
Attributes contributing to the effective use of quality

appraisal techniques by novice programmers

by

Guillaume Nel

Thesis submitted in fulfilment of the requirements for the degree

PHILOSOPHIAE DOCTOR

(Computer Information Systems)

in the Faculty of Natural and Agricultural Sciences

Department of Computer Science and Informatics

Bloemfontein - South Africa

January 2020

Promoter: Prof JC Cronje

Declaration

I, Guillaume Nel, hereby declare that the thesis titled “Attributes contributing to the

effective use of quality appraisal techniques by novice programmers” is the result of

my own independent investigation and that all the sources I have used or quoted have

been indicated and acknowledged by means of complete references. I further declare

that the work is submitted for the first time at this university/faculty towards the

Philosophiae Doctor degree in Computer Information Systems and that it has never

been submitted to any other university/faculty for the purpose to obtain a degree. I

also declare that I am aware that the copyright of this thesis is vested in the University

of the Free Sate.

………………………………... ………………………………...

Signature Date

27 January 2020

Acknowledgements

I would like to express my most sincere gratitude and appreciation to the following

individuals:

• My wife, Liezel, for her endless love, patience and support.

• My three four-legged girls for providing welcome distractions during difficult times.

• All members of my family for their love, prayers and support.

• My fellow PSP instructors from the Carnegie Mellon Software Engineering Institute

(SEI) and the Johannesburg Centre for Software Engineering (JCSE) for

introducing me to the world of measured software quality improvements.

• My colleagues at the Central University of Technology, Free State for their constant

interest and support.

• All the students who have participated in the various research activities that formed

part of this research study.

• Suezette Opperman for the language editing of this thesis report.

• Prof. Johannes Cronje for his wisdom, positive energy, insightful comments and

suggestions.

• Above all, to God my creator, for his care, grace and wisdom.

Guillaume Nel Bloemfontein

January 2020

i

Table of Contents

Table of Figures... vi

Table of Tables ... vii

Summary ... ix

Chapter 1: Introduction ... 1

1.1 Research Problem and Question ... 1

1.2 Research Design ... 3

1.2.1 Ethical considerations ... 6

1.2.2 Validity and reliability ... 6

1.3 Research Context .. 7

1.3.1 Professional context .. 7

1.3.2 Organisational context ... 9

1.3.3 National context .. 10

1.3.4 Theoretical context .. 11

1.4 Outline of the Thesis .. 13

Chapter 2: Literature Review .. 15

2.1 Software Quality Management Background ... 15

2.1.1 Software quality ... 15

2.1.2 The TQM philosophy ... 17

2.1.2.1 Customer focus .. 18

2.1.2.2 Process .. 18

2.1.2.3 Human side of quality ... 19

2.1.2.4 Measurement and analysis ... 20

2.1.3 Traditional Engineering vs Software Engineering 22

2.1.4 Software quality improvement frameworks .. 25

2.1.4.1 CMM framework ... 25

2.1.4.2 The PSP framework ... 27

2.2 Software Quality Problems in Higher Education .. 36

2.2.1 General programming problems .. 37

 ii

2.2.2 Design problems ... 39

2.3 The Use of PSP Principles by Higher Education Students 44

2.4 Technology Adoption Models ... 53

2.5 Summary ... 55

Chapter 3: Evaluating the quality of novice programmers’ typical software

development processes (Phase 1) .. 61

3.1 Cases ... 62

3.1.1 Data source management strategy ... 62

3.1.2 Sampling decisions ... 62

3.2 Data Collection Methods .. 63

3.3 Data Analysis ... 65

3.4 Evidence and Claims ... 66

3.4.1 Software development process and basic measurement 66

3.4.2 Estimation and planning .. 69

3.4.3 Quality management and design ... 70

3.4.3.1 Design modelling techniques .. 70

3.4.3.2 Defect removal strategies ... 74

3.4.4 Performance .. 75

3.5 Summary ... 78

Chapter 4: Understanding novice programmers’ actual development

processes and use of QATs (Phase 2) .. 81

4.1 Cases ... 82

4.1.1 Data source management strategy ... 82

4.1.2 Sampling decisions ... 83

4.2 Methodology and Data Collection Methods ... 84

4.2.1 Pre-activity questionnaire .. 84

4.2.2 Performance measurement tutorial ... 85

4.2.3 Programming exercise .. 86

4.2.4 Post-activity questionnaire .. 87

4.2.5 Focus group discussion ... 87

4.3 Data Analysis ... 88

4.4 Evidence .. 90

 iii

4.4.1 Participant 1 .. 90

4.4.1.1 Pre-questionnaire ... 91

4.4.1.2 Program and actual PSP data .. 92

4.4.1.3 Post-questionnaire .. 92

4.4.2 Participant 2 .. 94

4.4.2.1 Pre-questionnaire ... 94

4.4.2.2 Program and actual PSP data .. 95

4.4.2.3 Post-questionnaire .. 96

4.4.3 Participant 3 .. 97

4.4.3.1 Pre-questionnaire ... 97

4.4.3.2 Program and actual PSP data .. 98

4.4.3.3 Post-questionnaire .. 99

4.4.4 Participant 4 .. 100

4.4.4.1 Pre-questionnaire ... 100

4.4.4.2 Program and actual PSP data .. 101

4.4.4.3 Post-questionnaire .. 102

4.4.5 Participant 5 .. 102

4.4.5.1 Pre-questionnaire ... 103

4.4.5.2 Program and actual PSP data .. 104

4.4.5.3 Post-questionnaire .. 105

4.4.6 Participant 6 .. 106

4.4.6.1 Pre-questionnaire ... 106

4.4.6.2 Program and actual PSP data .. 107

4.4.6.3 Post-questionnaire .. 108

4.4.7 Instructor observations .. 108

4.4.8 Overall Process Dashboard© performance analysis 109

4.4.9 Focus group discussion ... 110

4.5 Discussion of Evidence .. 111

4.5.1 Differences between perceived and actual software development

processes .. 111

4.5.2 Attributes influencing the use of QATs .. 115

4.5.2.1 PSP0: Software development process and basic

measurements .. 115

4.5.2.2 PSP2: Quality Management and Design 118

 iv

4.5.2.3 Self-theory of intelligence ... 125

4.6 Summary ... 128

Chapter 5: Factors influencing novice programmers’ intent to adopt QATs

(Phase 3) .. 130

5.1 Cases ... 130

5.1.1 Data source management strategy ... 130

5.1.2 Sampling decisions ... 131

5.2 Data Collection Methods .. 131

5.3 Data Analysis and Evidence .. 132

5.4 Summary ... 133

Chapter 6: Discussions, Recommendations and Conclusions 136

6.1 Empirical Findings and Conclusions .. 137

6.1.1 Phase 1 - Evaluating the quality of novice programmers’ perceived

software development processes .. 137

RQ1.1: What is the quality of the typical software development

processes followed by novice programmers? 137

6.1.2 Phase 2 - Understanding novice programmers’ actual development

processes and use of QATs .. 139

RQ2.1: How do novice programmers’ perceived software development

processes (including their use of QATs) differ from their actual

processes? ... 140

RQ2.2: What are the attributes that could potentially influence novice

programmers’ use of quality appraisal techniques? 141

6.1.3 Phase 3 - Factors influencing novice programmers’ intent to adopt QATs

 .. 145

RQ3.1: What are the factors that could influence novice programmers’

intent to adopt QATs? ... 146

6.1.4 Attributes that could potentially influence novice programmers’ effective

use of QATs .. 149

6.2 Contributions and Implications of the Study ... 152

6.3 Limitations and Recommendations for Future Research 154

6.4 Conclusion ... 156

 v

List of References .. 158

Appendix A : Student Questionnaire (Phase 1) ... 169

Appendix B : Participant Information Sheet (Phase 2) 172

Appendix C : Pre-Activity Questionnaire (Phase 2) .. 175

Appendix D : Performance Measurement Tutorial (Phase 2) 178

Appendix E : Programming Assignment (Phase 2) ... 185

Appendix F : Programming Assignment Background (Phase 2) 189

Appendix G : Post-Activity Questionnaire (Phase 2) .. 194

Appendix H : Program Code (Participant 1) ... 196

Appendix I : Program Code (Participant 2) .. 198

Appendix J : Program Code (Participant 3) ... 200

Appendix K : Program Code (Participant 4) ... 202

Appendix L : Program Code (Participant 5) ... 203

Appendix M : Program Code (Participant 6) .. 204

Appendix N : Phase 3 survey .. 205

 vi

Table of Figures

Figure 1-1: Plowright's FraIM structure as used in this study 3

Figure 1-2: Conceptual framework for this study .. 13

Figure 2-1: Key elements of total quality management .. 17

Figure 2-2: The quality gap and its constituent gaps .. 19

Figure 2-3: PDSA cycle .. 21

Figure 2-4: PSP process flow ... 29

Figure 2-5: PSP project planning process .. 31

Figure 3-1: Perceived time spent in development phases .. 67

Figure 3-2: Preferred software life cycle ... 68

Figure 3-3: Design models used (grouped by year level) ... 71

Figure 3-4: Most efficient defect removal strategy .. 76

Figure 3-5: Average marks for programming assignments 76

Figure 3-6: Main reason for not scoring 100% for assignments 77

Figure 4-1: Experimental case study as data source management strategy 83

 vii

Table of Tables

Table 2-1: CMM framework illustrating key process areas addressed by CMM and

PSP ... 26

Table 2-2: The PSP framework .. 28

Table 2-3: PSP design specification structure .. 34

Table 2-4: PSP quality measures ... 35

Table 2-5: Marking criteria for group designs with weightings 41

Table 2-6: Mapping of real marks to original completeness categories 42

Table 2-7: Hierarchical outcome space: Students' understandings of "produce a

design" .. 42

Table 2-8: Theoretical models of individual adoption ... 54

Table 3-1: Origin of questionnaire questions .. 64

Table 3-2: Perceived time spent in development phases ... 66

Table 3-3: Preferred software life cycle .. 67

Table 3-4: Keep record of common defects ... 69

Table 3-5: Keep record of actual time spent in software development phases 69

Table 3-6: Estimation techniques used .. 70

Table 3-7: Design modelling techniques used .. 71

Table 3-8: Correlations (year level & design quadrants) .. 72

Table 3-9: Average design scores per year level ... 73

Table 3-10: Indicated use of defect removal strategies .. 74

Table 3-11: Correlations (design score and indicated use of design reviews) 74

Table 3-12: Most efficient defect removal strategy ... 75

Table 3-13: Main reason for not scoring 100% for assignments 77

Table 4-1: Summary of methodology and data collection strategies 84

Table 4-2: Process Dashboard© functionalities .. 86

Table 4-3: Recorded data for Participant 1 ... 91

Table 4-4: Defect data for Participant 1 .. 93

Table 4-5: Recorded data for Participant 2 ... 94

Table 4-6: Defect data for Participant 2 .. 96

Table 4-7: Recorded data for Participant 3 ... 97

Table 4-8: Defect data for Participant 3 .. 99

 viii

Table 4-9: Recorded data for Participant 4 ... 100

Table 4-10: Defect data for Participant 4 .. 102

Table 4-11: Recorded data for Participant 5 ... 103

Table 4-12: Defect data for Participant 5 .. 105

Table 4-13: Recorded data for Participant 6 ... 106

Table 4-14: Defect data for Participant 6 .. 108

Table 4-15: Comparison of participants’ perceived and actual design practices 112

Table 4-16: Comparison of participants’ perceived and actual testing/debugging and

coding time .. 113

Table 4-17: Comparison of participants’ perceived and actual defect removal

strategies .. 114

Table 4-18: Summary of participants’ proposed process changes 121

Table 4-19: Mapping of participants skills and behaviours to identified attributes .. 128

Table 5-1: TAM constructs retained ... 134

Table 5-2: Regression analysis of constructs ... 135

Table 6-1: Attributes that could influence effective use of QATs 151

 ix

Summary

Over the past 40 years, numerous studies have been conducted to evaluate the

programming performance of undergraduate Computer Science (CS) students (often

referred to as ‘novice programmers’) and to identify possible reasons for the low quality

of programs these novices developed. Humphrey (1999) proposes that CS educators

must shift their focus from the students’ programs to the data of the processes the

students use. Hilburn and Towhidnejad (2000) suggest that the quality of student

programs could be improved if instructors taught their students “a software

development process that emphasise quality techniques, methods, and analysis”.

They also propose the Personal Software Process (PSP) as a good candidate to

contribute towards the implementation of a curriculum that focuses on software quality.

A number of CS researchers have reported on attempts to incorporate PSP principles

and strategies in order to improve the quality of novice programmers’ software

development practices. Based on numerous implementation and adoption challenges

identified by these researchers - especially with regard to students’ use of quality

appraisal techniques (i.e. designs, code reviews, design reviews and quality

measures) - there have been various calls for further investigations into attributes that

might influence students’ use of PSP principles and strategies.

In response to these calls, the overall aim of this research study was to explore the

attributes that could potentially influence novice programmers’ effective use of quality

appraisal techniques in an educational context.

In addressing the stated aim, this research study followed a mixed-method approach

based on Plowright’s (2011) Framework of Integrated Methodologies (FraIM). This

study was divided into three phases in order to distinguish between the three main

sources of data (cases). Based on the emergent nature of the research design

followed in this study, the data, evidence and conclusions of each research phase

were used to make final decisions regarding the structure and focus of the next phase.

In Phase 1, a survey approach was followed to evaluate the quality of the typical

software development processes followed by novice programmers. By using the PSP

 x

quality improvement framework as an evaluation tool, the results of Phase 1 revealed

that the novice programmers typically used a code-and-fix development strategy, their

designs were almost non-existent, they mostly relied on testing to remove defects and

they did not make use of measurements to gain insight into their development

processes.

In a follow-up investigation, an integrated experimental case study approach was

followed in Phase 2 to form a better understanding of the differences between novice

programmers’ perceived and actual development processes [including their use of

quality appraisal techniques (QATs)] through the collection of both actual process

measurement data and narrative data. The collected data was also used to identify

nine attributes that could potentially influence novice programmer’s use of QATs:

understanding of development phases, technical programming skills, accuracy of

measurement data, ability to find and fix defects, design skills, design review and code

review skills, value of process measurement data, motivation orientation, and

achievement goal orientation. It was, however, concluded that to ensure effective use

of QATs, programmers first need to make the decision to change their current software

development processes.

This issue was addressed in Phase 3 where a case study approach was followed to

identify factors that could influence novice programmers’ intent to adopt QATs. It was

revealed that novices’ intentions to adopt QATs are driven by six factors: ease of use,

compatibility, usefulness, result demonstrability, subjective norm and career

consequences.

By combining the results of Phase 2 and Phase 3, this research study therefore

identified 15 attributes that could potentially influence novice programmers’ effective

use of QATs.

Keywords:

Software engineering, personal software process, software design, code review,

design review, process measurement, early defect removal, defect prevention, novice

programmers, Computer Science education

 1

Chapter 1: Introduction

Software quality in its most common form can be described as the lack of defects in

the end-product that evidently leads to conformance to requirements from the

customer’s perspective (Kan et al., 1994). Software quality improvement efforts need

to consider both product quality and process quality (Kan et al., 1994). Defects can

have a major impact on both of these quality dimensions (Humphrey, 2005). The

Personal Software Process (PSP) is a self-improvement framework based on the

quality principles of Total Quality Management (TQM). The PSP was specifically

developed to assist individual software developers in continuously improving their

personal software development processes (Humphrey, 1995) through the use of

process measurements (Deming, 1986). The PSP process improvement strategies

are based on the following principles: developers must use a defined process and

measurement data to improve their performance; and every developer is unique and

must therefore use personal data to plan his/her work. The PSP quality management

strategy is based on the following principles: personal responsibility for individual

quality, early defect removal, and defect prevention. These principles are addressed

through the use of specific strategies, namely design reviews, code reviews, design

templates and quality measures. These strategies can therefore be collectively

referred to as quality appraisal techniques (QATs). Since the introduction of PSP,

various industrial success stories have been published. However, the use of these

quality improvement strategies by higher education students need to be explored in

more detail.

1.1 Research Problem and Question

Over the past 40 years, numerous studies have been conducted (Lister et al. 2004;

McCracken et al., 2001; Soloway et al., 1982; Utting et al., 2013) to evaluate the

programming performance of undergraduate Computer Science (CS) students (often

referred to as ‘novice programmers’) and to identify possible reasons for the low quality

of programs developed by these novices. Humphrey (1999) proposes that Computer

Science educators must shift their focus from the programs that the students create to

the data of the processes the students use. Hu (2016) also suggests that software

development courses should have a stronger focus on process knowledge. Hilburn

 2

and Towhidnejad (2000) suggest that the quality of student programs could be

improved if instructors taught their students “a software development process that

emphasises quality techniques, methods, and analysis” (p. 171). They also propose

the PSP as a good candidate to contribute towards the implementation of a curriculum

that focuses on software quality. A number of CS researchers have reported on

attempts to incorporate PSP principles and strategies in order to improve the quality

of novice programmers’ software development practices (Börstler et al., 2002; Bullers,

2004; Carrington et al., 2001; Grove, 1998; Hou & Tomayko, 1998; Jenkins &

Ademoye, 2012; Prechelt, 2001; Prechelt & Unger, 2001; Rong et al., 2012; Rong et

al., 2016; Runeson, 2001; Towhidnejad & Salimi, 1996; Williams, 1997). In some

studies, the novice programmers struggled to capture accurate and reliable data

(Carrington et al., 2001; Grove, 1998; Prechelt, 2001; Towhidnejad & Salimi; 1996).

There were also cases where the novices completely abandoned the use of PSP

practices (Börstler et al., 2002; Bullers, 2004; Carrington et al., 2001; Hou & Tomayko,

1998; Towhidnejad & Salimi, 1996; Williams, 1997). In this regard, Prechelt and Unger

(2001) note that students are unlikely to realise the potential benefits of PSP if they

have to motivate themselves to adopt these principles as part of their natural process.

Consequently, Prechelt and Unger (2001) call for further investigations into the

technical, social and organisational attributes (beyond the level of training and

infrastructure provided) that might influence students’ use of PSP principles and

strategies. Rong et al. (2012) also call for future investigations into other factors that

might influence the use of code reviews.

In response to the calls by Prechelt and Unger (2001) and Rong et al. (2012), the aim

of the research study described in this thesis was to explore the attributes that could

potentially influence novice programmers’ effective use of quality appraisal techniques

in an educational context. This study was directed by the following main research

question:

What are the attributes that could potentially influence novice programmers’

effective use of quality appraisal techniques?

In the context of this study, an attribute refers to any feature, skill, quality or

characteristic that could affect the effective use of quality appraisal techniques by

 3

novice programmers for the purpose of personal software development process

improvement. These attributes can be personal, behavioural, technical and/or

environmental in nature.

1.2 Research Design

In answering the stated main research question, this research study followed a mixed-

method approach based on the Framework of Integrated Methodologies (FraIM) as

suggested by Plowright (2011). The FraIM provides a basic structure (as illustrated in

Figure 1-1) for the execution of a research project and guides the researcher in making

various methodological decisions. This framework is of particular relevance in any

study of social and educational phenomena that requires the integration of various

research processes into a “coherent whole”. It is therefore possible to combine

different research approaches into a single study. In following the FraIM, the

researcher is also not required to take a philosophical stance at the beginning of the

study. Consequently, the researcher is encouraged to have a “more responsive,

flexible and open-minded attitude” (Plowright, 2011) in answering the stated research

question(s). This fits in perfectly with the exploratory nature of this study.

(Source: Adapted from Plowright, 2011, p. 9)

Figure 1-1: Plowright's FraIM structure as used in this study

 4

The following important differences between the FraIM and traditional mixed-method

research approaches should be noted:

• The main research question of the study is formulated within the relevant

contexts that influenced the choice of research topic.

• Although the FraIM can be used as a linear process, it is also possible to use a

process of iteration where the researcher moves back and forth between the

different stages as the research study progresses and research plans are

adapted.

• The term ‘cases’ is used to refer to the sources that will provide the data for the

research activity. In situations where these data sources are individuals, they

can also be referred to as participants.

• The data source management strategy describes the approach that will be used

to manage the sources of data. The choice of data source management

strategy is influenced by three criteria: the number of cases, the degree of

control that the researcher has in allocating cases to different groups, and the

degree of naturalness of these groupings.

• The choice of data source management strategy will influence sampling

decisions regarding which cases to include as part of the research activity.

• Methods describe the ways in which data will be generated and collected from

the selected cases (i.e. the ‘data collection methods’). The FraIM classifies

three methods of data collection: observations, asking questions and artefact

analysis.

• The FraIM rejects any use of the “Q” words - qualitative and quantitative. In

referencing the resulting data, the terms ‘numerical’ and ‘narrative’ are used

instead. Each of the three methods (observations, asking questions and

artefact analysis) can be used to collect both numerical and narrative data.

The design of this research study can also be described as emergent since the

researcher did not present a fixed research plan at the beginning of the study - a

characteristic that is typical of traditional qualitative designs (Creswell, 2014). An

emergent design allows the researcher to adapt the research processes at any stage

 5

(conceptualisation, data collection, data analysis or composition) of the study based

on the discovery of new ideas, concepts or findings (Palithorpe, 2017). Such a design

encourages the researcher to react to unforeseen nuances in the data and often

results in a richer set of data.

This study was divided into three phases in order to distinguish between the three

main sources of data (cases) (Plowright, 2011). Based on the emergent nature of the

research design followed in this study, the data, evidence and conclusions of each

research phase were used to make final decisions regarding the structure and focus

of the next phase. Consequently, the following research questions were addressed in

each of the phases:

Phase 1: Evaluating the quality of novice programmers’ typical software

development processes

RQ1.1: What is the quality of the typical software development processes

followed by novice programmers?

Phase 2: Understanding novice programmers’ actual development processes

and use of QATs

RQ2.1: How do novice programmers’ perceived software development

processes (including their use of QATs) differ from their actual

processes?

RQ2.2: What are the attributes that could potentially influence novice

programmers’ use of QATs?

Phase 3: Factors influencing novice programmers’ intent to adopt QATs

RQ3.1: What are the factors that could influence novice programmers’ intent

to adopt QATs?

These research questions are subsidiary to the main research question (as stated in

Section 1.1). Since each of these phases focused on a separate research activity, the

 6

methodological details of each phase are reported in the actual phase descriptions (as

presented in Chapters 3, 4 and 5 of this report).

1.2.1 Ethical considerations

Ethical approval for this study was obtained from the relevant institutional ethics

committees (Reference number: UFS-HSD2015/0115). Although the procedures of

this research study presented a relatively low-risk of emotional or physical harm to

participants, specific methods were employed to mitigate the potential risks.

Throughout all research activities, the participants were informed of the purpose of the

activity and assured of confidentiality and anonymity of all their responses.

Participants were also assured that their participation is voluntary and that there would

be no academic implications if they chose to withdraw from the research activity. In

cases where participants reported any specific problems regarding the procedures or

nature of the interventions, steps were taken to responsibly manage such situations

in a caring and fair way that placed the needs of the participant(s) first (McMillan &

Schumacher, 2006). The specific participant information sheets and forms of consent

used are referenced as part of the discussion of each of the three research phases.

1.2.2 Validity and reliability

The following was done to enhance the validity of the findings (Creswell, 2014;

McMillan & Schumacher, 2006):

• Multiple methods of data collection (e.g. asking questions and analysing

artefacts) were used where relevant to allow the triangulation of data from

different sources.

• In the description of narrative data, rich and thick descriptions were used to

convey the findings.

• Low inference descriptors were used in questionnaires to ensure uniform

interpretation of questions.

• An existing software application (Process Dashboard©) was used to collect

“mechanically recorded” student process data.

• During analysis of numeric data, outlier data was identified from the collected

data to ensure that the sample contained no negative or discrepant data.

 7

The following measures were taken to ensure the reliability of the findings (Creswell,

2014; Saunders et al. 2016):

• Transcripts of the focus group discussion (Phase 2) were checked and re-

checked to ensure that it did not contain any mistakes.

• The researcher reported the particulars of each research activity in as much

detail as possible to ensure that others would be able to replicate the activities

in a similar way if they wanted to do so.

The researcher also enhanced reflexivity (McMillan & Schumacher, 2006) by keeping

a reflection journal in which he recorded all decisions made during the research study

and the rationale behind them.

1.3 Research Context

In order to form a deeper understanding of the origin of the main research question

(as stated in Section 1.1) and as a starting point for following the FraIM (see

Section 1.2), it is necessary to describe the various contexts that influenced the choice

of research topic for this particular study.

1.3.1 Professional context

After working in industry as a network technician and programmer, I started my

lecturing career in 1998 in the Department of Information Technology at the Central

University of Technology, Free State (CUT – formerly known as the Free State

Technikon). For the first few years, I was mostly responsible for presenting

programming courses to engineering students on 1st, 2nd and 3rd year level. Later, I

became more involved by teaching programming to CS students enrolled in the Web

Development stream as well as presenting the 4th year Software Engineering course.

I am currently presenting the introductory programming course (CS1) to a large group

of students (300 students in 2019). While I was presenting the Software Engineering

course for the first time, I realised that even after having completed three years of

programming courses, the students were generally unable to successfully combine

the knowledge they have gained from three years of study in order to design and

develop fully functional programs.

 8

In 2009, as part of an initiative of the Johannesburg Centre for Software Engineering

(JCSE), I was selected to join a group of programmers who enrolled for the basic

Personal Software Process (PSP) course. The course was presented by staff

members of Carnegie Mellon’s Software Engineering Institute (SEI), and was my first

introduction to Watts Humphrey’s PSP framework. For the first time in my career I

realised what actually determines the quality of a software product, as well as the

significant impact that early defect removal could have on software quality. After

having completed the PSP course, I also did the PSP Instructor course and presented

numerous PSP courses to programmers from one of the major commercial banks in

South Africa (on behalf of the JCSE). In working with these industry programmers, I

noticed that while some of them easily adapted their personal development processes

to fit in with the PSP framework, others really struggled to do so. These “struggling”

programmers had numerous reasons (or excuses) as to why they were unable to

follow the prescribed development processes. The eye-opener was in 2011 when the

JCSE provided funding for the PSP training of 20 CS graduates from CUT. During the

training I became aware that these students not only struggled to use the PSP

principles (similarly to what I have observed with the industry programmers), but also

lacked basic programming skills. Based on my PSP experiences, I also started to

incorporate some of the basic PSP principles in my Software Engineering course in

an attempt to foster quality management and process awareness among the students.

From a personal perspective, I was compelled to undertake this study as I wanted to

know why students are finding it so difficult to use good software development

processes and PSP principles. I hoped that this research study would bring me one

step closer to my ultimate goal in life - to convince students to use QATs to improve

the quality of their software programs.

From a practical perspective, this research had to be conducted because novice

programmers tend to develop software applications of low quality (full of defects).

There is therefore a need to understand (1) the software development processes

followed by these novices, and (2) the problems they experience when following

quality improvement principles.

 9

1.3.2 Organisational context

The context of this study was the Information Technology department at a selected

South African University of Technology (UoT). At the time when this study was

conducted, the department offered a three-year diploma course in Information

Technology with specialisation in either software development or web development.

In the first year of study, all students took the same modules, which included one year-

long programming module (OPG1) with C# as implementation language within the

Microsoft Visual Studio integrated development environment (IDE). This introduction

to programming module could be regarded as a typical CS1 module - as designated

by the Association for Computing Machinery (ACM1). In their second and third years

of study, the software development students continued with more advanced C#

programming modules (OPG2 and OPG3). These students also had to enrol for two

technical programming modules (TPG2 and TPG3) that focused on JAVA

programming and mobile application development with Android.

After completion of their first year, the web development students did not take further

C#-specific programming modules. Instead, they registered for modules that focused

on basic web page development using HyperText Markup Language (HTML) and

Cascading Style Sheets (CSS) (in WEB2 and INP2), and Internet programming using

the ASP.NET framework with C# (in WEB3 and INP3).

All students, regardless of their chosen speciality stream, also had to take an

Information Systems module in each of their three years of study. The first-year

Information Systems module (SYS1) covered basic computer literacy skills and the

working of computers. The second-year module (SYS2) included an introduction to

database concepts as well as an introduction to Software Engineering principles

(focusing mostly on basic analysis and design strategies). The third-year Information

Systems module (SYS3) covered Project Management principles. The students

received no additional training that focused specifically on the implementation of

Software Engineering principles other than this basic introduction. The students in

both streams also took several other modules of which the content were not directly

related to the context of this study. Although we commonly refer to our students as ‘IT

1 http://www.acm.org

 10

students’, the overall syllabus is more closely aligned with the ACM Computer Science

curriculum. In the context of this research study it would therefore be more appropriate

to refer to them as ‘CS students’. These students can also be regarded as novice

programmers since they do not have any industry-related software development

experience.

1.3.3 National context

Since this research study was conducted in the context of a South African University

of Technology (UoT), some background regarding the structuring of Higher Education

institutions in South Africa are relevant here. South Africa has three types of

institutions where students can study after having completed high school (Grade 12),

namely universities, UoTs, and Technical and Vocational Education and Training

(TVET) colleges.

Universities mostly offer bachelor’s degree courses that take three to four years to

complete. Although entry requirements for courses vary considerably, university

requirements tend to be very specific and generally require higher achievements in

Grade 12 than the other two types of institutions. Most university courses focus on

providing students with theoretical training in a specialised field. After completion of

their undergraduate degrees, students can continue with postgraduate studies up to

doctoral level.

UoTs offer mainly certificate and diploma courses, but there are also options for further

studies towards bachelor’s degrees and postgraduate degrees. After completion of a

three-year diploma course students can enrol for a one-year BTech degree course2.

It would therefore take students at least four years to complete an undergraduate

degree. Since students initially enrol for certificate or diploma courses, the entry

requirements at UoTs are generally lower than those of the traditional universities. The

UoTs are typically more focused on presenting career-directed courses and

2 From 2020, qualifications at all South African Higher Education Institutions must be aligned with the
Revised Higher Education Qualifications Sub-Framework (HEQSF). The purpose of this framework is
to ensure alignment of qualification levels across all institutions. This will allow students to move more
easily between qualifications and institutions if needed. Consequently, all BTech degrees are being
phased out and replaced with advanced diplomas. Under the new framework, advanced diplomas and
Bachelor’s degrees will be on the same qualification level.

 11

conducting applied research. Traditionally, these institutions were also more focused

on community engagement.

TVET colleges provide various types of training courses, from a few months to three

years in duration, with students receiving a certificate at the successful completion of

the course. The focus of these institutions is to provide students with the necessary

education and training to work in technical or vocational fields. In some cases,

students can continue their studies at a UoT after obtaining a TVET certificate.

1.3.4 Theoretical context

Total Quality Management (TQM) is an industrial quality management system based

on the philosophies of five quality gurus: Deming, Juran, Feigenbaum, Ishikawa and

Crosby (Neyestani, 2017). The aims of TQM are to obtain total customer satisfaction,

to continuously enhance product quality through variation control, to create a

companywide quality culture, and to manage all quality improvements by means of a

goal-oriented measurement system (Kan et al., 1994). Many of the TQM principles

can be related to software quality. Software quality in its most common form can be

described as the lack of defects in the end-product which evidently leads to

conformance to requirements from the user’s perspective (Kan et al., 1994). The

Software Engineering discipline was established with the aim “to create defect-free

software, delivered on time and within budget, that satisfy the client’s needs” (Schach,

2011, p. 4). Within this discipline, various best practices (e.g. development process

models, methods, approaches, tools, technologies, measures, metrics, and quality

parameters) are recommended for achieving quality in software projects (Kan et al.,

1994; Pressman, 2005; Schach, 2011; Sommerville, 2004). These practices are

typically taught to CS students as part of their undergraduate studies.

The TQM philosophy also formed the foundation for the development of numerous

software quality improvement frameworks (Kan, 2003). One such framework is the

Capability Maturity Model (CMM) that was developed to address software process

improvement, software process assessment and software capability evaluations within

both large and small organisations (Paulk et al., 1993). Building on the principles of

CMM, the PSP framework was specifically created as a self-improvement process to

guide individual software developers in following good development practices

 12

(Humphrey, 1995). Various researchers have reported on their own experiences with

the incorporation of PSP principles in educational environments in an attempt to

improve the quality of their students’ development processes (Börstler et al., 2002;

Jenkins & Ademoye, 2012; Towhidnejad & Salimi, 1996; Williams, 1997). Since PSP

is a process improvement framework, none of these studies have recognised the

potential value of the PSP framework as an evaluation model to assess the quality of

individual development processes. However, several attempts have been made to

develop models for the evaluation of the quality of students’ software designs (Chen

et al., 2005; Eckerdal et al., 2006a; Eckerdal et al., 2006b; Hu, 2016; Loftus et al.,

2011).

Humphrey (1999) claims that one of the biggest challenges in software development

is to persuade software developers to use effective methods. Software developers

tend to stick to a personal process that they have developed from the first small

program they have written, and it is difficult to convince them to adopt better practices.

Various researchers have reported on the challenges they experienced in motivating

their students to adopt PSP practices (Börstler et al., 2002; Bullers, 2004; Carrington

et al., 2001; Hou & Tomayako, 1998; Towhidnejad & Salimi, 1996; Williams, 1997).

There also have been numerous calls for further investigations into the factors (other

than training) that might influence the adoption of PSP methods (Prechelt & Unger,

2001; Rong et al., 2012). A number of authors have also proposed the use of narrative

data to gain better insight into students’ development processes (Hu, 2016;

McCracken et al., 2001). There are also numerous theoretical models that can be used

to examine individual intentions to adopt technology tools and development

methodologies (Davis, 1989; Moore & Benbasat, 1991; Riemenschneider et al., 2002;

Venkatesh & Davis, 2000; Thompson et al., 1991).

The conceptual framework of this research study, based on the various research

contexts discussed above, is illustrated in Figure 1-2.

 13

Figure 1-2: Conceptual framework for this study

1.4 Outline of the Thesis

This thesis report comprises six chapters.

Chapter One explains the outline of the research. This chapter includes a brief

explanation of the research problem and states the aim as well as the main research

question that guided the research activities of this study. Moreover, an explanation of

the integrated mixed-method design followed in this study is provided. The various

contexts that influenced the choice of research topic are also described. Finally, a

conceptual framework of the study is presented.

Chapter Two provides a literature overview and background information on the

following: software quality management principles and practices, the nature of

software quality problems in higher education, the use of PSP principles to improve

the quality of student software programs, and technology adoption models.

Chapter Three describes the Phase 1 research activity. The aim of this research

activity was to assess the quality of novice programmers’ software development

 14

processes by using the PSP framework as an evaluation model. As part of the Phase

1 description, the case selection, methods, data collection and data analysis stages

are outlined. Results in the form of evidence and claims are also presented.

Chapter Four describes the Phase 2 research activity. The aims of this research

activity was twofold: (1) to form a better understanding of the differences between

novice programmers’ perceived and actual development processes (including their

use of QATs) through the use of actual process measurement data (as prescribed by

the PSP framework) supplemented by narrative data; and (2) to identify attributes that

could potentially influence novice programmers’ use of QATs. As part of the Phase 2

description, the case selection, methods, data collection and data analysis stages are

outlined. Results in the form of evidence and claims are also presented.

Chapter Five describes the Phase 3 research activity. The aim of this activity was to

identify factors that could influence novice programmers’ intent to adopt QATs. As part

of the Phase 3 description, the case selection, methods, data collection and data

analysis stages are outlined. Results in the form of evidence and claims are also

presented.

Chapter Six concludes the work by synthesising the empirical findings and outlining

implications for research and practice. This chapter also describes the limitations of

this study and makes recommendations for future research.

 15

Chapter 2: Literature Review

In order to provide a conceptual and theoretical basis upon which the remainder of

this thesis builds, this chapter presents a brief overview focusing on four key areas.

Firstly, relevant theoretical background knowledge regarding the software quality

management principles and practices that are of particular relevance to this study is

presented. Secondly, the nature of software quality problems in higher education is

examined. Thirdly, the outcomes of a number of studies in which higher education

students have attempted to use PSP principles as part of their software development

processes are reviewed. Finally, various theoretical adoption models are described

and the applicability of these models to methodology adoption is explored.

2.1 Software Quality Management Background

In this section, a theoretical background regarding the software quality management

principles and practices that are of particular relevance to this study is presented. The

discussion is divided into four sub-sections that will focus on the following: defining the

meaning of quality in the context of software development; defining TQM and

discussing the underlying philosophies that contributed to the forming of the TQM

movement; defining software engineering and discussing the suitability of TQM

principles for the Software Engineering discipline; and providing an overview of

software quality improvement frameworks that are built on the TQM philosophy. As

part of the final sub-section, a detailed discussion of the PSP framework is provided

in order to create conceptual understanding regarding specific principles and practices

that are referenced in the remainder of this report.

2.1.1 Software quality

The American National Standards Institute (ANSI) generally regards quality as a

“subjective term” where the exact definition depends on the person who is defining it

and the context it relates to. According to the Cambridge English Dictionary online, the

term “quality” (n.d.) is typically used to describe how good or bad something is by

referring to its “degree of excellence”. Quality management (according to the ISO

9001:2015 standard) can therefore be described as “the act of overseeing all activities

and tasks needed to maintain a desired level of excellence” (ISO, 2015).

 16

Software quality in its most common form can be described as the lack of defects in

the end-product that evidently leads to conformance to requirements from the user’s

perspective (Kan et al., 1994). Humphrey (2005) acknowledges that defects in

software do not always have the highest priority, but argues that if software contains

defects that cause inconsistent product performance, “the user will not use it

regardless of its other attributes” (p. 136). From a customer satisfaction viewpoint,

software products are usually rated on what Juran (1999) describes as “fitness for use”

(p. 2.2) parameters. These end-product quality attributes include “capability, usability,

performance, reliability, installability, maintainability, documentation and availability”

(Kan et al., 1994, p. 6). To increase customer satisfaction, these end-product quality

attributes need to be considered throughout the entire software development process.

Software developers tend to spend most of their time finding and fixing defects and

therefore tend to neglect the attributes that matter to end-users (Humphrey, 2005).

Humphrey (2005) therefore argues that even though defects are not the top priority,

defect management is essential to product quality. It is, however, necessary to

differentiate between end-product quality and process quality (Kan et al., 1994).

Software is created through a complex development process that involves various

stages. Kan et al. (1994) argue that each stage in this process can be regarded as an

“internal user” (p. 6) of the previous stage. From this viewpoint, Crosby’s (1979, p. 9)

“conformance to [user] requirements” definition of quality also relates to process

quality. Humphrey (2005) further claims that “product and process quality goes hand

in hand” (p. 136).

Software quality can therefore be divided into two categories: product quality and

process quality. Defects can have a major impact on both of these quality categories.

The underlying philosophies of the TQM framework have been used successfully to

improve the quality of various manufacturing industries (Crosby, 1979; Deming, 1986;

Feigenbaum, 1983; Ishikawa, 1989; Juran, 1992). Kan et al. (1994) argue that these

TQM philosophies could also be used to improve quality in the software development

industry. The next section provides a closer look at the key elements and underlying

philosophies of TQM.

 17

2.1.2 The TQM philosophy

In 1985, the Naval Air Systems Command defined its Japanese-style management

approach as total quality management (TQM) (Kan et al., 1994). The main purpose of

TQM is to implement a long term, companywide process with improvement initiatives

at all levels (Elshennawy et al., 1991). The early development of the total quality

movement was influenced by several significant role players or so-called “quality

gurus” (Neyestani, 2017, p. 2): Philip B. Crosby, W. Edwards Deming, Armand V.

Feigenbaum, Kaoru Ishikawa and Joseph M. Juran. Despite the different

interpretations of TQM, the key elements of this philosophy can be described as

follows (Kan et al., 1994) (also see Figure 2-1):

• Customer focus: The objective is to obtain total customer satisfaction through

analysing needs and requirements, and by measuring and managing customer

satisfaction.

• Process: The objective is to enhance product quality by reducing process

variations and continuously improving business and product development

processes.

• Human side of quality: The objective is to create a companywide quality culture

by focusing on leadership, management commitment, total participation,

employee empowerment, and other social, psychological and human factors.

• Measurement and analysis: The objective is to manage all continuous quality

improvements through a goal-oriented measurement system.

(Source: Kan 2003, p. 1.4)

Figure 2-1: Key elements of total quality management

 18

The following discussions will look more closely at the contributions of the “quality

gurus” in relation to the key elements of TQM.

2.1.2.1 Customer focus

In the first of his four absolutes for quality management, Crosby (1979) states that “the

definition of quality is conformance to requirements” (p. 9). He argues that his “doing

it right the first time (DRIFT)” (Crosby, 1984, p. 59) principle can only be achieved

through clearly defined requirements that are understood by both customers and

suppliers. In this regard, Ishikawa (1989) includes the customer as part of the

development process. According to Juran (1999), quality can be regarded as the

“features of products” (p. 2.1) that provide customer satisfaction. Juran (1999),

however, warns that “conformance to specification” (p. 2.2) would not necessarily

equate to customer satisfaction. Satisfaction comes from customer expectations in a

product, while dissatisfaction comes from deficiencies in the product. In order to

manage quality, Juran (1999) introduces a trilogy consisting of three basic managerial

processes: quality planning, quality control and quality improvement. Quality planning

is a structured process that leads to the development of products that ultimately satisfy

customer needs (Early & Coletti, 1999). The biggest problem with quality planning lies

in the “quality gap” (Early & Coletti, 1999, p. 3.2) between the customer’s expectations

and the customer’s perception. This gap (see Figure 2-2) is caused by smaller

component gaps, namely lack of understanding customer needs, lack of design, lack

of a process to consistently create products conforming to a design, lack in means by

which processes are operated and controlled, and the customer’s perceived

perception. Juran’s quality planning process describes very specific processes,

methods, tools and techniques to minimise these component gaps (Early & Coletti,

1999).

