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Summary 

A need to nurture learners so that they are ready for the demands of the future suggests 

the need for a re-evaluation of traditional teaching approaches that tend to be teacher-

centred and promote rote learning and routine drill procedures. In contrast, learner-centred 

problem-based teaching approaches are aimed at enabling learners to think critically, 

regulate their own learning, shift the boundaries of their own capabilities and be more 

receptive to meaningful and long-lasting learning. However, skilful guidance and scaffolding 

from the teacher is a key determining factor for the success of such an approach. It is, 

therefore, unsurprising that, in South African schools, particularly in the townships, where 

teachers’ mathematics pedagogical and content knowledge is known to be low, problem-

based teaching is rarely practiced. Further, the cognitively taxing and time-consuming 

problem-based teaching approach seems incompatible with training for high-stakes 

examinations, which is prevalent in this context. Little is known about the way learners in 

this context respond to problem-based extension programmes.  

To contribute to filling this gap in the literature, I conducted this research using a case study 

design informed by the pragmatic paradigm and the framework for integrated 

methodology. A mixed methods research design comprising qualitative and quantitative 

data and using inductive analysis to produce rich, detailed accounts of learners’ responses, 

was used. This was done to investigate how 27 Grades 8 and 9 learners responded 

cognitively and affectively to a problem-based mathematics extension programme that 

lasted two hours a day for five days. The learners were selected by applying non-probability 

purposive sampling. Triangulation and peer examination were used to strengthen validity 

and reliability. Data analysis was inductive, iterative and pragmatic, and guided by the 

research questions. Content analysis was performed using existing codes from Carlson and 

Bloom's (2005) multidimensional problem-solving framework to code the various data 

sources using NVivo software. This was followed by thematic analysis, in which themes were 

derived inductively from the coded data in answer to the research questions. This was done 

in the form of five assertions.  

I assert that the learners employed resources, many of which were incorrect, and displayed 

a diverse repertoire of heuristics, but generally needed to be prompted. Furthermore, 
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across the intervention period, the learners responded to the teacher’s modelling of 

monitoring by increasingly posing Why and How questions but appeared unable to apply 

these questions to direct engagement in iterative problem-solving. Additionally, the learners 

engaged in the first three phases of the problem-solving process, but showed no 

engagement in the checking phase, nor were mathematical intimacy and integrity evident, 

although strong affective responses throughout the programme were visible.  

This study is not representative of Grades 8 and 9 South African learners at township 

schools; therefore, subsequent studies are needed to explore the extent to which the study 

could be generalisable to the broader population and more typical contexts. The significance 

of this study is that it demonstrates that it is possible to conduct problem-based extension 

programmes effectively to engage at least a sub-population of South African township 

learners both cognitively and affectively. A rich description of this programme is provided to 

serve as a model for the creation of similar programmes. 

 

Key terms: problem-based teaching, mathematics education, multidimensional problem-

solving framework, township education 
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 BACKGROUND AND RATIONALE 

“Education is what remains 

after one has forgotten what 

one has learned in school” 

Albert Einstein 

1.1 INTRODUCTION 

My view on teaching resonates with that of Hobden (2005, p. 308), who maintains that 

“there is a need to change what is taught and learnt, and how it is taught and learnt”. 

Traditional approaches rarely lead to mastery of a topic or skill (Savery, 2006), therefore, to 

change and improve on traditional teaching and learning approaches, it is necessary to 

encourage relevant, meaningful, and long-lasting learning (Orton & Frobisher, 1996; Ridlon, 

2009; Savery, 2006). Research shows that learner-centred approaches, as opposed to 

teacher-centred approaches, like problem-based learning (PBL), are more effective in 

promoting meaningful learning (Boaler, 2013; Voskoglou, 2008; Walker, Leary, Hmelo-Silver, 

& Ertmer, 2015). Furthermore, meaningful learning incorporates everyday experiences, 

which add value to what is learnt (Hobden, 2000), and nurture skills required to make a 

meaningful contribution to preparing learners for the modern world (Brown-Martin, 2017).  

South Africa’s democratic government is committed to ensuring that all children are 

provided with basic education, to meet the Millennium Development Goals (United Nations, 

2013), and to prepare South African learners for the demands of the future (Reddy et al., 

2016). Despite these commitments and endeavours, the quality of South African education 

is still in a dire state, especially for mathematics, where performance, according to in both 

national and international benchmarking tests, is extremely poor (Baller, Dutta, & Lanvin, 

2016; Gurney-Read, 2016; Reddy et al., 2016). In attempts to address this situation, national 

policies that focus on learner-centred and problem-based instructional practices, especially 

in mathematics, have been initiated (Department of Basic Education, 2011a, 2011b). South 

Africa is not the only country that has proposed such policies in response to concerns about 

and the need to develop mathematics problem-solving abilities in its learners (see, for 

example, National Research Council, 2000). This change in policies, or curriculum reform, 
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stipulates a greater focus on what may be considered to be minimally guided approaches, 

such as problem-based, discovery, inquiry, experiential, and constructivist learning (Bruner, 

1961; Jonassen, 1991; Schoenfeld, 1992), with the aim of encouraging learner-centredness 

in education.  

Since implementing constructivist approaches in a minimally guided manner causes extreme 

cognitive load, which is not conducive to learning for novices (Kirschner, Sweller, & Clark, 

2006), a carefully scaffolded approach that will support engagement in deep learning, 

coupled with skilful prompting, is necessary for approaches such as PBL to be successful 

(Hmelo-Silver, Duncan, & Chinn, 2007). It seems reasonable to assume that it would be 

possible to create learning experiences that would enable learners from less privileged 

contexts, such as South African townships, to enjoy these benefits too. However, there is a 

dearth of literature available on this topic, with most of what is available referring mainly to 

implementation difficulties and teacher misconceptions regarding problem-based and 

inquiry-focussed learning processes (Motala, Dieltiens, & Sayed, 2009). 

The context of township schools has a direct effect on the resilience of their learners 

(Mampane & Bouwer, 2011). Furthermore, impoverished pedagogy, which is mostly evident 

in township schools, very rarely promotes higher order thinking or quality learning (Hugo, 

Bertram, Green, & Naidoo, 2008; Hoadley, 2018). Learners in these contexts are, therefore, 

seldom exposed to problem-based instructional strategies.   

1.2 RESEARCH OBJECTIVE AND RESEARCH QUESTIONS 

In this research, the main objective was to investigate how South African township learners 

respond to a carefully scaffolded, problem-based instructional strategy. This topic was 

investigated so as to shed light on whether it is reasonable to expect learners who likely 

have limited skill levels (Spaull, 2013; Spaull & Kotze, 2015; Van den Berg, Spaull, Wills, & 

Kotze, 2016), and who may be used to having low expectations imposed on them (Hobden 

& Hobden, 2019; Hugo et al., 2008), to undergo the cognitively taxing process of problem-

solving. This knowledge will enhance our understanding of the applicability of the benefits 

of such an instructional strategy to contexts other than Western classrooms, in which they 

are typically studied. 
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The research question that guided the collection and analysis of data is the following: 

How do Grade 8 and 9 township learners respond to a problem-based 

mathematics extension programme? 

With this question in mind, the study unfolded in accordance with the following subsidiary 

questions: 

a) How do learners engage in the cognitive components of problem-solving? 

b) What are learners’ affective responses to the programme? 

1.3 THEORETICAL REFERENTS 

Various terms and concepts are central to this study, and framed the conceptualisation of 

this programme, the research questions, and the data collection. Section 1.3.1 summarises 

these concepts, which will be discussed in more detail throughout this dissertation.  

1.3.1 Theoretical framework 

Carlson and Bloom’s (2005) multidimensional problem-solving (MPS) framework was used 

as the conceptual framework for this study. Carlson and Bloom drew on a large body of 

literature to conceptualise the MPS framework; these sources ranged from early work on 

problem-solving (Pólya, 1957), which merely focussed on describing the problem-solving 

process, to more recent work that identifies the attributes of the problem-solver that 

contribute to problem-solving success (DeFranco, 1996; Schoenfeld, 1992; Geiger & 

Galbraith, 1998; Carlson, 1990a; all cited in Carlson and Bloom, 2005). Supplementary 

studies reveal the influence that various affective domains (e.g. beliefs, attitudes, and 

emotions) have on the problem-solving process. The integration of all the problem-solving 

domains resulted in the creation of the comprehensive MPS framework (refer to Figure 3.6 

in Section 3.4).  

This framework consists of four phases (first column of the MPS in Figure 3.6, Section 3.4), 

derived from a combination of the work of Pólya, and Garofalo and Lester (as cited in 

Carlson & Bloom, 2005). These four phases are viewed as consistently occurring in the 

problem-solving process, and are orientation, planning, executing, and checking. 

Furthermore, general behaviours (e.g. sense-making, organising) that occur during each 
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phase were identified by Carlson and Bloom (2005) during their close observations of 12 

mathematicians participating in problem-solving. The framework also characterises various 

problem-solving attributes (resources, affect, heuristics, and monitoring), taken from 

Schoenfeld (1992), and describes their roles and significance during each of the four 

problem-solving phases. Some key concepts will be briefly discussed below. 

Resources relating to problem-solving are described as “formal and informal knowledge” 

about the specific content domain, which includes facts, algorithmic procedures, routine 

procedures, and definitions relating to a specific topic (Carlson & Bloom, 2005, p. 48). The 

term monitoring refers to the problem-solver’s metacognitive reflection regarding the 

effectiveness of the problem-solving process (Schoenfeld, 1992, p. 355). The heuristics 

dimension of the framework describes specific procedures and approaches regarding the 

problem-solving activity, e.g. constructing a diagram or attempting a parallel problem 

(Carlson & Bloom, 2005). Affect encompasses the beliefs, attitudes, and emotions of the 

problem-solver, which have a powerful effect on the behaviour of the problem-solver 

(Schoenfeld, 1992). 

1.3.2 Pedagogical approach 

The pedagogical approach followed during the mathematics extension programme that 

formed part of this research study can be described using Stott's (2008) ladder approach 

instructional model (see Figure 1.1). This model emerged from her research into the 

promotion of critical thinking. I consider this instructional model to be consistent with the 

recommendations for teaching practice that arise in relation to the theoretical discussions 

presented in Chapters 2 and 3, as summarised below. The essence of this ladder approach 

should serve as reference when reading all the chapters in this dissertation.  
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Figure 1.1: The ladder approach  

Source: Stott (2008, p. 220) 

In reference to this ladder metaphor (refer to Figure 1.1), the two sides of the ladder 

represent the two main components of the model: (1) direct teaching by the teacher, and 

(2) individual learner engagement in the problem-solving task. These components run 

parallel throughout this study’s mathematics extension programmes’ problem-solving 

process. The amount of guidance, or engagement in the two opposite sides of the ladder, 

shifts according to (1) the phase of the problem-solving where learners find themselves, and 

(2) the amount of scaffolding needed from the teacher, which differs according to the 

cognitive capabilities of each individual learner. This shift in engagement, according to 

Stott (2008), with the opposite sides of the ladder relates to the discussion in Chapter 2, 

which states that the teacher’s pedagogical approach moves across the instructivist-
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constructivist-continuum in response to the needs of learners. Although the shift in 

classroom instruction alternates between either direct teaching by the teacher, and the 

learner’s engagement in the problem-solving task, the influence of both of these main 

components must be present throughout the learning sequence.  

The two sides of the ladder are held together by the rungs. The rungs represent the 

scaffolding tools that connect the two components. As the learner improves in his/her 

critical thinking and problem-solving skills, with assistance, he/she metaphorically climbs up 

the ladder. Throughout the climbing process, assistance, by both the teacher, who pulls 

from the top (see Figure 1.1), and peers, who generally assist on a similar thinking level, is 

required for problem-solving success.  

1.4 DESCRIPTION OF THE PROGRAMME 

The holiday extension programme that was central to the research study and which is 

reported on in this dissertation, took place in July 2016 and involved 27 township-based 

Grade 8 and 9 learners, who participated in a mathematics, science and English programme 

for five days, six hours per day. The learners were bussed in to the University of the Free 

State from schools in Motheo District (Botshabelo and Bloemfontein township schools) 

every day to attend the holiday programme. They received refreshments every day, and 

returned home with homework, to help them prepare for the following day’s work.  

The context used throughout the programme was engagement in an investigation into 

factors that affect the maximum height and range of a water rocket. The role of the 

mathematics section of the programme was to enable learners to take appropriate 

measurements to calculate the rocket’s height during flight. During the first three days of 

the programme, learners engaged in activities to prepare them to use trigonometry to 

measure and calculate the maximum height of the water rocket from observing its flight. On 

the fourth day, the water rocket was launched, and data were collected and analysed to 

complete the mathematical calculations. On the fifth day, the learners wrote reports on the 

entire investigation process and presented the entire week’s work to their peers.  

I assisted the learners to construct their own mathematics knowledge, through problem-

based strategies, which focussed on guided scaffolding and skilful prompting (Anderson, 
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2002). The essence of the mathematics programme revolved around basic trigonometric 

ratios to which, according to the Curriculum and Assessment Policy Statement (CAPS) 

(Department of Basic Education, 2011a, 2011b) for mathematics, learners are introduced 

only in Grade 10. The programme will be described in greater detail in Chapter 5. 

1.5 RESEARCH APPROACH 

1.5.1 Research aim 

In this research, I aimed to investigate the response of Grades 8 and 9 township learners to 

the problem-based mathematics extension programme briefly described in Section 1.4. The 

goal of the investigation was to add to the paucity of literature regarding problem-based 

mathematics approaches in the South African context, particularly those involving learners 

from poor communities. My aim in doing this was to identify and encourage the use of 

relevant, implementable strategies for this context. 

1.5.2 Research design, data collection and sampling 

A case study design, informed by the pragmatic paradigm and the framework for integrated 

methodology, was used (Plowright, 2011).The focus of this case study was how Grade 8–9 

learners respond while being actively engaged in mathematics problem-solving activities in 

the described extension programme. This paradigm and framework are flexible and 

responsive to the complexities of real classroom practice.  

Non-probability purposive sampling was applied to select learners for this study (Plowright, 

2011, pp. 42-43), since this method addressed the needs of this particular study best. The 

criteria of sampling were that (1) the learners attended Grades 8 or 9 in township schools 

near Bloemfontein, (2) the learners had voluntarily produced a project for the Expo for 

Young Scientists competition over the past three months, from which interest in 

mathematics and science was assumed, and (3) the learners wanted to participate in the 

programme during a week of their winter holidays.  

A number of qualitative methods, which will be elaborated on further in Chapter 4, such as 

“observer as participant”, “full observer”, “written questions answered face-to-face”, and 

“interpretational use of artefacts” were used (Plowright, 2011, pp. 66, 67, 78, 95). Being a 
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“participant observer” (Plowright, 2011, p. 67) allowed me, as the researcher, to answer the 

research questions with deeper understanding, since I was intimately involved in the 

process of investigation. A variety of data sources, namely pre- and post-tests, audio- and 

video- recorded lessons, written work and audio-recorded focus group discussions, were 

used to enhance validity and reliability, as discussed below. 

1.5.3 Data analysis 

Data analysis was inductive, iterative and pragmatic, and guided by the research questions. 

Content analysis was performed – I used existing codes from Carlson and Bloom's (2005) 

MPS framework to code the various data sources, using NVivo software. I used these 

existing codes to form an idea of the relative prevalence of each of the components of this 

framework. 

During thematic analysis, I used the coded data to inductively derive themes, which assisted 

me to answer the research questions by presenting five assertions in answer to the research 

questions, as presented in Chapter 6. 

1.5.4 Validity and reliability 

Triangulation and peer examination were used to strengthen internal validity and reliability 

of this study. Three sets of data sources were coded by the researcher and a peer. These six 

sets (three different sources, coded separately by two people) were compared by running a 

coding comparison query in the software program NVivo, from which a Cohen’s Kappa 

coefficient and percentage agreement results was obtained. Rich descriptions of the 

programme and the learners’ responses to the programme will be given in Chapters 5 and 6, 

to enable readers to judge the validity of the claims to knowledge that the study makes, and 

to form what Stake (1994) refers to as naturalised generalisations. Naturalised 

generalisation refers to the reader being able to extract elements from the case that are 

relevant to their particular circumstances. 

1.5.5 Limitations  

Since non-probability purposive sampling was used, the sample is not representative of all 

Grades 8 and 9 learners from South African townships. The learners in the sample tended to 
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be relatively strong academically, and internally motivated. In addition, the programme was 

presented in an environment that had ample resources and support, which is very different 

to the classroom contexts that these learners are usually exposed to. However, the aim was 

to study township learners’ responses to an exemplary PBL programme, rather than to 

investigate whether PBL is viable in typical, impoverished contexts. Further research could 

explore the extent to which this particular study could be generalisable to the broader 

population and more typical township contexts. 

1.6 ETHICAL STANDARDS 

Sensitivity to ethical standards and the research process was clearly communicated to all 

learners before they engaged with the programme, with emphasis on the voluntary nature 

of their participation in the study and the confidentiality of their responses (Strydom, 2005; 

Mertens 2010). 

1.7 THESIS OVERVIEW 

This chapter (Introduction) provided an overview of the research study. In Chapter 2 

(Literature review), I will elaborate on the literature and empirical findings relevant to this 

study. In Chapter 3 (Theoretical framework), I will continue discussing the theoretical 

framework that frames this study. In Chapter 4 (Research design and methodology) I will 

discuss the research design and methodology of this study, by elaborating on the data 

corpus, and the validity and reliability of the data. Chapter 5 (Description of programme) will 

provide a rich description of the extension programme, and Chapter 6 (Interpretation and 

analysis) will contain analytical and interpretative discussions on the cognitive and affective 

responses of the township learners to the programme. In Chapter 7 (Summary and 

implications for research and practice) I will conclude with a summary of the findings and 

provide suggestions regarding the limitations and implications of this study.
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 LITERATURE REVIEW 

2.1 INTRODUCTION  

This chapter will start with a discussion of the need for problem-based learning approaches 

in education. Then, I will sketch an overview of the context of South African township 

schools, by explaining the quintile system, the bimodal educational system that is prevalent 

in South Africa, and the type of pedagogy predominant in these contexts. I will elaborate on 

the South African curriculum by summarising the history of the different curricula that South 

Africa has seen, and then continue to discuss the dire situation of mathematics education in 

South Africa. The role that problem-based, constructivist and instructivist approaches play in 

the current curriculum will be addressed subsequently. I will conclude the chapter with 

empirical references to similar studies through a discussion on the gap in literature that this 

study hopes to address.  

2.2 WHY THE NEED FOR PROBLEM-BASED LEARNING? 

Effective teaching approaches are needed to promote meaningful and long-lasting learning 

(Orton & Frobisher, 1996; Ridlon, 2009; Savery, 2006). Teaching approaches that are 

effective are usually aimed at enabling the learner to master specific skills and knowledge to 

accomplish learning goals (Tambara, 2015). Traditionally, effective approaches to 

mathematics have tended to be teacher-centred, and often require rote learning and 

routine drill procedures (Voskoglou, 2008; Walker et al., 2015; Boaler, 2013). Savery (2006) 

maintains that traditional approaches rarely lead to in-depth mastery of a topic or skill, and 

that learner-centred approaches, such as PBL, are more effective for promoting meaningful 

learning. 

Educationists and learning theorists who favour problem-based approaches are in 

agreement that teaching methods that are used in classrooms should foster skills that 

encourage learners to think critically (Lai, 2011), regulate their own learning (Loyens, Magda 

& Rikers, 2008), and shift the boundaries of their own capabilities (Boaler, 2013). 

Furthermore, effective teaching should entail the teacher providing the learners with quality 
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opportunities to engage in practical experience, critical thinking, exploration, and real-world 

PBL (Dweck, 2015; Haylock, 2010; Ingavarson & Rowe, 2008).  

PBL addresses the desperate need to nurture learners so that they are ready for the 

demands of the future, specifically the demands of the fourth industrial revolution. The 

fourth industrial revolution, or industry 4.0, refers to a “change of the technological, 

economic, and social systems in industry” (Dombrowski & Wagner, 2014, p. 1). It refers to, 

among other aspects, artificial intelligence, genetic editing, automation, mobile 

supercomputing, and intelligent robots. This revolution offers incredible possibilities and 

solutions and is expected to create opportunities for jobs that have not been invented yet.  

Exciting as this revolution might seem, the threat it poses to illiterate people is extreme. 

‘Illiterate’ does not refer to people who cannot read or write, but rather, to people who 

cannot “learn, unlearn, and relearn” (Alvin Toffler, cited by Brown-Martin, 2014, p. 1). The 

skill to learn, unlearn, and relearn requires a growth mindset (Dweck, 2006; Boaler, 2013), 

and can be linked to the core skills that are listed in a detailed report of a survey that the 

World Economic Forum conducted in 2015. The aim of this report was to investigate the 

core skills needed for industry 4.0. The survey found that 36% of all employment 

opportunities across all industries require complex problem-solving as one of their core 

skills (World Economic Forum, 2016, p. 22). The list of core skills identified is given in Table 

2.1. 

Table 2.1: Change in demand for core work-related skills, 2015-2020, all industries 

Skill Scale of skills demand in 2020 

Cognitive abilities 15% 

Systems skills 17% 

Complex problem solving 36% 

Content skills 10% 

Process skills 18% 

Social skills 19% 

Resource management skills 13% 
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Skill Scale of skills demand in 2020 

Technical skills 12% 

Physical abilities 4% 

Source: World Economic Forum (2016, p. 22)  

Education, specifically the role the teacher fulfils, is at the heart of preparing current and 

future generations to thrive in industry 4.0. Unfortunately, it is almost impossible to 

embrace industry 4.0 in the majority of South African schools, since the digital revolution 

(3IR) has not been incorporated completely yet (Roberts, 2015). Furthermore, the majority 

of South African schools have not integrated technology into their teaching and learning 

approaches, due to, among other limitations, limited funding (Centre for Excellence in 

Financial Services, 2017). It is hoped that integrating different curriculum subjects and 

presenting learners with real-world problems that relate to their everyday experiences, will 

nurture the skills required to make a meaningful contribution to preparing learners for 

industry 4.0 (Brown-Martin, 2017).  

Even though South African township schools present unfavourable contexts for education 

change, human rights issues dictate that educationists should attempt to improve the 

chances of future success of learners in such contexts (Schweisfurth, 2013) Learners need to 

be guided, through problem-based approaches, to find value in what they learn at school, 

which should not be isolated from their everyday experiences (Hobden, 2000). 

2.3 CONTEXT OF SOUTH AFRICAN TOWNSHIP SCHOOLS 

In the following section I define townships, elaborate on the quintile system of South Africa, 

and distinguish between township and urban schools – a distinction which is relevant to 

understanding South Africa’s bimodal education system. This section will conclude by 

describing the type of education that is dominant in the poverty-stricken areas of South 

Africa.  

2.3.1 Defining township schools 

According to Donaldson (2014:108), townships are defined as  
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“areas that were designated under apartheid legislation for exclusive occupation by 

people classified as blacks, coloureds, and Indians. Townships have a unique and 

distinct history, which has had a direct impact on the socioeconomic status of these 

areas and how people perceive and operate within them.” 

Before South Africa’s political transformation of 1994, the education system was racially 

segregated regarding financial support, curriculum, and education department (Molefe & 

Brodie, 2010; Ramnarain & Schuster, 2014). These separations discriminated against black 

learners, specifically regarding education. Furthermore, only 20% of the teachers who were 

assigned to teach maths or science at the so-called ‘black schools’ had a suitable 

qualification (Ramnarain & Schuster, 2014, citing Murphy).  

2.3.2 Defining townships within the South African quintile system  

The quintile system was introduced in 1998, as part of the National Norms and Standards 

policy, to assist learners with paying school fees. Government schools in South Africa are 

divided into five categories, based on a school’s catchment area’s unemployment and 

illiteracy rates, as well as the socio-economic status of the learners’ parents. Quintile 1 

schools serve the socioeconomically most disadvantaged communities, and quintile 5 

schools serve the richest communities. Table 2.2 presents data that was issued in the 

Government Gazette on 28 April 2017 by Angelina M. Motshekga, the minister of Basic 

Education, and shows the distribution of South Africa’s nine provinces’ quintile percentages. 

Table 2.2: National poverty distribution for 2017  

 

Source: Department of Basic Education (2017, p. 5) 
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Quintile 1, 2, and 3 schools are usually found in South Africa’s township and rural residential 

areas, which are mostly characterised by being underdeveloped racially segregated urban 

areas, where violence, crime, and poverty are typical (Mampane & Bouwer, 2011). These 

low-quintile schools, or township or rural schools, might not have basic facilities, are often 

underfunded, ill-resourced, and have overcrowded classrooms (Mampane & Bouwer, 2011). 

