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ABSTRACT 

To date, groundwater flow problems are still increasingly becoming a great environmental 

concern worldwide. This is among some of the reasons that many researchers from various 

fields of science have focused much of their attention in formulating new mathematical 

equations and models that could be used to capture and understand the behavior of 

groundwater flow with respect to space and time. The main aim of this study was to 

develop a new concept for modeling groundwater flow problems. The approach involved 

coupling of differential operators with stochastic approach. Literature proves that each of 

these two concepts has shown a great success in modeling complex real-world problems. 

But we argued that differential equations with constant coefficient are not fit to capture 

complexities with statistical setting. Therefore, to solve such a problem in this study, we 

considered a classical one-dimensional advection-dispersion equation for describing 

transport in porous medium and then applied stochastic approach to convert groundwater 

velocity (v), retardation (R) and the dispersion (D) constant coefficients into probability 

distribution. The next step was to employ the concept of fractional differentiation where 

we substituted the time derivative with the time fractional differential operator. 

Thereafter, we applied the Caputo, Caputo-Fabrizio and the Atangana-Baleanu fractional 

operators and derived conditions under which the exact solution for each derivative can be 

obtained. We then suggested the numerical solutions using the newly established 

numerical scheme of the Adams-Bashforth in the case of the aforementioned three (3) 

different types of differential operators. By combining the two concepts, we developed a 

new method to capture groundwater flow problems that could not be possible to capture 

using differential operators or stochastic approach alone. This new approach is believed to 

be a future technique for modeling complex groundwater flow problems. After solving the 

new model numerically, the condition for stability was also tested using the Von Neumann 

stability analysis method. Lastly, we presented numerical simulations using a software 

package called MATLAB. 

Keywords: Advection-dispersion equation, Stochastic approach, Fractional 

differentiation, Adams-Bashforth, Numerical analysis, Stability analysis 
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CHAPTER 1: INTRODUCTION 

1.1 BACKGROUND AND RATIONALE 

One of the real-world’s most complicated and challenging issue to be represented by means 

of simple mathematical models and/or equations is the issue facing groundwater 

investigations, as it requires the modeler’s detailed understanding about the geologic 

structure and the response of the aquifer through which groundwater moves. Thus, 

modeling such a problem remains a challenging task because the response and geological 

structure of the aquifer through which groundwater travels is invisible and changes with 

space and time (Atangana and Bildik, 2013). For example, assessment of groundwater 

contamination and its remediation remains among the most complex hydrogeological 

issues to quantify due to the heterogeneity of geological medium and also demands 

knowing and understanding the physical, chemical and biological properties of a 

contaminant to be dealt with. In an aquifer system, in saturated zones for instance, solutes 

are transported together with flowing water, thus, groundwater serves as the main 

causative substance for the movement of those pollutants from one area to another (Dong, 

2006). Hence, the volume of a pollutant that is likely to be present in groundwater is 

determined by the aforementioned properties (i.e. physical, chemical and biological 

properties). Thus, two main transport processes, namely, advection and hydrodynamic 

dispersion (DellaSala and Goldstein, 2017) govern solute migration in the subsurface. 

In groundwater investigations, researchers employ the transport equation (see eq. 1.1) 

known as advection-dispersion equation (ADE) to quantify the movement of a contaminant 

within an aquifer system. This equation (eq. 1.1) accounts for the mass balance of 

pollutants over the entire volume of an aquifer system (DellaSala and Goldstein, 2017). 

Thus, advection and hydrodynamic dispersion are the two main physical processes 

influencing the migration of solutes through the entire volume of a porous medium (Freeze 

and Cherry, 1979).  
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The ADE shown below is from a published paper “A generalized advection-dispersion 

equation” by Atangana (2014). 

 𝐷
𝜕²𝐶

𝜕𝑥2
− 𝑣

𝜕𝐶

𝜕𝑥
− 𝜆𝑅𝐶 = 𝑅

𝜕𝐶

𝜕𝑡
+ 𝑓(𝑥, 𝑡) 

(1.1)  

Initial and boundary conditions may be presented as: 

 𝐶(𝑥, 0) = 0,                   𝐶(𝟢, 𝑡) = 𝑐0 exp(−𝛼𝑡) 
(1.2)  

and, 

 𝐶x (∞, 𝑡) = 0 
(1.3)  

where, D is the coefficient of dispersion, 𝑣 and R are the average linear groundwater 

velocity and the retardation factor, respectively. 𝜆 is the constant for radioactive decay, 𝑐0 

denotes the initial concentration, 𝛼 is the positive constant and 𝑓(𝑥, 𝑡) may be any source 

or sink term in the system. But the assumption can be made that there is no sink or source 

in  groundwater pollution and 𝑓(𝑥, 𝑡) is then ignored in such circumstances. 

The movement of solutes in an aquifer system as stated in the previous paragraphs is due 

to the processes of advection and hydrodynamic dispersion. Thus, the movement occurring 

under process of advection is mainly influenced by the fluid flow within the pore spaces, 

while the hydrodynamic dispersion process that may comprise both molecular diffusion 

with respect to concentration gradients, and mechanical dispersion as a result of pore 

fluids moving along the tortuous flow paths of porous media. When a pollutant is 

introduced in the groundwater system, advection becomes the main transport process 

influencing the movement of that particular pollutant through a geologic medium at some 

early stages (DellaSalla and Goldstein, 2017). This is because during advection process, the 

dissolved solutes are transported together with groundwater moving in bulk flows. For this 

reason, contaminant migration occurring under this process is said to travel at an equal 

speed as the average linear groundwater velocity. Therefore, a conclusion may be drawn 

that the advection process influences the arrival of pollutants at a certain location 
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(Vandenbohede, 2003). In other words, the main determining factor in advection process is 

average linear groundwater flow velocity/seepage velocity. 

Furthermore, during advection transport process, the seepage velocity is reliant on 

geologic medium properties such as average permeability, the hydraulic gradient as well 

the effective porosity of the medium (DellaSala and Goldstein, 2017). Moreover, since the 

process of advection is the movement of dissolved mass due to flowing groundwater, it can 

therefore be calculated by applying Darcy’s law (Patil and Chore, 2014). In geologic media 

characterized by high permeability material, advection process results in an increased 

solute migration in the more porous medium (Gillham et al., 1984). This proves that in 

reality, heterogeneity does exist in the subsurface and the solute transport due to advection 

through different types of formations is a non-uniform process hence seepage velocity will 

vary with space. To add, in subsurface locations where the porous medium exhibits 

fractures, the rate at which pollutants are transported will differ depending on the 

geological setting of those fractures (Silveira and Usunoff, 2009). For instance, higher 

seepage flow velocities will be measured in locations where the solute moves through the 

highly fractured medium as compared to the non-fractured areas within an aquifer system.   

In addition, during advection process, as solutes are transported from one location to 

another by the bulk movement of flowing groundwater, they are also subjected to different 

stages of mixing and spreading known as the dispersion. This is due to the presence of 

heterogeneities in porous medium which results in groundwater flow velocity variations as 

a with respect to space and time (Fitts, 2002). Thus, the interaction of solutes with pores of 

different sizes causes a migrating plume to disperse along the flow paths as a result of 

groundwater flow velocity variations. For example, as the plume migrates, some of the 

solutes move at increased rates through pore openings while other solutes move slowly 

due to interactions at grain boundaries and with large pores. Furthermore, in situations 

where groundwater flow is laminar and constant, the process of advection contributes to 

longitudinal dispersion of solutes, but no transversal dispersion. However, in reality 

subsurface groundwater flows are not uniform, and there exist variant groundwater flow 

velocities and molecular diffusion, which both cause transversal dispersion of solutes along 
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groundwater flow directions (Fitts, 2002). Subsequently, as these solutes are spread in 

longitudinal and transversal manner along the flow paths, they tend to be subjected to 

mechanical mixing and dilution effects due to the process known as mechanical dispersion 

(DellaSala and Goldstein, 2017).  

To add, based on the information from the previous paragraph it is clear that groundwater 

flow velocity variations resulting from tortuosity of porous medium flow paths also 

contribute to mechanical dispersion. Thus, mechanical dispersion can therefore be viewed 

as a microscopic and macroscopic process due to these fluctuations in groundwater flow 

velocity (Anderson, 1984). On microscopic scale, for non-homogeneous medium, 

longitudinal mechanical mixing will be experienced if the mixing happens along 

groundwater flow paths, and transversal if the mixing occurs at right-angles to 

groundwater flow paths (DellaSala and Goldstein, 2017; Schulze-Makuch, 2009). During 

solute transportation, the dispersion of solutes due to variations in groundwater flow 

velocity is also dependant on the structure of geologic medium through which the 

dissolved mass travels and how it interacts with the aquifer material either physically or 

chemically along the way (Dietrich, et al., 2005; Sahimi, 1995). For example, in 

heterogeneous geological medium, these solutes travel along paths differing in lengths and 

through pores with differing sizes. That is, some paths lengths are longer while others are 

short (converging and diverging flow paths) and therefore it becomes a complex issue for a 

modeler to predict when a contaminant will reach a certain place. Possibly, this converging 

and diverging effect of flow paths is likely to cause a contaminant to accumulate greater 

volumes within the subsurface as some fluid particles collide and some disperse with 

distance along flow paths.  

Similarly, with differing pores sizes, when a contaminant moves through larger pore 

spaces, the rate of movement increases because the flow path is widened and physical 

interaction of the flowing solutes with solid surface of the medium is reduced hence less 

friction is involved. On the other hand, when solute movement is happening closer to grain 

boundaries, the physical contact will cause solutes to travel slowly as a result of exposure 

to increased pore roughness. Thus, solute particles not in contact with the medium phase 
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will flow faster than those in contact with the solid phase. Furthermore, as the plume 

migrates, the spreading and dilution that occur in the process cause the concentration of a 

contaminant to decrease with distance from its source. On macroscopic scale (Kinzelbach, 

1992), the factor determining mechanical dispersion is the medium hydraulic conductivity 

which varies in space due to aquifer heterogeneity. These variations in geologic hydraulic 

conductivity either vertically or horizontally possibly cause flow paths irregularity, which 

also lead to a change in the direction of groundwater flow hence contaminant dispersion. 

Even if one might be familiar with how the process of dispersion occurs but capturing these 

variations in hydraulic conductivity (non-homogeneities) still remains challenging (Knox et 

al., 1993). Therefore, one can conclude that in actual facts, the quantification of 

groundwater flow and solute transport requires a thorough understanding of the aquifer 

geometry. Hence the need for the formulation of a model that will account for these 

heterogeneities. 

It is therefore among some of the reasons, that many models have been developed by 

numerous researchers in the field of hydrogeology with the attempt to suggest a model that 

will best describe subsurface groundwater flow, although no fully realistic findings as yet 

(Atangana and Bildik, 2013). Thus, modeling groundwater flow systems remains a 

challenging aspect because the subsurface through which this flow occurs is not visible and 

can change with time and space. Moreover, due to the invisibility of the nature of 

groundwater flow processes, mathematical equations are defined for groundwater 

movement to facilitate in the investigation of transport and fate of pollutants for risk 

management purposes. In this study, modeling of groundwater flow problems will be based 

on the modification of the aforementioned one-dimensional (1-D) advection-dispersion 

equation (ADE) by coupling of fractional differential and integral operators with stochastic 

approach. Hence, the need to account for random movement of groundwater and solute 

transport with respect to heterogeneity of aquifer systems. 
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1.1.1 Stochastic Approach 

How a contaminant will travel in groundwater is dependent on aquifer geohydraulic and 

geochemical properties, and these properties are said to vary with space within aquifer 

systems (Skaggs and Barry, 1996). As a result, it becomes a very challenging issue to 

characterise and provide a detailedillustration of aquifer heterogeneity. Thus, groundwater 

flow and transport parameters are in nature associated with uncertainty.In most 

groundwater problems, the aquifer spatial heterogeneity with respect to variable hydraulic 

conductivity is one of the main aspects in hydrogeology that impedes the means to feasibly 

characterize contaminated groundwater areas (Gómez-Hernández et al., 2016). In fact, not 

only aquifer heterogeneity results in uncertainty of hydrogeological models, but field data 

as well (Baalousha, 2011). 

In addition, a lot of assumptions or approximations are involved during formulation of 

mathematical equations, and are believed to pose higher possibilities of uncertainties in 

modeling results (Baalousha, 2011; Baalousha and Köngeter, 2006). These uncertainties in 

groundwater modeling can therefore be accounted by application of stochastic techniques. 

With such an approach, when modeling groundwater movement and solute migration the 

values of aquifer properties and parameters that impact on the flow and transport are 

treated as random, so that their uncertainties can be accounted for (Dagan, 2002). Thus, 

the stochastic approach provides a way to address these uncertainties using probability 

functions or related quantities such as statistical moments. 

Advantages of Stochastic Methods 

Numerous stochastic techniques have been developed for investigating solute movement in 

randomly heterogeneous aquifers. However, according to Dagan (2002), the Monte Carlo 

Simulations (MCS) and First-order approximation in log-conductivity variance (weak 

variance) are the two stochastic methods that were mostly used for solution over the past 

decades. In addition, Baalousha (2003) also mentioned that the most widely used methods 

in stochastic modeling are the Monte Carlo Simulations, First-Order Second Moment 

Method (FOSM) and First-Order Reliability Method (FORM). However, stochastic approach 
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using the Monte Carlo method is still the most famously applied method for analyzing 

uncertainty in hydrogeological models (Baalousha, 2011; Kunstmanna and Kastensb, 2006; 

Liou and Der Yeh, 1997). With the Monte Carlo Simulations (Dagan, 2002), the solution of 

flow and transport problems is achieved by performing repeated runs or executions 

through computation, and a sample output for each execution is produced. This 

computerized technique employs random sampling statistical methods based on 

probability distribution functions (Kwak and Ingall, 2007). With first-order approximation 

in log-conductivity variance, the equations of flow and transport are utilized in a power 

series to find first-order approximation (Dagan, 2002). There are other several numerical 

perturbation methods that have been proposed, although are not as efficient as the Monte 

Carlo approach when it comes to application in complex real-world situations (Li et al., 

2004; Li et al., 2003). It is therefore very important to point out that stochastic methods 

have both advantages and limitations. The advantages and limitations addressed in 

sections below are based on the aforementioned stochastic methods.  

The advantages of MCS as outlined by Dagan (2002) are based on its conceptual simplicity, 

generality, and comprehensive representation of results. Due to its conceptual simplicity, it 

provides a clear description of heterogeneity even when there is little available spatial or 

temporal data about the aquifer system in place. Hence, gives a modeler the capability to 

resolve the risk and address any uncertainty arising from any made estimations (Daniel et 

al., 2011). Thus, MCS is a very straightforward method to employ even in situations where 

there is limited field data. Accordingly, it is very simple to apply when dealing with both 

linear and non-linear stochastic flow and transport problems (Neuman, 2004). Apart from 

being a fit technique to apply in groundwater modeling, numerical MCS also produces 

results of better precision or accuracy (Baalousha, 2003). In fact, MCS has found its way in 

solution of many real-world systems given that it can handle uncertainty as well as 

variability associated with model parameters (Kwak and Ingall, 2007).  

Furthermore, some modifications of MCS such as Latin hypercube have been developed 

afterwards and is considered to significantly decrease the time needed for computation 

(Baalousha, 2011; Zhang and Phinder, 2003). In addition, another stochastic method 
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requiring a low computational time and effort for use as an alternative to Monte Carlo 

method (Baalousha, 2003) is the First-Order Reliability method (FORM). In most of its 

applications, FORM involves a less number of runs or simulations and this makes it to be 

more computationally efficient than MCS. It also yields good results in terms of accuracy 

(Manoj, 2016). However, this advantage only holds in situations dealing with solutions of 

less complicated real life problems. Next, another suggested method is the First-Order-

Second Moment (FOSM) method (Manoj, 2016), which also does not require a large 

number of computations compared to MCS but a disadvantage is that it yields poor results 

in terms of accurateness. With first-order approximation in log-conductivity variance, clear 

linearization approach is applied to the equations to achieve simplified results (Dagan, 

2002). Thus, this technique enables the results to be handled analytically or semi-

analytically with simplified data application.  

Additionally, in situations where there is inadequate data or a high level in data 

uncertainty, stochastic methods enable an uncertainty factor to be included in the modeling 

process. This in turn produces more meaningful model outcomes and enable better 

interpretations, which will help with easy model application when solving real-world 

situations (Ohio-EPA, 2007). Since modeling process involves making a lot of assumptions 

and estimations about the randomness of model properties, thus, stochastic modeling 

enables the validity of those assumptions to be tested statistically. Furthermore, because 

stochastic techniques have the ability to account for flow and transport parameter 

uncertainty (Skaggs and Barry, 1996), they are also very useful  in providing the modeler 

with an understanding of any possible impacts associated with heterogeneity on 

hydrogeological processes and models (Renard, 2007). 

Limitations of Stochastic Methods 

Despite the aforementioned advantages of stochastic techniques, some limitations for MCS 

method are that, the application of this method in three-dimensional (3-D) simulations 

becomes computationally too demanding and may require the extension of the grid size 

(Dagan, 2002). That is, quite a number of repeated computations are required to achieve a 

proper precision with MCS (Baalousha, 2003). In addition, in situations where a 
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contaminant transport has a large number of variables MCS becomes inefficient. Although 

the Latin hypercube method is considered to reduce the time requirements, it still also 

comes with huge computational costs (Yidana et al., 2016). With first-order log-

conductivity variance, the results generated are said to be valid only for small variances 

(Dagan, 2002). To add, its analytical solutions do not become realistic in situations with 

variable mean flow and transient conditions as well as where complex boundaries exist. 

Furthermore, with FORM method aforementioned as another alternative method to MCS, 

the disadvantage is that it requires optimization approach in order to achieve the most 

feasible results at a particular point (Baalousha, 2003). Consequently, this procedure is 

very complex hence more time and is very cost intensive, hence the likely increase in 

uncertainty of produced results. In addition, it also requires a substantial amount of 

variables when dealing with contaminant transport problems. Another challenge when 

employing a stochastic approach to simulate transport processes is that, it is not easy to 

compute the ensemble moments of solute concentration in a way that will account for the 

effects of some significant non-linearities (Li et al., 2004). According to Li et al. (2003), the 

numerical performance is what they suppose must be the main issue when it comes to the 

use of stochastic techniques in groundwater investigations. 

1.1.2 Definitions of some well-known Fractional Derivatives 

The notion of fractional differentiation as indicated in published research works is  vastly 

becoming a useful approach in the field of groundwater science when addressing the 

concept of heterogeneity, viscoelasticity, fading memory etc. There are quite a number of 

fractional differential operators that exist, although very few of them have been applied in 

the fields of scientific research to solve problems of real world. The Riemann-Liouville and 

the Caputo derivatives are regarded as the most commonly used fractional derivatives 

(Atangana and Bildik, 2013). Recently, some new fractional operators such as the 

Atangana-Baleanu and the Caputo-Fabrizio derivative have been proposed. Accordingly, 

these fractional operators have also shown their usefulness in the field of scientific 

research. The definition for each of these fractional derivatives is presented below. 
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Definition for Riemann-Liouville fractional derivative: 

 𝐷𝛼𝑓(𝑡) =  
1

Γ(𝑛 −  𝛼)

𝑑𝑛

𝑑𝑡𝑛
∫

𝑓(𝑥)

(𝑡 − 𝑥)𝛼+1−𝑛

𝑡

𝑎

 𝑑𝑥,        𝑛 –  1 < 𝛼 < 𝑛. 
(1.4)  

Definition for Caputo fractional derivative of function f is presented as: 

 𝐷𝑡
𝛼

0
𝐶 𝑓(𝑡) =  

1

Γ(𝑛 −  𝛼)
∫(𝑡 − 𝑥)𝑛− 𝛼−1
𝑡

0

𝑑𝑛

𝑑𝑥𝑛
(𝑓′(𝑥)) 𝑑, .      𝑛 –  1 < 𝛼 ≤ 𝑛. 

(1.5)  

Definition for Caputo-Fabrizio fractional derivative is given as follows: 

Let 𝑓 ∈ 𝐻1 (𝑎, 𝑏), 𝑏 >  𝑎, 𝛼 ∈ [0, 1] 

Then, 

 𝐷𝑡
𝛼

0
𝐶𝐹 𝑓(𝑡) =  

𝑀(𝛼)

1 −  𝛼)
∫𝑓′(𝑥) 𝑒𝑥𝑝 [−𝛼 

𝑡 − 𝑥

1 −  𝛼
]

𝑡

𝑎

𝑑𝑥, 
(1.6)  

However, if the function does not belong to 𝐻1(𝑎, 𝑏) then, the derivative is redefined as 

follows:  

 𝐷𝑡
𝛼

0
𝐶𝐹 𝑓(𝑡) =  

𝛼𝑀(𝛼)

1 −  𝛼)
∫(𝑓(𝑡) −  𝑓(𝑥)) 𝑒𝑥𝑝 [−𝛼 

𝑡 − 𝑥

1 −  𝛼
]

𝑡

𝑎

𝑑𝑥. 
(1.7)  

Definition for Atangana-Baleanu fractional derivative in the sense of Caputo is given as: 

Let 𝑓 ∈ 𝐻1(𝑎, 𝑏), 𝑎 < 𝑏, 𝛼 ∈ [0,1] 

Then, 

 𝐷𝑡
𝛼

𝑎
𝐴𝐵𝐶 (𝑓(𝑡)) =  

𝐴𝛣(𝛼)

1 −  𝛼
∫𝑓′(𝑥)𝐸𝛼 

𝑡

𝑎

[−𝛼
(𝑡 − 𝑥)𝛼

1 −  𝛼
] 𝑑𝑥,          0 < 𝛼 <  1. 

(1.8)  
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Atangana-Baleanu fractional derivative definition in the Riemann-Liouville sense is given as: 

Let 𝑓 ∈ 𝐻1(𝑎, 𝑏), 𝑎 < 𝑏, 𝛼 ∈ [0,1] 

Then, 

 𝐷𝑡
𝛼

𝑎
𝐴𝐵𝑅 (𝑓(𝑡)) =  

𝐴𝛣(𝛼)

1 −  𝛼

𝑑

𝑑𝑡
∫ 𝑓(𝑥)𝐸𝛼 

 𝑡

𝑎

[−𝛼
(𝑡 − 𝑥)𝛼

1 −  𝛼
] 𝑑𝑥,         0 < 𝛼 <  1. 

(1.9)  

The fractional integral for Atangana-Baleanu derivative of order 𝛼 of a function f (t), is given 

as: 

 𝐼𝑡
𝛼

𝑎
𝐴𝐵 (𝑓(𝑡)) =  

1 − 𝛼

𝐵(𝛼)
 𝑓(𝑡) + 

𝛼

𝐵(𝛼)Γ(α)
∫ 𝑓(𝜏)(𝑡 − 𝜏)𝛼−1𝑑𝜏
𝑡

𝑎

. 
(1.10)  

The definition of Mittag-Leffler function 𝐸𝛼,𝛽 is given as: 

 𝐸𝛼,𝛽(𝑡) =  ∑
𝑡𝑚

Γ(𝛼𝑚+𝛽)′
∞
𝑚 = 0 (𝛼 >  0), 𝛽 >  0). 

(1.11)  

It is therefore very essential to have a better understanding of some of the advantages and 

limitations associated with these fractional order derivatives before employing them to 

solve problems addressed in this research.  

Advantages of Fractional Differentiation 

As stated earlier that the most widely used fractional derivatives in the field of scientific 

research are the Riemann-Liouville, Caputo, Caputo-Fabrizio and Atangana-Baleanu 

fractional derivatives. Thus, this section highlights some of the advantages associated with 

these fractional operators. For instance, the Caputo fractional derivative has shown its 

significant advantage when solving real-world problems. The Caputo differential operator 

which utilizes the power law, is more suitable for modeling elastic, homogeneous 

subsurface. Accordingly, this derivative enables the use of both standard initial and 

boundary conditions during modeling process (Atangana and Secer, 2013), and has the 
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ability to present the initial conditions with a clear definition (Sontakke and Shaikh, 2015). 

In addition, the Caputo derivative is said to be mathematically bounded, which implies that 

the derivative of a constant in Caputo sense is zero (0). Furthermore, the Riemann-Liouville 

fractional derivative is also suitable for solution of real world problems such as in the field 

of viscoelasticity (Heymans and Podlubny, 2005). This fractional derivative also has the 

ability to depict issues related to anomalous diffusion process (Li et al., 2011). To add, both 

the Riemann-Liouville and Caputo fractional derivatives can be used in various areas of 

science including application to model heat flow in the field of engineering (Yang et al., 

2016; Hristov and El Ganaoui, 2013; Hussein, 2015). 

In addition, the fractional integrals of both the Caputo and Riemann-Liouville are very 

useful when deriving solution of linear fractional differential equations (Gladkina et al., 

2018). Also, these fractional derivatives are considered as non-local operators but have 

singular kernels. Nonetheless, the non-locality of their kernels has the ability to account for 

the memory effect (Zhang et al., 2017). Alternatively, Caputo and Fabrizio (2015) proposed 

a new modified version of Caputo fractional derivative with the aim to overcome some of 

the drawbacks that were encountered with the Caputo and Riemann-Liouville fractional 

derivatives. This new fractional derivative is known as the Caputo-Fabrizio (CF) fractional 

derivative and is based on the exponential law. It is a very suitable derivative to model 

subsurface heterogeneities and structures at different scales (Al-Salti et al., 2016; Caputo 

and Fabrizio, 2016). Furthermore, the CF operator employs an exponential kernel with no 

singularities (Ali et al., 2016). Therefore, due to the non-singularity of its kernel, the 

memory effect can be well addressed (Atangana and Alkahtani, 2015; Atangana and 

Alqahtani, 2016). To add, this derivative is appropriate for use with both the Laplace and 

Fourier transforms (Caputo and Fabrizio, 2015). 

