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: INTRODUCTION 

1.1 BACKGROUND 

Groundwater models are often used to represent and simulate the impacts of various 

activities on the aquifer systems. Such activities could include: potable groundwater 

provision to communities, irrigation from aquifer systems, groundwater abstraction 

for industrial and manufacturing use, evaluating the efficiency of remedial actions 

on contaminated aquifers, and studying the impacts of abstraction from aquifers for 

dewatering purposes at open pit mines. Groundwater models can also be used to 

simulate natural processes such as the interaction between groundwater and 

surface water. Apart from these applications, there are other geohydrological 

problems which also need to be solved by predicting the hydrodynamic 

potentiometric field and its behaviour with respect to time. In recent decades, 

groundwater models based on the Finite Element Method (FEM) and Finite 

Difference Method (FDM) have been used to simulate groundwater behaviour in 

many studies. However, due to the fact that these models require large quantities of 

data, it is often a costly and laborious process to develop such models for mine 

dewatering studies. 

1.2 MOTIVATION FOR THE RESEARCH 

Dewatering is critically important to open pit mining operations to provide access to 

ore for removal and transport to processing facilities, as well as for the safety of 

mining personnel. One of the methods used to plan dewatering programmes, and to 

support ongoing dewatering programmes, is based on the results from numerical 

groundwater modelling. 

Groundwater models simulate the lowering of the water level elevation as the mines 

develop deeper below the original ground surface and into the groundwater table. 

The behaviour of aquifers is typically complex. Aquifers are often highly 
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heterogeneous and anisotropic and their behaviour depends on the physical and 

chemical properties of the geological unit forming the aquifer. They are controlled by 

numerous hydraulic and physical parameters. 

Numerical models based on FDM and FEM are often used to solve geohydrological 

problems (Konikow, 1996). These methods discretize continuous media and assign 

to them some principles of behaviour and conservation characterized by constitutive 

parameters found from field and laboratories investigations (Levasseur, 2007). Their 

main disadvantages are that they typically require many inputs, including the 

geomorphology and geology of the area, hydraulic parameters, geohydrological 

characteristics, structural data, piezometer records and pumping data, which are 

often expensive to gather. The models are also limited by uncertainties associated 

with the availability and quality of the data. 

By contrast, Artificial Intelligence, in particular Artificial Neural Networks (ANNs), is 

known to be able to model complex systems in various disciplines (Sarkar, 2012). 

These networks can be defined as systems that reproduce the cognitive function by 

simulating the architecture of the brain. ANNs are powerful tools that can provide 

simple and accurate solutions to very complex systems. The accuracy of these 

solutions are, however, also typically dependent on the number and quality of the 

available data used as inputs to train the networks to perform specific tasks (Hsu et 

al., 1995). These observations lead to the following research question: 

Is it possible to develop ANNs, using limited input data, that can accurately predict 

aquifer behaviour during the dewatering of open pit mines? 

1.3 AIM AND OBJECTIVES OF THE RESEARCH 

When a scientist develops a numerical model to predict the behaviour of an aquifer, 

some past records of that aquifer are typically used to compare the model predictions 

to the observed behaviour. Based on the degree of agreement between the observed 

and modelled data, some inputs of the model may be adjusted to better simulate the 

observed behaviour. This process is called calibration. Calibration becomes difficult 
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when limited data are available for the calibration process. This observation leads to 

the aim of this thesis, which is to investigate the possibility of simulating dewatering 

at open pit mines where limited data are available, using ANNs. This research will 

be undertaken with the following objectives: 

- To develop an ANN capable of simulating and predicting the groundwater 

behaviour during mine dewatering; 

- To assess the success of the predictions made by the ANN under conditions of 

varying, but limited, input data availability; 

- To apply the developed ANN to real open pit mines to predict the behaviour of 

the aquifer systems at these mines; and, 

- To find simple mathematical equations to describe the hydraulic heads in 

observation wells at the mine. These equations could be used to make future 

predictions related to the impacts of dewatering strategies on the aquifer 

system. 

1.4 RESEARCH METHODOLOGY 

To achieve the aim and objectives of the study, the following actions will be taken: 

- A hydrogeological model will be developed using FEM to produce synthetic 

“observations” of the hydraulic heads at piezometers of a fictional mine to 

represent “true conditions” that a subsequent ANN will try to reproduce under 

varying data availability conditions; 

- Different ANNs will be developed to predict the hydraulic head response at the 

fictional mine. The modelled hydraulic head data (the synthetic observations) 

from the FEM will be used to train the ANNs and to do performance analysis; 

- The ANN most capable of simulating and predicting the groundwater 

behaviour for mine dewatering at the fictional mine will be identified by 

changing the architecture and algorithms used by the ANN through trial-and-

error adjustments; 
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- The strengths and weakness of the final ANN will be evaluated by doing 

performance analyses during which the predicted (by the ANN) and modelled 

(by the FEM) hydraulic heads will be statistically evaluated; 

- The ANN will be used to predict the hydraulic head response at two real open 

pit mines (the Kabwe and Shimbidi mines) in order to evaluate the model’s 

performance under real-world conditions; and, 

- Mathematical equations will be found to predict the hydraulic heads in 

piezometers at the Kabwe and Shimbidi open pit mines. These equations will 

be based on the predictions made by the ANN. 

1.5 THESIS STRUCTURE 

The thesis will comprise seven chapters: 

- In Chapter 1, the research will be presented through the background of the 

study, aim and objectives, motivation of the research and the methodology 

followed to achieve the aim and objectives; 

- Chapter 2, will give a review of the literature on groundwater modelling 

approaches, the physiological and mathematical models of Artificial Neural 

Networks, and mine dewatering processes. The theoretical background to the 

current investigations will be described; 

- In Chapter 3, a numerical groundwater model of an ideal mine will be 

developed using FEM. The numerical model will be used to simulate the 

behaviour of the groundwater system under different conditions of 

groundwater abstraction. These modelled groundwater responses (outputs) 

will be used to present “real” or “observed” measurements used as inputs to 

train the ANN developed in Chapter 4; 

- In Chapter 4, an Artificial Neural Network will be developed. This ANN will use 

the outputs from the numerical groundwater model developed in Chapter 3 as 

inputs during training. The strengths and weaknesses of the ANN in predicting 
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the aquifer response will be evaluated through statistical and graphical 

techniques. The architecture of the ANN will be adjusted to find the network 

yielding the best results; 

- In Chapter 5, the selected ANN will be applied to the Kabwe and Shimbidi open 

pit mines to explore its strengths and weaknesses in predicting aquifer 

behaviour under real-world conditions. Mathematical equations will be found 

to predict the groundwater behaviour at the mines during dewatering; 

- Chapter 6 will summarise the findings of the study, draw conclusions from the 

results of the study and make recommendations for future research. 
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: LITERATURE REVIEW 

2.1 INTRODUCTION 

This chapter will discuss the literature on groundwater modelling with its application 

for mine dewatering, the background of Artificial Neural Networks, and the evolution 

of Artificial Neural Networks in geohydrology. The understanding of advective 

groundwater behaviour is very important in water management. Although there are 

some variables (for example, physical and chemical soil properties) which affect 

groundwater flow in the subsurface, aquifers are conceptually easy to understand. 

Although water in the subsurface may also occur in the form of soil water and 

capillary water, the term groundwater often refers to the water below the water table 

(the upper surface of the zone of saturation). The groundwater media below the water 

table are saturated because the pore space in these media is completely filled with 

water. Above the water table, the soil is unsaturated and the pore space contains 

both air and water. After precipitation, water can flow across the ground surface 

(runoff), evaporate or infiltrate. Infiltration induces a local rise of the water table 

which could lead to groundwater flow if hydraulic gradients are formed (Kumar, 

1992). 

2.2 GROUNDWATER MODELLING 

Modelling is a simplification of a more complex reality. Groundwater modelling is an 

approximate representation of an underground water system. The main aim of 

groundwater models is the prediction of groundwater behaviour under different 

conditions and different impacts (Anderson and Woessner, 1992). 

Groundwater models are very useful tools for solving a wide range of groundwater 

problems and for supporting decision-making processes, such as with water supply 

projects and pit dewatering strategies. Models can be physical, analog or 

mathematical (Mercer and Faust, 1980). 
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2.2.1 PHYSICAL MODELS 

Physical models mimic, on a small scale, physical processes found in nature. In 

groundwater studies, they are commonly used to teach, demonstrate and perform 

experiments to simulate aquifer conditions. Physical models were the first models 

used in groundwater flow studies (Sarkar, 2012). 

2.2.2 ANALOG MODELS 

Some geohydrological problems cannot be solved by ordinary mathematical 

formulations. If boundary conditions and related factors are well defined, analog 

models can be used to solve such problems. Analog models are models that use two 

physical systems and the system that is easier to compute is used to model the other. 

The strength of analog modelling is the ease with which it can analyse very complex 

boundary-value problems with simple physical interpretations. 

In theory, there are two types of analog models which are prominent for groundwater 

flow: 

- Electric analog models are used to simulate geohydrological conditions based 

on the similitude between electrical laws and laminar liquid flow. An electrical 

analog model for groundwater studies in porous media is carried out by 

connecting generators that produce potential energy on the system, which 

leads to an energy-dissipative field. The electrical network assembled for that 

purpose is called an “analog computer”. The analog computer simulates the 

geometry and internal state of the region to reproduce analogically the geology 

of the aquifer (Jorgensen, 1974); 

- Viscous fluid analog models are based on the similitude between laminar 

liquid flow and the movement of viscous fluid flowing through two parallel 

plates separated by an infinitesimal distance (Todd, 1954). This model is based 

on the analogy between the groundwater flow and the movement of liquid flow 

between two parallel plates. This model can be built by using two parallel 
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plastic sheets separated at a small distance and connected to a reservoir of oil 

or glycerine. In the horizontal position, the viscous fluid analogue model can 

simulate confined or phreatic aquifers (Santing, 1957). According to Varrin 

and Fang (1967), geohydrological parameters can be simulated by varying the 

interspace between the plates, varying the viscosity of the fluid by using either 

glycerine or oil, and by changing the angle of the plates to model different 

hydraulic gradient conditions. 

2.2.3 MATHEMATICAL MODELS 

Mathematical models can be deterministic or statistical (stochastic), or a 

combination of these. The latter provides a window of solutions relative to 

probabilities while deterministic models are based on cause-and-effect relationships 

for well-known systems. Deterministic models can be analytical and numerical 

(Thangarajan, 1999). 

2.2.3.1 ANALYTICAL MODELS 

Analytical models are any solutions of numerical equations that can be expressed 

as polynomial, logarithmic, exponential or trigonometric functions (Craig and Read, 

2010). 

Several methods can be used to predict the impact of groundwater flow in open pit 

mining. For a single excavation face, one-dimensional methods are more frequently 

used (McWhorter, 1981). If inflow predictions are needed for the entire mine, the 

combination of radial flow and one-dimensional methods can give better first order 

estimates (Saunders, 1983). If enough data are available, numerical models have the 

potential to provide accurate prediction for complex conditions. 

In the last several years, analytical models have provided accurate predictions in 

various domains of geohydrological research. Below are some case examples: 
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- Koch (1985) developed an analytical model to predict inflows to open pit mines 

and to assess the geohydrological impacts of mining; 

- Holland et al. (2004) produced an analytical model of a lowland river 

floodplain. This model required inputs which could be easily found from 

published papers and it had lower requirements compared to numerical 

models done based on the FDM; 

- Craig and Read (2010) made a hybridisation of analytical and numerical 

models to increase the accuracy of prediction for non-linear problems; 

- Kelson et al. (2002) developed a model based on an analytical element code 

and non-linear parameter estimation. They concluded that analytical element 

models are able to predict hydraulic parameters well; 

- Brown and Trott (2014) developed an analytical model to solve water resource 

problems in a mining operation with limited available data. 

According to Csoma (2001), analytical models are preferable if: 

- There is a lack of information on the physical conditions at the boundaries of 

the model, since the method does not require specified boundary conditions 

around the area; 

- Several structures and surface water behaviour impact the aquifer throughout 

the model, as the description of their joint effects with the corresponding 

elements is simple and sufficient. 

2.2.3.2 NUMERICAL MODELS 

Numerical methods used for groundwater modelling may be classified as follows: 

- The Finite Difference Method (FDM) solves differential equations where finite 

differences approximate the derivatives on rectangular elements (Gilberto and 

Urroz, 2004); 
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- The Integrated Finite Difference Method (IFDM) is conceptually similar to 

FDM but uses an integrated form to have another differential form where the 

area to model can be easily discretised into subdomains (Ferrarresi, 1989); 

- The Finite Element Method (FEM) is based on finding approximate solutions 

for partial differential equations using triangular elements (Dhatt et al., 2012); 

- The Boundary Element Method (BEM) denotes any method that 

approximates the solution of differential equation on the boundary of the 

domain using integral equations (Costabel and Stephen, 1985); 

- The Collocation Method (CM) takes account of the finite-dimensional space 

of solutions and determines a number of points in the domain (called 

collocation points). The solution which satisfies the equation at the collocation 

point has to be selected to solve ordinary or partial differential equation or 

integral equations (Gomez and Lorenzis, 2016). 

2.3 MODELLING PROCESS 

The groundwater modelling process starts with planning the type of model needed 

and defining the modelling objectives. Then comes the conceptualisation of the 

model for defining known physical components of the area. In the design stage of the 

model, it is decided how to make a good representation of the conceptual model 

through a mathematical model. After calculating the model response, if the output 

is found to give a poor representation of the measured data, adjustments have to be 

made to either the model type, the conceptual model or the mathematical model 

(Barnett et al., 2012). On the other hand, if the model response is found to give a fair 

representation of the measured data, the model may be further improved by 

calibration during which the input parameters are adjusted to reduce the difference 

between the measured and modelled responses. Furthermore, sensitivity analyses 

may be carried out to determine which input parameters have the strongest 

influence on the modelled response. The model may then be used to predict the 

behaviour of the groundwater system. At any time during this process, adjustments 
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to the model should be made if the modelled response is found to give a poor 

representation of the measured response (refer to Figure 2-1). 

