## SYNTHESIS,

## ELECTROCHEMISTRY AND

DENSITY FUNCTIONAL THEORY CALCULATIONS ON CHROME AND COBALT CARBENE AND BETADIKETONATO COMPLEXES.
R. LIU

# SYNTHESIS, ELECTROCHEMISTRY AND DENSITY FUNCTIONAL THEORY CALCULATIONS ON CHROME AND COBALT CARBENE AND BETADIKETONATO COMPLEXES. 

A thesis submitted to meet the requirements for the degree of
Magister Scientiae

in the

Department of Chemistry
Faculty of Natural and Agricultural Sciences

> at the
> University of the Free State
> by
> Renyuan Liu

Supervisor
Prof. J. Conradie

## Acknowledgements

I would like to thank all my friends, family and colleague for their support through the period of my studies. Special appreciations must be made to the following people:
my promoter (Prof. Jeanet Conradie), thank you for all your patience, kindness, guidance and support throughout the whole period of this work.
my parents (Xinghua Liu and Hua Ren) in China, thank you for your support, love and understanding.

Dr. Marile Landman from the University of Pretoria, thank you for providing carbene complexes. This work could not be done without your help.

Prof. Petrus van Rooyen from the University of the Pretoria, thank you for refinement of crystal structures. You help made this work possible.

The Physical Chemistry group, thank you for support, guidance and joy throughout this study.

The Chemistry department and the University of the Free State, Thank you for available facilities.

The National Research Foundation and the University of the Free State, thank you for the financial support.

## Table of Contents

List of Abbreviations ..... VI
List of Complexes ..... VIII
Chapter 1
Introduction ..... 1
1.1 Tris( $\beta$-diketonato)chromium(III) complexes ..... 1
1.2 Tris( $\beta$-diketonato)cobalt(III) complexes ..... 3
1.3 Fischer carbene complexes with $\mathrm{Cr}(0)$ metal center ..... 4
1.4 Aims of this study ..... 6
Chapter 2
Literature survey and fundamental aspects ..... 9
2.1 Electrochemistry ..... 9
2.1.1 Cyclic Voltammetry (CV) ..... 9
2.1.2 Linear Sweep Voltammetry (LSV) ..... 14
2.1.3 Square Wave Voltammetry (SWV) ..... 16
2.2 Computational Chemistry ..... 18
2.2.1 Introduction ..... 18
2.2.2 Exchange-Correlation Functionals ..... 20
2.2.3 Basis Sets ..... 22
2.2.4 Symmetry and Point Groups ..... 23
2.2.5 Ligand Field Splitting ..... 25
2.3 X-ray Crystallography ..... 28
2.4 $\operatorname{Tris}(\beta$-diketonato)chromium(III) Complexes ..... 31
2.4.1 Synthesis and Characterization ..... 31
2.4.2 Electrochemical Studies ..... 35
2.5 Tris( $\beta$-diketonato)cobalt(III) Complexes ..... 41
2.5.1 Synthesis and Characterization ..... 41
2.6 Chromium(0)-Carbene Complexes ..... 44
2.6.1 Introduction ..... 44
2.6.2 Electrochemical Studies ..... 45
Chapter 3
Results and discussion ..... 49
3.1 Tris( $\beta$-diketonato)chromium(III) complexes ..... 49
3.1.1 Synthesis ..... 49
3.1.2 Crystal Structure ..... 52
3.1.3 Electrochemical Studies ..... 59
3.1.4 Computational Results on $\operatorname{Cr}(\beta \text {-diketonato })_{3}$ ..... 76
3.2 $\operatorname{Tris}(\beta$-diketonato)cobalt(III) complexes ..... 92
3.2.1 Synthesis ..... 92
3.2.2 Crystal Structures ..... 93
3.2.3 Computational Results on $\operatorname{Co}(\beta \text {-diketonato })_{3}$ ..... 100
3.3 Chromium(0) carbene complexes ..... 102
3.3.1 Isomers of $\mathrm{Cr}(0)$ carbene complexes ..... 103
3.3.2 Computational results of the $\operatorname{Cr}(0)$ carbene complexes ..... 104
3.3.3 Electrochemical studies of $\operatorname{Cr}(0)$ carbene complexes ..... 110
3.3.4 Relationships between calculated and experimental data ..... 118
Chapter 4
Experimental ..... 121
4.1 Materials ..... 121
4.2 Electrochemistry ..... 121
4.2.1 Tris(-diketonato)chromium(III) complexes ..... 121
4.2.2 Chromium(0) Carbenes ..... 122
4.3 Measurements ..... 122
4.4 Synthesis ..... 123
4.4.1 $\operatorname{Tris}(\beta$-diketonato)chromium(III) complexes ..... 123
4.4.2 $\operatorname{Tris}(\beta$-diketonato)cobalt(III) complexes ..... 127
4.5 Crystallography ..... 129
4.6 Computational Calculations ..... 129
4.6.1 Tris( $\beta$-diketonato)chromium and -cobalt complexes ..... 129
4.6.2 Cr-carbene complexes ..... 130
Chapter 5
Concluding remarks and future perspectives ..... 131
5.1 Concluding remarks ..... 131
5.1.1 $\operatorname{Tris}(\beta$-diketonato)chromium(III) complexes ..... 132
5.1.2 Tris( $\beta$-diketonato)cobalt(III) complexes ..... 132
5.1.3 Chromium(0) carbene complexes ..... 132
5.2 Future perspectives ..... 133
Appendix ..... 135
A. Cyclic Voltammetry (CV) ..... 135
B. Mass Spectrometry (MS) ..... 143
C. Nuclear Magnetic Resonance (NMR) ..... 146
D. Crystallography ..... CD
E. Computational ..... CD
F. Permissions ..... CD
Abstract ..... 151
Opsomming ..... 152

## List of Abbreviations

## $\beta$-diketones

| Hacac | 2,4-pentanedione (acetylacetone) |
| :---: | :---: |
| Hba | 1-phenyl-1,3-butanedione (benzoylacetone) |
| Hdbm | 1,3-diphenyl-1,3-propanedione (dibenzoylmethane) |
| Htfba | 4,4,4-trifluoro-1-(phenyl)-1,3-butanedione (trifluorobenzoylacetone) |
| Htfth | 4,4,4-trifluoro-1-(2-thenoyl)-1,3-butanedione (trifluorothenoylacetone) |
| Htffu | 4,4,4-trifluoro-1-(2-furoyl)-1,3-butanedione (trifluorofuroylacetone) |
| Htfaa | 1,1,1-trifluoro-2,4-pentanedione (trifluoroacetylacetone) |
| Hhfaa | 1,1,1,5,5,5-hexafluoro-2,4-pentanedione (hexafluoroacetylacetone) |

## Solvents

THF tetrahydrofuran
$\mathrm{CH}_{3} \mathrm{CN}$ acetonitrile
DCM dichloromethane
EtOH ethanol

## Functional Groups

| Th | 2-thienyl |
| :--- | :--- |
| Fu | 2-furyl |
| dppe | 1,2-bis(diphenylphosphino)ethane |

## Cyclic Voltammetry

| CV | cyclic voltammetry |
| :--- | :--- |
| $\mathrm{E}^{0^{\prime}}$ | formal reduction potential |
| $\mathrm{E}_{\mathrm{pa}}$ | anodic peak potential |
| $\mathrm{E}_{\mathrm{pc}}$ | cathodic peak potential |


| $\Delta \mathrm{E}_{\mathrm{p}}$ | separation of anodic and cathodic peak potentials |
| :--- | :--- |
| $i_{\mathrm{pa}}$ | anodic peak current |
| $i_{\mathrm{pc}}$ | cathodic peak current |
| $\mathrm{TBAPF}_{6}$ | tetrabutylammonium hexafluorophosphate [NBu4][PF6] |
| $\mathrm{TEABF}_{4}$ | tetraethylammonium tetrafluoroborate |
| SCE | saturated calomel electrode |

## List of Complexes

## Tris( $\beta$-diketones)chromium(III) complexes

$\mathrm{Cr}(\mathrm{acac})_{3}\{1\} \quad \operatorname{tris}(2,4$-pentadionato)chromium(III)
$\operatorname{Cr}(\mathrm{ba})_{3}\{2\} \quad \operatorname{tris}(1$-phenyl-1,3-butanedionato)chromium(III)
$\mathrm{Cr}(\mathrm{dbm})_{3}\{3\} \quad \operatorname{tris}(1,3$-diphenyl-1,3-propanedionato)chromium(III)
$\operatorname{Cr}(\mathrm{tfba})_{3}\{4\} \quad \operatorname{tris}(4,4,4-$ trifluoro-1-phenyl-1,3-butanedionato)chromium(III)
$\mathrm{Cr}(\mathrm{tfth})_{3}\{5\} \quad \operatorname{tris}(4,4,4$-trifluoro-1-(2-thienyl)-1,3-butanedionato)chromium(III)
$\mathrm{Cr}(\mathrm{tffu})_{3}\{6\} \quad \operatorname{tris}(4,4,4$-trifluoro-1-(2-furyl)-1,3-butanedionato)chromium(III)
$\mathrm{Cr}(\mathrm{tfaa})_{3}\{7\}$
$\mathrm{Cr}(\mathrm{hfaa})_{3}\{8\}$ tris(1,1,1-trifluoro-2,4-pentadionato)chromium(III) tris(1,1,1,5,5,5-hexafluoro-2,4-pentadionato)chromium(III)

## Tris( $\beta$-diketones)cobalt(III) complexes

$\mathrm{Co}(\text { acac })_{3}\{9\} \quad \operatorname{tris}(2,4$-pentadionato $) \operatorname{cobalt}($ III $)$
$\mathrm{Co}(\mathrm{ba})_{3}\{10\} \quad \operatorname{tris}(1$-phenyl-1,3-butanedionato)cobalt(III)
$\mathrm{Co}(\mathrm{dbm})_{3}\{11\} \quad$ tris(1,3-diphenyl-1,3-propanedionato)cobalt(III)
$\mathrm{Co}(\mathrm{tfba})_{3}\{12\}$ tris(4,4,4-trifluoro-1-phenyl-1,3-butanedionato)cobalt(III)
$\mathrm{Co}(\mathrm{tfaa})_{3}\{13\} \quad \operatorname{tris}(1,1,1$-trifluoro-2,4-pentadionato)cobalt(III)

## Chromium(0) carbene complexes

$\left[\mathrm{Cr}(\mathrm{CO})_{5} \mathrm{C}(\mathrm{OEt})(2\right.$-thienyl) $]$ \{carbene $\mathbf{1 \}}$

$\left[\mathrm{Cr}(\mathrm{CO}){ }_{5} \mathrm{C}(\mathrm{OEt})(2\right.$-furyl) $]$ \{carbene 2 \}

$\left[\mathrm{Cr}(\mathrm{CO})_{5} \mathrm{C}(\mathrm{OEt})(2\right.$-( N -methylpyrrolyl) $\left.)\right]\{$ carbene 3$\}$

$\left[\mathrm{Cr}(\mathrm{CO})_{5} \mathrm{C}(\mathrm{OEt})(\mathrm{N}\right.$-methyl-2-(2'-thienyl)pyrrole) $]$ \{carbene 4\}

$\left[\mathrm{Cr}(\mathrm{CO})_{5} \mathrm{C}(\mathrm{OEt}) 2,2\right.$ '-thienylfuran] \{carbene 5\}

$\left[(\mathrm{CO})_{3}(\mathrm{dppe}) \mathrm{Cr}=\mathrm{C}(\mathrm{OEt}) \mathrm{Th}\right]\{$ carbene $\mathbf{6}\}$

$\left[(\mathrm{CO})_{3}(\mathrm{dppe}) \mathrm{Cr}=\mathrm{C}(\mathrm{OEt}) \mathrm{Fu}\right]\{$ carbene 7$\}$

$\left[(\mathrm{CO})_{3}(\right.$ dppe $\left.) \mathrm{Cr}=\mathrm{C}(\mathrm{NHCy}) \mathrm{Th}\right]$ \{carbene $\mathbf{8 \}}$

$\left[(\mathrm{CO})_{3}(\right.$ dppe $\left.) \mathrm{Cr}=\mathrm{C}(\mathrm{NHCy}) \mathrm{Fu}\right]$ \{carbene 9$\}$


## Introduction

The research in this thesis constists of three parts:
a) Synthesis, crystal studies, electrochemistry and computational chemistry of tris( $\beta$-diketonato)chromium(III) complexes.
b) Synthesis, crystal studies and computational chemistry of tris( $\beta$-diketonato)cobalt(III) complexes.
c) Electrochemistry and computational chemistry of Fischer carbene complexes with a $\operatorname{Cr}(0)$ metal center.
A selection of $\beta$-diketonato ligands $\left(\mathrm{R}_{1} \mathrm{COCHCOR}_{2}\right)^{-1}$ (with substituents $\mathrm{R}_{1}, \mathrm{R}_{2}=\mathrm{CH}_{3}, \mathrm{CH}_{3} ; \mathrm{CH}_{3}$, $\mathrm{C}_{6} \mathrm{H}_{5} ; \mathrm{C}_{6} \mathrm{H}_{5}, \mathrm{C}_{6} \mathrm{H}_{5} ; \mathrm{CF}_{3}, \mathrm{C}_{6} \mathrm{H}_{5} ; \mathrm{C}_{4} \mathrm{H}_{3} \mathrm{~S}, \mathrm{CF}_{3} ; \mathrm{C}_{4} \mathrm{H}_{3} \mathrm{O}, \mathrm{CF}_{3} ; \mathrm{CH}_{3}, \mathrm{CF}_{3}$; and $\mathrm{CF}_{3}, \mathrm{CF}_{3}$ ) was used in parts a) and b). The Fischer carbene studies in part c) involved alkoxy and amino carbene complexes of the type $\left[(\mathrm{CO})_{5} \mathrm{Cr}=\mathrm{C}(\mathrm{OEt}) \mathrm{R}\right]$, with $\mathrm{R}=2$-thienyl, 2-furyl, 2-(N-methylpyrrolyl), N -methyl-2-((2'-thienyl)pyrrole) and 2,2'-thienylfural, as well as complexes of the type $\left[(\mathrm{CO})_{3}(\right.$ dppe $\left.) \mathrm{Cr}=\mathrm{C}(\mathrm{X}) \mathrm{R}\right]$, with $\mathrm{R}=2$-thienyl or 2-furyl, and $\mathrm{X}=\mathrm{OEt}$ or NHCy , and where dppe = 1,2-bis(diphenylphosphino)ethane.

### 1.1 Tris( $\beta$-diketonato)chromium(III) complexes

Chromium is the lightest and most abundant of the group VI transition metals. Supported chromium oxides are known to be important catalysts for the production of high-density polyethylene (HDPE) and linear low-density polyethylene. ${ }^{1}$ Cr-based catalysts are used both as homogeneous and heterogeneous catalysts.

An example involving Cr-based homogeneous catalysis is ethylene polymerization, during the formation of 1-hexene (see Scheme 1.1). This mechanism starts with the coordination of two ethylene molecules to chromium, and subsequent formation of chromacyclopentane, followed by insertion of the third ethylene molecule and the $\beta$-Hydrogen transfer to ethylene. Reductive

[^0]elimination of the product returns the original Cr-catalyst. The liberation of 1-hexene is known to be faster than further ethylene insertion, therefore further polymerization focuses on further growth of the metallocycle. ${ }^{2}$


Scheme 1.1: Trimerization of ethylene to 1-hexene. (Reprinted (adapted) with permission from Dixon, J. T.; Green, M. J.; Hess, F. M.; Morgan, D. H.; Journal of Organometallic Chemistry, 2004, 689, 3641-3668. Copyright (2004) ScienceDirect).

As the most well-known member of the tris( $\beta$-diketonato)chromium(III) complexes, tris(acetylacetonato)chromium(III), $\operatorname{Cr}(\mathrm{acac})_{3}$, is most studied as catalyst. As heterogeneous catalyst, two types of complexes are present on the surface of the support, Al-MCM-41: one has two acac ligands, and the other has three acac ligands, with H-bonding to the framework (see Scheme 1.2.). ${ }^{3}$ Ethylene polymerization was carried out over calcined Cr-Al-MCM-41, ${ }^{4}$ rather than Cr-Si-MCM-41 (as in Scheme 1.2), for higher catalytic activity. (MCM-41, namely Mobil Composition of Matter No. 41, is one of the most favoured members in the family of mesoporous materials, called Mobil Composition of Matter (MCM). ${ }^{5}$ MCM-41 possesses an array of hexagonal pores with very large suface area, therefore MCM-41 became an excellent support for chromium complexes.) Increasing calcination temperature also increases the catalytic activity. Cr-loading is also important to catalytic activity. Increasing Cr-loading up to

[^1]
## CHAPTER 1

$1 \mathrm{wt} \% \mathrm{Cr}$, gives increasing activity for the catalyst. Further Cr-loading leads to the formation of $\mathrm{Cr}_{2} \mathrm{O}_{3}$ and blocking of the reacting channels.


Scheme 1.2: Two types of $\mathrm{Cr}(\mathrm{acac})_{\mathrm{n}}(\mathrm{n}=2$ or 3$)$ complexes grafted onto the $\mathrm{Si}-\mathrm{MCM}-41$ support before calcination. (Reprinted (adapted) with permission from Rao, R. R.; Weckhuysen, B. M.; Schoonheydt, R. A.; Chem. Comm., 1999, 445-446. Copyright (1999) Royal Chemical Society).

### 1.2 Tris( $\beta$-diketonato)cobalt(III) complexes

Metal $\beta$-diketonato complexes are invaluable precursors for the chemical vapour deposition (CVD) of metal and non-metal thin films. The chemical vapour deposition (CVD) technique produces high-purity, high-performance solid materials, which are often used in producing semiconducting thin films. Volatile by-products need to be removed by gas flow, therefore highly volatile precusors are preferred by the CVD processes. Fahlman and Barron investigated the volatility of a series of metal $\beta$-diketonato complexes. ${ }^{6}$ It was found that the volatility of $\mathrm{M}(\beta \text {-diketonato })_{3}$ complexes linearly increases with the molecular weight. Partially and fully fluorinated $\beta$-diketonato ligands also enhance the precusors' volatility. Both $\mathrm{Co}^{\text {III }}(\beta \text {-diketonato })_{3}{ }^{6}$ and $\mathrm{Co}^{\mathrm{II}}(\beta \text {-diketonato })_{3}{ }^{7}$ complexes were found to be widely used in CVD processes, to produce cobalt oxide thin films. Cobalt oxide films $\left(\mathrm{CoO}, \mathrm{Co}_{2} \mathrm{O}_{3}\right.$ and $\left.\mathrm{Co}_{3} \mathrm{O}_{4}\right)$ are popularly produced due

[^2]
## INTRODUCTION

to their wide applications, e.g. in catalysis, in various types of sensors, in electrochromic-, electrical- and other opto-electronic devices. ${ }^{8}$ An interesting application of Co CVD-precursors, is the usage as electroluminescent device thin films. ${ }^{9}$ Electroluminescent (EL) devices rely on the emission of light through the applied electric field, to a doped phosphor material. In the double-insulating-layer structure, insulating films are deposited on either side of the phosphor layer, and current is applied to the electrodes outside the insulating layers. In the capacitance structure thus created, the maximum current is limited to the level of capacitive charging and discharging displacement current, and emission of light is generated over the phosphor layer, induced by the high electric field.

### 1.3 Fischer carbene complexes with $\mathbf{C r}(0)$ metal center

Fischer carbene complexes (FCCs) are "powerful tools" in synthetic chemistry. A considerable number of applications have been revealed, e.g. olefin metathesis, ${ }^{\mathbf{1 0}}$ cyclopropanation, ${ }^{\mathbf{1 1}}$ metathesis of dehydro amino acids, ${ }^{\mathbf{1 2}}$ and multi-component reactions (MCRs), ${ }^{\mathbf{1 3}}$ etc.

Scheme 1.3Error! Reference source not found. shows three typical reactions of FCCs involing alkyne insertion: Silyl-substituted acetylenes react thermally with chromium FCCs, leading to highly stable silyl vinylketenes. The silyl group electronically stabilize ketenes and the bulky silyl group, and impedes the final ring closure by the steric congestion (see Scheme $\mathbf{1 . 3}$ top). When aryl-substituted alkynes are employed, the chromium moiety generally remains linked to the aryl group; its photolytic removal quantitatively affords (E)-silyl vinyl ketene, which slowly converts to an equilibrium mixture of (E)-silyl vinyl ketene and cyclobutenone (see Scheme 1.3 middle). An almost 1-to-1 mixture of silyl-ketene and cyclobutenone has been obtained from the reaction of cyclopropyl FCC and triisopropylsilylethynyl (TIPS)-substituted phenyl acetylene; however, cyclobutenones have been isolated as sole reaction products, when TIPS-substituted furan-2-yl or cyclopropyl acetylenes were employed (see Scheme $\mathbf{1 . 3}$ bottom).

[^3]



Scheme 1.3: Reactions between $\operatorname{Cr}(0)$ Fischer carbene complexes and Silyl acetylenes. (Reprinted (adapted) with permission from Fernández-Rodriquez, M. A.; Garcia-Garcia, P.; Aguilar, E.; Chem. Commun., 2010, 46, 7670-7687. Copyright (2010) Royal Chemical Society).

## INTRODUCTION

### 1.4 Aims of this study

The following goals were set for the $\operatorname{Cr}(\beta \text {-diketonato })_{3}$ study:
(i) The synthesis of novel and existing $\operatorname{Cr}(\beta \text {-diketonato })_{3}$ complexes.
(ii) The characterization of newly synthesized $\operatorname{Cr}(\beta \text {-diketonato })_{3}$ complexes, via mass spectroscopy, X-ray crystallography and melting points.
(iii) The investigation of the electrochemical behaviour of the $\operatorname{Cr}(\beta \text {-diketonato })_{3}$ complexes, using cyclic voltammetry, linear sweep voltammetry and square wave voltammetry.
(iv) The identification of the three-dimensional geometry and spin state of the $\operatorname{Cr}(\beta \text {-diketonato })_{3}$ complexes, by use of DFT-computational methods.
(v) Establishing relationships between the experimental results (the reduction potential $\left(\mathrm{E}_{\mathrm{pc}}\right)$ of the $\mathrm{Cr}^{\text {III }} / \mathrm{Cr}^{\text {II }}$ redox processes), the DFT-calculated properties (electron affinity (EA), highest occupied molecular orbital (HOMO) energy, and lowest unoccupied molecular orbital (LUMO) energy) and the electronic parameters (acid dissociation constant ( $\mathrm{p} K_{\mathrm{a}}$ ) of the uncoordinated $\beta$-diketonato ligands, the total group electronegativities $\left\{\Sigma\left(\chi_{\mathrm{R}}+\chi_{\mathrm{R}^{\prime}}\right)\right\}$ and total Hammett sigma constants $(\Sigma \sigma)$ ).

The following goals were set for the $\operatorname{Co}(\beta \text {-diketonato })_{3}$ study:
(i) The synthesis of novel and existing $\operatorname{Co}(\beta \text {-diketonato })_{3}$ complexes.
(ii) The characterization of newly synthesized $\operatorname{Co}(\beta \text {-diketonato })_{3}$ complexes, via mass spectroscopy, X-ray crystallography and melting points.
(iii) The identification of the three-dimensional geometry and spin state of the $\mathrm{Co}(\beta \text {-diketonato })_{3}$ complexes, by use of DFT-computational methods.

The following goals were set for the $\operatorname{Cr}(0)$ carbene study:

## CHAPTER 1

(i) Understanding all possible isomers of the $\mathrm{Cr}(0)$ carbene complexes, namely cis/trans isomerism, fac/mer isomerism, and $E / Z$ conformations.
(ii) The investigation of the electrochemical behaviour of the $\operatorname{Cr}(0)$ carbene complexes, using cyclic voltammetry, linear sweep voltammetry and square wave voltammetry.
(iii) Understanding the three-dimensional geometry and spin state of the $\operatorname{Cr}(0)$ carbene complexes, by use of DFT-computational methods.
(iv) Establishing relationships between the experimental results (the oxidation potential $\left(\mathrm{E}_{\mathrm{pa}}\right)$ of the $\mathrm{Cr}^{0} / \mathrm{Cr}^{\mathrm{I}}$ redox process, as well as the reduction potential ( $\mathrm{E}_{\mathrm{pc}}$ ) of the carbene-ligand) and DFT-calculated properties (the highest occupied molecular orbital (HOMO) energy and lowest unoccupied molecular orbital (LUMO) energy).

# Literature survey and fundamental aspects. 

Three main techniques (Electrochemistry, Computational Chemistry and X-ray Crystallogrphy) are introduced first, followed by the background of tris( $\beta$-diketonato)chromium(III) complexes, tris( $\beta$-diketonato)cobalt(III) complexes and chromium(0)-carbene complexes.

### 2.1 Electrochemistry

### 2.1.1 Cyclic Voltammetry (CV)

Cyclic voltammetry is a very powerful and perhaps the most commonly used electroanalytical technique to study electroactive species. The theory of cyclic voltammetry is well discussed and understood since the 1980's. ${ }^{\mathbf{1 , 2 , 3 , 4}}$ A modern voltammetric system contains three electrodes: a working electrode, a reference electrode and an auxiliary electrode (see Figure 2.1). The surface of the working electrode (e.g. glassy carbon or platinum) is where the redox process takes place. The potential applied between the working electrode and the reference electrode (e.g. silver/silver chloride) is controlled and measured by the potentiostat. The reference electrode has a stable and well-known potential, such as silver/silver chloride $(\mathrm{Ag} / \mathrm{AgCl})$ or a saturated calomel electrode (SCE). The electrical current corresponding to the applied potential is provided by the auxiliary electrode (e.g. platinum or gold), and this current is carried via the supporting electrolyte in the analyte solution.

[^4]

Figure 2.1: Illustration of a three-electrode cell for voltammetry. ${ }^{3}$ (Reprinted (adapted) with permission from Kissinger, P. T.; Heineman, W. R.; J. Chem. Educ., 1983, 60, 702-706. Copyright (1983) American Chemical Society).

During the cyclic voltammetric measurements, the potential range of the stationary working electrode changes over time; this process is called the excitation signal (see Figure 2.2). Cycle 1 (solid line) in Figure 2.2 represents the first cycle of the excitation signal, which starts the forward scan at 0.8 V and ends at -0.2 V . Then the process is reversed and the potential returns to 0.8 V . The first reduction or oxidation process of the analyte is detected from the forward scan, and the resulting intermediate/product, due to the first redox process, is then detected from the reverse scan. The scan rate of the forward scan and the reverse scan is represented by the slope of the graph ( $50 \mathrm{mV} / \mathrm{s}$ in Figure 2.2). Cycle 2 starts immediately after cycle 1 has completed. A modern potentiostat can achieve single or multiple cycles at different scan rates.



Figure 2.2: Typical excitation signal for cyclic voltammetry - a triangular potential waveform, with turning points at 0.8 V and -0.2 V versus $\mathrm{SCE}^{3}$. (Reprinted (adapted) with permission from Kissinger, P. T.; Heineman, W. R.; J. Chem. Educ., 1983, 60, 702-706. Copyright (1983) American Chemical Society).

Figure 2.3 is the cyclic voltammogram obtained for $6.0 \mathrm{mM} \mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}$, using $1.0 \mathrm{M} \mathrm{KNO}_{3}$ in water as the supporting electrolyte and platinum as working electrode, measured against a saturated calomel electrode. Figure $\mathbf{2 . 3}$ shows the response to the excitation signal in Figure 2.2. There are four important parameters (as marked in Figure 2.3) for understanding the electrochemical behaviour of the analyte. These parameters will be explained in Section2.1.1.1.


Figure 2.3: Cyclic voltammograms of $6 \mathrm{mM} \mathrm{K} \mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}$ in $1 \mathrm{M} \mathrm{KNO}_{3}$, at scan rate of $50 \mathrm{mV} / \mathrm{s}^{3}$. (Reprinted (adapted) with permission from Kissinger, P. T.; Heineman, W. R.; J. Chem. Educ., 1983, 60, 702-706. Copyright (1983) American Chemical Society).

### 2.1.1.1 Parameters

The processes that occur during an electrochemical experiment occur at the surface of the electrode. The experimental potential E (in volt) of the cell at experimental conditions at any time during the experiment is determined by the Nernst equation $\left(E=E^{0}-\frac{R T}{n F} \ln \frac{a_{\text {Red }}}{a_{0 x}}\right)$ that relates the activity a of the reduced and oxidized form of the analyte at a specific temperature T . $\mathrm{E}^{\circ}$ is the standard potential (in V ) and is dependent on the identity of the reaction, R is the gas constant ( $\mathrm{J} / \mathrm{molK}$ ), n is the number of electrons transferred and F is Faraday's constant ( $\mathrm{C} /(\mathrm{mole} \mathrm{e})$. The potential is thus related to both concentration and potential energy of the reactants and products, and is therefore is primarily a thermodynamic measurement.

Four important basic parameters from the cyclic voltammograms are used to understand the electrochemical behaviour of the analyte, i.e. the anodic peak potential ( $E_{p a}$ ), the cathodic peak potential $\left(E_{p c}\right)$, the anodic peak current $\left(i_{p a}\right)$ and the cathodic peak current $\left(i_{p c}\right)$. Peak currents can be obtained by reading the difference between the peak and the extension of the base line, but obtaining peak currents can be difficult for a complicated system. The peak potentials are often measured against an internal standard, such as Ferrocene $\left(\mathrm{FcH} / \mathrm{FcH}^{+}\right) .{ }^{5}$ Other parameters are derived from these basic parameters.

The ratio of anodic and cathodic peak currents should be identical ( $i_{p a} / i_{p c}=1$ ), for a chemically reversible redox process. The chemical reversibility can also be described as thermodynamic reversibility which refers to the ability of the products to return to reactants.

In a stationary solution of analyte, the scan rate is the only variable.

In a system where diffusion is the only mode of mass transport (diffusion-controlled) and the kinetics of electron transfer are fast (reversible), the peak current is directly proportional to the square root of the scan rate. This correlation is described by the Randle-Sevcik equation (see Equation 2.1 ): ${ }^{3}$

Equation 2.1: $i_{p}=268600 n^{\frac{3}{2}} A D^{\frac{1}{2}} C v^{\frac{1}{2}}$
where $i_{\mathrm{p}}=$ current at maximum in ampere; $n=$ number of electrons transferred in the redox process; $A=$ electrode area in $\mathrm{cm}^{2} ; D=$ diffusion coefficient in $\mathrm{cm}^{2} / \mathrm{s} ; C=$ concentration in $\mathrm{mol} / \mathrm{cm}^{3} ; v=$ scan rate in V/s. The Randle-Sevcik equation relates current to scan rate and thus gives information of the instantaneous rate of the chemical reaction, and is thus partially controlled by the chemical kinetics of the system.

The formal reduction potential $\left(E^{0}\right)$ lies in the middle of $E_{\mathrm{pa}}$ and $E_{\mathrm{pc}}$, for a reversible redox process (Equation 2.2):

Equation 2.2: $E^{0^{\prime}}=\frac{E_{p a}+E_{p c}}{2}$

[^5]The potential separation ( $\Delta E_{\mathrm{p}}$, see Equation 2.3) determines the electrochemical reversibility of a redox process. Electrochemical irreversible processes are caused by slow electron exchange of the redox species with the working electrode. An electrochemically reversible redox process is fully obtained at $25^{\circ} \mathrm{C}$ for a one-electron redox process, if the potential separation ( $\Delta E_{\mathrm{p}}$ ) is 59 mV . Generally, a redox process is considered reversible if the potential separation is smaller than 90 mV . If $\Delta E_{\mathrm{p}}$ is greater than 90 mV and smaller than 150 mV , the redox process is quasireversible. The redox process is considered irreversible when $\Delta E_{\mathrm{p}}$ is greater than 150 mV :

Equation 2.3: $\Delta E_{p}=E_{p a}-E_{p c} \cong \frac{0.059}{n}$
where $n=$ number of electrons transferred.

When the analyte adsorp onto the electrode, the analyte does need to travel to the electrode as in a diffusion controlled experiment. Thus, when the potential required for reaction is reached, the current increases and decreases much more rapidly than in a diffusion controlled experiment. The result is a sharp (narrow) peak with a high current (since all the analyte can react at once).

### 2.1.2 Linear Sweep Voltammetry (LSV)

Linear Sweep Voltammetry (LSV) is the simplest type of voltammetry. In LSV, the potential change applied on the working electrode is varied linearly over time. The scan rates are slow, e.g. $1-5 \mathrm{mV} / \mathrm{s}$. This allows the fresh analyte to approach the electrode, and the reacted analyte to diffuse away from the electrode. ${ }^{6,7}$ A typical excitation signal of linear sweep voltammetry is given in Figure 2.4.

[^6]

Figure 2.4: Typical excitation signal of linear sweep voltammetry.

A typical linear sweep voltammogram (voltammetric wave) is given in Figure 2.5. The limiting current $i_{l}$ is reached when the current does not increase or decrease any further. Limiting currents are directly proportional to the analyte concentration, therefore the limiting current can be used to determine the concentration of analyte solution. ${ }^{7}$ The half-wave potential $\left(\mathrm{E}_{1 / 2}\right)$ is the potential when the current is half of the limiting current, this potential can be used to identify unknown species. ${ }^{7}$


Figure 2.5: Typical linear sweep voltammogram.

### 2.1.3 Square Wave Voltammetry (SWV) ${ }^{8,9,10}$

A pulsed voltammetry technique called Square Wave Voltammetry (SWV), uses a potential waveform as shown in Figure 2.6, which shows the excitation signals of SWV. Each step of the staircase and the pulses have the same duration. The advantage of square wave voltammetry is that the entire scan can be performed with great speed and high sensitivity.

[^7]

Figure 2.6: Typical excitation signals of square-wave voltammetry.

A typical square wave voltammogram for a reversible redox process, as a response to the excitation signal, is shown in Figure 2.7. The forward pulse (A) gives a current response $i_{\mathrm{A}}$, and the reverse pulse (B) gives a current response $i_{\mathrm{B}}$. The final current $i_{\mathrm{c}}$ is defined by the difference between $i_{\mathrm{A}}$ and $i_{\mathrm{B}}\left(i_{\mathrm{C}}=\Delta i=i_{\mathrm{A}}-i_{\mathrm{B}}\right)$. The SWV voltammogram is obtained by plotting the current difference. This difference is directly proportional to the concentration of the analyte. ${ }^{9}$


Figure 2.7: Typical square wave voltammogram for a reversible redox process. ${ }^{9}$ (Reprinted (adapted) with permission from Osteryoung, J. G.; Osteryoung, R. A.; Anal. Chem., 1985, 57, 101A-110A. Copyright (1985) American Chemical Society).

### 2.2 Computational Chemistry

### 2.2.1 Introduction ${ }^{11,12,13,14}$

Computational chemistry is a branch of chemistry, using computer simulations to solve chemical problems. It is based on the theoretical chemistry and utilizes powerful computer programmes to calculate physical and chemical properties of compounds, such as absolute/relative energies, molecular geometry and vibrational frequencies, etc. and to simulate chemical reactions. The advantage of computational chemistry is that it can simulate chemical reactions which are either dangerous, difficult, too expensive or even impossible to execute in a laboratory.

Five basic computational methods are described as follows:
(a) Molecular Mechanics (MM) considers a molecule as balls (atoms) connected by springs (bonds). If the equilibrium spring lengths, the angle between the springs and the energy needed to bend or stretch the spring are known, geometry optimization may be achieved by finding the lowest energy.
(b) Ab initio calculations solve the Schrödinger equation for a molecule to give the molecule's energy. Ab initio gives very accurate output, but it is time consuming and needs large computational facilities. Therefore this method is generally only used for small systems.

[^8]
## CHAPTER 2

(c) Semi-empirical (SE) calculations also are based on the Schrödinger equation, however, more approximations were added and very complicated integrals were left out. Experimental values were added as parameters to improve the accuracy.
(d) Density functional theory (DFT) is relatively new. DFT was introduced in the 1960's, but serious DFT-calculations only started in the 1980's. This method is also based on the Schrödinger equation, where the many-body electronic wavefunction is replaced by electronic density. The Amsterdam Density Functional programme (ADF) was developed on the basis of density functional theory. The ADF programme can perform calculations such as energy minimisation, determination of transition states, reaction paths, and harmonic frequencies with IR intensities, etc. ${ }^{15}$.
(e) Molecular dynamics apply the laws of motion to molecules. This is a powerful tool to solve motions in chemical systems by computational calculations, e.g. one can simulate the motion of an enzyme, when binding to a substrate.

Quantum and molecular mechanics are theories implemented in computational chemistry. Quantum mechanics describes molecules by interactions among nuclei and electrons. All quantum mechanical methods of computational chemistry are based on the Schrödinger equation. Schrödinger's equation describes nuclei and electrons as waves instead of particles. The general time-independent Schrödinger equation of a multi-nuclear, multi-electron system is shown below (see Equation 2.4):

Equation 2.4: $\hat{H} \Psi=\mathrm{E} \Psi$
where $\hat{H}=$ the Hamiltonian operator; $\mathrm{E}=$ the energy; $\Psi=$ the wavefunction. The Hamiltonian oprator is a combination of kinetic energy (T) and potential energy (V), (see Equation 2.5):

[^9]Equation 2.5: $H=T+V=-\sum_{i=1}^{N} \frac{\hbar^{2} \nabla^{2}}{2 m_{i}}+\sum_{i<j}^{N} \frac{q_{i} q_{j}}{r_{i j}}$
with
$\nabla_{i}^{2}=\frac{\partial^{2}}{\partial x_{i}^{2}}+\frac{\partial^{2}}{\partial y_{i}^{2}}+\frac{\partial^{2}}{\partial z_{i}^{2}}$
where $\nabla_{i}^{2}=$ the Laplacian operator acting on particle $i$ for both nuclei and electrons; $m_{i}=$ mass of particle $i ; q_{i}=$ charge of the particle $i ; r_{i j}=\operatorname{distance}$ between particles $i$ and $j$.

Since the multi-electron Schrödinger equation is derived from a series of one-electron quasiparticles, approximations have been introduced to provide methods for a multi-electron system. For example, the Born-Oppenheimer approximation assumes that nuclei are static and have zero nuclear kinetic energy; the Hartree-Fock approximation assumes that every single electron has independent motion from the other electrons. Hohenberg-Kohn (HK) theory showed that the electron density uniquely determines the Hamiltonian operator and thus all the properties of the system and that the ground state density minimizes the total electronic energy of the system.

### 2.2.2 Exchange-Correlation Functionals ${ }^{16,17}$

Density Functional Theory (DFT) is based on the HK theory that the electron kinetic energy should be calculated from an auxiliary set of orbitals used for representing the electron density density. A small difference between exact and calculated kinetic energy was found. The energy difference is defined as exchange-correlation terms. In the case of electrons, the exchange describes two electrons with same spin in different orbitals, and correlation describes two paired electrons with opposite spins in a same orbital. The simplest approach is to assume the electron density to be slowly varying, such that the exchange-correlation energy can be calculated using formulas derived for a uniform electron density.

The choice of exchange-correlation functionals (density functionals) makes a difference in the accuracy and results of DFT-calculations. Four basic exchange-correlations functionals are known:

[^10]
## CHAPTER 2

- Local Density Approximation (LDA) assumes that the spin density is a uniform electron gas, or equivalently, that the density is a slowly varying function. The functionals are only dependent on the density at a given point.
- Generalized Gradient Approximation (GGA) applies to density which is not uniform but varies very slowly.
- Hybrid functionals (hybrid GGA) include a hybride between pure density functionals for exchange and exact Hartree-Fock exchange, i.e. a certain amount of exact exchange is incorporated.
- Meta-generalized gradient approximation (meta-GGA) takes the second order gradient on electron density, and is dependent on the orbital kinetic energy density.

The GGA-functionals can have exchange correction, correlation correction, or both. A selection of applicable GGA-functionals are summarized in Table 2.1. ${ }^{18}$

Table 2.1: Summary of applicable GGA-functionals.

| Functionals with exchange correction |  |
| :--- | :--- |
| Becke: | Proposed by Becke in 1988 |
| PW91x: | Proposed by Perdew and Wang in 1991 |
| PBEx | Proposed by Perdew and Burke and Ernzerhof in 1996 |
| OPTX | Proposed by Handy and Cohen in 2001 |
| Functionals with correlation correction |  |
| Perdew | Proposed by Perdew in 1986 |
| LYP | Proposed by Lee and Yang and Parr in 1988 |
| PW91c | Proposed by Perdew and Wang in 1991 |
| PBEc | Proposed by Perdew and Burke and Ernzerhof in 1996 |
| Functionals with both corrections |  |
| BP86 | Combination of Becke and Perdew |
| PW91 | Combination of PW91x and PW91c |
| PBE | Combination of PBEx and PBEc |
| BLYP | Combination of Becke and LYP |
| OLYP | Combination of OPTX and LYPc |

[^11]| OPBE | Combination of OPTX and PBEc |
| :--- | :--- |
| B3LYP | Combination of Becke 3 parameter functional and LYP |
| B3LYP* $^{*}$ | Modified B3LYP with 15\% Hartree-Fock exchange |

- Energies across different functionals cannot be directly compared.


### 2.2.3 Basis Sets ${ }^{19,20}$

A basis set is a set of functions used to describe the shape of the orbitals in an atom. Most semiempirical methods use a predefined basis set. A basis set must be specified for ab initio and density functional theory calculations. Two types of basis functions are commonly used, i.e. Gaussian type orbitals (GTO) and Slater type orbitals (STO). STO gives an exact solution to the Schrödinger equation, and can be used for atomic and diatomic systems requiring high accuracy. GTO basis sets require more functions to describe the wave function. In contrast to the increasing number and universal usage of GTO basis sets, calculations with the Amsterdam Density Functional programmes can be done with the STO basis set instead.

One notation of a basis set is to specify the number of functions ( $\zeta$ ) used. The term zeta ( $\mathrm{Z}, \zeta$ ) describes the exponent of STO basis functions. In programs such as the Amsterdam Density Functional theory (ADF) the notation double zeta (DZ) and triple zeta (TZ) to highlight the fact that the valence basis functions are treated as a linear combination of two or three STOs respectively to present a single atomic orbital.The DZ basis set uses two $s$-functions for hydrogen ( 1 s and $1 \mathrm{~s}^{\prime}$ ), four $s$-functions ( $1 \mathrm{~s}, 1 \mathrm{~s}^{\prime}, 2 \mathrm{~s}$ and $2 \mathrm{~s}^{\prime}$ ) and two sets of $p$-functions ( 2 p and $2 \mathrm{p}^{\prime}$ ) for the first row elements, and six $s$-functions and four sets of $p$-functions for the second row elements. The smallest basis set is single zeta (SZ), and a triple zeta basis set needs three times the number of functions than in SZ.

Polarization functions (P), known as higher angular momentum functions, describe most of the important charge polarization effects. The polarization functions represent charge densities that are not locally spherically symmetric around the atomic nucleus and as such the polarization

[^12]
## CHAPTER 2

functions are important for hydrogen bonding and other agnostic-type interactions. For example, DZP stands for a double zeta basis set with polarization functions.

### 2.2.4 Symmetry and Point Groups ${ }^{21}$

Molecular symmetry describes the symmetry in molecules. The operations to obtain symmetries are called symmetry elements (see Table 2.2). After applying an operation according to any symmetry element, the molecule must be equivalent to the molecule before that operation.

Table 2.2: Five types of symmetry elements.

| Symmetry Element | Description |
| :--- | :--- |
| Identity $(E)$ | The corresponding symmetry element is the whole molecule; every <br> molecule has at least this symmetry element. |
| Rotational axis $\left(C_{n}\right)$ | Rotation by $360^{\circ} / \mathrm{n}$ leaves the molecule unchanged. Some molecules <br> have more than one $C_{n}$ axis, and then the one with the highest value of n <br> is called the principal axis. Rotations are counterclockwise about the axis <br> by convention. |
| Plane of symmetry <br> $(\sigma)$ | Reflection in the plane leaves the molecule unchanged. In a molecule <br> that also has an axis of symmetry, a mirror plane that includes the axis is <br> called a vertical mirror plane and is labelled $\sigma_{v}$, while a mirror plane <br> perpendicular to the axis is called a horizontal mirror plane and is <br> labelled $\sigma_{h}$. A vertical mirror plane that bisects the angle between two $C_{2}$ <br> axes is called a dihedral mirror plane, $\sigma_{d}$. |
| Inversion center $(i)$ | A center of symmetry exists in the molecule, and inversion through the <br> center of symmetry $(i)$ leaves the molecule unchanged. |
| Rotatory reflection <br> axis $\left(S_{\mathrm{n}}\right)$ | This operation consists of rotation by an angle of $360^{\circ} / \mathrm{n}$ about the axis, <br> followed by reflection in a plane perpendicular to the axis. |

A molecule can have more than one symmetry element. Point groups are groups consisting of various symmetry elements. The Schoenflies notation is used here for describing these point groups. General molecular point groups are listed in Table 2.3. All point groups contain the

[^13]identity operation $(E)$, therefore this symmetry element remains unmentioned if other symmetry elements exist in the point group.

Table 2.3: General types of point groups.

| Point group | Description |
| :--- | :--- |
| $C_{1}$ | Contains only the Identity $(E)$. |
| $C_{i}$ | Contains a center of inversion $(i)$. |
| $C_{s}$ | Contains a plane of symmetry $(\sigma)$. |
| $C_{n}$ | Contains an $n$-fold rotational axis $\left(C_{n}\right)$. |
| $C_{n v}$ | Contains an $n$-fold rotational axis $\left(C_{n}\right)$ and $n$ vertical mirror planes $\left(\sigma_{v}\right)$. |
| $C_{n h}$ | Contains an $n$-fold rotational axis $\left(C_{n}\right)$ and $n$ horizontal mirror planes $\left(\sigma_{h}\right)$. <br> $C_{2 h}$ automatically implies an inversion center $(i)$. |
| $D_{n}$ | Contains an $n$-fold axis of rotation $\left(C_{n}\right)$ and $n$ 2-fold rotations $\left(C_{2}\right)$ about <br> perpendicular to the principal axis and a horizontal mirror plane $\left(\sigma_{h}\right)$. |
| $D_{n h}$ | Contains an $n$-fold axis of rotation $\left(C_{n}\right), n$ 2-fold rotations $\left(C_{2}\right)$ about axes <br> perpendicular to the principal axis and a dihedral mirror plane $\left(\sigma_{d}\right)$. |
| $D_{n d}$ | Contains one $S_{n}$ axis. Previous point groups have priority over this point <br> group, e.g. $S_{l}$ should be $C_{l}$ and $S_{2}$ should be $C_{2}$. <br> $S_{n}$ <br> The following groups are cubic groups, containing more than one principal axis. <br> $T$ stands for tetrahedral groups and $O$ stands for octahedral groups: <br> $T_{d}$ |
| $T$ | Contains four $C_{3}$ axes, three $C_{2}$ axes and six dihedral mirror planes $\left(\sigma_{d}\right)$. |
| $T_{h}$ | Contains four $C_{3}$ axes and three $C_{2}$ axes. |
| $O_{h}$ | Contains four $C_{3}$ axes, three $C_{2}$ axes and an inversion center $(i)$. |
| $O$ | The group of the chiral octahedron. |

## CHAPTER 2

### 2.2.5 Ligand Field Splitting ${ }^{22}$

Ligand field theory provides understanding of bonding and electronic properties of complexes and compounds formed by the transition metals. In the form of a free ion, the central metal $\left(\mathrm{M}^{\mathrm{m}+}\right)$ has five equivalent d-orbitals. But in a ligand field (i.e. when ligands are attached to the metal), the $d$ orbitals split into various groups. This splitting of $d$ orbitals can be seen from the energylevel diagram, which shows the grouping in different crystal fields (see Figure 2.8): In octahedral complexes, $d_{x y}, d_{y z}$ and $d_{z x}$ are degenerate orbitals (at lower energy), and this group of orbitals is called the $t_{2 g}$ group of orbitals; while the two $d_{x 2-y 2}$ and $d_{z 2}$ orbitals form an equal but unfavoured group (higher energy), called the $e_{g}$ orbitals. The energy difference between these orbital groups is $\Delta_{0}$, in an octahedral ligand field. In contrast to octahedral complexes, tetrahedral complexes have an opposite arrangement of $d$-orbitals for the metal center, where the $t_{2}$ group of orbitals ( $d_{x y}, d_{y z}$ and $d_{z x}$ ) is more favoured than the $e$ orbitals ( $d_{x 2-y 2}$ and $d_{z 2}$ ). This energy difference between the orbital groups is termed $\Delta_{t}$, in a tetrahedral ligand field. If the octahedral and tetrahedral complexes have the same cation, anion and cation-anion distance, $\Delta_{\mathrm{t}}$ is four ninths of $\Delta_{0}$. Square planar complexes undergo more complicated $d$-orbital splitting, until four energy levels are reached.


Figure 2.8: Energy-level diagram of the splitting of $d$ orbitals in the metal center in octahedral, tetrahedral and square-planar complexes.

[^14]Due to the splitting of orbitals, the $d$-electron filling in complexes is then also different to the $d$ electron filling in a free metal ion. For example, in octahedral complexes, for a metal center which has $1,2,3,8,9$ or $10 d$ electrons ( $d^{1}, d^{2}, d^{3}, d^{8}, d^{9}$ and $d^{10}$ species), the splitted $d$ orbitals are filled in a unique way (see below Figure 2.9). For the remaining $d^{4}, d^{5}, d^{6}$ and $d^{7}$ species, two types of configurations are possible, namely high-spin and low-spin configurations (see Figure 2.10). The Pauli exclusion principle in the case of two electrons residing in the same orbital, electrons must have opposite spins or stay unpaired in different orbitals. Same as exchange-correlation energy (see Section 2.2.2), pairing energy describes the energy needed to pair two electrons with opposite spins. In principle to decrease electronic repulsion, when the pairing energy $(\mathrm{P})$ is larger than the energy difference $\Delta_{\mathrm{o}}$ in octahedral complexes, electrons tend to stay unpaired until all five $d$ orbitals have been filled with an electron. However when the pairing energy $(\mathrm{P})$ is smaller than the energy difference $\Delta_{o}$, electrons tend to fill the lowestenergy orbitals.


Figure 2.9: Electron configurations of $d^{1}, d^{2}, d^{3}, d^{8}, d^{9}$ and $d^{10}$ species in octahedral fields.

## High Spin



## Low Spin

Figure 2.10: Two possible electron configurations for $d^{4}, d^{5}, d^{6}$ and $d^{7}$ species in octahedral fields. The top row shows the high-spin $d$-electron configuration, while the bottom row shows the low-spin $d$-electron configuration.

The $\operatorname{Cr}(\beta \text {-diketonato })_{3}$ and $\operatorname{Co}(\beta \text {-diketonato })_{3}$ complexes of this study are $d^{3}$ and $d^{6}$ complexes respectively. According to the ligand field splitting for an octahedral complex, the $\operatorname{Cr}(\beta-$ diketonato) $)_{3}$ complex will have 3 unpaired electrons ( $\mathrm{S}=3 / 2$ or a quartet). However, the $\operatorname{Co}(\beta-$ diketonato) $3_{3}$ complex must first be tested whether it is a high-spin ( $S=4 / 2$ or a quintet) or a low$\operatorname{spin}(S=0$ or a singlet) complex, before the electron configuration can be specified.

### 2.3 X-ray Crystallography ${ }^{23}$

X-ray crystallography is a method used to determine the atomic and molecular structure of a crystal by measuring the angles and intensities of diffraction of incident X-ray caused by crystalline stoms.

In an X-ray diffraction measurement, a crystal is mounted on a gradually rotating goniometer while being bombarded with X-rays. According to Bragg's law for X-ray diffraction ( $2 d \sin \theta=$ $n \lambda$, where $\theta$ is known as the Bragg angle, $\lambda$ is the wavelength of the X -rays and d is the plane spacing,see Figure 2.11), a diffraction pattern of regularly spaced spots known as reflections is obtained. Figure 2.12 gives an example of X-ray diffraction pattern of ammonium oxalate monohydrate. A three-dimentional picture of the electron density within the crystal is obtained by applying Fourier transformation on the reflections. Figure $\mathbf{2 . 1 3}$ shows an example of a 3D electron density map of a planar molecule. Finally, these data are refined computationally with complementary chemical information to give a model of atomic arrangement called crystal structure.


Figure 2.11: Diffraction of X-rays from crystal lattice planes illustrating Bragg's law. (Reprinted (adapted) with permission from Blake, A. J.; Clegg, W.; Cole, J. M.; Peter Main, J. S. O. E.; Parsons, S.; Watkin, D. J.; Crystal Structure Analysis, Principles and Practice. $2^{\text {nd }}$ Edition, Oxford University Press, Copyright (2009) Oxford).

[^15]

Figure 2.12: Part of the X-ray diffraction pattern of ammonium oxalate monohydrate. (Reprinted (adapted) with permission from Blake, A. J.; Clegg, W.; Cole, J. M.; Peter Main, J. S. O. E.; Parsons, S.; Watkin, D. J.; Crystal Structure Analysis, Principles and Practice. $2^{\text {nd }}$ Edition, Oxford University Press, Copyright (2009) Oxford).


Figure 2.13: A section of the 3D electron density map of a planar molecule. (Reprinted (adapted) with permission from Blake, A. J.; Clegg, W.; Cole, J. M.; Peter Main, J. S. O. E.; Parsons, S.; Watkin, D. J.; Crystal Structure Analysis, Principles and Practice. 2 ${ }^{\text {nd }}$ Edition, Oxford University Press, Copyright (2009) Oxford).

All refined crystal structures have 7 possible crystal systems including 14 Bravais lattices. Table 2.4 shows 7 crystal systems and 14 Bravais lattices. Restrictions are applies to the vectors along edge of the lattice unit cell ( $a, b$ and $c$ ) and interfacial angles $\alpha$ (between edges $b$ and $c$ ), $\beta$ (between edges $a$ and $c$ ) and $\gamma$ (between edges $a$ and $b$ ).

Table 2.4: The seven crystal systems and fourteen Bravais lattices with restrictions.

| Crystal systems |
| :--- | :--- | :--- |
| Cubic |
| $a=b=c$ |
| $\alpha=\beta=\gamma=90^{\circ}$ |

- P = Primitive; I = Body-Centered; F = Face-Centered; C = Side-Centered

One parameter worthmention is atomic displacement parameters (ADP). Ellipsoids are used in crystallography to indicate the magnitudes and directions of the thermal vibration of atoms in crystal structures. These magnitudes and directions in space are usually anisotropic, therefore atomic displacement parameters are also called anisotropic parameters

### 2.4 Tris( $\beta$-diketonato)chromium(III) Complexes

### 2.4.1 Synthesis and Characterization

The synthesis of tris( $\beta$-diketonato)chromium(III) complexes is based on the synthetic method for tris(2,4-pentadionato)chromium(III), $\left(\mathrm{Cr}(\mathrm{acac})_{3}\right)$. In 1957, Fernelius and Blanch synthesized $\mathrm{Cr}(\mathrm{acac})_{3}$ with chromium(III) chloride-6-hydrate with urea and acetylacetone ${ }^{24}$ (see Scheme 2.1). In this method, urea (excess) and acetylacetone are added to the solution of chromium(III) chloride, and the reaction mixture is heated overnight over a steam-bath. Ammonia released from the hydrolysed urea, completes the formation of the product.


Scheme 2.1: Synthesis of $\operatorname{Cr}(\mathrm{acac})_{3}$, as proposed by Fernelius and Blanch.

Rahman and his co-workers recently (2010) established a faster synthetic method ${ }^{25}$ (see Scheme 2.2). Concentrated chromium(III) chloride solution is slowly added dropwise to an acetylacetone

[^16]solution, followed by dropwise addition of concentrated sodium acetate solution, until complete precipitation has occurred.


Scheme 2.2: Synthesis of $\operatorname{Cr}(\mathrm{acac})_{3}$, by Rahman, et al.

When one or both methyl groups on each ligand are substituted by different functional groups, the $\beta$-diketonato ligand becomes unsymmetrical. Coordination between an unsymmetrical $\beta$-diketonato ligand and the $\mathrm{Cr}^{\text {III }}$ cation, leads to two possible isomers: a facial isomer (fac) or a meridional isomer (mer), (see Scheme 2.3). A facial isomer (fac) contains three identical substituents (from the three different unsymmetrical ligands), each occupying the vertices of one face of the octahedron of the complex. On the other hand, a meridional isomer (mer) contains a plane passing through the central metal atom, which is formed by each of three identical substituents on the three different unsymmetrical ligands.

fac-isomer


mer-isomer


Scheme 2.3: Illustration of the $f a c$-isomer and $m e r$-isomer.

The synthesis of tris( $1,1,1,5,5,5$-hexafluoro-2,4-pentadionato $)$ chromium $(\mathrm{III}),\left(\mathrm{Cr}(\mathrm{hfaa})_{3}\right)$, is an exception from the general synthetic methods mentioned above. In 1993, Elisabeth Bouwman and her co-workers discovered that the ligand Hhfaa reacts with water. ${ }^{26}$ Doubly hydrated Hhfaa becomes a tetraol (a tetradentate linkage ligand), which coordinates to a metal center. In 1965, Morris and Aikens discovered a direct method to synthesize $\mathrm{Cr}(\mathrm{hfaa})_{3}{ }^{27}$ : Finely powdered potassium dichromate and the ligand Hhfaa were refluxed in carbon tetrachloride for 3 hours. $\mathrm{Cr}(\mathrm{hfaa})_{3}$ was obtained by filtration and evaporation of the solution to dryness. In 2007, Harada and Girolami also used a direct synthesis, which involved the bis(trimethylsilyl)amido complex $\left(\mathrm{Cr}\left[\mathrm{N}\left(\mathrm{SiMe}_{3}\right)_{2}\right]_{2}(\mathrm{thf})_{2}\right)$, (thf $=$ tetrahydrofuran) and Hexafluoroacetylacetone. ${ }^{28}$ The structural parameters of complexes $\operatorname{Cr}(\mathrm{acac})_{3}$ and $\mathrm{Cr}(\mathrm{hfaa})_{3}$ were reported in literature and are summarized in Table 2.5 and Table 2.6. The $\mathrm{Cr}-\mathrm{O}$ bonds of $\mathrm{Cr}(\mathrm{acac})_{3}$ and the $\mathrm{Cr}-\mathrm{O}$ bonds of $\mathrm{Cr}(\mathrm{hfaa})_{3}$ are similar within experimental accuracy. The $\operatorname{Cr}(\beta \text {-diketonato })_{3}$ crystals were all found to be octahedral, with six similar $\mathrm{Cr}-\mathrm{O}$ bonds and three nearly $90^{\circ} \mathrm{O}-\mathrm{Cr}-\mathrm{O}$ angles.

[^17]
## LITERATURE SURVEY AND FUNDAMENTAL ASPECTS

Table 2.5: $\mathrm{Cr}-\mathrm{O}$ bond length for reported structural parameters of $\mathrm{Cr}(\mathrm{acac})_{3}$ and $\mathrm{Cr}(\mathrm{hfaa})_{3}$.

| Complex | $\mathbf{C r}(\mathrm{acac})_{3}, \mathbf{R}_{1}=\mathbf{R}_{2}=\mathbf{C H}_{3}$ |  |  |  |  |  | Average | Ref |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Cr-O <br> Bond <br> length | 1.962 | 1.960 | 1.946 | 1.946 | 1.955 | 1.963 | 1.955(8) | 29 |
|  | 1.956(1) | 1.957(2) | 1.939(2) | 1.950(1) | 1.957(2) | 1.963(2) | 1.954(8) | 30 |
|  | 1.950(3) | 1.959(3) | 1.951(3) | 1.962(3) | 1.951(3) | $1.942(4)$ | 1.953(7) | 31 |
|  | 1.941(2) | 1.955(2) | 1.965(2) | 1.961(2) | 1.961(2) | 1.957(2) | 1.957(8) | 32 |
|  | 1.965(2) | 1.944(2) | 1.957(2) | 1.958(2) | 1.969(2) | 1.970(2) | 1.961(10) |  |
|  | 1.957(2) | 1.948(1) | 1.954(2) | 1.971(2) | 1.966(2) | 1.969(2) | 1.961(9) |  |
|  | 1.956(2) | 1.962(2) | 1.961(2) | $1.965(2)$ | 1.968(2) | 1.970(2) | 1.964(5) |  |
|  | 1.966(2) | 1.946(1) | 1.964(2) | 1.968(2) | 1.970(2) | 1.970(2) | 1.964(9) |  |
|  | 1.956(2) | 1.956(2) | 1.960(2) | 1.967(2) | 1.967(2) | 1.967(2) | 1.962(5) |  |
|  | 1.950(2) | 1.965(2) | 1.957(2) | 1.975(2) | 1.968(2) | 1.963(2) | 1.963(9) |  |
|  | 1.961(5) | 1.966(5) | 1.947(4) | 1.961(5) | 1.964(4) | 1.966(5) | 1.961(7) | 33 |
|  | 1.966(5) | 1.963(4) | 1.965(3) | 1.953(4) | 1.963(6) | 1.963(6) | 1.962(5) |  |
|  | Average all |  |  |  |  |  | 1.960(8) |  |
|  | $\mathbf{C r}(\mathrm{hfaa})_{3}, \mathrm{R}_{\mathbf{1}}=\mathrm{R}_{\mathbf{2}}=\mathrm{CF}_{\mathbf{3}}$ |  |  |  |  |  | Average | Ref |
|  | 1.960(1) | 1.950(1) | 1.959(1) | 1.956(1) | 1.951(1) | 1.964(1) | 1.957(5) | 34 |
|  | 1.942(6) | 1.956(5) | 1.942(5) | 1.955(6) | 1.944(7) | 1.956(5) | 1.949(7) |  |
|  | 1.924(6) | 1.924(6) | 1.924(8) | 1.924(6) | 1.924(6) | 1.924(8) | 1.924(0) | 28 |
|  |  |  |  |  |  | verage all | 1.943(15) |  |

Table 2.6: $\mathrm{O}-\mathrm{Cr}-\mathrm{O}$ angle for reported structural parameters of $\mathrm{Cr}(\mathrm{acac})_{3}$ and $\mathrm{Cr}(\mathrm{hfaa})_{3}$.

| Complex | $\mathbf{C r}(\mathrm{acac})_{3}, \mathbf{R}_{1}=\mathbf{R}_{\mathbf{2}}=\mathbf{C H}_{3}$ |  |  | Average | Ref |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} \mathrm{O}-\mathrm{Cr}-\mathrm{O} \\ \text { Angle } \end{gathered}$ | 90.7 | 91.0 | 91.7 | 91.1(5) | 29 |
|  | 90.5 | 91.1 | 91.7 | 91.1(6) | 30 |
|  | 91.3 | 91.3 | 90.4 | 91.0(5) | 31 |
|  | 91.3 | 91.5 | 90.6 | 91.1(5) | 32 |
|  | 90.7 | 91.4 | 91.5 | 91.2(4) |  |
|  | 90.7 | 91.6 | 91.5 | 91.3(5) |  |
|  | 90.9 | 91.1 | 91.3 | 91.1(2) |  |
|  | 90.4 | 91.5 | 91.5 | 91.1(6) |  |
|  | 91.1 | 90.9 | 91.2 | 91.1(2) |  |
|  | 91.2 | 91.1 | 91.2 | 91.1(1) |  |
|  | 90.9 | 91.1 | 91.2 | 91.1(1) | 33 |
|  | 91.0 | 89.9 | 90.5 | 90.5(5) |  |
|  | Average all |  |  | 91.1(4) |  |
|  | $\mathbf{C r}\left(\right.$ hfaa) ${ }_{3}, \mathbf{R}_{\mathbf{1}}=\mathbf{R}_{\mathbf{2}}=\mathbf{C F}_{\mathbf{3}}$ |  |  | Average | Ref |
|  | 89.7 | 88.5 | 89.9 | 89.4(7) | 34 |
|  | 89.7 | 89.7 | 89.7 | 89.7(0) | 28 |
|  | 89.4 | 89.4 | 89.4 | 89.4(0) |  |
|  | Average all |  |  | 90.6(2) |  |

### 2.4.2 Electrochemical Studies

### 2.4.2.1 Tris(acetylacetonato)chromium(III), $\mathrm{Cr}(\mathrm{acac})_{3}$

In 1984, Anderson et al. reported a two-step reduction process (quasi-reversible $\mathrm{Cr}^{\mathrm{II}} \rightarrow \mathrm{Cr}^{\mathrm{II}}$ and
 acetylacetonate. ${ }^{29}$ In 2010, Liu et al. reported fine cyclic voltammograms of $\mathrm{Cr}(\mathrm{acac})_{3},{ }^{30}$ (see Figure 2.14).

Anderson et al. proposed a dissociation mechanism for the reduction process. On grounds of the observance of $\mathrm{Cr}^{\mathrm{II}}(\mathrm{acac})_{2}$ by spectroelectrochemial studies, he proposed that the reduction processes caused the dissociation of ligands (Equation 2.6):

Equation 2.6: $\mathrm{Cr}^{\mathrm{III}}(\mathrm{acac})_{3}+\mathrm{e}^{-} \leftrightarrow\left[\mathrm{Cr}^{\mathrm{II}}(\mathrm{acac})_{3}\right]^{-} \leftrightarrow \mathrm{Cr}^{\mathrm{II}}(\mathrm{acac})_{2}+\mathrm{acac}^{-}$

Liu focussed on the oxidation of $\mathrm{Cr}^{\text {III }}(\mathrm{acac})_{3}$. On grounds of electrochemical studies with additional acetylacetone in support solution, he proposed that the oxidation processes caused the ligand dissociation (Equation 2.7):

Equation 2.7: $\mathrm{Cr}^{\mathrm{III}}(\mathrm{acac})_{3} \leftrightarrow\left[\mathrm{Cr}^{\mathrm{IV}}(\mathrm{acac})_{3}\right]^{+}+\mathrm{e}^{-} \leftrightarrow\left[\mathrm{Cr}^{\mathrm{IV}}(\mathrm{acac})_{2}\right]^{2+}+\mathrm{acac}^{-}$

[^18]

Figure 2.14: The cyclic voltammograms of $\mathrm{Cr}(\mathrm{acac})_{3}$, as reported by Liu et al. ${ }^{30}$ Measured at a glassy carbon electrode, in $0.05 \mathrm{M} \mathrm{Cr}(\mathrm{acac})_{3}$ and $0.5 \mathrm{M} \mathrm{TEABF}_{4}$, in $\mathrm{CH}_{3} \mathrm{CN}$, at scan rates of 50 , 200 and $500 \mathrm{mV} \cdot \mathrm{s}^{-1}$. Arrows show direction of increasing scan rate; at room temperature. (Reprinted (adapted) with permission from Liu, Q.; Shinkle, A. A.; Li, Y.; Monroe, C. W.; Thompson, L. T.; Sleightholeme, A. E. S.; Electrochemistry Communication, 2010, 12, 16341637. Copyright (2010) Elsevier).

