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ABSTRACT
Researchers have become increasingly interested in nanoparticles 
made from plants because of their stability and large surface area. 
In the current study, iron oxide and iron dioxide nanoparticles 
were synthesized using aerial parts of the E. tirucalli as a reducing 
agent. The nanoparticles were analyzed using various techniques, 
including Ultraviolet-visible spectroscopy, Fourier Transform Infrared 
spectroscopy, X-ray diffractometer, X-ray photoelectron spectros-
copy, X-ray energy dispersive spectroscopy, Scanning electron 
Microscopy, and Transmission Electron Microscopy. The nanoparti-
cles were then investigated for their antiproliferative effect against 
MCF-7, SK-BR-3, MDA-MB231, and Vero cell lines. The results con-
firmed the formation of FeO and FeO2 nanoparticles by color 
change and a UV absorbance peak between 220–390 nm. EDS 
analysis showed traces of Fe and O, while TEM confirmed the 
nanoparticle size of 100 nm. FTIR showed a peak at 514 nm. The 
FeO-RT NPs demonstrated over 80% antiproliferative activity 
against the MCF-7 cell line at a concentration of 10 μg/mL. while 
doxorubicin, FeO-RT NPs, and DCM extract showed similar activity 
against the MDA-MB231 cell line at 10 and 1 g/mL concentrations. 
However, Vero and SK-BR-3 cell lines showed decreased antiprolif-
erative activity. This study highlights the environmentally friendly 
use and safe application of iron oxide NPs in cancer therapy.

1.  Introduction

Cancer is a significant public health concern worldwide, ranking second only to cardio-
vascular disease as a leading cause of death [1]. Breast cancer is now the most commonly 
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diagnosed cancer worldwide, with 2.3 million new cases estimated in 2020, accounting for 
11.7% of all cancer cases [2]. Unfortunately, 684,996 people died from the disease [2]. 
The COVID-19 pandemic regulations resulted in a rise in cancer mortality and morbidity 
rates due to delayed diagnosis and treatment, ultimately impacting global health and the 
economy negatively [3].

Breast cancer is not a single disease, but rather a group of diseases with different 
characteristics and clinical features. Because of this, there is no single treatment approach 
that can be effective for all types of breast cancer [3,4]. For example, positive receptor 
cancer cell lines such as MCF-7, BT474, KLP-4, SK-BR-3, and others can be treated with 
surgery, hormonal therapy, and chemotherapy, respectively [5]. However, triple-negative 
breast cancers such as MDA-MB231, BT-459, SUM185PE, and others are difficult to treat 
because they lack all three receptors [6]. Moreover, it is important to note that the cur-
rent treatments have adverse side effects, are not selective, and have poor pharmacokinet-
ics [7–9]. Therefore, to overcome these limitations, a new therapeutic approach concerning 
cancer treatment is urgently needed.

Nanoparticles (NPs) have caught the attention of many researchers in the field of diag-
nosis and treatment due to their versatile and beneficial characteristics. They have already 
been utilized for various purposes such as tumor imaging in vivo, bio-molecular profiling 
of cancer biomarkers, and targeted drug delivery [10]. The use of green chemistry to 
synthesize NPs is an eco-friendly, economical, and sustainable solution that has gained 
attention for its potential to reduce the use of hazardous chemicals and solvents, resulting 
in lower toxicity and fewer harmful by-products [11–14]. This approach also utilizes read-
ily available natural resources, such as plant extracts or microorganisms, which reduces 
the need for expensive reagents and energy-intensive processes [15]. The versatility of this 
method enables the production of a wide range of NPs with varying properties, including 
size, shape, and surface chemistry, making it customizable for specific applications [16]. 
Furthermore, it generates lower waste by products, leading to reduced pollution [15]. It 
is also easily scalable, making it ideal for industrial applications that require large quan-
tities of NPs [17]. This method utilizes natural and renewable resources such as bacteria, 
algae, fungi, and plant extracts as substitutes for traditional physical and chemical meth-
ods to convert precursor metal salts into metal NPs [18]. When using biological agents 
like plant extracts or enzymes for green synthesis, the NPs often retain some of the bio-
active properties of the source material, which can be beneficial in applications like drug 
delivery and sensing [19]. Therefore, among all the natural sources available, plant extracts 
have received the most attention because they contain secondary metabolites that can 
effectively reduce and stabilize metal precursors during green synthesis [20]. Euphorbia 
tirucalli, belonging to the Euphorbiaceae family, originally comes from eastern tropical 
Africa but has spread to other parts of the continent, including South Africa [21]. This 
plant has shown various pharmacological activities, such as molluscicidal [22,23], antibac-
terial [24], antiherpetic [25], and anti-mutagenic properties [26]. The latex from the plant 
has also been found to have both co-carcinogenic [27] and anti-carcinogenic properties 
[28]. In the Northeast region of Brazil, locals use the latex of E. tirucalli for various 
medicinal purposes. It is believed to have antimicrobial and laxative properties, and can 
also be used to treat asthma, cough, earache, rheumatism, verrucae, cancer, chancre, epi-
thelioma, sarcoma, and skin tumors. Additionally, it is sometimes used as a folk remedy 
against syphilis [25,29].

