83.25

We can see that the credibility intervals for the overall mean exposure per worker are

rather wide, even though the mean values are well below the OEL.

Krishnamoorthy and Mathew (2002) also simulate the following statistic (and for the

purposes of comparison will be analysed using the Bayesian methodology developed

previously):
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1 2
T=u+ Zy_40, + Eae

where A 1s a suitably chosen parameter between 0 and 1 and Z is the cumulative
distribution function of the standard normal distribution. Using a specific value of OEL

the following hypothesis can be tested:

1
Holﬂ.'*‘ Zl—AO-T + EO'QZ = ln(OEL)

against the alternative hypothesis

1
Hl:‘u.+ ZI—AU‘E + 50'3 < ln(OEL)

For example, if our choice of 4 is 0.05 then essentially we are testing (one-sided) whether
at least 5% of the workers have mean exposure levels in excess of the chosen OEL. The
OEL is chosen to be a clinically relevant value. The specific choice of OEL is not the
primary concern of this research, but primarily a demonstration of the Bayesian

methodology.

In order to replicate the methodology of Krishnamoorthy and Mathew from a Bayesian
perspective the following simulation study was undertaken for a range of both OEL and
A values:
L LetT = p+ Zy_s0, + 202
2. To simulate a value of T we do the following:
a. Simulate a pair of (62, 02) values from their joint posterior distribution as
follows:

i. Simulate 1 from a x2 , distribution where v; = k(n — 1) and using

: SSE
this calculate: o5 = —
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ii. Simulate § from a xf,z distribution where v, = k — 1 and using

. SSt
 this calculate: 62 + nof = == o

2 2
0120,
iii. Calculate g7 = 22—

iv. If a negative value is obtained in step (iii) we disregard both g2
and o7 and repeat steps (i) - (iii) until we find a pair where both
are positive.

Using the values simulated in a) i.e. 62, 02, simulate u from the following

- 2 2
normal distribution u|Y, 02,02 ~ N (Y.. ,%)

Calculate T = u+ Z,_,0, + %O’ez, where Z is a standard normal

variable and Z;_4 is the inverse of the cumulative distribution function.
Repeat #a to #c | (= 1000 or 10000) times. So now we will have a

1 x I matrix.

3. For the data (i.e. the 1 X [ matrix of simulated observations mentioned in sub-

step d) above):

a.

b.

Order the observations from smallest to largest.
Taking a = 0.05 find the 100(1 — a)th percentile.
For a specific choice of OEL determine whether In(OEL) falls in the

critical region (i.e. test the hypothesis described earlier).

This procedure was performed for several choices of OEL (= [130; 140; 150; 160; 170;
180]) and for several choices of A (=[0.1; 0.05; 0.025; 0.001]).

The following results were obtained:
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Figure 42: Simulated T-values for A = 0.1 — Simulation 2
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"100(1 — a)th percentile = 5.1807
"In(130) = 4.8675
"In(140) = 4.9416
‘In(150) = 5.0106
‘In(160) = 5.0752
In(170) = 5.1356
“In(180) =5.1930
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Figure 43: Simulated T-values for A = 0.05 — Simulation 2
140 ] = i ] T T T T E
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'100(1 — a)th percentile = 5.3389
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Figure 44: Simulated T-values for A = 0.025 — Simulation 2
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Figure 45: Simulated T-values for A = 0.001 — Simulation 2
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*100(1 — @)th percentile = 5.9388

So for the simulated “Styrene Exposures” we can, by way of example arrive at the
following: for the first figure we can say that 10% (or more) of the workers had exposure
values in excess of 170 (95" percentile = 5.1907 and In(170) = 5.1358) whereas we
cannot say that 10% (or more) of the workers had exposure values in excess of 180

(In(180) = 5.193) at a 5% significance level.
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7.3.3 Simulation 3

We now shift our attention to the overall mean exposure, i.e. the mean exposure for all

the workers.

So we now define the overall mean exposure as:

<#+ a§+a,2)
Hy = € 2

To simulate mean overall exposure levels we do the following:

1.

oé+o2

Define g = pu + —

Now, B|Y,02,62 ~N (}_’.. +

distribution.

o3+0% o2+ no?

ST ) This is the conditional posterior

To simulate an observation from the unconditional posterior distribution, 8| ¥, we

can do the following:

a. Simulate a pair of (62, 62) values from their joint posterior distribution as

follows:

1.

11

1il.

1v.

Simulate A from a x2 , distribution where v; = k(n — 1) and using

SSE

this calculate: g5 = 7

Simulate § from a X1212 distribution where v, = k — 1 and using
this calculate: 62 + no? = = = g

2 2
012—0¢

Calculate o2

If a negative value is obtained in step (iii) we disregard both o2
and o and repeat steps (i) - (iii) until we find a pair where both

are positive.
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Using this pair of (62, 62) values and the data simulate a 8| Y. Since we
have the variance components we can plug them in and simulate the

values.

Calculate y, = e,

Repeat sub-steps a) to ¢) [ (= 1000 or 10000) times. So now we will
have a1 X | matrix representing simulated overall mean exposure levels.
4. For the data (i.e. the 1 X [ matrix of simulated observations mentioned in sub-
step d) above):
a. Draw up a histogram - so there will be only a single histogram

representing all simulated mean exposure levels.

# Simulated Values > OEL
l

b. Calculate P(e® > OEL) =

Assume, for the purposes of illustration that OFL = 130 and furthermore take [ =

10000. In this case, the following results were obtained:
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Figure 46: Overall Mean Exposure — Simulation 3
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*90% Bayesian Confidence Interval: [88.3341; 117.9463]

'95% Bayesian Confidence Interval: [85.8763; 122.4390]
"Mean = 101.6887; Median = 100.9088; Mode = 97.75

Table 94: Simulation Summary Results — Simulation 3
Worker P(“expasure >130) 90% CI

95%CI Mean Median  Mode
Low High Low High

All Workers

0.0091  88.334]1 117.9463  85.8763 122,439 101.6887 100.9088 97.75

Thus, the overall mean exposure can be easily simulated. The above distribution is

substantially narrower than the overall mean per each worker as discussed in the relevant
simulation study.
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7.3.4 The Geometric Mean

In finance particularly there is an abundant number of settings where one could have a
random effects model and where the data are lognormally distributed. Consider the
following as two elementary examples:

1. You have a sample of k insurance companies operating in the insurance industry
and for each of these companies you have n years worth total claims data. In this
case the “exposure” is not so much a biological exposure or threshold that is of
risk to the company, but rather a financial risk. Larger claims for an individual
company result in a larger chance of bankruptcy or liquidity shortages (analogous
to death or disability in the previous sections).

2. A sample of k investment portfolios is drawn and for each of these investment
portfolios there are n periods (annual, quarterly or even monthly) worth of returns
data for each investment portfolio. In this case a larger return is of value to a

portfolio manager, even though it is not a negative characteristic.

The geometric mean is often of interest in these situations, since it minimizes the effect of
outliers. Whereas the arithmetic mean is very sensitive to outliers, the geometric mean is
less so. In addition to these advantages financial institutions calculate the geometric
mean for portfolios since it is particularly suited to percentages and the actual amount
invested does not have to be known. In addition to this, many actuarial texts (not
mentioned here) reveal that returns and interest rates generally follow a lognormal

distribution. Thus, the possibility of applying the method mentioned before to the
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geometric mean is plausible. The data for these situations may diagrammatically be

arranged as:

Table 95: Data Representation — Insurance Claims

Annual Insurance Claims / Portfolio Returns
Companies / 1 2 n Company /
Investment Portfolio Means
Portfolios
1 X11 X12 Xin X,
2 X, X2 Xon X,.
k X1 Xy Xyn X.

Given the previous discussion the extension of the Bayesian method to the geometric
mean exposures will be applied to the simulated “styrene exposures”, but with the

knowledge that the application may not be limited to just this kind of biological setting,.

The following is an introductory definition of the geometric mean (hereafter referred to

as “GM”) and a few derivations:

.\
GM = T _
- (xf1xf2 ...an) - xfj
j=1
(7.9)
and as before the XfioJ =1,..,m have a lognormal distribution.
The expected value can be derived as:
L\ a 1
1 lyn -
E(GM) =E l_[xfj =E(e"r1e"r2 ... ¥rn) I (enZFlyff) =E(e'r)
j=1
(7.10)

Now,
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Ye |, 0f,08 ~ N(w, 07 + 0)

and

no? + o?
n

Ylu 02,08 ~N (u,

Therefore,

no?+o?

E(e7r) = o5 = om)

(7.11)

So we are interested in the above mean exposure for the f-th (future)
worker/company/portfolio.

Using the results obtained in Section 7.2 it is a simple matter to simulate mean exposures
from the posterior distribution, given that the prior distribution applied is the non-
informative prior distribution given by Box and Tiao (1973). The procedure for

simulating is as follows:

The prior distribution is:
p(,0i,0f) x a;%(0¢ +nof)™?
This was the same prior as used in previous simulations. So to simulate u, (GM) values

do the following;:

2 2
1. Define f = p+ 2229

2n

o2+no? %+ no?
2n ' nk

2. Now, B|Y,0%,02~N (17.. + ) This is the conditional posterior

distribution.
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3. To simulate an observation from the unconditional posterior distribution, 8| Y, we

can do the following:

a. Simulate a pair of (62, 62) values from their joint posterior distribution as

follows:

.

1i.

1v.

Simulate A from a x5, distribution where v; = k(n — 1) and using

: SSE
this calculate: 62 = —

Simulate § from a )(12,2 distribution where v, = k — 1 and using
this calculate: 2 + no? = = = g2,

2 2
0120,
Calculate g2 = —12—=

If a negative value is obtained in step (iii) we disregard both o2
and o and repeat steps (i) - (iii) until we find a pair where both

are positive.

b. Using this pair of (62, 02) values and the data simulate a 8| Y. Since we

have the variance components we can substitute them in 2) above and

simulate the values.

c. Calculate u, = e®.

d. Repeat sub-steps a) to c) [ (= 1000 or 10000) times. So now we will

have a 1 X! matrix representing simulated overall geometric mean

exposure levels.

