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ABSTRACT 

 

The main objective of this research was to compare the results obtained from modelling 

irrigation water allocation decisions within a single-stage decision-making framework with the 

results obtained within a multi-stage sequential decision-making framework under a full water 

quota and a restricted water quota. 

A unified irrigation decision-making framework was developed to model the impact of the 

interaction between water availability, irrigation area and irrigation scheduling decisions as 

multi-stage sequential decisions on gross margin variability. An Excel ® risk simulation model 

that utilises evolutionary algorithms embedded in Excel® based on the Soil Water Irrigation 

Planning and Energy management (SWIP-E) programming model was developed and applied 

to optimise irrigation water use. The model facilitates the simulation of the economic 

consequences resulting from changes to the key decision variables that need to be optimised 

through gross margin calculations for each state of nature. Risk enters the simulation model as 

crop yield risk through different potential crop yields in each state of nature and stochastic 

weather which determines irrigation management decisions. Water budget calculations were 

replicated to include 12 states of nature within a crop rotation system of maize and wheat. The 

risk simulation model was applied in Douglas, a typical location of an irrigation farm. 

The results showed improved risk management within a multi-stage decision-making 

framework as indicated by higher gross margins and reduced variability due to improved 

irrigation scheduling decisions under both a full and restricted water quota scenario. Close to 

potential yields, if not full potential yields were achieved within both decision-making 

frameworks. However, a significant reduction in per state irrigation water use resulted within 

a multi-stage decision-making framework sequentially resulting in improved gross margins. A 

full irrigation strategy with reduced areas was followed under a restricted water quota with 

reduced gross margins resulting owing to lower gross incomes. The resulting impact of risk 

aversion on gross margin risk was insignificant within a multi-stage decision-making 

framework, whilst a more evident impact within a single-stage decision-making framework 

was indicated by a significant increase in minimum gross margins. 

The resulting monetary value of modelling irrigation decision within a multi-stage sequential 

decision-making framework was R11 149 and R14 413 under a full and restricted water quota 

respectively for a risk averse decision-maker. The resulting value of a multi-stage decision-
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making framework assuming risk neutrality was significantly lower at R4 261 and R7 019 for 

a full and restricted water quota respectively. Results indicate that the interaction between 

different decisions made at different times during the growing season as represented with a 

multi-stage decision-making framework, becomes much more important under restricted water 

supply conditions taking risk aversion into account. 

The cost of a water restriction within a single-stage and multi-stage decision-making 

framework of R218 319 and R215 561 respectively resulted under a risk neutral framework. 

Under risk aversion, a slightly lower cost of a water restriction of R212 513 and R209 249 was 

generated within a single-stage and a multi-stage decision-making framework respectively. 

The lower costs for a water restriction within a risk framework owes to the fact that risk averse 

decision-makers already make conservative decisions hence a water restriction will have a 

relatively limited impact on such a decision-maker. 

The overall conclusion is that, ignoring modelling irrigation decisions as sequential decisions 

within a multi-stage decision-making framework overlooks the risk reducing impact of the true 

nature of irrigation decisions. As a result, water use dynamics are not explicitly accounted for 

with the gross margin risk and the value of a water restriction over-estimated. The main 

recommendation from this research is hence that, agricultural water allocation policies should 

be formulated based on crop water optimisation models that consider the multi-stage decision-

making framework within which irrigation decisions are made to ensure that the impact of any 

given policy on water use management is not over-estimated. Further research should focus on 

testing the global optimality of the solutions of the risk model with alternative evolutionary 

algorithm techniques and also reformulation of the model within a mathematical programming 

environment. 

 

Key words: Single-stage decision-making framework, Multi-stage decision-making 

framework, water use dynamics, sequential irrigation decisions, simulation, 

evolutionary algorithms, water restriction, risk decision-making 
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 CHAPTER 1 

INTRODUCTION 

 

1.1 BACKGROUND AND MOTIVATION 

Agriculture is considered the foundation and one of the prominent pillars of developing 

economies, with South Africa (SA) not being an exception. Despite contributing only about 

3% to total Gross Domestic Product (GDP) of SA, the success of the sector remains of 

paramount socio-economic significance in creating employment opportunities, earning foreign 

currency, social welfare, ecotourism and is considered a backbone of food security (Statistics 

South Africa, 2014). While maize and wheat production in South Africa is highly variable as 

the crops are produced under diverse environments, the harsh global El Nino conditions 

experienced during the 2015/16 planting season resulted in a devastating 50% reduction in 

South Africa’s maize yield and area in comparison to the average of the past 5 years (USDA, 

2016). Similarly, wheat production was also significantly low due to the El Nino–induced 

drought during the 2015/16 growing season. The drought has seen five of the nine provinces 

in South African declaring drought emergencies in 2016 coupled with the hiking of the maize 

price to record levels (Grain SA, 2016). The dwindling water resources owing to recurring 

droughts and erratic rainfall patterns renders the improvement of irrigation water management 

decisions greater priority given that agriculture consumes approximately 60% of SA’s already 

scarce water resources (DWA, 2013). The sustainability of irrigation farming that is already 

under pressure due to the drought induced water restrictions is thus more accentuated.  

Owing to the biological nature and climatic dependence of agriculture, irrigation farming is 

considered to be inextricably dependent on time and uncertain in nature (Blanco and Flichman, 

2002). The interaction between different decisions made at different times during the growing 

season becomes much more important under limited water supply conditions. Crop type and 

area decisions are made at the beginning of the growing season when the climatic conditions 

of the entire growing season are still unknown to the decision-maker. For a given water 

availability scenario, the area decisions determine whether a deficit irrigation strategy will be 

followed as the area decision determines the amount of water that could be applied on a per 

hectare basis. 
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Irrigation water scheduling decisions on the other hand are made sequentially throughout the 

growing season as the uncertain weather conditions unfold given the crop area decision already 

made. The sequential decisions made by irrigation farmers facilitate the adjustment of irrigation 

water schedules for each consecutive stage depending on the currently prevailing weather 

conditions. Thus, the decision-maker is able to manage production risk by taking cognisance 

of new information from unfolding weather states. Research efforts by Botes, Bosch and 

Oosthuizen (1996) to evaluate the value of irrigation information for decision-makers under 

both limited and unlimited water supply conditions concluded that irrigation scheduling 

decisions improved as more irrigation information was taken into account, especially under 

limited water supply conditions.  

Factors other than water availability and crop water demand may further complicate irrigation 

water allocation decisions (Venter, 2015). The introduction of time of use (TOU) tariffs forces 

decision-makers to consider improving their decision-making to reduce their irrigation costs. 

Irrigation water allocation is based on the marginal factor cost (MFC) of an input and the TOU 

nature of the Ruraflex electricity tariff implies that the MFC of using an additional unit of 

electricity will be different for different times of the day and days of the week. Multi-stage 

sequential decision-making thus enables irrigation farmers to incorporate such exogenous 

factors into their decisions. 

The question, however, is not whether irrigators should adopt a sequential decision-making 

framework or not. Rather, the problem is that currently applied methodologies to model 

irrigation water allocation decisions do not acknowledge the fact that multi-stage sequential 

decisions allows irrigators to manage their risks better. Consequently, researchers might over-

estimate the impact of water restrictions since their modelling framework does not allow for 

irrigation water allocation decisions to be made within multiple-stages throughout the growing 

season. Representing the true nature in which irrigation farmers make decisions is complex as 

you have to consider the impact of irrigation water allocation decisions on the stock of field 

water supply dynamically throughout the growing season. The latter mentioned necessitates 

the inclusion of daily water budget calculations. Assumptions also need to be made on the 

available information on which irrigation water allocation decisions are based. Typically, such 

information is not certain hence the inclusion of risk into the analyses is imperative.  
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1.2 PROBLEM STATEMENT AND OBJECTIVES 

Irrigation water allocation decisions at farm-level are currently modelled within a single-stage 

decision-making framework and therefore misrepresents the actual manner in which irrigators 

make irrigation water allocation decisions in reality. The unavailability of a modelling 

framework that represents irrigation decisions within a multi-stage decision-making 

framework results in researchers, water managers at water user associations and policy makers 

being unsure of the impact of better representing irrigation water allocation decisions on the 

main decision variables and hence the value of limited water resources. Consequently, decision 

support under limited water supply conditions is hampered.  

Considerable research efforts have been commissioned in South Africa on crop water use 

management under both limited and unlimited water supply conditions. Botes et al., (1996) 

applied a Simulation-Complex (SIMCOM) model to determine the value of irrigation 

information for decision-makers with neutral and non-neutral risk preference under both 

limited water supply and unlimited water supply conditions. Results indicated that risk attitudes 

have an impact on the expected yields and the amount of irrigation water applied. However, 

the interaction between crop, area planted and water availability on the ability to supply enough 

irrigation water on a per hectare basis to produce a non-stressed crop was assumed away by 

keeping area irrigated constant.  

Grové and Oosthuizen (2010) developed an expected utility optimisation model to optimise 

water allocation between multiple crops under stochastic weather conditions. The decision 

variables of the model include choice of crop type, area planted and irrigation schedule. 

Multiple irrigation schedules (1296) were included into the optimisation model for each crop 

in an effort to consider the intra-seasonal dynamics of water allocations within a multi-crop 

setting. Only three different states of nature were included in the model to reduce the 

dimensionality problem. Similarly, several research efforts on deficit irrigation (DI) 

accentuated on how the level of risk aversion will determine the level of DI preferred by an 

irrigator (Botes, 1990; Grové et al., 2006; Grové, 2006). However, none of the research 

considered sequential decision-making resulting in misrepresenting the risk framework 

irrigators make decisions with dynamics of water use only being approximated or overlooked. 

Stochastic dynamic programming (SDP) is a frequently preferred method by international 

researchers (Rhenals and Bras, 1981; Bryant, Mjelde and Lacewee, 1993; Bras and Cordova, 

1981; Burt and Staunder, 1971; Kennedy, 1988; Alamdarlo, Ahmadian and Khalilian, 2014) to 
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represent the dynamic nature of irrigation water allocation decisions. Locally Gakpo, Tsephe, 

Nwonwu and Viljoen (2005) used SDP to optimise irrigation water allocation under a capacity 

sharing (CS) arrangement. A linear programming (LP) model was firstly used to optimize farm 

water use during the immediate season. The gross margins calculated from the LP model were 

then inputted in the SDP to optimize the water use in storage in the farmers’ CS over the entire 

planning horizon. The marginal value product of water determined with the SDP model hence 

indicated the value of an additional unit of water to be used in the future contrary to the value 

of value of an additional unit of water to be used immediately determined with the LP model. 

SDP facilitated inter-year irrigation water allocation decision-making over a number of years 

depending on the states of water availability. The SDP model was used to optimise water 

quantity and select the best water management strategy with the aim of maximizing expected 

gross margin over the entire planning zone. The researchers however were unable to include 

area decisions for multiple crops as the area under production was predetermined. Also, the 

number of states included in the model was limited to reduce the dimensionality problem with 

no short term sequential decision such as weekly decisions considered.  

Recently Venter and Grové (2016) demonstrated the use of non-linear programming to 

optimise inter-seasonal water allocation between two crops taking cognisance of time of use 

electricity tariffs. The research was the first of its kind to successfully account for water 

dynamics through the optimisation of a daily water budget using non-linear programming. The 

model allows for changes in irrigation area and daily irrigation amounts to optimise the inter-

seasonal water allocation. The daily water budget was also linked to an electricity energy 

accounting module to enable an evaluation of the financial implications of considering time of 

use electricity tariffs. Risk neutrality was assumed since the model would become too complex 

and unable to overcome the exorbitant computational requirements that render infeasible the 

optimal solution. Furthermore, the model is structured within a single-stage decision-making 

framework where area and irrigation scheduling decisions are made within the same timeframe. 

Global optimality of the solutions could not be guaranteed as the solver is only able to find 

local optima.  

Haile (2017) showed that complex simulation models could be solved using evolutionary 

algorithms (EA). The advantage of EAs is that the complexity of the model does not render the 

solution infeasible. However, EAs do not guarantee optimality but near optimal solutions.  
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The review of South African literature shows that no unified framework exists within a South 

African context to model the interaction between water availability, irrigation area and 

irrigation scheduling decisions as multi-stage sequential decisions.  

The main objective of this research is to compare the results obtained when modelling irrigation 

water allocation decisions within a single-stage decision-making framework with the results of 

a multi-stage sequential decision-making framework under a full water quota and a restricted 

water quota. Comparing the results of the two decision-making frameworks for the two 

alternative water quotas will allow for the determination of the impact of modelling irrigation 

water allocation decisions within a multi-stage sequential manner on: 

 Total gross margin risk and irrigation management decision variables (irrigated areas and 

irrigation water use) under a full and restricted water quota. 

The results from an optimisation model cast within a single-stage decision-making 

framework will provide the area irrigated, irrigation schedule and associated irrigation costs 

that will maximise the certainty equivalent given any state of nature could unfold. The 

results will be used together with the crop yields in each state of nature to determine the 

distribution of gross margin variability. Subsequent optimisations will alter the single-stage 

irrigation schedule on a weekly basis given a specific state of nature is unfolding and the 

future weather variability is risky. The area irrigated determined during the first stage 

together with the state specific irrigation schedules, associated costs and crop yields will 

be used to determine the distribution of gross margin variability for the multi-stage 

sequential decision-making framework. 

 The monetary value that will result from the improved modelling of irrigation water 

allocation decisions for risk averse decision-makers under a full and restricted water quota.  

The monetary value of the multi-stage sequential decision-making framework was 

calculated as the difference in the certainty equivalents (CE) generated within a single-

stage decision-making framework to that generated within a multi-stage decision-making 

framework. 

 The monetary cost of valuing the impact of restricted water use resulting from ignoring the 

improved modelling of irrigation water allocation decisions for risk averse decision-

makers. The monetary cost of restricted water use is calculated as the difference in the CE 

generated under a full water quota and a restricted water quota for risk averse decision-

makers.  
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1.3 STUDY AREA 

The research was conducted in Douglas, a town situated close to the convergence of the Vaal 

and Orange Rivers in the Northern Cape Province. Douglas is a typical location of an irrigation 

farm where farmers source irrigation water from the Vaal River and Orange River. Douglas 

receives an average rainfall of approximately 211mm per annum with most rainfall occurring 

mainly during autumn. The semi-arid and arid environment leads to the reliance on irrigation 

farming along the river’s fertile lands which supports the production of quality agricultural 

products. Maize and wheat are dominant crops that are planted under irrigation under seasonal 

crop rotation systems. The farming units in the Northern Cape significantly vary in size with a 

typical irrigation farm of approximately 412 hectares (BFAP, 2012). Douglas receives the 

lowest rainfall (0mm) in June and the highest (57mm) in March. The monthly distribution of 

average daily maximum temperatures shows that the average midday temperatures for Douglas 

range from 18.4°C in winter and increase to 32.9°C in summer. Clovelly and Hutton soils are 

the two main types of soil found in the district.  

 

1.4 STUDY OUTLINE 

The thesis is organized in five main chapters. The first chapter presents the background of the 

study and a motivation on why the study is relevant. The problem statement was constructed 

from this background enabling the researcher to design objectives of the study. The following 

chapter, chapter 2, provides a review of the components of the soil water budget and the 

relationship of the components with crop water stress and crop yield. Thereafter, a discussion 

of the currently existing solution procedures to solve dynamic irrigation water allocation 

problems is provided. Chapter 3 describes the research model developed in terms of its 

formulation and application and sources of data. Chapter 4 presents the researcher’s findings 

and conclusions from the analysis done. Finally, chapter 5 outlines the summary and 

recommendations based on findings of the research. 
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CHAPTER 2 

LITERATURE REVIEW 

 

2.1 INTRODUCTION 

Chapter 2 commences with an overview of how crop water use relates to the soil water budget 

status. A discussion of the components of a soil water budget and how these components relate 

to crop moisture stress and crop yield is provided. The subsequent section classifies dynamic 

problems and discusses the available solution procedures for irrigation water use dynamic 

problems. Thereafter, a discussion of the implication of energy accounting on dynamics of 

irrigation water scheduling is provided. The final section of the chapter discusses dynamic 

modelling applications in South Africa.  

 

2.2 CROP WATER USE 

Soil water availability to crops is dependent on the water status of the soil water budget. 

Knowledge of the status of the soil water budget at any given crop growth stage is hence critical 

to schedule the timing and amount of irrigation events to avoid crop moisture stress. 

Accounting for the daily state of the soil water balance requires an assessment of the incoming 

and outgoing water flux into the root zone of the soil daily. The following section discusses the 

components of the root zone soil water budget and how these components relate to crop water 

stress and crop yields. 

 

2.2.1 SOIL WATER BUDGET COMPONENTS 

Components of the soil water budget can be represented by means of a container whose water 

content fluctuates depending on water inflows into the container and outflows from the 

container. Figure 2.1 adopted from Allen, Pereira, Raes and Smith (1998) represents the 

components of a soil water budget. Evapotranspiration, run-off and deep percolation represent 

the outgoing water flux from the root zone while irrigation, rainfall and capillary rise represent 

incoming water flux into the root zone as represented with arrows in Figure 2.1. 
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Figure 2. 1: Soil water budget components representing water fluxes within the root zone  

The upper limit of soil water budget is referred to as field capacity (FC). Soil water content at 

FC represents the total water available (TAW) in the root zone that can be potentially utilised 

by crops. TAW hence represents the root zone water holding capacity (RWCAP) which 

determines the maximum amount of water that can be contained in the root zone. Water content 

might however temporarily exceed RWCAP following a rainfall or irrigation event as indicated 

by the saturation water content level. In such instances, soil water is assumed to be lost through 

evapotranspiration, deep percolation beneath roots and surface run-off to adjust soil water 

content to FC (Allen et al., 1998). As long as soil water content is below RWCAP, no water is 
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lost from the soil through deep percolation and run-off. If water uptake by crops progresses 

without water deficits being replaced through irrigation or rainfall, the lower limit of soil water 

content known as the wilting point (WP) is reached where crops can no longer uptake any water 

from the soil.  

Theoretically, water in the soil is available for plant uptake until WP. However, the rate of 

uptake of the water from the soil by the crops decreases as actual root water content (RWC) 

drops below a certain level of the TAW resulting in crops experiencing water stress before WP. 

Readily available soil water (RAW) hence represents an average fraction of the TAW that is 

easily extractable from the root zone by crops before experiencing water stress. Soil water 

stress conditions are induced as soon as RWC depletes below a threshold level where RAW is 

depleted. The daily state of the water budget can hence be expressed in terms of soil water 

depletion at the end of each day according to the following equation; 

𝐷𝑟𝑖 =  𝐷𝑟𝑖−1 − (𝑅 − 𝑅𝑂)𝑖 − 𝐼𝑅𝑖 − 𝐶𝑅𝑖 + 𝐸𝑇𝑎𝑖 + 𝐵𝑅𝑖   Equation (2.1) 

Where; 

 Dri      Root zone depletion at the end of day i (mm) 

 Dri−1   Root zone water content at the end of the previous day i-1 (mm) 

 𝑅𝑖        Rainfall on day i (mm) 

 𝑅𝑂𝑖      Soil surface run-off on day i (mm) 

 𝐼𝑅𝑖       Irrigation application on day i (mm) 

 𝐶𝑅𝑖      Capillary rise due to root development on day i (mm) 

 𝐸𝑇𝑎𝑖    Actual crop evapotranspiration on day i (mm) 

 𝐵𝑅𝑖      Water draining below the root zone by deep percolation on day i (mm 

Root zone depletion determine root water shortages relative to the FC. The minimum root zone 

depletion is hence zero when soil water content is at FC. As water content in the root zone 

depletes as out fluxes offset influxes, the root zone depletion increases and reaches its 

maximum when no water is extractable from the soil through evapotranspiration. Root zone 

depletion can therefore not exceed TAW.  

Irrigation events are scheduled when or before the RAW is depleted to compensate water 

depletions and increase RWC above the threshold level to avoid crop water stress. The root 
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zone depletion should be equal or less than RAW to facilitate crop water stress-free conditions. 

An irrigation event scheduled in one stage will hence affect the state of the water budget in the 

next stage. Irrigation application should however not exceed root zone depletion to avoid deep 

percolation or run-off which has a negative implication on resulting irrigation costs. Water 

deficits in crops and the resulting water stress on plants influences crop evapotranspiration and 

crop yield (Kallitsari, Georgiou and Babajimopoulos, 2011). The following section discusses 

the relationship of the soil water budget components to soil water stress conditions. 

 

2.2.2 SOIL WATER STRESS 

Crop moisture stress is induced under non-standard conditions when root zone depletion 

exceeds RAW (𝐷𝑟 > 𝑅𝐴𝑊). Water stress conditions limit the amount of water lost from the 

root zone through evapotranspiration resulting in ETa reducing below potential or maximum 

levels (ETm). The magnitude of crop water stress can hence be quantified by assessing the 

extent by which ETa falls short of ETm (Rao, Sarma and Chander, 1988; Kallitsari et al., 2011). 

The reduction of ETa under water stress conditions can be represented by a crop stress 

coefficient Ks. Ks is calculated using the following equation (Allen et al., 1998); 

𝐾𝑠 =  
𝑇𝐴𝑊−𝐷𝑟

𝑇𝐴𝑊−𝑅𝐴𝑊
        Equation (2.2) 

Where; 

 𝑇𝐴𝑊   Total Available water in the root zone (mm) 

 Dr       Root zone depletion (mm) 

 𝑅𝐴𝑊   Readily available water in the root zone (mm) 

Ks represents a non-dimensional transpiration reduction factor between zero and one that is 

dependent on the amount of water available in the root zone. If the actual RWC (𝑇𝐴𝑊 − 𝐷𝑟) 

is more than the threshold soil water content level before RAW is depleted, Ks is equal to one. 

