POLYPHENOLS FROM *PERICOPSIS ELATA*
AND SYNTHESIS OF SELECTED STILBENES

Thesis submitted in fulfillment of the requirements for the degree

Master of Science

in the

Department of Chemistry
Faculty of Natural and Agricultural Science

At the

University of the Free State
Bloemfontein

by

EUNICE MADIRA LITEDU

Supervisor: Dr B. I. Kamara
Co-supervisor: Prof E. V. Brandt

May 2005
<table>
<thead>
<tr>
<th>TABLE OF CONTENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summary</td>
</tr>
<tr>
<td>Opsomming</td>
</tr>
</tbody>
</table>

CHAPTER 1. INTRODUCTION

LITERATURE SURVEY

CHAPTER 2. PHENOLIC COMPOUNDS

2.1. Introduction 3

CHAPTER 3. FLAVONOIDS

<table>
<thead>
<tr>
<th>3.1.</th>
<th>Introduction</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2.</td>
<td>Structure and classes of flavonoids</td>
<td>7</td>
</tr>
<tr>
<td>3.2.1.</td>
<td>Introduction</td>
<td>7</td>
</tr>
<tr>
<td>3.3.</td>
<td>Flavanones and dihydrochalcones</td>
<td>9</td>
</tr>
<tr>
<td>3.3.1.</td>
<td>Introduction</td>
<td>9</td>
</tr>
<tr>
<td>3.3.2.</td>
<td>Structures of flavanones and dihydrochalcones</td>
<td>9</td>
</tr>
<tr>
<td>3.3.3.</td>
<td>Identification by spectral methods</td>
<td>11</td>
</tr>
<tr>
<td>3.3.3.1.</td>
<td>Nucleur magnetic resonance spectroscopy</td>
<td>11</td>
</tr>
<tr>
<td>3.3.4.</td>
<td>Natural distribution</td>
<td>12</td>
</tr>
<tr>
<td>3.3.5.</td>
<td>Biological and pharmacological properties</td>
<td>13</td>
</tr>
<tr>
<td>3.4.</td>
<td>Isoflavones and α-methyldeoxybenzoin</td>
<td>13</td>
</tr>
<tr>
<td>3.4.1.</td>
<td>Characterization</td>
<td>15</td>
</tr>
<tr>
<td>3.4.1.1.</td>
<td>Nuclear magnetic resonance spectroscopy</td>
<td>15</td>
</tr>
<tr>
<td>3.4.2.</td>
<td>Natural distribution</td>
<td>15</td>
</tr>
<tr>
<td>3.4.3.</td>
<td>Biological Properties</td>
<td>16</td>
</tr>
</tbody>
</table>
3.5. Biosynthesis 17
3.5.1. Flavanones, chalcones and isoflavonoids 17
3.6. Chemistry of the flavonoids 20
3.6.1. Chemical structure 20
3.6.2. Structural features and antioxidant activity 20
3.6.2.1. Hydroxyl groups 20
3.6.2.2. O-Methylation 21

CHAPTER 4. STILBENES

4.1 Introduction 23
4.2 Structures and distribution 24
4.2.1. Monomeric stilbenes 24
4.2.2. Stilbene oligomers 25
4.3. Biosynthesis of stilbenes 26
4.4. Stilbene monomer synthesis 27
4.5. Stilbene oligomer synthesis 29

DISCUSSION

CHAPTER 5.

5. Monomers from Pericopsis elata 30
5.1. Introduction 30
5.2. Flavanones 31
5.2.1. 5,7,4'-Triacetoxyisoflavone (67) 31
5.2.2. 5,7,3',4'-Tetramethoxyflavanone (68) 32
5.3. Isoflavones 34
5.3.1. 5,7,4'-Triacetoxyisoflavone (69) 34
5.3.2. 5,7-Diacetoxy-4'-methoxyisoflavone (70) 35
5.4. Dihydrochalcones 36
5.4.1. R-α-Acetoxy-4,2',4'-triacetoxydihydrochalcone (71) 36
5.5. α-Methyldeoxybenzoins 37
5.5.1. 4'-Acetoxy-2'-hydroxy-4-methoxy-α-methyldeoxybenzoin (72) 38
5.6 Stilbenes 39
5.6.1 Monomeric stilbenes 39
5.6.1.1 \textit{trans}-4,3',5'-Triacetoxystilbene (73) 39
5.6.1.2 \textit{trans}-3,4,3',5'-Tetraacetoxystilbene (74) and \textit{trans}-3,4,3',5'-tetrahydroxystilbene (48) 40
5.6.1.3 \textit{trans}-2,3',5'-Triacetoxy-4-methoxystilbene (75) 42

CHAPTER 6. DIMERIC STILBENES

6.1 Dimeric stilbenes 44
6.1.1 Introduction 44
6.2 Dimeric stilbenes with a benzodioxane nucleus 47
6.2.1 \textit{rel}-2,3-\textit{trans}-2-(3,4-Dimethoxyphenyl)-3-(3,5-dimethoxyphenyl)-6-[2-(3,5-dimethoxyphenyl)-E-1-ethenyl]benzodioxane (76) 47
6.3 Dimeric stilbenes with the dihydrobenzofuran nucleus 51
6.3.1 \textit{rel}-2,3-\textit{trans}-2-(3,4-Dimethoxyphenyl)-3-(3,4-dimethoxyphenyl)-4-[2-(3,4-diethoxyphenyl)-E-1-ethenyl]-6-methoxy-2,3-dihydrobenzofuran (77) 52
6.3.2 \textit{rel}-2,3-\textit{trans}-2-(3,4-Diacetoxyphenyl)-3-(3,5-diacetoxyphenyl)-4-[2-(3,4-diacetoxyphenyl)-E-1-ethenyl]-6-acetoxy-2,3-dihydrobenzofuran (78) 56
6.3.3 \textit{rel}-2,3-\textit{trans}-2-(3,4-Dimethoxyphenyl)-3-(3,5-dimethoxyphenyl)-4-[2-(3,5-dimethoxyphenyl)-Z-1-ethenyl]-6-methoxy-2,3-dihydrobenzofuran (79) 60
6.3.4 \textit{rel}-2,3-\textit{trans}-4-Formyl-2-(3,4-dimethoxyphenyl)-3-(3,5-dimethoxyphenyl)-7-methoxy-2,3-dihydrobenzofuran (80) 63
6.3.5 \textit{rel}-2,3-\textit{trans}-2-(3,5-Diacetoxyphenyl)-3-(3,5-diacetoxyphenyl)-6-[2-(3,5-diacetoxyphenyl)-E-1-ethenyl]-4-acetoxy-2,3-dihydrobenzofuran (81) 65
CHAPTER 7. SYNTHESIS

7.1 Introduction 69
7.2 Synthesis of the stilbene monomer 48 70
7.3 Synthesis of the stilbene dimers (88 and 89) 72

CHAPTER 8. Standard experimental techniques

8.1 Chromatographic techniques 76
8.1.1 Paper chromatography 76
8.1.2 Column chromatography 76
8.1.3 Thin layer chromatography 77
8.2 Spraying reagents 77
8.2.1 Vanillin-sulphuric acid 77
8.2.2 Anisaldehyde 77
8.2.3 Formaldehyde-sulphuric acid 78
8.2.4 Bis-diazotized benzidine 78
8.3 Chemical methods 78
8.3.1 Acetylation 78
8.3.2 Methylation with diazomethane 78
8.4 Anhydrous solvents and reagents 79
8.5 Freeze-drying 79
8.6 Spectroscopical methods 79
8.6.1 Nuclear magnetic resonance spectroscopy 79
8.6.2 Circular dichroism 80
8.6.3 Mass spectrometry 80
8.7 Abbreviations 81

CHAPTER 9. Isolation of compounds from Pericopsis elata

9.1 Enrichment of the heartwood extract 82
9.2 Isolation of compounds from the acetone extract 82
9.2.1 4′-Acetoxy-2′-hydroxy-4-methoxy-α-methyldeoxybenzoin (72) 83
CHAPTER 10. Syntheses of the monomeric and oligomeric stilbenes

10.1. Formation of the phosphonate salt

10.1.1. 3,5-Dimethoxybenzyl alcohol (83)

10.1.2. 3,5-Dimethoxybenzyl bromide (84)

10.1.3. 3,5-Dimethoxy-diphenyl-benzylphosphonate (salt) (85)

10.2. Synthesis of the monomeric stilbene (87)

10.2.1. Demethylation of the monomeric stilbene
10.3. Synthesis of dimeric stilbenes (88 and 89) 90
10.3.1. Acetylation and methylation of dimeric stilbenes (88 and 89) 91
10.3.1. Methylation of 88 91
10.3.2. Acetylation of 89 91

Physical data

NMR Plates 1-21
Acknowledgements

I wish to express my sincere gratitude to the following

The Almighty God for the love and support he has shown me throughout my studies and also giving me the ability and opportunity that allowed me to be in this position.

Dr. B. I. Kamara, my supervisor, thank you for the support, advice, encouragement, assistance and for help you gave for interpretation of all my results. All your contributions and wonderful ideas are highly appreciated, without you this thesis would never have been a reality.

Prof. E. V. Brandt, my co-supervisor, thank you for the advice and guidance, for always being available and for your encouragement, it is highly appreciated.

Prof. J. A. Steenkamp, thank you for all your advice and ideas. All your contributions to my studies and always showing interest in my work is highly appreciated. You are an inspiration.

Thanks to the N.R.F. for financial assistance, without which, of course, this thesis would never have materialized.

Co-students and fellow workers of the Department of Chemistry, especially Tebogo (ex-students) who helped to create the good atmosphere, Jaco for the assistance with my thesis especially with NMR, Maleho and Legapa with their help during the synthetic part of the thesis and those whom I shared the lab with.

Father Brian Ivris (Thabiso) for the support, guidance and encouragement during my studies are highly appreciated.

My parents Notutu and Sello Litedu, thank you for your continued love and support, and for all the interest you took in my work. It meant a lot.
CHAPTER 1

1. INTRODUCTION

Pericopsis elata Meeuwen (also known as *Afromorsia elata* Harms) is an economically important timber-producing species native to the Guinean equatorial forests of West and Central Africa. It has a disjunct distribution with several isolated sub-populations occurring in Cote d’Ivoire, Ghana, Central African Republic (CAR), eastern Cameroon and Congo, Democratic Republic of Congo (DRC) and Nigeria. The species is considered an excellent alternative to teak.

Pericopsis elata is a semi-gregarious species with a limited distribution. The species occurs in dryer parts of moist semi-deciduous forests with annual rainfall of 1000 – 1500 mm. *Pericopsis elata* is a tree that reaches a height of around 50 m. The trunk is buttressed to about 2.5 m then fluted, and it has a maximum diameter of approximately 2 m.

Figure 1.1. Pericopsis elata
Ripe, indehiscent pods, which may be dispersed in strong winds, are produced at the beginning of the dry season (August-November).¹ Each pod contains between 1-3 flat seeds. Years of abundant seed generation have been recorded but in many fruiting years, germination is said to be poor. Seedlings are reported to be drought tolerant and saplings tend to have a spreading, bushy habit. In suitable conditions, growth may be rapid, up to 1 cm increment in diameter per year. The heartwood is durable and highly resistant to termite attack. It has white-yellowish sapwood, sharply different from duramen, which is olive-brown and the sapwood is permeable.

The Democratic Republic of Congo (DRC) has the largest remaining stocks of *Pericopsis elata*. Reported threats to *Pericopsis elata* are the use of the wood by local people for charcoal production. The wood of this species is used for the construction of fine boats, decorative veneers, furniture and also works easily and takes good finish when polished. The wood is also used in external application because of its weather resistance.

The bark of *Pericopsis elata* is used by the local population for cancer treatment. Previous phytochemical studies of *Pericopsis elata* revealed the presence of monomeric stilbenes (resveratrol, piceatannol and isorhapontigenin). The recently reported interesting biological activities of stilbenes and their derivatives, such as induction of apoptosis in colon cancer and blood sugar reduction implicated the importance of plants containing stilbenoids as resources for the development of new drugs.² The revealed phytochemical studies of *Pericopsis elata* and biological activities of the stilbenes prompted us to conduct an in-depth investigation of the heartwood specie. In these study we report the isolation of both monomeric and dimeric stilbenes along with the known flavonoids.

The taxonomic classification of *Pericopsis elata* is the following

Family: *Leguminosae (Fabaceae)*

Subfamily: *Lotoideae (Papilionoideae)*

Genus: *Pericopsis*

Species: *P. elata*

CHAPTER 2

2. PHENOLIC COMPOUNDS

2.1. Introduction

With the exception of proteins, lipids, carbohydrates and nucleic acids, plant chemical constituents plants are classified as either primary or secondary metabolites. Secondary metabolites are compounds biosynthetically derived from primary metabolites, with limited distribution in the plant kingdom, and are usually restricted to particular taxonomic groups (species, genus, family or closely related groups of families). Phenolic compounds constitute an important portion of the secondary plant metabolites. Although plant phenolics have no apparent function in a plant's primary metabolism, they often have an ecological role, that is, they are pollinator attractants, represent chemical adaptations to environmental stresses, serve as chemical defenses against microorganisms, insects and higher predators, or even other plants (allelochemics). Phenolics in dead plant material may persist for weeks or months, which may affect decomposition organisms and processes in soils, and therefore, the functioning of the ecosystem.

Phenolic compounds may have both beneficial and toxic effects on human health. Numerous physiological and biochemical processes in the human body produce oxygen-centered free radicals and other reactive oxygen species as by-products. Over-production of such free radicals can cause oxidative damage to biomolecules (for example lipids, proteins, DNA) and as a result, lipid peroxidation may take place with progressive loss in membrane fluidity, reduction in membrane potential, increase in membrane permeability to ions and finally cell death. Increase in oxidative stress has been regarded as an important underlying factor for a number of human

health problems leading to many chronic diseases, such as arteriosclerosis, cancer, diabetes, aging, and other degenerative diseases in humans. Plants may contain a wide variety of free radical scavenging molecules, such as phenolic compounds, which include phenolic acids, flavonoids, quinones, coumarins, lignans, stilbenes and tannins that are rich in antioxidant activity. Antioxidant activity is a fundamental property important for human life. Many of the biological functions, including antimutagenicity, anticarcinogenicity and antiaging, among others, may originate from it. The intake of natural antioxidants has been associated with reduced risks of cancer, cardiovascular disease, diabetes, and other diseases associated with ageing.

Most species of condiments, teas and other beverages such as coffee and cocoa owe their individual properties including flavors and aromas to the presence of active secondary plant phenolics such as vanillin, ephedrine and caffeine. Some of these biologically active plant phenolics have found application as drug entities or as a model compounds for drug syntheses and semi-syntheses. Examples include etoposide, a semi-synthetic antineoplastic agent derived from the mayapple (Podophyllum peltatum), which is reported to be useful in the chemotherapeutic treatment of refractory testicular carcinomas, small cell carcinomas, nonlymphetic leukemia's and non-Hodgkin's lymphomas. Atracurium besylate, a skeletal muscle relaxant, is another new plant-based drug approved for use, which is structurally and pharmacologically related to the curare alkaloids.

Due to their immobility, plants are easily attacked by snails, insects or vertebrate herbivores, bacteria, fungi and viruses. However, they have evolved defense chemicals to ward off, inhibit or kill enemies by production of allelochemicals. Allelochemicals are substances produced by higher plants that selectively inhibit the growth of soil microorganisms or other plants or both.

