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PREFACE 
 

In creating a protocol intended for the use of the general soil scientist in southern Africa, one has to stay 

in touch with the realities faced when doing soil surveys. Therefore a case study approach was favoured 

above a theoretical approach for this research. The case studies cover different soil mapping challenges, 

displaying the protocols application in a variety of situations faced by soil surveyors. At each case study 

the protocol was updated and improved, and I believe the final protocol being reported here could be 

applied to all situations of large area soil mapping in southern Africa.  

 

The core of the thesis is the four case studies (Chapters 3-6), being written up for publication in peer-

reviewed journals. Chapter 1 gives a short literature review and highlights the soil mapping challenges in 

southern Africa. Chapter 2 introduces the software and covariates used in this research. Chapter 3, which 

is accepted by the South African Journal of Plant and Soil, shows how a research soil map was produced 

near Madadeni, South Africa. A land mine threat posed interesting challenges to soil mapping near Tete, 

Mozambique in Chapter 4. This chapter was published in the peer-reviewed proceedings of the 5th Global 

Digital Soil Mapping Workshop, 2012, Sydney, Australia. Staying in Mozambique, the soil maps produced 

in Chapter 5 played an integral role in planning a new forestry development near Namarroi. In Chapter 6 

the soil map had a hydrological emphasis, with it being a base for the newly established ‘Research 

Supersites’ in the Kruger National Park. While discussing the protocol with other soil surveyors, the 

question which always came up is: “How many soil observations are enough?” Chapter 7 uses the data 

generated during this research to indicate an answer to the question. As there are not enough data 

available this work is only provisional and should be treated as such. The final chapter gives the protocol. 

In the appendices the usage of various individual software tools needed to use the protocol is explained. 

A moderate level of GIS expertise is necessary to apply the Appendices.  

 

The case study approach together with the article style thesis naturally leads to some repetition between 

chapters. However, I trust that the diverse scenarios of the case studies will keep the reading interesting.
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SUMMARY 
 

Although there is an increasing need for spatial soil information, traditional methods of soil survey are too 

cumbersome and expensive to supply in that need. Digital soil mapping (DSM) methods can fulfil that 

need. Internationally, DSM is moving from the research to the production phase. As soil-landscape 

interaction and availability of data varies between locations, local DSM research is needed to make its 

application practical.  

 

This research aims to produce a working DSM protocol which can be used for mapping large areas of 

land in southern Africa. The protocol must meet soil surveyors where they are at, being easy enough to 

follow, while also allowing for the creation of products needed by industry. To keep the link with industry’s 

needs, a case study approach was followed. Four case studies were done in succession, with the 

protocol being improved with every case study. The case studies cover an array of challenges faced by 

soil surveyors. 

 

In the first case study a baseline protocol was created when two land types near Madadeni were 

disaggregated in a series of soil maps. With each map, more information was incorporated when creating 

the map. For Map 1 only the land type inventory and terrain analysis were used. A reconnaissance field 

visit with the land type surveyor was added for the second map. Field work and a simplified soil 

association legend proved to improve the map accuracy for Maps 3 and 4, which were created using 30% 

and 60% of the observations points as training data respectively. The accuracy of the maps increased 

when more information was utilized. Map 1 reached an accuracy of 35%, while Map 4 achieved a 

commendable accuracy of 67%. Principles which emerged was that field work is critical to DSM, more 

data input improves the output and that simplifying the map legend improves the accuracy of the map. 

 

An unrealistic demand for a soil survey of 37 000 ha of land in the Tete Province, northern Mozambique, 

possibly infested with land mines, in 8 working days by two persons, created an opportunity to apply the 

soil-land inference model (SoLIM) as a digital soil mapping tool. Dividing the area into smaller areas 

where unique soil distribution rules would apply (homogeneous areas, HA’s) was introduced. A free 

survey was conducted along the available roads of the area. The final soil map for 15 000 ha had an 

accuracy of 69%. A principle which emerged was that inaccessible areas can be mapped, provided that 

they occur within surveyed HA’s.  

 

Near Namarroi, Mozambique, the potential of DSM soil survey methods to rapidly produce land suitability 

maps for a large area with acceptable accuracy was evaluated. Conditioned Latin hypercube sampling 
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(cLHS) was introduced to determine field observation positions. SoLIM was used to run an inference with 

soil terrain rules derived from conceptual soil distribution patterns. A restriction of the expert knowledge 

based approach was found in that only six soil map units (SMU’s) could be determined per HA. The map 

achieved an overall accuracy of 80%. Land suitability maps were created based on the soil class map.  

 

In the Kruger National Park a soil map was used to create and extrapolate 2-dimensional conceptual 

hydrological response models (CHRM’s) to a 3-dimensional landscape. This is a very good example on 

how value could be added to a soil map. An error matrix convincingly identified problem areas in the map 

where future work could focus to improve the soil map. 

 

The current data indicates that at least 28 soil observations are necessary to create a soil map to an 

acceptable standard. When minimum observation criteria are met, observation density is irrelevant. The 

cLHS method to pre-determine observation positions improved the usability of observations. Although 

more research is needed to accurately determine the minimum observation criteria, an observation 

strategy is suggested. 

 

A 15 step protocol is produced with which it was shown that soil surveyors could produce a variety of 

maps in diverse situations. The protocol relies on the expert knowledge of the soil surveyor, combined 

with field observations. It has the advantages that fewer observations are necessary, map accuracy 

assessment is possible, problem areas are identified and under certain conditions unsurveyed areas can 

also be mapped. On the down side, there is a limitation of six SMU’s per HA. 

 

Further research needs to be done to determine the minimum criteria for soil observations, and soil 

distribution relationships between soil and remotely sensed covariates. 

 

Keywords:  conditioned Latin hypercube sampling, DEM, Expert knowledge, Hydropedology, Inference 

systems, Land type, Soil functions, Soil survey, SoLIM, Remote sensing, Terrain analysis 
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OPSOMMING 
 

Ten spyte van ŉ groeiende aanvraag vir ruimtelike grond inligting, is tradisionele metodes van 

grondopname te tydrowend en duur om in die behoefte te voorsien. Digitale grond kartering (DSM) 

metodes kan daardie leemte vul. Internasionaal beweeg DSM van die navorsings tot die produksie fase. 

Omdat grond-landskap interaksies en beskikbaarheid van data varieer tussen plekke, is plaaslike DSM 

navorsing nodig om die gebruik van DSM prakties uitvoerbaar te maak. 

 

Hierdie navorsing poog om ŉ werkende DSM protokol op te stel, wat gebruik kan word vir die kartering 

van groot land oppervlaktes in suidelike Afrika. Die protokol moet grondopnemers tegemoet kom, deurdat 

dit maklik genoeg moet wees om te volg, maar terselfdertyd toelaat dat produkte geskik vir die industrie 

geskep word. Om die skakel met die industrie te behou, is besluit om ŉ gevallestudie benadering te volg. 

Vier gevallestudies is in opeenvolging gedoen en die protokol opgegradeer na elke gevallestudie. Die 

gevallestudies hanteer ŉ verskeidenheid van uitdagings wat deur grondopnemers in die gesig gestaar 

word. 

 

In die eerste gevallestudie is ŉ basis protokol opgestel. Twee landtipes naby Madadeni was ontbind in ŉ 

reeks grondkaarte. Met elke kaart is meer inligting gebruik tydens die skep van die kaart. Vir Kaart 1 is 

slegs die landtipe inventaris en terrein analise ingespan. Met Kaart 2 is die kennis van die landtipe 

opnemer vir die gebied getap tydens ŉ verkenningsbesoek aan die studiegebied. Veld werk en ŉ 

vereenvoudigde grond assosiasie legende het ŉ toename in akkuraatheid vir Kaarte 3 en 4 veroorsaak. 

Dertig en 60 % van die observasiepunte is onderskeidelik gebruik as kwekingsdata vir Kaarte 3 en 4. Die 

akkuraatheid van die kaarte het toegeneem wanneer meer inligting benut is. Kaart 1 het ŉ akkuraatheid 

van 35% bereik, terwyl Kaart 4 ŉ geloofwaardige 67% akkuraatheid bereik het. Beginsels wat tydens die 

projek ontluik het, is dat veldwerk krities is tot DSM, meer inligting insette verbeter die uitsette en dat die 

vereenvoudiging van die kaartlegende die kaart se akkuraatheid verbeter. 

 

ŉ Onrealistiese eis vir ŉ grondopname van 37 000 ha binne agt dae deur twee grondopnemers in ŉ 

gebied met beperkte beweging a.g.v. ŉ landmyngevaar het die geleentheid geskep om die grond-

landskap inferensie model (SoLIM) vir gebruik as DSM gereedskap te toets. Die gevallestudie het 

afgespeel in die Tete Provinsie, Mosambiek. Verdeling van die gebied in kleiner areas waar unieke 

grondverspreidings reëls geld (homogene gebiede) is tydens die gevallestudie ingestel. ŉ Vrye opname is 

geloods langs die beskikbare paaie van die gebied. Die finale grondkaart vir ŉ gebied van 15 000 ha 

beskik oor ŉ akkuraatheid van 69%. Die beginsel dat ontoeganklike gebiede gekarteer kan word, mits 

hulle in dieselfde homogene gebied as ŉ gebied waar ŉ opname wel kon plaasvind lê, is benut. 
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Naby Namarroi, Mosambiek, is die potensiaal van DSM grondopname metodes om vinnig 

landgeskiktheidskaarte op te stel vir ŉ groot area getakseer. “Conditioned Latin hypercube sampling 

(cLHS)” is ingestel as metode om veld observasiepunte te bepaal. SoLIM is gebruik om ŉ inferensie met 

grond-terrein reëls afgelei vanaf ŉ konseptuele grond verspreidings model oor die hele gebied te dryf. ŉ 

Beperking op die deskundige kennis gebaseerde benadering is raakgeloop. Slegs ses 

grondkaarteenhede kan bepaal word per homogene gebied. Die kaart het ŉ algehele akkuraatheid van 

80% behaal. Grondgeskiktheidskaarte is geskep gebaseer op die grond klas kaart. 

 

In die Kruger Nasionale Park is ŉ grondkaart gebruik om 2-dimensionele konseptuele hidrologiese 

reaksie modelle (CHRM) te skep en te ekstrapoleer na ŉ 3-dimensionele CHRM landskap. Hierdie is ŉ 

baie goeie voorbeeld van hoe waarde tot ŉ grondkaart gevoeg kan word. Satellietbeelde is gebruik 

tydens die skep van die kaart. ŉ Foutmatriks het doeltreffend probleemareas in die kaart uitgewys, 

waarop toekomstige verbeteringswerk op die kaart kan fokus. 

 

Die huidige data dui aan dat ten minste 28 observasies per homogene area nodig is om ŉ aanvaarbare 

grondkaart te skep. Wanneer die minimum observasie maatstaf vervul word, is observasie digtheid 

irrelevant. Die cLHS metode om observasie posisies te bepaal het die bruikbaarheid van observasies 

verhoog. Meer navorsing is nodig om die minimum maatstawwe vir observasies te bepaal. 

 

ŉ Vyftien-stap protokol waarmee bewys is dat grondopnemers ŉ verskeidenheid grondkaarte in diverse 

omstandighede kan skep is gelewer. Die protokol maak staat op die deskundige kennis van die 

grondopnemer, tesame met veld observasies. Die protokol het die voordele dat minder observasies nodig 

is, kaart akkuraatheid bepaal word, probleem areas uitgewys word en onder sekere toestande kan 

onbereikbare areas ook gekarteer word. Ongelukkig is daar ŉ beperking van slegs ses 

grondkaarteenhede per homogene gebied. 

 

Verdere navorsing is nodig om minimum maatstawwe vir grondobservasies en 

grondverspreidingsverhoudings met afstandswaarneming kovariate te bepaal. 

 

Sleutelwoorde : Afstandswaarneming, cLHS, DEM, Deskundige kennis, Grond funksies, Grondopname, 

Hidropedologie, Inferensie sisteme, Landtipe, SoLIM, Terrein analise 
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CHAPTER 1: 

INTRODUCTION 
 

1.1. The need for soil maps 

More than 95% of the world’s food requires soil as a basic natural resource (FAOSTAT, 2003). In spite of 

this, the importance of soil in the food chain is often underestimated. The crop production potential of 

South African ecotopes1 varies widely, and the lack of soil maps has been named as one of the biggest 

reasons for failure of many land reform projects, particularly in the Eastern Free State Province of South 

Africa (Gaetsewe, 2001). The benefit of doing a soil survey can be immense. According to calculations by 

Western (1978) in several countries, the cost benefit of doing a soil survey can be 1:125 or more. Thus 

for every rand invested in the soil survey, R125 can be gained from the knowledge achieved. According 

the Soil Science Society of South Africa (SSSSA) the cost benefit ratio in South Africa for dry land crop 

production is approximately 1: 20, with 1:10 as a minimum (Le Roux et al., 1999). Soil suitability maps 

enable the farmer to optimize the potential of the land by providing guidance with regard to the planting of 

specific crops, the application of appropriate production techniques, and utilizing specific management 

practises on specific soils.  

 

The role of soil in natural ecosystems has been ignored. Indications are that soil scientists world-wide 

focused on food security. The recent shift of focus to global health has drawn the attention of soil 

scientists. The focus is specifically on the impact of development on water supply to communities and the 

ecosystem. The ecosystem services supplied by individual soils and soilscapes are relevant. The need 

for soil maps in quantifying hydrology and assessing the role of soil on the impact of development on 

ecology and management have increased, due to an enlarged awareness of the role of soil in these 

processes. The fate of all precipitation, except what is stored in the canopy, is determined by the soil, as 

soil properties influence where the water will flow. The amount, seasonality and location of water in the 

landscape determine the vegetation and animal species and populations, thus directly controlling 

ecological functions. The extent of various sources of industrial pollution also depends on the soil 

properties’ influence on water movement.  

 

                                                        
1The crop production potential of a piece of land depends on three natural resource factors viz. climate, 
topography and soils. A piece of land where these three factors are reasonably homogeneous, is termed 
an ecotope. 
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Conventional methods of soil survey does not satisfy the growing demand for soil maps, due to being 

labour intensive and expensive (Zhu et al., 2001). However, the cost of conventional soil surveys can be 

greatly reduced by digital soil mapping (DSM) (Hensley et al., 2007). DSM harnesses the power of 

various new and rapidly developing technologies, including information technology, satellite imagery, 

digital elevation models (DEM’s), pedometrics and geostatistics, and combines them in inference 

systems, incorporating the tacit knowledge gained during field soil surveys. DSM quantifies the huge 

amount of tacit knowledge gained during soil surveys, which simply went astray with conventional 

methods. DSM thus aims at utilising various different new technologies to apply expert tacit knowledge to 

produce the same or better quality soil maps as conventional soil survey at a fraction of the price. 

 

Another challenge being addressed by the DSM community is the distribution of soil data. Traditionally 

soil scientists have struggled to communicate their findings within soil science and to other disciplines. 

(Hartemink and McBratney, 2008) This leads to the soil scientist’s advice not being followed (Greenland, 

1991). Products generated by DSM need to be used to benefit the community (McBratney et al., 2012). 

For this to happen soil scientist must address issues faced in other disciplines, and communicate their 

findings in non-soil science language. Bouma (2009) called for a focus on soil functionality, while keeping 

the knowledge chain (Bouma et al., 2008) intact, thus linking cutting edge research with the end users of 

the information. Therefore DSM should not only provide soil maps, but also extract the information 

relevant to the end user from the map and represent it in a way which is understandable to the non-soil 

scientist. 

 

1.2. Digital soil mapping background 

The concept of DSM emerged in the 1970’s and because of technological advances in related fields 

accelerated in the 1980’s. Research on different DSM technologies is converging and reaching a stage 

where operational systems are being implemented (Sanchez et al., 2009). The industrious Global Digital 

Soil Map (GDSM, Sanchez et al., 2009) project best showcases the theoretical potential of DSM. The aim 

of this project is to use both legacy and collected soil data to create a soil map of the world’s soil 

properties to a depth of 1 m and at a resolution of 90 by 90 m (Minasny and McBratney, 2010). 

 

Digital soil mapping produces predictions of soil classes or continuous soil properties in a raster format at 

various resolutions (Thompson et al., 2010). At its core, a digital soil map presents a spatial database of 

soil properties, derived from a statistical sample of landscapes (Sanchez et al., 2009). 

 

The fundamental principal of digital soil mapping lies in drawing correlations between soil and other 

factors which are easier to map than the soil. Equation 1 shows this relationship mathematically. 
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S = f(Q) + e          (1) 

 

With S = soil class or property to be mapped 

Q = other factors use to map S 

e = the error involved with the prediction 

 

 

The SCORPAN model of McBratney et al. (2003) (eq. 2) proposes seven factors which might be used as 

Q. 

 

S = f (s, c, o, r, p, a, n)         (2) 

With S = soil class or property to be mapped 

s = soil, or other properties of soil at a point 

c = climate or climatic properties at a point 

o = organisms, such as vegetation, fauna or human activity at a point 

r = relief, topography and landscape attributes 

p = parent material 

a = age, the time factor 

n = spatial variability. 

 

The SCORPAN modal differs from Jenny’s soil forming factors (Jenny, 1941) in that causality is not 

implied. Whatever correlation exists between soil properties or classes and the SCORPAN factors may be 

used to map soils, whether or not the SCORPAN factors influence the soil formation. Where there is 

evidence of a relationship it may be used (McBratney et al., 2003). According to the effort principal, 

something should not be predicted if it is easier to measure than the predictor (McBratney et al., 2002). 

Not all seven factors need to be used, but it is assumed that the more factors are included, the better the 

prediction will be (McBratney et al., 2003). 

 

As described by Zhu et al. (2001) conventional soil mapping occurs in the following steps: Firstly the soil 

mapper will conduct field work to establish the soil-landscape interaction for the specific area to be 

mapped. Thereafter the spatial extents of the different soils or soil groups will be mapped manually by 

aerial photography interpretation. In South Africa the conventional way of soil survey is to make 

observations on a grid basis, usually 150 m apart. After this the soil is mapped subjectively by drawing 

polygons around observations of the same type of soil, creating soil map units (SMU’s). Shortcomings of 

both these methods are that they are time consuming and manual. They also incorporate a lot of tacit 

knowledge into the soil map, without providing a platform where it can be recorded. Thus the tacit 

knowledge stays with the soil surveyor and is not distributed to possible users of that knowledge. Lastly 
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the outcome of the conventional methods of soil mapping is map units as discrete polygons. This is 

labelled crisp logic by Zhu (1997), a term derived from the crisp boundary between map units which 

arises from this method. This occurs in spite of the realisation that soil classes have intermediate 

boundaries in both geographic and attribute space (Burrough, 1996). Crisp soil map boundaries have two 

main limitations. Firstly soil types which are smaller than the minimum mapping unit needs to be 

incorporated into other map units, which leads to loosing of data (Mulla and McBratney, 2000). Secondly 

it is assumed that the whole soil map unit has the same properties, although property variation does exist 

within soil map units. Zhu (2000) calls these limitations the generalization of soil in the spatial and 

parameter domain.  

 

During a conventional soil survey tacit knowledge of individual and interactive relationships between all 

factors of SCORPAN, and individual and interactive relationships with surface properties i.e. vegetation, 

yield, surface colour, etc. is developed, but methodology to make it useful is not applied. DSM overcomes 

these shortcomings by using automated computer inference systems to apply all available data, including 

tacit knowledge to map soils, which speeds up the process considerably. The information whereby the 

inference system is run incorporates the expert tacit knowledge, thus providing a platform for it to be 

distributed to a wider audience. Furthermore a raster base is used for mapping. This means that the map 

is made up of pixels, each with an X, Y and Z value. The X and Y value is the spatial position of the pixel, 

whereas the Z value can be any soil property or class or environmental factor. This permits fuzzy 

transitions between mapping units, enabling a more real representation of soil boundaries. 