Ks reduces as actual RWC falls below RAW. Figure 2.2 indicates the effect of soil water stress 

on ETa as represented by Ks.  
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Figure 2. 2: Effects of soil water stress on actual crop evapotranspiration (ETa) as represented 

by a crop stress coefficient Ks 

At any given crop development stage, a crop does not experience water stress as long as ETa 

is equal to ETm as represented by a maximum Ks equal to one between  𝜃𝐹𝐶  and 𝜃𝑡. 

𝜃𝑡  represents a threshold RWC level before RAW is exhausted. Crop water stress free 

conditions are enforced by maintaining water content in the soil above 𝜃𝑡. As water is extracted 

from the soil beyond 𝜃𝑡, ETa reduces below ETm as represented by a proportional reduction 

of Ks until WP. In essence, if soil water content satisfies crop water requirements, ETa=ETm 

and if soil water is in deficit, ETa<ETm. Crop water stress can influence crop growth and the 

subsequent yield. A discussion of the relationship between soil moisture stress and crop yield 

is provided in the following section. 
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2.2.3 YIELD-MOISTURE STRESS RELATIONS  

The effect of crop water stress on yields can be evaluated through the quantification of the 

relative evapotranspiration deficit (1-(ETa/ETm)). Representation of functional relationship 

between crop yield and consumptive water uses estimated by ETa known as a crop water 

production function is however complex. Accounting for the effects of crop water stress in 

different periods (weekly, monthly or crop growth stages) of the growing season complicates 

the crop water use/yield relations regardless of the linear relationship between ETa and crop 

growth (Rao et al., 1988; Jensen, 1968; Doorenbos & Kassam, 1979). The independent effects 

of crop water stress in each period are dependent on the yield response factor (Ky) to water 

deficits during a specific stage. A multiplicative water production function is hence applicable 

to combine the effects of crop water stress on yield for the different periods. The Stewart 

multiplicative formula represents a simple heuristic multiplicative form of crop water 

production function models (Stewart et al., 1977). The formula is based on the linear 

relationship between relative evapotranspiration deficits and relative yield decrease presented 

by Doorenbos and Kassam (1979). Stewart multiplicative yield response function is presented 

by the following equation (De Jager, 1994); 

𝑌𝑐 =  𝑦𝑚𝑐 ×  П𝑔=1
4  (1 − 𝑘𝑦𝑐,𝑔 (1 − (

∑𝑖𝐸𝑇𝑎𝑐,𝑔

∑𝑖𝐸𝑇𝑚𝑐,𝑔
)))    Equation (2.3) 

Where; 

𝑌𝑐   Actual yield for crop c (t/ha) 

𝑦𝑚𝑐   Maximum (potential) yield for crop c (t/ha) 

𝑘𝑦𝑐,𝑔     Yield response factor for crop c in growth stage g 

𝐸𝑇𝑎𝑐,𝑔   Sum of daily actual crop evapotranspiration for crop c in growth stage g (mm) 

𝐸𝑇𝑚𝑐,𝑖  Sum of daily maximum crop evapotranspiration for crop c in growth stage g 

(mm) 

The multiplicative crop water production form suggests that crop water deficits in different 

crop growth stages may reduce the resulting crop yield, in a multiplicative manner. Ky is a 

crop and growth stage specific factor that quantifies the reduction in relative yield in response 

to reduced ETa as a result of soil water deficits.  
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Determining the yield-moisture stress relationship facilitates effective scheduling of timing and 

amounts of irrigation water. 

 

2.2.4 SUMMARY AND CONCLUSION 

The daily state of the water budget represents the stock nature of water resources as water 

fluxes in one period influences the availability of water in the next period. Irrigation scheduling 

decisions are hence made considering the stock nature of water resources. Computation of a 

daily water budget routine is necessary to determine the timing and amount of irrigation water 

needed to compensate deficits to avoid crop water stress. Crop water stress resulting from soil 

water deficits in the root zone is reflected by a reduction in ETa below ETm which is quantified 

by a crop water stress coefficient Ks. The reduction in ETa subsequently impacts the resulting 

crop yield. In conclusion, irrigation decisions are complicated decisions that are considered 

taking into account the dynamics of soil moisture depletion. The amount of irrigation water 

applied in one period affects the availability of extractable water by plants in the next time 

period since water can be stored in the soil. Application of a dynamic solution procedure is 

hence imperative when solving irrigation scheduling problems to account for irrigation water 

use dynamics. 

 

2.3 CLASSIFICATION AND RESOLUTION OF DYNAMIC PROBLEMS 

Sustainable irrigated agriculture relies substantially on the effective and efficient management 

of the supply and quality of natural resources such as water and soil. According to Young 

(1996), analysis of water use management in agriculture with the use of mathematical 

programming has been centred on deterministic, partial equilibrium and static models. 

However, the amplified need to take into cognisance the dynamic, intertemporal nature of 

irrigated agriculture in evaluating water allocation policies and water use strategies in the 

presence of exacerbated water scarcity supplies has served as an excellent impetus to the 

extension of these models to also develop dynamic models (Yakowitz, 1982). Some of the 

factors that result in dynamic concerns include the possibility of current production actions 

influencing productivity of future actions, a need to adjust over time to exogenous factors, 

exhaustible resource base and / or future uncertainty (McCarl and Spreen. 1997). 
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Water resources are considered to be a stock of natural capital as current water allocation 

decisions will affect the availability of future resources and subsequently, future returns. 

Optimisation of dynamic problems hence seek to determine the optimal time path of a given 

function and often deals with stock-flow (state and control variables) relationships among the 

variables at consecutive points in time. The section below highlights definitions of some key 

concepts when considering the application of dynamic models and the different classes of 

dynamic models.  

 

2.3.1 TIME AND MODELS 

Economic models are categorised as static or dynamic models given their representation of 

time. Dynamic models explicitly take time into account and they comprise of decision variables 

that are dependent on time (Bellman, 1957). Dynamic models consist of a sequence of 

operations, changes of state, activities and interactions resulting in an optimal solution over 

time. In contrast, static models comprise of decision variables that are independent of time as 

the model is conceptualised without time as an entity (Blanco and Flichman, 2002). 

Considering the biological nature of agricultural production, a significant time lag exists 

between initial production decisions and realisation of output. A dynamic analysis enables the 

decision-maker to consider the future consequences of the decision to be made presently. 

Dynamic models are thus considered to give more realistic solutions in irrigated agriculture as 

they express the intertemporal dependence nature of decisions in comparison to static models. 

Within economic models, the main distinguishing factor between dynamic models and other 

models is the intertemporal nature of dynamic optimisation models. Intertemporal is generally 

defined as an economic term describing how an individual's current decisions impacts the 

options that are available in the future (Kennedy, 1986). Theoretically, a reduction of 

consumption in the present could significantly increase the levels available for consumption in 

the future, and the opposite is true. The optimisation for an intertemporal dynamic model is 

performed over all the time periods included in the analysis known as the planning horizon. 

The planning horizon can be set as infinite or finite depending on the specific problem.  

As aforementioned, DP can be applied in deterministic or stochastic time settings. 

Deterministic and stochastic dynamic models are classified under the intertemporal 

optimisation models and these models represent one of the three dichotomies within dynamic 
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programming as classified by Nagypal (1998). Discrete or continuous time and finite or infinite 

horizon represent the other two dichotomies of DP. Time may be continuous or discrete for 

finite horizons while time is continuous for infinite horizons. The section below elucidates on 

the classes of dynamic models. 

 

2.3.2 CLASSIFICATION OF DYNAMIC OPTIMISATION MODELS 

Intertemporal optimisation models solve dynamic problems by performing an optimisation on 

the entire planning horizon defined. An intertemporal decision can be generally defined as a 

decision made in the present that has an influence on the options available in the future. 

Irrigation management decisions on when and how much to irrigate are considered 

intertemporal as a decision in one period will affect the availability of water in the next period. 

It is important to note that this study considers short run intertemporal modelling as decisions 

are made on a weekly basis in contrast to the yearly decisions considered in other studies. 

Intertemporal dynamic optimisation models include deterministic and stochastic dynamic 

models as discussed below. 

A dynamic model is considered to be deterministic if future information of all the parameters 

included in the model is assumed to be completely and perfectly known by the decision-maker 

(Blanco and Flichman, 2002). By implication, complete certainty is assumed when optimising 

a deterministic dynamic model.  

In contrast to the assumption of complete certainty considered for a determinist dynamic 

model, a stochastic dynamic model incorporates probabilistic elements. Stochastic models 

optimises the objective function when randomness is present. These models are employed to 

solve dynamic problems under uncertainty. Stochastic models can be further categorised into 

single decision and sequential decisions dynamic models. The most prominent difference 

between these two solution methods is that single decision dynamic models find a single 

optimal decision over the entire planning horizon while sequential decision models determine 

an optimal sequence of decisions (multi-stage) (Hannah, 2014). Stochastic models seek to find 

a single optimal solution under uncertainty. Knowledge of the future is represented with 

probabilities of states of nature in a single decision stochastic model hence the optimal decision 

is on average basis given any one of the given states of nature has occurred. 
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Agricultural production is undeniably a dynamic, stochastic phenomenon that requires the 

decision-maker to take more information into account as it becomes available over the planning 

horizon. An indication that uncertainty impacts the optimal decision rule has resulted when 

analysing dynamic, stochastic systems hence sequential decision models represent sequential 

decision-making with the gradual incorporation of information as and when it becomes 

available to the decision-maker (Antle, 1983). In essence, sequential decision-making entails 

multi-stage decision-making. 

 

2.3.3 SOLVING DYNAMIC PROBLEMS 

The possible methodologies that can be employed for water resource management decisions in 

agriculture include simulation, dynamic programming and multi-period linear programming 

(Boeljhe and White, 1969). Though linear programming and simulation optimisation methods 

have been widely employed to solve dynamic solutions, the results achieved with simulation 

optimisation models are only near optimal solutions. The DP algorithm was introduced by 

Bellman (1957) and has since been the subject of continuous research efforts in agricultural 

water resource management. Substantial research efforts have been commissioned on DP 

programming which led to the invention and application of techniques for implementing DP to 

water resource management problems such as discrete dynamic programming, differential 

dynamic programming, state incremental dynamic programming and Howard's policy iteration 

method (Yakowitz, 1982). In an effort to explain methods to solve dynamic problems, solution 

methods are grouped into non-sequential and sequential dynamic optimisation models. Given 

the clarification of classes of dynamic models discussed in the previous section, deterministic 

and single decision stochastic models are classified under non-sequential dynamic optimisation 

models. Both models take into account all the periods involved in the planning horizon to 

determine a single optimal decision with no modification or without taking further information 

into account afterwards (Blanco and Flichman, 2002). In contrast, sequential decision models 

as defined, represent dynamic decision-making that solves inter-temporal problems in a 

sequential manner taking into account additional information as it becomes available and hence 

will be grouped under sequential dynamic optimisation. 

 



Literature Review 

18 
 

2.3.3.1 Non-sequential dynamic optimisation 

Yaron and Dinar (1982) applied a DP model to determine optimal irrigation strategies during 

peak seasons considering farm restrictions and shadow prices of water. A predetermined area 

of one hectare was considered for the optimisation. The DP model optimises the total quantity 

of water for one hectare over a growing season and then optimises the allocation of that water 

over time. The state of the hectare plot on day t and the decision taken on day t will influence 

the state of the plot and the decision to be made on day t+1. The DP model also assumes 

certainty about weather conditions hence deterministic in nature. The model only includes two 

discrete state variables. A major limitation of this study is the deterministic DP framework 

applied. 

Rao et al. (1988) developed a deterministic DP technique to solve the water allocation problem 

under limited water supply conditions. The researchers modelled seasonal and weekly 

irrigation schedules for cotton under limited water supply conditions. The mathematical 

formulation was based on a dated water production function which is a mathematical 

relationship between ET and the associated yield and also on weekly soil water balance. 

Growth stages and weeks were the two decision time periods used in solving the allocation 

problem subject to water delivery and soil-water storage constraints. Growth stage optimal 

water allocations were obtained through a DP model that maximized the dated water production 

function. The water was then sequentially re-allocated at the second level to meet weekly water 

deficits within each stage. Rao et al. (1988) managed to develop a procedure that schedules 

limited irrigation water for short periods such as weekly intervals. 

Locally, Botes et al. (1995) employed a comprehensive dynamic approach to value irrigation 

information for decision-makers with neutral and non-neutral risk preferences under conditions 

of both unlimited and limited water supply. The optimal solution was however only considered 

on an annual basis ignoring the possible impact of a real-time, multi-year and sequential 

analysis on the optimal solution. No updating of additional information was facilitated during 

the planning horizon to allow sequential decision-making. 

 

2.3.3.2 Sequential dynamic optimisation 

Over a decade ago, researchers were challenged to develop and apply stochastic dynamic 

planning methods in a bid to manage water resource allocation in agriculture (Backeberg and 
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Oosthuizen, 1995). Substantial progress in the development and application of stochastic 

dynamic programming has hence been stimulated with the increased risk encountered by 

farmers and aggregated scarcity of water supplies. There are two widely applied 

mathematically equivalent methods to solve sequential stochastic dynamic optimisation 

namely stochastic dynamic programming (SDP) and discrete stochastic programming (DSP). 

These models break down multiple decision problem into a sequence of sub-problems which 

can result in the model being too large hence the curse of dimensionality problem associated 

with dynamic programming. In practice, researchers might need to limit the possible state and 

decision variable for the model resulting in a solution that is a mere estimate of the optimal 

solution. In an effort to address the curse of dimensionality problem associated with DP, Blanco 

and Flichman (2002) developed a methodology based on a recursive stochastic programming 

method (RSP) to solve stochastic dynamic problems. In a sequential decision problems, a 

decision-maker faces a sequence of decisions with a decision for the next iteration being 

influenced by the decision made at the previous iteration. Sequential decision-making can be 

simply illustrated through decision trees. Below is a general tree diagram representing a 

sequential decision problem. 

 

Figure 2. 3: A three stage (𝑢𝑖) decision making problem where a square represents a decision 

node at each stage given the possible two states of nature (𝑘𝑖 ) that could unfold 

at each stage represented by circles and the final results (𝑍𝑖) represented by 

triangles 
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As indicated in Figure 2.3, decision (𝑢1) is made at the initial state of the system. The decision 

made in the next stage (𝑢2) is dependent on the state of nature occurring (𝑘1 𝑜𝑟 𝑘2). The state 

of the system or nature is defined by a specific combination of discrete values of state variables 

(Gakpo et al. 2005). A square on a decision tree typically denotes a stage when a decision must 

be made while a circle denotes a chance node representing an event the decision-maker cannot 

control (Kikuti, Cozman & Filho, 2010). The following section discusses the application of 

sequential dynamic optimisation models. 

 

2.3.3.2.1 Stochastic dynamic programming 

Bryant et al. (1993) developed an intra-seasonal SDP model that optimally allocated 

predetermined number of irrigation intervals between two competing crops taking into account 

stochastic weather patterns. The main objective of the research was to maximise the expected 

net returns over the entire planning horizon defined as a single year given the specified number 

of irrigation events. A specified amount of water only sufficient to irrigate one of the fields 

could be pumped over a five-day irrigation cycle. The research considered 15 decision stages 

(15 potential irrigations) over 25 states of nature with a decision in stage t+1 being influenced 

by decision made in stage t. Three decisions were considered for each decision stage whether 

to irrigate crop 1, irrigate crop 2, or irrigate neither of the two crops. The stochastic sequential 

model allows water to be shifted between competing crops as the season progresses. However, 

similar to other dynamic programming studies, the area to be irrigated was predetermined. 

Similarly, Rhenals and Bras (1981); Bras and Cordova (1981); Burt and Stauder (1971) applied 

SDP model framework to allocate irrigation water over the growing season for a fixed area.  

In South Africa, Gapko et al. (2005) applied a SDP to optimise water allocation under capacity 

sharing arrangements. A linear programming (LP) model was used to optimize farm water use 

during the immediate season while a SDP model was used to optimise water use over the entire 

planning zone. 

 

2.3.3.2.2 Discrete stochastic programming 

As developed by Dantzig (1955), discrete stochastic programming (DSP) has also been 

considered to be capable of solving sequential decision problems under uncertainty in farm 

management. The application technique has since been extended through considerable 
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theoretical research efforts (Cocks, 1968; Rae, 1971a). DSP allows the formulation of problems 

in a linear programming framework. A decision tree is also typically used to represent 

sequential decision-making in a DSP solution. Application of DSP is however also limited due 

to the curse of dimensionality as noted with DP. Nevertheless, DSP’s ability to take into 

consideration diverse activities and constraints common in the agricultural environment 

renders it an advantage compared to DP with regards to the ease of applicability. 

Rae (1971b) applied DSP in farm management with the main aim of elucidate and build on to 

the empirical application of the DSP methodology. The main aim of the research was to 

evaluate the sequential problem solving ability of the DSP technique. To reduce the states of 

natured included in the model, the weather variables were simply classified as good, normal or 

bad. An increase in the expected utility for a fresh-vegetable holding resulted by employing 

SDP compared to that obtained by using a deterministic dynamic model. The author 

acknowledges that including more states of nature and allowing decisions to be formulated 

frequently as employed in this study could have improved the SDP model with specific 

reference to the efficient use of information received by the decision-maker. 

A DSP model was also applied by Jacquet and Pluvinage (1995) to analyse the effects of 

climatic variability on production choices for cereal-livestock farms in France. Similar to other 

applications of DP, states of nature have to be limited to avoid the model exploding in size. 

Four states of nature (excellent, good, mediocre and catastrophic) that correspond to a climatic 

situation with special reference to rainfall were included in the model. The models employed 

also considered a two-stage decision process where stage one decision is made with only the 

probability of occurrence of each state of nature known to the decision-maker. The second 

stage decision is then made with the knowledge of random variable values (climatic scenario). 

The results of the study indicated the significance of utilising such an approach to analyse how 

climatic variations can influence choices or decisions made by farmers. DSP allowed the 

researchers to simultaneously take risk linked with climatic variability into account since model 

formulation is not based on average results. 

All of the aforementioned studies concluded that DSP is easily applicable to the agricultural 

environment in comparison to DP. In addition, DSP allows the incorporation of risk analysis 

when optimising problems within a dynamic framework. However, this modelling technique 

also suffers from the curse of dimensionality problem hence the need to always limit the 

number of state and stage variables. A need to consider recursive stochastic programming that 



Literature Review 

22 
 

overcomes this curse of dimensionality problem hence exists as discussed in the following 

section.  

 

2.3.3.3 Recursive stochastic programming 

Recursive models are considered to belong with the family of dynamic models as the different 

decision stages are explicitly represented (Blanco and Flichman, 2002). The main difference 

between the recursive models and inter-temporal dynamic models lies in their optimisation 

procedures. In contrary to the backward recursion procedure of DP, RSP models solve complex 

problem by means of forward recursion. In addition, the optimisation is achieved for each 

individual time stage with the optimisation of the next stage dependent on the previous 

iteration’s optimisation in contrast to optimising over the entire planning horizon as with 

intertemporal dynamic models. This results in the RSP method overcoming the curse of 

dimensionality problem associated with inter-temporal optimisation models. 

Day (1961) developed the RSP method to present a process of an adjustment between real-life 

situations and optimal situations through gradual adaptation of changes of exogenous 

parameters. The approach was then extended by Blanco and Flichman (2002) to solve 

sequential stochastic dynamic problems analysing the sustainability of irrigation systems in a 

Tunisian region. The RSP methodology is based on the notion that the decision-maker’s 

uncertainty about the future is higher than DP would anticipate. Given the decision-maker’s 

knowledge to the future is significantly limited, it is difficult to fully anticipate the state of 

nature to unfold hence he must opt for a sub-optimal decision for the first iteration. The 

decision-maker can now adjust the decision for the second iteration taking into account the new 

information available. RSP involves a series of sequential optimisations as presented in the 

diagram below. 

As indicated by Figure 2.4, stage 𝑢1 decision is made in the first optimisation on stage 1 by 

taking into account all the information available at that moment. The decision taken at moment 

2 will be a subject of the state of nature (𝑘𝑖) that has occurred. At moment 2, the decision can 

be revised and optimised taking into account additional information that will be now available 

to the decision-maker.  
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Figure 2. 4: Sequential solution procedure for a recursive stochastic programming method 

given 𝑢𝑖 decision stages and 𝑘𝑖 possible states of nature 

This recursive decision-making will occur till the last stage (T) as represented in Figure 2.4. 

The main advantages of this model include its ability to have large number of state variables 

represented in the model, the ability of the model to introduce exogenous changes to some of 

the parameters including but not limited to stochastic resource availability and the ability to 

optimise both short term and long-term planning horizons.  

 

2.3.4 SUMMARY AND CONCLUSION 

Taking dynamics of water use into account when optimising irrigation water scheduling at farm 

level is imperative for efficient and effective agricultural water management. Ignoring the 

dynamics of water application will rather result in efficient and effective planning not 

management of irrigation water resources. DP has been increasingly employed as a technique 

to solve dynamic, inter-temporal decision problems in agricultural water resource management 

and the procedure has received considerable theoretical and application research attention over 

the past decade as noted in literature. Deterministic dynamic models ignore the expected cost 

of uncertainty thus optimal solutions are not risk efficient. Sequential decision-making is also 

not considered for deterministic and single decision stochastic models because a deterministic 
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model assumes complete knowledge of all decision variables. In addition, a single-stage 

decision is considered for single decision stochastic model. The strength of DP lies in the ability 

of the model to break down multiple decision problems into a sequence of sub-problems 

allowing the optimisation of diverse problems. Furthermore, uncertainty and integer 

restrictions can be easily included in a DP model. DP allows sequential decision-making for 

stochastic dynamic models which is critical given the stochastic and dynamic nature of 

agricultural production activities. Nevertheless, the association of DP with the curse of 

dimensionality problem and the lack of a general algorithm has resulted in the development of 

a recursive programming methodology that overcomes the curse of dimensionality problem. 

RSP models solve complex problem by means of forward recursion allowing each time stage 

to be optimised individually with the optimisation of the next stage dependent one the previous 

iteration’s optimisation. Thus, the recursive solution procedure overcomes the curse of 

dimensionality problem associated with inter-temporal optimisation models without limiting 

the number of states of nature considered and decision variables to a finite discrete set. 