4. For the data (i.e. the 1 X I matrix of simulated observations mentioned in d)

above):

a. Draw up a histogram.
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# Simulated Values > OEL
l

b. Calculate P(e®) > OFL) =

The following results were obtained:

Figure 47: Geometric Mean Exposure - Box and Tiao Prior Distribution
80—
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Mean Exposures
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Probability that mean exposure > OEL (130) = 0.0047
’90% Bayesian Confidence Interval: [84.6968; 113.2535]
'95% Bayesian Confidence Interval: [82.5039; 118.1787]
‘Mean = 97.6988; Median = 96.9063; Mode = 96.25

.
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Table 96: Simulation Summary Results — Geometric Mean

Worker P(Uerposure > 130) 90% CI 95%CI Mean Median  Mode
Low High Low High

All Workers 0.0047 84.6968 113.2535  82.5039 1181787  97.6988 96.9063 96.25

Other Prior Distributions

As before, in this section we will use the method described by Datta and Ghosh (1995) to

obtain Probability-Matching priors for the parameters of the lognormal distribution.

Probability-Matching Prior Distribution

nat+o3

In this section the Probability-Matching prior (PMP) will be derived for e(“Jr 2n ) and

this will be compared to the Box and Tiao (1973) prior as well as the Reference prior.

The Probability-Matching prior is

1
2 2 2 2y-1 ____Zn :
7-[1(0) = nl(lu'lo-‘flo-e) ¢ (nUT + O'e) 1+ (na-Z + 0-2)
T e

(7.12)
because

5 (OGO} + 55 1(0)01(0)) + 52 ((6)35(8)} = 0+0+0=0.

The proof is given in the appendix to this chapter.

In addition,

1
2 2 -2 2 2\—-1 —._.Zn 2
m,(0) = my(u,0f,08) x o7%(nof +02)7 1|1+ (no? + a2)
T e
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(7.13)
will also be a Probability-Matching prior.

It is interesting to note that if we substitute n = 1,062 = 0 and 62 = o into (7.12) then

it follows that

2

1

which is the same as the Probability-Matching prior derived in Chapter 3, Theorem 3.2.

Reference Prior Distribution

na%+a£)

In this section the Reference prior will be derived for e(u 2n

1
1 4 n )E 1
2(no? +02)  (ne? + 02)?

1
_1/1 n 2
x (no? + o?) 2<—+ —)

2 (ne?+d?2)

1 2n 2
« (no + ag)-z<1 n —>

(no? + )

- Pa(l,02,08)  (O)[@]™

2
O

N

|
|

o

This result is once again similar to the Reference prior distribution derived in Chapter 3,

Theorem 3.1. The proof is given in the appendix to this chapter.

- 300 -




Appendix to Chapter 7

Results of Simulation Studies

Figure 48: Simulated Mean Exposures for the Worker 1
i)
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"Worker 1

"Probability that mean exposure > OEL (130) = 0.0000
'90% Bayesian Confidence Interval: [66.4229; 88.7697]
'95% Bayesian Confidence Interval: [64.5125; 91.441 7]
‘Mean = 77.1247; Median = 76.74997; Mode = 76.25
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Figure 49: Simulated Mean Exposures for the Worker 2
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"Probability that mean exposure > OEL (130) = 0.0185
:90% Bayesian Confidence Interval: [93.8526; 125.052]

95% Bayesian Confidence Interval: [91.1934; 128.712]
'Mean = 108.6394; Median = 108.2715; Mode = 108.25
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Figure 50: Simulated Mean Exposures for the Worker 3
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"Probability that mean exposure > OEL (130) = 0.2553
'90% Bayesian Confidence Interval: [106.1538; 142.1947]
'95% Bayesian Confidence Interval: [103.1265; 146.5288]
‘Mean = 123.3331; Median = 122.7541; Mode = 121.25
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Figure 51: Simulated Mean Exposures for the Worker 4
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*Probability that mean exposure > OEL (130) = 0.0000
*90% Bayesian Confidence Interval: [53.3403; 71.9324]
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'95% Bayesian Confidence Interval: [51.9057; 74.2143]
"Mean = 62.1338; Median = 61.8007; Mode = 60.25
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Figure 52:Simulated Mean Exposures for the Worker 5
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"Worker 5

"Probability that mean exposure > OEL (130) =0.0000
'90% Bayesian Confidence Interval: [75.3602; 100.801]
*95% Bayesian Confidence Interval: [73.3048; 103.765]
'Mean = 87.5292; Median = 87.1 157; Mode = 86.25
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Figure 53:Simulated Mean Exposures for the Worker 6

Worker 6
*Probability that mean exposure > OEL (130) =0.9717

'90% Bayesian Confidence Interval: [133.1064; 179.1255]
‘95% Bayesian Confidence Interval: [129.3266; 184.1964]

‘Mean = 155.433; Median = 154.9561; Mode = 150.25
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Figure 54:Simulated Mean Exposures for the Worker 7
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*Probability that mean exposure > OEL (130) =0.0000
'90% Bayesian Confidence Interval: [67.6025; 91.0479]
"95% Bayesian Confidence Interval: [65.7469; 93.7203]
*Mean = 78.7889; Median = 78.3905; Mode = 77.25
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Figure 55:Simulated Mean Exposures for the Worker 8§
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*Probability that mean exposure > OEL (130) = 0.0000

S

'90% Bayesian Confidence Interval: [75.9612; 101.4618]
'95% Bayesian Confidence Interval: [73.8203; 104.4091]
‘Mean = 88.0160; Median = 87.5908; Mode = 87.25

-308 -




Figure 56:Simulated Mean Exposures for the Worker 9
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“Probability that mean exposure > OEL (130) = 0.4020
"90% Bayesian Confidence Interval: [110.4973; 147.6873)
'95% Bayesian Confidence Interval: [107.3347; 152.1216}
"Mean = 127.9384; Median = 127.2589; Mode = 124.25

-309 -




Figure 57:Simulated Mean Exposures for the Worker 10
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"Probability that mean exposure > OEL (130) = 0.2824

*90% Bayesian Confidence Interval: [106.8612; 143.1709]
95% Bayesian Confidence Interval: [103.6013; 147.4745]
"Mean = 124.1411; Median = 123.6203; Mode = 125.25
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Figure 58:Simulated Mean Exposures for the Worker 11
1200

1 I I I 1

Count

100
Mean Exposures
R o
Worker 11

*Probability that mean exposure > OEL (130) =0.0000
'90% Bayesian Confidence Interval: [59.4499; 79.8315]
"95% Bayesian Confidence Interval: [57.7856; 81.9463]
'Mean = 69.1806; Median = 68.8973; Mode = 68.75
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Figure 59:Simulated Mean Exposures for the Worker 12
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“Probability that mean exposure > OEL (130) = 0.0000
*90% Bayesian Confidence Interval: [55.7375; 74.8450]
'95% Bayesian Confidence Interval: [54.0608; 76.9643]
"Mean = 64.9028; Median = 64.6676; Mode = 63.75
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Figure 60:Simulated Mean Exposures for the Worker 13
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'95% Bayesian Confidence Interval: [83.3691; 116.6028]

"Mean = 98.1874; Median = 97.8116; Mode = 98.25
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Figure 61:Simulated Mean Exposures for the Worker 14
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Figure 62:Simulated Mean Exposures for the Worker 15
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*Probability that mean exposure > OEL (130) = 0.0698

"90% Bayesian Confidence Interval: [98.4583; 131.9492]
'95% Bayesian Confidence Interval: [95.6199; 136.1275]
*Mean = | 14.4943; Median = 113.9588; Mode = 110.75
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Derivation of the Probability-matching Prior

The Fisher Information Matrix for the above parameters is given by

kn

B — 0 0
no? + o2
kn? kn
F(u,02,0%) = F(0) = - -
(W oz, 02) 6) 0 2(no? + 02)? 2(no2 + 02)?
0 kn k(n—1) N k
2(no? +02)? 2(02)? 2(no? + 02)?l
and the inverse is found to be
F~'(u,0?,02) = F71(8)
o2 + o2 0 0
kn
B 0 2{(n — VD(no? + 02)* + (62)*} —2(cd)?
B knZ2(n —1) kn(n — 1)
0 —2(ad)? 2(0)* |

kn(n—-1) k(n—1) ]

1
We are interested in the Probability-Matching prior for t(8) = e** ("% +9%) = B

where B = + f;(narz + 02). |

Therefore,
at(0) 5
ou
o) 1 ,
do? 2
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Now it is possible to find

vi(6) =

at(@) 0dt(8) at(e)]_ea[l 1 1
ou do2  do2 | 2 2n

Ve()F(8) =

[(nar +02) (n-1)(no? + 02)? 0]
kn kn?(n —1)

Vi(@)F~1(0)V,(0) = 28 [(narz + Uez) (no? + 02)? ]

2kn?

_ 28 no? + o2 1+ (no? +02)
kn 2n

1 1
no? + aez>2 [1 N (no? +c?) |2

{Vi(O)F _1(0)Vt(9)}% = eB( o 2n

[(nar2 +02) (no?+ o2)? 0]

¢'(6) = kn____kn® = [((8) &(8) :(8)]
no? + o2\2 1+ (no? +a2) |2
() [+ o]

Now since {; (@) does not contain u and {53(8) is zero, we are only interested in {,(8):

(no? +2crez)2
$,(8) = —kn

nof + o (na? + o2)
(—k ) [1 T m

1
2

1

W (TlO’TZ + O'éz)z

(M

1
2n ]2
(naf + a2)

V21 (1)

(no? + o2) [1 +

1
(kn)z
= (no? + o

kn?v/2n

2n

(na? + a2)
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Therefore, the Probability-Matching prior is

1
2 2 2 2y-1 _____.Zn :
1 (0) = my(u,0f,08) x (nof +a) 1+ (no? + a2)
T e

Derivation of the Reference Prior

We are interested in the Fisher Information Matrix for t(8), 62 and o2. Since t(8) =

1
et m(9F498) 4t follows that U+ %(nar2 +02) = In(t(6)).

wou=In(t(9)) - %(narz +07)

Therefore,
op 1 op 1 op 1
0t(@)  t(@) ' dc2 2’ dc?  2n
Let
ou du du
ot(@) do? do? 1 1 1
Ae a(u,02,02) _ do? dg? 0do? _lt® "2 "z
0(t(8),02,02) o0t(08) do? do? 0 1 0
dc? 0cd? 090? 0 0 1
0t(@) do? 0do?]