 

There are some conflicting reports as to the accuracy of DSM and conventional soil maps. Because of the 

local variation within pixels and the uncertainty of environmental factor layers, it cannot be assumed that 

DSM will be more accurate than conventional maps (McBratney et al., 2003). However, there are various 

reports of DSM projects with better accuracy than conventional maps, for the same area for both soil 

classes and properties (Zhu et al., 2001; Zhu et al., 2010). The benchmark for soil map accuracy is 65%, 

which is what Marsman and De Gruijter (1986) found the accuracy of conventional soil maps to be. 

 

1.3. General framework of DSM; the SCORPAN-SSPFe br oad methodology 

A broad methodology to DSM has been generally accepted (McBratney et al., 2003): 

1. Decide on what is to be mapped (soil classes or soil properties, and which soil properties) and at  

which scale it is to be done to meet land use requirements. 

2. Acquire the data layers necessary to represent Q. 

3. Spatial decomposition of lagging layers. 

4. Sampling of assembled data to obtain sampling sites. 

5. GPS field sampling and laboratory measurements. 

6. Fit quantitative relationships with auto correlated errors (observing Ockhams razor). 
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7. Predict digital map. 

8. Field sampling and laboratory analysis for validation and quality testing. 

9. If necessary, simplify legend or decrease resolution by returning to 1 or improve map by returning  

to 5. 

 

At each step, the soil mapper is free to choose which specific methodology he or she would like to use. 

Several methods exist for each step. A general discussion of each step follows: 

 

Step 1: Decide on what is to be mapped (Soil classes or soil properties, and which soil properties) and at 

which scale it is to be done. 

To answer the question what is to be mapped, one needs to know the specific requirements of the map. 

DSM should not be an end to itself, but it rather should provide the input for a new framework for soil 

assessment (Carré et al., 2007). This statement implies a shift in focus from soil as a natural resource to 

soil as a production unit. This asks for a diverse range of soil properties to be mapped depending on land 

use requirements ranging from cropping to environment. 

 

The scale at which the maps are to be drawn is usually decided by the resolution of the available input 

variables. The finer the resolution the larger the scale will be. 

 

Step 2: Acquire the data layers necessary to represent Q. 

In South Africa, there is basic information available on all seven of the SCROPAN factors. This 

information however varies from place to place and comes with different accuracies and at different 

scales. The more data layers can be acquired, the larger the chance is that a good correlation will be 

found between a data layer and the soil. Chapter 2 discusses the data layers used in this research. 

 

Step 3: Spatial decomposition of lagging layers. 

After the necessary environmental layers have been assembled, they need to be prepared to be worked 

with. This step includes digitising and rasterising paper maps (normally for geological input), deriving 

secondary terrain covariates from the DEM, radio transforming remotely sensed data (computing layers 

such as the normalized difference vegetation index, NDVI) and interpolating all data layers onto the same 

grid (Minasny and McBratney, 2007). 

 

Step 4: Sampling of assembled data to obtain sampling sites. 

To make the most of field work, observation positions must be in optimal places. Not only does an optimal 

sampling strategy minimize costs by cutting back on sampling number, but it also provides accurate 

representations of variability in environmental covariates and enough samples for predictive modelling 

(Brungard and Boettinger, 2010).  
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Observations need to provide data that is adequate for the estimation of some statistical parameter or 

spatial predictions of soil properties over a specific area (Minasny and McBratney, 2006). A good 

sampling strategy will not necessarily cover the whole geographical area, but rather needs a good 

representation of the environmental factors. Minasny and McBratney, 2007, stated that: “The general 

perception that good sampling requires a geographical spread is not well founded.” Bui et al. (2007) found 

that sampling must be representative of the whole region, or it will lead to gross mistakes when 

interpolating between sampling sites. Various sampling schemes exist, and it is up the soil mapper to 

choose the scheme best suited to the project’s needs. In the research several schemes were used, 

including: hierarchical nested sampling (Vågen et al., 2010; Chapter 3), conditioned Latin hypercube 

sampling (cLHS, Minasny and McBratney, 2006; Chapters 5 and 6), on-site determined sampling 

(Chapters 3, 4 and 5) and smart sampling (Chapter 6). 

 

Step 5: GPS field sampling and laboratory measurements 

In this step the soil data is collected with which soil classes or properties will be predicted in the rest of 

the studied area. Soil observations are made and samples taken for laboratory analysis on the locations 

determined in step 4. Observations necessary for validation purposes will also be made during this step. 

 

Step 6: Fit quantitative relationships with auto correlated errors (observing Ockham’s razor) 

If DSM was a car, this step would be the engine. Here the observed data is correlated to the 

environmental factors with the soil surveyor’s method of choice. For a general overview of these methods 

see McBratney et al. (2003). In this research these quantitative relationships will take the form of soil-

landscape rules, derived based on the expert knowledge of the soil surveyor. The soil-landscape rules will 

be entered into the soil-landscape inference model (SoLIM; Zhu, 1997), which will also use the rules to 

predict the soil map (step 7). SoLIM is discussed in Chapter 2. 

 

Step 7: Predict digital map. 

The quantitative relationships determined in Step 6 are used to derive the soil map through an automated 

inference system. An inference model is a computer program which applies the defined quantitative 

relationship to the whole area to be mapped. Automated inference systems are more efficient, they 

reduce errors introduced through manual compilation, and they allow for constant application of the soil 

scientist’s knowledge over the entire mapping area (Qi et al., 2006). For a summary of inference systems, 

see McBratney et al., 2003.  

 

Step 8: Field sampling and laboratory analysis for validation and quality testing. 

This step is required to determine the error term (e) in Equation 1. To be able to use any map well, it must 

be known what the uncertainty of the map is (Carré et al., 2007). The error term could be random or have 
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spatial structure (McBratney et al., 2003). When it is random, spatial variation is probably responsible. Lin 

et al. (2005) found short range hydrological and hillslope curvature variations to account for a great deal 

of local variability. When e has spatial structure various factors can be responsible; the SCORPAN model 

can by inadequate, too few environmental factors were used, interactions or f(Q) could be misspesified or 

something intrinsic such as spatial diffusion which influences the error (McBratney et al., 2003). Errors 

can also be the result of the quality of the input data, which depends on laboratory analysis, experience of 

the surveyors, and date of sampling (Minasny and McBratney, 2010). 

 

Zhu et al. (2010) validated their maps on three levels. Firstly the map must make conceptual sense. 

Secondly the accuracy must be determined with field observation and laboratory testing. This involves the 

same procedure as steps 4 and 5. Usually observations made for validation is taken at the same time as 

the observations made for training data. The validation observations are however set apart for validation 

and not used when mapping. Lastly the maps should be tested against existing soil maps or maps 

created with different methods. 

 

Zhu et al. (2008; 2010) applied more than one sampling method in the validation step. Grid sampling, 

purposive sampling (the method they used at step 4) and transect sampling were used. This gives the 

assurance that the map is thoroughly validated. 

 

Various statistical measures exist with which the accuracy of the map can be shown. For soil classes 

Ziadat (2001) used the common sense method of taking the accuracy of the map as the percentage of 

validation points that was predicted correctly. This method involves an error matrix, which gives an idea of 

the accuracy of prediction for soil class maps. For soil property maps statistical measures such as mean 

absolute error (MAE), root mean square error (RMSE), and agreement coefficient (AC) can be used to 

determine the accuracy of the map (Zhu et al. 2010). 

 

Step 9: Assess the map. If necessary, simplify legend or decrease resolution by returning to 1 or improve 

map by returning to 5. 

 

Decide if the map met the criteria set in Step 1. If not, either the map needs to be improved, which can be 

done by returning to Step 4, or the scale and properties can be simplified by returning to Step 1. 

 

Generally speaking the SCORPAN-SSPFe method could be applied in two DSM approaches. The first 

approach relies on spatial statistics, with computer models generating soil predictions based on statistical 

relationships between the soil and covariates. Such processes are usually objective and fully automated, 

and thus require little time. On the downside, this approach is data hungry, needing plenty of observation 

points to fulfil statistical requirements (Hansen et al., 2009). The second approach relies on expert 
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knowledge. With this approach, the soil mapper is required to create soil-landscape rules, which relate to 

the soil distribution of the area. Thus the soil mapper’s knowledge of the soil distribution in the landscape 

is vital to the success of the soil survey (Qi et al., 2006). Fewer observation points are required as 

quantitative information can be thoroughly integrated into the prediction system (McKenzie et al., 1999). 

However, the process is only semi-automated and somewhat subjective, which might introduce bias when 

using expert knowledge to predict soils (McKenzie et al., 1999).  

 

1.4. DSM in South Africa 

The challenge with DSM lies in creating site specific protocols which soil surveyors could follow to 

produce a quality product. Soil-landscape interaction varies between different locations and thus 

methodologies used in regional soil mapping might not be applicable at a different scale (Minasny and 

McBratney, 2010). Furthermore, available data sources vary in different parts of the world which 

complicates the implementation of DSM. This, together with unresolved research questions such as 

which data layer gives the best correlation to soil properties, what is the best way to model and reflect 

uncertainties (Minasny and McBratney, 2010), which sampling methods are best for which situations, how 

should validation and quality control be implemented, and the economic value of DSM (McBratney et al., 

2003) demands that research into DSM should be conducted locally. 

 

In South Africa DSM is still an emerging research field, with only a few isolated reports and papers 

available. The Institute for Soil, Crop and Climate (ISCW) has compiled two reports (Van den Bergh and 

Weepener, 2008; Van den Bergh et al., 2009) with regard to DSM, both focusing on the use of remote 

sensing and the land type soil profile database to produce soil maps for areas of KwaZulu-Natal. 

Schoeman (2005) also from the ISCW compiled some work on the theory of pedometrics. In the Free 

State Hensley et al. (2007) described a procedure for delineating land suitable for rainwater harvesting, 

using expert knowledge based DSM techniques. Stals (2007) mapped salt affected soils in the Orange 

River irrigation scheme with remote sensing, by mapping plants that had been affected by saline soils. 

Mashimbye et al. (2012) also mapped soil salinity using hyper spectral remote sensing data. We need a 

lot more research in South Africa to understand our local soil-landscape interaction, as well as to know 

how to optimally use the unique set of environmental layers that are available in our country.  

 

Currently soil surveys in South Africa are industry driven. Clients pay soil surveyors to map soils for 

specific needs. The primary users of soils data are farmers, but developers (for environmental impact 

assessments), mines (for pollution studies), hydrologists (for hydrological purposes) and environmental 

consultants increasingly use soil maps. Regularly the areas to be mapped are fairly large (5 000 – 30 000 

ha), and have very little or no existing data. Often budgets limit the input data. Southern African soil 

surveyors are generally very well trained in soil morphology and application of soil knowledge to specific 

needs. However, specialist skills in GIS applications and statistics, although part of university curricula, 
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are often lacking. Thus a DSM protocol for southern Africa should have an expert knowledge approach, 

with a relatively simple GIS and statistical background. 

 

To keep the link with industry’s needs, a case study approach was followed in this research. Four case 

studies were done in succession, which cover an array of challenges faced by soil surveyors. Figure 1.1 

shows the locations, while Table 1.1 gives some features of the different case studies. Using these case 

studies a working DSM protocol for mapping large areas in southern Africa will be developed. 

 

 
Figure 1.1: The locations of the case studies. A – Madadeni; B – Tete, C – Namarroi; D – 
Stevenson Hamilton Research Supersite. 
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Table 1.1: Features of the case studies used in thi s project 
 Madadeni  Tete Namarroi  SHRS 

Map Aim  Research Environmental 

Impact Assessment 

Forestry 

Production 

Potential 

Hydrological 

Modelling 

Special feature  Land types Land mines LiDAR Remote sensing 

Sampling 

scheme 

Hierarchical 

nested 

Roads cLHS cLHS 

Smart sampling 

Hap-Hazard 

Covariates  30 m DEM, 

interpolated from 

contours 

1: 250 000 

geological map 

Land types 

25 m DEM, 

interpolated from 

contours 

1 : 20 000 

geological map 

 

10 and 30 m 

DEM, interpolated 

from Lidar 

1 : 1 000 000 

geological map 

10 and 30 m 

DEM, interpolated 

from 5 m SUDEM 

Landsat 7 

SPOT 5 

ET and Biomass 

Geology  Sandstone and 

dolerite 

Sandstone, shale 

and granitic gneiss 

Granitic gneiss 

Basic intrusive 

rocks 

Granite 

MAP 858 mm 627 mm 1 770 mm 560 mm 

 

Vegetation  Grassland Bushland Woodland Forest Savannah 

Area mapped  6 865 ha 15 000 ha 10 966 ha 4 001 ha 

SHRS – Stevenson Hamilton Research Supersite; cLHS – conditioned Latin hypercube sampling; DEM –

Digital elevation model; SUDEM – Stellenbosch University DEM; ET – Evapotranspiration; MAP – mean 

annual precipitation. 
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 Software and Covariates 
 

In DSM various covariate layers are needed to predict soil distribution by using a variety of GIS tools 

in several software programs. As there are many ways to kill a cat, the available covariate layers and 

software programs can often be used for the same purposes. This chapter will briefly discuss those 

used in this research.  

 

2.1. Software Programs 

Different software programs were used, as they are specialized to do different functions, even though 

there are quite a bit functionality overlaps. A practical procedure was followed in the research. The 

appendices show step by step procedures on how to use some of the tools of the software packages. 

 

2.1.1. ArcGIS 10 

ArcGIS is probably the most widely used commercial GIS package. It is developed by Environmental 

Systems Research Institute (ESRI, www.esri.com). Although quite expensive (especially when 

compared to open source GIS packages) it is being used for GIS training by most universities in 

South Africa and is therefore the most commonly used GIS product. ArcGIS was used for the 

conversion of files, creating and assigning projections to map layers, viewing and drawing of maps. 

ArcGIS can be purchased at www.esri-southafrica.com. 

 

2.1.2. SAGA 

The System for Automated Geoscientific Analysis (SAGA, Böhner et al., 2006; Böhner et al., 2008) is 

an open source GIS package, developed by a research team from the Department of Physical 

Geography, Hamburg. The functionality of SAGA is very good for specific tasks, as the modules have 

been developed by scientists that need particular tasks done. Nearly all the terrain and image 

analysis in the final protocol is done in SAGA. The program can be downloaded from 

http://sourceforge.net/projects/saga-gis/files/, and various manuals and other useful material related 

to the operation of SAGA could be downloaded from http://www.saga-gis.org/en/index.html. 

 

2.1.3. SoLIM 

The Soil-Land Inference Model (SoLIM) (Zhu, 1997) is a software tool specifically designed for digital 

soil mapping, using an expert knowledge based approach. In this research it is used to enter the soil 

distribution rules, and to create a map from the rules. It also includes a method to determine 

observation positions called purposive sampling (Zhu et al., 2008). Several scientific articles on the 

usage of SoLIM have been written (eg: Zhu, 2000; Zhu et al., 2001; Zhu et al., 2010). SoLIM can be 
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downloaded from http://solim.geography.wisc.edu/software. Manuals and publications of SoLIM can 

also be obtained from the website. A very good start-up tutorial is included in the software package. 

SoLIM is provided free of charge for non-commercial enterprises, however for commercial usage, 

please contact the developer Prof. A-Xing Zhu at mailto:azhu@wisc.edu.  

 

2.1.4. Conditioned Latin Hypercube Sampling 

Conditioned Latin hypercube sampling is adapted from Latin hypercube sampling (LHS) (see McKay 

et al., 1979), a stratified random sampling method used for multivariate distributions. It provides a 

sampling scheme where the full range of each variable is represented by maximally stratifying the 

marginal distribution. Thus it gives a good spread of the feature space, and not necessarily of the 

geographical space (Minasny and McBratney, 2007). LHS follows the idea of a Latin square, with one 

sample in each row and column (Minasny and McBratney, 2006). In a Latin hypercube each 

environmental factor is stratified into n dimensions. The sample is maximally stratified when n = the 

sample size and the probability of a sample falling into each stratum is n-1 (Minasny and McBratney, 

2006). Within each strata one sample is chosen randomly, which is then randomly paired with a 

sample from one strata of another environmental factor (Figure 2.1). 

 

 

 

 

 

 

The problem with applying LHS is that the chosen samples do not necessarily exist in reality (Minasny 

and McBratney, 2006). Conditioned Latin hypercube sampling (cLHS) adds the condition that the 

samples chosen by LHS must exist in the landscape studied (Brungard and Boettinger, 2010). There 

are two ways to accomplish this. The first is to run LHS repeatedly until all the samples exist in the 

Figure 2. 1: A graphic representation of the Latin Hypercube 
Sampling point selection (From Minasny and McBratne y, 2006). 
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landscape studied, or to include a seek function into the protocol. The latter option is performed by 

cLHS (Minasny and McBratney, 2006). 

 

2.2. Covariate layers 

Covariate layers can either be raster or polygon based. In raster based covariate layers, each pixel 

has an x, y and z value where the x and y values give the position of the pixel and the z value is the 

response. With a digital elevation model, the z value is height above sea level and for satellite 

images, the z value is the reflection of energy at a specific wavelength, usually expressed as a Digital 

Number (DN). It is the z values that are correlated with soil observations. Nearly all covariate layers 

are raster based, with the exception of geological maps, which is usually polygon based. These need 

to be converted to a raster format. 

 

2.2.1. Digital elevation models 

Correlations between soil and terrain variables are the most commonly used in DSM (McBratney, et 

al., 2003). Several terrain variables can be computed from a DEM. DEM’s can be obtained from 

various sources. The shuttle radar transmission (SRTM, Rodriguez et al., 2005), has a resolution of 3 

arc seconds, approximately 90 m. The ASTER Global DEM (Aster GDEM, undated) has a resolution 

of 30 m, but some problems with the data have been encountered. Another method to create a DEM 

is by interpolating the 20 m contours that is standard on the 1: 50 000 topographical maps of South 

Africa. Interpolation of contours gives varying resolutions dependant on relief. The larger the relief, the 

finer the resolution of the DEM will be. The DEM’s for Chapters 3 and 4 were created in this way. The 

SUDEM (Van Niekerk, 2012), a DEM created by Stellenbosch University for the whole of South Africa 

was created by interpolation. They used the contours from the 1: 50 000 and 1: 10 000 (where 

available) topographical maps as well as the SRTM DEM to create the SUDEM. The SUDEM was 

used in Chapter 6. The best topographical information can be attained with a Lidar (light detection and 

radar) device, which is able to acquire point elevations with sub metre accuracies. The DEM’s in 

Chapter 5 was acquired by interpolating Lidar data.  

 

2.2.2. Geological maps 

Geological maps at a scale of 1: 250 000 are available for South Africa (Geological Survey, 1988), 

which will provide the standard input for the parent material factor. These maps can be ordered from 

the Council for Geosciences (www.geoscience.org.za). The maps are quite expensive in digital 

format, so the most cost effective way to incorporate geological information into the equation is to 

order the printed map, scan it, and then georeference the map. A helpful portal for geological maps is 

One Geology (www.onegeology.org). From this website geological maps for large parts of the world 

can be downloaded. The geological information that was used in Chapter 5 was obtained in this way. 

Often, such as when the client is a mining company, the client provides very good geological data, as 

what happened in Chapter 4. The coarse scale of the geological maps can be limiting the accuracy of 

DSM, especially where dolerite dykes are present in an area (Chapter 6).  
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A further problem to address is the effect of colluvium. When two different geological formations exist, 

the colluvium from the top formation will influence soil formation on the bottom geology. This was 

encountered in Chapter 3. 

