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Abstract

The purpose of this thesis is twofold. Firstly, it reviews a significant portion of liter-

ature concerning multiple imputation and, in particular, sequential regression multiple

imputation, and summarises this information, thereby allowing a reader to gain in-depth

knowledge of this research field. Secondly, the thesis delves into one particular novel topic

in sequential regression multiple imputation. The latter objective, of course, is not truly

possible without the former, since the deeper the review of multiple imputation, the more

likely it will be to identify and solve pressing concerns in the sequential regression multiple

imputation subfield.

The literature review will show that there is room in imputation research for work on

a robust model for the sequential regression multiple imputation algorithm. This thesis

pays particular attention to this robust model, formulating its estimation procedure within

the context of sequential regression multiple imputation of continuous data, attempting to

discover a statistic that would show when to use the robust model over the regular Normal

specification, and then implementing the robust model in another estimation algorithm

that might allow for better imputation of ordinal data.

This thesis contributes to ‘extending the reach of sequential regression multiple imputa-

tion’ in two ways. Firstly, it is my wish for users of public data sets, particularly in South

Africa, to become familiar with the (now internationally standard) topics presented in

the first half of this thesis. The only way to start publicising sequential regression multi-

ple imputation in South Africa is to lay out the evidence for and against this procedure

in a logical manner, so that any reader of this thesis might be able to understand the

procedures for analysing multiply imputed data, or tackle one of the many research prob-

lems uncovered in this text. In this way, this thesis will extend the reach of sequential

regression multiple imputation to many more South African researchers. Secondly, by

working on a new robust model for use in the sequential regression multiple imputation

algorithm, this thesis strengthens the sequential regression multiple imputation algorithm

by extending its reach to incomplete data that is not necessarily Normally distributed, be

it due to heavy tails, or inherent skewness, or both.
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Abstract (Afrikaans)

Die doel van hierdie tesis is tweeledig. Eerstens, gee dit ’n oorsig oor ’n beduidende

gedeelte van die literatuur oor toerekening, en in die besonder, opeenvolgende regressie

veelvuldige toerekening, en som hierdie inligting op, waardeur n leser in-diepte kennis

van die navorsingsveld kan kry. Tweedens, die tesis vors ’n bepaalde nuwe onderwerp na

in opeenvolgende regressie veelvuldige toerekening. Die laasgenoemde doelwit is natu-

urlik nie werklik moontlik sonder die voormalige nie, want hoe deegliker die oorsig oor

veelvuldige toerekening, hoe meer waarskynlik sal dit wees om belangrike onderwerpe in

die opeenvolgende regressie veelvuldige toerekening area te identifiseer en op te los.

Die literatuuroorsig sal wys dat daar ruimte in die navorsingsgebied oor toerekening is

vir werk oor ’n robuuste model vir die opeenvolgende regressie veelvuldige toerekening

algoritme. Hierdie tesis bestee besondere aandag aan hierdie robuuste model, naamlik

die formulering van sy beramingsprosedure binne die konteks van opeenvolgende regressie

veelvuldige toerekening van deurlopende data, en die tesis poog om ’n statistiek te vind

wat aanwys wanneer die robuuste model moet gebruik word eerder as die gewone Normale

spesifikasie; daarna word die robuuste model geimplementeer in ’n ander beramingsalgo-

ritme wat moontlik ordinale data beter kan toereken.

Hierdie tesis dra by tot die ‘uitbreiding van die aanreik van opeenvolgende regressie

veelvuldige toerekening’ op twee maniere. Eerstens, dit is my wens dat gebruikers van

openbare data stelle, veral in Suid-Afrika, vertroud raak met die onderwerpe (wat nou

die internasionale standaard is) wat in die eerste helfte van hierdie tesis hersien is. Die

enigste manier om opeenvolgende regressie veelvuldige toerekening in Suid-Afrika bek-

end te stel is om sy voor- en nadele op ’n logiese manier uit te lê, sodat enige leser

van hierdie tesis in staat kan wees om die prosedures vir die ontleding van vermeerderde

toegerekende data te verstaan, of poging kan maak om een van die vele navorsingsprob-
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leme wat in hierdie teks voorgestel is op te los. Op hierdie manier sal die tesis die

rykwydte van opeenvolgende regressie veelvuldige toerekening uitbrei na baie meer Suid-

Afrikaanse navorsers. Tweedens, deur te werk op ’n nuwe robuuste model vir gebruik

in die opeenvolgende regressie veelvuldige toerekening algoritme, verbeter hierdie tesis

die opeenvolgende regressie veelvuldige toerekening algoritme deur die uitbreiding van sy

aanreik oor onvolledige data wat nie noodwendig Normaal versprei is, of dit nou te danke

is aan swaar sterte van die verdeling, of innerlike skeefheid daarvan, of albei.
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Description of content

The background and rationale for this thesis are given in Chapter 1. In Chapter 2 this

thesis reviews multiple imputation, from its origin to several recent advances. The main

advance in question, sequential regression multiple imputation, is reviewed in Chapter 3.

The sequential regression multiple imputation algorithm’s development, processes and

recent advances are discussed in detail within that chapter. A new robust model for the

sequential regression multiple imputation process is introduced and tested in Chapter 4.

The question of sequential regression multiple imputation evaluation is then discussed

in Chapter 5, with the goal of identifying when the new robust model should be used

instead of the traditional Normal model. An additional application in sequential regression

multiple imputation for the robust model introduced in this thesis is then evaluated in

Chapter 6. Chapter 7 will conclude this thesis. In this thesis, Chapters 1 to 3 represent

a review of previous literature, while the chapters thereafter contain new, original work.
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� ABB – approximate Bayesian bootstrap

� BB – Bayesian bootstrap
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� PM – predictive model

� PMM – predictive mean matching

� PS – propensity score

� QQ – quantile-quantile, as in QQ plots
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Mathematical notations

� Y (N) = N × p (population) matrix of partially observed outcome variables

� Y
(N)
inc (population) matrix of outcome variables included in the survey

� Y
(N)
obs (population) matrix of outcome variables that are observed

� X(N) = N × q (population) matrix of fully observed covariates

� I(N) = N × p (population) indicator matrix for inclusion of Y (N) in survey

� R(N) = N ×p (population) indicator matrix for response on Y (N). In R(N) there are
ones in the positions of the missing data entries of the complete data matrix, and
zeroes elsewhere

� R
(N)
inc (population) indicator matrix for response on Y (N), but only that part of R(N)

for the data that is included in the survey

� Y = n× p matrix of the incomplete part of a data set

� Yj j
th variable of the data set, Y

� Y−j The entire Y data set excluding the jth variable of the data set

� Ycom =
{
X(N), Y

(N)
inc , I

(N)
}

= n × p matrix representing the complete (but not

observed) version of the incomplete Y

� Yobs =
{
X(N), Y

(N)
obs , I

(N), R
(N)
inc =

}
n× p matrix of the observed part of Y

� yobs, a fully-observed dependent variable (Chapter 5)

� Ymis = n× p matrix of the missing part of Y

� X = n× q matrix of fully observed covariates in a data set

� Xobs = n× q matrix, is that part of X that corresponds to Yobs

� Xmis = n× q matrix, is that part of X that corresponds to Ymis

� nobs is the number of cases observed in the variable of interest

� nmis is the number of cases missing in the variable of interest

� R ≡ {rij} = n × p indicator matrix of response on Y . In R there are ones in
the positions of the missing data entries of the complete data matrix, and zeroes
elsewhere. The distribution of R, known as the missing data mechanism (or MDM
following the acronyms in this section section), is Pr (R|Ycom, θ), where θ is a vector
of unknown parameters.
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Chapter 1

Introduction

One of the major issues associated with large surveys is that of non-response or lost

data — missing survey data that is almost always multivariate in nature. Moreover, the

main problematic issue regarding missing data is that most data analysis procedures are

not designed to handle them, leading to analyses that conclude invalid and inefficient

inferences about a population (Schafer & Graham 2002). Many economic analyses use

either complete-case analysis or a simple method of imputing missing data, such as single

imputations. Even if simple single imputations are accurate, they almost certainly do not

capture the imputer’s inherent uncertainty in the guesswork involved. This is one of the

reasons for the development of multiple imputation. The science of multiple imputation

has evolved in such a way as to be able to remove the onus of imputing from the analyst

(Meng 1994), so that public-use data sets can be prepared by imputation experts and

offered to experts in the analysis arena without substantial loss in estimation validity

and/or efficiency, provided the guidelines for the use of multiply imputed data are followed.

Bayesian statistics, in particular, seem to be particularly well-suited for imputation (Meng

1994), since the unknown values can be modelled directly given the known and explicit

model parameters.

1



2 CHAPTER 1. INTRODUCTION

1.1 Background: Incomplete Data

It is important to lay the groundwork under the concept of incomplete data and the non-

imputation and imputation procedures used to solve incomplete data problems, so that

any reader not familiar with the topic can be guided into the field before being bombarded

with the technical aspects presented in Chapters 2 and 3. In essence, several topics need to

be introduced, namely, the concept of incomplete data and how data becomes incomplete,

how incomplete data is dealt with by statisticians.

1.1.1 What is incomplete data?

Incomplete data refers to any data set that contains missing values within one or more of

the variables within that data set. If the missing data points are found only within a single

variable, then the problem is univariate, but, as mentioned before, most often missing

values are spread across several variables within a data set. These missing values are

often the result of subjects not responding to certain questions in a survey questionnaire

in the cross-sectional case, or subjects dropping out of a study in the longitudinal case.

However, missing values can also be the result of several other factors, for example,

anomalous responses that are deleted.

In the statistical world, it is assumed that some random process causes data to become

missing. This process is known as the missing data mechanism. In brief, there are

three mechanisms by which data is said to be missing — ‘missing at random’ (MAR),

‘missing completely at random’ (MCAR), or ‘missing not at random’ (MNAR). In the

MAR mechanism, the distribution of positions of the missing data entries is assumed

to be independent of the missing data in the analysis, or Pr (R|Ycom, θ) = Pr (R|Yobs, θ),

where R is the missing data mechanism, Ycom is the theoretical complete data set, θ is

the unknown parameter of the data, and Yobs is the observed part of the data. In the

case of MCAR, a special version of the MAR mechanism, the positions of the missing

data entries are assumed to be independent of all of the variables in the analysis, i.e.

Pr (R|Ycom, θ) = Pr (R|θ), using the same notations as before. Of course, this implies that

the missing entries are entirely independently randomly missing. In the last case, the
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MNAR missing data mechanism, the positions of the missing data entries are assumed to

be at least dependent on data that is missing from the data set, or, more basically, the

distribution of missingness is not MAR. Once again using the same notations, this means

that for MNAR, Pr (R|Ycom, θ) 6= Pr (R|Yobs, θ).

1.1.2 Patterns of missing data

The missing data in an incomplete data set can form one of several different patterns.

These can be categorised into two main groups, namely, a monotone pattern and a general,

or non-monotone pattern.

A monotone pattern exists if the variables can be ordered such that, for each observation

in the data set, all previous variables are observed if a later variable is observed (i.e., if a

variable is observed for a particular row or case, all variables to the left of that variable

are also observed for that case). This pattern often exists in longitudinal studies when

patients drop out and do not return to the study.

Any pattern that is not a monotone form is a general pattern, or non-monotone pattern.

Specific types of general patterns do exist, however. One example is the file matching

pattern, in which a set of incomplete variables only has a single observed quantity per

observation.

1.2 Review of the methods of handling incomplete

data

1.2.1 Complete-case analysis on incomplete data

In complete-case analysis, only cases containing values for each of the variables in the

analysis are retained in the analysis procedures. This can raise the problem of serious

bias in the analysis if the data is originally incomplete (Little & Rubin 2002), including

problems relating to invalid and/or inefficient estimates. For example, suppose that a

survey is taken over rural and urban households, both poor and non-poor, and is designed
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to measure the amount of total years of formal education of the head of the household and

the monthly income of the household. One would expect a positive relationship between

income and education a priori. Moreover, for urban households, education may fluctuate

over a wide interval from poorly educated to well-educated (being closer to a wider range

of institutions able to offer a formal education). For rural households, however, one would

expect formal education to be more of a luxury, and so values for this variable would be

much lower in these households. Additionally, for rural households, where income is

traditionally lower and more difficult to determine, the probability of non-response in

the income variable may be higher. A complete-case analysis of all the household data

will then possibly drop a large number of rural observations (due to missing income)

and the strength of the positive relationship between education and income could be

understated. Hence, a bias can exist in the analysis. Additionally, loss of sampled units

increases variance and therefore leads to inefficient estimates. One must note, however,

that these possible biases may not always exist in complete-case analysis, but rather that

the extent of bias will depend on the mechanism by which data is deemed to be missing.

Particularly, if the data is missing completely at random (MCAR), then there will be no

bias in complete-case analysis of multivariate data with missing entries (Schafer 2003).

This is logical, since if data is missing completely at random, any incomplete cases dropped

from the complete-case analysis can be thought of as sampled units dropped in a second

random stage of sampling. However, even if this is the case, the resulting inferences

from this list-wise deletion may be inefficient, since the sample size is reduced, essentially

unnecessarily.

To overcome the possible biases in complete-case analysis, many methods of dealing with

incomplete data have been suggested. These methods are divided into two camps — the

non-imputation procedures, and the imputation procedures. The former is introduced in

the following subsection, while the latter is again divided into two main fields, namely

single imputation and multiple imputation. These are introduced in Subsections 1.2.3

and 1.2.5.
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1.2.2 Non-imputation procedures

The non-imputation methods of handling incomplete data include available-case analysis,

weighting (or re-weighting) procedures, indicator methods, and model-based procedures.

Available-case analysis. Available-case analysis estimates different parameters of in-

terest using different subsets of the data set, basically creating estimates of interest accord-

ing to the data that is available. While using all the available data is sensible, analytical

procedures are difficult to perform under these circumstances (Schafer & Graham 2002).

Re-weighting. The re-weighting procedure drops incomplete cases and assigns weights

to the remaining observations (determined by additional or auxiliary variables) so that

the remaining cases more accurately reflect the distribution of the complete data. In this

way generalised estimating equations can be modified to provide valid inferences when

the missing data mechanism is MCAR or MAR (Kenward & Carpenter 2007). However,

“[w]eighting can eliminate bias due to differential response related to the variables used

to model the response probabilities, but it cannot correct for biases related to variables

that are unused or unmeasured” (Schafer & Graham 2002, p.157). In other words, if the

probability of response is determined by unmeasured variables, which is entirely possible,

then this method becomes less attractive.

Additionally, re-weighting complete observations so that they are representative of the

population sampled implies calculating weights which are generated from estimated prob-

abilities of non-response. These estimated probabilities are inferred from the data or from

auxiliary variables, but the overall weighted analysis often does not include an uncertainty

component due to the estimation of these probabilities from the data.

Indicator method. In the indicator method, summarised by Brand (1998), for each

incomplete independent variable xj, the regression term βjxj can simply be replaced by

β0jxj(1− Rj) + βjRjxj, where Rj is the response indicator of xj. This procedure simply

adjusts the intercept when the value is missing, and as, such, can lead to biased estimates

under a number of conditions. A better replacement would be β0jxj(1− Rj) + Rjβjxj +
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∑
k∈mis;k 6=j Rj(1−Rk)βjkxj, but this method increases the number of parameters greatly,

and, therefore, may not be more efficient than list-wise deletion (Brand 1998).

Maximum likelihood. Rubin (1976) introduces this maximum likelihood estimation

procedure that integrates out missing data. Schafer & Graham (2002, p.162) mention

that, “[u]nder MAR, the marginal distribution of the observed data. . . provides the correct

likelihood for the unknown parameters [of the data,] θ, provided that the model for

the complete data is realistic”. Thus, even the maximum likelihood (ML) method of

imputation can suffer from serious drawbacks — a lack of robustness in estimates when

the model deviates from the fully parametric model assumed for the complete data, and

the fact that the ML method needs a large sample for ML estimates to be approximately

unbiased and Normally distributed (Schafer & Graham 2002).

In essence, however, the maximum likelihood procedure for incomplete data follows a

simple ideal that itself has merit enough to warrant a basic understanding of the process.

Brand (1998, pp.36–37) summarises the process well:

“[I]mpute the missing data entries on the basis of an initial estimate

θ(0) or θ; re-estimate θ from the completed data θ(1); use θ(1) to re-impute

the missing data entries; use the re-completed data to re-estimate θ by

θ(2); and so on; iterate this until θ(t) converges. Each iteration of [this so-

called] EM [algorithm] consists of an E-step (Expectation) and an M-step

(Maximi[s]ation). In the E-step, the expected complete data log-likelihood

Q(θ|θ(t)) = E[l(θ|y)|yobs, θ = θ(t)] is estimated from the current estimate θ(t).

In the M-step, a new estimate θ(t+1) is found, which maximi[s]es the expected

complete data likelihood Q(θ|θ(t)) from the previous E-step for θ. In fact,

in the E-step, not the missing data ymis but functions of ymis on which the

complete data log-likelihood l(θ|y) depends are estimated... For special statis-

tical models within the [E]xponential family, such as the multivariate [N]ormal

model, the M-step is similar to the MLE for complete data.”

Additional drawbacks mentioned by Brand (1998) include the fact that convergence of

EM can be very slow in cases where there is a large proportion of missing data, that
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convergence to a global maximum is not guaranteed, that standard errors and correlation

matrices of point estimates are not directly available from EM and their calculation can be

complicated, that ML is designed for large samples and has limitations for small samples,

and that EM requires statistical expertise.

Extending the ML method by including priors to formulate posteriors alleviates the incon-

venience of the large samples being required. However, these posteriors may be extremely

complex and may require numerical integration or Monte Carlo techniques in order to

solve them, similar to the final non-imputation method presented below.

Integration. One could attempt to integrate out the missing data within an incomplete

data set, in a way that is summarised by Carpenter & Kenward (2007). Suppose that we

divide the incomplete data set into outcome variables, Y , and covariates, X. Let R be

the missing data mechanism. Our initial model is f(Y,X,R) = f(Y,X) Pr(R|Y,X). If

the missing data mechanism is MCAR or MAR, then it is ignorable1, and if the overall

analysis model and the model for missingness share no parameter space, we can integrate

over the missing observation outcomes and covariates, Ymis and Xmis, as follows:

f (Yobs, Xobs)

= f (Yobs|Xobs) f (Xobs)

=

∫ ∫
f (Yobs, Ymis|Xobs, Xmis) f (Xmis|Xobs) f (Xobs) dXmisdYmis,

where Yobs and Xobs are the observed parts of the outcome and covariate matrices, respec-

tively.

This integration is often analytically intractable, and therefore many methods have been

developed and applied to tackle the problem, including the expectation-maximisation

(EM) algorithm, Monte Carlo Newton Raphson and Monte Carlo likelihood, mean score

methods, and fully Bayesian methods based on Markov Chain Monte Carlo (MCMC)

modelling (Kenward & Carpenter 2007).

1The concept of ignorability is fully discussed in Chapter 2.
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1.2.3 Single imputation before complete-case analysis

Alternatively, if complete-case analysis methods are to be used on an data set that is orig-

inally incomplete, data can be filled in by several single imputation procedures, including

substitution, cold-deck imputation, unconditional and conditional mean (or mean/mode)

substitution, imputation from unconditional distributions or (single) hot-deck imputation,

and imputation from conditional distributions. The term ‘single’ in the concept, ‘single

imputation methods’ implies imputing only one value for each missing datum.

Substitution. Substitution, occurring at the fieldwork stage of a survey, substitutes

non-respondents with respondents not originally selected for interview. Again, possible

bias may exist in parameters drawn from analysis if the non-respondents differ systemat-

ically from the respondents.

Cold-decking. Cold-deck imputation substitutes missing values with values from out-

side the current data set, such as a previous wave of the current survey. As with substitu-

tion, possible bias may exist due to a systematic difference between non-respondents and

the respondents from which the imputed values are taken.

Unconditional mean substitution. Unconditional mean substitution simply replaces

a missing value in a variable with the mean of the available data for that variable. While

the means of the variables will be preserved by this process, the standard errors will be

reduced, leading to parameter estimates that seem more significant than they actually

are. A variation of mean substitution is mean/mode substitution. The difference between

these two methods lies in their handling of categorical variables. For mean substitution

the mean of the corresponding indicator variables created from a categorical variable is

used, whereas in mean/mode substitution the mode of the categorical variables are used

for imputations.

Conditional mean substitution. Conditional mean substitution regresses the com-

plete part of a variable on other variables and predicts values for the incomplete part of

that variable. The missing values are imputed using the fitted values from the regression
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model. This method is not recommended for analysis of covariances or correlations, as

the strengths of the relationships between the imputation-filled variables and the rest of

the data set are overstated.

Hot-decking. Imputation from unconditional distributions (hot-decking) chooses a value

for the missing entries in a variable from the observed values of that variable. In this

case bias in analysis on the completed data is still possible, but it is more likely to oc-

cur in regressions equations based on the completed data than in measures of central

tendency (Saunders, Morrow-Howell, Spitznagel, Doré, Proctor & Pescarino 2006). Ard-

ington, Lam, Leibbrandt & Welch (2006) also correctly point out that observed outliers

or anomalies can affect the analyses more than they should be allowed to do so since any

outlier or anomaly has a chance of being drawn to replace a missing value.

Imputation from conditional distributions. Imputation from conditional dis-

tributions implies simulating a draw from the distribution Pr (Ymis|Yobs, θ) =

Pr (Yobs, Ymis, θ) /Pr (Yobs|θ), where θ is again the unknown parameter of the data. Since θ

is unknown, an estimate of θ, θ̂, must be made from Yobs, after which a draw can be made

from Pr(Ymis|Yobs, θ̂). This method requires a correctly specified model for Pr (Ymis|Yobs, θ),

but if this is the case it will produce “nearly unbiased estimates for many population quan-

tities under [the] MAR [mechanism]” (Schafer & Graham 2002, p. 159). For more on these

procedures, both imputation and non-imputation, see Little & Rubin (2002) and Schafer

& Graham (2002).

1.2.4 Requirements for good imputations

Incomplete data problems generally require a solution that has the following capabili-

ties, according to Rubin (1987, p. 11). Firstly, it should be possible to utilise standard

complete-data analysis methods on the data sets that have been filled in. Secondly,

the imputation technique and adjustments to the follow-up analysis should yield valid

inferences that produce both estimates that adjust for observed differences between re-

spondents and non-respondents and standard errors of these estimates that reflect the
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reduced sample size and an adjustment for observed differences between respondents and

non-respondents. Finally, the multiple imputation technique should display the sensitiv-

ity of inferences to various plausible models for nonresponse. These are the guidelines

that will be used to judge imputation methods within this thesis. As Meng (1994, p.

538) puts it, “[f]rom an inferential point of view, perhaps the most fundamental reason

for imputation is that a data collector’s assessment and information about the data, both

observed and unobserved, can be incorporated into the imputations.”

The single imputation methods mentioned in this section have the advantage of allowing

existing complete-case analysis methods to be used on the filled-in data set. Addition-

ally, the imputer’s knowledge can be incorporated into the imputation procedure. The

drawbacks, however, are that the complete-data methods that will be used assume the

imputed values are known. This means that inferences based on the data are systemati-

cally sharper than they should be, and quantities based on variability (e.g. correlations)

can be biased. Moreover, if the nonresponse mechanisms are not understood, no accom-

modation is being made for the uncertainty of not knowing which nonresponse models for

imputation are appropriate. In essence, the single imputation procedures only sufficiently

adhere to one of the three properties needed from a solution to incomplete data problems

(Rubin 1987).

1.2.5 Multiple Imputation

Multiple imputation covers a broad category of methods of imputation that impute several

plausible values for each missing value in a data set. Rubin (1978) mentions that the

interest in multiple imputation may have grown for three reasons:

1. Surveys seemed to be suffering more and more from nonresponse;

2. There was a growing awareness that the existing standard methods of handling

nonresponse were unsatisfactory; and,

3. Both mathematically and computationally, this topic was proving to be a rich sta-

tistical research area.
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From the start of the development of his methods (which, in time, have been proved

to be the fundamental groundwork for this entire research area), Rubin’s (1978, p. 20)

objective was to build “statistically sound tools for handling nonresponse in general pur-

pose surveys”, and to “be concerned with both theoretical appropriateness and practical

utility” [emphasis added]. From these statements we can see that the aim of multiple

imputation was two-fold from the beginning: statistical appropriateness and tractability,

in particular, for application in survey nonresponse. Rubin continues his explanation of

the guidelines under which he developed his methods, writing that “handling nonresponse

must mean displaying how different the answers from the surveys might have been if the

nonrespondents had responded” (Rubin 1978, p. 20). At this early stage in the develop-

ment of multiple imputation, Rubin already knew that key to this research area would be

to separate the analysis task from the imputation task. This is evident when he writes,

“in multipurpose surveys, some form of imputation is just about the only practically

possible method for handling nonresponse, because the data set will be used to address

many questions now and in the future. Remodelling the missing data process each time

a new question is to be asked of the data base seems to be impractical, while creating an

imputed data set is quite practical” (Rubin 1978, p. 21).

Multiple imputation is viewed as a flexible alternative to likelihood methods for a range

of incomplete data problems (Schafer & Graham 2002), as well as a range of nonresponse

models. As in single imputation, the knowledge of the imputer can be incorporated into

the imputation procedure, and, once the imputations have been completed, complete-case

analysis procedures can be used to analyse the data. However, the primary advantage of

multiple imputation is the inflation of uncertainty in the analysis estimates. In essence,

multiple imputation covers a class of methods that impute several plausible values for a

single missing data entry. Once the missing values have been imputed, several completed

data sets are left to be analysed by complete-case methods. A simple set of rules is

then used to combine the estimates from the separate analyses of the several data sets,

and the uncertainty of these estimates is then formed from the sample variation as well

as variation in the imputed values themselves. So the estimates derived from multiple

imputation adjust for observed differences between respondents and nonrespondents and

the standard errors of these estimates reflect the reduced sample size and an adjustment for
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observed differences between respondents and nonrespondents. Hence multiple imputation

methods technically adhere to all three of the guidelines set out by Rubin (1987).

Multiple imputation can easily be linked to Bayesian statistics, as the imputed values for

a single missing data entry can be draws from the posterior predictive distribution for

the non-missing data. Additionally, in the quest for parsimonious Bayesian algorithms

for multiple imputation, several advances in methodology have been made since Rubin’s

(1978)’s fundamental multiple imputation concepts were established. This thesis is pri-

marily focused on one particular multiple imputation evolution, that being sequential

regression multiple imputation. Multiple imputation in general, will be covered in Chap-

ter 2, while the more recent adaptation, sequential regression multiple imputation, will

be discussed in Chapter 3.

The drawbacks of multiple imputation, according to Rubin (1987), are as follows: that

more work is required to produce multiple imputations rather than single imputations;

that more space is needed to store multiply-imputed data sets; and that more work is

needed to analyse multiply-imputed data sets. However, with the advance in computing

power in modern times, these three disadvantages pale in comparison to the advantages of

applying multiple imputations in solving incomplete-data problems, even if we choose to

create a large number of multiply-imputed data sets for each incomplete-data problem.

1.3 Objectives

With the groundwork laid concerning the traditional measures of handling incomplete

data, the objectives of this thesis should be brought to light. The methods for handling

incomplete data introduced above clearly suggest that the only sensible way to produce

complete data from incomplete data in a variety of contexts, is to use a form of multiple

imputation.

The first objective of this thesis, therefore, is to review the literature on multiple im-

putation, and in particular, the later adaptations of multiple imputation, to be able to

provide a primer for any reader on the topic of multiple imputation, and to identify the

key research areas in which additional work will be beneficial.
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The second objective, which can only be completed after a thorough review of the liter-

ature on multiple imputation, is to contribute to one of the identified key research areas

within multiple imputation, by attempting to solve a set of related unsolved problems

under the topic of multiple imputation. The key research area under consideration is

sequential regression multiple imputation.

Both thesis objectives seek to “extend the reach of sequential regression multiple im-

putation”. By thoroughly reviewing the evolution of multiple imputation to sequential

regression multiple imputation, the reader will be familiarised with the methodology,

benefits, and uses of multiple imputation in general, and sequential regression multiple

imputation in particular. The reader can use this thesis as a primer on multiple imputa-

tion and sequential regression multiple imputation, in order to contribute to these fields

of research, or simply just to know how to handle multiple imputed data. The latter is

particularly important in South Africa, where the crude, non-multiple-imputation mea-

sures mentioned in this chapter are still being used extensively. The second objective of

this thesis seeks to “extend the reach of sequential regression multiple imputation”, but

this time, in a more literal manner. As will be shown in the literature review, one area

of research within sequential regression multiple imputation (and the focus area of this

thesis) is the use of robust alternatives to the standard models. These robust alternatives

allow sequential regression multiple imputation to reach a wider array of incomplete data

models. Moreover, these robust models allow for incomplete data with longer distribution

tails than are usually controlled for, thereby literally “extending the reach of sequential

regression multiple imputation”.
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Chapter 2

Multiple Imputation

2.1 Introduction

Multiple imputation (MI) was first proposed by Donald Rubin in the 1970’s as one solution

to survey nonresponse problems. Rubin (1978) suggested that guidelines be established

for imputers to be able to follow, rather than having imputers create ad hoc measures to

solve the nonresponse problem every time it arose. Rubin (1978) also mentions that a

goal of, or the plan for MI, was that the imputed values reflect the variation within an im-

putation model as well as sensitivity to different imputation models, and that the analysis

of the resultant multiply-imputed data be viewed as simulating predictive distributions

of desired summary statistics under imputation models. The entire process behind MI

and analysis is then divided into three areas, namely the modelling task (specifying a

hypothetical joint distribution), the imputation task (deriving a predictive posterior dis-

tribution for the incomplete variable(s)), and the analysis task (estimating parameters of

interest from the completed data). Restrictions inherently exist in MI problems, namely

statistical appropriateness and tractability or practicability. Additionally, tractability can

be emphasised in the way that MI was engineered to split the imputation task from the

analysis task.

The important early advances in this field of research will be reviewed in detail in Sec-

tion 2.2, while the more recent advances in the field will be reviewed in Section 2.3.

15
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2.2 Early Multiple Imputation

The early years in the development of MI saw some profound results. The first problem

that had to be dealt with was the the confounding process causing the missing data to

appear the way it does, since its inclusion in the modelling procedure made matters more

complicated. Research into the implications behind ignoring this MDM, and the situations

in which this was an acceptable practice, laid the groundwork into opening up the MI

research field to many new advances, including the standard multiple data set estimate

combining rules, analyses of the validity and efficiency of the estimates generated from

these rules, re-weighted combining rules, and, the primary topic of interest in this thesis

sequential regression multiple imputation, amongst others.

2.2.1 Ignorable processes for causing missing data

In general, Rubin’s (1976) work shows that one may ignore the process that causes the

missing data if the missing data are missing at random and the observed data are observed

at random. These two conditions together imply that the data is missing completely at

random (MCAR) (Little & Rubin 2002). In a Bayesian context, these requirements are

slightly adjusted, as will be explained below.

Rubin (1976) defines missing data to be missing at random if, for each possible value

of the parameter φ of the MDM, gφ(R̃|Ỹ ), the conditional probability of the observed

pattern of missing data, given the missing data and the observed data, is the same for all

possible values of the missing data. The tilde in the formulations represents the observed

matrices. So no matter what the missing values are or could be, we will still see the same

pattern of missing data if the data is MAR. Rubin (1976) defines data to be observed at

random if, for each possible value of the missing data and φ, the conditional probability

of the observed pattern of missing data, given the missing data and the observed data,

i.e. gφ(R̃|Y ), is the same for all possible values of the observed data. Rubin (1976) also

defines the parameter for the MDM, φ, and the parameter for the data, θ, as distinct if

their joint parameter space factorises into a space for φ and a space for θ, and when prior

distributions are specified for these two parameters, if these parameters are independent.
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Zhang (2003) elaborates, explaining that the parameters are distinct if:

1. From a frequentist perspective, the joint parameter space of (θ, φ) is the Cartesian

cross-product of the parameter spaces for θ and φ;

2. From a Bayesian perspective, the joint prior distribution of (θ, φ) can be factored

into independent marginal prior distributions for θ and φ.

Rubin’s (1976) objective was to use Ỹ , or alternatively, R̃ and Ỹobs to make inferences

about θ. This essentially implies ignoring the process that causes missing data by fixing

the random variable R at the observed pattern of missing data R̃ and assuming that the

values of the observed data, Ỹobs, arose from the marginal density of the random variable

Yobs: ∫
fθ (Y ) dYmis (2.1)

The question was whether this process would imply valid inferences about θ. In fact,

fixing the random variable R at the observed pattern of missing data R̃, the sampling

distribution of a statistic based on the observed data, S(Ỹobs), is the conditional density

of Yobs given R = R̃:

∫
fθ (Y )

gφ

(
R̃|Y

)
kθ,φ

(
R̃
) dYmis (2.2)

where kθ,φ(R̃) =
∫
fθ(Y )gφ(R̃|Y ), the marginal probability that R = R̃. This means

that the correct sampling distribution of S(Ỹ ) depends in general not only on the fixed

hypothesised fθ, but also on the fixed hypothesised gφ. However, Rubin (1976) goes on

to mention that if the missing data is MCAR, gφ(R̃|Y ) takes on the same value for all

Y . Hence, kθ,φ(R̃) = gφ(R̃|Y ), and thus the distribution of every statistic under the

density (2.1) is the same as under the density (2.2).

Moreover, the sampling distribution of S(Ỹ ) under fθ calculated by ignoring the MDM

equals the correct conditional sampling distribution of S(Ỹ ) given R̃ under fθgφ for

every S(Ỹ ), if and only if EYmis
[gφ(R̃|Y )|R̃, Yobs, θ, φ] = kθ,φ(R̃) > 1, and, the sam-
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pling distribution of S(Ỹ ) under fθ calculated by ignoring the MDM equals the correct

unconditional sampling distribution of S(Ỹ ) given R̃ under fθgφ for every S(Ỹ ), if and

only if gφ(R̃|Y ) = 1. For more information concerning these two theorems, see Rubin

(1976, p. 585).

In essence, ignoring the MDM and making inferences about the underlying parameter of

the data, θ, means comparing the estimator from the observed data (given the missing data

pattern) to the estimator from the marginal distribution of the observed data (ignoring

the MDM). As soon as one fixes which data are missing, the sampling distribution of

the observed data follows the conditional density of the observed data given the pattern

of missing data that was observed. Rubin (1976) shows that this conditional density is

the same as the marginal density (ignoring the missing data mechanism) if the missing

data are MAR and the observed data are observed at random. However, the resulting

inferences are conditional on the pattern of missing data that was observed; the densities

are equal to the correct sampling density if the pattern of missing data is assumed to be

the same regardless of the parameter of the process causing the data to be missing. So

if the MDM is ignorable, valid inferences about the population parameter can be made

from unconditional distributions of the observed data.

In Rubin’s (1976) paper, this process is also analysed in a Bayesian context (as well as

a direct likelihood approach, which will not be revisited here). In a Bayesian context,

θ and φ are random variables whose marginal distribution is specified by the product of

the priors, p(θ)p(φ|θ). If we ignore the MDM, we choose p(θ) and assume that Ỹobs arises

from density (2.1). So the posterior distribution of θ ignoring the MDM is proportional

to:

p (θ)

∫
fθ

(
Ỹ
)
dYmis (2.3)

However, we are fixing R = R̃ without conditioning on it in posterior (2.3). The correct

conditional posterior distribution is indeed proportional to:

p (θ) p (φ|θ)
∫
fθ

(
Ỹ
)
gφ

(
R̃|Ỹ

)
dYmis (2.4)
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However, if the data are MAR, and θ and φ are distinct, then:

p (θ) p (φ|θ)
∫
fθ

(
Ỹ
)
gφ

(
R̃|Ỹ

)
dYmis =[

p (θ)

∫
fθ

(
Ỹ
)
dYmis

] [
p(φ)gφ

(
R̃|Ỹ

)
dYmis

]

So, the posterior distribution of θ ignoring the process that causes missing data equals

the correct posterior distribution of θ, and the posterior distributions of θ and φ are

independent. Rubin (1976) also shows that the posterior distribution of θ ignoring the

process that causes missing data equals the correct posterior distribution of θ if and only

if Eφ,Ymis

[
gφ

(
R̃|Ỹ

)
|R̃, Ỹobs, θ

]
takes on a constant positive value, since the posterior

distribution of θ is proportional to posterior (2.4) integrated over φ, i.e.

[
p (θ) fθ

(
Ỹ
)
dYmis

] ∫
EYmis

[
gφ

(
R̃|Ỹ

)
|R̃, Ỹobs, θ, φ

]
p (φ|θ) dφ

=
[
p (θ) fθ

(
Ỹ
)
dYmis

]
Eφ,Ymis

[
gφ

(
R̃|Ỹ

)
|R̃, Ỹobs, θ

]
∝ p (θ)

∫
fθ

(
Ỹ
)
dYmis

To summarise the Bayesian aspect of this research, if the data are MAR and the param-

eters of the MDM and the overall data are distinct, the joint posterior distribution of the

parameters of the data and the MDM is the same as the correct posterior of the parameter

of the data. These distributions are the correct posterior distributions for the parameter

of the data if and only if the conditional expectation of the MDM, given the pattern of

missing data, the observed data and the underlying parameter for the data, is a constant

positive value. Note that the missing data need not be MAR and the observed data be

observed at random (i.e. we need not have missing data that is MCAR), but rather only

that the data are MAR and the parameters of the missing data process and the overall

data are distinct.

This work has boiled down to a very useful fact: “When response is unrelated to values

of missing variables within subgroups defined by observed covariates, the non-response is

called ignorable” (Glynn, Laird & Rubin 1993, p. 984). Rubin (1978, p. 21) simplifies

this idea even more, stating that “when mechanisms used to sample units and record data
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are known (possibly probabilistic) functions of recorded values, the mechanisms are said

to be ignorable.” It is more important to note, however, that if the MDM is ignorable

and is ignored, the inferences based on the observed data are valid inferences concerning

the original population parameter.

2.2.2 Nonignorable process for causing missing data

Having reviewed the case of ignorable MDMs, it seems justified at least to glance at the

problems that are inherent in nonignorable MDMs. The topic of nonignorable MDMs has

come into focus recently, and as such, studies relating to this research field are reviewed

in Section 2.3.

The main problem associated with assuming a certain MDM is that a data set that is being

filled-in through MI cannot provide evidence to suggest that the MDM is nonignorable.

Nonignorable mechanisms, are, by the very definition of nonignorability, mechanisms in

which missingness is related to that which is unobserved. As Kenward & Carpenter

(2007) put it, the choice between a MAR and a MNAR MDM is untestable. A researcher

could rather choose several mechanisms for their problem, and analyse results under each

mechanism as a sensitivity analysis. Thus, the problem of the choice between MAR and

MNAR mechanisms becomes a sensitivity analysis.

Alternatively, a data collector may be able to make a possibly nonignorable mechanism

less so, as mentioned by Rubin (1978). Rubin’s suggestion is for survey data collectors

to collect supplementary information from survey respondents, either information that is

hypothesised to be correlated with data that might be prone to nonignorable nonresponse,

or simply supplementary information that might help to explain the nonresponse. In

this way, the nonignorable nonresponse may be able to be modelled by these additional

covariates, in essence transforming the nonignorable process into an ignorable one.

The drawback of this process, of course, is that it needs to be completed at the survey

data collection stage, which is not likely to occur properly in practice. However, the

process raises the possibility that if one believes a MDM might be nonignorable, one could

theoretically increase the number of covariates in the imputation procedure (since surveys

often have multitudes of questions that are answered) to increase the variation of the
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incomplete variable that is explained by the rest of the covariates, thereby approximating

an ignorable MDM.1

2.2.3 Analysing multiple imputations

Once multiple data sets have been imputed from the same starting point, inferences on

the data sets can be combined using a simple set of rules as originally defined by Rubin

(1987), and explained below. More insight on the formation of these rules will be given

in Subsection (2.2.4).

Suppose that Q is a scalar population quantity to be estimated from the sample data

taken in a survey, and that an estimate of this quantity, Q̂ and standard error
√
U could

be easily calculated if Ymis were available. In MI, Ymis is replaced by m > 1 simulated

versions, Y
(1)
mis, Y

(2)
mis, . . . , Y

(m)
mis , leading to m estimates and their respective standard errors,(

Q̂j,
√
Uj

)
, j = 1, . . . ,m. An overall estimate for Q is

Q̄ =
1

m

m∑
j=1

Q̂j (2.5)

with a standard error of
√
T , where

T = Ū +

(
1 +

1

m

)
B (2.6)

Ū =
1

m

m∑
j=1

Uj (2.7)

and

B =
1

m− 1

m∑
j=1

(
Q̂j − Q̄

)2

. (2.8)

We have that T is the total variance of the estimator, while Ū is the regular within-

1This suggestion leads one to believe that imputers could possibly view R2 statistics within an im-
putation process as measures of the ignorability of a MDM. Perhaps this could be a viable avenue of
research, although it is beyond the scope of this thesis.
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imputation variance, and B is the between-imputation variance.

Note that if all imputations are made under the same MDM, the variability measured by

B stems from the inability of the observed data to predict the missing data under the given

MDM. In contrast if the MDM is varied across the m imputed data sets, B would describe

a measure of the sensitivity of the MI process to the choice of the MDM (Rubin 1978).

This idea has not received much attention over the years. It is most common to fix the

MDM and impute several data sets, rather than to impute under differing MDMs and

incorporate the variation from these changing MDMs into B.

If
(Q̂−Q)√

U
is approximately N (0, 1) with complete data, for example as is assumed to be

the case in many regression contexts, then, in the imputed case, according to Rubin &

Schenker (1986):

(
Q̂−Q

)
√
T

∼ tv (2.9)

where:

v = (m− 1)

[
1 +

(
m

m+ 1

)
Ū

B

]2

, (2.10)

or

v = (m− 1)

(
1 +

1

r

)2

(2.11)

and

r =

(
1 +

1

m

)
B

Ū
(2.12)

It is worth repeating that Equations (2.9)-(2.14) are for a complete data analysis that is

based on the Normal distribution.

The latter, r, is the relative increase in variance due to nonresponse (Schafer & Graham

2002). The degrees of freedom vary from (m− 1) to ∞ according to the rate of missing

information in the data set. According to Rubin (1987), the rate of missing information
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is given by:

γ =
r + 2

v+3

r + 1
, (2.13)

where r is given above. The estimated rate of missing information, γ̂, is approximately

r/(r + 1). Through simple rearranging, this term can be written as the form for the rate

of missing information given by Little & Rubin (2002):

(1 +
1

m
)
B

T
(2.14)

The derivation of this estimate is given in Subsection 2.2.4. As B approaches T , this

expression shows that the rate of missing information becomes large. This is expected, as

in this case the total variation of the estimate is made up mostly of between-imputation

variance, meaning that the imputation model is imputing wildly different imputations

from one imputed data set to the next. This can happen if the imputation model is

guessing imputations based on little known information.

Schafer & Graham (2002) also note that with large degrees of freedom (or alternatively

when the variation in the estimates between imputations is small compared to the overall

variation), there is not much that can be gained from increasing m, the number of imputed

data sets.

Additionally, Schenker, Raghunathan, Chiu, Makuc, Zhang & Cohen (2006) show that

when the rate of missing information is low, point estimates from MI vary little from

those obtained through single imputation. This is naturally due to a small value of B

that arises when there is little missing information. These authors also mention that the

rate of missing information is regularly less than the proportion of nonresponse, due to

the predictive power of other variables within the incomplete data set.

Barnard & Rubin (1999) provide a further refinement to the expression for the degrees of

freedom when the completed data sets are based on limited degrees of freedom, say, vcom

(when there are no missing values). In this case, v is replaced by v∗, given by

v∗ =
(
v−1 + v̂−1

obs

)−1
, (2.15)
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where

v̂obs = (1− γ̂)

(
vcom + 1

vcom + 3

)
vcom. (2.16)

This modified degrees of freedom increases monotonically in vcom, is always less than or

equal to vcom, and is equal to the original degrees of freedom, v, when vcom is infinite.

In order to determine the number of imputed data sets that should be created, Rubin

(1987) provides a measure of efficiency, measured in standard errors, and based on the

rate of missing information, γ, or at least γ̂. It is given by:

λ =
(

1 +
γ

m

)− 1
2

(2.17)

This measure essentially compares the size of the standard error after m imputations with

the size of the standard error after an infinite number of imputations.

Although the number of data sets that should be completed is often debated, a small

number of completed data sets, say, between 10 and 20, often suffices in order to obtain

precise estimates (assuming that the fraction of missing information is not extreme).

According to Little & Rubin (2002, p. 209),

“In those cases where inference from the complete-data posterior distribution

is based on multivariate [N]ormality (or the multivariate t), posterior moments

of θ can be reliably estimated from a surprisingly small number, D, of draws of

the missing data Ymis (e.g., D = 2–10), if the fraction of missing information

is not too large.”

It should be noted, however, that recent arguments against modest m. Zhou & Reiter

(2010) show in a simulation study that if an analyst intends on doing Bayesian analy-

sis on multiply imputed data, a large number of imputed data sets should be created.

Bayesians should not use average posterior quantiles of the resulting statistics, as the

regular combining rules might suggest, but rather use the approach of Gelman, Carlin,

Stern & Rubin (2004, p. 520) that obtains quantiles based on pooled statistic estimates

from a large number of completed data sets.
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2.2.4 Proper, valid multiple imputation

A large field of research is summarised by van Buuren, Boshuizen & Knook (1999, p.682)

when they explain that if the complete data model leads to valid inferences in the absence

of non-response and if the imputation procedure is proper with respect to the non-response

mechanism, then MI yields valid inferences. It is, therefore, critical to expand on the

definition and description of proper MI. One should note, however, that the expansion

presented in this section is limited to work already deemed well-known in MI research.

The repetition of this content within this thesis is necessary for a reader to be able to

follow the evolution of MI without having to refer to the progression of works from which

the definitions, formulae and proofs are obtained.

Nielson (2003) explains that proper MI methods are those for which the regular combining

rules yield a consistently asymptotically Normal estimator of the unknown parameter and

a weakly unbiased estimator of its asymptotic variance (given by a combination of the

average of the complete data variance estimators and the empirical variance of the multiple

estimators) in sufficiently regular models. He also explains that this means that Bayesian

MI is proper when the model used for the imputations and the model used for the analysis

are compatible. One instance when this is the case is when the complete data estimator

is the complete data MLE.

Infinite repetitions

Rubin (1987) defines proper MI methods as first examining the theoretical situation where

the number of imputed data sets is infinite, and then deriving the asymptotic distributions

for the case of finite m, and thereby deriving the regular MI combining rules:

Definition: Let Q̄∞ be the average of the estimators calculated over an infinite number

of imputation-filled data sets and let B∞ be the between-imputation variance of the esti-

mators calculated over an infinite number of imputation-filled data sets. A MI procedure

is proper for the set of complete-data statistics {Q̂, Y } if three conditions are satisfied:

1. Treating (X(N), Y (N), I(N)) as fixed, under the posited response mechanism, the

m = ∞ MI procedure provides randomisation-valid inferences for the complete-
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data statistic Q̂ = Q̂(X(N), Y
(N)
inc , I

(N)) based on the statistics Q̄∞ and B∞:

(
Q̄∞|X(N), Y (N), I(N)

)
∼ N

(
Q̂, B

)
(2.18)

(
B∞|X(N), Y (N), I(N)

)
∼ (B,� B) , (2.19)

where B = B
(
X(N), Y

(N)
inc , I

(N)
)

is defined by

B = V
(
Q̄∞|X(N), Y (N), I(N)

)
, (2.20)

and D ∼ (E,� F ) means that the distribution of D tends to be centred at E with

each component having variability substantially less than each positive component

of F .

2. Treating (X(N), Y (N), I(N)) as fixed, under the posited response mechanism, the

m =∞ imputation estimate of the complete-data statistic U = U(X(N), Y
(N)
inc , I

(N)),

that is, Ū∞, is centred at U with variability of a lower order than that of Q̄∞:

(
Ū∞|X(N), Y (N), I(N)

)
∼ (U,� B) . (2.21)

3. Treating (X(N), Y (N)) as fixed, over repeated samples the variability of B is of lower

order than that of Q̂:

(
B|X(N), Y (N)

)
∼ (B0,� U0) , (2.22)

where B0 = B0

(
X(N), Y (N)

)
is defined by

B0 = E
(
B|X(N), Y (N)

)
, (2.23)

and U0 = U0

(
X(N), Y (N)

)
= E

(
U |X(N), Y (N)

)
= V

(
Q̂|X(N), Y (N)

)
is fixed by the

true value of X(N) and Y (N).

The underlying random variable in (2.18)–(2.21) is R(N) with distribution specified

by the response mechanism (or MDM) Pr(R(N)|X(N), Y (N)), whereas the underlying
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random variable in (2.22) and (2.23) is I(N) with distribution Pr(I(N)|Y (N), X(N)) =

Pr(I(N)|X(N)).

Rubin (1987) proves that when proper MI methods are coupled with randomisation-

validity of the complete-data inference, the randomisation-validity of the infinite-m

repeated-imputation inference is implied.

Definition: Randomisation-validity of the complete-data inference means that

(
Q̂|X(N), Y (N)

)
∼ N (Q,U0) (2.24)

and

(
U |X(N), Y (N)

)
∼ (U0,� U0) , (2.25)

where Q = Q
(
X(N), Y (N)

)
and U0 = U0

(
X(N), Y (N)

)
are fixed by the true value of X(N)

and Y (N), and the underlying random variable in (2.24) and (2.25) is I(N) with distribution

Pr(I(N)|Y (N), X(N)) = Pr(I(N)|X(N)).

Definition: Randomisation-validity of the infinite-m repeated imputation inference means

that

(
Q̄∞|X(N), Y (N)

)
∼ N (Q, T0) (2.26)

and

(
T∞|X(N), Y (N)

)
∼ (T0,� T0) , (2.27)

where Q = Q
(
X(N), Y (N)

)
and T0 = T0

(
X(N), Y (N)

)
= V

(
Q̄∞|X(N), Y (N)

)
are fixed by

the true value of X(N) and Y (N), T∞ = Ū∞ + B∞ and Q̄∞, Ū∞ and B∞ are functions of

(X(N), Y
(N)
obs , R

(N)
inc , I

(N)) = (Yobs). The random variable in (2.26) and (2.27) is (R(N), I(N)).
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If the last definition holds, then the repeated-imputation inference is randomisation-valid,

meaning that the 95% interval estimate given by Q̄∞± 1.96T
1/2
∞ will be a 95% confidence

interval, and if Q = Q0, then the p-value given by

p− value
(
Q0|X(N), Y

(N)
obs , R

(N)
inc , I

(N)
)

=

Pr
{
χ2

dim(Q) >
(
Q0 − Q̄∞

)
T−1
∞
(
Q0 − Q̄∞

)′}

will be uniformly distributed on (0, 1). Hence the importance of a randomisation-valid

complete-data estimation procedure, and a proper MI procedure.

Theorem 1 (From Rubin, 1987, Result 4.1) If the complete-data inference is

randomisation-valid and the MI procedure is proper, then the infinite-m repeated-

imputation inference is randomisation-valid under the posited response mechanism.

Proof: Note that (2.24) and (2.18) imply that

(
Q̄∞|X(N), Y (N)

)
∼ N

(
Q,U0 + E

(
B|X(N), Y (N)

))
, (2.28)

which, by (2.22) gives

(
Q̄∞|X(N), Y (N)

)
∼ N (Q,U0 +B0) . (2.29)

Next note that by (2.19) and (2.21)

(
Ū∞ +B∞|X(N), Y (N), I(N)

)
∼ (U +B,� 2B) , (2.30)

which, by (2.25) and (2.22)

(
Ū∞ +B∞|X(N), Y (N)

)
∼ (U0 +B0,� (2B0 + 2U0)) , (2.31)

as required.
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Rubin (1996) provides an alternative way of proving this theorem, by proving the following

distribution for inferences on Q:

(
Q− Q̄∞

)
∼ N (0, T∞)

This distribution is due to the following:

E
(
Q̄∞|X(N), Y (N)

)
= E

[
E
(
Q̄∞|X(N), Y (N), I(N)

)
|X(N), Y (N)

]
= E

(
Q̂|X(N), Y (N)

)
= Q

and

E
(
T∞|X(N), Y (N)

)
= E

(
Ū∞|X(N), Y (N)

)
+ E

(
B∞|X(N), Y (N)

)
= E

[
E
(
Ū∞|X(N), Y (N), I(N)

)
|X(N), Y (N)

]
+ E

[
E
(
B∞|X(N), Y (N), I(N)

)
|X(N), Y (N)

]
= E

(
U |X(N), Y (N)

)
+ E

[
V
(
Q̄∞|X(N), Y (N), I(N)

)
|X(N), Y (N)

]
= V

(
Q̂|X(N), Y (N)

)
+ E

[
V
(
Q̄∞|X(N), Y (N), I(N)

)
|X(N), Y (N)

]
= V

[
E
(
Q̄∞|X(N), Y (N), I(N)

)
|X(N), Y (N)

]
+ E

[
V
(
Q̄∞|X(N), Y (N), I(N)

)
|X(N), Y (N)

]
= V

(
Q̄∞|X(N), Y (N)

)
Rubin (1987, p. 125–126) concludes that, “[i]f imputations are drawn to approximate

repetitions from a Bayesian posterior distribution of Ymis under the posited response

mechanism and an appropriate model for the data. . . ”, i.e. that (Q̄∞, Ū∞), the posterior

mean of (Q̂, U) are unbiased for (Q̂, U) under the posited response mechanism:

E
(
Q̄∞|X(N), Y (N), I(N)

) .
= Q̂ (2.32)
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and

E
(
Ū∞|X(N), Y (N), I(N)

) .
= U (2.33)

then, “. . . in large samples the imputation method is proper.” Although exceptions can

be found, this may serve as a guideline to proper Bayesian imputation. Rubin’s (1987, p.

126–127) message is summarised in three steps:

1. Draw imputations following the Bayesian paradigm as repetitions from a Bayesian

posterior distribution of the missing values under the chosen model for nonresponse

and data, or an approximation to this posterior distribution that incorporates

between-imputation variability.

2. Choose models of nonresponse appropriate for the posited response mechanism.

3. Choose models for the data that are appropriate for the complete-data statistics

likely to be used — if the model for the data is correct, then the model is appropriate

for all complete-data statistics.

Brand (1998, p. 87) summarises the conditions for proper and valid multiple imputations

in the case of an infinite number of imputed data sets. For proper imputations:

Q̄∞ ∼ N
(
Q̂, B

)
, (2.34)

Ū∞ ≈ U, (2.35)

B∞ ≈ B, (2.36)

B ≈ B0. (2.37)

For valid imputations:

Q̄∞ ∼ N (Q, T0) , (2.38)

T̄∞ ≈ T0. (2.39)

Nielson (2003) argues that multiple imputation is not proper when the imputation models

and the analysis models are the same. Rubin (2003a) responds by mentioning that it is

not necessary to multiply impute if one analyses the complete data according to the

models known. If a researcher wishes to model the completed data using a different
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model to that of the imputation process, then MI on the original accepted models is

useful. In this case, if one has an accepted model for the complete data (different models

for each variable) and the mechanism that creates the missing data, one effectively has

the posterior distribution(s).

Finite-m asymptotic distributions

The derivations in this section are taken from Section 4.5 from Rubin (1987).

Suppose that m draws of Ymis are taken from its posterior distribution, given

as Pr(Ymis|X(N), Y
(N)
obs , R

(N)
inc , I

(N)), and let Sm = Q̂∗l, U∗l, l = 1, . . . ,m be the set

of associated completed-data statistics Q̂ = E(Q|X(N), Y
(N)
inc , R

(N)
inc , I

(N)) and U =

V (Q|X(N), Y
(N)
inc , R

(N)
inc , I

(N)) evaluated on each of the m filled-in data sets. Rubin (1987,

p. 88–89) shows that it is reasonable to assume that

(
Q̂∗l|X(N), Y (N), I(N), R(N)

)
∼ N

(
Q̄∞, B∞

)
(2.40)

and

(
U∗l|X(N), Y (N), I(N), R(N)

)
∼
(
Ū∞,� B∞

)
, (2.41)

where all the Q̂∗l and U∗l are mutually independent given X(N), Y (N), I(N), and R(N).

When the imputations are repetitions drawn from the posterior distribution of Ymis, under

specified models for the data, Pr(X(N), Y (N)), and the response mechanism, Pr(R(N)|X(N), Y (N)),

it can be argued that (2.40) and (2.41) will hold regardless of the models’ correctness.

Furthermore, Rubin (1987) writes that evidence exists suggesting that these distributional

forms will hold asymptotically for a wide variety of approximately Bayesian imputation

models. These assumptions, as well as the assumptions of proper imputation methods

and valid complete-data inferences, are used in the following derivations.

The derivation for the conditional distribution of Q̄m follows three steps:

1. Average over the multiple estimates given (X(N), Y (N), I(N), R(N)), assuming the
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asymptotic validity of the sampling distribution Sm. From (2.40) and (2.41) we

have that

(
Q̄m|X(N), Y (N), I(N), R(N)

)
∼ N

(
Q̄∞, B∞/m

)
, (2.42)

(
Ūm|X(N), Y (N), I(N), R(N)

)
∼
(
Ū∞,� B∞/m

)
, (2.43)

and

(
(m− 1)BmB

−1
∞ |X(N), Y (N), I(N), R(N)

)
∼ χ2

m−1 (2.44)

where these random variables are mutually independent given X(N), Y (N), I(N), and

R(N).

2. Average over R(N) given (X(N), Y (N), I(N)), assuming the the imputation method

is proper under the posited response mechanism. The expressions (2.18), (2.19),

(2.42), and (2.44) imply that

(
Q̄m|X(N), Y (N), I(N)

)
∼ N

(
Q̂, (1 + 1/m)B

)
, (2.45)

and

(
(m− 1)BmB

−1|X(N), Y (N), I(N)
)
∼ χ2

m−1; (2.46)

The expressions (2.21), (2.19), and (2.43) imply that

(
Ūm|X(N), Y (N), I(N)

)
∼ (U,� (1 + 1/m)B) . (2.47)

The three random variables in expressions (2.45)–(2.47) are mutually independent

given X(N), Y (N), and I(N).

3. Average over I(N) given (X(N), Y (N)), assuming the complete-data inference is randomisation-

valid under the specified unconfounding sampling mechanism. Expressions (2.24),
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(2.25), (2.22), and (2.45) imply that

(
Q̄m|X(N), Y (N)

)
∼ N (Q,U0 + (1 + 1/m)B0) ; (2.48)

expressions (2.48) and (2.46) imply that

(
(m− 1)BmB

−1
0 |X(N), Y (N)

)
∼ χ2

m−1; (2.49)

and expressions (2.25), (2.22), and (2.47) imply that

(
Ūm|X(N), Y (N)

)
∼ (U0,� (U0 + (1 + 1/m)B0)) ; (2.50)

where the three random variables in (2.48)–(2.50) are mutually independent given

X(N) and Y (N).

Expressions (2.48)–(2.50), which comprise the asymptotic sampling distribution of Sm

given X(N) and Y (N) for proper MI methods, imply that

E
(
Tm|X(N), Y (N)

)
= V

(
Q̄m|X(N), Y (N)

)
(2.51)

and

V
(
Tm|X(N), Y (N)

)
= 2 (1 + 1/m)2B2

0/ (m− 1) (2.52)

which together imply that

[
2E
(
Tm|X(N), Y (N)

)]2
V (Tm|X(N), Y (N))

= (m− 1)

{
1 +

[(
1 +

1

m

)
B0

U0

]−1
}2

(2.53)

The reason for this is that for any multiple of a χ2 random variable, twice the squared

expectation divided by the variance gives the degrees of freedom.

These expressions are the derivations for the expressions given for the general combining

rules in Subsection 2.2.3. Expressions (2.48), (2.51), and (2.53) provide a random-response

randomisation-based justification for using a t reference distribution for (Q̄m −Q) with a
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squared scale Tm,

Tm = Ūm +

(
1 +

1

m

)
Bm, (2.54)

and degrees of freedom

v = (m− 1)

(
1 +

1

rm

)2

, (2.55)

where

rm =

(
1 +

1

m

)
Bm

Um
, (2.56)

which estimates (1 + 1/m)B0/U0. The v in Equation (2.55) is the estimate of the v given

as the degrees of freedom in Equation (2.53).

For multicomponent, or k-dimensional Q, these results are easily extended. Expressions

(2.48) and (2.50) still hold, but Bm’s distribution must be modified from the χ2 to the

k-dimensional Wishart with m− 1 degrees of freedom:

(
(m− 1)Bm|X(N), Y (N)

)
∼Wishartk (m− 1, B0) (2.57)

or, equivalently,

(m− 1)Bm =
m−1∑
i=1

ZiZ
′
i, where Zi ∼ N (0, B0) . (2.58)

Note that the three random variables Q̄m, Bm, and Ūm are still mutually independent.

Returning to the asymptotic t distribution of the finite-m statistics, we have that

(Q|Sm) ∼ tv
(
Q̄m, Tm

)
, (2.59)

where v is as given in expression (2.55). The negative average second derivative of the

logarithm of this posterior distribution, or, the information about Q in this posterior
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distribution, is

γm =

[
Ū−1
m −

(v+1)
(v+3)

T−1
m

]
Ū−1
m

. (2.60)

Using expressions (2.54) and (2.56), this can be rewritten as

γm =
rm + 2

v+3

rm + 1
. (2.61)

For notational simplicity one can drop the subscript, and the result given as Equa-

tion (2.17) is obtained. It is important to note that this quantity measures the extent of

the effect of missing information for a univariate Q, or for single component of a multi-

variate Q. Indeed, as Brand (1998, p. 74) puts it, it measures “the loss in precision due

to missing data.”

One can also measure the gain in precision from MI when compared with complete-case

analysis on incomplete data. Similar to Equation 2.60, if Ũ is the variance of the parameter

estimate Q̂ when Q̂ is obtained from complete-case analysis, then Brand (1998, p. 74)

gives the fraction of information gained about Q from MI above that obtained by the

complete-case analysis as

ζm =
v+1
v+3

T−1
m − Ũ−1

Ũ−1
. (2.62)

Brand (1998, p. 47) summarises the link between infinite iterations and the finite-m case

when he mentions the following:

“In the theoretical situation that m is infinite, the empirical probability

distribution obtained from the imputations is exactly equal to the probability

distribution representing the missing data entries as uncertain values, so that

the multiple imputation results are identical to the results from the analytical

incorporation of the extra uncertainty due to missing data. For modest m,

the multiple imputation results are an approximation of analytical incorpora-

tion, so that the pooling procedures also reflect extra uncertainty due to the

simulation error.”



36 CHAPTER 2. MULTIPLE IMPUTATION

Keep in mind, however, as Zhou & Reiter (2010) mention, that Bayesian analysts should

indeed prefer a larger number of multiply imputed data sets, as mentioned previously in

this chapter.