The quasi-reversible $\mathrm{Cr}^{\text {III }} \leftrightarrow \mathrm{Cr}^{\text {II }}$ reduction process becomes more chemically reversible when an excess free ligand (Hacac) is present. Urbanczyk reported a chemically reversible $\mathrm{Cr}^{\text {III }} \leftrightarrow \mathrm{Cr}^{\text {II }}$ process, with 40 -fold excess of free ligand present. ${ }^{31}$ The free ligand inhibits the ligand dissociation (formation of free ligand), therefore the electrochemical process is driven to the left of Equation 2.6.

[^19]
## CHAPTER 2

### 2.4.2.2 Tris( $\beta$-diketonato)chromium(III) Complexes ${ }^{32}$

In 1988, Tsiamis et al. reported electrochemical research on a series of $\mathrm{Cr}(\beta \text {-diketonato })_{3}$ complexes (see Table 2.7 and Figure 2.15). His studies focused on the quasi-reversible $\mathrm{Cr}^{\mathrm{III}} \leftrightarrow$ $\mathrm{Cr}^{\text {II }}$ redox process. Tsiamis observed that electron-donating substituents $\left(\mathrm{R}_{1}, \mathrm{R}_{2}\right)$ on the $\beta$ diketonato ligands hinder reduction (more negative potential), while electron-withdrawing substituents $\left(\mathrm{R}_{1}, \mathrm{R}_{2}\right)$ on the $\beta$-diketonato ligands enhance reduction (more positive potential).

Table 2.7: Reduction potentials, cyclic voltammetric cathodic and anodic peak values of first reduction, and Hammett $\Sigma \sigma_{\chi}$ constants for tris( $\beta$-diketonato)chromium(III) chelates for the $\mathrm{Cr}^{\text {III }} \leftrightarrow \mathrm{Cr}^{\text {II }}$ redox process, as reported by Tsiamis et al. ${ }^{32}$ Measured at a hanging Hg electrode, in 0.1 M tetraethylammonium perchlorate (TEAP) as supporting electrolyte, against saturated calomel electrode (SCE) in acetone or acetonitrile.

| Complex | $E_{1 / 2}(\mathrm{~V})^{\mathrm{a}}$ | $P_{\mathrm{c}}(\mathrm{V})^{\mathrm{b}}$ | $P_{\mathrm{a}}(\mathrm{V})^{\mathrm{b}}$ | $\left(P_{\mathrm{c}}+P_{\mathrm{a}}\right) / 2$ <br> $(\mathrm{~V})$ | $P_{\mathrm{c}}-P_{\mathrm{a}}(\mathrm{V})$ | $\Sigma \sigma_{x}{ }^{\mathrm{c}}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{Cr}(\mathrm{bda})_{3},[1]$ | -1.68 | - | - | - | - | -0.17 |
| $\mathrm{Cr}(\mathrm{acac})_{3},[2]$ | -1.94 | - | - | - | - | -0.34 |
| $\mathrm{Cr}(\mathrm{Cl}-\mathrm{acac})_{3},[3]$ | -1.57 | -1.62 | 0.00 | -0.81 | -1.62 | 0.03 |
| $\mathrm{Cr}(\mathrm{Br}-\mathrm{acac})_{3},[4]$ | -1.58 | -1.63 | -0.30 | -0.97 | -1.33 | 0.05 |
| $\mathrm{Cr}\left(\mathrm{NO}_{2}-\mathrm{acac}\right)_{3},[5]$ | -1.15 | -1.15 | 0.35 | -0.40 | -1.50 | 0.37 |
| $\mathrm{Cr}\left(\mathrm{SCN}^{2}-\mathrm{acac}\right)_{3} .[6]$ | -1.21 | -1.17 | -1.20 | -0.90 | -0.54 | 0.28 |
| $\mathrm{Cr}(\mathrm{CN}-\mathrm{acac})_{3},[7]$ | -1.21 | -1.26 | -1.20 | -1.23 | -0.06 | 0.34 |
| $\mathrm{Cr}(\mathrm{tfaa})_{3},[8]$ | -1.06 | - | - | - | - | 0.38 |
| $\mathrm{Cr}(\mathrm{bzac})_{3},[9]$ | -1.69 | -1.71 | -1.65 | -1.68 | -0.06 | -0.16 |
| $\mathrm{Cr}(\mathrm{Br}-\mathrm{bzac})_{3},[10]$ | -1.28 | -1.24 | -0.12 | -0.68 | -1.12 | 0.23 |
| $\mathrm{Cr}\left(\mathrm{NO}_{2}-\mathrm{bzac}\right)_{3},[11]$ | -1.00 | -1.09 | 0.45 | -0.32 | -1.54 | 0.55 |
| $\mathrm{Cr}(\mathrm{SCN}-\mathrm{bzac})_{3},[12]$ | -1.02 | -1.06 | -0.51 | -0.78 | -0.54 | 0.46 |
| $\mathrm{Cr}(\mathrm{bztfac})_{3},[13]$ | -0.89 | -0.90 | -0.84 | -0.87 | -0.06 | 0.56 |
| $\mathrm{Cr}(\mathrm{dbm})_{3},[14]$ | -1.63 | -1.65 | -1.59 | -1.62 | -0.06 | 0.02 |
| $\mathrm{Cr}(\mathrm{Br}-\mathrm{dbm})_{3},[15]$ | -1.18 | - | - | - | - | 0.41 |
| $\mathrm{Cr}\left(\mathrm{NO}_{2}-\mathrm{dbm}\right)_{3},[16]$ | -0.81 | - | - | - | - | 0.73 |
| $\mathrm{Cr}(\mathrm{SCN}-\mathrm{dbm})_{3},[17]$ | -0.70 | - | - | - | - | 0.64 |
| $\mathrm{Cr}(\mathrm{dpm})_{3},[18]$ | -2.15 | - | - | - | - | -0.40 |
| $\mathrm{Cr}(\mathrm{Cl}-\mathrm{dbm})_{3},[19]$ | -1.61 | - | - | - | - | -0.03 |
| $\mathrm{Cr}\left(\mathrm{NO}_{2}-\mathrm{dbm}\right)_{3},[20]$ | -1.21 | - | - | - | - | 0.31 |

[^20]
## LITERATURE SURVEY AND FUNDAMENTAL ASPECTS

| $\operatorname{Cr}(\text { hfaa })_{3},[21]$ | -0.20 | - | - | - | - | 1.10 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| $\operatorname{Cr}(\text { hfod })_{3},[22]$ | -1.13 | - | - | - | - | 0.41 |

a. $E_{1 / 2}$ is the first reduction potential, obtained from polarograms.
b. $\quad P_{\mathrm{c}}$ and $P_{\mathrm{a}}$ are the cathodic and anodic peak values, obtained from cyclic voltammetry, respectively.
c. $\Sigma \sigma_{\chi}$ is the sum of the Hammett $\sigma$ constants of the complexes (see Section 2.4.2.3).

### 2.4.2.3 Hammett constants, electronegativity and $\mathrm{p} K_{\mathrm{a}}$

In 1937, Louis P. Hammett discovered that a substituent in the meta- or para- position of benzene has a linear effect on the relationship between the rate of base-catalysed hydrolysis of a group of ethyl esters to form a series of carboxylic acids, and the equilibrium position of the ionisation in water of the corresponding group of acids. The concept of Hammett-substituent constants ( $\sigma$ ) has been developed from this fact. ${ }^{33}$ The Hammett constants $\sigma_{\mathrm{R}}$ are empirical constants that relates the $\log$ of rate or equilibrium constants for reactions of the substituted $\left(k_{R}\right.$, $\mathrm{R}=$ substituent) and the unsubstituted ( $\mathrm{k}_{\mathrm{H}}$, no substituent) benzoic acid derivatives to the reaction rate $\rho: \log \left(k_{R} / k_{H}\right)=\left(\sigma_{R}\right) \rho$. $\sigma_{R}$ depends solely on the nature and position of the substituent R. ${ }^{34}$ The $\beta$-diketonato ligands form a six-membered ring with the metal center, with the substituents $\mathrm{R}_{1}$ and $\mathrm{R}_{2}$ in the meta-position to the metal center (see Scheme 2.3). The metaHammett constant can thus be used in relationships involving metal- $\beta$-diketonato complexes. ${ }^{35}$ The core-electron binding energy (measured using X-ray photoelectron spectroscopy on free and supported metal clusters) is linearly correlated to the Hammett substituent constants. ${ }^{36,37}$ In this study, the core-electron binding energy is affected by the substituents $R_{1}$ and $R_{2}$ on the three $\beta$ diketonato ligands. Tsiamis et al. ${ }^{32}$ observed a linear correlation between the reduction potentials ( $E_{1 / 2}$ in mV , measured in acetone or acetonitrile versus SCE) and the sum of the Hammett constants, $\Sigma \sigma$ (see Figure 2.15). The linear correlation obtained is given in Equation 2.8:
Equation 2.8: $E_{1 / 2}(\mathrm{~V})=-1.62+1.14 \Sigma \sigma$

[^21]This equation is valid when acetone or acetonitrile is used as the solvent in the electro-chemical measurements.


Figure 2.15: Correlation of $E_{1 / 2}$ with the sum of the Hammett $\sigma$ constants of the $\mathrm{Cr}(\beta \text {-diketonato) })_{3}$ series, reported by Tsiamis et al. ${ }^{32}$ (Reprinted (adapted) with permission from Tsiamis, C.; Hadjikostas, C. C.; Karageorgiou, S.; Manoussakis, G.; Inorganica Chimica Acta, 1988, 143, 17-23, Copyright (1988) Elsevier). Data is given in Table 2.7.

Gordy scale group electronegativities values of a group $R, \chi_{\mathrm{R}}$, are empirical numbers that express the combined tendency of not only one atom, but a group of atoms, to attract electrons (including those in a covalent bond) as a function of the number of valence electrons, $n$, and the
covalent radius, r (in $\AA$ )..$^{38}$ It is empirically adjusted to be aligned with Pauling atomic electronegativities. The group electronegativity $\chi_{\mathrm{R}}$ of the substituents $\left(\chi_{\mathrm{R}}=\chi_{\mathrm{R}_{1}}+\chi_{\mathrm{R}_{2}}\right)$ on a $\beta$ diketonato ligand, determines the tendency of the ligand to attract electrons towards itself. For a chemically reversible single-electron transfer redox process, the formal reduction potential $\mathrm{E}^{0}$ of ferrocene, in a series of ferrocene-containing $\beta$-diketonato-ligands, is found to be directly proportional to the group electronegativity, $\chi_{\mathrm{R}} .{ }^{39}$

The equilibrium of the dissociation process $\left(\mathrm{R}_{1} \mathrm{COCH}_{2} \mathrm{COR}_{2} \rightarrow\left[\mathrm{R}_{1} \mathrm{COCHCOR}_{2}{ }^{-}+\mathrm{H}^{+}\right)\right.$, is described by the acid dissociation constant ( $K_{\mathrm{a}}$ ) of a $\beta$-diketone (see Scheme 2.4). In a metal chelate, a high $\mathrm{p} K_{\mathrm{a}}$ value leads to a low energy change (electron transition energy), where an electron migrates from one energy level to another. ${ }^{40}$ The acid dissociation constant of most $\beta$ diketones are known from literature, e.g. Hfaa, Htfaa, Htfba, Hba, Hacac measured in water, Hdbm measured in water as well as in various organic solvents and ferrocenyl-containing $\beta$ diketones in water containing $10 \%$ acetonitrile, $I=0.1 \mathrm{~mol} \mathrm{dm}^{-3}\left(\mathrm{NaClO}_{4}\right) .{ }^{\mathbf{4 1}}$

$$
\begin{aligned}
& K_{\mathrm{a}}=\frac{\left[\mathrm{R}_{1} \mathrm{COCHCOR}_{2}{ }^{-}\right]\left[\mathrm{H}^{+}\right]}{\left[\mathrm{R}_{1} \mathrm{COCH}_{2} \mathrm{COR}_{2}\right]} \\
& \mathrm{pKa}=-\log _{10} K_{\mathrm{a}} \\
& \text {, }
\end{aligned}
$$

$$
\mathrm{R}_{1} \mathrm{COCH}_{2} \mathrm{COR}_{2} \rightarrow\left[\mathrm{R}_{1} \mathrm{COCHCOR}_{2}\right]^{-}+\mathrm{H}^{+}
$$

Scheme 2.4: The acid dissociation process of a $\beta$-diketonato ligand.

[^22]
### 2.5 Tris( $\beta$-diketonato)cobalt(III) Complexes

### 2.5.1 Synthesis and Characterization

Typical synthesis of tris( $\beta$-diketonato)cobalt(III) complexes involves oxidation of a Cobalt(II) salt. In 1957, Bryant and Fernelius have prepared cobalt(III) acetylacetonato, (Co(acac) $)_{3}$ ), by oxidizing $\mathrm{Co}(\mathrm{II})$ salt in the presence of excess ligand. ${ }^{42} 10 \%$ hydrogen peroxide (large excess) was added dropwise to the suspension of $\operatorname{Co}(\mathrm{II})$ carbonate and acetylacetone ( 10 -fold excess), (see Scheme 2.5 (a)). In 1960, Bauer and Drinkard prepared a new intermediate for general synthesis of Cobalt(III) complexes. ${ }^{43}$ The intermediate sodium triscarbonatocobaltate(III) trihydrate, $\mathrm{Na}_{3}\left[\mathrm{Co}\left(\mathrm{CO}_{3}\right)_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}\right]$, was synthesized by initial addition of $\mathrm{Co}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ and $30 \%$ hydrogen peroxide to a sodium bicarbonate solution. $\mathrm{Co}(\mathrm{acac})_{3}$ was then synthesized from this intermediate and acetylacetone, with $70 \% \mathrm{HNO}_{3}$ under reflux. (See Scheme 2.5 (b)). Several crystal structures of $\operatorname{Co}(\beta \text {-diketonato })_{3}$ were reported. This structural parameters is summarized in Table 2.8. The $\operatorname{Co}(\beta \text {-diketonato })_{3}$ crystals, like the $\operatorname{Cr}(\beta \text {-diketonato })_{3}$ crystals, were all found to be octahedral, with six similar Co-O bonds and three nearly $90^{\circ} \mathrm{O}-\mathrm{Co}-\mathrm{O}$ angles. The average Co-O distances in $\operatorname{Co}(\beta \text {-diketonato })_{3}$ complexes are ca $0.07 \AA$ smaller than the $\mathrm{Cr}-\mathrm{O}$ distances in $\operatorname{Cr}(\beta \text {-diketonato })_{3}$, (Table 2.5).
(a) $2 \mathrm{CoCO}_{3}+6 \mathrm{C}_{5} \mathrm{H}_{8} \mathrm{O}_{2}+\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow 2\left[\mathrm{Co}\left(\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{O}_{2}\right)_{3}\right]+4 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{CO}_{2}$
(b) $2 \mathrm{Co}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}+6 \mathrm{NaHCO}_{3}+\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow 2 \mathrm{Na}_{3}\left[\mathrm{Co}\left(\mathrm{CO}_{3}\right)_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}\right]+4 \mathrm{HNO}_{3}+8 \mathrm{H}_{2} \mathrm{O}$ $\mathrm{Na}_{3}\left[\mathrm{Co}\left(\mathrm{CO}_{3}\right)_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}\right]+3 \mathrm{C}_{5} \mathrm{H}_{8} \mathrm{O}_{2} \rightarrow\left[\mathrm{Co}\left(\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{O}_{2}\right)_{3}\right]+\mathrm{NaHCO}_{3}+3 \mathrm{H}_{2} \mathrm{O}$

Scheme 2.5: Synthesis of $\operatorname{Co}(\mathrm{acac})_{3}$, by (a) Bryant's method, and (b) Bauer's method.

[^23]
## LITERATURE SURVEY AND FUNDAMENTAL ASPECTS

Table 2.8: $\mathrm{Co}-\mathrm{O}$ bond length for reported structural parameters of $\mathrm{Co}(\beta \text {-diketonato })_{3}$ complexes.

| Complex | Co(acac)3 |  |  |  |  |  | Average | Ref |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Cr-O <br> Bond <br> length | 1.879(1) | 1.894(2) | 1.919(1) | 1.883(1) | 1.926(1) | 1.883(1) | 1.897(20) | 44 |
|  | 1.885(6) | 1.883(7) | 1.886(9) | 1.891(6) | 1.889(9) | 1.878(7) | $1.885(5)$ | 45 |
|  | 1.887(2) | 1.889(2) | 1.880(2) | 1.875(2) | 1.884(2) | 1.883(2) | 1.883(5) | 46 |
|  | 1.888(2) | 1.889(2) | 1.881(2) | 1.875(2) | 1.884(2) | 1.883(2) | 1.883(5) |  |
|  | 1.889(1) | 1.890(2) | 1.881(2) | 1.876(2) | 1.885(2) | $1.885(1)$ | 1.884(5) |  |
|  | 1.890(1) | 1.891(1) | 1.880(2) | 1.877(1) | 1.886(2) | 1.883(1) | 1.885(6) |  |
|  | 1.890(1) | 1.891(1) | 1.883(1) | 1.877(1) | 1.886(1) | 1.886(1) | 1.886(5) |  |
|  | Average all |  |  |  |  |  | 1.886(10) |  |
|  | Co(tfaa) 3 |  |  |  |  |  | Average | Ref |
|  | 1.877(2) ${ }^{a}$ | $1.876(2)^{\text {b }}$ | 1.906(2) ${ }^{\text {a }}$ | $1.870(2)^{b}$ | 1.870(1) ${ }^{a}$ | 1.879(2) ${ }^{\text {b }}$ | 1.884(19) ${ }^{\text {a }}$ | 47 |
|  |  |  |  |  |  |  | $1.875(5)^{b}$ |  |
|  | 1.931(2) ${ }^{a}$ | 1.940(2) ${ }^{\text {b }}$ | $1.868(2)^{a}$ | 1.914(2) ${ }^{\text {b }}$ | $1.895(2)^{a}$ | 1.871(2) ${ }^{\text {b }}$ | $1.898(32)^{a}$ |  |
|  |  |  |  |  |  |  | $1.908(35)^{b}$ |  |
|  | Average all |  |  |  |  |  | 1.891(25) |  |
|  | Co(dbm) 3 |  |  |  |  |  | Average | Ref |
|  | 1.876(3) | 1.897(4) | 1.869(4) | 1.883(4) | 1.884(4) | 1.888(3) | 1.883(10) | 48 |
|  | 1.891(3) | 1.884(2) | 1.873(3) | 1.878(3) | 1.875(3) | 1.897(3) | 1.883(9) | 49 |
|  |  |  |  |  |  | Average all | 1.883(9) |  |

$a$ bond nearest to $\mathrm{CH}_{3}$ group
$b$ bond nearest to $\mathrm{CF}_{3}$ group

[^24]
## CHAPTER 2

Table 2.9: $\mathrm{O}-\mathrm{Cr}-\mathrm{O}$ angle for reported structural parameters of $\mathrm{Co}(\beta \text {-diketonato })_{3}$ complexes

| Complex |  | Co(acac)3 | Average | Ref |
| :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} \mathrm{O}-\mathrm{Cr}-\mathrm{O} \\ \text { Angle } \end{gathered}$ | 97.4 | 97.597 .1 | 97.3(2) | 44 |
|  | 96.3 | 96.696 .7 | 96.5(2) | 45 |
|  | 96.7 | 96.396 .8 | 96.6(2) | 46 |
|  | 96.7 | 96.496 .9 | 96.6(2) |  |
|  | 96.7 | 96.496 .8 | 96.6(2) |  |
|  | 96.8 | 96.496 .9 | 96.7(2) |  |
|  | 96.8 | 96.696 .8 | 96.7(1) |  |
|  | Average all |  | 96.7(3) |  |
|  | Co(tfaa)3 |  | Average | Ref |
|  | 95.5 | 96.594 .3 | 95.4(1.1) | 47 |
|  | 95.4 | 97.097 .9 | 96.8(1.2) |  |
|  | Average all |  | 96.1(1.3) |  |
|  | Co(dbm) 3 |  | Average | Ref |
|  | 95.8 | 94.996 .1 | 95.6(7) | 48 |
|  | 95.0 | 96.295 .3 | 95.5(6) | 49 |
|  |  | Average all | 95.5(6) |  |

### 2.6 Chromium(0)-Carbene Complexes

### 2.6.1 Introduction ${ }^{50,91952,5,3,545,5,56}$

Metal carbene complexes are known to have a formal metal-carbon double bond, i.e. $\mathrm{M}=\mathrm{CR}_{2}$. Almost all transition metals have been reported to have been used in carbene complexes, however, the Fischer carbene complexes are the point of interest in this study. Fischer carbenes are named after German chemist Ernst O. Fischer. These complexes have a metal center with low oxidation state, e.g. Fischer carbene complexes with metals from group VI: $\mathrm{Fe}(0), \mathrm{Mo}(0)$, $\mathrm{Cr}(0)$ and $\mathrm{W}(0)$. At the metal center, Fischer carbene complexes have $\pi$-acceptor ligands (such as CO) and the complexes are electrophilic at the carbene carbon atom. This electrophilic carbene carbon has $\pi$-donor substituents, such as alkoxy and alkylated amino groups (see substituent $X$ in Figure 2.16). Preparation of Fischer carbene complexes normally involves the carbene ligand substituting one carbonyl group from a metal hexacarbonyl complex. Subsequently, different non-carbene ligands can be added to Fischer carbenes, by further substitution of carbonyl groups.

[^25](a)

(b)

\[

$$
\begin{aligned}
& \mathrm{M}=\mathrm{Cr}, \mathrm{Mo}, \mathrm{~W} \\
& \mathrm{X}=\mathrm{O}, \mathrm{~S}, \mathrm{NR} \mathrm{R}^{\prime \prime}, \mathrm{N}-\mathrm{NR}^{\prime \prime} \mathrm{R}^{\prime \prime \prime}
\end{aligned}
$$
\]

Figure 2.16: Illustration of Fischer carbene complexes: (a) bonding information, (b) general structure of a typical Fischer carbene complex, as proposed by Baldoli et al. ${ }^{54}$ (Reprinted (adapted) with permission from Baldoli, C.; Cerea, P.; Falciola, L.; Giannini, C.; Licandro, E.; Maiorana, S.; Mussini, P.; Perdicchia, D.; Journal of Organometallic Chemistry, 2005, 690, 5777-5787. Copyright (2005) Elsevier).

### 2.6.2 Electrochemical Studies ${ }^{50,51,52,53,54,5,5,56,57,58}$,

Most electrochemical studies on Fischer carbene complexes were focused on the metal center and the carbene carbon. The redox processes of Fischer carbene complexes, involve oxidation of the metal center and reduction of the carbene carbon. Computational calculations comfirmed these results. The structures of these series (I, II, V and VI) of Fischer carbenes are shown in Figure 2.17. Figure 2.18 shows a typical cyclic voltammogram of a Fischer carbene complex, as shown in the figure obtained by Hoskovcava et al. in $2005^{53}$. They observed a two-electron irreversible reduction process with electrode adsorption (see Section 2.1.1), and a one-electron reversible oxidation process. Both oxidation and reduction have linear dependence on the Hammett constant $\sigma$ (see Section 2.1.1.1). Figure 2.19 shows this linear dependence for different series of Fischer carbene complexes. ${ }^{53,57}$

[^26]

l a, b, c, d, e, g, h
II a, b, c, d, e, g



V a, b, c, d, e, g
VI a, b, c, d, e, g
Figure 2.17: Structures of four series (I, II, V and VI) of Fischer carbene complexes, studied by Hoskovcova and her coworkers, ${ }^{53,57}$ where $\mathrm{R}=-\mathrm{OCH}_{3}(\mathrm{a}) ;-\mathrm{CH}_{3}(\mathrm{~b}) ;-\mathrm{H}(\mathrm{c}) ;-\mathrm{Cl}(\mathrm{d}) ;-\mathrm{CF}_{3}(\mathrm{e})$; $\mathrm{COOCH}_{3}(\mathrm{~g}) ;-\mathrm{COOH}(\mathrm{h})$. (Reprinted (adapted) with permission from Hoskovcova, I.; Zverinova, R.; Rohacova, J.; Dvorak, D.; Tobrman, T.; Zalis, S.; Ludvik, J.; Electrochimica Acta, 2011, 56, 6853-6859. Copyright (2011) Elsevier).


Figure 2.18: Cyclic voltammograms of Fischer carbene complex II.e, from Figure 2.17 ${ }^{\mathbf{5 3}}$ (as shown in this Figure), in solvent DMF on Pt as working electrode, at scan rate $400 \mathrm{mV} / \mathrm{s} v s$. $\mathrm{Ag} / \mathrm{AgCl}: ~(a)$ First scan, (b) Second scan $^{53}$ (Reprinted (adapted) with permission from Hoskovcova, I.; Rohacova, J.; Meca, L.; Tobrman, T.; Dvorak, D.; Ludvik, J.; Electrochimica Acta, 2005, 50, 4911-4955. Copyright (2005) Elsevier).


Figure 2.19: Linear dependence of the reduction of Fischer carbene complexes on the Hammett constant: (a) and (b) were reported by Hoskovcova et al. in 2005 and represent the carbene series I. a-e ( $\mathbf{\Delta}$ ) and carbene series II. a, c-e ( $\bullet$ ), from Figure 2.17. ${ }^{53}$ (Reprinted (adapted) with permission from Hoskovcova, I.; Rohacova, J.; Meca, L.; Tobrman, T.; Dvorak, D.; Ludvik, J.; Electrochimica Acta, 2005, 50, 4911-4955. Copyright (2005) Elsevier); (c) and (d) were reported by Hoskovcova et al. in 2011 and represent the carbene series I ( $\mathbf{\Delta}$ ) and carbene series $\mathrm{V}(\square)$; where ( $\circ$ ) and ( $\circ$ ) represent the dissociated form and non-dissociated form respectively, of carbene I. h. ${ }^{57}$ (Reprinted (adapted) with permission from Hoskovcova, I.; Zverinova, R.; Rohacova, J.; Dvorak, D.; Tobrman, T.; Zalis, S.; Ludvik, J.; Electrochimica Acta, 2011, 56, 6853-6859. Copyright (2011) Elsevier).

## Results and Discussion

Three classes of transition-metal complexes are investigated in this study:
i) tris( $\beta$-diketonato)chromium(III) complexes (synthesis, crystallography, electrochemistry and computational chemistry)
ii) $\quad \operatorname{tris}(\beta$-diketonato)cobalt(III) complexes (synthesis and crystallography)
iii) chromium(0) carbene complexes (electrochemistry and computational chemistry)

### 3.1 Tris( $\beta$-diketonato)chromium(III) Complexes

### 3.1.1 Synthesis

$\operatorname{Tris}(\beta$-diketonato)chromium(III) complexes $\{1\}-\{7\}$ were synthesized using the method reported by Rahman et al. ${ }^{1}$ (see Scheme 3.1). Complexes $\{1\}$ and $\{2\}$ were reported by Rahman, complexes $\{2\}$ and $\{3\}$ were reported by Collman et al. ${ }^{2}$, complexes $\{1\}-\{4\},\{7\}$ and $\{8\}$ were reported by Tsiamis ${ }^{3}$ utilizing Collman's method, while complexes $\{5\}$ and $\{6\}$ are reported here for the first time. During synthesis, chromium(III) chloride ( 2.05 mmole ) was dissolved in a minimum amount of water. The dark green chromium(III) chloride solution was added dropwise to 40 mL of an ethanol : water solution (1:1) containing $\beta$-diketone ( 6.0 mmole ). All $\beta$-diketonato-ligands that were used are completely soluble in ethanol/water. The chromium(III) chloride solution was added in slight excess to drive the reaction to completion, since the excess is removed by water during the purification process. The reaction mixture was stirred for 2 hours. Saturated sodium acetate solution was added dropwise until complete precipitation. Basic sodium acetate deprotonated the methine group of the $\beta$-diketone, which completed the coordination with the $\mathrm{Cr}^{\text {III }}$ cation. The product was the only precipitate, and was

[^27]
## RESULTS AND DISCUSSION

purified by washing with excess water. The product was filtered and dried on the funnel and then in a desiccator, at room temperature.


Scheme 3.1: General synthetic method for tris( $\beta$-diketonato)chromium(III) complexes, where $\mathrm{R}_{1}, \mathrm{R}_{2}=\mathrm{CH}_{3}, \mathrm{CH}_{3}\{1\} ; \mathrm{CH}_{3}, \mathrm{C}_{6} \mathrm{H}_{5}\{2\} ; \mathrm{C}_{6} \mathrm{H}_{5}, \mathrm{C}_{6} \mathrm{H}_{5}\{3\} ; \mathrm{CF}_{3}, \mathrm{C}_{6} \mathrm{H}_{5}\{4\} ; \mathrm{C}_{4} \mathrm{H}_{3} \mathrm{~S}, \mathrm{CF}_{3}\{5\}$; $\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{O}, \mathrm{CF}_{3}\{6\} ; \mathrm{CH}_{3}, \mathrm{CF}_{3}\{7\} ; \mathrm{CF}_{3}, \mathrm{CF}_{3}\{8\}$.

It was found that Rahman's method could not be applied to synthesize $\operatorname{Cr}(\mathrm{hfaa})_{3}$ (complex $\{8\}$; see Table 3.1). In 1993, Elisabeth Bouwman et al. showed ${ }^{4}$ that water reacts with Hhfaa to produce a tetraol (doubly-hydrated form of Hhfaa), i.e. 1,1,1,5,5,5-hexafluoropentane-2,2,4,4tetraol. ${ }^{4}$ The two $\mathrm{CF}_{3}$ groups in the ligand cause both carbonyl groups to be electrophilic, which then accommodate the oxygen's electrons from water. Therefore, both ketone structures are destroyed (Scheme 3.2). The deprotonated tetraol then complexes to the metal centre as a tetradentate bridging ligand, therefore not producing the desired product $\mathrm{Cr}(\mathrm{hfaa})_{3}$ via this method. The alternative synthetic method for complex $\{8\}$ reported by Harada and Girolami ${ }^{5}$ as described in Section 2.1.1, used the starting material $\mathrm{Cr}\left[\mathrm{N}\left(\mathrm{SiMe}_{3}\right)_{2}\right]_{2}(\mathrm{thf})_{2}(\mathrm{thf}=$ tetrahydrofuran $)$. Collman's method ${ }^{2}$ on the other hand used urea as starting material.


Scheme 3.2: The reaction between water and hexafluoroacetylacetone.

[^28]The following procedure was designed to avoid the above-mentioned problem (Scheme 3.3). Thionyl chloride ( $\mathrm{SOCl}_{2}$, in excess) was added to $\mathrm{CrCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ (dark green, 3 mmole) under slight gentle heating, and the gaseous side product $\mathrm{SO}_{2}$ and excess $\mathrm{SOCl}_{2}$ were trapped by a concentrated sodium acetate solution. A light green product was obtained, namely $\mathrm{CrCl}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$. This product was then dissolved in dry THF (tetrahydrofuran). A dark purple solution was obtained, while the dry THF removed the rest of the crystal water. Volatile hexafluoroacetylacetonato (Hhfaa, 2 mL ) was injected into this solution by a syringe. The reaction mixture was stirred overnight ( $\pm 15$ hours). The precipitate was filtered, washed with excess water, and then dried on the funnel and in a desiccator at room temperature. Sodium acetate was not required, since the electron-withdrawing $\mathrm{CF}_{3}$ group causes the Hhfaa ligand to easily coordinate to the metal centre, in this case the $\mathrm{Cr}^{\text {III }}$ cation. Low yield was obtained for $\mathrm{Cr}(\mathrm{hfaa})_{3}$ since the small amount of crystal water in THF destroyed some of the ligand Hhfaa.


Scheme 3.3: Synthetic method of $\operatorname{Cr}(\mathrm{hfaa})_{3}$, complex $\{8\}$.

Table 3.1 gives a summary of the yields obtained during the synthesis of complexes $\{1\}-\{8\}$. The general trend observed is that the non- $\mathrm{CF}_{3}$-containing complexes produced higher yields and $\mathrm{Cr}(\mathrm{hfaa})_{3}$ the lowest.

Since the $\operatorname{Cr}(\beta \text {-diketonato })_{3}$ complexes are paramagnetic, it was not possible to characterize them by NMR ${ }^{6}$. Characterization methods used include MS, elemental analysis and the crystal structures (see chapter 4 for experimental details).

[^29]Table 3.1: Summary of the yields of all the tris( $\beta$-diketonato)chromium(III) complexes that were synthesized.

| Complex | Name | Yield <br> $(\%)$ |
| :--- | :--- | :--- |
| $\mathrm{Cr}(\mathrm{acac})_{3}\{1\}$ | tris(2,4-pentadionato)chromium(III) | 83.0 |
| $\mathrm{Cr}(\mathrm{ba})_{3}\{2\}$ | tris(1-phenyl-1,3-butanedionato)chromium(III) | 67.1 |
| $\mathrm{Cr}(\mathrm{dbm})_{3}\{3\}$ | tris(1,3-diphenyl-1,3-propanedionato)chromium(III) | 90.4 |
| $\mathrm{Cr}(\mathrm{tfba})_{3}\{4\}$ | tris(4,4,4-trifluoro-1-phenyl-1,3-butanedionato)chromium(III) | 53.6 |
| $\mathrm{Cr}(\mathrm{tfth})_{3}\{5\}$ | tris(4,4,4-trifluoro-1-(2-thienyl)-1,3-butanedionato)chromium(III) | 28.3 |
| $\mathrm{Cr}(\mathrm{tffu})_{3}\{6\}$ | tris(4,4,4-trifluoro-1-(2-furyl)-1,3-butanedionato)chromium(III) | 71.8 |
| $\mathrm{Cr}(\mathrm{tfaa})_{3}\{7\}$ | tris(1,1,1-trifluoro-2,4-pentadionato)chromium(III) | 42.1 |
| $\mathrm{Cr}(\text { hfaa })_{3}\{8\}$ | tris(1,1,1,5,5,5-hexafluoro-2,4-pentadionato)chromium(III) | 15.9 |

### 3.1.2 Crystal Structures

Crystal structures of complexes $\operatorname{Cr}(\mathrm{acac})_{3}\{1\}^{7}$ and $\operatorname{Cr}(\mathrm{hfaa})_{3}\{8\}^{8}$ have been published previously. The structure of $\operatorname{Cr}(\mathrm{dbm})_{3}\{3\}$ is presented and discussed here, as representative example of the structures of the $\operatorname{Cr}(\beta \text {-diketonato })_{3}$ type of complexes with chromium. The molecular structure of $\{3\}$ with the atom-numbering scheme, is shown in Figure 3.1. Selected bond lengths and angles for the same complex are given in Table 3.2, and their averages compared to the corresponding geometrical parameters of complexes $\{1\}$ and $\{8\}$ in Table 3.3. The cif file with the complete crystallographic data is given in Appendix D.

[^30]

Figure 3.1 A perspective drawing of the molecular structure of $\operatorname{Cr}(\mathrm{dbm})_{3}\{3\}$, showing the atom numbering scheme. Atomic dispacement parameters (ADPs) are shown at the $50 \%$ probability level.

Table 3.3 compares the averages of the selected bond lengths, bond angles and dihedral angles of $\operatorname{Cr}(\mathrm{dbm})_{3}\{3\}$, with the same parameters of complexes $\operatorname{Cr}(\mathrm{acac})_{3}\{1\}^{7}$, and $\operatorname{Cr}(\mathrm{hfaa})_{3}\{8\}^{8}$, using the average values of these published crystal structures. These are three of the chromium complexes in this study, containing symmetrically substituted ligands (meaning that the $\mathrm{R}_{1}$ and $\mathrm{R}_{2}$ groups on the ligands are both the same).

Firstly considering the bond lengths, it can be seen that complex $\{3\}, \mathrm{Cr}(\mathrm{dbm})_{3}$, has six similar $\mathrm{Cr}-\mathrm{O}$ bond lengths which differ less than $0.02 \AA$ from average $\mathrm{Cr}-\mathrm{O}$ bond length. Similar results were also observed for complexes $\{1\}$ and $\{8\}$, namely six near identical $\mathrm{Cr}-\mathrm{O}$ bonds within each complex. The average $\mathrm{Cr}-\mathrm{O}$ bond length for complex $\{3\}$ was found to be 1.953 (11) $\AA$, compared to the average bond lengths of $1.960(8) \AA$ and $1.944(15) \AA$, for complexes $\{1\}$ and $\{8\}$ respectively. This similarity of bond lengths within experimental accuracy, in all three complexes, indicates that the variation of substituents (in this case the increasingly electronwithdrawing Ph or $\mathrm{CF}_{3}$ groups) on symmetrically substituted $\beta$-diketonato ligands, has no significant influence on the $\mathrm{Cr}-\mathrm{O}$ bond length.

Secondly, considering the bond angles $\mathrm{O}-\mathrm{Cr}-\mathrm{O}$, which describe the angle formed by two $\mathrm{Cr}-$ O bonds within a $\beta$-diketonato ligand: the average $\mathrm{O}-\mathrm{Cr}-\mathrm{O}$ bond angles found for complexes $\{1\},\{3\}$, and $\{8\}$ were essentially the same size, namely $\pm 90^{\circ}$ (differing only within $1.1^{\circ}$ ). Therefore, the variation of substituents (with added electronegative effect) on symmetrically substituted $\beta$-diketonato ligands, only has negligible influence on $\mathrm{O}-\mathrm{Cr}-\mathrm{O}$ bond angles.

Lastly considering the dihedral angles, which are the angles formed between any two planes within the molecule: each of these planes containing four oxygen atoms at the four vertices (corner points), with one chromium atom in the middle. As tabulated in Table 3.2 for $\mathrm{Cr}(\mathrm{dbm})_{3}$ $\{3\}$, the angle between the two planes $\mathrm{O} 1-\mathrm{O} 2-\mathrm{Cr}-\mathrm{O} 4-\mathrm{O} 5$ and $\mathrm{O} 2-\mathrm{O} 3-\mathrm{Cr}-\mathrm{O} 4-\mathrm{O} 6$ is $88.5^{\circ}$, the angle between the two planes $\mathrm{O} 1-\mathrm{O} 2-\mathrm{Cr}-\mathrm{O} 4-\mathrm{O} 5$ and $\mathrm{O} 1-\mathrm{O} 3-\mathrm{Cr}-\mathrm{O} 5-\mathrm{O} 6$ is $89.3^{\circ}$, and the angle between the two planes O2-O3-Cr-O4-O6 and O1-O3-Cr-O5-O6 is $89.4^{\circ}$. These three dihedral angles give an average of $89.1^{\circ}$ for complex $\{3\}$, which is the average dihedral angle tabulated in Table 3.3, together with the averages for complexes $\{1\}$ and $\{8\}$. These average dihedral angles for all three complexes are basically the same, within experimental accuracy, and close to $90^{\circ}$, which is the angle for perfect octahedral geometry. Once again, the symmetrical addition of increasingly electronegative substituents onto the ligand, does not effectively change the size of the dihedral angles.

Table 3.2: Selected geometrical parameters for $\operatorname{Cr}(\mathrm{dbm})_{3}\{3\}$.

| $\mathbf{C r}-\mathbf{O}$ Bond length $(\mathbf{\AA})$ | $\mathbf{O}-\mathbf{C r}-\mathbf{O}$ Bond angle ( ${ }^{\circ}$ ) | Dihedral angle $\left(^{\circ}{ }^{\circ}\right)$ |
| :--- | :--- | :--- |
| $1.945(2)$ | $89.6(9)$ | $88.5(3)$ |
| $1.971(2)$ | $90.4(9)$ | $89.3(3)$ |
| $1.954(2)$ | $90.6(9)$ | $89.4(3)$ |
| $1.959(2)$ |  |  |
| $1.949(2)$ |  |  |
| $1.939(2)$ |  | $\mathbf{8 9 . 1}(5)$ average |
| $\mathbf{1 . 9 5 3 ( 1 1 ) ~ a v e r a g e ~}$ | $\mathbf{9 0 . 2}(5)$ average |  |

Table 3.3: Selected averages of geometrical parameters for $\operatorname{Cr}(\mathrm{dbm})_{3}\{3\}$ (this study), and $\operatorname{Cr}(\text { acac })_{3}\{1\}^{7}$ and $\operatorname{Cr}(\text { hfaa })_{3}\{8\}^{8}$.

| Average values for: | $\mathbf{C r}(\mathbf{d b m})_{\mathbf{3}}\{\mathbf{3}\}$ | $\mathbf{C r}(\mathbf{a c a c})_{\mathbf{3}}\{\mathbf{1}\}{ }^{7}$ | $\mathbf{C r}(\mathbf{h f a a})_{\mathbf{3}}\{\mathbf{8}\}^{\mathbf{8}}$ |
| :--- | :--- | :--- | :--- |
| $\mathbf{C r}-\mathbf{O}$ Bond length $(\AA)$ | $1.953(11)$ | $1.960(8)$ | $1.943(15)$ |
| $\mathbf{O}-\mathbf{C r}-\mathbf{O}$ Bond angle $\left({ }^{\circ}\right)$ | $90.2(5)$ | $91.1(4)$ | $90.6(3)$ |
| Dihedral angle $\left({ }^{\circ}\right)$ | $89.1(5)$ | $87.8(2)$ | $89.5(4)$ |

All three complexes have similar geometrical parameters: From the results in Table 3.3, all three complexes $\{1\},\{3\}$ and $\{8\}$ show octahedral geometry, since the average dihedral angle within each complex is close to $90^{\circ}$. It may be seen from Table 3.6 that $\operatorname{Cr}(\mathrm{dbm})_{3}\{3\}$ from this study has a monoclinic crystal system. Similarly, most reported structures for $\operatorname{Cr}(\mathrm{acac})_{3}\{1\}$ and $\operatorname{Cr}(\mathrm{hfaa})_{3}\{8\}$, fall into the same lattice point group (namely the monoclinic crystal system); the only exception being one crystal structure of $\operatorname{Cr}(\mathrm{hfaa})_{3}\{8\}$, reported by Harada and Girolami ${ }^{5}$, which has a trigonal crystal system. Further, the $\mathrm{P} 2_{1} / \mathrm{c}$ space group was found for $\operatorname{Cr}(\mathrm{dbm})_{3}\{3\}$ in this study, as seen in Table 3.6. This once again corresponds with the published structures for chromium complexes: seven reported crystal structures for $\operatorname{Cr}(\mathrm{acac})_{3}\{1\}$ have a $\mathrm{P} 2_{1} / \mathrm{c}$ space group, and one has a $\mathrm{P} 2_{1}$ space group (CSD code:ACACCT). The structures published for $\mathrm{Cr}(\mathrm{hfaa})_{3}\{8\}$ fall into the space groups of $\mathrm{P} 2_{1} / \mathrm{n}$ (CSD code: IGAGEC) and P3c1 (CSD code: IGAGEC01). Therefore, these complexes with symmetrically substituted $\beta$-diketonato ligands tend to crystallize into the same isomorphous series, as can be seen from their similar geometries, lattice point groups and space groups.

Figure 3.1 shows that the phenyl rings on the ligands $\operatorname{Cr}(\mathrm{dbm})_{3}\{3\}$ do not all align with the backbones of their $\beta$-diketonato ligands. Table 3.4 gives a summary of angles formed between the phenyl rings and the backbones of the $\beta$-diketonato ligands which the phenyl rings are attached to, in $\operatorname{Cr}(\mathrm{dbm})_{3}\{3\}$. These angles vary from $12^{\circ}$ to $32^{\circ}$, due to the $\pi-\pi$ stacking between the intermolecular phenyl rings.

Table 3.4: Angles between phenyl rings and the plane of $\beta$-diketonato ligands in $\operatorname{Cr}(\mathrm{dbm})_{3}\{3\}$.

| Ligands | Angle formed by phenyl ring 1 | Angle formed by phenyl ring 2 |
| :--- | :--- | :--- |
| 1 | $12.82^{\circ}$ | $25.66^{\circ}$ |
| 2 | $12.44^{\circ}$ | $13.71^{\circ}$ |
| 3 | $30.02^{\circ}$ | $31.68^{\circ}$ |



Figure 3.2: $\pi-\pi$ stacking in $\mathrm{Cr}(\mathrm{dbm})_{3}$ crystals.

Figure 3.2 illustrates the $\pi-\pi$ stacking between molecules in the packing of the $\operatorname{Cr}(\mathrm{dbm})_{3}$ crystals, the phenyl rings of the two molecules (one formed by C34-C35-C36-C37-C38-C39, another formed by C79-C80-C81-C82-C83-C84) do not overlap. Instead, two stacked rings are slipped away from each other, which is called parallel displaced $\pi-\pi$ stacking. See Table 3.5 for the relatively large $\mathrm{C}-\mathrm{C}$ distances between the C -s of the phenyl rings in parallel molecules (compared to the inter-planar distance of $d_{1}=3.305 \AA$ ), due to this parallel displaced $\pi-\pi$ stacking. This way of stacking is one of the most common and most stable (lowest energy) $\pi-\pi$ stacking motifs. ${ }^{9,10}$

Figure 3.3 gives the typical parameters of $\pi-\pi$ stacking in $\operatorname{Cr}(\mathrm{dbm})_{3}$. The distance $\left(\mathrm{d}_{1}\right)$ between two planes formed by two phenyl rings in different molecules (e.g. C34-C35-C36-C37-C38-C39 and C79-C80-C81-C82-C83-C84) is $3.305 \AA$, while the centroid displacement $\left(\mathrm{d}_{2}\right)$ is $1.474 \AA$, the distance $\left(d_{3}\right)$ between centroids of two phenyl rings is $3.619 \AA$, and the displacement angle ( $\theta$ ) of centroids is $24.0^{\circ}$. Janiak ${ }^{10}$ stated that the interplanar distance has a common range of 3.3 $3.8 \AA$. In this study, the parameter between two planes in different molecules $\left(d_{1}=3.305 \AA\right)$ also falls in this region.

[^31]Table 3.5: The $\mathrm{C}-\mathrm{C}$ distance between two phenyl rings, of $\pi-\pi$ stacking in $\mathrm{Cr}(\mathrm{dbm})_{3}$ crystals.

| C - C distance of $\boldsymbol{\pi}-\boldsymbol{\pi}$ stacking ( $\AA$ ) |  |
| :--- | :--- |
| $\mathrm{C} 34-\mathrm{C} 82$ | 3.562 |
| $\mathrm{C} 35-\mathrm{C} 83$ | 3.563 |
| $\mathrm{C} 36-\mathrm{C} 84$ | 3.570 |
| $\mathrm{C} 37-\mathrm{C} 79$ | 3.562 |
| $\mathrm{C} 38-\mathrm{C} 80$ | 3.563 |
| C39 - C81 | 3.570 |
| Average distance: | $\mathbf{3 . 5 6 5}(\mathbf{0})$ |



C79C80C81C82C83C84

Figure 3.3: The parameters of $\pi-\pi$ stacking in $\operatorname{Cr}(\mathrm{dbm})_{3}$ crystals, $\{3\}$.

Table 3.6: Crystal data and structure refinement of $\operatorname{Cr}(\mathrm{dbm})_{3},\{3\}$.

| Empirical formula | $\mathrm{C}_{45} \mathrm{H}_{33} \mathrm{CrO}_{6}$ |
| :---: | :---: |
| Formula weight | 721.71 |
| Temperature | 150(2) K |
| Wavelength | 0.71073 £ |
| Crystal system | Monoclinic |
| Space group | P $21 / \mathrm{c}$ |
| Unit cell dimensions | $\mathrm{a}=16.9785(6) \AA, \alpha=90^{\circ}$ |
|  | $\mathrm{b}=9.7442(3) \AA$ 成 $\beta=92.772(2)^{\circ}$ |
|  | $\mathrm{c}=21.2271(7) \AA, \gamma=90^{\circ}$ |
| Volume | 3507.7(2) $\AA^{3}$ |
| Z | 4 |
| Density (calculated) | $1.367 \mathrm{Mg} / \mathrm{m}^{3}$ |
| Absorption coefficient | $0.378 \mathrm{~mm}^{-1}$ |
| F(000) | 1500 |
| Crystal size | $0.168 \times 0.110 \times 0.103 \mathrm{~mm}^{3}$ |
| Theta range for data collection | 2.300 to $26.373^{\circ}$. |
| Index ranges | $\begin{aligned} & -21<=\mathrm{h}<=21,-12<=\mathrm{k}<=11, \\ & -26<=\mathrm{l}<=26 \end{aligned}$ |
| Reflections collected | 32119 |
| Independent reflections | 7168 [ $\mathrm{R}(\mathrm{int})=0.0708]$ |
| $\begin{aligned} & \text { Completeness to theta = } \\ & \mathbf{2 5 . 2 4 2} \end{aligned}$ | 99.90 \% |
| Refinement method | Full-matrix least-squares on F2 |
| Data / restraints / parameters | 7168 / 0 / 469 |
| Goodness-of-fit on $\mathbf{F}^{\mathbf{2}}$ | 1.068 |
| Final R indices [I>2sigma(I)] | $\mathrm{R} 1=0.0658, \mathrm{wR} 2=0.1356$ |
| $\mathbf{R}$ indices (all data) | $\mathrm{R} 1=0.1114, \mathrm{wR} 2=0.1534$ |
| Extinction coefficient | n/a |
| Largest diff. peak and hole | 0.448 and -0.640 e. $\AA^{-3}$ |

### 3.1.3 Electrochemical Studies

The electrochemical behaviour of the tris( $\beta$-diketonato)chromium(III) complexes (where $\operatorname{Cr}(\beta-$ diketonato $)_{3}=\operatorname{Cr}(\mathrm{acac})_{3}\{1\}, \operatorname{Cr}(\mathrm{ba})_{3}\{2\}, \operatorname{Cr}(\mathrm{dbm})_{3}\{3\}, \operatorname{Cr}(\mathrm{tfba})_{3}\{4\}, \operatorname{Cr}(\mathrm{tfth})_{3}\{5\}, \operatorname{Cr}(\mathrm{tffu})_{3}$ $\{6\}, \operatorname{Cr}(\mathrm{tfaa})_{3}\{7\}, \operatorname{Cr}(\mathrm{hfaa})_{3}\{8\}$, see Table 3.1) is described in this section. Both the Cr-metal and the respective $\beta$-diketonato ligands are electrochemically active. Studies done by Liu ${ }^{11}$ reported that the $\mathrm{Cr}^{\text {III }}(\mathrm{acac})_{3}\{1\}$ complex undergoes four redox processes: $\mathrm{Cr}^{\mathrm{I}} \leftarrow \mathrm{Cr}^{\mathrm{II}} \leftarrow \mathrm{Cr}^{\mathrm{III}} \rightarrow$ $\mathrm{Cr}^{\mathrm{IV}} \rightarrow \mathrm{Cr}^{\mathrm{V}}$. The electrochemical behaviour of complexes $\{1\}-\{4\},\{7\}$ and $\{8\}$ has been reported previously by Tsiamis et al., ${ }^{3}$ whereas complexes $\{5\}$ and $\{6\}$ are reported here for the first time. The reduction potential of a metal-coordinated $\beta$-diketonato ligand generally occurs at a more negative position than for the free ligand, and was not observed for complexes $\{1\}-\{8\}$ in the potential window of the solvent $\left(\mathrm{CH}_{3} \mathrm{CN}\right)$ that was used. ${ }^{12 \cdot 13}$ The different substituents on the $\beta$-diketonato ligands have different influences on electron densities at the metal centre, therefore the redox potentials of the various complexes differ. The method used for electrochemical measurements is described in Chapter 4 (see Section 4.2.1). The complete cyclic voltammograms of all $\mathrm{Cr}^{\text {III }}(\beta \text {-diketonato })_{3}$ complexes are given in Appendix $\mathbf{A}$.

Figure 3.4 shows the cyclic voltammograms of $\operatorname{Cr}(\mathrm{acac})_{3}$, complex $\{1\}$. The expected ${ }^{11}$ four redox processes were observed: peak A and B in Figure 3.4 represent two irreversible oxidation prosesses presenting the $\mathrm{Cr}^{\text {III/V }}$ and $\mathrm{Cr}^{\text {IV/V }}$ oxidation respectivily. The reduction peak B has an oxidation peak near to it representing the $\mathrm{Cr}^{\text {III/II }}$ redox couple. The reduction peak A present the irreversible $\mathrm{Cr}^{\text {IIII }}$ reduction process. Only the $\mathrm{Cr}^{\text {III }} \leftrightarrow \mathrm{Cr}^{\text {II }}$ redox process (peak B in Figure 3.4) indicated quasi-reversibility. Table 3.7 to Table 3.10 give summaries of the data of the four redox processes of $\mathrm{Cr}(\mathrm{acac})_{3}$.

[^32]$\mathrm{Cr}(\mathrm{acac})_{3}(\mathbf{2 5} \mathbf{~ m M})$ in $\mathrm{TEABF}_{4} / \mathrm{CH}_{3} \mathrm{CN}(0.5 \mathrm{M})$


Figure 3.4: Cyclic voltammograms of $25 \mathrm{mM} \mathrm{Cr}(\mathrm{acac})_{3}\{1\}$, $v s . \mathrm{FcH} / \mathrm{FcH}^{+}$. $\left(\right.$Solvent $=\mathrm{CH}_{3} \mathrm{CN}$, supporting electrolyte $\mathrm{TEABF}_{4}$, scan rate $=50$ (smallest peak current), 100, 150, 200, 250 and 300 (largest peak current) $\mathrm{mV} \cdot \mathrm{s}^{-1}$, with glassy carbon as working electrolyte at $20^{\circ} \mathrm{C}$, scan direction as indicated by the arrow).

Table 3.7: Electrochemical data of $\left[\mathrm{Cr}(\mathrm{acac})_{3}\right]$ for the $\mathrm{Cr}^{\mathrm{III}} \rightarrow \mathrm{Cr}^{\mathrm{IV}}$ redox process (peak A in Figure 3.4).*

| Scan Rate | $\mathbf{E}_{\mathbf{p a}}(\mathbf{m V})$ | $\mathbf{E}_{\mathbf{p c}}(\mathbf{m V})$ | $\mathbf{\Delta E}_{\mathbf{p}}(\mathbf{m V})$ | $\mathbf{E}^{\mathbf{0}}(\mathbf{m V})$ | $\boldsymbol{i}_{\mathrm{pa}}(\boldsymbol{\mu A})$ | $\boldsymbol{i}_{\mathbf{p c}}(\boldsymbol{\mu} \mathbf{A})$ | $\boldsymbol{i}_{\mathrm{pa}} / \boldsymbol{i}_{\mathbf{p c}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $50 \mathrm{mV} \cdot \mathrm{s}^{-1}$ | 1182 | - | - | -- | 426 | - | - |
| $100 \mathrm{mV} \cdot \mathrm{s}^{-1}$ | 1201 | -- | -- | -- | 636 | -- | -- |
| $150 \mathrm{mV} \cdot \mathrm{s}^{-1}$ | 1236 | -- | -- | -- | 661 | -- | -- |
| $200 \mathrm{mV} \cdot \mathrm{s}^{-1}$ | 1236 | -- | -- | -- | 802 | -- | -- |
| $250 \mathrm{mV} \cdot \mathrm{s}^{-1}$ | 1263 | - | -- | -- | 819 | -- | -- |
| $300 \mathrm{mV} \cdot \mathrm{s}^{-1}$ | 1273 | - | -- | -- | 918 | -- | -- |

*the data are obtained in $0.1 \mathrm{~mol} \cdot \mathrm{dm}^{-3} \mathrm{TEABF}_{4} / \mathrm{CH}_{3} \mathrm{CN}$, on a glassy carbon working electrolyte, at $20^{\circ} \mathrm{C}$. Potentials are reported vs. $\mathrm{FcH} / \mathrm{FcH}^{+}$

Table 3.8: Electrochemical data of $\left[\mathrm{Cr}(\mathrm{acac})_{3}\right]$ for the $\mathrm{Cr}^{\mathrm{IV}} \rightarrow \mathrm{Cr}^{\mathrm{V}}$ redox process (Peak C in Figure 3.4).*

| Scan Rate | $\mathbf{E}_{\mathbf{p a}}(\mathbf{m V})$ | $\mathbf{E}_{\mathbf{p c}}(\mathbf{m V})$ | $\Delta \mathbf{E}_{\mathbf{p}}(\mathbf{m V})$ | $\mathbf{E}^{0^{\prime}}(\mathbf{m V})$ | $\boldsymbol{i}_{\mathbf{p a}}(\boldsymbol{\mu} \mathbf{A})$ | $\boldsymbol{i}_{\mathbf{p c}}(\boldsymbol{\mu} \mathbf{A})$ | $\boldsymbol{i}_{\mathbf{p a}} / i_{\mathbf{p c}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $50 \mathrm{mV} \cdot \mathrm{s}^{-1}$ | 1668 | -- | -- | -- | 508 | -- | - |
| $100 \mathrm{mV} \cdot \mathrm{s}^{-1}$ | 1640 | -- | -- | -- | 737 | -- | -- |
| $150 \mathrm{mV} \cdot \mathrm{s}^{-1}$ | 1700 | - | - | -- | 891 | -- | -- |
| $200 \mathrm{mV} \cdot \mathrm{s}^{-1}$ | 1700 | - | -- | -- | 991 | -- | -- |
| $250 \mathrm{mV} \cdot \mathrm{s}^{-1}$ | 1725 | -- | -- | -- | 1069 | -- | -- |
| $300 \mathrm{mV} \cdot \mathrm{s}^{-1}$ | 1763 | -- | -- | -- | 1190 | -- | -- |

*the data are obtained in $0.1 \mathrm{~mol} \cdot \mathrm{dm}^{-3} \mathrm{TEABF}_{4} / \mathrm{CH}_{3} \mathrm{CN}$, on a glassy carbon working electrolyte, at $20^{\circ} \mathrm{C}$. Potentials are reported $v s . \mathrm{FcH} / \mathrm{FcH}^{+}$

Table 3.9: Electrochemical data of $\left[\mathrm{Cr}(\mathrm{acac})_{3}\right]$ for the $\mathrm{Cr}^{\mathrm{III}} \leftrightarrow \mathrm{Cr}^{\mathrm{II}}$ redox couple (peak B in Figure 3.4).*

| Scan Rate | $\mathbf{E}_{\mathbf{p a}}(\mathbf{m V})$ | $\mathbf{E}_{\mathbf{p c}}(\mathbf{m V})$ | $\mathbf{\Delta} \mathbf{E}_{\mathbf{p}}(\mathbf{m V})$ | $\mathbf{E}^{\mathbf{0}^{\boldsymbol{\prime}}(\mathbf{m V})}$ | $\boldsymbol{i}_{\mathbf{p a}}(\boldsymbol{\mu A})$ | $\boldsymbol{i}_{\mathbf{p c}}(\boldsymbol{\mu \mathbf { A } )}$ | $\boldsymbol{i}_{\mathbf{p a}} / \boldsymbol{i}_{\mathbf{p c}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $50 \mathrm{mV} \cdot \mathrm{s}^{-1}$ | -2209 | -2322 | 113 | -2265 | 125 | 207 | 0.60 |
| $100 \mathrm{mV} \cdot \boldsymbol{s}^{-1}$ | -2206 | -2332 | 126 | -2269 | 212 | 352 | 0.60 |
| $150 \mathrm{mV} \cdot \mathrm{s}^{-1}$ | -2200 | -2343 | 143 | -2272 | 251 | 424 | 0.59 |
| $200 \mathrm{mV} \cdot \mathrm{s}^{-1}$ | -2187 | -2354 | 167 | -2271 | 293 | 491 | 0.60 |
| $250 \mathrm{mV} \cdot \mathrm{s}^{-1}$ | -2183 | -2378 | 195 | -2280 | 259 | 422 | 0.61 |
| $300 \mathrm{mV} \cdot \mathrm{s}^{-1}$ | -2164 | -2382 | 218 | -2273 | 276 | 452 | 0.61 |

*the data are obtained in $0.1 \mathrm{~mol} \cdot \mathrm{dm}^{-3} \mathrm{TEABF}_{4} / \mathrm{CH}_{3} \mathrm{CN}$, on a glassy carbon working electrolyte, at $20^{\circ} \mathrm{C}$. Potentials are reported vs. $\mathrm{FcH} / \mathrm{FcH}^{+}$

The $\mathrm{Cr}^{\text {IIIIII }}$ redox process (Peak B in Figure 3.4) has a $\Delta \mathrm{E}_{\mathrm{p}}$ larger than 110 mV and $i_{\mathrm{pa}} / i_{\mathrm{pc}}$ ratios of 0.6 . This process is thus chemically irreversible $\left(i_{\mathrm{pa}} i_{\mathrm{pc}} \neq 1\right)$ and electrochemically quasi reversible $\left(\Delta E_{p}>90 m V\right) .{ }^{14}$

[^33]Two unexpected peaks (Peak 1 and 2 in Figure 3.4 and Figure 3.5) were observed in the reduction cycle ( $c a .-850 \mathrm{mV}$ and $c a .-1400 \mathrm{mV}$ ). One unexpected peak (Peak 3 in Figure 3.4 and Figure 3.5) was observed in the oxidation cycle ( $c a .-1800 \mathrm{mV}$ ). Consequently, a series of cyclic voltammograms was performed to investigate the cause of these unexpected peaks, as illustrated in Figure 3.5:

Table 3.10: Electrochemical data of $\left[\mathrm{Cr}(\mathrm{acac})_{3}\right]$ for the $\mathrm{Cr}^{\mathrm{II}} \rightarrow \mathrm{Cr}^{\mathrm{I}}$ redox process (peak D in Figure 3.4).*

| Scan Rate | $\mathbf{E}_{\mathbf{p a}}(\mathbf{m V})$ | $\mathbf{E}_{\mathbf{p c}}(\mathbf{m V})$ | $\mathbf{\Delta E}_{\mathbf{p}}(\mathbf{m V})$ | $\mathbf{E}^{\mathbf{0}^{\prime}}(\mathbf{m V})$ | $\boldsymbol{i}_{\mathbf{p a}}(\boldsymbol{\mu} \mathbf{A})$ | $\boldsymbol{i}_{\mathbf{p c}}(\boldsymbol{\mu} \mathbf{A})$ | $\boldsymbol{i}_{\mathbf{p a}} / i_{\mathbf{p c}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $50 \mathrm{mV} \cdot \mathrm{s}^{-1}$ | -- | -2609 | -- | -- | -- | 129 | -- |
| $100 \mathrm{mV} \cdot \mathrm{s}^{-1}$ | -- | -2611 | -- | -- | -- | 181 | -- |
| $150 \mathrm{mV} \cdot \mathrm{s}^{-1}$ | -- | -2627 | -- | -- | -- | 201 | -- |
| $200 \mathrm{mV} \cdot \mathrm{s}^{-1}$ | -- | -2632 | -- | -- | -- | 233 | -- |
| $250 \mathrm{mV} \cdot \mathrm{s}^{-1}$ | -- | -2645 | -- | -- | -- | 241 | -- |
| $300 \mathrm{mV} \cdot \mathrm{s}^{-1}$ | -- | -2651 | -- | -- | -- | 241 | -- |

*the data are obtained in $0.1 \mathrm{~mol} \cdot \mathrm{dm}^{-3} \mathrm{TEABF}_{4} / \mathrm{CH}_{3} \mathrm{CN}$, on a glassy carbon working electrolyte, at $20^{\circ} \mathrm{C}$. Potentials are reported $v s . \mathrm{FcH} / \mathrm{FcH}^{+}$
$\mathrm{Cr}(\mathrm{acac})_{3}(25 \mathrm{mM})$ in $\mathrm{TEABF}_{4} / \mathrm{CH}_{3} \mathrm{CN}(0.5 \mathrm{M})$


Figure 3.5: Comparative cyclic voltammograms of $\operatorname{Cr}(\mathrm{acac})_{3}\{1\}$, at scan rates of $100 \mathrm{mV} \cdot \mathrm{s}^{-1}$ and scan directions as indicated. (Solvent $=\mathrm{CH}_{3} \mathrm{CN}$, supporting electrolyte $\mathrm{TEABF}_{4}$, with glassy carbon as working electrolyte at $20^{\circ} \mathrm{C}$, scan direction as indicated by the arrow).

In Figure 3.5, the same peaks 1 and 2 were observed at scan rates of 100 mV and higher, the current of these peaks increasing at higher scan rates. A scan excluding the first oxidation (green segment) showed no redox process. Peaks 1 and 2 were however observed on the scan including the first oxidation, $\mathrm{Cr}^{\text {III }} \rightarrow \mathrm{Cr}^{\text {IV }}$ (purple segment). It is therefore clear that the first oxidation caused the appearance of these two peaks. Peaks 1 and 2 thus most probably indicate the reduction of decomposition products resulting from the irreversible $\mathrm{Cr}^{\text {III/VV }}$ oxidation process:

Qinghua Liu et al. ${ }^{\mathbf{1 1}}$ proposed that the small peaks 1 and 2 in Figure 3.5 result from the fact that the oxidized species $\left[\mathrm{Cr}^{\mathrm{Iv}}(\mathrm{acac})_{3}\right]^{+}$gives up one acac ligand to form $\left[\mathrm{Cr}^{\mathrm{Iv}}(\mathrm{acac})_{2}\right]^{2+}$, as shown in Equation 3.1:

Equation 3.1: $\mathrm{Cr}^{\mathrm{III}}(\mathrm{acac})_{3} \leftrightarrows\left[\mathrm{Cr}^{\mathrm{IV}}(\mathrm{acac})_{3}\right]^{+}+\mathrm{e}^{-} \rightarrow\left[\mathrm{Cr}^{\mathrm{IV}}(\mathrm{acac})_{2}\right]^{2+}+\mathrm{acac}^{-}$

The cyclic voltammograms of most of the other $\mathrm{Cr}^{\text {III }}(\beta \text {-diketonato })_{3}$ complexes also showed small peaks (similar to peaks 1 and 2) related to the reduction of decomposition products resulting from the respective oxidation processes.

A scan including only the first reduction peak (red segment in Figure 3.5) showed a smooth segment after the $\mathrm{Cr}^{\mathrm{II}} \rightarrow \mathrm{Cr}^{\text {III }}$ oxidation. Peak 3 was observed only after the $2^{\text {nd }}$ reduction $\mathrm{Cr}^{\mathrm{II}} \rightarrow \mathrm{Cr}^{\mathrm{I}}$ (blue segment) at 100 mV scan rate and higher, which intensified with higher scan rates. Peak 3 is thus a result of the second reduction, $\mathrm{Cr}^{\mathrm{II}} \rightarrow \mathrm{Cr}^{\mathrm{I}}$.