Allelopathic agents encompass a wide array of chemical types including volatile terpenoids, phenylpropanoids, quinones, coumarins, flavonoids, tannins and other phenolics and cyanogenic glycosides. These phytotoxic compounds play a role in chemical warfare between plants (allelopathic interactions) and include natural herbicides, phytoalexins (microbial inhibitors) and inhibitors of seed germination. Although many allelochemicals are strictly defense substances, others are offensive compounds that act directly in weed aggressiveness, competition and regulation of plant density.

Over 8,000 phenolic structures that have been identified vary structurally from being simple molecules to highly polymerized compounds. More than ten classes of phenolic compounds have been defined on the basis of chemical structure. Plant phenolics are classified according to different classes such as, flavonoids (1) and stilbenes (2).

CHAPTER 3

3. FLAVONOIDS

3.1 Introduction

Flavonoids are a broad class of low molecular weight, secondary plant phenolics characterized by the flavan nucleus (1).\(^\text{22}\) Widely distributed in the leaves, seeds, bark and flowers of plants, over 6500 flavonoids have been identified to date.\(^\text{23}\) In plants, flavonoids provide protection against ultraviolet radiation, pathogens and herbivores.\(^\text{24}\) The anthocyanin co-pigments in flowers attract pollinating insects\(^\text{25}\) and are responsible for the characteristic red and blue colors of berries, wines, and certain vegetables which are the major sources of flavonoids in the human diet.\(^\text{25,26,27,28,29}\)

Most of the beneficial health effects of flavonoids are attributed to their antioxidant and chelating abilities.\(^\text{23}\) By virtue of their capacity to inhibit low-density lipoprotein LDL oxidation, flavonoids have demonstrated unique cardioprotective effects.\(^\text{30,31}\) Studies on flavonoid-rich diets revealed lower mortality from coronary heart disease, lower incidence of myocardial infarction in men\(^\text{32}\) and reduced risk of coronary heart disease by 38% in postmenopausal women.\(^\text{33}\)

Reactive oxygen species (ROS) are capable of oxidizing cellular proteins, nucleic acids and lipids.\(^\text{23}\) Lipid peroxidation is a free-radical mediated propagation of oxidative damage to polyunsaturated fatty acids involving several types of free radicals, and termination occurs

through enzymatic means or by free radical scavenging of antioxidants.34 ROS contribute to cellular aging,35 mutagenesis,36 carcinogenesis,37 and coronary heart disease,38 through destabilization of membranes,39 DNA damage38 and LDL oxidation.23 The protective effects of flavonoids in biological systems are ascribed to their capacity to transfer electron free radicals, chelate metal catalysts,40 activate antioxidant enzymes,41 reduce alpha-tocopherol radicals,42 and inhibit oxidases.43

3.2. Structure and classes of flavonoids

3.2.1. Introduction

Flavonoids have a basic $C_6.C_3.C_6$ skeleton in common, consisting of two aromatic rings (A and B), and a heterocyclic ring (C) containing one oxygen atom (1). In 1953, Birch and Donovan44 suggested that the flavonoid compounds originate from a cinnamic acid and three acetate units to give a tri-oxo acid intermediate. Tracer experiments confirmed Birch's hypothesis.45 Shikimate was shown to contribute via phenylalanine and cinnamate to rings B and C (1), and the A-ring was found to be formally derived from three acetate units by head-to-tail condensation. According to the oxidation level of the central heterocyclic C-ring, flavonoids are grouped into different structural classes (the major ones are shown in Figure 3.1)

45 H. Grisebach. \textit{Planta Med.}, 1962, 10, 385
Figure 3.1: Skeleton structures of flavonoids

The principle flavonoid is the flavanone (3). Hydroxylation of (3) in position 3 leads to dihydroflavonol (4), which following reduction of the carbonyl group in position 4 then gives flavan-3,4-diol (5), and flavan-3-ol (6). Oxidation to a 2,3-double bond in (3) leads to flavones (7) and flavonols (8). Chalcones (10 and 11) lack the typical flavonoid structure but they are biosynthetically the precursors of flavonoids (Scheme 3.2 page 19). Isoflavones (9) are distinct from the other flavonoid classes by having the B-ring attached to position 3 of the heterocyclic C-ring. Anthocyanins (12) possess a conjugated C-ring system giving rise to the red or blue color of these compounds. Proanthocyanidins (13) are condensation products of flavan-3,4-diols with flavan-3-ols.
3.3. Flavanones and dihydrochalcones

3.3.1. Introduction

Since C-2 and C-3 of their skeleton (or C-α and C-β in case of dihydrochalcones) are hydrogenated, flavanones are also called dihydroflavanones. Flavanones and dihydrochalcones are dihydroflavonoids lacking the conjugation between the A- and B-rings. The numbering system for the flavanone (3) is the same as that for flavones and flavonols, whereas the numbering for the dihydrochalcones (11) (Figure 3.2) nucleus follows that of the chalcones (10). Flavanones are biogenetically closely related to chalcones, and some easily isomerize (by ring opening) into chalcones during the isolation from plants.

![Flavanone (3) and Dihydrochalcone (11)](image)

Figure 3.2: Numbering systems for flavanones and dihydrochalcones.

Since C-2 of the flavanone molecule is a stereogenic centre, two stereoisomeric forms (S and R) of each flavanone structure are possible. Most if not all naturally occurring flavanones are levorotary and belong to the (2S) series. Dihydrochalcones do not have a stereogenic centre and are therefore achiral and optically inactive.

3.3.2. Structures of flavanones and dihydrochalcones

Within the classes of dihydroflavonoids, there is a variation in structure because of hydroxylation, methoxylation, glycosylation and alkylation of the C-atoms. At present ~319

different flavanones and ~71 dihydrochalcones including glycosides are known.47 The structures of simple naturally occurring flavanones and dihydrochalcones and their glycosides are shown in Figures 3.3 and 3.4, respectively.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{flavanones_dihydrochalcones.png}
\caption{Common naturally occurring flavanones.}
\end{figure}

3.3.3. Identification by spectral methods

3.3.3.1. Nuclear Magnetic Resonance Spectroscopy

Proton magnetic resonance spectroscopy has become an indispensable technique in the identification of the newly found flavonoids. It can be used to determine the oxygenation pattern of the molecule, the number of functional groups other than hydroxyls (e.g. O- and C-methyl and prenyl groups), to establish the number of sugars present in glycosides and to distinguish between the different classes of flavonoids.

The A- and B-ring protons of flavanones and dihydrochalcones give very similar chemical shifts, however, the NMR spectra of these two classes are easily distinguished from each other because of the differences in the signals produced by C-2 and C-3 protons in flavanones corresponding to C-β and C-α, respectively, in the dihydrochalcones (Table 3.1).48 In the flavanones, the C-2 proton gives a doublet of doublets between chemical shifts δ_H 5.1-5.5 ppm with tetramethylsilane

(TMS) as the internal standard in CDCl₃. The two C-α protons of dihydrochalcones produce a triplet at 3.1-3.4 ppm, and the two C-β protons a triplet at 2.8-2.9 ppm.

<table>
<thead>
<tr>
<th>Flavonoid class</th>
<th>C-2/ C-β proton (ppm)</th>
<th>C-3/ C-α proton (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flavanone</td>
<td>5.1-5.5, 1 H (dd, J 14.0, 3.0 Hz)</td>
<td>2.5-2.8, 1 H (dd, J 17.0, 3.0 Hz)</td>
</tr>
<tr>
<td>Dihydrochalcone</td>
<td>2.8-2.9, 2 H (t, J 8.5 Hz)</td>
<td>2.7-3.2, 1 H (dd, J 17.0, 14.0 Hz)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.1-3.4, 2 H (t, J 8.5 Hz)</td>
</tr>
</tbody>
</table>

Table 3.1: Proton NMR chemical shifts (δ) diagnostic for the flavanone and dihydrochalcone aglycones

dd = doublet of doublets; t = triplet

3.3.4. Natural distribution

Flavanones and dihydrochalcones occur in a number of ferns and gymnosperms, in many plant families belonging to the angiosperms⁴⁹ and in a few lower plants. The dihydrochalcones and flavanones are widespread in the Leguminosae, Compositae and Annonaceae families. However, in the Annonaceae family the dihydrochalcone and the flavanone structures seem to be present only in the genera Uvaria and Unona. Flavanones and dihydrochalcones from the Uvaria species are especially unusual because they are C-ortho-hydroxybenzylated e.g. uvaretin (22).

![Uvaretin (22)](image)
Many different flavanone structures have been found in *Labiatae, Rutaceae* and *Roseaceae*. There are also several genera of ferns (*e.g.* *Pityrogamma*) and conifers (*e.g.* *Pinus*), which are rich in flavanones.

Dihydrochalcones have been reported from a fungus (*Phallus impudicus*), a liverwort (*Radula variabilis*), from several ferns (*Pityrogamma, Notholaena*, and *Adiantum* species), a conifer (*Podocarpus nubigena*) and from seventeen angiosperm families.\(^1\) The greatest variety of structures has been found in the *Leguminosae* (in twelve genera), *Compositae* (*Helichrysum*) and *Annonaceae*. Only a small number of structures have been found in the *Ericaceae*.\(^{50}\)

3.3.5. Biological and pharmacological properties

Since flavonoids are phenolic compounds, they react with proteins, and thus they can react with enzymes and the biological processes in the cell.\(^{50}\) This can, for example, make them toxic to certain microorganisms or animals, and inhibit their growth. Some flavanones have been shown to have inhibitory effects on microorganisms. For instance, naringenin (16) isolated from the wood of *Salix capraea* was active against three out of five wood-destroying fungi tested.

Dreyer and Jones\(^{49}\) investigated the insect feeding deterrency of a number of flavanones and dihydrochalcones against the aphid *Schizaphis graminum*. While flavanone glycosides appeared to be inactive, flavanone aglycones showed activity. Of the dihydrochalcones tested, phloridzin (20) and its aglycone phloretin (18) showed the highest deterrency. Some dihydrochalcones appear to have uncoupling and inhibitory activities on isolated mitochondria.\(^{50}\) Since phloretin (18) was active, and not its 2'-O-glucoside, phloridzin (20), the presence of the hydroxyl group in the 2'-position seems to be essential in this respect.

3.4. Isoflavones and α-methyldeoxybenzoin

Isoflavonoids (9) are biogenetically related to flavonoids but constitute a distinctly separate class in that they contain a rearranged C₆.C₃.C₆ skeleton, and may be regarded as derivatives of 3-phenylchroman.⁵¹ There are more than 629 known structures⁵², which may be subdivided into different classes (examples in Figure 3.5) according to their oxidation level and variation in the complexity of the skeleton (9).

The isoflavones, with ~ 234 known aglycones, form the largest part of the isoflavonoids. The four commonest isoflavones (Figure 3.5) are genistein (23), daidzein (24), formononetin (25) and biochanin A (26). Additional known isoflavones are derived from these basic structures by the addition of hydroxyl, methoxyl or methylenedioxy groups, for example, orobol (29) with 3’-ring substitution of genistein (23). The remaining isoflavones have isoprenyl substitution leading in many cases to extra heterocyclic rings and allyl side chains. Examples include, glyceollin (27) and coumestrol (28). Other characteristic structural features of the isoflavones include the frequent absence of a 5-hydroxyl and the presence of 6- and 2’-hydroxylation.

Angolensin (30) and its methyl and cadinyl ethers are the documented members of the α-methyldeoxybenzoin class.53 As these compounds co-occur with the isoflavonoids, they are probably biosynthetically closely related.

3.4.1. Characterization

3.4.1.1. Nuclear Magnetic Resonance Spectroscopy

The main distinguishing feature of isoflavones proton NMR spectra from other flavonoid spectra is the resonance of a singlet H-2 proton which occurs at 7.6-8.2 ppm, (downfield from most

aromatic protons). The deshielding is due to its β-relationship to the 4-carbonyl and the fact that it is on a carbon attached to the oxygen and the presence of a double bond between C-2 and C-3.

3.4.2. Natural distribution

Isoflavonoids have limited distribution in nature, being confined essentially to the subfamily *Papilionoideae* (*Lotoideae*) of the *Leguminosae*. They also occur rarely in other families such as the *Apocynaceae*, *Meliaceae*, *Pinaceae*, *Polygaceae*, *Compositae*, and *Myristicaceae*. Several non-legume sources including the dicotyledons and microbial sources are known to produce isoflavonoids derivatives. The richest source of isoflavonoids in the monocotyledons are the rhizomes of *Iris* species, but they have also been identified in leaves of *Patersoniai*, another genus of *Iridiceae*. The limited taxonomic distribution of isoflavonoids is linked to the occurrence of the enzyme isoflavone synthase, which catalyzes the aryl migration ion [a two-step process (a → b → c → 23) involving hydroxylation/aryl migration followed by dehydration] leading to the formation of an isoflavone from a flavanone (Scheme 3.1).

![Scheme 3.1. Mechanism of isoflavone biosynthesis.](image)

3.4.3. Biological properties

Isoflavonoids show a wide range of biological properties but the three most important ones are the oestrogenic activities of simple isoflavones, the antifungal and antibacterial properties of the isoflavonoids as phytoalexins, and the insecticidal properties. Isoflavones were first discovered to have oestrogenic activity when sheep which were grazed on pastureland containing *Trifolium subterraneum* for longer periods than normal, were found to have reduced fertility. The two isoflavones, genistein (23) and formononetin (25), isolated from this clover by Bradbury and White were shown to be the active principles. The oestrogenic activity is due to the ability of these isoflavones to mimic the steroidal nucleus of the natural female hormone oestrogen.

Phytoalexins are antimicrobial, usually antifungal substances, which are produced as part of the plant’s natural defense system in response to fungal or bacterial invasion. Over 400 legumes have been surveyed for phytoalexins and most respond positively. The isoflavones genistein (23) and daidzein (24) have been identified in the root of legumes, where they have the ability to inhibit the nodulating ability of *Rhizobium* in the nitrogen-fixing symbiosis.

3.5. Biosynthesis

3.5.1. Flavanones, chalcones and isoflavonoids

All the flavonoids derive their carbon skeletons from two basic compounds, 4-coumaroyl-CoA and three molecules of malonyl-CoA. The pathway leading to the flavonoid precursors and various flavonoid classes with their respective enzymes are outlined in Scheme 3.2 which illustrates the general relationship of different types of compounds in the biosynthesis of flavonoids. The flavonoid C₆.C₃.C₆ carbon backbone is represented by the A-, B- and C-rings (1).
The initial formation of a flavonoid is catalyzed by chalcone synthase (CHS) (i), which forms the chalcone e.g. isoliquiritigenin (33) from malonyl-CoA (31) and 4-coumaroyl-CoA (32) in the presence of polyketide reductases (PKR) and NADPH. Because 4-coumaroyl-CoA is the principle physiological substrate for CHS, the B-ring of chalcones is primarily hydroxylated in the 4-position, and the respective flavonoids, therefore, in the 4’-position. The resulting chalcone is converted into a flavanone, e.g naringenin (16) by chalcone-flavanone isomerase (CHI) (ii), which catalyzes the stereospecific cyclization of chalcones to (2S)-flavanones.

Introduction of a 2,3-double bond in flavanones leads to the abundant flavones [e.g. apigenin (34)]. Two types of enzymes can catalyze this reaction i.e. flavone synthase I (FNS I) (iii) an oxoglutarate-dependent dioxygenase, and flavone synthase II (FNS II), an NADPH-dependent cytochrome P450 species which accomplishes dehydrogenation.

The 5-deoxyflavanones are important intermediates in the formation of isoflavones, also leading to pterocarpans (41). The first step in isoflavone formation is catalyzed by 2-hydroxyisoflavanone synthase (IFS) (vi), an NADPH-dependent cytochrome P450 mixed monoxygenase. Subsequent action of a dehydratase (IFD) (vii) leads to the respective isoflavone [e.g genistein (23)]. The pterocarpans (41) formation is catalyzed by pterocarpan synthase (viii) with 2-hydroxyisoflavanone as a substrate.

