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ABSTRACT

This work reports on the preparation and charazagdn of biodegradable polylactide (PLA)
nanocomposites based on functionalized carbon uobest (-MWCNTs). The
nanocomposites were prepared by melt extrusiorsalvént casting methods. A new method
used for the functionalization of multiwalled carbonanotubes (MWCNTSs) with
hexadecylamine (HDA) is also reported. Attenuatethlt reflectance Fourier-transform
infrared (ATR-FTIR), Raman, and X-ray photoelectr@pectroscopy confirmed the
functionalization of the carbon nanotubes. The rolpgy and structure of the
nanocomposites were investigated through scannitgctren microscopy (SEM),
transmission electron microscopy (TEM), polarizgdical microscopy (POM), small angle
X-ray scattering (SAXS), and atomic force microscofAFM). The influence of
functionalized carbon nanotubes on the thermalnibenechanical and tensile properties of

the PLA matrix was also investigated.

Firstly, a PLA composite containing 1.5 wt.% of MCNTs (with 10 % amine content,
determined gravimatrically) was prepared througmelt extrusion technique. FTIR and
Raman spectroscopy revealed the strong interatitween the -MWCNT's surfaces and
the PLA matrix. The POM (in the molten state) réedaa fairly homogeneous dispersion of
f-MWCNTs with some micron-scale agglomeration. P@lgo revealed that the -MWCNTs
acted as nucleating agents for the crystallizattdnthe PLA matrix. An increase in
crystallinity was also observed from differentiadasning calorimetry (DSC). Dynamic
mechanical analyses (DMA) showed an enhancemernheofelastic modulus, particularly
above room temperature. An improvement in the kergrength and elongation at break,

without significant loss of modulus, was also repdr

Secondly, a composite containing 0.5 wt. % of f-MMWK3 (with 20 % amine content) was
prepared by a melt extrusion technique. Improvenoénthe thermal stability in air was
observed. The spherulitic morphology and struciuae studied through POM and SAXS. An
improvement in the thermomechanical properties wlaserved below and above the glass
transition temperature. The presence of -MWCNTay@tl a nucleation role for the
crystallization of the polymer matrix. The dispersiwas fairly homogeneous in the PLA

matrix with some micro-scale agglomeration as olekm SEM.

Vi



Lastly, a PLA composite with -MWCNTs (with 10 % ama content) was prepared by a
solvent casting method using chloroform as a salvEhe effect of the incorporation of f-
MWCNTSs on the crystallization behaviour of biodedahble/biocompatible polylactide (PLA)
was studied. The crystallization behaviour of tHeARn the absence and presence of f-
MWCNTs was studied by using POM, DSC and AFM. Thsutts showed that the f-
MWCNTSs did not actively nucleate the crystallizatiof PLA, and that the PLA crystals were
perfectly grown in the case of the composite. Sarclobservation is quite uncommon to the

general understanding of the role of CNTs in seysialline polymer crystallization.
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Chapter 1

Introduction

1.1 Overview

When introducing the subject of nanoscience anateahnology, it is almost customary to
extract from RP Feynman’s visionary 1959 lectur@][XThere is plenty of room at the

bottom”. The field of nanoscience and nanotechnol@@ncerned with the manipulation of
matter on the nanoscale, which is now generallgrialis the 1-100 nm range) is of the
greatest interest to chemists, physicists and eegin (nanoparticles, nanostructured
materials, nanoporous materials, nanopigments, tabes, nanoimprinting, quantum dots,
etc.) and has already led to many innovative agptios, particularly in materials science [2-
5]. The main focus of this chapt&hall be mainly on nanotechnology as it is a fredjyeused

word, both in the scientific literature and in commlanguage [6].

Perhaps the question to be asked should be: Whydrasscience/nanotechnology attracted
such a huge global interest? It has already bembleshed that nanoscience/nanotechnology
is concerned with properties, interactions and @ssimg of units containing a notable number
of atoms. These units, regardless of whether threyfallerenes, quantum dots, carbon
nanotubes or biomolecules have novel electronitcalpand chemical properties by virtue of
their nanometre dimensions. Varying the size amdroting the interactions of these units
change fundamental properties of the nanostructumederials synthesized from these
building blocks. These created an impression taabscience and nanotechnology has a huge
potential to contribute in finding solutions foretlour difficulties facing a greater part of the
globe’s population: health, food, energy, and gallu It has thus sparked huge investments

from governments and private sectors across theedia 8.

Nanotechnology employs two main approaches: (a) “th&tom-up” approach where
materials and devices are built from molecular congmts which assemble themselves

chemically by principles of molecular recognitioand (ii) “top-down” approach where



nanoscale-objects are constructed from larger endgsut atomic-level manipulation [9].
However, it has become increasingly obvious thatttip-down approach is subject to drastic
limitations for dimensions smaller than 100 nm [10hus, the bottom-up approach opens
virtually unlimited possibilities regarding the dgs and construction of artificial molecular
devices and machines capable of performing spduaifictions upon stimulation with external
energy inputs [11,12]. Although nanoscience andotenihnology are still in their infancy,
new exciting results [13] and, sometimes, disappoemts [14] alternate the scene as always
happens in fields that have not yet reached muwturithe Project on Emerging
Nanotechnologies estimates that over 1015 manutaeidentified nanotech products are
available to the public as of August 2009 [15]. oe past decade, various methods have
been applied in the synthesis of nanomaterialsgoateed as fullerenes, carbon nanotubes,
nanospheres, and inorganic nanoparticles/nanotsystade from metals, semiconductors or
oxides). These are of great scientific interesthay effectively bridge the gap between bulk
materials and atomic or molecular structures byueirof their very high surface area to

volume ratio.

In this study, our main focus is on the CNTs dsrfil for polymeric composite systems. CNTs
are graphite sheets rolled up into seamless cykntiat have revolutionalized experimental
low-dimensional physics and are utilized in a widgiety of state-of-the-art nanoscientific

research. Since their discovery in 1991 at NEC Ltaooies in Japan by Sumio ljima, CNTs
have been found to exhibit outstanding physicalpproes for a wide range of potential

applications [16]. CNTs exhibit intrinsic propegisuch as high mechanical strength [17],
structurally dependent electrical conductivity 19, and thermal conductivity [20]. It is also

believed that the incorporation of CNTs into polymeatrices could lead to composites with
unique properties [21] such as dramatically enharicermal stability, as well as mechanical
and barrier properties [22-27]. There are two maipproaches to achieve polymer
nanomaterials. The most popular is to incorporateonscale particles into a polymer matrix to
produce polymer/nanoparticle composites. The oitheo manufacture polymeric materials
themselves in the nanoscale dimension. Both appesabave been applied to many non-
degradable and biodegradable polymer materialsingjivise to materials with good

performance. The advantages of nanoscale partderporation can lead to a countless
application possibilities where the analogous larggale particle incorporation would not

provide the adequate property profile for explasiat These areas include polymer blend



compatibilization, membrane separation, electrimahductivity, barrier properties, impact
modifications, UV screens and biomedical appliagatio

1.2  Objectives

The main objective of this project is to fabricabégh performance new and novel
bionanomaterials. Nanocomposites of anisotropitighes such as carbon nanotubes (CNTS)
with biocompatible polylactide were prepared andrahterized. The surfaces of the CNTs
were fine-tuned by proper chemistry to enhancectmepatibility of the CNT surface with the
polylactide matrix. The correlation between the CNj€ometries and nanocomposite
morphologies on the one hand, and the mechanibatmal, rheological, and electrical
properties of the nanocomposites on the other @ studied. The influence of surface
modification and filler content on the nanocomp®sihorphology and properties was
investigated. This was done to contribute to theowkedge needed to design new
bionanohybrid materials with desired propertieswieer, because of the strong inter-tube
Van der Waals interactions, the homogeneous digpedsstribution of CNTs within a
polymeric matrix remains a great scientific and ieegring challenge. If CNTs are not
dispersed as single tubes, the active surfacevaittaot increase sufficiently for polymer-
CNT surface interaction and as a result a very Isamabunt of stress will be transferred
between the filler and the matrix. While many teqgaes are recently available suchirasitu
polymerization of monomers in the presence of CNilsasonic dispersion of CNTs in the
polymer solution, melt processing, electrospinrang electrode chemistry, all the techniques
failed to individually disperse the CNTs in the yuokr matrix. For this reason, polymer
nanocomposites based on CNTs have so far not shasamatic improvement in mechanical
properties (maximum 30-40%) of the final composit&terials.

Both improvements in and worsening of mechanicatfopmance of CNT/polymer

nanocomposites have been reported. The possiblesanf such inconsistencies include
variable specimen preparation methods, variation€NTs quality and purity, dispersion,
type, aspect ratio, degree of alignment, and, liin@ifferences in tube-polymer interfacial

chemistry, both within a sample and among samptes tlifferent batches or laboratories.



In this project we used two innovative methodsigperse CNTs in the polymer matrix: The
first method is the solution casting, which is ased by dissolving a polymer and filler
separately in a solution and then mixing the twoptepare the composites. The second
method involves simple melt extrusion in which dypeer and filler are melt-mixed in a
chamber at a pre-set temperature. The later metla@dalso used by the Sinha Ray group

[28-31] to disperse layered silicates in polyolefiatrices.

In the first part of this study, we focused on fiimecalizing the surface of multiwalled CNTs
to improve the dispersion and interaction with pladylactide chains. We used the following
techniques to characterise them:
e Attenuated total reflectance Fourier-transformanéd (ATR-FTIR) spectroscopy to
confirm the functionalization.
e The presence of functional groups was also confirméth x-ray photoelectron
spectroscopy (XPS).
« Raman spectroscopy was used to confirm the nafub®mding between MWCNTs
and the surfactant of interest.
The second part focused on nanocomposite prepardiio melt extrusion, and the
characterization and property determination byfttiewing techniques:
» Scanning electron microscopy (SEM) to study thephology.
* Polarized optical microscopy (POM) to study thduehce of (FMWCNTS) on the
crystal growth behaviour of PLA nanocomposites.
» Differential scanning calorimetry (DSC) to studyetmmelting and crystallization
behaviour of the PLA nanocomposites.
e Thermogravimetric analysis (TGA) to study the iefhice of the presence of f-
MWCNTSs on the thermal stability of the PLA samples.
» Tensile testing to study the influence of -MWCNQGis the mechanical properties of
the PLA nanocomposites.
 Wide angle x-ray scattering (WAXS) to study the cibdity, crystallinity, and
structure of the PLA nanocomposites.
* Dynamic mechanical analysis (DMA) to study the efffef the -MWCNTs on

thermomechanical properties of PLA.



1.3 Layout of the thesis

This thesis contains 7 chapters. Chapter 1 desctiteegeneral background and objectives of
this study. Chapter 2 presents a literature revedavant to the project. Chapter 3 summarizes
the characterization techniques (including brieicdssions on how the techniques work) and
materials used in this study. Chapters 4, 5, apde6ents the discussion of results obtained.
Finally, chapter 7 summarizes the main observatmescribed in the thesis, and presents

some concluding remarks.
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Chapter 2

Literature review

2.1 Introduction

Over the past century synthetic polymers have becamintegral part of our lives. They are,
however, not readily biodegradable and their pggsteenvironmental pollution has become a

global problem [1].

There are two ways that can be used to alleviastipl wastes from the environment: (1)
storage of plastic wastes at landfill sites, bugsth sites are limited due to the rapid
development of society. (2) Recycling and incinerat Recycling appears to solve the
problem, but it requires substantial costs of laband energy for the removal of plastic
wastes, separation according to the types of plstvashing, drying, grinding, and then
reprocessing to final products. Hence, this leadnidre expensive packaging and the quality
of the recycled plastic wastes is often lower thlaat produced directly by the primary
manufacturer. Incineration of plastic wastes alwa@ysduces a large amount of carbon
dioxide which results in global warming. It alsonssgtimes produces toxic gases such as
nitrogen oxide, carbon monoxide, and nitrogen dlexiwhich again contribute to

environmental pollution [2].

With this background, the development of biodegbéslgpolymers has been a growing
concern since the last decade of th& 2éntury. Biodegradable polymers are regarded as
those that undergo microbially induced chain sorssnto smaller fragments, and ultimately
into simple stable end-products [3]. Mineralizatioray be due to aerobic or anaerobic
microorganisms, or biologically active processeasclisas enzymatic reactions) or passive
hydrolytic cleavage [4-6]. A range of biodegradaptdymer materials have been prepared
and industrialized [7-11].

Biodegradable polymers are classified into threppmzategories according to their different

origins: (i) synthetic polymers, particularly aligic polyester poly(L-lactide) (PLA) [12-17],



poly(e-caprolactone) (PCL) [18,19], poly(p-dioxane) (PPDQ19-21], poly(butylene
succinate) (PBS) [22-26], and poly(ethylene sudengPES) [27,28]; (ii) polyesters
produced by microorganisms, which basically indisat different types of
poly(hydroxyalkanoate)s, including popybydroxybuterate) (PHB) and poly(3-
hydroxybuterate-co-3-hydroxyvalerate) (PHBV) [29;3(ii) polymers that originate from
natural resources including starch, lignin, chitgseellulose, chitin, and proteins [32-39].
Even though biodegradable polymers have createdgiweaspportunities, they are still far
from taking over from conventional undegradableypwrs, in that they generally have poor
mechanical properties, are highly hydrophobic, bade poor processability which prohibits
their utilization. One can now easily understand/ where is a need for modification of these
polymers into biodegradable materials with balanpeoberties. The use of inorganic or
natural fillers for the preparation of blends omeentional composites is among the other
routes to improve some of the properties of bioddgble polymers. Reinforcements of
biodegradable polymers with nanometric materialsnpses to produce eco-friendly green
materials with controlled properties such as théstability, strength, low melt viscosity, gas
barrier properties, and slow biodegradation rateesé materials are called nanocomposites.
The high aspect ratio and high surface area asedamth nanometric fillers can improve the
reinforcement efficiency of nanocomposites withyortl 5 wt.% loading to match that of

conventional composites with 40 to 50 wt.% of loagdof classical fillers.

This chapter aims to provide a detailed introductd PLA and CNTs as a polymer and filler
of interest. Both their properties, synthesis, Bhd nanocomposites containing CNTs shall

be described. The characterization techniques Bhaliscussed in Chapter 3.

2.2  Chemistry and synthesis of lactic acid and PLA

Polylactide is synthesized from the monomer, lacad, which can be produced by
carbohydrate fermentation and chemical methods yofthssis. However, lactic acid
production by fermentation route is commonly fawmur This method is based on the
fermentation of starch and other polysaccharidésclwcan be easily found from potatoes,
corn, sugar cane, sugar beet, and other biomagess.of the commercially available lactic

acid is produced by a bacterial fermentation route.



Lactic acid (2-hydroxy propanoic acid) is a chimblecule which exists in two optically
active configurations, D- and L- enantiomers (Feg@rl). The D enantiomer differs from the
L enantiomer in that it rotates the plane of palkedi light counterclockwise, whereas the L

enantiomer rotates the plane of polarized lightkhase.

O
HO HO
OH
/,////
H CH3 H3C
L-Lactic acid D-Lactic acid

Figure 2.1  Enantiomers of lactic acid

Chemical processes produce a racemic mixture afiddLaenantiomers, optically inactive D,
L or meso forms of lactic acid. L-lactic acid isn@ntly produced through a popular bacterial

fermentation route using various modified straihkactobacillus[40].