2.2.5 Congeniality and efficiency in multiple imputation

The two main topics discussed in this subsection, congeniality and efficiency, go hand-in-

hand. When an analysis model is congenial to the imputation procedure, it can be argued

that the estimators are inefficient.

Congeniality

Suppose that we have an analysis procedure Ψ. From a non-Bayesian perspective, the

analyst’s complete-data procedure is summarised by

Ψcom = [Q̂(X(N), Y
(N)
inc , I

(N)), U(X(N), Y
(N)
inc , I

(N))],

where Q̂(X(N), Y
(N)
inc , I

(N)) = Q̂(Ycom) is an estimator of Q, with associated variance esti-

mator U(X(N), Y
(N)
inc , I

(N)) = U(Ycom). The procedure Ψcom depends on I(N), but not on

R
(N)
inc , the population indicator matrix for response on Y (N) for the data that is included in

the survey. This shows that different survey designs are accommodated, but once a design

is chosen, the response behaviour itself carries no information about Q when the MDM

is ignorable (see Rubin 1987, Meng 1994). This complete-data procedure can include any

method of completing the data, for example, MI. By comparison, let any incomplete-data

procedure be

Ψobs = [Q̂(X(N), Y
(N)
obs , I

(N), R
(N)
inc ), U(X(N), Y

(N)
obs , I

(N), R
(N)
inc )],

where Q̂(X(N), Y
(N)
obs , I

(N), R
(N)
inc ) = Q̂(Yobs) is the incomplete-data estimator with associ-

ated variance estimator U(X(N), Y
(N)
obs , I

(N), R
(N)
inc ) = U(Yobs). With a switch from finite-

population Bayesian methodology to superpopulation Bayesian methodology (and hence

a switch from estimating Q to estimating θ), without much loss of generality, Meng (1994,
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p. 543) provides the following definition for a model being congenial to an analysis pro-

cedure:

Definition: A Bayesian model f is said to be (second-moment) congenial to the analysis

procedure Ψ ≡ {Ψobs; Ψcom} for given Yobs = X(N), Y
(N)
obs , I

(N), R
(N)
inc if the following hold:

1. The posterior mean and variance of θ under f given the incomplete data are asymp-

totically the same as the estimate and variance from the analyst’s incomplete-data

procedure Ψobs, that is

[
θ̂ (Yobs) , U (Yobs)

]
' [Ef (θ|Yobs) , Vf (θ|Yobs)] (2.63)

2. The posterior mean and variance of θ under f given the complete data are asymp-

totically the same as the estimate and variance from the analyst’s complete-data

procedure Ψobs, that is

[
θ̂ (Ycom) , U (Ycom)

]
' [Ef (θ|Ycom) , Vf (θ|Ycom)] (2.64)

for any possible Yinc = (Yobs, Ymis) with Yobs fixed. In this definition, a ' b means that

the differences between corresponding elements of a and b are negligible compared to the

leading terms (e.g., a/b→ 1 when a and b are scalars) as the sample size of Yobs becomes

large, or, in other words, it denotes finite-sample asymptotic equivalency with respect

to the size of the observed data. Also note that Ef and Vf are the posterior mean and

variance with respect to f .

Any procedure that can’t be embedded into a Bayesian model is one that is not conge-

nial. This is rarely the case, as most analysis procedures are related to at least a simple

Bayesian context, for example, a common procedure model being Normal model with a

non-informative prior. Meng (1994, p. 543) immediately follows this definition with a

definition relating imputation models to the analysis procedures.

Definition: The analysis procedure Ψ is said to be congenial to the imputation model

g(Ymis|Yobs, A) (where A refers to any information that the imputer has above and beyond
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that which is given to the analyser) if one can find an f such that f is congenial to Ψ and

the posterior predictive density for Ymis derived under f is identical to the imputation

model, i.e. f(Ymis|Yobs) = g(Ymis|Yobs, A), for all possible Ymis.

Meng’s (1994) second definition, given above, implies that imputation models congenial

to analysis procedures essentially make use of the same model or distribution. It is easy

to see that uncongeniality is then usually the norm in the standard setting for analysis of

MI — that being public use of data that was multiply imputed ‘behind the scenes’ as it

were. Most often, the analyst will not have access to any extra information built into the

imputation model, and so will not know the imputation model, leading to uncongeniality.

Moreover, imputers and analysers may have different goals in their work, and may thus

use different models, also introducing uncongeniality. Finally, often several models are

considered for imputation or analysis, inevitably introducing uncongeniality.

Even with these points in mind one still might wish to aim for congeniality. However,

the dual use of the same model (which would assist in obtaining congeniality) is criti-

cised by Nielson (2003), stating that when the imputation model and the analysis model

are identical, the imputer has unwittingly increased inefficiency in the analyser’s work.

This criticism will be reviewed in the subsequent subsection. Moreover, as Schafer (2003)

points out, MI under congeniality implies the same inferences as originating from a max-

imum likelihood setting, weakening the backing behind the evolution of MI. In light of

these criticism, however, one should keep in mind a question that should be posed: How

important is congeniality for the MI framework?

This question is an important one indeed, since the justification for the regular combining

rules given in Subsection 2.2.3 is most straightforward when the analyst’s procedure is

congenial to the imputation model (Meng 1994). In this case we have inferential conge-

niality, meaning that the incomplete-data inference Ψobs asymptotically agrees with the

infinite-m repeated-imputation inference, which is denoted Ψ∞. Meng (1994, p. 544)

shows how inferential congeniality arises if f is a Bayesian model congenial to Ψ, and g
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is the imputation model, using the two definitions given above:

θ̄∞ = Eg

[
θ̂ (Ycom) |Yobs, A

]
' Eg [Ef [θ|Ycom] |Yobs, A]

= Ef [Ef [θ|Ycom] |Yobs]

= Ef [θ|Yobs]

' ˆθ (Yobs).

Also:

Ū∞ ≡ lim
m→∞

Ūm ' Ef [Vf [θ|Ycom] |Yobs] ,

B∞ ≡ lim
m→∞

Bm ' Vf [Ef [θ|Ycom] |Yobs] .

And, so:

T∞ = Ū∞ +B∞ ' Vf [θ|Yobs] ' U (Yobs) .

These equations imply that inferential uncongeniality means that Ψ∞ ' Ψobs. Meng’s

(1994) paper looks to find the answer to the question that immediately arises following

these proofs: in the presence of inferential uncongeniality, which procedure, Ψobs or Ψ∞,

provides better statistical inference?

Meng’s (1994) third definition reiterates Rubin’s definition for proper MI (albeit a ‘weaker’

version than Rubin’s). For the sake of completeness, it is restated in this thesis using

Meng’s (1994) notation.

Definition: An imputation model g is said to be second-moment proper for Ψcom if the

following three conditions are satisfied:

1. θ̄∞ and θ̂(Ycom) have the same expectation,

E
[
θ̄∞|X(N), Y (N)

]
' E

[
θ̂ (Ycom) |X(N), Y (N)

]
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2. Ū∞ estimates the variance of θ̂(Ycom),

E
[
Ū∞|X(N), Y (N)

]
' V

[
θ̂ (Ycom) |X(N), Y (N)

]

3. B∞ estimates the variance of θ̄∞ − θ̂(Ycom),

E
[
B∞|X(N), Y (N)

]
' B

[(
θ̄∞ − θ̂ (Ycom)

)2

|X(N), Y (N)

]
.

This weaker version of the definition allows an imputation model to be second-moment

proper while still being uncongenial to the analysis procedure. This definition also defines

the conditions for validity of an imputation model, but does not describe its efficiency.

The remainder of Meng’s (1994) paper connects congeniality with efficiency in MI es-

timators, particularly the variance decomposition into within- and between-imputation

variances.

Measures of efficiency

Rubin (1987, Section 4.5) derives measures to calculate the asymptotic efficiency of Q̄m

relative to Q̄∞. Given that T0 = T0(X(N), Y (N)) = V (Q̄∞|X(N), Y (N)) = U0 + B0, and

that the variance of Q̄m, given X(N) and Y (N), is U0 +(1+1/m)B0, from expression (2.48)

(for the multicomponent Q), the variance-covariance matrix of Q̄m relative to that of Q̄∞

is

T
−1/2
0

(
T0 +

B0

m

)
T
−1/2
0 (2.65)

This means that the efficiency of Q̄m relative to Q̄∞ in units of standard deviation is,

from (2.65),

λ0 =
(
I +

γ0

m

)−1/2

, (2.66)

where γ0 = T
−1/2
0 B0T

−1/2
0 , the eigenvalues of B0 with respect to T0, or the population

fractions of missing information. The largest fraction corresponds to the lowest relative
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efficiency for a linear combination of the components of Q, and the smallest fraction

corresponds to the highest relative efficiency for such a linear combination. Since T0 =

U0 +B0, the eigenvalues of B0 with respect to T0 are one minus the eigenvalues of U0 with

respect to T0. The formula for γ given in Subsection 2.2.3 follows from the asymptotic

version of expression (2.66) for finite m.

Efficiency in estimators

With these basic ideas, one can explore the wealth of information arguing for and against

the level of efficiency in the regular MI combining rules. The definitions provided by

Meng (1994), and given below, follow directly after the definitions given in the previous

paragraphs.

If the imputer’s model makes more assumptions than an analysis procedure, and these

assumptions are incorrect, invalid or inconsistent inferences follow. If these assumptions

are correct, however, and the analyst does not know and include this information in the

analysis procedure, then the completed-data analysis estimates will be superefficient, or

more efficient than the estimates based only on the observed data. Superefficiency does

not necessarily mean the estimators are the most efficient. Variance estimates are still

inflated, a fact that has been criticised (see Fay 1992, Nielson 2003). However, while

the estimates from the analysis not incorporating as much information as the imputation

model are inefficient (and possibly inconsistent), the confidence intervals from Ψ∞ will

still be preferred to those from Ψobs since they have at least the same coverage, but are

narrower. So in summary, Meng (1994, p. 547) writes:

“[I]n the presence of uncongeniality, it is vital to recogni[s]e that disagreement

between the repeated-imputation analysis and the (best possible) incomplete-

data analysis does not automatically invalidate the repeated-imputation in-

ference. Quite to the contrary, (substantial) disagreements between these two

analyses often raise questions about the incomplete-data analysis, because it

may suffer from serious nonresponse biases (as well as inefficiency) when the

analyst has less information about the nonresponse mechanism than the im-

puter has.”
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On the other hand, if the imputation model is more general than the analysis procedure

and the imputation model is valid, the inferences are automatically valid, without the an-

alyst needing to identify the MDM. Meng (1994) argues that it is therefore very important

for the imputer to correctly model the MDM. It must be noted that the opposite view is

also well supported; Schafer (2003) notes that assuming the MAR mechanism when the

data may have a more complex MDM is at least a step in the right direction, and should

be done rather than not impute at all — more effort can thus be placed on modelling

the data correctly, which may have stronger consequences than mis-modelling the MDM.

In any case, a more general imputation model than analysis model often means larger

standard errors on the MI estimates (Schafer 2003).

Meng (1994) provides a definition allowing one to quantify whether or not the imputations

from a particular model are necessary. Note that the following definition does not need a

congenial model for the analysis procedure, nor a correctly specified MDM.

Definition: An imputation model g is said to be better (than the analyst’s congenial

imputation model) for θ̂(Ycom) if

E

[(
θ̄∞ − θ̂ (Ycom)

)2

|X(N), Y (N)

]
≤ E

[(
θ̂ (Yobs)− θ̂ (Ycom)

)2

|X(N), Y (N)

]
. (2.67)

Meng (1994) then defines self-efficiency as follows (subsequently, Meng & Romero (2003)

update the definition to the form that is presented later in this Subsection):

Definition: Let Wc be a data set, and let Wo be a subset of Wc created by a selection

mechanism. A statistical estimation procedure θ̂(.) for θ is said to be self-efficient (with

respect to the selection mechanism) if there is no λ ∈ (−∞,+∞) such that the mean-

squared error of λθ̂(Wo) + (1− λ)θ̂(Wc) is less than that of θ̂(Wc).

If the estimation procedure is self-efficient, then the variance decomposition formula

T∞ = Ū∞ +B∞ is correct from the Bayesian as well as the likelihood and randomisation

perspectives, even if there is uncongeniality, as long as one does not assume that, “in the

absence of missing data, the imputer has extra information to improve the efficiency of
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the analyst’s self-efficient estimator” (Meng 1994, p. 549). Even if the imputer does have

extra information, decomposition still provides a conservative estimate of the sampling

variance of the repeated-imputation estimator, and this conservative estimator is still less

than the sampling variance of the analyst’s incomplete-data estimator, as long as the

imputation model is better in terms of the definition above. As discussed in this Sub-

section, it would be unwise to assume an analyst would choose to use a non-self-efficient

estimation procedure.

The decomposition will be conservative as long as there exists no negative λ that makes

λθ̂(Yobs) + (1 − λ)θ̂(Ycom) more efficient than θ̂(Ycom). This is common in practice, and

leads us to Meng’s (1994) next definition:

Definition: The imputation model g will be called information regular for estimating θ

using the self-efficient estimator θ̂(·), if there is no negative λ such that the mean-squared

error of λθ̄∞ + (1− λ)θ̂(Ycom) is less than that of θ̂(Ycom).

All of Meng’s (1994) definitions (and the lemmas he provides in the paper to link them)

lead to a set of conclusions (see Meng 1994, p. 551). If (i) the analyst’s complete-

data estimator θ̂(Ycom) is self-efficient, (ii) the imputer’s model is information regular for

estimating θ using θ̂(Ycom), and (iii) the imputer’s model is second-moment proper with

respect to the analyst’s complete-data procedure Ψcom, then the following hold:

1. The repeated-imputation estimator is consistent for θ, and is at least as efficient as

the analyst’s incomplete-data estimator.

2. For any nominal level, the corresponding repeated-imputation confidence interval

has at least nominal coverage, but has at most the same width as the confidence

interval from the analyst’s incomplete-data procedure with the same nominal cov-

erage.

It is important to note that information concerning the MDM is unimportant, and thus

the analyst’s incomplete-data estimator is allowed to be inconsistent. The conditions

given above are basic guidelines for good practice in MI. The strictest condition is that

of the imputer’s model having to be second-moment proper.
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Uncongeniality

The extensive work of Meng (1994) defines and analyses the advantages and disadvantages

of congeniality, while Schafer (2003) provides insight into the benefits of uncongeniality.

Summarising the findings of Collins, Schafer & Kam (2001), Schafer (2003, p. 25–26)

writes, “Overall, there are potentially important gains and small risks associated with

auxiliary variables in MI.” This means that extra information used by the imputer and

not available to the analyst (which means an imputation model uncongenial to the analysis

model),

� improves the imputations generated if these auxiliary variables are correlated to the

incomplete variable being imputed or are correlated with the MDM, and

� will not confound the imputation model seriously if they are not correlated with the

incomplete variable being used.

These statements are related to the concept of superefficiency, as mentioned before. It

must be noted that these statements also do not include auxiliary covariates that are

functions of R, making the estimation consistent with a MNAR MDM, but possibly

biased under MAR (Schafer 2003).

Increasing estimator efficiency

Meng (1994) continues his study into MI efficiencies by offering a method of combining

imputations from different MDMs in order to obtain more efficient estimators, based on

weights calculated using sampling importance resampling (SIR) methods. There might

be cases when multiply imputed data sets are provided, but an analyst wishes to analyse

the data completed through a different MDM. The method Meng (1994) offers could cater

for this situation. In fact, a study by Carpenter & Kenward (2007), reviewed later in this

chapter, uses Meng’s methods to investigate the underlying MDMs.

The importance weights generated in Meng’s (1994) algorithm provide a common way

for adjusting draws from an incorrect model. Let f(Ymis|Yobs, A) be an imputation model

that the investigator desire to use (this model would not depend on A for an analyst),

while g(Ymis|Yobs, A) is the imputation model that was used for the existing imputations.
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Then let the importance ratio be

τ (Ymis) =
f (Ymis|Yobs, A)

g (Ymis|Yobs, A)
C, (2.68)

for some arbitrary positive constant C that does not depend on Ymis.

Now suppose that the m parameter estimates and their associated variances from the

multiply-imputed data sets are available, as well as the m values τj ≡ τ(Y
(j)
mis), j =

1, . . . ,m. Let

wj =
τj

1
m

∑m
j=1 τj

≡ τj
τ̄
. (2.69)

Then Meng (1994) proposes that the weighted repeated-imputations estimator be

θ̄w =
1

m

m∑
j=1

wj θ̂j (2.70)

which reduces to the regular combining rule if f and g are congenial. The new weighted

combination for the variance is

Tw = Ūw +

(
1 +

1

m

)
Bw, (2.71)

where

Ūw =
m∑
j=1

wjUj, (2.72)

and

Bw =
m∑
j=1

wj

(
θ̂j − θ̄w

)(
θ̂j − θ̄w

)′
. (2.73)

Although this Tw provides a congenial variance associated with θ̄w as the number of

imputations tends to infinity, for finite m it ignores the extra variability caused by the

weighting scheme. The remedy provided by Meng (1994) refers to his earlier work (see

Meng 1993), and suggests that the formula for Tw be adjusted to incorporate the sampling
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variance of the weights, s2
w, i.e.,

T̃w = Ūw +

(
1 +

1 + s2
w

m

)
Bw, (2.74)

where

s2
w =

1

m− 1

m∑
j=1

(wj − 1)2 . (2.75)

With large m, Tw and T̃w are, therefore, equivalent.

The main advantage of these weighted estimates is for uncongenial imputation and anal-

ysis models. If the imputations are made under one model, the imputer can provide

importance weights for analyses under other models.

Even if the original imputations are proper with respect to the analysis model, a weighted

mixture of the weighted combining rules and the unweighted, regular combining rules can

be more efficient under certain circumstances, lending strength to analyses of this type,

and providing the reason for this paragraph’s title.

Some criticism

The most well-known criticism of estimators from MI is that they are inefficient (Fay 1992,

Nielson 2003). Fay (1992) also suggests that estimators for subdomains in the incomplete

data are worse under MI than under a correct design-based approach. Multiple imputation

cannot capture the covariance between the estimators from the subgroups in the way a

design-based approach can, although the variances under MI are larger than those under

the design-based approach.

Nielson (2003) suggests that unless one uses an efficient complete data estimator, the

variance estimator derived from the regular combining rules will be asymptotically biased.

This bias may be upwards, leading to inefficient but correct inference, or downwards,

leading to incorrect inference. Moreover, even if the complete data estimator is efficient,

the MI procedure is inefficient, since the inconsistency of the variance estimator leads to

weaker tests than a consistent estimator would. Rubin (2003a) responds by suggesting
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that even in the absence of missing data, an unbiased point estimate of sampling variance

is only an intermediary goal — a secondary aim after the quality of the interval estimate

for sampling variance. To clarify, he explains that the approximately unbiased estimation

of legitimate parameter, i.e. population variance, is a legitimate goal. However, the bias

of the estimated sampling variance associated with an estimate of a population quantity

is not directly relevant, except to be a rough guide to show what might happen in large

samples. To reiterate, what matters most is the coverage of the resulting interval estimates

— an area that MI analyses are particularly strong in, despite the cases where point

estimates are biased.

Nielson (2003) writes that a consistent estimator can always be constructed (although

probably with added complexity), and even a more efficient estimator could be found

based on the same amount of simulation work. However, it should be noted that in-

troducing inefficiencies through simulation is the only way that data constructors can

separate themselves from the data analysers, as should be the case with the construc-

tion and analysis of large survey data sets, and as is the case in the context for which

Rubin’s regular combining rules were created. Nielson’s (2003) final suggestion for an

approximately Bayesian imputation method is as follows:

1. Find the observed data MLE, θ̂.

2. Find a consistent estimator of the Fisher Information, Î.

3. Draw θ̃nj from N
(
θ̂n, Î

−1/n
)

.

4. Construct multiple imputations by drawing X̃ij from the conditional distribution of

Xi given Yi using θ̃nj as the parameter.

This will give proper imputations when the complete data estimator is the MLE. In

summary, Nielson (2003) suggests that not all Bayesian MI is proper, and even when it is

proper, it is inefficient (Meng & Romero 2003). Rubin (2003a) clarifies that the Bayesian

MI may be inefficient when the complete-data analysis is inefficient.

In Meng & Romero’s (2003) discussion of Nielson’s (2003) paper, the authors discuss self-

efficiency once more, and the regular variance combining rule given by Rubin (1987). Meng

& Romero (2003) believe that the complete-data estimator need only be self-efficient,
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as discussed in the practical guidelines given by Meng (1994) and listed above. If the

complete data analysis method is self-efficient, the method cannot “improve upon itself

by applying the same procedure to a part of the same data” (Meng & Romero 2003, p.

608). To recap, in mathematical terms Meng (1994) defines self-efficiency as follows, and

Meng & Romero (2003) add to the definition in terms of selection by MDM:

Definition: Let Wc be a data set, and let Wo be a subset of Wc created by a selection

mechanism (or specified missing-data mechanism). A statistical estimation procedure θ̂(.)

for θ is said to be self-efficient (with respect to the selection mechanism) if there is no

λ ∈ (−∞,+∞) such that the mean-squared error of λθ̂(Wo) + (1 − λ)θ̂(Wc) is less than

that of θ̂(Wc).

A researcher must have self-efficiency of their estimation procedure so that they cannot

provide more efficient estimators by using less data. With this condition being met,

the researcher is one step closer to providing valid inferences when using the regular MI

combining rules.

Rubin (2003a) believes that the main idea is not to get a perfect variance estimate, but

rather to obtain a variance estimator confidence interval that has nominal coverage, and

a good average width. In summary, Meng & Romero (2003) suggest that it may be useful

to sacrifice some efficiency for tractability (if the resulting method is still valid). Rubin

(2003a) goes so far as to say that even some validity could be lost (for example, with large

fractions of missing information), the benefits from using MI outweigh these efficiency and

validity losses.

2.2.6 The beauty of multiple imputation

There are multiple sources of uncertainty in MI. Rubin (2003a) points out that these often

complement each other to make MI “self-correcting” for approximately valid statistical

inference. Rubin (2003a) lists these three forms of uncertainty:

1. There is almost always uncertainty in choosing the correct imputation model and

MDM (ignorable or nonignorable)
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2. Even with complete knowledge of the form of an imputation model governed by

unknown parameters, there is uncertainty in the parameters’ values used to create

the imputations.

3. Given both the imputation model and its parameters, there is residual uncertainty

to be reflected when drawing imputed values

MI can reflect all of these uncertainties: the first, by drawing under different imputation

models, the second, by randomly drawing parameters from their posterior distributions

and thereby attempting to make the MI “proper” or “confidence proper” (see Rubin 1976,

Rubin 1996), and the third, by randomly drawing imputed values from their predictive

distribution, given the fixed parameters drawn previously.

Zhang (2003, pp. 581, 584) lists the three uncertainties in a slightly different way:

1. Uncertainty due to modelling the joint distribution of the response variables and

the missingness indicators, i.e. the uncertainty from P (Y,R|θ, φ).

2. Uncertainty due to the sampling from a given imputation model assuming that

the observed data and the values of the model parameters are known, i.e. the

uncertainty from P (Ymis|Yobs, θ)

3. Uncertainty about the values of the model parameters; the uncertainty for selecting

the imputation model; i.e. uncertainty from P (θ|Yobs).

According to Rubin (2003a) one can also use MI to investigate changes in the completed-

data inference resulting from changes in the assumed process for creating missing data,

when there is a desire for such sensitivity analysis, for example, testing whether the

missing data mechanism is MCAR or MAR, since, in the former case, imputation will

not change the complete-case analysis results, while in the latter case, results may change

significantly.

Rubin (2003a) believes that the combining rules for multiply imputed data from a sensible

but imperfect model will lead to slightly conservative inferences (coverage slightly larger

than nominal). In other words, the MI and combining process is self-correcting with the

result that imperfect MI tends to be confidence proper.
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From Nielson’s (2003) paper, MI is self-correcting. This is because the between-to-within

variance ratio is upwardly biased, leading to small degrees of freedom attached to the

resulting inference, and thus valid MI confidence intervals with a realistic number of

imputations even when the MI variance estimate is downwardly biased. So, the parameter

estimates have distributions that are heavy-tailed, leading to more uncertainty even if the

estimate itself is too low.

Another advantage of MI is concerned with the ignorability of the MDM. Rubin (2003a)

suggests that researchers should not be held up by the belief that their MDM is nonig-

norable. The primary concern should be to build a MI procedure around an ignorable

MDM that builds the relationships between variables, and to then test the sensitivity to

a nonignorable model. This is because one cannot determine whether the mechanism is,

in fact, nonignorable, by the very definition of nonignorability.

It can also be shown that the MI analysis and maximum likelihood estimation techniques

often produce similar results (in large samples and with diffuse priors) if their distri-

butional assumptions are equivalent (Schafer 2003). This would seem to make MI an

unnecessary evolution. However, the critical point to remember is that MI allows the

separation of the data collection and analysis tasks, which remains a particularly high

priority in the large-sample survey data sets that are typically made available today. One

alternative to MI, the design-based approach (Fay 1992), places significant burden on the

data analyser, rather than allow a specialised imputer handle the missing data problem.

So, in essence the MI procedure can be entirely modular (van Buuren 2007), splitting the

imputation and analysis tasks between the two parties.

Meng (1994) suggests that even with inferential uncongeniality, one can have superior

repeated-imputation inference in terms of validity and efficiency. Schafer (2003) also

argues that uncongeniality between imputation and analysis models may even be a good

thing, as opposed to how it was originally viewed, i.e. as a characteristic detrimental

to the imputation and analysis procedures (Fay 1992). Schafer (2003) mentions that

there is much practical evidence to suggest that under uncongeniality imputation and

analysis has fared rather better than expected. Additionally, with uncongenial models of

imputation and analysis, if the imputer’s model is reasonably accurate, inferences with

serious non-response bias are avoided, if not eliminated completely.
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It is well documented that, while the rules given by Meng (1994) concerning congeniality

and efficiency are profound guidelines for correct MI procedures, it suffices to have an

imputation model that is more general than the analysis model in order to obtain good,

valid MI results, even regardless of the MDM (see, for example Rubin 1978, Rubin 2003a,

Schafer 2003, Zhang 2003). The importance of this generality is two-fold: to link the

analysis and imputation procedures (adhering better to the guidelines and rules given in

this chapter) and to make any (possibly) nonignorable MDM more likely to be able to

be ignored. One of the arguments for a more general imputation model than the analysis

model is made by Zhang (2003), pointing out that if variables are used in the analyses

but not in the imputation model then the correlations between these omitted variables

and the imputed variables will be biased towards zero. Thus, it is important to recognise

this uncongeniality, not to invalidate the repeated-imputation estimators, but to ensure

correct interpretation of the conclusions from MI inferences since these inferences may

include information the imputer has that the analyst does not.

However, even if an imputer does not feel at ease embracing uncongeniality between

analysis and imputation models, there is a way out. If an analyst wants inferential

congeniality (maybe to take account of a variable that was not used in the imputation

model that the analyst wanted in the model), then the reweighted combining rules first

mentioned by Meng (1994) can be used to steer towards a better estimator.

So, in essence, MI has been derived for the specific Normal case, with specific rules for both

imputation and analysis procedures in order to obtain perfectly unbiased, valid, efficient

estimates in the analysis. However, these rules can be relaxed in numerous ways without

greatly affecting unbiasedness, validity, and efficiency. If the restrictions are relaxed in

any one of several ways, approximately unbiased and generally valid estimates are still

obtained, these estimates being more efficient than those based on the incomplete data.

The process becomes entirely modular, allowing the imputer and analyser to be separate

entities. The precise science that would yield perfect results can be reduced to an art form

that, when incorporated into scientific analyses, makes the answers from those analyses

more scientifically agreeable than näıve results.



52 CHAPTER 2. MULTIPLE IMPUTATION

2.3 Recent Advances in Multiple Imputation

2.3.1 Other multiple imputation procedures

The MI method developed by Rubin was first implemented assuming a multivariate Nor-

mal distribution for the data. Several other MI procedures besides the regular multivariate

Normal (MN) method presented in this chapter have been proposed. For MI from dis-

crete data, these procedures include the well known hot-deck (HD) imputation method,

variations on the HD procedure as explained by Ambler, Omar & Royston (2007), the

Bayesian Bootstrap (BB), proposed by Rubin (1981), and the Approximate Bayesian

Bootstrap (ABB), proposed by Rubin & Schenker (1986). One method for imputation

from continuous data is the Normal method that adjusts for uncertainty in the mean and

variance (NMV), reviewed by Rubin & Schenker (1986). These and the fully Normal im-

putation method are reviewed by Rubin & Schenker (1986), and are found to yield similar

results (in the context of coverage intervals) in the presence of non-Normality, with results

improving as m was increased. The best intervals are obtained from the NMV method.

Other methods for continuous imputation on montone patterns of missingness are the

propensity score (PS) method, proposed by Lavori, Dawson & Shera (1995), and the

predictive model (PM) method by Little & Rubin (2002), both reviewed by Zhang (2003).

These methods are reviewed in detail in the subsequent subsection.

Discrete imputation

� Hot-deck imputation (HD). In this MI method, the imputed values for Ymis are

drawn with replacement from Yobs, where each element of Yobs has equal probability

of being drawn. Unfortunately, since the parameter of the data, θ, is not drawn from

its own posterior distribution, and draws from a predictive posterior distribution

conditional on this θ are not made, the HD method underestimates uncertainty.

Moreover, observed outliers will have a greater influence on the post-imputation

analyses, since these outliers will form part of the donor pool for missing values

(Ardington et al. 2006).
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� Hot-deck imputation by covariate pattern (HDCP). This modification of the

HD procedure matches fully observed categorical variables (or categorised continu-

ous variables) for observations with missing values. These matches form the donor

pool from which imputations are drawn. Note that only predictors are imputed this

way.

� Hot-deck imputation by observation (HDobs). In this modification of the

HDCP procedure, the entire observation is replaced by a fully observed match, with

the matching made once more through fully observed categorical variables (or cat-

egorised continuous variables). Once more, only predictors are replaced this way.

� Hot-deck imputation including outcome (HDY). Two variations of this mod-

ification of the HDCP procedure exist: one where the outcome variable is the only

variable used to find matches from which imputed values are drawn, and the other,

where both the outcome and predictors are used to find matches from which imputed

values are drawn.

� Bayesian Bootstrap (BB). This method improves on the HD method by incorpo-

rating uncertainty in θ. Suppose that each element of the population takes one of the

values d1, . . . , dK with probabilities θ1, . . . , θK , respectively. If the improper Dirich-

let prior with density ∝
∏K

k=1 θ
−1
k is placed on the vector θ = (θ1, . . . , θK), then the

posterior distribution of θ is the Dirichlet distribution with density ∝
∏K

k=1 θ
qk−1
k

and K-dimensional mean vector θ̂ = (θ̂1, . . . , θ̂K) having components given by

θ̂k = qk/nobs, where qk = (number of times dk appears in Yobs). The BB MI method

first draws θ∗ from this posterior for θ. Then the components of Ymis are indepen-

dently drawn from among d1, . . . , dK using the probabilities in θ∗.

� Approximate Bayesian Bootstrap (ABB). This method is more computation-

ally direct than the BB method. First draw nobs observations with replacement from

Yobs. Then from this sample, draw nmis observations with replacement as imputa-

tions. In this way, rather than drawing θ from a Dirichlet posterior distribution,

this method draws θ from a scaled multinomial distribution. The distributions for

θ in this method have the same means and correlations as in the BB method, but

have (nobs + 1)/nobs times the variances. This method is approximately equiva-
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lent to choosing the values of θ for the conditional posterior predictive distribution

P (Ymis|Yobs, θ) from the observed data posterior distribution P (θ|Yobs). Note that

the former HD procedure modifications can also be combined with the ABB pro-

cedure, as is done in Ambler et al. (2007). Also note that a detailed study on

MDMs is made by Siddique & Belin (2008), in which the authors make extensive

use of various adaptations of the ABB procedure. This study will be reviewed in

Subsection 2.3.3.

Continuous imputation

� Multivariate Normal (MN). The MN method assumes that all variables in the

imputation model follow a joint multivariate Normal distribution. This is one of

the most commonly used MI models. Implementation often uses a Bayesian MCMC

approach, which appropriately allows for uncertainty in the estimation of the model

parameters as well as uncertainty in the imputation draws themselves. The develop-

ment of this method is attributed to Schafer (1997). The MN method first calculates

parameter estimates for the joint probability distribution using the expectation-

maximisation (EM) algorithm. The Gibbs sampler is then used to iteratively sample

values for the missing data given the observed data and the current estimates, then

new parameter estimates given the observed data and currently sampled values,

and the process repeats itself. Schafer (1997) describes methods to determine the

number of iterations that should be completed between each data set drawn as one

of the m imputed data sets.

� Normal method with uncertainty in mean and variance (NMV). In this

method the observed data can influence the Normal shape of the distribution of

the imputed values for Ymis. Let Ȳobs be the mean of Yobs and let s2
obs be the

variance of Yobs. First draw (µ∗, σ2
∗) from the posterior distribution of (µ, σ2); i.e.

σ2
∗ is drawn from (nobs − 1)s2

1/χ
2
nobs−1, and then µ∗ is drawn from N(Ȳobs, σ

2
∗/nobs).

Then the components of a nmis-dimensional vector X = (X1, . . . , Xnmis
) are drawn

with replacement from Yobs. Under repeated draws from Yobs, each Zi = (Xi −

Ȳobs)/[(nobs − 1)s2
1/nobs]

1/2 has expected value 0 and variance 1. Finally, the nmis
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components of Ymis are set equal to µ∗+σ∗Zi, i = 1, . . . , nmis. In this way the shape

of the Normal distribution is influenced by the observed data.

� Cubic spline regression method (CSR). This method is utilised in the study by

Faris, Ghali, Brant, Norris, Galbraith & Knudtson (2002). Cubic spline regressions,

conditional on all other variables from the completely observed part of a data set,

are used to generate imputations. This method does not assume the variables in the

analysis conform to a joint distribution. Following the conditional modelling, errors

for imputations are obtained by bootstrapping errors from the completely observed

data, using the ABB method.

� Markov Chain Monte Carlo method (MCMC). This method, reviewed by

Zhang (2003), is also known as the conditional modelling method. The method en-

compasses the basic idea behind sequential regression multiple imputation (SRMI),

a major topic of this thesis, so the MCMC method will be reviewed in more detail

in Chapter 3.

2.3.2 Imputation on monotone patterns

Imputation procedures for missing data with a monotone pattern deserve some attention.

Valid, proper MI in such data sets can be formed by stringing together as many univariate

imputation schemes as there are incomplete variables, as long as the pattern is monotone-

distinct (see pp. 174–178 in Rubin 1987). A monotone pattern is monotone-distinct if

the priors on θi, i = 1, . . . , p are a priori independent in the following factorisation:

f (Yi|Xi, θ) = f1 (Yi1|Xi, θ1) f2 (Yi2|Xi, Yi1θ2) . . .

. . . fp (Yip|Xi, Yi1, . . . , Yi,p−1θp) (2.76)

i.e., if Pr(θ) =
∏p

j=1 Pr(θj).

Another method for monotone missingness is the propensity score method, which is dif-

ferent to this univariate-chain predictive model type of method, and does not require the

assumption that the pattern be monotone-distinct.
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� Propensity score method (PS). In this method, summarised by Zhang (2003),

missingness is predicted using a linear logistic regression model. The conditional

probability of observing yij, given the history, yi1, . . . , yi,j−1, can be called a propen-

sity score sij. That is, sij = Pr(rij = 0|yi1, . . . , yi,j−1), where the rij are the elements

of the response indicator matrix R. Since the missing data have a monotone pattern,

the propensity score can be modelled by:

log

(
sij

1− sij

)
= β0 + β1yi1 + · · ·+ βj−1yi,j−1, (2.77)

where β0, β1, . . . , βj−1 are the regression coefficients. Once these coefficients are es-

timated from the observed rij for the response variable Yj and the complete data for

the covariates Y1, . . . , Yj−1, each observation can be assigned an estimated propen-

sity score,

ŝij =
exp

(
β̂0 + β̂1yi1 + · · ·+ β̂j−1yi,j−1

)
1 + exp

(
β̂0 + β̂1yi1 + · · ·+ β̂j−1yi,j−1

) , (2.78)

and then all observations are stratified in q strata based on the quantiles of these

estimated scores. Within each stratum a donor pool is created by applying the

ABB method to the observed cases within each stratum, in order to reflect addi-

tional uncertainty about the posterior distribution of the underlying parameters.

Each Ymis is then imputed from a draw from the applicable donor pool. Multiple

imputations can be made by creating conditionally independent donor pools and

imputing a single value from each donor pool. It is important to note that this

method cannot preserve any correlations that might exist between the actual his-

tory data, (Y1, . . . , Yj−1), and Yj. Only the missingness indicators in R and the

history are being considered; the joint distribution of Yj and (Y1, . . . , Yj−1) is not

being modelled.

� Predictive model method (PM). This method, reviewed by Zhang (2003), is also

meant for data with a monotone pattern of missingness. In these cases, the joint

observed data likelihood function can be factored into the independent observed
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data likelihood functions:

L (θ1, . . . , θp|Yobs) =

p∏
j=1

L (θj|Yobs)

where

L (θj|Yobs) ∝
nj∏
i=1

P (yij|yi1, . . . , yi,j−1, θj) ,

and P (Yj|Y1, . . . , Yj−1, θj) is the conditional distribution of Yj given Y1, Y2, . . . , Yj−1

and θj is the conditional distribution parameters.

If a multivariate Normal is assumed for the response variables Y1, . . . , Yp, then

L(θj|Yobs) becomes a linear regression of Yj on Y1, . . . , Yj−1 using the first nobs,j

observations, and the conditional distribution parameters θj become the regression

coefficients and the residual variance. The missing values of Yj can be imputed from

the predicted values from this regression, given the observed values of Y1, . . . , Yj−1

and the simulated regression parameters which are randomly drawn from from their

observed data posterior distributions (created using uninformative priors). In this

way, the extra uncertainty concerning the regression parameters is reflected in the

imputations.

This method is closely related to SRMI, discussed in Chapter 3. To uncover the rela-

tionship, the computational aspects of the multivariate Normal-based PM procedure

will be discussed below.

Let Xobs and Xmis be the rows of the data matrix X corresponding to Yobs,j and Ymis,j

respectively. The probability model of Yj given Y1, . . . , Yj−1 is univariate Normal,

Yj ∼ N1(µj, σ
2
j ), where µj = βo+β1Y1 + · · ·+βj−1Yj−1, the observed data likelihood

function of the regression parameters θj = (β0, β1, . . . , βj−1, σ
2
j ) is:

L
(
µj, σ

2
j |Yobs

)
∝ σ

−nobs,j

j exp

[
− 1

2σ2
j

nobs,j∑
i=1

(
yij −Xobs(i)β

)2

]
(2.79)

where β = (β0, β1, . . . , βj−1) is a vector of regression coefficients. A non-informative
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prior for (β, σ2
j ) is assumed, i.e. there is a flat prior on β and π(σ2

j ) ∝ σ−2
j . Af-

ter some manipulation, the observed data posterior distribution of (β, σ2
j ) can be

expressed as:

σ
−p/2
j exp

[
− 1

2σ2
j

(
β − β̂

)′
(X ′obsXobs)

(
β − β̂

)]
×

σ
−(nobs,j−p)/2−1

j exp

[
− 1

2σ2
j

nobs,j∑
i=1

(
yij −Xobs(i)β̂

)2
]

which is the product of a multivariate Normal and a scaled inverted chi-square

distribution:

β|Yobs, σ2
j ∼ N

(
β̂, σ2

j (X ′obsXobs)
′
)
, (2.80)

and

σ2
j |Yobs ∼

(
Yobs,j −Xobsβ̂

)′ (
Yobs,j −Xobsβ̂

)
χ−2
nobs,j−p, (2.81)

where β̂ = (X ′obsXobs)
−1X ′obsYobs,j is the MLE of β from the observed data likelihood

function and Yobs,j −Xobsβ̂ is the residual vector.

The values of (β, σ2
j ) can be simulated from their observed data posteriors (2.80)

and (2.81) by drawing u from χnobs,j−p, then letting

σ2
∗ =

(
Yobs,j −Xobsβ̂

)′ (
Yobs,j −Xobsβ̂

)
u

. (2.82)

Then draw β∗ from (2.80) given σ2
∗.

After a random draw from (β∗, σ2
∗) has been taken from their observed data posterior

distribution, the missing values of Yj, Ymis,j, are imputed by independent random

draws from the conditional predictive distribution N1(Xmisβ
∗, σ2
∗).

To obtain m sets of multiply-imputed data, m conditionally independent random

draws are taken from the observed data posteriors (2.80) and (2.81), say (β∗(t), σ2
∗(t)),

t = 1, . . . ,m. For each of these sets of regression parameter draws the Ymis,j are
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imputed by independent random draws from N1(Xmisβ
∗(t), σ2

∗(t)).
2

In essence, using the same procedure as in the PM method with the univariate Normal

distributions, a monotone pattern of missing data can be imputed from a single run

through a Gibbs sampler, with any set of univariate distribution models, as long as the

pattern is monotone-distinct. The imputations are made in a univariate fashion, variable

by variable, in the following manner:

P (Ymis,1|X, θ1)

P (Ymis,2|X, Y ∗1 θ2)

. . .

P
(
Ymis,k|X, Y ∗1 , . . . , Y ∗k−1θk

)
where k is the number of incomplete variables in the data set, and , Y ∗j stands for the jth

completed variable, as before (van Buuren 2007).

A multitude of imputation methods is available for univariate missing data, all of which

can be used in this chain of univariate distributions. For a comprehensive list of methods

and sources, see van Buuren (2007, p. 226). The sequence can be replicated m times to

create m multiply imputed data sets.

2.3.3 Research into the mechanisms behind missing data

Nonresponse is a difficult and complicated problem especially because there is never any

hard evidence in the data set itself to contradict relevant aspects of the assumptions on

the MDM (Rubin 1978).

After seeing many practical MI examples Rubin (2003a) states that the MDM may not be

the most important aspect to focus on in incomplete-data problems. From his experience,

he suggests that the most important procedure to follow, at a minimum, is to model the

missing data using an ignorable mechanism that builds relationships among the observed

variables. Then, if necessary, and if it is the focus of the research, one can continue

2As will be seen in Chapter 3, this procedure is identical to one round in SRMI if all of the incomplete
variables are univariate Normal.
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investigating any MNAR mechanisms that might be occurring. While Rubin (2003a)

does not suggest that MNAR MDM research is unimportant, he re-emphasises that at

least a MAR MDM should be assumed when there is missing data.

Schafer (2003) agrees, suggesting that as a general principle more time should be spent

on building an ‘intelligent’ model for the data, rather than spending too much time on

modelling the MDM, unless the departure from a MAR MDM is expected to be severe.

Collins et al. (2001) show that, with continuous data, an incorrect MAR assumption does

not have a major impact on estimates or standard errors unless the absolute correlation

between the the cause of missingness and the incomplete outcome is above 0.5. However,

should a significant departure from a MAR MDM exist, the problem can be dealt with

using the methods reviewed later in this subsection, Subsection 2.3.3.

Zhang (2003), too, mentions that often the MDM could have parts that are ignorable

and parts that are not. However, as long as the ignorable part is substantial, and the

nonignorable part is included in the imputation process, “the bias caused by treating all

of the missing data as ignorable would be negligible” (Zhang 2003, p. 590–591).

Indeed, the MI process can incorporate even uncertainty concerning a MNAR MDM.

“As long as the imputations reflect the correct amount of uncertainty there is nothing in

the theory of MI that prevents appropriate inferences under P (Y |X,R = 0). Multiple

imputation will also work for nonignorable response mechanisms” (van Buuren 2007, p.

223).

One alternative method to account for a non-MAR MDM is proposed by Schafer (2003).

This method involves creating extra covariates from the random variable R. Besides this

possibility, there have been several attempts to correctly model a MNAR MDM. Some of

these studies are reviewed below.

Glynn et al., 1993

Glynn et al. (1993) illustrate the application of MI to the estimation of means and re-

gression parameters when nonresponse is nonignorable, and follow-up data is available for

a sample of nonrespondents. The authors use a mixture model for MI; a mixture of a
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population model for respondents and a population model for the follow-up data obtained

from nonrespondents. The imputation models used (both Normal and ABB) are derived

using information from the nonrespondents that provide data once followed up.

Glynn et al. (1993) show that the use of this mixture model implemented through MI

corresponds to a fully Bayesian mixture model or the classical double-sampling estimate

(see, for example, Cochran 1977) in the simplest of cases, and yet it performs well in

relatively more complex situations as well. The procedure works well, even when the

underlying mixture model is incorrect. One of the most pertinent conclusions drawn

by the authors is that, using their method, there is no need to specify a model for the

probability of nonresponse, even though this model is nonignorable. It is assumed that the

follow-up data better represents the missing data, so the models built from the follow-up

data skew the imputations towards the correct nonignorable MDM. The authors also show

that the fraction of missing information in incomplete data with a nonignorable MDM is

larger than when the MDM is ignorable, so care should be taken to at least increase the

number of imputations (in the case of Normal data).

Van Buuren et al., 1999

Van Buuren et al.’s (1999) paper applies a form of MI on incomplete blood pressure vari-

ables (systolic and diastolic measures) in order to examine the relationship between blood

pressure and mortality (measured through a fully observed censoring flag and survival

date) in elderly individuals when controlling for age and sex (and health in one model).

The two most important aspects of this study are (i) that van Buuren et al. (1999) per-

form MI on individual variables sequentially, and (ii) that the authors multiply impute

under both MAR and MNAR mechanisms. The former technique introduces the SRMI

method. The latter exploration sheds light on how a priori assumptions can be used to

model data under the MNAR mechanism, and how using differing mechanisms can inform

the researcher about the underlying MDM. This part of the study will be reviewed in the

current subsection. On the same general topic as Meng (1994) introduced in his paper

concerning departure from a MAR MDM, van Buuren et al. (1999, p. 682) write:

“Of particular interest is that MI allows display of the sensitivity of the in-
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ferences to different mechanisms that could have created the non-response.

There is no need to assume one ‘true’ response model and stick to that. Sev-

eral plausible mechanisms can be tried. If none of these mechanisms changes

the relation of interest, then inference is robust against the specified causes of

the non-response. On the other hand, if the results do depend on the specific

form of the non-response model, then more precise statements can be made

regarding the exact conditions under which the obtained results apply.”

Van Buuren et al.’s (1999) overlying model is Cox regression of mortality on blood pres-

sure, adjusted for age and sex (and health). Approximately 12.5% of cases are missing

one or more blood pressure measurements, and, importantly, it is expected that individ-

uals with lower blood pressure are more likely to have the blood pressure measurements

missing. This means that the data might be MNAR.

Assuming that the data is merely MAR, a single variable is imputed as follows (van

Buuren et al. 1999):

1. Calculate W = (X ′obsXobs)
−1, β̂ = WX ′obsYobs, and Ŷobs = Xobsβ̂.

2. Draw a random variable c from the χ2
nobs−r distribution, where r is the number of

predictors for Y .

3. Calculate σ2
∗ = (Yobs − Ŷobs)′(Yobs − Ŷobs)/c

4. Draw an r-dimensional Normal random vector D ∼ N(0, Ir).

5. Calculate β∗ = β̂+σ∗W
1/2D, whereW 1/2 is the triangular square root ofW obtained

from the Cholesky decomposition.

6. Calculate predicted values Y ∗mis = Xmisβ
∗.

7. For each missing value i = 1, . . . , nmis, find the respondent whose Ŷobs is closest to

Y ∗mis,i, and take Yobs of this respondent as the imputed value for case i.

8. Repeat steps 2–7 m times to create the m (multiply) imputed data sets,

Y
(1)
mis, Y

(2)
mis, . . . , Y

(m)
mis .

This method is very similar to that which will be introduced as the sequential regression

Normal method, only differing in the penultimate two steps. It incorporates uncertainty
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due to deviations around the regression lines in steps 2 and 3, and also incorporates

variation of the regression line itself due to finite sampling in step 4.

In order to impute multivariate data, the sequential univariate regressions are applied.

By the way of Gibbs sampling, sampling from the univariate conditional distributions

iteratively, the multivariate joint distribution can be approximated (if it exists). This

process is essentially the method used by van Buuren et al. (1999) to impute the systolic

and diastolic blood pressure measures.

Each incomplete entry is initialised by filling in a random draw from the marginal distri-

bution of Yobs.

1. Y1 is imputed by the univariate procedure listed above, conditional on all other data

(observed and imputed combined).

2. Y2 is then imputed, conditional on all other data (using the most recent imputations

for Y1).

3. This process repeats itself until all the incomplete variables are imputed.

4. The first three steps are then repeated on a second pass of the data, using all

imputations created during the first pass.

5. Step 4 is then repeated until 20 passes have been made. The data set that results

after 20 passes is one imputed data set.

6. Step 5 is repeated m times to complete m imputed data sets.

The authors find that fewer iterations on each data set are required than for regular

Markov chain simulation techniques. This type of algorithm converges usually within

relatively few iterations, meaning the 20 iterations specified in the procedure above are

more than sufficient.

Van Buuren et al. (1999) then add a location term to the imputation model to adjust for

a MDM that is not random. The prior belief that missing blood pressure observations

are more likely to occur at lower blood pressures suggests that an adjustment should be

made to those cases where Ri = 1. Incorporating this idea into the regression switching

method implies the addition of a location term to the imputation model for systolic blood
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pressure (the effect of the location parameter is carried over via the regression switching

to the diastolic blood pressure imputations):

Y1 = Xβ + (1−R1) δ + ε

where R1 is the binary response indicator of systolic blood pressure, and δ is chosen by

the imputer to be the mean unit difference between responders and non-responders in

excess of that induced by X.

The Cox regression results on the imputed data sets are combined using the standard

combining rules given by Rubin (1987), assuming that the sample is large enough to

use the Normal confidence intervals for Q. Relative risk estimates and their confidence

limits in the Cox proportional hazards model can then be obtained as exp(Q̂) and exp(Q̂±

1.96
√
T ), with variables notated as previously. Various values of δ, (0,−5,−10,−15,−20)

are chosen for the analysis, and the results are compared. Of course, as delta becomes more

negative, the point estimates for imputed values become lower. However, the proportional

hazards for each blood pressure grouping remain similar to the complete-case analysis,

regardless of the value of δ. The lack of change in the overall proportional hazards model

may be due to the small amount of missing data, or because the differences in mortality

between responders and nonresponders are simply too small to exert a serious impact on

the estimates. The authors caution that although the imputation results are similar to the

complete-case analysis results, the complete-case analysis was not necessarily appropriate

in the first place.

Carpenter and Kenward, 2007

Carpenter & Kenward (2007) also apply sensitivity analysis on the MDM. The authors

impute under the MAR mechanism, obtain parameter estimates for each imputed data

set, and then obtain MNAR parameter estimates as a weighted average of the MAR pa-

rameter estimates, where the weights depend on the extent of the departure from the

MAR mechanism. The weights are calculated using importance-sampling, or an applica-

tion of the sampling importance resampling (SIR) algorithm, which Meng (1994) used in
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his study of non-congeniality in MI. Carpenter & Kenward’s (2007) approach provides a

simple approximate sensitivity analysis for imputers when the MAR and MNAR distri-

butions overlap and the fraction of missing information, γ or γ̂ from Subsection 2.2.3, is

not too great. The method allows researchers to assess the necessity of MNAR modelling,

and is detailed below.

Carpenter & Kenward (2007) model the response of patients in a longitudinal clinical trial

as follows:

logit Pr (Ri = 1)

= β0 + β1 × I0,1 [patient i on active treatment] + β2Xi + β3Yi (2.83)

where I0,1[·] is an indicator variable with argument for I0,1 = 1 in [·], β0 is the log-odds of

observing Yi, β1 is the adjusted change in the log-odds ration of observing Yi if the patient

is randomised to active treatment, and β2 is the additional change in the log-odds ratio

for a one-unit change in the baseline Xi, which itself need not be fully observed but will

remain notated as Xi in the review of this study for the sake of simplicity.

Of course, if β3 = 0 then the MDM is MAR. If β3 6= 0, then distributional assumptions

will be needed to estimate β3, since information about β3 within the model may be

scarce. As with the study by van Buuren et al. (1999), the authors therefore estimate the

model in expression (2.83) assuming that β3 = 0, i.e. that the MDM is MAR, and then

suggest suitable values for the additional dependence of Ri on Yi through fixed choices

of β3, testing the sensitivity to the each suggested MNAR mechanism. When δ 6= 0, this

process involves jointly fitting a model for the observed responses, Yi, and model (2.83),

which usually takes the form of numerical integration or MCMC modelling.

Let Z be the baseline data (baseline response and treatment allocation, i.e., I0,1 and X

together). As usual, Q is the scalar quantity of interest. Carpenter & Kenward (2007)

make the standard assumption that without missing data, Q is Normally distributed.

Assuming the MAR MDM, we have, as before, m versions of the missing data, and m

parameter estimates and their variances, Q̂∗l, U∗l, l = 1, . . . ,m. Also, as before, we have

the regular MAR MI estimates as per Equations (2.5)–(2.8). To obtain an estimate of

Q when the data are assumed to be MNAR, a suitable β3 must be chosen. The patients
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are then re-ordered so that it is patients i = 1, . . . , n∗ that have withdrawn and patients

i = n∗ + 1, . . . , n that are complete. Also, let Y
(j)
i denote the the jth MAR imputation

of patient i’s response. Then, for each imputation j, compute:

w̃j = exp

(
−β3

n∗∑
i=1

Y
(j)
i

)
, (2.84)

and

wj =
w̃j∑m
k=1 w̃k

. (2.85)

The derivation of these weights given model (2.83) is straight forward. The authors use

the sampling importance resampling (SIR) algorithm to determine the weights in a two-

imputation case for a single observation, and extend the basic result thereafter. SIR is

used when one wishes to estimate the mean of g, a probability distribution which is known

up to a normalising constant, but can only readily sample from f , although the support

of f and g coincide. Then:

1. Sample Y (1), . . . , Y (m) ∼ f

2. Calculate wj =
g(Y (j))
f(Y j)

3. Then we have that:

Eg [Y ] ≈
∑m

j=1 wjY
(j)∑m

j=1 wj
(2.86)

or

Eg [h (Y )] ≈
∑m

j=1 wjh
(
Y (j)

)∑m
j=1 wj

(2.87)

This approximation improves as m→∞. Now, in this algorithm, f represents the MAR

MDM that we know we can draw from, i.e. [Y |Z,R = 1], while g is the MNAR MDM that

we would like to draw from, i.e. [Y |Z,R = 0], and h is the completed data estimator, Q̂.

Looking at only a single observation (that is not in the treatment group) Y1 with R1 = 0
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and X1 observed. The weight then follows the ratio:

[Y1|Z1, R1 = 0]

[Y1|Z1, R1 = 1]
=

[Y1, Z1, R1 = 0]

[Y1, Z1, R1 = 1]

[Z1, R1 = 1]

[Z1, R1 = 0]

=
[R1 = 0|Y1, Z1]

[R1 = 1|Y1, Z1]

[Z1, R1 = 1]

[Z1, R1 = 0]
(2.88)

In model (2.83), for [R1 = 0|Y1, Z1], if the patient is in the non-treatment arm of the

clinical trial, this is {1 + exp[β0 + β2X1 + β3Y1]}−1. Thus, [R1 = 1|Y1, Z1] reduces to

exp[β0 + β2X1 + β3Y1]{1 + exp[β0 + β2X1 + β3Y1]}−1 Therefore, the weights for the two

imputations, Y (1) and Y (2) are:

w̃1 = exp
(
−β3Y

(1)
){

exp [− (β0 + β2X1)]
[Z1, R1 = 1]

[Z1.R1 = 0]

}
, (2.89)

and

w̃2 = exp
(
−β3Y

(2)
){

exp [− (β0 + β2X1)]
[Z1, R1 = 1]

[Z1.R1 = 0]

}
. (2.90)

Since the terms in braces are identical, the normalised weights w1 = w̃1/(w̃1 + w̃2) and

w2 = w̃2/(w̃1 + w̃2) are proportional to exp(−β3Y
(1)

1 ) and exp(−β3Y
(2)

1 ), respectively. It

is easy to see that the indicator variable will also be a part of the common terms, as

would any function of the observed data. This simple case is intuitively extended for all

observations and all cases, giving us the weighting formula in Equation (2.84). Given

the completed data, the probability of observing Y
(j)
i is independent of the probability of

observing Y
(j)
i′ , i 6= i′. It then follows from Equations (2.89) and (2.90) that the weight

for imputation m is:

wj ∝ exp

(
−β3

n∗∑
i=1

Y
(j)
i

)
. (2.91)

Thus, the log-weight is proportional to a linear combination of the imputed data.

Then, under the MNAR model implied by the choice of β3, the estimate of Q and its

variance, U , are simply re-weighted versions of the regular combining rules given in Equa-
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tions (2.5)–(2.8):

Q̄MNAR =
m∑
j=1

wjQ̂j; (2.92)

with variance:

TMNAR ≈ ŪMNAR +

(
1 +

1

m

)
BMNAR, (2.93)

where

ŪMNAR =
m∑
j=1

wjUj, (2.94)

and

BMNAR =
m∑
j=1

wj

(
Q̂j − Q̄MNAR

)2

. (2.95)

Carpenter & Kenward (2007) mention that the accuracy of the approximation justify-

ing Equations (2.92) and (2.93) improves as the number of imputations increases (with

problems often requiring m ≥ 50). However, TMNAR is still likely to underestimate the

variance, even with large m, since the effective sample size after reweighting is often less

than m. Therefore, the t-distribution degrees of freedom for the inferences based on the

MNAR model should be decreased.

In their simulation study, Carpenter & Kenward (2007) show that as m tends to infinity,

if the correct β3 is chosen, the estimates will be unbiased. The bias that the MAR results

offers is whittled away by increasing m and using the proposed reweighting scheme. One

of the advantages of this method is that parameters other than β3 need not be specified.

So the method is robust to misspecification of the model in Equation (2.83), providing β3

is correctly specified. Also note that [Y |X,R = 1] is estimated from the observed data. If

the fraction of missing information is large, the true distribution may not be summarised

adequately by the observed data. As for application of this model to real data, Carpenter

& Kenward (2007, p. 269) write,

“it is important to know whether we have enough imputations for a reasonably
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reliable answer, and also whether the range of parameter estimates from the

MAR model is sufficiently wide to give acceptable support to the [MN]AR

distribution — the key assumption to this method.”

So the MAR distribution’s support should complement that of the MNAR mechanism,

and the number of imputations should be large. The latter may be a problem when

the analyser is not the imputer, since it is not common to publish that many multiply

imputed completed data sets. It is also important that the choice of β3 be guided by

prior knowledge or from expert opinion, since there is usually insufficient information in

the incomplete data to estimate this. One option given by the Carpenter & Kenward

(2007, p. 274) is to “calculate the [β3] corresponding to one standard error change in the

parameter of interest, and then refer this value to experts to assess its plausibility.”

In order to perform sensitivity analysis, the authors use two types of graphs. The first

is a graph of the parameters versus the normalised weight for each imputation, with a

line plotted at the MAR estimate of the parameter (where there are equal weights). This

graph will show which imputations are being more highly weighted. The second graph is

a running re-weighted estimate versus number of imputations, i.e., a graph of the running

re-weighted estimate as more imputed data sets are added to the weighted combining

rules. Again a line is plotted for the unweighted MAR parameter estimate. These graphs

will show the model’s sensitivity to the MAR MDM, and will give close approximations

to the MNAR estimates if they are close to the MAR estimates, or will at least point in

the direction of the MNAR estimates if the MAR and MNAR distributions do not over

When discussing potential extensions to their study, Carpenter & Kenward (2007) mention

that a check on the reliability of resulting MNAR imputations is whether the re-weighted

estimates agree with those obtained under a MAR MDM.

Siddique and Belin, 2008

Siddique & Belin (2008) combine ABB and predictive mean matching (PMM) in multiple

imputation on nonignorable missingness in incomplete data. In the basic ABB procedure,

a new bootstrapped sample from Yobs (size nobs) is considered as being the set of donor

cases for the nmis imputation draws. Instead of each observation being drawn into the
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bootstrapped sample with equal probability, Siddique & Belin (2008) extend the method

proposed by Rubin & Schenker (1991) where the nobs observed values yi ∈ Yobs have

probability of being drawn equal to
yci∑nobs

j=1 ycj
. In Rubin & Schenker’s (1991) method, for

different values of c, the bootstrapped samples which offer the donor cases for imputation

draws will tend to over-represent large values (if c > 0 and yi > 0 for example) or over-

represent small values (if c < 0 and yi > 0 for example). In this way, more larger (or

smaller) values will be imputed, according to the nonignorable MDM that is hypothesised.

Alternative, other ‘shapes’ of donor cases can be generated, by, for example, sampling

based on difference from the median or another quantile.

Siddique & Belin (2008) create the bootstrap sample of donors using Rubin & Schenker’s

(1991) method, but then the probability of being selected as a donor case also uses weights

based on PMM. In PMM, values Yobs in the bootstrapped sample are regressed on a their

observed covariates, X. Using the parameters from this regression, predicted values are

calculated for all observations, observed and missing, Ŷ . Missing values of Y are then

drawn from the ABB donor or bootstrapped sample with a probability inversely propor-

tional to the distance between the missing values’ predictions and the donors’ predictions.

Without going too much into the technicalities, the distance formula incorporates a pa-

rameter k that allows the distancing formula to go from one extreme (nearest-neighbour

HD) to the other (simple random HD). Thus, all donor cases have a non-zero probability

of being selected as imputed values, but some will have higher probabilities than others,

based on their proximity in predicted value to the predicted value of the point being

imputed.

In their experiments, Siddique & Belin (2008) multiply impute using their ABB/PMM

mixed method. They find that the best results are obtained when the nonignorable MDM

is altered for each imputed data set (known as a Mixture ABB in their paper). The MDMs

can be altered with a focus on a hypothesised nonignorability (favouring large values, for

example), or they can be spread across several alternatives. In this way, the authors do

not have to assume they know the nonignorable MDM, but the variation over imputed

data sets represents sensitivity to the nonignorable MDM. In essence, a Mixture ABB MI

allows imputers to test the assumption of a nonignorable MDM.
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2.4 Conclusion

Since Rubin (1978) laid the groundwork for multiple imputation and ignorable MDMs,

research into MI has increased substantially. However, the fundamental concepts have

remained almost unchanged. The theory behind proper, valid multiple imputation has

remained sound over the last four decades, and research has reached into the effects of

nonignorable MDMs, MI of particular missingness patterns, and most importantly, new

methods reducing the complexity of the joint modelling procedure, most notably SRMI.

