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Abstract 

Both exact and approximate statistical inference for the parameters and the 

quantiles of location-scale, log-location-scale and location-scale-shape families 

of distributions are usually derived from likelihood-based methods. However, 

parameter estimation using exact and approximate maximum likelihood-based 

methods can be difficult and may require extensive programming, especially 

when dealing with censored samples. In some cases, maximum likelihood 

estimation based on censored samples may encounter convergence problems. 

Alternative methods of parameter estimation in location-scale, log-location-

scale and location-scale-shape distributions have been developed by many 

researchers. 

In this thesis we develop exact rank-based conventional and fiducial generalized 

methods of inference for location and scale parameters of distributions 

belonging to the location-scale and log-location-scale families using the 

generalized least squares approach. Furthermore, we propose rank-based 

fiducial generalized methods of inference for location, scale and shape 

parameters of distributions belonging to location-scale-shape families of 

distributions using rank-based, iterative generalized least squares methods, and 

a Gibbs sampler. We compare through simulation and practical applications the 

results, inter alia the coverage probabilities and average lengths of conventional 

and fiducial generalized confidence intervals for the parameters and quantiles of 

location-scale, log-location-scale, and location-scale-shape distributions, 

obtained using our proposed methods of inference with alternative methods 

existing in literature, for example, exact and approximate maximum likelihood-

based methods. 

For the cases of location-scale and log-location-scale families of distributions 

involving one or two-sample situations, our simulation results show that the 
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proposed exact rank-based (conventional and fiducial generalized) methods are 

very competitive with exact and approximate maximum likelihood-based 

methods in terms of relative lengths of confidence intervals for the model 

parameters, parameter contrasts and quantiles of distribution. Moreover, rank-

based methods produce confidence intervals for the model parameters, 

parameter contrasts and quantiles of distribution with good properties. In terms 

of practical application, our proposed rank-based methods produce  confidence 

intervals for the model parameters, parameter contrasts and quantiles of 

distribution that are very close to the confidence intervals calculated using exact 

maximum likelihood-based methods. 

When calculating rank-based fiducial generalized confidence intervals for the 

model parameters and quantiles of location-scale-shape family of distributions 

(when the shape parameter 𝜉 > 0), using iterative generalized least squares 

approach based on Gibbs sampler algorithm, two different parametrizations, 

namely the 𝜃 and 𝜃∗ parametrizations are investigated. Our simulation results 

show that the 𝜃∗ parametrization produces, overall, better and more stable 

estimates compared to 𝜃  parametrization. Finally, results of illustrative 

examples of data modelled by the Generalized Extreme Value distribution for 

the case when 𝜉 > 0, are comparable to the results based on the same data 

obtained using Bayesian methods. 
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Abbreviations and notations 

Unless stated otherwise, the following abbreviations and notations were 

commonly used in this thesis: 

AVL  average length 

BLUEs  best linear unbiased estimators 

CCPQ  conditional conventional pivotal quantity 

cdf  cumulative distribution function 

CFGPQ  conditional fiducial generalized pivotal quantity 

CI  confidence interval 

CP  coverage probability 

CPQ  conventional pivotal quantity 

e.g.  for example 

FGCI  fiducial generalized confidence interval 

FGCR  fiducial generalized confidence region 

FGI  fiducial generalized inference 

FGPQ  fiducial generalized pivotal quantity 

GCI  generalized confidence interval 

GEV  Generalized Extreme Value 

GLM  general linear model 

GLS  generalized least squares 
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GP  Generalized Pareto 

GPQ  generalized pivotal quantity 

GPV  generalized p-value 

GTV  generalized test variable 

i.i.d.  independent and identically distributed 

LLS  log-location-scale 

LM  likelihood moment 

LS  location-scale 

LSS  location-scale-shape 

mgf  moment generating function 

ML  maximum likelihood 

MLEs  maximum likelihood estimates 

MOM  methods of moments 

NR  Newton-Raphson 

pdf  probability density function 

POME  principal of maximum entropy 

POT  peaks-over-threshold 

PQ  pivotal quantity 

PWM  probability weighted moments 

RHS  right hand side 
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SCB  simultaneous confidence band 

SCR  simultaneous confidence region 

log𝑁  Lognormal distribution 

𝐵(∙)  complete beta function 

𝐶𝑜𝑣(∙)  covariance matrix of a random vector 

𝐸(∙)  operator of mathematical expectation 

𝐸𝑥𝑝  Exponential distribution 

𝐺𝑢𝑚  Gumbel distribution 

𝐻   linear predictor matrix 

𝐿(∙)   likelihood function 

𝐿𝐿𝑜𝑔𝑖𝑠𝑡 Log-Logistic distribution  

𝐿𝑜𝑔𝑖𝑠𝑡  Logistic distribution 

𝑁  Normal distribution 

ℝ  a set of real numbers 

𝑈  standard Uniform variate 

𝑈𝑛𝑖𝑓   Uniform distribution 

𝑉  covariance matrix of 𝑍 or log(𝑍−1)  

𝑉𝑎𝑟(∙)  variance of a random variable 

𝑊𝑒𝑖𝑏  Weibull distribution 

𝑋  intercept matrix of a GLM 
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𝑌  a vector of the order statistics of the sample of size 𝑛 

𝑍 a vector of  the order statistics of the standardized random 

variate 

𝑑  difference of two 𝑝 −quantiles of the distribution 

𝑒  scaled deviations of 𝑍 from 𝐸(𝑍)  

𝑙(∙)  log likelihood function 

𝑛  sample size 

𝑝  probability associated with the quantile of distribution  

 𝛼  level of significance 

𝛿  difference of two location parameters 

𝜂  quantile of the distribution  

𝜇  location parameter 

𝜉  shape parameter 

𝜋  failure probability 

𝜌  ratio of two scale parameters 

𝜎  scale parameter 

ℛ(∙)(∙)  FGPQ of a parameter or quantile of distribution 

𝑄(∙)(∙)  CPQ of a parameter or quantile of distribution  

𝑌∗  a scalar continuous random variable 

𝑍∗  a scalar standard random variate associated with  𝑌∗ 
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𝑦∗  a scalar observation associated with  𝑌∗ 

𝑧∗  a scalar observation associated with 𝑍∗ 

𝜇̂(∙)𝑀𝐿  maximum likelihood based estimator for 𝜇 

 𝜇̂(∙)  rank-based GLS estimator for 𝜇 

𝜎̂(∙)𝑀𝐿   maximum likelihood based estimator for 𝜎 

𝜎̂(∙)  rank-based GLS estimator for 𝜎 

 ∈  an element of  

∽  distributed as 
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Overview 

Rank-based methods of estimation and inference for the parameters and 

quantiles in location-scale, log-location-scale and location-scale-shape families 

of distributions have many applications especially in statistical problems 

involving lifetime data analysis. Although various exact and approximate 

frequentist and Bayesian methods of inference exist in literature, they may not 

be applicable to some of the statistical problems. Furthermore, when the 

frequentist and Bayesian methods of inference are applicable, their applicability 

may involve, for example, computational complexity. In this thesis, an 

alternative method of inference to frequentist and Bayesian methods are 

explored. Specifically, the fiducial generalized methods of inference are based 

on the concept of fiducial inference introduced by R.A. Fisher (1920s and 1930s). 

Further development of fiducial inference by other researchers after the 1930s, 

for example, Weerahandi (1989, 1993 and 2004) and Iyer and Petterson (2002), 

have greatly broadened the applicability of fiducial inference. Initially, in this 

thesis we present methods of generalized fiducial inference for location-scale 

(LS) and log-location-scale (LLS) families of distribtutions, the distributions with 

two parameters, a location and a scale parameter. Inference is done using rank-

based and maximum likelihood-based fiducial generalized pivotal quantities 

(FGPQs).  

In an attempt to extend fiducial inference to locations-scale-shape (LSS) families 

of distributions (distributions with three parameters) we present a new 

approach to fiducial inference, in order to reduce the computational complexity 

when dealing with high-dimensional parameter distributions. Therefore, in this 

thesis, we introduce the concept of Conditional Fiducial Generalized Pivotal 

Quantities (CFGPQs) which allow one to reduce high-dimensional parameter 

problems to a lower-dimensional parameter problem. 
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The concept of CFGPQs allows us to, for example, to calculate FGCIs for the 

model parameters and quantiles of distributions in the LSS setting, inter alia, for 

the GEV, GP and three-parameter Weibull distributions. Through the concept of 

CFGPQs, we associate conditional fiducial distributions with the parameters of a 

statistical model. Using those conditional fiducial distributions, the marginal 

distribution of model parameters can be determined through a Gibbs sampler 

(that is, Monte Carlo simulations). This procedure is analogous to methods for 

the calculation of marginal posterior distributions in a Bayesian context. 

A summary of the organization of chapters in this thesis is as follows:  

Chapter 1 provides a general introduction to the research topic, specifically, the 

history of the concept of fiducial inference and subsequent related 

developments of the fiducial idea. Unlike in the context of Bayesian inference, 

fiducial inference does not require a prior distribution for the parameters in 

order to carry out inference on model parameters. Although the concept of 

fiducial inference was initially not generally accepted, further research has since 

broadened its applicability and acceptance in various challenging statistical 

problems. The definitions of conventional and fiducial generalized PQs, and of 

conditional fiducial generalized PQs are presented in Chapter 1. Lastly, Chapter 1 

presents the objectives and research design of the thesis.  

Chapter 2 presents the definitions of LS and LLS families of distributions. Among 

others, the Normal, Logistic, Uniform and Gumbel distributions belong to LS 

families, and the Log-Normal, Log-Logistic, Pareto and Weibull distributions 

belong to LLS families. Furthermore, for each LS and LLS distribution, we express 

the standard variate associated with a random variable in terms of standard 

uniform variate because we simulate from those standard distributions. 

In Chapter 3, methods of parameter estimation in the LS and LLS families, 

namely rank-based GLS and ML-based methods, are discussed. A review of the 
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literature on methods of estimation of the parameters in LS and LLS families is 

presented.  

Chapter 4 presents, for the one sample problem, the rank-based conventional 

PQs and fiducial generalized PQs for model parameters and quantiles, as well as 

ML-based conventional PQs and fiducial generalized PQs in LS and LLS families. 

We can calculate confidence intervals for the parameters and quantiles through 

simulation of the corresponding conventional and fiducial generalized PQs. 

Furthermore, a simulation study is carried out to compare the average length of 

confidence intervals based respectively on rank-based and an ML-based PQs. 

Lastly, the proposed methods of inference are applied to the real data example. 

In Chapter 5, for the two-sample problem, rank and ML-based conventional and 

fiducial generalized inference in LS and LLS families, are discussed. Similarly to 

Chapter 4, a simulation study is carried out to compare the coverage and 

average length of confidence intervals based respectively on rank-based and an 

ML-based FGPQs in the two sample problem.  An illustrative example is also 

presented. 

Chapter 6 presents methods for fiducial inference for the LSS family of 

distributions. Among others, distributions that belong in this class are the GEV, 

GP, and three-parameter Weibull distributions. Initially, rank-based, iterative 

generalized least squares estimation of the model parameters in the LSS family 

is discussed. Thereafter, CFGPQs for the model parameters are derived. 

Confidence intervals for the model parameters in LSS family can then be carried 

out through simulation of the marginal fiducial distribution of the CFGPQs by 

using Gibbs sampler. A simulation study of the coverage and average length of 

such confidence intervals is presented. Computational problems, and successes 

and failures of the proposed methodology are discussed. An illustrative example 

is presented. 
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Chapter 7 provides a summary of the overall results and conclusions, and 

sketches open problems and avenues for further research. 
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Chapter 1 - Introduction 

1.1. Background of Order Statistics 

Statistical methodologies involving order statistics and their functions have 

many practical applications. The random variables or observed random variables 

of interest ranked according to their relative magnitudes are called order 

statistics. For example, consider an experiment involving the athletic 

competition of ten athletes running a distance of 100 meters. Then, the 

observed times (in seconds) that each athlete takes to complete the 100 meters 

distance are order statistics. That is, the observed times are ranked naturally 

from the fastest athlete, namely the winner, followed by the runner up, to the 

slowest or last runner. 

Historically, Fisher and Tippett (1928) first investigated the distribution of order 

statistics of a sample. In their pioneering paper, they derived the limiting 

distributions of the smallest or largest order statistics of an independent sample 

drawn from a general probability distribution. Since then, the results obtained 

by Fisher and Tippett (1928) did not see further development for about 30 years 

until Gumbel (1958) modified Fisher and Tippett (1928)’s results in his book. 

Gumbel’s book has since become an important reference with regard to 

applications of extreme value theory, especially to engineering problems. 

Furthermore, it has given rise to the discovery of the Gumbel distribution, 

widely used in extreme value theory to model the smallest or largest order 

statistics of a sample. The text of Beirlant et al (2004) provides a comprehensive 

coverage of the theory and a wide range of applications of the extreme value 

theory. In addition, extensive discussion of various methods of estimation based 

on complete and censored samples of order statistics appear in the text of 

Balakrishnan and Cohen (1991). 
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We can denote the order statistics of the sample as follows: 

If 𝑌1, 𝑌2, … , 𝑌𝑛 denote an independent and identically distributed (i.i.d.) random 

sample from the distribution of a continuous random variable 𝑌∗, then the 

random sample ordered in ascending order of magnitude can be written as  

                                                  𝑌(1), 𝑌(2), … , 𝑌(𝑛)                                                           (1.1) 

where 𝑌(1) ≤ 𝑌(2) ≤ ⋯ ≤ 𝑌(𝑛) . Similarly to equation (1.1) we write the 

realizations of the random sample 𝑌1, 𝑌2, … , 𝑌𝑛, denoted by 𝑦1, 𝑦2, … , 𝑦𝑛 ordered 

in ascending order of magnitude as 

                                                  𝑦(1), 𝑦(2), … , 𝑦(𝑛)                                                          (1.2) 

Using the notation above, the minimum of  𝑌𝑖,  where 𝑖 = 1, 2, … , 𝑛, is given by  

                                           𝑌(1) = 𝑚𝑖𝑛(𝑌1, 𝑌2, … , 𝑌𝑛)                                                 (1.3) 

and the maximum of 𝑌𝑖 can be written as 

                                 𝑌(𝑛) = 𝑚𝑎𝑥(𝑌1, 𝑌2, … , 𝑌𝑛)                                                        (1.4) 

Well-known examples of the functions of random variables based on order 

statistics are 𝑌(1),  𝑌(𝑛) and the range of the sample obtained as  𝑌(𝑛) − 𝑌(1) 

among others. The order statistics 𝑌(1)  and  𝑌(𝑛)  are known as ‘extremes’ 

(Balakrishnan and Cohen, p. 2), and their distributional properties and a wide 

range of applications are investigated mainly in studies that deal with extreme 

value theory. 

As will be seen in the remainder of this thesis, order statistics can be used to 

derive point and interval estimates of the location and scale parameters of 

location-scale families of distributions. Some of these methods can be extended 

to location-scale-shape distributions.   
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1.2. Background of Location-Scale, Log-

Location-Scale and Location-Scale-Shape 

Familes of Distributions 

In this section, we discuss the background of location-scale (LS), log location-

scale (LLS) and location-scale-shape (LSS) families of distributions. Estimation 

and inference for the parameters and quantiles of these families of distributions 

are widely treated in the literature, for example, by Nkurunziza and Chen (2011), 

Balakrishnan and Kateri (2008), He and Lawless (2005), and Hong et al. (2009, 

2010). The distributions in the LS and LLS family have two unknown parameters, 

namely a location and a scale parameter. Thus, estimation of both parameters is 

generally required. Similarly, in LSS families, three parameters are unknown, 

namely a shape parameter in addition to a location and scale parameter. 

However, in some cases one or more of the parameters of these distributions 

might be assumed known. For example, in a location problem (that is, the 

location parameter is unknown but the scale parameter is assumed known or 

fixed) or a scale problem (that is, the scale parameter is unknown but the 

location parameter is assumed known or fixed). Furthermore, if for example, the 

shape parameter in a LSS family is assumed known or fixed, then essentially we 

have a location-scale problem. 

Examples of distributions that belong to the LS family are the Normal, Logistic, 

Uniform and Gumbel distributions; examples of distributions that belong to the 

LLS family are the Log-Normal, Log-Logistic, Weibull and Pareto distributions; 

the three-parameter Weibull, three-parameter Log-Normal, Generalized 

Extreme Value and Generalized Pareto distributions are examples of LSS 

families. The formal definitions of LS, LLS and LSS families of distributions are 

presented in Sections 2.2, 2.3 and 6.1 respectively. 
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Estimation and inference for parameters and quantiles of LS, LLS and LSS 

families of distributions can in principle be based on maximum likelihood (ML) 

method. However, parameter estimation using ML can be difficult, especially in 

the presence of censored data. Other challenges of using the ML method are 

that maximum likelihood estimators (MLEs) may not exist and that in the 

absence of closed form expressions for the estimators, it may require extensive 

programming (Balakrishnan and Kateri, 2008). Thus, it seems worthwhile to 

explore alternative methods of parameter estimation and inference.
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In this study we will explore methods of estimation and inference based on 

order statistics. In the case of LS and LLS families of distributions, the location 

and scale parameters can be estimated using generalized least squares (GLS) 

estimation. This method of estimation, which we will refer to as the ‘rank-based 

method’, is based on a general linear model for the vector of order statistics of a 

sample, with, in general, non-diagonal variance-covariance matrix. The 

efficiency of the rank-based method is evaluated by comparing the estimates 

obtained using this method against ML-based estimates. It is noteworthy that 

the rank-based method of parameter estimation can very easily be applied to 

certain types of censored samples. ML-based inference for model parameters 

and quantiles in LS and LLS family using censored samples is, for example,  

discussed by Lawless (2003, pp. 218-235)).  

In the case of three-parameter families of distributions, iterative generalized 

least squares estimation approach can be used. Through this approach, we 

estimate different combinations of two parameters as for LS families, while 

keeping the third parameter fixed at the iteration in question. A similar 

approach forms the basis of a new concept of fiducial inference, namely 

conditional fiducial generalized inference which is introduced in the next 

section. 

1.3. Fiducial Inference 

In this section, we discuss the concept of fiducial inference and related 

developments that gave rise to concepts of fiducial generalized pivotal 

quantities (FGPQs), conditional FGPQs (CFGPQs) and fiducial generalized 

confidence intervals (FGCIs). 
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History 

Fiducial inference can be applied to statistical problems where frequentist and 

Bayesian inference may not be applicable or not be successful. Before the 

concept of fiducial inference, which is a subclass of generalized inference, was 

introduced, exact (non-Bayesian) methods of inference for statistical problems 

involving nuisance parameters were generally not available (Weerahandi, 1993). 

An example of such a situation is the Behrens-Fisher problem (Hannig et al., 

2006) of comparing the means of two independent normal distributions with 

unequal variances. Another example is the comparison of means or quantiles of 

two independent Exponential distributions. In both cases, conventional pivotal 

quantities (CPQs) for the parameter contrast of interest, which might be used in 

constructing confidence intervals, are not available. In contrast, FGPQs can be 

used to construct FGCIs, for example for the difference in mean parameters 

(Behrens-Fisher problem) and difference in quantiles of the distributions (two 

independent Exponential distributions). 

Historically, the concept of fiducial inference was first introduced by R.A. Fisher 

(1922, 1925, 1930, and 1935). Initially, Fisher introduced the concept of a 

fiducial distribution of a parameter, and proposed that the fiducial distribution 

replaces the Bayesian posterior distribution, when estimating a confidence 

interval of the parameter. Subsequently, the concept was developed through 

the work of other researchers, for example, D.A.S. Fraser in the 1960s, G.N. 

Wilkinson in the 1970s, David and Stone in the early 1980s. While Fraser, 

Wilkinson, David and Stone made great advances to fiducial inference, the 

concept was not generally accepted by other researchers during that time 

because some of “Fisher’s bold claims” about the properties of fiducial 

distributions were thought not to apply to statistical problems involving 

nuisance parameters. In other words, for one-parameter distributions, Fisher’s 

fiducial confidence intervals for the parameter were efficient relative to 
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conventional confidence intervals. However, while for the multi-parameter case, 

Fisher’s approach produced confidence intervals whose coverage probabilities 

were relatively close to nominal values, they did not conform to frequentist 

property of exactness in the case of repeated sampling.  For further references 

on the history of fiducial inference, the reader is referred to the papers of 

Hannig (2009) and Hannig et al. (2016). 

The work on fiducial inference and related ideas was developed further in the 

late 1980s and early 1990s. Tsui and Weerahandi (1989) introduced the new 

concepts of generalized P-values and generalized test variables (GTVs). His work 

led to new concepts of generalized pivotal quantities (GPQs) and generalized 

confidence intervals (GCIs) published in his subsequent papers, namely 

Weerahandi (1993, 2004). Following the work of Weerahandi (1993), methods 

for construction of GCIs were developed for a vast array of applications. For the 

various applications, the reader is referred to numerous references cited by 

Hannig, Iyer and Patterson (2006, Section 1). 

Further developments in the area of fiducial inference were made through 

papers of Iyer and Patterson (2002), Hannig, Iyer and Patterson (2006) and 

Hannig (2009). Iyer and Patterson (2002), and Hannig, Iyer and Patterson (2006) 

demonstrated that the concepts of fiducial inference and generalized inference 

are closely related, and thus those authors unified the two concepts; they called 

the unified concept generalized fiducial inference (GFI). By unifying the two 

concepts, they transferred randomness from the data to the parameter space, 

using an inverse of a data generating equation without the use of Bayes 

Theorem (Hannig et al., 2016). 

 A major advance was made by Hannig, Iyer and Patterson (2006) by proposing a 

special class of GPQs, namely FGPQs. Hannig, Iyer and Patterson (2006) 

described general methods for constructing FGPQs, and, by extension, for 

construction of FGCIs. Subsequently, Hannig (2009) presented a very general 
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method for construction of FGPQs that further broadens the applicability of 

fiducial inference. For examples, the general methods of Hannig, Iyer and 

Patterson (2006) and Hannig (2009) have been used successfully in the 

derivation of methods for fiducial inference in complex and challenging 

applications such as linear mixed models (Hannig and Iyer, 2008; Cisewski and 

Hannig, 2012), the largest mean of a multivariate distribution (Wandler and 

Hannig, 2011), and inference for the generalized Pareto distribution (Wandler 

and Hannig, 2012). 

However, specifically in the last chapter of the present thesis, we pursue a 

different route in an attempt to widen the applicability and reduce the 

computational complexity of fiducial inference. In order to achieve these goals, 

we introduce the concept of conditional FGPQs (CFGPQs). Through the concept 

of CFGPQs, we associate conditional fiducial distributions with the parameters 

of a statistical model. By analogy with methods for the calculation of marginal 

posterior distributions in a Bayesian context (Gelfand and Smith, 1990), the 

marginal fiducial distribution of the model parameters can be determined by 

Monte Carlo simulation, using the Gibbs sampler, from the relevant conditional 

fiducial distributions associated with CFGPQs. Essentially, the concept of CFGPQ 

allows one to reduce a high-dimensional parameter problem to a lower 

dimensional or even single-parameter problem. 

In this thesis, the concept of CFGPQs allows one to tackle fairly challenging 

problems in statistical inference. For example, using the concept of CFGPQs, one 

can calculate GCIs for the parameters and quantiles of distributions in the LSS 

setting, inter alia, three-parameter Weibull, Generalized Extreme Value, and 

Generalized Pareto distributions. However, let it be noted at this stage already: 

inference for LSS families based on CFGPQs has its own computational 

problems, and the approach is not in all cases successful. 
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Definition of Fiducial Generalized Pivotal Quantity 

Generally, we define a pivotal quantity (PQ) as a statistic whose distribution 

does not depend on any unknown parameters. In this thesis, the acronym CPQ 

stands for conventional pivotal quantity, as opposed to a fiducial generalized 

pivotal quantity (FGPQ). Formally, we define a (conventional) pivotal quantity as 

follows:  

Definition 1.1: Conventional Pivotal Quantity (Weerahandi, 1995, p. 19): 

A random variable 𝒬 = 𝜚(𝑌, 𝜃),  a function of the data 𝑌  and the 

parameter 𝜃 of the underlying distribution, is a pivotal quantity if the 

distribution of 𝒬 is independent of the parameter.  

Furthermore, in the manner of Weerahandi (2004, pp. 18-20) (and similar to the 

definition of Hannig, Iyer and Patterson, 2006) we define a fiducial generalized 

pivotal quantity (FGPQ) as follows:  

Definition 1.2: Fiducial Generalized Pivotal Quantity (Hannig, Iyer and 

Patterson, 2006): 

Let 𝑆 be a 𝑘-dimensional random vector whose distribution is indexed by 

a parameter or a vector parameter 𝜉 = (𝜃, 𝜂, 𝜁)′ of dimension 𝑝. Here 

we are interested in making inferences about the 𝑞-dimensional sub-

vector 𝜃 of 𝜉, 1 ≤ 𝑞 ≤ 𝑝. Furthermore, let 𝑠 be an observed value of 𝑆. 

Then, a FGPQ for 𝜃, denoted by 𝑅𝜃(𝑠, 𝑆, 𝜉), is a function of (𝑠, 𝑆, 𝜉) with 

the following properties: 

 FGPQ1: The distribution of 𝑅𝜃(𝑠, 𝑆, 𝜉) is free of 𝜉. 

 FGPQ2: For every allowable 𝑠, 𝑅𝜃(𝑠, 𝑠, 𝜉) = 𝜃. 
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Definition of Conditional Fiducial Generalized Pivotal Quantity 

Although many FGPQs exist where no CPQs are available, there remain 

situations where, a FGPQ for 𝜃 does not exist, or if a FGPQ for 𝜃 exists, it may 

not be obvious how to construct it. However, in many situations it may be 

possible to construct a FGPQ for a sub-vector 𝜃,  conditional on the 

𝑟 −dimensional sub-vector 𝜁  of 𝜉,  where 1 ≤ 𝑟 ≤ 𝑝 − 𝑞.  Thus, we define a 

CFGPQ as follows:  

Definition 1.3: Conditional Fiducial Generalized Pivotal Quantity:  

Let 𝑆 be a 𝑘-dimensional random vector whose distribution is indexed by 

a parameter or a vector parameter 𝜉 = (𝜃, 𝜂, 𝜁)′ of dimension 𝑝. Here 

we are interested in making inferences about the 𝑞-dimenstional sub-

vector 𝜃 of 𝜉, 1 ≤ 𝑞 ≤ 𝑝. Furthermore, let 𝑠 be an observed value of 𝑆. 

Then, a CFGPQ for 𝜃,  conditional on 𝜉,  denoted by 𝑅𝜃|𝜉(𝑠, 𝑆, 𝜉)  is a 

function of (𝑠, 𝑆, 𝜉) with the following properties: 

 CFGPQ1: The distribution of 𝑅𝜃|𝜉(𝑠, 𝑆, 𝜉)  is free of (𝜃, 𝜂). 

 CFGPQ2: For every allowable 𝑠, 𝑅𝜃|𝜉(𝑠, 𝑠, 𝜉) = 𝜃. 

Specific examples of rank-based conventional and fiducial generalized pivotal 

quantities for testing hypotheses and construction of confidence intervals for 

parameters, quantiles and tail probabilities in the LS and LLS families, are 

discussed in detail in Section 4.2. Similarly, specific examples of maximum 

likelihood-based conventional and fiducial generalized pivotal quantities are 

discussed in detail in Section 4.3. 

Fiducial Generalized Confidence Intervals 

In Section 1.2.2, we presented a general definition of the FGPQ. In Section 4.2, 

we will derive rank-based FGPQs for the parameters, quantiles and tail 
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probabilities of the distributions in the LS and LLS families, for the one sample 

problem. Similarly, ML-based FGPQs for the parameters and quantiles of those 

distributions are presented in Section 4.3. In Section 4.4, we use the 

distributions of rank-based FGPQs derived in Section 4.2 to construct the 

corresponding FGCIs. The FGCIs are obtained by taking 𝛼 2⁄  quantiles of the 

distribution of FGPQs as lower limits and  (1 − 𝛼 2⁄ )  quantiles of the 

distribution of FGPQs as upper limits. ML-based FGCIs can be obtained in a 

similar manner; for more details, see Section 5.4. Similarly, confidence intervals 

based on CPQs (when such CPQs are available) can be obtained through 

inversion of CPQs, as is well known. 

More generally, we might be required to make inferences about the difference 

in location parameters from two independent samples, or the difference of two 

quantiles. For example, we might consider the problem of obtaining a 

confidence interval for the difference of location parameters from two 

independent normal distributions with unequal variances (that is, the Behrens-

Fisher problem). We note that a conventional pivotal quantity for this problem is 

not available (Hannig, Iyer and Patterson, 2006). The solution to this problem 

can be derived using the fiducial argument discovered by Behrens in 1929 and 

later developed further by Fisher in 1935. In this thesis, we construct rank and 

ML-based FGCIs for the ratio of scale parameters, difference of location 

parameters, and difference of two quantiles, for the distributions in LS and LLS 

families. Thus, we discuss fiducial generalized inference for LS and LLS 

distributions involving two independent samples. 

Regarding the two-sample problem for LS and LLS distributions, rank-based 

FGPQs for the ratio of scale parameters, difference of location parameters, 

difference of two quantiles and log-odds ratio of tail probabilities, are presented 

in Sections 5.2.2, 5.2.3, 5.2.4, and 5.2.5 respectively; whereas ML-based FGPQs 

for the same contrasts are presented in Sections 5.3.1, 5.3.2, 5.3.3, and 5.3.4 
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respectively. As is the case with one sample problem, when FGPQs derived from 

two independent samples are available, FGCIs can be obtained directly through 

simulation of the distribution of respective FGPQs. The general algorithm for 

calculating the FGCIs for the difference of two location parameters and 

difference of two quantiles of the distribution is presented in Section 5.4.  

1.4. Objectives   

Primary objectives: 

The primary objectives of this thesis are as follows: 

 To develop exact rank-based conventional and fiducial generalized 

methods of estimation and inference for location-scale, log-location-

scale and location-scale-shape families of distributions. 

 To compare by simulation and practical application the performance of 

the proposed rank-based conventional and fiducial generalized methods 

of estimation and inference for location-scale, log-location-scale and 

location-scale-shape families of distributions with that based on 

likelihood methods. 

Secondary objectives:  

The secondary objectives of this thesis are as follows: 

For the case of location-scale and log-location-scale families of distributions: 

one-sample problem 

 To compare by simulation the average lengths of confidence intervals for 

𝜎, 𝜇 and quantiles (𝜂) for the Normal, Logistic, Uniform, Pareto and 

Weibull distributions obtained using rank-based CPQs and FGPQs with 

those obtained using ML-based CPQs and FGPQs. 
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 To identify through simulation the most efficient rank-based CPQ or 

FGPQ for the scale parameter 𝜎 among the three rank-based CPQs or 

FGPQs for 𝜎 proposed. 

 To illustrate the use of exact rank-based conventional and fiducial 

generalized methods of estimation and inference with real life data 

examples. 

For the case of location-scale and log-location-scale families of distributions: 

two-sample problem 

 To compare through simulation the coverage and average lengths of 

rank-based FGCIs for the difference of location parameters and 

difference of quantiles of two independent samples of Normal, Logistic, 

Uniform, Pareto and Weibull distributions, with FGPQs for the difference 

of location parameters and difference of quantiles obtained using ML-

based method: for the cases when 𝜎1 = 𝜎2; and when 𝜎1 ≠ 𝜎2. 

 To illustrate the use of rank-based fiducial generalized methods of 

estimation and inference with a real life data example. 

For the case of location-scale-shape family of distributions 

 To develop fiducial generalized rank-based methods of estimation and 

inference for the model parameters and quantiles of Generalized 

Extreme Value, Generalized Pareto and three-parameter Weibull 

distributions, using iterative generalized least squares (and the Gibbs 

sampler) based respectively on the 

o Theta and 

o Theta star parametrizations 

 To evaluate through simulation the coverage and average length of FGCIs 

for the model parameters and quantiles of the Generalized Extreme 

Value, Generalized Pareto and three-parameter Weibull distributions. 
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o To determine through simulation the most efficient 

parametrization in terms of empirical coverage and average 

length of FGCIs for the model parameters and quantiles of the 

Generalized Extreme Value, Generalized Pareto and three-

parameter Weibull distributions.  

 To illustrate, with real life data examples, the use of rank-based Gibbs 

sampler algorithm. 

1.5. Research Design 

This is an empirical study. Thus, simulation studies are used to assess coverage 

probabilities and average lengths of conventional and fiducial generalized 

confidence intervals for the parameters, parameter contrasts and quantiles of 

the distribution in LS, LLS and LSS families of distributions. The proposed 

methods of inference for model parameters and quantile of distributions are 

applied to examples of real data. 
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Chapter 2 - Location-Scale and 
Log-Location-Scale 
Families of 
Distributions 

2.1. Introduction 

This chapter provides background on LS and LLS families of distributions. As was 

mentioned in Section 1.1, for LS and LLS families of distributions we are 

concerned with estimation and inference problems about the location and scale 

parameters of the distribution, and about other quantities which are functions 

of those parameters, such as quantiles and tail probabilities. In general, 

statistical methods based on order statistics have been investigated extensively 

in literature, using different approaches; see, for example, Ene and Karahasan 

(2016) and the references cited therein. For this thesis, the pioneering paper of 

Lloyd (1952) is of interest in the context of applying the method of least squares 

estimation to the order statistics of samples drawn from LS and LLS families.  

The general forms of LS and LLS families can be defined in terms of the 

cumulative distribution functions (cdfs) as is shown below in equations (2.2.1) 

and (2.3.1) respectively. Specifically, in Sections 2.2 and 2.3 we discuss some 

examples of distributions that belong to the LS and LLS families. For Sections 2.2 

and 2.3 below, the main references are Escobar et al. (2009), and Hong et al. 

(2010). 
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2.2. Location-Scale Family of Distributions 

The distributions that belong to the LS family have two parameters, namely the 

location and scale parameters. The general form of location-scale family of 

distributions is presented as follows:   

A scalar continuous random variable 𝑌∗ belongs to the LS family of distributions 

if its cumulative distribution function can be written in the form  

                                                   𝐹𝑌∗(𝑦∗; 𝜃) = Φ(
𝑦∗ − 𝜇

𝜎
)                               (2.2.1) 

where the support of the distribution may be on the whole real line. Moreover, 

the vector of parameters 𝜃 is given by  

𝜃 = (𝜇, 𝜎)′ 

where 𝜇  and 𝜎  are, respectively, the location and scale parameters. 

Furthermore, the function Φ(∙) is continuous for all values of 𝑦∗ in the support 

of the distribution, and Φ(∙) is a monotone non-decreasing function of its 

argument. Lastly, the values of Φ(∙) lie in the interval [0,1]. 

We define the standard random variate 𝑍∗ associated with 𝑌∗ as 

                                                          𝑍∗ =
𝑌∗ − 𝜇

𝜎
                                                       (2.2.2) 

The cdf of 𝑍∗ is given by 

                                                        𝐹𝑍∗(𝑧∗; 𝜃) = Φ(𝑧∗)                                            (2.2.3) 

where  

𝜃 = (0, 1)′ 

Thus, the distribution of 𝑍∗ does not depend on any unknown parameters.  
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In this thesis, unless indicated otherwise, a scalar random variable is denoted by 

an upper case letter with subscript ∗, as in 𝑌∗ and 𝑍∗; a scalar observation 

associated with a scalar random variable, say 𝑌∗, is denoted by a lower case 

letter with subscript ∗, as in 𝑦∗. 

Balakrishnan et al. (2008, Proof of Theorem 2.3, Section 2.3) showed that the 

generalized least squares estimators based on order statistics, discussed in this 

thesis, are equivariant (see Definition 1.4). That is, the estimators are invariant 

under any scalar linear transformation, as is defined below:  

Definition 1.4: Equivariant estimators (Balakrishnan et al., 2008, Section 

1): 

Let 1𝑛 = (1,… , 1)
′  be the 𝑛 −dimensional vector of ones and 𝑌 =

(𝑌1, … , 𝑌𝑛)
′ be a random sample of observations of size 𝑛. Then, for the 

location-scale model (2.2.1), an estimator of the location parameter 

𝜇̂(𝑌) is referred to as an equivariant estimator of 𝜇 if 𝜇̂(𝑑 ∙ 𝑌 + 𝑐 ∙ 1) =

𝑑 ∙ 𝜇̂(𝑌) + 𝑐 for 𝑑 > 0, 𝑐 ∈ ℝ. 

Similarly, for the location-scale model (2.2.1), an estimator of the scale 

parameter 𝜎̂(𝑌)  is referred to as an equivariant estimator of 𝜎  if 

𝜎̂(𝑑 ∙ 𝑌 + 𝑐 ∙ 1𝑛) = 𝑑 ∙ 𝜎̂(𝑌) for 𝑑 > 0, 𝑐 ∈ ℝ. 

As is shown in Sections 2.2.1 through 2.2.4, the Normal, Logistic, Uniform and 

Gumbel distributions belong to the location-scale family. 

Normal Distribution 

As a result of the central limit theorem, the Normal distribution is the most 

important and useful distribution in the fields of probability theory and 

statistics. In this thesis, we denote the Normal distribution as follows: 
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Let 𝑌∗  follow a Normal distribution with parameters 𝜇  and 𝜎2,  denoted by 

𝑌∗~𝑁(𝜇, 𝜎
2). The parameters 𝜇 and 𝜎2 are, respectively, the mean and variance 

of the distribution. Then the cdf of 𝑌∗ is given by 

                                                      𝐹𝑌∗(𝑦∗; 𝜃) = Φ(
𝑦∗ − 𝜇

𝜎
)                                  (2.2.4) 

where   

Φ(z) =
1

√2𝜋
 ∫ 𝑒𝑥𝑝 [−

𝑡2

2
 ]

𝑧

−∞

𝑑𝑡 

and its pdf is given by 

𝑓𝑌∗(𝑦∗; 𝜃) =
1

√2𝜋𝜎2
 𝑒𝑥𝑝 [−

1

2
 (
𝑦∗ − 𝜇

𝜎
)
2

] 

where 𝜇 and the support of the distribution are on the whole real line, whereas 

𝜎  is always positive. Thus 𝜇  and 𝜎  are respectively the location and scale 

parameters of the distribution. 

The standard variate 𝑍∗, given by 

𝑍∗ =
𝑌∗ − 𝜇

𝜎
 

follows the standard Normal 𝑁(0, 1) distribution, which does not depend on any 

unknown parameters. The standard random variate can also be written as 

                           𝑍∗ = Φ
−1 {Φ (

𝑌∗ − 𝜇

𝜎
)} = 𝐹−1(𝑈) = Φ−1(𝑈)                 (2.2.5) 

where  

𝐹−1(𝑈) = Φ−1(𝑈) 

is the inverse of the cdf Φ(𝑌∗) of the standard Normal 𝑁(0, 1) distribution. 

Furthermore, 𝑈 is the standard Uniform variate. 
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Logistic Distribution 

The shape of the Logistic distribution is similar to that of the Normal 

distribution. However, the Logistic distribution has relatively heavier tails 

(Lawless, 2003, p. 24). Let  𝑌∗ follow a Logistic distribution.  Then its cdf and pdf 

are respectively given by 

                                              𝐹𝑌∗(𝑦∗; 𝜃) =
1

1 + 𝑒𝑥𝑝 {−(
𝑦∗ − 𝜇
𝜎 )}

              (2.2.6) 

and 

𝑓𝑌∗(𝑦∗; 𝜃) =
𝜎−1𝑒𝑥𝑝 (−

𝑦∗ − 𝜇
𝜎 )

{1 + 𝑒𝑥𝑝 (−
𝑦∗ − 𝜇
𝜎 )}

2  

where the support of the distribution is on the whole real line. Thus 𝜇 and 𝜎 are 

respectively the location and scale parameters of the distribution.  

The standard random variate is given by 

𝑍∗ =
𝑌∗ − 𝜇

𝜎
 

which can also be expressed as 

             𝑍∗ = − log {(𝐹𝑌∗(𝑌∗; 𝜃))
−1

− 1} = 𝐹−1(𝑈) = − log(𝑈−1 − 1)    (2.2.7) 

where  

𝐹−1(𝑈) = − log(𝑈−1 − 1) = log (
𝑈

1 − 𝑈
) 

is the inverse of the cdf 𝐹𝑍∗(𝑧∗; 0, 1)  of the standard Logistic 𝐿𝑜𝑔𝑖𝑠𝑡(0, 1) 

distribution. 
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Uniform Distribution 

The standard Uniform distribution can be used in simulations of data to 

generate pseudo random values of other standard distributions where the 

inverse of the cdf of such standard distributions can be expressed in closed 

form. See for example, equations (2.2.5) and (2.2.7) above. Let a scalar 

continuous random variable 𝑌∗ follow a Uniform distribution with parameters 𝑎 

and 𝑏, denoted by 𝑌∗~𝑈𝑛𝑖𝑓(𝑎, 𝑏). Then the cdf and pdf of 𝑌∗ are given by 

                                             𝐹𝑌∗(𝑦∗; 𝜃) =
𝑦∗ − 𝑎

𝑏 − 𝑎
                                (2.2.8) 

and 

𝑓𝑌∗(𝑦∗; 𝜃) =
1

𝑏 − 𝑎
 

respectively, where the support of the distribution lies in the interval [𝑎, 𝑏].   

If 𝑌∗~𝑈𝑛𝑖𝑓(𝑎, 𝑏) then  

(𝑌∗ − 𝑎)~𝑈𝑛𝑖𝑓(0, 𝑏 − 𝑎) 

and  

𝑌∗ − 𝑎

𝑏 − 𝑎
~𝑈𝑛𝑖𝑓(0, 1) 

Thus the standard random variate is given by  

                                             𝑍∗ =
𝑌∗ − 𝑎

𝑏 − 𝑎
=
𝑌∗ − 𝜇

𝜎
                                             (2.2.9) 

where 𝜇 = 𝑎  and 𝜎 = 𝑏 − 𝑎  are the location and scale parameters of the 

distribution, and the distribution of 𝑍∗  does not depend on any unknown 

parameters. Hence 𝑌∗~𝑈𝑛𝑖𝑓(𝑎, 𝑏)  is a member of location-scale family. 

Equation (2.2.9) can formally be expressed as 

                                            𝑍∗ = 𝐹
−1(𝑈) = 𝑈                                                  (2.2.10) 
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where 𝐹−1(𝑈) = 𝑈  is the inverse of the cdf 𝐹𝑍∗(𝑧∗; 0, 1)  of the standard 

Uniform 𝑈𝑛𝑖𝑓(0, 1) distribution.  

The standard Uniform distribution has the property which states that if 𝑈 has a 

Uniform distribution in the interval [0, 1],  then 1 − 𝑈  also has a Uniform 

distribution in the same interval. 

Gumbel Distribution 

The practical application of Gumbel distribution arises in extreme value theory 

where it is used to model extremes. For specific examples of applications, refer 

to the text of Rinne (2009, p. 109). In extreme value theory, the Gumbel 

distribution is known as the Extreme Value ‘Type-I-minimum’ distribution or the 

Extreme Value ‘Type-I-maximum’ distribution, referring to modelling the 

smallest or the largest values respectively. The Extreme Value ‘Type-I-maximum’ 

distribution can be obtained from Extreme Value ‘Type-I-minimum’ distribution 

by taking the negative values of Extreme Value ‘Type-I-minimum’ distribution. 

The Gumbel distribution is closely related to the Weibull distribution in the 

sense that in literature, it is known as the Log-Weibull distribution (Lawless, 

2003, p. 20). Extreme Value ‘Type-I-minimum’ and Extreme Value ‘Type-I-

maximum’ distributions are denoted as follow: 

Let a scalar continuous random variable 𝑌∗  follow a Gumbel (minimum) 

distribution with parameters 𝜇 and 𝜎, denoted by  𝑌∗~𝐺𝑢𝑚(𝜇, 𝜎) with cdf 

                                               𝐹𝑌∗(𝑦∗; 𝜃) = 𝑒𝑥𝑝 [−𝑒𝑥𝑝 {(
𝑦∗ − 𝜇

𝜎
)}]              (2.2.11) 

and pdf 

𝑓𝑌∗(𝑦∗; 𝜃) =
1

𝜎
𝑒𝑥𝑝 [(

𝑦∗ − 𝜇

𝜎
) − 𝑒𝑥𝑝 {(

𝑦∗ − 𝜇

𝜎
)}] 
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where 𝜇 and the support of the distribution are on whole real line, and 𝜎 is 

always positive. Thus 𝜇 and 𝜎 are respectively the location and scale parameters 

of the distribution. 

Then the standard random variate  

𝑍∗ =
𝑌∗ − 𝜇

𝜎
 

has a standard 𝐺𝑢𝑚(0, 1) distribution, which is parameter free.  

Alternatively, the standard random variate 𝑍∗ can be written as 

           𝑍∗ = 𝐹
−1[𝐹𝑌∗(𝑌∗; 𝜃)] = log[− log{𝐹𝑌∗(𝑌∗; 𝜃)}] = log[− log(𝑈)]  (2.2.12) 

where 𝐹−1(𝑈) = log[− log(𝑈)] is the inverse of the cdf 𝐹𝑍∗(𝑧∗; 0, 1) of the 

standard Gumbel (minimum), namely 𝐺𝑢𝑚(0, 1) distribution. 

Since the random variable − log(𝑈)  has a standard 𝐸𝑥𝑝(1)  Exponential 

distribution, the standard Gumbel random variate 𝑍∗ = log[− log(𝑈)] follows 

the distribution of the logarithm of a standard Exponential variate.  

Similarly to the cdf (2.2.11) and pdf of the Gumbel (minimum) distribution, the 

cdf and pdf of the Gumbel (maximum) distribution are, respectively given by 

                                𝐹𝑌∗(𝑦∗; 𝜃) = 𝑒𝑥𝑝 [−𝑒𝑥𝑝 {−(
𝑦∗ − 𝜇

𝜎
)}]                          (2.2.13) 

and 

𝑓𝑌∗(𝑦∗; 𝜃) =
1

𝜎
𝑒𝑥𝑝 [−(

𝑦∗ − 𝜇

𝜎
) − 𝑒𝑥𝑝 {−(

𝑦∗ − 𝜇

𝜎
)}] 

In this case, the standard random variate 𝑍∗ follows the distribution of the 

negative of the logarithm of a standard Exponential variate, namely the negative 

of the logarithm of an 𝐸𝑥𝑝(1) variate. Hence, 𝑍∗ can be expressed in terms of a 

standard Uniform random variate 𝑈 as 
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                                                     𝑍∗ = 𝐹
−1(𝑈) = −log[− log(𝑈)]                 (2.2.14) 

2.3. Log-Location-Scale Family of Distributions 

In contrast to a location–scale family, a positive scalar random variable 𝑊∗ 

belongs to the log-location-scale family of distributions if 𝑌∗ = log(𝑊∗) belongs 

to the location-scale family of distributions (Hong, Escobar and Meeker, 2010). 

Thus, if 𝑊∗ belongs to the log-location-scale family of distributions, the cdf of 

𝑊∗ = 𝑒𝑥𝑝(𝑌∗) can be written as 

                                            𝐹𝑊∗(𝑤∗; 𝜃
∗) = Φ [

log(𝑤∗) − 𝜇
∗

𝜎∗
]                            (2.3.1) 

where 𝑤∗ > 0.  

It can be noted here that equation (2.3.1) derives from a 𝑌∗ distributed as in 

equation (2.2.4). Examples of distributions that belong to the log-location-scale 

family are the Log-Normal, Log-Logistic, two-parameter Weibull (or simply 

Weibull) and Pareto distributions. 

Log-Normal Distribution 

The practical application of Log-Normal distribution arises in diverse fields, for 

example in engineering and medical sciences (Lawless, 2003, p. 21).  

The Log-Normal distribution can be defined as follows:  

The positive scalar continuous random variable 𝑊∗  follows a Log-Normal 

distribution with parameters 𝜇 and 𝜎2,  denoted by 𝑊∗~ log𝑁(𝜇, 𝜎
2),  if 𝑌∗ =

log(𝑊∗) follows a Normal distribution with mean 𝜇 and variance 𝜎2. The cdf of 

𝑌∗ is given in equation (2.2.4) above. Therefore, similarly to (2.2.4), the cdf and 

pdf of 𝑊∗ are, respectively, given by 
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                                              𝐹𝑊∗(𝑤∗; 𝜃) = Φ [
log(𝑤∗) − 𝜇

𝜎
]                              (2.3.2) 

and 

𝑓𝑤∗(𝑤∗; 𝜃) =
1

√2𝜋𝜎2𝑤∗2
𝑒𝑥𝑝 {−

1

2
[
log( 𝑤∗) − 𝜇

𝜎
]

2

} 

where 𝑤∗ and 𝜎 are always positive and 𝜇 is on the whole real line. Thus 𝜇 and 𝜎 

are respectively the location and scale parameters of the distribution. 

The standard random variate 𝑍∗, whose distribution does not depend on 𝜇 and 

𝜎2, is given by 

𝑍∗ =
log(𝑊∗) − 𝜇

𝜎
 

The standard variate can also be written as 

                           𝑍∗ = Φ
−1 {Φ [

log(𝑊∗) − 𝜇

𝜎
]} = 𝐹−1(𝑈) = Φ−1(𝑈)           (2.3.3) 

where 𝐹−1(𝑈) = Φ−1(𝑈)  is the inverse of the cdf of the standard 

Normal  𝑁(0, 1)   distribution. Thus 𝑍∗  follows a standard Normal  𝑁(0, 1)  

distribution. 

Log-Logistic Distribution 

Examples of practical applications of Log-Logistic distribution are the modelling 

of lifetime data and logistic regression modelling. The Log-Logistic distribution 

can be defined as follows: A positive scalar continuous random variate 𝑊∗ 

follows a Log-Logistic distribution with parameters 𝜇∗  and 𝜎∗ , denoted by 

𝑊∗~𝐿𝐿𝑜𝑔𝑖𝑠𝑡(𝜇
∗, 𝜎∗), if 𝑌∗ = log(𝑊∗) follows a Logistic distribution. Thus the cdf 

and pdf of 𝑊∗ are, respectively, given by  

                                𝐹𝑊∗(𝑤∗; 𝜃
∗) = 1 − [1 + (

𝑤∗
𝜇∗
)
𝜎∗

]

−1

=
(𝑤∗ 𝜇

∗⁄ )𝜎
∗

1 + [(𝑤∗ 𝜇
∗⁄ )𝜎∗]

            (2.3.4) 
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and 

𝑓𝑊∗(𝑤∗; 𝜃
∗) =

(𝜎∗ 𝜇∗⁄ )(𝑤∗ 𝜇
∗⁄ )𝜎

∗−1

[1 + (𝑤∗ 𝜇∗⁄ )𝜎∗]2
 

where the support of the distribution, and the parameters 𝜇∗,  and 𝜎∗ are all 

positive. Then the standard random variate is given by 

𝑍∗ = log [(
𝑊∗
𝜇∗
)
𝜎∗

] =
log(𝑊∗) − log(𝜇

∗)

1 𝜎∗⁄
=
log(𝑊∗) − 𝜇

𝜎
 

where 𝜇 = log(𝜇∗)  and 𝜎 = 1 𝜎∗⁄  which are respectively the location and scale 

parameters of the distribution. The standard random variate 𝑍∗  follows a 

standard 𝐿𝑜𝑔𝑖𝑠𝑡(0, 1)  distribution, or equivalently, the distribution of the 

logarithm of a standard 𝐿𝐿𝑜𝑔𝑖𝑠𝑡(1, 1) variate. 

Alternatively, 𝑍∗ can be expressed in terms of a standard Uniform random 

variate 𝑈 as follows: 

Since 𝐹𝑊∗(𝑊∗; 𝜃
∗) = 𝑈 then 

1 − [1 + (
𝑊∗
𝜇∗
)
𝜎∗

]

−1

= 𝑈 

[1 + (
𝑊∗
𝜇∗
)
𝜎∗

]

−1

= 1 − 𝑈 

1 + (
𝑊∗
𝜇∗
)
𝜎∗

=
1

1 − 𝑈
 

(
𝑊∗
𝜇∗
)
𝜎∗

=
𝑈

1 − 𝑈
 

Thus 

                           𝑍∗ = log [(
𝑊∗
𝜇∗
)
𝜎∗

] = log (
𝑈

1 − 𝑈
) = − log (

1 − 𝑈

𝑈
)            (2.3.5) 
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where 𝐹−1(𝑈) = 𝑈/(1 − 𝑈)  is the inverse of the cdf of the standard 

𝐿𝑜𝑔𝑖𝑠𝑡(0, 1) distribution. 

Weibull Distribution 

The Weibull distribution has been applied in diverse fields of application, for 

example demography, survival analysis, reliability theory, extreme value theory, 

and industrial engineering. For references detailing discussions of various 

applications, see for example, the texts of Lawless (2003, p. 18) and Rinne (2009, 

p. 275). In extreme value theory, the Weibull distribution is known as ‘Extreme 

Value Type III’ distribution.  

Different types of Weibull distribution exist in literature. However, the 

traditional types are the three-parameter, two-parameter and one-parameter 

Weibull distributions. Thus, the Weibull distribution can be related to other 

distributions as special cases, for example, the Exponential, Gamma and 

Generalized Extreme Value distributions.   

For the detailed discussion about the four-parameter and five-parameter 

Weibull distributions, see for example, Rinne (2009, pp. 158-166). 

In this thesis, unless specified otherwise, the Weibull distribution will refer to 

the scale-shape version of the two-parameter Weibull distribution. It is by far 

the most often used in practice (Rinne, 2009, p. 35). We define the Weibull 

distribution as follows (Lawless, 2003, p. 18): 

Let a continuous and positive scalar random variable 𝑊∗  follow a Weibull 

distribution with parameters 𝜇∗  and 𝜎∗,  denoted by 𝑊∗~𝑊𝑒𝑖𝑏(𝜇
∗, 𝜎∗).  Then, 

the cdf and pdf of 𝑊∗ are given by 

                              𝐹𝑊∗(𝑤∗; 𝜃
∗) = 1 − 𝑒𝑥𝑝 [− (

𝑤∗
𝜇∗
)
𝜎∗

]                                       (2.3.6) 

and 
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𝑓𝑊∗(𝑤∗; 𝜃
∗) =

𝜎∗

𝜇∗
(
𝑤∗
𝜇∗
)
𝜎∗−1

𝑒𝑥𝑝 [−(
𝑤∗
𝜇∗
)
𝜎∗

] 

                        =
𝜎∗

(𝜇∗)𝜎
∗ 𝑤∗

𝜎∗−1𝑒𝑥𝑝 [−(
𝑤∗
𝜇∗
)
𝜎∗

] 

where the support of the distribution,  the parameters 𝜇∗, and 𝜎∗ are all always 

positive. 

The standard random variate is given by 

𝑍∗ = log [(
𝑊∗
𝜇∗
)
𝜎∗

] =
log(𝑊∗) − log(𝜇

∗)

1 𝜎∗⁄
=
log(𝑊∗) − 𝜇

𝜎
 

where 𝜇 = log(𝜇∗)  and 𝜎 = 1 𝜎∗⁄  are respectively the location and scale 

parameters of the distribution.  

Alternatively, 𝑍∗ can be expressed in terms of a standard Uniform random 

variate 𝑈 as follows: 

Since 𝐹𝑊∗(𝑊∗; 𝜃
∗) = 𝑈 then 

1 − 𝑒𝑥𝑝 [−(
𝑊∗
𝜇∗
)
𝜎∗

] = 𝑈 

𝑒𝑥𝑝 [− (
𝑊∗
𝜇∗
)
𝜎∗

] = 1 − 𝑈 

(
𝑊∗
𝜇∗
)
𝜎∗

= − log(1 − 𝑈) 

Thus 

                 𝑍∗ = log (
𝑊∗
𝜇∗
)
𝜎∗

= log[− log(1 − 𝑈)]                                               (2.3.7) 

where 𝐹−1(𝑈) = − log(1 − 𝑈)  is the inverse of the cdf of the 

standard 𝑊𝑒𝑖𝑏(1, 1) distribution. Thus, the standard random variate 𝑍∗ follows 
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the distribution of the logarithm of a standard 𝑊𝑒𝑖𝑏(1, 1) variate (which is the 

distribution of the logarithm of a standard Exponential, namely 𝐸𝑥𝑝(1) variate 

since the standard 𝑊𝑒𝑖𝑏(1, 1) variate has a standard 𝐸𝑥𝑝(1) distribution). 

Pareto Distribution 

The Pareto distribution is widely used in various fields of application to model 

phenomena with skewed distributions. In Economics and Finance, for example, 

it is used to model the distributions of income and wealth (Reiss and Thomas, 

2007). The Pareto distribution is related to other distributions, such as the 

Generalized Pareto, Exponential and Log-Normal distributions. For example, the 

Pareto distribution is a special case of the Generalized Pareto distribution where 

the location parameter is equal to zero. We define the Pareto distribution as 

follows (Villaseňor-Alva and González-Estrada, 2009): 

Let a continuous and positive scalar random variable 𝑊∗  follow a Pareto 

distribution with parameters 𝜇∗ and 𝜎∗, denoted by 𝑊∗~𝑃𝑎𝑟𝑒𝑡𝑜(𝜇
∗, 𝜎∗). Then 

the cdf and pdf of 𝑊∗ are, respectively, given by 

                      𝐹𝑊∗(𝑤∗; 𝜃
∗) = 1 − (

𝜇∗

𝑤∗
)
𝜎∗

                                                              (2.3.8) 

and 

𝑓𝑊∗(𝑤; 𝜃
∗) =

𝜎∗(𝜇∗)𝜎
∗

(𝑤∗)𝜎
∗+1

= 𝜎∗(𝜇∗)𝜎
∗
(𝑤∗)

−𝜎∗−1 

where the support of the distribution lies in the interval [𝜇∗, ∞) and the 

parameters 𝜇∗ and 𝜎∗ are always positive. 

The standard random variate is given by 

𝑍∗ = log [(
𝑊∗
𝜇∗
)
𝜎∗

] =
log(𝑊∗) − log(𝜇

∗)

1 𝜎∗⁄
=
log(𝑊∗) − 𝜇

𝜎
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where 𝜇 = log(𝜇∗)  and 𝜎 = 1 𝜎∗⁄ are respectively the location and scale 

parameters of the distribution.  

Alternatively, 𝑍∗ can be expressed in terms of a standard Uniform random 

variate 𝑈 as follows: 

Since 𝐹𝑊∗(𝑊∗; 𝜃
∗) = 𝑈 then 

1 − (
𝜇∗

𝑊∗
)
𝜎∗

= 𝑈 

(
𝜇∗

𝑊∗
)
𝜎∗

= 1 − 𝑈 

log (
𝜇∗

𝑊∗
)
𝜎∗

= log(1 − 𝑈) 

Thus 

                       𝑍∗ = log (
𝑊∗

𝜇∗
)
𝜎∗

= −log(1 − 𝑈)                                                 (2.3.9) 

where 𝐹−1(𝑈) = (1 − 𝑈)−1  is the inverse of the cdf of the standard 

𝑃𝑎𝑟𝑒𝑡𝑜(1, 1) distribution. Thus, the standard random variate 𝑍∗  follows the 

distribution of the logarithm of a standard 𝑃𝑎𝑟𝑒𝑡𝑜(1, 1) variate (which is the 

standard Exponential distribution, namely 𝐸𝑥𝑝(1)). 
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Chapter 3 - Estimation for 
Location-Scale and 
Log-Location-Scale 
Distributions 

In this chapter, Section 3.1 presents a literature review on the existing methods 

of parameter estimation for LS and LLS families of distributions. The derivation 

of the GLS estimators for the location and scale parameters based on order 

statistics in LS and LLS families of distributions is presented in Section 3.2. Exact 

and approximate expressions for the mean and covariance matrix of the order 

statistics of standardized random variates are presented in Sections 3.3 and 3.5 

respectively. Lastly, the ML estimators for the location and scale parameters in 

the LS and LLS families of distributions are presented in Section 3.6. 

3.1. Literature Review 

A great deal of research has been done on the various methods of estimation of 

the location and scale parameters in LS and LLS families of distributions. A 

number of methods for estimation of the location and scale parameters in the 

LS and LLS families of distributions and applicable references are listed below: 

General least squares: Lloyd (1952), Gupta (1952), Gupta et al. (1967), 

Blom (1958, 1962), Downton (1953), Winer (1963), Hall (1975), Chan et 

al. (1971), Gupta and Gnanadesikan (1966), Chan and Cheng (1988), 

Balakrishnan and Cohen (1991, Sections 4.4 through 4.9), Sajeevkumar 

and Thomas (2005), Balakrishnan and Papadatos (2002), and 

Sajeevkumar and Thomas (2010).  
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Asymptotically best linear unbiased: Blom (1958), D’Agostino and Lee 

(1976).  

Best linear equivariant: Balakrishnan et al. (2008).  

Best linear invariant: Mann and Fertig (1973) and Mann (1971, 1967).  

Probability weights: Ene and Karahasan (2016).  

Method of moments: Schafer and Sheffield (1973).  

Method of estimation based on the linear and polynomial coefficients: 

Downton (1966).  

Simple method: Bain and Antle (1967), Gumbel (1958), and Menon 

(1963). 

Optimal asymptotic methods: Balakrishnan and Cohen (1991, Sections 

7.2 through 7.4), Bennett (1952), Jung (1955, 1962), Ogawa (1951, 1962), 

Dixon (1957, 1960), and Raghunandanan and Srinivasan (1970, 1971).   

Exact Maximum likelihood: Balakrishnan and Cohen (1991, Sections 5.2 

through 5.8), Malik (1970), Harter and Moore (1965, 1967), Gajjar and 

Khatri (1969), Murthy and Swartz (1975), Billmann et al. (1972), Wilson 

and Worcester (1943), Berkson (1957), Plackett (1958), and Harter and 

Moore (1967). 

Approximate maximum likelihood: The text of Balakrishnan and Cohen 

(1991, Sections 6.1 through 6.7) and all the references cited in Sections 

6.1 through 6.7 in the text.  

The general least squares method for estimating the location and scale 

parameters in LS families of distributions was first introduced by Llyod (1952). 

Llyod’s (1952) method of estimation is based on the least squares theorem of 
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Gauss and Markoff that is discussed in the paper of Aitken (1935). Llyod (1952) 

used the general least squares theory to derive the best (minimum variance) 

linear unbiased estimators for the location and scale parameters based on a 

complete sample of order statistics of a sample from a LS distribution. In 

addition, Llyod (1952) also derived closed form expressions for the variances 

and covariance of the least squares estimators for the location and scale 

parameters. Llyod (1952, Section 7) showed that the variance of least squares 

estimator for the location parameter based on order statistics is always less than 

or equal to the variance of the sample mean; and he investigated and provided 

the required conditions under which such variance is strictly less than the 

variance of the sample mean in the case of symmetric LS families of 

distributions. Similarly, Downton (1953) obtained the required conditions under 

which the variance of the estimator for the location parameter for non-

symmetrical LS distributions is strictly less than the variance of the sample 

mean.  

In the practical sense, Llyod’s (1952) method requires the evaluation of the 

expected values, variances, and inverse of covariance matrix of order statistics 

of a complete sample from the standard LS distributions. The expected values 

and the inverse of the covariance matrix of the order statistics of standard LS 

variates, essentially, provide the weights for the order statistics of a complete 

sample of observations from the LS families of distributions, and estimates of 

the location and scale parameters are then obtained as linear functions of the 

order statistics.  

Even though Llyod’s (1952) method of least squares estimation introduced more 

than six decades ago could be applied generally to LS families of distributions, 

the difficulty of its general applicability was argued by other researchers. For 

example, Gupta (1952) argued that the covariance matrix of order statistics of 

standard LS variates may be difficult to evaluate (Balakrishnan and Cohen, 1991, 
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p. 94). Furthermore, even if the covariance matrix of standardized LS variates 

were available, its inverse may be difficult to obtain especially when dealing 

with large sample sizes. To overcome this difficulty, Gupta (1952) suggested that 

the covariance matrix of the standardized LS variates be replaced by an identity 

matrix of the same dimension such that the inverse of such an identity matrix 

becomes also an identity matrix. Gupta (1952) referred to the process of 

replacing the covariance matrix by an identity matrix as the simplified linear 

unbiased estimation of the location and scale parameters in LS families of 

distributions. Balakrishnan and Cohen (1991, pp. 98-99) demonstrated that 

Gupta’s (1952) method of simplified linear unbiased estimation is relatively 

competitive with the method of the best linear unbiased estimation, specifically 

in the case of Type-II censored samples drawn from the Normal distribution.  

In contrast to Gupta’s (1952) method of the simplified linear unbiased 

estimation of the location and scale parameters, Blom (1958, 1962) proposed a 

different simplification approach to Llyod’s (1952) method of least squares 

estimation of the location and scale parameters. Blom’s (1958, 1962) method of 

simplified linear estimation, which can be applied generally to the LS families of 

distributions, is based on an asymptotic approximation of the covariance matrix 

of order statistics of the standardized variates. Similarly to Gupta’s (1952) 

method of simplified linear estimation, Blom’s (1958, 1962) method also uses 

the exact expected values of order statistics of the standardized variates. 

However, if the exact expected values of order statistics of the standardized 

variates are not available, an asymptotic approximation for the expected values 

may be used (Balakrishnan and Cohen, 1991, p. 100). The estimators for the 

location and scale parameters in LS families of distributions obtained using 

Gupta’s (1952) and Blom’s (1958, 1962) simplified linear methods are, 

respectively, referred to as, “unbiased nearly best linear estimators” and “nearly 

unbiased, nearly linear estimators” in the literature (Balakrishnan and Cohen, 

1991, p. 100). Estimation of the location and scale parameters using the method 
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of asymptotic approximation has an advantage over the method of best linear 

unbiased estimation. Asymptotic approximation-based estimation of the 

parameters does not require, as shown by Balakrishnan and Cohen (1991, p. 

104), the inverse of the covariance matrix of order statistics of the standardized 

variates. However, the asymptotic estimators of location and scale parameters 

may not be good, in particular in the case of dealing with small and censored 

sample sizes (Balakrishnan and Cohen, 1991, p. 104).  

Other related methods of estimation for the location and scale parameters in LS 

families of distributions are the various approaches applied to optimal linear 

estimation based on selected order statistics described by Balakrishnan and 

Cohen (1991, pp. 215-255). These approaches include the optimal asymptotic 

estimators of the location and scale parameters of LS distributions based on the 

weighted sums of probability functions and a sample of order statistics 

(Balakrishnan and Cohen, 1991, pp. 226-227) and derived by Bennett (1952). 

Jung (1955, 1962) derived the optimal asymptotic estimators for the location 

and scale parameters using a linear estimator that is expressed in terms of a 

continuous differentiable probability function bounded in the interval (0, 1); 

refer to Balakrishnan and Cohen (1991, pp. 229-233) for more details about 

Jung’s (1955, 1962) approach. Ogawa (1951, 1962) extended the work based on 

the Gauss-Markov Theorem by deriving the optimally and asymptotically best 

linear estimators for the location and scale parameters of LS distributions based 

on selected order statistics that minimise the variances of these estimators 

(Balakrishnan and Cohen, 1991, p. 235). Dixon (1957, 1960) derived simplified 

linear estimators for the location (one estimator) and scale (two estimators) 

parameters of the Normal distribution. Firstly, the simplified linear estimator for 

the location parameter is based on quasi-midrange of order statistics of a 

sample of the Normal distribution (Balakrishnan and Cohen, 1991, p. 249). 

Secondly, the first simplified linear estimator of the scale parameter is based on 

the quasi-range of order statistics of a sample of the Normal distribution 
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(Balakrishnan and Cohen, 1991, p. 251). Thirdly, the second simplified linear 

estimator (with smallest variance) of the scale parameter is based on the sample 

range of the Normal distribution (Balakrishnan and Cohen, 1991, p. 252). 

Similarly to Dixon’s (1957, 1960) simplified linear estimators for the location and 

scale parameters of the Normal distributions, Raghunandanan and Srinivasan 

(1970, 1971) derived simplified linear estimators of the location and scale 

parameters for the Logistic and two-parameter Exponential distributions based 

on symmetrically Type-II censored samples (Balakrishnan and Cohen, 1991, p. 

255). 

Following the advancement of the general theory of least squares method of 

estimation for the location and scale parameters in LS families of distributions 

during 1950’s and 1960’s, various studies have since focused on its practical 

applications. For example, Gupta et al. (1967, Section 5) obtained the best linear 

unbiased estimates for the location and scale parameters of the Logistic 

distribution based on real data of a double censored sample in the tails. The 

best linear unbiased estimates obtained by Gupta et al. (1967) are efficient and 

competitive with the results based on the Normal distribution obtained by 

Sarhan and Greenberg (1962). Other researchers who also made a significant 

contribution to the application of least squares method of estimation are, for 

example, Gupta (1952), Winer (1963), Hall (1975), Balakrishnan and Cohen 

(1991, pp. 83-118), Chan et al. (1971), Gupta and Gnanadesikan (1966), and 

Chan and Cheng (1988). For example, Gupta (1952, pp. 270-271) obtained best 

linear estimates for the location and scale parameters of the Normal distribution 

based a Type-II censored sample (three censored observations) of size 10; 

whereas Winer (1963, p. 464) obtained estimates for the location and scale 

parameters of two-parameter Exponential distribution based on a singly (one 

censored observation) Type-II censored sample of size 5.   
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A further development of best linear unbiased estimation of the location and 

scale parameters based on order statistics in LS families of distributions was 

formulated in 2000’s. Balakrishnan and Papadatos (2002) and Sajeevkumar and 

Thomas (2005, 2010) derived the best linear unbiased estimators of common 

location and common scale parameters of different LS distributions based on 

order statistics. Estimation of the common location and common scale 

parameters in their papers are based on spacings of the pooled sample obtained 

by combining all observations of individual samples from several LS distributions 

into a single sample.    

The general theory of asymptotic estimation of the location and scale 

parameters of LS families of distributions was discussed by Blom (1958). Other 

researchers have since applied the concept of asymptotic estimation to specific 

LS distributions. For example, Gupta and Gnanadesikan (1966), Chan et al. 

(1971), Jung (1955), and D’Agostino and Lee (1976) have asymptotically 

approximated the best linear unbiased estimates for the location and scale 

parameters of the Logistic distribution, either based on the complete or 

otherwise censored samples. 

Other methods of estimation of the location and scale parameters in LS families 

of distribution, related to Llyod’s (1952) method, are best linear equivariant, 

best linear invariant, and method of estimation based on linear and polynomial 

coefficients. Balakrishnan et al. (2008) derived the best linear equivariant 

estimators (estimators that minimise the standardized mean squared error) of 

the location and scale parameters using two different approaches. Firstly, the 

best linear equivariant estimators are based on an original sample of order 

statistics from a LS distribution, and secondly on the joint sample of original 

values and predicted future observations. The highlight of Balakrishnan et al.’s 

(2008) results is, perhaps, that the best linear equivariant estimators based on 

the joint sample were the same as the estimators obtained using the original 
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sample; and this finding turned out to be the same as the finding based on the 

best linear unbiased estimators established by Doganaksoy and Balakrishnan 

(1997) (Balakrishnan et al., 2008, p. 231). The best linear invariant estimators for 

the location and scale parameters are estimators that minimise the mean 

squared error invariant under linear transformations of the location and scale 

parameters (Mann and Fertig, 1973, p. 88). These estimators are linear functions 

of best linear unbiased estimators and based on sums of the weights of order 

statistics. Mann (1967) tabulated the weights for obtaining best linear invariant 

estimates for the location and scale parameters of Gumbel or Extreme Value 

distribution based on Type-II censored samples of sizes 2 through 15. Mann and 

Fertig (1973) used the weights obtained by Mann (1967) to calculate the 

confidence bounds and tolerance bounds of the Weibull distribution. Similarly to 

Mann’s (1967) tables of weights, Mann (1971) tabulated the weights for 

obtaining best linear invariant estimates for the location and scale parameters 

of the Gumbel distribution based on progressive censored samples of sizes 2 

through 6. However, the principal disadvantage of using best linear equivariant 

and best linear invariant methods of estimation is that estimators obtained 

based on these methods have larger variances relative to the variances of best 

linear unbiased estimators obtained by Llyod (1952). 

The methods of estimation of the location and scale parameters discussed so far 

in this section are based on linear functions of the parameters and order 

statistics of the sample. However, nonlinear methods of estimation of the 

location and scale parameters in the LS families of distributions are also 

available in literature. For example, Ene and Karahasan (2014) proposed the 

unbiased and nonlinear estimators of the location (one estimator) and scale 

(two estimators) parameters for symmetric LS distributions based on complete 

and symmetric double Type-II censored samples. An estimator for the location 

parameter and the first estimator for the scale parameter are expressed in 

terms of the ratios of the weighted sums of the probability weights and order 
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statistics of the sample (Ene and Karahasan, 2014, p. 8); whereas the second 

estimator of the scale parameter is based on ratios of the weighted sums of the 

probability weights and order statistics sample quasi ranges (Ene and Karahasan, 

2014, p. 9). Ene and Karahasan (2014) evaluated the performance of the three 

proposed estimators against that of the best linear unbiased estimators for the 

Normal, Logistic and Laplace distributions through simulations and real data 

examples. Overall, the results obtained through simulation and real data 

example show that the proposed estimators are competitive with those 

obtained using the best linear unbiased methods of estimation. 

Furthermore, other choices of methods of estimation for the location and scale 

parameters in LS families of distribution that have also been investigated are 

methods of moments, simple method, linear and polynomial coefficients-based 

method and ML-based methods.  A good reference for the estimation of the 

location and scale parameters using the method of moments is, for example, 

Schafer and Sheffield (1973). Bain and Antle (1967) derived the simple 

estimators for the location and scale parameters of the Gumbel distribution. 

Downton (1966) obtained the estimators for the location and scale parameters 

of the Normal and Gumbel distributions based on linear and polynomial weights 

of order statistics of the sample. Although the estimators by Downton (1966) are 

efficient for the Normal and Gumbel distributions, they cannot be applied to 

other LS distributions. Another difficulty with Downton’s (1966) method of 

estimation is that the omega matrix is ill-conditioned such that it may be difficult 

to achieve sufficient accuracy in the final results (Balakrishnan and Cohen, 1991, 

p. 119).    

Various studies have investigated the methods of ML estimation for the location 

and scale parameters in LS and LLS families of distributions, despite the fact that 

in some situations, for example censored samples, such estimators may not be 

optimal due to convergence problems resulting from computational difficulties. 



40 

However, in general, the ML estimators can be modified to either minimise 

considerably or completely eliminate the convergence problems, in order to 

make them at least nearly optimal (Balakrishnan and Cohen, 1991, p. 121). The 

general definition of the ML estimation of the location and scale parameters in 

LS and LLS families of distributions, based on a complete sample, is presented 

later in Section 3.6.1. Furthermore, the ML estimation for the location and scale 

parameters of the examples of distributions belonging to the LS and LLS families 

based on complete samples are discussed, in detail, in Sections 3.6.2 through 

3.6.7. However, we give a brief summary of some of the references in which the 

methods of estimation using ML for the location and scale parameters are 

discussed. The exact and approximate methods of ML estimation of the location 

and scale parameters based on complete and censored samples are well 

documented in the text of Balakrishnan and Cohen (1991, Chapters 5 and 6). For 

example, the explicit ML estimators for the location and scale parameters of the 

two-parameter Exponential and Rayleigh distributions based on complete 

samples were derived by Balakrishnan and Cohen (1991, p. 141). In addition, 

Balakrishnan and Cohen (1991, p. 148) derived the explicit ML estimators for the 

location and scale parameters of the left truncated Normal distribution. Due to 

symmetry property of the Normal distribution about its population mean, the 

ML estimators for the location and scale parameters of the left truncated 

Normal distribution can also be applied to the case of right truncated Normal 

distribution. For the explicit ML estimators for the location and scale parameters 

of the Normal distribution based on a complete sample, see for example, 

Balakrishnan and Cohen (1991, p. 147). However, when the ML estimation is 

based on Type-I and Type-II, left and right, censored samples, the explicit 

estimators for the location and squared scale parameters were derived by 

Balakrishnan and Cohen (1991, p. 153). Malik (1970) obtained the explicit ML 

estimators for the location and scale parameters of the Pareto distribution 

based on order statistics of the sample. In addition, various researches have 
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investigated the methods of obtaining the ML estimators for the location and 

scale parameters of various LS and LLS families of distributions using progressive 

censored samples. For example, Cohen (1963) obtained the ML estimators for 

the location and scale parameters of the Normal and two-parameter 

Exponential distributions, under the assumption that these parameters remain 

unchanged at each stage of censoring. Furthermore, Gajjar and Khatri (1969) 

obtained the explicit estimators for the Log-Normal and Logistic distributions. 

For some LS and LLS distributions, explicit ML estimators for the location and 

scale parameters are not available because the likelihood functions or log 

likelihood functions associated with such distributions cannot be solved 

explicitly for the location and scale parameters. Examples of such distributions 

are Logistic, Log-Logistic, Gumbel and Weibull distributions. Approximate ML 

estimators for location and scale parameters of these distributions can be 

derived such that the resulting estimators are explicit functions of order 

statistics of the sample and that they have optimal properties (Balakrishnan and 

Cohen, 1991, p. 161). For more details about the approximate ML estimators for 

the location and scale parameters of the one-parameter Rayleigh, Normal, 

Logistic, and Gumbel distributions among others, based on a general type-II 

censored sample, see for example, the text of Balakrishnan and Cohen (1991, 

pp. 161-213) and all the references cited in the pages 161 through 213 of the 

text. 

Alternatively, when ML estimation of the location and scale parameters of LS 

and LLS distributions cannot provide the explicit estimators, iterative procedures 

can be used to obtain computationally the estimates in the cases when 

complete and censored samples are considered. However, in some situations 

iterative procedures can be computationally difficult when convergence 

problems are encountered. The choice of suitable starting or initial values might 

be a problem. Various iterative procedures have been developed in the 



42 

literature. For example, the Newton-Raphson (NR) method, named after the 

English mathematicians, Isaac Newton (1643-1727) and Joseph Raphson ( ̴1648-

  ̴1715), is commonly used in the optimization of statistical problems. For related 

work on iterative procedures associated with the Logistic distribution, Wilson 

and Worcester (1943) discussed an iterative procedure for obtaining the ML 

estimators for the location and scale parameters of the Logistic based on 

complete samples. In addition, Plackett (1958) discussed an iterative procedure 

for obtaining the ML estimators for the location and scale parameters based on 

singly right censored samples. In the same manner, Harter and Moore (1967) 

discussed an iterative procedure for the ML estimators based on doubly 

censored samples. 

3.2.  Generalized Least Squares Estimation 

The GLS method of estimation has been widely applied, specifically in estimation 

and inference problems involving linear models. The location and scale 

parameters of LS and LLS families of distributions can be estimated using GLS 

based on a general linear model (with non-diagonal variance-covariance matrix) 

for the order statistics from an i.i.d. sample. Specifically,  the joint estimator for 

the location and scale parameters of LS and LLS families of distributions can be 

derived as described in the following (see, for example, Mann, Schafer and 

Singpurwalla, 1974; and Llyod, 1952). 

We refer back to equation (2.2.2), which defines the standard random variate 

𝑍∗ from a location-scale family as 

𝑍∗ =
𝑌∗ − 𝜇

𝜎
 

Solving the above equation for 𝑌∗ we can write 

                                          𝑌∗ = 𝜇 + 𝜎 ∙ 𝑍∗                                                           (3.2.1) 
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Now let 𝑌1, 𝑌2, … , 𝑌𝑛 be an i.i.d. random sample from the distribution of 𝑌∗, and 

let              

𝑍𝑖 =
𝑌𝑖 − 𝜇

𝜎
;      𝑖 = 1, 2, … , 𝑛 

be the corresponding standardized random variates as shown in equation 

(2.2.2). Furthermore, let 𝑌 = [𝑌(1), 𝑌(2), … , 𝑌(𝑛)]
′
 be the vector of the order 

statistics of the sample 𝑌1, 𝑌2, … , 𝑌𝑛, and similarly let 𝑍 = [𝑍(1), 𝑍(2), … , 𝑍(𝑛)]
′
 be 

the vector of the order statistics of the corresponding standardized random 

variates 𝑍1, 𝑍2, … , 𝑍𝑛. Then, using equation (3.2.1), the vector 𝑌 can be written 

as 

                                               𝑌 = 𝜇 ∙ 𝟏𝑛 + 𝜎 ∙ 𝑍                                               (3.2.2) 

where 𝟏𝑛 = (1, 1, … , 1)
′.   

The expectation and covariance matrix of 𝑌 are given by 

                                         𝐸(𝑌) = 𝜇 ∙ 𝟏𝑛 + 𝜎 ∙ 𝐸(𝑍)                                       (3.2.3) 

and 

                                       𝐶𝑜𝑣(𝑌) = 𝜎2 ∙ 𝐶𝑜𝑣(𝑍) = 𝜎2 ∙ 𝑉                                     (3.2.4) 

respectively. Here 𝐸(𝑍) and 𝑉 = 𝐶𝑜𝑣(𝑍) are the expected value and covariance 

matrix of the order statistics of an i.i.d. sample of size 𝑛 from the distribution of 

𝑍∗, respectively. We note that the quantities  𝐸(𝑍) and 𝑉 = 𝐶𝑜𝑣(𝑍) are known, 

or at any rate can be calculated, because the distribution of 𝑍 is parameter free. 

Writing the scaled deviations of the standardized observations from their mean 

as 𝑒 = 𝜎 ∙ [𝑍 − 𝐸(𝑍)], and using equations (3.2.2), (3.2.3) and (3.2.4) leads to 

the following general linear model (GLM) for 𝑌: 

                    𝑌 = 𝜇 ∙ 𝟏𝑛 + 𝜎 ∙ 𝐸(𝑍) + 𝑒;       𝐶𝑜𝑣(𝑒) = 𝜎
2 ∙ 𝑉                     (3.2.5) 
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In matrix notation, model (3.2.5) can be written as 

                         𝑌 = 𝑋𝜃 + 𝑒;        𝐶𝑜𝑣(𝑒) = 𝜎2 ∙ 𝑉                                        (3.2.6) 

where 𝑋 is an 𝑛 × 2 matrix, and is given by 

                       𝑋 = [𝟏𝑛: 𝐸(𝑍)] = [

1 𝐸{𝑍(1)}

⋮ ⋮
1 𝐸{𝑍(𝑛)}

]                                           (3.2.7) 

Under model (3.2.6) the generalized least squares (GLS) estimator 𝜃(𝑌) for 𝜃 =

(𝜇, 𝜎)′ is given by 

                  𝜃(𝑌) = (𝑋′𝑉−1𝑋)−1𝑋′𝑉−1𝑌 = 𝐻𝑌                                          (3.2.8) 

where  

                              𝐻 = (𝑋′𝑉−1𝑋)−1𝑋′𝑉−1                                                             (3.2.9) 

Clearly, 𝜃(𝑌) = [𝜇̂(𝑌), 𝜎̂(𝑌)]′ in equation (3.2.8) is the best (minimum variance) 

linear unbiased estimator for 𝜃 = (𝜇, 𝜎)′. 