2.3.1 CONCEPTUAL MODELS 

When constructing a model, the first step is to understand the physical system and 

to define how it operates through the development of a conceptual model. For a 

mathematical model as generalized in Figure 2-2, a conceptual model can be defined 

as a graphical representation of the groundwater system, based on 

geomorphological, hydrological, geological and hydrogeological data, in a simple 

block diagram or 2D section (Anderson and Woessner, 1992). 

After analysing the topography of the area of interest, the next step to produce the 

conceptual model is to define geological parameters, taking into account thicknesses 

of layers, layer continuity, tectonic features and lithology. These data can be found 

from geophysical surveys, geological maps, bore logs or some additional field 

mapping (Wilson et al., 2005). To construct a more objective model, additional data 

can be obtained from the government or private sources and investigations. 

A conceptual model takes into account all exterior constraints to the area by 

assigning boundary conditions to the model. 

2.3.2 MATHEMATICAL MODELS 

According to Fowler (1998), mathematical models of real-world situations are 

generally complex and it is difficult to describe the real physical phenomena in 

mathematical terms. When applied mathematicians attempt to construct a model, 

they start with a phenomenon of interest, which has to be described mathematically 

by considering the physical laws that govern the particular phenomenon. 
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Figure 2-1: Groundwater modelling process (modified from Yan et al., 2010) 

Observation of the phenomenon often leads to an understanding of the mechanisms 

that control the phenomenon. The main purpose of the mathematical model is to 

provide quantitative descriptions of the mechanisms and therefore, illustrate the 

phenomenon. 
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Quantitative description is usually done based on some physical variables. A 

mathematical model is constructed based on equations that depend on these 

variables. There are three ways to formulate the dependence of the equations on the 

variables. The equations can be expressed as (Fowler, 1998): 

- Exact conservative laws; 

- Constitutive relation between variables; and, 

- Hypothetical laws. 

Mathematical models are analysed by comparing their outputs with observations 

made in situ. Some adjustments to the model can be done to ensure that the 

mathematical formulation gives an accurate description of the mechanisms 

governing the phenomena. The model can also lead to predictions that help to assess 

the accuracy of the model. 

 

Figure 2-2: Logical diagram for developing a mathematical model (Mercer and Faust, 
1980) 

All models are idealisations and are limited in their applicability. Mathematical 

models are usually first done with simple formulations. If the modelled responses 

give acceptable estimations of the observed data, then the formulation can be made 

more complex to allow for the modelling of complex structures (Balint and Balint, 

2007). 
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Mathematical models are frequently used in studying groundwater systems. They 

can be used to simulate or predict groundwater flow and contaminant transport 

(Kumar, 1992). From the available literature it can be seen that groundwater models 

have been used in many studies relating to groundwater (Ardejani and Tonkaboni, 

2009; Aryafar et al., 2007; Shamim et al., 2004; Lohani and Krishnan, 2015; 

Haitjema and Brucker, 2005). As discussed in the preceding sections, groundwater 

models generally require many data, which are often difficult and expensive to 

acquire. It is thus important to find alternative methods of predicting aquifer 

behaviour in cases where little information on the aquifer systems is available. In 

the current study, an Artificial Neural Network is developed to address this problem. 

2.4 ARTIFICIAL NEURAL NETWORKS 

2.4.1 INTRODUCTION 

Artificial Neural Networks (ANNs) are part of Artificial Intelligence. They are a 

mechanism that reproduces the cognitive function of the brain by simulating its 

architecture. By imitating the human brain’s structure and function, ANNs are well-

known to be powerful in solving complex, noisy and non-linear problems (Hsieh, 

1993). They are successfully used for approximating functions, task classifications 

and clustering (Allende et al., 2002; Hsieh, 1993; Khashei and Bijari, 2009; 

Wilamowski, 2007). ANNs learn from the available data describing the behaviour of 

a system and attempt to establish a relationship between these data, even if the 

physical mechanisms controlling the behaviour of the system are poorly understood. 

They are thus suitable to model the complex behaviour of aquifers which by nature 

are anisotropic and heterogeneous. 

The learning and generalisation processes of ANNs are based on neurophysiological 

processes, and are described through mathematical relations that mimic the 

neurophysiological functioning. 
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2.4.2 NEUROPHYSIOLOGICAL PROCESSES 

The human brain contains almost 100 billion neurons with 1 000 to 10 000 

synapses by neuron. The way the brain processes information is not yet well known, 

although there are many available applications (Ellis et al., 1995; Park et al., 2009, 

Goh et al., 2005; Cho, 2009; Shi, 2000). Neurons can be defined as biological cells 

which have body cells and nuclei. Information is collected by fine structures called 

dendrites. A neuron produces an electrical signal and sends it through an axon, 

which is divided into several branches. That electrical signal is converted in an effect 

at each end of the branch by a synapse which then generates activity in connected 

neurons. 

When a neuron is excited enough, compared to its input, it generates electricity and 

sends its signal to its axon. Learning occurs when the effectiveness of the synapses 

changes, causing neurons to influence each other. 

2.4.3 MATHEMATICAL MODELS 

Biological neurons can perform various tasks such as body recognition, signal 

processing and generalisation. The performance of the neurons can be described by 

mathematical relations, which can be transformed into algorithms, leading to the 

development of Artificial Intelligence. ANNs are models of the neurophysiology of the 

brain that may be described by their components, descriptive variables and 

interactions between components (Rojas, 1996). Together, the components of the 

ANNs and the interactions between these components form the architecture of the 

ANNs. 

2.4.3.1 NEURAL NETWORK ARCHITECTURE 

An ANN is based on an interconnection of nodes, called neurons, that works as a 

collective system. This system comprises neurons and links. Each link has a weight, 

which is a numerical value representing the connection strength between the 
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neurons (see Figure 2-3). The sum of the input weights is converted to outputs 

through a transfer function (TF) (refer to Section 2.4.3.2) (Wilamowski, 2003). 

ANNs contain three kinds of layers: 

- An input layer which has the predicator variable; 

- One or more hidden layers which function as a collection of feature detectors; 

- An output layer used to produce a response relative to the inputs. 

ANNs can function using either feed-forward or feedback methods, using single or 

multiple hidden layers. 

 

Figure 2-3: Example of an ANN with one hidden layer (Li E., 1994) 

2.4.3.1.1 FEED-FORWARD NETWORKS 

Feed-Forward Neural Networks (FFNNs) are widely used. One such FFNN is the 

Multi-Layer Perceptron (MLP). In these neural networks, information progressions 

are unidimensional going from input layer to output layer through hidden layers 

(Millar and Calderbank, 1995). 
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2.4.3.1.2 FEEDBACK NETWORKS 

Feedback Networks (FBNs) are neural networks that process information in both 

directions by introducing loops in the network. They have an interactive or recurrent 

architecture. Their output is often used to create feedback connections in single layer 

organization. They can become very complex, but are often useful for solving complex 

problems (Rojas, 1996). 

2.4.3.2 TRANSFER FUNCTION 

An ANN should be able to reproduce the correct output for the related inputs. Its 

behaviour depends on the weights and the input-output function operating at each 

neuron, called the transfer function. While using an ANN, the choice of the transfer 

function can deeply impact the behaviour of the whole network. The most commonly 

used transfer functions are (Hajek, 2005): 

- Linear, where the output from the neuron is directly proportional to the total 

weighted input that it receives from the other neurons connected to it; 

- Threshold, where the output is set to a higher or lower level depending on 

whether the total input is greater or less than some threshold value; 

- Sigmoidal (logistic), where the output changes progressively but not linearly 

according to changes in the weighted input; 

- Hyperbolic tangent, where the fluctuation between consecutive inputs is 

relative to the hyperbolic tangent derivative. 

It is important to note that the threshold, sigmoidal and hyperbolic transfer 

functions are non-linear (Pushpa and Manimala, 2014). 

2.4.4 OPTIMISATION OF THE MODEL 

The process of optimisation of ANNs is also called the “training” or “learning” process. 

According to Rumelhart et al. (1986), the most commonly used method is the back-

propagation algorithm. This algorithm is non-linear and is more often applied when 
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using multi-layer perceptrons (Brown and Harris, 1994). Perceptrons are algorithms 

which can be computed by a binary variable coding. They can be linear or spherical 

according to the way outputs are computed. It is expensive to compute the back-

propagation algorithm, especially during the learning process. It is then important 

to find an alternative simplified method which can speed the learning process and 

produce reasonable outputs for new inputs. 

2.4.5 STOPPING CRITERIA 

When optimising ANNs, it is important to decide when the training process has to be 

stopped. The stopping criteria determine when the ANN has been optimally trained. 

The training process can be stopped when a) a fixed number of training inputs have 

been reached, or b) when the training error becomes acceptably small. The first 

stopping criterion could lead a prematurely cessation of training, while the second 

could lead to over-training. 

Cross-validation is a valuable technique to avoid such problems (Smith, 1993). When 

available inputs are limited, Amari et al. (1997) suggested using the cross-validation 

technique because it presents many advantages. In this technique, the data are 

divided in three parts: training, testing and validation. The training part is used to 

train and build the model. The testing part measures the ability of generalisation of 

the model. The training is stopped when the error of the testing set starts to increase, 

even if the number of iterations has not been reached. The validation part is used 

for performance analysis. It is also possible to divide the dataset into two parts where 

one part is used for training and the other for validation. 

2.4.6 PERFORMANCE ANALYSIS OF THE MODEL 

The main purpose of the performance analysis is to ensure that the ANN is able to 

generalise what was used for its training, rather than just memorising the 

relationship between the inputs and outputs of the training dataset. The ANN can 
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be assumed to be robust only if the performance on an independent dataset (not 

used during training) is adequate. 

Most model evaluations are done through statistical and graphical techniques 

(Moriasi et al., 2007). The main statistical evaluation techniques are: 

- The Slope and Y-intercept method shows how well the predicted data match 

the observed data. In this techniques it assumed that compared data have a 

linear relationship, measured data are free of error and all errors come from 

predicted data. In reality, the measured data often have errors. For this 

reason, the Slope and Y-intercept method has to be used carefully; 

- The Pearson correlation coefficient (r) describes the degree of collinearity 

between the observed data and the model output (predicted data). The Pearson 

correlation coefficient ranges from -1 (the observed and predicted data are 

negatively correlated) to +1 (the observed and predicted data are negatively 

correlated). An r-value of zero indicates that there is no correlation between 

the data. The coefficient can be defined as follows: 

𝑟 =
∑ [(𝑋𝑖 − 𝑋𝑚𝑒𝑎𝑛) ∗ (𝑌𝑖 − 𝑌𝑚𝑒𝑎𝑛)]
𝑛
𝑖=1

√∑ (𝑋𝑖 − 𝑋𝑚𝑒𝑎𝑛)2 ∗ ∑ (𝑌𝑖 − 𝑌𝑚𝑒𝑎𝑛)2
𝑛
𝑖=1

𝑛
𝑖=1

 

Where n is the number of data points, Xi is the observed value of data point 

i, Yi is the predicted value for data point i, and Xmean and Ymean are the mean 

values of the observed and predicted data, respectively. 

- The Nash-Sutcliffe Efficiency coefficient (NSE or E) is a statistical method 

that calculates the magnitude of the measured data variance compared to the 

residual variance (Nash and Sutcliffe, 1970). The NSE can range from - to 1 

(inclusive). If the value is equal to 1, it means that the model outputs match 

the observations perfectly. Values between 0 and 1 indicate acceptable 
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performance, whereas negative values indicate unacceptable performance. 

The NSE is defined as: 

𝑁𝑆𝐸 = 1 −
∑ (𝑋𝑖 − 𝑌𝑖)

2𝑛
𝑖=1

∑ (𝑋𝑖 − 𝑋𝑚𝑒𝑎𝑛)2
𝑛
𝑖=1

 

- The Percent Bias (PBIAS) measures the general trend of predicted data values 

compared to the observed data values. Data values are compared to determine 

whether the predicted values are generally smaller or larger than the observed 

values (Gupta et al., 1999). Positive values for the PBIAS indicate that the 

model is biased towards underestimation, while negative values indicate that 

that the model is biased towards overestimation. The optimal value for the 

PBIAS is zero, indicating no bias in the predicted data. The PBIAS is calculated 

as: 

𝑃𝐵𝐼𝐴𝑆 =
∑ (𝑋𝑖 − 𝑌𝑖)

∗100𝑛
𝑖=1

∑ 𝑋𝑖
𝑛
𝑖=1

 

- The Root Mean Square Error (RMSE) is based on the difference between the 

observed and predicted values. That difference is called the “residual”. 

According to Singh et al. (2005), a lower RMSE indicates better performance 

of the model. It can be defined as: 

𝑅𝑀𝑆𝐸 = √
∑ (𝑋𝑖 − 𝑌𝑖)2
𝑛
𝑖=1

𝑛
 

- The RMSE-Observations Standard Deviation Ratio (RSR) is a ratio of the 

RMSE and standard deviation of the observed data. It is a way of standardising 

the RMSE. The lower the RSR, the better the performance of the model (Moriasi 

et al., 2007). The optimal value of the RSR is zero, indicating a perfect fit 

between the observed and predicted data. The RSR is defined as: 
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𝑅𝑆𝑅 =
∑ (𝑋𝑖 − 𝑌𝑖)

2𝑛
𝑖=1

∑ (𝑋𝑖 − 𝑋𝑚𝑒𝑎𝑛)2
𝑛
𝑖=1

 

- The Normalised RMSE (NRSME) allows the comparison of the performance of 

models where differences in the mean data values of the models may lead to 

different performances if evaluated using the standard RMSE. The optimal 

value of the NRMSE is zero. It is calculated as follows: 

𝑁𝑅𝑀𝑆𝐸 =
𝑅𝑀𝑆𝐸

𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛
 

Where Xmax and Xmin are the maximum and minimum values of the data in the 

observed dataset. 