Hydroxylation of flavanones at C-3 leads to dihydroflavonols [e.g. dihydrokaempferol (36)]. This step is catalyzed by flavanone 3-hydroxylase (FHT) (iv). Dihydroflavonols are the precursors of flavonols (37) [e.g. kaempferol] and flavan-3, 4-diol (38) synthesis, the latter being the direct biosynthetic intermediate to flavan-3-ol and anthocyanidins (39). Flavonols are formed from dihydroflavonols by the introduction of a 2,3-double bond catalyzed by flavonol synthase (FLS) (v).

Reduction of the carbonyl group of the dihydroflavonols leads to flavan-3,4-diols (38), also called leucoantocyanidins, which is catalyzed by dihydroflavonol 4-reductase (DFR) (viii) with NADPH as the reducing factor. Flavan-3-ols (40) are formed by further reduction of flavan-3,4-diols at C-4 by leucoanthocyanidin reductase (LAR) (x) in the presence of NADPH.
Scheme 3.2. Flavonoid biosynthesis

(i) Chalcone synthase (vi) 2-Hydroxyisoflavanone synthase
(ii) Chalcone isomerase (vii) Isoflavanone dehydratase
(iii) Flavone synthase (viii) Pterocarpan synthase
(iv) Flavanone-3-hydroxylase (ix) Dihydroflavonol-4-reductase
(v) Flavanol synthase (x) Leucoanthocyanidin reductase
3.6. Chemistry of the flavonoids

3.6.1. Chemical structure

Flavonoids are benzo-γ-pyrone derivatives (1) which are classified according to the substitution and the oxidation state of the C-ring. Flavonoids also differ in the arrangements of hydroxyl, methoxy, and glycosidic substituents. During metabolism, hydroxyl groups are added, methylated, sulfated or glucuronidated. In food, flavonoids exist primarily as 3-O-glycosides and polymers, which comprise a substantial fraction of dietary flavonoid intake.

3.6.2. Structural features and antioxidant activity

3.6.2.1. Hydroxyl groups

The antioxidant activity of flavonoids and their metabolites in vitro depends upon the arrangement of functional groups on the skeletal structure. The arrangement of substituents is a greater determinant of antioxidant activity than the flavan backbone alone. Free radical scavenging capacity is attributed to the high reactivity of hydroxyl substituents that participate in the reaction (Equation 1) to form a stable radical.

\[
R'\cdot + R \rightarrow R'\cdotO + RH
\]

(Equation 1)

(Stable radical)

The superoxide anion radical \((O_2^\cdot-\)) is an obligate byproduct of normal aerobic metabolism that is generated by one electron transfer to molecular oxygen. \((O_2^\cdot-\)) is a precursor of multiple other and more toxic reactive oxygen species (ROS), such as the hydroxyl radical \((HO^\cdot)\), hypochlorous acid \((HOCl)\), and singlet oxygen \((1^1O_2)\), which is formed in the reaction with hydrogen peroxide. The B-ring hydroxyl configuration is a significant contributor to scavenging of reactive oxygen species (ROS) and reactive nitrogen species (RNS). Based upon fundamental chemical
principles, the ene-diol functionality in the electron-rich aromatic B-ring system is prone to flavonoids oxidation. Hydroxyl groups on the B-ring donate a hydrogen and a electron to hydroxy, peroxy, and peroxynitrite radicals, stabilizing them and giving rise to a relatively stable flavonoid radical (equation 1). The catechol B-ring (3',4'-dihydroxy) (Scheme 3.3) capable of readily donating hydrogen (and electron) to stabilize a radical species, strongly enhances lipid peroxidation,\(^{65}\) for example, the peroxyl radical scavenging ability of luteolin (42) substantially exceeds kaempferol (37),\(^{66}\) both having identical hydroxylation patterns on the A-ring, but kaempferol lacking the B-ring catechol.

Oxidation of a flavonoid occurs on the B-ring when the catechol arrangement is present, yielding a stable ortho-semiquinone radical through electron delocalization.\(^{67}\) Flavones lacking catechol or o-trihydroxyl (pyrogallol) systems form relatively unstable radicals and are thus weak scavengers.\(^{68}\)

\[\text{KA} + \text{O}_2^- \rightleftharpoons \text{KAO}^- + \text{HO}_2^- \rightarrow \text{KAA}^- + \text{HO}_2 \]

Scheme 3.3

Other structural features important for antioxidant nature include the presence of 2,3 unsaturation in conjugation with a 4-oxo-function in the C-ring and the presence of functional groups capable of binding transition metal ions, such as iron and copper [for example quercetin (43)].

Quercetin (43)

3.6.2.2. O-methylation

The differences in antioxidant activity between polyhydroxylated and polymethoxylated flavonoids are most likely due to differences in both hydrophobicity and molecular planarity. Suppression of antioxidant activity by O-methylation may reflect steric effects that perturb planarity. Although the ratio of methoxy to hydroxyl substituents does not necessarily predict the scavenging ability of a flavonoid, the B-ring is particularly sensitive to the position of the methoxy group. Alternating a 6'-OH/4'-OMe configuration to 6'-OMe/4'-OH completely abolishes the scavenging of DPPH by inducing coplanarity.

4. STILBENES

4.1. Introduction

Stilbenes (2) are a class of phenolic compounds, whose occurrence in plants has been reported mainly in grapes and wines. These compounds have been shown to have some important biological activities, act as antifungal agents, and as antimicrobial inhibitors. In addition, they possess cyclooxygenases COX-1 and COX-2 (which are respectively constitutive and inducible enzymes that catalyze the production of pro-inflammatory prostaglandins from arachidonic acid), inhibitory effects and anti-HIV 1 and cytotoxic effects. They also affect lipid peroxidation, LDL oxidation, arachidonate metabolism, root growth, antioxidant and vasodilation capacities, and function as phytoalexins and tyrosinase inhibitors.

Stilbenes play important roles in plants, especially in heartwood protection as part of both constitutive and inducible defense mechanisms, and in dormancy and growth inhibition. The role of phytostilbenes and related compounds is considered to contribute to the durability of

Formation of stilbenes occurs when tissues are dying slowly, usually due to desiccation of tissues. Stilbenes are also synthesized as a secondary response against mechanical wounds, fungal infections and insects infestations, and they complement the action of resin acids which also have fungitoxic properties. Certain stilbenes, besides being toxic to insects and other organisms, have mammalian and nematicidal properties.

4.2. Structure and distribution

4.2.1. Monomeric stilbenes

Monomeric stilbenes (44-52) ranging from the unsubstituted trans-stilbene (2) from Alnus and Petivera to the hexasubstituted combretastatin A-1 (52) from Combretum caffrum are more widely distributed in both gymnosperms and angiosperms. Stilbenes often co-occur with flavonoids, which are related to the stilbenes on biogenetic grounds. Resveratrol (trans-4,3',5'-trihydroxystilbene) (47) is a phytoalexin, produced by plants in response to damage, particularly in vines, pines, and legumes and is a representative stilbene in the field of polyphenol based studies. Resveratrol and its glucosides are widely reported to be beneficial to health. They are used in the treatment of a wide variety of diseases including dermatitis, gonorrhea, fever, hyperlipidemia, arteriosclerosis and inflammation.

A common oxygenation pattern of the natural stilbenes is the 3,5-dioxy substitution, thus pinosylvin (45) and its monomethyl and dimethyl ethers (46), the first stilbenes to be isolated from wood, carry 3,5-dioxy substituents. Most stilbenes isolated from natural sources have the trans (or E) configuration (2). However, Rowe et al have isolated the cis (or Z) isomer of

pinoysylvin dimethyl ether from the bark of *Pinus banksiana* which contains a mixture of the *cis/trans* isomers with the *trans* isomer (46) dominating.

![Chemical structures](image)

4.2.2. Stilbene oligomers

Natural stilbene oligomers (53-57) are a group of compounds mostly obtained from nine plant families, namely *Dipterocarpaceae, Vitaceae, Cyperaceae, Leguminosae, Gnetaceae, Iridaceae, Celastraceae, Paeoniaceae* and *Moraceae*.\(^9\) Various biological activities, such as, chemoprevention of cancer,\(^9\) protein kinase C inhibition,\(^10\) anti-HIV and cytotoxicity,\(^11\) anti-

fungal,102 and cyclooxygenase (COX I, COX II) inhibition103,104 have been found in stilbene oligomers. In addition, a number of natural dimeric stilbenes exhibited potent anti-inflammatory activities, including inhibition of leukotriene (LTB4, C4, D4) and its receptor antagonism, affinity of HL 60, and CEC multiplet in *vitro* and in *vivo* models.105,105,106 Most of the oligostilbenoid polyphenols are generated from resveratrol by oxidative phenolic coupling and like resveratrol possess the typical resorcinol arrangement. Stilbene monomer building blocks with the catechol arrangement are relatively infrequent precursors in oligostilbenoid biosynthesis.

![Chemical structures of Maackiasin, Viniferin, (-)-Balanocarpol, Gnemonol K, and Heimiol A](image)

4.3. Biosynthesis of stilbenes

The stilbene backbone is synthesized by the enzyme stilbene synthase (STS), which is structurally and functionally closely related to chalcone synthase (CHS). The two enzymes are polyketide synthases and therefore catalyze the linking of acyl-CoA units by repetitive condensations associated with decarboxylation. Stilbene synthase uses a starter CoA (32) from the phenylpropanoid pathway and performs three sequential condensation reactions with C₂ units from decarboxylated malonyl-CoA (31) to form a linear tetrakietide intermediate (58), which is folded via (59) to form a new aromatic ring system (47). Natural stilbenes appear to be significant only to certain genera and seem to be expressive taxonomic markers.

Scheme 4.1. Biosynthesis of stilbenes

4.4. Synthesis of the monomeric stilbenes

Resveratrol (47), (trans-4,3',5'-trihydroxystilbene), found in grapes and a variety of medicinal plants, is a naturally occurring phytoalexin that protects against fungal infections.⁷,⁸ Despite their high fat diet and heavy smoking habits, people in the south of France have a very low incidence
of coronary heart disease (CHD). This so-called French Paradox has strongly been related with wine consumption.107 Although resveratrol has numerous biological activities in vitro, there is little produced from raw materials and as a result, synthetic procedures are needed for the formation of substantial amounts of resveratrol.109

![Scheme 4.2. Synthesis of stilbene monomers](image-url)

Resveratrol (47) is one of the unsymmetrical and (E)-geometrical stilbenes. Among the various methods used to synthesize unsymmetrical stilbenes, the Wittig reaction108 is the most general methodology (Scheme 4.2). Wittig condensation of the appropriate aldehyde (for example 58) with a phosphonium salt generated from O-protected 3,5-dihydroxybenzyl bromide (55) affords stilbene (61), as a mixture of (E) and (Z)-geometrical isomers in the ratio of 2:1. This E/Z mixture is efficiently converted to (E)-geometrical isomer by heating with a catalytic amount of I\textsubscript{2} in refluxing heptane for 12 hours.

4.5. Stilbene oligomer synthesis

A FeCl₃-promoted sequential pericyclic pathway leading to a highly oxygenated oligostilbenoid dimer (incorporating two asymmetric centres) has been reported (Scheme 4.3).

Scheme 4.3. Synthesis of the stilbene dimers

The stilbene monomer (64) was obtained in 32% yield by heating a mixture of 4-iodoacetoxybenzene (62) and 3,4-dimethoxystyrene (63) in the presence of palladium dichloride, triphenylphosphine, potassium acetate and silver nitrate in DMF for seven days. Treatment of (64) with ferric chloride in dichloromethane (room temperature) gave the unnatural stilbenoid dimers 6,7-di(4-acetoxyphenyl)-2,3-dimethoxy-8-(3,4-dimethoxyphenyl)-7,8-dihydropentalene (65) and 6-(4-acetoxyphenyl)-7-(4-hydroxyphenyl)-2,3-dimethoxy-8-(3,4-dimethoxyphenyl)-7,8-dihydropentalene (66).

5. Monomers from *Pericopsis elata*

5.1. Introduction

Phytochemical studies of *P. elata* resulted in the isolation of isoflavonoids, chalcones, monomeric and dimeric stilbenes. The durability of the heartwood of *P. elata* and its high resistance to pathogens may be attributed to the presence of the stilbenes. Stilbenes act as uncoupling agents that inhibit oxidative phosphorylation, the main source of energy in decay.

The acetone and methanol extracts of the pulverized heartwood of *P. elata* afforded a complex mixture of phenolic compounds which was resolvable only after extensive enrichment and fractionation procedures. Derivatization (acetylation and methylation) of the fractions to attain an acceptable level of purity led to substantial losses, hence prohibiting reliable quantification of the constituents. The variety of compounds isolated comprised: flavanones (naringenin and eriodictyol), isoflavones (genistein and biochanin A), dihydrochalcone [(R)-α-4,2',4'-tetraacetoxydihydrochalcone], α-methyldeoxybenzoins (angolensin), stilbene monomers (piceatannol, resveratrol and isorhapontigenin) and six novel stilbene dimers [(rel-2,3-trans-2-(3,4-dimethoxyphenyl)-3-(3,5-dimethoxyphenyl)-6-[2-(3,5-dimethoxyphenyl)-E-1-ethenyl]benzodioxane, rel-2,3-trans-2-(3,4-dimethoxyphenyl)-3-(3,4-dimethoxyphenyl)-4-[2-(3,4-dimethoxyphenyl)]-E-1-ethenyl]-6-methoxy-2,3-dihydrobenzofuran, rel-2,3-trans-2-(3,4-diacetoxyphenyl)-3-(3,5-diacetoxyphenyl)-4-[2-(3,4-diacetoxyphenyl)]-E-1-ethenyl]-6-acetoxy-2,3-dihydrobenzofuran, rel-2,3-trans-2-(3,4-dimethoxyphenyl)-3-(3,5-dimethoxyphenyl)-4-[2-(3,5-dimethoxyphenyl)]-Z-1-ethenyl]-6-methoxy-2,3-dihydrobenzofuran, rel-2,3-trans-4-Formyl-2-(3,4-dimethoxyphenyl)-3-(3,5-dimethoxyphenyl)-6-methoxy-2,3-dihydrobenzofuran and rel-2,3-trans-2-(3,5-diacetoxyphenyl)-3-(3,5-diacetoxyphenyl)-6-[2-(3,5-diacetoxyphenyl)]-E-1-ethenyl]-4-acetoxy-2,3-dihydrobenzofuran)]
5.2 Flavanones

Acetylation and methylation followed by PLC separation of fractions A3 and B7 afforded O-acetyl and O-methyl derivatives of two known flavanones (67 and 68), respectively. Flavanones are characterized by the presence of the H-3 (two doublet of doublets, δ 3.00-3.15 and 2.69-2.85) and H-2 (doublet of doublets, δ 5.00-6.00) in their 1H NMR spectra.114

The CD spectra (Figures 5.1 and 5.2) of compounds 67 and 68 were in line with the anticipated111,112 Cotton effect used to determine the absolute configuration at C-2. Thus the negative Cotton effect for the π→π* transition at (~282 nm) and positive for the n→π* transition at (~340 nm) are compatible with flavanones possessing a 2S absolute configuration.113

5.2.1 5,7,4'-Triacetoxyflavanone

By far the most encountered natural flavanone is naringenin (5,7,4'-trihydroxyflavanone). This natural flavanone was isolated after acetylation and PLC separation of fraction A3 as the 5,7,4'-tri-O-acetyl derivative (67). This compound was identified by comparison of the 1H NMR data of its O-acetyl derivative with data in literature.114

\begin{center}
\includegraphics[width=0.5\textwidth]{flavanone.png}
\end{center}

\begin{center}
(67)
\end{center}

112 H. Arakawa and M. Nakazaki. \textit{Ind. Chem.}, 1960, 73.
113 W. Gaffield. \textit{Tetrahedron}, 1970, 26, 4039.
In the 1H NMR spectrum (Plate 1, Table 5.1) of 67, the aromatic AB spin system [δ 6.80 (d) and 6.56 (d)] and the aromatic AA'BB' spin system [δ 7.48 (d) and 7.18 (d)] correspond to the A- and B-rings, respectively. The heterocyclic C-ring protons show distinct spin systems at δ 5.51 (dd), H-2 (1H) and δ 3.06 (dd) and 2.79 (dd), H-3 (2H), characteristic of the flavanone nucleus.114

<table>
<thead>
<tr>
<th>Ring</th>
<th>Proton(s)</th>
<th>(67) δH (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>H-6</td>
<td>6.56 (d, J 2.5Hz)</td>
</tr>
<tr>
<td></td>
<td>H-8</td>
<td>6.80 (d, J 2.5 Hz)</td>
</tr>
<tr>
<td>B</td>
<td>H-2',6'</td>
<td>7.48 (d, J 8.5 Hz)</td>
</tr>
<tr>
<td></td>
<td>H-3',5'</td>
<td>7.18 (d, J 8.5 Hz)</td>
</tr>
<tr>
<td>C</td>
<td>H-2</td>
<td>5.51 (dd, J 14.0, 3.0 Hz)</td>
</tr>
<tr>
<td></td>
<td>H-3$_{(eq)}$</td>
<td>3.06 (dd, J 17.0, 14.0 Hz)</td>
</tr>
<tr>
<td></td>
<td>H-3$_{(ax)}$</td>
<td>2.79 (dd, J 17.0, 3.0 Hz)</td>
</tr>
<tr>
<td></td>
<td>3 x -OAc</td>
<td>2.41 (s) 2.34 (s), 2.33 (s)</td>
</tr>
</tbody>
</table>

Table 5.1. 1H NMR data of 5,7,4'-triacetoxyflavanone (67).