3.3. Exact Expressions for the Mean and 

Covariance Matrix of the Order Statistics 

of Standardized Random Variates 

For some LS and LLS distributions investigated in this thesis, closed form 

expressions for the mean and covariance matrix of order statistics of the 

standardized random variates are available. Thus, exact expected values and 

covariance matrix of such random variates can be calculated. However, if the 

closed form expressions of the mean and covariance matrix of order statistics of 

standardized random variates are unknown, then the values of such quantities 

can be calculated through simulation to any desired precision. 
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For example, let 𝑍 = [𝑍(1), 𝑍(2), … , 𝑍(𝑛)]
′
 be a vector of order statistics of 

standardized random variates 𝑍1, 𝑍2, … , 𝑍𝑛 from a Normal distribution with cdf 

and pdf, respectively, given by 

                      𝐹𝑍∗(𝑧∗; 𝜃) = Φ(𝑧∗)                                                                            (3.3.1) 

and 

𝑓𝑍∗(𝑧∗; 𝜃) =
1

√2𝜋
𝑒𝑥𝑝(−𝑧∗

2 2⁄ ) 

where 𝜃 = (0, 1)′. The support of the distribution of 𝑍∗ is on the whole real line. 

The exact expressions for 𝐸[𝑍(𝑖)], 𝑉𝑎𝑟[𝑍(𝑖)] and 𝐶𝑜𝑣[𝑍(𝑖), 𝑍(𝑗)] for the standard 

Normal distribution have been derived by various researchers, and the values of 

𝐸[𝑍(𝑖)], 𝑉𝑎𝑟[𝑍(𝑖)] and 𝐶𝑜𝑣[𝑍(𝑖), 𝑍(𝑗)] have been tabulated for selected sample 

sizes; see for example, Ruben (1954) and Harter (1961). 

In Sections 3.3.1 through 3.3.3, we present closed form expressions for the 

mean and covariance matrix of order statistics of the standardized random 

variates for the Uniform, Logistic, and Weibull distributions. 

Closed Form Expressions for Uniform Distribution 

As shown in (2.2.10), the standard random variate 𝑍∗ = 𝑈 follows a standard 

Uniform distribution in the interval [0, 1]. Thus, the order statistics of an i.i.d. 

random sample of size 𝑛 from the standard Uniform distribution 𝑈𝑛𝑖𝑓(0, 1), are 

denoted by the vector 

𝑍 = [𝑍(1), 𝑍(2), … , 𝑍(𝑛)]
′
 

which can be written as 

𝒰 = [𝑈(1), 𝑈(2), … , 𝑈(𝑛)]
′
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The expressions of expected values (or the first moments) and variances of 

order statistics of standardized random variates from the Uniform distribution 

are, respectively, derived by Balakrishnan and Cohen (1991, pp. 30-31) as 

                𝐸(𝒰) = {𝐸[𝑈(1)], 𝐸[𝑈(2)], … , 𝐸[𝑈(𝑛)]}
′
 

                  = [
1

𝑛 + 1
,
2

𝑛 + 1
,⋯ ,

𝑛

𝑛 + 1
]
′

 

                                                        = [𝛽(1), 𝛽(2), ⋯ , 𝛽(𝑛)]
′
                                     (3.3.2) 

where 𝛽(𝑖)  = 𝑖/(𝑛 + 1) for 𝑖 = 1, 2, … , 𝑛 is the expected value of the 𝑖th order 

statistic  𝑈(𝑖) = 𝑍(𝑖) from the Uniform distribution, and 

   𝑉𝑎𝑟(𝒰) = 𝑉𝑎𝑟[𝑈(𝑖)]                                                

   = 𝐸[𝑈(𝑖)
2] − 𝛽(𝑖)

2                     

                                =
𝑖(𝑛 + 1 − 𝑖)

(𝑛 + 2) (𝑛 + 1)2
                                                

                                               =
𝛽(𝑖)[1 − 𝛽(𝑖)]

𝑛 + 2
                                                        (3.3.3) 

where 𝐸[𝑈(𝑖)
2] is the second moment of 𝑈(𝑖). 

For 𝑖 = 1, 2, … , 𝑛 and 𝑗 = 1, 2, … , 𝑛, the covariance of 𝑈(𝑖) and 𝑈(𝑗) where 1 ≤

𝑖 < 𝑗 ≤ 𝑛, is given by 

𝑉𝑖𝑗 = 𝐶𝑜𝑣[𝑈(𝑖), 𝑈(𝑗)]                                 

=  𝐸[𝑈(𝑖)𝑈(𝑗)]                                

                                            =
𝑖(𝑗 + 1)

(𝑛 + 1) (𝑛 + 2)
                                                      (3.3.4) 

In terms of 𝛽(𝑖), the covariance of 𝑈(𝑖) and 𝑈(𝑗) (3.3.4) can be written as 
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                            𝑉𝑖𝑗 =
𝛽(𝑖)[1 − 𝛽(𝑖)]

𝑛 + 2
                                                                      (3.3.5) 

where 𝛽(𝑖) is defined in (3.3.2). 

Furthermore, the covariance matrix of order statistics of standardized random 

variates based on a sample of size 𝑛 can be written as 

𝐶𝑜𝑣(𝑈) = 𝑉𝑈 

Closed Form Expressions for Logistic Distribution 

The cdf and pdf of the Logistic distribution are given, respectively, in and below 

equation (2.2.6). In the manner of Balakrishnan and Cohen (1991, p. 12), if 𝑌 =

[𝑌(1), 𝑌(2), … , 𝑌(𝑛)]
′
 is a vector of order statistics of an i.i.d. continuous sample 

𝑌1, 𝑌2, … , 𝑌𝑛 with common cdf 𝐹𝑌∗[𝑦∗; 𝜃] and pdf 𝑓𝑌∗[𝑦∗; 𝜃], then the marginal pdf 

of 𝑌(𝑖), where 𝑖 = 1, 2, … , 𝑛, is given by  

      𝑓𝑌(𝑖)[𝑦(𝑖); 𝜃] =
𝑛!

(𝑖 − 1)! (𝑛 − 𝑖)!
{𝐹𝑌∗[𝑦(𝑖); 𝜃]}

𝑖−1
× 

                                                          {1 − 𝐹𝑌∗[𝑦(𝑖); 𝜃]}
𝑛−𝑖
𝑓𝑌∗[𝑦(𝑖); 𝜃]                    (3.3.6) 

where 𝐹𝑌∗[𝑦(𝑖); 𝜃] and 𝑓𝑌∗[𝑦(𝑖); 𝜃] are, respectively, the cdf and pdf of 𝑌∗ in and 

below equation (2.2.6) at point 𝑦(𝑖). The support of the distribution of 𝑌(𝑖) is on 

the whole real line. Based on the cdf and pdf in and below equation (2.2.6), let 

𝑍 = [𝑍(1), 𝑍(2), … , 𝑍(𝑛)]
′
 be a vector of order statistics of standardized variates 

𝑍1, 𝑍2, … , 𝑍𝑛 from a Logistic distribution with cdf and pdf, respectively, given by 

                                  𝐹𝑍∗(𝑧∗; 𝜃) =
1

1 + 𝑒𝑥𝑝(−𝑧∗)
                                               (3.3.7) 

and 

𝑓𝑍∗(𝑧∗; 𝜃) =
𝑒𝑥𝑝(−𝑧∗)

[1 + 𝑒𝑥𝑝(−𝑧∗)]2
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where 𝜃 = (0, 1)′. Using the marginal pdf of 𝑌(𝑖) in (3.3.6), the moments of 𝑍(𝑖) 

for a Logistic distribution can be obtained from the moment generation function 

(mgf) of 𝑍(𝑖) as follows (see, for example, Balakrishnan and Cohen (1991, pp. 38-

39))  

𝑀𝑍(𝑖)(𝑡) = 𝐸{𝑒𝑥𝑝[𝑡𝑍(𝑖)]}                                                                           

          =
𝑛!

(𝑖 − 1)! (𝑛 − 𝑖)!
∫ 𝑒𝑥𝑝[𝑡𝑧∗]
∞

−∞

{
1

1 + 𝑒𝑥𝑝[−𝑧∗]
}
𝑖−1

× 

{
𝑒𝑥𝑝[−𝑧∗]

1 + 𝑒𝑥𝑝[−𝑧∗]
}

𝑛−𝑖
𝑒𝑥𝑝[−𝑧∗]

{1 + 𝑒𝑥𝑝[−𝑧∗]}2
𝑑𝑧∗      

                        (3.3.8) 

The right hand side (RHS) of integral (3.3.8) can be simplified by transforming 𝑧∗ 

into a uniform 𝑢, namely by letting 𝑢 = 1 {1 + 𝑒𝑥𝑝[−𝑧∗]}⁄  such that  

𝑒𝑥𝑝[𝑧∗] =
𝑢

1 − 𝑢
 

and that 

𝑑𝑧∗ =
{1 + 𝑒𝑥𝑝[−𝑧∗]}

2

𝑒𝑥𝑝[−𝑧∗]
 

where 

𝑒𝑥𝑝[−𝑧∗] =
1 − 𝑢

𝑢
 

Thus, after the transformation and making the suitable substitution, the mgf of 

𝑍(𝑖) in (3.3.8) simplifies to 

                                  𝑀𝑍(𝑖)(𝑡) =
Γ(𝑖 + 𝑡)Γ(𝑛 − 𝑖 + 1 − 𝑡)

Γ(𝑖)Γ(𝑛 − 𝑖 + 1)
                                 (3.3.9) 
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The mgf of 𝑍(𝑖) in (3.3.9) is, then, used to generate the first moment of 𝑍(𝑖) 

about the origin, namely the expected value of 𝑍(𝑖), and other higher moments 

of 𝑍(𝑖) , as  

𝐸[𝑍(𝑖)] =
𝑑

𝑑𝑡
𝑀𝑍(𝑖)(𝑡)|

𝑡=0
                                                        

   =
Γ′(𝑖)

Γ(𝑖)
−
Γ′(𝑛 − 𝑖 + 1)

Γ(𝑛 − 𝑖 + 1)
                                 

                                     = 𝜓(𝑖) − 𝜓(𝑛 − 𝑖 + 1)                                                   (3.3.10) 

where the function 

 𝜓(𝑥) =
𝑑

𝑑𝑥
ln Γ(𝑥)    

=
Γ′(𝑥)

Γ(𝑥)
 

is known as the ‘psi’ or ‘digamma’ function. 

Similarly to (3.3.10), the second moment of 𝑍(𝑖) can be derived as  

𝐸[𝑍(𝑖)
2 ] =

𝑑2

𝑑𝑡2
 𝑀𝑍(𝑖)(𝑡)|

𝑡=0

                                                               

         =
Γ′′(𝑖)

Γ(𝑖)
− 2

Γ′(𝑖)

Γ(𝑖)

Γ′(𝑛 − 𝑖 + 1)

Γ(𝑛 − 𝑖 + 1)
+
Γ′′(𝑛 − 𝑖 + 1)

Γ(𝑛 − 𝑖 + 1)
   

= {𝜓′(𝑖) + [𝜓(𝑖)]2} − 2𝜓(𝑖) 𝜓(𝑛 − 𝑖 + 1) + 

{𝜓′(𝑛 − 𝑖 + 1) + [𝜓(𝑛 − 𝑖 + 1)]2}           

             = 𝜓′(𝑖) + 𝜓′(𝑛 − 𝑖 + 1) + [𝜓(𝑖) − 𝜓(𝑛 − 𝑖 + 1)]2   

                                                                                                                               (3.3.11) 

where, similarly to (3.3.10), the function 
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𝜓′(𝑥) =
𝑑

𝑑𝑥
𝜓(𝑥) 

                  =
𝑑2

𝑑𝑥2
ln Γ(𝑥) 

is the derivative of the ‘psi or digamma’ function and known as the ‘trigamma’ 

function. The variance of 𝑍(𝑖) is, then derived using the second moment of 𝑍(𝑖) in 

(3.3.11) and expected value of 𝑍(𝑖) in (3.3.10) as  

   𝑉𝑎𝑟[𝑍(𝑖)] = 𝐸[𝑍(𝑖)
2 ] − {𝐸[𝑍(𝑖)]}

2
                                                        

                     = 𝜓′(𝑖) + 𝜓′(𝑛 − 𝑖 + 1) + [𝜓(𝑖) − 𝜓(𝑛 − 𝑖 + 1)]2  

−[𝜓(𝑖) 𝜓(𝑛 − 𝑖 + 1)]2                         

                                    = 𝜓′(𝑖) + 𝜓′(𝑛 − 𝑖 + 1)                                                  (3.3.12) 

Furthermore and similarly to (3.3.10), (3.3.11) and (3.3.12), the covariance of 

𝑍(𝑖) and 𝑍(𝑗) where 1 ≤ 𝑖 < 𝑗 ≤ 𝑛 can be derived and its expression is given by 

𝐶𝑜𝑣[𝑍(𝑖), 𝑍(𝑗)] = 𝐸[𝑍(𝑗)
2 ]                                                                                          

+∑ ∑ [
(−1)𝑟+𝑖 (

𝑟 − 1

𝑖 − 1
) (
𝑛

𝑟
) (
𝑗 − 𝑖 − 𝑟 + 𝑠

𝑠
)Β(𝑠, 𝑛 − 𝑟 + 1)

× 𝐸{𝑍̌(𝑗+𝑠−𝑟)}
] +

𝑟−1

𝑠=1

𝑗−1

𝑟=𝑖
 

(
𝑛

𝑟
)∑ {(−1)𝑟 (

𝑛 − 𝑖

𝑟
)
1

𝑖 + 𝑟
[

−𝜓′(𝑛 − 𝑗 + 1) +

{
𝜓(𝑛 − 𝑗 + 1) −

𝜓(𝑛 − 𝑖 + 1)
} {
𝜓(𝑗 − 𝑖 + 𝑟) −

𝜓(𝑛 − 𝑗 + 1)
}
]}

𝑗−𝑖+1

𝑟=0
 

                                (3.3.13) 

where 𝑍̌(𝑗+𝑠−𝑟)  is the (𝑗 + 𝑠 − 𝑟)  order statistic of standardized variates 

sampled of sample size (𝑛 + 𝑠 − 𝑟) and Β(𝑠, 𝑛 − 𝑟 + 1) is a complete beta 

function given by 
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Β(𝑠, 𝑛 − 𝑟 + 1) =
Γ(𝑠)Γ(𝑛 − 𝑟 + 1)

Γ(𝑠 + 𝑛 − 𝑟 + 1)
 

Clearly, the digamma and trigamma functions depend on the position of order 

statistics of the standardized variates and the sample size. Thus, the exact values 

of 𝐸[𝑍(𝑖)], 𝐸[𝑍(𝑖)
2 ], 𝑉𝑎𝑟[𝑍(𝑖)], and 𝐶𝑜𝑣[𝑍(𝑖), 𝑍(𝑗)] can be determined for any 

sample of a given size drawn from a Logistic distribution. The values of the 

bigamma and trigamma functions of order statistics of the standardized variates 

from a Logistic distribution have been computed for different sample sizes. For 

example, Balakrishnan and Manlik (1990) tabulated the values of the means, 

variances and covariances of order statistics of the standardized variates from a 

Logistic distribution for sample sizes up to 𝑛 = 50 (Balakrishnan and Cohen, 

1991, p. 40). 

Closed Form Expressions for Weibull Distribution 

The cdf and pdf of the Weibull distribution are given, respectively, in and below 

equation (2.3.6) of Section 2.3.3. Let 𝑊 = [𝑊(1),𝑊(2), … ,𝑊(𝑛)]
′
 be the vector of 

order statistics of a random sample of size 𝑛 from the Weibull distribution. 

Furthermore, let 𝑊∗ = 𝑊1,𝑊2, … ,𝑊𝑛 be a random sample of size 𝑛 from the 

Weibull distribution with cdf and pdf, respectively, given by 

                                    𝐹𝑊∗(𝑤∗; 𝜃
∗) = 1 − 𝑒𝑥𝑝(−𝑤∗)                                         (3.3.14) 

and 

𝑓𝑊∗(𝑤∗; 𝜃
∗) = 𝑒𝑥𝑝(−𝑤∗) 

where 𝜃∗ = (1, 1)′. The support of the distribution of 𝑊∗ is always positive. The 

𝑘 (𝑘 ≥ 1 ) moment of 𝑊(𝑖), 𝑖 = 1, 2, … , 𝑛 about the origin can be derived as 

follows (Balakrinshnan and Cohen, 1991, p. 48): 

𝐸[𝑊(𝑖)
𝑘 ] = ∫ 𝑤∗

𝑘
∞

−∞

𝑓𝑤(𝑖)[𝑤(𝑖); 𝜃
∗]𝑑𝑤∗                                                                              
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               =
𝑛!

(𝑖 − 1)! (𝑛 − 𝑖)!
∫ 𝑤∗

𝑘[𝐹𝑊∗(𝑤(𝑖); 𝜃
∗)]

𝑖−1
[1 − 𝐹𝑊∗(𝑤(𝑖); 𝜃

∗)]
𝑛−𝑖

×
∞

−∞

 

𝑓𝑊∗[𝑤∗; 𝜃
∗]𝑑𝑤∗                                                                            

   =
𝑛!

(𝑖 − 1)! (𝑛 − 𝑖)!
∫ 𝑤∗

𝑘
∞

0

[1 − 𝑒𝑥𝑝(−𝑤∗)]
𝑖−1  ×                            

[𝑒𝑥𝑝(−𝑤∗)]
𝑛−𝑖𝑒𝑥𝑝(−𝑤∗)𝑑𝑤∗                                                    

=
𝑛!

(𝑖 − 1)! (𝑛 − 𝑖)!
∑ (−1)𝑟 (

𝑖 − 1

𝑟
)

𝑖−1

𝑟=0
 ×                                    

∫ 𝑒𝑥𝑝[−(𝑛 − 𝑖 + 𝑟 + 1)𝑤∗]
∞

0

𝑤∗
𝑘𝑑𝑤∗                                    

   =
𝑛!

(𝑖 − 1)! (𝑛 − 𝑖)!
Γ(1 + 𝑘) ×                                                              

                    ∑ (−1)𝑟 (
𝑖 − 1

𝑟
) (𝑛 − 𝑖 + 𝑟 + 1)1+𝑘⁄

𝑖−1

𝑟=0
                                  (3.3.15) 

Thus, using the moment of 𝑊(𝑖) (3.3.15), the variance of 𝑊(𝑖) for 𝑖 = 1, 2, … , 𝑛 

can be obtained as 

                                      𝑉𝑎𝑟[𝑊(𝑖)] = 𝐸[𝑊(𝑖)
2 ] − {𝐸[𝑊(𝑖)]}

2
                               (3.3.16) 

Similarly to moment of 𝑊(𝑖) (3.3.15), the covariance of 𝑊(𝑖) and 𝑊(𝑗) can be 

derived for 1 ≤ 𝑖 < 𝑗 ≤ 𝑛. Initially, it is convenient to determine the joint pdf of 

𝑊(𝑖) and 𝑊(𝑗) given by 

𝑓𝑊(𝑖)𝑊(𝑗)
[𝑤(𝑖), 𝑤(𝑗); 𝜃

∗] =
𝑛!

(𝑖 − 1)! (𝑗 − 𝑖 − 1)! (𝑛 − 𝑗)!
×                                    

                                      {𝐹𝑊(𝑖)
[𝑤(𝑖); 𝜃

∗]}
𝑖−1

{𝐹𝑊(𝑗)
[𝑤(𝑗); 𝜃

∗] − [𝑤(𝑖); 𝜃
∗]}

𝑗−𝑖−1

× 

                                 {1 − 𝐹𝑊(𝑗)
[𝑤(𝑗); 𝜃

∗]}
𝑛−𝑗

𝑓𝑊(𝑖)
[𝑤(𝑖); 𝜃

∗] 𝑓𝑊(𝑗)
[𝑤(𝑗); 𝜃

∗] 

                                                 (3.3.17) 
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where −∞ < 𝑤(𝑖) < 𝑤(𝑗) < ∞. Using (3.3.17), the expression for the cross 

product moment of 𝑊(𝑖) and 𝑊(𝑗) is given by 

𝐸[𝑊(𝑖)𝑊(𝑗)] = ∫ ∫ 𝑤(𝑖)𝑤(𝑗)

∞

0

∞

0

𝑓𝑊(𝑖)𝑊(𝑗)
[𝑤(𝑖), 𝑤(𝑗); 𝜃

∗]𝑑𝑤(𝑖)𝑑𝑤(𝑗)                        

 =
𝑛!

(𝑖 − 1)! (𝑗 − 𝑖 − 1)! (𝑛 − 𝑗)!
 ×                                    

       ∑ ∑ (−1)𝑗−𝑖−1−𝑠+𝑟 (
𝑖 − 1

𝑟
) (
𝑗 − 𝑖 − 1

𝑠
)

𝑗−𝑖−1

𝑠=0

𝑖−1

𝑟=0
× 

  𝜙(𝑟 + 𝑠 +  1, 𝑛 − 𝑖 − 𝑠)                                                          (3.3.18)  

where for 𝑎 ≥ 𝑏 such that 𝑎 (𝑎 + 𝑏)⁄  lies in the uniform interval [0, 1], the 

function 𝜙(𝑎, 𝑏) is known as Lieblein’s 𝜙-function given by 

                                  𝜙(𝑎, 𝑏) =
1

(𝑎𝑏)2
IB𝑎 (𝑎+𝑏)⁄ [2, 2]                                       (3.3.19) 

where IB𝑝(𝑏1, 𝑏2) is known as Karl Pearson’s (1935) incomplete beta function. 

Finally, using (3.3.18) the covariance between 𝑊(𝑖) and 𝑊(𝑗) where 1 ≤ 𝑖 < 𝑗 ≤

𝑛 can be derived as  

               𝐶𝑜𝑣[𝑊(𝑖),𝑊(𝑗)] = 𝐸[𝑊(𝑖)𝑊(𝑗)] − 𝐸[𝑊(𝑖)]𝐸[𝑊(𝑗)]                         (3.3.20) 

3.4. Calculation of the Expected Value and 

Covariance   Matrix of 𝒁 by Simulation 

Evaluating the GLS estimator 𝜃(𝑌) for 𝜃 using the vector of order statistics of 

the random sample of observations 𝑌1, 𝑌2, … , 𝑌𝑛 (refer to equation (3.2.8)) in 

Section 3.2 requires the calculation of the values of 𝐸(𝑍) and covariance matrix 

𝑉 = 𝐶𝑜𝑣(𝑍). When the closed form expressions of these quantities are not 

available, the values of 𝐸(𝑍) and 𝑉  can be simulated as described by the 

following algorithm. 
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Algorithm 1: Calculation of 𝑬(𝒁) and 𝑪𝒐𝒗(𝒁) by simulation: 

1. Simulate 𝑁 independent standardized random samples 𝑍1, 𝑍2, … , 𝑍𝑁 

of size 𝑛 from the distribution of 𝑍∗. 

2. Sort each of the 𝑁  simulated standardized random samples in 

ascending order, thereby obtaining the order statistics 

𝑍(1), 𝑍(2), … , 𝑍(𝑛)  of the simulated values within each random 

sample. We denote the sorted samples by 𝒵1, 𝒵2, … , 𝒵𝑁. That is, the 

sample 𝒵𝑖,  where 𝑖 = 1, 2, … ,𝑁  contains the order statistics 

𝑍(1)𝑖, 𝑍(2)𝑖, … , 𝑍(𝑛)𝑖 for the 𝑖th sorted sample. 

3. Calculate the expected value of order statistics of standardized 

random variates as the average  

                           𝐸(𝑍) =
1

𝑁
∑ 𝒵𝑖

𝑁

𝑖=1
                                                   (3.4.1) 

4. Calculate the covariance matrix of order statistics of the standardized 

random variates as 

              𝑉 = 𝐶𝑜𝑣(𝑍)                                                  

     =
1

𝑁
∑  [𝒵𝑖 − 𝐸(𝑍)]
𝑁
𝑖=1 [𝒵𝑖 − 𝐸(𝑍)]

′         (3.4.2)   

The simulated values of 𝐸(𝑍) and inverse of the covariance matrix 𝑉, namely 

𝑉−1 can then be used to estimate the location and scale parameters of various 

LS and LLS distributions. In addition, the simulated values of 𝐸(𝑍) and 𝑉−1 can 

be used to simulate the values of rank-based conventional pivotal quantities and 

fiducial generalized pivotal quantities as presented in Chapters 4 and 5.  
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3.5. Approximations of Mean and Covariance 

Matrix of the Order Statistics of 

Standardized Random Variates 

The approximations of expressions for the mean and covariance matrix of order 

statistics of the standardized variates drawn from an arbitrary continuous 

distribution can be obtained by using the method of David and Johnson (1954) 

(Balakrishnan and Cohen, 1991, p. 68). We note that approximations of the 

expected value and covariance matrix of order statistics of the standardized 

variates from an arbitrary continuous distribution, using David and Johnson’s 

(1954) method, require the transformation of order statistics of the 

standardized variates into the standardized Uniform order statistics. David and 

Johnson (1954) showed that in general, it is easier to obtain the moments of 

order statistics variates for continuous distributions, because the pdf of the 𝑖th 

order statistic is equivalent to the pdf of the two-parameter Beta distribution 

(Balakrishnan and Cohen, 1991, p. 12). As a result of this property, it is well 

known that a standard two-parameter Beta distribution is the same as a 

standard Uniform distribution. 

David and Johnson’s (1954) method of approximation of the expected value, 

variance and covariance matrix of the standardized order statistics from an 

arbitrary continuous distribution, can be summarized as follows (Balakrishnan 

and Cohen, 1991, p. 69): 

Initially, it is convenient to obtain the first, second, and other higher order 

derivatives of the transformation function 𝐺[𝐹−1(𝑈)] with respect to 𝑈, where 

𝑈 is a standard Uniform variate. These derivatives are then evaluated at the 

expected values of order statistics of the Uniform distribution, namely at  

𝐸[𝑈(𝑖)] = 𝛽(𝑖) . In this thesis, however, only the first and second order 

derivatives of the function 𝐺[𝐹−1(𝑈)]  are required to obtain the 
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approximations of 𝐸(𝑍)  and 𝐶𝑜𝑣(𝑍)  up to the third term of Taylor series 

expansion about the point 𝐸[𝑈(𝑖)] = 𝛽(𝑖), as shown below (Balakrishnan and 

Cohen, 1991, p. 69): 

The first order derivative of the function 𝐺[𝐹−1(𝑈)] is given by 

 
𝑑

𝑑𝑈
𝐺[𝐹−1(𝑈)] = 𝐺′[𝐹−1(𝑈)] ∙

𝑑

𝑑𝑈
[𝐹−1(𝑈)]                               

                                              = 𝐺′[𝐹−1(𝑈)] ∙
1

𝑓[𝐹−1(𝑈)]
                                      (3.5.1) 

where 𝐺′(∙)  denotes the first order derivative of the function 𝐺(∙)  and 

𝑑 𝑑𝑈⁄ [𝐹−1(𝑈)] can be obtained as  

 
𝑑

𝑑𝑈
[𝐹−1(𝑈)] =

1

𝐹′[𝐹−1(𝑈)]
     

                      =
1

𝑓′[𝐹−1(𝑈)]
  

where 𝐹′(∙) = 𝑓(∙). 

Similarly to (3.5.1), the second order derivative of 𝐺[𝐹−1(𝑈)] can be obtained 

by determining the second order derivative of the function 𝐺[𝐹−1(𝑈)] as  

𝑑2

𝑑𝑈2
𝐺[𝐹−1(𝑈)] =

𝑑

𝑑𝑈
{𝐺′[𝐹−1(𝑈)] ∙

1

𝑓[𝐹−1(𝑈)]
}                                             

                                   = 𝐺′′[𝐹−1(𝑈)] ∙
1

𝑓[𝐹−1(𝑈)]
∙

1

𝑓[𝐹−1(𝑈)]
− 𝐺′[𝐹−1(𝑈)] ×    

∙           
1

{𝑓[𝐹−1(𝑈)]}2
∙ 𝑓′[𝐹−1(𝑈)] ∙

1

𝑓[𝐹−1(𝑈)]
   

                                    =
𝐺′′[𝐹−1(𝑈)]  ∙  𝑓[𝐹−1(𝑈)] − 𝐺′[𝐹−1(𝑈)]  ∙  𝑓′[𝐹−1(𝑈)]

{𝑓[𝐹−1(𝑈)]}3
    

                                                                                                                          (3.5.2) 
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Approximation of Expected Value of 𝐙 

In Sections 3.5.1 and 3.5.2, the general principle of David and Johnson’s (1954) 

method described in Section 3.5 can be used to derive the approximate 

expressions of 𝐸(𝑍) and 𝐶𝑜𝑣(𝑍) for an arbitrary continuous distribution. Based 

on the probability integral transformation, the David and Johnson’s (1954) 

method explicitly uses the cdf 𝑈 = 𝐹𝑍∗(𝑍∗; 𝜃) to transform the order statistics 

𝑍(𝑖), 𝑖 = 1, 2, … , 𝑛 from a LS distribution with a cdf and pdf, 𝐹𝑍∗(𝑧∗; 𝜃) and 

𝑓𝑍∗(𝑧∗; 𝜃)  respectively, into the Uniform order statistics 𝑈(𝑖)  whose LS 

distribution has a cdf 𝐹𝑈∗(𝑢∗; 𝜃) and a pdf 𝑓𝑈∗(𝑢∗; 𝜃) where 𝜃 = (0, 1)′. Here, 

the values 0 and 1, denote respectively the lower and upper boundaries of the 

standard Uniform distribution as presented in Section 2.2.3. Thus, by finding the 

inverse of the transformation, namely finding the inverse of the cdf 𝐹𝑈∗(𝑢∗; 𝜃) 

leads to 

          𝑍(𝑖) = 𝐹
−1[𝑈(𝑖)]   

   = 𝐺[𝑈(𝑖)]                                              (3.5.3)  

Then, when a Taylor series expansion is applied to the function (3.5.3) at the 

point 𝐸[𝑈(𝑖)] = 𝛽(𝑖) up to the fourth term of the series leads to (refer to 

Balakrishnan and Cohen (1991, p. 69)) 

𝑍(𝑖) =∑
𝐺𝑖
(𝑛)[𝑈(𝑖) − 𝛽(𝑖)]

𝑛

𝑛!

∞

𝑛=0
                                                                       

         = 𝐺𝑖 +
𝐺𝑖
′[𝑈(𝑖) − 𝛽(𝑖)]

1!
+
𝐺𝑖
′′[𝑈(𝑖) − 𝛽(𝑖)]

2

2!
+
𝐺𝑖
′′′[𝑈(𝑖) − 𝛽(𝑖)]

3

3!
+ ⋯  

        = 𝐺𝑖 + 𝐺𝑖
′[𝑈(𝑖) − 𝛽(𝑖)] +

𝐺𝑖
′′[𝑈(𝑖) − 𝛽(𝑖)]

2

2
+
𝐺𝑖
′′′[𝑈(𝑖) − 𝛽(𝑖)]

3

6
+⋯ 

                                                                                                                                      (3.5.4) 
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where 𝐺𝑖 = 𝐺[𝛽(𝑖)], 𝐺𝑖
′ = 𝑑 𝑑𝑈⁄ 𝐺(𝑈)|𝑈=𝛽(𝑖) , and similarly to the first derivative,  

𝐺𝑖
′′, 𝐺𝑖

′′′, …, are equivalent to successive (i.e. second, third, … ,) derivatives of the 

function 𝐺(𝑈) evaluated at point 𝑈 = 𝛽(𝑖). 

Following the Taylor series expansion of the inverse transformation function 

(3.5.3), the expression for the approximate 𝐸[𝑍(𝑖)] can now be obtained by 

taking expectation on both sides of equation (3.5.4) as (Balakrishnan and Cohen, 

1991, p. 69) 

𝐸[𝑍(𝑖)] = 𝐸{𝐺(𝐹
−1[𝑈(𝑖)])}                                                                                             

   ≈ 𝐺{𝐹−1(𝐸[𝑈(𝑖)])} +
𝑉𝑎𝑟[𝑈(𝑖)]

2
∙
𝑑2

𝑑𝑈(𝑖)
2 𝐺(𝐹

−1[𝑈(𝑖)]) |

𝑈(𝑖)=𝛽(𝑖)

  

= 𝐺{𝐹−1[𝛽(𝑖)]} +
𝛽(𝑖)[1 − 𝛽(𝑖)]

2(𝑛 + 2)
×                                                ∙ 

               
𝐺′′[𝐹−1(𝛽(𝑖))]  ∙  𝑓[𝐹

−1(𝛽(𝑖))] − 𝐺
′[𝐹−1(𝛽(𝑖))]  ∙  𝑓

′[𝐹−1(𝛽(𝑖))]

{𝑓[𝐹−1(𝛽(𝑖))]}
3  

                                              (3.5.5)  

where the expressions for 𝛽(𝑖)’s are given in (3.3.2). 

Approximation of Covariance Matrix of 𝐙 

Similarly to obtaining (3.5.5), the expression for approximate 𝑉𝑎𝑟[𝑍(𝑖)] can be 

obtained using the following steps (for a detailed discussion, refer to 

Balakrishnan and Cohen (1991, p. 69)): 

1. Use equation (3.5.4) to apply a Taylor series expansion to 𝑍(𝑖)
2 . 

2. Then, take the expectation of a Taylor series expansion of 𝑍(𝑖)
2  obtained 

in the first step. 
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3. Lastly, the approximate 𝑉𝑎𝑟[𝑍(𝑖)]  is obtained by subtracting the 

expression of {𝐸[𝑍(𝑖)]}
2
, namely equation (3.5.5) raised to the power of 

two, from the expectation of a Taylor series expansion of 𝑍(𝑖)
2 . 

Thus, the expression for approximate variance of 𝑍(𝑖) is given by 

                        𝑉𝑎𝑟[𝑍(𝑖)] ≈ 𝑉𝑎𝑟[𝑈(𝑖)] ∙ 𝑑(𝑖)
2                                                             (3.5.6) 

where the expression for 𝑑(𝑖), 𝑖 = 1, 2, … , 𝑛 is given by 

𝑑(𝑖) =
𝑑

𝑑𝑈(𝑖)
𝐺{𝐹−1[𝑈(𝑖)]}|

𝑈(𝑖)=𝛽(𝑖)

        

                                              =
𝐺′{𝐹−1[𝛽(𝑖)]}

𝑓{𝐹−1[𝑈(𝑖)]}
                                                          (3.5.7) 

and the expression for 𝑉𝑎𝑟[𝑈(𝑖)] is given in (3.3.3). In terms of equations (3.3.3) 

and (3.5.7), the approximation of 𝑉𝑎𝑟[𝑍(𝑖)] in (3.5.6) is the same as 

                       𝑉𝑎𝑟[𝑍(𝑖)] =
𝛽(𝑖)[1 − 𝛽(𝑖)]

𝑛 + 2
∙ (
𝐺′{𝐹−1[𝛽(𝑖)]}

𝑓{𝐹−1[𝑈(𝑖)]}
)

2

                           (3.5.8) 

Furthermore, for 𝑖 = 1, 2, … , 𝑛  and 𝑗 = 1, 2, … , 𝑛 , where 1 ≤ 𝑖 < 𝑗 ≤ 𝑛   and 

similarly to obtaining (3.5.8), the expression for approximate 𝐶𝑜𝑣[𝑍(𝑖), 𝑍(𝑗)] can 

be obtained using the following steps (for a detailed discussion, refer to 

Balakrishnan and Cohen (1991, p. 70)): 

1. Use equation (3.5.4) to expand a Taylor series expansion to 𝑍(𝑖)𝑍(𝑗). 

2. Then, take the expectation of a Taylor series expansion of 𝑍(𝑖)𝑍(𝑗) 

obtained in the first step. 

3. Lastly, the approximate 𝐶𝑜𝑣[𝑍(𝑖), 𝑍(𝑗)]  is obtained by subtracting the 

expression of the product 𝐸[𝑍(𝑖)] ∙ 𝐸[𝑍(𝑗)] from the expectation of a 

Taylor series of 𝑍(𝑖)𝑍(𝑗). 

Thus, the expression for approximate covariance matrix for 𝑍 is given by 
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              𝐶𝑜𝑣(𝑍) = 𝐶𝑜𝑣{𝐺[𝐹−1(𝑈)]}    

      ≈ 𝐷𝐶𝑜𝑣(𝑈)𝐷                       

                                                     = 𝐷𝑉𝑈𝐷                                                                  (3.5.9) 

where 𝐷 = 𝑑𝑖𝑎𝑔[𝑑(1), 𝑑(2), … , 𝑑(𝑛) ] is a diagonal matrix of dimension 𝑛 by 𝑛, of 

which the diagonal entries are given in (3.5.7), for 𝑖 = 1, 2, … , 𝑛; and 𝑉𝑈 is a 

covariance matrix of order statistics of standardized variates from a Uniform 

distribution of sample size 𝑛, of which the entries, namely the variances of 𝑈(𝑖)’s 

and covariance between 𝑈(𝑖) ’s and 𝑈(𝑗) ’s for 1 ≤ 𝑖 < 𝑗 ≤ 𝑛 , are defined in 

(3.3.3) and (3.3.4) respectively.   

3.6. Maximum Likelihood Estimation 

In Section 3.61 below we present a general definition of method of the ML 

estimation for the vector parameter of arbitrary distribution. We then present in 

Sections 3.6.2 through 3.6.7 the ML estimation of location and scale parameters 

of examples of distributions that belong to LS and LLS families.  

Definition for Maximum Likelihood Estimation  

In some situations, the method of maximum likelihood is used for parameter 

estimation problems where explicit expressions for the maximum likelihood 

estimators as functions of the observations exist. However, when such explicit 

expressions do not exist, it may be possible to obtain numerically the maximum 

likelihood estimators for the parameters by using various methods of 

optimization. In most cases, methods of optimization can handle the 

maximization of complex log-likelihood functions, which the classical ML 

estimation procedures cannot. For a detailed discussion of optimization 

methods for maximum likelihood, refer to, for example, Lawless (2003, p. 555). 
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MLE for the location and scale parameters of LS and LLS families of distributions 

can be defined as follows: 

Let 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛)
′  be a vector of 𝑛  independent observations (not 

necessarily arranged in ascending order of magnitude) sampled randomly from a 

distribution with cdf 𝐹𝑋(𝑥; 𝜃) and joint pdf 𝑓𝑋(𝑥; 𝜃). Here, 𝜃  is a vector of 

unknown parameters of the distribution 𝐹𝑋(∙) . The maximum likelihood 

estimate for 𝜃 based on 𝑥 is denoted by 𝜃(𝑥)𝑀𝐿 ∈ Θ, where Θ is the parameter 

space of 𝜃, containing all possible combinations of the values of 𝜃(𝑥)𝑀𝐿 . In this 

thesis, unless stated otherwise, we use the subscript (∙)𝑀𝐿 on the estimators 

𝜃(∙) to distinguish them from the estimators based on rank-based GLS method. 

We assume that the analytic form of the cdf 𝐹𝑋(∙) is known.  

The likelihood function of 𝜃 based on observations 𝑥, namely 𝐿(𝜃; 𝑥), is the 

product of the marginal probability density functions (pdf’s) and is written as 

                                 𝐿(𝜃; 𝑥) =∏ 𝑓𝑋(𝑥𝑖; 𝜃)
𝑛

𝑖=1
                                                   (3.6.1) 

In most cases, it is convenient to take the logarithm of the likelihood function, 

denoted by 𝑙(𝜃; 𝑥), and which is given by 

                              𝑙(𝜃; 𝑥) = log[𝐿(𝜃; 𝑥)] =∑ log[𝑓𝑋(𝑥𝑖; 𝜃)]
𝑛

𝑖=1
                    (3.6.2) 

The maximum likelihood estimate 𝜃(𝑥)𝑀𝐿  is obtained by maximizing the 

likelihood function 𝐿(𝜃; 𝑥) or the logarithm of the likelihood function 𝑙(𝜃; 𝑥). To 

this end, one can determine the partial derivatives of 𝐿(𝜃; 𝑦) or 𝑙(𝜃; 𝑥) with 

respect to 𝜃  individually or simultaneously, and then equating the partial 

derivatives to zero. For any observed values 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛)
′, the maximum 

likelihood estimates (MLEs) of 𝜃 are denoted by 𝜃(𝑥)𝑀𝐿 . 

When a closed form expression for 𝜃(𝑥)𝑀𝐿  which maximizes the likelihood 

function (3.6.1) or log-likelihood (3.6.2) is not available, the maximum likelihood 
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estimate 𝜃(𝑥)𝑀𝐿 of 𝜃 can often be obtained through numerical optimization 

methods. For example, the iterative procedures can be used in such cases. 

Depending mainly on the shape of the likelihood functions or log-likelihood 

functions, various types of iterative methods have been developed in the 

literature. For example, NR, the system of non-linear equations, the direct 

maximization of the log-likelihood function, and a non-linear optimization are 

some of the examples of iterative methods. Thus, the shape of the likelihood 

functions or log-likelihood functions can be used as a criterion for selecting a 

suitable iterative method. As a result of the central limit theorem, the shape of 

many likelihood functions or log-likelihood functions tend to approximate 

quadratic functions. Thus, in this thesis, the NR iterative method, which is widely 

applied to many statistical maximization problems, is used. 

MLE of 𝛉 for the Normal and Log-Normal Distributions 

The explicit ML estimates for the location and scale parameters of the Normal 

and Log-Normal distributions based on complete samples are well known. For 

the Normal distribution, the explicit ML estimates for 𝜇 and 𝜎 are, respectively, 

given by (see, for example, Balakrishnan and Cohen, 1991, p. 147) 

                                     𝜇̂(𝑦)𝑀𝐿 = 𝑦̅ =∑ 𝑦𝑖
𝑛

𝑖=1
𝑛⁄                                                 (3.6.3) 

and 

                               𝜎̂(𝑦)𝑀𝐿 = [(𝑛 − 1)𝑠
2 𝑛⁄ ]1 2⁄                                                  (3.6.4) 

where 𝑦̅ is the sample mean and 𝑠2 is the sample variance, which is  

                                         𝑠2 =∑ (𝑦𝑖 − 𝑦̅)
2

𝑛

𝑖=1
(𝑛 − 1)⁄                                     (3.6.5) 

Similarly to (3.6.3) and (3.6.4), the explicit ML estimates for the location and 

scale parameters of the Log-Normal distribution based on a complete sample 

can be obtained as follows: 
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Based on the general definition of the LLS family of distributions in Section 2.3, 

let 𝑊1,𝑊2, … ,𝑊𝑛 be an i.i.d. random sample of size 𝑛 from the distribution of 

𝑊∗. 

Furthermore, let 𝑤 = (𝑤1, 𝑤2, … , 𝑤𝑛)
′ be a vector of observations associated 

with a random sample 𝑊1,𝑊2, … ,𝑊𝑛  of size 𝑛  from any LLS distribution 

investigated in this thesis. Then, the explicit ML estimates for 𝜇 and 𝜎 of the Log-

Normal distribution are, respectively, given by 

                               𝜇∗̂(𝑤)𝑀𝐿 =∑ log(𝑤𝑖)
𝑛

𝑖=1
𝑛                                                (3.6.6)⁄  

and 

                      𝜎 ∗̂(𝑤)𝑀𝐿 = {∑ [log(𝑤𝑖) − 𝜇∗̂(𝑤)𝑀𝐿]
2

𝑛

𝑖=1
𝑛⁄ }
1 2⁄

                 (3.6.7) 

The ML estimates for the location and scale parameters of the Normal and Log-

Normal distributions base on censored samples can be obtained using the 

iterative procedures. For the log-likelihood function for the location and scale 

parameters of these LS distributions and a detailed discussion, refer to Lawless 

(2003, p. 230).             

MLE of 𝛉∗ for the Weibull Distribution 

The MLE for the parameters of the Weibull distribution has been investigated by 

many researchers; see, for example, Balakrishnan and Kateri (2008), and the text 

of Rinne (2009, Chapter 11). It has been shown (see, for example, Rinne (2009, 

pp. 412-413)) that ML estimates for the parameters of the Weibull distribution 

based on a complete sample cannot be obtained explicitly from the equations of 

partial derivatives. To overcome this difficulty, an alternative approach to this 

method of estimation was proposed and is presented as follows.  

Let 𝑤 be a vector of the i.i.d. sample of observations drawn from the Weibull 

population with parameters 𝜇∗ and 𝜎∗ as defined earlier in Sections 2.3.3. and 
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3.6.2. Then, the log-likelihood function of the parameter vector 𝜃∗ = (𝜇∗, 𝜎∗)′, 

given the data 𝑤 = (𝑤1, 𝑤2, … , 𝑤𝑛)
′, can be given by 

𝑙(𝜃∗; 𝑤) = 𝑛[log(𝜎∗) − 𝜎∗ log(𝜇∗)] + 

(𝜎∗ − 1)∑ log(𝑤𝑖) −∑ (𝑤𝑖 𝜇
∗⁄ )𝜎

∗
𝑛

𝑖=1

𝑛

𝑖=1
 

Thus, taking the partial derivatives of the log-likelihood function with respect to 

the parameters 𝜇∗ and 𝜎∗, and equating the partial derivatives to zero lead to 

the estimating equations (3.6.8) and (3.6.9) 

   
𝜕𝑙(𝜃∗; 𝑤)

𝜕𝜇∗
= −

𝑛𝜎∗

𝜇∗
+
𝜇∗

𝜎∗
∑ (𝑤𝑖 𝜇

∗⁄ )𝜎
∗

𝑛

𝑖=1
= 0                    (3.6.8) 

 

𝜕𝑙(𝜃∗; 𝑤)

𝜕𝜎∗
=
𝑛

𝜎∗
− 𝑛 log(𝜇∗) +∑ log(𝑤𝑖)

𝑛

𝑖=1
−                           

                           ∑ (𝑤𝑖 𝜇
∗⁄ )𝜎

∗
𝑛

𝑖=1
log(𝑤𝑖 𝜇

∗⁄ ) = 0                  (3.6.9) 

Clearly, the partial derivative (estimating) equations (3.6.8) and (3.6.9) are non-

linear in 𝜇∗ and 𝜎∗ respectively. Thus, they may be solved numerically using 

iterative methods. Alternatively, the approximate ML estimates for the 

parameters of the Weibull distribution, when available, may be used. However, 

using estimating equation for 𝜇∗ (3.6.8), it may be convenient to express 𝜇∗ in 

terms of the parameter 𝜎∗, explicitly, so that only estimating equation for 𝜎∗ 

can be solved iteratively. That is,  

                            𝜇∗ = [∑ (𝑤𝑖)
𝜎∗

𝑛

𝑖=1
𝑛⁄ ]
1 𝜎∗⁄

                                                    (3.6.10) 

It follows from the explicit equation for 𝜇∗ (3.6.10) that 

                             (𝜇∗)𝜎
∗
=∑ (𝑤𝑖)

𝜎∗
𝑛

𝑖=1
𝑛⁄                                                        (3.6.11) 
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Substituting the RHS of equation (3.6.10) for 𝜇∗, and RHS of equation (3.6.11) for 

(𝜇∗)𝜎
∗
in estimating equation (3.6.9) lead to the simplified estimating equation 

                         
1

𝜎∗
+
1

𝑛
∑ log(𝑤𝑖) −

∑ log(𝑤𝑖)
𝑛
𝑖=1

∑ (𝑤𝑖)𝜎
∗𝑛

𝑖=1

= 0                             (3.6.12)
𝑛

𝑖=1
 

The ML estimate for the parameter 𝜎∗, namely 𝜎 ∗̂(𝑤)𝑀𝐿 can then be obtained 

by using a NR iterative procedure. After 𝜎 ∗̂(𝑤)𝑀𝐿 has been obtained iteratively, 

it is substituted for 𝜎∗ in explicit equation for 𝜇∗ (3.6.10) to obtain 𝜇∗̂(𝑤)𝑀𝐿 . 

Thus, the ML estimate for 𝜇∗, which depends on  𝜎 ∗̂(𝑤)𝑀𝐿, of the Weibull 

distribution is given by 

                       𝜇∗̂(𝑤)𝑀𝐿 = [∑ (𝑤𝑖)
𝜎∗̂(𝑤)𝑀𝐿

𝑛

𝑖=1
𝑛⁄ ]
1 𝜎∗̂(𝑤)𝑀𝐿⁄

                          (3.6.13) 

Furthermore, in the manner of Rinne (2009, p. 416) and using the ML estimate 

for 𝜇∗ (3.6.13), let  

𝑔[𝜎 ∗̂(𝑤)] =
1

𝜎 ∗̂(𝑤)
+
1

𝑛
∑ log(𝑤𝑖) −

∑ log(𝑤𝑖)
𝑛
𝑖=1

∑ (𝑤𝑖)𝜎
∗̂(𝑤)𝑛

𝑖=1

𝑛

𝑖=1
 

Then 

𝑔′[𝜎 ∗̂(𝑤)] =
𝜕

𝜕𝜎 ∗̂(𝑤)
𝑔[𝜎 ∗̂(𝑤)]                                                                  

           =
∑ log(𝑤𝑖)∑ log(𝑤𝑖)

𝑛
𝑖=1 (𝑤𝑖)

𝜎∗̂(𝑤)𝑛
𝑖=1

{∑ (𝑤𝑖)𝜎
∗̂(𝑤)𝑛

𝑖=1 }
2 −

1

[𝜎 ∗̂(𝑤)]2
 

Thus, an NR iterative procedure for obtaining 𝜎 ∗̂(𝑤)𝑀𝐿 can be summarized as 

follows  

                       𝜎 ∗̂(𝑤)𝑐+1 = 𝜎 ∗̂(𝑤)𝑐 −
𝑔[𝜎 ∗̂(𝑤)𝑐]

𝑔′[𝜎 ∗̂(𝑤)𝑐]
                                           (3.6.14) 

where 𝑐 = 0, 1, 2, … denotes the number of iterations. We present the NR 

algorithm for obtaining numerically the ML estimates for the scale and shape 

parameters of the Weibull distribution as follows:  
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Algorithm 2: Calculating 𝝁∗̂(𝒘)𝑴𝑳 and 𝝈∗̂(𝒘)𝑴𝑳 for Weibull distribution 

1. Let 𝑤1, 𝑤2, … , 𝑤𝑛 be an i.i.d. random sample of observations of size 𝑛 

from a Weibull distribution, namely 𝑊𝑒𝑖𝑏(𝜇∗, 𝜎∗). 

2. Start with a suitable initial estimate 𝜎 ∗̂(𝑤)0.  

3. For 𝑐 = 0, 1, 2, … substitute the value 𝜎 ∗̂(𝑤)𝑐 into equation (3.6.14) 

and then calculate 𝜎 ∗̂(𝑤)𝑐+1. 

4. Repeat step 3 iteratively until the values of 𝜎 ∗̂(𝑤)𝑐  converge to 

𝜎 ∗̂(𝑤)𝑀𝐿. 

5. After the convergence of 𝜎 ∗̂(𝑤)𝑀𝐿 is achieved, substitute the ML 

estimate 𝜎 ∗̂(𝑤)𝑀𝐿  for 𝜎∗  into the ML estimate for 𝜇∗  (3.6.13), 

thereby obtaining the ML estimate of 𝜇∗.  

Alternatively, the approximate ML estimates for the scale and shape parameters 

of the Weibull distribution based on a complete sample, when available, may be 

used. The approximate ML estimates for the location and scale parameters of 

the Gumbel distribution, which is the anti-log distribution of the Weibull, based 

on Type-II or doubly censored sample were derived by Balakrishnan and Cohen 

(1991, p. 189). Similarly, the log-likelihood function of the location and scale 

parameters of the Gumbel distribution, and the associated first and second 

order partial derivative equations of the likelihood function, based on a 

censored sample; standard survivor and pdf functions, are discussed by Lawless 

(2003, pp. 218-219).   

MLE of 𝛉 for the Logistic Distribution and 𝛉∗ for the Log-Logistic 

Distribution 

Let 𝑦1, 𝑦2, … , 𝑦𝑛 be an i.i.d. random sample of observations drawn from the 

Logistic distribution with location and scale parameters 𝜇 and 𝜎, respectively, as 

defined in Section 2.2.2. Then, the ML estimates for 𝜇 and 𝜎, namely 𝜇̂(𝑦)𝑀𝐿 
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and 𝜎̂(𝑦)𝑀𝐿 , may be obtained by solving estimating equations (3.6.15) and 

(3.6.16) below (see, for example, Mahdi and Cenac (2006)): 

                 
𝜕𝑙(𝜃; 𝑦)

𝜕𝜇
=
𝑛

𝜎
−
2

𝜎
∑ {

𝑒𝑥𝑝 [−(
𝑦𝑖 − 𝜇
𝜎 )]

1 + 𝑒𝑥𝑝 [−(
𝑦𝑖 − 𝜇
𝜎 )]

} = 0                (3.6.15)
𝑛

𝑖=1
 

and  

     
𝜕𝑙(𝜃; 𝑦)

𝜕𝜎
=∑ (

𝑦𝑖 − 𝜇

𝜎2
) −

𝑛

𝜎
−

𝑛

𝑖=1
                                                            

                                    
2

𝜎2
∑ {

(𝑦𝑖 − 𝜇)𝑒𝑥𝑝 [−(
𝑦𝑖 − 𝜇
𝜎 )]

1 + 𝑒𝑥𝑝 [−(
𝑦𝑖 − 𝜇
𝜎 )]

} = 0
𝑛

𝑖=1
               (3.6.16) 

Furthermore, estimating equations (3.6.15) and (3.6.16) can be simplified to 

estimating equations 

                                      
𝑛

2
=∑ [

1

1 + 𝑒𝑥𝑝 (
𝑦𝑖 − 𝜇
𝜎 )

]
𝑛

𝑖=1
                                   (3.6.17) 

and 

                      ∑ (
𝑦𝑖 − 𝜇

𝜎
){
1 − 𝑒𝑥𝑝 [−(

𝑦𝑖 − 𝜇
𝜎 )]

1 + 𝑒𝑥𝑝 [−(
𝑦𝑖 − 𝜇
𝜎 )]

}
𝑛

𝑖=1
= 𝑛                         (3.6.18) 

respectively. Then, the ML estimates for 𝜇 and 𝜎, namely 𝜇̂(𝑦)𝑀𝐿 and 𝜎̂(𝑦)𝑀𝐿 

based on a complete sample 𝑦 can be obtained numerically from estimating 

equations (3.6.17) and (3.6.18) by using the NR iterative procedure. 

Furthermore, the ML estimates for 𝜇∗ and 𝜎∗ of the Log-Logistic distribution 

based on a complete sample 𝑤, namely 𝜇∗̂(𝑤)𝑀𝐿 and 𝜎 ∗̂(𝑤)𝑀𝐿 , can be obtained 

by solving the following estimating equations for 𝜇∗ and 𝜎∗, respectively (see, 

for example, Singh and Guo (1995)): 
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                                          2 ∑ [
(
𝑤𝑖
𝜇∗
)
𝜎∗

1+(
𝑤𝑖
𝜇∗
)
𝜎∗] = 𝑛

𝑛
𝑖=1                                                   (3.6.19)

  

          2𝜎∗∑ [
log (

𝑤𝑖
𝜇∗) (

𝑤𝑖
𝜇∗)

𝜎∗

1 + (
𝑤𝑖
𝜇∗
)
𝜎∗

] − 𝜎∗∑ log (
𝑤𝑖
𝜇∗
)

𝑛

𝑖=1
− 𝑛 = 0

𝑛

𝑖=1
           (3.6.20) 

As is the case with the Logistic distribution, the ML estimates 𝜇∗̂(𝑤)𝑀𝐿 and 

𝜎 ∗̂(𝑤)𝑀𝐿  for the Log-Logistic distribution based on the complete sample 𝑤 can 

be obtained numerically by using the NR iterative procedure. Alternatively, the 

approximate ML estimates for the parameters of the Logistic and Log-Logistic 

distributions based on complete samples, when available, may be used. 

Balakrishnan and Cohen (1991, p. 179) derived the approximate ML estimates 

for the location and scale parameters of the Logistic distribution based on a 

doubly censored sample. For further related work, refer to Lawless (2003, p. 

232), who derived the log-likelihood function for the location and scale 

parameters of the Logistic distribution, and the first and second partial 

derivatives of the log-likelihood function, based on the standard survivor and 

pdf functions and a censored sample. 

MLE of 𝛉 for the Uniform Distribution 

Let 𝑦1, 𝑦2, … , 𝑦𝑛 be an i.i.d. random sample of observations drawn from the 

Uniform distribution with the location and scale parameters 𝑎 = 𝜇 and 𝑏 − 𝑎 =

𝜎, respectively, as defined earlier in Section 2.2.3. Then, explicit ML estimates 

for 𝑎 and 𝑏 − 𝑎, namely 𝑎̂(𝑦)𝑀𝐿 and 𝑏 − 𝑎̂(𝑦)𝑀𝐿 , can be obtained as follows: 

The likelihood function of 𝜃 = (𝑎, 𝑏)′, given the data 𝑦 can be given by 

𝐿(𝜃; 𝑦) =∏
1

𝑏 − 𝑎

𝑛

𝑖=1
= (𝑏 − 𝑎)−𝑛 
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and the log-likelihood function associated with the likelihood function can be 

given by  

                          𝑙(𝜃; 𝑦) = log[(𝑏 − 𝑎)−𝑛] = −𝑛 log(𝑏 − 𝑎)                          (3.6.21) 

The log-likelihood function (3.6.21) can be maximized by minimizing the value of 

(𝑏 − 𝑎) under the constraint that 𝑎 ≤ 𝑦(1) and 𝑏 ≥ 𝑦(𝑛), where 𝑦(1) = min
1≤𝑖≤𝑛

(𝑦𝑖) 

and 𝑦(𝑛) = max
1≤𝑖≤𝑛

(𝑦𝑖). Thus, explicit ML estimates for 𝑎 and 𝑏 are, respectively, 

𝑎̂(𝑦)𝑀𝐿 = 𝑦(1) and 𝑏̂(𝑦)𝑀𝐿 = 𝑦(𝑛). However, explicit unbiased ML estimates for 

𝑎 and 𝑏 are given by  

                                         𝑎̂(𝑦)𝑀𝐿 =
𝑛 − 1

𝑛
𝑦(1)                                                    (3.6.22) 

and 

  𝑏̂(𝑦)𝑀𝐿 =
𝑛 + 1

𝑛
𝑦(𝑛)  

respectively. In terms of LS parametrization, the unbiased ML estimate for the 

scale parameter 𝜎 = 𝑏 − 𝑎 is given by 

                                    𝜎 ̂(𝑦)𝑀𝐿 = 𝑏̂(𝑦)𝑀𝐿 − 𝑎̂(𝑦)𝑀𝐿                                           (3.6.23) 

MLE of 𝛉 for the Gumbel Distribution 

 Let 𝑦1, 𝑦2, … , 𝑦𝑛 be an i.i.d. random sample of observations drawn from the 

Gumbel distribution with parameters 𝜇 and 𝜎 as defined in Section 2.2.4. Then, 

the respective ML estimates for the location and scale parameters 𝜇 and 𝜎, 

namely 𝜇̂(𝑦)𝑀𝐿  and 𝜎̂(𝑦)𝑀𝐿 , can be obtained as follows (Mahdi and Cenac 

(2005)): 

The likelihood function of 𝜃 = (𝜇, 𝜎)′, given the data 𝑦 is given by 

𝐿(𝜃; 𝑦) = 𝜎−𝑛𝑒𝑥𝑝 [−∑ (
𝑦𝑖 − 𝜇

𝜎
)

𝑛

𝑖=1
] 𝑒𝑥𝑝 {−∑ 𝑒𝑥𝑝 [−(

𝑦𝑖 − 𝜇

𝜎
)]

𝑛

𝑖=1
} 
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and the log-likelihood function associated with the likelihood function is given 

by  

  𝑙(𝜃; 𝑦) = −𝑛 log(𝜎) −∑ (
𝑦𝑖 − 𝜇

𝜎
)

𝑛

𝑖=1
−                

                                                ∑ 𝑒𝑥𝑝 [−(
𝑦𝑖 − 𝜇

𝜎
)]

𝑛

𝑖=1
                                        (3.6.24) 

The log-likelihood function (3.6.24) can be maximized by finding its partial 

derivatives with respect to 𝜇  and 𝜎 , and equating to zero, which lead, 

respectively, to estimating equations 

                      
𝜕𝑙(𝜃; 𝑦)

𝜕𝜇
=
1

𝜎
{𝑛 −∑ 𝑒𝑥𝑝 [−(

𝑦𝑖 − 𝜇

𝜎
)]

𝑛

𝑖=1
} = 0                      (3.6.25) 

and 

          
𝜕𝑙(𝜃; 𝑦)

𝜕𝜎
=∑ (

𝑦𝑖 − 𝜇

𝜎
)

𝑛

𝑖=1
−
𝑛

𝜎
−                                                                  

                                   ∑ (
𝑦𝑖 − 𝜇

𝜎2
)

𝑛

𝑖=1
𝑒𝑥𝑝 [−(

𝑦𝑖 − 𝜇

𝜎
)] = 0                         (3.6.26) 

where 𝜎 ≠ 0. Furthermore, estimating equations (3.6.25) and (3.6.26) can be 

simplified, respectively, to  

                        𝜇 = 𝜎 {log(𝑛) − log [∑ 𝑒𝑥𝑝 {−(
𝑦𝑖
𝜎
)}

𝑛

𝑖=1
]}                           (3.6.27) 

and 

                                 𝑦̅ = 𝜎 +
∑ 𝑦𝑖
𝑛
𝑖=1 𝑒𝑥𝑝 [−(

𝑦𝑖
𝜎)]

∑ 𝑒𝑥𝑝 [−(
𝑦𝑖
𝜎)]

𝑛
𝑖=1

                                          (3.6.28) 

where 𝑦̅ = ∑ 𝑦𝑖
𝑛
𝑖=1 𝑛⁄  is a sample mean. Thus, the ML estimates for 𝜎, namely 

𝜎̂(𝑦)𝑀𝐿 for a Gumbel distribution can be obtained numerically by applying the 

NR iterative procedure to estimating equation (3.6.28). Then, the ML estimate 

for 𝜇, namely 𝜇̂(𝑦)𝑀𝐿 can be obtained implicitly by substituting 𝜎̂(𝑦)𝑀𝐿 for 𝜎 in 

equation (3.6.27). Thus, 
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        𝜇̂(𝑦)𝑀𝐿 = 𝜎̂(𝑦)𝑀𝐿 {log(𝑛) − log [∑ 𝑒𝑥𝑝 {−(
𝑦𝑖

𝜎̂(𝑦)𝑀𝐿
)}

𝑛

𝑖=1
]}           (3.6.29) 

In the manner of Rinne (2009, p. 416) and using (3.6.28), let  

𝑔[𝜎̂(𝑦)] = 𝜎̂(𝑦) +

∑ 𝑦𝑖
𝑛
𝑖=1 𝑒𝑥𝑝 [−(

𝑦𝑖
𝜎̂(𝑦)

)]

∑ 𝑒𝑥𝑝 [−(
𝑦𝑖
𝜎̂(𝑦)

)]𝑛
𝑖=1

− 𝑦̅ 

Then, 

𝑔′[𝜎̂(𝑦)] =
𝜕

𝜕𝜎̂(𝑦)
𝑔[𝜎̂(𝑦)]                                            

       = 1 +
0

{∑ 𝑒𝑥𝑝 [−(
𝑦𝑖
𝜎̂(𝑦)

)]𝑛
𝑖=1 }

2 = 1 

Thus, an NR iterative procedure for obtaining 𝜎̂(𝑦)𝑀𝐿 can be summarized as 

follows  

𝜎̂(𝑦)𝑐+1 = 𝜎̂(𝑦)𝑐 −
𝑔[𝜎̂(𝑦)𝑐]

𝑔′[𝜎̂(𝑦)]
                                                

                                      = 𝜎̂(𝑌)𝑐 −

∑ 𝑦𝑖
𝑛
𝑖=1 𝑒𝑥𝑝 [− (

𝑦𝑖
𝜎̂(𝑦)𝑐

)]

∑ 𝑒𝑥𝑝 [−(
𝑦𝑖

𝜎̂(𝑦)𝑐
)]𝑛

𝑖=1

− 𝑦̅                 (3.6.30) 

where 𝑐 = 0, 1, 2, … denotes the number of iterations. We present NR algorithm 

for obtaining numerically the ML estimates for the parameters of the Gumbel 

distribution as follows:  

Algorithm 3: Calculating 𝝁̂(𝒚)𝑴𝑳 and 𝝈̂(𝒚)𝑴𝑳 for a Gumbel distribution 

1. Let 𝑦1, 𝑦2, … , 𝑦𝑛 be an i.i.d. random sample of observations of size 𝑛 

from the Gumbel distribution, namely 𝐺𝑢𝑚𝑏𝑒𝑙 (𝜇, 𝜎). 

2. Calculate the sample mean 𝑦̅. 

3. Start with a suitable initial estimate 𝜎̂(𝑦)0. 



72 

4. For 𝑐 = 0, 1, 2, … substitute the value 𝜎̂(𝑦)𝑐  into equation (3.6.30) 

and then calculate 𝜎̂(𝑦)𝑐+1. 

5. Repeat step 4 iteratively until the values of 𝜎̂(𝑦)𝑐  converge to 

𝜎̂(𝑦)𝑀𝐿 . 

6. After the convergence of 𝜎̂(𝑦)𝑀𝐿  is achieved, substitute the ML 

estimate 𝜎̂(𝑦)𝑀𝐿  for 𝜎  into the explicit equation for 𝜇  (3.6.27), 

thereby obtaining the ML estimate of 𝜇. 

Alternatively, the approximate ML estimates for the location and scale 

parameters of the Gumbel distribution based on a complete sample, when 

available, may be used. Balakrishnan and Cohen (1991, p. 189) derived the 

approximate ML estimates for the location and scale parameters of the Gumbel 

distribution based on a doubly censored sample. Similarly, Lawless (2003, pp. 

218-219) discussed the log-likelihood function of the location and scale 

parameters of the Gumbel distribution, and the associated first and second 

order partial derivative equations of the likelihood function, based on a 

censored sample; standard survivor and pdf functions.   

MLE of 𝛉∗ for the Pareto Distribution 

Let 𝑤  be an i.i.d. random sample of observations drawn from the Pareto 

distribution with the scale and shape parameters 𝜇∗ and 𝜎∗, respectively, as 

defined in Sections 2.3.4. and 3.6.2. Then, the explicit ML estimates for 𝜇∗ and 

𝜎∗, namely 𝜇∗̂(𝑤)𝑀𝐿 and 𝜎 ∗̂(𝑤)𝑀𝐿 , can be obtained as follow. 

The log-likelihood function for the Pareto distribution can be given by 

      𝑙(𝜃∗; 𝑤) = 𝑛 log(𝜎∗) + 𝑛𝜎∗ log(𝜇∗) − (𝜎∗ + 1)∑ log(𝑤𝑖)
𝑛

𝑖=1
           (3.6.31) 

Clearly, the log-likelihood function (3.6.31) is a monotone increasing function of 

the scale parameter 𝜇∗ and, because the support of the Pareto distribution lies 
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in the interval [𝜇∗, ∞), then the ML estimate for 𝜇∗  based on a complete sample 

𝑤 is given by 

                                   𝜇∗̂(𝑤)𝑀𝐿 = min
1≤𝑖≤𝑛

(𝑤𝑖) = 𝑤(1)                                          (3.6.32) 

The ML estimate for the shape parameter 𝜎∗ based on a complete sample 𝑤, 

namely 𝜎 ∗̂(𝑤)𝑀𝐿, can be obtained by first determining the partial derivative of 

the log-likelihood function (3.6.31) with respect to 𝜎∗, equating the resulting 

estimating equation to zero and then finally solve explicitly for 𝜎∗.  

Thus, the partial derivative of (3.6.31) with respect to 𝜎∗ leads to the estimating 

equation 

                     
𝜕𝑙(𝜃∗; 𝑤)

𝜕𝜎∗
= 𝑛 𝜎∗ + 𝑛 log(𝜇∗) −∑ log(𝑤𝑖) = 0               (3.6.33)

𝑛

𝑖=1
⁄  

Solving the partial derivative (3.6.33) explicitly for 𝜎∗, leads the ML estimate for 

𝜎 

                     𝜎 ∗̂(𝑤)𝑀𝐿 = 𝑛 [∑ log(𝑤𝑖) − 𝑛 log(𝜇
∗)

𝑛

𝑖=1
]                              (3.6.34)⁄  

The ML estimate for 𝜎 (3.1.34) can be simplified further to 

                                𝜎 ∗̂(𝑤)𝑀𝐿 = 1 [log(𝑤)̅̅ ̅̅ ̅̅ ̅̅ ̅ − log(𝜇∗)]⁄                                    (3.6.35) 

where 

                                   log(𝑤)̅̅ ̅̅ ̅̅ ̅̅ ̅ = ∑ log(𝑤𝑖)
𝑛

𝑖=1
𝑛⁄                                              (3.6.36) 

Thus, 𝜎 ∗̂(𝑤)𝑀𝐿 can be obtained by substituting the ML estimate for 𝜇∗ (3.6.32), 

for 𝜇∗ in (3.6.35), namely 

                          𝜎 ∗̂(𝑤)𝑀𝐿 = 1 [log(𝑤)̅̅ ̅̅ ̅̅ ̅̅ ̅ − log( 𝜇∗̂(𝑤)𝑀𝐿)]⁄                            (3.6.37) 
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Chapter 4 - Inference for 
Location-Scale and 
Log-Location-Scale 
Distributions: One-
Sample Problem 

In this chapter we present firstly a literature review (Section 4.1) on inference 

for the location and scale parameters, quantiles of the distributions, parameter 

vector of the location and scale parameters, and tail probabilities based on 

order statistics of a single sample (complete or censored) and rank and/or ML-

based methods. Secondly, we discuss the rank (Section 4.2) and ML-based 

(Section 4.3) CPQs and FGPQs for inference based on a single sample from LS 

and LLS distributions. Statistical inference using rank and ML-based CPQs and 

FGPQs are presented in Sections 4.4 and 4.5 respectively. Lastly, a simulation 

study involving  one-sample problem and illustrative examples are presented in 

Sections 4.6 and 4.7 respectively. 

4.1. Literature Review 

A considerable range of literature is available on inference for the location and 

scale parameters and quantiles of the distribution from a single sample (one-

sample problem). Bain (1972) derived a chi-square test for testing a hypothesis 

about the scale parameter of a Gumbel distribution using a simple and unbiased 

estimator from a censored sample. A similar test based on the ML estimator for 

the scale parameter of a Weibull distribution using a censored sample, when the 

shape parameter is assumed to be known, was derived by Harter and Moore 

(1965). Related work was done, for example, by Mann (1967, 1968, and 1970). 

Nkurunziza and Chen (2011) applied the method of generalized inference based 
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on Pitman estimators to the location and scale parameters of the Normal, 

Cauchy and Logistic distributions; and special cases (see Nkurunziza and Chen 

(2011, Example 4.4, p. 226)) of the LS families of distributions, for which the ML 

estimators do not exist, were investigated by Gupta and Székey (1994). Through 

simulation, Nkurunziza and Chen (2011) obtained the coverage probabilities of a 

95% confidence interval for the location and scale parameters of the Normal, 

Cauchy and Logistic distributions for sample sizes 𝑛 = 2, 5, 10 and 100 and 

compared their results based on Pitman estimators with those based on ML 

methods. Furthermore, Nkurunziza and Chen (2011) demonstrated the 

performance of their method using real data examples. 

Another study on one-sample based inference was carried out by Withers and 

Nadarajah (2014), who obtained exact and approximate coverage probabilities 

and average lengths of a 95% confidence interval for the scale parameter of the 

Exponential and Gamma distributions, for the location parameter of the Gumbel 

distribution, and the location and scale parameters of the Normal distribution. 

The results of Withers and Nadarajah (2014) are based on simulated samples of 

sizes 𝑛 = 2 through 40 using the ML-based methods. Cheng and Iles (1983) 

derived the simultaneous confidence region (SCR) and subsequently the 

simultaneous confidence band (SCB) for the vector parameter 𝜃 = (𝜇, 𝜎 )′ in 

order to estimate the cdf of a general continuous distribution based on ML 

methods. Cheng and Iles (1983) applied this general method by considering the 

special cases of the LS distributions, namely the Normal, Log Normal, Gumbel 

and Weibull distributions.  Through simulation, Cheng and Iles (1983)  evaluated, 

using real data examples, their method based on a complete sample by 

comparing the 90% SCB  for  𝜃 of the Normal and Weibull distributions with the 

SCB obtained by Kanofsky and Srinivasan (1972). Simulation results showed that 

a 90% SCB for 𝜃 obtained by Cheng and Iles (1983) is competitive with that of 

Kanofsky and Srinivasan’s (1972). 
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4.2. Rank-Based Conventional and Fiducial 

Generalized Pivotal Quantities 

In Sections 4.2.1 through 4.2.5 we discuss specific examples of rank-based 

conventional and fiducial generalized pivotal quantities for testing hypotheses 

and constructing confidence intervals for the parameters, quantiles of the 

distributions, and tail probabilities in the LS and LLS families of distributions. 

CPQs and FGPQs for 𝝈 

In Sections 4.2.1.1 through 4.2.1.3, we present CPQs and FGPQs for the 

parameters 𝜎 and 𝜎2. 

 CPQ and FGPQ for 𝝈 based on GLS estimator for 𝝈  

As was shown in Section 3.2, equation (3.2.8), the GLS estimator for 𝜃 = (𝜇, 𝜎)′ 

is given by 

𝜃(𝑌) = (𝑋′𝑉−1𝑋)−1𝑋′𝑉−1𝑌 = 𝐻𝑌 

where  

𝐻 = (𝑋′𝑉−1𝑋)−1𝑋′𝑉−1 

Thus the GLS estimator for 𝜎 is 𝐿2
′ 𝜃(𝑌), where 𝐿2 = (0, 1)

′, namely 

𝜎̂(𝑌) = 𝐿2
′ (𝑋′𝑉−1𝑋)−1𝑋′𝑉−1𝑌             

= 𝐿2
′ 𝐻𝑌                                   

   = 𝐿2
′ 𝐻(𝜇 ∙ 𝟏𝑛 + 𝜎 ∙ 𝑍)             

                                                = 𝜎 ∙ 𝐿2
′ 𝐻𝑍                                                                (4.2.1) 

since 𝐻𝟏𝑛 = (1, 0)
′ and therefore 𝐿2

′ 𝐻𝟏𝑛 = 0. Based on (4.2.1), a CPQ for 𝜎 can 

be defined as follows: 
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𝒬𝜎(𝑌, 𝜃) = 𝜎̂(𝑌) 𝜎                             ⁄  

                                 = 𝐿2
′ 𝐻𝑍                                                             (4.2.2)  

The second equality in (4.2.2) shows that the distribution of 𝒬𝜎(𝑌, 𝜃) is free of 

𝜃. Thus 𝒬𝜎(𝑌, 𝜃) is a CPQ for 𝜎.  

Let 𝑦 be an observation of 𝑌. Based on (4.2.1), a FGPQ for 𝜎 can be defined as 

follows: 

   ℛ𝜎(𝑦, 𝑌, 𝜃) =
𝜎̂(𝑦)

𝜎̂(𝑌) 𝜎⁄
                                             

                                                      =
𝐿2
′ 𝐻𝑦

𝐿2
′ 𝐻𝑍

                                                               (4.2.3) 

The first equality in (4.2.3) shows that ℛ𝜎(𝑦, 𝑌, 𝜃) is a function of 𝑦, 𝑌 and 𝜎, 

and that ℛ𝜎(𝑦, 𝑦, 𝜃) = 𝜎  for all possible observations 𝑦  of 𝑌;  thus property 

FGPQ2 is fulfilled. Furthermore, the second equality in (4.2.3) shows that the 

distribution of ℛ𝜎(𝑦, 𝑌, 𝜃), conditional on an observation 𝑦 of 𝑌, is free of 𝜃 

since the quantity (4.2.3) is solely a function of the vector of ordered standard 

variates 𝑍. This completes the proof that ℛ𝜎(𝑦, 𝑌, 𝜃) is a FGPQ for 𝜎. 

Comparing the CFQ (4.2.2) and the FGPQ (4.2.3) we note that, given an 

observation 𝑦, the two quantities are monotonic functions of each other. In that 

sense, the CFQ (and its distribution) is equivalent to the FGPQ. 

 CPQ and FGPQ for 𝝈𝟐based on residual sum of squares 

The generalized least squares residuals under model (3.2.5)/(3.2.6) are defined 

as 

                           𝑒̂(𝑌) = [𝐼 − 𝑋(𝑋′𝑉−1𝑋)−1𝑋′𝑉−1]𝑌 = 𝑁𝑌                             (4.2.4) 

where 

                                 𝑁 = 𝐼 − 𝑋𝐻 = 𝐼 − 𝑋(𝑋′𝑉−1𝑋)−1𝑋′𝑉−1                         (4.2.5) 



78 

Using equation (3.2.2) in (4.2.4) the least squares residuals can be written as 

     𝑒̂(𝑌) = 𝑁𝑌      

                                       = 𝑁(𝜇 ∙ 𝟏𝑛 + 𝜎 ∙ 𝑍)    

                                                            = 𝜎 ∙ 𝑁𝑍                                           (4.2.6)  

since 𝑁𝟏𝑛 = 0. Now the following residual sum of squares is considered 

      𝑆(𝑌) = 𝑒̂(𝑌)′𝑉−1𝑒̂(𝑌)   

                  = 𝑌′𝑁′𝑉−1𝑁𝑌  

                  = 𝜎2 ∙ 𝑍′𝑁′𝑉−1𝑁𝑍 

                                                    = 𝜎2 ∙ 𝑍′𝑀𝑍                                            (4.2.7)  

where  

               𝑀 = 𝑁′𝑉−1𝑁 = 𝑉−1 − 𝑉−1𝑋(𝑋′𝑉−1𝑋)−1𝑋′𝑉−1                         (4.2.8) 

Based on (4.2.7) a CPQ for 𝜎2 can be defined as follows: 

                        𝒬𝜎2(𝑌, 𝜃) = 𝑆(𝑌) 𝜎
2⁄      

                                           = 𝑌′𝑀𝑌 𝜎2  ⁄  

                = 𝑍′𝑀𝑍                                    (4.2.9)  

As above, the third equality in (4.2.9) shows that the distribution of 𝒬𝜎2(𝑌, 𝜃) 

does not depend on any unknown parameters, since the quadratic form is solely 

a function of the vector of ordered standard variates 𝑍. Thus, 𝒬𝜎2(𝑌, 𝜃) is a CPQ. 

The expected value of 𝒬𝜎2(𝑌, 𝜃) is 𝑛 − 2 in the case of a Normal distribution. 

Similarly, based in (4.2.7), a FGPQ for 𝜎2 can be defined as  

ℛ𝜎2(𝑦, 𝑌, 𝜃) =
𝑆(𝑦)

𝑆(𝑌) 𝜎2⁄
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                                                                   =
𝑦′𝑀𝑦

𝑍′𝑀𝑍
                                               (4.2.10) 

The first equality in (4.2.10) shows that ℛ𝜎2(𝑦, 𝑦, 𝜃) = 𝜎
2  for all possible 

observations 𝑦 of 𝑌; the second equality in (4.2.10) shows that the distribution 

of ℛ𝜎2(𝑦, 𝑌, 𝜃) , conditional on an observation 𝑦  of 𝑌,  is free of 𝜃.  Thus, 

ℛ𝜎2(𝑦, 𝑌, 𝜃) is a FGPQ for 𝜎2. 

Similarly, based on (4.2.7), a CPQ for 𝜎 and a FGPQ for 𝜎 are given, respectively 

by 

                                        𝒬𝜎(𝑌, 𝜃) = √𝑍′𝑀𝑍                                                        (4.2.11) 

and 

                                             ℛ𝜎(𝑦, 𝑌, 𝜃) = √
𝑦′𝑀𝑦

𝑍′𝑀𝑍
                                            (4.2.12) 

 Combined CPQ and FGPQ for 𝝈𝟐 

The fact that there are two CPQs for 𝜎 (or 𝜎2), in (4.2.2) and (4.2.9), may suggest 

that information from these two quantities should be combined. The CPQ for 𝜎2 

in (4.2.9) is based on the residual sum of squares from the GLM (3.2.5)/(3.2.6), 

while the CPQ for 𝜎 in (4.2.2) is based on the GLS estimator for 𝜎. This suggests a 

combined CPQ based on the sum of the regression sum of squares due to the 

variable 𝐸(𝑍) in model (3.2.5) and residual sum of squares 𝑆(𝑌) in (4.2.7). 