Although polymerization of lactic acid to high moigar weight PLA can be achieved in two
ways, four methods are generally used for thehggi$ of PLA (Figure 2.2).

2.2.1 Azeotropic dehydrative condensation

This method involves the use of an organic solveattic acid is condensed directly into a
high molecular polymer. The removal of water isiaead azeotropically by balancing the
equilibrium between a polymer and a monomer, wietha solvent is dried and recycled
back into the reaction. This technique producegyhlypure, high molecular weight PLA by
allowing the reaction temperature to be below thelting point of the polymer, hence

effectively preventing depolymerization and raceation during polymerization [41-45].
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2.2.2 Direct polycondensation polymerisation

This method has the disadvantage that it is usdg tonobtain a low molecular weight
polymer. The stereochemistry is also very diffidoltcontrol as lactic acid is polymerized in
the presence of a catalyst at reduced pressureglieis very difficult to completely remove
water from the highly viscous reaction mixture. Agth molecular weight polymer can be
obtained by coupling a low molecular weight polym&ith isocyanates, epoxides or
peroxides [45,46]. These chain coupling reagenéstravith either hydroxyl or carboxyl
groups of low molecular weight PLA chains. Bothlmatyl- and hydroxyl- terminated PLA

chains serve as polymerization points to produgh molecular weight PLA.

CH3 0 CH3
| O |
HO Y
o éHs Chain coupling
agents
Low molecular weight prepolymer
Condensatig Mw = 2, 000- 10, 000

----0
T
w

----0

Hs CHs
OH Azeotropic dehydrative \ OH
HO condensation
-H,0

0 CH
Lactic acid 8 .
ngh molecular weight PLA
. Mw = >100,000
Condensation
-H,O
Ring opening
polymerizatio
CHs 0 CHa
i i o
o OH
Depolymerization
HO ¢} >
" n
o) CHs o) HaC”

Low molecular weight prepolymer
Mw = 1, 000- 5, 000

Figure 2.2  Different routes for the synthesis of PA [45].
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2.2.3 Ring opening polymerization

This method is usually preferred for the synthesfishigh molecular weight PLA as it
provides better prospects of controlling stereodbktgn Lactide is obtained from the de-
polymerization of a low molecular weight pre-polymeurified, and then polymerized to
high molecular weight PLA [46].

2.2.4. Solid state polymerization

This method offers advantages such as (a) no salveaquired, thus avoiding environmental
pollution; (b) operating at low temperatures, traide to control side reactions, thermal,
hydrolytic, oxidative degradation with reduced discation and degradation of the final

product; (c) polymers prepared from this metho@mfhave improved properties due to the
ability to avoid side reactions and monomer cytiora

2.3 Properties of poly(lactide)

The physical properties of PLA polymers depend oolegcular characteristics such as
crystallinity, degree of chain orientation, spheeusize, and crystalline thickness. The purity
of lactic acid stereocopolymer enantiomers alsduanfces the physical properties of
polylactide, for example, the polymerization of @ W/w mixture of L- and D-lactic acid

produces DL-poly(lactic acid) which is amorphougy(ife 2.3).

Similarly, polymerization of D- and L- lactic acidsespectively produces D- and L-
poly(lactic acid), that have the same properties, different stereochemistry. PLA can also
be produced with varying fractions of L- and D-ldet PLA resins having more than 93% of
L-lactic acid are semicrystalline, while PLA witl)-83% L-lactic acid is amorphous [46].

Some of the physical properties of PLA are sumnearin Table 2.1 [47].

12



HO
OH

%,
7,
Z

HaC H . H
D-Lactic acid OQC/ \C<CH3 Ring opening So(BL-Lactid
Condensation | | polymerization Oy(or- actide)
» —
+
H—C C
o X, PDLLA
HaC

Meso or DL-Lactide

L-Lactic acid

Figure 2.3  Synthesis of PLA based on chirality

The glass transition temperatureg(Bnd melting temperature £J are the most important
parameters, because they both influence the typ@mfcations the polymer will be used for

[47,48]. Changes in polymer chain mobility occubaabove T.

PLA synthesized from of 100% L-lactide has a meltiemperature of 178C. Addition of D-

lactide to the polymer structure reduces the ngpltgmperature to between 130 to 160°C
[48,50].

2.4 Applications of poly(lactide)

Due to its good mechanical properties, biodegrdit\gbiand the eco-friendliness of its
degradation products, PLA is used for a numberppliieations ranging from conventional
thermoplastics (as in packaging, agricultural poisiuand disposable products) to

biomedicine, surgery and pharmaceuticals.
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Table 2.1 Physical properties of PLA [47]

Property

Typical value

Molecular weight (kg ma)
Glass transition temperatufg, (°C)
Melting temperatureT,, (°C)
Heat of meltingAHm (J ¢%)
Degree of crystallinityX (%)
Surface energy (dyn)
Solubility parameter§ (J* mL™)
Density,p (kg m®)
Melt flow rate, MRF (g/10 min)
Permeability of @CO, (mol m* s* Pa?)
Tensile modulus: (GPa)
Yield strength (MPa)
Strength at break (MPa)
Flexural strength (MPa)
Elongation at break (%)
Notched Izod impact strength (J%jn
Decomposition temperature (K)
IR peaks (crit)
-OH (alcohol/carboxylic)
C=0
-COO
C-O
C-H

100-300

55-70

130-215

8.1-93.1

10-40
38
19-20.5
1.25
2-20

4.25/23.2

1941
70/53
66/44
119/88
100-180

66/18

500-600

3700-3450
1750-1735
1600-1580
1200-1000
950-700

14



2.4.1 Commodity applications

Current developments in the production processe®ldk, along with improvements in

material properties, has led to a variety of agpions such as fibres, injection moulded

articles, textile, and packaging. PLA is suitaldedll these applications due to its [51]:

()

(ii)

(iii)

(iv)

(v)
(vi)

Low moisture absorption and high wicking propertggoerior to even that of
poly(ethylene terephthalate) (PET), offering besefor sports and performance
apparel and products. The garments made from PL#ithr wool or cotton are
more comfortable with a silky touch.

Low flammability and smoke generation [52-54]. Titee shows improved self
extinguishing characteristics. Fibres can be madsdivent or by melt spinning
processes. The fibres produced by solvent spinmsioglly have better mechanical
properties than the fibre produced by melt spinnibgcause of thermal
degradation during melt spinning [55]

High resistance to ultraviolet light, a benefit fmrformance apparel as well as for
outdoor furniture and furnishing applications [SB-6

Low index of refraction, which provides excellemtlaur characteristics. PLA
possesses high transparency and it is an inherpoldy material due to its basic
repeating unit of lactic acid. This high polaritgads to a number of unique
attributes such as high critical surface energy thelds excellent printability.
Another benefit of PLA’s polarity is the resistarioealiphatic molecules such as
oils and terpenes.

Low density, making PLA fibres lighter in weightatt others.

Fibres coming from an annually renewable resoumse lthat are readily melt-
spun, offering manufacturing advantages resultimggieater consumer choice
[62].

The textile sector is showing a great potentialfbA applications. For example, Fibreweb in

France has shown webs and laminates made exchsreeh PLA. The French have also

extruded a range of melt-blown and spunlaid PLAi&sbunder the name Depo¥4q63]. The

garments showcased during the Nagano Olympics uhdarmbrella Fashion for the Earth

were the products of Japan’s Kanebo Ltd, which prasluced PLA fibre under the brand
name LACTROM" [46].
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2.4.2 Medical applications

The medical applications of PLA also rely on itedegradability and the compatibility of
lactic acid, as the degradation product, with then&n body. The degradation behaviour of
PLA was studied botin vitro andin vivo, and it was found to be influenced by environmienta

factors such as pH, air, temperature, and watgr [64

In general, metal devices are used to fix fractireades by aligning bone fragments into close
proximity so that easy healing can take place.tBatcomplete healing process relies on the
bone’s ability to carry normal weights, which igesf compromised as the device also carries
its own weight. Furthermore, the sudden removahefdevice might temporarily leave the
bone susceptible to re-fracture. However, with Pdavices, during the process of
degradation, the fibrous connective tissues suibstihe degrading implant. More importantly
is the fact that no further surgery is requiredeimove the products since they slowly degrade
in the body without any side effects [64]. The famad drug administration (FDA) of the
United States of America has approved the use éffet.certain human clinical applications

such as sutures [65, 66].

Sutures are wound closure filaments designed ilowsirshapes to keep tissues together in
place until their natural healing is completed. loer, the use of neat PLA for suture
applications has been restricted by its inhereapgnties such as rigidity, slow degradation,
and high crystallinity. In order to remedy this pplem, companies such as Ethicon
copolymerized (and commercialized) lactic acid whlodegradable monomers such as
glycosidic acid to produce a copolymer with theuiegd properties [67]. This introduces
significant changes in physical properties and aisceases the degradation rate of the PLA

filament.

There is an urgent need for the development okgystto deliver therapeutic agents directly
to the circulatory system, especially for drugst tlnadergo considerable inactivation by the
liver. PLA and its copolymers have been playingaial role in drug delivery applications

[67-70]. In the 1970s, protein based drugs and tirdvermones were not attractive to use
clinically, as methods to produce them, such asiéiextraction, were tedious. However, the
advancement in molecular biology made it easiesytathesize and introduce proteins like

insulin into bodies. PLA and its copolymers hasrbased to encapsulate and deliver these
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proteins [71,72]. These drug systems have beenajmak based on reservoir devices. In the
reservoir, the drug release takes place acrosdymeo membrane, while the drug activity
remains unchanged. The drug is released steadihytholytic degradation or morphological
changes in the polymer [68,73]. PLA and PLA bleimtels with desired properties such as
clearly designed porosity and biodegradability hbgen synthesized through dry-wet phase-
inversion and electro spinning for drug releasetesys. Both methods have produced
remarkable results. For example, Kenastyal. [74] investigated the release of a drug from
electrospun PLA, polyethylene-co-vinylacetate (PEB\&kd their 50:50 blends. The drug,
tetracycline hydrochloride, was solubilized in netbl, added to a PLA solution in
chloroform, and the solution was electrospun tapog a honwoven fabric sheet of very low
thickness. The results showed immediate drug releds neat PLA compared to PEVA and
its blend which showed a release of up to 120 dBlys. is an attractive characteristic of PLA

blends, where short term continuous drug releaseasded.

Another interesting application of PLA is in tisselegineering. This field is concerned about
developing biological materials to help maintaiestore, and improve tissue function. The
most fascinating aspects about tissue engineenagttaat there won't be a problem of
transplant rejection since no donor is requiredieRts with organ defects or malfunctions are
treated by using their own cells grown on a polymsepport so that a tissue part is
regenerated from the natural cells. This is becallme support disappears from the
transplantation site with time, leaving behind afge patch of the natural tissue. PLA
scaffolds may be designed into different shapes kngted, filament, film, braided, and
nonwoven to achieve the requirements of organ naatwfing. These scaffolds serve as
extracellular matrix to stick and grow cells leaglito the development of new functional
tissues. For example, Kelloméaki al. [75] reported on the design and manufacturing of
different bioabsorbable scaffolds for guided boegeneration and generation. They used
self-reinforced PLA rods as scaffolds for bone fation in muscle by free tibial periosteal
grafts. They found that, six weeks after implamtatinew, histologically mature, bone had
been generated in a pre-designed cylindrical f{@everal other potential applications of PLA

and its blends are summarized in a revieviLioyt et al.[64].
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25 Carbon nanotubes

Graphitic sheets that are coiled up into seamlgiaders called CNTs, have dramatically
changed the low-dimensional physics and are usedesearch by both scientists and
engineers in the field of nanotechnology. It is diecovery of fullerenes (geometric cage-like
structures of carbon atoms that are composed afduoeal and pentagonal faces) by Smalley
and co-workers [76] in the 1980s at Rice Univerthigt led to the discovery of CNTs. While
looking for new carbon structures by an arc disganethod, lijima [77] discovered long,
slender fullerenes, often capped at the end. This ved these fullerenes consisted of
hexagonal carbonic structures, which were thenllEdbeanotubes due to their nanometre
dimensions. Since then, the scientific community baen studying these materials intensely
because of their potential applications invokedH®ir exceptional material properties, owing

to their symmetric structure.

2.5.1 Types of carbon nanotubes

Carbon nanotubes are classified mainly in two cates:

(i) Single-walled CNTs. These consist of a singleppene sheet rolled seamlessly to form a
cylinder with a diameter of the order of 1 nm aeddth of up to centimetres.

(i) Multiwalled CNTs. These consist of an array oflinders formed concentrically and
separated by a distance of 0.35 nm. They have dgeamef 2-100 nm and lengths of tens of
microns (see Figure 2.4, the coaxial arrangemetiteofubes is clearly visible).
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Figure 2.4  TEM images of multi-walled carbon nanotbes [77].

A grapheme sheet may be rolled up in various way$otm single-walled CNTs with
different structures, defined by the chiral vedﬁgr,, and chiral angldy, such that:

C,=ng + ma, (1)

where & and &, are the basis vectors of the graphite latticerandare integers representing

the number of steps along the lattice (see Figufg. ZThe chiral vector covers the

circumference of the tube.

The relationship between the graphite lattice besisorss,, ,and the chiral vectorC, , are

used to characterize carbon nanotubes. Two limigages are showrfn, 0) indices are
associated with zigzag tubes wheréasn) indices are associated with armchair tulds.
other tubes are chiral. Figure 2.6 illustratesdifierent types of nanotube.
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Figure 2.5  Schematic diagram showing how a hexagonsheet of graphite is ‘rolled’

to form a carbon nanotube [78].

f )
- e s\

5o
P

ot
o o=,

14,

Figure 2.6  Diagrams of the three types of nanotubga) armchair, (b) zigzag and (c)
chiral [79].
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Chirality is an important characteristic of CNTsitasgletermines the type of properties they
will have, such as electronic properties. For eXamgraphite has semi-metal properties,

whereas CNTSs are either metallic or semiconductiegending on the nanotubes chirality.

2.5.2 Synthesis of carbon nanotubes

Although scientists across the globe are still lngkfor more ways to produce carbon
nanotubes, there are generally three main techsiqaefar. These are arc discharge, laser

ablation, and chemical vapour deposition.

2.5.2.1 Arc discharge

This method was initially used for the synthesi<Cgf fullerenes. lijima [77] first observed
nanotubes from the electric-arch discharge teclmnidjhis is the easiest technique to produce
carbon nanotubes. However, it has a disadvantageodiicing a mixture of components, so
that the produced nanotubes still have to be gurifiefore they can be useful. In this method,
two carbon rods separated by about 1 mm are plesddo end in an inert environment of
either argon or helium at low pressure, and theyaac-vaporized to produce CNTSs.

The discharge vaporises one of the carbon roddant a small rod shaped deposit on the
other rod. Both SWCNT and MWCNT can be selectiveiynthesized by this method
depending on the exact set-up. To produce singleadv&NTs, the anode has to be doped
with metal catalysts e.g. Mo, Co, Y, Fe, Ni, or tares of these [81]. Parameters such as
system geometry, type of gas, metal concentratiarrent strength, and inert gas pressure
influence the quality and quantity of the nanotubletined. The exact growth mechanism for
nanotubes is not yet fully understood. Howeverrehare some theories on the growth

mechanisms (Figure 2.7).
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Figure 2.7  Visualization of a possible CNTs growtimechanism [82].