- Lin and Cunningham III (1995) developed a new approach to fuzzy-neural 

knowledge extraction, which can be used to check the accuracy of complex 

models. They defined a parameter called the Performance Index (PI). They 

concluded that the lower the PI, the better the model. The PI is defined as 

followed: 

𝑃𝐼 =
√∑ (𝑋𝑖 − 𝑌𝑖)2

𝑚
𝑘=1

∑ |𝑋𝑖|
𝑚
𝑘=1

 

- Graphical residual analysis is a technique which allows a modeller to 

evaluate at first glance the performance of the model. It is based on the 

residual (difference between predicted and observed data) and is used to 

evaluate whether the four following assumptions are satisfied (Osborne and 

Waters, 2002): 

o Data from the different datasets display a linear relationship. There are 

several methods to investigate the linearity of models (Cohen and Cohen, 

1983; Pedhazur, 1997). The commonly used method is the plotting of 

residuals as function of predicted values, called residual plots. The 

spread of residuals has to be approximately constant from left to right 
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of the plot (random pattern) to assume that the model is linear. In the 

case of non-random pattern (U-shaped or inverted U), the model is said 

to be non-linear. 

o Data are independent. As for the linearity, the independence of 

variables is detected based on the residual plots. From the residual 

plots, a datasets can be judged independent (randomly distributed), 

positively correlated or negatively correlated. 

o Data are normally distributed. A histogram and a point-point plot (PP 

plot) can be used to test if the output data from the model are normally 

distributed. In a histogram, the observation that the data lie on a bell 

curve can be sufficient to indicate a normal distribution. The PP plot is 

a scatter diagram which compares two datasets (predicted and observed) 

of the same size and on the same scale. Data are assumed to be normally 

distributed if the scatter points lie close to a line with slope 1. A normal 

probability plot, formed by plotting the percentile versus the residual, 

can also be used to check the normality of the model. If the plot is almost 

linear it can be assumed that data are normally distributed. 

o Data have an equal variance. The residual plot is also used to check 

the error variance. If a residual plot shows an increasing or decreasing 

trend, it can be concluded that the data do not have an equal variance. 

If any of the above assumptions are violated, the results of the analysis may 

be misleading or completely wrong. In such a case, data have to be refined or 

transformed to meet the assumptions of the linear regression model. If the 

problem still remains unsolved, then it will have to be assumed that the model 

is non-linear. 

2.4.7 APPLICATION OF ANNs IN GROUNDWATER STUDIES 

An ANN can be seen as a universal approximator. Its ability to learn and generalise 

makes the ANN a powerful tool able to solve various complex problems, such as: 
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pattern recognition, stock forecasting, non-linear modelling, and classification of 

data according to type. In geohydrology, ANNs have had a significant growth since 

Rumelhart et al. (1986) developed their computational mechanism. This approach is 

now used in all branches of engineering and the sciences. 

Many water-related problems need to be solved by prediction and estimation. Most 

hydrogeological processes show high fluctuation, both spatially and temporally. They 

are often non-linear physical processes. Often there is large uncertainty in the 

parameters affecting the processes (McCuen, 1997). 

Geohydrologists have to provide answers to complex problems related to water 

management. To provide answers to these problems, ANNs offer the possibility of 

finding relationships between the inputs and outputs of processes even if these 

processes are not well understood. The applicability of ANNs in geohydrology is 

extensive. These networks can identify the relation between noisy data and help to 

generate simple rules (Sarkar, 2012). 

ANNs can be applied to mimic temporally and spatially distributed human 

influences, such as water extraction patterns, on a regional scale with high predictive 

accuracy for complex groundwater system, as shown by Feng et al. (2008). 

Sensitivity studies done with ANNs are an effective and efficient tool which can help 

decision-makers to understand the impact of human activity on the aquifer. 

Using ANNs, Joorabchi et al. (2009) found that tide variation is the main parameter 

impacting the water table in coastal anisotropic aquifers. Abrahart and See (2007) 

concluded that these networks can be used to produce understandable non-linear 

transformations in the study of aquifers.  

The power of ANNs to model complex non-linear problems is one of its strengths 

which can provide output datasets ready to be used in other areas of groundwater 

research, such as hydrochemistry (Seyam, 2010) and hydrodynamics (Aziz and 

Wong, 1992). 
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ANNs are known to be able to generate accurate predictions. The accuracy of these 

networks may be further improved by using them in combination with numerical 

models (Szidarovszky et al., 2007). This hybridisation method can be used to 

evaluate the performance of Finite Difference-based models and ANNS, as shown by 

Mohanty et al. (2013). 

ANNs are able to forecast time series (Sudheer et al., 2002; Yoon et al., 2007; Kumar 

et al., 2013) and compared to the performance of a hybrid model, the results suggest 

that both the ANN and hybrid model can successfully be used for the prediction of 

the temporal behaviour of groundwater levels. 

ANNs combined with numerical based-models have been used for predicting 

liquefaction potential in soil deposits (Farrokhzad et al., 2010). This combination 

provides results that are more accurate. 

In studies to protect coastal aquifers against seawater intrusions, ANNs have been 

developed, optimized and then combined with numerical models to provide better 

predictions, even for complex pumping system (Kourakos and Mantoglou, 2009). 

Additional to the study of groundwater quality in coastal areas, Yoon et al. (2011) 

developed two hydrogeological models based on Support Vector Machines (another 

form of machine learning) and ANNs to forecast the short-term fluctuations of the 

groundwater table of a coastal aquifer in Korea. It was observed that the Support 

Vector Machines gave more accurate results for long prediction times than ANNs. 

Seawater intrusion can increase the salinity of islands. It was observed by Banerjee 

et al. (2011) that when the pumping rate increases, the salinity of the aquifer also 

increases. Thus, they used both ANNs and SUTRA (Saturated-Unsaturated 

Transport; an FEM code) to predict the minimum acceptable pumping rate which 

would leave the salinity below an acceptable threshold. Comparing the results 

founds with SUTRA and ANNs to the observations, they concluded that ANNs 

provided more accurate predictions even though these networks required fewer 

inputs than SUTRA. 
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Juan et al. (2015) used ANNs to forecast suprapermafrost groundwater levels. Since 

permafrost areas are typically harsh environments, data collection in these areas is 

demanding, with the result that only a limited number of studies have focussed on 

understanding the behaviour of the aquifers in such areas. Juan et al. (2015) stated 

that the groundwater hydrodynamics of permafrost areas is not controlled by Darcy 

flow, but by thermodynamics. The authors employed ANNs in their investigations 

and used temperature, rainfall data and previous suprapermafrost groundwater 

levels as inputs to the ANNs to predict the suprapermafrost groundwater level. They 

observed that the results were satisfactory when compared to the field observations, 

although the accuracy of the predictions decreased with increasing prediction time. 

Mohanty et al. (2013) developed a groundwater model based on FDM, as well as 

ANNs, to predict the depletion of water in a region of India. After comparing the 

results of these studies to the field observations, they found ANNs to be more 

accurate for short-term predictions while FDM are more suitable for long-term 

predictions. They therefore recommended the combined use of these two methods to 

complement one another and ensure good decision-making in groundwater 

management. 

The coupling of numerical models and ANNs have been used to evaluate the 

interaction between rivers and aquifers, providing rapid results. These hybrid models 

can easily be extended to other complex scenarios (Parkin et al., 2001). Tapoglu et 

al. (2014) combined the use of ANNs and Kriging methods to predict the groundwater 

level changes in Bavaria (Germany). They used the hydraulic head data recorded at 

64 piezometers to train 64 ANNs, one for each piezometer. At positions removed from 

the piezometers interpolation with Kriging was used to estimate the hydraulic heads. 

It was found that this approach was powerful and required few inputs, making it a 

useful tool for the prediction of groundwater level changes in areas with limited 

geological and hydrogeological data. 

Hybridisation of approaches were shown in the last decade to be a more powerful 

technique for estimation and prediction of groundwater behaviour (Yeh, 1992; Das 
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and Datta, 2001). Thus, Bahrami et al. (2016) developed a hybrid model to predict 

the groundwater inflow during the advance of an open pit during mining. First they 

developed an ANN to perform the predictions. Since the performance of ANNs 

depends on the architecture of the network and a proper selection of weights for the 

connections between neurons, the authors used the Genetics Algorithm (GA) and 

Simulated Annealing (SA) to determine initial weights so as to obtain more accurate 

solutions. Thus, they developed a hybrid model based on ANN-GA and ANN-SA to 

predict the groundwater inflow during the pit advance. The comparison between the 

measured groundwater inflows and the predicted inflows gave better results for 

hybrid models than when using a simple ANN. 

Ardejani et al. (2013) used ANNs to predict the water table rebound in an excavation 

were the water table was below the floor of the pit. The authors stated that the 

methods commonly used to predict groundwater rebound require a lot of inputs, 

such as hydraulic conductivities, transmissivities, initial hydraulic heads, rainfall 

data and specific storages. Accurate information on these parameters is often 

difficult to obtain. Furthermore, since the system is nonlinearly dependent on these 

parameters, inaccuracies in the parameter estimates could lead to large errors in the 

predicted responses. To avoid such errors, the authors used ANNs to predict the 

behaviour of the groundwater level during rebound in the open pit mine. The 

predicted hydraulic heads were compared to the observed field data, and a 

correlation coefficient (R value) of 0.986 was obtained, showing good agreement 

between the observed and predicted water levels. 

However, if the available input data are sparse, it is important to use alternative 

methods, which start by using real or synthetic observations where the number of 

inputs can be reduced. Using this approach, Mohammadi (2008) employed synthetic 

observations generated from a groundwater model based on the finite difference 

method to implement an ANN model. The objective of his study was to investigate 

the applicability of ANNs in groundwater level simulation without any well boundary 

conditions and with limited data. In this research, different ANNs were used to 

predict the groundwater elevation. Although a few networks gave poor results, the 
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majority of the ANNs predicted the groundwater elevations with a high degree of 

accuracy. It was therefore concluded that ANNs can be effectively used for 

groundwater modelling. 

2.5 DEWATERING STRATEGIES AT MINES 

Modelling has been used for many years to simulate groundwater behaviour during 

pit dewatering operations. Open pit mine operations often extend below the 

groundwater table. This becomes a serious challenge and can have negative impacts 

on safety, operations and benefits. It is preferable, and at times mandatory, to 

perform mining in dry conditions by applying pit dewatering strategies at the mine. 

This usually requires a geohydrological assessment of the mine site. 

Individual mines often use a combination of dewatering methods, depending on the 

specific geohydrology and the experience of the geohydrologist. Based on the geology 

and the type of mine, different dewatering strategies may be applied, as described 

below: 

2.5.1 GROUTING 

Grouting is one of several methods of ground treatment for excluding water in mining 

operations. The advantage of this method is the permanence of the ground 

treatment, which may enhance dewatering and increase stability. Although ground 

freezing may also be used for water exclusion during mining, this method is only 

temporary in nature (Kipko et al., 1993; Heinz, 1997; Nel, 1997). 

Grouting of water-bearing strata is a highly efficient water exclusion method in 

underground mines and many practical applications indicate that a significant 

reduction of flow through the grouted strata is achievable. With the introduction of 

ultrafine and chemical grouts even low permeable strata can be efficiently grouted. 

The disadvantage of grouting is the relatively high cost over large areas and therefore, 

grouting is typically used in the sealing of smaller areas such as faults or fracture 

systems (Straskraba and Effner, 1998). 
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Note that in mining and tunnelling infrastructures, the application of cement-based 

grouts is more common than other types of grout (Daw and Pollard, 2006). 

2.5.2 STORM WATER CONTROL 

In open pits, storm water can be defined as water coming from precipitation events 

such as rainfall, snow or ice melts. The water can infiltrate into the soil, evaporate, 

or flow overland in the form of runoff. The goal of storm water control is to prevent 

water from entering the open pits at the mine, and to minimise contact of the water 

with materials or products which could lead to the pollution of the aquifer. 

2.5.3 WELLPOINTS AND BOREHOLES 

Wellpoints and boreholes accomplish pit dewatering through pumping from the 

surrounding aquifers. Pumping creates a cone of depression in the aquifer by 

reducing the water level elevation or hydraulic head around the borehole. For 

improved dewatering, more than one pumping borehole may be used to enhance the 

reduction in the hydraulic head through interference between the cones of 

depression. Boreholes may be located next to each other to cause an overlap in the 

cones of depression for more effective reduction of the water table. Using several 

pumping boreholes in conjunction often improves the dewatering of large areas. 

In the same way, wellpoints may be used to for dewatering operations in 

unconsolidated rocks. The casings of wellpoints typically have much smaller 

diameters than the casings of boreholes, and may be driven directly into the 

unconsolidated rocks. The effectiveness of wellpoints during dewatering is controlled 

by the permeability of rocks and the atmospheric pressure (Dowling et al., 2013). 

Due to their limited depths, wellpoints are used to dewater aquifers that occur close 

to the surface. For more efficient dewatering of a multi-layered aquifer, they are used 

in combination with deep dewatering boreholes. This process was used in South 

Africa to dewater some coal mines (Morton and Niekerk, 1993). Wellpoints are mostly 
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used to dewater aquifers during construction when foundations are cast below the 

water table. 

Water management is one of the expensive tasks in mining operations. Good 

groundwater control can limit mining expenses by reducing waste stripping and 

improving safety. Inclined and vertical boreholes are common methods for open pit 

dewatering. Boreholes and wellpoints often interfere with mining operations when 

they are installed on the pit floor. To avoid this interference, it is important to place 

them outside the pits (Morton, 2009). 