Another fractional operator, which is found to be very accurate in solving more complex 

real-world systems, is the Atangana-Baleanu fractional derivative. This differential 

operator is based on the Mittag-Leffler law (Atangana and Alqahtani, 2016) and is more 

suitable to model all types of geologic formations including the homogeneous, 

heterogeneous and viscoelastic subsurfaces. The Mittag-Leffler function is also very 
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appropriate to solutions involving linear and non-linear fractional differential equations. 

This differential operator (AB derivative) comes along with some additional advantages 

over other fractional operators because it employs both non-local and non-singular kernels 

(Atangana and Koca, 2016). Due to the non-singularity and non-locality of its kernel, it 

allows an easy expression with regard to the behavior of groundwater flow in viscoelastic 

materials (Alkahtani and Atangana, 2016; Ali et al., 2016) and the effect of memory within 

the structure at different scales. To add, this derivative is fit for use with the Laplace 

transform (Ali et al., 2016). In actual facts, the Atangana-Baleanu fractional derivative 

incorporates all the properties of other fractional derivatives and this makes it a very 

useful tool to address issues of real-world situations (Zhang et al., 2017).  

Limitations of Fractional Differentiation  

Although these fractional derivatives are becoming more advantageous in the field of 

science, they have some limitations for application in other scenarios. For example, the 

Riemann-Liouville has some drawbacks especially when coupled with fractional 

differential equations to solve real-world problems. Unlike the Caputo, the derivative of a 

function for a constant term in Riemann-Liouville sense does not equal to zero (Atangana 

and Secer, 2013). In addition, with the Riemann-Liouville derivative, the description of 

initial conditions of non-integer order is a requirement and if not provided with a clear 

definition, then its application remains a complex issue (Sontakke and Shaikh, 2015). Even 

though the Caputo derivative is the most popular, but it is quite intensive to apply as it 

requires the fractional derivative of a function to be calculated before performing the 

computations of such a function in Caputo sense (Atangana and Secer, 2013). In addition, 

the Caputo derivative is only suited for differentiable functions.  

Furthermore, both the Caputo and Riemann-Liouville are non-local fractional derivatives 

with singular kernels. As a result, the singularity of the kernel restricts their application 

when solving problems in real-world scenarios (Zhang et al., 2017).  Thus, the description 

of the heterogeneity at different scales cannot be fully accounted with fractional derivatives 

utilizing a singular kernel. Again, with the Caputo-Fabrizio fractional derivative, although it 
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was pointed out that its kernel is non-singular, but the operator is still not considered non-

local (Atangana and Koca, 2016).  

1.2 PROBLEM STATEMENT 

Modeling of contaminated groundwater systems is a very challenging issue due to the 

invisibility of the nature of groundwater flow processes, as well as spatial variability of the 

subsurface environments. In actual facts, what really happens in the field is different from 

what models performed under laboratory experiments portray, hence uncertainties 

inherent in porous medium will have an effect on the transport and fate of a contaminant in 

the subsurface (Qin et al., 2008). These uncertainties as mentioned in previous paragraphs 

emerge from different sources and may have an undesirable impact on model predictions. 

Thus, the processes describing the flow and transport of contaminants in the geologic 

medium are considered stochastic (Lin and Tartakovsky, 2010). Some literature however, 

assumes that the aquifer parameters are constant at every point within the geological 

formation. Nevertheless, such assumptions become practically invalid because the 

subsurface is characterized by heterogeneity and aquifer parameters are not known with 

certainty. It is therefore very preferable to capture such uncertainties and heterogeneities 

using the concept of stochastic modeling. Nonetheless, some models fail to provide reliable 

groundwater flow estimates due to their inability to account for the heterogeneity, 

viscoelasticity and memory effect. The concept of differentiation is therefore very suitable 

to model groundwater flow behavior in different types of geological formations. It is 

therefore among some of the reasons that different mathematical models are nowadays 

being suggested with the aim to come up with a model that will enhance the solution of 

groundwater flow related problems with great success. 

In this study, modeling of groundwater flow problems will be based on the aforementioned 

1-D advection-dispersion equation (ADE) by coupling the concept of fractional differential 

and integral operators with stochastic approach in order to account for the uncertainty of 

parameters within the advection-dispersion equation, that impact on the groundwater flow 

and transport of contaminants in the subsurface. Despite the great advantages of both 
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fractional differentiation and stochastic approach previously mentioned, the main 

challenge is that in the past decades these two approaches were each applied separately for 

solution of real-world problems. Therefore, this study is going to utilize the advantages of 

both fractional derivatives and stochastic methods to formulate a new method for 

modeling groundwater flow problems. This new approach is developed with the idea of 

capturing randomness with respect to flow and contaminant transport within the aquifer 

systems and account for the heterogeneity and memory effects by incorporating the 

concept of fractional differentiation.  

1.3 AIMS AND OBJECTIVES 

The study aims to develop a new method for modeling groundwater flow problems by 

incorporating the concept of fractional differentiation and stochastic approach into 

transport equation. This is done with the purpose of accounting for the heterogeneity and 

memory effects at field scale. 

Objectives 

The aim will be achieved through the following objectives: 

1.3.1 Reviewing of a simple one-dimensional advection-dispersion equation. 

1.3.2 Application of stochastic approach to perform the uncertainty analysis on the 

parameters that are associated with flow and contaminant transport. 

1.3.3 Quantification of the mean and variances of dispersion coefficient (D), seepage 

velocity (v) and retardation factor (R). 

1.3.4 Solution of advection-dispersion equation using numerical method based on the 

probability distributions of input parameters. 

1.3.5 Modification of a one-dimensional (1-D) advection-dispersion equation by making 

use of fractional differentiation. 
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1.3.6 Obtaining the approximate solutions using the concept of fractional derivatives and 

stochastic approach. 

1.3.7 Obtaining a modified transport equation using the concept of uncertainties function. 

1.4 RESEARCH FRAMEWORK 

The framework used to achieve the aim and objectives of this study is presented as follows: 

 

Figure 1: Study Research framework 

  



17 
 

1.5 DISSERTATION OUTLINE 

This dissertation is outlined as follows: Chapter 1 provides a background to the behavior of 

a migrating contaminant under the advection and dispersion transport processes within a 

porous groundwater system. This chapter also provides us with the advantages and 

limitations associated with stochastic approach and fractional differentiation as these 

concepts will be used to model groundwater flow problems in this study. In addition, the 

definitions and properties of most widely used fractional derivatives in fields of science are 

also presented. Chapter 2 presents the application of these two concepts to the 

modification of advection-dispersion transport equation. Furthermore, Chapter 3   provides 

the numerical solution of groundwater flow and transport within a porous medium in the 

case of Caputo, Caputo-Fabrizio and Atangana-Baleanu fractional derivatives. Finally, 

Chapter 4 and 5 entail the analysis of stability and presentation of numerical simulations in 

the case of Atangana-Baleanu derivative, respectively. Thereafter, the conclusion follows. 
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CHAPTER 2: FRACTIONAL-STOCHASTIC MODELING 

2.1 INTRODUCTION 

Within an aquifer system, the contaminants usually travel with moving groundwater, and 

thus, any geologic material properties and aquifer parameters influencing the behavior of 

groundwater flow are very likely to affect the movement of contaminants within aquifers 

(Jaiswal and Kumar, 2011). However, the major challenge is that, the natural environments 

through which these contaminants move are invisible and stochastic processes influencing 

flow and solute movement are not or cannot be known with certainty. It is therefore very 

essential to account for the parameter uncertainty into models in order to boost confidence 

in model predictions (Illangasekare and Saenton, 2004). Hence, the need for a 

mathematical model that will better simulate the uncertainties associated with flow and 

contaminants transport within any given geologic medium under various conditions. 

Because flow and solute transport is a non-uniform process, a number of stochastic 

techniques and fractional operators have been suggested in the literature with the focus of 

developing a better model that will account for the heterogeneity effects of the porous 

media. 

This chapter therefore gives an overview of some important parameters within advection-

dispersion equation that impact on groundwater flow and contaminant transport, their 

definitions as well as their associated probability distributions. Next, the brief discussion of 

the processes governing solute movement and the definitions of some important fractional 

derivatives in the field of science. Actually, this section gives an insight of how fractional 

derivatives and stochastic techniques are going to be employed for successful capturing of 

randomness with respect to flow and solute transport in porous media. 

2.2 STOCHASTIC MODELING 

As mentioned in the previous sections that the processes describing flow and transport of 

contaminants in the subsurface are considered stochastic, therefore, stochastic methods 

are very preferable when describing the behavior of solute movement in media 
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characterized by random heterogeneity. Thus, a stochastic model represents a situation 

where uncertainty exists. In other words, it is a process that has some kind of randomness. 

A stochastic model of subsurface solute migration therefore describes the random 

movement of fluids in a porous media due to velocity variations influenced by the 

interactions between the fluid and the solid phase of the media (Verwoerd, 2004). Thus, to 

describe this subsurface stochastic flow and solute movement, the application of advection-

dispersion equation (ADE) equation is considered (Lin and Tartakovsky, 2010). This means 

that, as indicated in Chapter 1, all the flow and solute transport parameters of interest must 

be treated as random so that their uncertainties can be accounted for. 

Some literature however, approach the solution using ADE along with a set of initial and 

boundary conditions by assuming dispersion and velocity as constants (Jaiswal and Kumar, 

2011). For example, Chegenizadeh et al., (2014) presented a 2-D Convection-Dispersion 

Equation to analyze contaminant movement through the soil, where the water content, 

dispersion coefficient and velocity were all assumed to be uniform. Another study was 

presented by Runkel (1996), in which they derived an analytical solution to advection-

dispersion equation based on the constant-parameter for a continuous load of a finite 

duration, where a fixed, constant flow rate was maintained and the resultant dispersion 

assumed to be constant with space. However, these approaches become practically invalid 

at field scale (van Kooten, 1996) because in nature, heterogeneity does exist in subsurface 

environments (Wu et al., 2004). And so, it must not be neglected during groundwater flow 

investigations so that any errors in model results can be avoided, hence incorrect model 

predictions.  

In reality, parameters influencing flow and solute transport are not constants. However, 

depend on the temporal and spatial scales of the aquifer heterogeneities through which 

flow and transport takes place (Kumar et al., 2012). Consequently, to well describe solute 

migration in heterogeneous medium, the coefficients of ADE used must not be treated as 

constants (Sanskrityayn and Kumar, 2016; Simpson, 1978; Matheron and de Marsily, 1980; 

Pickens and Grisak, 1981a), but rather described as random. Therefore, to account for the 

concept of heterogeneity, this study will employ the theory of stochastic modeling, where 
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constant parameters within the advection-dispersion transport equation are converted 

into distribution. 

In this section, some important parameters within the ADE as well as transport processes 

that influence solute movement in the subsurface are briefly discussed. As stated in 

Chapter 1 that there are two main transport mechanisms through which a contaminant can 

migrate in groundwater systems including the advection and dispersion. Therefore, when a 

pollutant is first introduced in groundwater, advection process plays a key role in the 

transportation of such a pollutant at some early stages. Thus, the advection process refers 

to the transport of solutes from one location to another due to the bulk movement of 

flowing groundwater in the subsurface. In addition, the rate at which these solutes are 

transported depends on the velocity of flowing groundwater. The influencing velocity is 

therefore referred to as seepage velocity (v) or average water velocity (Dietrich et al., 

2005). 

The one-dimensional (1-D) transport equation, which describes the movement of a solute 

influenced by advection alone, is given as: 

 
𝜕𝐶 (𝑥, 𝑡)

𝜕𝑡
= − 𝑣𝑥

𝜕𝐶 (𝑥, 𝑡)

𝜕𝑥
. 

(2.1)  

The advection mass-flux (𝐽𝑎,𝑖) representing the movement of a contaminant with flowing 

groundwateris expressed as: 

 𝐽𝑥 = 𝑛𝐶𝑣𝑖 , 
(2.2)  

where, C is the concentration of the transported solute and n is the total porosity. 

Furthermore, as the process of solute movement progresses, the pollutants tend to be 

subjected to different stages of mixing with distance from the source, through a process 

known as hydrodynamic dispersion. The hydrodynamic dispersion results from variations 

in flow velocities and can comprise of molecular diffusion (at low flow velocities) and 

mechanical dispersion at increased velocities. The mechanical dispersion process resulting 
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from increased flow velocities fluctuations then causes the spreading of a contaminant 

either longitudinal or transverse to the direction of groundwater flow, depending on the 

heterogeneity in hydraulic conductivity (Liu et al., 2004). Thus, mechanical dispersion is 

triggered by the mechanisms illustrated in Figure 2.  

That is,  

a) Due to some soil pores being large in size than others, this therefore allows water 

particles to move through them in a faster motion than those moving through tiny 

pores (slowed motion). 

b) Another factor is that, some of the water particles move along more tortuous flow 

paths, which results in longer times travelled but for the same linear distance.  

c) In addition, movement of water particles occurring close to the soil pores is very 

slow due pore-water friction resulting from interactions between water particles 

and the edges of the pores, but faster at the center because of less or no friction 

involved. 

The one-dimensional (1-D) dispersive transport equation, which describes the movement 

of a solute as influenced by dispersion alone, is given as: 

 
𝜕𝐶 (𝑥, 𝑡)

𝜕𝑡
= 𝐷

𝜕2𝐶 (𝑥, 𝑡)

𝜕𝑥2
. 

(2.3)  

The dispersive mass flux is given by: 

 
𝐽𝑑,𝑖 = −𝐷𝑑,𝑖𝑗

𝜕𝐶

𝜕𝑥𝑖
, 

(2.4)  

where, 𝐷 is the dispersive tensor. 
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Figure 2: Factors causing mechanical dispersion (Freeze and Cherry, 1979) 

However, during solute transport, the sorption reaction (interactions between the fluid and 

solid phase) sometimes becomes the determining factor for the movement and fate of 

contaminants in the subsurface, and thus, sorption must not be neglected during 

contamination risk assessment and management (Miller and Weber, 1986). 

2.2.1 Parameters within Advection-Dispersion Transport Equation 

Having being said previously, that the movement of solutes in the subsurface is well 

described in terms of the ADE. Therefore, some important groundwater flow and transport 

parameters considered in this research are discussed below. These include the seepage 

velocity (v), dispersion coefficient (D) and the retardation factor (R).  

2.2.1.1 Seepage Velocity/Average Linear Velocity (v) 

The seepage velocity of the flowing groundwater is undoubtedly a parameter that 

influences the movement and mixing of solutes in groundwater. This is the velocity of 

groundwater calculated from Darcy’s law and is simply described as the bulk movement of 
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water per unit time per unit cross-sectional area of available voids. It can simply be 

expressed as (Dietrich et al., 2005): 

 𝑣𝑖 =
𝑞𝑖
𝑛𝑒
, (2.5)  

where, 𝑣𝑖  is the seepage, 𝑛𝑒 and 𝑞𝑖 are the effective porosity and the specific discharge, 

respectively. 

The seepage velocity as previously mentioned, influences the transport of dissolved mass 

through a process known as advection. Thus, the pore velocity is considered as one of the 

main parameters governing the transport of pollutants in the subsurface (Zhang and 

Winter, 2000). The distribution of this flow velocity is considered not uniform, hence varies 

with both space and time due to the presence of inhomogeneity and anisotropy in porous 

media (Fitts, 2002). In nature, different aquifer systems differ in terms of their geologic 

settings with regard to distance, and thus, the existence of variable field flow velocities is a 

reality. For instance, velocity of a fluid flowing through fractures will differ from flow 

velocities at locations where the aquifer exhibits no fractures because of differing 

geological properties.  

It is therefore very important not to assume constant coefficients when describing solute 

migration with ADE (Sanskrityayn and Kumar, 2016; Simpson, 1978; Matheron and de 

Marsily, 1980; Pickens and Grisak, 1981a). In addition, groundwater flow velocities are said 

to be spatially and temporally dependent (Sanskrityayn and Kumar, 2016). Accordingly, 

the temporal dependency in flow velocities is due to time variable hydraulic gradient while 

the spatial dependency is a cause of hydraulic conductivity, which varies with location 

(Yadav and Kumar, 2018). 

2.2.1.2 Dispersion Coefficient (D) 

The dispersion coefficient is simply defined as a measure of the spreading of a flowing fluid 

as influenced by the geological setting of the porous media, resulting from both the 

coefficients of mechanical dispersion and molecular diffusion within a  porous geological 
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system. The influencing factor for the solute dispersion at microscopic scale is the spatial 

variability of flow velocities due to porous media characteristics such as porosity, 

tortuosity and dead-end pores (Hunt et al., 2010). This means that the degree of a 

spreading solute is reliant on distributions groundwater flow velocity within the porous 

media. Alternatively, dispersion at a macroscopic scale is caused by velocity fluctuations 

arising from variable hydraulic conductivities (Fleurant and Van Der Lee, 2001). Thus, the 

dispersion processes are considerably scale dependent (Raoof and Hassanizadeh, 2013), 

that is, differ from one scale to another. For instance, field scale studies have indicated that 

the dispersion coefficient increases with distance as the contaminant travels away from the 

point of source (Serrano, 1988; Sudiky and Cherry, 1979; Dieulin et al., 1980). Moreover, 

dispersivity can be determined based on two components. That is, the longitudinal 

dispersivity occuring along the local groundwater flow velocity and the transverse 

dispersivity taking place perpendicular to groundwater velocity. 

Since dispersion is dependent on flow velocities, then molecular diffusion will dominate 

only at low flow velocities whereas mechanical dispersion occurs at high flow velocities. 

However, according to Moezed et al., (2009); Gillham and Cherry (1982), molecular 

diffusion is only considered at flow velocities not greater than 10 cm s-1. To add, the macro-

dispersion coefficient, which is quantified based on the average linear velocity of 

groundwater may be expressed as follows (Lee et al., 2018; Zheng and Bennett, 2002). 

 𝐷𝑒(𝑥) =  [𝛼𝐿(𝑥) − 𝛼𝑇(𝑥)]
𝑣𝑖𝑣𝑗

�̅�
+  𝐷0(𝑥),     𝑖, 𝑗 = 1, 2, 

(2.6)  

where, 𝐷𝑒(𝑥) is macro-dispersion coefficient, 𝛼𝐿(𝑥) and 𝛼𝑇(𝑥) are the longitudinal and 

transverse dispersivities, respectively. 𝑣𝑖  and 𝑣𝑗  are the groundwater velocities occurring 

indifferent points within the porous fractures, and �̅� is the measure of seepage velocity. 

Whereas, 𝐷0(𝑥) is the coefficient of effective molecular diffusion. 

2.2.1.3 Retardation Factor (R) 

The retardation factor (R) may be referred to as the measure of the amount of contaminant 

as slowed through sorption by the geologic materials relative to groundwater flow velocity. 
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Accordingly, when a contaminant is transported in groundwater, the movement and fate 

along the flow directions may be affected by its interactions with the medium phase 

especially in low flow velocities, thus, resulting in retardation of solute movement (van 

Kooten, 1996). This is because different types of pollutants react differently with different 

aquifer materials depending on the nature of flow paths along which they travel as well as 

variable rates at which groundwater flow occurs. Once retardation occurs, the rate of 

movement of a contaminant tend to be slower than that of groundwater, hence 

contaminant fate at that stage will differ depending on the geologic settings of the medium. 

According to Schäfer and Kinzelbach, (1995), the retardation factor is a random variable in 

space. 

Thus, the spatial variability in both field flow velocity and retardation factor is considered 

as the factor influencing the migration of reactive solutes through porous media 

characterised by heterogeneity (Mojida and Vereecken, 2004). In cases where sorption 

does not occur at all, the rate at which solute movement happens can therefore be 

determined based on groundwater flow velocities (Fitts, 2002). This means that all the 

solute particles found in the free-phase (non-adsorbing) are susceptible to advection and 

dispersion mechanisms. 

The retardation factor (R) is expressed as: 

 𝑅 = 1 + (
𝜌𝑏𝐾𝑑
𝑁
), 

(2.7)  

where, 𝑅 is the retardation coefficient (unitless parameter), 𝜌𝑏 is the aquifer bulk density 

(M/L3), 𝐾𝑑 is the distribution coefficient (L3/M) and N is the porosity (L3/L3). 

2.2.2 Illustration of Probability Distributions Associated with Groundwater Flow 

and Solute Transport Parameters 

In nature, groundwater flow models are associated with uncertainties, and thus, these 

uncertainties can also be addressed by employing stochastic (statistical) approach. 

However, the main challenge to application of these approach is that, the statistical 
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characteristics of random variables of interest (e.g. the mean, variance, covariance etc.) 

must first be estimated before stochastic techniques can be employed (Dong et al., 2017). 

Nevertheless, such statistical characteristics are very difficult to calculate when limited or 

insufficient data is available. Therefore, when doing stochastic analysis, researchers 

address any uncertainty that may be present in hydrogeological parameters by means of a 

probability density function (PDF) (Baalousha, 2003). Thus, a model is considered 

stochastic if any of its parameters conforms to a probability distribution.  

Additionally, the most famously used geostatistical approach in stochastic analysis when 

describing the heterogeneity of the aquifer in terms of first and second moments of a 

probability distribution function (pdf), are mainly known as the mean and the 

variance/covariance, respectively (Illangasekare and Saenton, 2004). Note that, this 

probability distribution can vary between the variables and/or change with location (Dey, 

2010). 

When performing statistical analysis, if a certain parameter distribution is not known, but a 

set of data points {𝑥1, 𝑥2…𝑥𝑛} is available (Loucks et al., 2005), then the statistical 

moments of unknown distribution of 𝑥 can be determined based on the sample values 

using the given eqs. (2.8 and 2.9).  

That is, if 𝑛 points in the aquifer are sampled, then the sample estimate for the mean is 

given by:  

 �̅� =  
1

𝑛
(∑𝑥𝑖

𝑛

𝑖=1

) =
𝑥1 + 𝑥2+. . . 𝑥𝑛

𝑛
. 

(2.8)  

By taking note that �̅� is the mean, with the (𝑥1 + 𝑥2+. . . 𝑥𝑛) denoting the sum of all samples 

or observations, and 𝑛 representing the sample number. Then, the sample estimate for the 

variance is obtained as: 
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𝜎𝑥
2 = 𝑆𝑥

2 = 
1

𝑛
(∑(𝑥𝑖 − �̅�)

2

𝑛

𝑖=1

), 

𝜎𝑥
2 =

(𝑥1 − �̅�) + (𝑥2 − �̅�) + ⋯ (𝑥𝑛 − �̅�)

𝑛
, 

𝜎𝑥
2 =

(𝑥1 − �̅�)
2 + (𝑥2 − �̅�)

2+. . . (𝑥𝑛 − �̅�)
2

𝑛
. 

(2.9)  

Thus, the focus of this section is to express parameters within groundwater transport 

equation (𝐷, 𝑣 𝑎𝑛𝑑 𝑅) in terms of their statistical moments (mean and variance) and 

probability distributions. Normally, the type of statistical distribution employed depends 

on the situation to be dealt with. The illustrations are presented as follows: 

For the Dispersion Coefficient (D): 

Let us suppose the range of 𝐷, such that 𝐷 ∈ [𝑎1, 𝑎2, … 𝑎𝑛] 

Therefore, the arithmetic mean and variance denoting to dispersion coefficient (D) can 

simply be estimated from the following equations. 

Mean: 

 
D̅ =  

1

𝑛
(∑𝑎𝑖

𝑛

𝑖=1

) =
𝑎1 + 𝑎2+. . . + 𝑎𝑛

𝑛
. 

(2.10)  

Variance: 

 
𝜎2 = 

1

𝑛
∑(𝑎𝑖 − �̅�)

2

𝑛

𝑖=1

. 
(2.11)  

The variance and the mean dispersion coefficient can be approximated by both the normal 

(Gaussian) and log-normal (log-Gaussian) distributions. However, according to Hiscock and 
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Bense (2014), both laboratory and field observations show that the spreading of solute 

mass due to dispersion in a porous media follows a normal (Gaussian) distribution. 

We convert the constant dispersion (D) input parameter into distribution and use the 

normal distribution as follows: 

 �̂� = �̅� + 𝛾𝑁(�̅�, 𝜎2), (2.12)  

where, 𝛾 is the stochastic constant and 𝑁(·) represents the normal distribution given as: 

 
𝑓(𝑥) =

1

𝜎√2𝜋
exp [−

(𝑥 − �̅�)2

2𝜎2
], 

(2.13)  

where, �̅� is the mean for the dispersion coefficient. 

On the other hand, the variance and the mean for the dispersion coefficient in terms of the 

log-normal distribution may be approximated as follows. 

 �̂� =  �̅� + 𝛾 log𝑁 (�̅�, 𝜎2), (2.14)  

where, 𝛾 is the stochastic constant and log𝑁(·) represents the log-normal distribution 

given as: 

 
𝑓(𝑥) =

1

𝑥𝜎√2𝜋
exp [−

(ln 𝑥 − �̅�)2

2𝜎2
]. 