Teachers at these schools are generally poorly qualified, or completely unqualified in maths 

and science-related subjects (Fish, Allie, Pelaez, & Anderson, 2017).  

The schools that fall in quintiles 4 and 5 are usually found in and around urban areas. Urban 

schools are schools that are near large city and or town centres. These schools are better 

equipped, the classes have a small teacher-to-student ratio, and teachers are generally 

better qualified. Learners who attend these schools have good English language skills, have 

access to the internet and learning resources, and have middle-class socio-economic 

backgrounds (Fish et al., 2017).  

According to Spaull (2013), South Africa has a bimodal education system, which means that 

learners in quintile 5 (and some quintile 4) schools, which equates to 25% of the population, 

can compete in the international realm, while the remaining 75% of learners, who attend 

quintile 1, 2, and 3 schools, often fare extremely badly in international benchmarking tests 

(Stott, 2018, citing Spaull & Kotze and Pretorius & Spaull). Section 2.3.2 will elaborate on the 

bimodal education system. 

2.3.3 Bimodal education system 

The bimodal distribution in the South African education system and the performance of 

learners are consistent throughout numerous independent surveys and benchmarking tests 

(Spaull, 2013). The majority of all South African learners who attend quintile 1, 2, and 3 

schools perform, on average, very poorly on independent, national and international tests, 

in comparison to the minority from more functional schools (quintile 4 and 5), who perform 

much better (Fleisch, 2008). This consistent performance distribution is illustrated in the 

following three graphs, where the population is divided into 1) four wealth quartiles (Figure 

2.1 – Spaull (2013) on SACMEQ III), 2) school language (Figure 2.2 – PIRLS), and 3) former 

department (Figure 2.3 – NSES) (Spaull, 2013, pp. 4, 5).  
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Figure 2.1: Distribution of Grade 6 reading performance by school wealth quartile  

Source: Spaull’s (2013, p. 4) calculations for the Southern and Eastern Africa Consortium for 

Monitoring Educational Quality (SACMEQ) III of 2007 

 

 

Figure 2.2: Distribution of Grade 5 literacy achievement by language of school  

Source: Spaull (2013, p. 5) citing Shepherd (2011) on the 2006 Progress in International 

Reading Literacy Study (PIRLS) data. 
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Figure 2.3: Distribution of Grade 4 numeracy achievement by historical education department  

Source: Spaull (2013, p. 5) citing Taylor (2011) on the 2007/8/9 National School 

Effectiveness Study (NSES). 

 

From the graphs in Figures 2.1–2.3, it is clear that a dual system permeates South Africa’s 

education system, since two normal curves are prevalent in three aspects of learner 

performance – those relating to reading performance, literacy achievement, and numeracy 

achievement. A dualistic system, or bimodality, does not only occur within learner 

performance – it is also evident in other aspects that have a direct influence on learner 

performance (Ramnarain & Schuster, 2014; Spaull, 2013; Mampane & Bouwer, 2011). Table 

2.3 categorises performance, textbooks, school factors, and home background as 

representative of the four school wealth quartiles. It can be seen in Table 2.3 that learners 

in wealth quartile 4 schools are more likely to have access to conditions and resources that 

are conducive to learning, e.g. quality teachers with minimal absenteeism, educated 

parents, access to textbooks and computers, than poorer learners. It is, therefore, 

unsurprising that there is a considerable variation in learner achievement variables, such as 

reading and mathematics achievement, of quartiles 4 and 1–3 learners. 
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Table 2.3: Distribution of various schooling statistics across school wealth distribution quartiles 

(Grade 6 – SACMEQ III) 

 

Source: Spaull (2013, p. 7) 

Spaull (2013) uses these large-scale education statistics and analyses to determine if current 

curriculum, teaching practices, and interventions are effective. In addition to the efficacy of 

educational practices, these statistics report on the prevalence of two distinctly different 

educational systems.  

From the discussion above, it is clear that there are two quite different education systems in 

South Africa: one is well functioning, and the other is in a dire state, and each needs 

different resources, support, and pedagogical and methodological approaches. Learners in 

township schools (quintiles 1–3 or wealth quartile 1 and 2, and sometimes 3) respond 

differently to interventions and pedagogical approaches, compared to more fortunate 

learners in functioning schools (quintiles 4–5, and wealth quartile 4). These responses by 

learners in township schools need to be uniquely orchestrated if pedagogies are to be 

applicable and effective in these poverty-stricken areas (Van der Berg et al., 2011).  
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2.3.4 Pedagogy in poverty 

Hugo (2020, p. 118) describes the pedagogy that most township schoolteachers use as a 

pedagogy that is “stripped of any power and any effect”, due to the nature of this poor, 

chant-like, instructivistic pedagogy that is common in poor communities. An example of a 

transcript, taken from Ursula Hoadley’s book, Pedagogy in Poverty, shows typical dialogue 

between teachers and learners in these schools (Hugo citing Hoadley, 2020, pp. 118–119): 

Teacher: Listen, on page 63, how a tree lives and grows. It says that . . . 

what does it say people? How a tree lives and grows. What does it say?   

Learners: How a tree lives and grows.  

Teacher: What does it say?  

Learners: How a tree lives and grows.  

Teacher: What does it say?  

Learners: How a tree lives and grows.  

Teacher: Umthi uphula njani ukhube nyani. Say it in Xhosa.  

Learners: Umthi uphula njani ukhube nyani.  

Teacher: Say it again in English, how a tree lives and grows.  

Learners: How a tree lives and grows.  

Teacher: There are those who are not talking. I don’t hear you. How a tree 

lives and grows.  

Learners: How a tree lives and grows. 

Teacher: I don’t hear some [of you], how a tree lives and grows. 

Learners: How a tree lives and grows.  

Teacher: I don’t hear you. How a tree lives and grows.  

(Grade 3 classroom, Khayelitsha, South Africa, 2003) 

The dialogue example above represents a common scenario in township schools, where 

learners are positioned in a “passive reactive role” during lessons (Hoadley & Muller, 2019, 
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p. 111). The low level of cognitive engagement by learners, which is commonly found in 

township classrooms, is unfavourable for conceptualisation and deeper learning 

(Schoenfeld, 2016). Hoadley (2018, p. 1) describes this type of pedagogy, as follows: 

no distinctions or judgements are made of individual learners and their 

activity and initiative and spontaneity on the part of the students is closed 

down. Pedagogy is a form of marking time, a rite of rote.  

Learners in township schools are mostly subjected to poor pedagogies, as described in the 

extract above, and are almost never exposed to learner-centred approaches, such as PBL 

(Stott, 2018; Hugo, 2020). Teachers who implement these pedagogies do not necessarily 

know what excellence in teaching looks like, since it is likely that the majority of teachers 

who teach in township schools only have reference to their own impoverished schooling, 

their current teaching contexts might not be conducive to learning, and they might be 

surrounded by colleagues who use similar pedagogical approaches (Hobden & Hobden, 

2019). Hoadley and Muller (2019), in their contribution to the book South African Schooling: 

The Enigma of Inequality, concede that a successful pedagogy that is appropriate for the 

majority of South African schooling contexts has not yet been identified, although they 

emphasise that teachers’ cognitive horizons need to be shifted to pedagogies that promote 

meaningful learning in poorer contexts. 

2.4 CURRICULUM IN SOUTH AFRICA 

The South African curriculum has undergone significant changes over the past 25 years. 

Education change was encouraged by the drastic changes that the political realm 

underwent. The next section will elaborate on the South African curriculum from past to 

present, the stance of mathematics education in South Africa, and, finally, the balance 

between constructivist and instructivist approaches in the township context.  

2.4.1 Past to present  

After 1994, the Department of Education implemented three initiatives to stimulate reform 

of the national curriculum. These initiatives included abolishing the apartheid curriculum, 

implementing continuous assessment in all subjects and schools, and implementing 

outcomes-based education (OBE) (Jansen, 1998). Curriculum 2005 served as the vehicle 
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through which OBE was implemented (Cross et al., 2002) in 1998, and it was, in turn, revised 

to form the National Curriculum Statement, and later a Revised National Curriculum 

Statement. The current South African curriculum, the CAPS, which was implemented in 

2012, replaced the Revised National Curriculum Statement.  

The OBE curriculum entailed a constructivist approach to teaching (Stott, 2018), with an 

emphasis on mastering outcomes in each learning topic; this approach replaced the 

emphasis on content covered over a set time (Jansen, 1998). These outcomes were explicit 

in directing assessments towards stipulated goals. Exit outcomes, such as higher-order 

competencies, which includes PBL and critical thinking, replaced subject-matter mastery 

(Armstrong, 1999) as the main focus. All involved in the teaching community of South Africa 

were obliged to attend workshops, so that they were ready for the first phase of 

implementation. These workshops caused confusion and an aversion to OBE and its 

pedagogies (Stott, 2018, citing Chrisholm).  

Among the points of criticism relating to OBE, as reported by Rooth (2005, citing Jansen 

1999), was that pedagogical changes were too drastic for the majority of South African 

schools, it increased teachers’ administrative workload, leaving little time for lesson 

preparation, assessments remained basically the same, even though the OBE approach was 

completely different to previous curricula, and important curriculum content was trivialised. 

Furthermore, OBE was difficult to implement in schools where resources were scarce, and 

teachers underqualified (Taylor & Vinjevold, 1999). However, some educationalists argue 

that OBE had many positive aspects, such as encouraging teachers to start thinking 

creatively, learners being more engaged in lessons, and equity being addressed (Rooth, 

2005). 

Curriculum 2005 was guided by the principles of OBE, with the focus on a more progressive 

pedagogy (Cross et al., 2002). Curriculum 2005 enforced a clean break from the education 

system of the apartheid era. Reactions to Curriculum 2005 ranged from acceptance to 

condemnation. The envisioned results of Curriculum 2005 were not achieved, and a review 

committee proposed the introduction of the National Curriculum Statement, which was 

implemented in 2002.  
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The National Curriculum Statement’s main focus was on teaching and learning outcomes, 

instead of subject-specific content. However, because learners performed very poorly in 

national and international benchmarking tests, another, revised curriculum was introduced 

in 2012, namely the CAPS (Mnguni, 2019). 

A shift in pedagogical approaches occurred from the National Curriculum Statement, which 

proposed that teachers take a learner-centred approach, to the CAPS, which is highly 

prescriptive and content-heavy, and encourages a teacher-centred pedagogy (Hoadley & 

Muller, 2019). The writers of the CAPS document clearly envisaged this teacher-centred 

pedagogy resulting in meaningful learning, as evidenced by their appeal to learners to take 

“an active and critical approach to learning, rather than rote and uncritical learning of given 

truths” (Department of Basic Education, 2011a, p. 4), and it was expected to be 

implemented by all teachers.  

Over the course of about 25 years, South Africa has experienced four drastic changes in 

curriculum, but does not seem to be able to address the challenges that the majority of 

South African schools face (Hoadley, 2018), although there are signs of modest progress 

having been made, when viewed over time (Van der Berg & Gustafsson, 2019). The 

performance of South Africa’s learners, and the quality and effectiveness of the South 

African educational system, is still regarded as being in crisis (Hoadley & Muller, 2019). 

2.4.2 Mathematics education in South Africa 

South Africa’s democratic government has, since 1994, committed itself to ensuring that all 

children are provided with basic education, in order to achieve the Millennium 

Development Goals (United Nations, 2013). Twelve years after these Millennium 

Development Goals were set, South Africa, according to the World Economic Forum, was 

ranked 139th out of 139 countries for mathematics and science education quality, and 

137th out of 139 countries with regard to education system quality (Baller et al., 2016). The 

Trends in Mathematics and Science Studies (TIMSS) results confirm this bleak state of 

mathematics education in South Africa, by ranking South Africa at the bottom of the list 

(Gurney-Read, 2016). The belief among researchers regarding the dire state of mathematics 

education in South Africa was strengthened by the fact that, since 1995, South Africa has 
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performed poorly in both national and international assessments of mathematics 

achievement (Spaull & Kotze, 2015).  

To address the issue of improved mathematics learning, both national and international 

policies have been initiated which focus on learner-centred and problem-based instructional 

practices (Department of Education, 2007; National Research Council, 2000). These 

approaches have various labels, including problem-based, discovery, inquiry, experiential 

and constructivist learning (Bruner, 1961; Jonassen, 1991; Creswell, 2007; Schoenfeld, 

2016). Kirschner et al. (2006, p. 75) categorise all these types as minimally guided 

approaches and argue that such instruction is detrimental to effective learning, since 

minimal guidance discounts the limitations imposed by the small capacity of working 

memory in human cognitive architecture. They maintain that the “advantage of guidance 

begins to recede only when learners have sufficiently high prior knowledge to provide 

internal guidance”. 

It is unlikely that authors, such as Kirschner, would consider most South African 

mathematics learners as having this minimum amount of prior knowledge. This is hardly 

surprising, given the fact that most South African schools are situated in high-poverty areas 

(townships) with limited resources, low expectations posed on learners, and relatively poor 

teaching quality (Mampane & Bouwer, 2011). The heavy content focus of the current CAPS 

curriculum (Department of Basic Education, 2011a) serves as an additional cognitive 

obstacle to the successful implementation of problem-based teaching strategies (which will 

be further elaborated on in the next chapter). On the other hand, Hmelo-Silver et al. (2007) 

argue that PBL need not be minimally guided instructional practice but can also be a 

carefully scaffolded approach (refer to Chapter 3 for more detail) that focusses on deeper 

learning. 

As mentioned in the previous section, in spite of South Arica’s curriculum reform to focus on 

more learner-centred approaches (Umalusi, 2014), the culture of teacher-centeredness is 

still very strong in township schools (Tambara, 2015). This culture makes the application of 

problem-based pedagogies almost impossible.  
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2.4.3 Balance between constructivist and instructivist approaches  

The constructivism-instructivism debate divides approaches to teaching and learning into 

two distinctly different camps, especially concerning approaches to PBL. To elaborate 

further on my own view concerning instructional practice, it is, first, necessary to define the 

relevant terms.  

Constructivism is based on the philosophy of pragmatism (Dewey, 1916) and has 

characteristics of knowledge growth and self-regulated, active and lifelong learning, and 

contradicts behaviourist approaches, where learning is regulated externally through direct 

instruction (Schwartz et al., 2009; Duffy & Jonassen, 1992). Proponents of constructivism 

reject the view that information is absorbed throughout, and assert, instead, that 

knowledge is constructed (Von Glasersfeld, 1998). Constructivists argue that, for learners to 

enhance the depth and retention period of their learning, teacher feedback should be 

limited and cognitive load (which is discussed further in Chapter 3) should be enhanced 

(Stott, 2018, citing Wise & O'Neill). Constructivist approaches refer to learning taking place 

within authentic contexts through, for example, PBL (Savery, 2006). 

Instructivism emphasises repetition, memorisation, absorption of information, and drill 

exercises to embed knowledge (Porcaro, 2011). Instructivists promote the provision of 

guidance and continuous feedback to reduce the cognitive demand placed on the learner 

(Stott, 2008, citing Klahr). Teacher-centred approaches are central to the instructivist 

pedagogy, in contrast to constructivists’ learner-centred approaches (Onyesolu et al., 2013). 

To reduce all learning theories to either constructivist or instructivist categories is simplistic, 

as each theory is complex. Porcaro (2011) deems it helpful to visualise the two theories on 

opposite poles of the continuum of educational practice. Depending on the learning context 

and required outcomes, the focus of instruction should move accordingly across this 

continuum (Schweisfurth, 2013).  

Ramnarain and Schuster (2014) refer to Ausubel’s theoretical framework for learning and 

instruction to view learning in relation to instructional approaches. The vertical axis of 

Figure 2.4 represents the continuum of instruction, where reception learning refers to direct 

instruction, which is favoured by instructivists, and discovery learning refers to inquiry 

instruction, which is favoured by constructivists. The nature of learning, ranging from rote to 
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meaningful learning, is represented on the horizontal axis. PBL pedagogy is aimed at 

promoting meaningful learning (which will be discussed further in Chapter 3) (Malan, 

Ndlovu, & Engelbrecht, 2014), which falls in quadrants I and IV, and, consequently, rote 

learning falls in quadrants II and III. Thus, Ausubel’s representation (in Figure 2.4) stands in 

agreement with Porcaro (2011) and Ramnarain and Schuster (2014), who argue that 

meaningful learning can take place in both instructivist and constructivist approaches. 

Furthermore, discovery learning can be effective if it is orchestrated well, and the quality of 

feedback and assistance given by the teacher is a strong determinant of success (Hmelo-

Silver et al., 2007). However, discovery learning (discussed further in Chapter 3) can also 

have a negative effect on the learner if too little guidance is provided in an unstructured 

learning environment (Kirschner et al., 2006; Ramnarain & Schuster, 2014).  

 

Figure 2.4: Ausubel’s representation of types of instruction and nature of learning  

Source: Ramnarain and Schuster (2014, p. 632) 

Stott (2018) suggests that instructivist pedagogical approaches are more appropriate for the 

majority of South African low-quintile schools, because of the prodigious obstacles that 

have to be overcome in these contexts. That said, Stott (2018) does not completely 

disregard the appropriateness of a constructivist approach in township schools, if there is 

enough time to reach the learning outcomes, if the language proficiency and prior 

knowledge of the learners are sufficient, and if the teacher serves to be an invaluable 

human resource throughout the learning process.  

Therefore, problem-based approaches should not be an either-or choice between 

constructivism and instructivism, but rather a combination of the two approaches. The 
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combination should be adapted according to the needs of learners in the unique township 

school context, to assist them to obtain a sense of structure and direction. 

2.5 GAP IN THE LITERATURE  

A review of the literature shows that, although research into PBL for mathematics has been 

conducted in South African schools (Nieuwoudt, 2015), very little such research has been 

performed in township schools (Naroth & Luneta, 2015; Nel & Luneta, 2017; Chirinda & 

Barmby, 2018). The literature I could find regarding PBL in these township contexts suggests 

that, although some meaningful learning patterns can be identified throughout the 

mathematical PBL process (Malan et al., 2014), the negative impact of external factors and 

learners’ contexts (Moloi, 2013), coupled with overcrowded and under-resourced 

classrooms (Chirinda & Barmby, 2018), have on the efficacy of PBL, cannot be ignored.  

Stott (2019) conducted a study on the natural science section of the same programme that 

the current study investigated. From her findings, she maintains that, although the 

applicability of an inquiry-focussed approach in township schools appears to be an 

impractical ideal, a carefully conceptualised holiday inquiry programme proved to be 

effective for promoting learning among higher-achieving learners. This study extends Stott’s 

earlier work (2019) among higher-achieving township learners attending a holiday extension 

programme, into the domains of problem-based learning and mathematics learning. She 

researched these learners’ perceptions of mathematics problem-based learning at such a 

holiday programme. This holiday programme was conceptualised and conducted using the 

ladder approach teaching strategy developed by Stott (2008) as an outcome of action 

research she had conducted on her own practise teaching for Grade 10–12 physical sciences 

in a rural, but highly functional, South African school. Stott proposes the ladder approach as 

an effective teaching strategy for promoting critical thinking, including problem-based 

learning, but reminds us that the context of her study was not typical of South African 

schools, which may limit generalisation. One of the aims of this study was to investigate the 

suitability of the ladder approach for use in the context in which it was applied here, namely 

in a week-long holiday extension programme for Grades 8 and 9 township learners who 

showed an interest in science and mathematics. 
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2.6 CONCLUSION 

In this chapter, I presented arguments relating to the need for problem-based learning, 

especially in the context of township schools. I elaborated on the context of South African 

schools, and I explained the quintile system and the bimodal system, which permeate South 

Arica’s education. The emphasis was on the predominant pedagogical approaches in 

poverty-stricken circumstances, and I provided an example of a dialogue that is often 

evident in township schools. I discussed curriculum reform, and the current state of 

mathematics education in South Africa. I discussed the balance required between 

constructivist and instructivist approaches, particularly in impoverished contexts. I ended 

with a discussion of existing literature related to the promotion of problem-based learning 

in the South African context and pointed out the gap that this study intended to address. In 

Chapter 3, I will unpack the theoretical framework on which this study was conceptualised.  
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 THEORETICAL FRAMEWORK 

3.1 INTRODUCTION 

In this chapter, I aim to situate this study within the existing understanding of PBL, by 

providing a literature-based theoretical framework, which was used to approach data 

analysis and interpretation. I will begin with analogies relating to the way people process 

information, and I will define PBL. This definition will serve as the basis for my arguments 

about the necessity of scaffolding when minimally guided approaches to learning are used. I 

will then move on to discuss the MPS framework, which is central to this study, and served 

as the theoretical framework for interpreting the observations made. 

3.2 HOW DO PEOPLE PROCESS INFORMATION? 

My understanding of how people process information is based on Richard Atkinson and 

Richard Shiffrin’s widely accepted information processing model (IPM), which was published 

in 1968 (Gagné, Yekovich, & Yekovich, 1993; Atkinson & Shiffrin, 2016), and on John 

Sweller’s cognitive load theory (Mayer, 1988; Sweller, 1988;  Paas, Renkl, Sweller, Paas, & 

Renkl , 2003; Mayer, 2009). These two models are often applied together in literature, since 

cognitive load theory builds on the theory of the IPM. Furthermore, they are relevant to 

issues regarding minimal guidance, cognitive overload, and scaffolding in relation to learning 

approaches (Kirschner et al., 2006; Hmelo-Silver et al., 2007), all of which are particularly 

relevant when higher-order thinking skills are targeted (Stott, 2019). These two models are 

discussed in Sections 3.2.1 and 3.2.2. 

3.2.1 Information processing model  

3.2.1.1 Analogies to the information processing model 

An analogy to describe the IPM likens the functioning of the human cognitive architecture to 

a computer (Turple, 2016). Information enters the human brain, likened to a computer, 

through the senses (likened to a mouse or keyboard), then, this information is processed in 

our working memory (the analogous equivalent being the processor or RAM), where it is 

saved and later recalled from the section in our brains responsible for long-term memory 
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(likened to the hard drive). Finally, an output is delivered (analogously through the monitor) 

in response to the initial stimulus that had been received. This basic explanation contradicts 

behaviouristic notions, where each response is caused by a stimulus, and no processing is 

required (Skinner, 1953). Refer to Figure 3.1 for a schematic representation of the computer 

analogy. 

 

Figure 3.1: IPM computer analogy  

Source: Turple (2016) 

To describe the different phases of the IPM, I refer to a class situation. When a learner 

needs to give an explanation in response to a question asked by the teacher, a learner’s 

sensory memory may discard irrelevant information (such as birds chirping in the trees, or 

other learners searching for books in their suitcases) and keep the focus on the question 

that the teacher asked. The information from the learner’s sensory memory is passed 

through to their working memory, where it is either processed or rejected. The learner 

giving the answer to the teacher’s question might be an example of an output action. If the 

learner is able to undergo knowledge chunking through possessing a well-organised 

knowledge structure within their long-term memory, and due to having routinised skills 

through drill exercises and practice, then a successful output is probable, since chunking and 

routinisation reduce cognitive load in working memory (Kirschner, 2002). 

3.2.1.2 Theory behind the information processing model 

There are many information processing theories, namely Craik and Lockhart’s  (1972) three 

levels of information processing, Gibson’s (1979) bottom-up theory, Rumelhart et al.’s 

(1986) parallel-distributed processing model, the Baddeley and Hitch model of working 
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memory (Baddeley, 2001) and Driscoll’s (2001) cognitive information processing model, that 

have their roots in the traditional concepts of Atkinson and Shiffrin’s IPM (Atkinson & 

Shiffrin, 2016). Despite disagreements on many levels, these different theories agree that 1) 

limited capacity exists in working memory, 2) there is some kind of control system in 

sensory memory that deals with stimuli, and that 3) interaction takes place between stored 

and new information (Lutz & Huitt, 2003; Turple, 2016). The key element of the IPM is that 

learning and memory are viewed as “discontinuous and multi-staged” (Lutz & Huitt, 2003, p. 

2). The general model for information processing theory identifies three stages of memory: 

sensory memory, short-term or working memory, and long-term memory (Atkinson & 

Shiffrin, 2016). For a schematic representation of the IPM, refer to Figure 3.2. 

 

Figure 3.2: Information processing model.  

Source: Based on Mayer (1988, p. 15) 

Sensory memory serves to gather information through the senses. This information is 

altered by means of receptor cell activity, into a form that the brain can process. This 

information (or memories) only lasts for a short time, approximately three seconds, and is 

usually in the unconscious state. The sensory memory filters all information, and only 

focuses on the necessary aspects. This stage of the IPM serves to catch the attention and 

progress the information to working memory (Lutz & Huitt, 2003). 