 

2.2.3. Landsat satellite images 

Landsat is the longest running satellite observation program. The latest satellite, Landsat-ETM 7 

provides eight bands at varying resolutions (Table 2.1). The bands commonly used in DSM are 1 – 5 

and 7. Various mathematical transformations with the data are possible, of which the most well-known 

is the normalized difference vegetation index (NDVI) (Rouse et al., 1973; Tucker, 1979). These 

transformations provide an additional set of covariates with which the soils could be correlated. In 

Chapter 6 the NDVI proved valuable. Landsat images could be obtained free of charge from 

http://earthexplorer.usgs.gov/. The South African Space Agency (SANSA) also provides the images, 

with a level of pre-processing done on them, free of charge for educational and research purposes. 

 

Table 2.1: Landsat 7 bands (From NASA, undated) 
Band  Bandwidth  (µm) Resolution  

1 0.45 - 0.52 30 

2 0.52-0.6 30 

3 0.63 - 0.69 30 

4 0.76 - 0.9 30 

5 1.55 - 1.75 30 

6 10.4 - 12.5 60 

7 2.08 - 2.35 30 

Pan 0.5 - 0.9 15 

 

 

2.2.4. SPOT 5 satellite images 

The remote sensing covariates with the finest resolution are the Système Probatoire d'Observation de 

la Terre or SPOT images. It offers five bands, a 2.5 m panchromatic band, three multispectral bands 

(green, red and near infra-red) with a resolution of 10 m and a short wave infra-red band with a 20 m 

resolution. A pan sharpened image could be created, which is a fusion of the panchromatic and 

multispectral bands at a resolution of 2.5 m (SPOT image, undated). The three multispectral bands 

are used in DSM. As the multispectral bands include a red and infra-red band, the NDVI could be 

determined. SPOT images are available from SANSA. These images are provided free when used for 

educational and research purposes (terms and conditions apply), but are quite costly when used for 

commercial purposes. SPOT was used in Chapter 6. 

 

2.2.5. Other remotely sensed layers 

In Chapter 6, two further remotely sensed layers were used. These are commercially provided layers 

which measures biomass production and evaporation. The Inkomati Catchment Management Agency 
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on behalf of eLeaf (www.eleaf.com) and the WATPLAN EU project provided the images. When 

available, any layer which could be correlated to soil type could be used for DSM purposes. 

 

2.2.6. Land type inventory 

South Africa is blessed with the land type survey (Land Type Survey Staff, 1972-2006), whereby the 

whole country has been delineated into reasonably uniform land units at a scale of 1: 250 000. Each 

land type unit is described in the form of one representative catena per land type with percentages of 

soil forms per terrain morphological unit. The land type survey also included climate, parent material 

and topography to delineate the map units. The land type inventory gives an estimation of the 

percentage of each terrain morphological unit (TMU) which is occupied by a specific soil type. The soil 

classification was done according to MacVicar et al. (1977). The land type inventory is similar to the 

SOTER database (Oldeman and Van Engelen, 1993) (http://www.isric.org/projects/soil-and-terrain-

database-soter-programme). In Chapter 3 the land type database was disaggregated into a soil 

association map. 
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CHAPTER 3: 

 Disaggregation of Land Types, using 

terrain analysis, expert knowledge and 

GIS methods 
 

Abstract: 
Soil maps’ value is increasingly recognized for enabling the optimal management of ecosystems. 

Digital soil mapping (DSM) can overcome the cost constraints of traditional mapping methods, but 

requires local area specific research. As South Africa is blessed with the land type survey, local DSM 

research should start with the disaggregation of this resource. This paper shows how two land types 

(Ea34; Ca11) near Newcastle in KwaZulu-Natal were disaggregated using DSM methods. A series of 

soil maps were created. With each map, more information was incorporated when creating the map. 

For Map 1 only the land type inventory and terrain analysis were used. A reconnaissance field visit 

with the land type surveyor was added for the second map. Field work and a simplified soil 

association legend improved the map accuracy for Maps 3 and 4, which were created using 30% and 

60% of the observations points as training data respectively. The accuracy of the maps increased 

when more information was utilized. Map 1 reached an accuracy of 35%, while Map 4 achieved a 

commendable accuracy of 67%. Thus DSM methods can be used to disaggregate land types into 

accurate soil association maps. Emerging principles include: Lithology rather than hard geology 

should be used as parent material input, field work is critical to obtain acceptable results and 

simplifying the map legend into soil associations improves the accuracy of the map. 

 

Keywords:  Digital Soil Mapping, Soil Survey, DEM, SoLIM Software 

 

3.1. Introduction 
Virtually all food except for fish requires soil as a natural resource. In spite of this, the importance of 

soil in the food chain is often underestimated. In South Africa, the lack of soil suitability maps has 

been named as one of the reasons for failure among upcoming farmers (Gaetsewe, 2001). However, 

it is known that the benefit of a soil survey for dryland cropping is between 10 to 125 times that of the 

cost (Western, 1978; Le Roux et al., 1999). The value of soil survey in hydrology and the ecosystem 

has not been established. 
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Part of the reason for the lack of soil suitability maps is that traditional methods of soil survey are 

cumbersome and expensive. However, the cost of traditional soil surveys can be greatly reduced by 

digital soil mapping (DSM) methods (Hensley et al., 2007), which is moving from the research into the 

operational phase (McBratney et al., 2003). DSM harnesses the power of various new and rapidly 

developing technologies, including information technology, satellite imagery, digital elevation models 

(DEM’s) and geostatistics, and combines them in computer inference systems, incorporating the tacit 

knowledge gained during field soil surveys. DSM thus aims at utilising various new technologies to 

produce better quality soil maps at a fraction of the price, while also improving the interpretation of soil 

maps to a wider range of specialist fields. 

 

Soil-landscape interactions vary between different locations and thus methodologies used in regional 

soil mapping might not be applicable at a different scale or location (Minasny and McBratney, 2010). 

These, together with available data sources which vary in different parts of the world complicate the 

implementation of DSM and calls for local DSM research to be conducted. 

 

In South Africa DSM is still in its infant stage (Stalz, 2007; Hensley et al., 2007; van den Bergh and 

Weepener, 2009; van den Bergh et al., 2009). The scientific potential of the Land Type database 

(Land Type Survey Staff, 1972-2006) has been emphasised in these efforts and has the potential to 

be exploited further (Hensley et al., 2007), as the distribution of soil series (MacVicar et al., 1977) in 

the landscape serves as the scientific backbone of the survey. Because of this resource, it seems 

logical that the starting point of DSM in South Africa should be the disaggregation of land types.  

 

The land type survey (Land Type Survey Staff, 1972-2006) produced a 1: 250 000 scale map, 

showing relative homogeneous parcels of land in terms of terrain, climate and soil distribution pattern. 

Each such parcel of land is a different land type. Soil distribution is given as a rough estimate of the 

percentage of area of each Terrain Morphological Unit (TMU; also called terrain unit) covered by a 

specific soil series. Thus it is not a soil map, but rather a list of soil series’ found within the land type 

and a rough estimation of where in the landscape they will occur. Bui and Moran (2001) successfully 

disaggregated a similar product, the Land Systems of western New South Wales, using expert 

knowledge and soil-landscape relationships. 

 

The hypothesis expressed in this paper is that there is a sound scientific correlation between the local 

dominant soil forming factors, topography and parent material. This enables land types to be 

disaggregated into useful soil maps.  

 

Two land types were disaggregated into a series of soil association maps, using DSM methods. The 

first map was created in office, using only terrain analysis and the land type inventory. The second 

map was created after a reconnaissance visit to the site, together with the land type surveyor. The 

last two maps were created after field work was conducted, using 30% and 60% of the observations 

as training data. Technically these last two maps are not produced by disaggregation, but rather 



 
   

   23  
 

Chapter 3 

 
Disaggregation of Land Types 

DSM. As the methodology of the different maps is different from each other, different map legends 

and accuracies are to be expected. This is not seen as a problem, as the aim of the paper is to 

determine the level of spatial soil information we can expect with different levels of input.  

 

3.2. Material and methods 

3.2.1. Site description 

The study site of 6865 ha is north of Madadeni and Newcastle, in KwaZulu-Natal, close to the border 

with Mpumalanga and the Free State (Figure 3.1). Its geographical centre point is 29.95˚E and 

27.62˚S. Two land types occur in this area, namely Ca11 and Ea34 (Land Type Survey Staff, 1986). 

The geology of land type Ea34 is dominated by dolerite lithology (Geological Survey, 1988), which 

weathers to swelling red or black clay soils. Land type Ca11 has sandstone as its main lithology 

(Geological Survey, 1988), which weathers to sandy soils, often with plinthic character in the deeper 

subsoil horizons. The mean annual precipitation is 858 mm (SAWS, 2012). The veld types in the area 

are the KwaZulu-Natal Highland Thornveld and Income Sandy Grassland (Mucina and Rutherford, 

2006). Commercial cattle farming is the primary land use. Fields are burnt annually to provide 

regrowth as fodder for the cattle. This site is one of the sentinel sites for the Africa Soil Information 

Service project (AfSIS) (Vågen et al., 2010), and thus it was chosen for this project, as a way to 

increase usage of the data already collected. 

 

 
Figure 3.1: The Madadeni study site, showing the ex tent of the Ca 11 and Ea 34 land types.  
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The typical topography of the two land types varies (Figure 3.2). Land type Ea34 has all the 

topographical positions from crest to valley bottom, largely with short concave slopes. In contrast to 

this land type Ca11 has long concave slopes and is only comprised of crest, midslope and valley 

bottom positions. 

 

 
Figure 3.2: Terrain sketches of Land Types Ca11 (Fi g. 3.2a) and Ea34 (Fig. 3.2b)  

(Land Type Survey Staff, 1986). 

 

3.2.2. Software used 

The software used in this project is Arc Map 9.3 (Environmental Systems Research Institute Inc., 

2010), 3dMapper (Terrain Analytics, L.L.C.; 2003) and the Soil-Land Inference Model (SoLIM, Zhu, 

1997). 3dMapper and SoLIM have been specifically developed for use in DSM. SoLIM enables the 

user to capture soil terrain interactions as rules. Thus the user applies expert knowledge and writes 

specific terrain landscape rules for each soil map unit (SMU). SoLIM also runs an inference, whereby 

it assigns a specific SMU to each pixel, based on the rules the soil mapper created, thereby creating a 

soil map. Within 3dMapper terrain layers and maps created by SoLIM can be viewed in a 3d 

environment.  

 

3.2.3. Methodology  

Four different soil maps were drawn in hierarchical fashion, with each map having increasing levels of 

input.  

 

Map 1 

The first map was drawn in the office, by only using the land type inventory and a 30 m DEM 

interpolated from the 20 m contours of the 1: 50 000 topographic maps. As the DEM’s resolution is 

30 m, all products derived in this project also had a 30 m resolution. The terrain was divided by hand 

into TMU’s, by drawing polygons in ArcGIS at the topographic knick points and the soil series listed in 

the land type inventory on each TMU divided into three soil associations, i.e. shallow soils, wet soils 

and intermediate soils. Soil associations were mapped by assigning shallow soils to the convex 

slopes, wet soils to the concave slopes and intermediate soils to the straight slopes. The soil 

associations were mapped by hand using 3dMapper and ArcGIS for land type Ca11 and with the 

SoLIM inference model for land type Ea34. SoLIM was used rather than the hand method, as it 

automated the process, making it much faster. Soil associations were assigned. The legend to this 

map shows the soil series abbreviations for these soil associations, as they vary between TMU’s. 
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Map 2 

For map 2 a reconnaissance field visit was undertaken to the study site, along with the land type 

surveyor of the area, to better grasp the soil genesis of the area. This resulted in including parent 

material as a factor to create the soil maps.  

 

A lithology map (Figure 3.3b) was created for parent material input, as soil formation is influenced by 

the lithology and not hard geology (Figure 3.3a). Soil formation on sandstone hillslopes with dolerite 

colluviums especially underlined this statement. Therefore a Dol_Sand geological map unit was 

included in the lithology map for areas in the downslope colluvial positions where dolerite influence 

was noticed in the soil formation. The lithology map resulted in the map legend being changed 

considerably, as soil series’ derived from sandstone were included in the same soil association with 

soils derived from dolerite in Map 1. Including lithology enabled the separation of such soil series’. 

 

 

Figure 3.3: The geology (Geological Survey, 1988) ( Fig. 3.3a) and the revised lithology maps of 

land types Ca11 and Ea34 (Fig. 3.3b). 

 

The area was then divided into soilscapes, which are continuous areas with the same soil distribution 

patterns. From the soilscapes the soil associations were mapped by assigning the expected soil 

distribution pattern to each soilscape. The soil distribution pattern was determined by the soils series 

in the land type inventories on the different TMU’s. This created a complex legend, as certain 

soilscapes stretched across both land types, while others were only confounded to one. 

 

Maps 3 and 4 

Field work included one hundred and eighteen auger observations (Figure 3.4), with the soils being 

classified according to the Soil Classification Working Group (1991). The observation points were 

determined in a hierarchical nested sampling plan, which is used by AfSIS (Vågen et al., 2010). In this 

(a) (b) 
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sampling design a sentinel site of 10 000 ha is divided into 16 clusters of 2.5 by 2.5 km. Within each 

cluster 10 plots would be randomly chosen. These plots would be the observation points. Of the 

10 000 ha and 160 observation points of the sentinel site 6 865 ha and 118 observation points fell 

within the Ca11 and Ea34 land types.  

 

 
Figure 3.4: The observation points from the hierarc hical nested sampling design. 

 

The third and fourth soil maps were constructed using SoLIM with stratified randomly selected 30% 

and 60% of the observation points respectively. The observation points were stratified per cluster i.e. 

30% and 60% of the observation points within a cluster were chosen at random as training data for 

Maps 3 and 4 respectively.  

 

The map legend was simplified into six soil associations, following step 9 of the SCORPAN approach 

(McBratney et al., 2003). The soil associations were formed by grouping soil forms of the Soil 

Classification Working Group (1991) into logical associations. Table 3.1 shows how these groupings, 

as well as the soil-landscape rules created for Map 4. Shallow soils and wet soils occur throughout 

the area and their distribution is determined by the topography. Red and dark clays occur on the 

dolerite parent material, which provides the basic cations needed for clay formation. Plinthic soils 

occur on the sandstone parent material. On the hillslopes where dolerite overlies sandstone and the 

dolerite colluvium plays a marked role in soil formation, the intermediate soils occur. These soils are 

not as clayey as pure dolerite derived soils, but also not as sandy as sandstone derived soils. Some 

soil forms fit into more than one soil association. This is because they have characteristics of both of 

the soil associations, and is probably a transitional zone between two soil associations. 
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Table 3.1: Soil map units for Maps 3 and 4 
Soil  Soil-landscape rules 

Association Soil Classification IUSS Working 
Group, Instance*  Covariates 

 Working Group, 1991 WRB, 2007  Slope Profile 
Curvature 

Planform 
Curvature Aspect  Lithology 

Wet soils Katspruit, Kroonstad,  Gleysols,  1 x < 2.6 
    

 Dundee, Rensburg,  Stagnosols 2 3.3 < x < 5.2 
 

x > 0.005 
  

 Willowbrook  3 5.5 < x <10.7 
 

x > 0.05 
  

         
Shallow Soils Mispah, Milkwood, Leptosols 1 x > 14.4 

    
 Glenrosa, Rock  2 4.9 < x < 14.4 

 
x < -0.005 

 
Dolerite 

         
Red Clay Shortlands, Hutton Nitisols,  1 8 < x < 13 x < 0.001 

  
Dolerite 

  Ferralsols 2 4.5 < x < 8 x < -0.005 
  

Dolerite 
         
Dark Clay Arcadia, Rensburg, 

Bonheim, 
Vertisols,  

1 4.2 < x < 8 x > -0.001 
  

Dolerite 

 Milkwood, Willowbrook Mollisols 2 8.4 < x < 12.8 x > 0.005 
 

South Dolerite 
   

      

Plinthic soils Avalon, Westleigh, Dresden, 
Longlands, Glencoe, 
Wasbank 

Plinthosols 
1 3 < x < 14 

   
Sandstone 

         
Intermediate 
Soils 

Bonheim, Valsrivier, Sepane Luvisols, 
Lixisols 1 4.2 < x < 12.8       Dol_Sand 

* An instance is a different set of rules for the same soil association. 
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Validation 

Validation was done with the field observations. If the soil form as which the observation was classed, 

was part of the soil association on which it fell, the observation was deemed to be correct. Map 

accuracy was calculated by the percentage of observations that were predicted correctly. 

Observations of soil types which fitted into two soil associations were regarded as correct if it fell into 

either of those soil associations. Borderline observations were regarded as part of both soil 

associations, if it was unclear into which soil association the observation fell at a scale of 1 : 10 000. 

For Maps 1 and 2, all the observations were used, and for Maps 3 and 4 the observations which were 

not part of the training data were used. Thus for maps 1 and 2, 118 observations were used for 

validation, for map 3 it was 83 and for map 4 there were 47 validation observations.  

 

3.3. Results and discussion 

The four maps created and their accuracies can be seen in Figures 3.5 and 3.6. The accuracy of the 

maps improved with higher input into the maps. The first map included some illogical soil 

associations. Avalon soils (Av; WRB: Plinthosols) derived from sandstone and Arcadia soils (Ar, 

WRB: Vertisols) derived from dolerite were grouped together in the same soil association, since 

subdivision was only done on the basis of terrain forms. It would be desirable from a soil property and 

land use perspective to separate these soils. 

 

Separation of soils from different geologies was done by including a lithology map for the area. This 

immediately improved the map legend, as soil series’ which are more alike were grouped together in 

the same soil associations. However, the use of soilscapes as the basis for mapping soil associations 

complicated the map legend with too many mapping units. The accuracy of the map also did not 

improve much. The simplification of the map legends of Maps 3 and 4, together with the usage of field 

work, immediately improved the accuracy of the maps. The fourth map achieved an accuracy of 67%, 

which is comparable to the average traditional soil map accuracies of 65% as quoted by Marsman 

and De Gruijter (1986) and the 69 % map accuracy which was achieved in another project also using 

SoLIM (Van Zijl et al., 2012). In addition to being more accurate, the fourth map shows a lot more 

intricacy than the third map. This should closer represent the real situation at a large scale, showing 

differences in mapping units across short distances. As all the maps were evaluated at a scale of 1: 

10 000, the larger measure of intricacy probably contributed to the higher accuracy of the map. It is 

clear that using more observations as training data improved the final product. 

 

The comparable map accuracy of Map 4 to conventional soil survey, although using a lot less 

observations (3 430 observations is necessary for conventional mapping on a 2 ha grid) shows that 

combining land types, terrain analysis and expert knowledge  optimises the field work necessary for 

soil survey. The desktop study done for Map 1 can be applied to give some idea of the soil 

distribution, for projects where exact soil information is not necessary. As the whole country is 

included in the land type survey, this method has great potential to aid future soil surveys.  
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a) Map 1, Accuracy 35% 

 

b) Map 2, Accuracy 36% 

 

Figure 3.5: Maps 1 and 2. The map legend shows the abbreviations for the soil forms 

according to the Soil Classification Working Group,  1991. 
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a) Map 3, Accuracy 49% 

 

b) Map 4, Accuracy 67% 

 

Figure 3.6: Maps 3 and 4. The descriptions for the soil associations are shown in Table 3.1 

 

 

Soil Association 

Soil Association 
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An error matrix for Map 4 (Table 3.2) shows the specific accuracy of the different soil associations. 

The Wet (W) and Shallow soils (SS) map units are very accurate with barely any other observations 

made in them, although they did not include all the Wet and Shallow soils observations. This shows 

that the rules for the Wet and Shallow soils map units might be widened slightly. Seventy seven per 

cent of the dark clay (DC) observations were mapped correctly, but the map unit included a small 

number of plinthic soils (P), indicating possible small inaccuracies in the lithology map. The presence 

of shallow soils in the dark clay mapping unit is to be expected and may not be due to mapping errors 

as rock outcrops will commonly occur in this mapping unit.  