2.5.4 SUB-HORIZONTAL DRAINS 

Sub-horizontals drains are holes of five to eight centimetres diameter, drilled in the 

rock near the toes of slopes. These drains are usually sub-horizontal and are used 

for aquifer depressurisation. They are very useful dewatering strategies, particularly 

if used supplementary to the main system for lowering the groundwater table 

(Libicki, 1985). 

To decrease the build-up of pore pressure, another alternative is to blast entire 

benches without excavating them during the winter month. The increase in 

permeability acts as a drain which allows water to seep from the slope. This water 

has to be collected in sumps and pumped out of the pit (Brawner, 1982). 

2.5.5 CUT-OFF WALLS 

Cut-off walls are a useful method against groundwater inflow during mining 

operations. There are several types of cut-off walls. Usually, a special excavator is 

used to dig a ditch sealed to provide support for the walls and, in this way, to 

decrease the infiltration of water. The applicability of this method is limited by the 

operating range of the excavator (Libicki, 1993). 

Another type of cut-off wall may be constructed by grouting. It consists of drilling a 

borehole which is sealed with a special substance under pressure based on the 

regional pressure conditions. This method can be applied at significant distance from 
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the topographic surface. However, one disadvantage of the method is the fact that 

the grout wall has to be changed regularly as conditions change at the mine. This is 

especially true for grouting over large areas (Libicki, 1993). 

Cut-off walls can be used as impermeable layers to prevent inflow in overburden 

aquifers. If it is not extended to an impermeable layer, it can lose its efficiency by 

inducing damming of groundwater, which can increase the velocity through the non-

sealed area (Libicki, 1993). 

It is highly recommended to use cut-off walls in high permeable aquifers which are 

in direct contact with lakes or rivers. Another advantage of cut-off wall is that they 

can reduce or avoid the development of cones of depression far from the drained area 

and thus, keep the hydrodynamic behaviour of surrounding surface water system 

intact. This method is known to be expensive during construction, but may be cost-

effective in the long term by reducing the costs associated with continuous 

dewatering of pits during mining operations (Libicki, 1993). 

2.5.6 ARTIFICIAL GROUND FREEZING 

Ground freezing is a technique which converts pore water into ice by continuous 

circulation of cryogenic fluid in small diameter pipes installed into the ground. The 

frozen pore water acts as a part of the soil or rock and decrease its permeability. 

Freeze pipes are vertically installed into the soil and they are connected in parallel 

arrangements. The liquid nitrogen is pumped down into the freeze pipe, thus 

withdrawing the heat from the rock. When the rock temperature reached zero degree 

Celsius, there ice is formed around the pipe in a cylindrical shape. The radius of 

each cylinder increases until adjacent cylinders come in contact, thereby creating a 

continuous wall. This method is minimally invasive and requires limited penetration 

of pipes into the ground, since the “ice wall” is created by the propagation of heat 

out of the rock (Chang and Lacy, 2008). 
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Ground freezing has been used with success in different applications, from industrial 

construction to geotechnical engineering, as well as in mine dewatering and 

groundwater management (Straskraba and Effner, 2012). 

In the climate conditions of the Northern Hemisphere, slope freezing is commonly 

used to avoid seepages from the slopes. 

2.5.7 PIT SUMPS 

A sump is a hole dug at the bottom of the mine with the main purpose of collecting 

water coming from adjacent areas through channels or ditches. The water that 

collects in the sump is then removed through pumping. Slurry or sump pumps are 

used to remove water from shallow sumps. In the case of deep sumps, submersible 

pumps can be required (Quinion and Quinion, 1987). 

If the sump is dug in unconsolidated rock, the sides of the slopes have to be flattened 

to increase its stability. It is important to evaluate the stability of the surrounding 

foundation before pumping to avoid any settlement or erosion which could lead to 

high instability of existing structures (Quinion and Quinion, 1987). 
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: NUMERICAL MODELLING OF AQUIFER 

RESPONSE TO PIT DEWATERING 

3.1 INTRODUCTION 

Synthetic data have long been employed in geohydrology for model development and 

testing. The objective of this chapter is to generate a synthetic dataset of 

geohydrological responses during dewatering operations at a fictional open pit mine. 

The synthetic dataset is generated by using a numerical model. In the model, 

different pumping scenarios are considered. The model uses nine observation points 

(piezometers) and three, six, nine and 12 pumping wells in the four different 

pumping scenarios. The purpose of the pumping wells is to dewater the open pit 

under different pumping conditions. The response of the aquifer to these different 

pumping scenarios is examined. The datasets of hydraulic heads versus time thus 

generated allows for very different hydraulic head responses against which the 

performance of the ANNs in predicting the hydraulic heads under different pumping 

conditions can be tested (Chapter 4). 

3.2 MODEL DESCRIPTION 

Aquifers are complex and not often directly visible. For better understanding these 

aquifers for modelling purposes, they have to be represented by simplified versions 

in the form of conceptual models (refer to Section 2.3.1). The conceptual model may 

influence the choice of numerical method used for simulating the behaviour of the 

aquifers. For example, a conceptual model with complex aquifer boundaries may 

have to be modelled using FEM instead of FDM, since the rectangular cells used in 

FDM do not allow for adequate refinement of the modelling grid. 

If the conceptual model give an accurate representation of the real aquifer, the 

numerical model will also be more accurate (Anderson and Woessner, 1992). 
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The conceptual model of the current investigation includes information on the pit 

geometry, geomorphology, rainfall, surface water bodies, and aquifer units as derived 

from the geological layers. 

3.2.1 GEOMETRY OF THE MODELLED OPEN PIT MINE 

For the purposes of the current study, a model of a fictional open pit mine is 

developed. The fictional open pit mine is treated as a real mine and a degree of 

complexity in the geology, topography and boundary conditions is allowed so as to 

create a dataset of modelled hydraulic heads under conditions similar to those 

experienced at real-world open pit mines. This complexity allows for non-linear 

behaviour in the system, as would be expected at a real mine. 

The open pit mine is assumed to be excavated in a sedimentary deposit with the top 

and bottom elevations at 1 250 mamsl and 1 166 mamsl, respectively. The plan view 

of the pit can be compared to a smooth closed curve, which is symmetric about its 

centre with the transverse, and conjugate diameters of 880 m and 370 m, 

respectively (refer to Figure 3.1). 

The mine is exclusively excavated in the first geological layer (dolomite), which is 

160 m thick. The pit is assumed to be excavated in an unconfined aquifer, since it 

is assumed that water in the voids and fractures of the dolomite is in contact with 

the atmosphere and is therefore under atmospheric pressure. 

The vertical distance between the highest point on the perimeter of the pit and the 

pit floor is 84 m. The pit has nine benches with an average bench height of 9.3 m 

(see Figure 3.2). 



-  34  - 

 

 

Figure 3.1: Plan view of the open pit of the model 

 

Figure 3.2: Cross-section through the open pit of the model 
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3.2.2 TOPOGRAPHY AND HYDROGRAPHY OF THE MODELLED AREA 

The general topography of the region is gentle. The pre-mining topography shown in 

Figure 3.3 is an existing topography of a tropical area in the Democratic Republic of 

Congo (DRC). This particular area was chosen because of the variation in the surface 

topography (higher elevations in the south–western parts and lower elevations in the 

north-eastern parts). Since groundwater elevations generally emulate the surface 

topography, topographic gradients are often also associated with hydraulic gradients 

and thus with groundwater movement (Haitjema and Mitchell-Bruker, 2005). In this 

research, it is therefore assumed that the groundwater flows in the direction of the 

topographic gradient. 

 

Figure 3.3: Pre-mining topography of the model 
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The open pit is located on the watershed between two catchments as shown in Figure 

3.4. Each catchment drained by a river flowing from south-west to north-east. These 

two rivers are simulated as constrained head boundaries. The constrained heads 

were assigned values that ensure a gradient in the direction of the river flow (down-

gradient, according to the ground topography). It was further assumed that the water 

from the river infiltrates the aquifer at a constant rate of 30 m3/h. This latter 

infiltration rate was chosen because it was observed by Norris (1983) in the Scioto 

River in south-central Ohio (from 0.06 to 0.19 million gallons per day for one acre) 

and also in the Dipeta River in the Democratic Republic of Congo (30 m3/h for a river 

with a length of 1.3 km and a width of 3 m). 

 

Figure 3.4: Catchments and rivers of the model 
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Based on the topography of the model, some of the surface runoff drains directly into 

the open pit. Such runoff water could pose problems to the management of surface 

water at real mines. However, in this research, surface runoff water entering the pit 

will not be considered in the synthetic model, since the aim is to model pit dewatering 

by using abstraction wells. 

3.2.3 GEOMETRY OF THE GROUNDWATER MODEL 

The model domain is 1 126 m long, 574 m wide and 240 m high. As shown in Figure 

3.5, the geology of the region is assumed to be sub-horizontal, consisting of only two 

layers, namely: a dolomite layer (160 m thick), overlying a shale layer (80 m thick). 

No prominent tectonic features, such as faults, occur within the model domain. The 

open pit mine is excavated exclusively in the dolomite layer to depth of 84 m. 

3.2.4 HYDRAULIC PARAMETERS 

In Figure 3.5, the spatial distribution of the hydraulic parameters is shown. It is 

seen that these parameters are directly related to the geological units, and that these 

parameters do not vary within the geological units. As indicated in Table 3-1, the 

hydraulic conductivity is the only hydraulic parameter that differs for the two layers 

in the model. It is also seen that that the vertical hydraulic conductivities (KZZ) of the 

layers are significantly smaller than the horizontal hydraulic conductivities (KXX and 

KYY). These hydraulic conductivity values are based on the work of Morris and 

Johnson (1967) who conducted studies on the hydraulic parameters of several rock 

types. The specific storages, and the specific yields of the two layers are taken as the 

default values for dolomites and shales, as defined in the software. 

Table 3-1: Hydraulic parameters of the synthetic model 

 



-  38  - 

 

Figure 3.5: The synthetic model setup with hydraulic conductivity distribution
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3.2.5 RECHARGE 

The main recharge of the aquifer is through rainfall. The mean annual rainfall (MAR) 

in the modelled area is assumed to be 1 200 mm, corresponding to the rainfall 

figures in a tropical climate. A large percentage of the rainfall flows to rivers as runoff. 

In Feflow, rainfall is modelled as aerial groundwater recharge by using sink/source 

formulations. Recharge values for carbonate rocks such as limestone and dolomite 

range from 3 to 10% (MWR, 2009). This boundary condition was applied to the top 

of the first geological layer of the numerical model. Recharge calculation is then 

performed automatically according to the hydrogeological parameters (permeability, 

storativity, etc.) of the layers in the model. 

3.2.6 DEWATERING AND OBSERVATION WELLS 

While performing the dewatering simulations, the behaviour of the aquifer will be 

observed at nine observation points (OBS_1 to OBS_9) spatially distributed as shown 

in Figure 3.7. Observation point OBS_9 is used to evaluate the water elevation 

according the bottom of the pit because it is located right in the middle of the pit. 

Four dewatering scenarios will be run with three, six, nine and twelve dewatering 

wells. The dewatering wells are numbered BH_1 to BH_12. 
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Figure 3.6: Spatial distribution of observation points and dewatering well
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3.2.7 BOUNDARY CONDITIONS 

The base of the model (the bottom of the shale layer) is assumed to be impermeable. 

The numerical model used in this study incorporates the following boundary 

conditions: 

- Recharge (3 to 10% of the MAR) is represented by areal fluxes applied at the top 

slice of the synthetic model (the top of the dolomite layer); 

- The well boundary conditions applied to the dewatering wells describes the 

impact of water abstraction at a single node in m3/d; 

- The model assumes that the rivers and groundwater are in dynamic connection. 

Hydraulic head boundary condition with flow-rate constraints were used for 

definition of rivers. 

- Constant head boundary conditions are assigned to the boundaries of the model 

domain. These constant heads were determined by considering the surface 

topography at the boundaries. 
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Figure 3.7: Spatial distribution of observation points and dewatering well
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3.3 MODEL DEVELOPMENT 

3.3.1 MODEL PACKAGE 

The finite element software Feflow® v6.2 from DHI-WASY was used to simulate the 

behaviour of groundwater. Feflow is a three dimensional finite element package able 

to simulate unsaturated and saturated flow. It also has a mesh generation method 

which allows for flexible and quick editing of the model. This code allows rapid 

execution, development and analysis of the model (Diersch, 2004). 

The capabilities of Feflow to interact with ArcGIS (ESRI) and spreadsheets is one of 

the important features of this software. Its flexibility is the reasons why it is one of 

the modelling packages preferred by scientists (Knapton, 2009). 

3.3.2 SPATIAL DISCRETIZATION 

The discretization of the model is done with the Feflow® package. Meshes are 

generated by applying the automatic triangle algorithm (Shewchuk, 2002). This 

algorithm is very versatile and extremely fast, and can deal with complex geometrical 

setups of polygons, lines, and points. 

The mesh of the current model has 169 386 elements with 84 873 nodes. The 

regional mesh was refined in the synthetic model using the Mesh Geometry Editor. 

The resulting mesh used in the modelling is presented in Figure 3.8. 

3.3.3 MODEL SETTINGS 

The synthetic model assumed saturated and unconfined conditions, and also 

assumed only groundwater flow (not mass transport). The total duration of the 

modelling was for a period of 5 months. 



 

-  44  - 

 

 

Figure 3.8: Finite element mesh used in the synthetic model 

3.3.4 DEWATERING STRATEGY AND MODEL RESULTS 

3.3.4.1 PRE-MINING GROUNDWATER LEVELS 

The natural pre-mining hydraulic gradient in the vicinity of the pit is shown in Figure 

3.9. It can be seen that under natural conditions, the groundwater generally flows 

from south-west to north-east within the model domain. 
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Figure 3.9: Pre-mining hydraulic heads within the model domain 

3.3.4.2 STATIC GROUNDWATER LEVELS AFTER MINING 

After excavating the pit, and allowing equilibrium (static) conditions to be reached, 

the bottom level of the mine is located at an elevation of 1 166 mamsl, while the 

highest hydraulic head within the model domain is at 1 200 mamsl.  