However, over recent years some extensions have been attached to the age-old fundamental

procedures, such as the use of larger numbers of imputed data sets for post-imputation

Bayesian analysis, as discussed by Zhou & Reiter (2010).

The most profound outcome of the path of research and debate within MI has been the

illustration, time and again, of its convenience and efficiency. It is clear that MI is now

the preferred method for filling in incomplete data sets if those data sets are to be made

available for later public use: when the imputation and analysis tasks are separated, MI

is the most appealing solution to the missing data problem. Multiple imputation allows

the uncertainty inherent in imputation to be carried over from the imputation task to

the analysis tasks, including the uncertainty due to not knowing how the data became

missing, uncertainty in the imputation model, and sampling uncertainty.
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Chapter 3

Sequential Regression Multiple

Imputation

3.1 Introduction

A recent MI approach uses sequences of appropriate regression models to multiply im-

pute missing data. Hence the name Sequential Regression Multiple Imputation (SRMI).

This approach is also known as the fully conditional specification (FCS) or approach (for

reasons that will be explained shortly), or MI through chained equations (MICE), as well

as stochastic relaxation, regression switching, variable-by-variable imputation, partially

incompatible MCMC, iterated univariate imputation, or the ordered pseudo-Gibbs sam-

pler. This thesis will refer to all of these methods with the common acronym SRMI, since

they are all essentially the same procedure.1

One of the main problems of MI from a Bayesian context is that a multivariate model

needs to be chosen for the observed data. In practice, however, survey data consists

of many variables with different distributions, and often displays seemingly unsystematic

patterns of missing data. These properties of survey data make joint modelling approaches

extremely difficult to implement, since typical multivariate distributions are not flexible

1The reason SRMI is chosen above the more common FCS acronym, is due to the more explana-
tory nature of the terms ‘sequential regression’, which adequately describe some of the steps within the
procedure.

73



74 CHAPTER 3. SEQUENTIAL REGRESSION MULTIPLE IMPUTATION

enough to accommodate such varying structure.

In the sequential procedure, each variable can be modelled individually within the im-

putation process. Imputers can have much more control over imputations from variables

with inherent restrictions. This is not easily done when variables are jointly modelled in

an imputation procedure.

The SRMI method of MI was proposed by van Buuren et al. (1999), and independently

by Raghunathan, Lepkowski, van Hoewyk & Solenberger (2001), although the system had

been used even earlier by researchers such as Kennickell (1991).

3.2 The SRMI process

3.2.1 Overview

As explained by Raghunathan et al. (2001) and He & Raghunathan (2009), SRMI works,

in essence, in a two-dimensional process as follows. Reviewing our standard notation, let

Yj (j = 1, . . . , p) denote the variables with missing values, X denote the matrix of q fully

observed variables, and let Y−j = (Y1, . . . , Yj−1, Yj+1, . . . , Yp) denote the p − 1 variables

in Y excluding Yj. In SRMI, a conditional model P (Yj|Y−j, X, θj) is specified for each

Yj, with θj denoting the respective model parameters. The first dimension of the SRMI

process is a single iteration, or pass, of the process, essentially ‘filling in’ the missing data

values. The second dimension of the procedure is the repetition of this ‘filling in’ process,

using the previously filled-in values. Thus, in each iteration of the imputation procedure,

θj is drawn from P
(
Yj|Y obs

j , Y−j, X
)

using the observed part of the variable Yj, namely

Y obs
j , and the completed part Y−j (from the previous iteration if there was one), and X;

the missing part of the variable Yj, namely Y mis
j , is then imputed. The conditional model

process is repeated, cycling through all the Yj’s. Each conditional density is modelled

through the appropriate regression model, chosen specifically based on the distribution of

each variable.

Note that the first round of imputations, i.e. the first iteration, is slightly different, as

mentioned above in the text “. . . from the previous iteration if there is one”. Raghunathan
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et al. (2001) break down the first iteration in detail. The joint conditional density of

Y1, Y2, . . . , Yp given X can be factored as:

f (Y1, Y2 . . . , Yp|X, θ1, θ2 . . . , θp) =

f1 (Y1|X, θ1) f2 (Y2|X, Y1, θ2) . . . fp (Yp|X, Y1, Y2, . . . , Yp−1, θp) (3.1)

where fj, j = 1, . . . , p is the conditional density function and θj a vector of parameters

for the respective conditional distribution. So the first iteration of the SRMI procedure

conditions only on the data that has been filled in already in that iteration.

When the missing data have a non-monotone pattern, the target distribution is the joint

conditional distribution of Ymis and θ given Yobs, P (Ymis, θ|Yobs). One can simulate from

this distribution using the MCMC method, as proposed by Zhang (2003), which proceeds

as follows:

1. Replace the missing data Ymis by some assumed values.

2. Simulate θ from the resulting completed data posterior P (θ|Yobs, Ymis). Let θ(t) be

the current simulated value of θ from this complete data posterior distribution.

3. (Imputation or I-step): The next iterative sample of Ymis, namely Y
(t+1)
mis , can be

drawn from the conditional predictive distribution of Ymis given Yobs and θ(t):

Y
(t+1)
mis ∼ P

(
Ymis|Yobs, θ(t)

)
(3.2)

4. (Posterior or P-step): Conditioning on Y
(t+1)
mis , the next simulated value of θ can be

drawn from its completed data posterior distribution,

θ(t+1) ∼ P
(
θ|Yobs, Y (t+1)

mis

)
. (3.3)

5. Repeating steps 3 and 4 from a staring value of θ, say, θ(0), yields a Markov chain

{(θ(t), Y
(t)
mis) : t = 1, 2 . . .}. The stationary distribution is the target distribution,

P (Ymis, θ|Yobs).

Consequently, the marginal stationary distributions of the subsequence {θ(t) : t = 1, 2 . . .}
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and {Y (t)
mis : t = 1, 2 . . .} are the observed data posterior distribution P (θ|Yobs) and the

posterior predictive distribution P (Ymis|Yobs), respectively. When t is sufficiently large,

θ(t) can be viewed as a single simulation from the observed data posterior distribution

P (θ|Yobs), and Y
(t)
mis can be viewed as a single simulation from the posterior predictive

distribution P (Ymis|Yobs).

Multiple imputations of Ymis should be independent given Yobs. For this reason, Zhang

(2003) suggests that Ymis draws only be taken from widely separated items along a single

chain, or from the final draws on each of m chains. A comment on the efficiency of this

type of sampling is given in Subsection 3.4.7.

Since the convergence from MCMC is distributional, i.e. the draws do not converge, yet

the distributions from which they are drawn do, different methods have been proposed in

order to monitor this convergence. One of these methods will be reviewed later in this

chapter.

In the following section we explain the process behind SRMI in more detail, since this

method is the focus of the present chapter, and indeed, this thesis. Firstly, the imputation

steps can be explained in more detail, and, secondly, the Gibbs sampling procedure used

in the application of SRMI can be reviewed thoroughly. Both of these explanations are

presented in Raghunathan et al. (2001).

3.2.2 Step-by-step SRMI and Gibbs sampling

Given an incomplete dataset, the data set’s incomplete variables are sorted from the

variable with the least missing entries to the variable with the most missing entries. Let

the variable with the most missing entries be the vector Y1, the variable with the next

fewest missing be Y2, etc., until Yp. Let X again be the part of the dataset that is complete.

Finally, let θj once more be the vector of unknown regression and dispersion parameters

in the conditional model for Yj. The sorting of the dataset follows as an extension to the

fact that in model-based imputations the joint conditional density of Y1, Y2, . . . , Yp given

X can be factored as in Equation (3.1).

The first round of imputations then begins; the variable with the least amount of missing
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data entries (apart from the complete variables) is selected. This variable is regressed on

the complete data according to a regression model that is assumed to fit the distribution of

the variable, as mentioned above. The model first processed is illustrated in Equation (3.1)

by f1. The regression is Bayesian by nature, but utilizes a diffuse or non-informative prior.

If Θ = (θ1, θ2, . . . , θp) then the prior for each model is π (Θ) ∝ 1. A set of regression

parameters is then drawn from the regression model and a single draw from the posterior

predictive distribution of the model (the predictive distribution of the missing values given

the observed values) is made for every missing data entry in that variable. These draws

are the imputed values for that variable.

The SRMI process then selects the variable with the next fewest missing values, and

the procedures explained the above paragraph are repeated as follows. A new regression

model, illustrated by f2 in Equation (3.1), is chosen according to the assumed distribution

of Y2, the variable now being regressed. This new variable is regressed on the complete

data and the newly completed variable from the previous step (i.e. the variable with

the least missing values, all of which have now been imputed with a single imputation).

Again a set of regression parameters is drawn from the new regression model and a single

draw from the posterior predictive distribution of this model is made for every missing

data entry in the variable. This step is repeated until all of the variables in the dataset

are filled in by appropriate regression predictions. By the nature of this process, the term

‘sequential regression imputation’ is justified.

The reason that the data is sorted according to missingness is given by the fact that the

starting distribution in the Gibbs sampling procedure should be as close as possible to

the target distribution P (Ymis|Yobs), since the Gibbs sampling procedure can be strongly

influenced by the initial distribution (Brand 1998, p. 53). By filling in the data set

variable by variable, from least missing to most missing, we obtain the best possible

starting distribution.

Once an entire dataset has been filled in with imputed values for the original missing

entries, this completed dataset is subjected to an update round, round two, starting

essentially at the second step above. Thus, the iterative process involved in SRMI is

brought to light. The process involved in the updating rounds differs slightly to that of

steps two and three above.
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The first difference depends on the pattern of the missing data. For a monotone pattern

of missing data, if a datum for an observation is missing in variable Yj, then the data for

that observation will be missing in variables Yj+1, Yj+2, . . . , Yp. When this pattern occurs

the imputations in the first round are approximate draws from the predictive distribution

of the missing values given the observed values. Draws in subsequent rounds can be

improved upon using the SIR (sampling, importance-weighting, resampling) or another

rejection algorithm (Raghunathan et al. 2001). When the pattern of missing data is not

monotone, a Gibbs sampling algorithm must be developed to improve upon the previous

round’s estimates. Raghunathan et al. (2001) suggest that the missing values in Yj at

round (w + 1) need to be drawn from the conditional density:

f ∗j

(
Yj|X, θ(w+1)

1 , Y
(w+1)

1 , . . . , θ
(w+1)
j−1 , Y

(w+1)
j−1 , θ

(w)
j+1, Y

(w)
j+1 , . . . , θ

(w)
p , Y (w)

p

)
(3.4)

where Y
(w)
i is the vector Yi that was filled in with imputed values in round w. Equa-

tion (3.4) is computed based on the joint distribution specified in Equation (3.1). This

draw process would be extremely difficult to complete, since the density in Equation (3.4)

is difficult to compute in most practical situations without restrictions (Raghunathan

et al. 2001, He & Raghunathan 2009). However, Raghunathan et al. (2001) propose

that, instead, the draw in round (w + 1) for Yj is taken from the predictive distribution

corresponding to the conditional density:

gj

(
Yj|X, Y (w+1)

1 , Y
(w+1)

2 , . . . , Y
(w+1)
j−1 , Y

(w)
j+1 , . . . , Y

(w)
p , φ

)
(3.5)

where φ is a vector of regression parameters with diffuse prior.

In other words, in imputation rounds after the first round the values that were originally

missing in each variable are now predicted from regression models, regressing those vari-

ables on all of the other variables in the dataset. This process implies that the variables

with values imputed from the first round are used as regressors in the second round, in ad-

dition to the newly updated variables from the current round. The process can be viewed

as an approximation to the Gibbs sampling procedure in Equation (3.4). In some partic-

ular cases this approximation is equivalent to drawing values from a posterior predictive

distribution under a fully parametric model. For example, if all of the variables are con-
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tinuous and Normally distributed with constant variance, then the algorithm governing

Equation (3.5) converges to a joint predictive distribution under a multivariate Normal

distribution with an improper prior for the mean and covariance matrix (Raghunathan

et al. 2001).

This fourth step is then repeated as many times as the researcher deems fit (usually to a

point where the inferences made on the data during subsequent rounds converge).

3.3 Regression Models Used in SRMI

The SRMI modelling procedure is open to using new regression modelling procedures.

Numerous ‘regular’ regression models exist that have been used in SRMI modelling; these

models will be presented in Subsection 3.3.1. Besides these models, many other possible

regressions exist that could be incorporated into an SRMI procedure. One such example is

the family of generalised linear mixed models, which will be discussed in Subsection 3.3.3.

3.3.1 Imputing from generalised linear models

From Equation (3.5) it is evident that, in order to obtain predictions for the missing data

in a variable, a particular regression model needs to be utilised according to the assumed

distribution of the variable in question. Regular regression models considered are the Or-

dinary Least Squares (OLS) regression model for a variable that is Normally distributed,

the logistic Generalised Linear Model (GLM) for a variable that is dichotomous or binary,

the Poisson GLM for a variable that displays count data, and a polytomous regression

model for variables with three or more categories.

In this section, note that the univariate outcome variable is denoted by Y , while the

covariates used in the regression of Y are denoted by X, as opposed to the notation

in this thesis that regards Y as an incomplete data matrix, and X as a complete one.

Similarly, Ymis and Xmis are the outcome and covariate rows, respectively, where the

outcome is missing, and Yobs and Xobs are the outcome and covariate rows where the

outcome is observed.
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Normal data

When the variable in question is distributed Normally, i.e. Y ∼ N (µ, σ2I), then the OLS

regression model is applicable, where E [Y ] = Xβ. This method is very similar to that

reviewed by Zhang (2003) in the predictive model (PM) method for monotone missingness.

As noted in Subsection 3.2.2, a random draw from the posterior of the parameters and

σ2 is needed, and from there a random draw can be made from the posterior predictive

distribution of the variable.

The parameter estimates from OLS are known to be β̂ = (X ′X)−1X ′Y . In order to

generate a random draw from the posterior of σ2 we note that:

U =

(
Y −Xβ̂

)′ (
Y −Xβ̂

)
σ2

∼ χ2
n−k (3.6)

where n is the number of observations in the regression and k is the number of parameters.

Generating a random draw, u, from the χ2
n−k distribution, and using the parameter esti-

mates, β̂, one can generate an estimate for σ2, namely, σ2
∗, using the following equation:

σ2
∗ =

(
Y −Xβ̂

)′ (
Y −Xβ̂

)
u

(3.7)

Using this estimate one can draw a set of parameters, β∗, from the posterior distribution

of the parameters, using:

β∗ = β̂ + σ∗Tz1, (3.8)

where T is the symmetric square root of (X ′X)−1, the covariance matrix of β̂, and z1 is

a random draw from the Standard Normal distribution.

Using β∗ and σ2
∗, one can impute missing values using the following equation:

Y ∗mis = Xmisβ
∗ + σ∗z2, (3.9)

where z2 is another random draw from the Standard Normal distribution.

This procedure is identical to the procedure incorporated into the Normal version of the
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PM method for monotone data, discussed in Subsection 2.3.2.

Binary data

When the variable in question is binary, one should implement a special case of the

Binomial model, in which Y ∼ Bin (n, π). With dichotomous data the elements of n are

ones. Parameters can be estimated from the general logistic regression model, with the

logit link function, namely:

logit (π) = ln

(
π

1− π

)
= Xβ (3.10)

Maximum likelihood estimates of the parameters β, and therefore also of the vector of

probabilities π = exp(Xmisβ)
1+exp(Xmisβ)

, are obtained by maximizing the following log-likelihood

function:

l (π;Y ) =
n∑
i=1

[Yi lnπi + (1− Yi) ln (1− πi)] (3.11)

From Equation (3.10) we have that

πi =
exp (Xiβ)

1 + exp (Xiβ)
(3.12)

and therefore

ln (πi) = Xiβ − ln [1 + exp (Xiβ)] (3.13)

and

ln (1− πi) = − ln [1 + exp (Xiβ)] (3.14)

Using these results in Equation (3.11) yields the following log-likelihood function to be

maximised:

l (π;Y ) =
n∑
i=1

{Yi [Xiβ − ln [1 + exp (Xiβ)]]− (1− Yi) ln [1 + exp (Xiβ)]}

=
n∑
i=1

{YiXiβ − ln [1 + exp (Xiβ)]} (3.15)
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For maximum likelihood estimation, the scores with respect to the (p+1) elements of β are

required, U0, U1, . . . , Up, or in other words, the derivatives of the log-likelihood function

with respect to the elements of β, as well as the information matrix, F . The estimates

are then obtained by solving the iterative equation F (m−1)β̂(m) = F (m−1)β̂(m−1) +U (m−1),

where the superscripts denote the number of the iteration. The initial settings for the

elements of β̂ are zeros. Estimates are taken once convergence has been achieved, and at

that stage the covariance matrix is taken as the inverse of the information matrix. For

more details on the process, see Dobson (2002).

To impute missing values from this distribution, a random draw, β∗, is drawn from the

posterior of the parameters as before in Equation (3.8), although this time a different

MLE estimate β̂ is used. Then a vector of probabilities is generated:

π∗ =
exp (Xmisβ

∗)

1 + exp (Xmisβ∗)
(3.16)

Finally, a vector of Uniform random variables is generated that has the same length as

π∗, and this vector is compared with π∗. If an element of the vector of Uniforms is less

than or equal to the corresponding element of π∗ then a ‘1’ is imputed for the missing

value associated with that element of π∗. Alternatively, if an element of the vector of

Uniforms is greater than the corresponding element of π∗ then a ‘0’ is imputed for the

missing value associated with that element of π∗. This process details approximate draws

from the posterior predictive distribution of the missing values (Raghunathan et al. 2001).

Count data

For count data, where Y ∼ Pois (λ), the Poisson regression model is used. The mean of

Y is λ, and is modelled as follows:

λ = exp (Xβ) (3.17)

The linear predictor is g (λ) = Xβ, where g (.) is the log link function.

Once more a random draw, β∗, is taken from the posterior of the parameters of the

regression model, as before in Equation (3.8). A parameter set, λ∗mis, is then generated
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as follows:

λ∗mis = exp (Xmisβ
∗) (3.18)

A missing datum is then imputed by drawing a random number from a Poisson distribu-

tion with the element of λ∗mis corresponding to that missing datum as the distribution’s

parameter.

Categorical and ordinal data

For data Y that can take one of k values, j = 1, 2, . . . , k, let πj = Pr(Y = j|X). A

polytomous regression model is fitted, relating Y to X as follows:

log

(
πj
πk

)
= Xβj, j = 1, 2, . . . , k − 1. (3.19)

With the restriction that
∑k

j=1 πj = 1, then πk = [1 +
∑k−1

j=1 exp(Xβj)]
−1. Let β̂ be the

MLE estimate for a polytomous regression with regression coefficients (β1, β2, . . . , βk−1),

and let V be the asymptotic covariance matrix with Cholesky decomposition T .

Again a random draw, β∗, is taken from the posterior of the parameters of the regression

model, as before in Equation (3.8). Now let

P ∗i =
exp (Xmisβ

∗
i )

1 +
∑k−1

i=1 exp (Xmisβ∗i )
, (3.20)

where β∗i is the appropriate elements of β∗, i = 1, 2, . . . , k − 1, and P ∗k = 1−
∑k−1

i=1 P
∗
i .

Then let C0 = 0, Cj =
∑j

i=1 P
∗
i and Ck = 1, the cumulative sums of the probabilities. To

impute values, generate a random Uniform number u and take j as the imputed category

if Cj−1 ≤ u ≤ Cj. As with count data, the imputations are from approximate predicitve

posterior distributions, since the corresponding parameter draws are from asymptotic

Normal approximate posterior distributions.
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3.3.2 Other sequential procedures

It should be noted that several of the methods detailed in Subsection 2.3.1 can be in-

corporated into the SRMI procedure, as mentioned by Brand (1998). These methods

include a hot-deck (HD) error term variant and a round-off option, both methods similar

to methods introduced in He & Raghunathan (2009) and summarised in Subsection 3.4.4.

The HD error-term variant handles skew or heavy-tailed error-term distributions. In this

variant, imputations for a missing data entry are made up of the sum of the predicted

values of the outcome based on the posterior regression coefficients, plus an error drawn

from a suitable subset of error terms. When this set comprises the q error terms of the

q observations with predicted outcomes closest to the predicted value of the observation

considered, the imputation will be robust against heteroscedastic error terms. A rea-

sonable choice for q may be 0.3 ∗ nobs, with nobs the number of observed values for y

(Brand 1998, p. 59).

Brand (1998) also briefly describes a method in which values outside the domain of y are

not imputed, the round off option. In this case, any generated imputation is replaced by

the nearest observed value of y.

If even GLMs or the other proposed model-based methods are not adequate for a variable

in the incomplete data, a nearest neighbour classification can be used, as illustrated by

Brand (1998, pp. 59–60):

“With nearest neighbour imputation an imputation y∗i for a missing entry

yi is generated by drawing y∗i from an estimate P̂ (yi|XT
i ) of the predicitive

distribution of yi given the corresponding row XT
i of X. In order to reflect the

uncertainty about P (yi|XT
i ), the imputation y∗i is generated from P̂ (yi|XT

i )

according to the Bayesian boostrap method. The estimate P̂ (yi|XT
i ) is the

empirical distribution of the observed values yi1 , . . . , yiq of y which are chosen

such that the corresponding rows XT
i1
, . . . , XT

iq are the q = [fdc ∗ nobs] rows of

Xobs closest to XT
i , with fdc the donor class fraction and [.] the entire function.

In this context, ‘close’ is defined by a distance function d = d(XT
i , X

T
j ), with

XT
i and XT

j the i-th and j-th row of X. A reasonable value of fdc may be 0.1”
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Brand (1998, p. 98) further summarises this process into easy-to-follow steps, as given

below:

1. Select from Xobs the q rows XT
i1
, . . . , XT

iq which are closest to XT
i as measured by

a distance function d, such as the Euclidean, Mahalanobis or Jaccard distance (for

continuous commensurate, continuous non-commensurate, and categorical data, re-

spectively).

2. Draw q−1 Uniform(0,1) and let a1, . . . , aq−1 be their ordered values. Also, let a0 = 0

and aq = 1

3. Let pj = aj − aj−1 for j = 1, . . . , q

4. Draw y∗i from yi1 , . . . , yiq with probabilities p1, . . . , pq

Steps 2–4 indicate that imputations are drawn according to a Bayesian bootstrap method,

while the probabilities pj in Step 3 are drawn to reflect uncertainty about the predictive

distribution given the observed values.

This model-free approach may warrant further investigation, especially in any study aim-

ing, in part, to create a robust sequential procedure that would make SRMI more attrac-

tive amongst non-statisticians.

3.3.3 Imputing from generalised linear mixed models

Creation of the multiply imputed datasets can incorporate models using fixed and/or

random effects. In other words, the sequential regressions used in the MI process can

incorporate both fixed and random effects, to be more accurate and appropriate for certain

types of data. However, the process of including random effects into generalised linear

models is not simple when prediction is concerned. In order to predict missing values,

random effects have to be estimated in each generalised linear mixed model for each group

in the data. This is not explicitly possible from model estimation, but rather requires

a form of Gibbs sampling to determine the separate random effects. This complicated

approach is not considered in this thesis.
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3.3.4 Additional considerations for SRMI imputation

Whatever model or process is chosen to predict a particular variable, it is important to

recall several key aspects. The first of these is that the imputation model should be

more general than the final analysis model (see Subsection 2.2.6), and secondly as much

correlated information should be included within the imputation procedures as is possible,

in order to possibly shift an MNAR model towards becoming MAR, and any variables

possibly related to missingness should be present as well(see p. 62 Brand 1998).

It would seem that this may lead imputers to include a significant number of variables in

each imputation step; in order to reduce this number, stepwise procedures can be followed.

In this way, only the most important variables for imputation of incomplete variable will

be kept. This procedure is followed by Rubin (2003b), a study which is discussed in detail

later in Subsection 3.4.2.

3.4 Recent Research in SRMI

SRMI has only become popular over the last decade or so. This means that any advances

in the SRMI field besides the actual creation of the FCS, MICE, and SRMI procedures

can be thought of as being ‘recent’. For this reason, this section is substantial and

includes discussions on the studies that have used SRMI, studies that have compared

SRMI with other imputation procedures, studies that have attempted forming SRMI

diagnostic measures and studies that have used the unique characteristics of SRMI to

advance the MI field.

3.4.1 Studies using SRMI

Over the last decade SRMI has proved to be a particularly simple and effective method

of multiply imputing for incomplete data sets. For this reason, many studies have used

this MI method. Some of these studies will be mentioned in this subsection, in order to

obtain a more comprehensive view of the usage of SRMI.
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Raghunathan et al.’s 2001 study

Besides laying the groundwork for the common SRMI procedure, Raghunathan et al.

(2001) also include two illustrative examples for SRMI as well as a simulation study, all

of which should be noted here for very specific reasons.

In the first application, extremely complex incomplete data is imputed using SRMI in

a study of the relationship between cigarette smoking and primary cardiac arrest. In

particular, the variables measuring the number of years smoked were bounded by different

limits in different cases, depending on the respondents’ answers to questions such as, ‘how

long ago did you quit smoking’, ‘did you smoke in school’, etc. Such intricate bounds on

this incomplete variable make joint modelling of the entire dataset rather complex, and

so the SRMI algorithm, which can easily impute values from truncated distributions,

becomes an obvious choice.

In the second application, examining the effects of parental psychological disorders on

several measures of child development, the SRMI method is shown to be at least as good

as a fully Bayesian MI approach, given that the data is incomplete due to a MAR MDM.

In their simulation study, Raghunathan et al. (2001) create a dataset consisting of a

Normal variable, U , a Gamma random variable, Y1, with mean and variance dependent

on the Normal variable and another Gamma random variable, Y2 with mean and variance

dependent on the other two variables. The data is made incomplete using a logistic

regression approach, informing the approach used in Chapter 4 of this thesis. There

were no missing values in U ; the missing values in Y1 depend on U through a logistic

function logit [Pr(Y1 is missing)] = 1.5 +U ; and missing values in Y2 depend on U and Y1

through the logistic function logit [Pr(Y2 is missing)] = 1.5−0.5Y1−0.5U . This mechanism

generated 22% missing data in Y1 and 29% missing data in Y2, whereas the complete-case

analysis would use only 48% of the data. Their study shows that SRMI correctly provides

wider, more conservative confidence intervals on regression parameters than complete-

data analysis would do, showing that the SRMI procedure is correctly incorporating the

additional uncertainty due to missingness into the overall inferences.
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National Health Interview Survey of 2001

Schenker et al. (2006) use SRMI to impute missing income data in the National Health

Interview Survey (NHIS). The setting for the imputations in this study is well-suited to

SRMI — some of the variables are hierarchical in nature, with family-level and individual-

level measures; some variables have structural dependencies, with values depending on

other variables; some variables should be imputed within bounds; incomplete variables

have different non-Normal distributional forms. Each of these complications could easily

be incorporated into the sequential regression models, within the following steps (Schenker

et al. 2006, p. 926):

1. Impute missing values of person-level covariates and employment status for adults.

2. Create family-level covariates.

3. Impute missing values of family income and family earnings, as well as any missing

values of family-level covariates(due primarily to missing person-level covariates for

children).

4. Impute the proportion of family earnings to be allocated to each employed adult

with missing personal earnings, and calculate the resulting personal earnings.

The authors’ procedure then followed the standard SRMI sequence with four update

rounds after the initial round. As usual, in the initial round, step 1 did not include

income and employment as covariates, while steps 2 to 5 did (once all the gaps in the

data set had been filled in). However, in the update rounds employment status was not re-

imputed, to avoid incompatibilities with imputed values of personal earnings. The entire

process was completed five times (m = 5) for five imputed data sets. According to the

authors, other variables were also imputed and created, but were not retained in the final

public-use data. Note that Schenker et al. (2006) maintained the hypothesised structural

dependencies and truncated imputations, as mentioned before, and they incorporated

design variables as imputation covariates. Some variables were transformed via Box-Cox

analyses to Normality during imputation and were transformed back afterwards (see Box

& Cox 1964).

An interesting part of Schenker et al.’s (2006) study is their adherence to Meng’s (1994)
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recommendation that more general imputation models are required when imputation and

analysis tasks are separated (see Subsection 2.2.5 of this thesis). Accordingly, Schenker

et al. (2006) use about 60 predictors in the SRMI procedure, including variables related

to sample design.

The results obtained are as expected; in the context of assessing MI, the MI standard errors

for poverty ratios are lower than those from complete-case analysis (if both procedures

produce unbiased estimates), but more than those of single imputation (which, of course,

are not incorporating the true uncertainties within the imputation procedure).

Finally, the authors compare the MI results with results from poststratification reweight-

ing, the latter producing results similar to those from complete-case analysis. It is clear

that MI uses more additional information than the poststratification adjustment does.

Income poverty and inequality in South Africa from 1996-2001

Ardington et al. (2006) use SRMI to test the sensitivity of poverty and inequality measures

in South Africa to the imputations of certain covariates. The authors summarise a vast

literature (based on studies of incomplete data) that show how poverty and inequality

within racial groups both increased in South Africa over the period between 1996 and

2001. Their use of SRMI to validate these findings shows that the previous literature was

indeed correct, although they provide better confidence intervals via the MI procedure

than were offered by the default hot-deck single imputation confidence intervals reported

with the public release of the data. Ardington et al. (2006) find small increases in poverty

for the poorest of the poor, and increases in inequality across the board.

Moreover, the authors analyse the effect of a high proportion of household incomes to-

talling zero (around 25%). They adjust their imputation procedure to take account of this

drastic proportion, rather than ignoring the zeros or arbitrarily assigning small amounts

to these households, both practices having previously been thought of as being acceptable.

Besides this analysis, the authors check the sensitivity of the results to the assumptions

regarding point estimates for income that were generated from the income bands recorded

in the surveys. The initial setting is to take the midpoints of bands, the point estimate of

zero (which was included in the survey question response options), and the lower bound
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of the highest unbounded band.

The authors followed the imputation processes and recommendations made by Raghu-

nathan et al. (2001) and estimated mean household income, a poverty head count index,

and the Gini coefficient inequality measure from the resulting multiply imputed data sets.

The results were combined using the regular combining rules presented in Subsection 2.2.3.

The authors use province of residence, urban/rural location, and race as complete predic-

tors, while the incomplete variables, ordered from least missing to most missing include

age (a count variable), gender, emploment status (unemployed vs employed), occupation

(four categories), years of education (a count variable), and income (an ordered categorical

variable of 12 income bands).

Ardington et al. (2006) report on the sensitivity analysis for the 2001 data, and then

report the 1996 to 2001 interval’s estimates changes based on their best methods. They

find that ignoring the missing values downwardly biased estimates of mean income and

inequality, and upwardly biased estimates of poverty, results that were expected or are

consistent with preliminary analyses. The confidence intervals generated are far wider

than those generated from the single hot-deck imputation procedure.

Within a survey year, to test the sensitivity to the large proportion of households having

zero income, the authors recode the zeros as missing and allow the imputation procedure to

validate those original zeros. These households can then be assigned either positive or zero

incomes, depending on the imputation. The authors admit that this method will bias post-

imputation estimates (due to the fact that the true zeros are also recoded as missing), but

they argue that the procedure has merit as a sensitivity analysis. Systematic anomalous

entry types are also recoded to missing. The results are then thought of as being a

boundary limit. With no imputations, hot-deck imputations, and SRMI, the proportions

of households with no income, the proportions of employees earning no income, and the

proportion of children earning anomalous incomes, are all similar in magnitude, at around

24%, 2% and 0.14% respectively. After the recodings, however, these magnitudes drop

to 13.48%, 0.47%, and 0.01%. These percentages should be considered as lower bounds,

and we should expect, for example, the true number of households with zero income to be

between 13% and 23% (the latter being the SRMI value before the recodings). Recoding

the implausible values to missing also increases mean per capita income and decreases the
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Gini coefficient and the percentage of poor households, although these changes are not

substantially different from the SRMI results before recoding.

The final sensitivity test is the analysis of the estimates based on a generated income

measure. This measure looks to spread all the observations’ incomes over intra-band

distributions. The intra-band distributions used are based on empirical evidence from an-

other survey, and observations with income measures within a certain band are randomly

spread within that band according to the distribution of incomes within the same limits

from the alternative survey. The results indicate a falling mean income per capita, and

rising poverty and inequality, although all of these changes are not extreme, which indi-

cates a lack of sensitivity to the type of income measure: band midpoints or a continuous

distribution. Since the distributions within bands still follow empirical evidence, however,

the authors prefer this continuous measure to the band-midpoint measure.

General Social Survey of 1998

Penn (2007) applies SRMI to 1 747 observations (of individuals over the age of 25) from the

U.S. General Social Survey (GSS) of 1998. In this data set, 11.7% of records are missing

the income measure, primarily due to individuals refusing to answer that specific survey

question. By looking at the distributions of the income-complete and incomplete obser-

vations, Penn (2007) shows that complete-case analysis would definitely produce biased

results. The purpose of the study is to verify results from the study by McBride (2001),

which, after using only complete-case analyses, showed that a person’s self-reported hap-

piness is reliant on the person’s standard of living compared with that of their parents.

Penn (2007) use the following variables in the imputation: happiness, parents’ standard

of living, educational level, age, marital status, gender, health status, race, family in-

come, working status, occupation (9 categories), and educational level. All but the last

three variables are used for the completed-data analysis, so the imputation model is more

general than the analysis model. Of the 1 747 observations, income is missing for 205,

parents’ standard of living has 26 missing values, happiness has 21 missing values, and

fewer for health status and age. At least one item is missing for 13.9% of the sample.

Penn (2007) sets m = 6 in his analysis, and performs the ordered probit regression of
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happiness on both the completed-data and the incomplete data, for comparison. Penn

(2007) finds that not only do the coefficients of the relative standard of living between

parents and children grow (meaning that if they have a better standard of living than

their parents did at their age, they tend to be happier), but the standard errors for this

categorical variable decrease after imputation, moving the two statistically insignificant

categories into significance. The fact that these standard errors decrease may be due to

the increase of the analysed sample size, from 1 503 to 1 747, or, more likely, because

the imputation model is imputing correct information and superefficiency2 is occurring

(Meng 1994, Rubin 2003a).

3.4.2 Nested multiple imputation

Another recent MI technique is that developed by Shen (2000) and used by Rubin (2003b),

namely nested MI. The two novel ideas incorporated into this MI procedure are distri-

butionally incompatible MCMC (another name for SRMI), and nested MI to enhance

efficiency at a fixed cost. These procedures were applied to the National Medical Ex-

penditure Survey (NMES). In essence, the MCMC procedure is a form of the sequential

regression MI procedure. Rubin calls the MCMC procedure partially incompatible be-

cause a joint distribution of all the data might not exist, even though the MCMC method

works as if there was one. This problem is discussed further in Subsection 3.4.7.

Essentially, in nested MI, the imputations are split into two parts, the computationally

expensive, and the computationally inexpensive. For the first part of the imputation, m1

multiply imputed data sets are created, and for each of these data sets m2 imputed data

sets are created for the second part of the imputation. The regular combining rules are

then used to combine estimates from the m1m2 imputed data sets.

As before, with the complete data we have that (Q−Q̂) ∼ N(0, U). The m1m2 completed

data sets are used to calculate the following values of the statistics Q̂ and U : (Q̂i,j, Ui,j), i =

1, . . . ,m1; j = 1, . . . ,m2.

2As discussed in Subsection 2.2.5)
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Then we have that

Q̄NEST =
1

m1m2

m1∑
i=1

m2∑
j=1

Q̂i,j, (3.21)

and that

Q̄i,NEST =
1

m2

m2∑
j=1

Q̂i,j, (3.22)

or, Q̄i,NEST is the average Q̂ in the ith nest. Also, as before, let

ŪNEST =
1

m1m2

m1∑
i=1

m2∑
j=1

Ui,j, (3.23)

but, let MSWNEST be the within-nest mean square, and let MSBNEST be the between-nest

mean square, where

MSWNEST =
1

m1 (m2 − 1)

m1∑
i=1

m2∑
j=1

(
Q̂i,j − Q̄i,NEST

)2

, (3.24)

and

MSBNEST =
m2

(m1 − 1)

m1∑
i=1

(
Q̄i,NEST − Q̄NEST

)2
. (3.25)

With these quantities, the total variance of (Q− Q̄NEST), TNEST is estimated as follows:

TNEST = ŪNEST +
1

m2

(
1 +

1

m1

)
MSBNEST

+

(
1− 1

m2

)
MSWNEST. (3.26)

When m2 = 1, this last expression reduces to the familiar Equation (2.6), i.e. T =

Ū + (1 + 1/m)B.

Interval estimates and significance levels for a scalar Q are based on a Student-t reference
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distribution, as before, with (
Q̂−Q

)
√
T

∼ tw, (3.27)

where the degrees of freedom, w, are calculated as follows:

w =


 1
m2

(
1 + 1

m1

)
MSBNEST

TNEST

2

1

m1 − 1

+


(

1− 1
m2

)
MSWNEST

TNEST

2

1

m1 (m2 − 1)


−1

(3.28)

Once again, when m2 = 1, Equation (3.28) reduces to the familiar expression for the

degrees of freedom, Equation (2.10), namely,

w = v = (m− 1)

[
1 +

(
m

m+ 1

)
Ū

B

]2

,

One of the interesting aspects of this study is the use of slightly different regression models

for the conditional modelling, in particular, the use of stepwise regression and a sampling

importance resampling (SIR) algorithm.

� Missing binary variables are predicted using a stepwise logistic regression, with

parameters drawn from their asymptotic Normal Bayesian approximation improved

by SIR.

� Missing categorical variables are predicted in the same way as the binary variables,

but sequentially, first predicting the most populated category versus the rest, etc.,

using the appropriate group of subjects.

� OLS-round-to-observed variables are predicted using a stepwise Normal OLS regres-

sion with parameters drawn from the Bayesian posterior distribution, and are then

rounded to the closest observed value in the data set.

� Semi-continuous variables (with a positive probability of being zero, but if they are

positive then they are continuous) are imputed in two stages: the logistic for “0” vs
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“+”, and then, if “+”, an OLS-round-to-observed routine is followed.

� Missing or previously-imputed medical expenditure data, in the form of two 18x5

tables for each respondent (number of events by code and category within code and

expenditure by code and category within code), is imputed using a method similar

to the predictive mean matching method discussed in Subsection 3.4.5. The number

of events with both known expenditures and missing expenditures is known. For

those with missing expenditures, these missing values were originally imputed in

the publicised version of the data. These imputed values are used to create a donor

pool by looking for observed values of that same cell across a gender group within a

certain distance from that imputed value. The imputed values are not simply drawn

at random from this pool, but through probabilities attached to each value in each

person’s donor pool.

Before multiply imputing through the MCMC procedure, Rubin (2003b) sorts the rows

and columns in order to approximate a monotone pattern of missing data, which can be

dealt with non-iteratively, using combinations of standard regressions. Unlike in MCMC,

when the pattern of missing data is monotone, the univariate models are automatically

compatible. The imputation procedure then follows the steps given below:

1. In order to make this approximate monotone pattern exactly monotone, the missing

data (from the left-most variable) that destroy the monotone pattern are imputed

using one of the listed methods above. Then the next variable to the right is ‘filled

in’ up to a point where the pattern is monotone again, and then the next variable,

etc., until one dataset is obtained with a monotone pattern of missing data. When

the number of regressors becomes substantial, stepwise regression procedures are

used. Also, when parameter draws are made from posteriors where asymptotic

approximations are made, SIR is used to improve the draws.

2. The non-monotone missing values are imputed using one repetition of the SRMI

procedure as we know it, based on the models listed above. In other words, the

monotone-patterned incomplete data set is filled in using the first round of the

procedure explained in Subsection 3.2.2, using the models listed above.

3. The next round of imputations begins by re-imputing the missing values that orig-
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inally destroyed the non-monotone pattern. However, in this round the predictors

include all imputed values from the previous round (as if they were observed). After

this round, the result is another monotone-patterned data set.

4. Use step 2 to fill in the non-monotone part again. This is the iterative step. The

process switches between steps 2 and 3 until the whole process is iterated five times,

which Rubin (2003b) mentions took a substantial amount of time (2 days per it-

eration) in their research process. The small number of iterations, however, is less

concerning than it could be, since the missing data is made to be approximately

monotone (if it was perfectly monotone to start with, convergence would have been

immediate). The end result of these four steps is a single completed data set.

Moving to the imputation of the health expenditure variable, one row of the health ex-

penditure data indicated entries with missing health event codes. The expenditures in

this row have to be reallocated to one of the other codes. These reallocation codes are

multiply imputed within each completed data set arising from the four steps given above.

First the number of events with missing codes are allocated across the other codes, and

then the expenditures on these events with missing codes are reallocated.

Firstly, a prior distribution is created for each individual based on all other similar indi-

viduals. Then a procedure known as Iterative Proportional Fitting (see Bishop, Feinberg

& Holland 1975) is used to create a table with margins of the individual’s table, but

interactions formed from the similar people (in terms of covariates or coarse categories of

covariates). This is formed into a table of proportions that sums to one in each column

across the 17 real rows. Then twice the values in this table are added to the actual table

for that person. So each person has two prior observations added to each column. Then

a Dirichlet draw is taken from the table, column by column, and the missing events are

allocated with these probabilities.

Secondly, dollar amounts for the missing code events are drawn from a truncated posterior

Normal distribution with mean and variance of the cell to which the event is allocated, but

truncated to lie between zero and the maximum observed value for that type of event.3

3In other words the population cell mean is drawn, centered at the cell sample mean with variance
equal to the within-cell variance divided by the number of events in that cell on which that sample mean
is based and, for each event allocated to that cell, a value centered at the drawn population mean is
drawn with variance equal to the within-cell variance.
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Once all the dollar amounts are allocated in this way, they are renormed to add up to the

original total for the missing codes for that individual. The table values are then totalled

up with the imputed numbers of events and expenses for each of the reallocated events

for each individual.

Finally, the nesting comes into play. Since the imputations for the non-health expenditure

variables are computationally expensive to run when compared with the imputations for

the health expenditures, Rubin (2003b) creates ten imputed health expenditure parts of

the data set for each imputed data set created from the previous four listed steps.

3.4.3 Synthetic data

One of the more recent uses of SRMI has been in disclosure limitation in public use data

sets, spearheaded in part by Reiter (see, for example, Reiter 2005, Reiter & Raghunathan

2007, Reiter 2009, Reiter 2012, Wang & Reiter 2012, Paiva, Chakraborty, Reiter & Gelfand

2014). Disclosure limitation aims to ensure the respondents of surveys remain anonymous

once the data set that they are a part of is published. Even stripping out identifying

information (such as age, race, marital status, gender, etc.) might not be enough to

limit disclosure of respondents (Reiter & Raghunathan 2007). Thus, data disseminators

sometimes revert to methods that alter the observed value of the data. However, the more

alteration made to the data, the lower the accuracy of inferences made from the data,

even though the additional alterations help to anonymise the data (Reiter & Raghunathan

2007). However, using MI, and SRMI in particular (since survey data variables are difficult

to model jointly), one is able to multiply impute some or all of one or more variables of a

public use dataset in order to both limit disclosure and keep resultant inferences accurate.

The science behind disclosure limitation using multiple imputation boils down to two types

of synthesised data: partially synthetic data and fully synthetic data. Partially synthetic

data is a collection of data sets in which some variables for the surveyed units have been

fully or partially multiply imputed, whereas fully synthetic data consists of units that have

been entirely multiply imputed. To create partially synthetic data, sensitive information

within the current sample is multiply imputed and the actual values are replaced by these

multiple imputations. In order to create a fully synthetic sample, the missing population
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units are multiply imputed (and possibly even the original sampled units as well), and

from this completed population synthetic samples are drawn.4 The process is repeated

to create multiple synthetic samples. Different combining rules have been constructed for

both cases. For more information on these rules (and further references), see Reiter &

Raghunathan (2007, p. 1476).

The topic of multiple imputation for disclosure limitation is a large area of research. Thus,

it would not be wise to delve into the this field in this thesis. However, it is worth noting

that the novel area of research within this thesis can easily be applied within SRMI for

disclosure limitation; a research area that could be expanded on in the future.

3.4.4 Evaluation of SRMI

Since SRMI is a relatively recent development in the MI field, there have been several

studies recently that compare this method with other imputation procedures. These

studies are reviewed in this subsection.

SRMI vs available case

Van Buuren et al. (2006) evaluate SRMI in three simulation studies by looking at univari-

ate and multivariate missingness and three types of models. The univariate studies use

Irish wind speed data (for linear and logistic imputation methods), and data from women

on knowledge of, and attitude and behaviour towards mammography, i.e. mammographic

experience (for a polytomous imputation method).

For the univariate analysis the outcome variable is replaced in each study by predicted

values of the outcome given the other variables, in a sample taken from the original data.

This is done 1 000 times for each data set. Then 50% missingness is induced in these

simulated outcomes, according to an MCAR mechanism, and MAR mechanisms creating

more missing data in larger values (MARRIGHT), more missing in tail values (MARTAIL)

and more missing in the centre of the distribution (MARMID).

4Only the synthetically sampled, unobserved units actually need to be multiply imputed, not the
entire unobserved part of the population (Reiter & Raghunathan 2007).
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In the multivariate missingness study on continuous data, the wind speed data is used and

two samples of 400 observations are taken; one to approximate the mean and covariance

of the original data (the simulated set) and one random sample. Missing values were

then created in the data according to a specific non-monotone structure, as generated by

Brand (1998, p. 110–113), and summarised in van Buuren, Brand, Groothuis-Oudshoorn

& Rubin (2006, Appendix B). This process will be detailed here in order to be replicated

later in this study.

Assume a sample size of n, and that Y1, . . . , YJ are initially completely known. Additional

complete covariates X1, . . . , XL can be present for which no missing entries are sought.

The following must be specified:

� The proportion of incomplete cases (0 < α < 1).

� The allowed patterns of missing data (R1, . . . , RP , where RP = {rp1, . . . , RpJ} is a

0-1 response indicator of length J , with rpj = 0 if variable Yj is missing and rpj = 1

otherwise). All response patterns except fully observed and fully incomplete can

occur.

� The relative frequency of each pattern, i.e. f = (f1, . . . , fP ), the relative frequencies

for patterns R1, . . . , RP , with
∑

p fp = 1.

� The way in which the observed information can influence the response probability

of each pattern.

So each case is randomly assigned to one of P candidate blocks with probability fp.

Within each block, a subgroup of αnfp cases is made incomplete according to a pattern

Rp using a probability model specified as follows:

1. Calculate a linear score si =
∑J

j=1 apjrpjYij +
∑L

l=1 bplXil for each case in the block,

where apj and bpl are user weights specific to pattern p (for example, regression

weights from regressing Yj on {Y−j, X1, . . . , XL} as computed from the initially

complete data).

2. Divide the nfp cases within the candidate block p into kp subgroups using their value

si. The user can control the composition of each candidate subgroup by specifying

kp − 1 break points qpk for k = 1, . . . , kp − 1 in the form of quantiles.
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3. Specify for each subgroup hk(2 < k = kp) the odds wpk of having response pattern

RP relative to that of the reference subgroup h1. Together with α, these odds

determine the probability on response pattern Rp for each case in the candidate

block.

4. For each case, draw randomly from a Uniform distribution, and if this draw does

not exceed the probability on response pattern Rp the data for that case are set

missing according to response pattern Rp.

5. This procedure is then repeated for each candidate block.

For their simulation, van Buuren et al. (2006) generate missingness in their

data set {Y1, . . . , Y4, X1, X2} using the above procedure, with P = 4, R =

{010111, 001111, 110011, 101011}, f1 = f2 = f3 = f4 = 0.25, α = 0.625, k1 = k2 = k3 =

k4 = 2, qpl = 0.5, and wpk = 4 with p = 1, . . . , P and k = 1, . . . , kp − 1.

The authors find that the linear regression SRMI procedure restores correlations and

eliminates biases in the data set, correlation losses and biases that appear in the available

case analyses.

For their third and final simulation study, in each of 500 replication, 1000 draws are made

from a bivariate Normal distribution with means equal to 5, variance equal to 1, and

correlation equal to 0.6. All values are positive. Missing values are generated in one of

three ways:

� MARRIGHT: logit(Pr(Y1 = missing)) = −1+Y2/5, while logit(Pr(Y2 = missing)) =

−1 + Y1/5.

� MARTAIL: logit(Pr(Y1 = missing)) = −1+0.4|Y2|, while logit(Pr(Y2 = missing)) =

−1 + 0.4|Y1|.

� MARMID: 1− Pr(MARTAIL).

For MARRIGHT there are about 50% missing entries, 75% incomplete cases, and about

25% completely missing (Y1, Y2) pairs, with proportionally more missing data for the

higher values of Y1 and Y2. The average missing information generated is around 0.63,

which is rather extreme. Van Buuren et al. (2006, p. 1059) mention that, “The mul-

tivariate missing data were not entirely MAR because the cases where Y1 and Y2 (or
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both) is (are) missing were more frequent for the higher values. The regression lines

are, however, not affected because the nonresponse is generated symmetrically around

the regression lines.” Compatibility was ensured in the Gibbs sampler for the bivari-

ate draws by chaining the multiple imputations Y ∗1 and Y ∗2 from the conditional models

Y ∗2 |Y1 ∼ N(µ∗1 + β∗1Y1, σ
2∗
1 ) and Y ∗1 |Y2 ∼ N(µ∗2 + β∗2Y2, σ

2∗
2 ), where µ∗1, β

∗
1 , σ

2∗
1 , µ

∗
2, β

∗
2 , σ

2∗
2

are draws from the appropriate posterior distributions. Incompatibility was generated

by replacing the imputation step for Y2 by Y ∗2 |Y1 ∼ N(µ∗1 + β∗1Y
2

1 , σ
2∗
1 ), and, separately,

Y ∗2 |Y1 ∼ N(µ∗1 + β∗1 log(Y1), σ2∗
1 ). The authors generate m = 5 completed data sets for

each model, while in each data set, the Gibbs sampler is only iterated 5 times as well.

The complete data model is the linear model Y1 = α + βY2 + ε, with analysis interest

focussed on β.

The authors find that for the incompatible models, serious bias and undercoverage of the

true estimate is eliminated using SRMI, meaning that incompatibility is a relatively minor

issue in their SRMI applications; i.e. the SRMI procedure is robust against incompatibil-

ity.

SRMI vs poststratification reweighting

Note that the study by Schenker et al. (2006), reviewed in Subsection 3.4.1, showed

that postratification reweighting produced results similar to those of the complete-case

analyses, which implies that postratification reweighting uses less information than SRMI,

and thus is an inferior method in the case of their analyses.

SRMI vs MN

Several studies compare SRMI and the regular MN method. These will be summarised

briefly below.

Faris et al. (2002) compare MN, SRMI, CSR, and data enhancement (through merging

of additional data) in a study of 6 065 cardiac care patients in Alberta, Canada, in 1995.

The outcome of interest is the binary variable measuring one-year mortality. Categorical

variables in the predictor set are split into binary indicators. The original data set consists
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of 6 276 individuals, but is reduced when 6 026 individuals are matched with hospital

discharge administrative data in the ‘enhanced’ data sets — the combined clinical and

administrative data sets. Several of the variables overlap in these two data sets. For

the two categorical variables in the study that did not overlap (left ejection fraction and

Duke Index of coronary artery disease severity), missing values were recoded into an

additional observed category (but only in the enhanced data set). When they compared

the individuals with and without administrative data, the authors note that one may

assume that the individuals with administrative data are simply a random sample of the

original individuals. Sources discussing the merits and drawbacks of this method are given

by Faris et al. (2002, p. 186).

The authors then compare logistic regression results from mortality regressed on the

clinical data after MN MI on the original data, SRMI on the original data, complete-

case analysis of the enhanced data set, as well as enhancement and SRMI combined,

and finally, enhancement and SRMI with the administrative variables included in the

imputation model. The imputations from the SRMI procedure are taken after only five

rounds in this study, as the Gibbs sampler seems to converge at that point. Ten imputed

data sets are used in MI analyses.

In order to assess the procedures, firstly the logistic model fit was assessed using (1) the

C statistic, which is the area under the receiver operating characteristic or ROC curves5

with bootstrapped confidence intervals, and (2) the changes in deviance from the null

model, i.e. −2× logL of the model versus −2× logL of the null. Secondly, the ability of

the coefficients to predict the outcomes for the complete cases in a 1996 follow up survey

was assessed.

The authors find the following: for the 1995 data methods, the C statistic is greatest

for SRMI, followed by CSR, MN, and lastly, enhancement. Validating using the 1996

data shows the greatest C statistic for SRMI again, followed by CSR and enhancement,

followed by MN. In both cases, the SRMI C statistic ranks first in more than 90% of the

bootstrapped estimates. The SRMI model also has the largest decrease in deviance from

the null model for 1995, followed by CSR, then enhancement, then MN; SRMI is best in

5ROC curves will have a maximum value of one if when those dying all have larger fitted values than
those surviving.
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more than 99% of the bootstrapped values. Validating using the 1996 data shows SRMI

above CSR, followed by MN, followed by enhancement; SRMI is again first in 98% of

the bootstrapped estimates. The enhanced SRMI combination performs better than the

original enhanced fit, while the administrative SRMI model shows no improvement over

the original SRMI model. All of these results show the superiority of the SRMI method

in this case, although the performance of all methods is relatively satisfactory.

Van Buuren (2007) compares joint modelling through the MN specification to an SRMI

procedure on the Fourth Dutch Growth Study data set of measures of pubertal devel-

opment in 3801 Dutch girls (these were the observations with complete age, height and

weight measures). About 34% of the so called Tanner stage development data is missing.

The data includes menarche stage (two categories), breast development (five categories)

and pubic hair (six categories).

The imputations made for these incomplete variables under the MN scheme are rounded

to fit into the categorical nature of the data. The two-category menarche variable is

imputed using a logistic regression model, while the two incomplete categorical variables,

breast development and pubic hair, are imputed using polytomous logistic regression,

which in itself can raise modelling issues (see van Buuren 2007, p. 233). For each the MI

procedures, five imputed data sets were created.

The author uses correspondence analysis on the two categorical variables to determine

whether the inherent structure of the data is preserved between complete-case analysis

and MI via the MN and SRMI methods, and finds that the SRMI based correspondence

analysis preserves the canonical correlations of the complete-case analysis better than the

MN method does.

Van Buuren (2007) then regresses log weight on the incomplete and completed data,

and finds all three procedures (complete-case analysis, MN, and SRMI) produce the same

significant model fit. Standard errors from the imputed data are much narrower due to the

increased sample size (from 2200 in the complete-case analysis to 3 801 in the completed

data sets). Suspicious of these similar results, van Buuren (2007) creates reference curves

for the complete-case method versus the imputation methods. For each stage transition

of breast development, a reference curve was fitted conditional on age by a series of four
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logistic additive models. From these curves it is clear that the MN method imputes

data for breast development that does not fit the complete-case distribution across age,

while the SRMI approach does succeed in doing so. For this reason, van Buuren (2007)

recommends that the MN approach is not chosen above the SRMI approach when the

incomplete variables are categorical in nature. It is possible that the rounding of the MN

imputations adds to biases seen in the results.

Lee & Carlin (2010) compare the SRMI method with the standard MN method in their

study of estimation of regression coefficients from simulated data after MI. Their analysis is

similar to that of van Buuren (2007), except the rounding of the MN method’s imputations

is adapted to the true distribution of the categorical variable. The simulated data sets are

obtained by sampling from a synthetic population of 971 327 girls, grades 7–10, created

to resemble the sample from the US National Longitudinal Study of Adolescent Health.

The variables are synthesised sequentially, starting by drawing 1 million observations

from the 3× 5 race–grade table, and then adding one variable at a time using predictive

simulation from regression models based on the original data. At each step, the model

conditions on the previously generated values, incorporating them into complex regres-

sions that included nonlinear relations and numerous interactions, to create sufficient

population complexity. Since the outcome variable, emotional distress at wave II, is a

continuous measure between 0 and 3 that is strongly positively skewed, the 0 score ob-

servations are dropped so as to not complicate a logarithmic transform (ldistW2). Data

sets for the study each draw 1 000 individuals from this synthetic population. The anal-

ysis of the regression of the log of distress on other covariates (diet, log of distress at

wave I, Black race indicator, Hispanic race indicator, grade, health and physical fitness)

is primarily concerned with the main coefficient, that of diet. The so-called true values

of the coefficients are obtained from the same OLS model applied to the full synthetic

population. The authors use the original non-significant diet effect and an artificially

inflated significant diet effect as comparisons (but both produce a similar set of results,

given below).

The data are set missing according to one of three models set out below, each model using
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a logistic regression of the following form (where ldistW2 is the outcome variable):

logit Pr(missing) = α + β1diet+ β2Black + β3Hisp+ β4grade+ β5ldistW2

1. Missing data on emotional distress at wave I

2. Model 1, plus independent missing data pairs on health and physical fitness

3. Model 2, plus independent missing data on diet.

For Models 1 and 2, the coefficients are fixed to create a substantial association between

variables and missingness, as follows: α = 3, β1 = β2 = β3 = 1, β4 = 0.2, β5 = 0.3. The

MDM for Models 1 and 2 is automatically MAR, but to make Model 3 MAR, β1 is set to

0.

Imputations from the SRMI or MN methods are rounded to fit into the given scales.

Adaptive rounding is additionally used as an option for the binary diet variable (where

rounding is based on a Normal approximation to the Binomial, making use of the marginal

distribution in the observed data). For the SRMI approach, diet is imputed using a logistic

regression, while health and physical fitness used ordinal (proportional odds) logistic

regressions. The distress variable is either transformed to a Normal distribution (via log

transformation and log transformation with an offset to make 0 skewness in the observed

values) or is left as is. Imputations of 0 are then replaced with the smallest value in the

sample, while observations above 3 are truncated at 3. For the SRMI approach, predictive

matching is also used as an option for the Normal variables, imputing the observed value

with the predictive mean closest to that of the imputation for a missing value. The regular

combining rules are used on 20 imputed data sets for each method.

The authors find that the best results (under all missingness models) for the diet coefficient

are obtained using the MN method that uses the zero-log-skewness adjustment or the

prediction matching method in SRMI. All methods alleviate the biases and poor coverages

of the complete-case analysis. For the other coefficients (not associated with the MDM),

all methods provided adequate results, and it is shown that precision is improved by

imputing rather than using complete-case analysis. The zero-log-skewness adjusted MN

method performs even better than the SRMI approach with predictive matching in the
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context of coverage, when the adaptive rounding is used.

These studies results are important to note, since Lee & Carlin (2010) show that the MN

method can be adjusted to impute properly even for a binary variable. It may seem that

the added complexity inherent in an SRMI model may not always be justified. However,

sensitivity to non-Normality may make the SRMI approach seem to be the more robust

option. Of course, the inherent ease of dealing with ordinal and categorical variables in

the SRMI model may be enough to sway a researcher towards that option.

SRMI vs SI

The study by van der Heijden, Donders, Stijnen & Moons (2006) compares SRMI with

SI, complete-case analysis, and the missing-indicator approach; a form of the latter is

used by Faris et al. (2002) in their non-imputation data enhancement technique that was

compared with the MN method and SRMI, as discussed earlier in this subsection. The

data set used by van der Heijden et al. (2006) consists of 398 consecutive patients 18 years

or older who were referred to a Dutch hospital because acute pulmonary embolism (PE)

was suspected. Numerous tests were completed on these patients, which found that 43%

of the patients did have PE. The predictors chosen for the analysis of PE are based on

those recommended by previous studies.

None of the outcome values are missing, although the covariate data is incomplete. In

38% of the patients, one or more predictors are missing, while the data is certainly not

MCAR, since, based on the results of certain tests, doctors may have skipped subsequent

tests, considering them to be uninformative given the prior test result. Van der Heijden

et al. (2006) use complete-case analysis, the missing-indicator method6, SI (conditional

and unconditional mean imputation), and SRMI, with convergence within the imputed

data sets occurring after five rounds, and create ten imputed data sets.

The authors then use a backward selection process for the overall model on each of these

five methods, and compare regression coefficients, standard errors of the coefficients, and

6In this method, a missing value in a variable is recoded into a separate indicator variable attached to
the incomplete variable itself, while the missing values in the incomplete variable are recoded into zeros,
for example; complete case analysis will, then, not drop the observations for which these variables are
‘missing’.
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areas under the ROC curves — the so-called C statistic of Faris et al. (2002).

Van der Heijden et al. (2006) find that the model selected from complete-case analysis

is different from those selected after the imputation procedures. This is natural, since

the data is not MCAR. The standard errors are smallest for the conditional mean im-

putation (as expected). The indicator variables for the missing-indicator approach all

achieve significance, while the coefficients in this method are larger than for the other

models (since there are simply more coefficients). All areas under the ROC curves are

above 0.75, but since there are more significant (but clinically meaningless) predictors

in the missing-indicator approach, this method produces the highest area, albeit surely

overestimated, while conditional mean imputation and SRMI produce the lowest values.

The most significant outcome of this study is that the complete-case analysis is different

to that of the post-imputation analysis, warning researchers of the hazards of simply re-

lying on complete-case analysis methods. Interestingly, the missing-indicator, SI and MI

methods’ results do not differ greatly, in post-imputation analysis coefficient direction,

magnitude and precision. This may be due to the relatively small amount of missing

data. However, the authors do warn against the use of the missing-indicator approach,

for several valid reasons (see van der Heijden et al. 2006, p. 1108).

SRMI vs S-HD

Barnes, Gutierrez-Romero & Noble (2006) use SRMI on data taken from the South African

census in 2001. In this census, over 50% of individuals above the age of 18 report zero

income, and additionally, 16% of the income values are missing (Barnes et al. 2006). The

authors of this study compare the SRMI method with the imputation method used by

Statistics South Africa (StatsSA) when they published the data, namely single hot-deck

imputation S-HD. The S-HD process is the same as the HD process, except that only one

value is imputed for every missing value.

As mentioned by Ardington et al. (2006), income is recorded in income bands, so the

variable is essentially categorical. Other variables used in the study include age, gender,

population group, employment status, occupation, education, income, province and loca-

tion, the latter two being the only complete variables. As was done by bArdington et al.
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(2006), implausible values of income are recoded as follows:

� If household income is zero, income is set missing for household members aged 15

and older, and to zero for those younger than 15.

� For those younger than 15 with recorded income greater than R6 400 per month,

income is set missing.

� For those recorded as being employed but with zero income, income is set missing.

The results reported by this paper are minimal. The only statistics that are compared are

the proportions lying in each of the income bands before and after imputation. Barnes

et al.’s (2006) results are similar to those obtained by Ardington et al. (2006), as well

as those obtained StatsSA’s S-HD imputation procedure, although the latter seems to

favour slightly higher income band imputations for all but the lowest income band (the

zero band). The results of this study and that of Ardington et al. (2006) are similar

although age and education are modelled as Poisson variables in Ardington et al.’s (2006)

paper, while they are modelled as Normal variables by Barnes et al. (2006) — since the

latter authors prefer not to assume a constant failure rate for the inter-arrival times within

the variable — and although a simple logit regression is used for the income bands, instead

of the ordered logit used by Ardington et al. (2006). The most noteworthy conclusion is

that no major outlier problem exists, since such a problem would make the S-HD method’s

results differ substantially from those of SRMI.