 

Table 3.2: An error matrix of Map 4 
Validation  Observations 
  RC DC I P SS W Correct 

(#) 
Total Correct 

(%) 

M
ap

 

RC 1 2 0 0 0 0 1 3 33 
DC 1 10 0 1 3 0 10 15 67 
I 0 1 1 2 0 0 1 4 25 
P 1 0 2 6 1 1 6 11 55 
SS 1 0 0 0 10 0 10 11 91 
W 0 0 0 0 0 4 4 4 100 
Correct (#) 1 10 1 6 10 4 32   
Total 4 13 3 9 14 5  48  
Correct (%) 25 77 33 67 71 80   67 

 

 

The plinthic soil observations were mapped to an acceptable accuracy, but the map unit included five 

other observations, indicating that the map unit is too broadly defined by the soil-landscape rules. The 

rules governing the delineation between the plinthic and intermediate (I) soil associations should be 

improved. Sixty six per cent of the intermediate observations lie on the plinthic map unit and 50% of 

the observations on the intermediate map unit are plinthic soils. This might not be a true reflection of 

the map units’ accuracy, as there were only 4 observations made on the intermediate soil association. 

 

The combination of soil forming factors giving rise to red structured clay on the one hand and dark 

swelling clays on the other hand are not well understood in quantitative terms. Although both soils are 

commonly derived from basic igneous rocks, it is still unknown how soil forming factors determine 

which type of soil will form at a specific location. Thus, it is no surprise that there are dark clay 

observations on the red clay (RC) map unit and vice versa.  

 

3.4. Conclusions 

Digital soil mapping methods, and specifically the SoLIM software combined with expert knowledge 

and soil observations can be used to disaggregate land types into accurate soil association maps. 

The more information used when creating the maps, the better the map accuracy will be. 

 

The land type survey proved to be a good basis to start DSM. Using only terrain analysis, soil series 
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distribution could be predicted from this platform, to a reasonable accuracy, however, some illogical 

soil associations were mapped. Including parent material as input variable improved the usability of 

the soil map, but not its accuracy. A revised lithology map represented the real parent material better 

than hard geology did, especially in soilscapes where dolerite colluvium influenced soil formation on 

sandstone geological map units. Simplifying the map legend into soil associations improved the 

accuracy of the map. Field work is critical to obtain acceptable results. Results improved when more 

observations were used as training data. 

 

Research is needed to determine optimal sampling strategies which will include adequate observation 

points of all soil types present; a way to map the lithology accurately; and to utilize these soil 

association maps to create soil property maps. 
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CHAPTER 4: 

 Rapid soil mapping under restrictive 

conditions in Tete, Mozambique 
 

Abstract: 

The necessity to do large area soil surveys that conform to specified requirements is increasing, 

especially in areas with little baseline information. An unrealistic demand for a soil survey of 37 000 ha of 

land in the Tete Province, northern Mozambique, possibly infested with land mines, in 8 working days by 

two persons, created an opportunity to apply the soil-land inference model (SoLIM) as a digital soil 

mapping tool. A free survey was conducted along the available roads of the area. Based on geology and 

topography, the area was divided into seven homogeneous areas (HA’s). SoLIM was used to derive 

different soil-landscape rules and create a final soil map for the area. Independent observations were 

made for validation. A fifteen thousand ha area was mapped with a validation accuracy of 50%. When 

including borderline observations within one pixel of the correct soil map unit, the accuracy increased to 

69%. When including the training data, the overall accuracy was 58% and the borderline accuracy 72%. 

Several principles emerged in the study. Expert knowledge is necessary to conduct DSM. Inaccessible 

areas can be mapped, provided that they occur within surveyed sub-areas. Field work is essential. 

Identical soil forms from different HA’s could be lumped together, even if they were predicted with 

different rules. The better the data used, the better the results will be. Currently the methodology is 

surpassing the affordable technology, as finer resolution DEM’s will improve the quality of the products, 

created with the same methodology.  

 

Keywords: DEM, DSM, Expert knowledge, SoLIM, Terrain analysis 

 

4.1. Introduction 

Quick and accurate soil maps for vast areas are becoming increasingly sought after, especially as 

awareness of the role of soil in the environment spreads. Environmental impact assessments (EIA’s) are 

required by the International Finance Corporation for funding of new developments (IFC, 2012). Such 

developments covering large areas are often situated in remote areas and supported by little 

infrastructure. An EIA requires a soil map to provide guidelines for rehabilitation. For open cast mining the 

soil map provides guidelines for stockpiling of soil before mining commences. Soil is replaced after mining 

to facilitate rehabilitation to the original agricultural potential. To achieve this, the soil types are grouped 
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and stockpiled. It is specifically important to avoid mixing soils with different textures. Thus soil map units 

(SMU’s) should differentiate between soil types as well as soils with different textures. 

 

The production of conventional soil maps are slow and costly (Zhu et al., 2001). Digital soil mapping 

(DSM) greatly increases the speed and decreases the cost of soil mapping (Hensley et al., 2007). This is 

improving with growing correlation of soil observations with an array of new, rapidly developing 

technologies, including information technology, satellite imagery, digital elevation models (DEM’s) and 

pedometrics. Topographical analysis specifically considers soil-landscape interaction, using a DEM. Such 

methods can rely on legacy data (Mayr et al., 2010) or site specific sampling (Zhu et al., 2008; Minasny & 

McBratney 2010), to provide knowledge of the soil-landscape interaction necessary to create a soil map.  

 

In this project a soil map had to be created as part of an EIA for an open coal mine in an area of 

37 000 ha near Tete, Northern Mozambique. Two restrictive conditions challenged the soil survey. Firstly, 

a threat of land mines in the area confined observations to be made in safe areas along the explorations 

roads. Secondly, only 8 days were allocated for two surveyors to do the job. 

 

Thus site specific sampling could not be done due to the land mine threat, conventional soil mapping 

methods was not considered due to time restrictions and no legacy data exists for the area. As 

development in Africa increases, such challenges will be faced more frequently by soil surveyors. 

 

This paper aims to assess the potential of DSM methods to produce acceptable soil maps under these 

very restrictive conditions, specifically using SoLIM (Zhu et al., 1997), hard geology inputs and 

topographical analysis. 

 

4.2. Site description 

The site lies in the Tete province, in the North West of Mozambique, adjacent to the Ncondezi River 

(Figure 4.1). The geographical centre point is 33.93˚E and 15.85˚S. The elevation ranges between 235 

and 380 m above sea level. The area is very hot, with summer temperatures ranging between 23 and 

36 ˚C and winter temperatures between 16 and 29 ˚C. The mean annual precipitation is 627 mm. The 

vegetation type is bushland, with Colophospermum mopane and Adansonia digitata trees dominating. 

The main geological formations include sandstone, shale and granitic gneiss. Small areas overlain with 

Basalt and Rhyolites also occur. Vegetation and climate are uniform throughout the survey area. 
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4.3. Material and methods 

A 25 m pixel size DEM was constructed in ArcGIS9.3, using the 90 m SRTM DEM and a 20 m contour 

map. A 1: 20 000 hard geology map was rasterized to the same grid as the DEM. Unfortunately this map 

was created for coal exploration purposes, and had all igneous rocks and sedimentary rocks lumped 

together. Thus neither mavic and felsic igneous rocks nor coarse or fine grained sedimentary rocks could 

be distinguished. As vegetation and climate do not vary within the area, parent material and topography 

was used to divide the area into 7 more environmentally homogeneous sub-areas (Table 4.1), following 

MacMillan et al. (2010).  

 

Due to the land mines restricting the areas where observations could be made, the 131 auger 

observations used for training data was made along the mine exploration roads, while attempting to cover 

as large an area as possible. Ideally one would do site specific sampling, but under the circumstances 

this is the best that could be done. Soils were classified according to the South African soil classification 

system (Soil Classification Working Group, 1991) and for purposes of this paper converted into WRB 

reference soil groups (IUSS Working Group WRB, 2007). While doing the field work, a conceptual soil 

distribution model was postulated for each HA.  

 

The Soil-Land Inference Model (SoLIM; Zhu et al., 1997) was used to create soil-landscape rules for each 

soil type of each sub-area. The conceptual soil distribution model and soil-landscape rules were created 

with expert soil pedogenesis knowledge. An inference was run with these rules, and the final map 

hardened (hardening of a map is when each pixel is assigned the map unit with the highest membership 

value on that pixel). Validation was done using data from a fresh set of 52 independent observations, 

collected after the 131 training data observations, but sampled in the same way. The map accuracy was 

calculated by the percentage of observations which was predicted correctly. 

Figure 4. 1: The Ncondezi study site, and its location in 
Southern Africa  
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Table 4.1: General descriptions of the sub-areas 

Sub-

area 

Topographical description (Based on 

visual inspection of the DEM) 

Geology (From 1: 20 000 

mine exploration geological 

map) 

No. of observations 

in sub-area 

1 
Large flat plains with some small 

ridges  
Gabbro, Granitic Gneis 

38 

2 Wavy, with frequent ridges Gabbro, Granitic Gneis 16 

3 Wavy, with frequent ridges 
Sandstone, Shale, some 

Basalt 36 

4 
Medium flat plains, with common 

ridges 

Sandstone, Shale, some 

Basalt 20 

5 Hilly, frequent ridges Gabbro, Granitic Gneis 5 

6 Hilly, frequent ridges Sandstone, Shale 10 

7 
Large flat plains with some small 

ridges  
Sandstone, Shale 

6 

 

 

4.4. Results and discussion 

An example of a postulated conceptual soil distribution model is shown in Figure 4.2. This example 

accounts for sub-areas 5, 6 and 7. In this model, Leptosols occur on the ridges, while Cambisols will 

occur on the flat plains. The same model holds for the other sub-areas areas, however Arenosols (sub-

areas 1 and 2) and Luvisols (sub-areas 3 and 4) replace the Cambisols in the other HA’s. In general, the 

clay content of the soil increases from east to west. 

 

 

 

 

 

 

 

 

 

 

Leptosols occur on the ridges, while Cambisols occu py the plains.  

Leptosols Cambisols 

Figure 4. 2: The postulated conceptual soil distribution model  for areas 5, 6 and 7.  
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The soil-landscape rules differ between sub-areas, but within all sub-areas a general trend exists. If the 

slope is steep, then the soil will be a Leptosol. If the slope is flat, then Arenosols, Luvisols or Cambisols 

will occur, depending on the sub-area. The tops of the ridges, which have flat slopes but very convex 

curvature, will also be predicted as Leptosols. On intermediate slope gradients, if the curvature is convex, 

Leptosols will also be predicted, while concave intermediate slopes will be assigned to Arenosols, 

Luvisols or Cambisols. The specific slope and curvature values where the map unit boundary lines occur 

differ between sub-areas, but the trend is the same throughout the whole area.  

 

By combining the soil maps created within each of the sub-areas, the final soil map was created 

(Figure 4.3). It has four map units, Leptosols, Cambisols, Arenosols and Luvisols. Thus the same soils 

occurred in different sub-areas, even though the specific soil-landscape interactions differed slightly. For 

the EIA it was recommended that the four map units should be stockpiled separately, to avoid mixing soils 

with different textures. 

 

Figure 4.3 also shows that areas were mapped which could not be surveyed. Large areas were mapped 

without observations by extrapolation of data. This was possible because these areas were part of sub-

areas that could be surveyed. The same soil-landscape rules should apply across sub-areas. However, 

soil observations are critical. Inaccessible areas topographically or geologically different to HA’s were not 

mapped, lacking a scientific base to predict the soil distribution patterns. Thus only 15 000 ha of the total 

area were mapped. 

 

 

The accuracy of the map was sufficient (Table 4.2) to be accepted by the company conducting the EIA. 

The validation accuracy of 50% means that one can have 50% certainty of the soil type for a 15 000 ha 

area after sixteen working days.  

Figure  4.3: The soil map of the Ncondezi area, showing the tr aining and validation observations.  
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Table 4.2: Accuracy assessment of the soil map.  
Training 

Observations 

Validation 

Observations 

All 

Observations 

Observations 131 52 183 

Correct 80 26 106 

% Correct 61 50 58 

   
Borderline 15 10 25 

% Borderline 11 19 14 

   
% Correct + 

Borderline 
73 69 72 

Borderline observations were incorrectly mapped observations, but fell within one pixel of the correct map 

unit 

 

 

When including the training data observations, the accuracy increased to 58%. This is lower than the 

accepted 65% of conventional soil maps (Marsman and De Gruijter, 1986). The acceptance of the map 

was due to the large number of borderline observations. These are observations which were mapped 

incorrectly, but which fell within one pixel of the correct SMU. Including them raised the validation 

accuracy to 69%, slightly above the accepted accuracy. Thus there is a 69% certainty of correctly 

predicting the soil type or being within 25 m of the correct SMU. This accuracy percentage is comparable 

to other DSM projects across various scales, such as 69% by MacMillan et al. (2010) and 76% by Zhu et 

al. (2008). 

 

Borderline observations could occur for various reasons. Firstly, real map unit boundaries do not follow 

the straight lines and right angles that pixels do, but could actually occur within a pixel. The larger the 

pixel, the larger the chance is of this happening. While making observations close together to create the 

conceptual soil distribution model, different soil types were observed within the same pixel. Secondly, first 

and second derivative terrain attributes (slope and curvatures) could be incorrect due to the large 

distance (3 pixels, thus 75 m) by which they were calculated. Lastly, slightly incorrect soil-landscape rules 

could be another reason for the large number of borderline observations. 

 

Evidence that the mispresentations are due to the large pixel size of the DEM, can be seen in the 

accuracy of the individual soil types (Table 4.3). The boundaries between the Luvisols and the Leptosols 

are poorly defined, as 46% of the Luvisol observations fell on the Leptosol mapping unit and 41% of the 

Leptosol observations fell on the Luvisol mapping unit. However, those percentages dropped to 38% and 



 
   

    41  
 

Chapter 4 

 
Rapid soil mapping 

17% respectively when including borderline observations. Thus the borderline observations account for a 

large proportion of the inaccuracy of these two mapping units. When determining the spatial position of 

the Luvisol borderline observations, it shows that 29% of the total observations in sub-area 3 are 

borderline observations, while in sub-area 4 it is only 15%. Sub-area 3 has the more incised landscape of 

the two sub-areas, which creates smaller ridges and flat plains, resulting in smaller continuous mapping 

units. This increases the chances of soil boundaries occurring within pixel boundaries, amplifying the 

error due to a too coarse DEM.  

 

Table 4.3: An error matrix for all the validation o bservations  
    Observations 

 
    

    Leptosols Arenosols Cambisols Luvisols Vertisols Total Correct % Accuracy 

M
ap

 U
ni

ts
 

Leptosols 13 (21) 
 

2 (1) 6 (5) 1 (1) 22 (28) 13 (21) 59 (75) 

Arenosols 2 (1) 4 (4) 
 

1 (1) 
 

7 (6) 4 (4) 57 (67) 

Cambisols 2 (2) 
 

3 (4) 
  

5 (6) 3 (4) 60 (67) 

Luvisols 12 (5) 
  

6 (7) 
 

18 (12) 6 (7) 33 (58) 

Total 29 (29) 4 (4) 5 (5) 13 (13) 1 (1) 52 (52) 26 (36) 50 (69) 

Correct 13 (21) 4 (4) 3 (4) 6 (7) 0 (0) 26 (36) 

% Accuracy 45 (72) 100 (100) 60 (80) 46 (54) 0 (0) 50 (69) 

Values are number of observations. Values between brackets include borderline observations. Borderline 

observations are incorrectly mapped observations, but fell within one pixel of the correct map unit. 
 

 

The current terrain analysis methodology is ahead of the affordable DEM technology. As high resolution 

DEM technology such as Lidar becomes more affordable, the same methodology could be applied to 

such DEM’s and the results will be improved.  

 

However, an inadequate DEM is not the only reason for mapping inaccuracies. Even after including 

borderline observations, the prediction of the Luvisols was only 54% correct. Also, in the most incised 

sub-area, sub-area 5, where one would expect the largest effect of the coarse DEM, the mapping 

accuracy was 80%. Thus even with the current DEM, one could define soil-landscape rules which will 

represent the reality better. Ideally one would have chosen better situated observation sites, but this was 

not possible due to the land mine threat. 

 

The large accuracy difference between the training and validation observations is to be expected. The 

data used to create the soil-landscape rules will naturally be better represented by these rules than other 
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independent observations. However, the large number of borderline validation observations shows that 

the misrepresentation of the validation data is only slight. 

 

4.5. Conclusions 

Even under access restricted conditions topographical analysis using SoLIM was adequate to map an 

area of 15 000 ha within 16 working days, to an accepted standard to provide stockpiling guidelines. The 

absolute validation map accuracy was 50%, while another 19% of the observations fell within 1 pixel of 

the correct map unit. The inputs used were a DEM and a 1: 20 000 coal mining exploration hard 

geological map. 

 

Various principles emerged during the project. 1) Expert knowledge plays a vital role in creating the 

conceptual soil distribution model as well as the soil-landscape rules from which the map is created. 2) It 

is possible to map un-surveyed areas, provided that these areas occur within sub-areas which had been 

surveyed in parts, from which soil-landscape rules could be devised. 3) Field work within sub-areas is 

critical to enable mapping. Extrapolation of soil-landscape rules to unsurveyed areas outside of the sub-

area where the rules were created is erroneous. Because of this, the whole area was not mapped. 4) The 

same soil types from different sub-areas can be lumped together in the final map, even though they were 

predicted using different soil-landscape rules. 5) Better quality input data, especially DEM’s, will improve 

the accuracy of the map. At this stage the methodology is surpassing the affordable technology, as finer 

resolution DEM’s will enable better mapping.  
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CHAPTER 5: 
Functional digital soil mapping: a case 

study from Namarroi, Zambezia 
Province, Mozambique 

Abstract: 

The value of soil is often neglected in developing countries, partially due to a lack of spatial soil data. 

Traditional methods of soil survey are too cumbersome and expensive to fulfill the need for soil maps. 

Expert knowledge based digital soil mapping (DSM) methods provides the answer to deliver in-time 

spatial soil information in developing countries. The objective of this study was to evaluate the 

potential of DSM soil survey methods to rapidly produce land suitability maps of a large area with 

acceptable accuracy. An expert knowledge approach was used, with soil surveyors creating 

conceptual soil distribution patterns, and populating the patterns with covariate values to create soil-

landscape rules. A soil class map was created by running an inference with those rules. The map 

achieved an accuracy of 80%. Land suitability maps were created based on the soil class map. 

Furthermore the data indicated that more than 13 soil observations are needed per homogeneous 

area to achieved acceptable results, the sampling scheme used worked very well for mapping 

purposes, but did not represent soil diversity very well, and multiple scale covariates were useful to 

map different parts of the landscape. 

 

Keywords : Lidar, Production potential, SoLIM, Terrain analysis  

 

5.1. Introduction 

More than 95% of the world’s food comes from the soil (FAOSTAT, 2003). Despite this, the value of 

soil is often neglected in the food chain, especially where spatial soil data is scarce. In South Africa 

the return on investment for a soil survey is estimated to be 1:20 in the first year for dryland crop 

production (Le Roux et al., 1999). One reason for the lack of soil maps is that traditional methods of 

soil survey are cumbersome and expensive (Hensley et al., 2007). In South Africa the traditional soil 

survey method is to make soil observations on a 100 - 200 m grid, dependant on soil variation, and 

grouping similar observations together. It works well on small fields, but cannot produce maps for 

large areas which often need to be mapped in developing countries. With stereoscopy soil mapping is 

supported by using overlapping stereo pairs of black and white photographs to delineate terrain units 

for application as mapping units representative of soils, after making observations in those areas (Zhu 

et al., 2001). However, for this one needs aerial photographs, which is often not available, and it 

remains a time consuming manual process limiting the application of quantitative expert knowledge. 
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Expert knowledge based digital soil mapping (DSM) methods provides the answer to deliver in-time 

spatial soil information in developing countries (Van Zijl et al., 2012). It also has the advantages that 

the expert knowledge of the soil surveyor is captured and constantly applied, the process is 

automated, saving time and reducing errors, and it allows for higher levels of soil detail to be 

represented (Qi et al., 2006). 