Figure 3.10 shows the water elevations in all the observation wells under static (no 

groundwater abstraction) conditions. As expected, all the wells display constant 

heads (horizontal lines), because, under static conditions, the water table is not 

impacted by dewatering. The difference between the highest (OBS_1) and lowest 

(OBS_8) hydraulic heads at the observation wells is 8 m within the boundary of the 

model, as shown in Figure 3.10. 
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Figure 3.10: Modelled hydraulic heads of the observation wells when no abstraction 
takes place 

Under conditions of no abstraction, a pit lake occurs with a water elevation of 

1 195.58 mamsl (a depth of approximately 30 m as measured from the bottom of the 

pit), as shown in Figure 3.11. 

 

Figure 3.11: East-west profile of the pit for the model at initial conditions. 
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3.3.4.3 DEWATERING USING THREE ABSTRACTION WELLS 

One or more dewatering strategies described in the second chapter could be applied 

to lower the water level. In this research, vertical pit boreholes are used in the 

dewatering strategy. Each borehole pumps at a constant rate of 300 m3/h. Four 

scenarios, taking into account three, six, nine and 12 dewatering wells, running for 

a 5-month abstraction period, were considered during the modelling of pit 

dewatering. These scenarios correspond to different dewatering strategies that have 

lesser or greater impacts on the hydraulic heads in the aquifers surrounding the 

mine. 

To lower the water level, the first scenario consists of installing three wells (BH_1 to 

BH_3) along the iso-potentiometric line on the eastern ramp of the open pit in order 

to decrease the water inflow to the mine. After pumping commences, the water 

elevations at all the monitoring points decrease due to the formation of cones of 

depression around the abstraction wells (refer to Figure 3.12). However, from 

approximately two and a half months after pumping commenced all observation 

points indicate stable water levels, as equilibrium conditions are attained. 

After simulating three dewatering wells pumping for 5 months, the water level in the 

pit lake decreased to an elevation of 1 191.6 mamsl, as shown by the Figure 3.13. 

During the initial conditions, the water level at monitoring point OBS_9 was 

1 195.6 mamsl. After simulating three wells pumping for 5 months, the water level 

in the lake dropped by approximately 4 m. The water in the pit lake then had a depth 

of 26 m. 

3.3.4.4 DEWATERING USING SIX ABSTRACTION WELLS 

With six dewatering wells (BH_1 to BH_6) in the model pumping for 5 months, the 

depth of the water in the pit lake was reduced to 8.2 meters (observation point OBS_9 

in the pit had a water elevation of 1173.8 mamsl). The water levels in the observation 

wells during the 5-month period are shown in Figure 3.14, while a cross-section 

through the pit showing the groundwater elevation is presented in Figure 3.15. It 
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can be seen that the pit is still flooded after 5 months of pumping from the six 

dewatering boreholes. Under these circumstances, it would therefore be difficult to 

re-start mining operations unless some additional dewatering wells are installed. 

 

Figure 3.12: Modelled hydraulic heads of the observation wells for the model using 
three dewatering wells 

 

Figure 3.13: East-west profile of the pit for the model using three dewatering wells 
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Figure 3.14: Modelled hydraulic heads of the observation wells for the model using 
six dewatering wells 

 

Figure 3.15: East-west profile of the pit for the model using six dewatering wells. 

3.3.4.5 DEWATERING USING NINE ABSTRACTION WELLS 

The third scenario takes into account nine dewatering wells (BH_1 to BH_9). 

Abstracting water from these wells over a 5-month period reduced the water level of 

the pit lake (as observed at monitoring point OBS_9) to 1166.6 mamsl. The graphs 

of the water levels in the observation wells (Figure 3.16) show that the impact of the 

dewatering for 5 months is significant, with a steep cone of depression around the 
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boreholes, but that the water level in the pit is not reduced enough to allow the 

extraction of minerals under dry conditions. 

The water depth in the pit lake has now been reduced to only 1.0 meters (see Figure 

3.17). Although this water level is low, it is still not possible to extract minerals 

without further dewatering procedures. 

 

Figure 3.16: Modelled hydraulic heads of the observation wells for the model using 
nine dewatering wells 

 

Figure 3.17: East-west profile of the pit for the model using nine dewatering wells 
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3.3.4.6 DEWATERING USING 12 ABSTRACTION WELLS 

Since nine abstraction wells were not able to dewater the pit completely, another 

modelling scenario with more abstraction wells is required. This scenario takes into 

account 12 dewatering wells to lower the water level up to one bench lower than the 

bottom of the pit. After 5 months of dewatering, the water level at OBS_9 in the pit 

stabilises at 1151.2 mamsl (refer to Figure 3.18). This elevation is 14.8 m below the 

bottom elevation of the pit floor. 

A cross-section through the pit after 5 months of pumping with 12 abstraction wells 

is shown in Figure 3.19. The groundwater level is now below the bottom of the pit 

and the extraction of minerals can commence. 

 

Figure 3.18: Modelled hydraulic heads of the observation wells for the model using 
12 dewatering wells 
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Figure 3.19: East-west profile of the pit for the model using 12 dewatering wells 

3.3.4.7 DISCUSSION 

In Figure 3.20, the results of the different modelling scenarios are summarised by 

plotting the pit water level (OBS_9) against the number of abstraction wells used in 

the dewatering strategy. From this figure it is clear that the different modelling 

scenarios had significantly different impacts on the groundwater and pit water levels. 

The model results also showed under which conditions complete dewatering of the 

pit will be attained. 

 

Figure 3.20: Summary of the dewatering impact relative to the bottom of the pit 

The model results provide valuable datasets of hydraulics heads measured against 

time for the different pumping scenarios. These synthetics datasets will be used in 

the next chapter to train, test and validate ANNs. 
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: DEVELOPMENT AND EVALUATION OF 

ANNS FOR MINE DEWATERING 

PREDICTIONS 

4.1 INTRODUCTION 

This chapter is dedicated to the development of ANNs able to simulate the behaviour 

of aquifers, intersected by open pits, during pit dewatering. The ANNs will be trained 

using the dataset generated by the groundwater model based on FEM in Chapter 3. 

As described in Section 2.4, ANNs are able to mimic the functioning of human brain 

to recognise patterns in data. Each neuron of the ANNs has a transfer function which 

determines the output for the inputs that it receives from the previous layer. Since 

groundwater is known to have non-linear behaviour under abstraction conditions, 

non-linear transfer functions are required at the neurons to relate the inputs 

received to the outputs generated. Thus zero-based log-sigmoid functions, hyperbolic 

tangent functions, log-sigmoidal functions, and bipolar sigmoidal functions will be 

used as transfer functions in this study to find the best ANN capable of simulating 

and predicting the behaviour of groundwater when impacted by dewatering wells. 

4.2 METHODOLOGY 

In Chapter 3, a synthetic numerical model was created to model the aquifer response 

at an open pit during various dewatering strategies. The calculated responses formed 

a dataset that can now be used to train ANNs and evaluate their performances in 

predicting the aquifer behaviour under different conditions. The developed ANNs will 

be used to reproduce the FEM datasets using various non-linear transfer functions. 

Of these ANNs, those yielding the smallest error will be selected for the validation of 

real data from open pit mining environments (Chapter 5). 
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4.3 IMPLEMENTATION OF THE NEURAL NETWORK MODEL 

NeuroXL Predictor, an add-in to Microsoft Excel and part of NeuroSolutions software, 

was used to develop the ANNs. The most commonly used ANNs in the sciences are 

multi-layer perceptron networks (MLPs). MLPs have an input layers, one or more 

hidden layers and an output layer. They make use of a feed-forward architecture, 

and have a process where parameters (momentum, weight and number of neurons 

in the hidden layer) are manually adjusted until the targeted output is reached. 

According to Cybenko (1989), an MLP with just one hidden layer can be used to 

approximate any non-linear function. The choice of the transfer function is also very 

important in the model construction. 

The available dataset used for training and testing the ANNs has only two inputs, 

namely: time (date) and water levels. Seventy-five per cent of the time-water level 

data are used as inputs (time) and outputs (water level) during training. The 

remaining 25% is used to validate the performance of the ANNs. Based on a 

supervised learning process, the trial-and-error method is used by adjusting the 

weights, iteration numbers, learning rate momentums, transfer functions and 

number of neurons in the single hidden layer until the smallest error is attained. 

When designing any ANN, it is important to find a transfer function which can 

accurately predict the system of the study. Among the transfer functions discussed 

in the literature review (Chapter 2), only hyperbolic tangent and sigmoidal functions 

are used in this thesis, because they are known to be able to make non-linear 

approximations, and are therefore well suited to predict the non-linear behaviour of 

groundwater impacted by dewatering processes (Pushpa and Manimala, 2014). Also, 

NeuroXL Predictor is used in this study because it has the capability to handle non-

linear transfer functions. 

4.4 ARCHITECTURE OF ARTIFICIAL NEURAL NETWORKS 

There are several possible architectures for ANNs that are suitable for groundwater 

studies. The feed-forward ANNs used in this research, have a unidirectional signal 
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flow. After several trial-and-error adjustments of the network architectures, four 

ANNs, using sigmoidal and hyperbolic tangent transfer functions, were found to give 

acceptable results in reproducing the hydraulic heads of the synthetic observations 

made during the numerical modelling of mine dewatering simulation (Chapter 3). 

These ANNs are described in Table 4-1. 

Table 4-1: The ANNs best suited for groundwater level predictions 

 

Three of the ANNs (ANNs 1, 2 and 4) have the same architecture in terms of learning 

rates, momentum rates, initial weights and the number of neurons in the hidden 

layer. The remaining model (ANN 3) has quite a different structure, as can be seen 

when comparing the network architectures (refer to Figure 4-1 and Figure 4-2). As 

mentioned above, these architectures correspond to those ANNs yielding the smallest 

errors after several trial-and-error adjustments. The architectures that provided the 

most accurate water level predictions for dewatering purposes have the following 

characteristics: 

- ANNs 1, 2 and 4 have two inputs layers, six hidden layers and one output 

layer for the zero-based log-sigmoidal function (ZBLSF), bipolar sigmoidal 

function (BSF) and hyperbolic transfer function (HTF); 

- ANN 3 has two inputs layers, 15 hidden layers and one output layer for log-

sigmoid transfer function (LSF). 

The minimum weights assigned in the ANNs was 0.001, and the training involved a 

maximum number of 20 000 complete cycles (epochs). 
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Figure 4-1: Architecture of the ANNs 1, 2 and 4, using the zero-based log sigmoid, 
hyperbolic tangent, and bipolar sigmoidal transfer functions 

 

Figure 4-2: Architecture of the ANN 3, using on log-sigmoidal transfer function 
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4.5 EVALUATION OF THE DEVELOPED ANN 

4.5.1 INTRODUCTION 

In Section 4.4, ANNs were developed to predict the impacts of mine dewatering on 

the groundwater elevations. Different architectures were considered for the ANNs, 

and the abilities of the ANNs to accurately predict the groundwater levels were 

investigated by using synthetic datasets, generated with a numerical groundwater 

model (refer to Chapter 3), for training and validation. From trial-and-error 

adjustments to the architecture, the four architectures yielding the best results were 

identified. These four ANNs make use of four different transfer functions at the 

neurons of their hidden layers. 

The aim of this section is to use the four identified ANNs, and to investigate which 

transfer function allows the most accurate prediction of the groundwater levels. To 

do this, performance analyses will be carried out by using statistical and graphical 

evaluation techniques. The groundwater levels predicted by the ANNs will again be 

compared to the groundwater levels obtained from the numerical model. 

Seven statistical performance evaluation techniques will be used. These are the 

RMSE, NRMSE, NSE, PI, PBIAS, RSR and Pearson’s r techniques (Anderson and 

Woessener, 1992). Graphical evaluation techniques that will be used to investigate 

the performance of the ANNs include normal plots and residual plots. 

4.5.2 STATISTICAL EVALUATION 

Since the finite-difference numerical model included nine observation wells, and 

since four abstraction scenarios (3, 6, 9 and 12 abstraction wells) were modelled, a 

total of 36 different datasets of modelled groundwater elevations are available against 

which the performance of the ANNs can be evaluated. Each dataset consists of 36 

modelled values of the groundwater elevations at different times. 

Since the performances of four different ANNs using four different transfer functions 

are to be evaluated in this section, it will not be possible to include the evaluations 
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for each observation well, under each abstraction scenario, for each choice of 

transfer function. For this reason, only a selected number of evaluations will be 

shown and discussed. 

In Figure 4-3 to Figure 4-6, the modelled and predicted groundwater elevation at 

observation well OBS_9 are shown for the four dewatering strategies as examples of 

the responses obtained. Similar graphs for the other eight observation wells are 

presented in Appendix A. In these figures, the modelled (FEM) groundwater 

elevations, as well as the groundwater elevations predicted by four ANNs using 

different transfer functions, are plotted against the dates of measurement. 

 

Figure 4-3: Modelled and predicted hydraulic heads at observation well OBS_9 for a 

dewatering strategy using three dewatering wells 
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Figure 4-4: Modelled and predicted hydraulic heads at observation well OBS_9 for a 
dewatering strategy using six dewatering wells 
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Figure 4-5: Modelled and predicted hydraulic heads at observation well OBS_9 for a 
dewatering strategy using nine dewatering wells 
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Figure 4-6: Modelled and predicted hydraulic heads at observation well OBS_9 for a 
dewatering strategy using 12 dewatering wells 

From Figure 4-3 to Figure 4-6 it can be seen that the predictions of hydraulic heads 

made by the ANNs models generally underestimate the hydraulics heads from the 

numerical model. It can be also seen that ANN using the hyperbolic transfer function 

(HTF) yielded the best predictions of the modelled (FEM) hydraulic heads for three of 

the four dewatering scenarios (3, 6, 9 and 12 abstractions wells). It can furthermore 

be seen that the accuracy of the head predictions made by the ANNs generally 

decreased over time. However, the difference between the modelled and predicted 

hydraulic heads seldom exceeded 0.5 m. 