Figure 2.8 explains the two generally acceptedribsptip growth, and extrusion or root
growth. Both mechanisms postulate that metal csttggrticles are floating or are supported
on graphite or another substrate. The catalysicpestare spherical or pear-shaped. Extrusion
or root growth takes place when the nanotube gnopvgards from the metal particles that
remain attached to the substrate. Tip growth tgiase when the metal catalyst particles
detach from the substrate and move to the headweadrowing nanotube.

Although the diameter of the nanotubes can beyfawll controlled, the problem with this
method is that there are a lot of metal catalygpurities, and purification is difficult to
perform. If MWCNTs are preferred, both electrodes graphite. However, other products
such as graphite sheets, amorphous carbon, areteiudls are also formed. Purification is
therefore needed, which causes defects on the atlsa loss of structure. The absence of
metallic catalysts, however, means that the namstutan be produced with only a few

defects, since there won't be a need for heavytaeatment.
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2.5.2.2 Laser ablation

At first, laser ablation was used for the initighthesis of fullerenes, and the technique was
modified to allow for the synthesis of SWCNTSs. 1895, a pulsed or continuous laser was

used by Smalley and co-workers [83] to vaporisar@an target in an oven at 12700.

The oven is filled with argon or helium gas to ntain a certain pressure. The condensed
material is then collected on a water cooled target synthesize SWCNTs, the graphite
target is doped with metal catalysts, whereas guaehite produces MWCNTSs. In general,
laser ablation produces high yields of SWCNTs witter purity (up to 90%), better
properties and a narrower size distribution thaarmdischarge. However, the two methods

are similar in that they both need an inert atmespland a catalyst mix.

2.5.2.3 Chemical vapour deposition

Often called thermal or catalytic CVD to distinduig from other CVDs used for various
purposes, CVD is a simple and cost-effective tegmmifor producing carbon nanotubes at a
moderately low temperature and at ambient press$uig.quite flexible in that it allows for
the use of various hydrocarbons in any form like, galid or liquid. It also allows the use of
different substrates and enables nanotube growtrailmus forms such as powder, thin or
thick films, straight or coiled, aligned or entamgyl It is generally reported that low
temperatures (600 to 90C) favour the growth of MWCNTS, while high tempenas (900

to 1200°C) favour the growth of SWCNTs. The catalyst péetisize has been found to
dictate the nanotube diameter, growth rate, watlktiess, morphology and microstructure.
Solid organometallocene catalysts such as nickederrocene, and cobaltocene, producing
nanometal particles situ, are preferred for the synthesis of nanotubesiodarforms of
CVD techniques such as thermal CVD, laser assi€te®, vapour phase growth CVD,
plasma enhanced CVD, aero gel-supported CVD, aodhal catalytic CVD, have been
developed for the synthesis of CNTs [84].

Chemical vapour deposition can be regarded as &nenegly versatile technique for the
production of carbon nanotubes in that it: (i) éatively easy to scale up; (ii) successfully

uses a variety of hydrocarbons, catalysts, andysataupports; (iii) can fabricate various
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alignments and patterns of nanotubes; and (iv)GNd's can be produced continuously,
which provides a good way for the production ofg&rquantities of nanotubes under

relatively controlled conditions.

Before CNTs can reach their full potential, thegaé¢o be purified as they are produced with
a lot of impurities. Currently, the following tedlgnes are employed by various research
groups for the purification of CNTs: Oxidation (temove metal catalysts and other carbon
based impurities, usually with peroxides and sulghacid), annealing, micro filtration,
ultrasonication, cutting, chromatography, functioraion, acid treatment, and magnetic
purification [84].

2.6 Properties of carbon nanotubes

CNTs are regarded as one-dimensional systems. i$hikie to their small diameter (in
nanometers) and long length (up to microns), leadlinlarge aspect ratios. The large aspect
ratios are important for electronic, molecular asiductural properties. Carbon nanotubes
generally possess three special properties:

Electrical conductivity Depending on the chirality of their atomic stuwet, CNTs can be
either metallic or semiconducting. The differenaeconducting properties results from their
molecular structure (armchair, zigzag, or chiraithvdifferent band structures, and therefore
different band gaps [85]. The electronic propertieperfect MWCNTSs are similar to those of
perfect SWCNTs, because the coupling between tmeettric cylinders in MWCNTS is
weak.

Chemical reactivity A distinction must be made between the sidewadl the end caps of
nanotubes, because the CNTs reactivity is dirgethted to ther-orbital mismatch caused by
an increased curvature. In comparison with a gnagheheet, nanotubes’ reactivity is
enhanced by the curvature of the surfaces of thetanbes. Covalent chemical modifications
of either sidewalls or end caps have proved todssiple. However, further experiments on
the influence of chemical modifications on the rtabes’ behaviour are difficult, as it is not
easy to produce or to find highly pure nanotub&g.[8

Mechanical strength The small-diameter CNTs are quite stiff and exiogpally strong,
meaning that they have a high Young’s modulus TPa) and high tensile strength6Q

TPa), as well as unique deformation behaviour [88y.Ts are also very flexible due to their
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great length, which makes them potentially suitaflole future applications in composite
materials with anisotropic properties.

Optical propertieslt is expected that the optical properties of GNiill be affected by their
physical properties such as chirality, since thicakstudies have shown that optical activity
of chiral nanotubes disappears if the nanotubesrbedarger [87]. Optical activity of CNTs
might lead to optical devices.

2.7  Applications of carbon nanotubes

As extensive research is ongoing on the applicatmn\CNTs, we summarize here some of

the most promising applications from the literature

2.7.1 Composite materials

Due to the interesting properties that they poss€dsl's can potentially be used in the
development of super-strong and super-stiff polynecemposite materials with CNT
reinforcement [88—93]. The first achieved major aoencial application of MWCNTSs is their
use as electrically conducting components in potyro@mposites [95]. The nanofibre
morphology of the MWCNTSs allows electronic conduityi to be achieved at low loading
levels. Other performance aspects, such as mecthgmaperties and low melt flow viscosity,

are either minimized or avoided. These are neealetthiihn-wall moulding applications.

2.7.2 Hydrogen storage

Because they are cylindrical and hollow, CNTs hthes potential to be used for hydrogen
storage, e.g. for fuel cells that power electribigkes or laptop computers. However, it is still
impossible to assess these application potentlzdsause the reports of high storage

capacities have shown to be inconsistent [96-98].

25



2.7.3 Electrochemical devices

CNTs are attractive as electrodes for devices tisat electrochemical double-layer charge
injection, because they have high electrochemicadlyessible surface areas, good electronic
conductivity, and good mechanical properties. Stamacitors are good examples, as they
have huge capacitances compared to ordinary dieldzsed capacitors and
electromechanical actuators. Supercapacitors withT Celectrodes can be used for
applications that require much higher power capesl than batteries, and much higher
storage capacities than ordinary capacitors likeridyelectric vehicles that can provide rapid

acceleration and store braking energy electrig@®y100].

2.7.4 Sensors and nanoprobes

CNTs are also used as scanning probe tips for pagripsuch as atomic force and scanning
tunnelling microscopes, because they allow imagmgarrow, deep crevices and improve

resolution compared to metal tips or silicon tipese tips also have enhanced probe life and
do not damage the sample during repeated hardesasto substrates [101,102]. Nanoscopic
tweezers may be used as nanoprobes for assemlalydeethey are driven by the electrostatic

interaction between two nanotubes on a probe tip.

2.7.5 Field emitting devices

Both SWCNTs and MWCNTSs can be used as field emgitélectron sources for lamps, flat
panel displays, x-ray and microwave generators, gasl discharge tubes providing surge
protection. The emission behaviour depends on theotabes tip structure. Enhanced
emission results from the opening of the tip oheitan SWCNT or an MWCNT. Nanotube
field emitting surfaces are fairly easy to prodigescreen printing nanotube pastes and do
not deteriorate in moderate vacuum, which is araathge over tungsten and molybdenum tip
arrays that are difficult to manufacture [103,104].
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2.7.6 Drug delivery systems

Currently, CNTs have generated an enormous intémebtological systems, where a well
designed CNTs can serve as vaccine delivery systamwotein transporters [105-107].
Carbon nanotubes can be functionalised with bieagbeptides, proteins, nucleic acids and
drugs, and can be used to deliver their cargoslis and organs because they display low

toxicity and are not immunogenic.

2.8 Functionalization of carbon nanotubes

Because of their atomically smooth surface and liméted solubility in most organic
solvents, it is very difficult to disperse CNTs hogeneously into the polymer matrix. Over
the last few years there has been a great researetest in preparing homogeneous
dispersions/solutions of CNTs, suitable for prosessnto thin films and composites, and
exploiting the unrivalled properties of the CNTsheTmain routes consist of end and/or
sidewall functionalization, use of surfactants wstinication or high-shear mixing [108-111],
polymer wrapping of nanotubes’ outer surfaces [113}, and protonation by super-acids
[116]. Among all the reported methods, graftingGNITs’ outer surfaces with amines has
been widely investigated in preparing soluble CNTsarious solvents. For example, Wong
et al. [117] reported the modification of MWCNTgia amide bond formation between
carboxyl functional groups, bonded to the open aidke tubes, and the amines. Cle¢mal
[118] have demonstrated that SWCNTs can be sahalilin common organic solvents by
non-covalent (ionic) functionalization of the caxlgbc acid groups by using octadecyl amine.
They found that the same dissolution process, epph arc-produced MWCNTSs (average
length<1mm), only gave rise to very unstable suspensiomsganic solvents. And that they
were visually scattered. Qet al.[119] showed that, by modifying Haddon’s method([L2
using two Soxhlet extractors, large quantitiesadfilsilized MWCNTSs could be obtained. The
conventional approach of amine functionalizatiotedious with a typical reaction time of 4-
8 days which involves steps such as carboxylatiogichlorination, and amidation. Although
these methods are quite successful, however, tfiep andicate cutting of the tubes into
smaller pieces. This may be due to the oxidatigei@ed cutting during the refluxing with a
strong acid for a long time, thus partly losing thgh aspect ratio (length/diameter) of CNTs.

For the structural applications such as he fabdnabf CNT-based composites, full-length
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CNTs are always preferred because of their higlecsmtio. However, the dissolution of
pristine CNTs without losing the structural integristill remains a significant research

challenge.

2.9 Carbon nanotubes-containing PLA nanocomposites

Polymer composites prepared with conventional réllesually contain 10-70 wt.% filler,
which leads to composites with high densities argh material cost. The modulus and
strength of these composites is often traded fgih Fiacture toughness [121]. Unlike ordinary
polymer composites prepared with micron scaler§llgoreparation of polymer composites
containing CNTSs results in very short distancesvben the fillers, thereby hugely modifying
their properties at very low filler content.

Polymer/CNT nanocomposites can be classified astsital or functional composites [122].
For the structural composites, the uniqgue mechhpicgerties of CNTs, such as the high
modulus, tensile strength and strain to fracture, explored to obtain structural materials
with much improved mechanical properties. As for Tgdblymer functional composites,
many other unique properties of CNTs such as @ettrthermal, optical and damping
properties, along with their excellent mechanicalperties, are utilized to develop multi-
functional composites for applications in the feeldf heat resistance, chemical sensing,
electrical and thermal management, photoemissi@ciremagnetic absorbance, and energy
storage [123]. In 1994, Ajayaet al. [124] first reported the preparation of a polyruNT
nanocomposite. Following this, many research atterhpve been made to understand their
structure-property relationship and find useful laggpions in different fields. These efforts
have become more pronounced in the beginning oR1ils¢ century after the realization of

CNT fabrication on an industrial scale at lowertcos

Recently, a number of papers have appeared on rdganation, characterization, and
properties of CNT-reinforced PLA composite materiaMoon et al. [125] reported
mechanical, thermal, and electrical properties AV@NTs containing PLA composites,
which were fabricated by a solution blending teghei using chloroform as a solvent.
Besides a slight increase in Young's modulus, apravement in electromagnetic wave
shielding effectiveness was reported by adding L19oWIWCNTSs. Tshujiet al [126] studied
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the effects of incorporation of nano-structuredboar fillers such as fullerene (g,
SWCNTSs, carbon nanohorns (CNH), carbon nanoball¢GihsB), and carbon black (CB) on
the conductivity, thermal properties, crystallipati and enzymatic degradation of poly(L-
lactic acid) (PLLA). Results showed that the additof CNH, CNB, and CB increased the
thermal stability of PLLA, whereas the thermal digb of PLLA decreased after
incorporation of SWCNTs. However, the addition dWGNTs enhanced the enzymatic
degradation of PLLA. Wu and Liao [127] prepared PMMMWCNT composites by melt-
blending of acrylic-acid-grafted PLA (PLA-g-AA) andnultihydroxyl-functionalized
MWCNTs (MWCNT-OHSs). In this study, the authors tri¢o correlate the interaction
between the MWCNT-OH with the PLA-g-AA matrix witkhe tensile properties. A
significant enhancement in the thermal and mechapioperties of PLA was observed. For
example, there was a 77 °C increase in initial agaasition temperature with the addition of
only 1 wt% MWCNTs-OH. The thermal and mechanicahlgses showed that the optimal
amount of MWCNT-OH was 1 wt%, because excess MW@NH caused separation of the
organic and inorganic phases and lowered their edilvifity. McCullen et al.[128] reported
the preparation of MWCNTSs containing PLA fibres ddgctro-spinning from a PLA solution
to develop a scaffold for tissue engineering. Witle addition of MWCNTSs, the fibre
diameter was drastically reduced by 70% to formebwith a mean diameter of 700 nm. This
was believed to be due to an increased surfacegehdensity for the MWCNT/polymer
solution. Transmission electron microscopy validatee alignment of the MWCNTs within
the fibres. The presence of MWNTs showed an ineréaghe conductance of the scaffold
and in the tensile modulus at an optimal loadimgll®f 0.25 wt %.

Villmow et al.[129] studied the influence of twin-screw extrusmonditions on the degree of
dispersion of MWCNTSs in a PLA matrix. The main amas to establish a guideline for the
processing of PLA/IMWCNT composites using the mak#tch dilution technique. A high

rotation speed (500 rpm), that still ensures aageresidence time of the melt, combined with
a screw profile containing mainly mixing elementgere found to be highly convenient to
disperse and distribute the MWNTSs in the PLA mattixing the master-batch production
and during the dilution step. Under these procgssonditions a percolation threshold for
electrical conductivity was achieved on compressimulded samples at MWCNT contents

below 0.5 wt%.
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The above are some of several reports on the @éparand characterization of CNTs-
containing PLA composites by using pure and surfaadized CNTs as reinforcing filler.

Most of the reported works focused on enhancingntioelulus and thermal and electrical
properties of the final composite materials. Howgweher mechanical properties such as
strength and elongation at break have not beerideresl by most of the published studies on
CNTs containing polymer composites, particularlfthe case of PLA/CNT composites [125-
129]. This is because these mechanical propertiesdaectly related to the degree of
interfacial interactions between the filler surfeemed the polymer matrix, that is the CNT

dispersion in the PLA matrix.