2.1.2.2 Process

Deming argues that most production problems originate with the process - something

that can be controlled by using statistics (Gitlow & Gitlow, 1987). His quality

management philosophy focuses on the continuous improvement of all processes. If

the process is performed correctly, there will be less need for rework and quality goods

can be produced at a lower cost (Gitlow & Gitlow, 1987). In his second quality

absolute, Crosby (1984) states that “the system of quality is prevention” (p. 66). He

 19

(Source: Early & Coletti, 1999, p. 3.2)

Figure 2-2: The quality gap and its constituent gaps

argues that appraisal in the form of inspection and testing is the most visible expense

of quality practice and that errors should be eliminated through prevention. Juran

(1999) defines quality as “freedom from deficiencies” (p. 2.2). In this regard, higher

quality processes would not only reduce error rates, shorten production time, and lead

to a reduction in waste, rework, inspection and test, but also reduce aftersales

comebacks, warranty charges and customer dissatisfaction. From this viewpoint,

higher quality will cost less in the end. Quality control, the second process in Juran’s

trilogy, is used to evaluate actual performance, compare actual performance to goals,

and act on the difference to restore process stability (Juran & Godfrey, 1999).

Feigenbaum (1983) believes that one of the basic elements of total quality control is

sound technological methods that will help to increase customer satisfaction (Stevens,

1994) through the continuous improvement of all processes in the company

(Jancikova & Brycht, 2009). Feigenbaum (1983) regards quality as something that

“must be designed and built into a product; it cannot be exhorted or inspected into it”

(p. 77). His approach to total quality control is a prevention-based system that places

emphasis on product, service and process design as well as the streamlining of source

activities.

2.1.2.3 Human side of quality

Feigenbaum regards effective human relations that focus on “building up employee

responsibility for, and interest in, product quality” (Feigenbaum, 1983, p. 6) as another

basic element of total quality control. He believes that total quality control lies in the

“human hands” responsible for creating the products and that these individuals need

 20

to be “guided in a skilled, conscientious, and quality minded fashion” (Feigenbaum,

1983, p. 6). In this regard, Ishikawa introduces the concept of Quality Circles (QC) -

quality control workgroups that discuss and improve their work processes on a regular

basis (Krüger, 2001). This technique requires every member of the workforce to be

committed to quality. He also believes that TQM “begins with education and ends with

education” (Ishikawa, 1989, p. 68). The third process in Juran’s trilogy, quality

improvement, focuses on the actual actions necessary to adjust the level of

performance (Juran & Godfrey, 1999). Juran (1992) claims that humans follow a

similar process to adjust their individual performance when they apply the concept of

self-control. In this regard, Crosby (1984) states in his third absolute that “the

performance standard is zero defects” (p. 74). He claims that a performance standard

is a device that helps individuals to recognise the importance of all parts of a company

coming together to make everything turn out well. He further argues that people make

mistakes because of two factors: lack of knowledge and lack of attention. While

knowledge can be measured and deficiencies corrected, lack of attention is an attitude

problem. Individuals need commitment to monitor themselves in every detail to avoid

errors, which will enable them to move closer to zero defects.

2.1.2.4 Measurement and analysis

As part of this fourth quality absolute, Crosby (1984) states that “the measurement of

quality is the price of nonconformance” (p. 85). According to Crosby, the price of non-

conformance is regarded as the cost of fixing things that were done incorrectly, while

the price of conformance can be seen as the cost of doing things right the first time.

Feigenbaum (1983) regards “unavailability of meaningful data” (p. 109) as the major

factor leading to the misconception that higher quality involves higher cost. In this

regard he suggests that the costs of control should be measured in two areas

(Feigenbaum, 1983, p. 111):

• Appraisal costs (e.g. testing and inspections) for maintaining the quality level of

the product; and

• Prevention costs (e.g. quality engineering and quality training of employees) to

keep defects and nonconformities from occurring in the first place.

 21

Similarly, cost of failure of control should be measured in terms of internal failure costs

(e.g. defects and rework) and external failure costs (e.g. customer satisfaction)

(Feigenbaum, 1983). To assist in measurement and analysis, Ishikawa created seven

quality control tools: Pareto chart, Cause-and-Effect diagram, Stratification chart,

Scatter diagram, Check sheet, Histogram and Control chart (Neyestani, 2017).

Ishikawa (1985) believed that 95% of all quality problems in a company can be solved

by using these tools. Deming is regarded as the brainchild of process improvement

through statistical quality control (Sommerville, 2011, p. 706). Deming claims that

“understanding and controlling variation can lead to the total achievement of quality”

(Gitlow & Gitlow, 1987, p. 9). Based on this philosophy, Deming became famous for

his Plan-Do-Study-Act (PDSA) cycle (see Figure 2-3), which is a systematic process

for continual improvement of a product or process through measurement and variation

control (Deming, 2000b).

(Source: Adapted from Moen, 2009)

Figure 2-3: PDSA cycle

Summary

Even though all the quality gurus made significant contributions to the formulation of

the key TQM elements (customer focus, process, human side of quality, and

measurement and analysis), each one had their own unique views and procedures

towards quality improvement. In considering the underlying philosophies of the quality

gurus, the following insights came to light:

 22

• Defects in the end-product are caused by the quality gap between customer

expectations and customer perceptions. The existence of this gap can be

attributed to lack of understanding customer needs, lack of design, lack of a

process to consistently create products conforming to a design, lack in means

by which processes are operated and controlled, and perceived perception of

the customer.

• Defect prevention can be used to lower the cost of rework.

• Quality improvement efforts should be built-in throughout the whole process

and not through testing and mass inspection only.

• The person who creates the product must take responsibility for its quality.

• Individuals must be committed to monitor themselves and have the ability to

adjust their performance to prevent defects.

• Lack of commitment to quality can be regarded as an attitude problem.

• Cost reduction will not be possible without the availability of meaningful data.

• Quality can only be controlled through the use of relevant process measures

such as appraisal costs, prevention costs and failure costs.

• Process quality improvement can be achieved by continuously using

measurement data for statistical variation control.

• The understanding of measurement data is the key to process improvement.

Kan et al. (1994) regard process measurement as the foundation of quality

improvement for any scientific or engineering discipline (also see Figure 2-1). They

further suggest that the holistic approach of TQM should guide the software

engineering industry to mature towards a true engineering discipline and propose that

the use of quantitative approaches in software development should become an

“ingrained” practice. In the next section, the suitability of TQM principles for the

Software Engineering discipline is discussed.

2.1.3 Traditional Engineering vs Software Engineering

The term software engineering was first endorsed at a NATO conference held in 1968

to devise solutions to what was termed the “software crisis” (Naur & Randell, 1969).

 23

The software crisis was caused by software projects that were running late, over

budget and of a low-quality that did not meet the user requirements (Schach, 2011).

The Software Engineering discipline was established with the aim “to create defect-

free software, delivered on time and within budget, that satisfy the client’s needs”

(Schach, 2011, p. 4). The NATO group argued that software development can be

treated similar to traditional engineering disciplines and that software engineering

should use the same philosophies and paradigms to improve the quality of software

(Naur & Randell, 1969).

Watts Humphrey, who based his software quality improvement philosophy on

Deming’s work, acknowledges the similarities between traditional engineering and

software engineering by suggesting that the statistical process control concepts used

by Deming in his work with the Japanese industry “are just as applicable to software

as they are to automobiles, cameras, wristwatches and steel” (Humphrey, 1988,

p. 74). Ian Sommerville, however, does not support this view. Sommerville (2004)

states that in manufacturing, there exists a clear relationship between the quality of

the development process and the quality of the end-product because the processes

in manufacturing are easy to standardise and monitor. He (Sommerville, 2004) argues

that software is creatively designed and not manufactured through a mechanical

process. In this regard, Schach (2011) acknowledges that even though software

production is similar to traditional engineering, it “has its own unique properties and

problems” (p. 5). Sommerville (2004) further states that “software quality is not

dependant on a manufacturing process but on a design process where individual

human capabilities are significant” (p. 668). Although Sommerville (2004) does

acknowledge that the quality of some types of products are determined by the process

used, he argues that “for innovative applications in particular, the people involved may

be more important than the process used” (p. 668). He does, however, recognise the

strong relationship between process quality and software quality by stating that fewer

defects can be achieved in the delivered software through process quality

management and improvement. According to Sommerville (2004), the four main

factors that influence the quality of design-created products such as software are

development technology, process quality, people quality as well as cost, time and

schedule. He also emphasises that the size and type of project will influence the

impact of each of these factors. For example, in a large project the software process

 24

will have the biggest influence, while in a smaller project, the people quality will be

more important. Good development technology, on the other hand, will be of particular

importance for small teams working on small projects. Cost, time and schedule,

however, remains the most critical factor regardless of product size. Since process

quality depends highly on resources, only highly skilled individuals will be able to save

a project if the resources and process are inadequate.

Similarly to the viewpoints of Deming (2000a) and Humphrey (2005), Pressman (2005)

acknowledges that “variation control is the heart of quality control” (p. 745) and that

measurement enables developers “to gain insight regarding the process and the

project by providing a mechanism for objective evaluation” (p. 649). Sommerville

(2004) argues that most companies do not use software measurement to assess

software quality because of poorly defined processes, a lack of standards for metrics,

limited tool support for data collection and analysis, and misinterpretation of system or

process data. In this regard, Kan et al. (1994) suggest the following regarding software

measurement:

• Poor data quality is an obstacle to quality improvement and should be

addressed with good tracking systems;

• The amount of data could be overwhelming and therefore the number of

metrics must be selected carefully; and

• The information extracted from the data has to be focused, accurate and

useful.

Summary

Humphrey and Pressman both agree that statistical process control could be used for

software process improvement. Sommerville’s biggest concern with this idea is the

instability of software projects due to the ‘creative’ or ‘design’ nature of the software

engineering discipline. Even though he recognises the influence of process

improvement on product quality, he regards individual skills and differences as an

obstacle to process control. Sommerville argues that the effectiveness of process

control depends on the type and size of the product. Schach also acknowledges that

the Software Engineering discipline has its own unique properties. All the prominent

 25

authors, however, agree that fewer defects in the final product could be achieved

through process quality management and improvement.

In the next section, an overview of two software quality improvement frameworks

(CMM and PSP) that are built on the TQM philosophy is provided.

2.1.4 Software quality improvement frameworks

The TQM philosophy (as discussed in Section 2.1.2) is substantiated by numerous

organisational quality improvement frameworks (Kan, 2003). Two such frameworks

are the Capability Maturity Model (CMM) and the Personal Software Process (PSP).

These frameworks were developed by Watts Humphrey who based his work on the

TQM philosophies of Crosby, Deming and Juan (Humphrey, 2000; Paulk et al., 1993).

In the first sub-section of this discussion, an overview of the CMM framework is

provided. This is followed by a detailed discussion of the PSP framework in order to

provide conceptual understanding regarding specific principles and practices that are

referenced in the remainder of this report.

2.1.4.1 CMM framework

The CMM is specifically aimed at addressing software process improvement, software

process assessment and software capability evaluations within both large and small

organisations (Paulk et al., 1993). This framework describes five maturity levels that

an organisation have to move through in order to improve both their software process

capability and their software product quality. Each level (except the initial level)

contains key process areas that indicate the goals that must be achieved to reach a

specific maturity level (Paulk et al., 1993). The five CMM maturity levels, together with

the key process areas and characteristics of each level, are briefly summarised in

Table 2-1.

While the CMM is focused specifically on improving software quality within an

organisation, Humphrey expanded his work to develop a CMM-based framework,

called the Personal Software Process (PSP), aimed at individual software developers.

Many of the key process areas of CMM are also covered by the PSP (Saiedian & Carr,

1997) as indicated in Table 2-1. In the next section, the PSP framework is discussed

in more detail.

 26

Table 2-1: CMM framework illustrating key process areas addressed by CMM and PSP

Maturity Level Characteristics Key process areas (CMM) Key process areas (PSP)

1. Initial

(Unpredictable
process capability)

Ad hoc, chaotic

Lack of sound management practices

Few processes defined

Success depends on individual efforts

None None

2. Repeatable

(Disciplined process
capability)

Basic management processes established

Process is stable to repeat

Software configuration management

Software quality assurance

Software subcontract management

Software project tracking and oversight

Software project planning

Requirements management

Software project tracking

Software project planning

3. Defined

(Standard or
consistent process
capability)

Software process is documented

Projects use an approved software process

Peer reviews

Intergroup coordination

Software product engineering

Integrated software management

Training program

Organisation process definition

Organisation process focus

Peer reviews (indirectly via personal reviews)

Software product engineering

Integrated software management

Organisation process definition

Organisation process focus

4. Managed

(Predictable process
capability)

Measures of process quality collected

Process/product quantitatively controlled

Quantitative process management

Software quality management

Quantitative process management

Software quality management

5. Optimised

(Continuous process
improvement
capability)

Continuous process improvement

Quantitative feedback

Defect prevention

Technology change management

Process change management

Defect prevention

Technology change management

Process change management

(Source: Adapted from Paulk et al., 1993 and Saiedian & Carr, 1997)

 27

2.1.4.2 The PSP framework

Given the importance of the PSP in the context of this study, this section defines the

PSP framework, focusing firstly on the PSP principles, and secondly, on the features

that are included in each of the first three PSP levels.

The PSP framework was specifically designed as a self-improvement process to guide

individual software developers in increasing their planning accuracy and improving the

quality of their software programs (Humphrey, 2005). PSP is based on the following

planning and quality principles (Humphrey, 2000, p. 5):

• Every developer is unique; to be most effective, developers must plan their

work and base these plans on their own, personal data.

• To consistently improve their performance, developers must personally use

well-defined and measured processes.

• To produce quality products, developers must feel personally responsible for

the quality of their products. Superior products are not produced by mistake;

developers must strive to do quality work.

• It costs less to find and fix defects earlier in a process than later.

• It is more efficient to prevent defects than to find and fix them.

• The right way is always the fastest and cheapest way to do a job.

These PSP principles are based on the TQM philosophies of Crosby, Deming and

Juran (Paulk et al., 1993).

Similar to CMM, the PSP framework is divided into levels or process versions, each

with its own features and objectives (Humphrey, 1994) (see Table 2-2). The first PSP

level, PSP0, is aimed at introducing software developers to a defined measured

process (Objective 0). The features included in this level guide developers in

measuring the time they spend in the pre-defined PSP process phases, as well as

keeping track of the defects they inject and remove in each phase. In an expansion of

PSP0, PSP0.1 introduces coding standards, size measurement and the process

improvement proposal. PSP1 focuses on planning and tracking (Objective 1) by

incorporating size estimation and test reporting. This level is enhanced in PSP1.1 with

 28

the introduction of task and schedule planning. PSP2 focuses on quality management

(Objective 2) by introducing design reviews and code reviews to help developers find

and remove defects earlier in the software development life cycle. As a follow-up on

PSP2, PSP2.1 introduces design templates with the intent to quantify the

completeness of design artefacts. PSP3 focuses on scaling up to larger programs

(Objective 3) by adding a cyclic development process.

Table 2-2: The PSP framework

PSP levels Level Features Objective

PSP0

Defined process

Basic process measures:

• Time recording

• Defect tracking

Defect type standard

0. Defining and Using Processes

PSP0.1

Coding standard

Size measurement

Process improvement proposal

PSP1

Size estimation

Test reporting

1. Planning and Tracking

PSP1.1

Task planning

Schedule planning

PSP2

Code review

Design review

2. Quality Management

PSP2.1 Design templates

PSP3 Cyclic development 3. Scaling Up

(Source: Adapted from Humphrey, 2005, p. 8)

In the following sub-sections, the features of each of the different levels (PSP0, PSP1

and PSP2) of the PSP framework are discussed. The specific features of PSP3 are

excluded from this discussion as it falls outside the scope of this study.

PSP0 (Defining and using processes)

Humphrey (2005) states that “a defined process specifies precisely how to do

something” (p. 6). Defined processes serve as guidance and motivation to consistently

follow “disciplined software engineering practices” (Humphrey, 2005, p. 6). He

proposes that defined processes should include measures to enable developers to

 29

understand their performance, manage their work, and plan and manage the quality

of their products.

The PSP0 level proposes a defined process that is divided into eight phases: planning,

design, design review, code, code review, compile, test and post-mortem (see Figure

2-4) (Humphrey, 2000). Specific process scripts have been developed to indicate the

exact actions that should be performed in each of these phases. The following in-

process data (time, size and defect) are collected throughout the whole development

process (Humphrey, 2000, p. 15):

• Time spent in each development phase;

• Size of the artefacts (design documents, actual lines of code) created;

• Defects (including descriptions) injected and removed in each development

phase; and

• Time spent on fixing the documented defects.

(Source: Humphrey, 2000, p. 7)

Figure 2-4: PSP process flow

A plan summary form is used to record planning (estimated) time, size and defect

data. Actual time and defect data are recorded in “logs” while developers do their tasks

according to the scripts. During the post-mortem phase, when the all task(s) are

 30

completed, the plan summary form is updated with the actual time and defect data

from the logs, as well as the actual measured size(s) from the finished product.

PSP1 (Planning and tracking)

The main principle behind the PSP planning process is that “estimates are made by

comparing the planned job with previous jobs” (Humphrey, 2005, p. 69). The

prerequisite for planning is that a developer needs to have personal historical data on

the previous products that he/she created. The predictability of the estimations is

determined by the amount of historical data as well as the accuracy of the data

(Humphrey, 2005).

In PSP1, planning is done from a conceptual design that is based on clearly defined

requirements. The size of the product is estimated from the conceptual design. The

estimated size determines the total time required to do the task (which is based on

actual historical productivity data). The total time is divided into the development

phases based on the historical time-in-phase data. This planning process is called

proxy-based estimation (PROBE) (Humphrey, 2000; 2005) and is illustrated in Figure

2-5. The completed planning process will result in estimations for the size of the

program, the total development time and the time in each phase. The total

development time is used to schedule tasks for each day to perform the total job. An

earned-value method is used to track task completion.

PSP2 (Quality management)

Humphrey (2005) states that software developers tend to spend most of their time

finding and fixing defects and as a result tend to neglect the attributes that matter to

end-users. He therefore argues that even though defects are not top priority, defect

management is essential to product quality.

Quality management in PSP2 is based on three principles (Humphrey, 2000, pp. 23–

24):

1. The individual developer who creates the product has to be responsible for the

quality thereof. The PSP provides developers with quality measures and

guidelines to improve the quality of their products.

 31

(Source: Humphrey, 2000, p. 11)

Figure 2-5: PSP project planning process

2. Find and fix defects as early as possible in the life cycle. The PSP provides

developers with review practices (design review and code review) and

guidelines to find and fix defects before the program is compiled and tested.

3. The most effective way to manage defects is to prevent their initial introduction.

In dealing with the third quality management principle, PSP2 prescribes three ways to

prevent defects (Humphrey, 2000, p. 24):

• By recording defects and reviewing what caused them, the developer becomes

more sensitive towards making these defects during development. This

argument comes from the assumption that people tend to make the same

mistakes over and over again.

• By using effective design techniques to create reviewable designs, developers

will make fewer design mistakes.

• By producing better designs, developers will make fewer coding mistakes.

 32

The quality principles of PSP2 are implemented through the use of the following quality

improvement methods: design reviews, code reviews, design templates and quality

measurements.

Design reviews and code reviews

Software review methods (such as inspections, walkthroughs and personal reviews)

are widely used for early defect removal (Fagan, 1976; Humphrey, 2000; Pressman,

2005; Schach, 2011; Sommerville, 2004) as testing alone is seen as ineffective and

time-consuming (Humphrey, 2005; Schach, 2011). Humphrey (2005) argues that the

reason why reviews are more efficient than testing is that in reviews you “find defects

directly” and in testing you “only get the symptoms” (p. 195). The primary objective of

reviews is to find defects earlier in the development process so that they do not get

intensified during testing (Pressman, 2005). Humphrey (2000; 2005) further argues

that defects are caused by individual software developers and that these individuals

need to manage their personal behaviour through measurement and tracking, and

apply methods for early defect removal and defect prevention.

PSP2 proposes the use of personal design reviews and code reviews to find and fix

defects before testing (Humphrey, 2005). The underlying principle of personal reviews

is that people tend to make the same mistakes repeatedly (Humphrey, 2000).

Therefore, developers should analyse and use their collected defect data to create

checklists in order to specifically address their personal defect habits. Humphrey

(2005) claims that the use of personal checklists during reviews would increase the

efficiency of reviews.

PSP2 also recommends the following review principles (Humphrey, 2005, p. 169):

• Personally review all of your own work before you move to the next

development phase.

• Fix all defects before giving the product to someone else.

• Use a personal checklist and follow a structured review process.

• Follow sound review practices.

 33

• Measure the review time, the size of products reviewed, and the number and

types of defects you found and missed.

• Use data to improve your personal review process.

• Design and implement your products so that it can be easily reviewed.

• Review your data to identify ways to prevent defects.

Humphrey (2005) further states that “doing thorough design and code reviews will do

more to improve the quality and productivity of your work than anything else you can

do” (p. 163).

Design templates

Designs form an integral part of the quality of a software system (ICSE, 2011).

Humphrey (2005) argues that developers do not create thorough designs because

they believe that it will make the development process longer. He further argues that

if the developer only writes small programs (which is typical in many undergraduate

programming courses) the advantages of a thorough design would not be as evident.

Hence developers never learn how to do thorough or complete designs because they

tend not to use it while writing small programs. They are therefore unlikely to have the

necessary design skills and experience to write bigger programs.

PSP2 guides a software developer in creating ‘complete’ designs through the use of

four design templates (Humphrey, 2005) that each corresponds with four design

categories [as defined by de Champeaux, Lea and Faure (1993) in their two-

dimensional design specification structure]. Humphrey (2005, p. 247) further proposes

specific unified modelling language (UML) diagrams that can be used to model certain

system parts and system behaviour in each of the four design categories:

• The external static category models object attributes and the relationships

between classes with class diagrams.

• The external dynamic category models the interaction of users with a system.

During the requirements workflow of software development, these interactions

are modelled through use case diagrams and descriptions (Schach, 2011).

 34

During the analysis phase, these interactions are modelled with activity and

sequence diagrams (Schach, 2011).

• The internal static category is modelled through pseudocode or flowcharts.

Humphrey (2005) argues that even though the internal static category has no

UML equivalent, most UML tools provide a way to enter and store the

pseudocode with a design.

• The internal dynamic behaviour of objects is modelled through state charts.

Table 2-3 summarises the relation between these four design categories and the PSP

design templates.

Table 2-3: PSP design specification structure

PSP design template Design category Definition UML diagrams

Functional Specification
Template (FST)

External-static Define attributes of system
parts and the relationships
between system parts.

Class diagram

Operational Scenario
Template (OST)

External-dynamic Define interaction between
system parts.

Use case diagram

Use case description

Activity diagram

Sequence diagram

Logic Specification
Template (LST)

Internal-static Define the detail logical
structure within a system part.

No UML equivalent,
but pseudocode is
normally used.

State Specification
Template (SST)

Internal-dynamic Define the internal state
behaviour within a system part.

State diagram

Quality measures

In PSP, individual developers gather data to enable them to increase planning

accuracy and improve the quality of software programs. “With time, size and defect

data, there are many ways to measure, evaluate, and manage the quality of a

program” (Humphrey, 2000, p. 17). The PSP defines several quality measures to

enable a developer to analyse and improve personal development processes: defect

density, review rate, various development time ratios, defect rations, yield, defects per

hour, defect removal leverage (DRL) and appraisal to failure ration (A/FR). Each of

these measures are calculated by using the in-process data (time, size, defect)

(Humphrey, 2000). Table 2-4 provides a brief description of each of these quality

measures together with recommendations and good practice guidelines.

 35

Table 2-4: PSP quality measures

Quality
measure

Description Recommendations & good
practices

Defect density The number of defects found in a program
relative to its size - usually expressed in
terms of defects per 1000 lines of code.

The lower the defect density the
better the quality of the program.

Five or fewer defects/KLOC is
good.

The number of defects found in
testing is a good indication of
defects that remains in the
program.

Review rate The time spend on design and code reviews
normally expressed as lines of code (LOC)
per hour.

An effective review rate is between
150 and 200 LOC per hour.

Development
time ratios

The ratio of time spent in any two phases.
The following three ratios are important
quality measures:

• Design time to coding time.

• Design review time to design time.

• Code review time to coding time.

Design-to-coding ratio is the most
important quality ratio measure.

Design time should at least be the
same as coding time.

Design review time should at least
be half of design time.

Code review time should at least be
half of coding time.

Defect ratios The ratio of defects found in one phase
compared to another phase.

The main defect ratios are:

• Code review defects to Compile
defects indicates the quality of the
code.

• Design review defects to Test
defects indicates design quality.

Twice as many defects must be
found in code review than in
compilation.

Twice as many defects must be
found in design review than in test.

Yield The percentage of defects found in a specific
phase.

Process yield refers to the percentage of
defects found before the first compile or test.

The suggested guideline for high
quality programs is a process yield
of at least 70%.

Defects per
hour

The number of defects that is injected or
removed per hour.

Use defect removal rate to guide
personal planning.

Defect removal
leverage (DRL)

The measurement of the relative
effectiveness of two defect removal phases.
Typical ratios that is used is:

• Design review to test.

• Code review to test.

These ratios indicate if the reviews
are more effective than testing.

Appraisal to
failure ratio
(A/FR)

The A/FR indicates the quality of the
engineering process using Juran’s cost-of-
quality parameters. The A stands for
appraisal cost and is indicated as the time
spent in design reviews and code reviews.
The F stands for failure cost and is indicated
by the time spent in compile and testing.

The A/FR is an indication of effort
to find and fix defects early in the
development life cycle.

(Source: Adapted from Humphrey, 2000, pp.18–22)

 36

Summary

Overall, PSP is a continuous improvement process designed to guide individual

software developers in increasing their planning accuracy and improving the quality of

their software programs. The PSP framework is divided into four main levels: PSP0,

PSP1, PSP2 and PSP3 (see Table 2-2). PSP0 guides a developer in using a defined

process and measurement data to improve his/her performance. PSP1 is based on

the principle that every developer is unique and must therefore use his/her personal

data to plan his/her work. This is accomplished through the use of the PROBE

technique to improve the predictability of the development process. The PSP2 quality

management strategy is based on three principles: (1) the individual developer who

creates the product needs to be responsible for the quality thereof; (2) find and fix

defects as early as possible in the life cycle; and (3) the most effective way to manage

defects is to prevent their initial introduction. PSP2 addresses these principles through

the use of design reviews, code reviews, design templates and quality measurements.

PSP3 focuses on scaling up to larger programs by including a cyclic development

process.

The PSP principles are widely used in industry to improve the quality of work done by

software developers. Before taking a closer look at what happened when higher

education students attempted to use the PSP principles (as discussed in Section

2.1.4.2) as part of their software development processes, an explanation of the general

software quality problems in higher education is needed.

2.2 Software Quality Problems in Higher Education

Over the past 40 years, numerous studies have been conducted to evaluate the

programming performance of undergraduate CS students and identify possible

reasons for the low quality of their programs. In many of these studies, students had

difficulties completing even relatively small and basic programs. The remainder of the

discussion in this section provides an overview of some of the key studies that have

been conducted over the past four decades to identify both general programming

problems and design problems experienced by novice programmers.

 37

2.2.1 General programming problems

In 2001, the “McCracken Working Group (MWG)” (McCracken et al., 2001) conducted

a multi-national, multi-institutional study in the United States of America (USA) and

other countries during which they assessed the programming competency of

Computer Science students who completed their first or second programming

courses. In this study, students were required to write three small programs - the

simplest of which was to build a Reverse Polish Notation (RPN) Calculator. Even with

this simple exercise, the students performed much worse than expected. Most

students blamed their inability to complete the programming exercise in the given time

as the major reason for failure. The researchers argued that the students’ poor

performance was due to their inability to abstract the problem from requirements

(lacking problem solving skills) and “bad” programming habits (fixing syntax without

understanding the task). As a result, the MWG proposed that future research should

analyse narrative data gathered from students to gain better insight into the students’

development processes and problem-solving behaviour.

The ITiCSE 2004 “Leeds” working group (Lister et al., 2004) conducted a follow-up

study on the McCracken group’s research to investigate alternative reasons for poor

programming performance. They found that the main reasons for students’ poor

performance are the “lack of problem-solving skills”, “a fragile grasp of basic

programming principles”, and the inability to perform “routine programming tasks, such

as tracing through code” (Lister et al., 2004, p. 119). Lister et al. (2004) argue that

because students are taught by example, without the ability to read and interpret code

they would not be able to write code.

In 2013, a replicated study of the original MWG study was done to determine if the

conclusions of the original study still stand after more than a decade of teaching

intervention in Computer Science (Utting et al., 2013). During this study, a “skeleton”

class layout and pre-written test cases were given to the students as part of the

programming exercise (“the clock problem”). This means that the students did not

have to create the design from scratch and they had a method of verification for

correctness. The study found that students perform better in programming tasks when

they have enough scaffolding code as a starting point and when they do not need to

do the “whole design”. The authors also indicated that test-driven-development (TDD),

 38

where test cases are given by the instructor, improved the programming performance

of students. They further noted that modern students are more connected to resources

through the Internet, which might influence the strategies that they will use to solve

programming problems. Given the important role that complete designs play in defect

prevention (Humphrey, 2005), it is no surprise that these students were able to

produce higher quality programs than students from the original study.

As part of a study discussing a ‘goals and plans’ strategy to solve programming

problems, Soloway et al. (1982) introduced the ‘Rainfall Problem’:

Write a program that will read in integers and output their average. Stop reading

when the value 99999 is input.

This short length problem consists of four major tasks: get input, sum the input,

calculate the average and output the average. The results of Soloway et al.’s (1982)

initial study indicate that only nine out of 31 participants solved this problem correctly.

The rainfall problem and variations thereof have since been used in numerous

empirical studies (Ebrahimi, 1994). Although these studies considered different

aspects of programming, they all recognised various difficulties experienced by

students in solving this apparently simple problem. Ebrahimi (1994) identifies the

“misunderstanding of plan composition and semantic misinterpretation of language

constructs” (p. 457) as the two major causes of students’ errors in solving the rainfall

problem. Simon (2013), in using an adapted version of the rainfall problem in an

introductory programming course examination paper, reports that the 149 students

received an average mark of 23% for this problem. He concludes that despite

improvements in education over the last 30 years, students still make the same kind

of errors when doing the rainfall problem. In another ‘rainfall’ study, Lakanen et al.

(2015) used an adapted version of the rainfall problem to analyse implementation

approaches and program errors made by novice programmers. In contrast to some of

the other ‘rainfall studies’ (Soloway et al. 1982; Ebrahimi, 1994; Simon, 2013)),

students in Lakanen et al.’s (2015) study performed very well and obtained an average

score of 68.8% in a written exam paper. The most common defect made by students

in this study was not guarding against division by zero when calculating the average.

 39

In a study that looked more closely at the defects made by students, Ahmadzadeh et

al. (2005) collected compiler generated error messages on a large scale. They report

that there is a strong correlation between the time spent in debugging and the marks

obtained by the students. Ahmadzadeh et al. (2005) further argue that students “who

are skilled at debugging are faster and more effective at finding the errors and able to

achieve higher marks”. Weak debuggers revealed a lack of understanding of the intent

of the program or code that they had to debug. Most weak programmers could isolate

the defect but were unable to correct it. Good programmers who struggle with

debugging lack an understanding of the “actual program implementation”. They also

found that most good debuggers are good programmers, but less than half of the good

programmers are good debuggers. Of particular interest in this study is Ahmadzadeh

et al.’s (2005) use of defect measurements to evaluate student performance.

2.2.2 Design problems

While general programming problems (as discussed in Section 2.4.1) can have a

significant impact on the quality of software, designs are also critical in ensuring the

quality of a software system. It is therefore alarming that, even after having completed

their undergraduate studies, most CS students are still unable to design software and

generally lack even basic design knowledge (Chen et al., 2005; Eckerdal et al., 2006a;

Eckerdal et al., 2006b; Hu, 2016; Loftus et al., 2001). The discussion in this section

presents a chronological overview of five studies that investigated CS students’ design

ability, as well as their understanding of software design and software design criteria.

All five studies used the ‘super alarm clock’ task originally used in Chen et al.’s (2005)

study. For this task, students were instructed to design a ‘super alarm clock’ (based

on the provided requirements) that would help university students manage their own

sleep patterns. Each of the five studies, however, proposed different categories to

evaluate the quality of students’ designs.

In their multi-national, multi-institutional study, Chen et al. (2005) created five

categories for design evaluation: standard graphical, ad-hoc graphical, code or

pseudocode, textual and mixed. They analysed the complexity of the students’

designs according to the number of parts, use of grouping structures and interaction

among parts. Their results indicate that the design representation style progresses

 40

from textual to standard graphical as the developer’s experience level increases, and

that most students did not indicate the structural groupings and interaction between

parts. They found that recognition of requirements ambiguity also increases with

experience and resulted in higher success when used. In addition to the design task,

students also performed a ‘design criteria prioritisation’ task in which they had to rank

the importance of software design criteria for different design scenarios. In this regard,

the students identified the clarity of designs and the management of the design

process as the most critical elements of the design process.

In another attempt to examine students’ design ability, Eckerdal et al. (2006a, p. 404;

2006b, p. 200) proposed six semantic categories to evaluate the various degrees to

which a stated requirement was met:

• Nothing (“little or no intelligible content”);

• Restatement (“merely restate requirements from the task description”);

• Skumtomte (“add a small amount to restating the task”);

• First Step (“include some significant work beyond the description”);

• Partial Design (“provide an understandable description of each part and an

overview of the system that illustrates the relationships between the parts”);

and

• Complete (“show a well-developed solution”).

Overall, approximately 20% of the participants created no designs while more than

60% of them made no significant progress towards design. Only 9% created a partial

or complete design. Their results (Eckerdal et al., 2006a) indicate a positive correlation

between courses completed and the completeness of design. They did, however, find

no correlation between design completeness and the students’ performance in CS

courses.

In revisiting Eckerdal et al.’s (2006a) original question (Can graduating students

design software systems?), Loftus et al. (2011) conducted an extended study that

explored students’ abilities to design software in groups and to evaluate each other’s

designs. The first part of the experiment included a ‘super alarm clock’ design task

 41

that was completed by seven groups consisting of ten members each. The designs

were rated by both the researchers and the students according to the criteria listed in

Table 2-5. The design criteria were developed based on the information that a system

architect would be looking for in a complete design document. The artefacts list

possible elements that can be used to evaluate the design, while the weight assigned

to each design criteria adds up to 10. These artefacts also correspond closely with the

UML elements included in Humphrey’s PSP design templates (see Table 2-3). During

the design evaluation, a nominal mark of 0, 0.25, 0.5, 0.75 or 1 was awarded for each

design area. This nominal mark was then multiplied by the indicated weight to

determine the ‘real mark’ for the design area. Lotus et al. then mapped these ‘real

marks’ to Eckerdal et al.’s (2006a) original design completeness categories (see Table

2-6). This mapping was done to create an objective instrument that could be used to

evaluate different kinds of design. Lotus et al. (2011) also emphasised that the

weightings (as indicated in Table 2-5) can be adjusted based on the size and nature

of the system to be developed. Their ‘simpler’ categorisation can therefore be used to

assess “designs developed under different software engineering methodologies”

(Lotus et al., 2011, p. 110).

Table 2-5: Marking criteria for group designs with weightings

Design criteria Possible artefacts Weight (Total = 10)

Problem analysis Use case diagrams

Use case descriptions

2

Behavioural architecture Sequence, communication or activity diagrams 1.5

Structural architecture Component Diagrams 1

Detailed behaviour Pseudo-code or Flow charts 1

Detailed structural Detailed class diagrams 0.5

Database design ER diagrams 1.5

GUI design Mock-ups or Storyboards 0.5

Security Discussion on security considerations 0

Linkage of Artefacts Linkage by placing lines between diagrams 2

(Source: Adapted from Lotus et al., 2011, p. 109)

The results of Lotus et al.’s (2011) study indicate that students’ strongest design ability

is to analyse the problem by means of use-case diagrams. Detailed class diagrams

and relationships between classes were not used at all. Their experiment also

 42

revealed that structural design abilities were stronger than behavioural design abilities.

Although only one group was able to produce a “complete design”, students were

generally able to recognise better designs.

Table 2-6: Mapping of real marks to original completeness categories

Rating mark (RM) Completeness Category

𝑅𝑀 = 0 Nothing

0 < 𝑅𝑀 < 2 Restatement

2 ≤ 𝑅𝑀 < 4 Skumtomte

4 ≤ 𝑅𝑀 < 6 First Step

6 ≤ 𝑅𝑀 < 8 Partial Design

8 ≤ 𝑅𝑀 ≤ 10 Complete Design

(Source: Adapted from Lotus et al., 2011, p. 108)

In a further expansion of Eckerdal et al.’s original study, Thomas et al. (2014) used a

phenomenographic approach to gain insight into 35 students’ understanding of the

“produce a design” phenomenon. In comparison to the original Eckerdal et al. (2006a)

study, a larger portion of Thomas et al.’s (2014) participants delivered designs that fall

in the upper three categories (first step, partial, and complete) of Eckerdal et al.’s

design completeness classification model. Their phenomenographic data (based on

analysis of the students’ designs, as well as one design created by an expert) resulted

in six hierarchical categories of design understanding (see Table 2-7).

Table 2-7: Hierarchical outcome space: Students' understandings of "produce a design"

Category Code Description

0 Informal design. Normally text-based; can include some pictures, but no formal
artefacts.

1 Uses some formal structures for analysis like use case diagrams but does not
indicate system structure or behaviour.

2 Focuses on formal design techniques such as class diagrams and structural
relationships (static).

3 Formal design techniques that express (dynamic) behaviour such as sequence
diagrams or flowcharts.

4 Uses multiple artefacts and includes relationships between components indicating
a clear link between static and dynamic.

5 The notations are relaxed and only the essential artefacts are included (expert).

(Source: Thomas et al., 2014, p. 95)

 43

Based on their evaluation of the students’ designs, Thomas et al. (2014, p. 97) also

identified five features that are critical to the understanding of the ‘produce a design’

phenomenon: language of computing, structure of components, behaviour of

components, link structure and behaviour, and appropriate artefacts as needed. They

urge educators to create learning conditions that will help students to recognise these

critical features.

In a duplication of Eckerdal et al.’s (2006a) experiment, Hu (2016) used the original

design completeness categories to assess his students’ designs. The results of his

study indicate that half of the students created a “partial design”, a third created a

“complete design”, and the rest (16.6%) created a “first step design”. In addition to

completing the design task, Hu (2016) also asked students to implement their designs

and to describe their typical design process (as part of a post-activity reflection

exercise). Based on the students’ reflections, Hu (2016) identified four design process

approaches followed by novice programmers. Closer inspection of these approaches,

however, suggests that it would be more accurate to describe these as development

practices since each of the approaches include both design and implementation

practices. The development practices identified by Hu (2016, p. 201) can therefore be

described as follows:

• Noun-extraction: Students define classes, interfaces and data structures from

the problem description. They fix problems while they are coding to let the

defined data structures work.

• Task-oriented: Students start with tasks that are not completely new to them

and then start coding tasks that “seem(s) less likely to be abandoned later”.

Code are modified frequently, but designs are not improved.

• Console-dialog-oriented: Students create a “driver” program that prompts

specific tasks as input. They then create classes and methods to support these

tasks.

• Code-first: No design artefacts are created, only code. Students start with

simple tasks first and then code more difficult ones. Testing and changes occur

throughout the process.

 44

In summary, Hu’s (2016) study reveals that students were unable to effectively apply

design principles to indicate the comprehension of design trade-offs. Students were

unable to perform proper requirements analysis, especially with unfamiliar problems,

which in turn lead to difficulties in starting the design process. In cases where the

students’ design diagrams were of a low quality, the designs eventually became

useless artefacts. Students rarely updated their designs when code changed during

implementation. Hu (2016) suggests that the focus of a design course should be on

“process knowledge” (p. 203) and that design activities should be used throughout all

programming courses to improve the overall quality and usefulness of designs.

The five studies described above all confirm that it is possible to evaluate the

completeness of students’ designs according to some sort of hierarchical structure.

The UML elements included in Lotus et al.’s (2011) design evaluation framework

correspond closely with the PSP design templates. In most of these studies, very few

students were able to create complete designs. Novice students generally found it

difficult to correctly identify requirements (Chen et al. 2005; Hu, 2016) and

consequently delivered designs that were either not much more than a textual

description of the original task (Chen et al., 2005; Eckerdal et al., 2006a) or could at

most be described as the first-step of partial designs (Hu, 2016; Thomas et al., 2014).

Lotus et al. (2011) concurred that their students’ strongest design ability was to

analyse the problem by means of use-case diagrams. While the first four studies only

considered the actual designs created by the students, Hu (2016) was able to gain

much deeper insight into his students’ design processes through the inclusion of an

implementation and narrative component to his study. He suggests that design

courses should have a stronger focus on “process knowledge” (p. 203).

2.3 The Use of PSP Principles by Higher Education Students

The discussion in Section 2.2 highlighted some of the major programming and design

problems that directly influence the quality of software developed by students. Hilburn

and Towhidnejad (2000) argue that not enough attention is given to the quality of

software developed by programming students. They suggest that instructors should

adopt “a software development process that emphasise quality techniques, methods,

and analysis” (Hilburn & Towhidnejad, 2000, p. 171). Such a process should be taught

 45

to and used by programming students throughout all their courses. Humphrey (1999)

reasons that, despite all the literature that guides software developers on “good”

practices and effective methods, the only generally accepted short-term priority for a

software developer remains “coding and testing”. Humphrey (1999) claims that one of

the biggest challenges in software development is to persuade software developers to

use effective methods. Software developers tend to stick to a personal process that

they have developed from the first small program they have written, and it is difficult

to convince them to adopt better practices (Humphrey, 1999). Hilburn and

Towhidnejad (2000) propose the PSP as a good candidate to contribute towards the

implementation of a curriculum that focuses on software quality.