Anderson et al. ${ }^{15}$ proposed that peak 3 in Figure 3.5 is due to the dissociation of acetylacetonate, as shown in Equation 3.2 and Equation 3.3, where the reduced species $\left[\mathrm{Cr}(\mathrm{acac})_{3}\right]^{2-}$ loses two acac- ligands to form $\mathrm{Cr}(\mathrm{acac})$.

Equation 3.2: $\mathrm{Cr}^{\mathrm{III}}(\mathrm{acac})_{3}+\mathrm{e}^{-} \leftrightarrows\left[\mathrm{Cr}^{\mathrm{II}}(\mathrm{acac})_{3}\right]^{-} \rightarrow \mathrm{Cr}^{\mathrm{II}}(\mathrm{acac})_{2}+\mathrm{acac}^{-}$


The approximation of Equation 3.2 was not observed, since $\mathrm{Cr}^{\text {III }} \leftrightarrow \mathrm{Cr}^{\text {II }}$ is a reversible redox process, and the singly reduced species $\left[\mathrm{Cr}^{\mathrm{II}}(\mathrm{acac})_{3}\right]^{-}$is stable to be furtherly reduced.

[^34]$\mathrm{Cr}(\mathrm{ba})_{3}(\mathbf{2 5} \mathbf{~ m M})$ in TEAPF $6 / \mathrm{CH}_{3} \mathrm{CN}(0.5 \mathrm{M})$


Figure 3.6: Comparative cyclic voltammograms of $\operatorname{Cr}(\mathrm{ba})_{3}\{2\}$, at scan rates of $100 \mathrm{mV} \cdot \mathrm{s}^{-1}$ and scan directions as indicated. (Solvent $=\mathrm{CH}_{3} \mathrm{CN}$, supporting electrolyte $\mathrm{TEABF}_{4}$, with glassy carbon as working electrolyte at $20^{\circ} \mathrm{C}$, scan direction as indicated by the arrow).

In evaluating the cyclic voltammograms in Figure $\mathbf{3 . 6}$ of $\operatorname{Cr}(\mathrm{ba})_{3}$, complex $\{2\}$, an unexpected peak was once again observed: Peak $1(c a .180 \mathrm{mV})$ in Figure 3.6 appeared on the $3^{\text {rd }}$ segment, at all scan rates higher than $100 \mathrm{mV} \cdot \mathrm{s}^{-1}$. It is observed after the first reduction, $\mathrm{Cr}^{\mathrm{III}} \rightarrow \mathrm{Cr}^{\mathrm{II}}$, probably due to decomposition products of the reduced species (similar to peak 3 of complex $\{1\}$, in Figure 3.5). The second reduction $\mathrm{Cr}^{\mathrm{II}} \rightarrow \mathrm{Cr}^{\mathrm{I}}$ for $\mathrm{Cr}(\mathrm{ba})_{3}$ was not observed at all in the working window of the solvent $\left(\mathrm{CH}_{3} \mathrm{CN}\right)$.
$\mathbf{C r}(\mathrm{ba})_{3}(\mathbf{2 5} \mathbf{~ m M})$ in $\mathrm{TEABF}_{4} / \mathrm{CH}_{3} \mathrm{CN}(\mathbf{0} .5 \mathrm{M})$


Figure 3.7: Cyclic voltammograms of $25 \mathrm{mM} \mathrm{Cr}(\mathrm{ba})_{3}\{2\}$, vs. $\mathrm{FcH} / \mathrm{FcH}^{+}$. . Solvent $=\mathrm{CH}_{3} \mathrm{CN}$, supporting electrolyte $\mathrm{TEABF}_{4}$, scan rate $=50$ (smallest peak current), 100, 150, 200, 250 and 300 (largest peak current) $\mathrm{mV} \cdot \mathrm{s}^{-1}$, with glassy carbon as working electrolyte at $20^{\circ} \mathrm{C}$, scan direction as indicated by the arrow).

Figure 3.7 shows the cyclic voltammograms of complex $\operatorname{Cr}(\mathrm{ba})_{3}\{2\}$, at different scan rates. Oxidation process Cr ${ }^{\text {III/V }}$ causes electrode adsorption and decomposition, and leads to relatively large peaks, compared to the reduction peak $\mathrm{Cr}^{\text {IIIIII }}$. Only one reduction peak was observed in the active window of the solvent $\left(\mathrm{CH}_{3} \mathrm{CN}\right)$, the $\mathrm{Cr}^{\text {IIIIII }}$ oxidation peak was not observed through any of the scan rates.

## $\mathrm{Cr}(\mathrm{dbm})_{3}(\mathbf{2 5} \mathbf{~ m M})$ in $\mathrm{TEAPF}_{6} / \mathrm{CH}_{3} \mathrm{CN}(0.5 \mathrm{M})$



Figure 3.8: Comparative cyclic voltammograms of $\operatorname{Cr}(\mathrm{dbm})_{3}\{3\}$, at scan rates of $250 \mathrm{mV} \cdot \mathrm{s}^{-1}$. (Solvent $=\mathrm{CH}_{3} \mathrm{CN}$, supporting electrolyte $\mathrm{TEABF}_{4}$, with glassy carbon as working electrolyte at $20^{\circ} \mathrm{C}$, scan direction as indicated by the arrow).

The above cyclic voltammogram of $\mathrm{Cr}(\mathrm{dbm})_{3}$, complex $\{3\}$, showed similar decomposition of the oxidized species (peak 1 in Figure 3.8, ca. -1400 mV ) as described in Equation 3.1, as shown in Figure 3.8. Peak 1 is related to the first oxidation $\mathrm{Cr}^{\mathrm{III}} \rightarrow \mathrm{Cr}^{\mathrm{IV}}$, and can only be seen at scan rates of 250 mV and higher. Similarly, the red segment (where no redox process took place) showed that peak 1 is not due to any impurities.
$\mathrm{Cr}(\mathrm{dbm})_{3}(\mathbf{2 5} \mathbf{~ m M})$ in $\mathrm{TEABF}_{4} / \mathrm{CH}_{3} \mathrm{CN}(0.5 \mathrm{M})$


Figure 3.9: Cyclic voltammograms of $25 \mathrm{mM} \mathrm{Cr}(\mathrm{dbm})_{3}\{3\}$, vs. $\mathrm{FcH} / \mathrm{FcH}^{+}$. . Solvent $=\mathrm{CH}_{3} \mathrm{CN}$, supporting electrolyte $\mathrm{TEABF}_{4}$, scan rate $=50$ (smallest peak current), 100, 150, 200, 250 and 300 (largest peak current) $\mathrm{mV} \cdot \mathrm{s}^{-1}$, with glassy carbon as working electrolyte at $20^{\circ} \mathrm{C}$, scan direction as indicated by the arrow).

Figure 3.9 shows the cyclic voltammograms of $\operatorname{Cr}(\mathrm{dbm})_{3}\{3\}$, at different scan rates. The oxidation process of $\mathrm{Cr}^{\text {IIIIII }}$ was only observed when the scan rate was $150 \mathrm{mV} / \mathrm{s}$ and higher. Two oxidation peaks are observed, a sharp $\mathrm{Cr}^{\text {III/V }}$ oxidation process and another broad peak that resembles the $\mathrm{Cr}^{\text {IV/v }}$ oxidation of $\mathrm{Cr}(\mathrm{acac})_{3}$, Figure 3.4. These two oxidation peaks overlap, are large and broad, indicating electrode adsorption and decomposition. The small peak (ca. -1400 mV ) due to decomposition products of the oxidation $\mathrm{Cr}^{\text {III }} \rightarrow \mathrm{Cr}^{\text {IV }}$ of $\mathrm{Cr}(\mathrm{dbm})_{3}$, was discussed above and is illustrated in Figure 3.8.

## $\mathrm{Cr}(\mathrm{tffu})_{3}(\mathbf{2 5} \mathbf{~ m M})$ in TEAPF ${ }_{6} / \mathrm{CH}_{3} \mathrm{CN}(0.5 \mathrm{M})$



Figure 3.10: Comparative cyclic voltammograms of $\operatorname{Cr}(\mathrm{tffu})_{3}\{6\}$, with scan rates and scan directions as indicated. (Solvent $=\mathrm{CH}_{3} \mathrm{CN}$, supporting electrolyte $\mathrm{TEABF}_{4}$, scan rate $=50$ (smallest peak current), 100, 150, 200, 250 and 300 (largest peak current) $\mathrm{mV} \cdot \mathrm{s}^{-1}$, with glassy carbon as working electrolyte at $20^{\circ} \mathrm{C}$, scan direction as indicated by the arrow).

As shown in Figure 3.10, only one oxidation peak $\left(\mathrm{Cr}^{\mathrm{II}} \rightarrow \mathrm{Cr}^{\text {IV }}\right)$ was observed for complex $\{6\}$, $\mathrm{Cr}(\mathrm{tffu})_{3}$. A small peak (peak 1 in Figure 3.10) appeared before the $\mathrm{Cr}^{\text {II/III }}$ reduction. This small peak was observed when the scan rate was $150 \mathrm{mV} \cdot \mathrm{s}^{-1}$ and higher, and was only seen after the oxidation peak $\mathrm{Cr}^{\text {III }} \rightarrow \mathrm{Cr}^{\text {IV }}$ (purple segment). In contrast to this, a scan started from the reduction processes has a smooth baseline before the first reduction (black segment). This observation also agrees with Liu's proposal: that the oxidized species $\left[\mathrm{Cr}^{\mathrm{IV}}(\mathrm{ba})_{3}\right]^{+}$gives up one acac ligand to form $\left[\mathrm{Cr}^{\mathrm{IV}}(\mathrm{ba})_{3}\right]^{2+12}$. The irreversible oxidation peak $\left(\mathrm{Cr}^{\mathrm{III}} \rightarrow \mathrm{Cr}^{\mathrm{IV}}\right)$ leads to electrode adsorption and is therefore relatively large compared to the reduction peak $\left(\mathrm{Cr}^{\mathrm{III}} \rightarrow\right.$ $\mathrm{Cr}^{\mathrm{II}}$ ), which also includes those of the decomposition products of the complex.
$\operatorname{Tris}\left(\beta\right.$-diketonato)chromium(III) ( $\mathbf{2 5} \mathbf{~ m M}$ ) in $\mathrm{TBAPF}_{6} / \mathrm{CH}_{3} \mathrm{CN}$


Figure 3.11: Cyclic voltammograms of $25 \mathrm{mM} \mathrm{Cr}\left(\beta\right.$-diketonato) ${ }_{3}$, vs. $\mathrm{FcH} / \mathrm{FcH}^{+}$(supporting electrolyte: $\mathrm{TBAPF}_{6}$, scan rate $=100 \mathrm{mV} \cdot \mathrm{s}^{-1}$ ). (Solvent $=\mathrm{CH}_{3} \mathrm{CN}$, supporting electrolyte $\mathrm{TEABF}_{4}$, scan rate $=100 \mathrm{mV} \cdot \mathrm{s}^{-1}$, with glassy carbon as working electrolyte at $20^{\circ} \mathrm{C}$, scan direction as indicated by the arrow).

Figure 3.11 gives the cyclic voltammograms of all the complexes $\{1\}$ - $\{8\}$, at scan rates of 100 $\mathrm{mV} / \mathrm{s}$. Only for $\mathrm{Cr}(\mathrm{acac})_{3}$, complex $\{1\}$, was it possible to clearly distinguish the two oxidation processes, i.e. $\mathrm{Cr}^{\text {III }} \rightarrow \mathrm{Cr}^{\text {IV }} \rightarrow \mathrm{Cr}^{\mathrm{V}}$. The oxidation of complexes $\{2\}-\{8\}$ all lead to electrode adsorption and decompositions, resulting in broad oxidation peaks. The $\mathrm{Cr}^{\text {IIIIII }}$ redox process is generally electrochemically quasi reversible. However, two exceptions were observed: 1. For $\mathrm{Cr}(\mathrm{dbm})_{3}$, complex $\{3\}$, the $\mathrm{Cr}^{\text {IIIIII }}$ oxidation process was observed only at scan rates of 150 $\mathrm{mV} / \mathrm{s}$ and higher, see Figure 3.9; 2. For $\mathrm{Cr}(\mathrm{ba})_{3}$, complex $\{2\}$, the $\mathrm{Cr}^{\mathrm{II} / I I I}$ oxidation process was not observed for any of the scan rates, see Figure 3.7. The second reduction process $\mathrm{Cr}^{\mathrm{II} / \mathrm{I}}$ is irreversible and was not observed for complexes $\operatorname{Cr}(\mathrm{ba})_{3}\{2\}, \operatorname{Cr}(\mathrm{tfaa})_{3}\{4\}$, and $\operatorname{Cr}(\mathrm{hfaa})_{3}\{8\}$. Therefore, the reduction process $\mathrm{Cr}^{\text {III }} \rightarrow \mathrm{Cr}^{\text {II }}$ proved to be the best target for the study of these $\operatorname{Cr}(\beta \text {-diketonato })_{3}$ complexes, since it is easily observed for all these complexes.

As shown by the three different colours in Figure 3.11, the reduction process of $\mathrm{Cr}^{\mathrm{II}} \rightarrow \mathrm{Cr}^{\text {II }}$ can be divided into three groups: 1. Red group: the $\operatorname{Cr}(\mathrm{acac})_{3}$, complex $\{1\}$, is reduced at the most negative potential. The substitution of methyl groups $\left(\mathrm{CH}_{3}\right)$ by more electron-withdrawing phenyl groups $(\mathrm{Ph})$ made the corresponding $\mathrm{Cr}(\beta \text {-diketonato })_{3}$ complexes to reduce at a less negative potential, as in $\operatorname{Cr}(\mathrm{ba})_{3}$, complex $\{2\}$ (reduced at less negative potential than $\left.\mathrm{Cr}(\mathrm{acac})_{3}\right)$. The reduction process was further promoted when doubly substituted phenyl rings existed in the ligand, as in $\operatorname{Cr}(\mathrm{dbm})_{3}$, complex $\{3\}$. 2. Green group: The promotion to even less negative potential values continued to develop, when a strongly electron-withdrawing trifluoro group $\left(\mathrm{CF}_{3}\right)$ substituted the methyl group. The trifluoro group still dominated the reduction potential at these less negative values, even when used in combination with a variety of other substituents, as in complexes $\{4\}-\{7\}$. 3. Purple group: both methyl groups were substituted by the strongly electron-withdrawing trifluoro groups, and this complex $\{8\},\left(\operatorname{Cr}(\mathrm{hfaa})_{3}\right)$, is therefore most easily reduced of all (at the least negative potential).

Table 3.11: Reduction potential vs. $\mathrm{FcH} / \mathrm{FcH}^{+}$of the $\mathrm{Cr}^{\text {IIIIII }}$ processes, sum of the Hammett constants, sum of the group electronegativities of the $\mathrm{R}_{1}$ and $\mathrm{R}_{2}$ groups in $\left[\mathrm{Cr}\left(\mathrm{R}_{1} \mathrm{COCHCOR}_{2}\right)_{3}\right]$ (Scheme 3.1), and $\mathrm{p} K_{\mathrm{a}}$ values of the free $\beta$-diketone ligand.

| Complex | $\mathrm{R}_{1}$ | $\mathbf{R}_{2}$ | $\begin{aligned} & \hline \sigma_{\mathrm{R} 1}+ \\ & \sigma_{\mathrm{R} 2}{ }^{16} \\ & \hline \end{aligned}$ | $\boldsymbol{\Sigma} \boldsymbol{\sigma}$ | $\begin{gathered} \chi_{\mathrm{R} 1}+ \\ \chi_{\mathrm{R} 2}^{17,18,19} \end{gathered}$ | $\Sigma \chi$ | $\mathbf{p K}_{\mathbf{a}}{ }^{17,20,21}$ | $\mathrm{E}_{\mathrm{pc}}(\mathrm{mV})$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{Cr}(\mathrm{acac})_{3}$ | $\mathrm{CH}_{3}$ | $\mathrm{CH}_{3}$ | -0.14 | -0.42 | 4.68 | 14.04 | 8.95 | -2329 |
| $\mathrm{Cr}(\mathrm{ba})_{3}$ | $\mathrm{CH}_{3}$ | $\mathrm{C}_{6} \mathrm{H}_{5}$ | -0.01 | -0.03 | 4.55 | 13.65 | 8.7 | -2132 |
| $\mathrm{Cr}(\mathrm{dbm})_{3}$ | $\mathrm{C}_{6} \mathrm{H}_{5}$ | $\mathrm{C}_{6} \mathrm{H}_{5}$ | 0.12 | 0.36 | 4.42 | 13.26 | 9.35 | -1910 |
| $\mathrm{Cr}(\mathrm{tfba})_{3}$ | $\mathrm{CF}_{3}$ | $\mathrm{C}_{6} \mathrm{H}_{5}$ | 0.49 | 1.47 | 5.22 | 15.66 | 6.30 | -1273 |
| $\mathrm{Cr}(\mathrm{tfth})_{3}$ | $\mathrm{CF}_{3}$ | $\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{~S}$ | 0.52 | 1.56 | 5.11 | 15.33 | 6.497 | -1371 |
| $\mathrm{Cr}(\mathrm{tffu})_{3}$ | $\mathrm{CF}_{3}$ | $\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{O}$ | 0.49 | 1.47 | 5.13 | 15.39 | 6.5 | -1293 |
| $\mathrm{Cr}(\mathrm{tfaa})_{3}$ | $\mathrm{CH}_{3}$ | $\mathrm{CF}_{3}$ | 0.36 | 1.08 | 5.35 | 16.05 | 6.30 | -1547 |
| $\mathrm{Cr}(\mathrm{hfaa})_{3}$ | $\mathrm{CF}_{3}$ | $\mathrm{CF}_{3}$ | 0.86 | 2.58 | 6.02 | 18.06 | 4.35 | -807 |

[^35]Table 3.11 summarizes the reduction potentials of the $\operatorname{Cr}(\beta \text {-diketonato })_{3}$ series $\{1\}-\{8\}$, as well as the total sum of Hammett constants, total electronegativities, and $\mathrm{p} K_{\mathrm{a}}$ values. Since three $\beta$ diketonato ligands bind to one metal centre, the total sum of Hammett constants and total electronegativities are calculated according to Equation 3.4 and Equation 3.5:

Equation 3.4: Total f Hammettsum o constants, $\Sigma \sigma=3 \times\left(\sigma_{\mathrm{R} 1}+\sigma_{\mathrm{R} 2}\right)$
Equation 3.5: Total electronegativities, $\Sigma \chi=3 \times\left(\chi_{\mathrm{R} 1}+\chi_{\mathrm{R} 2}\right)$


Figure 3.12: The relation of the reduction potential of the $\mathrm{Cr}^{\text {III }}(\beta \text {-diketonato })_{3}$ complexes, $E_{\mathrm{pc}} \mathrm{Cr}^{\text {III/II }}$ vs. total group electronegativity of the $\mathrm{R}_{1}$ and $\mathrm{R}_{2}$ groups in $\left[\mathrm{Cr}\left(\mathrm{R}_{1} \mathrm{COCHCOR}_{2}\right)_{3}\right]$. (Data from Table 3.11).

Figure 3.12 relates the reduction potential of the $\mathrm{Cr}^{\text {IIIIII }}$ redox couple with the total group electronegativity of the $\mathrm{R}_{1}$ and $\mathrm{R}_{2}$ groups in complexes $\left[\mathrm{Cr}\left(\mathrm{R}_{1} \mathrm{COCHCOR}_{2}\right)_{3}\right]$. The same conclusion is drawn as from Figure 3.11, namely that the data can be divided into three groups. The red group indicates the most negative reduction potentials of the $\mathrm{Cr}^{\text {III }}(\beta \text {-diketonato })_{3}$ complexes without any $\mathrm{CF}_{3}$ groups. The green group contains complexes with one $\mathrm{CF}_{3}$ group on each $\beta$-diketonato ligand. This strongly electron-withdrawing $\mathrm{CF}_{3}$ group dominates the value of
the reduction potential, since it causes the $\mathrm{Cr}^{\text {III }}$-complex to be more easily reduced (at less negative potential) than in the red group. $\mathrm{Cr}(\mathrm{hfaa})_{3}$, complex $\{8\}$, is the only component in the purple group, with two strongly electron-withdrawing $\mathrm{CF}_{3}$ substituents on each ligand. Therefore $\mathrm{Cr}(\mathrm{hfaa})_{3}$ is reduced most easily (at the least negative potential), due to the largest electronegativity of the $\mathrm{CF}_{3}$ groups. The strong electron-withdrawing ability of both $\mathrm{CF}_{3}$ groups makes the $\mathrm{Cr}^{\text {III }}$ metal centre more positive causing it therefore to more easily accept another electron on the $\mathrm{Cr}^{\mathrm{III}}$. Therefore, more electron-withdrawing substituents on the $\beta$-diketonato ligand cause the metal centre to be more positive, and the resulting complex gets reduced at a less negative potential.

A good linearity was observed within the red group $\left(R^{2}=1.00\right)$, and this relation is defined by Equation 3.6:

Equation 3.6: $\Sigma \chi=-1.86 \mathrm{E}_{\mathrm{Cr}} \mathrm{III} / \mathrm{II}+9.70$ where $\Sigma \chi=3 \times\left(\chi_{\mathrm{R}_{1}}+\chi_{\mathrm{R}_{2}}\right)$

The same trend in reduction potentials (as in the red group in Figure 3.10) has also been observed for other $\mathrm{M}^{\mathrm{III}}(\beta \text {-diketonato })_{3}$ complexes with $\mathrm{M}=\mathrm{Fe}^{22}$ and $\mathrm{Mn}^{23}$, namely:
Most negative reduction: $\mathrm{E}_{p c}\left(\mathrm{M}(\mathrm{acac})_{3}\right)<\mathrm{E}_{p c}\left(\mathrm{M}(\mathrm{ba})_{3}\right)<\mathrm{E}_{p c}\left(\mathrm{M}(\mathrm{dbm})_{3}\right)$

[^36]$$
\mathbf{E}_{p c} \mathbf{C r}^{\text {III/III }} \text { vs. } \mathbf{p} K_{\mathbf{a}}
$$


Figure 3.13: The relation of the reduction potential of the $\mathrm{Cr}^{\text {III }}(\beta \text {-diketonato })_{3}$ complexes, $E_{\mathrm{pc}} \mathrm{Cr}^{\text {IIIIII }} v s$. the $\mathrm{p} K_{\mathrm{a}}$ values of the free $\beta$-diketone ligand. (Data from Table 3.11).

In Figure 3.13, the reduction potential of the metal centre, $\mathrm{Cr}^{\text {III }}$, in the complexes is related to the acid dissociation constant $\left(\mathrm{p} K_{\mathrm{a}}\right.$ ) of the free $\beta$-diketonato ligands for complexes $\{1\}$ - $\{8\}$. The metal centre coordinated to a $\beta$-diketonato ligand with a smaller $\mathrm{p} K_{\mathrm{a}}$ value, carries a lower electron density and is more easily reduced, since less energy is needed to remove an electron. Although the $\mathrm{E}_{p c} / \mathrm{p} K_{\mathrm{a}}$ data are also divided into roughly three groups, a fairly linear trend in the data over a large $\mathrm{p} K_{\mathrm{a}}$ range is observed. From Figure 3.13, the relation between the reduction potential and the acid dissociation constants $\left(\mathrm{p} K_{\mathrm{a}}\right)$ is given in Equation 3.7 with $\mathrm{R}^{2}=0.89$ :

Equation 3.7: $\mathrm{p} K_{a}=-0.0032 \mathrm{E}_{\mathrm{Cr}}{ }^{\text {III/II }}+2.08$


Figure 3.14: The relation of the reduction potential of the $\mathrm{Cr}^{\mathrm{III}}(\beta \text {-diketonato })_{3}$ complexes, $E_{\mathrm{pc}} \mathrm{Cr}^{\text {IIIII }}$ vs. total sum of the Hammett constants of the $\mathrm{R}_{1}$ and $\mathrm{R}_{2}$ groups in $\left[\mathrm{Cr}\left(\mathrm{R}_{1} \mathrm{COCHCOR}_{2}\right)_{3}\right]$. (Data from Table 3.11).

Figure 3.14 presents the relation between $\mathrm{E}_{\mathrm{Cr}} \mathrm{III/II}$ and the sum of the Hammett constants of the various substituents on the ligand. This relation is given by Equation 3.8, with $\mathrm{R}^{2}=0.99$ :

Equation 3.8: $\Sigma \sigma=0.0019 \mathrm{E}_{\mathrm{CrIII} / \mathrm{II}}+4.04$ where $\Sigma \sigma=3 \times\left(\sigma_{\mathrm{R}_{1}}+\sigma_{\mathrm{R}_{2}}\right)$

Hexafluoroacetylacetone (the ligand of complex \{8\}) has the highest total sum of Hammett constants. Reduction of $\mathrm{Cr}^{\text {III }}(\beta \text {-diketonato })_{3}$ complexes involves addition of an electron to the metal centre to form $\left(\mathrm{Cr}^{\mathrm{II}}\right)$. The group of substituents with increasingly positive Hammett values therefore stabilizes the added electrondensity on the metal centre via a stronger electron withdrawing effect via conjugation through the ligand. The more stable the $\left[\mathrm{Cr}^{\mathrm{II}}(\beta \text {-diketonato })_{3}\right]^{-}$ species becomes, the more easily the $\mathrm{Cr}^{\text {III }}(\beta \text {-diketonato })_{3}$ will be reduced. A ligand with larger total Hammett constans leads to a more positive $\mathrm{Cr}^{\text {IIIIII }}$ reduction potential, this linear relation was also observed by Taiamis's electrochemical studies ${ }^{3}$ on his series of $\mathrm{Cr}^{\text {III }}(\beta \text {-diketonato })_{3}$ complexes.

From the data presented above, we observe that the total sum of the Hammett constants is the best parameter by which to describe and predict the $\mathrm{Cr}^{\text {IIIIII }}$ reduction process in the $\operatorname{Cr}(\beta-$ diketonato) $)_{3}$ complexes. The linear relations obtained above also imply good electronic communications between the metal center and different side substituents on the $\beta$-diketonato ligands.

### 3.1.4 Computational Results on $\mathbf{C r}(\boldsymbol{\beta} \text {-diketonato })_{3}$

### 3.1.4.1 Spin state and symmetry of the $\mathbf{C r}(\text { acac })_{3}$ complex

Results obtained for the $\operatorname{Cr}(\mathrm{acac})_{3}$ complex $\{1\}$ will be discussed here, as representative example of the $\operatorname{Cr}(\beta \text {-diketonato })_{3}$ complexes. The neutral $\mathrm{Cr}^{\text {III }}(\beta \text {-diketonato })_{3}$ complexes are $\mathrm{d}^{3}$ complexes. With 3 d-electrons, the spin state can either be $\mathrm{S}=1 / 2$ (one unpaired electron) or $\mathrm{S}=$ $3 / 2$ (three unpaired electrons).

Table 3.12 gives the relative energy obtained by density functional theory (DFT) calculations, using the Amsterdam Density Functional (ADF) modelling suite, for the neutral $\mathrm{Cr}^{\mathrm{III}}(\text { acac })_{3}\{1\}$ complex. Four functionals were used, namely B3LYP, OLYP, BP86 and PW91. Results from these four functionals showed that the spin state of $3 / 2$ is more stable than the spin state of $1 / 2$.

Table 3.12: Relative DFT-calculated energies obtained by the four different functionals, for the indicated spin states and symmetries of $\mathrm{Cr}(\mathrm{acac})_{3}\{1\}$. All unconverged calculations are given with "-".

| Spin <br> state | Sym- <br> metry | Relative <br> energy <br> (eV) |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | B3LYP | OLYP | $\mathbf{B P 8 6}$ | PW91 |
| $1 / 2$ | $C_{1}$ | 1.040 | 1.150 | 0.856 | 0.838 |
|  | $C_{2}$ | 1.068 | 1.159 | 0.857 | 0.839 |
|  | $C_{3}{ }^{\text {a }}$ | 1.035 | 1.159 | - | 0.839 |
|  | $D_{3}$ | 1.038 | 1.167 | 0.872 | 0.856 |
| $3 / 2$ | $C_{1}$ | - | 0.000 | 0.000 | 0.000 |
|  | $C_{2}$ | 0.000 | 0.000 | 0.000 | 0.000 |


|  | $C_{3}{ }^{\mathrm{a}}$ | 0.000 | 0.000 | 0.000 | 0.000 |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  | $D_{3}$ | 0.000 | 0.000 | 0.000 | 0.000 |

a $C_{3}$ symmetry has complex irreducible representations which have not been implemented in ADF 2012, thus all $C_{3}$ input geometries run in $C_{l}$ symmetry.

Input geometries constructed in Chemcraft ${ }^{24}$ in different symmetries ( $C_{1}, C_{2}$ and $C_{3}$ ) all converged to $D_{3}$ symmetry as the lowest energy geometry, see Table $\mathbf{3 . 1 2}$ (relative energy $\mathrm{S}=$ $3 / 2$ is 0 for $D_{3}$ ) and Table $\mathbf{3 . 1 3}$ (all Cr-O bonds and $\mathrm{O}-\mathrm{Cr}-\mathrm{O}$ angles converged to the same value). $D_{3}$ symmetry is higher than $C_{3}, C_{2}$ or $C_{1}$ (no symmetry). $D_{3}$ symmetry requires identical $\mathrm{Cr}-\mathrm{O}$ bond lengths and $\mathrm{O}-\mathrm{Cr}-\mathrm{O}$ bond angles, with invariance upon rotation of $120^{\circ} . C_{2}$ symmetry needs a rotation of $180^{\circ}$ for invariance, which is not possible for $\mathrm{Cr}^{\mathrm{III}}(\mathrm{acac})_{3}$. Results from Table $\mathbf{3 . 1 2}$ and Table $\mathbf{3 . 1 3}$ clearly show that the $D_{3}$ symmetry is preferred by the $\mathrm{Cr}^{\text {III }}(\mathrm{acac})_{3}$ complex.

Table 3.13: DFT-calculated $\mathrm{Cr}-\mathrm{O}$ bond lengths and $\mathrm{O}-\mathrm{Cr}-\mathrm{O}$ bond angles, obtained by the four different functionals for the indicated symmetries of $\mathrm{Cr}(\mathrm{acac})_{3}$.

| Cr $^{\text {III }}{ }^{(\mathbf{a c a c})_{3}}$ | $\left.\mathbf{d ( C r}-\mathbf{O})(\AA)^{a}\right)^{a}$ |  |  |  | $\mathbf{O}-\mathbf{C r}-\mathbf{O}\left({ }^{\circ}{ }^{b}\right.$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Symmetry | B3LYP | OLYP | BP86 | PW91 | B3LYP | OLYP | BP86 | PW91 |
| $C_{1}$ | - | 2.008 | 1.980 | 1.978 | - | 89.7 | 91.5 | $91.5^{\text {c }}$ |
| $C_{2}$ | 1.983 | 2.008 | 1.980 | 1.978 | 91.5 | 89.7 | 91.4 | 91.5 |
| $C_{3}{ }^{\mathrm{d}}$ | 1.983 | 2.008 | 1.980 | 1.978 | 91.5 | 89.7 | 91.4 | 91.5 |
| $D_{3}$ | 1.983 | 2.008 | 1.980 | 1.978 | 91.5 | 89.7 | 91.4 | 91.5 |

a All Cr-O bonds converged to the same value
b All $\mathrm{O}-\mathrm{Cr}-\mathrm{O}$ angles converged to the same value
c Only functional PW91 with $\mathrm{C}_{1}$ symmetry gave different $\mathrm{O}-\mathrm{Cr}-\mathrm{O}$ angles of $91.4^{\circ}, 91.5^{\circ}$ and $91.6^{\circ}$ (average: $91.5^{\circ}$ )
$\mathrm{d} C_{3}$ input geometry run in $C_{l}$ symmetry in ADF.

The molecular orbitals (MOs) containing mainly Cr-d character, are displayed in Figure 3.15. $\mathrm{Cr}(\mathrm{acac})_{3}$ is an octahedral complex with 3 d-electrons and a spin state of $3 / 2$. From Figure 3.15 we observe that, as expected from the ligand field theory for an octahedral complex, three $\alpha$ orbitals ( $d_{x z}, d_{y z}$, and $d_{x y}$ ) are occupied by unpaired electrons, while two $\alpha$-orbitals ( $d_{z 2}, d_{x 2-y 2}$ ) and all the $\beta$-orbitals remain empty (LUMOs).

[^37]Figure 3.15: The illustration of the calculated five $d$-orbitals of $\mathrm{Cr}(\mathrm{acac})_{3}$, obtained by functional PW91.
HOMO-2,
LUMO+1,

Reduction of the $\mathrm{Cr}^{\text {III }}(\mathrm{acac})_{3}$ complex, involves the addition of an electron to the lowest unoccupied molecular orbital (LUMO) of the complex. Since the LUMO of the neutral $\mathrm{Cr}^{\mathrm{III}}(\mathrm{acac})_{3}$ is of Cr-d character (see Figure 3.15), the reduced $\mathrm{Cr}^{\mathrm{II}}(\mathrm{acac})_{3}{ }^{-}$(with charge $\mathrm{q}=-1$ ) will be a $d^{4}$ complex, therefore with either $0(S=0), 2(S=2 / 2)$ or $4(S=4 / 2)$ unpaired electrons. The LUMO is a $\beta$-orbital, therefore a spin state of $2 / 2$ (two unpaired electrons and 1 set of paired electons) is expected.

Table 3.14 gives the DFT results calculated for the reduced $\mathrm{Cr}^{\mathrm{II}}(\mathrm{acac})_{3}{ }^{-}$complex. Clearly, the spin state of $2 / 2$ in $\mathrm{D}_{3}$ symmetry has the lowest energy among the three possibilities. $\mathrm{Cr}^{\text {III }}(\mathrm{acac})_{3}$ has three unpaired electrons; addition of an extra electron tends to pair one of these electrons to result in $\mathrm{Cr}^{\mathrm{II}}(\mathrm{acac})_{3}{ }^{-}$, which has two unpaired electrons. This means that $\mathrm{Cr}^{\mathrm{II}}(\mathrm{acac})_{3}{ }^{-}$has a low spin on Cr , and the pairing energy $(\mathrm{P})$ is lower than the splitting energy $\left(\Delta_{o}\right)$, between $\mathrm{e}_{g}$ and $\mathrm{t}_{2 g}$ orbitals. (Section 2.5.5).

Table 3.14: Relative DFT-calculated energies obtained by the different functionals, for the indicated spin states and symmetries of $\mathrm{Cr}^{\mathrm{II}}(\text { acac })_{3}{ }^{-}($with charge $\mathrm{q}=-1$ ).

| Spin <br> state | Sym- <br> metry | Relative <br> energy <br> $(\mathbf{e V})$ | Relative <br> energy <br> (eV) | Relative <br> energy <br> (eV) | Relative <br> energy <br> (eV) |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | B3LYP | OLYP | $\mathbf{B P 8 6}$ | PW91 |
| $0 / 2$ | $C_{1}$ | 0.813 | 0.858 | 0.624 | 0.608 |
|  | $C_{2}$ | 0.810 | 0.861 | 0.624 | 0.607 |
|  | $C_{3}{ }^{\text {a }}$ | $-^{\mathrm{c}}$ | 0.861 | 0.624 | 0.607 |
|  | $D_{3}{ }^{\mathrm{b}}$ | 3.038 | 1.467 | 1.247 | 1.218 |
| $2 / 2$ | $C_{1}$ | 0.000 | 0.000 | 0.000 | 0.000 |
|  | $C_{2}$ | - | 0.000 | 0.000 | 0.000 |
|  | $C_{3}{ }^{\text {a }}$ | 0.000 | 0.000 | 0.000 | 0.000 |
|  | $D_{3}$ | - | 0.000 | 0.000 | 0.000 |
| $4 / 2$ | $C_{1}$ | - | 0.139 | 0.578 | 0.578 |
|  | $C_{2}$ | - | - | - | - |
|  | $C_{3}{ }^{\mathrm{a}}$ | - | - | - | - |
|  | $D_{3}{ }^{\mathrm{b}}$ | - | - | - | - |

a $C_{3}$ input geometry run in $C_{1}$ symmetry in ADF.
b $D_{3}$ not possible for $\mathrm{S}=0 / 2$ or $4 / 2$ since the $E$ orbitals are partially occupied, no symmetry available.
c. All calculations that did not converged, are given with "-"

A second reduction of the $\mathrm{Cr}^{\text {III }}(\mathrm{acac})_{3}$ complex can be viewed as :
(i) either the addition of an electron to the lowest unoccupied molecular orbital (LUMO) of the reduced $\mathrm{Cr}^{\mathrm{II}}(\mathrm{acac})_{3}{ }^{-}$complex, or
(ii) the addition of a second electron to the neutral $\mathrm{Cr}^{\text {III }}(\mathrm{acac})_{3}$, in this case to the LUMO+1.

Since the LUMO+1 of the neutral $\mathrm{Cr}^{\text {III }}(\mathrm{acac})_{3}$ is of Cr -d character (see Figure 3.15), the doubly reduced $\mathrm{Cr}^{\mathrm{I}}(\mathrm{acac})_{3}{ }^{-2}$ ( with charge $\mathrm{q}=-2$ ) will be a d ${ }^{5}$ complex, i.e. with either $1(\mathrm{~S}=1 / 2), 3(\mathrm{~S}=$ $3 / 2$ ) or $5(\mathrm{~S}=5 / 2)$ unpaired electrons.

Table 3.15 gives the DFT-results calculated for the doubly reduced $\mathrm{Cr}^{\mathrm{I}}(\mathrm{acac})_{3}{ }^{-2}$ complex, indicating that $\mathrm{S}=1 / 2$ for $\mathrm{Cr}^{\mathrm{I}}(\mathrm{acac})_{3}{ }^{-2}$. Since a low spin was obtained for $\mathrm{Cr}^{\mathrm{II}}(\mathrm{acac})_{3}{ }^{-}(\mathrm{S}=2 / 2$ for 4 d-electrons), it is expected that the addition of a second electron leads to another pairing of

## CHAPTER 3

electrons, namely $\mathrm{S}=1 / 2$ for $\mathrm{Cr}^{\mathrm{I}}(\mathrm{acac})_{3}{ }^{-2}$. From the relative energy values, it follows that $\mathrm{Cr}^{\mathrm{L}}$ (acac) $)^{-2}$ has no symmetry since $C_{2}$ symmetry gives non-Aufbau occupation.

Table 3.15: Relative DFT-calculated energies obtained by the different functionals, for the indicated spin states and symmetries of $\mathrm{Cr}^{1}(\mathrm{acac})_{3}{ }^{-2}($ with charge $\mathrm{q}=-2)$.

| Spin <br> state | Sym- <br> Metry | Relative <br> energy <br> $(\mathbf{e V})$ | Relative <br> energy <br> $(\mathbf{e V})$ | Relative <br> energy <br> (eV) | Relative <br> energy <br> (eV) |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\mathbf{B 3 L Y P}$ | OLYP | $\mathbf{B P 8 6}$ | PW91 |
| $1 / 2$ | $C_{1}$ | 0.000 | - $^{\mathrm{d}}$ | - $^{\mathrm{d}}$ | - $^{\mathrm{d}}$ |
|  | $C_{2}{ }^{\mathrm{a}}$ | 0.000 | - | 0.000 | - |
|  | $C_{3}{ }^{\mathrm{b}}$ | 0.000 | - | - | - |
|  | $D_{3}{ }^{\mathrm{c}}$ | $0.192^{\mathrm{c}}$ | - | 0.000 | 0.000 |
| $3 / 2$ | $C_{1}$ | 0.166 | - | 0.228 | 0.245 |
|  | $C_{2}{ }^{\mathrm{a}}$ | $-^{\mathrm{d}}$ | - | - | - |
|  | $C_{3}{ }^{\mathrm{b}}$ | - | - | - | - |
| $5 / 2$ | $D_{3}{ }^{\mathrm{c}}$ | - | - | - | - |
|  | $C_{1}$ | 0.346 | - | 0.459 | 0.455 |
|  | $C_{2}{ }^{\mathrm{a}}$ | - | - | - | - |
|  | $C_{3}{ }^{\mathrm{b}}$ | - | - | - | - |
|  | $D_{3}{ }^{\mathrm{c}}$ | - | - | - | - |

a $C_{2}$ symmetry gives non-Aufbau occupation.
b $C_{3}$ input geometry run in $C_{1}$ symmetry in ADF.
c Symmetry not possible since the $E$ orbitals are partially occupied and become non-degenerate.
d. All calculations that did not converged, are given with "-"

Oxidation of $\mathrm{Cr}^{\mathrm{III}}(\mathrm{acac})_{3}$ involves the removal of an electron from the HOMO of the complex. Since the HOMO of the neutral $\mathrm{Cr}^{\text {III }}(\mathrm{acac})_{3}$ is of Cr -d character (see Figure 3.15), the oxidized $\mathrm{Cr}^{\mathrm{IV}}(\mathrm{acac})_{3}{ }^{+}($with charge $\mathrm{q}=+1)$ will be a $\mathrm{d}^{2}$ complex, i.e. with either $0(\mathrm{~S}=0)$ or $2(\mathrm{~S}=2 / 2)$ unpaired electrons.

Table 3.14 gives the DFT results, calculated for the oxidized $\mathrm{Cr}^{\text {IV }}(\mathrm{acac})_{3}{ }^{+}$complex. The removal of an electron from $\mathrm{Cr}^{\text {III }}(\mathrm{acac})_{3}$ with spin state of $3 / 2$, will end up with two unpaired electrons,
which agrees with the results in Table 3.14. Therefore, it was concluded that the spin state with two unpaired electrons and $\mathrm{D}_{3}$ symmetrywas favoured by $\mathrm{Cr}^{\mathrm{IV}}(\mathrm{acac})_{3}{ }^{+}(\mathrm{S}=2 / 2)$.

Table 3.16: Relative DFT-calculated energies obtained by the different functionals, for the indicated spin states and symmetries of $\mathrm{Cr}^{\mathrm{IV}}(\mathrm{acac})_{3}{ }^{+}($with charge $\mathrm{q}=+1$ ).

| Spin <br> state | Sym- <br> metry | Relative <br> energy <br> $(\mathbf{e V})$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\mathbf{B 3 L Y P}$ | $\mathbf{O L Y P}$ | $\mathbf{B P 8 6}$ | PW91 |
| $0 / 2$ | $C_{1}$ | 0.350 | 0.705 | 0.495 | 0.504 |
|  | $C_{2}$ | $-^{\mathrm{d}}$ | 0.706 | 0.494 | 0.483 |
|  | $C_{3}{ }^{\mathrm{a}}$ | - | 0.706 | 0.494 | 0.482 |
|  | $D_{3}{ }^{\mathrm{c}}$ | 0.924 | 1.202 | 1.633 | 0.992 |
| $2 / 2$ | $C_{1}$ | - $^{\mathrm{d}}$ | 0.000 | 0.000 | 0.001 |
|  | $C_{2}{ }^{\mathrm{b}}$ | - | $0.079^{\mathrm{b}}$ | $0.043^{\mathrm{b}}$ | $0.043^{\mathrm{b}}$ |
|  | $C_{3}{ }^{\text {a }}$ | - | 0.002 | 0.000 | 0.000 |
|  | $D_{3}{ }^{\mathrm{c}}$ | 0.000 | $0.072^{\mathrm{b}}$ | $0.103^{\mathrm{b}}$ | $0.108^{\mathrm{b}}$ |

a $C_{3}$ input geometry run in $C_{1}$ symmetry in ADF.
b $C_{2}$ symmetry gives non-Aufbau occupation for $\mathrm{S}=2 / 2$.
c Symmetry not possible since the $E$ orbitals are partially occupied and become non-degenerate.
d. All calculations that did not converged, are given with "--"

A second oxidation of $\mathrm{Cr}^{\text {III }}(\mathrm{acac})_{3}$ involves the removal of a second electron from $\mathrm{Cr}^{\text {III }}(\mathrm{acac})_{3}$, in this case the electron in the HOMO-1. Since the HOMO-1 of the neutral $\mathrm{Cr}^{\text {III }}(\mathrm{acac})_{3}$ is of $\mathrm{Cr}-\mathrm{d}$ character (see Figure 3.15), the doubly oxidized $\mathrm{Cr}^{\mathrm{V}}(\mathrm{acac})_{3}{ }^{+2}$ (with charge $\mathrm{q}=+2$ ) will be a d ${ }^{1}$ complex, i.e. it must be paramagnetic with one unpaired electron ( $\mathrm{S}=1 / 2$ ). Table 3.17 gives the DFT results calculated for the doubly oxidized $\mathrm{Cr}^{\mathrm{V}}(\mathrm{acac})_{3}{ }^{+2}$ complex. From the relative energy values, it follows that $\mathrm{Cr}^{\mathrm{V}}(\mathrm{acac})_{3}{ }^{+2}$ has no symmetry since $C_{2}$ symmetry gives non-Aufbau occupation.

## CHAPTER 3

Table 3.17: Relative DFT-calculated energies, for the indicated spin states and symmetries of doubly oxidized $\mathrm{Cr}^{\mathrm{V}}(\mathrm{acac})_{3}{ }^{+2}($ with charge $\mathrm{q}=+2)$.

| Spin <br> state | Sym- <br> metry | Relative <br> energy $^{\text {b }}$ <br> $(\mathbf{e V})$ | Relative <br> energy $^{\text {b }}$ <br> $(\mathbf{e V})$ | Relative <br> energy $^{\text {b }}$ <br> $(\mathbf{e V})$ | Relative <br> energy $^{\text {b }}$ <br> $(\mathbf{e V})$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | B3LYP | OLYP | $\mathbf{B P 8 6}$ | PW91 |
| $1 / 2$ | $C_{1}$ | 0.000 | 0.000 | 0.000 | 0.000 |
|  | $C_{2}$ | $-^{\text {c }}$ | 0.000 | 0.000 | 0.000 |
|  | $C_{3}{ }^{\text {a }}$ | - | 0.000 | 0.000 | 0.000 |
|  | $D_{3}$ | 0.000 | 0.000 | 0.000 | 0.000 |

a $C_{3}$ input geometry run in $C_{1}$ symmetry in ADF.
b. Energies within a spesific functional are compared. NOTE the energies across functional are not compared here.
c. All calculations that did not converged, are given with "--"

### 3.1.4.2 DFT-calculated geometry of the $\mathbf{C r}(\mathrm{acac})_{3}$ complex

In this section the DFT-calculated geometry of $\mathrm{Cr}(\mathrm{acac})_{3}$, as calculated by four different functionals, will be compared to the experimental geometry of $\operatorname{Cr}(\mathrm{acac})_{3}\{1\} 7$. The DFT results obtained in the section above, clearly show that $\operatorname{Cr}(\mathrm{acac})_{3}$ has a $D_{3}$ symmetry. Due to this symmetry, all the calculated Cr-O bonds will be equal within experimental accuracy, as well as for the $\mathrm{O}-\mathrm{Cr}-\mathrm{O}$ bond angles, etc. Therefore, the calculated geometrical results will be compared to the average of the experimental values (see also Table 3.3). Scheme 3.4 shows the atom numbering used for the DFT-calculated bonds and angles which are tabulated in Table 3.18.


Scheme 3.4: Scheme showing atom numbering for $\operatorname{Cr}(\mathrm{acac})_{3}\{1\}$.

## RESULTS AND DISCUSSION

All DFT-calculated results showed longer $\mathrm{Cr}-\mathrm{O}$ bonds than the average experimental bond length, but the difference is small, namely $0.052 \AA$ (OLYP) to $0.022 \AA$ (PW91). All calculations gave slightly longer $\mathrm{C} 1-\mathrm{C} 2$ bond length than the experimental crystal data. For the $\mathrm{O}-\mathrm{Cr}-\mathrm{O}$ bond angles, OLYP gave a result smaller than the average from the experimental crystal data, and other functionals gave larger results. However, the slight difference between the calculated and experimental data is expected, since it is known that GGA density functionals tend to overestimate bonds lengths. ${ }^{25}$ B3LYP gave the same $\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$ bond angle as the average of the experimental results, while other functionals gave smaller $\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$ angles. Generally PW91 gave geometry parameters nearest to the experimental average.

Table 3.18: DFT-calculated and experimental geometrical parameters for $\mathrm{Cr}(\mathrm{acac})_{3}{ }^{2}$

|  | Average Experimental Values ${ }^{7}$ | B3LYP | OLYP | BP86 | PW91 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{C r}$ - O Bond length ( ${ }_{\text {( }}^{\text {a }}$ ) | 1.960(8) | 1.983 | 2.008 | 1.980 | 1.978 |
| C1-C2 Bond length ( ${ }_{\text {A }}$ ) | 1.390(11) | 1.401 | 1.406 | 1.407 | 1.405 |
| $\mathrm{O}-\mathrm{Cr}-\mathrm{O}$ Bond angle ( ${ }^{\circ}$ ) | 91.1(4) | 91.5 | 89.7 | 91.4 | 91.5 |
| C1-C2-C3 Bond angle ( ${ }^{\circ}$ ) | 125.0(6) | 125.0 | 124.4 | 124.6 | 124.6 |

### 3.1.4.3 Geometry of $\mathbf{C r}(\boldsymbol{\beta} \text {-diketonato })_{3}$ complexes

DFT-calculated results involved in this section were obtained using the PW91 functional. $D_{3}$ symmetry was used for complexes with symmetrically substituted $\beta$-diketonato ligands, i.e. complexes $\{1\},\{3\}$ and $\{8\} . C_{1}$ (no symmetry) was used for complexes with unsymmetrically substituted $\beta$-diketonato ligands, i.e complexes $\{2\},\{4\}-\{7\}$.

Table 3.19 summarizes the DFT-calculated and experimental results of the $\mathrm{Cr}-\mathrm{O}$ bond lengths and $\mathrm{O}-\mathrm{Cr}-\mathrm{O}$ bond angles for the symmetrical complexes $\{1\},\{3\}$ and $\{8\}$. The experimental values for complexes $\{1\}$, $\{3\}$ and $\{8\}$ all have the character of $D_{3}$ symmetry, namely, nearidentical $\mathrm{Cr}-\mathrm{O}$ bond lengths and $\mathrm{O}-\mathrm{Cr}-\mathrm{O}$ bond angles. Complexes $\{1\},\{3\}$ and $\{8\}$ have longer calculated $\mathrm{Cr}-\mathrm{O}$ distance and larger calculated $\mathrm{O}-\mathrm{Cr}-\mathrm{O}$ angles than the average published experimental values.

[^38]
## CHAPTER 3

Table 3.19: DFT-calculated $\mathrm{Cr}-\mathrm{O}$ bond lengths and $\mathrm{O}-\mathrm{Cr}-\mathrm{O}$ bond angles, obtained for complexes $\{1\}$, $\{3\}$ and $\{8\}$ with symmetrically substituted $\beta$-diketonato ligands, using the PW91 functional and $D_{3}$ symmetry (with the average experimental geometrical parameters in brackets).

| Complex | $\mathbf{d}(\mathbf{C r}-\mathbf{O})(\AA)$ | $\mathbf{O}-\mathbf{C r}-\mathbf{O}\left({ }^{\circ}\right)$ |
| :--- | :--- | :--- |
| $\operatorname{Cr}(\mathrm{acac})_{3}\{1\}^{7}$ | $1.978(1.960(8))$ | $91.5(91.1(4))$ |
| $\mathrm{Cr}(\mathrm{dbm})_{3}\{3\}^{a}$ | $1.964(1.953(11))$ | $90.8(90.2(5))$ |
| $\mathrm{Cr}(\mathrm{hfaa})_{3}\{8\}^{8}$ | $1.975(1.943(15))$ | $91.1(90.6(2))$ |

$a$ Experimental values from this study, see Section 3.1.2.

Table 3.20 summarizes the various $\mathrm{Cr}-\mathrm{O}$ bond lengths and $\mathrm{O}-\mathrm{Cr}-\mathrm{O}$ bond angles for complexes $\{2\},\{4\}-\{7\}$, containing unsymmetrically substituted $\beta$-diketonato ligands. $\operatorname{Tris}(\beta$ diketonato)chromium(III) complexes with unsymmetrical ligands have two types of $\mathrm{Cr}-\mathrm{O}$ bonds: the bonds near substituent $\mathrm{R}_{1}$ and the bonds near substituent $\mathrm{R}_{2}$.

In comparing the average of the three bond lengths in a complex near substituent $\mathrm{R}_{1}$ with the average of the bonds near substituent $\mathrm{R}_{2}$, we observe that values are the same within standard deviation or the difference is so small, that it can still be considered the same for all practical purposes.

The the $f a c$-complexes, the calculated $\mathrm{O}-\mathrm{Cr}-\mathrm{O}$ bond angles obtained without any symmetry constraint are very similar, and all alternately calculated $\mathrm{Cr}-\mathrm{O}$ bond lengths are nearly identical, implying $C_{3}$ symmetry for the fac-complexes, for all practical purposes. For a mer-complex, ligands coordinate in an "unsymmetrical" way (with one ligand pointing anti-clockwise opposite to the others), and therefore no symmetry is possible.

## RESULTS AND DISCUSSION

Table 3.20: DFT-calculated $\mathrm{Cr}-\mathrm{O}$ bond lengths and $\mathrm{O}-\mathrm{Cr}-\mathrm{O}$ bond angles, obtained for complexes $\{2\},\{4\}-\{7\}$ with unsymmetrically substituted ligands, using the PW91 functional and $C_{l}$ symmetry.

| Complex |  |  | $\begin{aligned} & \mathbf{d}(\mathbf{C r}-\mathrm{O}) \\ & (\AA) \\ & \hline \end{aligned}$ | $\mathrm{d}(\mathrm{Cr}-\mathrm{O})$ <br> (A) average | $\begin{aligned} & \hline \mathrm{O}-\mathrm{Cr}-\mathrm{O} \\ & \left({ }^{\circ}\right) \end{aligned}$ | $\mathrm{O}-\mathrm{Cr}-\mathrm{O}$ <br> $\left(^{\circ}\right.$ ) average |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{array}{\|l} \hline \mathrm{Cr}(\mathrm{ba})_{3} \\ \{2\} \\ \hline \end{array}$ | $f a c$ | Bond near $\mathrm{CH}_{3}$ | 1.969 | 1.969 (1) | 91.2 | 91.2 (1) |
|  |  |  | 1.970 |  |  |  |
|  |  |  | 1.969 |  | 91.2 |  |
|  |  | Bond near Ph | 1.971 | 1.973 (2) |  |  |
|  |  |  | 1.974 |  | 91.3 |  |
|  |  |  | 1.973 |  |  |  |
|  | mer | Bond near $\mathrm{CH}_{3}$ | 1.970 | 1.972 (2) | 91.2 | 91.2 (0) |
|  |  |  | 1.973 |  |  |  |
|  |  |  | 1.973 |  | 91.2 |  |
|  |  | Bond near Ph | 1.970 | 1.970 (2) |  |  |
|  |  |  | 1.972 |  | 91.2 |  |
|  |  |  | 1.969 |  |  |  |
| $\begin{aligned} & \mathrm{Cr}(\mathrm{tfba})_{3} \\ & \{4\} \end{aligned}$ | $f a c$ | Bond near $\mathrm{CF}_{3}$ | 1.970 | 1.969 (1) | 91.1 | 91.1 (1) |
|  |  |  | 1.969 |  |  |  |
|  |  |  | 1.969 |  | 91.1 |  |
|  |  | Bond near Ph | 1.970 | 1.970 (0) |  |  |
|  |  |  | 1.970 |  | 91.0 |  |
|  |  |  | 1.970 |  |  |  |
| $\begin{aligned} & \mathrm{Cr}(\mathrm{tfba})_{3} \\ & \{4\} \end{aligned}$ | mer | Bond near $\mathrm{CF}_{3}$ | 1.969 | 1.974 (5) | 90.7 | 90.8 (1) |
|  |  |  | 1.974 |  |  |  |
|  |  |  | 1.978 |  | 90.8 |  |
|  |  | Bond near Ph | 1.968 | 1.971 (3) |  |  |
|  |  |  | 1.969 |  | 90.7 |  |
|  |  |  | 1.974 |  |  |  |
| $\begin{array}{\|l} \hline \mathrm{Cr}(\mathrm{tfth})_{3} \\ \{5\} \\ \hline \end{array}$ | $f a c$ | Bond near $\mathrm{CF}_{3}$ | 1.970 | 1.970 (1) | 91.5 | 91.4 (1) |
|  |  |  | 1.969 |  |  |  |
|  |  |  | 1.971 |  | 91.4 |  |
|  |  | Bond near Th | 1.971 | 1.972 (2) |  |  |
|  |  |  | 1.970 |  | 91.3 |  |
|  |  |  | 1.974 |  |  |  |
|  | mer | Bond near $\mathrm{CF}_{3}$ | 1.974 | 1.972 (3) | 91.3 | 91.3 (1) |
|  |  |  | 1.968 |  |  |  |
|  |  |  | 1.974 |  | 91.4 |  |
|  |  | Bond near Th | 1.972 | 1.971 (2) |  |  |
|  |  |  | 1.968 |  | 91.3 |  |
|  |  |  | 1.970 |  |  |  |


| $\begin{aligned} & \mathrm{Cr}(\mathrm{tffu})_{3} \\ & \{6\} \end{aligned}$ | $f a c$ | Bond near $\mathrm{CF}_{3}$ | 1.972 | 1.972 (1) | 91.7 | 91.7(1) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 1.973 |  |  |  |
|  |  |  | 1.971 |  | 91.5 |  |
|  |  | Bond near Fu | 1.971 | 1.970 (2) |  |  |
|  |  |  | 1.972 |  | 91.7 |  |
|  |  |  | 1.968 |  |  |  |
|  | mer | Bond near $\mathrm{CF}_{3}$ | 1.975 | 1.974 (3) | 91.6 | 91.6(1) |
|  |  |  | 1.970 |  |  |  |
|  |  |  | 1.976 |  | 91.7 |  |
|  |  | Bond near Fu | 1.970 | 1.970 (2) |  |  |
|  |  |  | 1.966 |  | 91.5 |  |
|  |  |  | 1.970 |  |  |  |
| $\begin{aligned} & \hline \mathrm{Cr}(\mathrm{tfaa})_{3} \\ & \{7\} \\ & \hline \end{aligned}$ | fac | Bond near $\mathrm{CH}_{3}$ | 1.978 | 1.974 (0) | 91.4 | 91.4 (0) |
|  |  |  | 1.978 |  |  |  |
|  |  |  | 1.978 |  | 91.4 |  |
|  |  | Bond near $\mathrm{CF}_{3}$ | 1.974 | 1.978 (0) |  |  |
|  |  |  | 1.974 |  | 91.4 |  |
|  |  |  | 1.974 |  |  |  |
|  | mer | Bond near $\mathrm{CH}_{3}$ | 1.976 | 1.973 (2) | 91.4 | 91.4 (1) |
|  |  |  | 1.979 |  |  |  |
|  |  |  | 1.977 |  | 91.3 |  |
|  |  | Bond near $\mathrm{CF}_{3}$ | 1.973 | 1.977 (1) |  |  |
|  |  |  | 1.974 |  | 91.4 |  |
|  |  |  | 1.973 |  |  |  |

### 3.1.4.4 Relative energies of $\mathbf{C r}(\boldsymbol{\beta} \text {-diketonato })_{3}$ complexes

In this section, the experimentally measured reduction potential $\left(\mathrm{E}_{p c} \mathrm{Cr}^{\mathrm{II} / \mathrm{II}}\right)$ is compared to the DFT-calculated energies of the chromium complexes. The reduction of complexes $\{1\}-\{8\}$ involves the addition of an electron to the LUMO of the complex, and thus the relationship between the reduction potential (Section 3.1.3) and $E_{\text {LUMO }}$ can be established. Electron affinity (EA) is the energy difference between the neutral complex and the single-reduced complex (see Equation 3.9 and Equation 3.10):

Equation 3.9: $\mathrm{Cr}^{\mathrm{III}}(\beta-\text { diketonato })_{3}+e^{-}=\mathrm{Cr}^{\mathrm{II}}(\beta-\text { diketonato })_{3}+\mathrm{EA}$
Equation 3.10: $\mathrm{EA}=E_{\mathrm{Cr}^{\mathrm{III}}(\beta \text {-diketonato })_{3}}-E_{\mathrm{Cr}^{\mathrm{II}}(\beta \text {-diketonato })_{3}}$

## RESULTS AND DISCUSSION

Therefore, the relationship between the reduction potential and electron affinity, is also discussed in this section.

Table 3.21: DFT-calculated energies for complexes $\{1\}-\{8\}$ and their reduced species, calculated by functional PW91.

| Complex |  | $\mathbf{C r}^{\text {III }}(\boldsymbol{\beta})_{3}(\mathbf{e V})$ | $\mathbf{C r}^{\text {II }}(\boldsymbol{\beta})_{3}{ }^{-}(\mathbf{e V})$ | $\mathbf{E A}(\mathbf{e V})$ | $\boldsymbol{E}_{\text {LUMO }}(\mathbf{e V})$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Spin State: |  | $3 / 2$ | $2 / 2$ |  |  |
| $\mathrm{Cr}(\mathrm{acac})_{3}\{1\}$ |  | -265.838 | -266.822 | 0.983 | -2.571 |
| $\mathrm{Cr}(\mathrm{ba})_{3}\{2\}$ | fac | -421.955 | -423.584 | 1.629 | -2.915 |
|  | mer | -421.958 | -423.586 | 1.628 | -2.911 |
| $\mathrm{Cr}(\mathrm{dbm})_{3}\{3\}$ |  | -578.048 | -580.042 | 1.994 | -3.148 |
| $\mathrm{Cr}(\mathrm{tfba})_{3}\{4\}$ | fac | -424.740 | -427.255 | 2.515 | -3.845 |
|  | mer | -424.716 | -427.231 | 2.515 | -3.827 |
| $\mathrm{Cr}(\mathrm{tfth})_{3}\{5\}$ | fac | -358.946 | -361.427 | 2.481 | -3.827 |
|  | mer | -359.007 | -361.465 | 2.458 | -3.784 |
| $\mathrm{Cr}(\mathrm{tffu})_{3}\{6\}$ | fac | -366.4471 | -368.7981 | 2.351 | -3.716 |
|  | mer | -366.488 | -368.872 | 2.384 | -3.658 |
| $\mathrm{Cr}(\mathrm{tfaa})_{3}\{7\}$ | fac | -268.571 | -270.743 | 2.172 | -3.764 |
|  | mer | -268.585 | -270.758 | 2.173 | -3.765 |
| $\mathrm{Cr}(\mathrm{hfaa})_{3}\{8\}$ |  | -270.852 | -274.192 | 3.340 | -4.934 |

Table 3.21 gives a summary of the DFT-calculated energies of complexes $\{1\}-\{8\}$ and their reduced species, calculated by functional PW91. For complexes $\{2\},\{4\}-\{7\}$ with unsymmetrically substituted ligands, the values were displayed separately for the fac- and merisomers. Respective ratios of these isomers were obtained by the Boltzmann distribution function, and are tabulated in Table 3.22.

Table 3.22: Calculated Boltzmann population of $f a c$ - and $m e r$-isomers of $\mathrm{Cr}^{\text {III }}(\beta \text {-diketonato })_{3}$ and $\mathrm{Cr}^{\mathrm{II}}(\beta \text {-diketonato })_{3}{ }^{-}$.

| $\mathbf{C r}^{\text {III }}$ ( $\boldsymbol{\beta}$-diketonato) ${ }_{3}$ |  | Boltzmann population (\%) | $\mathrm{Cr}^{\text {II }}\left(\boldsymbol{\beta}\right.$-diketonato) ${ }_{3}{ }^{-}$ |  | Boltzmann population (\%) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \mathrm{Cr}^{\mathrm{III}}(\mathrm{ba})_{3} \\ & \{2\} \end{aligned}$ | $f a c$ | 47 | $\mathrm{Cr}^{\text {II }}(\mathrm{ba})_{3}$ | fac | 49 |
|  | mer | 53 |  | mer | 51 |
| $\begin{aligned} & \mathrm{Cr}^{\text {III }(\mathrm{tfaa})_{3}} \\ & \{7\} \end{aligned}$ | fac | 37 | $\mathrm{Cr}^{\text {III }}(\mathrm{tfaa})_{3}$ | $f a c$ | 64 |
|  | mer | 67 |  | mer | 36 |
| $\begin{aligned} & \mathrm{Cr}^{\mathrm{III}(\mathrm{tfba})_{3}} \\ & \{4\} \end{aligned}$ | fac | 72 | $\mathrm{Cr}^{\text {III }}(\mathrm{tfba})_{3}$ | fac | 72 |
|  | mer | 28 |  | mer | 28 |
| $\begin{aligned} & \mathrm{Cr}^{\text {III }}(\mathrm{tfth})_{3} \\ & \{5\} \end{aligned}$ | fac | 8 | $\mathrm{Cr}^{\text {III }}(\mathrm{tfth})_{3}$ | fac | 19 |
|  | mer | 92 |  | mer | 81 |
| $\begin{aligned} & \mathrm{Cr}^{\text {III }}(\mathrm{tffu})_{3} \\ & \{6\} \end{aligned}$ | fac | 17 | $\mathrm{Cr}^{\text {II }}(\mathrm{tffu})_{3}$ | fac | 95 |
|  |  | 83 |  | mer | 5 |

The electron affinity and final LUMO energy were obtained by the sum of fac- and mer-isomers, according to their respective ratios. These values are tabulated in Table 3.23, together with the reduction potential of complexes $\{1\}-\{8\}$.