A word of caution should be given after reviewing the paper by Barnes et al. (2006). It is

important to remember that it is not just the point estimates that are of importance in

assessing imputations, but also the confidence intervals generated by the procedure. As

has been mentioned before, no single imputation procedure will produce valid confidence

intervals, since the uncertainties associated with choosing an imputation model are not

incorporated into the analysis estimates as they are in MI.

SRMI vs SI and MI HD/ABB

Ambler et al. (2007) compare the SRMI procedure with several others in a study of risk

modelling. Complete case analysis, single imputation procedures and MI procedures are
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compared to SRMI in an analysis model with a binary outcome, i.e. a logistic analysis

model. The single imputation procedures include mean, mean/mode and conditional

mean imputation, all explained in Subsection 1.2.3, while the MI procedures include

hot-decking via HD, HDCP, HDobs and HDY (outcome only) procedures combined with

the ABB procedure, all explained in Subsection 2.3.1. The data used were the medical

characteristics of 20 738 aortic and/or mitral valve surgery patients in Great Britain and

Ireland between 1995 and 2003, with in-hospital mortality as the outcome variable.

The authors find the most prevalent missingness patterns (among observations), impute

the data using SRMI, create binary responses from the fitted logistic regression coefficients

based on the observed data (hereafter known as the true coefficients), and then find the

(rescaled) fitted probabilities of each observation belonging to each of the most prevalent

patterns, also using logistic regressions. Simulated data sets are created by sampling

without replacement from the completed data. For each of these data sets binary responses

were created from the true coefficients, and data was made missing according to both

MCAR and MAR rules separately. For MCAR, the observations were randomly assigned

to a missing data pattern according to that pattern’s prevalence. For MAR, the same

rule is applied, although in this case the covariates for an individual are set missing with

probability equal to that of the individual having been in the particular pattern originally

(the fitted probabilities calculated before). The different MI techniques are then applied

to five imputed versions of each of these simulated data sets and the overall logistic

regression is again run; this process allows a comparison between the true coefficients and

the multiply imputed coefficients. The measures used to assess the imputations over 1000

simulated datasets are as follows:

� Measure of agreement: The proportion of observations correctly classified into

the correct risk group.

� Rank correlation: A Spearman rank correlation between the true ranking of

disease severity and the ranking after the imputation procedures on the simulated

data sets.

� Root mean squared error (RMSE): The RMSE between the fitted and true

probabilities for patients.
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� Regression based calibration measure: To assess the calibration of the fitted

model, the fitted log-odds are regressed against the true log-odds for each simulation

data set using a standard linear regression. The coefficients of this regression provide

information about the calibration of the fitted model. Slope coefficients close to one

are wanted.

� Regression coefficients and confidence interval coverage: The biases between

the true regression coefficients and those obtained from the completed simulated

data sets is assessed, averaging over all simulated data sets for a particular method.

In essence the authors show that mean/mode imputation provides an improvement over

complete-case analysis. Mean imputation goes one step further, being less biased. Con-

ditional mean imputation, however, outperforms both of these methods in this study.

However, all methods suffer from the deficiency of not accounting for imputation model

uncertainty, which is provided for in MI.

Of the MI measure, HDobs performs the worst, even worse than some of the single im-

putation procedures, but the authors admit that this may have been due to the setup of

the simulated data sets (i.e. high proportions of missing data). SRMI, HD, HDCP, HDY

generally perform well and very similarly with respect to agreement, rank correlation and

RMSE. Additionally, SRMI and HDY methods exhibit good calibration and provide bet-

ter classification of low and high risk patients. This result may be due to the fact that

these methods include the outcome in the imputation procedure. The SRMI procedure

produces the lowest biases in the regression coefficients and the confidence intervals have

coverage values close to the nominal level.

3.4.5 Non-Normal errors in the imputation regressions

He & Raghunathan (2009) contribute to this research area by assessing several methods

of Normality-based SRMI when the underlying conditional distributions of the variables

are non-Normal. In a simulation study, they assess the following sequential imputation

methods when these methods are (incorrectly) applied to data that is non-Normal, with

missing values that are MCAR:
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� Sequential Normal linear regressions. This method is equivalent to imputa-

tion under the multivariate Normal model using Gibbs sampling (Schafer 1997, van

Buuren 2007),7 and is the method for Normal data specified in Subsection 3.3.1.

In summary, assuming a Jeffrey’s prior for β and σ2, P (β, σ2) ∼ 1/σ2, an ordinary

least squares regression model is fitted to the nobs complete cases, then a value σ∗

is drawn with σ2
∗ ∼ SSE/χ2

npbs−p, where SSE is the residual sum of squares from

the OLS regression fit. Then a value β∗ is drawn with β∗ ∼ N(β̂, σ2
∗(X

′
obsXobs)

−1),

where β̂ is the OLS estimate of β, and Xobs denotes the part of the covariate matrix

which have corresponding Y ’s observed. Finally, for an incomplete case i, a value

Y ∗i is imputed from N(Xiβ
∗, σ2
∗).

� Predictive mean matching (PMM). This method described by Schenker &

Taylor (1996) has its origin in hot-deck imputation. Missing Y values are imputed

from nearby complete cases. The predictive mean of an observation is given as

Ŷi = Xiβ
∗ where β∗ is drawn as in the Normal method given above. For each

incomplete case this method draws an observation randomly from from a set of

“possible donors” which are observations with predictive mean close to that of the

incomplete case. The value of Y for the chosen case is then donated to the incomplete

case.

� Local residual draw (LRD). This method, also described by Schenker & Taylor

(1996), imputes the value Y ∗i = Xiβ
∗ + r∗, where r∗ is drawn at random and with

replacement from the set of complete “donor cases” as defined above. The method

can adjust for the lack of fit of the Normal regression model by fitting local residuals,

rather than by drawing local observed values, as in the previous method.

Schenker & Taylor (1996) discuss the possible bias inherent in having too many

donor cases for the previous two methods, and the possibly overstated correlation

inherent in having too few donor cases. For this reason Schenker & Taylor (1996)

develop an adaptive technique for choosing the number of donor cases. The au-

thors find, however, that there is little difference in results between their adaptive

7Another special case relating joint modelling to the SRMI approach is when three variables are
modelled using logistic regressions. The joint model for this is effectively a multivariate log-linear model
with no three-way interaction term (see van Buuren 2007).
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technique and a non-adaptive fixed number of donor cases. Additionally, He &

Raghunathan (2009) also show that there is not much change in the overall analysis

if different (reasonable) fixed numbers are used for the donor cases.

� Adjustment of Normal regression by sampling from observed residuals

(or expanded residual draw, or ERD). This method, proposed by Rubin (1987),

is a modification of the sequential Normal method. This method first obtains the

standardised residuals:

Yi −Xiβ
∗√

SSE
nobs−p

From these residuals, nmis values are sampled with replacement (i.e. as many as

there are missing observations), multiplied by σ∗, and, finally, added to Xiβ
∗. These

standardised residuals then have the correct conditional moments, but a distribu-

tion whose shape is adjusted to reflect that of the actual error terms. In fact, this

method’s “donor set” for residual has just been expanded to include all complete

cases, and the residuals donated are standardised, so the overall adjustment is par-

tially parametric.

� Adjustment by fitting Tukey’s g-and-h distribution to errors. The final

method these authors analyse, is the Normal method adjusted to fit Tukey’s (1977)

g-and-h distribution to the error terms. Tukey (1977) proposed the gh family based

on a transformation of the standard Normal Z,

Tgh(Z) = µ+ τ
egZ − 1

g
ehZ

2/2, (3.29)

where µ is the location parameter, τ(> 0) is the scale parameter, and g and h are

scalars that govern the skewness and kurtosis or elongation of the data, respectively.

He & Raghunathan (2009) use a linear regression model for their method, with their

error terms modelled using the centered gh distribution,

Yi = Xiβ + εi, (3.30)

εi = τ

(
egZ − 1

g
ehZ

2/2 − Egh
)
,
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where Egh = 1
g
√

1−h

(
eg

2/[2(1−h)] − 1
)

is the mean of the standardised gh distribu-

tion with µ = 0 and τ = 1 in Equation 3.29. First, β∗ is drawn as if the error

distribution is Normal, and then parameters τ , g, and h are estimated from a boot-

strap sample of the observed residuals Yi − Xiβ
∗ using a quantile-based method

(He & Raghunathan 2009, Appendix). Then, for a missing case i, independent

standard Normal Zi’s are simulated and the missing value of Yi is estimated as

Yi = Xiβ
∗ + τ( e

gZ−1
g

ehZ
2/2 − Egh).

Each of these imputation methods is applied sequentially and multiply (with each dataset

imputed five times) on the following simulated data, with 20% missing values generated

completely at random:

Y1 ∼ U(0, 2),

Y2 = 1 + Y1 + ε2

Y3 = 1 + Y1 + Y2 + ε3

The authors then consider two sets (one with less variation and one with more variation)

of each of the following distributions for each of ε2 and ε3: Lognormal, centred Student’s

t, and Uniform. More details of the processes used in their study are given in Chapter 4.3.

Their simulation study consists of 1000 replicates, and each replicate includes 1000 cases.

On each replicate, once missing values have been generated, the given SRMI procedures

are applied, and in each case 5 imputed data sets are created (within each data set the

SRMI procedure is iterated 5 times). If “donor cases” are chosen in any method, their

number is restricted to 20. The quantities of interest in their study are the marginal

mean of Y3, the proportions of Y3 that are less than its different population quantiles (5%,

25%, 50%, 75%, and 95%), and the coefficients of regressing Y3 on Y1 and Y2. Inferences

made before deleting missing values are taken as a benchmark, while the results from

applying complete-case analysis on the incomplete data are used. The performance of

these methods is evaluated using relative bias, RBIAS, and the root of the relative mean

squared error, RRMSE.

RBIAS =

∣∣∣∣BiasTrue

∣∣∣∣× 100% (3.31)
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RRMSE =

√
MSE(Method)

MSE(Before deletion)
(3.32)

Additionally, coverage rates of the 95% confidence intervals across the 1000 replicates are

examined, which should be close to nominal if the imputation method is working well.

A reasonable upper limit for RBIAS is 5%. RRMSE measures the increase of RMSE

relative to that of the analysis before deletion of the missing observations. In general,

it is expected to be more than 1, reflecting loss of efficiency when analysing incomplete

data. However, it can be less than 1, too, implying “superefficiency” of the MI models,

as discussed in Rubin (1996). To recap, superefficiency happens when the analysis uses

more (correct) data than would be used in the complete-case analysis of the incomplete

data, i.e. the imputation methods are imputing correct values.

In essence, the study shows that the methods are reasonable for both estimating means

and proportions (although the sequential Normal method is the worst for the proportions),

and coverage rates are adequate. However, when estimating a regression coefficient for

a regression on the completed data, all methods are left wanting when the ε’s follow

the distributions with the wider variances. The key conclusion from this study is that

it is extremely important for a researcher to analyse the incomplete data thoroughly

before applying an imputation method, since it is shown that simply applying a regular

Normal method (even one adjusting from non-Normal errors) might not be adequate for

a particular estimation procedure in the presence of errors with non-Normal distributions

and large variances.

Following on the study by He & Raghunathan (2009), de Jong, van Buuren & Spiess (2014)

investigate a possible MI solution for missingness in non-Normal variables. The authors

focus on univariate missingness, conditional on other covariates (i.e. MAR missingness

for a single variable). The application is simple enough to extend to SRMI, but de Jong

et al. (2014) choose not to do this so that their new approach can be assessed without the

distracting interactions that might arise when solving a multivariate missingness problem.8

They compare multiple imputation from linear models (LMs), GLMs, linear and nonlinear

PMM, and their novel approach, generalised additive models for location, scale and shape

8This is the approach followed in Chapter 6 in this thesis.
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(GAMLSS). In GAMLSS, a target distribution is chosen for the incomplete variable, say

Normal or generalised Beta. If the Normal distribution is chosen, fitting and smoothing

algorithms are used to model the mean and variance of the distribution conditional on

other known covariates. If the Beta distribution is chosen, then fitting and smoothing

algorithms conditionally model the skewness and kurtosis of the incomplete variable in

addition to the mean and the variance.

In simulation experiments, de Jong et al. (2014) find that when the incomplete variable is

originally Normal, Normal-based GAMLSS performs adequately and comparable to the

LM MI, which is expected to perform best (since there is no model misspecification).

There is slight loss in efficiency for the GAMLSS model, due to its flexibility. When the

incomplete variable is Uniform, then the authors show that a generalised Beta GAMLSS

is robust and performs well. When the incomplete variable is distributed as a Uniform

squared, then GAMLSS performs well if it is based on the Normal distribution. If the

incomplete variable is distributed as a Student’s t with three degrees of freedom, how-

ever, then although GAMLSS seems to provide the best results of the given methods,

none of the considered models provide adequate imputations. This seems to suggest that

even GAMLSS is not suitable for imputation on variables with heavy-tailed distributions

(de Jong et al. 2014, p. 21). Finally, Normal-based GAMLSS seems to perform well for

a Poisson-type incomplete variable, even when the Poisson GLM and polytomous regres-

sion model underperform. In conclusion, the authors suggest that GAMLSS imputation

should be used if there is uncertainty concerning the the implementation of a parametric

imputation model, providing an alternative to PMM MI. However, they concede that

additional models will need to be considered for heavy-tailed imputation procedures.

3.4.6 Additional SRMI diagnostics

Kolmogorov-Smirnov, scatterplots and residuals

Although the diagnostic methods presented in this section can be applied to any multivari-

ate imputation method, Abayomi, Gelman & Levy (2008) apply these diagnostic measures

in the SRMI context. Abayomi et al. (2008, p. 273) mention that “the development of

diagnostic techniques for MI... has been retarded by the belief that the assumptions of
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the procedure are untestable from observed data.” In particular, researchers believe the

MAR assumption is untestable, since imputed values are merely guesses for unobserved,

unknown data. The response of Abayomi et al. (2008) is twofold:

1. In the context of the problem being studied, differences between imputed and ob-

served values can be examined, while the distribution of the completed data as a

whole (as well as the imputations alone) can also be checked to be sensible (when

compared with the observed data). This is an external diagnostic — a comparison

with outside knowledge.

2. The fit of the regression models that are used in the imputation process can be

assessed. This is an internal diagnostic — specific to observations and modelling.

From these responses, it is clear that there is no internal diagnostic for the MAR mecha-

nism, or any hypothesised MNAR mechanism.

When an incomplete variable contains gross outliers, predictive regression models will

impute values biased towards the outliers. For this reason, diagnostic measures for this

type of case are distributional plots before and after imputation, and of the imputations

themselves.

Using SRMI, imputers can check the distributional plots from the specific predictive

regression models against those of the observed data — deviations suggesting a possible

model error or possible deviation from the assumed MDM. However, it is not certain that

if the distributions differ there is indeed a problem, since some deviation is expected from

a MAR MDM.

Abayomi et al. (2008) firstly compare the empirical distributions of the observed and

imputed data using the Kolmogorov-Smirnov (KS) test for each variable, as well as visu-

ally. The p-value from the KS test is approximate, since the two sets of values are not

independent; the MAR assumption means that the imputed values depend on the ob-

served. Any dramatic differences between the distributions deserve attention. Since the

p-values are approximate, the authors suggest examining the 10% of the variables whose

KS tests are the most deviant. Secondly, the authors examine bivariate scatterplots of

the variables against both internal and external measures. Thirdly, Abayomi et al. (2008)

examine the residuals from the conditional regression models in the SRMI procedure. By
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fitting a LOWESS curve (see Cleveland 1979), the authors are then able to improve the

conditional regressions using residual refinement, but only if the assumption of random

missingness is true.

The authors found these methods to be quite helpful in diagnosing problems with the MI

model used in an SRMI procedure on the Environmental Sustainability Index (ESI) of

2001. While these methods might not diagnose the problems themselves, at least they

help identify the symptoms of the possible problems.

Calibrated posterior predictive p-value

The calibrated posterior predictive p-value (or cppp) is introduced by Hjort, Dahl &

Steinbakk (2006) and reviewed by Cabras, Castellanos & Quirós (2011) as a goodness of

fit (GOF) measure for the (parametric) Bayesian regressions chained within SRMI.

The cppp is based on the posterior predictive p-value, or ppp. Let Y be the variable that is

being imputed following the sampling model f (y|β) where β ∈ Θ is distributed according

to prior π (β), then the ppp is defined as

ppp (y) = Pr (D (Y rep, β) ≥ D (y, β) |y) , (3.33)

where D is a discrepancy measure9, y represents the observed data, and the distribution

of Y rep is the posterior predictive distribution, p (Y |y) =
∫

Θ
f (y|β) π (β|y) dβ. Without

loss of generality, larger values of Equation 3.33 indicate incompatibility of the regression

model. The ppp is usually approximated by a Monte Carlo sum where β and Y rep are

drawn from the posterior distributions π (β|y) and f (Y |β) respectively (Cabras et al. 2011,

p. 430).

Due to the fact that the ppp cannot be interpreted under the Uniform(0, 1) distribution,

as noted by Hjort et al. (2006) and Cabras et al. (2011) amongst others, it is suggested

that the cppp is used to overcome this disadvantage. This cppp is a post-processed ppp

9It should also be noted that the choice of the discrepancy measure also influences the GOF, so some
thought has to go into the choice of D.
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measure. Mathematically,

cppp (y) = Pr (ppp (Y ) ≤ ppp (y)) (3.34)

where Y comes from the prior predictive distribution, p (Y ) =
∫

Θ
f (y|β) π (β) dβ. The

cppp is then Uniform(0, 1) under the null model, as opposed to the ppp, which is not.

However, proper priors are required for β, in an area in which default and improper priors

are usually used. Cabras et al. (2011) provide a possible solution to this problem by using

minimal training samples to turn improper priors into proper ones.

Upon preliminary review, it seems as though this cppp statistic could be valuable in

assessing the need for a continuous-data SRMI model that deviates from the Normal

distribution. The cppp is part of a statistical test to determine objectively whether data

fits the chosen model. For this reason, the cppp method, some discrepancy measures, and

the practical details concerning the Monte Carlo simulation within the cppp measure will

be discussed in Chapter 5.

3.4.7 Problems in SRMI

The most obvious problem associated with SRMI is the need to specify models for each

incomplete variable. This need complicates the modelling process, even though the more

complicated process may be more accurate in certain contexts. Herein lies the second

obvious problem — the effectiveness and accuracy of SRMI has not been studied in

enough detail, given that the joint distribution of the specified conditionals might not

exist (van Buuren et al. 2006). This problem is discussed in more detail below. Finally,

an issue which seems to be more of a debate on correct procedure than an insurmountable

obstacle is the issue of efficiency in the Gibbs sampling algorithm. This issue is discussed

in the next paragraph.
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Gibbs sampling and efficiency

A criticism offered by Nielson (2003) is that, when running the Gibbs sampler, a better

estimator might be obtained by combining the estimates from the last k iterations in

each of the m chains, rather than just the final estimate from each of the m chains. One

can effectively even reduce the value of m. This process will reduce simulation noise.

In fact, simulation noise could be reduced by running the iteration chains for longer,

and increasing k. Meng & Romero (2003) note, however, that if this is done, the km

imputations are no longer conditionally independent, given the observed data — which

makes subsequent analyses much more complicated. One would have to derive more

general combining rules for specific dependent structures, or a general set of combining

rules for arbitrarily independent and dependent multiply-imputed data sets. It may be

more practically efficient (although less theoretically efficient) if km multiple datasets are

produced in the standard way — at least then each will be independent from all the

others.

Gibbs sampling and posterior approximations

Van Buuren et al. (2006), van Buuren (2007) and He & Raghunathan (2009) mention

that an uncertain issue in SRMI is that of the possible incompatibility of the conditional

models specified, or, rather, that a joint distribution may not exist given the conditional

distributions of the assumed forms. As mentioned by van Buuren et al. (2006), the implicit

joint distribution will not exist if the space spanned by the parameters of k incomplete

variables has more dimensions than is appropriate — this occurs when these parameters

are not independent of each other, which is commonly the case. Little & Rubin (2002) also

warn that if the sampling algorithm does not converge, then there an approximate poste-

rior does not exist. In fact, van Buuren et al. (1999) mentioned this incompatibility when

sequential conditional models were first being considered. In their paper, imputations on

two variables are made sequentially, and iterated, as is regularly done in SRMI, although,

as already discussed, these authors call the process “regression switching”. They mention

that under quite general conditions the draws from this sequential process converge to

the appropriate multivariate posterior density, P (Ymis|Yobs, X,R), as in a Gibbs sampling
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framework. However, they note that the specification of the two conditional distributions

for the incomplete variables P (Y1|Y2) and P (Y2|Y1) could be incompatible, in that no joint

distribution P (Y1, Y2) exists. If this is the case, the algorithm will alternate between the

isolated conditional distributions, although the results may still be adequate when eval-

uated by classic frequentist criteria, as shown by Brand (1998). A problem with having

incompatible conditional distributions is highlighted by van Buuren et al. (2006), when

they mention that there may be a possible effect of this incompatibility on imputation

inferences. Gelman (2004), however, points out that having a joint distribution may be

less important than incorporating other information about the specific variables that joint

modelling may not be able to do, such as zero/nonzero features bounds, skip patterns,

nonlinearity and interactions.

Gelman & Rubin (1992) develop a monitoring statistic in their work that looks at the

statistics based on iterative procedure like the Gibbs sampler. This monitoring statistic

continually assesses the variation between and within simulated sequences, until within

variation roughly equals between variation. This is the point at which the statistics

based on these sequences converge, since, “[o]nly when the distribution of each simulated

sequence is close to the distribution of all the sequences mixed together can they all be

approximating the target distribution” (Little & Rubin 2002, p. 206).

Gelman & Rubin (1992) use this monitoring statistic in a three-stage target distribution

simulation procedure. Firstly they generate a starting distribution with the same number

of modes as the target distribution; secondly they overlay this starting distribution with

an over-dispersed approximation; thirdly, they downweight draws from the overlaid ap-

proximation that have relatively low density under the target distribution (i.e. here the

authors use importance re-sampling). The monitoring statistic is used to determine how

much closer draws from the approximating distribution will be to the target distribution

if iterative simulations can continue indefinitely.

The process to calculate the monitoring statistic is as follows. For each scalar estimand

ψ, label the draws from D parallel sequences10, each of length L, as ψd,l(d = 1, . . . , D, l =

10Note that D in these expressions is equivalent to m in all other parts of this thesis.
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1, . . . , L), and compute B(seq.) and V̄ (seq.), the between and within sequence variances:

B(seq.) =
L

D − 1

D∑
d=1

(
ψ̄d· − ψ̄··

)
, (3.35)

where

ψ̄d· =
1

L

L∑
l=1

ψd,l ; ψ̄·· =
1

D

D∑
d=1

ψd· ,

and

V̄ (seq.) =
1

D

D∑
d=1

s2
d , (3.36)

where

s2
d =

1

L− 1

L∑
l=1

(
ψl,t − ψ̄d·

)2
.

The marginal posterior variance of the estimand, V (ψ|Yobs) can be estimated by a weighted

average of V̄ (seq.) and B(seq.),

V̂ + (ψ|Yobs) =
L− 1

L
V̄ (seq.) +

1

L
B(seq.), (3.37)

which overestimates the marginal posterior variance assuming the starting distribution

is appropriately overdispersed, but is unbiased if the starting distribution equals the

target distribution (i.e. under stationarity). This estimate is analogous to the classical

variance estimate for cluster sampling. As T →∞, the expectation of V̄ (seq.) approaches

V (ψ|Yobs). For this reason, one can monitor the potential scale reduction, ŜR, that the

current distribution of ψ could be reduced by, should T →∞, namely:

√
ŜR =

√
V̂ + (ψ|Yobs)
V̄ (seq.)

. (3.38)

Clearly,
√
ŜR→ 1 as T →∞. So, if this scale reduction is not below a certain threshold,

say, 1.2, then the sampling iterations should continue. When the threshold is reached,

subsequent draws from the D sequences can be treated as draws from the target distri-

bution.
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Even though these monitoring measures exist, it is important to note once more the results

obtained by van Buuren et al. (2006), reviewed earlier in this chapter. These authors find

that incompatible conditionals are potentially less of a problem in the SRMI context than

they were originally thought to be. The use of the monitoring statistics however, should

provide backing for SRMI for even the most sceptical of SRMI researchers.

Further research areas identified

Van Buuren et al. (2006) mention that one area needing work in SRMI studies is that of

choosing overdispersed starting values for multivariate missing data problems. Another

research area identified by these authors is the maintenance of higher order interactions

within the SRMI paradigm. The latter is clearly related to the need to make a MNAR

MDM more MAR, by including additional explanatory variables into the SRMI models,

although neither of these problems falls within the context of this thesis’ goal.

He & Raghunathan (2009) also believe that there is a general lack of research on robustness

of the SRMI algorithms when the conditional models are misspecified. Moreover, most

SRMI algorithms use linear regressions. This thesis will, therefore, in part attempt to

add to the literature on the study of robustness of SRMI under misspecification of the

assumed conditional regression models, although non-linearity will not be addressed.

3.5 Conclusion

Complex k-dimensional (incomplete) data structures can often more easily and more

accurately be modelled by k one-dimensional models than by a full k-dimensional model

(Gelman & Rubin 1992, van Buuren et al. 2006). This is, of course, due to the fact that

models for individual variables in a data set can easily incorporate limits or bounds, skip

patterns, interactions, and other distributional complications. These separate univariate

distributional complications are not easy to build into a joint model of a data set.

For this reason, SRMI has become increasingly popular over recent years, in vastly differ-

ent fields, such as economics and medicine. This popularity has resulted in breakthroughs

not only in the SRMI field, but also in MI in general as well.



3.5. CONCLUSION 123

Breakthroughs within the field of SRMI include increased understanding of the advan-

tages and limitations of the method and incorporated procedures, advances in diagnostic

measures, and comparisons with other MI procedures.

Advances in the MI field include research into MDMs, research into imputing under

non-Normal errors in data, and advancing the field of synthetic data utilisation. The

advantages of both joint modelling MI and SRMI have been combined in nested modelling,

making use of the best of both MI and SRMI worlds.

While these advances have been significant, much remains to be uncovered in the field.

The need for a robust SRMI model is the primary focus of the new work introduced in

the chapters to follow.
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Chapter 4

A New Robust Sequential

Regression Model

4.1 Introduction

Investigation of the literature on MI and SRMI suggests that there is a need for a robust

model within SRMI that can handle heavy-tailed and possibly skew data.1 Such a model

could be chosen as a default within an SRMI routine instead of the Normal regression

model, because this default model would be able to handle non-Normal errors (including

heavy tails and skewness).

One model which could fill the role of a robust sequential regression model is the Student’s

t-distribution. With heavier tails than the Normal distribution, and the possibility of

incorporating a skewness parameter, the t-distribution model could serve as a robust

counterpart to the Normal OLS regression model (even with the PMM, LRD and ERD

adaptations introduced in Subsection 3.4.5). If the errors are indeed Normal, then this

robust model will be able to reduce to the Normal case by increasing the degrees of

freedom of the t-distribution. In this thesis, the t model will be built using a Bayesian

paradigm.

The objective of this chapter is to show that the skew t-distribution in SRMI can reproduce

1Robust in the context of yielding satisfactory imputation results whether the underlying data model
is Normal, non-Normal, or possibly even initially misspecified.

125
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the error distribution under a variety of Normal and non-Normal symmetric and skew

specifications. Additionally, beyond simply replicating the original distributions, we would

like to show that the imputations made from the skew t-distribution have good coverage

of the original data points that are made missing.

4.2 The Student t-Distribution

We follow the setup presented in Sahu, Dey & Branco (2003) and Fonseca, Ferreira &

Migon (2008, p. 326). Consider a linear regression model in which an observation vector

y = (y1, . . . , yn)′ satisfies

y = Xβ + ε (4.1)

where β = (β0, β1, . . . , βp), ε = (ε1, . . . , εn)′ is the error vector and ε1, . . . , εn are i.i.d.

according to the Student-t distribution with location zero, scale parameter σ and ν degrees

of freedom. Here X = [x1, . . . , xn]′ is the n× p matrix of explanatory variables, taken to

be of full rank p. We denote the model parameters by θ = (β, σ, ν) ∈ Rp× (0,∞)2. Thus,

the likelihood function is given by:

L (β, σ, ν|y,X) =
Γ
(
ν+1

2

)n
νnν/2

Γ
(
ν
2

)n
πn/2σn

n∏
i=1

[
ν +

(
yi − x′iβ

σ

)2
]−(ν+1)/2

. (4.2)

The likelihood for the t-distribution given in Equation (4.2) can be restructured as follows:

L ∝
n∏
i=1

(
λiτ

2π

) 1
2

exp
[
−τ

2
(yi − βxi)2

]
×

n∏
i=1

[
(ν/2)ν/2

Γ (ν/2)
λ
ν/2−1
i exp

(
−νλi

2

)]
(4.3)

where xi is the row of the covariate matrix X that corresponds to observation yi, τ = σ−2

and the λi are weights indicating the influence of each observation on ν. Integrating out

the λi in Equation (4.3) yields Equation (4.2).



4.2. THE STUDENT T -DISTRIBUTION 127

4.2.1 Fitting the t-distribution

The conditional distributions of the parameters

When the t-distribution is used for errors on the posterior predictive distribution, gen-

erating the imputations is simply a matter of applying the posterior-drawn regression

parameters to the covariates and adding an appropriate t error. The difficulty is in find-

ing the degrees of freedom for this error. This thesis uses a Gibbs sampling process for the

parameters σ2, λi, i = 1, . . . , n, β, and ν, while ν itself is drawn via a Metropolis-Hastings

algorithm in each step of the Gibbs sampler. The Gibbs sampler requires the formulation

of the conditional posterior distributions for each of the parameters of the model. These

conditional distributions are presented within this subsection.

Given Equation (4.3), and ignoring uninformative priors, it can be shown that the condi-

tional distribution of the β vector is multivariate Normal, namely,

β|y, σ2,Λ, X ∼ N
{

(X ′ΛX)
−1
X ′Λy, σ2 (X ′ΛX)

−1
}
, (4.4)

where the matrix Λ is the diagonal matrix with diagonal elements λ1, λ2, . . . , λn.

The conditional posterior of σ2 is derived to be an Inverse Gamma distribution, such that

(y −Xβ)′ Λ (y −Xβ)

σ2
|y, β,X ∼ χ2

n. (4.5)

The posterior for ν, conditional on Λ, and its priors, is given in the following equations.

p (ν|y,Λ) ∝ ν
1
2
νn

2
1
2
νn
[
Γ
(
ν
2

)]n |Λ| 12ν−1 exp

[
−1

2
ν

n∑
i=1

λi

]
p (ν) , (4.6)

with the prior on ν taking one of four forms, namely the truncated Exponential2,

p (ν) ∝ e−νξ, ν > 2, ξ = 0, 1, (4.7)

2This distribution is truncated so that the mean and the variance exist (Sahu et al. 2003)
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the Independence Jeffrey’s prior,

pIJ (ν) ∝
(

ν

ν + 3

) 1
2
[
ψ′
(ν

2

)
− ψ′

(
ν + 1

2

)
− 2 (ν + 3)

ν (ν + 1)2

] 1
2

, (4.8)

the probability-matching prior or reference priors for the orders (ν, µ, σ2), (ν, σ2, µ), and

(µ, ν, σ2),

pPM,R1 (ν) ∝
[
ψ′
(ν

2

)
− ψ′

(
ν + 1

2

)
− 2 (ν + 3)

ν (ν + 1)2

] 1
2

, (4.9)

and the reference priors for the orders (µ, σ2, ν), (σ2, µ, ν), and (σ2, ν, µ),

pR2 (ν) ∝
[
ψ′
(ν

2

)
− ψ′

(
ν + 1

2

)
− 2 (ν + 5)

ν (ν + 1) (ν + 3)

] 1
2

. (4.10)

Note that ψ′ (·) is the trigamma function. Derivations for these priors are given in Ap-

pendix A. Working with the natural log posterior and log priors, which is easier, we

have,

log (p (ν|y, λ)) ∝ 1

2
νn log (ν)− 1

2
νn log (2)− n log

(
Γ
(ν

2

))
−
(

1

2
ν − 1

) n∑
i=1

log (λi)−
(

1

2
ν − 1

) n∑
i=1

λi − log (p (ν)) , (4.11)

log (pIJ (ν)) ∝ 1

2
(log (ν)− log (ν + 3))

+
1

2
log

[
ψ′
(ν

2

)
− ψ′

(
ν + 1

2

)
− 2 (ν + 3)

ν (ν + 1)2

]
, (4.12)

log (pPM,R1 (ν)) ∝ 1

2
log

[
ψ′
(ν

2

)
− ψ′

(
ν + 1

2

)
− 2 (ν + 3)

ν (ν + 1)2

]
, (4.13)

log (pR2 (ν)) ∝ 1

2
log

[
ψ′
(ν

2

)
− ψ′

(
ν + 1

2

)
− 2 (ν + 5)

ν (ν + 1) (ν + 3)

]
. (4.14)
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For λi, i = 1, . . . , n, we can show that

λi|y, β, τ, ν ∼ Γ

{
1

2
(ν + 1) ,

[
1

2
λi

(
1

σ2
(yi − xiβ)2 + ν

)]−1
}
. (4.15)

The algorithm for the Gibbs sampler (and Metropolis sampler for ν) utilises these con-

ditional distributions. We initialise the parameters, and then update multiple times via

these conditional distributions.

Programmable algorithm for fitting the t-distribution

1. Initialise the following parameters:

σ2
(1) = var (y)

Λ(1) = 0.5In×n

β(1) = σ2 (X ′ΛX)
− 1

2 × ε+ (X ′ΛX)
−1

(X ′Λy)

where ε is a ((p+ 1)× 1) vector of standard Normal draws, X is the observed

covariate matrix, y is the vector of observed responses, and In×n is the n×n identity

matrix. The 0.5 coefficient of Λ(1) was chosen through trial and error.

2. Initialise ν by drawing from the Metropolis sampler for ν: preseed a ν value as

10 × u + 4, where u is drawn from a U(0, 1) distribution, and set the log of the

posterior of ν as −∞; jump away from the preseeded value by a value drawn from

a N(0, 0.25) distribution (making sure the result is greater than 2); compare the

log posterior of ν from the jumped-to value of ν to the log posterior of ν from the

jumped-from value of ν. If the difference is greater than a random draw from a

U(0, 1) distribution, then the new, or jumped-to value of ν is retained. Repeat this

process to obtain at least 100 ν values (the burn-in period), and then take the next

draw of ν as the draw from the conditional posterior of ν in the Gibbs sampler.

3. Now the parameters σ,Λ, β, and ν have initial values σ(1),Λ(1), β(1), and ν(1). We then

start the updating process within the Gibbs sampler: for s = 2, 3, . . . ,m, where m

is the number of update rounds including burn-in and the number of draws required



130 CHAPTER 4. A NEW ROBUST SEQUENTIAL REGRESSION MODEL

from the conditional posterior distributions:

σ2
(s) =

(
y −Xβ(s−1)

)′
Λ(s−1)

(
y −Xβ(s−1)

)
u

, (4.16)

where u is a random draw from a χ2
n distribution;

β(s) =
[
σ2

(s)

(
X ′Λ(s)X

)−1
] 1

2 × φ+
(
X ′Λ(s)X

)−1
X ′Λ(s)y, (4.17)

where φ is a p× 1 vector of random draws from a N (0, 1) distribution; and Λ(s) is

a diagonal matrix with diagonal elements λi,(s),

λi,(s) =
w

ν(s−1) + 1
σ2

(s)

(
yi − x′iβ(s)

)2 (4.18)

where i = 1, 2, . . . , n, x′i is the ith row of the covariate matrix (corresponding to

the ith observation), yi is the response for the ith observation, and w is a random

draw from a χ2
(
ν(s−1) + 1

)
distribution. A new ν(s) is then drawn from the same

procedure as in Step 2, except this time it is conditional on y and Λ(s).

This simulation procedure becomes difficult to process when the number of covariates in

X becomes large. In this case, inverting X ′Λ(s)X can be computationally time-consuming,

and for this reason the simpler non-matrix alternative procedure for estimating the pa-

rameters for the t-distribution is considered as well. Furthermore, the non-matrix repre-

sentation is easily extended to incorporate skewness, which is critical to this research.

The (alternative) conditional distributions of the parameters

For ease of notation within the following equations, we calculate ỹiq for each observation

i = 1, . . . , n and covariate q = 0, 1, . . . , p , where ỹiq = yi − β−qX−q, where −q represents

all variables in X besides variable q. In other words, for q = 0:

ỹi0 = yi − β1xi1 − β2xi2 − . . .− βpxip (4.19)



4.2. THE STUDENT T -DISTRIBUTION 131

For q = 1:

ỹi1 = yi − β0 − β2xi2 − β3xi3 − . . .− βpxip (4.20)

For q = 2, . . . , p:

ỹiq = yi − β0 − β1xi1 − . . .− βq−1xi(q−1) − βq+1xi(q+1) − . . .− βpxip (4.21)

Finally, for q = p:

ỹip = yi − β0 − β1xi1 − β2xi2 − . . .− βp−1xi(p−1) (4.22)

It should be noted that instead of the parameter σ2, the parametrisation τ = σ−2 is used

in the following equations.

It can be shown that the following conditional distributions exist for the βq:

βq|y, β−q, τ,Λ ∼

N


(
τ

n∑
i=1

λix
2
iq +

1

σ2
βq

)−1(
τ

n∑
i=1

λixiqỹiq +
µβq
σ2
βq

)
,

(
τ

n∑
i=1

λix
2
iq +

1

σ2
βq

)−1
 (4.23)

where xiq is element (i, q) of the data matrix X (and when q = 0, xi0 = 1 for all i), and

µβq and σ2
βq

are the conjugate Normal prior mean and variance for βq respectively.

For τ , it can be shown that:

τ |y, β,Λ ∼ Γ

n2 + aτ ,

(
1

2

n∑
i=1

λiŷ
2
i + 2bτ

)−1
 (4.24)

where aτ and bτ are the conjugate Gamma prior parameters for τ , and ŷi = yi − β0 −

β1xi1 − . . .− βpxip.

The conditional posterior for ν is identical to that given in the above list of conditional

posteriors in the matrix-formation of these posteriors.
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As for the λi, it can be shown that

λi|y, β, τ, ν ∼ Γ

{
1

2
(ν + 1) ,

[
1

2

(
τ ŷ2

i + ν
)]−1

}
. (4.25)

This is the same distribution as given above, except with σ2 replaced by 1/τ .

Programmable (alternative) algorithm for fitting the t-distribution

1. Initialise the following parameters:

τ(1) =
1

var (y)

Λ(1) = 0.5In×n

β(1) = σ2 (X ′ΛX)
− 1

2 × ε+ (X ′ΛX)
−1

(X ′Λy)

where ε is a ((p+ 1)× 1) vector of standard Normal draws, X is the observed

covariate matrix, y is the vector of observed responses, and In×n is the n×n identity

matrix.

2. Draw an initial ν(1) in exactly the same manner as before, using the same Metropolis

sampler described above.

3. Now the parameters τ,Λ, β, and ν have initial values τ(1),Λ(1), β(1), and ν(1). Start

the updating process within the Gibbs sampler, for s = 2, 3, . . . ,m, where m is the

number of update rounds including burn-in and the number of draws required from

the conditional posterior distributions. First, in each step, recalculate the ỹiq,(s)

using β−q,(s−1). Then, for each βq, q = 0, 1, . . . , p,

βq,(s) =

(
τ(s)

n∑
i=1

λi,(s−1)x
2
iq +

1

σ2
βq

)− 1
2

× ε

+

(
τ(s)

n∑
i=1

λi,(s−1)x
2
iq +

1

σ2
βq

)−1(
τ(s)

n∑
i=1

λi,(s−1)xiqỹq +
µβq
σ2
βq

)
(4.26)

where ε is a random standard Normal value, and µβq and σ2
βq

are the conjugate

Normal prior mean and variance for βq respectively, as before. For simplicity and



4.2. THE STUDENT T -DISTRIBUTION 133

diffusion, µβq = 0 and σ2
βq

= 10000.

Then calculate ŷi,(s) and draw the τ(s) from the conditional Gamma distribution

given above in Equation (4.24), namely,

Γ

n2 + aτ ,

(
1

2

n∑
i=1

λi,(s−1)ŷ
2
i,(s) + 2bτ

)−1
 ,

where the priors are chosen as aτ = btau = 0.1.

Similarly, each λi is drawn from the Gamma distribution given above in Equa-

tion (4.25), namely:

Γ

{
1

2

(
ν(s−1) + 1

)
,

(
1

2
λi,(s)τ(s)ŷ

2
i,(s) + ν(s−1)

)−1
}
.

Finally, ν(s) drawn from the Metropolis algorithm presented above, conditional on

the new λi,(s), i = 1, . . . , n.

In order to fit the t-distribution regression model to a set of data, this research allows

the Gibbs sampler described above to generate several values of each parameter after a

particular burn-in period. The mean of the draws for a parameter is then used as the

parameter estimate. This method is followed when the fitting procedure is tested later in

this section.

Simulating from the predictive posterior distribution

The Gibbs sampler described above allows one to draw a single set of parameters that is

used to generate a response prediction based on a new set of observed covariate values.

Making a single draw of each parameter in the model for the data, and then drawing with

error, one effectively draws from the predictive posterior of the data.

This is the procedure that is followed within SRMI: the t-distribution regression model is

fitted to the observed data, the Gibbs sampler (eventually, after burn-in) provides a single

draw of each of the parameters from the approximate joint posterior of the parameters,

and then the parameter set is used to generate a prediction (with error) for the responses
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that are missing (but whose covariates are complete).

4.2.2 Fitting the skew t-distribution

In order to fit the skew t-distribution, this thesis follows the fitting procedure outlined by

Sahu et al. (2003).

The conditional distributions of the parameters

Although the t-distribution constitutes a step towards a robust imputation procedure, of

even greater importance is the fact that skewness can easily be built into the t-distribution.

The Gibbs sampling procedure that is required to estimate skewness within the data (given

the data is t-distributed) is only marginally more complicated than the sampler for the

symmetric t.

The likelihood for the symmetric distribution given in Equation (4.3) is altered slightly

to incorporate a skewness parameter, δ, as follows:

L ∝
n∏
i=1

(
λiτ

2π

) 1
2

exp
[
−τ

2
(yi − βxi − δzi)2

]
×

n∏
i=1

[
(ν/2)ν/2

Γ (ν/2)
λ
ν/2−1
i exp

(
−νλi

2

)]
(4.27)

where the other parameters are as before, except that we now have zi as zero-truncated

positive Normal values that show the influence of the skewness, δ, on each observation.

Skewness confounds several of the previous equations, so for the sake of completeness,

all of the conditional posterior distributions used in the Gibbs sampler will be given

below. Now, for each observation i, i = 1, . . . , n, and for each covariate q, q = 0, 1 . . . , p,

ỹiq = yi − β−qX−q − δzi, where −q represents all variables in X besides variable q. In

other words, for q = 0:

ỹi0 = yi − β1xi1 − β2xi2 − . . .− βpxip − δzi (4.28)
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For q = 1:

ỹi1 = yi − β0 − β2xi2 − β3xi3 − . . .− βpxip − δzi (4.29)

For q = 2, . . . , p:

ỹiq = yi − β0 − β1xi1 − . . .− βq−1xi(q−1) − βq+1xi(q+1) − . . .− βpxip − δzi (4.30)

Finally, for q = p:

ỹip = yi − β0 − β1xi1 − β2xi2 − . . .− βp−1xi(p−1) − δzi (4.31)

We also define ˜̃yi = yi − βxi − δzi separate from ŷi = yi − βxi.

With skewness incorporated into the ỹiq, the same conditional distributions exist for the

βq:

βq|y, β−q, τ,Λ ∼

N


(
τ

n∑
i=1

λix
2
iq +

1

σ2
βq

)−1(
τ

n∑
i=1

λixiqỹiq +
µβq
σ2
βq

)
,

(
τ

n∑
i=1

λix
2
iq +

1

σ2
βq

)−1


where µβq and σ2
βq

are the conjugate Normal prior mean and variance for βq respectively.

Once again, µβq = 0 and σ2
βq

= 10000.

For τ , we have that:

τ |y, β,Λ ∼ Γ

n2 + aτ ,

(
1

2

n∑
i=1

λi ˜̃y
2
i + 2bτ

)−1
 (4.32)

where aτ and bτ are the conjugate Gamma prior parameters for τ .

The conditional posterior for the zi, i = 1, . . . , n is derived to be:

zi|y, β, τ, δ,Λ ∼ N
{(
τλiδ

2 + 1
)−1

τλiδŷi,
(
τλiδ

2 + 1
)−1
}
I (Zi > 0) , (4.33)

where I (Zi > 0) is an indicator function to ensure that only positive zi exist (in order to
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make sense of the sign of the skewness parameter δ).

The conditional posterior distribution of the skewness parameter, δ, can be shown to be:

δ|y, β, τ,Λ, z1, . . . , zn ∼

N


(
τ

n∑
i=1

λiz
2
i +

1

σ2
δ

)−1(
τ

n∑
i=1

λiziŷi +
µδ
σ2
δ

)
,

(
τ

n∑
i=1

λiz
2
i +

1

σ2
δ

)−1
 , (4.34)

where µδ and σ2
δ are the conjugate Normal prior parameters for δ.

For the λi, it can be shown that

λi|y, β, τ, ν, δ, z1, . . . , zn ∼ Γ

{
1

2
(ν + 1) ,

[
1

2

(
τ ˜̃y2

i + ν
)]−1

}
, (4.35)

with the skewness incorporated in the distribution by replacing ŷi with ˜̃yi.

The posterior for ν, conditional on Λ, and its priors, are exactly the same as in Equa-

tion (4.6).

The algorithm for the Gibbs sampler (and Metropolis sampler for ν) when we wish to

incorporate skewness into the imputation model, is based on the conditional distributions

listed above.

Programmable algorithm for fitting the skew t-distribution

The algorithm explained in the previous subsection lays the groundwork for simulation

from a skew t-distribution. As for the symmetric t-distribution, we initialise the parame-

ters, and then update multiple times via the conditional distributions.
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1. Initialise the following parameters:

τ(1) =
1

var (y)

Λ(1) = 0.5In×n

β(1) = σ2 (X ′ΛX)
− 1

2 × ε+ (X ′ΛX)
−1

(X ′Λy)

zi,(1) = −1, i = 1, . . . , n

δ(1) = 0

where ε is a ((p+ 1)× 1) vector of standard Normal draws, X is the observed

covariate matrix, y is the vector of observed responses, and In×n is the n×n identity

matrix.

2. Draw an initial ν(1) in exactly the same manner as before, using the Metropolis

sampler described above.

3. Now the parameters τ,Λ, β, zi, δ and ν have initial values τ(1),Λ(1), β(1), zi,(1), δ(1),

and ν(1). Start the updating process within the Gibbs sampler, for s = 2, 3, . . . ,m,

where m is the number of update rounds including burn-in and the number of draws

required from the conditional posterior distributions. First in each step, recalculate

the ỹiq,(s) using β−q,(s−1). As in the symmetric case, for each βq, q = 0, 1, . . . , p,

βq,(s) =

(
τ(s)

n∑
i=1

λi,(s−1)x
2
iq +

1

σ2
βq

)− 1
2

× ε

+

(
τ(s)

n∑
i=1

λi,(s−1)x
2
iq +

1

σ2
βq

)−1(
τ(s)

n∑
i=1

λi,(s−1)xiqỹq +
µβq
σ2
βq

)
(4.36)

where ε is a random standard Normal value, and µβq and σ2
βq

are as before, the

conjugate Normal prior mean and variance for βq respectively, again chosen to be 0

and 10000, respectively. The skewness is incorporated into this process through the

skewness-adjusted ỹiq,(s).

Then calculate ŷi,(s) and draw the τ(s) from the conditional gamma distribution given
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above in Equation 4.24, namely,

Γ

n2 + aτ ,

(
1

2

n∑
i=1

λi,(s−1)ŷ
2
i,(s) + 2bτ

)−1
 ,

where the priors are chosen again as aτ = bτ = 0.1.

For the Normal zi values we simply use the following simulation for each i:

zi,(s) =
(
τ(s)λi,(s−1)δ

2
(s−1) + 1

)− 1
2 × ε

+
(
τ(s)λi,(s−1)δ

2
(s−1) + 1

)−1
τ(s)λi,(s−1)δ(s−1)ŷi,(s), (4.37)

where ε is a standard Normal draw.

For δ we have another Normal simulation, as follows:

δ(s) =

(
τ(s)

n∑
i=1

λi,(s−1)z
2
i,(s) +

1

σ2
δ

)− 1
2

× ε

+

(
τ(s)

n∑
i=1

λi,(s−1)z
2
i,(s) +

1

σ2
δ

)−1(
τ(s)

n∑
i=1

λi,(s)zi,(s)ŷi,(s) +
µδ
σ2
δ

)
, (4.38)

where ε is a standard Normal draw and the prior mean and variance are chosen such

that µδ = 0 and σδ = 1000.

Each λi is then drawn from the gamma distribution given above in Equation 4.25,

with skewness incorporated into ˜̃yi, namely:

Γ

{
1

2

(
ν(s−1) + 1

)
,

(
1

2
λi,(s)τ(s)

˜̃y2
i,(s) + ν(s−1)

)−1
}
.

Finally, ν(s) drawn from the Metropolis algorithm explained above, conditional on

the new λi,(s), i = 1, . . . , n.

.
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4.3 Methodology of the Simulation Study

The simulation study presented in this chapter is an analysis of the robustness of a

mis-specified sequential imputation method based on the t-distribution (and its skew

specification), as a continuation of the work presented by He & Raghunathan (2009).

The rationale behind this study is to find a robust Normal-family imputation method

that remains strong in the presence of non-Normal data. In this way, imputers with less

expertise will have a robust SRMI model to use under circumstances when the data may

not be Normally distributed, thereby figuratively extending the reach of SRMI to those

who might not have thought of using this process for their MI procedures.

The simulation study will evaluate the situations where predictive mean matching (PMM),

local residual draw (LRD), and expanded residual draw (ERD) can reduce bias in SRMI

procedures. While these adaptations have already been tested for Normality-based SRMI

by He & Raghunathan (2009), it is of interest to see if they are useful when the symmetric

t-distribution is used in SRMI, and to see if these adaptations can compare in effectiveness

to the actual skew specification of the t-distribution.

4.3.1 Assessment Methods

For an imputation method to be robust, the model should replicate the original data and

predict plausible imputations. The purpose of this chapter is to use the robust SRMI

model to replicate the original simulated data after it has been made incomplete. The

overall analysis of multiple completed data sets is unnecessary, so this chapter will refrain

from running these post-imputation analyses and computing RBIAS and RRMSE as

was done by He & Raghunathan (2009). The only results that need to be assessed are

the fit of the completed data to the original data and the fit of the imputation draws

to the values that were made missing.3 This assessment requires the construction of two

quantile-quantile (QQ) plots, and a statistic to measure the deviance of these plots from

the optimal solution.

3For an imputation method to be robust, the model should replicate the original data and predict
plausible imputations.
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1. Firstly, for one data scenario (with n = 200) and one MDM, a plot of the quantiles

of the completed data (for each variable with missingness) is drawn against the

quantiles of the original data (for each corresponding original complete variable).

Since MI creates multiple completed data sets and the overall analyses after MI

are averaged over these multiple completed data sets to obtain a final estimate, a

‘pooling’ procedure is followed when calculating the quantiles of the completed data

— the five MI completed data sets for a particular MI method are pooled before

the quantiles are calculated.

For each variable with missingness, the mean squared error (MSE) of the deviation

of the quantiles of the completed data from the quantiles of the original data is then

computed. Additionally, the MSE of the QQ plot for the incomplete (INC) data

and complete-case (CC) or case-deleted data is calculated for comparison. Across

multiple simulations within a data scenario and MDM, a distribution of QQ plot

MSE calculations is then obtained. The average of these MSE calculations for an

imputation method is reported for each data scenario and MDM combination.

This assessment allows one to compare post-imputation distributions with the orig-

inal data distributions, as well as with the distributions under the incomplete data

and the data set where incomplete observations are deleted.

2. Secondly, for each data scenario (with n = 200) and MDM combination, 200 multi-

ply imputed data sets are created under each SRMI model. For each variable with

missingness, the 1%, 2%, . . . , 99% equal-tail coverage intervals of the imputed val-

ues are calculated. The proportions of the original data points that fall inside their

1%, 2%, . . . , 99% imputed intervals is then determined. For an imputation method

that perfectly replicates the original data, one should find that, for one variable

with missingness, p% of the original data points that were made missing should fall

within the p% imputation intervals for that data point. The MSE of the QQ plot

of these coverage intervals from the 45◦ line is reported.

This assessment allows one to make sure that the imputation model is predicting

individual data points within expected intervals.
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4.3.2 Simulated data

Complete data is generated under four different data scenarios. The data is then made

incomplete using alternating MCAR and MAR mechanisms, and re-filled using various

SRMI models, namely the Normal and t, with their PMM, LRD and ERD adaptations

for skewness, as well as the skew t model.

Data Scenarios

In this study, simulated data consists of four variables, Y1, Y2, Y3, and Y4, where: Y1 = ε1,

Y2 = 1 + Y1 + ε2, Y3 = 1 + Y1 + Y2 + ε3, Y4 = 1 + Y1 + Y2 + Y3 + ε4.

The complete-data models take one of four forms:

1. Normality (and symmetry):

εj ∼ N (0, 1) for j = 1, 2, 3, 4.

2. Moderate tails, with skewness:

ε1 ∼ N (0, 1)

ε2 ∼ t6

ε3 = α3 − ω3 where α3 ∼ t6 and ω3 ∼ N (0, 1)

ε4 = α4 − 2ω4 where α4 ∼ t6 and ω4 ∼ N (0, 1)

3. Heavy tails, with skewness:

ε1 ∼ N (0, 1)

ε2 ∼ t3

ε3 = α3 − ω3 where α3 ∼ t3 and ω3 ∼ N (0, 1)

ε4 = α4 − 2ω4 where α4 ∼ t3 and ω4 ∼ N (0, 1)

4. Mixed gh distributions: Again ε1 ∼ N (0, 1). For the remaining error distribu-
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tions of ε2, ε3, and ε4, various options of Tukey’s gh distribution are chosen, as was

done by He & Raghunathan (2006) and reviewed in Subsection 3.4.5. For more infor-

mation on the forms of the gh distribution that were chosen, see He & Raghunathan

(2006).

For all errors in data scenario 4, µ = 0 and σ = 1. However, the g and h parameters

are varied as follows:

� For ε2, g = 1 and h = −0.25. This creates a downward-sloping monotonic

exponential-type distribution.

� For ε3, g = 0.75 and h = 0.25. This generates a right-skewed distribution.

� For ε4, g = 1 and h = 0. This is the well-known Lognormal distribution.

5. Extreme deviation from Normality: In this data scenario, the method of He &

Raghunathan (2009) is followed roughly, but only one of the 36 scenarios generated

by these authors is explored — one with extreme deviation from Normality, and

large error variances. Additionally, another variable is added, with a skew t3 error.

The algorithm followed is built according to the method of He & Raghunathan

(2009).

Let the vector of errors for Yj, j = 1, . . . , 4 be ξj = [ε1j ε2j ε3j . . . εnj]
′. Also, let

Uj = [u1j u2j u3j . . . unj]
′. For each observation i, i = 1, . . . , n, the error εij for this

observation on each variable is constructed as follows:

� ξ1 ∼ N (0, 1)

� εi2 = ui2−E(U2)
V ar(U2)

×
√

3V ar (Y1), u2 = 1 + exp (1 + Z), Z ∼ N (0, 1). So ξ2 is a

vector of centred and widely scaled Lognormal errors.

� εi3 = ui3−E(U3)
V ar(U3)

×
√

2 [V ar (Y1) + V ar (Y2)], u3 = W , W ∼ t3. So ξ3 is a vector

centred and widely scaled t3 errors.

� εi4 = ui4−E(U4)
V ar(U4)

×
√
V ar (Y1) + V ar (Y2) + +V ar (Y2), u4 = W − 2Z, W ∼ t3,

Z ∼ N (0, 1). So ξ4 is a vector centred and widely scaled right-skewed t3 errors.

This arrangement of error distributions is arguably the most extremely deviated

from Normality of the five data scenarios.
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Missing Data Mechanisms

In this study, two MDMs are simulated, namely one MCAR mechanism one MAR mech-

anism. For the MCAR mechanism, every data point has a 20% chance of being deleted in

one simulation. This does not guarantee 20% missingness, but, since the MAR mechanism

does not either, this point is moot.

For the MAR mechanism, a logistic regression is set up, variable by variable, to generate

a probability for each observation in the current variable to be missing.

� Y1 is complete.

� The probability that observation i is missing in Y2 is:

pi,2 = 0.4 [1 + exp (−0.3− 0.3yi,1)]−1

Once these probabilities are calculated, each observation with probability less than

an independent draw from a U (0, 1) distribution is made missing.

� The probability that observation i is missing in Y3 is:

pi,3 = 0.4 [1 + exp (−0.3− 0.3yi,1 − 0.3yi,2)]−1

If yi,2 is already missing, this term is ignored, ensuring the MAR MDM does not

become an MNAR MDM. Data points are made missing in the same way as for Y2.

� Finally, the probability that observation i is missing in Y4 is:

pi,3 = 0.4 [1 + exp (−0.3− 0.3yi,1 − 0.3yi,2 − 0.3yi,3)]−1

If yi,2 or yi,3 or both are already missing, the missing terms are ignored, ensuring

once more that the MAR MDM does not become an MNAR MDM. Data points are

made missing in the same way as for Y2 and Y3.

The 0.4 coefficient in the above equations ensures that missingness is comparable to the

MCAR MDM. Across 100 simulations of these MDMs we have average missingness for
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the two MDMs as given in Table 4.1.4

Table 4.1: Missingness from the MCAR and MAR MDMs

MDM Variable/CC
Data scenario

1 2 3 4 5

MCAR

Y2 20.1% 20.0% 20.4% 20.2% 19.6%
Y3 19.7% 19.4% 20.3% 20.0% 20.0%
Y4 20.1% 19.6% 20.4% 19.5% 19.7%
CC 48.7% 48.1% 49.6% 48.7% 48.5%

MAR

Y2 16.9% 17.3% 17.0% 17.3% 17.5%
Y3 16.9% 16.8% 17.0% 17.1% 17.4%
Y4 17.4% 17.3% 17.6% 16.9% 17.3%
CC 42.7% 43.1% 42.9% 42.8% 43.4%

To ensure that the MDMs are indeed MCAR and MAR, we examine the difference between

the mean of the original complete data and the mean of the incomplete data. The results

are given in Table 4.2.5

Table 4.2: Difference after data is made missing

Data scenario 1 Data scenario 2
MDM Y1 Y2 Y3 Y4 MDM Y1 Y2 Y3 Y4

MCAR 0.00 0.00 0.01 MCAR -0.01 -0.01 0.01
MCAR CC 0.00 0.00 0.00 -0.01 MCAR CC -0.01 0.00 -0.01 -0.04
MAR -0.03 -0.11 -0.33 MAR -0.04 -0.15 -0.39
MAR CC -0.16 -0.20 -0.36 -0.73 MAR CC -0.16 -0.26 -0.46 -0.91

Data scenario 3 Data scenario 4
MDM Y1 Y2 Y3 Y4 MDM Y1 Y2 Y3 Y4

MCAR 0.00 -0.01 -0.02 MCAR -0.01 0.00 -0.03
MCAR CC 0.00 0.01 0.00 0.00 MCAR CC -0.02 -0.01 -0.03 -0.06
MAR -0.04 -0.14 -0.40 MAR -0.03 -0.13 -0.34
MAR CC -0.16 -0.25 -0.47 -0.91 MAR CC -0.19 -0.21 -0.40 -0.80

Data scenario 5
MDM Y1 Y2 Y3 Y4

MCAR 0.01 -0.01 0.10
MCAR CC 0.00 0.01 0.01 0.10
MAR -0.05 -0.16 -0.13
MAR CC -0.15 -0.25 -0.48 -0.49

From Table 4.2 we can see that the MCAR MDM is making no difference to the mean

of the data, while the MAR MDM results show that the mean of the incomplete data

is higher than that of the original complete data. This suggests that the MAR MDM is

successfully weeding out smaller values in the data set.

4If n = 1000 observations are simulated, then there is no discernible difference in the missingness
figures.

5If n = 1000 observations are simulated the results are very similar; no marked differences are notable.
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4.4 Simulation Study Analysis

4.4.1 Distributional coverage

Tables 4.3 to 4.7 present the MSE of the QQ plots comparing the quantiles of the incom-

plete and completed data with the quantiles of the original data. Lower numbers are more

desirable. The best result for each variable (per data scenario and MDM) is highlighted

in bold, while methods with MSEs within 5% of the best method are italicised.