The Fisher Information Matrix for t(8), 62 and ¢ is
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F(t(6),07,02) = A'F(u,02,02)A

-1 kn 0 0
T0) 0 0 nof + o
_ 1 kn? kn 4
1=z 1ol % SGozyery 2(noZ + 022
1 0 1 0 kn k(n-1) k
- 2n 2(no2 +c2)?  2(c2)? 2(na? + o2)?
kn
@+ o) 0
—kn kn? kn
B 2(ne + o2) 2(no? + 02)? 2(no + 02)? A
-k kn k(n-1) k
L 2(no? + 02) 2(no? + c2)? 2(02)? 2(no? + a2)?]
kn —kn —k
t2(0)(no? + o) 2t(@)(no? + o2) 2t(0)(no? + a2)
—kn kn? kn kn k
= 12t(0)(noZ + 07) 2(nof + oD% | 4(no? + 0B 2o + 02)% | 4(no? + 02)
-k kn k k(n-1) k k
260)(noZ + 07) 2o +02): | moi +0f) 20007 | 2oz + o2 | an(no? + o) |

We shall derive the Reference prior distribution for the ordering [t(8), (62, 62)], which

implies that t(@) is the most important parameter and (g2, 62) is of the same importance.

By re-arranging we can write the Fisher Information matrix as

F. F.
Pe®).ctod) = [0 12

where

F. = kn
17 2 (e)c

_ —kn -k
Fip = [Zt(e)c 2t(8)C

—kn

2t(8)C
—k

2t(8)C
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kn®*  kn kn k
Fo= |2C° 4C 2C*  4C
22 kn kK k(n-1) & k
—t— —— + —+
2C*  4C 2(a2)? 2C% ' 4nC

where C = (no? + ¢2).

hy = Fy3 — FipF55'Fyy

1
» pr(t(8)) o hi = [¢(6)] "

and
h, = |Fyy| = kn(l+ )k (1 + 1)+ kn<1+n)k(n—1)
o2t oc\2 " c/2c\an T ¢/ T 2c\2 2(a2)?
76+ DG )
c/2C
() G+ D) - () (3 + e
B C C 4C
B kzn(n—l)( N ) 1
- 4C (62)?
Therefore,
1 2 3 2
= k‘n(n—1)\2/1 n\z 1
2 - —_— —_
hy = ( 4 > (zc+ 62) o?
1 l1 1 l1
2 n 2
. 2 2 4 Y o -
“ Prloz, 07) (ZC C? ) o2 (2(naf+cf§)+ (no? + o? 2) o’
and

1
1 4 n )2 1
2(ne? +02)  (no?+02)?) a2

- pa(t(0),0%,03) o [(@)]™
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Now,

1
t(B) - e/,H- ﬁ(na%—og)

and

d 1 2452
— Htso(no?+ad) _
dt(9) e «(6)

1
2

1
a7

1
Palh o 2) % OO (5o o) 7

1
1 21
I 2 + 2 —+ —_
(nor U"’) 2 (nd? +az) ) a2

1

1
o

x (no?+o%)72 (1+ (no? +0_2) )
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CHAPTER 8

Random Effect Model: Unbalanced Case

Introduction

In this chapter the extension to the balanced case, presented in Chapter 7, is given. In
many instances the assumption of balanced data (for example, equal observations for a
set of companies or the same number of styrene exposures for a group of different
workers) is overly simplistic. Unbalanced data can arise due to a number of different
factors and in this case the Bayesian methodology is similar to the previous chapter,

however additional derivations are required.

Again, this situation has been approached by some authors (e.g. Krishnamoorthy and
Guo, 2005), but the methods proposed involve generalized p-value approaches. The
problem statement is nevertheless the same: we would like to estimate the proportion of
exposure measurements exceeding a pre-specified limit or perhaps the probability of an
insurance claim exceeding a pre-specified boundary. According to Krishnamoorthy and
Guo (2005) the one-way random effects model incorporates both within and between
sources of variation in measurements. Since we are dealing with data that have a
lognormal distribution (i.e. the logged exposure levels are normally distributed) we are
interested in the overall mean effect and the two variance components in the model.
Once again, for a complete description of the methods and medical applications of this
method please refer to Krishnamoorthy and Guo (2005) as well as the texts by Rappaport,
Kromhout and Symanski (1993), Heederik and Hurley (1994) and Lyles, Kupper and

Rappaport (1997).
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In this chapter we extend the discussion regarding the one-way balanced random effects

model to the unbalance case. Particularly, this will be approached from the Bayesian
perspective.  In order to complete the Bayesian specification of the model prior
distributions have to be derived and this forms a large part of this chapter. The selection
and determination of non-informative priors in multi-parameter settings is not an easy
task and it has been observed that the selection of a specific prior could have
unexpectedly dramatic effects on the posterior distribution. In this chapter, the derivation
of suitable priors will be considered, where the Reference prior (Berger and Bernardo,
1992) is one such option and the second is the Probability-Matching prior. A simulation

study will also be presented to show the effectiveness of the proposed prior distributions.
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8.1 Description of the Setting

The setting for this chapter is nearly identical to the setting described in Chapter 7 and
will not be repeated at length here. Essentially, we have the following:
e Several authors have proposed the use of the one-way random effects model to
model exposure levels, even insurance claims.
¢ The natural logarithm of the data is normally distributed.
e Between- and within source of variability are accounted for.

e A pre-specific exposure level (OEL) has to be selected.

The only significant difference, conceptually, is that we are dealing here with the
unbalance case, e.g. not all workers have the same number of observations. Even though
this is a minor conceptual change all prior distributions and the derivation thereof will be
considerably different. So in this case we have the following situation (diagrammatic

representation):

Table 97: Representation of Shift Exposure Data

Shift-Long Exposure Measurcments
Workers 1 2 n; Worker Means
1 X11 X12 X1n, )fr
2 Xz1 X22 X2n, X,
k Xk1 Xi2 Xkny X

Therefore, there are n; measurements for the i-th worker. The overall mean of all the

data can be represented as X.. The X; ; are lognormally distributed and therefore Y;; =
In (X i j) are distributed normally. The assumed one-way random effects model is:

Yij =pu+ 17+ € i=1,.,kj=1,..,n;.
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where p is the general mean, 7; ~ N(0,072) and e;; ~ N(0,02). All the random variables

are independent of each other and here t; represents the random effect due to the i-th

worker.

According to Krishnamoorthy and Guo (2005) let
0.2
txy = E(Xyjlri) = E(exp[Yy]lv,) = exp (“ + 1+ e/2>

and py, is the mean exposure for the i-th worker. Let § denote the probability that u,,

exceeds the OEL. Thus,

2
In(0EL) — p— ¢/,

6 = P(uy, > OFL) = P(In(uy,) > In(0EL)) =1 - &
O
where ®(.) denotes the c.d.f. of the standard normal distribution. The kind of hypotheses
that are going to be considered here are:

Hy:8 2AvsH:0< A
where A is a specific quantity that is usually small, according to Krishnamoorthy and Guo

(2005).
As mentioned previously, Krishnamoorthy and Guo (2005) apply a technique based on

generalized confidence limits and generalized p-values in order to test the above

hypothesis. In this chapter we will be applying a Bayesian methodology to the problem.
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Table 98: Simulated “Styrene Exposures”

been deleted, resulting in an “unbalanced” design):

Observations / Measurements

The following is an example data set of simulated “styrene exposures” that will serve as a

basis for discussion in this chapter and will help us define and illustrate the objectives of

the chapter (it is the same data set as in Chapter 7, however, random observations have

Worker 1 2 3 4 5 6 7 8 9 10
| o56| 647 | 509 | 874 | 823 | 1499 | 334 | 775| 708 | 609
2| 574 | 823 | 1742|1078 | 985 120.0 | 1215 | 956 | 92.8 | 1330
3| 8482149 | 798| 169.0 | 1499 | 164.0 | 848 | 84.8 | 1144
41 687 | 77.5| 541 | 413 | 647 | 465| 591 | 452 | 54.1
511144 | 1015 | 494 | 1015 | 900 | 525 | 1144 | 708 | 687 | 87.4
6| 87.4 | 2423 | 1455 | 133.0 | 1742 | 214.9 | 137.0 | 120.0 | 169.0 | 1795
7| 541 752 848 557 | 900| 708 | 60.9|101.5| 647 | 956
8| 647| 956| 574 | 956 823 | 1015| 928 | 60.9 | 1015 | 985
911370 | 2085 | 928 | 1592 | 928 | 823 | 90.0

10 1252 | 874 1215 | 900 | 1545 | 107.8 | 117.9 | 179.5 | 129.0 | 129.0
M1 425| 730 509 | 591 | 49.4| 667

12| 574 687 59.1| 647 | 557 | 928 | 425

311015 | 1499 | 1111 | 775 | 1111 | 848 | 647 | 628

41 687 | 1015 | 1111 | 1795 | 823 | 1742 | 1742 | 87.4 | 1455 | 1144
5| 1215 | 775 | 1455 | 1742 | 775 | 92.8 | 159.2 | 129.0 | 1046 | 775

corresponding Y;; = ln(Xl- ]-):
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The above table represents the X;; data points and the

following table represents the




Table 99: Log of Simulated “Styrene Exposures”

Observations / Measurements
Worker 1 2 3 4 5 6 7
1 456 | 447 | 393| 447 | 441 501 | 3.51