Table 3.23: The electron affinity, LUMO energy and reduction potential of complexes $\{1\}-\{8\}$.

| Complexes | EA (eV) | $E_{\text {LUMO }}(\mathrm{eV})$ | $\mathbf{E}_{p c} \mathbf{C r}{ }^{\text {III/II }}(\mathrm{mV})$ |
| :---: | :---: | :---: | :---: |
| $\mathrm{Cr}(\mathrm{acac})_{3}\{1\}$ | 0.983 | -2.571 | -2329 |
| $\mathrm{Cr}(\mathrm{ba})_{3}\{2\}$ | 1.629 | -2.913 | -2132 |
| $\mathrm{Cr}(\mathrm{dbm})_{3}\{3\}$ | 1.994 | -3.148 | -1910 |
| $\mathrm{Cr}(\mathrm{tfba})_{3}\{4\}$ | 2.515 | -3.840 | -1273 |
| $\mathrm{Cr}(\mathrm{ffth})_{3}\{5\}$ | 2.460 | -3.787 | -1371 |
| $\mathrm{Cr}(\mathrm{tffu})_{3}\{6\}$ | 2.388 | -3.668 | -1293 |
| $\mathrm{Cr}(\mathrm{tfaa})_{3}\{7\}$ | 2.176 | -3.764 | -1547 |
| $\mathrm{Cr}(\mathrm{hfaa})_{3}\{8\}$ | 3.340 | -4.934 | -807 |

By using the data from Table 3.23, the relationship of reduction potential against LUMO energy and electron affinity, is illustrated in Figure $\mathbf{3 . 1 6}$ and Figure $\mathbf{3 . 1 7}$ respectively:

$$
\mathbf{E}_{p c} \mathbf{C r}^{\text {II/IIII }} v s . \mathbf{E}_{\mathrm{LUMO}}
$$



Figure 3.16: The relationship between the reduction potential of the $\mathrm{Cr}^{\mathrm{III}}(\beta \text {-diketonato })_{3}$ complexes $\left(E_{\mathrm{pc}} \mathrm{Cr}^{\text {IIIIII }}\right.$ ) vs. LUMO energy ( $E_{\mathrm{LUMO}}$ ), according to data from Table 3.23.

From Figure 3.16, it is clear that the LUMO energy is inversely proportional to the reduction potential of $\mathrm{Cr}^{\text {III }}(\beta \text {-diketonato })_{3}$ complexes. This is expected, since a lower LUMO energy (more negative value) can more easily accept the addition of an electron during reduction. The ease of acceptance of an electron naturally leads to a more positive reduction potential. The relation between reduction potential of the $\mathrm{Cr}^{\mathrm{III}}(\beta \text {-diketonato })_{3}$ complexes $\left(E_{\mathrm{pc}} \mathrm{Cr}^{\text {IIIII }}\right)$ and LUMO energy ( $E_{\text {LUMO }}$ ), is given by Equation 3.11

Equation 3.11: $E_{\text {LUMO }}=-0.0014 \mathrm{E}_{\mathrm{pc}}-5.66$


Figure 3.17: The relationship between the reduction potential of the $\mathrm{Cr}^{\text {III }}(\beta \text {-diketonato })_{3}$ complexes $\left(E_{\mathrm{pc}} \mathrm{Cr}^{\text {III/II }}\right)$ vs. Electron Affinity (EA), according to data from Table 3.23.

Figure 3.17 shows the direct proportionality between electron affinity (EA) and reduction potential $\left(\mathrm{E}_{p c}\right)$. A higher electron affinity causes the metal center $\left(\mathrm{Cr}^{\text {III }}\right)$ to more easily attract an electron, therefore leading to an reduction with more positive potential. The relationship between the reduction potential of the $\mathrm{Cr}^{\text {III }}(\beta \text {-diketonato })_{3}$ complexes $\left(E_{\mathrm{pc}} \mathrm{Cr}^{\text {IIIIII }}\right)$ and Electron Affinity (EA), is given by Equation $\mathbf{3 . 1 2}$

Equation 3.12: $\mathrm{EA}=0.0013 \mathrm{E}_{p c}+4.18$

### 3.2 Tris( $\beta$-diketonato)cobalt(III) Complexes

### 3.2.1 Synthesis

All synthesized $\operatorname{tri}(\beta$-diketonato)cobalt(III) complexes (complexes $\{9\}-\{13\}$ ) were based on the method of Bryant and Fernelius ${ }^{\mathbf{2 6}}$ (Scheme 3.5). Cobalt(II) carbonate ( $1.25 \mathrm{~g}, 0.0105$ mole) and the relevant $\beta$-diketone ligand ( 10 mmole ) were mixed with continuous stirring. An additional 10 mL of ethanol was added when the $\beta$-diketonato ligands were solids. This mixture was preheated to $95{ }^{\circ} \mathrm{C} .25 \%$ hydrogen peroxide ( 15 mL ) was added dropwise to the suspension over 30 minutes, stirring constantly. Addition of $\mathrm{H}_{2} \mathrm{O}_{2}$ to the ligand suspension caused vigorous frothing, therefore the $\mathrm{H}_{2} \mathrm{O}_{2}$ addition was conducted very slowly. Cobalt(II) carbonate was oxidized to cobalt(III) oxide by the hydrogen peroxide. In the presence of the $\beta$-diketonato ligand in the suspension, the coordination to the freshly oxidized $\mathrm{Co}^{\text {III }}$ cation proceeded immediately. Stirring and heating were kept constant for another hour in order to reach complete coordination. All five desired complexes appeared to be precipitates, and were filtered and washed with excess water. Each product was filtered and dried on the funnel and then in a desiccator at room temperature.

fac-isomer

$m e r$-isomer

Scheme 3.5: General synthetic method for the tris( $\beta$-diketonato)cobalt(III) complexes, where $\mathrm{R}_{1}, \mathrm{R}_{2}=\mathrm{CH}_{3}, \mathrm{CH}_{3}\{9\} ; \mathrm{CH}_{3}, \mathrm{C}_{6} \mathrm{H}_{5}\{10\} ; \mathrm{C}_{6} \mathrm{H}_{5}, \mathrm{C}_{6} \mathrm{H}_{5}\{11\} ; \mathrm{CF}_{3}, \mathrm{C}_{6} \mathrm{H}_{5}\{12\} ; \mathrm{CH}_{3}, \mathrm{CF}_{3}\{13\}$.

[^39]Table 3.24: Summary of the yields of all the tris( $\beta$-diketonato)cobalt(III) complexes that were synthesized.

| Complex | Name | Yield (\%) |
| :--- | :--- | :--- |
| $\mathrm{Co}(\text { acac })_{3}\{9\}$ | tris(2,4-pentadionato)cobalt(III) | 63.1 |
| $\mathrm{Co}(\mathrm{ba})_{3}\{10\}$ | tris(1-phenyl-1,3-butanedionato)cobalt(III) | 66.3 |
| $\mathrm{Co}(\text { dbm })_{3}\{11\}$ | tris(1,3-diphenyl-1,3-propanedionato)cobalt(III) | 72.3 |
| $\mathrm{Co}(\text { (tba })_{3}\{12\}$ | tris(4,4,4-trifluoro-1-phenyl-1,3-butanedionato)cobalt(III) | 13.38 |
| $\mathrm{Co}(\text { (faa) })_{3}\{13\}$ | tris(1,1,1-trifluoro-2,4-pentadionato)cobalt(III) | 50.8 |

### 3.2.2 Crystal Structures

Crystal structures of complexes $\operatorname{Co}(\mathrm{acac})_{3}\{9\}^{27}$ and $\operatorname{Co}(\mathrm{dbm})_{3}\{11\}^{28}$ and $\operatorname{Co}(\text { tfaa })_{3}\{13\}^{29}$ have been published previously. The structure of $\operatorname{Co}(\mathrm{ba})_{3}\{10\}$ and $\mathrm{Co}(\mathrm{tfba})_{3}\{12\}$ are presented and discussed here, as representative example of the structures of the $\operatorname{Co}(\beta \text {-diketonato })_{3}$ type of complexes with cobalt. The molecular structure of $\{10\}$ with the atom-numbering scheme, is shown in Figure 3.18. The molecular structure of $\{12\}$ with the atom-numbering scheme is shown in Figure 3.19. Selected bond lengths and angles for complexes $\{10\}$ and $\{12\}$ are given in Table 3.25 and Table 3.26, respectively, and their averages compared to the corresponding geometrical parameters of complexes $\{9\},\{11\}$ and $\{13\}$ in Table 3.27. The cif files with complete crystallographic data are given in Appendix D.

Two stereo isomers are possible for $\mathrm{M}(\beta \text {-diketonato })_{3}$ complexes with unsymmetrically substituted ligands, namely the facial isomer ( $f a c$ ) and the meridional isomer (mer), as illustrated above in Scheme 3.5. In the facial isomer, the $\beta$-diketonato ligands coordinate 'symmetrically' to the metal with the two different groups on each ligand pointing 'symmetrically' in a clockwise direction, which is not the case for the meridional isomer.

[^40]

Figure 3.18: A perspective drawing of the molecular structure of the mer isomer of $\mathrm{Co}(\mathrm{ba})_{3}$ $\{10\}$, showing the atom numbering scheme. Atomic dispacement parameters (ADPs) are shown at the $50 \%$ probability level.

Table 3.27 compares the averages of the selected bond lengths, bond angles and dihedral angles of the mer isomer of $\operatorname{Co}(\mathrm{ba})_{3}\{10\}$ and the fac isomer of $\operatorname{Co}(\mathrm{tfba})_{3}\{10\}$, with the same parameters of the symmetrically substituted complexes $\operatorname{Co}(\mathrm{acac})_{3}\{9\}^{27}, \operatorname{Co}(\mathrm{dbm})_{3}\{11\}^{28}$ and the mer isomer of the unsymmetrical $\operatorname{Co}(\text { tfaa })_{3}\{13\}^{29}$.

Firstly considering the bond lengths listed in this table: complexes $\operatorname{Co}(\mathrm{acac})_{3}\{9\}$ and $\operatorname{Co}(\mathrm{dbm})_{3}$ $\{11\}$ have symmetrically substituted $\beta$-diketonato ligands, with average $\mathrm{Co}-\mathrm{O}$ bond lengths of $1.886(10) \AA$ and $1.883(9) \AA$ respectively. However, $\operatorname{Co}(\mathrm{ba}\}_{3}\{10\}, \mathrm{Co}(\mathrm{tfba})_{3}\{12\}$ and $\mathrm{Co}(\mathrm{tfaa})_{3}$ $\{13\}$ have unsymmetrically substituted $\beta$-diketonato ligands. $\operatorname{In} \operatorname{Co}(\mathrm{ba})_{3}\{10\}$, the $\mathrm{Co}-\mathrm{O}$ bond (1.875(4) $\AA$ ) near the trans Ph group is shorter than the $\mathrm{Co}-\mathrm{O}$ bond (1.886(3) $\AA$ ) near the $\mathrm{CH}_{3}$ group. A similar trend was observed for $\mathrm{Co}(\mathrm{tfba})_{3}$, the $\mathrm{Co}-\mathrm{O}$ bond near $\mathrm{CF}_{3}$ group (1.880(7) $\AA$ ) is longer than the $\mathrm{Co}-\mathrm{O}$ bond near the phenyl group (1.875(6) $\AA$ ). The difference in $\mathrm{Co}-\mathrm{O}$ bonds is however less obvious in the $\mathrm{Co}(\mathrm{tfba})_{3}$ crystal. On the other hand, both types of $\mathrm{Co}-\mathrm{O}$ bonds in the unsymmetrical $\mathrm{Co}(\mathrm{tfaa})_{3}\{13\}$ have similar bond lengths: $1.892(29) \AA$ for the $\mathrm{Co}-$ O near $\mathrm{CF}_{3}$, and $1.891(25) \AA$ for the $\mathrm{Co}-\mathrm{O}$ near $\mathrm{CH}_{3}$. From these results no definite trend or conclusion can be made.

## CHAPTER 3

Secondly, considering the bond angles $\mathrm{O}-\mathrm{Co}-\mathrm{O}$, which describe the angle formed by two Co - O bonds within the same $\beta$-diketonato ligand: the average $\mathrm{O}-\mathrm{Co}-\mathrm{O}$ bond angles found for all four cobalt complexes are about $96^{\circ}$, ranging from $95.5(6)^{\circ}\left(\mathrm{Co}(\mathrm{dbm})_{3}\{11\}\right)$ to $96.7(3)^{\circ}$ $\left(\mathrm{Co}(\mathrm{acac})_{3}\{9\}\right)$.

Lastly considering the dihedral angles, which are the angles formed between any two planes within the molecule: Each of these planes contains four oxygen atoms at the vertices, with one cobalt atom in the middle. As tabulated in Table 3.25 for $\operatorname{Co}(\mathrm{ba})_{3}\{10\}$, the angle formed between the two planes O1-O2-Co-O4-O5 and O2-O3-Co-O4-O6 is $87.1(3)^{\circ}$, the dihedral angle between planes $\mathrm{O} 1-\mathrm{O} 2-\mathrm{Co}-\mathrm{O} 4-\mathrm{O} 5$ and $\mathrm{O} 1-\mathrm{O} 3-\mathrm{Co}-\mathrm{O} 5-\mathrm{O} 6$ is $87.1(3)^{\circ}$, and the dihedral angle between planes O2-O3-Co-O4-O6 and O1-O3-Co-O5-O6 is 87.8(3) ${ }^{\circ}$. All four these complexes have average dihedral angles ranging from $\left.86.2(1.9)^{\circ}\left(\mathrm{Co}(\mathrm{tfba})_{3}\right)\{12\}\right)$ to $88.2(6)^{\circ}\left(\mathrm{Co}(\mathrm{tfaa})_{3}\right.$ $\{13\}$ ). This negligible difference indicates that the changes in the $R_{1}$ and $R_{2}$ substituents on the $\beta$-diketonato ligands do not influence the dihedral angles of the tris( $\beta$-diketonato)cobalt(III) complexes.

Table 3.25: Selected geometrical parameters for $m e r-\operatorname{Co}(\mathrm{ba})_{3}\{10\}$ (this study).

|  | Co - O Bond length ( $\AA$ ) | $\mathrm{O}-\mathrm{Co}-\mathrm{O}$ Bond angle ( ${ }^{\circ}$ ) | Dihedral angle ( ${ }^{\circ}$ ) |
| :---: | :---: | :---: | :---: |
| Bond near Ph | 1.879(2) | 96.2(1) | 87.1(3) |
|  | 1.875(2) |  |  |
|  | 1.872(2) | 96.3(1) | 87.1(3) |
| Bond near $\mathrm{CH}_{3}$ | 1.888(3) |  |  |
|  | 1.883(2) | 95.5(1) | 87.8(3) |
|  | 1.887(3) |  |  |
| Average | $\begin{aligned} & 1.875(4) \text { near } \mathrm{Ph} \\ & 1.886(3) \text { near } \mathrm{CH}_{3} \end{aligned}$ | 96.0(4) | 87.3(4) |



Figure 3.19: A perspective drawing of the molecular structure of the fac isomer of $\operatorname{Co}(\mathrm{tfba})_{3}\{12\}$ showing the atom numbering scheme. Atomic dispacement parameters (ADPs) are shown at the $50 \%$ probability level.

Table 3.26: Selected geometric parameters for $\operatorname{Co}(\mathrm{tfba})_{3}\{12\}$ (this study).

|  | Co - O Bond length (A) | $\mathbf{O - C o - O ~ B o n d ~ a n g l e ~ ( ~}{ }^{\circ}$ ) | Dihedral angle ( ${ }^{\circ}$ ) |
| :---: | :---: | :---: | :---: |
| Bond near $\mathrm{CF}_{3}$ | 1.881(3) | 95.9(1) | 84.1(3) |
|  | 1.882(3) |  | 86.7(3) |
|  | 1.875(3) | 95.7(1) | 87.9(3) |
| Bond near Ph | 1.872(3) |  |  |
|  | 1.869(3) | 95.9(1) |  |
|  | 1.885(3) |  |  |
| Average | $\begin{aligned} & \hline \mathbf{1 . 8 8 0}(7) \text { near } \mathrm{CF}_{3} \\ & \mathbf{1 . 8 7 5}(6) \text { near } \mathrm{Ph} \end{aligned}$ | 95.8(1) | 86.2 (1.9) |

## CHAPTER 3

Table 3.27: Selected average geometrical parameters for $\operatorname{Co}(\mathrm{ba})_{3}\{10\}$ (this study), $\operatorname{Co}(\mathrm{tfba})_{3}$ $\{12\}$ (this study), $\mathrm{Co}(\mathrm{acac})_{3}\{9\}, \mathrm{Co}(\mathrm{dbm})_{3}\{11\}$ and $\mathrm{Co}(\mathrm{tfaa})_{3}\{13\}$.

| Average values for: | Co - O Bond length (A) | $\begin{array}{\|l\|} \hline \mathbf{O}-\mathrm{Co}-\mathrm{O} \\ \text { Bond angle }\left({ }^{\circ}\right) \\ \hline \end{array}$ | Dihedral angle ( ${ }^{\circ}$ ) | Fac or Mer |
| :---: | :---: | :---: | :---: | :---: |
| $\mathbf{C o ( b a )}{ }_{3}\{10\}$ | $\begin{aligned} & 1.875(4)(\text { near } \mathrm{Ph}) ; \\ & 1.886(3)\left(\text { near } \mathrm{CH}_{3}\right) \end{aligned}$ | 96.0(4) | 87.3(4) | Mer |
| $\mathbf{C o}(\mathrm{tfba})_{3}\{12\}$ | $\begin{aligned} & 1.880(7)\left(\text { near } \mathrm{CF}_{3}\right) \\ & 1.875(6)(\text { near } \mathrm{Ph}) \end{aligned}$ | 95.8(1) | 86.2(1.9) | Fac |
| $\mathbf{C o ( a c a c})_{3}\{9\}^{\text {a }}$ | 1.886(10) | 96.7(3) | 87.7(2) | - |
| $\mathbf{C o}(\mathrm{dbm})_{3}\{11\}^{\text {a }}$ | 1.883(9) | 95.5(6) | 87.5(5) | - |
| $\mathbf{C o}(\text { (faa })_{3}\{13\}^{\text {a }}$ | $\begin{aligned} & 1.892(25)\left(\text { near } \mathrm{CF}_{3}\right) ; \\ & 1.891(29)\left(\text { near } \mathrm{CH}_{3}\right) \end{aligned}$ | 96.1(1.3) | 88.2(6) | Mer |

a Data form Chapter 2 Tables 2.8 and Table 2.9

All five complexes have similar geometrical parameters. An interesting fact is that the meridional mer-isomer of $\operatorname{Co}(\mathrm{ba})_{3}\{10\}$ was obtained while the facial (fac-) isomers were obtained for $\mathrm{Co}(\mathrm{tfba})_{3}$. A mer-isomer was also reported in literature for the $\mathrm{Co}(\mathrm{tfaa})_{3}$ crystal. ${ }^{30} \mathrm{In}$ a facial (fac-) structure, large substituents (such as phenyl rings in $\{10\}$ ) on the $\beta$-diketonato backbone could have a steric influence on each other, favouring a meridional isomer. Computational chemistry results on the relative energy of the fac- and mer- isomer of $\mathrm{Co}(\mathrm{tfaa})_{3}$ showed, in agreement with the experimental structure, that the fac-isomer is more stable than the $m e r$-isomer by 0.01 eV , see Section 3.2.3. However, computational chemistry results on the relative energy of the fac- and mer- isomers of $\operatorname{Co}(\mathrm{ba})_{3}\{10\}$ and $\operatorname{Co}(\mathrm{tfba})_{3}\{12\}$, showed that while both isomers are possible for $\operatorname{Co}(\mathrm{ba})_{3}\{10\}$ and $\operatorname{Co}(\mathrm{tfba})_{3}\{12\}$, in this study the minor isomer was isolated and solved by solid state crystallography in this sudy for both $\operatorname{Co}(\mathrm{ba})_{3}\{10\}$ and $\operatorname{Co}(\mathrm{tfba})_{3}\{12\}$.

All five complexes are in octahedral geometry. In this study, $\operatorname{Co}(\mathrm{ba})_{3}\{10\}$ crystallized in the triclinic crystal system, and $P 1$ space group. All of the reported $\operatorname{Co}(\mathrm{acac})_{3}\{9\}$ crystals are in the monoclinic crystal system, and with space group $P 2_{l} / c^{27}$. Two symmetry groups were reported for $\mathrm{Co}(\mathrm{dbm})_{3}{ }^{28}\{11\}$ : triclinic with $P 1$ space group, and also monoclinic with $P 2_{1} / c$ space group. $\mathrm{Co}(\text { tfaa })_{3}{ }^{29}\{13\}$ was reported to be orthorhombic with space group Pca2 ${ }_{l}$.

[^41]Table 3.28: Crystal data and structure refinement of $\mathrm{Co}(\mathrm{ba})_{3},\{10\}$.

| Empirical formula | $\mathrm{C}_{30} \mathrm{H}_{27} \mathrm{CoO}_{6}$ |
| :---: | :---: |
| Formula weight | 542.44 |
| Temperature | 150(2) K |
| Wavelength | 0.71073 A |
| Crystal system | Triclinic |
| Space group | P-1 |
| Unit cell dimensions | $\mathrm{a}=9.7546(5) \AA, \alpha=83.883(2)^{\circ}$ |
|  | $\mathrm{b}=9.8755(6) \AA, \beta=84.5540(10)^{\circ}$ |
|  | $\mathrm{c}=14.2557(8) \AA, \gamma=77.6970(10)^{\circ}$ |
| Volume | 1330.41(13) $\AA^{3}$ |
| Z | 2 |
| Density (calculated) | $1.354 \mathrm{Mg} / \mathrm{m}^{3}$ |
| Absorption coefficient | $0.687 \mathrm{~mm}^{-1}$ |
| F(000) | 564 |
| Crystal size | $0.211 \times 0.113 \times 0.076 \mathrm{~mm}^{3}$ |
| Theta range for data collection | 2.455 to $25.398^{\circ}$ |
| Index ranges | $-11<=\mathrm{h}<=11,-11<=\mathrm{k}<=11,-17<=1<=17$ |
| Reflections collected | 48040 |
| Independent reflections | 4881 [ $\mathrm{R}(\mathrm{int})=0.0611]$ |
| Completeness to theta $=\mathbf{2 5 . 2 4 2}{ }^{\circ}$ | 99.90 \% |
| Absorption correction | None |
| Refinement method | Full-matrix least-squares on F2 |
| Data / restraints / parameters | 4881 / 0 / 334 |
| Goodness-of-fit on F2 | 1.098 |
| Final R indices [I>2sigma(I)] | $\mathrm{R} 1=0.0511, \mathrm{wR} 2=0.1225$ |
| R indices (all data) | $\mathrm{R} 1=0.0810, \mathrm{wR} 2=0.1346$ |
| Extinction coefficient | n/a |
| Largest diff. peak and hole | 0.473 and -0.225 e. $\AA^{-3}$ |

Table 3.29: Crystal data and structure refinement of $\mathrm{Co}(\mathrm{tfba})_{3},\{12\}$.

| Empirical formula | $\mathrm{C}_{30} \mathrm{H}_{18} \mathrm{CoF}_{9} \mathrm{O}_{6}$ |
| :--- | :--- |
| Formula weight | 704.37 |
| Temperature | $150(2) \mathrm{K}$ |
| Wavelength | $0.71073 \AA$ |
| Crystal system | Monoclinic |
| Space group | $\mathrm{P} 21 / \mathrm{c}$ |
| Unit cell dimensions | $\mathrm{a}=9.5067(7) \AA, \mathrm{a}=90^{\circ}$ |
|  | $\mathrm{b}=31.906(2) \mathrm{A}, \mathrm{b}=108.122(2)^{\circ}$ |
|  | $\mathrm{c}=9.9607(8) \AA, \mathrm{g}=90^{\circ}$ |
| Volume | $2871.4(4) \AA^{3}$ |
| Z | 4 |
| Density (calculated) | $1.629 \mathrm{Mg} / \mathrm{m}^{3}$ |
| Absorption coefficient | $0.700 \mathrm{~mm} \mathrm{~m}^{-1}$ |
| F(000) | 1416 |
| Crystal size | $0.172 \mathrm{x} 0.163 \mathrm{x} 0.078 \mathrm{~mm}{ }^{3}$ |
| Theta range for data collection | 2.244 to $26.368^{\circ}$. |
| Index ranges | $-11<=\mathrm{h}<=11,-39<=\mathrm{k}<=39,-12<=\mathrm{l}<=12$ |
| Reflections collected | 88047 |
| Independent reflections | $5878[\mathrm{R}(\mathrm{int})=0.0517]$ |
| Completeness to theta $=\mathbf{2 5 . 2 4 2}{ }^{\circ}$ | $100.00 \%$ |
| Absorption correction | $\mathrm{Semi}-\mathrm{empirical}$ from equivalents |
| Max. and min. transmission | 0.7454 and 0.6577 |
| Refinement method | $\mathrm{Full}-\mathrm{matrix}$ least-squares on F 2 |
| Data / restraints / parameters | $5878 / 0 / 415$ |
| Goodness-of-fit on F2 | 1.219 |
| Final R indices [I>2sigma(I)] | $\mathrm{R} 1=0.0669, \mathrm{wR} 2=0.1532$ |
| R indices (all data) | $\mathrm{R} 1=0.0782, \mathrm{wR} 2=0.1577$ |
| Extinction coefficient | $\mathrm{n} / \mathrm{a}$ |
| Largest diff. peak and hole | 0.970 and $-0.805 \mathrm{e} . \AA^{-3}$ |
|  |  |
|  |  |

### 3.2.3 Computational Results on $\mathbf{C o}(\beta \text {-diketonato })_{3}$

### 3.2.3.1 Spin state and symmetry of the $\mathbf{C o ( a c a c})_{3}$ complex

The neutral $\mathrm{Co}^{\text {III }}(\beta \text {-diketonato })_{3}$ complexes are $\mathrm{d}^{6}$ complexes. With 6 d-electrons, three possible spin states were evaluated, namely $\mathrm{S}=0 / 2$ (no unpaired electron, low spin), $\mathrm{S}=2 / 2$ (two unpaired electrons, high spin) or $S=4 / 2$ (four unpaired electrons, high spin). Table $\mathbf{3 . 3 0}$ gives the relative energy obtained for the neutral $\mathrm{Co}^{\text {III }}(\mathrm{acac})_{3}$ complex $\{9\}$, by using the PW91 functional. Three possible symmetries were tested, namely $C_{2}, C_{3}$ and $D_{3}$. The spin state of $\mathrm{S}=$ $0 / 2$ (lower energy) showed preference over $S=2 / 2$ and $4 / 2$, for all possible symmetries. This result agrees with the findings in literature. ${ }^{31}$

Table 3.30: DFT-calculated relative energies obtained by the PW91 functional, for the indicated spin states and symmetries for $\mathrm{Co}^{\mathrm{III}}(\mathrm{acac})_{3}\{9\}$.

| Co $^{\text {III }}{ }^{\text {(acac) }} \mathbf{3}$ | Relative Energy (eV) |  |  |
| :---: | :---: | :---: | :---: |
| Symmetry: | $\mathbf{S}=\mathbf{0 / 2}$ | $\mathbf{S}=\mathbf{2 / 2}$ | $\mathbf{S}=\mathbf{4 / 2}$ |
| $C_{2}$ | 0.000 | 1.329 | 1.314 |
| $C_{3}$ | 0.000 | 1.024 | 1.314 |
| $D_{3}$ | 0.000 | 1.023 | 1.312 |

Table 3.31 lists the $\mathrm{Co}-\mathrm{O}$ bond lengths and $\mathrm{O}-\mathrm{Co}-\mathrm{O}$ bond angles of $\mathrm{Co}^{\mathrm{III}}(\mathrm{acac})_{3}\{9\}$, with S $=0 / 2$. Calculations gave the same results for all $\mathrm{Co}-\mathrm{O}$ distances and $\mathrm{O}-\mathrm{Co}-\mathrm{O}$ bond angles. Similar to the chromium complex $\{1\}, \mathrm{Cr}(\mathrm{acac})_{3}$ (Section 3.1.4.1), all possible input symmetries optimized to $D_{3}$ symmetry during the calculations. Therefore, $D_{3}$ symmetry was used for all further $\mathrm{Co}^{\text {III }}(\beta \text {-diketonato })_{3}$ calculations.

Table 3.31: DFT-calculated $\mathrm{Co}-\mathrm{O}$ bond lengths and $\mathrm{O}-\mathrm{Co}-\mathrm{O}$ bond angles obtained by the PW91 functional, for the indicated symmetries for $\operatorname{Co}(\mathrm{acac})_{3}\{9\}$.

| Symmetry | $\mathbf{d}(\mathbf{C o}-\mathbf{O} \mathbf{( \AA )} \mathbf{~})$ |  |  |  |  |  | $\mathbf{O}-\mathbf{C o}-\mathbf{O}\left({ }^{\circ}\right)$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $C_{2}$ | 1.907 | 1.907 | 1.907 | 1.907 | 1.907 | 1.907 | 97.2 | 97.2 | 97.2 |
| $C_{3}$ | 1.907 | 1.907 | 1.907 | 1.907 | 1.907 | 1.907 | 97.2 | 97.2 | 97.2 |
| $D_{3}$ | 1.907 | 1.907 | 1.907 | 1.907 | 1.907 | 1.907 | 97.2 | 97.2 | 97.2 |

[^42]
## CHAPTER 3

### 3.2.3.2 Relative energies of the $\operatorname{Co}(\boldsymbol{\beta} \text {-diketonato })_{3}$ complexes

Calculated energies and the respective Boltzmann population of the fac and mer isomers of the $\mathrm{Co}^{\text {III }}(\beta \text {-diketonato })_{3}$ complexes, are listed in Table 3.32. It follows from Table 3.32, that the fac isomer is more stable than the mer isomer by 0.012 eV for complex $\mathrm{Co}(\mathrm{ba})_{3}\{10\}$, while the mer isomer is more stable than the $f a c$ isomer by 0.034 eV for $\mathrm{Co}(\mathrm{tfba})_{3}\{12\}$, and the mer isomer is also more stable than the $f a c$ isomer by 0.012 eV for $\mathrm{Co}(\mathrm{tfaa})_{3}\{13\}$. Experimentally, crystals of mer isomers were found for $\operatorname{Co}(\mathrm{ba})_{3}\{10\}$ and $\operatorname{Co}(\mathrm{tfaa})_{3}\{13\}$, and crystals of fac isomers for $\operatorname{Co}(\mathrm{tfba})_{3}\{12\}$. These crystals are the minor isomers of complexes $\{10\}$ and $\{12\}$. It is important to note that the computational chemistry results show that both isomers are possible for complexes $\operatorname{Co}(\mathrm{ba})_{3}\{10\}, \mathrm{Co}(\mathrm{tfba})_{3}\{12\}, \mathrm{Co}(\mathrm{tfaa})_{3}\{13\}, \operatorname{Co}(\mathrm{tffu})_{3}$ and $\operatorname{Co}(\mathrm{tfaa})_{3}\{13\}$, although only the minor isomer was experimentally solved for $\operatorname{Co}(\mathrm{ba})_{3}\{10\}$ (mer-isomer) and $\mathrm{Co}(\mathrm{tfba})_{3}\{12\}$ (fac-isomer) (See Section 3.2.2).

Table 3.32: PW91/TZP-calculated energies and calculated Boltzmann population (\%), for $\operatorname{Co}(\beta-$ diketonato) $3_{3}$ complexes.

|  |  | $\mathbf{E}(\mathbf{e V})$ | Relative E (eV) | Boltzmann population (\%) |
| :--- | :--- | :--- | :--- | :--- |
| Co(acac) $)_{3}\{9\}$ |  | -262.69 | - | 100 |
| Co(ba) $)_{3}\{10\}$ | fac | -418.77 | 0.000 | 62 |
|  | mer | -418.75 | 0.012 | 38 |
| Co(dbm) $)_{3}\{11\}$ |  | -574.81 | - | 100 |
| Co(tfba) $_{3}\{12\}$ | fac | -421.5 | 0.034 | 21 |
|  | mer | -421.54 | 0.000 | 79 |
| Co(tfth) $)_{3}$ | fac | -355.69 | 0.058 | 9 |
|  | mer | -355.75 | 0.000 | 91 |
| Co(tffu) $)_{3}$ | fac | -363.23 | 0.000 | 83 |
|  | mer | -363.19 | 0.040 | 17 |
| Co(tfaa) $)_{3}\{13\}$ | fac | -265.41 | 0.012 | 39 |
|  | mer | -265.43 | 0.000 | 61 |
| Co(hfaa) $)_{3}$ |  | -267.68 | - | 100 |

a Relative energy is the energy difference relative to the lowest energy isomer of each complex

### 3.3 Chromium(0) carbene complexes

The work presented in this section was done in collaboration with the research group of Dr M . Landman at the University of Pretoria. The syntheses of the Fischer alkoxy- and amino-carbene complexes of this study were done by the group of Dr M. Landman at the University of Pretoria, and selected crystal structures were solved by Prof P. van Rooyen at the University of Pretoria. The work presented in this section has been published ${ }^{32,33}$ and only the electrochemistry and computational chemistry that was conducted at the UFS, will be discussed. Scheme 3.6 shows the series of the complexes investigated by electrochemistry and computational chemistry. Contrary to the $\operatorname{Tris}(\beta$-diketonato)chromium(III) complexes that is paramagnetic, Chromium(0) carbene complexes are diamagnetic and can be measured on the NMR.


\{carbene 2\}

\{carbene 7\}

\{carbene 9\}


Scheme 3.6: Fischer alkoxy- and amino- Cr-carbene complexes of this study.

[^43]
### 3.3.1 Isomers of $\mathbf{C r}(0)$ carbene complexes

Three types of notations can be applied to isomers in the range of the Cr-carbene complexes of this study, namely cis/trans, fac/mer and E/Z notations. Cis and trans isomers are displayed in Scheme 3.7, and can also be called syn and anti, respectively. A cis isomer is obtained when the substituents with high priorities ( $\mathrm{X}, \mathrm{Y}$ ) lie on the same side of the bond, while a trans isomer has the opposite arrangement, where the high priority X and Y substituents lie on different sides of the bond. This notation can be applied to all carbene complexes in this study.



Scheme 3.7: Cis and trans isomers of alkoxy-carbene complexes.

The fac and mer isomers of Cr-carbene complexes (see Scheme 3.8) are similar to the fac and mer isomers of $\mathrm{M}(\beta \text {-diketonato })_{3}$ complexes. This notation applies to \{carbene 6 \} to \{carbene $\mathbf{9 \}}$, where all four these complexes have a bidentate DPPE (1,2-bis(diphenylphosphino)ethane) ligand coordinated to the metal center, as well as three carbonyl ligands. A fac isomer is obtained when the aryl ring (thienyl (Th) or furyl (Fu)) and the DPPE ligand occupy a face of the octahedron, while a mer isomer is obtained when the substituent containing the aryl ring and DPPE occupy a plane passing through the metal center.



Scheme 3.8: Mer and fac isomers of DPPE-containing carbene complexes.
$E / Z$ is an extended notation of the cis/trans notation, and is displayed in Scheme 3.9. The prefix $Z$ is added when two substituents lie on the same side of a bond, e.g. the cyclohexyl group (Cy) and the metal center on the same side of a bond in conformer 1 (see Scheme 3.9). The prefix $E$ is added when two substituents lie on opposite sides of the bond, e.g. X is opposite to the metal center in conformer 1 (see Scheme 3.9). This notation applies to \{carbene $\mathbf{8 \}}$ and \{carbene $\mathbf{9}\}$.


Conformer 1; (Z,E)


Conformer 2; (E,E)


Conformer 3; (Z,Z)


Conformer 4; (E,Z)

Scheme 3.9: E/Z-isomers of amino-carbene complexes.

### 3.3.2 Computational results of the $\mathrm{Cr}(0)$ carbene complexes

### 3.3.2.1 Geometries

For each of the Cr-carbene complexes shown in Scheme 3.6, different isomers are possible: for example two different isomers, the syn and the anti, are possible for \{carbene 1\}, \{carbene $\mathbf{2 \}}$ and \{carbene 3\} (see Scheme 3.7). For \{carbene 4\} and \{carbene 5\}, four isomers each are possible: syn-syn; syn-anti; anti-anti or anti-syn. However for \{carbene 6\} and \{carbene 7\} two different fac isomers (each with either a syn or an anti configuration), as well as two different mer isomers (each with either a syn or an anti configuration) are possible (see Scheme 3.8), resulting in 8 possible isomers each ( 4 fac and 4 mer ). On the other hand, in the case of \{carbene 8\} and \{carbene 9\}, the NHCy group can also adopt two different orientations (Scheme 3.9), leading to 16 possible isomers each ( 8 fac and 8 mer ), since each of the four $f a c$-isomers has four conformers: namely $(Z, Z),(Z, E)$ and $(E, Z),(E, E)$. All these possible isomers of \{carbene $\mathbf{1 \}}$ to

## CHAPTER 3

\{carbene 9\} were optimized (see Table 3.33) and only the lowest energy isomer(s) were considered in the following discussion.

Table 3.33: B3LYP-calculated energies and calculated Boltzmann populations (\%) for possible isomers of \{carbene $\mathbf{1 \}}$ to \{carbene $\mathbf{9}\}$.

|  |  | Relative E (eV) ${ }^{\text {a }}$ | Boltzmann population (\%) |
| :---: | :---: | :---: | :---: |
| \{carbene 1\} | syn | 0.00 | 99.33 |
|  | anti | 0.13 | 0.67 |
| \{carbene 2\} | syn | 0.08 | 3.54 |
|  | anti | 0.00 | 96.46 |
| \{carbene 3\} | syn | 0.00 | 99.99 |
|  | anti | 0.25 | 0.01 |
| \{carbene 4\} | syn-syn | 0.01 | 37.73 |
|  | syn-anti | 0.00 | 61.62 |
|  | anti-syn | 0.15 | 0.22 |
|  | anti-anti | 0.13 | 0.44 |
| \{carbene 5\} | syn-syn | 0.000 | 50.73 |
|  | syn-anti | 0.001 | 48.79 |
|  | anti-syn | 0.136 | 0.25 |
|  | anti-anti | 0.139 | 0.23 |
| \{carbene 6\} fac | facl-anti | 0.39 | 0.10 |
|  | facl-syn | 0.24 |  |
|  | fac2-anti | 0.37 |  |
|  | fac2-syn | 0.17 |  |
| \{carbene 6\} mer | merl-anti | 0.16 | 99.90 |
|  | merl-syn | 0.00 |  |
|  | mer2-anti | 0.14 |  |
|  | mer2-syn | 0.00 |  |
| \{carbene 7\} fac | facl-anti | 0.11 | 1.40 |
|  | facl-syn | 0.37 |  |
|  | fac2-anti | 0.28 |  |
|  | fac2-syn | 0.33 |  |
| \{carbene 7\} mer | merl-anti | 0.00 | 98.60 |
|  | merl-syn | 0.15 |  |
|  | mer2-anti | 0.04 |  |
|  | mer2-syn | 0.12 |  |
| \{carbene 8\} fac ${ }^{\text {a }}$ |  | 0.00 | 50.00 |
| \{carbene 8\} mer ${ }^{\text {a }}$ |  | 0.00 | 50.00 |
| \{carbene 9\} fac ${ }^{\text {b }}$ |  | 0.10 | 2.00 |
| \{carbene 9\} mer ${ }^{\text {b }}$ |  | 0.00 | 98.00 |

$a$ Lowest energy isomer, Th group has rotated, therefore conformer $(E, E)=(E, Z)$
$b$ Lowest energy isomer, Fu group has rotated, therefore conformer $(Z, E)=(Z, Z)$

## RESULTS AND DISCUSSION

### 3.3.2.2 Frontier orbitals

The character of the frontier orbitals gives information of the oxidation and reduction centers of a complex. Figure 3.20 and Figure 3.21 give a representation of selected frontier orbitals of the neutral, the reduced and the oxidized \{carbene $\mathbf{1 \}}$ - \{carbene $\mathbf{9}\}$ complexes.

## (i) LUMO and first reduction

Reduction of \{carbene $\mathbf{1}\}$ - $\{$ carbene $\mathbf{9}\}$ can be considered as the addition of an electron to the lowest unoccupied molecular orbital (LUMO) of the complex. All calculations on the LUMO of neutral carbene complexes, as well as on the singly occupied molecular orbital (SOMO) of singly reduced species, showed that the first reduction occurred on the carbene ligand. The Mulliken spin density plot also showed that the unpaired electron after reduction is localized on the ligand and not on the central metal (see Figure 3.20). The center of reduction is therefore the carbon (carbene carbon) bonded to the Cr metal.

## (ii) HOMO and first oxidation

Oxidation of \{carbene $\mathbf{1 \}}$ - \{carbene $\mathbf{9 \}}$ can be considered as the removal of an electron from the highest occupied molecular orbital (HOMO) of the complex. DFT-calculations showed that the HOMO of the neutral carbene complexes, as well as the singly unoccupied molecular orbital (SUMO) of singly oxidized radical cations, are centered mainly on the Cr metal. The Mulliken spin density plot also showed that the remaining unpaired electron-density after the first oxidation is localized around the Cr metal (see Figure 3.20). Therefore the first oxidation involves a $\mathrm{Cr}(0)$ to $\mathrm{Cr}(\mathrm{I})$ process. Only \{carbene 4$\}$ and \{carbene 5\} have delocalized HOMOs, mainly contributing electron-density over the metal center as well as over the two aryl rings in the carbene ligand.

| Carbene | HOMO of neutral complex | $\begin{gathered} \text { SUMO ( } \beta \text { of } \\ \text { of } \\ \text { cation } \end{gathered}$ | Mulliken spin density plot of cation | LUMO of neutral complex | $\begin{gathered} \text { Somo }(\alpha) \\ \text { of } \\ \text { anion } \end{gathered}$ | Mulliken spin density plot of anion |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 |  | $\operatorname{cob}_{8}^{2}+b^{8}$ | od |  | $\therefore \%$ | $\begin{aligned} & \infty 8 \\ & <0 \end{aligned}$ |
| 2 | ${ }_{8}^{20} 9$ |  | \% |  | $8$ |  |
| 3 |  |  |  |  | oter |  |
| 4 |  |  | $:$ | $\begin{gathered} 0,0 \\ \because=0.0 \end{gathered}$ | $\text { . } *=1$ | $=0.0$ : 21 |
| 5 |  | $2$ |  | $\therefore 8$ | .00\%: |  |
| fac-6 | Letint |  |  |  |  |  |
| mer-6 | $x^{2+5}$ | 㞄 ? |  |  |  | $5$ |
| fac-7 |  | $\cos ^{2}+1$ | $S^{2}$ | $\begin{gathered} \text { 5 } \\ \text { in } \\ \text { in } \end{gathered}$ |  |  |
| mer-7 | Fos |  | $\sum_{0}^{+\infty}$ |  | $\cos _{1}^{4}$ | $2$ |
| fac-8 |  |  |  |  | $\begin{aligned} & \text { xy } \\ & 0.5 \\ & 0.5 \end{aligned}$ | $\begin{aligned} & 102 \\ & \text { N } \end{aligned}$ |
| mer-8 |  |  | 唇 | ${ }^{2}$ |  |  |
| fac-9 |  |  | $\frac{40}{4 x}$ |  |  |  |
| mer-9 | $x^{4}$ | $z^{4}{ }^{4}$ | $\frac{3}{4}$ |  | $\frac{1}{4}$ | $8$ |

Figure 3.20: Representation of the indicated frontier MOs and Mulliken spin densities of \{carbene 1\}- \{carbene 9\}. The MO and spin density plots use a contour of 40 and $4 \mathrm{e} / \mathrm{nm}^{3}$ respectively.
(iii) HOMO of cation and second oxidation

The second oxidation of \{carbene $\mathbf{1 \}}$ - \{carbene $\mathbf{9}\}$ can be considered as the removal of another electron from the HOMO of the oxidized radical cation of \{carbene $\mathbf{1 \}}$ to \{carbene $\mathbf{9}\}$. Since the $m e r$-isomers of the singly oxidized species for \{carbene 6\} to \{carbene 9 \} dominate the population, only the $m e r$-isomers of the doubly oxidized species were considered for \{carbene $\mathbf{6 \}}$ to \{carbene 9\}. ${ }^{33}$ From Figure 3.21, the HOMO of the singly oxidized species, as well as the SUMO of the doubly oxidized species of \{carbene 1\} - \{carbene 3\} and \{carbene 6\} \{carbene 9\}, are located mainly on the Cr metal. However these same features are found on the aryl rings of the carbene ligand for \{carbene $\mathbf{4 \}}$ and \{carbene 5\}. Therefore the second oxidation occurs on the Cr metal for $\{$ carbene $\mathbf{1 \}}$ - \{carbene $\mathbf{3}\}$ and \{carbene $\mathbf{6}\}$ - \{carbene $\mathbf{9}\}$, while the second oxidation is proposed to occur on the carbene ligand for \{carbene $\mathbf{4 \}}$ and \{carbene 5$\}$.

| Carbene | $\begin{gathered} \text { HOMO ( } \beta \text { of } \\ \text { of } \\ \text { cation } \end{gathered}$ | $\begin{gathered} \text { SUMO ( } \beta \text { S } \\ \text { of } \\ \text { cation }^{2+} \end{gathered}$ | Mulliken spin density plot of cation ${ }^{2+}$ |
| :---: | :---: | :---: | :---: |
| 1 |  |  | $\operatorname{tg}$ |
| 2 |  |  | 回 |
| 3 |  |  |  |
| 4 |  |  |  |
| 5 |  |  |  |
| mer-6 |  |  |  |
| mer-7 |  |  |  |
| mer-8 |  |  | $5$ |
| mer-9 |  |  |  |

Figure 3.21: Representation of the indicated frontier MOs and spin densities of \{carbene 1\}\{carbene 9 \}, with charge $\mathrm{q}=1$ or 2 . The MO and spin density plots use a contour of 40 and 4 $\mathrm{e} / \mathrm{nm}^{3}$ respectively.

## RESULTS AND DISCUSSION

### 3.3.3 Electrochemical studies of $\mathrm{Cr}(0)$ carbene complexes

The two redox active centers in Cr-carbene complexes are the $\mathrm{Cr}(0)$ metal and the carbene ligand. The cyclic voltammograms of \{carbene 1\} to \{carbene 9\} are shown in Figure 3.22, and the experimental detail of the cyclic voltammograms is given in Table 3.34. Discussions of these results will be structured in three parts, namely:

1. \{carbene $\mathbf{1 \}}$ to \{carbene 3 \}
2. $\{$ carbene 4$\}$ and \{carbene 5\}
3. \{carbene 6\} to \{carbene 9$\}$


Figure 3.22: Cyclic voltammograms of $0.0005 \mathrm{~mol} \mathrm{dm}^{-3}$ solutions of \{carbene $\left.\mathbf{1}\right\}$ - $\{$ carbene $\mathbf{9}\}$. (Solvent $=\mathrm{CH}_{3} \mathrm{CN}$, containing $0.1 \mathrm{~mol} \mathrm{dm}{ }^{-3}\left[{ }^{\mathrm{n}}\left(\mathrm{Bu}_{4}\right) \mathrm{N}\right]\left[\mathrm{PF}_{6}\right]$ as supporting electrolyte, with glassy carbon as working electrode, scan rate $=0.100 \mathrm{~V} \mathrm{~s}^{-1}$ ).

### 3.3.3.1 $\{$ carbene 1 \} to $\{$ carbene 3 \}

Different aryl rings are involved in \{carbene $\mathbf{1 \}}$ to \{carbene 3\}, namely the 2-(thienyl) group for \{carbene 1\}, the 2-(furyl) group for \{carbene 2\} and the 2-(N-methylpyrrolyl) group for \{carbene $\mathbf{3}\}$. In proceeding from \{carbene $\mathbf{1 \}}$ to $\{$ carbene $\mathbf{2 \}}$ to $\{$ carbene $\mathbf{3}\}$, both the oxidation peaks and reduction peaks shift slightly to the left, to lower potentials, of the cyclic voltammograms. Only one reduction process was observed for each of these three carbene complexes. The reduction process of all three of these carbene complexes becomes more reversible at scan rates higher than $300 \mathrm{mV} / \mathrm{s}$ (see Figure 3.23). These reduced species are not stable over a long time, and can only be detected at high scan rates.

Two oxidation peaks were observed for \{carbene $\mathbf{1 \}}$ and \{carbene $\mathbf{2}\}$, and a third oxidation peak was observed for \{carbene 3\} (Figure 3.22). The first oxidation of each is both chemically and electrochemically reversible at all scan rates for \{carbene 1\} to \{carbene 3\}. From Section 3.3.2.2 (ii) and the MOs presented in Figure 3.20, this first oxidation process observed, is interpreted to be Cr -metal centered, i.e. $\mathrm{Cr}(0)$ to $\mathrm{Cr}(\mathrm{I})$ oxidation. The second oxidation process is chemically and electrochemically irreversible at all scan rates and is also Cr -metal centered (Section 3.3.2.2 (iii)), i.e. $\operatorname{Cr}(\mathrm{I})$ to $\mathrm{Cr}(\mathrm{II})$ oxidation. According to the DFT-calculations and a study of the HOMO of \{carbene 3$\}^{+232}$ the third oxidation of \{carbene $\left.\mathbf{3}\right\}$ is interpreted to be the oxidation of the five-membered ring on the carbene ligand, i.e. the 2 -(N-methylpyrrolyl) ring.
\{carbene 1\}

\{carbene 2\}

\{carbene 3\}


Figure 3.23: Cyclic voltammograms of 0.5 mM solutions of \{carbene $\mathbf{1 \}}$ (top left), \{carbene 2\} (top right) and \{carbene 3$\}$ (bottom) vs. $\mathrm{FcH} / \mathrm{FcH}^{+}$. (Solvent $=\mathrm{CH}_{3} \mathrm{CN}$, supporting electrolyte $\mathrm{TBAPF}_{6}$, scan rate $=50$ (smallest peak current), 100, 150, 200, 250, 300, 500, 1000 and 5000 (largest peak current) $\mathrm{mV} \cdot \mathrm{s}^{-1}$, with glassy carbon as working electrode at $20^{\circ} \mathrm{C}$, scan direction as indicated by the arrow).

### 3.3.3.2 \{carbene 4\} and \{carbene 5\}

Both \{carbene 4\} and \{carbene 5\} have a second aryl ring attached to the first aryl ring, namely N-methyl-2-(2'-thienyl)pyrrole) and 2,2'-thienylfuran for \{carbene 4\} and \{carbene 5\}, respectively. From Figure 3.22 and Table 3.34, it is observed that the first reduction is already reversible even at low scan rate, because the unpaired electron added during the reduction process, is further stabilized through the extended aryl ring. A second irreversible reduction of \{carbene 4\} and \{carbene 5\} could be observed, due to the stabilisation of the unpaired electron density of the reduced radical through the extended aryl ring after the first reversible reduction.

Similar to \{carbene 3\}, three oxidation processes were found for \{carbene $\mathbf{4 \}}$ and \{carbene $\mathbf{5 \}}$, but in this case the electrochemically active center is not Cr -based for the second oxidation. The first Cr-based oxidation is reversible for both \{carbene 4\} and \{carbene 5\}. For \{carbene 4\}, the first and second oxidation peaks are partially superimposed, therefore the baseline of the first oxidation peak is lifted, resulting in a relatively high peak. For \{carbene 5\}, the second and the third oxidation peaks are partially superimposed, resulting in a lifted baseline for the second oxidation peak. DFT-calculations and a visualization of the HOMO of \{carbene 4$\}^{+}$and \{carbene $\mathbf{5 \}}^{+}$(Figure 3.21), showed that the second oxidation process observed for \{carbene 4\} and \{carbene 5\}, mainly involves the removal of an electron from the respective dimeric heteroarene five-membered rings (and not from the Cr-metal center), implying that the second oxidation of \{carbene 4\} and \{carbene 5\} leads to a $(\mathrm{CO})_{5} \mathrm{Cr}(\mathrm{I}) \mathrm{C}(\mathrm{OEt}) \mathrm{R}(+)$ radical species. ${ }^{32}$ The third oxidation of $\{$ carbene $\mathbf{4 \}}$ and $\{$ carbene $\mathbf{5}\}$ is proposed to be Cr -metal based.

### 3.3.3.3 \{carbene 6 \} to $\{$ carbene 9$\}$

Three redox processes are observed for \{carbene $\mathbf{6}\}$ - \{carbene $\mathbf{9}\}$, which are interpreted by the DFT-calculations presented in Section 3.3.2.2, as two oxidation processes of the Cr metal $\left(\mathrm{Cr}^{0}\right.$ $\left.\rightarrow \mathrm{Cr}^{\mathrm{I}} \rightarrow \mathrm{Cr}^{\mathrm{II}}\right)$ as well as one reduction process of the carbene ligand. The first oxidation process consists of two different oxidation peaks and one reduction peak. The two oxidation peaks are consistent with the oxidation of the different mer and fac isomers of \{carbene $\mathbf{6}\}$ - \{carbene $\mathbf{9}\}$, each isomer being oxidized at a slightly different anodic peak potential. The second oxidation process $\left(\mathrm{Cr}^{\mathrm{I}} \rightarrow \mathrm{Cr}^{\mathrm{II}}\right)$, observed at potentials higher than $450 \mathrm{mV} v s . \mathrm{FcH} / \mathrm{FcH}^{+}$, is irreversible. The reduction process observed at a potential lower than $-2100 \mathrm{mV} v s . \mathrm{FcH} / \mathrm{FcH}^{+}$, becomes reversible at high scan rates.

Carbene complexes \{carbene $\mathbf{6}\}$ - \{carbene $\mathbf{9}\}$, all four containing the bidentate ligand DPPE, undergo fac/mer isomerism, and this isomerism results in a different oxidation potential for the different $f a c$ and mer isomers. Since the energy of the HOMO of the mer-isomer is higher than the energy of the fac-isomer (Table 3.34), the mer-isomer will be oxidized first, at a lower, more negative potential than the $f a c$-isomer. The first peak of the oxidation process, observed for each of the complexes \{carbene 6\} - \{carbene $\mathbf{9}\}$, at a potential between -600 and $-250 \mathrm{mV} v s$. $\mathrm{FcH} / \mathrm{FcH}^{+}$, is thus interpreted as the reversible oxidation of the mer-isomer, whereas the second oxidation at a slightly higher potential, is interpreted as the irreversible oxidation of the facisomer.

For \{carbene 6\}, the first oxidation is reversible, with a single oxidation peak observed at low scan rate, e.g. see the CV of \{carbene 6\}, at $100 \mathrm{mV} / \mathrm{s}$, in Figure 3.22. At higher scan rates, different oxidation peaks of the mer and fac isomers could be identified (see Figure 3.24). As the cycles of the CV proceeded at higher scan rates, less and less fac isomer was detected around the electrode, until eventually only the peak of the mer-isomer was detected for the first oxidation. This observation is consistent with the scan rate ( $500 \mathrm{mV} / \mathrm{s}$ ) being much faster than the diffusion rate and that the majority of the singly oxidized species did convert to $\mathrm{mer}^{+}$isomer. The ease of mer-isomer oxidation over fac-isomer oxidation is also proposed by DFTcalculations. DFT calculations also showed that the $\mathrm{mer}^{+}$isomer dominates the population, which agrees with the electrochemical results. ${ }^{33}$


Figure 3.24: Cyclic voltammograms of a 1 mM solution of \{carbene 6\} vs. $\mathrm{FcH} / \mathrm{FcH}^{+}$. (Solvent $=\mathrm{CH}_{3} \mathrm{CN}$, supporting electrolyte $\mathrm{TBAPF}_{6}$, scan rate $=500 \mathrm{mV} \cdot \mathrm{s}^{-1}$, with glassy carbon as working electrode at $20^{\circ} \mathrm{C}$, scan direction as indicated by the arrow).

Cyclic voltammograms of the mer-isomer of \{carbene 9$\}$ were performed immediately after dissolving the isomer, as shown in Figure 3.25. On the first cycle, only the oxidation signal of the mer-isomer was detected. Quick equilibrium between the fac/mer isomers was achieved after the first cycle, and distinct signals were observed in the cyclic voltammograms. This observation

## CHAPTER 3

confirms that the first reversible oxidation is due to the oxidation of the mer-isomer. Similarly, only the reduction of the $m e r$-isomer of the singly oxidized species was detected.


Figure 3.25: Cyclic voltammograms of a 0.5 mM solution of $m e r$ - $\{$ carbene 9$\}$ vs. $\mathrm{FcH} / \mathrm{FcH}^{+}$. (Solvent $=\mathrm{CH}_{3} \mathrm{CN}$, supporting electrolyte $\mathrm{TBAPF}_{6}$, scan rate $=100 \mathrm{mV} \cdot \mathrm{s}^{-1}$, with glassy carbon as working electrode at $20^{\circ} \mathrm{C}$, scan direction as indicated by the arrow).

A series of CV's at $100 \mathrm{mV} / \mathrm{s}$ was done on fac-\{carbene 7\}, as shown in Figure 3.26. A single peak for the fac-isomer was detected on the first segment in Scan 1, while both fac and mer isomers were detected on the third segment in Scan 1. Both signals were found for the rest of the scans, after the equilibrium was achieved in Scan 1. This observation confirms that the second irreversible oxidation is due to the oxidation of the fac-isomer.


Figure 3.26: Cyclic voltammograms of a 0.5 mM solution of fac-\{carbene 7\} vs. $\mathrm{Ag} / \mathrm{AgCl}$. (Solvent $=\mathrm{CH}_{3} \mathrm{CN}$, supporting electrolyte $\mathrm{TBAPF}_{6}$, scan rate $=100 \mathrm{mV} \cdot \mathrm{s}^{-1}$, with glassy carbon as working electrode at $20^{\circ} \mathrm{C}$, scan direction as indicated by the arrow).

Table 3.34: Cyclic voltammetry and density functional theory-calculated data for \{carbene $\mathbf{1}$ \} to \{carbene 9 \}. Cyclic voltammograms are obtained from $0.0005 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ solutions of \{carbene $\mathbf{1 \}}$ to \{carbene 9$\}$, in solvent $\mathrm{CH}_{3} \mathrm{CN}$, containing $0.1 \mathrm{~mol} \mathrm{dm}^{-3}\left[{ }^{\mathrm{n}}\left(\mathrm{Bu}_{4}\right) \mathrm{N}\right]\left[\mathrm{PF}_{6}\right]$ as supporting electrolyte, with glassy carbon as working electrode, at a scan rate of $0 . \operatorname{er} 100 \mathrm{~V} \mathrm{~s}^{-1}$, at $20^{\circ} \mathrm{C}$. Experimental potentials are in V relative to the $\mathrm{Fc} / \mathrm{Fc}{ }^{+}$couple.

| Complex | Experimental (V versus $\mathrm{FcH} / \mathrm{FcH}^{+}$) |  |  |  |  |  |  |  |  |  | Calculated (eV) neutral complex |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $1^{\text {st }}$ reduction |  |  |  | $1^{\text {st }}$ oxidation |  |  |  | $2^{\text {nd }}$ | $3^{\mathrm{rd}}$ |  |  |
|  | $E_{\mathrm{pc}}$ | $E_{\text {pa }}$ | $E^{0}$ | $\Delta E$ | $E_{\text {pa }}$ | $E_{\mathrm{pc}}$ | $E^{0}$ | $\Delta E$ | $E_{\mathrm{pa}}$ | $E_{\mathrm{pa}}$ | $E_{\text {Номо }}$ | $E_{\text {LUMO }}$ |
| \{carbene 1\} | -1.625 | $-1.552^{\text {a }}$ | $-1.589^{\text {a }}$ | $0.073{ }^{\text {a }}$ | 0.538 | 0.453 | 0.496 | 0.085 | 1.229 | - | -6.097 | -2.738 |
| \{carbene 2\} | -1.719 | $-1.649^{\text {a }}$ | $-1.684^{\text {a }}$ | $0.070^{\text {a }}$ | 0.494 | 0.414 | 0.454 | 0.080 | 1.148 | - | -5.984 | -2.566 |
| \{carbene 3\} | -2.019 | $-1.938^{\text {a }}$ | $-1.979{ }^{\text {a }}$ | $0.081{ }^{\text {a }}$ | 0.463 | 0.396 | 0.430 | 0.067 | 1.132 | 1.268 | -5.854 | -2.189 |
| \{carbene 4\} | -1.594 | -1.514 | -1.554 | 0.080 | 0.558 | 0.420 | 0.489 | 0.138 | 0.648 | 1.134 | -5.735 | -2.674 |
| \{carbene 5\} | -1.494 | -1.435 | -1.468 | 0.066 | 0.531 | 0.444 | 0.488 | 0.087 | 1.056 | 1.158 | -5.926 | -2.841 |
| \{carbene 6 mer\} |  |  |  |  | -0.275 | -0.353 | 0.078 | -0.314 | 1.233 |  | -4.816 | -1.779 |
| \{carbene 6 fac \} | -2.162 |  |  |  | - | - | - | - | - |  | -4.956 | -1.981 |
| \{carbene 7 mer\} | -2.269 |  |  |  | -0.356 | -0.410 | 0.054 | -0.383 | 0.625 |  | -4.738 | -1.598 |
| \{carbene 7 fac $\}$ | -2.124 |  |  |  | -0.235 | - | - | - | - |  | -4.907 | -1.937 |
| \{carbene 7 mer\} | -2.800 |  |  |  | -0.500 | -0.569 | 0.069 | -0.534 | 0.758 |  | -4.670 | -1.148 |
| \{carbene 8 fac $\}$ | -2.545 |  |  |  | -0.306 | - | - | - | - |  | -4.741 | -1.244 |
| \{carbene 9 mer\} | -2.615 |  |  |  | -0.545 | -0.600 | 0.055 | -0.573 | 0.456 |  | -4.530 | -1.300 |
| \{carbene 9 fac $\}$ |  |  |  |  | -0.368 | - | - | - | - |  | -4.679 | -1.576 |

a Values determined from data acquired by a $0.300 \mathrm{~V} \mathrm{~s}^{-1}$ scan rate (see Fig. 3.23).

### 3.3.4 Relationships between calculated and experimental data

As discussed in Section 3.3.2.2, the lowest unoccupied molecular orbital (LUMO) is related to the reduction, and the highest occupied molecular orbital (HOMO) is related to the oxidation process. By combining DFT-and electrochemical data, these relationships can be quantified for Cr-carbene complexes of this study.

Figure 3.27 presents a linear relationship between the HOMO energy and the first oxidation $\left(\mathrm{Cr}^{0 / 1}\right)$ potential, as listed in Table 3.34. Both \{carbene 4\} and \{carbene 5\} are the outliers, and are therefore excluded from the discussion. The reason for them being outliers is due to the delocalization of the HOMO, as discussed in 3.3.2.2. The higher HOMO energy (less negative) gives a lower (more negative) oxidation potential, i.e. a complex with a higher HOMO energy is oxidized more easily. This linear relation between the HOMO energy (in eV) and the peak anodic oxidation potential (in V), as shown in Figure 3.27, is given by Equation 3.13, with $\mathrm{R}^{2}=$ 0.99 .

Equation 3.13: $E_{\text {pa Cro }} 0 / 1=-0.69 E_{\text {Номо }}-3.65$


Figure 3.27: Linear relationship between the DFT-calculated $E_{\text {номо }}$ values and the experimental oxidation potential $E_{\mathrm{pa}}$ of the first oxidation of \{carbene $\mathbf{1 \}}$ - \{carbene $\left.\mathbf{3}\right\}$ and \{carbene $\mathbf{6 \}}$ \{carbene 9\}. Data is presented in Table 3.34. Experimental potentials are relative to the $\mathrm{FcH} / \mathrm{FcH}^{+}$couple. Blue markers are for \{carbene 1\}- \{carbene 3\}, and red markers for \{carbene 6\} - \{carbene 9 \}.

Figure 3.28 shows a linear relationship between the LUMO energy and the first reduction potential of \{carbene $\mathbf{1 \}}$ - \{carbene $\mathbf{9}\}$. This reduction process happens on the carbene carbon bonding to the Cr -metal; therefore the electrophilicity of the carbene ligand (especially the aryl substituents) plays a decisive role in this reduction. A complex with a higher LUMO energy (less negative) can be reduced more easily (at a more negative potential). Equation 3.14 gives the relationship between the LUMO energy (in eV ) and the first cathodic reduction potential (in V ) of carbene carbon, with $\mathrm{R}^{2}=0.98$.

Equation 3.14: $E_{\text {pa carbene carbon }}=-0.69 E_{\text {LUMO }}-3.49$


Figure 3.28: Linear relationship between the DFT-calculated $E_{\text {LUMO }}$ values and the experimental reduction potential $E_{\mathrm{pc}}$ of the first reduction of \{carbene $\left.\mathbf{1}\right\}$ - \{carbene $\left.\mathbf{9}\right\}$. Data is presented in Table 3.34. Experimental potentials are relative to the $\mathrm{FcH} / \mathrm{FcH}^{+}$couple. Blue markers are for \{carbene 1\}- \{carbene 5\}, and red markers for \{carbene 6\}- \{carbene $\mathbf{9}\}$.

For Cr-carbene complexes of the type $\left[(\mathrm{CO})_{5} \mathrm{Cr}=\mathrm{C}(\mathrm{OEt}) \mathrm{R}\right]$ (where $\mathrm{R}=2$-thienyl, 2-furyl, 2-(Nmethylpyrrolyl), N-methyl-2-(2'-thienyl)pyrrole or $2,2^{\prime}$-thienylfuran) and of the type $\left.\left[(\mathrm{CO})_{3}(\mathrm{dppe}) \mathrm{Cr}\right] \mathrm{C}(\mathrm{X}) \mathrm{R}\right]$ (where $\mathrm{R}=2$-thienyl or 2-furyl, and where $\mathrm{X}=\mathrm{OEt}$ or NHCy ), the linear relationships obtained between the calculated and experimental data, enable prediction of the reduction potential of these type of complexes by DFT-calculations, prior to synthesizing them. As a result, the reduction potential of the final complex can be fine-tuned, by substituting a variety of different substituents and ligands onto the Cr -carbene complex.

## Experimental

### 4.1 Materials

Reagents were obtained from Merck and Sigma-Aldrich. Solid reagents were used without further purification. Doubly distilled $\mathrm{H}_{2} \mathrm{O}$ was used. Organic solvents were distilled for waterfree reactions.

### 4.2 Electrochemistry

Measurements of Cyclic voltammograms (CV's) and linear sweep voltammograms (LSV's) were performed on $0.0005 \mathrm{~mol} \mathrm{dm}^{-3}$ compound solutions in dry acetonitrile. Tetra-nbutylammonium hexafluorophosphate, $\left(\left[\mathrm{N}\left({ }^{\mathrm{n}} \mathrm{Bu}_{4}\right)\right]\left[\mathrm{PF}_{6}\right]\right),\left(0.1 \mathrm{~mol} \mathrm{dm}^{-3}\right)$ was used as supporting electrolyte. The CV's were collected under a blanket of purified argon at $25{ }^{\circ} \mathrm{C}$ utilizing a Princeton Applied Research PARSTAT 2273 voltammograph running PowerSuite (Version 2.58).