Let  

                             𝑋̃2 = [𝐼 − 1𝑛(1𝑛
′ 𝑉−1𝟏𝑛)

−11𝑛
′ 𝑉−1] 𝐸(𝑍)                             (4.2.13) 

be the projection of 𝑋2 = 𝐸(𝑍) onto the space orthogonal to 𝟏𝑛. Then the GLS 

estimator for 𝜎 can be written as 

𝜎̂(𝑌) = (𝑋̃2
′𝑉−1𝑋̃2)

−1
𝑋̃2
′𝑉−1𝑌              
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                                                  = 𝜎 ∙ (𝑋̃2
′𝑉−1𝑋̃2)

−1
𝑋̃2
′𝑉−1𝑍                                (4.2.14) 

since 𝑋̃2
′𝑉−1𝟏𝑛 = 0. Furthermore, in terms of 𝑋̃2, the regression sum of squares 

due to the variable 𝐸(𝑍) in model (3.2.5) can be written as  

𝑆̃(𝑌) = 𝜎̂2(𝑌) ∙ (𝑋̃2
′𝑉−1𝑋̃2) = 𝜎̂

2(𝑌) [(𝑋′𝑉−1𝑋)−1]22⁄  

where [(𝑋′𝑉−1𝑋)−1]22 is the second diagonal entry of the matrix 𝑉𝑎𝑟(𝜃) =

(𝑋′𝑉−1𝑋)−1. Thus, using (4.2.14) 

𝑆̃(𝑌) = 𝜎̂2(𝑌) ∙ (𝑋̃2
′𝑉−1𝑋̃2)                                              

 = 𝑌′𝑉−1𝑋̃2(𝑋̃2
′𝑉−1𝑋̃2)

−1
𝑋̃2
′𝑉−1𝑌               

                                    = 𝜎2 ∙ 𝑍′𝑉−1𝑋̃2(𝑋̃2
′𝑉−1𝑋̃2)

−1
𝑋̃2
′𝑉−1𝑍                          (4.2.15) 

The sum of 𝑆(𝑌) in (4.2.7) and  𝑆̃(𝑌) in (4.2.15) is then 

      𝑆(𝑌) + 𝑆̃(𝑌) = 𝜎2 ∙ {𝑍′𝑀𝑍 +
(𝐿2
′ 𝐻𝑍)2

 [(𝑋′𝑉−1𝑋)−1]22
}                                       

                                     = 𝜎2 ∙ 𝑍′ [𝑀 + 𝑉−1𝑋̃2(𝑋̃2
′𝑉−1𝑋̃2)

−1
𝑋̃2
′𝑉−1]  𝑍        (4.2.16) 

Based on 𝑆(𝑌) + 𝑆̃(𝑌) in (4.2.16), a CPQ for 𝜎2 can be defined as follows: 

𝒬𝜎2(𝑌, 𝜃) = [𝑆(𝑌) + 𝑆̃(𝑌)] 𝜎
2⁄                                                     

      = 𝑍′ [𝑀 + 𝑉−1𝑋̃2(𝑋̃2
′𝑉−1𝑋̃2)

−1
𝑋̃2
′𝑉−1]  𝑍 

                                     = 𝑍′𝑀̃ 𝑍                                                                            (4.2.17) 

where 

                             𝑀̃ = 𝑀 + 𝑉−1𝑋̃2(𝑋̃2
′𝑉−1𝑋̃2)

−1
𝑋̃2
′𝑉−1                               (4.2.18) 

The second equality in (4.2.17) shows that the distribution of 𝒬𝜎2(𝑌, 𝜃) is free of 

𝜃. Thus 𝒬𝜎2(𝑌, 𝜃) is a CPQ for 𝜎2. 
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Similarly, based on 𝑆(𝑌) + 𝑆̃(𝑌) in (4.2.16), a combined FGPQ for 𝜎2 can be 

defined as  

ℛ𝜎2(𝑦, 𝑌, 𝜃) =
𝑆(𝑦) + 𝑆̃(𝑦)

[𝑆(𝑌) + 𝑆̃(𝑌)] 𝜎2⁄
                                               

                    =
𝑦′ [𝑀 + 𝑉−1𝑋̃2(𝑋̃2

′𝑉−1𝑋̃2)
−1
𝑋̃2
′𝑉−1] 𝑦

𝑍′ [𝑀 + 𝑉−1𝑋̃2(𝑋̃2
′𝑉−1𝑋̃2)

−1
𝑋̃2
′𝑉−1] 𝑍

       

                                          =
𝑦′𝑀̃𝑦

𝑍′𝑀̃𝑍
                                                                         (4.2.19) 

where, as defined in (4.2.18) 

𝑀̃ = 𝑀 + 𝑉−1𝑋̃2(𝑋̃2
′𝑉−1𝑋̃2)

−1
𝑋̃2
′𝑉−1 

The first equality in (4.2.19) shows that ℛ𝜎2(𝑦, 𝑦, 𝜃) = 𝜎
2  for all possible 

observations 𝑦 of 𝑌; the second equality in (4.2.19) shows that the distribution 

of ℛ𝜎2(𝑦, 𝑌, 𝜃),  conditional on an observation 𝑦  of 𝑌,  is free of 𝜃.  Thus 

ℛ𝜎2(𝑦, 𝑌, 𝜃) is a FGPQ for 𝜎2. 

Similarly to (4.2.11) and (4.2.12), based on 𝑆(𝑌) + 𝑆̃(𝑌) in (4.2.16), a combined 

CPQ for 𝜎 and a combined FGPQ for 𝜎 are given, respectively by 

                                        𝒬𝜎(𝑌, 𝜃) = √𝑍′𝑀̃ 𝑍                                                       (4.2.20) 

and 

                                      ℛ𝜎(𝑦, 𝑌, 𝜃) = √
𝑦′𝑀̃𝑦

𝑍′𝑀̃𝑍
                                                     (4.2.21) 

Again we can note that the pairs of CPQs and FGPQs (4.2.9) / (4.2.10) and 

(4.2.20) / (4.2.21) are equivalent, since they are monotonic functions of each 

other, given an observation 𝑦. 
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In Section 4.6.3.4, the efficiency of the ranked-based CPQs for 𝜎 (4.2.2), (4.2.11) 

and (4.2.20) and that of the rank-based FGPQs for 𝜎 (4.2.3), (4.2.12) and (4.2.21) 

is evaluated through a simulation study, to determine the most efficient rank-

based pivotal quantity for 𝜎 among the three rank-based CPQs and FGPQs. In 

other words, the average length of confidence intervals for 𝜎 based on three 

rank-based CPQs for 𝜎 and/or three rank-based FGPQs for 𝜎 are calculated and 

the average lengths compared. Based on the results of the simulation study, a 

ranked-based pivotal quantity for 𝜎 associated with a confidence interval for 𝜎  

that has the lowest average length among the three, is the most efficient. After 

the best and most efficient ranked-based pivotal quantity for 𝜎  has been 

identified, only this pivotal quantity will be used further for the remainder of 

this thesis, for example, for inference for the two-sample problem discussed 

below in Chapter 5. Specifically, the best and most efficient rank-based CPQ 

and/or FGPQ for 𝜎 will be used to calculate the confidence intervals for the ratio 

of scale parameters, difference of location parameters and difference of 

quantiles of the distributions in the case of a two-sample problem presented 

below in Sections 5.4 and 5.5. 

 Investigation of most efficient CPQ and FGPQ for 𝜎  

Above in Sections 4.2.1.1 through 4.2.1.3 we have presented three different 

CPQs and FGPQs for 𝜎. In the simulation study described below in Section 4.6.3, 

we will investigate which of the three CPQs and FGPQs is the best and most 

efficient, that is, which leads to the shortest lengths of confidence intervals for 𝜎 

and ratio of 𝜎1 and 𝜎2 (in the case of two-sample problem presented below in 

Chapter 5). 

It will turn out that the CPQ and FGPQ for 𝜎 based on GLS estimator for 𝜎 (4.2.2 

and 4.2.3, respectively) are the best and most efficient. Below, when deriving 

the FGPQs for 𝜇 in Section 4.2.2, we will continue to derive three versions based 
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on three versions for sigma. From Section 4.2.3 onwards, we will only use the 

CPQ (4.2.2) and FGPQ (4.2.3) for sigma and derive only one version of CPQs and 

FGPQs for quantiles of the distribution and a linear combination of theta in 

order to avoid duplication and unnecessary detail. 

 Comparison of the distribution of CPQs and FGPQs for 𝜇, 𝜎 and 

quantiles 

Above in Section 4.2.1 and below in Sections 4.2.2 through 4.2.5, we have 

presented the CPQs for 𝜇, 𝜎,  quantiles of the distribution and failure probability 

and their respective FGPQs. As noted above, the CPQs and their counterpart 

FGPQs are equivalent. Therefore, in the following chapters the CPQs, when they 

exist, will be used in simulation studies because they are slightly faster to 

simulate. 

CPQs and FGPQs for 𝛍  

In Sections 4.2.2.1, 4.2.2.2 and 4.2.2.3 we present CPQs and FGPQs for 𝜇 based 

on GLS estimator for 𝜇, residual sum of squares and combined CPQs and FGPQs 

for 𝜎2 in LS and LLS families of distributions. 

 CPQ and FGPQ for 𝜇 based on GLS estimator for 𝜎 

Similarly to the development in Section 4.2.1., it is noted that the GLS estimator 

for 𝜇 is 𝐿1
′ 𝜃(𝑌), where 𝐿1 = (1, 0)

′, namely 

   𝜇̂(𝑌) = 𝐿1
′ (𝑋′𝑉−1𝑋)−1𝑋′𝑉−1𝑌                    

= 𝐿1
′ 𝐻𝑌                                       

   = 𝐿1
′ 𝐻(𝜇 ∙ 𝟏𝑛 + 𝜎 ∙ 𝑍)                

                                               = 𝜇 + 𝜎 ∙ 𝐿1
′ 𝐻𝑍                                                        (4.2.22) 
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since 𝐻𝟏𝑛 = (1, 0)
′ and therefore 𝐿1

′ 𝐻𝟏𝑛 = 1. Based on (4.2.22), a conditional 

conventional pivotal quantity (CCPQ) for 𝜇 is defined as follows: 

  𝒬𝜇|𝜎(𝑌, 𝜃) = 𝜇̂(𝑌) − 𝜇                                     

                                                       = 𝜎 ∙ 𝐿1
′ 𝐻𝑍                                                      (4.2.23) 

The second equality in (4.2.23) shows that the distribution of 𝒬𝜇|𝜎(𝑌, 𝜃), 

conditional on 𝜎, is free of 𝜃 (that is, free of 𝜇). Thus 𝒬𝜇|𝜎(𝑌, 𝜃) is a CCPQ for 𝜇. 

Based on the conditional conventional pivotal quantity 𝒬𝜇|𝜎(𝑌, 𝜃), a CPQ for 𝜇 is 

obtained by dividing (4.2.23) by 𝜎 ∙ 𝐿2
′ 𝐻𝑍 (see (4.2.2)), thus eliminating the 

parameter 𝜎. The resulting CPQ for 𝜇 is given by 

    𝒬𝜇(𝑌, 𝜃) =
𝒬𝜇|𝜎(𝑌, 𝜃)

𝜎 ∙ 𝒬𝜎(𝑌, 𝜃)
                                     

           =
𝜇̂(𝑌) − 𝜇

𝐿2
′ 𝐻𝑌

                                  

                                                    =
𝐿1
′ 𝐻𝑍

𝐿2
′ 𝐻𝑍

                                                                (4.2.24) 

The FGPQ for 𝜇 is derived as follows: Similarly to the definition of CPQ for 𝜇 (see 

(4.2.24)), based on (4.2.22) the conditional fiducial pivotal quantity (CFGPQ) for 

𝜇 given 𝜎 is defined as follows: 

ℛ𝜇|𝜎(𝑦, 𝑌, 𝜃) = 𝜇̂(𝑦) − [𝜇̂(𝑌) − 𝜇]                                          

                     = 𝜇̂(𝑦) − 𝜎 ∙ 𝐿1
′ 𝐻𝑍                                          

                     = 𝐿1
′ 𝐻𝑦 − 𝜎 ∙ 𝐿1

′ 𝐻𝑍                                         

                                              = 𝐿1
′ 𝐻(𝑦 − 𝜎 ∙ 𝑍)                                                     (4.2.25) 

The first equality in (4.2.25) shows that ℛ𝜇|𝜎(𝑦, 𝑦, 𝜃) = 𝜇  for all possible 

observations 𝑦 of 𝑌 (and for all 𝜎); the second equality in (4.2.25) shows that the 
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distribution of ℛ𝜇|𝜎(𝑦, 𝑌, 𝜃), conditional on an observation 𝑦 of 𝑌 and on 𝜎, is 

free of 𝜃 (that is, free of 𝜇). Thus, ℛ𝜇|𝜎(𝑦, 𝑌, 𝜃) is a CFGPQ for 𝜇. 

Furthermore, based on the CFGPQ ℛ𝜇|𝜎(𝑦, 𝑌, 𝜃) in (4.2.25) a FGPQ for 𝜇 is 

obtained by replacing the parameter 𝜎 in (4.2.25) by a FGPQ for 𝜎, namely FGPQ 

(4.2.3). The resulting FGPQ for 𝜇 is given by 

 ℛ𝜇(𝑦, 𝑌, 𝜃) = 𝐿1
′ 𝐻 [𝑦 − ℛ𝜎(𝑦, 𝑌, 𝜃) ∙ 𝑍]                                           

                                      = 𝐿1
′ 𝐻 (𝑦 −

𝐿2
′ 𝐻𝑦

𝐿2
′ 𝐻𝑍

∙ 𝑍)                                                 (4.2.26) 

 CPQ and FGPQ for 𝜇 based on residual sum of squares 

Similarly to the presentation of CPQ and FGPQ for 𝜇 based on GLS estimator for 

𝜎 (see (4.2.24) and (4.2.26)), the CPQ and FGPQ for 𝜇 based on the residual sum 

of squares are, respectively given by 

                                    𝒬𝜇(𝑌, 𝜃) =
𝐿1
′ 𝐻𝑍

√𝑍′𝐻𝑍
                                                            (4.2.27) 

and 

                           ℛ𝜇(𝑦, 𝑌, 𝜃) = 𝐿1
′ 𝐻 (𝑦 −

𝐿2
′ 𝐻𝑦

√𝑍′𝐻𝑍
∙ 𝑍)                                   (4.2.28) 

 CPQ and FGPQ for 𝜇 based on combined CPQ and FGPQ for 𝜎2 

Again, similarly to as presented in Sections 4.2.2.1 and 4.2.2.2, and based on the 

conditional conventional pivotal quantity 𝒬𝜇|𝜎(𝑌, 𝜃), a CPQ for 𝜇 is obtained by 

dividing (4.2.23) by the square root of 𝜎2 ∙ 𝒬𝜎2(𝑌, 𝜃) = 𝜎
2 ∙ 𝑍′𝑀̃ 𝑍  (see 

(4.2.17)), thus eliminating the parameter 𝜎. The resulting CPQ for 𝜇 is given by 

𝒬𝜇(𝑌, 𝜃) =
𝒬𝜇|𝜎(𝑌, 𝜃)

𝜎 ∙ √𝒬𝜎2(𝑌, 𝜃)
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             =
𝜇̂(𝑌) − 𝜇

√𝑆(𝑌) + 𝑆̃(𝑌)
                  

                                                        =
𝐿1
′ 𝐻𝑍

√𝑍∗′𝑀̃𝑍∗
                                                    (4.2.29) 

where 𝑀̃ has been defined in (4.2.18). In (4.2.29), 𝑍∗ denotes an independent 

copy of the standard variate 𝑍. 

The FGPQ for 𝜇 is derived as follows: Similarly to the definition of CPQ for 𝜇 (see 

(4.2.29)), based on (4.2.22) the conditional fiducial pivotal quantity (CFGPQ) for 

𝜇 given 𝜎 is defined as follows: 

ℛ𝜇|𝜎(𝑦, 𝑌, 𝜃) = 𝜇̂(𝑦) − [𝜇̂(𝑌) − 𝜇]                   

              = 𝜇̂(𝑦) − 𝜎 ∙ 𝐿1
′ 𝐻𝑍            

                = 𝐿1
′ 𝐻𝑦 − 𝜎 ∙ 𝐿1

′ 𝐻𝑍             

                                                          = 𝐿1
′ 𝐻(𝑦 − 𝜎 ∙ 𝑍)                                          (4.2.30) 

The first equality in (4.2.30) shows that ℛ𝜇|𝜎(𝑦, 𝑦, 𝜃) = 𝜇  for all possible 

observations 𝑦 of 𝑌 (and for all 𝜎); the second equality in (4.2.30) shows that the 

distribution of ℛ𝜇|𝜎(𝑦, 𝑌, 𝜃), conditional on an observation 𝑦 of 𝑌 and on 𝜎, is 

free of 𝜃 (that is, free of 𝜇). Thus, ℛ𝜇|𝜎(𝑦, 𝑌, 𝜃) is a CFGPQ for 𝜇. 

Furthermore, based on the CFGPQ ℛ𝜇|𝜎(𝑦, 𝑌, 𝜃) in (4.2.30) a FGPQ for 𝜇 is 

obtained by replacing the parameter 𝜎 in (4.2.30) by a FGPQ for 𝜎. The resulting 

FGPQ for 𝜇 is given by 

ℛ𝜇(𝑦, 𝑌, 𝜃) = 𝐿1
′ 𝐻 [𝑦 − √ℛ𝜎2(𝑦, 𝑌, 𝜃) ∙ 𝑍]                       

                                           = 𝐿1
′ 𝐻 (𝑦 − √

𝑦′𝑀̃𝑦

𝑍∗′𝑀̃𝑍∗
∙ 𝑍)                                (4.2.31) 
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where 𝑀̃ has been defined in (4.2.18). In (4.2.31), 𝑍∗ denotes an independent 

copy of the standard variate 𝑍. 

CPQs and FGPQs for a Linear Combination 𝐋′𝛉 of 𝛉 

In this section, we derive the CPQ and FGPQ for a linear combination 𝐿′𝜃 of 𝜃, 

and for a quantile of the distribution of 𝑌∗. 

 CPQ for a linear combination 𝑳′𝜽 of 𝜽 

Let 𝐿 = (𝑙1, 𝑙2)
′. Using equation (3.2.8) a CPQ for a linear combination 𝐿′𝜃 of 𝜃 

can be derived from the GLS estimator 𝐿′𝜃(𝑌) for 𝐿′𝜃 as follows: 

    𝜃(𝑌) = 𝐿′𝐻𝑌                                                                                     

   = 𝐿′𝐻(𝜇 ∙ 𝟏𝑛 + 𝜎 ∙ 𝑍)                                                

     = 𝐿′𝐻{𝜇 ∙ 𝟏𝑛 + 𝜎 ∙ 𝐸(𝑍) + 𝜎 ∙ [𝑍 − 𝐸(𝑍)]}           

    = 𝐿′𝐻{𝑋𝜃 + 𝜎 ∙ [𝑍 − 𝐸(𝑍)]}                                     

                                = 𝐿′𝜃 + 𝜎 ∙ 𝐿′𝐻[𝑍 − 𝐸(𝑍)] (4.2.32)                                  (4.2.32) 

since 𝐻𝑋𝜃 = 𝜃. Then a CCPQ for 𝐿′𝜃 given 𝜎 can be defined as follows: 

  𝒬𝐿′𝜃|𝜎(𝑌, 𝜃) = 𝐿
′[𝜃(𝑌) − 𝜃]                                           

                                                   = 𝜎 ∙ 𝐿′𝐻[𝑍 − 𝐸(𝑍)]                                           (4.2.33) 

Based on the CCPQ 𝒬𝐿′𝜃|𝜎(𝑌, 𝜃), a CPQ for 𝐿′𝜃 can be obtained by dividing 

(4.2.33) by 𝒬𝜎(𝑌, 𝜃) = 𝐿2
′ 𝐻𝑍 (see 4.2.2), thus eliminating the parameter 𝜎. The 

resulting CPQ for 𝐿′𝜃 is given by 

   𝒬𝐿′𝜃(𝑌, 𝜃) =
𝒬𝐿′𝜃|𝜎(𝑌, 𝜃)

𝜎 ∙  𝒬𝜎(𝑌, 𝜃)
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                    =
𝐿′[𝜃(𝑌) − 𝜃]

𝐿2
′ 𝐻𝑍 

                                               

                                              =
𝐿′𝐻[𝑍 − 𝐸(𝑍)]

𝐿2
′ 𝐻𝑍 

                                                    (4.2.34) 

It is noted that in the derivation of 𝒬𝐿′𝜃(𝑌, 𝜃), it can be assumed that 𝑙1 ≠ 0. If 

𝑙1 = 0, then 𝒬𝐿′𝜃(𝑌, 𝜃) in (4.2.34) is a another CPQ for 𝜎. 

 CPQ for a 𝒑 quantile of the distribution 

For 0 ≤ 𝑝 ≤ 1, the 𝑝 quantile 𝜂𝑝 of the distribution of 𝑌∗ is given by 𝜂𝑝 = 𝜇 + 𝜎 ∙

𝑧𝑝, where 𝑧𝑝 is the 𝑝 quantile of the distribution of the standard variate 𝑍∗. 

Thus, the 𝑝 quantile is a linear combination of the parameters 𝜇 and 𝜎 of the 

distribution of 𝑌∗, namely  

𝜂𝑝 = 𝜇 + 𝜎 ∙ 𝑧𝑝 = 𝐿𝑝
′ 𝜃 

with 𝐿𝑝 = (1, 𝑧𝑝)
′
.  A CPQ for the linear combination 𝐿𝑝

′ 𝜃  of 𝜃  is given by 

(4.2.34), when 𝐿 in (4.2.34) is of the form 𝐿 = 𝐿𝑝 = (1, 𝑧𝑝)
′
.  

Equivalently, a CPQ for the 𝑝 quantile 𝜂𝑝 of the distribution of 𝑌∗ can be derived 

as follows: 

The generalized least squares estimator 𝜂̂𝑝(𝑌) of 𝜂𝑝 is given by 

𝜂̂𝑝(𝑌) = 𝐿𝑝
′ 𝐻𝑌                                                                                             

    = 𝐿𝑝
′ 𝐻(𝜇 ∙ 𝟏𝑛 + 𝜎 ∙ 𝑍)                                                           

= 𝐿𝑝
′ 𝐻[(𝜇 + 𝜎 ∙ 𝑧𝑝) ∙ 𝟏𝑛 + 𝜎 ∙ (𝑍 − 𝑧𝑝 ∙ 𝟏𝑛)]              

= 𝐿𝑝
′ 𝐻[𝜂𝑝 ∙ 𝟏𝑛 + 𝜎 ∙ (𝑍 − 𝑧𝑝 ∙ 𝟏𝑛)]                  

                                = 𝜂𝑝 + 𝜎 ∙ 𝐿𝑝
′ 𝐻(𝑍 − 𝑧𝑝 ∙ 𝟏𝑛)                                             (4.2.35) 

since 𝐻𝟏𝑛 = (1, 0)
′ and therefore 𝐿𝑝

′ 𝐻𝟏𝑛 = 1. A CCPQ is defined as 
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 𝒬𝜂𝑝|𝜎(𝑌, 𝜃) = 𝜂̂𝑝(𝑌) − 𝜂𝑝                                                                

                                        = 𝜎 ∙ 𝐿𝑝
′ 𝐻(𝑍 − 𝑧𝑝 ∙ 𝟏𝑛)                                               (4.2.36) 

Based on the CCPQ 𝒬𝜂𝑝|𝜎(𝑌, 𝜃), a CPQ for 𝜂𝑝  can be obtained by dividing 

(4.2.36) by 𝒬𝜎(𝑌, 𝜃) = 𝐿2
′ 𝐻𝑍  (4.2.2), thus eliminating the parameter 𝜎.  The 

resulting CPQ for 𝜂𝑝 is given by 

𝒬𝜂𝑝(𝑌, 𝜃) =
𝒬𝜂𝑝|𝜎(𝑌, 𝜃)

𝜎 ∙  𝒬𝜎(𝑌, 𝜃) 
                                            

            =
𝜂̂𝑝(𝑌) − 𝜂𝑝

𝐿2
′ 𝐻𝑍 

                                        

                                               =
𝐿𝑝
′ 𝐻(𝑍 − 𝑧𝑝 ∙ 𝟏𝑛)

𝐿2
′ 𝐻𝑍 

                                              (4.2.37) 

It is noted that CPQs (4.2.34) and (4.2.37) are identical, when 𝐿 = 𝐿𝑝 in (4.2.34). 

As is noted earlier in this Section 4.2.3.2, for 0 ≤ 𝑝 ≤ 1, the 𝑝 quantile 𝜂𝑝 of the 

distribution of 𝑌∗ is given by 𝜂𝑝 = 𝜇 + 𝜎 ∙ 𝑧𝑝, where 𝑧𝑝 is the 𝑝 quantile of the 

distribution of the standard variate 𝑍∗.  Thus, the 𝑝  quantile is a linear 

combination of the parameters 𝜇 and 𝜎 of the distribution of 𝑌∗, so that it is of 

particular interest to derive FGPQs for linear combinations 𝐿𝑝
′ 𝜃 of 𝜃. In the next 

section, we use two different approaches to derive FGPQs for linear 

combinations 𝐿𝑝
′ 𝜃 of 𝜃 as follows: 

 FGPQ for a linear combination 𝑳′𝜽  of 𝜽  derived by “plug-in” 

principle 

We wish to derive a FGPQ for a linear combination 𝐿′𝜃 of 𝜃, namely for 

                                         𝐿′𝜃 = 𝑙1 ∙ 𝜇 + 𝑙2 ∙ 𝜎                                                        (4.2.38) 

where 𝐿 = (𝑙1, 𝑙2)
′. In general, a FGPQ for 𝐿′𝜃 in (4.2.38) can be obtained by 

replacing the unknown parameters 𝜇  and 𝜎  with suitable FGPQs for those 
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parameters. We refer to this method of deriving FGPQs as the “plug-in” 

principle; Hannig et al. (2006b, Theorem 3) give a formal proof of principle, but 

call it the “two-stage approach”. Thus, a FGPQ for 𝐿′𝜃 in (4.2.38) can be written 

as 

                   ℛ𝐿′𝜃(𝑦, 𝑌, 𝜃) = 𝑙1 ∙ ℛ𝜇(𝑦, 𝑌, 𝜃) + 𝑙2 ∙ ℛ𝜎(𝑦, 𝑌, 𝜃)                      (4.2.39) 

where ℛ𝜇(𝑦, 𝑌, 𝜃) and ℛ𝜎(𝑦, 𝑌, 𝜃) have been defined in (4.2.26) and (4.2.3), 

respectively. 

However, it is noted that the FGPQ ℛ𝜎 appears twice in (4.2.39), namely in the 

first term of the sum, since the FGPQ ℛ𝜇 for 𝜇 implicitly involves ℛ𝜎 (see the 

first equality of (4.2.26)), and in the second term of the sum, where ℛ𝜎 appears 

explicitly. Now ℛ𝜎 is a function of the standard variate 𝑍 (see (4.2.3)), and it 

may not be immediately clear whether the two appearances of ℛ𝜎 in (4.2.39) 

should be associated with identical or independent copies of 𝑍. 

In order for this question to be answered, the FGPQ ℛ𝐿′𝜃(𝑦, 𝑌, 𝜃) for 𝐿′𝜃 is 

derived via the CFGPQ ℛ𝐿′𝜃|𝜎(𝑦, 𝑌, 𝜃) for 𝐿′𝜃 conditional on 𝜎.  ℛ𝐿′𝜃|𝜎(𝑦, 𝑌, 𝜃) is 

obtained by replacing 𝜇 in (4.2.38) by the CFGPQ ℛ𝜇|𝜎 in (4.2.30): 

 ℛ𝐿′𝜃|𝜎(𝑦, 𝑌, 𝜃) = 𝑙1 ∙ ℛ𝜇|𝜎 + 𝑙2 ∙ 𝜎                                                                     

   = 𝑙1 ∙ 𝐿1
′ 𝐻(𝑦 − 𝜎 ∙ 𝑍) + 𝑙2 ∙ 𝜎                        

                                     = 𝑙1 ∙ 𝐿1
′ 𝐻𝑦 − 𝜎 ∙ (𝑙1 ∙ 𝐿1

′ 𝐻𝑍 − 𝑙2)                                 (4.2.40) 

Now a FGPQ for 𝐿′𝜃 is obtained by replacing the parameter 𝜎 in (4.2.40) by the 

FGPQ for 𝜎 in (4.2.3): 

ℛ𝐿′𝜃(𝑦, 𝑌, 𝜃) = 𝑙1 ∙ 𝐿1
′ 𝐻𝑦 − ℛ𝜎(𝑦, 𝑌, 𝜃)  ∙ (𝑙1 ∙ 𝐿1

′ 𝐻𝑍 − 𝑙2)                  

= 𝑙1 ∙ ℛ𝜇 + 𝑙2 ∙ ℛ𝜎(𝑦, 𝑌, 𝜃)                         

                                     = 𝑙1 ∙ 𝐿1
′ 𝐻𝑦 −

𝐿2
′ 𝐻𝑦

𝐿2
′ 𝐻𝑍

∙ (𝑙1 ∙ 𝐿1
′ 𝐻𝑍 − 𝑙2)                         (4.2.41) 
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Therefore, the FGPQ ℛ𝐿′𝜃(𝑦, 𝑌, 𝜃) for 𝐿′𝜃 in (4.2.41) is obtained by replacing 

both instances of 𝜎 in (4.2.40) by ℛ𝜎.  

It is noted that if 𝑙1 = 0, equation (4.2.39) yields a FGPQ for 𝑙2 ∙ 𝜎 based solely 

on the FGPQ (4.2.3) for 𝜎. 

 FGPQ for a linear combination 𝑳′𝜽 of 𝜽 derived from GLS estimator 

for 𝑳′𝜽 

Alternatively to (4.2.39)/(4.2.41), a FGPQ for 𝐿′𝜃 can be derived from the GLS 

estimator 𝐿′𝜃(𝑌) for 𝐿′𝜃 as follows: 

 𝐿′𝜃(𝑌) = 𝐿′𝐻𝑌                                                                     

  = 𝐿′𝐻(𝜇 ∙ 𝟏𝑛 + 𝜎 ∙ 𝑍)                              

            = 𝐿′𝐻{𝜇 ∙ 𝟏𝑛 + 𝜎 ∙ 𝐸(𝑍) + 𝜎 ∙ [𝑍 − 𝐸(𝑍)]} 

 = 𝐿′𝐻{𝑋𝜃 + 𝜎 ∙ [𝑍 − 𝐸(𝑍)]}                

                                         = 𝐿′𝜃 + 𝜎 ∙ 𝐿′𝐻[𝑍 − 𝐸(𝑍)]                                          (4.2.42) 

since 𝐻𝑋𝜃 = 𝜃. Then a CFGPQ ℛ𝐿′𝜃|𝜎(𝑦, 𝑌, 𝜃) for 𝐿′𝜃 conditional on 𝜎 is 

  ℛ𝐿′𝜃|𝜎(𝑦, 𝑌, 𝜃) = 𝐿
′𝜃(𝑦) − [𝐿′𝜃(𝑌) − 𝐿′𝜃]          

     = 𝐿′𝜃(𝑦) − 𝜎 ∙ 𝐿′𝐻[𝑍 − 𝐸(𝑍)] 

     = 𝐿′𝐻{𝑦 − 𝜎 ∙ [𝑍 − 𝐸(𝑍)]}                                        (4.2.43)  

Again, the parameter 𝜎 in (4.2.43) is replaced by the FGPQ for 𝜎 in (4.2.3): 

ℛ𝐿′𝜃(𝑦, 𝑌, 𝜃) = 𝐿
′𝐻{𝑦 − ℛ𝜎(𝑦, 𝑌, 𝜃) ∙ [𝑍 − 𝐸(𝑍)]}                                           

                              = 𝐿′𝐻 {𝑦 −
𝐿2
′ 𝐻𝑦

𝐿2
′ 𝐻𝑍

∙ [𝑍 − 𝐸(𝑍)]}                                        (4.2.44) 
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 FGPQs for a 𝒑 quantile of the distribution 

As noted earlier in Section 4.2.3.2, the 𝑝 quantile 𝜂𝑝 of the distribution of 𝑌∗ is 

given by 𝜂𝑝 = 𝜇 + 𝜎 ∙ 𝑧𝑝, where 𝑧𝑝 is the 𝑝 quantile of the distribution of the 

standard variate 𝑍∗. Thus, 𝜂𝑝 can be written as the linear combination 𝜂𝑝 = 𝐿𝑝
′ 𝜃 

of 𝜃, where 𝐿𝑝 = (1, 𝑧𝑝)
′
. Therefore, two FGPQs for 𝜂𝑝 are obtained when 𝐿 in 

(4.2.41) and (4.2.44), respectively, is replaced by 𝐿𝑝; namely 

                        ℛ𝜂𝑝(𝑦, 𝑌, 𝜃) = 𝐿1
′ 𝐻𝑦 −

𝐿2
′ 𝐻𝑦

𝐿2
′ 𝐻𝑍

∙ (𝐿1
′ 𝐻𝑍 − 𝑧𝑝)                          (4.2.45) 

and 

                    ℛ𝜂𝑝(𝑦, 𝑌, 𝜃) = 𝐿𝑝
′ 𝐻 {𝑦 −

𝐿2
′ 𝐻𝑦

𝐿2
′ 𝐻𝑍

∙ [𝑍 − 𝐸(𝑍)]}                        (4.2.46) 

CPQs and FGPQs for 𝛉 

In Sections 4.2.4.1 through 4.2.4.4 below, we derive the CPQs and FGPQs for the 

two-dimensional parameter vector 𝜃 by using different approaches. 

 CPQ for 𝜽 derived from GLS estimator for 𝜽 

Using equation (3.2.8), the generalized least squares estimator 𝜃(𝑌) of 𝜃 as  

  𝜃(𝑌) = 𝐻𝑌                                                              

                        = 𝐻(𝜇 ∙ 𝟏𝑛 + 𝜎 ∙ 𝑍)                                                 

                       = 𝐻{𝜇 ∙ 𝟏𝑛 + 𝜎 ∙ 𝐸(𝑍) + 𝜎 ∙ [𝑍 − 𝐸(𝑍)]}          

 = 𝐻{𝑋𝜃 + 𝜎 ∙ [𝑍 − 𝐸(𝑍)]}             

                                  = 𝜃 + 𝜎 ∙ [𝑍 − 𝐸(𝑍)]                                        (4.2.47) 

The following CPQ for 𝜃 can be defined: 
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 𝒬𝜃(𝑌, 𝜃) = {[𝜃(𝑌) − 𝜃]
′
𝑋′𝑉−1𝑋[𝜃(𝑌) − 𝜃]} 𝜎2⁄                                          

= [(𝐻𝑌 − 𝜃)′𝑋′𝑉−1𝑋(𝐻𝑌 − 𝜃)] 𝜎2⁄                              

                          = [𝑍 − 𝐸(𝑍)]′𝑉−1𝑋(𝑋′𝑉−1𝑋)−1𝑋′𝑉−1[𝑍 − 𝐸(𝑍)]             (4.2.48) 

Clearly, the distribution of the quadratic form 𝒬𝜃(𝑌, 𝜃) does not depend on any 

unknown parameters, since the quadratic form is solely a function of the 

ordered standard variates 𝑍. Thus, 𝒬𝜃(𝑌, 𝜃) is a CPQ.  

 CPQ for 𝜽 based on a ratio of CPQs for 𝜽 and 𝝈𝟐 

Alternatively to CPQ (4.2.48), a CPQ for 𝜃 can be defined as the ratio of the CPQ 

(4.2.48) for 𝜃 and of the square of CPQ (4.2.2) for 𝜎: 

 𝒬̃𝜃(𝑌, 𝜃) =
 𝒬𝜃(𝑌, 𝜃)

 𝒬𝜎2(𝑌, 𝜎)
                                                                                         

=
[𝜃(𝑌) − 𝜃]

′
𝑋′𝑉−1𝑋[𝜃(𝑌) − 𝜃] 𝜎2⁄

[𝜎̂(𝑌)]2 𝜎2⁄
                         

      =
(𝐻𝑌 − 𝜃)′𝑋′𝑉−1𝑋(𝐻𝑌 − 𝜃)

(𝐿2
′ 𝐻𝑍)2

                                              

                          =
[𝑍 − 𝐸(𝑍)]′𝑉−1𝑋(𝑋′𝑉−1𝑋)−1𝑋′𝑉−1[𝑍 − 𝐸(𝑍)]

(𝐿2
′ 𝐻𝑍)2

            (4.2.49) 

Clearly, the distribution of 𝒬̃𝜃(𝑌, 𝜃)  does not depend on any unknown 

parameters, since it is solely a function of the ordered standard variates 𝑍. Thus, 

𝒬̃𝜃(𝑌, 𝜃) is a CPQ for 𝜃.  

 FGPQ for 𝜽 derived by “plug-in” principle 

We derive a FGPQ for 𝜃. In general, a FGPQ for 𝜃 = (𝜇, 𝜎)′ can be obtained by 

replacing the unknown parameters 𝜇  and 𝜎  with suitable FGPQs for those 

parameters (“plug-in” principle). Thus, a FGPQ for 𝜃 can be written as 
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ℛ𝜃(𝑦, 𝑌, 𝜃) = (
ℛ𝜇(𝑦, 𝑌, 𝜃)

ℛ𝜎(𝑦, 𝑌, 𝜃)
)                                                 

    = (
𝐿1
′ 𝐻𝑦 − ℛ𝜎(𝑦, 𝑌, 𝜃) ∙ 𝐿1

′ 𝐻𝑍

ℛ𝜎(𝑦, 𝑌, 𝜃)
)  

                                            =

(

 
 
𝐿1
′ 𝐻𝑦 −

𝐿2
′ 𝐻𝑦

𝐿2
′ 𝐻𝑍

∙ 𝐿1
′ 𝐻𝑍

𝐿2
′ 𝐻𝑦

𝐿2
′ 𝐻𝑍 )

 
 
                                  (4.2.50) 

where ℛ𝜇(𝑦, 𝑌, 𝜃) and ℛ𝜎(𝑦, 𝑌, 𝜃) have been defined in (4.2.26) and (4.2.3), 

respectively. 

 FGPQ for 𝜽 based on GLS estimator for 𝜽 

Alternatively to (4.2.50), a GFPQ for 𝜃 can be derived from a GLS estimator 𝜃(𝑌) 

for 𝜃:  

   𝜃(𝑌) = 𝐻𝑌                                                                

    = 𝐻(𝜇 ∙ 𝟏𝑛 + 𝜎 ∙ 𝑍)                             

                     = 𝐻{𝜇 ∙ 𝟏𝑛 + 𝜎 ∙ 𝐸(𝑍) + 𝜎 ∙ [𝑍 − 𝐸(𝑍)]}        

 = 𝐻{𝑋𝜃 + 𝜎 ∙ [𝑍 − 𝐸(𝑍)]}              

                                           = 𝜃 +  𝜎 ∙ 𝐻[𝑍 − 𝐸(𝑍)]                                             (4.2.51) 

since 𝐻𝑋𝜃 = 𝜃. Then 

ℛ𝜃|𝜎(𝑦, 𝑌, 𝜃) = 𝜃(𝑦) − [𝜃(𝑌) − 𝜃]                                            

= 𝜃(𝑦) − 𝜎 ∙ 𝐻[𝑍 − 𝐸(𝑍)]          

                                             = 𝐻{𝑦 − 𝜎 ∙ 𝐻[𝑍 − 𝐸(𝑍)]}                                      (4.2.52) 

Again, the parameter 𝜎 in (4.2.52) is replaced by the FGPQ for 𝜎 in (4.2.3): 

   ℛ𝜃(𝑦, 𝑌, 𝜃) = 𝐻{𝑦 − ℛ𝜎(𝑦, 𝑌, 𝜃) ∙ 𝐻[𝑍 − 𝐸(𝑍)]}                                   
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                                  = 𝐻 {𝑦 −
𝐿2
′ 𝐻𝑦

𝐿2
′ 𝐻𝑍

∙ 𝐻[𝑍 − 𝐸(𝑍)]}                                     (4.2.53) 

FGPQs for a Failure Probability 

Below in Sections 4.2.5.1 and 4.2.5.2, we derive two FGPQs for a failure 

probability by using two different approaches. 

 FGPQ for a failure probability derived by “plug-in” principle 

The failure probability 𝜋 at “time” 𝑦𝑒 is given by 

                                     𝜋 = 𝐹𝑌(𝑦𝑒; 𝜃) = Φ(
𝑦𝑒 − 𝜇

𝜎
)                                         (4.2.54) 

Let 

                                         𝜍 = Φ−1(𝜋) =
𝑦𝑒 − 𝜇

𝜎
                                                  (4.2.55) 

A FGPQ for 𝜍 can be obtained by replacing the unknown parameters 𝜇 and 𝜎 in 

(4.2.55) with suitable FGPQs for those parameters (“plug-in” principle). Thus, a 

FGPQ for 𝜍 can be written as 

     ℛ𝜍(𝑦, 𝑌, 𝜃) =
𝑦𝑒 − ℛ𝜇

ℛ𝜎
                                                                           

=
𝑦𝑒 − 𝐿1

′ 𝐻[𝑦 − ℛ𝜎(𝑦, 𝑌, 𝜃) ∙ 𝑍]

ℛ𝜎(𝑦, 𝑌, 𝜃)
         

                                       =
𝑦𝑒 − 𝐿1

′ 𝐻 (𝑦 −
𝐿2
′ 𝐻𝑦
𝐿2
′ 𝐻𝑍

 ∙  𝑍)

𝐿2
′ 𝐻𝑦
𝐿2
′ 𝐻𝑍

                                     (4.2.56) 

A FGPQ for 𝜋 is then given by 

                                   ℛ𝜋(𝑦, 𝑌, 𝜃) = Φ[ℛ𝜍(𝑦, 𝑌, 𝜃)]                                          (4.2.57) 
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 FGPQ for a failure probability based on CPQ for a linear combination 

𝑳′𝜽 of 𝜽 

Alternatively to (4.2.56) and (4.2.57), a FGPQ for the failure probability can be 

based on CPQ 𝒬𝐿′𝜃(𝑌, 𝜃) for a linear combination 𝐿′𝜃 of 𝜃, namely (see equation 

(4.2.34)) 

𝒬𝐿′𝜃(𝑌, 𝜃) =
𝐿′𝜃(𝑌) − 𝐿′𝜃

𝐿2
′ 𝐻𝑍

                            

                                                        =
𝐿′𝐻[𝑍 − 𝐸(𝑍)]

𝐿2
′ 𝐻𝑍

                                            (4.2.58) 

Let 𝐿𝜍 = (1, 𝜍)
′. From (4.2.55), it follows that 𝐿𝜍

′ 𝜃 = 𝜇 + 𝜍 ∙ 𝜎 = 𝑦𝑒 . 𝐿 and 𝐿′𝜃 in 

the numerator of (4.2.58) are now replaced with 𝐿𝜍 and 𝑦𝑒 , respectively, to 

obtain 

  𝒬𝜍(𝑌, 𝜃) = 𝒬𝐿𝜍′𝜃(𝑌, 𝜃) =
𝐿𝜍
′ 𝜃(𝑌) − 𝑦𝑒

𝐿2
′ 𝐻𝑍

   

                                                        =
𝐿𝜍
′𝐻[𝑍 − 𝐸(𝑍)]

𝐿2
′ 𝐻𝑍

                                          (4.2.59) 

As the third equality of (4.2.59) shows, the distribution of 𝒬𝐿𝜍′𝜃(𝑌, 𝜃) depends 

only on the parameter 𝜍. In the manner of Hannig, Iyer and Patterson (2006, 

Example 5), let 𝐹(𝑥; 𝜍) be the cdf of 𝒬𝜍(𝑌, 𝜃),  evaluated at 𝑥. Then 𝐹(𝑥; 𝜍) =

𝑡𝜖(0, 1), and 𝑄(𝑡; 𝑥) = 𝜍 is defined as the inverse of 𝐹 when 𝐹 is viewed as a 

function of 𝜍. Therefore, a FGPQ for 𝜍 is given by 

              ℛ𝜍 = 𝑄{𝐹[𝒬𝜍(𝑌, 𝜃); 𝜍]; 𝒬𝜍(𝑦, 𝜃)} = 𝑄[𝑈; 𝒬𝜍(𝑦, 𝜃)]                        (4.2.60) 

where 𝒬𝜍(𝑦, 𝜃) is the observed value of 𝒬𝜍(𝑌, 𝜃) and 𝑈~Uniform(0, 1). 
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4.3. Maximum Likelihood-Based Conventional 

and Fiducial Generalized Pivotal 

Quantities  

Rank-based CPQs and FGPQs were presented in Sections 4.2.1 through 4.2.5. In 

Sections 4.3.1 and 4.3.2 we present the CPQs and FGPQs for the parameters 𝜇 

and 𝜎, and quantiles of the distribution based on ML method.  

Approximate ML-based inference for the parameters 𝜇, 𝜎 and for quantiles of 

the distribution based on Wald-Type and likelihood ratio methods are not 

investigated in this thesis. However, for the detailed discussion about the 

approximate inference for 𝜇, 𝜎  and quantiles of the distribution, see for 

example, Lawless (2003, pp. 213-216). 

ML-based CPQs and FGPQs for 𝜎 , 𝜇  and a 𝑝  (0 ≤ 𝑝 ≤ 1)  quantile of the 

distribution can be derived in the manner of Lawless (2003, p. 217) as presented 

in Sections 4.3.1 and 4.3.2 below.  

CPQs and FGPQs for 𝝈 and 𝝁 Based on ML Estimators for 𝝈 and 

𝝁 

CPQs and FGPQs for 𝜎 and 𝜇 based on ML estimators for 𝜎 and 𝜇 can be defined 

as follows: 

Similar to the GLS estimator for 𝜎 in (4.2.1) and GLS estimator for 𝜇 in (4.2.22), it 

can be shown that for any LS parameterization (2.2.1) or (2.3.1), the ML 

estimators for 𝜎 and 𝜇 are, respectively, given by  

                                             𝜎̂(𝑌)𝑀𝐿 = 𝜎 ∙ 𝜎̂(𝑍)𝑀𝐿                                                (4.3.1) 

and 

                                             𝜇̂(𝑌)𝑀𝐿 = 𝜇 + 𝜎 ∙ 𝜇̂(𝑍)𝑀𝐿                                        (4.3.2) 
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Proof: (Lawless, 2003, p. 562). 

Let 𝑌 = (𝑌1, 𝑌2, … , 𝑌𝑛)
′  be a vector of an independent random sample 

𝑌1, 𝑌2, … , 𝑌𝑛 of size 𝑛 drawn from any LS distribution with a cdf of the form 

(2.2.1). Furthermore, let 𝑍 = (𝑍1, 𝑍2, … , 𝑍𝑛)
′ be the vector of the standardized 

variates 𝑍1, 𝑍2, … , 𝑍𝑛. As shown in (3.2.2), 𝑌 can be expressed in terms of 𝜇 and 

𝜎 as 

𝑌 = 𝜇 ∙ 𝟏𝑛 + 𝜎 ∙ 𝑍 

where 𝟏𝑛 = (1, 1, … , 1)
′.  Then, the ML functions for 𝜇 and 𝜎 based on 𝑍 and 𝑌 

are, respectively, given by 

                                           𝐿(𝜇, 𝜎; 𝑧) = [∏ 𝑔(𝑧𝑖)
𝑛

𝑖=1
]                                        (4.3.3) 

and 

                           𝐿(𝜇, 𝜎; 𝑦) = 𝜎−𝑛 [∏ 𝑔(
𝑦𝑖 − 𝜇

𝜎
)

𝑛

𝑖=1
]                                      (4.3.4) 

It is clear from equations (4.3.3) and (4.3.4) that 𝜇̂(𝑌)𝑀𝐿  and 𝜎̂(𝑌)𝑀𝐿  are 

invariant estimators because 𝜇̂(𝑍)𝑀𝐿  and 𝜎̂(𝑍)𝑀𝐿  maximize (4.3.3) only if 

𝜇̂(𝑌)𝑀𝐿 = 𝜇 + 𝜎 ∙ 𝜇̂(𝑍)𝑀𝐿 and 𝜎̂(𝑌)𝑀𝐿 = 𝜎 ∙ 𝜎̂(𝑍)𝑀𝐿 . 

Based on (4.3.1), a CPQ for 𝜎 based on ML estimator for 𝜎 can be defined as 

𝒬𝜎(𝑌, 𝜃)𝑀𝐿 =
𝜎̂(𝑌)𝑀𝐿
𝜎

                                               

    =
𝜎 ∙  𝜎̂(𝑍)𝑀𝐿

𝜎
                     

                                                    = 𝜎̂(𝑍)𝑀𝐿                                                               (4.3.5) 

The third equality in (4.3.5) shows that the distribution of 𝒬𝜎(𝑌, 𝜃)𝑀𝐿 does not 

depend on any unknown parameters since (4.3.5) is equivalent to the ML 

estimator for 𝜎 based on the vector of standard variates 𝑍. Thus 𝒬𝜎(𝑌, 𝜃)𝑀𝐿 is a 
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pivotal quantity and its exact distribution can be determined easily through 

simulation.  

Similarly to (4.2.3), let 𝑦 be an observation of 𝑌. Based on (4.2.3), a FGPQ for 𝜎 

based on ML method can be defined as follows: 

   ℛ𝜎(𝑦, 𝑌, 𝜃) =
𝜎̂(𝑦)𝑀𝐿
𝜎̂(𝑌)𝑀𝐿 𝜎⁄

                               

          =
𝜎̂(𝑦)𝑀𝐿

𝜎 ∙  𝜎̂(𝑍)𝑀𝐿 𝜎⁄
        

                                                           =
𝜎̂(𝑦)𝑀𝐿
𝜎̂(𝑍)𝑀𝐿

                                                        (4.3.6) 

Similarly to (4.3.5), based on (4.3.2), a CPQ for 𝜇 based on ML estimator for 𝜇 

can be defined as 

    𝒬𝜇(𝑌, 𝜃)𝑀𝐿 =
𝜇̂(𝑌)𝑀𝐿 − 𝜇

𝜎̂(𝑌)𝑀𝐿
                       

                                =
𝜇 + 𝜎 ∙  𝜇̂(𝑍)𝑀𝐿 − 𝜇

𝜎 ∙  𝜎̂(𝑍)𝑀𝐿
             

                                                               =
𝜇̂(𝑍)𝑀𝐿
𝜎̂(𝑍)𝑀𝐿

                                                     (4.3.7) 

Similarly to (4.3.5), the third equality in (4.3.7) shows that the distribution of 

𝒬𝜇(𝑌, 𝜃)𝑀𝐿 does not depend on any unknown parameters since (4.3.7) is solely 

a function of ML estimators for 𝜇 and 𝜎 based on the standard variate 𝑍∗, where 

𝑍∗~𝐿𝑆(0, 1). Thus, 𝒬𝜇(𝑌, 𝜃)𝑀𝐿 is a pivotal quantity and its exact distribution can 

be determined easily through simulation. 

Similarly to (4.2.25) and (4.2.26), a FGPQ for 𝜇 based on ML method can be 

defined as follows: 

 ℛ𝜇|𝜎(𝑦, 𝑌, 𝜃) = 𝜇̂(𝑦)𝑀𝐿 − [𝜇̂(𝑌)𝑀𝐿 − 𝜇]                                  
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             = 𝜇̂(𝑦)𝑀𝐿 − [𝜇 + 𝜎 ∙ 𝜇̂(𝑍)𝑀𝐿 − 𝜇]       

                                             = 𝜇̂(𝑦)𝑀𝐿 − 𝜎 ∙ 𝜇̂(𝑍)𝑀𝐿                                            (4.3.8) 

Based on CFGPQ ℛ𝜇|𝜎(𝑦, 𝑌, 𝜃) in (4.3.8), a FGPQ for 𝜇 is obtained by replacing 

the parameter 𝜎 in (4.3.8) by a FGPQ for 𝜎 in (4.3.6). Thus,  

ℛ𝜇(𝑦, 𝑌, 𝜃) = 𝜇̂(𝑦)𝑀𝐿 − ℛ𝜎(𝑦, 𝑌, 𝜃) ∙ 𝜇̂(𝑍)𝑀𝐿                                 

                                     = 𝜇̂(𝑦)𝑀𝐿 −
𝜎̂(𝑦)𝑀𝐿
𝜎̂(𝑍)𝑀𝐿

∙ 𝜇̂(𝑍)𝑀𝐿                                         (4.3.9) 

CPQ and FGPQ for 𝒑 Quantile of the Distribution 

As noted earlier, for 0 ≤ 𝑝 ≤ 1, the 𝑝 quantile of the distribution of 𝑌∗ is given 

by 𝜔𝑝 = 𝜇 + 𝜎 ∙ 𝑧𝑝, where 𝑧𝑝 is the 𝑝 quantile of the distribution of the standard 

variate 𝑍∗.  

A CPQ for 𝜔𝑝 can be defined as follows: 

   𝒬𝜔𝑝(𝑌, 𝜔𝑝)𝑀𝐿 =
𝜇̂(𝑌)𝑀𝐿 − 𝜔𝑝

𝜎̂(𝑌)𝑀𝐿
     

                              =
𝜇 + 𝜎 ∙ 𝜇̂(𝑍)𝑀𝐿 − 𝜇 − 𝜎 ∙ 𝑧𝑝

𝜎 ∙ 𝜎̂(𝑍)𝑀𝐿
    

                              =
𝜇̂(𝑍)𝑀𝐿 − 𝑧𝑝

𝜎̂(𝑍)𝑀𝐿
                                                          (4.3.10) 

The third equality in (4.3.10) shows that the distribution of 𝒬𝜔𝑝(𝑌, 𝜔𝑝)𝑀𝐿 does 

not depend on any unknown parameters since (4.3.10) is solely a function of 

ML based estimators for 𝜇 and 𝜎, and of 𝑧𝑝.  

Similarly to (4.2.45), a FGPQ for 𝜔𝑝 is given by 

                  ℛ𝜔𝑝(𝑦, 𝑌, 𝜃) = 𝜇̂(𝑦)𝑀𝐿 −
𝜎̂(𝑦)𝑀𝐿
𝜎̂(𝑍)𝑀𝐿

∙ [𝜇̂(𝑍)𝑀𝐿 − 𝑧𝑝]                      (4.3.11) 
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4.4. Statistical Inference Using Rank-Based 

Conventional and Fiducial Generalized 

Pivotal Quantities  

In this section we present hypothesis tests and confidence intervals (CIs) using 

rank-based conventional and fiducial generalized pivotal quantities for the 

parameters 𝜇 and 𝜎, linear combination 𝐿′𝜃 of 𝜃, 𝑝 quantile of the distribution, 

failure probability, and for the vector parameter 𝜃. 

Hypothesis Tests for 𝝈 

In this section we construct a hypothesis test for 𝜎 based on the most efficient 

CPQ for 𝜎 (4.2.2), that is, a CPQ based on GLS estimators as follows: 

Let 𝑦 be an observation of the random variable 𝑌. The null hypothesis to be 

tested is given by 

                                                   𝐻0: 𝜎 = 𝜎0                                                              (4.4.1) 

against the alternative 

𝐻𝐴: 𝜎 ≠ 𝜎0                          

A test statistic for 𝐻0 in (4.4.1), based on the CPQ (4.2.2) for 𝜎, is given by 

𝒬𝜎(𝑦, 𝜎0) = 𝜎̂(𝑦) 𝜎0⁄                                             

                                                   = 𝐿2
′ 𝐻𝑦 𝜎0⁄                                                             (4.4.2) 

As shown in Section 4.2.1.1., the statistic 𝒬𝜎(𝑌, 𝜎0) in (4.4.2), under 𝐻0, has the 

same distribution as the CPQ  

𝒬𝜎(𝑌, 𝜃) = 𝐿2
′ 𝐻𝑍 

Exact quantiles of the distribution of 𝒬𝜎(𝑌, 𝜃)  can be obtained through 

simulation. Let 𝒬𝜎(𝑌, 𝜃)𝛼 2⁄  and 𝒬𝜎(𝑌, 𝜃)1−𝛼 2⁄  be the 𝛼 2⁄  and (1 − 𝛼 2⁄ ) 
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quantiles of the distribution of 𝒬𝜎(𝑌, 𝜃).  Then, 𝐻0  in (4.4.1) is rejected if 

𝒬𝜎(𝑦, 𝜎0) < 𝒬𝜎(𝑌, 𝜃)𝛼 2⁄  or if 𝒬𝜎(𝑦, 𝜎0) > 𝒬𝜎(𝑌, 𝜃)1−𝛼 2⁄ . 

Confidence Intervals for 𝝈 

In this section we present confidence intervals for 𝜎 based on CPQ and FGPQ 

for 𝜎 derived from GLS estimators. 

A confidence interval for 𝜎 can be obtained by inverting the CPQ (4.2.2), namely 

𝒬𝜎(𝑌, 𝜃).  Let 𝒬𝜎(𝑌, 𝜃)𝛼 2⁄  and 𝒬𝜎(𝑌, 𝜃)1−𝛼 2⁄  be the 𝛼 2⁄  and (1 − 𝛼 2⁄ ) 

quantiles of the distribution of 𝒬𝜎(𝑌, 𝜃). Then 

 1 − 𝛼 = 𝑃[𝒬𝜎(𝑌, 𝜃)𝛼 2⁄ ≤ 𝒬𝜎(𝑌, 𝜃) ≤ 𝒬𝜎(𝑌, 𝜃)1−𝛼 2⁄ ]                         

= 𝑃 [𝒬𝜎(𝑌, 𝜃)𝛼 2⁄ ≤
𝜎̂(𝑌)

𝜎
≤ 𝒬𝜎(𝑌, 𝜃)1−𝛼 2⁄ ]                  

                        = 𝑃 [
𝜎̂(𝑌)

𝒬𝜎(𝑌, 𝜃)1−𝛼 2⁄
≤ 𝜎 ≤

𝜎̂(𝑌)

𝒬𝜎(𝑌, 𝜃)𝛼 2⁄
]                                  (4.4.3) 

Thus a 100 (1 − 𝛼) CI for 𝜎  based on GLS CPQ (4.2.2) is given by 

                                 [
𝜎̂(𝑌)

𝒬𝜎(𝑌, 𝜃)1−𝛼 2⁄
;  

𝜎̂(𝑌)

𝒬𝜎(𝑌, 𝜃)𝛼 2⁄
]                                             (4.4.4) 

Alternatively to (4.4.4), a CI for 𝜎 can be obtained from the distribution of FGPQ 

(4.2.3), namely from the distribution of ℛ𝜎(𝑦, 𝑌, 𝜃).  Let ℛ𝜎(𝑦, 𝑌, 𝜃)𝛼 2⁄  and 

ℛ𝜎(𝑦, 𝑌, 𝜃)1−𝛼 2⁄  be the 𝛼 2⁄  and (1 − 𝛼 2⁄ )  quantiles of the distribution of 

ℛ𝜎(𝑦, 𝑌, 𝜃). Then a 100(1 − 𝛼) CI for 𝜎 based on ℛ𝜎(𝑦, 𝑌, 𝜃) is given by 

                                 [ℛ𝜎(𝑦, 𝑌, 𝜃)𝛼 2⁄ ; ℛ𝜎(𝑦, 𝑌, 𝜃)1−𝛼 2⁄  ]                                       (4.4.5) 

We note that CIs for 𝜎 (4.4.4) and (4.4.5) are identical. 

Hypothesis Test for 𝝁 

The null hypothesis to be tested is given by 
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                                              𝐻0: 𝜇 = 𝜇0                                                                    (4.4.6) 

against the alternative 

                   𝐻𝐴: 𝜇 ≠ 𝜇0                                                        

A test statistic for 𝐻0 in (4.4.6), based on the CPQ (4.2.24) for 𝜇, is given by 

 𝒬𝜇(𝑦, 𝜇0) =
𝜇̂(𝑦) − 𝜇0
𝜎̂(𝑦)

                                

                                                       =
𝐿1
′ 𝐻𝑦 − 𝜇0
𝐿2
′ 𝐻𝑦

                                                    (4.4.7) 

As shown in Section 4.2.2, the statistic 𝒬𝜇(𝑌, 𝜇0), under 𝐻0, has the same 

distribution as the CPQ 

𝒬𝜇(𝑌, 𝜃) =
𝐿1
′ 𝐻𝑍

𝐿2
′ 𝐻𝑍

 

Exact quantiles of the distribution of 𝒬𝜇(𝑌, 𝜃)  can be obtained through 

simulation. Let 𝒬𝜇(𝑌, 𝜃)𝛼 2⁄  and 𝒬𝜇(𝑌, 𝜃)1−𝛼 2⁄  be the 𝛼 2⁄  and (1 − 𝛼 2⁄ ) 

quantiles of the distribution of 𝒬𝜇(𝑌, 𝜃).  Then 𝐻0  in (4.4.6) is rejected if 

𝒬𝜇(𝑦, 𝜇0) < 𝒬𝜇(𝑌, 𝜃)𝛼 2⁄  or if 𝒬𝜇(𝑦, 𝜇0) > 𝒬𝜇(𝑌, 𝜃)1−𝛼 2⁄ . 

Confidence Interval for 𝝁 

In this section we present the confidence intervals for 𝜇 based on CPQ and FGPQ 

for 𝜎 derived from GLS estimators. 

A CI for 𝜇 can be obtained by inverting the CPQ (4.2.24) for 𝜇, namely 𝒬𝜇(𝑌, 𝜃). 

Let 𝒬𝜇(𝑌, 𝜃)𝛼 2⁄  and 𝒬𝜇(𝑌, 𝜃)1−𝛼 2⁄  be the 𝛼 2⁄  and (1 − 𝛼 2⁄ ) quantiles of the 

distribution of 𝒬𝜇(𝑌, 𝜃). Then 

           1 − 𝛼 = 𝑃[𝒬𝜇(𝑌, 𝜃)𝛼 2⁄ ≤ 𝒬𝜇(𝑌, 𝜃) ≤ 𝒬𝜇(𝑌, 𝜃)1−𝛼 2⁄ ] 
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                        = 𝑃 [𝒬𝜇(𝑌, 𝜃)𝛼 2⁄ ≤
𝜇̂(𝑌) − 𝜇

𝜎̂(𝑌)
≤ 𝒬𝜇(𝑌, 𝜃)1−𝛼 2⁄ ] 

                                        = 𝑃 [

𝜇̂(𝑌) − 𝒬𝜇(𝑌, 𝜃)1−𝛼 2⁄ ∙ 𝜎̂(𝑌) ≤ 𝜇

≤ 𝜇̂(𝑌) − 𝒬𝜇(𝑌, 𝜃)𝛼 2⁄ ∙ 𝜎̂(𝑌)
]                  (4.4.8) 

Thus a 100(1 − 𝛼) CI for 𝜇, based on GLS estimator CPQ for 𝜎, is given by 

          [𝜇̂(𝑦) − 𝒬𝜇(𝑌, 𝜃)1−𝛼 2⁄ ∙ 𝜎̂(𝑌)  ;  𝜇̂(𝑦) − 𝒬𝜇(𝑌, 𝜃)𝛼 2⁄ ∙ 𝜎̂(𝑌)]              (4.4.9) 

Alternatively to (4.4.9), a CI for 𝜇 can be obtained from the distribution of FGPQ 

(4.2.26), namely ℛ𝜇(𝑦, 𝑌, 𝜃).  Let ℛ𝜇(𝑦, 𝑌, 𝜃)𝛼 2⁄  and ℛ𝜇(𝑦, 𝑌, 𝜃)1−𝛼 2⁄  be the 

𝛼 2⁄  and (1 − 𝛼 2⁄ )  quantiles of the distribution of ℛ𝜇(𝑦, 𝑌, 𝜃).  Then, a 

100(1 − 𝛼) CI for 𝜇 based on ℛ𝜇(𝑦, 𝑌, 𝜃) is given by 

                               [ℛ𝜇(𝑦, 𝑌, 𝜃)𝛼 2⁄ ;  ℛ𝜇(𝑦, 𝑌, 𝜃)1−𝛼 2⁄ ]                                      (4.4.10) 

We note that CIs (4.4.9) and (4.4.10) are identical.    

         

Hypothesis Test for a Linear Combination 𝑳′𝜽 of 𝜽 

The null hypothesis to be tested is given by 

                                                   𝐻0: 𝐿
′𝜃 = 𝜆0                                                        (4.4.11) 

against the alternative 

𝐻𝐴: 𝐿
′𝜃 ≠ 𝜆0                     

A test statistic for 𝐻0 in (4.4.11), based on the CPQ (4.2.34) for 𝐿′𝜃, is given by 

𝒬𝐿′𝜃(𝑦, 𝜆0) =
𝐿′𝜃(𝑦) − 𝜆0
𝜎̂(𝑦)

                                                  

                                        =
𝐿′𝐻𝑦 − 𝜆0
𝐿2
′ 𝐻𝑦

                                                       (4.4.12) 
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As shown in Section 4.2.3.1, the statistic 𝒬𝐿′𝜃(𝑌, 𝜆0), under 𝐻0, has the same 

distribution as the CPQ  

𝒬𝐿′𝜃(𝑌, 𝜃) =
𝐿′𝐻[𝑍 − 𝐸(𝑍)]

𝐿2
′ 𝐻𝑍

 

Exact quantiles of the distribution of 𝒬𝐿′𝜃(𝑌, 𝜃)  can be obtained through 

simulation. Let 𝒬𝐿′𝜃(𝑌, 𝜃)𝛼 2⁄  and 𝒬𝐿′𝜃(𝑌, 𝜃)1−𝛼 2⁄  be the 𝛼 2⁄  and (1 − 𝛼 2⁄ ) 

quantiles of the distribution of 𝒬𝐿′𝜃(𝑌, 𝜃). Then 𝐻0 in (4.4.11) is rejected if 

𝒬𝐿′𝜃(𝑦, 𝜆0) < 𝒬𝐿′𝜃(𝑌, 𝜃)𝛼 2⁄  or if 𝒬𝐿′𝜃(𝑦, 𝜆0) > 𝒬𝐿′𝜃(𝑌, 𝜃)1−𝛼 2⁄ . 

Confidence Interval for a Linear Combination 𝑳′𝜽 of 𝜽 

A CI for 𝐿′𝜃 can be obtained by inverting the CPQ (4.2.34) for 𝐿′𝜃, namely 

𝒬𝐿′𝜃(𝑌, 𝜃).  Let 𝒬𝐿′𝜃(𝑌, 𝜃)𝛼 2⁄  and 𝒬𝐿′𝜃(𝑌, 𝜃)1−𝛼 2⁄  be the 𝛼 2⁄  and (1 − 𝛼 2⁄ ) 

quantiles of the distribution of 𝒬𝐿′𝜃(𝑌, 𝜃). Then 

1 − 𝛼 = 𝑃[𝒬𝐿′𝜃 (𝑌, 𝜃)𝛼 2⁄ ≤ 𝒬𝐿′𝜃 (𝑌, 𝜃) ≤ 𝒬𝐿′𝜃 (𝑌, 𝜃)1−𝛼 2⁄ ]      

             = 𝑃 [𝒬𝐿′𝜃 (𝑌, 𝜃)𝛼 2⁄ ≤
𝐿′𝜃(𝑌) − 𝐿′𝜃

𝜎̂(𝑌)
≤ 𝒬𝐿′𝜃 (𝑌, 𝜃)1−𝛼 2⁄ ]  

                            = 𝑃 [

𝐿′𝜃(𝑌) − 𝒬𝐿′𝜃 (𝑌, 𝜃)1−𝛼 2⁄ ∙ 𝜎̂(𝑌)

≤ 𝐿′𝜃 ≤ 𝐿′𝜃(𝑌) − 𝒬𝐿′𝜃 (𝑌, 𝜃)𝛼 2⁄ ∙ 𝜎̂(𝑌)

]                  (4.4.13) 

Thus a 100(1 − 𝛼) CI for 𝐿′𝜃, based on CPQ for 𝜎, is given by 

[𝐿′𝜃(𝑦) − 𝒬𝐿′𝜃 (𝑌, 𝜃)1−𝛼 2⁄ ∙ 𝐿2
′ 𝐻𝑦; 𝐿′𝜃(𝑦) − 𝒬𝐿′𝜃 (𝑌, 𝜃)𝛼 2⁄ ∙ 𝐿2

′ 𝐻𝑦] 

                                                         (4.4.14) 

Alternatively to (4.4.14), a CI for 𝐿′𝜃  can be obtained from the distribution of 

FGPQ (4.2.41)/(4.2.44), namely ℛ𝐿′𝜃(𝑦, 𝑌, 𝜃).  Let ℛ𝐿′𝜃(𝑦, 𝑌, 𝜃)𝛼 2⁄  and 

ℛ𝐿′𝜃(𝑦, 𝑌, 𝜃)1−𝛼 2⁄  be the 𝛼 2⁄  and (1 − 𝛼 2⁄ ) quantiles of the distribution of 

ℛ𝐿′𝜃(𝑦, 𝑌, 𝜃). Then a 100(1 − 𝛼) CI for 𝐿′𝜃,  based on ℛ𝐿′𝜃(𝑦, 𝑌, 𝜃), is given by 
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                       [ℛ𝐿′𝜃(𝑦, 𝑌, 𝜃)𝛼 2⁄ ;  ℛ𝐿′𝜃(𝑦, 𝑌, 𝜃)1−𝛼 2⁄ ]                                     (4.4.15) 

We note that CIs (4.4.14) and (4.4.15) are identical.    

Hypothesis Test for a 𝒑 Quantile of the Distribution 

For 0 ≤ 𝑝 ≤ 1,  let 𝜂𝑝  be the 𝑝  quantile of the distribution of 𝑌∗ . The null 

hypothesis that is tested is given by 

                                                     𝐻0: 𝜂𝑝 = 𝜂𝑝0                                                        (4.4.16) 

against the alternative 

𝐻𝐴: 𝜂𝑝 ≠ 𝜂𝑝0                   

As noted in Section 4.2.3.2, the 𝑝 quantile 𝜂𝑝 is a linear combination of the 

parameters 𝜇 and 𝜎 of the distribution of 𝑌∗, namely 

𝜂𝑝 = 𝜇 + 𝜎 ∙ 𝑧𝑝                

                                                          = 𝐿𝑝
′ 𝜃                                                               (4.4.17) 

where 𝐿𝑝 = (1, 𝑧𝑝)
′
, and 𝑧𝑝 is the 𝑝 quantile of the distribution of 𝑍∗ (which, of 

course, is known for all 𝑝). Thus hypothesis (4.4.16) is equivalent to 

                                                 𝐻0: 𝐿𝑝
′ 𝜃 = 𝜂𝑝0                                                       (4.4.18) 

But the null hypothesis (4.4.18) is of the form (4.4.11), so that 𝐻0 in (4.4.16) and 

(4.4.18) can be tested using the test statistic (4.4.12), where the terms 𝐿 and 𝜆0 

in (4.4.12) are replaced by 𝐿𝑝 = (1, 𝑧𝑝)
′
 and 𝜂𝑝0, respectively. Explicitly, the test 

statistic for testing (4.4.16) and (4.4.18) is given by 

𝒬𝜂𝑝(𝑦, 𝜂𝑝0) =
𝐿𝑝
′ 𝜃(𝑦) − 𝜂𝑝0

𝐿2
′ 𝐻𝑦

                                      

                                                    =
𝐿𝑝
′ 𝐻𝑦 − 𝜂𝑝0

𝐿2
′ 𝐻𝑦

                                                     (4.4.19) 
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Confidence Interval for a 𝒑 Quantile of the Distribution 

As shown in Section 4.4.7 above, we note that when 𝐿 in (4.4.14) is replaced by 

𝐿𝑝, then  𝐿′𝜃 is specifically of the form 𝐿𝑝 = (1, 𝑧𝑝)
′
. Therefore (4.4.14) is a 

100(1 − 𝛼) CI for the 𝑝 quantile 𝜂𝑝 = 𝜇 + 𝜎 ∙ 𝑧𝑝  = 𝐿𝑝
′ 𝜃 of the distribution of 

𝑌∗. Explicitly, a 100(1 − 𝛼) CI for the 𝑝 quantile 𝜂𝑝 based on CPQ for 𝜎 derived 

from GLS estimators (4.2.37) is given by  

[𝐿𝑝
′ 𝜃(𝑦) − 𝒬𝐿𝑝′ 𝜃 (𝑌, 𝜃)1−𝛼 2⁄ ∙ 𝐿2

′ 𝐻𝑦; 𝐿𝑝
′ 𝜃(𝑦) − 𝒬𝐿𝑝′ 𝜃 (𝑌, 𝜃)𝛼 2⁄ ∙ 𝐿2

′ 𝐻𝑦] 

                            (4.4.20) 

Alternatively to (4.4.20), a 100(1 − 𝛼) CI for the 𝑝 quantile 𝜂𝑝 based on FGPQs 

(4.2.45) and (4.2.46) is given by 

                         [ℛ𝜂𝑝(𝑦, 𝑌, 𝜃)𝛼 2⁄ ;  ℛ𝜂𝑝(𝑦, 𝑌, 𝜃)1−𝛼 2⁄ ]                                      (4.4.21) 

Hypothesis Test for a Failure Probability 

The failure probability 𝜋𝑒 at some 𝑦𝑒 is given by 

      𝜋𝑒 = 𝐹𝑌( 𝑦𝑒; 𝜃)                                 

                                                    = Φ(
 𝑦𝑒 − 𝜇

𝜎
)                                                     (4.4.22) 

The null hypothesis to be tested is  

                                                   𝐻0: 𝜋𝑒 = 𝜋𝑒0                                                         (4.4.23) 

against the alternative 

𝐻𝐴: 𝜋𝑒 ≠ 𝜋𝑒0                      

Let 

𝜁𝑒 = Φ
−1(𝜋𝑒)                                

= Φ−1[𝐹𝑌( 𝑦𝑒; 𝜃)]              
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                                              =
 𝑦𝑒 − 𝜇

𝜎
                                                               (4.4.24) 

and similarly, 

                                        𝜁𝑒0 = Φ
−1(𝜋𝑒0)                                                           (4.4.25) 

Then the null hypothesis in (4.4.23) is equivalent to 

                               𝐻0: 𝜁𝑒 =
 𝑦𝑒 − 𝜇

𝜎
= 𝜁𝑒0                                                          (4.4.26) 

which in turn is equivalent to 

                                    𝐻0: 𝜇 + 𝜎 ∙ 𝜁𝑒0 = 𝑦𝑒                                                         (4.4.27) 

against 

𝐻0: 𝜇 + 𝜎 ∙ 𝜁𝑒0 ≠ 𝑦𝑒                                    

But the null hypothesis (4.4.27) is of the form (4.4.11), so that 𝐻0  in 

(4.4.23)/(4.4.26)/(4.4.27) can be tested using the test statistic (4.4.12), where 

the terms 𝐿  and 𝜆0  in (4.4.12) are replaced by 𝐿𝑒 = (1, 𝜆𝑒0)
′  and 𝑦𝑒 , 

respectively. Explicitly, the test statistic for testing (4.4.23)/(4.4.26)/(4.4.27) is 

given by 

𝒬𝐿𝑒′ 𝜃(𝑦, 𝑦𝑒) =
𝐿𝑒
′ 𝜃(𝑦) − 𝑦𝑒
𝐿2
′ 𝐻𝑦

                                 

                                                      =
𝐿𝑒
′ 𝐻𝑦 − 𝑦𝑒
𝐿2
′ 𝐻𝑦

                                                   (4.4.28) 

Confidence Interval for a Failure Probability 

An exact CI for the failure probability 𝜋𝑒 is obtained by inversion of the exact 

test described in Section 4.4.9. Thus a two-sided 100(1 − 𝛼) CI for 𝜋𝑒 is given 

by all values 𝜋𝑒0 for which the null hypothesis (4.4.23)/(4.4.26)/(4.4.27) is not 

rejected at two-sided significance level 𝛼. 
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Explicitly, let 𝜋𝑒1 and 𝜋𝑒2 respectively be the lower and upper limits of the 

100(1 − 𝛼)  CI for 𝜋𝑒 .  Furthermore, let 𝜁𝑒1 = Φ
−1(𝜋𝑒1)  and𝜁𝑒2 = Φ

−1(𝜋𝑒2) , 

and  𝐿𝑒1 = (1, 𝜆𝑒1)
′ and 𝐿𝑒2 = (1, 𝜆𝑒2)

′. Then 𝜁𝑒1 and 𝜁𝑒2  satisfy the following 

equalities 

                                      
𝐿𝑒1
′ 𝜃(𝑦) − 𝑦𝑒
𝐿2
′ 𝐻𝑦

= 𝒬𝐿𝑒1′ 𝜃(𝑌, 𝜃)𝛼 2⁄                                   (4.4.29)   

and 

                                          
𝐿𝑒2
′ 𝜃(𝑦) − 𝑦𝑒
𝐿2
′ 𝐻𝑦

= 𝒬𝐿𝑒2′ 𝜃(𝑌, 𝜃)1−𝛼 2⁄                            (4.4.30) 

where 𝒬𝐿𝑒1′ 𝜃(𝑌, 𝜃)𝛼 2⁄  and 𝒬𝐿𝑒2′ 𝜃(𝑌, 𝜃)1−𝛼 2⁄  are the 𝛼 2⁄  and (1 − 𝛼 2⁄ ) 

quantiles of the distribution of 𝒬𝐿𝑒1′ 𝜃(𝑌, 𝜃) and 𝒬𝐿𝑒2′ 𝜃(𝑌, 𝜃), respectively. Once 

𝜁𝑒1 and 𝜁𝑒2 are determined from (4.4.29) and (4.4.30), then the lower and upper 

limits of the 100(1 − 𝛼) CI for 𝜋𝑒 are given by 𝜋𝑒1 = Φ(𝜁𝑒1) and 𝜋𝑒2 = Φ(𝜁𝑒2). 

Since the distributions of 𝒬𝐿𝑒1′ 𝜃(𝑌, 𝑦𝑒) relevant in (4.4.23) and of 𝒬𝐿𝑒2′ 𝜃(𝑌, 𝑦𝑒) 

relevant in (4.4.30), and thus the quantiles 𝒬𝐿𝑒1′ 𝜃(𝑌, 𝜃)𝛼 2⁄  and 𝒬𝐿𝑒2′ 𝜃(𝑌, 𝜃)1−𝛼 2⁄  

depend on the null values 𝜋𝑒1  and 𝜋𝑒2  (through 𝜁𝑒1 = Φ
−1(𝜋𝑒1)  and𝜁𝑒2 =

Φ−1(𝜋𝑒2)), a closed-form expression for the exact CI for 𝜋𝑒 is not available. 

However, the upper and lower confidence limits can be calculated fast and in a 

straightforward manner, for example through bisection. 

Hypothesis Tests for 𝜽 

The null hypothesis to be tested is  

                                         𝐻0: 𝜃 = 𝜃0                                                                      (4.4.31) 

against the alternative 

𝐻𝐴: 𝜃 ≠ 𝜃0                                             
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Two options for testing 𝐻0 in (4.4.31) are available and thus, are presented in 

the following two sections. 

 Hypothesis test for 𝜽 based on GLS estimator CPQ for 𝜽 

A test statistic for 𝐻0 in (4.4.31), based on the CPQ (4.2.48) for 𝜃, is given by 

 𝒬𝜃(𝑦, 𝜃0) = {[𝜃(𝑦) − 𝜃0]
′
𝑋′𝑉−1𝑋[𝜃(𝑦) − 𝜃0]} 𝜎0 

2⁄                   

                                    = [(𝐻𝑦 − 𝜃0)
′𝑋′𝑉−1𝑋(𝐻𝑦 − 𝜃0)] 𝜎0

2⁄                        (4.4.32) 

As shown in Section 4.2.4.1, under 𝐻0  the statistic 𝒬𝜃(𝑌, 𝜃0) has the same 

distribution as the statistic 

𝒬𝜃(𝑦, 𝜃) = [𝑍 − 𝐸(𝑍)]
′𝑉−1𝑋(𝑋′𝑉−1𝑋)−1𝑋′𝑉−1[𝑍 − 𝐸(𝑍)] 

Exact quantiles of the distribution of 𝒬𝜃(𝑌, 𝜃0) can therefore be obtained by 

simulation from the distribution of 𝑍. Let 𝒬𝜃(𝑌, 𝜃)𝛼 2⁄  and 𝒬𝜃(𝑌, 𝜃)1−𝛼 2⁄  be the 

𝛼 2⁄  and (1 − 𝛼 2⁄ ) quantiles of the distribution of 𝒬𝜃(𝑌, 𝜃). Then 𝐻0 in (4.4.31) 

is rejected if 𝒬𝜃(𝑦, 𝜃0) < 𝒬𝜃(𝑌, 𝜃)𝛼 2⁄  or if 𝒬𝜃(𝑦, 𝜃0) > 𝒬𝜃(𝑌, 𝜃)1−𝛼 2⁄ . 

 Hypothesis test for 𝜽 based on the ratio of CPQ for 𝜽 and of CPQ for 

𝝈𝟐 

Alternatively to (4.4.32), 𝐻0 can be tested using a test statistic based on the CPQ 

(4.2.49) for 𝜃: 

 𝒬̃𝜃(𝑦, 𝜃0) =
 𝒬𝜃(𝑦,  𝜃0)

 𝒬𝜎2(𝑦,  𝜎0)
                                                                       

   =
[𝜃(𝑦) − 𝜃0]

′
𝑋′𝑉−1𝑋[𝜃(𝑦) − 𝜃0] 𝜎0

2⁄

(𝐿2
′ 𝐻𝑍)2 𝜎0

2⁄
        

                                   =
(𝐻𝑦 − 𝜃0)

′𝑋′𝑉−1𝑋(𝐻𝑦 − 𝜃0)

𝐿2
′ 𝐻𝑍

                                   (4.4.33) 
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As shown in Section 4.2.4.2, under 𝐻0  the statistic 𝒬̃𝜃(𝑌, 𝜃0) has the same 

distribution as the statistic 

𝒬̃𝜃(𝑌, 𝜃) =
[𝑍 − 𝐸(𝑍)]′𝑉−1𝑋(𝑋′𝑉−1𝑋)−1𝑋′𝑉−1[𝑍 − 𝐸(𝑍)]

𝐿2
′ 𝐻𝑍

 

Exact quantiles of the distribution of 𝒬̃𝜃(𝑌, 𝜃0) can therefore be obtained by 

simulation from the distribution of 𝑍. Let 𝒬̃𝜃(𝑌, 𝜃)𝛼 2⁄  and 𝒬̃𝜃(𝑌, 𝜃)1−𝛼 2⁄  be the 

𝛼 2⁄  and (1 − 𝛼 2⁄ ) quantiles of the distribution of 𝒬̃𝜃(𝑌, 𝜃). Then 𝐻0 in (4.4.31) 

is rejected if 𝒬̃𝜃(𝑦, 𝜃0) < 𝒬̃𝜃(𝑌, 𝜃)𝛼 2⁄  or if 𝒬̃𝜃(𝑦, 𝜃0) > 𝒬̃𝜃(𝑌, 𝜃)1−𝛼 2⁄ . 

Confidence Ellipsoids for 𝜽 

In this section we derive explicitly using different approaches, two versions of 

confidence ellipsoids for 𝜃. Exact simultaneous confidence regions (SCRs), in 

other words, confidence ellipsoids, for 𝜃 can be obtained by inversion of the 

CPQs described in Sections 4.2.4.1 and 4.2.4.2. 