21 405| 441| s516| 468| 450 | 486 48

3| 444 37| a38| s513| 501 51| 444

4| a23| 435] 399| 372| 417| 384| 408| 381 | 399

51 474 a2 39| 462 45| 396 | 474| 438| 423| 447
61 447| 549| 498| as89| s516| 537| 492| 48| 513| 519
71 399| 432 444| 402 45| 426 4.11 462 | 417| 456
8| 447| as6| 405| a56| 441| 462| 453| 411| 4e2| 459
91 492| 534 453 s507| 453| 441 45

101 483| 447 4.8 45| 504 | 468 477 519 | 4.86 | 4.86
M| 375| 420| 393| 408 3.9 42

121 405| 423 408| 417| 402| 453| 375

B 462| 501| 471| 435 471 444 | 417 | 414

1 423 462| 471| 519 441 516 | 516 | 447 | 498 474

15 48| 435| 498| s516| 435| 4a53| s507| 486 | 465] 435
From these data we have the following definitions and associated results:

k =15

K
v1=Z(ni—1);v2=k—1
i=1

n;
1 1
Y = =Y. = ——Z Y;;=[434748404450434448494.04.145484.7)
j=1

- 327 -




k N
SSe = vimy = Z Z(Yij - Y’L)Z = 10.492 = "within workers sum of squares"

i=1 j=1

k
§S: = vom, = Z n; (Y. — ¥.)2 = 11.885 = "between workers sum of squares"
i=1

8.2. Bayesian Methodology

As mentioned previously, the basis for analyzing any situation from a Bayesian
perspective is the following result:

Posterior o Likelihood X Prior
Given the setting described earlier we are able to represent the combined distribution (or
likelihood function) as follows:

1. 1 1 1
L(u,t,62,02|Y) = (2mo2) 2 exp {— 507 Y-um1-zZo)'¥Y - p1 - Z‘t)} 2no2) 2*exp {— FIIT}
e

T

where
= 2?:1 ni
T'=[T1 T2 Tk ]
u
ui= |
U
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( 1, O 0
1, 0 0
1,, O 0
0 1, 0
0 1, 0

Zﬁ Xk — :

0 1, 0
0 0 1,
0 o0 1,
0 0 1,

and

Y = [}’11 Yiz = Yin, " Yka Yi2 yknk]

Now, we already know, from the specification of the random effects model, that
7, ~N(0,02) withi = 1,2, ..., k. Since this is the case we would therefore like to define

prior distributions for £, g and 2. For the sake of convenience though we will define

. _ ot
F=—=
aé

and then define prior distributions for u, o2 and 7 instead.

In order to derive prior distributions for this though we first need to derive the integrated

likelihood function, L(y, 62, 62|Y).
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Theorem 8.1

The integrated likelihood function, L(u, 62, a?|Y) is given by the following:

k 1 k

1 1 2 1|vym n (¥ — w)?

(W, 0¢,0¢Y) (0¢) L | n;02 + o2 exp 2| o2 = nio? + of
i= t=

(8.1)

Proof: The proof is given in the appendix to this chapter.

2
Now, if 7 = % then it follows that
e

k

exp 1 vem +Zni@i-—#)z
P17 gz |1 nF + 1

€ i=1

k

L 02,710 @[ [ (

i=1

N =

|

(8.2)

nif‘ + 1)

We can now prove the following theorems:

Theorem 8.2

niJTZ + Uez>

Vilu, 02,02 ~N <u,
n;

Proof: The proof is given in the appendix to this chapter.

Theorem 8.3

For the model:

Y=ul+Zt+ €
where e ~ N(0,021;) and T ~ N(0,021,), then the Fisher Information Matrix for the

parameters (u, 7, 62) is given by
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k

lz n?

2 e (1 + f‘ni)z

202 Z 1+ 7n;
i=1

Proof: The proof is given in the appendix to this chapter.

Theorem 8.4

For the model:

Y=ul+Zt+ e
where e ~ N(0,02I;) and T ~ N(0,0l,), then the Probability-Matching Prior for the
parameters (u, 7, 62) is given by

1 k 5 k 232
n.

P ’ ~l 2 “ Y —l -

.7, 02) o2 Zl (1+7n;)? <Z=1 1+ 7n;

(8.3)

Proof: The proof is given in the appendix to this chapter.

Theorem 8.5.1

For the model:

Y=ul+Zt+ e

where e ~ N(0,021;) and T ~ N(0,02l}), then the Reference Prior for the parameter

groupings (4, 7, 02), (7, u, 02) and (7, 02, ) is given by
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1
2

2

k k
Pr, (0.7, 08) & = Z:(1+rn)2 B <le+rnl)

(8.4)

This is coincidentally the same as the Probability-Matching Prior and therefore the

Probability-Matching Prior is also the Reference Prior.

Proof: The proof is given in the appendix to this chapter.

Theorem 8.5.2

For the model:

Y=pul+Zt+ e

where e ~ N(0,0Z1;) and T~ N(0,02l,), then the Reference Prior for the parameter
groupings (u, 02, 7), (0,1, 7) and (62, 7,u) is given by

k
1 n?
P ’ 2 ’ 7 x Y —l
R, (.u O 7") O_ez {lé:l (1 i f”ni)z }

1
2

(8.5)

Proof: The proofis given in the appendix to this chapter.

At this stage it is appropriate to illustrate the following derivation:
In equation (8.4) substitute n; = n, = ...= ng =n and i = kn. Then it follows

immediately from this that

| =

P 2y 1 kn? 1( kn )2 2
“ — ————————— e S—
T, o¢ 21(1+7)2 kn\l1+#n

1 kn? kn
g2 {(1+7n)? (1 +7n)?
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1 {kn (n—1) }%

a_ez (1 + 7n)?

1
(0.8 - (1 +7’n)“1
Ue

. . 2 . o7 .
If we now substitute #* = %’2- and the Jacobian aTrz = % then we get the following:
e T e

1 no?\ ' 1
2 2 T
PRl(/’tl Ur;ae) 158 O_ez (1 + O_ez > O_ez

1
x — (62 +nof)?
o

(8.6)

Equation (8.6) is the same as the prior that was used in the Balanced Case in Chapter 7.

In a similar way we examine equation (8.5) and again we substitute in n, = n, = ... =
n, = nand @ = kn. Then it follows immediately from this that |

1
1 kn? )2

2 ~
Pr,(w,0¢ ,7) o a—g{m}

1
o — (1 + f'n)_l
O¢

and once again we can see that

1
Pr,(u, 02 ,02) o« = (¢ +nof)™?
e

(8.7)
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8.2.1 Joint Posterior Distribution for x, ¢’ and 7

We are now able to examine the distribution of the posterior distribution of u, 62 and .

This 1s based on the previous derivations and theorems that have been stated and proved
in the appendices to this chapter. From the formulation of the Bayesian model we know
the following:

p(u o7 , 7| ¥) o« L(u,0f 7| ¥)p(y o2 ,7)

where

k
. 15 1
LG 02, 71Y) & (o) z'ﬂ(nﬂ_ -)

1
2

exp{ [vlml + Z i ;y; _: !11) }

If we use the Probability-Matching prior as defined by equation (8.3), which is the same

i=1

as the Reference prior for the first ordering or parameters as described in equation (8.4),

then the joint posterior distribution is given by:

k

IR](.U-'TICEH)
L

“ ()
082 i=1

k _
P 2021 .1ni7~‘+1
=

8=

%(ﬁ+2)

|

k k 2\2
: : Tliz 1 n;

: (1 + f"ni)z n\ 4 1+ fni

i=1 =1

(8.8)

where
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Ko
vymy = SSE = ZZ(}’U - 71‘-)2

i=1 j=1

From equation (8.8) it follows that the joint posterior can be expressed hierarchically as

Pr,(u,7,02|Y) = p(ulY.7,02) x p(a¢|7,Y) x p(F|Y)

where

k -1
y|y,f,a§~N<ﬁ, ag(Z 11+r:n) )
i= t

In addition,

1,. k
N 1,20 1 n(yi. — f1)°
PRl(O'ezl‘I“, Y) = K; ('5_';2-) exp —Tl'ez vim, + ZW

i=1

(8.10)

which is an inverse Gamma distribution. Furthermore, we know that

= o Y12

and

3Gi-1)
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1
2

k 2
Z(1+rn1)2 B (Zl+rnl>

—3(n=1)

(8.11)
If we use the alternate ordering for parameters as described in equation (8.5) we find that

the joint posterior distribution has the same hierarchical structure, except that

1

: S
PRZ(?IY)O(H(n- < 1+rn> x(;W)

i=1

where 0 < 7 < o0,

The following figure depicts these two prior distributions:
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Figure 63: Two Reference Priors

Reference Prior 1 {red) vs Reference Prior 2 (blue)
T T T

Reference Prior 1 = Red; Reference Prior 2 = Blue.

For further details see van der Merwe, Pretorius and Meyer (2006).

Theorem 8.6

For the model:

Y=pul+2Zt+ e
where e ~ N(0,021;) and T ~ N(0,a?21,), the posterior distribution of u + 7; given o2
and 7 is normal with the following mean and variance:

rn; 1
E{(+ 1) |¥,0¢, 7} = 7—=—7F

A+
+TTll’ : 1+T~'Tllu

and
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k _1
1 Nn;
Va + 1)|Y,02, 7 = g2 {F+ -
r{iu+ 1) |Y, 00,7} = of {7 T <.Ell+fnz
=

Proof: The proof is given in the appendix to this chapter.