Application of recursive programming is hence of paramount importance to better account for 

these dynamics. 

The conclusion is that the applicability of techniques currently applied to solve dynamic 

problems is limited due to the curse of dimensionality. The stage and state variable are kept 

minimal to avoid the explosion of model in size resulting in dynamics only being approximated 

and risk being over-estimated. Though dynamic programming facilitates sequential decision-

making, the curse of dimensionality limits the applicability of the models for complex dynamic 

problems. The application of a recursive stochastic technique that overcomes the curse of 

dimensionality to better account for dynamics of water use and explicitly representing risk is 

hence imperative for improved irrigation water management. Explicitly modelling dynamic 

irrigation decisions entails the application of more complex dynamic models. The results 

generated within a framework that accounts for water use dynamics hence represent important 

realities of irrigation decision-making that are important to take into account if models are 

utilised as water allocation decision tools. 

 

2.4 IRRIGATION COSTS AND DYNAMICS 

Electricity costs are regarded as one of the most significant components of total variable inputs 

for irrigation farming for crops such as maize and wheat as it is vital for pumping water from 
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the source to the farms. The choice of the tariff plan that best suits the production activities of 

the irrigation farmers as designed by Eskom, does not only have an implication on the resulting 

electricity costs but can also impact irrigation water scheduling decisions hence the dynamics 

of water use. Eskom has designed several tariff options for irrigation farmers (Eskom, 2015/16 

tariff booklet). However, only the impact of Landrate and Ruraflex tariff options on water use 

dynamics will be discussed below as they are utilized by the majority of irrigation farmers. 

 

2.4.1 RURAFLEX 

Ruraflex tariff is a time of use (TOU) tariff plan consisting of both variable and fixed costs. 

The variable costs of Ruraflex depend on the TOU differentiated active energy charges. The 

fixed charges that are applicable regardless of usage include the service charge, reactive energy 

charge, network access charge and administration charge. The tariff caters for rural consumers 

whose dual and three phase supplies have a Notified Maximum Demand (NMD) from 25kVA 

and a supply voltage greater than or equal to 22kV. The TOU tariff discourages the straining 

of the national electricity system during high demand or peak periods of consumption by 

charging a higher energy charge during these periods. Contrastingly, it creates an incentive for 

using electricity during the off-peak periods and low demand seasons by charging lower energy 

charges. Ruraflex provides irrigators with an opportunity to use electricity efficiently to 

counterpart to a certain extent the escalating tariffs. The season and the time of the day are the 

two main distinguishing aspects for the different tariff rates for the TOU tariff (Eskom, 2015/16 

tariff booklet). The seasonal aspect differentiates the charges according to high and low 

demand while the daily aspect differentiates according to the time of the day. The daily aspect 

is effectively categorized into three periods which are off-peak, standard and peak periods. 

Contrasting from the previous years, the daily time periods allocation during the high demand 

season is now different from that of the low demand season. Below is an illustration of the 

three periods for each season. 

 Figure 2.5 illustrates the time of the day applicable to each period for each season. The peak, 

standard and off-peak periods entail periods of high, medium and low energy costs 

respectively. To benefit from the TOU tariffs, farmers have to schedule their irrigation in such 

a way that irrigation occurs mostly during off-peak and standard time slots. 
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Figure 2. 5: Distribution of Ruraflex’s peak, standard and off-peak time of use periods within a low and high demand season 

Source: Eskom 2015/16 Tariff booklet 
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The TOU option hence complicates water allocation decisions as the decision-maker might have to 

schedule an irrigation event on a specific day of the week and time of the day in an effort to curb 

electricity costs. 

 

2.4.2 LANDRATE 

Similar to the Ruraflex tariff option, the Landrate tariff option comprises of both fixed and variable 

charges. However, the tariff plan is characterized by a single active charge that depends on the supply 

size. Likewise, the network access, service and administration charges constitute the fixed cost 

component of the tariff plan. The tariff is divided into six ranges which mainly differ according to the 

metered supply phase and the corresponding kilovolt-amperes as illustrated below. 

Table 2. 1: Classification of Landrate tariff charges based on kVA supply 

Landrate 1 single-phase 16 kVA (80 A per phase) 

dual-phase 32 kVA (80 A per phase) 

three-phase 25 kVA (40 A per phase) 

Landrate 2 dual-phase 64 kVA (150 A per phase) 

three-phase 50 kVA (80 A per phase) 

Landrate 3 dual-phase 100 kVA (225 A per phase) 

three-phase 100 kVA (150 A per phase) 

Landrate 4 single-phase 16 kVA (80 A per phase) 

Landrate Dx single-phase 5 kVA (limited to 10 A per phase) 

Source: Eskom 2015/16 tariff booklet 

The Landrate tariff ranges vary with the metered supply phases, the Notified Maximum Demand 

(NMD) and the amperes supplied per phase as illustrated in Table 2.1. Supplies that constantly utilize 

at least 1000kWh monthly are closely associated with Landrate 1, 2 and 3 while Landrate 4 is suitable 

for those that utilize below 1000kWh on a monthly basis (Burger et al., 2003). Landrate Dx is more 

suitable for non-metered low usage supplies.  

The single active energy charge implies that the decision on the timing of the irrigation event has no 

implication on the resulting variable costs. The Landrate tariff option thus has no impact on the 

dynamics of irrigation water use. In the wake of the paradigm shift in the management of irrigation 

farming from a biological objective to maximize yields to an economic objective to maximise profits 
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or benefits (English et al., 2002), the incentive of using the TOU Ruraflex tariff choice doesn’t only 

impact irrigations costs but also the timing of irrigation events. 

 

2.5 SOUTH AFRICAN APPLICATIONS OF DYNAMIC MODELLING APPROACHES 

Considerable research has been conducted on optimal allocation of irrigation water in South Africa 

(Grové, 2006; Grové, 2008; Grové & Oosthuizen, 2010; Haile et al., 2014; Venter & Grové, 2016; 

Botes et al., 1990; Haile, 2017). Research efforts attempted to model the interdependency of water 

applications between irrigation applications in different time periods. The water allocation models 

however primarily focused on the depth of irrigation amounts without explicitly considering timing of 

irrigation events. Hence, only four research efforts significantly accounted for the dynamic, 

intertemporal nature of irrigation decisions through mathematical programming and simulation 

optimisation (Grové & Oosthuizen, 2010; Venter & Grové, 2016; Botes et al., 1990; Haile, 2017). 

What follows is a description of the aforementioned research efforts that considered water use 

dynamics in more detail. 

 

2.5.1 MATHEMATICAL PROGRAMMING 

A mathematical programming approach is applied by researchers to solve irrigation scheduling 

decisions problems as an alternative to DP. Grové and Oosthuizen (2010) developed a non-linear 

mathematical programming model to economically evaluate the effect of deficit irrigation (DI) under 

multiple crops taking increasing production risk of DI into account. The dynamic problem of 

optimising water use between multiple crops was approximated by including a large number of discrete 

activities to represent alternative water distribution strategies throughout the growing season. Multiple 

irrigation schedules were hence included in the optimisation model to dynamically optimise water use 

within a multi-crop setting. Maximising certainty equivalents for a defined range of risk aversion 

coefficients facilitated the incorporation of risk preferences into the model. Three different states of 

nature were included in the model to avoid the curse of dimensionality problem and on average optimal 

solutions were determined. The applicability of the mathematical model to solve complex dynamic 

problems with more states of nature is hence limited. Though daily water budgets were computed, 

water use dynamics were only approximated.  

Venter and Grové (2016) developed and applied a non-linear mathematical programming model that 

linked the timing of irrigation events with the electricity tariff choice for improved energy 
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management. A Soil Water Irrigation Planning and Energy management (SWIP-E) model was 

developed. The SWIP-E programming model is based on the SAPWAT optimisation (SAPWAT-OPT) 

(Grové, 2008) model that optimises a daily soil water budget for a single crop. The research effort 

successfully extended SAPWAT-OPT to facilitate optimisation of a daily water budget within an inter-

seasonal water allocation setting. Optimal irrigation hours required per irrigation cycle were allocated 

to the different TOU periods within the Ruraflex tariff. Irrigation hours were allocated first to the off-

peak time periods then the standard periods and lastly the peak-periods within the two-day cycle to 

manage the resulting variable electricity costs. In essence, a decision-maker was forced to irrigate 

during a certain time of the day and a certain day of the week taking into account the crop water 

requirements. Research results indicated that the Ruraflex tariff was more profitable as higher net 

present values resulted from reduced variable electricity costs. The optimal solution was however 

based on average data of 49 states of nature with only a single state on average basis considered to 

avoid the curse of dimensionality. The relationship between timing of irrigation events and energy 

costs was successfully modelled. However, the model failed to incorporate risk by including different 

states of nature hence risk neutrality for decision-makers was assumed. 

 

2.5.2 SIMULATION OPTIMISATION 

Botes et al. (1996) developed a simulation optimisation to optimise irrigation scheduling decision with 

the main aim of estimating the value of irrigation information under dynamic plant growth conditions. 

A simulation-complex (SIMCOM) model was developed and applied to maximize expected incomes 

given the different irrigation information scenarios. The complex method also known as the 

constrained simplex or the Nelder-Mead simplex algorithm achieves the maximum by moving away 

from low objective function values rather than moving in line towards the maximum. A crop growth 

simulation model was linked to an economic model to optimise irrigation scheduling for maize under 

conditions of limited and unlimited water supply. A crop simulation model was applied in an effort to 

realistically represent the stochastic, dynamic nature of irrigation scheduling decisions. The crop 

growth model firstly initializes soil, crop and weather variables which are then read into an irrigation 

scheduling subroutine. A decision to irrigate is made depending on the selected irrigation information 

strategy and weather data for the next three days. Six irrigation strategies considered in the model 

resulted from different combinations of information on soil water, plant growth and weather. A fixed 

irrigation amount of 10mm was applied when an irrigation event is triggered. Equal probabilities of 

occurrence of each state of nature included in the model was assumed. Research findings indicated 
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that incorporation of additional information on soil water level as determined by a daily account of 

ETa improved irrigation scheduling decisions. Additional information for the next three days was used 

to make an irrigation decision prior to those three days. Though the model accounted for water use 

dynamics, the model is not applicable to schedule real-time irrigation scheduling decisions as the 

additional information will be unknown to the decision-maker prior to decision-making. 

Recently, Haile (2017) developed an integrated bio-economic simulation optimisation model through 

the integration of the Soil Water Management Program (SWAMP) crop growth model with an 

economic model. The main aim of research was to evaluate the impact of optimal irrigation practices 

on stochastic efficiency, water use efficiencies and environmental. The developed SWAP-ECON 

model was linked to an evolutionary algorithm (EA) to determine the benefits of applying an optimal 

irrigation scheduling strategy. Application of an EA facilitated the generation of a feasible irrigation 

schedule that was used in the SWAMP model to simulate crop yield. SWAMP utilises daily 

simulations of the water budget to determine daily changes in water content of a multi-layer soil and 

seasonal impact on crop yield. SWAMP-ECON model can solve complex stochastic water allocation 

optimisation problems under salinity taking production risk into account. Seven states of nature were 

included in the simulation model. However, water was assumed to be a state-general input. Thus, the 

optimal irrigation strategy was determined such that it will maximise utility irrespective of the state of 

nature that occurs. Therefore, no adaptive decision-making was included in the model. 

 

2.5.3 SUMMARY AND CONCLUSION 

Formulation of procedures to optimise irrigation scheduling is complex given the stochastic and 

dynamic nature of such decisions. Modelling dynamic crop water optimisation problems hence 

requires one to explicitly take time into account if true water dynamics are to be accounted for. Though 

the computation of a daily water budget facilitates scheduling of irrigation events taking the status of 

the soil water balance into account, limiting state and stage variables in mathematical programming 

models only results in approximating such dynamics. The applicability of models to complex dynamic 

problems whose optimal solution is highly dependent on explicitly taking time into account is hence 

limited. Mathematical programming models are relatively easy to solve though explicitly representing 

irrigation water use dynamics within such a solution procedure is difficult. Simulation optimisation 

approaches were able to take into account a considerable number of states of nature given their ability 

to deal with high-dimensional non-linear or mixed integer optimisation problems. However, only near 

optimal solutions were generated as evolutionary algorithms are not based on optimality conditions. 
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Simulation optimisation models are more complex to solve in comparison to mathematical 

programming models as external algorithms are applied. The main shortcoming of the SA applications 

is that no sequential decision-making was considered to facilitate real-time adaptive behaviour as more 

water budget and weather information unfolds. The conclusion is therefore that irrigation water use 

dynamics were only approximated. 

 

2.6 OVERALL CONCLUSIONS 

From the literature review conducted, the following conclusions were made; 

 Irrigation water allocation decisions are complicated decisions that are made sequentially in multi-

stages taking into consideration the stock nature of field water supply dynamically throughout the 

growing season. An irrigation decision in one period will impact water availability to crops during 

the next time period since water can be stored in the soil. Under limited water supplies, area planted 

and irrigation decisions are made in multi-stages to allow an interaction between crop, area planted 

and water availability. Application of a dynamic solution procedure is necessary when solving 

irrigation scheduling problems to account for irrigation water use dynamics within a multi-stage 

decision making framework. 

 Dynamic programming and stochastic dynamic programming have been substantially applied to 

solve dynamic, inter-temporal decision problems in agricultural water use optimisation research 

efforts. However, the association of dynamic programming with the curse of dimensionality limits 

applicability of the solution procedure to complex dynamic problems when area planted and 

irrigation scheduling decisions need to be considered in multi-stages when allocating limited water 

supplies. A recursive stochastic solution procedure that solves problems through forward recursion 

hence provides an alternative solution procedure to solve complex dynamic problems without the 

curse of dimensionality limitation. 

 Currently available crop water use optimisation solution techniques within the South African 

context lack complexity with irrigation decisions modelled within a single-stage decision making 

framework where sequential adaptive decision-making is not considered. Thus, dynamics of 

irrigation water use and the associated production risk are only approximated if not overlooked. A 

new line of solution techniques that utilises evolutionary algorithms to optimise complex 

simulation models offers an alternative technique to solve complex multi-stage irrigation decisions. 

Evolutionary algorithms are capable of solving complex dynamic models without the complexity 

of the model rendering the solution infeasible. 
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 Time of use energy tariffs represents an exogenous factor that can further complicate irrigation 

scheduling decisions. Time of use tariffs forces decision-makers to consider improving their 

decision-making to reduce their irrigation costs. As a result, the timing of irrigation events is 

influenced which subsequently influences water use dynamics. Energy accounting is thus 

necessary when modelling irrigation scheduling decisions. 
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CHAPTER 3 
METHODOLOGY AND DATA 

 

3.1 INTRODUCTION 

Achieving the main objective of this research requires some form of agricultural water use 

optimisation. The optimisation procedure used in this research deviates from the normal mathematical 

programming approaches typically used in South Africa as it uses the evolutionary algorithms 

embedded in Excel® to optimise water use. Evolutionary algorithms use random realisations of the 

decision variables as a basis to evolve to a better solution. Thus, the “optimal” solution is not achieved 

when optimality conditions are satisfied and therefore only near optimal solutions are possible. Special 

care was taken to ensure that the solutions that were generated were the best possible solutions.  

Applying evolutionary algorithms to optimise agricultural water requires the development of a model 

that is able to simulate the economic consequences resulting from changes to the key decision variables 

that need to be optimised. The key decision variables in this research are the areas irrigated for maize 

and wheat as well as the respective irrigation schedules for the crops. The timing of irrigation events 

is vital as it has an impact on crop yield and irrigation costs. The first part of Chapter 3 is therefore 

devoted to a discussion of the calculation procedures to simulate the impact of changes in timing and 

magnitude of irrigation events on crop yield and the pumping hours necessary to apply the water. The 

crop yield estimations and the pumping hours provide the necessary link between the irrigation 

decisions and the quantification of the economic consequences thereof which is discussed next. 

Comparing the economics of the single-stage and multi-stage sequential decision-making frameworks 

requires the quantification of the risk. The procedures to include risk into the simulation model follows 

the economic module discussion which is then followed by a discussion of the specific procedures 

used to optimise water use for the two decision-making frameworks. Lastly, the data requirements are 

discussed. 

 

3.2 SIMULATING TIMING OF IRRIGATION EVENTS 

Accounting for water dynamics when scheduling irrigation decisions requires the computation of a 

daily soil water budget to avoid crop stress at any crop growth stage taking cognisance of the stock 
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nature of water resources. An irrigation decision scheduled in one stage will affect the soil water 

balance and availability of water for the next stage. The representation of the stock nature of water 

through the computation of a daily water budget and the key output variables of the simulation model 

is discussed next. 

 

3.2.1 DAILY WATER BUDGET COMPUTATION 

The main objective of scheduling irrigation events is to determine when to irrigate and how much to 

irrigate depending on the state of the soil water balance. By calculating the soil water balance of the 

root zone on a daily basis, the timing and the depth of future irrigation events can be planned. Assessing 

the state of the components of the daily water budget as they relate to crop water stress and the resulting 

yield is thus vital. Crop evapotranspiration is useful for determining crop water requirements as the 

amount of water lost through evapotranspiration represents the amount of water required by the crop 

to compensate water loss. Evapotranspiration can hence be determined by measuring various 

components of the soil water balance (Allen, Pereira, Raes and Smith, 1998).  

The effect of soil water content on evapotranspiration is conditioned primarily by the magnitude of the 

water deficit and the type of soil. Crop evapotranspiration under standard conditions denoted by ETm 

represents evapotranspiration from crops that are excellently managed, grown under optimum soil 

water conditions on large fields and achieving full potential yields. ETm is easily determined using the 

following equation; 

𝐸𝑇𝑚𝑐,𝑖 =  𝐾𝑐𝑐,𝑖  ×  𝐸𝑇𝑜𝑐,𝑖        Equation (3.1) 

Where; 

𝐾𝑐𝑐,𝑖     Crop coefficient for crop c on day i 

𝐸𝑇𝑜𝑐,𝑖   Reference evapotranspiration for crop c on day i (mm) 

Kc values range from zero to one and they differ with the stages of crop development. ETo is a climatic 

parameter estimated using climatic data and a grass reference crop expressing the atmospheric 

evaporation power. Scheduling of irrigation events is not necessary under standard conditions as crops 

do not experience water stress. However, under non-standard conditions, the actual evapotranspiration 

(ETa) by crops might differ from ETm due to non-standard conditions such as water stress, diseases, 

pests and low soil fertility. The computation of crop evapotranspiration under non-standard is hence 

complex. 
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Under non-standard conditions, one should determine the root water content (RWC) level where crops 

do not experience water stress to successfully simulate the timing and amount of irrigation events. The 

following calculation procedures were used to determine the status of the soil water balance to facilitate 

the simulation of irrigation events. Eta was calculated by the following equation; 

𝐸𝑇𝑎𝑐,𝑖 =  𝑚𝑖𝑛⃒
𝐸𝑇𝑚𝑐,𝑖 (

𝑅𝑊𝐶𝑐,𝑖
𝑇𝐴𝑊𝑐,𝑖 −𝑅𝐴𝑊𝑐,𝑖

)

𝐸𝑇𝑚𝑐,𝑖             Equation (3.2) 

Where; 

𝐸𝑇𝑚𝑐,𝑖    Maximum crop evapotranspiration for crop c on day i under standard conditions (mm) 

 𝑅𝑊𝐶𝑐,𝑖   Actual root water content for crop c on day i (mm) 

 𝑇𝐴𝑊𝑐,𝑖    Total available water for crop c on day i (mm) 

 𝑅𝐴𝑊𝑐,𝑖    Readily available water for crop c on day i (mm) 

Eta retains the minimum value generated between the ETm value and the product of ETm and Ks 

which represents evapotranspiration under water stress conditions. The minimum function indicates 

that ETa cannot exceed the potential or maximum evapotranspiration of a given crop generated under 

standard conditions. The following equation is used to calculate TAW; 

𝑇𝐴𝑊𝑐,𝑖 = (𝜃𝐹𝐶 − 𝜃𝑊𝑃) 𝑅𝐷𝑐,𝑖        Equation (3.3) 

Where; 

 𝜃𝐹𝐶       Soil water content at field capacity (mm) 

 𝜃𝑊𝑃     Soil water content at wilting point (mm 

 𝑅𝐷𝑐,𝑖    Root depth for crop c on day i (m) 

The magnitude of TAW is dependent on the type of the soil and the rooting depth. The soil type 

determines the amount of water that a soil can hold against gravitational forces while the rooting depth 

determines the drainage of the water below the roots if FC is reached. The RAW is calculated according 

to the following equation; 

𝑅𝐴𝑊𝑐,𝑖 =  𝑝𝑐,𝑖 ∗ 𝑇𝐴𝑊𝑐,𝑖        Equation (3.4) 

Where; 
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𝑝𝑐,𝑖  Average fraction of TAW that can be depleted from the root zone before crop c 

experiences moisture stress on day i 

The value of p is dependent on depth of the roots and the evaporation power of the atmosphere and 

ranges between zero and one. The greater the ETm, the larger the p value. The actual RWC is calculated 

as follows; 

𝑅𝑊𝐶𝑐,𝑖 = min ⃒𝑅𝑊𝐶𝐴𝑃𝑐,𝑖

𝑅𝑊𝐶𝑐,𝑖−1− 𝐸𝑇𝑎𝑐,𝑖−1+𝑅𝑐,𝑖−1+ 𝐼𝑅𝑐,𝑖−1+ 𝑇𝑅𝑐,𝑖     Equation (3.5) 

Where; 

 𝑅𝑐,𝑖−1        Rainfall for crop c on day i (mm) 

 𝐼𝑅𝑐,𝑖−1        Irrigation amount for crop c on day i (mm)  

𝑇𝑅𝑐,𝑖        Additions to the RWC due to root growth for crop c on day i (mm) 

𝑅𝑊𝐶𝐴𝑃𝑐,𝑖   Root zone water holding capacity for crop c on day i (mm) 

The RWC accounts for all the incoming water flux into the root zone on a daily basis. The actual 

capacity of the soil water cannot exceed RWCAP hence the minimum value generated between the 

total water influx and the RWCAP is retained. If the water influx into the root zone exceeds RWCAP, 

the soil drains the water below the roots. Water content below the root (BRWC) for each day is hence 

determined with the following equation; 

𝐵𝑅𝑊𝐶𝑐,𝑖 = 𝑚𝑖𝑛 ⃒𝑅𝑊𝐶𝐴𝑃𝑐,𝑖

𝐵𝑅𝑊𝐶𝑐,𝑖−1+ 𝐵𝑅𝑐,𝑖−  𝑇𝑅𝑐,𝑖       Equation (3.6) 

Where; 

𝐵𝑅𝑐,𝑖      Water draining below the root zone for crop c on day i (mm) 

𝑇𝑅𝑐,𝑖       Additions to the RWC due to the root growth for crop c on day i (mm) 

 𝑅𝐷𝑚𝑎𝑥    Maximum root development (m) 

Where TR and BR are determined by; 

𝑇𝑅𝑐,𝑖 = 𝑚𝑎𝑥⃒0

(𝑅𝐷𝑐,𝑖−𝑅𝐷𝑐,𝑖−1)/(𝑅𝐷𝑚𝑎𝑥−𝑅𝐷𝑐,𝑖−1)  𝐵𝑅𝑊𝐶𝑐,𝑖−1      Equation (3.7) 

𝐵𝑅𝑐,𝑖 = 𝑚𝑎𝑥 ⃒0

𝑅𝑊𝐶𝑐,𝑖−1+ 𝐵𝑅𝑐,𝑖−  𝑇𝑅𝑐,𝑖       Equation (3.8) 
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BRWC depends on the water movement into and out of the root zone and cannot exceed the RWCAP. 