Working or short-term memory consists of three components (Baddeley, 2001): the 

executive control system, which is responsible for information selection, processing 
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methods, and transfer of information to the long-term memory, and the auditory-loop and 

visual-spatial check pad, which is responsible for processing auditory and visual information, 

respectively. Sensory information transmitted to working memory lasts for 15–20 seconds; 

working memory has a limited capacity of 5–9 chunks of information. A chunk is a collection 

of similar pieces of information which have been grouped, and by chunking information one 

can free up space in the working memory (Young, Ten Cate, O’Sullivan, & Irby, 2016). 

According to the IPM, the limited capacity of the working memory is the limiting factor for 

learning by novices (Sweller, 1988; Van Merriënboer, Kirschner, & Ketser, 2003), since 

novice learners cannot chunk as much information as experts (Ockelford, 2002). The quality 

of processing that takes place in the working memory is affected by the level of cognitive 

load that a person experiences (Mayer, 1996). 

Long-term memory has unlimited capacity, in contrast to the limitations of the working 

memory. Possessing well-structured and interconnected knowledge structures in long-term 

memory enables chunking, and, subsequently, efficient use of the working memory space. 

The efficacy of long-term memory depends on how well information is organised, which is 

affected by the encoding and retrieval processes (Baddeley, 2001; Lutz & Huitt, 2003). The 

amount and quality of information retrieved from long-term memory relies on the manner 

in which information was stored in the first place (Bransford, Sherwood, Hasselbring, Kinzer, 

& Williams, 2009). Information can only be transferred from working memory to long-term 

memory if links are made between long-term memory and the working memory 

(Raaijmakers & Shiffrin, 2003). The limited capacity of working memory, relating to the 

ability to categorise, move, and store information in knowledge structures (or schemas) in 

long-term memory, is central to the cognitive load theory, which will be discussed in Section 

3.2.2.  

Finally, the sequential IPM model, though influential in the field of information processing, 

is criticised for reducing the complexities of the human cognitive architecture to being too 

linear, and for making unjustified assumptions, such as “consciousness which operates at 

the highest theoretical level”, about the processing aspects of consciousness (Hardcastle, 

1995:105). Nevertheless, the manner in which IPM holistically describes the processing of 

information and the role that short-term memory, working memory, and long-term memory 



 

31 

 

play, coupled with cognitive load theory, are considered appropriate for forming a 

framework for interpreting learners’ responses to a PBL intervention referred to in this 

study. 

3.2.2 Cognitive load theory  

Cognitive load theory is based on the concept that a person has, at a given time, a limited 

amount of figurative space available in their working memory, and when they undertake a 

thought process or learn something new, those thoughts and ideas take up a certain 

amount of figurative space in their working memory (Kirschner, Sweller, Kirschner, & 

Zambrano, 2018). According to Miller (1955), in his classic paper, The Magical Number 

Seven, Plus or Minus Two Some Limits on Our Capacity for Processing Information, this 

limited amount of space that is available is known to only accommodate seven plus or 

minus two units of information in working memory. 

Therefore, the essence of cognitive load theory is connecting the limited capacity of working 

memory to an infinite capacity of long-term memory (Baddeley, as cited in Kirschner, 2002). 

The capacity of working memory can be increased through schema automation and 

creation, by imposing tolerable levels of cognitive load (Kirschner, 2002), which are useful 

for managing demanding tasks during the problem-based learning process (Sweller, 1988). 

About twenty years after the cognitive load theory was introduced, the concept of chunking, 

also referred to as schema construction, was coined by William G. Chase and Herbert A. 

Simon, who describe it as a technique for isolating and grouping information in long-term 

memory, to reduce the cognitive load in working memory (Chase & Simon, 1973). These 

chunks can then be retrieved later, when needed, by working memory (Chi, Glaser, & Rees 

as cited in Sweller, 1988). 

Schema automation occurs after extensive practice has been applied to a certain procedure, 

until it can be carried out fluidly and precisely with minimal conscious effort, and, therefore, 

the cognitive activity required to perform the procedure is less strenuous, since this 

cognitive activity occupies less space in working memory (Kotovsky, Hays, & Simon, 1985). 

Even though the total number of these elements (chunks) active in working memory is 

limited (Miller, 1955), the complexity and size of each element is limitless (Sweller, 1988).  
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Furthermore, cognitive load is defined as “a multidimensional construct that represents the 

load that performing a particular task imposes on the cognitive system of a learner” (Paas & 

Van Merriënboer, 1994, p. 353). There are three types of cognitive load that impact greatly 

on working memory, where the volume of working-memory space occupied during 

instruction equates to the sum of these three types. These three types – intrinsic load, 

extraneous load, and germane load – are discussed below (Sweller, 1988; Sweller, 

Merriënboer, & Paas, 1998; Kirschner, 2002).  

Intrinsic cognitive load refers to a certain level of difficulty associated with each instruction. 

Even though the level of difficulty cannot be altered by the instructor, the information can 

be divided into separate subschemas and taught separately. 

Extraneous cognitive load is extrinsic information (which is not relevant) to the instruction 

given. Instructional designers can reduce this load by excluding information that is not 

directly relevant to the targeted learning outcome.  

Germane cognitive load is experienced through the learners’ sense-making activities, such 

as their use of cognitive strategies to construct, process, and automate information to 

improve existing schemas. Germane load is to be promoted, since it is associated with deep 

learning (Van Merriënboer & Sweller, 2005). 

Figure 3.3 on the next page illustrates the concept of cognitive load in early learners who 

are performing a difficult or unknown task, a medical handoff.  
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Figure 3.3: Interaction of cognitive load and working memory capacity during a difficult task  

Source: Young et al. (2016) 

When the instructional design is inappropriate or the information provided too complex, 

extraneous and intrinsic cognitive load is increased, which leaves little or no room for 

germane cognitive load (Van Merriënboer et al., 2003). Cognitive load theory was designed 

to “provide guidelines intended to assist in the presentation of information in a manner that 

encourages learner activities that optimize intellectual performance” (Sweller et al., 1998, 

p.251), therefore, teachers can use cognitive load theory to help them understand the value 

of scaffolding and removal of extraneous material from their instructional design. In terms 

of cognitive load theory, these techniques are intended to reduce intrinsic and extraneous 

cognitive load and, so, help learners to optimise the space available in their working 

memories for germane cognitive load. 

The difference between experts and novices is reliant on the quality and effectiveness of a 

person’s retrieval of stored knowledge (or schemas) from long-term memory (Kirschner, 

2002). The ability to chunk information extensively is a characteristic of experts (Chase & 

Simon, 1973). Furthermore, experts, in contrast to novices, can retrieve organised 

information from long-term memory seamlessly, which causes the limitations of working 

memory to disappear (Kirschner, 2002). This explains why the limitation of working memory 

size only applies to novices (Kirschner, 2009). 
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Since working memory is so limited, well designed instructions are necessary to assist 

learners in processing complex instructions effectively. This applies, in particular, to novice 

learners who experience the limitations associated with cognitive load, due to their limited 

ability to chunk information. In the context of a mathematics problem-based learning 

programme, learners who have had little prior exposure to higher-order thinking or 

problem-based programmes are considered to be novices.  

3.3 MATHEMATICS KNOWLEDGE FOR TEACHING 

In Shulman’s (1986) seminal work he concludes that besides content knowledge and 

curricular knowledge, teachers need a third kind of knowledge which he calls ‘pedagogical 

content knowledge’ (PCK). He suggests that PCK “goes beyond knowledge of the subject 

matter per se to the dimension of subject matter knowledge for teaching” (Shulman, 1986, 

p.  9).   Building on Schulman’s concept of PCK, Mathematics Knowledge for Teaching (MKT) 

was coined by Ball and colleagues (Ball & Bass, 2000; Ball, Lubienski & Mewborn, 2001), 

suggesting that for teachers to teach mathematics well, they need to be able to unpack or 

decompress the mathematics they know and have learned, so as to be able to make it 

accessible to learners. 

Teachers who possess advanced mathematics knowledge for teaching can anticipate how 

learners will approach a mathematics problem. Advanced teachers can design the most 

appropriate instructional strategies and scaffolding approaches for the specific mathematics 

problem and context (Hill & Ball, 2009; Tambara, 2015).  

An exploratory study by Hill et al. (2008) suggests that teachers with excellent mathematics 

knowledge exhibit a strong link between mathematics knowledge for teaching and high 

quality mathematics instruction, and were able to achieve better results in PBL, compared 

to teachers with less mathematics knowledge and lower mathematics knowledge for 

teaching. Tambara (2015, pp. 49-50) summarised the study of Hill and Ball (2009), and 

deduced that teachers with high mathematics knowledge for teaching were able to 

(Tambara, 2015, pp. 49–50),  

- “avoid mathematical errors and missteps;  
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- deploy their mathematical knowledge to support more rigorous 

explanations and reasoning, and to better analyse and make use of 

learner mathematical ideas than would otherwise have been 

possible; 

- create rich mathematical environments for their learners; 

- be critical of their mandated curriculum, and to like to invest 

considerable time in identifying and synthesising activities from 

supplemental resource material; 

- provide high-quality mathematical lessons;  

- provide high-skill responses to learners; and  

- choose examples wisely to ensure equitable opportunities for 

learning.” 

This list of competencies associated with having high mathematics knowledge for teaching  

highlights, (1) the vital importance of mathematics knowledge for teaching  in any effective 

lesson, more so during cognitively challenging approaches, like PBL, and (2) that the 

teacher’s skilful input is fundamental to the success of PBL approaches (Sweller et al., 1998; 

Van Merriënboer et al., 2003; Schmidt, Loyens, Van Gog, & Paas, 2007).  

3.3.1 Problem-based learning 

PBL originated as an attempt to improve the efficacy of medical education (Strobel & Van 

Barneveld, 2009, citing Barrows, 1996). Since its origin, PBL has been defined in a vast 

number of ways, but the essence of these definitions correlates throughout. This study will 

be guided by the definition of PBL given by Savery (2006, p. 9) which states that PBL is,  

an instructional (and curricular) learner-centered approach that empowers 

learners to conduct research, integrate theory and practice, and apply 

knowledge and skills to develop a viable solution to a defined problem. 

Generally, PBL is based on collaborative, learner-centred teaching approaches through 

authentic, relevant, and real-life learning tasks (Merrill, 2002; Van Merriënboer et al., 2003; 

Hmelo-Silver et al., 2007). Learners are cognitively engaged in an environment where the 

teacher facilitates the learning process. Teachers are only to intervene on a just-in-time 
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basis regarding the provision of relevant content knowledge (Hmelo-Silver et al., 2007; 

Strobel & Van Barneveld, 2009). Integrating knowledge, skills and attitudes is encouraged by 

PBL, which enables learners to eventually transfer these newly integrated characteristics to 

other non-task-specific environments (Strobel & Van Barneveld, 2009; Cantürk-Günhan, 

Bukova-Güzel, & Özgür, 2012).  

The following steps, according to Cantürk-Günhan et al. (2012, p. 148), are common to PBL. 

These steps served as the basis from which this study was approached: 

1. “The teacher presents the PBL scenario to students along with its 

evaluation rubric and the steps students should follow to solve the 

scenario. 

2. Groups work on the scenario in the presence of the teacher.  

3. Students do individual research on topics related to the scenario.  

4. Students share with their group the research they have done, and they 

establish the problems to solve. 

5. Students work collaboratively and cooperatively with their team 

members to propose a solution to the problems they stated. 

6. Students present their work to their classmates and hand out their 

report.  

7. The teacher comments on the similarities and differences among the 

groups’ work and pulls out of their presentations the main concepts 

involved in the problems and their solutions. 

8. The teacher evaluates the report.” 

The role the teacher plays is of vital importance to the success of PBL. It is not sufficient to 

only follow the steps mentioned above; the teacher should, in addition, possess a specific 

body of knowledge to ensure that a deep mathematics understanding is formed (Tambara, 

2015). In contrast to PBL, traditional approaches to teaching and learning are understood as 

teacher-centred instructional practices. Critics of such practices characterise them as being 

associated with curricula in which the content is compartmentalised, and as resulting in 

passive and shallow learning (Greening, 1998; Erickson, 1999; Barrows, 2000; Hmelo-Silver 

& Barrows, 2006; Walker et al., 2015). Although this is a simplistic characterisation (Taber, 
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2010), it does appear to be a fair description of the pedagogy typical of classrooms in the 

developing world (Schweisfurth, 2013), including in South African township schools 

(Hoadley, 2018). 

3.3.2 Mathematics problems vs problem-solving 

Pólya (1957) directed his early work on problem-solving mainly to describing the process, 

which was referred to as a linear process with four phases. Approximately a decade later, in 

the late 1960s, PBL first appeared in the literature as a pedagogical approach (Schoenfeld, 

2016; Loyens et al., 2008). This appearance of PBL as a pedagogy soon led to confusion 

about exactly what problems, problem-solving and PBL did and did not entail (Schoenfeld, 

2016). Therefore, I deem it necessary to clearly distinguish between the terms problem-

solving and mathematics problems. To define the word problem, Schoenfeld (2016) refers 

to Webster’s (1979, p.1434) dictionary definitions: 

Definition 1: “In mathematics, anything required to be done, or requiring 

the doing of something.” 

Definition 2: “A question . . . that is perplexing or difficult.” 

The first definition above is consistent with the traditional notion of doing routine 

procedures in mathematics. Routinised and previously practised mathematics exercises may 

be referred to as being perplexing, and, therefore, classed as problems, according to 

Definition 2. However, Schoenfeld (2016) maintains that such a categorisation would be 

inappropriate, since no matter how difficult a person may perceive a mathematics question 

to be, if they have previously encountered a similar example, the question cannot be seen 

as being a problem in the sense of Definition 2. 

Initially (1970–1982) problems were defined based on the question characteristics alone, i.e. 

as being difficult questions. However, more recent studies highlight that whether a question 

is perceived as being difficult is just as dependent on the characteristics of the solver as the 

characteristics of the question (Lester, 1994; Carlson & Bloom, 2005). Each learner has 

unique capabilities and working memory capacity (Kirschner, 2002; Schmidt et al., 2007), 

which make a particular task mundane for one learner and a problem for another. 
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Traditionally, learners were taught problem-solving techniques and to use specified 

algorithms, and they practised these algorithmic techniques in repetitive drill exercises to 

eventually master the particular technique (Schoenfeld, 2016). Although a shift in 

instructional focus across the constructivist-instructivist continuum (as discussed in Chapter 

2) is necessary (Jonassen, 1991; Ertmet & Newby, 1993), the sole focus of intentionally 

teaching problem-solving, and approaching problem-solving purely from an instructivist 

perspective, can affect the learners’ mathematical knowledge and understanding negatively 

(Schoenfeld, 2013).  

A learner’s sense of understanding of mathematics is established from their prior 

experiences of the subject. If learners are expected to engage in problem-solving in the 

sense of “what you do when you don’t know what to do” (Wheatley, 1995: 2), they will form 

a deep understanding of the particular topic and use mathematics meaningfully in other 

domains too (Schoenfeld, 2013). 

3.3.3 Problem-based learning: A minimally guided approach? 

Minimally guided teaching approaches have been referred to as constructivist learning, 

discovery learning, inquiry learning, experiential learning, and PBL (Kolb & Fry, 1975; Bruner, 

1961; Papert, 1980; Schmidt, 1983; Jonassen, 1991; Kirschner et al., 2006). These 

approaches are pedagogically similar, and hold the general view that learners construct 

their own knowledge through the process of discovery in a learner-centred environment, 

where the instructor serves as a facilitator of the learning process (Savery, 2006). 

In contrast with the view that PBL has to be minimally guided, Hmelo-Silver et al. (2007, p. 

100) argue that an assumption about this approach, that “learners need to explore 

phenomena and/or problems without any guidance”, has repeatedly been confirmed to be 

unsound (Hmelo-Silver et al., 2007, citing Mayer, 2004). They argue, instead, that PBL 

should be a well-guided and scaffolded pedagogical approach, bearing in mind that 

providing too much or too little guidance might threaten the success of PBL (Albanese & 

Mitchell, 1993). PBL requires teachers to change the instructional guidance they provide at 

various points in their teaching by operating across the constructivist-instructivist 

continuum, ranging from providing direct instruction, to taking a just-in-time instructional 
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approach, to offering no guidance at all (Schmidt et al., 2007; Schwartz et al., 2009; Strobel 

& Van Barneveld, 2009).  

Clearly, such a complex pedagogy requires the teacher to possess a rich pedagogical 

repertoire and, in response to classroom situations, to make appropriate decisions about 

the approach to use from this repertoire. Therefore, the skill of the teacher plays a crucial 

role in the efficacy of PBL (Cantürk-Günhan et al., 2012). 

3.3.4 Instructional scaffolding and problem-based learning 

To assist with this cognitively taxing task of PBL without compromising the positive effects 

of the learning process (Greening, 1998; Van Merriënboer & Sweller, 2005), tailored support 

should be given according to the learners’ needs. Support in the form of instructional 

scaffolding should be provided throughout the learning process (Sawyer, 2006; Hmelo-Silver 

et al., 2007). 

During instructional scaffolding, the teacher adjusts the level of support provided according 

to the learner’s level of cognitive potential (refer to Figure 3.4); when the learner is highly 

skilled, little or no assistance is needed during an easy task, and when the same task is 

presented to a learner with very few skills or prior knowledge, more assistance is needed 

(Wilson & Devereux, 2014; Beed, Hawkins, & Roller, 1991). 

The theory of instructional scaffolding is based on Lev Vygotsky’s theory of the zone of 

proximal development (ZPD) (Vygotsky, 1978), which refers to the field between what a 

learner is capable of accomplishing on their own, and what they can achieve with the help 

of a knowledgeable peer or teacher, which would not have been possible without assistance 

(Wilson & Devereux, 2014). Refer to Figure 3.4 for a chart representation of ZPD. 
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Figure 3.4: Zone of proximal development  

Source: Redd (2014) 

It is noteworthy that boredom creates equal levels of frustration and anxiety, which 

emphasises that tasks should be designed for learners to stay in their ZPD (Redd, 2014; 

Wilson & Devereux, 2014; Murphy, Scantlebury, & Milne, 2015). When instructional 

scaffolding is implemented effectively, learners operate within their ZPD, which (1) has a 

positive impact on the task at hand (Wilson & Devereux, 2014), and (2) influences future 

cognitive development, by building capacity in their working memory to eventually 

complete similar tasks unassisted, through transfer to their long-term memory (Landry, 

Miller-Loncar, & Swank, 2002). Learner independence is the ultimate goal of scaffolding.  

Both “high challenge” and “high support”, according to Mariani (1997), are needed for 

effective instructional scaffolding (refer to Figure 3.5). This model of scaffolding links to 

Figure 3.4, which also refers to the necessity of high support for difficult tasks and, 

conversely, that low challenge-low support is pointless, whereas high challenge-low 

support, or low challenge-high support, pushes learners out of their ZPD. 
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Figure 3.5: The “high challenge, high support” scaffolding model 

Source: Wilson and Devereux (2014, p. 93) 

The framework above (Figure 3.5), if implemented well, enables the teacher to contribute to 

improving the learning taking place, through scaffolding that offers rich potential for 

meaningful learning in constructivist approaches, such as PBL (Wilson & Devereux, 2014). In 

addition, a specific teaching strategy, such as the ladder approach (Stott, 2008) that was 

explained in Chapter 2, can serve as an efficient tool to combine the theoretical aspects 

discussed in this chapter. The ladder approach was used throughout the intervention of the 

study (refer to Chapter 5). 

3.4 MULTIDIMENSIONAL PROBLEM-SOLVING FRAMEWORK 

Embedded in the existing body of problem-solving literature, is Carlson and Bloom’s (2005) 

MPS framework, which they created after studying the responses of 12 mathematicians 

undertaking a problem-solving process. This framework provides a thorough classification of 

phases, attributes that relate to each phase, and cycles that occur in the problem-solving 

process (refer to Figure 3.6). The MPS framework also identifies various behaviours that 

problem-solvers exhibit during this process. 
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Phase 

• Behaviour 

Resources Heuristics Affect Monitoring 

Orienting 

• Sense making 
• Organising 
• Constructing 

Mathematical concepts, facts and 
algorithms were accessed when 
attempting to make sense of the 
problem. The solver also scanned her/his 
knowledge base to categorise the 
problem. 

The solver often drew pictures, 
labelled unknown and classified the 
problem. 

Motivation to make sense of the 
problem was influenced by their string 
curiosity and high interest. High 
confidence was consistently exhibited, 
as was strong mathematical integrity.  

Self-talk and reflective behaviours helped 
to keep their minds engaged. The solvers 
were observed asking, “What does this 
mean?”, “How should ii represent this?’, 
“What does that look like?”. 

Planning 

• Conjecturing 
• Imagining 
• Evaluating 

Conceptual knowledge and facts were 
accessed to construct conjectures and 
make informed decisions about 
strategies and approaches.  

Specific computational heuristics an 
geometric relationships were 
accessed and considered when 
determining a solution approach. 

Beliefs about the methods of 
mathematics and one’s abilities 
influenced the conjectures and 
decisions. Signs of intimacy, anxiety, 
and frustration were also displayed.  

Solvers reflected on the effectiveness of 
their strategies and plans. They frequently 
asked themselves questions such as, “Will 
this take me where I want to go?”, “How 
efficient will Approach X be?”. 

Executing 

• Computing 
• Constructing 

Conceptual knowledge, facts and 
algorithms were accessed when 
executing. Without conceptual 
knowledge, monitoring of constructions 
was misguided. 

Fluency with a wide repertoire of 
heuristics, algorithm, and 
computational approaches were 
needed for the efficient execution 
of a solution. 

Intima y with the problem, integrity in 
constructions, frustration, joy, defence 
mechanisms and concern for aesthetic 
solutions emerged in the context of 
constructing and computing. 

Conceptual understanding and numerical 
intuitions were employed to reflect on the 
sensibility of the solution progress and 
products when constructing solution 
statements.  

Checking 

• Verifying 
• Decision making 

Resources, including well-connected 
conceptual knowledge informed the 
solver as to the reasonableness of the 
solution attained.  

Computational and algorithmic 
shortcuts were used to verify the 
correctness of the answers and to 
ascertain the reasonableness of the 
computations.  

As with the other phases, many 
affective behaviours were displayed. It 
is at this phase that frustration 
sometimes overwhelmed the solver.  

Reflections on the efficiency, correctness 
and aesthetic quality of the solution 
provided useful feedback to the solver.  

 

Figure 3.6: The multidimensional problem-solving framework  

Source: Carlson and Bloom (2005, p. 67)
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In the table in Figure 3.6, the first column denotes the four problem-solving phases 

(orienting, planning, executing, checking), with examples of general behaviour (i.e. verifying, 

decision-making, etc.) being listed below each phase name. In columns 2, 3, 4, and 5, the 

key roles of the specific attribute (resources, heuristics, affect, monitoring) are described in 

relation to the problem-solving phases indicated in the first column. The problem-solving 

phases and attributes are discussed in the next sections. 

3.4.1 Phases of the problem-solving process  

George Pólya is renowned for his work on conceptualising the problem-solving process and 

its nature in relation to mathematics. In building on Pólya’s work, Lester and Garofalo (1989) 

maintain that a shift between problem-solving phases is only possible when metacognitive 

decisions lead to cognitive action. Carlson and Bloom (2005) labelled the four phases as (i) 

orienting, (ii) planning, (iii) executing, and (iv) checking, which are each defined below. 

During the first phase, orienting, behaviours of understanding the problem, and 

constructing and organising the information received, are identified (Carlson & Bloom, 2005; 

Schoenfeld, 2016).  

The planning phase refers to constructing conjectures, identifying goals and patterns, 

imagining the route to follow in order to reach the goal, and evaluating the plans made, 

through accessing one’s conceptual knowledge and heuristics (Carlson & Bloom, 2005; 

Pólya, 1957).  

Throughout the executing phase, the problem-solver engages in behaviours that include 

carrying out calculations based on the conjectures made in the planning phase, through 

accessing (factual and conceptual) knowledge, writing logical mathematical statements, and 

implementing strategies planned (Lester & Garofalo, 1989; Carlson & Bloom, 2005). 

In the course of the last phase, checking the accuracy of the written mathematical 

statements, conjectures, and calculations (which were done in the executing phase) is 

verified and justified. If the initial conjecture is correct, the goal (which was set in the 

planning phase), has been reached. If the calculations and conjectures are incorrect, the 

checking phase results in a rejection of the solution, which directs the problem-solver back 
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to the planning phase to rework the problem. Carlson and Bloom (2005) argue that the 

rejection and acceptance of solutions in the checking phase result in the problem-solving 

process being cyclical, and not linear, as initially argued by Pólya (1957). 