(2.15)  

For the Seepage Velocity (v): 

We suppose the range of 𝑣, such that 𝑣 ∈ [𝑏1, 𝑏2, … 𝑏𝑛] 

Then, the mean denoting to seepage velocity (𝑣) is given as: 
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�̅� =  

1

𝑛
(∑𝑏𝑖

𝑛

𝑖=1

) =
𝑏1 + 𝑏2+. . . + 𝑏𝑛

𝑛
. 

(2.16)  

Variance: 

 
𝜎2 = 

1

𝑛
∑(𝑏𝑖 − �̅�)

2

𝑛

𝑖=1

. 
(2.17)  

The probability distribution of groundwater velocity is said to be direction dependent. 

Thus, the probability distribution can change with location, meaning that longitudinal and 

transverse velocities will have different probability distributions (Dey, 2010). Cooke et al. 

(1995) and Biggar & Nielsen (1976) applied several probability distributions including the 

log-Gaussian, beta, gamma, Weibull, Pearson Type V and the Gumbel distributions in their 

work to approximate the variance and the mean seepage velocity distribution. 

Nevertheless, the velocity is well described by log-normal (non-Gaussian) than normal 

(Gaussian) distribution (Englert, 2003). However, with variances less than 0.1, the 

probability distribution of velocities conforms to a Gaussian shape (Fleurant and Van Der 

Lee, 2001). 

We follow the same procedure as in dispersion coefficient estimation in the previous 

section to convert the constant velocity (v) input parameter into distribution and apply the 

normal distribution as follows: 

 𝑣 =  �̅� + 𝛾𝑁(�̅�, 𝜎2), (2.18)  

where, 𝛾 is the stochastic constant and 𝑁(·) represents the normal distribution given as: 

 
𝑓(𝑥) =

1

𝜎√2𝜋
exp [−

(𝑥 − �̅�)2

2𝜎2
]. 

(2.19)  

where, �̅� is the mean estimate for the groundwater velocity. 
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Moreover, the variance and the mean for the seepage velocity can also be approximated 

using the log-normal distribution as follows. 

 𝑣 =  �̅� + 𝛾 log𝑁 (�̅�, 𝜎2), (2.20)  

where, 𝛾 is the stochastic constant and log𝑁 (·) represents the log-normal distribution 

given as: 

 
𝑓(𝑥) =

1

𝑥𝜎√2𝜋
exp [−

(ln 𝑥 − �̅�)2

2𝜎2
]. 

(2.21)  

For Retardation Factor (R): 

We assume the range of 𝑅, such that 𝑅 ∈ [𝑐1,𝑐2, … 𝑐𝑛] 

Similarly, the mean denoting to retardation factor (𝑅) is given as: 

 
�̅� =  

1

𝑛
(∑𝑐𝑖

𝑛

𝑖=1

) =
𝑐1 + 𝑐2+. . . + 𝑐𝑛

𝑛
. 

(2.22)  

Variance: 

 
𝜎2 = 

1

𝑛
∑(𝑐𝑖 − �̅�)

2

𝑛

𝑖=1

. 
(2.23)  

The variance and mean distribution of the retardation factor can be approximated by log-

normal distribution (Lemaire and Bjerg, 2017). Consequently, the distribution of 𝐾𝑑 values 

is commonly assumed to be log-normally distributed (Kaplan et al., 1995; Van Genuchten 

and Wierenga, 1986; Hillel, 1980). 

Likewise, we follow the same procedure to transform the constant retardation factor into 

probability distribution as follows: 
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 �̂� = �̅� + 𝛾𝑁(�̅�, 𝜎2), (2.24)  

where, 𝛾 is the stochastic constant and 𝑁(·) represents the normal distribution given as: 

 
𝑓(𝑥) =

1

𝜎√2𝜋
exp [−

(𝑥 − �̅�)2

2𝜎2
], 

(2.25)  

where, �̅� is the mean estimate denoting to retardation factor.  

To add, the variance and the mean for the retardation factor may be approximated using 

the log-normal distribution as follows. 

 �̂� =  �̅� + 𝛾 log𝑁 (�̅�, 𝜎2), (2.26)  

where, 𝛾 is the stochastic constant and log𝑁 (·) represents the log-normal distribution 

given as: 

 
𝑓(𝑥) =

1

𝑥𝜎√2𝜋
exp [−

(ln 𝑥 − �̅�)2

2𝜎2
]. 

(2.27)  

Besides the importance of stochastic modeling being able to capture some statistical setting 

of nature with great success, it is however, not fit capture some behavior of nature such as 

fading memory. For instance, fading memory for groundwater velocity fluctuations. It is 

therefore preferable to employ the concept of fractional differentiation to account for those 

scenarios that stochastic methods is unable to capture such as the effect of memory and 

viscoelasticity in porous media.  

Substituting the ADE input parameters v, D and R with their transformed statistical 

distributions as 𝑣 ̂, �̂� and �̂� respectively, such that eq. (1.1) becomes a new modified 

advection-dispersion equation. 

First, let us recall the distributions presented earlier for each sample where, 
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�̂� =  �̅� + 𝛾𝑁(�̅�, 𝜎2), 𝑣 =  �̅� + 𝛾𝑁(�̅�, 𝜎2), �̂� =  �̅� + 𝛾𝑁(�̅�, 𝜎2). 

Therefore, eq. (1.1) is transformed into the following equation: 

 

𝜕𝐶(𝑥, 𝑡)

𝜕𝑡
= (�̅� + 𝛾𝑁(�̅�, 𝜎2))

𝜕²𝐶(𝑥, 𝑡)

𝜕𝑥2
− (�̅� + 𝛾𝑁(�̅�, 𝜎2))

𝜕𝐶(𝑥, 𝑡)

𝜕𝑥

− (�̅� + 𝛾𝑁(�̅�, 𝜎2))𝜆𝐶(𝑥, 𝑡), 

(2.28)  

or, 

 �̂�
𝜕²𝐶(𝑥, 𝑡)

𝜕𝑥2
− 𝑣

𝜕𝐶(𝑥, 𝑡)

𝜕𝑥
− 𝜆�̂�𝐶(𝑥, 𝑡) =  

𝜕𝐶(𝑥, 𝑡)

𝜕𝑡
. 

(2.29)  

We then present an illustration of the above equation (2.29) based on the theory of 

fractional differentiation to generate equation (2.30) below. We substitute the time 

derivative (
𝜕𝐶

𝜕𝑡
) with a time fractional operator ( 𝐷𝑡

𝛼
0
𝐹 ) and obtain the following form of 

equation: 

 𝐷𝑡
𝛼

0
𝐹 𝐶(𝑥, 𝑡)  =  �̂�

𝜕2𝐶(𝑥, 𝑡)

𝜕𝑥2
 − 𝑣

𝜕𝐶(𝑥, 𝑡)

𝜕𝑥
− 𝜆�̂�𝐶(𝑥, 𝑡). 

(2.30)  

2.3 FRACTIONAL DIFFERENTIATION 

As indicated in Chapter 1, this study is as well going to employ the concept of fractional 

differentiation with the focus of developing of a new method that will help in the solution 

of problems related to groundwater flow and solute transport in real world situations. The 

concept of differential and integral operators has the benefits to account for some of the 

phenomena that cannot be captured with stochastic approach and these may include the 

memory effect and viscoelasticity of the porous media at different scales. In addition, the 

development or advancement made with regard to fractional calculus has also shown some 

great success in the investigation of transport within the groundwater systems (Mirza and 

Vieru, 2016). Literature suggests that the most commonly used fractional derivatives in the 

fields of science are the Riemann-Liouville, Caputo, Caputo-Fabrizio and the Atangana-



33 
 

Baleanu derivatives (refer to Chapter 1). In this section, we recall some of the advantages 

and the definitions of these fractional operators. Some examples from literature in which 

these derivatives have been applied are also given. Next, we employ these fractional 

operators to our transport equation to derive a modified equation that will be used to solve 

problems of real world. 

Riemann-Liouville Fractional Derivative (RLFD) 

The RLFD, which is based on power law kernel has shown some success in the fields of 

science including application in physics for simulations of anomalous diffusion (Li et al., 

2011; Zhuang et al., 2008; Ervein et al., 2007), viscoelasticity flows (Baleanu and 

Fernandez, 2017; Liu and Li, 2015; Mainardi, 2010). To add, it can also be applied to 

address the non-Markovian anomalous subdiffusive processes (Zhuang et al., 2008). 

Furthermore, it is an appropriate derivative for use in solution of linear fractional 

differential equations (FDEs) (Gladkina et al., 2018; Antoly et al., 2006). For example, 

Owolabi (2018) applied the RL derivative to model chaotic differential equations in which 

the focus of his work was on the stability analysis and numerical solution of chaotic time 

fractional equations. It is also a suitable derivative for use with the Laplace transform with 

respect to time and space components (Atangana and Kilicman, 2013), but it is argued that 

its Laplace transform presents insignificant physical terms (Mirza and Vieru, 2016). 

Definition for Riemann-Liouville derivative of fractional order𝛼 of function 𝑓(𝑡)is given as: 

 𝐷𝑡
𝛼

0
𝑅𝐿 𝑓(𝑡) =

𝑑𝑛

𝑑𝑡𝑛
𝐷−(𝑛−𝛼) 𝑓(𝑡) =  

1

Γ(𝑛 − 𝛼)

𝑑𝑛

𝑑𝑡𝑛
∫ (𝑡 −  𝜏)𝑛− 𝛼−1
𝑡

0

 𝑓(𝜏)𝑑𝜏. 
(2.31)  

The Riemann-Liouville fractional integral of order 𝛼 for a function 𝑓(𝑡) ∈ 𝐶1([0, 𝑏], ℝ𝑛); 𝑏 >

0 is given as: 

 𝐼𝑡
𝛼

0
𝑅𝐿 𝑓(𝑡) =

1

Γ(𝛼)
∫ (𝑡 −  𝜏) 𝛼−1
𝑡

0

 𝑓(𝜏)𝑑𝜏, 0 < 𝛼 < ∞. 
(2.32)  

where, Γ(∙) is the Euler’s gamma function. 
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Caputo Fractional Derivative (CFD) 

The CFD, which is also based on power function, is a fractional operator very appropriate 

for use to solution of linear fractional differential equations (FDEs) (Gladkina et al., 2018; 

Anatoly et al., 2006; Stefan et al., 1993). This derivative is very appropriate than the RL 

derivative when addressing real world problems as it can enhance the description of 

standard initial and boundary conditions (Kavvas et al., 2017; Podlubny, 1998). The CFD 

also enhances the description of the effect of memory effect, but lacks accuracy due to the 

singularity of its kernel (Gómez-Aguilar, et al., 2016; Caputo and Fabrizio, 2015). In 

addition, this derivative has shown its great success for use with the Laplace transform 

with respect to time and space components of fractional operators. For example, Atangana 

and Kiliçman (2013) managed to derive an analytical solution of the space-time Caputo 

fractional derivative of classical hydrodynamic advection-dispersion equation. Another 

study was done by Wanga et al. (2007), where they used the definition of Caputo derivative 

to determine solutions of time-fractional diffusion equation and its applications in 

fractional quantum mechanics.  

Definition for Caputo fractional derivative: 

Let 𝑏 >  0, 𝑓 ∈ 𝐻1(0, 𝑏) and 0 < 𝛼 > 1, then the Caputo fractional derivative of function of 

𝑓(𝑡) of order 𝛼is given as:   

 𝐷𝑡
𝛼

0
𝑐  𝑓(𝑡) =  

1

Γ(1 −  α)
∫ (𝑡 − 𝜏)−𝛼
𝑡

0

𝑓′(𝜏)𝑑𝜏. 
(2.33)  

Now, let us recall our eq. (2.29). Then, by replacing the time-derivative with Caputo time-

fractional derivative we obtain the following: 

 

𝐷𝑡
𝛼

0
𝐶 𝐶(𝑥, 𝑡)  =  �̂�

𝜕2𝐶(𝑥, 𝑡)

𝜕𝑥2
 − 𝑣

𝜕𝐶(𝑥, 𝑡)

𝜕𝑥
− 𝜆�̂�𝐶(𝑥, 𝑡), 

or, 

(2.34)  
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1

Γ(1 −  α)
∫ (𝑡 − 𝜏)−𝛼
𝑡

0

𝑓′(𝜏)𝑑𝜏 =  �̂�
𝜕2𝐶(𝑥, 𝑡)

𝜕𝑥2
 − 𝑣

𝜕𝐶(𝑥, 𝑡)

𝜕𝑥
− 𝜆�̂�𝐶(𝑥, 𝑡). 

Caputo-Fabrizio Fractional Derivative (CFFD) 

A new version of fractional derivative (Caputo-Fabrizio derivative) was recently proposed 

by Caputo and Fabrizio in order to overcome the limitations observed with the 

aforementioned Caputo and Riemann-Liouville derivatives. This new derivative with 

fractional order with non-singular kernel is considered among some of the very useful 

fractional derivatives based on its abilities to account for medium heterogeneities and 

structures at different scales (Al-Salti et al., 2016; Caputo and Fabrizio, 2016). The 

definition of Caputo-Fabrizio derivative is based on the convolution of a first order 

derivative with exponential function and it is also very useful in the expression of diffusion 

substances at various scales (Atangana and Alkahtani, 2015).  

Furthermore, the Caputo-Fabrizio temporal-fractional derivative is fit for use with the 

Laplace transform, whereas the Fourier transform can be incorporated for spatial 

representations of the Caputo-Fabrizio derivative (Shan and Khan, 2016). For instance, 

Mirza and Vieru (2016) were able to obtain a solution to their study involving the use of 

Laplace transform with respect to the temporal variable t, as well as the sine-Fourier and 

the exponential-Fourier transforms with respect to 𝑦 and 𝑥 variables, respectively. To 

validate the capabilities of this new derivative, Alkahtani and Atangana (2016)                          

successfully applied the new CFFD with fractional order to determine the behavior of the 

movement of waves on the surface of shallow water by making use of the properties of this 

new derivative as it can depict the migration of substances at different scales. 

The definition of fractional Caputo-Fabrizio derivative: 

Let 𝑓 ∈ 𝐻1(𝑎, 𝑏), 𝑏 > 𝑎, 𝛼 ∈ [0,1], then the definition of the Caputo-Fabrizio fractional 

derivative is given as follows: 
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 𝐷𝑡
𝛼

0
𝐶𝐹 𝑓(𝑡) =  

𝑀(𝛼)

1 −  𝛼
∫𝑓′(𝜏) exp [−𝛼 

𝑡 − 𝜏

1 −  𝛼
]

𝑡

𝑎

𝑑𝜏, 
(2.35)  

 𝐷𝑡
𝛼

0
𝐶𝐹 𝑓(𝑡) =  

𝛼𝑀(𝛼)

1 −  𝛼
∫(𝑓(𝑡) −  𝑓(𝜏)) exp [−𝛼 

𝑡 − 𝜏

1 −  𝛼
]

𝑡

𝑎

𝑑𝜏, 
(2.36)  

Nevertheless, if the function is not within  𝐻1(𝑎, 𝑏) then, the derivative is redefined as 

follows:  

 𝐷𝑡
𝛼

0
𝐶𝐹 𝑓(𝑡) =  

𝛼𝑀(𝛼)

1 −  𝛼)
∫(𝑓(𝑡) −  𝑓(𝜏)) exp [−𝛼 

𝑡 − 𝜏

1 −  𝛼
]

𝑡

𝑎

𝑑𝜏. 
(2.37)  

Similarly, we recall our eq. (2.29) and then replace the time-derivative with Caputo-

Fabrizio time-fractional operator to generate the following: 

 

𝐷𝑡
𝛼

0
𝐶𝐹 𝐶(𝑥, 𝑡)  =  �̂�

𝜕2𝐶(𝑥, 𝑡)

𝜕𝑥2
 − 𝑣

𝜕𝐶(𝑥, 𝑡)

𝜕𝑥
− 𝜆�̂�𝐶(𝑥, 𝑡), 

or, 

𝑀(𝛼)

1 −  𝛼
∫  𝑒𝑥𝑝 [−

𝛼

1 −  𝛼
(𝑡 − 𝜏)] 𝑓′(𝜏)𝑑𝜏

𝑡

𝑎

= �̂�
𝜕2𝐶(𝑥, 𝑡)

𝜕𝑥2
 − 𝑣

𝜕𝐶(𝑥, 𝑡)

𝜕𝑥
− 𝜆�̂�𝐶(𝑥, 𝑡). 

(2.38)  

Atangana-Baleanu Fractional Derivative (ABFD) 

The ABFD, based on the generalized Mittag-Leffler law is a fractional operator suggested by 

Atangana and Baleanu, and comprises both the non-local and non-singular kernels 

(Atangana and Baleanu, 2016). This means that the AB derivative is very fit for use when 

modeling the complexity of real-world problems within different kinds of geologic 

materials to address the concept of heterogeneity, viscoelasticity and the memory effect 

(Atangana and Baleanu, 2016; Atangana and Alqahtani, 2016). In addition, it is a very 

suitable derivative for use with the Laplace transform to describe some physical problems 

with initial conditions. To highlights among some of its applications with great success, 
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Atangana and Alqahtani (2016) applied this derivative to the model of groundwater 

movement through an unconfined aquifer. In their study, the solution to the model 

incorporated the application of Mittag-Leffler function, which allows better description of 

the complexity of natural phenomena. To achieve their aim, they obtained the analytical 

and numerical solutions by making use of the Laplace transform operator and Crank-

Nicolson technique, respectively. Furthermore, another study by Djida et al. (2016) 

entailed an application of Atangana-Baleanu fractional integral to model groundwater flow 

within a leaky aquifer. The approach to the solution of their problem was also based on 

Mittag-Leffler functions, then the analytical and numerical analysis were employed to 

derive their new model. In addition, Gómez-Aguilar et al. (2016)were able to employ 

Atangana-Baleanu fractional derivative in Liouville-Caputo and Riemann-Liouville sense to 

study electromagnetic waves in dielectric media. 

Definition of Atangana-Baleanu fractional derivative in Riemann-Liouville sense is given as: 

Let 𝑓 ∈ 𝐻1(𝑎, 𝑏), 𝑏 > 𝑎, 𝛼 ∈ [0,1] 

Then,  

 𝐷𝑡
𝛼

𝑎
𝐴𝐵𝑅 (𝑓(𝑡)) =  

𝛣(𝛼)

1 −  𝛼

𝑑

𝑑𝑡
∫ 𝑓(𝜏)𝐸𝛼 

 𝑡

𝑎

[−𝛼
(𝑡 − 𝜏)𝛼

1 −  𝛼
] 𝑑𝜏;   0 < 𝛼 <  1. 

(2.39)  

Definition of Atangana-Baleanu fractional derivative in Caputo sense is given as: 

Let 𝑓 ∈ 𝐻1(𝑎, 𝑏), 𝑏 > 𝑎, 𝛼 ∈ [0,1] 

Then, 

 𝐷𝑡
𝛼

𝑎
𝐴𝐵𝐶 (𝑓(𝑡)) =  

𝛣(𝛼)

1 −  𝛼
∫𝑓′(𝜏)𝐸𝛼 

𝑡

𝑎

[−𝛼
(𝑡 − 𝜏)𝛼

1 −  𝛼
] 𝑑𝜏;              0 < 𝛼 <  1. 

(2.40)  

Likewise, we recall eq. (2.29) and substitute the time-derivative with Atangana-Baleanu 

non-local fractional operator in Caputo sense to obtain the following: 
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𝐷𝑡
𝛼

0
𝐴𝐵𝐶 𝐶(𝑥, 𝑡)  =  �̂�

𝜕2𝐶(𝑥, 𝑡)

𝜕𝑥2
 − 𝑣

𝜕𝐶(𝑥, 𝑡)

𝜕𝑥
− 𝜆�̂�𝐶(𝑥, 𝑡), 

or, 

𝛣(𝛼)

1 −  𝛼
∫𝐸𝛼 [−

𝛼

1 −  𝛼
(𝑡 − 𝜏)𝛼] 𝑓′(𝜏)𝑑𝜏

𝑡

𝑎

= �̂�
𝜕2𝐶(𝑥, 𝑡)

𝜕𝑥2
 − 𝑣

𝜕𝐶(𝑥, 𝑡)

𝜕𝑥
− 𝜆�̂�𝐶(𝑥, 𝑡). 

(2.41)  

The Atangana-Baleanu fractional integral of order 𝛼ofa function f (t) is given as: 

 𝐼𝑡
𝛼

𝑎
𝐴𝐵 (𝑓(𝑡)) =  

1 − 𝛼

𝐵(𝛼)
 𝑓(𝑡) + 

𝛼

𝐵(𝛼)Γ(α)
∫ 𝑓(𝜏)(𝑡 − 𝜏)𝛼−1𝑑𝜏
𝑡

𝑎

. 
(2.42)  

The definition of Mittag-Leffler function 𝐸𝛼,𝛽is given as: 

 𝐸𝛼,𝛽(𝑡) =  ∑
𝑡𝑚

Γ(𝛼𝑚 + 𝛽)′

∞

𝑚 = 0
(𝛼 >  0),       (𝛽 >  0). 

(2.43)  

Since literature provides quite a number of studies confirming the success of stochastic 

techniques and fractional differentiation application in various scientific research areas, 

including application in hydrogeology. However, these two approaches were both in the 

past years, applied separately in modeling concepts. Therefore, the theory behind this 

research is that, coupling of both stochastic techniques and the concepts of fractional 

differentiation can be used to enhance the development of a new approach towards 

estimation of groundwater flow and solute transport with the focus of accounting for any 

random motion, heterogeneity effects, viscoelasticity and the memory effect within the 

porous media. More importantly, the study will combine the two approaches in order to 

develop a modified groundwater transport equation that will better capture the behavior 

of advection and dispersion processes in complex groundwater systems.  
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CHAPTER 3: NUMERICAL SOLUTIONS 

3.1 INTRODUCTION 

Due to the changing behavior of the transport phenomenon in terms of time and space, the 

numerical solution of ADE becomes a challenging task. Therefore, there is a need for the 

formulation of a more acceptable numerical method in terms of stability, accuracy, 

algorithmic simplicity and computational efficiency (Andújar et al., 2011). There are 

various numerical solution techniques reported in the literature for solving advection-

dispersion equation. Thus, the aim of this study as indicated earlier focuses on the 

development of a new approach for modeling groundwater related flow problems, by 

incorporating both the concept of fractional differentiation and stochastic techniques to 

develop a new groundwater transport equation. 

Subsequently, this chapter presents some fractional derivatives and their applications in 

modeling groundwater problems. Next, the numerical solutions and stability analysis for 

each exact solution will also be provided. 

3.2 NUMERICAL APPROXIMATIONS OF FRACTIONAL OPERATORS 

In this section, the numerical approximations of the most widely used fractional derivatives 

are presented, notably the Caputo, Caputo-Fabrizio and Atangana-Baleanu fractional 

derivatives. 

3.2.1 Numerical Approximation of the Caputo Derivative 

As mentioned earlier in this study, the Caputo derivative which is based on the power 

function is very appropriate for modeling homogeneous, elastic geologic materials (refer to 

Chapter 2). It is also a suitable derivative for use with the Laplace transform with respect to 

time and space components of fractional operators. For the purpose of numerical analysis, 

Caputo fractional derivative is numerically approximated based on its definition as follows. 
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Let n be a positive integer greater than 1, then: 

 𝐷𝑡
𝛼

0
𝐶 (𝑓(𝑡𝑛)) =   

1

Γ(1 −  α)
∫ (𝑡𝑛 − 𝜏)

−𝛼
𝑡𝑛

0

𝑑

𝑑𝑡
𝑓(𝜏) 𝑑𝜏. 