### 4.2.1 Tris( $\beta$-diketonato)chromium(III) Complexes

Cyclic voltammetry of tris( $\beta$-diketonato)chromium(III) complexes were measured using 1 mL of 25 mM solutions with $\mathrm{CH}_{3} \mathrm{CN}$ as solvent, and tetraethylammonium tetrafluoroborate ( 0.5 M , $\mathrm{TEABF}_{4},\left[\mathrm{NEt}_{4}\right]\left[\mathrm{BF}_{4}\right]$ ) as supporting electrolyte. Argon gas was used as experimental environment for a three-electrode cell, consisting of a Pt auxiliary electrode, a glassy carbon (working surface area $0.0707 \mathrm{~cm}^{2}$ ) working electrode and a $\mathrm{Ag} / \mathrm{Ag}^{+}(10 \mathrm{mM} \mathrm{AgNO} 3$ made from supporting electrolyte solution) reference electrode. The working electrode was polished with 1 $\mu \mathrm{m}$ Diapat diamond then $1 / 4 \mu \mathrm{~m}$ Diapat diamond paste on a Buehler polish pad, rinsed with $\mathrm{H}_{2} \mathrm{O}$ and acetone, and dried. This was repeated before every measurement. Measurements of each complex were done at a series of scan rates: $50 \mathrm{mV} / \mathrm{s}, 100 \mathrm{mV} / \mathrm{s}, 150 \mathrm{mV} / \mathrm{s}, 200 \mathrm{mV} / \mathrm{s}, 250 \mathrm{mV} / \mathrm{s}$, $300 \mathrm{mV} / \mathrm{s}, 500 \mathrm{mV} / \mathrm{s}, 1000 \mathrm{mV} / \mathrm{s}$ and $5000 \mathrm{mV} / \mathrm{s}$. Ferrocene was used as internal reference.

### 4.2.2 Chromium(0) Carbenes

Concentration of carbenes was 0.5 mM in 1 mL CH 33 CN solution, tetrabutylammonium hexafluorophosphate ( $0.1 \mathrm{M}\left[\mathrm{NBu}_{4}\right]\left[\mathrm{PF}_{6}\right]$ ) was used as electrolyte. A three-electrode cell, with a glassy carbon (surface area $7.07 \times 10^{-6} \mathrm{~m}^{2}$ ) working electrode, Pt auxiliary electrode and a $\mathrm{Ag} / \mathrm{Ag}^{+}\left(0.010 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{AgNO}_{3}\right.$ in $\left.\mathrm{CH}_{3} \mathrm{CN}\right)$ reference electrode ${ }^{1}$ mounted on a Luggin capillary, was used. ${ }^{2,3}$ All temperatures were kept constant to within $0.5^{\circ} \mathrm{C}$. Scan rates were $0.050-5.000$ $\mathrm{V} \mathrm{s}^{-1}$. Successive experiments under the same experimental conditions showed that all oxidation and formal reduction potentials were reproducible within 6 mV . All cited potentials were referenced against the $\mathrm{FcH} / \mathrm{FcH}^{+}$couple as suggested by IUPAC. ${ }^{4}$ Ferrocene exhibited a formal reduction potential $E^{0 \prime}=0.079 \mathrm{~V}$ vs. $\mathrm{Ag} / \mathrm{Ag}^{+}$, a peak separation $\Delta E_{\mathrm{p}}=E_{\mathrm{pa}}-E_{\mathrm{pc}}=0.069 \mathrm{~V}$ and $i_{p c} i_{p a}=0.98$ under our experimental conditions. $E_{\mathrm{pa}}\left(E_{\mathrm{pc}}\right)=$ anodic (cathodic) peak potential and $i_{p a}\left(i_{p c}\right)=$ anodic (cathodic) peak current. $E^{01}\left(\mathrm{FcH} / \mathrm{FcH}^{+}\right)=0.66(5) \mathrm{V}$ vs. SHE in $\left[\mathrm{NBu}_{4}\right] / \mathrm{CH}_{3} \mathrm{CN}$ and $0.77(5) \mathrm{V}$ vs. SHE in $\left[\mathrm{NBu}_{4}\right] / \mathrm{DCM}^{5}{ }^{5}$

### 4.3 Measurements

${ }^{1} \mathrm{H}$ NMR spectra were recorded on the Bruker Advance DPX $300\left[{ }^{1} \mathrm{H}(300.130 \mathrm{MHz})\right]$ spectrometer at $18^{\circ} \mathrm{C}$, using deuterated chloroform $\left(\mathrm{CDCl}_{3}\right)$.

Infrared (IR) spectra were recorded on Bruker-Tensor 27 FTIR spectrometer.
UV/Vis spectra were recorded on the Shimadzu UV-1650PC spectrophotometer with a CPS240A temperature control unit.

All melting points (M.p.) were determined on the Olympus BX51 microscope fitted with a Linkam-THMS600 hot stage (up to $250^{\circ} \mathrm{C}$ )

[^44]
### 4.4 Synthesis

The $\beta$-diketones used in this study were obtained from Merck and Sigma-Aldrich.

### 4.4.1 Tris( $\beta$-diketonato)chromium(III) complexes

Tris( $\beta$-diketonato)chromium(III) complexes $\{1\}-\{7\}$ were synthesised according to Rahman's method ${ }^{6}$. The chromium chloride ( 2.05 mmole in minimum amount of water) solution was added drop wise to ethanol/water solution of $\beta$-diketone ( 6.0 mmole in $40 \mathrm{~mL} 1: 1$ ethanol/water). The reaction mixture was stirred for 2 hours. Concentrated solution of sodium acetate was added drop wise until complete precipitation. The precipitate was washed with excess water, and then dried in a desiccator at room temperature.

Tris(hexafluoroacetylacetonato)chromium(III) $\left(\mathrm{Cr}(\mathrm{hfaa})_{3},\{8\}\right)$ was synthesised by the following method: Thionyl Chloride (excess $\mathrm{SOCl}_{2}$ ) was added to $\mathrm{CrCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ (dark green, 3 mmole) with slight gentle heat; the gaseous side product and excess $\mathrm{SOCl}_{2}$ were trapped with a concentrated sodium acetate solution. The desired product was light green $\mathrm{CrCl}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$, and was treated with dry THF. A dark purple solution was obtained. Into this solution, hexafluoroacetylacetonato (Hhfaa, 2 mL ) was injected with a syringe. The reaction mixture was stirred overnight ( $\pm 15$ hours). The precipitate was filtered, washed with excess water, and then dried in a desiccator at room temperature.

All synthesized tris( $\beta$-diketonato)chromium(III) complexes are paramagnetic.

### 4.4.1.1 Tris(acetylacetonato)chromium(III) $\left[\mathrm{Cr}(\mathrm{acac})_{3}\right]\{1\}$


\{1\}
Yield 74 \% Colour: Purple.

[^45]
### 4.4.1.2 $\operatorname{Tris}\left(1\right.$-phenyl-1,3-butanedionato)chromium(III) $\left[\mathbf{C r}(\mathbf{b a})_{3}\right]\{2\}$



Yield 67 \% Colour: Pale yellow.

### 4.4.1.3 $\operatorname{Tris}\left(1,3\right.$-diphenyl-1,3-propanedionato)chromium(III) $\left[\operatorname{Cr}(\mathbf{d b m})_{3}\right]\{3\}$


\{3\}
Yield 90 \% Colour: Yellow. MS Calcd. m/z 721.73, Found: m/z 723.06. M.P. $75.8^{\circ} \mathrm{C}$

### 4.4.1.4 Tris(4,4,4-trifluoro-1-phenyl-1,3-butanedionato)chromium(III) $\left[\mathbf{C r}(\mathbf{t f b a})_{3}\right]\{4\}$



Yield 54 \% Colour: Green

### 4.4.1.5 Tris(4,4,4-trifluoro-1-(2-thienyl)-1,3-butanedionato)chromium(III) $\left[\mathrm{Cr}(\mathrm{ffth})_{3}\right]\{5\}$



Yield 28 \% Colour: Green.

### 4.4.1.6 Tris(4,4,4-trifluoro-1-(2-furyl)-1,3-butanedionato)chromium(III) $\left[\mathrm{Cr}(\mathrm{tffu})_{3}\right]\{6\}$



Yield 71 \% Colour: Green.

### 4.4.1.7 $\operatorname{Tris}\left(1,1,1\right.$-trifluoro-2,4-pentadionato)chromium(III) $\left[\operatorname{Cr}(t f a a)_{3}\right]\{7\}$



Yield 21 \% Colour: Grey.
4.4.1.8 Tris(1,1,1,5,5,5-hexafluoro-2,4-pentadionato)chromium(III) $\left[\mathrm{Cr}(\mathrm{hfaa})_{3}\right]\{8\}$


\{8\}
Yield 17 \% Colour: Dark green.

## CHAPTER 4

### 4.4.2 Tris( $\beta$-diketonato)cobalt(III) Complexes

Complexes $\{9,10,1112$ and 13$\}$ were synthesised by the method of Bryant and Fernelius with minor changes ${ }^{7}$. A homogeneous suspension was made of cobalt(II) carbonate ( $1.25 \mathrm{~g}, 0.0105$ mole) and $10 \mathrm{~mL} \beta$-diketone under reflux. This mixture were preheated to $95^{\circ} \mathrm{C} 15 \mathrm{~mL} 25 \%$ hydrogen peroxide was added drop wise to the suspension over 30 minutes. The precipitate was filtered and washed with excess water, and then dried in a desiccator at room temperature.

### 4.4.2.1 Tris(acetylacetonato)cobalt(III) $\left[\mathrm{Co}(\mathrm{acac})_{3}\right]\{9\}$


\{9\}
Yield 63 \% Colour: Dark green. ${ }^{1} \mathrm{H}$ NMR: ( $300 \mathrm{MHz}, \delta / \mathrm{ppm}, \mathrm{CDCl}_{3}$ ): $2.19\left(\mathrm{~s}, 18 \mathrm{H}, 6 \times \mathrm{CH}_{3}\right)$ $5.53(\mathrm{~s}, 3 \mathrm{H}, 3 \times \mathrm{CH})$.

### 4.4.2.2 $\left.\operatorname{Tris}(1-p h e n y l-1,3-b u t a n e d i o n a t o) c o b a l t(I I I I)[C o(b a))_{3}\right]\{10\}$



Yield 66 \% Colour: Dark green. ${ }^{1} \mathrm{H}$ NMR: ( $300 \mathrm{MHz}, \delta / \mathrm{ppm}, \mathrm{CDCl}_{3}$ ): 2.32-2.42 (q, $9 \mathrm{H}, 3 \times$ $\left.\mathrm{CH}_{3}\right), 6.23(\mathrm{~d}, 3 \mathrm{H}, 3 \times \mathrm{CH}), 7.28-7.46(\mathrm{~m}, 9 \mathrm{H}, 9 \times \mathrm{PhH}), 7.85(\mathrm{t}, 6 \mathrm{H}, 6 \times \mathrm{PhH}) . \mathrm{MS}$ Calcd. MS Calcd. m/z 542.46, Found: m/z 601.53. M.P. $184.3^{\circ} \mathrm{C}$

[^46]
### 4.4.2.3 Tris(1,3-diphenyl-1,3-propanedionato)cobalt(III) $\left[\mathrm{Co}(\mathrm{dbm})_{3}\right]\{11\}$



Yield 72 \% Colour: Dark green.
4.4.2.4 Tris(4,4,4-trifluoro-1-phenyl-1,3-butanedionato)cobalt(III) $\left[\mathrm{Co}(\mathbf{t f b a})_{3}\right]\{12\}$


Yield 13 \% Colour: Dark green. MS Calcd. m/z 905.95 Found: m/z 978.94. M.P. $107.6^{\circ} \mathrm{C}$
4.4.2.5 $\operatorname{Tris}\left(1,1,1\right.$-trifluoro-2,4-pentadionato)cobalt(III) $\left[\mathrm{Co}(\text { (ffaa })_{3}\right]\{13\}$


Yield 51 \% Colour: Dark green.

### 4.5 Crystallography

Data for the crystals, obtained from solutions in diethyl ether, were collected on a Bruker D8 Venture kappa geometry diffractometer, with duo I $\mu$ s sources, a Photon 100 CMOS detector and APEX II ${ }^{8}$ control software using Quazar multi-layer optics monochromated, Mo-K $\alpha$ radiation by means of a combination of $\phi$ and $\omega$ scans. Data reduction was performed using SAINT+ ${ }^{8}$ and the intensities were corrected for absorption using SADABS. ${ }^{8}$ The structure was solved by intrinsic phasing using SHELXTS and refined by full-matrix least squares, using SHELXTL + ${ }^{9}$ and SHELXL-2013+. ${ }^{9}$ In the structure refinement, all hydrogen atoms were added in calculated positions and treated as riding on the atom to which they are attached. All non-hydrogen atoms were refined with anisotropic displacement parameters, all isotropic displacement parameters for hydrogen atoms were calculated as $\mathrm{X} \times$ Ueq of the atom to which they are attached, where $\mathrm{X}=$ 1.5 for the methyl hydrogens and 1.2 for all other hydrogens. The standard deviations from the experimental average value $(\bar{\omega})$ were calculated by equation $\sqrt{\frac{\Sigma(\bar{\omega}-\omega)^{2}}{n-1}}$, where n values were measured of $\omega$.

### 4.6 Computational Calculations

### 4.6.1 Tris( $\beta$-diketonato)chromium and -cobalt complexes

Approximate coordinates of $\mathrm{Cr}^{\text {III }}(\beta \text {-diketonato })_{3}$ complexes were obtained by drawing the structure on Chemcraft Version 1.6. ${ }^{10}$ Geometry optimizations of those coordinates were performed using Amsterdam Density Functional (ADF) 2012 system ${ }^{11}$ with the gradientcorrected correlation functional PW91 (Perdew-Wang, 1991 exchange) the Triple-Zeta with Polarisation (TZP) basis set based on the Density Functional Theory (DFT). All minimum

[^47]
## EXPERIMENTAL

structures were confirmed by a frequency analysis. The spin plots and orbital plots were obtained from ADF T21 and T41 file and visualized in Chemcraft.

### 4.6.2 Cr-carbene complexes

Density functional theory calculations on Cr-carbene complexes were carried out using the hybrid functional B3LYP ${ }^{12,13}$ as implemented in the Gaussian 09 program package. ${ }^{14}$ Geometries were optimized in gas phase with the triple- $\zeta$ basis set $6-311 \mathrm{G}(\mathrm{d}, \mathrm{p})$ on all atoms except chromium, where LANL2DZ was used (corresponding to the Los Alamos Effective Core Potential plus DZ. ${ }^{15}$ Calculations taking solvation effects into account did not alter the character of the frontier orbitals or the relationship relative to experimental values. ${ }^{16}$ All minimum structures were confirmed by a frequency analysis. The spin plots and orbital plots were obtained from the Gaussian checkpoint files, and visualized in Chemcraft.

[^48]
# Concluding remarks and future perspectives 

### 5.1 Concluding Remarks

### 5.1.1 Tris( $\beta$-diketonato)chromium(III) complexes

A series of $\operatorname{Cr}(\beta \text {-diketonato })_{3}$ complexes were studied by experimental and computational methods, where $\beta$-diketonato $=\mathrm{acac}$, ba, dbm, tfba, tfth, tffu, tfaa, hfaa. All eight $\operatorname{Cr}(\beta \text {-diketonato })_{3}$ complexes were successfully synthesized. The crystal structure of $\operatorname{Cr}(\mathrm{dbm})_{3}$ was solved and presented in this study. The electrochemical behaviour of the $\operatorname{Cr}(\beta \text {-diketonato })_{3}$ complexes was studied by the use of cyclic voltammetry. A maximum of four redox processes were observed:

$$
\mathrm{Cr}^{\mathrm{I}} \leftarrow \mathrm{Cr}^{\mathrm{II}} \leftrightarrow \mathrm{Cr}^{\text {III }} \rightarrow \mathrm{Cr}^{\mathrm{IV}} \rightarrow \mathrm{Cr}^{\mathrm{V}}
$$

Only the $\mathrm{Cr}^{\text {III }}(\beta \text {-diketonato })_{3} \leftrightarrow \mathrm{Cr}^{\mathrm{II}}(\beta \text {-diketonato })_{3}$ redox process was found to be quasireversible (except in $\mathrm{Cr}(\mathrm{ba})_{3}$ ), the other redox processes were irreversible. The oxidation of $\operatorname{Cr}(\mathrm{hfaa})_{3}$ was not observed, since it was shifted out of the working solvent window. Side groups $R_{1}$ and $\mathrm{R}_{2}$ of the $\beta$-diketonato ligands $\left(\left[\mathrm{R}_{1} \mathrm{COCHCOR}_{2}\right]^{-}\right)$have a decisive role in the shifting of redox potentials: more electron-withdrawing side groups shift the redox processes to more positive potentials. This influence is established by the linear dependence of $E_{\mathrm{pc}} \mathrm{of}_{\mathrm{Cr}}{ }^{\text {IIIIII }}$ on the total Hammett sigma meta constants $\left[\Sigma\left(\sigma_{R 1}+\sigma_{R 2}\right)\right]$ of the side groups on $\beta$-diketonato ligands, on the total group electronegativities $\left[\Sigma\left(\chi_{\mathrm{R} 1}+\chi_{\mathrm{R} 2}\right)\right]$, and on the acid dissociation constant $\left(\mathrm{p} K_{\mathrm{a}}\right)$ of the uncoordinated $\beta$-diketone. The linear equations of these relationships can be expressed as follows:
$\mathrm{p} K_{\mathrm{a}}=-0.0032 E_{\mathrm{pc}}+2.08 \quad \mathrm{R}^{2}=0.89$
$\Sigma \chi=-1.86 E_{\mathrm{pc}}+9.70, \quad \mathrm{R}^{2}=1.00\left(\right.$ for $\mathrm{Cr}(\mathrm{acac})_{3}, \mathrm{Cr}(\mathrm{ba})_{3}$ and $\left.\operatorname{Cr}(\mathrm{dbm})_{3}\right)$
$\Sigma \sigma=0.0019 E_{\mathrm{pc}}+4.04 \quad \mathrm{R}^{2}=0.99$

DFT-studies showed that $\operatorname{Cr}(\beta \text {-diketonato })_{3}$ has a spin-state preference of $3 / 2$, and $D_{3}$ symmetry. This observation agrees with the experimental results obtained. The reduction potentials ( $E_{\mathrm{pc}}$ ) of
the $\mathrm{Cr}^{\text {IIIIII }}$ redox processes are linearly dependent on the LUMO energies ( $E_{\mathrm{LUMO}}$ ) and electron affinity (EA). The linear equations of these relationships can be expressed as follows:
$E_{\mathrm{LUMO}}=-0.0014 E_{\mathrm{pc}}-5.66 \quad \mathrm{R}^{2}=0.93$
$\mathrm{EA}=0.0013 E_{\mathrm{pc}}+4.18 \quad \mathrm{R}^{2}=0.93$

### 5.1.2 Tris( $\beta$-diketonato)cobalt(III) complexes

A series of $\operatorname{Co}(\beta \text {-diketonato })_{3}$ complexes were studied by experimental and computational methods, where $\beta$-diketonato $=\mathrm{acac}$, ba, dbm, tfba, tfaa. All five $\operatorname{Co}(\beta \text {-diketonato })_{3}$ complexes were successfully synthesized. The crystal structures of $\operatorname{Co}(\mathrm{ba})_{3}$ and $\mathrm{Co}(\mathrm{tfba})_{3}$ were solved and presented in this study. DFT-studies showed that $\operatorname{Co}(\beta \text {-diketonato })_{3}$ has a spin-state preference of $0 / 2$ (diamagnetic), and $D_{3}$ symmetry. This observation agrees with the experimental results obtained.

### 5.1.3 Chromium(0) carbene complexes

Electrochemical behaviour of nine chromium(0) carbene complexes was investigated by cyclic voltammetry. Generally, one reduction and two oxidation processes were observed: 1) $\mathrm{Cr}^{0} \leftrightarrow$ $\mathrm{Cr}^{\mathrm{I}} \rightarrow \mathrm{Cr}^{\mathrm{II}}$ oxidation processes of the metal, and 2) the reduction of the carbene ligand at the carbene carbon. The first redox process on the Cr metal center was found to be reversible, while the second oxidation process of the $\mathrm{Cr}^{\mathrm{I}}$ species is totally irreversible. The reduction process of the carbene ligands became quasi-reversible at high scan rates ( $300 \mathrm{mV} / \mathrm{s}$ or higher). Four of the carbene complexes, with a bidentate ligand 1,2-bis(diphenylphosphino)ethane (DPPE), were found to have different oxidation potentials for the different fac- or mer-isomers. The redox behaviour of the fac- and mer-isomers was understood, via the results obtained from the computational studies. The mer-isomers are ionized at a lower potential than the fac-isomers for chromium( 0 ) carbene complexes, and also the $m e r$-isomers of the oxidized species dominate the population. The oxidation potentials $\left(E_{\mathrm{pa}}\right)$ of the chromium metal center are linearly dependent on the HOMO energy ( $E_{\text {номо }}$ ), while the reduction potentials ( $E_{\mathrm{pc}}$ ) of the carbene carbon on the ligand are linearly dependent on the LUMO energy ( $E_{\text {LUMO }}$ ). The linear equations of these relationships can be expressed as follows:

| $E_{\mathrm{pa} \mathrm{cr}} 0 / 1$ |  |
| :--- | :--- |
|  | $=-0.69 E_{\text {Номо }}-3.65$ |
| $E_{\mathrm{pc} \text { carbene carbon }}=-0.69 E_{\text {LUMO }}-3.49$ | $\mathrm{R}^{2}=0.99$ |
| $\mathrm{R}^{2}=0.98$ |  |

### 5.2 Future perspectives

The study of the $\operatorname{Cr}(\beta \text {-diketonato })_{3}$ complex series can be expanded as follows:
(i) Anchoring the $\mathrm{Cr}(\beta \text {-diketonato })_{3}$ complexes onto a support, e. g. Silica wafer, MCM-41 support.
(ii) Conducting catalytic studies on the free $\operatorname{Cr}(\beta \text {-diketonato })_{3}$ complexes, as well as when anchored onto a support. Evaluating their catalytic activities.

The study of the $\operatorname{Co}(\beta \text {-diketonato })_{3}$ complex series can be expanded as follows:
(i) Completing the syntheses for the series of $\operatorname{Co}(\beta \text {-diketonato })_{3}$ complexes, where $\beta$-diketonato $=\mathrm{tfth}, \mathrm{tffu}$, hfaa.
(ii) Studying the electrochemical behaviour for the full series of $\operatorname{Co}(\beta \text {-diketonato })_{3}$ complexes.
(iii) Using electronic parameters and computational methods to investigate the electrochemical behaviour of $\operatorname{Co}(\beta \text {-diketonato })_{3}$ complexes.
(iv) Anchoring the $\operatorname{Co}(\beta \text {-diketonato })_{3}$ complexes onto a Silica wafer support.
(v) Conducting catalytic studies on the free $\operatorname{Co}(\beta \text {-diketonato })_{3}$ complexes, as well as when anchored onto a support. Evaluating their catalytic activities.

The study of the $\operatorname{Cr}(0)$ carbene complex series can be expanded as follows:
(vi) Studying the catalytic activities of the $\operatorname{Cr}(0)$ carbene complexes.
(vii) Conducting electrochemistry and computational chemistry studies of a series of $\mathrm{M}(0)$ carbene complexes, establishing the influence of the metal on the activity of the complex.

## Appendix

## A. Cyclic Voltammetry (CV)



Figure A.1: Cyclic voltammograms of $25 \mathrm{mM} \mathrm{Cr}(\mathrm{acac})_{3}\{1\}$, vs. $\mathrm{FcH} / \mathrm{FcH}^{+}$. . (Solvent $=\mathrm{CH}_{3} \mathrm{CN}$, supporting electrolyte $\mathrm{TEABF}_{4}$, scan rate $=50,100,150,200,250$ and $300 \mathrm{mV} \cdot \mathrm{s}^{-1}$, with glassy carbon as working electrolyte at $20^{\circ} \mathrm{C}$, scan direction as indicated by the arrow).
$\mathrm{Cr}(\mathrm{ba})_{3}(\mathbf{2 5} \mathbf{~ m M})$ in $\mathrm{TEABF}_{4} / \mathrm{CH}_{3} \mathrm{CN}(\mathbf{0 . 5} \mathbf{~ M})$


Figure A.2: Cyclic voltammograms of $25 \mathrm{mM} \mathrm{Cr}(\mathrm{ba})_{3}\{2\}$, $v s . \mathrm{FcH} / \mathrm{FcH}{ }^{+}$. $\left(\right.$Solvent $=\mathrm{CH}_{3} \mathrm{CN}$, supporting electrolyte $\mathrm{TEABF}_{4}$, scan rate $=50,100,150,200,250$ and $300 \mathrm{mV} \cdot \mathrm{s}^{-1}$, with glassy carbon as working electrolyte at $20^{\circ} \mathrm{C}$, scan direction as indicated by the arrow).
$\mathrm{Cr}(\mathrm{dbm})_{3}(\mathbf{2 5} \mathrm{mM})$ in $\mathrm{TEABF}_{4} / \mathrm{CH}_{3} \mathrm{CN}(0.5 \mathrm{M})$


Figure A.3: Cyclic voltammograms of $25 \mathrm{mM} \mathrm{Cr}(\mathrm{dbm})_{3}\{3\}$, vs. $\mathrm{FcH} / \mathrm{FcH}{ }^{+}$. . Solvent $=\mathrm{CH}_{3} \mathrm{CN}$, supporting electrolyte $\mathrm{TEABF}_{4}$, scan rate $=50,100,150,200,250$ and $300 \mathrm{mV} \cdot \mathrm{s}^{-1}$, with glassy carbon as working electrolyte at $20^{\circ} \mathrm{C}$, scan direction as indicated by the arrow).

## APPENDIX

$\mathbf{C r}(\text { tfba })_{3}(\mathbf{2 5} \mathbf{~ m M})$ in $\mathrm{TEABF}_{4} / \mathrm{CH}_{3} \mathbf{C N}(\mathbf{0 . 5} \mathbf{~ M})$


Figure A.4: Cyclic voltammograms of $25 \mathrm{mM} \mathrm{Cr}(\mathrm{tfba})_{3}\{4\}$, vs. $\mathrm{FcH} / \mathrm{FcH}{ }^{+}$. . Solvent $=\mathrm{CH}_{3} \mathrm{CN}$, supporting electrolyte $\mathrm{TEABF}_{4}$, scan rate $=50,100,150,200,250$ and $300 \mathrm{mV} \cdot \mathrm{s}^{-1}$, with glassy carbon as working electrolyte at $20^{\circ} \mathrm{C}$, scan direction as indicated by the arrow).
$\mathbf{C r}(\text { tfth })_{3}(\mathbf{2 5} \mathbf{~ m M})$ in $\mathrm{TEABF}_{4} / \mathrm{CH}_{3} \mathrm{CN}(0.5 \mathrm{M})$


Figure A.5: Cyclic voltammograms of $25 \mathrm{mM} \mathrm{Cr}(\mathrm{tfth})_{3}\{5\}$, vs. $\mathrm{FcH} / \mathrm{FcH}^{+}$. $\left(\right.$Solvent $=\mathrm{CH}_{3} \mathrm{CN}$, supporting electrolyte $\mathrm{TEABF}_{4}$, scan rate $=50,100,150,200,250$ and $300 \mathrm{mV} \cdot \mathrm{s}^{-1}$, with glassy carbon as working electrolyte at $20^{\circ} \mathrm{C}$, scan direction as indicated by the arrow).
$\mathrm{Cr}(\mathrm{tffu})_{3}(\mathbf{2 5} \mathbf{~ m M})$ in TEAPF $/ \mathrm{CH}_{3} \mathrm{CN}(0.5 \mathrm{M})$


Figure A.6: Cyclic voltammograms of $25 \mathrm{mMCr}(\mathrm{tffu})_{3}\{6\}$, vs. $\mathrm{FcH} / \mathrm{FcH}^{+}$. $\left(\right.$Solvent $=\mathrm{CH}_{3} \mathrm{CN}$, supporting electrolyte $\mathrm{TEABF}_{4}$, scan rate $=50,100,150,200,250$ and $300 \mathrm{mV} \cdot \mathrm{s}^{-1}$, with glassy carbon as working electrolyte at $20^{\circ} \mathrm{C}$, scan direction as indicated by the arrow).

## APPENDIX

$\mathbf{C r}($ tfaa $) \mathbf{3} \mathbf{( 2 5} \mathbf{~ m M})$ in TEABF4/Acetonitrile ( 0.5 M )


Figure A.7: Cyclic voltammograms of $25 \mathrm{mM} \mathrm{Cr}(\mathrm{tfaa})_{3}\{7\}$, vs. $\mathrm{FcH} / \mathrm{FcH}^{+}$. $\left(\right.$Solvent $=\mathrm{CH}_{3} \mathrm{CN}$, supporting electrolyte $\mathrm{TEABF}_{4}$, scan rate $=50,100,150,200,250$ and $300 \mathrm{mV} \cdot \mathrm{s}^{-1}$, with glassy carbon as working electrolyte at $20^{\circ} \mathrm{C}$, scan direction as indicated by the arrow).


Figure A.8: Cyclic voltammograms of $25 \mathrm{mM} \mathrm{Cr}(\mathrm{hfaa})_{3}\{8\}$, vs. $\mathrm{FcH} / \mathrm{FcH}{ }^{+}$. . Solvent $=\mathrm{CH}_{3} \mathrm{CN}$, supporting electrolyte $\mathrm{TEABF}_{4}$, scan rate $=50,100,150,200,250$ and $300 \mathrm{mV} \cdot \mathrm{s}^{-1}$, with glassy carbon as working electrolyte at $20^{\circ} \mathrm{C}$, scan direction as indicated by the arrow).

## B. Mass Spectroscopy (MS)



Figure B.1: Gas chromatography-mass spectrometry (GC-MS) spectrum of $\operatorname{Cr}(\mathrm{dbm})_{3}\{3\}$, MS Calculated: MS Calculated: $\mathrm{Mr}=721.73 \mathrm{~g} / \mathrm{mol}$, Found: $\mathrm{m} / \mathrm{z} 723.06 \mathrm{~g} / \mathrm{mol}$


Figure B.2: Gas chromatography-mass spectrometry (GC-MS) spectrum of $\operatorname{Co}(\mathrm{ba})_{3}\{10\}$, MS Calculated: $\mathrm{Mr}=542.46 \mathrm{~g} / \mathrm{mol}$, Found: m/z $601.53 \mathrm{~g} / \mathrm{mol}$


Figure B.3: Gas chromatography-mass spectrometry (GC-MS) spectrum of $\mathrm{Co}(\mathrm{tfba})_{3}\{12\}$, MS Calculated: $\mathrm{Mr}=905.95 \mathrm{~g} / \mathrm{mol}$, Found: $\mathrm{m} / \mathrm{z} 978.94 \mathrm{~g} / \mathrm{mol}$
C. Nuclear Magnetic Resonance (NMR)


Figure C. 1: ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathrm{Co}(\mathrm{acac})_{3}\{9\}, 2.19\left(\mathrm{~s}, 18 \mathrm{H}, 6 \times \mathrm{CH}_{3}\right) 5.53(\mathrm{~s}, 3 \mathrm{H}, 3 \times \mathrm{CH})$.


Figure C. 2: ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathrm{Co}(\mathrm{ba})_{3}\{10\}, 2.32-2.42\left(3 \times \mathrm{s}, 9 \mathrm{H}, 3 \times \mathrm{CH}_{3}\right), 6.23(2 \times \mathrm{s}, 3 \mathrm{H}$, $3 \times \mathrm{CH}), 7.28-7.46(\mathrm{~m}, 9 \mathrm{H}, 9 \times \mathrm{PhH}), 7.85(\mathrm{t}, 6 \mathrm{H}, 6 \times \mathrm{PhH})$.


Figure C. 3: ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathrm{Co}(\mathrm{dbm})_{3}\{11\}, 6.93(\mathrm{~s}, 3 \mathrm{H}, 3 \times \mathrm{CH}), 7.29-7.59(\mathrm{~m}, 18 \mathrm{H}, 18$ $\times \mathrm{PhH}), 7.78-8.14(\mathrm{~d}, 12 \mathrm{H}, 12 \times \mathrm{PhH})$.


Figure C.4: ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathrm{Co}(\mathrm{tfba})_{3}\{12\}: 1.25(\mathrm{~s}, 3 \mathrm{H}, 3 \times \mathrm{CH}), 7.45-7.53(\mathrm{~m}, 6 \mathrm{H}, 6 \times$ $\mathrm{PhH}), 7.57-7.68(\mathrm{~m}, 3 \mathrm{H}, 3 \times \mathrm{PhH}), 8.03-8.22(\mathrm{t}, 6 \mathrm{H}, 6 \times \mathrm{PhH})$.


Figure C.5: ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathrm{Co}(\mathrm{tfaa})_{3}: 2.38-2.48\left(3 \times \mathrm{s}, 9 \mathrm{H}, 3 \times \mathrm{CH}_{3}\right), 5.98-6.10(3 \times \mathrm{s}, 3 \mathrm{H}$, $3 \times \mathrm{CH})$.

## Abstract

Two series of metal( $\beta$-diketonato $)_{3}$ complexes were synthesized: tris( $\beta$-diketonato)chromium(III) complexes (where $\beta$-diketonato $=\left[\mathrm{R}_{1} \mathrm{COCHCOR}_{2}\right]^{-}=\mathrm{acac}$, ba, dbm, tfba, tfth, tffu, tfaa, hfaa) and tris( $\beta$-diketonato)cobalt(III) complexes (where $\beta$-diketonato $=\mathrm{acac}$, ba , dbm, tfba, tfaa). These paramagnetic complexes were characterized by mass spectroscopy, X-ray crystallography and melting point measurements. The electrochemical behaviour of tris( $\beta$ diketonato)chromium(III) complexes was investigated by cyclic voltammetry (CV), linear sweep voltammetry (LSV) and square wave voltammetry (SWV). The reduction potentials of the $\mathrm{Cr}^{\text {III }}(\beta \text {-diketonato })_{3} \rightarrow \mathrm{Cr}^{\text {II }}(\beta \text {-diketonato })_{3}$ process correlate linearly with the following electronic parameters: 1) the acid dissociation constant $\left(\mathrm{p} K_{\mathrm{a}}\right)$ of the uncoordinated $\beta$-diketonato ligands, 2) the total electronegativities $(\Sigma \chi)$ of the side groups $\left(\mathrm{R}_{1}\right.$ and $\left.\mathrm{R}_{2}\right)$ on the $\beta$-diketonato ligands, and 3) the total Hammett sigma constant ( $\Sigma \sigma$ ) of the side groups ( $\mathrm{R}_{1}$ and $\mathrm{R}_{2}$ ) on the $\beta$-diketonato ligands. DFT-calculations were done on both series of these metal( $\beta$-diketonato $)_{3}$ complexes. Molecular geometry, spin state and respective population of possible isomers were calculated in this study. The understanding of crystal structures was complemented by using DFT-results. For $\mathrm{Cr}^{\text {III }}(\beta \text {-diketonato })_{3}$ complexes, linear dependence was found between their reduction potentials and electron affinity (EA), as well as between reduction potentials and the energies of the lowest unoccupied molecular orbitals ( $E_{\text {LUMO }}$ ).

Electrochemical behaviour of chromium(0) carbene complexes was investigated by cyclic voltammetry. The difference in oxidation potential of fac/mer isomers was observed for the first time for chromium( 0 ) carbene complexes and discussed in this study. DFT-calculations revealed the following linear relationships with the redox process of $\mathrm{Cr}(0)$ carbene complexes: 1) the linear dependence between the cathodic potential $\left(E_{\mathrm{pc}}\right)$ and energies of the lowest unoccupied orbitals ( $E_{\text {LUMO }}$ ), and 2) the linear dependence between the anodic potential ( $E_{\mathrm{pa}}$ ) and energies of the highest occupied orbitals ( $E_{\text {Номо }}$ ).

## Keywords

Chromium, Cobalt, tris( $\beta$-diketonato)metal complexes, Fischer carbene complexes, DFT, CV.

## Opsomming

Twee reekse metaal( $\beta$-diketonato $)_{3}$ komplekse is in hierdie studie gesintetiseer: tris( $\beta$ diketonato)chroom(III) komplekse (met $\beta$-diketonato $=\left[\mathrm{R}_{1} \mathrm{COCHCOR}_{2}\right]^{-}=\mathrm{acac}$, ba, dbm, tfba, tfth, tffu, tfaa, hfaa) en tris( $\beta$-diketonato)cobalt(III) komplekse (met $\beta$-diketonato $=\mathrm{acac}$, ba, dbm, tfba, tfaa). Hierdie paramagnetiese komplekse is gekarakteriseer deur massa-spektroskopie, X-straal-kristallografie en smeltpunt-bepalings. Die elektochemiese gedrag van die tris( $\beta$ diketonato)chroom(III) komplekse is ondersoek deur sikliese voltammetrie (CV), lineêre skandeer-voltammetrie (LSV) en reghoekige golf-voltammetrie (SWV). Die reduksie potensiale van die $\mathrm{Cr}^{\mathrm{III}}(\beta \text {-diketonato })_{3} \rightarrow \mathrm{Cr}^{\mathrm{II}}(\beta \text {-diketonato })_{3}$ proses korreleer lineêr met die volgende elektroniese parameters: 1) die suur dissosiasie-konstante $\left(\mathrm{p} K_{\mathrm{a}}\right)$ van die ongekoördineerde $\beta$ diketonato ligand, 2) die som van die elektronegatiwiteite ( $\Sigma \chi$ ) van die end-groepe ( $\mathrm{R}_{1}$ en $\mathrm{R}_{2}$ ) op die $\beta$-diketonato ligand, en 3 ) die som van die Hammett-sigma-konstantes ( $\Sigma \sigma$ ) van die endgroepe ( $\mathrm{R}_{1}$ en $\mathrm{R}_{2}$ ) op die $\beta$-diketonato ligand. DFT-berekeninge is gedoen op beide hierdie metaal $(\beta \text {-diketonato })_{3}$ series. Die molekulêre geometrie, spin-toestand en populasie van die moontlike isomere is bereken in hierdie studie. DFT-berekeninge het die begrip van die kristalstrukture gekomplementeer. Vir $\mathrm{Cr}^{\text {III }}(\beta \text {-diketonato })_{3}$ komplekse is ' n lineêre verband bepaal tussen hulle reduksie potensiale en elektron affiniteit (EA), sowel as tussen reduksie potensiale en die energieë van die laagste besette molekulêre orbitale ( $E_{\mathrm{LUMO}}$ ).

Elektrochemiese gedrag van chroom(0) karbeen komplekse is ondersoek deur sikliese voltammetrie. Die verskil in oksidasie-potensiaal van die fac/mer isomere, is in hierdie studie vir die eerste keer vir chroom(0) karbeen komplekse waargeneem en bespreek. DFT-berekeninge het die volgende lineêre verwantskappe met die redoks-prosesse van die $\operatorname{Cr}(0)$ karbeen komplekse getoon: 1) die lineêre verband tussen die katodiese potensiaal ( $E_{\mathrm{pc}}$ ) en die energieë van die laagste ongeökkupeerde molekulêre orbitale ( $E_{\mathrm{LUMO}}$ ), en 2 ) die lineêre verband tussen die anodiese potensiaal ( $E_{\text {ра }}$ ) en die energieë van die hoogste besette molekulêre orbitale ( $E_{\text {номо }}$ ).

## Sleutelterme

Chroom, Kobalt, tris( $\beta$-diketonato)metaal komplekse, Fischerkarbeenkomplekse, DFT, CV.

## Declaration.

I, Renyuan Liu, declare that the dissertation/thesis hereby handed in for the qualification Magister Scientiae in Chemistry at the University of the Free State is my own independent work and that I have not previously submitted the same work for a qualification at/in another university/faculty. I furthermore cede copyright of the thesis in favour of the University of the Free State.

Signed
Date

## Appendix

## D. Crystallography

Table D.1: Atomic coordinates ( $\mathrm{x} 10^{4}$ ) and equivalent isotropic displacement parameters $\left(\AA^{2} \mathrm{x}\right.$ $10^{3}$ ) for $\operatorname{Cr}(\mathrm{dbm})_{3}\{3\} . \mathrm{U}(\mathrm{eq})$ is defined as one third of the trace of the orthogonalized $\mathrm{U}^{\mathrm{ij}}$ tensor.

| l x | y | Z |  |  |
| :--- | :--- | ---: | ---: | :--- |
| $\mathrm{Cr}(1)$ | $7557(1)$ | $305(1)$ | $8672(1)$ | $25(1)$ |
| $\mathrm{O}(1)$ | $8365(1)$ | $-374(2)$ | $8132(1)$ | $27(1)$ |
| $\mathrm{O}(2)$ | $7573(1)$ | $2083(2)$ | $8230(1)$ | $27(1)$ |
| $\mathrm{O}(3)$ | $8339(1)$ | $994(2)$ | $9300(1)$ | $28(1)$ |
| $\mathrm{O}(4)$ | $7560(1)$ | $-1483(2)$ | $9094(1)$ | $26(1)$ |
| $\mathrm{O}(5)$ | $6718(1)$ | $903(2)$ | $9203(1)$ | $28(1)$ |
| $\mathrm{O}(6)$ | $6785(1)$ | $-319(2)$ | $8032(1)$ | $30(1)$ |
| $\mathrm{C}(1)$ | $8536(2)$ | $97(4)$ | $7596(2)$ | $26(1)$ |
| $\mathrm{C}(2)$ | $8276(2)$ | $1358(4)$ | $7351(2)$ | $28(1)$ |
| $\mathrm{C}(3)$ | $7815(2)$ | $2287(4)$ | $7676(2)$ | $28(1)$ |
| $\mathrm{C}(4)$ | $8556(2)$ | $434(4)$ | $9823(2)$ | $25(1)$ |
| $\mathrm{C}(5)$ | $8314(2)$ | $-871(4)$ | $10011(2)$ | $30(1)$ |
| $\mathrm{C}(6)$ | $7874(2)$ | $-1783(4)$ | $9633(2)$ | $25(1)$ |
| $\mathrm{C}(7)$ | $5979(2)$ | $987(4)$ | $9050(2)$ | $32(1)$ |
| $\mathrm{C}(8)$ | $5661(2)$ | $696(4)$ | $8449(2)$ | $41(1)$ |
| $\mathrm{C}(9)$ | $6060(2)$ | $71(4)$ | $7975(2)$ | $30(1)$ |
| $\mathrm{C}(10)$ | $9061(2)$ | $-809(4)$ | $7235(2)$ | $25(1)$ |
| $\mathrm{C}(11)$ | $9606(2)$ | $-286(4)$ | $6832(2)$ | $33(1)$ |
| $\mathrm{C}(12)$ | $10119(3)$ | $-1161(5)$ | $6541(2)$ | $45(1)$ |
| $\mathrm{C}(13)$ | $10076(2)$ | $-2561(4)$ | $6635(2)$ | $42(1)$ |
| $\mathrm{C}(14)$ | $9522(3)$ | $-3079(4)$ | $7020(2)$ | $41(1)$ |
| $\mathrm{C}(15)$ | $9026(2)$ | $-2211(4)$ | $7325(2)$ | $32(1)$ |


| C(16) | 7579(2) | 3624(4) | 7379(2) | 28(1) |
| :---: | :---: | :---: | :---: | :---: |
| C(17) | 7459(2) | 3767(4) | 6729(2) | 45(1) |
| C(18) | 7208(3) | 5006(5) | 6470(2) | 53(1) |
| C(19) | 7085(2) | 6115(5) | 6854(2) | 47(1) |
| $\mathrm{C}(20)$ | 7205(3) | 5989(4) | 7495(2) | 47(1) |
| C(21) | 7450(2) | 4749(4) | 7756(2) | 39(1) |
| C(22) | 9136(2) | 1223(4) | 10227(2) | 27(1) |
| C(23) | 9376(3) | 808(4) | 10827(2) | 51(1) |
| C(24) | 9965(3) | 1506(5) | 11166(2) | 59(1) |
| C(25) | 10312(2) | 2632(4) | 10921(2) | 42(1) |
| C(26) | 10066(3) | 3070(5) | 10343(2) | 56(1) |
| C(27) | 9473(3) | 2394(5) | 9998(2) | 49(1) |
| C(28) | 7776(2) | -3239(4) | 9843(2) | 27(1) |
| C(29) | 8019(3) | -3691(5) | 10438(2) | 60(1) |
| C(30) | 7941(3) | -5061(5) | 10592(2) | 75(2) |
| C(31) | 7635(2) | -5989(4) | 10167(2) | 47(1) |
| C(32) | 7360(3) | -5539(4) | 9585(2) | 51(1) |
| C(33) | 7428(3) | -4173(4) | 9430(2) | 43(1) |
| C(34) | 5476(2) | 1437(4) | 9564(2) | 34(1) |
| C(35) | 4657(2) | 1454(4) | 9493(2) | 46(1) |
| C(36) | 4204(3) | 1843(5) | 9986(2) | 57(1) |
| C(37) | 4555(3) | 2210(5) | 10552(3) | 60(1) |
| C(38) | 5361(3) | 2192(5) | 10633(2) | 57(1) |
| C(39) | 5821(2) | 1810(4) | 10141(2) | 43(1) |
| C(40) | 5673(2) | -185(4) | 7340(2) | 39(1) |
| C(41) | 4864(3) | -333(5) | 7247(2) | 57(1) |
| $\mathrm{C}(42)$ | 4536(3) | -512(6) | 6640(2) | 67(2) |
| C(43) | 5001(3) | -529(5) | 6138(2) | 60(1) |
| C(44) | 5802(3) | -405(4) | 6221(2) | 54(1) |
| C(45) | 6138(3) | -235(4) | 6823(2) | 42(1) |

Table D.2: Bond lengths [ $\AA$ ] for $\operatorname{Cr}(\mathrm{dbm})_{3}\{3\}$

|  | Bond length [A] |
| :--- | :---: |
| $\mathrm{Cr}(1)-\mathrm{O}(6)$ | $1.939(2)$ |
| $\mathrm{Cr}(1)-\mathrm{O}(1)$ | $1.945(2)$ |
| $\mathrm{Cr}(1)-\mathrm{O}(5)$ | $1.949(2)$ |
| $\mathrm{Cr}(1)-\mathrm{O}(3)$ | $1.954(2)$ |
| $\mathrm{Cr}(1)-\mathrm{O}(4)$ | $1.959(2)$ |
| $\mathrm{Cr}(1)-\mathrm{O}(2)$ | $1.971(2)$ |
| $\mathrm{O}(1)-\mathrm{C}(1)$ | $1.274(4)$ |
| $\mathrm{O}(2)-\mathrm{C}(3)$ | $1.279(4)$ |
| $\mathrm{O}(3)-\mathrm{C}(4)$ | $1.275(4)$ |
| $\mathrm{O}(4)-\mathrm{C}(6)$ | $1.274(4)$ |
| $\mathrm{O}(5)-\mathrm{C}(7)$ | $1.283(4)$ |
| $\mathrm{O}(6)-\mathrm{C}(9)$ | $1.288(4)$ |
| $\mathrm{C}(1)-\mathrm{C}(2)$ | $1.398(5)$ |
| $\mathrm{C}(1)-\mathrm{C}(10)$ | $1.492(5)$ |
| $\mathrm{C}(2)-\mathrm{C}(3)$ | $1.400(5)$ |
| $\mathrm{C}(3)-\mathrm{C}(16)$ | $1.494(5)$ |
| $\mathrm{C}(4)-\mathrm{C}(5)$ | $1.400(5)$ |
| $\mathrm{C}(4)-\mathrm{C}(22)$ | $1.489(5)$ |
| $\mathrm{C}(5)-\mathrm{C}(6)$ | $1.380(5)$ |
| $\mathrm{C}(6)-\mathrm{C}(28)$ | $1.390(5)$ |
| $\mathrm{C}(7)-\mathrm{C}(8)$ | $1.498(5)$ |
| $\mathrm{C}(7)-\mathrm{C}(34)$ | $1.391(5)$ |
| $\mathrm{C}(8)-\mathrm{C}(9)$ | $1.483(5)$ |
| $\mathrm{C}(9)-\mathrm{C}(40)$ | $1.382(5)$ |
| $\mathrm{C}(10)-\mathrm{C}(15)$ | $1.391(5)$ |
| $\mathrm{C}(10)-\mathrm{C}(11)$ | $1.381(5)$ |
| $\mathrm{C}(11)-\mathrm{C}(12)$ | C |


| $\mathrm{C}(17)-\mathrm{C}(18)$ | $1.385(6)$ |
| :--- | :--- |
| $\mathrm{C}(18)-\mathrm{C}(19)$ | $1.376(6)$ |
| $\mathrm{C}(19)-\mathrm{C}(20)$ | $1.370(6)$ |
| $\mathrm{C}(20)-\mathrm{C}(21)$ | $1.385(5)$ |
| $\mathrm{C}(22)-\mathrm{C}(27)$ | $1.375(5)$ |
| $\mathrm{C}(22)-\mathrm{C}(23)$ | $1.378(5)$ |
| $\mathrm{C}(23)-\mathrm{C}(24)$ | $1.384(6)$ |
| $\mathrm{C}(24)-\mathrm{C}(25)$ | $1.360(6)$ |
| $\mathrm{C}(25)-\mathrm{C}(26)$ | $1.347(6)$ |
| $\mathrm{C}(26)-\mathrm{C}(27)$ | $1.383(5)$ |
| $\mathrm{C}(28)-\mathrm{C}(33)$ | $1.377(5)$ |
| $\mathrm{C}(28)-\mathrm{C}(29)$ | $1.382(5)$ |
| $\mathrm{C}(29)-\mathrm{C}(30)$ | $1.382(6)$ |
| $\mathrm{C}(30)-\mathrm{C}(31)$ | $1.362(6)$ |
| $\mathrm{C}(31)-\mathrm{C}(32)$ | $1.371(5)$ |
| $\mathrm{C}(32)-\mathrm{C}(33)$ | $1.377(5)$ |
| $\mathrm{C}(34)-\mathrm{C}(39)$ | $1.380(5)$ |
| $\mathrm{C}(34)-\mathrm{C}(35)$ | $1.392(5)$ |
| $\mathrm{C}(35)-\mathrm{C}(36)$ | $1.382(6)$ |
| $\mathrm{C}(36)-\mathrm{C}(37)$ | $1.362(7)$ |
| $\mathrm{C}(37)-\mathrm{C}(38)$ | $1.371(6)$ |
| $\mathrm{C}(38)-\mathrm{C}(39)$ | $1.386(5)$ |
| $\mathrm{C}(40)-\mathrm{C}(45)$ | $1.385(5)$ |
| $\mathrm{C}(40)-\mathrm{C}(41)$ | $1.385(6)$ |
| $\mathrm{C}(41)-\mathrm{C}(42)$ | $1.391(6)$ |
| $\mathrm{C}(42)-\mathrm{C}(43)$ | $1.367(7)$ |
| $\mathrm{C}(43)-\mathrm{C}(44)$ |  |
| $\mathrm{C}(44)-\mathrm{C}(45)$ |  |

Table D.3: Angles [ $\AA$ ] for $\mathrm{Cr}(\mathrm{dbm})_{3}\{3\}$

|  | Angles [ ${ }^{\circ}$ ] |
| :--- | :---: |
| $\mathrm{O}(6)-\mathrm{Cr}(1)-\mathrm{O}(1)$ | $87.28(10)$ |
| $\mathrm{O}(6)-\mathrm{Cr}(1)-\mathrm{O}(5)$ | $90.57(10)$ |
| $\mathrm{O}(1)-\mathrm{Cr}(1)-\mathrm{O}(5)$ | $177.12(10)$ |
| $\mathrm{O}(6)-\mathrm{Cr}(1)-\mathrm{O}(3)$ | $178.01(10)$ |
| $\mathrm{O}(1)-\mathrm{Cr}(1)-\mathrm{O}(3)$ | $92.54(10)$ |
| $\mathrm{O}(5)-\mathrm{Cr}(1)-\mathrm{O}(3)$ | $89.68(10)$ |
| $\mathrm{O}(6)-\mathrm{Cr}(1)-\mathrm{O}(4)$ | $91.58(10)$ |
| $\mathrm{O}(1)-\mathrm{Cr}(1)-\mathrm{O}(4)$ | $88.90(10)$ |
| $\mathrm{O}(5)-\mathrm{Cr}(1)-\mathrm{O}(4)$ | $89.25(10)$ |
| $\mathrm{O}(3)-\mathrm{Cr}(1)-\mathrm{O}(4)$ | $90.40(9)$ |
| $\mathrm{O}(6)-\mathrm{Cr}(1)-\mathrm{O}(2)$ | $88.11(10)$ |
| $\mathrm{O}(1)-\mathrm{Cr}(1)-\mathrm{O}(2)$ | $89.58(9)$ |
| $\mathrm{O}(5)-\mathrm{Cr}(1)-\mathrm{O}(2)$ | $92.27(10)$ |
| $\mathrm{O}(3)-\mathrm{Cr}(1)-\mathrm{O}(2)$ | $89.91(10)$ |
| $\mathrm{O}(4)-\mathrm{Cr}(1)-\mathrm{O}(2)$ | $178.46(10)$ |
| $\mathrm{C}(1)-\mathrm{O}(1)-\mathrm{Cr}(1)$ | $127.0(2)$ |
| $\mathrm{C}(3)-\mathrm{O}(2)-\mathrm{Cr}(1)$ | $125.9(2)$ |
| $\mathrm{C}(4)-\mathrm{O}(3)-\mathrm{Cr}(1)$ | $127.2(2)$ |
| $\mathrm{C}(6)-\mathrm{O}(4)-\mathrm{Cr}(1)$ | $127.4(2)$ |
| $\mathrm{C}(7)-\mathrm{O}(5)-\mathrm{Cr}(1)$ | $127.4(2)$ |
| $\mathrm{C}(9)-\mathrm{O}(6)-\mathrm{Cr}(1)$ | $125.7(2)$ |
| $\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)$ | $124.6(3)$ |
| $\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(10)$ | $114.4(3)$ |
| $\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(10)$ | $121.0(3)$ |
| $\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$ | $124.0(3)$ |
| $\mathrm{O}(2)-\mathrm{C}(3)-\mathrm{C}(2)$ | $124.4(3)$ |
| $\mathrm{O}(2)-\mathrm{C}(3)-\mathrm{C}(16)$ | $115.6(3)$ |
| $\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(16)$ | $120.0(3)$ |
| $\mathrm{O}(3)-\mathrm{C}(4)-\mathrm{C}(5)$ | $124.1(3)$ |
| $\mathrm{O}(3)-\mathrm{C}(4)-\mathrm{C}(22)$ | $115.8(3)$ |
| $\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(22)$ | $120.0(3)$ |
| $\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(4)$ | $125.0(3)$ |


| $\mathrm{O}(4)-\mathrm{C}(6)-\mathrm{C}(5)$ | $124.1(3)$ |
| :--- | :--- |
| $\mathrm{O}(4)-\mathrm{C}(6)-\mathrm{C}(28)$ | $115.9(3)$ |
| $\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(28)$ | $119.9(3)$ |
| $\mathrm{O}(5)-\mathrm{C}(7)-\mathrm{C}(8)$ | $123.3(3)$ |
| $\mathrm{O}(5)-\mathrm{C}(7)-\mathrm{C}(34)$ | $115.1(3)$ |
| $\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(34)$ | $121.5(3)$ |
| $\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(7)$ | $125.2(4)$ |
| $\mathrm{O}(6)-\mathrm{C}(9)-\mathrm{C}(8)$ | $124.2(3)$ |
| $\mathrm{O}(6)-\mathrm{C}(9)-\mathrm{C}(40)$ | $114.4(3)$ |
| $\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(40)$ | $121.4(3)$ |
| $\mathrm{C}(15)-\mathrm{C}(10)-\mathrm{C}(11)$ | $118.9(3)$ |
| $\mathrm{C}(15)-\mathrm{C}(10)-\mathrm{C}(1)$ | $118.9(3)$ |
| $\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(1)$ | $122.1(3)$ |
| $\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(10)$ | $120.1(4)$ |
| $\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{C}(11)$ | $120.3(4)$ |
| $\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(12)$ | $119.5(4)$ |
| $\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$ | $120.5(4)$ |
| $\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(10)$ | $120.7(4)$ |
| $\mathrm{C}(21)-\mathrm{C}(16)-\mathrm{C}(17)$ | $118.4(3)$ |
| $\mathrm{C}(21)-\mathrm{C}(16)-\mathrm{C}(3)$ | $119.6(3)$ |
| $\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{C}(3)$ | $122.0(3)$ |
| $\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{C}(16)$ | $120.5(4)$ |
| $\mathrm{C}(19)-\mathrm{C}(18)-\mathrm{C}(17)$ | $120.1(4)$ |
| $\mathrm{C}(20)-\mathrm{C}(19)-\mathrm{C}(18)$ | $119.9(4)$ |
| $\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(21)$ | $120.2(4)$ |
| $\mathrm{C}(16)-\mathrm{C}(21)-\mathrm{C}(20)$ | $120.9(4)$ |
| $\mathrm{C}(27)-\mathrm{C}(22)-\mathrm{C}(23)$ | $117.5(4)$ |
| $\mathrm{C}(27)-\mathrm{C}(22)-\mathrm{C}(4)$ | $119.9(3)$ |
| $\mathrm{C}(23)-\mathrm{C}(22)-\mathrm{C}(4)$ | $122.6(3)-\mathrm{C}(26)-\mathrm{C}(27)$ |
| $\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{C}(24)$ | $120.7(4)$ |
| $\mathrm{C}(25)-\mathrm{C}(24)-\mathrm{C}(23)$ | $120.8(4)$ |
| $\mathrm{C}(26)-\mathrm{C}(25)-\mathrm{C}(24)$ | $118.9(4)$ |


| $\mathrm{C}(33)-\mathrm{C}(28)-\mathrm{C}(29)$ | $118.1(3)$ |
| :--- | :--- |
| $\mathrm{C}(33)-\mathrm{C}(28)-\mathrm{C}(6)$ | $119.2(3)$ |
| $\mathrm{C}(29)-\mathrm{C}(28)-\mathrm{C}(6)$ | $122.7(3)$ |
| $\mathrm{C}(28)-\mathrm{C}(29)-\mathrm{C}(30)$ | $119.8(4)$ |
| $\mathrm{C}(31)-\mathrm{C}(30)-\mathrm{C}(29)$ | $121.5(4)$ |
| $\mathrm{C}(30)-\mathrm{C}(31)-\mathrm{C}(32)$ | $119.1(4)$ |
| $\mathrm{C}(31)-\mathrm{C}(32)-\mathrm{C}(33)$ | $119.8(4)$ |
| $\mathrm{C}(32)-\mathrm{C}(33)-\mathrm{C}(28)$ | $121.6(4)$ |
| $\mathrm{C}(39)-\mathrm{C}(34)-\mathrm{C}(35)$ | $118.1(4)$ |
| $\mathrm{C}(39)-\mathrm{C}(34)-\mathrm{C}(7)$ | $119.6(3)$ |
| $\mathrm{C}(35)-\mathrm{C}(34)-\mathrm{C}(7)$ | $122.2(4)$ |
| $\mathrm{C}(36)-\mathrm{C}(35)-\mathrm{C}(34)$ | $120.7(4)$ |
| $\mathrm{C}(37)-\mathrm{C}(36)-\mathrm{C}(35)$ | $120.3(4)$ |
| $\mathrm{C}(36)-\mathrm{C}(37)-\mathrm{C}(38)$ | $120.0(4)$ |
| $\mathrm{C}(37)-\mathrm{C}(38)-\mathrm{C}(39)$ | $120.2(4)$ |
| $\mathrm{C}(34)-\mathrm{C}(39)-\mathrm{C}(38)$ | $120.6(4)$ |
| $\mathrm{C}(45)-\mathrm{C}(40)-\mathrm{C}(41)$ | $118.8(4)$ |
| $\mathrm{C}(45)-\mathrm{C}(40)-\mathrm{C}(9)$ | $118.7(4)$ |
| $\mathrm{C}(41)-\mathrm{C}(40)-\mathrm{C}(9)$ | $122.5(4)$ |
| $\mathrm{C}(40)-\mathrm{C}(41)-\mathrm{C}(42)$ | $119.7(5)$ |
| $\mathrm{C}(43)-\mathrm{C}(42)-\mathrm{C}(41)$ | $120.4(5)$ |
| $\mathrm{C}(42)-\mathrm{C}(43)-\mathrm{C}(44)$ | $120.8(4)$ |
| $\mathrm{C}(43)-\mathrm{C}(44)-\mathrm{C}(45)$ | $119.5(5)$ |
| $\mathrm{C}(44)-\mathrm{C}(45)-\mathrm{C}(40)$ | $120.8(4)$ |

Table D.4: Anisotropic displacement parameters $\left(\AA^{2}{ }^{2} 10^{3}\right)$ for $\operatorname{Cr}(\mathrm{dbm})_{3}\{3\}$. The anisotropic displacement factor exponent takes the form: $-2 p^{2}\left[h^{2} a^{* 2} U^{11}+\ldots+2 h k a^{*} b^{*} U^{12}\right]$

|  | $\mathrm{U}^{11}$ | $\mathrm{U}^{22}$ | $\mathrm{U}^{33}$ | $\mathrm{U}^{23}$ | $\mathrm{U}^{13}$ | $\mathrm{U}^{12}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathrm{Cr}(1)$ | $25(1)$ | $29(1)$ | $21(1)$ | $2(1)$ | $4(1)$ | $2(1)$ |
| $\mathrm{O}(1)$ | $28(1)$ | $31(1)$ | $22(1)$ | $4(1)$ | $6(1)$ | $5(1)$ |
| $\mathrm{O}(2)$ | $32(1)$ | $28(1)$ | $22(1)$ | $-1(1)$ | $7(1)$ | $5(1)$ |
| $\mathrm{O}(3)$ | $30(1)$ | $31(1)$ | $23(1)$ | $3(1)$ | $5(1)$ | $-1(1)$ |
| $\mathrm{O}(4)$ | $28(1)$ | $32(1)$ | $20(1)$ | $2(1)$ | $2(1)$ | $-2(1)$ |
| $\mathrm{O}(5)$ | $25(1)$ | $35(1)$ | $26(1)$ | $-3(1)$ | $5(1)$ | $3(1)$ |


| $\mathrm{O}(6)$ | $28(1)$ | $33(1)$ | $30(1)$ | $-1(1)$ | $1(1)$ | $5(1)$ |
| :--- | :--- | :--- | :--- | :---: | :---: | :---: |
| $\mathrm{C}(1)$ | $24(2)$ | $29(2)$ | $26(2)$ | $0(2)$ | $2(1)$ | $0(2)$ |
| $\mathrm{C}(2)$ | $35(2)$ | $29(2)$ | $20(2)$ | $1(2)$ | $7(2)$ | $6(2)$ |
| $\mathrm{C}(3)$ | $25(2)$ | $31(2)$ | $27(2)$ | $2(2)$ | $-1(2)$ | $-2(2)$ |
| $\mathrm{C}(4)$ | $22(2)$ | $33(2)$ | $22(2)$ | $0(2)$ | $9(1)$ | $1(2)$ |
| $\mathrm{C}(5)$ | $35(2)$ | $37(2)$ | $18(2)$ | $-2(2)$ | $2(2)$ | $-4(2)$ |
| $\mathrm{C}(6)$ | $22(2)$ | $29(2)$ | $24(2)$ | $0(2)$ | $7(1)$ | $5(2)$ |
| $\mathrm{C}(7)$ | $29(2)$ | $29(2)$ | $37(2)$ | $3(2)$ | $5(2)$ | $-1(2)$ |
| $\mathrm{C}(8)$ | $29(2)$ | $52(3)$ | $42(2)$ | $-8(2)$ | $-1(2)$ | $4(2)$ |
| $\mathrm{C}(9)$ | $35(2)$ | $28(2)$ | $28(2)$ | $2(2)$ | $0(2)$ | $4(2)$ |
| $\mathrm{C}(10)$ | $29(2)$ | $30(2)$ | $17(2)$ | $-2(2)$ | $0(1)$ | $2(2)$ |
| $\mathrm{C}(11)$ | $40(2)$ | $26(2)$ | $34(2)$ | $-2(2)$ | $10(2)$ | $2(2)$ |
| $\mathrm{C}(12)$ | $46(3)$ | $53(3)$ | $39(2)$ | $-8(2)$ | $19(2)$ | $6(2)$ |
| $\mathrm{C}(13)$ | $54(3)$ | $39(2)$ | $33(2)$ | $-9(2)$ | $6(2)$ | $20(2)$ |
| $\mathrm{C}(14)$ | $58(3)$ | $36(2)$ | $29(2)$ | $-5(2)$ | $0(2)$ | $9(2)$ |
| $\mathrm{C}(15)$ | $38(2)$ | $32(2)$ | $27(2)$ | $0(2)$ | $1(2)$ | $0(2)$ |
| $\mathrm{C}(16)$ | $26(2)$ | $27(2)$ | $32(2)$ | $1(2)$ | $7(2)$ | $1(2)$ |
| $\mathrm{C}(17)$ | $59(3)$ | $45(3)$ | $31(2)$ | $3(2)$ | $4(2)$ | $18(2)$ |
| $\mathrm{C}(18)$ | $64(3)$ | $56(3)$ | $40(2)$ | $14(2)$ | $5(2)$ | $15(2)$ |
| $\mathrm{C}(19)$ | $40(3)$ | $43(3)$ | $59(3)$ | $22(2)$ | $4(2)$ | $8(2)$ |
| $\mathrm{C}(20)$ | $54(3)$ | $25(2)$ | $62(3)$ | $0(2)$ | $10(2)$ | $6(2)$ |
| $\mathrm{C}(21)$ | $48(2)$ | $35(2)$ | $36(2)$ | $-1(2)$ | $7(2)$ | $5(2)$ |
| $\mathrm{C}(22)$ | $27(2)$ | $30(2)$ | $24(2)$ | $-4(2)$ | $3(1)$ | $0(2)$ |
| $\mathrm{C}(23)$ | $66(3)$ | $36(2)$ | $48(3)$ | $7(2)$ | $-20(2)$ | $-14(2)$ |
| $\mathrm{C}(24)$ | $71(3)$ | $48(3)$ | $56(3)$ | $6(2)$ | $-34(3)$ | $-2(2)$ |
| $\mathrm{C}(25)$ | $30(2)$ | $52(3)$ | $46(2)$ | $-20(2)$ | $-1(2)$ | $-3(2)$ |
| $\mathrm{C}(26)$ | $65(3)$ | $59(3)$ | $45(3)$ | $-9(2)$ | $11(2)$ | $-34(3)$ |
| $\mathrm{C}(27)$ | $59(3)$ | $63(3)$ | $25(2)$ | $0(2)$ | $3(2)$ | $-21(2)$ |
| $\mathrm{C}(28)$ | $25(2)$ | $27(2)$ | $30(2)$ | $3(2)$ | $7(2)$ | $-2(2)$ |
| $\mathrm{C}(29)$ | $80(4)$ | $51(3)$ | $44(3)$ | $20(2)$ | $-25(2)$ | $-34(3)$ |
| $\mathrm{C}(30)$ | $99(4)$ | $64(3)$ | $58(3)$ | $34(3)$ | $-37(3)$ | $-40(3)$ |
| $\mathrm{C}(31)$ | $47(3)$ | $37(2)$ | $57(3)$ | $17(2)$ | $-1(2)$ | $-6(2)$ |
| $\mathrm{C}(32)$ | $82(3)$ | $31(2)$ | $39(2)$ | $-6(2)$ | $-5(2)$ | $-9(2)$ |
|  | $31(2)$ | $28(2)$ | $2(2)$ | $-5(2)$ | $-2(2)$ |  |