Metal oxide NPs are known for their unique physio-chemical and optoelectronic prop-
erties, making them highly important [30–32]. Among the various metal oxides, iron 
oxide NPs have garnered significant attention due to their low toxicity, superparamagnetic 
properties, surface area and volume ratio, protein immobilization, and potential use in 
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diagnostic magnetic resonance imaging (MRI), thermal therapy, and drug delivery [33]. 
In addition, they have demonstrated effectiveness in inhibiting MCF-7 cell lines in prior 
research [34]. However, no comparative study has been conducted to assess the antipro-
liferative effects of iron oxide and iron dioxide NPs against MCF-7, SK-BR-3, and 
MDA-MB231 cell lines.

Therefore, this study aimed to synthesize metal iron oxide and iron dioxide NPs using 
the aerial plant extract of E. tirucalli as a reducing agent, characterize the NPs, and com-
pare their antiproliferative effect against three different subtypes of breast cancer cell lines. 
Our research focuses on investigating the potential anticancer properties of E. tirucalli 
against breast carcinoma.

2.  Materials and Methods

2.1.  Materials

In March 2017, the E. tirucalli plant species was commercially acquired from Gariep 
Nursery in Pretoria, South Africa (GPS coordinates 25°47′3″S, 28°18′58″E). Dr. Nolubabalo 
Matinise of iTHEMBA LABS, South Africa generously donated ferric nitrate nonahydrate 
salts. The extraction solvents, namely Hex, DCM, and methanol (MeOH), were purchased 
from Merck in South Africa. MCF-7, SK-BR-3, and MDA-MB231 cells were purchased 
from Cellonex in South Africa. Reagents including DMEM, trypan blue dye, and MTT 
salt were purchased from Sigma Aldrich in South Africa.

2.2.  Methods

2.2.1.  Plant extraction and preparation
Upon arrival at the laboratory, the aerial parts of the plant were washed with tap water 
and chopped into smaller pieces. The pieces were then air-dried and ground into a 
fine powder.

2.2.2.  Preparation of FeO and FeO2 nanoparticles
In order to synthesize NPs, the E. tirucalli finely ground powder weighing 30 g was boiled 
in distilled water at 80 °C for a duration of 2 h. Following this, the extract was divided 
into two beakers and mixed with 5 g of Ferric nitrate nonahydrate. These solutions were 
then placed on a magnetic stirrer, maintained at 60 °C for a period of 12 h, and closely 
observed for any changes in color which would indicate the formation of NPs. The result-
ing NP pellets were obtained by subjecting the solutions to centrifugation at 5000 rpm for 
20 min, after which they were washed with double distilled water to remove any excess 
plant extract. These pellets were then dried in an oven at 80 °C for 2 h. Once dried, the 
NPs were annealed at 500 °C for a duration of 2 h to eliminate impurities and were sub-
sequently stored at room temperature for characterization.

2.2.3.  Preparation of Euphorbia tirucalli aerial extracts for cell culture.  To extract 
compounds from the plant, a 10 g fine powder was sequentially extracted using various 
organic solvents (hexane, dichloromethane, methanol, and ethyl acetate) in 150 mL 
portions. The extraction process was carried out for 48 h on a shaker at room temperature. 
The resulting extracts were filtered and concentrated under reduced pressure at 45 °C 
using a rotary vacuum evaporator from Buchi labotech Switzerland. Finally, the extracts 
were dried under a fume hood and stored at 4 °C for future use.
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2.2.4.  Characterization of synthesized nanoparticles
Characterization of FeO and FeO2 NPs was conducted using the established protocol by 
Shunmugadevi and Palanisamyb [35], with slight modifications. UV spectroscopy was uti-
lized to investigate the absorption patterns, employing the Multiskan Go 1.01.10 spectro-
photometer. Fourier Transform Infrared Spectroscopy (FTIR) was used to identify the 
functional groups involved in the capping process, with the Thermo Nicolet Nexus 670 
spectrometer measuring the spectrum. The structural properties of the NPs were exam-
ined using the Bruker D8 X-ray diffractometer. The NPs’ chemical state was determined 
by using XPS with the Versa Probe XPS V1.4. The morphology and size of the particles 
were determined using SEM and TEM, respectively. The JEOL JEM 2010 UHR and 
Philips 100 transmission electron microscope were used for this purpose. Lastly, EDS was 
used to detect the nano constituents present in FeO and FeO2 NPs. The Philips 100 
transmission electron microscope was used for this process.