To verify the accuracy of the hydraulic head predictions, statistical techniques were 

used to assess the performance of the different ANNs. The performance analyses 

were carried by considering the modelled and predicted hydraulic heads at all nine 
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observation points (OBS_1 to OBS_9) for all four dewatering simulations (using 3, 6, 

9 and 12 abstraction wells). 

In Figure 4-7, the Root Mean Square Errors (RMSEs) for the hydraulic head 

predictions made by the ANNs using the four different transfer functions are shown 

at all nine observation points. The RMSEs for the ANNs using the BSF, LSF, ZLBSF 

and HTF are shown in green, blue, brown and orange, respectively. From this figure 

it can be seen that the HTF yielded the smallest errors at most observation wells, 

followed by the BSF. The ANN using the ZLBSF and LSF gave the largest errors 

(poorest predictions). Similar observations can be made when considering the 

Normalised Root Mean Square Errors (NRMSEs) (refer to Figure 4-8). 

 

Figure 4-7: Root Mean Square Errors (RMSEs) for the hydraulic head predictions at 
the different observation wells 
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In Figure 4-9 the Person’s r value is shown for all the observation wells. These values 

all range between approximately 0.88 and 1. According to Section 2.4.6, this means 

that there is a strong positive correlation between the datasets. The positive 

correlation implies that increases or decreases in the observed data correspond to 

similar increases and decreases in the predicted data. The Pearson’s r correlation 

coefficients therefore indicate that the ANN was able to successfully predict changes 

in the hydraulic heads. At six of the nine observation wells, the ANN using the HTF 

had r-values closer to 1 than the ANNs using the other transfer functions. It can 

therefore be concluded that the ANN using the HTF performed better than the other 

ANNs in predicting the hydraulic heads at the observations wells. 

Figure 4-10 shows the NSE at all the observation wells. As explained in Section 2.4.6, 

NSE-values between 0 and 1 indicate acceptable performance, whereas negative 

values indicate unacceptable performance. From Figure 4-10 it is seen that large 

negative NSE-values were calculated at some of the observation wells for the 

predictions made by the ANNs using the ZLBSF, LSF and BSF. Positive or small 

negative NSF-values were calculated for the ANN using the HTF. This ANN therefore 

outperformed the others in its predictions of the hydraulic heads. 
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Figure 4-8: Normalised Root Mean Square Error (NRMSE) for the hydraulic head 
predictions at the different observation wells 

In Figure 4-11 the PIs calculated at all the observation wells are shown. The 

correspondence between two datasets is deemed satisfactory when low PI values are 

calculated for these datasets (Lin and Cunningham III, 1995). From Figure 4-11 it 

can be seen that, at most wells, the lowest PI values were calculated for the ANN 

using the HTF. This transfer function therefore yielded the best results. 

Figure 4-12 shows the RSR calculated for the hydraulic head data at all the 

observation wells. From this figure it is seen that the ANN using the HTF yielded the 

lowest RSR values at most observation wells, and therefore gave the best 

performance in predicting the hydraulic heads at the different piezometers. 
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In Figure 4-13 the PBIAS for the groundwater elevation data at all the observations 

wells is shown. Again the ANN with the HTF gives the lowest (closest to zero) values 

for the PBIAS at most observation wells. This ANN therefore performed the best in 

predicting the hydraulic heads. 

 

Figure 4-9: Pearson correlation coefficient (r) for the hydraulic head predictions at the 
different observation wells 
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Figure 4-10: Nash-Sutcliffe Efficiency (NSE) for the hydraulic head predictions at the 
different observation wells 
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Figure 4-11: Performance Index (PI) for all observation points 
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Figure 4-12: RMSE-observations Standard deviation RATIO (RSR) for all observation 
points 
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Figure 4-13: Percent BIAS (PBIAS) for all observation points 

4.5.2.1 DISCUSSION 

The main objective of this section was to use statistical methods to evaluate which 

transfer function used by the different ANNs results in the best prediction of the 

hydraulic heads obtained from the numerical model. ANNs using four different 

transfer functions were used and their performances were evaluated based on seven 

statistical evaluation techniques. The statistical evaluation results show that the 

ANN using the HTF best predicts the effects of the dewatering process at the open 

pit. 
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4.5.3 GRAPHICAL EVALUATION 

From the statistical evaluation techniques, the model based on the HTF was found 

to be most suitable to predict the groundwater elevations. In this section, graphical 

residual analysis will be used to further assess the performance of the ANN using 

this transfer function.  

In Figure 4-14 to Figure 4-17 the hydraulic heads predicted at OBS_9 by the ANN 

using the HTF are plotted against the modelled (FEM) hydraulic heads for the four 

dewatering scenarios (3, 6, 9 and 12 dewatering wells). Similar graphs for the other 

observation wells are presented in Appendix B. From these figures it can be seen 

that predicted values give good approximations of the modelled values. The R-

squared values of the linear fits range between 0.91 and 0.99, indicating that 

hydraulics heads predicted by ANN fit the regression line well. 

However, it is known that the R-squared value cannot determine if the hydraulics 

heads predicted by the ANN are biased. For this reason, normal probability plots and 

residual plots were constructed for the data at the different observation wells. There 

are several methods to test the normality of data distribution. For graphical analysis, 

the common techniques are the quantile-quantile (Q-Q) probability plot and the 

normal probability plot. The Q-Q plot is a technique used to determine if the data 

used for the analysis are from populations with the same distribution. The normal 

probability plot helps to evaluate if the dataset follows a normal or Weibull 

distribution (Chambers et al., 1983). In the current study, normal probability plots 

were used. These plots are graphs showing the percentile of the normal distribution 

against the residual values. 
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Figure 4-14: ANN versus FEM hydraulic heads for observation point OBS_9 using 
three dewatering wells 

 

Figure 4-15: ANN versus FEM hydraulic heads for observation point OBS_9 using six 
dewatering wells 
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Figure 4-16: ANN versus FEM hydraulic heads for observation point OBS_9 using 
nine dewatering wells 

 

Figure 4-17: ANN versus FEM hydraulic heads for observation point OBS_9 using 12 
dewatering wells 

The normality plots for observation well OBS_9 during the four dewatering strategies 

are presented in Figure 4-18 to Figure 4-21. Similar plots for the other observation 



 

-  73  - 

 

points may be perused in Appendix C. From these figures it can be observed that 

there are minor deviations from the straight line fit. It can therefore be concluded 

that the data are normally distributed, since these plot show strong linear patterns 

with R-squared values close to 1. No significant outliers are observed in the data. 

 

Figure 4-18: Normal probability plot for observation point OBS_9 using three 
dewatering wells 

The comparison between the outputs from the ANN and the FEM revealed good 

agreement between these two datasets. However, further examination of the data by 

means of residual plots could reveal systematic differences between the two datasets. 

Graphical residual analysis is used in this research to verify the quality of the 

agreement between the modelled and predicted data to determine whether the ANN 

needs further refinement for linearization. 

Residual plots are firstly used to determine if the data fits the linearity and 

homogeneity of the variance assumptions. The plots have to be randomly distributed 

if the variance is homogeneous. To meet the linearity requirement, the residuals have 

to be equally scattered above and below the x-axis of the plot. 
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Figure 4-19: Normal probability plot for observation point OBS_9 using six 
dewatering wells 

The residual plots of observation well OBS_9 are shown in Figure 4-22 to Figure 4-

25 for the four dewatering strategies. Similar plots for the other observation wells 

are presented in Appendix D. From these figures it is seen that the residual plots 

have non-random, inverted U-shaped patterns, suggesting that a better fit to the 

data could have been obtained using a non-linear model. The shapes of the residual 

plots suggest that the function used to describe data should be quadratic. 

In an attempt to improve the predictions of the ANN, the ANN was refined by 

transformation of the data to achieve linearity. Transforming a dataset is to re-

express it with another measurement scale using an appropriate mathematical 

operation. A non-linear transformation increases or decreases a linear relationship 

between variables, changing their correlation by so-doing. 

The challenge of variable refinement is to find the method of transformation 

appropriate to linearize the dataset at hand. Several transformation methods were 

used in the current investigation to randomize the residual plots in order to meet 
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the linearity assumptions. However, it was found that none of these transformations 

were able to achieve linearity. 

 

Figure 4-20: Normal probability plot for observation point OBS_9 using nine 
dewatering wells 
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Figure 4-21: Normal probability plot for observation point OBS_9 using twelve 
dewatering wells 

 

Figure 4-22: Residuals plots for observation point OBS_9 using three dewatering 
wells 



 

-  77  - 

 

 

Figure 4-23: Residuals plots for observation point OBS_9 using six dewatering wells 

 

Figure 4-24: Residuals plots for observation point OBS_9 using nine dewatering 
wells 
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Figure 4-25: Residuals plots for observation point OBS_9 using twelve dewatering 
wells 

4.5.3.1 DISCUSSION 

From the graphical residual analysis it is seen that there is a systematic non-

linearity between the modelled and predicted datasets. Despite this non-linearity, all 

the other graphical evaluation techniques showed that the ANN was successful in 

predicting the hydraulic heads with high accuracy. In Chapter 5, the developed ANN 

will be applied to a real open pit mine to predict the impact of dewatering strategies.  
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: HYDRAULIC HEAD SIMULATION FOR 

DEWATERING OF OPEN PIT MINES IN 

THE TENKE COMPLEX 

5.1 INTRODUCTION 

In open pit mining, dewatering of the pits is important to support the mining 

operations to prevent flooding and slope stability problems. One of the tools used to 

plan future dewatering programmes is groundwater modelling. The aim of 

groundwater modelling is to simulate the behaviour of aquifers during dewatering 

operations aimed at lowering the water table below the pit floor. Modelling usually 

requires large datasets for several input parameters, such as hydraulics 

conductivity, storativity, geology, tectonic features, rainfall and pumping rates. Many 

mining companies have only limited data available for the input parameters, since 

the acquisition of these data is usually a difficult, time-consuming and costly 

process. Alternative methods are therefore required to simulate or predict the 

groundwater behaviour at mines where limited input data are available.  

In this study, the ANN developed in Chapter 4 will be used to simulate and predict 

the impacts of mine dewatering strategies at a real mine with limited input data. 

5.2 STATEMENT OF THE PROBLEM 

The Democratic Republic of Congo (DRC) is a country with many mineral deposits. 

Several mining companies are extracting these minerals. Tenke Fungurume Mining 

(TFM) is currently extracting copper and cobalt in the Tenke Complex deposit. Two 

of their open pit mines are the Kabwe and Shimbidi Mines. These two mines have 

been active for some years. The Kabwe open pit is 1 100 m long, 347 m wide and 

90 m deep, while the Shimbidi open pit is 410 m long, 405 m wide and 45 m deep. 

The main dewatering strategy at the Kabwe and Shimbi Mines is the use of 

dewatering boreholes. 
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Recently, mining operations were shut down to allow expansion of the two pits to 

the north to form one single pit. When mining operations were stopped, almost all 

the dewatering boreholes were shut down and the water table rebounded to its 

equilibrium level. The only bench currently accessible for mining will be depleted of 

ore within six months. Dewatering of the pits is therefore required if mining is to 

continue. This will require the rebounded water table to again be dropped to a level 

of 10 meters below the pit floor elevation.  

For numerical and analytical calculations, geohydrologists and hydrogeological 

engineers need to have information on the geohydrological characteristics and 

physical properties of soil, and the hydraulics characteristics of the geological units 

intersected by mining. Much of this information is absent or incomplete at the two 

mines considered in this investigation, making the development of numerical models 

to accurately simulate the behaviour of the system a near impossibility.  

However, temporal data on the hydraulic heads at a number of piezometers are 

available at the two mines. Hydraulic head data are gathered at these mines using 

automatic loggers. This study aims to investigate whether these measured hydraulic 

heads can be used to predict the water elevations during mine dewatering at the two 

mines where the existing lack of other input data would yield poor numerical models. 

5.3 AIM AND OBJECTIVES OF THE STUDY 

In Chapter 4 an ANN was developed for the prediction of the impact of mine 

dewatering on the aquifer system intersected by mining. The ANN using a HTF was 

found to provide the accurate predictions and simulations. This ANN will be used in 

this section to predict the water table elevations at two open pit mines in the DRC. 

These pits are currently flooded and the water levels in these pits will have to be 

lowered by 7.5 meters within six months to allow mining operations to restart. The 

ANN will use temporal hydraulic head data recorded at a number of piezometers at 

the mines as training data. The performance of the ANN will be evaluated by 

comparing the hydraulic head observations and predictions. 
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5.4 TOPOGRAPHICAL SETTINGS OF THE STUDY AREA 

The pre-mining topography of the study area was rugged, consisting of hills which 

alternate with valleys, as shown in Figure 5-1. Mining activities have significantly 

altered the topography, transforming hills into flat areas and pits, as shown in Figure 

5-2. The current study was carried out in an area with two such open pit mines, 

namely the Shimbidi and Kabwe Mines. Before mining commenced, the Dipeta River 

flowed at a position between the current locations of these two open pits. Since 

dewatering operations started, the flow of the river decreased drastically. The river 

is currently located at a distance of 130 m from the Kabwe open pit and 75 m from 

the Shimbidi open pit, and has a negligible impact on the water volumes in the pits. 