Humphrey (2000) created a personal software process (PSP) course in which a

software developer gradually learns to adopt his/her software practices according to

personal measurements (also see Table 2-2). There are various versions of the PSP

course that are suited for either beginning university students, advanced

undergraduate students, graduates or industry developers (Humphrey, 2000).

Analyses of thousands of PSP students’ measurement data indicate that personal

reviews improve program quality and that students spend less time in the testing

phase if they use QATs (design reviews and code reviews) (Humphrey, 2005). The

course data also indicates an improvement on predictions based on historical data.

Humphrey (1999) states that PSP trained students in an educational environment will

only use these methods if the educator grade them on the use thereof, and that most

students eventually will fall back on a process of coding and testing. He suggests that

Computer Science educators must shift their focus from the programs that the

students create to the data of the processes that the students use.

Although there are numerous studies that report on the use of PSP principles for

process improvement in industry, the number of PSP studies in the higher education

domain is limited (Kuhrmann et al. 2016). An extensive search on some of the major

academic databases (Academic Search Ultimate, EBSCOhost and Scopus), as well

as Google Scholar revealed very few educational PSP studies during the past five

years (2015 - 2019). Due to implementation and adoption challenges identified in

earlier studies, educational researchers seem to have either terminated their PSP

integration efforts (Pando & Ojeda, 2019) or shifted their instruction (and research)

 46

efforts to focus more specifically on strategies and tools that can be used to overcome

the identified challenges (Denwattana et al., 2019; Gomez-Alvarez et al., 2016; Pando

& Ojeda, 2019; Raza et al., 2017; Raza et al., 2019; Rong et al., 2018). Only

educational studies that specifically reported on efforts to use basic PSP principles for

the improvement of students’ development process quality, were selected for further

discussion in this section.

In the selected PSP educational studies, researchers have either incorporated

selected PSP principles as part of their traditional teaching approaches or conducted

a PSP course with their students. For these PSP courses, some instructors chose to

use a scaled-down or adapted version of the full PSP course. Based on their own and

their students’ experiences, these researchers identified various attributes and/or

challenges that influenced the success of their students’ attempts to improve the

quality of their development practices solely through the application of PSP principles.

In one of the first PSP-related studies conducted in an educational environment,

Towhidnejad and Salimi (1996) experimented with an integrated learning approach of

PSP concepts as part of two first-year CS semester courses. During the first semester,

the focus was on collecting time-in-phase process data and making size estimations.

They indicate that the students’ improvement on making accurate size estimation was

not as good as time estimations. They argue that the reason for this was that students

were unfamiliar with the complexity level of new programming constructs (like loops)

and therefore, initially found it difficult to estimate the size of programs. Initially, the

students also resisted to keep track of time because they thought they knew how to

do time management, and also found it difficult to relate the concept of time

management to programming. During the second semester, the students used code

reviews as a defect removal strategy and kept record of defect data. Students found it

easier to adopt code reviews as part of their quality improvement process since they

perceived it as more closely related to programming. Code reviews also helped the

students to decrease the number of syntax defects before the first compile. Overall,

the instructors’ biggest challenges were (1) to motivate students to follow PSP

practices, and (2) to get students to collect accurate and reliable data.

 47

In an attempt to train better software developers, the University of Utah incorporated

PSP concepts in all their undergraduate CS courses (Williams, 1997). The specific

PSP concepts addressed were time management and defect removal. Students

recorded time-in-phase and size data that were used for estimations. For quality, they

used code reviews and recorded defects removed in specific development phases.

Data were compiled in summary reports that the students themselves had to analyse

in an effort to improve their planning accuracy and program quality. Williams (1997)

indicate that, according to students, time management was not relevant to software

development and obstructed their focus on the learning of programming. Similarly to

the findings of Towhidnejad and Salimi (1996), Williams also reports that students

found code reviews more relevant to programming. For this reason, the instructors

decided to first do the quality management principles and then perform time

management and estimation practices. Williams (1997) further reports that although

students demonstrated accurate theoretical knowledge of PSP principles, they

struggled with the application thereof. Overall, there was no improvement on

productivity with the use of code reviews and no significant improvement on planning

through the use of the PROBE estimation technique. Williams (1997) suggests that

discussions of group statistical feedback data might influence students’ intention to

capture more accurate individual process measurement data.

Similarly, Carrington et al. (2001) included selected elements of the PSP in a large

second-year programming course (with 360 students) at the University of Queensland.

The objective of this intervention was to “help students develop good software

development habits early, and to encourage them to see software development as a

systematic discipline rather than a trial and error activity” (p. 81). Students were trained

during four lectures that focused on defect recording, time and size measurement,

code reviews and checklists. Students also had to complete a final assignment in

which they had to analyse and reflect on their own, personal data. Carrington et al.

(2001) report that the additional work caused a cognitive overload for some students,

especially for those who struggled with basic programming skills. On the other hand,

some of the more skilled programmers “felt that the PSP practices interfered with their

well-established habits” and made the assignments “less entertaining and more

tedious” (p. 85). Carrington et al. (2001) emphasise that when students write a

program by incrementally coding and testing one line of code at a time, they are unable

 48

to log data in the correct prescribed PSP phases. Although the final assignment

reports indicated that most students did not record defect and time data correctly, the

authors, however, believe that the whole process of using PSP principles, encouraged

students to start questioning their current development practices.

Since Grove (1998) regarded the complete PSP course as possibly being too difficult

for beginning programmers, he instead created and used a scaled down version called

the Software Development Process Log (SDPL). Grove (1998) indicates that students

initially struggled with the distinction between development phases and therefore

struggled to collect reliable data. The use of SDPL, however, had a positive impact on

students’ attitudes toward software process improvement (Grove, 1998). In this

regard, the students recognised the value of using a proper programming

methodology, good designs and reviews. They further realised the importance of

process measurement data as a motivator for continuous improvement.

As part of a comparative experiment conducted at Carnegie Mellon, Hou and Tomayko

(1998) applied key components of PSP with 65 first year CS students. They compared

the results of these students to those of a group of similar size who did not receive

such training. The process data logged by the PSP-group revealed interesting insights

regarding their development practices. Even though these students captured time in

the design phase, there was no evidence that they created any design documentation.

After the introduction of code reviews, there was a significant decline in the number of

compile defects recorded. Students in the non-PSP group took significantly longer to

produce their final projects and on average obtained lower marks. Hou and Tomayko

(1998) believe that the better performance of the PSP-group can be attributed to less

time spent in testing/debugging. Based on additional narrative feedback, students

from the PSP-group could be divided into two distinct groups: those who indicated that

PSP helped them to better plan their personal schedule and those who regarded the

extra work of capturing process data as a burden.

Similarly to the views of Hou and Tomayko’s (1998) students, Bullers (2004) also

states his disappointment in the low value that students place on the PSP discipline.

In describing a study that integrated PSP practices into an introductory database

course, Bullers (2004) mentions that his students generally struggled to appreciate the

 49

value of gathering data on their personal development practices. Some students even

objected that the PSP principles were not related to the database course syllabus.

From the instructor’s side, the biggest concern was the time spent on monitoring,

analysing and grading the PSP data gathered by students during the course.

Börstler et al. (2002) report on their experiences in teaching some PSP variations at

different universities. At Montana Tech of the University of Montana, students initially

showed resistance to PSP, but the general reaction at the end of the course was that

they felt “more aware of their programming practices and shortcomings” (p. 45).

Although some master’s students at Drexel University also initially showed resistance

towards PSP, several of them reported incorporating at least some PSP parts in their

work environments. At Umeå University, the use of PSP was optional in a second-

year C++ course with only six of 78 students opting to use it throughout the course.

The students’ main reason for abandoning PSP was that it “impose[d] an excessively

strict process on them” (p. 44) and that they did not believe that the extra effort would

be worthwhile. An evaluation of the Purdue University students’ attitude towards PSP

revealed that they regarded PSP activities as “extra work” (p. 45), and did not show

appreciation for the potential benefits of this disciplined process. Students strongly

recommended that PSP topics should rather be placed in more advanced

programming courses when students are already familiar with language specific

syntax and the development environment.

Although Runeson (2001) agrees that it would be harder for first-years to learn PSP

practices together with the development of programming skills, he argues that first-

year students find it easier to adopt PSP practices than graduates do. Based on his

experiences in teaching PSP courses to students of various levels at Lund University

in Sweden from 1996 to 1999, Runeson (2001) found that first-year students are more

focused on programming issues than process issues and can therefore gain most from

PSP. Since first-year students have less established development habits, it is easier

to convince them to use PSP practices as part of their natural development processes.

This also supports Humphrey’s (1999) statement that students are likely to stick to the

development process they used on their very first program.

 50

In an attempt to test the process improvement claims of PSP, Prechelt and Unger

(2001) conducted an experiment to compare the performance of a group of CS

master’s students consisting of both PSP-trained programmers (P-group) and non-

PSP trained programmers (N-group). They report that 18 of the 24 P-group

participants did not use PSP techniques at all. Prechelt and Unger (2001) claim that

the low level of PSP usage might be explained by the “different temperaments of the

programmers”, the small size of the PSP tasks, as well as the absence of “a working

environment which actively encourages PSP usage” (p. 471). They call for further

investigations into the technical, social and organisational attributes (beyond the level

of training and infrastructure provided) that might influence the use of PSP methods.

Through further experimentation, Prechelt (2001) proved that it is possible to learn and

apply defect logging and defect analysis (DLDA) without spending time on doing a full

PSP course. DLDA can be applied on any software phase with the intention to remove

defects earlier in the development life-cycle. Prechelt (2001) argues that early defect

removal or defect prevention is an attribute of a “mature process” that can be applied

on “immature” software processes (p. 57).

In focusing on early defect removal, Jenkins and Ademoye (2012) conducted a pilot

and follow-up experiment in which students performed personal code reviews using

the standard PSP code review checklist (Humphrey, 2005). Since the pilot study

indicated that students found it difficult to use the provided checklist, the follow-up

study used a different approach as tutorials were used to first train the students to use

the checklists. As a result, the students in the follow-up study found the checklist

reviews easier to use. According to the students, the major problem they experienced

with the code reviews was the time it took to complete the review. In both experiments

the qualitative feedback from the students indicate that they believe the process of

using code reviews improved the quality of their programs although there are no

concrete evidence to support this statement.

In another study that focused on the use of checklists to conduct personal reviews,

Rong et al. (2012) designed an experiment to ascertain whether checklist based

reviews work well for inexperienced first-year students. They let one group use

checklists while the other group conducted ad-hoc reviews without checklists. In order

to determine the impact that using checklists during reviews have on beginners, Rong

 51

et al. (2012) used the review rate, review efficiency and sensitivity of a checklist as

measures to compare the results of the two groups. The checklist group used the PSP

code review checklist as described by Humphrey (2005) - the same checklist used by

Jenkins and Ademonye (2012) in their study. Rong et al. (2012) conclude that

checklists are helpful to guide beginner programmers during code reviews with the

resulting review rates close to the suggested 200 lines of code (LOC)/hour benchmark

prescribed by Humphrey. However, they found no concrete evidence that code

reviews with checklists will improve the efficiency of the review. For future research,

the authors suggest finding methods to improve the effectiveness of checklists and

identifying other attributes that might influence the use of code reviews.

As part of a more recent study, Rong et al. (2016) argue that it is not acceptable to

wait for novice programmers to become more experienced before quality software can

be produced. They therefore set out to determine if software engineering students

were able to produce high quality or even defect-free code. Rong et al. (2016) state

that the main challenge of using PSP to improve software quality is that the developer

must possess the ability to adjust his/her process according to lessons learnt from

past experience. They argue that this is impossible for students with limited experience

and therefore propose a process called PSP+ that includes additional steps for

“Seeding” and “Guided Sharing” (p. 365). The “Seeding” step is presented in the form

of a lecture that focuses on best practices in software engineering and defect free

programming (DFP). The “Guided Sharing” step includes an instructor-led open

discussion on interpretation of process data and sharing of “lessons learnt” after the

programming assignments. Based on the results of a comparative study that involved

one PSP group and one PSP+ group, Rong et al. (2016) conclude that PSP+ showed

potential in helping students produce defect-free programs “without sacrificing

productivity” (p. 371). Narrative data collected from both groups suggest that detailed

design and code reviews are the most useful practices for achieving DFP. While the

PSP group valued code reviews as more important, the PSP+ group (who were initially

sensitised to best practices) indicated that detailed designs was the most useful

practice for achieving DFP.

 52

Summary

Based on the findings of the various educational PSP studies discussed in this section,

both positive and negative effects of the use of PSP principles have been noted. On

the positive side, the use of a defined and measurement process made students more

aware of the shortcomings in their current development practices (Börstler et al., 2002;

Carrington et al., 2001; Grove, 1998) and had a positive impact on the students’

attitudes toward software process improvement (Grove, 1998). After being introduced

to code reviews, students were able to remove defects earlier in the development life

cycle (Grove, 1998; Hou & Tomayko, 1998; Jenkins & Ademoye, 2012; Prechelt, 2001;

Rong et al., 2016; Towhidnejad & Salimi, 1996) and consequently spent less time in

testing/debugging. Early defect removal or defect prevention is an attribute of a

“mature process” that can be applied on “immature” software processes (Prechelt,

2001, p. 57). Detailed designs were highlighted as a major contributor to defect

prevention (Grove, 1998; Rong et al., 2016).

On the negative side, the following problems were noted with regard to the use of PSP

principles:

• Students struggled to capture accurate and reliable data (Carrington et al.,

2001; Grove, 1998; Prechelt, 2001; Towhidnejad & Salimi; 1996). In some

studies this was attributed to students’ inability to distinguish between the

development phases (Carrington et al., 2001; Grove, 1998). Carrington et al.

(2001) emphasised that students struggle to distinguish between the various

phases when they code and test one line of code at a time. Prechelt (2001),

however, attributed the inaccurate data to a lack of self-discipline on the

students’ side and labelled it as a “personality issue” (p. 61). In cases where

students were struggling with basic programming skills, the additional tasks of

capturing data caused a cognitive overload (Carrington et al., 2001). In this

regard, Börstler et al. (2002) recommend that PSP topics should only be

introduced in more advanced programming courses, while Grove (1998)

instead created and used a scaled down version of PSP.

• Many students abandoned the use of PSP practices. In a number of studies,

students objected to process measurement because they either found it

unrelated to software development (Bullers, 2004; Towhidnejad & Salimi, 1996;

 53

Williams, 1997) or regarded it as extra effort (Börstler et al., 2002; Carrington

et al., 2001; Hou & Tomayko, 1998). In some studies, students objected to the

use of the PSP defined process because this process was not compatible with

their current development practices (Carrington et al., 2001) or they regarded it

as too strict and therefore could not see the potential benefits of using this

disciplined process (Börstler et al., 2002).

• Students struggled with the application of PSP principles even though they

demonstrated accurate theoretical knowledge of these principles (Williams,

1997).

• Students with limited software development experience are unable to adjust

their processes according to lessons learnt from past experience (Rong et al.,

2016).

Humphrey (1999) claims that one of the biggest challenges in software development

is to convince software developers to adopt better practices as they tend to stick to a

personal process that they have developed from the first small program they have

written. In the next section, various technology adoption models are considered.

2.4 Technology Adoption Models

There are numerous theoretical models that can be used to examine individual

intentions to adopt information technology tools. The key models are summarised in

Table 2-8.

Although software development methodologies, and more specifically QATs, cannot

necessarily be regarded as technological tools, a study conducted by

Riemenschneider et al. (2002) provides empirical evidence that established models of

individual intentions for tool adoption can be used to provide insights into methodology

adoption by software developers in a large organisation. For their study,

Riemenschneider et al. (2002) selected the following existing technology acceptance

models: Technology Acceptance Model (TAM); TAM2; Perceived Characteristics of

Innovating (PCI); Theory of Planned Behaviour (TPB); and Model of Personal

Computer Utilisation (MPCU). After evaluation of these five models, Riemenschneider

et al. (2002, p. 1139) identified the following 12 constructs (which include both

 54

common and unique constructs from the selected models) as being appropriate in the

context of software development methodology adoption: behavioural intention,

usefulness, ease of use, subjective norm, voluntariness, compatibility, result

demonstrability, image, visibility, perceived behavioural control (internal), perceived

behavioural control (external), and career consequences.

Table 2-8: Theoretical models of individual adoption

Models Core Constructs Source

TRA Attitude toward behaviour; Subjective norm. (Fishbein & Ajzen, 1975)

TPB Attitude toward behaviour; Subjective norms; Perceived
behavioural control.

(Ajzen, 1985; 1991)

TAM Perceived usefulness; Perceived ease of use. (Davis, 1989)

TAM 2 Perceived usefulness; Perceived ease of use; Subjective
norms.

(Venkatesh & Davis, 2000)

UTAUT Performance expectancy; Effort expectancy; Social
influence; Facilitating conditions.

(Venkatesh et al., 2012)

DOI Innovation attributes; Innovators characteristics. (Rogers, 1983)

SCT Outcome expectations (Performance); Outcome
expectations (Personal); Self-efficacy; Affect; Anxiety;

(Compeau & Higgins, 1995)

MM Extrinsic motivation; Intrinsic motivation.

(Davis et al., 1992)

MPCU Job-fit; Complexity; Long-term consequences; Affect
towards use; Social factors; Facilitating conditions.

(Thompson et al., 1991)

IS
Success

System quality; Information quality; Service quality;
System use; User satisfaction; Net benefits.

(DeLone & McLean, 2003)

PCI Relative advantage; Ease of use; Image; Visibility;
Compatibility; Result demonstrability; Voluntariness;
Trialability.

(Moore & Benbasat, 1991)

In using the newly developed model to evaluate the intentions of a group of developers

in a large organisation to use a newly introduced software methodology,

Riemenschneider et al. (2002) identified usefulness, compatibility, subjective norm

and voluntariness as significant determinants of methodology adoption. They further

argue that the introduction of a new methodology will not be successful if the software

developers do not regard it as useful. A new methodology will be regarded as useful

when it enables developers to be more productive and increase their performance

level. If the developers regard the methodology as useful, the likelihood of adoption is

higher if this new process is compatible with their current processes. They also warn

that developers who believe in the usefulness and compatibility of a software process

 55

innovation might avoid using the innovation because of the negative views of peers

and supervisors (subjective norm) who oppose the use thereof. The significance of

subjective norm as a determinant was attributed to the importance of teamwork in

software development. Riemenschneider et al. (2002) suggest that new

methodologies should be introduced step-by-step. The same principle is followed in

the PSP course as developers are gradually introduced to the PSP framework

objectives through seven levels (Humphrey, 1994).

In describing a conceptual framework for examining the acceptance of agile

methodologies, Chang and Tong (2009) identified perceived usefulness, perceived

ease of use, perceived compatibility, result demonstrability and perceived maturity as

possible determinants of methodology acceptance. Chang and Thong (2009) argue

that the insignificance of result demonstrability in Riemenschneider et al.’s study may

be attributed to the long development cycles of real-world methodologies – preventing

software developers “from observing the results in a short period of time” (p. 811).

They (Chan & Thong, 2009) acknowledge that the adoption of innovations often

require a radical change in the developers’ existing work practices. If the innovation is

not compatible with the developers’ current practices, they are unlikely to adopt it - as

also noted in Riemenschneider et al.’s study (2002).

Various other studies have also identified perceived usefulness as a significant factor

in predicting professional developers’ intention to use software process innovations

such as programming languages (Agarwal & Prasad, 2000) and CASE tools (Iivari,

1996). Overall, these studies also suggest that an innovation is only likely to be

accepted if it is perceived as being useful in increasing job performance (Chan &

Thong, 2009).

2.5 Summary

In this chapter, four key areas applicable to this study were considered. Firstly,

theoretical background regarding the software quality management principles and

practices that are of particular relevance to this study were presented. As part of this

background discussion, the meaning of quality in the context of software development

was defined; TQM and the underlying philosophies that contributed to the forming of

 56

the TQM movement were discussed; the suitability of TQM principles for the software

engineering discipline were explored; and an overview of two software quality

improvement frameworks (CMM and PSP) that are built on the TQM philosophy were

provided. A detailed discussion of specific principles and practices of the PSP

framework relevant to this study were also provided. Secondly, given the higher

education context in which this study is situated, general programming and design

problems that could influence the quality of software developed by students were

considered. Thirdly, various attributes and/or challenges that influenced the success

of higher education students’ attempts to improve the quality of their development

practices through the use of PSP principles were presented. Finally, various

theoretical models that could be used to examine individual intentions to adopt

technology tools were described.

Over the past 40 years, numerous studies have been conducted (Lister et al. 2004;

McCracken et al., 2001; Soloway et al., 1982; Utting et al., 2013) to evaluate the

programming performance of undergraduate Computer Science (CS) students (often

referred to as ‘novice programmers’) and identify possible reasons for the low quality

of programs developed by these novices. Even though these landmark studies placed

a huge emphasis on the relation between problem solving skills and the quality of the

final product, the quality of the processes followed by the novices were not measured.

Software quality improvement efforts need to consider both product quality and

process quality (Kan et al., 1994). Defects can have a major impact on both of these

quality categories (Humphrey, 2005). The underlying philosophies of TQM have been

used successfully to improve the quality of various manufacturing industries (Crosby,

1979; Deming, 1986; Feigenbaum, 1983; Ishikawa, 1985; Juran, 1999). These

philosophies are focused on defect prevention to lower the cost of rework. Quality

improvement mechanisms should be built-in throughout the whole development

process to reduce the time spent in testing. All process improvement efforts must be

measured in order to be improved. The key to process improvement is the

understanding of measurement data. The individuals who create the product must be

committed to take responsibility for the quality thereof and have the ability to adjust

their performance based on measurements. Kan et al. (1994) argue that these TQM

philosophies can also be used to improve the quality in the software development

industry. The CMM and PSP software process improvement frameworks are based

 57

on the TQM philosophies. The CMM is specifically aimed at addressing software

process improvement, software process assessment and software capability

evaluations within both large and small organisations (Paulk et al., 1993). PSP is a

continuous improvement process designed to guide individual software developers in

increasing their planning accuracy and improving the quality of their software

programs (Humphrey, 2000; Humphrey, 2005). The PSP process improvement

strategies are based on the following principles: the developer must use a defined

process and measurement data to improve his/her performance; and every developer

is unique and must therefore use personal data to plan his/her work. The PSP quality

management strategy is based on the following principles: personal responsibility for

individual quality, early defect removal, and defect prevention. These principles are

addressed through the use of the following strategies: design reviews, code reviews,

design templates and quality measures. These strategies can therefore be collectively

referred to as quality appraisal techniques (QATs). A number of researchers have

reported on attempts to incorporate PSP principles and strategies in order to improve

the quality of novice programmers’ software development practices (Börstler et al.,

2002; Bullers, 2004; Carrington et al., 2001; Grove, 1998; Hou & Tomayko, 1998;

Jenkins & Ademoye, 2012; Prechelt, 2001; Prechelt & Unger, 2001; Rong et al., 2012;

Rong et al., 2016; Runeson, 2001; Towhidnejad & Salimi, 1996; Williams, 1997). One

of the major PSP quality strategies is focused on the creation of complete designs

(Humphrey, 2005). Several attempts have been made to develop models to evaluate

the quality of novice programmers’ software designs (Chen et al., 2005; Eckerdal et

al., 2006a; 2006b; Hu, 2016; Loftus et al., 2001). Of these researchers, only Hu (2016)

was able to gain deeper insight into his students’ design processes by including a

product implementation and reflective (narrative) component to his study. Even though

he suggests that design courses should have a stronger focus on process knowledge,

no mention is made of process measurements. The PSP framework includes

measurements that can reveal deeper insights regarding the quality of design, as well

as the quality of the entire software development process. However, none of the

educational researchers mentioned above recognised the potential value of the PSP

framework as an evaluation model to assess the quality of individual development

processes.

 58

This gap was addressed in the first research activity of this study (Phase 1) where the

PSP framework was used as an evaluation framework to address the following

research question:

RQ1.1: What is the quality of the typical software development processes

followed by novice programmers?

CS researchers have mentioned both successes and problems regarding their

students’ use of the defined PSP processes and QATs (i.e. complete designs, design

reviews, code reviews and measurements). Through the use of PSP principles, novice

programmers became more aware of their actual development processes and had a

more positive attitude towards software process improvement (Börstler et al., 2002;

Carrington et al., 2001; Grove, 1998). After the introduction of code reviews, novice

programmers were able to remove defects earlier in the development life cycle (Grove,

1998; Hu & Tomayko, 1998; Jenkins & Ademoye, 2012; Prechelt, 2001; Rong et al.,

2016; Towhidnejad & Salimi, 1996). Detailed designs were highlighted as a major

contributor to defect prevention (Grove, 1998; Rong et al., 2016). Despite these

positive outcomes, a number of problems were also noted. In some studies, the novice

programmers struggled to capture accurate and reliable data (Carrington et al., 2001;

Grove, 1998; Prechelt, 2001; Towhidnejad & Salimi; 1996). There were also cases

where the novices completely abandoned the use of PSP practices. These novices

regarded the use of defined measured processes as (1) unrelated to software

development (Bullers, 2004; Towhidnejad & Salimi, 1996; Williams, 1997); (2) extra

effort (Börstler et al., 2002; Carrington et al., 2001; Hou & Tomayko, 1998); (3)

incompatible with their current development practices (Carrington et al., 2001); or (4)

too strict (Börstler et al., 2002). The above mentioned successes and problems can

serve as a starting point in identifying attributes that could influence novice

programmers’ use of PSP principles. Williams (1997) specifically mentions that the

novice programmers in his study struggled with the application of PSP principles even

though they demonstrated accurate theoretical knowledge of these principles. This

could suggest a difference between how novices perceive their development

processes and what they actually do. A number of authors have proposed the use of

narrative data to gain better insight into students’ development processes (Hu 2016;

McCracken et al., 2001). Humphrey (1999) suggests that educators must shift their

 59

focus from the programs that the students create to the data of the processes the

students use. Rong et al. (2012) also suggest that there could be other attributes that

might influence students’ use of quality processes. In an attempt to form a better

understanding of novice programmers’ actual development processes (including their

use of QATs) when compared to their perceived processes as well as the attributes

that could potentially influence novice programmers’ use of QATs, the second

research activity of this study (Phase 2) was directed by the following two research

questions:

RQ2.1: How do novice programmers’ perceived software development

processes (including their use of QATs) differ from their actual

processes?

RQ2.2: What are the attributes that could potentially influence novice

programmers’ use of QATs?

Humphrey (1999) claims that one of the biggest challenges in software development

is to convince software developers to adopt better practices as they tend to stick to a

personal process that they have developed from the first small program they have

written. Runeson (2001) also found it easier to convince first-year students (who do

not yet have well established development habits) to use PSP practices as part of their

natural development process. Students in Towhidnejad and Salimi’s (1996) study

found it easier to adopt code reviews as part of their quality improvement process

since they regarded it as more closely related to programming. Various researchers

have reported on the challenges they experienced in motivating their students to adopt

PSP practices (Börstler et al., 2002; Bullers, 2004; Carrington et al., 2001; Hou &

Tomayako, 1998; Towhidnejad & Salimi, 1996; Williams, 1997). Prechelt and Unger

(2001) claim that in their study, the low level of PSP usage could be explained by the

“different temperaments of the programmers”, the small size of the PSP tasks, as well

as the absence of “a working environment which actively encourages PSP usage”

(p. 471). They call for further investigations into the technical, social and organisational

attributes (beyond the level of training and infrastructure provided) that might influence

the use of PSP methods. Rong (2012) calls for further investigations into attributes

that might influence the use of QATs such as code reviews. A number of authors have

shown that adoption models that were originally developed to examine individual

 60

intentions to adopt information technology tools can also be used for software process

and software development methodology adoption (Agarwal & Prasad, 2000; Chang &

Tong, 2009; Iivari, 1996; Riemenschneider et al., 2002). In the third research activity

of this study (Phase 3), an adapted version of Riemenschneider et al.’s (2002)

methodology adoption model was used to examine the intent of novice programmers

to adopt QATs as part of their natural development process. Phase 3 was directed by

the following research question:

RQ3.1: What are the factors that could influence novice programmers’ intent

to adopt QATs?

In the next chapter, the methodology and results of the Phase 1 research activity are

discussed.

 61

Chapter 3: Evaluating the quality of novice programmers’

typical software development processes

(Phase 1)

As explained in the introductory chapter of this thesis report (see Section 1.2), this

research study followed a mixed-methods approach based on Plowright’s (2011)

FraIM framework. This study was divided into three phases in order to distinguish

between the three main sources of data (cases). Each of these phases also followed

a different methodology. It was therefore deemed more appropriate to create a

separate discussion for the methodology and results of each research activity.

Consequently, the methodology and results of the Phase 1 research activity are

discussed in this chapter (Chapter 3), while the details of each of the other two phases

are covered in Chapter 4 (Phase 2) and Chapter 5 (Phase 3) respectively.

The aim of the Phase 1 research activity was to use the PSP framework (see Table 2-

2) as a basis for evaluating the quality of novice programmers’ typical software

development processes. In addressing this aim, Phase 1 was guided by the following

research question:

RQ1.1: What is the quality of the typical software development processes

followed by novice programmers’?

Using Plowright’s basic FraIM structure as a roadmap (see Figure 1-1), this chapter

describes both the methodology and the results of the Phase 1 research activity.

Firstly, the selection of a survey approach as the main data source management

strategy for this phase of the study and sampling decisions that were made are

outlined. Secondly, the data collection process and analysis procedures are explained.

Thirdly, a discussion of the evidence and claims that transpired from this part of the

empirical investigation is provided. Finally, a summary of the main findings from

Phase 1 is presented. To inform the emergent nature of this research study, further

investigations are also suggested.

 62

3.1 Cases

For this part of the investigation, a survey approach (Plowright, 2011) was followed to

assess the quality of novice programmers’ typical software development processes

using the PSP framework as an evaluation model.

3.1.1 Data source management strategy

From a methodological perspective, a survey approach was regarded the most

suitable data source management strategy for Phase 1. The main information source

for this investigation included a large number of potential cases (approximately 500),

which included all the undergraduate CS students who were registered in the

Department of Information Technology at the selected UoT at the time. The potential

cases were already grouped by year level as well as the various courses they were

enrolled for. The researcher, however, still had some control in selecting cases

(participants) based on these groupings. A survey approach allowed the researcher to

draw participants from “naturally occurring groups” (Plowright, 2011) while making

provision for some interruption of the participants’ natural setting. By involving the

participants in a data collection activity during one of their normal scheduled classes,

the degree of naturalness in which the data were collected (“ecological validity”) would

be lower than that of a case study approach. The intention of this survey approach

was, however, not to capture accurate portrayals of the participants’ behaviour in their

natural setting, but rather to gather reflections on actions and behaviours that they

have followed in the past.

3.1.2 Sampling decisions

The research population for this survey included all first-, second- and third-year CS

students at the selected UoT, giving a total population of approximately 500 students.

These students are enrolled in one of two academic streams, namely software

development or web development. The intent of the survey was to uncover general

information (regarding software development processes) with a limited amount of

detail but enough responses (from novice programmers) to provide an opportunity for

generalisation within the study population. Therefore, a purposive sampling strategy

(Babbie, 2010) was used to specifically select students enrolled for the software

development stream. The sampling strategy can also be regarded as convenient

 63

(Patton, 2015) since all the students were studying at the same department where the

researcher was employed. This minimised any potential logistical issues as all

participants were located geographically at the same university/department and were

easily accessible to the researcher. The resulting sample comprised all the students

enrolled for the three compulsory software development courses (one for each of the

three year levels) at the selected institution. Since the web development students

could also enrol for these courses (as electives), these students were not excluded

from the original population.

3.2 Data Collection Methods

For this survey, data was collected by means of ‘asking questions’ in a paper-based

self-completion questionnaire (Plowright, 2011) (see Appendix A). The purpose of the

questionnaire was to evaluate the software development processes typically used by

undergraduate CS students at the selected UoT. The questionnaire integrated both

structured (close-ended questions) and less structured (open-ended questions)

approaches to asking questions (Babbie, 2010). The questionnaire was divided into

two sections: demographic information and software development processes. Four

different types of questions [Yes/No, multiple choice (either single or multiple answer),

rating and open-ended] were used to elicit responses from the participants.

In the demographic section, participants were only asked to enter the subject code of

their software development module. This information was used to verify the academic

year-level of each participant.

In the software development processes section, nine questions were included to

gather information regarding the participants’ perceptions of the software development

processes they typically follow while working on programming assignments (see Table

3-1). Each of these questions were specifically structured to relate to one of the levels

of Humphrey’s (2005) PSP framework (PSP0, PSP1 or PSP2).

 64

Table 3-1: Origin of questionnaire questions

Category Related questions Question type PSP level

Software
development
process and
basic
measurement

Q1: Percentage time spent in development
phases

Open-ended (totalled to
100%)

PSP0

Q3: Software Life Cycle model Open-ended PSP0

Q8: Record defects Yes / No checklist PSP0

Q9: Record actual time in phases Yes / No checklist PSP0

Estimation and
planning

Q10: Use of estimation technique Yes / No checklist PSP1

Q11: Estimation Technique Open-ended PSP1

Quality
management
and design

Q2: Use of defect removal strategies MCQ (multiple answer) PSP2

Q4: Most efficient defect removal strategy MCQ (single answer) PSP2

Q5: Design modelling technique MCQ (multiple answer) PSP2.1

Performance Q6: Average mark for programming
assignments

Rating (10-point scale) n/a

Q7: Reason for failure MCQ (single answer) n/a

An open-ended question (Q3) was included to determine which software life cycle

participants typically used. Humphrey claims that most developers do not know how

to use operational processes (2005:7) and prescribes a process structure consisting

of eight major phases (see Section 2.3.1). Six of these phases (planning, design,

coding, compile, test and post-mortem) form part of the PSP0 baseline process

(Humphrey, 2005). Based on Humphrey’s (2005) suggestion that in .NET

programming environments compile defect time should be recorded under the testing

phase, the compile and test phases were combined into one phase called testing. The

post-mortem phase was also removed because students were generally unfamiliar

with this concept. Q1 (time spent in development phases) therefore only included

planning, design, coding and testing as the major software development phases. The

basic measurements of PSP0 include time-in-phase data and defect data (Humphrey,

2005). Participants were therefore also asked to indicate, by means of Yes/No

questions, if they keep record of the most common mistakes they make (Q8) and the

actual time they spend in the different development phases (Q9).

PSP1 is concerned with software estimation and planning. The PSP framework

proposes a planning framework that uses a PROBE technique (Humphrey, 2005) to

estimate the size and duration of a project. The questionnaire firstly included a Yes/No

question to establish if the participant uses estimation techniques to determine the

size of and time spent on his/her assignments (Q10). This was followed by an open-

 65

ended question (Q11) in which the participant was probed to describe the technique(s)

that he/she uses for time and/or size estimation.

PSP2 is concerned with quality management and design. Quality management

includes the defect removal strategies (design review, code review and testing) that is

used by a programmer. The questionnaire therefore included a question (Q2) to

determine which defect removal strategies (design review, code review and testing)

the participant uses, as well as a question (Q4) where the participant could indicate

which one of these strategies he/she regards as the most effective. In the context of

PSP2, design includes the different techniques that programmers use to model their

designs. The PSP framework proposes a design specification structure with four

categories in which specific UML diagrams (see Table 2-3) can be used to model the

designs (Humphrey, 2005). The design question (Q5) therefore included the following

six response options: “I never do any designs”, “Class diagrams”, “State charts”,

“Flowcharts and/or Pseudocode”, “Sequence and/or Activity diagrams” and “Use

cases”. Two non-PSP related questions (Q6 and Q7) were added to the questionnaire

to elicit the participants’ perceptions regarding their overall programming performance.

The questionnaire was distributed during normal lectures and participants were given

20 minutes to complete it. A total of 251 participants completed the survey. This

sample included 74 (29.48%) first-year, 113 (45.02%) second-year and 64 (25.50%)

third-year students.

3.3 Data Analysis

All the data collected through the questionnaire was captured in a Microsoft Excel

spreadsheet. Narrative data collected from the open-ended questions was imported

into NVivo for Mac, Version 11. An open coding process (Babbie, 2010) was then

employed to group related responses. Based on the categories that emerged from the

data, related responses to each question were then grouped and converted to numeric

data. The next step in the data analysis process was to import all the numeric data in

IBM SPSS Statistics for Windows, Version 25.0 for further analysis. After careful data

inspections (exploration via box-plots and identification of unusual cases), the data of

five participants (three first-years, one second-year and one third-year) were removed

 66

from the data set that was used for further analysis and reporting. The final data set

therefore included data for 246 participants - 71 (28.86%) first-years, 112 (45.53%)

second-years and 63 (25.61%) third-years.

3.4 Evidence and Claims

The discussion in this section is grouped according to the four main question

categories set out in Table 3-1: current process and measurement, estimation and

planning, quality management and design, and performance.

3.4.1 Software development process and basic measurement

The discussion in this section focuses on the perceived time spent in development

phases and the operational process model(s) that students typically follow. Students

first had to indicate how much of their development time they typically spent in each

of the four main software development phases (planning, design, coding and testing).

The students indicated that on average they typically spent most of their development

time in coding (49.84%) (see Table 3-2 and Figure 3-1). They seem to spend 24.81%

of their time in testing/debugging, which is almost half of their coding time. The

perceived time spent in planning (13.32%) is almost equal to the design time (12.03%).

The time for planning and design combined was 26.17%. Overall the perception exists

that they spent approximately a quarter of their time before coding, half their time

during coding and a quarter of their time debugging after coding. Students of all year

levels reported almost similar perceived time values, which can be regarded as an

indication that a first-year student and a third-year student typically use quite similar

development processes.

Table 3-2: Perceived time spent in development phases

Development Phase

1st Year

(N = 71)

2nd Year

(N = 112)

3rd Year

(N = 63)

All students

(N = 246)

Planning 11.8% 13.2% 15.3% 13.32%

Design 10.5% 12.6% 12.9% 12.03%

Coding 53.1% 47.8% 49.8% 49.84%

Testing/Debugging 24.6% 26.5% 22.1% 24.81%

 67

Figure 3-1: Perceived time spent in development phases

When students were asked to indicate their preferred software development life cycle

model, the majority of second-year (68.8%) and third-year (63.5%) students indicated

that they use “Code-and-Fix” (see Table 3-3 and Figure 3-2). None of the first year

students could name their preferred software life cycle. This is not surprising since

operational process models are only covered in the second-year curriculum. The

senior students’ reliance on code-and-fix strategies serves as an indication that they

lack a thorough design phase in their development process and explains why they

spent the least amount of time in the design phase (see Figure 3-1).

Table 3-3: Preferred software life cycle

Life cycle

1st Year

(N = 71)

2nd Year

(N = 112)

3rd Year

(N = 63)

All students

(N = 246)

Don't know 100% 4.5% 4.8% 32.1%

Code-and-fix - 68.8% 63.5% 47.6%

Open source - 7.1% 3.2% 4.1%

Waterfall - 15.2% 14.3% 10.6%

Prototype - 3.6% 4.8% 2.8%

Agile - 0.9% 9.5% 2.8%

0%

10%

20%

30%

40%

50%

60%

1st Year 2nd Year 3rd Year

P
e

rc
e

n
ta

ge
 o

f
ti

m
e

Student Group

Time spent in development phases

Planning

Design

Coding

Testing

 68

Figure 3-2: Preferred software life cycle

PSP0 prescribes two process measures: “time spent per phase” and “defects found

per phase” (Humphrey, 2005, p. 20). This measurement data can be used for planning

and managing projects and serve as a performance indicator when making process

changes (Humphrey, 2005). Defect measurement data should include the following:

the time to fix the defect, the phase in which a defect was injected, the phase in which

the defect was removed, and a description of the defect (Humphrey, 2005). The

description of the defects should be clear enough so that the programmer can use it

during reviews and for defect prevention purposes (Humphrey, 2005). Since only

30.1% of the students indicated that they keep record of the defects they make (see

Table 3-4), it can be concluded that the majority of the students have no specific

strategy to manage their defects and/or prevent future occurrences of the same

defects. The students’ year level also does not have a significant impact on their use

of such a strategy.

It is also important to note that the reported percentages of time spent in the various

development phases (Table 3-2) should mostly be regarded as individual perceptions

since only 16.3% of the students indicated that they keep actual time records (see

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1st Year 2nd Year 3rd Year

P
e

rc
e

n
ta

ge
 o

f
st

u
d

e
n

ts

Student Group

Preferred Software Life Cycle

Don't know

Code-and-fix

Open source

Waterfall

Prototype

Agile

 69

Table 3-5). Very few first-year students (11.3%) and even fewer second-year students

(3.6%) indicated that they keep record of the actual time they spend in the various

development phases. This is in contrast to the much larger portion of the third-year

students (44.4%) who indicated that they keep time records.

Table 3-4: Keep record of common defects

Response

1st Year

(N = 71)

2nd Year

(N = 112)

3rd Year

(N = 63)

All students

(N = 246)

Yes 31.0% 25.9% 36.5% 30.1%

No 69.0% 74.1% 63.5% 69.9%

Table 3-5: Keep record of actual time spent in software development phases

Response

1st Year

(N = 71)

2nd Year

(N = 112)

3rd Year

(N = 63)

All students

(N = 246)

Yes 11.3% 3.6% 44.4% 16.3%

No 88.7% 96.4% 55.6% 83.7%

3.4.2 Estimation and planning

The discussion in this section focuses on the estimation and planning techniques

typically used by students. The majority of students (87.8%) indicated that they do not

use any time estimation techniques. Of the 30 students who use such estimation

techniques, 14 (46.7%) could not name the specific technique they used (see Table

3-6). Seven students (23.3%) indicated that their estimations are based on conceptual

designs. Four students (13.3%) indicated that they used the PROBE technique

prescribed by the PSP framework (Humphrey, 2005). The first step in the PROBE

technique is, however, to create a conceptual design that is used to make size

estimations. One student mentioned that he used “functionality and complexity”, which

might indicate some resemblance to the “technical complexity factor” (TCF) of function

point computation (Schach, 2011, p. 273). Two students (6.7%) indicated that they

used “guessing”, but did not mention any evidence of what these “guesses” are based

on. Another two students (6.7%) indicated that they used “scheduling”, which is one

of the activities that is conducted after estimations are made (Humphrey, 2005).