Figure 5.1: CD spectrum of compound (67).
5.2.2. 5,7,3',4'-Tetramethoxyflavanone

Eriodictyol the parent compound of several natural flavanones, was isolated after methylation and PLC separation of B7 as the O-methyl derivative (68).

![Chemical Structure](image)

In the 1H NMR spectrum (Plate 2, Table 5.2) of 68, the aromatic AB spin system [δ 6.17 (d) and 6.11 (d)] and the aromatic ABX spin system [δ 7.01 (dd), 7.00 (d) and 6.91 (d)] correspond to the A- and B-rings, respectively. The heterocyclic C-ring protons show distinct spin systems at δ 5.36 (dd), H-2 (1H) and δ 3.06 (dd) and 2.79 (dd), H-3 (2H), characteristic of the flavanone nucleus.114

<table>
<thead>
<tr>
<th>Ring</th>
<th>Proton(s)</th>
<th>(68) δ_H (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>H-6</td>
<td>6.11 (d, J 2.5Hz)</td>
</tr>
<tr>
<td></td>
<td>H-8</td>
<td>6.17 (d, J 2.5 Hz)</td>
</tr>
<tr>
<td>B</td>
<td>H-2'</td>
<td>7.00 (d, J 2 Hz)</td>
</tr>
<tr>
<td></td>
<td>H-5'</td>
<td>7.01 (dd, J 2.5, 8.5 Hz)</td>
</tr>
<tr>
<td></td>
<td>H-6'</td>
<td>6.91 (d, J 8.5 Hz)</td>
</tr>
<tr>
<td>C</td>
<td>H-2</td>
<td>5.36 (dd, J 14.0, 3.0 Hz)</td>
</tr>
<tr>
<td></td>
<td>H-3$_{\text{eq}}$</td>
<td>3.07 (dd, J 17.0, 14.0 Hz)</td>
</tr>
<tr>
<td></td>
<td>H-3$_{\text{ax}}$</td>
<td>2.79 (dd, J 17.0, 3.0 Hz)</td>
</tr>
<tr>
<td></td>
<td>4 x -OMe</td>
<td>3.94 (s) 3.92 (2 x s), 3.84 (s)</td>
</tr>
</tbody>
</table>

Table 5.2. 1H NMR data of 5,7,3',4'-tetramethoxyflavanone (68).
5.3. Isoflavones

Acetylation and PLC purification of fraction A3 afforded the peracetate derivatives of two known isoflavones (69 and 70). Their 1H NMR spectra invariably display the singlet at δ 7.92 (69) and 7.89 (70) reminiscent of the vinylic H-2 resonance of isoflavones.

5.3.1. 5,7,4’-triacetoxyisoflavone

The most common isoflavone, genistein (5,7,4’-trihydroxyisoflavone), was isolated after acetylation and PLC separation as the tri-O-acetyl derivative (69). The 1H NMR spectrum of 69 (Plate 3, Table 5.3) displays the 2-H singlet at δ 7.92, an AA'BB' spin system [δ 7.52 (d) and 7.18 (d)] attributed to the B-ring, the aromatic *meta*-coupled doublets [δ 7.85 (d) and 7.28 (d)] assigned to the A-ring and three accompanying acetoxyl groups. Compound 69 was identified by comparison of the 1H NMR data of its tri-O-acetyl derivative with data in the literature.115

5.3.2. 5,7-diacetoxy-4'-methoxyisoflavone

The known biochanin A116 was isolated as a di-O-acetyl derivative (70) after acetylation and PLC separation of fraction A3 of the acetone extract. In the 1H NMR spectrum of (70) (Plate 4, Table 5.3), the 4'-acetoxy of 5,7,4' -triacetoxy-isoflavone (69) is replaced by a natural methoxy group on the B-ring. An AA'BB' spin system [δ 7.42, (d) and δ 6.98, (d)] is attributed to the B-ring, the aromatic meta-coupled doublets (δ 7.26, d and 6.87, d) are assigned to the A-ring. Two acetoxy groups as well as one methoxy group are also displayed in the same spectrum. The n.O.e association of 4'-OMe with H-3',5' (Plate 4a) confirms the position of the methoxy group.

Table 5.3. 1H NMR data of 5,7,4'-triacetoxyisoflavone (69) and 5,7-diacetoxy-4'-methoxyisoflavone (70).

5.4. Dihydroxychalones

5.3.1. (R)-α-4,2',4'-tetraacetoxydihydrochalcone

Dihydrochalones bearing an oxygen substituent alpha to the carbonyl carbon are rare in nature. However, a known dihydrochalcone, (R)-α-4,2',4'-tetra-acetoxydihydrochalcone (71) was isolated after acetylation and PLC purification of fraction A2.

![Dihydroxychalcone](image)

(71)

The 1H NMR spectrum (Plate 5, Table 5.4) of 71, displays a methylene group [H-β (eq) (3.22 (dd,) and H-β (ax) 3.14 (dd)] and H-α 5.99 (dd), which are characteristic resonances of the α-hydroxydihydrochalcone. The AA'BB' spin system at δ 7.28 (d) and 7.06 (d) is attributed to the B-ring and the ABX spin system [δ 7.77 (d), δ 6.71 (dd) and δ 6.81 (d)]
is assigned to the A-ring. The three aromatic acetoxy groups appear as singlets at $\delta \ 2.32$ (s), $2.34 \ (2 \times s)$ and the aliphatic acetoxy group resonates at $\delta \ 2.15$ (s).

<table>
<thead>
<tr>
<th>Ring</th>
<th>Proton(s)</th>
<th>(71) δ_H (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>H-3'</td>
<td>6.81 (d, $J 2.5$ Hz)</td>
</tr>
<tr>
<td></td>
<td>H-5'</td>
<td>6.71 (dd, $J 8.5, 2.5$Hz)</td>
</tr>
<tr>
<td></td>
<td>H-6'</td>
<td>7.77 (d, $J 8.5$Hz)</td>
</tr>
<tr>
<td></td>
<td>H-β(eq)</td>
<td>3.22 (dd, $J 15.0, 8.5$ Hz)</td>
</tr>
<tr>
<td></td>
<td>H-β(ax)</td>
<td>3.14 (dd, $J 15.0, 8.5$ Hz)</td>
</tr>
<tr>
<td></td>
<td>H-α</td>
<td>5.99 (dd, $J 8.5, 2.5$ Hz)</td>
</tr>
<tr>
<td>B</td>
<td>H-2,6</td>
<td>7.28 (d, $J 8.5$ Hz)</td>
</tr>
<tr>
<td></td>
<td>H-3,5</td>
<td>7.06 (d, $J 8.5$ Hz)</td>
</tr>
<tr>
<td></td>
<td>3 x OAc</td>
<td>2.34 (2 x s), 2.32 (s)</td>
</tr>
<tr>
<td></td>
<td>OAc</td>
<td>2.15 (s)</td>
</tr>
</tbody>
</table>

Table 5.4. 1H NMR data of (R)-α-4,2',4'-tetraacetoxydihydrochalcone (71).

5.5. α-Methyldeoxybenzoins

Angolensin117 is an example of the α-methyldeoxybenzoin class of compounds. Co-occurrence with various isoflavonoids suggests that the α-methyldeoxybenzoins could be reduced forms of the isoflavonoid skeleton. A single α-methyldeoxybenzoin 72 was isolated after acetylation and PLC separation of fraction A3.

5.5.1. 4'-Acetoxy-2'-hydroxy-4-methoxy-α-methyldeoxybenzoin

![Diagram](https://via.placeholder.com/150)

(72)

The 1H NMR spectrum (Plate 6, Table 5.4) of compound 72 displays an ABX spin system [δ 6.71 (d) 6.59 (dd) 7.82 (d)] allocated to the A-ring, an AA'BB' spin system [6.87 (d) 7.22 (d)] assigned to the B-ring, an aromatic acetoxy group at δ 2.30 (s) and a methoxy group at δ 3.79 (s). The conspicuous quartet at δ 4.63 and the doublet at δ 1.53 characteristic of the α-methyldeoxybenzoin compounds are displayed in the same spectrum. The n.O.e association of 4-OMe with H-3,5 (Plate 6a) confirms the position of the methoxy group. Due to the expected hydrogen bonding in structure (72), only one acetoxy group is observable after acetylation in the 1H NMR spectrum. Compound (72) is confirmed to be angolensin by comparison with 1H NMR data in the literature.118

![Table 5.4](image)

Table 5.4: 1H NMR data of 4'-acetoxy-2'-hydroxy-4-methoxy-α-methyldeoxybenzoin (72).

118 B. C. B. Bezuidenhout, E. V. Brandt and D. G. Roux. *J. C. S. Perkin 1*, 1980, 2179.
5.6. Stilbenes

Two stilbene monomers that are considered to play a role as phytoalexins119, namely resveratrol and piceatannol were isolated from the heartwood of \textit{P. elata}. Piceatannol the major phenolic constituent of \textit{P. elata} (\textasciitilde16\%) has been identified as the active ingredient of the species used in traditional herbal medicine120 and as an antileukemic compound in the seeds of \textit{E. lagascae}, which is used in folk medicine to treat cancer, tumors and warts.121 Resveratrol's biological properties include antifungal, antibacterial, anticancer, antiviral, oestrogenic, platelet aggregating and heart protecting activities.122 Isorhapontigenin isolated from \textit{R. undulatum}123 exhibited strong anti-allergic activity. Generally stilbenes act as uncoupling agents that inhibit oxidative phosphorylation, the main source of energy in decay.

5.6.1. Monomeric stilbenes

Stilbenes are phenolic compounds composed of two benzene rings linked by vinylic group. Irrespective of analyzing the samples in different solvents, overlapping of the aromatic protons in the 1H NMR spectra of the stilbenes rendered structural elucidation difficult.

5.6.1.1. \textit{trans}-4,3’,5’-Triacetoxy-stilbene

The \textit{trans}-4,3’,5’-trihydroxystilbene, resveratrol (47), and its \textit{cis} isomer are familiar plant metabolites isolated from red wine.124,125,126 The \textit{trans}-tri-\textit{O}-acetyl resveratrol derivative (73) was isolated after acetylation and PLC separation of fraction A3.

125 "Dictionary of Natural Products", ed. Buckingham, Chapman and Hall; London, 1994, 2, 1783.
The 1H NMR spectrum (Plate 7, Table 5.6) of 73 exhibits simple aromatic spin systems. An AA'BB' spin system [δ 7.51 (d) and 7.11 (d)] is attributed to the A-ring and an A$_2$B spin system [(δ 7.14 (d, 2H) 6.84(t)] is assigned to the B-ring. The doublets with a large coupling constant ($J = 16.0$) (H-α at δ 7.09 and H-β at δ 6.98) in the spectrum represent the trans-olefinic system. The three acetoxy groups resonate as a singlet (δ 2.33).

<table>
<thead>
<tr>
<th>Ring</th>
<th>Proton(s)</th>
<th>(73) δH (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>H-2,6</td>
<td>7.51 (d, J 8.5 Hz)</td>
</tr>
<tr>
<td></td>
<td>H-3,5</td>
<td>7.11 (d, J 8.5 Hz)</td>
</tr>
<tr>
<td></td>
<td>H-α</td>
<td>7.09 (d, J 16.0 Hz)</td>
</tr>
<tr>
<td></td>
<td>H-β</td>
<td>6.98 (d, J 16.0 Hz)</td>
</tr>
<tr>
<td>B</td>
<td>H-2',6'</td>
<td>7.14 (d, J 2.5 Hz)</td>
</tr>
<tr>
<td></td>
<td>H-4'</td>
<td>6.84 (t, J 2.5 Hz)</td>
</tr>
<tr>
<td></td>
<td>3 x OAc</td>
<td>2.33 (3 x s)</td>
</tr>
</tbody>
</table>

Table 5.6. 1H NMR data of trans-4,3',5'-triacetoxystilbene (73).
5.6.1.2.

trans-3,4,3',5'- Tetraacetoxystilbene and *trans*-3,4,3',5'-tetrahydroxystilbene

Piceatannol\(^\text{127}\) (*trans*-3,4,3',5'-tetrahydroxystilbene) also known as 3-hydroxyresveratrol or astringinine) was isolated as a free phenol (48) (major constituent of fraction B5 of the acetone extract) and as peracetate derivative (74) after acetylation and PLC separation of the same fraction.

\[\text{OR} \quad \text{OR} \]
\[\alpha \quad \beta \]
\[1 \quad 2 \quad 5 \quad 6 \]
\[\text{A} \quad \text{B} \]
\[\text{OR} \quad \text{OR} \]

(48) \(R = \text{H} \) \n(74) \(R = \text{Ac} \)

The \(^1\)H NMR spectrum (Plate 8, Table 5.7) (48) displays an ABX spin system at \(\delta \) 7.09 (d) 6.82 (d) and 6.91 (dd) attributed to the A-ring and an A\(_2\)B spin system [\(\delta \) 6.54 (d), 6.27 (t)] assigned to the B-ring. The large coupling constant (\(J = 16.0 \)) observed between H-\(\alpha \) [\(\delta \) 6.97 (d)] and H-\(\beta \) [\(\delta \) 6.83 (d)] in the spectrum corresponds to the *trans*-olefinic system. The four hydroxy groups \(\delta \) 8.05, 8.15 and 8.35 (x2) resonate as broadened singlets.