 

Soil survey for quantification of soil as a natural resource has decreased dramatically and surveys are 

now driven by industrial needs, implying that the map has to serve a specific aim, comply to a budget 

and fit a time frame. The survey often cover large areas (10 000 ha and more) with limited 

accessibility, little legacy data and variable ancillary data (dependent on the resources of the client). 

Requirements for land uses vary and they need to be matched with land qualities to produce an easily 

understandable map legend, for the map to be usable by the client (Bui, 2004). To apply site specific 

management, detailed application orientated and functional soil maps are needed (Zhu et al., 2013). 

 

The objective of this study was to evaluate the potential of DSM soil survey methods to rapidly 

produce land suitability maps of a large area with acceptable accuracy. The area to be mapped is 

near Namarroi, Zambezia Province, Mozambique, where a forestry company aims to establish 

forestry plantations. The soil map is a primary input to determine where the trees will be planted, and 

which soil preparation works are necessary. Specific research questions include: 

1. What is the minimum observation density to achieve acceptable map accuracy? 

2. How well does the sampling scheme represent the real soil diversity? 

3. Which covariates are the most important in predicting soil classes? 

 

The hypothesis is that a soil map for a large area, suitable for forestry, can be produced using DSM 

methodology. 

 

5.2. Site Description 

The site (Figure 5.1) is located in the Namarroi district, Zambezia Province, Mozambique, with 15.7˚S; 

36.6˚E as its centre point. The site is divided into two areas, Nammarua (6 820 ha) to the South, and 

Cassarano to the North (4 150 ha). The vegetation forms part of the Miombo Woodland Forest 

(Snyman, 2012). The area is burnt annually by the locals to catch moles and mice for food. 

Subsistence crop production takes place, with cassava and maize being the most popular crops. 
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Figure 5.1: The study area. Nammarua is to the Sout h and Cassarano to the North. Soil auger 
observation points are displayed as red dots.  

 

The area is very hot and humid. Figure 5.2 shows the rainfall and mean temperatures for the period 

1951 – 1968, the only period for which climate data exist. The climate is marked by a distinct wet and 

dry season. Very little rain falls between May and October, which places a specific emphasis on the 

water holding capacity of soils to bridge the dry season.  

 

Granite and gneiss are the main geological formations, both of which weathers to very coarse, 

bleached, sandy soils. There are some basic igneous rock intrusions, which produces red structured 

clayey soils. Unfortunately the existing geological map (Direcção Nacional de Geologia (DNG), 

undated), at a small scale of 1:1 000 000, does not show all of these intrusions. Thus a makeshift 

geological map had to be produced while doing field work, as in Van Zijl et al. (2013). Large steep 

granite inselbergs are common, while the rest of the terrain is relatively flat, often dipping steeply near 

the streams. 
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Figure 5.2: Rainfall and temperature for Namarroi, Zambezia, Mozambique for the period 1951 – 
1968 (Obtained from ATFC, 2013).  

 

5.3. Material and Methods 

Two Lidar interpolated DEM’s (10 m and 30 m) were used as ancillary data. Multiple resolutions were 

used, as multi scale terrain analysis is known to improve prediction accuracy (Behrens et al., 2010). 

Terrain variables were derived in SAGA (SAGA User Group Association, 2011) with the “Basic Terrain 

Analysis” module. Conditioned Latin Hypercube Sampling (cLHS; Minasny and McBratney, 2006) 

were used to determine pre-determined field observation points. The cLHS method allows for 

observations at positions representing the entire attribute space. For the Nammarua site, cLHS was 

conducted on the 30 m resolution grids using Slope, Profile curvature, Planform curvature, Wetness 

index and Altitude above channel network (AACN) as ancillary data. For the Cassarano site, principal 

component analysis was conducted on all the 30 m resolution derived topographic layers and the 

resulting three layers were used to perform the cLHS. Forty two and thirty observation points were 

determined for the Nammarua and Cassarano sites respectively. 

 

Field work was done in a period of six work weeks. Field observations were made at pre-determined 

observation positions, and at on-site determined transects and positions when moving from one pre-

determined observation position to the next. The on-site determined observations were made to gain 

understanding of soil distribution patterns in order to build pedogenetic knowledge of the area; a 

crucial prerequisite for creating the soil map. Conceptual soil distribution patterns were constructed 

based on the pedogenetic knowledge obtained during field work. Soils were classified according to 

the South African Soil Classification System (Soil Classification Working Group, 1991). Field 

estimated texture, structure, mottles and depth were noted for each soil horizon. 
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The area was divided into homogeneous areas (HA’s), with the same geology and pattern of 

topography using applicable methodology (MacMillan et al., 2007; Van Zijl et al., 2012). SMU’s 

(SMU’s) were derived for each HA, by grouping soil observations with the similar morphological 

properties together. Because of the distinct dry season of the area, the water holding capacity of a soil 

determines its production potential. Soil texture and depth were the main determining factors. The 

observations were divided into training and validation data. For SMU’s which had enough 

observations within a HA, roughly a quarter of the observations were chosen at random as validation 

observations. Validation observations were not used to develop rules for delineating SMU’s. Within 

each HA, unique soil-landscape rules were created by adding terrain covariate values to the 

conceptual soil distribution patterns, using the training observations. A soil map was created by 

running an inference in the Soil Land Inference Model (SoLIM, Zhu, 1997), using the soil-landscape 

rules.  

 

The map was validated using the selected independent validation observation data. Map accuracy 

was calculated as a percentage of correctly predicted observations. A one pixel buffer was included 

around SMU’s, as in Van Zijl et al. (2012). Thus the accuracy shows the percentage of soil 

observations which occur within 30 m (one pixel) of the same SMU. The Shallow Soil (Leptosols) 

observations and the Clovelly Shallow (Arenosols) observations were not included in the validation, 

as rock outcrops around which these SMU’s occur are seemingly randomly distributed and smaller 

than the mapping resolution of 30 m, making it impossible to map. This does not hinder the operations 

of the client though, rock outcrops will easily be identified while planting. A 15 m radius area around 

the rock outcrops should not be planted, as the soils within this area will still be too shallow for tree 

production. Large rock outcrops, generally the granite inselbergs, were mapped. 

 

After validation the raster file was converted to a shapefile in ArcGIS. Polygons smaller than 0.81 ha 

(9 pixels) were incorporated into surrounding polygons, to yield a soil map product which has a 

minimum mapping unit size of 0.81 ha, and definite soil boundaries which could be used by the client. 

 

Land suitability evaluation included production potential, compaction risk and soil erodibility risk. This 

was mapped by assigning a semi-quantitative value for each of these properties to each SMU, on a 

scale of 1 to 5. For production potential the scale was relative, with the most productive soils being 

assigned a 5 rating and less productive soils lower values. Soil texture and depth are the dominant 

soil properties taken into account for assigning a production potential value to SMU’s. For compaction 

and soil erodibility risk, the scale was absolute, with values being assigned to SMU’s based on the 

expected risk. Texture is the main determinant of compaction risk, with sandy soils being more 

susceptible to compaction. Soil erodibility risk is determined by the water infiltration rate and clay 

stability. Thus the topsoil texture and presence of cutans (which suggest clay dispersibility) were 

considered when assigning erosion risk values. Soils with a coarse texture and absence of cutans 

received low erosion risk values. Continuous land suitability maps were created with the “Property 

Map” tool in SoLIM, using the equation: 
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Where Sij is the estimated soil property value at location (i;j) 

Sk
ij is the fuzzy membership value for kth soil at location (i;j) and  

Vk is the representative property value for kth soil. 

 

To answer the specific research questions further data analysis was done. Observation numbers and 

densities were plotted against map accuracy for each HA, the percentage of SMU’s observed in 

sampling was correlated with the percentage map areas of the different SMU’s and a survey was 

made into the number of soil-landscape rules used in each covariate layer. 

 

5.4. Results and discussion 

Identification of homogeneous areas 

Topography was used to delineate six HA’s. Lithology was used to delineate the other four. The 

geological map scale limited application of lithology as diagnostic rule and only one HA (N2) was 

delineated on geology indicated by the map. Three more HA’s (N3, N4 and N5) with soils with a high 

clay content were delineated (Figure 5.3). The clayey texture is probably related to lithology. 

 

Soil map units 

Ten SMU’s were determined based on their classifications according to the South African soil 

classification system (Soil Classification Working Group, 1991) and their properties. The SMU 

descriptions are presented in Table 5.1. For purposes of this publication the SMU’s classification 

according to the World Reference Base classification system (IUSS, 2007) is included. Soils were 

divided into SMU’s with its production potential and management in mind. Thus separation occurred 

based on depth and subsoil characteristics, resulting in similarities between map units. 
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Figure 5.3: The homogeneous areas superimposed on a  30 m ‘Altitude above channel network’ 
background. Areas N2, C3, C4 and C5 were differenti ated by lithology, while the other areas 
were differentiated by topography.  

 

Conceptual Soil Distribution Patterns 

The three conceptual soil distribution patterns are shown in Figure 5.4 (a, b and c). In the first 

distribution pattern (Figure 5.4a) there are steep inselbergs sloping to a level plain. The plain slopes 

steeply to the river. On the inselbergs the Shallow Soils class (Leptosols) and rock outcrops 

dominate. Several SMU’s occur on the plains and the Wet Soil class (Gleysols) borders the river. On 

rock outcrops occurring randomly on the plains, the Shallow Soil class (Leptosols), and the shallow 

variants of the Clovelly and Oakleaf soils (Arenosols and Cambisols) dominate. The second soil 

distribution pattern (Figure 5.4b) is similar to the first, excluding the inselbergs. The third soil 

distribution pattern has shorter hillslopes with a low gradient (Figure 5.4c). This topography occurs in 

areas with only granite lithology. The ridges are overlain with some of the Clovelly SMU’s (Arenosols), 

while the Fernwood Soil class (Arenosols) occurs on the midslopes and footslopes. The Wet Soil 

class (Gleysols) occurs near the stream. The training data observations were used to distinguish 

between SMU’s on areas where more than one can occur. As an example, the final rules for HA N1 

can be seen in Table 5.2. 
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Table 5.1: Soil map units 

Soil Map Unit 
WRB 

Classification 
Rooting 

Depth (mm) Clay Content 
Production 
Potential 

Erosion 
Risk 

Compaction 
Risk Determining characteristic 

Shallow Soils Leptosols < 450 Any 0 0 0 Shallow depth 

Wet Soils Gleysols < 500 Any 0 0 0 Root depth inhibited by water logging 

Fernwood Arenosols > 900 B horizon < 5 % 2 2 4 Lateral subsurface water flow 

Shortlands Nitisols > 1000 B horizon > 20 % 5 1 2 Red, clayey structured soils 
Clovelly 
Shallow Arenosols 500 - 900 B horizon < 10 % 1 3 4 Shallow sandy soil on shallow rock 

Clovelly Clayey Acrisols > 1200 
B horizon < 10 % 
C horizon > 20 % 

4 1 4 Sandy horizon on clayey saprolite 

Clovelly Sandy Arenosols > 1200 B + C horizon < 12 % 3 2 4 Sandy horizon on sandy saprolite 

Clovelly Deep Arenosols > 1000 B horizon < 10 % 3 2 4 Deep sandy soil 
Oakleaf 
Shallow Cambisols < 800 B horizon > 10 % 2 2 2 Shallow moderately clayey soil 

Oakleaf Deep Cambisols > 1000 B horizon > 10 % 4 1 2 Deep moderately clayey soil 
 

Table 5.2: Soil-landscape rules for homogeneous are a N1, as an example of how the rules are constructe d. Values in brackets show the resolution 
of the covariate 

Soil map unit Instance  
Altitude above 

channel network (10) 
Altitude above 

channel network (30) 
Wetness index 

(30) Slope % (30) 

Shallow Soils N1.1 x > 12 

 
N1.2 x > 39 

Wet Soils N1.1 x < 0.1 

 
N1.2 x > 10.3 

Clovelly Clayey N1.1 2.3 < x < 39 x < 10 
7.5 < x < 

10.5 

 
N1.2 2.3 < x < 39 x < 10 x < 4.3 

Clovelly Sandy N1.1 2.3 < x < 39 x < 10 4.4 < x < 7.5 
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Figure 5.4: Conceptual soil distribution patterns f or the main topographic shapes.  

 

The soil map 

The boundaries of the soil map (Figure 5.5) follow natural looking lines, except for the Shortlands 

SMU (Nitisols) from the HA N2. The reason for this is that the boundaries for this HA were determined 

by the geological map, which is crisp. This shows a challenge faced by all soil surveyors working in 

areas with more than one geological formation. How does one determine the extent to which the 

colluvium from the upper geological formation influences the soil formation on the lower geological 

formation? In this case, the boundary was taken as the furthest Shortlands observation, as basic 

igneous rocks are required for formation of this soil form. However the soil boundary does then stay 

abrupt, as the HA’s boundary is abrupt. The division of the other HA’s is more natural, as they follow 

rivers. 
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Figure 5.5: Soil map for both the Nammarua and Cass arano study sites.  

 

Only six SMU’s could be mapped within each HA. Using SoLIM Zhu et al. (2010) also only delineated 

six SMU’s. However Zhu et al. (2001) created a soil map with 18 SMU’s. Geology was one of the 

input variables in Zhu et al, (2001), thus it could be assumed that geology was used to divide the area 

into HA’s. However, the number of SMU’s which were mapped per HA are uncertain. Our experience 

is that when one tries to add more SMU’s, the map becomes too cluttered, with very small and 

fragmented SMU’s. This is one practical limitation to the methodology. A solution could be to 

decrease the size of the HA’s, but that would mean more observations will be necessary, and this will 

increase costs. 
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Validation 

The overall accuracy (Table 5.3) achieved a very good 80%. This compares well with the accuracy of 

traditional soil maps (65%, Marsman and De Gruijter, 1986), and other DSM projects which use the 

same kind of approach, such as Van Zijl et al. (2012), 69%, Zhu et al. (2001) 81% and Zhu et al, 

(2010), 76%. The omission of the shallow soils in the validation increased the accuracy, and the client 

should acknowledge this when planting. However, it is impossible to map those soil areas, due to the 

seeming randomness of small rock outcrops.  

 

Table 5.3: Map accuracy for the different homogeneo us areas as presented in Figure 5.3 

  Validation observations Training observations Total  observations 
Homogeneous 
Area # % Correct # % Correct # % Correct 

Nammarua 1 14 86 18 89 32 88 

Nammarua 2 *** *** 31 77 31 77 

Nammarua 3 8 88 14 79 22 82 

Nammarua 4 8 63 24 88 32 81 

Cassarano 1 4 75 10 90 14 86 

Cassarano 2 4 100 10 60 14 71 

Cassarano 3 7 86 17 71 24 75 

Cassarano 4 4 100 16 75 20 80 

Cassarano 5* 1 0 3 67 4 50 

Cassarano 6 5 60 8 88 13 77 

All 55 80 151 79 206 80 
*** For the Nammarua 2 homogeneous area, no independent validation was done 
*The very small number of observations for the Cassarano 5 homogeneous area is due to the shallow 
soil observations not being part of the accuracy assessment, and a large part of the area has bare 
rock or shallow soils. If one includes them, there are 9 validation observations with accuracy of 89%. 
 

 

Land suitability assessment 

The production potential, compaction risk and soil erodibility maps (Figure 5.6) show that the areas 

with the highest production potential (light colours) also has low erosion and compaction risk (dark 

colours) This is good news for the client, as it means less soil preparation for the areas where 

cultivation is most likely to take place. Black areas on all three maps denote areas of the Wet Soil 

(Gleysols) or Shallow Soils (Leptosols) classes. The Wet Soil class (Gleysols) cannot be planted due 

to wetland protection laws, while the Shallow Soil class (Leptosols) is too shallow to be planted. 

Table 5.4 shows the areas which each of these property classes occupy. This shows that the largest 

part of the area should have an above average production potential, as 8 266 ha, or 76% of the area 

has a production potential of three or above. The largest risk is compaction, with 6 846 ha falling into 

risk category 4. This is due to the coarse textured soils in all four Clovelly type SMU’s (Arenosols and 

Acrisols). 
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a) Production Potential b) Erosion Risk c) Compaction Risk 

Figure 5.6: Soil property maps derived from the soi l map. a) Production potential, b) Erosion 
risk and c) Compaction risk. Black areas on all thr ee maps denote areas the wet or shallow 
soils, which cannot be planted.  

 

Table 5.4: Areas which each of the property classes  occupy 

Rating  Production Potential (ha)  Erosion Risk (ha)  Compaction Risk (ha)  

5 1201 0 0 

4 2835 0 6846 

3 4230 552 0 

2 488 4718 2461 

1 552 4037 0 

0 1660 1660 1660 

 

 

Minimum number of observations needed 

In some HA’s there were not enough observations to have validation observations of all the SMU’s. 

This, together with the different number of observations in the different HA’s ask the question “how 

many observations are enough?” The graph of total number of observations against map accuracy 

per HA (Figure 5.7a) indicates that more than 13 observations are necessary per HA to achieve an 

accuracy of more than 65%. The total number of observations seem to be more important that 

observation density. Figure 5.7b shows that in all the areas with more than 13 observation points an 

accuracy of more than 65% was achieved, regardless of observation density. Observation densities of 

between 17 and 99 ha per observation were observed. This implies that the number of observations 

needed to map an area to an adequate standard depends on the heterogeneity of the area (which 

determines the number of HA’s), rather than the size of the area.  
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a.  

 

b.  

 

Figure 5.7: Observations against map accuracy. Figu re 5.7a depicts the total number of 
observations, while Figure 5.7b shows the observati on density. Each data point represents a 
homogeneous area. The dashed line represents an acc uracy of 65%. 

 

Sampling vs. Soil diversity 

Although the soil map was created to an adequate standard, the sampling scheme does not represent 

the soil diversity very well. In Figure 5.8 the percentage of observations of the different SMU’s were 

plotted against the percentage of area which the SMU’s represent. The understanding is that in a 

good sampling scheme the percentage of observations will closely represent the percentage of the 

area of each SMU. For Cassarano (Figures 5.8 d, e and f) the expected trend of improving the 

sampling scheme when adding more observations was observed. For the cLHS only two SMU’s were 

observed within the 65% confidence level. This low number is probably due to the low number of 

observations made. For the on-site determined observations, being a lot more, the number increased 

to four. When the two sampling schemes were combined, the number was raised to five. Nammarua 

(Figures 5.8 a, b, and c) shows a different trend. The cLHS sampling method caused four of the eight 

SMU’s being represented within the 65% confidence levels. The on-site determined observations only 

had three, and probably due to the much larger number of on-site determined than cLHS observations 

the total number of observations also only had three data points within the 65% confidence intervals.  

 

The fact that the sampling scheme does not represent the soil diversity very well does not necessarily 

mean it is not useful for DSM. Grinand et al. (2007) found that classification accuracy was not largely 

influenced by having an observation intensity in proportion to class extent. The cLHS method is 

supposed to ensure full coverage of the attribute space. In doing this very good conclusions for the 

soil formation could be drawn for the whole area, as it is mapped by determining soil attribute 

interactions. However, attribute space does not automatically imitate spatial extent. The aim of the on-

site determined sampling scheme is to gain a good understanding of soil-landscape interactions. 