 70

Table 3-6: Estimation techniques used

Estimation technique No. of students

Do not know 14

Conceptual design 7

PROBE 4

Guessing 2

Scheduling 2

Functionality and complexity 1

3.4.3 Quality management and design

The main aim of the PSP quality management strategy is to find defects as early as

possible in the development life cycle by reviewing artefacts after production

(Humphrey, 2005) (also see Section 2.3.4). As part of this strategy, developers’ first

focus should be on producing a complete design and document it according to the four

PSP design templates (Humphrey, 2005). Then the developer can use personal

design reviews and code reviews to find defects before testing (Humphrey, 2005). The

discussion in the following sub-sections elaborates on evidence collected regarding

the design modelling techniques and defect removal strategies typically used by

students.

3.4.3.1 Design modelling techniques

The UML modelling techniques used by the students were grouped according to the

relevant design template quadrants of the PSP2 framework (Humphrey, 2005) (see

Table 3-7 and Figure 3-3). The participants were also provided with a “never do any

designs” option and an “other” option where they could specify any additional model(s)

used. No responses were recorded for the “additional models” option. Overall, 46.3%

of the students indicated that they never do any designs.

The internal static category of designs is modelled through pseudocode or flowcharts

during the design phase of development. These designs are typically used to model

the logical flow of statement execution for program segments. From the data

presented in Table 3-7 and the graphical representation in Figure 3-3, it becomes

evident that first-year and second-year students who do designs mostly used

flowcharts or pseudocode, while third-year students mostly used class diagrams. For

 71

all year levels the use of static modelling structures were considerably higher than

dynamic modelling structures, which were rarely used.

Table 3-7: Design modelling techniques used

Design quadrant UML techniques 1st Year 2nd Year 3rd Year All students

- No designs used 56.3% 41.1% 44.4% 46.3%

External static Class diagrams 7.0% 23.2% 34.9% 21.5%

Internal static Flowcharts

Pseudocode 39.4% 49.1% 25.4% 40.2%

External dynamic Use cases

Interaction diagrams 1.4% 2.7% 4.8% 2.8%

Internal dynamic State diagrams 0.0% 0.0% 0.0% 0.0%

Figure 3-3: Design models used (grouped by year level)

Designs from the external static category were seemingly used by 21.5% of the

students. These designs, which are modelled with class diagrams, are created during

the design phase of development to show the interaction between objects and the

relationships between classes. The indicated use of class diagrams showed an

increase from first-year (7.0%) to third-year level (34.9%). The first-years only start

with object-oriented programming towards the end of their second semester, which

0%

10%

20%

30%

40%

50%

60%

1st Year 2nd Year 3rd Year

P
e

rc
e

n
ta

ge
 o

f
st

u
d

e
n

ts

Student Group

Design modelling techniques used (per group)

No Design

Class diagrams

Flowcharts/Pseudo

Use cases/Interaction

State diagrams

 72

explains their limited use of class diagrams. Further analysis of the data revealed a

significant correlation at the 0.01 level [Pearson correlation: .251; sig (2-tailed): .000]

between the students’ year level and their use of external static design models (see

Table 3-8). No such correlations were observed for any of the other design quadrants.

Table 3-8: Correlations (year level & design quadrants)

 Year External
static

Internal
dynamic

Internal
static

External
dynamic

Year Pearson Correlation 1 .251** .b -0.099 0.074

Sig. (2-tailed) 0.000 0.123 0.248

Sum of Squares and
Cross-products

133.740 18.724 0.000 -8.780 2.228

Covariance 0.546 0.076 0.000 -0.036 0.009

N 246 246 246 246 246

External
static

Pearson Correlation .251** 1 .b 0.034 0.089

Sig. (2-tailed) 0.000 0.599 0.165

Sum of Squares and
Cross-products

18.724 41.581 0.000 1.671 1.492

Covariance 0.076 0.170 0.000 0.007 0.006

N 246 246 246 246 246

Internal
dynamic

Pearson Correlation .b .b .b .b .b

Sig. (2-tailed)

Sum of Squares and
Cross-products

0.000 0.000 0.000 0.000 0.000

Covariance 0.000 0.000 0.000 0.000 0.000

N 246 246 246 246 246

Internal
static

Pearson Correlation -0.099 0.034 .b 1 0.009

Sig. (2-tailed) 0.123 0.599 0.887

Sum of Squares and
Cross-products

-8.780 1.671 0.000 59.159 0.183

Covariance -0.036 0.007 0.000 0.241 0.001

N 246 246 246 246 246

External
dynamic

Pearson Correlation 0.074 0.089 .b 0.009 1

Sig. (2-tailed) 0.248 0.165 0.887

Sum of Squares and
Cross-products

2.228 1.492 0.000 0.183 6.801

Covariance 0.009 0.006 0.000 0.001 0.028

N 246 246 246 246 246
**. Correlation is significant at the 0.01 level (2-tailed).

b. Cannot be computed because at least one of the variables is constant.

The external dynamic category of designs models the interaction of users with a

system by means of use cases and interaction diagrams. Since the creation of these

diagrams only form part of the second-year curriculum, it might explain the slight

increment in the perceived use of these modelling techniques from year one (1.4%) to

year three (4.8%). The low usage of use cases and interaction diagrams in the first-

year (1.4%) and second-year (2.7%) can be attributed to the nature of the exercises

and assignments given on these levels. Most of the exercise and assignment

specifications given during the first two years are in an analysed form. There is

 73

therefore no need for the students to gather or analyse requirements on these levels.

During the third year of study, students have to work on much bigger projects. It is

therefore expected that use cases and interaction diagrams will form part of their

requirements and analysis process. The data, however, shows that only 4.8% of the

third-year students indicated that they made use of use cases and interaction

diagrams, which is a possible area of concern. The overall low usage of these

diagrams (used by only 2.8% of the students) can be linked to the types of exercises

or assignments that the students have to complete as these rarely force them to do

“real” or complete requirements and analysis.

The internal dynamic behaviour of objects is modelled through state charts. The lack

of usage of internal dynamic modelling (not used by any of the students, as indicated

in Table 3-7) can be regarded as a direct result of the limited use of external dynamic

modelling. Internal dynamic modelling should take place during the analysis phase

when user interaction with the system is modelled in the form of object states that

change through user interaction (Schach, 2011).

The only design modelling style that seemed to remain fairly constant through the year

levels were the use of “no-designs”. This is not surprising given the students’ heavy

reliance on “code-and-fix” as their primary development life cycle (see Figure 3-2).

A design score was also calculated for each student in an effort to obtain a clearer

picture of the overall quality of the students’ designs. A student received one (1) mark

for each of the design template quadrants in which he/she indicated use of the specific

modelling technique. These marks (to a maximum of four) were then totalled and

converted to a percentage to give the total design score for each student. The average

design score for the entire group of participants was 16.16% (see Table 3-9). The drop

in average design score from the second year (18.75%) to the third year (16.27%)

reveals another area of concern as one would expect a higher number of senior

students to produce better quality designs.

Table 3-9: Average design scores per year level

1st year 2nd year 3rd year All students

Average design score 11.97% 18.75% 16.27% 16.16%

 74

3.4.3.2 Defect removal strategies

The discussion in this section examines the students’ indicated use of three defect

removal strategies: design reviews, code reviews and debugging/testing. Even though

Humphrey (2005) claims that the “reviewability” (p. 185) of a design is not that

important if you review your own designs, he still states that it is impossible to conduct

an efficient design review on a poorly documented and incomplete design. As

presented in Table 3-10, the students’ indicated use of both design reviews and code

reviews increased slightly from the first year to the third year of study. Additional data

analysis (see Table 3-11) revealed a significant correlation between students’ design

scores and their indicated use of design reviews as a defect removal strategy [Pearson

correlation: .238; Sig. (2-tailed): .000]. The observed increase in average design

scores from the first year to the third year (see Table 3-9) could therefore explain the

slight increase in the indicated use of design reviews from 7.0% in the first year to

14.3% in the third year (see Table 3-10). The indicated use of code reviews ranged

from 43.7% in the first year to 55.6% in the third year (an increase of 11.9% between

the year levels). Overall, the students least used design reviews (10.2%), followed by

code reviews (50.4%). The most popular technique for removing defects was

debugging, with an overall indicated usage of 93.1% (see Table 3-10).

Table 3-10: Indicated use of defect removal strategies

Strategy

1st year

(N = 71)

2nd year

(N = 112)

3rd year

(N = 63)

All students

(N = 246)

Design review 7.0% 9.8% 14.3% 10.2%

Code review 43.7% 51.8% 55.6% 50.4%

Testing/Debugging 88.7% 96.4% 92.1% 93.1%

Table 3-11: Correlations (design score and indicated use of design reviews)

 Design review Design score (%)

Design review Pearson correlation 1 .238**

Sig. (2-tailed) 0.000

N 246 246

Design score (%) Pearson correlation .238** 1

Sig. (2-tailed) 0.000

N 246 246

**. Correlation is significant at the 0.01 level (2-tailed).

 75

Students also had to indicate which one of the three defect removal strategies they

regarded as the most effective. Given the majority perception (76.8% of students) that

testing/debugging was the most efficient defect removal strategy (see Table 3-12 and

Figure 3-4), it is not surprising that an overwhelming majority of students (93.1%)

reported that they used debugging for fixing defects (see Table 3-10). This perception

might change if more of them keep record of the actual time that they spend in the

different development phases as well as the time that it takes to find and fix defects

late in development life cycles. Since 46.3% of the students indicated that they did not

do any designs (see Table 3-7), it is not surprising that only 2.4% of the students

regarded design reviews as the most effective technique for removing defects (see

Table 3-12). The data also indicated a slight increase in the perceived effectiveness

of code reviews from first-year to third-year level. The slight increase in the use of

code reviews is proportional to the increase in students’ perception regarding the

effectiveness of code reviews as a defect removal strategy (a 13.6% increase from

first-year to third-year – see Table 3-12).

Table 3-12: Most efficient defect removal strategy

Strategy

1st Year

(N = 71)

2nd Year

(N = 112)

3rd Year

(N = 63)

All students

(N = 246)

Design review 0.0% 3.6% 3.2% 2.4%

Code review 19.7% 14.3% 33.3% 20.7%

Testing/Debugging 80.3% 82.1% 63.5% 76.8%

3.4.4 Performance

In order to obtain a reflective response from the students on the causes of failure, they

were asked to indicate the average mark that they normally obtained for programming

assignments. As indicated in Figure 3-5, the reported average marks form a normal

distribution curve around the mean value of 59.7%.

 76

Figure 3-4: Most efficient defect removal strategy

Figure 3-5: Average marks for programming assignments

Students then had to select (from three provided options) the main reason why they

did not score full marks in all their programming assignments. The data analysis

revealed distinct differences between the responses from students in the different year

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

1st Year 2nd Year 3rd Year

P
er

ce
n

ta
ge

 o
f

st
u

d
en

ts

Student Group

Most efficient way to remove errors

Design review

Code review

Testing/Debugging

0%

5%

10%

15%

20%

25%

30%

P
er

ce
n

ta
ge

 o
f

st
u

d
en

ts

Average mark (%)

Average marks for programming assignments

1st Year 2nd Year 3rd Year Total

 77

levels (see Table 3-13 and Figure 3-6). The majority of first-year students (50.7%)

believed that their lack of programming skills was the major cause of poor results. This

corresponds with Runeson’s (2001) findings regarding first-year students’ tendency to

focus on programming issues rather than process issues. Second-year (47.3%) and

third-year (61.9%) students mostly placed the blame on their inability to identify

defects. Towards the third year of study, fewer students (15.9%) regarded their ‘lack

of skill’ as the major reason for failure. Although the students in all year levels regarded

‘time’ as a stumbling block to their success, it was not seen as the major contributor

(with values ranging between 16.9% and 27.7%). This is in contrast with students from

McCracken et al.’s (2001) study who indicated ‘time’ as the major reason for their

failure to successfully complete programming exercises.

Table 3-13: Main reason for not scoring 100% for assignments

Main reason

1st Year

(N = 71)

2nd Year

(N = 112)

3rd Year

(N = 63)

All students

(N = 246)

Not enough time 16.9% 27.7% 20.6% 22.8%

Unable to identify defects 26.8% 47.3% 61.9% 45.1%

Lack of skills 50.7% 25.0% 15.9% 30.1%

Figure 3-6: Main reason for not scoring 100% for assignments

0,0%

10,0%

20,0%

30,0%

40,0%

50,0%

60,0%

70,0%

1st Year 2nd Year 3rd year

P
er

ce
n

ta
ge

 o
f

st
u

d
en

ts

Student group

Main reason for not scoring 100%

Not enough time

Unable to identify defects

Lack of skills

 78

The students indicated ‘testing/debugging’ as their primary technique for fixing defects

(see Table 3-10). Since debugging treats the consequence of a defect, these students

are likely to find it a lot more difficult and time-consuming to find defects (Humphrey,

2005). This could also explain why students regarded the ‘identification of defects’ as

a major contributor to poor results (see Figure 3-6). This effect is likely to increase

towards the third-year when assignments are more comprehensive – making it even

more difficult to identify defects (Humphrey 2005).

Without a process that accommodates designs (see Table 3-7), students would spend

little time on design reviews (see Table 3-10) and would consequently not be able to

identify defects early in the development life cycle. These students therefore have to

rely on code reviews and testing/debugging as their primary techniques for finding and

fixing defects (as indicated in Table 3-10). Given the students’ heavy reliance on code-

and-fix strategies (see Figure 3-2), it is most likely that the thinking process of ‘how to

solve a problem’ would occur during the coding phase and not during the design

phase. This could explain why students perceived that they spend most of their time

in the coding phase (see Figure 3-1).

Without measurement data, a student is unlikely to be aware of his/her actual

development process and will subsequently continue to use exactly the same methods

and techniques. Software developers tend to stick to a personal process that they

have developed from the first small program they have written, and it is difficult to

convince them to adopt better practices (Humphrey, 1999).

3.5 Summary

In this chapter, the methodology and results of Phase 1 of this research study were

reported. Firstly, the selection of a survey approach as the main data source

management strategy, as well as the sampling decisions made were outlined.

Secondly, the data collection and analysis strategies were explained. Thirdly, a

discussion of the evidence and claims that transpired from this part of the empirical

investigation was provided. The main findings can be summarised as follows:

 79

The aim of the Phase 1 research activity was to evaluate the quality of novice

programmers’ software development processes through the use of the PSP

framework as an evaluation model (see RQ1.1). Overall, the evidence revealed that

most students on all three levels of study relied on a code-and-fix development

process, which resulted in them not spending nearly enough time on designs. Almost

half of the students indicated that they never did any designs, while the average design

quality score of those who did create designs was calculated as 16.16%. The students’

lack of design completeness (indicated by the low design scores) could also explain

the limited time spent on designs. Since most of the students (69.9%) indicated that

they did not keep track of their most common defects, they are unlikely to realise the

effectiveness of complete and accurate designs. The majority of the students (76.8%)

regarded testing/debugging as the most effective technique to remove defects, which

corresponded with their preferred development life cycle of code-and-fix. As a result

of the limited use of designs and the lack of completeness thereof, only 2.4% of the

students perceived design reviews as the most effective way to remove defects. Few

students (20.7%) indicated that they perceived code reviews as the most effective, but

almost half of them (50.4%) indicated that they used it. Even though a large portion of

the students (45.1%) believed that their inability to identify defects was the major

contributor to failure, most students did not make use of any effective defect removal

strategies (QATs). The overall lack of process measurement and process awareness

might explain why the students did not adopt more effective development processes

and QATs.

It should be noted, however, that these findings are based solely on the students’

perceptions regarding the software development processes they typically followed.

There are no indications as to how closely related these perceived processes are to

their actual software development processes. Actual process measurement data could

also provide a better indication of the quality of students’ development processes. In

addition, a number of authors (Hu 2016; McCracken et al., 2001) have proposed the

use of narrative data to gain better insight into students’ development processes. Rong

et al. (2012) also suggested that there could be other attributes that might influence

students’ use of quality processes.

 80

Chapter 4 describes a follow-up investigation (Phase 2) that looked more closely at

the differences between the perceived and actual development processes followed by

a group of novice programmers while using the PSP framework. This included a closer

examination of attributes that might influence these programmers’ use of QATs.

 81

Chapter 4: Understanding novice programmers’ actual

development processes and use of QATs

(Phase 2)

In Phase 1 of this research study, the PSP framework was used to evaluate the quality

of novice programmers’ software development processes. Since the data collected as

part of Phase 1 was solely based on the students’ perceptions of their typical

development processes, a number of additional questions were raised regarding the

actual processes followed by these students (as outlined in the Conclusion section of

Chapter 3). The aim of the Phase 2 research activity was twofold. Firstly, to form a

better understanding of the differences between novice programmers’ perceived and

actual development processes (including their use of QATs) through the use of actual

process measurement data (as prescribed by the PSP framework), supplemented by

narrative data. Secondly, to identify attributes that could potentially influence novice

programmers’ use of QATs. This is also in line with Humphrey’s (1999) suggestion

that educators must shift their focus from the programs that the students create to the

data of the processes that the students use. Consequently, Phase 2 of this research

study was directed by the following two research questions:

• RQ2.1: How do novice programmers’ perceived software development

processes (including their use of QATs) differ from their actual processes?

• RQ2.2: What are the attributes that could potentially influence novice

programmers’ use of QATs?

Following an adapted version of Plowright’s basic FraIM structure (see Figure 1-1),

this chapter describes both the methodology and the results of Phase 2. Firstly, the

selection of an experimental case study approach as the main data source

management strategy, as well as the sampling decisions made in this phase of the

study are outlined. Secondly, the data collection and analysis strategies are explained.

Thirdly, evidence of the perceived and actual development process followed by each

of the participants are provided. In the course of these overviews, the participants’

actual process measurement data and narrative data are also considered. Fourthly,

 82

further discussions of the data are offered as guided by the Phase 2 research

questions.

4.1 Cases

For this part of the investigation, an integrated experimental case study approach

(Plowright, 2011) was followed to gain a deeper understanding of novice

programmers’ actual development processes and their use of QATs through the

collection of both actual process measurement data and narrative data. The

discussion in the following sub-sections clarifies the selection of this particular data

source management strategy and explains the sampling decisions.

4.1.1 Data source management strategy

For Phase 2, I wanted to collect detailed, in-depth information from a small number of

participants, therefore favouring either a case study or an experiment as the preferred

data source management strategy. The research would, however, not be conducted

in (1) a conventional/natural setting where (2) I had little control over the selection of

participants – failing to satisfy two of Plowright’s (2011) main criteria for selecting a

case study strategy. Although students (novice programmers) regularly do

development tasks/exercises in the institutional computer laboratories (the chosen

research location), I would manipulate the development conditions by requiring

students to follow a defined development process unfamiliar to them – therefore

creating an unnatural situation. For Phase 2, I would also not be completely bounded

by natural occurring groups within the undergraduate CS student population when

selecting research participants. The lack of naturalness in the research location and

situation (“ecological validity”), and the relatively high degree of control over participant

selection therefore favoured an experimental strategy. The data source management

strategy could, however, not be described as a true experiment since this was not a

comparative study with treatment and control groups. I therefore decided to settle for

an integrated data source management approach that can be described as an

experimental case study (see Point A in Figure 4-1). Accordingly, Phase 2 involved a

low number of cases, with a medium level of ecological validity where I had a relatively

higher level of control over the selection of cases (participants).

 83

(Source: Adapted from Plowright, 2011)

Figure 4-1: Experimental case study as data source management strategy

4.1.2 Sampling decisions

The population for this phase included all third- and fourth-year CS students enrolled

for the software development stream at the selected UoT. These students already had

intermediate programming skills and experience in the use of software defect removal

strategies. Since I wished to select only a small subset of the population for this phase

of the research study, I employed purposive sampling (Babbie, 2010). I therefore

identified a total of 15 top performing students from my third- and fourth-year courses

who I believed possessed the necessary skills to complete the various activities that

would form part of the Phase 2 study. A participant information sheet (see Appendix

B) was distributed to all the identified students as an invitation to participate in the

research activity. The sampling strategy can therefore also be regarded as convenient

(Patton, 2015) since I had easy access to the participants. Participants also had to be

available during a pre-determined time slot – minimising any potential logistical issues.

The resultant sample comprised six male students in their third year of study in the

software development stream.

 84

4.2 Methodology and Data Collection Methods

The methodology that was followed for the Phase 2 experimental case study

comprised the six steps as summarised in Table 4-1. Data was collected during five

of these steps. The various data collection strategies included making observations,

asking questions (pre-activity questionnaire, post-activity questionnaire and focus

group discussion) and analysing artefacts (Process Dashboard© data and program

code) (Plowright, 2011). Each of the six steps and the corresponding data collection

strategies (where applicable) are described in more detail in the following sub-

sections.

Table 4-1: Summary of methodology and data collection strategies

Activity Duration Rationale

1. Participants complete pre-
questionnaire

5 – 10 min Gather information regarding participants’
perceived software development processes.

2. Instructor presents performance
measurement tutorial.

1 hour Teach participants to capture process
measures and interpret process data.

3. Participants do programming
exercise.

4. Instructor makes observations.

3 hours Capture process measures while doing
programming exercise (Participants).

Record participant behaviour and questions
asked (Instructor).

5. Participants complete post-
questionnaire

15 – 20 min Explore participants’ perceptions of process
measurement and evaluate their process
improvement proposals.

6. Instructor conducts a focus
group discussion with
participants

20 min Gain deeper insights into participants’
development processes.

4.2.1 Pre-activity questionnaire

The participants first completed a pre-activity questionnaire (see Appendix C) that was

based on the questionnaire used in Phase 1 (see Appendix A). Although the majority

of the questions were kept unchanged, some changes were deemed necessary to

better align the questions with the aim of Phase 2. The question that asked participants

to indicate which software life cycle they normally used (compare with Question 1 in

Appendix A) was changed from an open-ended question to a multiple-choice (multiple-

option) question. The five life cycle options were based on the main life cycles that

were identified from the Phase 1 data. For the ‘time spent in phases’ question

(compare with Question 2 in Appendix A), design review and code review phases were

 85

added because some Phase 1 participants indicated that they used design reviews

and code reviews as defect removal strategies. I also wanted to investigate the

perceived and actual time spent during these phases and the effectiveness of these

removal strategies.

Two new questions were also added. Participants who indicated that they made use

of defect removal strategies (in Question 3) were asked to specify which of the

indicated checklists they used (see Question 4), as well as the origin of those

checklists (see Question 5). Two questions (asking participants for their student

number, initials and surname) were added in Section 2 to allow for matching of data

collected in the other Phase 2 steps.

4.2.2 Performance measurement tutorial

After the participants have completed the pre-activity questionnaire, I (as the

instructor) conducted a tutorial activity to teach the participants how to log and interpret

performance measurement data using the Process Dashboard© software3. This

software application is part of an open-source initiative to support developers in using

PSP or Team Software Process (TSP). The creators of this software believe that

Process Dashboard© can remove one of the barriers (sufficient tool support) to adopt

PSP or TSP. Process Dashboard© offers the basic functionalities listed in Table 4-2

and is often adopted by PSP/TSP instructors in the offering of the Carnegie Mellon

Software Engineering Institute’s official PSP and TSP courses. The software creators

claim that the major strengths of Process Dashboard© are in its ease of use, flexibility,

platform independence and price. From an ease-of-use perspective, the tool optimises

the ease of collecting common metrics (time and defects) and provides easy access

to process scripts to guide developers through hierarchically arranged tasks. The tool

coexists easily with other development environments because of its small screen

footprint.

As part of the process measurement tutorial, participants worked on a programming

exercise (see Appendix D) so that they could practice the capturing of process

measurements with Process Dashboard©. I started the tutorial with a discussion of the

3 https://www.processdash.com

https://www.processdash.com/

 86

generic PSP2.1 process script, which gave an overview of the different development

phases and the required steps of each phase. Specific attention was also paid to

defect types and examples of each. The participants then completed the tutorial

exercise while following the PSP2.1 process script and capturing measurements. I

adapted the tool so that the participants only logged actual data, and not any planning

or estimation data.

Table 4-2: Process Dashboard© functionalities

Functionality Description

Data collection Time, defects, size for plan and actual data

Planning Integrated scripts, templates, forms and summaries, PROBE

Tracking Earned value

Data analysis Charts and reports aid the analysis of historical data trends

Data export Export data to excel

As part of the tutorial, I also discussed the analysis and interpretation of time and

defect data at the end of the exercise. One hour was set aside for completion of the

entire tutorial. This included the instructor-led explanations and discussions. No data

(for research purposes) was collected during this step.

4.2.3 Programming exercise

After the tutorial, the participants completed an individual programming exercise (see

Appendix E) during which they had to capture performance data using the Process

Dashboard© software. The purpose of the exercise was to:

1. Use Process Dashboard© to capture process measurement data while doing a

programming assignment following the PSP2.1 process script.

2. Capture the following process data through Process Dashboard©:

• Time spent in development phases.

• Defects injected and removed in specific phases.

• Time spent removing defects.

• Size of the product.

3. Interpret data collected through Process Dashboard©.

 87

For the programming exercise, the participants had to implement the code to simulate

the “Quick Pick Option” of the South African National Lottery (LOTTO©) draw. The

participants received an extensive background document on how “LOTTO” draws

work (see Appendix F). In this “Quick Pick Option” program, a user first has to select

the number of player lotto draw records that should be generated. The requested

number of records are then generated randomly, sorted and written to a text file. The

participants could use any resources, including the Internet, to complete this activity.

While they worked on the individual programming exercise, I moved between the

participants and recorded any relevant observations as well as all questions asked by

the participants. Participants were given three hours to complete the programming

exercise.

4.2.4 Post-activity questionnaire

After this exercise, the participants had to complete a post-activity questionnaire (see

Appendix G) that consisted of mostly open-ended questions. The purpose of this

questionnaire was to explore the participants’ views regarding the capturing and

interpreting of process measurement data and their beliefs on how this data could be

used to improve their personal development process. The first part of the

questionnaire (Questions 1 to 3) was used to determine the difficulties that the

participants encountered when capturing time and defect data with Process

Dashboard©. Question 4 required the participants to reflect on the process they

followed when doing reviews and to propose improvements that could reduce testing

time (based on their recorded time-in-phase data). Question 5 focused on defect data

and asked the participants to propose techniques for removing defects earlier in the

development life cycle. Question 6 was an open-ended question where the

participants had to reflect on the value of process measurement data. Question 7 was

another open-ended question asking participants for proposals for personal process

improvement.

4.2.5 Focus group discussion

For the final step of Phase 2, I initially planned to conduct a focus group discussion

with all six participants. In order to provide me with enough time to review the

questionnaire responses and artefacts created by each participant during the

 88

preceding Phase 2 activities, these interviews were scheduled for the next day. Only

three of the six participants, however, showed up for the scheduled discussion. The

other three participants declined participation in the discussion (even after they were

given an option to reschedule). During this discussion, open-ended questions were

used to gather narrative data regarding the participants’ development processes.

These questions focused on the actual process that each of the three participants

followed to solve the given programming problem.

4.3 Data Analysis

The numerical data collected through the two questionnaires was analysed in

Microsoft Excel, while narrative data from the questionnaires and the focus group

discussion was analysed in NVivo for Mac, Version 11. The built-in Process

Dashboard© functionality was used to export a summary of each participant’s captured

process measurement data to Microsoft Excel spreadsheets for further analysis and

comparison. For the purpose of this analysis (and the discussions to follow), data

collected through the pre-questionnaire were labelled as “perceived” since it painted

a picture of the software development processes, as well as the basic measurement,

quality management and design strategies that the participants thought they typically

used in their programming assignments. In contrast, the data collected through

artefact analysis (process measurement data and program code) were labelled as

“actual” since it was collected or created during or in direct response to an actual

programming activity. Since Phase 2 involved six participants only, I was able to do

an in-depth analysis of each participant’s individual data. During the analysis process,

I used the various guidelines as set out in Humphrey’s (2000) PSP quality measures

(see Table 2.2) to evaluate the collected data.

The first step in the analysis was to analyse the pre-questionnaire data. Firstly, the

perceived time-in-phase data was analysed to determine if the participant typically

spent enough time on the relevant strategies (design, design review and code review)

to allow for the early removal of defects (before testing). The following time-in-phase

recommendations are made as part of the PSP quality measures:

• Design time should at least be the same as coding time.

• Design review time should at least be half of design time.

 89

• Code review time should at least be half of coding time.

As part of the pre-questionnaire data analysis, the following data comparisons and/or

evaluations were also made for each participant:

• The perceived testing time was compared to the perceived time spent on

techniques to remove defects earlier.

• The perceived development process was compared to the perceived design

modelling techniques and design time.

• The perceived choice of defect removal strategies was evaluated based on the

perceived time indicated for performing the defect removal strategies and

compared to the perception of the effectiveness of the strategies.

• The perceived use of checklist(s) was compared to the perceived use of defect

removal strategies.

• The perceived source of the checklist(s) was compared to the participant’s

perceived capturing of time and defect data.

Secondly, the following comparisons between actual and perceived data were made:

• The actual design documentation was compared to the perceived design

modelling techniques and the actual time spent in design.

• The actual time-in-phase data was compared to the perceived time-in-phase

data and the perceived development process.

• The actual time spent on design review and code review was compared to the

perceived defect removal strategies to deduce the actual strategies used to

remove defects.

• The actual defect data was evaluated by comparing the phases in which defects

were removed to the perceived defect removal strategy.

• The actual effectiveness of the defect removal strategies was compared to the

perceived effectives indicated in the pre-questionnaire.

 90

Lastly, the quality of actual defect descriptions (the clarity with which the cause of a

defect was described) was evaluated to deduce if it would be usable for future defect

prevention.

4.4 Evidence

Since the Phase 2 participants were all considered to be top-performers, my initial

expectations were that the collected data would not contain a lot of variance.

Surprisingly, there were six very different experiences that revealed interesting details

regarding each participant’s individual development process. The observed

differences therefore warrant an individual discussion of each participant’s data. The

discussion in this section hence focuses on presenting the individual data collected

from each of the six participants during Steps 1, 3, 4, 5 and 6 of the Phase 2

experimental case study. In each sub-section, the pre-questionnaire data, program

and actual PSP data, and post-questionnaire data of a participant are discussed.

For each participant, the pre-questionnaire data discussion focuses on the

participant’s perceived development processes. The program code and PSP data sub-

section describes the time taken to complete the programming exercise, the size of

the final program, the functional requirements achieved, and the conceptual parts

used by the participant to solve the problem. The discussion in the post-questionnaire

sub-section describes the participant’s reflection on his process measurement

experience as well as the personal process changes he proposed after analysing his

process measurement data.

The section concludes with a short description of my overall observations, the

evidence gathered from the participants’ combined captured process measurement

data, and the data collected during the focus group discussion.

4.4.1 Participant 1

A comparison of Participant 1’s perceived and actual development process data is

summarised in Table 4-3. Details are discussed in the sub-sections to follow.

 91

Table 4-3: Recorded data for Participant 1

 Perceived Actual

Development process Code-and-fix Code-and-fix

Design modelling Use cases Code comments

Development time in phase %

Planning 25% 9.68%

Design 10% 3.23%

Design review 4% 0.81%

Coding 55% 32.30%

Code review 0% 6.45%

Testing/Debugging 6% 47.60%

Defect removal strategies Debugging Design review

Code review

Debugging

Use of checklists None None

4.4.1.1 Pre-questionnaire

Participant 1 indicated that he typically spent most of his development time in the

coding phase (55%), followed by planning (25%) and design (10%). Since he spent

only 4% of his time (in design reviews) finding defects before testing, the low time

indication for testing (6%) is questionable. Although he selected code-and-fix as his

development process, this does not correspond with the relatively high percentage of

perceived time indicated for planning and design (total of 35%). The participant,

however, indicated that he utilised “use cases” for design modelling, which could

explain the perceived time spent in planning and design.

His primary defect removal strategy, “debugging”, also does not match the

corresponding perceived time-in-phase data of 6% for testing. The participant

furthermore believed that “debugging” was the most effective way to remove defects.

No use of review checklists was indicated, which corresponds with the indicated time

spent on reviews. According to the participant, he did no actual recording of defects

or the time it took to find and fix them. He believed that poor performance in

programming assignments can be attributed to “insufficient programming skills”.

 92

4.4.1.2 Program and actual PSP data

According to the actual PSP data, the participant’s total development time to complete

the assignment was 124 minutes. The total size of the submitted program was 64 lines

of code (see Appendix H). All the major functional requirements were achieved with

the program code. The program functionality was accomplished through three

methods. A driver method was used to get input from the user and served as the main

entry point in the program from which other methods were invoked. Two additional

methods were created: “GenerateNumbers” for generating the required lotto rows in a

two-dimensional array structure, and “StoreNumbersToDataFile” to write the lotto

numbers from the array to a text file. The generated numbers were, however, not

checked for duplicates and the output was not sorted.

No design documentation was created, which corresponds with the low percentage of

actual time spent in design (3.23%) and with his preferred code-and-fix development

process (as indicated in the pre-questionnaire) (see Table 4-3). The high actual testing

time (47.6%) can be attributed to his development style. This value is also much higher

than the perceived value of 6% indicated in the pre-questionnaire.

The participant recorded a total of nine defects that were all injected during the coding

phase (see Table 4-4). One defect was removed during code review and the other

eight during testing. The defect removal efficiency of the code review was 7.5 defects

per hour and 8.14 defects per hour for the testing. This indicates that the actual review

technique and debugging strategy used by the participant were equally effective and

contributed to his believe that debugging is the most effective technique for removing

defects. The defect descriptions were clear but, in some cases, described the

consequence of the defect instead of the cause of the defect (e.g. “Not giving enough

feedback”).

4.4.1.3 Post-questionnaire

Participant 1 reported that time recording, identifying defect types and describing

defects were “easy”, but he had some trouble categorising and describing “run-time”

defects. He also indicated that recording time in the correct phase was “very easy”,

even though he had trouble differentiating between the coding and the testing phase.

 93

Table 4-4: Defect data for Participant 1

Defect type Phase
injected

Phase

removed

Time to fix
(minutes)

Defect description

Assignment Code Test 1.4 Specifying number of rows in a two-
dimensional array.

Assignment Code Test 3.2 Object null pointer exception.

Assignment Code Test 4.5 Invalid rank specifier when assigning two-
dimensional array.

Interface Code Code
review

2.2 Not writing rows on separate lines.

Function Code Test 3.4 Not using "GetLongLength" method to get
number of rows and columns.

Interface Code Test 2.1 Not giving enough feedback.

Interface Code Test 0.9 Moving cursor to the next line after feedback.

Interface Code Test 6.1 Invalid parameter passed to Sort method.

Function Code Test 2.1 Index out of bound exception when looping
through numbers.

His first step in doing the assignment was to identify and understand the main

functional requirements of the problem. He then documented the major requirements

as code comments (also see Appendix H) instead of creating an actual design

document. He believed that these design comments helped him to identify defects in

his code and perceived these comments as a code review.

Based on his time data, he believed that if he spent more time on designing and

reviewing the design, he would be able to find and fix defects earlier and that this

would help to reduce the time spent in testing.

After he analysed his defect data, he concluded that spending more time on designs

and reviews could lower the number of defects that he would find in testing. He also

believed that the measurement data could help him to measure his own “productivity”

in terms of the time spent in the different development phases. As for process

improvement, he proposed to learn how to do effective designs, spend more time on

reviewing and “move away” from code-and-fix.

 94

4.4.2 Participant 2

A comparison of Participant 2’s perceived and actual development process data is

summarised in Table 4-5. Details are discussed in the sub-sections to follow.

Table 4-5: Recorded data for Participant 2

 Perceived Actual

Development process Code-and-fix

Iterative

Code-and-fix

Design modelling Flow charts

Pseudo code

None

Development time in phase %

Planning 5% 7.80%

Design 10% 2.84%

Design review 0% 0.00%

Coding 60% 70.20%

Code review 10% 0.00%

Testing/Debugging 15% 19.10%

Defect removal strategies Debugging Debugging

Use of checklists None None

4.4.2.1 Pre-questionnaire

Participant 2 indicated that he typically spent 60% of his development time in the

coding phase, which is relatively high in comparison to his perceived time spent in

planning and design (15%). He indicated his perceived time for code review at 10%

and for testing at 15%, which provide a fairly realistic total of 25% to find and fix

defects. He selected code-and-fix and iterative as his perceived development

processes, which correspond with the low perceived design time of 15%. The

participant, however, indicated that he utilised “flowcharts and pseudo code” for design

modelling, which would require him to spend at least as much time in design as in

coding. He also indicated that he typically spent 0% of his time on design reviews,

which is likely to lead to design defects that will only be discovered late in the

development life-cycle. Since his perceived design time is relatively low, it might also

indicate that the designs are not on a reviewable quality level, which could explain the

0% of perceived time spent on design reviews.

 95

He selected “debugging” as his only defect removal strategy, which could explain why

he typically spent more time on debugging (15%) than on reviews (10%). Even though

the participant believed that “debugging” was the most effective way to remove

defects, he still indicated that he typically spent 10% of his time on code reviews

without the use of any checklists.

According to the participant, he did not usually do any actual recording of defects or

the time it took to find and fix them. He believed that poor performance in programming

assignments can be attributed to “insufficient time”.

4.4.2.2 Program and actual PSP data

The participant’s total development time to complete the assignment was 124 minutes.

The total size of the submitted program was 76 lines of code (see Appendix I). All

functional requirements were 100% achieved with the program code. The program

functionality was accomplished through four methods. A driver method was used to

get input from the user and to generate the lotto row numbers. Three additional

methods were implemented and called from the driver program: “CheckDuplicates” to

search for duplicates before storing a generated number in a one-dimensional array

structure; “Sort” to sort the generated lotto row; and “LottoNumbers” to write the lotto

numbers from the array to a text file.

No design documentation was created, which corresponds with the low percentage of

actual time spent in design (2.84%) as well as his perceived use of code-and-fix and

iterative development processes (as indicated in the pre-questionnaire). The

participant spent 0% of his actual development time on code reviews and design

reviews, which indicates that no reviews were done. This data does not correspond

with his original perception that he typically spent 10% of his time in code reviews (see

Table 4-5). The actual coding time (70.2%) was higher than the anticipated 60%

indicated in the pre-questionnaire. The actual testing time of 19.1% was close to the

perceived value of 15% indicated in the pre-questionnaire.

The participant recorded a total of four defects, all injected during the coding phase

and all removed during testing (see Table 4-6). The defect removal efficiency of the

 96

testing was 8.89 defects per hour. The defect descriptions clearly explained the cause

of the defects and could therefore be useful in the construction of personalised

checklists.

Table 4-6: Defect data for Participant 2

Defect type Phase injected Phase removed Time to fix
(minutes)

Defect description

Function Code Test 4.2 Logical error in loop condition

Assignment Code Test 5.1 Accessing an empty array

Function Code Test 4.4 Infinite loop

Interface Code Test 11.0 Did not use file append

4.4.2.3 Post-questionnaire

The participant struggled to “record time” and mentioned that he specifically found it

“very difficult to record time in the correct phase”. He also mentioned that he was

unable to “log” data in the correct phase because he struggled to comprehend “what

must be done” in the different phases. He also reported that “describing a defect” was

difficult even though he found it easy to identify the type of defect. He could not

describe some of the defects and therefore did not record them, even though he fixed

them. The participant acknowledged that he did not do any code or design reviews.

Based on a review of his time data, he believed that “doing each phase step-by-step”

and finding defects earlier would reduce his testing time. After analysing his defect

data, he concluded that “logging all defects” and “doing design reviews and code

reviews” could also enable him to remove defects earlier. He believed that the

measurement data could help him to “rate” himself on his ability to detect defects and

could also serve as “encouragement” to improve. As for personal process

improvement, he proposed spending more time on designs, design reviews and code

reviews. He also acknowledged that he did not have a clear understanding of “what

must be done” during the various software development phases.

 97

4.4.3 Participant 3

A comparison of Participant 3’s perceived and actual development process data is

summarised in Table 4-7. Details are discussed in the sub-sections to follow.

Table 4-7: Recorded data for Participant 3

 Perceived Actual

Development process Code-and-fix Code-and-fix

Design modelling Flow charts None

Development time in phase %

Planning 20% 17.00%

Design 10% 0.00%

Design review 5% 0.00%

Coding 40% 33.30%

Code review 15% 0.00%

Testing/Debugging 10% 49.67%

Defect removal strategies Code review

Debugging

Debugging

Use of checklists Code review None

4.4.3.1 Pre-questionnaire

Participant 3 indicated that his typical development time was distributed as follows:

20% for planning, 10% for design, 5% for design review, 40% for coding, 15% for code

review and 10% for testing (see Table 4-7). The much higher perceived planning time

in comparison to the perceived design time raised questions regarding what exactly

he did for planning and design respectively. Both perceived review times (design

review and code review) correspond well with the perceived time spent on design and

coding. The low value for perceived testing time (10%) could be an indication that the

participant typically detected most defects during the design review and code review

phases.

Although he selected code-and-fix as his development process, this does not

correspond with the high percentage of perceived time indicated for planning and

design (30%). The participant, however, indicated that he utilised “flowcharts” for

design modelling, which could explain the time spent in design.