## APPENDIX

| $\mathrm{C}(34)$ | $33(2)$ | $26(2)$ | $44(2)$ | $-4(2)$ | $12(2)$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathrm{C}(35)$ | $38(3)$ | $44(3)$ | $57(3)$ | $-3(2)$ | $14(2)$ |
| $\mathrm{C}(36)$ | $43(3)$ | $48(3)$ | $83(4)$ | $-3(3)$ | $23(3)$ |
| $\mathrm{C}(37)$ | $56(3)$ | $51(3)$ | $76(4)$ | $-15(3)$ | $38(3)$ |
| $\mathrm{C}(38)$ | $63(3)$ | $59(3)$ | $50(3)$ | $-21(2)$ | $19(2)$ |
| $\mathrm{C}(39) 43(3)$ | $46(3)$ | $43(2)$ | $-13(2)$ | $17(2)$ | $-8(3)$ |
| $\mathrm{C}(40) 41(2)$ | $39(2)$ | $37(2)$ | $-5(2)$ | $-9(2)$ | $10(2)$ |
| $\mathrm{C}(41) 44(3)$ | $76(3)$ | $50(3)$ | $-17(3)$ | $-7(2)$ | $4(2)$ |
| $\mathrm{C}(42) 50(3)$ | $87(4)$ | $63(3)$ | $-18(3)$ | $-22(3)$ | $5(3)$ |
| $\mathrm{C}(43) 73(4)$ | $52(3)$ | $52(3)$ | $-10(2)$ | $-29(3)$ | $10(3)$ |
| $\mathrm{C}(44)$ | $79(4)$ | $45(3)$ | $38(2)$ | $0(2)$ | $-6(2)$ |
| $\mathrm{C}(45) 53(3)$ | $37(2)$ | $35(2)$ | $-2(2)$ | $-7(2)$ | $1(2)$ |

Table D.5: Hydrogen coordinates ( $\times 10^{4}$ ) and isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for $\mathrm{Cr}(\mathrm{dbm})_{3}\{3\}$.

|  | x | y | z |  |
| :--- | :--- | ---: | ---: | :--- |
| $\mathrm{H}(2)$ | 8420 | 1600 | 6938 | 33 |
| $\mathrm{H}(5)$ | 8461 | -1153 | 10429 | 36 |
| $\mathrm{H}(8)$ | 5127 | 948 | 8357 | 49 |
| $\mathrm{H}(11)$ | 9628 | 674 | 6756 | 40 |
| $\mathrm{H}(12)$ | 10502 | -797 | 6275 | 55 |
| $\mathrm{H}(13)$ | 10428 | -3161 | 6436 | 51 |
| $\mathrm{H}(14) 9480$ | -4043 | 7076 | 49 |  |
| $\mathrm{H}(15) 8657$ | -2580 | 7601 | 39 |  |
| $\mathrm{H}(17) 7549$ | 3008 | 6461 | 54 |  |
| $\mathrm{H}(18) 7120$ | 5090 | 6026 | 64 |  |
| $\mathrm{H}(19)$ | 6917 | 6966 | 6676 | 57 |
| $\mathrm{H}(20)$ | 7121 | 6755 | 7760 | 56 |
| $\mathrm{H}(21)$ | 7531 | 4671 | 8200 | 47 |
| $\mathrm{H}(23)$ | 9133 | 34 | 11009 | 61 |
| $\mathrm{H}(24)$ | 10130 | 1196 | 11576 | 71 |
| $\mathrm{H}(25)$ | 10721 | 3102 | 11154 | 51 |
| $\mathrm{H}(26)$ | 10304 | 3857 | 10169 | 67 |
| $\mathrm{H}(27)$ | 9295 | 2743 | 9598 | 59 |


| $\mathrm{H}(29) 8239$ | -3062 | 10740 | 72 |
| :---: | :---: | :---: | :---: |
| $\mathrm{H}(30) 8105$ | -5362 | 11003 | 90 |
| $\mathrm{H}(31) 7613$ | -6936 | 10272 | 56 |
| $\mathrm{H}(32) 7124$ | -6167 | 9291 | 61 |
| $\mathrm{H}(33) 7230$ | -3869 | 9027 | 51 |
| $\mathrm{H}(35) 4406$ | 1196 | 9101 | 55 |
| $\mathrm{H}(36) 3646$ | 1854 | 9931 | 69 |
| $\mathrm{H}(37) 4242$ | 2478 | 10890 | 72 |
| $\mathrm{H}(38) 5605$ | 2442 | 11029 | 68 |
| $\mathrm{H}(39) 6379$ | 1804 | 10200 | 52 |
| $\mathrm{H}(41) 4536$ | -312 | 7597 | 68 |
| $\mathrm{H}(42) 3982$ | -623 | 6575 | 81 |
| $\mathrm{H}(43) 4769$ | -629 | 5725 | 72 |
| $\mathrm{H}(44) 6125$ | -435 | 5868 | 65 |
| $\mathrm{H}(45) 6694$ | -151 | 6881 | 50 |

Table D.6: Torsion angles [ ${ }^{\circ}$ ] for $\operatorname{Cr}(\mathrm{dbm})_{3}\{3\}$.

|  | Torsion angles [$]$ |
| :--- | :---: |
| $\mathrm{Cr}(1)-\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)$ | $13.0(5)$ |
| $\mathrm{Cr}(1)-\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(10)$ | $-167.7(2)$ |
| $\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$ | $2.5(6)$ |
| $\mathrm{C}(10)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$ | $-176.8(3)$ |
| $\mathrm{Cr}(1)-\mathrm{O}(2)-\mathrm{C}(3)-\mathrm{C}(2)$ | $-15.7(5)$ |
| $\mathrm{Cr}(1)-\mathrm{O}(2)-\mathrm{C}(3)-\mathrm{C}(16)$ | $164.7(2)$ |
| $\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{O}(2)$ | $-0.8(6)$ |
| $\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(16)$ | $178.7(3)$ |
| $\mathrm{Cr}(1)-\mathrm{O}(3)-\mathrm{C}(4)-\mathrm{C}(5)$ | $6.4(5)$ |
| $\mathrm{Cr}(1)-\mathrm{O}(3)-\mathrm{C}(4)-\mathrm{C}(22)$ | $-177.0(2)$ |
| $\mathrm{O}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$ | $6.9(6)$ |
| $\mathrm{C}(22)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$ | $-169.6(3)$ |
| $\mathrm{Cr}(1)-\mathrm{O}(4)-\mathrm{C}(6)-\mathrm{C}(5)$ | $-3.2(5)$ |
| $\mathrm{Cr}(1)-\mathrm{O}(4)-\mathrm{C}(6)-\mathrm{C}(28)$ | $179.4(2)$ |
| $\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{O}(4)$ | $-8.5(6)$ |
| $\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(28)$ | $168.8(3)$ |


| $\mathrm{Cr}(1)-\mathrm{O}(5)-\mathrm{C}(7)-\mathrm{C}(8)$ | $-2.5(5)$ |
| :--- | :---: |
| $\mathrm{Cr}(1)-\mathrm{O}(5)-\mathrm{C}(7)-\mathrm{C}(34)$ | $178.1(2)$ |
| $\mathrm{O}(5)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$ | $11.5(6)$ |
| $\mathrm{C}(34)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$ | $-169.2(4)$ |
| $\mathrm{Cr}(1)-\mathrm{O}(6)-\mathrm{C}(9)-\mathrm{C}(8)$ | $-18.4(5)$ |
| $\mathrm{Cr}(1)-\mathrm{O}(6)-\mathrm{C}(9)-\mathrm{C}(40)$ | $160.6(2)$ |
| $\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{O}(6)$ | $-0.3(7)$ |
| $\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(40)$ | $-179.2(4)$ |
| $\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(10)-\mathrm{C}(15)$ | $29.5(4)$ |
| $\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(10)-\mathrm{C}(15)$ | $-151.2(3)$ |
| $\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(10)-\mathrm{C}(11)$ | $-147.7(3)$ |
| $\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(10)-\mathrm{C}(11)$ | $31.7(5)$ |
| $\mathrm{C}(15)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$ | $-1.7(5)$ |
| $\mathrm{C}(1)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$ | $175.4(3)$ |
| $\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$ | $1.9(6)$ |
| $\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$ | $0.0(6)$ |
| $\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$ | $-1.9(6)$ |
| $\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(10)$ | $2.1(6)$ |
| $\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(15)-\mathrm{C}(14)$ | $-0.3(5)$ |
| $\mathrm{C}(1)-\mathrm{C}(10)-\mathrm{C}(15)-\mathrm{C}(14)$ | $-7.5(5)$ |
| $\mathrm{O}(2)-\mathrm{C}(3)-\mathrm{C}(16)-\mathrm{C}(21)$ | $-177.5(3)$ |
| $\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(16)-\mathrm{C}(21)$ | $28.4(5)$ |
| $\mathrm{O}(2)-\mathrm{C}(3)-\mathrm{C}(16)-\mathrm{C}(17)$ | $-177.8(4)$ |
| $\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(16)-\mathrm{C}(17)$ | $-151.2(4)$ |
| $\mathrm{C}(21)-\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)$ | $-149.5(4)$ |
| $\mathrm{C}(3)-\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)$ | $30.9(5)$ |
| $\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)$ | $-0.7(6)$ |
| $\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(20)$ | $177.2(4)$ |
| $\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(21)$ | $0.9(7)$ |
| $\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{C}(21)-\mathrm{C}(20)-\mathrm{C}(22)-\mathrm{C}(27)$ | $-0.5(7)$ |
| $\mathrm{C}(3)-\mathrm{C}(16)-\mathrm{C}(21)-\mathrm{C}(20)$ | $0.0(7)$ |
| $\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{C}(16)$ | $0.2(6)$ |


| $\mathrm{O}(3)-\mathrm{C}(4)-\mathrm{C}(22)-\mathrm{C}(23)$ | $174.4(4)$ |
| :--- | :---: |
| $\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(22)-\mathrm{C}(23)$ | $-8.8(5)$ |
| $\mathrm{C}(27)-\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{C}(24)$ | $-3.7(6)$ |
| $\mathrm{C}(4)-\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{C}(24)$ | $174.4(4)$ |
| $\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{C}(25)$ | $1.2(7)$ |
| $\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{C}(25)-\mathrm{C}(26)$ | $0.8(7)$ |
| $\mathrm{C}(24)-\mathrm{C}(25)-\mathrm{C}(26)-\mathrm{C}(27)$ | $-0.2(7)$ |
| $\mathrm{C}(23)-\mathrm{C}(22)-\mathrm{C}(27)-\mathrm{C}(26)$ | $4.3(6)$ |
| $\mathrm{C}(4)-\mathrm{C}(22)-\mathrm{C}(27)-\mathrm{C}(26)$ | $-173.9(4)$ |
| $\mathrm{C}(25)-\mathrm{C}(26)-\mathrm{C}(27)-\mathrm{C}(22)$ | $-2.4(7)$ |
| $\mathrm{O}(4)-\mathrm{C}(6)-\mathrm{C}(28)-\mathrm{C}(33)$ | $5.9(5)$ |
| $\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(28)-\mathrm{C}(33)$ | $-171.6(3)$ |
| $\mathrm{O}(4)-\mathrm{C}(6)-\mathrm{C}(28)-\mathrm{C}(29)$ | $-173.9(4)$ |
| $\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(28)-\mathrm{C}(29)$ | $8.6(5)$ |
| $\mathrm{C}(33)-\mathrm{C}(28)-\mathrm{C}(29)-\mathrm{C}(30)$ | $2.9(7)$ |
| $\mathrm{C}(6)-\mathrm{C}(28)-\mathrm{C}(29)-\mathrm{C}(30)$ | $-177.3(4)$ |
| $\mathrm{C}(28)-\mathrm{C}(29)-\mathrm{C}(30)-\mathrm{C}(31)$ | $0.6(9)$ |
| $\mathrm{C}(29)-\mathrm{C}(30)-\mathrm{C}(31)-\mathrm{C}(32)$ | $-3.5(8)$ |
| $\mathrm{C}(30)-\mathrm{C}(31)-\mathrm{C}(32)-\mathrm{C}(33)$ | $-0.177 .9(4)$ |
| $\mathrm{C}(31)-\mathrm{C}(32)-\mathrm{C}(33)-\mathrm{C}(28)$ | $-0.3(7)$ |
| $\mathrm{C}(29)-\mathrm{C}(28)-\mathrm{C}(33)-\mathrm{C}(32)$ |  |
| $\mathrm{C}(6)-\mathrm{C}(28)-\mathrm{C}(33)-\mathrm{C}(32)$ | $-2.8(7)$ |
| $\mathrm{O}(5)-\mathrm{C}(7)-\mathrm{C}(34)-\mathrm{C}(39)$ | $0.8(7)$ |
| $\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(34)-\mathrm{C}(39)$ | $-3.6(6)$ |
| $\mathrm{O}(5)-\mathrm{C}(7)-\mathrm{C}(34)-\mathrm{C}(35)$ | $176.5(4)$ |
| $\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(34)-\mathrm{C}(35)$ | $4.0(5)$ |
| $\mathrm{C}(39)-\mathrm{C}(34)-\mathrm{C}(35)-\mathrm{C}(36)$ | $-175.4(4)$ |
| $\mathrm{C}(7)-\mathrm{C}(34)-\mathrm{C}(35)-\mathrm{C}(36)$ | $-173.8(3)$ |
| $\mathrm{C}(34)-\mathrm{C}(35)-\mathrm{C}(36)-\mathrm{C}(37)$ | $6.9(6)$ |
| $\mathrm{C}(35)-\mathrm{C}(36)-\mathrm{C}(37)-\mathrm{C}(38)$ | $0.4(6)$ |
| $\mathrm{C}(36)-\mathrm{C}(37)-\mathrm{C}(38)-\mathrm{C}(39)$ | $178.2(4)$ |
| $\mathrm{C}(35)-\mathrm{C}(34)-\mathrm{C}(39)-\mathrm{C}(38)$ | $-\mathrm{C}(39)-\mathrm{C}(38)$ |
| C | $\mathrm{C}(39)-\mathrm{C}(34)$ |


| $\mathrm{O}(6)-\mathrm{C}(9)-\mathrm{C}(40)-\mathrm{C}(45)$ | $-26.9(5)$ |
| :--- | :---: |
| $\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(40)-\mathrm{C}(45)$ | $152.1(4)$ |
| $\mathrm{O}(6)-\mathrm{C}(9)-\mathrm{C}(40)-\mathrm{C}(41)$ | $155.1(4)$ |
| $\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(40)-\mathrm{C}(41)$ | $-25.8(6)$ |
| $\mathrm{C}(45)-\mathrm{C}(40)-\mathrm{C}(41)-\mathrm{C}(42)$ | $-0.7(7)$ |
| $\mathrm{C}(9)-\mathrm{C}(40)-\mathrm{C}(41)-\mathrm{C}(42)$ | $177.3(4)$ |
| $\mathrm{C}(40)-\mathrm{C}(41)-\mathrm{C}(42)-\mathrm{C}(43)$ | $-0.7(8)$ |
| $\mathrm{C}(41)-\mathrm{C}(42)-\mathrm{C}(43)-\mathrm{C}(44)$ | $1.6(8)$ |
| $\mathrm{C}(42)-\mathrm{C}(43)-\mathrm{C}(44)-\mathrm{C}(45)$ | $-1.2(7)$ |
| $\mathrm{C}(43)-\mathrm{C}(44)-\mathrm{C}(45)-\mathrm{C}(40)$ | $-0.2(6)$ |
| $\mathrm{C}(41)-\mathrm{C}(40)-\mathrm{C}(45)-\mathrm{C}(44)$ | $1.1(6)$ |
| $\mathrm{C}(9)-\mathrm{C}(40)-\mathrm{C}(45)-\mathrm{C}(44)$ | $-176.9(4)$ |

Table D.7: Atomic coordinates ( $\mathrm{x} 10^{4}$ ) and equivalent isotropic displacement parameters ( $\AA^{2} \mathrm{X}$ $10^{3}$ ) for $\operatorname{Co}(\mathrm{ba})_{3}\{10\}$. $\mathrm{U}(\mathrm{eq})$ is defined as one third of the trace of the orthogonalized $\mathrm{U}^{\mathrm{ij}}$ tensor.

|  | x | y | z | $\mathrm{U}(\mathrm{eq})$ |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{Co}(1)$ | $7531(1)$ | $8713(1)$ | $7268(1)$ | $50(1)$ |
| $\mathrm{O}(1)$ | $8175(2)$ | $9641(3)$ | $6144(2)$ | $53(1)$ |
| $\mathrm{O}(4)$ | $9417(2)$ | $7869(3)$ | $7445(2)$ | $54(1)$ |
| $\mathrm{O}(3)$ | $7181(3)$ | $7317(3)$ | $6571(2)$ | $61(1)$ |
| $\mathrm{O}(5)$ | $6948(3)$ | $7681(3)$ | $8370(2)$ | $60(1)$ |
| $\mathrm{O}(2)$ | $5628(2)$ | $9571(2)$ | $7211(2)$ | $54(1)$ |
| $\mathrm{O}(6)$ | $7821(2)$ | $10204(2)$ | $7879(2)$ | $52(1)$ |
| $\mathrm{C}(1)$ | $7417(4)$ | $10663(4)$ | $5691(2)$ | $51(1)$ |
| $\mathrm{C}(2)$ | $5978(4)$ | $11132(4)$ | $5885(3)$ | $58(1)$ |
| $\mathrm{C}(3)$ | $5162(4)$ | $10548(4)$ | $6596(2)$ | $48(1)$ |
| $\mathrm{C}(6)$ | $10066(4)$ | $6729(4)$ | $7116(2)$ | $50(1)$ |
| $\mathrm{C}(5)$ | $9470(4)$ | $5944(4)$ | $6591(3)$ | $59(1)$ |
| $\mathrm{C}(4)$ | $8091(4)$ | $6244(4)$ | $6360(3)$ | $58(1)$ |
| $\mathrm{C}(7)$ | $6720(4)$ | $8139(4)$ | $9176(3)$ | $64(1)$ |
| $\mathrm{C}(8)$ | $7020(5)$ | $9379(4)$ | $9398(3)$ | $73(1)$ |
| $\mathrm{C}(9)$ | $7572(4)$ | $10312(4)$ | $8766(3)$ | $52(1)$ |


| $\mathrm{C}(10)$ 8147(4) | $11386(4)$ | $4885(3)$ | $66(1)$ |
| :--- | ---: | ---: | ---: |
| $\mathrm{C}(11)$ 3603(3) | $11045(3)$ | $6686(3)$ | $48(1)$ |
| $\mathrm{C}(12) 2856(4)$ | $11589(4)$ | $5900(3)$ | $59(1)$ |
| $\mathrm{C}(13) 1406(4)$ | $11964(4)$ | $5992(3)$ | $66(1)$ |
| $\mathrm{C}(14)$ 689(4) | $11800(4)$ | $6854(3)$ | $71(1)$ |
| $\mathrm{C}(15) 1414(4)$ | $11294(4)$ | $7637(3)$ | $74(1)$ |
| $\mathrm{C}(16)$ | $2863(4)$ | $10906(4)$ | $7553(3)$ |
| $\mathrm{C}(24)$ | $6071(6)$ | $7231(5)$ | $9938(4)$ |
| $\mathrm{C}(25)$ | $7924(4)$ | $11583(4)$ | $9080(3)$ |
| $\mathrm{C}(26)$ | $7695(4)$ | $12820(4)$ | $8503(3)$ |
| $\mathrm{C}(27)$ | $8079(5)$ | $13978(5)$ | $8759(4)$ |
| $\mathrm{C}(28)$ | $8715(6)$ | $13942(6)$ | $9551(5)$ |
| $\mathrm{C}(29)$ | $8970(6)$ | $12737(8)$ | $10139(4)$ |
| $\mathrm{C}(30)$ | $8552(5)$ | $11541(5)$ | $9919(3)$ |
| $\mathrm{C}(17)$ | $7570(5)$ | $5247(5)$ | $5813(3)$ |
| $\mathrm{C}(18)$ | $11571(4)$ | $6321(4)$ | $7326(3)$ |
| $\mathrm{C}(19)$ | $12294(5)$ | $4939(4)$ | $7363(4)$ |
| $\mathrm{C}(20)$ | $13702(5)$ | $4609(5)$ | $7551(4)$ |
| $\mathrm{C}(21)$ | $14382(5)$ | $5609(6)$ | $7709(4)$ |
| $\mathrm{C}(22)$ | $13680(5)$ | $6977(5)$ | $7674(4)$ |
| $\mathrm{C}(23)$ | $12285(4)$ | $7319(4)$ | $7492(3)$ |

Table D.8: Bond lengths [ $\AA$ ] for $\operatorname{Co}(\mathrm{ba})_{3}\{10\}$

|  |  |
| :--- | :--- |
| $\mathrm{Co}(1)-\mathrm{O}(6)$ | $1.872(2)$ |
| $\mathrm{Co}(1)-\mathrm{O}(2)$ | $1.875(2)$ |
| $\mathrm{Co}(1)-\mathrm{O}(4)$ | $1.879(2)$ |
| $\mathrm{Co}(1)-\mathrm{O}(1)$ | $1.883(2)$ |
| $\mathrm{Co}(1)-\mathrm{O}(3)$ | $1.887(3)$ |
| $\mathrm{Co}(1)-\mathrm{O}(5)$ | $1.889(3)$ |
| $\mathrm{O}(1)-\mathrm{C}(1)$ | $1.270(4)$ |
| $\mathrm{O}(4)-\mathrm{C}(6)$ | $1.280(4)$ |
| $\mathrm{O}(3)-\mathrm{C}(4)$ | $1.272(4)$ |
| $\mathrm{O}(5)-\mathrm{C}(7)$ | $1.261(5)$ |


| $\mathrm{O}(2)-\mathrm{C}(3)$ | 1.271(4) |
| :---: | :---: |
| $\mathrm{O}(6)-\mathrm{C}(9)$ | 1.277(4) |
| $\mathrm{C}(1)-\mathrm{C}(2)$ | 1.393(5) |
| $\mathrm{C}(1)-\mathrm{C}(10)$ | 1.492(5) |
| $\mathrm{C}(2)-\mathrm{C}(3)$ | 1.382(5) |
| $\mathrm{C}(3)-\mathrm{C}(11)$ | 1.493(5) |
| $\mathrm{C}(6)-\mathrm{C}(5)$ | 1.378(5) |
| $\mathrm{C}(6)-\mathrm{C}(18)$ | $1.488(5)$ |
| $\mathrm{C}(5)-\mathrm{C}(4)$ | 1.378(5) |
| $\mathrm{C}(4)-\mathrm{C}(17)$ | 1.512(5) |
| $\mathrm{C}(7)-\mathrm{C}(8)$ | 1.393(6) |
| $\mathrm{C}(7)-\mathrm{C}(24)$ | 1.513(6) |
| $\mathrm{C}(8)-\mathrm{C}(9)$ | 1.376(5) |
| $\mathrm{C}(9)-\mathrm{C}(25)$ | 1.493(5) |
| $\mathrm{C}(11)-\mathrm{C}(16)$ | $1.380(5)$ |
| $\mathrm{C}(11)-\mathrm{C}(12)$ | 1.392(5) |
| $\mathrm{C}(12)-\mathrm{C}(13)$ | 1.381(5) |
| $\mathrm{C}(13)-\mathrm{C}(14)$ | 1.366 (6) |
| $\mathrm{C}(14)-\mathrm{C}(15)$ | 1.371(6) |
| $\mathrm{C}(15)-\mathrm{C}(16)$ | 1.381(5) |
| C(25)-C(26) | 1.387(5) |
| $\mathrm{C}(25)$-C(30) | 1.387(6) |
| C(26)-C(27) | 1.370(6) |
| C(27)-C(28) | 1.333(7) |
| C(28)-C(29) | 1.371(8) |
| C(29)-C(30) | 1.403(7) |
| C(18)-C(23) | 1.373(5) |
| $\mathrm{C}(18)-\mathrm{C}(19)$ | 1.394(5) |
| $\mathrm{C}(19)-\mathrm{C}(20)$ | 1.387(6) |
| C(20)-C(21) | 1.349(7) |
| $\mathrm{C}(21)-\mathrm{C}(22)$ | 1.376(6) |
| $\mathrm{C}(22)-\mathrm{C}(23)$ | $1.374(5)$ |

Table D.9: Angles for $\mathrm{Co}(\mathrm{ba})_{3}\{10\}$

|  |  |
| :--- | :---: |
| $\mathrm{O}(6)-\mathrm{Co}(1)-\mathrm{O}(2)$ | $89.47(11)$ |
| $\mathrm{O}(6)-\mathrm{Co}(1)-\mathrm{O}(4)$ | $87.40(10)$ |
| $\mathrm{O}(2)-\mathrm{Co}(1)-\mathrm{O}(4)$ | $174.76(11)$ |
| $\mathrm{O}(6)-\mathrm{Co}(1)-\mathrm{O}(1)$ | $86.30(10)$ |
| $\mathrm{O}(2)-\mathrm{Co}(1)-\mathrm{O}(1)$ | $96.20(10)$ |
| $\mathrm{O}(4)-\mathrm{Co}(1)-\mathrm{O}(1)$ | $87.80(10)$ |
| $\mathrm{O}(6)-\mathrm{Co}(1)-\mathrm{O}(3)$ | $175.30(11)$ |
| $\mathrm{O}(2)-\mathrm{Co}(1)-\mathrm{O}(3)$ | $87.89(11)$ |
| $\mathrm{O}(4)-\mathrm{Co}(1)-\mathrm{O}(3)$ | $95.51(11)$ |
| $\mathrm{O}(1)-\mathrm{Co}(1)-\mathrm{O}(3)$ | $90.12(11)$ |
| $\mathrm{O}(6)-\mathrm{Co}(1)-\mathrm{O}(5)$ | $96.28(11)$ |
| $\mathrm{O}(2)-\mathrm{Co}(1)-\mathrm{O}(5)$ | $86.06(10)$ |
| $\mathrm{O}(4)-\mathrm{Co}(1)-\mathrm{O}(5)$ | $90.10(11)$ |
| $\mathrm{O}(1)-\mathrm{Co}(1)-\mathrm{O}(5)$ | $176.60(11)$ |
| $\mathrm{O}(3)-\mathrm{Co}(1)-\mathrm{O}(5)$ | $87.42(12)$ |
| $\mathrm{C}(1)-\mathrm{O}(1)-\mathrm{Co}(1)$ | $123.6(2)$ |
| $\mathrm{C}(6)-\mathrm{O}(4)-\mathrm{Co}(1)$ | $124.9(2)$ |
| $\mathrm{C}(4)-\mathrm{O}(3)-\mathrm{Co}(1)$ | $124.4(2)$ |
| $\mathrm{C}(7)-\mathrm{O}(5)-\mathrm{Co}(1)$ | $123.6(3)$ |
| $\mathrm{C}(3)-\mathrm{O}(2)-\mathrm{Co}(1)$ | $124.2(2)$ |
| $\mathrm{C}(9)-\mathrm{O}(6)-\mathrm{Co}(1)$ | $124.2(2)$ |
| $\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)$ | $125.1(3)$ |
| $\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(10)$ | $116.3(3)$ |
| $\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(10)$ | $118.6(3)$ |
| $\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$ | $124.9(3)$ |
| $\mathrm{O}(2)-\mathrm{C}(3)-\mathrm{C}(2)$ | $125.1(3)$ |
| $\mathrm{O}(2)-\mathrm{C}(3)-\mathrm{C}(11)$ | $114.3(3)$ |
| $\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(11)$ | $120.6(3)$ |
| $\mathrm{O}(4)-\mathrm{C}(6)-\mathrm{C}(5)$ | $124.5(3)$ |
| $\mathrm{O}(4)-\mathrm{C}(6)-\mathrm{C}(18)$ | $114.0(3)$ |
| $\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(18)$ | $121.5(3)$ |
| $\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(4)$ | $125.4(4)$ |


| $\mathrm{O}(3)-\mathrm{C}(4)-\mathrm{C}(5)$ | $125.2(4)$ |
| :--- | :--- |
| $\mathrm{O}(3)-\mathrm{C}(4)-\mathrm{C}(17)$ | $115.3(4)$ |
| $\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(17)$ | $119.4(4)$ |
| $\mathrm{O}(5)-\mathrm{C}(7)-\mathrm{C}(8)$ | $125.2(4)$ |
| $\mathrm{O}(5)-\mathrm{C}(7)-\mathrm{C}(24)$ | $115.3(4)$ |
| $\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(24)$ | $119.4(4)$ |
| $\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(7)$ | $125.1(4)$ |
| $\mathrm{O}(6)-\mathrm{C}(9)-\mathrm{C}(8)$ | $125.0(4)$ |
| $\mathrm{O}(6)-\mathrm{C}(9)-\mathrm{C}(25)$ | $113.7(3)$ |
| $\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(25)$ | $121.3(3)$ |
| $\mathrm{C}(16)-\mathrm{C}(11)-\mathrm{C}(12)$ | $118.5(3)$ |
| $\mathrm{C}(16)-\mathrm{C}(11)-\mathrm{C}(3)$ | $120.2(3)$ |
| $\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(3)$ | $121.3(3)$ |
| $\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{C}(11)$ | $120.2(4)$ |
| $\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(12)$ | $120.5(4)$ |
| $\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$ | $119.9(4)$ |
| $\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$ | $120.2(4)$ |
| $\mathrm{C}(11)-\mathrm{C}(16)-\mathrm{C}(15)$ | $120.8(4)$ |
| $\mathrm{C}(26)-\mathrm{C}(25)-\mathrm{C}(30)$ | $118.7(4)$ |
| $\mathrm{C}(26)-\mathrm{C}(25)-\mathrm{C}(9)$ | $119.8(3)$ |
| $\mathrm{C}(30)-\mathrm{C}(25)-\mathrm{C}(9)$ | $121.4(4)$ |
| $\mathrm{C}(27)-\mathrm{C}(26)-\mathrm{C}(25)$ | $120.6(4)$ |
| $\mathrm{C}(28)-\mathrm{C}(27)-\mathrm{C}(26)$ | $121.3(5)$ |
| $\mathrm{C}(27)-\mathrm{C}(28)-\mathrm{C}(29)$ | $120.0(5)$ |
| $\mathrm{C}(28)-\mathrm{C}(29)-\mathrm{C}(30)$ | $120.5(5)$ |
| $\mathrm{C}(25)-\mathrm{C}(30)-\mathrm{C}(29)$ | $118.9(5)$ |
| $\mathrm{C}(23)-\mathrm{C}(18)-\mathrm{C}(19)$ | $118.2(4)$ |
| $\mathrm{C}(23)-\mathrm{C}(18)-\mathrm{C}(6)$ | $119.9(3)-\mathrm{C}(23)-\mathrm{C}(22)$ |
| $\mathrm{C}(19)-\mathrm{C}(18)-\mathrm{C}(6)$ | $121.9(4)$ |
| $\mathrm{C}(20)-\mathrm{C}(19)-\mathrm{C}(18)$ | $119.9(4)$ |
| $\mathrm{C}(21)-\mathrm{C}(20)-\mathrm{C}(19)$ | $120.8(5)$ |
| $\mathrm{C}(21)-\mathrm{C}(22)$ | $119.9(4)$ |

Table D.10: Anisotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for $\operatorname{Co}(\mathrm{ba})_{3}\{10\}$. The anisotropic displacement factor exponent takes the form: $-2 p^{2}\left[h^{2} a^{* 2} U^{11}+\ldots+2 h k a^{*} b^{*} U^{12}\right]$

|  | $\mathrm{U}^{11}$ | $\mathrm{U}^{22}$ | U33 | $\mathrm{U}^{23}$ | $\mathrm{U}^{13}$ | $\mathrm{U}^{12}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{Co}(1)$ | 44(1) | 51(1) | 54(1) | -4(1) | -1(1) | -8(1) |
| $\mathrm{O}(1)$ | 42(1) | 65(2) | 49(1) | -8(1) | 1(1) | -10(1) |
| $\mathrm{O}(4)$ | 46(1) | 56(2) | 61(2) | -11(1) | -9(1) | -5(1) |
| $\mathrm{O}(3)$ | 49(2) | 66(2) | 71(2) | -13(1) | -9(1) | -14(1) |
| $\mathrm{O}(5)$ | 61(2) | 49(2) | 66(2) | 3(1) | 1(1) | -8(1) |
| $\mathrm{O}(2)$ | 44(1) | 55(2) | 59(2) | 5(1) | 1(1) | -8(1) |
| $\mathrm{O}(6)$ | 55(2) | 53(2) | 46(1) | -4(1) | 3(1) | -9(1) |
| C(1) | 51(2) | 59(2) | 46(2) | -11(2) | -1(2) | -17(2) |
| C(2) | 50(2) | 62(2) | 58(2) | 5(2) | -2(2) | -7(2) |
| C(3) | 48(2) | 47(2) | 51(2) | -8(2) | -4(2) | -11(2) |
| C(6) | 50(2) | 46(2) | 51(2) | 2(2) | 3(2) | -9(2) |
| C(5) | 55(2) | 54(2) | 69(3) | -16(2) | -7(2) | -7(2) |
| C(4) | 58(2) | 56(2) | 62(2) | -7(2) | -2(2) | -13(2) |
| C(7) | 61(2) | 54(2) | 66(3) | 6(2) | 11(2) | 1(2) |
| C(8) | 95(3) | 66(3) | 50(2) | -1(2) | 17(2) | -11(2) |
| C(9) | 45(2) | 53(2) | 52(2) | -2(2) | -2(2) | 2(2) |
| C(10) | 58(2) | 78(3) | 62(2) | 0(2) | 9(2) | -21(2) |
| $\mathrm{C}(11)$ | 42(2) | 44(2) | 56(2) | -7(2) | 1(2) | -9(2) |
| $\mathrm{C}(12)$ | 52(2) | 68(3) | 57(2) | -11(2) | 1(2) | -11(2) |
| C(13) | 51(2) | 74(3) | 70(3) | -9(2) | -9(2) | -6(2) |
| C(14) | 46(2) | 67(3) | 93(3) | -7(2) | 5(2) | -3(2) |
| C(15) | 57(3) | 74(3) | 78(3) | 3(2) | 19(2) | -3(2) |
| C(16) | 53(2) | 61(2) | 64(2) | 4(2) | 2(2) | -4(2) |
| C(24) | 118(4) | 76(3) | 94(4) | 17(3) | 35(3) | -17(3) |
| C(25) | 50(2) | 61(2) | 52(2) | -16(2) | 3(2) | 0 (2) |
| C(26) | 58(2) | 54(2) | 73(3) | -7(2) | 0 (2) | -7(2) |
| C(27) | 80(3) | 68(3) | 103(4) | -15(3) | -2(3) | -16(2) |
| C(28) | 102(4) | 86(4) | 131(5) | -45(4) | -7(4) | -24(3) |
| C(29) | 97(4) | 149(6) | 82(4) | -56(4) | -11(3) | -25(4) |
| C(30) | 87(3) | 92(3) | 61(3) | -18(2) | -8(2) | -5(3) |
| C(17) | 84(3) | 74(3) | 92(3) | -20(2) | -21(3) | -29(2) |

APPENDIX

| $\mathrm{C}(18) 47(2)$ | $52(2)$ | $57(2)$ | $2(2)$ | $-1(2)$ | $-8(2)$ |
| :--- | :--- | :---: | :---: | :---: | :---: |
| $\mathrm{C}(19)$ | $66(3)$ | $56(3)$ | $119(4)$ | $-7(2)$ | $-21(3)$ |
| $\mathrm{C}(20)$ | $72(3)$ | $68(3)$ | $161(5)$ | $-6(3)$ | $-39(3)$ |
| $\mathrm{C}(21)$ | $49(3)$ | $92(4)$ | $137(5)$ | $-8(3)$ | $-27(3)$ |
| $\mathrm{C}(22)$ | $57(3)$ | $77(3)$ | $116(4)$ | $6(3)$ | $-16(3)$ |
| $\mathrm{C}(23)$ | $54(2)$ | $55(2)$ | $78(3)$ | $2(2)$ | $-7(2)$ |

Table D.11: Hydrogen coordinates ( $\times 10^{4}$ ) and isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for $\mathrm{Cr}(\mathrm{dbm})_{3}\{10\}$.

|  | x | y | z | U(eq) |
| :---: | :---: | :---: | :---: | :---: |
| H(2) | 5522 | 11912 | 5499 | 70 |
| H(5) | 10059 | 5128 | 6369 | 70 |
| H (8) | 6829 | 9598 | 10037 | 87 |
| H(10A) | 9148 | 10946 | 4834 | 100 |
| H(10B) | 8043 | 12367 | 4994 | 100 |
| H(10C) | 7730 | 11320 | 4297 | 100 |
| H(12) | 3345 | 11704 | 5297 | 71 |
| H(13) | 903 | 12339 | 5453 | 79 |
| H(14) | -310 | 12036 | 6909 | 85 |
| H(15) | 918 | 11210 | 8240 | 88 |
| H(16) | 3355 | 10539 | 8098 | 74 |
| $\mathrm{H}(24 \mathrm{~A})$ | 5926 | 6403 | 9671 | 151 |
| H(24B) | 5165 | 7756 | 10188 | 151 |
| H(24C) | 6703 | 6947 | 10451 | 151 |
| H(26) | 7268 | 12866 | 7926 | 75 |
| H(27) | 7887 | 14823 | 8364 | 100 |
| H(28) | 8992 | 14750 | 9708 | 124 |
| H(29) | 9432 | 12713 | 10700 | 127 |
| H(30) | 8698 | 10716 | 10337 | 97 |
| H(17A) | 6576 | 5607 | 5705 | 119 |
| H(17B) | 7677 | 4336 | 6176 | 119 |
| H(17C) | 8121 | 5154 | 5203 | 119 |
| H(19) | 11824 | 4225 | 7261 | 97 |
| H(20) | 14194 | 3668 | 7569 | 122 |


| $\mathrm{H}(21)$ | 15343 | 5369 | 7845 | 112 |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{H}(22)$ | 14161 | 7684 | 7775 | 99 |
| $\mathrm{H}(23)$ | 11805 | 8264 | 7480 | 76 |

Table D.12: Torsion angles [ ${ }^{\circ}$ ] for $\operatorname{Cr}(\mathrm{dbm})_{3}\{10\}$.

|  |  |
| :--- | :---: |
| $\mathrm{O}(6)-\mathrm{Co}(1)-\mathrm{O}(1)-\mathrm{C}(1)$ | $-79.1(3)$ |
| $\mathrm{O}(2)-\mathrm{Co}(1)-\mathrm{O}(1)-\mathrm{C}(1)$ | $10.0(3)$ |
| $\mathrm{O}(4)-\mathrm{Co}(1)-\mathrm{O}(1)-\mathrm{C}(1)$ | $-166.6(3)$ |
| $\mathrm{O}(3)-\mathrm{Co}(1)-\mathrm{O}(1)-\mathrm{C}(1)$ | $97.8(3)$ |
| $\mathrm{O}(6)-\mathrm{Co}(1)-\mathrm{O}(4)-\mathrm{C}(6)$ | $-174.7(3)$ |
| $\mathrm{O}(1)-\mathrm{Co}(1)-\mathrm{O}(4)-\mathrm{C}(6)$ | $-88.3(3)$ |
| $\mathrm{O}(3)-\mathrm{Co}(1)-\mathrm{O}(4)-\mathrm{C}(6)$ | $1.6(3)$ |
| $\mathrm{O}(5)-\mathrm{Co}(1)-\mathrm{O}(4)-\mathrm{C}(6)$ | $89.0(3)$ |
| $\mathrm{O}(2)-\mathrm{Co}(1)-\mathrm{O}(3)-\mathrm{C}(4)$ | $-176.8(3)$ |
| $\mathrm{O}(4)-\mathrm{Co}(1)-\mathrm{O}(3)-\mathrm{C}(4)$ | $-0.8(3)$ |
| $\mathrm{O}(1)-\mathrm{Co}(1)-\mathrm{O}(3)-\mathrm{C}(4)$ | $87.0(3)$ |
| $\mathrm{O}(5)-\mathrm{Co}(1)-\mathrm{O}(3)-\mathrm{C}(4)$ | $-90.6(3)$ |
| $\mathrm{O}(6)-\mathrm{Co}(1)-\mathrm{O}(5)-\mathrm{C}(7)$ | $7.6(3)$ |
| $\mathrm{O}(2)-\mathrm{Co}(1)-\mathrm{O}(5)-\mathrm{C}(7)$ | $-81.4(3)$ |
| $\mathrm{O}(4)-\mathrm{Co}(1)-\mathrm{O}(5)-\mathrm{C}(7)$ | $95.0(3)$ |
| $\mathrm{O}(3)-\mathrm{Co}(1)-\mathrm{O}(5)-\mathrm{C}(7)$ | $-169.5(3)$ |
| $\mathrm{O}(6)-\mathrm{Co}(1)-\mathrm{O}(2)-\mathrm{C}(3)$ | $80.6(3)$ |
| $\mathrm{O}(1)-\mathrm{Co}(1)-\mathrm{O}(2)-\mathrm{C}(3)$ | $-5.6(3)$ |
| $\mathrm{O}(3)-\mathrm{Co}(1)-\mathrm{O}(2)-\mathrm{C}(3)$ | $-95.5(3)$ |
| $\mathrm{O}(5)-\mathrm{Co}(1)-\mathrm{O}(2)-\mathrm{C}(3)$ | $176.9(3)$ |
| $\mathrm{O}(2)-\mathrm{Co}(1)-\mathrm{O}(6)-\mathrm{C}(9)$ | $83.3(3)$ |
| $\mathrm{O}(4)-\mathrm{Co}(1)-\mathrm{O}(6)-\mathrm{C}(9)$ | $-92.5(3)$ |
| $\mathrm{O}(1)-\mathrm{Co}(1)-\mathrm{O}(6)-\mathrm{C}(9)$ | $179.5(3)$ |
| $\mathrm{O}(5)-\mathrm{Co}(1)-\mathrm{O}(6)-\mathrm{C}(9)$ | $-2.7(3)$ |
| $\mathrm{Co}(1)-\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)$ | $-8.4(5)$ |
| $\mathrm{Co}(1)-\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(10)$ | $172.5(2)$ |
| $\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$ | $-0.4(6)$ |
| $\mathrm{C}(10)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$ | $178.7(4)$ |
|  |  |


| $\mathrm{Co}(1)-\mathrm{O}(2)-\mathrm{C}(3)-\mathrm{C}(2)$ | $-0.6(5)$ |
| :--- | :---: |
| $\mathrm{Co}(1)-\mathrm{O}(2)-\mathrm{C}(3)-\mathrm{C}(11)$ | $179.0(2)$ |
| $\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{O}(2)$ | $5.4(6)$ |
| $\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(11)$ | $-174.2(3)$ |
| $\mathrm{Co}(1)-\mathrm{O}(4)-\mathrm{C}(6)-\mathrm{C}(5)$ | $-0.7(5)$ |
| $\mathrm{Co}(1)-\mathrm{O}(4)-\mathrm{C}(6)-\mathrm{C}(18)$ | $177.5(2)$ |
| $\mathrm{O}(4)-\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(4)$ | $-1.6(6)$ |
| $\mathrm{C}(18)-\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(4)$ | $-179.7(4)$ |
| $\mathrm{Co}(1)-\mathrm{O}(3)-\mathrm{C}(4)-\mathrm{C}(5)$ | $-1.0(6)$ |
| $\mathrm{Co}(1)-\mathrm{O}(3)-\mathrm{C}(4)-\mathrm{C}(17)$ | $178.9(3)$ |
| $\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{O}(3)$ | $2.5(7)$ |
| $\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(17)$ | $-177.3(4)$ |
| $\mathrm{Co}(1)-\mathrm{O}(5)-\mathrm{C}(7)-\mathrm{C}(8)$ | $-8.2(6)$ |
| $\mathrm{Co}(1)-\mathrm{O}(5)-\mathrm{C}(7)-\mathrm{C}(24)$ | $172.0(3)$ |
| $\mathrm{O}(5)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$ | $2.0(7)$ |
| $\mathrm{C}(24)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$ | $-178.1(4)$ |
| $\mathrm{Co}(1)-\mathrm{O}(6)-\mathrm{C}(9)-\mathrm{C}(8)$ | $-2.0(5)$ |
| $\mathrm{Co}(1)-\mathrm{O}(6)-\mathrm{C}(9)-\mathrm{C}(25)$ | $178.6(2)$ |
| $\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{O}(6)$ | $3.6(7)$ |
| $\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(25)$ | $-177.0(4)$ |
| $\mathrm{O}(2)-\mathrm{C}(3)-\mathrm{C}(11)-\mathrm{C}(16)$ | $-176.6(4)$ |
| $\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(11)-\mathrm{C}(16)$ | $1.2(6)$ |
| $\mathrm{O}(2)-\mathrm{C}(3)-\mathrm{C}(11)-\mathrm{C}(12)$ | $26.3(5)$ |
| $\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(11)-\mathrm{C}(12)$ | $-154.1(4)$ |
| $\mathrm{C}(16)-\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$ | $-150.4(3)$ |
| $\mathrm{C}(3)-\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$ | $29.2(5)$ |
| $\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$ | $-0.7(6)$ |
| $\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$ | $176.1(3)$ |
| $\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(25)-\mathrm{C}(26)$ | $-0.3(6)$ |
| $\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(16)-\mathrm{C}(15)$ | $1.7(7)$ |
| $\mathrm{C}(3)-\mathrm{C}(11)-\mathrm{C}(16)-\mathrm{C}(15)$ | $-2.2(7)$ |
| $\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(11)$ | $0.2(6)$ |
|  | $-\mathrm{C}(26)$ |


| $\mathrm{O}(6)-\mathrm{C}(9)-\mathrm{C}(25)-\mathrm{C}(30)$ | $-139.9(4)$ |
| :--- | :---: |
| $\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(25)-\mathrm{C}(30)$ | $40.7(5)$ |
| $\mathrm{C}(30)-\mathrm{C}(25)-\mathrm{C}(26)-\mathrm{C}(27)$ | $-0.2(6)$ |
| $\mathrm{C}(9)-\mathrm{C}(25)-\mathrm{C}(26)-\mathrm{C}(27)$ | $-176.6(4)$ |
| $\mathrm{C}(25)-\mathrm{C}(26)-\mathrm{C}(27)-\mathrm{C}(28)$ | $1.9(7)$ |
| $\mathrm{C}(26)-\mathrm{C}(27)-\mathrm{C}(28)-\mathrm{C}(29)$ | $-1.5(9)$ |
| $\mathrm{C}(27)-\mathrm{C}(28)-\mathrm{C}(29)-\mathrm{C}(30)$ | $-0.6(9)$ |
| $\mathrm{C}(26)-\mathrm{C}(25)-\mathrm{C}(30)-\mathrm{C}(29)$ | $-1.8(6)$ |
| $\mathrm{C}(9)-\mathrm{C}(25)-\mathrm{C}(30)-\mathrm{C}(29)$ | $174.6(4)$ |
| $\mathrm{C}(28)-\mathrm{C}(29)-\mathrm{C}(30)-\mathrm{C}(25)$ | $2.3(8)$ |
| $\mathrm{O}(4)-\mathrm{C}(6)-\mathrm{C}(18)-\mathrm{C}(23)$ | $-24.9(5)$ |
| $\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(18)-\mathrm{C}(23)$ | $153.4(4)$ |
| $\mathrm{O}(4)-\mathrm{C}(6)-\mathrm{C}(18)-\mathrm{C}(19)$ | $154.9(4)$ |
| $\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(18)-\mathrm{C}(19)$ | $-26.8(6)$ |
| $\mathrm{C}(23)-\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(20)$ | $-0.9(7)$ |
| $\mathrm{C}(6)-\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(20)$ | $179.3(4)$ |
| $\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(21)$ | $0.8(9)$ |
| $\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{C}(22)$ | $-0.8(9)$ |
| $\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(23)$ | $1.0(8)$ |
| $\mathrm{C}(19)-\mathrm{C}(18)-\mathrm{C}(23)-\mathrm{C}(22)$ | $1.1(6)$ |
| $\mathrm{C}(6)-\mathrm{C}(18)-\mathrm{C}(23)-\mathrm{C}(22)$ | $-179.1(4)$ |
| $\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{C}(18)$ | $-1.2(7)$ |

Table D.13: Atomic coordinates ( $\mathrm{x} 10^{4}$ ) and equivalent isotropic displacement parameters $\left(\AA^{2} \mathrm{x}\right.$ $10^{3}$ ) for $\operatorname{Co}(\mathrm{tfba})_{3}\{12\} . \mathrm{U}(\mathrm{eq})$ is defined as one third of the trace of the orthogonalized U ij tensor.

|  | x | y | z | $\mathrm{U}(\mathrm{eq})$ |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{Co}(1)$ | $7096(1)$ | $8838(1)$ | $3945(1)$ | $27(1)$ |
| $\mathrm{O}(1)$ | $5916(3)$ | $8417(1)$ | $2819(3)$ | $31(1)$ |
| $\mathrm{O}(2)$ | $8523(3)$ | $8849(1)$ | $2993(3)$ | $34(1)$ |
| $\mathrm{O}(3)$ | $5924(3)$ | $9221(1)$ | $2644(3)$ | $26(1)$ |
| $\mathrm{O}(4)$ | $8208(3)$ | $9243(1)$ | $5189(3)$ | $29(1)$ |
| $\mathrm{O}(5)$ | $5665(3)$ | $8874(1)$ | $4871(3)$ | $27(1)$ |


| $\mathrm{O}(6)$ | $8245(3)$ | $8421(1)$ | $5131(3)$ | $35(1)$ |
| :--- | :--- | ---: | ---: | ---: |
| $\mathrm{C}(1)$ | $6137(4)$ | $8242(1)$ | $1764(4)$ | $30(1)$ |
| $\mathrm{C}(2)$ | $7368(5)$ | $8323(1)$ | $1314(4)$ | $34(1)$ |
| $\mathrm{C}(3)$ | $8443(4)$ | $8608(1)$ | $1956(4)$ | $31(1)$ |
| $\mathrm{C}(10)$ | $4982(5)$ | $7935(1)$ | $1006(4)$ | $34(1)$ |
| $\mathrm{C}(11)$ | $5265(6)$ | $7616(1)$ | $185(5)$ | $43(1)$ |
| $\mathrm{C}(12)$ | $4193(6)$ | $7324(2)$ | $-420(5)$ | $54(1)$ |
| $\mathrm{C}(13)$ | $2813(6)$ | $7351(2)$ | $-244(6)$ | $58(2)$ |
| $\mathrm{C}(14)$ | $2487(6)$ | $7682(2)$ | $517(6)$ | $51(1)$ |
| $\mathrm{C}(15)$ | $3573(5)$ | $7973(1)$ | $1143(5)$ | $37(1)$ |
| $\mathrm{C}(16)$ | $9778(5)$ | $8649(2)$ | $1433(5)$ | $42(1)$ |
| $\mathrm{F}(1)$ | $10902(4)$ | $8429(2)$ | $2251(5)$ | $100(2)$ |
| $\mathrm{F}(2)$ | $9571(5)$ | $8510(2)$ | $168(4)$ | $114(2)$ |
| $\mathrm{F}(3)$ | $10298(4)$ | $9026(1)$ | $1519(5)$ | $94(1)$ |
| $\mathrm{C}(4)$ | $5763(4)$ | $9602(1)$ | $2902(4)$ | $23(1)$ |
| $\mathrm{C}(5)$ | $6617(4)$ | $9814(1)$ | $4126(4)$ | $26(1)$ |
| $\mathrm{C}(6)$ | $7758(4)$ | $9621(1)$ | $5135(4)$ | $25(1)$ |
| $\mathrm{C}(17)$ | $4582(4)$ | $9825(1)$ | $1805(4)$ | $25(1)$ |
| $\mathrm{C}(18)$ | $4628(4)$ | $10251(1)$ | $1580(4)$ | $30(1)$ |
| $\mathrm{C}(19)$ | $3523(5)$ | $10442(1)$ | $506(5)$ | $39(1)$ |
| $\mathrm{C}(20)$ | $2354(5)$ | $10209(2)$ | $-320(4)$ | $39(1)$ |
| $\mathrm{C}(21)$ | $2279(5)$ | $9785(2)$ | $-88(5)$ | $42(1)$ |
| $\mathrm{C}(22)$ | $3386(4)$ | $9590(1)$ | $968(4)$ | $34(1)$ |
| $\mathrm{C}(23)$ | $8687(4)$ | $9869(1)$ | $6414(4)$ | $30(1)$ |
| $\mathrm{F}(4)$ | $10089(3)$ | $9896(1)$ | $6418(3)$ | $48(1)$ |
| $\mathrm{F}(5)$ | $8195(3)$ | $10253(1)$ | $6465(3)$ | $54(1)$ |
| $\mathrm{F}(6)$ | $8717(3)$ | $9677(1)$ | $7600(2)$ | $44(1)$ |
| $\mathrm{C}(7)$ | $5639(4)$ | $8667(1)$ | $5942(4)$ | $27(1)$ |
| $\mathrm{C}(8)$ | $6742(5)$ | $8376(1)$ | $6640(5)$ | $35(1)$ |
| $\mathrm{C}(9)$ | $7890(5)$ | $8274(1)$ | $6167(4)$ | $34(1)$ |
| $\mathrm{C}(24)$ | $4330(4)$ | $8741(1)$ | $6411(4)$ | $28(1)$ |
| $\mathrm{C}(25)$ | $4286(5)$ | $8636(1)$ | $7748(5)$ | $42(1)$ |
| $\mathrm{C}(26)$ | $3034(6)$ | $8720(2)$ | $8135(6)$ | $49(1)$ |
|  | $1810(5)$ | $8900(2)$ | $7180(5)$ | $45(1)$ |


| $\mathrm{C}(28)$ | $1831(5)$ | $9000(1)$ | $5851(5)$ | $41(1)$ |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{C}(29)$ | $3082(5)$ | $8928(1)$ | $5470(5)$ | $34(1)$ |
| $\mathrm{C}(30)$ | $8971(5)$ | $7929(1)$ | $6928(6)$ | $46(1)$ |
| $\mathrm{F}(7)$ | $8568(4)$ | $7743(1)$ | $7939(4)$ | $68(1)$ |
| $\mathrm{F}(8)$ | $9030(3)$ | $7627(1)$ | $6025(4)$ | $63(1)$ |
| $\mathrm{F}(9)$ | $10315(3)$ | $8075(1)$ | $7499(4)$ | $81(1)$ |

Table D.14: Bond lengths [ $\AA \AA$ ] and angles [ ${ }^{\circ}$ ] for $\mathrm{Co}(\mathrm{tfba})_{3}\{12\}$

|  | Bond lengths $[\AA]$ |
| :--- | :---: |
| $\mathrm{Co}(1)-\mathrm{O}(5)$ | $1.869(3)$ |
| $\mathrm{Co}(1)-\mathrm{O}(4)$ | $1.872(3)$ |
| $\mathrm{Co}(1)-\mathrm{O}(3)$ | $1.875(3)$ |
| $\mathrm{Co}(1)-\mathrm{O}(1)$ | $1.881(3)$ |
| $\mathrm{Co}(1)-\mathrm{O}(2)$ | $1.882(3)$ |
| $\mathrm{Co}(1)-\mathrm{O}(6)$ | $1.885(3)$ |
| $\mathrm{O}(1)-\mathrm{C}(1)$ | $1.265(5)$ |
| $\mathrm{O}(2)-\mathrm{C}(3)$ | $1.270(5)$ |
| $\mathrm{O}(3)-\mathrm{C}(4)$ | $1.264(4)$ |
| $\mathrm{O}(4)-\mathrm{C}(6)$ | $1.275(5)$ |
| $\mathrm{O}(5)-\mathrm{C}(7)$ | $1.261(5)$ |
| $\mathrm{O}(6)-\mathrm{C}(9)$ | $1.272(5)$ |
| $\mathrm{C}(1)-\mathrm{C}(2)$ | $1.402(6)$ |
| $\mathrm{C}(1)-\mathrm{C}(10)$ | $1.489(6)$ |
| $\mathrm{C}(2)-\mathrm{C}(3)$ | $1.369(6)$ |
| $\mathrm{C}(3)-\mathrm{C}(16)$ | $1.520(6)$ |
| $\mathrm{C}(10)-\mathrm{C}(11)$ | $1.383(6)$ |
| $\mathrm{C}(10)-\mathrm{C}(15)$ | $1.393(6)$ |
| $\mathrm{C}(11)-\mathrm{C}(12)$ | $1.375(7)$ |
| $\mathrm{C}(12)-\mathrm{C}(13)$ | $1.379(8)$ |
| $\mathrm{C}(13)-\mathrm{C}(14)$ | $1.391(8)$ |
| $\mathrm{C}(14)-\mathrm{C}(15)$ | $1.383(6)$ |
| $\mathrm{C}(16)-\mathrm{F}(2)$ | $1.292(6)$ |
| $\mathrm{C}(16)-\mathrm{F}(3)$ | $1.293(6)$ |
| $\mathrm{C}(16)-\mathrm{F}(1)$ |  |


| $\mathrm{C}(4)-\mathrm{C}(5)$ | $1.409(5)$ |
| :--- | :--- |
| $\mathrm{C}(4)-\mathrm{C}(17)$ | $1.482(5)$ |
| $\mathrm{C}(5)-\mathrm{C}(6)$ | $1.373(5)$ |
| $\mathrm{C}(6)-\mathrm{C}(23)$ | $1.527(5)$ |
| $\mathrm{C}(17)-\mathrm{C}(18)$ | $1.381(6)$ |
| $\mathrm{C}(17)-\mathrm{C}(22)$ | $1.400(5)$ |
| $\mathrm{C}(18)-\mathrm{C}(19)$ | $1.385(6)$ |
| $\mathrm{C}(19)-\mathrm{C}(20)$ | $1.376(6)$ |
| $\mathrm{C}(20)-\mathrm{C}(21)$ | $1.377(7)$ |
| $\mathrm{C}(21)-\mathrm{C}(22)$ | $1.382(6)$ |
| $\mathrm{C}(23)-\mathrm{F}(5)$ | $1.319(5)$ |
| $\mathrm{C}(23)-\mathrm{F}(6)$ | $1.323(5)$ |
| $\mathrm{C}(23)-\mathrm{F}(4)$ | $1.335(5)$ |
| $\mathrm{C}(7)-\mathrm{C}(8)$ | $1.412(5)$ |
| $\mathrm{C}(7)-\mathrm{C}(24)$ | $1.477(6)$ |
| $\mathrm{C}(8)-\mathrm{C}(9)$ | $1.356(6)$ |
| $\mathrm{C}(9)-\mathrm{C}(30)$ | $1.536(6)$ |
| $\mathrm{C}(24)-\mathrm{C}(25)$ | $1.387(6)$ |
| $\mathrm{C}(24)-\mathrm{C}(29)$ | $1.397(5)$ |
| $\mathrm{C}(25)-\mathrm{C}(26)$ | $1.386(7)$ |
| $\mathrm{C}(26)-\mathrm{C}(27)$ | $1.379(7)$ |
| $\mathrm{C}(27)-\mathrm{C}(28)$ | $1.368(7)$ |
| $\mathrm{C}(28)-\mathrm{C}(29)$ | $1.376(6)$ |
| $\mathrm{C}(30)-\mathrm{F}(9)$ | $1.313(6)$ |
| $\mathrm{C}(30)-\mathrm{F}(7)$ | $1.324(6)$ |
| $\mathrm{C}(30)-\mathrm{F}(8)$ |  |

Table D.15: Angles [ ${ }^{\circ}$ ] for $\operatorname{Co}(\mathrm{tfba})_{3}\{12\}$.

|  | Angles [ ${ }^{\circ}$ ] |
| :--- | :---: |
| $\mathrm{O}(5)-\mathrm{Co}(1)-\mathrm{O}(4)$ | $88.84(12)$ |
| $\mathrm{O}(5)-\mathrm{Co}(1)-\mathrm{O}(3)$ | $86.21(11)$ |
| $\mathrm{O}(4)-\mathrm{Co}(1)-\mathrm{O}(3)$ | $95.73(11)$ |
| $\mathrm{O}(5)-\mathrm{Co}(1)-\mathrm{O}(1)$ | $86.96(12)$ |
| $\mathrm{O}(4)-\mathrm{Co}(1)-\mathrm{O}(1)$ | $175.16(13)$ |


| $\mathrm{O}(3)-\mathrm{Co}(1)-\mathrm{O}(1)$ | $86.38(11)$ |
| :--- | :---: |
| $\mathrm{O}(5)-\mathrm{Co}(1)-\mathrm{O}(2)$ | $175.38(12)$ |
| $\mathrm{O}(4)-\mathrm{Co}(1)-\mathrm{O}(2)$ | $88.46(12)$ |
| $\mathrm{O}(3)-\mathrm{Co}(1)-\mathrm{O}(2)$ | $90.33(12)$ |
| $\mathrm{O}(1)-\mathrm{Co}(1)-\mathrm{O}(2)$ | $95.88(12)$ |
| $\mathrm{O}(5)-\mathrm{Co}(1)-\mathrm{O}(6)$ | $95.92(12)$ |
| $\mathrm{O}(4)-\mathrm{Co}(1)-\mathrm{O}(6)$ | $88.52(12)$ |
| $\mathrm{O}(3)-\mathrm{Co}(1)-\mathrm{O}(6)$ | $175.29(12)$ |
| $\mathrm{O}(1)-\mathrm{Co}(1)-\mathrm{O}(6)$ | $89.53(12)$ |
| $\mathrm{O}(2)-\mathrm{Co}(1)-\mathrm{O}(6)$ | $87.76(13)$ |
| $\mathrm{C}(1)-\mathrm{O}(1)-\mathrm{Co}(1)$ | $126.1(3)$ |
| $\mathrm{C}(3)-\mathrm{O}(2)-\mathrm{Co}(1)$ | $121.9(3)$ |
| $\mathrm{C}(4)-\mathrm{O}(3)-\mathrm{Co}(1)$ | $124.8(2)$ |
| $\mathrm{C}(6)-\mathrm{O}(4)-\mathrm{Co}(1)$ | $120.8(2)$ |
| $\mathrm{C}(7)-\mathrm{O}(5)-\mathrm{Co}(1)$ | $126.5(2)$ |
| $\mathrm{C}(9)-\mathrm{O}(6)-\mathrm{Co}(1)$ | $121.4(3)$ |
| $\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)$ | $123.7(4)$ |
| $\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(10)$ | $115.1(4)$ |
| $\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(10)$ | $121.1(4)$ |
| $\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$ | $123.4(4)$ |
| $\mathrm{O}(2)-\mathrm{C}(3)-\mathrm{C}(2)$ | $128.9(4)$ |
| $\mathrm{O}(2)-\mathrm{C}(3)-\mathrm{C}(16)$ | $112.5(4)$ |
| $\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(16)$ | $118.5(4)$ |
| $\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(15)$ | $119.4(4)$ |
| $\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(1)$ | $122.3(4)$ |
| $\mathrm{C}(15)-\mathrm{C}(10)-\mathrm{C}(1)$ | $118.3(4)$ |
| $\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(10)$ | $120.2(5)$ |
| $\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$ | $120.5(5)$ |
| $\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$ | $119.9(5)$ |
| $\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{C}(13)$ | $119.5(5)$ |
| $\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(10)$ | $120.3(4)$ |
| $\mathrm{F}(2)-\mathrm{C}(16)-\mathrm{F}(3)$ | $108.9(5)$ |


| $\mathrm{F}(2)-\mathrm{C}(16)-\mathrm{C}(3)$ | $114.5(4)$ |
| :--- | :--- |
| $\mathrm{F}(3)-\mathrm{C}(16)-\mathrm{C}(3)$ | $113.5(4)$ |
| $\mathrm{F}(1)-\mathrm{C}(16)-\mathrm{C}(3)$ | $110.1(4)$ |
| $\mathrm{O}(3)-\mathrm{C}(4)-\mathrm{C}(5)$ | $124.3(3)$ |
| $\mathrm{O}(3)-\mathrm{C}(4)-\mathrm{C}(17)$ | $115.1(3)$ |
| $\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(17)$ | $120.6(3)$ |
| $\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(4)$ | $122.0(4)$ |
| $\mathrm{O}(4)-\mathrm{C}(6)-\mathrm{C}(5)$ | $129.3(3)$ |
| $\mathrm{O}(4)-\mathrm{C}(6)-\mathrm{C}(23)$ | $110.9(3)$ |
| $\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(23)$ | $119.9(3)$ |
| $\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{C}(22)$ | $119.4(3)$ |
| $\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{C}(4)$ | $122.5(3)$ |
| $\mathrm{C}(22)-\mathrm{C}(17)-\mathrm{C}(4)$ | $118.1(3)$ |
| $\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)$ | $120.1(4)$ |
| $\mathrm{C}(20)-\mathrm{C}(19)-\mathrm{C}(18)$ | $120.2(4)$ |
| $\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(21)$ | $120.2(4)$ |
| $\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{C}(22)$ | $120.1(4)$ |
| $\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(17)$ | $119.9(4)$ |
| $\mathrm{F}(5)-\mathrm{C}(23)-\mathrm{F}(6)$ | $107.8(3)$ |
| $\mathrm{F}(5)-\mathrm{C}(23)-\mathrm{F}(4)$ | $107.7(4)$ |
| $\mathrm{F}(6)-\mathrm{C}(23)-\mathrm{F}(4)$ | $106.5(3)$ |
| $\mathrm{F}(5)-\mathrm{C}(23)-\mathrm{C}(6)$ | $113.2(3)$ |
| $\mathrm{F}(6)-\mathrm{C}(23)-\mathrm{C}(6)$ | $110.6(3)$ |
| $\mathrm{F}(4)-\mathrm{C}(23)-\mathrm{C}(6)$ | $110.8(3)$ |
| $\mathrm{O}(5)-\mathrm{C}(7)-\mathrm{C}(8)$ | $123.6(4)$ |
| $\mathrm{O}(5)-\mathrm{C}(7)-\mathrm{C}(24)$ | $115.1(3)$ |
| $\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(24)$ | $121.3(4)$ |
| $\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(7)$ | $122.8(4)$ |
| $\mathrm{O}(6)-\mathrm{C}(9)-\mathrm{C}(8)$ | $129.7(4)$ |
| $\mathrm{O}(6)-\mathrm{C}(9)-\mathrm{C}(30)$ | $111.1(4)$ |
| $\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(30)$ | $119.2(4)$ |
| $\mathrm{C}(25)-\mathrm{C}(24)-\mathrm{C}(29)$ | $118.3(4)$ |
|  | $123.0(4)$ |
| $\mathrm{C}(24)-\mathrm{C}(7)$ |  |


| $\mathrm{C}(26)-\mathrm{C}(25)-\mathrm{C}(24)$ | $120.4(4)$ |
| :--- | :--- |
| $\mathrm{C}(27)-\mathrm{C}(26)-\mathrm{C}(25)$ | $120.1(4)$ |
| $\mathrm{C}(28)-\mathrm{C}(27)-\mathrm{C}(26)$ | $120.1(4)$ |
| $\mathrm{C}(27)-\mathrm{C}(28)-\mathrm{C}(29)$ | $120.2(4)$ |
| $\mathrm{C}(28)-\mathrm{C}(29)-\mathrm{C}(24)$ | $120.9(4)$ |
| $\mathrm{F}(9)-\mathrm{C}(30)-\mathrm{F}(7)$ | $107.6(4)$ |
| $\mathrm{F}(9)-\mathrm{C}(30)-\mathrm{F}(8)$ | $108.1(4)$ |
| $\mathrm{F}(7)-\mathrm{C}(30)-\mathrm{F}(8)$ | $105.9(4)$ |
| $\mathrm{F}(9)-\mathrm{C}(30)-\mathrm{C}(9)$ | $111.7(4)$ |
| $\mathrm{F}(7)-\mathrm{C}(30)-\mathrm{C}(9)$ | $112.9(4)$ |
| $\mathrm{F}(8)-\mathrm{C}(30)-\mathrm{C}(9)$ | $110.3(4)$ |