Thus, for complex soil boundaries, more observations would be made near the boundaries, increasing 

the observations for specific SMU’s, which might not have a very large spatial extent. This confirms 

the statement of Minansy and McBratney (2007): “The general perception that good sampling 

requires a geographical spread is not well founded.”  
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a) Nammarua: All observations 

 

b) Nammarua: cLHS observations 

 

c) Nammarua: On-site observations 

 

d) Cassarano: All observations 

 

e) Cassarano: cLHS observations 

 

f) Cassarano: On-site observations 

 

Figure 5.8: Graphs depicting percentage of observat ion points for soil map units against percentage of  area covered by the same soil map unit. 
The solid lines depict the 1:1 line and the dashed lines a 65% confidence interval.  
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To improve the sampling scheme, we suggest that cLHS should be done on each HA individually. This 

will of course only be possible for HA’s determined on topographical patterns or from the geological map. 

Areas could only be differentiated due to perceived differences in parent material after field work has 

been completed. Determining observation positions for each HA will ensure enough observation points 

within each HA. The data from this project suggest that more than 13 observations should be made within 

each HA.  

 

Covariates 

The most valuable covariate in this project was the Wetness Index at 30 m resolution, which was used for 

seven out of eight SMU’s in Nammarua and eight out of eight SMU’s for Cassarano (Table 5.5). Other 

important covariates include AACN (both 10 m and 30 m resolution) and Slope (30). The impact which 

the AACN and Wetness index covariates had at both 10 m and 30 m resolution shows the value of using 

multi resolution DEM’s. Near small streams, which were not picked up as streams on the 30 m DEM, the 

10 m covariates proved invaluable. When moving further away from the streams, the generalization of the 

larger resolution covariates managed to smooth any noise in the soil-landscape relation. This agrees with 

Smith et al. (2006) that higher resolution DEM’s do not always lead to higher accuracies, but that it is 

more important to match terrain characteristics with characteristics of the real world landscape. Behrens 

et al. (2010) also found that soil classes were best predicted using different combinations of covariates at 

different scales. The fact that only seven out of a possible 24 covariate layers were used concurs with 

Behrens et al. (2010) that only a small number of covariates are needed to achieve a good prediction.  

 

Table 5.5: The covariates used in the soil-landscap e rules.  This table shows in which 
homogeneous areas they were used, for how many rule s, and for how many soil map units.  

Covariate Homogeneous Areas Rules SMU's 

Nammarua 

AACN (30) 1,2,3,4 12 7 

AACN (10) 1,2,4 6 5 

LS (30) 1 2 2 

Profile Curvature (30) 3 2 2 

Slope (30) 1,2,3,4 15 7 

Wetness Index (30) 1,2,3 13 7 

Wetness Index (10) 1,3 2 1 

Cassarano 

AACN (30) 1,3,4,5,6 10 6 

AACN (10) 3,4,5,6 10 6 

Wetness Index (30) 1,2,3,4,5,6 14 8 
AACN – Altitude above channel network; LS – Length of Slope factor; SMU’s – Soil map units. The 
values in brackets depict the resolutions of the layers. 
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5.5. Conclusions 

The DSM method used proved adequate to rapidly create functional land suitability maps for a large area 

with little legacy data. The overall map accuracy is 80%. Production potential, soil compaction risk and 

soil erodibility risk maps were created. 

 

To evaluate the approach used in this project, it has to be compared with other possible approaches. This 

project took 12 work weeks to be concluded, six weeks for field work and another six for creating the 

maps and writing the report. In the South African traditional approach with soil observations on a 150 X 

150 m grid 5 000 observations would have been needed. It is estimated to need at least 30 work weeks 

for field work and another two for drawing the map and writing the report. Thus the time cost would have 

been 2.6 times more. Added to that, the extra field work costs (accommodation, food and labour) would 

have been 5 times higher. Thus the current approach resulted in substantial financial and time savings. 

Added to that, with the traditional approach, no independent validation is possible, as all the grid points 

are needed to create the soil map. With the aerial photo interpretation approach, the dividing of the area 

into mapping units would be manual, and thus more time consuming than this automated approach. Also, 

no validation would be possible. Geostatistical DSM methods are data hungry. To provide for this, an 

increased amount of time for field work should be allowed, which is the most expensive part of the 

project. By using pedogenetic knowledge fewer observations are necessary, thus saving on costs 

 

A limitation to the method is that SMU’s are limited to six per HA. One option to increase the number of 

SMU’s is to have smaller HA’s. However, this will increase the number of observations required, which in 

turn will increase the costs. 

 

Data from this project indicates that more than 13 observations must be made to create soil maps to an 

adequate standard. Even though the soil maps were completed to an adequate standard, the sampling 

scheme did not represent the soil diversity well. By dividing the area into HA’s before determining the 

observation positions per HA, one can ensure that there will be enough observations within each HA. 

 

Covariates of different resolutions (10 m and 30 m) were critical to delineate specific SMU’s. The smaller 

resolution covariates worked well near small streams, that were too small to be picked up with the 30 m 

DEM, while the larger covariates succeeded in filtering out noisy soil-landscape interactions evident with 

the smaller resolution covariates. 
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CHAPTER 6: 

Creating a hydrological soil map for 

the Stevenson Hamilton Research 

Supersite, Kruger National Park 
 

Abstract: 

Water probably plays the defining role in ecosystems, directly influencing the vegetation and animal 

distributions. Therefore the understanding of hydrological processes is a vital building block in 

managing ecosystems. Conceptual hydrological response models (CHRM’s) are the basic 

expressions of hydrological flowpaths. Unfortunately they exist as 2-dimensional expressions, and 

landscapes are 3-dimensional units. This research uses a soil map to create and extrapolate 2D 

CHRM’s to the 3D landscape of the Stevenson Hamilton Research Supersite. The soil map is 

produced with an expert knowledge based digital soil mapping (DSM) approach. One hundred and 

thirteen soil observations were made in the 4 001 ha area. Fifty-four of these observations were pre-

determined by smart sampling and conditioned Latin hypercube sampling. These observations were 

used to determine soil distribution rules, from which the soil map was created in SoLIM. The map was 

validated by the remaining 59 observations. The soil map achieved an overall accuracy of 73%. The 

soil map units were converted to hydrological response units. Using GIS terrain analysis, the area 

was divided into hillslopes. The hillslopes, together with the hydrological response map, were used to 

create a CHRM map for the whole area. The CHRM map is a 3D representation of 2D CHRM’s, and is 

a valuable input into understanding the hydrology of the area.  

 

Keywords : Digital Soil Mapping, Terrain analysis, Ecosystem Services, Conceptual Hydrological 

Response Models 

 

6.1. Introduction 

Water is probably the defining element in all ecosystems. Hydrological processes determine the 

amount, seasonality and location of water, therefore rendering ecological system services, by directly 

influencing vegetation and animal distribution. The importance of a clear understanding of the 

hydrological processes in the management of water resources is augmented in the highly variable 

hydrological environment of southern Africa (Wenninger et al., 2008). The identification, definition and 

quantification of the flowpaths and residence times of the different components of flow are central to 

the understanding of hydrological processes. There exists an interactive relationship between soil and 
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hydrology. As soil formation is influenced by climate, vegetation/land use, topography, parent material 

and time (Jenny, 1941), soil properties incorporates the influence of these factors on hydrologic flow 

paths. Therefore soil can be a first order control in partitioning hydrological flow paths, residence 

times and distributions and water storage (Soulsby et al., 2006). Thus soil properties contain unique 

signatures of the hydrologic regime under which they formed. By interpreting these signatures, 

hillslope conceptual hydrological response models (CHRM’s) can be created (Ticehurst et al., 2007; 

Van Tol et al., 2010; Kuenene et al., 2011). CHRM’s are the basic expression of the understanding of 

hydrological flowpaths. Unfortunately CHRM’s only give a 2-dimensional (2D) expression of 

hydrological behaviour (Van Tol et al., 2012), and landscapes are 3-dimensional (3D) units.  

 

Soil distribution patterns, expressed as soil maps, can provide a means by which 2D CHRM’s are 

extrapolated to 3D landscapes. As traditional methods of soil mapping is time consuming and 

expensive, digital soil mapping (DSM) methods, which reduces the cost and time needed for soil 

survey (Hensley et al., 2007) will be used. DSM harnesses the power of various new and rapidly 

developing technologies, including information technology, remote sensing, digital elevation models 

(DEM’s), pedometrics and geostatistics, and combine them in inference systems, to produce soil 

maps in considerably less time than traditional soil survey methods. The hypothesis expressed in this 

paper is that a soil map derived from DSM could be the used to create and extrapolate the 2D 

CHRM’s to 3D landscapes. 

 

6.2. Site description 

The study site is the 4001 ha Stevenson Hamilton Supersite, approximately 7 km’s South of Skukuza 

in the Kruger National Park (Figure 6.1). The mean annual precipitation is 560 mm/a (Smit et al., 

2013), and the geological formation is granite and gneiss of the Nelspruit Suite (Venter, 1990). It lies 

in the Renosterkoppies land type (Venter, 1990). Furthermore it has a highly dissected landscape, 

with a high stream density (Smit et al., 2013), with a few prominent inselbergs occurring as rock 

outcrops. Combretum apiculatum and Combretum zeyher dominate the woody vegetation on the 

crests. A distinct seepline commonly occurs between the crest and the midslopes, where Terminalia 

sericea is noticeable. Acacia nilotica and other fine leaved woody species are most abundant on the 

midslopes and footslopes. Sodic sites frequently occur, where of Eucleadi vinoriumis occurs 

commonly (Smit et al., 2013).There is a very good correlation between the vegetation and soil type 

(Venter, 1990), which makes the use of satellite images to map soils very worthwhile. 
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Figure 6.1: The Stevenson Hamilton Research Supersi te. 

 

6.3. Material and methods 

A suite of environmental covariates were assembled including Spot 5 (SPOT images, undated), 

Landsat (USGS, undated) satellite images, remotely sensed biomass and evapotranspiration (ET) for 

a series of dates (eLeaf, undated) and the SUDEM (Van Niekerk, 2012) digital elevation model 

(DEM). The SUDEM was re-interpolated to a 10 m and 30 m resolution, as multi-resolution elevation 

layers are useful for soil mapping (van Zijl et al., 2013). Topographic variables were derived from both 

DEM’s with the basic terrain analysis tool in SAGA (SAGA User Group Association, 2011). Several 

additional co-variate layers, such as NDVI, were created by mathematical manipulation of the different 

bands of the Landsat and SPOT 5 images. 

 

Three different sampling strategies were followed. For the training observations, both “smart 

sampling” and conditioned Latin hypercube sampling (cLHS) (Minasny and McBratney, 2006) were 

used. For the smart sampling a colour aerial photograph was subjectively divided into 5 classes, and 

observation positions were chosen to include all 5 of the classes. Twenty-five smart sampling 

observations were made. Six co-variate layers were included into the cLHS. These layers were the 

principal component analysis (PCA) results of the ET, biomass, Landsat images, SPOT 5 images and 
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both the resolutions topographic variable layers. Thirty observation positions were selected, of which 

one was rejected due to being too close to a road. Thus 29 observations were made by cLHS. The 

position of 59 validation observations were determined on-site, with soil surveyors walking transects 

through the study site, visually selecting representative sites where observations could be made. In 

this way, the entire study site was covered. The smart sampling and cLHS ensured that the whole 

attribute space was sampled, whereas the on-site determined sampling ensured full spatial coverage 

(Figure 6.2). Soil observations were classified according to the South African soil classification system 

(Soil Classification Working Group, 1991). Hand estimated texture, structure, mottles and stoniness 

were also observed per soil horizon. 

 

-  

Figure 6.2: Soil observation positions.  
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The soil observations were divided into soil map units (SMU’s) based on texture and the occurrence 

of a horizon with signs of wetness. Seven SMU’s were determined. The SMU’s were mapped by 

creating soil-landscape rules for each in SoLIM (Zhu, 1997). Central to these rules is an 

understanding of the soil distribution, based on the expert knowledge gained during field work. 

Specific values for the rules were obtained from the values for the different covariates of the different 

soil observations. The rules were derived by starting with the easiest identifiable SMU, the Sodic 

Soils. Once this SMU was mapped satisfactorily, the rules which defined its distribution were inverted 

for the other SMU’s. Then the Clayey soils were separated from the Sandy soils. Lastly within both 

the Clayey and Sandy soils the interflow soils were separated from the recharge soils. By running an 

inference of the soil map rules, SoLIM created a soil map for the area. The raster layer soil map was 

converted to a shapefile, and filtered using a majority filter with a square radius of 2 pixels and a 20 % 

threshold. Polygons smaller than four pixels were manually included into larger, surrounding 

polygons. Alluvial soils were mapped by setting buffers around the stream network. The distance of 

the buffers were determined by the observations of how far alluvial soils occurred around the different 

stream orders. Rock outcrops were mapped manually from an aerial photograph, following the effort 

principal that it is better to map areas than to predict it when it is easier to map it (McBratney, 2002). 

 

The map was validated using the independent validation observations. Map accuracy was calculated 

as a percentage of correctly predicted point observations. A one pixel buffer was included around 

SMU’s, as in Van Zijl et al. (2012). An accuracy matrix was created to evaluate the accuracy of each 

SMU. 

 

To create a hydrological soil map, a conceptual hydrological response was assigned to each SMU 

according to Le Roux et al. (2011). To convert this map to a conceptual hydrological response model 

map, the entire area was divided into hillslopes in SAGA. Firstly the SUDEM was pre-processed with 

the ‘fill sinks’ module. Then the pre-processed DEM was used in the ‘Catchment area’ module to 

create a catchment area grid layer. This layer was used as the initiation grid in the ‘Channel Network’ 

module with an initiation threshold of 40 000, to determine the channel network. The channel network 

and the pre-processed DEM were used in the ‘Watershed basins (extended)’ module to produce 

subbasins. The polygon subbasins were divided into hillslopes along the channel network with the 

‘polygon-line interception’ module. By superimposing the hillslope layer on the hydrological soil map, 

a conceptual hydrological response model was subjectively predicted for each hillslope. This allowed 

the area and size of each conceptual hydrological response model to be known. 

 

6.4. Results and discussion 

The observation positions give a good spatial coverage of the study area. The clusters that formed 

are due to the on-site determined sampling. The total of 113 observations is very little compared to 

the 2000 which would have been necessary to draw a soil map with conventional methods. Thus a 

considerable cost and time saving was made.  
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The SMU’s (Table 6.1) were divided on the basis of hydrological response. Therefore soil forms could 

be allocated to more than one SMU, based on its hydrological response. The Bonheim soil form fits 

into both the Clayey Interflow and Clayey Recharge SMU’s. The division was made on the basis of 

whether or not the C-horizon had signs of wetness. The Oakleaf and Tukulu soil forms also fit into two 

SMU’s. Only when it was clear that the soil had formed due to alluvial deposits, was it added to the 

alluvial SMU, otherwise the observation was added to the Sandy Interflow or Sandy Recharge SMU’s 

respectively. The distinct seepline where Terminalia sericea is noticeable commonly occurs above the 

Sodic site SMU. Here the Glenrosa soil form (Leptosols) is dominant. It was not mapped as it is too 

thin to be picked up at a 30 m resolution. 

 

Table 6.1: Descriptions of the soil map units 

Soil 
Association 

Soil forms 1 

 
WRB 
Reference 
Groups 2 

Determining characteristics  HRU 

Sodic Site Sterkspruit, 
Estcourt 

Solonetz Abrupt textural transition between 
the top and subsoil. Signs of 
wetness in C horizon 

Responsive 
 
 

Clayey 
Interflow 

Sepane, 
Bonheim 

Phaeozems, 
Luvisols 

High clay percentage in B 
horizon.  
Signs of wetness in C horizon 

Interflow 
 
 

Clayey 
Recharge 

Bonheim, 
Valsrivier, 
Swartland, 
Milkwood, Mayo 

Phaeozems, 
Luvisols, 
Leptosols 

High clay percentage in A and/or 
B horizon. No signs of wetness in 
C horizon 

Recharge 
 
 
 

Sandy 
Interflow 

Tukulu, 
Pinedene, 
Westleigh, 
Avalon 

Arenosols Coarse textured A and/or E 
horizon.  
Signs of wetness in C horizon 

Interflow 
 
 

Sandy 
Recharge 

Clovelly, 
Oakleaf, Mispah, 
Glenrosa 

Arenosols, 
Leptosols 

Coarse textured A horizon.  
No signs of wetness in C horizon 

Recharge 
 
 

Rock 
Outcrops 

Rock Rock Rock outcrop Recharge 
 
 

Alluvial Soils Dundee, 
Oakleaf, Tukulu 

Fluvisols, 
Arenosols 

Coarse textured soils, from 
alluvial deposits 

Recharge 

WRB – World Reference Day; HRU – Hydrological Response Unit 
1 Soil Classification Working Group, 1991 
2 IUSS, 2007 
 

 

The SoLIM rules for the five SMU’s mapped with SoLIM is shown in Table 6.2. The hierarchical 

fashion of the rule creating and the exclusion from lesser distinct SMU’s from ones mapped earlier is 

evident when one considers the values of the rules. Both topographic and vegetation indicating 

covariates were used, indicating that of the five soil forming factors, not one dominates soil formation 

in this area. Vegetation is determined by the soil type, rather than playing a big role in the soil 

formation in this area. However, the parent material plays a dominant role in soil formation. The main 

geological formation of the area is granite, which weathers to a coarse sandy material, except in 

extreme cases where Sodic Sites develop. It is however highly unlikely for soils with melanic A 
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horizons (Bonheim, Milkwood, Mayo) to occur. These soils are associated with basic intrusive rocks 

(Le Roux et al., 2013). Unfortunately the scale of the geological map did not allow for dolerite dykes 

(which is known to occur in the area) to be mapped. The soil map (Figure 6.3) shows that there are 

considerable areas of Clayey Recharge and Clayey Interflow soils, which are largely comprised of soil 

forms with melanic A horizons. Thus the soil map could be improved if the location and extent of the 

influence of the dolerite dykes can be mapped. 

 

Table 6.2: Soil distribution rules for the soil map  units 

    Co-Variate 

Soil Map  
Unit Instance 

Biomass  
PCA 

Biomass  
2012-01-

11 

ET 
2012-03-

14 
Landsat 
band 4 NDVI 

AACN 
(10) 

DEM 
(30) 

Profile 
Curvature 

(30) 
Sodic 1   x < 23.6      

 2    x > 63     

 3     x < 0.18    

          
Clayey 
Recharge 1 x > -32  x > 23.6 x < 63 x > 0.18 x < 7.6 x < 362  

          
Clayey 
Interflow 1 x < -32  x > 23.6 x < 63 x > 0.18 x < 7.6   

 2   x > 23.6 x < 63 x > 0.18 x < 7.6 x > 362  

          
Sandy 
Recharge 1  x < 197 x > 23.6 x < 63 x > 0.18 x > 7.6   

 2   x > 23.6 x < 63 x > 0.18 x > 7.6  x > 0.199 

          
Sandy 
Interflow 1   x > 197 x > 23.6 x < 63 x > 0.18 x > 7.6   x < 0.199 

PCA – Principal component analysis, ET – Evapotranspiration, NDVI – Normalized difference 

vegetation index, AACN – Altitude above channel network, DEM – Digital elevation model. Numbers 

between brackets denote topographical layer’s resolutions. 
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Figure 6.3: The soil map for the study site, showin g the percentage of area which each soil 
map unit occupies.  

 

The overall soil map accuracy of 73% (Table 6.3) is acceptable. This is higher than the 65% 

commonly accepted as the map accuracy of conventional soil maps (Marsman and De Gruijter, 

1986). It also compares well with other studies using comparable methodology, such as MacMillan et 

al. (2010), 69%, Van Zijl et al. (2012), 69% and Zhu et al. (2008), 76%. 

 

A concern though is the low accuracy values for the Clayey Interflow and Sandy Interflow map units. 