 Confidence ellipsoid for 𝜽 based on GLS estimator CPQ for 𝜽 

An SCR for 𝜃 is obtained by inverting the CPQ (4.2.48) for 𝜃. Let 𝒬𝜃(𝑌, 𝜃)1−𝛼 be 

the (1 − 𝛼) quantile of the distribution of 𝒬𝜃(𝑌, 𝜃). Then 

1 − 𝛼 = 𝑃{𝒬𝜃(𝑌, 𝜃) ≤ 𝒬𝜃(𝑌, 𝜃)1−𝛼}                                                                                

  = 𝑃 {[𝜃(𝑌) − 𝜃]
′
𝑋′𝑉−1𝑋[𝜃(𝑌) − 𝜃] 𝜎2⁄ ≤ 𝒬𝜃(𝑌, 𝜃)1−𝛼}                     

           = 𝑃 {[𝜃(𝑌) − 𝜃]
′
𝑋′𝑉−1𝑋[𝜃(𝑌) − 𝜃] ≤ 𝜎2 ∙ 𝒬𝜃(𝑌, 𝜃)1−𝛼}             (4.4.34) 

Thus a 100(1 − 𝛼) SCR for 𝜃 is given by 

    𝑆𝐶𝑅(𝜃) = {𝜃|[𝜃(𝑦) − 𝜃]
′
𝑋′𝑉−1𝑋[𝜃(𝑦) − 𝜃] ≤ 𝜎2 ∙ 𝒬𝜃(𝑌, 𝜃)1−𝛼}      (4.4.35) 

As is shown in Appendix G (R. Schall, working paper, 2012), the SCR for 𝜃 in 

(4.4.35) can be calculated as follows:  
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Let 𝐷𝐷′ = 𝑋′𝑉−1𝑋 be the Cholesky decomposition of 𝑋′𝑉−1𝑋, such that 

                                                 𝐷 = (
𝑑1 0
𝑑2 𝑑3

)                                                      (4.4.36) 

Then an SCR for 𝜃 is given by all 𝜃 = (𝜇, 𝜎)′ which satisfy the following two 

conditions: 

        𝜎̂(𝑦) ∙
𝑑3

𝑑3 +√𝒬𝜃(𝑌, 𝜃)1−𝛼
≤ 𝜎 ≤ 𝜎̂(𝑦) ∙

𝑑3

𝑑3 −√𝒬𝜃(𝑌, 𝜃)1−𝛼
          (4.4.37) 

and 

   𝜇̂(𝑦) − {√𝜎2 ∙ 𝒬𝜃(𝑌, 𝜃)1−𝛼 − 𝑑3
2[𝜎̂(𝑦) − 𝜎]2 − 𝑑2[𝜎̂(𝑦) − 𝜎]} 𝑑1⁄  

      ≤ 𝜇 ≤ 𝜇̂(𝑦) + {√𝜎2 ∙ 𝒬𝜃(𝑌, 𝜃)1−𝛼 − 𝑑3
2[𝜎̂(𝑦) − 𝜎]2 + 𝑑2[𝜎̂(𝑦) − 𝜎]} 𝑑1⁄  

                                                                                                                               (4.4.38) 

 Confidence ellipsoid for 𝜽 based on the ratio of CPQ for 𝜽 and of 

CPQ for 𝝈𝟐 

Alternatively to the SCR (4.4.35), an SCR for 𝜃 is obtained by inverting the CPQ 

(4.2.49) for 𝜃. Let 𝒬̃𝜃(𝑌, 𝜃)1−𝛼 be the (1 − 𝛼) quantile of the distribution of 

𝒬̃𝜃(𝑌, 𝜃). Then 

1 − 𝛼 = 𝑃{𝒬̃𝜃(𝑌, 𝜃) ≤ 𝒬̃𝜃(𝑌, 𝜃)1−𝛼}                                                                                 

= 𝑃 {[𝜃(𝑌) − 𝜃]
′
𝑋′𝑉−1𝑋[𝜃(𝑌) − 𝜃] 𝐿2

′ 𝐻𝑍⁄ ≤ 𝒬̃𝜃(𝑌, 𝜃)1−𝛼}               

          = 𝑃 {[𝜃(𝑌) − 𝜃]
′
𝑋′𝑉−1𝑋[𝜃(𝑌) − 𝜃] ≤ 𝐿2

′ 𝐻𝑍 ∙ 𝒬̃𝜃(𝑌, 𝜃)1−𝛼}        (4.4.39) 

Thus a 100(1 − 𝛼) SCR for 𝜃 is given by 

 𝑆𝐶𝑅(𝜃) = {𝜃|[𝜃(𝑦) − 𝜃]
′
𝑋′𝑉−1𝑋[𝜃(𝑦) − 𝜃] ≤ 𝐿2

′ 𝐻𝑍 ∙ 𝒬̃𝜃(𝑌, 𝜃)1−𝛼} 

                                                                                                                                    (4.4.40) 
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In the same manner as for the SCR (4.4.35), it can be shown that an SCR for 𝜃 is 

given by all 𝜃 = (𝜇, 𝜎)′ which satisfy the following two conditions: 

 𝜎̂(𝑦) − √𝐿2
′ 𝐻𝑍 ∙ 𝒬̃𝜃(𝑌, 𝜃)1−𝛼 𝑑3⁄ ≤ 𝜎 ≤ 𝜎̂(𝑦) + √𝐿2

′ 𝐻𝑍 ∙ 𝒬̃𝜃(𝑌, 𝜃)1−𝛼 𝑑3⁄   

                                                                                                                                     (4.4.41) 

and 

  𝜇̂(𝑦) − {√𝐿2
′ 𝐻𝑍 ∙ 𝒬̃𝜃(𝑌, 𝜃)1−𝛼 − 𝑑3

2[𝜎̂(𝑦) − 𝜎]2 − 𝑑2[𝜎̂(𝑦) − 𝜎]} 𝑑1⁄  

     ≤ 𝜇 ≤ 𝜇̂(𝑦) + {√𝐿2
′ 𝐻𝑍 ∙ 𝒬̃𝜃(𝑌, 𝜃)1−𝛼 − 𝑑3

2[𝜎̂(𝑦) − 𝜎]2 + 𝑑2[𝜎̂(𝑦) − 𝜎]} 𝑑1⁄  

                                                                                                                                       (4.4.42) 

Simultaneous Confidence Bands for the CDF of the 

Distribution 

Based on the SCRs for 𝜃  described in Sections 4.4.12.1 and 4.4.12.2, 

simultaneous confidence bands (SCBs) for the cdf of 𝑌∗ can be constructed as 

described by Cheng and Iles (1983); see also Hong, Escobar and Meeker (2010, 

Section 1.2). 

4.5. Statistical Inference using ML-Based 

Conventional Pivotal Quantities 

In Sections 4.5.1 through 4.5.6 we present the hypothesis tests and confidence 

intervals for the parameters 𝜇 and 𝜎, and for the 𝑝 quantile of the distribution 

using ML-based CPQs.  
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Hypothesis Test for 𝝈 

Let 𝑦 be an observation of the random variable 𝑌. Equivalently to (4.4.1), the 

null hypothesis that is tested is given by 

                                                 𝐻0: 𝜎 = 𝜎0                                                                  (4.5.1) 

against the alternative 

𝐻𝐴: 𝜎 ≠ 𝜎0                               

A test statistic for 𝐻0 in (4.5.1) based on the CPQ (4.3.5) for 𝜎 is given by  

                                             𝒬𝜎(𝑦, 𝜎0)𝑀𝐿 =
𝜎̂(𝑦)𝑀𝐿
𝜎0

                                              (4.5.2) 

As shown in Section 4.3.1, the test statistic 𝒬𝜎(𝑌, 𝜎0)𝑀𝐿 , under 𝐻0, has the same 

distribution as the CPQ 

𝒬𝜎(𝑌, 𝜃)𝑀𝐿 = 𝜎̂(𝑍)𝑀𝐿 

Exact quantiles of the distribution of 𝒬𝜎(𝑌, 𝜃)𝑀𝐿  can be obtained through 

simulation from the distribution of 𝑍∗.  Let 𝒬𝜎(𝑌, 𝜃)𝑀𝐿 (𝛼 2⁄ )  and 

𝒬𝜎(𝑌, 𝜃)𝑀𝐿 (1−𝛼 2⁄ )  be 𝛼 2⁄  and (1 − 𝛼 2⁄ )  quantiles of the distribution of 

𝒬𝜎(𝑌, 𝜃)𝑀𝐿 . Then 𝐻0 in (4.5.1) is rejected if 𝒬𝜎(𝑦, 𝜎0)𝑀𝐿 < 𝒬𝜎(𝑌, 𝜃)𝑀𝐿 (𝛼 2⁄ ) or if 

𝒬𝜎(𝑦, 𝜎0)𝑀𝐿 > 𝒬𝜎(𝑌, 𝜃)𝑀𝐿 (1−𝛼 2⁄ ). 

Confidence Interval for 𝝈 

In the manner of Lawless (2003, p. 564), exact CI for 𝜎 can be obtained by 

inverting the CPQ (4.3.5) for 𝜎, namely 𝒬𝜎(𝑌, 𝜃)𝑀𝐿 . Let 𝒬𝜎(𝑌, 𝜃)𝑀𝐿 (𝛼 2⁄ )  and 

𝒬𝜎(𝑌, 𝜃)𝑀𝐿 (1−𝛼 2⁄ )  be 𝛼 2⁄  and (1 − 𝛼 2⁄ )  quantiles of the distribution of 

𝒬𝜎(𝑌, 𝜃)𝑀𝐿 .  

Then 

    1 − 𝛼 = 𝑃[𝒬𝜎(𝑌, 𝜃)𝑀𝐿 (𝛼 2⁄ ) ≤ 𝒬𝜎(𝑌, 𝜃)𝑀𝐿 ≤ 𝒬𝜎(𝑌, 𝜃)𝑀𝐿 (1−𝛼 2⁄ )]   
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          = 𝑃 [𝒬𝜎(𝑌, 𝜃)𝑀𝐿 (𝛼 2⁄ ) ≤
𝜎̂(𝑌)𝑀𝐿
𝜎

≤ 𝒬𝜎(𝑌, 𝜃)𝑀𝐿 (1−𝛼 2⁄ )]    

                         = 𝑃 [
𝜎̂(𝑌)𝑀𝐿

𝒬𝜎(𝑌, 𝜃)𝑀𝐿 (1−𝛼 2⁄ )
≤ 𝜎 ≤

𝜎̂(𝑌)𝑀𝐿
𝒬𝜎(𝑌, 𝜃)𝑀𝐿 (𝛼 2⁄ )

]                (4.5.3) 

Thus a 100(1 − 𝛼) exact CI for 𝜎 is given by 

                        [
𝜎̂(𝑦)𝑀𝐿

𝒬𝜎(𝑌, 𝜃)𝑀𝐿 (1−𝛼 2⁄ )
;  

𝜎̂(𝑦)𝑀𝐿
𝒬𝜎(𝑌, 𝜃)𝑀𝐿 (𝛼 2⁄ )

]                                   (4.5.4) 

Hypothesis Test for 𝝁 

Equivalently to (4.4.6), the null hypothesis that is tested is given by 

                                                          𝐻0: 𝜇 = 𝜇0                                                        (4.5.5) 

against the alternative 

𝐻𝐴: 𝜇 ≠ 𝜇0            

A test statistic for 𝐻0 in (4.5.5), based on the CPQ (4.3.7) for 𝜇, is given by 

                                      𝒬𝜇(𝑦, 𝜇0)𝑀𝐿 =
𝜇̂(𝑦)𝑀𝐿 − 𝜇0
𝜎̂(𝑦)𝑀𝐿

                                          (4.5.6) 

As shown in Section 4.3.1, the test statistic 𝒬𝜇(𝑌, 𝜇0)𝑀𝐿 , under 𝐻0, has the same 

distribution as the CPQ 

𝒬𝜇(𝑌, 𝜃)𝑀𝐿 =
𝜇̂(𝑍)𝑀𝐿
𝜎̂(𝑍)𝑀𝐿

 

Exact quantiles of the distribution of 𝒬𝜇(𝑌, 𝜃)𝑀𝐿  can be obtained through 

simulation from the distribution of 𝑍∗.  Let 𝒬𝜇(𝑌, 𝜃)𝑀𝐿 (𝛼 2⁄ )  and 

𝒬𝜇(𝑌, 𝜃)𝑀𝐿 (1−𝛼 2⁄ )  be 𝛼 2⁄  and (1 − 𝛼 2⁄ )  quantiles of the distribution of 

𝒬𝜇(𝑌, 𝜃)𝑀𝐿 . Then 𝐻0 in (4.5.5) is rejected if 𝒬𝜇(𝑦, 𝜇0)𝑀𝐿 < 𝒬𝜇(𝑌, 𝜃)𝑀𝐿 (𝛼 2⁄ ) or if 

𝒬𝜇(𝑦, 𝜇0)𝑀𝐿 > 𝒬𝜇(𝑌, 𝜃)𝑀𝐿 (1−𝛼 2⁄ ). 
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Confidence Interval for 𝝁 

Similarly to obtaining the CI for 𝜎 in (4.5.4), exact confidence interval for 𝜇 can 

be obtained by inverting the CPQ (4.3.7) for 𝜇,  namely 𝒬𝜇(𝑌, 𝜃)𝑀𝐿 .  Let 

𝒬𝜇(𝑌, 𝜃)𝑀𝐿 (𝛼 2⁄ ) and 𝒬𝜇(𝑌, 𝜃)𝑀𝐿 (1−𝛼 2⁄ ) be 𝛼 2⁄  and (1 − 𝛼 2⁄ ) quantiles of the 

distribution of 𝒬𝜇(𝑌, 𝜃)𝑀𝐿 .  

Then 

           1 − 𝛼 = 𝑃[𝒬𝜇(𝑌, 𝜃)𝑀𝐿 (𝛼 2⁄ ) ≤ 𝒬𝜇(𝑌, 𝜃)𝑀𝐿 ≤ 𝒬𝜇(𝑌, 𝜃)𝑀𝐿 (1−𝛼 2⁄ )]  

                        = 𝑃 [𝒬𝜇(𝑌, 𝜃)𝑀𝐿 (𝛼 2⁄ ) ≤
𝜇̂(𝑌)𝑀𝐿 − 𝜇

𝜎̂(𝑌)𝑀𝐿
≤ 𝒬𝜇(𝑌, 𝜃)𝑀𝐿 (1−𝛼 2⁄ )]   

                             = 𝑃 [

𝜇̂(𝑌)𝑀𝐿 − 𝒬𝜇(𝑌, 𝜃)𝑀𝐿 (1−𝛼 2⁄ ) ∙ 𝜎̂(𝑌)𝑀𝐿 ≤ 𝜇

≤ 𝜇̂(𝑌)𝑀𝐿 − 𝒬𝜇(𝑌, 𝜃)𝑀𝐿 (𝛼 2⁄ ) ∙ 𝜎̂(𝑌)𝑀𝐿

]            (4.5.7) 

Thus a 100(1 − 𝛼) exact CI for 𝜇 is given by 

                          [
𝜇̂(𝑦)𝑀𝐿 − 𝒬𝜇(𝑌, 𝜃)𝑀𝐿 (1−𝛼 2⁄ ) ∙ 𝜎̂(𝑦)𝑀𝐿;

𝜇̂(𝑦)𝑀𝐿 − 𝒬𝜇(𝑌, 𝜃)𝑀𝐿 (𝛼 2⁄ ) ∙ 𝜎̂(𝑦)𝑀𝐿
]                                (4.5.8) 

Hypothesis Tests for 𝒑 Quantile of the Distribution 

For 0 ≤ 𝑝 ≤ 1,  let 𝜔𝑝  be the 𝑝  quantile of the distribution of 𝑌∗ . The null 

hypothesis that is tested is given by 

                                                      𝐻0: 𝜔𝑝  = 𝜔𝑝0                                                       (4.5.9) 

against the alternative  

𝐻𝐴: 𝜔𝑝  ≠ 𝜔𝑝0               

A test statistic for 𝐻0 in (4.5.9) based on the CPQ (4.3.10) for 𝜔𝑝 is  

                                  𝒬𝜔𝑝(𝑦, 𝜔𝑝)𝑀𝐿 =
𝜇̂(𝑦)𝑀𝐿 −𝜔𝑝0

𝜎̂(𝑦)𝑀𝐿
                                      (4.5.10) 
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As shown in Section 4.3.2, the test statistic 𝒬𝜔𝑝(𝑌, 𝜔𝑝0)𝑀𝐿 , under 𝐻0, has the 

same distribution as the CPQ 

𝒬𝜔𝑝(𝑌, 𝜔𝑝)𝑀𝐿 =
𝜇̂(𝑍)𝑀𝐿 − 𝑧𝑝

𝜎̂(𝑍)𝑀𝐿
 

Exact quantiles of the distribution of 𝒬𝜔𝑝(𝑌, 𝜔𝑝)𝑀𝐿 can be obtained through 

simulation from the distribution of 𝑍∗.  Let 𝒬𝜔𝑝(𝑌, 𝜔𝑝)𝑀𝐿 (𝛼 2⁄ )
 and 

𝒬𝜔𝑝(𝑌, 𝜔𝑝)𝑀𝐿 (1−𝛼 2⁄ )
 be 𝛼 2⁄  and (1 − 𝛼 2⁄ )  quantiles of the distribution of 

𝒬𝜔𝑝(𝑌, 𝜔𝑝)𝑀𝐿 .  Then 𝐻0  in (4.5.9) is rejected if 𝒬𝜔𝑝(𝑦, 𝜔𝑝0)𝑀𝐿 <

𝒬𝜔𝑝(𝑌, 𝜔𝑝)𝑀𝐿 (𝛼 2⁄ )
 or if 𝒬𝜔𝑝(𝑦, 𝜔𝑝0)𝑀𝐿 > 𝒬𝜔𝑝(𝑌, 𝜔𝑝)𝑀𝐿 (1−𝛼 2⁄ )

. 

Confidence Intervals for 𝒑 Quantile of the Distribution 

Exact confidence interval for the 𝑝 quantile of the distribution, namely 𝜔𝑝 can 

be constructed as follows. 

The CI for 𝜔𝑝 = 𝜇 + 𝜎 ∙ 𝑧𝑝 can be obtained by inverting the CPQ (4.3.10) for 𝜔𝑝, 

namely 𝒬𝜔𝑝(𝑌, 𝜔𝑝)𝑀𝐿 . Let 𝒬𝜔𝑝(𝑌, 𝜔𝑝)𝑀𝐿 (𝛼 2⁄ )
 and 𝒬𝜔𝑝(𝑌, 𝜔𝑝)𝑀𝐿 (1−𝛼 2⁄ )

 be 

𝛼 2⁄  and (1 − 𝛼 2⁄ ) quantiles of the distribution of 𝒬𝜔𝑝(𝑌, 𝜔𝑝)𝑀𝐿 . 

Then 

        1 − 𝛼 = 𝑃 [𝒬𝜔𝑝(𝑌, 𝜔𝑝)𝑀𝐿 (𝛼 2⁄ )
≤ 𝒬𝜔𝑝(𝑌, 𝜔𝑝)𝑀𝐿 ≤ 𝒬𝜔𝑝(𝑌, 𝜔𝑝)𝑀𝐿 (1−𝛼 2⁄ )

]  

                   = 𝑃 [𝒬𝜔𝑝(𝑌, 𝜔𝑝)𝑀𝐿 (𝛼 2⁄ )
≤
𝜇̂(𝑌)𝑀𝐿 − 𝜔𝑝

𝜎̂(𝑌)𝑀𝐿
≤ 𝒬𝜔𝑝(𝑌, 𝜔𝑝)𝑀𝐿 (1−𝛼 2⁄ )

]   

                  = 𝑃 [

𝜇̂(𝑌)𝑀𝐿 − 𝒬𝜔𝑝(𝑌, 𝜔𝑝)𝑀𝐿 (1−𝛼 2⁄ )
∙ 𝜎̂(𝑌)𝑀𝐿 ≤ 𝜔𝑝

≤ 𝜇̂(𝑌)𝑀𝐿 − 𝒬𝜔𝑝(𝑌, 𝜔𝑝)𝑀𝐿 (𝛼 2⁄ )
∙ 𝜎̂(𝑌)𝑀𝐿

]         (4.5.11) 

Thus a 100(1 − 𝛼) exact CI for 𝜔𝑝 is given by 
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                           [
𝜇̂(𝑦)𝑀𝐿 − 𝒬𝜔𝑝(𝑌, 𝜔𝑝)𝑀𝐿 (1−𝛼 2⁄ )

∙ 𝜎̂(𝑦)𝑀𝐿; 

𝜇̂(𝑦)𝑀𝐿 − 𝒬𝜔𝑝(𝑌, 𝜔𝑝)𝑀𝐿 (𝛼 2⁄ )
∙ 𝜎̂(𝑦)𝑀𝐿

]                     (4.5.12) 

                                                                                                                            

4.6. Simulation Study: One-Sample Problem 

In Section 4.6.1 we describe the calculation, by simulation, of the expected value 

and inverse of the covariance matrix of order statistics of an i.i.d. sample from 

the Normal, Logistic, Uniform, Pareto and Weibull distributions. Similarly, the 

calculation, by simulation, of the lower and upper quantiles of the distribution 

of CPQs for the location and scale parameters and quantiles of the distribution 

for these LS and LLS families of distributions is described in Section 4.6.2. In 

Section 4.6.3, we describe a simulation study for determining the coverage 

probabilities and average lengths of confidence intervals for the location and 

scale parameters and quantiles of the distribution involving a one-sample. We 

discuss the summary of the results of a simulation study in Section 4.6.3.4 

below.  

All program code for the simulation studies, and example program code of each 

method included with this thesis, unless stated otherwise, was written using 

MATLAB R2013a software. Only selected program code is presented in this 

thesis at Appendix H. However, all other program code is available electronically 

on request. 

Calculation of the Expected Value and Inverse of Covariance 

Matrix of 𝒁 in LS and LLS Families 

The program code of the calculation of the expectation 𝐸(𝑍) and the inverse of 

the covariance matrix 𝐶𝑜𝑣(𝑍) is presented at Appendix H1 (Code H1.1 through 



119 

H1.5) below. The rationale, design and results of this simulation study are 

presented as follows: 

 Rationale of simulation 

This simulation was carried out to calculate the 𝐸(𝑍) and the inverse of 𝐶𝑜𝑣(𝑍) 

of order statistics of an i.i.d. sample of size 𝑛 from standard LS and LLS 

distributions. The values of these two quantities, namely 𝐸(𝑍) and the inverse 

of 𝐶𝑜𝑣(𝑍), are required for the calculation of the lower and upper quantiles of 

the distribution of rank-based CPQs and FGPQs for the parameters 𝜇 and 𝜎, and 

for quantiles of the distribution for the Normal, Logistic, Uniform, Pareto and 

Weibull distributions. Furthermore, the values of 𝐸(𝑍) and inverse of 𝐶𝑜𝑣(𝑍) 

are required for hypotheses testing to calculate the value of the test statistics, 

and for the calculation of confidence intervals for the parameters 𝜇 and 𝜎, and 

for quantiles of the distribution using rank-based CPQs and FGPQs.    

 Design of simulation  

For this simulation, five programs were written to calculate the values of 𝐸(𝑍) 

and inverse of 𝐶𝑜𝑣(𝑍) for the Normal, Logistic, Uniform, Weibull and Pareto 

distributions. The values of the 𝐸(𝑍)  and inverse of 𝐶𝑜𝑣(𝑍)  for these 

distributions were calculated using 𝑆 = 100000 simulated independent samples 

of selected sizes 𝑛 = 10  and 𝑛 = 25  from the standard Normal, Logistic, 

Uniform, Weibull and Pareto distributions based on the LS parametrization. 

Furthermore, the values of the 𝐸(𝑍) and inverse of 𝐶𝑜𝑣(𝑍) for each distribution 

were calculated using the Algorithm 1 presented earlier in Section 3.4. 

 Results of simulation 

For sample sizes 𝑛 = 10 and 𝑛 = 25, the values of five vectors of the 𝐸(𝑍) of 

dimensions 1 by 10 and 1 by 25, and inverses of five 𝐶𝑜𝑣(𝑍) of dimensions 10 
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by 10, and 25 by 25, respectively, were calculated for the standard Normal, 

Logistic, Uniform, Weibull, and Pareto distributions through simulation and have 

been stored away. 

Calculation of Lower and Upper Quantiles of the Distribution of 

CPQs for 𝝁, 𝝈 and 𝜼 

Below we present the rationale, design, and results of this simulation as follows: 

 Rationale of simulation 

We calculate through simulation the lower and upper quantiles of the 

distribution of rank and ML-based CPQs for 𝜇, 𝜎 and quantile of the distribution 

𝜂 in LS and LLS families of distributions. We recall from Sections 4.4 through 4.5 

that the values of the lower and upper quantiles of the distribution of rank and 

ML-based CPQs, which we refer to in this thesis, respectively, as 𝛼 2⁄  and 1 −

𝛼 2⁄  quantiles, are required to calculate the confidence intervals for 𝜇, 𝜎 and 𝜂. 

In addition, the values of the 𝛼 2⁄  and 1 − 𝛼 2⁄  quantiles of the distribution of 

rank and ML-based CPQs are required for hypotheses testing to decide whether 

or not to reject a specified null hypothesis.  

 Design of simulation 

 For sample sizes 𝑛 = 10 and 𝑛 = 25, five programs were written to calculate 

the values of 𝛼 2⁄  and 1 − 𝛼 2⁄  quantiles of the distribution of rank and ML-

based CPQs for the Normal, Logistic, Uniform, Weibull, and Pareto distributions. 

The values of  𝛼 2⁄  and 1 − 𝛼 2⁄  quantiles of the distribution of these rank and 

ML-based CPQs for the Normal, Logistic, Uniform, Weibull and Pareto 

distributions were calculated using 𝑆 = 1000000  simulated independent 

samples of sizes 𝑛 = 10 and 𝑛 = 25 from the standard LS distributions and for 

the levels of significance 𝛼 of 0.1, 0.05 and 0.01.  
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 Results of simulation 

Rank-based 𝛼 2⁄  and 1 − 𝛼 2⁄  quantiles of the distribution of 𝜇, 𝜎 and 𝜂 for the 

Normal, Logistic, Uniform, Weibull and Pareto distributions are similar to their 

ML-based counterparts. The results of 𝛼 2⁄  and 1 − 𝛼 2⁄  quantiles of the 

distribution of rank and ML-based CPQs for 𝜇, 𝜎 and 𝜂 of the Normal, Logistic, 

Uniform, Weibull and Pareto distributions are presented in Appendix A1 (Tables 

A1.1 through A1.15 for 𝑛 = 10) and in Appendix A2 (Tables A2.1 through A2.15 

for 𝑛 = 25). 

 Simulation Study: Coverage Probabilities and Average Lengths 

of Confidence Intervals for 𝝁, 𝝈 and 𝜼 

In this simulation study we evaluate the performance of the proposed rank-

based methods of inference against the ML-based methods. Specifically, we 

calculate the coverage probabilities and average lengths of confidence intervals 

for 𝜇, 𝜎 and 𝜂 in the LS and LLS families of distributions using rank and ML-based 

CPQs. Below we present the objectives, design and results of this simulation 

study as follows: 

 Objectives of simulation study 

 Firstly, we calculate the average length of confidence intervals for 𝜇, 𝜎 

and 𝜂 using rank and ML-based CPQs: 

o To determine the “best”  (most efficient) CPQ and/or FGPQ for 𝜎 

in terms of average length of confidence intervals for 𝜇, 𝜎 and 𝜂 

based on the respective CPQ and/or FGPQ for 𝜎. 

o Compare the efficiency of rank and ML-based methods in terms 

of average length of confidence intervals for 𝜇, 𝜎 and 𝜂 and the 

coverage probabilities. 
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o To determine whether confidence intervals for 𝜇 and 𝜂 calculated 

using two independent copies of the standard variate 𝑍 have 

shorter average length than confidence intervals based on a 

single copy of 𝑍. 

 Secondly, since the rank and ML-based methods for the one-sample 

problem are exact, the coverage probability of confidence intervals must 

be exact if the program code is correct. Hence, we determine if the 

simulated coverage probabilities are equal to the specified nominal 

probabilities, which serves as a validation check for the programming. 

 Design of simulation study 

For each distribution investigated in this thesis (Normal, Logistic, Uniform, 

Weibull and Pareto distributions), a program code was written to calculate the 

coverage probabilities and average lengths of confidence intervals for 𝜇, 𝜎 and 𝜂 

based on rank and ML-CPQs, at confidence levels (1 − 𝛼 2⁄ ) of 0.90, 0.95, and 

0.99 and 𝑆 = 1000000 simulated samples of sizes of 𝑛 = 10 and 𝑛 = 25. 

 Results of simulation study 

The results of the coverage probabilities and average lengths of confidence 

intervals for 𝜇, 𝜎 and 𝜂 of the Weibull distribution (𝑛 = 25) are presented below 

(Tables 4.6.3.1 through 4.6.3.3). However, the results of a simulation study (𝑛 =

10 and 𝑛 = 25) for the Normal, Logistic, Uniform and Pareto distributions are 

presented in Appendix B1 (Tables B1.1 through B1.15 for 𝑛 = 10) and Appendix 

B2 (Tables B2.1 through B2.12 for 𝑛 = 25) in order to avoid too many tables 

from appearing in the text.  
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Table 4.6.3.1: Weibull distribution: Coverage probability and average length of confidence intervals for 𝝈 based on four 

CPQs at specified nominal confidence levels (sample size 𝒏 = 𝟐𝟓;  𝑺 = 𝟏𝟎𝟎𝟎𝟎𝟎𝟎 simulated samples) 

 Nominal confidence level 

Quantity  0.90    0.95    0.99   

 𝜎11 𝜎22 𝜎33 𝜎𝑀𝐿 𝜎1 𝜎2 𝜎3 𝜎𝑀𝐿 𝜎1 𝜎2 𝜎3 𝜎𝑀𝐿 

Coverage 0.9007 0.9003 0.9003 0.9012 0.9503 0.9503 0.9508 0.9504 0.9901 0.9901 0.9904 0.9900 

Length 0.5565 0.8116 0.5900 0.5551 0.6729 0.9841 0.7149 0.6708 0.9184 1.3409 0.9762 0.9155 

                                                      
1 Subscript 1used in Tables (4.6.3.1 through 4.6.3.), A1, A2, B1 and B2 refers to the calculations based on the GLS estimator for 𝜎. 
2 Subscript 2 used un Tables (4.6.3.1 through 4.6.3.), A1, A2, B1 and B2 refers to the calculations based on the residual sum of squares (RSS) for 𝜎. 
3 Subscript 3 used un Tables (4.6.3.1 through 4.6.3.), A1, A2, B1 and B2 refers to the calculations based on the combined information of  the GLS estimator for 
𝜎 and RSS for 𝜎. 
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Table 4.6.3.2: Weibull distribution: Coverage probability and average length of confidence intervals for 𝝁 based on 

eight CPQs at specified nominal confidence levels (sample size 𝒏 = 𝟐𝟓;  𝑺 = 𝟏𝟎𝟎𝟎𝟎𝟎𝟎 simulated samples) 

 Nominal confidence level 

Quantity  0.90    0.95    0.99   

 𝜇1 𝜇2 𝜇3 𝜇𝑀𝐿 𝜇1 𝜇2 𝜇3 𝜇𝑀𝐿 𝜇1 𝜇2 𝜇3 𝜇𝑀𝐿 

Coverage 0.9000 0.9002 0.9006 0.9006 0.9509 0.9506 0.9505 0.9507 0.9902 0.9895 0.9900 0.9902 

Length 0.7165 0.7446 0.7203 0.7161 0.8660 0.9117 0.8709 0.8654 1.1777 1.2742 1.1892 1.1761 

 𝜇1
∗ 𝜇2

∗  𝜇3
∗  𝜇𝑀𝐿

∗  𝜇1
∗ 𝜇2

∗  𝜇3
∗  𝜇𝑀𝐿

∗  𝜇1
∗ 𝜇2

∗  𝜇3
∗  𝜇𝑀𝐿

∗  

Coverage 0.9003 0.8999 0.9002 0.9007 0.9492 0.9491 0.9496 0.9505 0.9889 0.9886 0.9886 0.9901 

Length 0.7192 0.7465 0.7227 0.7165 0.8699 0.9154 0.8756 0.8646 1.1922 1.2914 1.2039 1.1754 
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Table 4.6.3.3: Weibull distribution: Coverage probability and average length of confidence intervals for 𝜼 based on 

eight CPQs at specified nominal confidence levels (sample size 𝒏 = 𝟐𝟓;  𝑺 = 𝟏𝟎𝟎𝟎𝟎𝟎𝟎 simulated samples) 

 Nominal confidence level 

Quantity  0.90    0.95    0.99   

 𝜂1 𝜂2 𝜂3 𝜂𝑀𝐿  𝜂1 𝜂2 𝜂3 𝜂𝑀𝐿  𝜂1 𝜂2 𝜂3 𝜂𝑀𝐿  

Coverage 0.9007 0.9008 0.9009 0.9003 0.9508 0.9506 0.9508 0.9507 0.9907 0.9903 0.9905 0.9909 

Length 0.8655 0.8982 0.8694 0.8630 1.0479 1.1034 1.0549 1.0446 1.4390 1.5539 1.4500 1.4342 

 𝜂1
∗ 𝜂2

∗  𝜂3
∗  𝜂𝑀𝐿

∗  𝜂1
∗ 𝜂2

∗  𝜂3
∗  𝜂𝑀𝐿

∗  𝜂1
∗ 𝜂2

∗  𝜂3
∗  𝜂𝑀𝐿

∗  

Coverage 0.9051 0.9035 0.9050 0.9002 0.9515 0.9502 0.9443 0.9509 0.9859 0.9873 0.9862 0.9909 

Length 0.8583 0.8917 0.8624 0.8626 1.0386 1.0932 1.0184 1.0461 1.4197 1.5395 1.4337 1.4382 



126 

 Discussion of results of simulation study  

 Comparison of three proposed rank-based CPQs for 𝜎 with a ML-based 

CPQ for 𝜎: 

o Earlier in this chapter (see Section 4.2), three rank-based CPQs for 

𝜎 were proposed, namely the CPQ for 𝜎 based on GLS estimator 

for 𝜎  (4.2.2) referred to, for example, in Table 4.6.3.1 as 

𝒬𝜎1(𝑌, 𝜃), CPQ for 𝜎 based on residual sum of squares (4.2.11) 

referred to, for example, in Table 4.6.3.1 as 𝒬𝜎2(𝑌, 𝜃),  and CPQ 

for 𝜎 based on combined CPQs for 𝜎 (4.2.20) referred to, for 

example, in Table 4.6.3.1 as 𝒬𝜎3(𝑌, 𝜃).  

o The simulation results of the average lengths of confidence 

intervals for the scale parameter 𝜎  of the Normal, Logistic, 

Uniform, Weibull and Pareto distributions show that, when using 

rank-based CPQs or FGPQs for 𝜎, the most efficient rank-based 

CPQ or FGPQ for the scale parameter 𝜎 is a CPQ or FGPQ based 

on GLS method, namely CPQ for 𝜎 (4.2.2) or FGPQ for 𝜎 (4.2.3). 

This finding applies to both sample sizes 𝑛 = 10 and 𝑛 = 25. 

o As is shown in Table 4.6.3.1 (presented above in the text) and in 

Appendix B2 (Tables B2.1, B2.4, B2.7 and B2.10), the average 

lengths of confidence intervals for the scale parameter  𝜎 

calculated using rank-based CPQ for 𝜎1 are shorter than those 

calculated using the rank-based CPQs for 𝜎2  and 𝜎3  at all 

confidence levels investigated in this thesis, namely 0.90, 0.95, 

and 0.99. This finding is confirmed when we consider the average 

length of confidence intervals for 𝜇 and 𝜂. Thus, the rank-based 

CPQ for 𝜎 derived from GLS estimators will be used for further 

inferences involving a two-sample problem and for a three-
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parameter problem discussed later in Chapters 5 and 6, 

respectively. This finding also applies to the case when 𝑛 = 10. 

 Comparison of relative performance of the rank and ML-based methods: 

o The simulation results suggest that rank-based methods are very 

competitive with ML-based methods in terms of relative length of 

confidence intervals for the model parameters 𝜇 and 𝜎 and 0.975 

quantiles of distributions for the cases when 𝑛 = 10 and 𝑛 = 25. 

o The average lengths of confidence intervals calculated using the 

most efficient rank-based method and those calculated using the 

ML-based methods, are practically equal, with a slight advantage 

for ML-based methods.  

 Choice of using two independent copies of standard variate 𝑍 when 

calculating the average length of confidence intervals for 𝜇 and 𝜂: 

o We recall that in the rank and ML-based CPQs for 𝜇 (rank (4.2.24), 

(4.2.27), and (4.2.29); and ML (4.3.7)), the standard variate 𝑍 

appears in the numerator and denominator. This leads to the 

question of whether we should use the standard variate 𝑍 in both 

the numerator and denominator (one copy of standard variate 𝑍) 

when calculating the rank and ML-based CPQs for 𝜇 and 𝜂 of the 

Normal, Logistic, Uniform, Pareto and Weibull distributions, or 

alternatively we should use the standard variate 𝑍  in the 

numerator and an independent copy of 𝑍,  namely 𝑍∗  in the 

denominator (two independent copies of standard variate 𝑍)? In 

other words, does using two independent copies of standard 

variate 𝑍 lead to 𝛼 2⁄  and 1 − 𝛼 2⁄  quantiles of the distribution of 

CPQs (4.2.24), (4.2.27), (4.2.29) and (4.3.7) that are significantly 

different from those calculated when one copy of standard 

variate 𝑍 is used?  
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o The simulation results show that, in general, the 𝛼 2⁄  and 1 −

𝛼 2⁄  quantiles of the distribution of four rank-based CPQs for the 

location parameter 𝜇  ((4.2.24), (4.2.27), (4.2.29) and (4.3.7)) 

obtained using one copy of standard variate 𝑍 are practically the 

same as those obtained using two independent copies of 

standard variate 𝑍. This finding is true for the cases of the 

Normal, Logistic, Uniform, Pareto and Weibull distributions (see 

Appendix A1 (Tables A1.2, A1.5, A1.8, A1.11 and A1.14, for 𝑛 =

10); and Appendix A2 (Tables A2.2, A2.5, A2.8, A2.11 and A2.14, 

for 𝑛 = 25)).  

o In contrast, the simulation results suggest that, in general, the 

distance between the 𝛼 2⁄  and 1 − 𝛼 2⁄  quantiles of the 

distribution of three ranked-based CPQs for 𝜂 calculated using 

one copy of standard variate 𝑍  is shorter than the distance 

between the quantiles when the rank-based CPQ for 𝜂 is based 

on two independent copies of standard variate 𝑍 (see Appendix 

A1 (Tables A1.3, A1.6, A1.9, A1.12 and A1.15, for 𝑛 = 10); and 

Appendix A2 (A2.3, A2.6, A2.9, A2.12 and A2.15, for 𝑛 = 25)). 

However, the same finding does not apply to ML-based CPQ for 𝜂 

because the 𝛼 2⁄  and 1 − 𝛼 2⁄  quantiles of the distribution of ML-

based CPQs for 𝜂 remain generally the same.  

o Conclusion: 

 In view of the discussion above, the simulation results 

show that confidence intervals calculated from rank and 

ML-based CPQs or FGPQs for 𝜇 and 𝜂 using a single copy 

of the standard variate 𝑍 have either approximately the 

same average length as, or are shorter than confidence 

intervals calculated from CPQs or FGPQs for 𝜇 and 𝜂 using 

two independent copies of the standard variate 𝑍. Refer, 
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for example, to Tables 4.6.3.2 and 4.6.3.3 (in the text), 

and Appendix B2 (Tables B2.2, B2.3, B2.5, B2.6, B2.8, B2.9, 

B2.11 and B2.12). This finding is also consistent with a 

sample size 𝑛 = 10. Thus it is recommended to use only a 

single copy of the standard variate 𝑍 for calculation of 

these confidence intervals. 

 Checking for the exactness of the coverage: 

o Both the rank and ML-based methods investigated for the one-

sample problem in this chapter are exact. As can be expected, the 

simulation results show that the simulated coverage probabilities 

of confidence intervals for the parameters 𝜇 and 𝜎 and for 0.975 

quantiles of distributions are very close to the specified nominal 

probabilities (0.90, 0.95, and 0.99) for both cases when one copy 

of the standard variate  𝑍  and two independent copies of 

standard variate  𝑍  are used. This finding validates our 

programming. 

4.7. Illustrative Examples: One-Sample 

Problem: Weibull Distributions 

In this section, we evaluate the performance of the proposed rank-based 

methods of inference against ML-based methods using two real data examples 

provided in the text of Lawless (2003, p. 240). This data represent the levels of 

voltage at which failures occurred in two independent types of electrical cable 

(Type I and Type II) insulation after specimens were subjected to an increasing 

voltage stress in a laboratory experiment. For each type of electrical cable 

insulation, twenty (20) specimens were considered and the failure voltages (in 

kilovolts per millimeter) were recorded. The ranked failure voltages (in 

increasing order of magnitude) of the two types are given in Table 4.7.1 below. 
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Table 4.7.1: Levels of voltage (in kilovolts per millimeter) for Type I and 

Type II cable insulations 

Type I 

Insulation 

32.0 35.4 36.2 39.8 41.2 43.3 45.5 46.0 46.2 46.4 

46.5 46.8 47.3 47.3 47.6 49.2 50.4 50.9 52.4 56.3 

Type II 

Insulation 

39.4 45.3 49.2 49.4 51.3 52.0 53.2 53.2 54.9 55.5 

57.1 57.2 57.5 59.2 61.0 62.4 63.8 64.3 67.3 67.7 

 

Stone and Lawless (1979) showed that the levels of voltage at which failures 

occur in each type of cable insulation follow a Weibull distribution with a 

common shape parameter 𝜎∗ = 𝜎
14

∗ = 𝜎
25

∗ .  For the one-sample problem 

described in this chapter, we have analyzed the data for Type I and Type II 

insulations separately. However, for the two-sample problem presented in 

Chapter 5, we have analyzed the data set under the assumption that the failure 

voltages for Type I and Type II insulations cables follow the Weibull distributions 

with possibly unequal shape parameters 𝜎1
∗ and 𝜎2

∗ respectively. 

The results of the analysis of the data for the two samples are presented in 

Table 4.7.2 below. The analysis of the two samples is based on the fact that the 

Weibull distribution belongs to the log-location-scale family of distributions as 

was presented in Section 2.3.3 above. 

 

  

                                                      
4 Subscript 1 used in Sections 4.7 and 5.6 refers to Type I. 
5 Subscript 2 used in Sections 4.7 and 5.6 refers to Type II. 
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Table 4.7.2: Log-Weibull distributions real data examples: Fiducial generalized confidence intervals (FGCIs) for the 

parameters 𝝁𝟏, 𝝁𝟐,  𝝈𝟏  and 𝝈𝟐 based on the proposed rank and ML-based FGPQs at specified nominal confidence levels 

(𝑺 = 𝟏𝟎𝟎𝟎𝟎 simulated standard samples). 

𝑛1 = 20; 𝜇̂1𝑅 = 3.8688;  𝜇̂1𝑀𝐿 = 3.8666; 𝜎̂1𝑅 = 0.1116; 𝜎̂1𝑀𝐿 = 0.1066 

Nominal confidence level 

FGCI 0.90 0.95 0.99 

𝑅 𝑀𝐿 𝑅 𝑀𝐿 𝑅 𝑀𝐿 

FGCI for 𝜇1 [3.8223, 3.9124] [3.8224, 3.9121] [3.8112, 3.9208] [3.8114, 3.9203] [3.7902, 3.9412] [3.7903, 3.9404] 

FGCI for 𝜎1 [0.0855, 0.1555] [0.0849, 0.1543] [0.0813, 0.1662] [0.0810, 0.1648] [0.0733, 0.1916] [0.0730, 0.1903] 

 

𝑛2 = 20; 𝜇̂2𝑅 = 4.0824;  𝜇̂2𝑀𝐿 = 4.0796; 𝜎̂2𝑅 = 0.1144; 𝜎̂2𝑀𝐿 = 0.1094 

 

FGCI for 𝜇2 [4.0347, 4.1270] [4.0343, 4.1269] [4.0233, 4.1357] [4.0230, 4.1347] [4.0018, 4.1566] [4.0013, 4.1554] 

FGCI for 𝜎2 [0.0876, 0.1594] [0.0871, 0.1584] [0.0834, 0.1704] [0.0831, 0.1691] [0.0752, 0.1965] [0.0749, 0.1954] 
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o Rank and ML-based point estimates of the model parameters for the two 

Log Weibull samples 

 Sample 1 rank and ML-based point estimates of the parameters 

𝜇1  and 𝜎1  are  𝜇̂1𝑅 = 3.8688  and  𝜇̂1𝑀𝐿 = 3.8666;  and 𝜎̂1𝑅 =

0.1116  and 𝜎̂1𝑀𝐿 = 0.1066  respectively. The ML-based point 

estimates obtained by Lawless (2003, p. 241) are 𝜇̂1𝑀𝐿 = 3.867 

and 𝜎̂1𝑀𝐿 = 0.107. 

 Similarly, sample 2 results based on the proposed methods are 

𝜇̂2𝑅 = 4.0824  and 𝜇̂2𝑀𝐿 = 4.0796;  and 𝜎̂2𝑅 = 0.1144  and 

𝜎̂2𝑀𝐿 = 0.1094. Sample 2 ML-based point estimates obtained by 

Lawless (2003, p. 241) are  𝜇̂2𝑀𝐿 = 4.080  and 𝜎̂2𝑀𝐿 = 0.109. 

Thus, these results suggest that the rank-based estimates of the 

parameters are very close to the ML estimates. 

o Rank and ML-based FGCIs of the parameters for the two Log Weibull 

samples 

 In terms of relative lengths of FGCIs of the parameters 𝜇1,

𝜇2,  𝜎1  and 𝜎2 , the results show that rank-based methods 

produced FGCIs of 𝜇1, 𝜇2,  𝜎1  and 𝜎2 that are very close to the 

ML-based FGCIs at 0.90, 0.95 and 0.99 confidence levels. This 

conclusion validates the general conclusion from the results of 

simulation study concerning the relative performance of the rank 

and ML-based methods; refer to the third bullet of Section 4.6.3.4 

above.  
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Chapter 5 - Conventional and 
Fiducial 
Generalized 
Inference for 
Location-Scale and 
Log-Location-Scale 
Distributions: Two-
Sample Problem 

This chapter presents a literature review, conventional pivotal quantities, where 

they exist, and fiducial generalized pivotal quantities for the two-sample 

problem in LS and LLS distributions, using both rank and ML methods. 

Furthermore, in this chapter we present methods for statistical inference for 

comparing two independent samples from LS and LLS distributions using fiducial 

generalized inference. Simulation studies and their results are presented for 

obtaining the lower and upper quantiles of CPQs for the ratio of scale 

parameters, and for determining the coverage probabilities and average lengths 

of fiducial generalized confidence intervals for the ratio of scale parameters, 

difference of location parameters and difference of two quantiles are also 

presented. We note that in this and subsequent chapters only CPQs and FGPQs 

based on the GLS estimator for 𝜎 (the “most efficient” CPQ or FGPQ, as was 

discussed in Section 4.6.3.4) are presented. 

5.1. Literature Review 

The well-known Behrens-Fisher problem (Behrens, 1929 and Fisher, 1935) has 

motivated consideration of statistical inference for comparing two independent 



135 

samples in LS and LLS families of distributions. This problem in its original form 

involves the construction of exact confidence intervals for the difference in 

location parameters from two independent Normal samples, without making 

the assumption that the scale or variance parameters are equal for the two 

samples. Possible solutions to such statistical problems were introduced on the 

basis of the concepts of generalized p-values (GPVs), see, for example, 

Weerahandi (1987) and Tsui and Weerahandi (1989), and, subsequently, 

generalized confidence intervals (GCIs) (Weerahandi, 1993). Since then, a 

considerable range of research work on statistical inference involving two-

sample problems in LS and LLS families of distributions using various approaches 

has appeared in the literature. 

For example, Wu et al. (2002) used ML based methods, namely signed log-

likelihood ratio and modified signed log-likelihood ratio statistics to compare by 

hypothesis testing the population means (location and scale parameters 

contrast) of two independent Lognormal distributions. In addition, Wu at al. 

(2002) derived a method for calculating confidence intervals for the ratio of 

population means (locations parameters contrast) of two independent 

Lognormal distributions. Wu et al. (2002) evaluated the performance of their 

methods through simulation studies and real-life examples by obtaining the 

coverage probabilities and average lengths of nominal 90% confidence intervals 

for the population means of two independent Lognormal distributions based on 

a range of smaller sample size, and compared their results with the results 

based on a Z-score method obtained by Zhou et al. (1997). 

Hannig et al. (2006) used the method of fiducial generalized inference to derive 

simultaneous confidence intervals for all possible combinations of ratios of the 

population means of at least three independent Lognormal distributions (i.e. 

pairwise multiple comparisons). The performance of the FGI method was 

evaluated through a simulation study based on small, medium and large sample 



136 

sizes by obtaining the exact and asymptotic coverage probabilities of 95% FGCIs 

for the pairs of ratios of the population means of independent Lognormal 

distributions. Similarly, Kharrati-Kapaei et al. (2013) applied the method of 

fiducial generalized inference to obtain coverage probabilities and average 

lengths of simultaneous fiducial generalized confidence intervals for the 

successive differences of location parameters of several independent two-

parameter Exponential distributions when the scale parameters are not equal. 

Nkurunziza and Chen (2011) developed a method constructing the generalized 

confidence interval and hypothesis test for the difference of location 

parameters of LS families of distributions using minimum risk equivariant 

estimation of the location and scale parameters of the distributions. Nkurunziza 

and Chen’s (2011) method of inference is based on a generalization of the ML-

based methods of inference for the difference in location parameters of LS 

families of distributions. Recently, Zakerzadeh and Jafari (2015) developed exact 

methods of carrying out conventional and generalized inference for various 

parameter contrasts of two independent Weibull distributions based on record 

values, which essentially may be considered as order statistics, and ML methods. 

Specifically, Zakerzadeh and Jafari (2015) derived a method for hypothesis 

testing and conventional constructing confidence interval for the ratio of shape 

parameters of two Weibull distributions. Furthermore, they used the 

generalized methods to develop a generalized pivotal quantity for testing 

hypotheses and constructing generalized confidence intervals for the ratio of 

scale parameters of two Weibull distributions when the shape parameters are 

equal and when they are not equal. Similarly, Zakerzadeh and Jafari (2015) 

applied their method of generalized inference to stress-strength reliability, 

which they expressed as a function of scale and shape parameters of two 

independent Weibull distributions. Finally, the efficiency of the developed 

methods for the natural logarithm of the ratio of scale parameters and stress-

strength reliability was evaluated through the simulation studies and real life 
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example in terms of obtaining coverage probabilities and average lengths of 95% 

generalized confidence intervals. 

5.2. Rank-Based CPQ and FGPQs  

As is well-known, with regard to the ratio of the scale parameters of two 

independent samples from LS and LSS distributions, namely 𝜌 = 𝜎1 𝜎2⁄ , there 

exists a CPQ (see Section 5.2.1). Furthermore, a FGPQ for 𝜌 is presented in 

Section 5.2.2. Finally, FGPQ for the difference of location parameters of two 

independent samples from LS and LSS distributions, namely a FGPQ for 𝛿 =

𝜇1 − 𝜇2  and for the difference of two quantiles, namely 𝑑 = 𝜂1𝑝 − 𝜂2𝑝  are 

presented in Sections 5.2.3 and 5.2.4 respectively. 

In order to derive CPQs and FGPQs, respectively based on ranks and ML 

methods, for inference on two independent samples from LS and LSS 

distributions, we use the following notation:  

Let 𝑌11, 𝑌12, … , 𝑌1𝑛1  be an i.i.d. random sample from the distribution of 𝑌1∗, 

(where that distribution is from an LS or LLS family), and let 

𝑍1𝑖 =
𝑌1𝑖 − 𝜇1
𝜎1

;          𝑖 = 1, 2, … , 𝑛1 

be the corresponding standardized random variates associated with 𝑌1∗. 

Furthermore, let 𝑌1 = [𝑌(11), 𝑌(12), … , 𝑌(1𝑛1)]
′
 be the vector of the order statistics 

of the sample 𝑌11, 𝑌12, … , 𝑌1𝑛1 , and similarly let 𝑍1 = [𝑍(11), 𝑍(12), … , 𝑍(1𝑛1)]
′
 be 

the vector of the order statistics of the corresponding standardized variates 

𝑍11, 𝑍12, … , 𝑍1𝑛1. 
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Similarly, let 𝑌21, 𝑌22, … , 𝑌2𝑛1  be an i.i.d. random sample from the distribution of 

𝑌2∗, (where that distribution is from the same LS or LLS family as the distribution 

of 𝑌1∗), and let 

𝑍2𝑖 =
𝑌2𝑖 − 𝜇2
𝜎2

;          𝑖 = 1, 2, … , 𝑛2 

be the corresponding standardized random variates associated with 𝑌2∗. 

Furthermore, let 𝑌2 = [𝑌(21), 𝑌(22), … , 𝑌(2𝑛2)]
′

 be the vector of the order 

statistics of the sample 𝑌21, 𝑌22, … , 𝑌2𝑛2 ,  and similarly let 𝑍2 =

[𝑍(21), 𝑍(22), … , 𝑍(2𝑛2)]
′
 be the vector of the order statistics of the corresponding 

standardized variates 𝑍21, 𝑍22, … , 𝑍2𝑛2. 

Now we let 𝑦1be an observation of 𝑌1 and 𝑦2 be an observation of 𝑌2. 

 CPQ for the Ratio of Scale Parameters 

A CPQ for 𝜎 based on the GLS estimator for 𝜎 from a single sample is given in 

(4.2.2), namely 

𝒬𝜎(𝑌, 𝜃) = 𝜎̂(𝑌) 𝜎⁄    

            = 𝐿2
′ 𝐻𝑍 

Using (4.2.2), let 𝒬𝜎1(𝑌1, 𝜃1) and 𝒬𝜎2(𝑌2, 𝜃2) denote the CPQs for 𝜎1  and 𝜎2 , 

respectively. Then a CPQ for 𝜌 is given by 

                       𝒬𝜌 = 𝒬𝜎1(𝑌1, 𝜃1) 𝒬𝜎2(𝑌2, 𝜃2)⁄  

                      =
𝜎̂(𝑌1) 𝜎1⁄

𝜎̂(𝑌2) 𝜎2⁄
                    

                                                                =
𝐿2
′ 𝐻𝑍1
𝐿2
′ 𝐻𝑍2

                                                     (5.2.1) 
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FGPQ for the Ratio of Scale Parameters 

We refer back to (4.2.3), which is a FGPQ for 𝜎 based on GLS estimator for 𝜎 

from a single sample as 

ℛ𝜎(𝑦, 𝑌, 𝜃) =
𝐿2
′ 𝐻𝑦

𝐿2
′ 𝐻𝑍

 

Similarly, let ℛ𝜎1  and ℛ𝜎2  be FGPQs for 𝜎1  and 𝜎2 , respectively, from two 

independent samples. Then a FGPQ for 𝜌 is given by 

               ℛ𝜌 = ℛ𝜎1(𝑦1, 𝑌1, 𝜃1) ℛ𝜎2⁄ (𝑦2, 𝑌2, 𝜃2)    

  =
𝐿2
′ 𝐻𝑦1 𝐿2

′ 𝐻𝑍1⁄

𝐿2
′ 𝐻𝑦2 𝐿2

′ 𝐻𝑍2⁄
               

                                                    =
𝐿2
′ 𝐻𝑦1
𝐿2
′ 𝐻𝑍1

∙
𝐿2
′ 𝐻𝑍2
𝐿2
′ 𝐻𝑦2

                                                 (5.2.2) 

FGPQ for the Difference of Location Parameters 

We note in this section that a CPQ for 𝛿 = 𝜇1 − 𝜇2 does not exist in general, in 

particular when 𝜎1 ≠ 𝜎2 with the scale parameters unknown. Therefore, only a 

FGPQ for 𝛿 is presented. We recall that when only one sample is available, a 

FGPQ for 𝜇 is given in (4.2.26) by 

  ℛ𝜇(𝑦, 𝑌, 𝜃) = 𝐿1
′ 𝐻 [𝑦 − ℛ𝜎(𝑦, 𝑌, 𝜃) ∙ 𝑍]  

               = 𝐿1
′ 𝐻 (𝑦 −

𝐿2
′ 𝐻𝑦

𝐿2
′ 𝐻𝑍

∙ 𝑍) 

Similarly to (4.2.26), let ℛ𝜇1 and ℛ𝜇2 be FGPQs for 𝜇1 and 𝜇2, respectively, from 

two independent samples. Then the FGPQ for 𝛿 is given by 

  ℛ𝛿 = ℛ𝜇1 − ℛ𝜇2                                                                                          
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                      = 𝐿1
′ 𝐻(𝑦1 −

𝐿2
′ 𝐻𝑦1
𝐿2
′ 𝐻𝑍1

∙ 𝑍1) − 𝐿1
′ 𝐻(𝑦2 −

𝐿2
′ 𝐻𝑦2
𝐿2
′ 𝐻𝑍2

∙ 𝑍2)               (5.2.3) 

FGPQ for the Difference of Two 𝒑-Quantiles 

As stated in Section 5.2.3, a CPQ for 𝑑 does not exist either. We refer back to 

(4.2.45) and (4.2.46), which give the FGPQ for the 𝑝-quantile of the distribution 

when only one sample is available as 

ℛ𝜂𝑝(𝑦, 𝑌, 𝜃) = 𝐿1
′ 𝐻𝑦 −

𝐿2
′ 𝐻𝑦

𝐿2
′ 𝐻𝑍

∙ (𝐿1
′ 𝐻𝑍 − 𝑧𝑝) 

and 

ℛ𝜂𝑝(𝑦, 𝑌, 𝜃) = 𝐿𝑝
′ 𝐻 {𝑦 −

𝐿2
′ 𝐻𝑦

𝐿2
′ 𝐻𝑍

∙ [𝑍 − 𝐸(𝑍)]} 

Let ℛ𝜂1𝑝  and ℛ𝜂2𝑝  be FGPQs for 𝜂1𝑝  and 𝜂2𝑝 , respectively, from two 

independent samples. Then, using (4.2.45) and (4.2.46), the FGPQ for the 

difference of two 𝑝-quantiles of the distribution is given by 

ℛ𝑑 = ℛ𝜂1𝑝(𝑦1, 𝑌1, 𝜃1) − ℛ𝜂2𝑝(𝑦2, 𝑌2, 𝜃2)                                                               

            = {𝐿1
′ 𝐻𝑦1 −

𝐿2
′ 𝐻𝑦1

𝐿2
′ 𝐻𝑍1

∙ (𝐿1
′ 𝐻𝑍1 − 𝑧𝑝)} − {𝐿1

′ 𝐻𝑦2 −
𝐿2
′ 𝐻𝑦2

𝐿2
′ 𝐻𝑍2

∙ (𝐿1
′ 𝐻𝑍2 − 𝑧𝑝)}  

                          (5.2.4)  

and  

 ℛ𝑑 = 𝐿𝑝
′ 𝐻 {𝑦1 −

𝐿2
′ 𝐻𝑦1
𝐿2
′ 𝐻𝑍1

∙ [𝑍1 − 𝐸(𝑍)]} − 𝐿𝑝
′ 𝐻 {𝑦2 −

𝐿2
′ 𝐻𝑦2
𝐿2
′ 𝐻𝑍2

∙ [𝑍2 − 𝐸(𝑍)]}  

                                                    (5.2.5) 
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FGPQ for the Log-Odds Ratio of Tail Probabilities 

In this section we present a FGPQ for the log-odds ratio of tail probabilities 

based on the FGPQ for 𝜎 (4.2.3). We recall from (4.2.57) that the FGPQ for 

failure probability 𝜋 at “time” 𝑦𝑒 is given by 

ℛ𝜋(𝑦, 𝑌, 𝜃) = Φ[ℛ𝜍(𝑦, 𝑌, 𝜃)] 

where 

ℛ𝜍(𝑦, 𝑌, 𝜃) =
𝑦𝑒 − 𝐿1

′ 𝐻 (𝑦 −
𝐿2
′ 𝐻𝑦
𝐿2
′ 𝐻𝑍

 ∙  𝑍)

𝐿2
′ 𝐻𝑦
𝐿2
′ 𝐻𝑍

 

Let ℛ𝜋1  and ℛ𝜋2  be FGPQs for failure probabilities 𝜋1 and  𝜋2  at “time” 𝑦𝑒 , 

respectively. Then, using (4.2.56) and (4.2.57), it is clear that ℛ𝜍1  and ℛ𝜍2  are 

FGPQs for 𝜍1 and 𝜍2 at “time” 𝑦𝑒, respectively. Furthermore, let 𝑞1 = 1 − ℛ𝜋1 

and 𝑞2 = 1 − ℛ𝜋2 . Using (4.2.57), a FGPQ for the log-odds ratio of tail 

probabilities based on the FGPQ for 𝜎 (4.2.3) is given by 

ℛ𝜏 = log {
ℛ𝜋1(𝑦1, 𝑌1, 𝜃1) 𝑞1⁄

ℛ𝜋2(𝑦2, 𝑌2,  𝜃2) 𝑞2⁄
}                                                              

                 = log[ℛ𝜋1(𝑦1, 𝑌1, 𝜃1)] + log(𝑞1) − log[ℛ𝜋2(𝑦2, 𝑌2, 𝜃2)] − log(𝑞2)   

                                                                                                                      (5.2.6) 

where in terms of (4.2.57) 

                              ℛ𝜋1(𝑦1, 𝑌1, 𝜃1) = Φ[ℛ𝜍1(𝑦1, 𝑌1, 𝜃1)]                                    (5.2.7) 

and 

                                 ℛ𝜋2(𝑦2, 𝑌2, 𝜃2) = Φ[ℛ𝜍2(𝑦2, 𝑌2, 𝜃2)]                              (5.2.8) 

whereas in terms of (4.2.57) 
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                   ℛ𝜍1(𝑦1, 𝑌1, 𝜃1) =
𝑦𝑒 − 𝐿1

′ 𝐻 (𝑦1 −
𝐿2
′ 𝐻𝑦1
𝐿2
′ 𝐻𝑍1

 ∙  𝑍1)

𝐿2
′ 𝐻𝑦1
𝐿2
′ 𝐻𝑍1

                         (5.2.9) 

and 

                 ℛ𝜍2(𝑦2, 𝑌2, 𝜃2) =
𝑦𝑒 − 𝐿1

′ 𝐻 (𝑦2 −
𝐿2
′ 𝐻𝑦2
𝐿2
′ 𝐻𝑍2

 ∙  𝑍2)

𝐿2
′ 𝐻𝑦2
𝐿2
′ 𝐻𝑍2

                         (5.2.10) 

5.3. Maximum Likelihood-Based CPQ and 

FGPQs  

In this section, we present the CPQ and FGPQ for 𝜌 and FGPQs for 𝛿 and 𝑑 based 

on maximum likelihood method. 

CPQ for the Ratio of Scale Parameters 

A CPQ for 𝜎 based on ML estimator for 𝜎 using a single sample is given in (4.3.5) 

as 

𝒬𝜎(𝑌, 𝜃)𝑀𝐿 =
𝜎̂(𝑌)𝑀𝐿
𝜎

  

                             =
𝜎 ∙  𝜎̂(𝑍)𝑀𝐿

𝜎
 

                     = 𝜎̂(𝑍)𝑀𝐿 

Similarly to (4.3.5), let 𝒬𝜎1(𝑌1, 𝜃1)𝑀𝐿 and 𝒬𝜎2(𝑌2, 𝜃2)𝑀𝐿 denote CPQs for 𝜎1 and 

𝜎2, respectively. Then a CPQ for 𝜌 is given by 

  𝒬𝜌 = 𝒬𝜎1(𝑌1, 𝜃1)𝑀𝐿 𝒬𝜎2(𝑌2, 𝜃2)𝑀𝐿⁄    

=
𝜎̂(𝑌1)𝑀𝐿 𝜎1⁄

𝜎̂(𝑌2)𝑀𝐿 𝜎2⁄
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                                               =
𝜎̂(𝑍1)𝑀𝐿
𝜎̂(𝑍2)𝑀𝐿

                                                                 (5.3.1) 

FGPQ for the Ratio of Scale Parameters 

A FGPQ for 𝜎 based on ML estimator for 𝜎 using a single sample is given in 

(4.3.6) as 

ℛ𝜎(𝑦, 𝑌, 𝜃) =
𝜎̂(𝑦)𝑀𝐿
𝜎̂(𝑌)𝑀𝐿 𝜎⁄

                 

              =
𝜎̂(𝑦)𝑀𝐿

𝜎 ∙  𝜎̂(𝑍)𝑀𝐿 𝜎⁄
 

 =
𝜎̂(𝑦)𝑀𝐿
𝜎̂(𝑍)𝑀𝐿

 

Similarly to (4.3.6), let ℛ𝜎1(𝑦1, 𝑌1, 𝜃1) and ℛ𝜎2(𝑦2, 𝑌2, 𝜃2) denote the FGPQs for 

𝜎1 and 𝜎2, respectively. Then, a FGPQ for 𝜌 based on ML is given by 

 ℛ𝜌 = ℛ𝜎1(𝑦1, 𝑌1, 𝜃1) ℛ𝜎2(𝑦2, 𝑌2, 𝜃2)⁄       

 =
𝜎̂(𝑦1)𝑀𝐿
𝜎̂(𝑌1)𝑀𝐿 𝜎1⁄

𝜎̂(𝑦2)𝑀𝐿
𝜎̂(𝑌2)𝑀𝐿 𝜎2 ⁄

⁄        

                                           =
𝜎̂(𝑦1)𝑀𝐿
𝜎̂(𝑍1)𝑀𝐿

∙
𝜎̂(𝑍2)𝑀𝐿
𝜎̂(𝑦2)𝑀𝐿

                                                 (5.3.2) 

FGPQ for the Difference of Location Parameters 

A FGPQ for 𝜇 based on ML estimator for 𝜇 using a single sample is given in 

(4.3.9) as 

ℛ𝜇(𝑦, 𝑌, 𝜃) = 𝜇̂(𝑦)𝑀𝐿 −ℛ𝜎(𝑦, 𝑌, 𝜃) ∙ 𝜇̂(𝑍)𝑀𝐿  

              = 𝜇̂(𝑦)𝑀𝐿 −
𝜎̂(𝑦)𝑀𝐿
𝜎̂(𝑍)𝑀𝐿

∙ 𝜇̂(𝑍)𝑀𝐿 
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Similarly to (4.3.9), let ℛ𝜇1(𝑦1, 𝑌1, 𝜃1) and ℛ𝜇2(𝑦2, 𝑌2, 𝜃2) denote the FGPQs for 

𝜇1 and 𝜇2, respectively. Then, a FGPQ for 𝛿 based on ML is given by 

ℛ𝛿 = ℛ𝜇1(𝑦1, 𝑌1, 𝜃1) − ℛ𝜇2(𝑦2, 𝑌2, 𝜃2)                                                            

             = [𝜇̂(𝑦1)𝑀𝐿 −
𝜎̂(𝑦1)𝑀𝐿
𝜎̂(𝑍1)𝑀𝐿

∙ 𝜇̂(𝑍1)𝑀𝐿] − [𝜇̂(𝑦2)𝑀𝐿 −
𝜎̂(𝑦2)𝑀𝐿
𝜎̂(𝑍2)𝑀𝐿

∙ 𝜇̂(𝑍2)𝑀𝐿]  

                                      (5.3.3) 

FGPQ for Difference of Two 𝒑-Quantiles 

A FGPQ for 𝜔𝑝 based on ML estimator for 𝜔𝑝 using a single sample is given in 

(4.3.11) as 

ℛ𝜔𝑝(𝑦, 𝑌, 𝜃) = 𝜇̂(𝑦)𝑀𝐿 −
𝜎̂(𝑦)𝑀𝐿
𝜎̂(𝑍)𝑀𝐿

∙ [𝜇̂(𝑍)𝑀𝐿 − 𝑧𝑝] 

Based on (4.3.11), let ℛ𝜔1𝑝(𝑦1, 𝑌1, 𝜃1) and ℛ𝜔2𝑝(𝑦2, 𝑌2, 𝜃2) denote FGPQs for 

𝜔1𝑝 and 𝜔2𝑝 respectively. Then, a FGPQ for 𝑑 based on maximum likelihood 

method is given by 

  ℛ𝑑 = ℛ𝜔1𝑝(𝑦1, 𝑌1, 𝜃1) − ℛ𝜔2𝑝(𝑦2, 𝑌2, 𝜃2)                      

             = {𝜇̂(𝑦1)𝑀𝐿 −
𝜎̂(𝑦1)𝑀𝐿
𝜎̂(𝑍1)𝑀𝐿

∙ [𝜇̂(𝑍1)𝑀𝐿 − 𝑧𝑝]} −              

{𝜇̂(𝑦2)𝑀𝐿 −
𝜎̂(𝑦2)𝑀𝐿
𝜎̂(𝑍2)𝑀𝐿

∙ [𝜇̂(𝑍2)𝑀𝐿 − 𝑧𝑝]} 

                                 (5.3.4) 
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5.4. Conventional and Fiducial Generalized 

Confidence Intervals for Differences, 

Ratios and Log-Odds Ratios 

In this section we describe the general principle of how to obtain conventional 

and fiducial generalized confidence intervals for differences, ratios and log-odds 

ratios presented earlier in Sections 5.2 and 5.3. 

When CPQs for the ratio of scale parameters, namely ℛ𝜌 exist as is the case in 

(5.2.1) and (5.3.1), the conventional confidence intervals can be obtained by 

inverting the respective CPQs.  

However, when only FGPQs are available, as is the case in (5.2.3), (5.2.4), (5.2.5), 

(5.2.6), (5.3.3) and (5.3.4), fiducial generalized confidence intervals can be 

obtained by calculating the confidence intervals through the simulation of 

FGPQs ℛ𝜌, ℛ𝜏, and ℛ𝛿 and ℛ𝑑. 

Following is a sketch of the algorithm for calculating fiducial generalized 

confidence intervals for 𝛿 and 𝑑 based on rank- and ML-based FGPQs: 

Algorithm 4: Calculation of fiducial generalized confidence intervals for 

the difference of location parameters and difference of two quantiles of 

the distribution 

1. Draw two independent samples of observations of sizes 𝑛1 and 𝑛2 

from a specified standard LS or LLS distribution.  

2. Sort the values of the samples drawn in Step 1 in ascending order of 

magnitude, thus obtaining the order statistics of the samples. 

3. For each ordered sample, calculate the GLS estimates of the location 

and scale parameters. 
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4. For each unordered sample, calculate the unbiased ML estimates of 

the location and scale parameters. 

5. Using the GLS and unbiased ML estimates of the location and scale 

parameters calculated in Steps 3 and 4, respectively, calculate the 

values of rank and ML-based FGPQs for 𝛿 = 𝜇1 − 𝜇2 and 𝑑 = 𝜂1 −

𝜂2. 

6. Save the values of FGPQs calculated in Step 5. 

7. Repeat Steps 1 through 6 𝐽 number of times.  The (1 − 𝛼)  FGCIs for 

𝛿 = 𝜇1 − 𝜇2  and 𝑑 = 𝜂1 − 𝜂2  are given as the 𝛼/2 and (1 − 𝛼/2) 

quantiles of the respective distributions of simulated FGPQs. 

5.5. Simulation Studies: Two-Sample Problem 

 In Sections 5.5.1 and 5.5.2 two simulation studies for the two-sample problem 

are described. Firstly, the simulations for calculating the lower and upper 

quantiles of CPQs for the ratio of two scale parameters are presented in Section 

5.5.1. Secondly, a simulation study for obtaining the coverage probabilities and 

average lengths of fiducial generalized confidence intervals for the ratio of scale 

parameters, difference of location parameters and difference of two quantiles 

of the distribution is presented in Section 5.5.2. 

Calculation of Lower and Upper Quantiles of CPQs for 𝝆 through 

Simulation 

Since the CPQs for the ratio of the scale parameters based on rank and ML 

methods are available, we present in this section the simulations for calculating 

the lower and upper quantiles of such CPQs for the Normal, Logistic, Uniform, 

Pareto and Weibull distributions. The lower and upper quantiles of CPQs for the 

𝜌 (ratio of scale parameters) when 𝑛1 = 𝑛2 = 10 are presented in Appendix C1 

(Tables C1.1 through C1.5). Similarly, the lower and upper quantiles of 𝜌 when 
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𝑛1 = 𝑛2 = 25 and  are presented in Appendix C2 (Tables C2.1 through C2.5). 

These quantiles are used to calculate the coverage probabilities and average 

lengths of conventional confidence intervals for the ratio of scale parameters 

discussed in Section 5.5.2.3 and presented in Appendix D1 (Tables D1.1 through 

D1.5 (for 𝑛1 = 𝑛2 = 10)) and Appendix D2 (Tables D2.1 through D2.5 (for 𝑛1 =

𝑛2 = 25)).  

 Objectives of simulation study 

The objective of these simulations is to calculate the lower and upper quantiles 

of rank and ML-based CPQs for the ratio of scale parameters for the Normal, 

Logistic, Uniform, Pareto and Weibull distributions. 

 Design of simulation study 

Five programs were written to calculate the lower and upper quantiles of a CPQ 

for the ratio of scale parameters based on order statistics of the samples and a 

CPQ for the ratio of scale parameters based on ML methods, at the level of 

significance 𝛼 = 0.1, 0.05 and 0.01. The lower and upper quantiles of these two 

CPQs for 𝜌 = 𝜎1 𝜎2⁄  were calculated using 𝑆 = 1000000 simulated samples of 

sizes 𝑛1 = 𝑛2 = 25 drawn from the Normal, Logistic, Uniform, Pareto and 

Weibull distributions. The calculation of lower and upper quantiles of CPQs for 𝜌 

was repeated for sample sizes 𝑛1 = 𝑛2 = 10. 

 Results of simulation study 

The results of the lower and upper quantiles of two CPQs for 𝜌 at levels of 

significance 𝛼 = 0.1, 0.05 and 0.01 for the Normal, Logistic, Uniform, Pareto 

and Weibull distributions are presented in Appendix C1 (Tables C1.1 through 

C1.5 for 𝑛1 = 𝑛2 = 10) and Appendix C2 (Tables C2.1 through C2.5 for 𝑛1 =

𝑛2 = 25). 
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Simulation Studies: Coverage Probabilities and Average 

Lengths of Conventional Confidence Intervals for 𝝆  and 

Fiducial Generalized Confidence Intervals for 𝜹 and 𝒅 

We present in this section two simulations. Firstly, a simulation for calculating 

the coverage probabilities and average lengths of conventional confidence 

intervals for the ratio of scale parameters. Secondly, a simulation for calculating 

the fiducial generalized confidence intervals for the difference of location 

parameters, and difference of two quantiles of the distribution for the Normal, 

Logistic, Uniform, Pareto and Weibull distributions.  

 Objectives of simulation studies 

The objectives of these simulations, respectively, are:  

 To calculate the coverage probabilities and average lengths of 

conventional confidence intervals for the ratio of scale parameters based 

on rank and ML CPQs.  

 To calculate the coverage probabilities and average lengths of fiducial 

generalized confidence intervals for the difference of location 

parameters and difference of two quantiles of the distribution based on 

rank and ML FGPQs for the Normal, Logistic, Uniform, Pareto and 

Weibull distributions. 

 Design of simulation studies 

For the first simulation, five programs were written to calculate the coverage 

probabilities and average lengths of conventional confidence intervals for the 

ratio of scale parameters of the Normal, Logistic, Uniform, Pareto and Weibull 

distributions based on the rank and ML CPQs. Similarly, for the second 

simulation, five programs were written to calculate the coverage probabilities 

and average lengths of fiducial generalized confidence intervals for the 



149 

difference of location parameters and difference of two quantiles of the 

distribution for the Normal, Logistic, Uniform, Pareto and Weibull distributions 

based on rank and ML FGPQs. For both cases, the coverage probabilities and 

average lengths of confidence intervals were calculated using 𝑆 = 100000 

simulated samples of observations of sample sizes 𝑛1 = 𝑛2 = 10, and  𝑛1 =

𝑛2 = 25, nominal confidence levels 1 − 𝛼 = 0.90, 0.95 and 0.99 and for the 

cases of equal and unequal scale parameters of two independent samples from 

LS and LLS distributions. 

Following is a sketch of the algorithm for calculating the coverage probabilities 

and average lengths of fiducial generalized confidence intervals for 𝛿 and 𝑑 

based on rank- and ML-based FGPQs: 

Algorithm 5: Calculation of coverage probabilities and average lengths of 

confidence intervals for the ratio of scale parameters, difference of 

location parameter, and difference of quantiles: 

1. Draw two independent samples of observations of sizes 𝑛1 and 𝑛2 

from a specified LS or LLS distribution. 

2. Sort the values of the samples drawn in Step 1 in ascending order of 

magnitude, thus obtaining the order statistics of the samples. 

3. For each ordered sample, calculate the GLS estimates of the location 

and scale parameters. 

4. For each (unordered) sample, calculate the unbiased ML estimates of 

the location and scale parameters. 

5. Using the samples in Steps 1 and 2, and GLS and ML estimates 

calculated in Steps 3 and 4, calculate the confidence intervals for 𝛿 =

𝜇1 − 𝜇2 and 𝑑 = 𝜂1 − 𝜂2 as was described above in Algorithm 4. 

6. Repeat Steps 1 through 5 𝐽 number of times. 

7. Calculate the average length and observed coverage of the 𝐽 

confidence intervals calculated in Steps 1 through 6. 
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 Results of simulation studies 

The results of the coverage probabilities and average lengths of conventional 

confidence intervals for 𝜌 = 𝜎1 𝜎2⁄  of the Normal, Logistic, Uniform, Pareto and 

Weibull distributions based on two CPQs (rank and ML-based) are presented in 

Appendix D1 (Tables D1.1 through D1.5 for 𝑛1 = 𝑛2 = 10) and Appendix D2 

(Tables D2.1 through D2.5 for 𝑛1 = 𝑛2 = 25). Furthermore, the results of the 

coverage probabilities and average lengths of fiducial generalized confidence 

intervals for 𝛿 = 𝜇1 − 𝜇2  and 𝑑 = 𝜂1 − 𝜂2  for the Normal, Logistic, Uniform, 

Pareto and Weibull distributions based on two FGPQs (rank and ML-based) are 

presented in Appendix E1 (Tables E1.1 through E1.10 for 𝑛1 = 𝑛2 = 10) and 

Appendix E2 (Tables E2.1 through E2.10 for 𝑛1 = 𝑛2 = 25). 

 Discussion of result of simulation studies: 

 The results of both simulations show that the average lengths of 

confidence intervals for the ratio of scale parameters, difference of 

location parameters, and difference of two 0.975 quantiles of the 

distribution calculated using rank-based methods are practically the 

same as those calculated using ML-based methods for the case of equal 

scale parameters of two independent samples from LS and LLS 

distributions. 

 This finding is confirmed when the case of unequal scale parameters of 

two independent samples is considered: in this case, too, the average 

lengths of confidence intervals for the ratio of scale parameters, 

difference of location parameters, and difference of two 0.975 quantiles 

of the distribution calculated using rank-based methods are practically 

the same as those calculated using ML-based methods. 

 As was case with simulations of one sample problem, the observed 

coverage at all three confidence levels is practically equal to the 
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respective nominal coverage. This finding can only serve as a validation 

of the simulation program for the ratio of scale parameters, since this 

confidence interval method is of course known to be exact.  However, 

the statement that the confidence interval methods for the difference of 

location parameters, and for the difference of two 0.975 quantiles are 

exact (or at least nearly exact), is not trivial. 

5.6. Illustrative Example: Two-Sample 

Problem: Weibull Distributions 

In this section, we apply the fiducial rank and ML-based methods of inference 

using the data set of Type I and Type II cable-insulation failures (in kilovolts per 

millimeter) of two Weibull distributions presented in Lawless (2003, p. 240). For 

the data set, see Table 4.7.1 and the background to the data set is described in 

Section 4.7 above. 

Under the assumption that the two samples were drawn from Weibull 

distributions with possibly unequal shape parameters (or equivalently the two 

samples were drawn from Extreme Value distributions with unequal scale 

parameters), we estimate the ratio of two scale parameters (𝜌 = 𝜎1 𝜎2⁄ ), 

difference of two location parameters (𝛿 = 𝜇1 − 𝜇2) and difference of two 

0.975 quantiles of the distribution (𝑑 = 𝜂1 − 𝜂2). 

Furthermore, we calculated, using the two sample data, the 90%, 95% and 99% 

FGCIs for 𝜌, 𝛿 and 𝑑 based on rank and ML-based FGPQs. The results of the 

analysis for the two-sample are presented in Table 5.6.1 below: 
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Table 5.6.1: Log-Weibull distribution real data – failure voltages (in kilovolts per millimetre) example: Fiducial 

generalized confidence intervals (FGCIs) for the parameters 𝝆 = 𝝈𝟏 𝝈𝟐⁄ , 𝜹 = 𝝁𝟏 − 𝝁𝟐 and 𝒅 = 𝜼𝟏 − 𝜼𝟐 based on rank 

and ML-based FGPQs at specified nominal confidence levels (𝑺 = 𝟏𝟎𝟎𝟎𝟎 pairs of simulated standard samples) 

𝑛1 = 𝑛2 = 20; 𝜌̂𝑅 = 0.9755;  𝜌̂𝑀𝐿 = 0.9744; 𝛿𝑅 = −0.2136; 𝛿𝑀𝐿 = −0.2130; 𝜂̂1 = 4.0145; 𝜂̂2 = 4.2318; 𝑑̂ = −0.2173 

Nominal confidence level 

FGCI 0.90 0.95 0.99 

𝑅 𝑀𝐿 𝑅 𝑀𝐿 𝑅 𝑀𝐿 

FGCI for 𝜌 [0.6358, 1.4837] [0.6384, 1.4814] [0.5862, 1.6209] [0.5842, 1.6183] [0.4940, 1.9074] [0.4945, 1.8923] 

FGCI for 𝛿 [-.2765, -.1484] [-.2758, -.1485] [-.2907, -.1349] [-.2901, -.1353] [-.3164, -.1082] [-.3155, -.1087] 

FGCI for 𝑑 [-.2964, -.1379] [-.2948, -.1388] [-.3138, -.1222] [-.3126, -.1221] [-.3539, -.0809] [-.3520, -.0804] 
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o Rank and ML-based point estimates of 𝜌, 𝛿 and 𝑑 for two Log Weibull 

samples 

 The rank and ML-based estimates of 𝜇1, 𝜇2, 𝜎1,  and 𝜎2  were 

calculated and presented in Section 4.7. See Table 4.7.2. For the 

two-sample problem the rank-based point estimates  of the 

parameters 𝜌 , and 𝛿  were calculated, respectively, as 𝜌̂𝑅 =

0.1116 0.1144 = 0.9755⁄  and 𝛿𝑅 = 3.8688 − 4.0824 =

−0.213.  Similarly, the ML-based point estimates of the 

parameters 𝜌 and  𝛿  were be calculated as 𝜌̂𝑀𝐿 =

0.1066 0.1094 =⁄ 0.9744 and 𝛿𝑀𝐿 = 3.8666 − 4.0796 =

−0.2130 respectively. Lastly, the point estimate of the difference 

of two 0.975 quantiles of the distribution was calculated as 𝑑̂ =

4.0145 − 4.2318 = −0.2173. 

 ML-based point estimates for 𝜌  and  𝛿  presented in Lawless 

(2003, p. 241) are 𝜌̂𝑀𝐿 = 0.107 0.109 =⁄ 0.982  and 𝛿𝑀𝐿 =

3.867 − 4.080 = −0.213  respectively. Clearly, the results in 

Lawless (2003, p. 241) are very similar to those based on the 

proposed rank and ML-based methods. 

o Rank and ML-based FGCIs estimates of 𝜌, 𝛿 and 𝑑 for two Log Weibull 

samples 

 In terms of relative lengths of FGCIs of the parameters 𝜌, 𝛿 and 𝑑, 

the results show that rank-based methods produced FGCIs of 𝜌, 𝛿 

and 𝑑 that are practically the same as those based on ML-based 

methods at 0.90, 0.95 and 0.99 confidence levels, with a slight 

advantage for ML-based methods. This conclusion agrees with 

the general conclusion of the results of simulation studies 

discussed in Section 5.5.2.4, the first and second bullets above. 