2.10 Preparation methods of carbon nanotubes-containg PLA nanocomposites

2.10.1 Melt blending

This is the most preferred method in the industng it only uses high temperature and a high
shear force to disperse CNTs in a polymer matrirother interesting feature is that no
solvent is required for the dispersion of the CNHawever, it may be less effective
compared to other methods such as solution blentiegause it is only limited to low filler

concentration due to the high viscosities of theatamposites at high CNTs contents [130].

2.10.2 Solution blending

This is the most common used method for the préparaf CNT/polymer composites. It

involves the mixing of the two components in a prefd solvent and evaporating the solvent
to form a composite film. Usually the CNT powder dspersed in a solvent by either
vigorous stirring or sonication [124], mixed with pplymer solution and evaporating the

solvent with or without vacuum.

2.10.3 In-situ polymerization

In this method, monomers are polymerized to proguadgmer-grafted tubes mixed with free
polymer chains. There is a high homogeneity ofréseilting composites compared to mixing

the polymer and CNTSs in solution due to the smiakk ®f the monomeric molecules. This
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method produces composites with high CNT weighttioa. Jia and co-workers [131]
initially used this method for the preparation MMA composites.

2.10.4 Bulk mixing

This method has been used mainly to shorten thgtHeof carbon nanostructures [132]. For
example, Xiaet al.[133] used a solid state mechanochemical pulvéoizgrocess to prepare
CNT/polypropylene composite powder, which was sgbseatly melt-mixed with a twin-roll
masticator to obtain a homogenous composite. Thgtheof the CNTs was found to be
reduced from a few micrometers @800 nm. A reasonable level of dispersion of CNTe in
the polymer matrix was observed leading to the awement of the physical properties of the

samples.

2.10.5 Latex technology

This method differs fronin situ polymerization in that, the polymer is synthesifiest and
then follows the addition of CNTs. It makes it pb#s to disperse CNTs in many polymers
produced by emulsion polymerization, or those tbah be brought in the form of an

emulsion. The process is also safe and eco-fridneitpuse water is used as a solvent.

2.10.6 Other methods

Recently, new methods have been developed to peo@dT/polymer nanocomposites with

high CNT content or for some specific applicatiombese methods include pulverization,
densification, layer-by-layer deposition, and spagnof coagulant [123]. The nanocomposite
materials field has not yet reached maturity, ametdfore most of these methods are still
under investigation. It is hoped that nanocompesitgh unique structures and properties for

specialised applications will be produced.
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2.11 Properties of nanocomposites

2.11.1 Thermal properties

Due to the excellent thermal properties of CNTke lhigh thermal conductivity and good
thermal stability, it was through that CNTs willegitly improve the thermal properties of
polymers. However, this phenomenon did not quitéendise, except for a very few cases.
By means of thermogravimetric analysis, a numbereskearch groups reported improved
thermal conductivity in CNT/polymer composites tefa to the neat polymers. Choi and co-
workers [134] prepared an epoxy composite with WEWCNT and reported a 300%
increase in thermal conductivity at room tempetwith an additional 10% when aligned
magnetically. Biercuk and co-workers [134] reporéethermal conductivity increase of about
125% from an epoxy composite containing 1 wt.% WCNTs. Cai and Song [136] used
latex technology to prepare polyurethane/CNT conteesThe thermal conductivity of the

composites increased by about 200% with 3 wt.% CNTs

So far, the most promising result on the improveneémthermal conductivity by nanotubes in
polymer composites was reported by Huang and cdaver[137]. They embedded the
aligned MWCNT array (synthesised from CVD) withicihe elastomers using injection
moulding. The composite film they prepared had MWGNips protruding on both sides,
which made better contact with the heat sources Timposite, containing 0.3 wt.% of
aligned MWCNTSs, was found to have a thermal conditgtof [115-280% higher than

either the pristine polymer or a composite withWt36 of randomly dispersed MWCNTSs.

Incorporation of CNTs also enhances thermal stglalnd flame retardant properties. To be
specific, the onset temperature and the temperatureximum weight loss rate are generally
higher in the nanocomposites. For example, 5 wt.%/@NT/ polyacrylonitrile (PAN)
composite fibres showed a 2@ increase in onset temperature compared to thagatf PAN
[138]. Velasco-Santogt al. [139] prepared a 1.0 wt.% SWCNT/polymethylmeth&atey
(PMMA) composite which gave rise to a 4@ increase in the gl of the PMMA.
CNT/PMMA composites have also been reported to lilanee retardant properties, and the
mechanisms of these had been studied [140,141]raDveéhe thermal properties of
CNT/polymer composites depend on the dispersiam@fcarbon nanotubes, their interfacial
interactions with the polymer matrices, aspecordiiler content, and filler alignment.
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2.11.2 Mechanical properties

Dispersion is the most important aspect in manufaay CNT/polymer composites. Good
dispersion ensures more surface area availabditypdbnding with the polymer matrix, and
also prevents aggregated filler from acting assstomncentrators [141]. The aspect ratio must
also be large enough to maximize the load trars#eween the CNTs and the matrix material
to achieve enhanced mechanical properties. In gertbe tensile modulus and strength of
polymer-rich nanotube composites were found toeiase with nanotube loading, dispersion,
and alignment in the matrix. Dalton and co-workgr43] used a coagulation method and
spun several hundred meters of SWCNT/polyvinyl latddPVA) composite fibres. These
composite fibres contained 60% w/w SWCNTs. Thisesupugh composite had a tensile
stress at break of 1.8 GPa, which is comparabteabof the silk fibre produced by a spider.
Qian and co-workers [144] prepared a 1.0 wt.% CHNIygiyrene nanocomposite and
observed 25 and 35% improvements in the tensigagth and elastic modulus, respectively.
A number of papers on CNT/polymer composites albglan the literature were recently
summarized in a review by Mat al [123]. It has been well established that the greriince

of a fibre-reinforced composite depends critically the interfacial characteristics between
the reinforcement and the matrix material. Liaual [145] used molecular mechanics
simulations and elasticity calculations to stud tinterfacial characteristics of a CNT-
reinforced polystyrene composite. They found thahie absence of atomic bonding between
the reinforcement and the matrix material, theneasnterfacial stress transfer ability, which
is a critical parameter controlling material penfiance. It should be noted that functional
moieties on nanotubes provide better interfaciadldransfer through bonding and/or
entanglement with the polymer matrix. Geng and cokers [146] fabricated a
poly(ethyleneoxide) composite containing 1.0 wtl4ofinated SWCNTSs, and reported 145
and 300% increase in tensile modulus and yieldngth, respectively. It is important to
understand the mechanism of interfacial adhesiahemolecular level to further optimize
the interface in nanocomposite systems. Furthegestigations are necessary to understand
and then optimize nanotube/polymer interfaces.
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2.11.3 Electrical properties

CNT/polymer composites were found to be electycatinductive with small loadings of 0.1
wt.% CNTs or less [147]. Electrical conductivity tihe bulk material is achieved when the
filler content exceeds the percolation thresholtafacterized by a sharp jump in the
conductivity by many orders of magnitude which itriluted to the formation of a 3-
dimensional conductive network of the fillers withthe matrix). Above the percolation
threshold, the electrical conductivity of the corape often shows saturation because multiple
electron pathways exist in the matrix. Below thercptation threshold, the electrical
properties are dominated by the matrix materialektron pathways do not exist. To
accomplish conducting networks in the composite, dmount of conducting filler must be
above the percolation threshold. Even though tieerg obvious consensus on percolation
thresholds, most polymers show a transition frosuliator to a conductor when the CNT
content is below 5 wt.% [148]. It is generally agpgethat the electrical properties of
CNT/polymer nanocomposites are affected by the p&€NTs (SWCNT or MWCNT),
aspect ratio of CNTs, their dispersion (homogemdiggibution of individual CNTs or CNT
agglomerates on microscopic scale), and disentarggieof CNT agglomerates on the nano
scale [149-152].

Functionalization of CNTs also plays a crucial rml@amproving the electrical properties of
polymer nanocomposites. However, the use of stemnds with higher concentrations should
be avoided as they have the potential of fragmgn@NTs into smaller pieces, resulting in
low aspect ratios that are critical for the formoatiof conducting networks in composites.
Introduction of many heterogeneous atoms on théaseirof CNTs destabilises the
electrons, thereby altering the inherent electrpralperties on the nanotubes. However, the
high cost associated with CNTs, particularly the @\V's, continues to limit the widespread

uses of conducting polymers based on nanotubes.

2.11.4 Rheological properties

Rhelogy is defined as the study of the flow behawiof a material, primarily in the liquid
state, but also as 'soft solids' or solids undeditmns in which they respond with plastic

flow rather than deforming elastically in respobsen applied force. Rheological properties
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are related to the materia’s microstructure, thgesovf the nanotube dispersion, orientation of
nanotubes, the aspect ratio, and the interactietwden nanotubes and polymer chains. In
general, the rheology of polymer melts dependsngtyoon the temperature at which the
measurement is made. For thermorheologically simm¢erials, bilogarithmic plots of the
isotherms of the storage modulus @’(loss modulus G%), and complex viscosityir{*|)
can be superimposed by horizontal shifts of Igg@long logp), and vertical shifts given by
log(br), such that:

brG’'(arw,T) = G'(o, Trer) (2)
brG”(arm,T) = G"(®, Trer) (3)
(br/ ar)i n* 1(ar®, Trer) = IM* (@, Trer) (4)

where T is the reference temperature. All isotherms mesaktior neat polymers and for

various nanocomposites can be superimposed inveys

For polymer samples, the temperatures and freqeenet which the rheological
measurements are taken are expected to exhibiaatlastic homopolymer-like terminal

flow behavior, expressed by the power-laws [G'w?

and G” 0 o. The rheology of a
polymer/CNT composite also displays a transitioonfra rheological state to a solid-like
behaviour at a point called the rheological pertoohathreshold [153-155]. Abbasi and co-
workers [153] reported a decrease in the percaolatweshold from 0.8 wt.% to about 0.3
wt.% upon increasing the temperature from 210 t0 30 in MWCNT/polycarbonate
nanocomposites. Improved dispersion of functioealiCNTs also decreases the rheological
percolation threshold of CNT containing nanocomiassi Mitchell and co-workers [156]
reported an improved SWCNT dispersion in polystgrenith a reduced rheological
percolation threshold from 3.0 to 1.5 wt.%. Vistpsilso lowers with the better dispersion

of nanotubes.

Oscillatory frequency sweep measurements showed atidition of about 2.0 wt% F-
MWNTSs led to a solid-like response where a perealatetwork structure formed, and the
composites exhibited remarkable improvement of Idgtoal properties in the melt state as
compared with that of neat PLA [157].
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PLA nanocomposites with various functionalized MWIEN\were prepared by melt mixing
for morphological, rheological and thermal measwets. The results show that
PLA/carboxylic MWCNTs present a typical solid-likeiscoelastic response at low
frequencies under small amplitude oscillatory shéaw and, the percolation threshold is
lower than 3 wt% [158].

Other independent reports also found that in génenproved dispersion of functionalized
CNTs decreases percolation threshold [159-160]

2.11.5 Damping

Damping properties are concerned with the tendehayaterials to decrease the amplitude of
oscillations in an oscillatory system. As with g¢lasnechanical properties, improved CNT
dispersion can increase the damping propertiesanbecomposites. Frictional sliding of the
CNTs within the polymer matrix can cause consideralissipation of energy, even when
they are present in small amounts. This phenom&rams to an enhancement of the damping
properties of the CNT/polymer nanocomposites, whglargely due to the CNTs having
large surface areas, low mass densities, and vimalfacial bonding with the polymer [161].
For polycarbonate nanocomposites prepared using MWGind MWCNTs the damping
properties were found to be higher compared totipespolycarbonate [162]. The loss
modulus of the SWCNT/polycarbonate nanocomposite feand to be considerably higher
than that of the MWCNT/polycarbonate nanocomposteygesting that the inner layers of
MWCNTSs did not contribute to the interfacial frietial sliding with the polymer matrix for

energy dissipation.
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Chapter 3

Sample preparation and experimental techniques

3.1 Introduction

The experimental techniques used in this studyudela bench-top counter-rotating twin-
screw mini-extrusion, injection moulding, hot meitessing, attenuated total reflectance
Fourier-transform infrared spectroscopy, X-ray [pletgctron spectroscopy, Raman
spectroscopy, focused ion beam scanning electrerosgopy, dynamic mechanical analysis
thermogravimetric analysis, differential scanningicnmscopy, and polarized optical

microscopy.

3.2 Materials

3.2.1 Poly(lactide)

Polylactide (with an average molecular weight = k§8nol* and a D-lactide content of 1.1—
1.7%) used in this study was obtained from Unitil@a Ltd, Japan. Prior to use, the PLA was
dried at 80 °C for 2 days under vacuum.

3.2.2 Multiwalled carbon nanotubes

The MWCNTSs used in this study were purchased fragm&-Aldrich, with more than 95%
purity (inner diameter 10 nm; outer diameter 20 nm; length 500um).

3.2.3 Others

HDA, chloroform, and ethanol were also purchasethfSigma-Aldrich.
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3.3 Methods

3.3.1 Preparation of samples

3.3.1.1 Functionalization of carbon nanotubes

In a typical functionalization process, a mixtufelog pure MWCNTs and 5 g HDA was
transferred to a conical flask and heated at 18@Ff® h in an oil bath. After cooling to room
temperature, the excess HDA was removed from thetioen mixture by washing with
ethanol several times. The black solid was coltettg Nylon membrane filtration (0.45um
pore size) and dried at 110 °C overnight to gebmstant weight. The mass increase of the
functionalised MWCNTSs (f-MWCNTSs) was ~10 %, deteneul gravimetrically.

3.3.1.2 Preparation of nanocomposites with melt mimg technique

For the preparation of the PLA/IMWCNT compositeg tHtMWCNTs (1.5 wt.% in powder
form, with an amine content of ~10%, determinedsignatrically) and the PLA (pellet form)
were first dry-mixed in a polyethylene bottle. Thexture was then extruded by using a
counter-rotating twin-screw mini-extruder (bench-tdaake Minilab 1, Thermo Scientific)
operated at 180 °C (screw speed = 30 rpm, timemrd to yield black coloured composite
strands. These strands were chopped into piecesangdression moulded by pressing at 2
MPa pressure at 180 °C for 2 min. For tensile prypmeasurements, injection moulded
dumbbell-shaped specimens were used. The driedPhg€atind nanocomposite strands were
injection-moulded using an injection-moulder (beap Haake Minijet Il) operated at 180
°C at a mould temperature of 80 °C (ASTM D-638)rePBLA and nanocomposite samples
were annealed at 110 °C under vacuum, prior to chtiracterizations and property

measurements.
Another PLA/f-MWCNT was prepared through this methdhis composite contained 0.5

wt.% of -MWCNTs with an amine content of ~20%, @®iined gravimetrically. This
composite was treated in the same way as was deddan the first paragraph.
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A PLA composite with untreated MWCNTs was also pred and analysed, but the results
are not presented here, because of high varialiliy to extremely poor dispersion of the

MWCNTs when prepared under the same conditions.