Table D.16: Anisotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for $\operatorname{Co}(t f b a)_{3}\{12\}$. The anisotropic displacement factor exponent takes the form: $-2^{2}\left[h^{2} a^{* 2} \mathrm{U}^{11}+\ldots+2 \mathrm{hk} \mathrm{a}^{*} \mathrm{~b}^{*}\right.$ $\mathrm{U}^{12}$ ]

|  | $\mathrm{U}^{11}$ | $\mathrm{U}^{22}$ | $\mathrm{U}^{33}$ | $\mathrm{U}^{23}$ | $\mathrm{U}^{13}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathrm{U}^{12}$ |  |  |  |  |  |
| $\mathrm{Co}(1)$ | $23(1)$ | $27(1)$ | $27(1)$ | $-3(1)$ | $2(1)$ |
| $\mathrm{O}(1)$ | $30(1)$ | $28(1)$ | $34(2)$ | $-4(1)$ | $8(1)$ |
| $\mathrm{O}(2)$ | $29(2)$ | $37(2)$ | $36(2)$ | $-9(1)$ | $10(1)$ |
| $\mathrm{O}(3)$ | $24(1)$ | $29(1)$ | $22(1)$ | $-3(1)$ | $2(1)$ |
| $\mathrm{O}(4)$ | $24(1)$ | $32(2)$ | $26(1)$ | $-5(1)$ | $-1(1)$ |
| $\mathrm{O}(5)$ | $25(1)$ | $28(1)$ | $25(1)$ | $1(1)$ | $4(1)$ |
| $\mathrm{O}(6)$ | $26(1)$ | $33(2)$ | $41(2)$ | $-1(1)$ | $3(1)$ |
| $\mathrm{C}(1)$ | $31(2)$ | $23(2)$ | $30(2)$ | $-1(2)$ | $0(2)$ |
| $\mathrm{C}(2)$ | $38(2)$ | $35(2)$ | $26(2)$ | $-2(2)$ | $6(2)$ |
| $\mathrm{C}(3)$ | $32(2)$ | $31(2)$ | $29(2)$ | $2(2)$ | $7(2)$ |
| $\mathrm{C}(10)$ | $33(2)$ | $27(2)$ | $33(2)$ | $2(2)$ | $-1(2)$ |
| $\mathrm{C}(11)$ | $47(3)$ | $38(2)$ | $35(2)$ | $-7(2)$ | $0(2)$ |
| $\mathrm{C}(12)$ | $59(3)$ | $44(3)$ | $47(3)$ | $-12(2)$ | $-3(2)$ |
| $\mathrm{C}(13)$ | $59(3)$ | $40(3)$ | $56(3)$ | $-11(2)$ | $-8(3)$ |
| $\mathrm{C}(14)$ | $41(3)$ | $53(3)$ | $54(3)$ | $-3(2)$ | $7(2)$ |
| $\mathrm{C}(15)$ | $40(2)$ | $31(2)$ | $36(2)$ | $-2(2)$ | $7(2)$ |
| $\mathrm{C}(16)$ | $46(3)$ | $40(3)$ | $42(3)$ | $-2(2)$ | $19(2)$ |

## APPENDIX

| $\mathrm{F}(1)$ | $55(2)$ | $144(4)$ | $116(3)$ | $52(3)$ | $47(2)$ |
| :--- | :--- | :---: | :---: | :---: | :---: |
| $\mathrm{F}(2)$ | $88(3)$ | $204(5)$ | $68(2)$ | $-59(3)$ | $49(2)$ |
| $\mathrm{F}(3)$ | $92(3)$ | $60(2)$ | $170(4)$ | $-15(2)$ | $99(3)$ |
| $\mathrm{C}(4)$ | $18(2)$ | $30(2)$ | $21(2)$ | $1(2)$ | $6(1)$ |
| $\mathrm{C}(5)$ | $24(2)$ | $27(2)$ | $22(2)$ | $-3(2)$ | $1(1)$ |
| $\mathrm{C}(6)$ | $19(2)$ | $35(2)$ | $20(2)$ | $-4(2)$ | $4(1)$ |
| $\mathrm{C}(17)$ | $21(2)$ | $35(2)$ | $18(2)$ | $-1(2)$ | $3(1)$ |
| $\mathrm{C}(18)$ | $27(2)$ | $34(2)$ | $27(2)$ | $1(2)$ | $3(2)$ |
| $\mathrm{C}(19)$ | $41(2)$ | $37(2)$ | $35(2)$ | $8(2)$ | $6(2)$ |
| $\mathrm{C}(20)$ | $32(2)$ | $52(3)$ | $26(2)$ | $5(2)$ | $1(2)$ |
| $\mathrm{C}(21)$ | $31(2)$ | $56(3)$ | $30(2)$ | $-9(2)$ | $-4(2)$ |
| $\mathrm{C}(22)$ | $31(2)$ | $35(2)$ | $31(2)$ | $-3(2)$ | $0(2)$ |
| $\mathrm{C}(23)$ | $24(2)$ | $37(2)$ | $22(2)$ | $-5(2)$ | $-1(2)$ |
| $\mathrm{F}(4)$ | $27(1)$ | $79(2)$ | $34(1)$ | $-14(1)$ | $2(1)$ |
| $\mathrm{F}(5)$ | $61(2)$ | $38(2)$ | $41(2)$ | $-16(1)$ | $-14(1)$ |
| $\mathrm{F}(6)$ | $50(2)$ | $58(2)$ | $19(1)$ | $-4(1)$ | $5(1)$ |
| $\mathrm{C}(7)$ | $26(2)$ | $23(2)$ | $27(2)$ | $-5(2)$ | $0(2)$ |
| $\mathrm{C}(8)$ | $32(2)$ | $31(2)$ | $37(2)$ | $6(2)$ | $5(2)$ |
| $\mathrm{C}(9)$ | $31(2)$ | $27(2)$ | $36(2)$ | $-4(2)$ | $-1(2)$ |
| $\mathrm{C}(24)$ | $29(2)$ | $20(2)$ | $31(2)$ | $-1(2)$ | $6(2)$ |
| $\mathrm{C}(25)$ | $46(3)$ | $38(2)$ | $38(2)$ | $11(2)$ | $7(2)$ |
| $\mathrm{C}(26)$ | $58(3)$ | $49(3)$ | $49(3)$ | $12(2)$ | $29(3)$ |
| $\mathrm{C}(27)$ | $42(3)$ | $43(3)$ | $59(3)$ | $1(2)$ | $28(2)$ |
| $\mathrm{C}(28)$ | $27(2)$ | $41(2)$ | $52(3)$ | $-2(2)$ | $8(2)$ |
| $\mathrm{C}(29)$ | $31(2)$ | $34(2)$ | $0(2)$ | $4(2)$ |  |
| $\mathrm{C}(30)$ | $36(2)$ | $56(2)$ | $78(2)$ | $35(2)$ | $18(2)$ |
| $\mathrm{F}(7)$ | $66(2)$ | $37(2)$ | $91(2)$ | $2(2)$ | $21(2)$ |
| $\mathrm{F}(8)$ | $59(2)$ | $53(2)$ | $120(3)$ | $27(2)$ | $-25(2)$ |
| $\mathrm{F}(9)$ | $36(2)$ |  |  |  |  |
|  |  | $3(2)$ | $4(2)$ |  |  |

Table D.17: Hydrogen coordinates ( $\times 10^{4}$ ) and isotropic displacement parameters ( $\AA^{2} \times 10{ }^{3}$ ) for $\mathrm{Co}(\mathrm{dbm})_{3}\{12\}$

|  | x | y | z | U(eq) |
| :--- | :--- | :--- | :--- | :--- |
| $H(2)$ | 7461 | 8173 | 522 | 41 |

## APPENDIX

| $\mathrm{H}(11)$ | 6205 | 7599 | 39 |
| :--- | ---: | ---: | :--- |
| $\mathrm{H}(12)$ | 4404 | 7102 | -963 |
| $\mathrm{H}(13)$ | 2086 | 7143 | -643 |
| $\mathrm{H}(14)$ | 1525 | 7709 | 608 |
| $\mathrm{H}(15)$ | 3357 | 8199 | 1667 |
| $\mathrm{H}(5)$ | 6398 | 10098 | 4258 |
| $\mathrm{H}(18)$ | 5420 | 10414 | 2164 |
| $\mathrm{H}(19)$ | 3571 | 10734 | 338 |
| $\mathrm{H}(20)$ | 1597 | 10341 | -1054 |
| $\mathrm{H}(21)$ | 1466 | 9626 | -655 |
| $\mathrm{H}(22)$ | 3334 | 9298 | 1126 |
| $\mathrm{H}(8)$ | 6676 | 8245 | 7476 |
| $\mathrm{H}(25)$ | 5119 | 8507 | 8403 |
| $\mathrm{H}(26)$ | 3020 | 8653 | 9060 |
| $\mathrm{H}(27)$ | 950 | 8955 | 7446 |
| $\mathrm{H}(28)$ | 980 | 9120 | 5190 |
| $\mathrm{H}(29)$ | 3096 | 9007 | 4554 |

Table D.18: Torsion angles [ ${ }^{\circ}$ ] for $\operatorname{Co}(\mathrm{tfba})_{3}\{12\}$

|  |  |
| :--- | :---: |
| $\mathrm{O}(5)-\mathrm{Co}(1)-\mathrm{O}(1)-\mathrm{C}(1)$ | $174.1(3)$ |
| $\mathrm{O}(3)-\mathrm{Co}(1)-\mathrm{O}(1)-\mathrm{C}(1)$ | $87.7(3)$ |
| $\mathrm{O}(2)-\mathrm{Co}(1)-\mathrm{O}(1)-\mathrm{C}(1)$ | $-2.3(3)$ |
| $\mathrm{O}(6)-\mathrm{Co}(1)-\mathrm{O}(1)-\mathrm{C}(1)$ | $-90.0(3)$ |
| $\mathrm{O}(4)-\mathrm{Co}(1)-\mathrm{O}(2)-\mathrm{C}(3)$ | $177.2(3)$ |
| $\mathrm{O}(3)-\mathrm{Co}(1)-\mathrm{O}(2)-\mathrm{C}(3)$ | $-87.1(3)$ |
| $\mathrm{O}(1)-\mathrm{Co}(1)-\mathrm{O}(2)-\mathrm{C}(3)$ | $-0.7(3)$ |
| $\mathrm{O}(6)-\mathrm{Co}(1)-\mathrm{O}(2)-\mathrm{C}(3)$ | $88.6(3)$ |
| $\mathrm{O}(5)-\mathrm{Co}(1)-\mathrm{O}(3)-\mathrm{C}(4)$ | $70.4(3)$ |
| $\mathrm{O}(4)-\mathrm{Co}(1)-\mathrm{O}(3)-\mathrm{C}(4)$ | $-18.0(3)$ |
| $\mathrm{O}(1)-\mathrm{Co}(1)-\mathrm{O}(3)-\mathrm{C}(4)$ | $157.6(3)$ |
| $\mathrm{O}(2)-\mathrm{Co}(1)-\mathrm{O}(3)-\mathrm{C}(4)$ | $-106.5(3)$ |
| $\mathrm{O}(5)-\mathrm{Co}(1)-\mathrm{O}(4)-\mathrm{C}(6)$ | $-68.6(3)$ |
| $\mathrm{O}(3)-\mathrm{Co}(1)-\mathrm{O}(4)-\mathrm{C}(6)$ | $17.4(3)$ |


| $\mathrm{O}(2)-\mathrm{Co}(1)-\mathrm{O}(4)-\mathrm{C}(6)$ | $107.6(3)$ |
| :--- | :---: |
| $\mathrm{O}(6)-\mathrm{Co}(1)-\mathrm{O}(4)-\mathrm{C}(6)$ | $-164.6(3)$ |
| $\mathrm{O}(4)-\mathrm{Co}(1)-\mathrm{O}(5)-\mathrm{C}(7)$ | $-87.7(3)$ |
| $\mathrm{O}(3)-\mathrm{Co}(1)-\mathrm{O}(5)-\mathrm{C}(7)$ | $176.5(3)$ |
| $\mathrm{O}(1)-\mathrm{Co}(1)-\mathrm{O}(5)-\mathrm{C}(7)$ | $89.9(3)$ |
| $\mathrm{O}(6)-\mathrm{Co}(1)-\mathrm{O}(5)-\mathrm{C}(7)$ | $0.7(3)$ |
| $\mathrm{O}(5)-\mathrm{Co}(1)-\mathrm{O}(6)-\mathrm{C}(9)$ | $-0.7(3)$ |
| $\mathrm{O}(4)-\mathrm{Co}(1)-\mathrm{O}(6)-\mathrm{C}(9)$ | $87.9(3)$ |
| $\mathrm{O}(1)-\mathrm{Co}(1)-\mathrm{O}(6)-\mathrm{C}(9)$ | $-87.6(3)$ |
| $\mathrm{O}(2)-\mathrm{Co}(1)-\mathrm{O}(6)-\mathrm{C}(9)$ | $176.5(3)$ |
| $\mathrm{Co}(1)-\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)$ | $3.4(5)$ |
| $\mathrm{Co}(1)-\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(10)$ | $-176.5(2)$ |
| $\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$ | $-1.4(6)$ |
| $\mathrm{C}(10)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$ | $178.5(4)$ |
| $\mathrm{Co}(1)-\mathrm{O}(2)-\mathrm{C}(3)-\mathrm{C}(2)$ | $2.7(6)$ |
| $\mathrm{Co}(1)-\mathrm{O}(2)-\mathrm{C}(3)-\mathrm{C}(16)$ | $-175.4(3)$ |
| $\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{O}(2)$ | $-2.0(7)$ |
| $\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(16)$ | $176.0(4)$ |
| $\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(10)-\mathrm{C}(11)$ | $-156.7(4)$ |
| $\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(10)-\mathrm{C}(11)$ | $23.4(6)$ |
| $\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(10)-\mathrm{C}(15)$ | $-35.0(6)$ |
| $\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(10)-\mathrm{C}(15)$ | $146.6(4)$ |
| $\mathrm{C}(15)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$ |  |
| $\mathrm{C}(1)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$ | $22.9(5)$ |
| $\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$ | $-157.1(4)$ |
| $\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$ | $-3.9(7)$ |
| $\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$ | $175.7(4)$ |
| $\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(10)$ | $1.5(8)$ |
| $\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(15)-\mathrm{C}(14)$ | $1.8(8)$ |
| $\mathrm{C}(1)-\mathrm{C}(10)-\mathrm{C}(15)-\mathrm{C}(14)$ | $-2.7(8)-\mathrm{C}(3)-\mathrm{C}(16)-\mathrm{F}(2)$ |
| $\mathrm{O}(2)-\mathrm{C}(3)-\mathrm{C}(16)-\mathrm{F}(2)$ | $0.3(7)$ |
| $\mathrm{C}(3)-\mathrm{F}(3)$ | $3.0(7)$ |

## APPENDIX

| $\mathrm{O}(2)-\mathrm{C}(3)-\mathrm{C}(16)-\mathrm{F}(1)$ | $80.4(5)$ |
| :--- | :---: |
| $\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(16)-\mathrm{F}(1)$ | $-98.0(5)$ |
| $\mathrm{Co}(1)-\mathrm{O}(3)-\mathrm{C}(4)-\mathrm{C}(5)$ | $10.6(5)$ |
| $\mathrm{Co}(1)-\mathrm{O}(3)-\mathrm{C}(4)-\mathrm{C}(17)$ | $-169.5(2)$ |
| $\mathrm{O}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$ | $2.6(6)$ |
| $\mathrm{C}(17)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$ | $-177.3(4)$ |
| $\mathrm{Co}(1)-\mathrm{O}(4)-\mathrm{C}(6)-\mathrm{C}(5)$ | $-10.9(6)$ |
| $\mathrm{Co}(1)-\mathrm{O}(4)-\mathrm{C}(6)-\mathrm{C}(23)$ | $169.3(2)$ |
| $\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{O}(4)$ | $-2.2(7)$ |
| $\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(23)$ | $177.7(4)$ |
| $\mathrm{O}(3)-\mathrm{C}(4)-\mathrm{C}(17)-\mathrm{C}(18)$ | $-152.2(4)$ |
| $\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(17)-\mathrm{C}(18)$ | $27.7(6)$ |
| $\mathrm{O}(3)-\mathrm{C}(4)-\mathrm{C}(17)-\mathrm{C}(22)$ | $27.4(5)$ |
| $\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(17)-\mathrm{C}(22)$ | $-152.7(4)$ |
| $\mathrm{C}(22)-\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)$ | $-2.0(6)$ |
| $\mathrm{C}(4)-\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)$ | $177.6(4)$ |
| $\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(20)$ | $1.6(7)$ |
| $\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(21)$ | $-0.3(7)$ |
| $\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{C}(22)$ | $-0.6(7)$ |
| $\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(17)$ | $-1.4(6)$ |
| $\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{C}(22)-\mathrm{C}(21)$ | $177.9(3)$ |
| $\mathrm{C}(4)-\mathrm{C}(17)-\mathrm{C}(22)-\mathrm{C}(21)$ |  |
| $\mathrm{O}(4)-\mathrm{C}(6)-\mathrm{C}(23)-\mathrm{F}(5)$ | $-3.2(7)$ |
| $\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(23)-\mathrm{F}(5)$ | $1.1(6)$ |
| $\mathrm{O}(4)-\mathrm{C}(6)-\mathrm{C}(23)-\mathrm{F}(6)$ | $-178.5(4)$ |
| $\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(23)-\mathrm{F}(6)$ | $-175.1(3)$ |
| $\mathrm{O}(4)-\mathrm{C}(6)-\mathrm{C}(23)-\mathrm{F}(4)$ | $5.0(5)$ |
| $\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(23)-\mathrm{F}(4)$ | $-54.0(4)$ |
| $\mathrm{Co}(1)-\mathrm{O}(5)-\mathrm{C}(7)-\mathrm{C}(8)$ | $126.1(4)$ |
| $\mathrm{Co}(1)-\mathrm{O}(6)-\mathrm{C}(9)-\mathrm{C}(8)$ | $63.8(4)$ |
| $\mathrm{O}(5)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$ | $-116.1(4)$ |
|  | $1.4(5)$ |
| $\mathrm{C}(64)-\mathrm{C}(9)-\mathrm{C}(30)$ | $-176.8(2)$ |
| $\mathrm{C}(7)-\mathrm{C}(9)$ | $-\mathrm{C}(24)$ |

## APPENDIX

| $\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{O}(6)$ | $4.0(7)$ |
| :--- | :---: |
| $\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(30)$ | $-175.3(4)$ |
| $\mathrm{O}(5)-\mathrm{C}(7)-\mathrm{C}(24)-\mathrm{C}(25)$ | $-162.1(4)$ |
| $\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(24)-\mathrm{C}(25)$ | $19.7(6)$ |
| $\mathrm{O}(5)-\mathrm{C}(7)-\mathrm{C}(24)-\mathrm{C}(29)$ | $17.5(5)$ |
| $\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(24)-\mathrm{C}(29)$ | $-160.8(4)$ |
| $\mathrm{C}(29)-\mathrm{C}(24)-\mathrm{C}(25)-\mathrm{C}(26)$ | $-0.6(7)$ |
| $\mathrm{C}(7)-\mathrm{C}(24)-\mathrm{C}(25)-\mathrm{C}(26)$ | $178.9(4)$ |
| $\mathrm{C}(24)-\mathrm{C}(25)-\mathrm{C}(26)-\mathrm{C}(27)$ | $1.4(8)$ |
| $\mathrm{C}(25)-\mathrm{C}(26)-\mathrm{C}(27)-\mathrm{C}(28)$ | $-0.5(8)$ |
| $\mathrm{C}(26)-\mathrm{C}(27)-\mathrm{C}(28)-\mathrm{C}(29)$ | $-1.2(7)$ |
| $\mathrm{C}(27)-\mathrm{C}(28)-\mathrm{C}(29)-\mathrm{C}(24)$ | $1.9(7)$ |
| $\mathrm{C}(25)-\mathrm{C}(24)-\mathrm{C}(29)-\mathrm{C}(28)$ | $-1.1(6)$ |
| $\mathrm{C}(7)-\mathrm{C}(24)-\mathrm{C}(29)-\mathrm{C}(28)$ | $179.4(4)$ |
| $\mathrm{O}(6)-\mathrm{C}(9)-\mathrm{C}(30)-\mathrm{F}(9)$ | $63.9(5)$ |
| $\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(30)-\mathrm{F}(9)$ | $-116.7(5)$ |
| $\mathrm{O}(6)-\mathrm{C}(9)-\mathrm{C}(30)-\mathrm{F}(7)$ | $-174.6(4)$ |
| $\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(30)-\mathrm{F}(7)$ | $4.8(6)$ |
| $\mathrm{O}(6)-\mathrm{C}(9)-\mathrm{C}(30)-\mathrm{F}(8)$ | $-56.4(5)$ |
| $\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(30)-\mathrm{F}(8)$ | $123.1(5)$ |

## E. Computational

Optimized Cartesian coordinates ( $\AA$ )
All the compounds were optimized with ADF, PW91/TZP

Table E.1: Optimized Cartesian coordinates of $\operatorname{Cr}(\mathrm{acac})_{3}\{1\}, \mathrm{S}=3 / 2$ with $D 3$ symmetry.

|  | X | Y | Z |
| :---: | :---: | :---: | :---: |
| Cr | 0.000000000 | 0.000000000 | 0.000000000 |
| O | 0.015492000 | -1.602309000 | -1.159443000 |
| O | -1.395386000 | -0.787738000 | 1.159443000 |
| O | 0.015492000 | 1.602309000 | 1.159443000 |
| O | 1.379894000 | 0.814570000 | -1.159443000 |
| O | 1.379894000 | -0.814570000 | 1.159443000 |
| O | -1.395386000 | 0.787738000 | -1.159443000 |
| C | -0.710257000 | -2.650674000 | -1.021023000 |
| C | -1.940423000 | -1.940437000 | 1.021023000 |
| C | -1.651938000 | -2.861241000 | 0.000000000 |
| C | -0.494821000 | -3.714149000 | -2.070461000 |
| C | -2.969136000 | -2.285602000 | 2.070461000 |
| C | -0.710257000 | 2.650674000 | 1.021023000 |
| C | -1.651938000 | 2.861241000 | 0.000000000 |
| C | -0.494821000 | 3.714149000 | 2.070461000 |
| C | 2.650679000 | 0.710237000 | -1.021023000 |
| C | 3.303877000 | 0.000000000 | 0.000000000 |
| C | 2.650679000 | -0.710237000 | 1.021023000 |
| C | 3.463958000 | 1.428547000 | -2.070461000 |
| C | 3.463958000 | -1.428547000 | 2.070461000 |
| C | -1.940423000 | 1.940437000 | -1.021023000 |
| C | -2.969136000 | 2.285602000 | -2.070461000 |
| H | -2.195882000 | -3.803380000 | 0.000000000 |
| H | -1.121595000 | -4.595367000 | -1.905202000 |
| H | 0.561597000 | -4.011690000 | -2.072653000 |

APPENDIX

| H | -0.713105000 | -3.292103000 | -3.059994000 |
| :--- | ---: | ---: | ---: |
| H | -3.418908000 | -3.269013000 | 1.905202000 |
| H | -3.755024000 | -1.519488000 | 2.072653000 |
| H | -2.494493000 | -2.263618000 | 3.059994000 |
| H | -2.195882000 | 3.803380000 | 0.000000000 |
| H | -1.121595000 | 4.595367000 | 1.905202000 |
| H | 0.561597000 | 4.011690000 | 2.072653000 |
| H | -0.713105000 | 3.292103000 | 3.059994000 |
| H | 4.391765000 | 0.000000000 | 0.000000000 |
| H | 4.540502000 | 1.326354000 | -1.905202000 |
| H | 3.193427000 | 2.492202000 | -2.072653000 |
| H | 3.207598000 | 1.028485000 | -3.059994000 |
| H | 4.540502000 | -1.326354000 | 1.905202000 |
| H | 3.193427000 | -2.492202000 | 2.072653000 |
| H | 3.207598000 | -1.028485000 | 3.059994000 |
| H | -3.418908000 | 3.269013000 | -1.905202000 |
| H | -3.755024000 | 1.519488000 | -2.072653000 |
| H | -2.494493000 | 2.263618000 | -3.059994000 |

Table E.2: Optimized Cartesian coordinates of $f a c-\mathrm{Cr}(\mathrm{ba})_{3}\{2\}, \mathrm{S}=3 / 2$ with $D 3$ symmetry.

|  | $\mathbf{X}$ | $\mathbf{Y}$ | $\mathbf{Z}$ |
| :--- | :--- | :--- | :--- |
| Cr | 0.033405000 | 0.015267000 | -0.011088000 |
| O | 1.777577000 | 0.933389000 | -0.115796000 |
| C | 2.784183000 | 0.625249000 | -0.855598000 |
| C | 2.787943000 | -0.431939000 | -1.784044000 |
| H | 3.675249000 | -0.586735000 | -2.388555000 |
| C | 1.706778000 | -1.293517000 | -2.018523000 |
| O | 0.571759000 | -1.253145000 | -1.419119000 |
| C | 1.830934000 | -2.380451000 | -3.058401000 |
| H | 1.659352000 | -3.354914000 | -2.583377000 |
| H | 1.047006000 | -2.247416000 | -3.814977000 |
| H | 2.810053000 | -2.381309000 | -3.546350000 |
| C | 3.988429000 | 1.490652000 | -0.685611000 |


| C | 3.864599000 | 2.677702000 | 0.055600000 |
| :--- | :---: | :---: | :---: |
| C | 4.960086000 | 3.516563000 | 0.242261000 |
| C | 6.203039000 | 3.181115000 | -0.299868000 |
| C | 6.342063000 | 1.997980000 | -1.029077000 |
| C | 5.245221000 | 1.160967000 | -1.221876000 |
| H | 2.893280000 | 2.923258000 | 0.479356000 |
| H | 5.380154000 | 0.235615000 | -1.777555000 |
| H | 4.845147000 | 4.435764000 | 0.815551000 |
| H | 7.310601000 | 1.723259000 | -1.445127000 |
| H | 7.061390000 | 3.835468000 | -0.150676000 |
| O | -1.700450000 | -0.910559000 | 0.106904000 |
| C | -2.741287000 | -0.672579000 | -0.606609000 |
| C | -2.859562000 | 0.336585000 | -1.572929000 |
| H | -3.802837000 | 0.394268000 | -2.105477000 |
| C | -1.844633000 | 1.252266000 | -1.904993000 |
| O | -0.671174000 | 1.253287000 | -1.376438000 |
| C | -3.910431000 | -1.588778000 | -0.338815000 |
| H | -4.773036000 | -1.360140000 | -0.971497000 |
| H | -3.599913000 | -2.628019000 | -0.506398000 |
| H | -4.200429000 | -1.504049000 | 0.716405000 |
| C | -2.078429000 | 2.303398000 | -2.938586000 |
| C | -0.974709000 | 3.016024000 | -3.434730000 |
| C | -1.141582000 | 3.999532000 | -4.406405000 |
| C | -2.416256000 | 4.295761000 | -4.894916000 |
| C | -3.523928000 | 3.601992000 | -4.400651000 |
| C | -3.356958000 | 2.614697000 | -3.432232000 |
| H | 0.012294000 | 2.778318000 | -3.044005000 |
| H | -4.234663000 | 2.099686000 | -3.047515000 |
| H | -0.273342000 | 4.537434000 | -4.785259000 |
| H | -4.522657000 | 3.834565000 | -4.768211000 |
| H | -2.547834000 | 5.065933000 | -5.654295000 |

## APPENDIX

| H | 0.261092000 | 0.051633000 | 4.372536000 |
| :--- | ---: | ---: | ---: |
| C | -0.429970000 | 1.151096000 | 2.661621000 |
| O | -0.537518000 | 1.283049000 | 1.386047000 |
| C | 1.392320000 | -2.151557000 | 3.409894000 |
| H | 1.337545000 | -1.980603000 | 4.489022000 |
| H | 0.905909000 | -3.104448000 | 3.165355000 |
| H | 2.444403000 | -2.238728000 | 3.109118000 |
| C | -1.001703000 | 2.270859000 | 3.466500000 |
| C | -1.419605000 | 3.433703000 | 2.797767000 |
| C | -1.963005000 | 4.504010000 | 3.503724000 |
| C | -2.106640000 | 4.430376000 | 4.891390000 |
| C | -1.702964000 | 3.276341000 | 5.566963000 |
| C | -1.154804000 | 2.207091000 | 4.862062000 |
| H | -1.308952000 | 3.475521000 | 1.716407000 |
| H | -0.862057000 | 1.312751000 | 5.407546000 |
| H | -2.278647000 | 5.399112000 | 2.969276000 |
| H | -1.820253000 | 3.207057000 | 6.647705000 |
| H | -2.535119000 | 5.265964000 | 5.444039000 |

Table E.3: Optimized Cartesian coordinates of $\operatorname{mer}-\operatorname{Cr}(\mathrm{ba})_{3}\{2\}, \mathrm{S}=3 / 2$ with $D 3$ symmetry.

|  | $\mathbf{X}$ | $\mathbf{Y}$ | $\mathbf{Z}$ |
| :--- | :--- | :--- | :--- |
| Cr | -0.036442000 | 0.022576000 | -0.015365000 |
| O | 1.680769000 | 0.987820000 | -0.016981000 |
| O | -1.745812000 | -0.954744000 | 0.001845000 |
| O | -0.718095000 | 1.277141000 | -1.377596000 |
| O | 0.599770000 | -1.193449000 | -1.428830000 |
| O | -0.682701000 | 1.250150000 | 1.386486000 |
| O | 0.661221000 | -1.227928000 | 1.342602000 |
| C | -2.775250000 | -0.748140000 | -0.740928000 |
| C | -1.862240000 | 1.219830000 | -1.959977000 |
| C | -2.867789000 | 0.279065000 | -1.698923000 |
| H | -3.769088000 | 0.344706000 | -2.299279000 |
| C | -0.539439000 | 1.132119000 | 2.659709000 |


| C | 0.664374000 | -1.045449000 | 2.614441000 |
| :--- | :--- | :--- | :--- |
| C | 0.110065000 | 0.053025000 | 3.286315000 |
| C | 1.756026000 | -1.176123000 | -1.988247000 |
| C | 2.720464000 | 0.743994000 | -0.734256000 |
| C | 2.795236000 | -0.282202000 | -1.693722000 |
| H | 3.706342000 | -0.382749000 | -2.273877000 |
| C | 1.340321000 | -2.139017000 | 3.405405000 |
| H | 1.283954000 | -1.969180000 | 4.484584000 |
| H | 0.876072000 | -3.103093000 | 3.161882000 |
| H | 2.393843000 | -2.201929000 | 3.103123000 |
| C | 1.957633000 | -2.231855000 | -3.048054000 |
| H | 1.825470000 | -3.224138000 | -2.597752000 |
| H | 1.184293000 | -2.123379000 | -3.819159000 |
| H | 2.946291000 | -2.173067000 | -3.512697000 |
| H | 0.214253000 | 0.069650000 | 4.365985000 |
| C | -1.101526000 | 2.252575000 | 3.469501000 |
| C | -1.465452000 | 3.439589000 | 2.812894000 |
| C | -1.291059000 | 2.167731000 | 4.859109000 |
| C | -1.987551000 | 4.515574000 | 3.525850000 |
| C | -1.819598000 | 3.242247000 | 5.570975000 |
| C | -2.165815000 | 4.422093000 | 4.908381000 |
| H | -1.326992000 | 3.495194000 | 1.735208000 |
| H | -1.046511000 | 1.250768000 | 5.391050000 |
| H | -2.258634000 | 5.431572000 | 3.001818000 |
| H | -1.967625000 | 3.156858000 | 6.646727000 |
| H | -2.577444000 | 5.262205000 | 5.467013000 |
| C | 3.882014000 | 1.650747000 | -0.498847000 |
| C | 3.680201000 | 2.821783000 | 0.250332000 |
| C | 5.171904000 | 1.375959000 | -0.983049000 |
| C | 4.733049000 | 3.699467000 | 0.494403000 |
| C | 6.226475000 | 2.251452000 | -0.732619000 |

## APPENDIX

| H | 4.557819000 | 4.606430000 | 1.072249000 |
| :--- | :---: | :---: | :---: |
| H | 7.221980000 | 2.019102000 | -1.108942000 |
| H | 6.835345000 | 4.103872000 | 0.196844000 |
| C | -2.088327000 | 2.281728000 | -3.008868000 |
| H | -1.306461000 | 2.205216000 | -3.775345000 |
| H | -3.071106000 | 2.197914000 | -3.481960000 |
| H | -1.989911000 | 3.272831000 | -2.547529000 |
| C | -3.905081000 | -1.701916000 | -0.542932000 |
| C | -5.202691000 | -1.452894000 | -1.019909000 |
| C | -3.662333000 | -2.895252000 | 0.156448000 |
| C | -6.225029000 | -2.375807000 | -0.810958000 |
| C | -4.682946000 | -3.820521000 | 0.358202000 |
| C | -5.968099000 | -3.565406000 | -0.125257000 |
| H | -5.427311000 | -0.522606000 | -1.537409000 |
| H | -2.657677000 | -3.077688000 | 0.531610000 |
| H | -7.228147000 | -2.163362000 | -1.178693000 |
| H | -4.476324000 | -4.745191000 | 0.896200000 |
| H | -6.768278000 | -4.287312000 | 0.035604000 |

Table E.4: Optimized Cartesian coordinates of $\operatorname{Cr}(\mathrm{dbm})_{3}\{3\}, \mathrm{S}=3 / 2$ with $D 3$ symmetry.

|  | $\mathbf{X}$ | $\mathbf{Y}$ | $\mathbf{Z}$ |
| :--- | :--- | :--- | :--- |
| Cr | 0.000000000 | 0.000000000 | 0.000000000 |
| O | -1.379401000 | 0.797938000 | 1.148028000 |
| O | 1.380735000 | -0.795627000 | -1.148028000 |
| O | -0.001334000 | -1.593565000 | 1.148028000 |
| O | -1.379401000 | -0.797938000 | -1.148028000 |
| O | 1.380735000 | 0.795627000 | 1.148028000 |
| O | -0.001334000 | 1.593565000 | -1.148028000 |
| C | 1.931174000 | -1.954560000 | -1.032994000 |
| C | 0.727112000 | -2.649726000 | 1.032994000 |
| C | 1.654288000 | -2.865311000 | 0.000000000 |
| H | 2.195122000 | -3.802064000 | 0.000000000 |
| C | 1.931174000 | 1.954560000 | 1.032994000 |
| C | 0.727112000 | 2.649726000 | -1.032994000 |


| C | 1.654288000 | 2.865311000 | 0.000000000 |
| :--- | ---: | :--- | :--- |
| C | -2.658286000 | -0.695166000 | -1.032994000 |
| C | -2.658286000 | 0.695166000 | 1.032994000 |
| C | -3.308576000 | 0.000000000 | 0.000000000 |
| H | -4.390245000 | 0.000000000 | 0.000000000 |
| H | 2.195122000 | 3.802064000 | 0.000000000 |
| C | 0.516022000 | -3.681262000 | 2.090407000 |
| C | -0.586074000 | -3.544551000 | 2.951116000 |
| C | 1.376286000 | -4.777895000 | 2.269696000 |
| C | -0.828493000 | -4.483037000 | 3.949775000 |
| C | 1.136303000 | -5.713273000 | 3.273606000 |
| C | 0.030572000 | -5.571960000 | 4.115228000 |
| H | -1.244748000 | -2.689471000 | 2.817028000 |
| H | 2.254514000 | -4.898087000 | 1.638771000 |
| H | -1.691838000 | -4.364503000 | 4.603702000 |
| H | 1.817686000 | -6.553163000 | 3.403540000 |
| H | -0.157259000 | -6.305539000 | 4.898610000 |
| C | 2.930055000 | -2.287519000 | -2.090407000 |
| C | 3.449636000 | -3.580846000 | -2.269696000 |
| C | 3.362708000 | -1.264721000 | -2.951116000 |
| C | 4.379688000 | -3.840704000 | -3.273606000 |
| C | 4.296671000 | -1.524022000 | -3.949775000 |
| C | 4.810173000 | -2.812456000 | -4.115228000 |
| H | 3.114611000 | -4.401510000 | -1.638771000 |
| H | 2.951524000 | -0.266752000 | -2.817028000 |
| H | 4.766363000 | -4.850744000 | -3.403540000 |
| H | 4.625690000 | -0.717077000 | -4.603702000 |
| H | 5.539386000 | -3.016579000 | -4.898610000 |
| C | 2.930055000 | 2.287519000 | 2.090407000 |
| C | 3.362708000 | 1.264721000 | 2.951116000 |
| C | 3.449636000 | 3.580846000 | 2.269696000 |
|  | 4.296671000 | 1.524022000 | 3.949775000 |
| C | 4.810173000 | 2.812456000 | 4.115228000 |

APPENDIX

| H | 2.951524000 | 0.266752000 | 2.817028000 |
| :--- | ---: | ---: | ---: |
| H | 3.114611000 | 4.401510000 | 1.638771000 |
| H | 4.625690000 | 0.717077000 | 4.603702000 |
| H | 4.766363000 | 4.850744000 | 3.403540000 |
| H | 5.539386000 | 3.016579000 | 4.898610000 |
| C | 0.516022000 | 3.681262000 | -2.090407000 |
| C | 1.376286000 | 4.777895000 | -2.269696000 |
| C | -0.586074000 | 3.544551000 | -2.951116000 |
| C | 1.136303000 | 5.713273000 | -3.273606000 |
| C | -0.828493000 | 4.483037000 | -3.949775000 |
| C | 0.030572000 | 5.571960000 | -4.115228000 |
| H | 2.254514000 | 4.898087000 | -1.638771000 |
| H | -1.244748000 | 2.689471000 | -2.817028000 |
| H | 1.817686000 | 6.553163000 | -3.403540000 |
| H | -1.691838000 | 4.364503000 | -4.603702000 |
| H | -0.157259000 | 6.305539000 | -4.898610000 |
| C | -3.446077000 | 1.393742000 | 2.090407000 |
| C | -2.776634000 | 2.279830000 | 2.951116000 |
| C | -4.825922000 | 1.197049000 | 2.269696000 |
| C | -3.468177000 | 2.959015000 | 3.949775000 |
| C | -5.515991000 | 1.872569000 | 3.273606000 |
| C | -4.840744000 | 2.759504000 | 4.115228000 |
| H | -1.706776000 | 2.422719000 | 2.817028000 |
| H | -5.369125000 | 0.496577000 | 1.638771000 |
| H | -2.933851000 | 3.647426000 | 4.603702000 |
| H | -6.584049000 | 1.702419000 | 3.403540000 |
| H | -5.382127000 | 3.288960000 | 4.898610000 |
| C | -3.446077000 | -1.393742000 | -2.090407000 |
| C | -4.825922000 | -1.197049000 | -2.269696000 |
| C | -2.776634000 | -2.279830000 | -2.951116000 |
| C | -5.515991000 | -1.872569000 | -3.273606000 |


| H | -1.706776000 | -2.422719000 | -2.817028000 |
| :--- | :--- | :--- | :--- |
| H | -6.584049000 | -1.702419000 | -3.403540000 |
| H | -2.933851000 | -3.647426000 | -4.603702000 |
| H | -5.382127000 | -3.288960000 | -4.898610000 |

Table E.5: Optimized Cartesian coordinates of $f a c-\operatorname{Cr}(\mathrm{tfba})_{3}\{4\}, \mathrm{S}=3 / 2$ with $D 3$ symmetry.

|  | $\mathbf{X}$ | Y | Z |
| :---: | :---: | :---: | :---: |
| Cr | 0.002763000 | -0.014619000 | -0.051060000 |
| O | 1.735224000 | 0.920870000 | -0.126547000 |
| O | -1.735680000 | -0.934862000 | 0.043875000 |
| O | -0.693046000 | 1.237391000 | -1.402904000 |
| O | 0.567636000 | -1.256259000 | -1.471463000 |
| O | -0.572793000 | 1.230569000 | 1.363691000 |
| O | 0.721593000 | -1.264840000 | 1.290909000 |
| C | -2.763280000 | -0.622398000 | -0.651425000 |
| C | -1.859073000 | 1.275335000 | -1.939913000 |
| C | -2.902952000 | 0.383220000 | -1.595640000 |
| H | -3.870274000 | 0.490291000 | -2.068635000 |
| C | -0.484118000 | 1.095103000 | 2.637634000 |
| C | 0.660658000 | -1.087721000 | 2.556349000 |
| C | 0.114290000 | -0.026032000 | 3.261410000 |
| C | 1.729581000 | -1.266983000 | -2.006495000 |
| C | 2.760203000 | 0.653731000 | -0.853314000 |
| C | 2.803037000 | -0.419639000 | -1.774461000 |
| H | 3.715004000 | -0.609287000 | -2.325377000 |
| H | 0.177465000 | -0.061281000 | 4.341133000 |
| C | -1.035195000 | 2.210875000 | 3.449151000 |
| C | -1.438372000 | 3.386787000 | 2.792280000 |
| C | -1.177341000 | 2.132865000 | 4.845949000 |
| C | -1.957894000 | 4.457411000 | 3.513155000 |
| C | -1.702617000 | 3.203761000 | 5.564121000 |
| C | -2.091191000 | 4.369819000 | 4.901428000 |
| H | -1.334523000 | 3.440263000 | 1.710896000 |
| H | -0.895686000 | 1.229372000 | 5.381521000 |

## APPENDIX

| H | -2.262990000 | 5.363478000 | 2.992209000 |
| :--- | ---: | :--- | :---: |
| H | -1.813669000 | 3.126507000 | 6.644585000 |
| H | -2.501029000 | 5.206836000 | 5.465502000 |
| C | 3.932924000 | 1.548089000 | -0.674114000 |
| C | 3.923790000 | 2.468730000 | 0.388684000 |
| C | 5.046868000 | 1.515736000 | -1.531836000 |
| C | 5.001157000 | 3.325026000 | 0.592352000 |
| C | 6.121358000 | 2.377585000 | -1.328479000 |
| C | 6.103448000 | 3.282498000 | -0.264999000 |
| H | 3.060019000 | 2.493568000 | 1.048937000 |
| H | 5.076009000 | 0.829053000 | -2.374593000 |
| H | 4.983832000 | 4.028200000 | 1.424133000 |
| H | 6.975083000 | 2.344543000 | -2.003595000 |
| H | 6.946675000 | 3.953713000 | -0.105542000 |
| C | -2.071355000 | 2.339632000 | -2.954672000 |
| C | -1.067227000 | 3.307010000 | -3.136780000 |
| C | -3.231755000 | 2.411576000 | -3.746177000 |
| C | -1.223794000 | 4.322014000 | -4.075567000 |
| C | -3.383330000 | 3.425344000 | -4.688322000 |
| C | -2.382334000 | 4.385148000 | -4.854203000 |
| H | -0.167886000 | 3.244039000 | -2.528723000 |
| H | -4.018733000 | 1.667974000 | -3.644396000 |
| H | -0.438954000 | 5.066035000 | -4.203709000 |
| H | -4.284311000 | 3.464445000 | -5.298605000 |
| H | -2.503746000 | 5.177815000 | -5.591596000 |
| C | -3.973982000 | -1.524279000 | -0.341188000 |
| F | -5.074296000 | -1.201536000 | -1.082451000 |
| F | -3.683424000 | -2.823541000 | -0.592739000 |
| F | -4.324686000 | -1.423217000 | 0.965577000 |
| C | 1.311970000 | -2.244147000 | 3.340320000 |
| F | 1.228382000 | -2.075822000 | 4.692832000 |
| F | 0.718165000 | -3.424083000 | 3.041588000 |

## APPENDIX

| F | 3.123795000 | -2.418390000 | -3.616900000 |
| :--- | :--- | :--- | :--- |
| F | 1.681843000 | -3.607564000 | -2.471747000 |
| F | 0.980056000 | -2.254123000 | -4.045377000 |

Table E.6: Optimized Cartesian coordinates of $m e r-\operatorname{Cr}(\mathrm{tfba})_{3}\{4\}, \mathrm{S}=3 / 2$ with $D 3$ symmetry.

|  |  | $\mathbf{X}$ | $\mathbf{Y}$ |
| :--- | :--- | :--- | :--- |
| Cr | -0.110135000 | 0.048514000 | 0.011797000 |
| O | 1.544687000 | 1.113957000 | -0.023153000 |
| O | -1.762549000 | -1.021125000 | 0.038599000 |
| O | -0.873544000 | 1.243794000 | -1.361223000 |
| O | 0.616672000 | -1.170038000 | -1.353545000 |
| O | -0.817588000 | 1.267735000 | 1.394606000 |
| O | 0.629677000 | -1.144318000 | 1.405748000 |
| C | -2.838707000 | -0.868432000 | -0.643750000 |
| C | -2.055993000 | 1.137135000 | -1.844423000 |
| C | -3.027285000 | 0.189545000 | -1.568992000 |
| H | -3.959476000 | 0.258280000 | -2.113766000 |
| C | -0.681939000 | 1.206049000 | 2.669910000 |
| C | 0.561637000 | -0.924577000 | 2.664597000 |
| C | -0.015170000 | 0.144894000 | 3.332019000 |
| C | 1.801672000 | -1.104398000 | -1.835613000 |
| C | 2.621220000 | 0.920999000 | -0.696510000 |
| C | 2.791225000 | -0.166518000 | -1.588315000 |
| H | 3.725159000 | -0.274924000 | -2.123752000 |
| H | 0.064863000 | 0.159954000 | 4.411022000 |
| C | -1.266803000 | 2.333409000 | 3.442621000 |
| C | -1.763975000 | 3.446445000 | 2.741583000 |
| C | -1.345258000 | 2.328282000 | 4.847304000 |
| C | -2.315949000 | 4.525264000 | 3.426714000 |
| C | -1.902986000 | 3.406151000 | 5.529580000 |
| C | -2.388170000 | 4.508353000 | 4.822332000 |
| H | -1.706119000 | 3.446641000 | 1.655310000 |
| H | -0.984812000 | 1.476216000 | 5.418478000 |
| H | -2.693119000 | 5.382963000 | 2.871761000 |
|  |  |  |  |

## APPENDIX

| H | -1.963099000 | 3.383867000 | 6.616746000 |
| :--- | :---: | ---: | :---: |
| H | -2.823566000 | 5.351415000 | 5.358242000 |
| C | 3.703122000 | 1.919952000 | -0.496456000 |
| C | 3.434076000 | 3.058944000 | 0.284100000 |
| C | 4.986708000 | 1.767271000 | -1.050634000 |
| C | 4.418263000 | 4.017855000 | 0.499333000 |
| C | 5.970775000 | 2.727511000 | -0.831575000 |
| C | 5.689763000 | 3.855937000 | -0.057420000 |
| H | 2.441068000 | 3.173912000 | 0.711772000 |
| H | 5.232089000 | 0.892965000 | -1.648793000 |
| H | 4.195236000 | 4.896032000 | 1.103802000 |
| H | 6.960819000 | 2.594462000 | -1.264542000 |
| H | 6.460436000 | 4.606838000 | 0.112514000 |
| C | -3.898666000 | -1.884711000 | -0.424232000 |
| C | -5.196332000 | -1.750270000 | -0.950962000 |
| C | -3.592958000 | -3.023264000 | 0.342552000 |
| C | -6.159831000 | -2.727331000 | -0.716016000 |
| C | -4.556833000 | -4.000677000 | 0.570975000 |
| C | -5.842748000 | -3.855588000 | 0.043952000 |
| H | -5.468131000 | -0.875335000 | -1.536518000 |
| H | -2.588383000 | -3.125903000 | 0.746458000 |
| H | -7.161769000 | -2.606751000 | -1.125237000 |
| H | -4.305542000 | -4.880509000 | 1.160851000 |
| H | -6.597029000 | -4.621132000 | 0.224333000 |
| C | 1.213276000 | -2.051911000 | 3.492759000 |
| F | 1.209207000 | -1.790673000 | 4.833290000 |
| F | 0.545050000 | -3.223297000 | 3.310188000 |
| F | 2.501121000 | -2.252888000 | 3.122108000 |
| C | 2.097514000 | -2.257890000 | -2.814423000 |
| F | 3.357105000 | -2.191623000 | -3.339485000 |
| F | 1.984281000 | -3.457736000 | -2.188827000 |
|  | 1.223410000 | -2.249720000 | -3.852700000 |
| F | -267002000 | 3.475488000 | -2.286623000 |

## APPENDIX

| F | -1.505023000 | 2.211239000 | -3.908445000 |
| :--- | :--- | :--- | :--- |
| F | -3.633168000 | 2.151131000 | -3.379216000 |

Table E.7: Optimized Cartesian coordinates of $f a c-\operatorname{Cr}(\mathrm{tfth})_{3}\{5\}, \mathrm{S}=3 / 2$ with $D 3$ symmetry.

|  | $\mathbf{X}$ | $\mathbf{Y}$ | $\mathbf{Z}$ |
| :--- | :--- | :--- | :--- |
| Cr | -0.009275000 | 0.050421000 | 0.044607000 |
| O | 1.716258000 | 1.003234000 | 0.065659000 |
| O | -1.748614000 | -0.873363000 | 0.047448000 |
| O | -0.646973000 | 1.347372000 | -1.293812000 |
| O | 0.608989000 | -1.142758000 | -1.395507000 |
| O | -0.635171000 | 1.256581000 | 1.476973000 |
| O | 0.669199000 | -1.243316000 | 1.367159000 |
| C | -2.745281000 | -0.556630000 | -0.691442000 |
| C | -1.793617000 | 1.383138000 | -1.874223000 |
| C | -2.846846000 | 0.472107000 | -1.614615000 |
| H | -3.782797000 | 0.581917000 | -2.153394000 |
| C | -0.537491000 | 1.084480000 | 2.748565000 |
| C | 0.592643000 | -1.099798000 | 2.636810000 |
| C | 0.049148000 | -0.050814000 | 3.359836000 |
| C | 1.768247000 | -1.093979000 | -1.935964000 |
| C | 2.738750000 | 0.793963000 | -0.684675000 |
| C | 2.813298000 | -0.224063000 | -1.667063000 |
| H | 3.727493000 | -0.334375000 | -2.241977000 |
| H | 0.078720000 | -0.108580000 | 4.441334000 |
| C | -1.072387000 | 2.155734000 | 3.577301000 |
| C | -1.126538000 | 2.283681000 | 4.957782000 |
| C | -1.729943000 | 3.486780000 | 5.376495000 |
| C | -2.131543000 | 4.268600000 | 4.313876000 |
| H | -0.744846000 | 1.532634000 | 5.642917000 |
| H | -1.867907000 | 3.771242000 | 6.415839000 |
| H | -2.621095000 | 5.235988000 | 4.348020000 |
| C | -1.969526000 | 2.455856000 | -2.848933000 |
| C | -1.031319000 | 3.415965000 | -3.188160000 |
| C | -1.492173000 | 4.321632000 | -4.166211000 |

APPENDIX

| C | -2.780840000 | 4.050396000 | -4.572458000 |
| :--- | ---: | ---: | :---: |
| H | -0.047558000 | 3.439288000 | -2.728857000 |
| H | -0.903605000 | 5.143843000 | -4.564326000 |
| H | -3.378426000 | 4.577887000 | -5.308066000 |
| C | -3.960284000 | -1.476005000 | -0.464341000 |
| F | -5.017288000 | -1.157415000 | -1.265786000 |
| F | -3.640037000 | -2.769335000 | -0.709195000 |
| F | -4.388775000 | -1.391879000 | 0.821355000 |
| C | 1.214683000 | -2.284488000 | 3.400184000 |
| F | 1.122563000 | -2.142995000 | 4.755580000 |
| F | 0.601384000 | -3.446569000 | 3.071950000 |
| F | 2.531730000 | -2.410723000 | 3.097495000 |
| C | 1.953722000 | -2.167073000 | -3.025961000 |
| F | 3.192097000 | -2.126285000 | -3.597572000 |
| F | 1.784184000 | -3.409195000 | -2.512411000 |
| F | 1.044472000 | -2.002055000 | -4.020096000 |
| S | -3.437418000 | 2.687474000 | -3.761824000 |
| S | -1.779059000 | 3.543768000 | 2.799131000 |
| C | 3.865988000 | 1.698239000 | -0.473110000 |
| C | 3.920556000 | 2.738554000 | 0.439694000 |
| C | 5.142957000 | 3.441878000 | 0.407757000 |
| H | 5.378825000 | 4.288060000 | 1.047363000 |
| H | 3.087425000 | 2.962263000 | 1.099318000 |
| S | 5.354930000 | 1.599811000 | -1.376101000 |
| C | 6.018904000 | 2.937220000 | -0.528558000 |
| H | 7.021052000 | 3.278829000 | -0.763774000 |
|  |  |  |  |

Table E.8: Optimized Cartesian coordinates of $\operatorname{fac}-\mathrm{Cr}(\mathrm{tfth})_{3}\{5\}, \mathrm{S}=3 / 2$ with $D 3$ symmetry.

|  | $\mathbf{X}$ | $\mathbf{Y}$ | $\mathbf{Z}$ |
| :--- | :--- | :--- | :--- |
| Cr | 0.028477000 | 0.026713000 | -0.106707000 |
| O | 1.779971000 | 0.924264000 | -0.144799000 |
| O | -1.722442000 | -0.873020000 | -0.043166000 |
| O | -0.607485000 | 1.265732000 | -1.505720000 |
| O | 0.609524000 | -1.269571000 | -1.468844000 |

## APPENDIX

| O | -0.587118000 | 1.329797000 | 1.238672000 |
| :---: | :---: | :---: | :---: |
| O | 0.664455000 | -1.197494000 | 1.305509000 |
| C | -2.783086000 | -0.587817000 | -0.711843000 |
| C | -1.805457000 | 1.296328000 | -1.959263000 |
| C | -2.874527000 | 0.474614000 | -1.647842000 |
| H | -3.817067000 | 0.65 | -2.152445000 |
| C | -0.553632000 | 1.219651000 | 2.518062000 |
| C | 0.532639000 | -0.991318000 | 2.562292000 |
| C | -0.021396000 | 0.101763000 | 3.208715000 |
| C | 1.776371000 | -1.302038000 | -1.996993000 |
| C | 2.805529000 | 0.623920000 | -0.862217000 |
| C | 2.852848000 | -0.461167000 | -1.772925000 |
| H | 3.766584000 | -0.644170000 | -2.325545000 |
| H | -0.041520000 | 0.095428000 | 4.294014000 |
| C | -1.113601000 | 2.346568000 | 3.259174000 |
| C | -1.674000000 | 3.487904000 | 2.709904000 |
| C | -2.137863000 | 4.400655000 | 3.680370000 |
| C | -1.930041000 | 3.954563000 | 4.968057000 |
| H | -1.733621000 | 3.632995000 | 1.635275000 |
| H | -2.608617000 | 5.352326000 | 3.449290000 |
| H | -2.185488000 | 4.447757000 | 5.899575000 |
| C | 3.969569000 | 1.481165000 | -0.697213000 |
| C | 5.212688000 | 1.435657000 | -1.311939000 |
| C | 6.079771000 | 2.458582000 | -0.877937000 |
| C | 5.492901000 | 3.277339000 | 0.064204000 |
| H | 5.486530000 | 0.688955000 | -2.050992000 |
| H | 7.095412000 | 2.592947000 | -1.239986000 |
| H | 5.929820000 | 4.136015000 | 0.563144000 |
| C | -3.939572000 | -1.433074000 | -0.458698000 |
| C | -5.216350000 | -1.396580000 | -1.000758000 |
| C | -6.061332000 | -2.400176000 | -0.486451000 |
| C | -5.423315000 | -3.195188000 | 0.443256000 |
| H | -5.529182000 | -0.670192000 | -1.744773000 |
| H | -7.096944000 | $-2.539153000$ | -0.784408000 |

APPENDIX

| H | -5.833956000 | -4.036942000 | 0.990708000 |
| :--- | ---: | ---: | ---: |
| C | -2.016215000 | 2.434789000 | -2.973622000 |
| F | -1.826413000 | 3.643451000 | -2.377434000 |
| F | -1.139731000 | 2.343278000 | -4.001877000 |
| F | -3.272567000 | 2.443486000 | -3.506948000 |
| C | 1.928458000 | -2.452588000 | -3.008992000 |
| F | 3.168964000 | -2.493156000 | -3.577891000 |
| F | 1.719161000 | -3.651275000 | -2.410600000 |
| F | 1.026905000 | -2.330906000 | -4.015788000 |
| C | 1.080325000 | -2.156134000 | 3.408453000 |
| F | 0.960084000 | -1.935919000 | 4.749655000 |
| F | 0.415216000 | -3.305865000 | 3.127225000 |
| F | 2.394615000 | -2.366198000 | 3.149021000 |
| S | -3.792982000 | -2.727850000 | 0.696743000 |
| S | -1.166550000 | 2.416577000 | 5.000410000 |
| S | 3.883384000 | 2.808015000 | 0.427225000 |

Table E.9: Optimized Cartesian coordinates of $f a c-\operatorname{Cr}(\mathrm{tffu})_{3}\{6\}, \mathrm{S}=3 / 2$ with $D 3$ symmetry.

|  | $\mathbf{X}$ | $\mathbf{Y}$ | $\mathbf{Z}$ |
| :--- | :--- | :--- | :--- |
| Cr | 0.061614000 | 0.038920000 | 0.059089000 |
| O | 1.804646000 | 0.956479000 | 0.122765000 |
| O | -1.696671000 | -0.852081000 | 0.036516000 |
| O | -0.509491000 | 1.333101000 | -1.309591000 |
| O | 0.686265000 | -1.173844000 | -1.365507000 |
| O | -0.585002000 | 1.274380000 | 1.453122000 |
| O | 0.680637000 | -1.252638000 | 1.416221000 |
| C | -2.682236000 | -0.503496000 | -0.703631000 |
| C | -1.659465000 | 1.392928000 | -1.884038000 |
| C | -2.748563000 | 0.526112000 | -1.627826000 |
| H | -3.670263000 | 0.679326000 | -2.177439000 |
| C | -0.543367000 | 1.103123000 | 2.722762000 |
| C | 0.559703000 | -1.095388000 | 2.681180000 |
| C | 0.002270000 | -0.033141000 | 3.372449000 |
| C | 1.834590000 | -1.108901000 | -1.926882000 |


| C | 2.816846000 | 0.741802000 | -0.642431000 |
| :---: | :---: | :---: | :---: |
| C | 2.883367000 | -0.243340000 | -1.655409000 |
| H | 3.796639000 | -0.328612000 | -2.233409000 |
| H | -0.015223000 | -0.077583000 | 4.455110000 |
| C | -1.097699000 | 2.168911000 | 3.544443000 |
| C | -1.232110000 | 2.343365000 | 4.907528000 |
| C | -1.863537000 | 3.598945000 | 5.099587000 |
| C | -2.074230000 | 4.110538000 | 3.846488000 |
| H | -0.918246000 | 1.650574000 | 5.678476000 |
| H | -2.132823000 | 4.066848000 | 6.039006000 |
| H | -2.520989000 | 5.028457000 | 3.486011000 |
| C | -1.799790000 | 2.454915000 | -2.862526000 |
| C | -0.917679000 | 3.421415000 | 0 |
| C | -1.600046000 | 4.192208000 | -4.266789000 |
| C | -2.852866000 | 3.649820000 | -4.375131000 |
| H | 0.096308000 | 3.541735000 | $-2.929388000$ |
| H | -1.220023000 | 5.040300000 | 0 |
| H | -3.715975000 | 3.891702000 | -4.982165000 |
| C | -3.930355000 | -1.375570000 | -0.471359000 |
| F | -4.957 | -1.058336000 | -1.310694000 |
| F | -3.648629000 | $-2.688145000$ | -0.651595000 |
| F | -4.387224000 | -1.222738000 | 0.799922000 |
| C | 1.139809000 | -2.277549000 | 3.478800000 |
| F | 0.994635000 | -2.122886000 | 4.828774000 |
| F | 0.531503000 | -3.438353000 | 3.137238000 |
| F | 2.467483000 | -2.417426000 | 3.231494000 |
| C | 2.002780000 | -2.153464000 | -3.046463000 |
| F | 3.234490000 | -2.104849000 | -3.630431000 |
| F | 1.829747000 | -3.408945000 | -2.566875000 |
| F | 1.083768000 | -1.955053000 | -4.026755000 |
| C | 3.956491000 | 1.609920000 | -0.406513000 |
| C | 4.149250000 | 2.633337000 | 0.493833000 |
| C | 5.460299000 | 3.130071000 | 0.271244000 |
| H | 5.960265000 | 3.936428000 | 0.794818000 |

## APPENDIX

| H | 3.419313000 | 2.968170000 | 1.220234000 |
| :--- | ---: | ---: | ---: |
| C | 5.984871000 | 2.381258000 | -0.748312000 |
| H | 6.939804000 | 2.387275000 | -1.257999000 |
| O | -3.000419000 | 2.592309000 | -3.531606000 |
| O | 5.090284000 | 1.450042000 | -1.178780000 |
| O | -1.617322000 | 3.261776000 | 2.890019000 |

Table E.10: Optimized Cartesian coordinates of $\operatorname{mer}-\operatorname{Cr}(\mathrm{tffu})_{3}\{6\}, \mathrm{S}=3 / 2$ with $D 3$ symmetry.

|  | X | Y | Z |
| :---: | :---: | :---: | :---: |
| Cr | -0.018675000 | 0.007918000 | -0.161692000 |
| O | 1.705539000 | 0.953501000 | -0.165571000 |
| O | -1.752389000 | -0.926981000 | -0.123741000 |
| O | -0.653861000 | 1.239451000 | -1.570415000 |
| O | 0.615330000 | -1.272141000 | -1.518624000 |
| O | -0.697551000 | 1.282090000 | 1.179060000 |
| O | 0.655258000 | -1.200871000 | 1.247361000 |
| C | -2.807237000 | -0.635902000 | -0.789067000 |
| C | -1.848678000 | 1.258271000 | -2.033189000 |
| C | -2.910621000 | 0.427399000 | -1.724826000 |
| H | -3.855727000 | 0.592603000 | -2.228690000 |
| C | -0.626853000 | 1.170066000 | 2.458343000 |
| C | 0.562548000 | -0.979078000 | 2.505041000 |
| C | -0.019630000 | 0.097352000 | 3.154440000 |
| C | 1.803462000 | -1.295130000 | -1.998392000 |
| C | 2.754134000 | 0.655221000 | -0.839810000 |
| C | 2.858553000 | -0.439307000 | -1.737087000 |
| H | 3.798864000 | -0.611847000 | -2.247406000 |
| H | -0.014934000 | 0.122250000 | 4.238162000 |
| C | -1.236678000 | 2.256704000 | 3.202381000 |
| C | -1.882435000 | 3.396117000 | 2.779902000 |
| C | -2.284396000 | 4.093660000 | 3.948946000 |
| C | -1.859097000 | 3.338565000 | 5.009876000 |
| H | -2.035851000 | 3.675634000 | 1.745216000 |
| H | -2.819658000 | 5.034054000 | 4.006850000 |

## APPENDIX

| H | -1.932078000 | 3.459365000 | 6.083154000 |
| :--- | :---: | :---: | :---: |
| C | 3.912653000 | 1.516098000 | -0.662338000 |
| C | 5.181330000 | 1.521287000 | -1.207939000 |
| C | 5.866420000 | 2.625958000 | -0.640666000 |
| C | 4.976104000 | 3.223722000 | 0.212296000 |
| H | 5.572993000 | 0.816439000 | -1.930761000 |
| H | 6.884276000 | 2.943002000 | -0.833644000 |
| H | 5.037350000 | 4.087867000 | 0.861362000 |
| C | -3.979457000 | -1.463894000 | -0.557394000 |
| C | -5.256462000 | -1.465452000 | -1.083771000 |
| C | -5.957328000 | -2.524096000 | -0.453416000 |
| C | -5.067575000 | -3.100477000 | 0.414974000 |
| H | -5.642984000 | -0.788514000 | -1.835616000 |
| H | -6.984818000 | -2.826936000 | -0.616790000 |
| H | -5.138910000 | -3.930303000 | 1.106112000 |
| C | -2.064479000 | 2.390412000 | -3.052304000 |
| F | -1.897123000 | 3.604264000 | -2.460075000 |
| F | -1.177615000 | 2.307571000 | -4.072732000 |
| F | -3.316288000 | 2.380408000 | -3.598071000 |
| C | 2.011966000 | -2.451438000 | -2.992480000 |
| F | 3.274946000 | -2.478296000 | -3.512307000 |
| F | 1.797740000 | -3.648434000 | -2.392326000 |
| F | 1.149429000 | -2.353516000 | -4.035814000 |
| C | 1.201361000 | -2.098121000 | 3.348929000 |
| F | 1.119083000 | -1.859867000 | 4.689675000 |
| F | 0.593497000 | -3.288262000 | 3.112173000 |
| F | 2.516525000 | -2.240163000 | 3.044434000 |
| O | -3.864675000 | -2.474307000 | 0.367735000 |
| O | -1.218517000 | 2.215800000 | 4.582959000 |
| O | 3.787260000 | 2.568084000 | 0.214540000 |
|  |  |  |  |