 The 90% CIs for 𝛿  based on approximate likelihood ratio 

procedure, and approximate standard normal pivotal quantity for 
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𝛿 presented in Lawless (2003, p. 241) are (-0.272, -0.157) and (-

0.272, -0.154) respectively. Clearly, these 90% CIs for 𝛿 are similar 

to the 90% CIs for 𝛿 based on the proposed rank and ML methods 

presented in Table 5.6.1 above. 
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Chapter 6 - Location-Scale-
Shape Family of 
Distributions 

6.1. Definition of Location-Scale-Shape Family 

This chapter provides the background on Location-scale-shape (LSS) family of 

distributions. It is concerned with estimation and inference problems involving 

the three unknown parameters of the LSS distributions, namely the location, 

scale and shape parameters; the chapter is also concerned with the estimation 

of and inference for quantiles of LSS distributions. An LSS family of distributions 

is defined as follows: 

A scalar continuous random variable 𝑌∗ belongs to an LLS family of distributions 

if its cumulative distribution function (cdf) can be written in the form 

                                𝐹𝑌∗(𝑦∗; 𝜃
∗) = Φ{[1 + 𝜉 (

𝑦∗ − 𝜇∗
𝜎∗

)]
−1 𝜉⁄

}                         (6.1.1) 

where the support of the distribution may be on the whole real line. The vector 

parameter of (6.1.1) 𝜃∗is given by    

𝜃∗ = (𝜇∗, 𝜎∗, 𝜉)
′ 

where 𝜇∗, 𝜎∗ and 𝜉 are, respectively, the location, scale and shape parameters of 

the distribution. As is the case for LS families of distributions presented in 

Chapter 2 above, the function Φ(∙) in equation (6.1.1) is continuous for all real 

values of 𝑦∗  and it is a monotone non-decreasing function of 𝑦∗ , given 𝜃. 

Furthermore, the values of the function Φ(∙) given in (6.1.1) lie in the interval 

[0,1]. 

As is shown below, when 𝜉 ≠ 0 it may be convenient to write 
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1 + 𝜉 (
𝑦∗ − 𝜇∗
𝜎∗

) =
𝑦∗ − (𝜇∗ − 𝜎∗ 𝜉⁄ )

𝜎∗ 𝜉⁄
 

 which suggests the re-parametrization of the distribution as 

                                       𝜇 = 𝜇∗ − 𝜎∗ 𝜉;         ⁄ 𝜎 = 𝜎∗ 𝜉⁄                                       (6.1.2) 

Under re-parametrization (6.1.2), 𝑌∗ belongs to an LSS family of distributions if 

its cdf has the form 

                             𝐹𝑌∗(𝑦∗; 𝜃) = Φ [(
𝑦∗ − 𝜇

𝜎
)
−1 𝜉⁄

]                                                (6.1.3) 

In this case, the vector parameter is given by 

𝜃 = (𝜇, 𝜎, 𝜉)′ 

where 𝜇, 𝜎 and 𝜉 are, respectively, the location, scale and shape parameters of 

the distribution. Thus, the scalar continuous random variable 𝑌∗ is said to have a 

LSS(𝜃) distribution.  

Using (6.1.3) we define the standard random variate 𝑍∗ associated with 𝑌∗ as 

                                                       𝑍∗ = (
𝑌∗ − 𝜇

𝜎
)
−1 𝜉⁄

                                           (6.1.4) 

 so that the cdf of  𝑍∗ is given by  

𝐹𝑍∗(𝑧∗; 𝜃) = Φ( 𝑧∗) 

where 

𝜃 = (0, 1, 1)′ 

such that 𝐹𝑍∗(𝑧∗; 𝜃) = Φ(𝑧∗) does not depend on any unknown parameters. 

Limiting case 𝜉 = 0: 

Raising both sides of equation (6.1.4) to the power −𝜉, and solving for 𝑌∗, we 

obtain an LS model 
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                                                  𝑌∗ = 𝜇 + 𝜎 ∙ 𝑍∗
−𝜉                                                  (6.1.5) 

We note that the distribution of 𝑍∗
−𝜉

 is degenerate as 𝜉 → 0. Thus, using re-

parametrization (6.1.2), we write equation (6.1.5) in terms of the original 

(𝜇∗, 𝜎∗) parametrization as follows  

  𝑌∗ = 𝜇∗ −
𝜎∗
𝜉
+
𝜎∗
𝜉
∙ 𝑍∗

−𝜉
                      

 = 𝜇∗ + 𝜎∗ ∙ (
𝑍∗
𝜉
− 1

𝜉
)              

                                               = 𝜇∗ + 𝜎∗ ∙ (
(𝑍∗
−1)𝜉 − 1

𝜉
)                                      (6.1.6) 

Using the last inequality in equation (6.1.6) we can note that term [(𝑍∗
𝜉
− 1) 𝜉⁄ ] 

is the Box-Cox power transformation of the variate 𝑍∗
𝜉
.  Thus 

lim
𝜉→0

[(𝑍∗
−𝜉
− 1) 𝜉⁄ ] = − log(𝑍∗) = log(𝑍∗

−1).  

Theorem 1 

If the distribution of  𝑌∗ is an LSS family with parameter vector 𝜃∗ = (𝜇∗, 𝜎∗, 𝜉 )
′, 

the limiting distribution of  𝑌∗, as 𝜉 → 0, exists and has the following properties: 

1. The limiting distribution of  𝑌∗ is an LS family with location parameter 𝜇∗ 

and scale parameter 𝜎∗. 

2. The standard variate of the limiting LS family is given by  𝑊∗ =

log(𝑍∗
−1) = − log(𝑍∗),  where 𝑍∗  is the standard variate of the LSS 

family. 

As is shown in Sections 6.1.1 through 6.1.3, examples of distributions that 

belong to the LSS family include the Generalized Extreme Value (GEV), 

Generalized Pareto (GP) and three-parameter Weibull distributions. 
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Parametrizations: In the following we will repeatedly refer to the two 

parametrizations of LSS families outlined above.  The parametrization  𝜃 =

(𝜇, 𝜎, 𝜉)′ , see equations (6.1.2)/(6.1.5) we call the 𝜃 parametrization, while the 

parametrization 𝜃∗ = (𝜇∗, 𝜎∗, 𝜉)
′,see equation (6.1.1)/(6.1.6) we call the 𝜃∗ 

parametrization. 

6.1.1 Generalized Extreme Value Distribution 

The Generalized Extreme Value distribution has been used widely in extreme 

value theory as the limiting distribution of block maxima. Of special interest is 

usually inference about the shape parameter 𝜉, which is known as a tail index in 

the literature, and inference about quantiles of the distribution. We define the 

GEV distribution as follows:  

Let a scalar continuous random variable 𝑌∗  follow a GEV distribution 

parameterised by 𝜃∗, denoted by 𝑌∗~𝐺𝐸𝑉(𝜇∗, 𝜎∗, 𝜉). Then, the cdf and pdf of 

𝐺𝐸𝑉(𝜃∗) are, respectively, given by 

                             𝐹𝑌∗(𝑦∗; 𝜃
∗) = 𝑒𝑥𝑝 {− [1 + 𝜉 (

𝑦∗ − 𝜇∗
𝜎∗

)]
−1 𝜉⁄

}                      (6.1.7) 

and 

𝑓𝑌∗(𝑦∗; 𝜃
∗) =

1

𝜎∗
[1 + 𝜉 (

𝑦∗ − 𝜇∗
𝜎∗

)]
(−1 𝜉⁄ )−1

𝑒𝑥𝑝 {− [1 + 𝜉 (
𝑦∗ − 𝜇∗
𝜎∗

)]
−1 𝜉⁄

} 

The location parameter 𝜇∗ and shape parameter 𝜉 of the GEV distribution lie in 

the interval (−∞,∞). Furthermore, the scale parameter 𝜎∗ is positive. 

When 𝜉 ≠ 0, under re-parametrization (6.1.2) the random variable 𝑌∗ follows a 

Generalized Extreme distribution 𝐺𝐸𝑉(𝜃) with the cdf and pdf given by 

                                    𝐹𝑌∗(𝑦∗; 𝜃) = 𝑒𝑥𝑝 [− (
𝑦∗ − 𝜇

𝜎
)
−1 𝜉⁄

]                                   (6.1.8) 
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and  

𝑓𝑌∗(𝑦∗; 𝜃) =
1

𝜎 ∙ 𝜉
[
𝑦∗ − 𝜇

𝜎
]
(−1 𝜉⁄ )−1

𝑒𝑥𝑝 {− [(
𝑦∗ − 𝜇

𝜎
)]
−1 𝜉⁄

} 

respectively. Furthermore, for the 𝐺𝐸𝑉(𝜃) distribution, the cdf of the standard 

variate 𝑍∗ in (6.1.4), and the form of Φ(∙) in (6.1.8), are given by 

𝐹𝑍∗(𝑧∗; 𝜃) = Φ(𝑧∗) = 𝑒𝑥𝑝(−𝑧∗) 

Since the random variate 𝐹𝑍∗(𝑍∗) has a Uniform distribution, we can write 

𝑒𝑥𝑝(−𝑍∗) = 𝑈 

where 𝑈 is a random variable with a Uniform distribution in the interval [0,1]. 

Alternatively solving for 𝑍∗ we obtain 

𝑍∗ = − log(𝑈) 

Thus the standard variate 𝑍∗ has a standard Exponential distribution.  

Using equation (6.1.8) we can write the general random variate 𝑌∗ in terms of 

the standard variate 𝑍∗ as 

𝑌∗ = 𝜇 + 𝜎 ∙ 𝑍∗
−𝜉 

where 𝑍∗ = − log(𝑈). 

Case 1: 𝝃 > 𝟎 

Initially we assume 𝜉 > 0 , in which case the support of the distribution is the 

interval [𝜇∗ − 𝜎∗ 𝜉,∞).⁄  Thus, the support of the distribution is bounded below 

when 𝜉 > 0. Similarly, the support of the re-parametrized 𝐺𝐸𝑉(𝜃) distribution, 

in terms of 𝜇, is the interval [𝜇,∞], when 𝜉 > 0. Thus, any estimate of 𝜇 should 

be less than the smallest order statistic 𝑦(1) when 𝜉 > 0. 

Case 2: 𝝃 = 𝟎 
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For 𝜉 = 0, it follows from Theorem 1 that the distribution of  𝑌∗ is an LS family 

with standard variate 

  𝑊∗ =
𝑌∗ − 𝜇∗
𝜎∗

= − log(𝑍∗) = − log[− log(𝑈)] = log (
1

− log(𝑈)
) 

                                                                                                                          (6.1.9)  

Thus the distribution of 𝑊∗ follows the distribution of the logarithm of the 

inverse of standards Exponential variate with cdf 

𝐹𝑊∗(𝑤∗) = 𝑒𝑥𝑝[−𝑒𝑥𝑝(−𝑤∗)] 

where the vector parameter 𝜃∗ = (𝜇∗, 𝜎∗)
′.  

Furthermore, the cdf of 𝑌∗, for 𝜉 = 0, is given by 

                           𝐹𝑌∗(𝑦∗;  𝜃
∗) = 𝑒𝑥𝑝 [−𝑒𝑥𝑝 (−

𝑦∗ − 𝜇∗
𝜎∗

)]                                 (6.1.10) 

which is the cdf of the Gumbel distribution. 

Case 3: 𝝃 < 𝟎 

When 𝜉 < 0, the support of the 𝐺𝐸𝑉(𝜃∗) distribution is bounded above, and is 

in the interval (−∞, 𝜇∗ − 𝜎∗ 𝜉].⁄  Furthermore, in terms of re-parametrization 

(6.1.2), the support of the GEV distribution is in the interval (−∞, 𝜇], when 𝜉 <

0. Thus, any estimate of  𝜇 should be greater than the largest order statistic 𝑦(𝑛) 

when 𝜉 < 0. 

Generalized Pareto Distribution 

The Generalized Pareto (GP) distribution is a family of various distributions such 

as the Pareto, Exponential, Uniform, and sub-models of Beta distributions 

(Villaseňor-Alva and González-Estrada, 2009). This important family of 

distributions is widely used in many applications of extreme value analysis. See, 
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for example, the text of Reiss and Thomas (2007, Chapter 5). For example, the 

GP distribution can be used to model excesses over a threshold. The GP 

distribution was used to select a suitable threshold and treatment of time-series 

dependence (Smith, 2001). The GP distribution can be defined as follows: 

Let a scalar continuous random variable 𝑌∗  follow a GP distribution 

parameterised by 𝜃∗, and denoted by 𝑌∗~𝐺𝑃(𝜃
∗) distribution. Here the vector 

parameter 𝜃∗ = (𝜇∗, 𝜎∗, 𝜉)
′. Then, the cdf and pdf of the 𝐺𝑃(𝜃∗) distribution 

are, respectively, given by  

                                 𝐹𝑌∗(𝑦∗; 𝜃
∗) = 1 − [1 +

𝜉(𝑦∗ − 𝜇∗)

𝜎∗
]

−1 𝜉⁄

                         (6.1.11) 

and 

𝑓𝑌∗(𝑦∗; 𝜃
∗) =

1

𝜎∗
[1 +

𝜉(𝑦∗ − 𝜇∗)

𝜎∗
]

−(1 𝜉+1⁄ )

 

The location parameter 𝜇∗ and shape parameter 𝜉 of the 𝐺𝑃(𝜃∗) distribution lie 

in the interval (−∞,∞). Furthermore, the scale parameter 𝜎∗ is always positive.  

As we have done in Section 6.1.1 above, when 𝜉 ≠ 0 we can employ re-

parametrization (6.1.2) so that the random variable 𝑌∗ follows a Generalized 

Pareto 𝐺𝑃(𝜃) distribution with the cdf and pdf, respectively, given by 

                                     𝐹𝑌∗(𝑦∗; 𝜃) = 1 − (
𝑦∗ − 𝜇

𝜎
)
−1 𝜉⁄

                                       (6.1.12) 

and 

𝑓𝑌∗(𝑦∗; 𝜃) =
1

𝜎 ∙ 𝜉
(
𝑦∗ − 𝜇

𝜎
)
−(1 𝜉+1⁄ )

 

For the 𝐺𝑃(𝜃) distribution, the cdf of the standard variate 𝑍∗ in (6.1.4), and the 

form of Φ(∙) in (6.1.8), are given by 

                                    𝐹𝑍∗(𝑧∗; 𝜃) =  Φ(𝑧∗) = 1 − 𝑧∗                                          (6.1.13) 
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Since the standard random variable 𝐹𝑍∗(𝑍∗) has a Uniform distribution, we can 

write 

1 − 𝑍∗ = 𝑈 

where 𝑈 is a random variable with a Uniform distribution on the interval [0,1]. 

Alternatively, the standard random variate 𝑍∗ can be expressed in terms of a 

standard Uniform variate 𝑈 as  

𝑍∗ = Φ
−1(𝑧∗ ) = 𝐹

−1(𝑈) = 1 − 𝑈 

 where 𝐹−1(𝑈) = 1 − 𝑈 is the cdf of the standard Generalized Pareto 𝐺𝑃(0,1,1) 

distribution. Thus, 𝑍∗ follows the distribution of the standard Uniform variate. 

Using equation (6.1.12) we can write the general random variate 𝑌∗ in terms of 

the standard variate 𝑍∗ as 

𝑌∗ = 𝜇 + 𝜎 ∙ 𝑍∗
−𝜉 

where 𝑍∗ = (1 − 𝑈). 

Case 1: 𝝃 > 𝟎 

When 𝜉 > 0 the support of the distribution is the interval [𝜇∗, ∞).  Thus, any 

estimate of 𝜇∗ should be less than or equal to the smallest order statistic 𝑦(1) 

when 𝜉 > 0 . In terms of re-parametrization (6.1.2), the support of the 

distribution is the interval [𝜇 + 𝜎,∞), when 𝜉 > 0.  

Case 2: 𝝃 = 𝟎 

For 𝜉 = 0, it follows from Theorem 1 that the distribution of 𝑌∗ is an LS family 

with standard variate 

                              𝑊∗ =
𝑌∗ − 𝜇∗
𝜎∗

= − log(𝑍∗) = − log(𝑈)                              (6.1.14) 
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 Thus, the distribution of 𝑊∗ is the standard Exponential distribution, with cdf 

𝐹𝑊∗(𝑤∗) = 1 − 𝑒𝑥𝑝(−𝑤∗) 

 Furthermore, the cdf of 𝑌∗, for 𝜉 = 0, is given by 

                                              𝐹𝑌∗(𝑦∗; 𝜃
∗) = 1 − 𝑒𝑥𝑝 (−

𝑦∗ − 𝜇∗
𝜎∗

)                     (6.1.15)   

where 𝑦∗ ≥ 𝜇∗. Alternatively, 𝑊∗ follows the distribution of the logarithm of the 

inverse of a standard Uniform variate. 

Case 3: 𝝃 < 𝟎 

When 𝜉 < 0, the support of the 𝐺𝑃(𝜃∗) distribution is bounded both above and 

below, namely in the interval [𝜇∗, 𝜇∗ − 𝜎∗ 𝜉⁄ ] when 𝜉 < 0. In terms of the re-

parametrization (6.1.2), the support of the 𝐺𝑃(𝜃) distribution is the interval 

[𝜇 − 𝜎, 𝜇]. In other words, any estimate of 𝜇 − 𝜎 should be less than or equal to 

the smallest order statistic 𝑦(1), and any estimate of 𝜇 should be greater than or 

equal to the largest order statistic 𝑦(𝑛), when 𝜉 < 0. 

Three-Parameter Weibull Distribution 

The three-parameter Weibull distribution is a generalization of the two-

parameter Weibull distribution presented in Section 2.3.3 above. It has an 

additional parameter, namely the location parameter, compared to a two-

parameter Weibull distribution. The three-parameter Weibull distribution is 

defined as follows (Nagatsuka et al., 2013, Section 1): 

Let a scalar continuous random variable 𝑌∗ follow a three-parameter Weibull 

distribution parameterized by 𝜃, denoted by 𝑌∗~𝑊𝑒𝑖𝑏(𝜇, 𝜎, 𝜉) with the cdf and 

pdf of the distribution, respectively, given by 

                                 𝐹𝑌∗(𝑦∗; 𝜃) = 1 − 𝑒𝑥𝑝 [−(
𝑦∗ − 𝜇

𝜎
)
1 𝜉⁄

]                             (6.1.16) 
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and 

𝑓𝑌∗(𝑦∗; 𝜃) =
1

𝜎𝜉
∙ (
𝑦∗ − 𝜇

𝜎
)
1 𝜉⁄ −1

𝑒𝑥𝑝 [−(
𝑦∗ − 𝜇

𝜎
)
1 𝜉⁄

] 

where 𝜇 is the location parameter, 𝜎 > 0 the scale parameter and 𝜉 > 0 the 

shape parameter. We note that Nagatsuka et al. (2013, Section 1) parametrize 

the distribution with 𝛽 = 1 𝜉⁄ . The support of the distribution is the interval 

(𝜇,∞) when 𝜉 > 0. In other words, any estimate of 𝜇 should be strictly smaller 

than the smallest order statistic 𝑦(1). We note that when 𝜇 = 0, then the cdf 

(6.1.16) becomes a cdf of a two-parameter Weibull distribution.  

Using re-parametrization (6.1.2) we can write the cdf (6.1.16) in terms of 𝜃∗ 

parametrization as 

𝐹𝑌∗(𝑦∗; 𝜃
∗) = 1 − 𝑒𝑥𝑝 [−(

𝑦∗ − 𝜇

𝜎
)
1 𝜉⁄

]                  

                      = 1 − 𝑒𝑥𝑝 {− [1 + 𝜉 (
𝑦∗ − 𝜇∗
𝜎∗

)]
1 𝜉⁄

}  

                               = 1 − 𝑒𝑥𝑝 {−{[1 + 𝜉 (
𝑦∗ − 𝜇∗
𝜎∗

)]
−1 𝜉⁄

}

−1

} 

                                                   = 1 − 𝑒𝑥𝑝{−𝑍∗
−1}                                               (6.1.17) 

where the standard variate of 𝑌∗, that is,  𝑍∗, as in equation (6.1.4), is given by 

    𝑍∗ = (
𝑌∗ − 𝜇

𝜎
)
−1 𝜉⁄

                                     

                                              = [1 + 𝜉 (
𝑦∗ − 𝜇∗
𝜎∗

)]
−1 𝜉⁄

                                        (6.1.18) 

Thus, for the three-parameter Weibull (𝜃∗) distribution, cdf of the standard 

variate 𝑍∗ in (6.1.18), and the function Φ(∙) in (6.1.1), have the form 
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                     𝐹𝑍∗(𝑧∗; 𝜃
∗) =  Φ(𝑧∗) = 1 − 𝑒𝑥𝑝(−𝑧∗

−1)                                     (6.1.19) 

Thus, 𝐹𝑍∗(𝑧∗; 𝜃
∗) does not depend on any unknown parameters. 

Since the random variable 𝐹𝑍∗(𝑍∗) has a Uniform distribution, we can write 

1 − 𝑒𝑥𝑝(−𝑍∗
−1) = 𝑈 

where 𝑈 is a random variable with a Uniform distribution in the interval [0, 1]. 

Solving for 𝑍∗ we obtain 

𝑍∗ = [− log(1 − 𝑈)]
−1 

Thus, for the three-parameter Weibull (𝜃∗) distribution, the standard variate 𝑍∗ 

follows the distribution of the inverse of a standard Exponential variate. 

Using equation (6.1.18) we can write the general random variate 𝑌∗ in terms of 

the standard variate 𝑍∗ as 

                                                    𝑌∗ = 𝜇 + 𝜎 ∙ 𝑍∗
−𝜉                                               (6.1.20) 

where 𝑍∗ = [− log(1 − 𝑈)]
−1. 

Case: 𝝃 = 𝟎 

For 𝜉 = 0, it follows from Theorem 1 that the distribution of 𝑌∗ is an LS family 

with standard variate 

  𝑊∗ =
𝑌∗ − 𝜇∗
𝜎∗

= − log(𝑍∗) = − log([− log(𝑈)]
−1) = log[− log(𝑈)]  

                                      (6.1.21) 

Thus the distribution of 𝑊∗follows the distribution of the logarithm of a standard 

Exponential variate, with cdf 

𝐹𝑊∗(𝑤∗) = 1 − 𝑒𝑥𝑝[−𝑒𝑥𝑝(𝑤∗)] 



167 

Furthermore, the cdf of 𝑌∗, for 𝜉 = 0, is given by 

                          𝐹𝑌∗(𝑦∗) = 1 − 𝑒𝑥𝑝 [−𝑒𝑥𝑝 (
𝑦∗ − 𝜇∗
𝜎∗

)]                                     (6.1.22) 

We summarise in the following table the LSS distributions investigated in this 

thesis, the distribution of their respective standard variate and their 

distributions when 𝜉 = 0. 

Table 6.1: Comparison of the GEV, GP and three-parameter Weibull 

distribution in terms of the distribution of their standard variates. 

Distribution Distribution of a 

standard variate 

Distribution when 𝜉 = 0 

Generalized Extreme 

Value 

𝑍∗ = − log(𝑈) = 𝜘 

where 𝜘~𝑒𝑥𝑝(1) 

Υ∗ = − log(𝑍∗)  

 = − log(𝜘)                 

where  𝜘~𝑒𝑥𝑝(1) 

Generalized Pareto 𝑍∗ = 𝑈 Υ∗ = − log(𝑈) = 𝜘 

where 𝜘~𝑒𝑥𝑝(1) 

Three-parameter 

Weibull 

𝑍∗ = [− log(𝑈)]
−1 

     = 𝜘−1 

where 𝜘~𝑒𝑥𝑝(1) 

Υ∗ = − log(𝜘
−1) 

     = log(𝜘) 

where 𝜘~𝑒𝑥𝑝(1) 

6.2. Conditional Location-Scale Families of 

Distributions 

In this section we present the concept of conditional LS families. Specifically, 

assuming that the random variable 𝑌∗comes from a three-parameter LSS family, 

we write the random variable 𝑌∗, or a suitable function of the random variable 

𝑌∗, as a linear function of two parameters, conditional on the third parameter. 

Subsequently, we use methods developed for (two-parameter) LS families to 

develop methods of generalized inference for three-parameter LSS families, 
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using the concept of conditional generalized pivotal quantities (CFGPQs) defined 

in Sections 6.4.1 through 6.4.4 below. The concept of a conditional LS family can 

be presented as follows. 

Case 1: 𝝃 > 𝟎 

As was the case in Section 6.1 above, initially we assume 𝜉 > 0. Taking the 

logarithm on both sides of equation (6.1.4), and solving for log(𝑌∗ − 𝜇), we 

obtain 

                                log(𝑌∗ − 𝜇) = log(𝜎) − 𝜉 ∙ log(𝑍∗)  =  log(𝜎) + 𝜉 ∙ log(𝑍∗
−1)   

                          (6.2.1) 

Since the distribution of − log(𝑍∗) = log(𝑍∗
−1) is free of unknown parameters, 

equation (6.2.1) shows that, conditional on 𝜇, the random variable  (𝑌∗ − 𝜇) 

belongs to an LLS family of distributions with location parameter log(𝜎) and 

scale parameter 𝜉. 

Similarly, raising both sides of equation (6.1.4) to the power −𝜉, and solving for 

𝑌∗, we obtain 

                                          𝑌∗ = 𝜇 + 𝜎 ∙ 𝑍∗
−𝜉
                                                             (6.2.2) 

Since, conditional on 𝜉, the distribution of 𝑍∗
−𝜉

 is free of unknown parameters, 

equation (6.2.2) shows that the random variable 𝑌∗, conditional on 𝜉, belongs to 

an LS family of distributions with location parameter 𝜇 and scale parameter 𝜎. 

We note that the distribution of 𝑍∗
−𝜉

 is degenerate as 𝜉 → 0. Thus, using re-

parametrization (6.1.2), we write (6.2.2) in terms of the original (𝜇∗, 𝜎∗) 

parametrization to obtain  

  𝑌∗ = 𝜇∗ −
𝜎∗
𝜉
+
𝜎∗
𝜉
∙ 𝑍∗

−𝜉
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                                         = 𝜇∗ + 𝜎∗ ∙ (
𝑍∗
−𝜉
− 1

𝜉
)                                                  (6.2.3) 

Again, conditional on 𝜉  the distribution of (𝑍∗
−𝜉
− 1) 𝜉⁄  is free of unknown 

parameters, so that, conditional on 𝜉, the random variable 𝑌∗ belongs to an LS 

family of distributions with location parameter 𝜇∗ and scale parameter 𝜎∗. 

In summary:  

1. Conditional on 𝜇, the random variable  (𝑌∗ − 𝜇) belongs to an LLS family 

of distributions with location parameter log(𝜎) and scale parameter 𝜉. 

2. Conditional on 𝜉, the random variable 𝑌∗, belongs to an LS family of 

distributions with location parameter 𝜇 and scale parameter 𝜎. In the 

alternative parametrization, conditional on 𝜉, the random variable 𝑌∗ 

belongs to an LS family of distributions with location parameter 𝜇∗ and 

scale parameter 𝜎∗. 

Case 2: 𝝃 = 𝟎 

We note that lim
𝜉→0

[(𝑍∗
−𝜉
− 1) 𝜉⁄ ] = − log(𝑍∗) = log(𝑍∗

−1). Thus, for 𝜉 = 0, we 

have 

𝑌∗ = 𝜇∗ + 𝜎∗ ∙ log(𝑍∗
−1)     

which is the an LS family, for example, the Gumbel distribution.  

Case 3: 𝝃 < 𝟎 

Similarly to obtaining model (6.2.1) above, we take the logarithm on both sides 

of equation (6.1.4), and with 𝜉 < 0 we obtain 

log(𝑍∗) = −1 𝜉 ∙ [log(𝜇 − 𝑌∗) − log(−𝜎)]⁄  

Solving for log(𝜇 − 𝑌∗), we obtain 
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                               log(𝜇 − 𝑌∗) = log(−𝜎) − 𝜉 ∙ log(𝑍∗)                                    (6.2.4) 

(Note that, with 𝜉 < 0, 𝑌∗ < 𝜇 and 𝜎 < 0).  Again, since the distribution of 

log(𝑍∗) does not depend on any unknown parameters, equation (6.2.4) shows 

that, conditional on 𝜇, the random variable  (𝜇 − 𝑌∗) belongs to an LS family of 

distributions with location parameter log(−𝜎) and scale parameter −𝜉. 

Alternatively, equation (6.2.4) can be written as 

                         log(𝜇 − 𝑌∗) = log(−𝜎) + 𝜉 ∙ log(𝑍∗
−1)                                       (6.2.5) 

Finally, we can note that equations (6.2.2) and (6.2.3) hold unchanged for the 

case 𝜉 < 0. 

6.3. Estimation for Location-Scale-Shape 

Family of Distributions 

We start by presenting a literature review on the estimation of parameters and 

vector parameters of LSS distributions using rank and maximum likelihood-

based methods in Section 6.3.1. In Section 6.3.2 we present a method of 

iterative generalized least squares estimation of the parameters of LSS family of 

distributions.  

Literature Review 

Generalized Extreme Value distribution 

Various methods of parameter estimation have mostly been used in the 

literature to estimate the parameters of GEV distribution. For example, the 

probability-weighted moments (Hosking et al. (1985) and Dupuis (1999)); 

maximum likelihood (Hosking (1985), Prescott and Walden (1980, 1983), 

Martins and Stedinger (2000), Feng et al. (2007), Ahsanullah and Holland (1994), 



171 

Ahsanullah (1996)); likelihood moments (Hosking (1985) and Martins and 

Stedinger (2000); and method of moments (Martins and Stedinger (2000)). 

Generalized Pareto distribution: 

The GP distribution has diverse areas of applications in literature, for example, 

engineering, insurance (e.g. extreme claims), economics and finance (e.g. 

extreme market movements), hydrology (e.g. extreme river flows) and 

climatology (e.g. extreme rain fall or temperatures) among others (de Zea 

Bermudez and Kotz (2010). The range of a shape parameter (or tail index) of the 

GP distribution plays an important role in determining the area of application. 

For example, hydrological phenomena tend to exhibit and be modelled by 

heavier-tailed version of a GP distribution. In extreme value theory, a GP 

distribution has been used to fit the distribution of peaks-over-threshold (POT); 

see, for example, Mackay et al. (2011) and references cited in Section 1 of their 

paper.  

A great deal of research has been done on the various methods of estimation of 

the parameters of a GP distribution. Examples of methods of estimation include 

the maximum likelihood (ML) (Brabson and Palutikof, 2000; Mackay et al. 

(2011); Peng and Welsh (2001)), methods of moments (MOM) (Hoskins and 

Wallis (1987), probability weighted moments (PWM) (Hosking and Wallis 

(1987)), least squares (LS) (Kulldorff and Vannman (1973); Vannman (1976)) and 

likelihood moment (LM) (Zhang, 2007). Most methods of parameter estimation 

for the GP distribution in literature, according to our knowledge, appear to focus 

on the estimation of the scale and shape parameter of the distribution, 

conditional on threshold (location) parameter. However, in such cases 

predetermining the sufficiently high threshold before the actual parameter 

estimation appears to be subjective. Although overall, different methods of 

parameter estimation are ideal for different versions of GP distribution in terms 

of the range of shape parameter space. For example, MOM estimators only exist 
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when the shape parameter is greater than -0.5, that is, the population mean and 

variance of GP distribution are not defined for the values of the shape 

parameter outside that range. On the contrary, least squares estimation is ideal 

for position shape parameter. For more detail on comparison of various 

methods of estimation, see de Zea Bermudez and Kotz (2010, Section 7). 

Historically, the work on parameter estimation of GP distribution started in the 

early 1970s. Kulldorff and Vannman (1973) derived, using Gauss-Markoff 

theorem, the best linear unbiased estimators (BLUEs) of the location and scale 

parameters, conditional on the shape parameter based on order statistics of a 

sample. We note here that although the approach used by Kulldorff and 

Vannman (1973) is different, the general principle is similar to our method of 

using iterative generalized least squares estimation of the location parameter 𝜇∗ 

and scale parameter 𝜎∗ conditional on the shape parameter 𝜉 as presented in 

Section 6.3.2.2 below. In addition, Kulldorff and Vannman (1973) also derived 

conditional BLUEs for the location and scale parameters of GP distribution. 

Furthermore, they derived the conditional asymptotic BLUEs for the location, 

scale, and location and scale parameters based on a censored sample. Similarly 

to Kulldorff and Vannman (1973), Vannman (1976) derived, using Gauss-Markoff 

theorem, the conditional BLUEs for location, scale, and location and scale 

parameters of GP distribution based on a censored sample. Since then, many 

researchers have applied various methods of estimation to obtain estimates of 

the parameters. Moreover, new methods of estimation were developed and 

their performance compared through Monte Carlo simulations with that of 

other methods. For example, Singh and Guo (1995) derived a method of 

estimation for the parameters of a GP distribution based on the principle of 

maximum entropy (POME) of the distribution. They then compared POME-

based estimators with estimators based on ML, PWM and MOM. Zhang (2007) 

proposed a method of estimation of the parameters of a GP distribution based 

on likelihood moment (LM) and found that, under a specified condition of the 
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shape parameter, estimators derived using LM have asymptotic properties 

equivalent to those obtained using the maximum likelihood-based method. 

Furthermore, Peng and Welsh (2001) derived the parameter estimators of GP 

distribution based on sample and population medians of the distribution. 

Three-parameter Weibull distribution 

Many authors have studied various methods of estimation of the parameters of 

three-parameter Weibull distribution. Examples of methods of estimation 

include the maximum likelihood, maximum product spacings, method of 

moments, least squares, and data transformation-based method. Nagatsuka at 

al. (2013, section 1) provide comprehensive overview of estimation methods for 

the parameters of three-parameter Weibull distribution. 

Iterative Generalized Least Squares Estimation in LSS Family 

In Sections 6.3.2.1 through 6.3.2.3 we present three generalized least squares 

methods of estimation in LSS family of distributions using rank-based methods. 

 Generalized least squares estimation of 𝜉, given 𝜇 

1. Case 𝝃 > 𝟎: Estimation of 𝝃 and 𝐥𝐨𝐠(𝝈), given 𝝁  

For 𝜉 > 0,  to estimate the parameters log(𝜎)  and 𝜉 , conditional on 𝜇,  we 

consider equation (6.2.1): Let 𝑌1, 𝑌2, … , 𝑌𝑛 be an i.i.d. random sample from the 

distribution of 𝑌∗, and let 

                            𝑍𝑖 = (
𝑌𝑖 − 𝜇

𝜎
)
−1 𝜉⁄

,        𝑖 = 1, 2, … , 𝑛                                      (6.3.1)  

be the standardized variates in the manner of equation (6.1.4). Furthermore, let 

𝑌 = [𝑌(1),𝑌(2), … , 𝑌(𝑛)]
′
 be the vector of the order statistics of the sample 

𝑌1, 𝑌2, … , 𝑌𝑛, and similarly let 𝑍−1 = [𝑍(1)
−1, 𝑍(2)

−1, … , 𝑍(𝑛)
−1  ]

′
 be the vector of the 
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order statistics of the inverse standard variates 𝑍1
−1, 𝑍2

−1, … , 𝑍𝑛
−1. Then we can 

write 

                                  log(𝑌 − 𝜇) = log(𝜎) + 𝜉 ∙ log(𝑍−1)                                 (6.3.2) 

Note: Here (equation (6.3.2)) and in the following, the sum, difference or 

product of a vector and a scalar, such as 𝑌 − 𝜇, denotes the sum, 

difference or product of each component of the vector and the scalar, in 

the usual way. Similarly, all the vector-valued functions, such as 

log(𝑌 − 𝜇), are evaluated component-wise. 

The expectation and covariance matrix of log(𝑌 − 𝜇) are respectively given by 

                         𝐸[log(𝑌 − 𝜇)] = log(𝜎) + 𝜉 ∙ 𝐸[log(𝑍−1)]                             (6.3.3) 

and 

                   𝐶𝑜𝑣[log(𝑌 − 𝜇)] = 𝜉2 ∙ 𝐶𝑜𝑣[log(𝑍−1)] = 𝜉2 ∙ 𝑉                         (6.3.4) 

Thus, 𝐸[log(𝑍−1)] and 𝑉 = 𝐶𝑜𝑣[log(𝑍−1)] are respectively the expected value 

and covariance matrix of the order statistics of a sample of size 𝑛 from the 

distribution of log(𝑍∗
−1), namely the distribution of the logarithm of the inverse 

standard variate  𝑍∗
−1. 

Writing log(𝑌 − 𝜇) = 𝐸[log(𝑌 − 𝜇)] + 𝑒, and using (6.3.3) and (6.3.4), we have 

the following general linear model for  log(𝑌 − 𝜇): 

 log(𝑌 − 𝜇) = log(𝜎) + 𝜉 ∙ 𝐸[log(𝑍−1)] + 𝑒;           𝐶𝑜𝑣(𝑒) = 𝜉2 ∙ 𝑉 

                                                      (6.3.5) 

In matrix notation model (6.3.5) can be written as 

              log(𝑌 − 𝜇) = 𝑋 (
log(𝜎)

𝜉
) + 𝑒;              𝐶𝑜𝑣(𝑒) = 𝜉2 ∙ 𝑉                     (6.3.6) 

where the 𝑛 × 2 matrix 𝑋 is given by 
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                      𝑋 = [1𝑛: 𝐸[log(𝑍
−1)]] = (

1 𝐸[log(𝑍(1)
−1)]

⋮ ⋮
1 𝐸[log(𝑍(𝑛)

−1)]
)                           (6.3.7) 

Under model (6.3.6) the generalized least squares (GLS) estimator 𝜃(𝑌) for 𝜃 =

(log(𝜎) , 𝜉)′ when 𝜉 > 0, is given by 

 𝜃̂(𝑌) = (
log(𝜎)̂ (𝑌)

𝜉(𝑌)
)                                                    

                                        = (𝑋′𝑉−1𝑋)−1𝑋′𝑉−1 log(𝑌 − 𝜇)                                   (6.3.8) 

    = 𝐻 log(𝑌 − 𝜇)                                            

where 𝐻 = (𝑋′𝑉−1𝑋)−1𝑋′𝑉−1.  Clearly, for given 𝜇,  log(𝜎)̂ (𝑌)  and 𝜉(𝑌)  in 

equation (6.3.8) are the best (minimum variance) linear unbiased estimators for 

the parameters log(𝜎) and 𝜉. 

2. Case 𝝃 < 𝟎: Estimation of 𝝃 and 𝐥𝐨𝐠(−𝝈), given 𝝁  

Similarly to obtaining the estimates log(𝜎)̂ (𝑌) and 𝜉(𝑌) conditional on 𝜇  in 

equation (6.3.8), we now consider the estimation of log(−𝜎) and 𝜉, conditional 

on 𝜇, when 𝜉 < 0, by using equation (6.2.5). 

Again, we let 𝑌1, 𝑌2, … , 𝑌𝑛 be an i.i.d. random sample from the distribution of 𝑌∗, 

and let 

                           𝑍𝑖 = (
𝑌𝑖 − 𝜇

𝜎
)
−1 𝜉⁄

,        𝑖 = 1, 2, … , 𝑛                                       (6.3.9)  

be the standardized variates in the manner of equation (6.1.4). Furthermore, let 

𝑌 = [𝑌(1),𝑌(2), … , 𝑌(𝑛)]
′
 be the vector of the order statistics of the sample 

𝑌1, 𝑌2, … , 𝑌𝑛, and similarly, let 𝑍−1 = [𝑍(1)
−1, 𝑍(2)

−1, … , 𝑍(𝑛)
−1  ]

′
 be the vector of the 

order statistics of the inverse standard variates 𝑍1
−1, 𝑍2

−1, … , 𝑍𝑛
−1. Then using 

equation (6.2.5) we can write 
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                                   log(𝜇 − 𝑌) = log(−𝜎) + 𝜉 ∙ log(𝑍−1)                          (6.3.10) 

The identity (6.3.10) for order statistics can be motivated as follows: since the 

vector 𝑌 of order statistics is ordered from small to large, the vector log(𝜇 − 𝑌) 

is ordered from large to small; similarly, since the vectors 𝑍−1 , and thus 

log(𝑍−1) of order statistics are ordered from small to large, the vector 𝜉 ∙

log(𝑍−1) is ordered from large to small, when 𝜉 < 0. Thus the vectors on both 

sides of equation (6.3.10) are ordered from large to small. 

The expectation and covariance matrix of log(𝜇 − 𝑌) in equation (6.3.10) are, 

respectively, given by 

                   𝐸[log(𝜇 − 𝑌)] = log(−𝜎) + 𝜉 ∙ 𝐸[log(𝑍−1)]                             (6.3.11) 

and 

                    𝐶𝑜𝑣[log(𝜇 − 𝑌)] = 𝜉2 ∙ 𝐶𝑜𝑣[log(𝑍−1)] = 𝜉2 ∙ 𝑉                       (6.3.12) 

Thus 𝐸[log(𝑍−1)] and 𝑉 = 𝐶𝑜𝑣[log(𝑍−1)] are respectively the expected value 

and covariance matrix of the order statistics of a sample of size 𝑛 from the 

distribution of log(𝑍∗
−1), namely the distribution of the logarithm of the inverse 

standard variate  𝑍∗
−1. 

Writing log(𝜇 − 𝑌) = 𝐸[log(𝜇 − 𝑌)] + 𝑒,  and using equations (6.3.11) and 

(6.3.12), we have the following general linear model for  log(𝜇 − 𝑌): 

 log(𝜇 − 𝑌) = log(−𝜎) + 𝜉 ∙ 𝐸[log(𝑍−1)] + 𝑒;           𝐶𝑜𝑣(𝑒) = 𝜉2 ∙ 𝑉 

                                      (6.3.13) 

In matrix notation model (6.3.13) can be written as 

          log(𝜇 − 𝑌) = 𝑋 (
log(−𝜎)

𝜉
) + 𝑒;              𝐶𝑜𝑣(𝑒) = 𝜉2 ∙ 𝑉                  (6.3.14) 

where the 𝑛 × 2 matrix 𝑋 is given by 
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                     𝑋 = [1𝑛: 𝐸[log(𝑍
−1)]] = (

1 𝐸[log(𝑍(1)
−1)]

⋮ ⋮
1 𝐸[log(𝑍(𝑛)

−1)]
)                         (6.3.15) 

Similarly, under model (6.3.14) the generalized least squares (GLS) estimator 

𝜃(𝑌) for 𝜃 = (log(−𝜎) , 𝜉)′ is given by  

   𝜃̂(𝑌) = (
log(−𝜎)̂ (𝑌)

𝜉(𝑌)
)                                                             

                                  = (𝑋′𝑉−1𝑋)−1𝑋′𝑉−1 log(𝜇 − 𝑌)                                      (6.3.16) 

  = 𝐻 log(𝜇 − 𝑌)                                                     

where 𝐻 = (𝑋′𝑉−1𝑋)−1𝑋′𝑉−1.  Clearly, for given 𝜇,  log(−𝜎)̂ (𝑌)  and 𝜉(𝑌)  in 

equation (6.3.16) are the best (minimum variance) linear unbiased estimators 

for the parameters log(−𝜎) and 𝜉. 

We note that the matrix 𝐻 in (6.3.16) is the same as the matrix 𝐻 in (6.3.8); 

estimators (6.3.8) and (6.3.16) differ only in the dependent variables, namely 

log(𝑌 − 𝜇) in (6.3.8) but log(𝜇 − 𝑌) in (6.3.16). 

 Generalized least squares estimation of 𝜇∗ and 𝜎∗, given 𝜉 

Here we consider equation (6.2.3) when 𝜉 ≠ 0. As in Section 6.3.2.1 above, let 𝑌 

be the vector of order statistics from an i.i.d. sample of size 𝑛 from the 

distribution of 𝑌∗;  furthermore let (𝑍−𝜉 − 1) 𝜉⁄ =

[(𝑍(1)
−𝜉
− 1) 𝜉⁄ ,… , (𝑍(𝑛)

−𝜉
− 1) 𝜉⁄ ] be the vector of the order statistics of the 

variates (𝑍1
−𝜉
− 1) 𝜉⁄ ,… , (𝑍𝑛

−𝜉
− 1) 𝜉⁄  from the distribution of 

(𝑍∗
−𝜉
− 1) 𝜉.⁄ Then, similarly to equation (6.3.5), we obtain a general linear 

model for the vector of order statistics 𝑌 as 
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            𝑌 = 𝜇∗ + 𝜎∗ ∙ 𝐸 (
𝑍−𝜉 − 1

𝜉
) + 𝑒;                 𝐶𝑜𝑣(𝑒) = 𝜎2 ∙ 𝑉𝜉             (6.3.17) 

where 𝐸[(𝑍−𝜉 − 1) 𝜉⁄ ]  and 𝑉𝜉 = 𝐶𝑜𝑣[(𝑍
−𝜉 − 1) 𝜉⁄ ]  are respectively the 

expected value and covariance matrix of the vector of order statistics 

(𝑍−𝜉 − 1) 𝜉⁄ . In matrix notation model (6.3.17) can be written as 

                           𝑌 = 𝑋𝜉 (
𝜇∗
𝜎∗
) + 𝑒;                 𝐶𝑜𝑣(𝑒) = 𝜎2 ∙ 𝑉𝜉                       (6.3.18) 

where the 𝑛 × 2 matrix 𝑋𝜉 is given by 

             𝑋𝜉 = [1𝑛: 𝐸[(𝑍
−𝜉 − 1) 𝜉⁄ ]] = (

1 𝐸 [(𝑍(1)
−𝜉
− 1) 𝜉⁄ ]

⋮ ⋮

1 𝐸 [(𝑍(𝑛)
−𝜉
− 1) 𝜉⁄ ]

)                (6.3.19) 

Under model (6.3.18) the GLS estimator 𝜃(𝑌) for 𝜃 = (𝜇∗, 𝜎∗)
′ is given by 

𝜃(𝑌) = (
𝜇∗̂(𝑌)

𝜎∗̂(𝑌)
)                                               

                                              = (𝑋𝜉
′𝑉𝜉
−1𝑋𝜉)

−1
𝑋𝜉
′𝑉𝜉
−1𝑌                                         (6.3.20) 

  = 𝐻𝜉𝑌                                              

where 𝐻𝜉 = (𝑋𝜉
′𝑉𝜉
−1𝑋𝜉)

−1
𝑋𝜉
′𝑉𝜉
−1.  For given 𝜉,  𝜇∗̂(𝑌)  and 𝜎∗̂(𝑌)  in equation 

(6.3.20) are the best (minimum variance) linear unbiased estimates for the 

parameters 𝜇∗ and 𝜎∗.  

We note that a similar general principle for estimation was used by Kulldorff and 

Vannman (1973, Section 4). 
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 Iterative generalized least squares estimation of 𝜇, 𝜎 and 𝜉 

The estimators presented by equations (6.3.8), (6.3.16) and (6.3.20) suggest that 

the parameters 𝜇∗, 𝜎∗ and 𝜉 of a 𝐿𝑆𝑆(𝜃∗) distribution can be estimated using the 

following iterative generalized least squares algorithms: 

Algorithm 6a: Case 𝝃 > 𝟎: Iterative generalized least squares estimation of 

𝝁∗, 𝝈∗ and 𝛏 

Let 𝑦1, 𝑦2, … , 𝑦𝑛 be a sample of observations from a 𝐿𝑆𝑆(𝜃∗) distribution, and 

let 𝑦 = [𝑦(1), 𝑦(2), … , 𝑦(𝑛)]
′
 be the vector of associated order statistics. 

1. Choose an initial estimate 𝜉(0) for 𝜉. 

2. For 𝑖 = 1, 2, … ,𝑀 do Steps 2(a) and 2(b) until convergence: 

(a) Given the current estimate 𝜉(𝑖−1), and using estimator (6.3.20), 

obtain GLS estimates 𝜇∗
(𝑖) and 𝜎∗

(𝑖) for 𝜇∗ and 𝜎∗ as 

(
 𝜇∗
𝜎∗
)
𝑖

= (𝑋
𝜉(𝑖−1)
′ 𝑉

𝜉(𝑖−1)
−1 𝑋𝜉(𝑖−1))

−1

𝑋
𝜉(𝑖−1)
′ 𝑉

𝜉(𝑖−1)
−1 𝑦 

and obtain the estimate 𝜇(𝑖) for 𝜇 as  

𝜇(𝑖) = 𝜇∗
(𝑖) − 𝜎∗

(𝑖) 𝜉(𝑖−1)⁄  

(b) Given the current estimate 𝜇(𝑖), and using estimator  (6.3.8), 

obtain GLS estimates log(𝜎)𝑖 and 𝜉(𝑖) for log(𝜎) and 𝜉 as 

(
log(𝜎)

𝜉
)
(𝑖)

= (𝑋′𝑉−1𝑋)−1𝑋′𝑉−1 log(𝑦 − 𝜇(𝑖)) 

Note: We assume in this algorithm that all positive GLS 

estimates of 𝜉 are greater than or equal to 0.1. 

Algorithm 6a: Case 𝝃 < 𝟎: Iterative generalized least squares estimation of  

𝝁∗, 𝝈∗ and 𝛏 

Again, let 𝑦1, 𝑦2, … , 𝑦𝑛 be a sample of observations from a 𝐿𝑆𝑆(𝜃∗) distribution, 

and let 𝑦 = [𝑦(1), 𝑦(2), … , 𝑦(𝑛)]
′
 be the vector of associated order statistics. 
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1. Choose an initial estimate 𝜉(0) for 𝜉. 

2. For 𝑖 = 1, 2, … ,𝑀 do Steps 2(a) and 2(b) until convergence: 

(a) Given the current estimate 𝜉(𝑖−1), and using estimator (6.3.20), 

obtain GLS estimates 𝜇∗
(𝑖) and 𝜎∗

(𝑖) for 𝜇∗ and 𝜎∗ as 

(
 𝜇∗
𝜎∗
)
𝑖

= (𝑋
𝜉(𝑖−1)
′ 𝑉

𝜉(𝑖−1)
−1 𝑋𝜉(𝑖−1))

−1

𝑋
𝜉(𝑖−1)
′ 𝑉

𝜉(𝑖−1)
−1 𝑦 

and obtain the estimate 𝜇(𝑖) for 𝜇 as  

𝜇(𝑖) = 𝜇∗
(𝑖) − 𝜎∗

(𝑖) 𝜉(𝑖−1)⁄  

(b) Given the current estimate 𝜇(𝑖), and using estimator  (6.3.16), 

obtain GLS estimates log(−𝜎)𝑖 and 𝜉(𝑖) for log(−𝜎) and 𝜉 as 

(
log(−𝜎)

𝜉
)
(𝑖)

= (𝑋′𝑉−1𝑋)−1𝑋′𝑉−1 log(𝜇(𝑖) − 𝑦) 

Note: Here we do not pursue further the GLS estimation of the parameters of 

LSS families of distribution. Instead, in the following section we present methods 

for fiducial inference for LSS families of distributions that are inspired by the 

idea of iterative GLS estimation presented above. One output of the proposed 

fiducial inference method is the joint fiducial distribution of model parameters, 

from which not only GCIs for parameters can be obtained, but also parameter 

estimates (by taking, for example, the mean or the median of the fiducial 

distribution of the parameter of interest). 

6.4. Conditional Fiducial Generalized Pivotal 

Quantities for LSS Family of Distributions 

Based on Ranks 

We present below in Sections 6.4.1 through 6.4.5 rank-based conditional fiducial 

generalized pivotal quantities (CFGPQs) for the parameters and parameter 
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vectors in LSS family of distributions. Computational problems in respect of the 

simulation of the linear predictors of the parameters 𝜇∗ and 𝜎∗ are presented in 

Section 6.4.6. 

Conditional Fiducial Generalized Pivotal Quantities for 𝝃 Based 

on Ranks 

Below in Sections 6.4.1.1 and 6.4.1.2 we present two rank-based CFGPs for 𝜉, 

namely a CFGPQ for 𝜉, given 𝜇; and a CFGPQ for 𝜉, given 𝜇 and 𝜎 respectively. 

 Conditional fiducial generalized pivotal quantity for 𝜉,  given 𝜇, 

based on ranks  

1. Case 𝝃 > 𝟎 

Using equation (6.3.8), with 𝐿2 = (0, 1)
′, the GLS estimator for 𝜉 is given by 

𝜉(𝑌) = 𝐿2
′ 𝐻 log(𝑌 − 𝜇)                                         

= 𝐿2
′ 𝐻[log(𝜎) ∙ 1𝑛 + 𝜉 ∙ log(𝑍

−1)] 

= 𝜉 ∙ 𝐿2
′ 𝐻 log(𝑍−1)                              

since 𝐿2
′ 𝐻1𝑛 = 0. We define the following CFGPQ for 𝜉 

ℛ𝜉|𝜇(𝑦, 𝑌) =
𝜉(𝑦)

𝜉(𝑌) 𝜉⁄
                                                          

=
𝐿2
′ 𝐻 log(𝑦 − 𝜇)

𝐿2
′ 𝐻 log(𝑌 − 𝜇) 𝜉⁄

                

                                               =
𝐿2
′ 𝐻 log(𝑦 − 𝜇)

𝐿2
′ 𝐻 log(𝑍−1)

                                                     (6.4.1) 

Firstly, conditional on 𝜇, the distribution of ℛ𝜉|𝜇 in equation (6.4.1) does not 

depend on any unknown parameters (as can be seen from the last term in 
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(6.4.1)); secondly, the observed value of ℛ𝜉|𝜇 (for any value 𝜇) is equal to 𝜉 (as 

can be seen from the last term in (6.4.1)). Thus, conditional on 𝜇, ℛ𝜉|𝜇 is a 

CFGPQ for 𝜉. 

2. Case 𝝃 < 𝟎 

Similarly, using equation (6.3.16), with 𝐿2 = (0, 1)
′, the GLS estimator for 𝜉 is 

given by 

𝜉(𝑌) = 𝐿2
′ 𝐻 log(𝜇 − 𝑌)                                             

= 𝐿2
′ 𝐻[log(−𝜎) ∙ 1𝑛 + 𝜉 ∙ log(𝑍

−1)] 

= 𝜉 ∙ 𝐿2
′ 𝐻 log(𝑍−1)                                 

since 𝐿2
′ 𝐻1𝑛 = 0. We define the following CFGPQ for 𝜉 conditional on 𝜇, as 

ℛ𝜉|𝜇(𝑦, 𝑌) =
𝜉(𝑦)

𝜉(𝑌) 𝜉⁄
                                            

=
𝐿2
′ 𝐻 log(𝜇 − 𝑦)

𝐿2
′ 𝐻 log(𝜇 − 𝑌) 𝜉⁄

   

                                                     =
𝐿2
′ 𝐻 log(𝜇 − 𝑦)

𝐿2
′ 𝐻 log(𝑍−1)

                                              (6.4.2) 

Again, conditional on 𝜇 the distribution of ℛ𝜉|𝜇 in equation (6.4.2) does not 

depend on any unknown parameters, and secondly the observed value of ℛ𝜉|𝜇 

(for any value 𝜇) is equal to 𝜉. Thus, conditional on 𝜇, ℛ𝜉|𝜇 is a CFGPQ for 𝜉 < 0. 

 Conditional Fiducial Generalized Pivotal Quantity for 𝐥𝐨𝐠(𝝈), 

Given 𝝁, Based on Ranks 

1. Case 𝝃 > 𝟎 
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Using equation (6.3.8), with 𝐿1 = (1, 0)
′, the GLS estimator for log(𝜎) when 𝜉 >

0, is given by 

log(𝜎)̂ (𝑌) = 𝐿1
′ (𝑋′𝑉−1𝑋)−1𝑋′𝑉−1 log(𝑌 − 𝜇)     

                   = 𝐿1
′ 𝐻[log(𝜎) ∙ 1𝑛 + 𝜉 ∙ log(𝑍

−1)]     

                                                  = log(𝜎) + 𝜉 ∙ 𝐿1
′ 𝐻 log(𝑍−1)                                (6.4.3) 

Since 𝐻1𝑛 = (1, 0)
′ and therefore 𝐿1

′ 𝐻1𝑛 = 1. Based on equation (6.4.3) we 

define the following CFGPQ for log(𝜎) given 𝜇 and 𝜉: 

 ℛlog(𝜎)|𝜇,𝜉(𝑦, 𝑌) = log(𝜎)̂ (𝑦) − [log(𝜎)̂ (𝑌) − log(𝜎)]                                       

= log(𝜎)̂ (𝑦) − 𝜉 ∙ 𝐿1
′ 𝐻 log(𝑍−1)                 

     = 𝐿1
′ 𝐻 log(𝑦 − 𝜇) − 𝜉 ∙ 𝐿1

′ 𝐻 log(𝑍−1)             

                                    = 𝐿1
′ 𝐻[log(𝑦 − 𝜇) − 𝜉 ∙ log(𝑍−1)]                                   (6.4.4) 

The first equality in equation (6.4.4) shows that ℛlog(𝜎)|𝜇,𝜉(𝑦, 𝑦) = log(𝜎) for all 

possible observations 𝑦 of 𝑌 (for all the values of 𝜇 and 𝜉); the second equality 

in equation (6.4.4) show that the distribution of ℛlog(𝜎)|𝜇,𝜉, conditional on an 

observation 𝑦 of 𝑌 and on 𝜇 and 𝜉, is free of 𝜇 and 𝜉. Thus ℛlog(𝜎)|𝜇,𝜉  is a CFGPQ 

for log(𝜎). 

Furthermore, we can obtain the CFGPQs for log(𝜎) given 𝜇 by replacing the 

parameter 𝜉 in equation (6.4.4) by the CFGPQ ℛ𝜉|𝜇 in equation (6.4.1) as 

 ℛlog(𝜎)|𝜇(𝑦, 𝑌) = 𝐿1
′ 𝐻[log(𝑦 − 𝜇) − ℛ𝜉|𝜇 ∙ log(𝑍

−1)]                                               

                            = 𝐿1
′ 𝐻 [log(𝑦 − 𝜇) −

𝐿2
′ 𝐻 log(𝑦 − 𝜇)

𝐿2
′ 𝐻 log(𝑍−1)

∙ log(𝑍−1)]          (6.4.5) 

We note that the anti-log of equation (6.4.5) is a CFGPQ for 𝜎, given 𝜇, namely 

ℛ𝜎|𝜇 = 𝑒𝑥𝑝( ℛlog(𝜎)|𝜇). 
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2. Case 𝝃 < 𝟎 

Using equation (6.3.16), with 𝐿1 = (1, 0)
′,  the GLS estimator for log(−𝜎) 

when 𝜉 < 0, is given by 

      log(−𝜎)̂ (𝑌) = 𝐿1
′ (𝑋′𝑉−1𝑋)−1𝑋′𝑉−1 log(𝜇 − 𝑌)                                    

     = 𝐿1
′ 𝐻[log(−𝜎) ∙ 1𝑛 + 𝜉 ∙ log(𝑍

−1)]         

                                      = log(−𝜎) + 𝜉 ∙ 𝐿1
′ 𝐻 log(𝑍−1)                                       (6.4.6) 

Since 𝐻1𝑛 = (1, 0)
′ and therefore 𝐿1

′ 𝐻1𝑛 = 1. Based on equation (6.4.6) we 

define the following CFGPQ for log(−𝜎) given 𝜇 and 𝜉: 

 ℛlog(−𝜎)|𝜇,𝜉(𝑦, 𝑌) = log(−𝜎)̂ (𝑦) − [log(−𝜎)̂ (𝑌) − log(−𝜎)]                      

        = log(−𝜎)̂ (𝑦) − 𝜉 ∙ 𝐿1
′ 𝐻 log(𝑍−1)             

             = 𝐿1
′ 𝐻 log(𝜇 − 𝑦) − 𝜉 ∙ 𝐿1

′ 𝐻 log(𝑍−1)            

                                         = 𝐿1
′ 𝐻[log(𝜇 − 𝑦) − 𝜉 ∙ log(𝑍−1)]                               (6.4.7) 

The first equality in equation (6.4.7) shows that ℛlog(−𝜎)|𝜇,𝜉(𝑦, 𝑦) = log(−𝜎) for 

all possible observations 𝑦  of 𝑌  (for all the values of 𝜇  and 𝜉 ); the second 

equality in equation (6.4.7) shows that the distribution of ℛlog(−𝜎)|𝜇,𝜉 , 

conditional on an observation 𝑦 of 𝑌 and on 𝜇 and 𝜉, is free of 𝜇 and 𝜉. Thus 

ℛlog(−𝜎)|𝜇,𝜉 is a CFGPQ for log(−𝜎). 

Furthermore, we can obtain the CFGPQ for log(−𝜎) given 𝜇 by replacing the 

parameter 𝜉 in equation (6.4.7) by the CFGPQs ℛ𝜉|𝜇 in equation (6.4.2) as 

  ℛlog(−𝜎)|𝜇(𝑦, 𝑌) = 𝐿1
′ 𝐻[log(𝜇 − 𝑦) − ℛ𝜉|𝜇 ∙ log(𝑍

−1)]                                            

                                = 𝐿1
′ 𝐻 [log(𝜇 − 𝑦) −

𝐿2
′ 𝐻 log(𝜇 − 𝑦)

𝐿2
′ 𝐻 log(𝑍−1)

∙ log(𝑍−1)]        (6.4.8) 
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We note that the anti-log of equation (6.4.8) is a CFGPQ for −𝜎, given 𝜇, namely 

ℛ−𝜎|𝜇 = 𝑒𝑥𝑝( ℛlog(−𝜎)|𝜇). 

Conditional Fiducial Generalized Pivotal Quantities for 𝝈∗ and 

𝝈, Given 𝝃, Based on Ranks 

In this section we present the rank-based CFGPQs for 𝜎∗, given 𝜉.  In addition, 

we derive the rank-based CFGPQ for 𝜎, given 𝜉 > 0 and  CFGPQ for −𝜎, given 

𝜉 < 0. 

Using equation (6.3.20), with 𝐿2 = (0, 1)
′, the GLS estimator for  𝜎∗ is given by 

 𝜎∗̂(𝑌) = 𝐿2
′ 𝐻𝜉𝑌                                              

                      = 𝐿2
′ 𝐻𝜉(𝜇∗ ∙ 1𝑛 + 𝜎∗ ∙ [(𝑍

−𝜉 − 1) 𝜉⁄ ])  

= 𝜎∗ ∙ 𝐿2
′ 𝐻𝜉[(𝑍

−𝜉 − 1) 𝜉⁄ ] 

since 𝐿2
′ 𝐻𝜉1𝑛 = 0. We define the following CFGPQ for 𝜎∗, given 𝜉 > 0: 

  ℛ𝜎∗|𝜉(𝑦, 𝑌) =
 𝜎∗̂(𝑦)

 𝜎∗̂(𝑌) 𝜎∗⁄
                                                   

   =
𝐿2
′ 𝐻𝜉𝑦

𝐿2
′ 𝐻𝜉𝑌 𝜎∗⁄

                             

                                                  =
𝐿2
′ 𝐻𝜉𝑦

𝐿2
′ 𝐻𝜉[(𝑍−𝜉 − 1) 𝜉⁄ ]

                                           (6.4.9) 

Firstly, conditional on 𝜉  the distribution of  ℛ𝜎∗|𝜉  does not depend on any 

unknown parameters, and secondly the observed value of  ℛ𝜎∗|𝜉  (for any 𝜉) is 

equal to 𝜎∗. Thus, conditional on 𝜉,  ℛ𝜎∗|𝜉  is a CFGPQ for 𝜎∗. 

Furthermore, we obtain the CFGPQ for 𝜎 = 𝜎∗ 𝜉,⁄  given 𝜉, as 

                                ℛ𝜎|𝜉(𝑦, 𝑌) =   ℛ𝜎∗|𝜉(𝑦, 𝑌) 𝜉⁄                                                (6.4.10) 
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where ℛ𝜎∗|𝜉(𝑦, 𝑌) is given in equation (6.4.9) above. 

Conditional Fiducial Generalized Pivotal Quantities for 𝝁∗ and 

𝝁, Given 𝝃, Based on Ranks 

We present in this section rank-based CFGPQs for 𝜇∗ given 𝜉; and rank-based 

CFGPQs for 𝜇, given 𝜉. 

Using equation (6.3.20), with 𝐿1 = (1, 0)
′, the GLS estimator for 𝜇∗ is given by 

𝜇∗̂(𝑌) = 𝐿1
′ 𝐻𝜉𝑌                                                   

              = 𝐿1
′ 𝐻𝜉(𝜇∗ ∙ 1𝑛 + 𝜎∗ ∙ [(𝑍

−𝜉 − 1) 𝜉⁄ ]) 

= 𝜇∗+𝜎∗ ∙ 𝐿1
′ 𝐻𝜉[(𝑍

−𝜉 − 1) 𝜉⁄ ] 

since 𝐻𝜉1𝑛 = (1, 0)
′ and therefore 𝐿1

′ 𝐻𝜉1𝑛 = 1. We define the following CFGPQ 

for 𝜇∗, given 𝜉 and 𝜎∗: 

 ℛ𝜇∗|𝜉,𝜎∗(𝑦, 𝑌) = 𝜇∗̂(𝑦) − [𝜇∗̂(𝑌) − 𝜇∗]                                     

             = 𝜇∗̂(𝑦) − 𝜎∗ ∙ 𝐿1
′ 𝐻𝜉[(𝑍

−𝜉 − 1) 𝜉⁄ ]   

              = 𝐿1
′ 𝐻𝜉𝑦 − 𝜎∗ ∙ 𝐿1

′ 𝐻𝜉[(𝑍
−𝜉 − 1) 𝜉⁄ ]   

                                               = 𝐿1
′ 𝐻𝜉(𝑦 − 𝜎∗ ∙ [(𝑍

−𝜉 − 1) 𝜉⁄ ])                         (6.4.11) 

The first equality in equation (6.4.11) shows that ℛ𝜇∗|𝜉,𝜎∗(𝑦, 𝑦) = 𝜇∗ for all 

possible observations 𝑦 of 𝑌 (and for all values of 𝜉 and 𝜎∗); the second equality 

in equation (6.4.11) shows that the distribution of ℛ𝜇∗|𝜉,𝜎∗(𝑦, 𝑌), conditional on 

an observation 𝑦 of 𝑌, and conditional on 𝜉  and 𝜎∗, is free of any unknown 

parameters. Thus, ℛ𝜇∗|𝜉,𝜎∗(𝑦, 𝑌) is a CFGPQ for 𝜇∗. 
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Furthermore, we obtain the CFGPQ for 𝜇∗ given 𝜉 by replacing the parameter 𝜎∗ 

in equation (6.4.11) by the CFGPQ  ℛ𝜎∗|𝜉  in equations (6.4.9) (“plug-in-

principle”): 

ℛ𝜇∗|𝜉(𝑦, 𝑌) = 𝐿1
′ 𝐻𝜉(𝑦 − ℛ𝜎∗|𝜉 ∙ [(𝑍

−𝜉 − 1) 𝜉⁄ ])                                                          

                      = 𝐿1
′ 𝐻𝜉 {𝑦 −

𝐿2
′ 𝐻𝜉𝑦

𝐿2
′ 𝐻𝜉[(𝑍−𝜉 − 1) 𝜉⁄ ]

∙ [(𝑍−𝜉 − 1) 𝜉⁄ ]}              (6.4.12) 

Finally, we obtain the CFGPQ for 𝜇 = 𝜇∗ − 𝜎∗ 𝜉⁄ , given  𝜉 as 

                                ℛ𝜇|𝜉(𝑦, 𝑌) = ℛ𝜇∗|𝜉(𝑦, 𝑌) −   ℛ𝜎∗|𝜉(𝑦, 𝑌) 𝜉                    ⁄ (6.4.13) 

where ℛ𝜇∗|𝜉(𝑦, 𝑌)  is taken from equation (6.4.12), and  ℛ𝜎∗|𝜉(𝑦, 𝑌)  from 

equation (6.4.9) above. 

Gibbs Sampler for the Joint Fiducial Distribution of the Model 

Parameters 

In Section 6.4.1 above we have derived the CFGPQs ℛ𝜉|𝜇 for both cases, 𝜉 > 0 

and 𝜉 < 0, and in Sections 6.4.12, 6.4.9, and 6.4.13 we have, respectively, 

derived CFGPQs ℛ𝜇∗|𝜉  for 𝜇∗,  ℛ𝜎∗|𝜉  for 𝜎∗ , and  ℛ𝜇|𝜉  for 𝜇.  Thus we can 

determine the conditional fiducial distribution of 𝜉 given 𝜇, and the conditional 

fiducial distributions of 𝜇∗ given 𝜉, of 𝜎∗ given 𝜉, and of 𝜇 given 𝜉  respectively. 

Based on these conditional distributions, and assuming that either 𝜉 > 0 or 𝜉 <

0,  the joint distribution of 𝜉, 𝜇∗  and 𝜎∗,  and thus the marginal fiducial 

distributions of these parameters, can be determined using the Gibbs sampler 

algorithm as follows: 

Algorithm 7: Gibbs sampler for the joint fiducial distribution of 𝝁∗, 𝝈∗ and  

𝝃 
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1. If 𝜉 > 0  is assumed, choose an initial copy 𝜉(0) > 0 . If 𝜉 < 0  is 

assumed, choose an initial copy 𝜉(0) < 0. 

2. For 𝑖 = 1,… ,𝑀 do Steps 2(a) through 2(c) below: 

(a) Given the current copy 𝜉(𝑖−1)  of 𝜉 > 0  or 𝜉 < 0,  draw the 

following random copies: 

i. a copy 𝜎̃∗
(𝑖)  of 𝜎∗ from the distribution of  ℛ𝜎∗|𝜉=𝜉̃(𝑖−1) , see 

equation (6.4.9) for both cases, 𝜉 > 0, and 𝜉 < 0. 

ii. a copy 𝜇∗
(𝑖)  of 𝜇∗  from the distribution of ℛ𝜇∗|𝜉=𝜉̃(𝑖−1) , see 

equation (6.4.12) for both cases, 𝜉 > 0, and 𝜉 < 0. 

(b) Calculate 𝜇(𝑖)  of 𝜇  as 𝜇(𝑖) = 𝜇∗(𝑖) − 𝜎̃∗(𝑖) 𝜉(𝑖−1)⁄  ,  see equation 

(6.4.13) for both cases 𝜉 > 0, and 𝜉 < 0. 

(c) Given the current random copy 𝜇(𝑖) of 𝜇, draw a random copy 

 𝜉(𝑖) of 𝜉 from the distribution of ℛ𝜉|𝜇=𝜇̃(𝑖) , see equation (6.4.1) 

for 𝜉 > 0, and equation (6.4.2) for 𝜉 < 0.      

The Monte-Carlo Markov chain of 𝑀  draws 

(𝜇∗
(𝑖), 𝜎̃∗

(𝑖), 𝜉(1)), … , (𝜇∗
(𝑀), 𝜎̃∗

(𝑀), 𝜉(𝑀)) provides an estimate of the joint fiducial 

distribution of the parameters in the usual way. 

Note: In Algorithm 7 either 𝜉 > 0 or 𝜉 < 0 is assumed, that is, in this form the 

methodology does not determine whether 𝜉 > 0 or 𝜉 < 0. The latter problem is 

not handled here and is the subject of future research. 

Computational Problems 

Simulation of the linear predictors 𝝁∗  and 𝝈∗ in the LSS family of distributions: 

We note that FGCIs for 𝜇∗, 𝜇, 𝜎∗, 𝜎, 𝜉 and 𝜂 of GEV, GP and three-parameter 

Weibull distributions are calculated using a Gibbs sampler through the 

simulation of CFGPQs for these parameters (and for functions of these 
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parameters such as quantiles) as are defined in Sections 6.4.1 through 6.4.4 

above. Furthermore, we note that the calculation of CFGPQs requires the 

calculation of the 𝐻𝜉  matrix for the eventual calculation of the linear predictors 

for 𝜇∗  and 𝜎∗.  To this end, for GEV, GP and three-parameter Weibull 

distributions we simulate the 𝐻𝜉  matrix for a grid of 𝜉 values, assuming 𝜉 > 0. 

For 𝜉 > 0, the lower and upper limits were as chose as presented in the table 

below. 

Table 6.4.1: Grid of 𝝃 (𝝃 > 𝟎) values for simulating 𝑯𝝃 matrix for GEV, GP 

and three-parameter Weibull distributions 

Distribution Lower limit Increment Upper limit 

Generalized Extreme 

Value 

0.1 0.01 3.5 

Generalized Pareto 0.01 0.01 2.5 

Three-parameter 

Weibull 

0.1 0.01 3.5 

 

We note that in our experience using a lower or higher limit of the grid for 𝜉 

makes, in general, no practical difference with respect to the calculated FGCIs 

for the model parameters (as long as the true value of 𝜉can be assumed to lie 

well within the interval in question). 

6.5. Fiducial Generalized Inference for 

Location-Scale-Shape Family of 

Distributions 

We present in Section 6.5.1 below a brief literature review on fiducial 

generalized inference for the location, scale and shape parameters or a function 

of a parameter of the LSS distributions. Furthermore, the general principle of 



190 

how to obtain fiducial generalized confidence intervals for the location, scale 

and shape parameters or a function of a parameter of the LSS distributions is 

described in Section 6.5.2. 

Literature Review 

We have noted above that considerable work on estimation of parameters in 

the LSS families of distributions using various methods such as maximum 

likelihood, method of moments, probability-weighted-moments, least squares, 

and likelihood moment, among others, has been done in the literature. 

However, thus far there appears to be limited literature on hypotheses tests and 

generalized confidence intervals for the location, scale and shape parameters of 

LSS families of distributions, especially using fiducial methods. Among the 

authors, Challenor and Carter (1983) derived a two-sided hypothesis test for 

testing whether the shape parameter of GEV distribution is equal to zero based 

on likelihood ratio methods. Alternatively, Challenor and Carter (1983) fitted a 

Gumbel distribution to the data. Similarly, Hosking (1984) proposed a 

modification to the likelihood test of Challenor and Carter (1983) and applied it 

to one-sided and two-sided hypothesis testing of the shape parameter of GEV 

distribution. Huang et al. (2013) derived a generalized likelihood test for the 

shape parameter of GEV distribution. Wandler and Hannig (2012) proposed 

fiducial generalized confidence intervals, using fiducial probability density 

functions of the parameters of high quantiles of the GP distribution, of the 

parameter and quantiles in the case when the threshold parameter is either 

known, or unknown and needs to be chosen. The performance of proposed 

methods was evaluated using Monte Carlo simulations and real life data 

example and compared with results based on Bayesian methods. 
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Fiducial Generalized Confidence Intervals for the Parameters 

of Location-Scale-Shape Distributions 

Fiducial generalized confidence intervals (FGCIs) for the location, scale and 

shape parameters or a function of a parameter in LSS family of distributions can 

be obtained by calculating the FGCIs using a Gibbs sampler through the 

simulation of CFGPQs defined in Sections 6.4.1 through 6.4.4 above.  

Summary of the simulation of FGCIs of model parameters and 

quantiles LSS distribution: 

We present below a summary of the simulation of fiducial generalized 

confidence intervals for 𝜎∗, 𝜎, 𝜇∗, 𝜇, 𝜉 and 𝜂 of the Generalized Extreme Value, 

Generalized Pareto and three-parameter Weibull distributions. As presented 

above, we note again here that the methods for calculating the FGCIs for the 

parameters and quantiles of the distribution can in principle be generally 

applied to any LSS family of distribution. When applying the general method to 

various distributions (LSS families), in principle, the only adaptation necessary is 

to specify the relevant standard distribution of the standard variate 𝑍∗ (see 

equation 6.1.4), from which we simulate the estimates of the 𝐻 and 𝐻𝜉  matrices 

needed in the calculation of the various CFGPQs. 

 For the GEV distribution, the estimates of the 𝐻 and 𝐻𝜉  matrices are 

simulated using the standard variate 𝑍∗ from the standard Exponential 

distribution. 

 For GP distribution, the estimates of 𝐻 and 𝐻𝜉  matrices are simulated 

using the standard variate 𝑍∗ from the standard Uniform distribution. 

 For the three-parameter Weibull distribution, the estimates of the 𝐻 and 

𝐻𝜉  matrices are simulated using the standard variate 𝑍∗ which is the 

inverse of a variate from the standard Exponential distribution. 
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Since the matrix 𝐻𝜉  depends on 𝜉, it is simulated using a grid of 𝜉 values, and we 

chose a lower limit of 0.1 (GEV and three-parameter Weibull distributions) and 

0.01 (GP distribution) for the grid in the simulation studies described in Section 

6.6 below. When the lower limit for the grid is chosen too low, the simulation 

trace for 𝜉 can collapse and converge to the minimum value.   

6.6. Simulation Studies: Location-Scale-Shape 

Family of Distributions 

In Sections 6.6.1, 6.6.2 and 6.6.3 we present the simulation studies for 

calculating empirical coverages and average lengths of fiducial generalized 

confidence intervals for model parameters and quantiles of Generalized 

Extreme Value, Generalized Pareto and three-parameter Weibull distributions, 

respectively. The simulation studies are based on CFGPQs for 𝜎, 𝜎∗, 𝜇, 𝜇∗, 𝜉 and 𝜂 

using 𝜃 (theta) (see equations (6.1.2)/(6.1.5)) and 𝜃∗ (theta star) (see equations 

(6.1.1)/(6.1.6)) parametrizations and selected values of 𝜉. 

Coverage Probabilities and Average Lengths of FGCIs for Model 

Parameters and Quantiles of Generalized Extreme Value 

Distribution 

We present in this section the simulation study of calculating the coverage 

probabilities and average lengths of FGCIs for model parameters and quantiles 

of distribution for the Generalized Extreme Value distribution. 

 Objectives of simulation study 

The objectives of this simulation study are: 

 To evaluate, using rank-based fiducial generalized methods applied to 

the GEV distribution, the performance of Gibbs sampler. 
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 To evaluate and compare the empirical coverages and average lengths of 

FGCIs for model parameters and quantiles of the distribution obtained 

using 𝜃 parametrization with those based on 𝜃∗ parametrization. 

 Design of simulation study 

We have written a number of programs to calculate the empirical coverages and 

average lengths of FGCIs for model parameters and 0.975 quantile of GEV 

distribution. For both parametrizations, the empirical coverages and average 

lengths of FGCIs were calculated for sample size 𝑛 = 50  using the input 

parameters 𝜎 = 1 and 𝜇 = 0; 𝑆 = 4000 simulated samples of data; 𝐽 = 1000 

draws from the fiducial distribution, and specified values of positive shape 

parameter 𝜉 = 0.2, 0.25, 0.33, 0.5, and 1. Furthermore, the simulation study was 

repeated for sample size 𝑛 = 25.  Schall and Ring (2011, Section 3.2) have 

shown that the simulation study of empirical coverage of 90% confidence 

interval for a model parameters or contrasts based on 4000 simulations 

produces a simulation standard error of the coverage probability of 0.005.  

Asimulation standard error of the coverage probability of 0.5% is very small, and 

thus it serves as the justification for the choice of using 4000 simulated samples. 

 Results of simulation study 

We compare in this section the simulation results of 95% FGCIs for model 

parameters and 0.975 quantile of GEV distribution obtained using 𝜃 

parametrization with those based on 𝜃∗ parametrization for 𝑛 = 50 and 𝜉 =

0.2, 0.25, 0.33, 0.5, and 1  (see Tables 6.6.1.1 through 6.6.1.5 below). Full 

simulation results of 90%, 95% and 99% FGCIs for model parameters and 0.975 

quantile of GEV distribution based on 𝜃∗ parametrization for sample sizes 𝑛 =

25 and 𝑛 = 50 are presented in Appendix F1 (Tables F1.1 through F1.5) below. 
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Table 6.6.1.1: Generalized Extreme Value distribution: 95% CPs and AVLs 

of FGCIs for model parameters and 𝜼𝟎.𝟗𝟕𝟓 quantile based on six CFGPQs 

using theta and theta star parametrizations (𝒏 = 𝟓𝟎;  𝝈 = 𝟏;  𝝁 = 𝟎;  𝝃 =

𝟎. 𝟐; 𝜼𝟎.𝟗𝟕𝟓 = 𝟐. 𝟎𝟖𝟔𝟎;  𝑺 = 𝟒𝟎𝟎𝟎  simulated samples of data; 𝑱 = 𝟏𝟎𝟎𝟎 

draws from the fiducial distribution) 

  Parametrization 

Parameter Quantity  Theta Theta star 

𝜎 CP  0 0.9822 

 AVL  0.1099 1.6588 

𝜎∗ CP  0.0140 0.9593 

 AVL  1.6541 0.1105 

𝜇 CP  0 0.9832 

 AVL  0.1253 1.6196 

𝜇∗ CP  0 0.9543 

 AVL  1.6149 0.1259 

𝜉 CP  0.9838 0.9818 

 AVL  0.3547 0.3553 

𝜂0.975 CP  0.9587 0.9410 

 AVL  1.3851 1.2938 
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Table 6.6.1.2: Generalized Extreme Value distribution: 95% CPs and AVLs 

of FGCIs for model parameters and 𝜼𝟎.𝟗𝟕𝟓 quantile based on six CFGPQs 

using theta and theta star parametrizations (𝒏 = 𝟓𝟎;  𝝈 = 𝟏;  𝝁 = 𝟎;  𝝃 =

𝟎. 𝟐𝟓; 𝜼𝟎.𝟗𝟕𝟓 = 𝟐. 𝟓𝟎𝟔𝟗;  𝑺 = 𝟒𝟎𝟎𝟎 simulated samples of data; 𝑱 = 𝟏𝟎𝟎𝟎 

draws from the fiducial distribution) 

  Parametrization 

Parameter Quantity  Theta Theta star 

𝜎 CP  0 0.9735 

 AVL  0.1428 1.9958 

𝜎∗ CP  0.0235 0.9540 

 AVL  1.9868 0.1418 

𝜇 CP  0 0.9762 

 AVL  0.1597 1.9458 

𝜇∗ CP  0 0.9453 

 AVL  1.9358 0.1592 

𝜉 CP  0.9732 0.9795 

 AVL  0.3974 0.3947 

𝜂0.975 CP  0.9530 0.9430 

 AVL  2.1465 1.9017 
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Table 6.6.1.3: Generalized Extreme Value distribution: 95% CPs and AVLs 

of FGCIs for model parameters and 𝜼𝟎.𝟗𝟕𝟓 quantile based on six CFGPQs 

using theta and theta star parametrizations (𝒏 = 𝟓𝟎;  𝝈 = 𝟏;  𝝁 = 𝟎;  𝝃 =

𝟎. 𝟑𝟑; 𝜼𝟎.𝟗𝟕𝟓 = 𝟑. 𝟑𝟔𝟒𝟏;  𝑺 = 𝟒𝟎𝟎𝟎 simulated samples of data; 𝑱 = 𝟏𝟎𝟎𝟎 

draws from the fiducial distribution) 

  Parametrization 

Parameter Quantity  Theta Theta star 

𝜎 CP  0 0.9490 

 AVL  0.1977 2.3477 

𝜎∗ CP  0.0558 0.9490 

 AVL  2.3462 0.1982 

𝜇 CP  0 0.9483 

 AVL  0.2135 2.2739 

𝜇∗ CP  0 0.9493 

 AVL  2.2729 0.2138 

𝜉 CP  0.9570 0.9503 

 AVL  0.4621 0.4608 

𝜂0.975 CP  0.9497 0.9263 

 AVL  3.8334 3.4631 
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Table 6.6.1.4: Generalized Extreme Value distribution: 95% CPs and AVLs 

of FGCIs for model parameters and 𝜼𝟎.𝟗𝟕𝟓 quantile based on six CFGPQs 

using theta and theta star parametrizations (𝒏 = 𝟓𝟎;  𝝈 = 𝟏;  𝝁 = 𝟎;  𝝃 =

𝟎. 𝟓; 𝜼𝟎.𝟗𝟕𝟓 = 𝟔. 𝟐𝟖𝟒𝟕;  𝑺 = 𝟒𝟎𝟎𝟎  simulated samples of data; 𝑱 = 𝟏𝟎𝟎𝟎 

draws from the fiducial distribution) 

  Parametrization 

Parameter Quantity  Theta Theta star 

𝜎 CP  0.0185 0.9343 

 AVL  0.3392 2.3289 

𝜎∗ CP  0.2488 0.9537 

 AVL  2.3264 0.3402 

𝜇 CP  0 0.9357 

 AVL  0.3303 2.1883 

𝜇∗ CP  0 0.9440 

 AVL  2.1881 0.3318 

𝜉 CP  0.9275 0.9380 

 AVL  0.5655 0.5673 

𝜂0.975 CP  0.9240 0.9077 

 AVL  11.7493 10.3809 
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Table 6.6.1.5: Generalized Extreme Value distribution: 95% CPs and AVLs 

of FGCIs for model parameters and 𝜼𝟎.𝟗𝟕𝟓 quantile based on six CFGPQs 

using theta and theta star parametrizations (𝒏 = 𝟓𝟎;  𝝈 = 𝟏;  𝝁 = 𝟎;  𝝃 =

𝟏; 𝜼𝟎.𝟗𝟕𝟓 = 𝟑𝟗. 𝟒𝟗𝟕𝟗;  𝑺 = 𝟒𝟎𝟎𝟎  simulated samples of data; 𝑱 = 𝟏𝟎𝟎𝟎 

draws from the fiducial distribution) 

  Parametrization 

Parameter Quantity  Theta Theta star 

𝜎 CP  0.9575 0.9420 

 AVL  0.9997 1.8769 

𝜎∗ CP  0.9483 0.9530 

 AVL  1.3253 1.0453 

𝜇 CP  0 0.9343 

 AVL  0.6900 1.4070 

𝜇∗ CP  0 0.9503 

 AVL  0.8710 0.7161 

𝜉 CP  0.9430 0.9393 

 AVL  0.7684 0.7681 

𝜂0.975 CP  0.9345 0.9050 

 AVL  207.7658 180.5037 
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 Discussion of results of simulation study for GEV distribution 

Based on the results of simulation study presented in Tables 6.6.1.1 through 

6.6.1.5 above, we conclude the following: 

 Overall, the results of simulation study suggest that the Gibbs sampler 

algorithm using rank-based CFGPQs produces FGCIs with good coverage 

when the 𝜃∗ parametrization is applied compared to 𝜃 parametrization. 