If RWC is below RWCAP, the soil does not drain and BR can be equal to zero. TR is dependent on 

root development and BRWC hence it is only above zero during the development growth stage of the 

crop and it is zero in all the other crop growth stages. To initiate the water balance in the root zone for 

the first day, an initial soil water depletion of 50% is estimated for RWC and BRWC in the simulation 

model.  

 

3.2.2 KEY OUTPUT VARIABLES 

Crop yield and pumping hours were identified as key output variables necessary to link changes in 

irrigation schedules to the economics. Both these output variables are direct functions of the irrigation 

schedule that is used. The calculations of the key output variables are discussed next. 

 

3.2.2.1 Crop yield 

The Stewart multiplicative relative evapotranspiration formula was applied to quantify the actual yield 

of each crop by taking the effect of water deficits in different crop growth stages into account (De 

Jager, 1994). 

𝑌𝑐 =  𝑦𝑚𝑐 ×  П𝑔=1
4  (1 − 𝑘𝑦𝑐,𝑔 (1 − (

∑𝑔𝐸𝑇𝑎𝑐,𝑔

∑𝑔𝐸𝑇𝑚𝑐,𝑔
)))     Equation (3.9) 

Where; 

𝑌𝑐           Actual yield for crop c (t/ha) 

𝑦𝑚𝑐       Maximum (potential) yield for crop c (t/ha) 

𝑘𝑦𝑐,𝑔      Yield response factor for crop c is growth stage g 

𝐸𝑇𝑎𝑐,𝑔   Sum of daily actual crop evapotranspiration for crop c in growth stage g (mm) 

𝐸𝑇𝑚𝑐,𝑖   Sum of daily maximum crop evapotranspiration for crop c in growth stage g (mm) 

The Stewart yield response function does not directly relate crop yield to total water application. 

Rather, the response of the crop to water deficits is determined by crop yield response factors (Ky) 

which relate the relative reduction in yield (1-Ya/Ym) to relative evapotranspiration deficit (1-

ETa/ETm). ETa is determined in the daily water budget. Crop response factors represent the sensitivity 
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of crops to water stress hence they are crop specific and also vary at each crop growth stage. If 

irrigation decisions are scheduled taking into account the daily state of the soil water balance and 

avoiding crop water stress, the actual yield generated is close, if not equal to the potential yield.  

 

3.2.2.2 Pumping hours 

Precise quantification of daily pumping hours associated with irrigating a specific amount of irrigation 

water is essential given the Ruraflex time of use electricity tariffs are differentiated by time of the day 

and the day of the week (Venter, 2015). Necessary pumping hours are closely linked to the delivery 

capacity of the irrigation systems which is calculated using the following equation (Burger et al., 

2003): 

𝑅𝑃𝐻𝑐,𝑖 = 
 
𝐼𝑅𝑐,𝑖

𝜂𝑠
𝐴𝑐×10

𝑄
          Equation (3.10) 

Where; 

𝑅𝑃𝐻𝑐,𝑖    Required pumping hours to irrigate crop c on day i (Hours) 

Q    Flow rate (𝑚3/h) 

𝜂𝑠          Pumping efficiency 

𝐼𝑅𝑐,𝑖     Irrigation application for crop c on day i (mm) 

𝐴𝑐     Area planted for crop c (hectare) 

For a given pivot size, the flow rate will determine how many millimetres of water the irrigation system 

can apply within a 24-hour period.  

 

3.3 QUANTIFYING ECONOMIC IMPLICATIONS OF IRRIGATION EVENTS 

The crop yields and the pumping hours from the previous section are used in the economics module to 

quantify the economic implications of different irrigation schedules.  

 

3.3.1 GROSS MARGIN CALCULATION 

The total gross margin was calculated using the following equation; 
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𝐺𝑀𝑐 = ∑ 𝑃𝐼𝑐 −𝑐 ∑ 𝑌𝐷𝐶𝑐𝑐 − ∑ 𝐴𝐷𝐶𝑐𝑐 − ∑ 𝐼𝐷𝐶𝑐𝑐      Equation (3.11) 

Where; 

 𝑃𝐼𝑐      Total production income for crop c (R) 

 𝑌𝐷𝐶𝑐  Total yield dependent costs for crop c (R) 

𝐴𝐷𝐶𝑐   Total area dependent costs for crop c (R)  

𝐼𝐷𝐶𝑐    Total irrigation dependent costs for crop c (R) 

As indicated in Equation (3.11), the total yield dependent, area dependent and irrigation dependent 

costs incurred during production are deducted from the gross income to obtain the gross margin (GM) 

for the farm business. The components of the gross margin are discussed below. 

 

3.3.1.1 Production income 

The production income is a function of the yield produced, the size of area utilized for production and 

the price for the given crop. Equation 3.12 below represents the production income. 

 𝑃𝐼𝑐 =  𝑌𝑐  × 𝑝𝑐 × 𝐴𝑐         Equation (3.12) 

Where; 

𝑌𝑐    Actual yield for crop c (ton/ha) 

𝑝𝑐    Price for crop c (R/ton) 

𝐴𝑐    Area utilized for production of crop c (ha) 

The areas and prices for each crop are included as input parameters in the model. The actual crop yield 

used to calculate production income is determined with the daily water budget simulation. 

 

3.3.1.2 Yield dependent costs 

Yield dependent costs entail all production costs that change as the yield produced change. The cost 

reduction method developed by Grové (1997) form the basis of the yield dependent costs calculations. 

The calculation of yield dependent costs is represented by the following equation: 

𝑌𝐷𝐶𝑐  = 𝐴𝑐(𝑣𝑦𝑚𝑐 − ( 𝑦𝑚𝑐 − 𝑌𝑐 )𝑣𝑦𝑐)      Equation (3.13) 
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Where; 

 𝑣𝑦𝑚𝑐  Total yield dependent costs at maximum yield for crop c (R/ton 

𝑦𝑚𝑐     Maximum (potential) yield for crop c (ton/ha) 

𝑌𝑐         Actual yield for crop c (t/ha) 

𝑣𝑦𝑐      Scaling factor for less than proportional reduction in yield dependent costs for crop c 

(R/ton) 

The total yield dependent costs indicated in Equation 3.13 are calculated using the economic data 

obtained from enterprise budgets for each crop. The scaling factor enables the calculation of the less 

than proportional reduction in yield dependent costs if the actual crop yield is less than the maximum 

potential yield. The following equation is used to calculate the scaling factor; 

𝑣𝑦𝑐  =  
(𝑣𝑦𝑚𝑐−𝑣𝑌𝑐)

(𝑦𝑚𝑐−𝑌𝑐)
         Equation (3.14) 

Where; 

 𝑣𝑌𝑐   Total yield dependent costs at actual yield for crop c (R/ton) 

The scaling factor represents the fact that yield dependent costs reduce in a disproportional manner as 

actual yield reduces below maximum potential yield. If for instance, the yield dependent costs per ton 

of crop c is R500, a reduction of actual crop yield below maximum yield with a ton will not necessarily 

result is actual yield dependent costs that are R500 lower than the maximum potential yield dependent 

costs. 

 

3.3.1.3 Area dependent costs 

All production costs that change subject to a change in the size of the area under production are known 

as area dependent costs. The following equation is applicable for the calculation of area dependent 

costs for each crop;  

𝐴𝐷𝐶𝑐 = 𝐴𝑐 × 𝑣𝑎𝑐         Equation (3.15) 

Where:  

              𝐴𝑐    Area under production of crop c (ha) 
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𝑣𝑎𝑐   Area dependent costs for crop c (R/ha) 

As noted before, the area decision is made at the beginning of the production season. The area 

dependent costs are calculated using the information obtained from the enterprise budgets for each 

crop. Production costs such as seeds, fertilizers and pesticides costs are amongst the costs that are 

influenced by the size of the area planted.  

 

3.3.1.4 Irrigation dependent costs 

Irrigation dependent costs are costs incurred during crop production that are related to irrigation as 

represented by Equation 3.13 below. 

𝐼𝐷𝐶𝑐  = 𝐸𝐶𝑐 + 𝐿𝐶𝑐 + 𝑅𝑀𝐶𝑐 + 𝑊𝑐       Equation (3.16) 

Where; 

𝐸𝐶𝑐  Total electricity costs for crop c (R) 

𝐿𝐶𝑐  Total labor costs for crop c (R) 

𝑊𝑐  Total water costs for crop c (R) 

𝑅𝑀𝐶𝑐    Total repair and maintenance costs for crop c (R) 

Electricity costs are incurred when pumping irrigation water from the source to the field. Total 

electricity costs comprise of both the variable electricity costs component and the fixed costs 

component. The charges for both the fixed and variable cost component are dependent on the choice 

of the electricity tariff plan. The Ruraflex tariff plan was utilized for this study given that the tariff 

option has an implication on dynamics of water use and is widely utilized by farmers within the study 

area. Total electricity costs calculations are represented by the formula below (Venter, 2015);  

𝐸𝐶𝑐 = ∑ (𝑡𝑎𝑖,𝑡)𝑘𝑊𝑃𝐻𝑐,𝑖,𝑡 + ∑ (𝑟𝑐𝑖𝑖,𝑡 + 𝑑𝑐𝑖)𝑘𝑊𝑃𝐻𝑐,𝑖,𝑡 + ∑ 𝑡𝑟𝑎𝑖,𝑡𝑘𝑣𝑎𝑟𝑃𝐻𝑐,𝑖,𝑡 + 𝑓𝑒𝑐𝑖,𝑡𝑖,𝑡   

           Equation (3.17) 

Where; 

𝑡𝑎𝑖,𝑡     Active energy charge for day i in timeslot t (R/kWh) 

𝑟𝑐𝑖       Reliable energy charge for day i (R/kWh) 

𝑑𝑐𝑖       Demand energy charge for day i (R/kWh) 
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𝑘𝑊       Kilowatt requirement (kW) 

𝑃𝐻𝑐,𝑖,𝑡   Pumping hours on day i in timeslot t to irrigate crop c (Hours) 

𝑡𝑟𝑎𝑖,𝑡    Reactive energy charge day i in timeslot t (R/kVARh) 

𝑘𝑣𝑎𝑟    Kilovar (kVAR) 

𝑓𝑒𝑐      Fixed electricity costs (R) 

The active, reactive, reliable and network demand energy charges are the different types of variable 

electricity charges applicable for the Ruraflex tariff option as stipulated by Eskom’s charging system 

(Eskom tariff booklet, 2015/16). The fixed cost component of the Ruraflex tariff option comprises of 

the network access charge, service charge, administration charge and reactive energy charge. The 

pump capacity or flow rate, the total pressure or dynamic head and pump and motor efficiencies are 

essential factors that affect the kilowatt requirement. Likewise, the flow rate, total irrigation water 

applied and the area under production are the vital factors that influence the required irrigation 

pumping hours. The calculation of the kVAR is dependent on the distinctive power factor for each 

pump. The fixed electricity costs which are payable regardless of using the electricity are determined 

by the tariff plan choice. Irrigation events were scheduled within a two-day cycle.  

The incentive of utilising TOU Ruraflex tariff relies on a decision-maker being able to manage their 

decisions by scheduling irrigation events during off-peak periods where a lower active energy charge 

is applicable. After the total pumping hours needed within a production season are determined for each 

crop, the pumping hours allocated for each two-day irrigation cycle are restricted to the total hours 

available within an irrigation cycle and within the TOU period. The following equations were used to 

enforce a restriction of pumping hours allocated to each TOU period within a two-day irrigation cycle; 

𝑃𝐻𝑐,𝑖,"𝑜𝑓𝑓−𝑝𝑒𝑎𝑘" = 𝑚𝑖𝑛⃒𝑎𝑝ℎ𝑐,𝑖,"𝑜𝑓𝑓−𝑝𝑒𝑎𝑘"

𝑅𝑃𝐻𝑐,𝑖       Equation (3.18) 

𝑃𝐻𝑐,𝑖,"𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑"    = 𝑚𝑖𝑛⃒𝑎𝑝ℎ𝑐,𝑖,"𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑"

𝑅𝑃𝐻𝑐,𝑖−𝑃𝐻𝑐,𝑖,"𝑜𝑓𝑓−𝑝𝑒𝑎𝑘"
     Equation (3.19) 

𝑃𝐻𝑐,𝑖,"𝑝𝑒𝑎𝑘"           = 𝑚𝑖𝑛⃒𝑎𝑝ℎ𝑐,𝑖,"𝑝𝑒𝑎𝑘"

𝑅𝑃𝐻𝑐,𝑖− 𝑃𝐻𝑐,𝑖,"𝑜𝑓𝑓−𝑝𝑒𝑎𝑘"−𝑃𝐻𝑐,𝑖,"𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑"
   Equation (3.20) 

Where; 

𝑎𝑝ℎ𝑐,𝑖,𝑡   Available pumping hours during a time of use period (off-peak, standard and peak) 

when irrigating crop c on day i (hours) 
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𝑃𝐻𝑐,𝑖,𝑡    Required pumping hours allocated to a time of use period (off-peak, standard and 

peak) on day i while irrigating crop c (hours) 

The simulation model assumes that irrigation events could occur every consecutive day. Thus, the 

model implicitly assumes that the irrigation hours could be spread over a two-day period to make better 

use of the time differentiated electricity tariff structure of Ruraflex. Irrigation hours are firstly allocated 

to the off- peak period of the first day of the cycle. If the irrigation hours needed for each cycle are 

greater than the hours available during the off-peak period of day one, the next irrigation event is 

carried out during the off-peak periods of the second day of the cycle. If all the hours available during 

the off-peak periods of both days are exhausted, the hours available during the standard periods are 

then used. Irrigation events will only be carried out during peak periods if the total hours available 

during off-peak and standards periods have been utilized. The simulation mode therefore allows for 

irrigation events to be scheduled during a specific time period and a specific day of the week to achieve 

minimum electricity costs. 

The labour costs that are related to irrigation crop production are calculated according to the following 

formula suggested by Meiring (1989); 

𝐿𝐶𝑐 = ∑
𝑅𝑃𝐻𝑐,𝑖

24𝑖  lh lw         Equation (3.21) 

Where; 

Lh    Labour hours needed per 24 hours of irrigation for a given center pivot size (hours) 

lw    Labour wage rate (R/hour) 

The system size and the type of the task being carried out determine the amount of labor that is required 

per hour for irrigation purposes. For this reason, the labor costs are deemed variable. The labor demand 

is determined for every 24 hours the irrigation system is under operation. The total pumping hours 

needed and the wage rate are also important for the calculation of total labor costs as indicated in 

Equation 3.21. Meiring (1989) also proposed the formula below that was used to calculate the repair 

and maintenance costs that form part of the irrigation dependent costs; 

𝑅𝑀𝐶𝑐 =  ∑ 𝑅𝑃𝐻𝑐,𝑖 𝑟𝑡𝑖         Equation (3.22) 

Where;  

𝑟𝑡  Repair and maintenance tariff per 1000 hours pumped for an irrigation system 

(R/1000hours) 
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The pump usage directly influences the repair and maintenance incurred for the pump. The longer the 

time the pump is in use, the higher the repair and maintenance costs that are likely to be incurred. As 

indicated in Equation 3.22, the tariff is determined for every 1000 hours the irrigation system is 

pumping water. The water costs are also an important function of the total irrigation dependent costs. 

Below is an equation that was used to calculate the water costs; 

𝑊𝐶𝐶 =  ∑ 𝐼𝑅𝑐,𝑖𝐴𝑐𝑤𝑡𝑖          Equation (3.23) 

Where; 

𝑤𝑡     Water tariff (R/mm) 

The water tariff determines the monetary value of the water used for irrigation purposes which differs 

per water user association. Total amount of irrigation water used is vastly influenced by the amount of 

water needed to compensate evapotranspiration losses and the size of area to be irrigated. 

Given the simulated water budget and the subsequent economic implications, the next section presents 

the inclusion of risk into the model to facilitate the simulation of risk implications of irrigation events. 

 

3.4 SIMULATING RISK IMPLICATIONS OF IRRIGATION EVENTS 

Risk enters the simulation model as crop yield risk through different potential crop yields in each state 

of nature and stochastic weather which determines irrigation management decisions. The fact that 

irrigation events influence the stock of field water supply that the crop use to satisfy evapotranspiration 

requirements necessitates a replication of the daily water budget calculations for each state of nature 

to simulate the impact of changes in the irrigation schedule on the key output variables. Replicating 

the water budget calculations for each state of nature allows for the determination of an irrigation 

schedule that will maximise utility irrespective of the occurrence of state of nature. Weather data was 

available to define 49 states of nature. However, only 12 states of nature were considered in this 

research to reduce the dimensionality of the simulation model.  

Next, the procedure for identifying the 12 weather states through cluster analysis is discussed, followed 

by a discussion of the procedures used to identify a unique potential crop yield for each state of nature. 

The last section is devoted to calculation procedures that were used to include risk aversion into the 

model.  
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3.4.1 IDENTIFICATION OF WEATHER STATES 

Weather data over a period of 49 years was used to identify representative weather states that could be 

included in the simulation model to quantify the impact of weather risk on irrigation management 

decision-making. The 49 possible weather states were reduced to 12 representative states through the 

use of cluster analysis (CA). CA is a recognized statistical classification tool designed to classify 

multivariate dataset into some number of clusters whose members are more similar to one another than 

to members of other clusters (Gong and Richman, 1994; Marzban and Sandgathe, 2005). The 

difference between the weekly average ETm and the weekly average rainfall for both crops represented 

the weekly average irrigation requirement variable used to cluster the states of nature. Research done 

by Marzban and Sandgathe (2005) with the main aim of evaluating the applicability of different CA 

methods concluded that the Ward’s method performs the best among hierarchical methods. The 

Ward’s hierarchical cluster method proposed by Ward (1963) that generates clusters by minimizing 

within-group sum of squares was hence applied. A dendogram presented in Figure 3.1 was extracted 

to determine the number of clusters and the representative states of nature. States of nature with limited 

differences on the weekly irrigation requirements were clustered together. The shorter the height 

difference between the stems of each state, the lesser the differences between them. Weekly irrigation 

requirement in state of nature 38 greatly varies from the other states as indicated by the highest stem 

which is the furthest from other states. The distance between every pair of clusters is computed, and 

the two closest clusters are merged into a single cluster at each iteration. The procedure is then repeated 

with the new set of clusters. The number of clusters, therefore, begins with N the sample size, and is 

systematically reduced to one, that is, the entire dataset. The horizontal line within the dendogram 

represents the cluster distance at which the cluster tree was cut with 12 clusters resulting. The cluster 

tree was cut at the level indicated to ensure minimum variations within each cluster.  

The variation within each cluster are represented in Figure 3.2 depicting the representative state of 

nature for each cluster. In each cluster, the state of nature with the minimum sum of squared differences 

with all the states was chosen to represent that cluster. According to Figure 3.2, significant differences 

between clusters arose from negative weekly average irrigation requirements representing weekly 

average rainfall that is greater than weekly average ETm for the first half of the production season. 

The first half of production season represents maize production periods in summer with considerable 

rainfall levels and limited irrigation requirements. The considerable rainfall during week 10 and 12 

received in state of nature 38 is also evident in Figure 3.2. The second half of the production season 

represents wheat production during winter periods with limited rainfall experienced hence the positive 
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rainfall requirements. Winter rainfall is generally limited in the study area thus the variation on 

irrigation requirements will also be lesser than in summer. 
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Figure 3.1: Dendogram representing the resulting 12 clusters created based on average weekly irrigation requirement data 
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Figure 3.2: Variation of weekly average irrigation requirements for the 12 representative states of nature from each cluster 
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3.4.2 MAXIMUM POTENTIAL YIELD FOR EACH STATE OF NATURE 

A yield index calculation was applied to calculate the maximum potential yield for each crop 

in each state of nature using the following equation; 

ymc,s =  
∑ (ETmc,s)c,s

∑ (ETmc,s∗psc,s  )
∗ 𝑦𝑝𝑐       Equation (3.24) 

Where; 

ETmc,s   Maximum potential evapotranspiration for crop c for state of nature s (mm) 

ps    Probability of state of nature s to occur 

𝑦𝑝𝑐   Potential crop yield for crop c (ton/ha) 

The potential yield of the research area was adjusted up or down based on the fraction of the 

specific year’s ETm value relative to the average ETm of all the states of nature included in 

the model. The probability of each state of nature to occur was determined in accordance to the 

CA results. The number of states in each cluster was used to calculate the probability of each 

representative state of nature. For instance, if a cluster had three states of nature, the probability 

of any of the three states to occur will be equal to 0.0612 (3/49) where 49 represents the total 

number of states included in the historical data. 