Seven of the soil observations made on the areas of these map units are actually Clayey Recharge 

soil observations. Thus the Clayey Interflow and Sandy Interflow SMU’s are too large and the Clayey 

Recharge SMU is too small. To improve the map, more observations should be made along these 

map units’ boundaries. This will enable the improvement of the rules predicting the three map units. 
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Table 6.3: An accuracy matrix of the soil map 

Map units 
Sodic 
Site 

Clayey 
Interflow 

Clayey 
Recharge 

Sandy 
Interflow 

Sandy 
recharge Alluvial Total Correct % 

O
bs

er
va

tio
ns

 

Sodic 18 1 2 1 0 1 23 18 78 
Clayey 
Interflow 0 3 0 0 0 0 3 3 100 

Clayey 
Recharge 0 3 11 4 0 0 18 11 61 

Sandy 
Interflow 0 0 1 5 0 0 6 5 83 

Sandy 
Recharge 0 0 2 0 4 0 6 4 67 

Alluvial 1 0 0 0 0 2 3 2 67 

Total 19 7 16 10 4 3 59 43 73 

Correct 18 3 11 5 4 2 43   
% 95 43 69 50 100 67 73 

  
 

 

From the hydrological soil map, which also shows the hillslopes, (Figure 6.4) it is clear that various 

different hydrological responses function in the different hillslopes. The seventeen different conceptual 

hydrological response models are shown in Figure 6.5, and the final CHRU map in Figure 6.6. There 

are five hillslopes in which the hydrological soil map is too complex to predict a hydrological response. 

These hillslopes were mapped as such. The two most common hydrological responses account for 

40% of the area and are: ‘Recharge-Interflow-Recharge’ and ‘Interflow-Recharge’. This shows the 

interchanging nature of recharge and interflow soils. It is suspected that the character of underlying 

bedrock (whether it is cracked or not) and the position in the topography (whether it can release water 

to lower lying soils or receive water from higher lying land) determines the hydrological response of 

the soil. This argument is strengthened by the observation that large trees are often clumped together 

in recharge areas, and seldom occur in interflow areas. The roots of the trees probably grow into the 

cracks and can extract water from the fractured rock. Where the rock is not cracked, interflow occurs 

at the soil-rock interface, but the roots can also not penetrate the rock. The water holding capacity of 

the soil is then too low to sustain large tree growth. The fact that interflow and responsive hydrological 

response units occur in high lying terrain positions is an indication that the storage capacity of the 

granites is high and control hydrological response. 
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Figure 6.4: Hydrological soil map of the study site , showing the areas which each hydrological 
unit occupies, as well as the hillslopes of the are a. 
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Figure 6.5: The different CHRM’s and the percentage  of area they occupy of the study site.  
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Figure 6.6: The CHRM map for the study site.  

 

6.5. Conclusions 

The spatial identification and quantification of CHRM’s presented as a map, could be valuable input 

data into hydrological models.  

 

Digital soil mapping is a tool with which 3D hydrological soil maps can be created in a timely cost 

effective way. One hundred and thirteen soil observations were made to create a soil map which was 

73% accurate. In contrast to this, 2000 soil observations would have been necessary in conventional 

soil mapping. The map could be improved with a geological map showing the dolerite dykes, as well 

as by making more observations on the boundaries between the Sandy Interflow, Clayey Interflow 

and Clayey Recharge SMU’s, as pointed out by the error matrix. 
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By combining terrain analysis to the soil map, a CHRM could be devised for each individual hillslope. 

Based on these CHRM’s it is clear that topography alone does not determine the soil’s hydrological 

response, as each hydrological soil type occurs on each terrain position. It is thought that geology 

plays a larger role in this, due both to the occurrence of dolerite dykes, as well as the varying 

character of the bedrock.  
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CHAPTER 7: 

Observation Optimization 
 

7.1. Introduction 

The main advantage of the expert knowledge DSM approach is that it adds value to each observation. 

In the traditional grid method, a point observation is just another observation of soil type which could 

be grouped together with identical soil types. In geostatistical based DSM methods an observation is 

merely a statistical sample with which statistical correlations could be drawn with the covariates. In 

contrast to these two methods rule based systems allow for the integration of quantitative information 

into a prediction system (McKenzie et al., 1999), as well as allowing for the soil surveyors mental 

model to be expressed qualitatively. This enables the optimal use of point observations, thus requiring 

fewer observations. The expected trend (Figure 7.1) is that with more observations the map accuracy 

would increase, up to a point where the accuracy will reach a plateau and more observations will not 

have a meaningful effect on the map accuracy. 

 

 
Figure 7.1: The theoretical relationship between ma p accuracy and number of observations.  
 

To optimize field work one would like to make a number of observations which is close to the optimal 

inflection point where an acceptable accuracy will be obtained. Vašát et al. (2010) found this to be 
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challenging and concluded that an optimal sampling design for one soil variable is suboptimal for 

another.  

 

In other expert knowledge approaches for soil classification mapping, a large range of observation 

numbers was used. Zhu et al. (2000) mapped roughly 4 000 ha with three homogeneous areas 

(HA’s), using 150, 140 and 90 training observations for the three HA’s respectively. For validation 

purposes they took a further 90, 80 and 60 observations. This constitutes a total observation density 

of 6.5 ha per observation. In a later article, using the purposive sampling design, Zhu et al. (2008) 

used 23 training and 45 validation observations to map an area of 6000 ha, which constitutes a total 

observation density of 88 ha per observation.  

 

Training data observations and validation observations serve a different purpose. With training data 

observations one would like to be able to determine realistic soil distribution patterns and derive 

covariate values for the SMU boundaries. Chapter 5 confirmed that a good representation of soil 

diversity is not necessary for training data. However, this is exactly what is needed from validation 

observations. When deciding on a sampling scheme and the number of observations needed, the 

purpose of the observations should be kept in mind.  

 

In Chapter 5 the data indicated that total observations are more important than observation density 

and at least 13 observations are necessary per HA. In this chapter, the data from Chapters 4, 5 and 6 

will be evaluated to obtain a better indication of the minimum requirements for observations needed 

(Chapter 3 was left out, as no HA’s were defined in that project, while the subareas from Chapter 4 

were combined into three HA’s, to make the data applicable to the current chapter). Based on the 

indications from Chapter 5, the following three hypotheses are made: 

1. A total observation size of at least 13 per HA is needed to obtain an acceptable mapping 

accuracy. 

2. The observation density does not matter if the minimum number of observations is 

adhered to. 

3. Whether or not the observations are determined on-site or with a specific sampling 

scheme does not matter, as long as a sufficient number of observations are made. 

 

To obtain statistically correct guidelines for sampling schemes would require at least 50 HA’s to be 

able to apply quantile regression to the data points (Cade and Noon, 2003; Mills et al., 2006) 

Therefore the results presented in this chapter are only preliminary, although they do give a good 

indication of observation requirements. 

 

7.2. Material and Methods 

The sampling schemes from Chapters 4, 5 and 6 (Table 7.1) are analyzed, with various subsets of 

sampling data correlated with map accuracy. Minimum criteria for observation quantity are interpreted 

from these graphs. Two assumptions are made. Firstly, that the target map accuracy is 65% and  
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Table 7.1: Sampling schemes analysed in this Chapte r 
Chapter  Sampling 

scheme 

HA Size 

(ha) 

Training 

obs (#) 

Training obs 

density 

(ha/obs) 

Validation 

obs (#) 

Validation obs 

density (ha/obs) 

Total 

obs (#) 

Total obs 

density 

(ha/obs) 

Map 

Accuracy 

(%) 

4: Tete On-site 

1 8515 54 158 10 852 64 133 90 

2 3686 21 176 6 614 27 137 50 

3 3149 56 56 36 87 92 34 72 

5: Namarroi 
cLHS +  

On-site 

N1 1137 18 63 14 81 32 36 86 

N2 3115 31 100 
  

31 100 
 

N3 1561 14 111 8 195 22 71 88 

N4 1010 24 42 8 126 32 32 75 

C1 1387 10 139 4 347 14 99 75 

C2 714 10 71 4 179 14 51 100 

C3 906 17 53 7 129 24 38 86 

C4 342 16 21 4 85 20 17 100 

C5 330 3 110 1 330 4 83 0 

C6 475 8 59 5 95 13 37 60 

6: Kruger 

National Park 

cLHS + 

Smart +  

On-site 

1 4001 59 68 54 74 113 35 73 

HA – Homogeneous area; obs – observations; cLHS – conditioned Latin hypercube sampling 
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secondly, a minimum criterion is applied. Values for numbers of observations are derived from the 

maximum observation size which did not meet the required map accuracy. This leads to conclusions 

being drawn such as: “More than x number of observations are needed”.  

 

To develop an indication of validation observation number norms, the percentage of validation 

observations of the different soil map units were plotted against the ratio of map unit to total map area 

in percent. With a sampling scheme which closely represents reality, the percentage of observations 

will represent the ratio of area of each SMU. The data was divided into three groups. The first group 

represents the HA’s which do not meet the minimum validation criteria as suggested by the 

correlations with map accuracy. They have 6 or less validation observations. In the second group is 

the HA’s with between 7 and 14 validation observations. Lastly there is the group of HA’s with more 

than 15 validation observations. 

 

7.3. Results and Discussion 

Total observations 

The total number of observations needed with all sampling schemes to obtain acceptable results is 

more than 27 (Figure 7.2a). This is more than the 13 observations that is indicated in Chapter 5, 

showing that under different conditions, more observations could be necessary. The reason for this 

higher number of observations needed is probably due to the sampling strategy followed in Chapter 4, 

where, due to the land mine threat, no pre-determined observations could have been made. The area 

where observations could have been made was also limited, therefore forcing observations to be 

made in less optimal positions. This invariably led to requiring a higher number of observations. Other 

factors which could influence the number of observations necessary include complexity of terrain and 

the quality of covariate layers. 

 

At least 22 of the observations should be used as training data, with more than six validation 

observations (Figure 7.2b and c). As in Chapter 5, the observation density is irrelevant (Figure 7.2d), 

as long as the minimum criteria for the total, training and validation observations are adhered to. This 

concurs with Grinand et al. (2007), who found that observation density did not largely influence 

classification accuracy. Thus the number of observations is determined by the complexity of the area, 

which is expressed as HA’s. Within each HA it seems that a certain number of observations are 

needed to sufficiently grasp the soil distribution pattern. 

 

cLHS 

Usage of cLHS to pre-determine observation positions improved the usage of the soil observations. 

Only 4 or more cLHS observations are needed per HA for acceptable results (Figure 7.3a), while 

more than 27 on-site determined observations are needed (Figure 7.3c). With cLHS observation 

densities also do not play a role, when the minimum criteria are adhered to, for observation densities 

varying between 63 and 310 ha per observation (Figure 7.3b and d). When cLHS was performed, only 

11 or more additional on-site determined observations were required (Figure 7.4). Unexpectedly, the 
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percentage of training data observations determined by cLHS does not play a major role (Figure 7.5a) 

as acceptable map accuracies were obtained with a wide range of cLHS percentages. It also does not 

matter which percentage the cLHS determined observations contribute to the total observations 

(Figure 7.5b). Therefore it seems that the advantage of the cLHS observations lies in the sampling of 

the entire attribute space, which allows for conceptual soil distribution patterns to be created which 

cover the whole area. 

 

Training vs. Validation observations 

There is a slight trend suggesting that when the minimum observation requirements are adhered to, a 

larger percentage of training observations increases the map accuracy (Figure 7.6). This could be 

expected, as more training data observation points will lead to more accurate covariate values at 

SMU boundaries. However, this is not a rule to be adhered to, but rather an interesting observation. 

Minimum requirements for both training and validation observations are more important. 
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a) 

 

b) 

 

c) 

 

d) 

 

Figure 7.2: Sampling schemes against map accuracy. Figure 7.2d shows the observation density of the to tal observations. 
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a)  

 

b) 

 

c) 

 

d) 

 

Figure 7.3: Different sampling schemes against map accuracy. Figures a and b is for predetermined obse rvations, while Figures 7.3c and 7.3d 
shows the data for on-site determined observations.  
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Figure 7.4: On-site determined observations for HA’ s where cLHS has been applied, against 
map accuracy.  
 

 

a) 

 

b) 

 

Figure 7.5: cLHS as percentage of Training observat ions (a) and Total observations (b) against 
map accuracy. 
 

 

 
Figure 7.6: Training observations as percentage of total observations, against map accuracy. 
Only data points which meet the minimum criteria ar e shown. 
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Validation observations 

The group of HA’s with six or less validation observations had 6 out of 21 SMU’s that were 

represented between the 65% confidence intervals (Figure 7.7a). Understandably there are 7 SMU’s 

with no validation observations, due to the very few observations. The group of HA’s with between 7 

and 14 validation observations were better represented, with 9 out of 19 SMU’s being represented 

within the 65% confidence levels (Figure 7.7b). However this group also had 4 SMU’s with no 

validation observations at all. Surprisingly, the group of HA’s with more than 14 validation 

observations were represented far worse with only 2 out of 9 SMU’s being represented within the 65% 

confidence levels (Figure 7.7c). There was also one SMU with no validation observation. Thus more 

validation observations do not necessarily mean a better representation of reality, placing more 

emphasis on the placement of validation observations. Unbiased field observations are necessary to 

assess accuracy (MacMillan et al., 2007). This, together with the irrelevancy of whether the cLHS 

observations are included into the training or validation data sets, make using the cLHS observations 

as validation data observations a logical improvement to the current sampling scheme. However, it is 

a more complex problem, as all SMU’s must be represented in the validation data set. More research 

is needed on how to determine where and how many validation observations should be made. 
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a) Six or less validation observations 

 

b) Between six and fourteen validation observations 

 

c) More than fourteen validation observations 

 

Figure 7.7: Graphs depicting percentage of observat ion points for soil map units against 
percentage of area covered by the same soil map uni t. The solid lines depict the 1:1 line and the 
dashed lines a 65% confidence interval. 
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7.4. Conclusions 

The current data indicate that more than 27 observations, with at least 22 training data observations and 

more than 6 validation observations are necessary to obtain acceptable results. This is less than the 

hypothesized 13 observations, thus the first hypothesis is rejected. However, when using cLHS to pre-

determine some of the observation points, the first hypothesis holds true, and only 14 or more 

observations are needed. The improvement could be ascribed to the fact that cLHS allows the entire 

attribute space to be observed, allowing for conceptual soil distribution patterns to be created which 

represent the entire area. The fact that cLHS improved the sampling scheme rejects the third hypothesis 

as well, as it does matter which sampling scheme is used.  

 

The second hypothesis is accepted, because in none of the subsets of data did observation density play 

a role. Thus the total number of observations is not dependent on the size of the area to be mapped, but 

rather on the heterogeneity of the area, which is expressed by the number of HA’s present in the area. 

 

To gain a good representation of reality, which is necessary for validation observations, both the number 

and positions of observations play a role. Validation observations need to be pre-determined to prohibit 

bias. More research is needed into where and how many validation observations should be made.  

 

These conclusions are only indications as statistically proving the observation requirements would 

necessitate at least 50 HA’s, in order to apply quantile regression. This will take another 5 – 10 projects to 

be achieved. However, based on the current data, the following sampling scheme could be suggested: 

 

Within each HA, determine 10 cLHS observation points. This allows for enough stratification to ensure 

sampling the entire attribute space. In the field make at least another 25 on-site determined observations. 

This will give at least 35 observations, which will ensure that the minimum criteria of at least 22 training 

data observations and six validation observations will be met. When dividing the observations between 

the training and validation data sets, include roughly a third of each SMU’s observations in the validation 

data set, giving preference to the cLHS observations. This will decrease the bias in the validation data 

set.  
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CHAPTER 8: 

Conclusions 
 

8.1. Conclusions 

Using the four diverse case studies, a working expert knowledge based DSM protocol was developed 

which can be used to create soil maps of an adequate standard for a variety of uses under different 

conditions in southern Africa. The understanding of the soil distribution pattern in the landscape is central 

to the protocol, thus it capitalizes on the strengths of the general local soil surveyor.  

 

Although still an integral part of the protocol, field work is limited, as the expert knowledge approach 

allows for the quantification of the expert knowledge extracted by the soil surveyor from the soil 

observations. Provisional results showed that at least 28 soil observations are needed per HA to achieve 

acceptable soil map accuracies, irrespective of the observation density. Thus landscape heterogeneity, 

expressed as number of HA’s, determines the number of soil observations required. Using the cLHS 

method to pre-determine observation locations improved the amount of information gained per 

observation, therefore decreasing the number of observations needed.  

 

The protocol includes an accuracy assessment of the map, allowing for controlled utilization of the map 

by end users. The error matrix which is used to assess the accuracy pinpoints problem areas, which can 

be addressed in future mapping work. As expert knowledge is stored in its quantified form, improvement 

of the map concerns the refinement of expert knowledge soil-covariate interaction values. The protocol 

allows for soil mapping in inaccessible areas, as extrapolation of the soil map to unsurveyed areas is 

possible when the unsurveyed area is in the same HA as a surveyed area. Attributed soil properties (such 

as production potential) could be mapped. However, mapping of soil properties which need to be 

determined in a laboratory was unsuccessful. This is ascribed to a lack of soil samples taken in the field. 

 

A limitation of the protocol is that only six SMU’s per HA could be mapped. This practically means that 

functional soil groups rather than soil forms are mapped. However, for management purposes, six SMU’s 

per HA are sufficient. 

 

Further research is required to more precisely determine optimal soil observation numbers and positions, 

create a method to delineate HA’s and to define survey needs to enable the mapping of all soil properties. 

 



 
   

90  
 

Chapter 8 Conclusions 

8.2. The Protocol 

Step 1: Decide on purpose of the map and scale. 

The purpose of the map is prescribed by the client and the scale is limited by the resolutions of the 

available data layers. The resolution of the largest pixel size covariate is used. The resolution of the soil 

map should facilitate the purpose of the map. 

 

Step 2: Accumulate different covariate layers needed to represent Q. 

In this step all the covariate layers should be assembled. This means practically that the DEM should 

either be downloaded or interpolated from contours or points, satellite imagery should be downloaded and 

geological maps must be digitized. Every covariate must be prepared to be imported into the GIS 

software. 

 

Step 3: Spatial decomposition of lagging layers 

To enable working with different layers in a GIS, the different layers are converted to a common 

projection (Appendix 1.3). The user is free to choose any projection, as long as it is in meters, as this 

enables derivation of terrain attributes and areas of polygons. In southern Africa the projection 

‘WGS_1984_UTM_Zone_36S’ works well. The different covariate layers assembled will not have the 

same spatial resolution and extent. Even if pixel sizes are the same, the positions of the pixels will differ, 

therefore resampling of the covariate layers into a common raster system (Appendix 2.3) is necessary 

when using the covariates to pre-determine observation positions. When using multi resolution 

covariates, it is only necessary to resample the covariates with the resolution at which the observation 

positions will be determined. Polygon based layers are converted into raster layers of the same common 

system (Appendix 1.6). Thereafter the derivation of further covariate layers can occur. Terrain derivatives 

are derived from the DEM (Appendix 2.4), while mathematical manipulation (Appendix 2.5) of satellite 

imagery provides additional imagery indices, such as the NDVI. 

 

Step 4: Divide area into homogeneous areas. 

In this step the whole area is stratified into smaller areas with homogeneous vegetation, topographic 

patterns and geology. Within each HA unique soil distribution rules apply. Division on the basis of geology 

is quite easy, as the geological map will determine the boundaries of the HA’s, unless a colluvium effect 

plays a role, such as in Chapter 3. Then the soil observations are used to determine the extent of the 

colluvium impact. To determine HA’s by vegetation and/or topography, one visually inspects several 

vegetation and/or topographical layers. Where the pattern differs, a separation should be made. Currently 

this is done by hand drawing polygons (Appendix 1.4) where the HA’s boundaries should be. The 

development of a method on which basis HA’s could be determined is a future research need. 
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Step 5: Determine observation points 

This step is probably the most important, as it determines the effect which the field work will have. The 

aim is to choose observation points for their intended use. Training data observations need to give the 

soil surveyor a very good understanding of the soil genesis and spatial distribution for the area, as well as 

allow for covariate values at SMU boundaries to be determined. Validation observations need to 

represent the real soil distribution. Any sampling scheme which fulfills these pre-requisites can be used.  