5.5 CLIMATE 

Kabwe and Shimbidi mines are located in the Democratic Republic of Congo in the 

Katanga province close to the city of Kolwezi. The area of TFM experiences a dry 

season (May to October) which is totally distinct to its rainy season (November to 

April). According to Golder Associates (2007), the climate of the area is cool and dry 

between May and August, hot and dry between September and October and rainy 

between November and April. Based on the meteorological station of Kolwezi, the 

MAR varies from 870 mm to 1 420 mm with an average of 1 150 mm. Being close to 

the equator (10° latitude), daylight (from 6:00 to 18:00) and night time (from 18:00 

to 6:00) are of almost equal duration. 

5.6 GEOLOGICAL SETTINGS 

The Tenke Complex occurs in the Tenke-Fungurume district in the African Copper 

Belt. The latter is a Neoproterozoic sedimentary and metasedimentary complex 

located between the south-eastern part of the DRC and the northern part of Zambia. 

The African Copper Belt, in its Katanga Supergroup, is one of the most important 

source of copper and cobalt in the world. The Shimbidi and Kabwe Mines extract ore 

from the Tenke Complex through open pit mining activities (Fay and Barton, 2011). 
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Figure 5-1: Pre-mining topography at the Kabwe and Shimbidi Mines 



 

-  83  - 

 

 

Figure 5-2: Current topography at the Kabwe and Shimbidi Mines 
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The Katanga Supergroup is divided into the Nguba, Roan and Kundelungu Groups 

(Batumike et al., 2007). As shown in Table 5-1, the study area of this investigation 

is located in the Roan Group. This latter has four subgroups, which are from top to 

bottom: Mwashya (R4), Dipeta (R3), Mines (R2) and Roche Argilo-Talqueuse (RAT) 

(R1). The Mwashya Subgroup is composed of carbonaceous shales, siltstones and 

sandstone deposits (Cailteux et al., 2007). According to François (1987), the Dipeta 

Subgroup consists of sandy-argillaceous rocks. As shown in Table 5-1 the Mines 

Subgroup consists of dolomite and dolomitic shales (Cailteux et al., 2005). The RAT 

Subgroup mainly consists of sandy-argillaceous and dolomitic rock (François, 1995).  

Occurring mainly in the Roan Group, the geological stratigraphy of the Tenke 

Complex has at its base the RAT Group (or clay talceous rocks). It is important to 

note that the abbreviation RAT refers to both the RAT Subgroup and to argillaceous   

talceous rocks in general. RAT (the rock type) occurs in both the RAT Subgroup (lilac 

to red in colour) and the Mines Subgroup (grey in colour) (refer to Table 5-1). In the 

Tenke Complex the lilac and grey RAT are respectively approximately 15 and 6 

meters thick. Above the grey RAT in the Mines Subgroup, stratified dolomite (DStrat), 

followed by Roche Siliceuse Feuilletée (RSF) or fissile siliceous rocks, occur. The 

distribution of these different rock types within the study area are shown in Figure 

5-3 (also refer to Table 5-1). 

The Tenke Complex had a long and complex brittle evolution influenced by local and 

regional events (Kipata, 2013). The geological formations of the Tenke-Fungurume 

district are highly tectonised. The main trend of fault axes is north-west/south-east. 

All of these faults intersect the aquifer. Evidence for brittle tectonism is abundant in 

the study area. This tectonism caused extensive fracturing of the aquifers. 
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Figure 5-3: Geology of the Tenke Complex 
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Table 5-1: Stratigraphic columns of the Katangan Super-group in Congo compiled from Kipata et al. (2013) and 
Batumike et al. (2007). 
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5.7 HYDROGEOLOGICAL CHARACTERISTICS 

The Mines Group of the Tenke Complex consists mainly of dolomite and dolomitic 

shale. Some of these rock units are more permeable than others. The dolomitic 

formations, especially the “Roche Siliceuse Cellulaire” (RSC), are karstic and their 

hydraulic parameters (permeabilities, hydraulic conductivities, storativities) are 

much higher than those of the sandstones layers or the dolomitic sandstone, such 

as RAT. The permeability of the rocks is controlled by the presence of fractures and 

cavities. The main aquifer comprises the SD, RSC, RSF, DSTRAT and RSF (refer to 

Figure 5-3 and Table 5-1). The RGS and RAT are generally not very permeable but 

these rock units can obtain secondary permeability if brecciated. 

In some other areas of the Roan Group, geohydrological tests were performed by a 

government company (Gecamines) along with consultants, such as Geomines Inc. 

They found hydraulic conductivity values (vertical and horizontal) of rocks ranging 

from 0.00011 to 6.2 m/day. 

Unfortunately, no known pumping tests have yet been performed on the aquifers of 

the Tenke Complex. The available hydraulic head data were recorded at existing 

wells and monitoring points at the open pit mines extracting ore from the complex. 

The positions of the wells and monitoring points relative to the mining activities in 

the study area are shown in Figure 5-4. The monitoring points are used to record 

hydraulics heads at a pre-defined time step. These head-vs-time measurements form 

the dataset that will be used in this chapter to investigate the applicability of the 

ANN developed in Chapter 4 in the prediction of the behaviour of the aquifers of the 

Tenke Complex during dewatering of the Kabwe and Shimbidi open pits. 
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Figure 5-4: The positions of monitoring and pumping wells at the Kabwe and Shimbidi Mines 
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During dewatering of the open pits at the Kabwe and Shimbidi Mines, continuous 

monitoring of water levels, pumping rates and inflows was done. Nine dewatering 

wells were in operations at these two open pits. Some of these dewatering wells were 

pumping continuously while others encountered mechanical problem which put 

them out of commission for a couple days. The pumping rates of the dewatering wells 

were not constant during the dewatering activities. After air-lifting, some wells 

yielded up to 250 m3/h, but the average flow of all wells was approximately 

108 m3/h. 

5.8 HYDRAULIC HEAD PREDICTION USING THE ANN 

For accurate predictions with an ANN, it is important to have a dataset of good 

quality, containing as much data as possible (Smith and Eli, 1995). In this study, 

hydraulics heads automatically recorded with Geokon data loggers at eight 

piezometers (TK-GMXP-01, 02, 05, 06, 08, 18, 20 and 22), as well as manual 

measurements, were used to train and validate the ANN. 

The ANN used to predict hydraulic heads at the Kabwe and Shimbidi Mines was 

trained using observed hydraulic heads for the period from 03 January 2015 to 30 

September 2015. The validation of the ANN was done using data recorded during the 

period from 05 October 2015 to 30 December 2015. 

The ANN used for prediction is the network that performed best during the 

evaluation (refer to Chapter 4). This ANN is based on a feed-forward algorithm, has 

a single hidden layer, uses two inputs (hydraulics heads and date), and makes use 

of the hyperbolic tangent transfer function (HTF) to relate the inputs at each cell to 

an output from the cell. The maximum weight assigned to the connections of the 

ANN was 0.001, while the network was trained for up to 20 000 epochs. 
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5.8.1 RESULTS 

The hydraulic head predictions made by the ANN are shown in Figure 5-5 along with 

the observed hydraulic heads. To allow visual comparison, the predictions at only 

three piezometers (TK-GMXP-01, 02 and 18) are shown in this figure. 

From Figure 5-5, it can be seen that the ANN was successful in predicting the general 

behaviour of the hydraulic heads in terms of their absolute values and trends. 

However, the ANN was less successful at those piezometers where large fluctuations 

in the hydraulic heads were recorded. This is to be expected, since the ANN makes 

predictions based on patterns recognised in the training data. The ANN is therefore 

more adept at making predictions about the general temporal and spatial behaviour 

of the system, while short-period fluctuations are inherently unpredictable. 

 

Figure 5-5: Observed and predicted hydraulic heads at three piezometers 
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It is also apparent from Figure 5-5 that the accuracy of the predictions at some 

piezometers become worse over time. This is especially noticed at piezometer TK-

GMXP-18 where the initial prediction (05 October 2015) of the hydraulic head was 

good, but where the observed and predicted hydraulic heads diverged over time. 

Nonetheless, over the prediction period of approximately 3 months, the difference 

between the observed and predicted hydraulic heads never exceeded 1.5 m. 

Profiles of the observed and predicted hydraulic heads across the open pits on 30 

December 2015 are presented in Figure 5-6. From this figure it is seen that ANN 

successfully predicted the general behaviour of the hydraulic heads around and 

within the open pits. However, the predicted hydraulic heads were too high at certain 

positions, and too low in other positions. Particularly in the vicinity of the Shimbidi 

pit, where low hydraulic heads occur, the ANN overestimated the hydraulic head by 

more than 1.5 m. 

It should be kept in mind that the ANN was trained using hydraulic head data 

recorded at eight piezometers during active pit dewatering. As stated in Section 5.7, 

the pumping rates of the dewatering wells were not constant during the dewatering 

activities and not all the dewatering wells were in operation during the period from 

03 January 2015 to 30 December 2015. The variable pumping rates necessarily 

caused fluctuations in the hydraulic heads. The ANN’s performance in predicting the 

general behaviour of the hydraulic heads is therefore quite remarkable. One cannot 

expect the ANN to predict the unpredictable. 

From the profiles of the hydraulic heads in Figure 5-6, it seems that the ANN was 

more successful in predicting the hydraulic heads at positions were smaller 

drawdown occurred (in the vicinity of the Kabwe open pit), and less successful at 

positions where larger drawdowns occurred (in the vicinity of the Shimbidi open pit). 

This may prove to be a weakness of ANNs in predicting aquifer behaviour near 

dewatering wells. 
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Figure 5-6: Observed and predicted (simulated) hydraulic heads on 30 December 2015 
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5.9 PERFORMANCE ANALYSIS 

By comparing the predictions of the ANN with the observed hydraulic heads, it is 

seen that the ANN was more successful in predicting the hydraulic heads at some 

monitoring points than at others. For example, predictions for monitoring point 

TK-GMXP-02 were more accurate than for monitoring point TK-GMXP-18 (refer to 

Figure 5-5). 

Furthermore, when comparing the results of the hydraulic head predictions at the 

Kabwe and Shimbidi Mines with the results of the predictions made for the 

synthetic (numerical) example (refer to Chapter 4), it is seen that the ANN 

performed much better with the synthetic data than with the real data. This is to 

be expected since the real hydraulic head data exhibited much more fluctuation 

due to factors such as the varying abstraction rates from the dewatering wells at 

the mines. Since ANNs function by recognising patterns in the training data and 

using these patterns to make general future predictions, such localised short-

period fluctuations cannot be predicted. 

Despite the above limitations, the ANN was able to predict the general behaviour of 

the aquifer system at the Kabwe and Shimbidi Mines. The values of the predicted 

hydraulic heads were generally within 1.5 m from the values of the observed 

hydraulic heads. 

To further analyse the performance of the ANN in predicting the hydraulic heads 

at the Kabwe and Shimbidi Mines, the statistical and graphical evaluation 

techniques described in Section 2.4.6 will now be applied. Figure 5-7 shows the 

RMSE between the predicted and observed hydraulic heads. The RMSE is seen to 

vary from 0.08 for piezometer TK-GMXW-02 to 1.0 for the piezometer TK-GMXW-

08. The RMSE is less than 1.0 at all the other piezometers, indicating a high 

agreement between the observed and predicted hydraulic heads. 

Also shown in Figure 5-7 are the Pearson correlation coefficients, r, calculated at 

the different piezometers. This coefficient is less than 0.2 at piezometers TK-

GMXW-08 and TK-GMXW-01, indicating very weak correlations between the 

observed and modelled data at these piezometers. However, the r-value at the other 

piezometers ranged from 0.2 to 0.94, which according to Smith (1995), shows that 

there is a good correlation between observed and simulated hydraulics heads. As 
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the ANN produced low values of RMSE and relatively high r-values, it can be 

concluded that the model was able to accurately predict the behaviour of aquifers 

of the Tenke Complex under dewatering conditions. 

 

Figure 5-7: RMSE and Pearson correlation coefficient of the ANN model for each 
piezometer 

Each evaluation technique has its strength and weakness (Chai and Draxler, 2014; 

Willmott and Matsuura, 2005). For greater certainty in the results of the 

performance analysis, other statistical techniques, such as the NSE, PBIAS, RSR, 

NRMSE and PI, were also used to evaluate the performance of the ANN. 

The values of NRMSE and PI ranged respectively from 0.0001 to 0.0019 and from 

0 to 0.0004 as shown in Figure 5-8. As these values are low, it can be concluded 

that the performance of the ANN model is good indicating that the model can well 

simulate the behaviour of groundwater for mine dewatering.  
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Figure 5-8: NRMSE and PI of the ANN model for each piezometer 

Neglecting the outlier value (11.3) at piezometer TK-GMXP-08, the RSR-values 

calculated for the data at the other piezometers ranged from 0.7 to 2.7 (see Figure 

5-9). Although these values of the RSR index suggest that the performance of the 

model was unsatisfactory, the NSE-values ranged from 0.9 to 1.0, which according 

to Moriasi et al. (2007) shows that the ANN was successful in predicting the 

groundwater behaviour at the Kabwe and Shimbidi Mines during dewatering. 
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Figure 5-9: NSE and RSR of the ANN model for each piezometer 

Figure 5-10 shows that the PBIAS calculated for the hydraulic head datasets at the 

different piezometers varied between -7% and 19%. These values show that the 

performance of the ANN ranged from good to very good according to the 

classification system suggested by Moriasi et al. (2002). 
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Figure 5-10: PBIAS of the ANN model for each piezometer 

5.9.1 DISCUSSION 

From the results of the different performance evaluation techniques used to assess 

the performance of the ANN, it can be concluded that the ANN was successful in 

predicting the hydraulic heads at the Kabwe and Shimbidi Mines under dewatering 

conditions. However, the accuracy of the predictions varied between the different 

piezometers. Particularly the predictions at piezometer TK-GMXP-08 were less 

accurate than the predictions at the other piezometers. 

Piezometer TK-GMXW-08 is located between the two open pits (refer to Figure 5-6). 