(3.1)  

Employing Crank-Nicolson Scheme yields: 

 𝐷𝑡
𝛼

0
𝐶 (𝑓(𝑡𝑛)) =   

1

Γ(1 −  α)
∫ (𝑡𝑛 − 𝜏)

−𝛼
𝑡𝑛

0

𝑓(∆𝜏 +  𝜏) − 𝑓(𝜏)

∆𝜏
𝑑𝜏, 

(3.2)  

 𝐷𝑡
𝛼

0
𝐶 (𝑓(𝑡𝑘)) =

1

Γ(1 −  α)
∑∫

𝑓(𝑡𝑘+1) − 𝑓(𝑡𝑘)

∆𝑡

𝑡𝑘+1

𝑡𝑘

(𝑡𝑛 − 𝜏)
−𝛼𝑑𝜏

𝑛−1

𝑘=0

, 
(3.3)  

 =
1

Γ(1 −  α)
∑

𝑓(𝑡𝑘+1) − 𝑓(𝑡𝑘)

∆𝑡
∫ (𝑡𝑛 − 𝜏)

−𝛼𝑑𝜏
𝑡𝑛

0

𝑛−1

𝑘=0

, 
(3.4)  

If 𝑦 = (𝑡𝑛 −  𝜏), 𝑦 =  𝑡𝑛 − 𝑡𝑘+1, 𝑦 =  𝑡𝑛 − 𝑡𝑘and, 𝑑𝑦 =  −𝑑𝜏 ⇒ 𝑑𝜏 =  −𝑑𝑦 

Then,  

 𝐷𝑡
𝛼

0
𝐶 (𝑓(𝑡𝑘)) =

1

Γ(1 −  α)
∑

𝑓(𝑡𝑘+1) − 𝑓(𝑡𝑘)

∆𝑡
∫ 𝑦−𝛼 (−𝑑𝑦)
𝑡𝑛− 𝑡𝑘+1

𝑡𝑛− 𝑡𝑘

𝑛−1

𝑘=0

, 
(3.5)  

For any variable, −∫ 𝑓(𝑥)𝑑𝑥 = ∫ 𝑓(𝑥)𝑑𝑥
𝑎

𝑏

𝑏

𝑎
 

Therefore,  

𝐷𝑡
𝛼

0
𝐶 (𝑓(𝑡𝑘)) =

1

Γ(1 −  α)
∑

𝑓(𝑡𝑘+1) − 𝑓(𝑡𝑘)

∆𝑡
∫ 𝑦−𝛼 𝑑𝑦
𝑡𝑛− 𝑡𝑘

𝑡𝑛− 𝑡𝑘+1

𝑛−1

𝑘=0

, 
(3.6)  

=
1

Γ(1 −  α)
∑

𝑓(𝑡𝑘+1) − 𝑓(𝑡𝑘)

∆𝑡
(∫

𝑦−𝛼+1

−𝛼 + 1

𝑡𝑛− 𝑡𝑘

𝑡𝑛− 𝑡𝑘+1

)

𝑛−1

𝑘=0

, 
(3.7)  

=
1

Γ(1 −  α)
∑

𝑓(𝑡𝑘+1) − 𝑓(𝑡𝑘)

∆𝑡
(
𝑦−𝛼+1

−𝛼 + 1
)|
𝑡𝑛−𝑡𝑘+1

𝑡𝑛−𝑡𝑘𝑛−1

𝑘=0

, 
(3.8)  
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Let 𝑡 = ∆𝑡, 𝑡𝑘 = 𝑘∆𝑡, 𝑡𝑛 = 𝑛∆𝑡, 𝑡𝑛 − 𝑡𝑘 = 𝑛∆𝑡 − 𝑘∆𝑡, 𝑡𝑛 − 𝑡𝑘+1 = 𝑛∆𝑡 − (𝑘 + 1)∆𝑡 

𝐷𝑡
𝛼

0
𝐶 (𝑓(𝑡𝑛)) =

1

Γ(2 −  α)
∑

𝑓(𝑡𝑘+1) − 𝑓(𝑡𝑘)

∆𝑡

𝑛

𝑘=0

{(𝑛∆𝑡 −  𝑘∆𝑡)1−𝛼

− (𝑛∆𝑡 − (𝑘 + 1)∆𝑡)1−𝛼}, 

(3.9)  

=
1

Γ(2 −  α)
∑

𝑓(𝑡𝑘+1) − 𝑓(𝑡𝑘)

∆𝑡
(∆𝑡)1−𝛼{(𝑛 − 𝑘)1−𝛼 − (𝑛 −  𝑘 − 1)1−𝛼}

𝑛

𝑘=0

. 
(3.10)  

3.2.2 Numerical Approximation to Caputo-Fabrizio (CF) Derivative 

The Caputo-Fabrizio derivative is a new derivative with non-singular kernel recently 

introduced by Caputo and Fabrizio based on exponential law. It has shown a great success 

in the describing the heterogeneity of subsurface at different scales (refer to Chapter 2). 

Since the medium heterogeneity is among the factors that influence the behavior of 

groundwater flow and transport, this study will therefore employ the CF derivative in the 

solution of advection and dispersion problems. 

The well-known Caputo-Fabrizio operator is given as: 

 𝐷𝑡
𝛼

0
𝐶𝐹 𝑓(𝑡𝑛) =  

𝑀(𝛼)

1 −  𝛼
∫

𝜕

𝜕𝑡
𝑓(𝑡)

𝑡𝑛

0

exp [−
𝛼

1 −  𝛼
(𝑡𝑛 −  𝜏)] 𝑑𝜏. 

(3.11)  

For simplicity of the numerical analysis, numerical approximation of the Caputo-Fabrizio 

derivative is presented as: 

Let 𝑛 ≥ 0, then: 

 𝐷𝑡
𝛼

0
𝐶𝐹 𝑓(𝑡𝑛) =

𝑀(𝛼)

1 −  𝛼
∑∫

𝑓(𝑡𝑘+1) −  𝑓(𝑡𝑘)

∆𝑡

𝑡𝑘+1

𝑡𝑘

𝑛

𝑘=0

𝑒𝑥𝑝 [−
𝛼

1 −  𝛼
(𝑡𝑛 −  𝜏)] 𝑑𝜏, 

(3.12)  

 =
𝑀(𝛼)

1 −  𝛼
∑

𝑓(𝑡𝑘+1) −  𝑓(𝑡𝑘)

∆𝑡
∫ 𝑒𝑥𝑝 [−

𝛼

1 −  𝛼
(𝑡𝑛 −  𝜏)]

𝑡𝑘+1

𝑡𝑘

𝑛

𝑘=0

𝑑𝜏, 
(3.13)  

Let, 𝑦 = (𝑡𝑛 −  𝜏), 𝑦 =  𝑡𝑛 − 𝑡𝑘+1, 𝑦 =  𝑡𝑛 − 𝑡𝑘 and, 𝑑𝑦 =  −𝑑𝜏 ⇒ 𝑑𝜏 =  −𝑑𝑦 
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Then,  

 𝐷𝑡
𝛼

0
𝐶𝐹 𝑓(𝑡𝑛) =

𝑀(𝛼)

1 −  𝛼
∑

𝑓(𝑡𝑘+1) −  𝑓(𝑡𝑘)

∆𝑡
∫ 𝑒𝑥𝑝 [−

𝛼

1 −  𝛼
 𝑦]

𝑡𝑛−𝑡𝑘+1

𝑡𝑛− 𝑡𝑘

𝑛

𝑘=0

𝑑𝑦, 
(3.14)  

 =
𝑀(𝛼)

1 −  𝛼
∑

𝑓(𝑡𝑘+1) −  𝑓(𝑡𝑘)

∆𝑡

𝑛

𝑘=0

{
1 − 𝛼

𝛼
exp│𝑡𝑛− 𝑡𝑘

𝑡𝑛− 𝑡𝑘+1}, 
(3.15)  

 = 
𝑀(𝛼)

1 −  𝛼
∑

𝑓(𝑡𝑘+1) −  𝑓(𝑡𝑘)

∆𝑡

𝑛

𝑘=0

{exp [
1 − 𝛼

𝛼
(𝑡𝑛 − 𝑡𝑘+1)] − exp [

1 − 𝛼

𝛼
(𝑡𝑛 − 𝑡𝑘)]}, 

(3.16)  

 = 
𝑀(𝛼)

1 −  𝛼
∑

𝑓(𝑡𝑘+1) −  𝑓(𝑡𝑘)

∆𝑡

𝑛

𝑘=0

𝜓𝑛,𝑘
𝛼 , 

(3.17)  

Where, 

𝜓𝑛,𝑘
𝛼 = exp [

1 − 𝛼

𝛼
(𝑡𝑛 − 𝑡𝑘+1)] − exp [

1 − 𝛼

𝛼
(𝑡𝑛 − 𝑡𝑘)]. 

The Caputo-Fabrizio fractional integral of order 𝛼 of a function 𝜇(𝑥, 𝑡)is given as: 

 𝐼𝑡
𝛼

0
𝐶𝐹 𝜇(𝑥, 𝑡) =  

1 − 𝛼

𝑀(𝛼)
𝜇(𝑥, 𝑡) +

𝛼

𝑀(𝛼)
∫ 𝜇(𝑥, 𝜏)𝑑𝜏
𝑡

0

. 
(3.18)  

At (𝑥𝑖, 𝑡𝑛) we have, 

 𝐼𝑡
𝛼

0
𝐶𝐹 𝜇(𝑥𝑖, 𝑡𝑛) =  

1 − 𝛼

𝑀(𝛼)
𝜇(𝑥𝑖, 𝑡𝑛) +

𝛼

𝑀(𝛼)
∫ 𝜇(𝑥𝑖, 𝜏)𝑑𝜏
𝑡𝑛

0

, 
(3.19)  

 = 
1 − 𝛼

𝑀(𝛼)
𝜇𝑖
𝑛 +

𝛼

𝑀(𝛼)
∑∫ 𝜇𝑖

𝑗
𝑑𝜏

𝑡𝑗+1

𝑡𝑗

𝑛−1

𝑗=0

, 
(3.20)  

 = 
1 − 𝛼

𝑀(𝛼)
𝜇𝑖
𝑛 +

𝛼

𝑀(𝛼)
∑𝜇𝑖

𝑗
∫ 𝑑𝜏
𝑡𝑗+1

𝑡𝑗

𝑛−1

𝑗=0

, 
(3.21)  

 = 
1 − 𝛼

𝑀(𝛼)
𝜇𝑖
𝑛 +

𝛼

𝑀(𝛼)
∑𝜇𝑖

𝑗
(𝑡𝑗+1 − 𝑡𝑗)

𝑛−1

𝑗=0

, 
(3.22)  
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 = 
1 − 𝛼

𝑀(𝛼)
𝜇𝑖
𝑛 +

𝛼

𝑀(𝛼)
∑𝜇𝑖

𝑗
∆𝑡

𝑛−1

𝑗=0

. 
(3.23)  

3.2.3 Numerical Approximation to Atangana-Baleanu (AB) Derivative in Caputo 

sense 

Due to the complexity of the geological environments through which groundwater flow and 

transport takes place, there is a need for the application of a suitable differential operator 

that will account for these complexities. Recently, Atangana and Baleanu proposed a new 

fractional derivative based on the generalized Mittag-Leffler function. This new fractional 

operator is called the Atangana-Baleanu derivative and incorporates both the non-singular 

and non-local kernels. Since this new version of derivative has been very successful in the 

solution of real world problems, therefore, this paper also aims at utilizing the benefits of 

the AB derivative to solve problems related to advection and dispersion.  

The new operator of AB in the sense of Caputo is given as: 

 𝐷𝑡
𝛼

𝑎
𝐴𝐵𝐶 (𝑓(𝑡𝑛)) =  

𝐴𝛣(𝛼)

1 −  𝛼
∫

𝑑

𝑑𝜏

𝑡𝑛

0

 𝑓(𝜏)𝐸𝛼 [−𝛼
(𝑡𝑛 − 𝜏)

𝛼

1 −  𝛼
] 𝑑𝜏. 

(3.24)  

The numerical approximation of AB derivative in the sense of Caputo is presented below, n 

is a positive integer, and the subdivisions of time intervals are also given as: 

Let, 0 = 𝑡0 ≤ 𝑡1 ≤ 𝑡2… ≤ 𝑡𝑛−1 ≤ 𝑡𝑛 ≤ ∆𝑡 = 𝑡𝑘 − 𝑡𝑘−1 

 𝐷𝑡
𝛼

𝑎
𝐴𝐵𝐶 (𝑓(𝑡𝑛)) =  

𝐴𝛣(𝛼)

1 −  𝛼
∫

𝑑

𝑑𝜏

𝑡𝑛

0

 𝑓(𝜏)𝐸𝛼 [−𝛼
(𝑡𝑛 − 𝜏)

𝛼

1 −  𝛼
] 𝑑𝜏, 

(3.25)  

 =
𝐴𝛣(𝛼)

1 −  𝛼
∑∫

𝑓(𝑡𝑘+1) − 𝑓(𝑡𝑘)

∆𝑡

𝑡𝑘+1

𝑡𝑘

𝑛−1

𝑘=0

𝐸𝛼 [−𝛼
(𝑡𝑛 − 𝜏)

𝛼

1 −  𝛼
] 𝑑𝜏, 

(3.26)  

 =
𝐴𝛣(𝛼)

1 −  𝛼
∑

𝑓(𝑡𝑘+1) − 𝑓(𝑡𝑘)

∆𝑡

𝑛−1

𝑘=0

∫ 𝐸𝛼 [−𝛼
(𝑡𝑛 − 𝜏)

𝛼

1 −  𝛼
] 𝑑𝜏,

𝑡𝑘+1

𝑡𝑘

 
(3.27)  
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=
𝐴𝛣(𝛼)

1 −  𝛼
∑

𝑓(𝑡𝑘+1) − 𝑓(𝑡𝑘)

∆𝑡

𝑛−1

𝑘=0

{(𝑡𝑛 − 𝑡𝑘+1)𝐸𝛼,2 [
𝛼

1 − 𝛼
(𝑡𝑛 − 𝑡𝑘+1)]

− (𝑡𝑛 − 𝑡𝑘)𝐸𝛼,2 [
𝛼

1 − 𝛼
(𝑡𝑛 − 𝑡𝑘)]}, 

(3.28)  

 =
𝐴𝛣(𝛼)

1 −  𝛼
∑

𝑓(𝑡𝑘+1) − 𝑓(𝑡𝑘)

∆𝑡

𝑛

𝑘=0

Φ𝛿𝑛,𝑘
𝛼 , 

(3.29)  

Where, 

 Φ𝛿𝑛,𝑘
𝛼 = (𝑡𝑛 − 𝑡𝑘+1)𝐸𝛼,2 [

𝛼

1 − 𝛼
(𝑡𝑛 − 𝑡𝑘+1)] − (𝑡𝑛 − 𝑡𝑘)𝐸𝛼,2 [

𝛼

1 − 𝛼
(𝑡𝑛 − 𝑡𝑘)].  

The Atangana-Baleanu fractional integral can be presented as follows: 

If, 𝑓 ∈ 𝐶2[0, T] 

Then, 

 𝐼𝑡
𝛼(𝑓(𝑡𝑘)) =  

1 − 𝛼

𝐴𝐵(𝛼)0
𝐴𝐵 𝑓(𝑡𝑘) + 

𝛼(∆𝑡)𝛼

𝐴𝐵(𝛼)Γ(𝛼 + 1)
∑𝑏𝑗

𝛼

𝑘−1

𝑗=0

𝑓(𝑡𝑘−𝑗) + 𝑓(𝑡𝑘−𝑗+1)

2
+ 𝑅𝑘,𝛼, 

(3.30)  

Where, 

|𝑅𝑘,𝛼| ≤ 𝐾𝑡𝑘
𝛼𝜏,𝑘 =  1, 2, 3, … , 𝑛 and 𝑏𝑗

𝛼 = (𝑗 + 1)𝛼 − 𝑗𝛼, 𝑗 = 0, 1, 2, 3, … 𝑛. 

Therefore, the Atangana-Baleanu integral is approximated using discretization approach 

as: 

 𝐼𝑡
𝛼

0
𝐴𝐵 𝜇(𝑥, 𝑡) =

1 − 𝛼

𝐴𝐵(𝛼)
𝜇(𝑥, 𝑡) +

𝛼

𝐴𝐵(𝛼)Γ(𝛼)
∫𝜇(𝑥, 𝜏)(𝑡 − 𝜏)𝛼−1𝑑𝜏

𝑡

0

. 
(3.31)  

At (𝑥𝑖, 𝑡𝑛) we have: 
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 𝐼𝑡
𝛼

0
𝐴𝐵 𝜇(𝑥𝑖 , 𝑡𝑛) =

1 − 𝛼

𝐴𝐵(𝛼)
𝜇(𝑥𝑖, 𝑡𝑛) +

𝛼

𝐴𝐵(𝛼)Γ(𝛼)
∫ 𝜇(𝑥𝑖, 𝜏)(𝑡𝑛 − 𝜏)

𝛼−1
𝑡

0

𝑑𝜏, 
(3.32)  

 =
1 − 𝛼

𝐴𝐵(𝛼)
𝜇𝑖
𝑛 +

𝛼

𝐴𝐵(𝛼)Γ(𝛼)
∑∫ 𝜇𝑖

𝑗(𝑡𝑛 − 𝜏)
𝛼−1

𝑡𝑗+1

𝑡𝑗

𝑑𝜏

𝑛−1

𝑗=0

, 
(3.33)  

 =
1 − 𝛼

𝐴𝐵(𝛼)
𝜇𝑖
𝑛 +

𝛼

𝐴𝐵(𝛼)Γ(𝛼)
∑𝜇𝑖

𝑗
∫ (𝑡𝑛 − 𝜏)

𝛼−1
𝑡𝑗+1

𝑡𝑗

𝑛−1

𝑗=0

𝑑𝜏, 
(3.34)  

Let𝑦 = (𝑡𝑛 − 𝜏), 𝑦 = (𝑡𝑛 − 𝑡𝑗+1), 𝑦 = (𝑡𝑛 − 𝑡𝑗) 𝑎𝑛𝑑 𝑦 = 𝑑𝑦 = −𝑑𝜏 ⇒ 𝑑𝜏 = −𝑑𝑦 

Then,  

𝐼𝑡
𝛼

0
𝐴𝐵 𝜇(𝑥𝑖 , 𝑡𝑛) =

1 − 𝛼

𝐴𝐵(𝛼)
𝜇𝑖
𝑛 +

𝛼

𝐴𝐵(𝛼)Γ(𝛼)
∑𝜇𝑖

𝑗
∫ 𝑦𝛼−1
𝑡𝑛−𝑡𝑗+1

𝑡𝑛−𝑡𝑗

𝑛−1

𝑗=0

(−𝑑𝑦), 
(3.35)  

For any variable, −∫ 𝑓(𝑥)𝑑𝑥 = ∫ 𝑓(𝑥)𝑑𝑥
𝑎

𝑏

𝑏

𝑎
 

Therefore,  

𝐼𝑡
𝛼

0
𝐴𝐵 𝜇(𝑥𝑖, 𝑡𝑛) =

1 − 𝛼

𝐴𝐵(𝛼)
𝜇𝑖
𝑛 +

𝛼

𝐴𝐵(𝛼)Γ(𝛼)
∑𝜇𝑖

𝑗
∫ 𝑦𝛼−1
𝑡𝑛−𝑡𝑗

𝑡𝑛−𝑡𝑗+1

𝑛−1

𝑗=0

𝑑𝑦, 
(3.36)  

=
1 − 𝛼

𝐴𝐵(𝛼)
𝜇𝑖
𝑛 +

𝛼

𝐴𝐵(𝛼)Γ(𝛼)
∑𝜇𝑖

𝑗
∫

𝑦(𝛼−1)+1

(𝛼 − 1) + 1

𝑡𝑛−𝑡𝑗

𝑡𝑛−𝑡𝑗+1

𝑛−1

𝑗=0

, 
(3.37)  

=
1 − 𝛼

𝐴𝐵(𝛼)
𝜇𝑖
𝑛 +

𝛼

𝐴𝐵(𝛼)Γ(𝛼)
∑𝜇𝑖

𝑗
𝑦𝛼|𝑡𝑛−𝑡𝑗+1

𝑡𝑛−𝑡𝑗

𝑛−1

𝑗=0

, 
(3.38)  

=
1 − 𝛼

𝐴𝐵(𝛼)
𝜇𝑖
𝑛 +

𝛼

𝐴𝐵(𝛼)Γ(𝛼)
∑𝜇𝑖

𝑗
{(𝑡𝑛 − 𝑡𝑗)

𝛼
− (𝑡𝑛 − 𝑡𝑗+1)

𝛼
}

𝑛−1

𝑗=0

, 
(3.39)  

If 𝑡 = ∆𝑡, 𝑡𝑗 = 𝑗∆𝑡, 𝑡𝑛 = 𝑛∆𝑡, 𝑡𝑛 − 𝑡𝑗 = 𝑛∆𝑡 − 𝑗∆𝑡, 𝑡𝑛 − 𝑡𝑗+1 = 𝑛∆𝑡 − (𝑗 + 1)∆𝑡 

𝐼𝑡
𝛼

0
𝐴𝐵 𝜇(𝑥𝑖, 𝑡𝑛) =

1−𝛼

𝐴𝐵(𝛼)
𝜇𝑖
𝑛 +

𝛼

𝐴𝐵(𝛼)Γ(𝛼)
∑ 𝜇𝑖

𝑗
{(∆𝑡(𝑛 − 𝑗))

𝛼
− (∆𝑡(𝑛 − 𝑗 − 1))

𝛼
}𝑛−1

𝑗=0 , (3.40)  
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=
1 − 𝛼

𝐴𝐵(𝛼)
𝜇𝑖
𝑛 +

𝛼

𝐴𝐵(𝛼)Γ(𝛼)
∑𝜇𝑖

𝑗{(∆𝑡)𝛼((𝑛 − 𝑗)𝛼 − (𝑛 − 𝑗 − 1)𝛼)}

𝑛−1

𝑗=0

, 
(3.41)  

=
1 − 𝛼

𝐴𝐵(𝛼)
𝜇𝑖
𝑛 +

𝛼(∆𝑡)𝛼−1

𝐴𝐵(𝛼)Γ(𝛼)
∑𝜇𝑖

𝑗{(𝑛 − 𝑗)𝛼 − (𝑛 − 𝑗 − 1)𝛼}

𝑛−1

𝑗=0

, 
(3.42)  

=
1 − 𝛼

𝐴𝐵(𝛼)
𝜇𝑖
𝑛 +

𝛼(∆𝑡)𝛼

𝐴𝐵(𝛼)Γ(𝛼 + 1)
∑𝜇𝑖

𝑗{(𝑛 − 𝑗)𝛼 − (𝑛 − 𝑗 − 1)𝛼}

𝑛−1

𝑗=0

+ �̃�𝑛,𝛼, 
(3.43)  

Where, 

�̃�𝑛,𝛼 = ∑∫
𝑓(𝑦) + 𝑓(𝑡𝑗+1)

(𝑡𝑛 − 𝑦)1−𝛼

𝑡𝑗+1

𝑡𝑗

𝑛−1

𝑗=0

𝑑𝑦. 

3.3 NUMERICAL SOLUTION OF THE NEW MODEL WITH FRACTIONAL 

OPERATORS 

The previous section is based on the numerical approximations of the well-known 

fractional derivatives and their integrals. The numerical approximation to the solutions of 

ordinary differential equations are normally achieved through application of numerical 

methods for ordinary differential equations (Süli, 2014). The most widely applied methods 

when presenting the approximated solutions to the initial value problem for ordinary 

differential equations are the Adams methods, which are based on approximating the 

integral by means of a polynomial integration within the intervals, say (𝑡𝑛, 𝑡𝑛+1) (Peinado 

et al., 2010). In addition, there exists two types of Adamsmethods, being the explicit and 

the implicitAdams-Bashforth (AB) methods. These methods are derived from the 

fundamental theorem of calucus by means of polynomial interpolation in the Lagrange 

form.In this section, we apply the AB approach based on the Caputo, Caputo-Fabrizio and 

the Atangana-Baleanu fractional derivative to solve the advection-dispersion transport.  
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3.3.1 Numerical Solution of the New Model with Caputo Fractional Derivative 

The following modified advection-dispersion transport equation is expressed in terms of 

Caputo fractional operator: 

 𝐷𝑡
𝛼

0
𝐶 𝐶(𝑥, 𝑡) = �̂�

𝜕2𝐶(𝑥, 𝑡)

𝜕𝑥2
− 𝑣

𝜕𝐶(𝑥, 𝑡)

𝜕𝑥
− 𝜆�̂�𝐶(𝑥, 𝑡), 

(3.44)  

Where the terms on the right hand side can be replaced by the function, 𝑓(𝑥, 𝑡, 𝐶(𝑥, 𝑡)) such 

that: 

 �̂�
𝜕2𝐶(𝑥, 𝑡)

𝜕𝑥2
− 𝑣

𝜕𝐶(𝑥, 𝑡)

𝜕𝑥
− 𝜆�̂�𝐶(𝑥, 𝑡) = 𝑓(𝑥, 𝑡, 𝐶(𝑥, 𝑡)), 

(3.45)  

Therefore, we consider the following non-linear fractional ordinary equation: 

 𝐷𝑡
𝛼

0
𝐶 𝐶(𝑥, 𝑡) = 𝑓(𝑥, 𝑡, 𝐶(𝑥, 𝑡)), 

(3.46)  

or 

 𝑓(𝑥, 𝑡, 𝐶(𝑥, 𝑡)) =
1

Γ(1 − 𝛼)
∫ (𝑡 − 𝜏)𝛼−1𝑓′(𝜏) 𝑑𝜏
𝑡

0

, 
(3.47)  

When applying the fundamental theorem of calculus to eq. (3.47), we obtain: 

 𝐶(𝑥, 𝑡) − 𝐶(𝑥, 0) =
1

Γ(2 − 𝛼)
∫ (𝑡 − 𝜏)𝛼−1𝑓(𝑥, 𝜏, 𝐶(𝑥, 𝜏)) 𝑑𝜏
𝑡

0

, 
(3.48)  

We then consider at point (𝑡𝑛+1), where n = 0, 1, 2, 3 . . ., now the equation above is 

reformulated as follows: 

 𝐶𝑖
𝑛+1 − 𝐶𝑖

0 =
1

Γ(2−𝛼)
∫ (𝑡𝑛+1 − 𝜏)

𝛼−1𝑓(𝑥𝑖, 𝜏, 𝐶(𝑥𝑖, 𝜏))
𝑡𝑛+1

0
𝑑𝜏, (3.49)  
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 =
1

Γ(2 − 𝛼)
∑∫ (𝑡𝑛+1 − 𝜏)

𝛼−1𝑓(𝑥𝑖 , 𝜏, 𝐶(𝑥𝑖 , 𝜏)) 𝑑𝜏
𝑡𝑗+1

𝑡𝑗

𝑛

𝑗=0

, (3.50)  

When we approximate of the function 𝑓(𝑥𝑖 , 𝜏, 𝐶(𝑥𝑖 , 𝜏)) within the interval [𝑡𝑗 , 𝑡𝑗+1] using the 

Lagrange Polynomial method, the following equation is obtained: 

 𝑃𝑗(𝜏) =
𝜏 − 𝑡𝑗−1

𝑡𝑗 − 𝑡𝑗−1
𝑓(𝑥𝑖 , 𝑡𝑗 , 𝐶𝑖

𝑗
) −

𝜏 − 𝑡𝑗

𝑡𝑗 − 𝑡𝑗−1
𝑓(𝑥𝑖, 𝑡𝑗−1, 𝐶𝑖

𝑗−1
), (3.51)  

We can now substitute with 𝑃𝑗(𝜏), into eq. (3.50) as follows: 

 𝐶𝑖
𝑛+1 = 𝐶𝑖

0 +
1

Γ(2 − 𝛼)
∑∫ (𝑡𝑛+1 − 𝜏)

𝛼−1𝑃𝑗(𝜏) 𝑑𝜏
𝑡𝑗+1

𝑡𝑗

𝑛

𝑗=0

, (3.52)  

Therefore, 

 

𝐶𝑖
𝑛+1 = 𝐶𝑖

0 +
(∆𝑡)−𝛼

Γ(2 − 𝛼)
∑[𝑓(𝑥𝑖, 𝑡𝑗 , 𝐶𝑖

𝑗
){(𝑛 − 𝑗 + 1)𝛼(𝑛 − 𝑗 + 2 + 𝛼)

𝑛

𝑗=0

− (𝑛 − 𝑗)𝛼(𝑛 − 𝑗 + 2 + 2𝛼)}

− 𝑓(𝑥𝑖, 𝑡𝑗−1, 𝐶𝑖
𝑗−1
){(𝑛 − 𝑗 + 1)𝛼+1 − (𝑛 − 𝑗)𝛼(𝑛 − 𝑗 + 1 + 𝛼)}]. 