 

A combination of the cLHS method (Minasny and McBratney, 2006) and on-site determined sampling 

worked very well in this research (Chapters 5 and 6). cLHS ensures full attribute coverage of the area, 

while the on-site determined observations provide a good understanding of the soil distribution. On-site 

determined observations also allow for optimal usage of time in the field, while allowing the freedom to 

investigate specific conditions in the field, as they are not linked to specific positions. 

 

The suggested method of determining observation points is to run cLHS (Appendix 3.1) within each HA, 

to generate at least 10 points for a reasonable stratification of covariates. Use principal component 

analysis layers as input (Appendix 2.6). If there are more than one type of data input (as in Chapter 6), 

create one PCA layer for each type of input. If only topographical data could be obtained, then three PCA 

layers should be created.  

 

Another 25 on-site determined observations per HA should be made, spread out between the cLHS 

points. This will give 35 total observations, which is more than the 28 suggested in Chapter 7, and should 

ensure enough observations to meet the minimum criteria for both the training (at least 22 observations) 

and validation (at least seven observations) datasets. More research is needed into how many 

observations are optimal. 

 

Other sampling schemes can be used. Purposive sampling (Zhu et al., 2008) is one which have been 

used to good effect. It is built into the SoLIM software. It was not used in this research, as the software 

had some problems and predicted points outside of the study area. However, the developers of SoLIM 

continually fix bugs in the software and it will be worthwhile to investigate purposive sampling and other 

sampling schemes. 

 

Step 6: Field work 

During field work, all observations should be entered into a GPS, so that the exact location is known. 

Describe soil profiles in as much detail as possible and take soil samples as necessary for the purpose of 

the map. 
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Step 7: Divide observations into soil map units. 

As SMU’s are limited to six per HA, one cannot map soil forms, therefore soil form observations should be 

aggregated into functional SMU’s. This is done by matching soil qualities to land-use requirements. The 

research covers crop production suitability (Chapter 5) and hydrological response models (Chapter 6). 

For crop production suitability maps, soil forms with the same crop production potential and management 

requirements are grouped, while for a hydrological response model map, the grouping is determined by 

similar hydrological responses. Groupings are strictly land-use requirement related. As in Chapter 5, it 

often happens that soil observations with the same soil form will be divided into different SMU’s based on 

functionality. 

 

SMU’s are derived individually for each HA and are based on the observations within that HA. There 

should be at least four observations for each soil SMU to ensure enough observations for training and 

validation observations. 

 

Step 8: Set apart validation observations 

When dividing the observations between the training and validation data sets, include roughly a third of 

each SMU’s observations in the validation data set, giving preference to the cLHS observations. This will 

decrease the bias in the validation data set. Ensure that there are at least seven validation observations. 

These observations are not used in determining the soil distribution rules. More research into the number 

and positions of validation observations are needed. 

 

Step 9: Create rules for soil map 

The rules carry the information with which the map will be created. It is the quantitative expression of the 

expert knowledge of the soil surveyor. Thus it provides a platform where expert knowledge can be 

retained. Thus improvement of soil maps can be done by updating the soil distribution rules. When only 

topographical covariates are available, a conceptual soil distribution model is a pre-requisite to create the 

rules. Then, with the model in mind, the values of the covariates at the SMU boundaries are obtained 

from the training data. To do this, covariate values are added to the point data set (Appendix 2.7). It is 

more difficult to create soil distribution patterns with satellite imagery, as correlations between soil and 

vegetation, and vegetation and satellite imagery are not well known. However the training data 

observations can still be used to determine the covariate values at SMU boundaries. The soil distribution 

rules are created in SoLIM. See Appendix 4 to see how to apply SoLIM.  

 

Step 10: Run inference with rules to create soil map. 

Using the soil distribution rules, SoLIM will create a soil map by running an inference over the study site. 
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Step 11: Filter out small map units into larger map units. 

Inevitably, very small areas of only a few pixels will be delineated as SMU’s. Although this might be 

representative of the real situation, it is not functional. A filter tool is applied to filter small map units into 

larger ones (Appendix 2.8). Thereafter the raster based soil map is converted to a polygon based 

shapefile (Appendix 1.5). 

 

Step 12: Validate the map. 

The map is validated using an accuracy matrix. The advantage of an accuracy matrix is that it points out 

where inaccuracies in the map exist. For example, in Chapter 6 the accuracy matrix showed that the 

largest concern with the map is the map boundaries between the Clayey Recharge and Clayey and 

Sandy Interflow SMU’s. The map can be improved by making more observations along the borders of 

these SMU’s, and in that way improve the covariate values of the border.  

 

To create an accuracy matrix, the map unit of the pixel where the location is located for each validation 

observation should be noted. When the correct SMU falls within one pixel of the observation, the 

observation is deemed to be correct. Purists would argue that this creates bias towards higher accuracy 

values. However, this is done to correct a systemic bias towards lower accuracy values. The bias towards 

lower accuracy values occurs in the following ways: 

1.  It is easy to predict soil distribution in the centre of the SMU’s. However, with on-site determined 

sampling, one makes observations at the boundaries of SMU’s to determine the covariate values at 

which boundaries occur. This leads to more validation observations at the SMU boundaries, 

leading to perceived lower map accuracies. 

2.  When filtering small SMU’s into larger units, some detail of the map is lost. Thus the map could be 

predicted correctly, but because of the small area of the map unit, it is incorporated into a larger 

unit, and the accuracy decreases. This is the inclusion problem also encountered in traditional grid 

based surveys. 

3.  Natural soil boundaries do not follow the right angles of pixels. As in Figure 8.1 a situation can exist 

where an observation can be classified correctly and the correlating pixel be predicted correctly, 

but where the observation is deemed to be mapped incorrectly. The chance of this happening is 

larger at SMU boundaries, where on-site determined observations tend to concentrate. 
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Figure 8.1: Natural soil boundaries vs. pixels. A h ypothetical situation where soil map boundaries 
do not follow pixel boundaries, and bias towards lo wer accuracies occur as a result thereof. 

 

 

The one pixel buffer around validation observations is a way to somewhat rectify this systemic bias 

towards lower map accuracies. 

 

Step 13: Evaluate the map. 

Based on the accuracy assessment and the initial aim of the map set out in Step 1, the map is assessed 

to determine whether or not the aims have been met. If it does, proceed to Step 14 and if not, either 

redefine the aims (Step 1) or do more field work in problem areas. To do this, return to Step 5. 

 

Step 14: Add value. 

Soil maps in general are not very good vehicles to convey soil information to non–soil scientists. To 

convey soil information to the client, some value adding must be done. In Chapter 5 soil property maps 

and in Chapter 6 a hydrological response model map were developed. After value adding data was easily 

accessible for the users. During value adding soil related terminology are converted to land use 

terminology.  

 

Step 15: Extrapolate data. 

This step is done in special scenarios. When the area surveyed is similar to areas around it, one could 

apply the soil distribution rules to the new areas. However, no validation of the new area is possible. 

Caution must be applied when extrapolating, as incorrect soil information could lead to wrong 

management decisions. Grinand et al. (2007) found strong differences in accuracies between training and 
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extrapolated areas. A situation where extrapolation could occur reasonably safely is in Chapter 6, where 

the soil map could be extrapolated to the extent of the Renosterkoppies land type. 
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Appendix 1: ArcGIS 

1.1 ArcGIS Interface 

The basic interface of ArcGIS is shown in Figure A1.1. Various toolbars are at the top, the table of 

contents is on the left, the map view is in the middle and the toolboxes are on the right. The exact position 

of all of these functions can vary. The toolboxes are the main function that is focused on in the 

appendices.  

 

 

Figure A1.1: The basic interface of ArcGIS. 

 

1.2: Importing layers into ArcGIS 

In ArcGIS it is the easiest of all the software that are used to import layers, as it can accommodate nearly 

all file types. Left click on the icon with a black plus over the yellow layer (FigureA1.2) and select the layer 

required. 
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Figure A1.2: Import layers. 

 

1.3: Project layers 

Using a uniform projection enables multiple datasets to be used. To re-project a raster layer, use the 

‘Data Management Tools’ – ‘Projections and Transformation’ – ‘Raster’ – ‘Project Raster’ toolbox. To re-

project a shapefile use the ‘Data Management Tools’ – ‘Projections and Transformation’ – ‘Feature – 

Project’ toolbox. The dialogue screen that will appear (Figure A1.3) is similar for projecting both rasters 

and shapefiles. 

 

 

Figure A1.3: The re-projection dialogue window. 
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A projection where the coordinates are in meters should be used. In South Africa, 

WGS_1984_UTM_Zone_36S is a good projection to use. When the coordinates are in degrees, the 

coordinate system used is usually GCS_WGS_1984. ESRI provides a good tutorial on understanding 

map projections. It is available at: 

http://downloads2.esri.com/support/documentation/ao_/710Understanding_Map_Projections.pdf 

 

1.4: Drawing polygons by hand 

To divide the area into HA’s, one needs the boundary of the area as a shapefile, which is usually provided 

by the client. One way to create a duplicate boundary shapefile is to use the ‘Conversion Tools’ – ‘To 

Shapefile’ – ‘Feature Class To Shapefile’ toolbox. To divide this duplicate boundary shapefile into HA’s it 

needs to be edited. This is done with the ‘Editor Toolbar’ (Figure A1.4) (Right click on any toolbar and 

select the ‘Editor Toolbar’ from the dropdown menu to activate it).  

 

 

FigureA1.4: The Editor Toolbar.  

 

Left click on the down arrow next to the word ‘Editor’, and left click on ‘Start Editing’ button in the drop 

down menu. Make sure the desired layer is in the ‘Layer to be edited’ box, and that the ‘Action to be 

performed’ is ‘Cut Polygon Features’. Then select the polygon to be cut with the ‘Select polygon tool’. Left 

click on ‘Draw tool’ and divide the desired polygon into smaller units by left clicking where one wants to 

divide the polygon. One has to start and end by clicking on the outside of the polygon being divided.  
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1.5: Convert raster to polygon 

To convert a raster layer to a polygon layer, use the ‘Conversion Tools’ – ‘From Raster’ – ‘Raster To 

Polygon’ toolbox (Figure A1.5). Name the raster being converted, the field by which conversion takes 

place and how the new shapefile is saved. 

 

 

Figure A1.5: Raster to Polygon dialogue window. 

 

1.6. Convert polygon to raster 

To convert a polygon shapefile to a raster, use the ‘Conversion tools’ – ‘To Raster’ – ‘Polygon To Raster’ 

toolbox. In the dialogue window (Figure A1.6), enter the shapefile to be converted, the field from which 

the new raster’s z value is determined, and where and as what the new raster is saved. One can specify 

the method by which pixel values are assigned (‘Cell_Center’ works well) and the new raster’s resolution. 

Enter a resolution which is the same as the soil map’s resolution. 

 



 
   

101  
 

Appendices  

 

 

Figure A1.6: The ‘Polygon To Raster’ dialogue windo w. 

 

1.7. Convert rasters to Ascii 

To convert a raster file to Ascii file, use the ‘Conversion Tools’ – ‘From Raster’ – ‘Raster to Ascii’ toolbox. 

In the dialogue window (Figure A1.7), enter the raster to be converted and where and how the new Ascii 

file is saved. 

 

 

Figure A1.7: The ‘Raster to Ascii’ dialogue window.  
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1.8. Converting a text file to a shapefile 

Firstly, convert the text file (.txt) to a Microsoft Excel file (.xls) by simply saving it as an ‘.xls’ file, using the 

‘save as’ command. Then import the sheet into ArcGIS (Appendix 1.2). The Excel sheet will appear as a 

layer in the ‘Table of Contents’ part of the ArcGIS interface, but not on the map. Right click on the layer in 

the ‘Table of Contents’ and select ‘Display XY Data’. Set the columns for the X and Y coordinates and 

choose the coordinate system and then left click on ‘OK’. The points will appear as a new layer in the 

‘Table of Contents’ and in the ‘Map View’. Right click on the new layer (its name is in the format: ‘oldname 

Events’), and select ‘Data’ – ‘Export Data’. In the following dialogue window select the location and name 

of the shapefile being created. After creating the shapefile, a pop up window will appear, asking: ‘Do you 

want to add the exported data to the map as a layer?‘ Left click on ‘Yes’. The shapefile will appear in the 

‘Table of Contents’ and in the ‘Map View’. 
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Appendix 2: SAGA 

2.1: SAGA interface 

The SAGA interface is shown in Figure A2.1. At the top are toolbars where some commands for the maps 

can be performed. At the left is the ‘Workspace Window’, where one can toggle between the ‘Modules’, 

‘Data’ and ‘Maps’ menu’s. Modules are similar to toolboxes in ArcGIS and are referred to the most in the 

appendices. In the ‘Data’ menu, all the data layers are shown while the ‘Maps’ menu contains the layers 

of the different maps (multiple sets of maps can be open). To the right is the ‘Object Window’, where 

properties of the layers can be seen and at the bottom, in the ‘Message Window’ the tasks which are 

performed are shown. 

 

Raster layers (as used in this research and in ArcGIS), are called grids in SAGA. SAGA also groups the 

grids based on the grid system to which they belong to. The grid system is determined by the grid extent 

and resolution. 

 

 

Figure A2.1: The SAGA interface. 

 

2.2: Import layers into SAGA 

The easiest way to import raster layers into SAGA is to convert them to Ascii files in ArcGIS (Appendix 

1.7) and then import the file using the ‘Import/Export – GDAL/OGR’ – ‘GDAL: Import Raster’ module. The 

‘Import Raster’ dialogue window is shown in Figure A2.2. Left click on the three dots on the right and 
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select the file to be imported. If the three dots do not appear, left click in the bigger block around the area 

where they should appear, and they will. 

 

 

Figure A2.2: The ‘Import Raster’ dialogue window. 

 

To import a shapefile, use the module ‘Import/Export – GDAL/OGR’ – ‘OGRL: Import Vector Data’, the 

dialogue window is the same as the ‘Import Raster’ dialogue window. 

 

2.3 Resampling 

Resampling of rasters allows for the raster extent and resolution to be changed. To do this, use the ‘Grid 

– Tools’ – ‘Resampling’ module. In the following dialogue window (Figure A2.3) set the grid system, target 

grid, additional grids and the new grid system. When keeping the new grid system as ‘user defined’ a new 

dialogue window will appear where the extent and resolution of the new grid can be set. If it is changed to 

‘grid’ a grid to which the new grid system will be set must be chosen. 
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Figure A2.3: The ‘Resampling’ dialogue window. 

 

2.4: Terrain derivatives 

Although an array of terrain derivatives can be derived, in this research the ‘Terrain Analysis – Compound 

Analyses’ – ‘Basic Terrain Analysis’ module are used. In the dialogue window (Figure A2.4), the input grid 

system and DEM need to be entered. Thirteen terrain variable layers are derived. 

 

 

Figure A2.4: The ‘Basic Terrain Analysis’ dialogue window. 
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2.5: Mathematical manipulation 

The module ‘Grid-Calculus’ – ‘Grid Calculator’ allows the mathematical manipulation of grids. In the 

example dialogue window (Figure A2.5), the NDVI is calculated. The inputs needed are the input grid 

system, the input grids and the equation which needs to be performed. Set the new created grid to 

‘[create]’, and enter a name for the new grid. In the formula, g1 refers to the first entered grid, g2 to the 

second entered grid and so forth.  

 

 

Figure A2.5: The ‘Grid Calculator’ dialogue window.  

 

2.6 Principal component analysis (PCA) 

To perform PCA use the ‘Geostatistics – Grids’ – ‘Principle Component Analysis’ module. In the dialogue 

window (Figure A2.6), specify the input grid system, the input grids and the number of components in the 

output. Each component is created as a separate covariate layer. The method to determine the PCA can 

be stipulated. In this research the default method was used. 
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Figure A2.6: The ‘Principal Component Analysis’ dia logue window. 

 

2.7 Adding covariate values to point data 

To add covariate layers values to a point shapefile, the ‘Shapes- Grid’ – ‘Add Grid Values to Points’ 

module is used. In the dialogue window (Figure A2.7) the points to which the covariate values are added 

and the grids which values are added must be set. Set the output shapefile to ‘[create]’ and the method 

used to ‘Nearest Neighbor’. A point shapefile is created with the covariate values added in the attribute 

table. 
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Figure A2.7: The ‘Add Grid Values to Points’ dialog ue window.  

 

2.8 Filter 

To filter small map units into larger ones, use the ‘Grid – Filter’ – ‘Majority Filter’ module. In the dialogue 

window enter the input grid system and grid. Set the output grid to ‘[create]’. The search mode 

establishes whether the search mode is square or circular. The pixel radius determines how many pixels 

are included in the smoothing. The larger the pixel radius, the larger the size of SMU’s which are 

incorporated into other SMU’s. The threshold sets a percentage which influences how much detail is 

retained. A larger percentage allows for more detail to be retained and a lower percentage for a smoother 

output. In Chapter 6 a square search mode was used with a pixel radius of 2 and a threshold percentage 

of 20.  
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Figure A2.8: The ‘Majority Filter’ dialogue window.  

 

2.9: Export Grid to XYZ 

As input for the cLHS, the input grids must be in a text file format (.txt). Use the ‘Import/Export – Grids’ – 

‘Export Grid to XYZ’ to do this. The input grid system and input grids must be specified, and an output file 

name can be chosen. 

 

 

Figure A2.9: The ‘Export Grid to XYZ’ dialogue wind ow. 
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Appendix 3: Conditioned Latin hypercube sampling (c LHS). 

Within the cLHS file, one would find the files such as in Figure A3.1. All inputs must be set to correlate 

with the names given in the clhs_input.txt file (Figure A3.2). The ‘infile’ is the file where all the grid data is, 

which was created in Appendix 2.9. The ‘outfile’ is the output grid file and ‘nvar’ is the number of grids 

included in the ‘infile’. ‘nsam’ is the desired number of observations and ‘icord’ must be set to 1. Leave 

‘w1’, ‘w2’ and ‘tfactr’ as they are. The number of iterations is set with ‘niter’. In this research a value of 

20 000 was used. 

 

 

Figure A3.1: The files included in the cLHS file. 

 

 

Figure A3.2: The ‘clhs_input.txt’ window. 

 

After entering the data in the ‘clhs_input’ file, the file should be saved. Then click on the ‘clhs.exe’ icon in 

the cLHS file (Figure A3.1). The program will run and the output occur as the ‘outfile’ specified in the 

‘clhs_input.txt’ window. To create a shapefile from the data, refer to Appendix 1.8. 
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Appendix 4: SoLIM 

The functionality of SoLIM is explained beautifully in the ‘Quick Tutorial’ which is included in the help 

manual. The help manual goes with the SoLIM 2010 program. Refer to this document when starting out 

on SoLIM. Appendix 4.1 explains how to export maps created in SoLIM. 

 

4.1. Exporting maps from SoLIM 

SoLIM derives products in the ‘.3dr’ SoLIM format. To view these maps in ArcGIS, it needs to be 

converted back to an Ascii file. On the ‘Menu Toolbar’ (Figure A4.1) left click on the ‘Utilities’ button and 

then in the drop down menu select ‘Data Format Conversion’ – ‘3dr -> Grid Ascii’. In the following 

dialogue window, the ‘Input File’ is the map created by SoLIM, and the ‘Output File’ is the name of the 

new Ascii file being created. Left click on ‘OK’ and the map will be converted to the Ascii format. This file 

can be opened in ArcMap and SAGA by following the import instructions in Appendix 1.2 or 2.2. 

 

 

Figure A4.1: The SoLIM interface. 

 