3.4.2 Attributes of problem-solving 

Early studies in problem-solving involved mainly descriptions of the process, whilst more 

recent studies emphasise the problem-solving behaviours and attributes that are conducive 

to problem-solving success (Wilson, Fernandez, Hadaway, 1993; Carlson & Bloom, 2005; 

Voskoglou, 2008; Tambara, 2015). These problem-solving behaviours are determined by the 

person’s problem-solving attributes, which involve resources, heuristics, monitoring, and 

affect (Stott, 2002; Carlson & Bloom, 2005; Schoenfeld, 2016).  

Resources, defined by Carlson and Bloom (2005, p. 50), are “the conceptual understandings, 

knowledge, facts, and procedures used during problem solving”. These resources can be 

chunked (or clustered) together to maximise capacity in working memory (Sweller et al., 

1998; Baddeley, 2001; Young et al., 2016), so that stored knowledge (or long-term memory) 

can be utilised (Stott, 2002). When resources in long-term memory are used, learning for 

understanding occurs, which causes intrinsic motivation (Stevenson & Palmer, 1994), since 

new knowledge is integrated into cognitive schemas. This intrinsic motivation can positively 

impact the belief system of the problem-solver (Stott, 2002). Furthermore, problem-solving 

success strongly relates to the role control plays in attaining resources (Vinner, 1997); 

Schoenfeld (2016, p. 23) maintains that “[i]t’s not just what you know; it’s how, when, and 

whether you use it”, which means that, even though a problem-solver might possess the 

resources required to solve a problem, they do not always access those resources. 

Heuristics is described as specific strategies and procedures which the problem-solver 

follows, and methods they use whilst grappling with a problem (Carlson & Bloom, 2005; 

Tambara, 2015). These specific procedures and/or methods are used to reduce the cognitive 

load experienced by the learner (Kirschner, 2002), and require conscious thought 

(Schoenfeld, 2016), in contrast to automated strategies which are classified as resources 

transferred from long-term memory (Sweller et al., 1998).  
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Monitoring, or control, refers to the selection and implementation of approaches, resources, 

and strategies to be utilised during the problem-solving process (Tambara, 2015), and that 

influence the solution path. There are three categories into which control can be divided 

(Carlson & Bloom, 2005):  

1. Initial cognitive engagement, where understanding the problem and creating 

goals are the focus,  

2. Cognitive engagement during problem-solving refers to the linking of resources 

from long-term memory with working memory to connect existing knowledge 

with new information, to construct logical statements, 

3. Metacognitive behaviours that denote reflecting on the effectiveness and 

efficiency of one’s thought process and chosen problem-solving strategy, as well 

as self-regulatory behaviours during the problem-solving process.  

Effective employment of the monitoring (or control) attribute to the problem-solving 

process is an integral part of the success of PBL (Vinner, 1997; Schoenfeld, 2013; Young et 

al., 2016), and requires good judgement regarding the utilisation of accessible resources and 

which strategies to apply to which situations (Schoenfeld, 2013). Furthermore, 

metacognitive skill is an essential component of a problem-solver’s ability to control the 

learning process (Garner, 1988; Lester & Garofalo, 1989) – when problem-solvers can plan, 

regulate, and evaluate their own problem-solving approaches, they are self-motivated and 

fulfilled by the task at hand (Stott, 2002; Van Merriënboer & Sweller, 2005). Stott’s (2002) 

views around metacognition and the successful employment of control during a problem-

solving task are embedded in the self-efficacy theory, which relates to people’s self-belief 

regarding their own capabilities to complete a demanding task, which is discussed further in 

the next paragraph.  

Affective aspects, like beliefs, mindsets, attitudes, and emotions impact greatly on the 

behaviour of the problem-solver (Lester & Garofalo, 1989; Dweck, 2006; Schoenfeld, 2016). 

Even though a person’s beliefs, which are defined as deep-rooted convictions, such as 

“learning mathematics is mostly memorisation” or “doing mathematics requires lots of 

practice in following rules” (Schoenfeld, 2016, p. 10), are less evident than emotions 

(frustration, excitement, anxiety, etc.), they play a key role during problem-solving. 
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Schoenfeld (2016) argues that a person’s belief system determines their perception of a 

mathematical task and how to approach this task, which may contribute to the success or 

failure of problem-solving. Schoenfeld (2016), therefore, states that problem-solving success 

is not purely a result of what a person knows. In line with the aforementioned statements 

on beliefs, Dweck (2006) coined the terms “growth” and “fixed mindsets”, after decades of 

researching numerous differently aged people. Dweck and other researchers, such as Boaler 

(2013), found that a person’s mindset has a strong effect on their beliefs regarding their 

ability to complete a difficult task. Learners can develop a growth mindset when they 

believe that intellect can be improved and that, with effort and exercise, one’s brain can 

grow. Learners with growth mindsets learn more efficiently, exhibit a longing for resilience, 

problem-solving and challenge, and use failures as learning experiences. People with fixed 

mindsets, in contrast, foster the notion that a person is either intelligent or not, and when 

failure sets in, such people lack the determination to persevere, and they give up (Boaler, 

2010; Dweck, 2015). The desire of learners to produce only correct mathematics work, due 

to the prevalence of fixed mindset beliefs, is not conducive to learning, since such a mindset 

is not conducive to cognitive development (Boaler, 2013). Furthermore, it is extremely 

unlikely that learners will be able to produce only correct mathematics work if tasks are 

pitched within learners’ ZPD, since operating within one’s ZPD is characterised by a degree 

of failure, which indicates the need for help from a more skilled peer or instructor (Wilson & 

Devereux, 2014). 

3.5 CONCLUSION 

In this chapter, I outlined the theoretical framework within which I operated as I conducted 

this study. A constructivist view of learning was taken, informed by Vygotsky’s theory of the 

ZPD, the cognitive load theory, as well as the IPM. The latter two theories emphasise the 

limitations of working memory capacity. I continued to discuss mathematical knowledge for 

teaching, by emphasising the necessity thereof for the effective implementation of problem-

based learning approaches. I described PBL by elaborating on general, misguided use of the 

terms mathematics problems and problem-solving, and followed it by a discussion of the 

debate whether PBL is necessarily a minimally guided approach, or not. With reference to 

the latter, I concluded with the view I take regarding the minimally guided approach, namely 
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that instructional scaffolding, incorporating the ladder approach, is vital for the PBL 

approach. Finally, I described the MPS framework, by elaborating on the phases of the 

problem-solving process and the attributes that are evident during the problem-solving 

process. In the next chapter, I will discuss the methodology and research approach taken for 

this study.  
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 RESEARCH DESIGN AND METHODOLOGY 

4.1 INTRODUCTION  

In Chapter 4, I will describe and motivate a case study design that was informed by a 

pragmatic paradigm and the framework for integrated methodology (Plowright, 2011). This 

methodology was used to determine how Grades 8–9 learners responded to a problem-

based mathematics extension programme. This framework and paradigm are flexible and 

responsive to the complexities and idiosyncrasies of real classroom practice. Furthermore, 

by working within the framework for integrated methodology (FraIM), a pragmatic 

methodology invited the researcher to conduct research that has the aim of “informing 

decisions and activities that impact on the world or that solve problems” (Plowright, 2011, 

p. 185). 

The research question that guided the collection and analysis of data is: 

How do grade 8 and 9 township learners respond to a problem-based 

mathematics extension programme? 

With the abovementioned question in mind, the study unfolded in accordance with the 

following subsidiary questions: 

a) How do learners engage in the cognitive components of problem-solving? 

b) What are learners’ affective responses to the programme? 

I will start this chapter by describing the study, and the fit for research design to research 

question, after which I will elaborate on the collection and analysis of data. The internal and 

external validity and reliability will then be discussed in detail, followed by limitations to the 

study and concluding remarks. 

4.2 DESCRIBING THE SAMPLE  

A descriptive case study design, as opposed to an explanatory- or exploratory case study 

design, was used to present a complete description of the phenomenon within the 

particular context (Merriam, 2009). The holiday extension programme that was central to 

the research took place in July 2016 and involved 27 Grades 8 and 9 learners from township 
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schools who participated in a five-day mathematics, science and English programme for six 

hours a day. The learners were selected by applying non-probability purposive sampling 

(Plowright, 2011, p.  42–43), since this method was considered to be the best for addressing 

the needs of this particular study. The criteria for sampling included that the learners were 

in either Grade 8 or 9 in a township school near Bloemfontein, and that each learner had 

voluntarily entered the Expo for Young Scientists competition, which served as an indication 

that the chosen participants showed an interest in science, and, therefore, it was assumed, 

also mathematics, and were willing to do more than the bare minimum, and subsequently 

participate actively in an intense holiday extension programme during the winter holidays. A 

detailed description of the programme will be given in Chapter 5. 

4.3 FIT OF RESEARCH DESIGN TO RESEARCH QUESTION 

The aim of this study was to determine the manner in which, if at all, township learners 

respond to problem-solving teaching and learning. Plowright’s FraIM model, which served as 

a template which guided me through the research process, also encouraged a more 

responsive, flexible and open-minded approach to research based on answering the 

research questions of this study. What is arguably most different about FraIM to other, 

more traditional, models is that FraIM does not “dictate that you hold a particular 

philosophical position prior to beginning the research” (Plowright, p. 7).  A mixed methods 

research design, comprising qualitative and quantitative data, and inductive analysis to 

produce rich, detailed accounts for the learners’ responses (Tambara, 2015), was 

appropriate for achieving the aim of this study. By using a mixed methods design, qualitative 

and quantitative data were combined and integrated to form an improved understanding of 

the research problem. The strengths of each method complemented the other to assist in 

gaining a holistic understanding of the study (Creswell, 2003, 2007; Castro, Kellison, Boyd, & 

Kopak , 2010). 

A variety of qualitative methods were used, such as “observer as participant”, during which 

some interaction between the observer and participant occurs; “full observer”, where the 

researcher has minimal contact with participants; “written questions answered face-to-

face”, using written pre- and post-tests; and “interpretational use of artefacts”, which 

involves the researcher interpreting learning events and experiences (Plowright, 2011, pp. 
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66, 67, 78, 95). Being a participant observer (Plowright, 2011, p. 67) allowed me, as the 

researcher, to answer the research questions with deeper understanding, since I was 

intimately involved in the process. However, to ensure that these participant observer data, 

or full observer data, are not biased, other sources of data (e.g. artefacts in the form of 

learners’ written work) were also included.  

Mixed methods can be categorised into three types: exploratory, explanatory, and 

triangulation (McMillan & Schumacher, 2006, p. 28). A triangulation design was used in this 

study, since the strengths of both qualitative and quantitative methods complement each 

other to add to the reliability and validity of the data. Triangulation will be elaborated on 

when the reliability of the study is discussed, in Section 4.6.3. 

4.4 DATA COLLECTION PROCEDURES 

A variety of data were collected over five consecutive days. Each learner received a 

workbook designed according to the principles of carefully scaffolded guided inquiry and 

problem-solving (Hmelo-Silver et al., 2007). Learners’ answers in these workbooks were 

analysed to identify the interaction of problem-solving attributes with the general 

behaviours exhibited during the four problem-solving phases, to determine the extent to 

which learners engaged in and responded to problem solving. Every session was video-

recorded, and detailed field notes were taken during the course of the extension 

programme. The opinions of the learners regarding the holiday extension programme were 

captured with audio-recorded focus group discussions at the end of the week. The group of 

learners was divided into three smaller groups and focus group discussions were guided by 

the researcher and her colleagues. A focus group discussion guide was conceptualised 

before each discussion (refer to Addendum C). Pre- and post-tests (Addendum D) were 

written by the learners at the start and end of the holiday extension programme 

respectively. These tests were designed to determine the learners’ knowledge base 

(Schoenfeld, 2016) and to analyse their individual understanding of the concepts that had 

been taught throughout the week. The tests included questions on basic mathematics 

concepts, which form part of their current school curriculum, as well as trigonometric 

concepts that had not been taught to them. Table 4.1 summarises the data corpus, by listing 

the day of collection and quantity of each data type gathered. 
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Table 4.1: Relationship between quantity, day of collection, and type of data collected during the 

holiday extension programme 

Type of data collected 
Quantity of data collected 

Day 1 Day 2 Day 3 Day 4 Day 5 

Video recordings of lessons 41 min 91 min 110 min 220 min 0 

Audio recordings of lessons 2 min 2 min 12 min 0 0 

Audio recordings of three different 
focus groups’ discussions (learners). 

0 0 0 0 101 min 

Audio recordings of individual 
interviews during lessons (conducted 
by research assistants) 

2 min 16 min 43 min 0 0 

Photos of lessons 0 9 5 13 9 

Field notes: Maths researcher on 
maths lessons (written document 
completed after maths lessons) 

1 1 1 1 1 

Field notes: Science researcher on 
maths lessons (written document 
completed during maths lesson) 

1 1 1 1 0 

Pre-test  26* 0 0 0 0 

Post-test 0 0 0 0 26* 

Learner booklets 0 0 0 0 25** 

*One learner was absent during the pre-test and one during the post-test (each time a 
different person). 
** Two learner booklets were unavailable for collection and analysed subsequently. 

4.5 DATA ANALYSIS 

Data analysis was inductive, iterative and pragmatic, and guided by the research questions. 

Data from the video and audio recordings, and the observer’s field notes, are nominal data 

(data not placed in a certain order or rank) with a low degree of structure, which were 

enlarged to ordinal data (ordinal data stands in relation to each other in a ranked fashion) 

by adding information to order or rank the original data (Plowright, 2011, p. 128). Data from 
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the pre- and post-tests, and written work are ratio/interval data with a high degree of 

structure, which was reduced to ordinal data (Plowright, 2011, p. 129) through the process 

of data reduction, which grouped the data; new categories of these groups were created.  

The video and audio recordings were transcribed and coded using a problem-solving coding 

taxonomy (refer to Addendum A), which is embedded in the literature relating to the four 

problem-solving phases and problem-solving attributes (Carlson & Bloom, 2005, p. 51). The 

MPS framework (Figure 3.1) (Carlson & Bloom, 2005, p. 66) provides a detailed 

characterisation of phases and cycles that occur consistently in the problem-solving process. 

This framework was used to categorise the transcribed codes to develop a holistic idea of 

the ways in which the learners responded to the problem-based holiday extension 

programme, as guided by the research questions. The data were coded using the software 

package NVivo. After coding, data were transformed, which combined effective organisation 

of nonnumerical, unstructured data through indexing, searching, and theorising. Using 

NVivo software for data coding and analysis increased the reliability of the research process 

by ensuring transparency and allowing for clear peer examination, as described in Section 

4.6. Furthermore, using this software enhanced the rigor, efficiency and effectiveness of the 

data analysis process.  

4.6 VALIDITY AND RELIABILITY 

In qualitative research, the researcher serves as the “primary instrument for data collection 

and analysis” (Merriam, 2009, p. 15), which causes the risk of this human instrument being 

biased. Therefore, validity and reliability, which will be discussed in this section, are two 

factors about which a researcher should be concerned throughout the study, since a 

research study design that meets the standards of these factors increases credibility. These 

factors should not be seen as independent qualities (Marczyk, Dematteo, & Festinger, 

2005), because a measurement is deemed invalid if it is unreliable (Loyal, 2016). 

4.6.1 Internal validity 

Internal validity refers to whether the findings of a study are legitimate and correspond with 

reality (Mertens, 1998). The way the data was recorded, collected, and analysed influences 

the internal validity directly. According to Merriam (2009), triangulation, member checks, 
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peer examination, and stating the researcher’s assumptions and biases are strategies that 

the researcher can apply to increase the internal validity. Triangulation and peer 

examination were used in this study to strengthen internal validity. Three different data 

type files (audio file, video file, and field notes) were coded and examined, using the coding 

taxonomy based on Carlson and Bloom’s (2005) multidimensional problem-solving 

framework (refer to Addendum A for the complete list of codes), by both the researcher and 

a peer, after which discrepancies and shortfalls were discussed and adjustments were made 

to the coding taxonomy and approach. To strengthen the internal validity further, after 

coding all sources of data, the researcher re-evaluated all coded evidence and compared the 

codes to make sure that different data sources did not refer to the same piece of evidence, 

and that the accumulated number of codes counted evidence of, e.g. 5 codes, which all 

referred to a single occurrence (refer to Table 4.2).  

Table 4.2: Number of coded attribute evidence per problem-solving phase 

  
Attributes of problem-solving 
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Orienting 92 71 38 17 108 76 42 21 

Planning 67 61 11 5 79 59 19 6 

Executing 59 22 8 2 44 23 5 1 

Checking 0 0 0 0 0 0 0 0 

 
Total 218 154 57 24 231 158 66 28 

By recoding the data, as shown in Table 4.2, there was a clear distinction made between 

coded evidence and true evidence, where coded evidence represents the total number of 

codes that represent a certain occurrence, and true evidence represents the amalgamated 

number of occurrences. For example, if a particular occurrence of learners showing 

evidence of resources in the planning phase was evident, and this particular occurrence was 

coded three times in field notes, video recordings and learner books (coded evidence), it 
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was re-evaluated to count as only one occurrence (and not three) of evidence (true 

evidence).  

4.6.2 External validity 

External validity refers to the possibility of the results of a study being generalised to other 

cases (Creswell, 2003). This case study is too small for the aim of generalisation; however, 

the aim was not to generalise, but to understand “how people make sense of their world 

and the experiences they have in the world” (Merriam, 2009, p. 13). Fuzzy generalisations 

allow predictions of possible similar occurrences to be made (Bassey, cited in Stott, 2002). 

Furthermore, “rich descriptions” (Merriam, 2009, p. 16) of a case enable readers to form 

their own naturalistic generalisations, since understanding is socially constructed (Stake, 

1994).  

4.6.3 Reliability 

Reliability is the degree to which a study produces consistent end correct results (Tambara, 

2015); a study is deemed reliable if it can be reproduced under a similar methodology 

(Golafshani, 2003). To reproduce a study is not easy in the social sciences as it is in the pure 

sciences, since dealing with the human factor contributes to the complexity of the study 

(Merriam, 2009). For example, this study would not have necessarily yielded similar results 

if the teacher had lacked the essential problem-solving knowledge and mathematical 

knowledge for teaching. Dependability and consistency serve as the key focus areas of 

reliability in the social sciences. The underlying question in social sciences research is “not 

whether the results of one study are the same as the results of a second or third study, but 

whether the results of the study are consistent with the data collected” (Merriam, 1995, p. 

56). The strategies I used to improve reliability were (1) triangulation, using more than one 

method of data collection; (2) peer examination, by a researcher verifying the data results;  

and (3) ensuring an audit trail, by providing a clear description of the data collection 

instruments, data analysis and interpretation (see Chapter 5), so that readers can audit the 

complete process (Merriam, 1995). 

In this study, triangulation and peer examination were used to ensure reliability. As 

mentioned in the Section 4.6.1, three sets of data were coded by the researcher and a peer. 
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These six sets (three different sources, coded by two people) were compared by running a 

coding comparison query in the software program NVivo, which produced a Cohen’s Kappa 

coefficient and percentage agreement result. Refer to Addendum B for an example of how 

the difference sources were coded in the NVivo program, of the compared codes of one of 

the data sets (Field notes of 27/06/16), as well as a screenshot of a visual comparison of 

different codes at a specific part of the field note document.  

The Cohen’s Kappa coefficient verifies the occurrence of the themes that appeared in the 

study. It is a statistical inter-rater reliability measure to determine the level of agreement 

between two peers (or raters). Figure 4.1 outlines the Cohen's Kappa concordance index. 

 

Figure 4.1: Cohen's Kappa concordance index 

Source: Decito, Chueire, and Bonvicine  (2013, p. 179) 

The inter-rater agreement results (averages of all code agreements) for the three different 

data sources which were coded by the researcher and a peer are displayed in the Table 4.3 

(refer to Addendum B, Table 2, for the complete list of inter-rater reliability of codes). These 

results show substantial concordance and strong agreement between the coded data of the 

two raters, suggesting a high degree of reliability in the NVivo coding process.  
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Table 4.3: Inter-rater agreement results 

Data source Cohen’s 
Kappa 

Agree-
ment  

(%) 

A and B 
(%) 

Not A 
and 

Not B 

(%) 

Dis-
agree-
ment 

 (%) 

A and 
Not B  

(%) 

B and 
Not A  

(%) 

Field notes of 
Day 1 0.6760 96.2556 2.5439 93.7119 3.7444 3.1661 0.5786 

Video recording 
of Day 3 0.7100 96.3249 2.6836 93.6415 3.6751 3.0891 0.5864 

Audio 
recording of 
focus group 
Day 5 

0.7416 96.5478 2.7341 93.8139 3.4522 2.9080 0.5445 

 

4.7 LIMITATIONS AND ETHICS IN RESEARCH ACTIVITIES 

This sample is not representative of Grades 8 and 9 South African learners at township 

schools, since these learners tended to be relatively strong and motivated academically, 

compared to the average township learner (McMillan & Schumacher, 2006). Furthermore, 

the intervention was not conducted in a township context, and it involved expertise and 

outstanding human resources that are not usually available in township classrooms. 

However, given the paucity of research in this area and the difficulty of attaining success, it 

was considered appropriate to conduct this study in the manner most likely to succeed. 

Subsequent studies could explore the extent to which the study could be generalisable 

(McMillan & Schumacher, 2006) to the broader population and more typical contexts. 

The researcher’s sensitivity to ethical standards and the research process were clearly 

communicated to each individual before learners started with the holiday extension 

programme, completed any of the documentation (questionnaire or workbook with 

reflections), or participated in the focus group discussions, where the voluntary aspect of 

participation and confidentiality of responses were highlighted (Mertens, 2005; Strydom, 

2005). Attendance at the intervention and inclusion in the research sample were both 
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voluntary, and independent of each other. All intervention participants gave informed 

assent and all their parents gave informed consent to be included in the research sample.  

4.8 CONCLUSION 

This chapter started by restating the research questions that guided the collection and 

analysis of data, followed by a description of the sample and the fit for the research design 

to the research questions. Next, an outline of the data collection procedures and types of 

data collected, and a description of the research instruments were given, with emphasis on 

the internal and external validity of the research. Subsequently, I described how Cohen’s 

Kappa coefficient was used as a statistical inter-rater reliability measure to determine the 

reliability of the data. Lastly, the limitations of the study were elaborated on. The results 

and findings of the NVivo analysis will be elucidated in Chapter 5. 
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 DESCRIPTION OF PROGRAMME 

5.1 INTRODUCTION  

The aim of this chapter is to provide a rich description of the problem-based mathematics 

extension programme that resulted in this research. First, the context of the programme will 

be presented by a discussion on the background of the researcher, followed by the 

philosophy of the programme. A short summary of the learners’ school context will then be 

given, having been discussed in detail in Section 2.3. A description of the intervention 

programme will be outlined and followed by a rich description of each day of the 

programme. These descriptions will add to the understanding of how the data was 

interpreted and analysed, which will be reported in Chapter 6.  

5.2 CONTEXT OF THE PROGRAMME 

5.2.1 Background of researcher 

At the time of the research, I worked on mentorship programmes, and I mentored 

mathematics teachers in township schools. This mentorship programme’s focus was to 

impact disadvantaged South African youth through education, and to produce a positive 

ripple effect in the surrounding communities.  

The group of mentors working on these mentorship programmes acts as agents of change in 

disadvantaged communities, by being leaders of school change (Van der Walt, 2016). The 

aims of these school mentorship programmes included assisting in developing social capital 

in poor communities (Taylor, 2020). These programmes have a credible history of bringing 

about change in school management and the quality of teaching in classrooms, and for 

opening opportunities for gifted learners in township schools (Van der Walt, 2016; Jacobs, 

2018).  

Furthermore, the dire situation of STEM (science, technology, engineering, and 

mathematics) education in the majority of South African schools (Reddy et al., 2016) 

prompted the University of the Free State to work towards establishing an innovative, 

independent, STEM Academy on its South Campus, aimed at changing the way teachers are 

trained and the way learners learn to make greater use of PBL that requires higher-order 
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thinking. I was part of the team tasked with researching the feasibility of using PBL in STEM 

education for township learners.  

My beliefs regarding schooling in South Africa challenge the current landscape of teaching 

and learning in South African schools. I agree with Hobden (2005, p. 308) that “there is a 

need to change what is taught and learnt, and how it is taught and learnt”. I am, 

furthermore, in agreement with Jo Boaler (2013), who states that learners must be 

encouraged to imagine, to think, to explore, to collaborate, to investigate, to think critically, 

and to create meaning, and that teachers should be facilitators in a learner-centred and 

problem-based pedagogical approach.  