(3.53)  

Let us recall the function 𝑓(𝑥, 𝑡, 𝐶(𝑥, 𝑡)), presented earlier as: 

 �̂�
𝜕2𝐶(𝑥, 𝑡)

𝜕𝑥2
− 𝑣

𝜕𝐶(𝑥, 𝑡)

𝜕𝑥
− 𝜆�̂�𝐶(𝑥, 𝑡) = 𝑓(𝑥, 𝑡, 𝐶(𝑥, 𝑡)), 

(3.54)  

Then, 

 𝑓(𝑥𝑖, 𝑡𝑗 , 𝐶𝑖
𝑗
) = �̂�

𝐶𝑖+1
𝑗
− 2𝐶𝑖

𝑗
+ 𝐶𝑖−1

𝑗

(Δ𝑥)2
− 𝑣

𝐶𝑖+1
𝑗
− 𝐶𝑖−1

𝑗

Δ𝑥
− 𝜆�̂�𝐶𝑖

𝑗
, 

(3.55)  

 𝑓(𝑥𝑖 , 𝑡𝑗−1, 𝐶𝑖
𝑗−1
) = �̂�

𝐶𝑖+1
𝑗−1

− 2𝐶𝑖
𝑗−1

+ 𝐶𝑖−1
𝑗−1

(Δ𝑥)2
− 𝑣

𝐶𝑖+1
𝑗−1

− 𝐶𝑖−1
𝑗−1

Δ𝑥
− 𝜆�̂�𝐶𝑖

𝑗−1
, 

(3.56)  

Rewriting eq. (3.53) by substituting with the results of the functions obtained in eqs. (3.55) 

and (3.56), we then have the following form of equation: 
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𝐶𝑖
𝑛+1 = 𝐶𝑖

0 +
(∆𝑡)−𝛼

Γ(2 − 𝛼)
∑[(�̂�

𝐶𝑖+1
𝑗
− 2𝐶𝑖

𝑗
+ 𝐶𝑖−1

𝑗

(Δ𝑥)2
− 𝑣

𝐶𝑖+1
𝑗
− 𝐶𝑖−1

𝑗

Δ𝑥

𝑛

𝑗=0

− 𝜆�̂�𝐶𝑖
𝑗
) {(𝑛 − 𝑗 + 1)𝛼(𝑛 − 𝑗 + 2 + 𝛼) − (𝑛 − 𝑗)𝛼(𝑛 − 𝑗 + 2 + 2𝛼)}  

− (�̂�
𝐶𝑖+1
𝑗−1

− 2𝐶𝑖
𝑗−1

+ 𝐶𝑖−1
𝑗−1

(Δ𝑥)2
− 𝑣

𝐶𝑖+1
𝑗−1

− 𝐶𝑖−1
𝑗−1

Δ𝑥

− 𝜆�̂�𝐶𝑖
𝑗−1
) {(𝑛 − 𝑗 + 1)𝛼+1 − (𝑛 − 𝑗)𝛼(𝑛 − 𝑗 + 1 + 𝛼)}]. 

(3.57)  

3.3.2 Numerical Solution of the New Model with Caputo-Fabrizio Fractional 

Derivative 

We recall from eq. (2.19) where the terms on the right hand side can be replaced by the 

function, 𝑓(𝑥, 𝑡, 𝐶(𝑥, 𝑡)) such that: 

 �̂�
𝜕2𝐶(𝑥, 𝑡)

𝜕𝑥2
− 𝑣

𝜕𝐶(𝑥, 𝑡)

𝜕𝑥
− 𝜆�̂�𝐶(𝑥, 𝑡) = 𝑓(𝑥, 𝑡, 𝐶(𝑥, 𝑡)). 

(3.58)  

We then consider the following non-linear fractional equation expressed in terms of the 

Caputo-Fabrizio fractional operator 𝐷𝑡
𝛼

0
𝐶𝐹 , as: 

 𝐷𝑡
𝛼

0
𝐶𝐹 𝐶(𝑥, 𝑡) = 𝑓(𝑥, 𝑡, 𝐶(𝑥, 𝑡)), 

(3.59)  

or, 

 𝑓(𝑥, 𝑡, 𝐶(𝑥, 𝑡)) =  
𝑀(𝛼)

1 −  𝛼
∫ 𝑓′(𝜏) exp [−𝛼 

𝑡 − 𝜏

1 −  𝛼
]

𝑡

0

𝑑𝜏. 
(3.60)  

By utilizing the fundamental theorem of calculus, the above equation becomes: 

 𝜇(𝑥, 𝑡) − 𝜇(𝑥, 0) =
1 − 𝛼

𝑀(𝛼)
𝑓(𝑥, 𝑡, 𝐶(𝑥, 𝑡)) +

𝛼

𝑀(𝛼)
∫ 𝑓(𝑥, 𝜏, 𝐶(𝑥, 𝜏))
𝑡

0

𝑑𝜏, 
(3.61)  
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We consider at a given point (𝑥𝑖, 𝑡𝑛+1), where n = 0, 1, 2, 3. . ., then the above equation is 

reformulated as follows: 

 𝜇(𝑥𝑖, 𝑡𝑛+1) = 𝜇(𝑥𝑖, 0) +
1 − 𝛼

𝑀(𝛼)
𝑓(𝑥𝑖, 𝑡𝑛, 𝐶(𝑥𝑖, 𝑡𝑛)) +

𝛼

𝑀(𝛼)
∫ 𝑓(𝑥𝑖, 𝜏  𝐶(𝑥𝑖 , 𝜏)) 𝑑𝜏
𝑡𝑛+1

0

, 
(3.62)  

At a point (𝑥𝑖, 𝑡𝑛), 

 𝜇(𝑥𝑖, 𝑡𝑛) = 𝜇(𝑥𝑖, 0) +
1 − 𝛼

𝑀(𝛼)
𝑓(𝑥𝑖 , 𝑡𝑛−1, 𝐶(𝑥𝑖, 𝑡𝑛−1)) +

𝛼

𝑀(𝛼)
∫ 𝑓(𝑥𝑖, 𝜏  𝐶(𝑥𝑖 , 𝜏)) 𝑑𝜏
𝑡𝑛

0

, 
(3.63)  

By subtracting eq. (3.63) from eq. (3.62), the following is obtained: 

 

𝜇𝑖
𝑛+1 − 𝜇𝑖

𝑛 =
1 − 𝛼

𝑀(𝛼)
[𝑓(𝑥𝑖, 𝑡𝑛, 𝐶𝑖

𝑛) − 𝑓(𝑥𝑖 , 𝑡𝑛−1, 𝐶𝑖
𝑛−1)]

+
𝛼

𝑀(𝛼)
∫ 𝑓(𝑥𝑖 , 𝜏, 𝐶(𝑥𝑖, 𝜏))𝑑𝜏
𝑡𝑛+1

𝑡𝑛

, 

(3.64)  

 

𝜇𝑖
𝑛+1 = 𝜇𝑖

𝑛 +
1 − 𝛼

𝑀(𝛼)
[𝑓(𝑥𝑖, 𝑡𝑛, 𝐶𝑖

𝑛) − 𝑓(𝑥𝑖 , 𝑡𝑛−1, 𝐶𝑖
𝑛−1)]

+
𝛼

𝑀(𝛼)
[
3

2
∆𝑡𝑓(𝑥𝑖, 𝑡𝑛, 𝐶𝑖

𝑛) −
∆𝑡

2
𝑓(𝑥𝑖 , 𝑡𝑛−1, 𝐶𝑖

𝑛−1)]. 

(3.65)  

Apply the Caputo-Fabrizio integral operator discretization to the solution of the modified 

advection-dispersion equation. First, let us recall the modified advection-dispersion 

equation to be used in the numerical solution, given as: 

 𝐷𝑡
𝛼

0
𝐶𝐹 𝐶(𝑥, 𝑡) = �̂�

𝜕2𝐶(𝑥, 𝑡)

𝜕𝑥2
− 𝑣

𝜕𝐶(𝑥, 𝑡)

𝜕𝑥
− 𝜆�̂�𝐶(𝑥, 𝑡). 

(3.66)  

Let us remember that, 

 �̂�
𝜕2𝐶(𝑥, 𝑡)

𝜕𝑥2
− 𝑣

𝜕𝐶(𝑥, 𝑡)

𝜕𝑥
− 𝜆�̂�𝐶(𝑥, 𝑡) = 𝑓(𝑥, 𝑡, 𝐶(𝑥, 𝑡)). 

(3.67)  

Replacing 𝜇𝑖
𝑛+1by 𝐶𝑖

𝑛+1and 𝜇𝑖
𝑛 by 𝐶𝑖

𝑛 in eq. (3.65) yields the following equation: 
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𝐶𝑖
𝑛+1 =  𝐶𝑖

𝑛 +
1 − 𝛼

𝑀(𝛼)
[𝑓(𝑥𝑖, 𝑡𝑛, 𝐶𝑖

𝑛) − 𝑓(𝑥𝑖 , 𝑡𝑛−1, 𝐶𝑖
𝑛−1)]

+
𝛼

𝑀(𝛼)
[
3

2
∆𝑡𝑓(𝑥𝑖, 𝑡𝑛, 𝐶𝑖

𝑛) −
∆𝑡

2
𝑓(𝑥𝑖 , 𝑡𝑛−1, 𝐶𝑖

𝑛−1)], 

(3.68)  

At this point, the functions 𝑓(𝑥𝑖, 𝑡𝑛, 𝐶𝑖
𝑛) and 𝑓(𝑥𝑖, 𝑡𝑛−1, 𝐶𝑖

𝑛−1) from eq. (3.68) can be 

presented as: 

 𝑓(𝑥𝑖, 𝑡𝑛, 𝐶𝑖
𝑛) = �̂�

𝐶𝑖+1
𝑛 − 2𝐶𝑖

𝑛 + 𝐶𝑖−1
𝑛

(∆𝑥)2
− 𝑣

𝐶𝑖+1
𝑛 − 𝐶𝑖−1

𝑛

∆𝑥
− 𝜆�̂�𝐶𝑖

𝑛, 
(3.69)  

 𝑓(𝑥𝑖, 𝑡𝑛−1, 𝐶𝑖
𝑛−1) =

𝐶𝑖+1
𝑛−1 − 2𝐶𝑖

𝑛−1 + 𝐶𝑖−1
𝑛−1

(Δ𝑥)2
− 𝑣

𝐶𝑖+1
𝑛−1 − 𝐶𝑖−1

𝑛−1

Δ𝑥
− 𝜆�̂�𝐶𝑖

𝑛−1, 
(3.70)  

Substituting with the results of the functions, then the new model is presented as follows 

based on the discretized Caputo-Fabrizio integral operator: 

 

𝐶𝑖
𝑛+1 = 𝐶𝑖

𝑛 +
1 − 𝛼

𝑀(𝛼)
{(�̂�

𝐶𝑖+1
𝑛 − 2𝐶𝑖

𝑛 + 𝐶𝑖−1
𝑛

(∆𝑥)2
− 𝑣

𝐶𝑖+1
𝑛 − 𝐶𝑖−1

𝑛

∆𝑥
− 𝜆�̂�𝐶𝑖

𝑛)

− (�̂�
𝐶𝑖+1
𝑛−1 − 2𝐶𝑖

𝑛−1 + 𝐶𝑖−1
𝑛−1

(Δ𝑥)2
− 𝑣

𝐶𝑖+1
𝑛−1 − 𝐶𝑖−1

𝑛−1

Δ𝑥
− 𝜆�̂�𝐶𝑖

𝑛−1)}

+
𝛼

𝑀(𝛼)
{
3Δ𝑡

2
(�̂�
𝐶𝑖+1
𝑛 − 2𝐶𝑖

𝑛 + 𝐶𝑖−1
𝑛

(Δ𝑥)2
− 𝑣

𝐶𝑖+1
𝑛 − 𝐶𝑖−1

𝑛

Δ𝑥
− 𝜆�̂�𝐶𝑖

𝑛)

−
Δ𝑡

2
(�̂�
𝐶𝑖+1
𝑛−1 − 2𝐶𝑖

𝑛−1 + 𝐶𝑖−1
𝑛−1

(Δ𝑥)2
− 𝑣

𝐶𝑖+1
𝑛−1 − 𝐶𝑖−1

𝑛−1

Δ𝑥
− 𝜆�̂�𝐶𝑖

𝑛−1)}. 

(3.71)  

3.3.3 Numerical Solution of the New Model with Atangana-Baleanu Fractional 

Derivative Caputo sense 

Let us consider the following non-linear fractional equation expressed in terms of 

Atangana-Baleanu fractional derivative in a Caputo sense (ABC). 

 𝐷0
𝐴𝐵𝐶

𝑡
𝛼𝐶(𝑥, 𝑡) = 𝑓(𝑥, 𝑡, 𝐶(𝑥, 𝑡)), 

(3.72)  

or 
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 𝑓(𝑥, 𝑡, 𝐶(𝑥, 𝑡)) =  
𝐴𝛣(𝛼)

1 −  𝛼
∫ 𝑓′(𝜏)𝐸𝛼 [−𝛼

(𝑡 − 𝜏)𝛼

1 −  𝛼
]

𝑡

0

𝑑𝜏. 
(3.73)  

Applying the fundamental theorem of calculus to the above eq. (3.73) yields: 

 

𝐶(𝑥, 𝑡) − 𝐶(𝑥, 0)

=
1 − 𝛼

𝐴𝐵(𝛼)
𝑓(𝑥, 𝑡, 𝐶(𝑥, 𝑡))

+
𝛼

𝐴𝐵(𝛼)Γ(𝛼)
∫ (𝑡 − 𝜏)𝛼−1𝑓(𝑥, 𝜏, 𝐶(𝑥, 𝜏))
𝑡

0

𝑑𝜏. 

(3.74)  

We then consider at point (𝑡𝑛+1), where n = 0, 1, 2, 3, . . ., then the above equation is 

reformulated as: 

 

𝐶𝑖
𝑛+1 − 𝐶𝑖

0 =
1 − 𝛼

𝐴𝐵(𝛼)
𝑓(𝑥𝑖, 𝑡𝑛, 𝐶𝑖

𝑛)

+
𝛼

𝐴𝐵(𝛼)Γ(𝛼)
∫ (𝑡𝑛+1 − 𝜏)

𝛼−1𝑓(𝑥𝑖 , 𝜏, 𝐶(𝑥𝑖, 𝜏))
𝑡𝑛+1

0

𝑑𝜏, 

(3.75)  

 =
1 − 𝛼

𝐴𝐵(𝛼)
𝑓(𝑥𝑖, 𝑡𝑛, 𝐶𝑖

𝑛) +
𝛼

𝐴𝐵(𝛼)Γ(𝛼)
∑∫ (𝑡𝑛+1 − 𝜏)

𝛼−1𝑓(𝑥𝑖 , 𝜏, 𝐶(𝑥𝑖, 𝜏)) 𝑑𝜏
𝑡𝑗+1

𝑡𝑗

𝑛

𝑗=0

, (3.76)  

We now apply the Lagrange Polynomial method to approximate the function 

𝑓(𝑥𝑖, 𝜏, 𝐶(𝑥𝑖, 𝜏)) within the interval [𝑡𝑗 , 𝑡𝑗+1], and obtain: 

 𝑃𝑗(𝜏) =
𝜏 − 𝑡𝑗−1

𝑡𝑗 − 𝑡𝑗−1
𝑓(𝑥𝑖 , 𝑡𝑗 , 𝐶𝑖

𝑗
) −

𝜏 − 𝑡𝑗

𝑡𝑗 − 𝑡𝑗−1
𝑓(𝑥𝑖, 𝑡𝑗−1, 𝐶𝑖

𝑗−1
), (3.77)  

Substituting with 𝑃𝑗(𝜏) in eq.  (3.76), we obtain: 

 𝐶𝑖
𝑛+1 − 𝐶𝑖

0 =
1 − 𝛼

𝐴𝐵(𝛼)
𝑓(𝑥𝑖, 𝑡𝑛, 𝐶𝑖

𝑛) +
𝛼

𝐴𝐵(𝛼)Γ(𝛼)
∑∫ 𝑃𝑗(𝜏)(𝑡 − 𝜏)

𝛼−1𝑑𝜏
𝑡𝑗+1

𝑡𝑗

𝑛

𝑗=0

, (3.78)  

Then, the following form of equation is generated: 



53 
 

 

𝐶𝑖
𝑛+1 = 𝐶𝑖

0 +
1 − 𝛼

𝐴𝐵(𝛼)
𝑓(𝑥𝑖, 𝑡𝑛, 𝐶𝑖

𝑛)

+
(Δ𝑡)𝛼

𝐴𝐵(𝛼)Γ(𝛼 + 2)
∑[𝑓(𝑥𝑖 , 𝑡𝑗 , 𝐶𝑖

𝑗
){(𝑛 − 𝑗 + 1)𝛼(𝑛 − 𝑗 + 2 + 𝛼)

𝑛

𝑗=0

− (𝑛 − 𝑗)𝛼(𝑛 − 𝑗 + 2 + 2𝛼)}

− 𝑓(𝑥𝑖, 𝑡𝑗−1, 𝐶𝑖
𝑗−1
){(𝑛 − 𝑗 + 1)𝛼+1 − (𝑛 − 𝑗)𝛼(𝑛 − 𝑗 + 1 + 𝛼)}]. 

(3.79)  

Let us recall, based on our modified advection-dispersion equation, that the function 

𝑓(𝑥, 𝑡, 𝐶(𝑥, 𝑡)) is expressed as follows: 

 𝑓(𝑥, 𝑡, 𝐶(𝑥, 𝑡)) = �̂�
𝜕2𝐶(𝑥, 𝑡)

𝜕𝑥2
− 𝑣

𝜕𝐶(𝑥, 𝑡)

𝜕𝑥
− 𝜆�̂�𝐶(𝑥, 𝑡), 

(3.80)  

Therefore, 

 𝑓(𝑥𝑖, 𝑡𝑗 , 𝐶𝑖
𝑗
) = �̂�

𝐶𝑖+1
𝑗
− 2𝐶𝑖

𝑗
+ 𝐶𝑖−1

𝑗

(Δ𝑥)2
− 𝑣

𝐶𝑖+1
𝑗
− 𝐶𝑖−1

𝑗

Δ𝑥
− 𝜆�̂�𝐶𝑖

𝑗
, 

(3.81)  

 𝑓(𝑥𝑖, 𝑡𝑗−1, 𝐶𝑖
𝑗−1
) = �̂�

𝐶𝑖+1
𝑗−1

− 2𝐶𝑖
𝑗−1

+ 𝐶𝑖−1
𝑗−1

(Δ𝑥)2
− 𝑣

𝐶𝑖+1
𝑗−1

− 𝐶𝑖−1
𝑗−1

Δ𝑥
− 𝜆�̂�𝐶𝑖

𝑗−1
, 

(3.82)  

 𝑓(𝑥𝑖, 𝑡𝑛, 𝐶𝑖
𝑛) = �̂�

𝐶𝑖+1
𝑛 − 2𝐶𝑖

𝑛 + 𝐶𝑖−1
𝑛

(Δ𝑥)2
− 𝑣

𝐶𝑖+1
𝑛 − 𝐶𝑖−1

𝑛

Δ𝑥
− 𝜆�̂�𝐶𝑖

𝑛, 
(3.83)  

Equation (3.79) can now be written by substituting with the results of the functions in eqs. 

(3.81), (3.82) and (3.83), we then have the following: 
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𝐶𝑖
𝑛+1 = 𝐶𝑖

0 +
1 − 𝛼

𝐴𝐵(𝛼)
[�̂�
𝐶𝑖+1
𝑛 − 2𝐶𝑖

𝑛 + 𝐶𝑖−1
𝑛

(Δ𝑥)2
− 𝑣

𝐶𝑖+1
𝑛 − 𝐶𝑖−1

𝑛

Δ𝑥
− 𝜆�̂�𝐶𝑖

𝑛]

+
(Δ𝑡)𝛼

𝐴𝐵(𝛼)Γ(𝛼 + 2)
∑[(�̂�

𝐶𝑖+1
𝑗
− 2𝐶𝑖

𝑗
+ 𝐶𝑖−1

𝑗

(Δ𝑥)2
− 𝑣

𝐶𝑖+1
𝑗
− 𝐶𝑖−1

𝑗

Δ𝑥

𝑛

𝑗=0

− 𝜆�̂�𝐶𝑖
𝑗
) {(𝑛 − 𝑗 + 1)𝛼(𝑛 − 𝑗 + 2 + 𝛼) − (𝑛 − 𝑗)𝛼(𝑛 − 𝑗 + 2 + 2𝛼)}

− (�̂�
𝐶𝑖+1
𝑗−1

− 2𝐶𝑖
𝑗−1

+ 𝐶𝑖−1
𝑗−1

(Δ𝑥)2
− 𝑣

𝐶𝑖+1
𝑗−1

− 𝐶𝑖−1
𝑗−1

Δ𝑥

− 𝜆�̂�𝐶𝑖
𝑗−1
) {(𝑛 − 𝑗 + 1)𝛼+1 − (𝑛 − 𝑗)𝛼(𝑛 − 𝑗 + 1 + 𝛼)}]. 

(3.84)  
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CHAPTER 4: NUMERICAL STABILITY ANALYSIS OF THE NEW MODEL 

USING VON NEUMANN METHOD 

4.1 INTRODUCTION 

In this section, the conditions for stability of numerical schemes for the new generated 

groundwater transport model is analyzed using Von Neumann stability analysis. The Von 

Neumann stability method is also referred to as the Fourier’s method. The British 

Researchers Crank and Nicolson invented this method at Los Alamos National in 1947. This 

method has been in operation since its development and is still in use to date. Analysis for 

stability is very essential because during discretization of partial differential equations 

(PDEs), numerical errors are likely to be generated hence the need for stability analysis 

(Delahaies, 2012). Von Neumann method is mostly employed to investigate the stability of 

finite difference schemes in relation to solutions of PDEs. A finite difference scheme is said 

to be stable if the associated error remains constant or decreases with time throughout the 

entire process of computation. On the other hand, when the generated error increases with 

time, then the scheme becomes unstable. Note that, the numerical scheme is said to be 

stable if |𝜉| ≤ 1, and unstable if |𝜉| > 1. 

The von Neumann method is based on the decay of errors into Fourier series. 

Consequently, the Fourier expansion can be presented in terms of space as follows: 

 𝜌(𝑥, 𝑡) =∑�̂�(𝑡) 𝑒𝑥𝑝(𝑖𝑘𝑚𝑥)

𝑓

. (4.1)  

For von Neumann stability analysis, we assume the following: 

 휀𝑖
𝑛+1 = �̂�𝑛+1𝑒

𝑖𝑘𝑚𝑥, 
(4.2)  

 휀𝑖
𝑛 = �̂�𝑛𝑒

𝑖𝑘𝑚𝑥 , 
(4.3)  

 휀𝑖+1
𝑛 = �̂�𝑛𝑒

𝑖𝑘𝑚(𝑥+∆𝑥), 
(4.4)  
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 휀𝑖−1
𝑛 = �̂�𝑛𝑒

𝑖𝑘𝑚(𝑥−∆𝑥), 
(4.5)  

 휀𝑖
𝑛−1 = �̂�𝑛−1𝑒

𝑖𝑘𝑚𝑥, 
(4.6)  

 휀𝑖+1
𝑛−1 = �̂�𝑛−1𝑒

𝑖𝑘𝑚(𝑥+∆𝑥), 
(4.7)  

 휀𝑖−1
𝑛−1 = �̂�𝑛−1𝑒

𝑖𝑘𝑚(𝑥−∆𝑥). 
(4.8)  

4.1.1 Stability analysis of the new numerical scheme for solution of PDEs derived in 

terms of Caputo-Fabrizio fractional derivative 

In this section, we present the condition of stability to our discretized advection-dispersion 

transport equation (eq. 3.71) in the case of Caputo-Fabrizio fractional order derivative. The 

approach employed is the Von Neumann stability analysis. 