The \(^1\)H NMR spectrum (Plate 9, Table 5.7) of the tetra-\(O \)-acetyl derivative (74), the 3-acetoxy analogue of 73 displays an ABX spin system \(\delta \) 7.31 (d) 7.18 (d) and 7.33 (dd) attributed to the A-ring and A\(_2\)B spin system [\(\delta \) 7.11 (d, 2H), 6.84 (t)] assigned to the B-ring. The large coupling constant (\(J = 16.0 \)) observed between H-\(\alpha \) at \(\delta \) 7.02 (d) and H-\(\beta \) at \(\delta \) 6.94 (d) in the spectrum corresponds to the *trans*-olefinic system. Four acetate groups are also displayed in the same spectrum.

<table>
<thead>
<tr>
<th>Ring</th>
<th>Proton (s)</th>
<th>(48) δ_\text{H} (ppm)</th>
<th>(74) δ_\text{H} (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>H-2</td>
<td>7.09 (d, J 2.5 Hz)</td>
<td>7.31 (d, J 2.5 Hz)</td>
</tr>
<tr>
<td></td>
<td>H-5</td>
<td>6.82 (d, J 8.5 Hz)</td>
<td>7.18 (d, J 8.5 Hz)</td>
</tr>
<tr>
<td></td>
<td>H-6</td>
<td>6.91 (dd, J 8.5, 2.5 Hz)</td>
<td>7.33 (dd, J 8.5, 2.5 Hz)</td>
</tr>
<tr>
<td></td>
<td>H-α</td>
<td>6.97 (d, J 16.0 Hz)</td>
<td>7.02 (d, J 16.0 Hz)</td>
</tr>
<tr>
<td></td>
<td>H-β</td>
<td>6.83 (d, J 16.0 Hz)</td>
<td>6.94 (d, J 16.0 Hz)</td>
</tr>
<tr>
<td>B</td>
<td>H-2',6'</td>
<td>6.54 (d, J 2.5 Hz)</td>
<td>7.11 (d, J 2.5 Hz)</td>
</tr>
<tr>
<td></td>
<td>H-4'</td>
<td>6.27 (t, J 2.5 Hz)</td>
<td>6.84 (t, J 2.5 Hz)</td>
</tr>
<tr>
<td></td>
<td>4 x OH</td>
<td>8.35 (2 x bs), 8.15 (bs), 8.05 (bs)</td>
<td>2.32 (s), 2.30 (2 x s), 2.29 (s)</td>
</tr>
<tr>
<td></td>
<td>4 x OAc</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 5.7. 1H NMR data of trans-3,4,3',5'-tetrahydroxystilbene (48) and trans-3,4,3',5'-tetraacetoxystilbene (74).

5.6.1.3.

trans-2,3',5'-Triacetoxy-4-methoxystilbene

trans-4,3',5'-Trihydroxy-3-methoxystilbene (isorhapontigenin) (49) was isolated after acetylation and PLC separation as the *trans*-O-acetyl derivative (75) from fraction A4.
The 1H NMR spectrum (Plate 10, Table 5.8) of 75 displays an ABX spin system [δ 7.05 (d), 7.03 (d) and 7.08 (dd)] attributed to the A-ring and A$_2$B spin system [δ 7.15 (d, 2H) and 6.84 (t)] assigned to the B-ring. The large coupling constant ($J = 16.0$) observed between H-α at δ 7.07 (d) and H-β at δ 6.98 (d) in the spectrum represents the trans-olefinic system. Three acetoxy groups resonate at δ 2.35 (s), 2.33 (2 x s) and one methoxy group at δ 3.90 (s). The A$_2$B spin system and the three acetoxy groups displayed in the 1H NMR of compound 74 (Plate 9) are accompanied by an additional methoxy group in compound 75 and the ABX spin system replaces the AA'BB' spin system. Compound 75 is therefore the 3-methoxy analogue of 4,3',5',-tri-O-acetyl resveratrol. This is confirmed by n.O.e association of 3-OMe with H-3 and H-5 (Plate 10a) of the ABX system.

<table>
<thead>
<tr>
<th>Ring</th>
<th>Proton(s)</th>
<th>(75) δ_H (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>H-3</td>
<td>7.05 (d, J 2.5 Hz)</td>
</tr>
<tr>
<td></td>
<td>H-5</td>
<td>7.08 (dd, J 8.5, 2.5 Hz)</td>
</tr>
<tr>
<td></td>
<td>H-6</td>
<td>7.03 (d, J 8.5 Hz)</td>
</tr>
<tr>
<td></td>
<td>H-α</td>
<td>7.07 (d, J 16.0 Hz)</td>
</tr>
<tr>
<td></td>
<td>H-β</td>
<td>6.98 (d, J 16.0 Hz)</td>
</tr>
<tr>
<td>B</td>
<td>H-2',6'</td>
<td>7.15 (d, J 2.5 Hz)</td>
</tr>
<tr>
<td></td>
<td>H-4'</td>
<td>6.84 (t, J 2.5 Hz)</td>
</tr>
<tr>
<td></td>
<td>OMe</td>
<td>3.90 (s)</td>
</tr>
<tr>
<td></td>
<td>3 x OAc</td>
<td>2.35 (s), 2.33 (2 x s)</td>
</tr>
</tbody>
</table>

Table 5.8: 1H NMR data of 2,3',5'-trans-triacetoxy-4-methoxystilbene (75).
6.1. Dimeric Stilbenes

6.1.1. Introduction

Although dimers from stilbene building blocks occur infrequently in nature, six dimeric stilbenes (76-81, Figures 6.1 and 6.2) have been isolated from the methanol and acetone extracts of P. elata. The structures of the dimeric stilbenes originate from different combinations of the two monomeric stilbenes, piceatannol (3,4,3',5'-tetrahydroxystilbene) (the major constituent ~16% of the phenolic content of P. elata), and 3,4,3',4'-tetrahydroxystilbene.

The relative stereochemistry at the chiral centers and the olefinic bonds in the dimers contribute to the variety of the structures. Elucidation of the structures is based mainly on spectroscopic data and is confirmed unambiguously by the synthesis of selected structures.

Natural coupling of the dimers is envisaged to follow a biosynthetic route involving two monomers where the olefinic carbons of one monomer couple with the vicinal 3,4- or 3,5-dioxygenated ring of the second monomer resulting in ether linkages and C-C bonds, forming dimers with different structural backbones (Figures 6.1 and 6.2). The 1H NMR analysis of semi-purified fractions prior to derivatization demonstrated the absence of methoxy and acetoxy groups in the natural dimeric stilbenes.
Figure 6.1: Dimeric stilbene with the dioxane coupling.
Figure 6.2: Dimeric stilbenes with the dihydrobenzofuran coupling.
6.2 Dimeric stilbenes with the dioxane coupling.

Following methylation of fraction 7 of the methanol extract a single dimeric stilbene with a dual ether linkage was isolated as a methoxy derivative 76. The dimer possesses a dioxane fusion between the two units presumably originating from oxidative coupling of the oxygens of the catechol ring of one monomer with the vinyl bond of the second monomer, to give the benzodioxane A-ring. The 1H NMR spectrum of derivative 76 (Plate 11) exhibits twelve aromatic protons, accompanied by six methoxy groups, a trans-disubstituted vinyl group and two deshielded aliphatic protons. The oxygenation patterns of the aromatic rings all belong to either a catechol- or resorcinol arrangement and the data suggest that it is a piceatannol (3,4,3',5'-tetrahydroxystilbene) dimer, which is probably its precursor.

6.2.1 rel-2,3-trans-2-(3,4-Dimethoxyphenyl)-3-(3,5-dimethoxyphenyl)-6-[2-(3,5-dimethoxyphenyl)-E-1-ethenyl]benzodioxane (76).

Methylation of fraction 7 of the methanol extract followed by PLC purification afforded the o-methyl derivative 76. The 1H and 13C NMR spectral data of 76 (Plates 11 and 11a, Table 6.1), together with the 1H-1H-COSY and HMQC spectra, permitted the assignment of two 3,5-dimethoxyphenyl rings (D and E) (A$_2$B spin systems), the 3,4-dimethoxyphenyl C-ring and catechol B-ring. The 3',4'-dimethoxy C-ring is designated by 2J correlations of H-2' to C-3', H-5' to C-4', and 3J of H-2 to C-2' and -6', while the 3'', 5''-dimethoxy phenyl D-ring is resolved by 2J of H-2'',6'' to C-3'',5'' and 3J of H-2'',6'' to C-3, (Figure 6.4, Table 6.1).
The 1H NMR spectral data (Plate 11) also reveals the presence of two deshielded aliphatic methine protons [δ 4.88 (d, H-2) and 4.84 (d, H-3)]. The deshielding suggests that they could be attached to the benzylic carbons, each bearing an oxygen atom. This assumption is supported by the 13C NMR chemical shifts [δ_C 81.3 ppm (C-2) and 80.7 ppm (C-3)] (Table 6.1). The coupling constant ($J = 8.0$ Hz) of the doublets corresponds to a 2,3-trans relative configuration for the A-ring.128 The molecular composition of 76 C$_{34}$H$_{34}$O$_8$ established from FABMS at m/z 570.2254 (M + H)$^+$ is in accord with spectroscopic analyses made for compound 76.

Significant n.O.e associations (Figure 6.3, Plate 11b) of H-2 with H-2'' and 6'' of the D-ring, as well as H-3 with H-2' and -6' of the C-ring confirm the proposed 2,3-trans configuration. The same interactions confirm the assignments of the C- and D-rings.

![Figure 6.3: Relevant n.O.e associations of the methoxy derivative of the dimeric stilbene 76.](image)

The trans-relationship of the olefinic protons H-\(\alpha\) (7.03, d, $J = 14.0$ Hz) and H-\(\beta\) (6.93, d, $J = 14.0$ Hz) is indicated by the large coupling constant and n.O.e associations (Figure 6.3). Hence, strong n.O.e associations of H-\(\alpha\) with H-7, and H-\(\beta\) with H-2'' (Plate 11c) confirms the B- and D rings hydroxylation patterns. 2 D experiments [HMOCQ and HMBC (Figure 6.4, Table 6.1)], thus, allow the assignment of all proton and carbon signals (Table 6.1).

Figure 6.4: Relevant HMBC correlations of the methoxy derivative of the dimeric stilbene 76.

<table>
<thead>
<tr>
<th>Ring</th>
<th>Protons</th>
<th>δ<sub>H</sub> (ppm)</th>
<th>Carbons</th>
<th>δ<sub>C</sub> (ppm)</th>
<th>2J (H→C)</th>
<th>3J (H→C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>2</td>
<td>4.88 (d, J 8.0)</td>
<td>2</td>
<td>81.3</td>
<td>C-1', C-3</td>
<td>C-2', C-6'</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>4.84 (d, J 8.0)</td>
<td>3</td>
<td>80.7</td>
<td>C-2'', C-1''</td>
<td>C-2'', C-6''</td>
</tr>
<tr>
<td></td>
<td>4a</td>
<td></td>
<td>4a</td>
<td>144.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>7.25 (d, J 2.5)</td>
<td>5</td>
<td>115.3</td>
<td>C-6, C-3a</td>
<td>C-8α, C-α</td>
</tr>
<tr>
<td>B</td>
<td>6</td>
<td></td>
<td>6</td>
<td>131.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>7.12 (dd, J 8.5, 2.5)</td>
<td>7</td>
<td>120.8</td>
<td>C-6</td>
<td>C-8α, C-β</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>7.05 (d, J 8.5)</td>
<td>8</td>
<td>117.8</td>
<td>C-8</td>
<td>C-3a</td>
</tr>
<tr>
<td></td>
<td>8a</td>
<td></td>
<td>8a</td>
<td>144.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>1'</td>
<td></td>
<td>1'</td>
<td>129.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2'</td>
<td>6.62 (d, J 2.5)</td>
<td>2'</td>
<td>110.7</td>
<td>C-3'</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3'</td>
<td></td>
<td>3'</td>
<td>149.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4'</td>
<td></td>
<td>4'</td>
<td>149.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5'</td>
<td>6.79 (d, J 8.5)</td>
<td>5'</td>
<td>111.1</td>
<td>C-4'</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6'</td>
<td>6.71 (dd, J 8.5, 2.5)</td>
<td>6'</td>
<td>120.5</td>
<td>C-5'</td>
<td>C-2</td>
</tr>
<tr>
<td>D</td>
<td>1''</td>
<td></td>
<td>1''</td>
<td>138.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2''</td>
<td>6.67 (d, J 2.5)</td>
<td>2''</td>
<td>104.8</td>
<td>C-3''</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3''</td>
<td></td>
<td>3''</td>
<td>161.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4''</td>
<td>6.40 (t, J 2.5)</td>
<td>4''</td>
<td>101.0</td>
<td>C-3'', C-5''</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5''</td>
<td></td>
<td>5''</td>
<td>161.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6''</td>
<td>6.67 (d, J 2.5)</td>
<td>6''</td>
<td>104.8</td>
<td>C-5''</td>
<td></td>
</tr>
<tr>
<td>Olefinic</td>
<td>α</td>
<td>7.05 (d, J 16.0)</td>
<td>α</td>
<td>128.9</td>
<td>C-6, C-α</td>
<td>C-5, C-7</td>
</tr>
<tr>
<td>Olefinic</td>
<td>β</td>
<td>6.94 (d, J 16.0)</td>
<td>β</td>
<td>127.8</td>
<td>C-7', C-9'</td>
<td>C-2'', C-6'''</td>
</tr>
<tr>
<td>E</td>
<td>1'''</td>
<td></td>
<td>1'''</td>
<td>139.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2'''</td>
<td>6.25 (d, J 2.5)</td>
<td>2'''</td>
<td>106.0</td>
<td>C-3'', C-5'''</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3'''</td>
<td></td>
<td>3'''</td>
<td>161.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4'''</td>
<td>6.38 (t, J 2.5)</td>
<td>4'''</td>
<td>100.1</td>
<td>C-3'', C-5'''</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5'''</td>
<td></td>
<td>5'''</td>
<td>161.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6'''</td>
<td>6.25 (d, J 2.5)</td>
<td>6'''</td>
<td>106.0</td>
<td>C-3'', C-5'''</td>
<td></td>
</tr>
<tr>
<td>OCH<sub>3</sub></td>
<td></td>
<td>3.88, 3.85 (x2), 3.78, 3.7 (x2)</td>
<td>OCH<sub>3</sub></td>
<td>56.3 (x2)</td>
<td>55.8 (x4)</td>
<td></td>
</tr>
</tbody>
</table>

Table 6.1. ¹H NMR (300 MHz), ¹³C HMR (75 MHz) and HMBC data of compound 76.
6.3 Dimeric stilbenes with the dihydrobenzofuran coupling.

The dimeric stilbenes 77-81 all exhibit two prominent aliphatic doublets [δ 4.5-4.9 and δ 5.4-6.1] in their ¹H NMR spectra (Plates 12, 13, 14, 15 and 16) corresponding to signals at δC 55-58 and δC 91-94 ppm, respectively in the ¹³C NMR spectra (Plates 12a, 13a, 14a and 16a). The deshielded doublet at δH 5.4-6.1 (δC 91-94 ppm) suggests that the proton is attached to an oxygen bearing carbon in comparison to the methine proton [δH 4.5-4.9 (δC 55-58 ppm)] which is apparently not. Thus, the two methine protons in the ¹H NMR spectra belong to the dihydrofuran A-ring. Using this conclusion as the focal point, the structures of the dimeric stilbenes (77-81) were elucidated in conjunction with the 1D (¹H and ¹³C NMR) and 2D experiments (HMQC, HMBC, NOESY and COSY).