 98

His perceived defect removal strategies include debugging and code review, but not

design review for which he allocated some time (5%). He indicated that he typically

used code review checklists compiled from both existing checklists and his own defect

data. He also indicated that he kept record of his defects, which corresponds with the

way in which he compiled his checklists. The participant also believed that code

reviews was the most effective way to remove defects, which corresponds with the

amount of perceived time that he allocated for code reviews. He believed that poor

performance in programming assignments can be attributed to “the inability to identify

all defects”.

4.4.3.2 Program and actual PSP data

The participant’s total development time to complete the assignment was 147 minutes.

The total size of the submitted program was 63 lines of code (see Appendix J). The

project consisted of two driver methods ("Main" and "Main2") – each contained in a

separate file. Only the code in the "Main" method executed automatically at runtime.

Not all functional requirements were completely achieved with the program code.

Participant 3 did not implement the parts to get input from the user and write the

numbers to a text file. The "Main" method implementation generated six non-duplicate

numbers and stored it in an array list. The code also sorted the numbers and displayed

it on the screen.

No design documentation was created, which corresponds with the zero time spent in

design and with his preferred code-and-fix development process model (as indicated

in the pre-questionnaire). His actual testing time of 41.5% was much higher than the

anticipated 10% as indicated in the pre-questionnaire (see Table 4-7). He spent zero

time in design and design review, which indicates that no designs were done and that

design defects likely slipped through to testing. This could explain the high amount of

time he actually spent in testing. The participant also logged time in compile, which

indicates that some defects were fixed during a compile phase. In a .NET

programming environment such as Microsoft Visual Studio, compile defects should

actually have been recorded under testing, as suggested by Humphrey (2005). Test

defects and compile defects are defects picked up late in the life cycle, which

essentially totalled his actual compile and test defect removal time to 49.67%. This

was much higher than the anticipated 10% indicated in the pre-questionnaire.

 99

The participant recorded a total of five defects that were all injected during the coding

phase (see Table 4-8). Four of the defects were removed during testing and one defect

during the compile phase. The defect removal efficiency of the testing was 3.93

defects per hour. His defect descriptions were vague and focused on the

consequences of the defects and not on the causes. Descriptions like these are

unlikely to benefit the participant in improving his defect management.

Table 4-8: Defect data for Participant 3

Defect type Phase injected Phase removed Time to fix
(minutes)

Defect description

Syntax Code Test 3.8 Syntax error

Interface Code Test 6.2 Output format wrong

Checking Code Compile 9.3 Output format wrong

Checking Code Test 4.4 Output format wrong

Checking Code Test 25.2 Output format wrong

4.4.3.3 Post-questionnaire

The participant reported that “recoding time” was “easy”, but to “record time in the

correct phase” was “difficult”. He struggled to differentiate between coding and testing,

which is a common effect of using a code-and-fix process. The participant also

mentioned that he found it difficult to “identify the type of defect” and to “describe a

defect”. This acknowledgement, together with his very vague defect descriptions (see

Table 4-8), made it highly unlikely that he typically recorded defects to create his own

checklists for future use (as indicated in his pre-questionnaire). The participant also

struggled to record the time to find and fix the recorded defects. He acknowledged that

he did not do any code review or design review.

Based on his actual time data, he believed that better planning for more “efficient code”

and reviewing his design would reduce his testing time.

After he analysed his defect data, he concluded that code reviews and “compiling more

often” would enable him to remove defects earlier. He also mentioned that the

measurement data could help him to “manage time spent on defects” and to do better

 100

planning. As for process improvement, he proposed doing better planning before

implementing the code.

4.4.4 Participant 4

A comparison of Participant 4’s perceived and actual development process data is

summarised in Table 4-9. Details are discussed in the sub-sections to follow.

Table 4-9: Recorded data for Participant 4

 Perceived Actual

Development process Code-and-fix

Prototyping

Code-and-fix

Design modelling Use cases

Flow charts

None

Development time in phase %

Planning 25% 14.5%

Design 15% 0.0%

Design review 5% 0.0%

Coding 40% 46.5%

Code review 0% 0.0%

Testing/Debugging 15% 39.0%

Defect removal strategies Debugging Debugging

Use of checklists None None

4.4.4.1 Pre-questionnaire

For Participant 4, the indicated perceived time spent on design (15%) was

questionable because his perceived development processes are code-and-fix and

prototyping (see Table 4-9). The low amount of perceived time spent on design review

(5%) could be an indication that the design might not be of a reviewable quality. The

indicated use of use cases and flowcharts for design modelling could explain the 15%

of perceived time spent in design. His indication of 0% perceived time for code review

could be an indication that he typically solved most of his syntax defects during testing.

Most of his defects would therefore be resolved late in the life cycle which could in

turn, lead to much higher testing time than the perceived 15%.

 101

He indicated “debugging” as his only defect removal strategy, which raises questions

regarding the perceived time portion allocated for design review. The participant

indicated that he kept track of common defects as well as the time to find and fix them.

He also indicated that he typically made use of checklists based on his previous errors

and existing checklists. What was questionable, however, was that he did not use

these checklists for design reviews and code reviews. The participant believed that

“debugging” was the most effective way to remove defects, which corresponded with

his choice of defect removal strategies. He believed that poor performance in

programming assignments could be attributed to “insufficient time”.

4.4.4.2 Program and actual PSP data

Participant 4’s total development time to complete the assignment was 114 minutes.

The total size of the submitted program was 32 lines of code (see Appendix K). Not all

functional requirements were completely achieved with the program code. The

program functionality was accomplished through one driver method. No code was

attempted to get input from the user for the generation of multiple rows of lotto

numbers. Instead, an outer loop structure was used to generate ten rows of lotto

numbers. For each row, six non-duplicate numbers were created and stored in a one-

dimensional array. Neither sorting nor output to a text file was attempted with the code.

The participant did, however, attempt to display the content of the array, but the code

had some syntax defects that could not be resolved.

No design documentation was created, which corresponds with the no actual time

spent in design as well as his preferred code-and-fix and prototyping development

strategies (as indicated in the pre-questionnaire) (see Table 4-9). His actual testing

time (39%) was much higher than anticipated in the pre-questionnaire (15%), but

corresponds with no actual design review and code review times. The participant’s

actual testing time was most probably much higher than perceived because defects

were discovered late in the development life cycle and he did not employ techniques

for early defect removal.

The participant recorded four defects injected during coding that were all removed

during testing (see Table 4-10). The defect removal efficiency of the testing was 4.29

 102

defects per hour. His defect descriptions were vague and also indicated that he did

not know what caused the defects.

Table 4-10: Defect data for Participant 4

Defect type Phase injected Phase removed Time to fix
(minutes)

Defect description

Assignment Code Test 3.4 Unknown

Syntax Code Test 3.0 Unknown

Function Code Test 17.0 Could not create a list

Function Code Test 28.9 Unknown

4.4.4.3 Post-questionnaire

The participant reported that “recoding time”, “recording time in the correct phase” and

“identifying defect types” were easy. However, he found it difficult to describe defects

and considered it as “something to get use to”. He struggled to differentiate between

coding and testing, which is a common effect of using a code-and-fix process. The

participant acknowledged that he should have logged more time under testing instead

of coding. He also acknowledged that he did not do any code review or design review,

which corresponds with the actual time spent in these phases.

Based on his time data, he believed that if he “writes all code and then test” instead of

small iterative cycles of code-and-test, he would be able to reduce his testing time.

After analysing his defect data, he proposed that he should not spend too much time

on one error, which contributed to his argument of larger code-and-test cycles. He

believed that the measurement data could help him to do better time management and

“improv[e] on ways to detect defects”. He also mentioned that the data made him

realise that he had problems with software development. As for process improvement,

he surprisingly proposed “no changes” to his current process.

4.4.5 Participant 5

A comparison of Participant 5’s perceived and actual development process data is

summarised in Table 4-11. Details are discussed in the sub-sections to follow.

 103

Table 4-11: Recorded data for Participant 5

 Perceived Actual

Development process Code-and-Fix Code-and-fix

Design modelling Data flow diagrams

Flow charts

None

Development time in phase %

Planning 10% 10.00%

Design 15% 1.88%

Design review 15% 0.00%

Coding 40% 84.40%

Code review 10% 0.00%

Testing/Debugging 10% 3.75%

Defect removal strategies Design review

Code review

Debugging

Debugging

Use of checklists Code review None

4.4.5.1 Pre-questionnaire

Participant 5 indicated that his typical development time was distributed as follows:

10% for planning, 15% for design, 15% for design review, 40% for coding, 10% for

code review and 10% for testing (see Table 4-11). The perceived time spent on design

was questionable since he indicated his typical development process as code-and-fix.

The perceived time allocated for code review might be a bit low compared to the

amount of perceived time spent in coding. The low amount of perceived time indicated

for testing could be an indication that he typically found and fixed most defects in

design review and code review. Although he selected code-and-fix as his development

process, the participant indicated that he utilised flowcharts and data flow diagrams

for design modelling, which could explain the perceived time spent in design.

His defect removal strategies included design review, code review and debugging,

which correspond with the time allocated for these phases. He indicated that he

typically made use of code review checklists compiled from his own defect data. He

also kept record of his defects, which corresponds with the way in which he compiled

his code review checklists. The participant also indicated that he kept track of the

amount of time that he typically spent on fixing defects. There was no indication of the

 104

use of checklists for design reviews, which raised questions regarding his perceived

time spent on and the technique used for design reviews. The participant also believed

that code reviews was the most effective way to remove defects and that poor

performance in programming assignments could be attributed to the inability to identify

all defects.

4.4.5.2 Program and actual PSP data

Participant 5’s total development time to complete the assignment was 140 minutes.

The total size of the submitted program was 28 lines of code (see Appendix L). The

code contained some defects that could not be resolved. The participant implemented

one method called “LottoTest” that was invoked from a “Page_Load” method. The

code indicated no attempt to get input from the user. A “Dictionary” data structure was

created for storing the lotto numbers and a “Random” object for generating each

number. An iteration structure that repeated six times was created, but the code to

generate and store each number contained defects. No attempt was made to check

for duplicate numbers. The code also contained a string array that stored the values

from the dictionary structure as strings using LINQ. A second loop was created that

iterated through a string array to display the values of the array. Despite the defects

present in the code, it was apparent that the participant’s intention was to create code

that generated six numbers and displayed these six numbers. This participant most

probably did not have the technical knowledge to use a dictionary data structure to

accomplish the desired functionalities. It was not clear why the participant decided to

use a data structure that was beyond his technical capability.

No design documentation was created, which corresponds with the low percentage of

actual time spent in design (1.88%) and with his preferred code-and-fix development

process (as indicated in the pre-questionnaire) (see Table 4-11). Only the actual

planning time data corresponds with the perceived time-in-phase data indicated in the

pre-questionnaire. His actual design time (1.88%) indicated that almost no designs

were done and therefore no design review could occur. There was also no actual time

spent in code reviews. Given that no actual time was spent in design reviews and code

reviews, the low amount of actual time in testing was questionable. However, there

was a substantially large proportion of time logged in coding (84.4%), which led to the

 105

assumption that the participant either did not capture time data correctly, or that he

‘got stuck’ in the coding phase and could not produce a workable program.

The participant recorded one defect that was injected during the design phase and he

attempted to remove it in the testing phase (see Table 4-12). The defect removal

efficiency of his testing was 10 defects per hour. Since the participant only managed

to produce 28 lines of code during the actual time spent in coding, this could be a

further indication of his low technical skill level as he was unable to produce a fully

functional program. The single recorded defect description was confirmation that the

participant did not know what caused the defect and therefore could not resolve it.

Table 4-12: Defect data for Participant 5

Defect type Phase injected Phase removed Time to fix
(minutes)

Defect description

Interface Design Test 2.4 Unknown - still fixing

4.4.5.3 Post-questionnaire

The participant reported that recording time, recording time in the correct phase,

identifying defect types and describing defects were just “new”, and not difficult. He

emphasised that his focus was not on taking process measurements, but rather on

coding. He also stated that recording defect data was not difficult, but “something to

get used to”. He struggled to find and fix defects during his code review and

acknowledged that he did not log that time as code review but as coding because he

forgot to log time in a different phase. Based on his time data, he believed “keeping

track of code and design time” would reduce his testing time.

After he analysed his defect data, he concluded that he “did bad” and would “try to do

much better” next time. He also indicated that he removed most of his defects during

the coding phase (which does not correspond with his defect data). According to the

participant, measurement data could help him to keep track of the time in different

phases. He also felt that knowledge of this data could enable him to divide time better

and to “attend” to all phases of the development life-cycle. As for process

improvement, he proposed collecting more accurate process data, especially

regarding defects.

 106

4.4.6 Participant 6

A comparison of Participant 6’s perceived and actual development process data is

summarised in Table 4-13. Details are discussed in the sub-sections to follow.

Table 4-13: Recorded data for Participant 6

 Perceived Actual

Development process Code-and-fix

Prototyping

Code-and-fix

Design modelling Data flow diagrams

Class diagrams

Flow charts

None

Development time in phase %

Planning 20% 23.00%

Design 20% 0.00%

Design review 5% 0.00%

Coding 20% 7.08%

Code review 25% 0.00%

Testing/Debugging 10% 69.90%

Defect removal strategies Design review

Code review

Debugging

Debugging

Use of checklists Code review None

4.4.6.1 Pre-questionnaire

For Participant 6, the perceived time spent on design (20%) was questionable because

he indicated that his typical development process was a combination of code-and-fix

and prototyping (see Table 4-13). The perceived time spent on design review (5%)

also indicated that the design might not be of a reviewable quality. The indicated use

of flowcharts, data flow diagrams and class diagrams for design modelling could

explain the large amount of perceived time spent in planning and design. The

perceived time allocation for code review (25%) compared to testing (10%) could serve

as an indication that the participant typically removed most of his defects during code

review. The low amount of perceived time indicated for testing (10%) could be an

indication that he followed an effective early defect removal strategy. The greater

 107

portion of perceived time in code reviews could be an indication that he preferred code

reviews over design reviews or testing.

His perceived defect removal strategies included design review, code review and

debugging, which correspond with the perceived time allocated for these phases.

Participant 6 indicated that he typically made use of code review checklists compiled

from his own defect data and from existing checklists. This does not correspond with

the indication that he typically did not keep track of any defects or time spent on finding

and fixing these defects. The participant believed that debugging is the most effective

way to remove defects even though there was no indication that he typically kept track

of the time it took to remove defects. He believed that poor performance in

programming assignments could be attributed to insufficient programming skills.

4.4.6.2 Program and actual PSP data

The participant’s total development time to complete the assignment was 113 minutes.

The total size of the submitted program was 12 lines of code (see Appendix M).

No design documentation was created, which corresponds with the zero percentage

of actual time spent in design and with his preferred code-and-fix and prototyping

development strategies (as indicated in the pre-questionnaire). Only the actual

planning time data corresponds with the intended time-in-phase data of the pre-

questionnaire (see Table 4-13). The actual high planning time (23%) could serve as

an indication that prototyping was used. The actual design time indicated that no

designs were done and therefore no design review could occur. The low amount of

actual time spent in coding (7.08%) combined with the small program size indicated

that a small portion of code was created (presumably the “prototype”) and then tested.

The participant recorded one defect injected during the coding phase that he

attempted to remove during testing (see Table 4-14). The defect removal efficiency of

the testing was 0.76 defects per hour. The large amount of actual testing time

(69.90%) and the single defect that was logged (but not resolved) could be an

indication that the participant ‘got stuck’ on one defect, rendering him unable to

continue. The defect description served as confirmation that the participant did not

know what caused the defect and therefore could not resolve it.

 108

Table 4-14: Defect data for Participant 6

Defect type Phase
injected

Phase
removed

Time to fix
(minutes)

Defect description

Function Code Test 63.9 Unknown - output is totally wrong

The program code did not reveal any answers regarding his development process as

it only consisted of the 12 lines of code that were generated by the compiler for a

default project. No code was added to reflect an attempt to solve the problem. During

his interview, Participant 6 claimed that he “explored” with some code, but could not

get a single line to compile. He therefore deleted everything before submitting his

program.

4.4.6.3 Post-questionnaire

The participant reported that recording time was “very difficult”, but to record it in the

correct phase was “difficult”. He also reported that identifying defect types was “very

difficult”, while it was “difficult” to describe defects. His reason for struggling with time

recording and defect recording was that it was difficult for him “to use something new”.

He acknowledged that he did not do any reviews.

Based on his time data, the participant believed that improving his technical skills

would reduce his testing time. He stated that his biggest problem was syntax and

logical defects. He believed that doing design reviews and code reviews could help to

reduce his number of test defects. According to the participant, measurement data

could also help him to realise in which phase he should spend more time. As for

process improvement, he proposed improving his basic programming skills.

4.4.7 Instructor observations

I made the following main observations while the participants were completing the

programming exercise:

• Participants searched the Internet in an attempt to find solutions for the

exercise.

• No designs were created to solve the exercise problem.

 109

• Some participants forgot to start and stop the Process Dashboard© timer when

switching phases.

• Some defects were not logged.

• Participants struggled to distinguish between the “coding” and the “testing”

phase.

• Participants struggled to describe their logged defects.

Given the participants’ inability to distinguish between the coding and the testing

phase, they did not log their re-work coding in the correct phase. Most of them logged

that time under coding, which explained why re-work (testing) time was lower than

coding time. More precise measurements would therefore have resulted in much

higher testing times.

4.4.8 Overall Process Dashboard© performance analysis

The six participants took 135 minutes on average to create the program. This time

frame included all phases of development: planning, design, design review, coding,

code review and testing. I decided to end the programming exercise after 150 minutes

as enough useful experimental data was accumulated. At that time, the participants

also indicated that they would not be able to identify and fix all remaining defects even

without a time limit.

The participants on average spent their actual development time as follows:

• 17% on planning,

• 1% on design,

• 0% on design reviews,

• 45% on coding,

• 1% on code reviews, and

• 36% on testing or debugging.

 110

If averages are compared, the actual time that these participants spent on design was

much lower than the perceived times reported in the pre-questionnaire. Most of them

also spent much more time in testing than expected. The actual testing time would,

however, be much higher if they had to continue to produce fully functional programs.

The participants on average produced 45 lines of code, which resulted in a productivity

of 20 lines of code per hour. They recorded an average of five defects with 90% of

these defects injected during coding. The limited actual time spent on designs explains

why most defects were injected during coding. Ninety-five percent of the defects were

removed in the testing phase – an indicator that debugging was used as the primary

technique for defect removal. Given the average time spent on reviews (1%), it is not

surprising that so few defects (2%) were discovered during reviews. Since the

participants (on average) only spent 1% of their actual time in the design phase, the

complete absence of design reviews is understandable. This resulted in defects being

discovered late in the development life cycle (testing), which made it more difficult to

identify them.

4.4.9 Focus group discussion

A focus group discussion was conducted with Participants 4, 5 and 6 to gain a deeper

understanding of the development processes they followed to create the program. The

only artefacts that these participants created (in addition to the captured Process

Dashboard© measurement data) were their actual programming code. Since they did

not create any designs, I decided to rather redirect the discussion to focus on their

problem solving processes.

All three participants indicated that their first step in solving the problem was to do an

Internet search for possible solutions. They all found code that they thought could

possibly solve the problem. They copied the code and then tried to change it to solve

the problem. They also indicated that this was the method they typically followed when

completing their programming assignments. Feiner and Krajnc (2009) made a similar

observation in their experiment where most students indicated that their first step in

solving a programming problem was to search "the Internet" or "use Google". In a

questionnaire conducted at the end of their experiment, the students revealed their

 111

general acceptance of "Copy & Paste" programming (Feiner & Krajnc, 2009, p. 84) as

part of their software development process.

In reflecting on their problem-solving process, the three participants from this study

indicated that they should rather have started by first solving the problem logically

(using flowcharts or pseudo code) and only then have resorted to searching for code

snippets to accomplish specific tasks. They also indicated that they did not find it easy

to write pseudo code to solve problems and therefore preferred to search for code

solutions where the logical thinking has already been done. Generally, they found it

“hard to start” solving a problem.

4.5 Discussion of Evidence

In the previous section, the Phase 2 evidence was evaluated according to the quality

guidelines of the PSP framework. A number of issues were also raised regarding the

differences between the perceived and actual development processes that the

participants followed. In order to form a better understanding of these novice

programmers’ development processes and their use of QATs, a thorough exploration

of the evidence is needed. The discussion in this section is structured around the two

main themes of Phase 2: differences between perceived and actual development

processes (including the use of QATs), and attributes influencing the use of QATs.

4.5.1 Differences between perceived and actual software development

processes

Evidence has been provided of distinct differences between the participants’ perceived

and actual software development processes. Major differences were noted with regard

to their design practices as well as the time spent in the testing/debugging and coding

phases.

Table 4-15 summarises and compares the perceived and actual design practices

followed by the participants during the Phase 2 experimental case study.

 112

Table 4-15: Comparison of participants’ perceived and actual design practices

Participant
% Time spent on designs Design modelling techniques

Perceived Actual Perceived Actual

1 10% 3.23% Use cases Code comments

2 10% 2.84%
Flowcharts

Pseudo code
None

3 10% 0 Flowcharts None

4 15% 0
Use cases

Flowcharts
None

5 15% 1.88%
DFD

Flowcharts
None

6 20% 0

DFD

Flowcharts

Class diagrams

None

All the participants spent much less time in design than originally perceived. Despite

the substantial amount of perceived design time (ranging from 10% to 20%), most of

the participants ended up spending almost no time on designs. Similarly to the

students in Hou and Tomayko’s (1998) study, some of the participants in this study

created no design documentation even though they captured time in the design phase.

The participants’ small amount of actual design time also corresponded with the

design modelling techniques that they actually used (none) and the total lack of formal

design documentation. A similar lack of designs was also noted in other design studies

(Eckerdal et al., 2006a; Lotus et al., 2011). In Eckerdal et al.’s (2006a) study, 80% of

the students created either no designs or made no significant progress towards

design. The only exception in this study was Participant 1, who actually used some

form of design modelling. This participant’s design can be classified in the “informal

design” category of Thomas et al. (2014) as it was only text based.

Table 4-16 summarises and compares the participants’ perceived and actual time

spent in testing/debugging and coding during the experiment. Comparisons of the

participants’ perceived and actual time-in-phase data are complicated by the fact that

students generally struggle to distinguish between the development phases (Grove,

1998) and consequently find it difficult to capture accurate and reliable process data

(Towhidnejad & Salimi, 1996). With the exception of Participant 5, most participants

in this study completely underestimated the time that they normally spent resolving

 113

defects during testing. Although the actual coding time for Participant 2 and Participant

4 was higher than perceived, they both indicated that they should have captured even

more time in testing because a lot of their coding occurred as a result of re-work to

resolve defects (which should have been logged as testing time). Carrington et al.

(2001) emphasise that when students write a program by incrementally compiling and

testing one line of code at a time, they are unable to log data in the correct prescribed

PSP phases. The higher than expected testing times could therefore also be an

indication that participants ended up doing more “fixing than coding” instead of the

code-and-fix strategy that most of them believed that they typically used.

Table 4-16: Comparison of participants’ perceived and actual testing/debugging and coding
time

Participant
% Time spent on testing % Time spent on coding

Perceived Actual Perceived Actual

1 6% 47.60% 55% 32.30%

2 15% 19.10% 60% 70.20%

3 10% 49.67% 40% 33.30%

4 15% 39.00% 40% 46.50%

5 10% 3.75% 40% 84.40%

6 10% 69.90% 20% 7.08%

Early defect removal occurs when defects are removed before the testing/debugging

phase (Humphrey, 2005). This is accomplished through the use of design reviews and

code reviews (as examples of QATs). Table 4-17 summarises and compares the

participants’ perceived and actual defect removal strategies, as well as their perceived

and actual time spent on these strategies.

With the exception of Participant 1, all the participants ended up using debugging as

their only defect removal strategy during the programming exercise. According to

Humphrey (1999), one of the biggest challenges in software development is to

persuade software developers to use effective methods. Although Participant 1

indicated that he typically only used debugging, he did attempt to use design reviews

and code reviews during the programming exercise. The low amount of time that he

 114

ended up spending on design review and code review was, however, not indicative of

someone who really depended on these strategies to remove defects.

Table 4-17: Comparison of participants’ perceived and actual defect removal strategies

Participant Defect removal strategy % Time spent on
design review

% Time spent on
code review

% Time spent on
testing/debugging

Perceived Actual Perceived Actual Perceived Actual Perceived Actual

1 Debugging Design
review

Code
review

Debugging

4% 0.81% 0% 6.45% 6% 47.60%

2 Debugging Debugging 0% 0% 10% 0% 15% 19.10%

3 Code
review

Debugging

Debugging 5% 0% 15% 0% 10% 49.67%

4 Debugging Debugging 5% 0% 0% 0% 15% 39.00%

5 Design
review

Code
review

Debugging

Debugging 15% 0% 10% 0% 10% 3.75%

6 Design
review

Code
review

Debugging

Debugging 5% 0% 25% 0% 10% 69.90%

Participant 2 and Participant 4 indicated debugging as their only perceived defect

removal strategy, which correspond with their use thereof during the exercise.

Participants 3, 5, and 6 indicated that they typically used other strategies (design

review and code review) as well, but ended up using only debugging during the

exercise. Of interest is the fairly huge amount of perceived time these three

participants believed they were using for design reviews and code reviews. This might

directly influence the perceived time that they thought they spent on testing/debugging

because they believed that they would pick up defects earlier in the life cycle (with

design reviews and code reviews). The overall low perceived design review times

might be an indication of the participants’ inability to create reviewable designs

(Humphrey, 2000). However, it is still questionable that some participants indicated

that they used design reviews and even assigned a substantial amount of time to it

while they ended up not doing any designs at all. Since even small programming

 115

exercises requires some code to be written, there will always be at least some code

to review. Students in Towhidnejad and Salimi’s (1996) study found it easier to adopt

code reviews as part of their quality improvement process because they regarded it

as more closely related to programming. However, software developers tend to stick

to a personal process that they have developed from the first small program they have

written, and it is difficult to convince them to adopt better practices (Humphrey, 1999).

4.5.2 Attributes influencing the use of QATs

The discussion in this section takes a reflective look at all the collected evidence using

PSP0 and PSP2 as lenses in an attempt to identify specific problems experienced by

the participants in following these guidelines/practices. Since the adoption of QATs

would likely require a change in behaviour from the participants, the self-theory of

intelligence is included as a third, supporting lens for this discussion. Ultimately, these

identified problems are related to attributes that could potentially influence novice

programmers’ use of QATs.

4.5.2.1 PSP0: Software development process and basic measurements

In using PSP0 as the first lens for this reflection, four potentially influencing attributes

were identified.

Understanding of development phases

One of the PSP quality improvement practices states that: “To do high-quality work,

you must measure and manage the quality of your development process” (Humphrey,

2005, p. 157). Given the negative impact that defects have on the quality of the

development process, it is not surprising that “most software professionals agree that

it is a good idea to remove defects early, and they are even willing to try doing it”

(Humphrey, 2005, p. 142). In this study, the participants tried to do the same, but they

all opted for a code-and-fix development process which is not the best strategy to

follow for early defect removal. They therefore spent most of their actual development

time in the planning, coding and testing phases. The code-and-fix model does not

make provision for any phases that can be linked to quality appraisal practices such

as design, design review and code review (Schach, 2011). Some participants

indicated that they did not know exactly what to do in these development phases

 116

(design, design review, code review), but acknowledged that the process

measurement data made them aware that something needs to be done in these

phases. Participant 4 indicated that he mostly “confused coding and testing”, while

Participant 2 attributed his struggles to the fact that he “could not differentiate on what

must be done on each phase”. As for process improvement, Participant 2 proposed

“try[ing] to understand what must be done in each phase” and “spend[ing] more time

on design, design review and code review”. In this regard, Participant 1 proposed that

for process improvement he should “learn how to do design effectively” and “spend

more time reviewing so I don’t do more of code and fix”. Participant 5 indicated that

the recording of time data in specified phases forced him to “attend all sections as far

as possible”. This is an indication that Participant 5 did not know exactly what to do in

each of these phases.

Technical programming skills

One of the code review principles of PSP is that one must, first of all, produce a

reviewable product (Humphrey, 2005). Only Participant 2 created a fully functional

program for the programming exercise while Participant 1 successfully implemented

most of the major functionalities. Participant 6 indicated that his biggest problem was

his lack of technical programming skills and that this was the main reason why he

produced only a small amount of workable code. As for process improvement, he

suggested “recapping on OPG1 stuff [the basics of coding] because my problem was

mainly syntax and logical errors”. Participant 5 also produced very few lines of

workable code and used data structures beyond his technical capability. In his post-

questionnaire, however, he did not mention any shortcomings in his technical ability

to produce code. Participant 4 produced slightly more workable code than Participants

5 and 6, but in his post-questionnaire stated that process measurement data “is good

for making one see his/her problems in software development”.

Accuracy of measurement data

Time measurement data is typically used to “analyse your process, to understand

strengths and weaknesses, and to improve” (Humphrey, 2005, p. 15). Therefore, the

accuracy of time data will directly influence process improvement decisions. All the

participants indicated that they had some difficulty capturing accurate time data in the

correct phase:

 117

Participant 1: “Forgot to switch the timer between phases when busy testing

and had to go back to coding”.

Participant 2: “I could not log data in the correct phase and sometimes forgot

to log data”.

Participant 3: “I had a problem recording time while I was in testing”.

Participant 4: “I record[ed] time in the wrong phase, and it was a bit confusing

when it came to the part where I had to test because I was

working more on the coding”.

“I confused coding and testing for most of my recording”.

Participants 5 and 6 did not indicate any specific problems with capturing accurate

time data, but acknowledged that capturing process measurement data is “new” to

them. The most common problem that the participants experienced was to distinguish

between “re-work” (as result of fixing a defect) and normal work. The re-work time was

supposed to be logged under the phase in which the defect was discovered. If this is

not done correctly, it will be impossible to accurately compute the efficiency of the

defect removal strategy. This confusion could be attributed to the nature of the code-

and-fix process model whereby most coding occurs because of the fixing of defects.

Towhidnejad and Salimi (1996) also reported that only half of their students collected

accurate and reliable data.

Ability to find and fix defects

From the participants’ defect descriptions, it was evident that some of them could not

resolve all the defects regardless of their defect removal strategy. Since these

participants mostly relied on testing to resolve defects, it could point to a lack of

debugging skills. Humphrey (2005) explained that in reviews you “find defects

directly”, and in testing you “only get the symptoms”. Only Participants 1 and 2

managed to create 100% working programs. Their defect descriptions were much

better than the rest of the participants as they described the cause of the defects and

not the consequence thereof. Participant 3 had vague generic descriptions (e.g.

“Syntax Error” and “Output Format Wrong”) that at best indicated the kind of defect

that occurred, but not the cause of the defect. Participant 4 had one vague description

 118

(“Could not create a list”) that described the consequence of the defect and not the

cause thereof. The remainder of his identified defects were described as “Unknown”

and it was therefore not clear if he managed to resolve these defects. Participants 5

and 6 each had one defect description. In both cases the defect description reflected

unresolved defects:

Participant 5: “Unknown - Still fixing”

Participant 6: “Unknown - output is totally wrong”

In PSP, defect descriptions are used to create personalised checklist items

(Humphrey, 2005). These descriptions therefore need to be clear and precise. Most

participants in this study indicated some difficulty logging all defects and also struggled

to describe the defects:

Participant 1: “Difficult to come up with the right description for run-time errors”.

Participant 2: “I fixed some defects without recording them”.

 “I could not understand which defects to record”.

Participant 3: “I struggled identifying type of defects and to describe them”.

Participant 5: “During my code review, most of the time I was fixing errors and

did not remember to log the defects in Process Dashboard”.

Based on the defect descriptions of each participant, the only descriptions that could

be useful for defect management were created by Participants 1 and 2. Poor

descriptions of defects are likely to lead to difficulties when this data must to be used

to create personal checklist items. When not all defects are logged, it can lead to

misinterpretation of the severity of defects and the causes of the lost time in the phase

during which the defect was removed.

4.5.2.2 PSP2: Quality Management and Design

In using PSP2 as the second lens for this reflection, three potentially influencing

attributes were identified: design skills, design review and code review skills, and value

of process measurement data.

 119

Design skills

The PSP quality-management strategy recommends that developers’ first focus

should be on producing “a thorough and complete design and then document[ing] the

design with the four PSP design templates” (Humphrey, 2005, p. 155). Even though

Humphrey claimed that the “reviewability” of a design is not that important if you review

your own designs, he also stated that “without a well-documented and complete

design, it is impossible to do a competent design review” (Humphrey, 2005, p. 185).

All the participants in this study indicated some formal design modelling techniques

that they typically used, but none of them attempted (during the Phase 2 activity) to

use any of these techniques to create formal design documentation. Some participants

also indicated that they did not know how to create effective designs. In explaining his

strategies for process improvement, Participant 1 said that he would have to “learn

how to design effectively” and “design the requirements, review to identify defects so

that I have less design defects when I code”.

Design review and code review skills

Participants 1 and 2 indicated that they typically did not do reviews and therefore did

not use any checklists. Participant 4 also indicated that he did not do reviews but

created checklists based on his previous defects and from existing checklists.

Participant 3 indicated that he typically used checklists for code reviews compiled from

his previous defects and from existing checklists, but he ended up not doing any

reviews. Participants 5 and 6 also indicated that they typically made use of checklists

for code reviews, compiled from their own defects, but ended up not doing any

reviews.

However, only Participant 1 ended up doing some form of reviews. He described his

technique as follows:

 “In my design review I actually ensured that my requirements were well

design[ed], even though I just passed through it”.

“For my code review I actually commented what was required by the

requirements”.

“[I] spend little time on reviewing by just scanning through [the] code and initial

design”.

 120

Value of process measurement data

The main purpose of requesting the participants to gather process measurement data

on their own development processes was to provide them with an opportunity to reflect

on this data and to propose process improvements or changes based on the collected

data. After the participants analysed their own process measurement data, they were

therefore probed to propose process changes on how to reduce their testing time and

methods to remove defects earlier in the life cycle. Specific attention was given to

proposals that would influence early defect removal and reduce the time spent in

testing. In reviewing these proposals, I was specifically looking for indications that a

participant’s reflection on his time and defect data showed some signs that could be

interpreted as encouragement to use QATs (design reviews and code reviews). The

participants displayed varying interpretations of their process measurement data and

the potential value of the data. Table 4-18 summarises the participants’ responses in

this regard.

Participant 1 revealed good insight into his time-in-phase data and realised that by

spending more time on design, design review and code review he could reduce his

testing time. Through interpretation of his defect data, he identified a problem with his

current review technique (“I spent little time on reviewing by just scanning through the

code and initial design”), but failed to see any use for the defect descriptions. His

primary focus of interpretation was on time rather than on defects: “Process

measurement data helps you to measure yourself on the different development

phases, like what it is your doing most when working on a project”. He also was the

only participant who acknowledged a lack in his design skill and who realised that by

addressing this shortcoming he would be able to change his development process, as

illustrated by the following comment: “Learn how to design effectively and being able

to spend more time reviewing so I don’t do more of code and fix”.

After reviewing his process measurement data, Participant 2 proposed that he should

“try to identify and fix defects as early as possible” to reduce testing time. He

acknowledged that performing “design reviews and code review” could help him to

reduce testing defects. He saw some value in defect data, but did not indicate how

defect descriptions could help him to prevent future defects: “Every error that you fix

you must log whether big or small. Process measurement data helps you to rate

 121

yourself on detecting errors. It encourages you to improve as you write code”.

Participant 2 revealed good insight into potential process improvement strategies:

“Spend more time on design, design review and code review”. In addition, he also

acknowledged his lack of skill to perform each of these quality appraisal activities: “Try

to understand what must be done in each phase”.

Table 4-18: Summary of participants’ proposed process changes

 How to reduce test time How to remove defects
earlier

Changes to development
process

1 • Spend more time
reviewing.

• Design the requirements
and then review to identify
defects of the design.

• Spend more time on code
review after completing
each segment of code.

• Find and fix defects earlier
by doing reviews.

• Do more thorough
reviews.

• Learn to do design effectively.

• Spend more time on reviewing.

• Do not do code-and-fix.

2 • Do each phase step-by-
step.

• Try to identify and fix
defects as early as
possible.

• Do design reviews and
code reviews.

• Spend more time on design,
design review and code review.

• Try to understand what must be
done on each phase.

3 • Plan well.

• Code efficient.

• Review design for
accuracy.

• Fix problems as quickly as
possible during testing.

• Review code.

• Compile more often.

• Do better planning to
minimise defects.

• Fast coding.

• Plan well before implementing
anything.

4 • Code in full before testing.

• Correct all defects at once.

• Do not spend too much
time on one defect.

• No changes.

5 • Keep track of time spent in
phases.

• Do designs.

• Do better because this
was bad.

• Become familiar with the data
capturing tool (Process

Dashboard©).

• Remember to log all defects.

6 • Recap the basics of
coding.

• Avoid syntax and logical
errors.

• Do code review and
design review.

• Know the basics (programming
principles and language syntax).

 122

After reviewing his time-in-phase data, Participant 3 made a couple of questionable

statements regarding strategies that he could follow to reduce testing time. “Review

my design” could be an indication that he acknowledges the role that design reviews

can play in reducing testing time. However, he did not give any indication that he

should create a reviewable design to enable the review. Through the statements “code

as efficient as I can” and “fix errors as quick as possible”, he voiced his believe that

doing tasks quicker will allow him to reduce his testing time. The statement “I would

plan well” is very vague and does not point to any specific task-oriented

activity/strategy to reduce testing time. After interpreting his defect data, Participant 3

identified three strategies for the earlier removal of defects. Although he realised that

code reviews can lead to early defect removal, his proposed strategy to “compile my

program more often” is still likely to result in defects being discovered late – essentially

making the code-and-fix life cycle even worse. “If I plan well, I would avoid having

many defects” is a vague statement and does not indicate a specific process related

activity to reduce test defects. Even though Participant 3 indicated that process

measurement data “helps to manage time spent on error fixing”, he did not clearly

indicate how this would be accomplished. He also believed that process measurement

data “gives ideas on how to conduct your product in terms of planning, coding,

reviewing and testing”. This statement could be an indication that he has never really

thought of development phases before and that the process measurement data would

guide him to perform his development in more phases than just code-and-fix. It is also

interesting to note that he left out the “design” phase in this statement. This might be

an indication that he was confused with the difference between planning and design.

As for improving his own process, he proposed “fast coding”, which does not point to

any concrete process improvement activity. He did, however, state “planning well

before implementing anything”, which might be an indication that he referred to a

“design” phase that must be completed before coding.

In the interpretation of his process measurement data, Participant 4 focused on

changes within his current process instead of the adoption of new techniques that

would result in a process change. After reviewing his time-in-phase data, he proposed

a technique where he would “cod[e] in full before testing - to correct all the errors I

have at once” as a way of improving his current highly incremental code-and-fix

development style. Although he did not come up with any process improvement ideas

 123

to remove defects earlier than in the testing phase, he could see (from his defect data)

that he should “try not to spend too much time on one defect”. He regarded process

measurement data as a good way “to do time management”. This is a good

observation given that historical time data can be used for future project estimations.

Although he indicated that measurement data can be used “for recording of ways to

improv[e] defects”, this was not clearly demonstrated in his proposal for earlier defect

removal. Even though he stated that process measurement data “is good for making

one see his/her problems in software development” and was unable to create a fully

functional program, he still recommended “no changes [for] now” to his current

software development process.

Participant 5 focused on the task of capturing process measurement data during the

interpretation of his time-in-phase data and indicated no specific way in which this data

could help him to improve his own development process. He made the following two

remarks in this regard: “Just have to keep track of amount of time during coding and

other phases like design because that’s what kept the process of testing much higher”

and “One can adjust by practicing to keep track of time”. He also did not show any

meaningful insight in his interpretation of defect data, as is evident from the following

excerpt: “I would try to do much better than this because this was fairly bad enough”.

His interpretation of the value of process measurement data did, however, give some

indication that he was beginning to think about doing development in different phases

and that the data served as a tool for time management: “Helps me to keep track of

time spend on each section so that you can divide your time accordingly to attend all

sections as far as possible”. In his development process improvement proposal, he

indicated that he wanted to improve the way in which he captured measurement data

and not what he would change about his development process: “The changes that I

would make would be to familiarise myself with Process Dashboard and remember

the defect log for every section”. The participant’s interpretations revealed that he had

no idea of the actual purpose of process measurement data and saw the recording of

this data as a separate activity that was not directly influencing his development

practice. This is also evident in his description for doing reviews: “During my code

review, most of the time I was fixing errors and only doing the coding and I couldn’t

keep the thought of Process Dashboard to switch between defect log at all”.

 124

Since Participant 6 indicated technical programming skills as his major problem, his

measurement data interpretations were mostly clouded by acknowledgements of his

technical skill limitations instead of focusing on process improvements: “Recapping on

the basics of coding because my problem mainly was syntax and logical errors”.

However, he did indicate that “doing coding and design review will help” to remove

defects earlier in the life cycle, but failed to mention anything regarding his lack of

designs. He also indicated that the process measurement data made him aware of his

lack of knowledge in terms of “where [in which phase] one should spend more time”,

but did not mention anything regarding how he should spend the time. Despite some

process-oriented interpretations of his defect data and the value of process

measurement data, he still believed that the only way to improve his development

process was by improving his technical skill. This is evident from the following

statement: “By knowing the basic programming principles, because I spent much time

in coding and testing because of syntax and logical errors”. He therefore believed that

that logical errors are the effect of poor knowledge of basic programming principles

and not a lack of problem solving and design skills.

The PSP quality guidelines claim that quality can only be improved if it is measured

and that the quality measurements should indicate “the effectiveness of the process

for removing the defects” (Humphrey, 2005, p. 143). Participants 1, 2, 4 and 6 believed

that debugging is the most effective defect removal strategy, which corresponded with

their usage thereof. Participants 3 and 5 believed that code reviews are the most

effective method for removing defects but ended up not doing any code reviews at all.