2.2.5.  Phytochemical screening
A phytochemical analysis was conducted on the aerial part of E. tirucalli using Yadav and 
Agarwala’s [36] protocol, with some slight modification. Various tests were carried out to 
determine the presence or absence of alkaloids, glycosides, flavonoids, phenols, saponins, 
terpenoids, and tannins.

2.2.6.  Antiproliferation screening of Euphorbia extracts
2.2.6.1.  Cell culture.  The MCF-7, SK-BR-3, and MDA-MB231 cell lines were cultured 
using Dulbecco’s modified eagle’s medium (DMEM), DMEM: HAMS F12 (1:1), and  
Mc-Coy media, respectively. Each medium was supplemented with 10% fetal bovine 
serum (FBS) and the cells were kept in an environment with 37 °C temperature and  
5% CO2 humidity in an incubator. When the cells reached 80% confluency, they were 
sub-cultured.

2.2.6.2.  Antiproliferative assay.  To facilitate easy harvesting, the cells were treated with 
Trypsin. An automated cell counter (Countess FI, life technology) was used to count the 
viable cells with trypan blue dye. 1 x 105 cells/ml were then seeded into each well of a 
96-well microtiter plate and incubated under the same conditions for 24 h. The cells were 
treated with unannealed and annealed NPs along with crude E. tirucalli at concentrations 
of 100, 10, and 1 μg/mL in triplicate for 48 h. Wells containing untreated cells were used 
as a negative control, while Doxorubicin drug was used as a positive control. Cell growth 
activity was measured using the tetrazolium dye (MTT assay) [37]. Cell viability and 
growth inhibition percentage were calculated, and graphs were plotted using Microsoft 
Excel 2008.

3.  Results and discussion

3.1.  Phytochemical analysis

In our previous research on E. tirucalli, we examined its phytochemicals and discovered 
the presence of tannins, glycosides, triterpenoids, and saponins [38]. These components 
are recognized for possessing anticancer and antioxidant properties, and also have the 
potential to reduce metal ions [39,40]. Additionally, plants that contain antioxidants typ-
ically have reducing abilities.
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3.2.  Synthesis of iron oxide and iron dioxide NPs

The aerial part of E. tirucalli was utilized as a reducing agent, leading to a noticeable shift 
in color from light brown to black upon the introduction of Ferric nitrate nonahydrate 
salt to the E. tirucalli extract, Figure 1. This indicates the stimulation of electrons and the 
formation of FeO and FeO2 NPs. The formation of these NPs was caused by plant sec-
ondary metabolites specifically polyphenols that effectively reduced metal ions and stabi-
lized the FeO NPs and FeO2 NPs. These nanoparticles have phytochemicals attached to 
their surface that possess hydrophilic hydroxyl groups. These groups enable the nanopar-
ticles to be evenly dispersed in aqueous solutions [41]. These results are consistent with 
those of katata-Seru et  al. [42], who found a comparable color alteration from reddish 
brown to black, suggesting the presence of Fe NPs.

3.3.  Characterization of synthesized NPs

3.3.1.  UV-vis spectrum of iron oxide and iron dioxide NPs
To analyze the formation of iron nanoparticles, a UV-vis spectrophotometer was utilized 
to measure the absorbance in the range of 200 – 1000 nm. The results, depicted in Figure 
2a,b, exhibit two absorption peaks between 220 – 390 nm. Figure 1a displays peaks at 220 
and 380 nm, whereas Figure 1b shows peaks at 230 and 390 nm. These absorption peaks 
are attributed to the formation of iron nanoparticles. The absorption peak at 220 nm are 
attributed to the presence of tannins and tritepenoids in E. tirucalli extract [41]. The 
220 nm and 230 nm peaks are consistent with Pattanayak and Nayak’s study [43], which 
suggests the presence of surface plasmon vibrations in metallic iron nanoparticle solu-
tions. Furthermore, the peak observed at 390 nm is in line with the findings of Kumar 
and Prem’s study [44], which identified the formation of iron oxide nanoparticles.