Let us recall our discretized eq. (3.71) given as: 

 

𝐶𝑖
𝑛+1 = 𝐶𝑖

𝑛 +
1 − 𝛼

𝑀(𝛼)
{(�̂�

𝐶𝑖+1
𝑛 − 2𝐶𝑖

𝑛 + 𝐶𝑖−1
𝑛

(∆𝑥)2
− 𝑣

𝐶𝑖+1
𝑛 − 𝐶𝑖−1

𝑛

∆𝑥
− 𝜆�̂�𝐶𝑖

𝑛)

− (�̂�
𝐶𝑖+1
𝑛−1 − 2𝐶𝑖

𝑛−1 + 𝐶𝑖−1
𝑛−1

(Δ𝑥)2
− 𝑣

𝐶𝑖+1
𝑛−1 − 𝐶𝑖−1

𝑛−1

Δ𝑥
− 𝜆�̂�𝐶𝑖

𝑛−1)}

+
𝛼

𝑀(𝛼)
{
3Δ𝑡

2
(�̂�
𝐶𝑖+1
𝑛 − 2𝐶𝑖

𝑛 + 𝐶𝑖−1
𝑛

(Δ𝑥)2
− 𝑣

𝐶𝑖+1
𝑛 − 𝐶𝑖−1

𝑛

Δ𝑥
− 𝜆�̂�𝐶𝑖

𝑛)

−
Δ𝑡

2
(�̂�
𝐶𝑖+1
𝑛−1 − 2𝐶𝑖

𝑛−1 + 𝐶𝑖−1
𝑛−1

(Δ𝑥)2
− 𝑣

𝐶𝑖+1
𝑛−1 − 𝐶𝑖−1

𝑛−1

Δ𝑥
− 𝜆�̂�𝐶𝑖

𝑛−1)}, 

(4.9)  

and assume that, 

�̂�

(∆𝑥)2
= 𝑎,

𝑣

∆𝑥
= 𝑏, 𝜆�̂� = 𝑧,

1 − 𝛼

𝑀(𝛼)
= 𝑓,

𝛼

𝑀(𝛼)
= 𝑔,

3Δ𝑡

2
= ℎ,

Δ𝑡

2
= 𝑘. 

Therefore, substituting with these variables into eq. (4.9), we obtain: 
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𝐶𝑖
𝑛+1 = 𝐶𝑖

𝑛 + 𝑓{[𝑎(𝐶𝑖+1
𝑛 − 2𝐶𝑖

𝑛 + 𝐶𝑖−1
𝑛 ) − 𝑏(𝐶𝑖+1

𝑛 − 𝐶𝑖−1
𝑛 ) − 𝑧𝐶𝑖

𝑛]

− [𝑎(𝐶𝑖+1
𝑛−1 − 2𝐶𝑖

𝑛−1 + 𝐶𝑖−1
𝑛−1) − 𝑏(𝐶𝑖+1

𝑛−1 − 𝐶𝑖−1
𝑛−1) − 𝑧𝐶𝑖

𝑛−1]}

+ 𝑔{ℎ[𝑎(𝐶𝑖+1
𝑛 − 2𝐶𝑖

𝑛 + 𝐶𝑖−1
𝑛 ) − 𝑏(𝐶𝑖+1

𝑛 − 𝐶𝑖−1
𝑛 ) − 𝑧𝐶𝑖

𝑛]

− 𝑘[𝑎(𝐶𝑖+1
𝑛−1 − 2𝐶𝑖

𝑛−1 + 𝐶𝑖−1
𝑛−1) − 𝑏(𝐶𝑖+1

𝑛−1 − 𝐶𝑖−1
𝑛−1) − 𝑧𝐶𝑖

𝑛−1]}. 

(4.10)  

Further numerical solution by collection of the like terms and simplification to the above 

equation becomes: 

 

𝐶𝑖
𝑛+1 = 𝐶𝑖

𝑛[(1 − 2𝑎𝑓 − 𝑧𝑓)] + 𝑓[𝑎(𝐶𝑖+1
𝑛 + 𝐶𝑖−1

𝑛 ) − 𝑏(𝐶𝑖+1
𝑛 − 𝐶𝑖−1

𝑛 )]

+ 𝐶𝑖
𝑛−1[−(−2𝑎𝑓 − 𝑧𝑓)] − 𝑓[𝑎(𝐶𝑖+1

𝑛−1 + 𝐶𝑖−1
𝑛−1) − 𝑏(𝐶𝑖+1

𝑛−1 − 𝐶𝑖−1
𝑛−1)]

+ 𝐶𝑖
𝑛[(−2𝑎𝑔ℎ − 𝑧𝑔ℎ)] + 𝑔[𝑎ℎ(𝐶𝑖+1

𝑛 + 𝐶𝑖−1
𝑛 ) − 𝑏ℎ(𝐶𝑖+1

𝑛 − 𝐶𝑖−1
𝑛 )]

+ 𝐶𝑖
𝑛−1[−(−2𝑎𝑔𝑘 − 𝑧𝑔𝑘)]

− 𝑔[𝑎𝑘(𝐶𝑖+1
𝑛−1 + 𝐶𝑖−1

𝑛−1) − 𝑏𝑘(𝐶𝑖+1
𝑛−1 − 𝐶𝑖−1

𝑛−1)]. 

(4.11)  

We consider the above-simplified eq. (4.11) and plug eqs. (4.2) to (4.8) as follows: 

 

�̂�𝑛+1𝑒
𝑖𝑘𝑚𝑥 = (1 − 2𝑎𝑓 − 𝑧𝑓)�̂�𝑛𝑒

𝑖𝑘𝑚𝑥 + 𝑎𝑓(𝑒𝑖𝑘𝑚∆𝑥 + 𝑒−𝑖𝑘𝑚∆𝑥)�̂�𝑛𝑒
𝑖𝑘𝑚𝑥

− 𝑏𝑓(𝑒𝑖𝑘𝑚∆𝑥 − 𝑒−𝑖𝑘𝑚∆𝑥)�̂�𝑛𝑒
𝑖𝑘𝑚𝑥 + (2𝑎𝑓 + 𝑧𝑓)�̂�𝑛−1𝑒

𝑖𝑘𝑚𝑥

− 𝑎𝑓(𝑒𝑖𝑘𝑚∆𝑥 + 𝑒−𝑖𝑘𝑚∆𝑥)�̂�𝑛−1𝑒
𝑖𝑘𝑚𝑥

+ 𝑏𝑓(𝑒𝑖𝑘𝑚∆𝑥 − 𝑒−𝑖𝑘𝑚∆𝑥)�̂�𝑛−1𝑒
𝑖𝑘𝑚𝑥 − (2𝑎𝑔ℎ + 𝑧𝑔ℎ)�̂�𝑛𝑒

𝑖𝑘𝑚𝑥

+ 𝑎𝑔ℎ(𝑒𝑖𝑘𝑚∆𝑥 + 𝑒−𝑖𝑘𝑚∆𝑥)�̂�𝑛𝑒
𝑖𝑘𝑚𝑥 − 𝑏𝑔ℎ(𝑒𝑖𝑘𝑚∆𝑥 − 𝑒−𝑖𝑘𝑚∆𝑥)�̂�𝑛𝑒

𝑖𝑘𝑚𝑥

+ (2𝑎𝑔𝑘 + 𝑧𝑔𝑘)�̂�𝑛−1𝑒
𝑖𝑘𝑚𝑥 − 𝑎𝑔𝑘(𝑒𝑖𝑘𝑚∆𝑥 + 𝑒−𝑖𝑘𝑚∆𝑥)�̂�𝑛−1𝑒

𝑖𝑘𝑚𝑥

+ 𝑏𝑔𝑘(𝑒𝑖𝑘𝑚∆𝑥 − 𝑒−𝑖𝑘𝑚∆𝑥)�̂�𝑛−1𝑒
𝑖𝑘𝑚𝑥. 

(4.12)  

Dividing both sides of eq. (4.12) by 𝑒𝑖𝑘𝑚𝑥 yields the following: 
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�̂�𝑛+1 = (1 − 2𝑎𝑓 − 𝑧𝑓)�̂�𝑛 + 𝑎𝑓(𝑒
𝑖𝑘𝑚∆𝑥 + 𝑒−𝑖𝑘𝑚∆𝑥)�̂�𝑛 − 𝑏𝑓(𝑒

𝑖𝑘𝑚∆𝑥 − 𝑒−𝑖𝑘𝑚∆𝑥)�̂�𝑛

+ (2𝑎𝑓 + 𝑧𝑓)�̂�𝑛−1 − 𝑎𝑓(𝑒
𝑖𝑘𝑚∆𝑥 + 𝑒−𝑖𝑘𝑚∆𝑥)�̂�𝑛−1

+ 𝑏𝑓(𝑒𝑖𝑘𝑚∆𝑥 − 𝑒−𝑖𝑘𝑚∆𝑥)�̂�𝑛−1 − (2𝑎𝑔ℎ + 𝑧𝑔ℎ)�̂�𝑛

+ 𝑎𝑔ℎ(𝑒𝑖𝑘𝑚∆𝑥 + 𝑒−𝑖𝑘𝑚∆𝑥)�̂�𝑛 − 𝑏𝑔ℎ(𝑒
𝑖𝑘𝑚∆𝑥 − 𝑒−𝑖𝑘𝑚∆𝑥)�̂�𝑛

+ (2𝑎𝑔𝑘 + 𝑧𝑔𝑘)�̂�𝑛−1 − 𝑎𝑔𝑘(𝑒
𝑖𝑘𝑚∆𝑥 + 𝑒−𝑖𝑘𝑚∆𝑥)�̂�𝑛−1

+ 𝑏𝑔𝑘(𝑒𝑖𝑘𝑚∆𝑥 − 𝑒−𝑖𝑘𝑚∆𝑥)�̂�𝑛−1. 

(4.13)  

If, 

 𝑒𝑖𝑘𝑚∆𝑥 = cos(𝑘𝑚∆𝑥) + 𝑖sin(𝑘𝑚∆𝑥), 
(4.14)  

and, 

 𝑒−𝑖𝑘𝑚∆𝑥 = cos(𝑘𝑚∆𝑥) − 𝑖sin(𝑘𝑚∆𝑥). 
(4.15)  

Then, by further simplification in eq. (4.13), we obtain: 

 

�̂�𝑛+1 = (1 − 2𝑎𝑓 − 𝑧𝑓)�̂�𝑛 + 𝑎𝑓(2cos(𝑘𝑚∆𝑥))�̂�𝑛 − 𝑏𝑓(2𝑖sin(𝑘𝑚∆𝑥))�̂�𝑛

+ (2𝑎𝑓 + 𝑧𝑓)�̂�𝑛−1 − 𝑎𝑓(2cos(𝑘𝑚∆𝑥))�̂�𝑛−1 + 𝑏𝑓(2𝑖sin(𝑘𝑚∆𝑥))�̂�𝑛−1

− (2𝑎𝑔ℎ + 𝑧𝑔ℎ)�̂�𝑛 + 𝑎𝑔ℎ(2cos(𝑘𝑚∆𝑥))�̂�𝑛 − 𝑏𝑔ℎ(2𝑖sin(𝑘𝑚∆𝑥))�̂�𝑛

+ (2𝑎𝑔𝑘 + 𝑧𝑔𝑘)�̂�𝑛−1 − 𝑎𝑔𝑘(2cos(𝑘𝑚∆𝑥))�̂�𝑛−1

+ 𝑏𝑔𝑘(2𝑖sin(𝑘𝑚∆𝑥))�̂�𝑛−1. 

(4.16)  

By simplifying and factorizing, we obtain the following: 

 

�̂�𝑛+1 = [1 − 𝑧𝑓 − 2𝑎𝑓(1 − cos(𝑘𝑚∆𝑥)) − 𝑏𝑓(2𝑖sin(𝑘𝑚∆𝑥)) − 𝑧𝑔ℎ

− 2𝑎𝑔ℎ(1 − cos(𝑘𝑚∆𝑥)) − 𝑏𝑔ℎ(2𝑖sin(𝑘𝑚∆𝑥))]�̂�𝑛

+ [𝑧𝑓 + 2𝑎𝑓(1 − cos(𝑘𝑚∆𝑥)) + 𝑏𝑓(2𝑖sin(𝑘𝑚∆𝑥)) + 𝑧𝑔𝑘

+ 2𝑎𝑔𝑘(1 − cos(𝑘𝑚∆𝑥)) + 𝑏𝑔𝑘(2𝑖sin(𝑘𝑚∆𝑥))]�̂�𝑛−1. 

(4.17)  

We can further simplify as follows: 
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�̂�𝑛+1 = [1 − 𝑧𝑓 − 4𝑎𝑓sin
2 (
𝑘𝑚∆𝑥

2
) − 𝑏𝑓(2𝑖sin(𝑘𝑚∆𝑥)) − 𝑧𝑔ℎ − 4𝑎𝑔ℎsin

2 (
𝑘𝑚∆𝑥

2
)

− 𝑏𝑔ℎ(2𝑖sin(𝑘𝑚∆𝑥))] �̂�𝑛

+ [𝑧𝑓 + 4𝑎𝑓sin2 (
𝑘𝑚∆𝑥

2
) + 𝑏𝑓(2𝑖sin(𝑘𝑚∆𝑥)) + 𝑧𝑔𝑘

+ 4𝑎𝑔𝑘sin2 (
𝑘𝑚∆𝑥

2
) + 𝑏𝑔𝑘(2𝑖sin(𝑘𝑚∆𝑥))] �̂�𝑛−1. 

(4.18)  

Let us suppose that: 

𝐴 = [1 − 𝑧𝑓 − 4𝑎𝑓sin2 (
𝑘𝑚∆𝑥

2
) − 𝑏𝑓(2𝑖sin(𝑘𝑚∆𝑥)) − 𝑧𝑔ℎ − 4𝑎𝑔ℎsin

2 (
𝑘𝑚∆𝑥

2
)

− 𝑏𝑔ℎ(2𝑖sin(𝑘𝑚∆𝑥))], 

and, 

𝐵 = [𝑧𝑓 + 4𝑎𝑓sin2 (
𝑘𝑚∆𝑥

2
) + 𝑏𝑓(2𝑖sin(𝑘𝑚∆𝑥)) + 𝑧𝑔𝑘 + 4𝑎𝑔𝑘sin

2 (
𝑘𝑚∆𝑥

2
)

+ 𝑏𝑔𝑘(2𝑖sin(𝑘𝑚∆𝑥))]. 

Then, eq. (4.18) can be written as: 

 �̂�𝑛+1 = 𝐴�̂�𝑛 + 𝐵�̂�𝑛−1. 
(4.19)  

From eq. (4.18), when 𝑛 = 0 we have: 

�̂�1 = 𝐴�̂�0 

 

�̂�1 = [1 − 𝑧𝑓 − 4𝑎𝑓sin
2 (
𝑘𝑚∆𝑥

2
) − 𝑏𝑓(2𝑖sin(𝑘𝑚∆𝑥)) − 𝑧𝑔ℎ − 4𝑎𝑔ℎsin

2 (
𝑘𝑚∆𝑥

2
)

− 𝑏𝑔ℎ(2𝑖sin(𝑘𝑚∆𝑥))] �̂�0. 

(4.20)  

By rearranging, we get: 
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�̂�1
�̂�0
= [1 − 𝑧𝑓 − 4𝑎𝑓sin2 (

𝑘𝑚∆𝑥

2
) − 𝑏𝑓(2𝑖sin(𝑘𝑚∆𝑥)) − 𝑧𝑔ℎ − 4𝑎𝑔ℎsin

2 (
𝑘𝑚∆𝑥

2
)

− 𝑏𝑔ℎ(2𝑖sin(𝑘𝑚∆𝑥))]. 

(4.21)  

Thus, we find the stability condition for which: 

 |
�̂�1
�̂�0
| < 1. 

(4.22)  

Which implies that: 

 

|
�̂�1
�̂�0
| = |𝐴| < 1, 

|𝐴| < 1. 

(4.23)  

Let us recall that: 

𝐴 = [1 − 𝑧𝑓 − 4𝑎𝑓sin2 (
𝑘𝑚∆𝑥

2
) − 𝑏𝑓(2𝑖sin(𝑘𝑚∆𝑥)) − 𝑧𝑔ℎ − 4𝑎𝑔ℎsin

2 (
𝑘𝑚∆𝑥

2
)

− 𝑏𝑔ℎ(2𝑖sin(𝑘𝑚∆𝑥))] 

Therefore, by applying the absolute value of a complex number, where we assume that 

𝑠 = 𝑎 + 𝑖𝑏 and |𝑠| = √𝑎2 + 𝑏2. We now have: 

 |𝐴| = √(1 − 𝑧𝑓 − 4𝑎𝑓sin2 (
𝑘𝑚∆𝑥

2
) − 𝑧𝑔ℎ − 4𝑎𝑔ℎsin2 (

𝑘𝑚∆𝑥

2
))

2

− (2𝑏𝑓sin(𝑘𝑚∆𝑥) + 2𝑏𝑔ℎsin(𝑘𝑚∆𝑥))
2
, 

(4.24)  

We can also rewrite the above equation that: 

 

|1 − 𝑧𝑓 − 4𝑎𝑓sin2 (
𝑘𝑚∆𝑥

2
) − 𝑏𝑓(2𝑖sin(𝑘𝑚∆𝑥)) − 𝑧𝑔ℎ − 4𝑎𝑔ℎsin

2 (
𝑘𝑚∆𝑥

2
) − 𝑏𝑔ℎ(2𝑖sin(𝑘𝑚∆𝑥))|

= √(1 − 𝑧𝑓 − 4𝑎𝑓sin2 (
𝑘𝑚∆𝑥

2
) − 𝑧𝑔ℎ − 4𝑎𝑔ℎsin2 (

𝑘𝑚∆𝑥

2
))

2

− (2𝑏𝑓sin(𝑘𝑚∆𝑥) + 2𝑏𝑔ℎsin(𝑘𝑚∆𝑥))
2
, 

(4.25)  
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Thus, 

 |𝐴| = √(1 − 𝑧𝑓 − 4𝑎𝑓sin2 (
𝑘𝑚∆𝑥

2
) − 𝑧𝑔ℎ − 4𝑎𝑔ℎsin2 (

𝑘𝑚∆𝑥

2
))

2

− (2𝑏𝑓sin(𝑘𝑚∆𝑥) + 2𝑏𝑔ℎsin(𝑘𝑚∆𝑥))
2
< 1, 

(4.26)  

Therefore, we can infer that |�̂�1| < |�̂�0| when: 

 √(1 − 𝑧𝑓 − 4𝑎𝑓sin2 (
𝑘𝑚∆𝑥

2
) − 𝑧𝑔ℎ − 4𝑎𝑔ℎsin2 (

𝑘𝑚∆𝑥

2
))

2

− (2𝑏𝑓sin(𝑘𝑚∆𝑥) + 2𝑏𝑔ℎsin(𝑘𝑚∆𝑥))
2
< 1. 

(4.27)  

We again recall from eq. (4.18), that: 

𝐵 = [𝑧𝑓 + 4𝑎𝑓sin2 (
𝑘𝑚∆𝑥

2
) + 𝑏𝑓(2𝑖sin(𝑘𝑚∆𝑥)) + 𝑧𝑔𝑘 + 4𝑎𝑔𝑘sin

2 (
𝑘𝑚∆𝑥

2
)

+ 𝑏𝑔𝑘(2𝑖sin(𝑘𝑚∆𝑥))] 

Then, 

 

|𝐵|

= √(𝑧𝑓 + 4𝑎𝑓sin2 (
𝑘𝑚∆𝑥

2
) + 𝑧𝑔𝑘 + 4𝑎𝑔𝑘sin2 (

𝑘𝑚∆𝑥

2
))

2

+ (2𝑏𝑓sin(𝑘𝑚∆𝑥) + 2𝑏𝑔𝑘sin(𝑘𝑚∆𝑥))
2, 

(4.28)  

Similarly, 

 

|𝑧𝑓 + 4𝑎𝑓sin2 (
𝑘𝑚∆𝑥

2
) + 𝑏𝑓(2𝑖sin(𝑘𝑚∆𝑥)) + 𝑧𝑔𝑘 + 4𝑎𝑔𝑘sin

2 (
𝑘𝑚∆𝑥

2
) + 𝑏𝑔𝑘(2𝑖sin(𝑘𝑚∆𝑥))|

= √(𝑧𝑓 + 4𝑎𝑓sin2 (
𝑘𝑚∆𝑥

2
) + 𝑧𝑔𝑘 + 4𝑎𝑔𝑘sin2 (

𝑘𝑚∆𝑥

2
))

2

+ (2𝑏𝑓sin(𝑘𝑚∆𝑥) + 2𝑏𝑔𝑘sin(𝑘𝑚∆𝑥))
2. 

(4.29)  

∀ 𝑛 > 0, we assume that: 

|�̂�𝑛| < |�̂�0| ⟹ |
�̂�𝑛
�̂�0
| < 1 
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Using the above assumption, we can prove that: 

|�̂�𝑛+1| < |�̂�0| ⟹ |
�̂�𝑛+1
�̂�0
| < 1, 

Thus, 

 

|�̂�𝑛+1| = |𝐴�̂�𝑛 + 𝐵�̂�𝑛−1| 

|�̂�𝑛+1| = |�̂�𝑛 (1 − 𝑧𝑓 − 4𝑎𝑓sin
2 (
𝑘𝑚∆𝑥

2
) − 𝑏𝑓(2𝑖sin(𝑘𝑚∆𝑥)) − 𝑧𝑔ℎ

− 4𝑎𝑔ℎsin2 (
𝑘𝑚∆𝑥

2
) − 𝑏𝑔ℎ(2𝑖sin(𝑘𝑚∆𝑥)))

+ �̂�𝑛−1 (𝑧𝑓 + 4𝑎𝑓sin
2 (
𝑘𝑚∆𝑥

2
) + 𝑏𝑓(2𝑖sin(𝑘𝑚∆𝑥)) + 𝑧𝑔𝑘

+ 4𝑎𝑔𝑘sin2 (
𝑘𝑚∆𝑥

2
) + 𝑏𝑔𝑘(2𝑖sin(𝑘𝑚∆𝑥)))|, 

(4.30)  

Which means that, 

 

|�̂�𝑛+1| ≤ |𝐴||�̂�𝑛| + |𝐵||�̂�𝑛−1| 

|�̂�𝑛+1|

≤ √(1 − 𝑧𝑓 − 4𝑎𝑓sin2 (
𝑘𝑚∆𝑥

2
) − 𝑧𝑔ℎ − 4𝑎𝑔ℎsin2 (

𝑘𝑚∆𝑥

2
))

2

− (2𝑏𝑓sin(𝑘𝑚∆𝑥) + 2𝑏𝑔ℎsin(𝑘𝑚∆𝑥))
2
|�̂�𝑛|

+ √(𝑧𝑓 + 4𝑎𝑓sin2 (
𝑘𝑚∆𝑥

2
) + 𝑧𝑔𝑘 + 4𝑎𝑔𝑘sin2 (

𝑘𝑚∆𝑥

2
))

2

+ (2𝑏𝑓sin(𝑘𝑚∆𝑥) + 2𝑏𝑔𝑘sin(𝑘𝑚∆𝑥))
2|�̂�𝑛−1|. 

(4.31)  

By applying the inductive hypothesis, we suppose that: 

|�̂�𝑛| < 0 and |�̂�𝑛−1| < |�̂�0| 

 
|�̂�𝑛+1| < |𝐴||�̂�0| + |𝐵||�̂�0|, (4.32)  
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|�̂�𝑛+1|

< |�̂�0|

(

 
 
√(1 − 𝑧𝑓 − 4𝑎𝑓sin2 (

𝑘𝑚∆𝑥

2
) − 𝑧𝑔ℎ − 4𝑎𝑔ℎsin2 (

𝑘𝑚∆𝑥

2
))

2

− (2𝑏𝑓sin(𝑘𝑚∆𝑥) + 2𝑏𝑔ℎsin(𝑘𝑚∆𝑥))
2

)

 
 

+ |�̂�0|

(

 
 
√(𝑧𝑓 + 4𝑎𝑓sin2 (

𝑘𝑚∆𝑥

2
) + 𝑧𝑔𝑘 + 4𝑎𝑔𝑘sin2 (

𝑘𝑚∆𝑥

2
))

2

+ (2𝑏𝑓sin(𝑘𝑚∆𝑥) + 2𝑏𝑔𝑘sin(𝑘𝑚∆𝑥))
2

)

 
 
. 