Only Participant 1 made use of reviews and resolved one defect during code review

at an efficiency rate that is just lower than his debugging efficiency rate. Those

participants who did not do any reviews, consequently had no measurements to

indicate the effectiveness of their use of QATs. Without the existence of these

efficiency metrics there will be no motivation to adopt QATs as defect removal

strategies.

Overall, the participants who struggled to produce a working program (Participants 3,

4, 5 & 6) displayed a less meaningful interpretation of their process measurement

data. Their improvement proposals focused more on changing the activities in their

current software process than on changing the process itself. Even though their

 125

current software development processes did not result in good performance, they still

believed that they followed the optimum process and just needed to perform better at

what they were already doing. On the contrary, the better performing participants

(Participants 1 & 2) proposed process-oriented changes such as spending more time

on creating effective designs and learning how to do more effective reviews. Although

their current practices resulted in success, they were still motivated to find ways to

further improve the quality of their current process, beyond their current capability.

4.5.2.3 Self-theory of intelligence

Through the participants’ post-mortems (as recorded in the post-questionnaire and

focus group discussion), they have provided some personal insights regarding their

own intelligence and abilities. According to Dweck’s (2000) Self-theory of Intelligence,

a student’s implicit assessment of his/her own intelligence and abilities could ultimately

influence his/her individual motivations and behaviours. Given the development

processes followed by the participants in the Phase 2 exercise, the actual adoption of

QATs would require a fairly drastic change in normal “development” behaviour from

them. It is also likely that not all participants will be equality motivated to adopt such a

new behaviour. In using self-theory of intelligence as the third lens for this reflection,

two behavioural attributes were identified.

Motivation

As part of her self-theory of intelligence, Dweck (2000) described the reactions of

students in situations of failure as a “helpless” pattern. Some of these “helpless”

responses were visible in the post-questionnaire responses of the participants.

Participants 4, 5 and 6 blamed their own inability to get used to the new environment

(Process Dashboard©), the new practices and the unfamiliar problem as their

reason(s) for failure (to capture accurate time and defect data) as is evident from the

following responses:

Participant 4: “My mind is slowly getting used to it [the process of capturing

data], so as a result I confused times”.

Participant 5: “Remembering to always check time was a problem because I

was used to just coding”.

 “Just getting used to adjust to this new system”.

 126

Participant 6: “The big problem is being new to a program. If I get used to it, it

would not be a problem”.

“I forgot the steps to follow since the problem is new to me”.

Signs of “helplessness” were also observed during the focus group discussion.

Participants 4, 5 and 6 acknowledged a deterioration in their problem-solving

strategies and described how they made use of maladaptive practices such as “cargo

culting” (O’Dell, 2017, p. 78) to produce code. Some of these participants also

indicated that they “gave up”. According to Participant 4, more time would not have

helped him: “Even if I had more time, I would not be able to solve this problem”.

Participant 5 realised that he had “more failure than success” and that he, in future,

“would try to do much better than this because this was fairly bad enough”. Participant

6 condemned his ability by blaming his lack of basic programming skills: “Recapping

on OPG1 stuff [the basic of coding] because my main problem was syntax and logical

errors”. The other three participants (1, 2 & 3) never showed any signs of questioning

or blaming their own abilities. Instead, they started devising self-improvement

strategies - thereby portraying behaviours that can be more closely linked to what

Dweck (2000) referred to as the “mastery-oriented” pattern.

Behaviour

Linking to another attribute of the self-theory of intelligence, some participants

revealed a “performance goal” orientation in which they “want to look smart (to

themselves or others) and avoid looking dumb” (Dweck, 2000). In their perceived time-

in-phase process data (as captured in the pre-questionnaire), Participants 5 and 6

indicated a process that included enough time in the design, design review and code

review phases to remove defects early in the life cycle. Their perceived defect removal

strategies also indicated that they used QATs such as design reviews and code

reviews. Only Participants 5 and 6 indicated that they used all the listed defect removal

strategies (design review, code review and debugging). Participant 3 indicated that he

used code reviews and debugging. However, during the programming exercise,

Participants 3, 5 and 6 ended up not using any of their perceived QATs and did not

spend any time at all on design, design reviews or code reviews. Participants 3, 4, 5

and 6 indicated that they used checklists based on previous defects for conducting

reviews. Not one of these participants described their defects clearly so that it could

 127

be used for future defect prevention as checklist items. Participants 5 and 6 were the

only participants who could not produce workable programs during the programming

exercise. As for their process improvement proposals, not one of Participants 4, 5 and

6 revealed any “learning-oriented goals” (Dweck, 2000) that could ultimately contribute

to the use of QATs. Despite only being able to produce a partially working program,

Participant 4 even went as far as stating that he would not make any changes to his

current software development process. Although Participant 3 made some

unsubstantiated statements for process improvement, there was some indication of

awareness of the use of QATs to reduce testing time and to find defects earlier in the

life cycle - as is evident from the following quotes:

 “I would review my design for accuracy”.

 “I should review my code”.

 “Planning well before implementing anything”.

On the contrary, both Participant 1 and Participant 2 did not try to “look smart” when

they completed the pre-questionnaire. Both participants indicated that they only used

debugging as defect removal strategy and that they did not use any checklists. There

was also no indication of the creation of checklists based on previously collected

personal data. During the programming exercise, only Participant 1 used code

reviews. Participants 1 and 2 also captured the most defects in their error logs and the

high quality of their defect descriptions made theirs the only descriptions that could be

usable for future defect prevention. In the post-questionnaire, both of these

participants also indicated some learning-oriented goals that could ultimately

contribute to their use of QATs.

Participant 1: “Learn how to do designs effectively”.

 “Spend more time on reviewing and fixing while reviewing”

instead of “just scanning through code and the initial design”.

Participant 2: “Spend more time on design, design reviews and code reviews”.

 “Try to understand what must be done in each phase”.

These goals “reflected a desire to learn new skills, master new tasks, or understand

new things” as specified by Dweck (2000) as being attributes of beholders of an

 128

incremental theory of intelligence. It is therefore interesting to note that only

Participants 1 and 2 managed to produce completely functional programs.

Table 4-19 provides a summary of the identified skills and behavioural characteristics

of each participant, mapped to the identified attributes.

Table 4-19: Mapping of participants skills and behaviours to identified attributes

Attributes
Participant

1 2 3 4 5 6

PSP0

Understanding of
development
phases

X X X X X X

Technical
programming skills X X

Accuracy of
measurement data

X X X X X X

Ability to find and
fix defects X X

PSP2

Design skills X X X X X X

Design review and
code review skills

X X X X X X

Value of process
measurement data X X X X

Self-theory of intelligence

Motivation
orientation

Mastery Mastery Mastery Helpless Helpless Helpless

Achievement goal
orientation

Learning Learning Performance Performance Performance Performance

4.6 Summary

In this chapter, the methodology and the results of Phase 2 of this research study were

reported. The aim of the Phase 2 research activity was twofold: (1) to form a better

understanding of the differences between novice programmers’ perceived and actual

development processes and their use of QATs through the use of actual process

measurement data (as prescribed by the PSP framework) supplemented by narrative

data; and (2) to identify attributes that could potentially influence novice programmers’

use of QATs. Firstly, the selection of an experimental case study approach as the main

 129

data source management strategy, as well as the sampling decisions made were

outlined. Secondly, the data collection and analysis strategies were explained. In the

main research activity, participants used the PSP0 and PSP2 framework scripts to

guide them in capturing process measurement data while solving a programming

problem. Thirdly, a detailed discussion of each participants’ perceived and actual

process data were presented. Fourthly, in order to form a better understanding of

these novice programmers’ development processes and use of QATs, a more

thorough exploration of the evidence (as guided by the two main themes of Phase 2)

were provided. The main findings can be summarised as follows:

Software development processes and use of QATs

Overall, the participants mostly used a code-and-fix style of development, as was also

indicated in their perceived processes. There was a total lack of formal design

documentation despite the indication of some formal design techniques that they

typically used. Most participants spent a lot more time in testing than they perceived.

Most participants used debugging as their only defect removal strategy. Although

almost half of the participants indicated that they typically used design reviews and

code reviews as well, they ended up using only debugging.

Attributes influencing the use of QATs

In using PSP0, PSP2 and the self-theory of intelligence as lenses, nine attributes that

could potentially influence a novice programmer’s use of QATs were identified (see

Table 4-19). The attributes listed under PSP0 and PSP2 can be regarded as technical

attributes, while the self-theory of intelligence attributes are motivational and

behavioural in nature. These attributes can be regarded as critical skills and personal

behaviours that could potentially influence the successful use of QATs.

To ensure effective use of QATs, the programmer first needs to make the decision to

change his/her current software development process. However, it remains unclear

which factors could influence a novice programmer’s intent to adopt QATs as part of

his/her personal software development process. This issue is addressed in Phase 3

of this research study, as described in the next chapter.

 130

Chapter 5: Factors influencing novice programmers’ intent

to adopt QATs (Phase 3)

The overall aim of this research study was to explore the attributes that could

potentially influence novice programmers’ effective use of QATs in an educational

context. In this regard, the Phase 2 research activity identified nine attributes that could

potentially influence a novice programmer’s use of QATs. However, it was noted that

in order to ensure effective use of these QATs, the programmer first needs to make

the decision to change his/her personal software development process. The aim of

Phase 3 of this study was therefore to identify factors that could influence novice

programmers’ intent to adopt QATs. Phase 3 was therefore directed by the following

research question:

RQ3.1: What are the factors that could influence novice programmers’ intent

to adopt QATs?

As with the discussion of the previous two research phases, the Phase 3 discussion

also uses Plowright’s basic FraIM structure (see Figure 1-1) as a roadmap to describe

the methodology and results of this research activity. Firstly, the chosen data source

management strategy and sampling decisions are explained. Secondly, an

explanation is provided about how data was collected in Phase 3. Thirdly, the data

analysis strategies are described and evidence that transpired from this part of the

empirical investigation is provided.

5.1 Cases

For this part of the investigation, a case study approach (Plowright, 2011) was followed

to identify various factors that are likely to influence novice programmers’ intention to

adopt QATs. The discussion in the following sub-sections clarifies the selection of the

chosen data source management strategy and explains the sampling decisions.

5.1.1 Data source management strategy

For Phase 3, I wanted to collect data from students who already had sufficient

programming knowledge as well as some experience with process measurement and

reviews (code and design). Since the participants were to be sourced from the

 131

selected institution, the only group of students who matched the selection criteria were

the fourth year Computer Science students who were registered for the Software

Engineering module. The major focus of this module was object-oriented analysis and

design, but students were also exposed to process measurement practices (using

Process Dashboard©) and the use of reviews (design reviews and code reviews) as

defect removal strategies. Since these students were already in their fourth year of

studying programming, it could be assumed that they also had sufficient knowledge of

basic programming. However, they had no industry programming experience and

could therefore still be regarded as novice programmers. My choice of research

participants was therefore limited by the available potential cases. Given the relatively

small number of students registered for this module (55 students), I involved as many

of these students as possible in the research activity, thereby satisfying one of

Plowright’s (2011) main criteria for the use of a case study as data source

management strategy.

5.1.2 Sampling decisions

As explained in Section 5.1.1, the research population for this case was restricted to

the fourth-year Software Engineering students from the selected institution (55

students). These students were selected because they were already familiar with the

various techniques that could be used to improve the quality of their programs. Data

was collected by means of ‘asking questions’ in a paper-based self-completion survey

(Plowright, 2011). The survey was distributed and completed at the end of a scheduled

lecture. Forty-seven students (the sample) completed the survey (85% response rate).

5.2 Data Collection Methods

There are numerous theoretical models that can be used to examine individual

intentions to adopt methodologies. In this regard, Riemenschneider et al. (2002)

identified 12 constructs that are appropriate in the context of software development

methodology adoption. These constructs were defined as follows in the context of

Phase 3:

• Behavioural Intention (BI) – the extent of the novice programmer’s intention to

use QATs.

• Usefulness (U) – the extent to which the novice programmer thinks that using

QATs will enhance his/her programming performance.

 132

• Ease of use (EOU) – the extent to which the novice programmer perceives that

using QATs will be free of effort.

• Subjective norm (SN) – the extent to which the novice programmer believes

that others, who are important to him/her, think he/she should use QATs.

• Voluntariness (VOL) – the extent to which the novice programmer perceives

the adoption of QATs as non-mandatory.

• Compatibility (C) – the extent to which QATs are perceived as being

consistent/compatible (incorporable) with the current manner in which the

novice programmer develops systems.

• Result Demonstrability (RD) – the extent to which the results or benefits of using

QATs are apparent to the novice programmer.

• Image (IMG) – the extent to which the use of QATs are perceived to enhance

the novice programmer’s image/status in his/her social system.

• Visibility (VIS) – the extent to which the use of QATs can be observed in the

novice programmer’s learning environment.

• Perceived behavioural control – internal (PBC-I) – the novice programmer’s

perceptions of internal constraints on using QATs.

• Perceived behavioural control – external (PBC-E) – the novice programmer’s

perceptions of external constraints on using QATs.

• Career consequences (CC) – the extent to which the adoption of QATs will

influence the novice programmer’s chance to secure employment after

completing his/her degree.

The survey constructed for Phase 3 (see Appendix N) was based on the validated

measurement scales from Riemenschneider et al.’s (2002) research study, with

rewording of a number of items to make it relevant in terms of the context of the current

study. Each item was based on a 4-point Likert scale (1 = strongly disagree and 4 =

strongly agree).

5.3 Data Analysis and Evidence

The numerical data collected through the survey was analysed using IBM SPSS

Statistics for Windows, Version 25.0. During initial analysis, Cronbach’s alpha was used

 133

to assess the reliability of measurement items for each of the 12 constructs. For 10 of

the constructs, the values of Cronbach’s alpha were between 0.640 and 0.841. These

values were regarded as acceptable given the limited number of test items (Berger &

Hänze, 2015). However, the values for voluntariness (Cronbach’s alpha = 0.418) and

perceived behavioural control - internal (Cronbach’s alpha = 0.346) displayed low

construct reliability. Therefore, only the 10 constructs with Cronbach’s alpha values

of 0.640 or higher were retained for further analysis (see Table 5-1).

The next step was to identify the constructs that could be regarded as significant

determinants of novice programmers’ intentions (BI) to use QATs. Each construct was

tested individually using least-squares regression analysis. Table 5-2 shows the

results of each construct test, indicating the names of the constructs as well as the

beta coefficients, significance levels and R2 values.

Ease of use and compatibility showed the highest significance, followed by usefulness

and result demonstrability (p < 0.01). Subjective norm and career consequences were

also significant (p < 0.05), while PBC-E, visibility and image were not significant. A

comparison between these significant determinants and those identified in

Riemenschneider et al.’s (2002) study reveal a number of interesting commonalities

as well as several notable differences. When compared to the six significant

determinants identified in the present study, Riemenschneider et al.’s study only

identified compatibility, usefulness and subjective norm as significant determinants of

methodology use intentions.

5.4 Summary

In this chapter, the analysis and results of Phase 3 of this research study were

reported. The aim of the Phase 3 research activity was to identify factors that could

influence novice programmers’ intent to adopt QATs. Firstly, the selection of a case

study approach, the data source management strategy, as well as the sampling

decisions made, were outlined. Secondly, the data collection strategies were

explained. Thirdly, the data analysis strategies were described and evidence that

transpired from this part of the empirical investigation was provided.

 134

Table 5-1: TAM constructs retained

Construct Scale items alpha

Behavioural intention
(BI)
Mean = 3.6809
SD = 0.45951

• I intend to use QATs in future programming tasks. 0.640

 • Given the opportunity, I would use QATs.

Usefulness (U)
Mean = 3.4433
SD = 0.37795

• Using QATs improves my programming performance. 0.681

• Using QATs increases my productivity.

• Using QATs enhances the quality of my programs.

• Using QATs makes it easier to do my programming tasks.

• The advantages of using QATs outweigh the disadvantages.

• QATs are useful in programming tasks.

Ease of use (EOU)
Mean = 2.8156
SD = 0.45872

• Learning QATs was easy for me. 0.663

 • I think QATs are clear and understandable.

• Using QATs do not require a lot of mental effort.

• I find QATs easy to use.

• QATs are not cumbersome to use.

• Using QATs do not take too much of my time.

Subjective norm (SN)
Mean = 3.0071
SD = 0.73717

• People who influence my behaviour think I should use QATs. 0.760

 • People who are important to me think I should use QATs.

• My fellow students think I should use QATs.

Compatibility (C)
Mean = 2.9504
SD = 0.56027

• QATs are compatible with the way I develop systems. 0.783

 • Using QATs are compatible with all aspects of my programming tasks.

• Using QATs fit well with the way I work.

Image (IMG)
Mean = 2.9929
SD = 0.67204

• Software developers who use QATs have more prestige than those
who do not.

0.745

• Software developers who use QATs have a high profile.

• Using QATs are a status symbol amongst software developers.

Visibility (VIS)
Mean = 2.4521
SD = 0.68888

• QATs are very visible at the Department4. 0.748

 • It is easy for me to observe others using QATs.

• I have had plenty of opportunity to see QATs being used.

• I can see when other students use QATs.

Personal behavioural
control – external
(PBC-E)
Mean = 2.8553
SD = 0.57891

• Specialised instruction and education concerning QATs are available
to me.

0.724

• Formal guidance is available to me in using QATs.

• A specific group is available for assistance with QAT difficulties.

• For making the transition to QATs, I felt I had a solid network of support
(e.g. knowledgeable fellow students, student assistants, lecturers,
etc.)

• The Department provides most of the necessary help and resources
to enable students to use QATs.

Career
Consequences (CC)
Mean = 3.2270
SD = 0.59123

• Knowledge of QATs puts me on the cutting edge in my field. 0.841

 • Knowledge of QATs increases my chance of getting a job.

• Knowledge of QATs can increase my flexibility of changing jobs.

• Knowledge of QATs can increase the opportunity for more meaningful
work.

• Knowledge of QATs can increase the opportunity for preferred jobs.

• Knowledge of QATs can increase the opportunity to gain job security.

Result
Demonstrability (RD)
Mean = 3.1383
SD = 0.62730

• I would have no difficulty telling others about the results of using QATs. 0.825

 • I believe I could communicate to others the consequences of using
QATs.

• The results of using QATs are apparent to me.

• I would have no difficulty explaining why QATs may or may not be
beneficial.

4 Although the real name of the academic department and institution concerned were used on the actual instrument,
it will not be disclosed here in order to protect the anonymity of the selected institution.

 135

Table 5-2: Regression analysis of constructs

 Construct 𝜷
Standard error

of 𝜷 t Sig. R2

Ease of use 0.412 0.136 3.023 0.004** 0.169

Compatibility 0.341 0.111 3.065 0.004** 0.173

Usefulness 0.467 0.167 2.788 0.008** 0.147

Result demonstrability 0.280 0.101 2.779 0.008** 0.146

Subjective norm 0.224 0.870 2.587 0.013* 0.129

Career consequences 0.274 0.108 2.526 0.015* 0.124

Personal behavioural control -
external 0.216 0.114 1.897 0.064 0.074

Visibility 0.156 0.097 1.614 0.113 0.055

Image 0.139 0.100 1.396 0.170 0.041

Notes: * p<0.05, ** p < 0.01

The case study conducted in Phase 3 revealed that students’ intentions to adopt QATs

are driven by six factors: ease of use, compatibility, usefulness, result demonstrability,

subjective norm and career consequences. These usage intentions differ from those

identified in studies that involved professional programmers (Agarwal & Prasad, 2000;

Chan & Thong, 2009; Iivari, 1996; Riemenschneider et al., 2002). By combining these

six factors with the nine attributes that could potentially influence a novice

programmer’s use of QATs (as identified in Phase 2), we end up with a list of 15

attributes that could potentially influence novice programmers’ effective use of QATs.

This concludes the discussions of the methodology and results of each of the three

research activities that were conducted as part of this study. Chapter 6 concludes the

work by synthesising the empirical findings and outlining implications for research and

practice. This final chapter also describes the limitations of this study and makes

recommendations for future research.

 136

Chapter 6: Discussions, Recommendations and

Conclusions

The mixed-methods study presented in this thesis was conducted as a continuation of

more than four decades of research that focused on evaluating the programming

performance of novice programmers in educational environments and identifying

possible reasons for the low quality of programs developed by them. Building on the

principles of Total Quality Management (TQM) and related software quality

improvement frameworks (such as CMM and PSP) that have been successfully

implemented in the software industry, the study aimed to provide greater insights

regarding attributes that could potentially influence novice programmers’ effective use

of QATs in an educational context. To this end, this study set out to answer the

following main research question:

What are the attributes that could potentially influence novice programmers’

effective use of quality appraisal techniques?

In order to answer this main research question, three research activities were

conducted (Phase 1, Phase 2 and Phase 3) to answer the following four subsidiary

research questions:

RQ1.1: What is the quality of the typical software development processes

followed by novice programmers?

RQ2.1: How do novice programmers’ perceived software development

processes (including the use of QATs) differ from their actual

processes?

RQ2.2: What are the attributes that could potentially influence novice

programmers’ use of QATs?

RQ3.1: What are the factors that could influence novice programmers’ intent

to adopt QATs?

This chapter commences with a discussion of the empirical findings and conclusions

from each of the three research activities to provide answers to the main and

 137

subsidiary research questions (as defined for each of the phases). Following this, the

contributions and implications of this study are outlined. Next, limitations present in

the current study are acknowledged and recommendations for future research are

proposed. Lastly, a final conclusion to this study is presented.

6.1 Empirical Findings and Conclusions

This section outlines the empirical findings and conclusions from each of the three

main research activities that formed part of this research study. In the first three sub-

sections, the research questions as addressed by each of the phases are discussed.

The final sub-section focuses on answering the main research question.

6.1.1 Phase 1 - Evaluating the quality of novice programmers’ perceived

software development processes

As a starting point to this research study, the aim of the Phase 1 research activity was

to use the PSP framework as a basis for evaluating the quality of novice programmers’

typical software development processes. Phase 1 was guided by the following

research question:

RQ1.1: What is the quality of the typical software development processes

followed by novice programmers?

In Phase 1, a survey approach was followed to gather information regarding novice

programmers’ perceptions of the software development process they typically use

when developing programs. The participants comprised a large group of

undergraduate CS students from a selected UoT. Data collected by means of ‘asking

questions’ in a paper-based self-completion questionnaire were analysed and

compared to the quality guidelines as set out in the PSP framework.

Overall, the evidence revealed that most students relied on a process of code-and-fix,

as Humphrey (1999) predicted. Code-and-fix was clearly the process of choice from

first- to third-year level, which indicated no process improvement through these years

of study. Students also viewed testing as the most effective strategy to remove

defects. Within the different levels of Humphrey’s (2005) PSP quality framework, a

 138

number of interesting observations were made regarding the development processes

followed by these novice programmers.

Based on Humphrey’s (2005) PSP0 guideline that a developer should spend at least

the same amount of time in the design phase than in the coding phase, it became

clear that the students did not spend nearly enough time in the design phase. This

seemed to be a direct consequence of the students’ predominant reliance on

development life cycles that did not include a design phase. It is possible that the

students will continue with the same low-quality development process throughout their

undergraduate studies because they do not really know how they spend their

development time and are not aware of the common defects they make. The majority

of the students (83.7%) did not keep track of the actual time spent in the different

development phases, while 69.9% lacked a defect management strategy to prevent

similar defects in future. This overall lack of process measurement and process

awareness might explain why the students do not adopt more effective development

processes and QATs.

In the process of developing quality software, PSP1 strongly emphasises the use of

software estimation and planning techniques (Humphrey, 2005). The majority of

students (87.8%), however, indicated that they did not use any time estimation

techniques. In contrast to results of the MWG study (McCracken et al., 2001) where

students listed time as the major reason for their failure, only 22.8% of the Phase 1

students regarded lack of time as the major contributor to their failure to create fully

functional programs.

Within the PSP quality framework, PSP2 proposes a design specification structure

with four design categories to describe the different modelling techniques that

programmers use to model their designs (Humphrey, 2005). A design quality score

was calculated for each student based on his/her use of the specified modelling

techniques. Almost half of the students (46.3%) indicated that they never did any

designs, while the average design quality score of those who did create designs was

calculated as 16.16%. This overall low design score is an indication that the designs

produced by the students are not “complete, accurate, and precise enough to ensure

its quality implementation” (Humphrey, 2005, p. 220). Humphrey (2005) stated that

 139

“the lack of a precise design is the source of many implementation errors” and “an

under-specified design can be expensive and error prone” (p. 221). The students’ lack

of design completeness (indicated by the low design scores) could also explain the

limited time spent in the design phase. Defect measurements could also be useful to

indicate design defects and limitations that a developer has in design skills. Since the

majority of the students (69.9%) indicated that they did not keep track of their most

common defects, they are unlikely to realise the usefulness of complete and accurate

designs.

As part of the quality management process in PSP2, developers are encouraged to

employ effective QATs (such as design reviews and code reviews). Most students

(76.8%) regarded testing/debugging as the most effective technique to remove

defects, which corresponded with their preferred development life cycle of code-and-

fix. As a result of the limited use of designs and the lack of completeness thereof, only

2.4% of the students perceived design reviews as the most effective way to remove

defects. Few students (20.7%) indicated that they perceived code reviews as the most

effective, but almost half of them (50.4%) indicated that they used it.

Since the questionnaire data only revealed insights regarding the students’

perceptions of the software development process they typically use when developing

programs, there was no indication whether these were the processes they actually

used. Further investigations were therefore needed to explore any possible

differences between the perceived and actual development processes of novice

programmers. To improve the quality of students’ programs, Humphrey (1999)

suggested that CS educators should focus on their students’ actual process data of

the programs they create. As a follow-up on Phase 1, Phase 2 of this research study

therefore looked into the actual development processes followed by a group of novice

programmers while using the PSP framework.

6.1.2 Phase 2 - Understanding novice programmers’ actual development

processes and use of QATs

Humphrey (1999) claimed that one of the biggest challenges in software development

is to convince software developers to adopt better practices as they tend to stick to a

personal process that they have developed from the first small program they have

 140

written. Runeson (2001) also found it easier to convince first-year students (who do

not yet have well established development habits) to use PSP practices as part of their

natural development process. As part of the Phase 2 research activity, an integrated

experimental case study approach was followed in an attempt to (1) form a better

understanding of the differences between novice programmers’ perceived and actual

development processes (including the use of QATs) through the use of actual process

measurement data (as prescribed by the PSP framework), supplemented by narrative

data; and (2) identify attributes that could potentially influence novice programmers’

use of QATs. Phase 2 was therefore guided by two research questions - each of which

are addressed in the following sub-sections.

RQ2.1: How do novice programmers’ perceived software development

processes (including their use of QATs) differ from their actual

processes?

Overall, the participants mostly used a code-and-fix style of development as indicated

in their perceived processes. Similar to the findings of Hou and Tomakyo (1998), these

students also created no actual design documentation despite their indications of the

numerous design modelling techniques (use cases, flowcharts, pseudo code, data

flow diagrams, class diagrams) they typically used. Other design studies (Eckerdal et

al., 2006a; Lotus et al., 2011) also reported a total lack of formal design documentation

with their students. However, most participants indicated that they typically used

flowcharts - a design modelling technique that would have been perfectly suitable for

modelling the logic for this specific exercise. This could suggest that although they

have the necessary theoretical knowledge, they did not know how to implement it

correctly. Williams (1997) made a similar observation regarding students’ theoretical

knowledge of PSP principles. The overall lack of formal design documentation for the

exercise could also be attributed to the relatively small size of the exercise. Schach

(2011) suggested that a code-and-fix model without any design could be suitable for

short programming exercises (less than 200 lines of code).

Most participants in this study completely underestimated the time they typically spent

resolving defects during testing. Since most participants used debugging as their

 141

primary (and only) defect removal strategy, the higher than expected testing times

were not surprising. Although half of the participants indicated that they typically used

design reviews and code reviews as well, they ended up using only debugging. What

is still of concern, however, is that some participants indicated that they used design

reviews and even assigned a substantial amount of time to it while they ended up not

doing any designs at all. Students in Towhidnejad and Salimi’s (1996) study found it

easier to adopt code reviews as part of their quality improvement process since they

regarded it as more closely related to programming.

RQ2.2: What are the attributes that could potentially influence novice

programmers’ use of quality appraisal techniques?

Following the evidence that resulted from the Phase 2 research activity, nine attributes

that could potentially influence novice programmers’ use of QATs as prescribed by the

PSP framework were identified.

Understanding of development phases

Grove (1998) indicated that beginner programmers struggle with the distinction

between development phases. Some Phase 2 participants indicated that they did not

know exactly what to do in the design, design review and code review development

phases, but acknowledged that the defined process made them aware that something

needed to be done in these phases. Carrington et al. (2001) emphasised that students

struggle to distinguish between the various phases when they code and test one line

of code at a time.

Technical programming skills

One of the code review principles of PSP is that one must firstly produce a reviewable

product (Humphrey, 2005). Some of the Phase 2 participants who struggled with the

programming exercise, identified their lack of basic programming skills as the major

cause of their inability to produce working code. Carrington et al. (2001) argued that

the additional work required to implement the PSP can cause a cognitive overload for

some students, especially for those who struggle with basic programming skills. For

this reason, Runeson (2001) agreed that it would be harder for first-years to learn PSP

 142

practices together with the development of programming skills, but he stated that these

students are the ones that can benefit the most from following such practices.

Accuracy of measurement data

Towhidnejad and Salimi (1996) reported that only half of their students collected

accurate and reliable data. All the Phase 2 participants indicated that they had

difficulties to capture data in the correct phases. The major problem was that they

could not differentiate between coding and testing. This confusion could have been

caused by the coding-rework that they had to do in order to fix a defect. Because of

their heavy reliance on a code-and-fix style of programming, it created a situation

where most of the coding was done in response to fixing a defect. The confusion led

to inaccurate data that should have been logged under testing and not under coding.

This could also have influenced the time that was logged to find and fix a defect.

Carrington et al. (2001) emphasised that when students write a program by

incrementally compiling and testing one line of code at a time, they are unable to log

data in the correct prescribed PSP phases. Grove (1998) argued that his students

initially struggled with the distinction between development phases and therefore had

problems to collect reliable data. Williams (1997) suggested that discussions of group

statistical feedback data might influence students’ intention to capture more accurate

individual process measurement data.

Ability to find and fix defects

Humphrey (2005) stated that the process of debugging is “the time required to get

from symptoms to defects” (p. 195). He defined debugging as “the process of finding

the defective code that caused the program to behave improperly” (p. 195). From the

participants’ defect descriptions, it was evident that some of them could not resolve all

the defects regardless of their defect removal strategy. Some of the Phase 2

participants also struggled to describe their defects clearly. In most cases, the poor

description of the defects could be linked to their inability to determine the cause of

the defect. Poor descriptions of defects are likely to lead to difficulties when defect

data are used to create personal checklist items. None of the participants in this study

realised that the purpose of defect data was to act as a means of defect prevention.

Some participants also mentioned that they did not log all defects. Prechelt (2001)

indicated that more than half of his PSP participants could not “keep the self-discipline

 143

required for defect logging” (p. 61) and regarded it as a “personality issue”. Not logging

all defects can lead to misinterpretations regarding the severity of defects, as well as

the exact phase (planning, design, coding or testing) during which the defect occurred.

According to the participants’ data, most defects were injected during the coding

phase. Consequently, their defect measurement data did not provide enough detailed

information to prevent similar defects in future. Carrington et al. (2001) also noted that

that most of their students did not record defect data accurately. However, they failed

to mention specific details regarding the quality of their students’ defect descriptions

and the consequences thereof.

Design skills

The PSP quality management strategy recommends that developers’ first focus

should be on producing “a thorough and complete design and then document the

design with the four PSP design templates” (Humphrey, 2005, p. 155). Various studies

reported that even after having completed their undergraduate studies, most CS

students generally lack basic design knowledge (Chen et al., 2005; Eckerdal et al.,

2006a, 2006b; Hu, 2016; Loftus et al., 2001). None of the Phase 2 participants created

formal design documents. Even the better performing participants indicated that they

lacked the skills necessary to create effective designs. The lack of a well-documented

and complete design directly influenced the use of design reviews as a defect removal

strategy. Rong et al.’s (2016) students indicated that detailed design is one of the most

useful practices for achieving defect free programming (DFP).

Design review and code review skills

None of the Phase 2 participants used properly defined strategies for performing

design reviews and code reviews. Even though Humphrey claimed that the

“reviewability” of a design is not that important if you review your own designs, he still

stated that “without a well-documented and complete design, it is impossible to do a

competent design review” (Humphrey, 2005, p. 185). The lack of complete designs

could therefore have been the reason for the absence of design reviews. Most

participants produced code that could be reviewed, but none of them used code

reviews either. Even though some of the Phase 2 participants indicated that defects

could be removed earlier, and that testing time could be reduced through the use of

design reviews and code reviews, none of them attempted to use it. The only logical

 144

conclusion that can be drawn is that the participants lacked proper strategies for

performing design reviews and code reviews. The total lack of reviews also caused a

lack of defect removal efficiency measurements for their reviews. The absence of an

efficiency indicator for the value of reviews could cause a barrier to adopting reviews

as defect removal strategies. As for Jenkins and Ademoye’s (2012) students, the

additional time that they took to complete code reviews could negatively influence the

value they placed on reviews and consequently the adoption thereof. On the contrary,

Towhidnejad and Salimi (1996), as well as Williams (1997), reported that students

found code reviews more relevant to programming, and therefore, easier to adopt than

time management. Rong et al. (2012) suggested future research in methods that could

improve the effectiveness of reviews.

Value of process measurement data

Various studies reported on the low value that students place on PSP principles and

the consequential abandonment of PSP practices. In several studies, students

objected to process measurement because they either found it unrelated to software

development (Bullers, 2004; Towhidnejad & Salimi, 1996; Williams, 1997) or regarded

it as extra effort (Börstler et al., 2002; Carrington et al., 2001; Hou & Tomayko, 1998).

In some studies, students objected to the use of the PSP defined process because

this process was not compatible with their current development practices (Carrington

et al., 2001) or they regarded it as too strict and therefore could not see the potential

benefits of using this disciplined process (Börstler et al., 2002).

In contrast, the Phase 2 participants placed a similar value on PSP principles as

Grove’s (1998) students. They recognised the value of using proper programming

methodologies, good designs and reviews. They further realised the importance of

process measurement data as a motivator for continuous improvement. Even though

not all Phase 2 participants illustrated the same level of interpretation of their process

data, most of them agreed that it provided valuable insights regarding their

development processes. This is similar to Börstler et al.’s (2002) study where students

showed initial resistance to PSP, but the general reaction at the end of the course was

that they were “more aware of their programming practices and shortcomings” (p. 45).

Those Phase 2 participants who struggled to produce a working program displayed a

less meaningful interpretation of their process measurement data. A possible

 145

explanation for this could be, as reported by Carrington et al. (2001), that the additional

work caused a cognitive overload for some students, especially for those who

struggled with basic programming skills. One of the Phase 2 participants revealed

some disconnected behaviour towards PSP similar to the claim by Williams (1997)

that students saw time management as irrelevant to software development and

obstructed their focus from programming. Some of the process improvement

proposals made by the participants in Phase 2 did not transpire from their own,

personal data. They instead made proposals that could be theoretically regarded as

good improvements. In Williams’ (1997) study, the students also demonstrated

accurate theoretical knowledge of PSP principles, but struggled with the application

thereof.

Individual motivations and behaviours

According to Dweck’s (2000) Self-theory of Intelligence, a students’ implicit

assessment of his/her own intelligence and abilities could ultimately influence his/her

individual motivations and behaviours. During the post-mortem reflections, some

participants revealed a “helpless” orientation, and consequently blamed their own

inability to get used to the new environment (Process Dashboard©), the new practices

and the unfamiliar problem as their reason(s) for failure. They also acknowledged a

deterioration in their problem-solving strategies and described how they used

maladaptive practices like “cargo culting” (O’Dell, 2017, p. 78) to produce code.

Some participants revealed a “performance goal” orientation in which they “want[ed]

to look smart (to themselves or others) and avoid looking dumb” (Dweck, 2000).

Participants who did not try to “look smart” indicated some learning-oriented goals that

could ultimately contribute to process improvement. These goals “reflected a desire to

learn new skills, master new tasks, or understand new things”, as indicated by Dweck

(2000) as being attributes of beholders of an incremental theory of intelligence. These

participants were the only ones who managed to produce completely functional

programs.

6.1.3 Phase 3 - Factors influencing novice programmers’ intent to adopt QATs

Various researchers have reported on the challenges they experienced in motivating

their students to adopt PSP practices (Börstler et al., 2002; Bullers, 2004; Carrington

 146

et al., 2001; Hou & Tomayako, 1998; Towhidnejad & Salimi, 1996; Williams, 1997).

There have also been numerous calls for further investigations into the factors (other

than training) that might influence the adoption of PSP methods (Prechelt & Unger,

2001; Rong et al., 2012). In Phase 3, a case study approach was followed to identify

factors that could influence novice programmers’ intent to adopt QATs. Phase 3 was

therefore directed by the following research question:

RQ3.1: What are the factors that could influence novice programmers’ intent

to adopt QATs?

As a starting point in identifying these factors, Riemenschneider et al.’s (2002) 12

constructs for methodology adoption were used: behavioural intention; usefulness;

ease of use; subjective norm; voluntariness; compatibility; result demonstrability;

image; visibility; perceived behavioural control (internal); perceived behavioural

control (external); and career consequences.

Results of the Phase 3 case study revealed that students’ intentions to use QATs are

driven by ease of use, compatibility, usefulness, result demonstrability, subjective

norm and career consequences. These usage intentions differ from those identified in

studies that involved professional programmers (Agarwal & Prasad, 2000; Chan &

Thong, 2009; Iivari, 1996; Riemenschneider et al., 2002).

The results of Phase 3 also showed that the perceived compatibility of software

process innovations (such as QATs) with a novice programmer’s pre-existing software

development process had a highly significant influence on intention to use. Chan and

Thong (2009) emphasised that the adoption of innovations often require a radical

change in the developers’ existing work practices. If the innovation is not compatible

with the developers’ current practices, they are unlikely to perceive it as beneficial.

Carrington et al.’s (2001) students objected to the use of the PSP defined process

because it was not compatible with their current development practices. In several

other studies (Bullers, 2004; Towhidnejad & Salimi, 1996; Williams, 1997), students

objected to process measurement because they found it unrelated to software

development. In a study comparing the PSP experiences of first-year and graduate

 147

students, Runeson (2001) argued that it is easier to convince first-year students to use

PSP as part of their development process since they have not yet formed established

development habits. This argument supports Humphrey’s statement (1999) that

students are likely to stick to the development process they used on their very first

program. Both Towhidnejad and Salimi (1996) and Williams (1997) reported that

students found code reviews more relevant to programming and therefore easier to

adopt than time management.

There are numerous examples of prior studies that have found perceived usefulness

a significant factor in predicting professional developers’ intention to use software

process innovations such as software development methodologies (Chan & Thong,

2009; Riemenschneider et al., 2002), programming languages (Agarwal & Prasad,

2000) and CASE tools (Iivari, 1996). Overall, these studies suggest that an innovation

is only likely to be accepted if it is perceived as being useful in increasing job

performance (Chan & Thong, 2009). Similar to software developers in an industry

environment, student developers are also influenced by a reward structure. They want

to be productive and attain high marks for their assignments. If they do not see QATs

as beneficial to their productivity, they are unlikely to regard it as being useful. Börstler

et al.’s (2002) students abandoned the use of PSP principles because they could not

see the potential benefits of such a defined process. From a productivity viewpoint,

Jenkins and Ademoye’s (2012) reported that even though the students in their study

believed that reviews improved the quality of their programs, they indicated that the

biggest problem with code reviews was the extra time that it took. In this regard, Rong

et al. (2012) could not find any concrete evidence that the efficiency of reviews were

improved by the use of checklists. Even though the use of checklists serve as a useful

guide for novice programmers, Rong et al. (2012) still stressed that researchers need

to find methods to improve the effectiveness of reviews. Hou and Tomayko (1998)

reported a significant decline in their students’ compile defects after the introduction

of code reviews. They also reported that non-PSP trained students took significantly

longer to produce their final projects and on average obtained lower marks.

In support of prior studies, the Phase 3 results also showed that subjective norm

significantly affects intention. Riemenschneider et al. (2002) warned that developers

who believe in the usefulness and compatibility of a software process innovation might

 148

avoid using the innovation because of the negative views of peers and supervisors

who oppose the use thereof. Chang and Thong (2009) concluded that the significance

of subjective norm as a determinant can be attributed to the importance of teamwork

in software development. The student software developers in the context of Phase 3

were also required to complete a number of group projects as part of their other

modules. Even in cases where they are working on individual projects, the students

often form study groups to help one another. This creates a social learning

environment where students could be subjected to peer influences. Students at the

University of Utah who followed PSP practices during pair programming activities

reported a higher level of enjoyment and higher confidence levels in their own work

(Börstler et al., 2002). These students also mentioned that they “encouraged each

other to follow PSP practices” (p. 45).

The differences noted between studies conducted in industry contexts and educational

contexts regarding the effect of ease of use on adoption, could possibly be attributed

to the difference between work and education environment. While professional

developers are already using the innovation, students are still in the process of

learning how to use it. The professionals may have already moved beyond early

concerns regarding the effort required to use the innovation (Chan & Thong 2009,

p. 811). Chang and Thong (2009) also argued that the diverse views on the result

demonstrability of methodology use in Riemenschneider et al.’s study may be

attributed to the long development cycles of real-world methodologies – preventing

software developers “from observing the results in a short period of time” (p. 811).

While the students in Phase 3 have not necessarily used QATs in their own

development projects, they might believe that they have adequate theoretical

knowledge regarding the benefits of using QATs. In an attempt to improve students’

utilisation of PSP, Williams (1997) found that even if students have theoretical

knowledge of the process, they might still struggle to apply it.