3.3.2.  FTIR spectrum analysis of iron oxide and iron dioxide NPs
FTIR spectroscopy was employed to investigate the functional groups within E. tirucalli 
and the synthesized iron NPs. The FTIR spectra of the iron NPs are shown on Figure 
3a,b. The figures displayed peaks in the 500 – 4000 cm-1 range, specifically at 3350 cm-1, 
1650 cm-1, 1150–1050 cm-1, 750 cm-1, and 514 cm-1. The 3350 cm-1 peak signifies the 
presence of O-H groups, potentially originating from phenols or water in the E. tirucalli 
plant [45]. At 1650 cm-1, the peak suggests hydrogen bonding between oxygen molecules 
in the iron oxide nanoparticles and hydrogen molecules in E. tirucalli, representing C = O 

Figure 1. Green synthesis of feo/feo2 nps using aerial part of E. tirucalli.
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stretching vibrations of amide-I [46,47]. The absorption peaks at 1150–1050 cm-1 are 
attributed to C-O groups, aligning with previous research confirming the formation of 
iron oxide nanoparticles [48]. The 750 cm-1 peak is due to CH groups present in aro-
matic compounds within E. tirucalli. Furthermore, the presence of a peak at 514 cm-1 
confirms the formation of both iron oxide and dioxide nanoparticles, corroborating find-
ings from earlier studies [34,47,49].

3.3.3.  XRD analysis of iron oxide and iron dioxide NPs
The XRD spectra of iron oxide and dioxide NPs synthesized using a green method are 
displayed in Figure 4a,b. The spectra showed various diffraction peaks at 2θ = 30.91°, 
35.70°, 43.14°, 57.46°, and 62.90°, which correspond to the planer reflections of (220), 
(311), (222), (400), (511), and (440) of a cubic phase for both types of NPs, respectively. 
These peaks are attributed to (00-graphitic) [50]. These reflection peaks can be indexed 
to the magnetite structure of iron oxide observed in previous studies by Kumar and Prem 
[44], Perumal et  al. [50], and Taha et  al. [51], and can further be compared with the data 
found in JCPDS card (77–1545). However, additional peaks were detected in both sam-
ples, indicating the presence of impurities.

Figure 2. ultraviolet visible spectroscopy of feo (a) and feo2 (b) from E. tirucalli.

Figure 3. ftir spectrum analysis of (a) iron oxide (feo) and (b) iron dioxide (feo2) nps reduced using E. tirucalli. 
Black line (B:feo-rt) represents nps at room temperature and red (D:feo2-500 °c)represent the annealed nps at 
500 °c.
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3.3.4.  XPS analysis of iron dioxide NPs
The XPS technique was employed to analyze the elemental composition and electron sur-
face state of various components in FeO2 NPs. Unfortunately, the analysis for FeO NP 
could not be completed as there was not enough material available. The resulting analysis, 
as shown in Figure 5a–c, revealed the presence of iron (Fe), magnesium (Mg), oxygen 
(O), carbon (C), and calcium (Ca) in FeO2 NPs, thereby providing valuable insights into 
the chemical composition of the material. These findings were further affirmed through 
EDS analysis, which corroborated the presence of these elements in FeO2 NPs. The peaks 
observed at 712.3, 710.3, and 708.5 eV were attributed to Fe 2p1, Fe 2p, and Fe p3, 
respectively, thereby providing evidence for the presence of Fe3+ octahedral species in the 
NP. These findings are consistent with previous studies [52] and highlight the importance 
of Fe3+ in the electronic properties of FeO2 NPs. Moreover, the peaks observed at 
530.5 eV and 532 eV were attributed to O 1s in the NPs and the presence of hydroxyl 
groups [53,54], respectively. Additionally, the peak observed at 529.2 eV indicated the 
presence of O on the surface of E. tirucalli FeO2 NP, associated with O–H, O–C, and 
O = C compounds [55]. These findings suggest that the electronic properties of FeO2 NPs 
are heavily influenced by the presence of O on the surface of the plant. Overall, the 

Figure 4. x-ray diffraction analysis of reduced feo (a) and feo2 (b) nps from E. tirucalli aerial parts after annealing.