By factorization, we can infer that: 

 

|�̂�𝑛+1| < |�̂�0|(|𝐴| + |𝐵|), 

|�̂�𝑛+1|

< |�̂�0|

(

 
 
√(1 − 𝑧𝑓 − 4𝑎𝑓sin2 (

𝑘𝑚∆𝑥

2
) − 𝑧𝑔ℎ − 4𝑎𝑔ℎsin2 (

𝑘𝑚∆𝑥

2
))

2

− (2𝑏𝑓sin(𝑘𝑚∆𝑥) + 2𝑏𝑔ℎsin(𝑘𝑚∆𝑥))
2

+√(𝑧𝑓 + 4𝑎𝑓sin2 (
𝑘𝑚∆𝑥

2
) + 𝑧𝑔𝑘 + 4𝑎𝑔𝑘sin2 (

𝑘𝑚∆𝑥

2
))

2

+ (2𝑏𝑓sin(𝑘𝑚∆𝑥) + 2𝑏𝑔𝑘sin(𝑘𝑚∆𝑥))
2

)

 
 
. 

(4.33)  

We further have: 

|
�̂�𝑛+1
�̂�0
| < |𝐴| + |𝐵|, 

 

|
�̂�𝑛+1

�̂�0
|

< √(1 − 𝑧𝑓 − 4𝑎𝑓sin2 (
𝑘𝑚∆𝑥

2
) − 𝑧𝑔ℎ − 4𝑎𝑔ℎsin2 (

𝑘𝑚∆𝑥

2
))

2

− (2𝑏𝑓sin(𝑘𝑚∆𝑥) + 2𝑏𝑔ℎsin(𝑘𝑚∆𝑥))
2

+ √(𝑧𝑓 + 4𝑎𝑓sin2 (
𝑘𝑚∆𝑥

2
) + 𝑧𝑔𝑘 + 4𝑎𝑔𝑘sin2 (

𝑘𝑚∆𝑥

2
))

2

+ (2𝑏𝑓sin(𝑘𝑚∆𝑥) + 2𝑏𝑔𝑘sin(𝑘𝑚∆𝑥))
2. 

(4.34)  

Remember that: 

|
�̂�𝑛+1
�̂�0
| < 1 
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This also implies that: 

 

|𝐴| + |𝐵| < 1, 

|(1 − 𝑧𝑓 − 4𝑎𝑓sin2 (
𝑘𝑚∆𝑥

2
) − 𝑏𝑓(2𝑖sin(𝑘𝑚∆𝑥)) − 𝑧𝑔ℎ − 4𝑎𝑔ℎsin

2 (
𝑘𝑚∆𝑥

2
)

− 𝑏𝑔ℎ(2𝑖sin(𝑘𝑚∆𝑥)))|

+ |+(𝑧𝑓 + 4𝑎𝑓sin2 (
𝑘𝑚∆𝑥

2
) + 𝑏𝑓(2𝑖sin(𝑘𝑚∆𝑥)) + 𝑧𝑔𝑘

+ 4𝑎𝑔𝑘sin2 (
𝑘𝑚∆𝑥

2
) + 𝑏𝑔𝑘(2𝑖sin(𝑘𝑚∆𝑥)))| < 1, 

(4.35)  

Similarly, 

 

√(1 − 𝑧𝑓 − 4𝑎𝑓sin2 (
𝑘𝑚∆𝑥

2
) − 𝑧𝑔ℎ − 4𝑎𝑔ℎsin2 (

𝑘𝑚∆𝑥

2
))

2

− (2𝑏𝑓sin(𝑘𝑚∆𝑥) + 2𝑏𝑔ℎsin(𝑘𝑚∆𝑥))
2

+ √(𝑧𝑓 + 4𝑎𝑓sin2 (
𝑘𝑚∆𝑥

2
) + 𝑧𝑔𝑘 + 4𝑎𝑔𝑘sin2 (

𝑘𝑚∆𝑥

2
))

2

+ (2𝑏𝑓sin(𝑘𝑚∆𝑥) + 2𝑏𝑔𝑘sin(𝑘𝑚∆𝑥))
2 < 1. 

(4.36)  

Therefore, we conclude that, under this condition our numerical method is conditionally 

stable. 

4.1.2 Stability analysis of the new numerical scheme for solution of PDEs derived in 

terms of Atangana-Baleanu fractional derivative in Caputo sense 

This section presents the analysis of stability condition to our discretized advection-

dispersion transport equation (eq. 3.84) in the case of Atangana-Baleanu fractional order 

derivative in Caputo sense. The method of approach employed to test for stability is the 

Von Neumann stability method. 
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Consider the transport equation below expressed in terms of Atangana-Baleanu fractional 

derivative in the sense of Caputo as: 

𝐷0
𝐴𝐵𝐶

𝑡
𝛼𝐶(𝑥, 𝑡) = �̂�

𝜕2𝐶(𝑥, 𝑡)

𝜕𝑥2
− 𝑣

𝜕𝐶(𝑥, 𝑡)

𝜕𝑥
− 𝜆�̂�𝐶(𝑥, 𝑡). 

Therefore, we recall our discretized eq. (3.84) that: 

 

𝐶𝑖
𝑛+1 = 𝐶𝑖

𝑛 +
1 − 𝛼

𝐴𝐵(𝛼)
[�̂�
(𝐶𝑖+1
𝑛+1 − 2𝐶𝑖

𝑛+1 + 𝐶𝑖−1
𝑛+1)

(∆𝑥)2
− 𝑣

(𝐶𝑖+1
𝑛+1 − 𝐶𝑖−1

𝑛+1)

∆𝑥
− 𝜆�̂�𝐶𝑖

𝑛+1]

−
1 − 𝛼

𝐴𝐵(𝛼)
[�̂�
(𝐶𝑖+1
𝑛 − 2𝐶𝑖

𝑛 + 𝐶𝑖−1
𝑛 )

(∆𝑥)2
− 𝑣

(𝐶𝑖+1
𝑛 − 𝐶𝑖−1

𝑛 )

∆𝑥
− 𝜆�̂�𝐶𝑖

𝑛]

+
(∆𝑡)𝛼

𝐴𝐵(𝛼)Γ(𝛼)
[�̂�
(𝐶𝑖+1
𝑛 − 2𝐶𝑖

𝑛 + 𝐶𝑖−1
𝑛 )

(∆𝑥)2
− 𝑣

(𝐶𝑖+1
𝑛 − 𝐶𝑖−1

𝑛 )

∆𝑥

− 𝜆�̂�𝐶𝑖
𝑛] (𝑛 − 𝑗 + 1)𝛼(𝑛 − 𝑗 + 2 + 𝛼) − (𝑛 − 𝑗)𝛼(𝑛 − 𝑗 + 2 + 2𝛼)

−
(∆𝑡)𝛼

𝐴𝐵(𝛼)Γ(𝛼)
[�̂�
(𝐶𝑖+1
𝑛−1 − 2𝐶𝑖

𝑛−1 + 𝐶𝑖−1
𝑛−1)

(∆𝑥)2
− 𝑣

(𝐶𝑖+1
𝑛−1 − 𝐶𝑖−1

𝑛−1)

∆𝑥

− 𝜆�̂�𝐶𝑖
𝑛−1] (𝑛 − 𝑗 + 1)𝛼+1 − (𝑛 − 𝑗)𝛼(𝑛 − 𝑗 + 1 + 𝛼). 

(4.37)  

From the above equation, we then assume that: 

�̂�

(∆𝑥)2
= 𝑎,

𝑣

∆𝑥
= 𝑏, 𝜆�̂� = 𝑧,

1 − 𝛼

𝐴𝐵(𝛼)
= 𝑓,

(∆𝑡)𝛼

𝐴𝐵(𝛼)Γ(𝛼)
= 𝑔,

𝛿𝑛
𝛼,1 = (𝑛 − 𝑗 + 1)𝛼(𝑛 − 𝑗 + 2 + 𝛼) − (𝑛 − 𝑗)𝛼(𝑛 − 𝑗 + 2 + 2𝛼),

𝛿𝑛
𝛼,2 = (𝑛 − 𝑗 + 1)𝛼+1 − (𝑛 − 𝑗)𝛼(𝑛 − 𝑗 + 1 + 𝛼) 

Therefore, substituting with these variables into eq. (4.37) gives: 

 

𝐶𝑖
𝑛+1 = 𝐶𝑖

𝑛 + 𝑓[𝑎(𝐶𝑖+1
𝑛+1 − 2𝐶𝑖

𝑛+1 + 𝐶𝑖−1
𝑛+1) − 𝑏(𝐶𝑖+1

𝑛+1 − 𝐶𝑖−1
𝑛+1) − 𝑧𝐶𝑖

𝑛+1]

− 𝑓[𝑎(𝐶𝑖+1
𝑛 − 2𝐶𝑖

𝑛 + 𝐶𝑖−1
𝑛 ) − 𝑏(𝐶𝑖+1

𝑛 − 𝐶𝑖−1
𝑛 ) − 𝑧𝐶𝑖

𝑛]

+ 𝑔[𝑎(𝐶𝑖+1
𝑛 − 2𝐶𝑖

𝑛 + 𝐶𝑖−1
𝑛 ) − 𝑏(𝐶𝑖+1

𝑛 − 𝐶𝑖−1
𝑛 ) − 𝑧𝐶𝑖

𝑛]𝛿𝑛
𝛼,1

− 𝑔[𝑎(𝐶𝑖+1
𝑛−1 − 2𝐶𝑖

𝑛−1 + 𝐶𝑖−1
𝑛−1) − 𝑏(𝐶𝑖+1

𝑛−1 − 𝐶𝑖−1
𝑛−1) − 𝑧𝐶𝑖

𝑛−1]𝛿𝑛
𝛼,2. 

(4.38)  
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Simplification of the above eq. (4.38) gives: 

 

𝐶𝑖
𝑛+1 = 𝐶𝑖

𝑛(1 + 2𝑎𝑓 + 𝑧𝑓) − 𝑎𝑓(𝐶𝑖+1
𝑛 + 𝐶𝑖−1

𝑛 ) + 𝑏𝑓(𝐶𝑖+1
𝑛 − 𝐶𝑖−1

𝑛 )

− 𝐶𝑖
𝑛(2𝑎𝑔 + 𝑧𝑔)𝛿𝑛

𝛼,1 + 𝑎𝑔𝛿𝑛
𝛼,1(𝐶𝑖+1

𝑛 + 𝐶𝑖−1
𝑛 ) − 𝑏𝑔𝛿𝑛

𝛼,1(𝐶𝑖+1
𝑛 − 𝐶𝑖−1

𝑛 )

− 𝐶𝑖
𝑛+1(2𝑎𝑓 + 𝑧𝑓) + 𝑎𝑓(𝐶𝑖+1

𝑛+1 + 𝐶𝑖−1
𝑛+1) − 𝑏𝑓(𝐶𝑖+1

𝑛+1 − 𝐶𝑖−1
𝑛+1)

+ 𝐶𝑖
𝑛−1(2𝑎𝑔 + 𝑧𝑔)𝛿𝑛

𝛼,2 − 𝑎𝑔𝛿𝑛
𝛼,2(𝐶𝑖+1

𝑛−1 + 𝐶𝑖−1
𝑛−1)

+ 𝑏𝑔𝛿𝑛
𝛼,2(𝐶𝑖+1

𝑛−1 − 𝐶𝑖−1
𝑛−1). 

(4.39)  

For Von Neumann stability analysis, we utilize the assumptions from eqs. (4.2) to (4.8) and 

plug into eq. (4.39) to obtain the following: 

 

�̂�𝑛+1𝑒
𝑖𝑘𝑚𝑥 = (1 + 2𝑎𝑓 + 𝑧𝑓)�̂�𝑛𝑒

𝑖𝑘𝑚𝑥 − 𝑎𝑓(𝑒𝑖𝑘𝑚∆𝑥 + 𝑒−𝑖𝑘𝑚∆𝑥)�̂�𝑛𝑒
𝑖𝑘𝑚𝑥

+ 𝑏𝑓(𝑒𝑖𝑘𝑚∆𝑥 − 𝑒−𝑖𝑘𝑚∆𝑥)�̂�𝑛𝑒
𝑖𝑘𝑚𝑥 − (2𝑎𝑔𝛿𝑛

𝛼,1 + 𝑧𝑔𝛿𝑛
𝛼,1)�̂�𝑛𝑒

𝑖𝑘𝑚𝑥

+ 𝑎𝑔𝛿𝑛
𝛼,1(𝑒𝑖𝑘𝑚∆𝑥 + 𝑒−𝑖𝑘𝑚∆𝑥)�̂�𝑛𝑒

𝑖𝑘𝑚𝑥

− 𝑏𝑔𝛿𝑛
𝛼,1(𝑒𝑖𝑘𝑚∆𝑥 − 𝑒−𝑖𝑘𝑚∆𝑥)�̂�𝑛𝑒

𝑖𝑘𝑚𝑥 − (2𝑎𝑓 + 𝑧𝑓)�̂�𝑛+1𝑒
𝑖𝑘𝑚𝑥

+ 𝑎𝑓(𝑒𝑖𝑘𝑚∆𝑥 + 𝑒−𝑖𝑘𝑚∆𝑥)�̂�𝑛+1𝑒
𝑖𝑘𝑚𝑥

− 𝑏𝑓(𝑒𝑖𝑘𝑚∆𝑥 − 𝑒−𝑖𝑘𝑚∆𝑥)�̂�𝑛+1𝑒
𝑖𝑘𝑚𝑥 + (2𝑎𝑔𝛿𝑛

𝛼,2 + 𝑧𝑔𝛿𝑛
𝛼,2)�̂�𝑛−1𝑒

𝑖𝑘𝑚𝑥

− 𝑎𝑔𝛿𝑛
𝛼,2(𝑒𝑖𝑘𝑚∆𝑥 + 𝑒−𝑖𝑘𝑚∆𝑥)�̂�𝑛−1𝑒

𝑖𝑘𝑚𝑥

+ 𝑏𝑔𝛿𝑛
𝛼,2(𝑒𝑖𝑘𝑚∆𝑥 − 𝑒−𝑖𝑘𝑚∆𝑥)�̂�𝑛−1𝑒

𝑖𝑘𝑚𝑥. 

(4.40)  

Dividing both sides of eq. (4.40) by 𝑒𝑖𝑘𝑚𝑥 yields the following: 

 

�̂�𝑛+1 = (1 + 2𝑎𝑓 + 𝑧𝑓)�̂�𝑛 − 𝑎𝑓(𝑒
𝑖𝑘𝑚∆𝑥 + 𝑒−𝑖𝑘𝑚∆𝑥)�̂�𝑛 + 𝑏𝑓(𝑒

𝑖𝑘𝑚∆𝑥 − 𝑒−𝑖𝑘𝑚∆𝑥)�̂�𝑛

− (2𝑎𝑔𝛿𝑛
𝛼,1 + 𝑧𝑔𝛿𝑛

𝛼,1)�̂�𝑛 + 𝑎𝑔𝛿𝑛
𝛼,1(𝑒𝑖𝑘𝑚∆𝑥 + 𝑒−𝑖𝑘𝑚∆𝑥)�̂�𝑛

− 𝑏𝑔𝛿𝑛
𝛼,1(𝑒𝑖𝑘𝑚∆𝑥 − 𝑒−𝑖𝑘𝑚∆𝑥)�̂�𝑛 − (2𝑎𝑓 + 𝑧𝑓)�̂�𝑛+1

+ 𝑎𝑓(𝑒𝑖𝑘𝑚∆𝑥 + 𝑒−𝑖𝑘𝑚∆𝑥)�̂�𝑛+1 − 𝑏𝑓(𝑒
𝑖𝑘𝑚∆𝑥 − 𝑒−𝑖𝑘𝑚∆𝑥)�̂�𝑛+1

+ (2𝑎𝑔𝛿𝑛
𝛼,2 + 𝑧𝑔𝛿𝑛

𝛼,2)�̂�𝑛−1 − 𝑎𝑔𝛿𝑛
𝛼,2(𝑒𝑖𝑘𝑚∆𝑥 + 𝑒−𝑖𝑘𝑚∆𝑥)�̂�𝑛−1

+ 𝑏𝑔𝛿𝑛
𝛼,2(𝑒𝑖𝑘𝑚∆𝑥 − 𝑒−𝑖𝑘𝑚∆𝑥)�̂�𝑛−1. 

(4.41)  

By factorization and simplification, we obtain the following: 
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�̂�𝑛+1 = [(1 + 2𝑎𝑓 + 𝑧𝑓) − 𝑎𝑓(𝑒
𝑖𝑘𝑚∆𝑥 + 𝑒−𝑖𝑘𝑚∆𝑥) + 𝑏𝑓(𝑒𝑖𝑘𝑚∆𝑥 − 𝑒−𝑖𝑘𝑚∆𝑥)

− (2𝑎𝑔𝛿𝑛
𝛼,1 + 𝑧𝑔𝛿𝑛

𝛼,1) + 𝑎𝑔𝛿𝑛
𝛼,1(𝑒𝑖𝑘𝑚∆𝑥 + 𝑒−𝑖𝑘𝑚∆𝑥)

− 𝑏𝑔𝛿𝑛
𝛼,1(𝑒𝑖𝑘𝑚∆𝑥 − 𝑒−𝑖𝑘𝑚∆𝑥)]�̂�𝑛

+ [(2𝑎𝑔𝛿𝑛
𝛼,2 + 𝑧𝑔𝛿𝑛

𝛼,2) − 𝑎𝑔𝛿𝑛
𝛼,2(𝑒𝑖𝑘𝑚∆𝑥 + 𝑒−𝑖𝑘𝑚∆𝑥)

+ 𝑏𝑔𝛿𝑛
𝛼,2(𝑒𝑖𝑘𝑚∆𝑥 − 𝑒−𝑖𝑘𝑚∆𝑥)]�̂�𝑛−1

− [(2𝑎𝑓 + 𝑧𝑓) − 𝑎𝑓(𝑒𝑖𝑘𝑚∆𝑥 + 𝑒−𝑖𝑘𝑚∆𝑥)

+ 𝑏𝑓(𝑒𝑖𝑘𝑚∆𝑥 − 𝑒−𝑖𝑘𝑚∆𝑥)]�̂�𝑛+1. 

(4.42)  

If, 

 𝑒𝑖𝑘𝑚∆𝑥 = cos(𝑘𝑚∆𝑥) + 𝑖sin(𝑘𝑚∆𝑥), 
(4.43)  

and, 

 𝑒−𝑖𝑘𝑚∆𝑥 = cos(𝑘𝑚∆𝑥) − 𝑖sin(𝑘𝑚∆𝑥). 
(4.44)  

Then further simplification yields: 

 

�̂�𝑛+1 = [(1 + 2𝑎𝑓 + 𝑧𝑓) − 𝑎𝑓(2cos(𝑘𝑚∆𝑥)) + 𝑏𝑓(2𝑖𝑠𝑖𝑛(𝑘𝑚∆𝑥))

− (2𝑎𝑔𝛿𝑛
𝛼,1 + 𝑧𝑔𝛿𝑛

𝛼,1) + 𝑎𝑔𝛿𝑛
𝛼,1(2cos(𝑘𝑚∆𝑥))

− 𝑏𝑔𝛿𝑛
𝛼,1(2𝑖𝑠𝑖𝑛(𝑘𝑚∆𝑥))]�̂�𝑛

+ [(2𝑎𝑔𝛿𝑛
𝛼,2 + 𝑧𝑔𝛿𝑛

𝛼,2) − 𝑎𝑔𝛿𝑛
𝛼,2(2cos(𝑘𝑚∆𝑥))

+ 𝑏𝑔𝛿𝑛
𝛼,2(2𝑖𝑠𝑖𝑛(𝑘𝑚∆𝑥))]�̂�𝑛−1

− [(2𝑎𝑓 + 𝑧𝑓) − 𝑎𝑓(2cos(𝑘𝑚∆𝑥)) + 𝑏𝑓𝛿𝑛
𝛼,1(2𝑖𝑠𝑖𝑛(𝑘𝑚∆𝑥))]�̂�𝑛+1. 

(4.45)  

By factorizing, we have: 
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�̂�𝑛+1 = [1 + 𝑧𝑓 − 2𝑎𝑓(1 − cos(𝑘𝑚∆𝑥)) + 𝑏𝑓(2𝑖𝑠𝑖𝑛(𝑘𝑚∆𝑥)) + 𝑧𝑔𝛿𝑛
𝛼,1

− 2𝑎𝑔𝛿𝑛
𝛼,1(1 − cos(𝑘𝑚∆𝑥)) − 𝑏𝑔𝛿𝑛

𝛼,1(2𝑖𝑠𝑖𝑛(𝑘𝑚∆𝑥))]�̂�𝑛

+ [𝑧𝑔𝛿𝑛
𝛼,2 + 2𝑎𝑔𝛿𝑛

𝛼,2(1 − cos(𝑘𝑚∆𝑥)) + 𝑏𝑔𝛿𝑛
𝛼,2(2𝑖𝑠𝑖𝑛(𝑘𝑚∆𝑥))]�̂�𝑛−1

− [𝑧𝑓 + 2𝑎𝑓(1 − cos(𝑘𝑚∆𝑥)) + 𝑏𝑓(2𝑖𝑠𝑖𝑛(𝑘𝑚∆𝑥))]�̂�𝑛+1. 

(4.46)  

We further have: 

 

�̂�𝑛+1 = [1 + 𝑧𝑓 + 4𝑎𝑓sin
2 (
𝑘𝑚∆𝑥

2
) + 𝑏𝑓(2𝑖𝑠𝑖𝑛(𝑘𝑚∆𝑥)) − 𝑧𝑔𝛿𝑛

𝛼,1

− 4𝑎𝑔sin2 (
𝑘𝑚∆𝑥

2
)𝛿𝑛

𝛼,1 − 𝑏𝑔𝛿𝑛
𝛼,1(2𝑖𝑠𝑖𝑛(𝑘𝑚∆𝑥))] �̂�𝑛

+ [𝑧𝑔𝛿𝑛
𝛼,2 + 4𝑎𝑔sin2 (

𝑘𝑚∆𝑥

2
)𝛿𝑛

𝛼,2 + 𝑏𝑔𝛿𝑛
𝛼,2(2𝑖𝑠𝑖𝑛(𝑘𝑚∆𝑥))] �̂�𝑛−1

− [𝑧𝑓 + 4𝑎𝑓sin2 (
𝑘𝑚∆𝑥

2
) + 𝑏𝑓(2𝑖𝑠𝑖𝑛(𝑘𝑚∆𝑥))] �̂�𝑛+1, 

(4.47)  

and, 

 

[1 + 𝑧𝑓 + 4𝑎𝑓sin2 (
𝑘𝑚∆𝑥

2
) + 𝑏𝑓(2𝑖𝑠𝑖𝑛(𝑘𝑚∆𝑥))] �̂�𝑛+1

= [1 + 𝑧𝑓 + 4𝑎𝑓sin2 (
𝑘𝑚∆𝑥

2
) + 𝑏𝑓(2𝑖𝑠𝑖𝑛(𝑘𝑚∆𝑥)) − 𝑧𝑔𝛿𝑛

𝛼,1

− 4𝑎𝑔sin2 (
𝑘𝑚∆𝑥

2
)𝛿𝑛

𝛼,1 − 𝑏𝑔𝛿𝑛
𝛼,1(2𝑖𝑠𝑖𝑛(𝑘𝑚∆𝑥))] �̂�𝑛

+ [𝑧𝑔𝛿𝑛
𝛼,2 + 4𝑎𝑔sin2 (

𝑘𝑚∆𝑥

2
)𝛿𝑛

𝛼,2 + 𝑏𝑔𝛿𝑛
𝛼,2(2𝑖𝑠𝑖𝑛(𝑘𝑚∆𝑥))] �̂�𝑛−1. 

(4.48)  

From the above equation when 𝑛 = 0, we have: 

 

[1 + 𝑧𝑓 + 4𝑎𝑓sin2 (
𝑘𝑚∆𝑥

2
) + 𝑏𝑓(2𝑖𝑠𝑖𝑛(𝑘𝑚∆𝑥))] �̂�1

= [1 + 𝑧𝑓 + 4𝑎𝑓sin2 (
𝑘𝑚∆𝑥

2
) + 𝑏𝑓(2𝑖𝑠𝑖𝑛(𝑘𝑚∆𝑥)) − 𝑧𝑔𝛿𝑛

𝛼,1

− 4𝑎𝑔sin2 (
𝑘𝑚∆𝑥

2
)𝛿𝑛

𝛼,1 − 𝑏𝑔𝛿𝑛
𝛼,1(2𝑖𝑠𝑖𝑛(𝑘𝑚∆𝑥))] �̂�0. 

(4.49)  
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Let us suppose that: 

𝐴𝑚 = [1 + 𝑧𝑓 + 4𝑎𝑓sin
2 (
𝑘𝑚∆𝑥

2
) + 𝑏𝑓(2𝑖𝑠𝑖𝑛(𝑘𝑚∆𝑥))], 

and, 

𝐵𝑚 = [1 + 𝑧𝑓 + 4𝑎𝑓sin
2 (
𝑘𝑚∆𝑥

2
) + 𝑏𝑓(2𝑖𝑠𝑖𝑛(𝑘𝑚∆𝑥)) − 𝑧𝑔𝛿𝑛

𝛼,1 − 4𝑎𝑔sin2 (
𝑘𝑚∆𝑥

2
)𝛿𝑛

𝛼,1

− 𝑏𝑔𝛿𝑛
𝛼,1(2𝑖𝑠𝑖𝑛(𝑘𝑚∆𝑥))]. 