The significance of career consequences as a determinant of students’ intention to

adopt QATs could also be attributed to the educational context. Since students are

preparing to enter the job market, they are likely to regard their familiarity with industry-

used techniques as something that will influence their chances of securing

employment after the completion of their degree. In Börstler et al.’s (2002) study,

 149

students who have used PSP in their first-year course reported that their knowledge

of software engineering principles helped them to obtain summer internships.

6.1.4 Attributes that could potentially influence novice programmers’ effective

use of QATs

This exploratory research study was directed by one main research question:

What are the attributes that could potentially influence novice programmers’

effective use of quality appraisal techniques?

By using the PSP quality improvement framework as an evaluation tool, the results of

the Phase 1 research activity revealed that the novice programmers typically used a

code-and-fix development strategy, their designs were almost non-existent, they

mostly relied on testing to remove defects and they did not make use of measurements

to gain insight into their development processes. The quality of the processes used by

these novices did not change from first- to third-year level - an indication that they

have already formed established development practices that will be difficult to change.

The majority of the more experienced novices (second- and third-year students) did,

however, recognise that the low quality of their programs were caused by their ‘inability

to identify defects’. In contrast, the less experienced novices believed that ‘lack of

technical skills’ was the major contributor to low quality products.

In Phase 2, the low-quality of novice programmers’ development practices was

confirmed through a comparison of perceived and actual development processes.

Surprisingly, for some of these novices’ their perceived usage of QATs was totally

different from their actual use thereof. Even in their proposal improvements these

individuals revealed a strong theoretical knowledge of techniques that should be used

for early defect removal and defect prevention. The noted differences between the

perceived and actual use of QATs could possibly be attributed to these individuals’

performance goal orientation. Further analysis of the actual process data and narrative

data revealed that the following difficulties could have hampered their effective use of

QATs:

 150

• Lack of understanding of what exactly needs to be done in the prescribed

development phases;

• Lack of technical programming skills;

• Inaccurate measurement data;

• Inability to identify defects;

• Lack of design review and code review skills;

• Lack of design skills;

• Inability to interpret measurement data;

• Helpless motivational orientation during problem solving; and

• Lack of learning-oriented achievement goals.

Based on these identified difficulties, nine attributes that could influence novice

programmers’ use of QATs were identified. These attributes can be linked to individual

technical skills and abilities as well as individual motivations and behaviours. However,

in order to ensure effective use of QATs, the developer first needs to make the

decision to adopt a new development process that includes QATs. The six factors (in

Phase 3) that have been shown to influence a novice programmer’s intent to adopt

such a process (ease of use, compatibility, usefulness, result demonstrability,

subjective norm and career consequences) can therefore also be regarded as

attributes impacting the effective use of QATs. By combining the results of Phase 2

and Phase 3, this research study therefore identified 15 attributes that could potentially

influence novice programmers’ effective use of QATs as summarised in Table 6-1. In

this summary, the original intention to adopt attributes (factors) are grouped with the

two attributes that can be linked to the self-theory of intelligence (achievement goal

orientation and motivational orientation) as behavioural and motivational attributes that

could potentially influence a novice programmer’s intent to adopt QATs. The remaining

seven attributes can be linked to individual skills and abilities.

The PSP quality management principles (defect prevention and early defect removal)

rely heavily on the creation of complete designs and the use of proper review

strategies. Without a complete design it would be impossible to perform design

 151

reviews. In Phase 2, the novice programmers showed limited design abilities and a

total lack of review skills. They were also unsure about what exactly needed to be

done in the prescribed development phases (other than coding and testing).

Numerous studies have reported that even after completion of their undergraduate

studies, most CS students are still unable to design software and generally lack even

basic design knowledge. It is therefore not an easy task to get novice programmers to

create complete designs that would be suitable for defect prevention and early defect

removal. Given that the Phase 3 participants indicated ‘ease of use’ and ‘result

demonstrability’ as major factors for adoption, it is likely that they would only adopt a

new strategy if it is quick and easy to use and the effect thereof is noticeable

immediately. It is therefore unlikely that novice programmers will recognise the

‘usefulness’ of complete designs.

Table 6-1: Attributes that could influence effective use of QATs

Category Attributes

Skills and abilities • Understanding of development phases

• Accuracy of measurement data

• Value of process measurement data

• Technical programming skills

• Ability to find and fix defects

• Design skills

• Design review and code review skills

Behaviour and motivation • Career consequences

• Compatibility

• Ease of use

• Result demonstrability

• Subjective norm

• Usefulness

• Achievement goal orientation

• Motivational orientation

The use of designs and reviews would also require the ability and willingness from

these novices to make a drastic change to their current well-established code-and-fix

practices. What make designs and reviews even less likely to be used is that the

novices in this study indicated ‘compatibility’ as a major factor for adoption. Thong

(2009) emphasised that the adoption of innovations often requires a radical change in

 152

the developers’ existing work practices. If the innovation is not compatible with the

developers’ current practices, they are unlikely to perceive it as beneficial.

It was enlightening that most of the novices in this study realised that the low quality

of their programs was caused by their inability to find and fix defects. Instead of

focusing on efforts to get novice programmers to adopt quality processes (see Section

2.3), it might therefore be easier to direct their focus towards the costs of their failures

(defects) through the use of process measurement data. Based on TQM and PSP

principles, the foundation of quality improvement lies in process measurement data

and the interpretation thereof. While the additional task of capturing data can cause a

cognitive overload for novice programmers (Carrington et al., 2001), the amount of

data can also be overwhelming (Kan et al., 1994). Kan et al. (1994) therefore suggest

that the number of metrics need to be selected carefully and that the information

extracted from the data should be focused, accurate and useful.

Based on these findings and arguments, a process improvement strategy that focuses

on a measured defect management approach might be more effective to encourage

the use of QATs. In following such an approach, students only need to measure the

defects they make and the time they spend on fixing these defects (thereby reducing

the number of metrics). These focused defect measurements could help to make

students more aware of the cost of rework - especially when defects are picked up late

in the development process (with testing). Students would therefore not be forced into

following defined processes that are not compatible with their current processes.

Instead, minimal but useful measurement data might convince them to consider the

adoption of QATs.

6.2 Contributions and Implications of the Study

The Software Engineering discipline recommends various best practices for achieving

quality in software projects. These practices are typically taught to CS students as part

of their undergraduate studies. The PSP framework was specifically created as a self-

improvement process to guide software developers in following good development

practices. A number of researchers have reported on attempts to incorporate PSP

principles as part of their Computer Science curriculums. Several attempts have also

 153

been made to develop models for the evaluation of the quality of students’ software

designs. Previous studies have, however, failed to recognise the potential value of the

PSP framework as an evaluation model to assess the quality of individual development

practices. The unique contribution of Phase 1 of this study was therefore to use the

PSP framework as a model for evaluating the quality of novice programmers’ software

development processes. Humphrey (1999) suggested that educators should shift their

focus from the programs that the students create to the data of the processes that they

followed. The model created in Phase 1 could be used by educators to “quickly”

assess the quality of their students’ development processes without the effort of

gathering actual process measurement data. This model could also be used to identify

“gaps” in the education of novice programmers. However, it should be noted that there

could be differences between the perceived and actual development processes of

novice programmers as illustrated in Phase 2 of this study.

Various researchers have reported on their own experiences with the incorporation of

PSP principles in educational environments in an attempt to improve the quality of

their student’s development processes (Börstler et al., 2002; Jenkins & Ademoye,

2012; Towhidnejad & Salimi, 1996; Williams, 1997). While all of these attempts have

had some level of success, a number of problems regarding the students’ use of the

PSP principles were mentioned. The unique contribution of Phase 2 of this study was

the identification of a list of critical success factors for novice programmers’ use of

QATs (based on data gathered from actual process measurement data and narrative

feedback). The focus of Phase 2 was to specifically investigate attributes that could

influence the use of QATs (design, design review and code review) as primarily utilised

in the context of PSP. This list of attributes can be used as cautionary guidelines when

educators attempt to use PSP principles or QATs to improve the quality of novice

programmer’s development practices. The identified technical attributes can also be

used as a skills development guide for novice programmers to ensure the success of

quality improvement efforts.

Various researchers have reported on the challenges they experienced in motivating

their students to adopt PSP practices (Börstler et al., 2002; Bullers, 2004; Carrington

et al., 2001; Hou and Tomayako, 1998; Towhidnejad & Salimi, 1996; Williams, 1997).

There have also been numerous calls for further investigations into the factors (other

 154

than training) that might influence the adoption of PSP methods (Prechelt & Unger,

2001; Rong et al., 2012). There are numerous theoretical models (e.g. TAM, TAM2,

PCI, TPB and MPCU) that are typically used to examine individual intentions to adopt

technology tools - not processes. Riemenschneider et al. (2002) showed that these

models could be used to provide insights into methodology adoption by software

developers in a large organisation. Through the Phase 3 research activity,

Riemenschneider et al.’s (2002) adoption model was used to specifically examine

novice programmers’ intent to adopt QATs as part of their natural development

processes in an educational context. No other reported studies could be found that

specifically used technology adoption models to examine individual intentions to adopt

PSP practices.

The results of the Phase 2 research activity revealed a possible link between self-

theory of intelligence and an individual’s ability and/or intent to change his/her current

software development practices. Quality improvement, as suggested by Deming’s

(2000b) PDSA cycle, requires continuous improvement of a product or process

through statistical variation control. Since continuous improvement through the

interpretation of process measurement data is central to the PSP framework, self-

theory of intelligence could have a direct impact on the effective utilisation of PSP’s

QATs. Another unique contribution of this study is the suggested relation between self-

theories of intelligence and the use of QATs in the specific context of the PSP. Due to

the exploratory nature of this research study, the ‘Why’ of this suggested relation fell

outside the scope of the stated research aim.

6.3 Limitations and Recommendations for Future Research

This study has offered an exploratory perspective on attributes that could potentially

influence novice programmers’ effective use of QATs. As a direct consequence of this

methodology, the study encountered a number of limitations that need to be

acknowledged. In most cases, these limitations could be addressed by future

research.

The research activities conducted as part of this study focused on specific groups of

students (as novice programmers) within a specific context (a selected South African

 155

UoT). Since this was an exploratory study, the aim was merely to explore the research

topic and not to provide final and conclusive answers to all the research questions.

Consequently, no claims are made to the generalisability of the findings and

conclusions. The findings and conclusions of this study could, however, be used as a

departure point for the creation of new hypotheses to inform further research and

debate in similar contexts.

Although all the Phase 2 participants recorded time in the planning and design phases,

no formal design documentation were created. They could therefore not present any

evidence of what they actually did in these phases. In this regard it would be interesting

to investigate the actual planning and design processes followed by novice

programmers.

As indicated in Phase 2, the students’ lack of designs could potentially be the main

driver behind their preference towards a code-and-fix development process. However,

during the Phase 2 focus group discussion, the students indicated that their first step

in solving programming problems was to “search the Internet” for solutions. Although

the students were allowed to use the Internet during the programming activity, no data

was collected on what they searched for, what they found and how the ‘discovered’

code were incorporated as part of their own program code. An in-depth investigation

could also shed more light on the extent of which this ‘copy-paste-and-fix’ style of

programming is used by undergraduate computer programming students. If this is

found to be the dominant style among students, instructors could focus on equipping

students with proper "Copy and Paste" skills [as suggested by Feiner and Krajnc

(2009)]. While additional attempts to improve students' code reading and interpretation

skills could advance their ability to review and debug their own code (Perkins et al.,

1986), it could also enable them to effectively reuse code snippets copied from the

Internet and other sources. However, it is recommended that instructors enforce

effective design techniques from the first programs that students write in an effort to

ensure that the students will not fall back on an unstructured code-and-fix or copy-

past-and-fix life cycle. It would also be interesting to experiment with design activities

that could motivate students to perform designs and realise the value of good designs.

This could also include experiments with technologies and tools that could help

students to form better design practices.

 156

One particular aspect that had a significant impact on the students’ programming

performance was their inability to find and fix defects (debugging). The only defect

data that were captured were the defect descriptions, the phase in which the defect

was injected and resolved, and the time it took to fix the defect. No specific data was

collected to provide insight regarding the actual defect removal processes that were

used. Further investigations in this regard could shed more light on why students are

unable to resolve specific defects. In an attempt to encourage earlier removal of

defects, in would be interesting to have students experiment with different review

strategies in order to improve the effectiveness of their reviews and possibly

encourage the usage of such strategies.

As part of the attribute identification process in Phase 2, it was suggested that a

student’s self-theory of intelligence could impact his/her individual motivations and

behaviours. Future research could be conducted to further investigate the possible

influence of self-theory on the development practices of novice programmers.

6.4 Conclusion

In spite of all the efforts of CS instructors to get their students to improve the quality of

their software programs through the use of PSP principles and strategies, the results

are often worse than expected. This study was an attempt to direct the focus of CS

instructors towards attributes that could influence the effective use of QATs (design

review, code review, designs templates and quality measures) by novice

programmers. The identified attributes were grouped into two categories: skills and

abilities needed for the effective use of QATs; and behavioural and motivational

attributes influencing the intention to adopt QATs (also see Table 6-1). It was,

however, argued that the mastery of these skills and abilities could be influenced by

the adoption attributes. Based on the overall findings and supporting arguments, a

process improvement strategy that focuses on a measured defect management

approach might be more effective to encourage the use of QATs by novice

programmers.

 157

Although I am still a long way from achieving my ultimate goal in life - convincing

students to use QATs to improve the quality of their software programs - this study

provided me with better insights regarding attributes that could potentially influence

the software quality improvement attempts of my students.

“Quality work is not done by accident; it is done only by skilled

and motivated people.”

- Watts S. Humphrey

 158

List of References

Agarwal, R., & Prasad, J. (2000). A field study of the adoption of software process

innovations by information systems professionals. IEEE Transactions on

Engineering Management, 47(3), 295-308. https://doi.org/10.1109/17.865899

Ahmadzadeh, M., Elliman, D., & Higgins, C. (2005). An analysis of patterns of

debugging among novice computer science students. In J. Cunha & W.

Fleischman (Chairs), Proceedings of the 10th annual SIGCSE conference on

Innovation and Technology in Computer Science Education (ITiCSE’05) (pp.

84-44). Association for Computing Machinery.

https://doi.org/10.1145/1067445.1067472

Ajzen, I. (1985). From intentions to action: A theory of planned behavior. In J. Kuhl

and J. Beckmann (Eds.), Action Control (pp.11–39). SSSP Springer Series in

Social Psychology. Springer. https://doi.org/10.1007/978-3-642-69746-3_2

Ajzen, I. (1991). The theory of planned behavior. Organizational Behavior and

Human Decision Processes, 50(2), 179–211. https://doi.org/10.1016/0749-

5978(91)90020-T

Babbie, E. (2010). The practice of social research (12th ed.). Cengage Learning.

Berger, R., & Hänze, M. (2015). Impact of expert teaching quality on novice

academic performance in the jigsaw cooperative learning method.

International Journal of Science Education, 37(2), 294–320.

https://doi.org/10.1080/09500693.2014.985757

Börstler, J., Carrington, D., Hislop, G.W., Lisack, S., Olson, K., & Williams, L. (2002).

Teaching PSP: challenges and lessons learned. IEEE Software, 19(5), 42–48.

https://doi.org/10.1109/MS.2002.1032853

Bullers, W.I. (2004, January). Personal software process in the database course. In

R. Lister & A. Young (Eds.), Proceedings of the 6th Australian Conference on

Computing Education (ACE’04) (Vol. 30, pp. 25–31). Australian Computer

Society, Inc.

Carrington, D., McEniery, B., & Johnston, D. (2001). PSPSM in the large class. In

Proceedings of the 14th Conference on Software Engineering Education and

https://doi.org/10.1109/17.865899
https://doi.org/10.1145/1067445.1067472
https://doi.org/10.1007/978-3-642-69746-3_2
https://doi.org/10.1016/0749-5978(91)90020-T
https://doi.org/10.1016/0749-5978(91)90020-T
https://doi.org/10.1080/09500693.2014.985757
https://doi.org/10.1109/MS.2002.1032853

 159

Training, In search of a software engineering profession (Cat. No.

PR01059) (pp. 81–88). IEEE. https://doi.org/10.1109/CSEE.2001.913824

Chan, F.K.Y., & Thong, J.Y.L. (2009). Acceptance of agile methodologies: A critical

review and conceptual framework. Decision Support Systems, 46(4), 803–

814. https://doi.org/10.1016/j.dss.2008.11.009

Chen, T., Tew, A.E., Fincher, S., Cooper, S., Stoker, C., Simon, B., Bouvier, D.,

Powers, K., Blaha, K., Sanders, D., Johnson, H., Robins, A., Eckerdal, A.,

Ratcliffe, M., McCartney, R., Tenenberg, J., Moström, J.E., Schwartzman, L.,

Vandegrift, T., ... Monge, A. (2005). Students designing software: a multi-

national, multi-institutional study. Informatics in Education, 4(1), 143–162.

Compeau, D.R., & Higgins, C.A. (1995). Computer self-efficacy: development of a

measure and initial tests. MIS Quarterly, 19(2), 189–211.

https://doi.org/10.2307/249688

Cresswell, J.W. (2014). Research design: Qualitative, quantitative and mixed

methods approaches (4th ed.). Sage.

Crosby, P.B. (1979). Quality is free. McGraw-Hill.

Crosby, P.B. (1984). Quality without Tears. McGraw-Hill.

Davis, F. (1989). Perceived usefulness, perceived ease of use, and user acceptance

of Information Technology. MIS Quarterly, 13(3), 318–339.

https://doi.org/10.2307/249008

Davis, F.D, Bagozzi, R.P., & Warshow, P.R. (1992). Extrinsic and intrinsic motivation

to use computers in the workplace. Journal of Applied Social Psychology,

22(14), 1111–1132. https://doi.org/10.1111/j.1559-1816.1992.tb00945.x

de Champeaux, D., Lea, D., & Faure, P. (1993). Object-oriented system

development. Addison-Wesley.

DeLone, W.H., & McLean, E.R. (2003). The DeLone and McLean model of

information systems success: A ten-year update. Journal of Management

Information Systems, 19(4), 9–30.

https://doi.org/10.1080/07421222.2003.11045748

https://doi.org/10.1109/CSEE.2001.913824
https://doi.org/10.1016/j.dss.2008.11.009
https://doi.org/10.2307/249688
https://doi.org/10.2307/249008
https://doi.org/10.1111/j.1559-1816.1992.tb00945.x
https://doi.org/10.1080/07421222.2003.11045748

 160

Deming, W.E. (1986). Out of the crisis: quality, productivity, and competitive position.

MIT Press.

Deming, W.E. (2000a). Out of the crisis [Kindle edition]. MIT Press.

Deming, W.E. (2000b). The new economics for industry, government, education (2nd

ed.). MIT Press.

Denwattana, N., Saengsai, A., & Charoenchaimonkon, E. (2019). AppDOSI: An

application for analyzing and monitoring the personal software process. In

Proceedings of the 4th International Conference on Information Technology

(InCIT) (pp. 280–283). IEEE. https://doi.org/10.1109/INCIT.2019.8911993

Dweck. C. (2000). Self-Theories: Their role in motivation, personality, and

development [Kindle edition]. Taylor & Francis.

Early, J.F., & Coletti, O.J. (1999). The quality planning process. In J.M. Juran & A.B.

Godfrey (Eds.), Juran’s Quality Handbook (5th ed., pp. 3.1–3.50). McGraw-

Hill.

Ebrahimi, A. (1994). Novice programmer errors: Language constructs and plan

composition. International Journal of Human-Computer Studies, 41(4), 457–

480. https://doi.org/10.1006/ijhc.1994.1069

Eckerdal, A., McCartney, R., Moström, J.E., Ratcliffe, M., & Zander, C. (2006a,

March). Can graduating students design software systems?. ACM SIGCSE

Bulletin, 38(1), 403–407). https://doi.org/10.1145/1124706.1121468

Eckerdal, A., McCartney, R., Moström, J.E., Ratcliffe, M., & Zander, C. (2006b).

Categorizing student software designs: Methods, results, and implications.

Computer Science Education, 16(3), 197–209.

https://doi.org/10.1080/08993400600912376

Elshennawy, A.K., Maytubby, V.J., & Aly, N.A. (1991). Concepts and attributes of

total quality management. Total Quality Management, 2(1), 75–98.

https://doi.org/10.1080/09544129100000008

Fagan, M.E. (1976). Design and code inspections to reduce errors in program

development. IBM Systems Journal, 15(3), 182–211.

https://doi.org/10.1147/sj.153.0182

https://doi.org/10.1109/INCIT.2019.8911993
https://doi.org/10.1006/ijhc.1994.1069
https://doi.org/10.1145/1124706.1121468
https://doi.org/10.1080/08993400600912376
https://doi.org/10.1080/09544129100000008
https://doi.org/10.1147/sj.153.0182

 161

Feigenbaum, A. (1983). Total Quality Control (3rd ed.). McGraw-Hill.

Feiner, J., & Kranjc, E. (2009, September 23–25). Copy & paste education: solving

programming problems with web code snippets. In Proceedings of the

Interactive Computer Aided Learning conference (ICL 2009) (pp. 81–88).

Fishbein, M., & Ajzen, I. (1975). Belief, attitude, intention and behavior: an

introduction to theory and research. Addison-Wesley.

Gitlow, H.S., & Gitlow, S.J. (1987). The Deming guide to quality and competitive

position. Prentice-Hall.

Gómez-Alvarez, M.C., Gasca-Hurtado, G.P., Manrique-Losada, B., & Arias, D.M.

(2016, June). Method of pedagogic instruments design for software

engineering. In Proceedings of the 11th Iberian Conference on Information

Systems and Technologies (CISTI) (pp. 1–6). IEEE.

https://doi.org/10.1109/CISTI.2016.7521377

Grove, R.F. (1998, August). Using the personal software process to motivate

programming practices. In Proceedings of the 6th Annual Conference on the

Teaching of Computing and the 3rd Annual Conference on Integrating

Technology into Computer Science Education: Changing the Delivery of

Computer Science Education (ITiCSE’98) (pp. 98–101). Association for

Computing Machinery. https://doi.org/10.1145/282991.283046

Hilburn, T.B., & Townhidnejad, M. (2000, March). Software quality: a curriculum

postscript?. In Proceedings of the 31st SIGCSE technical symposium on

Computer Science Education (SIGCSE’00) (pp. 67–171). Association for

Computing Machinery. https://doi.org/10.1145/330908.331848

Hou, L., & Tomayko, J. (1998, March). Applying the personal software process in

CS1: An experiment. In Proceedings of the 29th SIGCSE technical

symposium on Computer Science Education (SIGCSE’98) (pp. 322–325).

Association for Computing Machinery. https://doi.org/10.1145/273133.274322

Hu, C. (2016, February) Can students design software? The answer is more

complex than you think. In Proceedings of the 47th ACM Technical

Symposium on Computing Science Education (SIGCSE’16) (pp. 199–204).

https://doi.org/10.1109/CISTI.2016.7521377
https://doi.org/10.1145/282991.283046
https://doi.org/10.1145/330908.331848
https://doi.org/10.1145/273133.274322

 162

Association for Computing Machinery.

https://doi.org/10.1145/2839509.2844563

Humphrey, W.S. (1988, March) Characterizing the software process: a maturity

framework. IEEE Software, 5(2), 73–79. https://doi.org/10.1109/52.2014

Humphrey, W.S. (1994). Process feedback and learning. In Proceedings of the 9th

International Software Process Workshop (pp. 104–106). IEEE.

https://doi.org/10.1109/ISPW.1994.512776

Humphrey, W.S. (1995, September). Making process improvement personal. IEEE

Software, 12(5), 82–83. https://doi.org/10.1109/52.406762

Humphrey, W.S. (1999). Why don’t they practice what we preach? The personal

software process (PSP). Annals of Software Engineering, 6, 201–222.

https://doi.org/10.1023/A:1018997029222

Humphrey, W.S. (2000). The personal software process. Carnegie Mellon University.

Humphrey, W.S. (2005). PSP: A self-improvement process for software engineers.

Pearson Education Inc.

ICSE. (2011, May). Welcoming message of ICSE 2011. The 33rd International

Conference on Software Engineering. Honolulu, Hawaii. Retrieved December

22, 2018, from http://2011.icseconferences.org/content/welcome

Iivari, J. (1996, October). Why are CASE tools not used? Communications of the

ACM, 39(10), 94–103. https://doi.org/10.1145/236156.236183

International Organization for Standardization (ISO). (2015). ISO 9001: International

standards for quality management. International Organization for

Standardization.

Ishikawa, K. (1989). Introduction to Quality Control. JUSE Press.

Ishikawa, K., & Lu, D. (1985). What is total quality control? Prentice-Hall.

Jancikova, A., & Brycht, K. (2009). TQM and organizational culture as significant

factors in ensuring competitive advantage: a theoretical perspective.

Economics & Sociology, 2(1), 80–95. https://doi.org/10.14254/2071-

789X.2009/2-1/8

https://doi.org/10.1145/2839509.2844563
https://doi.org/10.1109/52.2014
https://doi.org/10.1109/ISPW.1994.512776
https://doi.org/10.1109/52.406762
https://doi.org/10.1023/A:1018997029222
http://2011.icseconferences.org/content/welcome
https://doi.org/10.1145/236156.236183
https://doi.org/10.14254/2071-789X.2009/2-1/8
https://doi.org/10.14254/2071-789X.2009/2-1/8

 163

Jenkins, G.L., & Ademoye, O. (2012). Can individual code reviews improve solo

programming on an introductory course? Innovations in Teaching and

Learning in Information and Computer Sciences (ITALICS), 11(1), 71–79.

https://doi.org/10.11120/ital.2012.11010071

Juran, J.M. (1992). Juran on quality by design: the new steps for planning quality in

goods and services. The Free Press.

Juran, J.M. (1999). How to think about quality. In J.M. Juran & A.B. Godfrey (Eds.),

Juran’s Quality Handbook (5th ed., pp. 2.1–2.18). McGraw-Hill.

Juran, J.M., & Godfrey, A.B. (1999). The quality control process. In J.M. Juran & A.B.

Godfrey (Eds.), Juran’s Quality Handbook (5th ed., pp. 4.1–4.29). McGraw-

Hill.

Kan, S.H. (2003). Metrics and models in software quality engineering (2nd ed.).

Addison-Wesley Longman Publishing Co., Inc.

Kan, S.H., Basili, V.R., & Shapiro, L.N. (1994). Software quality: An overview from

the perspective of quality management. IBM Systems Journal, 33(1), 4–19.

https://doi.org/10.1147/sj.331.0004

Krüger, V. (2001). Main schools of TQM: “the big five”. The TQM magazine, 13(3),

146–155. https://doi.org/10.1108/09544780110366042

Kuhrmann, M., Diebold, P., & Münch, J. (2016). Software process improvement: a

systematic mapping study on the state of the art. PeerJ Computer Science, 2,

e62. https://doi.org/10.7717/peerj-cs.62

Lakanen, A., Lappalainen, V., & Isomöttönen, V. (2015, November). Revisiting

rainfall to explore exam questions and performance on CS1. In Proceedings

of the 15th Koli Calling Conference on Computing Education Research (pp.

40–49). ACM. https://doi.org/10.1145/2828959.2828970

Lister, R., Adams, E.S., Fitzgerald, S., Fone, W., Hamer, J., Lindholm, M.,

McCartney, R., Moström, J.E., Sanders, K. Seppälä, O., Simon, B., &

Thomas, L. (2004, December). A multi-national study of reading and tracing

skills in novice programmers. ACM SIGCE Bulletin, 36(4), 119–150).

https://doi.org/10.1145/1041624.1041673

https://doi.org/10.11120/ital.2012.11010071
https://doi.org/10.1147/sj.331.0004
https://doi.org/10.1108/09544780110366042
https://doi.org/10.7717/peerj-cs.62
https://doi.org/10.1145/2828959.2828970
https://doi.org/10.1145/1041624.1041673

 164

Loftus, C., Thomas, L., & Zander, C. (2011, March). Can graduating students design:

revisited. In Proceedings of the 42nd ACM technical symposium on Computer

Science Education (SIGCSE’11) (pp. 105–110). Association for Computing

Machinery. https://doi.org/10.1145/1953163.1953199

McCracken, M., Almstrum, V., Diaz, D., Guzdial, M., Hagan, D., Kolikant, Y.B.,

Laxer, C., Thomas, L., Utting, I., & Wilusz, T. 2001. A multi-national, multi-

institutional study of assessment of programming skills of first-year CS

students. In Working group reports from ITiCSE on Innovation and technology

in computer science education (ITiCSE-WGR’01) (pp. 125–180). Association

for Computing Machinery. https://doi.org/10.1145/572133.572137

McMillan, J.H., & Schumacher, S. (2006). Research in education: evidence-based

inquiry (6th ed.). Pearson Education Inc.

Moen, R. (2009, September). Foundation and history of the PDSA cycle. In

Proceedings of the Asian network for quality conference. Tokyo. Retrieved

October 27, 2018, from

https://deming.org/uploads/paper/PDSA_History_Ron_Moen.pdf

Moore, G.C., & Benbasat, I. (1991). Development of an instrument to measure the

perceptions of adopting an information technology innovation. Information

Systems Research, 2(3), 192–222. https://doi.org/10.1287/isre.2.3.192

Naur, P., & Randell, B. (Eds.). (1969). Software Engineering: Report of a conference

sponsored by the NATO Science Committee, Garmisch, Germany, 7-11

October 1968. NATO, Scientific Affairs Division.

Neyestani, B (2017, February) Principles and contributions of total quality

management (TQM) gurus on business quality improvement. SSRN.

https://doi.org/10.2139/ssrn.2950981

O’Dell, D.H. (2017, February). The debugging mindset. Queue, 15(1), 71–90.

https://doi.org/10.1145/3055301.3068754

Pailthorpe, B.C. (2017). Emergent design. The International Encyclopaedia of

Communication Research Methods, 1–2.

https://doi.org/10.1002/9781118901731.iecrm0081

https://doi.org/10.1145/1953163.1953199
https://doi.org/10.1145/572133.572137
https://deming.org/uploads/paper/PDSA_History_Ron_Moen.pdf
https://doi.org/10.1287/isre.2.3.192
https://doi.org/10.2139/ssrn.2950981
https://doi.org/10.1145/3055301.3068754
https://doi.org/10.1002/9781118901731.iecrm0081

 165

Pando, B., & Ojeda, T. (2019). PSP-CI: A tool for collecting developer’s data with

continuous integration. In Á. Rocha, C. Ferrás & M. Paredes (Eds.),

Information Technology and Systems, ICITS 2019, Advances in Intelligent

Systems and Computing (Vol 918, pp. 103–112). Springer.

https://doi.org/10.1007/978-3-030-11890-7_11

Patton, M.Q. (2015). Qualitative research & evaluation methods: integrating theory

and practice (4th ed.). Sage Publications.

Paulk, M.C., Weber, C.V., Garcia, S.M., Chrissis, M.B., & Bush, M. (1993). Key

practices of the capability maturity model, Version 1.1 (CMU/SEI-93-TR-025).

Software Engineering Institute, Carnegie Mellon University.

https://resources.sei.cmu.edu/asset_files/TechnicalReport/1993_005_001_16

214.pdf

Perkins, D.N., Hancock, C., Hobbs, R., Martin, F., & Simmons, R. (1986). Conditions

of learning in novice programmers. Journal of Educational Computing

Research, 2(1), 37–55. https://doi.org/10.2190/GUJT-JCBJ-Q6QU-Q9PL

Plowright, D. (2011). Using Mixed Methods: Frameworks for an Integrated

Methodology [Kindle edition]. SAGE Publications.

Prechelt, L (2001). Accelerating learning from experience: avoiding defects faster.

IEEE Software, 18(6), 56–61. https://doi.org/10.1109/52.965803

Prechelt, L., & Unger, B. (2001). An experiment measuring the effects of personal

software process (PSP) training. IEEE Transactions on Software Engineering,

27(5), 465–472. https://doi.org/10.1109/32.922716

Pressman, R.S. (2005). Software engineering: a practitioner’s approach (6th ed.).

McGraw-Hill.

Quality (n.d.). In Cambridge English Dictionary online. Retrieved October 14, 2019,

from https://dictionary.cambridge.org/dictionary/english/quality

Raza, M., Faria, J.P., & Salazar, R. (2019). Assisting software engineering students

in analyzing their performance in software development. Software Quality

Journal, 27(3), 1209–1237. https://doi.org/10.1007/s11219-018-9433-7

Raza, M., Faria, J.P., Amaro, L., & Henriques, P.C. (2017, July). WebProcessPAIR:

recommendation system for software process improvement. In Proceedings of

https://doi.org/10.1007/978-3-030-11890-7_11
https://resources.sei.cmu.edu/asset_files/TechnicalReport/1993_005_001_16214.pdf
https://resources.sei.cmu.edu/asset_files/TechnicalReport/1993_005_001_16214.pdf
https://doi.org/10.2190/GUJT-JCBJ-Q6QU-Q9PL
https://doi.org/10.1109/52.965803
https://doi.org/10.1109/32.922716
https://dictionary.cambridge.org/dictionary/english/quality
https://doi.org/10.1007/s11219-018-9433-7

 166

the 2017 International Conference on Software and System Process (ICSSP

2017) (pp. 139–140). Association for Computing Machinery.

https://doi.org/10.1145/3084100.3084365

Riemenschneider, C.K., Hardgrave, B.C., & Davis, F.D. (2002). Explaining software

developer acceptance of methodologies: a comparison of five theoretical

models. IEEE Transactions on Software Engineering, 28(12), 1135–1145.

https://doi.org/10.1109/TSE.2002.1158287

Rogers, E.M. (1983) Diffusion of innovations (3rd ed.). The Free Press.

Rong, G., Li, J., Xie, M., & Zheng, T. (2012, April). The effect of checklist in code

review for inexperienced students: an empirical study. In Proceedings of the

25th Conference on Software Engineering Education and Training (pp. 120–

124). IEEE. https://doi.org/10.1109/CSEET.2012.22

Rong, G., Zhang, H., Liu, B., Shan, Q., & Shao, D. (2018, February). A replicated

experiment for evaluating the effectiveness of pairing practice in PSP

education. Journal of Systems and Software, 136, 139–152.

https://doi.org/10.1016/j.jss.2017.08.011

Rong, G., Zhang, H., Qi, S., & Shao, D. (2016, May). Can software engineering

students program defect-free? An educational approach. In Proceedings of

the IEEE/ACM 38th International Conference on Software Engineering

Companion (ICSE-C) (pp. 364–373). IEEE.

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7883322&isnumbe

r=7883261

Runeson, P. (2001, February). Experiences from teaching PSP for freshmen. In

Proceedings of the 14th Conference on Software Engineering Education and

Training, In search of a software engineering profession (pp. 98–107). IEEE.

https://doi.org/10.1109/CSEE.2001.913826

Saiedian, H., & Carr, N. (1997, July). Characterizing a software process maturity

model for small organizations. ACM SIGICE Bulletin, 23(1), 2–11.

https://doi.org/10.1145/1031167.1031168

Saunders, M., Lewis, P., & Thornhill, A. (2016). Research methods for business

students (7th ed.). Pearson Education Limited.

https://doi.org/10.1145/3084100.3084365
https://doi.org/10.1109/TSE.2002.1158287
https://doi.org/10.1109/CSEET.2012.22
https://doi.org/10.1016/j.jss.2017.08.011
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7883322&isnumber=7883261
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7883322&isnumber=7883261
https://doi.org/10.1109/CSEE.2001.913826
https://doi.org/10.1145/1031167.1031168

 167

Schach, S.R. (2011). Object-oriented and classical software engineering (8th ed.).

McGraw-Hill.

Simon. (2013, March). Soloway’s rainfall problem has become harder. In

Proceedings of 2013 Learning and Teaching in Computing and Engineering

(pp. 130–135). IEEE. https://doi.org/10.1109/LaTiCE.2013.44

Soloway, E., Ehrlich, K., Bonar, J.G., & Greenspan, J. (1982). What do novices know

about programming? In A. Badre & B. Shneiderman (Eds.), Directions in

Human–Computer Interactions (Vol. 6, pp. 27–54). Ablex Publishing.

Sommerville, I. (2004). Software Engineering (7th ed.). Pearson Education Limited.

Stevens, T. (1994, July 4). Dr. Armand Feigenbaum on the cost of quality and the

hidden factory. Industry Week. https://www.industryweek.com/quality/dr-

armand-feigenbaum-cost-quality-and-hidden-factory

Thomas, L., Eckerdal, A., McCartney, R., Moström, J.E., Sanders, K., & Zander, C.

(2014, July). Graduating students’ designs: through a phenomenographic

lens. In Proceedings of the 10th annual conference on International

Computing Education Research (ICER’14) (pp. 91–98). Association for

Computing Machinery. https://doi.org/10.1145/2632320.2632353

Thompson, R.L., Higgins, C.A., & Howell, J.M. (1991, March). Personal computing:

toward a conceptual model of utilization. MIS Quarterly, 15(1), 125–143.

https://doi.org/10.2307/249443

Towhidnejad, M., & Salimi, A. (1996). Incorporating a disciplined software

development process into introductory computer science programming

courses: initial results. In Technology-Based Re-Engineering Engineering

Education Proceedings of Frontiers in Education 26th Annual Conference

(FIE’96) (Vol. 2, pp. 497–500). IEEE. https://doi.org/10.1109/FIE.1996.572893

Utting, I., Tew, A.E., McCracken, M., Thomas, L., Bouvier, D., Frye, R., Paterson, J.,

Caspersone, M., Kolikant, Y.B., Sorva, J., & Wilusz, T. (2013, June). A fresh

look at novice programmers' performance and their teachers' expectations.

In Proceedings of the ITiCSE working group reports conference on Innovation

and Technology in Computer Science Education – working group reports

https://doi.org/10.1109/LaTiCE.2013.44
https://www.industryweek.com/quality/dr-armand-feigenbaum-cost-quality-and-hidden-factory
https://www.industryweek.com/quality/dr-armand-feigenbaum-cost-quality-and-hidden-factory
https://doi.org/10.1145/2632320.2632353
https://doi.org/10.2307/249443
https://doi.org/10.1109/FIE.1996.572893

 168

(ITiCSE – WGR’13) (pp. 15–32). ACM.

https://doi.org/10.1145/2543882.2543884

Venkatesh, V., & Davis, F.D. (2000). A theoretical extension of the technology

acceptance model: four longitudinal field studies. Management Science,

46(2), 186–204. https://doi.org/10.1287/mnsc.46.2.186.11926

Venkatesh, V., Thong, J.Y., & Xu, X. (2012, March). Consumer acceptance and use

of information technology: extending the unified theory of acceptance and use

of technology. MIS Quarterly, 36(1), 157–178.

https://doi.org/10.2307/41410412

Williams, L.A. (1997, November). Adjusting the instruction of the personal software

process to improve student participation. In Proceedings of the Frontiers in

Education 27th Annual Conference, Teaching and Learning in an Era of

Change (FIE’97) (Vol. 1, pp. 154–156). IEEE.

https://doi.org/10.1109/FIE.1997.644830

https://doi.org/10.1145/2543882.2543884
https://doi.org/10.1287/mnsc.46.2.186.11926
https://doi.org/10.2307/41410412
https://doi.org/10.1109/FIE.1997.644830

 169

Appendix A : Student Questionnaire (Phase 1)

Software Development Process Questionnaire (Phase 1)

Dear Student

Thank you for giving your attention to this questionnaire. The approximate time needed to

complete this questionnaire is 15 - 20 minutes. The purpose of these questions is mainly to

find out which software development processes you make use of for the programming

assignments of the subject that is specified at the top of this page. By completing this

questionnaire you give the researcher consent to use your information for research purposes

only. Responses will be confidential and your privacy will be protected to the maximum extent

allowable by law. Participation is voluntary. Completing or failing to complete this

questionnaire has absolutely no bearing on your marks for this subject.

Please mark your selected answers with an X.

Section 1 - Demographic Information

Which Software Development course are you currently registered for? _____________

Section 2 – Current Software Development Process

1. Make use of percentages to indicate how much time you normally spend in each of the

following software development phases. Please make sure that the percentages add up

to 100%.

Planning: ________________

Design: ________________

Coding: ________________

Testing/Debugging: ________________

 100%

2. Which of the following defect removal strategies do you normally use? (Check all that

apply.)

 Design review Code review Testing/Debugging

3. Which Software Life Cycle do you normally use?

Note: If you normally do not spend

any time in one or more of these

phases, you can write 0% next to

that phase.

 170

4. Which one of these do you think is the most efficient way to remove errors from a program?

(Only select one.)

 Design review Code review Testing/Debugging

5. Which of the following do you normally use to model your designs? (Check all that apply)

 I never do any designs OR Class diagrams

 State diagrams

 Flowcharts and/or Pseudo code

 Sequence and/or Activity diagrams

 Use cases

 Other (please specify): ___________________

6. What is the average mark that you normally get for your programming assignments in this

subject?

 0-9 10-19 20-29 30-39 40-49 50-59

 60-69 70-79 80-89 90-99 100

7. If you don't get 100% for all your programming assignments, please indicate the main

reason why you think you don't get 100%? (Only select one.)

 Insufficient time Insufficient programming skills

 Unable to identify or locate all defects

8. Do you keep record of the most common mistakes you make in your programs?

 Yes No

9. Do you keep record of the actual time you spend on the different software development

phases?

 Yes No

10. Have you ever used an estimation technique to determine how big a program is going to

be and how much time it will take to complete the program?

 Yes No

 171

11. If you answered Yes to Question 10, please specify which estimation technique(s) you

use:

__

Thank you for kindly participating and completing this questionnaire.

 172

Appendix B : Participant Information Sheet (Phase 2)

Attributes contributing to the effective use of quality appraisal techniques by

undergraduate Computer Science students

Dear Student

Thank you for your willingness to consider participating in the “Quality appraisal

techniques” research project. This study is being conducted in partial fulfilment of a

Ph.D. degree for Guillaume Nel under the supervision of Prof Johannes Cronje.