From Theorem 8.6 it follows that
1 2 2 =
U+ T + Eae |Y,of,7

is distributed normally with

E{(+ +12)Y2~}— fni".{. 1 '*+12
wE Tt g0 ) 1Yo T = g Vet T, AT 30
(8.13)
and
K -1
1 2 2 o 2 ) 1 n;
Var #+Ti+§ae [¥,0c,7y=0c 37+ 1+7n; Zl+fni
=
(8.14)
Now, we are interested in the posterior distribution of
0.2
explu+ t; + 9/2
(8.15)

fori =1, 2, ..., k, in other words, for each worker.
Given ¢Z and # we can now simulate from (8.15) by simulating from a Normal
Distribution with mean and variance specified by equations (8.13) and (8.14)
respectively.  Using these results we are able to simulate and test hypotheses for

individuals (e.g. individual workers). The results will be presented in later sections.
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8.2.2 Procedure for Simulation Study

The purpose of this chapter is to describe the behavior of the various prior distributions to
the setting described earlier. Although detailed descriptions will be given in relevant
sections, here we offer a broad description of the simulation of g2 and 7 values from the
distributions obtained in previous sections, including the final simulation of u, which will
ultimately enable the simulation of quantities such as defined by equation (8.15). The
simulation procedure can broadly be described as follows:

1. Simulate a value for 7 using either equation (8.11) or (8.12), based on the choice
of prior distribution. Since neither (8.11) nor (8.12) is a known distribution and
cannot be solved in closed form the use of the Rejection method as described in
Rice (1995) will be used.

2. Each value of 7 simulated in the previous step will then be substituted into
equation (8.10) to simulate a value of ¢2. In this case the distribution is of a

known form, i.e. an Inverse Gamma distribution, and therefore we can simulate
02 by making use of the fact that:

nL(yl - /1) 2
{ [V1m1+z e+ 1 } Xn-1

It follows that a simulated value of 62 can be obtained from the equation

o 38

n
Using the values of 2 and 7 simulated in the previous steps we can simulate values of u

(if desired) from equation (8.9). All the desired quantities are based on these variables in

SOmMeE manner.
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8.3. An Upper Confidence Bound and Test for the Overall Mean Exposure

This chapter is, as mentioned previously, a Bayesian interpretation and application of the
problem proposed by Krishnamoorthy and Guo (2005) entitled “Assessing occupational
exposure via the one-way random effects model with unbalanced data.” Of primary
interest is testing the hypothesis of whether the occupational exposure in an individual
(discussed previously in (8.13) and (8.14)) or group of workers exceeds a pre-specified or

acceptable threshold. If we consider making inferences about the total group, we are

interested in the distribution the Overall Mean Exposure, which can be represented as:
1. . 2
Hx = exP{/""‘ E(O'e + Gr)}
For the unbalanced case this will for convenience be written as:
g’ 0
Uy = expiu+ -2—(r+ Di=e

(8.16)

Now we know that from (8.9)

k -1
M) A7 ~N<ﬁ, A <Z H%) )
i=1 t

and therefore,
o3 -
6=u+ S (F+ VY, 7,02 ~N(E®), Var(8))

is distributed normally with the following mean and variance:
2

2
a, g,
E(@)zE{,u+ Te(m 1)|y,f,ag}= g+ 7‘3(?+ 1)

(8.17)
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k -1

o _ 5 n;
Var(9) = Var {u + -Zi(r + 1Y, 7, aez} = g? P ;‘Tli

(8.18)
Thus, given 7 and o2 we simulate 8 from a normal distribution with mean and variance
defined by (8.17) and (8.18) and substitute this into (8.16). We then repeat this process

[ (= 10000) times.

Additionally one of the objectives of the work by Krishnamoorthy and Guo (2005) was to
test hypotheses as to whether the overall exposure exceeds a certain limit. The authors
also simulate the following statistic (and for the purposes of comparison will be analysed

using the Bayesian methodology developed previously):

1 2
T = H+ Zl-—AJ‘E + 'Eo'e

where A is a suitably chosen parameter between 0 and 1 and Z~N(0,1) is the cumulative
distribution function of the standard normal distribution. Using a specific value of OEL

the following hypothesis can be tested:

1
Ho:p+ Zy_40, + 503 > In(0OEL)

against the alternative hypothesis

1
Hl:ﬂ'f’ Zl—AJT + -iO'eZ < ln(OEL)

For example, if our choice of 4 is 0.05 then essentially we are testing (one-sided) whether
at least 5% of the workers have mean exposure levels in excess of the chosen OEL. In

practice the OEL is chosen to be a clinically relevant value. The specific choice of OEL
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1s not the primary concern of this research, but primarily a demonstration of the Bayesian

methodology.

In order to replicate the methodology of Krishnamoorthy and Guo (2005) from a
Bayesian perspective the following simulation study was undertaken for a range of both

OEL and A4 values:
LetT = u+ o? (%+ Zl_Af‘)

We know that T | Y, 7, 6 is distributed normally with:

1
E{T|Y,% 02}~ i+ o (E“L Zl_Af>

and

k -1

n.
Var{T | Y,7,62} ~ o2 EH‘M
i

i=1

This procedure was performed for several choices of OEL (= [130; 140; 150; 160; 170;

180]) and for several choices of A (=[0.1; 0.05; 0.025; 0.001]), as was done in Chapter 7.
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8.4. Results from the Simulation Study

Using the methodology derived previously a simulation study was conducted to simulate
10000 observations for each particular type of analysis. Using the unbalanced data
provided in Table 99 we were able to simulate observations relating to occupational
exposure in the workplace. Since 2 Reference priors were derived the simulations were
repeated for each of these Reference priors. The results are presented in the following

sections.

8.4.1 Results: Individual Worker Means

As mentioned it was possible to simulate observations from the posterior distribution for
each of the 15 workers, using both Reference priors. These results are presented in the

appendix to this chapter as Figures 79 to 108.

We can see that the results from the first and second Reference priors are comparable,

with no large differences between the choice of Reference prior.

The effect of “unbalancing” has largely been minimized. For example, workers 4 and 11
both had comparable mean exposure levels (55.98 and 55.7 respectively), but were at the
two extremes (in this hypothetical data set) with regards to unbalancing (worker 4 had 10
exposure observations, which worker 11 only had 6). It is interesting to note though that

in both cases the probability of exceeding the OEL of 130 was 0.0001 (based on 10000
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simulated observations). It thus appears that the Bayesian methodology is rather stable

with regards to unbalanced data, particularly at a worker-specific level.

Table 100: Simulation Summary Results — Reference Prior 1

Worker P(texposure > 130) 90% CI 95%CI Mean Median  Mode
Low High Low High

Worker ] 0.0013 63.64 91.84 59.94 97.16 77.49 77.25 71.75
Worker 2 0.0550 90.61  130.96 85.60  139.11 109.27 108.29 109.75
Worker 3 02312 10205  147.41 97.01 15586 122.45 121.07 118.75
Worker 4 0.0001 50.34 72.64 47.29 76.177 61.62 61.71 63.25
Worker 5 0.003 7232 104.14 6851  109.68 87.64 87.31 88.75
Worker 6 0.9522 130.31 188.23 123.89 199.80 155.65 153.50 152.25
Worker 7 0.0013 64.81 93.68 61.05 96.81 78.69 78.69 78.75
Worker 8 0.0034 72.90 105.40 69.10 111.36 88.29 87.70 87.25
Worker 9 0.1551 99.11 14228 94.00  150.67 118.80 117.50 117.75
Worker 10 02955 10350  150.46 9833 160.07 124.74 123.11 151.25
Worker 11 0.0001 51.48 74,27 4833 77.76 63.17 63.19 61.75
Worker 12 0.0001 55.34 80.22 52.04 84.27 67.89 67.88 67.25
Worker 13 0.0124 80.14  115.55 7621 12236 96.68 95.84 94.25
Worker 14 02013  100.18  145.38 95.13  154.12 120.86 119.37 117.75
Worker 15 0.1055 95.44  137.77 90.61 145.03 114.83 113.70 111.75
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Table 101: Simulation Summary Results — Reference Prior 2
Worker P{Mexposure > 130) 90% Cl 95%Cl Mean Median  Mode
Low High Low High

Worker | 0.0010 63.86 92.07 60.19 97.26 71.50 77.24 71.75

Worker 2 0.0487 90.61  129.66 85.67 13644 108.82 107.88 107.75
Worker 3 0.2271 101,78 14615 9707 15545 122.12 120.76 121.75
Worker 4 0.0002 50.05 72.90 47.35 76.42 61.59 61.6] 62.75
Worker 5 0.0040 72.77 104.50 68.81 110.52 87.84 87.30 87.25
Worker 6 09521 13048 18844  123.69 20044 155.62 153.33 152.75
Worker 7 0.0014 65.18 93.44 61.36 98.29 78.94 78.71 78.75
Worker 8 0.0036  73.1934  104.88 69.11 110.89 88.24 87.70 87.25
Worker 9 0.1565 98.68  142.71 9337  149.86 118.52 117.30 113.75
Worker 10 02832 10355 14947 9743 157.73 124.44 123.13 123.75
Worker 11 0.0001 51.24 74.07 48.18 77.50 63.15 63.28 64.25
Worker 12 0.0003 55.97 79.97 52.46 83.93 68.02 67.98 66.25
Worker 13 0.0107 79.79  115.25 75.63 121.94 96.45 95.66 95.25
Worker 14 01976 10037 14530 9472 153.68 120.85 119.55 117.75
Worker 15 0.0997 95.84  136.99 91.11 144.72 114.76 113.58 111.75

8.4.2 Results: Overall Mean Exposure

The next result relates to the overall mean exposure, i.e. the exposure of the group of 15
workers as a whole. The following results were obtained for the two Reference prior

distributions (the relevant information for each histogram is displayed in the subsequent

table):
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Figure 64: Overall Mean Exposure — Reference Prior 1
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Table 102: Simulation Summary Results of Overall Mean Exposure

Worker P(Uexposure > 130) 90% CI 95%CI Mean Median Mode
Low High Low High

Reference
Prior | 0.0001 96.75 105.04 9643  107.04 99.89 99.27 98.75

Reference
Prior 2 0.0001 96.73 105.07 9639  107.11 99.86 99.24 98.25

The above results are based on 20000 simulations. We can see very little difference

between the two Reference prior distributions.