## APPENDIX

Table E.11: Optimized Cartesian coordinates of $f a c-\operatorname{Cr}(\mathrm{tfaa})_{3}\{7\}, \mathrm{S}=3 / 2$ with $D 3$ symmetry.

|  | $\mathbf{X}$ | $\mathbf{Y}$ | $\mathbf{Z}$ |
| :--- | :--- | :--- | :--- |
| Cr | -7.775023000 | -2.575508000 | 6.461430000 |
| O | -8.188982000 | -0.804122000 | 7.227995000 |
| O | -7.321304000 | -4.342744000 | 5.698720000 |
| O | -8.895938000 | -3.411006000 | 7.855097000 |
| O | -9.346415000 | -2.478504000 | 5.264744000 |
| O | -6.220691000 | -2.706201000 | 7.671279000 |
| O | -6.676427000 | -1.707115000 | 5.065073000 |
| C | -7.745091000 | -5.459913000 | 6.149054000 |
| C | -9.123206000 | -4.658417000 | 8.027878000 |
| C | -8.588227000 | -5.693514000 | 7.229468000 |
| C | -10.036706000 | -4.995431000 | 9.175736000 |
| H | -11.026498000 | -4.560523000 | 8.983717000 |
| H | -10.138613000 | -6.074020000 | 9.322422000 |
| H | -9.652400000 | -4.531073000 | 10.092374000 |
| H | -8.848946000 | -6.719418000 | 7.469035000 |
| C | -5.022510000 | -2.318127000 | 7.444819000 |
| C | -5.431308000 | -1.446826000 | 5.176465000 |
| C | -4.587220000 | -1.699966000 | 6.251735000 |
| C | -10.164433000 | -1.499238000 | 5.216179000 |
| C | -9.161667000 | -0.030942000 | 6.922073000 |
| C | -10.148690000 | -0.321265000 | 5.954303000 |
| H | -10.930532000 | 0.410207000 | 5.776712000 |
| C | -9.210780000 | 1.272925000 | 7.672508000 |
| H | -10.100040000 | 1.859779000 | 7.427407000 |
| H | -9.184755000 | 1.071278000 | 8.750542000 |
| H | -8.313042000 | 1.857432000 | 7.431357000 |
| H | -3.544466000 | -1.410652000 | 6.169279000 |
| C | -11.297742000 | -1.727258000 | 4.195810000 |
| F | -12.138654000 | -0.658782000 | 4.095979000 |
|  | -10.796895000 | -1.969047000 | 2.961924000 |
| F | -190000 | -2.800572000 | 4.556130000 |

## APPENDIX

| F | -5.846333000 | -6.726769000 | 5.459877000 |
| :--- | :--- | :--- | :--- |
| F | -7.697953000 | -7.853261000 | 5.790601000 |
| F | -7.505320000 | -6.550969000 | 4.038431000 |
| C | -4.042200000 | -2.564641000 | 8.560110000 |
| H | -4.431736000 | -2.126798000 | 9.487535000 |
| H | -3.954458000 | -3.646584000 | 8.725592000 |
| H | -3.053660000 | -2.151255000 | 8.342941000 |
| C | -4.860067000 | -0.749511000 | 3.925457000 |
| F | -5.459712000 | 0.456366000 | 3.740408000 |
| F | -3.518355000 | -0.524719000 | 4.014955000 |
| F | -5.076040000 | -1.493228000 | 2.815482000 |

Table E.12: Optimized Cartesian coordinates of mer $-\operatorname{Cr}(\mathrm{tfaa})_{3}\{7\}, \mathrm{S}=3 / 2$ with $D 3$ symmetry.

|  | $\mathbf{X}$ | $\mathbf{Y}$ |  |
| :--- | :--- | :--- | :--- |
| Cr | -7.816681000 | -2.572283000 | 6.498758000 |
| O | -8.257021000 | -0.798433000 | 7.245410000 |
| O | -7.341820000 | -4.336229000 | 5.746101000 |
| O | -8.947107000 | -3.411779000 | 7.880542000 |
| O | -9.370740000 | -2.493368000 | 5.276509000 |
| O | -6.278107000 | -2.676945000 | 7.735981000 |
| O | -6.702943000 | -1.718139000 | 5.111681000 |
| C | -7.753534000 | -5.456735000 | 6.201294000 |
| C | -9.147262000 | -4.661411000 | 8.069728000 |
| C | -8.593595000 | -5.694365000 | 7.281617000 |
| C | -10.042380000 | -5.003221000 | 9.229965000 |
| H | -11.006897000 | -4.495428000 | 9.103383000 |
| H | -10.204107000 | -6.080040000 | 9.326480000 |
| H | -9.592333000 | -4.616670000 | 10.153631000 |
| H | -8.836837000 | -6.722278000 | 7.530639000 |
| C | -5.094163000 | -2.284010000 | 7.459652000 |
| C | -5.449911000 | -1.467276000 | 5.162904000 |
| C | -4.623927000 | -1.716052000 | 6.282380000 |
| C | -10.202607000 | -1.526380000 | 5.218535000 |
| C | -9.241334000 | -0.043300000 | 6.935162000 |

APPENDIX

| C | -10.214671000 | -0.349294000 | 5.957261000 |
| :--- | :--- | :--- | :---: |
| H | -11.008061000 | 0.368260000 | 5.773887000 |
| C | -4.857887000 | -0.872188000 | 3.914015000 |
| H | -3.813134000 | -0.579140000 | 4.048260000 |
| H | -4.925146000 | -1.611579000 | 3.104729000 |
| H | -5.453008000 | -0.003900000 | 3.606053000 |
| C | -9.325089000 | 1.253751000 | 7.694466000 |
| H | -10.186347000 | 1.856563000 | 7.394169000 |
| H | -9.383753000 | 1.037293000 | 8.768787000 |
| H | -8.402385000 | 1.825858000 | 7.533015000 |
| H | -3.573277000 | -1.451353000 | 6.219612000 |
| C | -4.116835000 | -2.492832000 | 8.633529000 |
| F | -4.517733000 | -1.782313000 | 9.719701000 |
| F | -4.065958000 | -3.799495000 | 8.992208000 |
| F | -2.845799000 | -2.100331000 | 8.337971000 |
| C | -11.313118000 | -1.766342000 | 4.175893000 |
| F | -12.192347000 | -0.727513000 | 4.094153000 |
| F | -10.783191000 | -1.947839000 | 2.941380000 |
| F | -12.028161000 | -2.877784000 | 4.486991000 |
| C | -7.205908000 | -6.654027000 | 5.398973000 |
| F | -5.849164000 | -6.670941000 | 5.430460000 |
| F | -7.639713000 | -7.852991000 | 5.879886000 |
| F | -7.587585000 | -6.574864000 | 4.099785000 |

Table E.13: Optimized Cartesian coordinates of $\mathrm{Cr}(\mathrm{hfaa})_{3}\{8\}, \mathrm{S}=3 / 2$ with $D 3$ symmetry.Cr(hfaa)3

| $\mathbf{X}$ |  | $\mathbf{Y}$ | $\mathbf{Z}$ |
| :--- | ---: | :--- | :--- |
| Cr | 0.000000000 | 0.000000000 | 0.000000000 |
| O | -1.396619000 | 0.790902000 | -1.150088000 |
| O | 1.383251000 | -0.814057000 | 1.150088000 |
| O | 1.383251000 | 0.814057000 | -1.150088000 |
| O | 0.013368000 | 1.604959000 | 1.150088000 |
| O | 0.013368000 | -1.604959000 | -1.150088000 |

## APPENDIX

| O | -1.396619000 | -0.790902000 | 1.150088000 |
| :--- | :--- | :--- | :---: |
| C | 2.642106000 | -0.703022000 | 0.995588000 |
| C | 2.642106000 | 0.703022000 | -0.995588000 |
| C | 3.325135000 | 0.000000000 | 0.000000000 |
| H | 4.409203000 | 0.000000000 | 0.000000000 |
| C | -0.712218000 | -2.639642000 | -0.995588000 |
| C | -1.929888000 | -1.936620000 | 0.995588000 |
| C | -1.662568000 | -2.879652000 | 0.000000000 |
| C | -0.712218000 | 2.639642000 | 0.995588000 |
| C | -1.929888000 | 1.936620000 | -0.995588000 |
| C | -1.662568000 | 2.879652000 | 0.000000000 |
| H | -2.204602000 | 3.818482000 | 0.000000000 |
| H | -2.204602000 | -3.818482000 | 0.000000000 |
| C | 3.449277000 | -1.462993000 | 2.071114000 |
| F | 4.790102000 | -1.331227000 | 1.895857000 |
| F | 3.142988000 | -0.998612000 | 3.304211000 |
| F | 3.153329000 | -2.784023000 | 2.031721000 |
| C | 3.449277000 | 1.462993000 | -2.071114000 |
| F | 3.142988000 | 0.998612000 | -3.304211000 |
| F | 3.153329000 | 2.784023000 | -2.031721000 |
| F | 4.790102000 | 1.331227000 | -1.895857000 |
| C | -0.457649000 | 3.718658000 | 2.071114000 |
| F | -1.242174000 | 4.813963000 | 1.895857000 |
| F | -0.706671000 | 3.221214000 | 3.304211000 |
| F | 0.834370000 | 4.122874000 | 2.031721000 |
| C | -2.991628000 | 2.255665000 | -2.071114000 |
| F | -2.436317000 | 2.222602000 | -3.304211000 |
| F | -3.987699000 | 1.338851000 | -2.031721000 |
| F | -3.547928000 | 3.482736000 | -1.895857000 |
| C | -2.991628000 | -2.255665000 | 2.071114000 |
| F | -3.547928000 | -3.482736000 | 1.895857000 |

APPENDIX

| F | -0.706671000 | -3.221214000 | -3.304211000 |
| :---: | :---: | :---: | :---: |
| F | 0.834370000 | -4.122874000 | -2.031721000 |
| F | -1.242174000 | -4.813963000 | -1.895857000 |

Table E.14: Optimized Cartesian coordinates of mer- $\operatorname{Co}(\text { acac })_{3}\{9\}, \mathrm{S}=0 / 2$ with $D 3$ symmetry.

|  |  | $\mathbf{X}$ | $\mathbf{Z}$ |
| :--- | :--- | :--- | :--- |
| Co | 0.000000000 | 0.000000000 | 0.000000000 |
| O | -1.359205000 | 0.671646000 | -1.156939000 |
| O | 1.261265000 | -0.841283000 | 1.156939000 |
| O | 1.261265000 | 0.841283000 | -1.156939000 |
| O | 0.097940000 | 1.512929000 | 1.156939000 |
| O | 0.097940000 | -1.512929000 | -1.156939000 |
| O | -1.359205000 | -0.671646000 | 1.156939000 |
| C | 2.527583000 | -0.728608000 | 1.006044000 |
| C | 2.527583000 | 0.728608000 | -1.006044000 |
| C | 3.180043000 | 0.000000000 | 0.000000000 |
| C | 3.343770000 | 1.466723000 | -2.042009000 |
| H | 3.054808000 | 2.524958000 | -2.048378000 |
| H | 4.417625000 | 1.382488000 | -1.852351000 |
| H | 3.118033000 | 1.060846000 | -3.036346000 |
| C | 3.343770000 | -1.466723000 | 2.042009000 |
| H | 3.054808000 | -2.524958000 | 2.048378000 |
| H | 4.417625000 | -1.382488000 | 1.852351000 |
| H | 3.118033000 | -1.060846000 | 3.036346000 |
| H | 4.267810000 | 0.000000000 | 0.000000000 |
| C | -0.632798000 | -2.553255000 | -1.006044000 |
| C | -1.894785000 | -1.824647000 | 1.006044000 |
| C | -1.590021000 | -2.753998000 | 0.000000000 |
| C | -0.632798000 | 2.553255000 | 1.006044000 |
| C | -1.894785000 | 1.824647000 | -1.006044000 |
| C | -1.590021000 | 2.753998000 | 0.000000000 |
| H | -2.133905000 | 3.696032000 | 0.000000000 |
| C | -2.942105000 | -2.162429000 | 2.042009000 |
| H | -3.406082000 | -3.134532000 | 1.852351000 |
|  |  |  |  |

## APPENDIX

| H | -2.477736000 | -2.169873000 | 3.036346000 |
| :--- | :---: | :---: | :---: |
| H | -3.714081000 | -1.383063000 | 2.048378000 |
| C | -0.401666000 | -3.629152000 | -2.042009000 |
| H | -0.640297000 | -3.230719000 | -3.036346000 |
| H | 0.659273000 | -3.908020000 | -2.048378000 |
| H | -1.011543000 | -4.517019000 | -1.852351000 |
| C | -0.401666000 | 3.629152000 | 2.042009000 |
| H | -0.640297000 | 3.230719000 | 3.036346000 |
| H | 0.659273000 | 3.908020000 | 2.048378000 |
| H | -1.011543000 | 4.517019000 | 1.852351000 |
| C | -2.942105000 | 2.162429000 | -2.042009000 |
| H | -3.406082000 | 3.134532000 | -1.852351000 |
| H | -2.477736000 | 2.169873000 | -3.036346000 |
| H | -3.714081000 | 1.383063000 | -2.048378000 |
| H | -2.133905000 | -3.696032000 | 0.000000000 |

Table E.15: Optimized Cartesian coordinates of $f a c-\operatorname{Co}(\mathrm{ba})_{3}\{10\}, \mathrm{S}=0 / 2$ with $D 3$ symmetry.

|  | $\mathbf{X}$ | $\mathbf{Y}$ | $\mathbf{Z}$ |
| :--- | :--- | :--- | :--- |
| Co | -0.010577000 | -0.042560000 | -0.022986000 |
| O | 1.612942000 | 0.922176000 | 0.187782000 |
| O | -1.654876000 | -1.004959000 | -0.042964000 |
| O | -0.444774000 | 1.178586000 | -1.413157000 |
| O | 0.617876000 | -1.268814000 | -1.338272000 |
| O | -0.794399000 | 1.201414000 | 1.182604000 |
| O | 0.595613000 | -1.283153000 | 1.288233000 |
| C | -2.655271000 | -0.699447000 | -0.788069000 |
| C | -1.592033000 | 1.202869000 | -1.984641000 |
| C | -2.670371000 | 0.347382000 | -1.724886000 |
| C | -1.734318000 | 2.285586000 | -3.029184000 |
| H | -0.975757000 | 2.140323000 | -3.808646000 |
| H | -2.728014000 | 2.285754000 | -3.486216000 |
| H | -1.545060000 | 3.262602000 | -2.567435000 |
| H | -3.586516000 | 0.534193000 | -2.274748000 |
| C | -0.815690000 | 1.023076000 | 2.452133000 |

## APPENDIX

| C | 0.410319000 | -1.137189000 | 2.550266000 |
| :--- | :---: | :---: | :---: |
| C | -0.263233000 | -0.058632000 | 3.149067000 |
| C | 1.798930000 | -1.232185000 | -1.842348000 |
| C | 2.662108000 | 0.678216000 | -0.507501000 |
| C | 2.802159000 | -0.318115000 | -1.481168000 |
| H | 3.751410000 | -0.362084000 | -2.004151000 |
| C | -1.523864000 | 2.118941000 | 3.214376000 |
| H | -1.049322000 | 3.082347000 | 2.990193000 |
| H | -2.565954000 | 2.181512000 | 2.876298000 |
| H | -1.503269000 | 1.945797000 | 4.294137000 |
| C | 3.826451000 | 1.591749000 | -0.202412000 |
| H | 4.694664000 | 1.371371000 | -0.830013000 |
| H | 3.520601000 | 2.634207000 | -0.354882000 |
| H | 4.105233000 | 1.483371000 | 0.853349000 |
| H | -0.396412000 | -0.069574000 | 4.225793000 |
| C | -3.866334000 | -1.550406000 | -0.584914000 |
| C | -4.931134000 | -1.580359000 | -1.500558000 |
| C | -3.942921000 | -2.355905000 | 0.563589000 |
| C | -6.045493000 | -2.383850000 | -1.268088000 |
| C | -5.059688000 | -3.154771000 | 0.797020000 |
| C | -6.116370000 | -3.170945000 | -0.116406000 |
| H | -4.886340000 | -0.989883000 | -2.413167000 |
| H | -3.113191000 | -2.338693000 | 1.266664000 |
| H | -6.859743000 | -2.399585000 | -1.991534000 |
| H | -5.105982000 | -3.767906000 | 1.696244000 |
| H | -6.989613000 | -3.796727000 | 0.065377000 |
| C | 0.956255000 | -2.243749000 | 3.391397000 |
| C | 1.192180000 | -2.095203000 | 4.767682000 |
| C | 1.257870000 | -3.472807000 | 2.782776000 |
| C | 1.706760000 | -3.151425000 | 5.517035000 |
| C | 1.765673000 | -4.529525000 | 3.534662000 |

## APPENDIX

| H | 1.892539000 | -3.017411000 | 6.582086000 |
| :--- | :--- | :--- | :--- |
| H | 1.987958000 | -5.479252000 | 3.049578000 |
| H | 2.391667000 | -5.199492000 | 5.491802000 |
| C | 2.057012000 | -2.255224000 | -2.899689000 |
| C | 3.353449000 | -2.593766000 | -3.320195000 |
| C | 0.963689000 | -2.908518000 | -3.492516000 |
| C | 3.550395000 | -3.548483000 | -4.315843000 |
| C | 1.161795000 | -3.858886000 | -4.491338000 |
| C | 2.455234000 | -4.181237000 | -4.909078000 |
| H | 4.219526000 | -2.128097000 | -2.854298000 |
| H | -0.038836000 | -2.653759000 | -3.155569000 |
| H | 4.563042000 | -3.804267000 | -4.625492000 |
| H | 0.302942000 | -4.351485000 | -4.945769000 |
| H | 2.610596000 | -4.926013000 | -5.689129000 |

Table E.16: Optimized Cartesian coordinates of $\operatorname{mer}-\mathrm{Co}(\mathrm{ba})_{3}\{10\}, \mathrm{S}=0 / 2$ with $D 3$ symmetry.

|  | $\mathbf{X}$ | $\mathbf{Y}$ | $\mathbf{Z}$ |
| :--- | :--- | :--- | :--- |
| Co | -0.028238000 | -0.026794000 | -0.086493000 |
| O | 1.623594000 | 0.910960000 | 0.039914000 |
| O | -1.683908000 | -0.960717000 | -0.027841000 |
| O | -0.495689000 | 1.180425000 | -1.476870000 |
| O | 0.523055000 | -1.288228000 | -1.399992000 |
| O | -0.741340000 | 1.253850000 | 1.128883000 |
| O | 0.607449000 | -1.257538000 | 1.223242000 |
| C | -2.696638000 | -0.673715000 | -0.763700000 |
| C | -1.661674000 | 1.211109000 | -2.009171000 |
| C | -2.735131000 | 0.362567000 | -1.711516000 |
| C | -1.833383000 | 2.294910000 | -3.048261000 |
| H | -1.069406000 | 2.179383000 | -3.826986000 |
| H | -2.826682000 | 2.269728000 | -3.505390000 |
| H | -1.673936000 | 3.273956000 | -2.579058000 |
| H | -3.663584000 | 0.542402000 | -2.242699000 |
| C | -0.671206000 | 1.120840000 | 2.401651000 |
| C | 0.506595000 | -1.068042000 | 2.488988000 |

APPENDIX

| C | -0.092049000 | 0.050620000 | 3.094849000 |
| :---: | :---: | :---: | :---: |
| C | 1.712538000 | -1.324123000 | -1.875532000 |
| C | 2.672105000 | 0.604808000 | -0.635281000 |
| C | 2.764787000 | -0.459691000 | -1.548351000 |
| H | 3.722805000 | -0.647063000 | -2.022276000 |
| C | -1.287354000 | 2.264060000 | 3.174569000 |
| H | -0.822921000 | 3.207661000 | 2.862560000 |
| H | -2.355482000 | 2.330842000 | 2.931572000 |
| H | -1.169964000 | 2.138695000 | 4.254742000 |
| C | 1.939087000 | -2.429507000 | -2.881000000 |
| H | 1.691258000 | -3.395065000 | -2.423085000 |
| H | 1.259840000 | -2.290697000 | -3.731653000 |
| H | 2.971475000 | -2.449982000 | -3.241871000 |
| H | -0.080785000 | 0.114104000 | 4.178063000 |
| C | -3.895273000 | -1.535983000 | -0.536680000 |
| C | -4.975167000 | -1.576835000 | -1.433825000 |
| C | -3.940275000 | -2.347505000 | 0.608451000 |
| C | -6.074101000 | -2.396717000 | -1.185970000 |
| C | -5.041255000 | -3.162885000 | 0.857455000 |
| C | -6.113657000 | -3.189804000 | -0.037114000 |
| H | -4.953770000 | -0.983402000 | -2.345141000 |
| H | -3.096422000 | -2.324795000 | 1.294426000 |
| H | -6.899872000 | -2.421083000 | -1.895922000 |
| H | -5.062583000 | -3.782493000 | 1.753255000 |
| H | -6.974015000 | -3.829668000 | 0.156564000 |
| C | 3.857051000 | 1.475195000 | -0.375992000 |
| C | 3.898706000 | 2.236657000 | 0.803048000 |
| C | 4.925967000 | 1.572757000 | -1.281243000 |
| C | 4.988887000 | 3.059106000 | 1.076668000 |
| C | 6.012542000 | 2.401982000 | -1.009558000 |
| C | 6.050356000 | 3.144630000 | 0.172591000 |
|  | 3.064610000 | 2.165860000 | 1.497693000 |
| H | 5.011665000 | 3.636872000 | 2.000067000 |

## APPENDIX

| H | 6.829263000 | 2.474166000 | -1.726793000 |
| :--- | :--- | :--- | :---: |
| H | 6.901419000 | 3.790801000 | 0.385383000 |
| C | 1.105287000 | -2.145921000 | 3.331178000 |
| C | 0.753283000 | -2.329322000 | 4.678245000 |
| C | 2.046804000 | -3.013706000 | 2.755173000 |
| C | 1.335778000 | -3.346951000 | 5.431412000 |
| C | 2.633852000 | -4.025156000 | 3.511281000 |
| C | 2.281892000 | -4.195566000 | 4.852227000 |
| H | 0.001519000 | -1.690952000 | 5.138234000 |
| H | 2.310506000 | -2.873671000 | 1.709140000 |
| H | 1.045470000 | -3.481898000 | 6.472622000 |
| H | 3.370292000 | -4.684256000 | 3.053036000 |
| H | 2.739202000 | -4.988882000 | 5.442802000 |

Table E.17: Optimized Cartesian coordinates of $\operatorname{Co}(\mathrm{dbm})_{3}\{11\}, \mathrm{S}=0 / 2$ with $D 3$ symmetry.

|  |  |  |  |
| :--- | ---: | ---: | ---: | ---: |
| Co | 0.000000000 | 0.000000000 | 0.000000000 |
| O | -0.089728000 | 1.508301000 | -1.150665000 |
| O | -0.089728000 | -1.508301000 | 1.150665000 |
| O | 1.351091000 | -0.676444000 | -1.150665000 |
| O | 1.351091000 | 0.676444000 | 1.150665000 |
| O | -1.261363000 | -0.831857000 | -1.150665000 |
| O | -1.261363000 | 0.831857000 | 1.150665000 |
| C | 0.646708000 | -2.553436000 | 1.017201000 |
| C | 1.887987000 | -1.836784000 | -1.017201000 |
| C | 1.591261000 | -2.756146000 | 0.000000000 |
| H | 2.132279000 | -3.693216000 | 0.000000000 |
| C | -2.534695000 | -0.716653000 | -1.017201000 |
| C | -2.534695000 | 0.716653000 | 1.017201000 |
| C | -3.182523000 | 0.000000000 | 0.000000000 |
| C | 1.887987000 | 1.836784000 | 1.017201000 |
| C | 0.646708000 | 2.553436000 | -1.017201000 |
| C | 1.591261000 | 2.756146000 | 0.000000000 |
| H | 2.132279000 | 3.693216000 | 0.000000000 |

## APPENDIX

| H | -4.264558000 | 0.000000000 | 0.000000000 |
| :--- | ---: | ---: | ---: |
| C | 0.422494000 | -3.606167000 | 2.052162000 |
| C | 1.355827000 | -4.625672000 | 2.302341000 |
| C | -0.756401000 | -3.568882000 | 2.813968000 |
| C | 1.110782000 | -5.587903000 | 3.279804000 |
| C | -1.003296000 | -4.535987000 | 3.785055000 |
| C | -0.072404000 | -5.549851000 | 4.021377000 |
| H | 2.294028000 | -4.657333000 | 1.752029000 |
| H | -1.471646000 | -2.770805000 | 2.628304000 |
| H | 1.849074000 | -6.366291000 | 3.468268000 |
| H | -1.926553000 | -4.497362000 | 4.361976000 |
| H | -0.264346000 | -6.304349000 | 4.783643000 |
| C | -3.334279000 | 1.437193000 | 2.052162000 |
| C | -4.683863000 | 1.138655000 | 2.302341000 |
| C | -2.712542000 | 2.439503000 | 2.813968000 |
| C | -5.394657000 | 1.831986000 | 3.279804000 |
| C | -3.426632000 | 3.136873000 | 3.785055000 |
| C | -4.770110000 | 2.837629000 | 4.021377000 |
| H | -5.180383000 | 0.341980000 | 1.752029000 |
| H | -1.663765000 | 2.659885000 | 2.628304000 |
| H | -6.437907000 | 1.581801000 | 3.468268000 |
| H | -2.931553000 | 3.917124000 | 4.361976000 |
| H | -5.327554000 | 3.381105000 | 4.783643000 |
| C | 2.911785000 | 2.168974000 | 2.052162000 |
| C | 3.328036000 | 3.487016000 | 2.302341000 |
| C | 3.468943000 | 1.129379000 | 2.813968000 |
| C | 4.283875000 | 3.755917000 | 3.279804000 |
| C | 4.429928000 | 1.399114000 | 3.785055000 |
| C | 4.842514000 | 2.712222000 | 4.021377000 |
| H | 2.886355000 | 4.315353000 | 1.752029000 |
| H | 3.135411000 | 0.110920000 | 2.628304000 |
|  | 4.588833000 | 4.784491000 | 3.468268000 |
|  | 5.591899000 | 2.923245000 | 4.783643000 |

## APPENDIX

| C | 2.911785000 | -2.168974000 | -2.052162000 |
| :---: | :---: | :---: | :---: |
| C | 3.468943000 | -1.129379000 | -2.813968000 |
| C | 3.328036000 | -3.487016000 | -2.302341000 |
| C | 4.429928000 | -1.399114000 | -3.785055000 |
| C | 4.283875000 | -3.755917000 | -3.279804000 |
| C | 4.842514000 | -2.712222000 | -4.021377000 |
| H | 3.135411000 | -0. | -2.628304000 |
| H | 2.886355000 | -4.315353000 | -1.752029000 |
| H | 4.858106000 | $-0.580237000$ | -4.361976000 |
| H | 4.588833000 | -4.784491000 | -3.468268000 |
| H | 5.591899000 | $-2.923245000$ | -4.783643000 |
| C | 0.422494000 | 3.606167000 | -2.052162000 |
| C | -0.756401000 | 3.568882000 | -2.813968000 |
| C | 1.355827000 | 4.625672000 | -2.302341000 |
| C | -1.003296000 | 4.535987000 | -3.785055000 |
| C | 1.110782000 | 5.587903000 | -3.279804000 |
| C | -0.072404000 | 5.549851000 | -4.021377000 |
| H | -1.471646000 | 2.770805000 | -2.628304000 |
| H | 2.294028000 | 4.657333000 | -1.752029000 |
| H | -1.926553000 | 4.497362000 | -4.361976000 |
| H | 1.849074000 | 6.366291000 | -3.468268000 |
| H | -0.264346000 | 6.304349000 | -4.783643000 |
| C | -3.334279000 | -1.437193000 | $-2.052162000$ |
| C | -2.712542000 | -2.439503000 | $-2.813968000$ |
| C | -4.683863000 | -1.138655000 | $-2.302341000$ |
| C | -3.426632000 | -3.136873000 | -3.785055000 |
| C | -5.394657000 | -1.831986000 | -3.279804000 |
| C | -4.770110000 | -2.837629000 | -4.021377000 |
| H | -1.663765000 | -2.659885000 | -2.628304000 |
| H | -5.180383000 | -0.341980000 | -1.752029000 |
| H | -2.931553000 | -3.917124000 | $-4.361976000$ |
| H | -6.437907000 | -1.581801000 | -3.468268000 |
| H | -5.327554000 | -3.381105000 | -4.783643000 |

Table E.18: Optimized Cartesian coordinates of $f a c-C o(t f b a)_{3}\{12\}, S=0 / 2$ with $D 3$ symmetry.

|  | $\mathbf{X}$ |  |  |
| :--- | :--- | :--- | :--- |
| Co | 0.003819000 | -0.016262000 | 0.324407000 |
| O | 1.496954000 | 0.201507000 | -0.834832000 |
| O | -1.511004000 | -0.048178000 | 1.472929000 |
| O | -0.547117000 | -1.428689000 | -0.822744000 |
| O | 0.792962000 | -1.304082000 | 1.478297000 |
| O | -0.944300000 | 1.161097000 | -0.829533000 |
| O | 0.730553000 | 1.317688000 | 1.467800000 |
| C | -2.470440000 | -0.868775000 | 1.277466000 |
| C | -1.642724000 | -2.083551000 | -0.699217000 |
| C | -2.610139000 | -1.842633000 | 0.301656000 |
| H | -3.525446000 | -2.420312000 | 0.297667000 |
| C | -0.993773000 | 2.434936000 | -0.690980000 |
| C | 0.470973000 | 2.555191000 | 1.287411000 |
| C | -0.319476000 | 3.156445000 | 0.319999000 |
| C | 2.002973000 | -1.680030000 | 1.317350000 |
| C | 2.624459000 | -0.393124000 | -0.689823000 |
| C | 2.918772000 | -1.306921000 | 0.346337000 |
| H | 3.915204000 | -1.724425000 | 0.411435000 |
| H | -0.390109000 | 4.236611000 | 0.330572000 |
| C | -3.597628000 | -0.684274000 | 2.313232000 |
| F | -4.630099000 | -1.555183000 | 2.120758000 |
| F | -3.133138000 | -0.878552000 | 3.570745000 |
| F | -4.110158000 | 0.569669000 | 2.248521000 |
| C | 1.185529000 | 3.444967000 | 2.324519000 |
| F | 0.882680000 | 4.766927000 | 2.173444000 |
| F | 0.841165000 | 3.091494000 | 3.584748000 |
| F | 2.532417000 | 3.324684000 | 2.211362000 |
| C | 2.433232000 | -2.692494000 | 2.398214000 |
|  | 3.724735000 | -3.104152000 | 2.241993000 |
| F | 2.326891000 | -2.152921000 | 3.635559000 |
| F | -3.798908000 | 2.358057000 |  |
|  | -3.141524000 | -1.721154000 |  |

## APPENDIX

| C | -1.085363000 | -3.131210000 | -2.891262000 |
| :--- | ---: | ---: | ---: |
| C | -2.816678000 | -4.159350000 | -1.547363000 |
| C | -1.267182000 | -4.105339000 | -3.868088000 |
| C | -2.990799000 | -5.137014000 | -2.523883000 |
| C | -2.220667000 | -5.110977000 | -3.688417000 |
| H | -0.342355000 | -2.346985000 | -3.018497000 |
| H | -3.409172000 | -4.209077000 | -0.636550000 |
| H | -0.661903000 | -4.082615000 | -4.773462000 |
| H | -3.726106000 | -5.925794000 | -2.372174000 |
| H | -2.360104000 | -5.875619000 | -4.451784000 |
| C | 3.654475000 | -0.051691000 | -1.707627000 |
| C | 3.466835000 | 1.086214000 | -2.511219000 |
| C | 4.803984000 | -0.836691000 | -1.899925000 |
| C | 4.411698000 | 1.436246000 | -3.470922000 |
| C | 5.744170000 | -0.487286000 | -2.866350000 |
| C | 5.553470000 | 0.651707000 | -3.651575000 |
| H | 2.574894000 | 1.690744000 | -2.363780000 |
| H | 4.960418000 | -1.737988000 | -1.311509000 |
| H | 4.258917000 | 2.326239000 | -4.079656000 |
| H | 6.627218000 | -1.108348000 | -3.008887000 |
| H | 6.292522000 | 0.926175000 | -4.403629000 |
| C | -1.811431000 | 3.150064000 | -1.707061000 |
| C | -2.161817000 | 2.481929000 | -2.892152000 |
| C | -2.258629000 | 4.467456000 | -1.510879000 |
| C | -2.926534000 | 3.122097000 | -3.863106000 |
| C | -3.031220000 | 5.102023000 | -2.480551000 |
| C | -3.363530000 | 4.433763000 | -3.660929000 |
| H | -1.821680000 | 1.458987000 | -3.036544000 |
| H | -2.029494000 | 4.994421000 | -0.587324000 |
| H | -3.185540000 | 2.596110000 | -4.780902000 |
| H | -3.380725000 | 6.119234000 | -2.311007000 |
| H | -3.966061000 | 4.932640000 | -4.419127000 |
|  |  |  |  |
|  |  |  |  |

Table E.19: Optimized Cartesian coordinates of mer $-\operatorname{Co}(\mathrm{tfba})_{3}\{12\}, \mathrm{S}=0 / 2$ with $D 3$ symmetry.

|  | X | Y | Z |
| :---: | :---: | :---: | :---: |
| Co | -0.017882000 | 0.005218000 | -0.019376000 |
| O | 1.629127000 | 0.954987000 | 0.049873000 |
| O | -1.660629000 | -0.949271000 | 0.084201000 |
| O | -0.568597000 | 1.264667000 | -1.336024000 |
| O | 0.470433000 | -1.198770000 | -1.405478000 |
| O | -0.671289000 | 1.231497000 | 1.274719000 |
| O | 0.690506000 | -1.264556000 | 1.203913000 |
| C | -2.649118000 | -0.641160000 | -0.665246000 |
| C | -1.723455000 | 1.286163000 | -1.891196000 |
| C | -2.763242000 | 0.371876000 | -1.602966000 |
| H | -3.693256000 | 0.441716000 | -2.151993000 |
| C | -0.539577000 | 1.094776000 | 2.542295000 |
| C | 0.632012000 | -1.069694000 | 2.466586000 |
| C | 0.084369000 | -0.009469000 | 3.167919000 |
| C | 1.623443000 | -1.246874000 | -1.961077000 |
| C | 2.612948000 | 0.622816000 | -0.697136000 |
| C | 2.697477000 | -0.379395000 | -1.648435000 |
| H | 3.648409000 | -0.520633000 | -2.146252000 |
| H | 0.176956000 | -0.018276000 | 4.246596000 |
| C | -3.843470000 | -1.590750000 | -0.447627000 |
| F | -4.928205000 | -1.249961000 | -1.200623000 |
| F | -3.507678000 | -2.864753000 | -0.779703000 |
| F | -4.234583000 | -1.591849000 | 0.848986000 |
| C | 1.291221000 | -2.222181000 | 3.249619000 |
| F | 1.244537000 | -2.030228000 | 4.598932000 |
| F | 0.669747000 | -3.398657000 | 2.986812000 |
| F | 2.595518000 | -2.357054000 | 2.905011000 |
| C | 3.839900000 | 1.522279000 | -0.451137000 |
| F | 3.549480000 | 2.815871000 | -0.754028000 |
| F | 4.225641000 | 1.479447000 | 0.845560000 |
| F | 4.914321000 | 1.162831000 | -1.209920000 |
| C | -1.920292000 | 2.359903000 | -2.902163000 |

## APPENDIX

| C | -0.799097000 | 3.068838000 | -3.367488000 |
| :--- | ---: | :--- | :--- |
| C | -3.190425000 | 2.697879000 | -3.399197000 |
| C | -0.944706000 | 4.078093000 | -4.313792000 |
| C | -3.333142000 | 3.712531000 | -4.342695000 |
| C | -2.211662000 | 4.402972000 | -4.805660000 |
| H | 0.182563000 | 2.811467000 | -2.976317000 |
| H | -4.079186000 | 2.185634000 | -3.037787000 |
| H | -0.066593000 | 4.614839000 | -4.670571000 |
| H | -4.324308000 | 3.967585000 | -4.714561000 |
| H | -2.325119000 | 5.194248000 | -5.545804000 |
| C | 1.788856000 | -2.312858000 | -2.983318000 |
| C | 2.833738000 | -2.291696000 | -3.922095000 |
| C | 0.862875000 | -3.369478000 | -3.016796000 |
| C | 2.951384000 | -3.306226000 | -4.869010000 |
| C | 0.988117000 | -4.385274000 | -3.959633000 |
| C | 2.031706000 | -4.357223000 | -4.888274000 |
| H | 3.547362000 | -1.470604000 | -3.934297000 |
| H | 0.054680000 | -3.381571000 | -2.289056000 |
| H | 3.760852000 | -3.274195000 | -5.596632000 |
| H | 0.269609000 | -5.203640000 | -3.970171000 |
| H | 2.127589000 | -5.151981000 | -5.627317000 |
| C | -1.078522000 | 2.214611000 | 3.357053000 |
| C | -1.319946000 | 3.451256000 | 2.734768000 |
| C | -1.358010000 | 2.073846000 | 4.726182000 |
| C | -1.813802000 | 4.524477000 | 3.469465000 |
| C | -1.860930000 | 3.147939000 | 5.456419000 |
| C | -2.085510000 | 4.377062000 | 4.832036000 |
| H | -1.103860000 | 3.554387000 | 1.673853000 |
| H | -1.208611000 | 1.117768000 | 5.222873000 |
| H | -1.986774000 | 5.481173000 | 2.978802000 |
| H | -2.082466000 | 3.023742000 | 6.515351000 |
|  | -2.474075000 | 5.217372000 | 5.406116000 |

## APPENDIX

Table E.20: Optimized Cartesian coordinates of $f a c-C o(t f a a)_{3}\{13\}, \mathrm{S}=0 / 2$ with $D 3$ symmetry.

|  | $\mathbf{X}$ | $\mathbf{Y}$ | $\mathbf{Z}$ |
| :--- | :--- | :--- | :--- |
| Co | -0.023472000 | -0.031991000 | -0.009603000 |
| O | 1.623262000 | 0.915394000 | 0.109343000 |
| O | -1.678216000 | -0.976521000 | 0.073086000 |
| O | -0.527045000 | 1.210144000 | -1.360878000 |
| O | 0.500333000 | -1.247714000 | -1.382071000 |
| O | -0.719543000 | 1.207663000 | 1.255590000 |
| O | 0.660872000 | -1.292922000 | 1.246708000 |
| C | -2.662374000 | -0.653472000 | -0.670711000 |
| C | -1.674657000 | 1.221577000 | -1.922917000 |
| C | -2.744207000 | 0.351934000 | -1.625811000 |
| C | -1.839660000 | 2.267803000 | -2.995792000 |
| H | -1.204898000 | 2.003636000 | -3.852024000 |
| H | -2.877091000 | 2.345739000 | -3.331696000 |
| H | -1.495293000 | 3.237846000 | -2.619137000 |
| H | -3.674189000 | 0.471593000 | -2.172088000 |
| C | -0.659682000 | 1.040681000 | 2.521100000 |
| C | 0.546416000 | -1.104785000 | 2.502781000 |
| C | -0.055728000 | -0.050922000 | 3.178339000 |
| C | 1.669928000 | -1.209810000 | -1.888707000 |
| C | 2.651239000 | 0.643365000 | -0.599488000 |
| C | 2.729310000 | -0.365416000 | -1.581543000 |
| H | 3.662892000 | -0.490152000 | -2.120655000 |
| C | -1.316434000 | 2.129149000 | 3.331539000 |
| H | -0.979384000 | 3.108588000 | 2.973002000 |
| H | -2.402954000 | 2.079842000 | 3.180148000 |
| H | -1.100351000 | 2.028450000 | 4.398431000 |
| C | 3.859488000 | 1.498053000 | -0.310912000 |
| H | 4.651620000 | 1.344289000 | -1.048234000 |
| H | 3.566527000 | 2.554069000 | -0.291600000 |
| H | 4.244723000 | 1.245513000 | 0.685918000 |
|  | -0.064405000 | -0.069740000 | 4.263288000 |
|  | -3.899892000 | -1.534563000 | -0.405200000 |

## APPENDIX

| F | -4.931436000 | -1.252916000 | -1.250421000 |
| :--- | ---: | ---: | :--- |
| F | -3.603671000 | -2.846692000 | -0.546150000 |
| F | -4.354178000 | -1.344448000 | 0.862000000 |
| C | 1.205337000 | -2.235809000 | 3.318051000 |
| F | 1.015622000 | -2.089720000 | 4.659750000 |
| F | 0.710476000 | -3.444014000 | 2.965157000 |
| F | 2.547314000 | -2.256306000 | 3.100877000 |
| C | 1.852659000 | -2.265713000 | -2.997578000 |
| F | 3.122497000 | -2.287659000 | -3.492298000 |
| F | 1.571786000 | -3.506995000 | -2.539553000 |
| F | 1.018686000 | -2.008210000 | -4.039870000 |

Table E.21: Optimized Cartesian coordinates of $f a c-C o(t f a a)_{3}\{13\}, S=0 / 2$ with $D 3$ symmetry.

|  |  |  |  |
| :--- | :---: | :--- | :--- |
| Co | -0.026786000 | -0.010268000 | -0.042593000 |
| O | 1.629115000 | 0.927452000 | 0.046648000 |
| O | -1.685333000 | -0.942453000 | 0.067935000 |
| O | -0.544207000 | 1.228659000 | -1.391690000 |
| O | 0.469743000 | -1.240292000 | -1.409842000 |
| O | -0.688390000 | 1.242230000 | 1.230865000 |
| O | 0.662749000 | -1.276369000 | 1.204129000 |
| C | -2.683489000 | -0.607588000 | -0.651813000 |
| C | -1.706002000 | 1.260850000 | -1.920924000 |
| C | -2.777979000 | 0.400834000 | -1.602223000 |
| C | -1.895265000 | 2.336442000 | -2.960455000 |
| H | -1.098788000 | 2.264087000 | -3.710659000 |
| H | -2.870668000 | 2.264198000 | -3.448704000 |
| H | -1.801512000 | 3.319223000 | -2.480626000 |
| H | -3.720328000 | 0.533737000 | -2.123739000 |
| C | -0.573092000 | 1.095697000 | 2.494979000 |
| C | 0.584269000 | -1.076517000 | 2.461816000 |
| C | 0.029362000 | -0.001890000 | 3.143628000 |
| C | 1.633773000 | -1.288086000 | -1.932065000 |
| C | 2.620928000 | 0.589296000 | -0.682211000 |

## APPENDIX

| C | 2.709176000 | -0.427313000 | -1.622836000 |
| :--- | ---: | ---: | ---: |
| H | 3.649981000 | -0.568314000 | -2.145111000 |
| C | -1.137658000 | 2.228530000 | 3.313422000 |
| H | -0.560145000 | 3.139234000 | 3.108073000 |
| H | -2.172748000 | 2.420744000 | 3.006933000 |
| H | -1.103459000 | 2.013538000 | 4.384563000 |
| C | 1.829932000 | -2.388857000 | -2.942803000 |
| H | 1.920447000 | -3.344326000 | -2.408569000 |
| H | 0.950533000 | -2.458112000 | -3.592172000 |
| H | 2.730847000 | -2.233326000 | -3.542831000 |
| H | 0.058729000 | -0.007940000 | 4.228346000 |
| C | -3.919139000 | -1.485067000 | -0.366655000 |
| F | -4.984428000 | -1.156962000 | -1.151336000 |
| F | -3.644166000 | -2.794104000 | -0.582148000 |
| F | -4.312977000 | -1.350907000 | 0.925485000 |
| C | 1.213516000 | -2.231614000 | 3.266627000 |
| F | 1.135086000 | -2.033954000 | 4.612069000 |
| F | 0.591684000 | -3.404569000 | 2.991279000 |
| F | 2.525973000 | -2.375645000 | 2.953672000 |
| C | 3.848666000 | 1.487861000 | -0.432895000 |
| F | 3.569949000 | 2.778183000 | -0.752176000 |
| F | 4.215723000 | 1.455788000 | 0.871335000 |
| F | 4.930163000 | 1.111921000 | -1.171121000 |


[^0]:    ${ }^{1}$ Fu, S. L.; Rosynek, M. P.; Linsford, J. H.; Langmuir, 1991, 7, 1179-1187

[^1]:    ${ }^{2}$ Dixon, J. T.; Green, M. J.; Hess, F. M.; Morgan, D. H.; J. Organomet, Chem, 2004, 689, 3641-3668
    ${ }^{3}$ Rao, R. R.; Weckhuysen, B. M.; Schoonheydt, R. A.; Chem. Commun., 1999, 445-446
    ${ }^{4}$ Kresge, C. T.; Leonowicz, W. J.; Roth, W. J.; Vartuli, J. C.; Beck, J. S.; Nature, 1992, 359, 710-712
    ${ }^{5}$ Kresge, C. T.; Leonowicz, W. J.; Roth, W. J.; Vartuli, J. C.; Beck, J. S.; Nature, 1992, 359, 710-712

[^2]:    ${ }^{6}$ Fahlman, B. D.; Barron, A. R.; Adv. Mater. Opt. Electron., 2000, 10, 223-232
    ${ }^{7}$ Pasko, S.; Hubert-Pfalzgraf, L. G.; Abrutis, A.; Vaissermann, J.; Polyhedron, 2004, 23, 735-741

[^3]:    ${ }^{8}$ Narayan, R. V.; Kanniah, V.; Dhathathreyan, A.; J. Chem. Sci., 2006, 118, 179-184.
    ${ }^{9}$ Tiitta, M.; Niinistö, L.; Chem. Vap. Deposilion, 1997. 3, 167-182
    ${ }^{10}$ McCinnis, J.; Katz, T. J.; 1 Hurwitz, S.; J. Am. Chem. Soc., 1976, 98, 605-606
    ${ }^{11}$ Casey, C. P.; Burkhardt, T. J.; Journal of the American Chemical Society, 1974, 96, 7808-7809
    12 Dialer, H.; Polborn,K.; Beck, W.; Journal of Organometallic Chemistry, 1999, 589, 21-28
    ${ }^{13}$ Fernández-Rodriguez, M. A.; Garcia-Garcia, P.; Aguilar, E.; Chem. Commun., 2010, 46, 7670-7687

[^4]:    ${ }^{1}$ Evans, D. H.; O’Connell, K. M.; Petersen, P. A.; Kelly, M. J.; J. Chem. Educ., 1983, 60, 290-293
    ${ }^{2}$ Mabbott, G. A.; J. Chem. Educ., 1983, 60, 697-702
    ${ }^{3}$ Kissinger, P. T.; Heineman, W. R.; J. Chem. Educ., 1983, 60, 702-706
    ${ }^{4}$ Van Benschoten, J. J.; Lewis, J. Y.; Heineman, W. R.; J. Chem. Educ., 1983, 60, 772-776

[^5]:    ${ }^{5}$ Gagne, R. R.; Koval, C. A.; Lisensky, G. C.; Inorg. Chem., 1980, 19, 2855-2857

[^6]:    ${ }^{6}$ Bard, A. J.; Faulknerm L. R.; Electrochemical Methods: Fundamentals and Applications, $2^{\text {nd }}$ Edition, John Wiley \& Sons, 2001, 226-239
    ${ }^{7}$ Skoog, D. A.; West, D. M.; Holler, F. J.; Crouch, S. R.; Fundamentals of Analytical Chemistry, $8^{\text {th }}$ Edition, Thomson Brooks/Cole, 2004, 667-673

[^7]:    ${ }^{8}$ O'Dea, J. J.; Osteryoung, J.; Osteryoung, R. A.; Anal. Chem., 1981, 53, 695-701
    ${ }^{9}$ Osteryoung, J. G.; Osteryoung, R. A.; Anal. Chem., 1985, 57, 101A-110A
    ${ }^{10}$ Osteryoung, J.; J. Chem. Educ., 1983, 60, 296-298

[^8]:    ${ }^{11}$ Lewars, E.; Computational Chemistry, Introduction to the Theory and Applications of Molecular and Quantum Mechanics, Kluver Academic Publishers, Boston, 2003, p1-7

    12 Hehre, W. J.; A Guide to Molecular Mechanics and quantum chemical calculations, Wavefunction Inc. Irvine, 2003, p1-5

    13 Young, D. C.; Computatioanl Chemistry, A Practical Guide for Applying Technique to Real-World Problems, Wiley and Sons, New York, 2001, p1-4
    14 Jensen, F.; Introduction to Computational Chemistry, $2^{\text {nd }}$ edition, John Wiley \& Sons, England, 2007, p1-20

[^9]:    15 Te Velde, G.; Bickelhaupt, F. M.; Baerends, E. J.; Fonseca Guerra, C.; van Gisbergen, S. J. A.; Snijders, J. G.; Ziegler, T.; Journal of Computational chemistry, 2001, 22, 931-967

[^10]:    16 Jensen, F.; Introduction to Computational Chemistry, $2^{\text {nd }}$ edition, John Wiley \& Sons, England, 2007, p232-255
    ${ }^{17}$ Koch, W.; Holtzhausen, M. C.; A Chemist's guide to Density Functional Theory, Wiley-VCH, 2001, p65-91

[^11]:    18 Conradie, M.M.; Rhodium and Iron Complexes and Transition States: A computational, Spectroscopic and Electrochemical Study, 2010, PhD thesis, University of the Free State, Bloemfontein, RSA

[^12]:    19 Young, D. C.; Computational Chemistry, A Practical Guide for Applying Techniques to Real-World Problems, Wiley and Sons, New York, 2001, p78-89
    20 Jensen, F.; Introduction to Computational Chemistry, $2^{\text {nd }}$ edition, John Wiley \& Sons, England, 2007, p192-198

[^13]:    21 Atkins, P.; de Paula, J.; Atkins' Physical Chemistry, $8^{\text {th }}$ edition, W.H. Freeman and Company, New York, 2006, p404-411

[^14]:    22 Cotton, F. A.; Wilkinson, G.; Gaus, P. L.; Basic Inorganic chemistry, $3^{\text {rd }}$ Edition, John Wiley and Sons, Canada, 1995, p503-518

[^15]:    ${ }^{23}$ Blake, A. J.; Clegg, W.; Cole, J. M.; Peter Main, J. S. O. E.; Parsons, S.; Watkin, D. J.; Crystal Structure Analysis, Principles and Practice. $2^{\text {nd }}$ Edition, 2009, 1-8

[^16]:    ${ }^{24}$ Fernelius, W.C.; Blanch, J. E.; Inorg. Syn., 1957, 5, 130-131
    ${ }^{25}$ Rahman, A. K.; Hossain, M. B.; Halim, M. A.; Chowdhury, D. A.; Salam, M. A.; Afr. J. Pure Appl. Chem., 2010, 4, 216-220

[^17]:    ${ }^{26}$ Bouwman, E.; Caulton, K. G.; Christou, G.; Folting, K.; Gasser, C.; Hendrickson, D. N.; Huffman, J. C.; Lobkovsky, E. B.; Martin, J. D.; Michel, P.; Tsai, H.; Xue, Z.; Inorg. Chem., 1993, 32, 3463-3470
    ${ }^{27}$ Morris, M. L.; Aikens, D. A.; Nature, 1965, 207, 631-632
    ${ }^{28}$ Harade, Y.; Girolami, G. S.; Polyhedron, 2007, 26, 1758-1762

[^18]:    ${ }^{29}$ Anderson, C. W.; Lung, K. R.; Inorg. Chim Acta, 1984, 85, 33-36
    ${ }^{30}$ Liu, Q.; Shinkle, A. A.; Li, Y.; Monroe, C. W.; Thompson, L. T.; Sleightholme, A. E. S.; Electrochem.Commun., 2010, 12, 1634-1637

[^19]:    ${ }^{31}$ Urbanczyk, A.; Debek, E.; Kalinowski, M. K.; Journal of Electroanalytical Chemistry, 1995, 389, 141-148

[^20]:    32 Tsiamis, C.; Hadjikostas, C. C.; Karageorgiou, S.; Manoussakis, G.; Inorganica Chimica Acta, 1988, 143, 17-23

[^21]:    33 Hammett, L. P.; J. Am. Chem. Soc., 1937, 59, 96-103
    ${ }^{34}$ McDaniel, D. H.; Brown, H.C.; J. Org. Chem., 1958, 420, 420-427
    ${ }^{35}$ Lintvedt, R.L.; Russell, H.D.; Holtzclaw, H.F.; Inorg. Chem., 1966, 5, 1603-1607
    ${ }^{36}$ Lindberg, B.; Svensson, S.; Malmquist, P. A.; Basilier, E.; Gelius, U.; Siegbahn, K.; Chem. Phys. Lett., 1976, 40, 175-179
    37 Wertheim, G. K.; Z. Phys. B - Condensed Matter, 1987, 66, 53-63

[^22]:    38 (a) Wells, P. R. In Progress in Physical Organic Chemistry, John Wiley \& Sons, Inc.: New York, 1968; Vol. 6, pp. 111-145. (b) Kagarise, R. E. J. Am. Chem. Soc. 1955, 77, 1377.
    ${ }^{39}$ Conradie, J.; Cameron, T. S.; Aquino, M. A. S.; Lamprecht, G. J.; Swarts, J. C.; Inorg. Chim. Acta, 2005, 358, 2530-2542
    ${ }^{40}$ Polyakov, O. V.; Badalyan, A. M.; Kaletinal, I. V.; Belyi, V. I.; Chemistry for Sustainable Development, 2000, 8 , 261-265

    41 W.C. du Plessis, T.G. Vosloo, J.C. Swarts, J. Chem. Soc. Dalton Trans. 1998, 2507. (b) J. Starý, The Solvent Extraction of Metal Chelates, MacMillan Company, New York, 1964, Appendix. (c) M. Ellinger, H. Duschner, K. Starke, J. Inorg. Nucl. Chem. 1978, 40, 1063.

[^23]:    42 Bryant, B. E.; Fernelius, W.C.; Inorg. Syn., 1957, 5, 188-189
    ${ }^{43}$ Bauer, H. F.; Drinkard, W. C.; J. Am. Chem. Soc., 1960, 82, 5031-5032

[^24]:    44 Hon, P. K.; Pfluger, C. E.; J. Coord. Chem., 1973, 1, 67-76
    45 Kruger, G. J.; Reynhardt, E. C.; Acta Crystallogr., Sect.B: Struct. Crystallogr. Cryst. Chem., 1974, 30, 822-824
    $\mathbf{4 6}^{\text {von Chrzanowski, L. S.; Lutz, M.; Spek, A. L.; Acta Crystallogr., Sect.C: Cryst. Struct. Commun., 2007, 63, }}$ m283-m288

    47 Vogelson, C. T.; Edwards, C. L.; Kobylivker, A. N.; Chacko, S. B.; Moran, C. E.; Dalton, K.; Stewart, S. M.; Werner, B. C.; Bott, S. G.; J. Chem. Cryst., 1998, 28, 815-824

    48 Kaitner, B.; Mestrovic, E.; Z. Kristallogr., 1994, 209, 818-821
    ${ }^{49}$ Kaitner, B.; Mestrovic, E.; Z. Kristallogr., 1995, 210, 952-955

[^25]:    50 Fischer, E. O.; Advances in Organometallic Chemistry, 1976, 14, 1-32
    ${ }^{51}$ Hoskovcova, I.; Rohacova, J.; Dvorak, D.; Tobrman, T.; Zalis, S.; Zverinova, R.; Ludvik, J.; Electrochimica Acta, 2010, 55, 8341-8351
    ${ }^{52}$ Landman, M.; Liu, R.; Fraser, R.; van Rooyen, P.; Conradie, J.; Journal of Organometallic Chemistry, 2014, 752, 171-182
    ${ }^{53}$ Hoskovcova, I.; Rohacova, J.; Meca, L.; Tobrman, T.; Dvorak, D.; Ludvik, J.; Electrochimica Acta, 2005, 50, 4911-4955

    54 Baldoli, C.; Cerea, P.; Falciola, L.; Giannini, C.; Licandro, E.; Maiorana, S.; Mussini, P.; Perdicchia, D.; Journal of Organometallic Chemistry, 2005, 690, 5777-5787
    55 Metalkova, R.; Tobrman, T.; Kvapilova, H.; Hoskovcova, I.; Ludvik, J.; Electrochimica Acta, 2012, 82, 470-477
    ${ }^{56}$ Schobert, R.; Kempe, R.; Schmalz, T.; Gmeiner, A.; Journal of Organometallic Chemistry, 2006, 691, 859-868

[^26]:    ${ }^{57}$ Hoskovcova, I.; Zverinova, R.; Rohacova, J.; Dvorak, D.; Tobrman, T.; Zalis, S.; Ludvik, J.; Electrochimica Acta, 2011, 56, 6853-6859

    58 Casey, C. P.; Albin, L. D.; Saeman, M. C.; Evans, D. H.; Journal of Organometallic Chemistry, 1978, 155, C37C40

[^27]:    ${ }^{1}$ Rahman, A. K.; Hossain, M. B.; Halim, M. A.; Chowdhury, D. A.; Salam, M. A.; African Journal of Pure and Applied Chemistry, 2010, 4, 216-220
    ${ }^{2}$ Collman, J. P.; Moss, R. A.; Maltz, H.; Heindel, C. C.; J. Am.Chem. Soc., 1961, 83, 531-534
    ${ }^{3}$ Tsiamis, C.; Hadjikostas, C. C.; Karageorgiou, S.; Manoussakis, G.; Inorganica Chimica Acta, 1988, 143, 17-23

[^28]:    ${ }^{4}$ Bouwman, E.; Caulton, K. G.; Christou, G.; Folting, K.; Gasser, C.; Hendrickson, D. N.; Huffman, J. C.; Lobkovsky, E. B.; Martin, J. D.; Michel, P.; Tsai, H.; Xue, Z.; Inorg. Chem., 1993, 32, 3463-3470
    5 Harada, Y.; Girolami, G. S.; Polyhedron, 2007, 26, 1758-1762

[^29]:    ${ }^{6}$ Bertini, I.; Luchinat, C.; Parigi, G.; Progress in Nuclear Magnetic Resonance Spectroscopy, 2002, 40, 249-273

[^30]:    7 Cambridge Structural Database (CSD), Version 5.34, May 2013 update, CSD reference codes: ACACCR, ACACCR02, ACACCR05, ACACCR07, ACACCR08, ACACCT
    ${ }^{8}$ Cambridge Structural Database (CSD), Version 5.34, May 2013 update, CSD reference codes: IGAGEC, IGAGEC01

[^31]:    ${ }^{9}$ Sinnokrot, M. O.; Valleev, E. F.; Sherrill, C. D.; J. Am. Chem. Soc., 2002, 124, 10887-10893
    10 Janiak. C.; J. Chem. Soc., Dalton Trans., 2000, 3885-3896

[^32]:    ${ }^{11}$ Liu, Q.; Shinkle, A. A.; Li, Y.; Monroe, C. W.; Electrochemistry Communications, 2010, 12, 1634-1637
    12 Kuhn, A.; Conradie, J.; Electrochimica Acta, 2010, 56, 257-264
    $\mathbf{1 3}^{13}$ Ferreira, H.; Conradie, M. M.; Conradie, J.; Electrochimica Acta, 2013, 113, 519-526

[^33]:    14 Kissinger, P. T.; Heineman, W. R.; J. Chem. Educ., 1983, 60, 702-706

[^34]:    15 Anderson, C. W.; Lung, K. R.; Nile, T. A.; Inorganica Chemica Acta, 1984, 85, 33-36

[^35]:    ${ }^{16}$ Hansch, C.; Leo, A.; Taft, R. W.; Chem. Rev., 1991, 91, 165-195
    17 du Plessis, W. C.; Vosloo, T. G.; Swarts, J. C.; J. Chem. Soc., Dalton Trans., 1998, 15, 2507-2514
    18 Kagarise, R. E.; J. Am. Chem. Soc., 1955, 77, 1377-1379
    ${ }^{19}$ Conradie, M. M.; Muller, A. J.; Conradie, J.; S. Afr. J. Chem., 2008, 61, 13-21
    ${ }^{20}$ Ellinger, M.; Duschner, H.; Starke, K.; J. Inorg. Nucl. Chem., 1978, 40, 1063-1067
    21 Starý, J.; The Solvent Extraction of Metal Chelates, MacMillan Company, 1964, Appendix

[^36]:    22 Conradie, M.M.; Rhodium and Iron Complexes and Transition States: A Computational, Spectroscopic and Electrochemical Study, 2010, PhD thesis, University of the Free State, Bloemfontein, RSA

    23 Freitag, R.; Computational, Structural and Electrochemical properties of Metal(III) tris-betadiketonato Complexes, 2011, MSc thesis, University of the Free State, Bloemfontein, RSA

[^37]:    24 http://www.chemcraftprog.com

[^38]:    25 (a) Scheiner, A.C.; Baker, J.; Andzelm, J.W.; J. Comput. Chem., 1997, 18, 775-795 (b) Hill, J.R.; Freeman, C.M.; Delley, B.; J. Phys. Chem. A, 1999, 103, 3772-3777. (c) Furche, F.; Perdew, J.P.; J. Chem Phys., 2006, 124, 044103-044129.

[^39]:    ${ }^{26}$ Bryant, B. E.; Fernelius, W.C.; Inorg. Syn., 1957, 5, 188-189

[^40]:    ${ }^{27}$ Cambridge Structural Database (CSD), Version 5.34, May 2013 update, CSD reference codes: COACAC02, COACAC03, COACAC06, COACAC07, COACAC08, COACAC09, COACAC10
    28 Cambridge Structural Database (CSD), Version 5.34, May 2013 update, CSD reference codes: JINRIH01, JINRIH02
    ${ }^{29}$ Cambridge Structural Database (CSD), Version 5.34, May 2013 update, CSD reference codes: GUCGOA

[^41]:    30 Vogelson, C. T.; Edwards, C. L.; Kobylivker, A. N.; Chacko, S. B.; Moran, C. E.; Dalton, K.; Werner, B. C.; Bott, S. G.; Barron, A. R.; J. Chem. Cryst., 1998, 28, 815-824

[^42]:    ${ }^{31}$ Diaz-Acosta, I.; Baker, J.; Hinton, J. F.; Pulay, P.; Spectrochimica Acta Part A, 2003, 59, 363-377

[^43]:    ${ }^{32}$ Landman, M.; Liu, R.; van Rooyen, P. H.; Conradie, J.; "Electrochemistry of Fischer alkoxycarbene complexes of chromium: The use of DFT to predict and understand oxidation and reduction potentials", Electrochim. Acta, 2013, 114, 205-214
    ${ }^{33}$ Landman, M.; Liu, R.; Fraser, R.; van Rooyen, P. H.; Conradie, J.; "Fac and Mer Fischer DPPE-Carbene complexes of chromium: X-ray, DFT and electrochemical study", Journal of Organometallic Chemistry, 2014, 752, 171-182

[^44]:    ${ }^{1}$ Sawyer, D.T.; Roberts (Jr), J. L.; Experimental Electrochemistry for Chemists, Wiley, New York, 1974, 54
    ${ }^{2}$ Evans, D.H.; O’Connell, K.M.; Peterson, R.A.; Kelly, M.J.; J. Chem. Educ., 1983, 60, 290-293
    ${ }^{3}$ Mabbott, G. A.; J. Chem. Educ.; 1983, 60, 697-701.
    ${ }^{4}$ Gritzner, G.; Kuta, J.; Pure Appl. Chem., 1984, 56, 461-466
    ${ }^{5}$ Pombeiro, A. J. L.; J. Organomet. Chem., 2005, 690, 6021-6040

[^45]:    ${ }^{6}$ Rahman, A. K.; Hossain, M. B.; Halim, M. A.; Chowdhury, D.A.; and Salam, M. A.; African Journal of Pure and Applied Chemistry, 2010, 4, 216-220

[^46]:    ${ }^{7}$ Bryant, B. E.; Fernelius, W.C.; Inorg. Syn., 1957, 5, 188-189

[^47]:    ${ }^{8}$ APEX2 (including SAINT and SADABS); Bruker AXS Inc., Madison, WI, 2012
    ${ }^{9}$ Sheldrick, G. M.; Acta Cryst., 2008, A64, 112-122
    ${ }^{10} \mathrm{http}: / /$ www.chemcraftprog.com
    ${ }^{11}$ Te Velde, G.; Bickelhaupt, F. M.; Baerends, E. J.; Guerra, C. F.; Van Gisbergen, S. J. A.; Snijders, J. G.; Ziegler, T.; J. Comput. Chem., 2001, 22, 931-967

[^48]:    ${ }^{12}$ Becke, A. D.; Phys. Rev. A, 1988, 38, 3098-3100
    ${ }^{13}$ Lee, C.; Yang, W.; Parr, R. G.; Phys. Rev. B, 1988, 37, 785-789
    ${ }^{14}$ Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery (Jr), J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J.; Gaussian 09, Revision C.01, Gaussian Inc., Wallingford CT, 2010.
    ${ }^{15}$ (a) Dunning (Jr), T. H.; Hay, P. J.; Modern Theoretical Chemistry, Ed. H.F. Schaefer III, 3, Plenum, New York, 1976
    (b) Hay, P. J.; Wadt, W. R.; J. Chem. Phys., 1985, 82, 270-283
    (c) Hay, P. J.; Wadt, W. R.; J. Chem. Phys., 1985, 82, 284-298
    (d) Hay, P. J.; Wadt, W. R.; J. Chem. Phys., 1985, 82, 299-310
    ${ }^{16}$ Landman, M.; Liu, R.; van Rooyen, P. H.; Conradie, J.; Electrochim. Acta, 2013, 114, 205-214