Although all the dimeric stilbenes 77-81 display similar aliphatic doublets (H-2 and H-3) in their ¹H NMR spectra, spectroscopic data (HMBC, NOESY and HMQC) indicate that the coupling in the compounds 77-81 differs (Figure 6.5). In order to form the C-C bond between C-3 and C-3a (Figure 6.5a and b), coupling could occur between the olefinic carbon of one stilbene monomer with either C-4' or C-2'/-6' of (48) in the second stilbene monomer. Compounds 77-80 have the same arrangement on the B-ring (Figure 6.5a) and their spectral data confirm that the C-C bond between C-3 and C-3a formed at C-2'/-6' in the resorcinol ring, whereas for compound 81 the same C-C bond formed at C-4' in the resorcinol ring (Figure 6.5b).
Figure 6.5. Relevant HMBC correlations and n.O.e associations confirming the products from the different couplings.

For compounds 77-80 there are strong HMBC correlations (Figure 6.5a) from H-7 to C-7a and C-6, and H-5 to C-4 and C-α, which confirm the hydroxylation pattern of the B-rings. However, for compound 81 the HMBC correlations show from H-7 to C-7a, and H-5 to the oxygen bearing carbon C-4. n.O.e Associations between H-α with both H-5 and H-7 (Figure 6.5b) confirm the hydroxylation pattern of the B-ring of 81.

6.3.1 \textit{rel-2,3-trans-2-(3,4-Dimethoxyphenyl)-3-(3,4-dimethoxyphenyl)-4-[2-(3,4-dimethoxyphenyl)]-E-1-ethenyl]-6-methoxy-2,3-dihydrobenzofuran (77).}

Methylation and PLC purification of fraction B7 afforded the \textit{o}-methyl derivative of a novel dimeric stilbene 77. Compound 77 has a molecular formula of C_{35}H_{36}O_{8} revealed by FABMS at \textit{m/z} 584.2410 (M + H)^{+}. The \textit{^1}H NMR spectrum of 77 displays eleven aromatic protons, two olefinic protons, two deshielded aliphatic protons, and the seven methoxy groups. The aromatic protons are displayed as 3 sets of ABX spin systems for the C-, D- and E-rings, and an AB system for the B-ring (Plate 12, Table 6.2) all suggesting that 3,4,3',4'-tetrahydroxy stilbene and piceatannol (3,4,3',5'-tetrahydroxystilbenes) are its precursors. The prominent methine doublets at δ 5.52 and 4.45 (\textit{J} = 7.0 Hz), characteristic of a dihydrobenzofuran A-ring129 are allocated to H-2 and H-3, respectively. Allocation of all protons and carbons are \textit{via} HMQC, HMBC, COSY and NOESY experiments.

HMBC correlations (Figure 6.6, Table 6.2, Plate 12d) of H-2 to C1', -2' and -6' and H-3 to C-2, -3a,-1'', -2'' and -5'' establish the C- and D-rings assignments. The E ring is allocated from the COSY and HMBC experiments, and confirmed by n.O.e association of H-β to H-2'' and -6'' (Figure 6.7).

Configuration at the two stereogenic centers (C-2 and C-3) is defined by prominent n.O.e interactions of H-2 with H-2'' and -6'' (Figure 6.7, Plate 12c), and H-3 with H-2', H-6' and H-β (Plate 12b) as a trans relative configuration. The same associations, together with n.O.e associations of H-2 with H-2' and H-6' and H-3 with H-2'' and H-6'' (plates 12b and 12c) further confirm the C and D-rings assignments.

FABMS revealed the base peak of compound 77 to be 584.2410 m/z (M + H)$^+$, corresponding to the molecular formula of C$_{35}$H$_{36}$O$_8$.

(77)
Figure 6.6: Relevant HMBC correlations of the o-methyl derivative of the dimeric stilbene 77.

Figure 6.7: Relevant n.O.e associations of the o-methyl derivative of the dimeric stilbene 77.
<table>
<thead>
<tr>
<th>Ring</th>
<th>Protons</th>
<th>δ<sub>H</sub> (ppm)</th>
<th>Carbons</th>
<th>δ<sub>C</sub> (ppm)</th>
<th>2<sup>J</sup> (H→C)</th>
<th>3<sup>J</sup> (H→C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>2</td>
<td>5.52 (d, J 7.0)</td>
<td>2</td>
<td>93.8</td>
<td>C-1', C-2', C-6'</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>4.54 (d, J 7.0)</td>
<td>3</td>
<td>57.7</td>
<td>C-1'', C-2, C-3a</td>
<td>C-1', C-7a, C-2'', 5''</td>
</tr>
<tr>
<td>B</td>
<td>3a</td>
<td></td>
<td>3a</td>
<td>120.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td></td>
<td>4</td>
<td>136.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>6.76 (d, J 2.5)</td>
<td>5</td>
<td>120.9</td>
<td>C-4</td>
<td>C-α, C-3a C-6</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td></td>
<td>6</td>
<td>108.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>6.65 (d, J 2.5)</td>
<td>7</td>
<td>149.4</td>
<td>C-7a</td>
<td>C-6</td>
</tr>
<tr>
<td></td>
<td>7a</td>
<td></td>
<td>7a</td>
<td>161.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>1'</td>
<td></td>
<td>1'</td>
<td>146.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2'</td>
<td>6.86 (d, J 2.5)</td>
<td>2'</td>
<td>118.8</td>
<td>C-1', C-3</td>
<td>C-2, C-6'</td>
</tr>
<tr>
<td></td>
<td>3'</td>
<td></td>
<td>3'</td>
<td>149.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4'</td>
<td></td>
<td>4'</td>
<td>149.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5'</td>
<td>6.87 (d, J 8.5)</td>
<td>5'</td>
<td>111.5</td>
<td>C-4', C-6'</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6'</td>
<td>6.87 (dd, J 8.5, 2.5)</td>
<td>6'</td>
<td>109.1</td>
<td>C-5'</td>
<td>C-1', 2''</td>
</tr>
<tr>
<td>D</td>
<td>1''</td>
<td></td>
<td>1''</td>
<td>134.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2''</td>
<td>6.40 (d, J 2.5)</td>
<td>2''</td>
<td>106.5</td>
<td>C-3''</td>
<td>C-3, C-6''</td>
</tr>
<tr>
<td></td>
<td>3''</td>
<td></td>
<td>3''</td>
<td>161.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4''</td>
<td></td>
<td>4''</td>
<td>161.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5''</td>
<td>6.39 (d, J 8.5)</td>
<td>5''</td>
<td>106.5</td>
<td>C-6''</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6''</td>
<td>6.39 (dd, J 8.5, 2.5)</td>
<td>6''</td>
<td>99.2</td>
<td>C-3'', C-5''</td>
<td></td>
</tr>
<tr>
<td>Olefinic α</td>
<td>6.89 (d, J 16.0)</td>
<td>α</td>
<td>129.7</td>
<td>C-5</td>
<td>C-4</td>
<td></td>
</tr>
<tr>
<td>Olefinic β</td>
<td>6.68 (d, J 16.0)</td>
<td>β</td>
<td>123.7</td>
<td>C-1''</td>
<td>C-6''</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>1'''</td>
<td></td>
<td>1'''</td>
<td>130.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2'''</td>
<td>6.50 (d, J 2.5)</td>
<td>2'''</td>
<td>95.6</td>
<td>C-1', C-3''</td>
<td>C-6''</td>
</tr>
<tr>
<td></td>
<td>3'''</td>
<td></td>
<td>3'''</td>
<td>161.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4'''</td>
<td></td>
<td>4'''</td>
<td>149.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5'''</td>
<td>6.77 (d, J 8.5)</td>
<td>5'''</td>
<td>111.3</td>
<td>C-4'''</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6'''</td>
<td>6.75 (dd, J 8.5, 2.5)</td>
<td>6'''</td>
<td>102.6</td>
<td>C-2''</td>
<td>C-2''</td>
</tr>
<tr>
<td>OC<sub>H</sub></td>
<td>3.84 (x2), 3.87, 3.82, 3.79, 3.73 (x2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OCH<sub>3</sub></td>
<td>3.84 (x2), 3.87, 3.82, 3.79, 3.73 (x2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OCH<sub>3</sub></td>
<td>56.3 (X3), 56.0, 55.8, 55.7 (X2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 6.2. ¹H NMR (300 MHz), ¹³C NMR (75 MHz) and HMBC data of compound 77.
6.3.2 *rel*-2,3-*trans*-2-(3,4-Diacetoxyphenyl)-3-(3,5-diacetoxyphenyl)-4-[2-(3,4-diacetoxyphenyl)]-*E*-1-ethenyl]-6-acetoxy-2,3-dihydrobenzofuran (78).

![Chemical structure of compound 78](image)

Following acetylation and PLC purification of fraction A7, compound 78 was isolated as a peracetate derivative. The 1H NMR spectrum of 78 (Plate 13, Table 6.3) exhibits eleven aromatic protons, two *trans*-olefinic protons (δ 6.54 and 6.84 d, $J = 16.0$ Hz), two methine protons (δ 4.64 and 5.61, $J = 7.0$ Hz) and seven acetoxy groups. Four spin systems from eleven aromatic protons are assignable to the B-, C-, D- and E-rings. All the protons and carbons (Plate 13a) are allocated via HMQC, HMBC, NOESY and COSY experiments.

Assignment of the ABX system (Table 6.3) to the C-ring is confirmed by the strong n.O.e association (Figure 6.8, Plate 13b) of H-2 with H-6'. H-5' is established from its coupling (COSY) with H-6'. Two bonds removed for H-2' to the oxygen linked C-3' (144.4 ppm) and three bonds to C-4' (142.7 ppm) (HMBC) (Figure 6.9) confirm the ABX hydroxylation pattern of the C-ring.

The A$_2$B system of the D-ring is defined by a prominent triplet (resorcinol ring) at δ 6.66 (H-4") and a doublet at δ 6.40 (H-2",6", 2H). The assignment is confirmed by both the
strong n.O.e associations (Figure 6.8) of H-3 with H-2",6" and H-β (plate 13c), as well as 2J of H-2",6" to C-3",5" and 3J of H-3 to C-2",6" (Figure 6.9).

n.O.e Association of H-2 with H-2",6" (Figure 6.8) establishes the relative 2,3-trans configuration. The B-ring protons H-5 and-7 are displayed as meta-doublets resonating at δ 7.01 and 6.95, respectively. Strong n.O.e association of H-α with H-5 (Figure 6.8), in conjunction with HMBC correlations of H-α with C-4 and C-3a confirm the allocation. Further indication is given by strong HMBC correlations of H-5 to C-6 and H-7 to the deshielded oxygen bearing carbons C-6 and C-7a (plate 13d). The remaining aromatic protons (Table 6.3) are assigned to the E-ring. Strong n.O.e association of H-β with H-2" and -6" confirm the allocation. The molecular formula of C$_{42}$H$_{36}$O$_{15}$ (M$^+$ m/z 780.2054 (FABMS) is in agreement with the structure of compound 78.

Figure 6.8: Relevant n.O.e associations of the peracetate derivative of the dimeric stilbene 78.
Figure 6.9: Relevant HMBC correlations of the peracetate derivative of the dimeric stilbene 78.
<table>
<thead>
<tr>
<th>Ring</th>
<th>Protons</th>
<th>δ_H (ppm)</th>
<th>Carbons</th>
<th>δ_C (ppm)</th>
<th>2J (H→C)</th>
<th>3J (H→C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>2</td>
<td>6.03 (d, J 8.5)</td>
<td>2</td>
<td>88.2</td>
<td>C-1'</td>
<td>C-2', C-6'</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>4.83 (d, J 8.5)</td>
<td>3</td>
<td>52.5</td>
<td>C-1', C-2, C-3a</td>
<td>C-1', C-7a, C-2', 5'</td>
</tr>
<tr>
<td>B</td>
<td>3a</td>
<td>3a</td>
<td>3a</td>
<td>125.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td></td>
<td>4</td>
<td>135.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>7.01 (d, J 2.5)</td>
<td>5</td>
<td>125.0</td>
<td>C-6</td>
<td>C-\alpha</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td></td>
<td>6</td>
<td>135.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>6.95 (d, J 2.5)</td>
<td>7</td>
<td>121.8</td>
<td>C-7a</td>
<td>C-6</td>
</tr>
<tr>
<td></td>
<td>7a</td>
<td>7a</td>
<td>7a</td>
<td>161.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>1'</td>
<td></td>
<td>1'</td>
<td>140.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2'</td>
<td>6.72 (d, J 2.5)</td>
<td>2'</td>
<td>124.0</td>
<td>C-3'</td>
<td>C-1'</td>
</tr>
<tr>
<td></td>
<td>3'</td>
<td></td>
<td>3'</td>
<td>142.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4'</td>
<td></td>
<td>4'</td>
<td>142.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5'</td>
<td>7.00 (d, J 8.5)</td>
<td>5'</td>
<td>123.3</td>
<td>C-4'</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6'</td>
<td>6.96 (dd, J 8.5, 2.5)</td>
<td>6'</td>
<td>123.7</td>
<td>C-1'</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>1''</td>
<td></td>
<td>1''</td>
<td>136.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2''</td>
<td>6.40 (d, J 2.5)</td>
<td>2''</td>
<td>119.7</td>
<td>C-3', 5'</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3''</td>
<td></td>
<td>3''</td>
<td>151.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4''</td>
<td>6.66 (t, J 2.5)</td>
<td>4''</td>
<td>114.5</td>
<td>C-3', 5'</td>
<td>C-2', 6'</td>
</tr>
<tr>
<td></td>
<td>5''</td>
<td></td>
<td>5''</td>
<td>151.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6''</td>
<td>6.40 (d, J 2.5)</td>
<td>6''</td>
<td>119.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Olefinic</td>
<td>α</td>
<td>6.88 (d, J 16.0)</td>
<td>α</td>
<td>130.5</td>
<td>C-4</td>
<td>C-3a</td>
</tr>
<tr>
<td>Olefinic</td>
<td>β</td>
<td>6.67 (d, J 16.0)</td>
<td>β</td>
<td>125.4</td>
<td>C-1''</td>
<td>C-\alpha</td>
</tr>
<tr>
<td>E</td>
<td>1'''</td>
<td></td>
<td>1'''</td>
<td>142.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2'''</td>
<td>7.14 (d, J 2.5)</td>
<td>2'''</td>
<td>105.5</td>
<td>C-3'''</td>
<td>C-1'''</td>
</tr>
<tr>
<td></td>
<td>3'''</td>
<td></td>
<td>3'''</td>
<td>153.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4'''</td>
<td></td>
<td>4'''</td>
<td>141.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5'''</td>
<td>7.10 (d, J 8.5)</td>
<td>5'''</td>
<td>122.3</td>
<td>C-4'''</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6'''</td>
<td>6.99 (dd, J 8.5, 2.5)</td>
<td>6'''</td>
<td>112.0</td>
<td>β</td>
<td>C-4'''</td>
</tr>
<tr>
<td>OCOCH$_3$</td>
<td>2.37, 2.31, 2.30, 2.29, 2.28, 2.24, 2.23</td>
<td>OCOCH$_3$</td>
<td>21.6, 21.5 (X2), 21.1 (X4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OCOCH$_3$</td>
<td></td>
<td>OCOCH$_3$</td>
<td>169.4, 169.0 (X2), 168.9, 168.6, 168.4, 168.3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 6.3. 1H NMR (300 MHz), 13C NMR (75 MHz) and HMBC data of compound 78.
6.3.3 *rel*-2,3-*trans*-2-(3,4-Dimethoxyphenyl)-3-(3,5-dimethoxyphenyl)-4-[2-(3,5-dimethoxyphenyl)]-Z-1-ethenyl]-6-methoxy-2,3-dihydrobenzofuran (79).