3.3.1.3 Preparation of nanocomposites with solutiomixing technique

A portion of the -MWCNTs was accurately weigheddadissolved into 200 ml of
chloroform. The undissolved f-MWCNTs were dried mrght at 90 °C under vacuum and
weighed again to determine the exact amount disdadlv chloroform. From this solution, 1.5
wt.% f-MWCNTSs was calculated and the composite m&pared by sonicating with PLA at
+ 40 °C. The solvent was evaporated overnight dii@nm temperature to collect thin films of
about 1 mm thickness. The thin films were furtledt in a vacuum oven at 60 °C overnight to
completely remove the chloroform. These were thett-pressed for 5 minutes at 180 °C
using a pressure of 2 metric tons in a Carver helt-press for various characterizations.

Although a PLA composite with untreated MWCNTSs vpagspared using this technique, the
analysis results on this composites are also regemted in this work, because of the same

reasons mentioned in the previous section.

3.3.2 Attenuated total reflectance Fourier-transfom infrared spectroscopy

Infrared spectroscopy is a chemical analytical népine, which measures infrared intensity
versus wavelength of light by detecting the vilmas characteristic of chemical functional
groups in a sample. Infrared light is classifiedasinfrared, mid infrared, and near infrared
with wavelengths 4 ~ 4000 ¢m400 ~ 4000 ci, and 4000 ~ 14000 chrespectively.

Attenuated total reflectance (ATR) is a samplinchteque used in conjunction with infrared
spectroscopy which allows samples to be examineztttly in the solid, liquid or gas state
without further preparation [2]. ATR measurements eonducted by placing the sample in
close contact with the surface of a prism made bigaly refractive material that transmits
infrared light. Thus close contact between the dampd the prism is very important. The

commonly used prisms include germanium (Ge), zelersde (ZnSe) and diamond. Even
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though it is expensive, diamond is by far the I#éER crystal because of its robustness and
durability. Figure 3.1 shows the infrared beam patthe ATR setup.

Beam splitter

IR source

Beam

J-stop

Filter Diamond crystal

Mirror

Detector

-

Figure 3.1  Schematic representation of infrared bea path in the ATR setup [2].

ATR-FTIR analyses of MWCNTSs, HDA, -MWCNTSs, PLA, dithe composites were carried
out using a Perkin Elmer Spectrum 100 instrumettt wiresolution of 4.0 cth

3.3.3 X-ray photoelectron spectroscopy

XPS is an analytical technique used to estimatel®ental composition and chemical state
of the elements on the surface of a material, loyepting soft X-rays (with a photon energy
of 200-2000 eV) onto the surface and detectingethergy of photoelectrons emitted from
areas a few nm (top 1-10 nm usually) from the serfd]. Every element has a particular
characteristic binding energy associated with ezmte atomic orbital, which means each
element will give rise to a distinctive set of psak the photoelectron spectrum at kinetic
energies determined by the photon energy and thigecéive binding energies [4,5]. The
existence of peaks at particular energies therefalieates the existence of a specific element

in the sample under study. The intensity of thekpes also related to the concentration of the
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element within the sampled region [6]. The opemtprinciple of XPS is schematically

shown in Figure 3.2.
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Figure 3.2  Operating principle of XPS [7].

Elemental mapping of pure MWCNT and -MWCNT sampleas performed XPS on a
Kratos Axis Ultra device, with a monochromatic AlrXy source (1486.6 eV). Survey spectra

were acquired at 160 eV and region spectra at 2fas¢ energies.

3.3.4 Raman spectroscopy

Raman spectroscopy is a spectroscopic techniquehioh the frequency of photons in
monochromatic light changes upon interaction witkaeaple. Photons of the laser light are
absorbed by the sample and then reemitted. Thedremy of the reemitted photons is shifted
up or down in comparison to an original monochrométequency, which is called the
Raman effect. This shift provides information abetilirational, rotational and other low
frequency transitions in molecules. Raman speabscan be used to study solid, liquid and
gaseous samples [8-10]he Raman scattering and infrared spectra for angspecies often
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resemble one another quite closely. There are, \'&wenough differences between the kinds
of groups that are infrared active and those thatRaman active to make the techniques
complementary rather than competitien important advantage of Raman spectra over
infrared lies in the fact that water does not caunserference. Glass or quartz cells can be
used, thus avoiding the inconvenience of workinghwsodium chloride or other
atmospherically unstable confinements. Thus aqueoligions can be studied by Raman
spectroscopy, but not by IR. Despite these advastaBaman spectroscopy is subject to
interference by fluorescence or impurities in tlaenple. Raman spectra are obtained by
irradiating a sample with a powerful laser sourdevisible or infrared monochromatic
radiation. This radiation usually has a wavelentjht is well away from any absorption
peaks of the sample. The scattered radiation ishife types, namely Stokes (found at
wavenumbers that are 218, 314, and 495@mallerthan the Rayleigh peak), anti-Stokes
(occur at 218, 314, and 459¢ngreaterthan the wavenumber of the source), and Rayleigh
(wavelength is exactly that of the excitation seurand is significantly more intense than
either of the two types) (Figure 3.3) [11].
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Figure 3.3  Raman scattering of excited molecules dratoms [12].
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Raman spectra of MWCNTs, -MWCNTSs, PLA, and PLA/MWTs nanocomposites were
recorded using a Lab Raman system (Jobin-Yvon dofi64000 Spectroscopy) equipped
with an Olympus BX-40 microscope. The excitationvelangth was 514.5 nm with an

energy setting of 1.2 mW from a Coherent Innova 8I@&0D8 argon ion laser.

3.3.5 Thermogravimetric analysis

TGA is a technique that studies thermal stabilify noaterials under inert conditions
(dehydration, carbonization, spontaneous chainadiegion), and in an oxygen environment
(oxidation) [13]. This method monitors the weigbs$ of a sample in a chosen atmosphere as
a function of time or temperature. It is composddaorecording balance, a furnace, a
temperature programmer, a sample holder, an enelofr establishing the required
atmosphere, and a means of recording and displathegdata (Figure 3.4). Balance
sensitivity is usually approximately one microgramth a total capacity of a few hundred

milligrams.
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Figure 3.4  Schematic representation of a TGA setup.
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Thermogravimetric analyses of all the samples waagied out on a TGA Q500 (TA
Instruments) at the specified heating rates undemto-oxidative conditions, from ambient

temperature to 650 °C.

3.3.6 Differential scanning calorimetry

DSC is a thermoanalytical technique which analyhesmal transitions occurring in samples
when they are heated or cooled. In polymers, ngelimd glass transition temperatures can be
determined as well as the various transitions @aidl crystalline mesophases. In a typical
DSC experiment, two pans are placed on a pairagitidally positioned platforms connected
to a furnace by a common heat flow path. One pateats the sample, the other one is empty
(often called the reference pan). Then the two paa$ieated at a specific heating rate. A plot
is created where the difference in heat flow betwtbe sample and reference is plotted as a

function of temperature. [15].

The melting and glass transition temperatures disaserystallinity of the PLA matrix before
and after nanocomposite formation were studied8& instrument (TA Instruments model
Q2000) under a constant nitrogen flow of 50 mL ™émd a heating rate of 20 °C mirThe
DSC samples were weighed such that all the sampl@sn identical PLA content. The DSC
instrument was calibrated by determining the temjoee and melting enthalpy of an indium
standard, and the baseline was checked accordihg fBA Instruments protocols.

3.3.7 Scanning electron microscopy

SEM is one of the most versatile instruments alsllafor microstructure morphology
examination and chemical composition characteopatj16]. In the scanning electron
microscope, an image is formed by a very fine edecbeam which is scanned across the
surface of a sample in a series of lines and fraralled a raster; at any given moment, the
specimen is bombarded with electrons over a vergllsarea. These electrons may be
elastically reflected with no loss of energy (bagktered electrons), they may be absorbed
and give rise to secondary electrons of very loergy (together with X-rays), they may be
absorbed and give rise to the emission of visilght| and they may give rise to electric

currents within the specimen. All these effects lbarused to produce images. The contrast in
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the image is determined by the sample morphologigh-resolution image can be obtained
because of the small diameter of the primary edadeam (Figure 3.5) [15,16].
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Figure 3.5 A schematic representation of scanningextron microscope [17].

Both PLA and nanocomposite samples were freezéufedt in liquid nitrogen, sputter coated
with carbon, and the morphology was studied withaal Zeiss SMT Neon 40, Cross Beam
Series FIB-SEM in SEM mode, with an acceleratiohage of 2 kV and a filament current of
2.38 A (Figure 3.8).

3.3.8 Polarized optical microscopy

Polarized optical microscopy is a technique thailais the interference of the split light
rays, as they are re-united along the same oppe#th, to extract information about
anisotropic materials. The polarized light micrgseas designed to scrutinize and take
pictures of specimens that are visible primarily doi their optically anisotropic character. To
achieve this, the microscope must be equipped bath a polarizer, positioned in the light
path somewhere before the specimen, and an analgzsecond polarizer) placed in the
optical pathway between the objective rear apeduckthe observation tubes or camera port.
Image contrast arises from the interaction of plaokarized light with a birefringent (or
doubly-refracting) specimen to produce two indidbwave components that are each

polarized in mutually perpendicular planes. Theowiies of these components, that are
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termed the ordinary and the extraordinary waveformre different and vary with the
propagation direction through the specimen. [16,18]

The spherulitic growth behaviour of the PLA mafaixvarious temperatures and the degree of
dispersion of MWCNTSs in the PLA matrix was studieith a Carl Zeiss Imager Z1M
polarized optical microscope. A compression moultted films of PLA and the composite
were placed between two covering glasses on a minkat stage (Linkam Scientific
Instruments Ltd, UK), mounted on the microscopee Bamples were heated to 190 °C at
specified heating rates while OM images were takeld at that temperature for 5 min, and
then OM images were taken again during cooling.

3.3.9 Dynamic mechanical analysis

DMA is concerned with the measurement of the thenexhanical properties of a specimen
as a function of temperature. DMA is a sensitivabprof molecular mobility within materials

and is most commonly used to measure the glassitiantemperature and other transitions
in macromolecules, or to follow changes in the ti@mechanical properties brought about by
chemical reactions [19]. For this type of measumnige sample is subjected to an oscillating
stress. In this test the sample, having the forra sfrip, is clamped firmly at the upper end,
while an oscillating disc is fastened to the lowad (Figure 3.6). The turning motion of this

disc can be followed optically and continuouslyamied. A thermostatted chamber that can

be heated or cooled surrounds the test sample.

Figure 3.6 A photo of a thermostatted chamber showp the clamped sample in a
DMA
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The storage modulus, being in-phase with the agiress, represents the elastic component
of the material’s behaviour, whereas the loss melabrresponds to the viscous nature of the
material. The tangent of the ratio between the krs3 storage moduliX/G’) gives the
useful quantity known as the mechanical dampingofagtand) which is a measure of the

amount of deformational energy that is dissipatetieat during each cycle.

The dynamic mechanical properties of neat PLA ahd/MWCNTs composite samples
were determined using an Anton Paar-Physica MCRBB&ometer in the tension-torsion
mode. The temperature dependence of the storagalusofz’) and tard of neat PLA and
composite samples, were measured at a constantefreg of 6.28 rad swith a strain
amplitude of 0.02% (selected after a series oirsaeep tests at different temperatures to
determine the linear region) and in the temperatamge of -20 to 160 °C at a heating rate of

2 °C min.

3.3.10 Small- and wide angle X-ray scattering

SAXS is a technique where the elastic scatteringXefiys by a sample, which has
inhomogeneities in the nanometre range, is recoati®gry low angles (typically 0.1 to 10°).
In the past decade, small angle X-ray scatterirgy been widely used to study the phase
dispersion in matrices, polymerization, emulsificat colloidal stabilization, shear-induced
structures, polymer crystallization, and the phdseain behaviour in polymers [2BAXS
data provides information about the size and sludpmarticles that are present in a system
and also gives information about the presence fbérdnt particle populations and types of
interactions [21]SAXS analysis is mainly applicable for randomlyemtied and statistically
distributed particle systems. Hence, their threeetdisional scattering pattern represents the

orientational average of their structure [22-24].

SAXS experiments of the PLA and nanocomposite sesnwkre carried out in an Anton Paar
SAXSess instrumen operated at 40 kV and 50 mA witime collimation geometry. The
radiation used was a Ni filtered Cykadiation of wavelength 0.154 nm (PAN Analytical X
ray source). Intensity profiles were obtained watlslit collimated SAXSess and recorded
with a two-dimensional imaging plate. The samplel¢tector distance was 264.5 mm and
covered the length of the scattering vectyr ffom 0.084 to 28 nih The read-out angles
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were calculated from the pixel size, and the oletig-scale was cross-checked by measuring
silver behenate whose equidistant peak positioaskaown. SAXS data were collected at

room temperature. All the samples were exposeldeadtrays for 5 min.

3.3.11 Tensile testing

Uniaxial tensile testing is a well known and unsadrtest to determine material parameters
such as yield strength, Young's modulus, % elongat?te area of reduction and ultimate
strength. Tensile testing is carried out by applying longihad or axial load at a specific

extension rate to a standard tensile specimenkmitvn dimensions (gauge length and cross

sectional area perpendicular to the load directummij failure.

The primary output from a tensile test is the lgadelongation curve of the specimen, which
is recorded in real-time using a load cell and ateresometer. This curve is then used to

determine the stress-strain curve (Figure 3.7).
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Figure 3.7  An example of a typical stress-strain gue [26].

The tensile properties of the pure polymer and namposite samples were measured using a
Hounsfield H1OKT tensile tester (Tinius Olsen L&d)room temperature. The microinjection
moulded dumbbell-shaped specimens of thickness 3 width 3 mm, and length 64 mm
were used. For these tests, a gauge length of 25ntha cross-head speed of 5 mm in
were employed. Five measurements were carriedoowgeich specimen, and the results were

averaged to obtain a mean value.
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3.3.12 Electrical conductivity

The resistivity of a semiconductor is often deteraai using a four-point probe technique.
This technique involves bringing four equally sphqeobes in contact with a material of
unknown resistance. The probe array is placed encimtre of the material, as shown in

Figure 3.8.

The two outer probes are used for sourcing curaewt the two inner probes are used for
measuring the resulting voltage drop across théaseirof the sample. The four probes
eliminate measurement errors due to the probetaesis, the spreading resistance under each
probe, and the contact resistance between each pnetee and the semiconductor material
[27].
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Figure 3.8  Schematic representation of four-point allinear probe set-up (all

dimensions in mm)
The direct current (dc) conductivity for the PLAdamanocomposite samples was measured at

room temperature (26 °C), using a four-point celin probe method (Keithley 4200-SCS,
USA). The data presented here are the averageeoinidependent tests.
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3.3.13 Transmission electron microscopy

TEM is an instrument that uses a high energy eladbeam transmitted through a very thin
sample to image and analyse the microstructure atemals with atomic scale resolution
[28,29]. An image is formed from the interactiontbe electrons transmitted through the
specimen; the image is magnified and focused omtionaging device, such as a fluorescent
screen, a layer of photographic film, or is detédig a sensor such as a CCD camera (Figure
3.9). A TEM sample must be approximately 1000 Aess in thickness in the area of interest.