 

3.4.3 INCLUSION OF RISK AVERSION 

Subjective expected utility theory (SEU) is considered the main theory used as a decision-

making guide under risk (Rabin and Thaler, 2001). The SEU allows the decision-maker to 

assimilate risk levels and the corresponding utility levels. Due to the complex interpretation of 

utility owing to its ordinal nature, ranking of risky alternatives has shifted from using utility to 

using stochastic efficiency with respect to a function (SERF) which is based on the idea that 

using utility to rank risky alternatives is similar to ranking alternatives according to certainty 

equivalence (CE) (Harder, Richardson & Khalilian, 2004). Harder et al. (2004) defines CE as 

the specific amount measured with the same unit of measurement as the key output variable 

that has the same utility as the expected utility of the risky alternative. The decision-maker will 

hence be indifferent between CE and the utility derived from the risky alternative. CE therefore 

presents an easier way of ranking risk as the alternative with the highest CE is chosen at a 

specified level of risk aversion. According to Harder et al. (2004), the expected utility function 
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of the decision-maker (EU) and the level of absolute risk aversion determine the CE. CE is 

hence calculated using the following negative exponential utility function if constant absolute 

risk aversion (CARA) is assumed (Babcook, Kwan and Feinerman, 1993); 

𝐶𝐸 =  
−𝐼𝑛(𝐸𝑈(𝑥))

𝑟𝑎(𝑥)
        Equation (3.25) 

Where EU is determined using the following formula; 

𝐸𝑈(𝑥) =  ∑ 𝑃𝑠 (𝑒−𝑟𝑎(𝑥)𝐺𝑀𝑠)𝑠        Equation (3.26) 

Where; 

 𝑃𝑠  Probability of occurrence of state of nature s 

 𝑟𝑎(𝑥)   Absolute risk aversion level  

 𝐺𝑀𝑠  Gross Margin for alternative state of nature s (R) 

The 𝑟𝑎(𝑥) was calculated according to the relationship between 𝑟𝑎(𝑥) and a standardized 

measure of risk aversion (𝑟𝑠(𝑥𝑠)) as indicated below; 

𝑟𝑎(𝑥) =  
𝑟𝑠(𝑥𝑠) 

𝜎𝑥
         Equation (3.27) 

Where 𝜎𝑥 represents the standard deviation of the unstandardized data. The minimum and 

maximum level of 𝑟𝑠(𝑥𝑠) according to the plausible range for 𝑟𝑠(𝑥𝑠) between 0 and 2.5 

determined by Grové (2010) were used to determine the impact of risk aversion. 

 

3.5 OPTIMISATION PROCEDURE 

Excel ® macros were used to command the simulation procedures within both a single-stage 

decision framework and multi-stage decision framework. The model was applied for two water 

supply conditions namely full water quota and restricted water quota for the Ruraflex electricity 

tariff under risk neutrality and risk aversion. The impact of the TOU Ruraflex tariff option on 

the dynamics of water supply and the fact that the tariff option is utilised by the majority of the 

farmers in the study area motivates why Ruraflex is the only tariff considered for the analysis. 

The Excel ® Solver was used to optimise the model using the evolutionary algorithm embedded 

in Excel ® due to the complexity of the model. A Macro was programmed in Excel VBA 

(Visual Basic for Applications) to allow the Excel Solver to automatically solve repetitive 
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commands in the model for both water supply scenarios and also to reduce the amount of time 

consumed optimizing the problem due to the repetitive commands. Two macros were 

programmed with one solving the risk model within a single-stage decision-making framework 

and the other solving within a multi-stage decision framework for both a full water quota and 

restricted water quota supply scenario for a risk neutral and risk averse decision-maker.  

Evolutionary algorithms are based on random generations of the decision variables that need 

to be optimized. As a result, enforcing limits could become difficult. Next, the procedures 

employed for constraint handling are discussed followed by a discussion of the macros that 

were used to solve the model under the single and multi-stage sequential decision-making 

frameworks.  

 

3.5.1 CONSTRAINT HANDLING 

Two distinct procedures were employed to place constrain the decision variables. The first 

procedure generates values between a lower and an upper limit and is easily enforced. 

Enforcing a constraint on the seasonal water allocation is more difficult since total irrigation 

water demand is determined by the interaction between area planted and the irrigation schedule. 

A penalty function was developed for the seasonal water allocation limit to inform the 

evolutionary algorithm if an unfavourable solution is generated.  

 

3.5.1.1 Lower and upper limits 

Under a full water quota, no constraint was enforced for area as full area can be irrigated given 

the availability of sufficient irrigation water. However, an area constraint was included for the 

limited water quota scenario. The following equation was used to restrict the area planted for 

each crop under a limited water quota scenario under a crop rotation system. 

         0 ≥ 𝐴𝐶 ≤ 30.1         Equation (3.28) 

The daily irrigation amounts could either be zero or take a value between a lower limit of 5mm 

and 24mm based on a two-day cycle and an irrigation system capacity of 12mm/day. IF 

functions were used to ensure that irrigation events smaller than 5mm were equated to no 

irrigation. 
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3.5.1.2 Penalty function  

The main purpose of the penalty function is to inform the evolutionary algorithm that a solution 

was generated that is deemed infeasible. A penalty is calculated and subtracted from the GM 

if water use exceeds the amount of water allocated. The following exponential equation was 

used to calculate the penalty; 

𝑦 = (𝑎𝑏𝑥 − 1)𝑠        Equation (3.29) 

Where; 

𝑦    Penalty 

 𝑎    1 

 𝑏    100 

𝑥     
𝑤𝑎𝑡𝑒𝑟 𝑙𝑖𝑚𝑖𝑡−𝑤𝑎𝑡𝑒𝑟 𝑢𝑠𝑎𝑔𝑒

100
 

 𝑠    Scaling factor of 1000 

The properties of the function are such that the penalty becomes exponentially larger as the 

water allocation is exceeded.  

 

3.5.2 SINGLE-STAGE DECISION FRAMEWORK MACRO 

Within a single-stage decision framework the assumption is made that the area irrigated and 

the irrigation schedule for the whole season are determined at the beginning of the season when 

the weather for the rest of the season is unknown. As a result, the optimisation will determine 

the irrigation schedule that will maximise the CE irrespective of the state of nature occurring. 

Figure 3.3 explains the general purpose of the macro that was used to optimise the area irrigated 

and the irrigation schedules for the two crops while assuming a single-stage decision-making 

framework.  

The first section of the macro allows the initialisation of ETm and Rain for each state of nature 

for the two crops. Initialisation is vital to ensure that the initial data for these two parameters 

that significantly influence the amount of irrigation water is retained in the model before any 

optimisation can proceed. Also, given that the model is run more than once to ensure the best 

near optimal solution is achieved, retaining the initial data before each optimisation is 
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imperative. Before the Excel Solver can begin solving, the base sheet where all calculations 

are done is defined together with the cell to be optimised. Furthermore, the constraint sets the 

optimisation is subject to are also defined. Solver implements a GA technique procedures to 

achieve the near optimal solution. The optimisation is repeated as long as the generated solution 

is greater than the previous solution. The optimal solution is achieved when the same CE is 

achieved. The optimality of the solution is tested by rerunning the optimisation but with a 

different mutation rate. The single-stage decision framework model runs for approximately 30 

minutes. It is important to note that the macro sections are similar for both water supply 

scenarios. However, the macro for a limited water quota scenario includes an additional 

constraint of area planted not to exceed full area achieved under a full water quota given the 

limited seasonal irrigation water amount. 

 

Figure 3. 3: Schematic representation of components of the single-stage decision-making 

framework solution macro 

 



Methodology and Data 

54 
 

3.5.3 MULTI-STAGE DECISION FRAMEWORK MACRO 

The multi-stage decision-making framework macro was programmed to facilitate recursive 

programming that allowed the gradual adaptation to different rainfall and ETa levels in each 

state of nature on a weekly basis. Within a multi-stage decision-making framework, the area 

decision is made in the first stage and the irrigation scheduling decisions are made in the second 

stage of decision-making. The multi-stage decision framework macro is a further development 

of the base macro to implement some sort of adaptive behavior of real time information as it 

becomes available. The model is based on the recursive stochastic programming (RSP) 

methodology developed by Blanco and Flichman (2002) as an alternative of solving complex 

dynamic problems that overcomes the curse of dimensionality. In contrast to the procedure 

followed in dynamic programming, RSP solves dynamic problems by means of forward 

recursion to facilitate an adjustment between real-life situations and optimal situations through 

gradual adaptation of changes of exogenous parameters. Important to note, the first stage of the 

multi-stage decision framework model to make area decisions is the same as that for the single-

stage decision-making framework model. The second stage of the multi-stage decision 

framework facilitates sequential irrigation scheduling decisions as the model is updated with 

real-time data of rainfall and ETm in successive weeks. Modelling decisions within a multi-

stage decision framework results in a specific irrigation schedule determined for each state of 

nature in contrast to the single irrigation schedule generated within a single-stage decision 

framework.  

The components of the multi-stage decision-making framework macro are represented in 

Figure 3.4. As noted in Figure 3.4, the first component of the macro includes the defining of 

all the states included in the set of states to allow the updating to occur in each state defined. 

Likewise, the macro also allows the initialisation of ETm and rain to also retain the initial data 

before solving the model. The optimisation for the multi-stage decision-making framework 

requires a separate optimisation for each state of nature hence it was imperative to define the 

state assumed to occur for each optimisation. A cumulative distribution of plant days (CPD) 

was used to set the fixing ranges for each updating for each crop. The CPD range was set to be 

greater than the first day of planting for each crop (t1) and end on the last day of planting for 

each crop. The updating for both crops was however set to end when the value in the CPD 

range was equal to zero hence the last value in the CPD was set at zero. ETm and rainfall 

information was updated for each state with the data of the state assumed to occur. 
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Figure 3. 4: Schematic representation of components of the multi-stage decision-making 

framework solution macro 

The multi-stage updating macro commands the optimisation of the model after each weekly 

update of ETm and Rain data of all the other states with that of the state assumed to occur till 

CDP is equal to zero. The recursive updating procedure occurs after each optimisation until the 

CPD is equal to zero. The optimisation was repeated until the maximum CE is achieved. The 

multi-stage decision framework model runs for approximately 8 hours for each of the 12 states 

of nature. After completing all 12 recursive optimisations, the GMs resulting from each 

optimisation were combined to generate the distribution of gross margin risk associated with 

the multi-stage decision-making framework.  
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3.6 DATA REQUIREMENTS AND INPUT PARAMETER CALCULATIONS 

Secondary economic, agronomic and irrigation dependent data was used to set up the Excel 

SWIP-E model. Some input parameters were calculated separately before they were used in 

the model. The following sections discussed the sources of the secondary data used and input 

parameter calculations. 

 

3.6.1 ECONOMIC INPUT DATA 

Some of the economic data utilised in the model was obtained from the cost guide published 

by Griekwaland-Wes Korporatief (GWK) (2016). Input data such as the crop price, area and 

target yield for both maize and wheat were extracted from the enterprise budgets of the cost 

guide. The maximum potential yield for each crop in each state of nature was calculated using 

the yield index method. The cost reduction method developed by Grové (1997) form the basis 

of the yield dependent costs calculations. A scaling factor was used to calculate the actual yield 

dependent costs according to a method proposed by Venter (2015). The economic data used in 

the model for both maize and wheat is represented below; 

Table 3. 1: Economic input data for maize and wheat, 2016 

 MAIZE WHEAT 

Crop price (R/ton) 4 840 4 800 

Area dependent costs (R/ha) 9 077.34 6 298.34 

Target Yield costs (R/ton) 11 710 9 939.10 

Scaling factor (R/ton) 1 106.53 1 034.5 

Source: GWK cost guide, 2016 and own calculations 

 

3.6.2 AGRONOMIC INPUT DATA  

Agronomic input data includes weather related, soil, water allocation, root growth and yield 

response factors data. The agronomic data is used for water budget calculations in the model. 

Weather related input parameters such as the ETO, Kc and rainfall were obtained from 

SAPWAT3 (South African Procedure for estimating irrigation Water requirements) (Van 

Heerden, 2015). Weather data extracted from the V13D weather station was used in SAPWAT3 

to estimate the daily ETO, Kc and rainfall for each crop for a growing period of 120 days and 
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148 days for maize and wheat respectively over a period of 49 years. As aforementioned, the 

ETm was calculated as a function of the ETO and Kc for each state of nature. A soil with a 

water holding capacity (WHC) and a depth of 130mm/m and 1.2m respectively is used in the 

model. To initialise the BRWC and RWC for the first day of the water budget, a 50% initial 

soil water depletion was assumed. The yield response factors (Ky factors) and the length of 

growth stages (Ky days) as proposed by Doorenbos and Kassam (1979) were used in the model. 

The length of Kc and Ky days and yield response factors for each growth stage are presented 

in Table 3.2 for both crops.  

Table 3. 2: Length of Kc and Ky days and yield response factors for the different crop growth 

stages for maize and wheat. 

GROWTH STAGES 

  
Initial 

Crop 

development 
Mid-season Late season 

Length of 

Kc-days 

Maize 21 26 63 10 

Wheat 28 47 63 10 

Length of 

Ky-days 

Maize 50 15 45 10 

Wheat 91 17 30 10 

Ky-Factors 
Maize 0.4 1.5 0.5 0.2 

Wheat 0.2 0.6 0.5 0.1 

 

3.6.3 IRRIGATION DEPENDENT INPUT DATA 

The electricity tariffs, water tariff, labour wage rate, irrigation system design and repair and 

maintenance data were important inputs in the model for the calculation of irrigation dependent 

costs. The Ruraflex tariffs obtained from Eskom (2015/16) were used to calculate the electricity 

costs given the total pumping hours and the kilowatt usage. The Ruraflex tariff option chosen 

is based on transmission zone ranging between 300km and 600km, a voltage of less than 500V 

and a monthly utilised capacity ranging between 100kVA and 500kVA. Both the fixed and the 

variable cost components of both tariff options were used in the calculations. The tariffs used 

are presented in Table 3.3. The peak, standard and off-peak time of use periods entail periods 

of high, medium and low energy costs respectively. During the weekdays, total available hours 

for the peak, standard and off-peak periods are 5hours/day, 11hours/day and 8hours/day 

respectively for both low and high demand season. A total of 17hours/day and 7hours/day are 
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available on Saturdays during the off- peak and standard time slots respectively with no peak 

periods available for both seasons as well. An entire day of off-peak period is available on 

Sundays. The reactive energy charge is only applicable during the high demand season hence 

only applicable for wheat. A minimum wage determined by DOL (2014) of R12.41per hour 

was used in the model accounting for 0.58 labour hours for every 24 hours. The repair and 

maintenance tariff of R0.413217 expressed per 1000 hours pumped base on a method proposed 

by Meiring (1989) was used. 

Table 3. 3: Ruraflex Electricity tariffs applicable to the Douglas area, 2015/2016 

Variable Electricity Costs Tariffs 

Active Energy charge (c/kWh) 

High Demand 

(June- August) 

Off-Peak 48.83 

Standard 89.91 

Peak 296.80 

Low Demand  

(September-

April) 

Off-Peak 42.28 

standard 66.63 

Peak 96.81 

Reliability Service Charge (c/kWh) 0.38 

Network Demand Charge (c/kWh) 24.16 

Reactive Energy Charge (c/kVArh) 
High Demand (June-August) 8.16 

Low demand (September- April) 0 

Fixed Electricity Costs Tariffs 

Network access Charge (R/KVA/month) 17.02 

Service Charge (R/Account/day) 56.93 

Administration Charge (R/POD/day) 26.39 

 

A volumetric based water tariff of R0.716 based on the Van der Kloof water user association 

was used. The water allocation for the Douglas area is 1 000mm/ha. The design data of a 30.1 

ha center pivot with a delivery capacity of 12mm/day used in the model was obtained from 

Myburgh (2014) as indicated in the table below. 
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Table 3. 4: Irrigation system design parameters of the infield irrigation system  

Center pivot size (ha) 30.1 

Delivery capacity (mm/day) 12 

Flow rate (𝐦𝟑/h) 150.5 

Center pressure (m) 24.1 

Efficiency (%) 0.775 

Kilowatt pump (kW) 24.9 

Kilovar (kVAR) 14 

Kilovolt-ampere (kVA) 50 

Source: Myburgh (2014) 
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CHAPTER 4 

RESULTS AND CONCLUSIONS 

 

4.1 INTRODUCTION 

In this chapter, the results of the risk simulation model applied to achieve the objectives of the 

study are presented in three main sections. The first section presents the results of the gross 

margin variations and the responses of a decision-maker within a single-stage and multi-stage 

decision-making framework taking risk into account under a full water quota and a restricted 

water quota scenario. The second section presents results of the estimated value or benefit of 

considering a multi-stage decision-making framework within the two alternative water supply 

scenarios and risk preferences of the decision-maker. Thereafter, the results of the cost of a 

water restriction are presented in the third section. All the results presented are for a combined 

inter-seasonal production of maize and wheat. 

 

4.2 MODELLING IRRIGATION DECISIONS 

The manner in which decision-makers make area and irrigation water scheduling decisions can 

play a significant role on the resulting distribution of expected gross margins and the risk they 

face. Irrigation decisions are generally modelled within a single-stage decision-making 

framework (SSDF) where area and irrigation scheduling decisions are considered as a single 

decision. However, in reality, irrigation farmers make decisions within a multi-stage decision-

making framework (MSDF) where area decisions are considered in the first stage and 

sequential irrigation scheduling decisions in the second stage to facilitate the optimal 

interaction of water availability, area and irrigations schedules. The results of the decisions 

made within a SSDF and a MSDF are presented below for the two alternative water supply 

scenarios. Special attention was given to the resulting gross margin (GM) variability and the 

responses of the decision-maker within each decision-making framework. The standardized 

measure of risk aversion 𝑟𝑠(𝑥𝑠) was set at 0 and 2.5 for a risk neutral and a risk averse decision-

maker respectively in accordance to the minimum and the maximum of the plausible range for
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𝑟𝑠(𝑥𝑠) according to Grové (2008). Cumulative distribution functions (CDF) are used to 

quantify the level of gross margin risk faced by a risk neutral (RN) and a risk averse (RA) 

decision-maker within the two alternative decision-making frameworks for both a full water 

quota (FQ) and restricted water quota (RQ) scenario. The resulting gross margins (GMs) for 

each of the 12 states nature under each water supply scenario are used to graph the CDF.  

 

4.2.1 SINGLE-STAGE DECISION FRAMEWORK  

The resulting GM variabilities and the responses of the decision-maker under the two 

alternative water supply scenarios and risk preferences within a SSDF are presented below. 

 

4.2.1.1 Gross margin variability 

The resulting GM variations within a SSDF and how these variations alter under a FQ and a 

RQ water supply scenario taking risk preferences into consideration are depicted in Figure 4.1. 

As highlighted in Figure 4.1, a similar distribution of GMs results under both water supply 

scenarios and risk preferences with a notable lower tail. A distribution with a range and a 

standard deviation of 468 885 and 113 248 respectively is generated under a FQ scenario and 

500 410 and 113 508 respectively under a RQ scenario for a RN decision-maker. Considering 

an extreme level of risk aversion resulted in a relatively lower range and standard deviation of 

429 029 and 99 997 respectively under a FQ scenario and 409 454 and 90 664 respectively 

under a RQ scenario. The lower range and standard deviation under risk aversion indicate a 

smaller likelihood of the actual GMs to differ from the expected GMs. The lower tail comprises 

of expected GMs with a cumulative distribution probability of 30% and lower while the upper 

tail comprises of expected GMs with a cumulative distribution probability of more than 30%. 

A relatively larger range of 413 138 is noted under a RQ for the lower tail in comparison to a 

range of 356 760 noted under a FQ if risk neutrality is assumed. Also, an upper tail range noted 

under a RQ of 87 272 is smaller than that of 112 125.under a FQ.  

However, under risk aversion, a shift of the CDFs to the left results in a reduction of the range 

of expected GMs for the lower tail more significantly under a RQ. In addition, an increase of 

the range of the upper tail is noted under a RQ in contrast to the reduced range under a FQ. The 

more evident improvement of GMs on the lower tail for the RQ scenario entail a significant 
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sacrifice of the GMs on the upper tail under risk aversion within a RQ scenario hence the 

significant shift of the upper tail to the left. 

 

 

Figure 4. 1: Gross margin variability for a risk neutral (RN) and risk averse (RA) decision-

maker within a single-stage decision-making framework for a full water quota 

(FQ) and a restricted water quota (RQ) scenario 

 

4.2.1.2 Responses 

The resulting variations of the GMs within a SSDF are attributed to the response of the 

decision-maker with regards to areas planted, irrigation water use and the resulting crop yields 

under the two alternative water supply scenarios and risk preferences. Given a single average 

best irrigation schedule is applied within a SSDF over all 12 states of nature, an over or under 

irrigation may result in other states hence a subsequent impact on the resulting yields and 

irrigation dependent costs. The resulting yield for each state thus has a significant impact on 

the resulting GM given that only production income (PI) and yield dependent costs could differ 
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for each state as the irrigation schedule was kept constant across all states implying similar 

irrigation dependent costs. The resulting PI and yield dependent costs will determine how the 

level of GMs differs for each state within a SSDF. The responses of a decision-maker under 

each water supply scenario taking risk into account are presented next. 