Therefore, the 𝜃∗ parametrization is preferred. 

 The coverage probabilities for the parameters 𝜇∗ and 𝜎∗ are close to the 

nominal 95%, but for the quantiles 𝜂 the observed coverage is generally 

smaller than 95% and tends to be about 91% when 𝜉 is close to 1. 

However, for smaller values of 𝜉, for example 𝜉 < 0.33, the coverage of 

the guantiles 𝜂 is satisfactory. 

 However, the Gibbs sampler algorithm using rank-based CFGPQs does 

not work well in the case of GEV distribution for 𝜉 > 1 because the 

draws from the conditional fiducial distributions of the various 

parameters become very unstable. To illustrate this instability, as an 

example, we have produced a plot of the trace for the FGPQ for the 

quantile 𝜂0.975 using 𝜃∗ parametrization for the parameter combination 

𝜎 = 1, 𝜇 = 0, 𝜉 = 2 and sample size 𝑛 = 50. See Figure 6.6.1 below. 

For 𝜉 = 2, the value of 𝜂0.975 is 1560.1 which is very far away from the 

median estimate of 0.975 quantile of 17784 (median of the simulated 

fiducial distribution). 

 In contrast, for 𝜉 < 1,  for example 𝜉 = 0.25,  the draws from the 

conditional fiducial distributions of the various parameters become 

generally stable and the trace for the quantile 𝜂 looks better (see Figure 

6.6.2 below). 
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Figure 6.6.1: Generalized Extreme Value distribution: Distribution of draws of 𝜼𝟎.𝟗𝟕𝟓 quantile (𝒏 = 𝟓𝟎; 𝑺 = 𝟏𝟎𝟎𝟎 

draws from the fiducial distribution; true 𝜼𝟎.𝟗𝟕𝟓 = 𝟏𝟓𝟔𝟎. 𝟏;  𝝈 = 𝟏;  𝝁 = 𝟎;  𝝃 = 𝟐;  median = 17784) 
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Figure 6.6.2: Generalized Extreme Value distribution: Distribution of draws of 𝜼𝟎.𝟗𝟕𝟓 quantile (𝒏 = 𝟓𝟎; 𝑺 = 𝟏𝟎𝟎𝟎 

draws from the fiducial distribution; 𝝈 = 𝟏;  𝝁 = 𝟎;  𝝃 = 𝟎. 𝟐𝟓; median = 2.7728)  
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Coverage Probabilities and Average Lengths of FGCIs for Model 

Parameters and Quantiles of Generalized Pareto Distribution 

We present in this section the simulation study of calculating the coverage 

probabilities and average lengths of FGCIs for model parameters and quantiles 

of distribution for the Generalized Pareto distribution. 

 Objectives of simulation study 

The objectives of this simulation study are: 

 To evaluate, using rank-based fiducial generalized methods applied to 

the GP distribution, the performance of Gibbs sampler. 

 To compare the empirical coverages and average lengths of FGCIs for 

model parameters and quantiles of GP distribution obtained using 𝜃 

parametrization with those based on 𝜃∗ parametrization. 

 Design of simulation study 

We have written a number of programs to calculate the empirical coverages and 

average lengths of FGCIs for model parameters and 0.975 quantile of GP 

distribution. For both parametrizations, the empirical coverages and average 

lengths of FGCIs were calculated for sample size 𝑛 = 50  using the input 

parameters 𝜎 = 1 and 𝜇 = 0; 𝑆 = 4000 simulated samples of data; 𝐽 = 1000 

draws from the fiducial distribution, and specified values of positive shape 

parameter 𝜉 = 0.05, 0.1, 0.2, 0.25, 0.33, 0.5 and 1. Furthermore, the simulation 

study was repeated for sample size 𝑛 = 25. 

 Results of simulation study 

We compare in this section the simulation results of 95% FGCIs for model 

parameters and 0.975 quantile of GP distribution obtained using 𝜃 
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parametrization with those based on 𝜃∗ parametrization for 𝑛 = 50 and 𝜉 =

0.05 and 0.1 (see Tables 6.6.2.1 and 6.6.2.2 below). Full simulation results of 

90%, 95% and 99% FGCIs for model parameters and 0.975 quantile of GP 

distribution based on 𝜃∗ parametrization for sample sizes 𝑛 = 25 and 𝑛 = 50 

are presented in Appendix F2 (see Tables F2.1 through F2.3 below). 
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Table 6.6.2.1: Generalized Pareto distribution: 95% CPs and AVLs of 

FGCIs for model parameters and 𝜼𝟎.𝟗𝟕𝟓 quantile based on six CFGPQs 

using theta and theta star parametrizations (𝒏 = 𝟓𝟎;  𝝈 = 𝟏;  𝝁 = 𝟎;  𝝃 =

𝟎. 𝟎𝟓; 𝜼𝟎.𝟗𝟕𝟓 = 𝟏. 𝟐𝟎𝟐𝟓;  𝑺 = 𝟒𝟎𝟎𝟎  simulated samples of data; and 𝑱 =

𝟏𝟎𝟎𝟎 draws from the fiducial distribution) 

  Parametrization 

Parameter Quantity  Theta Theta star 

𝜎 CP  0 0.9785 

 AVL  0.0338 4.8069 

𝜎∗ CP  0.1187 0.9537 

 AVL  4.7778 0.0337 

𝜇 CP  0 0.9788 

 AVL  0.0037 4.8347 

𝜇∗ CP  0 0.9465 

 AVL  4.8068 0.0037 

𝜉 CP  0.9728 0.9788 

 AVL  0.3823 0.3756 

𝜂0.975 CP  0.9623 0.9360 

 AVL  0.2297 0.1999 
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Table 6.6.2.2: Generalized Pareto distribution: 95% CPs and AVLs of 

FGCIs for model parameters and 𝜼𝟎.𝟗𝟕𝟓 quantile based on six CFGPQs 

using theta and theta star parametrizations (𝒏 = 𝟓𝟎;  𝝈 = 𝟏;  𝝁 = 𝟎;  𝝃 =

𝟎. 𝟏; 𝜼𝟎.𝟗𝟕𝟓 = 𝟏. 𝟒𝟒𝟔𝟏;  𝑺 = 𝟒𝟎𝟎𝟎  simulated samples of data; and 𝑱 =

𝟏𝟎𝟎𝟎 draws from the fiducial distribution) 

  Parametrization 

Parameter Quantity  Theta Theta star 

𝜎 CP  0 0.9802 

 AVL  0.0719 9.4858 

𝜎∗ CP  0.1543 0.9605 

 AVL  9.5148 0.0721 

𝜇 CP  0 0.9800 

 AVL  0.0076 9.5492 

𝜇∗ CP  0 0.9477 

 AVL  9.5773 0.0076 

𝜉 CP  0.9830 0.9798 

 AVL  0.4200 0.4274 

𝜂0.975 CP  0.9633 0.9413 

 AVL  0.5421 0.4829 
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 Discussion of results of simulation study for GP distribution 

Based on the results of simulation study, we conclude the following: 

 The results of simulation study (see Tables 6.6.2.1 and 6.6.2.2 above) 

show that the Gibbs sampler algorithm using rank-based CFGPQs does 

not work in the case of GP distribution when the 𝜃 parametrization is 

applied. The draws from the conditional fiducial distributions of the 

various model parameters are very unstable and the coverage 

probabilities of GCIs are generally close to zero. 

o For illustration, as an example, we have produced a plot of the 

trace for the draws of the FGPQ for the parameter 𝜎 using 𝜃 

parametrization for the parameter combination 𝜎 = 1, 𝜇 = 0,

𝜉 = 0.15 and sample size 𝑛 = 50. See Figure 6.6.3 below.  

 Furthermore, the results of simulation study suggest that the Gibbs 

sampler algorithm using rank-based CFGPQs produces FGCIs with, 

overall, good coverage when 𝜃∗ parametrization is applied in the case of 

smaller values of 𝜉. That is, for 𝜉 values smaller than or equal to 0.2. 

Similarly to the case of GEV distribution, the coverage probabilities for 

the parameters 𝜇∗ and 𝜎∗ are close to the nominal 95%, but for the 

quantiles 𝜂 the observed coverage is generally smaller than 95% but 

tends to be satisfactory, say about 94%, when 𝜉 is close to 0.1.  

 The full results of empirical coverages and average lengths of FGCIs for 

model parameters and quantiles of GP distribution in the case of 𝜃∗ 

parametrization for 𝜉 = 0.05, 0.1 and 0.2 are presented in Appendix F2 

(see Tables F2.1 through F2.3). 

o Figure 6.6.4 below illustrates that for 𝜉 > 0.2, the draws from the 

conditional fiducial distributions of various parameters of GP 

distribution become very unstable for 𝜃∗ parametrization. This 

result is perhaps not surprising given the fact that the GP 
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distribution is a very heavy tailed distribution when the extreme 

value index is above 0.2. 
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Figure 6.6.3: Generalized Pareto distribution: Distribution of the draws of 𝝈 (𝒏 = 𝟓𝟎; 𝑺 = 𝟏𝟎𝟎𝟎 draws from the 

fiducial distribution; 𝝈 = 𝟏;  𝝁 = 𝟎;  𝝃 = 𝟎. 𝟏𝟓;  median = 0.3755) 
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Figure 6.6.4: Generalized Pareto distribution: Distribution of the draws of 𝝃 (𝒏 = 𝟓𝟎; 𝑺 = 𝟏𝟎𝟎𝟎 draws from the 

fiducial distribution; 𝝈 = 𝟏;  𝝁 = 𝟎;  𝝃 = 𝟎. 𝟓;  median = 0.2388) 
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Coverage Probabilities and Average Lengths of FGCIs for Model 

Parameters and Quantiles of Three-Parameter Weibull 

Distribution 
We present in this section the simulation study of calculating the coverage 

probabilities and average lengths of FGCIs for model parameters and quantiles 

of distribution for the three-parameter Weibull distribution. 

 Objectives of simulation study 

The objectives of this simulation study are: 

 To evaluate, using rank-based fiducial generalized methods applied to 

three-parameter Weibull distribution, the performance of Gibbs sampler. 

 To compare the empirical coverages and average lengths of FGCIs for 

model parameters and quantiles of three-parameter Weibull distribution 

obtained using 𝜃  parametrization with those based on 𝜃∗ 

parametrization. 

 Design of simulation study 

We have written a number of programs to calculate the empirical coverages and 

average lengths of FGCIs for model parameters and 0.975 quantile of three-

parameter Weibull distribution. For both parametrizations, the empirical 

coverages and average lengths of FGCIs were calculated for sample size 𝑛 = 50 

using the input parameters 𝜎 = 1 and 𝜇 = 0; 𝑆 = 4000 simulated samples of 

data; 𝐽 = 1000 draws from the fiducial distribution, and specified values of 

positive shape parameter 𝜉 = 0.2, 0.25, 0.33, 0.5, 1 and 2.  Furthermore, the 

simulation study was repeated for sample size 𝑛 = 25. 
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 Results of simulation study 

We compare in this section the simulation results of 95% FGCIs for model 

parameters and 0.975 quantile of three-parameter Weibull distribution 

obtained using 𝜃 parametrization with those based on 𝜃∗ parametrization for 

𝑛 = 50 and 𝜉 = 0.2, 0.25, 0.33, 0.5, 1 and 2 (see Tables 6.6.3.1 through 6.6.3.6 

below). Full simulation results of 90%, 95% and 99% FGCIs for model parameters 

and 0.975 quantile of three-parameter Weibull distribution, based on 𝜃∗ 

parametrization for sample sizes 𝑛 = 25 and 𝑛 = 50 are presented in Appendix 

F3 below (see Tables F3.1 through F3.6). 
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Table 6.6.3.1: Three-parameter Weibull distribution: 95% CPs and AVLs 

of FGCIs for model parameters and 𝜼𝟎.𝟗𝟕𝟓 quantile based on six CFGPQs 

using theta and theta star parametrizations (𝒏 = 𝟓𝟎;  𝝈 = 𝟏;  𝝁 = 𝟎;  𝝃 =

𝟎. 𝟐; 𝜼𝟎.𝟗𝟕𝟓 = 𝟏. 𝟐𝟗𝟖𝟑;  𝑺 = 𝟒𝟎𝟎𝟎  simulated samples of data;  𝑱 = 𝟏𝟎𝟎𝟎 

draws from the fiducial distribution) 

  Parametrization 

Parameter Quantity  Theta Theta star 

𝜎 CP  0.9690 0.9720 

 AVL  1.3294 1.3298 

𝜎∗ CP  0.9643 0.9660 

 AVL  0.0953 0.0953 

𝜇 CP  0.9695 0.9710 

 AVL  1.2973 1.2978 

𝜇∗ CP  0.9595 0.9597 

 AVL  0.1284 0.1252 

𝜉 CP  0.9705 0.9712 

 AVL  0.2857 0.2881 

𝜂0.975 CP  0.9860 0.9523 

 AVL  0.2451 0.2029 
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Table 6.6.3.2: Three-parameter Weibull distribution: 95% CPs and AVLs 

of FGCIs for model parameters and 𝜼𝟎.𝟗𝟕𝟓 quantile based on six CFGPQs 

using theta and theta star parametrizations (𝒏 = 𝟓𝟎;  𝝈 = 𝟏;  𝝁 = 𝟎;  𝝃 =

𝟎. 𝟐𝟓; 𝜼𝟎.𝟗𝟕𝟓 = 𝟏. 𝟑𝟖𝟓𝟗;  𝑺 = 𝟒𝟎𝟎𝟎 simulated samples of data; 𝑱 = 𝟏𝟎𝟎𝟎 

draws from the fiducial distribution) 

  Parametrization 

Parameter Quantity  Theta Theta star 

𝜎 CP  0.9587 0.9627 

 AVL  1.5188 1.5198 

𝜎∗ CP  0.9640 0.9650 

 AVL  0.1183 0.1180 

𝜇 CP  0.9577 0.9633 

 AVL  1.4746 1.4754 

𝜇∗ CP  0.9563 0.9540 

 AVL  0.1581 0.1556 

𝜉 CP  0.9610 0.9648 

 AVL  0.3189 0.3203 

𝜂0.975 CP  0.9805 0.9497 

 AVL  0.3221 0.2625 
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Table 6.6.3.3: Three-parameter Weibull distribution: 95% CPs and AVLs 

of FGCIs for model parameters and 𝜼𝟎.𝟗𝟕𝟓 quantile based on six CFGPQs 

using theta and theta star parametrizations (𝒏 = 𝟓𝟎;  𝝈 = 𝟏;  𝝁 = 𝟎;  𝝃 =

𝟎. 𝟑𝟑; 𝜼𝟎.𝟗𝟕𝟓 = 𝟏. 𝟓𝟑𝟖𝟒;  𝑺 = 𝟒𝟎𝟎𝟎 simulated samples of data; 𝑱 = 𝟏𝟎𝟎𝟎 

draws from the fiducial distribution) 

  Parametrization 

Parameter Quantity  Theta Theta star 

𝜎 CP  0.9427 0.9433 

 AVL  1.5688 1.5709 

𝜎∗ CP  0.9575 0.9595 

 AVL  0.1570 0.1572 

𝜇 CP  0.9387 0.9445 

 AVL  1.4975 1.5002 

𝜇∗ CP  0.9530 0.9533 

 AVL  0.2069 0.2051 

𝜉 CP  0.9370 0.9397 

 AVL  0.3662 0.3686 

𝜂0.975 CP  0.9760 0.9385 

 AVL  0.4695 0.3775 
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Table 6.6.3.4: Three-parameter Weibull distribution: 95% CPs and AVLs 

of FGCIs for model parameters and 𝜼𝟎.𝟗𝟕𝟓 quantile based on six CFGPQs 

using theta and theta star parametrizations (𝒏 = 𝟓𝟎;  𝝈 = 𝟏;  𝝁 = 𝟎;  𝝃 =

𝟎. 𝟓; 𝜼𝟎.𝟗𝟕𝟓 = 𝟏. 𝟗𝟐𝟎𝟔;  𝑺 = 𝟒𝟎𝟎𝟎  simulated samples of data;  𝑱 = 𝟏𝟎𝟎𝟎 

draws from the fiducial distribution) 

  Parametrization 

Parameter Quantity  Theta Theta star 

𝜎 CP  0.9410 0.9470 

 AVL  0.9859 0.9940 

𝜎∗ CP  0.9543 0.9533 

 AVL  0.2481 0.2491 

𝜇 CP  0.9445 0.9485 

 AVL  0.8304 0.8392 

𝜇∗ CP  0.9515 0.9517 

 AVL  0.3094 0.3098 

𝜉 CP  0.9423 0.9475 

 AVL  0.4114 0.4115 

𝜂0.975 CP  0.9760 0.9367 

 AVL  0.8877 0.6972 
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Table 6.6.3.5: Three-parameter Weibull distribution: 95% CPs and AVLs 

of FGCIs for model parameters and 𝜼𝟎.𝟗𝟕𝟓 quantile based on six CFGPQs 

using theta and theta star parametrizations (𝒏 = 𝟓𝟎;  𝝈 = 𝟏;  𝝁 = 𝟎;  𝝃 =

𝟏; 𝜼𝟎.𝟗𝟕𝟓 = 𝟑. 𝟔𝟖𝟖𝟗;  𝑺 = 𝟒𝟎𝟎𝟎  simulated samples of data;  𝑱 = 𝟏𝟎𝟎𝟎 

draws from the fiducial distribution) 

  Parametrization 

Parameter Quantity  Theta Theta star 

𝜎 CP  0.9510 0.9493 

 AVL  0.6449 0.6470 

𝜎∗ CP  0.9455 0.9515 

 AVL  0.6678 0.6709 

𝜇 CP  0.9457 0.9497 

 AVL  0.1161 0.1158 

𝜇∗ CP  0.9495 0.9475 

 AVL  0.6099 0.6124 

𝜉 CP  0.9587 0.9483 

 AVL  0.5161 0.5165 

𝜂0.975 CP  0.9780 0.9367 

 AVL  3.4513 2.6667 
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Table 6.6.3.6: Three-parameter Weibull distribution: 95% CPs and AVLs 

of FGCIs for model parameters and 𝜼𝟎.𝟗𝟕𝟓 quantile based on six CFGPQs 

using theta and theta star parametrizations (𝒏 = 𝟓𝟎;  𝝈 = 𝟏;  𝝁 = 𝟎;  𝝃 =

𝟐; 𝜼𝟎.𝟗𝟕𝟓 = 𝟏𝟑. 𝟔𝟎𝟕𝟖;  𝑺 = 𝟒𝟎𝟎𝟎  simulated samples of data;  𝑱 = 𝟏𝟎𝟎𝟎 

draws from the fiducial distribution) 

  Parametrization 

Parameter Quantity  Theta Theta star 

𝜎 CP  0.9527 0.9487 

 AVL  1.3029 1.2991 

𝜎∗ CP  0.9465 0.9483 

 AVL  2.5703 2.5632 

𝜇 CP  0.8472 0.8610 

 AVL  0.0087 0.0087 

𝜇∗ CP  0.9525 0.9485 

 AVL  1.3016 1.2979 

𝜉 CP  0.9593 0.9543 

 AVL  0.9268 0.9273 

𝜂0.975 CP  0.9802 0.9545 

 AVL  29.8563 23.5094 

  



218 

 Discussion of simulation results of three-parameter Weibull 

distribution 
Based on the results of simulation study presented in Tables 6.6.3.1 through 

6.6.3.6 above, we conclude the following: 

 Overall, the results of simulation study suggest that the Gibbs sampler 

algorithm using rank-based CFGPQs produces FGCIs with good coverage 

when 𝜃∗  parametrization is applied compared to 𝜃  parametrization. 

Therefore, as is the case with GEV and GP distributions, the 𝜃∗ 

parametrization is preferred. 

 The coverage probability of both model parameters and quantiles is 

satisfactory, namely at least 94% (when rounded to full percent) in all 

cases. 

6.7. Illustrative Example: GEV Distribution 

In this section, we evaluate the performance of the proposed fiducial rank-based 

methods of inference using the real life data example. We apply our proposed 

rank-based methods of inference to an example of data set of extreme values 

observed from an environmental context. The data set represent wind-speed 

measurements recorded at different locations in Cape Town, South Africa, 

namely the harbour, airport and Robben Island. The monthly maximal wind gust 

measurement (in miles per hour) was recorded for 70 months at each location. 

This data set was also analysed by Beirlant et al. (2004, pp. 452-459) to illustrate 

the application of Bayesian methods in extreme value theory. In the context of 

our parametrization, the monthly maximal wind speed measurements from 

each location follow a Generalized Extreme Value distribution with the location 

parameter 𝜇∗, scale parameter 𝜎∗ and shape parameter 𝜉. 
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For each location, we used the Gibbs sampler to calculate point estimates and 

95% fiducial generalized confidence intervals for the model parameters and 

quantiles, based on the distribution of the simulated FGPQs for 𝜇∗, 𝜎∗, 𝜉 and 𝜂 

(see Tables 6.7.1 through 6.7.3 below). The point estimates of the model 

parameters and quantiles were calculated as the averages of the simulated 

draws (𝐽 = 10000) from the fiducial distribution of FGPQs for model parameters 

and quantiles. We note that the calculations of the FGPQ for 𝜎∗(see equation 

6.4.9 above) and FGPQ for 𝜇∗ (see equation 6.4.12 above) depend on 𝜉, namely 

the linear predictors of 𝜇∗ and 𝜎∗ (that is, matrix 𝐻𝜉). Therefore, for this specific 

illustrative example, the 𝐻𝜉  matrix based on sample size 𝑛 = 70  and 𝐼 =

100000 simulated samples from the standard Exponential distribution was 

simulated for the GEV distribution using the grid for 𝜉 values with the lower limit 

of 0.01, with an increment of 0.01, and upper limit of 1.5. In our simulations 

from the fiducial distributions, the initial value chosen for the shape parameter 

𝜉 is 0.135≈0.14 which is the same as the one used by Beirlant at el. (2004, p. 

454). Similarly to the results of illustrative example by Beirlant at el. (2004, 

Figures 11.12 through 11.14), we have also shown the plots of traces of 10000 

simulated draws from the distribution of FGPQs for 𝜇∗, 𝜎∗, 𝜉 and 𝜂0.975 for the 

three locations (see Figures 6.7.1 through 6.7.12 below). Furthermore, for the 

three locations we presented the plots of the median quantile and 95% fiducial 

generalized confidence region (FGCR) for 𝜂  at selected values of failure 

probability 𝑝, as a function of 1 − 𝑝 (see Figures 6.7.13 through 6.7.15 below). 
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Table 6.7.1: Generalized Extreme Value distribution: Point estimates and 

95% fiducial generalized confidence intervals for model parameters and 

quantile of the distribution based on four FGPQs using the Cape Town 

Harbour data (𝒏 = 𝟕𝟎;  𝑱 = 𝟏𝟎𝟎𝟎𝟎 draws from the fiducial distribution; 

lower limit of the grid for 𝝃 = 𝟎. 𝟎𝟏) 

Parameter/Quantile Point estimate 95% FGCI 

𝜎∗           8.03 (~8)6      [6.39, 10.02] 

𝜇∗   47.64 (~47.5) [45.58, 49.90] 

𝜉      0.144 (~0.135) [0.011, 0.354] 

𝜂0.975           87.28 [76.26, 107.41] 

 

  

                                                      
6 For Tables 6.7.1 through 6.7.3, the approximate point estimates for the parameters  
𝜎∗, 𝜇∗ and  𝜉 obtained by Beirlant et al. (2004, pp. 452 - 457) are presented in  round brackets. 
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Table 6.7.2: Generalized Extreme Value distribution: Point estimates and 

95% fiducial generalized confidence intervals for model parameters and 

quantile of the distribution based on four FGPQs using the Cape Town 

Airport data (𝒏 = 𝟕𝟎;  𝑱 = 𝟏𝟎𝟎𝟎𝟎 draws from the fiducial distribution; 

lower limit of the grid for 𝝃 = 𝟎. 𝟎𝟏) 

Parameter/Quantile Point estimate 95% FGCI 

𝜎∗           4.56 (~4.5) [3.75, 5.55] 

𝜇∗           45.23 (~45) [44.10, 46.40] 

𝜉            0.051 (~0.135) [0.010, 0.167] 

𝜂0.975           63.73 [59.67, 69.58] 
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Table 6.7.3: Generalized Extreme Value distribution: Point estimates and 

95% fiducial generalized confidence intervals for model parameters and 

quantile of the distribution based on four FGPQs using the Cape Town 

Robben Island data ( 𝒏 = 𝟕𝟎;  𝑱 = 𝟏𝟎𝟎𝟎𝟎  draws from the fiducial 

distribution; lower limit of the grid for 𝝃 = 𝟎. 𝟎𝟏) 

Parameter/Quantile Point estimate 95% FGCI 

𝜎∗           4.47 (~4.5) [3.69, 5.42] 

𝜇∗           35.23 (~35) [34.15, 36.37] 

𝜉           0.029 (~0.135) [0.010, 0.108] 

𝜂0.975           52.58 [48.95, 57.27] 
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Figure 6.7.1: Generalized Extreme Value distribution: Trace of  𝝈∗ (𝒏 = 𝟕𝟎; 𝑺 = 𝟏𝟎𝟎𝟎𝟎 draws from the fiducial 

distribution; Cape Town harbour data) 
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Figure 6.7.2: Generalized Extreme Value distribution: Trace of  𝝈∗ (𝒏 = 𝟕𝟎; 𝑺 = 𝟏𝟎𝟎𝟎𝟎 draws from the fiducial 

distribution; Cape Town airport data) 
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Figure 6.7.3: Generalized Extreme Value distribution: Trace of  𝝈∗ (𝒏 = 𝟕𝟎; 𝑺 = 𝟏𝟎𝟎𝟎𝟎 draws from the fiducial 

distribution; Cape Town Robben Island data) 
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Figure 6.7.4: Generalized Extreme Value distribution: Trace of  𝝁∗ (𝒏 = 𝟕𝟎; 𝑺 = 𝟏𝟎𝟎𝟎𝟎 draws from the fiducial 

distribution; Cape Town harbour data) 
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Figure 6.7.5: Generalized Extreme Value distribution: Trace of  𝝁∗ (𝒏 = 𝟕𝟎; 𝑺 = 𝟏𝟎𝟎𝟎𝟎 draws from the fiducial 

distribution; Cape Town airport data) 
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Figure 6.7.6: Generalized Extreme Value distribution: Trace of  𝝁∗ (𝒏 = 𝟕𝟎; 𝑺 = 𝟏𝟎𝟎𝟎𝟎 draws from the fiducial 

distribution; Cape Town Robben Island data) 
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Figure 6.7.7: Generalized Extreme Value distribution: Trace of  𝝃 (𝒏 = 𝟕𝟎; 𝑺 = 𝟏𝟎𝟎𝟎𝟎 draws from the fiducial 

distribution; Cape Town harbour data) 

 



230 

Figure 6.7.8: Generalized Extreme Value distribution: Trace of  𝝃 (𝒏 = 𝟕𝟎; 𝑺 = 𝟏𝟎𝟎𝟎𝟎 draws from the fiducial 

distribution; Cape Town airport data) 
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Figure 6.7.9: Generalized Extreme Value distribution: Trace of  𝝃 (𝒏 = 𝟕𝟎; 𝑺 = 𝟏𝟎𝟎𝟎𝟎 draws from the fiducial 

distribution; Cape Town Robben Island data) 
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Figure 6.7.10: Generalized Extreme Value distribution: Trace of  𝜼𝟎.𝟗𝟕𝟓 (𝒏 = 𝟕𝟎; 𝑺 = 𝟏𝟎𝟎𝟎𝟎 draws from the 

fiducial distribution; Cape Town harbour data) 
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Figure 6.7.11: Generalized Extreme Value distribution: Trace of  𝜼𝟎.𝟗𝟕𝟓 (𝒏 = 𝟕𝟎; 𝑺 = 𝟏𝟎𝟎𝟎𝟎 draws from the 

fiducial distribution; Cape Town airport data) 
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Figure 6.7.12: Generalized Extreme Value distribution: Trace of  𝜼𝟎.𝟗𝟕𝟓 (𝒏 = 𝟕𝟎; 𝑺 = 𝟏𝟎𝟎𝟎𝟎 draws from the 

fiducial distribution; Cape Town Robben Island data) 
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Figure 6.7.13: Generalized Extreme Value distribution: Median quantile (in miles per hour) and 95% fiducial 

generalized confidence region of quantiles of the distribution at selected values of failure probabilities 𝒑, as a 

function of 𝟏 − 𝒑 (𝒏 = 𝟕𝟎; 𝑺 = 𝟏𝟎𝟎𝟎𝟎 draws from the fiducial distribution; Cape Town harbour data) 
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Figure 6.7.14: Generalized Extreme Value distribution: Median quantile (in miles per hour) and 95% fiducial 

generalized confidence region of quantiles of the distribution at selected values of failure probabilities 𝒑, as a 

function of 𝟏 − 𝒑 (𝒏 = 𝟕𝟎; 𝑺 = 𝟏𝟎𝟎𝟎𝟎 draws from the fiducial distribution; Cape Town airport data) 
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Figure 6.7.15: Generalized Extreme Value distribution: Median quantile (in miles per hour) and 95% fiducial 

generalized confidence region of quantiles of the distribution at selected values of failure probabilities 𝒑, as a 

function of 𝟏 − 𝒑 (𝒏 = 𝟕𝟎; 𝑺 = 𝟏𝟎𝟎𝟎𝟎 draws from the fiducial distribution; Cape Town Robben Island data) 
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The discussion of results of illustrative example 

o The choice of using a lower or higher limit of the grid for 𝜉 when 

simulating the 𝐻𝜉  matrix 

 We stated in Section 6.5.2 above that a value of 0.01 was 

used as a lower limit of the grid for 𝜉 when simulating the 

linear predictors for 𝜇∗  and 𝜎∗, namely the  𝐻𝜉  matrix.  

 It is important to state here that higher values of lower 

limit of the grid for 𝜉 were also used to simulate 𝐻𝜉 , 

however, they produced essentially similar results for the 

theta star parameters and quantiles of the distribution. 

That is, higher values of lower limit of the grid for 𝜉 gave 

practically the same FGCIs and traces of 𝜇∗, 𝜎∗ and 𝜂 for 

the GEV distribution. 

o The comparison of the distribution of FGPQs for the model 

parameters and quantiles of the three locations 

 Overall, the results of our proposed rank-based fiducial 

generalized inference methods agree well with the results 

from the Bayesian analysis of Beirlant et al. (2004, pp. 

453-457). See Tables 6.7.1 through 6.7.3 above. 

 Similarly to the results from a Bayesian analysis of Beirlant 

et al. (2004, Figures 11.15 (a), (b) and (c)), our methods 

show that the distribution of maximal wind gust at Cape 

Town harbour has the highest extreme value index (see 

Figures 6.7.13 through 6.7.15 above). 

 Even though our FGCRs of the quantiles appear to be 

somewhat wider than the high probability density regions 

obtained by Beirlant at el. (2004), overall, results 
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produced by the proposed rank-based fiducial methods 

seem satisfactory. 
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Chapter 7 - Summary and 
Conclusion 

We present, in this chapter, a summary and discussion of summary of the main 

results of this thesis (Section 7.1), and identify open problems and possible 

avenues for further research (Section 7.2).  

7.1. Discussion 

Location-scale and log-location-scale families of distributions: one-sample 

problem 

 Our simulation results and results based on illustrative examples suggest 

that the proposed rank-based methods are competitive with ML-based 

methods in terms of relative length of confidence intervals for the model 

parameters 𝜇 and 𝜎, and  for quantiles of the distribution 𝜂. Refer to 

Tables 4.6.3.1 through 4.6.3.3 (for the simulation study) and 4.7.2 (for 

the illustrative example) in the text. Alternatively, refer to Appendix B1 

(Tables B1.1 through B1.15), and Appendix B2 (Tables B2.1 through 

B2.12) for the simulation studies. 

 Furthermore, our investigation through simulation shows that when 

using the proposed rank-based CPQs or FGPQs for 𝜎, the most efficient 

rank-based CPQ or FGPQ for 𝜎 is a CPQ or FGPQ based on GLS method, 

namely the CPQ or FGPQ for 𝜎1. Refer to Tables 4.6.3.1 (in the text), 

Appendix B1 (Tables B1.1, B1.4, B1.7, B1.10 and B1.13) and Appendix B2 

(Tables B2.1, B2.4, B2.7 and B2.10). 

 Lastly, when calculating the confidence intervals for 𝜇 and 𝜂 in LS and LLS 

families of distributions using rank and ML-based CPQs or FGPQs for 𝜇 

and 𝜂, using one copy of the standard variate 𝑍 produces GCIs as good 
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(or slightly better) than using two independent copies, in terms of the 

average lengths of such confidence intervals. 

Location-scale and log-location-scale families of distributions: two-sample 

problem 

 For both cases of equal and unequal scale parameters of the two 

independent distributions, our simulation results and results based on 

illustrative example suggest that the proposed rank-based methods are 

competitive with ML-based methods in terms of relative length of 

confidence intervals for the ratio of scale parameters, difference of 

location parameters, and difference of quantiles of the distribution. 

Refer to Tables 5.6.1 for the illustrative example (in the text), Appendix 

D1 (Tables D1.1 through D1.5), Appendix D2 (Tables D2.1 through D2.5), 

Appendix E1 (Tables E1.1 through E1.10), and Appendix E2 (Tables E2.1 

through E2.10) for the simulation study. 

 Simulation results show that rank-based FGCIs for 𝜌, 𝛿 and 𝑑 have very 

good coverage properties, with the observed coverage in simulation 

studies being very close to the nominal coverage in all cases. Refer to 

Appendix D1 (Tables D1.1 through D1.5), Appendix D2 (Tables D2.1 

through D2.5), Appendix E1 (Tables E1.1 through E1.10), and Appendix 

E2 (Tables E2.1 through E2.10) for the simulation study. These results 

suggest that the FGCIs for 𝜌, 𝛿 and 𝑑 in the two-sample problem are 

either exact or near exact. 

Location-scale-shape family of distributions 

Generalized Extreme Value distribution: 

 Overall, simulation results show that the Gibbs sampler using rank-based 

CFGPQs produces rank-based FGCIs with generally good properties when 

the 𝜃∗ parametrization is used and when 𝜉 ≤ 1. Refer to Tables 6.6.1.1 
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through 6.6.1.5 in the text, and Appendix F1 (Tables F1.1 through F1.5). 

In addition, refer to Figure 6.6.2 in the text. 

 Therefore, when calculating the rank-based FGCIs for the model 

parameters and quantiles of the distribution for the Generalized Extreme 

Value distribution using Gibbs sampler algorithm, the preferred 

parameterization is the 𝜃∗ parametrization. 

o This finding is demonstrated by the comparison of 𝜃  and 𝜃∗ 

parametrizations in terms of the empirical coverages and average 

lengths of rank-based FGCIs for the model parameters and 

quantiles of distribution in Tables 6.6.1.1 through 6.6.1.5 above. 

 However, the Gibbs sampler using rank-based CFGPQs does not work 

well when 𝜉 > 1. For 𝜉 > 1, the draws from the conditional fiducial 

distributions of the parameters 𝜇∗, 𝜎∗ and 𝜉 for the Generalized Extreme 

Value distribution become very unstable, as is illustrated by Figure 6.6.1 

above. It can be noted here that 𝜉 > 1 for the Generalized Extreme 

Value distribution is quite rare in practice. 

Generalized Pareto distribution: 

 For the case of Generalized Pareto distribution, simulation results show 

that the Gibbs sampler using rank-based CFGPQs fails when 𝜃 

parametrization is used to calculate FGCIs for the model parameters and 

quantile of the distribution. 

 However, the 𝜃∗ parametrization produces FGCIs of model parameters 

and quantiles of the distribution with generally good properties for 

smaller values of 𝜉, that is, for 𝜉 values smaller than or equal 0.2. Refer 

to Figures 6.6.3 and 6.6.4 above. 

Three-parameter Weibull distribution: 
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 The 𝜃∗  parametrization produces FGCIs of model parameters and 

quantiles of three-parameter Weibull distribution with good properties 

for a wide range of values of 𝜉. 

Overall conclusion for the case of three-parameter distributions: 

 Overall, for the LSS distributions investigated here, when calculating 

FGCIs for the model parameters and quantiles of distribution based on 

the Gibbs sampler using rank-based CFGPQs, the  𝜃∗ parametrization is 

recommended. 

 The proposed fiducial methodology works quite well overall for the 

three-parameter Weibull distribution, well for the Generalized Extreme 

Value distribution when 𝜉  is not larger than 1, but well for the 

Generalized Pareto distribution only when 𝜉 is not larger than 0.2. 

7.2. Open Problems and Further Research 

The concept of conditional fiducial generalized pivotal quantities, and their 

application for fiducial inference based on a Gibbs sampler, presented in this 

thesis is new. Our investigation through simulation and practical application of 

rank-based methods of fiducial generalized inference for the model parameters 

and quantiles of distribution of LSS families can handle cases when the shape 

parameter 𝜉 is assumed to be positive. However, cases of rank-based fiducial 

inferences when 𝜉 is negative, or when potentially both positive and negative 

values of  𝜉 are allowed, have not been investigated in this thesis, and are the 

subject of further research. Thus, in this thesis, when determining the joint 

fiducial distribution of  𝜃∗ parameters and 𝜉 of LSS distributions using the Gibbs 

sampler algorithm, we assume that 𝜉 is positive. Methodology for determining 

whether 𝜉 is positive or 𝜉 is negative is not handled here, and it is an open 

problem for further research. 
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Furthermore, instead of using rank-based methods for fiducial inference in LSS 

families, the use of the corresponding ML-based methods can be investigated 

(although, based on our results for LS and LLS families, one could expect that the 

rank-based methods are competitive with the ML-based methods). 

A major open research question is a comparison of the performance of the 

fiducial inference methods proposed here for LSS families, with Bayesian 

methods. 

Lastly, exact rank-based iterative generalized least squares estimation of model 

parameters of LSS distributions for the cases when 𝜉  is positive and 𝜉  is 

negative, involving censored samples, is an open problem for further research. 
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Appendices 

Appendix A: LS and LLS families of distributions: Lower and upper quantiles of 

the distribution of CPQs for 𝝁, 𝝈 and 𝜼 

A1: LS and LLS families of distributions: Lower and upper quantiles of the distribution of CPQs for 

𝝁, 𝝈 and 𝜼 for sample size 𝒏 = 𝟏𝟎 

Table A1.1: Normal distribution: Lower and upper quantiles of four CPQs for 𝝈 at specified values of alpha (sample size 𝒏 = 𝟏𝟎;  𝑱 = 𝟏𝟎𝟎𝟎𝟎𝟎𝟎 draws from 
the distribution of CPQs) 
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    Quantile     

  𝛼 2⁄      1 − 𝛼 2⁄   

𝛼 𝒬𝜎1(𝑌, 𝜃) 𝒬𝜎2(𝑌, 𝜃) 𝒬𝜎3(𝑌, 𝜃) 𝒬𝜎𝑀𝐿(𝑌, 𝜃) 𝒬𝜎1(𝑌, 𝜃) 𝒬𝜎2(𝑌, 𝜃) 𝒬𝜎3(𝑌, 𝜃) 𝒬𝜎𝑀𝐿(𝑌, 𝜃) 

0.10 0.6241 1.3931 3.0850 0.5467 1.4134 4.3413 7.1225 1.3016 

0.05 0.5621 1.2233 2.7788 0.5200 1.4998 4.7729 7.5893 1.3802 

0.01 0.4509 0.9284 2.2242 0.4174 1.6722 5.7146 8.5437 1.5378 
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Table A1.2: Normal distribution: Lower and upper quantiles of eight CPQs for 𝝁 at specified values of alpha (sample size 𝒏 = 𝟏𝟎;  𝑱 = 𝟏𝟎𝟎𝟎𝟎𝟎𝟎 draws from the distribution 
of CPQs) 
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    Quantile     

  𝛼 2⁄      1 − 𝛼 2⁄   

𝛼 𝒬𝜇1(𝑌, 𝜃) 𝒬𝜇2(𝑌, 𝜃) 𝒬𝜇3(𝑌, 𝜃) 𝒬𝜇𝑀𝐿(𝑌, 𝜃) 𝒬𝜇1(𝑌, 𝜃) 𝒬𝜇2(𝑌, 𝜃) 𝒬𝜇3(𝑌, 𝜃) 𝒬𝜇𝑀𝐿(𝑌, 𝜃) 

0.10 -0.5644 -0.2272 -0.1137 -0.6106 0.5650 0.2272 0.1136 0.6129 

0.05 -0.6967 -0.2880 -0.1405 -0.7533 0.6967 0.2876 0.1404 0.7553 

0.01 -1.0022 -0.4352 -0.2019 -1.0840 1.0000 0.4361 0.2019 1.0826 

 𝑄𝜇1
∗ (𝑌, 𝜃) 𝑄𝜇2

∗ (𝑌, 𝜃) 𝑄𝜇3
∗ (𝑌, 𝜃) 𝑄𝜇𝑀𝐿

∗ (𝑌, 𝜃) 𝑄𝜇1
∗ (𝑌, 𝜃) 𝑄𝜇2

∗ (𝑌, 𝜃) 𝑄𝜇3
∗ (𝑌, 𝜃) 𝑄𝜇𝑀𝐿

∗ (𝑌, 𝜃) 

0.10 -0.5643 -0.2273 -0.1136 -0.6107 0.5639 0.2269 0.1135 0.6092 

0.05 -0.6980 -0.2881 -0.1407 -0.7540 0.6956 0.2880 0.1403 0.7515 

0.01 -1.0016 -0.4370 -0.2021 -1.0847 1.0013 0.4339 0.2017 1.0836 

 

CPQs with * are based on both the original sample of the standard variate 𝑍 and an independent copy of the standard variate 𝑍, 

namely 𝑍∗. 
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Table A1.3: Normal distribution: Lower and upper quantiles of eight CPQs for 𝜼 at specified values of alpha (sample size 𝒏 = 𝟏𝟎;  𝑱 = 𝟏𝟎𝟎𝟎𝟎𝟎𝟎 draws from the 
distribution of CPQs) 
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    Quantile     

  𝛼 2⁄      1 − 𝛼 2⁄   

𝛼 𝒬𝜂1(𝑌, 𝜃) 𝒬𝜂2(𝑌, 𝜃) 𝒬𝜂3(𝑌, 𝜃) 𝒬𝜂𝑀𝐿(𝑌, 𝜃) 𝒬𝜂1(𝑌, 𝜃) 𝒬𝜂2(𝑌, 𝜃) 𝒬𝜂3(𝑌, 𝜃) 𝒬𝜂𝑀𝐿(𝑌, 𝜃) 

0.10 -1.3552 -0.5344 -0.2713 -3.5858 0.7235 0.3023 0.1472 -1.3409 

0.05 -1.7436 -0.6996 -0.3493 -4.0041 0.8298 0.3630 0.1695 -1.2262 

0.01 -2.7065 -1.1372 -0.5441 -5.0478 1.0182 0.5002 0.2103 -1.0214 

 𝑄𝜂1
∗ (𝑌, 𝜃) 𝑄𝜂2

∗ (𝑌, 𝜃) 𝑄𝜂3
∗ (𝑌, 𝜃) 𝑄𝜂𝑀𝐿

∗ (𝑌, 𝜃) 𝑄𝜂1
∗ (𝑌, 𝜃) 𝑄𝜂2

∗ (𝑌, 𝜃) 𝑄𝜂3
∗ (𝑌, 𝜃) 𝑄𝜂𝑀𝐿

∗ (𝑌, 𝜃) 

0.10 -0.9859 -0.3984 -0.1988 -3.5843 1.0345 0.4159 0.2084 -1.3427 

0.05 -1.2059 -0.5000 -0.2429 -4.0023 1.2872 0.5301 0.2593 -1.2278 

0.01 -1.7104 -0.7495 -0.3452 -5.0588 1.8716 0.8146 0.3777 -1.0241 

 

CPQs with * are based on both the original sample of the standard variate 𝑍 and an independent copy of the standard variate 𝑍, 

namely 𝑍∗. 
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Table A1.4: Logistic distribution: Lower and upper quantiles of four CPQs for 𝝈 at specified values of alpha (sample size 𝒏 = 𝟏𝟎;  𝑱 = 𝟏𝟎𝟎𝟎𝟎𝟎𝟎 draws from the distribution 
of CPQs) 
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    Quantile     

  𝛼 2⁄      1 − 𝛼 2⁄   

𝛼 𝒬𝜎1(𝑌, 𝜃) 𝒬𝜎2(𝑌, 𝜃) 𝒬𝜎3(𝑌, 𝜃) 𝒬𝜎𝑀𝐿(𝑌, 𝜃) 𝒬𝜎1(𝑌, 𝜃) 𝒬𝜎2(𝑌, 𝜃) 𝒬𝜎3(𝑌, 𝜃) 𝒬𝜎𝑀𝐿(𝑌, 𝜃) 

0.10 0.5874 1.2973 2.5983 0.5526 1.4888 4.5149 6.8365 1.4006 

0.05 0.5243 1.1333 2.3167 0.4938 1.6016 5.0352 7.4165 1.5053 

0.01 0.4171 0.8521 1.8392 0.3921 1.8474 6.2233 8.7103 1.7333 
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Table A1.5: Logistic distribution: Lower and upper quantiles of eight CPQs for 𝝁 at specified values of alpha (sample size 𝒏 = 𝟏𝟎;  𝑺;  𝑱 = 𝟏𝟎𝟎𝟎𝟎𝟎𝟎 draws from the 
distribution of CPQs) 
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    Quantile     

  𝛼 2⁄      1 − 𝛼 2⁄   

𝛼 𝒬𝜇1(𝑌, 𝜃) 𝒬𝜇2(𝑌, 𝜃) 𝒬𝜇3(𝑌, 𝜃) 𝒬𝜇𝑀𝐿(𝑌, 𝜃) 𝒬𝜇1(𝑌, 𝜃) 𝒬𝜇2(𝑌, 𝜃) 𝒬𝜇3(𝑌, 𝜃) 𝒬𝜇𝑀𝐿(𝑌, 𝜃) 

0.10 -0.9797 -0.4005 -0.2189 -1.0399 0.9733 0.4011 0.2183 1.0348 

0.05 -1.1968 -0.5043 -0.2685 -1.2718 1.1906 0.5044 0.2682 1.2661 

0.01 -1.6937 -0.7523 -0.3810 -1.8055 1.7169 0.7659 0.3863 1.8187 

 𝑄𝜇1
∗ (𝑌, 𝜃) 𝑄𝜇2

∗ (𝑌, 𝜃) 𝑄𝜇3
∗ (𝑌, 𝜃) 𝑄𝜇𝑀𝐿

∗ (𝑌, 𝜃) 𝑄𝜇1
∗ (𝑌, 𝜃) 𝑄𝜇2

∗ (𝑌, 𝜃) 𝑄𝜇3
∗ (𝑌, 𝜃) 𝑄𝜇𝑀𝐿

∗ (𝑌, 𝜃) 

0.10 -1.0114 -0.4148 -0.2262 -1.0420 1.0126 0.4174 0.2272 1.0496 

0.05 -1.2612 -0.5284 -0.2835 -1.2782 1.2628 0.5317 0.2834 1.2879 

0.01 -1.8565 -0.8070 -0.4144 -1.8227 1.8671 0.8259 0.4231 1.8292 
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Table A1.6: Logistic distribution: Lower and upper quantiles of eight CPQs for 𝜼 at specified values of alpha (sample size 𝒏 = 𝟏𝟎;  𝑱 = 𝟏𝟎𝟎𝟎𝟎𝟎𝟎 draws from the 
distribution of CPQs) 
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    Quantile     

  𝛼 2⁄      1 − 𝛼 2⁄   

𝛼 𝒬𝜂1(𝑌, 𝜃) 𝒬𝜂2(𝑌, 𝜃) 𝒬𝜂3(𝑌, 𝜃) 𝒬𝜂𝑀𝐿(𝑌, 𝜃) 𝒬𝜂1(𝑌, 𝜃) 𝒬𝜂2(𝑌, 𝜃) 𝒬𝜂3(𝑌, 𝜃) 𝒬𝜂𝑀𝐿(𝑌, 𝜃) 

0.10 -2.8303 -1.1345 -0.6301 -6.8971 1.4337 0.6010 0.3238 -2.3710 

0.05 -3.6104 -1.4843 -0.8114 -7.7440 1.6610 0.7251 0.3768 -2.1336 

0.01 -5.5285 -2.3987 -1.2500 -9.7690 2.0547 0.9997 0.4715 -1.7117 

 𝑄𝜂1
∗ (𝑌, 𝜃) 𝑄𝜂2

∗ (𝑌, 𝜃) 𝑄𝜂3
∗ (𝑌, 𝜃) 𝑄𝜂𝑀𝐿

∗ (𝑌, 𝜃) 𝑄𝜂1
∗ (𝑌, 𝜃) 𝑄𝜂2

∗ (𝑌, 𝜃) 𝑄𝜂3
∗ (𝑌, 𝜃) 𝑄𝜂𝑀𝐿

∗ (𝑌, 𝜃) 

0.10 -1.9505 -0.8042 -0.4380 -6.8992 2.2302 0.9141 0.5020 -2.3687 

0.05 -2.3815 -1.0039 -0.5344 -7.7575 2.8619 1.1901 0.6416 -2.1245 

0.01 -3.4015 -1.5286 -0.7696 -9.8872 4.3698 1.9383 0.9802 -1.7155 
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Table A1.7: Uniform distribution: Lower and upper quantiles of four CPQs for 𝝈 at specified values of alpha (sample size 𝒏 = 𝟏𝟎;  𝑱 = 𝟏𝟎𝟎𝟎𝟎𝟎𝟎 draws from 
the distribution of CPQs) 
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    Quantile     

  𝛼 2⁄      1 − 𝛼 2⁄   

𝛼 𝒬𝜎1(𝑌, 𝜃) 𝒬𝜎2(𝑌, 𝜃) 𝒬𝜎3(𝑌, 𝜃) 𝒬𝜎𝑀𝐿(𝑌, 𝜃) 𝒬𝜎1(𝑌, 𝜃) 𝒬𝜎2(𝑌, 𝜃) 𝒬𝜎3(𝑌, 𝜃) 𝒬𝜎𝑀𝐿(𝑌, 𝜃) 

0.10 0.7389 1.5479 5.8104 0.7033 1.1766 4.1709 9.3786 1.0637 

0.05 0.6761 1.3740 5.3143 0.6505 1.1903 4.5586 9.5793 1.0748 

0.01 0.5565 1.0745 4.3492 0.5473 1.2081 5.4357 10.0516 1.0893 
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Table A1.8: Uniform distribution: Lower and upper quantiles of eight CPQs for 𝝁 at specified values of alpha (sample size 𝒏 = 𝟏𝟎;  𝑱 = 𝟏𝟎𝟎𝟎𝟎𝟎𝟎 draws from 
the distribution of CPQs) 
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    Quantile     

  𝛼 2⁄      1 − 𝛼 2⁄   

𝛼 𝒬𝜇1(𝑌, 𝜃) 𝒬𝜇2(𝑌, 𝜃) 𝒬𝜇3(𝑌, 𝜃) 𝒬𝜇𝑀𝐿(𝑌, 𝜃) 𝒬𝜇1(𝑌, 𝜃) 𝒬𝜇2(𝑌, 𝜃) 𝒬𝜇3(𝑌, 𝜃) 𝒬𝜇𝑀𝐿(𝑌, 𝜃) 

0.10 -0.0860 -0.0379 -0.0109 0.0046 0.2346 0.0931 0.0297 0.3033 

0.05 -0.0883 -0.0428 -0.0113 0.0023 0.3252 0.1310 0.0415 0.3807 

0.01 -0.0902 -0.0548 -0.0117 0.00048529 0.5712 0.2379 0.0722 0.5762 

 𝑄𝜇1
∗ (𝑌, 𝜃) 𝑄𝜇2

∗ (𝑌, 𝜃) 𝑄𝜇3
∗ (𝑌, 𝜃) 𝑄𝜇𝑀𝐿

∗ (𝑌, 𝜃) 𝑄𝜇1
∗ (𝑌, 𝜃) 𝑄𝜇2

∗ (𝑌, 𝜃) 𝑄𝜇3
∗ (𝑌, 𝜃) 𝑄𝜇𝑀𝐿

∗ (𝑌, 𝜃) 

0.10 -0.1009 -0.0439 -0.0128 0.0046 0.1911 0.0759 0.0242 0.3036 

0.05 -0.1117 -0.0511 -0.0142 0.0023 0.2488 0.1016 0.0316 0.3818 

0.01 -0.1381 -0.0678 -0.0175 0.00046491 0.3750 0.1633 0.0473 0.5678 
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Table A1.9: Uniform distribution: Lower and upper quantiles of eight CPQs for 𝜼 at specified values of alpha (sample size 𝒏 = 𝟏𝟎;  𝑱 = 𝟏𝟎𝟎𝟎𝟎𝟎𝟎 draws from the 
distribution of CPQs) 
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    Quantile     

  𝛼 2⁄      1 − 𝛼 2⁄   

𝛼 𝒬𝜂1(𝑌, 𝜃) 𝒬𝜂2(𝑌, 𝜃) 𝒬𝜂3(𝑌, 𝜃) 𝒬𝜂𝑀𝐿(𝑌, 𝜃) 𝒬𝜂1(𝑌, 𝜃) 𝒬𝜂2(𝑌, 𝜃) 𝒬𝜂3(𝑌, 𝜃) 𝒬𝜂𝑀𝐿(𝑌, 𝜃) 

0.10 -0.2287 -0.0902 -0.0290 -1.2167 0.0836 0.0369 0.0106 -0.8798 

0.05 -0.3169 -0.1277 -0.0402 -1.3119 0.0859 0.0418 0.0110 -0.8721 

0.01 -0.5589 -0.2336 -0.0708 -1.5654 0.0900 0.0529 0.0116 -0.8534 

 𝑄𝜂1
∗ (𝑌, 𝜃) 𝑄𝜂2

∗ (𝑌, 𝜃) 𝑄𝜂3
∗ (𝑌, 𝜃) 𝑄𝜂𝑀𝐿

∗ (𝑌, 𝜃) 𝑄𝜂1
∗ (𝑌, 𝜃) 𝑄𝜂2

∗ (𝑌, 𝜃) 𝑄𝜂3
∗ (𝑌, 𝜃) 𝑄𝜂𝑀𝐿

∗ (𝑌, 𝜃) 

0.10 -0.1855 -0.0732 -0.0235 -1.2142 0.0971 0.0423 0.0123 -0.8799 

0.05 -0.2416 -0.0989 -0.0306 -1.3066 0.1071 0.0489 0.0136 -0.8723 

0.01 -0.3680 -0.1582 -0.0467 -1.5628 0.1322 0.0657 0.0168 -0.8536 
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Table A1.10: Weibull distribution: Lower and upper quantiles of four CPQs for 𝝈 at specified values of alpha (sample size 𝒏 = 𝟏𝟎;  𝑱 = 𝟏𝟎𝟎𝟎𝟎𝟎𝟎 draws from 
the distribution of CPQs) 
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    Quantile     

  𝛼 2⁄      1 − 𝛼 2⁄   

𝛼 𝒬𝜎1(𝑌, 𝜃) 𝒬𝜎2(𝑌, 𝜃) 𝒬𝜎3(𝑌, 𝜃) 𝒬𝜎𝑀𝐿(𝑌, 𝜃) 𝒬𝜎1(𝑌, 𝜃) 𝒬𝜎2(𝑌, 𝜃) 𝒬𝜎3(𝑌, 𝜃) 𝒬𝜎𝑀𝐿(𝑌, 𝜃) 

0.10 0.5952 1.3196 2.7143 0.5500 1.4682 4.4703 6.9060 1.3529 

0.05 0.5328 1.1531 2.4295 0.4925 1.5740 4.9863 7.4705 1.4498 

0.01 0.4224 0.8698 1.9238 0.3906 1.7967 6.1636 8.6903 1.6564 
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Table A1.11: Weibull distribution: Lower and upper quantiles of eight CPQs for 𝝁 at specified values of alpha (sample size 𝒏 = 𝟏𝟎;  𝑱 = 𝟏𝟎𝟎𝟎𝟎𝟎𝟎 draws from 
the distribution of CPQs) 
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    Quantile     

  𝛼 2⁄      1 − 𝛼 2⁄   

𝛼 𝒬𝜇1(𝑌, 𝜃) 𝒬𝜇2(𝑌, 𝜃) 𝒬𝜇3(𝑌, 𝜃) 𝒬𝜇𝑀𝐿(𝑌, 𝜃) 𝒬𝜇1(𝑌, 𝜃) 𝒬𝜇2(𝑌, 𝜃) 𝒬𝜇3(𝑌, 𝜃) 𝒬𝜇𝑀𝐿(𝑌, 𝜃) 

0.10 -0.5726 -0.2312 -0.1242 -0.6628 0.6346 0.2619 0.1386 0.6438 

0.05 -0.7180 -0.2972 -0.1559 -0.8195 0.7802 0.3308 0.1708 0.8018 

0.01 -1.0707 -0.4643 -0.2332 -1.2005 1.1186 0.5003 0.2456 1.1681 

 𝑄𝜇1
∗ (𝑌, 𝜃) 𝑄𝜇2

∗ (𝑌, 𝜃) 𝑄𝜇3
∗ (𝑌, 𝜃) 𝑄𝜇𝑀𝐿

∗ (𝑌, 𝜃) 𝑄𝜇1
∗ (𝑌, 𝜃) 𝑄𝜇2

∗ (𝑌, 𝜃) 𝑄𝜇3
∗ (𝑌, 𝜃) 𝑄𝜇𝑀𝐿

∗ (𝑌, 𝜃) 

0.10 -0.6348 -0.2579 -0.1381 -0.6645 0.5798 0.2378 0.1262 0.6417 

0.05 -0.8055 -0.3348 -0.1754 -0.8204 0.7087 0.2982 0.1544 0.7999 

0.01 -1.2053 -0.5281 -0.2632 -1.2003 1.0049 0.4465 0.2199 1.1577 
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Table A1.12: Weibull distribution: Lower and upper quantiles of eight CPQs for 𝜼 at specified values of alpha (sample size 𝒏 = 𝟏𝟎;  𝑱 = 𝟏𝟎𝟎𝟎𝟎𝟎𝟎 draws from the 
distribution of CPQs) 
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    Quantile     

  𝛼 2⁄      1 − 𝛼 2⁄   

𝛼 𝒬𝜂1(𝑌, 𝜃) 𝒬𝜂2(𝑌, 𝜃) 𝒬𝜂3(𝑌, 𝜃) 𝒬𝜂𝑀𝐿(𝑌, 𝜃) 𝒬𝜂1(𝑌, 𝜃) 𝒬𝜂2(𝑌, 𝜃) 𝒬𝜂3(𝑌, 𝜃) 𝒬𝜂𝑀𝐿(𝑌, 𝜃) 

0.10 -1.0137 -0.4027 -0.2188 -2.5516 0.5442 0.2318 0.1200 -0.8699 

0.05 -1.3238 -0.5358 -0.2862 -2.8862 0.6227 0.2779 0.1380 -0.7847 

0.01 -2.1040 -0.8847 -0.4563 -3.7296 0.7670 0.3826 0.1719 -0.6286 

 𝑄𝜂1
∗ (𝑌, 𝜃) 𝑄𝜂2

∗ (𝑌, 𝜃) 𝑄𝜂3
∗ (𝑌, 𝜃) 𝑄𝜂𝑀𝐿

∗ (𝑌, 𝜃) 𝑄𝜂1
∗ (𝑌, 𝜃) 𝑄𝜂2

∗ (𝑌, 𝜃) 𝑄𝜂3
∗ (𝑌, 𝜃) 𝑄𝜂𝑀𝐿

∗ (𝑌, 𝜃) 

0.10 -0.7778 -0.3164 -0.1693 -2.5514 0.7499 0.3063 0.1634 -0.8699 

0.05 -0.9753 -0.4071 -0.2127 -2.8831 0.9280 0.3885 0.2023 -0.7850 

0.01 -1.4481 -0.6328 -0.3160 -3.7242 1.3359 0.5925 0.2934 -0.6295 
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Table A1.13: Pareto distribution: Lower and upper quantiles of four CPQs for 𝝈 at specified values of alpha (sample size 𝒏 = 𝟏𝟎;  𝑱 = 𝟏𝟎𝟎𝟎𝟎𝟎𝟎 draws from 
the distribution of CPQs) 
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    Quantile     

  𝛼 2⁄      1 − 𝛼 2⁄   

𝛼 𝒬𝜎1(𝑌, 𝜃) 𝒬𝜎2(𝑌, 𝜃) 𝒬𝜎3(𝑌, 𝜃) 𝒬𝜎𝑀𝐿(𝑌, 𝜃) 𝒬𝜎1(𝑌, 𝜃) 𝒬𝜎2(𝑌, 𝜃) 𝒬𝜎3(𝑌, 𝜃) 𝒬𝜎𝑀𝐿(𝑌, 𝜃) 

0.10 0.5224 1.1392 2.0349 0.4704 1.6024 4.7167 6.6003 1.4427 

0.05 0.4585 0.9766 1.7776 0.4129 1.7520 5.3364 7.2789 1.5775 

0.01 0.3490 0.7081 1.3440 0.3150 2.0683 6.7456 8.8209 1.8639 
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Table A1.14: Pareto distribution: Lower and upper quantiles of eight CPQs for 𝝁 at specified values of alpha (sample size 𝒏 = 𝟏𝟎;  𝑱 = 𝟏𝟎𝟎𝟎𝟎𝟎𝟎 draws from the 
distribution of CPQs) 
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    Quantile     

  𝛼 2⁄      1 − 𝛼 2⁄   

𝛼 𝒬𝜇1(𝑌, 𝜃) 𝒬𝜇2(𝑌, 𝜃) 𝒬𝜇3(𝑌, 𝜃) 𝒬𝜇𝑀𝐿(𝑌, 𝜃) 𝒬𝜇1(𝑌, 𝜃) 𝒬𝜇2(𝑌, 𝜃) 𝒬𝜇3(𝑌, 𝜃) 𝒬𝜇𝑀𝐿(𝑌, 𝜃) 

0.10 -0.0947 -0.0437 -0.0246 0.0057 0.2551 0.1052 0.0647 0.3945 

0.05 -0.0973 -0.0496 -0.0259 0.0029 0.3552 0.1501 0.0902 0.5059 

0.01 -0.0996 -0.0623 -0.0281 0.00055920 0.6171 0.2718 0.1578 0.7961 

 𝑄𝜇1
∗ (𝑌, 𝜃) 𝑄𝜇2

∗ (𝑌, 𝜃) 𝑄𝜇3
∗ (𝑌, 𝜃) 𝑄𝜇𝑀𝐿

∗ (𝑌, 𝜃) 𝑄𝜇1
∗ (𝑌, 𝜃) 𝑄𝜇2

∗ (𝑌, 𝜃) 𝑄𝜇3
∗ (𝑌, 𝜃) 𝑄𝜇𝑀𝐿

∗ (𝑌, 𝜃) 

0.10 -0.1472 -0.0635 -0.0376 0.0057 0.2304 0.0957 0.0584 0.3923 

0.05 -0.1804 -0.0795 -0.0463 0.0028 0.3188 0.1354 0.0812 0.5056 

0.01 -0.2620 -0.1219 -0.0677 0.00059433 0.5631 0.2498 0.1453 0.8011 
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Table A1.15: Pareto distribution: Lower and upper quantiles of eight CPQs for 𝜼 at specified values of alpha (sample size 𝒏 = 𝟏𝟎;  𝑱 = 𝟏𝟎𝟎𝟎𝟎𝟎𝟎 draws from the 
distribution of CPQs) 
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    Quantile     

  𝛼 2⁄      1 − 𝛼 2⁄   

𝛼 𝒬𝜂1(𝑌, 𝜃) 𝒬𝜂2(𝑌, 𝜃) 𝒬𝜂3(𝑌, 𝜃) 𝒬𝜂𝑀𝐿(𝑌, 𝜃) 𝒬𝜂1(𝑌, 𝜃) 𝒬𝜂2(𝑌, 𝜃) 𝒬𝜂3(𝑌, 𝜃) 𝒬𝜂𝑀𝐿(𝑌, 𝜃) 

0.10 -3.2830 -1.3713 -0.8300 -7.6309 1.3572 0.5732 0.3452 -2.4788 

0.05 -4.2458 -1.8120 -1.0838 -8.7009 1.5440 0.6892 0.3970 -2.2711 

0.01 -6.6988 -3.0175 -1.7262 -11.4241 1.8592 0.9344 0.4863 -1.9232 

 𝑄𝜂1
∗ (𝑌, 𝜃) 𝑄𝜂2

∗ (𝑌, 𝜃) 𝑄𝜂3
∗ (𝑌, 𝜃) 𝑄𝜂𝑀𝐿

∗ (𝑌, 𝜃) 𝑄𝜂1
∗ (𝑌, 𝜃) 𝑄𝜂2

∗ (𝑌, 𝜃) 𝑄𝜂3
∗ (𝑌, 𝜃) 𝑄𝜂𝑀𝐿

∗ (𝑌, 𝜃) 

0.10 -2.0410 -0.8738 -0.5215 -7.6390 2.4768 1.0320 0.6280 -2.4732 

0.05 -2.5077 -1.1008 -0.6413 -8.7085 3.2679 1.3910 0.8286 -2.2588 

0.01 -3.6052 -1.6669 -0.9329 -11.4446 5.2720 2.3669 1.3546 -1.9187 
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A2: LS and LLS families of distributions: Lower and upper quantiles of the distribution of CPQs for 𝝁, 𝝈 and 𝜼 

for sample size 𝒏 = 𝟐𝟓. 

Table A2.1: Normal distribution: Lower and upper quantiles of four pivotal CPQs for 𝝈 at specified values of alpha (sample size 𝒏 = 𝟐𝟓;  𝑱 = 𝟏𝟎𝟎𝟎𝟎𝟎𝟎 draws from the 
distribution of CPQs) 
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    Quantile     

  𝛼 2⁄      1 − 𝛼 2⁄   

𝛼 𝒬𝜎1(𝑌, 𝜃) 𝒬𝜎2(𝑌, 𝜃) 𝒬𝜎3(𝑌, 𝜃) 𝒬𝜎𝑀𝐿(𝑌, 𝜃) 𝒬𝜎1(𝑌, 𝜃) 𝒬𝜎2(𝑌, 𝜃) 𝒬𝜎3(𝑌, 𝜃) 𝒬𝜎𝑀𝐿(𝑌, 𝜃) 

0.10 0.7662 3.1717 6.3342 0.7439 1.2450 6.5397 10.5519 1.2069 

0.05 0.7250 2.9461 5.9866 0.7039 1.2943 7.0040 11.0221 1.2547 

0.01 0.6469 2.5405 5.3323 0.6281 1.3934 8.0298 11.9872 1.3494 
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Table A2.2: Normal distribution: Lower and upper quantiles of eight CPQs for 𝝁 at specified values of alpha (sample size 𝒏 = 𝟐𝟓;  𝑱 = 𝟏𝟎𝟎𝟎𝟎𝟎𝟎 draws from the distribution 
of CPQs) 
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    Quantile     

  𝛼 2⁄      1 − 𝛼 2⁄   

𝛼 𝒬𝜇1(𝑌, 𝜃) 𝒬𝜇2(𝑌, 𝜃) 𝒬𝜇3(𝑌, 𝜃) 𝒬𝜇𝑀𝐿(𝑌, 𝜃) 𝒬𝜇1(𝑌, 𝜃) 𝒬𝜇2(𝑌, 𝜃) 𝒬𝜇3(𝑌, 𝜃) 𝒬𝜇𝑀𝐿(𝑌, 𝜃) 

0.10 -0.3393 -0.0751 -0.0407 -0.3492 0.3382 0.0749 0.0406 0.3490 

0.05 -0.4092 -0.0920 -0.0492 -0.4212 0.4081 0.0916 0.0491 0.4211 

0.01 -0.5541 -0.1279 -0.0668 -0.5703 0.5540 0.1278 0.0668 0.5714 

 𝑄𝜇1
∗ (𝑌, 𝜃) 𝑄𝜇2

∗ (𝑌, 𝜃) 𝑄𝜇3
∗ (𝑌, 𝜃) 𝑄𝜇𝑀𝐿

∗ (𝑌, 𝜃) 𝑄𝜇1
∗ (𝑌, 𝜃) 𝑄𝜇2

∗ (𝑌, 𝜃) 𝑄𝜇3
∗ (𝑌, 𝜃) 𝑄𝜇𝑀𝐿

∗ (𝑌, 𝜃) 

0.10 -0.3397 -0.0751 -0.0407 -0.3493 0.3381 0.0748 0.0406 0.3487 

0.05 -0.4100 -0.0918 -0.0492 -0.4212 0.4082 0.0914 0.0490 0.4211 

0.01 -0.5541 -0.1280 -0.0668 -0.5697 0.5543 0.1279 0.0667 0.5715 

 

CPQs with * are based on both the original sample of the standard variate 𝑍 and an independent copy of the standard variate 𝑍, 

namely 𝑍∗. 
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Table A2.3: Normal distribution: Lower and upper quantiles of eight CPQs for 𝜼 at specified values of alpha (sample size 𝒏 = 𝟐𝟓;  𝑱 = 𝟏𝟎𝟎𝟎𝟎𝟎𝟎 draws from the distribution 
of CPQs) 
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    Quantile     

  𝛼 2⁄      1 − 𝛼 2⁄   

𝛼 𝒬𝜂1(𝑌, 𝜃) 𝒬𝜂2(𝑌, 𝜃) 𝒬𝜂3(𝑌, 𝜃) 𝒬𝜂𝑀𝐿(𝑌, 𝜃) 𝒬𝜂1(𝑌, 𝜃) 𝒬𝜂2(𝑌, 𝜃) 𝒬𝜂3(𝑌, 𝜃) 𝒬𝜂𝑀𝐿(𝑌, 𝜃) 

0.10 -0.7080 -0.1554 -0.0848 -2.7481 0.4859 0.1090 0.0586 -1.5197 

0.05 -0.8785 -0.1944 -0.1052 -2.9234 0.5649 0.1291 0.0682 -1.4386 

0.01 -1.2496 -0.2834 -0.1500 -3.3045 0.7053 0.1687 0.0856 -1.2943 

 𝑄𝜂1
∗ (𝑌, 𝜃) 𝑄𝜂2

∗ (𝑌, 𝜃) 𝑄𝜂3
∗ (𝑌, 𝜃) 𝑄𝜂𝑀𝐿

∗ (𝑌, 𝜃) 𝑄𝜂1
∗ (𝑌, 𝜃) 𝑄𝜂2

∗ (𝑌, 𝜃) 𝑄𝜂3
∗ (𝑌, 𝜃) 𝑄𝜂𝑀𝐿

∗ (𝑌, 𝜃) 

0.10 -0.5837 -0.1294 -0.1294 -2.7461 0.5967 0.1319 0.0716 -1.5207 

0.05 -0.7000 -0.1574 -0.1574 -2.9189 0.7225 0.1620 0.0868 -1.4396 

0.01 -0.9360 -0.2168 -0.2168 -3.3052 0.9865 0.2272 0.1188 -1.2922 
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Table A2.4: Logistic distribution: Lower and upper quantiles of four CPQs for 𝝈 at specified values of alpha (sample size 𝒏 = 𝟐𝟓;  𝑱 = 𝟏𝟎𝟎𝟎𝟎𝟎𝟎 draws from the distribution 
of CPQs) 
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    Quantile     

  𝛼 2⁄      1 − 𝛼 2⁄   

𝛼 𝒬𝜎1(𝑌, 𝜃) 𝒬𝜎2(𝑌, 𝜃) 𝒬𝜎3(𝑌, 𝜃) 𝒬𝜎𝑀𝐿(𝑌, 𝜃) 𝒬𝜎1(𝑌, 𝜃) 𝒬𝜎2(𝑌, 𝜃) 𝒬𝜎3(𝑌, 𝜃) 𝒬𝜎𝑀𝐿(𝑌, 𝜃) 

0.10 0.7356 3.0327 5.4216 0.7188 1.2935 6.7123 9.9142 1.2634 

0.05 0.6919 2.7994 5.0901 0.6762 1.3578 7.2446 10.4751 1.3260 

0.01 0.6107 2.3995 4.4806 0.5968 1.4895 8.4392 11.6772 1.4545 
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Table A2.5: Logistic distribution: Lower and upper quantiles of eight CPQs for 𝝁 at specified values of alpha (sample size 𝒏 = 𝟐𝟓;  𝑱 = 𝟏𝟎𝟎𝟎𝟎𝟎𝟎 draws from the distribution 
of CPQs) 
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    Quantile     

  𝛼 2⁄      1 − 𝛼 2⁄   

𝛼 𝒬𝜇1(𝑌, 𝜃) 𝒬𝜇2(𝑌, 𝜃) 𝒬𝜇3(𝑌, 𝜃) 𝒬𝜇𝑀𝐿(𝑌, 𝜃) 𝒬𝜇1(𝑌, 𝜃) 𝒬𝜇2(𝑌, 𝜃) 𝒬𝜇3(𝑌, 𝜃) 𝒬𝜇𝑀𝐿(𝑌, 𝜃) 

0.10 -0.5922 -0.1324 -0.0794 -0.6032 0.5868 0.1310 0.0786 0.6035 

0.05 -0.7114 -0.1611 -0.0955 -0.7258 0.7070 0.1601 0.0948 0.7262 

0.01 -0.9571 -0.2238 -0.1290 -0.9770 0.9557 0.2232 0.1289 0.9810 

 𝑄𝜇1
∗ (𝑌, 𝜃) 𝑄𝜇2

∗ (𝑌, 𝜃) 𝑄𝜇3
∗ (𝑌, 𝜃) 𝑄𝜇𝑀𝐿

∗ (𝑌, 𝜃) 𝑄𝜇1
∗ (𝑌, 𝜃) 𝑄𝜇2

∗ (𝑌, 𝜃) 𝑄𝜇3
∗ (𝑌, 𝜃) 𝑄𝜇𝑀𝐿

∗ (𝑌, 𝜃) 

0.10 -0.5995 -0.1338 -0.0803 -0.6024 0.5930 0.1323 0.0794 0.6024 

0.05 -0.7268 -0.1647 -0.0976 -0.7262 0.7205 0.1630 0.0967 0.7257 

0.01 -0.9972 -0.2312 -0.1342 -0.9789 0.9905 0.2307 0.1335 0.9815 
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Table A2.6: Logistic distribution: Lower and upper quantiles of eight CPQs for 𝜼 at specified values of alpha (sample size 𝒏 = 𝟐𝟓;  𝑱 = 𝟏𝟎𝟎𝟎𝟎𝟎𝟎 draws from the distribution 
of CPQs) 
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    Quantile     

  𝛼 2⁄      1 − 𝛼 2⁄   

𝛼 𝒬𝜂1(𝑌, 𝜃) 𝒬𝜂2(𝑌, 𝜃) 𝒬𝜂3(𝑌, 𝜃) 𝒬𝜂𝑀𝐿(𝑌, 𝜃) 𝒬𝜂1(𝑌, 𝜃) 𝒬𝜂2(𝑌, 𝜃) 𝒬𝜂3(𝑌, 𝜃) 𝒬𝜂𝑀𝐿(𝑌, 𝜃) 

0.10 -1.4733 -0.3273 -0.1970 -5.2552 0.9779 0.2195 0.1311 -2.7466 

0.05 -1.8191 -0.4090 -0.2435 -5.6083 1.1394 0.2607 0.1535 -2.5814 

0.01 -2.5879 -0.5969 -0.3478 -6.3962 1.4337 0.3428 0.1942 -2.2817 

 𝑄𝜂1
∗ (𝑌, 𝜃) 𝑄𝜂2

∗ (𝑌, 𝜃) 𝑄𝜂3
∗ (𝑌, 𝜃) 𝑄𝜂𝑀𝐿

∗ (𝑌, 𝜃) 𝑄𝜂1
∗ (𝑌, 𝜃) 𝑄𝜂2

∗ (𝑌, 𝜃) 𝑄𝜂3
∗ (𝑌, 𝜃) 𝑄𝜂𝑀𝐿

∗ (𝑌, 𝜃) 

0.10 -1.1724 -0.2620 -0.1570 -5.2525 1.2661 0.2825 0.1695 -2.7467 

0.05 -1.3970 -0.3174 -0.1876 -5.6045 1.5621 0.3530 0.2097 -2.5821 

0.01 -1.8586 -0.4356 -0.2505 -6.3935 2.2080 0.5112 0.2973 -2.2795 
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Table A2.7: Uniform distribution: Lower and upper quantiles of four CPQs for 𝝈 at specified values of alpha (sample size 𝒏 = 𝟐𝟓;  𝑱 = 𝟏𝟎𝟎𝟎𝟎𝟎𝟎 draws from the distribution 
of CPQs) 
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    Quantile     

  𝛼 2⁄      1 − 𝛼 2⁄   

𝛼 𝒬𝜎1(𝑌, 𝜃) 𝒬𝜎2(𝑌, 𝜃) 𝒬𝜎3(𝑌, 𝜃) 𝒬𝜎𝑀𝐿(𝑌, 𝜃) 𝒬𝜎1(𝑌, 𝜃) 𝒬𝜎2(𝑌, 𝜃) 𝒬𝜎3(𝑌, 𝜃) 𝒬𝜎𝑀𝐿(𝑌, 𝜃) 

0.10 0.8927 3.4329 16.7069 0.9223 1.0677 6.3106 20.0767 1.0379 

0.05 0.8627 3.2390 16.1461 0.8971 1.0726 6.7332 20.2329 1.0390 

0.01 0.7996 2.8832 14.9675 0.8408 1.0788 7.6868 20.5763 1.0398 
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Table A2.8: Uniform distribution: Lower and upper quantiles of eight CPQs for 𝝁 at specified values of alpha (sample size 𝒏 = 𝟐𝟓;  𝑱 = 𝟏𝟎𝟎𝟎𝟎𝟎𝟎 draws from the 
distribution of CPQs) 
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    Quantile     

  𝛼 2⁄      1 − 𝛼 2⁄   

𝛼 𝒬𝜇1(𝑌, 𝜃) 𝒬𝜇2(𝑌, 𝜃) 𝒬𝜇3(𝑌, 𝜃) 𝒬𝜇𝑀𝐿(𝑌, 𝜃) 𝒬𝜇1(𝑌, 𝜃) 𝒬𝜇2(𝑌, 𝜃) 𝒬𝜇3(𝑌, 𝜃) 𝒬𝜇𝑀𝐿(𝑌, 𝜃) 

0.10 -0.0365 -0.0085 -0.0019 0.0020 0.0842 0.0184 0.0045 0.1082 

0.05 -0.0375 -0.0092 -0.0020 0.00097038 0.1149 0.0254 0.0061 0.1314 

0.01 -0.0384 -0.0106 -0.0021 0.00019273 0.1907 0.0428 0.0102 0.1836 

 𝑄𝜇1
∗ (𝑌, 𝜃) 𝑄𝜇2

∗ (𝑌, 𝜃) 𝑄𝜇3
∗ (𝑌, 𝜃) 𝑄𝜇𝑀𝐿

∗ (𝑌, 𝜃) 𝑄𝜇1
∗ (𝑌, 𝜃) 𝑄𝜇2

∗ (𝑌, 𝜃) 𝑄𝜇3
∗ (𝑌, 𝜃) 𝑄𝜇𝑀𝐿

∗ (𝑌, 𝜃) 