8.4.3 Results: Hypothesis Testing

Lastly, and most importantly, Krishnamoorthy and Guo (2005) tested hypotheses

regarding the group of workers using the following measure:

1,
T=u+ Zi_40; +§ae

where A is a suitably chosen parameter between 0 and 1 and Z denotes the standard
normal distribution. So, for example, if our choice of A is 0.05 then essentially we are
testing (one-sided) whether at least 5% of the workers have mean exposure levels in

excess of the chosen OEL.

Several different values of 4 were chosen in addition to several different OEL limits.

The results are once again produced for both Reference prior distributions:
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Figure 66: Reference Prior 1; A =0.001
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Figure 67: Reference Prior 2; A = 0.001
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Figure 68: Reference Prior 1; A = 0.05
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Figure 69: Reference Prior 2; A =0.05
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Figure 70: Reference Prior 1; A = 0.025
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Figure 71: Reference Prior 2; A = 0.025
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Figure 72: Reference Prior 1; A = 0.1
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Figure 73: Reference Prior 2; A =0.1

Ll | I —— j

2

CTount
=
'.

| |

ey —)

i TR 0
' Sined T vl

5

6

100(1 - a)th percentlle =4.8086

What is interesting to note is that compared to results obtained in Chapter 7, of which this

chapter is merely an extension to the unbalance case, the distributions in the unbalanced

case are more skewed, with longer tails.
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From the above figure we can see that 10% or




more of workers had occupational exposure levels in excess of 4.8086 (95" percentile),

which corresponds to an OEL of roughly 130.

8.4.1 Prior Distribution Based on Gelman

In addition to the prior distributions applied in the previous results section, Gelman

(2006) suggested the following prior for the unbalanced random effects model:

PGetman () Ue , Ur ) 2

JT
We know that the use of o7 would result in an improper posterior distribution.

From (8.1) we know that

1 k

2 1|v,;m n (¥ — w)?
B 0 | (A M g ST
(1,0, 02|Y) < (a2)” n,02 + o2 #XP173 o? " (s nof + o

=1

}

Now transforming Gelman’s prior into the notation of the ratio of 6 and 62 we have the

following:

2 2 -2 -1
Dgetman(l, 05,0 ) « O " O¢

. 07
F=—
of
11902 1
-32-5 [99z| _ ,-35-3 ;2
pGelman(l‘vae:r) X 0, 2 6? = 0" T 20,

1
X o172

Converting the likelihood to specification in terms of 7:
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k

Lw o2, 71) « @ P

=1

1
Tlif' + 1) 2 Tll‘f + 1

€ i=1

1 k _
2 1lvimy n (¥ — p)?
expi—5 | +

}

(8.19)
In a similar way to the previous sections we can derive the combined posterior

distribution, given Gelman’s prior distribution, as follows:

k

1, 1 1
p(u, 08, 7IY) < (0f) 7 |\t
1=

N =

k —
ex _l Vimy n Zni(}’i- — w)?
U2 ed "4 nit 1
i=

}

Therefore,
p(o2,7|Y) = f p(u, 02, F|Y) du

In order to find this integral we have to complete the square with respect to u (similarly

to previously done) and therefore,

k
1, 1
P2, 7N = @ 2™V | |

i=1
K k
(¥ — i 2 J.oo 1 52 i
S ool o S
& onf+ 1 } o P 207 w=n Lamf + 1 #
Therefore,
1
1 1 k 1 1(< K 1
_ p) n; vm
- ot 1) (Sts) ol 425
p(og, 7|Y) = (08) T . n# 4+ 1 Lan7+ 1 exp 2| o
i=1 i=1
k — ”
N Zni(yl - 4y
- nfF+ 1
Therefore,
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1 1[v S (5 — )2
- m . o —
217 y) = K(o2) 2™ _2|ham Z;
Pl = Ko 20 exp =3 |+ ) =i
=

}

which 1s an Inverse Gamma distribution with

k —_— ~
= \ljvimy 2 :ni()’i- - i)
2| of : nfF+ 1

|

3(-2)

1

;nifni - {[V1m1 Z i #)

Once again, to simulate observations from the posterior distribution, the Rejection
Method will be used to simulate observations from p(7|Y). Then using this simulated

value of 7 the following relationship will be used to simulate ¢2:

ae {SSE'*’ Z l(yl. - #) } X%_z

Simulation Results:

The same simulations that were performed for the two Reference priors previously will
also be presented for the prior proposed by Gelman to examine whether any differences
between the prior distributions exist. The following situations were examined in the
previous simulation study (and will be repeated for Gelman’s prior here):

1. Simulation of individual worker means

2. Simulation of overall mean exposure

3. Hypothesis testing
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The methodologies are similar to those mentioned previously and will thus not be
repeated here. The only deviations from the previous descriptions would be the exact

specifications of p(7|Y) and p(c?|#,Y).

The simulation results for individual workers using Gelman’s prior are presented in the

appendix as Figures 109to 123. The following table summarises the information therein:

Table 103: Simulation Summary Results — Gelman Prior

Worker P(/chposure > 130) 90% CI 95%ClI Mean Median Mode
Low High Low High

Worker | 0.0021 62.49 93.19 58.72 98.36 77.46 77.21 76.75
Worker 2 0.0635 89.12  133.00 83.73 14234 109.27 108.07 106.75
Worker 3 02605 10074 150.49 9478  159.32 123.05 121.46 119.75
Worker 4 £ 0.0003 4937 73.74 46.46 78.29 61.58 61.43 6225
Worker 5 0.0062 7126 106.35 6738 113.18 88.10 87.51 87.75
Worker 6 09413 12816  191.69 12141  205.56 156.25 153.68 146.25
Worker 7 0.0018 63.48 95.50 5952  101.63 78.96 78.63 79.25
Worker 8 0.0046 7139 106.53 6696  112.30 88.27 87.75 87.25
Worker 9 0.1779 97.55  145.68 9242 155.18 119.05 11735 111.25
Worker 10 02994 10237  151.74 96.05 16117 124.87 123.49 122.25
Worker [1 0.0006 50.19 75.26 46.92 79.38 62.99 63.02 62.75
Worker 12 0.0006 54.55 81.05 51.06 86.31 67.83 67.74 68.75
Worker I3 0.0156 7821 116.80 7421 12449 96.49 95.69 95.25
Worker 14 0.2194 99.41  147.88 9389  156.15 121.46 120.02 118.75
Worker 15 0.1210 93.87 14048 88.54 14832 115.00 113.63 109.75

The results from Gelman’s Prior distribution are as expected. Given the form of the prior
distribution, when compared to the two Reference prior distributions, it appears as though
the Reference priors decrease the variance in the posterior distribution more efficiently
than the Reference priors. The only possible exception to this would be when ¢ < 1.
So it would be expected that Gelman’s prior would be better suited when modeling the

situation when within-worker variance is less than one. However, this was not the case in
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this example and consequently the two Reference priors result in narrower 95%
confidence intervals, implying a decrease in variance. This is easily seen in Worker 2,
for example, whereby the confidence intervals for the first and second Reference priors
are [85.61 : 139.11] and [85.67 : 136.44] respectively. In particular, for these two prior
distributions it would appear as though the second Reference prior results in upper
bounds that are less than for the first Reference prior. Thus, Reference prior 2 perhaps
does not place as much emphasis on potential extreme upper values from the distribution.
Gelman’s prior on the other hand accounts for more variance than both of these and

results in a 95% Bayesian confidence interval of [83.73 : 142,33] for Worker 2.

The following table summarizes the results and differences between the 3 priors
considered here for the Overall Mean Exposure:

Table 104: Simulation Summary Results

Worker P(texposure > 130) 90% CI 95%Cl1 Mean Median  Mode
Low High Low High

Gelman 0.0003 96.90 106.18 96.53 108.45 100.35 99.62 98.75
Reference
Prior | 0.0001 96.75 105.04 96.43 107.04 99.89 99.27 98.75
Reference
Prior2 0.0001 96.73 105.07 9639  107.11 99.86 99.24 98.25

We see that there is very little to distinguish between the two Reference priors. However,
it seems that Gelman’s prior results in interval lengths that are slightly longer than the

two Reference priors.
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Figure 74: Simulation Results for Gelman’s Prior for Overall Mean Exposure
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“Refer to Table 105 for summary statistics accompanying this figure

From the above and a comparison of the Reference priors previously discussed it appears
as though the posterior distribution derived using Gelman’s prior has longer tails. Thus,
there 1s more potential to simulate extreme values for the overall mean exposure. This
indicates that perhaps Gelman’s prior results in a larger variance component than the

Reference prior and therefore accounts for “more” uncertainty.
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Figure 75: Simulation Results for Gelman’s Prior for Hypothesis Testing: A = 0.1
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Figure 76: Simulation Results for Gelman’s Prior for Hypothesis Testing: A = 0.05
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Figure 77: Simulation Results for Gelman’s Prior for Hypothesis Testing: A = 0.025
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Figure 78: Simulation Results for Gelman’s Prior for Hypothesis Testing: A = 0.001
wj T T T T T

1 | 1
65 7 75

Simillated T vélues

R e e e

1001(1 — a)th percentlle = 5 2209

- 359 -




Appendix to Chapter 8

Proof of Theorem 8.1

oo

L(w,02,02|¥) = f L(w,7,02,02|V)dT

[o]

We begin by completing the square with respect to T. Let

S=—
0,

= (V7 - Zt)’(f’— Zt) + % 7't where ¥ = Y — pul.