Table 4.3: QQ MSE for Data Scenario 1

Var.: Y2 Y3 Y4

MDM: MCAR MAR MCAR MAR MCAR MAR
Sample: 200 1000 200 1000 200 1000 200 1000 200 1000 200 1000
INC 0.006 0.002 0.007 0.002 0.027 0.005 0.037 0.023 0.085 0.017 0.190 0.153
CC 0.022 0.006 0.061 0.057 0.079 0.018 0.203 0.206 0.259 0.064 0.771 0.746
N 0.003 0.001 0.003 0.001 0.009 0.002 0.009 0.002 0.024 0.004 0.019 0.004
NPMM 0.004 0.002 0.004 0.001 0.018 0.004 0.018 0.003 0.046 0.018 0.046 0.021
NLRD 0.003 0.001 0.003 0.001 0.010 0.002 0.010 0.002 0.025 0.005 0.022 0.004
NERD 0.003 0.001 0.003 0.001 0.009 0.002 0.008 0.002 0.024 0.004 0.019 0.004
t 0.003 0.001 0.003 0.001 0.009 0.002 0.009 0.002 0.025 0.004 0.020 0.004
tPMM 0.004 0.002 0.004 0.001 0.018 0.004 0.018 0.003 0.045 0.018 0.049 0.021
tLRD 0.004 0.001 0.003 0.001 0.010 0.002 0.009 0.002 0.026 0.005 0.022 0.004
tERD 0.006 0.003 0.005 0.002 0.010 0.003 0.010 0.003 0.024 0.005 0.020 0.004
tskew 0.003 0.001 0.003 0.001 0.009 0.002 0.009 0.002 0.024 0.004 0.021 0.004

Table 4.4: QQ MSE for Data Scenario 2

Var.: Y2 Y3 Y4

MDM: MCAR MAR MCAR MAR MCAR MAR
Sample: 200 1000 200 1000 200 1000 200 1000 200 1000 200 1000
INC 0.015 0.002 0.016 0.003 0.029 0.007 0.047 0.026 0.133 0.025 0.283 0.154
CC 0.074 0.007 0.146 0.061 0.113 0.023 0.330 0.206 0.474 0.083 1.284 0.756
N 0.013 0.001 0.010 0.001 0.016 0.004 0.014 0.004 0.066 0.012 0.065 0.011
NPMM 0.013 0.002 0.013 0.002 0.022 0.005 0.017 0.005 0.097 0.022 0.105 0.019
NLRD 0.011 0.002 0.010 0.001 0.017 0.004 0.015 0.004 0.076 0.013 0.072 0.012
NERD 0.012 0.001 0.011 0.001 0.015 0.004 0.013 0.003 0.065 0.013 0.063 0.011
t 0.010 0.002 0.009 0.001 0.017 0.004 0.014 0.004 0.070 0.012 0.064 0.011
tPMM 0.013 0.002 0.012 0.002 0.021 0.005 0.016 0.005 0.096 0.021 0.104 0.019
tLRD 0.011 0.002 0.010 0.001 0.017 0.004 0.015 0.003 0.075 0.014 0.075 0.011
tERD 0.011 0.002 0.011 0.001 0.016 0.004 0.014 0.003 0.073 0.021 0.071 0.017
tskew 0.010 0.002 0.009 0.001 0.017 0.004 0.014 0.004 0.067 0.012 0.065 0.010

It is clear from the Tables that under both MCAR and MAR MDMs, complete case data

have distributions that deviate the most from the original data, although this difference

is somewhat muted under the MCAR mechanism (as expected).

Under the assumption of Normal errors in Data Scenario 1, Normal, Normal with ERD,

and the skew t imputation models perform the best under both the MCAR and MAR

MDMs.
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Table 4.5: QQ MSE for Data Scenario 3

Var.: Y2 Y3 Y4

MDM: MCAR MAR MCAR MAR MCAR MAR
Sample: 200 1000 200 1000 200 1000 200 1000 200 1000 200 1000
INC 0.015 0.004 0.014 0.004 0.037 0.008 0.060 0.024 0.154 0.030 0.307 0.170
CC 0.053 0.017 0.106 0.074 0.143 0.032 0.373 0.210 0.464 0.113 1.242 0.780
N 0.010 0.013 0.009 0.011 0.028 0.006 0.021 0.005 0.077 0.015 0.063 0.012
NPMM 0.013 0.005 0.012 0.004 0.036 0.009 0.029 0.009 0.116 0.037 0.110 0.044
NLRD 0.011 0.003 0.010 0.002 0.028 0.007 0.022 0.005 0.082 0.015 0.068 0.013
NERD 0.010 0.011 0.009 0.009 0.027 0.006 0.020 0.004 0.079 0.014 0.060 0.012
t 0.011 0.003 0.009 0.002 0.027 0.005 0.022 0.004 0.075 0.015 0.061 0.012
tPMM 0.013 0.005 0.011 0.003 0.037 0.009 0.030 0.009 0.118 0.037 0.110 0.043
tLRD 0.012 0.003 0.010 0.002 0.029 0.007 0.023 0.005 0.082 0.016 0.069 0.013
tERD 0.011 0.004 0.009 0.003 0.028 0.007 0.023 0.006 0.080 0.023 0.065 0.023
tskew 0.011 0.003 0.010 0.002 0.028 0.005 0.022 0.004 0.083 0.015 0.062 0.012

Table 4.6: QQ MSE for Data Scenario 4

Var.: Y2 Y3 Y4

MDM: MCAR MAR MCAR MAR MCAR MAR
Sample: 200 1000 200 1000 200 1000 200 1000 200 1000 200 1000
INC 0.005 0.001 0.005 0.002 0.017 0.003 0.034 0.018 0.064 0.012 0.185 0.118
CC 0.016 0.003 0.058 0.040 0.057 0.011 0.214 0.154 0.221 0.042 0.848 0.615
N 0.001 0.000 0.001 0.000 0.003 0.001 0.003 0.001 0.010 0.002 0.009 0.002
NPMM 0.003 0.001 0.002 0.001 0.008 0.003 0.006 0.002 0.030 0.011 0.025 0.009
NLRD 0.001 0.000 0.001 0.000 0.003 0.001 0.003 0.001 0.010 0.002 0.009 0.002
NERD 0.001 0.000 0.001 0.000 0.003 0.001 0.003 0.001 0.010 0.002 0.008 0.002
t 0.001 0.000 0.001 0.000 0.003 0.001 0.003 0.001 0.010 0.002 0.009 0.001
tPMM 0.002 0.001 0.002 0.001 0.008 0.003 0.006 0.002 0.030 0.011 0.024 0.009
tLRD 0.001 0.000 0.001 0.000 0.003 0.001 0.003 0.001 0.010 0.002 0.009 0.002
tERD 0.004 0.003 0.004 0.002 0.006 0.002 0.005 0.002 0.014 0.003 0.012 0.002
tskew 0.001 0.000 0.001 0.000 0.003 0.001 0.003 0.001 0.010 0.002 0.009 0.002

In Data Scenario 2, with moderate t errors, the Normal model with ERD performs well,

but only when n = 200. The Normal, t and skew t models perform well under both

MDMs, both choices of N , and for all incomplete variables.

Under Data Scenario 3, the Normal model and Normal model with ERD generally perform

well when n = 200. The t and skew t imputation models consistently perform adequately.

Looking at Data Scenario 4, several imputation models perform well, including the Normal

and the Normal with ERD, the t, and the skew t. The LRD adaptations of both the

Normal and the t models are also adequate. These results all hold for both sample sizes.

Data Scenario 5 holds mixed results. Strangely, no model is able to replicate the distribu-

tion of the original data’s Y2 better than the incomplete data. The error on this variable

was Lognormal, so further investigation into this scenario might be warranted in future

research.

Amongst the imputation models, the best performers for replicating the original distribu-

tion of Y2 are the Normal and t models with the PMM and LRD adaptations. For Y3, the
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Table 4.7: QQ MSE for Data Scenario 5

Var.: Y2 Y3 Y4

MDM: MCAR MAR MCAR MAR MCAR MAR
Sample: 200 1000 200 1000 200 1000 200 1000 200 1000 200 1000
INC 0.028 0.010 0.020 0.009 0.080 0.016 0.114 0.029 1.476 0.423 1.232 0.632
CC 0.087 0.034 0.141 0.123 0.357 0.064 0.513 0.274 13.450 1.346 8.227 1.809
N 0.042 0.034 0.030 0.025 0.093 0.023 0.095 0.015 1.989 0.632 1.630 0.569
NPMM 0.032 0.013 0.020 0.011 0.094 0.021 0.109 0.014 2.766 0.495 1.739 0.454
NLRD 0.030 0.010 0.020 0.009 0.086 0.015 0.092 0.012 2.026 0.489 2.419 0.466
NERD 0.032 0.014 0.021 0.011 0.078 0.017 0.091 0.013 1.592 0.422 1.446 0.431
t 0.045 0.035 0.029 0.024 0.066 0.021 0.083 0.013 1.739 0.453 1.415 0.453
tPMM 0.036 0.010 0.021 0.009 0.093 0.021 0.112 0.013 3.005 0.511 1.764 0.473
tLRD 0.036 0.011 0.021 0.009 0.095 0.018 0.107 0.012 2.094 0.481 2.479 0.489
tERD 0.033 0.027 0.021 0.018 0.121 0.050 0.157 0.040 6.667 6.489 5.470 5.188
tskew 0.045 0.035 0.027 0.023 0.075 0.020 0.082 0.013 1.666 0.426 1.502 0.450

t and skew t models perform well, together with the Normal and t models incorporating

the LRD adjustment. For Y4, once more the incomplete data seems close in distribution

to the original data, while the Normal model with ERD, the t model, and the skew t

model perform best amongst the imputation models.

Across all models, it is clear that the skew t model is the most robust. This model shows

fewer weaknesses than the other models, while always remaining relatively close to the

performance of the best imputation model if it is not the best model itself. It can also

be noted that when the distributional assumptions of the errors are less pronounced, i.e.

when n = 200, it is more difficult to choose a better imputation model. However, with

n = 1000, we are better able to gauge the effectiveness of some of the imputation models,

for example, the skew t model.

Before continuing with the second analysis, it is important to keep in mind that the errors

across the three variables are uncorrelated, and that a certain amount of ‘averaging’ of

errors across an observation may or may not have allowed less robust models to appear

better than they are. However, this property should not concern us too much, since it is

clear that even with this advantage, the traditionally less robust models appear are still

shown to be less robust that the skew t model.

4.4.2 Imputation coverage

Tables 4.8 to 4.12 provide the MSEs of the QQ plots that compare the coverage of the

actual distribution of the imputations over the original values of the data that was made
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Figure 4.1: Boxplots of MSE ranks of imputations, across variables, MDMs and data
scenarios

missing. Once again, lower numbers are more desirable, and the best result for each

variable (per data scenario and MDM) is highlighted in bold, while methods with MSEs

within 5% of the best method are italicised. Take note that the maximum MSE for a

method across the three variables is also given as a measure of the worst error the method

made within the given data scenario and sample size.

The ranks of these MSEs are summarised in a boxplot, Figure 4.1, sorted by the mean of

the ranks for each method.

While little information can be gained from this crude ranking analysis, one can at least

note that the symmetric and skew t models are performing far better than the Normal

model in general, and that the t model with ERD has poor imputation coverage intervals.

There is no systematic evidence of one imputation method providing more accurate cov-

erage of the original data points before these were made missing. Clearly, however, the

t model with the ERD adjustment is inadmissable as an imputation method. The errors

that the algorithm has to ‘donate’ to the imputations are simply too wide, too often.

By examining averages across scenarios and MDMs, one finds that the Normal modelwith

either PMM, LRD or ERD adjustments, along with the t models with PMM or LRD

adjustments, all perform better than the unadjusted Normal, unadjusted t, and the skew
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Table 4.8: QQ MSE for imputations under Data Scenario 1

MDM: MCAR MAR
N Variable: Y2 Y3 Y4 Y2 Y3 Y4 MAX

200

N 7.3 87.3 23.7 93.4 30.4 13.5 93.4
NPMM 67.6 43.4 37.7 19.1 21.0 112.5 112.5
NLRD 41.4 77.7 72.5 47.8 29.6 32.4 77.7
NERD 9.7 77.9 67.9 73.3 27.5 17.4 77.9
t 8.1 65.1 46.1 75.3 20.3 26.8 75.3
tPMM 66.6 13.2 48.8 44.5 29.8 157.8 157.8
tLRD 35.2 88.4 69.8 56.0 17.7 24.2 88.4
tERD 349.3 58.2 22.0 484.0 123.8 20.7 484.0
tskew 10.5 66.8 41.8 71.1 23.8 19.1 71.1

1000

N 5.4 3.4 6.1 4.7 5.9 11.8 11.8
NPMM 5.0 2.7 8.5 8.2 8.2 24.9 24.9
NLRD 5.8 4.5 7.8 2.8 12.8 15.7 15.7
NERD 4.6 3.1 6.1 2.0 5.8 19.3 19.3
t 9.3 2.8 2.1 2.6 11.0 11.5 11.5
tPMM 7.0 2.1 10.2 4.2 7.5 27.7 27.7
tLRD 5.9 6.7 5.8 1.6 13.7 12.2 13.7
tERD 295.5 95.0 4.4 262.7 59.5 39.6 295.5
tskew 4.5 2.7 2.5 3.5 8.2 13.7 13.7

Table 4.9: QQ MSE for imputations under Data Scenario 2

MDM: MCAR MAR
N Variable: Y2 Y3 Y4 Y2 Y3 Y4 MAX

200

N 21.2 70.5 8.6 25.8 16.6 90.1 90.1
NPMM 16.4 33.0 22.7 36.6 97.4 30.5 97.4
NLRD 12.1 51.3 11.2 35.5 50.4 85.8 85.8
NERD 10.6 52.5 8.2 39.3 36.8 116.0 116.0
t 12.0 74.4 13.1 53.2 35.1 102.7 102.7
tPMM 21.2 61.0 17.8 19.7 100.5 51.0 100.5
tLRD 14.1 93.8 5.0 48.5 33.5 77.7 93.8
tERD 56.5 19.3 515.4 32.1 100.9 164.7 515.4
tskew 9.7 75.0 8.1 46.5 29.4 116.5 116.5

1000

N 34.6 8.4 13.5 17.8 4.5 8.4 34.6
NPMM 30.7 5.5 25.8 10.7 4.6 7.1 30.7
NLRD 20.2 7.7 21.2 4.7 2.7 8.7 21.2
NERD 27.0 7.6 18.6 14.1 4.4 6.1 27.0
t 22.4 3.2 23.6 3.9 3.4 3.8 23.6
tPMM 21.2 11.6 15.8 7.3 5.8 5.4 21.2
tLRD 18.3 5.8 14.6 5.4 2.0 9.9 18.3
tERD 90.5 69.1 758.3 31.2 105.5 612.8 758.3
tskew 25.9 5.0 14.6 9.2 6.4 4.1 25.9

t models when n = 1000. However, when n = 200, the skew t model provides the best

coverages on average, followed by the t model. This is also the case if we average the

MSEs across sample size. Certainly, the unadjusted t and the skew t models generally

perform better than the unadjusted Normal model.

According to maximums across scenarios, sample sizes, and MDMs, the Normal with

PMM, LRD, or ERD, and the t with PMM or LRD seem to provide the best coverages.

The excellent performance of the models with modest adjustments for skewness, namely

the PMM, LRD, and ERD on Normal errors, may suggest that in the context of imputation

it suffices restrict error draws within the realm of observed errors in the data set. If,
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Table 4.10: QQ MSE for imputations under Data Scenario 3

MDM: MCAR MAR
N Variable: Y2 Y3 Y4 Y2 Y3 Y4 MAX

200

N 21.7 55.3 23.1 66.7 76.7 32.8 76.7
NPMM 15.7 201.6 27.4 279.4 57.2 55.8 279.4
NLRD 29.4 183.7 83.9 79.6 35.4 20.7 183.7
NERD 23.5 86.7 51.3 67.6 67.5 14.3 86.7
t 28.0 51.4 62.4 94.8 63.4 10.9 94.8
tPMM 16.4 178.2 23.5 263.9 33.5 30.2 263.9
tLRD 29.8 234.5 67.6 154.8 22.3 20.2 234.5
tERD 43.8 392.1 583.6 53.9 44.4 558.8 583.6
tskew 23.1 69.3 63.3 62.1 92.7 17.4 92.7

1000

N 37.9 17.4 4.6 51.2 3.1 2.4 51.2
NPMM 2.1 5.0 12.1 5.1 11.2 6.9 12.1
NLRD 8.7 8.1 19.7 5.4 9.4 9.3 19.7
NERD 5.9 7.8 14.8 13.0 8.1 5.1 14.8
t 7.5 7.8 13.3 9.2 7.5 4.7 13.3
tPMM 2.7 5.4 8.5 10.4 11.3 5.2 11.3
tLRD 8.5 5.6 16.6 7.7 14.1 5.3 16.6
tERD 7.6 200.9 835.6 6.4 221.8 711.8 835.6
tskew 10.5 7.9 14.0 13.5 5.8 3.5 14.0

Table 4.11: QQ MSE for imputations under Data Scenario 4

MDM: MCAR MAR
N Variable: Y2 Y3 Y4 Y2 Y3 Y4 MAX

200

N 85.2 21.2 24.0 59.4 82.3 50.1 85.2
NPMM 23.3 18.5 153.2 47.2 30.5 19.6 153.2
NLRD 24.1 18.5 27.5 55.9 68.2 10.9 68.2
NERD 85.8 15.3 13.2 61.8 45.2 24.7 85.8
t 26.6 17.6 23.3 28.4 63.3 59.6 63.3
tPMM 17.7 33.3 106.0 47.1 34.5 24.5 106.0
tLRD 12.8 18.0 19.3 30.2 34.1 16.1 34.1
tERD 717.5 711.0 381.2 803.0 559.4 444.8 803.0
tskew 11.5 24.0 31.0 16.3 41.5 93.2 93.2

1000

N 10.9 25.6 65.5 53.3 11.2 92.5 92.5
NPMM 5.8 6.2 24.7 9.9 16.9 20.4 24.7
NLRD 6.3 28.7 31.5 49.7 5.7 49.7 49.7
NERD 5.5 13.9 28.1 43.6 5.9 36.3 43.6
t 14.2 21.9 57.9 52.1 4.7 74.6 74.6
tPMM 6.3 8.4 23.8 11.1 16.3 17.4 23.8
tLRD 4.9 27.6 27.7 38.3 8.0 35.3 38.3
tERD 599.4 532.5 208.1 646.4 607.8 233.6 646.4
tskew 15.8 22.8 67.6 55.7 6.8 74.1 74.1

however, it is important to allow for errors in the imputations that are wider than the

existing observed errors (for example, if extreme proportions of the data sets are missing),

then one could assume that these adaptations to the symmetric models will not suffice.

In conclusion, the second analysis shows that the most accurate of the pure distribution-

based imputation methods is the skew t model, followed by the symmetric t model. If

adaptations to incorporate observed skewness are deemed suitable for the data set, the

Normal model with any adaptation (PMM, LRD, or ERD) will suffice, and will signifi-

cantly reduce computation time.
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Table 4.12: QQ MSE for imputations under Data Scenario 5

MDM: MCAR MAR
N Variable: Y2 Y3 Y4 Y2 Y3 Y4 MAX

200

N 302.7 166.0 47.3 177.8 43.5 49.6 302.7
NPMM 7.8 57.1 25.3 42.6 21.6 54.7 57.1
NLRD 17.3 43.6 41.7 20.7 31.6 71.2 71.2
NERD 119.2 50.8 19.6 22.6 10.7 55.7 119.2
t 53.7 20.9 16.7 15.4 20.5 57.5 57.5
tPMM 125.2 17.8 32.2 38.0 32.0 35.8 125.2
tLRD 31.9 13.7 40.3 58.1 25.4 47.0 58.1
tERD 379.0 824.3 2721.6 367.2 1272.0 2691.9 2721.6
tskew 31.3 13.8 21.5 7.9 20.5 60.2 60.2

1000

N 103.5 189.6 2.5 271.4 191.0 2.7 271.4
NPMM 14.1 7.8 13.9 10.1 3.5 11.7 14.1
NLRD 25.4 8.4 10.0 7.4 7.5 8.3 25.4
NERD 8.5 19.5 12.8 10.5 4.9 11.6 19.5
t 24.1 16.9 12.7 12.7 1.4 9.8 24.1
tPMM 20.7 11.3 12.6 9.4 2.2 17.4 20.7
tLRD 25.4 12.5 7.1 10.5 6.4 10.1 25.4
tERD 532.4 750.4 2719.8 428.4 974.4 2506.6 2719.8
tskew 21.3 10.8 7.3 14.0 1.9 14.7 21.3

4.5 Conclusion

Clearly, at the very least Normal SRMI should be used instead of incomplete data analysis

or CC data analysis. The Normal model has proved to be relatively robust to misspecifi-

cation within the SRMI approach for the data variations presented in this chapter when

compared with complete case or incomplete data analysis.

However, an imputer can choose a better SRMI model based on the results of this chapter.

It seems that in many cases the Normal model with a PMM, LRD or ERD adaptation

on the imputed errors will suffice in order to accommodate skewness. The advantage of

this choice is the quicker computation time, since the t and skew t models are much more

complex in their implementation. It also seems as though the t models with PMM or

LRD adaptations are rather robust. The t model with ERD is not recommended due to

its generation of errors that lead to poor coverage of imputations over the original data

points before they were made missing. Unfortunately, the t model with adaptation does

not share the computational simplicity of the Normal model, with or without adaptations.

If one prefers to allow for errors in imputations that are outside of the limits of the errors

that are actually observed, a more robust adaptation-free approach should be considered.

If this is the case, the obvious choice is the skew t approach. In this chapter the skew

t approach has been shown to have favourable properties under many of the simulation

scenarios. Moreover, it would seem that the skew t model, while not always being the
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best choice of imputation model, has shown no serious weaknesses in the context of this

simulation study even when compared to the adapted Normal models. The skew t model

is, therefore, an acceptable choice of imputation model should the error distributions of

the data not be known. The disadvantage of increased computation time (compared with

the Normal model) is more than offset by the model’s flexibility.



Chapter 5

SRMI Evaluation

5.1 Introduction

The review of previous literature shows that a single measure for the evaluation of impu-

tation has not yet been agreed upon. However, there are several plausible methods that

should be considered when evaluating new SRMI methods. These methods include the

relative bias (RBIAS) and the root of the relative mean squared error (RRMSE), as

used by He & Raghunathan (2009), the QQ-plots and KS statistic used by Abayomi et al.

(2008), and the calibrated posterior predictive p-value, as used by Cabras et al. (2011).

In general, this thesis is concerned with the evaluation of the model used in an SRMI

procedure. In particular, an imputer would like to know whether or not the model cho-

sen for a particular incomplete variable is appropriate, given the observed data for that

variable. For some models, of course, this check is unnecessary, when a single model is

known to be appropriate (for example, a Poisson model for count data). However, where

several models might fit a particular variable, we either need to find the optimal model,

or at least rule out any ill-fitting choice.

We desire a statistic to determine whether or not the skew t-distribution would suffice

when it used in SRMI, knowing only the incomplete data.1 However, the evaluation

problem can be simplified somewhat when we consider that the skew t-distribution is in

1Imputation methods can be tested using coverage, bias, and confidence interval width only if the
original complete data is known.
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fact a robust alternative to the standard practice of using a Normal model for continuous

data (that may or may not have been transformed to better represent a Normal bell-

shaped density). For this reason, we need only assess the fit of a Normal distribution to

a variable’s observed data, and if the fit statistic rejects Normality, we can switch the

model for the data to the more robust skew t-distribution. Whether or not the skew

t-distribution is the best fit becomes a moot point when we consider that no alternative

exists for the skew t-distribution at this point. Of course, there is merit in completing the

same research for the skew t-distribution as we will be doing for the Normal case, if one

considers that non-Normal, non-skew-t data might need transformation to allow the skew

t-distribution to fit the data properly. However, for the sake of simplicity, this thesis will

be concerned with the null hypothesis of Normality (with the alternative being the skew

t-distribution), laying the groundwork for further research into model assessment for a

null hypothesis that the data is t- or skew t-distributed.

To start the search for an appropriate assessment method, let us first review the three

main methods glanced at in Chapter 3.

5.1.1 Relative Bias and Root Relative Mean Squared Error

The first set of assessment measures briefly considered are those used by He & Raghu-

nathan (2009). As explained in Subsection 3.4.5, RBIAS and RRMSE are calculated as

follows:

RBIAS =

∣∣∣∣BiasTrue

∣∣∣∣× 100% (5.1)

RRMSE =

√
MSE(Method)

MSE(Before deletion)
(5.2)

To review, a reasonable upper limit for RBIAS is 5%. RRMSE measures the increase

of RMSE relative to that of the analysis before deletion of the missing observations.

In general, it is expected to be more than 1, reflecting loss of efficiency when analysing

incomplete data. However, it can be less than 1 as well, implying “superefficiency” of the
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MI models, as discussed by Rubin (1996).

However, assessing the correctness of an imputation regression model’s coefficients may

not always be the right process for one important reason, namely that a data set created

with non-Normal errors might be better fitted by a regression model with intercept and

slope coefficients that are different to those used to actually create the data. This is

particularly evident in the case of the skew t-distribution, where the skewness parameter

directly influences the size of the intercept parameter. If we were to use the RBIAS

and RRMSE measures to assess the correctness of the imputed intercept, the results

would show poor estimation of the coefficient, although the mean squared error from

overall model fit, and possibly from predictions as well, could be vastly superior to a

model showing lower coefficient RBIAS and RRMSE. For this reason, this thesis is

more concerned with a method that can directly compare the distributions of imputation-

completed data sets with the actual complete data, and any measure that can possibly

provide a distribution-based statistic of SRMI model GOF.

5.1.2 Quantile-quantile plots and the Kolmogorov-Smirnov test

In order to assess the extent to which the overall distribution of the imputed data matches

the distribution of the original data, one can plot the quantiles of the completed data

against the quantiles of the complete data before deletion. This will allow us to view on

a graph the exact stages of the distribution in which the imputation model differs from

the original data’s model, namely, for example, in the tails, around the mean, to the left

or right of the distribution, etc.

Along with this visual representation, the Kolmogorov-Smirnov (KS) statistic can be

derived to test the null hypothesis that the completed data conforms to the known distri-

bution of the complete data. This test, however, is often quite lenient when it comes to

deviations from the original distribution (as we will see in the next chapter), so we may

in fact have to rely on the QQ plots more often than on the KS statistic.

Because of the graphical nature of this evaluation method, it involves a fair amount of

subjectivity, which leaves little room for research opportunities for this thesis.
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5.1.3 Calibrated Posterior Predictive p-Value

The calibrated posterior predictive p-value, or cppp, has been used to assess the GOF

of imputation regressions, as explained in Section 3.4.6. To review, if ppp (y) =

Pr (D (Y rep, β) ≥ D (y, β) |y), then the cppp is Pr (ppp (Y ) ≤ ppp (y)). We have that D

is a discrepancy measure, y represents the observed data, the distribution of Y rep is the

posterior predictive distribution, and Y is a replicate sample from the prior predictive

distribution.

The cppp statistic has evolved from the mathematics behind the ppp measure, discussed

at length in Gelman, Meng & Stern (1996). This measure has a substantial history, as

well as the choice of the discrepancy measure (and the actual calibration of the ppp).

Hjort et al. (2006) have done some work on ppp statistic calibration in the case of Normal-

ity which suggests that the statistic could have potential in identifying situations where

the traditional Normal model used in SRMI should be replaced by the more robust skew

t SRMI model introduced in Chapter 4. Therefore, this chapter will focus on some of the

mathematics behind the ppp and cppp statistics, will attempt to derive an appropriate

discrepancy measure in order to meet the objective, and will then check on the distribu-

tional properties of the ppp and cppp statistics in order to assess this method’s use within

the required context. Simulation checks of the mathematical results follow, to verify the

mathematical derivations.

This research will focus on model evaluation for the complete-data case, since the exten-

sion to incomplete data is rather trivial because, in essence, the cppp statistic is designed

to test if data fits a particular broad model; whether the data is complete, incomplete or

completed makes no difference. In SRMI, the cppp statistic could be generated to test

whether the observed part of a variable fits the model attached to that variable in the

SRMI process, or it could be generated to test whether the completed variable still fits

the model attached to that variable in the SRMI process, or both. In both cases, the cppp

is generated on what is considered to be complete data. Hence it suffices to develop the

theory on the statistic under the complete-data assumption.
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5.2 Calibrated Posterior Predictive p-Values

In this section we review two methods of deriving the cppp statistics, namely the mathe-

matical formulation, as introduced by Hjort et al. (2006), and the MCMC approximation

of the cppp, as explained by Cabras et al. (2011).

5.2.1 Mathematical derivation — existing discrepancy

In this subsection, we review the mathematical derivation of the cppp for the discrepancy

measure given by Hjort et al. (2006). We use the following notation: Y is a random

variable with elements yi, i = 1, 2, . . . , n, and Yobs represents the observed data, while

Y rep represents a posterior predictive replicate of the observed data.

Regression context

We focus on the general regression model for data (xi, yi) where yi = X ′iβ + εi, for

i = 1, . . . , n. The vector Xi is a p-dimensional covariate vector for observation i, and the

εi’s are independent with mean zero and standard deviation σ. In matrix notation we

have the standard OLS result, β̂ = (X ′X)−1X ′Y = Ω−1
n X ′Y .

Suppose that D (y, θ) = 1
σ2

(
β̂ − β

)′
Ωn

(
β̂ − β

)
. We then have that D (Y rep, θ) =

1
σ2

(
β̂rep − β

)′
Ωn

(
β̂rep − β

)
. This is the discrepancy measure used by Hjort et al. (2006,

p. 1166).

Consider σ2 known. We know the following:

β̂rep|β, σ2 ∼ N
(
β, σ2 (X ′X)

−1
)

= N
(
β, σ2Ω−1

n

)
∴ Ω

1
2
n β̂

rep|β, σ2 ∼ N
(

Ω
1
2
nβ, σ

2Ω
1
2
nΩ−1

n Ω
1
2
n

)
= N

(
Ω

1
2
nβ, σ

2Ip

)
∴ Ω

1
2
n β̂

rep − Ω
1
2
n β̂|β, σ2 ∼ N

(
0, σ2Ip

)
∴ Z|β, σ2 =

1

σ
Ω

1
2
n

(
β̂rep − β̂

)
∼ N (0, Ip)

∴ Z ′Z|β, σ2 =
1

σ2

(
β̂rep − β

)′
Ωn

(
β̂rep − β

)
∼ χ2

p
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Now suppose that our data is given by Yobs. Also assume that β has a prior distribution

of the form Np

(
βo, σ

2 (c0Ω0)−1). Hjort et al. (2006) mentioned that the parametrisation

is somewhat redundant, since c0 can be incorporated into the Ω0, but it is useful to start

with the covariance structure and then explore different levels of sharpness (c0 large) or

vagueness (c0 small).

We can obtain the posterior of β as follows:

p
(
β|σ2, yobs

)
∝ L

(
β|σ2, yobs

)
p (β)

∝ |Ωn|
1
2

(2π)
1
2
p (σ2)

1
2
p

exp

[
− 1

2σ2

(
β̂obs − β

)′
Ωn

(
β̂obs − β

)]

× |c0Ω0|
1
2

(2π)
1
2
p (σ2)

1
2
p

exp
[
− c0

2σ2
(β − β0)′Ω0 (β − β0)

]
We now complete the square in the exponent with respect to β:

(
β̂obs − β

)′
Ωn

(
β̂obs − β

)
+ c0 (β − β0)′Ω0 (β − β0)

More specifically, consider only the terms involving β:

β′Ωnβ − 2β′Ωnβ̂
obs + c0β

′Ω0β − 2c0β
′Ω0β0

If we let β̃ = (c0Ω0 + Ωn)−1
(
c0Ω0β0 + Ωnβ̂

obs
)

, we have:

β′Ωnβ − 2β′Ωnβ̂
obs + c0β

′Ω0β − 2c0β
′Ω0β0 ∝

(
β − β̃

)′
(c0Ω0 + Ωn)

(
β − β̃

)
As is also mentioned by Hjort et al. (2006), we thus find that:

β|σ2, yobs ∼ N
(
β̃, σ2 (c0Ω0 + Ωn)−1

)
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We also have the following:

(c0Ω0 + Ωn)−1 Ωnβ̂
obs − β̂obs = (c0Ω0 + Ωn)−1 [Ωn − (c0Ω0 + Ωn)] β̂obs

= − (c0Ω0 + Ωn)−1 c0Ω0β̂
obs

∴ β̃ − β̂obs = (c0Ω0 + Ωn)−1 c0Ω0

(
β0 − β̂obs

)
∴
(
β − β̂obs

)
|yobs, σ2 ∼ N

(
(c0Ω0 + Ωn)−1 c0Ω0

(
β0 − β̂obs

)
, σ2 (c0Ω0 + Ωn)−1

)
∼ N

(
f̃ , σ2 (c0Ω0 + Ωn)−1

)
∴

1

σ

(
β − β̂obs

)
|yobs, σ2 ∼ N

(
1

σ
f̃ , (c0Ω0 + Ωn)−1

)
= N

(
f, (c0Ω0 + Ωn)−1)

Now the discrepancy measure for the observed data, as well as the ppp for the observed

data, can be found as follows:

∴ D
(
yobs, θ

)
= (U + f)′Ωn (U + f) ,

where U ∼ N
(
0, (c0Ω0 + Ωn)−1) and f = 1

σ
(c0Ω0 + Ωn)−1 c0Ω0

(
β0 − β̂obs

)
, both vectors.

∴ ppp
(
yobs
)

= Pr
[
D (Y rep, θ) ≥ D

(
yobs, θ

)
|X
]

= Pr
[
χ2
p ≥ (U + f)′Ωn (U + f)

]
This result is shown by Hjort et al. (2006, p. 1166). Now consider the special case:

Ω0 = 1
n
Ωn. In this case the prior variance of β is specified as being proportional to the

sample variance of its least squares estimator. The coefficient c0 then has a more precise

interpretation relative to the sample size (Hjort et al. 2006, p. 1166).

E
(
β|yobs

)
= β̃ = (c0Ω0 + Ωn)−1

(
c0Ω0β0 + Ωnβ̂

obs
)

=
(c0

n
Ωn + Ωn

)−1 (c0

n
Ωnβ0 + Ωnβ̂

obs
)

=

(
c0 + n

n

)−1 (c0

n
β0 + β̂obs

)
=

n

c0 + n

(c0

n
β0 + β̂obs

)
=

c0

c0 + n
β0 +

n

c0 + n
β̂obs
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Now U is multivariate Normal, as follows:

U ∼ N
(
0, (c0Ω0 + Ωn)−1) = N

(
0,
(cn
n

Ωn + Ωn

)−1
)

= N

(
0,Ω−1

n

(
c0 + n

n

)−1
)

= N

(
0,Ω−1

n

n

c0 + n

)

Then f can be simplified:

f =
1

σ
(c0Ω0 + Ωn)−1 c0Ω0

(
β0 − β̂obs

)
=

1

σ

(c0

n
Ωn + Ωn

)−1 c0

n
Ωn

(
β0 − β̂obs

)
=

1

σ

(
n

co + n

)
c0

n

(
β0 − β̂obs

)
=

1

σ

(
c0

co + n

)(
β0 − β̂obs

)
For ppp

(
yobs
)

we can now simplify (U + f)′Ωn (U + f):

(U + f)′Ωn (U + f)

=

[
U +

c0

c0 + n

(
β0 − β̂obs

σ

)]′
Ωn

[
U +

c0

c0 + n

(
β0 − β̂obs

σ

)]

=
n

c0 + n

(c0 + n)
1
2

n
1
2

U +
c0

(
β0 − β̂obs

)
n

1
2 (c0 + n)

1
2 σ

′Ωn

(c0 + n)
1
2

n
1
2

U +
c0

(
β0 − β̂obs

)
n

1
2 (c0 + n)

1
2 σ


=

n

c0 + n

W +
c0

(
β0 − β̂obs

)
n

1
2 (c0 + n)

1
2 σ

′Ωn

W +
c0

(
β0 − β̂obs

)
n

1
2 (c0 + n)

1
2 σ

 ,
where W ∼ N (0,Ω−1

n ). Further simplifying yields the following:

(U + f)′Ωn (U + f)

=
n

c0 + n

Ω
1
2
nW + Ω

1
2
n

c0

(
β0 − β̂obs

)
n

1
2 (c0 + n)

1
2 σ

′Ω− 1
2

n ΩnΩ
− 1

2
n

Ω
1
2
nW + Ω

1
2
n

c0

(
β0 − β̂obs

)
n

1
2 (c0 + n)

1
2 σ


=

n

c0 + n

(
W̃ + τ

)′ (
W̃ + τ

)
,
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where τ = Ω
1
2
n
c0(β0−β̂obs)
n

1
2 (c0+n)

1
2 σ

, and W̃ ∼ N (0, Ip).

∴ (U + f)′Ωn (U + f) ∼ n

c0 + n
χ2
p (τ ′τ) .

The non-central Chi-square distribution has non-centrality parameter τ ′τ , which can be

simplified as:

τ ′τ =

Ω
1
2
n

c0

(
β0 − β̂obs

)
n

1
2 (c0 + n)

1
2 σ

′Ω
1
2
n

c0

(
β0 − β̂obs

)
n

1
2 (c0 + n)

1
2 σ


=
c2

0

(
β0 − β̂obs

)′
Ωn

(
β0 − β̂obs

)
σ2n (c0 + n)

Now we can solve for the ppp
(
yobs
)

for this special case:

ppp
(
yobs
)

= Pr
[
D (Y rep, θ) ≥ D

(
yobs, θ

)
|X
]

= Pr
[
χ2
p ≥ (U + f)′Ωn (U + f)

]
= Pr

[
χ2
p ≥

n

c0 + n
χ2
p (τ ′τ)

]
= Pr

[
χ2
p (τ ′τ)

χ2
p

≤ c0 + n

n

]
= Fp,p

(
1 +

c0

n
, τ ′τ

)
= Fp,p

(
1 +

c0

n
,

c2
0K

obs
n

σ2 (c0 + n)

)
,

where Kobs
n = 1

n

(
β0 − β̂obs

)′
Ωn

(
β0 − β̂obs

)
.

For ppp (Y ), Kobs
n is considered to be random, and is written as

Kn (Y ) =
1

n

(
β0 − β̂ (Y )

)′
Ωn

(
β0 − β̂ (Y )

)
.

Therefore we have that

ppp (Y ) = Fp,p

(
1 +

c0

n
,

c2
0

c0 + n

Kn (Y )

σ2

)
,
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and

cppp
(
yobs
)

= Pr
[
ppp (Y ) ≤ ppp

(
yobs
)]

= Pr

[
Kn (Y )

σ2
≥ Kobs

n

σ2

]

= Pr


(
β0 − β̂ (Y )

)′
Ωn

(
β0 − β̂ (Y )

)
σ2

≥

(
β0 − β̂obs

)′
Ωn

(
β0 − β̂obs

)
σ2

 .
Since β̂ (Y ) |β, σ2 ∼ N (β, σ2Ω−1

n ) and β ∼ N
(
β0, σ

2 n
c0

Ω−1
n

)
, it follows that,

β̂ (Y ) |σ2 ∼ N

(
β0, σ

2

(
1 +

n

c0

)
Ω−1
n

)
.

Therefore,

cppp
(
yobs
)

= Pr

(1 +
n

c0

)
χ2
p ≥

(
β0 − β̂obs

)′
Ωn

(
β0 − β̂obs

)
σ2


= Pr

χ2
p ≥

(
c0

c0 + n

) (β0 − β̂obs
)′

Ωn

(
β0 − β̂obs

)
σ2



Consider σ2 unknown. We now consider the regression case where σ2 is unknown, as

was done by Hjort et al. (2006). Suppose that λ = 1
σ2 . We have that λ ∼ Γ

(
1
2
a0,

1
2
b0

)
and β|λ ∼ N

(
β0, λ

−1 (c0Ω0)−1). We can obtain the joint posterior as follows:

p (β, λ|X) ∝ L (β, λ|X) p (β, λ)

∝ λ
1
2
p exp

[
−λ

2

(
β̂obs − β

)′
Ωn

(
β̂obs − β

)]
× λ

1
2

(n−p) exp

[
−λ

2

(
yobs −Xβ̂obs

)′ (
yobs −Xβ̂obs

)]
× p (β, λ) ,
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with prior p (β, λ) ∝ λ
1
2
a0−1 exp

(
1
2
b0λ
)
λ

1
2
p exp

[
−1

2
c0λ (β − β0)′Ωn (β − β0)

]
. Completing

the square, with respect to β in the exponent, we find that, as before:

(
β̂obs − β

)′
Ωn

(
β̂obs − β

)
+ c0 (β − β0)′Ω0 (β − β0)

= β′ (c0Ω0 + Ωn) β − 2β′
(
c0Ω0β0 + Ωnβ̂

obs
)

+ β̂′obsΩnβ̂
obs + c0β

′
0Ω0β0

=
(
β − β̃

)′
(c0Ω0 + Ωn)

(
β − β̃

)
−
(
c0Ω0β0 + Ωnβ̂

obs
)′

(c0Ω0 + Ωn)−1
(
c0Ω0β0 + Ωnβ̂

obs
)

+ β̂′obsΩnβ̂
obs + c0β

′
0Ω0β0,

where β̃ = (c0Ω0 + Ωn)−1
(
c0Ω0β0 + Ωnβ̂

obs
)

.

Therefore, we have that β0|λ, yobs ∼ N
(
β̃, 1

λ
(c0Ω0 + Ωn)−1

)
.

Since we have,

−
(
c0Ω0β0 + Ωnβ̂

obs
)′

(c0Ω0 + Ωn)−1
(
c0Ω0β0 + Ωnβ̂

obs
)

+ β̂′obsΩnβ̂
obs + c0β

′
0Ω0β0

=
(
β0 − β̂obs

)′
Ωn (c0Ω0 + Ωn)−1 c0Ω0

(
β0 − β̂obs

)
=
(
β0 − β̂obs

)′ (
c−1

0 Ω−1
0 + Ω−1

n

)−1
(
β0 − β̂obs

)
,

the posterior of λ is then given by,

p (λ|X) ∝ λ
1
2

(a0+n)−1 exp

{
−1

2
λ

[
b0 +

(
yobs −Xβ̂obs

)′ (
yobs −Xβ̂obs

)
+
(
β0 − β̂obs

)′ (
c−1

0 Ω−1
0 + Ω−1

n

)−1
(
β0 − β̂obs

)]}
∝ λ

1
2

(a0+n)−1 exp

{
−1

2
λ

[
b0 +Qobs

0 +
(
β0 − β̂obs

)′
K
(
β0 − β̂obs

)]}
,

where Qobs
0 =

(
yobs −Xβ̂obs

)′ (
Yobs −Xβ̂obs

)
and K =

(
c−1

0 Ω−1
0 + Ω−1

n

)−1
. Moving on to

the derivation of the ppp, we note once again that D (Y rep, β) ∼ χ2
p. Moreover,

D
(
yobs, θ

)
= λ

(
β̂obs − β

)′
Ωn

(
β̂obs − β

)
Since β|λ,X ∼ N

(
β̃, (c0Ω0 + Ωn)−1

)
, it follows that β|λ,X = β̃ + λ−

1
2U where U is a
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p-dimensional multivariate Normal, U ∼ N
(
0, (c0Ω0 + Ωn)−1).

∴ D
(
yobs, θ

)
= λ

(
β̃ + λ−

1
2U − β̂obs

)′
Ωn

(
β̃ + λ−

1
2U − β̂obs

)
=
(
λ

1
2 (c0Ω0 + Ωn)−1 c0Ω0

(
β̂obs − β0

)
+ U

)′
Ωn

×
(
λ

1
2 (c0Ω0 + Ωn)−1 c0Ω0

(
β̂obs − β0

)
+ U

)
From this expression we can see that it is sufficient to simulate a large number of replicates

of (λj, Uj) with λ ∼ Γ
(

1
2
an,

1
2
bn
)
, with an = a0 + n and,

bn = b0 +
(
yobs −Xβ̂obs

)′ (
yobs −Xβ̂obs

)
+
(
β0 − β̂obs

)′ (
c−1

0 Ω−1
0 + Ω−1

n

)−1
(
β0 − β̂obs

)
= b0 +Qobs

0 +
(
β0 − β̂obs

)′
K
(
β0 − β̂obs

)
.

Now consider again the special case: Ω0 = 1
n
Ωn

D
(
yobs, θ

)
=

[
λ

1
2

(c0

n
Ωn + Ωn

)−1 c0

n
Ωn

(
β̂obs − β0

)
+ U

]′
Ωn

×
[
λ

1
2

(c0

n
Ωn + Ωn

)−1 c0

n
Ωn

(
β̂obs − β0

)
+ U

]
=

[
λ

1
2

c0

c0 + n

(
β̂obs − β0

)
+ U

]′
Ωn

[
λ

1
2

c0

c0 + n

(
β̂obs − β0

)
+ U

]
=

[
λ

1
2

c0

c0 + n

(
β̂obs − β0

)
+

(
n

c0 + n

) 1
2

Ω
− 1

2
n Z

]′
Ωn

×

[
λ

1
2

c0

c0 + n

(
β̂obs − β0

)
+

(
n

c0 + n

) 1
2

Ω
− 1

2
n Z

]

=

(
n

c0 + n

)[
λ

1
2 c0Ω

1
2
n

(c0 + n)
1
2 n

1
2

(
β̂obs − β0

)
+ Z

]′

×

[
λ

1
2 c0Ω

1
2
n

(c0 + n)
1
2 n

1
2

(
β̂obs − β0

)
+ Z

]

=

(
n

c0 + n

)
(τ + Z)′ (τ + Z)
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where Z ∼ N (0, Ip), and again we have τ = λ
1
2 c0Ω

1
2
n

(c0+n)
1
2 n

1
2

(
β̂obs − β0

)
.

∴ D
(
yobs, θ

)
=

(
n

c0 + n

)
χ2
p (τ ′τ)

=

(
n

c0 + n

)
χ2
p

[
c2

0λ

n (n+ c0)

(
β̂obs − β0

)′
Ωn

(
β̂obs − β0

)]
=

(
n

c0 + n

)
χ2
p

(
c2

0λ

n+ c0

Kobs
n

)
,

where Kobs
n = 1

n

(
β̂obs − β0

)′
Ωn

(
β̂obs − β0

)
once more.

∴ ppp
(
yobs
)

= Pr

[
χ2
p ≥

n

c0 + n
χ2
p

(
λ

c0

c0 + n
Kobs
n

)]
(5.3)

ppp
(
yobs
)

=

∫ ∞
0

Fp,p

(
c0 + n

n
, λ

c2
0

c0 + n
Kobs
n

)
gn (λ) dλ, (5.4)

where gn (λ) is a Gamma density with parameters an = a0 + n and

bn = b0 +
(
yobs −Xβ̂obs

)′ (
yobs −Xβ̂obs

)
+

c0

c0 + n
nKobs

n .

To derive ppp (Y ), Kobs
n in Equation (5.4) must be considered random. Therefore de-

fine Kn = 1
n

(
β̂ (Y )− β0

)′
Ωn

(
β̂ (Y )− β0

)
. The marginal distribution of Y , or more

specifically, the marginal distribution of β̂ (Y ) must be used to determine the marginal

distribution of Kn. Now β̂ (Y ) |β, σ2 ∼ N (β, σ2Ω−1
n ). Since β|σ2 ∼ N

(
β0, σ

2
(
n
c0

)
Ω−1
n

)
,

it follows that β̂ (Y ) |σ2 ∼ N
(
β0, σ

2Ω−1
n

(
1 + n

c0

))
, and Z̃ =

(
1
n

) 1
2 Ω
− 1

2
n

(
β̂ (Y )− β0

)
∼

N
(

0, σ2
(

1
n

+ 1
c0

))
. Therefore,

Z̃ ′Z̃ = Kn ∼ σ2

(
1

n
+

1

c0

)
χ2
p = σ2

(
1

n
+

1

c0

)
Z (5.5)
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Substitute Equation (5.5) in (5.3), and using the fact that λ = 1
σ2 it follows that,

Sppp (Y ) = Pr

{
χ2
p ≥ χ2

p

[
1

σ2

c2
0

c0 + n
σ2

(
1

n
+

1

c0

)
Z

]}
= Pr

[
χ2
p ≥

n

c0 + n
χ2
p

(c0

n
Z
)]

= Pr

[
Fp,p

(c0

n
Z
)
≤ c0 + n

n

]
= Pr

[
Fp,p

(c0

n
Z
)
≤ 1 +

c0

n

]
Therefore, to make probability statements about the ppp measure in this special case, we

can use the following function:

G (u) = Pr [ppp (Y ) ≤ u]

= Pr
[
Fp,p

(
1 +

c0

n
,
c0

n
Z
)
≤ u

]
.

∴ cppp
(
yobs
)

= Pr
[
ppp (Y ) ≤ ppp

(
yobs
)]

= Pr

[
Fp,p

(
1 +

c0

n
,
c0

n
Z
)

≤
∫ ∞

0

Fp,p

(
1 +

c0

n
, λ

c0

c0 + n
Kobs
n

)
gn (λ) dλ

]

5.2.2 Mathematical derivation — new discrepancy

Now consider a new discrepancy measure, expanding on the work done by Hjort et al.

(2006). Suppose that D (y, θ) = 1
σ2 (Y −Xβ)′ (Y −Xβ).

Consider σ2 known. We have that Y = Xβ + ε, where ε ∼ N (0, Ip). Furthermore,

since β̂ = (X ′X)−1 (X ′Y ),

D (y, θ) =
1

σ2
(Y −Xβ)′ (Y −Xβ)

=
1

σ2

[(
Y −Xβ̂

)′ (
Y −Xβ̂

)
+
(
β − β̂

)′
X ′X

(
β −Xβ̂

)]
=

1

σ2

(
Y −Xβ̂

)′ (
Y −Xβ̂

)
+

1

σ2

(
β − β̂

)′
Ωn

(
β −Xβ̂

)
,
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because the cross product term is zero.

Suppose now that the prior for β is β ∼ N
(
β0, σ

2 (c0Ω0)−1). We consider only the special

case where Ω0 = 1
n
Ωn. Then β|σ2 ∼ N

(
β0, σ

2
(
c0
n

Ωn

)−1
)

. Now we determine the posterior

distribution of 1
σ2

(
β − β̂

)′
Ωn

(
β −Xβ̂

)
.

1

σ2

(
β − β̂

)′
Ωn

(
β −Xβ̂

)
∼ n

n+ c0

χ2
p

 c2
0

n (c0 + n)

(
β̂obs − β0

)′
Ωn

(
β̂obs − β0

)
σ2


∼ n

n+ c0

χ2
p

(
c0

c0 + n

Kobs
n

σ2

)
,

where Kobs
n = 1

n

(
β̂obs − β0

)′
Ωn

(
β̂obs − β0

)
. Define

(
Y −Xβ̂

)′ (
Y −Xβ̂

)
= RSS, the

residual sum of squares.

D
(
yobs, θ

)
=

1

σ2
RSS +

n

n+ c0

χ2
p

(
c0

c0 + n

Kobs
n

σ2

)
.

To obtain D (Y, θ) the marginal distribution of Y must be used: RSS ∼ σ2χ2
n−p, and,

D (Y, θ) = χ2
n−p +

n

n+ c0

χ2
p

c0σ
2
(

1
n

+ 1
c0

)
Z

(n+ c0)σ2


= χ2

n−p +
n

n+ c0

χ2
p

(c0

n
Z
)
, whereZ ∼ χ2

p. (5.6)

Equation (5.6) follows from the fact that RSS
σ2 ∼ chi2n−p and β̂ (Y ) |σ2, β,X ∼ N (β, σ2Ω−1

n ).

But, β ∼ N
(
β0, σ

2 n
c0

Ω−1
n

)
,

∴ β̂ (Y ) |σ2, X, β0 ∼ N

(
β0, σ

2Ω−1
n + σ2 n

c0

Ω−1
n

)
∼ N

(
β0, σ2Ω−1

n

(
1 +

n

c0

))
.
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From this it follows that,

β̂ (Y )− β0 ∼ N

(
0, σ2Ω−1

n

(
1 +

n

c0

))
∴

Ω
1
2
n

σ

(
1 +

n

c0

)− 1
2 (
β̂ (Y )− β0

)
∼ N (0, Ip)

∴
1

σ2

(
1 +

n

c0

)−1 (
β̂ (Y )− β0

)′
Ωn

(
β̂ (Y )− β0

)
∼ χ2

p

∴
1

σ2

(
c0

n+ c0

)(
β̂ (Y )− β0

)′
Ωn

(
β̂ (Y )− β0

)
∼ χ2

p

∴
n

σ2

(
c0

n+ c0

)
Kn ∼ χ2

p

∴
c2

0

n+ c0

Kn ∼
c0

n
χ2
p =

c0

n
Z

Now we can move on to the cppp formulation.

cppp
(
yobs
)

= Pr
[
ppp (Y ) ≤ ppp

(
yobs
)]

= Pr

{
Pr

[
χ2
p ≥ χ2

n−p +
n

n+ c0

χ2
p

(c0

n
Z
)]

≤ Pr

[
χ2
p ≥

RSS

σ2
+

n

n+ c0

χ2
p

(
c2

0

c0 + n

Kobs
n

σ2

)]}
= Pr

[
χ2
n−p +

n

n+ c0

χ2
p

(c0

n
Z
)
≥ RSS

σ2
+

n

n+ c0

χ2
p

(
c0

c0 + n

Kobs
n

σ2

)]
= Pr

[
χ2
n−p ≥

RSS

σ2
+

n

n+ c0

χ2
p

(
c0

c0 + n

Kobs
n

σ2

)
+

n

n+ c0

χ2
p

(c0

n
Z
)]

Now χ2
p

(
c0

c0+n
Kobs

n

σ2

)
is a non-central chi-square distribution with p degrees of freedom and

non-centrality parameter
(

c0
c0+n

Kobs
n

σ2

)
. Furthermore, χ2

p

(
c0
n
Z
)

is a non-central chi-square

distribution with p degrees of freedom and non-centrality parameter c0
n
Z, where Z ∼ χ2

p.

So the non-centrality parameter is also a random variable.

Consider σ2 unknown. Once more, D (y, θ) = 1
σ2 (Y −Xβ)′ (Y −Xβ), with the same

prior for β as before, namely, β ∼ N
(
β0, σ

2 (c0Ω0)−1). We consider again only the special

case where Ω0 = 1
n
Ωn. The results will be similar to those found in Hjort et al. (2006,

Section 5.2).



5.2. CALIBRATED POSTERIOR PREDICTIVE P -VALUES 169

Let λ = 1
σ2 . Then,

D (Y rep, θ) ∼ χ2
n

and,

D
(
yobs, θ

)
= λRSS +

n

n+ c0

χ2
p

(
λ

c2
0

n+ c0

Kobs
n

)
.

∴ ppp
(
yobs
)

= Pr
[
D (Y rep, θ) ≥ D

(
yobs, θ

)]
= Pr

[
χ2
n ≥ λRSS +

n

n+ c0

χ2
p

(
λ

c2
o

n+ c0

Kobs
n

)]
= Pr

{
χ2
n ≥

∫ ∞
0

[
λRSS +

n

n+ c0

χ2
p

(
λ

c2
o

n+ c0

Kobs
n

)]
gn (λ) dλ

}
,

where gn (λ) is a Gamma density with parameters an = a0+n, and bn = b0+Qobs
0 + c0nKobs

n

c0+n
.

∴ ppp (Y ) = Pr [D (Y rep, θ) ≥ D (Y, θ)]

= Pr

[
χ2
n ≥ χ2

n−p +
n

n+ c0

χp

(c0

n
Z
)]

,

where Z ∼ chi2p.

∴ cppp
(
yobs
)

= Pr
[
ppp

(
Y ≤ ppp

(
yobs
))]

= Pr

{
Pr

[
χ2
n ≥ χ2

n−p +
n

n+ c0

χ2
p

(c0

n
Z
)]

≤ Pr

[
χ2
n ≥

∫ ∞
0

[
λRSS +

n

n+ c0

χ2
p

(
λ

c2
o

n+ c0

Kobs
n

)]
gn (λ) dλ

]}
= Pr

{
χ2
n−p +

n

n+ c0

χ2
p

(c0

n
Z
)

≥
∫ ∞

0

[
λRSS +

n

n+ c0

χ2
p

(
λ

c2
o

n+ c0

Kobs
n

)]
gn (λ) dλ

}

We now have a usable formulation for the cppp statistic for a new discrepancy measure.

However, the problem with this formulation of the cppp is that the prior distribution has

to be known. Needing to know the exact prior is not practical, so we turn to the method

of Cabras et al. (2011), using a minimal training sample in order to transform a vague



170 CHAPTER 5. SRMI EVALUATION

prior into a proper one. However, before moving to this MCMC approximation method,

we simplify into a non-regression context, with σ2 known, so that we can illustrate the

distribution of the cppp.

Non-regression context

Consider σ2 known. Suppose that yi|θ ∼ N (θ, σ2), i = 1, 2, . . . , n, and that θ|θ0, σ
2
0 ∼

N (θ0, σ
2
0). Also, consider the discrepancy measure D (Y, θ) = 1

σ2

∑n
i=1 (yi − θ)2. There-

fore, we know that D (Y rep, θ) ∼ χ2
n.

Now, D (Y, θ) = 1
σ2

∑n
i=1 (yi − θ)2, which can be written as:

D (Y, θ) =
1

σ2

n∑
i=1

[(
yi − ȳobs

)
−
(
θ − ȳobs

)]2
=

1

σ2

n∑
i=1

(
yi − ȳobs

)2
+
n
(
ȳobs − θ

)
σ2

,

since the cross product is zero.

∴ D (Y, θ) =
RSS

σ2
+
n
(
ȳobs − θ

)2

σ2

The last term is the discrepancy measure considered by Hjort et al. (2006).

We need to consider the posterior distribution of θ in order to obtain D
(
yobs, θ

)
. It can

be shown that the posterior distribution of θ is as follows:

θ|σ2, θ0, σ
2
0, y

obs ∼ N

[
(1− Pn) θ0 + Pnȳ

obs,
Pnσ

2

n

]
,

where

Pn =
nσ2

0

σ2 + nσ2
0

.

Thus, if z1 ∼ N (0, 1), then we have that:

θ|σ2, θ0, σ
2
0, y

obs ∼ (1− Pn) θ0 + Pnȳ
obs + z1

P
1
2
n σ√
n
.
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∴ D
(
yobs, θ

)
=
RSS

σ2
+

n

{
ȳobs −

[
(1− Pn) θ0 + Pnȳ

obs + z1
P

1
2
n σ√
n

]}2

σ2

=
RSS

σ2
+

[
P

1
2
n z1 − (1− Pn)

√
n
(
ȳobs − θ0

)
σ

]2

∴ ppp
(
yobs
)

= Pr
[
D (Y rep, θ) ≥ D

(
yobs, θ

)]
= Pr

χ2
n ≥

RSS

σ2
+

[
P

1
2
n z1 − (1− Pn)

√
n
(
ȳobs − θ0

)
σ

]2


= Pr

χ2
n ≥

RSS

σ2
+ Pn

[
z1 −

√
n (1− Pn)

σP
1
2
n

(
ȳobs − θ0

)]2


We now need the marginal distribution of ȳ for the null distribution of ppp (Y ). We know

that ȳ|σ2, θ0, σ
2
0 ∼ N

(
θ0,

σ2

n
+ σ2

0

)
, which means that if z2 ∼ N (0, 1) independent of z1,

then ȳ|σ2, θ0, σ
2
0 ∼ θ0+

(
σ2

n
+ σ2

0

) 1
2
z2. We also know that RSS

σ2 = 1
σ2

∑n
i=1 (yi − ȳ)2 ∼ χ2

n−1.

So, we have that:

D (Y, θ) = χ2
n−1 + Pn

[
z1 −

√
n (1− Pn)

Pn

σ0

σ
z2

]2

∴ ppp (Y ) = Pr [D (Y rep, θ) ≥ D (Y, θ)]

= Pr

{
χ2
n ≥ χ2

n−1 + Pn

[
z1 −

√
n (1− Pn)

Pn

σ0

σ
z2

]2
}
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∴ cppp
(
yobs
)

= Pr
[
ppp (Y ) ≤ ppp

(
yobs
)]

= Pr

Pr

[
χ2
n ≥ χ2

n−1 + Pn

[
z1 −

√
n (1− Pn)

Pn

σ0

σ
z2

]2
]

≤ Pr

χ2
n ≥

RSS

σ2
+ Pn

[
z1 −

√
n (1− Pn)

σP
1
2
n

(
ȳobs − θ0

)]2


= Pr

χ2
n−1 + Pn

[
z1 −

√
n (1− Pn)

Pn

σ0

σ
z2

]2

≥ RSS

σ2
+ Pn

[
z1 −

√
n (1− Pn)

σP
1
2
n

(
ȳobs − θ0

)]2


= Pr

χ2
n−1 ≥

RSS

σ2
+ Pn

[
z1 −

√
n (1− Pn)

σP
1
2
n

(
ȳobs − θ0

)]2

− Pn
[
z1 −

√
n (1− Pn)

Pn

σ0

σ
z2

]2

 (5.7)

With this formulation of the cppp using our new discrepancy measure in a non-regression

context, with σ2 known, we can illustrate the distribution of the cppp.

Example. Suppose that θ ∼ N (θ0, σ
2
0), where θ0 = 5 and σ2

0 = 9. Also assume that

yi|θ, σ2 ∼ N (θ, σ2), so that ȳ|θ, σ2 ∼ N
(
θ, σ

2

n

)
, and that n = 16 and σ2 = 4 (recall we

assume that σ2 is known). We want to calculate the cppp
(
yobs
)

from Equation (5.7). The

easiest way is through simulation, adhering to the following steps:

1. Draw a value of θ from θ ∼ N (5, 9). Then draw a value of ȳ|θ∗, σ2. Now draw a

value of RSS
σ2 ∼ χ2

n−1. Calculate Pn =
nσ2

0

σ2+nσ2
0
. These are all draws for a single data

set, and for a single cppp
(
yobs
)

value. These values stay constant over Step 2.

2. Draw, say, 10 000 values of z1 and independently, 10 000 values of z2, from N (0, 1)

distributions. Draw 10 000 draws from a χ2
n−1 distribution. Calculate the right-

hand side of the inequality for cppp
(
yobs
)

from Equation (5.7) for each of the 10 000

sets of (z1, z2) draws, and determine what proportion of these right-hand sides are

greater than their corresponding χ2
n−1 draw. This gives a single cppp

(
yobs
)

value

for the given simulated data.
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3. Repeat Steps 1 and 2, say, 10 000 times, to obtain the distribution of the cppp
(
yobs
)

under the null model.

4. Repeat the entire process for alternative data (calculating the RSS and ȳ under

each simulation for each alternative) to determine distribution of the cppp
(
yobs
)

under alternative data scenarios (i.e. to investigate power).

Following these steps, we obtain a uniform distribution for the cppp
(
yobs
)

under the null

model. If we assume yi|θ, σ2 = θ + Z + σt5, where Z ∼ N (0, 1) IZ>0, then we have the

following distribution of the cppp. These results are shown below in Figure 5.1.

Figure 5.1: Distribution of the cppp statistic under the null model, and a skew t alternative
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With this simple result, it is clear that further research into the mathematics behind

the cppp measure is warranted. Note that additional work not reported in this thesis
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was completed in this regard, with no success in finding a cppp formulation that was not

reliant on the prior and uniform under the null distribution. As far as we can determine,

the problem of not knowing the prior distribution is not alleviated using the suggestion

by Hjort et al. (2006), O’Hagan’s (1995) fractional Bayes prior, or Zellner’s g-prior (as

used in Liang, Paulo, Molina, Clyde & Berger 2008).

5.2.3 Monte Carlo approximation of the cppp

Since the cppp measure requires knowledge of the prior distribution on β, Cabras et al.

(2011) use training samples to turn vague priors into proper priors for use in the cppp

formulation. To approximate the cppp, we follow the steps outlined by Cabras et al. (2011,

434):

1. Draw a minimum training sample {yt, Xt}, where yt is a random sample of size

nt = p + 1 drawn from the observed data yobs, and Xt are the corresponding rows

of X.