Figure 5. xps analysis of feo2 nps: high resolution feo2 scan (a); feo2-2p1 scan (b), feo2-o1s scan (c).
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valence states of Fe and O in FeO2 NPs were found to be +3 and −2, respectively, as 
observed in the attributes of Fe 2p and O 1s core levels. These results provide valuable 
insights into the electronic properties of FeO2 NPs and highlight the importance of 
understanding the elemental composition and electron surface state of materials in the 
field of nanotechnology.

3.3.5.  SEM analysis of iron oxide and iron dioxide NPs
The morphology and size of iron oxide and dioxide NPs were examined using a SEM. 
The nanoparticles were found to measure 100 nm in size, as illustrated in Figure 6a,b. 
Figure 6a depicts the iron oxide nanoparticles in a mesoporous and matrix-like arrange-
ment, with a flat plate shape that can bend into a rod shape. In contrast, Figure 6b shows 
a different morphology compared to the iron oxide nanoparticles. Iron dioxide nanopar-
ticles are formed in a spherical shape with a few cubic shapes and a clustered pattern. 
They may have clumped together due to the consistency of the solution and the drying 
method used [56]. The variation in morphology between the two iron nanoparticles could 
be attributed to the reducing power of phytochemicals, pH levels, or other factors that 
can affect their formation [57].

Figure 6. sEm imaging of (a) feo and (b) feo2 observed at 100 nm.

Figure 7. tEm imaging (a) and EDs analysis of feo nps synthesized using aerial parts of E. tirucalli (b).
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3.3.6.  TEM and EDS analysis
The TEM images in Figures 7a and 8a showcase the iron NPs that were synthesized, 
revealing hexagonal agglomerated NPs with a size of 100 nm. EDS profiling of all nano-
composites obtained after calcination indicated peaks, with a high characteristic peak of 
oxygen followed by carbon, iron, calcium, chloride, magnesium, potassium, sodium, sul-
phur and phosphorus present for both NPs in Figures 7b and 8b. Notably, sodium was 
not detected in the iron dioxide NP (Figure 8b). The presence of iron and oxygen con-
firmed the formation of iron oxide and dioxide NPs. The high oxygen and carbon peaks 
detected in both NPs suggest that polyphenols were involved in the synthesis of iron 
nanoparticles [58]. Furthermore, the oxygen and carbon peaks may represent the poly-
phenol present in the plant [59]. Additional weak composite peaks observed of calcium, 
sodium, and magnesium may arise from the glass that holds the sample during synthesis 
[52]. The phosphorus, potassium, sulphur, and chloride peaks observed were due to 
improper washing of the sample [60].

The composition of the iron oxide NPs was 53.4% of iron, 22.1% of carbon, 17.0% of 
oxygen, and all other composites were less than 5% (Figure 7b). On the other hand, the 
iron dioxide NPs were composed of 40.4% of iron, 28.0% of oxygen, 17.7% of carbon, 
7.2% of calcium, and all other composites were less than 5% (Figure 8b). The difference 
in oxygen percentages between the iron oxide and iron dioxide NPs can be attributed to 
their formation process. They are both formed from Ferric nitrate nonahydrate precursor 
salt when iron reacts with oxygen from the plant extract’s metabolic constituents. 
Sometimes, when the oxygen from the water or air binds to iron, it increases the number 
of oxygen molecules within the compound, differentiating between the two oxides. The 
presence of oxygen and carbon is crucial as they stabilize and reduce the two metal 
oxides [61]. Although there were impurities present in the samples, they were in low 
concentrations, as shown in the results.

3.3.7.  MTT assay
Breast cancer is characterized by the protein expression of estrogen receptor (ER), pro-
gesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2). Because 
of these characteristics, it is necessary to compare the effects of the potential antiprolifer-
ation drugs or drug carriers in different breast cancer cells with clinically approved cancer 
drugs in order to assess the efficacy or potential benefits within new application techniques.

Figure 8. tEm imaging (a) and EDs analysis of feo2 nps synthesized using aerial parts of E. tirucalli (b).
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Antiproliferative effect of the crude extracts, annealed and unannealed Iron Oxide and 
Iron dioxide NPs against MCF-7, SKBR-3, MDA-MB231 and Vero cell lines was tested 
across concentrations of 1, 10, and 100 μg/mL in triplicates, and doxorubicin served as a 
standard drug. The level of toxicity exhibited by the treatment was observed to be 
concentration-dependent, with the most substantial toxicity observed at the highest con-
centration, Figure 9a–d.