Therefore,
1“’1”’ 2 1 7IXF 1 1 !
SZ—ZYY——Z‘CZY+-—ET'Z/Z‘L'+—ZTT
O¢ O¢ O¢ Oz
- Llyvs '{1Z'Z+11} 20 L 77
~ R O A L

1
—Y'Y+ Dt —-27'C
o

where

z'Y

mNI =

1., 1
D ={;gzz+ U—Tzlk}and(]:U
After completing the square it follows that

S=ZV¥+ (- D7C)D(x~ DI~ CDC
Therefore, the integrated likelihood function is

oo}

L(w, 02, 62|Y) = f L(w 7,02, 02|V)0t

o)
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]

where
1 3 1 7* 1

=) () ew{-3[Z77+ - prcyp@E- D720y - pic])

e T

L(u,1,02,02|Y) (

Therefore, the integrated likelihood is
1, 1
I\2" 7 1N\2F 2 111
) (—) |D| Zexp{——[—Y’Y— C’D‘IC]}
2 Lo

af

L o2, 21Y) « (S
Oe

Equation (A) can be simplified as follows

Consider
1
D|'% ! Z2'7+ ! 1 E
I - o_ez 0_1? K
1
n, 1 2
— > 0 0
Ue 0‘[
n 1 k
I 0 = o
- O¢ 01 - o2
; e
=1
n 1
0 0 =+ 5
0-6 G-T
1
i 1
-11(22)
-1 \nio2 + o2
i=1
Next, consider iz Y'Y in the exponent of (A)
a,
kK N

1. 1 ,
SV (- ) (- ) = — ) (-
e e=1
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Yii = Y= n—iz}’u

j=1
and therefore,
kK Ty
1 Py 1 Z(
P S | Yij
e e i=1 j=1
1 kK Ty
= 522,200
e < .
=1 j=1

k

- /l)z = G%ZZ Z{(}’ij -y )+ G — #)}2

i=1 j=1

since the middle term becomes zero.

Furthermore,

1 S 1
D C= =YD 2V
g, o,

e

1
= ?(Y— ul) ZD* Z'(Y — ul)
e

(& D00 You-m - You-w

e
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o2 _ _ _
= (a_Tz) (. — W) n(¥z. — u) (. — W]
e
———;L——— 0
n,6Z2 + o2 _
v ¢ 1 (. — )
0 0 n,(y, —
X , 7,02 + o2 Z(YZ: 1)
: i g (P — 1)
0 0
n,o? + o2l
2N K o2es N2
— U_T Zni (yl' .u)
0% )& nioZ + o
i=1
(D)
From (C) and (D) it follows that
1 .
—¥¥-cp'c
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- 2 ij i 2 i R ) 2 2
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€i=1

k
= 2

_nm 1 e — 0
- g2 02 bkt Mo + o
O¢ e it T O¢

i=

Therefore,

k
1 1
L(u,02,02|Y) (03)_7(n_k)1_[(
i=1

which proves the theorem.

Proof of Theorem 8.2
yijl#"[ilo-g ~N(.u+ Tl',O’g)
_ 5 af
yilwti, 00 ~N{lpu+ 1y, —
n;

Therefore,

- 2 2 o¢ 2
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Proof of Theorem 8.3

From the integrated likelihood function,

k k
1 1 1 n (7. — w)?
Ly, o2, #|Y 2 zn||< ) __ E.:_;____
(n, 08, 7|Y) o« (0f) e+ 1 exp 202 vim, + n + 1

i=1 i=1

it follows that

K
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Therefore,
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Differentiation with respect to u gives
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Proof of Theorem 8.4

The inverse of the Fisher Information Matrix is given by,

FY(u, 7 02) =

The determinant |H| is

k

[ k
n.
2 L
g
€ (Z 1+ fni
i=1

n (ni)z

)_1 :

0

K
1 2 n;
202|H| £ 1+ 7n;

1 % (n;)?

n o/1\2
: 21 ()
1 u n;
0 _20§|H|;1+Fni
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2

|H| =

4037 LT +n)?
=

k
T
4(0'32)2 - 11+f‘ni
i=

2101 L T +7n)? |

2
We are interested in the Probability-Matching Prior for # = % (the variance ratio). Let
e

0' = (u,7,02) and t(0

at(e
()=o
au

at(0)
oF

at(0)
do2

V(@) = [0 1 0]

and

Vi(O)FT1(0) = [0

"3
2|H| \o2

) = 7, then

k
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Further,

2

VTOF@V(® = |50 ( : )

2|H|\a?
and
1 1ok
Vi(O)F'(0) fi2 2 n;
VVi(8)F1(8)V.(6) VZlHZe2  VZmEE

= [m(0) n,(6) n3(6)]

The prior p(8) = p(u, 7, 62) is a Probability-Matching Prior if the following differential

equation is satisfied:

0{n.(O)p(6)}  0{n.(6)p(8)} & 0{ns(8)p(8)} _
+ . + =0
ou o7 da?

1
If we take p(@) = |H|z then

2(n(0)p(8)} _

ou 0

o (O)p(8)) _ 9 [ 72

o7 37 | V202

1k
Wma@p®) _ 0 | aI n
do2 do? V2 £ 1+ 7n;

The differential equation is therefore satisfied and the theorem has been proved. It is

further clear that

1
p(8) = p(u,7,02) = |H|Z
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2
1 _(m)? zk
<x — —_
o? (1+rn )? _11+rnl

is a Probability-Matching Prior.

Proof of Theorem 8.5.1

Only the Reference prior for the group ordering (i, 7, 62) will be derived, since the

Reference priors for the group orderings (7, u, 62) and (#, 62, 1) can be derived in a

similar way.

The Fisher Information Matrix for the ordering (u, 7, 62) is given by

0 L1+ 7n
i=1
k

Fluwt,08) = 0 ZZ:(1+rn)2

O Z
202 4.1 + ™m;
=

The functions h; (j = 1,2,3) are calculated as follows:

20821+rnl
i=1
n(l)
2\g?

i
n, ZZ (1 +7n,)?

) 0
Zae a1l + n;
i=1
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0 _E S S
24 1(1+7’nl~)2
i= -

202 Z 1+7n
L i=1

which means that

Hyy = Fop — E Fy3 F3, = hy

where
2

k K
2_2,1(1+f“ni)2 +rnl
1= i=1

Further
2

N Sh

1
=55
e

1
Now p(u) o« h? = 1 (because it does not contain u)
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2

k k 2
) o B2 > w1 §
7 = -
S R VO ENE 11+rnl
t= i=

and

1
p(od|F, 1) « hi=

e

Thus, the Reference prior for the group ordering (u, 7, 62) is given by

1 £ 1 n;
Pr, (W7, 08) = p(Wp(FlWp(cé|F,u) = 52 Z 1 +,~fn.)2 - Z( 1 +;n')
% = ' =1 l

and also satisfies the Probability-Matching criterion.

Proof of Theorem 8.5.2

Only the Reference prior for the group ordering (u, 62, #) will be derived, since the
Reference priors for the group orderings (62, u, ) and (¢2, 7, 1) can be derived in a

similar way.

The Fisher Information Matrix for the ordering (u, 62, 7) is given by

&
— 0 0
6221:1+rnl
fir1y?
Fluot, 1) = 2(c2) Z
(w02, 7) 0 2 \o? 207 1+rnl
K
S e
Zaez.ll-l-f‘ni 2 (1-+—7"nl)2
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The functions h; (j = 1,2,3) are calculated as before:
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Further
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e e §
3T U337 2, 4 (1+7n;)?
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1
Now p(u) « h} =1 (because it does not contain ).

1
p(clln) « k2= =

and

1 I,
p(FloZ, p) « h2 = ( —‘-—)
i=1

Thus, the Reference prior for the group ordering (i, 62, ¥) is given by

o

k 2
1 n?
2 =y — 2 212 ) — L
Pr, (W, 0&,7) = p(Wp(aé|Wp(Flos, 1) > (21(1 +7~,ni)2>
Proof of Theorem 8.6

From Theorem 1 it follows that:

p(u, T, 02, 7|Y)

12" 1
« () Fob?

e

Y- p1-Zoy)(Y — pu1 — Z‘t)} exp {— 12 r"t}

X —_
o] 7

202
X p(u, 02,7)

To obtain the posterior distribution of T the square with respect to T in the exponent must

be completed. From Theorem 8.1 we know that

1 &y - ’ - y—
S=;§-YY+ (t— D~C)'D(xr— D™1C)- C¢'D7C
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Therefore,

T| 02,7 Y ~N{DIC, D

where D~ and C are defined as in Theorem 8.1. From equation (8.9) we know that

k
= 2 - 2 ni
Y., 00 ~ N <,u, e (Zi=1 1+7n;
and
koo n;
. et T v
= =r,

Since T = (14,73, ..., T) it follows from the definitions of D~! and D€ given in

Theorem 1 that

E(t;| w02, 7Y) = 7 (F; — w)

and

_1}

. 2 = _ ‘FO’g
Var(t; | u,0f,7,Y) = T

It follows from this that

nj
1+7n;

))

n.
E(u+t; | wo2,7,Y) = 7 (. — — +
w+tlwoe, 7,Y) =7 u)1+fni I
_ fni 54 1
T O
and
Var(u + 2y = 1O
ar(p+1; | u,00,7Y) = 147,

- 375 -




Therefore, unconditionally on u it follows that

Fni 1

—_ ~

L+
T+7n 0t T B

E(u+rt; |02 7Y)=

and
Var(ri | O.QZ'.':‘ Y) = Eu(# + T; I .uro-ezlfl Y) + Varu(# +Ti |li'0e2'7~’. Y)

k -1
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Please refer to Table 104 for the accompanying results to these figures.

Figure 79: Simulation Results for Reference Prior 1 for Individual Worker Means - Worker 1
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Figure 80: Simulation Results for Reference Prior 1 for Individual Worker Means - Worker 2
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Figure 81: Simulation Results for Reference Prior 1 for Individual Worker Means - Worker 3
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Figure 82: Simulation Results for Reference Prior 1 for Individual Worker Means - Worker 4
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Figure 83: Simulation Results for Reference Prior 1 for Individual Worker Means - Worker 5
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Figure 84: Simulation Results for Reference Prior 1 for Individual Worker Means - Worker 6
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Figure 86:Simulation Results for Reference Prior 1 for Individual Worker Means - Worker 8
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Figure 88: Simulation Results for Reference Prior 1 for Individual Worker Means - Worker 10
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Figure 89: Simulation Results for Reference Prior 1 for Individual Worker Means - Worker 11
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Figure 90: Simulation Results for Reference Prior 1 for Individual Worker Means - Worker 12
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Figure 91: Simulation Results for Reference Prior 1 for Individual Worker Means - Worker 13
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Figure 92: Simulation Results for Reference Prior 1 for Individual Worker Means - Worker 14
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Figure 93: Simulation Results for Reference Prior 1 for Individual Worker Means - Worker 15
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Please refer to Table 102 for the accompanying results to these figures.