Therefore, we can present eq. (4.49) as: 

 �̂�1𝐴𝑚 = �̂�0𝐵𝑚. 
(4.50)  

Thus, we can find the condition for which: 

 |
�̂�1
�̂�0
| < 1. 

(4.51)  

Which implies that: 

 |
�̂�1
�̂�0
| = |

𝐵𝑚
𝐴𝑚
| < 1. 

(4.52)  

Let us recall that: 

𝐴𝑚 = [1 + 𝑧𝑓 + 4𝑎𝑓sin
2 (
𝑘𝑚∆𝑥

2
) + 𝑏𝑓(2𝑖𝑠𝑖𝑛(𝑘𝑚∆𝑥))], 

and, 

𝐵𝑚 = [1 + 𝑧𝑓 + 4𝑎𝑓sin
2 (
𝑘𝑚∆𝑥

2
) + 𝑏𝑓(2𝑖𝑠𝑖𝑛(𝑘𝑚∆𝑥)) − 𝑧𝑔𝛿𝑛

𝛼,1 − 4𝑎𝑔sin2 (
𝑘𝑚∆𝑥

2
)𝛿𝑛

𝛼,1

− 𝑏𝑔𝛿𝑛
𝛼,1(2𝑖𝑠𝑖𝑛(𝑘𝑚∆𝑥))]. 
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Therefore, we can express |
𝐵𝑚

𝐴𝑚
| as follows: 

 |
1 + 𝑧𝑓 + 4𝑎𝑓sin2 (

𝑘𝑚∆𝑥

2
) + 𝑏𝑓(2𝑖𝑠𝑖𝑛(𝑘𝑚∆𝑥)) − 𝑧𝑔𝛿𝑛

𝛼,1 − 4𝑎𝑔sin2 (
𝑘𝑚∆𝑥

2
) 𝛿𝑛

𝛼,1 − 𝑏𝑔𝛿𝑛
𝛼,1(2𝑖𝑠𝑖𝑛(𝑘𝑚∆𝑥))

1 + 𝑧𝑓 + 4𝑎𝑓sin2 (
𝑘𝑚∆𝑥

2
) + 𝑏𝑓(2𝑖𝑠𝑖𝑛(𝑘𝑚∆𝑥))

|. 
(4.53)  

By applying the absolute value of a complex number, where we assume that 𝑠 = 𝑎 + 𝑖𝑏 and 

|𝑠| = √𝑎2 + 𝑏2. Thus, we now have: 

 |𝐴𝑚| = √(1 + 𝑧𝑓 + 4𝑎𝑓sin2 (
𝑘𝑚∆𝑥

2
))

2

+ (2𝑏𝑓𝑠𝑖𝑛(𝑘𝑚∆𝑥))
2
, 

(4.54)  

and, 

 

|𝐵𝑚|

= √(1 + 𝑧𝑓 + 4𝑎𝑓sin2 (
𝑘𝑚∆𝑥

2
) − 𝑧𝑔𝛿𝑛

𝛼,1 − 4𝑎𝑔sin2 (
𝑘𝑚∆𝑥

2
) 𝛿𝑛

𝛼,1)
2

+ (2𝑏𝑓 𝑠𝑖𝑛(𝑘𝑚∆𝑥) − 2𝑏𝑔𝛿𝑛
𝛼,1 𝑠𝑖𝑛(𝑘𝑚∆𝑥))

2
. 

(4.55)  

Which means that: 

 

|
1 + 𝑧𝑓 + 4𝑎𝑓sin2 (

𝑘𝑚∆𝑥

2
) + 𝑏𝑓(2𝑖𝑠𝑖𝑛(𝑘𝑚∆𝑥))

1 + 𝑧𝑓 + 4𝑎𝑓sin2 (
𝑘𝑚∆𝑥

2
) + 𝑏𝑓(2𝑖𝑠𝑖𝑛(𝑘𝑚∆𝑥)) − 𝑧𝑔𝛿𝑛

𝛼,1 − 4𝑎𝑔sin2 (
𝑘𝑚∆𝑥

2
) 𝛿𝑛

𝛼,1 − 𝑏𝑔𝛿𝑛
𝛼,1(2𝑖𝑠𝑖𝑛(𝑘𝑚∆𝑥))

|

=

√(1 + 𝑧𝑓 + 4𝑎𝑓sin2 (
𝑘𝑚∆𝑥

2
) − 𝑧𝑔𝛿𝑛

𝛼,1 − 4𝑎𝑔sin2 (
𝑘𝑚∆𝑥

2
) 𝛿𝑛

𝛼,1)
2
+ (2𝑏𝑓 𝑠𝑖𝑛(𝑘𝑚∆𝑥) − 2𝑏𝑔𝛿𝑛

𝛼,1 𝑠𝑖𝑛(𝑘𝑚∆𝑥))
2

√(1 + 𝑧𝑓 + 4𝑎𝑓sin2 (
𝑘𝑚∆𝑥

2
))
2

+ (2𝑏𝑓𝑠𝑖𝑛(𝑘𝑚∆𝑥))
2

. 

(4.56)  

Therefore, |
𝐵𝑚

𝐴𝑚
| < 1 is presented as: 

 
|
𝐵𝑚
𝐴𝑚
| =

√(1 + 𝑧𝑓 + 4𝑎𝑓sin2 (
𝑘𝑚∆𝑥

2
) − 𝑧𝑔𝛿𝑛

𝛼,1 − 4𝑎𝑔sin2 (
𝑘𝑚∆𝑥

2
) 𝛿𝑛

𝛼,1)
2

+ (2𝑏𝑓 𝑠𝑖𝑛(𝑘𝑚∆𝑥) − 2𝑏𝑔𝛿𝑛
𝛼,1 𝑠𝑖𝑛(𝑘𝑚∆𝑥))

2

√(1 + 𝑧𝑓 + 4𝑎𝑓sin2 (
𝑘𝑚∆𝑥

2
))
2

+ (2𝑏𝑓𝑠𝑖𝑛(𝑘𝑚∆𝑥))
2

< 1. (4.57)  

Simplifying, 
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√(1 + 𝑧𝑓 + 4𝑎𝑓sin2 (
𝑘𝑚∆𝑥

2
) − 𝑧𝑔𝛿𝑛

𝛼,1 − 4𝑎𝑔sin2 (
𝑘𝑚∆𝑥

2
) 𝛿𝑛

𝛼,1)
2

+ (2𝑏𝑓 𝑠𝑖𝑛(𝑘𝑚∆𝑥) − 2𝑏𝑔𝛿𝑛
𝛼,1 𝑠𝑖𝑛(𝑘𝑚∆𝑥))

2

< √(1 + 𝑧𝑓 + 4𝑎𝑓sin2 (
𝑘𝑚∆𝑥

2
))

2

+ (2𝑏𝑓𝑠𝑖𝑛(𝑘𝑚∆𝑥))
2
. 

(4.58)  

We recall eq. (4.46) and suppose that: 

𝐶𝑚 = [𝑧𝑔𝛿𝑛
𝛼,2 + 4𝑎𝑔sin2 (

𝑘𝑚∆𝑥

2
)𝛿𝑛

𝛼,2 + 𝑏𝑔𝛿𝑛
𝛼,2(2𝑖𝑠𝑖𝑛(𝑘𝑚∆𝑥))], 

Then, 

 |𝐶𝑚| = √(𝑧𝑔𝛿𝑛
𝛼,2 + 4𝑎𝑔sin2 (

𝑘𝑚∆𝑥

2
)𝛿𝑛

𝛼,2)
2

+ (𝑏𝑔𝛿𝑛
𝛼,2(2𝑠𝑖𝑛(𝑘𝑚∆𝑥)))

2

. 
(4.59)  

  Similarly, 

 

|𝑧𝑔𝛿𝑛
𝛼,2 + 4𝑎𝑔sin2 (

𝑘𝑚∆𝑥

2
)𝛿𝑛

𝛼,2 + 𝑏𝑔𝛿𝑛
𝛼,2(2𝑖𝑠𝑖𝑛(𝑘𝑚∆𝑥))|

= √(𝑧𝑔𝛿𝑛
𝛼,2 + 4𝑎𝑔sin2 (

𝑘𝑚∆𝑥

2
) 𝛿𝑛

𝛼,2)
2

+ (𝑏𝑔𝛿𝑛
𝛼,2(2𝑠𝑖𝑛(𝑘𝑚∆𝑥)))

2

. 

(4.60)  

Therefore, eq. (4.46) can be presented as: 

 �̂�𝑛+1𝐴𝑚 = �̂�𝑛𝐵𝑚 + �̂�𝑛−1𝐶𝑚. 
(4.61)  

∀ 𝑛 > 0, we assume that: 

|�̂�𝑛| < |�̂�0| ⟹ |
�̂�𝑛
�̂�0
| < 1, 

Using the above assumption, we can prove that: 
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|
�̂�𝑛+1
�̂�0
| < 1, 

Thus, 

 

|�̂�𝑛+1||𝐴𝑚| = |�̂�𝑛𝐵𝑚 + �̂�𝑛−1𝐶𝑚|, 

|�̂�𝑛+1| |1 + 𝑧𝑓 + 4𝑎𝑓sin
2 (
𝑘𝑚∆𝑥

2
) + 𝑏𝑓(2𝑖𝑠𝑖𝑛(𝑘𝑚∆𝑥))|

= |�̂�𝑛 (1 + 𝑧𝑓 + 4𝑎𝑓sin
2 (
𝑘𝑚∆𝑥

2
) + 𝑏𝑓(2𝑖𝑠𝑖𝑛(𝑘𝑚∆𝑥)) − 𝑧𝑔𝛿𝑛

𝛼,1

− 4𝑎𝑔sin2 (
𝑘𝑚∆𝑥

2
)𝛿𝑛

𝛼,1 − 𝑏𝑔𝛿𝑛
𝛼,1(2𝑖𝑠𝑖𝑛(𝑘𝑚∆𝑥)))

+ �̂�𝑛−1 (𝑧𝑔𝛿𝑛
𝛼,2 + 4𝑎𝑔sin2 (

𝑘𝑚∆𝑥

2
) 𝛿𝑛

𝛼,2 + 𝑏𝑔𝛿𝑛
𝛼,2(2𝑖𝑠𝑖𝑛(𝑘𝑚∆𝑥)))|. 

(4.62)  

Which means that: 

 

|�̂�𝑛+1||𝐴𝑚| ≤ |�̂�𝑛||𝐵𝑚| + |�̂�𝑛−1||𝐶𝑚|, 

|�̂�𝑛+1|

(

 √(1 + 𝑧𝑓 + 4𝑎𝑓sin2 (
𝑘𝑚∆𝑥

2
))

2

+ (2𝑏𝑓𝑠𝑖𝑛(𝑘𝑚∆𝑥))
2

)

 

≤ |�̂�𝑛| (√(1 + 𝑧𝑓 + 4𝑎𝑓sin2 (
𝑘𝑚∆𝑥

2
) − 𝑧𝑔𝛿𝑛

𝛼,1 − 4𝑎𝑔sin2 (
𝑘𝑚∆𝑥

2
)𝛿𝑛

𝛼,1)
2

+ (2𝑏𝑓 𝑠𝑖𝑛(𝑘𝑚∆𝑥) − 2𝑏𝑔𝛿𝑛
𝛼,1 𝑠𝑖𝑛(𝑘𝑚∆𝑥))

2
)

+ |�̂�𝑛−1| (√(𝑧𝑔𝛿𝑛
𝛼,2 + 4𝑎𝑔sin2 (

𝑘𝑚∆𝑥

2
)𝛿𝑛

𝛼,2)
2

+ (𝑏𝑔𝛿𝑛
𝛼,2(2𝑠𝑖𝑛(𝑘𝑚∆𝑥)))

2
). 

(4.63)  

By applying the inductive hypothesis, we suppose that: 

|�̂�𝑛| < 0 and |�̂�𝑛−1| < |�̂�0| 

 
|�̂�𝑛+1||𝐴𝑚| < |�̂�0||𝐵𝑚| + |�̂�0||𝐶𝑚|, (4.64)  



73 
 

|�̂�𝑛+1|

(

 √(1 + 𝑧𝑓 + 4𝑎𝑓sin2 (
𝑘𝑚∆𝑥

2
))

2

+ (2𝑏𝑓𝑠𝑖𝑛(𝑘𝑚∆𝑥))
2

)

 

≤ |�̂�0| (√(1 + 𝑧𝑓 + 4𝑎𝑓sin2 (
𝑘𝑚∆𝑥

2
) − 𝑧𝑔𝛿𝑛

𝛼,1 − 4𝑎𝑔sin2 (
𝑘𝑚∆𝑥

2
)𝛿𝑛

𝛼,1)
2

+ (2𝑏𝑓 𝑠𝑖𝑛(𝑘𝑚∆𝑥) − 2𝑏𝑔𝛿𝑛
𝛼,1 𝑠𝑖𝑛(𝑘𝑚∆𝑥))

2
)

+ |�̂�0| (√(𝑧𝑔𝛿𝑛
𝛼,2 + 4𝑎𝑔sin2 (

𝑘𝑚∆𝑥

2
) 𝛿𝑛

𝛼,2)
2

+ (𝑏𝑔𝛿𝑛
𝛼,2(2𝑠𝑖𝑛(𝑘𝑚∆𝑥)))

2
). 

By factorization, we have: 

 

|�̂�𝑛+1||𝐴𝑚| < |�̂�0|(|𝐵𝑚| + |𝐶𝑚|), 

|�̂�𝑛+1|√(1 + 𝑧𝑓 + 4𝑎𝑓sin2 (
𝑘𝑚∆𝑥

2
))

2

+ (2𝑏𝑓𝑠𝑖𝑛(𝑘𝑚∆𝑥))
2

< |�̂�0| (√(1 + 𝑧𝑓 + 4𝑎𝑓sin2 (
𝑘𝑚∆𝑥

2
) − 𝑧𝑔𝛿𝑛

𝛼,1 − 4𝑎𝑔sin2 (
𝑘𝑚∆𝑥

2
)𝛿𝑛

𝛼,1)
2

+ (2𝑏𝑓 𝑠𝑖𝑛(𝑘𝑚∆𝑥) − 2𝑏𝑔𝛿𝑛
𝛼,1 𝑠𝑖𝑛(𝑘𝑚∆𝑥))

2

+√(𝑧𝑔𝛿𝑛
𝛼,2 + 4𝑎𝑔sin2 (

𝑘𝑚∆𝑥

2
)𝛿𝑛

𝛼,2)
2

+ (𝑏𝑔𝛿𝑛
𝛼,2(2𝑠𝑖𝑛(𝑘𝑚∆𝑥)))

2
). 

(4.65)  

We further have: 

 |
�̂�𝑛+1
�̂�0
| <

|𝐵𝑚| + |𝐶𝑚|

|𝐴𝑚|
, 

(4.66)  

|
�̂�𝑛+1
�̂�0
|

<

√(1 + 𝑧𝑓 + 4𝑎𝑓sin2 (
𝑘𝑚∆𝑥

2
) − 𝑧𝑔𝛿𝑛

𝛼,1 − 4𝑎𝑔sin2 (
𝑘𝑚∆𝑥

2
) 𝛿𝑛

𝛼,1)
2
+ (2𝑏𝑓 𝑠𝑖𝑛(𝑘𝑚∆𝑥) − 2𝑏𝑔𝛿𝑛

𝛼,1 𝑠𝑖𝑛(𝑘𝑚∆𝑥))
2
+ √(𝑧𝑔𝛿𝑛

𝛼,2 + 4𝑎𝑔sin2 (
𝑘𝑚∆𝑥

2
) 𝛿𝑛

𝛼,2)
2
+ (𝑏𝑔𝛿𝑛

𝛼,2(2𝑠𝑖𝑛(𝑘𝑚∆𝑥)))
2

√(1 + 𝑧𝑓 + 4𝑎𝑓sin2 (
𝑘𝑚∆𝑥

2
))
2

+ (2𝑏𝑓𝑠𝑖𝑛(𝑘𝑚∆𝑥))
2

. 

Remember that: 

|
�̂�𝑛+1
�̂�0
| < 1, 

Which also implies that: 
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|𝐵𝑚| + |𝐶𝑚|

|𝐴𝑚|
< 1, 

(4.67)  

√(1 + 𝑧𝑓 + 4𝑎𝑓sin2 (
𝑘𝑚∆𝑥

2
) − 𝑧𝑔𝛿𝑛

𝛼,1 − 4𝑎𝑔sin2 (
𝑘𝑚∆𝑥

2
) 𝛿𝑛

𝛼,1)
2
+ (2𝑏𝑓 𝑠𝑖𝑛(𝑘𝑚∆𝑥) − 2𝑏𝑔𝛿𝑛

𝛼,1 𝑠𝑖𝑛(𝑘𝑚∆𝑥))
2
+ √(𝑧𝑔𝛿𝑛

𝛼,2 + 4𝑎𝑔sin2 (
𝑘𝑚∆𝑥

2
) 𝛿𝑛

𝛼,2)
2
+ (𝑏𝑔𝛿𝑛

𝛼,2(2𝑠𝑖𝑛(𝑘𝑚∆𝑥)))
2

√(1 + 𝑧𝑓 + 4𝑎𝑓sin2 (
𝑘𝑚∆𝑥

2
))
2

+ (2𝑏𝑓𝑠𝑖𝑛(𝑘𝑚∆𝑥))
2

< 1. 

We can therefore conclude that, under this condition our numerical method is conditionally 

stable. 
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CHAPTER 5: NUMERICAL SIMULATIONS 

Modeling real world problem requires three major steps including observation, analysis 

and prediction. The last two steps are performed within the framework of mathematical 

models, where observed facts are converted into a mathematical equation or set of 

mathematical equations. To perform the analysis, one needs to solve such mathematical 

problem using either analytical methods which normally provide exact solutions however, 

when the model is highly nonlinear, analytical methods are replaced by numerical 

methods. Numerical methods are now able to provide an approximate solution of the 

model. In the previous chapter, we presented some application of new numerical methods 

to solve the new model of groundwater flow with stochastic coefficients. The stability 

analysis was performed to guarantee the accuracy of the method.  

In this section, we present the numerical simulations of the new suggested method for 

modeling advection and dispersion transport problems via ABC derivative with different 

alpha values used. The figures are plotted using the MATLAB software and the numerical 

simulations via this software are portrayed from figures 3 to 22. The simulations depict 

change in contaminant concentration with respect to time and distance within a 

preferential flow path. To perform the simulation, we consider the following theoretical 

parameters  0.2<D< 2, 0.4<V<2, the following initial condition is considered c(0,0)=1000, 

we consider the boundary condition to following exponential decay law with respect to 

time, and consider a fixed decay rate of 0.9.  For each set of dispersion we consider the 

normal distribution as its statistical representation.  Since the subsurface is concerned and 

heterogeneity, one will expect a cross-over behavior in transport distribution. To account 

for this crossover, we chose to simulate the model with the Atangana-Baleanu fractional 

derivative as this derivative was found to be a powerful mathematical operator able to 

capture crossover from waiting time distribution to probability distribution. In general, we 

are aware that within a geological formation with heterogeneity, the pollution path always 

follow the non-Gaussian distribution. This also allow us not to simulate with Caputo-

Fabrizio to avoid steady state situation. 
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Figure 3: Numerical Simulation for contaminant concentration with respect to time using 

ABC, for α = 0.2 

 

Figure 4: Numerical Simulation for contaminant concentration within a preferential flow 

path using ABC derivative, for α =0.2 
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Figure 5: Numerical presentation for a contaminant concentration with respect to time and 

distance using ABC derivative, for α =0.2 

 

Figure 6: Numerical Simulation for contaminant concentration with respect to time using 

ABC derivative, for α = 0.2 
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Figure 7: Numerical Simulation for concentration with respect to time using ABC 

derivative, for α = 0.4 

 

Figure 8: Numerical Simulation for contaminant concentration within a preferential flow 

paths using ABC derivative, α =0.4 
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Figure 9: Numerical presentation for a contaminant concentration with respect to time and 

distance using ABC derivative, α = 0.4 

 

Figure 10: Numerical presentation for a contaminant concentration with respect to 

distance using ABC derivative, α = 0.4 
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Figure 11: Numerical presentation for a contaminant concentration with respect to time 

using ABC derivative, α = 0.6 

 

Figure 12: Numerical Simulation for contaminant concentration within a preferential flow 

path with respect to time and space using ABC derivative, α = 0.6 
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Figure 13: Numerical presentation for a contaminant concentration with respect to time 

and distance using ABC derivative, α = 0.6 

 

Figure 14: Numerical presentation for a contaminant concentration with respect to 

distance using ABC derivative, α = 0.6 
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Figure 15: Numerical presentation for a contaminant concentration with respect to time 

using ABC derivative, α = 0.7 

 

Figure 16: Numerical Simulation for contaminant transport within a preferential flow path 

with respect to time and space using ABC derivative, α = 0.7 
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Figure 17: Numerical presentation for a contaminant concentration with respect to time 

and distance using ABC derivative, α = 0.7 

 

Figure 18: Numerical presentation for a contaminant concentration with respect to 

distance using ABC derivative, α = 0.7 
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Figure 19: Numerical presentation for a contaminant concentration with respect to time 

using ABC derivative, α = 1 

 

Figure 20: Numerical Simulation for contaminant transport within a preferential flow path 

with respect to time and space using ABC derivative, α = 1 
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Figure 21: Numerical Simulation for contaminant concentration with respect to time and 

space using ABC derivative, α = 1 

 

Figure 22: Numerical presentation for a contaminant concentration with respect to 

distance using ABC derivative, α = 1 
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5.1 RESULTSAND DISCUSSIONS 

From the numerical simulations presented in the previous section, it can be seen that the 

results depict the behavior of certain real world situation in which the contaminant 

concentration changes with respect to time and space. This also indicates that the presence 

of heterogeneity with the aquifer systems has an impact on the groundwater velocity and 

dispersion of pollution. From the above figures 3, 5, 6, 10, 14 and 18, we observe the 

gradual decrease of the contaminant concentration with time. That is, in high values of 

alpha the pollution concentration decreases within a short time as compared to low alpha 

values. This means that, increasing or decreasing the scale factor has a direct influence on 

the concentration of pollution. The numerical simulations also show that there is a 

crossover from Gauss to non-Gaussian probability distribution. This is true for field scale 

observations because heterogeneity does exist in groundwater systems, and has an 

influence on groundwater velocity variability which also leads to dispersion of a pollutant. 

Thus, the above figures depict a normal distributions at some point but as the pollution 

travels with respect to time and distance, then we observe a change to non-Gaussian 

distribution. This is the main reason why the Atangana-Baleanu fractional derivative was 

used as it can capture these crossovers. 

Therefore, the new theorem here is that classical differential operators can only be used be 

to model homogeneous groundwater systems. However, in reality groundwater systems 

are not homogeneous, but are characterized by heterogeneity. We therefore conclude that, 

fractional differential operators must be used to model natural groundwater systems 

because they can capture heterogeneity. The numerical simulations obviously show that 

the fractional order the differential operator can replicate very accurately the fast, slow and 

normal flow depending on the value of the used alpha. Another important fact is that the 

concept of arithmetic average used in groundwater problems is not suitable as it gives 

exaggerated results. We suggest geometric means if all the same are different from zero.   
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CONCLUSION 

Modeling groundwater flow behavior using mathematical equations has always been a 

challenge as it requires a detailed understanding about the geologic formation through 

which groundwater moves. This remains a tricky challenge because the response and 

geological formation through which groundwater moves is invisible and can change with 

time and space. Some literature however, assumes that the aquifer parameters are constant 

at every point within the geological formation. Nevertheless, such assumptions become 

practically invalid because the subsurface is characterized by heterogeneity and aquifer 

parameters are not known with certainty. It is therefore very preferable to capture such 

uncertainties and heterogeneities using the concept of stochastic modeling. Stochastic 

models are very useful for providing predictions in situations where little information on 

aquifer parameters is available. Also, stochastic approach is used to estimate the variability 

of aquifer parameters of interest in a statistical framework, where a given constant 

coefficient is converted into a distribution. Thus, a stochastic approach has the ability to 

capture some physical processes with statistical setting. Nonetheless, some models fail to 

provide reliable groundwater flow estimates due to their inability to account for the 

heterogeneity, viscoelasticity and memory effect. The concept of differentiation is therefore 

very suitable to model different types of geological formations. For example, literature 

proves that the Atangana-Baleanu fractional derivative which is based on the Mittag-Leffler 

function is fit for application in various types of geological formations including the 

homogeneous, heterogeneous and viscoelastic subsurfaces. The Caputo fractional operator 

which utilizes the power function is very suitable for application in elastic and 

homogeneous subsurfaces, while the Caputo-Fabrizio fractional derivative which is based 

on the exponential law is suitable for modeling heterogeneous subsurfaces. Accordingly, 

the aim of this study was to combine the concept of non-local differential and integral 

operators with the stochastic approach because both concepts are capable to model 

complexity in real-world problems. In addressing the main, a new numerical scheme was 

developed using the Adams-Bashforth method to generate a new solution of modeling 

groundwater flow problems. Then, the condition for stability was tested using the Von 

Neumann stability analysis method. Lastly, numerical simulations were also presented. 
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