Participation in this research project requires signed consent from participants. Before

you sign the consent form, we want to provide you with the necessary background

regarding this project so that you can make an informed decision as to whether you

will be participating or not.

The Research Ethics Committee of the Faculty of Natural and Agricultural Science,

University of the Free State has approved this research study [UFS-HSD2015/0115].

This information sheet and the attached consent form are only part of the process of

informed consent. If you want more details about something mentioned here, or

information not included here, you should feel free to ask. Please take the time to read

this participant information sheet carefully and to understand any accompanying

information.

What is the purpose of this study?

The purpose of this study is to explore the factors contributing to quality of computer

programmes developed by undergraduate Computer Science students.

Why have I been invited to participate?

You have been invited to participate since you are an undergraduate Computer

Science student at the South African Higher Education Institution that have been

selected for this study. Please note that participation is voluntary and that there will be

no consequences if you decided not to participate. Since this study does not form part

of any academic module that you are registered for, there will also be no academic

implications if you decide not to participate.

What will I be asked to do?
You will be asked to participate in a 5-hour experiment session that will be conducted

in one of the institutional computer laboratories. During this session you will be asked

to do the following:

 173

• Attend a 1-hour tutorial session during which various performance

measurement aspects will be discussed.

• Complete a pre-activity questionnaire. The purpose of this questionnaire will be

to explore your current software development practices.

• Complete an individual programming exercise during which you have to capture

performance data using the Process Dashboard© software.

• Complete a post-activity questionnaire. The purpose of this questionnaire will

be to explore your perceptions on the capturing and interpreting of process

measurement data.

• Be interviewed by the researcher. During this interview you will be asked to give

narrative feedback regarding the development processes you used during the

individual programming exercise. With your permission, the researcher will

audiotape the interview solely for the purposes of accurately transcribing the

conversions. You will have an opportunity to review and correct the transcript.

Are there any possible benefits and or risks from participation in this study?

There will be no direct benefits to participants. However, your participation might give

you valuable insight into the processes that you currently use to solve programming

problems. There are no known risks to participating in this study.

What if I change my mind during or after the study?

Should you decide at any time during the experiment that you no longer wish to

participate, you may withdraw your consent without providing an explanation. Any

anonymous data collected up to the point of withdrawal will be retained for use in the

study.

What happens to the information I provide?

Tapes and transcription data will be stored in a locked cabinet and only the researcher

will have the key. Any local electronic data will be stored on secured computers where

only the researcher and supervisors can gain access to the data. All physical records

of identifying information will be destroyed one year after publication of the study

results. Electronic records with identifying information will be destroyed one year after

the publication of the study results.

 174

How will the results of the study be published?

Written findings will be published online or in print journals; and both written and video

reporting may be presented at local, provincial, national or international academic

conferences for the purpose of furthering an understanding of quality appraisal

techniques used by undergraduate Computer Science students. Your identity will

remain anonymous in all written presentations of data via pseudonyms and the

reporting of aggregated results.

What if I have questions about this study?

Please feel free to contact the researcher or supervisors if you require further

information about the study. If you have concerns or complaints about the conduct of

this study, please contact the Research Ethics Coordinator of the Department of

Computer Science & Informatics, University of the Free State.

Contact details

Researcher: guilnel@cut.ac.za

Supervisors: Johannes.cronje@gmail.com

Departmental Research Ethics Coordinator: pieterb@ufs.ac.za

How do I give my consent to participate?

Complete the attached consent form if you understand and agree to take part in this

study. Please submit the completed consent form to your lecturer. You may keep this

information sheet for your own records.

mailto:guilnel@cut.ac.za
mailto:Johannes.cronje@gmail.com
mailto:pieterb@ufs.ac.za

 175

Appendix C : Pre-Activity Questionnaire (Phase 2)

Software Development Process Pre-Questionnaire

The purpose of this questionnaire is to determine which software development practices you
currently make use of for you programming assignments. The approximate time needed to
complete this questionnaire is 5 tot 10 minutes.

Please mark your selected answers with an X.

Section 1 – Current Software Development Process

1. Which Software Life Cycle do you normally use? (Check all that apply.)

 Code-and-fix

 Waterfall

 Iterative

 Prototyping

 Agile

2. Make use of percentages to indicate how much time you normally spend in each of the

following software development phases. Please make sure that the percentages add up
to 100%.

Planning: ________________

Design: ________________

Design review: ________________

Coding: ________________

Code review: ________________

Testing/Debugging: ________________

 Total = 100%

3. Which of the following defect removal strategies do you normally use? (Check all that

apply.)

 Design review

 Code review

 Testing/Debugging

Note: If you normally do not

spend any time in one or more

of these phases, you can write

0% next to that phase.

 176

4. If you selected either “Design review” or “Code review” in Question 3, which of the
following checklists do you normally use? (Check all that apply.)

 Design review checklists

 Code review checklists

 None

5. If you make use of checklists, how do you compile your checklist items? (Check all that

apply.)

 Compile checklist based on previous errors that I have made.

 Use an existing checklist (compiled by someone else).

6. Do you keep record of the most common mistakes you make in your programs?

 Yes No

7. Do you keep record of the actual time you spend on the different software development
phases?

 Yes No

8. Which one of the following do you think is the most efficient way to remove errors from a
program? (Only select one.)

 Design reviews Code reviews Testing/Debugging

9. Which of the following do you normally use to model your designs? (Check all that apply)

 I never do any designs OR Class diagrams

 Flowcharts and/or Pseudo code

 Use cases and/or Interaction diagrams

 State charts/diagrams

 Other (please specify): _____________

10. What is the average mark that you normally get for your programming assignments in this

subject?

 0-9 10-19 20-29 30-39 40-49 50-59

 60-69 70-79 80-89 90-99 100

 177

11. If you don't get 100% for all your programming assignments, please indicate the main
reason why you think you don't get 100%? (Only select one.)

 Insufficient time Insufficient programming skills

 Unable to identify or locate all defects

Section 2 - Demographic Information

Student number: ___

Initials & surname: ___

Gender: Male Female

Age: 18 19 20 21 22 23+

Thank you for kindly participating and completing this questionnaire.

 178

Appendix D : Performance Measurement Tutorial (Phase 2)

Performance Measurement Class Tutorial

Overview

This class tutorial describes a simulation exercise on how to capture process

measurement data.

Purpose

The purpose of this tutorial is:

1. To get an overview of how to use the Process Dashboard© software to capture

process measurement data.

2. To be able to capture the following process data through Process Dashboard©:

a. Time spend in development phases.

b. Defects injected and removed in specific phases.

c. Time spend to remove defects.

d. Size of the product.

3. To be able to interpret data collected through Process Dashboard©.

Table of Contents

Section Page

Exercise Requirements 2

Assignment Instructions 4

Submission Instructions 6

Important Notes 6

 179

Exercise Requirements

Write a program to calculate the mean and standard deviation of a set of n real
numbers.

Your program can read the n real numbers from the keyboard, a file, or some other
source.

Use a list to store the n numbers for the calculations. If necessary, a variable or static
array(s) or other data structure(s) may be used to hold the data.

Thoroughly test the program. You need to conduct at least two tests using the data
values provided in Table 1. Expected results for each of the provided test data sets
are indicated in Table 2.

Table 1: Test data

Test Data Set 1 Test Data Set 2

160 15.0

591 69.9

114 6.5

229 22.4

230 28.4

270 65.9

128 19.4

1657 198.7

624 38.8

1503 138.2

Table 2: Expected results

Test Expected Value

 Mean Std. Dev

Test Data Set 1 550.6 572.03

Test Data Set 2 60.32 62.26

 180

Mean and Standard Deviation

Overview The mean is the average of a set of data. The average is the
most common measure of location for a set of numbers. The
average locates the centre of the data.

Standard deviation is a measure of the spread or dispersion of a
set of data. The more widely the values are spread out, the
larger the standard deviation. For example, say we have two
separate lists of exam results from a class of 30 students; one
ranges from 31% to 98%, the other from 82% to 93%. The
standard deviation would be larger for the results of the first
exam.

Calculating
mean and
standard
deviation

The formula for calculating the mean is

n

x

x

n

i

i

avg


== 1

The formula for standard deviation,  (sigma), is

()

1
1

2

−

−

=

=

n

xx
n

i

avgi



where

•  is the symbol for summation
• i is an index to the n numbers
• x is the data in the set
• n is the number of items in the set

 181

Assignment instructions

Use the defect type standards listed in Table 3 to determine in which category a defect

should be logged.

Table 3: Defect Type Standards

Category Description Sub-description

10 Documentation Comments

 Manuals

20 Syntax Spelling

 Punctuation

 Typos

 Instruction formats

 Begin-End Brackets

 Spelling

30 Packaging Library

 Version Control

40 Assignment Naming Declaration

 Duplicate names

 Scope

 Initialization Variables and objects

 Range Variable limits

 Array range

50 Interface Internal Incorrect module interaction

 Incorrect module-external data structure

 Incorrect input parameters

 Input/Output File

 Display

 Printer

 Communication

 User Interface Formats

 Content

 Large response time

 Lack of naturalness

 Inconsistency

 182

Category Description Sub-description

 Redundancy

 Complexity

 Lack of flexibility

 Non-responsiveness

 Unpredictable flows

 Visual stimulation

60 Checking Error Messages

 Inadequate checks

70 Data Structure

 Content

80 Function Loops Incorrect Initial value

 Incorrect terminal value

 Incorrect control value processing

 Computation Incorrect Equation

 Wrong manipulation

 Algorithmic Incorrect/missing processing

 Unnecessary processing

 Duplicate Logic

 Unachievable path

 Illogical conditions or Impossible Cases

90 System Timing

 Memory

100 Environment Design, Compile,
Test support systems

Before starting the assignment, review the process script in Table 4 to ensure that you

understand the “big picture” before you begin. Also, ensure that you have all of the

required inputs before you begin.

 183

Table 4: Process Script

Purpose: To guide the development of small programs

Entry Criteria: - Requirements statement
- Defect type standard (see Table 3)
- Process Dashboard

Step Activities Description

1 Planning - Read through the requirements statement.
- Record time in the Time Recording log.

2 Design
(optional)

- Review the requirements and produce a design to meet them.
- Record in the Defect Recording log any requirements defects found.
- Record time in the Time Recording log.

3 Design Review
(optional)

- Review the design.
- Record defects in the Defect Recording log.
- Record time in the Time Recording log.

4 Code - Implement the design.
- Record in the Defect Recording log any requirements or design

defects found.
- Record time in the Time Recording log.

5 Code Review
(optional)

- Review the code.
- Record defects in the Defect Recording log.
- Record time in the Time Recording log.

6 Compile
(optional)

- Compile the program until error-free.
- Fix all defects found.
- Record defects in the Defect Recording log.
- Record time in the Time Recording log.

7 Test - Test until all tests run without error.
- Fix all defects found.
- Record defects in the Defect Recording log.
- Record time in the Time Recording log.

8 Post-mortem - Determine the total program size.
- Enter this data in the Project Plan Summary form.

Exit Criteria - A thoroughly tested program.
- Completed Time and Defect Recording logs.

 184

Submission Instructions

Submit your assignment package to the instructor.

The assignment package should consist of:

• Process Dashboard© backup file.

• Program source code.

Important Notes

• Remember, you must complete this program before the end of today’s tutorial

session.

• Keep your program simple.

• You must submit a 100% working program.

• If you are not sure about something, ask your instructor for clarification.

 185

Appendix E : Programming Assignment (Phase 2)

Programming Assignment 1

Overview

Program 1 should simulate the “Quick Pick Option” during which a Terminal

generates a certain number of lotto game rows for a player.

Purpose

The purpose of this assignment is:

2. To use the Process Dashboard© software to capture process measurement

data while doing a programming assignment.

3. To be able to capture the following process data through Process Dashboard©:

a. Time spend in development phases.

b. Defects injected and removed in specific phases.

c. Time spend to remove defects.

d. Size of the product.

4. To be able to interpret data collected through Process Dashboard©.

Table of Contents

Section Page

Prerequisites 2

Program 1 Requirements 2

Program 1 Example Data 2

Assignment Instructions 3

Submission Instructions 4

Important Notes 4

 186

Prerequisites

You will need the following resources in order to complete this assignment:

• Performance Measurement Class tutorial.

• Assignment Domain Background Information Document.

Program 1 Requirements

Write a program that generate any number of randomly selected lottery row numbers

and store it in a text file. Your program needs to get the number of rows that should

be generated as input through the keyboard from the user. You may use any data

structure(s) to store the numbers in memory.

You must make use of a text file in which the numbers are stored permanently. The

lottery row numbers should be stored in separate lines. Each lottery row contains six

unique numbers ranging from 1 to 49 and needs to be separated by spaces. The

numbers in each row needs to be in ascending order before storing it in the text file.

Program 1 Example Data

If the user decides to generate 10 lottery rows, the following data needs to be created

in the text file:

9 12 23 24 32 42

14 17 20 28 40 45

5 15 17 28 34 49

2 13 23 32 38 42

2 5 18 29 35 48

8 15 33 37 43 44

5 9 13 21 43 47

3 26 29 31 36 40

3 4 12 31 40 49

18 20 23 26 31 36

 187

If the user decides to generate 7 lottery rows on another execution of the program, the

following data needs to be created in the text file:

16 20 23 28 43 46

2 6 7 8 11 18

1 2 23 26 28 45

9 19 24 27 37 39

9 17 22 35 46 48

15 17 32 33 35 49

12 31 33 34 35 42

Take note that your program should generate different randomly selected numbers.

The above examples are only to illustrate the layout of the text file that is created.

Assignment Instructions

Before starting the assignment, review the process script in Table 1 to ensure that you

understand the “big picture” before you begin. Also, ensure that you have all of the

required inputs before you begin.

Submission Instructions

Submit your assignment package, consisting of the following, to the instructor.

• Process Dashboard© backup file.

• Program source code.

• Any other documentation (designs) created during the development.

Important Notes

• You only have three hours to complete this program.

• Keep your program simple.

• You must submit a 100% working program.

• If you are not sure about something, ask your instructor for clarification.

 188

Table 1: Process Script

Purpose: To guide the development of small programs

Entry Criteria: - Requirements statement

- Defect type standard

- Process Dashboard

Step Activities Description

1 Planning - Read through the requirements statement.

- Record time in the Time Recording log.

2 Design

(optional)

- Review the requirements and produce a design to
meet them.

- Record in the Defect Recording log any requirements
defects found.

- Record time in the Time Recording log.

3 Design Review

(optional)

- Review the design.

- Record defects in the Defect Recording log.

- Record time in the Time Recording log.

4 Code - Implement the design.

- Record in the Defect Recording log any requirements
or design defects found.

- Record time in the Time Recording log.

5 Code Review

(optional)

- Review the code.

- Record defects in the Defect Recording log.

- Record time in the Time Recording log.

6 Compile

(optional)

- Compile the program until error-free.

- Fix all defects found.

- Record defects in the Defect Recording log.

- Record time in the Time Recording log.

7 Test - Test until all tests run without error.

- Fix all defects found.

- Record defects in the Defect Recording log.

- Record time in the Time Recording log.

8 Post-mortem - Determine the total program size.

- Enter this data in the Project Plan Summary form.

- Analyse your data.

- Complete your post-activity questionnaire

Exit Criteria - A thoroughly tested program.

- Completed Time and Defect Recording logs.

 189

Appendix F : Programming Assignment Background (Phase 2)

Assignment Domain Background Information

Table of Contents

Section See Page

Overview 1

What is LOTTO? 1

How to play LOTTO? 1

Quick Pick Option 2

Lotto Draws 2

Lotto Prizes 3

Overview

All the programming assignments that you are going to do during this experiment will

be based on one problem domain – “The National Lottery” also referred to as

“LOTTO”. All background information, activities and aspects involved in the “LOTTO”

domain will be covered in this document. This document will therefore be an integral

part of all programming assignments.

What is LOTTO?

LOTTO is a game of chance where the player should select six (6) numbers from a

field of 49 numbers (hence the term LOTTO 6/49). If these six (6) numbers match the

six drawn numbers of the LOTTO draw, the player wins the first category prize.

 190

How to play LOTTO?

1. Each LOTTO Game Row costs R3.50 inclusive of VAT.

2. On any one LOTTO Entry Coupon a Player may play a minimum of one Game

Row.

3. A Player must manually mark in black or blue pen or pencil six (6) numbers from

the numbers 1 to 49 inclusive on each of one or more Game Rows.

4. The completed LOTTO Entry Coupon with the appropriate amount due shall then

be submitted to the Retailer who will process the completed LOTTO Entry

Coupon through the Terminal. A Ticket recording each selection marked on the

coupon will be issued to the Player.

5. The Retailer shall process LOTTO Entry Coupons through the Terminal, and

Tickets will be issued only through the Terminal.

6. If the Terminal rejects the LOTTO Entry Coupon, the entry is not valid.

Quick Pick Option

A Ticket that contains numbers randomly generated by the Terminal may also be

purchased. This is called a QuickPick Ticket. The Player must request such a Ticket

from the Retailer and decide the number of Game Rows the Terminal needs to

generate. The number of rows generated determines the price of the ticket. Each row

will cost R3.50.

Example of QuickPick Ticket with 7 rows:

16 20 23 28 43 46

2 6 7 8 11 18

1 2 23 26 28 45

9 19 24 27 37 39

9 17 22 35 46 48

15 17 32 33 35 49

12 31 33 34 35 42

 191

LOTTO Draws

Players can purchase LOTTO tickets any day. A public draw, that determines the

winning numbers for a game, is conducted twice per week every Wednesday and

Saturday.

In LOTTO draws seven (7) numbers are drawn at random from a Drawing Machine

containing forty-nine (49) balls numbered 1 to 49.

The first six (6) numbers drawn are the Main Numbers and the seventh number drawn

is the Bonus Number.

The Draw is broadcasted live on TV. The LOTTO Game sales are closed

approximately 30 minutes before the Draw on Wednesday and Saturday evenings.

During this time all Game Rows are collected from the Terminals to determine the

Total Game row sales. According to these figures ,the total sales and total price money

can be given during the live shows.

With every draw an updated script, which includes the number of times each number

has been drawn is given to the LOTTO presenters. The updated script is written on

the assumption that each and every number will be drawn during that specific draw,

so that the presenter can read the relevant number and times that it has been drawn

with ease. Refer to Table 1 for examples of previous LOTTO draws.

Table 1: LOTTO draw examples

Draw Date Draw Number Main Numbers Bonus Number

2017/04/26 1 14 19 25 30 44 45 19

2017/04/29 2 15 20 26 29 40 46 28

2017/05/03 3 5 15 18 24 43 44 17

 192

LOTTO Prizes

Winning Categories and Distribution of Price Money

The winning amount distributed to the players (called the price pool) is 45% of the total

sales, which is determined from each game row that is sold for R 3.50. Refer to Table 2

for the winning categories of the LOTTO and the distribution of the prize money.

Table 1: LOTTO prize money distribution

Winning Categories Matching Numbers % Distribution of winnings

Division 1 6 Correct Numbers 18.25%

Division 2 5 Correct Numbers + Bonus Number 4.00%

Division 3 5 Correct Numbers 9.00%

Division 4 4 Correct Numbers + Bonus Number 5.00%

Division 5 4 Correct Numbers 16.75%

Division 6 3 Correct Numbers + Bonus Number 11.00%

Division 7 3 Correct Numbers 36.00%

Moments after each draw, the number of row matches in each category is determined

and the exact pay-out amount for each of these matches. All that a player needs to do

is match his/her selected numbers with the drawn numbers and claim his/her payouts

at the nearest Ticket Centre. The Terminal at the Ticket Centre can also do this kind

of matching.

Example of Price Divisions for Draw 2 with 10 million game rows:

Draw Date: 2017/04/30

Draw Number: 2

Main Numbers: 15 20 26 29 40 46

Bonus Number: 28

Total Sales: R 35 000 000.00

Total Price Pool: R 15 750 000.00

The results (per division) are indicated in Table 2.

 193

Table 2: Results for Draw 2

Division Results

Winning
Categories

Matching Numbers Number of row
winners

Price money per
winning row

Division 1 6 Correct Numbers 2 R 1 437 187.50

Division 2 5 Correct Numbers

+ Bonus Number

2 R 315 000.00

Division 3 5 Correct Numbers 177 R 8 008.47

Division 4 4 Correct Numbers

+ Bonus Number

435 R 1 810.34

Division 5 4 Correct Numbers 9255 R 285.05

Division 6 3 Correct Numbers

+ Bonus Number

12362 R 140.15

Division 7 3 Correct Numbers 164386 R 34.49

What are the odds of winning a LOTTO prize?

There are 13,983,816 different combinations that one can play when choosing six out

of 49 numbers. When calculating the permutations, many people make the

assumption that the numbers selected must match the drawn numbers in the exact

order drawn. If this was the case, the odds of matching six numbers would be

astronomically more than 13,9 million. The odds of getting 5 numbers plus bonus are

1 in 2.3 million - nearly 6 times easier than getting 6 numbers. To get 5 numbers is 1

in 55 thousand - 40 times easier than getting 5 + bonus, etc. Refer to Table 3 for the

odds of winning a prize.

Table 3: LOTTO winning odds

Winning Categories Matching Numbers Odds

Division 1 6 Correct Numbers 1 in 14 million

Division 2 5 Correct Numbers

+ Bonus Number

1 in 2.3 million

Division 3 5 Correct Numbers 1 in 55 thousand

Division 4 4 Correct Numbers

+ Bonus Number

1 in 22 thousand

Division 5 4 Correct Numbers 1 in 1 thousand

Division 6 3 Correct Numbers

+ Bonus Number

1 in 800

Division 7 3 Correct Numbers 1 in 61

 194

Appendix G : Post-Activity Questionnaire (Phase 2)

Post-Activity Questionnaire

The purpose of this questionnaire is to explore your perceptions on the use of measurements
during your development process for Programming Assignment 1.

1. On a scale of 1 - 4, indicate the ease with which you were able to perform the following

actions in Process Dashboard. (Mark your selected answers with an X.)

 Very

difficult

Difficult Easy Very

easy

a. Record time. 1 2 3 4

b. Record time in the correct phase. 1 2 3 4

c. Identify the type of defect. 1 2 3 4

d. Describe a defect. 1 2 3 4

2. Which challenges/problems did you experience with the time measurement?

3. Which challenges/problems did you experience with the recording of defects?

4. Review your “Time in Phase” data in Process Dashboard.

4.1 If you logged any time during the “Design Review” and/or “Code Review” phases,

write down a complete description of what you did during these phases.

4.2 What percentage of your time did you spend in the “Test” phase? _____________

 195

4.3 What actions would you take in the next assignment to reduce your “Test” time?

5. Review your “Defects Removed” data in Process Dashboard.

5.1 In which phase did you remove the most defects? ____________________

5.2 What would you do differently in the next assignment to ensure that you remove

defects earlier in the life cycle?

6. What value do you see in process measurement data?

7. Which changes would you make to your development process to improve your

programming performance?

Thank you for kindly participating and completing this questionnaire!

 196

Appendix H : Program Code (Participant 1)

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.IO;

namespace Quick_Pick_Option
{
 class Program
 {

 static void Main(string[] args)
 {

 int numberOfRows;

 //Get number of rows
 Console.Write("Please Enter Number of Rows: ");
 numberOfRows = Convert.ToInt32(Console.ReadLine().Trim());

 //Generate numbers
 int[,] quickPickNumbers = GenerateNumbers(numberOfRows);

 int rc = StoreNumbersToDataFile(quickPickNumbers);

 if(rc !=-1)
 Console.WriteLine("Numbers successfully saved");

 else
 Console.WriteLine("Numbers not successfully saved");

 Console.ReadKey();

 }//End Main

 static int[,] GenerateNumbers(int numberOfRows)
 {

 int number;

 //Numbers will be in rows and columns
 int[,] quickPickNumbers = new int[numberOfRows,6];

 //Create random number object
 Random random = new Random();

 //Generating
 for (int row = 0; row < quickPickNumbers.GetLongLength(0); ++row)
 {

 for (int col = 0; col < quickPickNumbers.GetLongLength(1); ++col)
 {

 //Generate number
 number = random.Next(49);

 //Check if available

 197

 //Put a number in a certain column
 quickPickNumbers[row, col] = number;

 }

 }

 return quickPickNumbers;

 }

 static int StoreNumbersToDataFile(int[,] quickPickNumbers)
 {

 int rc = 0;

 try
 {

 //Creating file
 FileStream file = new FileStream("Numbers.txt", FileMode.Create);
 StreamWriter strFile = new StreamWriter(file);

 long len = quickPickNumbers.GetLongLength(1);

 //Writing to file
 for (int row = 0; row < quickPickNumbers.GetLongLength(0); ++row)
 {

 for (int col = 0; col < quickPickNumbers.GetLongLength(1); ++col)
 {

 strFile.Write(quickPickNumbers[row, col] + " ");

 }

 //Moving file pointer to the next line
 strFile.WriteLine();

 }

 strFile.Close();
 file.Close();

 }
 catch (Exception)
 {

 rc = -1;

 }

 return rc;

 }//End StoreNumbersToDataFile

 }
}

 198

Appendix I : Program Code (Participant 2)

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.IO;

namespace Lotto
{
 class Program
 {
 static void Main(string[] args)
 {
 int rows;
 int number;
 Random newNumber = new Random();

 Console.WriteLine("Please enter number of rows to generate");
 rows = Convert.ToInt32(Console.ReadLine());
 int[] quickpick = new int[6];
 for (int i = 0; i < rows; i++)
 {
 for (int x = 0; x < 6; ++x)
 {
 number = newNumber.Next(1, 49);
 if (!(CheckDuplicates(quickpick, number)))
 {
 quickpick[x] = number;
 }
 else
 {
 --x;
 }

 }
 LottoNumbers(Sort(quickpick),rows);
 }

 Console.ReadKey();
 }
 public static int[] Sort(int[] array)
 {
 int temp;
 int[] SortedArray = new int[6];
 for (int x = 0; x < array.Length -1; ++x)
 {

 if (array[x] < array[x + 1])
 {
 temp = array[x];
 array[x] = array[x + 1];
 array[x + 1] = temp;
 }
 }
 return array;
 }
 public static bool CheckDuplicates(int[] array, int randomNumber)
 {
 bool flag = false;
 for (int x = 0; x < 6; ++x)

 199

 {
 if (array[x] == randomNumber)
 {
 flag = true;
 }
 }
 return flag;
 }
 public static void LottoNumbers(int[] quickpick,int rows)
 {
 FileStream lottoNumbers = new FileStream("LottoNumbers.txt",
FileMode.Append, FileAccess.Write);
 StreamWriter writer = new StreamWriter(lottoNumbers);

 writer.WriteLine();
 for (int i = 0; i < quickpick.Length; i++)
 {
 writer.Write(quickpick[i] + " ");
 }

 writer.Close();
 lottoNumbers.Close();

 }
 }
}

 200

Appendix J : Program Code (Participant 3)

Note: Participant 3 submitted a C# project folder that contained two .cs files, each

containing a single Main() method. The code from both files were used to determine

the total lines of code generated (63 lines).

Program.cs

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Collections;

namespace ConsoleApplication1
{
 class Program
 {

 static void Main(string[] args)
 {
 ArrayList numbers = new ArrayList();

 Random RandomClass = new Random();
 int randomNumber;

 for (int i = 0; i < 6; i++)
 {
 do
 {
 randomNumber = RandomClass.Next(1, 49);
 }
 while (numbers.Contains(randomNumber));

 numbers.Add(randomNumber);
 Console.Write(" " + randomNumber + " ");
 }

 numbers.Sort();
 numbers.Reverse();
 }
 }
}

 201

Program_R2.cs

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace RandomNumbers
{
 class Program
 {
 static void Main2(string[] args)
 {
 int smallest = 1;
 int biggest = 49;
 int Totalnumbers = 10;

 List<int> possible = new List<int>();
 for (int i = smallest; i <= biggest; i++)
 {
 possible.Add(i);
 }

 List<int> result = new List<int>();
 Random rand = new Random();
 for (int i = 0; i < Totalnumbers; i++)
 {
 int random = rand.Next(1, possible.Count) - 1;
 result.Add(possible[random]);
 possible.RemoveAt(random);
 }
 Console.WriteLine("Random Numbers between 1 to 49 : ");
 foreach (int i in result)
 {
 Console.WriteLine(i + " ");
 }
 Console.Read();
 }
 }

}

 202

Appendix K : Program Code (Participant 4)

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace ConsoleApplication1
{
 class Program
 {
 private static Random _rnd;

 static void Main(string[] args)
 {
 _rnd = new Random();
 string inputString;
 int lotto;

 Int32[] lottoNumbers = new Int32[6];

 for (int i = 0; i < 10; i++)
 {
 for (Int32 idx = 0; idx < 6; idx++)
 {

 do
 {

 lotto = _rnd.Next(1, 50);
 }

 while (lottoNumbers.Contains(lotto));

 lottoNumbers[idx] = lotto;

 }

 }
 Console.WriteLine("{0,6}", lottoNumbers[]);
 inputString = Console.ReadLine();
 }

 }
}

 203

Appendix L : Program Code (Participant 5)

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.UI;
using System.Web.UI.WebControls;

public partial class _Default : System.Web.UI.Page
{

 protected void Page_Load(object sender, EventArgs e)
 {

 LottoTest();

 }

 private void LottoTest()
 {
 Dictionary<int, int> numbers = new Dictionary<int, int>();
 Random generator = new Random();
 while (numbers.Count < 6)
 {
 numbers[generator.Next(1, 49)] = 1;
 }

 string[] lotto = numbers.Keys.OrderBy(n => n).Select(s => s.ToString()).ToArray();

 foreach (String _str in lotto)
 {
 Response.Write(_str);
 Response.Write(" ");

 }

 }

}

 204

Appendix M : Program Code (Participant 6)

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.UI;
using System.Web.UI.WebControls;

public partial class _Default : System.Web.UI.Page
{

 protected void Page_Load(object sender, EventArgs e)
 {

 }

}

 205

Appendix N : Phase 3 survey

Software Engineering IV: Perceptions regarding Quality Appraisal Techniques

Throughout your years of study, you have been introduced to various techniques that can be used to
improve the quality of your programs. The aim of this survey is to find out more about your perceptions
regarding Quality Appraisal Techniques (QATs). For the purpose of this survey, QATs are defined as
Designs, Design Reviews and Code Reviews.

Participation in this research study is voluntary and any data gathered will be regarded as confidential.
Completion and submission of this survey is regarded as your consent to participate.

The survey will take approximately 20 - 25 minutes of your time and your participation is highly
appreciated.

Instructions:

When completing this survey, think about each statement by itself and indicate your level of agreement
from your perspective as a software development student. Give the answer that truly applies to you,
and not what you would like to be true, or what you think others want to hear.

Select ONE level of agreement for each statement. Mark your selection with an X.

 Strongly
Disagree

Slightly
Disagree

Slightly
Agree

Strongly
Agree

Usefulness

1. Using QATs improves my programming performance. ❒ ❒ ❒ ❒

2. Using QATs increases my productivity. ❒ ❒ ❒ ❒

3. Using QATs enhances the quality of my programs. ❒ ❒ ❒ ❒

4. Using QATs makes it easier to do my programming
tasks.

❒ ❒ ❒ ❒

5. The advantages of using QATs outweigh the
disadvantages.

❒ ❒ ❒ ❒

6. QATs are useful in programming tasks. ❒ ❒ ❒ ❒

• Ease of use

7. Learning QATs was easy for me. ❒ ❒ ❒ ❒

8. I think QATs are clear and understandable. ❒ ❒ ❒ ❒

9. Using QATs do not require a lot of mental effort. ❒ ❒ ❒ ❒

10. I find QATs easy to use. ❒ ❒ ❒ ❒

11. QATs are not cumbersome to use. ❒ ❒ ❒ ❒

12. Using QATs do not take too much of my time. ❒ ❒ ❒ ❒

• Behavioural Intention

13. I intend to use QATs in future programming tasks. ❒ ❒ ❒ ❒

14. Given the opportunity, I would use QATs. ❒ ❒ ❒ ❒

 206

 Strongly
Disagree

Slightly
Disagree

Slightly
Agree

Strongly
Agree

• Social Factors

15. People who influence my behaviour think I should use
QATs.

❒ ❒ ❒ ❒

16. People who are important to me think I should use
QATs.

❒ ❒ ❒ ❒

17. My fellow students think I should use QATs. ❒ ❒ ❒ ❒

• Voluntariness

18. Although it might be helpful, using QATs are certainly
not compulsory in programming tasks.

❒ ❒ ❒ ❒

19. My lecturers do not require me to use QATs. ❒ ❒ ❒ ❒

20. My use of QATs are voluntary. ❒ ❒ ❒ ❒

• Compatibility

21. QATs are compatible with the way I develop systems. ❒ ❒ ❒ ❒

22. Using QATs are compatible with all aspects of my
programming tasks.

❒ ❒ ❒ ❒

23. Using QATs fit well with the way I work. ❒ ❒ ❒ ❒

• Image

24. Software developers who use QATs have more
prestige than those who do not.

❒ ❒ ❒ ❒

25. Software developers who use QATs have a high
profile.

❒ ❒ ❒ ❒

26. Using QATs are a status symbol amongst software
developers.

❒ ❒ ❒ ❒

• Visibility

27. QATs are very visible at the Department. ❒ ❒ ❒ ❒

28. It is easy for me to observe others using QATs. ❒ ❒ ❒ ❒

29. I have had plenty of opportunity to see QATs being
used.

❒ ❒ ❒ ❒

30. I can see when other students use QATs. ❒ ❒ ❒ ❒

•

• Perceived Behavioural Control – Internal

31. I feel that there is no gap between my existing skills and
knowledge and those required to use QATs.

❒ ❒ ❒ ❒

32. I have the knowledge necessary to use QATs. ❒ ❒ ❒ ❒

• Perceived Behavioural Control – External

33. Specialised instruction and education concerning
QATs are available to me.

❒ ❒ ❒ ❒

 207

 Strongly
Disagree

Slightly
Disagree

Slightly
Agree

Strongly
Agree

34. Formal guidance is available to me in using QATs. ❒ ❒ ❒ ❒

35. A specific group is available for assistance with QAT
difficulties.

❒ ❒ ❒ ❒

36. For making the transition to QATs, I felt I had a solid
network of support (e.g. knowledgeable fellow
students, student assistants, lecturers, etc.)

❒ ❒ ❒ ❒

37. The Department provides most of the necessary help
and resources to enable students to use QATs.

❒ ❒ ❒ ❒

• Career Consequences

38. Knowledge of QATs puts me on the cutting edge in my
field.

❒ ❒ ❒ ❒

39. Knowledge of QATs increases my chance of getting a
job.

❒ ❒ ❒ ❒

40. Knowledge of QATs can increase my flexibility of
changing jobs.

❒ ❒ ❒ ❒

41. Knowledge of QATs can increase the opportunity for
more meaningful work.

❒ ❒ ❒ ❒

42. Knowledge of QATs can increase the opportunity for
preferred jobs.

❒ ❒ ❒ ❒

43. Knowledge of QATs can increase the opportunity to
gain job security.

❒ ❒ ❒ ❒

• Result Demonstrability

44. I would have no difficulty telling others about the results
of using QATs.

❒ ❒ ❒ ❒

45. I believe I could communicate to others the
consequences of using QATs.

❒ ❒ ❒ ❒

46. The results of using QATs are apparent to me. ❒ ❒ ❒ ❒

47. I would have no difficulty explaining why QATs may or
may not be beneficial.

❒ ❒ ❒ ❒

THANK YOU FOR TAKING THE TIME TO COMPLETE THIS SURVEY

	Title Page
	Declaration
	Acknowledgements
	Table of Contents
	Table of Figures
	Table of Tables
	Summary
	Chapter 1: Introduction
	1.1 Research Problem and Question
	1.2 Research Design
	1.2.1 Ethical considerations
	1.2.2 Validity and reliability

	1.3 Research Context
	1.3.1 Professional context
	1.3.2 Organisational context
	1.3.3 National context
	1.3.4 Theoretical context

	1.4 Outline of the Thesis

	Chapter 2: Literature Review
	2.1 Software Quality Management Background
	2.1.1 Software quality
	2.1.2 The TQM philosophy
	2.1.2.1 Customer focus
	2.1.2.2 Process
	2.1.2.3 Human side of quality
	2.1.2.4 Measurement and analysis

	2.1.3 Traditional Engineering vs Software Engineering
	2.1.4 Software quality improvement frameworks
	2.1.4.1 CMM framework
	2.1.4.2 The PSP framework
	PSP0 (Defining and using processes)
	PSP1 (Planning and tracking)
	PSP2 (Quality management)
	Design reviews and code reviews
	Design templates
	Quality measures

	2.2 Software Quality Problems in Higher Education
	2.2.1 General programming problems
	2.2.2 Design problems

	2.3 The Use of PSP Principles by Higher Education Students
	2.4 Technology Adoption Models
	2.5 Summary

	Chapter 3: Evaluating the quality of novice programmers’ typical software development processes (Phase 1)
	3.1 Cases
	3.1.1 Data source management strategy
	3.1.2 Sampling decisions

	3.2 Data Collection Methods
	3.3 Data Analysis
	3.4 Evidence and Claims
	3.4.1 Software development process and basic measurement
	3.4.2 Estimation and planning
	3.4.3 Quality management and design
	3.4.3.1 Design modelling techniques
	3.4.3.2 Defect removal strategies

	3.4.4 Performance

	3.5 Summary

	Chapter 4: Understanding novice programmers’ actual development processes and use of QATs (Phase 2)
	4.1 Cases
	4.1.1 Data source management strategy
	4.1.2 Sampling decisions

	4.2 Methodology and Data Collection Methods
	4.2.1 Pre-activity questionnaire
	4.2.2 Performance measurement tutorial
	4.2.3 Programming exercise
	4.2.4 Post-activity questionnaire
	4.2.5 Focus group discussion

	4.3 Data Analysis
	4.4 Evidence
	4.4.1 Participant 1
	4.4.1.1 Pre-questionnaire
	4.4.1.2 Program and actual PSP data
	4.4.1.3 Post-questionnaire

	4.4.2 Participant 2
	4.4.2.1 Pre-questionnaire
	4.4.2.2 Program and actual PSP data
	4.4.2.3 Post-questionnaire

	4.4.3 Participant 3
	4.4.3.1 Pre-questionnaire
	4.4.3.2 Program and actual PSP data
	4.4.3.3 Post-questionnaire

	4.4.4 Participant 4
	4.4.4.1 Pre-questionnaire
	4.4.4.2 Program and actual PSP data
	4.4.4.3 Post-questionnaire

	4.4.5 Participant 5
	4.4.5.1 Pre-questionnaire
	4.4.5.2 Program and actual PSP data
	4.4.5.3 Post-questionnaire

	4.4.6 Participant 6
	4.4.6.1 Pre-questionnaire
	4.4.6.2 Program and actual PSP data
	4.4.6.3 Post-questionnaire

	4.4.7 Instructor observations
	4.4.8 Overall Process Dashboard© performance analysis
	4.4.9 Focus group discussion

	4.5 Discussion of Evidence
	4.5.1 Differences between perceived and actual software development processes
	4.5.2 Attributes influencing the use of QATs
	4.5.2.1 PSP0: Software development process and basic measurements
	Understanding of development phases
	Technical programming skills
	Accuracy of measurement data
	Ability to find and fix defects

	4.5.2.2 PSP2: Quality Management and Design
	Design skills
	Design review and code review skills
	Value of process measurement data

	4.5.2.3 Self-theory of intelligence
	Motivation
	Behaviour

	4.6 Summary

	Chapter 5: Factors influencing novice programmers’ intent to adopt QATs (Phase 3)
	5.1 Cases
	5.1.1 Data source management strategy
	5.1.2 Sampling decisions

	5.2 Data Collection Methods
	5.3 Data Analysis and Evidence
	5.4 Summary

	Chapter 6: Discussions, Recommendations and Conclusions
	6.1 Empirical Findings and Conclusions
	6.1.1 Phase 1 - Evaluating the quality of novice programmers’ perceived software development processes
	RQ1.1: What is the quality of the typical software development processes followed by novice programmers?

	6.1.2 Phase 2 - Understanding novice programmers’ actual development processes and use of QATs
	RQ2.1: How do novice programmers’ perceived software development processes (including their use of QATs) differ from their actual processes?
	RQ2.2: What are the attributes that could potentially influence novice programmers’ use of quality appraisal techniques?
	Understanding of development phases
	Technical programming skills
	Accuracy of measurement data
	Ability to find and fix defects
	Design skills
	Design review and code review skills
	Value of process measurement data
	Individual motivations and behaviours

	6.1.3 Phase 3 - Factors influencing novice programmers’ intent to adopt QATs
	RQ3.1: What are the factors that could influence novice programmers’ intent to adopt QATs?

	6.1.4 Attributes that could potentially influence novice programmers’ effective use of QATs

	6.2 Contributions and Implications of the Study
	6.3 Limitations and Recommendations for Future Research
	6.4 Conclusion

	List of References
	Appendix A : Student Questionnaire (Phase 1)
	Appendix B : Participant Information Sheet (Phase 2)
	Appendix C : Pre-Activity Questionnaire (Phase 2)
	Appendix D : Performance Measurement Tutorial (Phase 2)
	Appendix E : Programming Assignment (Phase 2)
	Appendix F : Programming Assignment Background (Phase 2)
	Appendix G : Post-Activity Questionnaire (Phase 2)
	Appendix H : Program Code (Participant 1)
	Appendix I : Program Code (Participant 2)
	Appendix J : Program Code (Participant 3)
	Appendix K : Program Code (Participant 4)
	Appendix L : Program Code (Participant 5)
	Appendix M : Program Code (Participant 6)
	Appendix N : Phase 3 survey