Figure 94: Simulation Results for Reference Prior 2 for Individual Worker Means - Worker 1
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Figure 95: Simulation Results for Reference Prior 2 for Individual Worker Means - Worker 2

o T T n ] T T

Count
£

1500

e e T s e e g

-393 -




Figure 96:Simulation Results for Reference Prior 2 for Individual Worker Means - Worker 3
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Figure 97:Simulation Results for Reference Prior 2 for Individual Worker Means - Worker 4
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Figure 98: Simulation Results for Reference Prior 2 for Individual Worker Means - Worker 5
£y [ T | T T T T | 1

B0k ]
- ]
€
2 ot .
Q
]S .
s 1

B e e e e S e e e e

-396 -




]

Figure 99: Simulation Results for Reference Prior 2 for Individual Worker Means - Worker 6
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Figure 100: Simulation Results for Reference Prior 2 for Individual Worker Means - Worker 7
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Figure 101: Simulation Results for Reference Prior 2 for Individual Worker Means - Worker 8
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Figure 102: Simulation Results for Reference Prior 2 for Individual Worker Means - Worker 9
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Figure 103: Simulation Results for Reference Prior 2 for Individual Worker Means - Worker 10
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Figure 104: Simulation Results for Reference Prior 2 for Individual Worker Means - Worker 11

Cl | | T T | z

- 402 -




Figure 105: Simulation Results for Reference Prior 2 for Individual Werker Means - Worker 12
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Figure 106: Simulation Results for Reference Prior 2 for Individual Worker Means - Worker 13
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Figure 108: Simulation Results for Reference Prior 2 for Individual Worker Means - Worker 15
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Please refer to Table 104 for the accompanying results to these figures.

Figure 109: Simulation Results for Gelman’s Prior for Individual Worker Means - Worker 1
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Figure 110: Simulation Results for Gelman’s Prior for Individual Worker Means - Worker 2
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Figure 111: Simulation Results for Gelman’s Prior for Individual Worker Mecans - Worker 3
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Figure 112: Simulation Results for Gelman’s Prior for Individual Worker Means - Worker 4
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Figure 113: Simulation Results for Gelman’s Prior for Individual Worker Means - Worker 5
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Figure 114: Simulation Results for Gelman’s Prior for Individual Worker Means - Worker 6
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Figure 115: Simulation Results for Gelman’s Prior for Individual Worker Means - Worker 7
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Figure 116: Simulation Results for Gelman’s Prior for Individual Worker Means - Worker 8
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Figure 117: Simulation Results for Gelman’s Prior for Individual Worker Means - Worker 9

30 T

Count
=
=

_415 -




Figure 118: Simulation Results for Gelman’s Prior for Individual Worker Means - Worker 10
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Figure 119: Simulation Results for Gelman’s Prior for Individual Worker Means - Worker 11
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Figure 120: Simulation Results for Gelman’s Prior for Individual Worker Means - Worker 12
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Figure 121: Simulation Results for Gelman’s Prior for Individual Worker Means - Worker 13
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Figure 122: Simulation Results for Gelman’s Prior for Individual Worker Means - Worker 14
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Figure 123: Simulation Results for Gelman’s Prior for Individual Worker Means - Worker 15
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Summary and Conclusions

The work contained in this thesis is focused on objective Bayesian techniques for various
estimation applications, as discussed in the Introduction to this thesis. However,
regardless of the particular setting, in each case the objective was to develop the Bayesian
framework for analysis and test this framework using a variety of objective prior
distributions against known frequentist techniques. In general, the performance was
measured by comparing the coverage probabilities as well as the average interval lengths

and in some cases the associated bias of a particular technique.

The prior distributions primarily applied were:

1. Jeffreys Rule prior

2.  Independence Jeffreys prior
3. Probability-Matching prior
4.  Reference prior

In specific chapters, additional priors were considered, such as the uniform and constant
priors in Chapters 2 to 4 and a variety of other priors proposed in the literature in Chapter

6 for the bivariate lognormal distribution.

In general, the Bayesian techniques developed compared well to the existing frequentist
techniques and in certain cases clearly outperformed certain of the existing frequentist

techniques.

In Chapters 2 to 4 for the analysis of the mean of the lognormal distribution the Bayesian
techniques proved superior to Maximum Likelihood and Bootstrap techniques. The only
exception is perhaps in comparison to the MOVER. Neither method proved to be
superior in this setting and motivation for the MOVER was evidenced by means of its
simplicity. However, the usefulness of Bayesian techniques was further enhanced in

subsequent chapters where the MOVER can currently not be derived.

Furthermore, all priors did not perform equally well. In particular, the Jeffreys priors

(Independence Jeffreys and Jeffreys Rule) proved to be most efficient in the majority of
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settings when compared to the Reference and Probability-Matching priors. Only in a few
selected settings did the Reference and Probability-Matching priors show efficiency. For
the Probability-Matching prior though, this was not entirely unexpected, due to the nature
of the Probability-Matching prior.

Furthermore, it was found that the Bayesian techniques were particular useful in small

sample size settings.

When analyzing the means of the bivariate lognormal distribution the Bayesian
techniques showed flexibility and usefulness above other techniques. As far as we could
tell, in specific settings the MOVER was not derivable and as such the Bayesian

techniques proved to be advantageous.

For the one-way random effects models, in both the balanced and unbalanced cases the
Bayesian framework added to the analysis of the setting. From the “Styrene exposures”
example setting it was clear that in addition to overall mean exposure the Bayesian
framework offers the ability to estimate exposure levels for individual workers, which

was not previously possible.

From this work it is clear that there are possible suggestions for future research. In
particular, future research into hypothesis testing and confidence testing for three or more
lognormal means could be undertaken. Of particular interest is the multiple testing
problem where other authors have managed to control the simultaneous coverage rate, in

what is referred to as the multiple comparison problem.
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Opsomming

Die werk waarop in hierdie tesis gefokus is, is die toepassing van objektiewe Bayes
tegnieke vir verskeie beramings, soos bespreek in die inleiding van hierdie tesis. Ongeag
die spesifieke opset, was die doelwit in elke geval om 'n Bayes raamwerk te ontwerp vir
die analisering en toetsing van daarvan deur gebruik te maak van verskeie Bayes prior
verdelings teenoor die meer bekende frekwentistiese tegnieke. In die algemeen is die
prestasie gemeet deur die dekkings waarskynlikhede te vergelyk sowel as die gemiddelde

interval-lengtes en in sekere gevalle die geassosieerde sydigheid van 'n spesifieke tegniek.

Die prior verdelings wat primér toegepas is, was:

1. Jeffreys Reél prior
Onafhanklike Jeffreys prior
Waarskynlikheidsafparings prior

el

Referensie prior

In spesifieke hoofstukke is addisionele priors oorweeg, soos die uniforme en konstante
priors in hoofstukke 2 tot 4. ’n Verskeidenheid van ander priors in die literatuur is in

hoofstuk 6 voorgestel vir die bivariate lognormaal verdeling.

Die Bayes tegnieke wat ontwikkel is, het in die algemeen goed ooreengestem met die
huidige frekwentisitiese tegnieke. In sekere gevalle het die Bayes tegnieke beter presteer

as die huidige frekwenstistiese tegnieke.

In hoofstukke 2 tot 4 het die Bayes tegnieke, die Maksimum aanneemlike- sowel as
Skoenlus tegnieke oortref vir die analise van die gemiddeld van die lognormaal
verdeling. Die enigste moontlike uitsondering is in vergelyking met die MOVER.
Geeneen van die twee tegnieke was daar beter nie en motivering ten gunste van die
MOVER berus slegs op die eenvoudigheid van hierdie metode. Die bruikbaarheid van die
Bayes tegnieke is verder uitgelig in latere hoofstukke waar die MOVER tans nie afgelei

kan word nie.
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Verder is gevind dat alle priors nie ewe goed presteer het nie. Onder anderé het dit
geblyk dat die Jeffreys priors (onafhanklike Jeffreys en Jeffreys reél) die mees
doeltreffende metode is in die meerderheid van ontwerpe as dit vergelyk word met die
Referensie and Waarskynlikheidsafparings priors. Slegs in enkele geselekteerde ontwerpe
was die Referensie en Waarskynlikheidsafparings priors meer doeltreffendheid. Dit was
nie heeltemal onverwags nie as gevolg van die aard van die Waarskynlikheidsafparings

prior.

Verder was gevind dat die Bayes tegnieke besonders nuttig is in kleiner steekproef

ontwerpe.

By die analisering van die bivariate lognormaal verdeling was die Bayes tegnieke meer
buigsaam en nuttig as ander tegnieke. Sover as wat ons kennis strek, kon die MOVER vir
sekere ontwerpe nie afgelei word nie en dus is die gebruik van Bayes tegnieke daar meer

voordelig.

In die eenrigting ewekansige effekte modelle vir beide gebalanseerde en ongebalanseerde
ontwerpe, het die Bayes raamwerk die analise van die ontwerp verbeter. Uit die “Styrene
exposures” voorbeeld was dit duidelik dat die Bayes raamwerk die vermoé verskaf om
blootstellingsvlakke van individuele werkers te beraam in plaas daarvan om die algehele

gemiddelde van alle werkers te beraam, wat voorheen nie moontlik was nie.

Uit die werk is dit duidelik dat daar moontlikhede vir toekomstige navorsing

bestaan. Navorsing in hipotesetoetse en vertrouensintervalle vir drie of meer lognormaal
gemiddeldes kan ondersoek word. Van spesifieke belang is die meervoudige toetsings
probleem, waar verskeie ander outeurs die gelyktydige oordekkings koers kon beheer,

ook bekend as die meervoudige vergelykings probleem.
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