The extracts from E. tirucalli, specifically Hex and DCM, displayed moderate antipro-
liferative effects against MCF-7 and MDA-MB231 cells. At concentrations of 100 and 
10 μg/mL, these extracts inhibited cell growth by over 50% and 40%, respectively. However, 
the same extracts showed weak activity against SK-BR-3 and Vero cells, with cell growth 
inhibition rates of less than 40%. This suggests that SK-BR-3 is less susceptible to the 
extracts than MCF-7 and MDA-MB231. Previous research has also shown that stevioside 
and other compounds have higher cytotoxicity against MDA-MB231 and MCF-7 cell lines 
compared to SK-BR-3 cell line [62,63]. This anticancer activity could be due to estrogen 
and progesterone receptors as both cell lines are HER2 negative [62]. Additionally, 
Fe3O4NPs were reported to inhibit the growth of lung cancer cells Habibi et  al. [64]. 
Moreover, Rajendran et  al. [65] have demonstrated a considerable level of Fe2O3NPs cyto-
toxicity against various cancer cells, especially at lower concentrations, in comparison to 
normal cells. In a study conducted by Al-Shalabi et  al. [66], it was found that IONPs were 
highly effective in inhibiting the growth of the MDA-MB231 cell line. The IC50 value was 
measured at 0.3817 μg/mL, indicating a strong inhibitory effect. According to a research 
conducted by Pillai and colleagues [67], IONPs have been found to possess remarkable 
cytotoxicity against DLD-1 cancer cells. Interestingly, these nanoparticles have been 

Figure 9. cell growth inhibition % of four Euphorbia crude extracts, feo-rt, feo-500, feo2-rt and feo2-500 nps 
against mcf-7 (a), sK-Br-3 (B), mDa-mB231 (c) and Vero (D). E. tirucalli hexane (ETRC Hex) extract, E. tirucalli 
Dichloromethane (ETRC Dcm), E. tirucalli Dichloromethane: methanol (ETRC Dcm: meoH), E. tirucalli methanol (ETRC 
meoH), iron oxide unannealed nps (feo-rt), iron oxide annealed nps (feo-500), iron dioxide unannealed nps 
(feo2-rt) and iron dioxide annealed nps (feo2-500). Doxorubicin (standard drug).
*feo2-500 nps was not tested on Vero cell line.
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demonstrated to have minimal or no adverse effects on normal cells, thus making them 
a potentially efficient option for treating cancer. This finding suggests that IONPs may 
have potential as a therapeutic agent for breast cancer treatment.

Moreover, the synthesized unannealed FeO-RT NPs showed potent activity against 
MCF-7 cells with over 80% inhibitory activity at concentrations of 100 and 10 μg/mL, 
which could be attributed to impurities and compounds present in the plant before cal-
cination. After calcination, the antiproliferative activity decreased, indicating the degrada-
tion of phytochemicals due to increased temperature. Additionally, the annealed and 
unannealed FeO NPs showed higher inhibitory activity against MCF-7 than the Hex and 
DCM extracts, and about the same as the standard drug. Contrary, studies by Hernandes 
et  al. [68] reported a 20% decrease in cell viability when MCF-7 and HeLa cells were 
treated with mesoporous silica NPs. Moreover, other studies revealed that MCF-7 cells 
treated with pure/uncoated iron oxide NPs had high cell viability [69].

The FeO NPs and doxorubicin standard drug showed almost the same activity at 10 
and 1 μg/mL concentrations against MDA-MB231, indicating moderate activity against the 
cell line. This activity shows the potential of FeO as a promising antiproliferative agent. 
The FeO2 NPs showed decreased cell growth inhibition activity compared to the FeO 
NPs, which could be attributed to the chemicals and bonding abilities of FeO2 and FeO.

4.  Conclusion

Iron oxide and iron dioxide NPs were successfully synthesized using the aerial parts of 
Euphorbia tirucalli. The synthesized FeO-RT NPs together with the Hex and DCM extracts 
showed increased antiproliferative activity against MCF-7 and MDA-231 breast cancers 
compared to SK-BR-3 and Vero cells. The results show that the triple-negative breast 
cancer is not restricted to the receptor binding mode of action. The decreased antiprolif-
erative activity against SK-BR-3 cells should be investigated further to determine the 
mechanism of action of the NPs and extracts. Further cytotoxic analysis should be con-
ducted to determine the selectivity of the NPs and extracts. In conclusion, this study 
confirmed that the green-synthesized FeO NPs could be a potential antiproliferative drug 
because of the safety it displayed with the Vero cells.
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