 

4.2.1.2.1 Full water quota 

Table 4.1 indicates the responses of a risk neutral and risk averse decision-maker in terms the 

amount of irrigation water applied and the corresponding yields under a FQ scenario. Under a 

FQ scenario, maize and wheat are produced under full areas of 30.1 hectares and 30.1 hectares 

respectively regardless of the risk preference. In addition, the actual average yield of 17t/ha for 

maize was equal to the average potential yield while the actual average yield of 7.99t/ha for 

wheat was almost equal to the average potential yield of 8t/ha as indicated in Table 4.1.  

However, taking risk aversion into account under a FQ scenario resulted in a reduction of the 

average actual yield of maize to 16.81t/ha while the average actual yield for wheat was kept 

constant. Also, to note, the total amount of irrigation water used under a FQ scenario reduced 

from 9055 for a risk neutral decision-maker to 8860𝑚3 for a risk averse decision-maker. The 

reduction in the average maize yield and the amount of irrigation water used owes to the 

extreme level of risk aversion used for the analysis with the improvement of the lower tail of 

the GM distribution considered imperative. 

As noted in Figure 4.1, a distribution of higher minimum and lower maximum GMs is 

generated for both water supply scenarios when risk aversion is considered. Under extreme risk 

aversion levels, substantial emphasis is placed on an improved lower tail of the CDF hence 

improved minimums are preferred. A slight improvement in GMs for states of nature forming 

the lower tail of the risk averse CDF is hence noticed, while GMs of states forming the upper 

tail are reduced. Almost, if not, full potential yields were achieved in each state for both crops 

for a risk neutral and a risk averse decision-maker regardless of the reduced water use under 

risk aversion. 



Results and Conclusion 

64 
 

Table 4. 1: Optimized irrigation water use, crop yields and the total gross margin for maize and wheat in each state of nature within a single-stage 

decision-making framework for a risk neutral and risk averse decision-maker under a full water quota scenario, 2016 

SINGLE-STAGE DECISION FRAMEWORK (FULL WATER QUOTA) 

 Risk Neutral Risk Averse 

State 
Irrigation 

(𝑚3) 

Maize yield 

(t/ha) 

Wheat yield 

(t/ha) 

Total Gross 

Margin(R) 

Irrigation 

(𝑚3) 

Maize yield 

(t/ha) 

Wheat yield 

(t/ha) 

Total Gross 

Margin (R) 

1 9055 15.58 8.23 2121460 8860 15.58 8.31 2131069 

2 9055 16.03 7.58 2090756 8860 16.03 7.58 2091906 

3 9055 17.61 7.99 2380657 8860 17.14 7.99 2329141 

4 9055 17.39 7.29 2245992 8860 16.86 7.29 2187930 

5 9055 17.11 8.32 2354040 8860 17.10 8.32 2354287 

6 9055 16.83 8.00 2268532 8860 16.83 8.00 2269682 

7 9055 16.21 8.24 2212365 8860 16.21 8.24 2213516 

8 9055 14.51 8.12 1946196 8860 14.51 8.12 1947347 

9 9055 16.23 8.09 2194099 8860 16.23 8.09 2195249 

10 9055 13.98 8.38 1911772 8860 13.98 8.49 1925257 

11 9055 16.10 7.87 2142381 8860 16.10 7.87 2143531 

12 9055 17.24 7.81 2298310 8860 17.23 7.81 2299460 

Average 9055 17 7.99 2291835 8860 16.81 7.99 2271690 
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The insignificant, if any, deviations in yields achieved between the two alternative risk 

preferences as indicated in Table 4.1 entail an over irrigation if risk neutrality is assumed. 

Though, a reduction in the amount of irrigation water used is coupled by a slight increase in 

the yield of wheat for states of nature 1 and 10, an increase in GMs under risk aversion is 

substantially attributed to reduced irrigation dependent costs given the reduction in irrigation 

water use. Also, a slight decrease in maize yield for states of nature 5 and 12 is noted under 

risk aversion though higher GMs still result as a result of the reduced water use. Nevertheless, 

a reduction in maize yields for states of nature 3 and 4 which form part of the upper tail of the 

risk averse CDF resulted in reduced GMs regardless of the reduced irrigation water use. The 

negative effect of the reduced PI due to the lower yields for states of nature 3 and 4 is thus 

greater than the positive impact of reduced irrigation dependent costs on GM under risk 

aversion. Given the responses under a FQ for the two alternative risk preferences, the responses 

under a restricted quota scenario are discussed in the next section. 

 

4.2.1.2.2 Restricted water quota 

Irrigation decisions made within a SSDF under a restricted water quota scenario resulted in a 

full area production of 30.1 hectares for maize for both a risk neutral and a risk averse decision-

maker. However, wheat production is reduced to 20 hectares and 20.7 hectares for a risk neutral 

and risk averse decision-maker respectively. The reduction in area under production for wheat 

resulted in relatively lower GMs generated owing to the lower gross incomes. A distribution 

of GMs under a RQ scenario is hence represented by cumulative distribution functions lying 

to the left of the FQ cumulative distribution functions as indicated in Figure 4.1. The responses 

of a risk neutral and a risk averse decision-maker with regards to areas, water use and resulting 

yields under a RQ scenario are represented in Table 4.2. According to Table 4.2, average actual 

yields of 16.96t/ha and 16.2t/ha for maize and 7.88t/ha and 7.99t/ha for wheat are generated 

for a risk neutral and a risk averse decision-maker respectively when a water restriction is 

enforced. The resulting average yields for both crops are slightly lower than the average 

potential yields of 17t/ha and 8t/ha for maize and wheat respectively apart from maize yield 

for a RA decision-maker which is significantly lower than the average potential yield.
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Table 4. 2: Optimized irrigation water use, crop yields and the total gross margin for maize and wheat in each state of nature within a single-stage 

decision-making framework for a risk neutral and risk averse decision-maker under a restricted water quota scenario, 2016 

SINGLE-STAGE DECISION FRAMEWORK (RESTRICTED WATER QUOTA) 

 Risk Neutral Risk Averse 

State 
Irrigation 

(𝑚3) 

Maize yield 

(t/ha) 

Wheat yield 

(t/ha) 

Total Gross 

Margin (R) 

Irrigation 

(𝑚3) 

Maize yield 

(t/ha) 

Wheat yield 

(t/ha) 

Total Gross 

Margin (R) 

1 8355 15.58 7.85 1874834 8350 15.58 8.30 1925698 

2 8355 16.03 7.58 1905485 8350 16.03 7.58 1919710 

3 8355 17.52 7.91 2159168 8350 15.88 7.99 1996650 

4 8355 17.36 7.29 2071895 8350 15.75 7.29 1904165 

5 8355 17.11 8.01 2109910 8350 16.60 8.32 2093048 

6 8355 16.83 8.00 2062835 8350 16.83 8.00 2078531 

7 8355 16.21 8.14 1987600 8350 16.21 8.24 2011695 

8 8355 14.51 7.96 1723523 8350 14.51 8.12 1751041 

9 8355 16.23 8.09 1983695 8350 16.23 8.09 2000069 

10 8355 13.98 8.01 1658757 8350 13.98 8.43 1707693 

11 8355 15.89 7.87 1919139 8350 15.08 7.87 1843990 

12 8355 17.23 7.76 2098877 8350 17.23 7.81 2117148 

Average 83505 16.96 7.88 2073516 8350 16.2 7.99 2013050 
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In addition, irrigation water use slightly decreased when risk aversion is considered. Important 

to note is the significant variations of yields per state to facilitate the generation of higher 

minimums and lower maximum as preferred by a risk averse decision-maker. Though the slight 

decrease in water use in each state contributed to improve GMs under risk aversion, higher 

GMs significantly resulted from the increase in yields for wheat as noted for states of nature 

1,3,5,7,8,10 and 12 as indicated in Table 4.2. The higher GMs at the lower tail of the risk averse 

CDF thus owe to the higher gross income that resulted from improved wheat yields. On the 

contrary, a reduction in maize yield for states of nature 3,4,5 and 11 resulted in lower GMs 

generated for the upper tail of the risk averse CDF. For states of nature 3 and 5, the reduction 

in PI due to lower maize yields was greater than the increase in gross incomes due to higher 

wheat yields hence the resulting lower GMs. 

In light of the noted responses of decision-makers and the corresponding variations in GMs 

under a RQ and a FQ within a SSDF, the conclusion is that risk aversion does not significantly 

impact the resulting area and yields under a full water quota. However, irrigation water use is 

significantly reduced in effort to increase the minimum outcomes. Under a RQ, a significant 

difference between yields generated for a risk neutral and for a risk averse decision-maker are 

noted hence implying the noteworthy impact of risk aversion on responses of a decision-maker 

when water supply is restricted. Though water is considered a risk reducing input, the extreme 

level of risk aversion resulted in a reduction of irrigation water applied in an effort to improve 

minimum expected values. 

 

4.2.2  MULTI-STAGE DECISION FRAMEWORK  

The resulting GM variabilities and the responses of the decision-maker under the two 

alternative water supply scenarios and risk preferences within a SSDF are presented in the 

following section. 

 

4.2.2.1 Gross margin variability 

The resulting GM variations within a MSDF and how these variations alter under a FQ and RQ 

water supply scenario taking risk preferences into consideration are depicted in Figure 4.2. 
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Figure 4. 2: Gross margin variability for a risk neutral (RN) and risk averse (RA) decision-

maker within a multi-stage decision-making framework (MD) for a full water 

quota (FQ) and a restricted water quota (RQ) scenario 

A similar distribution of expected GMs is noted for both a FQ and a RQ scenario within a 

MSDF as depicted in Figure 4.2. A distribution with a range and a standard deviation of 

443 379 and 108 829 respectively is generated under a FQ scenario while 451 072 and 104 812 

respectively is generated under a RQ scenario for a risk neutral decision-maker. Considering 

an extreme level of risk aversion resulted in a relatively lower range and standard deviation of 

431 195 and 105 066 respectively under a FQ scenario and 397 954 and 84 660 respectively 

under a RQ scenario. Similarly, the lower tail of the CDFs comprises of expected GMs with a 

cumulative distribution probability of 30% and lower while the upper tail comprises of 

expected GMs with a cumulative distribution probability of more than 30%. A relatively larger 

range of 379 545 is noted under a RQ for the lower tail in comparison to a range of 340 160 

noted under a FQ if risk neutrality is assumed. Also, an upper tail range noted under a RQ of 

71 526 is smaller than that of 103 219 under a FQ for a risk neutral decision-maker. However, 

under risk aversion, a shift of the CDFs to the left results in a significant reduction of the range 
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of expected GMs for the lower tail under a RQ while a slight increase of the range is noted 

under a FQ. Furthermore, an increase of the range of the upper tail is noted under a RQ in 

contrast to the reduced range under a FQ. The impact of risk aversion indicated by the shifts of 

the CDF to left is more visible within a SSDF compared to under a MSDF implying a lesser 

significant impact of risk aversion within a MSDF. 

 

4.2.2.2 Responses 

As aforementioned, the resulting variations in the GMs within a MSDF are also attributed 

responses of a decision-maker in terms of areas planted, irrigation water use and the resulting 

crop yields under the two alternative water supply scenarios and risk preferences. Given a state 

specific irrigation schedule is generated for each state of nature within MSDF, irrigation 

dependent costs and the subsequent yields have a significant impact on the resulting GM for 

each state. The responses of a decision-maker under a FQ and a RQ scenario within a MSDF 

are discussed next. 

 

4.2.2.2.1 Full water quota 

The areas under production for both maize and wheat generated within a SSDF correspond to 

those generated within a MSDF as the first stage of the MSDF is the same as single-stage within 

a SSDF. Full areas of 30.1 hectares for maize and 30.1 hectares for wheat are hence planted 

regardless of the risk preferences. Table 4.3 indicates the responses of a risk neutral and risk 

averse decision-maker in terms the amount of irrigation water applied and the corresponding 

yields under a FQ scenario. The actual average yields of 16.99t/ha for maize and 7.99t/ha for 

wheat were almost equal to the average potential yields of 17t/ha and 8t/ha for maize and wheat 

respectively if risk neutrality is assumed as indicated in Table 4.3. A slight reduction of actual 

average maize yield to 16.95t/ha under risk aversion is noted while the average actual yield for 

wheat remains constant for the two alternative risk preferences. In addition, a reduction of the 

total amount of irrigation water used per state under FQ reduced from 8389.40𝑚3 for a risk 

neutral decision-maker to 8128𝑚3 for a risk averse decision-maker. The reduction in the 

average maize yield and the amount of irrigation water used owes to the extreme level of risk 

aversion used for the analysis with the improvement of the lower tail of the GM distribution 

considered imperative. As expected under risk aversion, a distribution of slightly higher 



Results and Conclusion 

70 
 

minimum GMs and lower maximum GMs is generated for a risk averse decision-maker as 

indicated in Figure 4.2. A significant reduction of irrigation water applied for all the states of 

nature result under risk aversion. The relatively higher GMs generated under risk aversion 

hence resulted from reduced irrigation dependent costs as the yields in each state vary slightly 

between the two risk preferences as highlighted in Table 4.3. A reduction in irrigation water in 

an effort to increase the minimum expected values however also resulted in a reduction maize 

yield for states of nature 3, 4, 5 and 11. Lower GMs thus resulted for the aforementioned states 

due to the lower PI, regardless of the reduced irrigation dependent costs. A noteworthy trend 

of relatively higher GMs resulting from reduced irrigation water use under risk aversion can 

be deduced from Table 4.3 with the exception of states of nature 3, 4 and 5 where a water 

reduction is coupled by a reduction in maize yield. 
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Table 4. 3: Optimized irrigation water use, crop yields and the total gross margin for maize and wheat in each state of nature within a multi-stage 

decision-making framework for a risk neutral and risk averse decision-maker under a full water quota scenario, 2016 

 MULTI-STAGE DECISION FRAMEWORK (FULL WATER QUOTA) 

 Risk Neutral Risk Averse 

State 
Irrigation 

(𝑚3) 

Maize yield 

(t/ha) 

Wheat yield 

(t/ha) 

Total Gross 

Margin (R) 

Irrigation 

(𝑚3) 

Maize yield 

(t/ha) 

Wheat yield 

(t/ha) 

Total Gross 

Margin (R) 

1 7935 15.58 8.31 2135987 7470 15.58 8.31 2138647 

2 7570 16.03 7.58 2098793 7380 16.03 7.58 2100003 

3 9080 17.61 7.99 2380657 8855 17.49 7.99 2368518 

4 6885 17.39 7.29 2257702 6660 17.35 7.29 2255024 

5 8710 17.11 8.32 2355928 8660 17.10 8.32 2355136 

6 7335 16.83 8.00 2277437 7160 16.83 8.00 2278755 

7 7800 16.21 8.24 2219198 7420 16.21 8.24 2221358 

8 7195 14.51 8.12 1956223 7045 14.51 8.12 1957247 

9 8290 16.23 8.09 2198311 7545 16.23 8.09 2207307 

10 6610 13.98 8.49 1937277 6625 13.98 8.49 1937323 

11 7930 16.10 7.87 2148447 7665 16.04 7.87 2143541 

12 8200 17.23 7.81 2303080 7720 17.23 7.81 2305874 

Average 8389 16.99 7.99 2296096 8128 16.95 7.99 2292377 
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4.2.2.2.2 Restricted water quota 

As noted under a FQ scenario, the areas under production for both maize and wheat generated 

within a SSDF correspond to those generated within a MSDF as the first stage of the MSDF is 

the same as single-stage within a SSDF. Full area production of 30.1 hectares for maize for 

both a risk neutral and a risk averse decision-maker is hence applicable while 20 hectares and 

20.7 hectares is applicable for wheat for a risk neutral and risk averse decision respectively 

under a RQ scenario. The lower areas for wheat resulted in a distribution of lower GMs under 

a RQ scenario represented by cumulative distribution functions lying to the left of the FQ 

cumulative distribution functions as indicated in Figure 4.2.  

The responses of a decision-maker within a MSDF under a RQ scenario are presented in Table 

4.4. The actual average yields of 16.99t/ha for maize and 7.89t/ha for wheat were almost equal 

to the average potential yields of 17t/ha and 8t/ha for maize and wheat respectively if risk 

neutrality is assumed as indicated in Table 4.4. A reduction of the actual average maize yield 

to 16.62t/ha under risk aversion is noted while the average actual yield for wheat remains 

constant for the two alternative risk preferences. In addition, a reduction of the total amount of 

irrigation water used per state under FQ reduced from 8015𝑚3 for a risk neutral decision-maker 

to 7831𝑚3 for a risk averse decision-maker.  

A noteworthy reduction of irrigation water use in each state resulted in lower irrigation 

dependent costs hence the relative higher GMs at the lower tail of the risk averse CDF. 

However, a reduction in water use states of nature 3,4 and 5 resulted in lower maize yields due 

to under irrigation and subsequently resulted in lower GMs for the upper tail of the risk averse 

CDF. As similarly noted under a FQ within a MSDF, the negative effect of reduced gross 

income due to lower yields was greater than the positive impact of reduced irrigation dependent 

costs due to reduced water use. 

The conclusion is that, the overall increase in GMs within a MSDF is attributed to the lower 

irrigation dependent costs incurred given the reduced per state irrigation water use. The 

updating of additional water budget information as is becomes available with irrigation 

decisions made sequentially reflects the true risk that a decision-maker faces and hence the 

higher expected GMs resulting from improved irrigation water scheduling. 
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Table 4. 4: Optimized irrigation water use, crop yields and the total gross margin for maize and wheat in each state of nature within a multi-stage 

decision-making framework for a risk neutral and risk averse decision-maker under a restricted water quota scenario, 2016 

MULTI-STAGE DECISION FRAMEWORK (RESTRICTED WATER QUOTA) 

 Risk Neutral Risk Averse 

State 
Irrigation 

(𝑚3) 

Maize yield 

(t/ha) 

Wheat yield 

(t/ha) 

Total Gross 

Margin (R) 

Irrigation 

(𝑚3) 

Maize yield 

(t/ha) 

Wheat yield 

(t/ha) 

Total Gross 

Margin (R) 

1 8055 15.58 8.31 1911931 7435 15.58 8.31 1931407 

2 7695 16.03 7.58 1909415 7485 16.03 7.58 1924023 

3 8300 17.61 7.71 2153585 8195 16.97 7.72 2097356 

4 6690 17.39 7.29 2082059 6665 17.15 7.29 2068059 

5 8475 17.10 8.32 2132228 8385 16.23 8.32 2050947 

6 7220 16.83 8.00 2068317 7050 16.83 8.00 2084659 

7 7700 16.21 8.24 1999125 7230 16.21 8.24 2017553 

8 6820 14.51 8.12 1743713 6930 14.51 8.12 1758734 

9 7550 16.23 8.09 1987802 7330 16.23 8.09 2005927 

10 7105 13.98 8.49 1702513 6720 13.98 8.49 1721175 

11 7675 16.10 7.87 1946124 7715 16.10 7.87 1960157 

12 8050 17.23 7.80 2103902 7765 17.23 7.80 2119129 

Average 8015 16.99 7.89 2080535 7831 16.62 7.89 2055024 
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Having quantified the risk faced within a SSDF and a MSDF and how responses of a decision-

maker within each decision-making framework, the following section presents the estimated 

value or the worth of a MSDF. 

 

4.3 THE VALUE OF A MULTI-STAGE DECISION-MAKING FRAMEWORK 

The value of switching to a MSDF is estimated by comparing the certainty equivalents (CE) of 

a SSDF to that of a MSDF for a both risk neutral and a risk averse decision-maker under a full 

and restricted water quota as presented in Table 4.5. 

Table 4. 5: The value of a multi-stage decision framework for a risk neutral and risk averse 

decision-maker under full and restricted water quota scenarios, 2016 

 FULL WATER 

QUOTA 

RESTRICTED WATER 

QUOTA 

 
Risk  

Neutral  

Risk  

Averse  

Risk 

Neutral 

Risk 

Averse 

Single-stage framework 

Certainty equivalent (R) 
2 291 835 2 077 144 2 073 516 1 864 631 

Multi-stage framework 

Certainty equivalent (R) 
2 296 097 2 088 293 2 080 535 1 879 044 

Value(R) 4 261 11 149 7 019 14 413 

 

As indicated in Table 4.5, the value of a MSDF is R4 261 and R11 149 for a risk neutral and a 

risk averse decision-maker respectively under a FQ. The value is determined by subtracting the 

CE generated within a SSDF from that generated within a MSDF. Subtracting the CE for a less 

preferred alternative from the CE for a preferred alternative at a specified level of 𝑟𝑠(𝑥𝑠) yields 

a utility weighted risk premium, which is defined as the minimum sure amount that must be 

paid to a decision-maker to justify a switch between a preferred and a less preferred alternative 

(Hardaker et al., 2004). The value hence represents the minimum sure amount that has to be 

paid to a decision-maker to justify a switch from making irrigation decisions within a SSDF to 

a MSDF. For a rational decision-maker, the CE under risk aversion is expected to be lower 

than the expected value but greater than the minimum value as noted in Table 4.5. The gain 

realized within a MSDF under a FQ is attributed to the improved irrigation water management 
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taking additional water budget information into account as sequential irrigation decisions are 

made over the course of the production season. With the improved risk management within a 

MSDF as highlighted in the first section, the certain minimum amount that both a risk neutral 

and a risk averse decision-maker can receive increases within a MSDF. The resulting value of 

MSDF for the extreme level of risk aversion considered is R6 887 more than that generated 

under risk neutrality under a FQ as indicated in Table 4.5. The noteworthy increase in the value 

of MSDF owes to the risk reducing nature of the decision-making framework hence more 

favorable for a risk averse decision-maker. 