2. Calculate ppp
(
yobs
)

using the following Monte Carlo sum:

ppp
(
yobs
)

=
1

J

J∑
j=1

I
{
D
(
Y rep
j , βj

)
≥ D

(
yobs, Ym,j, βj

)}
(5.8)

where βj is drawn from the posterior distribution of β given the observed data,

while the imputed values Ym,j, and the replicated data Y rep, are both drawn from

the posterior predictive distribution.

In essence, this step calculates how often the discrepancy measure D of the com-

pleted variable is greater than that of simulated responses.

3. Approximate cppp according to:

cppp
(
yobs
)

=
1

K

K∑
k=1

I
{
ppp (Yobs,k) ≤ ppp

(
yobs
)}

(5.9)

where Yobs,k are drawn from the posterior predictive distribution given the observed

covariates Xobs, and βk is simulated from the trained prior for β. For each Yobs,k,
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calculate ppp (Yobs,k) using the second step above. First draw response observations

from the prior predictive distribution for the cases with observed responses and

replace these observed responses with the prior-drawn responses. Then generate

(many times over) response observations for all cases (and response imputations for

missing cases) from the posterior predictive distribution with observed responses

equal to these prior-drawn responses. We count the proportion that the D from

the replicated data is larger than that of the completed data. This gives us one

ppp (Yobs,k). We compare this value to the proportion of times that the R2 from the

replicated data is smaller than that of the completed data when the completed data

has its original responses (and not prior-drawn responses). Doing this comparison

K times, each time D calculated from new prior-drawn ‘observed’ responses D

compared to D calculated from actual observed responses, allows the approximation

of the cppp (step 3).

The process can be filtered down to a programmable algorithm. The first three steps in-

volve creating the ppp (y) statistic which will be compared against the numerous ppp (Yobs,k)

statistics.

1. From the posterior predictive distribution, generate a complete set of responses Y rep

and calculate D for these responses regressed on the explanatory variables.

2. From the posterior predictive distribution, generate a set of imputations to complete

the response variable. Calculate D for this completed variable regressed on the

explanatory variables.

3. Repeat steps 1 and 2, counting the proportion of times that the D from step 2 is

less than D from step 1. This gives ppp (y).

The following steps generate K separate prior-draws which allow multiple ppp comparisons

with the ppp generated in step 3.

4. Draw a minimum training sample from the observed data

5. Create a proper prior distribution from the minimum training sample for the pa-

rameters, and then a proper prior predictive distribution, and draw from this dis-

tribution to replace all the observed responses.
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Now repeat the initial three steps with the prior-replaced observed responses.

6. From the posterior predictive distribution, generate a complete set of responses Y rep

and calculate the D for these responses regressed on the explanatory variables.

7. From the posterior predictive distribution, generate a set of imputations to complete

the response variable. Calculate the D for this completed variable regressed on the

explanatory variables.

8. Repeat this process, counting the proportion of times that D from step 7 is less

than D from step 6. This gives ppp (Yo,1).

The last few step involves the iterating procedure that calibrates the ppp.

9. Repeat steps 4–8 K times, counting the proportion in which the ppp in step 8 is

greater than the ppp in step 3. This proportion is the cppp.

One of the problems associated with this approximation is that the discrepancy measure

must be something observable, such as the R2 statistic, a function of the residuals, etc. We

cannot easily use the new discrepancy measure suggested Subsection 5.2.2, i.e. D (y, θ) =

1
σ2 (Y −Xβ)′ (Y −Xβ). However, as was done in the previous section, we illustrate the

distribution of the cppp under a null model and an alternative using the approximation

given by Cabras et al. (2011). In this way, we can gauge whether there is merit in following

up this line of research in the future.

Example. Suppose that Y = 1+X+ ε, where X ∼ N (0, 1), and ε ∼ N (0, 1) under the

null model, and ε = 0.5Z + W with Z ∼ N (0, 1) IZ>0 and W ∼ t3 under the alternative

model. If we set the discrepancy measure to be the MSE of the deviation from Normality

of the regression residuals, i.e. mean (Normal quantiles − Empirical quantiles)2, then

we obtain the distribution of ppp and cppp as shown in Figure 5.2. It should be noted

that this method of obtaining the cppp statistic is simulation-intensive, and requires hours

of simulation for 500 cppp values as opposed to the minutes required for the 10 000 cppp

values obtained in the previous example.

Immediately one will note that, although the cppp statistic is well calibrated and has

high power, the ppp measure is also Uniform, implying that no calibration seems to have
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Figure 5.2: Distribution of the MCMC cppp statistic under the null model, and a skew t
alternative
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been necessary. This is also true for the discrepancy measure that subtracts the smallest

residual from the largest residual.2

Furthermore, it is clear that only discrepancy measures that are actually observable are

candidates for this methodology. This is somewhat limiting, given the fact that the dis-

crepancy measure used in the mathematical example isD (y, θ) = 1
σ2 (Y −Xβ)′ (Y −Xβ),

and not just a function of the residuals, or some such observed quantity.

Clearly, more research needs to be done concerning this method of cppp approximation.

The ppp statistic should be investigated in order to determine why it is Uniform in this

instance.

2For brevity, this very similar result is not illustrated here.
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5.3 Using the cppp in Multiple Imputation

The goal of this chapter was to find a way to determine objectively whether the Normal

model within SRMI should be substituted for the more robust skew t alternative. In

theory, this could be done by calculating the cppp statistic on both the incomplete con-

tinuous variable, assuming Normality, and after completing the variable using the Normal

model. This two-stage cppp calculation would test the fit of the proposed model before

and after imputation. If the statistic were above a particular threshold in either step,

then the variable would have to be imputed or re-imputed using the more robust skew t

alternative that is the focus of this thesis.

Of course, one could also try to develop the cppp statistic for the robust alternative. How-

ever, preliminary research into this area, using Cabras et al.’s (2011) cppp approximation

algorithm, has not yielded any positive results yet. So far, we have not been able to

obtain a Uniform cppp statistic for the skew t model. This means that there is potential

for future research in this area; we are not suggesting that it cannot be accomplished —

we are merely suggesting that additional methods of calibration of the ppp statistic need

to be investigated.

5.4 Conclusion

This chapter has seen some mixed results. The cppp research field is rich with opportunity.

Hjort et al. (2006) have provided the mathematical basis for further work in obtaining the

distributional properties of the cppp, provided that we can somehow create proper priors.

Cabras et al. (2011) also provide grounding for more work on MCMC approximation of the

cppp, but the example shown in this section shows that the ppp measure is just as Uniform

as the cppp. A more thorough investigation of the cppp approximation methodology is

thus warranted as well.

One can note that the discovery of a method for finding a mathematical function or

statistical distribution of the cppp statistic without a known proper prior would be a

boon for this thesis. In essence it would allow imputers to use the Normal SRMI model



5.4. CONCLUSION 179

on continuous data until the statistic moved out of its limits, implying a more robust

model is necessary. In these cases, the faster Normal regression models could be replaced

by the much slower, more flexible skew t model introduced in Chapter 4.

However, not having the statistic’s distribution for the time being is not a disaster. As

was shown in Chapter 4, the skew t SRMI model performs very well when the data is

Normally distributed. This means that the robust model can be used as a default model

until the cppp calculation is practicable.
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Chapter 6

Skew Robit Model

6.1 Introduction

A categorical response model is a regression model in which the dependent variable can

take on one of a set of values. The probit model, one type of binary response model,

assumes that there is an underlying, latent variable (not observed), which indicates in

which category each observation belongs. This underlying variable can be a function

of the observed covariates, with a Normally distributed error. There are other models

that can map (−∞,∞) data to the (0, 1) space, for example the logit link function, and

the complementary log-log. This chapter builds on the Bayesian estimation processes of

probit, set out by Albert & Chib (1993), the logit, set out by Groenewald & Mokgatlhe

(2005), and the robit, set out by Liu (2005), and introduces a more robust model for the

underlying latent variable, namely the model based on the skew adaptation of Student’s

t-distribution, this thesis’ distribution of interest. Since the categorical response model

is based on a (robust) skew t-distribution, it will henceforth be referred to as the strobit

model. This study is concerned with estimation of the strobit model for both binary

responses and ordinal categorical responses, the latter being an extension of the former.

The Bayesian estimation procedure does not actually model a categorical response variable

as a function of the predictors. Rather, it models the latent variable as a function of the

predictors. This implies that the estimated regression parameters have no meaning, except

for classification and prediction purposes. For this study, however, this is of no concern,
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because the model can be used for the prediction of a category for a new observation

(or of an observation with missing response category). Thus, the estimation method of

this regression model is suitable for SRMI, for example. The goal of this chapter’s study

is to determine whether or not a more robust model for the underlying latent variable

leads to better classification of new observations (observations with missing binary or

ordinal responses) when the underlying latent variable is misspecified. Although this

chapter does not directly deal with incomplete data, it is with little extra effort that

the model introduced can be incorporated into an SRMI algorithm, even for multivariate

missingness. Moreover, if the model works well in a univariate classification setting, then

it will work well for an imputation setting, the latter simply being a classification of a case

with unobserved response variable into a particular category for that response variable.

This chapter first reviews estimation procedures of the Bayesian probit model for binary

and ordinal responses, as constructed by Albert & Chib (1993). We will then introduce

methodology to estimate the parameters of a skew t-distribution, and incorporate this

process into the estimation of the latent variable in the binary and ordinal response

strobit models. Some practicalities will be discussed, after which the strobit model will

be tested on simulated data. Conclusions will be drawn based on the comparison between

the probit and strobit models after these models are applied to categorical data that is

built on both latent Normal and non-Normal assumptions.

6.2 Bayesian Estimation of the Probit Model

In this section, we review probit and ordered probit estimation as laid out by Albert &

Chib (1993). It is important to understand the MCMC simulation procedure for this

method, since it will be adapted for estimation of the strobit and ordered strobit mod-

els. Additionally, the probit and ordered probit models are compared to the strobit and

ordered strobit models, respectively, in the simulation study.
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6.2.1 Two-category probit model

Consider a binary outcome vector Y , and covariate matrix X with rows x1, . . . , xn. In-

troduce n latent variables (one for each observation), W1, . . . ,Wn, where the Wi are

independent N(x′iβ, 1), and define Yi = 2 if Wi > 0 and Yi = 1 otherwise. It can be shown

that the Yi are independent Bernoulli r.v. with pi = P (Yi = 2) = Φ (x′iβ). So the joint

posterior of the unobservables is:

π (β,W |y) ∝ π (β)
n∏
i=1

(IWi>0Iyi=2 + IWi≤0Iyi=1)φ (Wi;x
′
iβ, 1) ,

where the vector y represents the observed categorical data, π (β) is the prior on β, I is an

indicator function that takes the value 1 on the subscripted condition, and 0 otherwise,

and φ (Wi;x
′
iβ, 1) is the Normal density function for the variable Wi with mean x′iβ, and

variance 1.

The conditional posterior distributions (using diffuse priors) are as follows:

β|y,W ∼ N
(

(X ′X)
−1

(X ′W ) , (X ′X)
−1
)

(6.1)

Wi|y, β ∼ N (x′iβ, 1) truncated at the left by 0 if yi = 2

Wi|y, β ∼ N (x′iβ, 1) truncated at the right by 0 if yi = 1 (6.2)

Thus, for a Gibbs sampler to estimate draws from the joint posterior we use the following

sequential procedure:

1. Initialise β(0) using the least squares estimate (X ′X)−1 (X ′y).

2. Generate a vector W from Equation (6.2), given the preceding draw of β.

3. Generate a new vector β from Equation (6.1), given the preceding draw of W .

4. Repeat steps 2 and 3 until convergence of W and β.
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6.2.2 Ordinal probit model

Albert and Chib (1993) also described an approach for Bayesian estimation of an ordered

probit, similar to the two-category estimation procedure. The first category split (between

categories 1 and 2), γ1, is pinned down on the latent variable at 0, as before. The second

split, γ2 (to differentiate between categories 2 and 3), becomes an additional parameter

to be estimated in the Gibbs sampler. Similarly, if there are more than three categories,

each additional boundary, γj, on the underlying latent variable is another parameter to

estimate within the Gibbs sampler.

In the case of the ordered probit, given that γ is a vector of the J category boundaries

on the latent variable, the joint posterior of the unobservables is (with diffuse priors):

π (β, γ,W |y) ∝
n∏
i=1

{[
J∑
j=1

IYi=jIγj−1<Wi<γj

]
φ (Wi;x

′
iβ, 1)

}

The conditional distributions for the γj|W,Y are then Uniformly (UNF ) distributed as

follows:

UNF {max [max (Wi : Yi = j) , γj−1] ,min [min (Wi : Yi = j + 1) , γj+1]} (6.3)

The γj|W,Y parameters are drawn before the Wi and the parameter estimates in the

Gibbs sampler: So for a Gibbs sampler to estimate draws from the joint posterior we

simply perform the following steps:

1. Initialise β using the least squares estimate (X ′X)−1 (X ′y).

2. Generate category splits from Equation (6.3), with γ1 fixed at a latent value of 0,

given the previously generated W .

3. Generate a new vector W from Equation (6.2), given the preceding draw of W and

the draws of the γj.

4. Generate a new vector β from Equation (6.1), given the preceding draw of W .

5. Repeat steps 2–4 until convergence of W and the parameters.
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6.3 The Skew Student t-Distribution

We again follow the structure and estimation of the skew t-distribution presented in

Chapter 4. For the sake of completeness, the base distribution and the required conditional

distributions used in the Gibbs sampler for the strobit estimation are reiterated here.

Consider a linear regression model in which an observation vector y = (y1, . . . , yn)′ satisfies

y = Xβ + Zδ + ε

where β = (β0, β1, . . . , βp) are the regression coefficients, δ is a skewness parameter, Z is

a vector with elements zi > 0, i = 1, 2, . . . , n as skewness coefficients, ε = (ε1, . . . , εn)′

is the error vector and ε1, . . . , εn are i.i.d. according to the Student-t distribution with

location zero, scale parameter σ and ν degrees of freedom. Here X = [x1, . . . , xn]′ is the

n×p matrix of explanatory variables and is taken to be full rank p. We denote the model

parameters by θ = (β, δ, σ, ν) ∈ Rp+1 × (0,∞)2. The likelihood function is given by:

L (β, σ, ν|y,X) =
Γ
(
ν+1

2

)n
νnν/2

Γ
(
ν
2

)n
πn/2σn

n∏
i=1

[
ν +

(
yi − x′iβ − δzi

σ

)2
]−(ν+1)/2

. (6.4)

The likelihood for the t-distribution given in Equation (6.4) can be restructured as follows:

L ∝
n∏
i=1

(
λiτ

2π

) 1
2

exp
[
−τ

2
(yi − x′iβ − δzi)

2
]
×

n∏
i=1

[
(ν/2)ν/2

Γ (ν/2)
λ
ν/2−1
i exp

(
−νλi

2

)]
(6.5)

where τ = σ−2 and the λi are weights indicating the influence of each observation on ν.

Integrating out the λi in Equation (6.5) yields Equation (6.4).

6.3.1 Fitting the skew t-distribution

As was discussed in Section 4.2.1, when the t-distribution is used for errors on the posterior

predictive distribution, generating the imputations is simply a matter of applying the

posterior-drawn regression parameters to the covariates and adding an appropriate t error.

As before, the challenge is to find the degrees of freedom for this error. This involves a
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Gibbs sampling process for the parameters β, τ , zi, i = 1, . . . , n, δ, λi, i = 1, . . . , n,

and ν, while ν itself is drawn via a Metropolis-Hastings algorithm in each step of the

Gibbs sampler. The Gibbs sampler requires the formulation of the conditional posterior

distributions for each of the parameters of the model.

For each observation i, i = 1, . . . , n, and covariate q, q = 0, 1 . . . , p, ỹiq = yi−β−qX−q−δzi,

with −q representing all variables in X besides variable q. In other words, for q = 0:

ỹi0 = yi − β1xi1 − β2xi2 − . . .− βpxip − δzi

For q = 1:

ỹi1 = yi − β0 − β2xi2 − β3xi3 − . . .− βpxip − δzi

For q = 2, . . . , p:

ỹiq = yi − β0 − β1xi1 − . . .− βq−1xi(q−1) − βq+1xi(q+1) − . . .− βpxip − δzi

Finally, for q = p:

ỹip = yi − β0 − β1xi1 − β2xi2 − . . .− βp−1xi(p−1) − δzi

We also define ˜̃yi = yi − βxi − δzi separate to ŷi = yi − βxi, where xi is the ith row of the

data matrix, corresponding to the covariates for observation i.

With skewness a part of the ỹiq, the same conditional distributions exist for the βq:

βq|y, β−q, τ,Λ ∼

N


(
τ

n∑
i=1

λix
2
iq +

1

σ2
βq

)−1(
τ

n∑
i=1

λixiqỹiq +
µβq
σ2
βq

)
,

(
τ

n∑
i=1

λix
2
iq +

1

σ2
βq

)−1
 , (6.6)

where xiq is element (i, q) of the data matrix X (and when q = 0, xi0 = 1 for all i), and

µβq and σ2
βq

are the conjugate Normal prior mean and variance for βq respectively. Once

again, µβq = 0 and σ2
βq

= 10000.
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For τ , we have that:

τ |y, β,Λ ∼ Γ

n2 + aτ ,

(
1

2

n∑
i=1

λi ˜̃y
2
i + 2bτ

)−1
 , (6.7)

where aτ and bτ are the conjugate Gamma prior parameters for τ , and the matrix Λ is

the diagonal matrix with diagonal elements λ1, λ2, . . . , λn. However, for the case of the

strobit and ordered strobit models, without loss of generality, τ is fixed at 1, just as σ is

fixed at 1 in the formulation of the probit estimation of Albert & Chib (1993).

The conditional posterior for the zi, i = 1, . . . , n is derived to be:

zi|y, β, τ, δ,Λ ∼ N
{(
τλiδ

2 + 1
)−1

τλiδŷi,
(
τλiδ

2 + 1
)−1
}
IZi>0, (6.8)

where IZi>0 is an indicator function to ensure that only positive zi exist (in order to make

sense of the sign of the skewness parameter δ).

The conditional posterior distribution of the skewness parameter, δ, is given can be shown

to be:

δ|y, β, τ,Λ, z1, . . . , zn ∼

N


(
τ

n∑
i=1

λiz
2
i +

1

σ2
δ

)−1(
τ

n∑
i=1

λiziŷi +
µδ
σ2
δ

)
,

(
τ

n∑
i=1

λiz
2
i +

1

σ2
δ

)−1
 , (6.9)

where µδ and σ2
δ are the conjugate Normal prior parameters for δ.

For the λi, it can be shown that

λi|y, β, τ, ν, δ, z1, . . . , zn ∼ Γ

{
1

2
(ν + 1) ,

[
1

2

(
τ ˜̃y2

i + ν
)]−1

}
, (6.10)

with the skewness built into the distribution by replacing ŷi with ˜̃yi.

The posterior for ν, conditional on Λ, and its priors, are given in the following equations.

p (ν|y,Λ) ∝ ν
1
2
νn

2
1
2
νn
[
Γ
(
ν
2

)]n |Λ| 12ν−1 exp

[
−1

2
ν

n∑
i=1

λi

]
p (ν) , (6.11)
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with the prior on ν taking one of four forms, namely the truncated exponential, the

Independence Jeffrey’s prior, the probability-matching prior or reference priors for the

orders (ν, µ, σ2), (ν, σ2, µ), and (µ, ν, σ2), and the reference priors for the orders (µ, σ2, ν),

(σ2, µ, ν), and (σ2, ν, µ). In this study the Independence Jeffrey’s prior is used. We

find that this prior is less restrictive on the degrees on freedom than the well-established

exponential prior, within the context of the strobit estimation.1 It is shown by Fonseca

et al. (2008) that the independence Jeffreys prior is

pIJEFF (ν, β, σ) ∝ σ−1

(
ν

ν + 3

) 1
2
[
ψ′
(ν

2

)
− ψ′

(
ν + 1

2

)
− 2 (ν + 3)

ν (ν + 1)2

] 1
2

assuming that the marginal priors for β and (σ, ν) are independent a priori. Once again,

ψ′ (·) is the trigamma function.

Working with the natural log posterior and log priors is easier:

log (p (ν|y, λ)) ∝ 1

2
νn log (ν)− 1

2
νn log (2)− n log

(
Γ
(ν

2

))
−
(

1

2
ν − 1

) n∑
i=1

log (λi)−
(

1

2
ν − 1

) n∑
i=1

λi − log [pIJEFF (ν, β, σ)] .

(6.12)

The algorithm for the Gibbs sampler (and Metropolis sampler for ν) when we wish to

incorporate skewness into the imputation model utilises the conditional distributions listed

above.

6.3.2 Strobit and ordered strobit model estimation

Now that we have the conditional distributions of the parameters of the skew t-distribution,

we can use these draws in the place of the draws of probit parameters, namely the β.

Once more, after initialising the parameters, if the strobit is estimating a two-category

response variable, the category split on the latent variable is set at 0. Otherwise, similarly

1Of the priors derived in this thesis, the independence Jeffreys prior seemed to allow for ν draws closer
to the true degrees of freedom. In the overall simulation study, however, the choice of prior made little
difference, if any, to the final results.
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to the ordered probit estimation, the first category split, γ1, is set at 0, while the remaining

category splits, the γj, become parameters to be estimated in the same way as for the

ordered probit, namely their conditional distribution follows Equation (6.3).

Given all the other unknowns, we can draw bounded latent variables as follows:

Wi|y, β, τ = 1, δ, Z, ν ∼ tν +Xβ + Zδ

truncated at the left by 0 if yi = 2

Wi|y, β, τ = 1, δ, Z, ν ∼ tν +Xβ + Zδ

truncated at the right by 0 if yi = 1 (6.13)

Thus, for a Gibbs sampler to estimate draws from the joint posterior we us the following

algorithm:

1. Initialise β using the Gibbs sampler with y as the dependent variable, follow up

with initialisation of all the other parameters.

2. Set the category split at a latent value of 0 in the case of 2-category response

variable, or, in the case of the ordered response variable, draw the γj variables from

Equation (6.3), given the preceding draw of W .

3. Generate a vector W from Equation (6.13).

4. Step through the Gibbs sampler for conditional draws from Equations (6.6)-(6.11),

each paramater based on preceding draws of the other parameters.

5. Repeat steps 2–4 until the draws for W and the parameters converge.

Some practicalities

If we follow the algorithm above, then the draws for the parameters (β in particular) vary

widely from round to round. Theoretically, the draws should be stable, but the variance

in the draws makes any prediction based on a single draw in Step 4 rather unreliable. In

other words, since the drawn parameter values vary widely from one draw to the next, a

prediction based on one particular draw might differ drastically from a prediction based
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on the very next draw in the sampling sequence. In order to stabilise the draws, Step 4

of the above procedure is repeated several times, say 200 times, until a conservative set

of draws for the parameters of the skew t-distribution is evident.

While this modification of the algorithm considerably increases its running time, the

modification is necessary if the fitting algorithm is to be used for prediction. In prediction,

only a single draw from the end of the Gibbs sampler is used, and if the variation from

one draw to the next is very high, one is likely to obtain drastically different coefficient

estimates from one run of the fitting procedure to the next.

Through thorough investigation, we are satisfied that this extra smoothing step does not

detract from the implementation of the strobit model except in the case where there are

time constraints for the fitting procedure.

6.4 Simulation Study Methodology

6.4.1 Simulated data

In order to assess the robustness of the probit and strobit models, and their ordered

counterparts, four difference latent data construction scenarios are examined: Normal,

skew t, Exponential and Uniform. We assume U = −1 + 4x + ξ, where U is the true

latent variable, x ∼ N(0.5, 1), and ξ is an error that depends on the data scenario under

question:

1. Normal data: ξi ∼ N(0, 1), i = 1, . . . , n;

2. Skew t data: ξi = −2zi+ 0.5w, i = 1, . . . , n, where zi ∼ N(0, 1)Izi>0, in other words,

the zi are positively truncated Normal random variables, and wi ∼ t5;

3. Exponential data: ξi ∼ Exp(1), i = 1, . . . , n or ξi = − ln (1− ui), where ui ∼

U(0, 1);

4. Uniform data: ξi, i = 1, . . . , n, is a random integer between 0 and 5.

Once the latent data is generated, the observations are allocated to categories based

on latent data using random category splits in the full simulation analysis, or splitting
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point(s) -2 (and 2) for the two-category (three-category) single simulation discussion.

Two sample sizes are considered in the full simulation study, namely n = 200 and n =

1000, but for the single simulation analysis, the review is restricted to n = 1000.

6.4.2 Assessment Methods

The primary method of assessing the probit and strobit models, as well as their ordered

counterparts, is using the mean absolute deviation (MAD) of the predicted category values

from their actual category values given a new sample for a particular data scenario. This

criteria is essentially a summary of the classification matrices across multiple simulations

within each data scenario. In brief, we proceed using the following steps:

1. Generate latent data dependent on an exogenous Normal random variable, x, an

intercept, and an error appropriate to the data scenario under examination.

2. Split the latent data at random points to generate a categorical variable (ensuring

that each category contains at least 2% of the sample).

3. Estimate parameter values for the (ordered) probit and strobit models on the given

simulated data, using the average of 300 draws from the Gibbs sampler, after a burn-

in of 300 draws. Within the strobit estimation, the smoothing process also burns in

50 draws of the skew t-distribution parameters within each of the 600 strobit Gibbs

sampler runs.

4. Generate a new sample according to the same latent data scenario of step 1.

5. Using the random splits generated in step 2, re-split the new sample into categories.2

These categories are the ‘correct’ categories for the new sample.

6. Using the estimated parameter values for the regression model estimated in step

3, predict a latent value for each observation in the new sample, drawing random

Normal errors for the probit and ordered probit predictions, and skew t errors for

the stobit and ostrobit models. 3

2It can be noted that in some instances, this procedure led to one category containing all the obser-
vations. These cases were not eliminated, since the model could still theoretically predict an observation
outside of the category bounds containing all these observations, leading to classification error.

3Symmetric t errors combined with a aero-truncated Normal error for skewness
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7. Using the latent predictions and the estimated category splits from the model esti-

mation, re-categorise the new sample. These categories are the predicted categories

of the new sample.

8. Calculate the MAD for a model by averaging the absolute difference between actual

and predicted categories of the new sample.

9. Repeat steps 1–8 for a total of 200 simulations.

6.5 Simulation Study Analysis

In this section, a single simulation across all data scenarios is scrutinised, and then the

process is repeated for a total of 200 runs for a thorough assessment of the methodology.

6.5.1 Single-run analysis

In order to understand the simulation analysis, the histograms of the data, as well as

histograms for the errors that are added to the exogenous covariates, are presented in

Figures 6.1 and 6.2, for a two- and three-category simulation, respectively. From these

figures, it is clear that the latent data is modelled as a regression on a Normal covariate

and an intercept, and is coupled with varying errors, including Normality (scenario 1),

negative skewness (scenario 2), positive skewness (scenario 3), and uniformity (scenario

4). The probit and strobit Gibbs sampler draws for the two-category model estimation

(after burn-in) are shown in Figures 6.3 and 6.4. These parameter draws are particularly

stable, except for the degrees of freedom, ν, for the strobit estimation. The probit and

strobit Gibbs sampler draws for the three-category model estimation (after burn-in) are

shown in Figures 6.5 and 6.6. One will notice in these figures that there is sometimes

drift in both the γ1 value and a β value. This drift is not much of a concern as long as the

draws drift together — one cannot pin more than one category boundary down without

severely limiting the estimation procedure. One might argue that for three categories, one

could fix the category boundaries and hope that the sampler is long enough to squeeze and

move the underlying latent model to correctly fit the data, but beyond three categories
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this would be unrealistically strict. In any case, the drift of the strobit parameter pairs is

not entirely a problem, since we are not using the estimation procedure for interpretation

of fit parameters, but merely for prediction (and classification). Parameter pair drift will

not affect this goal.
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Figure 6.1: Latent data under the four data scenarios for the 2-category analysis, with embedded errors; n = 1000.
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Figure 6.2: Latent data under the four data scenarios for the 3-category analysis, with embedded errors; n = 1000.
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Figure 6.3: Probit Gibbs sampler draws after burn-in for the 2-category data
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Figure 6.4: Strobit Gibbs sampler draws after burn-in for the 2-category data
strobit2 parameter draws after burn−in
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Figure 6.5: Probit Gibbs sampler draws after burn-in for the 3-category data
probit3 parameter draws after burn−in
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Figure 6.6: Strobit Gibbs sampler draws after burn-in for the 3-category data
strobit3 parameter draws after burn−in
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Once the probit and strobit models are fitted under each data scenario, the fitted latent

distributions are graphed in Figure 6.7 for two categories and Figure 6.8 for three cate-

gories. The different shades indicate the different sequentially observed categories. Note

that the fitted latent data is forced to be separated by category, leading to multi-modal

distributions. One would hope that the estimation algorithms would lead to smooth,

uni-modal fitted distributions, but this is not the case, even for the probit on Normal

data.

Once the models are estimated, a new sample is drawn according to the appropriate data

scenario, and the estimated models are used to predict a new distribution of the latent

data. Histograms of these distributions are given in Figure 6.9 for two categories, and

Figure 6.10 for three categories, and are shaded according to the categories that the new

sample’s observations would be assigned to had the underlying model been known. It is

clear from these figures that there is no way of splitting all the new observations using

their predicted latent data into their correct categories. This leads to classification error.

A visual representation of the classification matrix for the three-category simulation is

given in Figure 6.11.

For the two simulations represented in the graphs, we have the following classification

errors for the new samples: for two categories, the probit has MAD errors of 18%, 18.8%,

20.6% and 14.9% for the Normal, skew t, Exponential and Uniform data scenarios re-

spectively, while the srobit has MAD errors of 13%, 9.9%, 13.7% and 15.6% for the four

data scenarios, respectively; for three categories the probit has MAD errors of 32.1%,

37.7%, 27.2% and 41% for the Normal, skew t, Exponential and Uniform data scenarios

respectively, while the srobit has MAD errors of 21.6%, 24.5%, 19.6% and 28% for the

four data scenarios, respectively. These figures have little value without repeating the

simulation process multiple times, as is carried out in the next section.

6.5.2 Multiple-run analysis

The initial simulation analysis, summarised in Table 6.1, seems promising for the strobit

model. In all simulation scenarios, across two and three categories, sample sizes of both

200 and 1000, and across all four data scenarios, the strobit model’s MAD error is more
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often than not lower than that of the probit model’s MAD error.

Table 6.1: MAD error superiority proportions, by category, sample size, and data scenario

Categories Sample size Data scenario Probit better Models equal Strobit better

2

200

Normal 20.5% 33.5% 46.0%
skew t 12.5% 41.0% 46.5%

Exponential 16.5% 40.5% 43.0%
Uniform 15.5% 43.0% 41.5%

1000

Normal 28.0% 27.5% 44.5%
skew t 18.5% 31.0% 50.5%

Exponential 18.5% 38.0% 43.5%
Uniform 20.5% 39.0% 40.5%

3

200

Normal 20.5% 33.5% 46.0%
skew t 12.5% 41.0% 46.5%

Exponential 16.5% 40.5% 43.0%
Uniform 15.5% 43.0% 41.5%

1000

Normal 41.0% 4.5% 54.5%
skew t 39.5% 7.0% 53.5%

Exponential 42.5% 9.5% 48.0%
Uniform 29.5% 8.5% 62.0%

However, upon further analysis, the strobit model loses some of its favour. The first

problem becoming evident is the number of times within the multiple simulation procedure

that MAD errors from the probit and strobit models are the same. In Figures 6.12 – 6.15,

we plot the difference between probit and strobit MAD errors against a measure of tail-

category sparseness or observation-scarcity, namely the negative sum of the natural logs of

the proportions of observations in the tail categories.4 We find that in the two-category

case the probit and strobit models are misclassifying the same proportions when tail

scarcity is high, i.e. the strobit model is not doing better than the probit in classifying

observations into the correct categories when those categories are sparsely-populated tail

categories. This is quite a concern, since the strobit model, with an underlying heavy-

tailed skew distribution, might naturally be thought of as more capable in this context.

Another issue becomes apparent when one examines the difference in MAD errors be-

tween the probit and strobit models across multiple simulations: this difference is not

significantly greater than zero, i.e. while it is evident that the strobit model’s MAD error

is often smaller than that of the probit, the average strobit MAD error is not significantly

lower than that of the probit. This is illustrated in Figures 6.16 – 6.19. The empirical 95%

intervals for the probit minus strobit MAD error crosses over zero for all data scenarios

4Or simply negative sum of the natural logs of the proportions of observations in both categories in
the two-category case.



6.6. CONCLUSION 199

under both the two- and three-category cases.

Apart from a general review of the analyses performed, one can note a few interesting

results from this study. It is clear that the strobit model performs better classifications

that the probit when the latent data is Normally distributed. This is a strange result,

but can be partially explained by the fact that the Normal distribution is a special case

of the skew t. Also, for the two-category scenarios, the strobit does perform better than

the probit model when the scarcity measure is not extremely high, but moderately large

(Figures 6.12 and 6.14).

6.6 Conclusion

This chapter introduces a new robust Bayesian procedure for modelling ordinal categorical

response data as a function of exogenous covariates. The work is based on the Bayesian

estimation processes of probit, as explained by Albert & Chib (1993), the logit, as ex-

plained by Groenewald & Mokgatlhe (2005), and the robit, as explained by Liu (2005).

The modelling procedure expands on the existing literature by assuming that the (ordi-

nal) categorical responses are linked to skew t-distributed latent data — this model is

then called the strobit model. Procedures are introduced to estimate the parameters of

this Bayesian strobit model. Since the strobit model fits more parameters than the probit

and logit, the estimation procedure can be quite time consuming, and some practicali-

ties associated with this process are discussed. It is noted that the Bayesian estimation

procedures of categorical response models such as the probit, logit and strobit, produce

parameters that are linked to unknown underlying latent data, and are thus not useful

for interpretation, but only for prediction or classification of new observations.

The probit and strobit model are compared under two-category and three-category binary

responses based on simulated latent data with various characteristics. The strobit model

performs marginally better than the probit under all data situations (even when the latent

data is Normally distributed), but the difference in performance between the two models

is not significant. However, since the Normal distribution is a special case of the skew

t-distribution, and hence the probit is a special case of the strobit, and since the strobit
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performs marginally better than the probit model under varying data scenarios (including

Normality), the authors recommend that if computing time is not of great concern to a

modeller, the Bayeian estimation of the strobit model be used in place of the Bayesian

estimation of the probit.

Naturally, this study opens up various topics for further research. The strobit model is

built for implementation in sequential regression multiple imputation (SRMI), and thus

further research into the applicability of this model in that context is warranted. Moreover,

this model should be compared with other categorical imputation procedures, such as the

multinomial model that is commonly used in SRMI, or other categorical response models.

Also, the fact that the strobit model, as it is defined in this chapter, does not significantly

improve the classification results on tail categories with low counts, is a concern. Perhaps

a skew t model with more allowance for skewness could be examined (i.e. zi ∼ t3Izi>0

instead of zi ∼ N(0, 1)Izi>0 could be used). As far as the estimation procedure itself

is concerned, work should be done to speed up the Gibbs sampler, as well as stabilise

the actual sampling. This research required sampling-in-sampling to obtain stabilised

parameter estimates, and research can be done on the suitability and efficiency of such a

procedure.
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Figure 6.7: Fitted latent data (2 categories)
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The different shades represent the two different observed categories. The latent data is separated for each
category by the fitting algorithm.
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Figure 6.8: Fitted latent data (3 categories)
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each category by the fitting algorithm.
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Figure 6.9: Predicted latent data (2 categories)

Predicted latent data by observed category

−12−10 −8 −6 −4 −2 0 2 4 6 8
0

50

100

150

200

Unknown latent data is Uniform

−10 −8 −6 −4 −2 0 2 4 6 8
0

50

100

150

200

Unknown latent data is Uniform

−12−10−8 −6 −4 −2 0 2 4 6 8 10 12 14
0

20

40

60

80

100

Unknown latent data is Exponential

−10−8 −6 −4 −2 0 2 4 6 8 10 12
0

50

100

150

Unknown latent data is Exponential

−19 −15 −11 −7 −3 1 5 9 13
0

100

200

300

Unknown latent data is skew t

−14−12−10−8 −6 −4 −2 0 2 4 6 8
0

50

100

150

Unknown latent data is skew t

−17 −13 −9 −5 −1 3 7 11
0

50

100

150

200
STROBIT

Unknown latent data is Normal

−16−14−12−10−8−6−4−2 0 2 4 6 8 10
0

50

100

150
PROBIT

Unknown latent data is Normal

The different shades represent the two different actual observed categories, and not the categories that
are chosen off the predicted latent data.
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Figure 6.10: Predicted latent data (3 categories)
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Figure 6.11: Classification errors for 3-category simulation
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Figure 6.12: Two-category MAD error difference on category sparseness, by data scenario,
n = 200
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Scatterplot of probit minus strobit MAD error by negative sum of logs of category proportions for the
two-category multiple simulation procedure.

Figure 6.13: Three-category MAD error difference on tail category sparseness, by data
scenario, n = 200
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Scatterplot of probit minus strobit MAD error by negative sum of logs of outer category proportions for
the three-category multiple simulation procedure.
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Figure 6.14: Two-category MAD error difference on category sparseness, by data scenario,
n = 1000
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Scatterplot of probit minus strobit MAD error by negative sum of logs of category proportions for the
two-category multiple simulation procedure.

Figure 6.15: Three-category MAD error difference on tail category sparseness, by data
scenario, n = 1000
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Scatterplot of probit minus strobit MAD error by negative sum of logs of outer category proportions for
the three-category multiple simulation procedure.
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Figure 6.16: Two-category mean MAD error difference with 95% interval, by data sce-
nario, n = 200
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two-category multiple simulation procedure.

Figure 6.17: Three-category mean MAD error difference with 95% interval, by data sce-
nario, n = 200
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Mean probit minus strobit MAD error, with associated 95% empirical intervals, by data scenario, for the
three-category multiple simulation procedure.
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Figure 6.18: Two-category mean MAD error difference with 95% interval, by data sce-
nario, n = 1000
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Figure 6.19: Three-category mean MAD error difference with 95% interval, by data sce-
nario, n = 1000

N data skew t data Exp data Unf data
−0.2

−0.1

0

0.1

0.2
probit minus strobit MAD error, with 95% empirical interval, n = 1000

Mean probit minus strobit MAD error, with associated 95% empirical intervals, by data scenario, for the
three-category multiple simulation procedure.



210 CHAPTER 6. SKEW ROBIT MODEL



Chapter 7

Conclusion

7.1 Review

Incomplete data, or the presence of missing data, is a prevalent problem in large survey

data sets. Missing data is almost always multivariate in nature, and occurs for numerous

reasons, from non-response to drop-out to purposeful deletion. There are several archaic

and inappropriate methods for handling missing data, such as re-weighting and single

imputation, that need to be avoided when completing a data set for public use. Multiple

imputation (MI) was developed as a successor to these methods. The MI family of meth-

ods predict several plausible values for each missing datum; in this way several completed

data sets are created, ready for complete-case analysis methods. The inferences from the

same analysis on the multiple data sets are combined using particular rules to obtain a

single overall inference. These rules were formulated based on asymptotic theory, or an

infinite number of completed data sets. However, the combining rules were subsequently

defined for a finite number of imputations, and the guidelines for proper, valid, MI were

established. The beauty of MI lies in the fact that the three types of uncertainty associated

with missing data are incorporated into the final complete-data analysis: the uncertainty

associated with the missing data mechanism (MDM); the uncertainty associated with the

imputation model; and, the uncertainty associated with the sampled units.

It is assumed that a random process, the MDM, causes missingness in data sets. The

MDM can be completely random (MCAR), random but based on observed data (MAR),

211



212 CHAPTER 7. CONCLUSION

or not random, i.e. based on unobserved data (MNAR). The MCAR and MAR MDMs are

ignorable in multiple imputation, meaning that one need not explicitly model the MDM

in the joint posterior distribution of missingness and data model. The assumption of an

ignorable MDM is not a very strong one, and researchers believe it must at least be used

even if the missing data is MNAR. The flexibility that this assumption provides is useful,

and has allowed for numerous advances in specifying the imputation model without having

the complexity of the MDM confounding the process. Bayesian statistics has proved useful

in MI modelling, since model and sampling uncertainty (the two uncertainties that cannot

be ignored) can easily be incorporated in a posterior predictive distribution.

There has been a vast amount of research in the area of MI. Topics of interest have

included uncongeniality and efficiency, adaptations of the combining rules, research into

nonignorable MDMs, and comparisons between MI inferences and non-MI inferences.

There is consensus that MI represents one of the best solutions (and certainly the most

parsimonious) for the missing data problem when the imputation task and the analysis

task are performed by different experts.

One significant development in the field of MI has been sequential regression multiple

imputation (SRMI). It is easy to see that joint modelling of an entire survey data set

can be a complex (if not impossible) task when the variables in the data set are of

different types (continuous versus discrete, for example), or follow different univariate

distributions. For this reason, SRMI was developed. In SRMI, a univariate multiple

regression is performed separately and sequentially on each incomplete variable, predicting

the missing data points through the corresponding univariate posterior predictive models.

The process is refined into an approximate Gibbs sampler, so that after some iteration,

draws from the univariate predictive posteriors approximate draws from the joint model,

as is required in proper MI.

The SRMI algorithm has proved useful, because any type of Bayesian regression model (or

approximately Bayes adaptation of a model) can be incorporated in the chained equations.

In this way, variables are completed using plausible models appropriate to those variables.

Research in SRMI has shown that it is at least equivalent to fully Bayesian joint model

MI, and considerably better than single imputation methods for solving the missing data

problem. The SRMI algorithm has proved useful under different circumstances, from
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its intended purpose, namely solving the missing data problem, to disclosure limitation

of public use data. There has been research into the evaluation of model selection for

the chained equation models in SRMI, but this is an area that is still rather open. Of

particular interest to this thesis is the need for a robust model in SRMI that can handle

both Normal-type data and data with heavy tails and/or skewness.

The need for a robust SRMI model is met through the implementation of the Bayesian

skew Student’s t-distribution for regression model errors. Estimation procedures and algo-

rithms are designed and summarised in this thesis, and the model is compared with both

the Normal SRMI model, a symmetric t model, and predictive mean matching (PMM),

local residual draw (LRD) and expanded residual draw (ERD) adaptations designed to

incorporate skewness into the symmetric models. The skew t model proves to be useful

as a flexible SRMI model alternative, handling both Normal and non-Normal incomplete

variables well.

The calibrated posterior predictive p-value (cppp), designed to test model fit in Bayesian

statistics, is also examined in this thesis. The cppp is mathematically derived under the

assumptions of Normality and complete data, to serve as a test statistic for deviation

from Normality. The complete data assumption is merely a formality, knowing that a

well defined cppp model can easily be extended to the Normal SRMI algorithm. However,

this thesis shows that the cppp is not without its own problems. The measure requires

known proper priors for the regression parameters — a task that is not trivial in practice.

Various attempts at determining or approximating these priors were unsuccessful in this

thesis. One possible solution is a Markov Chain Monte Carlo (MCMC) approximation to

the cppp. However, this method also has drawbacks, and requires further study. Thus,

while the thesis attempted to shed light on an SRMI evaluation measure, several obstacles

were encountered, preventing a deeper advance into this specific research area. However,

these problems should not detract from the positive results displayed in this thesis, since

the robust model can be used when the data is Normal as well; the cppp evaluation

statistic would merely speed up the SRMI algorithm in practice, by allowing the Normal

model to be used when the robust model is not entirely necessary.

Finally, the robust skew t model is implemented in the context of Bayesian estimation of

ordinal categorical data, in a new model called the strobit model. Again, the assumption
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of complete data is used without loss of generality to implementation in SRMI, since the

estimation procedure is only defined with prediction and classification in mind. The goal

of the study was to better predict observations in scarcely populated ordinal data tail

categories. While this goal was not achieved, general prediction is slightly improved over

the probit model, so that the strobit model seems is a viable alternative to the probit

model in SRMI.

7.2 Further Research

Several topics for research have been uncovered in the pursuit of the two objectives of this

thesis: MI and SRMI review; and robust SRMI model development. These topics can be

divided into two broad categories, namely, open topics that are not related to the work

in this thesis (which were mentioned in passing during the literature review), and topics

that have been discovered in the development of the novel methods in this thesis.

Open topics in MI

� The possibility of using the R2 statistic from binary-outcome regression models ex-

plaining variable missingness might be developed into a measure of the MAR nature

of the MDM. Low R2 values could simply be used to measure the extent to which

the MDM may be MNAR. Additionally, the effect of spuriously making a MNAR

mechanism more MAR by adding additional covariates could be investigated.

� Extending the work of Zhou & Reiter (2010), one might consider a more extensive

comparison of using smaller numbers of imputed data sets versus larger numbers of

imputed data sets when the completed-data inferences are not based on the Normal

distribution. Additionally, one could compare the inferences based on the regular

combining rules with the inferences based on the empirical distributions of the large

number of completed data sets. The rationale for such a study is simple — to

determine under the robustness of the regular combining rules.

� It was noted that research into the interdependency of imputed data sets is war-

ranted, as the Gibbs sampler might not produce imputation draws that display
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enough independence in the MI algorithm.

� One could investigate the effect of donor proportions in PMM and LRD adaptations

of symmetrical models used in SRMI.

Topics related to the development of the robust model for SRMI

� The robust skew t model is in its infancy. For this reason, numerous related topics

could be expanded on, including (but not limited to):

– refining and speeding up the estimation procedure;

– investigating the effect of discretising the posterior distribution for the degrees

of freedom in the skew t estimation procedure;

– comparing actual inferences on data completed using the Normal model against

inferences on completed using the robust model;

– investigating the effect of a t-distributed Z value — i.e. a heavy-tailed exposure

to the skewness parameter, δ; and,

– introducing into SRMI a possible light-tailed alternative to the skew t, namely

the skew Normal.

� Extensive work can be done on the cppp SRMI evaluation procedure. Besides at-

tempting to find a way of correctly specifying the prior distribution of the regression

parameters, work on approximate methods can also be extended. An investigation

into the seemingly already-calibrated nature of the ppp displayed in this thesis is

also warranted.

� One could compile a comparison of the strobit model with the regular multinomial

formulation in SRMI, and with other correspondence analysis based imputation

methods. Additionally, research is still required to find a Bayesian model that might

better predict missing ordinal data when the tail categories are sparsely populated.
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7.3 Final Note

In summary, this thesis has reviewed the existing research on MI and SRMI, and has suc-

cessfully developed and implemented a robust model for use in SRMI, for both continuous

and ordinal data. While this development may seem like a small step for a statistician,

imputers would like other statisticians to remember that all statistical theory is, in fact,

the study of incomplete data, and that any advance in the field of missing data is an

advance for all ‘statistician-kind’.
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Appendix A

Priors for the Student t-distribution

This appendix provides the derivations (or references for these derivations) for the Jef-

freys, reference, and probability-matching priors for the symmetric Student t-distribution.

Reference and probability-matching priors generally lead to procedure with properties fre-

quentists can relate to while still retaining Bayesian validity.

The Jeffreys Prior. It is shown by Fonseca et al. (2008) that the independence Jeffreys

prior is

PIJEFF (ν, β, σ) ∝ σ−1

(
ν

ν + 3

) 1
2
[
ψ′
(ν

2

)
− ψ′

(
ν + 1

2

)
− 2 (ν + 3)

ν (ν + 1)2

] 1
2

assuming that the marginal priors for β and (σ, ν) are independent a priori. Note that

ψ′ (·) is the trigamma function, the derivative of the digamma function.

Reference Priors. We derive the reference prior of Berger & Bernardo (1992) for the

parameters of the Student t-distribution. The derivation depends on the ordering of the

parameters and how the parameter vector is divided into sub-vectors. The reference prior

maximises the difference in information about the parameters provided by the prior and

the posterior (Pearn & Wu 2005); i.e. the reference prior provides as little information as
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possible about the parameters of interest.

I (β, σ, ν) =


β2 βσ βν

σβ σ2 σν

νβ νσ ν2

 and I (ν, β, σ) =


ν2 νβ νσ

βν β2 βσ

σν σβ σ2


In general,

{I (θ)}ij = EY |θ

[
− ∂2

∂θi∂θj
log {L (θ; y, x)}

]

The Fisher information matrix for the ordering {ν, β, σ} is therefore given by,

I (ν, β, σ)

=
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(A.1)

=


F11 F12 F13

F21 F22 F23

F31 F32 F33


To calculate the reference prior for the ordering {ν, β, σ}, we must first calculate:

h1 = F11 −
[
F12 F13

] F22 F23

F32 F33

−1  F21

F31


from the information matrix in Equation (A.1).
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Similarly, we can find the Reference Prior for the ordering (β, σ, ν):
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The Fisher information matrix for the ordering {ν, σ, β} is,
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
ν+1

σ2(ν+3)

∑n
i=1 xix

′
i 0

0 n
4

[
ψ′
(
ν
2

)
− ψ′

(
ν+1

2

)
− 2(ν+5)

ν(ν+1)(ν+3)

]


− σ2 (ν + 3)

2nν


0

−2n
σ(ν+1)(ν+3)

[ 0 −2n
σ(ν+1)(ν+3)

]
(A.2)

=

 H11 H12

H21 H22

 .
Since h2 = H22 it follows that,

∴ h2 =
n

4

[
ψ′
(ν

2

)
− ψ′

(
ν + 1

2

)
− 2 (ν + 5)

ν (ν + 1) (ν + 3)

]
− 4n2σ2 (ν + 3)

2nσ2ν (ν + 1)2 (ν + 3)2

∴ h
1
2
2 ∝ σ−1

[
ψ′
(ν

2

)
− ψ′

(
ν + 1

2

)
− 2 (ν + 3)

ν (ν + 1)2

] 1
2
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Further, h
1
2
3 =

[
2nν

σ2(ν+3)

] 1
2
, and p (σ|ν, β) ∝ h

1
2
3 = σ−1. So

∴ P 4
REF = P 3

REF (ν, σ, β)

= P 1
REF (ν, β, σ)

∝ σ−1

[
ψ′
(ν

2

)
− ψ′

(
ν + 1

2

)
− 2 (ν + 3)

ν (ν + 1)2

] 1
2

The Fisher information matrix for the ordering {σ, ν, β} is given by,

I (σ, ν, β)

=



2nν
σ2(ν+3)

−2n
σ(ν+1)(ν+3)

0

−2n
σ(ν+1)(ν+3)

n
4

[
ψ′
(
ν
2

)
− ψ′

(
ν+1

2

)
− 2(ν+5)

ν(ν+1)(ν+3)

]
0

0 0 ν+1
σ2(ν+3)

∑n
i=1 xix

′
i



∴ h1 =
2nν

σ2 (ν + 3)

−
[

−2n
σ(ν+1)(ν+3)

0
]

A 0

0 σ2(ν+3)
(ν+1)

∑n
i=1 xix

′
i




0

−2n
σ(ν+1)(ν+3)


(A.3)

where A = 4
n

[
ψ′
(
ν
2

)
− ψ′

(
ν+1

2

)
− 2(ν+5)

ν(ν+1)(ν+3)

]−1

∴ h1 =
2nν

σ2 (ν + 3)
− 4n2

σ2 (ν + 1)2 (ν + 3)

(
4

n

)[
ψ′
(ν

2

)
− ψ′

(
ν + 1

2

)
− 2 (ν + 5)

ν (ν + 1) (ν + 3)

]−1

∴ h1 ∝ σ−2

∴ h
1
2
1 ∝ σ−1 = p (σ)
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H =

 H11 H12

H21 H22



=


2nν

σ2(ν+3)
−2n

σ(ν+1)(ν+3)

−2n
σ(ν+1)(ν+3)

n
4

[
ψ′
(
ν
2

)
− ψ′

(
ν+1

2

)
− 2(ν+5)

ν(ν+1)(ν+3)

]


− σ2 (ν + 3)

(ν + 1)
∑n

i=1 xix
′
i


0

0

[ 0 0
]

∴ h
1
2
2 = H

1
2
22 ∝

[
ψ′
(ν

2

)
− ψ′

(
ν + 1

2

)
− 2 (ν + 5)

ν (ν + 1) (ν + 3)

] 1
2

We also have that h
1
2
3 ∝ c.

∴ P 5
REF (σ, ν, β) ∝ σ−1

[
ψ′
(ν

2

)
− ψ′

(
ν + 1

2

)
− 2 (ν + 5)

ν (ν + 1) (ν + 3)

] 1
2

Finally, the Fisher information matrix for the ordering {σ, β, ν} is given by,

I (σ, β, ν)

=



2nν
σ2(ν+3)

0 −2n
σ(ν+1)(ν+3)

0 ν+1
σ2(ν+3)

∑n
i=1 xix

′
i 0

−2n
σ(ν+1)(ν+3)

0 n
4

[
ψ′
(
ν
2

)
− ψ′

(
ν+1

2

)
− 2(ν+5)

ν(ν+1)(ν+3)

]


So we have that h

1
2
1 ∝ σ−1, h

1
2
2 ∝ c and h

1
2
3 ∝ ψ′

(
ν
2

)
− ψ′

(
ν+1

2

)
− 2(ν+5)

ν(ν+1)(ν+3)
.

∴ P 6
REF (σ, β, ν) ∝ σ−1

[
ψ′
(ν

2

)
− ψ′

(
ν + 1

2

)
− 2 (ν + 5)

ν (ν + 1) (ν + 3)

] 1
2

Probability-matching prior. The probability-matching prior, another non-

informative prior, provides accurate frequentist intervals and is also used for comparisons
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in Bayesian analysis. Datta & Ghosh (1995) provide a method for finding probability-

matching priors by deriving a differential equation that a prior must satisfy if the

posterior probability of a one-sided credibility interval for a parametric function and its

frequentist probability agree up to O (n−1), where n is the sample size.

For the probability-matching prior, PM (ν, β, σ), we need the inverse of the Fisher infor-

mation matrix,

I−1 (θ) = I−1 (β, σ, ν) =

σ2(ν+3)
ν+1

(
∑n

i=1 xix
′
i)
−1

0 0

0 n
4D

[
ψ′
(
ν
2

)
− ψ′

(
ν+1

2

)
− 2(ν+5)

ν(ν+1)(ν+3)

]
2n

Dσ(ν+1)(ν+3)

0 2n
Dσ(ν+1)(ν+3)

2nν
Dσ2(ν+3)


where

D =
n2ν

2σ2 (ν + 3)

[
ψ′
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2

)
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2
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)
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(
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4
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]
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[
ψ′
(ν

2

)
− ψ′

(
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Let t (θ) = ν, where t (θ) is the parameter of interest.
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From this it follows that ∂t(θ)
∂ν

= 1; ∂t(θ)
∂β

= 0; ∂t(θ)
∂σ

= 0, and,

∇′t (θ) =
[

∂t(θ)
∂β

∂t(θ)
∂σ

∂t(θ)
∂ν

]
=
[

0 0 1
]

∴ ∇′t (θ) I−1 (θ) =
[

0 2n
Dσ(ν+1)(ν+3)

2nν
Dσ2(ν+3)

)
,

which means that,

[
∇′t (θ) I−1 (θ)∇t (θ)

] 1
2 =

(
2nν

Dσ2 (ν + 3)

) 1
2

.

ζ ′ (θ) =
∇′t (θ) I−1 (θ)

[∇′t (θ) I−1 (θ)∇t (θ)]
1
2

=
[
ζ1 (θ) ζ2 (θ) ζ3 (θ)

]
=

[
0 (2n)

1
2

D
1
2 ν

1
2 (ν+1)(ν+3)

1
2

(2nν)
1
2

D
1
2 σ(ν+3)

1
2

]

This indicates that the probability-matching prior is:

p (θ) = PM (ν, β, σ) ∝ D
1
2

(ν + 3)
1
2

ν
1
2

∝ σ−1

[
ψ′
(ν

2

)
− ψ′

(
ν + 1

2

)
− 2 (ν + 3)

ν (ν + 1)2

] 1
2

because the differential equation ∂
∂β

[ζ1 (θ) p (θ)]+ ∂
∂σ2 [ζ2 (θ) p (θ)]+ ∂

∂ν
[ζ3 (θ) p (θ)] = 0. The

probability-matching prior is therefore the same as the reference priors for the orderings

{ν, β, σ}, {β, ν, σ}, and {ν, σ, β}.
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Appendix B

MATLAB code

The programs run in this thesis were personally written in MATLAB (2012).

B.1 SRMI Programs for Chapters 4 and 6

Any program used in this thesis that calls the SRMI algorithm requires a fundamental
set of programs. These are the first listed in this appendix. The following is the function
that runs the SRMI.

1 function [ComplD, ConvD, cppp values]=SRMI(data, idvars, explvars, ...
models, rounds, iterations, varargin)

2

3 %varargin - step 0/1: stepwise regression, or not (default)
4 % - [pmm vector] (0/1/2/3s indicating pmm/lrd/erd, same length...

as models), donor proportion
5 %models - a vector specifying which regression to use for each ...

variable
6 %of the original matrix: 0:id variable 1:Normal; 1.5: t; 2:Bernoulli; ...

3:Poisson
7 %4:Ordinal/categorical
8 %Must specify a model for each variable - even the filled variables
9 %step is a 0-1 specifying the use of stepwise regressions

10 %step is not programmed yet
11 prior num = 2; %Ind Jeff prior for t
12 %data must be in form: [idvars data]
13

14 e = length(models);
15 f = e - idvars - explvars; % the num. of variables to try impute
16 ConvD = zeros(length(data(:,1)),e-explvars,rounds);
17 ComplD = zeros(length(data(:,1)),e-explvars,iterations);
18 if nargin>6
19 cppp test = varargin{1};
20 else
21 cppp test = 0;

235
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22 end
23

24 if nargin>7
25 step = varargin{2};
26 else
27 step = 0;
28 end
29 if nargin>8
30 adapt vec = varargin{3};
31 donor prop = varargin{4};
32 else
33 adapt vec = zeros(1,e);
34 donor prop = 0;
35 end
36

37 [sdata J fulls] = SRMIsortmis(data(:,(idvars+explvars+1):e));
38

39 nmodels = models(:,(idvars+explvars+1):e);
40 adapt vec = adapt vec(:,(idvars+explvars+1):e);
41 seqreg = nmodels(:,J);
42 adapt vec = adapt vec(:,J);
43 cppp values = -1*ones(2,f);
44

45

46 for impute = 1:iterations
47 if (models(1) == 1.5) | | (models(1) == 1.6)
48 disp(impute)
49 end
50 %YR = [];
51 if impute 6= 1
52 [sdata J fulls] = SRMIsortmis(data(:,(idvars+explvars+1):e));
53 end
54 %I = [];
55 YR = isnan(sdata);
56 %YR = isnan(sdata(:,1:fulls));
57 for round = 1:rounds
58 for regr = (fulls+1):f
59 %fulls also have models and pmm specified
60 y = sdata(:,regr);
61 if explvars == 0
62 if round == 1
63 %YR = [YR isnan(y)];
64 X = sdata(:,1:(regr-1)); % this will work since %...

there must be at least 1 full variable
65 else
66 if regr == f
67 X = sdata(:,1:(regr-1));
68 else
69 X = sdata(:,[1:(regr-1) (regr+1):f]);
70 end
71 end
72 else
73 if round == 1
74 %YR = [YR isnan(y)];
75 X = [data(:,(idvars+1):(idvars+explvars)) sdata...

(:,1:(regr-1))]; % this will work since %there...
must be at least 1 full variable
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76 else
77 if regr == f
78 X = [data(:,(idvars+1):(idvars+explvars)) ...

sdata(:,1:(regr-1))];
79 else
80 X = [data(:,(idvars+1):(idvars+explvars)) ...

sdata(:,[1:(regr-1) (regr+1):f])];
81 end
82 end
83 end
84 I = find(YR(:,regr) == 1);
85 adapt switch = adapt vec(1,regr);
86 if seqreg(regr) == 1
87 [M,¬,¬] = SRMInorm(y, X, I, step, adapt switch, ...

donor prop);
88 elseif seqreg(regr) == 1.1
89 %[M,¬,¬,¬,¬] = SRMIt(y, X, I, step, prior num, ...

adapt switch, donor prop);
90 [M,¬,¬] = SRMIlogit norm(y, X, I, step);
91 elseif seqreg(regr) == 1.5
92 %[M,¬,¬,¬,¬] = SRMIt(y, X, I, step, prior num, ...

adapt switch, donor prop);
93 [M,¬,¬,¬,¬,¬,¬] = SRMItskew(y, X, I, 0, step, ...

prior num, adapt switch, donor prop);
94 elseif seqreg(regr) == 1.6
95 [M,¬,¬,¬,¬,¬,¬] = SRMItskew(y, X, I, 1, step, ...

prior num);
96 elseif seqreg(regr) == 2
97 [M] = SRMIbern(y, X, I);
98 elseif seqreg(regr) == 3
99 [M] = SRMIpois(y, X, I);

100 elseif seqreg(regr) == 4
101 [M] = SRMIcat(y, X, I);
102 end
103 sdata(I,regr) = M; %Updating the data matrix
104 end
105

106 if impute == 1
107 unsortedData = SRMIunsort(sdata, J);
108 ConvD(:,:,round) = [data(:,1:idvars) unsortedData]; %...

explvars are dropped; their use is finished
109 end
110 end
111 unsortedData = SRMIunsort(sdata, J);
112 ComplD(:,:,impute) = [data(:,1:idvars) unsortedData]; %explvars ...

are dropped; their use is finished
113 end
114

115 %ComplD is a 3D completed data matrix with the z-dimension showing ...
filled data from

116 %each iteration - matrix is in rows(obs), columns(var) and depth(...
iteration)

117 % The ComplD matrix does not include the variables listed as 0.5 in ...
the

118 % models vector (they are dropped)
119

120 %ConvD is a 3D matrix with the z-dimension showing the 1st dataset (...
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the
121 %dataset during the 1st iteration) after each round of imputation.

Within SRMI, sorting and unsorting (by missingness) is required. The next two programs
do these procedures.

1 function [sdata I fulls] = SRMIsortmis(data)
2 % Finding proportions of missing data:
3 [r c] = size(data);
4 R = isnan(data);
5

6 % Finding the proportion of data missing for each column.
7 propmiss = (sum(R)./r)'; %a column vector
8 fulls = length(find(propmiss == 0));
9 % Sorts the data according to missingness

10 [Tmp,I] = sortrows(propmiss, 1); %a column vector length models-advars...
-explvars

11 sdata = data(:,I');
12

13 %I'
14

15 %sR = R(:,I');

1 function [data] = SRMIunsort(sdata, J)
2

3 [Tmp,I] = sortrows(J, 1);
4 data = sdata(:,I);

The following function is the Normal model regression in SRMI.