The entire specimen must fit into a 3 mm diametgr &nd be less than about 100 microns in
thickness.
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Figure 3.9  Schematic representation of a transmissn electron microscope [29].

The degree of dispersion of -MWCNTs in the comfmsias investigated by means of
transmission electron microscopy (JEOL JEM 21003rafed at an accelerating voltage of
100 kV. The composite sample was cut using a chyaraicrotome (-70°C), collected on a

300-mesh carbon coated copper grid, and observbodwtifurther treatment.
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3.3.14 Atomic force microscopy

AFM is a technique that probe the sample and mat@sorements in three dimensions, X, Y,
and z(normal to the sample surface), thus allowing thesentation of three-dimensional
images of a sample surface [30]. Clean samplesmatbxcessively large surface features can
have a resolution in the xplane ranging from 0.1 to 1.0 nm and in thdirection 0.01 nm
(atomic resolution). AFM does not need a vacuumirenment or any special sample
preparation, and it can be used in either an arhloiehquid nitrogen environment. Because
of its versatility, AFM can be used in different des such contact (Figure 3.10), noncontact,

or tapping modes.
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Photodiode

Detector Cantilever & Tip
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Figure 3.10 Schematic diagram showing the operatingrinciples of the AFM in the

tapping mode [31].
The AFM topography examinations were carried ouhvei multimode AFM Nano Scope

Version (R) IV usind).5 — 2.0Q.cm phosphorous (n) doped tip with a radius of/ature of
less tharlO nm The tip mounted in a 125 um long cantilever with spring constant of 40
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N m* was employed for the tapping mode experiment. $esnpere imaged using a scan
rate of 0.5 Hz and tip frequencies ranging from 28810 kHz.

Samples of PLA and its composite were separataigotired in chloroform. Thin films were

prepared on the glass substrates using a spinrelaich was ramped at 500 rpm for 10 s and
subsequently ramped at 1000 rpm for 20 s. The ssnpére annealed in a vacuum oven at
130 °C for 30 min and quenched with liquid nitrogdihe samples were then immediately

taken for AFM experiments.
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Chapter 4

High-performance carbon nanotube-reinforced bioplatic

4.1 Introduction

Recently, a broad range of biodegradable aliphpatigesters and their co-polymers have been
commercialized by various companies [1]. One of thest well-studied and promising
polymers in this area is polylactide (PLA), becausis made from renewable agricultural
products and is readily biodegradable [2-4]. Anotimaportant property of PLA is its
biocompatibility [5,6]. Commercially available PLAas a high modulus and strength
comparable to those of most petroleum-based pobk/niywever, its low elongation at break
and very slow crystallization rate present drawksaitk its biomedical applications such as
implant materials, surgical sutures, and controtledy delivery systems, as well as for the
conventional applications where common thermopdastire employed [4]. In this chapter,
the different properties of PLA and its -MWCNTsneposites are discussed. The PLA
composite contained 1.5 wt.% of -MWCNTs. The f-MWTs used in this work contained
~10% (determined gravimetrically) of HDA.

The work on the PLA composite with non-functionaizMWCNTS is not presented here,
because of variable results obtained due to papedsion of the MWCNTSs.

4.2 Results and discussion

4.2.1 Fourier-transform infrared spectroscopy: Fungionalization of MWCNTSs

The functionalization of the outer surface of mwltlled carbon nanotubes (MWCNTSs) and
the presence of hexadecylamine (HDA) chains onotiter surface of the MWCNTs were
examined by FTIR spectroscopy. The FTIR spectrgouie HDA, pure MWCNTs (p-
MWCNTSs), and functionalized MWCNTs (-MWCNTSs) arbaosvn in Figure 4.1. The main
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IR peaks of HDA, appearing at 1456, 1613, 2846,62%hd 3336 cih are due to: C-H
deformation, primary amine N-H deformation, £lbcking vibration due to tail-to-tail
addition, -C-H- stretching, and N-H stretching,pedtively [7]. The peaks at 1976 and 2160
cm™* on spectrum (a) correspond to pure MWCNTS, andatsmbe observed on the spectrum
of -MWCNTSs (spectrum (b)). The HDA (spectrum (pgaks can also be observed on the
spectrum of -MWCNT. Thus, with a careful analysisthe FTIR spectra of pure HDA, p-
MWCNTs, and -MWCNTs, one can conclude that the MWG outer surfaces are

(b) -MWCNTSs

— A

(@) p-MWCNTs AN

functionalized by HDA chains.

(c) HDA

Relative transmittance / a.u.

1 1 1 ‘ 1 1 1 ‘ 1 1 1 ‘ 1 1 1 ‘ 1 1 1 ‘ 1 1 1 ‘ 1 1 1 ‘
4000 3600 3200 2800 2400 2000 1600 1200
Wavenumber / cm™*

Figure 4.1  Fourier-transform infrared spectra of (8 p-MWCNTSs, (b) -MWCNTSs,
and (c) pure HDA.

4.2.2 X-ray photoelectron spectroscopy: Functionatation of MWCNTs

The presence of amine groups on the outer graplagee of the MWCNTSs can further be
identified by comparing the XPS spectra of p-MWCNihsl f-MWCNTS. Figure 3hows the
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XPS spectra of p-MWCNTs and -MWCNTs samples. Tuatigct features can be identified

from the XPS spectrum of the -MWCNTSs. First is tigpearance of the ‘N 1S’ peak at 400
eV, suggesting the presence of amine groups oMINENTS’ outer surface. Secondly, the
appearance of weak ‘O 1s’ and ‘O KLL' peaks may chee to the presence of surface
adsorbed oxygen in the sample. Another interestivgprvation is that the characteristic ‘C
1S’ peak of the -MWCNTs remains at almost the s@wostion as that of the p-MWCNTS,

indicating that the MWCNTSs’ surface carbon atomsreveot damaged due to amine

functionalization and there is also no indicatidrc@valent bond formation.
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Figure 4.2  XPS spectra of (a) p-MWCNTs and (b) -MVCNTSs. The right side is the
enlarged peak position of ‘C 1S’.

4.2.3 Raman spectroscopy: Functionalization of MWCHNs

To investigate the nature of the bonding betweenHDA chains with the outer graphene
layer of the MWCNTs, Raman spectroscopy analysee wenducted on both p- and f-
MWCNTs samples, and the results are presentedguréi4.3. Both samples show the two
characteristic peaks of the MWCNTSs. The first papgears at 1350 ¢cmwhich is due to the
disordered C-atoms and is commonly known atrand. The second peak appears at 1580
cm?, which is related to thep” hybridized C-atoms of the MWCNTSs, and is knowrtreesG-
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band. It is interesting to note that there is mgnificant shift in the peak positions of both
bands in the case of the -MWCNTSs. This observaitmlicates the non-covalent adsorption
of the HDA chains on the MWCNTSs outer surface. Amotinteresting observation is that in
the case of -MWCNTS, the intensity ratio of t@eband to theD-band remains almost the
same as for the p-MWCNTSs. This indicates the adsorpf HDA chains on the MWCNTS’
outer surface without damaging the carbon atontseofraphene layer.

(a) p-MWCNTs
(b) -MWCNTs

Intensity / a.u.

(b) | I

=

(@)

Il ‘ Il Il Il Il ‘ Il Il ' Il Il ‘ Il Il Il Il ‘ Il Il Il Il ‘ Il Il Il Il ‘ Il Il
1200 1300 1400 1500 1600 1700

Wavenumber / cm™

Figure 4.3 Raman spectra of (a) p-MWCNTs and (b) MWCNTs. Excitation

wavelength was 514.5 nm.

4.2.4 Fourier-transform infrared spectroscopy: Afta composite formation

The question is how the HDA chains adsorb on the GMNVs’ outer surface without the
formation of any covalent bonds with the MWCNT seds? It has already been established
that CNTs are natural electron acceptors [8]. @natther hand, the amine group of the HDA
chain is an electron donor. Thus, the free amioeigs of the HDA chains interact with the
MWCNTSs’ surfaces and get adsorbed through the foomaf charge-transfer complexes [9].
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Figure 4.4 shows the FTIR spectra of -MWCNTs, p®eA, and the PLA/f-MWCNT
composite. The PLA spectrum shows the -C=0, GB-O-C ester group, and -CH(@H
stretching peaks at 1753, 3004 and 2942, 1184,187%6 cn, respectively [10, 11]. The
FTIR spectrum of the composite confirms the presevicthe characteristic peaks of PLA,
MWCNTSs, and HDA. On the other hand, the charadierl8-H stretching peak of HDA in
the IR spectrum of the composite (marked by anvaimothe figure) moved to a much higher
wavenumber of 3503 cicompared to the 3336 ¢hof the f-MWCNTs (marked an by
arrow in the figure). This indicates some degreetdractions between the amine groups of

HDA chains and the polyester backbone of PLA.
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Figure 4.4  FTIR of (a) pure PLA, (b) PLA/f-MWCNTs composite, and (c) f-
MWCNTSs.
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4.2.5 Raman spectroscopy: After composite formation

Further confirmation of the strong interactionswesn the -MWCNTS’ surface and the PLA

chains is revealed by the Raman spectroscopic sinalfhe Raman spectra of the f-

MWCNTs and the corresponding composite with PLA sltewn in Figure 4.5. The spectra
show shifts of both the characterisbe andG-bands of the MWCNTSs in the composite to
higher wavenumbers, which means that the systendsnesore energy to vibrate the

individual tube or each tube becomes more bulkhécomposite. The characteristic peak of
the PLA matrix (see inset iRigure 4.5) is also at a higher wavenumber. Thésermwations

suggest the formation of strong bonds between-M@ICNTs’ surfaces and the PLA chains.

I I I I I
1200 1300 1400 1500 1600 1700

Intensity / a.u.
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1200 1300 1400 1500 1600 1700
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Figure 4.5  Raman spectra of (a) -MWCNTs and (b) ta PLA/f-MWCNTs composite.
The inset is the Raman spectrum of the pure PLA maix. The excitation wavelength

was 514.5 nm.
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4.2.6 Differential scanning calorimetry

To investigate the effect of the incorporation 9IWCNTSs on the thermal properties of the
PLA matrix, DSC analyses were performed. Figure ghéws the DSC curves for the
annealed samples of neat PLA and its composite WMIWCNTs. The T of the PLA
increased from 63C for the neat PLA to 68C for the PLA in the nanocomposite with f-
MWCNTSs. Such an increase in thg Juggests the presence of strong interactions ketwe
the -MWCNTSs surfaces and the PLA chains, whichdeinthe motion of the PLA chains.
The slight increase in the melting temperaturehef PLA from 167°C for pure PLA to 168
°C for PLA in the composite suggests that the f-MWIGNad some effect on the PLA matrix
crystallinity. The melting enthalpy and degree afstallinity (x;) of the PLA matrix
increased fromA\H = 39.9 J ¢ and . = 42.9% for the pure PLA tAH = 47.9 J § and x. =
51.5% for the PLA in the composite, which is in€linvith the increase in the melting

temperaturey. was calculated according to the Equation 1.

AH sample
Xc = ———100 (1)

H 100
whereAHsampieis the heat of fusion of the sample akidipo0is the heat of fusion of 100%

crystalline PLA (93 J Q) [12,13]. The increase in crystallinity indicaté® active nucleating
role of the dispersed MWCNTSs on PLA matrix crystation.
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Figure 4.6  DSC curves of (a) pure PLA and (b) the [PA/f-MWCNT composite. Both

samples were annealed at 11 for 3h under vacuum prior to analysis.

4.2.7 Polarized optical microscopy

To check the nucleating role of the MWCNTS, theesphtic growth behaviour of the PLA
from its melt at 130C was investigated by POM for both pure PLA andrtarocomposite.
Figure 4.7 shows the POM images of pure PLA andctiraposite. The pure PLA matrix
shows a well-defined large spherulitic morpholodirg(ire 4.7(a)). This shows that at a
cooling rate of 10 °C.mih PLA crystals have enough time to grow undisturledhe
absence of -MWCNTs. However, in the presence f-M\IWE, at the same cooling rate, the
sizes of the PLA spherulites are significantly reetli and highly disordered as shown in
Figure 4.7(b). This observation indicates that sheface of the dispersed nanotubes act as

strong nucleating agents for the PLA matrix crystation. This is a very important
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observation because the crystalline phase of the ¢adin confer useful mechanical and other

physical properties.
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Figure 4.7  Polarized optical micrographs of (a) pue PLA and (b) the PLA/f-
MWCNT composite. Both samples were crystallized fnm their melts at 130°C for 30

min.

The degree of dispersion-distribution of the nahetuin the PLA matrix was analysed with
POM in the transmission mode at 190 (Figure 4.8). Most of the tubes are homogeneously

dispersed, but there is still some microscale dgpe of tube bundles in the PLA matrix.
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Figure 4.8 POM image of the PLA/f-MWCNT composite aken at 190°C in the
transmittance mode. This is the most representativémage after taking 5 pictures at

different positions in the sample.

4.2.8 Dynamic mechanical analysis

Upon the application of a harmonic strain, the dayitamechanical response reveals the
amount of energy stored as elastic energy and theuat of energy dissipated in the
composite, which are strongly dependent on thellefedispersion-distribution of the
nanotubes and their interaction with the PLA matiike temperature dependence of the
storage modulugy’) and tand of the neat PLA and the composite is shown in FEgu8. The
composite with 1.5 wt.% of -MWCNTs shows an obsdate increase in the elastic modulus

compared to that of the pure PLA, particularly Ire tglass transition and rubbery regions
(Figure 4.9a)).
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PLA and the composite: (a) storage modulus and (lian d.
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The increased modulus is accompanied by an increa3g, as is evidenced by the peak
position in the tam curve that moves to a higher temperature for tmposite (Figure

4.9b)). The increase in modulus is related to the stiotegaction between the -MWCNTS’
outer surface and the PLA matrix, which gives fisehe immobilization of the polymer
chains. This immobilization becomes prominent ie tjlass transition region when the

polymer chains start to relax.

4.2.9 Tensile properties

The strong f-MWCNTFPLA interaction also leads to an improvement ohghdion at break

of the pure PLA matrix without significant loss ofodulus. However, tensile strength at
break does not change significantly. This is anadrtgnt observation because even in the
presence of CNTSs, the original properties of PLA @t lost. The representative tensile curve

is presented in Figure 4.10. The results are suimethin Table 4.1.
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Figure 4.10 Most representative (out of five testbor each sample) room temperature
uniaxial tensile tests of neat PLA and composite sgles at a constant cross head speed

of 5 mm/min. Annealed (11C®C for 3h) injection moulded samples were used.
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Table 4.1 Various properties of neat PLA and its amposite with f-MWCNTs

Tensile properties

Samples Modulus / GPa Strength at break / MPa| Eloragion at break / %
PLA 6.1+ 0.4 61.0£ 4.1 1.5+04

Composite] 4.7+0.5 61.6+ 4.6 2.7+0.1

®Five measurements were carried out for each speciamel the results were averaged to
obtain a mean value. Injection moulded samg@mealed at 116 for 3h under vacuum)
were used for tensile property measureme@smpression moulded sheets (~0.6 mm,

annealed at 116C for 3h under vacuujmwere used for conductivity measurements.