My background of studying mathematics, applied mathematics and chemistry, coupled with 

my teaching experience in an inquiry-focussed private school, serves as the basis from which 

I approached my mathematics mentoring, as well as my view on teaching as a whole. 

Additionally, one of my mentoring colleagues, a deeper-learning expert, continuously 

challenged my mentoring approaches, to encourage me to improve on the impact I had on 

the limiting environment of South African township schools.  

Lastly, being part of both initiatives mentioned above, working as a mentor who mentors 

mathematics teachers in township schools, and being a member of the team tasked to 

establish a STEM academy, I interacted with learners who showed an interest in science and 

mathematics. The aforementioned team ignited the idea to run a pilot programme to 

evaluate the feasibility of a STEM approach in poorer contexts of South Africa, and to 

evaluate the feasibility of PBL with township learners. Consequently, the conceptualisation 

of a week-long science, English for science, and mathematics programme was initiated.  

5.2.2 Philosophy of the programme 

During the conceptualisation of this programme I, in accordance with my view on teaching, 

used a combination of scaffolding techniques (Van Merriënboer et al., 2003; Hmelo-Silver et 

al., 2007; Wilson & Devereux, 2014) and a variation of teaching methodologies from across 

the constructivist-instructivist continuum (Porcaro, 2011; Stott, 2018). I made sure I was 

sensitive to learners’ cognitive load (Beed et al., 1991; Van Merriënboer et al., 2003), their 

range of abilities, and external factors, such as hunger, which might impact negatively on 
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their learning experiences (Mampane & Bouwer, 2011). Skilful questioning, a scaffolding 

technique, was employed when responding to questions or situations where learners felt 

they were stuck and wanted to give up – this usually occurs when a learner’s cognitive load 

is high (Van Merriënboer et al., 2003). During my prompts and questioning, in accordance 

with the scaffolding approach, I focussed on posing carefully scaffolded questions to skilfully 

guide each learner to succeed as they worked within their ZPD (Vygotsky, 1978; Murphy et 

al., 2015; Wilson & Devereux, 2014). I also decided to use statements that encourage 

growth mindsets (Boaler, 2013), by responding to possibly incorrect or correct learner 

answers with encouragement and prompts to undertake deeper thought. Examples include, 

“you figured out what to do really fast, how did you do it?”, “I remembered a time at the 

beginning of the week when that felt so difficult, now you can do it by yourself”, “Even 

though this was hard, you gave it your best try”, and “You cannot do it yet, but you will get 

it when you practise more” (Video recording; Field notes, Days 1, 2, 3, 5). Additionally, two 

Grade 12 learners volunteered to serve as teaching assistants throughout the duration of 

the programme, thereby increasing the individual attention we were collectively able to give 

the learners.  

One of the three essential features of scaffolding is to determine the learners’ current level 

of knowledge, and then to pitch new content just above that level (Beed et al., 1991). Even 

though I had a certain programme planned, which determined the pitch of instruction at the 

pre-empted level of learner knowledge and competence, I sometimes had to spontaneously 

adjust my teaching speed and content according to the leaners’ needs, which also forced me 

to make changes to lesson time frames. Throughout the programme, I worked to encourage 

each learner to participate in conversations, and to have the confidence to make mistakes, 

since this assists learners to fully engage in the learning process (Hobden & Hobden, 2019). 

When I conceptualised the workbooks, tests, and lesson plans, I was very conscious of the 

requirement that my instructional design should consider the anticipated limited capacity of 

the learners’ working memory (Van Merriënboer & Sweller, 2005). Consequently, I ensured 

that I excluded unnecessary details from the workbooks and presented lessons in a varied 

and learner-centred manner. I avoided all concepts that did not contribute to the learning 

goal, as such unwanted concepts would only increase the extraneous and intrinsic cognitive 

load. I encouraged cognitive linking in my prompts, with comments such as “remember 
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when you tried to use Pythagoras in an obtuse triangle” (Audio-recording, Day 2). These 

approaches were taken with the aim of encouraging the learners to engage in sense-making, 

i.e. to engage in generative cognitive processing, which offers germane cognitive load 

(Kirschner, 2002), through minimising extraneous load and managing intrinsic load. 

During the tea and lunch breaks I played music, danced with the learners, and engaged in 

social conversations. I learnt all the participants’ names, which I hoped made them feel 

valued and heard. This appeared effective as, during the focus group discussion on the final 

day, one of the learners remarked, “it made me feel happy when you learnt our names” 

(Audio recording, Day 5). I also introduced learners to new knowledge through YouTube 

videos, music and creative demonstrations; all of which they would not have experienced in 

their own schools.  

I am aware that this extension programme’s classroom environment and context are in 

stark contrast to classrooms in township schools, but the aim was not to recreate their 

learning environment to see if the learners could respond to new pedagogies within these 

unfortunate circumstances. Rather, the aim was to investigate if learners with limited prior 

exposure to problem-solving approaches and limited mathematical conceptual 

understanding, were able to respond to new learning and teaching strategies.  

5.2.3 Context of learners’ schools  

As discussed in more detail in Section 2.3, township schools such as those that these 

learners attended, rarely promote deep learning (Hugo et al., 2008; Hobden & Hobden, 

2019). The teaching approaches of this pilot programme week and the teaching approaches 

that the learners are used to are incomparable. Therefore, I approached the intervention 

and research with an awareness that even modest learner responses to the programme 

would be noteworthy; I also designed the programme to create opportunities for the 

learners to achieve well beyond the very limited expectations normally imposed on them. 

5.3 THE OUTLINE OF THE PROGRAMME 

The conceptualisation of this weeklong problem-based mathematics extension programme 

was a group effort, which called for input from numerous team members. The aim, 

conceptualisation and detailed planning were brainstormed with two STEM-focussed 
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research colleagues, an Expo specialist, a natural science subject specialist, an English 

subject specialist and me, to conduct the mathematics research. Four assistants were tasked 

with providing additional individual attention to the learners throughout the week. An 

additional person was tasked with administrative duties, such as organising all the catering, 

arranging the buses and transport for the learners, and printing all the programme material. 

One teacher at each school was assigned to act as the liaison between the university and 

the respective schools. Table 5.1 provides a summary of the team that assisted in the 

implementation the holiday programmes.  

Table 5.1: Task team for the weeklong problem-based mathematics extension programme 

Team  Description  

Four subject 
specialists 

One mathematics teacher 

One physical science teacher 

One English teacher (fluent in the learners’ mother tongue) 

One Expo teacher 

Four assistants  Two Grade 12 learners, both with exceptional mathematics, English, 
and physical science proficiency, from other high-quintile schools 
assisted the learners with specific Expo-related or subject-related 
questions 

Two teachers from the learners’ schools attended the sessions to 
assist and possibly gain from the problem-solving which was modelled 

One 
administrative 
official  

One administrative person to organise buses, stationery, catering, 
printing, venue bookings, and Wi-Fi access at the university 

Two additional 
conceptual 
planning team 

Two additional external specialised researchers to assist in 
conceptualising the week-long programme 

Contact person 
at each school 

One staff member at each of the representing schools was 
approached to assist as liaison between the organisers and the school 

 

The learners were bussed in to the University of the Free State from schools in the Motheo 

District (Botshabelo and Bloemfontein township schools) each day; the weeklong holiday 

programme involved six hours of contact time per day, with roughly two hours allocated to 
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each of the three subjects offered: mathematics, science, and English for science. Learners 

received refreshments, and were given homework on Days 1–4, to help them prepare for 

the following day’s work. The work engaged in during each of the three disciplines was 

embedded in the context of investigating factors affecting the maximum height and range of 

a water rocket. The role of the mathematics section of the programme was to enable the 

learners to take appropriate measurements from which they could calculate the rocket’s 

maximum height during flight.  

Problem-based strategies, based on guided inquiry and carefully prepared scaffolding, to 

help learners construct their own knowledge (Anderson, 2002), were used for teaching a 

specific mathematics topic, trigonometry. Not only was this appropriate for the context, i.e. 

for the learners to determine the maximum height of the water-rocket, but it was also an 

appropriate topic for this research, since I was confident that the learners were not already 

familiar with this topic, because, according to the CAPS (Department of Basic Education, 

2011a, 2011b) for mathematics, learners are only introduced to trigonometry in Grade 10. 

The aforementioned ensured that the trigonometric concepts the learners were taught 

were completely foreign and authentic to them. Another reason why trigonometry adds to 

the problem-solving nature of learning is because it requires learners to link triangle 

drawings with numerical relationships and requires them to manipulate symbols included in 

those relationships (Weber, 2008), which learners tend to find extremely difficult (Kamber & 

Takaci, 2018). 

To address the taxing cognitive tasks discussed in the previous chapter, I referred to Stott's 

(2008) conceptualised pedagogical approach. The following steps of the ladder approach 

proposed by Stott (2008, pp. 219-220) describe the implementation of this weeklong 

mathematics extension programme for guiding learners to solve the problem of finding the 

maximum height of the water rocket: 

1. Initial problem engagement: the teacher demonstrates a scale rocket launch and 

guides the learners to realise the scope of the problem and aim of the week, which is 

finding the maximum height of the water rocket. (“This aims to develop learning 

anticipation” (Stott, 2008, p. 219)) 

2. Direct instruction: Guidance is given to assist learners to link with their prior 

knowledge. The teacher, through constant provision of scaffolded guidance and 
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skilful prompts, encourages sense-making by the learners. (“This aims at developing 

procedural knowledge and an understanding of the relevant fundamental 

knowledge, as well as encouraging reflection of this in terms of the problem.” (Stott, 

2008, p. 21)) 

3. Scaffolding worksheet engagement:  

a. Learners individually engage in answering the related questions in the 

Learner Workbook (refer to Addendum F). (“Critical thinking during guided 

self-reflection is aimed for here.” (Stott, 2008, p. 219)) 

b. Learners compare their diagrams and calculations with those of the other 

members of their group. They engage in critical group discussions and choose 

the best answer or sketch to represent their group’s work to the rest of the 

class. (”Critical thinking through critical discourse is aimed for here.” (Stott,  

2008, p. 219)) 

c. The teacher engages in class discussions and encourages further critical 

discussions, to skilfully guide the learners to conclude which answers are 

correct, and also to reflect on why their answers might be incorrect. Then, 

the learners revert to their own individual work to do corrections and reflect 

on their own answers. (“In this way the scaffolding worksheet acts as a 

formative assessment tool.” (Stott, 2008, p. 219))  

4. Repetition of Steps 2 and 3, until all relevant concepts are covered, and learners are 

empowered to confidently move to the next section of the problem or Learner 

Workbook. 

5. Problem task solution: 

a. Learners answer the relevant problem individually, guided by the scaffolded 

Learner Workbook questions. (“This requires learners to use their conceptual 

understanding and procedural knowledge in new and creative ways to solve 

the subsuming problem and doing so requires critical thought.” (Stott, 2008, 

p. 220))  

b. Learners present their calculations, verbally, guided by their individual 

written work, to their group. The group members critique each other, modify 

their answers, and produce an answer that represents their groups answer 
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best. (“Critical thinking through discourse is aimed at here.” (Stott, 2008, p. 

220)) 

c. The teacher assesses and responds accordingly to the different groups’ 

answers.  

The ladder approach was used throughout the five days of the programme. During the first 

three days of the programme (refer to Table 5.2 for the programme and times of the week), 

learners engaged in activities to prepare them to use trigonometry to calculate the height of 

the water rocket. On the fourth day, the water rocket was launched, and data collected and 

analysed to complete the mathematical calculations. On the fifth day, the learners wrote a 

report of the entire investigation process and presented the entire week’s work to their 

peers. The data that is used in this dissertation focuses only on the mathematics teaching 

and learning of this holiday extension programme.  

Table 5.2: The outline of the programme for days 1–5  

Day Science  English  Mathematics  Extension (home) 

Day 1 

Monday 

 

Introduction 
to the 
maximum 
height 
problem 

8:30–9:30  

Introductory 
video 

11:30–13:00 

Pre–test 

Plan 
investigation 

9:30–11:00 

Vocabulary 
relating to 
rockets  

Read article 
about rockets 
and the science 
involved 

13:30–15:00 

Pre-test 

Practical 
demonstration 
and 
investigation 

Linking to prior 
knowledge 

Start thinking 
about height 
calculations 

Science: Go 
through glossary 
and explain ‘What 
is happening: 
Terms and 
concepts’ in own 
words/other 
language/pictures 

Mathematics: 
Prior knowledge 
sums 

Day 2 

Tuesday 

 

Investigating 
Trigonometric 
ratios 

10:30–12:00 

Terms and 
concepts 

12:00–13:00; 
13:30–15:00 

Find key words 

Make mind 
maps 

8:30–10:00 

Triangles 

Investigating 
trig ratios 

Reflection 

Science: Read 
relevant texts: 
Energy, Newton’s 
third law 

Maths: Two 
extension sums 
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Day Science  English  Mathematics  Extension (home) 

Day 3 

Wednesday 

 

Top secret 
information 

8:30–10:00 

Raw and 
processed data 
table 
preparation 

Data 
interpretation 

Hypothesis 

13:30–15:00 

Plan report 

 

10:30–12:00 

Measuring 
angles 

Practical 
activity on 
angle of 
inclination 
(stationary and 
moving object) 

Trig ratios/ 
identities 
application 

Science: Design 
the highest-flying 
rocket possible, 
with reasons 

Maths: two sums 
and prep for 
launch 

Day 4 

Thursday 

 

Launch day 

12:00–13:00 

Evaluate data 

Compare 
hypotheses to 
observations 

 

13:30–15:00 

Write report 

 

 

11:00–12:00 

Capture data 

Calculating 
unknown 
height (of 
vertical launch) 

Line graph 
construct 

Finish report 

Maths: Finish 
graph and think 
about essay 

Day 5 

Friday 

 

Reflecting 
and 
presenting  

8:30–9:30 

Explain 
observations  

Improve report 

Post–test 

– 9:30–10:30 

Post-test 

Essay on 
findings and 
accuracy of 
data 

– 

Source: Modified from Stott (2019, p. 160) 

5.3.1 Day 1: Introduction to the maximum height problem 

The aim of Day 1 was to challenge the learners with the problem of finding the maximum 

height that the water rocket would reach. They needed to be guided to realise that their 

knowledge of the Pythagorean theorem would not be sufficient to do the calculations.  

The mathematics concepts and terminology I emphasised throughout Day 1 were basic 

triangle terminology, right-angled triangles and their characteristics, the fundamentals of 
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the Pythagorean theorem, similar triangles, and terminology relating to the launch (range, 

angle of inclination, launch pad, maximum height, stationary, and observer).  

After an enthusiastic welcome, a video of a NASA rocket launch was shown to ignite 

excitement and anticipation amongst the learners for the week ahead. Then, during the first 

contact session on Day 1, I introduced the concept of launching a rocket with a small-scale 

demonstration, using basic stationery. Throughout my demonstration I focussed on 

emphasising important mathematical terminology (described in the sections to follow) and 

repeating mathematical concepts that are central to the success of reaching the main goal 

of calculating the maximum height that a water rocket could reach during the practical 

launch on Day 4. After my scaled practical demonstration, the learners sketched a 2D 

diagram of what they had observed, after which they compared their individual sketches 

within their groups and answered guided questions (refer to Addendum F, Learner 

Workbook pp. 2–3). Each group decided on the sketch that represents their combined 

understandings best and presented it on an A0-sized piece of paper. This process enabled 

me to identify several misconceptions, which I addressed by guiding the class through a 

discussion of four different representative sketches, which I drew on the chalkboard. I 

guided the learners, using questioning techniques, to the point where they indicated which 

of the four options was the best sketch to represent the scaled demonstration. I then 

directed the discussion to possibilities for calculating the maximum height of the rocket, 

where, as I anticipated, they reverted to the theorem of Pythagoras. I prompted a discussion 

to guide the learners to realise that Pythagoras would not be sufficient for calculating the 

maximum height (refer to the second dialogue in Section 6.2.1.2).  

I continued to link the current launch demonstration with the learners’ prior knowledge of 

similar triangles, since similarity would be a key concept in Day 2’s investigation. I had 

included practise problems in the part of the workbook used on Day 1, where learners were 

required to use Pythagoras to calculate the side lengths of different triangles. Although they 

would not need Pythagoras for calculating the maximum height of the rocket, I deemed it 

important for learners to have a sound knowledge of the Pythagorean theorem, which I 

hoped to develop through requiring them to complete the routine sums given in Addendum 

F, Learner Workbook p. 5. I did this because I believed that, if the learners did not fully 

comprehend why they could not use the Pythagorean theorem to solve the problem of 
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determining the maximum height of the water rocket, they would not be able to realise the 

need for learning a new concept.  

At the end of Day 1, I left the learners with two questions: 1) Can a ratio be written as a 

fraction? I asked this because misconceptions regarding ratios and fractions are known to be 

prevalent (Ramadıȧntı,̇ Prıȧtna, & Kusnandı,̇ 2019), and this would serve as a conceptual link 

between Day 1’s work and Day 2’s work, and 2) How will you calculate the maximum height 

if you cannot use the theorem of Pythagoras? 

5.3.2 Day 2: Investigating trigonometric ratios 

The aim of Day 2 was to prompt learners to realise that the relationship between the ratio 

of similar triangles’ various side lengths are the same if the reference angles in all similar 

right-angled triangles are the same. This contact session was probably the learners’ first 

introduction to trigonometry. My aim was to prompt the learners to find patterns, 

relationships and similarities without any explicit mention of trigonometry. 

Learners revisited, after I prompted them, the terminology of the previous day, by adding 

appropriate labels to the blank diagram on p. 7 of the Learner Workbook (Addendum F). I 

made sure that all learners were comfortable with the relevant terminology to be used, 

since I wanted to prevent unfamiliarity with basic concepts, which would add to learners’ 

cognitive load, since they would need as much mental space as possible to attend to the 

calculations and relations addressed in the rest of the lesson.  

Learners completed the investigation (refer to Addendum F, Learner Workbook p. 8), after 

which I engaged in guided discussions to assist learners to identify the link between, 

specifically, the ratio of the opposite side to the adjacent side of right-angled triangles (0,6) 

with relation to the reference angle of 30o. Learners were then asked to complete the next 

section in the Learner Workbook (p. 9), which required them to make the link between the 

previous and the new exercise; and identify that the new question (2.4) consisted of a right-

angled triangle with a reference angle of 30o, similar to the investigation sums. 

I ended Day 2’s programme by asking the learners to reflect on what they had accomplished 

in only two days. I emphasised how difficult these concepts were and how well they had 

managed to grasp the new mathematics concepts. At the end of Day 1, it appeared that all 
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learners had been convinced that the only way to find the maximum height of the rocket is 

to try and find the lengths of the hypotenuse and the range, so that they could calculate the 

third side (height of the rocket). By the end of Day 2, however, it appeared that many of the 

learners had realised that knowing the size of a reference angle and only one side length of 

the same triangle is sufficient information to calculate the height of a right-angled triangle. 

5.3.3 Day 3: Top secret information  

The aim of Day 3 was (1) to link the concept of ratios and reference angles (learnt in Day 2) 

with the new concept of a varying angle of inclination, (2) to assist the learners to 

understand basic trigonometric ratios, (3) to assist learners to use calculators to calculate 

trigonometric ratios, and (4) to discuss the endeavours of Day 4 (launch day).  

On Day 3, I encouraged reflective engagement by the learners, by only engaging in How and 

When questions. The learners were prompted, through class discussions and completion of 

sums similar to those of Day 2, to identify that the new mathematics concept that would be 

covered on Day 3 would be different from the previous day’s work, in the sense that the 

reference angle (angle of inclination) would not be a constant 30o angle anymore. I set up a 

practical demonstration of a water bottle on a ledge (representing the stationary position of 

the water rocket), a book as the launchpad, and a box at the position of the observer. I 

instructed the learners to sketch what they saw, and from their sketches determine the 

maximum height of the water bottle. The learners were provided with a large wooden 

inclinometer and protractors. This instruction triggered excitement and increased 

anticipation of which group would be able to calculate the correct answers first. I did not tell 

the learners how to use the inclinometer, which encouraged many group conversations and 

practical trial-and-error behaviour by the groups (which will be discussed further in Chapter 

6). Learners were able to construct the correct sketch, but soon realised that the angle of 

inclination is not 30o, which caused a barrier for them to continue with the sum. After all 

learners had reached this point – of not knowing how to continue – I handed them sealed 

envelopes with “top secret information” inside (refer to Addendum F). The enclosed sheet 

introduced and provided guidance for using the basic trigonometric ratios they needed to 

be able to work with any sized reference angle. Learners continued to complete practise 
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examples (Addendum F, Learner Workbook p. 14), where the angle of inclination differed in 

each sum, to enhance their confidence in calculating similar sums on launch day (Day 4).  

I ended Day 3 by encouraging learners to engage in thorough planning for launch day, (1) by 

having clarity about how to measure the angle of inclination of moving objects correctly, (2) 

by identifying the role that each learner in the group would fulfil, to be optimally efficient in 

taking measurements, and (3) by revising all important mathematics concepts they had 

learnt that week.  

5.3.4 Day 4: Launch day 

The aim of Day 4 was to gather data, correctly, to work efficiently as a team, to do precise 

measurements and calculations, and to report on all findings in a scientific manner.  

Before the learners were directed to the launch area, all groups were given the chance to 

reflect on their planning of the previous day. Although all groups were able to say what they 

would be doing when they reached the launch area, it took a bit of effort by the researchers 

to guide the learners to carry out their plans effectively. It is not clear whether this was 

because of the divide between planning and practice, or whether there had been a 

passenger effect, with the leaders having been able to explain what should be done, but 

struggling with the execution, because it required action by all members of each group, 

some of whom had not yet internalised the plan. 

All groups were responsible for their own data and the researchers or assistants did not help 

the learners to collect and manage their data. Instead, the learners were expected to work 

together and help each other if anyone failed to understand something. The learners 

divided themselves into groups: some launched the rocket, some were positioned at the 

observer point with the inclinometer, others captured the data and started with rough 

sketches and calculations, and some evaluated the accuracy of the angle of inclination. A 

high degree of engagement was evident, although there were five of the learners (19%) 

whom I observed not cooperating with their teams.  

All groups were asked to complete their reporting documents (refer to Addendum F, 

Learner Workbook pp. 16–20), and to be ready to present their findings of the launch to the 

rest of the learners on the final day of the programme. 
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5.3.5 Day 5: Reflecting and presenting  

The aim of Day 5 was to give learners the opportunity to present their findings and to reflect 

on the intervention of the past week, and to emphasise that science and mathematics are 

enjoyable and engaging subjects. 

At the start of Day 5, learners all wrote a post-test in both science and mathematics. Next, 

learners presented their findings in a scientific manner. This was done in the format used in 

the Expo for Young Scientists Science Fair. Each learner had a poster board, on which they 

pasted their investigative report (reported on in greater detail in Stott, 2019), which 

included their calculations of the maximum height of the rockets launched under various 

investigated conditions. The learners were randomly paired with one another and required 

to deliver a verbal presentation of their work. Several adults, including all the teachers 

involved in the programme, and others invited to view the presentations, walked around 

the presentations, engaging with the learners. After this, the learners engaged in focus 

group discussions, after which we ended the week with lunch, took photographs, and 

engaged in informal social conversations.  

5.4 CONCLUSION  

In this chapter, I described the context of the intervention programme, the philosophy of 

the programme, and my background and philosophy of teaching. I presented the detailed 

programme of the week, followed by a description of the aims and activities of each of the 

five days. This was a weeklong, problem-based, mathematics-focussed programme, aimed 

at skilfully guiding learners to inductively employ basic trigonometric ratios in taking 

measurements and performing calculations to determine the maximum height a water-

launched rocket could reach. The focus shifted from Day 1 to Day 2, from revising basic 

triangle characteristics and the Pythagorean theorem, to investigating the relation between 

side-length ratios to various, constant 30o reference angle triangles. Then, on Day 3, the 

focus expanded to include triangles with varying reference angles, and learners’ new 

conceptual knowledge of trigonometric ratios was implemented. On Day 4, the focus 

continued to expand, by including all concepts learnt the previous three days and applying 

theory to practice on launch day. The last day’s focus was on presenting all findings in a 
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scientific manner and reflecting on the experiences of the past week. In the next chapter, I 

will analyse and interpret the Grade 8 and 9 township learners’ responses to this problem-

based programme in accordance with the theoretical framework outlined in Chapter 3 and 

guided by the study’s research questions.  
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 ANALYSIS AND INTERPRETATION OF FINDINGS 

6.1 INTRODUCTION  

The analysis of data in this study will be formulated to answer the general research question 

and associated sub-questions listed below, and to present evidence for assertions made in 

response to these questions. The general research question is: 

How do grade 8 and 9 township learners respond to a problem-based 

mathematics extension programme? 