1 function [M,bs,sig2] = SRMInorm(y, X, I, varargin)
2 % Output gives a vector of imputed values, and the indices of the rows...

of
3 % the data matrix where the imputed values fit into the y vector.
4 % varargin: step, adapt switch (nothing=0, pmm=1, lrd=2, erd=3), ...

adapt prop (prop donor cases)
5

6 warning off all
7 adapt switch = 0;
8 if nargin > 3
9 step = varargin{1};

10 else
11 step = 0;
12 end
13 if nargin > 4
14 adapt switch = varargin{2};
15 end
16 if nargin > 5
17 adapt prop = varargin{3};
18 end
19

20 % The regression fit
21

22 switch step
23 case 0
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24 % if X isempty, then X is ones - this should be implemented
25 X = [ones(length(X(:,1)),1) X];
26 b = regress(y,X);
27 case 1
28 [b,se,pval,inmodel,stats,nextstep,history] = stepwisefit(X,y,'...

display','off');
29 b = [stats.intercept ; b((inmodel == 1))];
30 X = [ones(length(X(:,1)),1) X(:,(inmodel == 1))];
31 clear se pval stats nextstep history
32 end
33

34 % the missing y's, and th corresponding X's
35 Xmiss = X(I,:);
36

37

38 %the non-missing y's
39 YR = isnan(y);
40 J = find(YR == 0);
41 Xcompl = X(J,:);
42 ycompl = y(J,:);
43

44

45 % Generating sig
46 u = chi2rnd(length(ycompl)-length(Xcompl(1,:)));
47 sig2 = ((ycompl-Xcompl*b)'*(ycompl-Xcompl*b))./u;
48

49 % Generating B
50 cov = sig2*inv(Xcompl'*Xcompl);
51 T = (chol(cov))';
52 bs = b + T*randn(length(b),1);
53

54 % Now to do Predictive Mean Matching, Local Residual Draw, or Expanded
55 % Residual Draw if need be, or to just draw a prediction
56

57 if adapt switch == 1 | | adapt switch == 2 | | adapt switch == 3
58 M = zeros(length(I),1);
59 pred mean compl = Xcompl*bs;
60 resid compl = ycompl-pred mean compl;
61 for i = 1:length(I)
62 pred mean inc = Xmiss(i,:)*bs;
63 if adapt switch == 1 | | adapt switch == 2
64 [donors,D] = sort(abs(pred mean compl-pred mean inc));
65 % D is the index numbers col. vector of the rows of Xcompl...

that are
66 % the closest to furthest predictive means to the
67 % predictive mean of the incomplete obs
68 cutoff = max(round(adapt prop*length(donors)),1);
69 donors = donors(1:cutoff,1);
70 D = D(1:cutoff,1);
71 % These previous 3 commands cut the donor vector down to ...

size
72 if adapt switch == 1 %do PMM
73 M(i) = ycompl(D(ceil(rand*length(donors))));
74 elseif adapt switch == 2 %do LRD
75 M(i) = pred mean inc + resid compl(D(ceil(rand*length(...

donors))));
76 end
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77 elseif adapt switch == 3 %do ERD
78 std resid compl = resid compl./sqrt(sum(resid compl.ˆ2)./(...

length(resid compl)-length(b)));
79 M(i) = pred mean inc + sig2ˆ(0.5).*std resid compl(ceil(...

rand*length(std resid compl)));
80 end
81 end
82 else
83 % Imputing values from generated Bs
84 M = Xmiss*bs + sig2ˆ(0.5).*randn(length(Xmiss(:,1)),1);
85 end

The following function is the t model regression in SRMI.

1 function [M,bs,sig2,v,lambdas] = SRMIt(y, X, I, varargin)
2 % Output gives a vector of imputed values, and the indices of the rows...

of
3 % the data matrix where the imputed values fit into the y vector.
4 % varargin: step, prior type for v; adapt switch (nothing=0, pmm=1, ...

lrd=2, erd=3), adapt prop (prop donor cases)
5 % v's prior type: 1: truncated exponential, 2:Independence Jeffrey's, ...

3:
6 % Probability Matching or Reference for the orders {v, mu, sig2}, {v, ...

sig2,
7 % mu}, {mu, v, sig2}, 4: Reference for the orders {mu, sig2, v}, {sig2...

, v,
8 % mu}, {sig2, mu, v}
9

10 warning off all
11

12 if nargin > 3
13 step = varargin{1};
14 end
15 if nargin > 4
16 prior num = varargin{2};
17 end
18 if nargin > 5
19 adapt switch = varargin{3};
20 end
21 if nargin > 6
22 adapt prop = varargin{4};
23 end
24

25 % The regression fit
26 X = [ones(length(X(:,1)),1) X];
27 %b = regress(y,X);
28

29 % the missing y's, and th corresponding X's
30 Xmiss = X(I,:);
31

32 %the non-missing y's
33 YR = isnan(y);
34 J = find(YR == 0);
35 Xcompl = X(J,:);
36 ycompl = y(J,:);
37

38 % Generating parameters
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39

40 [beta sig2 v lambdas] = draw gibbs t(ycompl, Xcompl, 1);
41 bs = beta';
42

43 % Now to do Predictive Mean Matching, Local Residual Draw, or Expanded
44 % Residual Draw if need be, or to just draw a prediction
45

46 if adapt switch == 1 | | adapt switch == 2 | | adapt switch == 3
47 M = zeros(length(I),1);
48 pred mean compl = Xcompl*bs;
49 resid compl = ycompl-pred mean compl;
50 for i = 1:length(I)
51 pred mean inc = Xmiss(i,:)*bs;
52 if adapt switch == 1 | | adapt switch == 2
53 [donors,D] = sort(abs(pred mean compl-pred mean inc));
54 % D is the index numbers col. vector of the rows of Xcompl...

that are
55 % the closest to furthest predictive means to the
56 % predictive mean of the incomplete obs
57 cutoff = max(round(adapt prop*length(donors)),1);
58 donors = donors(1:cutoff,1);
59 D = D(1:cutoff,1);
60 % These previous 3 commands cut the donor vector down to ...

size
61 if adapt switch == 1 %do PMM
62 M(i) = ycompl(D(ceil(rand*length(donors))));
63 elseif adapt switch == 2 %do LRD
64 M(i) = pred mean inc + resid compl(D(ceil(rand*length(...

donors))));
65 end
66 elseif adapt switch == 3 %do ERD
67 std resid compl = resid compl./sqrt(sum(resid compl.ˆ2)./(...

length(resid compl)-length(X(1,:))));
68 M(i) = pred mean inc + std resid compl(ceil(rand*length(...

std resid compl)));
69 end
70 end
71 else
72 % Imputing values from generated Bs
73 M = Xmiss*bs + sig2ˆ(0.5).*random('t',v,[length(Xmiss(:,1)),1]);
74 end

The following function is the skew t model regression in SRMI.

1 function [M,bs,tau,v,lambda,∆,Z] = SRMItskew(y, X, I, skew, varargin)
2 % Output gives a vector of imputed values, and the indices of the rows...

of
3 % the data matrix where the imputed values fit into the y vector.
4 % varargin: step, prior type for v;
5 % v's prior type: 1: truncated exponential, 2:Independence Jeffrey's, ...

3:
6 % Probability Matching or Reference for the orders {v, mu, sig2}, {v, ...

sig2,
7 % mu}, {mu, v, sig2}, 4: Reference for the orders {mu, sig2, v}, {sig2...

, v,
8 % mu}, {sig2, mu, v}
9
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10 warning off all
11 prior num = 1; %Exponential by default.
12 adapt switch = 0; %by default, no PMM, LRD, or ERD
13 if nargin > 4
14 step = varargin{1};
15 end
16 if nargin > 5
17 prior num = varargin{2};
18 end
19 if nargin > 6
20 adapt switch = varargin{3};
21 end
22 if nargin > 7
23 adapt prop = varargin{4};
24 end
25

26 % The regression fit
27 X = [ones(length(X(:,1)),1) X];
28

29 % the missing y's, and th corresponding X's
30 Xmiss = X(I,:);
31

32 %the non-missing y's
33 YR = isnan(y);
34 J = find(YR == 0);
35 Xcompl = X(J,:);
36 ycompl = y(J,:);
37

38 % Generating parameters
39

40 [beta, tau, v, lambda, ∆, Z] = draw gibbs t skew(ycompl, Xcompl, 1, ...
skew, prior num);

41 bs = beta';
42

43 if (adapt switch == 1 | | adapt switch == 2 | | adapt switch == 3) && (...
skew == 0)

44 M = zeros(length(I),1);
45 pred mean compl = Xcompl*bs;
46 resid compl = ycompl-pred mean compl;
47 for i = 1:length(I)
48 pred mean inc = Xmiss(i,:)*bs;
49 if adapt switch == 1 | | adapt switch == 2
50 [donors,D] = sort(abs(pred mean compl-pred mean inc));
51 % D is the index numbers col. vector of the rows of Xcompl...

that are
52 % the closest to furthest predictive means to the
53 % predictive mean of the incomplete obs
54 cutoff = max(round(adapt prop*length(donors)),1);
55 donors = donors(1:cutoff,1);
56 D = D(1:cutoff,1);
57 % These previous 3 commands cut the donor vector down to ...

size
58 if adapt switch == 1 %do PMM
59 M(i) = ycompl(D(ceil(rand*length(donors))));
60 elseif adapt switch == 2 %do LRD
61 M(i) = pred mean inc + resid compl(D(ceil(rand*length(...

donors))));



B.1. SRMI PROGRAMS FOR CHAPTERS 4 AND 6 243

62 end
63 elseif adapt switch == 3 %do ERD
64 std resid compl = resid compl./sqrt(sum(resid compl.ˆ2)./(...

length(resid compl)-length(X(1,:))));
65 M(i) = pred mean inc + std resid compl(ceil(rand*length(...

std resid compl)));
66 end
67 end
68 else
69 M = Xmiss*bs + ∆*abs(randn([length(Xmiss(:,1)),1])) + tauˆ(-0.5).*...

random('t',v,[length(Xmiss(:,1)),1]);
70 end

Whenever the t model is fitted, the following program is called.

1 function [beta sig2 v lambdas] = draw gibbs t(y, X, draws, varargin)
2 % y is a column vector
3 % vs was an additional output originally
4 if nargin > 3
5 prior num = varargin{1};
6 else
7 prior num = 1;
8 end
9 if nargin > 4

10 v discrete = varargin{2};
11 else
12 v discrete = 1;
13 end
14 if nargin > 5
15 burn in = varargin{3};
16 else
17 burn in = 200;
18 end
19 %% Core program
20 [n p] = size(X);
21

22

23 sig2 = ones((burn in+draws),1);
24 lambdas = ones((burn in+draws),n);
25 beta = ones((burn in+draws),p);
26 v = ones((burn in+draws),1)*3;
27

28 % initial values
29

30 [¬,¬,¬,¬,thestats] = regress(y,X);
31 sig2(1) = thestats(4);
32

33 beta(1,:) = (sqrtm(sig2(1).*(X'*diag(lambdas(1,:))*X))\randn(p,1) + (X...
'*diag(lambdas(1,:))*X)\X'*diag(lambdas(1,:))*y)';

34

35

36 if v discrete
37 [v draws] = draw post v discr(1, n, lambdas(1,:), prior num);
38 else
39 [v draws] = draw post v(1, n, lambdas(1,:), prior num);
40 end
41 v(1) = v draws(end);
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42 %vs = [];
43

44 for i = 2:(burn in+draws)
45 sig2(i) = (y-X*beta(i-1,:)')' * diag(lambdas(i-1,:)) * (y-X*beta(i...

-1,:)') / chi2rnd(n);
46 % sig2(i) = 1;
47 beta(i,:) = (sqrtm(sig2(i)*(X'*diag(lambdas(i-1,:))*X))\randn(p,1)...

+ (X'*diag(lambdas(i-1,:))*X)\X'*diag(lambdas(i-1,:))*y)';
48

49 lambdas(i,:) = chi2rnd(v(i-1)+1,[1,n]) ./ (v(i-1)+((y-X*beta(i,:)...
')').ˆ2./sig2(i));

50 %%lambdas(i,:) = gamrnd(0.5*(v(i-1)+1),0.5,[1,n]) ./ (v(i-1)+((y-X...

*beta(i,:)')').ˆ2./sig2(i));
51 if v discrete
52 [v(i)] = draw post v discr(1, n, lambdas(i,:), prior num,i);
53 else
54 [v(i)] = draw post v(1, n, lambdas(i,:), prior num);
55 end
56 %vs = [vs ; v draws];
57 end
58

59 % figure(1)
60 % plot((1:(burn in+draws))',v)
61 % title('v draws')
62 % figure(2)
63 % plot((1:(burn in+draws))',sig2)
64 % title('sig2 draws')
65 % plot((1:(burn in+draws))',lambdas)
66 % title('lambdas draws')
67 % figure(3)
68 % hist(v)
69 % title('Histogram of v draws')
70 % figure(4)
71 % hist(sig2)
72 % title('Histogram of sig2 draws')
73 % for i = 1:p
74 % figure(4+i)
75 % hist(beta(:,i))
76 % title(strcat(['Histogram of draws for beta ' num2str(p)]))
77 % end
78

79 beta = beta((burn in+1):end,:);
80 sig2 = sig2((burn in+1):end,1);
81 lambdas = lambdas((burn in+1):end,:);
82 v = v((burn in+1):end,1);
83

84 % beta = beta(1:end,:);
85 % sig2 = sig2(1:end,1);
86 % lambdas = lambdas(1:end,:);
87 % v = v(1:end,1);
88 end

Likewise, if the skew t model is fitted, the following program is called.

1 function [beta tau v lambdas ∆ Z] = draw gibbs t skew(y, X, draws, ...
varargin)

2 % y is a column vector
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3 % vs was an additional output originally
4 % skew is a 0 (for symmetric t) or 1 for skew t.
5 %X includes a column of ones for the intercept term
6 if nargin > 3
7 skew = varargin{1};
8 else
9 skew = 1;

10 end
11 if nargin > 4
12 prior num = varargin{2};
13 else
14 prior num = 1;
15 end
16 if nargin > 5
17 v discrete = varargin{3};
18 else
19 v discrete = 0;
20 end
21 if nargin > 6
22 burn in = varargin{4};
23 else
24 burn in = 200;
25 end
26

27 %% Core program
28 [n p] = size(X);
29

30 %Priors
31

32 mu∆ = 0; %these are the parameters on the proper Normal prior for ∆

33 sig2∆ = 1000;
34

35 mubeta = 0*ones(1,p);
36 sig2beta = 10000*ones(1,p);
37

38 agamma = 0.1;
39 lgamma = 0.1;
40

41 muz = 0;
42 sig2z = 1;
43

44

45 %Initialise vectors
46 %Initial values
47 tau = zeros((burn in+draws),1);
48 [¬,¬,¬,¬,thestats] = regress(y,X);
49 tau(1) = 1/thestats(4);
50 lambdas = ones((burn in+draws),n);
51 beta = zeros((burn in+draws),p);
52 beta(1,:)=(sqrtm((tau(1)ˆ(-1)).*(X'*diag(lambdas(1,:))*X))\randn(p,1) ...

+ (X'*diag(lambdas(1,:))*X)\X'*diag(lambdas(1,:))*y)';
53 Z = repmat(abs(randn(1,n)),burn in+draws,1).*ones((burn in+draws),n);
54 ∆ = zeros((burn in+draws),1); %0 is the prior mean for ∆.
55 v = 3*ones((burn in+draws),1);
56 if v discrete
57 [v draws] = draw post v discr(1, n, lambdas(1,:), prior num);
58 else
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59 [v draws] = draw post v(1, n, lambdas(1,:), prior num);
60 end
61 v(1) = v draws(end);
62

63 ystar = zeros(n,p);
64 ycurl = zeros(n,burn in+draws);
65

66 for i = 2:(burn in+draws)
67 if p>1
68 for j = 1:p
69 switch j
70 case 1
71 ystar(:,j) = y - X(:,(j+1):end)*beta((i-1),(j+1)...

:end)' - ∆(i-1)*Z((i-1),:)';
72 case p
73 ystar(:,j) = y - X(:,1:(end-1))*beta((i),1:(end-1)...

)' - ∆(i-1)*Z((i-1),:)';
74 otherwise
75 ystar(:,j) = y - X(:,[1:(j-1) (j+1):end])*[beta((i...

),1:(j-1)) beta((i-1),(j+1):end)]' - ∆(i-1)*Z...
((i-1),:)';

76 end
77 beta(i,j) = randn.* (tau(i-1)*lambdas((i-1),:)*(X(:,j).ˆ2)...

+1/sig2beta(j))ˆ(-0.5) + (tau(i-1).*lambdas((i-1),:)*(...
X(:,j).ˆ2)+1/sig2beta(j))ˆ(-1) * (tau(i-1).*lambdas((i...
-1),:)*(X(:,j).*ystar(:,j))+mubeta(j)/sig2beta(j));

78 end
79 else
80 ystar(:,1) = y - X*beta(i-1) - ∆(i-1)*Z((i-1),:)';
81 %and beta? I added this line
82 beta(i,1) = randn.* (tau(i-1)*lambdas((i-1),:)*(X(:,j).ˆ2)+1/...

sig2beta(j))ˆ(-0.5) + (tau(i-1).*lambdas((i-1),:)*(X(:,j)....
ˆ2)+1/sig2beta(j))ˆ(-1) * (tau(i-1).*lambdas((i-1),:)*(X...
(:,j).*ystar(:,j))+mubeta(j)/sig2beta(j));

83 end
84 ycurl(:,i) = y - X*beta(i,:)' - ∆(i-1)*Z((i-1),:)';
85 tau(i) = gamrnd(n/2 + agamma,(0.5*lambdas((i-1),:)*(ycurl(:,i).ˆ2)...

+ 2*lgamma)ˆ-1);
86 if skew == 1
87 yhat = y - X*beta(i,:)';
88 Z(i,:) = trunc N(0,Inf,(tau(i).*lambdas(i-1,:).*∆(i-1)ˆ2 +1)....

ˆ-1 .* tau(i).*lambdas(i-1,:).*∆(i-1).*yhat',sqrt((tau(i)....

*lambdas(i-1,:).*∆(i-1)ˆ2 +1 ).ˆ-1),1);
89 ∆(i) = randn* (tau(i)*lambdas((i-1),:)*(Z(i,:).ˆ2)'+1/sig2z)...

ˆ(-0.5) + (tau(i)*lambdas((i-1),:)*(Z(i,:).ˆ2)'+1/sig2z)...
ˆ(-1) * (tau(i)*lambdas((i-1),:)*(Z(i,:)'.*yhat) + muz/...
sig2z);

90 ycurl(:,i) = y - X*beta(i,:)' - ∆(i)*Z((i),:)';
91 end
92 lambdas(i,:) = chi2rnd(v(i-1)+1,[1,n]) ./ (v(i-1)+tau(i)*(ycurl(:,...

i)').ˆ2);
93 [v(i)] = draw post v discr(1, n, lambdas(i,:), prior num,i); %...

discretised v or not?
94 end
95

96 beta = beta((burn in+1):end,:);
97 tau = tau((burn in+1):end,1);
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98 lambdas = lambdas((burn in+1):end,:);
99 v = v((burn in+1):end,1);

100 Z = Z((burn in+1):end,:);
101 ∆ = ∆((burn in+1):end,1);

The Metropolis-Hastings sampler for the degrees of freedom in the t or skew t is in the
following program.

1 function [v draws] = draw post v(draws, n, lambdas, varargin)
2 %burn-ins are passed through as well
3 % lambdas are the draws from the gibbs sampler for the other
4 % parameters
5 % v's prior type: 1: truncated exponential, 2:Independence Jeffrey's, ...

3:
6 % Probability Matching or Reference for the orders {v, mu, sig2}, {v, ...

sig2,
7 % mu}, {mu, v, sig2}, 4: Reference for the orders {mu, sig2, v}, {sig2...

, v,
8 % mu}, {sig2, mu, v}
9

10 if nargin > 3
11 prior num = varargin{1};
12 else
13 prior num = 1; %truc exp default
14 end
15 jumpsize = 1;
16 burn in = 50;
17 v draws = zeros(1,(burn in+draws));
18 v old = 5; %10*rand+4; %Pre-seed value
19 logpost v old = -Inf;
20 i = 0;
21 j = 0;
22 while i < (burn in + draws)
23 v = v old + randn*jumpsize;
24 while v < 2
25 v = v old + randn*jumpsize;
26 end
27

28 % v = rand*40;
29 j = j + 1;
30 switch prior num
31 case 1
32 if v > 2 % shouldn't be used, since the previous check ...

ensures v>2
33 logprior v = -v; % v > 2
34 else
35 logprior v = 0;
36 end
37 case 2
38 logprior v = 0.5*(log(v)-log(v+3)) + 0.5*log(psi(1,v/2)-...

psi(1,(v+1)/2)-2*(v+3)/(v*(v+1)ˆ2));
39 case 3
40 logprior v = 0.5*log(psi(1,v/2)-psi(1,(v+1)/2)-2*(v+3)/(v...

*(v+1)ˆ2));
41 case 4
42 logprior v = 0.5*log(psi(1,v/2)-psi(1,(v+1)/2)-2*(v+5)/(v...

*(v+1)*(v+3)));
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43 end
44 logpost v = logprior v + 0.5*v*n*log(v) - 0.5*v*n*log(2) - n*...

gammaln(v/2) + (0.5*v-1)*sum(log(lambdas)) - 0.5*v*sum(lambdas...
);

45 if ((logpost v - logpost v old) > log(rand))
46 i = i + 1;
47 v draws(i) = v;
48 v old = v;
49 logpost v old = logpost v;
50 % else
51 % v draws(i) = v old;
52 end
53 end
54 v draws = v draws(1,(burn in+1):end); %drop the burn-in v's
55 %acceptrate = i/j

To save time in the Gibbs sampler, the degrees of freedom draws are discretised in the
following program.

1 function [v draws] = draw post v discr(draws, n, lambdas, varargin)
2 %burn-ins are passed through as well
3 % lambdas are the draws from the gibbs sampler for the other
4 % parameters
5 % v's prior type: 1: truncated exponential, 2:Independence Jeffrey's, ...

3:
6 % Probability Matching or Reference for the orders {v, mu, sig2}, {v, ...

sig2,
7 % mu}, {mu, v, sig2}, 4: Reference for the orders {mu, sig2, v}, {sig2...

, v,
8 % mu}, {sig2, mu, v}
9 if nargin > 3

10 prior num = varargin{1};
11 else
12 prior num = 1; %exponential
13 end
14 if nargin > 4
15 gibbs round = varargin{2};
16 else
17 gibbs round = 0;
18 end
19 v draws = zeros(1,draws);
20 % v = [2.1:0.1:120 150 250 500 1000]'; %maybe chop up into 0.01 ...

intervals
21 v = logspace(0.3223,3,200)';
22 for i = 1:draws
23 switch prior num
24 case 1
25 logprior v = -v; % v > 2
26 case 2
27 logprior v = 0.5.*(log(v)-log(v+3)) + 0.5.*log(psi(1,v./2)...

-psi(1,(v+1)./2)-2.*(v+3)./(v.*(v+1).ˆ2));
28 case 3
29 logprior v = 0.5.*log(psi(1,v./2)-psi(1,(v+1)./2)-2.*(v+3)...

./(v.*(v+1).ˆ2));
30 case 4
31 logprior v = 0.5.*log(psi(1,v./2)-psi(1,(v+1)./2)-2.*(v+5)...

./(v.*(v+1).*(v+3)));
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32 end
33 logpost v = logprior v + 0.5.*v.*n.*log(v/2) - n.*gammaln(v./2) ...

+ (0.5.*v-1).*sum(log(lambdas)) - 0.5.*v.*sum(lambdas);
34 post v = exp(logpost v - max(logpost v));
35 cum post v = cumsum(post v);
36 cum post v = cum post v./cum post v(end);
37 cum post v = [0 cum post v']';
38 choice = find(cum post v < rand,1,'last');
39 v draws(i) = v(choice);
40 if (gibbs round > 0) && (gibbs round < 31);
41 if v draws(i) < 3
42 v draws(i) = 3;
43 end
44 if v draws(i) > 30
45 v draws(i) = 30;
46 end
47 end
48 end
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B.2 Programs for Chapter 4

The following program runs the first analysis for Chapter 4.

1 % In this program I will generate 3 n-by-4 datasets.
2 % Case 1: y1¬N. y2 |y1¬N. y3 |y1,y2¬N. y4 |y1,y2,y3¬N.
3 % MAR randomness generated using logit with logit betas as parameters.
4 % y1 complete, y2M¬logit(y1), y3M¬logit(y1,y2), y4M¬logit(y1,y2,y3),
5 % but if any of the logit arguments are missing, they are ignored.
6 % This part of project 1 will do the MSE coverage graphs.
7 % 100 incomplete data sets from MCAR and from MAR are created, and in ...

each
8 % 5 iterations are imputed. The MSE's of each idata, cpart idata, and ...

the
9 % imputation methods are created.

10 % In v2, I will pool the 5 cdatas for one scenario [cdata(:,:,1);
11 % cdata(:,:,2) ...], then do mse's of percentiles. So one completed ...

data
12 % set for each missingness scenario
13 clear
14 clc
15 start = tic;
16 n = 1000; %dataset size
17 draws = 500;
18 mi iterations = 5;
19 mi rounds = 15;
20 simulations = 100;
21 logit betas = [-0.3 -0.3 -0.3 -0.3];
22 mcar prop = 0.2;
23 data scenarios = 5;
24 mi options = 9;
25 original data cell = cell(data scenarios,1); % 1 for each ...

data scenario
26 idata cell = cell(1,2,data scenarios);
27 cpart idata cell = cell(1,2,data scenarios);
28 completed data cell = cell(9,2,simulations,data scenarios);
29 parameter text = {'n =', n;
30 'draws =', draws;
31 'mi iterations =', mi iterations;
32 'logit betas =', NaN;
33 'mcar prop =', mcar prop;
34 NaN, NaN;
35 'MCAR missing y1', NaN; % line 7
36 'MCAR missing y2', NaN;
37 'MCAR missing y3', NaN;
38 'MCAR missing y4', NaN;
39 'MCAR cpart miss', NaN;
40 'MAR missing y1', NaN;
41 'MAR missing y2', NaN;
42 'MAR missing y3', NaN;
43 'MAR missing y4', NaN;
44 'MAR cpart miss', NaN;
45 NaN, NaN;
46 'MSE QQ Y2',NaN;
47 'MDM MCAR',NaN;
48 'incomplete',NaN; % now line 20
49 'case deleted',NaN;
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50 'N',NaN;
51 'N {pmm}',NaN;
52 'N {lrd}',NaN;
53 'N {erd}',NaN;
54 't',NaN;
55 't {pmm}',NaN;
56 't {lrd}',NaN;
57 't {erd}',NaN;
58 't {skew}',NaN;
59 NaN, NaN;
60 'MDM MAR',NaN;
61 'incomplete',NaN; % now line 33
62 'case deleted',NaN;
63 'N',NaN;
64 'N {pmm}',NaN;
65 'N {lrd}',NaN;
66 'N {erd}',NaN;
67 't',NaN;
68 't {pmm}',NaN;
69 't {lrd}',NaN;
70 't {erd}',NaN;
71 't {skew}',NaN;
72 NaN, NaN;
73 'MSE QQ Y3',NaN;
74 'MDM MCAR',NaN;
75 'incomplete',NaN; % now line 47
76 'case deleted',NaN;
77 'N',NaN;
78 'N {pmm}',NaN;
79 'N {lrd}',NaN;
80 'N {erd}',NaN;
81 't',NaN;
82 't {pmm}',NaN;
83 't {lrd}',NaN;
84 't {erd}',NaN;
85 't {skew}',NaN;
86 NaN, NaN;
87 'MDM MAR',NaN;
88 'incomplete',NaN; % now line 60
89 'case deleted',NaN;
90 'N',NaN;
91 'N {pmm}',NaN;
92 'N {lrd}',NaN;
93 'N {erd}',NaN;
94 't',NaN;
95 't {pmm}',NaN;
96 't {lrd}',NaN;
97 't {erd}',NaN;
98 't {skew}',NaN;
99 NaN, NaN;

100 'MSE Y4',NaN;
101 'MDM MCAR',NaN;
102 'incomplete',NaN; % now line 74
103 'case deleted',NaN;
104 'N',NaN;
105 'N {pmm}',NaN;
106 'N {lrd}',NaN;
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107 'N {erd}',NaN;
108 't',NaN;
109 't {pmm}',NaN;
110 't {lrd}',NaN;
111 't {erd}',NaN;
112 't {skew}',NaN;
113 NaN,NaN;
114 'MDM MAR',NaN;
115 'incomplete',NaN; % now line 87
116 'case deleted',NaN;
117 'N',NaN;
118 'N {pmm}',NaN;
119 'N {lrd}',NaN;
120 'N {erd}',NaN;
121 't',NaN;
122 't {pmm}',NaN;
123 't {lrd}',NaN;
124 't {erd}',NaN;
125 't {skew}',NaN;
126 NaN, NaN;
127 'MDM MCAR',NaN; % line 18, now 99
128 'idata KS h 2',NaN;
129 'cpart KS h 2',NaN;
130 'cdata KS h 2',NaN;
131 NaN, NaN;
132 'idata KS h 3',NaN;
133 'cpart KS h 3',NaN;
134 'cdata KS h 3',NaN;
135 NaN, NaN;
136 'idata KS h 4',NaN;
137 'cpart KS h 4',NaN;
138 'cdata KS h 4',NaN;
139 NaN, NaN;
140 'MDM MAR',NaN; % line 31, now 112
141 'idata KS h 2',NaN;
142 'cpart KS h 2',NaN;
143 'cdata KS h 2',NaN;
144 NaN, NaN;
145 'idata KS h 3',NaN;
146 'cpart KS h 3',NaN;
147 'cdata KS h 3',NaN;
148 NaN, NaN;
149 'idata KS h 4',NaN;
150 'cpart KS h 4',NaN;
151 'cdata KS h 4',NaN;
152 NaN, NaN;
153 'MSE IMP QQ Y2 Y3 Y4',NaN;
154 'MDM MCAR',NaN;
155 'N',NaN; % now line 127
156 'N {pmm}',NaN;
157 'N {lrd}',NaN;
158 'N {erd}',NaN;
159 't',NaN;
160 't {pmm}',NaN;
161 't {lrd}',NaN;
162 't {erd}',NaN;
163 't {skew}',NaN;
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164 NaN, NaN;
165 'MDM MAR',NaN;
166 'N',NaN; % now line 138
167 'N {pmm}',NaN;
168 'N {lrd}',NaN;
169 'N {erd}',NaN;
170 't',NaN;
171 't {pmm}',NaN;
172 't {lrd}',NaN;
173 't {erd}',NaN;
174 't {skew}',NaN};
175

176 mi option text = cell(14,9);
177 mi option text(1,:) = {'N','N {pmm}','N {lrd}','N {erd}','t','t {pmm}'...

,'t {lrd}','t {erd}','t {skew}'};
178 mi option text(14,:) = {'N','N {pmm}','N {lrd}','N {erd}','t','t {pmm}...

','t {lrd}','t {erd}','t {skew}'};
179

180 xlswrite('Project 01.xlsx',parameter text,'Sheet1','A1');
181 xlswrite('Project 01.xlsx',logit betas,'Sheet1','B4');
182 xlswrite('Project 01.xlsx',mi option text,'Sheet1','B99');
183 xlswrite('Project 01.xlsx',parameter text,'Sheet2','A1');
184 xlswrite('Project 01.xlsx',logit betas,'Sheet2','B4');
185 xlswrite('Project 01.xlsx',mi option text,'Sheet2','B99');
186 xlswrite('Project 01.xlsx',parameter text,'Sheet3','A1');
187 xlswrite('Project 01.xlsx',logit betas,'Sheet3','B4');
188 xlswrite('Project 01.xlsx',mi option text,'Sheet3','B99');
189 xlswrite('Project 01.xlsx',parameter text,'Sheet4','A1');
190 xlswrite('Project 01.xlsx',logit betas,'Sheet4','B4');
191 xlswrite('Project 01.xlsx',mi option text,'Sheet4','B99');
192 xlswrite('Project 01.xlsx',parameter text,'Sheet5','A1');
193 xlswrite('Project 01.xlsx',logit betas,'Sheet5','B4');
194 xlswrite('Project 01.xlsx',mi option text,'Sheet5','B99');
195

196 for data scenario = 1:data scenarios
197 scenario timer = tic;
198 switch data scenario
199 case 1 % Normality
200 y1 = randn(n,1);
201 y2 = 1 + y1 + randn(n,1);
202 y3 = 1 + y1 + y2 + randn(n,1);
203 y4 = 1 + y1 + y2 + y3 + randn(n,1);
204 Y = [y1 y2 y3 y4]; clear y1 y2 y3 y4
205 Original Data = Y;
206 case 2 %
207 y1 = randn(n,1);
208 y2 = 1 + y1 + trnd(6,n,1);
209 y3 = 1 + y1 + y2 + trnd(6,n,1) - randn(n,1);
210 y4 = 1 + y1 + y2 + y3 + trnd(6,n,1) - 2*randn(n,1);
211 Y = [y1 y2 y3 y4]; clear y1 y2 y3 y4
212 Original Data = Y;
213 case 3
214 y1 = randn(n,1);
215 y2 = 1 + y1 + trnd(3,n,1);
216 y3 = 1 + y1 + y2 + trnd(3,n,1) - randn(n,1);
217 y4 = 1 + y1 + y2 + y3 + trnd(3,n,1) - 2*randn(n,1);
218 Y = [y1 y2 y3 y4]; clear y1 y2 y3 y4
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219 Original Data = Y;
220 case 4
221 y1 = randn(n,1);
222 u2 = rand(n,1);
223 y2 = 1 + y1 + (exp(u2)-1).*exp(-0.125*u2.ˆ2); % ...

exponential type
224 u3 = rand(n,1);
225 y3 = 1 + y1 + y2 + (exp(0.75.*u3)-1)./0.75.*exp(0.125*u3....

ˆ2); % skew type
226 u4 = rand(n,1);
227 y4 = 1 + y1 + y2 + y3 + (exp(u4)-1); % lognormal
228 Y = [y1 y2 y3 y4]; clear y1 y2 y3 y4 u2 u3 u4
229 Original Data = Y;
230 case 5
231 y1 = randn(n,1);
232 e2 = 1+exp(1+randn(n,1));
233 e2 = e2-mean(e2);
234 e2 = e2/std(e2) * sqrt(var(y1)*3);
235 y2 = 1 + y1 + e2;
236 e3 = trnd(3,n,1);
237 e3 = e3 - mean(e3);
238 e3 = e3/std(e3) * sqrt(2*(var(y1)+var(y2)));
239 y3 = 1 + y1 + y2 + e3;
240 e4 = trnd(3,n,1)-2*randn(n,1);
241 e4 = e4 -mean(e4);
242 e4 = e4/std(e4) * (var(y1)+var(y2)+var(y3));
243 y4 = 1 + y1 + y2 + y3 +e4;
244 Y = [y1 y2 y3 y4]; clear y1 y2 y3 y4 e2 e3 e4
245 Original Data = Y;
246 end
247 original data cell{data scenario,1} = Original Data;
248 [n p] = size(Y);
249 missingness = NaN*ones(10,simulations);
250 % MCAR y1
251 % MCAR y2
252 % MCAR y3
253 % MCAR y4
254 % MCAR cpart idata
255 % MAR y1
256 % MAR y2
257 % MAR y3
258 % MAR y4
259 % MAR cpart idata
260

261 for miss mech = 1:2;
262

263 ks test slice = zeros(11,9);
264 ks test = NaN*ones(11,9); %See output file
265 ks test(:,1) = zeros(11,1);
266 ks test(3,:) = zeros(1,9);
267 ks test(7,:) = zeros(1,9);
268 ks test(11,:) = zeros(1,9);
269

270 idata 3D = ones(n,p,simulations);
271 cpart 3D = NaN*ones(n,p,simulations);
272

273 for sim = 1:simulations
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274 % C is the binary matrix with 1 indicating observed and 0
275 % indicating missing (completeness matrix).
276

277 switch miss mech
278 case 1 % MCAR missingness
279 idata = Y;
280 P M = [zeros(n,1) rand(n,3)];
281 C = ones(n,4);
282 for col = 2:4 %variables with missingness
283 %U = rand(n,1);
284 C((P M(:,col)<mcar prop),col) = zeros(sum(P M...

(:,col)<mcar prop),1);
285 end
286 % Calculate missingness:
287 idata(C==0)=NaN; % incomplete data
288 cpart idata = idata(isfinite(sum(idata,2)),:); % ...

Case deleted data
289 missingness(1:4,sim) = (sum(isnan(idata))./n)';
290 missingness(5,sim) = 1- length(cpart idata(:,1))/n...

;
291 case 2 % MAR missingness
292 idata = Y;
293 P M = zeros(n,4); %probability missing
294 C = ones(n,4);
295 for col = 2:4 %variables with missingness
296 a = logit betas(1) * ones(n,1);
297 for i = 1:(col-1)
298 a = nansum([a logit betas(i+1)*(idata(:,i)...

-nanmean(idata(:,i)))./nanstd(idata(:,...
i))],2);

299 end
300 P M(:,col) = 0.4./(1+exp(-a));
301 U = rand(n,1);
302 C((U<P M(:,col)),col) = zeros(sum(U<P M(:,col)...

),1);
303 idata(C==0)=NaN; % incomplete data
304 end
305 % Calculate missingness:
306 % idata(C==0)=NaN; % incomplete data
307 cpart idata = idata(isfinite(sum(idata,2)),:); % ...

Case deleted data
308 missingness(6:9,sim) = (sum(isnan(idata))./n)';
309 missingness(10,sim) = 1- length(cpart idata(:,1))/...

n;
310 end
311 idata 3D(:,:,sim) = idata;
312 cpart 3D(1:length(cpart idata(:,1)),:,sim) = cpart idata;
313

314 % Calculate contribution to kstest reject proportion in
315 % this simulation, for idata and cpart idata
316 ks test slice(1,1) = kstest2(Original Data(:,2),idata(:,2)...

)/simulations;
317 ks test slice(2,1) = kstest2(Original Data(:,2),...

cpart idata(:,2))/simulations;
318 ks test slice(5,1) = kstest2(Original Data(:,3),idata(:,3)...

)/simulations;
319 ks test slice(6,1) = kstest2(Original Data(:,3),...
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cpart idata(:,3))/simulations;
320 ks test slice(9,1) = kstest2(Original Data(:,4),idata(:,4)...

)/simulations;
321 ks test slice(10,1) = kstest2(Original Data(:,4),...

cpart idata(:,4))/simulations;
322

323 M = isnan(idata);
324 % idata is then used for the MI part
325 for mi option = 1:mi options
326 disp(strcat(['Data Scenario ' num2str(data scenario) '...

, MI option ' num2str(mi option), ', Miss Mech ' ...
num2str(miss mech)]))

327 switch mi option
328 case 1
329 [cdata,¬,¬]=SRMI(idata,0,0,[1 1 1 1],mi rounds...

,mi iterations);
330 case 2
331 [cdata,¬,¬]=SRMI(idata,0,0,[1 1 1 1],mi rounds...

,mi iterations,0,0,[1 1 1 1],0.1);
332 case 3
333 [cdata,¬,¬]=SRMI(idata,0,0,[1 1 1 1],mi rounds...

,mi iterations,0,0,[2 2 2 2],0.1);
334 case 4
335 [cdata,¬,¬]=SRMI(idata,0,0,[1 1 1 1],mi rounds...

,mi iterations,0,0,[3 3 3 3],0.1);
336 case 5
337 [cdata,¬,¬]=SRMI(idata,0,0,[1.5 1.5 1.5 1.5],...

mi rounds,mi iterations);
338 case 6
339 [cdata,¬,¬]=SRMI(idata,0,0,[1.5 1.5 1.5 1.5],...

mi rounds,mi iterations,0,0,[1 1 1 1],0.1)...
;

340 case 7
341 [cdata,¬,¬]=SRMI(idata,0,0,[1.5 1.5 1.5 1.5],...

mi rounds,mi iterations,0,0,[2 2 2 2],0.1)...
;

342 case 8
343 [cdata,¬,¬]=SRMI(idata,0,0,[1.5 1.5 1.5 1.5],...

mi rounds,mi iterations,0,0,[3 3 3 3],0.1)...
;

344 case 9
345 [cdata,¬,¬]=SRMI(idata,0,0,[1.6 1.6 1.6 1.6],...

mi rounds,mi iterations);
346 end
347 completed data cell{mi option,miss mech,sim,...

data scenario} = cdata;
348 %kstest
349 for j = 2:4
350 for i = 1:mi iterations
351 ks test slice(4*(j-1)-1,mi option) = ...

ks test slice(4*(j-1)-1, mi option) + ...
kstest2(Original Data(:,j),cdata(:,j,i))/(...
mi iterations*simulations);

352 end
353 end
354

355 end
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356 disp(strcat(['Simulation ' num2str(sim) ', finished with ...
MI option ' num2str(mi option) ', MDM ' num2str(...
miss mech) ' on data scenario ' num2str(data scenario)...
]))

357 ks test(:,:) = ks test(:,:) + ks test slice(:,:);
358 end
359 idata cell{1,miss mech,data scenario} = idata 3D;
360 cpart idata cell{1,miss mech,data scenario} = cpart 3D;
361 xlswrite('Project 01.xlsx',ks test(:,:),strcat(['Sheet' ...

num2str(data scenario)]),strcat(['B' num2str(100+13*(...
miss mech-1))]));

362 end
363 xlswrite('Project 01.xlsx',missingness,strcat(['Sheet' num2str(...

data scenario)]),'B7');
364 disp(strcat(['Finished with page ' num2str(data scenario)]))
365 toc(scenario timer)
366 save 'D:\Workspace P1 v2 n1000.mat'
367 end
368 %now that I have all the data arrays, I must find the mse's of the qq-...

plots
369 %for the columns within each cell (against Original Data columns)
370 %Original Data n x p
371 %idata cell 1,2,4 each with n x p
372 %cpart idata cell 1,2,4 each with n x p
373 %cdata cell 9,2,4 each with n x p
374 disp('Starting MSE calculations of distribution QQ plots')
375 mse QQ i = cell(1,2,data scenarios);
376 mse QQ c = cell(1,2,data scenarios);
377 % Preallocation
378 for data scenario = 1:data scenarios
379 for miss mech = 1:2;
380 mse QQ i{1,miss mech,data scenario} = zeros(2,simulations,3);
381 mse QQ c{1,miss mech,data scenario} = zeros(9,simulations,3);
382 end
383 end
384

385 for data scenario = 1:data scenarios
386 target pctiles = prctile(original data cell{data scenario}(:,2:end...

),1:99);
387 for miss mech = 1:2;
388

389 for sim = 1:simulations
390 %idata mses
391 mse QQ i{1,miss mech,data scenario}(1,sim,:) = permute(...

mean((target pctiles - prctile(idata cell{1,miss mech,...
data scenario}(:,2:end,sim),1:99)).ˆ2),[1 3 2]);

392 %cpart idata mses
393 % Variable 1 might have a different distribution!
394 mse QQ i{1,miss mech,data scenario}(2,sim,:) = permute(...

mean((target pctiles - prctile(cpart idata cell{1,...
miss mech,data scenario}(:,2:end,sim),1:99)).ˆ2),[1 3 ...
2]);

395 %here I stack the mi iterations of cdata on top of one ...
another,

396 %without the complete first variable
397 tmp = zeros(mi iterations*n,p-1);
398 for mi option = 1:mi options
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399 for mi iteration = 1:mi iterations
400 tmp(((mi iteration-1)*n+1):(mi iteration*n),:) = ...

completed data cell{mi option,miss mech,sim,...
data scenario}(:,2:end,mi iteration);

401 end
402 %cdata mses
403 mse QQ c{1,miss mech,data scenario}(mi option,sim,:) =...

permute(mean((target pctiles - prctile(tmp,1:99)...
).ˆ2),[1 3 2]);

404 end
405

406 end
407 end
408 end
409 % now we have mse matrices (in a 1 x 2 x 4 cell) that are 11 x
410 % mi iterations x 3 (columns in depth)
411 disp('Finished with MSE calculations of distribution QQ plots')
412

413 % MSE Data writer
414 mse QQ cell = cell(1,2,data scenarios);
415 for data scenario = 1:data scenarios
416 for miss mech = 1:2
417 mse QQ = NaN*ones(11,simulations,3);
418 mse QQ(1:2,:,:) = mse QQ i{1,miss mech,data scenario};
419 mse QQ(3:11,:,:) = mse QQ c{1,miss mech,data scenario};
420 for col = 1:3
421 xlswrite('Project 01.xlsx',mse QQ(:,:,col),strcat(['Sheet'...

num2str(data scenario)]),strcat(['B' num2str(20+(col...
-1)*27+(miss mech-1)*13)]));

422 end
423 mse QQ cell{1,miss mech,data scenario} = mse QQ;
424 end
425 end
426

427 toc(start)
428 %Plotting bar graphs for mses
429 label array = {'incomplete','case deleted','N','N {pmm}','N {lrd}','N ...

{erd}','t','t {pmm}','t {lrd}','t {erd}','t {skew}'};
430 for data scenario = 1:data scenarios
431 for miss mech = 1:2
432 figure
433 title(strcat(['Imputation coverage intervals for data scenario...

' num2str(data scenario) ' and MDM ' num2str(miss mech)])...
)

434 for i = 1:3 % the number of columns with missingness
435 subplot(3,1,i)
436 boxplot(mse QQ cell{1,miss mech,data scenario}(:,:,i)','...

labels',label array)
437 title(strcat(['Data scenario ' num2str(data scenario) ', ...

MDM ' num2str(miss mech) ', MSE of Y' num2str(i+1)]))
438 end
439 end
440 end

The following program box-plotted the ranks for the simulation study in Chapter 4.

1 l string = {'INC','CC','N','N {PMM}','N {LRD}','N {ERD}','t','t {PMM}'...
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,'t {LRD}','t {ERD}','t {skew}'};
2 data = [10 11 2 7 5 1 3 8 6 9 4
3 9 11 1 7 6 3 2 8 5 10 4
4 10 11 2 8 6 1 4 7 5 9 3
5 10 11 3 7 5 1 2 8 6 9 4
6 10 11 1 8 5 3 4 9 6 7 2
7 10 11 5 9 2 4 6 8 1 7 3
8 10 11 3 8 6 1 4 9 5 7 2
9 10 11 5 8 2 3 6 9 1 7 4

10 10 11 2 9 6 4 5 8 7 1 3
11 8 11 1 10 6 4 2 9 7 5 3
12 10 11 1 8 7 2 4 9 6 3 5
13 10 11 3 8 4 2 5 9 7 6 1
14 10 11 7 9 3 6 1 8 4 5 2
15 10 11 1 9 5 2 4 8 6 7 3
16 10 11 3 9 4 7 1 8 5 6 2
17 10 11 4 9 6 3 2 8 5 7 1
18 10 11 3 9 7 1 4 8 5 2 6
19 10 11 2 8 3 7 4 9 5 1 6
20 10 11 5 9 6 1 2 8 7 3 4
21 10 11 5 8 4 3 7 9 2 1 6
22 10 11 2 9 7 1 4 8 6 5 3
23 10 11 1 9 5 4 3 8 6 7 2
24 10 11 3 9 6 1 2 8 7 5 4
25 10 11 4 8 6 2 3 9 5 7 1
26 10 11 2 9 5 1 4 8 7 3 6
27 6 11 10 8 1 9 4 7 2 5 3
28 10 11 4 9 6 1 3 8 7 2 5
29 8 11 10 7 1 9 3 6 4 5 2
30 9 11 5 8 6 1 2 10 7 3 4
31 8 11 4 10 5 3 2 9 6 7 1
32 10 11 2 8 4 1 5 9 6 7 3
33 10 11 4 9 5 3 1 8 6 7 2
34 10 11 2 8 5 3 1 9 6 4 7
35 8 11 4 9 5 1 3 10 6 7 2
36 10 11 4 9 6 1 2 8 7 5 3
37 10 11 2 9 5 4 3 8 6 7 1
38 10 11 2 8 5 1 3 7 6 9 4
39 7 11 1 9 5 2 4 8 6 10 3
40 10 11 1 7 5 2 3 8 6 9 4
41 9 11 4 8 5 3 1 7 6 10 2
42 10 11 1 8 5 2 4 9 6 7 3
43 9 11 4 10 6 1 2 8 5 7 3
44 10 11 2 8 6 3 4 9 5 7 1
45 10 11 4 8 6 2 3 9 5 7 1
46 10 11 4 8 5 1 3 9 6 7 2
47 10 11 4 8 5 2 1 9 6 7 3
48 10 11 3 9 6 1 2 8 5 7 4
49 10 11 2 8 5 3 1 9 6 7 4
50 1 11 8 4 2 3 9 7 6 5 10
51 1 9 8 5 3 6 11 2 4 7 10
52 1 11 10 2 3 6 9 7 4 5 8
53 1 11 10 6 4 5 9 3 2 7 8
54 4 11 6 8 5 3 1 7 9 10 2
55 2 11 9 8 1 3 7 6 4 10 5
56 9 11 5 7 4 3 2 8 6 10 1
57 9 11 8 7 2 5 3 6 1 10 4
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58 1 11 5 8 6 2 4 9 7 10 3
59 2 10 9 7 6 1 4 8 5 11 3
60 1 11 5 6 8 3 2 7 9 10 4
61 9 10 8 4 5 1 3 6 7 11 2];
62

63

64 subplot(1,3,3)
65 [s mean data, I] = sort(mean(data));
66 s data = data(:,I);
67 s labels = l string(I);
68 boxplot(s data,'labels',s labels,'plotstyle','compact')
69 title('Combined')
70

71 subplot(1,3,1)
72 data200 = data(1:2:59,:);
73 [s mean data, I] = sort(mean(data200));
74 s data = data200(:,I);
75 s labels = l string(I);
76 boxplot(s data,'labels',s labels,'plotstyle','compact')
77 title('n = 200')
78

79 subplot(1,3,2)
80 data1000 = data(2:2:60,:);
81 [s mean data, I] = sort(mean(data1000));
82 s data = data1000(:,I);
83 s labels = l string(I);
84 boxplot(s data,'labels',s labels,'plotstyle','compact')
85 title('n = 1000')
86

87 l string = {'N','N {PMM}','N {LRD}','N {ERD}','t','t {PMM}','t {LRD}',...
't {ERD}','t {skew}'};

88 data =[1 8 6 3 2 7 5 9 4
89 8 2 6 7 4 1 9 3 5
90 2 3 9 7 5 6 8 1 4
91 8 1 3 6 7 2 4 9 5
92 8 3 6 5 2 7 1 9 4
93 1 8 7 2 6 9 5 4 3
94 8 6 4 2 3 7 5 9 1
95 6 2 3 4 7 5 9 1 8
96 4 8 5 3 6 7 1 9 2
97 2 5 4 6 9 1 8 3 7
98 1 7 6 5 4 8 3 9 2
99 5 1 4 7 6 2 3 9 8

100 3 1 7 5 6 2 8 9 4
101 2 7 6 4 1 5 8 9 3
102 1 3 8 4 5 2 7 9 6
103 3 9 5 4 6 8 7 1 2
104 8 5 3 7 6 2 1 4 9
105 7 8 5 2 1 6 4 9 3
106 7 4 5 8 6 3 2 9 1
107 6 4 5 1 2 8 3 9 7
108 4 8 5 1 3 7 2 9 6
109 7 5 6 8 2 4 3 9 1
110 8 1 7 5 6 3 2 9 4
111 6 3 1 5 7 4 2 9 8
112 8 1 2 6 5 7 4 9 3
113 8 7 5 6 4 3 1 9 2
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114 8 4 7 2 1 5 6 9 3
115 8 6 3 4 2 5 7 9 1
116 8 4 6 1 3 7 5 9 2
117 3 4 8 5 6 1 2 9 7
118 4 3 5 2 8 7 6 9 1
119 6 3 7 5 4 1 8 9 2
120 5 8 7 6 1 9 4 3 2
121 7 8 4 2 3 6 1 9 5
122 2 5 7 1 6 3 8 9 4
123 2 7 5 6 1 8 3 9 4
124 8 7 2 6 4 3 1 9 5
125 7 3 6 5 1 8 4 9 2
126 1 8 6 5 7 4 2 9 3
127 8 6 2 7 1 4 3 9 5
128 5 6 2 4 3 7 1 9 8
129 6 5 7 4 1 3 8 9 2
130 9 1 7 3 4 2 6 5 8
131 8 1 7 5 4 2 3 9 6
132 1 3 8 6 4 2 7 9 5
133 9 1 2 7 5 6 4 3 8
134 1 6 5 4 3 7 8 9 2
135 1 7 8 4 3 5 6 9 2
136 6 3 5 2 7 4 1 9 8
137 6 1 8 3 4 2 7 9 5
138 7 2 5 4 6 1 3 9 8
139 7 1 5 4 6 2 3 9 8
140 6 8 2 3 1 7 5 9 4
141 8 2 5 4 7 1 3 9 6
142 8 2 6 1 5 3 7 9 4
143 8 1 2 7 6 4 5 9 3
144 1 8 4 7 6 5 2 9 3
145 8 3 1 5 6 2 4 9 7
146 8 4 7 5 1 3 6 9 2
147 1 6 2 5 3 8 4 9 7];
148

149 figure
150 subplot(1,3,3)
151 [s mean data, I] = sort(mean(data));
152 s data = data(:,I);
153 s labels = l string(I);
154 boxplot(s data,'labels',s labels,'plotstyle','compact')
155 title('Combined')
156

157 subplot(1,3,1)
158 data200 = data(1:30,:);
159 [s mean data, I] = sort(mean(data200));
160 s data = data200(:,I);
161 s labels = l string(I);
162 boxplot(s data,'labels',s labels,'plotstyle','compact')
163 title('n = 200')
164

165 subplot(1,3,2)
166 data1000 = data(31:60,:);
167 [s mean data, I] = sort(mean(data1000));
168 s data = data1000(:,I);
169 s labels = l string(I);
170 boxplot(s data,'labels',s labels,'plotstyle','compact')
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171 title('n = 1000')

The following program performed the second analysis study in Chapter 4.

1 % In this program I will generate 3 n-by-4 datasets.
2 % Case 1: y1¬N. y2 |y1¬N. y3 |y1,y2¬N. y4 |y1,y2,y3¬N.
3 % MAR randomness generated using logit with logit betas as parameters.
4 % y1 complete, y2M¬logit(y1), y3M¬logit(y1,y2), y4M¬logit(y1,y2,y3),
5 % but if any of the logit arguments are missing, they are ignored.
6

7 % This part of project 1 will do the imputation coverage graphs.
8 % One incomplete data set from MCAR and one from MCAR are imputed, and...

100
9 % iterations are imputed. The KS test accept/reject fraction is ...

calculated
10 % for each iteration, and a coverage graph for T2, Y3 and Y4 is ...

created.
11 clear
12 clc
13 start = tic;
14 n = 1000; %dataset size
15 draws = 500;
16 mi rounds = 15;
17 mi iterations = 200;
18 logit betas = [-0.3 -0.3 -0.3 -0.3];
19 mcar prop = 0.2;
20 data scenarios = 5;
21 mi options = 9;
22 imp cov cdata = cell(1,2,data scenarios);
23 mse imp cov cdata = cell(1,2,data scenarios);
24 for i = 1:2 % The MDMs
25 for j = 1:4 % The different data scenarios
26 imp cov cdata{1,i,j} = zeros(mi options,99,3); %mi opt x 1% ...

percentile x cols
27 mse imp cov cdata{1,i,j} = zeros(mi options,3); %mi opt x cols
28 end
29 end
30 original data cell = cell(data scenarios,1); % 1 for each ...

data scenario
31 idata cell = cell(1,2,data scenarios);
32 cpart idata cell = cell(1,2,data scenarios);
33 completed data cell = cell(9,2,data scenarios);
34 parameter text = {'n =', n;
35 'draws =', draws;
36 'mi iterations =', mi iterations;
37 'logit betas =', NaN;
38 'mcar prop =', mcar prop;
39 NaN, NaN;
40 'MCAR missing y1', NaN; % line 7
41 'MCAR missing y2', NaN;
42 'MCAR missing y3', NaN;
43 'MCAR missing y4', NaN;
44 'MCAR cpart miss', NaN;
45 'MAR missing y1', NaN;
46 'MAR missing y2', NaN;
47 'MAR missing y3', NaN;
48 'MAR missing y4', NaN;
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49 'MAR cpart miss', NaN;
50 NaN, NaN;
51 'MSE IMP QQ Y2 Y3 Y4',NaN;
52 'MDM MCAR',NaN;
53 'N',NaN; %line 20
54 'N {pmm}',NaN;
55 'N {lrd}',NaN;
56 'N {erd}',NaN;
57 't',NaN;
58 't {pmm}',NaN;
59 't {lrd}',NaN;
60 't {erd}',NaN;
61 't {skew}',NaN;
62 NaN, NaN;
63 'MDM MAR',NaN;
64 'N',NaN; %line 31
65 'N {pmm}',NaN;
66 'N {lrd}',NaN;
67 'N {erd}',NaN;
68 't',NaN;
69 't {pmm}',NaN;
70 't {lrd}',NaN;
71 't {erd}',NaN;
72 't {skew}',NaN};
73

74 xlswrite('Project 01 Part 2.xlsx',parameter text,'Sheet1','A1');
75 xlswrite('Project 01 Part 2.xlsx',logit betas,'Sheet1','B4');
76 xlswrite('Project 01 Part 2.xlsx',parameter text,'Sheet2','A1');
77 xlswrite('Project 01 Part 2.xlsx',logit betas,'Sheet2','B4');
78 xlswrite('Project 01 Part 2.xlsx',parameter text,'Sheet3','A1');
79 xlswrite('Project 01 Part 2.xlsx',logit betas,'Sheet3','B4');
80 xlswrite('Project 01 Part 2.xlsx',parameter text,'Sheet4','A1');
81 xlswrite('Project 01 Part 2.xlsx',logit betas,'Sheet4','B4');
82 xlswrite('Project 01 Part 2.xlsx',parameter text,'Sheet5','A1');
83 xlswrite('Project 01 Part 2.xlsx',logit betas,'Sheet5','B4');
84 for data scenario = 1:data scenarios
85 scenario timer = tic;
86 switch data scenario
87 case 1 % Normality
88 y1 = randn(n,1);
89 y2 = 1 + y1 + randn(n,1);
90 y3 = 1 + y1 + y2 + randn(n,1);
91 y4 = 1 + y1 + y2 + y3 + randn(n,1);
92 Y = [y1 y2 y3 y4]; clear y1 y2 y3 y4
93 Original Data = Y;
94 case 2 %
95 y1 = randn(n,1);
96 y2 = 1 + y1 + trnd(6,n,1);
97 y3 = 1 + y1 + y2 + trnd(6,n,1) - randn(n,1);
98 y4 = 1 + y1 + y2 + y3 + trnd(6,n,1) - 2*randn(n,1);
99 Y = [y1 y2 y3 y4]; clear y1 y2 y3 y4

100 Original Data = Y;
101 case 3
102 y1 = randn(n,1);
103 y2 = 1 + y1 + trnd(3,n,1);
104 y3 = 1 + y1 + y2 + trnd(3,n,1) - randn(n,1);
105 y4 = 1 + y1 + y2 + y3 + trnd(3,n,1) - 2*randn(n,1);
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106 Y = [y1 y2 y3 y4]; clear y1 y2 y3 y4
107 Original Data = Y;
108 case 4
109 y1 = randn(n,1);
110 u2 = rand(n,1);
111 y2 = 1 + y1 + (exp(u2)-1).*exp(-0.125*u2.ˆ2); % ...

exponential type
112 u3 = rand(n,1);
113 y3 = 1 + y1 + y2 + (exp(0.75.*u3)-1)./0.75.*exp(0.125*u3....

ˆ2); % skew type
114 u4 = rand(n,1);
115 y4 = 1 + y1 + y2 + y3 + (exp(u4)-1); % lognormal
116 Y = [y1 y2 y3 y4]; clear y1 y2 y3 y4 u2 u3 u4
117 Original Data = Y;
118 case 5
119 y1 = randn(n,1);
120 e2 = 1+exp(1+randn(n,1));
121 e2 = e2-mean(e2);
122 e2 = e2/std(e2) * sqrt(var(y1)*3);
123 y2 = 1 + y1 + e2;
124 e3 = trnd(3,n,1);
125 e3 = e3 - mean(e3);
126 e3 = e3/std(e3) * sqrt(2*(var(y1)+var(y2)));
127 y3 = 1 + y1 + y2 + e3;
128 e4 = trnd(3,n,1)-2*randn(n,1);
129 e4 = e4 -mean(e4);
130 e4 = e4/std(e4) * (var(y1)+var(y2)+var(y3));
131 y4 = 1 + y1 + y2 + y3 +e4;
132 Y = [y1 y2 y3 y4]; clear y1 y2 y3 y4 e2 e3 e4
133 Original Data = Y;
134 end
135 original data cell{data scenario,1} = Original Data;
136 [n p] = size(Y);
137 missingness = zeros(10,1);
138 % MCAR y1
139 % MCAR y2
140 % MCAR y3
141 % MCAR y4
142 % MCAR cpart idata
143 % MAR y1
144 % MAR y2
145 % MAR y3
146 % MAR y4
147 % MAR cpart idata
148 for miss mech = 1:2;
149 % C is the binary matrix with 1 indicating observed and 0
150 % indicating missing (completeness matrix).
151 switch miss mech
152 case 1 % MCAR missingness
153 idata = Y;
154 P M = [zeros(n,1) rand(n,3)];
155 C = ones(n,4);
156 for col = 2:4 %variables with missingness
157 %U = rand(n,1);
158 C((P M(:,col)<mcar prop),col) = zeros(sum(P M(:,...

col)<mcar prop),1);
159 end
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160 % Calculate missingness:
161 idata(C==0)=NaN; % incomplete data
162 cpart idata = idata(isfinite(sum(idata,2)),:); % Case ...

deleted data
163 missingness(1:4,1) = (sum(isnan(idata))./n)';
164 missingness(5,1) = 1- length(cpart idata(:,1))/n;
165 case 2 % MAR missingness
166 idata = Y;
167 P M = zeros(n,4); %probability missing
168 C = ones(n,4);
169 for col = 2:4 %variables with missingness
170 a = logit betas(1) * ones(n,1);
171 for i = 1:(col-1)
172 a = nansum([a logit betas(i+1)*(idata(:,i)-...

nanmean(idata(:,i)))./nanstd(idata(:,i))...
],2);

173 end
174 P M(:,col) = 0.4./(1+exp(-a));
175 U = rand(n,1);
176 C((U<P M(:,col)),col) = zeros(sum(U<P M(:,col)),1)...

;
177 idata(C==0)=NaN; % incomplete data
178 end
179 % Calculate missingness:
180 % idata(C==0)=NaN; % incomplete data
181 cpart idata = idata(isfinite(sum(idata,2)),:); % Case ...

deleted data
182 missingness(6:9,1) = (sum(isnan(idata))./n)';
183 missingness(10,1) = 1- length(cpart idata(:,1))/n;
184 end
185 M = isnan(idata);
186 for mi option = 1:9
187 mi start = tic; % Timer for the SRMI procedure
188 disp(strcat(['Data Scenario ' num2str(data scenario) ', ...