As illustrated in Table 4.5, the rand value of switching from a SSDF to a MSDF is R7 019 and 

R14 413 for a risk neutral and a risk averse decision-maker respectively under a RQ. In other 

words, the minimum amount of money that a risk neutral and a risk averse decision-maker has 

to receive to consider a MSDF is R7 019 and R14 413 respectively. As afore-noted under a FQ 

scenario, the value of a MSDF is greater when risk aversion is taken into account. Nonetheless, 

a greater value for irrigation decisions made within a MSDF results if water supply is restricted 

compared to a full water quota scenario for both a risk neutral and risk averse decision-maker 

as highlighted in Tables 4.5. In addition, the value of a MSDF for a risk averse decision-maker 

under a RQ is R7 394 greater than that generated under risk neutrality and is also greater than 

the difference between the value under risk neutrality and risk aversion of R6 887 noted under 

a FQ. Generally, efficient and effective irrigation management is more beneficial under 

restricted water conditions as the responses of a decision-maker will have an impact on the 

resulting GMs hence the greater value of a MSDF under a restricted water quota.  

The conclusion therefore is that, making irrigation decisions within a MSDF is worthwhile 

considering its resulting value when the CEs of two alternative decision-making frameworks 

are compared. Also, the utility weighted risk premium of a MSDF is more significant under 

restricted water supply hence it is imperative to consider such a framework given the worsening 

water resource scarcity problem. Modelling of irrigation decisions within a MSDF also results 

in a true reflection of the value of the CE. 

 

4.4 THE COST OF A WATER RESTRICTION 

To determine the cost of a water restriction, the CEs generated within the two alternative 

decision-making frameworks under a full quota and a restricted quota water supply scenario 
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are compared for a risk neutral and a risk averse decision-maker. The results of the cost of a 

water restriction are presented in Tables 4.6. Given the certain amount that a risk neutral 

decision-maker receives reduces significantly when a water restriction is enforced, the cost of 

a water restriction is represented by the difference between the CE generated under a full water 

quota and that under a restricted water quota for each decision-making framework. As 

illustrated in Table 4.6, the cost of a water restriction for a SSDF of R218 319 is greater than 

that of R215 561 faced within a MSDF for a risk neutral decision-maker. By implication, the 

cost of a water restriction is over-estimated within a SSDF. The true quantification of risk is 

hence imperative if the true cost of a water restriction is to be determined.  

Likewise, a greater cost of a water restriction of R212 513 results within a SSDF in comparison 

to R209 249 generated within MSDF under risk aversion as depicted in Table 4.6. An 

overestimation of the cost of a water restriction is hence also noted for a risk averse decision-

maker. Nevertheless, the costs for a water restriction when risk aversion is considered are lower 

than under risk neutrality for both a SSDF and a MSDF. The lower costs can be attributed to 

the fact that risk averse decision-makers already make conservative decisions hence a water 

restriction will have a relatively lesser impact on such a decision-maker. 

The conclusion is that, the results of the costs of a water restriction confirm the notion under 

which the aim of this study was constructed that suggested that applying a SSDF considering 

area and irrigation water scheduling decisions as one decision will lead to an under or over 

estimation of the cost of a water restriction. In this case, the cost of a water restriction is over-

estimated within a SSDF which might result in imprecise modeling of irrigation decision tools 

especially under restricted water scenarios taking risk preferences into cognisance. 
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Table 4. 6: Certainty equivalents for each water supply scenario for the two alternative decision-making frameworks for a risk neutral and a risk 

averse decision-maker, 2016 

 RISK NEUTRAL RISK AVERSE 

 Full quota  Restricted quota  Cost (R) Full quota  Restricted quota  Cost (R) 

Single-stage framework 

Certainty equivalent (R) 
2 291 835 2 073 516 218 319 2 077 144 1 864 631 212 513 

Multi-stage framework 

Certainty equivalent (R) 
2 296 097 2 080 535 215 561 2 088 293 1 879 044 209 249 
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CHAPTER 5 

SUMMARY AND RECOMMENDATIONS 

 

Chapter 5 provides a summary of each of the four chapters and the recommendations thereof 

in accordance to the conclusions drawn from the research. 

 

5.1 INTRODUCTION 

5.1.1 BACKGROUND AND MOTIVATION 

Recurrent droughts and inconsistent rainfall patterns that have been experienced in South 

Africa over the past few production seasons have further threatened the sustainability of 

agriculture, especially irrigated agriculture given the already scarce water resources. Precise 

decision-making by irrigators has since become more imperative for sustainable irrigation 

farming given the drought-induced water supply restrictions.  

Irrigation farmers face complex management decisions that include decisions on the type of 

crop to produce, the area under production and the water scheduling decisions that are made at 

different stages during the growing season. Crop type and area decisions are once-off decisions 

made at the beginning of the growing season which will greatly determine water needs and the 

irrigation strategy thereof. Irrigation water scheduling decisions are however made sequentially 

in multi-stages throughout the growing season as uncertain weather conditions unfold given 

the crop area decision already made. Sequential decision making facilitates adaptive decision 

behaviour by the decision-maker depending on currently prevailing weather conditions. As a 

result, decision-makers improve their production risk management as taking additional 

information into account will guide forthcoming irrigation decisions. In addition, multi-stage 

sequential decision-making enables decision-makers to incorporate exogenous factors that 

complicate irrigation water allocation decisions such as time of use electricity tariffs into their 

decisions. The interaction between these different decisions made in different stages during the 

growing season becomes much more important under limited water supply conditions. 

Currently applied methodologies to model irrigation water allocation decisions in the South 

African context do not acknowledge the fact that multi-stage decision making facilitates 

improved production risk management. As a result, the impact of water restrictions on 

irrigation farmers might be over-estimated. To represent the true nature of irrigation decisions, 
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one should consider the impact of irrigation water allocation decisions on the stock of the field 

water supply dynamically throughout the growing season. 

 

5.1.2 PROBLEM STATEMENT AND OBJECTIVES 

Irrigation water allocation decisions at farm-level are currently modelled within a single-stage 

decision-making framework and therefore misrepresents the actual manner in which irrigators 

make irrigation water allocation decisions in reality. The unavailability of a modelling 

framework that represents irrigation decisions within a multi-stage decision-making 

framework results in researchers, water managers at water user associations and policy makers 

being unsure of the impact of better representing irrigation water allocation decisions on the 

main decision variables and hence the value of limited water resources. Consequently, decision 

support under limited water supply conditions is hampered.  

Significant research has been commissioned nationally on crop water use optimisation for both 

limited and unlimited water supply conditions. The significance of taking more irrigation 

information into account has been acknowledged especially under limited water supply. 

However, most researchers assume fixed irrigated area ignoring the impact of the interaction 

between crops, area planted and water availability on the ability to supply adequate irrigation 

water per hectare. In addition, applied models are structured within a single-stage decision-

making framework where area and irrigation decisions are made within the same time period. 

Also, a limited number of states of nature have been considered in research efforts to limit the 

curse of dimensionality problems. Optimal irrigation strategies that maximize utility 

irrespective of the state of nature unfolding were hence determined with dynamics of water use 

and risk only approximated or overlooked. The review of South African literature also 

indicated that a unified irrigation decision-making framework that models the interaction 

between water availability, irrigation area and irrigation scheduling decisions as multi-stage 

sequential decisions is unavailable. 

The main objective of this research is to compare the results obtained when modelling irrigation 

water allocation decisions within a single-stage decision-making framework with the results of 

a multi-stage sequential decision-making framework under a full water quota and a restricted 

water quota. Comparing the results of the two decision-making frameworks for the two water 
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quotas will allow for the determination of the impact of modelling irrigation water allocation 

decisions within a multi-stage sequential manner on: 

 Total gross margin risk and irrigation management decision variables (irrigated areas and 

irrigation water use) under a full and restricted water quota. 

 

 The monetary value that will result from the improved modelling of irrigation water 

allocation decisions for risk averse decision-makers under a full and restricted water quota.  

 

 The monetary cost of valuing the impact of restricted water use resulting from ignoring the 

improved modelling of irrigation water allocation decisions for risk averse decision-

makers. 

 

5.2 LITERATURE REVIEW 

A literature review was conducted to guide the development of the solution procedures and 

model utilised in the research to optimise irrigation water use. Four main conclusions were 

drawn from the literature that are considered to be of the utmost importance when developing 

models to optimise agricultural water use. 

Firstly, irrigation water allocation decisions are complicated, since such decisions are made 

taking the stock nature of field water supply dynamically into account throughout the growing 

season. Soil water availability to crops is dependent on the water status of the soil. The latter 

necessitates the computation of daily water budget to account for water fluxes and facilitate 

scheduling of irrigation events before soil moisture stress conditions are triggered that have an 

impact on crop growth and the resulting crop yield. Under limited water supplies, area planted 

and irrigation decisions are made in multi-stages to allow an interaction between crop, area 

planted and water availability to ensure sufficient irrigation water is supplied per hectare basis 

to avoid crop moisture stress. Irrigation scheduling decisions are dynamic decisions made 

sequentially, given a water application decision made in one period will impact water 

availability to crops during the next time period. Irrigation scheduling decisions are hence 

complex dynamic problems that need to be solved with a dynamic solution procedure that 

facilitates adaptive-decision behaviour throughout the growing season within a multi-stage 

decision making framework.  
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Secondly, trends of applications of dynamic modelling approaches reveal that dynamic 

programming approaches have been mostly applied to solve stochastic dynamic agricultural 

water use problems. Dynamic programming allows the model to break down multiple decision 

problems into a sequence of sub-problems allowing the optimisation of diverse problems in a 

sequential manner. However, if the number of state and stage variables included in the model 

are large, the model will explode in size deeming the solution infeasible, a dynamic 

programming limitation known the curse of dimensionality. In addition, water optimisation 

decisions are modelled in a single-stage decision-making framework where area planted and 

irrigation decisions are made simultaneously. The applicability of dynamic programming to 

solve complex dynamic problems where irrigation scheduling decisions are made subsequent 

to the area decision is hence limited. An alternative solution procedure (Blanco and Flichman, 

2002) known as recursive stochastic programming that solves complex dynamic problems 

without the limitation of the curse of dimensionality should hence be considered when 

modelling water allocation problems. Recursive stochastic programming facilitates a 

sequential adjustment between real-life situations and optimal situations through gradual 

adaptation of changes of exogenous parameters through forward recursion. The decision-maker 

adjusts the decision for a given decision stage taking into account the new information available 

from the previous stage. The recursive solution procedure of Blanco and Flichman (2002) is 

hence a viable alternative to solve complex sequential irrigation scheduling decisions within a 

multi-stage decision-making framework. 

Thirdly, a review of literature indicated that mathematical programming and simulation 

optimisation approaches have been applied by researchers to solve irrigation water application 

decision problems as alternatives to dynamic programming. Results from the water use 

optimisation studies considered in literature that fairly accounted for water dynamics within 

the South African context reveal that, the currently available solution techniques lack 

complexity. Mathematical programming models require simplification to limit the state and 

stage variables included in the model with no adaptive-sequential behaviour considered to 

avoid the curse of dimensionality. An attempt to incorporate risk into a mathematical 

programming model resulted in the model becoming infeasible (Venter, 2015). The 

applicability of mathematical programming models to complex dynamic problems whose 

optimal solution is highly dependent on explicitly taking time into account with area and 

irrigation decisions being made consecutively within a risk framework is hence limited. 

Simulation optimisation approaches were able to take into account a considerable number of 
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states of nature given their ability to deal with high-dimensional non-linear or mixed integer 

optimisation problems. Application of evolutionary algorithms to optimise complex simulation 

models has been recently adopted in South Africa. Evolutionary algorithms provide an 

alternative solution technique that overcomes the complexity of modelling irrigation decisions 

without deeming the solution infeasible. The creditability of such a procedure was recently 

demonstrated by Haile (12017). The availability of alternative solution procedures such as 

evolutionary algorithms provides an opportunity for researchers to model more complex 

representations of irrigation scheduling management decisions. 

Finally, time of use electricity tariffs are considered an exogenous factor other than water 

availability and crop water demand that may further complicate irrigation water allocation 

decisions. The Ruraflex time of use tariffs that charges different tariff for different time periods 

might force a decision-maker to schedule an irrigation event during a specific time of the day 

and a specific day of the week. The time of use tariff option will hence impact the decision on 

the timing of irrigation events and subsequently affecting irrigation water use dynamics. 

Energy accounting should thus be incorporated in irrigation water allocation models. 

 

5.3 METHODOLOGY 

An Excel ® simulation model based on the Soil Water Irrigation Planning and Energy 

management (SWIP-E) programming model (Venter, 2015) was developed and applied. 

Firstly, a daily water budget is computed to determine the timing and magnitude of irrigation 

events and the resulting crop yields and total irrigation hours as key output variables. The 

model facilitates the simulation of the economic consequences resulting from changes to the 

key decision variables that need to be optimised through gross margin calculations for each 

state of nature. The crop yield estimations determined in the water budget influences the gross 

margin through the gross income while the total pumping hours are accounted for within the 

irrigation dependent costs. Any adjustments in the water budget will hence alter the gross 

margin depending on the response of crop yields and total irrigation hours. The allocation of 

irrigation hours needed for each cycle within the time of use periods (TOU) of the electricity 

tariff was essential to account for the impact of the TOU Ruraflex tariff on water use dynamics 

as an exogenous factor.  
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An extension of the model to incorporate risk was essential to facilitate a comparison of the 

economic consequences within the single-stage and multi-stage sequential decision–making 

frameworks. Inclusion of risk in the model facilitates the quantification of the uncertainty in 

resulting yields and irrigation costs under stochastic weather induced variabilities. To 

determine an optimal irrigation schedule that optimises utility regardless of the state of nature 

occurring, replication of the water budget calculations for each of the representative 12 weather 

states was imperative. A cluster analysis classification tool was utilised to identify the 12 

representative states of nature from the possible 49 states obtained and extracted from 

SAPWAT3 software. Risk preferences were incorporated into the model by means of 

maximization of the certainty equivalents assuming constant absolute risk aversion. 

The Excel ® Solver is used to optimise the risk simulation model using the evolutionary 

algorithm embedded in Excel ®. Two Excel ® macros were programmed in Excel VBA (Visual 

Basic for Applications) to command the simulation procedures within each decision-making 

framework and to limit the amount of time consumed optimizing the problem given the 

repetitive commands. The single-stage decision-making framework macro commanded the 

optimisation of the base model where the area decision and an irrigation schedule are 

determined in a single-stage with only knowledge of the possible states of nature that could 

unfold. The multi-stage decision-making framework macro facilitated weekly sequential 

irrigation scheduling decisions considering additional rainfall and ETm information over the 

course of the production season. The first stage of the multi-stage decision-making framework 

is the same as the single-stage considered within a single-stage decision-making framework. A 

recursive stochastic programing methodology is adopted at the second stage of the multi-stage 

decision-making framework macro to facilitate sequential irrigation decisions as each state of 

nature unfolds on a weekly basis. 

 

5.4 RESULTS AND CONCLUSIONS 

5.4.1 SINGLE-STAGE DECISION-MAKING FRAMEWORK 

The distribution of gross margins within a single-stage decision-making framework is 

represented with cumulative distribution functions. A similar distribution of gross margins with 

a noteworthy lower tail resulted under both full and restricted water quota supply scenarios 

within a multi-stage decision framework. Considering an extreme level of risk aversion resulted 

in the lower tail of the cumulative distribution function for both water supply scenarios shifting 



Summary and Recommendations 

84 
 

slightly to the right and the upper tails shifting to the left. The shifting resulted from increased 

minimum gross margin values with reduced maximum gross margins under risk aversion. 

The resulting variations of the gross margins within a single-stage decision-making framework 

are attributed to the responses of the decision-maker with regards to areas planted, irrigation 

water use and the resulting crop yields under the two alternative water supply scenarios and 

risk preferences. Within a single-stage decision framework, the crop will be either over or 

under irrigated depending on the state of nature that occurs with the subsequent impact on the 

resulting yields and irrigation dependent costs. Full areas of 30.1 hectares and 30.1 hectares 

are produced for maize and wheat respectively regardless of the risk preference under a full 

quota with potential yields achieved for both crops. However, taking risk aversion into account 

under a full quota scenario resulted in a reduction of the average actual yield of maize to 

16.81t/ha while the average actual yield for wheat was kept constant at 7.99t/ha. The total 

amount of irrigation water used under a full quota also reduced from 9050𝑚3 under risk 

neutrality to 8860𝑚3 under risk aversion. The reduction in the average maize yield and the 

amount of irrigation water used owes to the extreme level of risk aversion. Improved minimum 

gross margins within the lower tail of the cumulative distribution function results from reduced 

irrigation dependent costs while a slight decrease in maize yield resulted in lower gross margins 

within the upper tail. 

Under a restricted water quota, irrigation decisions made within a single-stage decision-making 

framework assuming risk neutrality resulted in full areas being produced for maize regardless 

of risk preferences. A reduction of production area of wheat to 20 hectares and 20.7 hectares 

is however noted for a risk neutral and risk averse decision-maker respectively. A full irrigation 

strategy with reduced areas is hence followed under a restricted water quota with a reduced 

gross income resulting in lower gross margins. The resulting average yields for both crops 

under restricted water supply for both risk preferences are lower than the average potential 

yields of 17t/ha and 8t/ha for maize and wheat respectively. Though the total amount of 

irrigation water slightly decreased under risk aversion, the improvement of minimum gross 

margins at the lower tail is attributed to a notable increase in wheat yields. In contrast, reduced 

maize yields for states of nature comprising the upper tail of the cumulative distribution 

function resulted in reduced maximum gross margins. 

The overall conclusion of the impact of modelling irrigation decisions within a single-stage 

decision framework where the area and irrigation scheduling decisions are made in one stage 
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is that the impact of risk aversion is limited under a full water quota. Though irrigation water 

application significantly reduced in effort to increase the minimum gross margins, yield 

variations were limited between alternative risk preferences. However, significant yield 

variations resulted under a restricted water quota when risk aversion was considered implying 

the noteworthy impact of risk aversion on responses of a decision-maker when water supply is 

restricted. Though water is considered a risk reducing input, the extreme level of risk aversion 

resulted in a reduction of irrigation water applied to improve minimum expected values. 

 

5.4.2 MULTI-STAGE DECISION-MAKING FRAMEWORK 

Gross margins within a multi-stage decision-making framework are also represented with 

cumulative distribution functions with a similar distribution of gross margins resulting under 

both water supply scenarios. A distinctive irrigation schedule is determined for each state of 

nature hence the irrigation water application and subsequent irrigation dependent costs varied 

per state. Areas under production for both crops generated within a multi-stage decision-

making framework corresponds to those generated within a single-stage decision-making 

framework as the first stage of decision-making is the same within both frameworks. The 

impact of risk aversion is indicated by the shifts of the cumulative distribution graph’s lower 

tail to the right and upper tail to left. Important to note is that the shift of the lower tails to the 

right under risk aversion is more significant within a single-stage decision-making framework 

than within a multi-stage decision-making framework. The impact of risk aversion within a 

multi-stage decision-making framework is thus limited. 

Under a full water quota, maize and wheat are produced under full areas for both risk 

preferences with almost potential yields achieved for both crops. The total irrigation water 

applied over all states of nature reduced from 8389.40𝑚3 for a risk neutral decision-maker to 

8128𝑚3 for a risk averse decision-maker with limited yield variation between the two risk 

preferences. As expected under extreme levels of risk aversion, improved minimum gross 

margins within the lower tails results under both water supply scenarios. A reduction in 

irrigation water use under risk aversion resulted in lower irrigation dependent costs and 

subsequently higher gross margins for the lower tail of the cumulative distribution function. 

However, lower yields were generated in states of nature comprising the upper tail due to 

reduced irrigation water application under risk aversion resulting in lower gross margins. The 
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positive impact of reduced water use on gross margin is hence offset by the negative impact 

resulting from yield reduction. 

Under a restricted water quota, yields under production for both crops also correspond to those 

generated under a single-stage decision-making framework. The full irrigation and reduced 

area strategy is hence also followed under a restricted water quota for wheat production. 

Reduced area under wheat production resulted in lower gross margins with a cumulative 

distribution functions lying to the left of the full water cumulative distribution functions. A risk 

averse decision-maker responds under a full water quota scenario by reducing irrigation water 

from 8015𝑚3 under risk neutrality to 7831𝑚3. Higher gross margins at the lower tail under 

risk aversion hence resulted from a reduction in irrigation water use in each state, consequently 

resulting in lower irrigation dependent costs. However, a reduction in water resulted in lower 

maize yields due to under irrigation in some states of nature and subsequently resulted in lower 

gross margins within the upper tail of the risk averse cumulative distribution function. 

The main conclusion is that the overall increase in gross margins within a multi-stage decision-

making framework owes to the lower irrigation dependent costs incurred given the reduced per 

state irrigation water application. The updating of additional water budget information as is 

becomes available with irrigation decisions made sequentially reflects the true nature of 

irrigation decisions. 

 

5.4.3 THE VALUE OF A MULTI-STAGE DECISION-MAKING FRAMEWORK 

The value of switching to a multi-stage decision-making framework is estimated by comparing 

the certainty equivalents of a single-stage decision-making framework to that of a multi-stage 

decision-making framework. The value represents the minimum sure amount that a decision-

maker must be compensated with to justify a switch from making irrigation decisions within a 

single-stage to a multi-stage decision-making framework. The value of a multi-stage decision-

making framework is R4 261 and R11 149 for a risk neutral and a risk averse decision-maker 

respectively under a full water quota scenario. The minimum rand value a rationale decision-

maker must receive to consider a switch from a single-stage to a multi-stage decision-making 

framework under a restricted water quota is R7 019 and R14 413 for a risk neutral and a risk 

averse decision-maker respectively. Sequential decision-making within a multi-stage decision-

making framework results in improved irrigation water management for each state of nature. 

The consequent lower irrigation dependent costs thus result in a higher certainty equivalents. 
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The noteworthy value of a multi-stage decision-making framework owes to the risk reducing 

nature of the decision-making framework with sequential irrigation decisions considered as 

more water budget information is taken into account. The value of modelling irrigation 

decisions within a multi-stage decision-making framework is greater when water supply is 

limited as improving irrigation water scheduling is generally more beneficial when water 

supply is limited. 

The conclusion therefore is that, modelling irrigation decisions within a multi-stage decision-

making framework is worthwhile considering its resulting value when the certainty equivalents 

of two alternative decision-making frameworks are compared. Modelling decisions within a 

multi-stage decision-making framework is more significant under restricted water supply 

scenarios as greater value of the framework is realized when water supply is limited. 