With the abovementioned question in mind, the study unfolded in accordance with the 

following subsidiary questions, based on the MPS framework (refer to Section 3.4):  

a) How do learners engage in the cognitive components of problem-solving? 

b) What are learners’ affective responses to the programme? 

6.2 ENGAGEMENT IN COGNITIVE ATTRIBUTES 

In the following section, I will present four assertions based on the data collected. I provide 

arguments in support of these assertions, by drawing on literature and empirical evidence. 

The assertions collectively answer the research questions in Section 6.1.  

6.2.1 Resources: Assertion 1 

The learners showed evidence of employment of resources, many instances 

of which were incorrect, but they generally needed to be prompted to do 

so.  

6.2.1.1 Employing resources 

The coded evidence of resources evident over the course of the programme is displayed in 

Table 6.1, which reports evidence of procedural knowledge, wrong knowledge, conceptual 

understanding, misconceptions, technology use during calculations, and written materials, 

when learners referred to textbooks or notes. In mathematics, procedural knowledge 

relates to the ability to apply the correct algorithms during the problem-solving process 

(Byrnes & Wasik, 1991), and conceptual knowledge refers to understanding of concepts, 
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principles, and relationships (Hiebert & Lefevre, 1986). Therefore, my understanding of a 

misconception is that it is an incorrect representation of a mathematics principle or 

concept. Wrong knowledge and wrong procedures are understood as being evidenced when 

learners were observed to use algorithms incorrectly or making careless errors. Although 

learners displayed evidence of using resources (refer to Table 6.1), the most remarkable 

finding is that learners were comfortable about making mistakes, such that they did not 

show signs of fear of failing in attempting new ways to solve the problem, which is in 

contrast to what the literature reports, as will be discussed in the next paragraph. 

Table 6.1: Coded evidence of resources  

Code Description of code Number of codes 

RK Knowledge, facts, and procedures 44 

RKN Wrong knowledge and procedures 52 

RC Conceptual understandings 22 

RCN Misconceptions (negative/opposite of RC) 19 

RT Technology 7 

RW  Written materials 10 

Source: Terminology of codes from Carlson and Bloom (2005, p. 51) 

Table 6.1 indicates that, during the employment of resources, there were, in total, 154 

coded pieces of evidence, of which 46% referred to errors, i.e. wrong knowledge (52 codes) 

and misconceptions (19 codes). The coded evidence for knowledge, wrong knowledge, 

misconceptions, and conceptual understandings can be broken down further, as displayed 

in Table 6.2.  
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Table 6.2: Breakdown of daily coded responses of knowledge and conceptual understandings 

  
Day 1 Day 2 Day 3 Day 4 Day 5 

Total 
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Knowledge, facts, and procedures 3 2 4 3 5 6 8 2 11 0 44 

Wrong knowledge and procedures 0 8 2 7 9 6 10 4 6 0 52 

Conceptual understandings 0 2 1 4 1 5 1 3 2 3 22 

Misconceptions (negative/opposite of 
RC) 1 4 1 3 2 2 0 2 1 3 19 

 

As shown in Table 6.2, no evidence of errors could be found in the learners’ workbooks on 

Day 1, although some errors were evident in the audio and video recordings (8). This finding 

is consistent with that of Hobden and Hobden (2019), who found that learners from 

township schools tend to wait for their teacher to give the correct answer, which they copy 

into their books, to provide immaculate work. Although the book is immaculate, it does not 

reflect the learner’s true sense of understanding and knowledge and does not allow for the 

vital process of error-making in the learning process (Hobden & Hobden, 2019). There was, 

however, an increase in coded evidence of errors in workbook data sources of learners over 

the course of the week, as shown in Table 6.2.  

An increase in coded evidence was observed, generally, though the coded evidence of 

conceptual understanding in workbooks was low throughout the week, since it was difficult 

to deduce conceptual understanding from the learners’ written work – they might have, for 

example, copied work from a peer. The aforementioned finding is consistent with the 

findings of Van der Berg, Spaull, Wills, Gustafsson, and Kotzé (2016), who found that 

learners at township schools usually show very little to no evidence of conceptual 

understanding and knowledge. The TIMMS results also indicate that mathematics 

knowledge and understanding of most South African learners are extremely poor (Reddy et 

al., 2016). A low level of content knowledge and conceptual understanding was evident in 

this study’s findings (Workbooks, audio recordings, video recordings, fieldnotes), which 
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shows that these learners are, indeed, novices, who experienced high cognitive load due to 

limited working memory (Schmidt et al., 2007).  

In the following two paragraphs, examples will be presented from the qualitative data to 

support Assertion 1. Many misconceptions were evident throughout the programme. The 

misconception indicated in Figure 6.1 was evident in 17 (65%) of the learners’ pre-tests for 

question 1b. This shows that the majority of the learners could not distinguish between 

different measurement units. These learners used the side length of the triangle and the 

angle sizes in one linear equation, which shows that the learners did not realise that 

addition or subtraction cannot be performed using unlike units.  

 

Figure 6.1: Example of the misconception that unlike units can be added 

Another misconception, indicated in Figure 6.2, was evident for 11 of the learners (42%), 

who did not know the mathematical meaning of an equation, in the sense that they viewed 

the equals sign as a symbol that separates a problem and the answer (Kieran, 1981). The 

example below indicates that the height, which does not even relate to the question asked, 

is equal to 48, which is also equal to 107 m, and also equal to 5 136, thus, this learner 

claims, ℎ = 48 = 107 𝑚𝑚 = 5136 = 5136 ÷ 107 = 48.  

 

Figure 6.2: Example of the misconception regarding equations 
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In addition to the two examples illustrated in Figures 6.1 and 6.2, from the pre-test, I 

detected an increase in misconceptions and wrong knowledge in the written work from Day 

1 to Day 4 of the programme (see Table 6.2), which suggests that learners may have started 

to feel more comfortable about making mistakes in their written work. This finding may 

suggest that the learners developed an appreciation of the value of mistakes during the 

problem-solving process from the start to the end of the programme. Even though making 

mistakes is a crucial part of the learning process, and learners need to have the freedom to 

make mistakes (Boaler, 2013; Hobden & Hobden, 2019), making mistakes is not encouraged 

in township schools (Hobden & Hobden, 2019). 

6.2.1.2 Generally needed to be prompted 

Throughout the course of the week, I frequently prompted learners to explain their thinking, 

by asking Why and How questions (refer also to the dialogues in Section 6.2.1.2), to assist 

learners with developing conceptual understanding, or to identify the limits of the learners’ 

mathematics knowledge. Learners at township schools generally show evidence of limited 

mathematics knowledge (Van den Berg et al., 2016), which emphasises the central role a 

teacher should play in providing scaffolded prompts and guidance to assist learners to 

engage collaboratively in constructive processing of knowledge (Hmelo-Silver & Barrows, 

2006).  

On Day 1, I set up a physical demonstration of the water rocket, using general stationery to 

imitate the launch. Learners had to individually represent what they saw on a sketch in their 

workbooks (refer to Addendum F, Learner Workbook, p. 2). After walking around in class, I 

identified four different types of schematic representations given by the learners. I redrew 

the four sketches on the blackboard, without identifying which learners’ sketches each was. 

I led the class through a discussion, in which we critically analysed each sketch and 

identified the sketch that represented the demonstration best. The following discussion 

took place: 

Teacher Now, in general, everyone displayed the same type of shape. What was 
it? 

Class Triangles. 
Teacher Yes, a triangle. Now, why do you think that triangles would help us in 

finding the height? 
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Class [silence] 
Teacher What do you know about triangles? What theorems can be used when 

working with triangles? 
Learner A Oh! The theorem of Pythagoras. 
Teacher Why? 
Learner B It will help us find the height. 
Teacher Can we only determine the height? 
Learner C No. 
Teacher Please explain why you disagree. 
Learner C You can use it to measure any side. 
Teacher Ok, listen to what you are saying. You are saying that the theorem of 

Pythagoras is used to measure any side. Do you all agree? 
Class Yes. 
Teacher [frowning and squinting] 
Class [silence] 
Teacher To measure? 
Learner B Oh no! Not to measure; you use it to calculate the side lengths. 

 

The discussion above illustrates the important role of the teacher in providing guided 

prompts to skilfully address wrong knowledge and misconceptions, and how learners should 

express what they mean. The predominant answering method used in township schools is 

the chorus method (Hoadley, 2018), which is exemplified by the class’ response of 

“triangles”, or “yes” in the extract above. This method is not conducive to individual 

reflection or metacognitive engagement (Hugo, 2019). I often reminded the learners to be 

prepared to justify their answers. I would regularly give prompts, like,  

Guys, can you see that, as scientists, which you are this week, you need to 

be careful and choose your words well. You always need to be able to give 

proof of what you have based your decision on. 

The brief answers of the learners, as exemplified in the dialogue above, are typical of the 

findings throughout the data: they only justified their answers after prompting by the 

teacher. At the beginning of the week, there were many sections of teacher-learner 

dialogue in which the whole class responded to the teacher’s questions with silence, 

possibly since these learners were not used to being expected to answer non-recall 

questions (Hugo et al., 2008). However, it appeared to me that, towards the end of the 

week, there were fewer silent responses when I asked questions.  



 

79 

 

The conversation below illustrates how I guided the learners to realise that the theorem of 

Pythagoras would not be sufficient to determine the height if one of the three side lengths 

is known. I endeavoured to regularly model reflection and questioning behaviour, as shown 

in the first section of the conversation below.  

Teacher Ok. Now, let us just pause and examine what we have and what we can 
measure. If you think of the theorem of Pythagoras, at least how many 
side lengths of the triangle do you need to find the length of the unknown 
side? 

Class Two. 
Teacher So, at least two of the tree sides are necessary to work with the theorem 

of Pythagoras? 
Class Yes. 
Teacher So, will we be able to measure the range? 
Class Yes. 
Teacher [encircles the range and draws a tick next to it] Yes. And what about the 

hypotenuse? 
Class Yes. 
Teacher Will we be able to measure the hypotenuse with measuring tape? 
Class [silence] 
Learner C No, that is impossible. We will measure the height. 
Teacher Ok, how will you do that? 
Learner C Measuring tape. 
Teacher And if your rocket goes to the moon? 
Learner C [laughs] 
Teacher Come on fellow scientists, jump in and help us. 
Learner D We cannot measure the height and the hypotenuse. It is impossible. 
Teacher Oh goodness me. What now? 
Learner D We can only find one of the three sides. 
Teacher What does that mean? 
Learner D Pythagoras will not work. 
Teacher Oh no! Now what now? I think we should just give up. 
Class [shouts] No! 
Teacher But this is a big problem. You only know how to use Pythagoras, and it 

cannot help us. We have a huge problem. Or no, actually, you have a big 
problem. Because at the end of the week you will have to solve this to be 
able to launch our rocket and I am not giving any answers. 

Class [laughs and makes cringing expressions] 
Learner D  We will have to find a new way. 
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Most of the responses in the conversation above came from top achievers. The aim of this 

discussion was to assist learners to realise that finding the maximum height requires more 

than using Pythagoras. I had initiated this discussion because I had anticipated that learners 

would revert to the Pythagorean theorem for solving this question. However, simply 

conducting this discussion was clearly insufficient for some of the learners to realise the 

need for additional learning, as suggested by three learners’ body language and comments 

immediately after the discussion above, which suggested that they thought their current 

knowledge was sufficient to solve the problem (Fieldnotes, Day 1). This is consistent with 

the reasons proposed by Marais, Van der Westhuizen, and Tillema (2013) for why learners 

avoid asking for help: (1) not caring about the answer, which refers to a lack of engagement 

from the learners’ side; or (2) ignorance, which refers to a lack of metacognitive awareness 

that they are in need of assistance. Teachers need to be able to identify these queues and 

channel the reasoning and thought processes of learners, in order to contribute to 

meaningful learning. 

6.2.2 Heuristics: Assertion 2 

The learners displayed a diverse repertoire of heuristics, but generally 

needed to be prompted. 

6.2.2.1 Variety of heuristics  

As shown in Table 6.3, the learners presented evidence of using a wide variety of heuristics 

throughout the week. The qualitative descriptions given in Sections 6.2.2 and 6.2.3 provide 

further support for my claim that learners used a variety of heuristics. The seemingly low 

number of counts per heuristic in Table 6.3 may be caused by several factors, and it should 

be borne in mind that  (1) the data collection method was not well suited to accessing the 

learners’ cognitive processing, since participant observation, instead of think-aloud 

protocols, were used, consistent with the pragmatic, intervention-focussed approach taken, 

furthermore, (2) as explained in Section 4.6.1, counts of evidence of heuristics were 

consolidated in the analysis process, so that it only reflected once per learner group, and 

across data sources. It should be pointed out, however, that, since learners largely worked 

in groups composed of learners with a range of mathematics abilities, it is highly likely that 
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the data that was collected does not represent the activities of all the members of each 

group. 

Table 6.3: Number of true coded instances of evidence of heuristics 

Code Description of code Number of instances of 
true evidence 

HT Constructs new statements and ideas 4 

HP Carries out computations 3 

HR Accesses resources 1 

HW Works backwards 1 

HO Observes symmetries and similarities  2 

HS Substitutes numbers 4 

HM Represents situation with a picture, graph, table, or 
action/movement 

5 

HC  Relaxes constraints or generalises the problem 1 

HD Subdivides the problem 1 

HA Assimilates parts into whole or adds the subdivided 
parts to make sense 

0 

HL Alters the given problem so that it is easier 1 

HE Looks for a counter example 1 

Source: Terminology of codes from Carlson and Bloom (2005, p. 51) 

The learners’ use of multiple heuristics is in stark contrast to the passivity known to typify 

South African township learners (Fish et al., 2017; Hoadley, 2018). In fact, the number of 

heuristics listed in Table 6.3 even contradicts the limited heuristic use found during 

problem-solving by learners of high quintile schools (Hobden, 2000). However, the learners’ 

use of multiple heuristics is consistent with studies of learners engaging in discovery 

learning, where ample time, appropriate resources and a supportive environment are 

involved (Veermans, Van Joolingen & De Jong, 2006). Under these conditions, learners have 

been shown to display a natural creativity and curiosity (Goldenberg, 2019). Such conditions 
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are not typically present in South African schools, particularly township schools. Given the 

general low mathematics content knowledge of teachers in township schools (Taylor, 2019; 

Van der Berg et al., 2016), and the content-heavy curriculum and focus on high-stakes 

examinations in the South African context in general (Stott & Hobden, 2008), it is 

unsurprising that low heuristic use is typical amongst South African learners. These 

conditions in South African schools are not conducive to the time and energy-consuming 

and knowledge-intensive process required to promote higher-order thinking skills (Stott, 

2008), which include problem-solving heuristic use (Singh et al., 2018). Teachers in township 

schools are known to have very limited expectations of learners, with Hugo et al. (2008) 

failing to find evidence of question-posing beyond the recall level of Bloom’s taxonomy 

(Anderson & Sosniak, 1994). Although teachers in high quintile schools do tend to expect 

learners to answer higher-order questions (Hugo et al., 2008), their approach to problem-

solving instruction tends to involve modelling a limited variety of heuristics for the learners 

to copy, rather than prompting learners to generate their own heuristics in an exploratory, 

problem-solving manner (Hobden, 2005). 

6.2.2.2 Generally needed prompting (guidance provided, and heuristics modelled)  

Modelling and prompting the use of heuristics encourages higher order thinking during the 

problem-solving process (Snyder & Snyder, 2008). I experienced that, as I did this, initially, 

the learners displayed behaviour typical of literature descriptions of township learners (for 

example, that by Hoadley, 2018). However, by the end of the first day, the discussions I 

observed in two of the four learner groups displayed evidence of heuristic use (Field notes, 

Audio recording; Day 1). As the week progressed, more instances, and a greater variety, of 

heuristic use was evident in the data. For 14 of the learners, no evidence of heuristic use 

could be found in the data. For the remaining 12 learners, heuristic use can be classified 

along initiation and efficacy dimensions as follows. On the initiation dimension, heuristic use 

was either guided or spontaneous. On the efficacy dimension, heuristic use can be described 

as having been fruitful or unfruitful. By guided use of heuristics, I refer to learners mimicking 

a teacher-modelled heuristic when prompted to do so, as opposed to learners making self-

directed heuristic choices, referred to as spontaneous heuristic usage. By fruitful heuristic 

use, I refer to learners employing heuristics that progressed their solution in a meaningful 

manner. Although spontaneous heuristic use was observed for nine of the learners, this was 
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never fruitful, whereas guided heuristic use was mostly observed to be fruitful. For three of 

the learners, fruitful spontaneous use of heuristics was evident by the end of the week. In 

the sections to follow, I will discuss guided heuristic responses and spontaneous heuristic 

responses. 

a) Guided heuristic response 

The following description illustrates learners’ use of guided heuristic responses. This 

occurred on Day 2, after I had shown the learners a demonstration of a scale model of the 

launch of the water rocket that formed the context of the programme. I asked them how 

they would calculate the rocket’s maximum height. There was general agreement amongst 

the learners that Pythagoras could be used, revealing the misconception that the 

Pythagorean theorem can be used to calculate the length of an unknown side given only the 

length of one of the sides of the triangle.  

I then spent 17 minutes modelling, observing symmetries, generalising constraints, sub-

dividing the problem, and asking guided questions to assist the learners to alter the given 

problem, to make it easier. After another 8 minutes of discussions, two learners commented 

respectively, “oh, this is not so easy”, and “Pythagoras will not work” (Video recording, Day 

2). This indicated that these learners had realised their initial error. All learners were asked 

to think about the error and possible ways to solve the problem for homework.  

The following day, the learners had to complete the investigation worksheet in their 

workbooks on page 8 (refer to Addendum F), which guided them to investigate the ratio 

between different triangles’ interior angles and side lengths. This investigation was designed 

to prompt learners to realise that right-angled triangles of particular reference angles have 

constant side-length ratios. I had not highlighted this fact before, and since trigonometry, 

which rests on this premise, is only introduced by the South African curriculum in Grade 10 

(Department of Basic Education, 2010), it is extremely unlikely that these Grades 8 and 9 

learners were aware of this relationship at this point, nor did I point out to the learners that 

this investigation was related to the practise problem (refer to Learner Workbook p 9, in 

Addendum F).  

The targeted outcomes of the practise problem included that the learners would be able to 

1) identify the similarities between the practise problem and the previous day’s 
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investigation, by identifying that all triangles used have a reference angle of 30o, and that 

there was only one side length provided for all triangles, and 2) identify symmetries and 

apply this, to set up an equation to assist in finding the hypotenuse. None of the learners 

could identify the similarities between the practise problem and the investigation on their 

own. After three minutes of letting the learners grapple with the practice problem, I asked 

the following question: “Compare the sums of yesterday and the sum of today; what is 

exactly the same? Do not answer yet, if you find it, draw a circle around the numbers of 

shapes or questions which are exactly the same.” During the next five minutes learners 

paged back and forth in their books, 11 learners started writing, and others (15) sat quietly, 

waiting for me to give the next step. It appeared to me that the top-achieving learners were 

the only ones with their heads down, writing. I walked around the class and saw that those 

learners who were writing were either setting up equations, or copying the ratios to the 

practise problem, and most of the other learners had only circled the 30o angle and seemed 

to be stuck – they could not continue. Then, I discussed the reason for identifying 

similarities, by emphasising the link of similarity and setting up an equation. I showed the 

learners on the blackboard how to plug values into an equation and instructed them to set 

up an equation with aspects similar to that of the sums. This still seemed to be too difficult a 

task for the learners. I realised that the learners still needed to link the 30o angle with the 

ratio of 0, 6 ( 6
10

). This ratio is the tangent ratio when the reference angle is equal to 30o. 

After a class discussion, consensus was reached that an equation should be set up, and this 

equation would only work for a reference angle of 30o in both triangles. I guided the 

learners further with questioning techniques to the final derived equation of  𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

= 6
10

. 

This guidance appeared to be sufficient for the learners to complete the calculation and 

determine the maximum height of the practise problem, since I observed many learners 

smiling, grabbing their pens, and writing.  

Even though learners were able to substitute the values correctly into the equation, the 

majority (14 learners) could not perform the basic procedure of making the numerator of 

the fraction on the left-hand side of the equation the subject of the equation. I then spent 

another 8 minutes revising the concept of making a certain value the subject of the 

equation, after which learners used this procedural mathematics knowledge to complete 

the equation. When all learners indicated that they had completed the sum, I did the sum 
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on the board, demonstrating and talking my way through my actions of finding similarities, 

substituting, and carrying out computations. All the learners seemed to have performed 

calculations correctly, because, when I asked who had the answer correct, everyone put up 

their hands. However, when I marked their workbooks, four learners had not corrected their 

incorrect answers, which indicated that they were either not paying attention, or they were 

too shy to confess that they could not do it.  

The example discussed above describes the way I guided the learners with scaffolding 

techniques and skilful questioning, in an attempt to serve as an expert collaborator, and as a 

resource of additional working memory space for the learners to access, thus, reducing the 

individual cognitive load required for the learners to manage a solution (Kirschner et al., 

2018). The description also suggests that the learners were operating in their ZPD (Wilson & 

Devereux, 2014), since they were unable to make progress without my guidance, but 

generally responded well to this guidance. I modelled the use of the following heuristics: 

observe symmetries and similarity, substitute numbers, and carry out computations. At very 

specific times, I prompted the learners on exactly how to use these heuristics to be able to 

get to the next step in their calculations. In this example, 22 learners showed evidence of 

fruitful heuristic use, after being prompted. 

b) Spontaneous heuristic response (guidance provided, but no heuristics 

modelled) 

An example of a spontaneous heuristic response occurred on Day 3, during the practical 

activity (refer to Learner Workbook, p. 12), when learners were given big, manual 

inclinometers, without being told how to use them. None of the learners knew what an 

inclinometer was. I gave the instruction: “Each group can get one of these special tools to 

possibly help you. Discuss in groups and let’s see if you can use it effectively to determine 

the maximum height” (Video recording, Day 3). Whilst learners were trying to figure out 

what this new tool was, I placed a water bottle on a ledge, to indicate the position of the 

water rocket when it has reached its maximum height. I told the learners that, at this 

instant, I had stopped time to assist them to form a picture of how the maximum height can 

be calculated. I also told the learners where the launch pad was positioned and reminded 

them that the observer is situated at the launch pad. This practical activity is a smaller-scale 

example of what would be happening on Day 4 (launch day), and a bigger-scale example of 
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the first demonstration of a water rocket launch on Day 1, when I had used a highlighter and 

eraser to represent the rocket and launchpad.  

 

Figure 6.3: Learners of all groups working together to try find the hypotenuse length  

I asked the learners to use their inclinometers to assist them to find the maximum height of 

the water rocket. All the learners wanted to measure the hypotenuse side of the imaginary 

right-angled triangle formed with the simulated rocket and launch pad serving as apexes, 

which indicated a misconception – some of the learners reverted back to the idea that 

Pythagoras should be used to calculate the maximum height, and that they expected a 

rocket to remain stationary mid-air. To measure the hypotenuse side, learners tried to 

position all the inclinometers end to end, as shown in Figure 6.3. All the groups 

spontaneously started working together to do this, and it was evident (Video recordings; 

Fieldnotes, Day 3) that the learners started questioning each other about whether this 

method was actually feasible, because one learner asked why they would need an angle of 

inclination if they could just determine the hypotenuse (Fieldnotes, Day 3).  

At this moment, I stepped in and started reflecting on the feasibility of using the 

inclinometer. I, first, asked them if they would be able to use this method the following day, 

highlighting the fact that they would not be able to stop time. I asked the following guided 

questions to indicate their incorrect use of the inclinometer: “Why do you think this tool can 

be adjusted?”, and “Do you think that this tool can maybe also point at the maximum 

height?” (Fieldnotes; video recording, Day 3). After hearing this, a learner jumped up and 

said: “it can be used here [standing on the launch pad], it will point”, then another learner 
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said, “we can then measure [this] angle, because this is what we need” (Video recording; 

Fieldnotes, Day 3). This led to the learners trying to work with the inclinometer, as 

illustrated in Figures 6.3, 6.4 and Figure 6.5. 