MI option ' num2str(mi option), ', Miss Mech ' num2str...
(miss mech)]))

189 switch mi option
190 case 1
191 [cdata,¬,¬]=SRMI(idata,0,0,[1 1 1 1],20,...

mi iterations);
192 e col = 'B';
193 case 2
194 [cdata,¬,¬]=SRMI(idata,0,0,[1 1 1 1],20,...

mi iterations,0,0,[1 1 1 1],0.1);
195 e col = 'C';
196 case 3
197 [cdata,¬,¬]=SRMI(idata,0,0,[1 1 1 1],20,...

mi iterations,0,0,[2 2 2 2],0.1);
198 e col = 'D';
199 case 4
200 [cdata,¬,¬]=SRMI(idata,0,0,[1 1 1 1],20,...

mi iterations,0,0,[3 3 3 3],0.1);
201 e col = 'E';
202 case 5
203 [cdata,¬,¬]=SRMI(idata,0,0,[1.5 1.5 1.5 1.5],20,...

mi iterations);
204 e col = 'F';
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205 case 6
206 [cdata,¬,¬]=SRMI(idata,0,0,[1.5 1.5 1.5 1.5],20,...

mi iterations,0,0,[1 1 1 1],0.1);
207 e col = 'G';
208 case 7
209 [cdata,¬,¬]=SRMI(idata,0,0,[1.5 1.5 1.5 1.5],20,...

mi iterations,0,0,[2 2 2 2],0.1);
210 e col = 'H';
211 case 8
212 [cdata,¬,¬]=SRMI(idata,0,0,[1.5 1.5 1.5 1.5],20,...

mi iterations,0,0,[3 3 3 3],0.1);
213 e col = 'I';
214 case 9
215 [cdata,¬,¬]=SRMI(idata,0,0,[1.6 1.6 1.6 1.6],20,...

mi iterations);
216 e col = 'J';
217 end
218 completed data cell{mi option,miss mech,data scenario} = ...

cdata;
219 toc(mi start)
220

221 %counting coverage
222 for col = 2:p %we know var 1 is full
223 X = repmat(Original Data(M(:,col)==1,col),1,99);
224 tmp = cdata(M(:,col)==1,col,:);
225 tmp = reshape(tmp,length(tmp(:,1,1)),mi iterations);
226 P = prctile(tmp,0.5:0.5:99.5,2);
227 P1 = P(:,1:99);
228 P2 = P(:,199:-1:101);
229 col coverage = mean((P1<X) & (P2>X));
230 col coverage = col coverage(:,end:-1:1);
231 %Save the coverages, and MSEs of coverages:
232 imp cov cdata{1,miss mech,data scenario}(mi option,:,(...

col-1)) = col coverage;
233 mse imp cov cdata{1,miss mech,data scenario}(mi option...

,(col-1)) = mean(((1:99)-col coverage*100).ˆ2);
234 end
235 end
236 disp(strcat(['Finished with MI option ' num2str(mi option) ' ...

on data scenario ' num2str(data scenario)]))
237 end
238 disp(strcat(['Finished with page ' num2str(data scenario)]))
239 toc(scenario timer)
240 end
241

242 %now that I have all the data arrays, I must fins the mse's of the qq-...
plots

243 %for the columns within each cell (against Original Data columns)
244 %Original Data n x p
245 %idata cell 1,2,4 each with n x p
246 %cpart idata cell 1,2,4 each with n x p
247 %cdata cell 9,2,4 each with n x p
248

249 % MSE imputations Data writer
250 for data scenario = 1:data scenarios
251 for miss mech = 1:2
252 xlswrite('Project 01 Part 2.xlsx',mse imp cov cdata{1,...
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miss mech,data scenario}(:,:),strcat(['Sheet' num2str(...
data scenario)]),strcat(['B' num2str(20+(miss mech-1)...

*11)]));
253 end
254 end
255 toc(start)
256 xlswrite('Project 01 Part 2.xlsx',missingness,strcat(['Sheet' num2str(...

data scenario)]),'B7');
257 save D:\Workspace P1b n1000
258

259 % Plotting coverage for imputations
260 for data scenario = 1:data scenarios
261 for miss mech = 1:2
262 figure
263 title(strcat(['Imputation coverage intervals for data scenario...

' num2str(data scenario) ' and MDM ' num2str(miss mech)])...
)

264 for i = 1:3 % the number of columns with missingness
265 subplot(3,1,i)
266 hold on
267 plot([0.01 0.99] ,[0.01 0.99],'k')
268 plot(0.01:0.01:0.99, imp cov cdata{1,miss mech,...

data scenario}(1,:,i)','b')
269 plot(0.01:0.01:0.99, imp cov cdata{1,miss mech,...

data scenario}(2,:,i)','.b')
270 plot(0.01:0.01:0.99, imp cov cdata{1,miss mech,...

data scenario}(3,:,i)','--b')
271 plot(0.01:0.01:0.99, imp cov cdata{1,miss mech,...

data scenario}(4,:,i)','-.b')
272 plot(0.01:0.01:0.99, imp cov cdata{1,miss mech,...

data scenario}(5,:,i)','r')
273 plot(0.01:0.01:0.99, imp cov cdata{1,miss mech,...

data scenario}(6,:,i)','.r')
274 plot(0.01:0.01:0.99, imp cov cdata{1,miss mech,...

data scenario}(7,:,i)','--r')
275 plot(0.01:0.01:0.99, imp cov cdata{1,miss mech,...

data scenario}(8,:,i)','-.r')
276 plot(0.01:0.01:0.99, imp cov cdata{1,miss mech,...

data scenario}(9,:,i)','g')
277 title(strcat(['Data page ' num2str(data scenario) ', MDM '...

num2str(miss mech) ', coverage of Y' num2str(i+1)]))
278 legend('45 deg','N','N {pmm}','N {lrd}','N {erd}','t','t {...

pmm}','t {lrd}','t {erd}','t {skew}','Location','...
NorthEastOutside')

279 hold off
280 end
281 end
282 end
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B.3 Programs for Chapter 5

The following program performs the basic cppp example from Chapter 5.

1 sims layer1 = 10000;
2 sims layer2 = 10000;
3 n = 16;
4 mu 0 = 5;
5 sig2 0 = 9;
6 sig2 = 4;
7 cppp0 simulations = zeros(sims layer1,1);
8 cppp1 simulations = zeros(sims layer1,1);
9

10 for cppp sim = 1:sims layer1
11 % one data set
12 mu draw = randn*sig2 0ˆ0.5+mu 0;
13 y0 = mu draw + sig2ˆ0.5*randn(n,1);
14 ybar = mean(y0);
15 lRSS = 1/sig2 * sum((y0-ybar).ˆ2);
16 Pn = (n*sig2 0)/(sig2+n*sig2 0);
17 cppp = 0;
18 z1 = randn(sims layer2,1);
19 z2 = randn(sims layer2,1);
20 w = chi2rnd(n-1,sims layer2,1);
21 rhs = lRSS + Pn*(z1-(nˆ0.5)*(1-Pn)/(Pnˆ0.5*sig2ˆ0.5)*(ybar-mu 0))....

ˆ2 - Pn*(z1 - (nˆ0.5)*(1-Pn)*sig2 0ˆ0.5/(Pn*sig2ˆ0.5)*z2).ˆ2;
22 cppp0 simulations(cppp sim) = mean(w>rhs);
23 if mod(cppp sim,100) == 0
24 disp(cppp sim)
25 end
26 end
27 hist(cppp0 simulations)
28

29 for cppp sim = 1:sims layer1
30 % one data set
31 mu draw = randn*sig2 0ˆ0.5+mu 0;
32 [truncNs] = trunc N(0,Inf,0,1,n);
33 y1 = mu draw + truncNs + sig2ˆ0.5*trnd(5,n,1);
34 ybar = mean(y1);
35 lRSS = 1/sig2 * sum((y1-ybar).ˆ2);
36 Pn = (n*sig2 0)/(sig2+n*sig2 0);
37 cppp = 0;
38 z1 = randn(sims layer2,1);
39 z2 = randn(sims layer2,1);
40 w = chi2rnd(n-1,sims layer2,1);
41 rhs = lRSS + Pn*(z1-(nˆ0.5)*(1-Pn)/(Pnˆ0.5*sig2ˆ0.5)*(ybar-mu 0))....

ˆ2 - Pn*(z1 - (nˆ0.5)*(1-Pn)*sig2 0ˆ0.5/(Pn*sig2ˆ0.5)*z2).ˆ2;
42 cppp1 simulations(cppp sim) = mean(w>rhs);
43 if mod(cppp sim,100) == 0
44 disp(cppp sim)
45 end
46 end
47 figure(1)
48 set(1,'units','normalized','position',[0.05 0.05 0.25 0.5]);
49 subplot(2,1,1)
50 hist(cppp0 simulations)
51 title('Histogram of cppp values under the null model')
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52 subplot(2,1,2)
53 hist(cppp1 simulations)
54 title('Histogram of cppp values under the a skew t alternative model')
55 export fig cppp example.pdf -nocrop

The following program performs the MCMC approximation of the cppp from Chapter 5.

1 clear
2 clc
3 n = 200; %dataset size
4 pppsims = 200;
5 sims = 500;
6 ppp0 = zeros(1,sims);
7 cppp0 = zeros(1,sims);
8 pppt0 = zeros(pppsims,sims);
9 ppp1 = zeros(1,sims);

10 cppp1 = zeros(1,sims);
11 pppt1 = zeros(pppsims,sims);
12

13 model = 1;
14

15 for sim = 1:sims
16 tic
17 sim
18 x0 = rand(n,1);
19 y0 = x0 + 1 + randn(n,1); %null model
20 [cppp0(sim), ppp0(sim), pppt0(:,sim)] = cppp val complete(y0, x0, ...

model, pppsims, 2,0,0);
21 xlswrite('CabrasOutput N full.xlsx',[ppp0(sim) cppp0(sim)],'Sheet1...

', strcat('A', num2str(sim)));
22 toc
23 end
24

25 for sim = 1:sims
26 tic
27 sim
28 x1 = rand(n,1);
29 y1 = x1 + 1 + 0.5*trunc N(0,Inf,0,1,n) + trnd(3,n,1);
30 [cppp1(sim), ppp1(sim), pppt1(:,sim)] = cppp val complete(y1, x1, ...

model, pppsims, 2,0,0);
31 xlswrite('CabrasOutput N full.xlsx',[ppp1(sim) cppp1(sim)],'Sheet2...

', strcat('A', num2str(sim)));
32 toc
33 end
34 toc
35 figure(1)
36 set(1,'units','normalized','position',[0.05 0.05 0.5 0.8]);
37 subplot(2,2,1)
38 hold on
39 plot(sort(ppp0),'--')
40 plot(sort(cppp0),'r-.')
41 plot([0 sims],[0 1],'k')
42 hold off
43 legend('ppp','cppp','Location','NorthWest')
44 title('Distribution of ppp and cppp under the null')
45 subplot(2,2,3)
46 hist(cppp0)
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47 title('Density of the cppp under the null')
48 subplot(2,2,2)
49 hold on
50 plot(sort(ppp1),'--')
51 plot(sort(cppp1),'r-.')
52 plot([0 sims],[0 1],'k')
53 hold off
54 legend('ppp','cppp','Location','NorthWest')
55 title('Distribution of ppp and cppp under the alternative')
56 subplot(2,2,4)
57 hist(cppp1)
58 title('Density of the cppp under the alternative')
59 export fig cppp cabras example2.pdf -nocrop

The following program calculates the discrepancy measure used in the previous two pro-
grams in Chapter 5.

1 clear
2 clc
3 n = 200; %dataset size
4 pppsims = 200;
5 sims = 500;
6 ppp0 = zeros(1,sims);
7 cppp0 = zeros(1,sims);
8 pppt0 = zeros(pppsims,sims);
9 ppp1 = zeros(1,sims);

10 cppp1 = zeros(1,sims);
11 pppt1 = zeros(pppsims,sims);
12

13 model = 1;
14

15 for sim = 1:sims
16 tic
17 sim
18 x0 = rand(n,1);
19 y0 = x0 + 1 + randn(n,1); %null model
20 [cppp0(sim), ppp0(sim), pppt0(:,sim)] = cppp val complete(y0, x0, ...

model, pppsims, 2,0,0);
21 xlswrite('CabrasOutput N full.xlsx',[ppp0(sim) cppp0(sim)],'Sheet1...

', strcat('A', num2str(sim)));
22 toc
23 end
24

25 for sim = 1:sims
26 tic
27 sim
28 x1 = rand(n,1);
29 y1 = x1 + 1 + 0.5*trunc N(0,Inf,0,1,n) + trnd(3,n,1);
30 [cppp1(sim), ppp1(sim), pppt1(:,sim)] = cppp val complete(y1, x1, ...

model, pppsims, 2,0,0);
31 xlswrite('CabrasOutput N full.xlsx',[ppp1(sim) cppp1(sim)],'Sheet2...

', strcat('A', num2str(sim)));
32 toc
33 end
34 toc
35 figure(1)
36 set(1,'units','normalized','position',[0.05 0.05 0.5 0.8]);
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37 subplot(2,2,1)
38 hold on
39 plot(sort(ppp0),'--')
40 plot(sort(cppp0),'r-.')
41 plot([0 sims],[0 1],'k')
42 hold off
43 legend('ppp','cppp','Location','NorthWest')
44 title('Distribution of ppp and cppp under the null')
45 subplot(2,2,3)
46 hist(cppp0)
47 title('Density of the cppp under the null')
48 subplot(2,2,2)
49 hold on
50 plot(sort(ppp1),'--')
51 plot(sort(cppp1),'r-.')
52 plot([0 sims],[0 1],'k')
53 hold off
54 legend('ppp','cppp','Location','NorthWest')
55 title('Distribution of ppp and cppp under the alternative')
56 subplot(2,2,4)
57 hist(cppp1)
58 title('Density of the cppp under the alternative')
59 export fig cppp cabras example2.pdf -nocrop
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B.4 Programs for Chapter 6

The following program runs the first (single simulation) analysis for Chapter 6.

1 function [errors,latent data]=Project 02 Part1(n,categories,draws,...
burn in)

2

3 clc
4

5 %categories = 2;
6 %n= 1000;
7 %burn in = 500;
8 %draws = 400;
9 latent data = zeros(n,3,4);

10 data scenarios = 4;
11 errors = zeros(data scenarios,2);
12

13 for data model = 1:data scenarios
14

15 % Setting the real data
16 x = 0.5+randn(n,1);
17 if categories == 2
18 cutoff = 2;
19 [latent,skewness,y,X] = new sample(data model,n,categories,...

cutoff);
20 elseif categories == 3
21 cutoff = [-2 2];
22 [latent,skewness,y,X] = new sample(data model,n,categories,...

cutoff);
23 end
24 latent data(:,:,data model) = [latent y x];
25 figure(1)
26 set(1,'units','normalized','position',[0.05 0.05 0.9 0.5]);
27 grapher 1(data model,categories,latent,skewness) %grapher for ...

latent and skewness
28

29 tic
30 % Fitting the probit
31 [beta,Z,Gamma]= gibbs oprobit fitter(y,X,draws,burn in);
32 G norm = median(Gamma,2);
33 b norm = median(beta,2);
34 z norm = median(Z,2);
35

36 figure(2)
37 set(2,'units','normalized','position',[0.05 0.05 0.9 0.5]);
38 grapher 2(data model, categories, beta, Gamma) %grapher for probit...

draws
39

40 disp('Probit finished, starting skew robit')
41

42 tic
43 % Fitting skew robit
44 [beta,tau,V,¬,∆,¬,W,Gamma] = gibbs osrobit fitter3(y,X,draws,...

burn in);
45 G t = median(Gamma,2); % mean or median. Must choose.
46 b t = median(beta,2)';
47 w = median(W,2);
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48 d = median(∆);
49 v = median(V);
50 t = median(tau);
51

52

53 figure(3)
54 set(3,'units','normalized','position',[0.05 0.05 0.9 0.5]);
55 grapher 3(data model,categories,beta,V,∆,tau,Gamma) %grapher for ...

ostrobit draws
56 figure(4)
57 set(4,'units','normalized','position',[0.05 0.05 0.4 0.8]);
58 grapher 4(data model,categories,y,z norm,w) %grapher for forced-...

to-fit latent data
59

60 %Predicted augmented data for errors
61 if categories == 2
62 [latent,¬,y,X] = new sample(data model,n,categories,cutoff);
63 elseif categories == 3
64 [latent,¬,y,X] = new sample(data model,n,categories,cutoff);
65 end
66 z rep = X*b norm + randn(n,1);
67 [z draws] = trunc N(0,Inf,0,1,n);
68 w rep = X*b t' + d*z draws + tˆ(-0.5)*trnd(v);
69 y rep N = ones(n,1);
70 y rep t = ones(n,1);
71 for i = 1:(categories-1)
72 y rep N(z rep≥cutoff(i))=(i+1);
73 y rep t(w rep≥cutoff(i))=(i+1);
74 end
75 normal shifts = y-y rep N;
76 t shifts = y-y rep t;
77 normal error = mean(abs(y-y rep N));
78 t error = mean(abs(y-y rep t));
79 errors(data model,:) = [normal error t error];
80 if categories == 3
81 figure(6)
82 set(6,'units','normalized','position',[0.1 0.1 0.4 0.6])
83 grapher 6(data model,normal shifts,t shifts)
84 end
85

86 figure(5)
87 set(5,'units','normalized','position',[0.05 0.05 0.4 0.8]);
88 grapher 5(data model,categories,y,z rep,w rep) %grapher for ...

forced-to-fit latent data
89

90

91 toc
92 end
93 end
94

95

96 function [latent,skewness,y,X] = new sample(data model,n,categories,...
cutoff)

97 x = 0.5+randn(n,1);
98 B true = [-1 4]';
99 if data model == 1;

100 %Normal
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101 latent = B true(1)+B true(2)*x+randn(n,1);
102 elseif data model == 2;
103 %skew t data
104 [z draws] = trunc N(0,Inf,0,1,n);
105 latent = B true(1)+B true(2)*x-2*z draws+0.5*trnd(5,n,1);
106 elseif data model == 3;
107 %exponential data
108 latent = B true(1)+B true(2)*x-log(1-rand(n,1));
109 elseif data model == 4;
110 %uniform data
111 latent = B true(1)+B true(2)*x+randi(6,n,1)-6;
112 end
113 skewness = latent - B true(1)-B true(2)*x;
114

115 X = [ones(n,1) x];
116 y = ones(n,1);
117

118 for i = 1:(categories-1)
119 y(latent≥cutoff(i))=(i+1);
120 end
121 end
122 function grapher 1(data model,categories,latent,skewness)%grapher for ...

latent and skewness
123

124 figure(1)
125 if data model == 1;
126 %Normal
127 figure(1)
128 subplot(2,4,1)
129 hist(latent,15)
130 h = findobj(gca,'Type','patch');
131 set(h,'FaceColor',[0.15 0.15 0.25],'EdgeColor','k')
132 title('True Normal latent data')
133 subplot(2,4,5)
134 hist(skewness,15)
135 h = findobj(gca,'Type','patch');
136 set(h,'FaceColor',[0.4 0.4 0.7],'EdgeColor','k')
137 title('Error added to X\beta for Normal latent')
138 elseif data model == 2
139 %skew t data
140 figure(1)
141 subplot(2,4,2)
142 hist(latent,15)
143 h = findobj(gca,'Type','patch');
144 set(h,'FaceColor',[0.15 0.15 0.25],'EdgeColor','k')
145 title('True skew t latent data')
146 subplot(2,4,6)
147 hist(skewness,15)
148 h = findobj(gca,'Type','patch');
149 set(h,'FaceColor',[0.4 0.4 0.7],'EdgeColor','k')
150 title('Error added to X\beta for skew t latent')
151 elseif data model == 3
152 %exponential data
153 figure(1)
154 subplot(2,4,3)
155 hist(latent,15)
156 h = findobj(gca,'Type','patch');
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157 set(h,'FaceColor',[0.15 0.15 0.25],'EdgeColor','k')
158 title('True Exponential latent data')
159 subplot(2,4,7)
160 hist(skewness,15)
161 h = findobj(gca,'Type','patch');
162 set(h,'FaceColor',[0.4 0.4 0.7],'EdgeColor','k')
163 title('Error added to X\beta for Exponential latent')
164 elseif data model == 4
165 %uniform data
166 figure(1)
167 subplot(2,4,4)
168 hist(latent,15)
169 h = findobj(gca,'Type','patch');
170 set(h,'FaceColor',[0.15 0.15 0.25],'EdgeColor','k')
171 title('True Uniform latent data')
172 subplot(2,4,8)
173 hist(skewness,6)
174 h = findobj(gca,'Type','patch');
175 set(h,'FaceColor',[0.4 0.4 0.7],'EdgeColor','k')
176 title('Error added to X\beta for Uniform latent')
177 [¬,h] = suplabel('Latent data scenarios' ,'t');
178 set(h,'FontSize',14);
179

180 if categories == 2
181 export fig fig data2.pdf -nocrop
182 else
183 export fig fig data3.pdf -nocrop
184 end
185 end
186 end
187 function grapher 2(data model,categories,beta, Gamma)%grapher for ...

oprobit draws
188 figure(2)
189 subplot(1,4,data model)
190 hold on
191 plot(beta(1,:)','r')
192 plot(beta(2,:)','b')
193 if categories == 3
194 plot(Gamma(3,:)','k')
195 end
196 grid on
197 hold off
198 if data model==1
199 title('Unknown latent data is Normal')
200 if categories == 2
201 legend('B 0','B 1','location','East')
202 else
203 legend('B 0','B 1','Gamma 2','location','East')
204 end
205 elseif data model==2
206 title('Unknown latent data is skew t')
207 if categories == 2
208 legend('B 0','B 1','location','East')
209 else
210 legend('B 0','B 1','Gamma 2','location','East')
211 end
212 elseif data model==3
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213 title('Unknown latent data is Exponential')
214 if categories == 2
215 legend('B 0','B 1','location','East')
216 else
217 legend('B 0','B 1','Gamma 2','location','East')
218 end
219 elseif data model==4
220 title('Unknown latent data is Uniform')
221 if categories == 2
222 legend('B 0','B 1','location','East')
223 [¬,h] = suplabel('probit2 parameter draws after burn-in' ,'t')...

;
224 set(h,'FontSize',14);
225 export fig fig probit2 draws.pdf -nocrop
226 else
227 legend('B 0','B 1','Gamma 2','location','East')
228 [¬,h] = suplabel('probit3 parameter draws after burn-in' ,'t')...

;
229 set(h,'FontSize',14);
230 export fig fig probit3 draws.pdf -nocrop
231 end
232 end
233 end
234 function grapher 3(data model,categories,beta,V,∆,tau,Gamma) %grapher ...

for ostrobit draws
235

236 figure(3)
237 subplot(1,4,data model)
238 hold on
239 plot(beta(1,:),'r')
240 plot(beta(2,:),'g')
241 if categories == 3
242 plot(Gamma(3,:)','k')
243 end
244 plot(V,'b')
245 plot(∆,'c')
246 plot(tau,'m')
247

248 grid on
249 hold off
250 if data model==1
251 title('Unknown latent data is Normal')
252 if categories == 2
253 legend('B 0','B 1','v','d','tau','location','North')
254 else
255 legend('B 0','B 1','Gamma 2','v','d','tau','location','North')
256 end
257 elseif data model == 2
258 title('Unknown latent data is skew t')
259 if categories == 2
260 legend('B 0','B 1','v','d','tau','location','North')
261 else
262 legend('B 0','B 1','Gamma 2','v','d','tau','location','North')
263 end
264 elseif data model == 3
265 title('Unknown latent data is Exponential')
266 if categories == 2
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267 legend('B 0','B 1','v','d','tau','location','North')
268 else
269 legend('B 0','B 1','Gamma 2','v','d','tau','location','North')
270 end
271 elseif data model == 4
272 title('Unknown latent data is Uniform')
273 if categories == 2
274 legend('B 0','B 1','v','d','tau','location','North')
275 [¬,h] = suplabel('strobit2 parameter draws after burn-in' ,'t'...

);
276 set(h,'FontSize',14);
277 export fig fig strobit2 draws.pdf -nocrop
278 else
279 legend('B 0','B 1','Gamma 2','v','d','tau','location','North')
280 [¬,h] = suplabel('strobit3 parameter draws after burn-in' ,'t'...

);
281 set(h,'FontSize',14);
282 export fig fig strobit3 draws.pdf -nocrop
283 end
284 end
285

286 end
287 function grapher 4(data model,categories,y,z norm,w) %grapher for ...

forced-to-fit latent data
288

289 %Forced-to-fit augmented data
290 a = floor(min(z norm)); b = ceil(max(z norm));
291 z norm1 = z norm(y==1);
292 z norm2 = z norm(y==2);
293 if categories == 3
294 z norm3 = z norm(y==3);
295 end
296 if ((b-a) > 29) && (mod(b-a,2) == 0)
297 edges1 = a:2:b;
298 step1 = 2;
299 elseif (b-a) > 29
300 edges1 = (a-1):2:b;
301 step1 = 2;
302 else
303 edges1 = a:b;
304 step1 = 1;
305 end
306 n1 = histc(z norm1,edges1);
307 n2 = histc(z norm2,edges1);
308 if categories == 3
309 n3 = histc(z norm3,edges1);
310 end
311 xlabels1 = num2cell(edges1);
312 if length(edges1)>15
313 if mod(a,2) == 0;
314 xlabels1(2:2:end) = {[]};
315 else
316 xlabels1(1:2:end) ={[]};
317 end
318 end
319 a = floor(min(w)); b = ceil(max(w));
320 w1 = w(y==1)';
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321 w2 = w(y==2)';
322 if categories == 3
323 w3 = w(y==3)';
324 end
325 if ((b-a) > 29) && (mod(b-a,2) == 0)
326 edges2 = a:2:b;
327 step2 = 2;
328 elseif (b-a) > 29
329 edges2 = (a-1):2:b;
330 step2 = 2;
331 else
332 edges2 = a:b;
333 step2 = 1;
334 end
335

336 n4 = histc(w1,edges2);
337 n5 = histc(w2,edges2);
338 if categories == 3
339 n6 = histc(w3,edges2);
340 end
341 xlabels2 = num2cell(edges2);
342 if length(edges2)>15
343 if mod(a,2) == 0;
344 xlabels2(2:2:end) = {[]};
345 else
346 xlabels2(1:2:end) ={[]};
347 end
348 end
349

350 figure(4)
351 subplot(4,2,(data model-1)*2+1)
352 if categories == 2
353 h = bar(edges1,[n1 n2],1,'stacked');
354 set(gca,'XTick',edges1-step1/2,'XTickLabel',xlabels1,'FontSize',9)...

;
355 set(h(1),'FaceColor',[0.4 0.4 0.7],'EdgeColor','k');
356 set(h(2),'FaceColor',[0.15 0.15 0.25],'EdgeColor','k')
357 else
358 h = bar(edges1,[n1 n2 n3],1,'stacked');
359 set(h(1),'FaceColor',[0.4 0.4 0.7],'EdgeColor','k');
360 set(h(2),'FaceColor',[0.15 0.15 0.25],'EdgeColor','k')
361 set(h(3),'FaceColor',[0.4 0.4 0.7],'EdgeColor','k');
362 end
363 if data model==1
364 title('PROBIT')
365 xlabel('Unknown latent data is Normal')
366 elseif data model==2
367 xlabel('Unknown latent data is skew t')
368 elseif data model==3
369 xlabel('Unknown latent data is Exponential')
370 elseif data model==4
371 xlabel('Unknown latent data is Uniform')
372 end
373 subplot(4,2,(data model-1)*2+2)
374 if categories == 2
375 h = bar(edges2,[n4' n5'],1,'stacked');
376 set(gca,'XTick',edges2-step2/2,'XTickLabel',xlabels2,'FontSize',9)...
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;
377 set(h(1),'FaceColor',[0.4 0.4 0.7],'EdgeColor','k');
378 set(h(2),'FaceColor',[0.15 0.15 0.25],'EdgeColor','k')
379 else
380 h = bar(edges2,[n4' n5' n6'],1,'stacked');
381 set(gca,'XTick',edges2-step2/2,'XTickLabel',xlabels2,'FontSize',9)...

;
382 set(h(1),'FaceColor',[0.4 0.4 0.7],'EdgeColor','k');
383 set(h(2),'FaceColor',[0.15 0.15 0.25],'EdgeColor','k')
384 set(h(3),'FaceColor',[0.4 0.4 0.7],'EdgeColor','k');
385 end
386

387 if data model==1
388 title('STROBIT')
389 xlabel('Unknown latent data is Normal')
390 elseif data model==2
391 xlabel('Unknown latent data is skew t')
392 elseif data model==3
393 xlabel('Unknown latent data is Exponential')
394 elseif data model==4
395 xlabel('Unknown latent data is Uniform')
396 [¬,h] = suplabel('Fitted latent data by observed category' ,'t');
397 set(h,'FontSize',14);
398 if categories == 2
399 export fig fig latent2.pdf -nocrop
400 else
401 export fig fig latent3.pdf -nocrop
402 end
403 end
404 end
405 function grapher 5(data model,categories,y,z rep,w rep)%grapher for ...

predicted latent data
406

407 a = floor(min(z rep)); b = ceil(max(z rep));
408 z rep1 = z rep(y==1);
409 z rep2 = z rep(y==2);
410 if categories == 3
411 z rep3 = z rep(y==3);
412 end
413 if ((b-a) > 29) && (mod(b-a,2) == 0)
414 edges1 = a:2:b;
415 step1 = 2;
416 elseif (b-a) > 29
417 edges1 = (a-1):2:b;
418 step1 = 2;
419 else
420 edges1 = a:b;
421 step1 = 1;
422 end
423

424 n1 = histc(z rep1,edges1);
425 n2 = histc(z rep2,edges1);
426 if categories == 3
427 n3 = histc(z rep3,edges1);
428 end
429 xlabels1 = num2cell(edges1);
430 if length(edges1)>15
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431 if mod(a,2) == 0;
432 xlabels1(2:2:end) = {[]};
433 else
434 xlabels1(1:2:end) ={[]};
435 end
436 end
437 a = floor(min(w rep)); b = ceil(max(w rep));
438 w rep1 = w rep(y==1);
439 w rep2 = w rep(y==2);
440 if categories == 3
441 w rep3 = w rep(y==3);
442 end
443 if ((b-a) > 29) && (mod(b-a,2) == 0)
444 edges2 = a:2:b;
445 step2 = 2;
446 elseif (b-a) > 29
447 edges2 = (a-1):2:b;
448 step2 = 2;
449 else
450 edges2 = a:b;
451 step2 = 1;
452 end
453 n4 = histc(w rep1,edges2);
454 n5 = histc(w rep2,edges2);
455 if categories == 3
456 n6 = histc(w rep3,edges2);
457 end
458 xlabels2 = num2cell(edges2);
459 if length(edges2)>15
460 if mod(a,2) == 0;
461 xlabels2(2:2:end) = {[]};
462 else
463 xlabels2(1:2:end) ={[]};
464 end
465 end
466 figure(5)
467 subplot(4,2,(data model-1)*2+1)
468 if categories == 2
469 h = bar(edges1,[n1 n2],1,'stacked');
470 set(gca,'XTick',edges1-step1/2,'XTickLabel',xlabels1,'FontSize',9)...

;
471 set(h(1),'FaceColor',[0.4 0.4 0.7],'EdgeColor','k');
472 set(h(2),'FaceColor',[0.15 0.15 0.25],'EdgeColor','k')
473 else
474 h = bar(edges1,[n1 n2 n3],1,'stacked');
475 set(h(1),'FaceColor',[0.4 0.4 0.7],'EdgeColor','k');
476 set(h(2),'FaceColor',[0.15 0.15 0.25],'EdgeColor','k')
477 set(h(3),'FaceColor',[0.4 0.4 0.7],'EdgeColor','k');
478 end
479 if data model==1
480 title('PROBIT')
481 xlabel('Unknown latent data is Normal')
482 elseif data model==2
483 xlabel('Unknown latent data is skew t')
484 elseif data model==3
485 xlabel('Unknown latent data is Exponential')
486 elseif data model==4
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487 xlabel('Unknown latent data is Uniform')
488 end
489 subplot(4,2,(data model-1)*2+2)
490 if categories == 2
491 h = bar(edges2,[n4 n5],1,'stacked');
492 set(gca,'XTick',edges2-step2/2,'XTickLabel',xlabels2,'FontSize',9)...

;
493 set(h(1),'FaceColor',[0.4 0.4 0.7],'EdgeColor','k');
494 set(h(2),'FaceColor',[0.15 0.15 0.25],'EdgeColor','k')
495 else
496 h = bar(edges2,[n4 n5 n6],1,'stacked');
497 set(gca,'XTick',edges2-step2/2,'XTickLabel',xlabels2,'FontSize',9)...

;
498 set(h(1),'FaceColor',[0.4 0.4 0.7],'EdgeColor','k');
499 set(h(2),'FaceColor',[0.15 0.15 0.25],'EdgeColor','k')
500 set(h(3),'FaceColor',[0.4 0.4 0.7],'EdgeColor','k');
501 end
502

503 if data model==1
504 title('STROBIT')
505 xlabel('Unknown latent data is Normal')
506 elseif data model==2
507 xlabel('Unknown latent data is skew t')
508 elseif data model==3
509 xlabel('Unknown latent data is Exponential')
510 elseif data model==4
511 xlabel('Unknown latent data is Uniform')
512 [¬,h] = suplabel('Predicted latent data by observed category' ,'t'...

);
513 set(h,'FontSize',14);
514 if categories == 2
515 export fig fig pred latent2.pdf -nocrop
516 else
517 export fig fig pred latent3.pdf -nocrop
518 end
519 end
520

521 end
522 function grapher 6(data model,normal shifts,t shifts)
523 edges = -2:2;
524 n1 = histc(normal shifts,edges);
525 n2 = histc(t shifts,edges);
526 figure(6)
527 subplot(2,2,data model)
528 h = bar(edges,[n1 n2],1,'hist');
529 set(gca,'XTick',edges,'XTickLabel',edges,'FontSize',9);
530 set(h(1),'facecolor',[0.4 0.4 0.7],'edgecolor','k');
531 set(h(2),'FaceColor',[0.15 0.15 0.25],'EdgeColor','k')
532 legend('probit','srobit')
533 if data model==1
534 xlabel('Unknown latent data is Normal')
535 elseif data model==2
536 xlabel('Unknown latent data is skew t')
537 elseif data model==3
538 xlabel('Unknown latent data is Exponential')
539 elseif data model==4
540 xlabel('Unknown latent data is Uniform')
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541 [¬,h] = suplabel('Category shifts (classifications) by model' ,'t'...
);

542 set(h,'FontSize',14);
543 export fig fig classification err3.pdf -nocrop
544 end
545 end

The following program runs the second (multi-simulation) analysis for Chapter 6.

1 function [errors,data cell,classif cell,cutoff,results]=...
Project 02 Part2(n,categories,simulations,draws,burn in)

2 clc
3 data scenarios = 4;
4 errors = zeros(simulations,2,data scenarios);
5 data cell = cell(simulations,data scenarios);
6 cutoff = ones(simulations,categories-1,data scenarios);
7 classif cell = cell(simulations,data scenarios,2);
8 zeros(data scenarios*categories,2*categories,simulations);
9 headings = cell(1,5);

10 headings{1} = 'n'; headings{2} = 'cats'; headings{3} = 'sims';
11 headings{4} = 'draws'; headings{5} = 'burn in';
12 xlswrite(strcat(['project2-2 classif' num2str(categories) '-' num2str(...

n) '-' num2str(simulations) '.xlsx']),headings,'Sheet1','A1');
13 xlswrite(strcat(['project2-2 classif' num2str(categories) '-' num2str(...

n) '-' num2str(simulations) '.xlsx']),[n categories simulations ...
draws burn in],'Sheet1','A2');

14 for sim = 1:simulations
15 tic
16 disp(strcat(['Simulation number ' num2str(sim)]))
17 for data model = 1:data scenarios
18 [latent,y,X,cutoff] = data creator(data model,n,categories,...

cutoff,sim);
19 data cell{sim,data model} = [latent y X];
20

21 [beta,tau,V,¬,∆,¬,¬,Gamma t] = gibbs osrobit fitter3(y,X,draws...
,burn in);

22 [beta N,¬,Gamma N]= gibbs oprobit fitter(y,X,draws,burn in);
23 G N = median(Gamma N,2);
24 b norm = median(beta N,2);
25 G t = median(Gamma t,2);
26 b t = median(beta,2)';
27 d = median(∆);
28 v = median(V);
29 t = median(tau);
30

31 [y,X] = new sample(data model,n,categories,cutoff(sim,:,...
data model));

32 z rep = X*b norm + randn(n,1);
33 [z draws] = trunc N(0,Inf,0,1,n);
34 w rep = X*b t' + d*z draws + tˆ(-0.5)*trnd(v);
35 y rep N = ones(n,1);
36 y rep t = ones(n,1);
37

38 for i = 1:(categories-1)
39 y rep N(z rep≥cutoff(sim,i,data model))=(i+1);
40 y rep t(w rep≥cutoff(sim,i,data model))=(i+1);
41 end
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42 normal error = mean(abs(y-y rep N));
43 t error = mean(abs(y-y rep t));
44 errors(sim,:,data model) = [normal error t error];
45

46 class matrix N = zeros(categories,categories);
47 for i = 1:n
48 tmp = zeros(categories,categories);
49 tmp(y(i),y rep N(i)) = 1;
50 class matrix N = class matrix N+tmp;
51 end
52 classif cell{sim,data model,1} = class matrix N;
53

54 class matrix t = zeros(categories,categories);
55 for i = 1:n
56 tmp = zeros(categories,categories);
57 tmp(y(i),y rep t(i)) = 1;
58 class matrix t = class matrix t+tmp;
59 end
60 classif cell{sim,data model,2} = class matrix t;
61 writer(data model,n,categories,simulations,sim,normal error,...

t error,class matrix N,class matrix t)
62 end
63 toc
64 end
65 [results,dif error results,¬] = in analyser(n,simulations,...

categories,data scenarios);
66 xlswrite(strcat(['project2-2 classif' num2str(categories) '-' ...

num2str(n) '-' num2str(simulations) '.xlsx']),results,'Sheet1'...
,'A4');

67 xlswrite(strcat(['project2-2 classif' num2str(categories) '-' ...
num2str(n) '-' num2str(simulations) '.xlsx']),...
dif error results,'Sheet1','A8');

68 end
69

70 function [latent,y,X,cutoff] = data creator(data model,n,categories,...
cutoff,sim)

71 x = 0.5+randn(n,1);
72 B true = [-1 4]';
73 if data model == 1;
74 %Normal
75 latent = B true(1)+B true(2)*x+randn(n,1);
76 elseif data model == 2;
77 %skew t data
78 [z draws] = trunc N(0,Inf,0,1,n);
79 latent = B true(1)+B true(2)*x-2*z draws+0.5*trnd(5,n,1);
80 elseif data model == 3;
81 %exponential data
82 latent = B true(1)+B true(2)*x-log(1-rand(n,1));
83 elseif data model == 4;
84 %uniform data
85 latent = B true(1)+B true(2)*x+randi(6,n,1)-6;
86 end
87 X = [ones(n,1) x];
88 y = ones(n,1);
89 keep splitting = 1;
90 attempt counter = 0;
91 while keep splitting == 1
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92 keep splitting = 0;
93 for i = 1:(categories-1)
94 if i == 1
95 a = ceil(min(latent));
96 else
97 a = cutoff(sim,(i-1),data model);
98 end
99 b = floor(max(latent));

100 cutoff(sim,i,data model) = randi((b-a+1),1)+a-1;
101 if i == 1
102 counter1 = sum(latent<cutoff(sim,i,data model));
103 else
104 counter1 = sum(latent<cutoff(sim,i,data model) & latent>...

cutoff(sim,(i-1),data model));
105 end
106 %if i == (categories-1)
107 counter2 = sum(latent>cutoff(sim,i,data model));
108 %end
109 if min(counter1,counter2) < 0.02*n
110 keep splitting = 1;
111 attempt counter = attempt counter + 1;
112 disp(strcat(['CatSplit Attempt ' num2str(attempt counter) ...

' not good, trying again.']))
113 break
114 end
115 end
116 end
117 for i = 1:(categories-1)
118 y(latent≥cutoff(sim,i,data model))=(i+1);
119 end
120 end
121 function [y,X] = new sample(data model,n,categories,cutoffs)
122 x = 0.5+randn(n,1);
123 B true = [-1 4]';
124 if data model == 1;
125 %Normal
126 latent = B true(1)+B true(2)*x+randn(n,1);
127 elseif data model == 2;
128 %skew t data
129 [z draws] = trunc N(0,Inf,0,1,n);
130 latent = B true(1)+B true(2)*x-2*z draws+0.5*trnd(5,n,1);
131 elseif data model == 3;
132 %exponential data
133 latent = B true(1)+B true(2)*x-log(1-rand(n,1));
134 elseif data model == 4;
135 %uniform data
136 latent = B true(1)+B true(2)*x+randi(6,n,1)-6;
137 end
138 X = [ones(n,1) x];
139 y = ones(n,1);
140 for i = 1:(categories-1)
141 y(latent≥cutoffs(i))=(i+1);
142 end
143 end
144 function writer(data model,n,categories,simulations,sim,normal error,...

t error,class matrix N,class matrix t)
145 xlswrite(strcat(['project2-2 classif' num2str(categories) '-' num2str(...
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n) '-' num2str(simulations) '.xlsx']),[normal error t error],...
strcat(['errors dm' num2str(data model)]),strcat(['A' num2str(sim)...
]));

146 xlswrite(strcat(['project2-2 classif' num2str(categories) '-' num2str(...
n) '-' num2str(simulations) '.xlsx']),class matrix N,strcat(['...
probit dm' num2str(data model)]),strcat(['A' num2str((sim-1)*...
categories+1)]));

147 xlswrite(strcat(['project2-2 classif' num2str(categories) '-' num2str(...
n) '-' num2str(simulations) '.xlsx']),class matrix t,strcat(['...
strobit dm' num2str(data model)]),strcat(['A' num2str((sim-1)*...
categories+1)]));

148 end
149 function [results,dif error results,extreme index] = in analyser(n,...

simulations,categories,data scenarios)
150 errors = zeros(simulations,2*data scenarios);
151 classif N = zeros(categories*simulations,categories,data scenarios);
152 classif t = zeros(categories*simulations,categories,data scenarios);
153

154 for data model = 1:data scenarios
155 errors(:,((2*(data model-1)+1):(2*(data model)))) = xlsread(strcat...

(['project2-2 classif' num2str(categories) '-' num2str(n) '-' ...
num2str(simulations) '.xlsx']),strcat(['errors dm' num2str(...
data model)]));

156 classif N(:,:,data model) = xlsread(strcat(['project2-2 classif' ...
num2str(categories) '-' num2str(n) '-' num2str(simulations) '...
.xlsx']),strcat(['probit dm' num2str(data model)]));

157 classif t(:,:,data model) = xlsread(strcat(['project2-2 classif' ...
num2str(categories) '-' num2str(n) '-' num2str(simulations) '...
.xlsx']),strcat(['strobit dm' num2str(data model)]));

158 end
159 observed prop = permute((sum(classif N,2)/n),[1 3 2]);
160

161

162 extreme index = zeros(simulations,data scenarios);
163 for j = 1:data scenarios
164 for i = 1:simulations
165 working = observed prop((categories*(i-1)+1):(categories*i),j)...

;
166 extreme index(i,j) = -log(working(1)) -log(working(end));
167 end
168 end
169 N errors = errors(:,(1:2:(data scenarios*2)-1));
170 t errors = errors(:,(2:2:(data scenarios*2)));
171 dif errors = N errors - t errors;
172

173 fig name = strcat(['fig MAD scarcity' num2str(categories) ' ' num2str(...
n) ' ' num2str(simulations) '.pdf']);

174 figure(1)
175 set(1,'units','normalized','position',[0.05 0.05 0.4 0.4]);
176 hold on
177 scatter(extreme index(:,1),dif errors(:,1),'ob')
178 scatter(extreme index(:,2),dif errors(:,2),'+r')
179 scatter(extreme index(:,3),dif errors(:,3),'xk')
180 scatter(extreme index(:,4),dif errors(:,4),'ˆg')
181 title(strcat(['probit minus strobit MAD error, by scarcity within tail...

categories, n = ' num2str(n)]))
182 legend('N data','skew t data','Exp data','Unf data','location','...
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NorthEastOutside')
183 grid on
184 hold off
185 export fig figure.pdf -nocrop
186 movefile('figure.pdf',fig name)
187

188 results = [mean(N errors<t errors);mean(N errors==t errors);mean(...
N errors>t errors)];

189

190

191 %Plotting error bar graphs
192 q errors = quantile(errors,[0.975 0.025]);
193 m errors = mean(errors);
194 q dist = abs(q errors-repmat(m errors,2,1));
195

196

197 figure(2)
198 set(2,'units','normalized','position',[0.05 0.05 0.3 0.3]);
199 errorbar(m errors,ones(1,length(m errors)),'.')
200 h=errorbar(m errors,ones(1,length(m errors)),'.');
201 set(h,'UData',q dist(1,:)')
202 set(h,'LData',q dist(2,:)')
203 set(gca,'YGrid','on')
204

205 q dif errors = quantile(dif errors,[0.975 0.025]);
206 m dif errors = mean(dif errors);
207 q dif dist = abs(q dif errors-repmat(m dif errors,2,1));
208 dif error results = [q dif errors(2,:)' m dif errors' q dif errors...

(1,:)'];
209

210 fig name = strcat(['fig MAD scenario' num2str(categories) ' ' num2str(...
n) ' ' num2str(simulations) '.pdf']);

211 figure(3)
212 set(3,'units','normalized','position',[0.05 0.05 0.25 0.25]);
213

214 errorbar(m dif errors,ones(1,length(m dif errors)),'x')
215 h=errorbar(m dif errors,ones(1,length(m dif errors)),'x');
216 title(strcat(['probit minus strobit MAD error, with 95% empirical ...

interval, n = ' num2str(n)]))
217 set(h,'UData',q dif dist(1,:)')
218 set(h,'LData',q dif dist(2,:)')
219 set(gca,'YGrid','on')
220 set(gca,'XTick',[1 2 3 4])
221 set(gca,'XTickLabel',{'N data', 'skew t data', 'Exp data', 'Unf data'...

})
222 export fig figure.pdf -nocrop
223 movefile('figure.pdf',fig name)
224 end

In Chapter 6, if the (ordered) probit is fitted, the following program is used.

1 function [beta,Z,Gamma]= gibbs oprobit fitter(y,X,sims,burn in)
2 %y is the categorical respopnse vector (with obs in each category 1:J)
3 %X is n x p+1, an intercept and p slopes
4 %beta is the (p+1) x sims final set of beta draws (after burn-in)
5 %Z is the n x sims final set of underlying latent draws (after burn-in...

)
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6 %Gamma is the (J-1) x sims set of bounds for the categories
7

8 categories = length(unique(y));
9 [n p1] = size(X);

10 beta = zeros(p1,sims);
11

12 Z = zeros(n,sims);
13 Gamma = zeros(categories+1,sims);
14

15 %Initialisation
16 b = regress(y,X);
17 cov = inv(X'*X);
18 Bcomp = cov*(X');
19 bs = mvnrnd(b,cov)';
20 z = X*bs +randn(n,1); %creating a non-grouped z just to make initial ...

bounds
21

22 if categories == 2
23 G = [-Inf 0 Inf];
24 else
25 tmp = levelcounts(ordinal(y));
26 tmp = cumsum(tmp)./n;
27 tmp = tmp(1:(end-1));
28 G = [-Inf quantile(z,tmp') Inf]; %J+1 endpoint, J-1 limits, J cats
29 end
30 for j = 1:categories
31 z(y==j) = trunc N(G(j),G(j+1),X(y==j,:)*bs,ones(sum(y==j),1),1);
32 end
33 bs = mvnrnd(Bcomp*z,cov)';
34

35 %Initialisation complete
36 for simulation = 1:(burn in+sims)
37 %drawing bounds
38 if categories == 2
39 G = [-Inf 0 Inf];
40 else
41 [G,¬] = gibbs probit bounds(y,z,G);
42 end
43 %drawing new z's
44 for j = 1:categories
45 z(y==j) = trunc N(G(j),G(j+1),X(y==j,:)*bs,ones(sum(y==j),1)...

,1);
46 end
47 %drawing new betas
48 bs = mvnrnd(Bcomp*z,cov)';
49 if simulation > burn in
50 beta(:,simulation-burn in) = bs;
51 Z(:,simulation-burn in) = z;
52 Gamma(:,simulation-burn in) = G;
53 end
54 end

Similarly, in Chapter 6, if the (ordered) strobit is fitted, the following program is used.

1 function [beta,tau,V,lambdas,∆,Z,W,Gamma]= gibbs osrobit fitter3(y,X,...
draws,burn in)

2 %y is the categorical respopnse vector (with obs in each category 1:J)
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3 %X is n x p+1, an intercept and p slopes
4 %beta is the (p+1) x sims final set of beta draws (after burn-in)
5 %W is the n x sims final set of underlying latent draws (after burn-in...

)
6 %Gamma is the (J-1) x sims set of bounds for the categories
7

8 %Let's fix the draws across the columns
9 categories = length(unique(y));

10 [n,p1] = size(X);
11 beta = zeros(p1,draws+burn in);
12 W = zeros(n,draws+burn in);
13 V = 3*ones(1,draws+burn in);
14 ∆ = zeros(1,draws+burn in);
15 Gamma = zeros(categories+1,draws+burn in);
16 tau = ones(1,draws+burn in);
17 lambdas = ones(n,draws+burn in);
18 Z = ones(n,draws+burn in);
19

20

21

22 %The fitter must restart if the truncation drawer fails.
23 [b,t,v,¬,d,z] = draw gibbs t skew1(y, X, 1);
24 b = b'; z = z';
25 counter = 0;
26 while sum(isnan(b))>0
27 counter = counter+1;
28 if counter > 5
29 restarter = 1;
30 end
31 if restarter == 1; break; end %%
32 disp(strcat(['Initialisation draws counter ' num2str(counter)]))
33 [b,t,v,¬,d,z] = draw gibbs t skew1(y, X, 1);
34 b = b'; z = z';
35 end
36

37 w = X*b + z.*d + tˆ(-0.5)*trnd(v,n,1); %PROBLEM HERE?
38

39 if categories == 2
40 G = [-Inf 0 Inf];
41 else
42 tmp = levelcounts(ordinal(y));
43 tmp = cumsum(tmp)./n;
44 tmp = tmp(1:(end-1));
45 G = [-Inf quantile(w,tmp') Inf]; %J+1 endpoint, J-1 limits, J cats
46 end
47

48 for j = 1:categories
49 w(y==j) = trunc nct(G(j),G(j+1),X(y==j,:)*b + z(y==j,1).*d,tˆ-0.5*...

ones(length(y(y==j)),1),v.*ones(length(y(y==j)),1),1);
50 end
51 W(:,1) = w;
52 [b,t,v,¬,d,z] = draw gibbs t skew1(w, X, 1);
53 beta(:,1) = b';
54 V(1) = v;
55 ∆(1) = d;
56 tau(1) = t;
57 Z(:,1) = z';
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58

59 round = 1;
60 while round < (burn in+draws)
61 round = round+1;
62 if categories == 2
63 G = [-Inf 0 Inf];
64 else
65 [G,¬] = gibbs probit bounds(y,w,G);
66 end
67

68 w = zeros(n,1);
69 for j = 1:categories
70 w(y==j) = trunc nct(G(j),G(j+1),X(y==j,:)*beta(:,(round-1)) + ...

Z(y==j,(round-1)).*∆(round-1),tau(round-1)ˆ-0.5*ones(...
length(y(y==j)),1),V(round-1).*ones(length(y(y==j)),1),1);

71 end
72 W(:,round) = w;
73

74 [b,t,v,l,d,z] = draw gibbs t skew1(W(:,round), X, 1, beta(:,(round...
-1))',tau(round-1),V(round-1),lambdas(:,(round-1))',∆(round-1)...
,Z(:,(round-1))');

75 b = b'; z = z';
76 counter = 0;
77 if sum(isnan(b))>0
78 counter = counter+1;
79 disp(strcat(['Beta NaNs after trunced w, counter ' num2str(...

counter) ', round ' num2str(round) ', going back 1 round.'...
]))

80 round = round-2;
81 else
82 beta(:,round) = b;
83 W(:,round) = w;
84 V(1,round) = v;
85 ∆(1,round) = d;
86 Gamma(:,round) = G';
87 tau(1,round) = t;
88 lambdas(:,round) = l';
89 Z(:,round) = z;
90 end
91

92 end
93 beta = beta(:,(burn in+1):end);
94 W = W(:,(burn in+1):end);
95 V = V(:,(burn in+1):end);
96 ∆ = ∆(:,(burn in+1):end);
97 Gamma = Gamma(:,(burn in+1):end);
98 tau = tau(:,(burn in+1):end);
99 lambdas = lambdas(:,(burn in+1):end);

100 Z = Z(:,(burn in+1):end);
101

102

103 function [beta,tau,v,lambdas,∆,Z] = draw gibbs t skew1(y, X, draws, ...
varargin)

104 %variable arguments:
105 %var arg 1: burn in
106 %var arg 2: prior (1: trunc exp; 2: Ind Jeff; 3: Ref 1; 4: Ref 2)
107 %var arg 3: discretised (1) or MH (0) [not implemented yet]
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108

109 % y is a column vector
110 % X includes a column of ones for the intercept term
111

112 % if nargin > 3
113 % burn in = varargin{1};
114 % else
115 burn in = 50;
116 % end
117 % if nargin > 4
118 % prior num = varargin{2};
119 % else
120 prior num = 2;
121 % end
122 % if nargin > 5
123 % v discrete = varargin{3};
124 % else
125 % v discrete = 1;
126 % end
127

128 [n p] = size(X);
129

130 %Priors
131

132 mu∆ = 0; %these are the parameters on the proper Normal prior for ∆

133 sig2∆ = 1000;
134 mubeta = 0*ones(1,p);
135 sig2beta = 10000*ones(1,p);
136 agamma = 0.1;
137 lgamma = 0.1;
138 muz = 0;
139 sig2z = 1;
140

141 tau = ones((burn in+draws),1);
142 lambdas = ones((burn in+draws),n);
143 beta = zeros((burn in+draws),p);
144 Z = repmat(abs(randn(1,n)),burn in+draws,1).*ones((burn in+draws),n);
145 ∆ = zeros((burn in+draws),1);
146 v = 3*ones((burn in+draws),1);
147

148 if length(varargin) == 6
149 beta(1,:) = varargin{1};
150 tau(1) = varargin{2};
151 v(1) = varargin{3};
152 lambdas(1,:) = varargin{4};
153 ∆(1) = varargin{5};
154 Z(1,:) = varargin{6};
155 else
156 b = regress(y,X);
157 beta(1,:) = b';
158 [v draws] = draw post v discr(1, n, lambdas(1,:), prior num);
159 v(1) = v draws(end);
160 end
161 ystar = zeros(n,p);
162 ycurl = zeros(n,burn in+draws);
163

164 for i = 2:(burn in+draws)
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165 if p>1
166 for j = 1:p
167 switch j
168 case 1
169 ystar(:,j) = y - X(:,(j+1):end)*beta((i-1),(j+1)...

:end)' - ∆(i-1)*Z((i-1),:)';
170 case p
171 ystar(:,j) = y - X(:,1:(end-1))*beta((i),1:(end-1)...

)' - ∆(i-1)*Z((i-1),:)';
172 otherwise
173 ystar(:,j) = y - X(:,[1:(j-1) (j+1):end])*[beta((i...

),1:(j-1)) beta((i-1),(j+1):end)]' - ∆(i-1)*Z...
((i-1),:)';

174 end
175 beta(i,j) = randn.* (tau(i-1)*lambdas((i-1),:)*(X(:,j).ˆ2)...

+1/sig2beta(j))ˆ(-0.5) + (tau(i-1).*lambdas((i-1),:)*(...
X(:,j).ˆ2)+1/sig2beta(j))ˆ(-1) * (tau(i-1).*lambdas((i...
-1),:)*(X(:,j).*ystar(:,j))+mubeta(j)/sig2beta(j));

176 end
177 else
178 ystar(:,1) = y - X*beta(i-1) - ∆(i-1)*Z((i-1),:)';
179 beta(i,1) = randn.* (tau(i-1)*lambdas((i-1),:)*(X(:,1).ˆ2)+1/...

sig2beta(1))ˆ(-0.5) + (tau(i-1).*lambdas((i-1),:)*(X(:,1)....
ˆ2)+1/sig2beta(1))ˆ(-1) * (tau(i-1).*lambdas((i-1),:)*(X...
(:,1).*ystar(:,1))+mubeta(1)/sig2beta(1));

180 end
181 ycurl(:,i) = y - X*beta(i,:)' - ∆(i-1)*Z((i-1),:)';
182 %tau(i) = gamrnd(n/2 + agamma,(0.5*lambdas((i-1),:)*(ycurl(:,i)....

ˆ2) + 2*lgamma)ˆ-1);
183 yhat = y - X*beta(i,:)';
184 Z(i,:) = trunc N(0,Inf,(tau(i).*lambdas(i-1,:).*∆(i-1)ˆ2 +1).ˆ-1 ....

* tau(i).*lambdas(i-1,:).*∆(i-1).*yhat',sqrt((tau(i).*lambdas(...
i-1,:).*∆(i-1)ˆ2 +1 ).ˆ-1),1);

185 ∆(i) = randn* (tau(i)*lambdas((i-1),:)*(Z(i,:).ˆ2)'+1/sig2z)ˆ(-0.5...
) + (tau(i)*lambdas((i-1),:)*(Z(i,:).ˆ2)'+1/sig2z)ˆ(-1) * (tau...
(i)*lambdas((i-1),:)*(Z(i,:)'.*yhat) + muz/sig2z);

186 ycurl(:,i) = y - X*beta(i,:)' - ∆(i)*Z((i),:)';
187 lambdas(i,:) = chi2rnd(v(i-1)+1,[1,n]) ./ (v(i-1)+tau(i)*(ycurl(:,...

i)').ˆ2);
188 [v(i)] = draw post v discr(1, n, lambdas(i,:), prior num,i); %...

discretised v or not?
189 end
190

191 beta = beta((burn in+1):end,:);
192 tau = tau((burn in+1):end,1);
193 lambdas = lambdas((burn in+1):end,:);
194 v = v((burn in+1):end,1);
195 Z = Z((burn in+1):end,:);
196 ∆ = ∆((burn in+1):end,1);

In both the preceding programs, the following function is used.

1 function [G,bounds] = gibbs probit bounds(y,z,G)
2 %G initial is a vector size J of the initial bounds (also giving ...

length)
3 %G initial includes -Inf and +Inf
4 %G is a vector size J of the drawn bounds
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5 %z is a vector size n of the observed underlying latent draws
6 %y is a vector size n of the actual categories observed
7

8 J = length(G); %4
9 bounds = zeros(J,2);

10 bounds(1,:) = -Inf * ones(1,2);
11 bounds(2,:) = zeros(1,2);
12 bounds(J,:) = Inf * ones(1,2);
13 G(2) = 0;
14 if J > 3
15 for j = 2:(J-2)
16 bounds(j+1,1) = max(max(z(y==j)),G(j));
17 bounds(j+1,2) = min(min(z(y==(j+1))),G(j+2));
18 G(j+1) = rand*(bounds(j+1,2)-bounds(j+1,1))+bounds(j+1,1);
19 end
20 end
21 %G = G(2:(end-1));
22 %s bounds = sort(bounds,2);
23 %G = rand(J,1).*(bounds(:,2)-bounds(:,1))+bounds(:,1);
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B.5 General Programs

If ever truncated Normal, t, or non-central t values are required, the following functions
are called.

1 function [draws] = trunc N(lower,upper,mu,sigma,n)
2 %mu and sigma are vectors. Multiple draws create a matrix. If mu and ...

sigma
3 %are matrices, a new dimension is created with the draws for each ...

pair. Only
4 %2 dimensions for mu and sigma are supported.
5

6 [rows cols] = size(mu);
7 l = repmat(lower,[rows cols n]);
8 u = repmat(upper,[rows cols n]);
9 mu = repmat(mu,[1 1 n]);

10 sigma = repmat(sigma,[1 1 n]);
11 Z = rand(rows,cols,n);
12 draws = norminv((normcdf(u,mu,sigma)-normcdf(l,mu,sigma)).*Z + normcdf...

(l,mu,sigma),mu,sigma);
13 % if sum(draws) == Inf
14 % [Z draws u l mu sigma normcdf(u,mu,sigma) normcdf(l,mu,sigma)]
15 % end
16 if rows == 1 %draws down columns
17 draws = permute(draws,[3 2 1]);
18 elseif cols == 1; %draws across rows
19 draws = permute(draws,[1 3 2]);
20 end

1 function [draws] = trunc t(lower,upper,mu,sigma,v,n)
2 %with this function, centred truncated t-values are given.
3 %v is a vector of d.f.
4 %Multiple draws create a matrix. If v is
5 %a matrices, a new dimension is created with the draws for v. Only
6 %2 dimensions for v are supported.
7

8 [rows cols] = size(v);
9 l = repmat(lower,[rows cols n]);

10 u = repmat(upper,[rows cols n]);
11 Z = rand(rows,cols,n);
12 draws = tinv((tcdf(u,v)-tcdf(l,v)).*Z+tcdf(l,v),v);
13 if rows == 1 %draws down columns
14 draws = permute(draws,[3 2 1]);
15 elseif cols == 1; %draws across rows
16 draws = permute(draws,[1 3 2]);
17 end

1 function [draws] = trunc nct(lower,upper,mu,sigma,v,n)
2 %with this function, noncentred truncated t-values are given.
3 %v is a vector of d.f.
4 %mu is the vector of non-centrality parameters, same size as v.
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5 [rows,cols] = size(v);
6 l = (repmat(lower,[rows,1,n])-mu)./sigma;
7 u = (repmat(upper,[rows,1,n])-mu)./sigma;
8 Z = rand(rows,1,n);
9 if lower == -Inf

10 a = zeros(rows,1);
11 else
12 a = tcdf(l,v);
13 end
14 if upper == Inf
15 b = ones(rows,1);
16 else
17 b = tcdf(u,v);
18 end
19 draws = sigma.*tinv((b-a).*Z+a,v)+mu;
20 if rows == 1 %draws down columns
21 draws = permute(draws,[3 2 1]);
22 elseif cols == 1; %draws across rows
23 draws = permute(draws,[1 3 2]);
24 end
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