Compound 79 was isolated from the methanol extract B7 after methylation and PLC purification. The o-methyl derivative 79 displays the same number of aromatic and methine protons 1H NMR ([Plate 14](#)) (Table 6.4) as compound 79. The M^+, m/z 584.2410 based on the FABMS corresponds to the molecular formula of C$_{35}$H$_{36}$O$_8$ that is expected for 79. Allocation of the protons and carbons using the spectroscopic data (Table 6.4) indicates that compounds 78 and 79 have the same hydroxylation patterns for all the rings and only differ from each other with the geometric relationship of the olefinic protons. The olefinic protons in 79 (H-α, δ 6.10, $J = 12.0$ Hz and H-β, δ 6.25, $J = 12.0$ Hz) suggest that compound 79 is a *cis* isomer of 78. The smaller coupling constant ($J = 12.0$ Hz), and a strong n.O.e association of H-α with H-β (Figure 6.10, Plate 14b) confirm the *cis* isomer.
Figure 6.10: Relevant n.O.e associations of the o-methyl derivative of the dimeric stilbene 79.

\(^3\)J of H-2 to C-2' and -6' (HMBC) further confirms the assignments of the C-ring protons, while \(^3\)J of H-3 to C-2" and -6" confirms the D-ring assignments. The B-ring protons H-5 and -7 are established from the COSY and HMBC experiments. The ABX spin system assigned to the E-ring is established by the COSY experiments and confirmed by n.O.e interactions between H-\(\beta\) with H-6" and H-2", in conjunction with HMBC correlations of H-\(\beta\) to C-2" and H-2" to C-3". Thus, the novel compounds 78 and 79 are geometric isomers. The assignment of all the proton and carbon signals was established from the NOESY, COSY, HMQC, HMBC experiments.
<table>
<thead>
<tr>
<th>Ring</th>
<th>Protons</th>
<th>δ<sub>H</sub> (ppm)</th>
<th>Carbons</th>
<th>δ<sub>C</sub> (ppm)</th>
<th>2<sup>J</sup> (H→C)</th>
<th>3<sup>J</sup> (H→C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>2</td>
<td>5.42 (d, J 7.0)</td>
<td>2</td>
<td>93.6</td>
<td>C-1"</td>
<td>C-2", C-6"</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>4.03 (d, J 7.0)</td>
<td>3</td>
<td>57.5</td>
<td>C-1", C-2, C-3a</td>
<td>C-1", C-7a, C-2",5"</td>
</tr>
<tr>
<td>B</td>
<td>3a</td>
<td></td>
<td>3a</td>
<td>120.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td></td>
<td>4</td>
<td>131.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>6.41 (d, J 2.5)</td>
<td>5</td>
<td>107.5</td>
<td>C-6</td>
<td>C-α, C-3a</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td></td>
<td>6</td>
<td>161.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>6.46 (d, J 2.5)</td>
<td>7</td>
<td>97.7</td>
<td>C-6, C-7a</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7a</td>
<td></td>
<td>7a</td>
<td>162.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>1'</td>
<td></td>
<td>1'</td>
<td>145.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2'</td>
<td>6.74 (d, J 2.5)</td>
<td>2'</td>
<td>120.9</td>
<td></td>
<td>C-1"</td>
</tr>
<tr>
<td></td>
<td>3'</td>
<td></td>
<td>3'</td>
<td>149.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4'</td>
<td></td>
<td>4'</td>
<td>149.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5'</td>
<td>6.81 (d, J 8.5)</td>
<td>5'</td>
<td>110.9</td>
<td></td>
<td>C-4"</td>
</tr>
<tr>
<td></td>
<td>6'</td>
<td>6.76 (dd, J 8.5, 2.5)</td>
<td>6'</td>
<td>109.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>1"</td>
<td></td>
<td>1"</td>
<td>134.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2"</td>
<td>6.20 (d, J 2.5)</td>
<td>2"</td>
<td>106.4</td>
<td>C-3", 5"</td>
<td>C-1"</td>
</tr>
<tr>
<td></td>
<td>3"</td>
<td></td>
<td>3"</td>
<td>161.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4"</td>
<td>6.34 (t, J 2.5)</td>
<td>4"</td>
<td>149.5</td>
<td>C-3", 5"</td>
<td>C-1"</td>
</tr>
<tr>
<td></td>
<td>5"</td>
<td></td>
<td>5"</td>
<td>161.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6"</td>
<td>6.20 (d, J 2.5)</td>
<td>6"</td>
<td>95.5</td>
<td>C-3", 5"</td>
<td>C-1"</td>
</tr>
<tr>
<td>Olefinic</td>
<td>α</td>
<td>6.10 (d, J 12.0)</td>
<td>α</td>
<td>131.4</td>
<td>C-4</td>
<td>C-3a</td>
</tr>
<tr>
<td></td>
<td>β</td>
<td>6.25 (d, J 12.0)</td>
<td>β</td>
<td>126.4</td>
<td>C-1"</td>
<td>C-6"</td>
</tr>
<tr>
<td>E</td>
<td>1'''</td>
<td></td>
<td>1'''</td>
<td>136.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2'''</td>
<td>6.64 (d, J 2.5)</td>
<td>2'''</td>
<td>113.0</td>
<td>C-3"</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3'''</td>
<td></td>
<td>3'''</td>
<td>149.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4'''</td>
<td></td>
<td>4'''</td>
<td>148.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5'''</td>
<td>6.87 (d, J 8.5)</td>
<td>5'''</td>
<td>111.5</td>
<td>C-4"</td>
<td>C-3"</td>
</tr>
<tr>
<td></td>
<td>6'''</td>
<td>6.72 (dd, J 8.5, 2.5)</td>
<td>6'''</td>
<td>122.5</td>
<td></td>
<td>C-2", C-4"</td>
</tr>
<tr>
<td>OC<sub>4</sub>H<sub>13</sub></td>
<td>3.89, 3.84, 3.83, 3.83, 3.73 (x3), 3.61</td>
<td></td>
<td>OC<sub>3</sub>H<sub>13</sub></td>
<td>55.0-57.0 (x7)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 6.4. ¹H NMR (300 MHz), ¹³C NMR (75 MHz) and HMBC data of compound 79.
6.3.4 *rel-2,3-trans-4-Formyl-2-(3,4-dimethoxyphenyl)-3-(3,5-dimethoxyphenyl)-6-methoxy-2,3-dihydrobenzofuran* (80).

Methylation and PLC purification of fraction B7 of the methanol extract afforded the *O*-methyl ether derivative of compound 80. Besides the two characteristic methine protons (δ 5.58, H-2 and δ 4.81, H-3)\(^2\), which are prominent in the \(^1\)H NMR spectrum (Plate 15, Table 6.5) of 80, an exceptional peak at δ 9.77 allocated to the aldehyde is displayed. The aldehyde functionality replaces the vinylic group and the E-ring present in structures 77-79. In the same \(^1\)H NMR spectrum eight aromatic protons, two olefinic protons, and five accompanying methoxy groups are also displayed. The eight aromatic protons correspond to an ABX spin system (C-ring), an A\(_2\)B spin system (D-ring) and an AB spin system (B-ring) (Table 6.5). The small sample (0.9 mg) of compound 80, obtained from the purifications did not allow analysis of the \(^{13}\)C NMR spectrum. Structure elucidation for 80 is based on the \(^1\)H NMR, COSY and NOESY experiments as well as comparison of its \(^1\)H NMR data with that of compounds 77-79.

The ABX spin system assigned to the C-ring is confirmed by n.O.e associations (Figure 6.11) of H-2 and H-3 with H-2' and H-6'.
<table>
<thead>
<tr>
<th>Ring</th>
<th>Proton</th>
<th>δ_H (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>H-2</td>
<td>5.58 (d, J 6.0)</td>
</tr>
<tr>
<td></td>
<td>H-3</td>
<td>4.81 (d, J 6.0)</td>
</tr>
<tr>
<td>B</td>
<td>H-5</td>
<td>6.98 (d, J 2.5)</td>
</tr>
<tr>
<td></td>
<td>H-7</td>
<td>6.81 (d, J 2.5)</td>
</tr>
<tr>
<td>C</td>
<td>H-2'</td>
<td>6.86 (d, J 2.5)</td>
</tr>
<tr>
<td></td>
<td>H-5'</td>
<td>6.84 (d, J 8.5)</td>
</tr>
<tr>
<td></td>
<td>H-6'</td>
<td>6.84 (dd, J 8.5, 2.5)</td>
</tr>
<tr>
<td>D</td>
<td>H-2''6''</td>
<td>6.29 (d, J 2.5)</td>
</tr>
<tr>
<td></td>
<td>H-4''</td>
<td>6.37 (t, J 2.5)</td>
</tr>
<tr>
<td></td>
<td>5 x OMe</td>
<td>3.90, s, 3.89, s, 3.68, s, 3.75 (x2), s</td>
</tr>
<tr>
<td></td>
<td>CHO</td>
<td>9.77, s</td>
</tr>
</tbody>
</table>

Table 6.5. 1H NMR (300 MHz) data of compound 80.

Figure 6.11: Relevant n.O.e associations of the o-methyl derivative of the dimeric stilbene 80.
The relative *trans* configuration between H-2 and H-3 is established from the n.O.e association of H-3 with H-6', and H-2 with H-2" and H-6" (*Figure 6.11, Plate 15a*). H-5' of the ABX spin system is established from the COSY experiments. n.O.e Association of H-3 with H-6" and H-2" confirms the 3",5"-dimethoxy D-ring. The *meta*-coupled protons at δ 6.98 (H-5) and 6.81 (H-7) are allocated to the B-ring. A strong n.O.e association of both H-5 and H-7 with 6-OMe (*Plate 15b*) confirms the allocations of H-5 and H-7. FABMS (M⁺/m/z 450.1679) corresponding to a molecular formula of C_{26}H_{26}O_{7} corresponds with the structure of compound 80.

6.3.5 *rel*-2,3-*trans*-2-(3,5-Diacetoxyphenyl)-3-(3,5-diacetoxyphenyl)-6-[2-(3,5-diacetoxyphenyl)]-E-1-ethenyl]-4-acetoxy-2,3-dihydrobenzofuran (81).

Compound 81 was obtained as a peracetate derivative following acetylation and PLC purification of fraction A7 of the methanol extract. In the ¹H NMR spectrum (*Plate 16*), compound 81 displays the same number of aromatic protons as 77, two aliphatic protons and seven acetoxy groups (*Table 6.6*). The thirteen protons in the aromatic region correspond to two ABX spin systems, an A₂B spin system, an AB spin system and two olefinic protons. ¹³C and ¹H NMR allocations (NOESY and HMBC experiments, *Figures 6.12 and 6.13*, respectively) (*Table 6.6*) confirmed that for compound 81 the substituted double bond is located on C-6 of the 2,3-dihydrobenzofuran ring. HMBC correlation (*Figure 6.13*) of only H-5 to the oxygen bearing carbon (C-4) and strong n.O.e association (*Figure 6.12*) of H-5 and H-7 to H-α (*plate 16b*) correlate with the hydroxylation pattern of the B-ring. Data from the NOESY, COSY, ¹³C NMR, HMBC and HMQC experiments conclusively establish the hydroxylation patterns of the C-, D-, and E-rings (*Table 6.6*). FABMS revealed a molecular ion peak at m/z (M + H)⁺ 780.2054 consistent with molecular formula of C_{43}H_{40}O_{15} and confirms the structure of compound 81.
Figure 6.12: Relevant n.O.e associations of the peracetate derivative of the dimeric stilbene 81.
Figure 6.13: Relevant HMBC associations of the peracetate derivative of the dimeric stilbene 81.
<table>
<thead>
<tr>
<th>Ring</th>
<th>Protons</th>
<th>δ_H (ppm)</th>
<th>Carbons</th>
<th>δ_C (ppm)</th>
<th>2J (H\rightarrowC)</th>
<th>3J (H\rightarrowC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>2</td>
<td>5.60 (d, J 7.0)</td>
<td>2</td>
<td>92.5</td>
<td>C-1'</td>
<td>C-2', C-6'</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>4.61 (d, J 7.0)</td>
<td>3</td>
<td>57.0</td>
<td>C-1'', C-2', C-3a</td>
<td>C-1', C-7a, C-2'',5''</td>
</tr>
<tr>
<td>B</td>
<td>3a</td>
<td></td>
<td>3a</td>
<td>125.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td></td>
<td>4</td>
<td>142.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>7.08 (d, J 2.5)</td>
<td>5</td>
<td>121.9</td>
<td>C-4, C-6</td>
<td>C-1', C-7</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td></td>
<td>6</td>
<td>135.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>7.0 (d, J 2.5)</td>
<td>7</td>
<td>125.2</td>
<td>C-7a, C-6</td>
<td>C-12</td>
</tr>
<tr>
<td></td>
<td>7a</td>
<td></td>
<td>7a</td>
<td>161.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>1'</td>
<td></td>
<td>1'</td>
<td>144.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2'</td>
<td>7.21 (d, J 2.5)</td>
<td>2'</td>
<td>124.2</td>
<td>C-1'</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3'</td>
<td></td>
<td>3'</td>
<td>142.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4'</td>
<td></td>
<td>4'</td>
<td>142.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5'</td>
<td>7.20 (d, J 8.5)</td>
<td>5'</td>
<td>121.0</td>
<td>C-4'</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6'</td>
<td>7.19 (dd, J 8.5, 2.5)</td>
<td>6'</td>
<td>124.0</td>
<td>C-2', C-5'</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>1''</td>
<td></td>
<td>1''</td>
<td>139.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2''</td>
<td>6.88 (d, J 2.5)</td>
<td>2''</td>
<td>119.0</td>
<td>C-3'', C-5''</td>
<td>C-4''</td>
</tr>
<tr>
<td></td>
<td>3''</td>
<td></td>
<td>3''</td>
<td>152.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4''</td>
<td>6.92 (t, J 2.5)</td>
<td>4''</td>
<td>115.3</td>
<td>C-3'', C-5''</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5''</td>
<td></td>
<td>5''</td>
<td>152.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6''</td>
<td>6.88 (t, J 2.5)</td>
<td>6''</td>
<td>119.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Olefinic</td>
<td>α</td>
<td>6.54 (d, J 16.0)</td>
<td>α</td>
<td>130.2</td>
<td>C-6</td>
<td>C-7</td>
</tr>
<tr>
<td>Olefinic</td>
<td>β</td>
<td>6.85 (d, J 16.0)</td>
<td>β</td>
<td>125.2</td>
<td>C-1''</td>
<td>C-6''</td>
</tr>
<tr>
<td>E</td>
<td>1'''</td>
<td></td>
<td>1'''</td>
<td>136.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2'''</td>
<td>6.68 (d, J 2.5)</td>
<td>2'''</td>
<td>103.6</td>
<td>C-6''</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3'''</td>
<td></td>
<td>3'''</td>
<td>142.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4'''</td>
<td></td>
<td>4'''</td>
<td>152.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5'''</td>
<td>7.10 (d, J 8.5)</td>
<td>5'''</td>
<td>124.0</td>
<td>C-4''</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6'''</td>
<td>6.93 (dd, J 8.5, 2.5)</td>
<td>6'''</td>
<td>111.1</td>
<td>C-5''</td>
<td>C-4''</td>
</tr>
<tr>
<td>OCOCH$_3$</td>
<td>2.35, 2.30 (x2), 2.29, 2.27(x2)</td>
<td>OCOCH$_3$</td>
<td>21.6, 21.5 (X2), 21.1 (X2), 21.0 (X2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OCOCH$_3$</td>
<td>169.9, 169.1 (x2), 168.7, 168.6, (x2), 168.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 6.6. 1H NMR (300 MHz), 13C NMR (75 MHz) and HMBC data of compound 81.
Summary

The bark of *Afrososia elata* has (family name) been used by …….for the or as ………

Previous phytochemical studies (Ferreira et al) of *Afrososia elata* resulted in isolation of isoflavonoids, flavonoids, stilbene monomers and chalcones. Among the previously known isolates, stilbenes are known to have biological activities such as, act as antioxidants (Ref), antifungal (REF), and antimicrobial inhibitors (REF). They posses COX-1 and COX-2 inhibitory effects (REF), affect lipid peroxidation (REF), LDL oxidation (REF), and function as phytoalexins (REF) among other activities. Dimers with resveratrol as the building block have been isolated from different sources (REFERENCES)

The present paper reports the composition of the MeOH and acetone extracts of *A. elata*. Together with the known monomeric stilbenes (………), isoflavonoids (………), chalcones (……….) and a flavanone (………..), new compounds, namely a stilbene, (3,4,3’,4’-tetra acetoxystilbene), a stilbenoid (………..), and eight dimeric stilbenes (……………) have been isolated.