 

  

Figure 6.4: Learners measuring the angle of 

inclination 
Figure 6.5: Learners discussing the unknown 

height problem 

One group (shown in Figure 6.4) correctly measured the range and angle of inclination, and 

substituted their values into the equation of the previous problem activity (refer to Learner 

Workbook p. 9), where the ratio was 0,6. The learners did not realise that this would not 

give the correct answer, because that ratio is only applicable to 30o reference angles. The 

learners in this group even checked their answers, by working backward, but still did not 

realise that they did not incorporate the angle of inclination as measured. This showed the 

spontaneous use of the following heuristics, albeit unfruitful in their efforts: 1) substitution, 

and 2) works backward.  

Another group (shown in Figure 6.5) did physical demonstrations of how the rocket would 

be launched, and how the observer would open the inclinometer to indicate the point 
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where the rocket would reach the maximum height, using their arms, hands and a variety of 

stationery. After the learners had spoken to one another within their group, they were 

observed to run back to their group’s table and demonstrate the 3D display of the water 

rocket, on a 2D surface, for them to collaboratively redraw the triangle on paper. They 

paged back to the previous sections of their workbooks, and started discussing the previous 

day’s problem activity, in what appeared to be an attempt to find similarities. This group 

seemed to realise that they could not use the ratio of 0,6, since one of the learners started 

arguing with another group member, pointing at the 30o angle and the angle of inclination 

which they had measured as 70o. This group then tried to change the 70o proportionally, to 

reduce it to 30o, and then started multiplying and dividing with various (incorrect) values 

(Fieldnote, Day 3). When I asked them what they were doing, they said they wanted to get 

the angle of inclination to 30o to work with the previous day’s equation. This group’s final 

answer was incorrect; thus, they were unfruitful, but showed spontaneous use of the 

following heuristics: 1) Represents situation with an action, 2) observes symmetries and 

similarities, and 3) substitutes numbers. 

My findings agree with Anggrianto, Churiyah, and Arief (2016), who suggest that using 

heuristics develops a learner’s critical thinking skills. A teacher can promote learners’ 

development of these critical thinking skills through using scaffolding, guided worksheets, 

and prompting (Stott, 2008). As discussed in Section 2.3.3, this type of prompting is not 

common in township schools, which is why it was expected that learners would need 

regular scaffolded guidance, and prompting, since these learners are not used to being 

expected to engage in higher-order thinking (Stott, 2018). It is likely that these learners do 

not possess the necessary space in their working memories to be able to solve the problem 

posed unaided. This is because their novice status and associated inability to chunk 

information (Kirschner, 2002), would have caused them to experience a high intrinsic load 

from the problem-solving process. Scaffolding of tasks reduces cognitive load (Belland, Kim, 

& Hannafin, 2013), and collaboration between peers and the teacher allows pooling of 

cognitive resources, thus, extending the effective size of working memory (Kirschner et al., 

2018).  

Those learners who exhibited spontaneous heuristic use were the highest achievers in the 

sample. This is consistent with cognitive load theory, since academically stronger learners 
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tend to have better organised knowledge structures, and, therefore, experience the 

limitations of working memory to a lesser degree than weaker learners do (Kirschner et al., 

2018). 

The following features of the programme appear to be relevant to understanding why the 

learners were able to display a variety of heuristics, despite this practice being largely 

foreign in the context of township education: (1) This programme did not focus on test 

scores and on curriculum coverage; and (2) I incorporated and prompted the use of 

different heuristics in my teaching. It should be noted, however, that most of the evidence 

of heuristics involved responses from higher achieving learners within this already higher 

achieving sample of township learners, which poses a limitation on generalisation of these 

assertions to the broader population of township learners, or even the population of higher 

achieving township learners.  

6.2.3 Monitoring: Assertion 3 

Across the intervention period, the learners responded to the teacher’s 

modelling of monitoring by increasingly posing Why and How questions 

but appeared unable to apply this to direct engagement in iterative 

problem-solving.  

6.2.3.1 Teacher modelled monitoring across the programme  

Throughout the course of the week, I focussed on using teaching prompts, such as 

questioning, by asking How and Why questions, since it is known that using task-appropriate 

elaboration during the problem-solving process may promote problem-solving success 

(King, 1991), and may assist in keeping the learners’ minds engaged in the problem-solving 

process (Carlson & Bloom, 2005). Meaningful engagement does not only refer to good 

communication between the teacher and the student, it also relates to the quality and 

intensity of learner participation in the problem-solving process. Meaningful engagements 

are influenced by the type and quality of teacher prompts, including questioning (Khoza & 

Nyamupangedengu, 2018). Throughout the course of the programme, I aimed to implement 

the programme in a manner consistent with literature on best practice, namely 1) to skilfully 

assist the learners’ thinking processes, in order to reduce the learners’ cognitive load 
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through scaffolding and asking guided questions (as described in Sections 6.2.1 and 6.2.2); 

2) to avoid giving the learners direct answers, which would have converted the task from a 

problem to a routine exercise, which no longer required the learners to operate within their 

ZPD (see, for example, the first dialogue in Section 6.2.1.2), and 3) to model metacognitive 

behaviour with the hope of encouraging the learners to mimic my behaviour. Table 6.4 

indicates the large number of questions I asked throughout the programme.  

Table 6.4: Number of How and Why questions asked by the teacher and learners throughout the 

course of the week 

 
Day 1 Day 2 Day 3 Day 4 Day 5 

Teacher's count of How and Why 
questions throughout the week 62 51 55 29 33 

Learners' count of How and Why 
questions throughout the week 2 9 16 4 2 

 

A high count of coded data for teacher questioning was recorded for Days 1–3, since these 

days were mainly focussed on guiding the learners through difficult problem-solving 

scenarios related to finding the maximum height of the rocket – extreme effort from my 

side was needed to make sure the learners stayed actively engaged. The reason for the 

decrease in recorded teacher questions on Days 4 and 5 was limited data being captured on 

these days because of limited video and audio recordings being done on these days, since 

Day 4 was launch day and Day 5 was mainly spent reflecting on the week, and writing pre- 

and post-tests. This change in data collection pattern is consistent with the pragmatic 

paradigm that was used (Plowright, 2011) and is, therefore, not considered to be a failing of 

the research design. However, it is important to interpret the findings consistently with the 

method used. 

6.2.3.2 Learners increasingly adopted Why and How questioning  

From Table 6.4 it is evident that the learners’ use of How and Why questions increased from 

Day 1 to Day 3, for which the amount of data collected is comparable. My experience of 

interacting with the learners was that this increase continued to Days 4 and 5, however, as 
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explained in the previous section, this interaction was not captured in the data, given the 

different focus of the intervention, and, consequently, forms of data collection during these 

days. During the focus group discussions on Day 5, several incidents were recorded of 

learners reflecting on their experiences of questioning. However, these incidents were not 

coded as evidence of asking How and Why questions, since learners did not actually pose 

such questions in this data. I suggest that learners’ increased use of How and Why questions 

was related to the fact that I had modelled such questions so extensively throughout the 

week.  

The following extract of dialogue between two learners occurred when a more gifted 

learner explained to one of her peers how she had arrived at the correct answer to an 

investigation from which they should have concluded their general findings on the 

relationship between the side length ratios of a triangle and the size of the reference angle 

(refer to Figure 6.6). The learners should have used these findings as a prompt to complete 

the succeeding (refer to Figure 6.7) problem-solving exercise.  

Learner A:  I think this is right. Because I looked at this sum [pointing to previous table in the 

investigation as seen in Figure 6.6] and it looked the same as this one [pointing at 

the current sum’s 30o angle as seen in Figure 6.7]. I saw that [reading from her book 

– refer to Figure 6.6] even though the sides are not the same, when we round off to 

one decimal place, they [are] equal, because they all have 90o angles and their 

reference angle equals 30o. They are all similar sides. 

Learner B:  But how? You cannot use it for all sums  

Learner A: Why not, it works for all 30o triangles? 

Learner B: But this is a bigger triangle [referring to the side lengths of question 2.4 in the 

Learner Workbook) 

Learner A: If you look at the table, all these answers are the same [pointing to the investigation 

table on page 8 of the Learner Workbook]. Then I made my equations the same and 

worked with same ratio of 0,6. 
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Figure 6.6: Learner A's completed investigation (Learner Workbook, Day 2) 

 

Figure 6.7: Learner A’s problem-solving exercise 2.4 (Learner Workbook, Day 3) 

The dialogue above is an example of learners engaging in a dialogue in which one learner 

questions the work of the other. It is noteworthy to state that Learner B did not accept that 

Learner A was correct. Because Learner A’s solution did not make sense to Learner B, he 

questioned Learner A’s calculations. Learner A was so confident about her answer and 

findings that she immediately responded with reasons why her calculations were correct.  

During the focus group discussions on Day 5, learners were divided into three groups, with a 

maximum of nine learners per group. Various reflection questions regarding their 

experiences of the programme were asked. I will identify some noteworthy responses. 
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I asked the learners how they experienced the large amount of questioning that they were 

introduced to, and what they had learnt from it. The following responses were recorded 

(Audio recorded focus group discussions, Day 5):  

When I go back to school, I will continue to ask myself Why, Why, Why 

with every step of the sum.  

There is always a reason for an answer, and I need to give it [the reason]. 

Sometimes you write an answer and you do not know what you write. 

In this week I have learnt to ask questions for everything. 

I felt comfortable in asking for assistance if I was not sure.  

These responses indicate that the value of questioning oneself during problem-solving 

seemed to have been conveyed to the learners. One learner acknowledged that I 

conceptualised all teaching approaches around scaffolding and questioning, by stating that,  

We were never given an answer. We had to read and think and write and 

read again and think again. 

I am familiar with the type of teaching and learning scenarios that occur during class time in 

the township schools, since I spent six years mentoring teachers in such schools. Consistent 

with descriptions given in academic literature (Hoadley, 2018), I know that teaching in this 

context is teacher-centred and operates at a low level of engagement from the learners’ 

side. Nevertheless, I wanted to find out how the learners perceived the week’s programme, 

in comparison to what they were used to. Except for one learner who said that “we do 

difficult work [in our schools]”, the learners’ responses suggested that their experiences in 

this programme contrasted with their usual experiences at their schools. One learner 

responded: “the teacher [at our school] speaks and explains a lot and shows us how to do 

everything and we only write”; another learner agreed, adding to the previous scenario: 

“yes, and when we do not understand something at school, the teacher would come and 

explain, but we would still not understand because he does not explain it clearly or he does 

not know how to”. A third learner, in further agreement with his peers, said  

Teachers would come into the class and say ‘take out your books’ and then 

he writes things on the board, and then erases it all without us copying 
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everything. He also does not explain what he wrote. Then the lesson is 

over.  

These three explanations of how the learners experience teaching and learning at their own 

schools are in agreement with what literature states about the teaching in South African 

township schools generally, namely that they do not promote higher-order thinking or 

problem-solving skills (Hugo et al., 2008; Hoadley, 2018; Stott, 2019).  

It was suggested by one of the learners that  

Teachers need to let us think out of the box, and not only learn the 

textbook. And sometimes the textbook is wrong and then you are right, but 

you are afraid to tell the teacher, so you leave it (Audio recording, Day 5).  

This quote suggests that, even though the learners experienced this programme as mentally 

taxing and difficult, they prefer to engage in meaningful learning, in contrast to the rote and 

boring learning they encounter at their own schools.  

6.2.3.3 Learners appeared unable to engage in iterative problem-solving  

There was no evidence of learners engaging in iterative problem-solving. This is not 

surprising, since monitoring, which is a type of metacognition, is extremely intensive on 

working memory – even more so for novices (Kirschner, 2009). Experts, in contrast to these 

learners, possess well-connected knowledge and rich schemata, which frees up space in 

working memory (Kirschner et al., 2018). Even though learners were not able to engage in 

iterative problem-solving, it is remarkable that they were able to start the process of 

monitoring, checking and questioning. In addition to the aforementioned, the progress 

made and the responses that some of the learners showed during the contact time of one 

week, albeit small, is truly noteworthy.  

6.2.4 Engagement in cognitive attributes over the problem-solving phases: 

Assertion 4 

Learners engaged in the first three phases of the problem-solving process 

but showed no engagement in the checking phase.  
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6.2.4.1 Engagement in the orienting, planning, and executing phases  

Following the discussion of problem-solving attributes stated in Assertions 1, 2, and 3, 

learner responses were evident in three of the four problem-solving phases (orienting, 

planning, executing, and checking), and across all four of the problem-solving attributes 

(resources, heuristics, affect, and monitoring) (refer to Table 6.5). However, there was no 

reliable evidence to suggest that engagement occurred in the checking phase, and 

furthermore, no indication of a cyclical nature of the problem-solving process.  

For problem-solving to be effective for constructing knowledge and developing a deeper 

understanding, certain problem-solving behaviours and attributes need to be evident in 

each of the four problem-solving phases (Carlson & Bloom, 2005).  

During the orientation phase of the problem-solving process, behaviours of understanding 

the problem, constructing, and organising the information received are identified 

(Schoenfeld, 2016). The planning phase refers to the phase when learners construct 

conjectures and identify goals and patterns through accessing their conceptual knowledge 

and heuristics (Pólya, 1957; Carlson & Bloom, 2005). During the executing phase, the 

problem-solver engages in behaviours that include carrying out calculations based on the 

conjectures made in the planning phase, through accessing (factual and conceptual) 

knowledge, writing logical mathematical statements, and implementing planned strategies 

(Lester & Garofalo, 1989; Carlson & Bloom, 2005). During the checking phase, the accuracy 

of the written mathematical statements, conjectures, and calculations are verified and 

justified.  
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Table 6.5: Number of coded attribute evidence per problem solving phase 

  
Attributes of problem solving 

  
Resources Heuristics Affect Monitoring 
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Orienting 92 71 38 17 108 76 42 21 

Planning 67 61 11 5 79 59 19 6 

Executing 59 22 8 2 44 23 5 1 

Checking 0 0 0 0 0 0 0 0 

 
Total: 218 154 57 24 231 158 66 28 

 

6.2.4.2 No engagement in the checking phase  

True problem-solving does not involve a quick fix. To shift learners’ metacognitive 

behaviours and ways of thinking requires an enormous amount of energy from the teacher’s 

side and requires the consistent expectation that learners engage in the learning process for 

long periods of time ( Stott, 2008). To achieve a shift in metacognitive behaviours or any 

evidence of higher-order thinking requires constant intellectual challenge from the teacher, 

coupled with constant scaffolding and support. Although very difficult, especially in the case 

of novices, evidence of this happening, even in a short programme similar to this research 

programme (Stott, 2019), can be identified.  

No evidence of engagement in the fourth phase of problem-solving, the checking phase, 

was identified (refer to Table 6.5). According to Carlson and Bloom (2005, p. 70), a learner’s 

ability to, at the right time, access useful mathematical knowledge, is highly dependent on 

the “richness and connectedness of the individual’s conceptual knowledge”. In contrast to 

experts, these learners did not appear to possess the ability to access this useful 

mathematics knowledge during the metacognitive phase (checking). Since well-connected 

conceptual knowledge influences all four phases of the problem-solving process, and these 
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learners did not appear to possess these rich conceptual knowledge connections, it is not 

surprising that learners were unable to engage in the checking phase. Furthermore, for 

learners to fully engage in all phases of the problem-solving process, they need an 

enormous reservoir of behaviours, conceptual mathematics knowledge and reasoning 

patterns, which were not evident during the programme. In addition to the previous point, 

learners need a great deal of practise and experience in problem-solving approaches to be 

able to engage in all phases of the problem-solving process (Carlson & Bloom, 2005), which 

these learners, unfortunately, had not been exposed to.  

6.3 AFFECTIVE RESPONSES  

6.3.1 Affect: Assertion 5 

Learners showed strong affective responses throughout the programme, 

but mathematical intimacy and integrity were not evident. 

6.3.1.1 Interest in the programme 

Affective responses, as shown in Table 6.6, accounted for the greatest amount of overall 

coded evidence, compared to the cognitive responses that were coded. This high number of 

coded affective responses is inconsistent with literature findings in township schools, since 

learners from township schools rarely show affective responses during lessons, possibly 

because teacher-centred approaches dominate in these contexts (Hugo et al., 2008; 

Hoadley, 2018; Stott, 2018). When learners are not actively involved in the learning process, 

such as in lessons where rote and routine learning are expected, learners could lose interest 

in the learning process (Wilson & Devereux, 2014). Although routinisation of learning is seen 

to be effective for producing relatively good marks, learners find lessons that routinise 

learning boring (Hobden & Hobden, 2019). Low-challenge tasks, usually related to rote and 

routine learning, cause boredom, which can push learners to operate outside of their ZPD 

(Wilson & Devereux, 2014). High-challenge tasks, coupled with scaffolded support, can be 

extremely motivating, and may encourage learners to excel in their learning (Wilson & 

Devereux, 2014). 
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Table 6.6: Number of affective responses 

Code Description of code Number of Codes 

AA Attitudes - 

AAE  Enjoyment 12 

AAM Motivation 13 

AAI Interest 8 

AB Beliefs - 

ABC Self-confidence 14 

ABE  Pride 9 

ABP Persistence 11 

ABM Multiple attempts are needed in problem 
solving 

3 

AE Emotions - 

AEF Frustration 22 

AEA Anxiety 11 

AEC Confusion 19 

AEJ Joy, pleasure 23 

AEI Impatience, anger 13 

AV Values/Ethics - 

AVI Mathematical intimacy 0 

AVG Mathematical integrity 0 

Source: Terminology of codes from Carlson and Bloom (2005, p. 51) 

As seen in Table 6.6, general curiosity and interest (eight instances of evidence) were mostly 

displayed during the orientation phase of the problem-solving process, and this was always 

coupled with motivation (13 counts). Motivation appeared to be encouraged when the 

groups competed against each other to find an answer to my posed questions or challenges. 
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However, the aspect of time constraints, brought about by competition, may be counter-

productive for learners who do not possess as much working memory as the top achievers, 

which can then encourage a passenger effect and be counterproductive to meaningful 

learning. Evidence of the occurrence of a passenger effect is suggested in the following two 

comments by learners during the focus group discussions (Audio recording, Day 5):  

[when someone copies my work] it makes me feel bad, because that 

person doesn’t want to use his or her own mind to think, they only use ours 

some kids do not want to do their own work in groups, because they say 

that the group will say that they are dumb and the others in the group are 

clever  

The nine records of evidence of pride comprised (1) four cases where learners were proud 

of their work and where their work was, indeed, correct; and (2) five cases where learners 

showed pride in their solution attempt and for managing to obtain an answer, even though 

their answers were incorrect.  

The three cases coded as multiple attempts are needed in problem solving, were all 

responses from two top-achieving learners (two pieces of evidence coded for one learner, 

and one coded for another). I initially identified the relevant observations as indications of 

engagement in iterative monitoring (refer to Assertion 4), but when asked about their 

multiple attempts, both learners said they redid their sums because of the prompts that I 

gave, since what they had calculated did not correspond with my prompt. These learners did 

not seem to question me or try to identify why their answers differed from the prompt I had 

given, they just assumed they were wrong, and the teacher is always correct (Fieldnotes, 

Days 1, 3). The learners erased their first attempts before I could take a photograph, even 

though I had encouraged all the learners to always keep their initial answers. 

Interestingly, the high number of negative emotional responses observed, which included 

frustration (22 counts), anxiety (11 counts), confusion (19 counts), impatience or anger (13 

counts), were coupled with learners giving up and either waiting for me to assist, or doing 

something completely different, such as walking around the classroom (Video recording; 

Fieldnotes, Days 1, 2, 3).  
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Some pairs of items in Table 6.6 appear to be very similar, and I will describe how I 

implemented the coding for two such pairs: 1) Joy or pleasure, and Enjoyment; and 2) 

Motivation, and Persistence. Consistent with literature, I identified evidence of enjoyment 

as attitudes that are “consistent [and longer-lasting] displays of affects” (Carlson & Bloom, 

2005, p. 64). Emotions such as joy or pleasure could last for a shorter time and, to a certain 

extent, be superficial, and not necessarily portray an attitude of true enjoyment. An 

example of joy would be when the class laughed after I made an amusing comment, and an 

example of enjoyment would be when a certain learner, throughout Day 4 (Fieldnotes, 

Video recordings, Day 4), asked many questions and regularly stated how much she was 

enjoying the rocket-launching process.  

Another pair of seemingly similar items in Table 6.6, is persistence and multiple attempts are 

needed in problem solving. I identified persistence as relating to a learner struggling with a 

given mathematical problem, but the learner not necessarily reverting to different ways of 

completing the given sum, i.e. they continued along their initial path of approaching the 

problem to reach an answer. Multiple attempts are needed in problem solving was identified 

when a learner redid a sum completely to try a new approach to solving the problem, and 

only stopping when, it seemed, they believed they had reached an answer. The latter, if 

done spontaneously, coupled with evidence of the learner engaging in checking, can be seen 

as a metacognitive action. As mentioned previously, I did not interpret or code the three 

points of evidence as being metacognitive, since the learners were responding to a prompt I 

had given, rather than initiating the checking.  

During the focus group discussions of Day 5, some learners reflected on problem-solving 

and the teacher’s scaffolded approaches to learning. A number of learners referred to the 

practical aspect of learning: 

It was easy to understand things, because it was not only theory. It was 

done practically too. 

Things were not only said once and then left behind. It was repeated in 

different ways and many times. It made it easy to take notes. 
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It was good to have a small highlighter demonstration [on Day 1], then the 

bigger one on day 3, then the launch day practical [on Day 4]. It made it 

easy to know what we should do and how we should measure. 

It was difficult on day 1 to draw a picture from a practical demonstration. 

But later it was easy.  

One learner highlighted that creativity played a big role in the success of the week:  

I feel that we needed to be creative the whole week. I do not think that we 

could do the sums if we were not able to be creative in thinking 

To highlight the necessity of engaging learners affectively in the problem-solving process, so 

that they find an interest in what they are learning and feel motivated to persevere in the 

process of problem-solving, I quote a learner in Hobden's (2005, p. 308) study: 

I believe school, as it has with all other subjects, has managed to destroy 

all the interest that is inherent in science— it is, after all, man’s attempt at 

understanding the world around him. But this ‘specialness’ is lost in boring 

classroom routine, irrelevant trick questions and such like. 

6.3.1.2 Absence of mathematical intimacy and integrity 

Affective responses are more complex than merely expressing emotions such as enjoyment, 

anger, or frustration. Affective responses to problem-solving may also involve intimacy, 

integrity, and meta-effect, which form complex networks of affective pathways, to positively 

or negatively affect a learner’s mathematics problem-solving ability (Carlson & Bloom, 2005; 

Schoenfeld, 2016). Intimate mathematics experiences (mathematics intimacy) create a deep 

connection between a learner and his/her mathematics. These types of deep connections 

have been regarded as behaviours such as a learner cradling his/her work in his/her arms or 

speaking passionately about the mathematics problems he/she has solved. Furthermore, 

mathematical intimacy and integrity are directly related, since the absence of integrity 

creates an obstacle to intimacy, and the absence of intimacy decreases the learner’s need 

for integrity (Carlson & Bloom, 2005). 

Negative emotions, as displayed by expressions of frustration, impatience, or anger, may 

also indicate high levels of mathematical intimacy (Carlson & Bloom, 2005). Although 
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emotional responses like anger and frustration were displayed when, for example, five 

learners engaged in the checking phase of problem-solving, there is not enough evidence to 

suggest that these emotions indicated true mathematics intimacy, since emotional 

engagement in building mathematical meaning (Heyd-Metzuyanim, 2011) could not be 

determined, due to the nature of the intervention and data collected. In addition, since 

these learners’ honesty relative to their understanding of the mathematics problem was not 

clear, mathematics integrity could not be coded. The observation that anger and frustration 

were evident indicates an engaged level of commitment towards a mathematics problem 

but could not be coded as evidence of mathematical intimacy and/or integrity. 

6.4 CONCLUSION 

In Chapter 6, I stated the following five assertions concerning the responses of the sample of 

Grades 8 and 9 learners from township schools to the problem-based mathematics 

extension programme: 

• The learners showed evidence of employment of resources, many instances of which 

were incorrect, but they generally needed to be prompted to do so.  

• The learners displayed a diverse repertoire of heuristics, but generally needed to be 

prompted. 

• Across the intervention period, the learners responded to the teacher’s modelling of 

monitoring by increasingly posing Why and How questions but appeared unable to 

apply this to direct engagement in iterative problem-solving.  

• Learners engaged in the first three phases of the problem-solving process but 

showed no engagement in the checking phase.  

• Learners showed strong affective responses throughout the programme, but 

mathematical intimacy and integrity were not evident. 

In this chapter, I presented and supported my interpretation that the Grades 8 and 9 

learners from township schools largely positively engaged in the programme, and they 

responded well cognitively within the understandable limitations of their working memory. 