 

5.4.4 THE COST OF A WATER RESTRICTION 

The cost of a water restriction was determined by comparing the certainty equivalents 

generated within the two alternative decision-making frameworks under a full and a restricted 

water quota. The cost of a water restriction generated within a single-stage decision-making 

framework is R218 319 while a cost of R215 561 was generated within a multi-stage decision-

making for a risk neutral decision-maker. Under risk aversion, the cost of a water restriction 

within a single-stage decision-making framework of R212 513 is greater than that of R209 249 

generated within a multi-stage decision-making framework. The costs for a water restriction 

when risk aversion is considered are lower than under risk neutrality within both decision-

making frameworks. The lower costs can be attributed to the fact that risk averse decision-

makers already make conservative decisions hence a water restriction will have a relatively 

limited impact on such a decision-maker. 

The main conclusion is that modelling irrigation decisions within a single-stage decision-

making framework over-estimates the value of a water restriction to irrigation farmers. Care 

should hence be taken when modeling irrigation decisions as the misrepresentation of the true 

decision-making framework of irrigators might mislead water allocation decisions. 
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5.5 RECOMMENDATIONS  

In light of the results and conclusions determined from the study, the following 

recommendations were made. 

 Caution is necessary when formulating agricultural water allocation policies based on crop 

water optimisation models that ignore the multi-stage decision-making framework within 

which irrigation decisions are made. Ignoring modelling irrigation decisions as sequential 

dynamic decisions results in over-estimating the impact of any given policy on water use 

management. It is hence critical to analyse farm-level profitability within a framework that 

better represents farmers’ decision-making to provide policy decision-makers with 

improved decision-making tools. 

 

 It is recommended that the optimality of the solutions of the risk model be tested with 

alternative evolutionary algorithm techniques. Excel ® Solver struggled to reach an optimal 

solution under a limited water supply taking risk aversion into account without assigning 

initial areas for both crops. The possibility of reformulating the model within a 

mathematical programming environment should be investigated. Such a reformulation 

could be solved to a global optimal solution using a global solver such as BARON (Branch 

and Reduce Optimisation Navigator) (Sahinidis, 1996). 

 

 Evolutionary algorithms allow for the development of more complex models. The 

possibility of integrating the short-run optimisation model with a long-run component of 

investment analysis should hence be investigated. 

 

 Historical data was used to provide an indication of future weather events. Probabilistic 

weather forecasts may provide better information about future weather conditions and 

should be incorporated into the model. 

 

 The modelling framework is general and allows for the analysis of other agricultural 

problems such as contracting prices during different time periods. 

 

 The levels of risk aversion included in this analysis was limited. Only the maximum and 

the minimum level of 𝑟𝑠(𝑥𝑠) of 0 and 2.5 respectively according to the plausible range for 

𝑟𝑠(𝑥𝑠) determined by Grové (2010) were used to determine the impact of risk aversion. 



Summary and Recommendations 

89 
 

Further research procedures need to incorporate more levels of risk aversion to improve the 

risk analysis. 

 

 The model could also be expanded to optimize intra-seasonal water allocation with crops 

such as maize and groundnuts produced in the same production season competing for water 

resources.  
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APPENDIX A 

FULL WATER QOUTA 

SINGLE-STAGE DECISION-MAKING FRAMEWORK MACRO  

Sub SolveBaseModel 

 

Dim score As Variant 

Dim max As Variant 

Dim n As Integer 

'========================================================================== 

'initialise states 

states = Array("state1", "state2", "state3", "state4", "state5", "state6", 

"state7", "state8", "state9", "state10", "state11", "state12") 

For n = 0 To UBound(states) 

 

 Sheets(" INITIAL (ETM,RAIN,RAM)").Select 

     

    'Crop1 etm 

    'Range("B3:B122").Select 

    Range(Cells(3, n + 2), Cells(122, n + 2)).Select 

    Selection.Copy 

    Sheets(states(n)).Select 

    Range("C8").Select 

    Selection.PasteSpecial Paste:=xlPasteValues, Operation:=xlNone, 

SkipBlanks _ 

        :=False, Transpose:=False 

     

    'Crop2 etm 

    Sheets(" INITIAL (ETM,RAIN,RAM)").Select 

    Range(Cells(124, n + 2), Cells(271, n + 2)).Select 

    Selection.Copy 

    Sheets(states(n)).Select 

    Range("C137").Select 

    Selection.PasteSpecial Paste:=xlPasteValues, Operation:=xlNone, 

SkipBlanks _ 

        :=False, Transpose:=False
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    'Crop1 rain 

    Sheets(" INITIAL (ETM,RAIN,RAM)").Select 

    Range(Cells(276, n + 2), Cells(395, n + 2)).Select 

    Selection.Copy 

    Sheets(states(n)).Select 

    Range("F8").Select 

    Selection.PasteSpecial Paste:=xlPasteValues, Operation:=xlNone, 

SkipBlanks _ 

        :=False, Transpose:=False 

     

     'Crop2 rain 

    Sheets(" INITIAL (ETM,RAIN,RAM)").Select 

    Range(Cells(397, n + 2), Cells(544, n + 2)).Select 

    Selection.Copy 

    Sheets(states(n)).Select 

    Range("F137").Select 

    Selection.PasteSpecial Paste:=xlPasteValues, Operation:=xlNone, 

SkipBlanks _ 

        :=False, Transpose:=False 

Next 

'========================================================================== 

Sheets("State1").Select 

 

n = 1 

max = 1 

score = 0 

Range("BM8:BM65582").ClearContents 

Calculate 

 

SolverReset 

    SolverOk SetCell:="$G$305", MaxMinVal:=1, ValueOf:=0, ByChange:= _ 

        "$BH$8:$BH$141", Engine:=3, EngineDesc:="Evolutionary" 

   SolverAdd CellRef:="$BH$8:$BH$141", Relation:=1, 

FormulaText:="$BJ$8:$BJ$141" 

   SolverAdd CellRef:="$BH$8:$BH$141", Relation:=3, 

FormulaText:="$BI$8:$BI$141" 
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 SolverOptions PopulationSize:=30, MutationRate:=0.5, RandomSeed:=1, 

MaxTimeNoImp:=300 

    Do Until score = max 

    SolverSolve userFinish:=True 

     

 Range("G305").Select 

    Application.CutCopyMode = False 

    Selection.Copy 

     

    score = Range("G305").Value 

    max = Range("BN8").Value 

    'Range("BM8").Select 

    Cells(8 + n - 1, 65).Select 

    Selection.PasteSpecial Paste:=xlPasteValues, Operation:=xlNone, 

SkipBlanks _ 

        :=False, Transpose:=False 

   n = n + 1 

 Loop 

score = 0 

  SolverReset  

    SolverOk SetCell:="$G$305", MaxMinVal:=1, ValueOf:=0, ByChange:= _ 

        "$BH$8:$BH$141", Engine:=3, EngineDesc:="Evolutionary" 

      

    SolverAdd CellRef:="$BH$8:$BH$141", Relation:=3, 

FormulaText:="$BI$8:$BI$141" 

    SolverAdd CellRef:="$BH$8:$BH$141", Relation:=1, 

FormulaText:="$BJ$8:$BJ$141" 

    SolverOptions PopulationSize:=30, MutationRate:=0.075, RandomSeed:=1, 

MaxTimeNoImp:=300 

         

     Do Until score = max  

    SolverSolve userFinish:=True 

     

  Range("G305").Select 

    Application.CutCopyMode = False 
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    Selection.Copy 

     

    score = Range("G305").Value 

    max = Range("BN8").Value 

    'Range("BM8").Select 

    Cells(8 + n - 1, 65).Select 

    Selection.PasteSpecial Paste:=xlPasteValues, Operation:=xlNone, 

SkipBlanks _ 

        :=False, Transpose:=False 

   n = n + 1 

 Loop 

 Range("$BH$8:$BH$141").Select 

    Application.CutCopyMode = False 

    Selection.Copy 

 

Range("BQ8").Select 

Selection.PasteSpecial Paste:=xlPasteValues, Operation:=xlNone, SkipBlanks 

_ 

        :=False, Transpose:=False 

Range("CM8").Select 

Selection.PasteSpecial Paste:=xlPasteValues, Operation:=xlNone, SkipBlanks 

_ 

        :=False, Transpose:=False 

End Sub 
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APPENDIX B 

FULL WATER QUOTA 

MULTI-STAGE DECISION-MAKING FRAMEWORK MACRO 

Sub SolveStateModel 

 

states = Array("state1", "state2", "state3", "state4", "state5", "state6", 

"state7", "state8", "state9", "state10", "state11", "state12") 

 

Dim score As Variant 

Dim max As Variant 

Dim n As Integer 

 

Dim fixat As Variant 

 

Dim dynachange As Range 

Dim dynamin As Range 

Dim dynamax As Range 

Dim crop1Last As Integer 

 

Sheets("State1").Select 

CPDdays = 0 

fixat = Range("BP8").Value 

'============================ 

'zero = to state 1 

staten = 0 

'============================ 

Range("$BI$8:$BI$141").Value = 0 

'========================================================================== 

'initialise states 

For n = 0 To UBound(states) 

 

 Sheets(" INITIAL (ETM,RAIN,RAM)").Select 

    'Crop1 etm 

    'Range("B3:B122").Select
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    Range(Cells(3, n + 2), Cells(122, n + 2)).Select 

    Selection.Copy 

    Sheets(states(n)).Select 

    Range("C8").Select 

    Selection.PasteSpecial Paste:=xlPasteValues, Operation:=xlNone, 

SkipBlanks _ 

        :=False, Transpose:=False 

     

    'Crop2 etm 

    Sheets(" INITIAL (ETM,RAIN,RAM)").Select 

    Range(Cells(124, n + 2), Cells(271, n + 2)).Select 

    Selection.Copy 

    Sheets(states(n)).Select 

    Range("C137").Select 

    Selection.PasteSpecial Paste:=xlPasteValues, Operation:=xlNone, 

SkipBlanks _ 

        :=False, Transpose:=False 

     

    'Crop1 rain 

    Sheets(" INITIAL (ETM,RAIN,RAM)").Select 

    Range(Cells(276, n + 2), Cells(395, n + 2)).Select 

    Selection.Copy 

    Sheets(states(n)).Select 

    Range("F8").Select 

    Selection.PasteSpecial Paste:=xlPasteValues, Operation:=xlNone, 

SkipBlanks _ 

        :=False, Transpose:=False 

     

     'Crop2 rain 

    Sheets(" INITIAL (ETM,RAIN,RAM)").Select 

    Range(Cells(397, n + 2), Cells(544, n + 2)).Select 

    Selection.Copy 

    Sheets(states(n)).Select 

    Range("F137").Select 

    Selection.PasteSpecial Paste:=xlPasteValues, Operation:=xlNone, 

SkipBlanks _ 



Appendix B 

103 
 

        :=False, Transpose:=False 

Next 

'========================================================================== 

Sheets("State1").Select 

 

Do Until fixat = 0 

 

Range("$BM$8:$BM$100").ClearContents 

 

Range("$BQ$8:$BQ$141").Select 

    Application.CutCopyMode = False 

    Selection.Copy 

 

Range("BH8").Select 

Selection.PasteSpecial Paste:=xlPasteValues, Operation:=xlNone, SkipBlanks 

_ 

        :=False, Transpose:=False 

 

crop1Last = Range("BD5").Value 

 

If fixat <= crop1Last Then 

'Cells(8 + ((fixat - 1) / 2), 61).Value = 5 

Calculate 

 

For s = 0 To UBound(states) 

nn = s + 1 

 

    'Crop1 etm 

 

Worksheets(" INITIAL (ETM,RAIN,RAM)").Activate 

Range(Cells(3, staten + 2), Cells(3 + fixat - 2, staten + 2)).Select 

Selection.Copy 

Sheets("state" & nn).Select 

Range("C8").Select 
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    Selection.PasteSpecial Paste:=xlPasteValues, Operation:=xlNone, 

SkipBlanks _ 

        :=False, Transpose:=False 

         

        'Crop1 rain 

    Sheets(" INITIAL (ETM,RAIN,RAM)").Activate 

    Range(Cells(276, staten + 2), Cells(276 + fixat - 2, staten + 

2)).Select 

    Selection.Copy 

    Sheets("state" & nn).Select 

    Range("F8").Select 

    Selection.PasteSpecial Paste:=xlPasteValues, Operation:=xlNone, 

SkipBlanks _ 

        :=False, Transpose:=False 

Next s 

 

Sheets("State1").Select 

 

Set dynachange = Range(Cells(8 + ((fixat - 1) / 2), 60), Cells(143, 60)) 

Set dynamin = Range(Cells(8 + ((fixat - 1) / 2), 61), Cells(143, 61)) 

Set dynamax = Range(Cells(8 + ((fixat - 1) / 2), 62), Cells(143, 62)) 

 

dynachange.Select 

dynamin.Select 

dynamax.Select 

 

Else 

 

'Cells(8 + ((fixat - 82 - 1) / 2) + 1, 61).Value = 5 

Calculate 

 

For s = 0 To UBound(states) 

nn = s + 1 

Sheets("state" & nn).Select 

 

    'Crop2 etm 
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    Sheets(" INITIAL (ETM,RAIN,RAM)").Select 

    Range(Cells(124, staten + 2), Cells(124 + fixat - 200 - 2, staten + 

2)).Select 

    Selection.Copy 

    Sheets("state" & nn).Select 

    Range("C137").Select 

    Selection.PasteSpecial Paste:=xlPasteValues, Operation:=xlNone, 

SkipBlanks _ 

        :=False, Transpose:=False 

     

     

     'Crop2 rain 

    Sheets(" INITIAL (ETM,RAIN,RAM)").Select 

    Range(Cells(397, staten + 2), Cells(397 + fixat - 200 - 2, staten + 

2)).Select 

    Selection.Copy 

    Sheets("state" & nn).Select 

    Range("F137").Select 

    Selection.PasteSpecial Paste:=xlPasteValues, Operation:=xlNone, 

SkipBlanks _ 

        :=False, Transpose:=False 

 

Next s 

Sheets("State1").Select 

 

Set dynachange = Range(Cells(8 + ((fixat - 82 - 1) / 2) + 1, 60), 

Cells(143, 60)) 

dynachange.Select 

Set dynamin = Range(Cells(8 + ((fixat - 82 - 1) / 2) + 1, 61), Cells(143, 

61)) 

dynamin.Select 

Set dynamax = Range(Cells(8 + ((fixat - 82 - 1) / 2) + 1, 62), Cells(143, 

62)) 

dynamax.Select 

 

End If 

n = 1 
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max = 1 

score = 0 

 

Do Until score = max 

    SolverReset 

     

    SolverOk SetCell:="G$305", MaxMinVal:=1, ValueOf:=0, ByChange:= _ 

        dynachange.Offset(0, 0), Engine:=3, EngineDesc:="Evolutionary" 

     

    SolverAdd CellRef:=dynachange.Offset(0, 0), Relation:=3, 

FormulaText:=dynamin.Offset(0, 0) 

    SolverAdd CellRef:=dynachange.Offset(0, 0), Relation:=1, 

FormulaText:=dynamax.Offset(0, 0) 

 

    SolverOptions PopulationSize:=30, MutationRate:=0.5, RandomSeed:=1, 

MaxTimeNoImp:=300 

    SolverSolve userFinish:=True 

    

 Range("G305").Select 

    Application.CutCopyMode = False 

    Selection.Copy 

     

    score = Range("G305").Value 

    max = Range("BN8").Value 

     

        'Range("BM8").Select 

    Cells(8 + n - 1, 65).Select 

    Selection.PasteSpecial Paste:=xlPasteValues, Operation:=xlNone, 

SkipBlanks _ 

        :=False, Transpose:=False 

   n = n + 1 

 Loop 

 

 Range("$BH$8:$BH$143").Select 

    Application.CutCopyMode = False 

    Selection.Copy 
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Range("BQ8").Select 

Selection.PasteSpecial Paste:=xlPasteValues, Operation:=xlNone, SkipBlanks 

_ 

        :=False, Transpose:=False 

 

CPDdays = CPDdays + 1 

fixat = Cells(8 + CPDdays, 68).Value 

Loop 

End Sub 
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APPENDIX C 
LIMITED WATER QUOTA 

SINGLE-STAGE DECISION-MAKING FRAMEWORK MACRO 

Sub SolveBaseModel 

 

Dim score As Variant 

Dim max As Variant 

Dim n As Integer 

 

''initialise states 

states = Array("state1", "state2", "state3", "state4", "state5", "state6", 

"state7", "state8", "state9", "state10", "state11", "state12") 

For n = 0 To UBound(states) 

 

 Sheets(" INITIAL (ETM,RAIN,RAM)").Select 

     

    'Crop1 etm 

    'Range("B3:B122").Select 

    Range(Cells(3, n + 2), Cells(122, n + 2)).Select 

    Selection.Copy 

    Sheets(states(n)).Select 

    Range("C8").Select 

    Selection.PasteSpecial Paste:=xlPasteValues, Operation:=xlNone, 

SkipBlanks _ 

        :=False, Transpose:=False 

     

    'Crop2 etm 

    Sheets(" INITIAL (ETM,RAIN,RAM)").Select 

    Range(Cells(124, n + 2), Cells(271, n + 2)).Select 

    Selection.Copy 

    Sheets(states(n)).Select 

    Range("C137").Select 

    Selection.PasteSpecial Paste:=xlPasteValues, Operation:=xlNone, 

SkipBlanks _ 

        :=False, Transpose:=False
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    'Crop1 rain 

    Sheets(" INITIAL (ETM,RAIN,RAM)").Select 

    Range(Cells(276, n + 2), Cells(395, n + 2)).Select 

    Selection.Copy 

    Sheets(states(n)).Select 

    Range("F8").Select 

    Selection.PasteSpecial Paste:=xlPasteValues, Operation:=xlNone, 

SkipBlanks _ 

        :=False, Transpose:=False 

     

     'Crop2 rain 

    Sheets(" INITIAL (ETM,RAIN,RAM)").Select 

    Range(Cells(397, n + 2), Cells(544, n + 2)).Select 

    Selection.Copy 

    Sheets(states(n)).Select 

    Range("F137").Select 

    Selection.PasteSpecial Paste:=xlPasteValues, Operation:=xlNone, 

SkipBlanks _ 

        :=False, Transpose:=False 

Next 

 

'========================================================================== 

Sheets("State1").Select 

 

n = 1 

max = 1 

score = 0 

 

Range("BM8:BM65582").ClearContents 

Calculate 

 

SolverReset 

    SolverOk SetCell:="$G$305", MaxMinVal:=1, ValueOf:=0, ByChange:= _ 

        "$BH$8:$BH$141,$BH$2:$BH$3", Engine:=3, EngineDesc:="Evolutionary" 
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   SolverAdd CellRef:="$BH$8:$BH$141", Relation:=1, 

FormulaText:="$BJ$8:$BJ$141" 

   SolverAdd CellRef:="$BH$8:$BH$141", Relation:=3, 

FormulaText:="$BI$8:$BI$141" 

  

   SolverAdd CellRef:="$BH$2:$BH$3", Relation:=1, 

FormulaText:="$BJ$2:$BJ$3" 

   SolverAdd CellRef:="$BH$2:$BH$3", Relation:=3, 

FormulaText:="$BI$2:$BI$3" 

  

 SolverOptions PopulationSize:=30, MutationRate:=0.5, RandomSeed:=1, 

MaxTimeNoImp:=300 

   

    Do Until score = max 

 

    SolverSolve userFinish:=True 

     

 Range("G305").Select 

    Application.CutCopyMode = False 

    Selection.Copy 

     

    score = Range("G305").Value 

    max = Range("BN8").Value 

    'Range("BM8").Select 

    Cells(8 + n - 1, 65).Select 

    Selection.PasteSpecial Paste:=xlPasteValues, Operation:=xlNone, 

SkipBlanks _ 

        :=False, Transpose:=False 

   n = n + 1 

 Loop 

score = 0 

  SolverReset 

         

    SolverOk SetCell:="$G$305", MaxMinVal:=1, ValueOf:=0, ByChange:= _ 

        "$BH$8:$BH$141,$BH$2:$BH$3", Engine:=3, EngineDesc:="Evolutionary" 
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    SolverAdd CellRef:="$BH$8:$BH$141", Relation:=3, 

FormulaText:="$BI$8:$BI$141" 

    SolverAdd CellRef:="$BH$8:$BH$141", Relation:=1, 

FormulaText:="$BJ$8:$BJ$141" 

 

   SolverAdd CellRef:="$BH$2:$BH$3", Relation:=1, 

FormulaText:="$BJ$2:$BJ$3" 

   SolverAdd CellRef:="$BH$2:$BH$3", Relation:=3, 

FormulaText:="$BI$2:$BI$3" 

  

    SolverOptions PopulationSize:=30, MutationRate:=0.075, RandomSeed:=1, 

MaxTimeNoImp:=30 

         

     Do Until score = max 

    

    SolverSolve userFinish:=True 

     

  Range("G305").Select 

    Application.CutCopyMode = False 

    Selection.Copy 

     

    score = Range("G305").Value 

    max = Range("BN8").Value 

    'Range("BM8").Select 

    Cells(8 + n - 1, 65).Select 

    Selection.PasteSpecial Paste:=xlPasteValues, Operation:=xlNone, 

SkipBlanks _ 

        :=False, Transpose:=False 

   n = n + 1 

 Loop 

 

 Range("$BH$8:$BH$141").Select 

    Application.CutCopyMode = False 

    Selection.Copy 

 

Range("BQ8").Select 
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Selection.PasteSpecial Paste:=xlPasteValues, Operation:=xlNone, SkipBlanks 

_ 

        :=False, Transpose:=False 

Range("CM8").Select 

Selection.PasteSpecial Paste:=xlPasteValues, Operation:=xlNone, SkipBlanks 

_ 

        :=False, Transpose:=False 

End Sub 

 

 

 

 

 