4.2.10 Direct current measurements

The incorporation of -MWCNTSs in PLA did not seem have an influence on the dc
electrical conductivity of the sample. The dc dieal conductivity measurements (average of
5 measurements) were recorded as £3018) x 10* for PLA, and (9.7 0.7) x 10* S.cm for
the composite. This suggests that the alkyl chafndDA covered most of the nanotubes’
outer surface and blocked the active flow of elatdrbetween the matrix and filler. It can
also be that the concentration of -MWCNT was tow Ifor the formation of percolation
paths.

4.3 Conclusions

In summary, in this chapter we described a newrenveél MWCNTSs-reinforced approach for
biodegradable/biocompatible PLA that results inocacurrent improvement in the inherent
properties of PLA such as glass transition tempeeatcrystallization kinetics, dynamic
mechanical properties, strength, and elongatidredk. The results show that the concurrent
improvement in PLA properties after composite fatiora with -MWCNTSs is due to the

strong interfacial interaction between the nanastubater surface and the PLA chains.
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Chapter 5

The effect of surface functionalized carbon nanotués on the morphology,
as well as thermal, thermomechanical, and crystaltation properties of

polylactide

51 Introduction

Over the last few years, a significant amount ofkMeas been done on the preparation and
characterization of polymer nanocomposites basedanoclays such as montmorillinite,
saponite, and synthetic mica [1-7]. These fillersderately improved the mechanical and
physical properties of the neat polymer matricesnethough their amounts were small (~5
wt.%). The main reason for these improved properirethe case of the clay-containing
polymer nanocomposites is the presence of intaffaciteractions as opposed to the

conventional composites.

Currently a number of researchers are focusinghenpreparation and characterization of
functionalized carbon nanotube containing polym@natomposites [8-20]. The main
purpose is to prepare conducting composites wiblalance of mechanical properties. This
chapter summarizes various properties of a PLA «witg containing 0.5 wt.% of
functionalized multiwalled carbon nanotubes (FMWTS). The f-MWCNTs used in this
work contain +20% (determined gravimetrically) @Xadecylamine (HDA).

5.2 Results and discussion

5.2.1 Attenuated total reflectance Fourier-transfom infrared (ATR-FTIR)

spectroscopy

The functionalization of the MWCNTSs outer surfacey’ HDA was studied by ATR-FTIR
spectroscopy. Figure 5.1 shows the ATR-FTIR speuftnraeat PLA, the -MWCNTSs and the
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PLA/f-MWCNTs composite. The spectrum of the compowshows the characteristic peaks of
PLA and the -MWCNTSs. The broad peak in the speutaf the -MWCNTSs represents the
N-H stretching of HDA. This broad peak also appearthe spectrum of the composite. The
peak at 1592 cth(indicated by *) in the spectrum of the f-MWCNTpresents the primary
amine N-H deformation of HDAThis peak is also observed in the spectrum of timeposite

at 1645 crit (also indicated by *). These results confirm thesence of -MWCNTSs in the
composite. However, it is difficult to establish &ther there is a possible interfacial
interaction between the PLA and the HDA chains,abee we could not get a clear peak of

the N-H stretching in both the -MWCNTs and the garsite spectra.

" (a)PLA
e R

(b) f-MWCNTs

;(c) Nanocomposite

Transmittance / a.u.

]

4000 3600 3200 2800 2400 2000 1600 1200 800
Wavenumber / cm ™

Figure 5.1 FT-IR spectra of pure PLA, f-MWCNTSs, andthe nanocomposite.

5.2.2 Raman spectroscopy

Raman spectroscopy was used to verify the presehqaossible interfacial interactions
between -MWCNTSs and the matrix of PLA. Figure Sl#®ws the Raman spectra of the f-
MWCNTs and the corresponding nanocomposite of At.8an be seen from the spectra that

there is a small shift in the characteriddidand and a quite significant shift in t@eband of
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the -MWCNTSs to higher wavenumbers in the casehefrtanocomposite. This indicates the
presence of interfacial interactions between thé lEhains and the f-MWCNTSs surfaces. It
can also be seen that the characteristic peakeoPttA matrix (appearing at 1450 ¢nfor
neat PLA, refer to Chapter 4) moves toward highewavenumber of 1453 ch This
observation further confirms the presence of someractions between the PLA matrix and
the -MWCNT surfaces.

L \ \ ]
- —e— fMWCNTSs 7
40 == Nanocomposite 7
30
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2 20
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Figure 5.2  Raman spectra of PLA and its nanocompdsi.

5.2.3 Scanning electron microscopy

The dispersion of the -MWCNTSs in the PLA matrix svetudied using a scanning electron
microscope (SEM) operated at an accelerated volbadekV. Figure 5.3(a) represents the
SEM image of the freeze fractured surface of theds/RMWCNT nanocomposite. The

polymer matrix surface with some white spots isadieseen. Two areas, with and without

84



white spots, were selected and magnified. Theysamvn in Figure 5.3(b & c). In these
pictures a fairly good dispersion of CNTs can benséut the white spots are clearly the
result of agglomeration of f-MWCNTs in the PLA miatrat a micron scale level.
Agglomeration of MWCNTSs in the PLA matrix suggestat part of the surface area of CNTs
could not be accessed during functionalization I3AHThis is due to the intrinsic van der
Waals forces keeping the MWCNTSs together as bunélased on these observations, it can
be concluded that the homogenous dispersion of-M&/CNTSs is the result of improved
interaction between the PLA matrix and the HDA aaon the surface of the MWCNTS, as

established in Raman results.

Figure 5.3  Scanning electron microscopy images of manocomposite containing 0.5
wt.% f-MWCNTSs with two selected spots at differentmagnifications.

5.2.4 Polarized optical microscopy

To further verify the good dispersion of the -MWT#& in the PLA matrix, the composite
was investigated through an optical microscopyS&t AC where PLA was in the molten state.
These results are presented in Figure 5.4. The sjauks represent agglomerates of CNTSs.
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This image clearly shows that there is indeed hamogs dispersion of -MWCNTs with few
agglomerates at micron scale, as shown by thegtats. Again, this results support the SEM

results.

Figure 5.4  Optical microscopic image of the PLA/f-MVCNTs nanocomposite taken
at 190 °C in the transmittance mode. This is the presentative image of images taken

from five different positions.

5.2.5 The effect of cooling rate on the non-isotheral crystallization behaviour of PLA

To study the influence of cooling rates on the msmihermal crystallization behaviour of
PLA, the samples were heated to 19D at a heating rate of 20C.min’, kept at this
temperature for 5 min, and then cooled down to°@@t different cooling rates. The cooling
curves of pure PLA and its composite during nortkisomal crystallization from their melts
at five different cooling rates are shown in FigGr®. In the case of neat PLA, a broad peak is
observed when the sample was cooled from the ntedt mate of 0.5 °C.mih With an
increase in cooling rate to°C.min*, a peak with a shoulder peak appears and shiftartts

lower temperatures. The peak shoulders indicatendrnuous change of enthalpy. It is clear
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that at cooling rates higher than 5 °C.tiit is very difficult for the PLA matrix to fully
crystallize and the polymer stays in a super-coaliede. The crystallization peak shifts to
lower temperatures as the cooling rate is increasea natural observation, because it is
difficult for the polymer chains to crystallize fster cooling rates. A small crystallization
peak appears at 126 °C for the composite whenabléng rate from the melt is 0.5 °C.rifin

It is further observed that this peak does notrbleshow the double thermal event that was
observed in the case of the neat PLA. This pealt slfsfts to lower temperatures as the
cooling rate increases to 1 °C.MirA further increase in the cooling rates to 5 %@-halso
shows the presence of a double peak as in theofd3eA. The crystallization peaks for the
nanocomposite, for all the investigated coolingesatare more intense and better resolved
than those for neat PLA. What is more interestsghat even at a faster cooling rate of 10
°C.min*, the nanocomposite is still able to crystallizasBd on the observations above, it can
be concluded that -MWCNTs act as nucleating agémtshe crystallization of the PLA

matrix.

To confirm the nucleating effect of the -MWCNTSsrohg non-isothermal crystallization, the
samples were investigated through POM. For the R@dAsurements, a cooling rate of 10
°C.min* was selected because during injection mouldingcti@ing rates are usually very
fast. The POM images of the PLA and its nanocontepsaken at 130 °C during isothermal
crystallization from their melt, are shown in Figus.6. The images show large spherulites
for the neat PLA sample, but much smaller and nuawesely packed crystallites for the
nanocomposite. This observation indicates that #HWCNT nanoparticles formed

nucleating sites for the formation of small sphiéeslin the nanocomposite.
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Figure 5.5  DSC heating curve of PLA and its nanocoposite after non-isothermal

crystallization at different cooling rates.
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Figure 5.6  Polarized optical micrographs of (a) negaPLA and (b) the PLA/f-
MWCNT nanocomposite. Both samples were crystallizedt 130°C from their melts.

5.2.6 Effect of cooling rates on melting behaviousf PLA

In order to study the effect of cooling rates ore timelting behaviour, PLA and its
nanocomposite were heated from -20 to 190 °C atCfnin* as soon as the cooling was
finished. These heating curves are presented uwr&ig.7, and the DSC data are summarized
in Table 5.1. It can be seen that PLA only showd coystallization peaks and two melting
peaks when the cooling rates were 5 and 10 °C'niline composite also shows cold
crystallization peaks at the same cooling rates,simgle melting peaks. This observation
indicates that the crystallization of PLA chainsswet completed during cooling at the faster
cooling rates, and the crystallization process iooletd during heating. The double melting
peaks indicate the presence of different typesydtals with different stabilities. Nawt al.
[20] also suggested that the double melting pe&ld.8 may be due to the presence of less
perfect crystals having enough time to melt andrag@e into crystals with higher structural
perfection, which re-melted at higher temperatutagsng heating in the DSC. However,
when the cooling rates were 0.5, 1, and 2 °C'mi cold crystallization peak was observed
for both PLA and its nanocomposite. This indicdtes the crystallization of PLA chains was
completed at slower cooling rates during the nahisrmal cooling process. Single melting

peaks were observed when the cooling rate was@.uBifi* for both samples. In brief, the
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nanocomposite shows two distinct melting peaks wihencooling rate was 2 °C.minin
comparison to the neat polymer. This is an indicathat the nucleation effect of -MWCNTs

in the polymer matrix assisted in the formationmadre perfect crystals.

By integrating the area under the endothermic regiothe DSC curves, and by subtracting
the extra heat absorbed by the crystallites formiedng cold crystallization, the melting
enthalpy AH;) of all the samples was calculated, and at theestime the degree of
crystallinity () was estimated by considering the melting enthalp$00% crystalline PLA
as 93 J.g [21]. They. data in Table 5.1 show that the overall crystailiof PLA was
reduced when 0.5 wt.% f-MWCNTSs was added. A deeréa®verall crystallinity may be as
a result of two factors: MWCNT agglomerates actagyactive nucleation sites and at the
same time, the non-agglomerated sites inhibitindpitity of the polymer chains. Because of
the well-dispersed -MWCNTSs crystal growth was ited, thus leading to a decrease of

crystallinity.

Table 5.1 Cooling rate dependence of the melting #ralpy from two melting peaks of
the PLA and the composite

Sample  Cooling rate Melting enttipy / J g*° % crystallinity’

PLA 0.5 53.0 57.0
1 44.4 47.8
2 41.1 44,2
5 37.6 40.4
10 37.6 40.4

Nanocomposite 0.5 48.0 51.6
1 40.1 43.1
2 39.1 42.0
5 38.8 41.7
10 33.9 36.5

% The total melting enthalpy of PLA evaluated byemnmation of the area under the
endothermic peaks from the heating scans afterigmthermal crystallization.
b Calculated using the melting enthalpy of 100% tjise PLA, 93 J g [21].
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Figure 5.7  DSC heating curves of PLA and the nanoagposite after non-isothermal

crystallization at five different cooling rates.
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5.2.7 Temperature modulated DSC

To separate the heat capacity and kinetically edlatomponents during cold crystallization
and subsequent melting of neat PLA and its nanoositgy TMDSC of melt quenched
samples were done. TMDSC allows us to see whethereacrystallization process occurs as
soon as PLA begins to melt. This has been usedmndirm the presence of melting, re-
crystallization, and re-melting processes. Figuillustrates the TMDSC curves of (a) neat
PLA and (b) its nanocomposite during the secondifgal he samples were first equilibrated
at -20 °C for 30 min., and then heated to 190 °C at a cit® °C.min', kept at that
temperature for 5 min. to destroy any previousrti@rhistory, and cooled to -2C at a rate
of 2 °C.min*. TMDSC was started as soon as the cooling washfiul.For both samples the
total heat flow (middle curve) is separated intolvaefined reversible heat flow (bottom
curve) and non-reversible heat flow (top curve)r Reat PLA, the following behaviour is
observed: two melting signals on the reversiblet liav curve are accompanied by the
subsequent re-crystallization on the non-reverdigat flow curve, with the total heat flow
curve showing only the melting peaks. This obs@ématay be due to the partial melting and
perfection of different crystals at temperaturesfol®e their final melting. For the
nanocomposite, two melting peaks are observedlfthexheat flow curves with no apparent
re-crystallization. What is more notable is tha ttvo melting peaks of the nanocomposite on
the reversible heat flow curve are now distinctcomparison with the peaks for the neat
polymer. This indicates the presence of differesrinis of crystals with different thermal
stabilities. Another interesting feature is that DSIC enabled us to see partial re-

crystallization occurring in the neat polymer, whis absent in the composite.

To estimate the percent crystallinity:)( of the samples, we took the enthalpy of melting
(AH;) from the reversible heat flow curve, divided thiglue by the enthalpy of a 100%
crystalline polymer AH; for 100 % crystalline PLA is 93 J'g[21]), and multiplied the
answer by 100%. The data is reported in TableT2se values indicate that the crystallinity
of the PLA matrix decreased in the presence of-i8VCNTSs.
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Table 5.2 TMDSC data for PLA and its nanocomposite.