0.10 -0.0382 -0.0089 -0.0020 0.0020 0.0776 0.0170 0.0041 0.1084 

0.05 -0.0399 -0.0097 -0.0021 0.00097154 0.1031 0.0228 0.0055 0.1315 

0.01 -0.0435 -0.0114 -0.0023 0.00019701 0.1606 0.0364 0.0086 0.1831 
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Table A2.9: Uniform distribution: Lower and upper quantiles of eight CPQs for 𝜼 at specified values of alpha (sample size 𝒏 = 𝟐𝟓;  𝑱 = 𝟏𝟎𝟎𝟎𝟎𝟎𝟎 draws from the 
distribution of CPQs) 
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    Quantile     

  𝛼 2⁄      1 − 𝛼 2⁄   

𝛼 𝒬𝜂1(𝑌, 𝜃) 𝒬𝜂2(𝑌, 𝜃) 𝒬𝜂3(𝑌, 𝜃) 𝒬𝜂𝑀𝐿(𝑌, 𝜃) 𝒬𝜂1(𝑌, 𝜃) 𝒬𝜂2(𝑌, 𝜃) 𝒬𝜂3(𝑌, 𝜃) 𝒬𝜂𝑀𝐿(𝑌, 𝜃) 

0.10 -0.0823 -0.0180 -0.0044 -1.0305 0.0355 0.0082 0.0019 -0.8551 

0.05 -0.1121 -0.0248 -0.0060 -1.0601 0.0366 0.0090 0.0020 -0.8314 

0.01 -0.1849 -0.0416 -0.0099 -1.1318 0.0382 0.0104 0.0020 -0.7797 

 𝑄𝜂1
∗ (𝑌, 𝜃) 𝑄𝜂2

∗ (𝑌, 𝜃) 𝑄𝜂3
∗ (𝑌, 𝜃) 𝑄𝜂𝑀𝐿

∗ (𝑌, 𝜃) 𝑄𝜂1
∗ (𝑌, 𝜃) 𝑄𝜂2

∗ (𝑌, 𝜃) 𝑄𝜂3
∗ (𝑌, 𝜃) 𝑄𝜂𝑀𝐿

∗ (𝑌, 𝜃) 

0.10 -0.0760 -0.0166 -0.0041 -1.0301 0.0370 0.0086 0.0020 -0.8548 

0.05 -0.1007 -0.0223 -0.0054 -1.0595 0.0386 0.0094 0.0021 -0.8315 

0.01 -0.1562 -0.0356 -0.0083 -1.1321 0.0420 0.0110 0.0022 -0.7796 
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Table A2.10: Weibull distribution: Lower and upper quantiles of four CPQs for 𝝈 at specified values of alpha (sample size 𝒏 = 𝟐𝟓;  𝑱 = 𝟏𝟎𝟎𝟎𝟎𝟎𝟎 draws from the 
distribution of CPQs) 
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    Quantile     

  𝛼 2⁄      1 − 𝛼 2⁄   

𝛼 𝒬𝜎1(𝑌, 𝜃) 𝒬𝜎2(𝑌, 𝜃) 𝒬𝜎3(𝑌, 𝜃) 𝒬𝜎𝑀𝐿(𝑌, 𝜃) 𝒬𝜎1(𝑌, 𝜃) 𝒬𝜎2(𝑌, 𝜃) 𝒬𝜎3(𝑌, 𝜃) 𝒬𝜎𝑀𝐿(𝑌, 𝜃) 

0.10 0.7460 3.0800 5.7154 0.7235 1.2768 6.6539 10.1059 1.2366 

0.05 0.7028 2.8510 5.3743 0.6818 1.3350 7.1793 10.6423 1.2926 

0.01 0.6222 2.4526 4.7492 0.6038 1.4543 8.3616 11.7919 1.4078 
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Table A2.11: Weibull distribution: Lower and upper quantiles of eight CPQs for 𝝁 at specified values of alpha (sample size 𝒏 = 𝟐𝟓;  𝑱 = 𝟏𝟎𝟎𝟎𝟎𝟎𝟎 draws from the 
distribution of CPQs) 
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    Quantile     

  𝛼 2⁄      1 − 𝛼 2⁄   

𝛼 𝒬𝜇1(𝑌, 𝜃) 𝒬𝜇2(𝑌, 𝜃) 𝒬𝜇3(𝑌, 𝜃) 𝒬𝜇𝑀𝐿(𝑌, 𝜃) 𝒬𝜇1(𝑌, 𝜃) 𝒬𝜇2(𝑌, 𝜃) 𝒬𝜇3(𝑌, 𝜃) 𝒬𝜇𝑀𝐿(𝑌, 𝜃) 

0.10 -0.3443 -0.0765 -0.0445 -0.3702 0.3731 0.0835 0.0483 0.3696 

0.05 -0.4168 -0.0937 -0.0538 -0.4447 0.4503 0.1022 0.0584 0.4494 

0.01 -0.5680 -0.1314 -0.0737 -0.6001 0.6112 0.1424 0.0795 0.6150 

 𝑄𝜇1
∗ (𝑌, 𝜃) 𝑄𝜇2

∗ (𝑌, 𝜃) 𝑄𝜇3
∗ (𝑌, 𝜃) 𝑄𝜇𝑀𝐿

∗ (𝑌, 𝜃) 𝑄𝜇1
∗ (𝑌, 𝜃) 𝑄𝜇2

∗ (𝑌, 𝜃) 𝑄𝜇3
∗ (𝑌, 𝜃) 𝑄𝜇𝑀𝐿

∗ (𝑌, 𝜃) 

0.10 -0.3722 -0.0827 -0.0481 -0.3707 0.3479 0.0777 0.0450 0.3695 

0.05 -0.4553 -0.1025 -0.0589 -0.4444 0.4157 0.0942 0.0539 0.4489 

0.01 -0.6361 -0.1472 -0.0826 -0.5999 0.5577 0.1303 0.0725 0.6145 
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Table A2.12: Weibull distribution: Lower and upper quantiles of eight CPQs for 𝜼 at specified values of alpha (sample size 𝒏 = 𝟐𝟓;  𝑱 = 𝟏𝟎𝟎𝟎𝟎𝟎𝟎 draws from the 
distribution of CPQs) 
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    Quantile     

  𝛼 2⁄      1 − 𝛼 2⁄   

𝛼 𝒬𝜂1(𝑌, 𝜃) 𝒬𝜂2(𝑌, 𝜃) 𝒬𝜂3(𝑌, 𝜃) 𝒬𝜂𝑀𝐿(𝑌, 𝜃) 𝒬𝜂1(𝑌, 𝜃) 𝒬𝜂2(𝑌, 𝜃) 𝒬𝜂3(𝑌, 𝜃) 𝒬𝜂𝑀𝐿(𝑌, 𝜃) 

0.10 -0.5111 -0.1125 -0.0658 -1.8875 0.3555 0.0805 0.0462 -0.9959 

0.05 -0.6373 -0.1420 -0.0822 -2.0173 0.4120 0.0951 0.0537 -0.9381 

0.01 -0.9259 -0.2098 -0.1193 -2.3135 0.5150 0.1241 0.0675 -0.8318 

 𝑄𝜂1
∗ (𝑌, 𝜃) 𝑄𝜂2

∗ (𝑌, 𝜃) 𝑄𝜂3
∗ (𝑌, 𝜃) 𝑄𝜂𝑀𝐿

∗ (𝑌, 𝜃) 𝑄𝜂1
∗ (𝑌, 𝜃) 𝑄𝜂2

∗ (𝑌, 𝜃) 𝑄𝜂3
∗ (𝑌, 𝜃) 𝑄𝜂𝑀𝐿

∗ (𝑌, 𝜃) 

0.10 -0.4379 -0.0976 -0.0566 -1.8875 0.4215 0.0940 0.0545 -0.9963 

0.05 -0.5333 -0.1203 -0.0656 -2.0198 0.5067 0.1146 0.0656 -0.9390 

0.01 -0.7345 -0.1710 -0.0955 -2.3186 0.6871 0.1598 0.0892 -0.8327 
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Table A2.13: Pareto distribution: Lower and upper quantiles of four CPQs for 𝝈 at specified values of alpha (sample size 𝒏 = 𝟐𝟓;  𝑱 = 𝟏𝟎𝟎𝟎𝟎𝟎𝟎 draws from the distribution 
of CPQs) 
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    Quantile     

  𝛼 2⁄      1 − 𝛼 2⁄   

𝛼 𝒬𝜎1(𝑌, 𝜃) 𝒬𝜎2(𝑌, 𝜃) 𝒬𝜎3(𝑌, 𝜃) 𝒬𝜎𝑀𝐿(𝑌, 𝜃) 𝒬𝜎1(𝑌, 𝜃) 𝒬𝜎2(𝑌, 𝜃) 𝒬𝜎3(𝑌, 𝜃) 𝒬𝜎𝑀𝐿(𝑌, 𝜃) 

0.10 0.6891 2.8416 4.5332 0.6615 1.3580 6.9331 9.4285 1.3036 

0.05 0.6407 2.5997 4.2022 0.6151 1.4391 7.5426 10.0762 1.3813 

0.01 0.5529 2.1780 3.6056 0.5308 1.6050 8.9345 11.4739 1.5407 
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Table A2.14: Pareto distribution: Lower and upper quantiles of eight CPQs for 𝝁 at specified values of alpha (sample size 𝒏 = 𝟐𝟓;  𝑱 = 𝟏𝟎𝟎𝟎𝟎𝟎𝟎 draws from the 
distribution of CPQs) 
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    Quantile     

  𝛼 2⁄      1 − 𝛼 2⁄   

𝛼 𝒬𝜇1(𝑌, 𝜃) 𝒬𝜇2(𝑌, 𝜃) 𝒬𝜇3(𝑌, 𝜃) 𝒬𝜇𝑀𝐿(𝑌, 𝜃) 𝒬𝜇1(𝑌, 𝜃) 𝒬𝜇2(𝑌, 𝜃) 𝒬𝜇3(𝑌, 𝜃) 𝒬𝜇𝑀𝐿(𝑌, 𝜃) 

0.10 -0.0381 -0.0090 -0.0058 0.0021 0.0873 0.0195 0.0130 0.1327 

0.05 -0.0391 -0.0098 -0.0060 0.0010 0.1191 0.0268 0.0178 0.1658 

0.01 -0.0402 -0.0113 -0.0065 0.0002066 0.1977 0.0454 0.0296 0.2477 

 𝑄𝜇1
∗ (𝑌, 𝜃) 𝑄𝜇2

∗ (𝑌, 𝜃) 𝑄𝜇3
∗ (𝑌, 𝜃) 𝑄𝜇𝑀𝐿

∗ (𝑌, 𝜃) 𝑄𝜇1
∗ (𝑌, 𝜃) 𝑄𝜇2

∗ (𝑌, 𝜃) 𝑄𝜇3
∗ (𝑌, 𝜃) 𝑄𝜇𝑀𝐿

∗ (𝑌, 𝜃) 

0.10 -0.0468 -0.0108 -0.0070 0.0021 0.0839 0.0187 0.0125 0.1331 

0.05 -0.0532 -0.0125 -0.0080 0.0011 0.1143 0.0258 0.0171 0.1660 

0.01 -0.0673 -0.0162 -0.0102 0.00021019 0.1883 0.0434 0.0283 0.2472 
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Table A2.15: Pareto distribution: Lower and upper quantiles of eight CPQs for 𝜼 at specified values of alpha (sample size 𝒏 = 𝟐𝟓;  𝑱 = 𝟏𝟎𝟎𝟎𝟎𝟎𝟎 draws from the 
distribution of CPQs) 
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    Quantile     

  𝛼 2⁄      1 − 𝛼 2⁄   

𝛼 𝒬𝜂1(𝑌, 𝜃) 𝒬𝜂2(𝑌, 𝜃) 𝒬𝜂3(𝑌, 𝜃) 𝒬𝜂𝑀𝐿(𝑌, 𝜃) 𝒬𝜂1(𝑌, 𝜃) 𝒬𝜂2(𝑌, 𝜃) 𝒬𝜂3(𝑌, 𝜃) 𝒬𝜂𝑀𝐿(𝑌, 𝜃) 

0.10 -1.6480 -0.3712 -0.2463 -5.5177 0.9636 0.2179 0.1441 -2.7975 

0.05 -2.0483 -0.4674 -0.3070 -5.9340 1.1143 0.2571 0.1674 -2.6403 

0.01 -2.9572 -0.6910 -0.4454 -6.8822 1.3771 0.3334 0.2093 -2.3662 

 𝑄𝜂1
∗ (𝑌, 𝜃) 𝑄𝜂2

∗ (𝑌, 𝜃) 𝑄𝜂3
∗ (𝑌, 𝜃) 𝑄𝜂𝑀𝐿

∗ (𝑌, 𝜃) 𝑄𝜂1
∗ (𝑌, 𝜃) 𝑄𝜂2

∗ (𝑌, 𝜃) 𝑄𝜂3
∗ (𝑌, 𝜃) 𝑄𝜂𝑀𝐿

∗ (𝑌, 𝜃) 

0.10 -1.2088 -0.2734 -0.1807 -5.5150 1.3803 0.3104 0.2062 -2.7967 

0.05 -1.4357 -0.3301 -0.2155 -5.9351 1.7265 0.3926 0.2582 -2.6417 

0.01 -1.9163 -0.4552 -0.2901 -6.8742 2.4915 0.5818 0.3756 -2.3685 
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Appendix B: LS and LLS families of distributions: Coverage probability and average 

length of confidence intervals for 𝝁, 𝝈 and 𝜼 

B1: LS and LLS families of distributions: Coverage probability and average length of confidence intervals for 

𝝁, 𝝈 and 𝜼 (𝒏 = 𝟏𝟎) 

Table B1.1: Normal distribution: Coverage probabilities and average lengths of confidence intervals for 𝝈 based on four CPQs at specified confidence levels (sample size 
𝒏 = 𝟏𝟎;  𝑺 = 𝟏𝟎𝟎𝟎𝟎𝟎 simulated samples of data) 
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 Nominal confidence level 

Quantity  0.90    0.95    0.99   

 𝜎1 𝜎2 𝜎3 𝜎𝑀𝐿 𝜎1 𝜎2 𝜎3 𝜎𝑀𝐿 𝜎1 𝜎2 𝜎3 𝜎𝑀𝐿 

Coverage 0.9009 0.8989 0.9003 0.9153 0.9503 0.9491 0.9500 0.9501 0.9899 0.9896 0.9900 0.9898 

Length 0.8955 1.3054 0.9170 0.8795 1.1132 1.6280 1.1383 1.1066 1.6211 2.4158 1.6596 1.6116 
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Table B1.2: Normal distribution: Coverage probabilities and average lengths of confidence intervals for 𝝁 based on eight CPQs at specified confidence levels (sample size 
𝒏 = 𝟏𝟎;  𝑺 = 𝟏𝟎𝟎𝟎𝟎𝟎 simulated samples of data) 
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 Nominal confidence level 

Quantity  0.90    0.95    0.99   

 𝜇1 𝜇2 𝜇3 𝜇𝑀𝐿 𝜇1 𝜇2 𝜇3 𝜇𝑀𝐿 𝜇1 𝜇2 𝜇3 𝜇𝑀𝐿 

Coverage 0.9014 0.9012 0.9017 0.9017 0.9501 0.9507 0.9502 0.9500 0.9901 0.9899 0.9898 0.9900 

Length 1.1303 1.2168 1.1343 1.1296 1.3945 1.5414 1.4018 1.3928 2.0038 2.3333 2.0151 2.0004 

 𝜇1
∗ 𝜇2

∗  𝜇3
∗  𝜇𝑀𝐿

∗  𝜇1
∗ 𝜇2

∗  𝜇3
∗  𝜇𝑀𝐿

∗  𝜇1
∗ 𝜇2

∗  𝜇3
∗  𝜇𝑀𝐿

∗  

Coverage 0.9011 0.9011 0.9014 0.9008 0.9502 0.9509 0.9503 0.9495 0.9901 0.9899 0.9898 0.9901 

Length 1.1291 1.2163 1.1333 1.1263 1.3947 1.5427 1.4023 1.3900 2.0045 2.3322 2.0151 2.0019 
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Table B1.3: Normal distribution: Coverage probabilities and average lengths of confidence intervals for 𝜼 based on eight CPQs at specified confidence levels (sample size 
𝒏 = 𝟏𝟎;  𝑺 = 𝟏𝟎𝟎𝟎𝟎𝟎 simulated samples of data) 

  



325 

 Nominal confidence level 

Quantity  0.90    0.95    0.99   

 𝜂1 𝜂2 𝜂3 𝜂𝑀𝐿  𝜂1 𝜂2 𝜂3 𝜂𝑀𝐿  𝜂1 𝜂2 𝜂3 𝜂𝑀𝐿  

Coverage 0.9009 0.9005 0.9011 0.9006 0.9496 0.9495 0.9495 0.9496 0.9899 0.9901 0.9900 0.9899 

Length 2.0804 2.2406 2.0885 2.0726 2.5755 2.8455 2.5890 2.5647 3.7277 4.3848 3.7647 3.7174 

 𝜂1
∗ 𝜂2

∗  𝜂3
∗  𝜂𝑀𝐿

∗  𝜂1
∗ 𝜂2

∗  𝜂3
∗  𝜂𝑀𝐿

∗  𝜂1
∗ 𝜂2

∗  𝜂3
∗  𝜂𝑀𝐿

∗  

Coverage 0.8993 0.8975 0.8995 0.8999 0.9358 0.9394 0.9363 0.9493 0.9736 0.9793 0.9742 0.9899 

Length 2.0220 2.1806 2.0321 2.0696 2.4951 2.7585 2.5061 2.5616 3.5849 4.1885 3.6075 3.7251 
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Table B1.4: Logistic distribution: Coverage probabilities and average lengths of confidence intervals for 𝝈 based on four CPQs at specified confidence levels (sample size 
𝒏 = 𝟏𝟎;  𝑺 = 𝟏𝟎𝟎𝟎𝟎𝟎 simulated samples of data) 
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 Nominal confidence level 

Quantity  0.90    0.95    0.99   

 𝜎1 𝜎2 𝜎3 𝜎𝑀𝐿 𝜎1 𝜎2 𝜎3 𝜎𝑀𝐿 𝜎1 𝜎2 𝜎3 𝜎𝑀𝐿 

Coverage 0.8995 0.9002 0.8997 0.8994 0.9491 0.9499 0.9501 0.9484 0.9899 0.9901 0.9901 0.8999 

Length 1.0303 1.4548 1.0731 1.0301 1.2824 1.8108 1.3349 1.2794 1.8554 2.6824 1.9290 1.8554 
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Table B1.5: Logistic distribution: Coverage probabilities and average lengths of confidence intervals for 𝝁 based on eight CPQs at specified confidence levels (sample size 
𝒏 = 𝟏𝟎;  𝑺 = 𝟏𝟎𝟎𝟎𝟎𝟎 simulated samples of data) 

  



329 

 Nominal confidence level 

Quantity  0.90    0.95    0.99   

 𝜇1 𝜇2 𝜇3 𝜇𝑀𝐿 𝜇1 𝜇2 𝜇3 𝜇𝑀𝐿 𝜇1 𝜇2 𝜇3 𝜇𝑀𝐿 

Coverage 0.8982 0.8981 0.8972 0.8978 0.9476 0.9479 0.9476 0.9474 0.9890 0.9893 0.9889 0.9890 

Length 1.9522 2.1228 1.9663 1.9506 2.3864 2.6713 2.4139 2.3861 3.4092  4.0206 3.4510 3.4074 

 𝜇1
∗ 𝜇2

∗  𝜇3
∗  𝜇𝑀𝐿

∗  𝜇1
∗ 𝜇2

∗  𝜇3
∗  𝜇𝑀𝐿

∗  𝜇1
∗ 𝜇2

∗  𝜇3
∗  𝜇𝑀𝐿

∗  

Coverage 0.9088 0.9070 0.9079 0.9002 0.9578 0.9559 0.9572 0.9494 0.9933 0.9923 0.9933 0.9895 

Length 2.0232 2.2039 2.0392 1.9665 2.5229 2.8074 2.5497 2.4126 3.7220 4.3243 3.7667 3.4334 
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Table B1.6: Logistic distribution: Coverage probabilities and average lengths of confidence intervals for 𝜼 based on eight CPQs at specified confidence levels (sample size 
𝒏 = 𝟏𝟎;  𝑺 = 𝟏𝟎𝟎𝟎𝟎𝟎 simulated samples of data) 
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 Nominal confidence level 

Quantity  0.90    0.95    0.99   

 𝜂1 𝜂2 𝜂3 𝜂𝑀𝐿  𝜂1 𝜂2 𝜂3 𝜂𝑀𝐿  𝜂1 𝜂2 𝜂3 𝜂𝑀𝐿  

Coverage 0.8996 0.8993 0.8992 0.8994 0.9493 0.9494 0.9500 0.9495 0.9899 0.9899 0.9900 0.9898 

Length 4.2622 4.5960 4.2902 4.2553 5.2692 5.8510 5.3440 5.2747 7.5800 8.9998 7.7426 7.5752 

 𝜂1
∗ 𝜂2

∗  𝜂3
∗  𝜂𝑀𝐿

∗  𝜂1
∗ 𝜂2

∗  𝜂3
∗  𝜂𝑀𝐿

∗  𝜂1
∗ 𝜂2

∗  𝜂3
∗  𝜂𝑀𝐿

∗  

Coverage 0.8892 0.8911 0.8903 0.8997 0.9263 0.9320 0.9275 0.9505 0.9697 0.9764 0.9708 0.9901 

Length 4.1789 4.5505 4.2277 4.2594 5.2412 5.8103 5.2892 5.2960 7.7680 9.1812 7.8699 7.6828 

 

 

  



332 

Table B1.7: Uniform distribution: Coverage probabilities and average lengths of confidence intervals for 𝝈 based on four CPQs at specified confidence levels (sample size 
𝒏 = 𝟏𝟎;  𝑺 = 𝟏𝟎𝟎𝟎𝟎𝟎 simulated samples of data) 
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 Nominal confidence level 

Quantity  0.90    0.95    0.99   

 𝜎1 𝜎2 𝜎3 𝜎𝑀𝐿 𝜎1 𝜎2 𝜎3 𝜎𝑀𝐿 𝜎1 𝜎2 𝜎3 𝜎𝑀𝐿 

Coverage 0.9017 0.8971 0.9002 0.9023 0.9505 0.9491 0.9495 0.9506 0.9901 0.9900 0.9903 0.9901 

Length 0.5029 1.1001 0.5167 0.4423 0.6383 1.3767 0.6611 0.5571 0.9682 2.0218 1.0293 0.8346 
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Table B1.8: Uniform distribution: Coverage probabilities and average lengths of confidence intervals for 𝝁 based on eight CPQs at specified confidence levels (sample size 
𝒏 = 𝟏𝟎;  𝑺 = 𝟏𝟎𝟎𝟎𝟎𝟎 simulated samples of data) 
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 Nominal confidence level 

Quantity  0.90    0.95    0.99   

 𝜇1 𝜇2 𝜇3 𝜇𝑀𝐿 𝜇1 𝜇2 𝜇3 𝜇𝑀𝐿 𝜇1 𝜇2 𝜇3 𝜇𝑀𝐿 

Coverage 0.8988 0.9002 0.8984 0.8994 0.9494 0.9500 0.9528 0.9500 0.9893 0.9903 0.9910 0.9897 

Length 0.3203 0.3547 0.3204 0.2742 0.4131 0.4706 0.4167 0.3474 0.6607  0.7925 0.6621 0.5285 

 𝜇1
∗ 𝜇2

∗  𝜇3
∗  𝜇𝑀𝐿

∗  𝜇1
∗ 𝜇2

∗  𝜇3
∗  𝜇𝑀𝐿

∗  𝜇1
∗ 𝜇2

∗  𝜇3
∗  𝜇𝑀𝐿

∗  

Coverage 0.9294 0.9094 0.9293 0.8995 0.9546 0.9494 0.9547 0.9502 0.9826 0.9842 0.9824 0.9896 

Length 0.2917 0.3244 0.2920 0.2745 0.3601 0.4135 0.3614 0.3484 0.5126 0.6257 0.5114 0.5208 
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Table B1.9: Uniform distribution: Coverage probabilities and average lengths of confidence intervals for 𝜼 based on eight CPQs at specified confidence levels (sample size 
𝒏 = 𝟏𝟎;  𝑺 = 𝟏𝟎𝟎𝟎𝟎𝟎 simulated samples of data) 
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 Nominal confidence level 

Quantity  0.90    0.95    0.99   

 𝜂1 𝜂2 𝜂3 𝜂𝑀𝐿  𝜂1 𝜂2 𝜂3 𝜂𝑀𝐿  𝜂1 𝜂2 𝜂3 𝜂𝑀𝐿  

Coverage 0.9015 0.8996 0.8999 0.9000 0.9495 0.9496 0.9508 0.9499 0.9898 0.9896 0.9903 0.9895 

Length 0.3120 0.3441 0.3125 0.3093 0.4024 0.4590 0.4040 0.4038 0.6482 0.7757 0.6502 0.6536 

 𝜂1
∗ 𝜂2

∗  𝜂3
∗  𝜂𝑀𝐿

∗  𝜂1
∗ 𝜂2

∗  𝜂3
∗  𝜂𝑀𝐿

∗  𝜂1
∗ 𝜂2

∗  𝜂3
∗  𝜂𝑀𝐿

∗  

Coverage 0.9300 0.9078 0.9297 0.8986 0.9562 0.9499 0.9563 0.9483 0.9827 0.9837 0.9826 0.9892 

Length 0.2823 0.3127 0.2825 0.3069 0.3483 0.4002 0.3488 0.3987 0.4997 0.6062 0.5011 0.6511 
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Table B1.10: Pareto distribution: Coverage probabilities and average lengths of confidence intervals for 𝝈 based on four CPQs at specified confidence levels (sample size 
𝒏 = 𝟏𝟎;  𝑺 = 𝟏𝟎𝟎𝟎𝟎𝟎 simulated samples of data) 
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 Nominal confidence level 

Quantity  0.90    0.95    0.99   

 𝜎1 𝜎2 𝜎3 𝜎𝑀𝐿 𝜎1 𝜎2 𝜎3 𝜎𝑀𝐿 𝜎1 𝜎2 𝜎3 𝜎𝑀𝐿 

Coverage 0.8999 0.8986 0.8990 0.8999 0.9497 0.9496 0.9496 0.9498 0.9905 0.9901 0.9903 0.9905 

Length 1.2920 1.7299 1.3614 1.2918 1.6126 2.1736 1.7028 1.6122 2.3853 3.2841 2.5259 2.3787 

 

  



340 

Table B1.11: Pareto distribution: Coverage probabilities and average lengths of confidence intervals for 𝝁 based on eight CPQs at specified confidence levels (sample size 
𝒏 = 𝟏𝟎;  𝑺 = 𝟏𝟎𝟎𝟎𝟎𝟎 simulated samples of data) 
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 Nominal confidence level 

Quantity  0.90    0.95    0.99   

 𝜇1 𝜇2 𝜇3 𝜇𝑀𝐿 𝜇1 𝜇2 𝜇3 𝜇𝑀𝐿 𝜇1 𝜇2 𝜇3 𝜇𝑀𝐿 

Coverage 0.9000 0.9008 0.9006 0.9005 0.9496 0.9512 0.9501 0.9495 0.9899 0.9900 0.9901 0.9902 

Length 0.3503 0.3869 0.3576 0.3506 0.4532 0.5189 0.4650 0.4535 0.7177  0.8681 0.7445 0.7173 

 𝜇1
∗ 𝜇2

∗  𝜇3
∗  𝜇𝑀𝐿

∗  𝜇1
∗ 𝜇2

∗  𝜇3
∗  𝜇𝑀𝐿

∗  𝜇1
∗ 𝜇2

∗  𝜇3
∗  𝜇𝑀𝐿

∗  

Coverage 0.9397 0.9364 0.9399 0.8997 0.9679 0.9678 0.9684 0.9503 0.9930 0.9934 0.9934 0.9900 

Length 0.3781 0.4136 0.3845 0.3486 0.4999 0.5583 0.5106 0.4534 0.8263 0.9657 0.8531 0.7218 
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Table B1.12: Pareto distribution: Coverage probabilities and average lengths of confidence intervals for 𝜼 based on eight CPQs at specified confidence levels (sample size 
𝒏 = 𝟏𝟎;  𝑺 = 𝟏𝟎𝟎𝟎𝟎𝟎 simulated samples of data) 
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 Nominal confidence level 

Quantity  0.90    0.95    0.99   

 𝜂1 𝜂2 𝜂3 𝜂𝑀𝐿  𝜂1 𝜂2 𝜂3 𝜂𝑀𝐿  𝜂1 𝜂2 𝜂3 𝜂𝑀𝐿  

Coverage 0.9000 0.8964 0.8988 0.9000 0.9495 0.9486 0.9492 0.9495 0.9902 0.9905 0.9906 0.9903 

Length 4.6469 5.0522 4.7067 4.6454 5.7982 6.4986 5.9306 5.7975 8.5704 10.2677 8.8610 8.5666 

 𝜂1
∗ 𝜂2

∗  𝜂3
∗  𝜂𝑀𝐿

∗  𝜂1
∗ 𝜂2

∗  𝜂3
∗  𝜂𝑀𝐿

∗  𝜂1
∗ 𝜂2

∗  𝜂3
∗  𝜂𝑀𝐿

∗  

Coverage 0.8731 0.8802 0.8754 0.9010 0.9117 0.9203 0.9130 0.9508 0.9604 0.9677 0.9620 0.9904 

Length 4.5244 4.9516 4.6037 4.6578 5.7840 6.4741 5.8869 5.8154 8.8901 10.4805 9.1614 8.5891 
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Table B1.13: Weibull distribution: Coverage probabilities and average lengths of confidence intervals for 𝝈 based on four CPQs at specified confidence levels (sample size 
𝒏 = 𝟏𝟎;  𝑺 = 𝟏𝟎𝟎𝟎𝟎𝟎 simulated samples of data) 
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 Nominal confidence level 

Quantity  0.90    0.95    0.99   

 𝜎1 𝜎2 𝜎3 𝜎𝑀𝐿 𝜎1 𝜎2 𝜎3 𝜎𝑀𝐿 𝜎1 𝜎2 𝜎3 𝜎𝑀𝐿 

Coverage 0.8993 0.9001 0.8998 0.8993 0.9491 0.9500 0.9498 0.9492 0.9899 0.9902 0.9897 0.9898 

Length 0.9987 1.4189 1.0342 0.9954 1.2412 1.7711 1.2846 1.2368 1.8103 2.6233 1.8719 1.8049 
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Table B1.14: Weibull distribution: Coverage probabilities and average lengths of confidence intervals for 𝝁 based on eight CPQs at specified confidence levels (sample size 
𝒏 = 𝟏𝟎;  𝑺 = 𝟏𝟎𝟎𝟎𝟎𝟎 simulated samples of data) 
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 Nominal confidence level 

Quantity  0.90    0.95    0.99   

 𝜇1 𝜇2 𝜇3 𝜇𝑀𝐿 𝜇1 𝜇2 𝜇3 𝜇𝑀𝐿 𝜇1 𝜇2 𝜇3 𝜇𝑀𝐿 

Coverage 0.9000 0.8994 0.8996 0.8998 0.9492 0.9496 0.9492 0.9489 0.9900 0.9900 0.9899 0.9900 

Length 1.2068 1.3100 1.2154 1.2054 1.4977 1.6684 1.5110 1.4957 2.1886 2.5626 2.2144 2.1851 

 𝜇1
∗ 𝜇2

∗  𝜇3
∗  𝜇𝑀𝐿

∗  𝜇1
∗ 𝜇2

∗  𝜇3
∗  𝜇𝑀𝐿

∗  𝜇1
∗ 𝜇2

∗  𝜇3
∗  𝜇𝑀𝐿

∗  

Coverage 0.8983 0.8984 0.8986 0.8997 0.9480 0.9477 0.9475 0.9489 0.9886 0.9890 0.9883 0.9897 

Length 1.2142 1.3169 1.2224 1.2050 1.5137 1.6817 1.5253 1.4948 2.2095 2.5892 2.2343 2.1753 
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Table B1.15: Weibull distribution: Coverage probabilities and average lengths of confidence intervals for 𝜼 based on eight CPQs at specified confidence levels (sample size 
𝒏 = 𝟏𝟎;  𝑺 = 𝟏𝟎𝟎𝟎𝟎𝟎 simulated samples of data) 
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 Nominal confidence level 

Quantity  0.90    0.95    0.99   

 𝜂1 𝜂2 𝜂3 𝜂𝑀𝐿  𝜂1 𝜂2 𝜂3 𝜂𝑀𝐿  𝜂1 𝜂2 𝜂3 𝜂𝑀𝐿  

Coverage 0.8996 0.9000 0.8996 0.8993 0.9501 0.9500 0.9495 0.9499 0.9899 0.9900 0.9901 0.9900 

Length 1.5574 1.6856 1.5669 1.5514 1.9459 2.1617 1.9619 1.9387 2.8701 3.3668 2.9054 2.8608 

 𝜂1
∗ 𝜂2

∗  𝜂3
∗  𝜂𝑀𝐿

∗  𝜂1
∗ 𝜂2

∗  𝜂3
∗  𝜂𝑀𝐿

∗  𝜂1
∗ 𝜂2

∗  𝜂3
∗  𝜂𝑀𝐿

∗  

Coverage 0.9067 0.9022 0.9058 0.8993 0.9439 0.9454 0.9446 0.9497 0.9804 0.9842 0.9806 0.9899 

Length 1.5272 1.6543 1.5387 1.5512 1.9027 2.1136 1.9194 1.9356 2.7831 3.2552 2.8185 2.8550 
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B2: LS and LLS families of distributions: Coverage probability and average length of confidence intervals for 

𝝁, 𝝈 and 𝜼 (𝒏 = 𝟐𝟓) 

Table B2.1: Normal distribution: Coverage probabilities and average lengths of confidence intervals for 𝝈 based on four CPQs at specified confidence levels (sample size 
𝒏 = 𝟐𝟓;  𝑺 = 𝟏𝟎𝟎𝟎𝟎𝟎𝟎 simulated samples of data) 
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 Nominal confidence level 

Quantity  0.90    0.95    0.99   

 𝜎1 𝜎2 𝜎3 𝜎𝑀𝐿 𝜎1 𝜎2 𝜎3 𝜎𝑀𝐿 𝜎1 𝜎2 𝜎3 𝜎𝑀𝐿 

Coverage 0.8999 0.9000 0.9001 0.8997 0.9493 0.9498 0.9505 0.9497 0.9899 0.9898 0.9897 0.9900 

Length 0.5018 0.7602 0.5273 0.5001 0.6065 0.9207 0.6377 0.6048 0.8279 1.2598 0.8700 0.8253 
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Table B2.2: Normal distribution: Coverage probabilities and average lengths of confidence intervals for 𝝁 based on eight CPQs at specified confidence levels (sample size 
𝒏 = 𝟐𝟓;  𝑺 = 𝟏𝟎𝟎𝟎𝟎𝟎𝟎 simulated samples of data) 
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 Nominal confidence level 

Quantity  0.90    0.95    0.99   

 𝜇1 𝜇2 𝜇3 𝜇𝑀𝐿 𝜇1 𝜇2 𝜇3 𝜇𝑀𝐿 𝜇1 𝜇2 𝜇3 𝜇𝑀𝐿 

Coverage 0.9013 0.9011 0.9009 0.9010 0.9510 0.9504 0.9506 0.9508 0.9905 0.9904 0.9905 0.9904 

Length 0.6773 0.7022 0.6794 0.6771 0.8171 0.8595 0.8214 0.8168 1.1078 1.1971 1.1164 1.1072 

 𝜇1
∗ 𝜇2

∗  𝜇3
∗  𝜇𝑀𝐿

∗  𝜇1
∗ 𝜇2

∗  𝜇3
∗  𝜇𝑀𝐿

∗  𝜇1
∗ 𝜇2

∗  𝜇3
∗  𝜇𝑀𝐿

∗  

Coverage 0.9014 0.9009 0.9009 0.9009 0.9512 0.9499 0.9504 0.9508 0.9905 0.9904 0.9905 0.9904 

Length 0.6776 0.7018 0.6794 0.6769 0.8180 0.8577 0.8206 0.8168 1.1081 1.1980 1.1156 1.1067 
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Table B2.3: Normal distribution: Coverage probabilities and average lengths of confidence intervals for 𝜼 based on eight CPQs at specified confidence levels (sample size 
𝒏 = 𝟐𝟓;  𝑺 = 𝟏𝟎𝟎𝟎𝟎𝟎𝟎 simulated samples of data) 
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 Nominal confidence level 

Quantity  0.90    0.95    0.99   

 𝜂1 𝜂2 𝜂3 𝜂𝑀𝐿  𝜂1 𝜂2 𝜂3 𝜂𝑀𝐿  𝜂1 𝜂2 𝜂3 𝜂𝑀𝐿  

Coverage 0.9019 0.9015 0.9022 0.9020 0.9517 0.9514 0.9519 0.9518 0.9900 0.9897 0.9896 0.9898 

Length 1.1936 1.2378 1.1983 1.1912 1.4430 1.5145 1.4490 1.4399 1.9543 2.1166 1.9688 1.9494 

 𝜂1
∗ 𝜂2

∗  𝜂3
∗  𝜂𝑀𝐿

∗  𝜂1
∗ 𝜂2

∗  𝜂3
∗  𝜂𝑀𝐿

∗  𝜂1
∗ 𝜂2

∗  𝜂3
∗  𝜂𝑀𝐿

∗  

Coverage 0.9016 0.9008 0.9022 0.9013 0.9452 0.9455 0.9454 0.9511 0.9808 0.9831 0.9813 0.9899 

Length 1.1801 1.2233 1.1841 1.1883 1.4221 1.4953 1.4281 1.4345 1.9220 2.0786 1.9345 1.9521 
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Table B2.4: Logistic distribution: Coverage probabilities and average lengths of confidence intervals for 𝝈 based on four CPQs at specified confidence levels (sample size 
𝒏 = 𝟐𝟓;  𝑺 = 𝟏𝟎𝟎𝟎𝟎𝟎𝟎 simulated samples of data) 
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 Nominal confidence level 

Quantity  0.90    0.95    0.99   

 𝜎1 𝜎2 𝜎3 𝜎𝑀𝐿 𝜎1 𝜎2 𝜎3 𝜎𝑀𝐿 𝜎1 𝜎2 𝜎3 𝜎𝑀𝐿 

Coverage 0.9008 0.9004 0.9008 0.9009 0.9502 0.9496 0.9499 0.9499 0.9901 0.9898 0.9903 0.9901 

Length 0.5860 0.8405 0.6271 0.5855 0.7085 1.0192 0.7577 0.7076 0.9656 1.3869 1.0320 0.9647 
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Table B2.5: Logistic distribution: Coverage probabilities and average lengths of confidence intervals for 𝝁 based on eight CPQs at specified confidence levels (sample size 
𝒏 = 𝟐𝟓;  𝑺 = 𝟏𝟎𝟎𝟎𝟎𝟎𝟎 simulated samples of data) 
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 Nominal confidence level 

Quantity  0.90    0.95    0.99   

 𝜇1 𝜇2 𝜇3 𝜇𝑀𝐿 𝜇1 𝜇2 𝜇3 𝜇𝑀𝐿 𝜇1 𝜇2 𝜇3 𝜇𝑀𝐿 

Coverage 0.9008 0.9000 0.9009 0.9011 0.9505 0.9495 0.9498 0.9502 0.9905 0.9903 0.9904 0.9905 

Length 1.1784 1.2248 1.1854 1.1782 1.4177 1.4935 1.4278 1.4177 1.9118 2.0785 1.9349 1.9117 

 𝜇1
∗ 𝜇2

∗  𝜇3
∗  𝜇𝑀𝐿

∗  𝜇1
∗ 𝜇2

∗  𝜇3
∗  𝜇𝑀𝐿

∗  𝜇1
∗ 𝜇2

∗  𝜇3
∗  𝜇𝑀𝐿

∗  

Coverage 0.9045 0.9030 0.9043 0.9007 0.9548 0.9536 0.9543 0.9502 0.9925 0.9920 0.9926 0.9906 

Length 1.1919 1.2373 1.1982 1.1763 1.4466 1.5237 1.4578 1.4176 1.9867 2.1478 2.0085 1.9141 
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Table B2.6: Logistic distribution: Coverage probabilities and average lengths of confidence intervals for 𝜼 based on eight CPQs at specified confidence levels (sample size 
𝒏 = 𝟐𝟓;  𝑺 = 𝟏𝟎𝟎𝟎𝟎𝟎𝟎 simulated samples of data) 
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 Nominal confidence level 

Quantity  0.90    0.95    0.99   

 𝜂1 𝜂2 𝜂3 𝜂𝑀𝐿  𝜂1 𝜂2 𝜂3 𝜂𝑀𝐿  𝜂1 𝜂2 𝜂3 𝜂𝑀𝐿  

Coverage 0.9000 0.9004 0.9003 0.9004 0.9508 0.9498 0.9505 0.9507 0.9904 0.9900 0.9903 0.9904 

Length 2.4500 2.5425 2.4616 2.4493 2.9570 3.1140 2.9786 2.9554 4.0196 4.3694 4.0664 4.0172 

 𝜂1
∗ 𝜂2

∗  𝜂3
∗  𝜂𝑀𝐿

∗  𝜂1
∗ 𝜂2

∗  𝜂3
∗  𝜂𝑀𝐿

∗  𝜂1
∗ 𝜂2

∗  𝜂3
∗  𝜂𝑀𝐿

∗  

Coverage 0.8991 0.8977 0.8985 0.9000 0.9397 0.9415 0.9404 0.9504 0.9766 0.9804 0.9775 0.9904 

Length 2.4373 2.5318 2.4496 2.4466 2.9576 3.1172 2.9808 2.9510 4.06445 4.4025 4.1100 4.0168 
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Table B2.7: Uniform distribution: Coverage probabilities and average lengths of confidence intervals for 𝝈 based on four CPQs at specified confidence levels (sample size 
𝒏 = 𝟐𝟓;  𝑺 = 𝟏𝟎𝟎𝟎𝟎𝟎𝟎 simulated samples of data) 
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 Nominal confidence level 

Quantity  0.90    0.95    0.99   

 𝜎1 𝜎2 𝜎3 𝜎𝑀𝐿 𝜎1 𝜎2 𝜎3 𝜎𝑀𝐿 𝜎1 𝜎2 𝜎3 𝜎𝑀𝐿 

Coverage 0.9000 0.8989 0.9007 0.9016 0.9497 0.9489 0.9500 0.9518 0.9899 0.9896 0.9900 0.9902 

Length 0.1836 0.6261 0.1883 0.1208 0.2269 0.7552 0.2345 0.1522 0.3237 1.0216 0.3414 0.2276 
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Table B2.8: Uniform distribution: Coverage probabilities and average lengths of confidence intervals for 𝝁 based on eight CPQs at specified confidence levels (sample size 
𝒏 = 𝟐𝟓;  𝑺 = 𝟏𝟎𝟎𝟎𝟎𝟎𝟎 simulated samples of data) 
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 Nominal confidence level 

Quantity  0.90    0.95    0.99   

 𝜇1 𝜇2 𝜇3 𝜇𝑀𝐿 𝜇1 𝜇2 𝜇3 𝜇𝑀𝐿 𝜇1 𝜇2 𝜇3 𝜇𝑀𝐿 

Coverage 0.9030 0.9030 0.8808 0.9011 0.9518 0.9500 0.9502 0.9507 0.9904 0.9898 0.9950 0.9907 

Length 0.1207 0.1268 0.1200 0.1062 0.1524 0.1631 0.1518 0.1304 0.2291 0.2517 0.2306 0.1834 

 𝜇1
∗ 𝜇2

∗  𝜇3
∗  𝜇𝑀𝐿

∗  𝜇1
∗ 𝜇2

∗  𝜇3
∗  𝜇𝑀𝐿

∗  𝜇1
∗ 𝜇2

∗  𝜇3
∗  𝜇𝑀𝐿

∗  

Coverage 0.9346 0.9089 0.9166 0.9014 0.9680 0.9529 0.9679 0.9508 0.9907 0.9894 0.9908 0.9905 

Length 0.1158 0.1221 0.1143 0.1064 0.1430 0.1532 0.1425 0.1305 0.2041 0.2253 0.2043 0.1829 
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Table B2.9: Uniform distribution: Coverage probabilities and average lengths of confidence intervals for 𝜼 based on eight CPQs at specified confidence levels (sample size 
𝒏 = 𝟐𝟓;  𝑺 = 𝟏𝟎𝟎𝟎𝟎𝟎𝟎 simulated samples of data) 
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 Nominal confidence level 

Quantity  0.90    0.95    0.99   

 𝜂1 𝜂2 𝜂3 𝜂𝑀𝐿  𝜂1 𝜂2 𝜂3 𝜂𝑀𝐿  𝜂1 𝜂2 𝜂3 𝜂𝑀𝐿  

Coverage 0.8997 0.8971 0.9025 0.9014 0.9516 0.9499 0.9639 0.9503 0.9903 0.9904 0.9844 0.9903 

Length 0.1178 0.1235 0.1181 0.1754 0.1487 0.1593 0.1500 0.2287 0.2231 0.2451 0.2231 0.3521 

 𝜂1
∗ 𝜂2

∗  𝜂3
∗  𝜂𝑀𝐿

∗  𝜂1
∗ 𝜂2

∗  𝜂3
∗  𝜂𝑀𝐿

∗  𝜂1
∗ 𝜂2

∗  𝜂3
∗  𝜂𝑀𝐿

∗  

Coverage 0.9264 0.9051 0.9324 0.9014 0.9637 0.9512 0.9657 0.9499 0.9906 0.9893 0.9905 0.9903 

Length 0.1130 0.1188 0.1143 0.1753 0.1393 0.1494 0.1406 0.2280 0.1982 0.2196 0.1968 0.3525 
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Table B2.10: Pareto distribution: Coverage probabilities and average lengths of confidence intervals for 𝝈 based on four CPQs at specified confidence levels (sample size 
𝒏 = 𝟐𝟓;  𝑺 = 𝟏𝟎𝟎𝟎𝟎𝟎𝟎 simulated samples of data) 
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 Nominal confidence level 

Quantity  0.90    0.95    0.99   

 𝜎1 𝜎2 𝜎3 𝜎𝑀𝐿 𝜎1 𝜎2 𝜎3 𝜎𝑀𝐿 𝜎1 𝜎2 𝜎3 𝜎𝑀𝐿 

Coverage 0.8993 0.9002 0.8998 0.8992 0.9494 0.9497 0.9495 0.9492 0.9900 0.9899 0.9900 0.9899 

Length 0.7150 0.9618 0.7745 0.7150 0.8661 1.1674 0.9381 0.8659 1.1859 1.6080 1.2861 1.1858 
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Table B2.11: Pareto distribution: Coverage probabilities and average lengths of confidence intervals for 𝝁 based on eight CPQs at specified confidence levels (sample size 
𝒏 = 𝟐𝟓;  𝑺 = 𝟏𝟎𝟎𝟎𝟎𝟎𝟎 simulated samples of data) 
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 Nominal confidence level 

Quantity  0.90    0.95    0.99   

 𝜇1 𝜇2 𝜇3 𝜇𝑀𝐿 𝜇1 𝜇2 𝜇3 𝜇𝑀𝐿 𝜇1 𝜇2 𝜇3 𝜇𝑀𝐿 

Coverage 0.9023 0.9020 0.9061 0.9020 0.9517 0.9516 0.9487 0.9527 0.9901 0.9905 0.9916 0.9904 

Length 0.1254 0.1320 0.1271 0.1254 0.1582 0.1695 0.1609 0.1582 0.2380 0.2626 0.2441 0.2376 

 𝜇1
∗ 𝜇2

∗  𝜇3
∗  𝜇𝑀𝐿

∗  𝜇1
∗ 𝜇2

∗  𝜇3
∗  𝜇𝑀𝐿

∗  𝜇1
∗ 𝜇2

∗  𝜇3
∗  𝜇𝑀𝐿

∗  

Coverage 0.9468 0.9384 0.9466 0.9024 0.9732 0.9722 0.9733 0.9505 0.9943 0.9945 0.9945 0.9902 

Length 0.1307 0.1366 0.1319 0.1258 0.1675 0.1774 0.1697 0.1583 0.2557 0.2760 0.2603 0.2372 
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Table B2.12: Pareto distribution: Coverage probabilities and average lengths of confidence intervals for 𝜼 based on eight CPQs at specified confidence levels (sample size 
𝒏 = 𝟐𝟓;  𝑺 = 𝟏𝟎𝟎𝟎𝟎𝟎𝟎 simulated samples) 
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 Nominal confidence level 

Quantity  0.90    0.95    0.99   

 𝜂1 𝜂2 𝜂3 𝜂𝑀𝐿  𝜂1 𝜂2 𝜂3 𝜂𝑀𝐿  𝜂1 𝜂2 𝜂3 𝜂𝑀𝐿  

Coverage 0.8994 0.9009 0.8997 0.8991 0.9494 0.9502 0.9501 0.9494 0.9899 0.9898 0.9900 0.9900 

Length 2.6122 2.7282 2.6398 2.6120 3.1634 3.3553 3.2078 3.1627 4.3354 4.7442 4.4270 4.3363 

 𝜂1
∗ 𝜂2

∗  𝜂3
∗  𝜂𝑀𝐿

∗  𝜂1
∗ 𝜂2

∗  𝜂3
∗  𝜂𝑀𝐿

∗  𝜂1
∗ 𝜂2

∗  𝜂3
∗  𝜂𝑀𝐿

∗  

Coverage 0.8915 0.8909 0.8913 0.8991 0.9279 0.9318 0.9289 0.9494 0.9683 0.9729 0.9698 0.9899 

Length 2.5897 2.7037 2.6162 2.6101 3.1630 3.3470 3.2031 3.1624 4.4089 4.8026 4.5014 4.3264 
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Appendix C: LS and LLS families of distributions: two-sample problem: lower and upper 

quantiles of the distribution of CPQs for 𝝆 = 𝝈𝟏 𝝈𝟐⁄  

C1: LS and LLS families of distributions: lower and upper quantiles of the distribution of CPQs for 𝝆 =

𝝈𝟏 𝝈𝟐⁄ ; sample sizes 𝒏𝟏 = 𝒏𝟐 = 𝟏𝟎  

Table C1.1: Normal distribution: Lower and upper quantiles of two CPQs for 𝝆 = 𝝈𝟏 𝝈𝟐⁄  at specified values of alpha (sample sizes 𝒏𝟏 = 𝒏𝟐 = 𝟏𝟎 ;  𝑺 = 𝟏𝟎𝟎𝟎𝟎𝟎𝟎 draws 
from the distribution of CPQs) 
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Quantile 

 𝛼 2⁄  1 − 𝛼 2⁄  

𝛼 ℚ𝜌𝑅 ℚ𝜌𝑀𝐿 ℚ𝜌𝑅 ℚ𝜌𝑀𝐿 

0.10 0.5584 0.5603 1.7883 1.7832 

0.05 0.4962 0.4978 2.0138 2.0069 

0.01 0.3887 0.3901 2.5623 2.5565 
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Table C1.2: Logistic distribution: Lower and upper quantiles of two CPQs for 𝝆 = 𝝈𝟏 𝝈𝟐⁄  at specified values of alpha (sample sizes 𝒏𝟏 = 𝒏𝟐 = 𝟏𝟎;  𝑺 = 𝟏𝟎𝟎𝟎𝟎𝟎𝟎 draws 
from the distribution of CPQs) 
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Quantile 

 𝛼 2⁄  1 − 𝛼 2⁄  

𝛼 ℚ𝜌𝑅 ℚ𝜌𝑀𝐿 ℚ𝜌𝑅 ℚ𝜌𝑀𝐿 

0.10 0.5160 0.5161 1.9400 1.9385 

0.05 0.4526 0.4530 2.2139 2.2115 

0.01 0.3467 0.3466 2.8886 2.8867 
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Table C1.3: Uniform distribution: Lower and upper quantiles of two CPQs for 𝝆 = 𝝈𝟏 𝝈𝟐⁄  at specified values of alpha (sample sizes 𝒏𝟏 = 𝒏𝟐 = 𝟏𝟎;  𝑺 = 𝟏𝟎𝟎𝟎𝟎𝟎𝟎 draws 
from the distribution of CPQs) 
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Quantile 

 𝛼 2⁄  1 − 𝛼 2⁄  

𝛼 ℚ𝜌𝑅 ℚ𝜌𝑀𝐿 ℚ𝜌𝑅 ℚ𝜌𝑀𝐿 

0.10 0.7080 0.7962 1.4136 1.3592 

0.05 0.6472 0.6806 1.5460 1.4705 

0.01 0.5302 0.5728 1.8818 1.7448 
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Table C1.4: Pareto distribution: Lower and upper quantiles of two CPQs for 𝝆 = 𝝈𝟏 𝝈𝟐⁄  at specified values of alpha (sample sizes 𝒏𝟏 = 𝒏𝟐 = 𝟏𝟎;  𝑺 = 𝟏𝟎𝟎𝟎𝟎𝟎𝟎 draws from 
the distribution of CPQs) 
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Quantile 

 𝛼 2⁄  1 − 𝛼 2⁄  

𝛼 ℚ𝜌𝑅 ℚ𝜌𝑀𝐿 ℚ𝜌𝑅 ℚ𝜌𝑀𝐿 

0.10 0.4513 0.4513 2.2159 2.2154 

0.05 0.3857 0.3857 2.5910 2.5905 

0.01 0.2814 0.2815 3.5525 3.5529 

 

 

 

 

 

 

 

  



382 

Table C1.5: Weibull distribution: Lower and upper quantiles of two CPQs for 𝝆 = 𝝈𝟏 𝝈𝟐⁄  at specified values of alpha (sample sizes 𝒏𝟏 = 𝒏𝟐 = 𝟏𝟎;  𝑺 = 𝟏𝟎𝟎𝟎𝟎𝟎𝟎 draws 
from the distribution of CPQs) 
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Quantile 

 𝛼 2⁄  1 − 𝛼 2⁄  

𝛼 ℚ𝜌𝑅 ℚ𝜌𝑀𝐿 ℚ𝜌𝑅 ℚ𝜌𝑀𝐿 

0.10 0.5263 0.5273 1.9021 1.8978 

0.05 0.4626 0.4635 2.1646 2.1588 

0.01 0.3564 0.3572 2.8136 2.8059 
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C2: LS and LLS families of distributions: lower and upper quantiles of the distribution of CPQs for 𝝆 =

𝝈𝟏 𝝈𝟐⁄ ; sample sizes 𝒏𝟏 = 𝒏𝟐 = 𝟐𝟓  

Table C2.1: Normal distribution: Lower and upper quantiles of two CPQs for 𝝆 at specified values of alpha (sample sizes 𝒏𝟏 = 𝒏𝟐 = 𝟐𝟓 ;  𝑺 = 𝟏𝟎𝟎𝟎𝟎𝟎𝟎 draws from the 
distribution of CPQs) 
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Quantile 

 𝛼 2⁄  1 − 𝛼 2⁄  

𝛼 ℚ𝜌𝑅 ℚ𝜌𝑀𝐿 ℚ𝜌𝑅 ℚ𝜌𝑀𝐿 

0.10 0.7092 0.7099 1.4093 1.4083 

0.05 0.6631 0.6640 1.5084 1.5065 

0.01 0.5807 0.5813 1.7261 1.7235 
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Table C2.2: Logistic distribution: Lower and upper quantiles of two CPQs for 𝝆 at specified values of alpha (sample sizes 𝒏𝟏 = 𝒏𝟐 = 𝟐𝟓;  𝑺 = 𝟏𝟎𝟎𝟎𝟎𝟎𝟎 draws from the 
distribution of CPQs) 
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Quantile 

 𝛼 2⁄  1 − 𝛼 2⁄  

𝛼 ℚ𝜌𝑅 ℚ𝜌𝑀𝐿 ℚ𝜌𝑅 ℚ𝜌𝑀𝐿 

0.10 0.6707 0.6710 1.4916 1.4916 

0.05 0.6206 0.6209 1.6123 1.6116 

0.01 0.5314 0.5317 1.8775 1.8766 
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Table C2.3: Uniform distribution: Lower and upper quantiles of two CPQs for 𝝆 at specified values of alpha (sample sizes 𝒏𝟏 = 𝒏𝟐 = 𝟐𝟓;  𝑺 = 𝟏𝟎𝟎𝟎𝟎𝟎𝟎 draws from the 
distribution of CPQs) 
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Quantile 

 𝛼 2⁄  1 − 𝛼 2⁄  

𝛼 ℚ𝜌𝑅 ℚ𝜌𝑀𝐿 ℚ𝜌𝑅 ℚ𝜌𝑀𝐿 

0.10 0.8749 0.9122 1.1434 1.0966 

0.05 0.8455 0.8873 1.1837 1.1275 

0.01 0.7823 0.8315 1.2777 1.2020 
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Table C2.4: Pareto distribution: Lower and upper quantiles of two CPQs for 𝝆 at specified values of alpha (sample sizes 𝒏𝟏 = 𝒏𝟐 = 𝟐𝟓;  𝑺 = 𝟏𝟎𝟎𝟎𝟎𝟎𝟎 draws from the 
distribution of CPQs) 
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Quantile 

 𝛼 2⁄  1 − 𝛼 2⁄  

𝛼 ℚ𝜌𝑅 ℚ𝜌𝑀𝐿 ℚ𝜌𝑅 ℚ𝜌𝑀𝐿 

0.10 0.7092 0.7099 1.4093 1.4083 

0.05 0.6631 0.6640 1.5084 1.5065 

0.01 0.5807 0.5813 1.7261 1.7235 
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Table C2.5: Weibull distribution: Lower and upper quantiles of two CPQs for 𝝆 at specified values of alpha (sample sizes 𝒏𝟏 = 𝒏𝟐 = 𝟐𝟓;  𝑺 = 𝟏𝟎𝟎𝟎𝟎𝟎𝟎 draws from the 
distribution of CPQs) 
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Quantile 

 𝛼 2⁄  1 − 𝛼 2⁄  

𝛼 ℚ𝜌𝑅 ℚ𝜌𝑀𝐿 ℚ𝜌𝑅 ℚ𝜌𝑀𝐿 

0.10 0.6835 0.6842 1.4624 1.4610 

0.05 0.6346 0.6353 1.5753 1.5731 

0.01 0.5478 0.5486 1.8262 1.8229 
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Appendix D: LS and LLS families of distributions: two-sample problem: Coverage 

probabilities and average lengths of confidence intervals for 𝝆 = 𝝈𝟏 𝝈𝟐⁄ : 

equal and unequal 𝝈𝟏 and 𝝈𝟐 

D1: LS and LLS families of distributions: coverage probabilities and average lengths of confidence intervals 

for 𝝆 = 𝝈𝟏 𝝈𝟐⁄ ; samples sizes 𝒏𝟏 = 𝒏𝟐 = 𝟏𝟎   

Table D1.1: Normal distribution: Coverage probabilities and average lengths of confidence intervals for 𝝆 = 𝝈𝟏 𝝈𝟐⁄  based on two CPQs at specified nominal confidence 
levels (𝑺 = 𝟏𝟎𝟎𝟎𝟎𝟎 simulated samples of data) 
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𝑛1 = 10; 𝜇1 = 0; 𝜎1 = 1 / 𝑛2 = 10; 𝜇2 = 0; 𝜎2 = 1   

Nominal confidence level 

Quantity 0.90 0.95 0.99 

 𝜌𝑅 𝜌𝑀𝐿 𝜌𝑅 𝜌𝑀𝐿 𝜌𝑅 𝜌𝑀𝐿 

Coverage 0.9012 0.9008 0.9506 0.9510 0.9901 0.9900 

Average length 1.3070 1.2989 1.6127 1.6028 2.3098 2.3010 

𝑛1 = 10; 𝜇1 = 0; 𝜎1 = 1 / 𝑛2 = 10; 𝜇2 = 0; 𝜎2 = 2   

Coverage 0.8999 0.9004 0.9499 0.9498 0.9900 0.9900 

Average length 0.6546 0.6505 0.8078 0.8027 1.1569 1.1523 
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Table D1.2: Logistic distribution: Coverage probabilities and average lengths of confidence intervals for 𝝆 = 𝝈𝟏 𝝈𝟐⁄  based on two CPQs at specified nominal confidence 
levels (𝑺 = 𝟏𝟎𝟎𝟎𝟎𝟎 simulated samples of data) 
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𝑛1 = 10; 𝜇1 = 0; 𝜎1 = 1 / 𝑛2 = 10; 𝜇2 = 0; 𝜎2 = 1   

Nominal confidence level 

Quantity 0.90 0.95 0.99 

 𝜌𝑅 𝜌𝑀𝐿 𝜌𝑅 𝜌𝑀𝐿 𝜌𝑅 𝜌𝑀𝐿 

Coverage 0.9006 0.9003 0.9488 0.9490 0.9896 0.9897 

Average length 1.5482 1.5460 1.9149 1.9113 2.7635 2.7608 

𝑛1 = 10; 𝜇1 = 0; 𝜎1 = 1 / 𝑛2 = 10; 𝜇2 = 0; 𝜎2 = 2   

Coverage 0.9001 0.9004 0.9509 0.9507 0.9907 0.9909 

Average length 0.7729 0.7720 0.9559 0.9544 1.3796 1.3786 
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Table D1.3: Uniform distribution: Coverage probabilities and average lengths of confidence intervals for 𝝆 = 𝝈𝟏 𝝈𝟐⁄  based on two CPQs at specified nominal confidence 
levels (𝑺 = 𝟏𝟎𝟎𝟎𝟎𝟎 simulated samples of data) 
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𝑛1 = 10; 𝜇1 = 0; 𝜎1 = 1 / 𝑛2 = 10; 𝜇2 = 0; 𝜎2 = 1   

Nominal confidence level 

Quantity 0.90 0.95 0.99 

 𝜌𝑅 𝜌𝑀𝐿 𝜌𝑅 𝜌𝑀𝐿 𝜌𝑅 𝜌𝑀𝐿 

Coverage 0.9006 0.8995 0.9505 0.9501 0.9899 0.9899 

Average length 0.7221 0.6344 0.9198 0.8044 1.3832 1.1935 

𝑛1 = 10; 𝜇1 = 0; 𝜎1 = 1 / 𝑛2 = 10; 𝜇2 = 0; 𝜎2 = 2   

Coverage 0.9011 0.9006 0.9509 0.9510 0.9901 0.9897 

Average length 0.3610 0.3172 0.4599 0.4022 0.6915 0.5968 
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Table D1.4: Pareto distribution: Coverage probabilities and average lengths of confidence intervals for 𝝆 = 𝝈𝟏 𝝈𝟐⁄  based on two CPQs at specified nominal confidence 
levels (𝑺 = 𝟏𝟎𝟎𝟎𝟎𝟎 simulated samples of data) 
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𝑛1 = 10; 𝜇1 = 0; 𝜎1 = 1 / 𝑛2 = 10; 𝜇2 = 0; 𝜎2 = 1   

Nominal confidence level 

Quantity 0.90 0.95 0.99 

 𝜌𝑅 𝜌𝑀𝐿 𝜌𝑅 𝜌𝑀𝐿 𝜌𝑅 𝜌𝑀𝐿 

Coverage 0.8982 0.8982 0.9494 0.9493 0.9900 0.9900 

Average length 1.9802 1.9796 2.4748 2.4742 3.6708 3.6711 

𝑛1 = 10; 𝜇1 = 0; 𝜎1 = 1 / 𝑛2 = 10; 𝜇2 = 0; 𝜎2 = 2   

Coverage 0.9000 0.8999 0.9497 0.9496 0.9898 0.9897 

Average length 3.9619 3.9609 4.9514 4.9504 7.3444 7.3452 
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Table D1.5: Weibull distribution: Coverage probabilities and average lengths of confidence intervals for 𝝆 = 𝝈𝟏 𝝈𝟐⁄  based on two CPQs at specified nominal confidence 
levels (𝑺 = 𝟏𝟎𝟎𝟎𝟎𝟎 simulated samples of data) 
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𝑛1 = 10; 𝜇1 = 0; 𝜎1 = 1 / 𝑛2 = 10; 𝜇2 = 0; 𝜎2 = 1   

Nominal confidence level 

Quantity 0.90 0.95 0.99 

 𝜌𝑅 𝜌𝑀𝐿 𝜌𝑅 𝜌𝑀𝐿 𝜌𝑅 𝜌𝑀𝐿 

Coverage 0.9006 0.9001 0.9496 0.9495 0.9898 0.9897 

Average length 1.4801 1.4739 1.8310 1.8238 2.6435 2.6335 

𝑛1 = 10; 𝜇1 = 0; 𝜎1 = 1 / 𝑛2 = 10; 𝜇2 = 0; 𝜎2 = 2   

Coverage 0.8995 0.8993 0.9499 0.9500 0.9903 0.9904 

Average length 2.9714 2.9585 3.6759 3.6596 5.3069 5.2860 
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D2: LS and LLS families of distributions: coverage probabilities and average lengths of confidence intervals 

for 𝝆 = 𝝈𝟏 𝝈𝟐⁄ ; samples sizes 𝒏𝟏 = 𝒏𝟐 = 𝟐𝟓   

Table D2.1: Normal distribution: Coverage probabilities and average lengths of confidence intervals for 𝝆 = 𝝈𝟏 𝝈𝟐⁄  based on two CPQs at specified nominal confidence 
levels (𝑺 = 𝟏𝟎𝟎𝟎𝟎𝟎 simulated samples of data) 
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𝑛1 = 25; 𝜇1 = 0; 𝜎1 = 1 / 𝑛2 = 25; 𝜇2 = 0; 𝜎2 = 1   

Nominal confidence level 

Quantity 0.90 0.95 0.99 

 𝜌𝑅 𝜌𝑀𝐿 𝜌𝑅 𝜌𝑀𝐿 𝜌𝑅 𝜌𝑀𝐿 

Coverage 0.8991 0.8990 0.9494 0.9496 0.9891 0.9892 

Average length 0.7161 0.7142 0.8646 0.8616 1.1715 1.1680 

𝑛1 = 25; 𝜇1 = 0; 𝜎1 = 1 / 𝑛2 = 25; 𝜇2 = 0; 𝜎2 = 2   

Coverage 0.9009 0.9012 0.9510 0.9510 0.9904 0.9903 

Average length 0.3575 0.3566 0.4316 0.4302 0.5849 0.5832 
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Table D2.2: Logistic distribution: Coverage probabilities and average lengths of confidence intervals for 𝝆 = 𝝈𝟏 𝝈𝟐⁄  based on two CPQs at specified nominal confidence 
levels (𝑺 = 𝟏𝟎𝟎𝟎𝟎𝟎 simulated samples of data) 
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𝑛1 = 25; 𝜇1 = 0; 𝜎1 = 1 / 𝑛2 = 25; 𝜇2 = 0; 𝜎2 = 1   

Nominal confidence level 

Quantity 0.90 0.95 0.99 

 𝜌𝑅 𝜌𝑀𝐿 𝜌𝑅 𝜌𝑀𝐿 𝜌𝑅 𝜌𝑀𝐿 

Coverage 0.9001 0.8999 0.9496 0.9495 0.9900 0.9902 

Average length 0.8454 0.8451 1.0213 1.0202 1.3863 1.3850 

𝑛1 = 25; 𝜇1 = 0; 𝜎1 = 1 / 𝑛2 = 25; 𝜇2 = 0; 𝜎2 = 2   

Coverage 0.8977 0.8977 0.9484 0.9484 0.9900 0.9899 

Average length 0.4233 0.4231 0.5114 0.5108 0.6941 0.6935 
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Table D2.3: Uniform distribution: Coverage probabilities and average lengths of confidence intervals for 𝝆 = 𝝈𝟏 𝝈𝟐⁄  based on two CPQs at specified nominal confidence 
levels (𝑺 = 𝟏𝟎𝟎𝟎𝟎𝟎 simulated samples of data) 
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𝑛1 = 25; 𝜇1 = 0; 𝜎1 = 1 / 𝑛2 = 25; 𝜇2 = 0; 𝜎2 = 1   

Nominal confidence level 

Quantity 0.90 0.95 0.99 

 𝜌𝑅 𝜌𝑀𝐿 𝜌𝑅 𝜌𝑀𝐿 𝜌𝑅 𝜌𝑀𝐿 

Coverage 0.8984 0.8991 0.9499 0.9499 0.9901 0.9899 

Average length 0.2693 0.1846 0.3393 0.2405 0.4969 0.3710 

𝑛1 = 25; 𝜇1 = 0; 𝜎1 = 1 / 𝑛2 = 25; 𝜇2 = 0; 𝜎2 = 2   

Coverage 0.9017 0.9006 0.9508 0.9497 0.9900 0.9900 

Average length 0.1348 0.0924 0.1698 0.1203 0.2487 0.1886 
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Table D2.4: Pareto distribution: Coverage probabilities and average lengths of confidence intervals for 𝝆 = 𝝈𝟏 𝝈𝟐⁄  based on two CPQs at specified nominal confidence 
levels (𝑺 = 𝟏𝟎𝟎𝟎𝟎𝟎 simulated samples of data) 
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𝑛1 = 25; 𝜇1 = 0; 𝜎1 = 1 / 𝑛2 = 25; 𝜇2 = 0; 𝜎2 = 1   

Nominal confidence level 

Quantity 0.90 0.95 0.99 

 𝜌𝑅 𝜌𝑀𝐿 𝜌𝑅 𝜌𝑀𝐿 𝜌𝑅 𝜌𝑀𝐿 

`Coverage 0.9000 0.9018 0.9503 0.9503 0.9902 0.9903 

Average length 1.0407 1.0437 1.2627 1.2626 1.7387 1.7374 

𝑛1 = 25; 𝜇1 = 0; 𝜎1 = 1 / 𝑛2 = 25; 𝜇2 = 0; 𝜎2 = 2   

Coverage 0.9011 0.9030 0.9500 0.9500 0.9900 0.9900 

Average length 2.0807 2.0867 2.5246 2.5243 3.4761 3.4735 
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Table D2.5: Weibull distribution: Coverage probabilities and average lengths of confidence intervals for 𝝆 = 𝝈𝟏 𝝈𝟐⁄  based on two CPQs at specified nominal confidence 
levels (𝑺 = 𝟏𝟎𝟎𝟎𝟎𝟎 simulated samples of data) 
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𝑛1 = 25; 𝜇1 = 0; 𝜎1 = 1 / 𝑛2 = 25; 𝜇2 = 0; 𝜎2 = 1   

Nominal confidence level 

Quantity 0.90 0.95 0.99 

 𝜌𝑅 𝜌𝑀𝐿 𝜌𝑅 𝜌𝑀𝐿 𝜌𝑅 𝜌𝑀𝐿 

Coverage 0.8958 0.8988 0.9488 0.9486 0.9901 0.9901 

Average length 0.7895 0.7974 0.9659 0.9627 1.3127 1.3081 

𝑛1 = 25; 𝜇1 = 0; 𝜎1 = 1 / 𝑛2 = 25; 𝜇2 = 0; 𝜎2 = 2   

Coverage 0.8983 0.9013 0.9509 0.9511 0.9904 0.9901 

Average length 1.5772 1.5932 1.9296 1.9234 2.6223 2.6136 
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Appendix E: LS and LLS families of distributions: two-sample problem: coverage 

probabilities and average lengths of confidence intervals for 𝜹 = 𝝁𝟏 − 𝝁𝟐 

and 𝒅 = 𝜼𝟏 − 𝜼𝟐: equal and unequal 𝝈𝟏 and 𝝈𝟐 

E1: LS and LLS families of distributions: coverage probabilities and average lengths of confidence intervals 

for 𝜹 = 𝝁𝟏 − 𝝁𝟐 and 𝐝 = 𝜼𝟏 − 𝜼𝟐; samples sizes 𝒏𝟏 = 𝒏𝟐 = 𝟏𝟎   

Table E1.1: Normal distribution: Coverage probabilities and average lengths of fiducial generalized confidence intervals for 𝜹 = 𝝁𝟏 − 𝝁𝟐 based on two FGPQs at specified 
nominal confidence levels (𝑺 = 𝟏𝟎𝟎𝟎𝟎𝟎 simulated samples of data; 𝑰 = 𝟒𝟎𝟎𝟎 draws from the fiducial distribution) 
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𝑛1 = 10; 𝜇1 = 0; 𝜎1 = 1 / 𝑛2 = 10; 𝜇2 = 0; 𝜎2 = 1   

   

Nominal confidence level 

Quantity   0.90                                0.95   0.99  

  𝛿𝑅  𝛿𝑀𝐿         𝛿𝑅  𝛿𝑀𝐿  𝛿𝑅  𝛿𝑀𝐿 

Coverage  0.9172  0.9169  0.9619  0.9618  0.9936  0.9936 

Length  1.6299  1.6285  1.9855  1.9834  2.7657  2.7617 

𝑛1 = 10; 𝜇1 = 0; 𝜎1 = 1 / 𝑛2 = 10; 𝜇2 = 0; 𝜎2 = 2   

Coverage  0.9117  0.9118  0.9568  0.9568  0.9918  0.9919 

Length  2.5630  2.5608  3.1346  3.1311  4.4141  4.4073 
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Table E1.2: Normal distribution: Coverage probabilities and average lengths of fiducial generalized confidence intervals for 𝒅 = 𝜼𝟏 − 𝜼𝟐 based on two FGPQs at specified 
nominal confidence levels (𝑺 = 𝟏𝟎𝟎𝟎𝟎𝟎 simulated samples of data; 𝑰 = 𝟒𝟎𝟎𝟎 draws from the fiducial distribution) 
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𝑛1 = 10; 𝜇1 = 0; 𝜎1 = 1 / 𝑛2 = 10; 𝜇2 = 0; 𝜎2 = 1   

   

Nominal confidence level 

Quantity   0.90                                0.95   0.99  

  𝑑𝑅  𝑑𝑀𝐿         𝑑𝑅  𝑑𝑀𝐿  𝑑𝑅  𝑑𝑀𝐿 

Coverage  0.9023  0.9024  0.9516  0.9513  0.9896  0.9897 

Length  3.0515  3.0394  3.8333  3.8181  5.7480  5.7248 

𝑛1 = 10; 𝜇1 = 0; 𝜎1 = 1 / 𝑛2 = 10; 𝜇2 = 0; 𝜎2 = 2   

Coverage  0.9034  0.9035  0.9522  0.9518  0.9901  0.9903 

Length  4.7803  4.7617  5.9805  5.9566  8.9277  8.8929 
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Table E1.3: Logistic distribution: Coverage probabilities and average lengths of fiducial generalized confidence intervals for 𝜹 = 𝝁𝟏 − 𝝁𝟐 based on two FGPQs at specified 
nominal confidence levels (𝑺 = 𝟏𝟎𝟎𝟎𝟎𝟎 simulated samples of data; 𝑰 = 𝟒𝟎𝟎𝟎 draws from the fiducial distribution) 
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𝑛1 = 10; 𝜇1 = 0; 𝜎1 = 1 / 𝑛2 = 10; 𝜇2 = 0; 𝜎2 = 1   

   

Nominal confidence level 

Quantity   0.90                                0.95   0.99  

  𝛿𝑅  𝛿𝑀𝐿         𝛿𝑅  𝛿𝑀𝐿  𝛿𝑅  𝛿𝑀𝐿 

Coverage  0.9197  0.9196  0.9638  0.9630  0.9927  0.9927 

Length  2.8521  2.8512  3.4661  3.4653  4.8031  4.8024 

𝑛1 = 10; 𝜇1 = 0; 𝜎1 = 1 / 𝑛2 = 10; 𝜇2 = 0; 𝜎2 = 2   

Coverage  0.9143  0.9145  0.9601  0.9599  0.9927  0.9926 

Length  4.4593  4.4574  5.4378  5.4350  7.5990  7.5972 

  



420 

Table E1.4: Logistic distribution: Coverage probabilities and average lengths of fiducial generalized confidence intervals for 𝒅 = 𝜼𝟏 − 𝜼𝟐 based on two FGPQs at specified 
nominal confidence levels (𝑺 = 𝟏𝟎𝟎𝟎𝟎𝟎 simulated samples of data; 𝑰 = 𝟒𝟎𝟎𝟎 draws from the fiducial distribution) 
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𝑛1 = 10; 𝜇1 = 0; 𝜎1 = 1 / 𝑛2 = 10; 𝜇2 = 0; 𝜎2 = 1   

   

Nominal confidence level 

Quantity   0.90                                0.95   0.99  

  𝑑𝑅  𝑑𝑀𝐿         𝑑𝑅  𝑑𝑀𝐿  𝑑𝑅  𝑑𝑀𝐿 

Coverage  0.9041  0.9036  0.9501  0.9506  0.9886  0.9883 

Length  6.2858  6.2828  7.8824  7.8772  11.7886  11.7842 

𝑛1 = 10; 𝜇1 = 0; 𝜎1 = 1 / 𝑛2 = 10; 𝜇2 = 0; 𝜎2 = 2   

Coverage  0.9025  0.9012  0.9518  0.9520  0.9901  0.9907 

Length  9.7891  9.7828  12.2261  12.2178  18.1844  18.1745 
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Table E1.5: Uniform distribution: Coverage probabilities and average lengths of fiducial generalized confidence intervals for 𝜹 = 𝝁𝟏 − 𝝁𝟐 based on two FGPQs at specified 
nominal confidence levels (𝑺 = 𝟏𝟎𝟎𝟎𝟎𝟎 simulated samples of data; 𝑰 = 𝟒𝟎𝟎𝟎 draws from the fiducial distribution) 
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𝑛1 = 10; 𝜇1 = 0; 𝜎1 = 1 / 𝑛2 = 10; 𝜇2 = 0; 𝜎2 = 1   

   

Nominal confidence level 

Quantity   0.90                                0.95   0.99  

  𝛿𝑅  𝛿𝑀𝐿         𝛿𝑅  𝛿𝑀𝐿  𝛿𝑅  𝛿𝑀𝐿 

Coverage  0.8980  0.8984  0.9481  0.9488  0.9891  0.9896 

Length  0.5070  0.4310  0.6871  0.5730  1.1681  0.9264 

𝑛1 = 10; 𝜇1 = 0; 𝜎1 = 1 / 𝑛2 = 10; 𝜇2 = 0; 𝜎2 = 2   

Coverage  0.8986  0.8985  0.9504  0.9494  0.9888  0.9889 

Length  0.7755  0.6603  1.0443  0.8723  1.7534  1.3941 
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Table E1.6: Uniform distribution: Coverage probabilities and average lengths of fiducial generalized confidence intervals for 𝒅 = 𝜼𝟏 − 𝜼𝟐 based on two FGPQs at specified 
nominal confidence levels (𝑺 = 𝟏𝟎𝟎𝟎𝟎𝟎 simulated samples of data; 𝑰 = 𝟒𝟎𝟎𝟎 draws from the fiducial distribution) 

  



425 

𝑛1 = 10; 𝜇1 = 0; 𝜎1 = 1 / 𝑛2 = 10; 𝜇2 = 0; 𝜎2 = 1   

   

Nominal confidence level 

Quantity   0.90                                0.95   0.99  

  𝑑𝑅  𝑑𝑀𝐿         𝑑𝑅  𝑑𝑀𝐿  𝑑𝑅  𝑑𝑀𝐿 

Coverage  0.9027  0.9028  0.9482  0.9490  0.9904  0.9905 

Length  0.4929  0.4884  0.6686  0.6604  1.1357  1.1158 

𝑛1 = 10; 𝜇1 = 0; 𝜎1 = 1 / 𝑛2 = 10; 𝜇2 = 0; 𝜎2 = 2   

Coverage  0.9080  0.9107  0.9540  0.9552  0.9902  0.9910 

Length  0.7568  0.7508  1.0203  1.0095  1.7350  1.7064 
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Table E1.7: Pareto distribution: Coverage probabilities and average lengths of fiducial generalized confidence intervals for 𝜹 = 𝝁𝟏 − 𝝁𝟐 based on two FGPQs at specified 
nominal confidence levels (𝑺 = 𝟏𝟎𝟎𝟎𝟎𝟎 simulated samples of data; 𝑰 = 𝟒𝟎𝟎𝟎 draws from the fiducial distribution) 
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𝑛1 = 10; 𝜇1 = 0; 𝜎1 = 1 / 𝑛2 = 10; 𝜇2 = 0; 𝜎2 = 1   

   

Nominal confidence level 

Quantity   0.90                                0.95   0.99  

  𝛿𝑅  𝛿𝑀𝐿         𝛿𝑅  𝛿𝑀𝐿  𝛿𝑅  𝛿𝑀𝐿 

Coverage  0.9021  0.9018  0.9490  0.9492  0.9884  0.9884 

Length  0.5620  0.5620  0.7602  0.7601  1.2906  1.2905 

𝑛1 = 10; 𝜇1 = 0; 𝜎1 = 1 / 𝑛2 = 10; 𝜇2 = 0; 𝜎2 = 2   

Coverage  0.9047  0.9048  0.9515  0.9515  0.9884  0.9882 

Length  0.8594  0.8594  1.1549  1.1548  1.9297  1.9296 
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Table E1.8: Pareto distribution: Coverage probabilities and average lengths of fiducial generalized confidence intervals for 𝒅 = 𝜼𝟏 − 𝜼𝟐 based on two FGPQs at specified 
nominal confidence levels (𝑺 = 𝟏𝟎𝟎𝟎𝟎𝟎 simulated samples of data; 𝑰 = 𝟒𝟎𝟎𝟎 draws from the fiducial distribution) 
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𝑛1 = 10; 𝜇1 = 0; 𝜎1 = 1 / 𝑛2 = 10; 𝜇2 = 0; 𝜎2 = 1   

   

Nominal confidence level 

Quantity   0.90                                0.95   0.99  

  𝑑𝑅  𝑑𝑀𝐿         𝑑𝑅  𝑑𝑀𝐿  𝑑𝑅  𝑑𝑀𝐿 

Coverage  0.9022  0.9020  0.9499  0.9496  0.9901  0.9904 

Length  6.9827  6.9827  8.9203  8.9196  13.7998  13.7992 

𝑛1 = 10; 𝜇1 = 0; 𝜎1 = 1 / 𝑛2 = 10; 𝜇2 = 0; 𝜎2 = 2   

Coverage  0.9010  0.9016  0.9510  0.9514  0.9901  0.9902 

Length  10.8615  10.8595  13.8002  13.7985  21.2816  21.2800 
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Table E1.9: Weibull distribution: Coverage probabilities and average lengths of fiducial generalized confidence intervals for 𝜹 = 𝝁𝟏 − 𝝁𝟐 based on two FGPQs at specified 
nominal confidence levels (𝑺 = 𝟏𝟎𝟎𝟎𝟎𝟎 simulated samples of data; 𝑰 = 𝟒𝟎𝟎𝟎 draws from the fiducial distribution) 
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𝑛1 = 10; 𝜇1 = 0; 𝜎1 = 1 / 𝑛2 = 10; 𝜇2 = 0; 𝜎2 = 1   

   