Because of those limitations, a teacher’s skilful guidance and a scaffolded teaching approach 

are crucial components of the programme’s success. In the final chapter of this dissertation, 

I will consider possible implications of these findings.   
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 SUMMARY AND IMPLICATIONS FOR RESEARCH AND PRACTICE 

7.1 INTRODUCTION  

This was a case study informed by a pragmatic paradigm and the framework for integrated 

methodology, was used (Plowright, 2011). The aim of the study was to investigate the 

responses of the Grades 8 and 9 learners at township schools to the mathematics problem-

solving extension programme they participated in in this study. Carlson and Bloom’s (2005) 

MPS framework was used as the conceptual framework for this study. Data were collected 

from various sources and coded using NVIVO. A rich description of the data was given in 

Chapter 5, and this served as basis for analysing the data, presented in Chapter 6. A 

summary of the knowledge claims I make will be given below. I will continue to elaborate on 

the possible limitations of this study, and the implications for further research and practice.   

The research question that guided this study is: 

How do Grade 8 and 9 township learners respond to a problem-based 

mathematics extension programme? 

With the abovementioned question in mind, the study unfolded in accordance with the 

following subsidiary questions: 

a) How did the learners engage in the cognitive components of problem-solving? 

b) What were the learners’ affective responses to the programme? 

The holiday extension programme that was central to the research involved 27 Grades 8 and 

9 learners from township schools, who participated in a five-day mathematics, science and 

English programme for six hours a day. The aim of the mathematics section of the 

programme was to use problem-based teaching, implemented according to the ladder 

approach teaching strategy (Stott, 2008) to teach trigonometry, so that the learners could 

apply this gained knowledge to measure and calculate the maximum height that a water 

rocket reaches, from observations of its flight. 
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7.2 SUMMARY OF KNOWLEDGE CLAIMS 

On completion of this study, I am convinced that learners from low-quintile schools who 

show an interest in science and mathematics, and who are committed to a fair amount of 

self-regulatory work, can respond positively to a problem-based mathematics extension 

programme. Additionally, I made the following five assertions concerning the responses of 

the Grades 8 and 9 township learners in the sample to the problem-based mathematics 

extension programme: 

• The learners showed evidence of employment of resources, many instances of 

which were incorrect, but they generally needed to be prompted to do so.  

• The learners displayed a diverse repertoire of heuristics, but generally needed to 

be prompted. 

• Across the intervention period, the learners responded to the teacher’s 

modelling of monitoring by increasingly posing Why and How questions but 

appeared unable to apply this to direct engagement in iterative problem-solving.  

• Learners engaged in the first three phases of the problem-solving process but 

showed no engagement in the checking phase.  

• Learners showed strong affective responses throughout the programme, but 

mathematical intimacy and integrity were not evident. 

The learners’ responses to the programme, as laid out in the five assertions above, were 

remarkable, especially since, (1) it is unlikely that they had had prior experience with true 

problem-based learning (Hugo et al., 2008; Hobden & Hobden, 2019), and (2) it is very likely 

that these learners had poor mathematics knowledge, like most learners of South African 

no-fee paying schools (Reddy, Juan, Isdale, & Fongwa, 2019) and, therefore, had very limited 

working memory capacity, given their likely extreme novice status (Kirschner, 2009), 

thereby reducing the likelihood that engagement in problem-solving activity would be 

productive (Kirschner et al., 2006). 

I will now reflect on the appropriateness of the various theoretical tools I used to guide the 

conceptualisation and implementation of both the mathematics problem-solving 

programme, and the research relating to this programme. 
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7.3 APPROPRIATENESS OF THE LADDER APPROACH FOR THIS CONTEXT 

Though the ladder approach was, initially, conceptualised for a well-functioning school’s 

Grades 10–12 learners in their everyday science (Stott, 2008), this programme showed that 

this approach can work in other circumstances too, given the evidence coded throughout 

the week (refer to Chapter 6). Since my broad planning of the programme, guided by the 

ladder approach (see Chapter 5, Section 5.3) and the implementation of the approach (as 

described in Chapter 5), correlated, I consider the ladder approach to have served as an 

effective planning tool.  

Further, the ladder approach guided me in moving across the constructivist-instructivist 

continuum, in a manner appropriate for these learners’ needs, as exemplified in the rich 

descriptions in Chapter 5.  

The ladder approach is geared for solving a problem. The strong affective response referred 

to in Assertion 5 appears to be associated with the motivating effect that this problem-

based approach had, as learners showed great affective responses in their attempts to solve 

the target problem, i.e. finding the maximum height of the water rocket.  

7.4 APPROPRIATENESS OF COGNITIVE LOAD THEORY AND INFORMATION 

PROCESSING MODEL FOR UNDERSTANDING THE TRENDS OBSERVED 

Cognitive load theory and the IPM of learning were useful for directing the planning and 

interpretation of the PBL approach and for directing the interpretation of the responses 

observed. 

I found that the cognitive load theory and IPM were valuable and useful, particularly for 

exposing the importance of scaffolding to guide the choices I made in creating the 

resources, planning my teaching and conducting the lessons. In my opinion, these two 

theories are cognisant of the limitations imposed by the learners’ working memory and 

guided me to be sensitive to signs that the learners may have been operating outside their 

ZPR and, therefore, required an appropriate prompt from me. Being aware of these theories 

guided me to be more observant of learner queues, which, in response, lead me to modify 

my instructional approach. 
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With reference to my five assertions, after analysing the data (Chapter 6), all assertions 

showed positive responses to PBL, which can be interpreted, in terms of cognitive load 

theory and IPM, as indicating successful implementation of my scaffolded guidance. These 

assertions also indicate that learners were only able to respond to a certain level of PBL, and 

these two theories, the cognitive load theory and the IPM, assisted me to understand why 

these limitations might be present in learners (novices). 

I, therefore, experienced cognitive load theory and IMP to be versatile enough to guide all 

aspects of the creation, execution and evaluation of this problem-based programme. This is 

particularly remarkable considering that these theories tend to be used by proponents of 

instructivism (e.g. Kirschner et al., 2006), whereas PBL pedagogy tends to be considered to 

be more constructivist in nature (Kirschner et al., 2006). Perhaps, as argued by authors such 

as Hugo (2019), this finding points to the value of drawing on both extremes of the 

instructivist-constructivist continuum, as will promote the attainment of particular 

outcomes best, when designing instruction. 

7.5 APPROPRIATENESS OF MULTIDIMENSIONAL PROBLEM-SOLVING FRAMEWORK 

FOR ANALYSING THE DATA 

This framework was originally designed by Carlson and Bloom (2005) to study problem-

solving behaviours, using think-aloud protocol for experts; nonetheless, it was a very useful 

heuristic to use to study novices too. The plausibility of this framework, and its relative fit 

for application in a novice context, makes it quite remarkable. This framework assisted me 

to code and group the data, which provided more structure to my data analysis process. 

However, in this study, I was not able to identify metacognitive behaviour.  

The fact that novices exhibited responses, in terms of coded evidence, to PBL, might raise 

questions about the validity and reliability of coding; however, as discussed in Chapter 4, 

triangulation and peer-reviewed data comparison were used to strengthen the reliability 

and validity of the data.  
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7.6 LIMITATIONS OF THE STUDY 

A number of limitations were evident in this study, among which the following: 

• The claims made about learners’ responses to the described teaching and 

learning programme cannot be generalised to all South African township 

learners, since the sample was not representative of South African township 

learners. This is because the learners who participated were chosen because 

they had voluntarily completed a project for the Expo for Young Scientists 

competition. It is, therefore, somewhat unsurprising that they showed great 

interest in the programme and were motivated to participate fully. Therefore, 

the claims made are confined to township learners who demonstrate interest 

and perseverance in mathematics and/or science in a similar manner as the 

learners I included in this study.  

• The success of the programme relied greatly on the skills of the teacher. If a 

teacher’s mathematics knowledge for teaching is insufficient, or his/her 

pedagogical approaches are not in line with true mathematics problem-solving, 

the responses of the learners might not be equally evident and replicating the 

programme might not render similar results (Tambara, 2015). 

• The teaching context of this programme is not similar to everyday township 

classroom contexts, which have limited resources and are not always conducive 

to learning (Mampane & Bouwer, 2011). However, the aim of this study was not 

to research replication in township school contexts; instead, the focus of this 

study was to determine if township learners would be able to respond to PBL 

when conducted in a manner conducive to meaningful engagement occurring.  

7.7 IMPLICATIONS OF THE STUDY 

The first part of this section will elucidate a metaphor for the pedagogical approach that was 

used throughout this study, and then, recommendations for further research and practice 

will be discussed.  
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7.7.1 Recommendations for practice  

In South Africa, there are, and have been, similar programmes piloted and implemented 

with problem-based approaches (Human, Hofmeyr, Human, Makae, & Van Koersveld,  

2010), however, the majority of these programmes, especially those run by the Department 

of Education, are focussed on curriculum coverage and exam training. These programmes 

do not provide extension in learning and critical thinking for top-achieving or interested 

learners. The need for extension, especially in light of our current reality of industry 4.0, is 

vital if we wish to avoid an even bigger divide in equity regarding the next generation of 

leaders. If no extension programmes are available, learners at township schools – also those 

who great potential – will fall even further behind learners at high quintile schools, and can 

be expected to stay behind (Spaull, 2013).   

I wish to call on other tertiary institutions and organisations to implement similar holiday 

programmes, to ignite hope and develop critically thinking in learners, to counter the 

impoverished pedagogies and passive learning they are usually exposed to (Hoadley, 2018; 

Hugo, 2019). I further recommend that teachers should be invited to attend these holiday 

programmes, where a parallel focus on the teachers’ pedagogical development can be 

incorporated simultaneously.  

7.7.2 Recommendations for further research 

The following recommendations for further research are made: 

• The efficacy of the programme prototype suggested here, conducted by different 

teachers, in a variety of South African contexts, with a variety of South African 

learners, could be investigated. 

• The efficacy of a teacher professional development initiative aimed at developing 

teachers’ ability to conduct problem-based extension programmes, such as the 

one described here, could be investigated. 

• In the future, related studies that include think-aloud protocols within the data 

collection process are anticipated to improve the ability to identify individual 

metacognitive behaviour, which may give more insight into the learners’ 

engagement with the problem-solving process.  
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7.8 CONCLUSION 

In this chapter, I started by giving a summary of the knowledge claims I made in this study, 

which focussed on the assertions that resulted from the analysis of the data collected in this 

study. I continued by discussing the limitations of this study, after which I elaborated on the 

implications and recommendations for future research and practise arising from this study.  

Given the national and international drive to develop learners for jobs that have not been 

invented yet, through equipping the next generation with the necessary skillsets – where 

problem-solving skills make up the biggest proportion of anticipated future key skills – it is 

imperative that all learners, not only learners from high-quintile and wealth-quartile 

schools, are granted the opportunity to be exposed to programmes similar to that described 

in this study.  

Through my mentoring experience in these township schools, I encountered learners with 

potential far beyond comprehension. Learners who, regardless of their unfathomable 

circumstances, report to school every day with smiles on their faces and the hope to gain 

knowledge; learners whose eyes sparkle when a I call out their names and acknowledge 

their existence; learners who leave the class with a tangible sense of joy after I shared a 

motivational story; learners who will be our leaders of tomorrow; learners who truly want 

to make the world a better place. It is towards these learners that we have a responsibility 

to unlock their incredible potential. A combined effort from all sectors is needed to impact 

the learners who, due to exposure to impoverished pedagogies, need extension 

programmes the most. Let our collaborative efforts ignite a hopeful response from the 

learners’ lives we endeavour to touch.  

Lastly, I rest my hope for our future generation in Jeremiah 29:11: 

For I know the plans I have for you, declares the Lord, plans to prosper you, 

and not to harm you, plans to give you hope and a future.
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Addendum A: Coding taxonomy 

Coding of problem-solving Phases (Rows of MPS Framework): 
OR/OH/OA/OM  Orienting during Resources/Heuristics/Affect/Monitoring 
PR/PH/PA/PM  Planning during Resources/Heuristics/Affect/Monitoring 
ER/EH/EA/EM  Executing during Resources/Heuristics/Affect/Monitoring 
CR/CH/CA/CM  Checking during Resources/Heuristics/Affect/Monitoring 

 
Coding of problem-solving Attributes (Columns of MPS Framework): 
1.  RESOURCES 

RK Knowledge, facts, and procedures 
RKN Wrong knowledge  
RC Conceptual understandings 
RCN Misconceptions (negative/opposite of RC) 
RT Technology 
RW  Written materials 

 
2.  HEURISTICS  

HT Constructs new statements and ideas 
HP Carries out computations 
HR Accesses resources 
HW Works back- wards 
HO Observes symmetries  
HS Substitutes numbers 
HM Represents situation with a picture, graph, table, or action/movement 
HC  Relaxes constraints or generalises the problem 
HD Sub- divides the problem  
HA Assimilates parts into whole or add the sub-divided parts to make sense 
HL Alters the given problem so that it is easier 
HE Looks for a counter example 

 
3.  AFFECT 

AA Attitudes 
 AAE  Enjoyment 
 AAM Motivation 
 AAI Interest 
AB Beliefs 
 ABC Self-confidence 
 ABE  Pride 
 ABP Persistence 
 ABM Multiple attempts are needed in problem solving 
AE Emotions 
 AEF Frustration 
 AEA Anxiety / 



 

 

AEC  Confusion  
 AEJ Joy, pleasure 
 AEI Impatience, anger 
AV Values/Ethics 
 AVI Mathematical intimacy 
 AVG Mathematical integrity 

 
4.  MONITORING 

MP  Initial Cognitive Engagement  
MPE  Effort is put forth to read and understand the problem  
MPO  Information is organized  
MPG  Goals and givens are established and represented  
MPS  Strategies and tools are devised, considered, and selected 

ME  Cognitive Engagement During Problem Solving  
MES  Evidence of sense making  
MEM  Effort is put forth to stay mentally engaged  
MEL  Effort is put forth to construct logically connected statements 

MM  Metacognitive Behaviours During Problem Solving  
MMQ  Reflects on the efficiency and effectiveness of cognitive activities  
MMM  Reflects on the efficiency and effectiveness of the selected methods  
MMC  Exerts conscious effort to access resources/mathematical knowledge  
MMG  Generates conjectures  
MMV  Verifies processes and results  
MMR  Relates problem to parallel problem  
MMP  Refines, revises, or abandons plans as a result of solution process  
MME  Manages emotional responses to the problem-solving situation  
MMI  Engages in internal dialogue 

  



 

 

Addendum B: Examples of coded data using NVivo software 

 

 

 

Figure i: Interface of NVivo programme - Summary of three sources that were coded and 

compared 



 

 

 

 

 

Figure ii: Coded data of Source 1 - Maths Video Day 3 



 

 

 

Figure iii: Coded data of Source 2 - Fieldnotes 

  



 

 

 

Figure iv:  Codes of Source 3 - Audio focus group 



 

 

Table i:  All data coded from the 3 sources 

Attributes Different Attributes of MPS Framework: Resources, Heuristics, Affect, 
Monitoring 

3 85 

R Resources 3 23 
RK Knowledge, facts, and procedures 2 3 
RC Conceptual understandings 2 2 
RT Technology 1 2 
RW Written materials 2 4 
RO Teachers as Resources 2 3 
RP Peers as Resources 3 9 
H Heuristics 2 18 
HT Constructs new statements and ideas 1 1 
HP Carries out computations 1 1 
HR Accesses resources 2 3 
HW Works back- wards 0 0 
HO Observes symmetries 1 2 
HS Substitutes numbers 0 0 
HM Represents situation with a picture, graph, table, or action/movement 2 9 
HC Relaxes constraints or generalises problem 1 1 
HD Sub- divides the problem 0 0 
HA Assimilates parts into whole or add the sub-divided parts to make 

sense 
0 0 

HL Alters the given problem so that it is easier 0 0 
HE Looks for a counter example 1 1 
A Affect 3 32 
AA Attitudes 3 13 
AAE Enjoyment 2 3 
AAM Motivation 2 5 
AAI Interest 3 5 
AB Beliefs 3 11 
ABC Self-confidence 1 5 
ABE Pride 0 0 
ABP Persistence 3 4 
ABM Multiple attempts are needed in problem solving 2 2 
AE Emotions 1 8 
AEF Frustration 0 0 
AEA Anxiety 1 4 
AEJ Joy, pleasure 1 4 
AEI Impatience, anger 0 0 
AV Values/Ethics 0 0 
AVI Mathematical intimacy 0 0 
AVG Mathematical integrity 0 0 
M Monitoring 3 12 
MP Initial Cognitive Engagement 1 4 



 

 

MPE Effort is put forth to read and understand the problem 1 2 
MPO Information is organised 1 1 
MPG Goals and givens are established and represented 1 1 
MPS Strategies and tools are devised, considered, and selected 0 0 
ME Cognitive engagement during problem solving 2 3 
MES Evidence of sense making 2 2 
MEM Effort is put forth to stay mentally engaged 1 1 
MEL Effort is put forth to construct logically connected statements 0 0 
MM Metacognitive behaviours during problem solving 2 5 
MMQ Reflects on the efficiency and effectiveness of cognitive activities 1 1 
MMM Reflects on the efficiency and effectiveness of the selected methods 0 0 
MMC Exerts conscious effort to access resources/mathematical knowledge 0 0 
MMG Generates conjectures 0 0 
MMV Verifies processes and results 0 0 
MMR Relates problem to parallel problem 1 1 
MMP Refines, revises, or abandons plans as a result of solution process 0 0 
MME Manages emotional responses to the problem-solving situation 1 1 
MMI Engages in internal dialogue 2 2 

 

 

  



 

 

Table ii: Inter-rater reliability of codes 

Code 
Cohen's 
Kappa 

coefficient 

Percentage Agreement of codes by Researcher and Colleague 

Agreement 
(%) 

A and B 
(%) 

Not A and 
Not B  

(%) 

Disagreement 
(%) A and Not B (%) B and Not A (%) 

Attributes 0.6879 84.29 45.01 39.29 15.71 12.85 2.86 

Attributes\A 0.5648 83.42 15.95 67.47 16.58 16.58 0 

Attributes\A\AA 0.6482 95.01 5.13 89.88 4.99 4.88 0.12 

Attributes\A\AA\AAE 0.5953 97.6 1.85 95.76 2.4 2.28 0.12 

Attributes\A\AA\AAI 0.6616 96.61 3.56 93.05 3.39 3.39 0 

Attributes\A\AA\AAM 0.8107 98.48 3.41 95.07 1.52 1.52 0 

Attributes\A\AB 0.6997 90.51 8.68 81.83 9.49 9.49 0 

Attributes\A\AB\ABC 0.652 92.71 8.07 84.65 7.29 7.29 0 

Attributes\A\AB\ABE 1 100 0 100 0 0 0 

Attributes\A\AB\ABM 0.3047 96.09 0.53 95.56 3.91 3.91 0 

Attributes\A\AB\ABP 0.3617 97.27 0.09 97.18 2.73 2.73 0 

Attributes\A\AE 0.2955 85.45 2.12 83.33 14.55 14.55 0 

Attributes\A\AE\AEA 0.2709 90.41 2.02 88.39 9.59 9.59 0 

Attributes\A\AE\AEF 1 100 0 100 0 0 0 

Attributes\A\AE\AEI 1 100 0 100 0 0 0 

Attributes\A\AE\AEJ 0.1244 92.22 0.11 92.12 7.78 7.78 0 

Attributes\A\AV 1 100 0 100 0 0 0 

Attributes\A\AV\AVG 1 100 0 100 0 0 0 

Attributes\A\AV\AVI 1 100 0 100 0 0 0 

Attributes\H 0.5261 82.84 15.14 67.7 17.16 9.58 7.58 

Attributes\H\HA 1 100 0 100 0 0 0 

Attributes\H\HC 0.8983 96.14 0 96.14 3.86 3.86 0 

Attributes\H\HD 0.1297 94.91 0 94.91 5.09 0 5.09 

Attributes\H\HE 0.1583 96.14 0 96.14 3.86 3.86 0 

Attributes\H\HL 1 100 0 100 0 0 0 

Attributes\H\HM 0.5423 89.05 8.16 80.89 10.95 9.83 1.12 

Attributes\H\HO 0.4391 93.79 0 93.79 6.21 6.21 0 

Attributes\H\HP 0.2873 98.89 0 98.89 1.11 1.11 0 

Attributes\H\HR -0.0398 92.2 0 92.2 7.8 4.44 3.36 

Attributes\H\HS 1 100 0 100 0 0 0 

Attributes\H\HT 0.2499 95.51 0.8 94.7 4.49 0.3 4.19 

Attributes\H\HW 1 100 0 100 0 0 0 

Attributes\M 0.4544 91.21 4.3 86.91 8.79 7.85 0.94 

Attributes\M\ME 0.3626 96.09 1.17 94.91 3.91 3.91 0 

Attributes\M\ME\MEL 1 100 0 100 0 0 0 

Attributes\M\ME\MEM 0.9888 99.97 1.17 98.8 0.03 0.03 0 

Attributes\M\ME\MES 0.8566 96.11 0 96.11 3.89 3.89 0 

Attributes\M\MM 0.9964 99.99 1.87 98.12 0.01 0.01 0 

Attributes\M\MM\MMC 1 100 0 100 0 0 0 



 

 

Attributes\M\MM\MME 1 100 0 100 0 0 0 

Attributes\M\MM\MMG 1 100 0 100 0 0 0 

Attributes\M\MM\MMI 0.9964 99.99 1.87 98.12 0.01 0.01 0 

Attributes\M\MM\MMM 1 100 0 100 0 0 0 

Attributes\M\MM\MMP 1 100 0 100 0 0 0 

Attributes\M\MM\MMQ 1 100 0 100 0 0 0 

Attributes\M\MM\MMR 1 100 0 100 0 0 0 

Attributes\M\MM\MMV 1 100 0 100 0 0 0 

Attributes\M\MP 0.2941 91.25 1.25 90 8.75 7.81 0.94 

Attributes\M\MP\MPE 0.3165 95.14 1.24 93.9 4.86 3.91 0.95 

Attributes\M\MP\MPG 0.1147 96.1 0 96.1 3.9 3.9 0 

Attributes\M\MP\MPO 0.1087 98.72 0 98.72 1.28 1.28 0 

Attributes\M\MP\MPS 1 100 0 100 0 0 0 

Attributes\R 0.5439 88.77 8.67 80.1 11.23 8.17 3.06 

Attributes\R\RC 1 100 1.07 98.93 0 0 0 

Attributes\R\RK 0.9986 99.17 3.86 95.31 0.83 0 0.83 

Attributes\R\RO 0.3059 95.95 0.25 95.7 4.05 4.05 0 

Attributes\R\RP 0.399 93.56 2.45 91.1 6.44 4.22 2.23 

Attributes\R\RT 1 100 0 100 0 0 0 

Attributes\R\RW 0.2784 97.52 0.29 97.23 2.48 1.73 0.75 

AVERAGE: 0.6760 96.2556 2.5439 93.7119 3.7444 3.1661 0.5786 

 



 

 

 

Figure v: Screen shot of the NVivo program, displaying a section of the correlating codes (i.e. ABE, AEF, AAM) between the researcher (M) and her 

colleague (AE)  



 

 

Addendum C: Focus group discussion guide 

1. Learning goals  
a. Remembering. 

How well do the learners feel they can remember terms, facts and 
procedures they were taught in this week? 

b. Understanding. 
How well do the learners feel they understand the principles, concepts and 
skills they were taught in this week? 

c. Self-regulating. 
How much extra effort did the learners put into learning this week? To what 
extent did they do the extension activities? Were they self-motivated? 

d. Thinking. 
i. Creative thinking. 

Did they think creatively in this week? Did they come up with new 
ideas they hadn’t thought of before? Describe when and what caused 
this. 

ii. Critical thinking. 
• Did they think critically in this week? Did they question others and 

expect reasons for claims? Did they give reasons for claims they 

made? Did they always try to correct themselves and others? 

Describe when and what caused this. 

e. Communicating. 
• Did they learn how to communicate better in writing and verbally? Describe 

what helped / hindered them with this. 

2. Issues arising. 
• What made the week enjoyable / not enjoyable? 

• What made the learning effective / not effective? 

• How would they suggest we improve a program like this in the future? 

3. Learners’ perceptions. 
• Did they enjoy / not enjoy the week? Why? 

• Did the week make them like / understand / want to do science and maths more 

or less?  

• Did the week make them think science and maths are easier or more difficult / 

nicer or less nice than they used to think?  



 

 

Addendum D: Pre- and post-test 

 



 

 

  



 

 

Addendum E: Top secret information 

 

 

 

  



 

 

Addendum F: Learner workbook 
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