The low hydraulic head observed at this piezometer was most probably due to the 

presence of two nearby dewatering wells (TK-GMXW-01 and TK-GMXW-04) which 

pumped continuously during the period from 05 October 2015 to 30 December 

2015. Furthermore, dewatering well TK-GMXW-01 was drilled in the area between 

three mineralized zones and has a high yield. During the drilling of this well and 

piezometer TK-GMXP-08, a significant loss of water occurred in some layers. A fault 

is known to occur in the area where these two wells are located. This fault could 
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be responsible for the encountered water loss and may also be partly responsible 

for the low hydraulic head observed at piezometer TK-GMXW-08. 

From the above observations it again appears that the ANN was more successful 

in predicting the hydraulic heads at positions of less drawdown in the groundwater. 

Near the dewatering wells, where larger drawdown occurred, the predictions of the 

ANN became worse, even though the difference between the observed and predicted 

hydraulic heads was rarely greater than 1.5 m. 

5.10 APPROXIMATE MATHEMATICAL RELATIONS TO PREDICT 

HYDRAULIC HEADS 

In mining environments, water management responsibilities often fall on the 

shoulders of geohydrologists and geohydrological engineers. When these 

professionals are off-site when mining operations have to continue, mining and 

construction engineers often have to take care of water management. Simplified 

methods of predicting the hydraulic heads in and around the mines are therefore 

required since mining and construction engineers are generally not familiar with 

groundwater modelling (or the use of ANNs to predict hydraulic heads). 

As an example of how this may be done, equations approximating the drawdown 

in the hydraulic heads as a function of time were found for the Kabwe and Shimbidi 

Mines. The CurveExpert code was used to equations that approximate the hydraulic 

heads predicted by the ANN for the period 05 October to 30 December 2015. 

CurveExpert Professional is a code computed for data analysis and curve fitting. 

The particularity of this code is its ability to model data using linear regression, 

nonlinear regression or various splines (Solanki et al., 2015). The equations for the 

drawdowns at the different piezometers are listed in Table 5-2, while graphs 

showing the modelled (FEM), predicted (ANN) and calculated (approximated) 

hydraulic heads at three piezometers are shown in Figure 5-11. The equations 

listed in Table 5-2 are all in a form known as the Richard’s Equation and may be 

used to estimate the hydraulic heads at times later than 30 December 2015. 

It should be kept in mind that the equations approximating the drawdown at the 

different piezometers were based on the hydraulic heads predicted by the ANN. This 

ANN was trained using input data recorded at the Kabwe and Shimbidi Mines 

during selected months (January to October 2015) when particular conditions 
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prevailed (i.e. pumping rates at dewatering wells, pumping duration, rainfall, etc.) 

The predicted hydraulic heads are therefore inherently based on the assumption 

that the future conditions will be similar to the conditions during the training 

period. If these conditions were to change significantly, both the predicted 

hydraulic heads and the equations approximating drawdown will no longer be 

valid. In such a case it would be necessary to retrain the ANN using input data 

representative of the new conditions before the predictions can be updated. 

Table 5-2: Simplified relations between dewatering time and the predicted 
drawdown at the different piezometers 
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Figure 5-11: The observed, predicted (simulated) and calculated hydraulics heads 
at three piezometers 
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: CONCLUSIONS AND 

RECOMMENDATIONS 

This study investigated the possibility of predicting the impact of dewatering 

operations at open pit mines where limited geohydrological data are available, by 

using ANNs. The advantage that ANNs offer is that these networks are able to 

recognise patterns in the observed data, without considering the underlying 

physical principles that govern the phenomena being studied. The values of specific 

parameters that influence the phenomena are also not required as inputs to the 

ANNs. ANNs can therefore operate in data-scarce environments. 

Numerical groundwater modelling is commonly used to simulate the aquifer 

response during dewatering operations at mines. These methods are, however, 

expensive and require a lot of geohydrological data. At mines where limited data on 

the geohydrological conditions are available, ANNs offer the possibility of predicting 

the aquifer response to dewatering strategies by using historical datasets of the 

hydraulic heads recorded at different observation points over time. The ANNs can 

be trained using these historical datasets to make generalised predictions about 

the future behaviour of the aquifer under similar dewatering conditions. 

In the current study, ANNs with different internal architectures were used to 

predict the aquifer response to dewatering strategies. First, the ANNs were applied 

to synthetic datasets, generated through a numerical groundwater model 

developed for a fictional mine. Different dewatering strategies, corresponding to 

different numbers of dewatering wells, were used to generate datasets of the 

hydraulic heads versus time at different observation points at the fictional mine. 

The ANNs were trained using parts of the generated datasets, and their 

performances were evaluated by using the remaining data in the datasets. 

Performance analyses were carried out by using different statistical and graphical 

evaluation techniques to assess the degree of agreement between the modelled and 

predicted datasets. The ANN that performed best in predicting the modelled 

hydraulic heads was selected for application to two real open pit mines. 

The selected ANN was used to predict the hydraulic heads at the Kabwe and 

Shimbidi open pit mines where dewatering of the pits takes place. As with the 
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modelled fictional mine, hydraulic head data measured over a selected time period 

were used to train the ANN, while the hydraulic head data recorded over a 

subsequent time period were used to evaluate the performance of the ANN. Again, 

several statistical evaluation techniques were employed during the performance 

analyses. 

The results of the performance analyses showed that the ANN was successful in 

predicting the general behaviour of the hydraulic heads at the two mines 

undergoing dewatering. However, the ANN was unsuccessful in predicting the 

short-term fluctuations in the hydraulic heads that result from changes in the 

abstraction rates at the dewatering wells. This is to be expected, since the ANN 

makes predictions based on patterns recognised in the training data. The ANN is 

therefore more adept at making predictions about the general temporal and spatial 

behaviour of the system, while short-period and localised fluctuations are 

inherently unpredictable. It should furthermore be noted that the ANN was more 

successful in predicting the hydraulic heads at positions of less drawdown than at 

positions of larger drawdown. This may prove to be a weakness of ANNs in 

predicting aquifer behaviour near dewatering wells. 

An advantage of using ANNs to predict mine dewatering is the fact that the size of 

the dataset available for training constantly increases as new hydraulic head data 

are recorded. The potential of the ANNs to make accurate predictions increases 

accordingly as the historical record of the hydraulic heads expands. 

To provide mining personal with a simple way of predicting the aquifer behaviour 

during mine dewatering operations, simplified mathematical equations describing 

the predicted drawdown over time were found. These equations give 

approximations of the predicted drawdowns in the different piezometers at the 

mines. It should, however, be kept in mind that the predictions made by the ANN 

are inherently based on the assumption that the future conditions at the mines 

will be similar to the conditions during the training period. If these conditions were 

to change significantly, both the predicted hydraulic heads and the equations 

approximating drawdown will no longer be valid. 
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Considering the performance of the ANN at the Kabwe and Shimbidi Mines, the 

following actions are recommended for future investigations into the application of 

ANNs for mine dewatering predictions: 

- Four different ANN architectures were used in the current investigations. 

These architectures were found to give the best approximations to the 

hydraulic heads found from a numerical model developed for a fictional mine. 

The architectures were selected through a trial-and-error process. It is 

possible that the optimal architecture that would have yielded the best 

hydraulic head predictions was excluded during the trial-and-error selection 

of ANN architectures. It is therefore recommended that an investigation be 

launched to systematically study the impact of network architecture on 

network performance, specifically for ANNs used to predict hydraulic heads 

near mine dewatering operations. 

- Only hyperbolic tangent and sigmoidal transfer functions were used in this 

study. These transfer functions were chosen because they are well suited to 

predict the non-linear behaviour of groundwater impacted by dewatering 

processes. For future studies, it is recommended that other non-linear 

transfer functions should be employed to evaluate whether such transfer 

functions could improve the performance of the ANNs in predicting hydraulic 

heads near dewatered open pit mines. 

- In this study, an ANN was applied to only two adjacent open pit mines in the 

DRC. It is recommended that ANNs be used at more real mines to evaluate 

the performance of these networks under real world conditions. The 

application on the ANNs should also be extended to underground mines 

where dewatering is required for mining operations to continue. 

- When ANNs are used at mines to predict the hydraulic heads, these networks 

should be retrained every six months using all the data recorded up to the 

date of retraining. In this way the training dataset will continually expand 

allowing for better pattern recognition and more accurate predictions to be 

made. 



 

-  104  - 

For mine wishing to implement ANNs to predict the groundwater response to 

dewatering based on the historic records of hydraulic heads recorded at 

piezometers, the following steps are recommended: 

- An ANN should be developed using codes such as NeuroXL Predictor. The 

results of this thesis showed that a network with only one hidden layer with 

six neurons should suffice. 

- The developed ANN should use non-linear transfer functions at its neurons 

to allow for better prediction of the non-linear response of the complex 

groundwater system. It is recommended that the Hyperbolic Tangent 

Function be used. 

- It is recommended that the following values be used for the learning rate, 

momentum rate and initial weights of the ANN: 0.3, 0.2 and 0.2. These values 

were found to yield the best performance during the current investigations. 

- For training purposes, it is recommended that the first 75% of the historical 

record of hydraulic heads during dewatering be used, while the last 25% be 

used to test the performance of the ANN in predicting the hydraulic head. 

- If the performance of the ANN is poorer than desired, small adjustments (less 

than 10%) to the learning rate, momentum rate and initial weights of the 

ANN should be made in a trial-and-error manner until the performance of 

the ANN is satisfactory. 

- The ANN should then be used to predict the future hydraulic heads in the 

vicinity of the dewatered mine. Validation of the predictions will be an 

ongoing process as new hydraulic head data recorded at the mine can be 

compared with the predicted hydraulic heads. If poor agreement is found, 

the ANN should be retrained using an adjusted training dataset which 

includes more recent hydraulic head data. Further adjustments to the 

learning rate, momentum rate and initial weights of the ANN may also be 

required. 
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ABSTRACT 

Open pit mines often experience problems related to groundwater inflows. To 

perform mineral extraction in safe conditions with high productivity, it is essential 

to have dry working conditions. For this reason, the groundwater table is often 

lowered below the elevation of the floors of the pits by using various dewatering 

schemes. 

Numerical groundwater models are powerful tools that can be used to simulate the 

behaviour of aquifers during dewatering operations. However, these models 

typically require a lot of geohydrological data which are often expensive and time-

consuming to collect. When geohydrological input data are limited, artificial neural 

networks (ANNs) provide an alternative way of predicting the behaviour of the 

groundwater system under dewatering conditions. ANNs can simulate complex 

systems, and have been used to provide simple and accurate solutions to problems 

encountered in many disciplines of the earth sciences. 

This study investigated the possibility of predicting the impacts of pit dewatering 

on the aquifer system in the vicinity of open pit mines where geohydrological inputs 

are limited, using ANNs. First, the performance of the ANNs in predicting hydraulic 

head responses was evaluated by using synthetic datasets generated by a 

numerical groundwater model developed for a fictional mine. The synthetic 

datasets were then used to both train and evaluate the performance of the ANNs. 

The ANN found to give the best predictions of the hydraulic heads had an 

architecture of 2-6-1 (input-hidden-output layers) and was based on the hyperbolic 

tangent transfer function. This network was selected for application to real open 

pit mines. 

The selected ANN was next used to predict hydraulic heads at a number of 

piezometers installed at two open pit mines in the Democratic Republic of the 

Congo. The only input to the ANN was the recorded hydraulics heads and the time 

of recording. A portion of the real dataset was used to train the ANN, while the 

remaining portion was used to evaluate the performance of the ANN in predicting 

the hydraulic heads. The results of the performance analyses indicated that the 
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ANN successfully predicted the general behaviour of the aquifer system under 

dewatering conditions, using only limited input data. 

The results of this investigation illustrate the great potential of using ANNs to 

predict aquifer responses during dewatering operations in the absence of 

comprehensive geohydrological datasets. Since these networks recognise patterns 

in the training datasets without considering the underlying physical principles that 

govern the processes, the responses of complex systems that are dependent on 

numerous parameters may be predicted. 
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Figure C-1: Normal probability plot for observation point OBS_1 

 

Figure C-2: Normal probability plot for observation point OBS_2 
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Figure C-5: Normal probability plot for observation point OBS_5 
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Figure C-7: Normal probability plot for observation point OBS_7 
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Figure C-9: Normal probability plot for observation point OBS_1 
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Figure C-13: Normal probability plot for observation point OBS_5 
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Figure C-15: Normal probability plot for observation point OBS_7 

 

Figure C-16: Normal probability plot for observation point OBS_8 
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Figure C-17: Normal probability plot for observation point OBS_1 
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C-10 
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Figure C-21: Normal probability plot for observation point OBS_5 
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Figure C-23: Normal probability plot for observation point OBS_7 
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Figure C-25: Normal probability plot for observation point OBS_1  
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Figure C-27: Normal probability plot for observation point OBS_3 
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Figure C-29: Normal probability plot for observation point OBS_5 
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Figure C-31: Normal probability plot for observation point OBS_7 
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Figure D-1: Residuals plots for observation point OBS_1 
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Figure D-3: Residuals plots for observation point OBS_3 
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Figure D-5: Residuals plots for observation point OBS_5 
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Figure D-7: Residuals plots for observation point OBS_7 

 

Figure D-8: Residuals plots for observation point OBS_8 
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Figure D-9: Residuals plots for observation point OBS_1  
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Figure D-11: Residuals plots for observation point OBS_3 
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Figure D-13: Residuals plots for observation point OBS_5 
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Figure D-15: Residuals plots for observation point OBS_7 
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Figure D-17: Residuals plots for observation point OBS_1  
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Figure D-25: Residuals plots for observation point OBS_1  
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Figure D-27: Residuals plots for observation point OBS_3 

 

Figure D-28: Residuals plots for observation point OBS_4 



D-15 
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