Nominal confidence level 

Quantity   0.90                                0.95   0.99  

  𝛿𝑅  𝛿𝑀𝐿         𝛿𝑅  𝛿𝑀𝐿  𝛿𝑅  𝛿𝑀𝐿 

Coverage  0.9201  0.9206  0.9637  0.9637  0.9934  0.9937 

Length  1.7510  1.7487  2.1400  2.1370  3.0069  3.0013 

𝑛1 = 10; 𝜇1 = 0; 𝜎1 = 1 / 𝑛2 = 10; 𝜇2 = 0; 𝜎2 = 2   

Coverage  0.9216  0.9216  0.9640  0.9641  0.9939  0.9938 

Length  1.7532  1.7511  2.1424  2.1394  3.0103  3.0053 
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Table E1.10: Weibull distribution: Coverage probabilities and average lengths of fiducial generalized confidence intervals for 𝒅 = 𝜼𝟏 − 𝜼𝟐 based on two FGPQs at specified 
nominal confidence levels (𝑺 = 𝟏𝟎𝟎𝟎𝟎𝟎 simulated samples of data; 𝑰 = 𝟒𝟎𝟎𝟎 draws from the fiducial distribution) 
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𝑛1 = 10; 𝜇1 = 0; 𝜎1 = 1 / 𝑛2 = 10; 𝜇2 = 0; 𝜎2 = 1   

   

Nominal confidence level 

Quantity   0.90                                0.95   0.99  

  𝑑𝑅  𝑑𝑀𝐿         𝑑𝑅  𝑑𝑀𝐿  𝑑𝑅  𝑑𝑀𝐿 

Coverage  0.9068  0.9072  0.9537  0.9539  0.9905  0.9907 

Length  2.3020  2.2919  2.9169  2.9041  4.4561  4.4368 

𝑛1 = 10; 𝜇1 = 0; 𝜎1 = 1 / 𝑛2 = 10; 𝜇2 = 0; 𝜎2 = 2   

Coverage  0.9049  0.9052  0.9533  0.9532  0.9901  0.9899 

Length  2.3048  2.2949  2.9211  2.9086  4.4619  4.4427 
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E2: LS and LLS families of distributions: coverage probabilities and average lengths of confidence intervals 

for 𝜹 = 𝝁𝟏 − 𝝁𝟐 and 𝒅 = 𝜼𝟏 − 𝜼𝟐; samples sizes 𝒏𝟏 = 𝒏𝟐 = 𝟐𝟓   

Table E2.1: Normal distribution: Coverage probabilities and average lengths of fiducial generalized confidence intervals for 𝜹 = 𝝁𝟏 − 𝝁𝟐 based on two FGPQs at specified 
nominal confidence levels (𝑺 = 𝟏𝟎𝟎𝟎𝟎𝟎 simulated samples of data; 𝑰 = 𝟒𝟎𝟎𝟎 draws from the fiducial distribution) 
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𝑛1 = 25; 𝜇1 = 0; 𝜎1 = 1 / 𝑛2 = 25; 𝜇2 = 0; 𝜎2 = 1   

   

Nominal confidence level 

Quantity   0.90                                0.95   0.99  

  𝛿𝑅  𝛿𝑀𝐿         𝛿𝑅  𝛿𝑀𝐿  𝛿𝑅  𝛿𝑀𝐿 

Coverage  0.9059  0.9059  0.9538  0.9538  0.9903  0.9902 

Length  0.9644  0.9641  1.1570  1.1566  1.5467  1.5459 

𝑛1 = 25; 𝜇1 = 0; 𝜎1 = 1 / 𝑛2 = 25; 𝜇2 = 0; 𝜎2 = 2   

Coverage  0.9046  0.9046  0.9530  0.9531  0.9904  0.9903 

Length  1.5208  1.5204  1.8276  1.8270  2.4550  2.4539 
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Table E2.2: Normal distribution: Coverage probabilities and average lengths of fiducial generalized confidence intervals for 𝒅 = 𝜼𝟏 − 𝜼𝟐 based on two FGPQs at specified 
nominal confidence levels (𝑺 = 𝟏𝟎𝟎𝟎𝟎𝟎 simulated samples of data; 𝑰 = 𝟒𝟎𝟎𝟎 draws from the fiducial distribution) 
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𝑛1 = 25; 𝜇1 = 0; 𝜎1 = 1 / 𝑛2 = 25; 𝜇2 = 0; 𝜎2 = 1   

   

Nominal confidence level 

Quantity   0.90                                0.95   0.99  

  𝑑𝑅  𝑑𝑀𝐿         𝑑𝑅  𝑑𝑀𝐿  𝑑𝑅  𝑑𝑀𝐿 

Coverage  0.9004  0.9004  0.9502  0.9499  0.9893  0.9891 

Length  1.7085  1.7045  2.0752  2.0705  2.8604  2.8536 

𝑛1 = 25; 𝜇1 = 0; 𝜎1 = 1 / 𝑛2 = 25; 𝜇2 = 0; 𝜎2 = 2   

Coverage  0.9005  0.9006  0.9497  0.9497  0.9882  0.9893 

Length  2.6888  2.6828  3.2595  3.2524  4.4828  4.4730 
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Table E2.3: Logistic distribution: Coverage probabilities and average lengths of fiducial generalized confidence intervals for 𝜹 = 𝝁𝟏 − 𝝁𝟐 based on two FGPQs at specified 
nominal confidence levels (𝑺 = 𝟏𝟎𝟎𝟎𝟎𝟎 simulated samples of data; 𝑰 = 𝟒𝟎𝟎𝟎 draws from the fiducial distribution) 
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𝑛1 = 25; 𝜇1 = 0; 𝜎1 = 1 / 𝑛2 = 25; 𝜇2 = 0; 𝜎2 = 1   

   

Nominal confidence level 

Quantity   0.90                                0.95   0.99  

  𝛿𝑅  𝛿𝑀𝐿         𝛿𝑅  𝛿𝑀𝐿  𝛿𝑅  𝛿𝑀𝐿 

Coverage  0.9050  0.9030  0.9480  0.9490  0.9900  0.9900 

Length  1.6954  1.6956  2.0307  2.0309  2.790  2.7084 

𝑛1 = 25; 𝜇1 = 0; 𝜎1 = 1 / 𝑛2 = 25; 𝜇2 = 0; 𝜎2 = 2   

Coverage  0.9145  0.9134  0.9585  0.9586  0.9919  0.9918 

Length  2.6477  2.6470  3.1792  3.1783  4.2604  4.2598 
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Table E2.4: Logistic distribution: Coverage probabilities and average lengths of fiducial generalized confidence intervals for 𝒅 = 𝜼𝟏 − 𝜼𝟐 based on two FGPQs at specified 
nominal confidence levels (𝑺 = 𝟏𝟎𝟎𝟎𝟎𝟎 simulated samples of data; 𝑰 = 𝟒𝟎𝟎𝟎 draws from the fiducial distribution) 
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𝑛1 = 25; 𝜇1 = 0; 𝜎1 = 1 / 𝑛2 = 25; 𝜇2 = 0; 𝜎2 = 1   

   

Nominal confidence level 

Quantity   0.90                                0.95   0.99  

  𝑑𝑅  𝑑𝑀𝐿         𝑑𝑅  𝑑𝑀𝐿  𝑑𝑅  𝑑𝑀𝐿 

Coverage  0.9110  0.9080  0.9590  0.9590  0.9940  0.9940 

Length  3.5523  3.5503  4.3109  4.3091  5.9319  5.9307 

𝑛1 = 25; 𝜇1 = 0; 𝜎1 = 1 / 𝑛2 = 25; 𝜇2 = 0; 𝜎2 = 2   

Coverage  0.9042  0.9033  0.9504  0.9499  0.9893  0.9890 

Length  5.5432  5.5406  6.7189  6.7160  9.2329  9.2288 
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Table E2.5: Uniform distribution: Coverage probabilities and average lengths of fiducial generalized confidence intervals for 𝜹 = 𝝁𝟏 − 𝝁𝟐 based on two FGPQs at specified 
nominal confidence levels (𝑺 = 𝟏𝟎𝟎𝟎𝟎𝟎 simulated samples of data; 𝑰 = 𝟒𝟎𝟎𝟎 draws from the fiducial distribution) 
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𝑛1 = 25; 𝜇1 = 0; 𝜎1 = 1 / 𝑛2 = 25; 𝜇2 = 0; 𝜎2 = 1   

   

Nominal confidence level 

Quantity   0.90                                0.95   0.99  

  𝛿𝑅  𝛿𝑀𝐿         𝛿𝑅  𝛿𝑀𝐿  𝛿𝑅  𝛿𝑀𝐿 

Coverage  0.9030  0.9021  0.9524  0.9527  0.9906  0.9906 

Length  0.1902  0.1656  0.2511  0.2124  0.4002  0.3161 

𝑛1 = 25; 𝜇1 = 0; 𝜎1 = 1 / 𝑛2 = 25; 𝜇2 = 0; 𝜎2 = 2   

Coverage  0.9015  0.9016  0.9491  0.9486  0.9886  0.9883 

Length  0.2912  0.2541  0.3819  0.3238  0.6021  0.4773 
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Table E2.6: Uniform distribution: Coverage probabilities and average lengths of fiducial generalized confidence intervals for 𝒅 = 𝜼𝟏 − 𝜼𝟐 based on two FGPQs at specified 
nominal confidence levels (𝑺 = 𝟏𝟎𝟎𝟎𝟎𝟎 simulated samples of data; 𝑰 = 𝟒𝟎𝟎𝟎 draws from the fiducial distribution) 
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𝑛1 = 25; 𝜇1 = 0; 𝜎1 = 1 / 𝑛2 = 25; 𝜇2 = 0; 𝜎2 = 1   

   

Nominal confidence level 

Quantity   0.90                                0.95   0.99  

  𝑑𝑅  𝑑𝑀𝐿         𝑑𝑅  𝑑𝑀𝐿  𝑑𝑅  𝑑𝑀𝐿 

Coverage  0.9065  0.9080  0.9547  0.9566  0.9906  0.9899 

Length  0.1854  0.2490  0.2448  0.3137  0.3900  0.4618 

𝑛1 = 25; 𝜇1 = 0; 𝜎1 = 1 / 𝑛2 = 25; 𝜇2 = 0; 𝜎2 = 2   

Coverage  0.8989  0.9027  0.9493  0.9523  0.9890  0.9906 

Length  0.2847  0.3915  0.3740  0.4996  0.5956  0.7530 
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Table E2.7: Pareto distribution: Coverage probabilities and average lengths of fiducial generalized confidence intervals for 𝜹 = 𝝁𝟏 − 𝝁𝟐 based on two FGPQs at specified 
nominal confidence levels (𝑺 = 𝟏𝟎𝟎𝟎𝟎𝟎 simulated samples of data; 𝑰 = 𝟒𝟎𝟎𝟎 draws from the fiducial distribution) 
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𝑛1 = 25; 𝜇1 = 0; 𝜎1 = 1 / 𝑛2 = 25; 𝜇2 = 0; 𝜎2 = 1   

   

Nominal confidence level 

Quantity   0.90                                0.95   0.99  

  𝛿𝑅  𝛿𝑀𝐿         𝛿𝑅  𝛿𝑀𝐿  𝛿𝑅  𝛿𝑀𝐿 

Coverage  0.8946  0.8947  0.9487  0.9487  0.9907  0.9907 

Length  0.1986  0.1986  0.2620  0.2620  0.4171  0.4171 

𝑛1 = 25; 𝜇1 = 0; 𝜎1 = 1 / 𝑛2 = 25; 𝜇2 = 0; 𝜎2 = 2   

Coverage  0.8961  0.8961  0.9469  0.9469  0.9867  0.9870 

Length  0.3034  0.3034  0.3977  0.3976  0.6252  0.6252 
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Table E2.8: Pareto distribution: Coverage probabilities and average lengths of fiducial generalized confidence intervals for 𝒅 = 𝜼𝟏 − 𝜼𝟐 based on two FGPQs at specified 
nominal confidence levels (𝑺 = 𝟏𝟎𝟎𝟎𝟎𝟎 simulated samples of data; 𝑰 = 𝟒𝟎𝟎𝟎 draws from the fiducial distribution) 
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𝑛1 = 25; 𝜇1 = 0; 𝜎1 = 1 / 𝑛2 = 25; 𝜇2 = 0; 𝜎2 = 1   

   

Nominal confidence level 

Quantity   0.90                                0.95   0.99  

  𝑑𝑅  𝑑𝑀𝐿         𝑑𝑅  𝑑𝑀𝐿  𝑑𝑅  𝑑𝑀𝐿 

Coverage  0.8985  0.8988  0.9498  0.9503  0.9905  0.9906 

Length  3.7802  3.7798  4.6307  4.6300  6.5049  6.5037 

𝑛1 = 25; 𝜇1 = 0; 𝜎1 = 1 / 𝑛2 = 25; 𝜇2 = 0; 𝜎2 = 2   

Coverage  0.8964  0.8965  0.9476  0.9476  0.9907  0.9905 

Length  5.9159  5.9152  7.2270  7.2260  10.1104  10.1090 
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Table E2.9: Weibull distribution: Coverage probabilities and average lengths of fiducial generalized confidence intervals for 𝜹 = 𝝁𝟏 − 𝝁𝟐 based on two FGPQs at specified 
nominal confidence levels (𝑺 = 𝟏𝟎𝟎𝟎𝟎𝟎 simulated samples of data; 𝑰 = 𝟒𝟎𝟎𝟎 draws from the fiducial distribution) 
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𝑛1 = 25; 𝜇1 = 0; 𝜎1 = 1 / 𝑛2 = 25; 𝜇2 = 0; 𝜎2 = 1   

   

Nominal confidence level 

Quantity   0.90                                0.95   0.99  

  𝛿𝑅  𝛿𝑀𝐿         𝛿𝑅  𝛿𝑀𝐿  𝛿𝑅  𝛿𝑀𝐿 

Coverage  0.9120  0.9114  0.9609  0.9598  0.9917  0.9917 

Length  1.0263  1.0257  1.2318  1.2311  1.6503  1.6492 

𝑛1 = 25; 𝜇1 = 0; 𝜎1 = 1 / 𝑛2 = 25; 𝜇2 = 0; 𝜎2 = 2   

Coverage  0.9094  0.9097  0.9562  0.9565  0.9931  0.9928 

Length  1.0230  1.0224  1.2276  1.2270  1.6443  1.6431 

 

  



452 

Table E2.10: Weibull distribution: Coverage probabilities and average lengths of fiducial generalized confidence intervals for 𝒅 = 𝜼𝟏 − 𝜼𝟐 based on two FGPQs at specified 
nominal confidence levels (𝑺 = 𝟏𝟎𝟎𝟎𝟎𝟎 simulated samples of data; 𝑰 = 𝟒𝟎𝟎𝟎 draws from the fiducial distribution) 
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𝑛1 = 25; 𝜇1 = 0; 𝜎1 = 1 / 𝑛2 = 25; 𝜇2 = 0; 𝜎2 = 1   

   

Nominal confidence level 

Quantity   0.90                                0.95   0.99  

  𝑑𝑅  𝑑𝑀𝐿         𝑑𝑅  𝑑𝑀𝐿  𝑑𝑅  𝑑𝑀𝐿 

Coverage  0.9014  0.9001  0.9503  0.9503  0.9896  0.9895 

Length  1.2501  1.2459  1.5244  1.5193  2.1204  2.1142 

𝑛1 = 25; 𝜇1 = 0; 𝜎1 = 1 / 𝑛2 = 25; 𝜇2 = 0; 𝜎2 = 2   

Coverage  0.9047  0.9045  0.9511  0.9523  0.9896  0.9897 

Length  1.2457  1.2415  1.5186  1.5136  2.1130  2.1057 
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Appendix F: LSS families of distributions: CPs and 

AVLs of FGCIs for model parameters and 

𝜼𝟎.𝟗𝟕𝟓 quantile based on six CFGPQs at 

specified confidence levels and 𝝃 values, 

using theta star parametrization 

F1: Generalized Extreme Value distribution 

Table F1.1: GEV distribution: CPs and AVLs of FGCIs (𝜽∗parametrization; 𝛔 = 𝟏;  𝝁 = 𝟎;  𝝃 = 𝟎. 𝟐; 𝜼𝟎.𝟗𝟕𝟓 =
𝟐. 𝟎𝟖𝟔𝟎;  𝑺 = 𝟒𝟎𝟎𝟎 simulated samples of data; 𝑰 = 𝟏𝟎𝟎𝟎 draws from the fiducial distribution) 
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   Nominal confidence level 

𝑛 Parameter Quantity 0.90 0.95 0.99 

25 𝜎 CP 0.9648 0.9815 0.9948 

  AVL 1.6816 1.9557 2.4990 

 𝜎∗ CP 0.9263 0.9668 0.9932 

  AVL 0.1395 0.1708 0.2416 

 𝜇 CP 0.9660 0.9820 0.9952 

  AVL 1.6369 1.9119 2.4489 

 𝜇∗ CP 0.9140 0.9567 0.9895 

  AVL 0.1511 0.1821 0.2465 

 𝜉 CP 0.9660 0.9845 0.9960 

  AVL 0.4194 0.5031 0.6824 

 𝜂0.975 CP 0.8888 0.9383 0.9808 

  AVL 1.8862 2.6474 5.3264 

50 𝜎 CP 0.9607 0.9822 0.9952 

  AVL 1.4314 1.6588 2.0587 

 𝜎∗ CP 0.9130 0.9593 0.9928 

  AVL 0.0914 0.1105 0.1510 

 𝜇 CP 0.9613 0.9832 0.9958 

  AVL 1.3991 1.6196 2.0183 

 𝜇∗ CP 0.9087 0.9543 0.9885 

  AVL 0.1052 0.1259 0.1674 

 𝜉 CP 0.9648 0.9818 0.9960 

  AVL 0.2993 0.3553 0.4766 

 𝜂0.975 CP 0.8960 0.9410 0.9830 

  AVL 0.9988 1.2938 2.1734 
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Table F1.2: GEV distribution: CPs and AVLs of FGCIs for model parameters and 𝜼𝟎.𝟗𝟕𝟓 quantile based on 
six CFGPQs at specified nominal confidence levels (theta star parametrization; 𝝈 = 𝟏;  𝝁 = 𝟎;  𝝃 =
𝟎. 𝟐𝟓; 𝜼𝟎.𝟗𝟕𝟓 = 𝟐. 𝟓𝟎𝟔𝟗;  𝑺 = 𝟒𝟎𝟎𝟎  simulated samples of data;  𝑰 = 𝟏𝟎𝟎𝟎  draws from the fiducial 
distribution) 
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   Nominal confidence level 

𝑛 Parameter Quantity 0.90 0.95 0.99 

25 𝜎 CP 0.9507 0.9760 0.9938 

  AVL 2.0631 2.4260 3.1022 

 𝜎∗ CP 0.9107 0.9575 0.9915 

  AVL 0.1803 0.2210 0.3138 

 𝜇 CP 0.9527 0.9765 0.9942 

  AVL 2.0031 2.3551 3.0377 

 𝜇∗ CP 0.9125 0.9543 0.9905 

  AVL 0.1918 0.2309 0.3131 

 𝜉 CP 0.9600 0.9798 0.9932 

  AVL 0.4609 0.5511 0.7392 

 𝜂0.975 CP 0.8858 0.9355 0.9785 

  AVL 2.9519 4.2046 8.8370 

50 𝜎 CP 0.9373 0.9735 0.9960 

  AVL 1.7052 1.9958 2.5091 

 𝜎∗ CP 0.9033 0.9540 0.9888 

  AVL 0.1173 0.1418 0.1939 

 𝜇 CP 0.9365 0.9762 0.9962 

  AVL 1.6627 1.9458 2.4595 

 𝜇∗ CP 0.8982 0.9453 0.9902 

  AVL 0.1331 0.1592 0.2112 

 𝜉 CP 0.9455 0.9795 0.9980 

  AVL 0.3334 0.3947 0.5206 

 𝜂0.975 CP 0.8910 0.9430 0.9858 

  AVL 1.4694 1.9017 3.1616 
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Table F1.3: Generalized Extreme Value distribution: CPs and AVLs of FGCIs for model parameters and 
𝜼𝟎.𝟗𝟕𝟓 quantile based on six CFGPQs at specified nominal confidence levels (theta star parametrization; 
𝝈 = 𝟏;  𝝁 = 𝟎;  𝝃 = 𝟎. 𝟑𝟑; 𝜼𝟎.𝟗𝟕𝟓 = 𝟑. 𝟑𝟔𝟒𝟏;  𝑺 = 𝟒𝟎𝟎𝟎  simulated samples of data; 𝑰 = 𝟏𝟎𝟎𝟎  draws 
from the fiducial distribution) 
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   Nominal confidence level 

𝑛 Parameter Quantity 0.90 0.95 0.99 

25 𝜎 CP 0.9065 0.9550 0.9908 

  AVL 2.5406 3.0350 3.9584 

 𝜎∗ CP 0.8995 0.9493 0.9928 

  AVL 0.2508 0.3084 0.4411 

 𝜇 CP 0.9077 0.9580 0.9918 

  AVL 2.4542 2.9327 3.8712 

 𝜇∗ CP 0.8998 0.9547 0.9905 

  AVL 0.2573 0.3100 0.4200 

 𝜉 CP 0.9207 0.9648 0.9940 

  AVL 0.5265 0.6283 0.8344 

 𝜂0.975 CP 0.8685 0.9277 0.9782 

  AVL 5.5922 8.2877 22.2975 

50 𝜎 CP 0.8908 0.9490 0.9882 

  AVL 1.9577 2.3477 3.0491 

 𝜎∗ CP 0.9015 0.9490 0.9895 

  AVL 0.1637 0.1982 0.2713 

 𝜇 CP 0.8935 0.9483 0.9895 

  AVL 1.8944 2.2739 2.9798 

 𝜇∗ CP 0.9033 0.9493 0.9902 

  AVL 0.1787 0.2138 0.2840 

 𝜉 CP 0.8990 0.9503 0.9922 

  AVL 0.3889 0.4608 0.5998 

 𝜂0.975 CP 0.8622 0.9263 0.9818 

  AVL 2.6749 3.4631 5.7366 
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Table F1.4: Generalized Extreme Value distribution: CPs and AVLs of FGCIs for model parameters and 
𝜼𝟎.𝟗𝟕𝟓  quantile based on six CFGPQs at specified nominal confidence levels 
(𝐭𝐡𝐞𝐭𝐚 𝐬𝐭𝐚𝐫 𝐩𝐚𝐫𝐚𝐦𝐞𝐭𝐫𝐢𝐳𝐚𝐭𝐢𝐨𝐧; 𝝈 = 𝟏;  𝝁 = 𝟎;  𝝃 = 𝟎. 𝟓; 𝜼𝟎.𝟗𝟕𝟓 = 𝟔. 𝟐𝟖𝟒𝟕;  𝑺 = 𝟒𝟎𝟎𝟎 simulated samples 
of data; 𝑰 = 𝟏𝟎𝟎𝟎 draws from the fiducial distribution) 
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   Nominal confidence level 

𝑛 Parameter Quantity 0.90 0.95 0.99 

25 𝜎 CP 0.8595 0.9257 0.9870 

  AVL 3.0575 3.7911 5.2567 

 𝜎∗ CP 0.8968 0.9530 0.9915 

  AVL 0.4356 0.5395 0.7905 

 𝜇 CP 0.8605 0.9233 0.9860 

  AVL 2.8903 3.5985 5.0860 

 𝜇∗ CP 0.9002 0.9525 0.9905 

  AVL 0.4052 0.4891 0.6663 

 𝜉 CP 0.8665 0.9325 0.9885 

  AVL 0.6627 0.7927 1.0462 

 𝜂0.975 CP 0.8177 0.8920 0.9715 

  AVL 18.5573 28.4028 71.7104 

50 𝜎 CP 0.8778 0.9343 0.9880 

  AVL 1.8550 2.3289 3.2684 

 𝜎∗ CP 0.9025 0.9537 0.9895 

  AVL 0.2802 0.3402 0.4695 

 𝜇 CP 0.8778 0.9357 0.9872 

  AVL 1.7316 2.1883 3.1331 

 𝜇∗ CP 0.8975 0.9440 0.9862 

  AVL 0.2772 0.3318 0.4404 

 𝜉 CP 0.8798 0.9380 0.9880 

  AVL 0.4760 0.5673 0.7400 

 𝜂0.975 CP 0.8452 0.9077 0.9745 

  AVL 7.9382 10.3809 17.4516 
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Table F1.5: Generalized Extreme Value distribution: CPs and AVLs of FGCIs for model parameters and 
𝜼𝟎.𝟗𝟕𝟓  quantile based on six CFGPQs at specified nominal confidence levels 
(𝐭𝐡𝐞𝐭𝐚 𝐬𝐭𝐚𝐫 𝐩𝐚𝐫𝐚𝐦𝐞𝐭𝐫𝐢𝐳𝐚𝐭𝐢𝐨𝐧;  𝝈 = 𝟏;  𝝁 = 𝟎;  𝝃 = 𝟏; 𝜼𝟎.𝟗𝟕𝟓 = 𝟑𝟗. 𝟒𝟗𝟕𝟗;  𝑺 = 𝟒𝟎𝟎𝟎 simulated samples 
of data; 𝑰 = 𝟏𝟎𝟎𝟎 draws from the fiducial distribution) 
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   Nominal confidence level 

𝑛 Parameter Quantity 0.90 0.95 0.99 

25 𝜎 CP 0.8718 0.9305 0.9832 

  AVL 2.7334 3.4431 5.1100 

 𝜎∗ CP 0.8978 0.9535 0.9928 

  AVL 1.3225 1.6814 2.6537 

 𝜇 CP 0.8528 0.9135 0.9738 

  AVL 2.1585 2.7821 4.3729 

 𝜇∗ CP 0.8912 0.9525 0.9902 

  AVL 0.8886 1.0851 1.5359 

 𝜉 CP 0.8592 0.9170 0.9785 

  AVL 0.9557 1.1516 1.5509 

 𝜂0.975 CP 0.8123 0.8832 0.9617 

  AVL 495.6 908.1 3667.4 

50 𝜎 CP 0.8815 0.9420 0.9870 

  AVL 1.6224 1.8769 2.4400 

 𝜎∗ CP 0.9048 0.9530 0.9928 

  AVL 0.8574 1.0453 1.4792 

 𝜇 CP 0.8790 0.9343 0.9812 

  AVL 1.2153 1.4070 1.8621 

 𝜇∗ CP 0.9035 0.9503 0.9890 

  AVL 0.5984 0.7161 0.9578 

 𝜉 CP 0.8872 0.9393 0.9872 

  AVL 0.6399 0.7681 1.0265 

 𝜂0.975 CP 0.8428 0.9050 0.9685 

  AVL 129.7349 180.5037 370.1645 
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F2: Generalized Pareto distribution 

Table F2.1: Generalized Pareto distribution: CPs and AVLs of FGCIs for model parameters and 𝜼𝟎.𝟗𝟕𝟓 
quantile based on six CFGPQs at specified nominal confidence levels (theta star parametrization; 𝝈 =
𝟏;  𝝁 = 𝟎;  𝝃 = 𝟎. 𝟎𝟓; 𝜼𝟎.𝟗𝟕𝟓 = 𝟏. 𝟐𝟎𝟐𝟓;  𝑺 = 𝟒𝟎𝟎𝟎 simulated samples of data; 𝑰 = 𝟏𝟎𝟎𝟎 draws from the 
fiducial distribution) 
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   Nominal confidence level 

𝑛 Parameter Quantity 0.90 0.95 0.99 

25 𝜎 CP 0.9730 0.9848 0.9928 

  AVL 4.5704 5.3757 6.8256 

 𝜎∗ CP 0.9000 0.9530 0.9885 

  AVL 0.0403 0.0489 0.0668 

 𝜇 CP 0.9735 0.9855 0.9935 

  AVL 4.5956 5.4172 6.9954 

 𝜇∗ CP 0.8972 0.9535 0.9898 

  AVL 0.0060 0.0076 0.0117 

 𝜉 CP 0.9742 0.9845 0.9932 

  AVL 0.4375 0.5533 0.8248 

 𝜂0.975 CP 0.8868 0.9403 0.9885 

  AVL 0.2868 0.4234 1.1908 

50 𝜎 CP 0.9620 0.9785 0.9902 

  AVL 4.1649 4.8069 5.8421 

 𝜎∗ CP 0.9000 0.9537 0.9915 

  AVL 0.0280 0.0337 0.0453 

 𝜇 CP 0.9625 0.9788 0.9910 

  AVL 4.1831 4.8347 5.9455 

 𝜇∗ CP 0.8980 0.9465 0.9862 

  AVL 0.0029 0.0037 0.0055 

 𝜉 CP 0.9625 0.9788 0.9902 

  AVL 0.3011 0.3756 0.5623 

 𝜂0.975 CP 0.8910 0.9360 0.9860 

  AVL 0.1527 0.1999 0.3582 
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Table F2.2: Generalized Pareto distribution: CPs and AVLs of FGCIs for model parameters and 𝜼𝟎.𝟗𝟕𝟓 
quantile based on six CFGPQs at specified nominal confidence levels (theta star parametrization; 𝝈 =
𝟏;  𝝁 = 𝟎;  𝝃 = 𝟎. 𝟏; 𝜼𝟎.𝟗𝟕𝟓 = 𝟏. 𝟒𝟒𝟔𝟏;  𝑺 = 𝟒𝟎𝟎𝟎 simulated samples of data; 𝑰 = 𝟏𝟎𝟎𝟎 draws from the 
fiducial distribution) 
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   Nominal confidence level 

𝑛 Parameter Quantity 0.90 0.95 0.99 

25 𝜎 CP 0.9755 0.9865 0.9938 

  AVL 9.2195 10.9364 14.0470 

 𝜎∗ CP 0.9087 0.9543 0.9910 

  AVL 0.0856 0.1037 0.1413 

 𝜇 CP 0.9758 0.9868 0.9938 

  AVL 9.2715 11.0247 14.3957 

 𝜇∗ CP 0.8988 0.9513 0.9908 

  AVL 0.0124 0.0157 0.0242 

 𝜉 CP 0.9772 0.9885 0.9945 

  AVL 0.4854 0.6081 0.8901 

 𝜂0.975 CP 0.8878 0.9377 0.9852 

  AVL 0.7228 1.1102 3.4414 

50 𝜎 CP 0.9545 0.9802 0.9938 

  AVL 8.1255 9.4858 11.6804 

 𝜎∗ CP 0.9157 0.9605 0.9940 

  AVL 0.0601 0.0721 0.0966 

 𝜇 CP 0.9555 0.9800 0.9938 

  AVL 8.1650 9.5492 11.8951 

 𝜇∗ CP 0.8952 0.9477 0.9868 

  AVL 0.0061 0.0076 0.0114 

 𝜉 CP 0.9543 0.9798 0.9932 

  AVL 0.3469 0.4274 0.6198 

 𝜂0.975 CP 0.8970 0.9413 0.9855 

  AVL 0.3643 0.4829 0.8758 
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Table F2.3: Generalized Pareto distribution: CPs and AVLs of FGCIs for model parameters and 𝜼𝟎.𝟗𝟕𝟓 
quantile based on six CFGPQs at specified nominal confidence levels (theta star parametrization; 𝝈 =
𝟏;  𝝁 = 𝟎;  𝝃 = 𝟎. 𝟐; 𝜼𝟎.𝟗𝟕𝟓 = 𝟐. 𝟎𝟗𝟏𝟑;  𝑺 = 𝟒𝟎𝟎𝟎 simulated samples of data; 𝑰 = 𝟏𝟎𝟎𝟎 draws from the 
fiducial distribution) 
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   Nominal confidence level 

𝑛 Parameter Quantity 0.90 0.95 0.99 

25 𝜎 CP 0.9245 0.9692 0.9958 

  AVL 18.4111 22.2571 29.1453 

 𝜎∗ CP 0.8975 0.9463 0.9880 

  AVL 0.1934 0.2338 0.3168 

 𝜇 CP 0.9240 0.9690 0.9955 

  AVL 18.5317 22.4595 29.9631 

 𝜇∗ CP 0.9080 0.9555 0.9912 

  AVL 0.0265 0.0338 0.0522 

 𝜉 CP 0.9247 0.9752 0.9965 

  AVL 0.5793 0.7162 1.0229 

 𝜂0.975 CP 0.8718 0.9297 0.9818 

  AVL 2.2764 3.7344 13.0599 

50 𝜎 CP 0.8852 0.9545 0.9968 

  AVL 14.8758 17.8083 22.5276 

 𝜎∗ CP 0.9025 0.9533 0.9925 

  AVL 0.1372 0.1642 0.2181 

 𝜇 CP 0.8848 0.9525 0.9965 

  AVL 14.9638 17.9501 22.9903 

 𝜇∗ CP 0.8990 0.9505 0.9905 

  AVL 0.0127 0.0161 0.0242 

 𝜉 CP 0.8858 0.9527 0.9952 

  AVL 0.4366 0.5267 0.7258 

 𝜂0.975 CP 0.8610 0.9240 0.9810 

  AVL 1.0671 1.4356 2.6159 
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F3: Three-parameter Weibull distribution 

Table F3.1: Three-parameter Weibull distribution: CPs and AVLs of FGCIs for model parameters and 𝜼𝟎.𝟗𝟕𝟓 
quantile based on six CFGPQs at specified nominal confidence levels (theta star parametrization; 𝝈 =
𝟏;  𝝁 = 𝟎;  𝝃 = 𝟎. 𝟐; 𝜼𝟎.𝟗𝟕𝟓 = 𝟏. 𝟐𝟗𝟖𝟑;  𝑺 = 𝟒𝟎𝟎𝟎 simulated samples of data; 𝑰 = 𝟏𝟎𝟎𝟎 draws from the 
fiducial distribution) 
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   Nominal confidence level 

𝑛 Parameter Quantity 0.90 0.95 0.99 

25 𝜎 CP 0.9557 0.9748 0.9888 

  AVL 1.3657 1.5948 2.0211 

 𝜎∗ CP 0.9260 0.9673 0.9942 

  AVL 0.1185 0.1479 0.2241 

 𝜇 CP 0.9550 0.9760 0.9905 

  AVL 1.3334 1.5547 1.9716 

 𝜇∗ CP 0.9210 0.9625 0.9938 

  AVL 0.1509 0.1829 0.2522 

 𝜉 CP 0.9590 0.9770 0.9905 

  AVL 0.3402 0.4123 0.5767 

 𝜂0.975 CP 0.9137 0.9550 0.9940 

  AVL 0.2609 0.3292 0.5078 

50 𝜎 CP 0.9435 0.9720 0.9872 

  AVL 1.1477 1.3298 1.6472 

 𝜎∗ CP 0.9220 0.9660 0.9952 

  AVL 0.0779 0.0953 0.1356 

 𝜇 CP 0.9435 0.9710 0.9882 

  AVL 1.1214 1.2978 1.6047 

 𝜇∗ CP 0.9107 0.9597 0.9920 

  AVL 0.1041 0.1252 0.1694 

 𝜉 CP 0.9490 0.9712 0.9892 

  AVL 0.2433 0.2881 0.3778 

 𝜂0.975 CP 0.9080 0.9523 0.9905 

  AVL 0.1652 0.2029 0.2912 
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Table F3.2: Three-parameter Weibull distribution: CPs and AVLs of FGCIs for model parameters and 𝜼𝟎.𝟗𝟕𝟓 
quantile based on six CFGPQs at specified nominal confidence levels (theta star parametrization; 𝝈 =
𝟏;  𝝁 = 𝟎;  𝝃 = 𝟎. 𝟐𝟓; 𝜼𝟎.𝟗𝟕𝟓 = 𝟏. 𝟑𝟖𝟓𝟗;  𝑺 = 𝟒𝟎𝟎𝟎 simulated samples of data; 𝑰 = 𝟏𝟎𝟎𝟎 draws from the 
fiducial distribution) 
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   Nominal confidence level 

𝑛 Parameter Quantity 0.90 0.95 0.99 

25 𝜎 CP 0.9450 0.9750 0.9900 

  AVL 1.6036 1.8872 2.4113 

 𝜎∗ CP 0.9275 0.9708 0.9948 

  AVL 0.1463 0.1822 0.2746 

 𝜇 CP 0.9430 0.9740 0.9910 

  AVL 1.5568 1.8303 2.3468 

 𝜇∗ CP 0.9175 0.9613 0.9935 

  AVL 0.1868 0.2263 0.3109 

 𝜉 CP 0.9525 0.9758 0.9920 

  AVL 0.3732 0.4495 0.6197 

 𝜂0.975 CP 0.9083 0.9525 0.9940 

  AVL 0.3355 0.4226 0.6480 

50 𝜎 CP 0.9130 0.9627 0.9885 

  AVL 1.2921 1.5198 1.9162 

 𝜎∗ CP 0.9190 0.9650 0.9948 

  AVL 0.0965 0.1180 0.1679 

 𝜇 CP 0.9135 0.9633 0.9885 

  AVL 1.2553 1.4754 1.8627 

 𝜇∗ CP 0.8990 0.9540 0.9922 

  AVL 0.1294 0.1556 0.2100 

 𝜉 CP 0.9150 0.9648 0.9885 

  AVL 0.2705 0.3203 0.4169 

 𝜂0.975 CP 0.8932 0.9497 0.9920 

  AVL 0.2138 0.2625 0.3753 
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Table F3.3: Three-parameter Weibull distribution: CPs and AVLs of FGCIs for model parameters and 𝜼𝟎.𝟗𝟕𝟓 
quantile based on six CFGPQs at specified nominal confidence levels (theta star parametrization; 𝝈 =
𝟏;  𝝁 = 𝟎;  𝝃 = 𝟎. 𝟑𝟑; 𝜼𝟎.𝟗𝟕𝟓 = 𝟏. 𝟓𝟑𝟖𝟒;  𝑺 = 𝟒𝟎𝟎𝟎 simulated samples of data; 𝑰 = 𝟏𝟎𝟎𝟎 draws from the 
fiducial distribution) 
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   Nominal confidence level 

𝑛 Parameter Quantity 0.90 0.95 0.99 

25 𝜎 CP 0.9028 0.9593 0.9895 

  AVL 1.8280 2.1933 2.8766 

 𝜎∗ CP 0.9233 0.9688 0.9930 

  AVL 0.1928 0.2403 0.3587 

 𝜇 CP 0.9020 0.9563 0.9900 

  AVL 1.7509 2.1012 2.7787 

 𝜇∗ CP 0.8992 0.9575 0.9928 

  AVL 0.2440 0.2953 0.4044 

 𝜉 CP 0.9075 0.9683 0.9920 

  AVL 0.4301 0.5157 0.6967 

 𝜂0.975 CP 0.8798 0.9435 0.9900 

  AVL 0.4765 0.5993 0.9064 

50 𝜎 CP 0.8860 0.9433 0.9868 

  AVL 1.2842 1.5709 2.0936 

 𝜎∗ CP 0.9133 0.9595 0.9958 

  AVL 0.1284 0.1572 0.2228 

 𝜇 CP 0.8872 0.9445 0.9870 

  AVL 1.2244 1.5002 2.0112 

 𝜇∗ CP 0.9067 0.9533 0.9902 

  AVL 0.1708 0.2051 0.2758 

 𝜉 CP 0.8800 0.9397 0.9895 

  AVL 0.3091 0.3686 0.4796 

 𝜂0.975 CP 0.8835 0.9385 0.9882 

  AVL 0.3085 0.3775 0.5351 
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Table F3.4: Three-parameter Weibull distribution: CPs and AVLs of FGCIs for model parameters and 𝜼𝟎.𝟗𝟕𝟓 
quantile based on six CFGPQs at specified nominal confidence levels (theta star parametrization; 𝝈 =
𝟏;  𝝁 = 𝟎;  𝝃 = 𝟎. 𝟓; 𝜼𝟎.𝟗𝟕𝟓 = 𝟏. 𝟗𝟐𝟎𝟔;  𝑺 = 𝟒𝟎𝟎𝟎 simulated samples of data; 𝑰 = 𝟏𝟎𝟎𝟎 draws from the 
fiducial distribution) 
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   Nominal confidence level 

𝑛 Parameter Quantity 0.90 0.95 0.99 

25 𝜎 CP 0.8772 0.9393 0.9912 

  AVL 1.7184 2.1840 3.1241 

 𝜎∗ CP 0.8995 0.9505 0.9938 

  AVL 0.3041 0.3787 0.5596 

 𝜇 CP 0.8752 0.9420 0.9902 

  AVL 1.5490 1.9873 2.9184 

 𝜇∗ CP 0.8972 0.9477 0.9900 

  AVL 0.3682 0.4449 0.6058 

 𝜉 CP 0.8768 0.9407 0.9918 

  AVL 0.5247 0.6320 0.8451 

 𝜂0.975 CP 0.8650 0.9237 0.9852 

  AVL 0.8747 1.0953 1.6268 

50 𝜎 CP 0.8928 0.9470 0.9878 

  AVL 0.7773 0.9940 1.4714 

 𝜎∗ CP 0.9080 0.9533 0.9900 

  AVL 0.2040 0.2491 0.3489 

 𝜇 CP 0.8972 0.9485 0.9922 

  AVL 0.6466 0.8392 1.2844 

 𝜇∗ CP 0.8972 0.9517 0.9915 

  AVL 0.2581 0.3098 0.4144 

 𝜉 CP 0.8968 0.9475 0.9885 

  AVL 0.3401 0.4115 0.5501 

 𝜂0.975 CP 0.8752 0.9367 0.9850 

  AVL 0.5709 0.6972 0.9696 
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Table F3.5: Three-parameter Weibull distribution: CPs and AVLs of FGCIs for model parameters and 𝜼𝟎.𝟗𝟕𝟓 
quantile based on six CFGPQs at specified nominal confidence levels (theta star parametrization; 𝛔 =
𝟏;  𝝁 = 𝟎;  𝝃 = 𝟏; 𝜼𝟎.𝟗𝟕𝟓 = 𝟑. 𝟔𝟖𝟖𝟗;  𝑺 = 𝟒𝟎𝟎𝟎 simulated samples of data; 𝑰 = 𝟏𝟎𝟎𝟎 draws from the 
fiducial distribution) 
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   Nominal confidence level 

𝑛 Parameter Quantity 0.90 0.95 0.99 

25 𝜎 CP 0.8930 0.9450 0.9895 

  AVL 0.8959 1.1048 1.5756 

 𝜎∗ CP 0.8852 0.9420 0.9890 

  AVL 0.8295 1.0413 1.5521 

 𝜇 CP 0.8728 0.9395 0.9935 

  AVL 0.2880 0.3928 0.6923 

 𝜇∗ CP 0.8848 0.9433 0.9875 

  AVL 0.7394 0.8964 1.2337 

 𝜉 CP 0.9010 0.9507 0.9920 

  AVL 0.6838 0.8295 1.1291 

 𝜂0.975 CP 0.8615 0.9257 0.9842 

  AVL 3.5013 4.4031 6.5841 

50 𝜎 CP 0.9023 0.9493 0.9905 

  AVL 0.5392 0.6470 0.8639 

 𝜎∗ CP 0.9002 0.9515 0.9902 

  AVL 0.5506 0.6709 0.9294 

 𝜇 CP 0.8875 0.9497 0.9948 

  AVL 0.0899 0.1158 0.1824 

 𝜇∗ CP 0.9002 0.9475 0.9915 

  AVL 0.5098 0.6124 0.8200 

 𝜉 CP 0.8998 0.9483 0.9912 

  AVL 0.4297 0.5165 0.6914 

 𝜂0.975 CP 0.8752 0.9367 0.9840 

  AVL 2.1907 2.6667 3.6815 
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Table F3.6: Three-parameter Weibull distribution: CPs and AVLs of FGCIs for model parameters and 𝜼𝟎.𝟗𝟕𝟓 
quantile based on six CFGPQs at specified nominal confidence levels (theta star parametrization; 𝝈 =
𝟏;  𝝁 = 𝟎;  𝝃 = 𝟐; 𝜼𝟎.𝟗𝟕𝟓 = 𝟏𝟑. 𝟔𝟎𝟕𝟖;  𝑺 = 𝟒𝟎𝟎𝟎 simulated samples of data; 𝑰 = 𝟏𝟎𝟎𝟎 draws from the 
fiducial distribution) 
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   Nominal confidence level 

𝑛 Parameter Quantity 0.90 0.95 0.99 

25 𝜎 CP 0.8932 0.9453 0.9885 

  AVL 1.6675 2.0729 3.0432 

 𝜎∗ CP 0.8900 0.9427 0.9895 

  AVL 3.3412 4.3129 6.9342 

 𝜇 CP 0.8988 0.9200 0.9330 

  AVL 0.0289 0.0445 0.0979 

 𝜇∗ CP 0.8930 0.9457 0.9885 

  AVL 1.6607 2.0652 3.0368 

 𝜉 CP 0.9160 0.9587 0.9918 

  AVL 1.1745 1.4213 1.9333 

 𝜂0.975 CP 0.8972 0.9470 0.9885 

  AVL 35.1922 46.8177 80.8819 

50 𝜎 CP 0.8918 0.9487 0.9888 

  AVL 1.0677 1.2991 1.7926 

 𝜎∗ CP 0.8980 0.9483 0.9910 

  AVL 2.0753 2.5632 3.6630 

 𝜇 CP 0.8300 0.8610 0.8925 

  AVL 0.0056 0.0087 0.0200 

 𝜇∗ CP 0.8922 0.9485 0.9890 

  AVL 1.0668 1.2979 1.7906 

 𝜉 CP 0.9065 0.9543 0.9920 

  AVL 0.7723 0.9273 1.2390 

 𝜂0.975 CP 0.9002 0.9545 0.9870 

  AVL 18.8478 23.5094 34.4665 
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Appendix G: Proof for simultaneous confidence 

region for 𝜽  

The proof shown below is based on R. Schall (2012) research working paper. 

As is shown in Section 4.4.12.1 above, an exact SCR for 𝜃 is given by 

                          𝑆𝐶𝑅(𝜃) = {𝜃|(𝜃 − 𝜃)
′
𝑋′𝑉−1𝑋(𝜃 − 𝜃) ≤ 𝜎2 ∙ 𝐶1−𝛼}           (𝐺. 1) 

Proof: 

Let 𝐷𝐷′ = 𝑋′𝑉−1𝑋 be the Cholesky decomposition of 𝑋′𝑉−1𝑋, such that 

𝐷 = (
𝑑1 0
𝑑2 𝑑3

) 

Then 

(𝜃 − 𝜃)
′
𝑋′𝑉−1𝑋(𝜃 − 𝜃) ≤ 𝜎2 ∙ 𝐶1−𝛼 

⟺ [𝑑1(𝜇̂ − 𝜇) + 𝑑2(𝜎̂ − 𝜎)]
2 + 𝑑3

2(𝜎̂ − 𝜎)2 ≤ 𝜎2 ∙ 𝐶1−𝛼 

⟺ [𝑑1(𝜇̂ − 𝜇) + 𝑑2(𝜎̂ − 𝜎)]
2 ≤ 𝜎2 ∙ 𝐶1−𝛼 − 𝑑3

2(𝜎̂ − 𝜎)2 

All solutions to the inequality must satisfy the inequality 

                                         𝜎2 ∙ 𝐶1−𝛼 − 𝑑3
2(𝜎̂ − 𝜎)2 ≥ 0                                           (𝐺. 2) 

Assuming this is the case, we distinguish the cases G.2.1 and G.2.2 below: 

G.2.1. If [𝑑1(𝜇̂ − 𝜇) + 𝑑2(𝜎̂ − 𝜎)] ≥ 0: 

                   ⟺ 𝑑1(𝜇̂ − 𝜇) + 𝑑2(𝜎̂ − 𝜎) ≤ √𝜎2 ∙ 𝐶1−𝛼 − 𝑑3
2(𝜎̂ − 𝜎)2 

                     ⟺ 𝜇̂ − 𝜇 ≤ {√𝜎2 ∙ 𝐶1−𝛼 − 𝑑3
2(𝜎̂ − 𝜎)2 − 𝑑2(𝜎̂ − 𝜎)} 𝑑1⁄  
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⟺ 𝜇 ≥ 𝜇̂ − {√𝜎2 ∙ 𝐶1−𝛼 − 𝑑3
2(𝜎̂ − 𝜎)2 − 𝑑2(𝜎̂ − 𝜎)} 𝑑1⁄  

G.2.2. If [𝑑1(𝜇̂ − 𝜇) + 𝑑2(𝜎̂ − 𝜎)] < 0: 

⟺ 𝑑1(𝜇̂ − 𝜇) + 𝑑2(𝜎̂ − 𝜎) ≥ −√𝜎2 ∙ 𝐶1−𝛼 − 𝑑3
2(𝜎̂ − 𝜎)2 

    ⟺ 𝜇̂ − 𝜇 ≥ −{√𝜎2 ∙ 𝐶1−𝛼 − 𝑑3
2(𝜎̂ − 𝜎)2 + 𝑑2(𝜎̂ − 𝜎)} 𝑑1⁄  

       ⟺ 𝜇 ≤ 𝜇̂ + {√𝜎2 ∙ 𝐶1−𝛼 − 𝑑3
2(𝜎̂ − 𝜎)2 + 𝑑2(𝜎̂ − 𝜎)} 𝑑1⁄       

Furthermore, returning to inequality (G.2) we have the following conditions on 

𝜎: 

𝜎2 ∙ 𝐶1−𝛼 − 𝑑3
2(𝜎̂ − 𝜎)2 ≥ 0 

⟺ 𝜎2(𝐶1−𝛼 − 𝑑3
2) + 2𝑑3

2𝜎̂ 𝜎 − 𝑑3
2𝜎̂2 ≥ 0                                          

⟺ 𝜎2(𝑑3
2 − 𝐶1−𝛼) − 2𝑑3

2𝜎̂ 𝜎 + 𝑑3
2𝜎̂2 ≤ 0                                          

⟺ (𝜎√𝑑3
2 − 𝐶1−𝛼 −

𝑑3
2𝜎̂

√𝑑3
2 − 𝐶1−𝛼

)

2

≤
𝑑3
4𝜎̂2

𝑑3
2 − 𝐶1−𝛼

− 𝑑3
2𝜎̂2            

⟺ (𝜎√𝑑3
2 − 𝐶1−𝛼 −

𝑑3
2𝜎̂

√𝑑3
2 − 𝐶1−𝛼

)

2

≤ 𝑑3
2𝜎̂2 ∙ (

𝑑3
2

𝑑3
2 − 𝐶1−𝛼

− 1) 

⟺ (𝜎√𝑑3
2 − 𝐶1−𝛼 −

𝑑3
2𝜎̂

√𝑑3
2 − 𝐶1−𝛼

)

2

≤ 𝑑3
2𝜎̂2 ∙

𝐶1−𝛼

𝑑3
2 − 𝐶1−𝛼

              

⟺ [𝜎(𝑑3
2 − 𝐶1−𝛼) − 𝑑3

2𝜎̂]2 ≤ 𝑑3
2𝜎̂2 ∙ 𝐶1−𝛼                                        

Again we distinguish two cases, G.2.3 and G.2.4, below: 

G.2.3. If [𝜎(𝑑3
2 − 𝐶1−𝛼) − 𝑑3

2𝜎̂] ≥ 0: 
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⟺ 𝜎(𝑑3
2 − 𝐶1−𝛼) − 𝑑3

2𝜎̂ ≤ 𝑑3𝜎̂ ∙ √𝐶1−𝛼  

⟺ 𝜎(𝑑3
2 − 𝐶1−𝛼) ≤ 𝑑3𝜎̂ ∙ √𝐶1−𝛼 + 𝑑3

2𝜎̂  

⟺ 𝜎(𝑑3
2 − 𝐶1−𝛼) ≤ 𝑑3𝜎̂ ∙ (√𝐶1−𝛼 + 𝑑3) 

⟺ 𝜎 ≤ 𝑑3𝜎̂ ∙
√𝐶1−𝛼 + 𝑑3

𝑑3
2 − 𝐶1−𝛼

                           

⟺ 𝜎 ≤ 𝜎̂ ∙
𝑑3

𝑑3 −√𝐶1−𝛼
                               

G.2.4. If [𝜎(𝑑3
2 − 𝐶1−𝛼) − 𝑑3

2𝜎̂] < 0: 

⟺ 𝜎(𝑑3
2 − 𝐶1−𝛼) − 𝑑3

2𝜎̂ ≥ −𝑑3𝜎̂ ∙ √𝐶1−𝛼  

⟺ 𝜎(𝑑3
2 − 𝐶1−𝛼) ≥ −𝑑3𝜎̂ ∙ √𝐶1−𝛼 + 𝑑3

2𝜎̂  

 ⟺ 𝜎(𝑑3
2 − 𝐶1−𝛼) ≥ 𝑑3𝜎̂ ∙ (𝑑3 −√𝐶1−𝛼)    

 ⟺ 𝜎 ≥ 𝑑3𝜎̂ ∙
𝑑3 − √𝐶1−𝛼

𝑑3
2 − 𝐶1−𝛼

                              

⟺ 𝜎 ≥ 𝜎̂ ∙
𝑑3

𝑑3 +√𝐶1−𝛼
                                  

In summary, the SCR for 𝜃 is given by all 𝜃 = [𝜇, 𝜎]′ which satisfy the following 

two conditions: 

𝜎̂ ∙
𝑑3

𝑑3 +√𝐶1−𝛼
≤ 𝜎 ≤ 𝜎̂ ∙

𝑑3

𝑑3 −√𝐶1−𝛼
 

and 

𝜇̂ − {√𝜎2 ∙ 𝐶1−𝛼 − 𝑑3
2(𝜎̂ − 𝜎)2 − 𝑑2(𝜎̂ − 𝜎)} 𝑑1⁄ ≤ 𝜇 ≤ 
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𝜇̂ + {√𝜎2 ∙ 𝐶1−𝛼 − 𝑑3
2(𝜎̂ − 𝜎)2 + 𝑑2(𝜎̂ − 𝜎)} 𝑑1⁄                
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Appendix H: MATLAB Programming Code 

Please note that all code presented herein remains the intellectual property of 

the University of the Free State and may not be published without consent. The 

code for calculating the expected value and covariance matrice of Normal, 

Logistic, Uniform, Pareto, and Weibull distributions; and examples code for 

calculating the FGCIs for model parameters and quantile of Weibull (one and 

two sample problems) and Generalized Extreme Value distributions are solely 

presented in this thesis. However, other programs code are available 

electronically on request. 

H1: LS and LLS families of distributions: Simulation of expected value and covariance matrix of 

𝑍 for sample sizes  𝑛 = 10 and 𝑛 = 25 

Code H1.1: Normal distribution (𝑛 = 10;  𝑛 = 25)  

clear 

  
n = 10;  

 

% n = 25; 

  
mu = 0; 

  
sig = 1; 

  
I = 100000;  

  
Z = zeros(I, n); 

  
for i = 1 : I 

     
    z = normrnd(mu, sig, [1, n]);  

     
    s = sort(z);  

     
    Z(i, :) = s; 

     
end 

  
EZ = mean(Z);  

  
V = cov(Z);  
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v = ones(size(EZ)); 

  
X = [v; EZ]'; 

  
H = (X' / V * X) \ X' / V; % Linear predictor for mu and sigma 

 

Code H1.2: Logistic distribution (𝑛 = 10;  𝑛 = 25) 

clear 

  
n = 10;  

 

% n = 25; 

  
a = 0; 

  
b = 1; 

  
I = 100000;  

  
Z = zeros(I, n); 

  
for i = 1 : I 

     
    u = unifrnd(a, b, [1, n]);  

 
    z = - log((1 - u) ./ u);  

 
    s = sort(z);  

     
    Z(i, :) = s; 

     
end 

  
EZ = mean(Z);  

  
V = cov(Z);  

  
v = ones(size(EZ)); 

  
X = [v; EZ]'; 

  
H = (X' / V * X) \ X' / V;  
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Code H1.3: Uniform distribution (𝑛 = 10;  𝑛 = 25) 

clear 

  
n = 10;  

 

% n = 25; 

  
a = 0; 

  
b = 1; 

  
I = 100000;  

  
Z = zeros(I, n); 

  
for i = 1 : I 

     
    u = unifrnd(a, b, [1, n]);  

     
    s = sort(u);  

     
    Z(i, :) = s; 

     
end 

  
EZ = mean(Z);  

  
V = cov(Z);  

  
v = ones(size(EZ)); 

  
X = [v; EZ]'; 

  
H = (X' / V * X) \ X' / V;  
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Code H1.4: Pareto distribution (𝑛 = 10;  𝑛 = 25) 

clear 

  
n = 10;  

 

% n = 25; 

 
a = 0; 

  
b = 1; 

  
I = 100000;  

  
Z = zeros(I, n); 

  
for i = 1 : I 

     
    u = unifrnd(a, b, [1, n]);  

     
    z = - log(1 - u);  

     
    s = sort(z);  

     
    Z(i, :) = s; 

     
end 

  
EZ = mean(Z);  

  
V = cov(Z);  

  
v = ones(size(EZ)); 

  
X = [v; EZ]'; 

  
H = (X' / V * X) \ X' / V;  
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Code H1.5: Weibull distribution (𝑛 = 10;  𝑛 = 25) 

clear 

  
n = 10;  

 

% n = 25; 

  
mu_s = 1; 

  
sig_s = 1; 

  
I = 100000;  

  
Z = zeros(I, n); 

  
for i = 1 : I 

     
    w = wblrnd(mu_s, sig_s, [1, n]);  

     
    z = log(w);  

     
    s = sort(z);  

     
    Z(i, :) = s; 

     
end 

  
EZ = mean(Z);  

  
V = cov(Z);  

  
v = ones(size(EZ)); 

  
X = [v; EZ]'; 

  
H = (X' / V * X) \ X' / V;  
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H2: LS and LLS families of distributions: Calculation of point estimates and fiducial generalized 

confidence intervals for the model parameters of Log Weibull distributions using real data 

examples from Lawless (2003, p. 240) 

Code H2.1: Illustrative examples for one-sample problem: Log Weibull distributions (𝑛 = 20) 

clear 

  
n = 20;  

 

mu_s = 1; 

  
sig_s = 1; 

  
a1 = .10;  

  
a2 = .05;  

  
a3 = .01;  

  
J = 10000; % Number of draws from fiducial distributions 

  
LCP1 = round((J * a1 / 2) * 1) / 1;  

  
    if LCP1 <= 0 

          
        LCP1 = 1; 

         
    end  

  
UCP1 = round((J * (1 - a1 / 2)) * 1) / 1;  

  
LCP2 = round((J * a2 / 2) * 1) / 1;        

  
    if LCP2 <= 0 

          
        LCP2 = 1; 

         
    end  

  
UCP2 = round((J * (1 - a2 / 2)) * 1) / 1;  

  
LCP3 = round((J * a3 / 2) * 1) / 1;        

  
    if LCP3 <= 0 

          
        LCP3 = 1; 

         
    end  

  
UCP3 = round((J * (1 - a3 / 2)) * 1) / 1;   
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L1 = [1; 0]; 

  
    L2 = [0; 1]; 

     
    C1 = L1' * H; % Linear predictor for mu estimate 

  
    C2 = L2' * H; % Linear predictor for sigma estimate 

     
    w1s = 

[32.0;35.4;36.2;39.8;41.2;43.3;45.5;46.0;46.2;46.4;46.5;46.8; 

47.3;47.3;47.6;49.2;50.4;50.9;52.4;56.3]; % Order statistics of 

sample 1  

      
     phat1 = wblfit(w1s);  

  
        muHAT1 = log(phat1(1));  

  
            sigHAT1 = 1 / (phat1(2));  

  
y1s = log(w1s);  

  
    muhat1 = C1 * y1s;      

     
        sighat1 = C2 * y1s;     

         
        w2s = 

[39.4;45.3;49.2;49.4;51.3;52.0;53.2;53.2;54.9;55.5;57.1;57.2; 

 

57.5;59.2;61.0;62.4;63.8;64.3;67.3;67.7]; % Order statistics of 

sample 2  

  
    phat2 = wblfit(w2s);  

  
        muHAT2 = log(phat2(1));  

  
            sigHAT2 = 1 / (phat2(2));  

  
y2s = log(w2s);  

  
    muhat2 = C1 * y2s;      

     
        sighat2 = C2 * y2s;     

         
VR_sig_1 = zeros(1, J); 

  
VML_sig_1 = zeros(1, J); 

  
VR_mu_1 = zeros(1, J); 

  
VML_mu_1 = zeros(1, J); 
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VR_sig_2 = zeros(1, J); 

  
VML_sig_2 = zeros(1, J); 

  
VR_mu_2 = zeros(1, J); 

  
VML_mu_2 = zeros(1, J);     

  
for j = 1 : J 

     
    Z = wblrnd(mu_s, sig_s, [n, 1]);  

  
    PHAT = wblfit(Z);  

     
        MUHAT = log(PHAT(1));  

  
            SIGHAT = 1 / (PHAT(2));  

             
    z = log(Z);  

             
        zs = sort(z);  

  
            Muhat = C1 * zs;  

         
                Sighat = C2 * zs;  

     
    VR_sig_1(j) = sighat1 / Sighat; % Rank-based FGPQ for sigma 1 

     
    VML_sig_1(j) = sigHAT1 / SIGHAT; % ML-based FGPQ for sigma 1 

     
    VR_mu_1(j) = C1 * (y1s - (R_sig_1 * zs)); % Rank-based FGPQ 

for mu 1 

     
    VML_mu_1(j) = muHAT1 - (ML_sig_1 * MUHAT); % ML-based FGPQ 

for mu 1 

     
    VR_sig_2(j) = sighat2 / Sighat; % Rank-based FGPQ for sigma 2 

     
    VML_sig_2(j) = sigHAT2 / SIGHAT; % ML-based FGPQ for sigma 2 

     
    VR_mu_2(j) = C1 * (y2s - (R_sig_2 * zs)); % Rank-based FGPQ 

for mu 2 

     
    VML_mu_2(j) = muHAT2 - (ML_sig_2 * MUHAT); % ML-based FGPQ 

for mu 2 

     
end 

  
% Rank-based point estimates  
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R_param_est = [muhat1, sighat1; muhat2, sighat2]; 

  
% ML-based point estimates  

  
ML_param_est = [muHAT1, sigHAT1; muHAT2, sigHAT2]; 
 

% Rank and ML-based FGCIs 

 
SVR_sig_1 = sort(VR_sig_1);  

  
a1_RCI_Sig_1 = [SVR_sig_1(LCP1), SVR_sig_1(UCP1)];  

  
SVML_sig_1 = sort(VML_sig_1);  

  
a1_MLCI_Sig_1 = [SVML_sig_1(LCP1), SVML_sig_1(UCP1)];  

  
a2_RCI_Sig_1 = [SVR_sig_1(LCP2), SVR_sig_1(UCP2)];  

  
a2_MLCI_Sig_1 = [SVML_sig_1(LCP2), SVML_sig_1(UCP2)];  

  
a3_RCI_Sig_1 = [SVR_sig_1(LCP3), SVR_sig_1(UCP3)];  

  
a3_MLCI_Sig_1 = [SVML_sig_1(LCP3), SVML_sig_1(UCP3)];  

  
SVR_sig_2 = sort(VR_sig_2);  

  
a1_RCI_Sig_2 = [SVR_sig_2(LCP1), SVR_sig_2(UCP1)];  

  
SVML_sig_2 = sort(VML_sig_2);  

  
a1_MLCI_Sig_2 = [SVML_sig_2(LCP1), SVML_sig_2(UCP1)];  

  
a2_RCI_Sig_2 = [SVR_sig_2(LCP2), SVR_sig_2(UCP2)];  

  
a2_MLCI_Sig_2 = [SVML_sig_2(LCP2), SVML_sig_2(UCP2)];  

  
a3_RCI_Sig_2 = [SVR_sig_2(LCP3), SVR_sig_2(UCP3)];  

  
a3_MLCI_Sig_2 = [SVML_sig_2(LCP3), SVML_sig_2(UCP3)];  

  
SVR_mu_1 = sort(VR_mu_1);  

  
a1_RCI_mu_1 = [SVR_mu_1(LCP1), SVR_mu_1(UCP1)];  

  
SVML_mu_1 = sort(VML_mu_1);  

  
a1_MLCI_mu_1 = [SVML_mu_1(LCP1), SVML_mu_1(UCP1)];  

  
a2_RCI_mu_1 = [SVR_mu_1(LCP2), SVR_mu_1(UCP2)];  

  
a2_MLCI_mu_1 = [SVML_mu_1(LCP2), SVML_mu_1(UCP2)];  
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a3_RCI_mu_1 = [SVR_mu_1(LCP3), SVR_mu_1(UCP3)];  

  
a3_MLCI_mu_1 = [SVML_mu_1(LCP3), SVML_mu_1(UCP3)];  

  
SVR_mu_2 = sort(VR_mu_2);  

  
a1_RCI_mu_2 = [SVR_mu_2(LCP1), SVR_mu_2(UCP1)];  

  
SVML_mu_2 = sort(VML_mu_2);  

  
a1_MLCI_mu_2 = [SVML_mu_2(LCP1), SVML_mu_2(UCP1)];  

  
a2_RCI_mu_2 = [SVR_mu_2(LCP2), SVR_mu_2(UCP2)];  

  
a2_MLCI_mu_2 = [SVML_mu_2(LCP2), SVML_mu_2(UCP2)];  

  
a3_RCI_mu_2 = [SVR_mu_2(LCP3), SVR_mu_2(UCP3)];  

  
a3_MLCI_mu_2 = [SVML_mu_2(LCP3), SVML_mu_2(UCP3)];  
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H3: LS and LLS families of distributions: Calculation of point estimates and fiducial generalized 

confidence intervals for the ratio of 𝜎1 and 𝜎2, difference of 𝜇1 and 𝜇2, and difference of 𝜂1 

and 𝜂2 of Log Weibull distributions using real data example from Lawless (2003, p. 240) 

Code H3.1: Illustrative example for two-sample problem: Log Weibull distributions (𝑛1 = 𝑛2 =

20) 

n1 = 20;  

  
n2 = 20;  

  
mu_s1 = 1; 

  
sig_s1 = 1; 

  
mu_s2 = 1; 

  
sig_s2 = 1; 

     
a1 = .10;  

  
a2 = .05;  

  
a3 = .01;  

  
J = 10000; % Number of draws from fiducial distributions 

         
LCP1 = round((J * a1 / 2) * 1) / 1;  

  
    if LCP1 <= 0 

          
        LCP1 = 1; 

         
    end  

  
UCP1 = round((J * (1 - a1 / 2)) * 1) / 1;  

  
LCP2 = round((J * a2 / 2) * 1) / 1;        

  
    if LCP2 <= 0 

          
        LCP2 = 1; 

         
    end  

  
UCP2 = round((J * (1 - a2 / 2)) * 1) / 1;  

  
LCP3 = round((J * a3 / 2) * 1) / 1;        

  
    if LCP3 <= 0 
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        LCP3 = 1; 

         
    end  

  
UCP3 = round((J * (1 - a3 / 2)) * 1) / 1;   

         
L1 = [1; 0]; 

  
    L2 = [0; 1]; 

     
    C1 = L1' * H;  

  
    C2 = L2' * H;  

     
    w1s = 

[32.0;35.4;36.2;39.8;41.2;43.3;45.5;46.0;46.2;46.4;46.5;46.8; 

 

47.3;47.3;47.6;49.2;50.4;50.9;52.4;56.3]; % Order statistics of 

sample 1  

  
       y1s = log(w1s);  

 
   w2s = 

[39.4;45.3;49.2;49.4;51.3;52.0;53.2;53.2;54.9;55.5;57.1;57.2; 

 

57.5;59.2;61.0;62.4;63.8;64.3;67.3;67.7]; % Order statistics of 

sample 2  

     
        y2s = log(w2s);  

     
% Rank-based poit estimates of parameters based on samples 1 & 2 

  
muhat1 = 3.8688; 

  
sighat1 = .1116; 

  
muhat2 = 4.0824; 

  
sighat2 = .1144; 

  
% ML-based point estimates of parameters based on samples 1 & 2 

         
muHAT1 = 3.8666; 

  
sigHAT1 = .1066; 

  
muHAT2 = 4.0796; 

  
sigHAT2 = .1094; 

  
p1 = .975; % failure probability for eta 1 
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p2 = .975; % failure probability for eta 2 

  
z_p1 = log(- log(1 - p1));  

  
    Lp1 = [1, z_p1]'; 

     
        eta_p1 = Lp1' * H * y1s;  

  
z_p2 = log(- log(1 - p2));  

  
    Lp2 = [1, z_p2]'; 

  
       eta_p2 = Lp2' * H * y2s;  

   
  rho_R = sighat1 / sighat2; % rank-based rho  

   
  rho_ML = sigHAT1 / sigHAT2; % ML-based rho 

   
  delta_R = muhat1 - muhat2; % Rank-based delta  

   
  delta_ML = muHAT1 - muHAT2; % ML-based delta 

   
  dif_etas = eta_p1 - eta_p2; % ML-based diff  

   
VR_rho = zeros(1, J); 

  
VML_rho = zeros(1, J); 

  
VR_delta = zeros(1, J); 

  
VML_delta = zeros(1, J); 

  
VR_eta_d = zeros(1, J); 

  
VML_eta_d = zeros(1, J); 

   
for j = 1 : J 

         
W_1 = wblrnd(mu_s1, sig_s1, [n1, 1]);  

  
    PHAT1 = wblfit(W_1);  

     
        MUHAT1 = log(PHAT1(1));  

  
            SIGHAT1 = 1 / (PHAT1(2));  

             
    z1 = log(W_1);  

             
        z1s = sort(z1);  
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            Muhat1 = C1 * z1s;  

         
                Sighat1 = C2 * z1s;  

     
W_2 = wblrnd(mu_s2, sig_s2, [n2, 1]);  

  
    PHAT2 = wblfit(W_2);  

     
        MUHAT2 = log(PHAT2(1));  

  
            SIGHAT2 = 1 / (PHAT2(2));  

             
    z2 = log(W_2);  

  
        z2s = sort(z2);  

  
            Muhat2 = C1 * z2s;  

  
                Sighat2 = C2 * z2s;  

     
    % Rank and ML based FGPQs 

     
    VR_rho(j) = (sighat1 / Sighat1) * (Sighat2 / sighat2);  

     
    VML_rho(j) = (sigHAT1 / SIGHAT1) * (SIGHAT2 / sigHAT2);  

     
    VR_delta(j) = (C1 * (y1s - (sighat1 / Sighat1 * z1s))) - (C1 

* (y2s –  

(sighat2 / Sighat2 * z2s)));  

     
    VML_delta(j) = (muHAT1 - (sigHAT1 / SIGHAT1 * MUHAT1)) - 

(muHAT2 - (sigHAT2 / SIGHAT2 * MUHAT2));  

     
    VR_eta_d(j) = (muhat1 - ((sighat1 / Sighat1) * (Muhat1 - 

z_p1))) - (muhat2 - ((sighat2 / Sighat2) * (Muhat2 - z_p2)));  

     
    VML_eta_d(j) = (muHAT1 - (sigHAT1 / SIGHAT1 * (MUHAT1 - 

z_p1))) - (muHAT2 - (sigHAT2 / SIGHAT2 * (MUHAT2 - z_p2)));  

      
end 

  
% Rank-based point estimates of rho, delta, and eta_diff 

  
R_param_est = [rho_R, delta_R, dif_etas] 

  
% ML-based point estimates of rho, delta, and eta_diff 

     
ML_param_est = [rho_ML, delta_ML, dif_etas]    

     
% 90%, 95% and 99% FGCIs for rho_R, rho_ML, delta_R, 

delta_ML,dif_etas     
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SVR_rho = sort(VR_rho); 

  
a1_RCI_rho = [SVR_rho(LCP1), SVR_rho(UCP1)];  

     
SVML_rho = sort(VML_rho); 

  
a1_MLCI_rho = [SVML_rho(LCP1), SVML_rho(UCP1)];  

     
a2_RCI_rho = [SVR_rho(LCP2), SVR_rho(UCP2)];  

  
a2_MLCI_rho = [SVML_rho(LCP2), SVML_rho(UCP2)];  

 
a3_RCI_rho = [SVR_rho(LCP3), SVR_rho(UCP3)];  

  
a3_MLCI_rho = [SVML_rho(LCP3), SVML_rho(UCP3)];  

     
SVR_delta = sort(VR_delta);  

  
a1_RCI_delta = [SVR_delta(LCP1), SVR_delta(UCP1)];  

  
SVML_delta = sort(VML_delta);  

  
a1_MLCI_delta = [SVML_delta(LCP1), SVML_delta(UCP1)];  

     
a2_RCI_delta = [SVR_delta(LCP2), SVR_delta(UCP2)];  

  
a2_MLCI_delta = [SVML_delta(LCP2), SVML_delta(UCP2)];  

  
a3_RCI_delta = [SVR_delta(LCP3), SVR_delta(UCP3)];  

  
a3_MLCI_delta = [SVML_delta(LCP3), SVML_delta(UCP3)];  

     
SVR_eta_d = sort(VR_eta_d);  

  
a1_RCI_eta_d = [SVR_eta_d(LCP1), SVR_eta_d(UCP1)];  

  
SVML_eta_d = sort(VML_eta_d);  

  
a1_MLCI_eta_d = [SVML_eta_d(LCP1), SVML_eta_d(UCP1)];  

     
a2_RCI_eta_d = [SVR_eta_d(LCP2), SVR_eta_d(UCP2)];  

  
a2_MLCI_eta_d = [SVML_eta_d(LCP2), SVML_eta_d(UCP2)];  

  
a3_RCI_eta_d = [SVR_eta_d(LCP3), SVR_eta_d(UCP3)];  

  
a3_MLCI_eta_d = [SVML_eta_d(LCP3), SVML_eta_d(UCP3)];  

 
  



501 

H4: LSS family of distributions: Calculation of point estimates and fiducial generalized 

confidence intervals for the model parameters and quantile of Generalized Extreme Value 

distribution using real data examples, also analysed by Beirlant et al. (2004, pp. 452-459) 

Code H4.1: Illustrative examples: Generalized Extreme Value distribution (𝑛 = 70) based on 𝜃∗ 

parametrization 

 

H_vec = H;  

  
L2 = [0, 1]';  

  
HM = H_X; % H matrix of demension n x 282 containing linear 

predictors for  

mu* and sigma* 

  
DATA = ctwind; % 70 x 3 matrix of data: Harbour; Airport and 

Robben Island 

  
M = 10000; % Number of draws from the fiducial distribution of 

FGPQs  

  
n = 70; 

  
c = 1; % c = 1 refers to (Cape Town Harbour data); c = 2 (Cape 

Town Airport data); and c = 3 (Cape Town Robben Island data) 

  
a = 0;  

  
b = 1;  

  
% Input THETA* parametrization 

  
    mu_star = 35;  

  
    sig_star = 4.5;  

  
    xi = .14;  

  
p = .975; % failure probability for p-quantile of GEV  

  
lambda = 1;  

  
z_p = - log(p) / lambda; % p_quantile of standard Exponential  

  
 eta_p = mu_star + sig_star * ((z_p^(- xi) - 1) / xi); % 

p_quantile of a GEV distribution based on THETA* parametrization 

  
D = sort(ctwind(:, c)); % Order statistics of Harbour, Airport, 

or Robben Island data 
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a1 = .10;  

  
a2 = .05;  

  
a3 = .01;  

  
LCP1 = round((M * a1 / 2) * 1) / 1;  

  
    if LCP1 <= 0 

         
        LCP1 = 1; 

         
    end 

  
UCP1 = round((M * (1 - a1 / 2)) * 1) / 1;  

  
LCP2 = round((M * a2 / 2) * 1) / 1; 

  
    if LCP2 <= 0 

         
        LCP2 = 1; 
    end 

  
UCP2 = round((M * (1 - a2 / 2)) * 1) / 1; 

  
LCP3 = round((M * a3 / 2) * 1) / 1; 

  
    if LCP3 <= 0 

         
        LCP3 = 1; 

         
    end 

  
UCP3 = round((M * (1 - a3 / 2)) * 1) / 1; 

  
xi_1 = .01; % Starting value of POSITIVE Xi's for the grid 

  
xi_step = .01; % Increament steps of Xi 

  
 X_i = zeros(1, M + 1);  

  
     X_i(1) = 1;     % Filling the 1st position in vector X_i 

with initial value of 1st element 1 

  
sig_s = zeros(1, M + 1);  

  
sig = zeros(1, M + 1);   

  
mu_s = zeros(1, M + 1);  

  
mu = zeros(1, M + 1);   
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ETA = zeros(1, M + 1);  

  
ys = D';  

  
for i = 1 : M 

  
    k = round(X_i(i) * 100) / 100;  

     
    c_mu_s = round(((2 * (k - xi_1) / xi_step) + 1) * 1) / 1;  

     
       if c_mu_s <= 0 

              
           c_mu_s = 1; % Keeping indices within the lower bound 

(column 1)  

            
       end   

        
           if c_mu_s > 281 % last column number of mu* is 281 

                
               c_mu_s = 281; % keeping indices within the upper 

bound (column 281) 

                
           end 

          
    c_sig_s = c_mu_s + 1; % Columns numbers of linear predictors 

of sigma* 

     
    L1_xi = HM(:, c_mu_s); % Catching the linear predictors of 

mu* from HM matrix 

     
    L2_xi = HM(:, c_sig_s); % Catching the linear predictors of 

sigma* from HM matrix 

     
        u = unifrnd(a, b, [1, n]);  

     
            z = - log(u);  

                         
        Zz_Xi = z .^ - X_i(i);  

                         
                Zz_s = sort(Zz_Xi);  

                         
                ZZ_Xi = (Zz_s - 1) ./ X_i(i);  

                             
% Drawing copies of parameters estimates from the distribution of 

their respective CFGPQs    

                         
            sig_s(i+1) = L2_xi' * ys' / (L2_xi' * ZZ_Xi');  

   
             sig(i+1) = sig_s(i+1) / X_i(i);             
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            mu_s(i+1) = L1_xi' * (ys' - (sig_s(i+1) * ZZ_Xi'));  

             
            mu(i+1) = mu_s(i+1) - sig(i+1);                

         
% since the support of the distribution y is lower bounded at mu, 

we make % % sure that the estimate of mu is less than or equal to 

the smallest %observation ys(1) 

  
                   if mu(i+1) > ys(1) 

                        
                       mu(i+1) = ys(1) - .00001; 

                        
                   end 

  
        u_2 = unifrnd(a, b, [1, n]); % Draw a new standard 

Uniform 

     
            z_2 = - log(u_2); % new standard Exponential 

             
            z_2_s = sort(z_2 .^ - 1);  

         
        X_i(i+1) = L2' * H * log(mu(i+1) - ys' ) / (L2' * H * 

log(z_2_s'));    

         
             if X_i(i+1) < .01  % Because we have simulated 

linear %  %predictors with smallest value of xi = 0.01,we limit 

all the estimates  

% of X_i to >= 0.01 

                 
                    X_i(i+1) = .01; 

                 
             end 

         
        ETA(i+1) = mu_s(i+1) + sig_s(i+1) * ((z_p ^ - X_i(i+1) - 

1) / X_i(i+1));  

        
end 

  
% CFGCIs 

 
% Sigma*: 

  
    V1s = sort(sig_s(2 : length(sig_s)));  

  
        V1s_L1 = V1s(LCP1);  

  
        V1s_U1 = V1s(UCP1);  

  
             V1s_L2 = V1s(LCP2);  

  
             V1s_U2 = V1s(UCP2);  
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                    V1s_L3 = V1s(LCP3);  

  
                    V1s_U3 = V1s(UCP3);  

    
% Sigma: 

  
      V2s = sort(sig(2 : length(sig)));  

  
        V2s_L1 = V2s(LCP1);  

  
        V2s_U1 = V2s(UCP1);  

         
             V2s_L2 = V2s(LCP2);  

  
             V2s_U2 = V2s(UCP2);  

        
                 V2s_L3 = V2s(LCP3);  

  
                V2s_U3 = V2s(UCP3);  

        
% Mu*: 

  
       V3s = sort(mu_s(2 : length(mu_s)));   

  
            V3s_L1 = V3s(LCP1);  

  
            V3s_U1 = V3s(UCP1);  

  
                V3s_L2 = V3s(LCP2);  

  
                V3s_U2 = V3s(UCP2);  

         
                    V3s_L3 = V3s(LCP3);  

  
                    V3s_U3 = V3s(UCP3);  

  
% Mu: 

  
    V4s = sort(mu(2 : length(mu)));  

  
        V4s_L1 = V4s(LCP1);  

  
        V4s_U1 = V4s(UCP1);  

  
            V4s_L2 = V4s(LCP2);  

  
            V4s_U2 = V4s(UCP2);  

     
                V4s_L3 = V4s(LCP3);  

  
                V4s_U3 = V4s(UCP3);  
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      % Xi: 

        
     V5s = sort(X_i(2 : length(X_i)));   

         
        V5s_L1 = V5s(LCP1);  

  
        V5s_U1 = V5s(UCP1);  

  
            V5s_L2 = V5s(LCP2);  

  
            V5s_U2 = V5s(UCP2);  

        
                V5s_L3 = V5s(LCP3);  

  
                V5s_U3 = V5s(UCP3);  

  
   % Eta: 

  
      V6s = sort(ETA(2 : length(ETA)));   

  
            V6s_L1 = V6s(LCP1);  

  
            V6s_U1 = V6s(UCP1);  

  
                V6s_L2 = V6s(LCP2);  

  
                V6s_U2 = V6s(UCP2);  

  
                    V6s_L3 = V6s(LCP3);  

  
                    V6s_U3 = V6s(UCP3);  

  
Eta_Exp_p = z_p;  

  
Eta_GEV_p_xi = eta_p;  

  
% point estimates of model parameters and quantile  

  
P_Est1 = sum(V1s) / M; % point estimate for sigma* 

  
P_Est2 = sum(V2s) / M;  % point estimate for sigma 

  
P_Est3 = sum(V3s) / M;  % point estimate for mu* 

  
P_Est4 = sum(V4s) / M;  % point estimate for mu 

  
P_Est5 = sum(V5s) / M;  % point estimate for xi 

  
P_Est6 = sum(V6s) / M;  % point estimate for eta_.975 
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% FGCIs for the model parameters and quantile  

 
FGCI1 = [V1s_L1, V1s_U1; V1s_L2, V1s_U2; V1s_L3, V1s_U3]; % 

sigma* 

  
FGCI2 = [V2s_L1, V2s_U1; V2s_L2, V2s_U2; V2s_L3, V2s_U3]; % sigma 

  
FGCI3 = [V3s_L1, V3s_U1; V3s_L2, V3s_U2; V3s_L3, V3s_U3]; % mu* 

  
FGCI4 = [V4s_L1, V4s_U1; V4s_L2, V4s_U2; V4s_L3, V4s_U3]; % mu 

  
FGCI5 = [V5s_L1, V5s_U1; V5s_L2, V5s_U2; V5s_L3, V5s_U3]; % xi 

  
FGCI6 = [V6s_L1, V6s_U1; V6s_L2, V6s_U2; V6s_L3, V6s_U3]; % 

eta_.99 

 
 

 