Sample Total Reversible Non-reversible Xc
Tmi Tm2 AHf | Tg  Tm1 Tm2 AHs AH: AH; Tq %
°C °C Jg|°c °c °oC Jyl Jgt agt e°c
PLA 169.9 - 43.54 62.2 164.2 169.8 30.1 8.9 26.7 169.9 19.10
Compositel 165.3 171.2 44.94 62.0 165.3 171.2 26.9 1.7 24.3 1710 243

5.2.8 Wide angle X-ray scattering

To study the presence of different PLA crystals #melr modification, WAXS of the neat
PLA and nanocomposite samples were performed. Tdasurements were taken from room
temperature to the melting temperature, and thek tmaroom temperature. The samples were
kept at each temperature for 5 minutes, includimgiriute exposure to the X-rays. Figure 5.9
shows the one-dimensional WAXS patterns of PLA #rel nanocomposite obtained under
these conditions. Overall, there is no sign of thedification of existing crystals or the
formation of new crystals. The notable observat®mwhen both samples were cooled from
their melts. It is clear that it is very difficuior PLA to crystallize during cooling. However,
crystals are formed in the presence of -MWCNTslamwvn by the fully resolved peaks in the
spectra of the nanocomposite. Again, this supgbesiucleation effect of -MWCNTSs in the
polymer matrix. However, a very small peak is ofaedron the spectra of both samples at

around ® = 22.5°. This observation suggests the growtmoflzer type of crystal.
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5.2.9 Thermogravimetric analysis

This section discusses the thermal stabilitieseatt iPLA and the nanocomposite in a thermo-
oxidative environment. The TGA and the first dTGAInes of neat PLA and the
nanocomposite obtained under oxygen flow are ptedem Figure 5.10. The dTGA are
presented because they more clearly show the eliféer in thermal stabilities between the
samples. Both samples show a one-step decomposiliba thermal stability of the
nanocomposite is higher than that of the neat PlltAs improvement can be attributed to the
fairly homogenous dispersion of the -MWCNTSs. Therinal stability of the nanocomposite
may also be due to the higher thermal stabilitthefCNTs in comparison to that of PLAhe
dTGA peak of the nanocomposite shifts to a highargerature compared to that of the neat
PLA sample. This is also an indication of the imment in thermal stability of PLA in the
presence of the -MWCNTSs.
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Figure 5.10 TGA and derivative TGA curves of PLA aml the nanocomposite under

oxygen flow at a heating rate of 10 °C min.
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5.2.10 Dynamic mechanical analysis

DMA generally reveals the amount of energy storethe nanocomposite as elastic energy,
and the amount of energy dissipated during mechhsicain, which strongly depends on the
geometrical characteristics and the level of disiper of the filler in the matrix. It also
depends on the degree of interaction between thexnaad the filler [22]. Figure 5.11 (a and
b) represents the storage modulus (G’) and the ghanfactor (tard) curves for PLA and the
nanocomposite, respectively. The damping factorviges information on the relative
contributions of the viscous and elastic componehtfe viscoelastic material. Figure 5.11a
shows three phenomena: (1) from 0-50 #&re is an increase in modulus. This is because
both samples are stiff because there is not yehchability, but the nanocomposite is stiffer
due to the presence stiff -MWCNTSs; (2) from 504D there is a sudden drop of modulus
because the chains of the surfactant (HDA) exhibitglasticizing effect on the polymer
matrix just below and above the glass transitionperature; (3) from 80-16%C, there is a
slight improvement of modulus because the presefdairly homogenously dispersed f-
MWCNTSs inhibits the PLA chain mobility. Figure 54 Iclearly indicates that there is a
decrease in the glass transition temperature frébiio 71 °C. This supports the observation of
a plasticizing effect of the HDA chains in the Pb#atrix. From these observations it may be
concluded that the fairly homogenously dispers®W-CNTs in the PLA matrix improved
the storage modulus below and above the glassitttangemperature. Also, the -MWCNTs

acted as a plasticizer of the PLA matrix at arothedglass transition temperature.
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53 Conclusions

This chapter discussed the morphology, thermal,taeadnomechanical properties of a PLA
nanocomposite containing 0.5 wt.% of f-MWCNTs (wdah amine content of 20 %]Jhe
SEM and POM (of the samples in the molten statsult® confirm the homogenous
dispersion of -MWCNTs in the PLA matrix, with sommicro-agglomeration. The POM
results also show the formation of much smaller Paristallites in the presence of f-
MWCNTs. The -MWCNTs were found to play a nucleatimle in the crystallization of
PLA, as observed from the DSC, SEM, and WAXS resdlhe DMA and TGA results show
that the presence of -MWCNTs had only a slightiuefce on the thermomechanical
properties and thermal stability of the PLA. FTIRdaRaman spectroscopy confirmed the
functionalization of the MWCNTS, and the present&oial interaction between f-MWCNTSs
and the PLA matrix.
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Chapter 6

Unusual crystallization behaviour of carbon nanotules-containing

biodegradable polylactide composite

6.1 Introduction

In recent years, various types of nano-fillers haeen used as reinforcement materials for
polymer matrices [1-12]. Among these nano-fillecarbon nanotubes (CNTs) have been
receiving special attention because of their extliaary high modulus and strength, their
excellent electrical conductivity along with th@mportant thermal conductivity and stability

and finally, their very low density [13-15]. The rhogeneous dispersion of CNTs in a
polymer matrix can lead to a moderate improvemetiué electrical properties with a balance

of mechanical properties.

The incorporation of CNTs can also affect the altation kinetics, spherulite growth and
morphology, and the degree of crystallinity of angeystalline polymer matrix [1:620]. In
general, it has been found that the incorporatfo@NdTs, which act as nucleation sites, tends
to increase the rate of crystallization of the m&g1]. In most reported studies it was found
that the dispersed CNTs are strongly agglomerateldnance crystallization of the polymer
chains occurs in a bulk and not in confined spatesthis chapter, we found that the
crystallization behaviour of a semicrystalline pubr such as PLA is completely changed
when CNTs are homogeneously dispersed in the mafhis chapter summarizes various
properties of a PLA composite containing 1.5 wt.%f-0MWCNTs prepared through a
solution casting method. The -MWCNTs used in tiierk contain +10% (determined
gravimetrically) of HDA.

6.2 Results and discussion

POM was used to check the spherulitic growth behavof the PLA matrix before and after
composite formation. Figure 6.1 shows the crystalgh behaviour of neat PLA and the
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composite at 130C from their melts. It can be seen from the POMdgesathat it is very
difficult for PLA crystals to grow fast in the peasce of -CNTs. This result implies that the
nucleating role of f-CNTs in the crystallization tife PLA matrix is almost non-existent.
Such an observation is completely contrary to whiat observed when the PLA/f-CNT
composite was prepared by a melt-mixing techni@ilepter 4), and also quitmcommon to
the general understanding of the role of Cdwsards semicrystalline polymer crystallization
[21]. We believe this observation is the resuladfuperstructure templating effect associated
with the non-agglomerated (nano-levdispersion of the CNTs in the PLA matrix that, in

turn, retards the PLA crystals to grow fast.

Figure 6.1  Polarized optical micrographs of (a) negaPLA and (b) the PLA/f-

MW CNT composite. Both samples were crystallized at 03C from their melts.

To understand the effect of -MWCNTSs incorporatmmthe crystallization behaviour of the
PLA matrix, DSC experiments of neat PLA and the HLBNTs composite samples were
carried out. The crystallization exotherms of nebA and its f-CNTs-containing composite
during non-isothermal crystallization from their ltseat a cooling rate of 16C.min' are
shown in Figure 6.2(a). Both samples show two exwotis — the first one is prominent (from
the low temperature side) and the other one is sergll. This indicates the growth of two
different crystal fractions during cooling. On tbther hand, in the case of the composite,
both exotherms appear at much lower temperatusssttiose of neat PLA. This result again
supports the inactive nucleation role of -CNTsRA crystallization.
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Figure 6.2 DSC curves of neat PLA and the PLA/f-CNTcomposite: (a) during

cooling from the melt and (b) during heating as saoas the cooling was finished.

To study the influence of nonisothermal crystati@ma on the melting behaviour of the
matrix, both neat PLA and the composite samplegWeated at a rate of 2G.min* directly
from -20°C as soon as the cooling was finished. Figure b 2f{bws the DSC curves of neat
PLA and the composite during heating after nonkisonhal crystallization, and the following
main features are observed from these curves:

(i) For both samples, a sharp crystallization egothappears. Only one prominent exotherm
indicates that for both samples the cold crystafion process takes place from a single
homogeneous phase. However, the cold crystallizgigak of neat PLA (122.%C) appears

at a much higher temperature than that of the RICANfs composite (108.2C). This
indicates that the crystallization process is modre complete in the case of neat PLA than
for the composite, or we can say that the neat RLi a much more stable state than the
composite. Therefore, it is expected that the camneawill go through the relaxation and
crystal growth process much faster than the ne#®, Rince each system tries to attain a
thermodynamically stable state. For this reasoa,dbmposite shows a cold crystallization
peak at a much lower temperature than the neatriathix. It can also be seen from the DSC
curves that the cold crystallization peak is mosdladefined in the case of the composite than
in the case of neat PLA. This suggests the formadfanore perfect crystals in the case of the

composite during heating.
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(i) The melting peak of the composite (168®) is at a slightly higher temperature than that
of neat PLA (165.8C). This may be the result of the formation of muhre stable and

perfect PLA crystals in the case of the composite.

Dynamic mechanical analysis in the tension-torsimode has been used to examine the
temperature dependence of t#Heof PLA upon composite formation with f-CNTs, whiahe
strongly dependent on the level of dispersion-iistron of the nanotubes and their
interaction with the PLA matrix. The temperatur@eedence oE' andtan dof the neat PLA
and the composite is presented in Figure 6.3. Fh Isamples, in théan J curves, a
prominent relaxation appears at around 28.4as marked by the dotted line). However, the
degree of relaxation is much higher in the casthefcomposite than in the case of the neat
PLA. Such an observation indicates that the initddixation of the polymer chains is much
faster in the composite than in neat PLA, althobgth samples were annealed under the
same conditions. This relaxation probably faciitataster crystal growth in the case of the
composite during the second heating cycle (ref&igare 6.2(b)).

On the other hand, the composite shows a subdtamti@ase in thé&' compared to that of
the neat PLA, particularly above room temperat@each an increase iB'occurs with the
modification of theTy of the neat PLA, as is evidenced by the peak ijposit thetan J curve
that moves quite significantly to higher temperasuupon f-CNTs addition. We believe that
such a relative enhancement in the modulus iseetlad the presence of the f-CNT network
structure, which eventually retards the mobilizatod the PLA chains. The immobilization of
the PLA chains becomes prominent above room terhperavhen the macromolecule chains
start to relax. For this reason, the composite shaignificant improvement in modulus close

to or above thd@jy of the matrix.
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Figure 6.3  The temperature dependence of elasticosage modulus and tand curves
of neat PLA and the PLA/f-CNTs composite. Compresen moulded, annealed (at 11

for 3h under vacuum) samples were used.

(b)

Figure 6.4  (a) Field-emission scanning electron nmascopic image of the freeze-
fractured surface of the composite and (b) brightield transmission electron

microscopic image of the composite.
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The degree of dispersion-distribution of f-CNTstlre PLA matrix was studied by FE-SEM
and TEM. Figure 6.4(a) shows the freeze-fracturgthse image of the composite. It can be
seen from the FE-SEM image that most of the tulegmraited and nicely dispersed in the
PLA matrix, and formed a network-like structure. eThright-field TEM image of the
composite further supports the conclusion made henhasis of the SEM image. Such a
network-like structure is responsible for the uralsarystal growth behaviour and increase in

mechanical properties of the composite.
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Figure 6.5  Tapping mode atomic force microscopy hght images of (a, a’) neat PLA
and (b, b’) PLA/f-CNTs composite thin films at twodifferent magnifications.

Finally, to see the effect of the incorporatiorf-@NTs on the crystallization behaviour of the
PLA matrix in a confined space, the crystal grobéhaviour of the neat PLA and the PLA/f-
CNTs composite thin films was studied by AFM. Figg.5 shows the tapping mode AFM
height images (at two different magnifications) ridat PLA and its composite thin-film
samples after being annealed at 2@0for 30 min. It is clear from the height images 49

that the crystals were not perfectly grown in tlasec of neat PLA. This may be due to the
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presence of a secondary crystallization or imping@neffect. On the other hand, the crystals
were more perfectly grown in the case of the PLAINTs composite (Figure 6.5(b, b’)). Such
an observation is the result of the presence ofdgyemeously dispersed f-CNTs in the PLA
matrix. Because of the homogeneous dispersion etubes, the crystals are tightly bound
and there is no chance of further impingement amiegnselves, which means that the
crystals grow slowly and more perfectly. This résupports the conclusions made on the
basis of the POM and DSC results.

6.3 Conclusions

In this chapter we have discussed the effect oNTF€ incorporation on the crystallization
behaviour of PLA in both bulk and confined spad@®M observations, AFM images and
DSC curves show that the incorporation of f-CNTaraed the crystallization behaviour of
PLA in a way that is quite uncommon from the gehenaderstanding of CNTs filled
semicrystalline polymer systems. This is attribui@dhe non-agglomerated dispersion of the
CNTs in the PLA matrix, which eventually formed etwork-like structured as evidenced by
SEM and TEM. This network-like structure acts a®hstacle for the mobility and flexibility
of the PLA chains to fold and join the crystallipat growth front. However, the network-like

structure increases the elastic storage modultleeatomposite.
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Chapter 7

Conclusions, publications and conference presentafis

7.1 Conclusions

The purpose of the study was to prepare polymeoc@nposites based on biodegradable
poly(L-lactide) (PLA) with -MWCNTSs. The polymer nacomposites were prepared by melt
extrusion and solvent casting methods. A new anegInBlWCNTs-reinforced approach for

biodegradable/biocompatible PLA was presented.

In the case of poly(lactide) nanocomposite contgni.5 wt.% of f-MWCNTs (with an
amine content of ~10 % content) prepared by a mdhusion method, an improvement in
the inherent properties of the PLA such as thesgteansition temperature, crystallization
kinetics, dynamic mechanical properties, strengtit, elongation at break were reported. The
results showed that these property improvements dee to the strong interfacial interaction

between the nanotubes’s outer surface and the Bhikns.

In the case of the PLA nanocomposite containingvt.80 of -MWCNTSs (with an amine
content of ~20%) prepared by melt extrusion, the rphology, thermal, and
thermomechanical properties of the PLA and its mangposite were discussed. The SEM
and POM (of the samples in the molten state) resuhfirmed the good dispersion of the f-
MWCNTSs in the PLA matrix, with some micro-agglomigoa. The POM results also show
the formation of much smaller PLA crystallites ihetpresence of -MWCNTs. The f-
MWCNTs were found to play a nucleation role in trgstallization of PLA, as observed
from the DSC, SEM, and WAXS results. However, tlerall crystallinity of the PLA was
reduced when 0.5 wt.% f-MWCNTs was added. A deea@aghe overall crystallinity was
found to be the result of two factors: -MWCNT agglerates acting as active nucleation sites
and at the same time, the non-agglomerated siteiting mobility of the polymer chains.
The DMA and TGA results showed that the presencd-MIWCNTs had only a slight
influence on the thermomechanical properties amdntal stability of the PLA. FTIR and
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Raman spectroscopy confirmed the functionalizabbthe MWCNTS, and the presence of

interfacial interaction between the f-MWCNTSs and LA matrix.

In the case of the PLA nanocomposite containing it36 f-MWCNTs (with an amine
content of ~10%) prepared through solution castimghod, the effect of the -MWCNTs
incorporation on the crystallization behaviour &fAPin both the bulk and confined spaces
was investigated. POM observations, AFM images &%®IC curves showed that the
incorporation of -MWCNTs changed the crystallipatibehaviour of the PLA in a way that
is quite uncommon from the general understandin@NT's filled semicrystalline polymer
systems. This was attributed to the non-agglomeérdispersion of the CNTs in the PLA
matrix, which eventually formed a network-like sttured as evidenced by SEM and TEM.
This network-like structure acted as an obstacitetie mobility and flexibility of the PLA
chains to fold and join the crystallization growitbnt. However, the network-like structure

was found to increase the elastic storage modudltteeccomposite.
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7.3

7.4

Future work

We intent to study crystallization kinetics andalugyical properties of the samples we
prepared. Furthermore, different functional grompk be attached to the surface of
CNTs, composites will be prepared by melt extrusiad solution casting techniques.

These will be characterized and studied in detafl®rthopaedic applications.
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