The aim of this work was to isolate, elucidate and establish the phytochemical composition of *Afrososia elata*, and relate the findings to the current uses of the plant and claimed physiological properties of the stilbenes, which are the major constituents.
7. SYNTHESIS

7.1 Introduction

Structural elucidation of the six dimeric stilbenes from *P. elata* proved to be difficult often due to overlapping of the aromatic protons in their 1H NMR spectra (Plates 11, 12, 13, 14, 15 and 16). With the aim of improving the resolution of the overlapping aromatic protons, the samples were investigated in different deuterated solvents. This, however, did not necessarily solve the problem. Although the structural elucidation of the six novel stilbene dimers by spectroscopic methods was considered to be satisfactory, selected compounds were synthesized to confirm unequivocally the proposed structures.

The route considered for the synthesis of the dimeric stilbenes was conceived to proceed *via* oxidative coupling of the olefinic protons of one stilbene monomer with the catechol or the resorcinol ring of the second stilbene monomer according to the retrosynthetic pathway (Figure 7.1).
Scheme 7.1: Retrosynthetic pathway to stilbene dimers

The most common synthetic protocol for the synthesis of the monomeric stilbenes for example, piceatannol (48), proceeds via the Wittig reaction. Thus, the stilbene monomer could be obtained following reduction and bromination of commercially available aldehyde. Synthesis of the dimeric stilbenes was accordingly implemented via the protocol in Scheme 7.1.

7.2. Synthesis of the stilbene monomer (48)

3,5-Dimethoxybenzyl alcohol (83) was obtained in 96% yield by the reduction of 3,5-dimethoxybenzaldehyde (82) using NaBH4 in ethanol. Structure of the alcohol (83) was confirmed by 1H NMR where the spectra showed the disappearance of a signal 9.81 ppm corresponding to aldehydic group and the appearance of a signal at 4.64 ppm corresponding to the methine protons indicating the formation of 3,5-dimethoxybenzyl alcohol (83).
During the synthesis of the phosphonium salts the alcohol (83) was treated with phosphorus tribromide in dry THF to yield 3,5-dimethoxybenzyl bromide (84) in 98% yield. 3,5-Dimethoxybenzyl bromide (84) was refluxed with excess triphenylphosphine in dry acetonitrile and 3,5-dimethoxybenzyl triphenylphosphonium bromide (85) was obtained in 40% yield. The structure of phosphonium bromide was (85) was confirmed by 1H NMR, appearance of signals in 7.87 ppm region corresponding to 15 protons of triphenyl phosphine and the downfield shift of methine protons due to the electron-withdrawing phosphorus group.

3,5-Dimethoxybenzyl triphenylphosphonium bromide (85) was subjected to the Wittig reaction with appropriate aryl aldehyde (86) and the resulting monomeric stilbene (87) was obtained in 40% yield. Purification of the stilbene by pTLC or flash chromatography resulted in the decomposition of the stilbene and low yields. The phosphonium salt reacted with the appropriate aryl aldehyde (86) to yield the desired stilbene monomer, albeit in modest yield (Scheme 7.1), probably due to the electron-delocalizing phenyl substituent of the benzyl group which decreases the reactivity of the phosphoranes. A probable side reaction involving attack of the base directly on phosphorus may further be responsible for the low yields (Figure 7.1).

![Figure 7.1. Direct attack on phosphorus by the base.](image)

During the multi-step synthesis of the monomeric stilbene, the phenolic hydroxyl groups were protected as methyl ethers. Due to the stability of aryl methyl ethers difficulties were encountered during the regeneration of the parent phenol. The methods available for the regeneration of phenols from aryl methyl ethers include cleavage by acidic reagents, by organometallic compounds, by treatment with alkali metals, or by reaction with nucleophiles. Cleavage by acidic reagents required harsh reaction conditions and the methylated stilbene could be protonated. Demethylation by organometallic compounds and alkali metals requires the use of high temperatures and long reaction times, mostly under pressure, giving partial demethylation.
Cleavage by nucleophiles was chosen as the best method and sodium ethoxide was used as a suitable reagent because of the ease with which the phenol can be separated from excess reagent and the volatile methyl ethyl sulphide (Y-Me) (eqn. (1), Y = EtS).

\[
Y^- + \text{MeO}^- \text{Ar} \rightarrow \begin{align*}
&\overset{\text{H}}{\text{Y--C--O--Ar}} \overset{\text{H}}{\text{Y Me}} + \text{ArO}^- \\
&\text{eqn (1)}
\end{align*}
\]

Since demethylation of aryl methyl ethers by nucleophilic reagents proceeds by \(S_N2\) displacement on the alkyl methyl group (eqn. (1)) dipolar aprotic DMF was chosen as a solvent to enhance the nucleophilicity of ethoxide anion, and it is stable to strong bases at reflux temperatures. DMF is also water soluble, thus, allowing easy recovery of phenolic compounds.

7.3. Synthesis of the stilbene dimers (88 and 89)

The free phenolic stilbene (48) was heated with AgOAc (60 °C, 30 min) in dry methanol. The use of methanol as a solvent was the most effective for the smooth formation of the dimers because of the good solubility of AgOAc in methanol, as to opposed other organic solvents, such as THF, acetone and acetonitrile. PLC separation of the mixture yielded the free phenols 88 and 89. The reaction is envisaged to proceed via two routes (48 to 88 and 48 to 89) (Scheme 7.2) probably by a free radical mechanism (Scheme 7.3).
The anticipated course of reaction is attributed to the heat sensitive AgOAc (the oxidizing agent) which yields Ag⁺ and initiates the mechanism by removing an electron from the olefinic system \(48 \) to form a benzylic radical \(90 \). Deprotonation of 4-hydroxy group of the catechol ring of a second molecule of the stilbene forms the stabilized phenoxy radical \(91 \). During the formation of \(88 \) the phenoxy radical of the catechol ring \(91 \) couples with the benzylic radical \(90 \) to yield \(92 \). The subsequent nucleophilic attack occur using the lone pair on oxygen to give \(88 \).
Methylation of 88 yielded 76. 1H NMR of the methylated derivative is identical to the O-methyl ether derivative of the isolated compound 76.

Scheme 7.3. Proposed mechanism for the formation of 88

Compound 89 forms when the resorcinol ring of the stilbene monomer (48) is involved in the coupling instead of the catechol ring (Scheme 7.4). The benzylic radical (90) attacks the position ortho to the phenoxy radical (93) generating a para quinone (94) which is highly susceptible to cyclization. Loss of a proton and a simultaneous ring closure yields compound 89 which was subsequently acetylated to (81). The 1H NMR of the peracetate derivative of 89 was identical to that of the isolated compound 81. The novel compounds (76) and (81) therefore, have been successfully synthesized and their structures unequivocally confirmed.
Scheme 7.4 Proposed mechanism for the formation of 89
8. Standard experimental techniques

Unless otherwise stated the following techniques were applied through the course of this study.

8.1. Chromatographic techniques

8.1.1. Paper chromatography

Two-dimensional paper chromatograms were conducted on Whatman no 1 paper (28.5X 46cm) in two directions, using water-saturated butan-2-ol in the first direction and 2% (v/v) acetic acid in the second direction. After development, the chromatograms were air dried and investigated by UV-light and spraying reagents.

8.1.2. Column chromatography

Separations on Sephadex LH-20 were carried out on various column sizes at differing flow rates as specified. The Sephadex LH-20 was prepared by soaking it in the eluant [ethanol or methanol/water (50/50)] for 24-hours. The crude extract in a minimum amount of the eluant was applied to the packed Sephadex LH-20 column. Column fractions were eluted at a flow rate of 0.5 ml/min, and fractions of 15 ml were collected with an ISCO (model 273) automatic fraction collector.

Merck Kieselgel 60 column chromatography separations were performed on various column sizes at different flow rates under gravity. The glass column was charged with this suspension of Kieselgel 60 and the crude extract, dissolved in a minimum of the appropriate solvents applied to the column. Columns were eluted at a flow rate of approximately 0.5 ml/min and fractions of 15 ml were collected with an ISCO (model 273) automatic fraction collector.

Flash column chromatography (FCC) was performed on a glass column (5 cm diameter) charged with 100g of Merck Kieselgel 60 (230-400 mesh) for every 1 g of the crude material. Air was displaced by elution with the appropriate solvent under N₂-pressure (ca. ~ 40kPa). The
crude product was dissolved in a minimum of the appropriate solvent and applied to the column. The purified product was recovered by elution under N₂-pressure in 15 ml fractions.

8.1.3. Thin layer chromatography

Qualitative thin layer chromatography (TLC) was performed on pre-coated Merck plastic sheets (silica gel PF₂₅₄, 0.25mm). After development, the plates were sprayed with vanillin-\(\text{H}_₂\text{SO}_₄ \). \(R_f \) values reported are those observed in these qualitative TLC assessments.

Preparative scale thin layer chromatography (PLC) was conducted on glass plates (20 X 20cm) coated with Kieselgel PF254 (1.0 mm), which were air-dried overnight at room temperature. The plates (loaded with 10-15 mg of material per plate) were developed in an appropriate eluent and dried in a stream of air. The bands were distinguished by UV (254 nm) light and scraped off. Compounds were eluted from the adsorbent with acetone, which was removed on a rotary evaporator under reduced pressure at 40°C. Small-scale separations were conducted on Merck pre-coated (0.25) TLC plates, silica gel 60 F₂₅₄ with each plate charged with 3-5 mg of the crude product.

8.2. Spraying reagents

8.2.1. Vanillin-sulphuric acid

The TLC plates were sprayed lightly with a solution of vanillin (1 g) in concentrated sulphuric acid (100 ml) and subsequently heated (\(ca \) 100 °C) to ensure optimum colour development.

8.2.2. Anisaldehyde

Thin-layer chromatograms were sprayed with a solution of anisaldehyde (5 ml) in concentrated sulphuric acid (5 ml) and ethanol (90 ml) and gently heated to 100 °C to ensure optimum colour development.
8.2.3. Formaldehyde-sulphuric acid130

TLC plates were quickly sprayed with 2\% (v/v) solution of formaldehyde (37 wt \% solution in water) in concentrated sulphuric acid and heated to 120 °C to ensure maximum development of colour.

8.2.4. Bis-diazotized benzidine131

Benzidine (5 g) dissolved in concentrated hydrochloric acid (14 ml) was added to distilled water (980 ml). The mixture (30 ml) was dissolved in sodium nitrite (10 \% m/v, 20 ml). Paper chromatograms were gently sprayed with the freshly prepared mixture of this solution and subsequently washed with for 1 hour under running tap water.

8.3. Chemical methods

8.3.1. Acetylation132

Dry phenolic material was dissolved in a minimum volume of pyridine and twice the amount of acetic anhydride was added. After 8-12 hours at ambient temperatures, crushed ice was added to precipitate the acetylated material which was filtered and excess pyridine washed out with cold water.

8.3.2. Methylation with diazomethane133

Methylations were performed with an excess of diazomethane prepared by the reaction of a cold (-10 °C) potassium hydroxide [5g in ethanol (95\%, 55 ml, v/v)] with N-methyl-N-nitroso-p-toulene sulphonamide (22 g) in cold ether (150 ml) and distilled directly into a solution of dry phenolic material (250 mg) in methanol (5-10 ml) at –10 °C. After 48 hours at –15 °C the excess diazomethane and solvents were evaporated at room temperature.

131 D. G. Roux and E. A. Maihs. \textit{J. Chromatogr.}, 1960, 4, 65.
8.4. **Anhydrous solvents and reagents**

THF was predried with sodium metal, and was refluxed over sodium/benzophenone under N₂ until a dark blue colour persisted with subsequent fresh distillation under N₂ prior to use.

Acetonitrile was left over 4Å molecular sieves and was refluxed under N₂ for 48 hours with subsequent distillation under N₂ prior to use.

DMF was left over barium oxide for 24 hours. Barium oxide was filtered off and the solvent subsequently refluxed over NaH under N₂ and stored under N₂.

Methanol was left over anhydrous potassium carbonate for 24 hours. The potassium carbonate was filtered off and the solvent subsequently distilled over 3Å molecular sieves and stored under N₂.

8.5. **Freeze-drying**

Phenolic material in aqueous solution was freeze-dried using a Virtis Freezemodi; 12SL at 40 millitorr.

8.6. **Spectroscopical methods**

8.6.1. **Nuclear magnetic resonance spectroscopy**

NMR spectra were recorded on a Bruker AVANCE DPX300 spectrometer with tetramethylsilane an internal standard. The solvents used were deuteriochloroform (CDCl₃, δ_H 7.24) and deuterioacetone [(CD₃)₂CO/acetone d₆, δ_H 2.04]. Chemical shifts are reported in parts per million (ppm) on the δ-scale and coupling constants were measured in Hz. Abbreviations are used as follows:
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Signal multiplicity</th>
<th>Abbreviation</th>
<th>Signal multiplicity</th>
</tr>
</thead>
<tbody>
<tr>
<td>s</td>
<td>singlet</td>
<td>dd</td>
<td>doubles of doublets</td>
</tr>
<tr>
<td>d</td>
<td>doublet</td>
<td>br</td>
<td>broadened</td>
</tr>
<tr>
<td>t</td>
<td>triplet</td>
<td>eq</td>
<td>equatorial</td>
</tr>
<tr>
<td>m</td>
<td>multiplet</td>
<td>ax</td>
<td>axial</td>
</tr>
</tbody>
</table>

Table 8.1: Abbreviations used in describing 1H NMR signal multiplicities.

8.6.2. Circular dichroism

CD spectra were recorded on a Jasco J-710 spectropolarimeter in spectrophotometric grade methanol (~ 1 mg/10 ml MeOH). The formula used to calculate the molecular ellipticity (θ) was:

$$\theta = \frac{(L)(\text{scale})(\text{molecular weight})(100)}{[\text{length of tube (cm)}][\text{concentration (g/l)}]}$$

where L is the difference (at any given wavelength) between the reading (in cm) of the compound in solution and the reading (in cm) of pure solvent.

8.6.3. Mass spectrometry

All fast atom bombardment (FAB) and electron ionisation (EI) mass spectra were recorded on a VG70-70E double-focusing mass spectrometer using a VG-250J data system and an Iontech saddlefield FAB gun. M$^+$ denotes the molecular ion.
8.7. Abbreviations

The following abbreviations for solvents are used throughout the experimental section:

A = acetone
C = chloroform
DMF = dimethylformamide
E = diethyl ether
EA = ethyl acetate
EtOH = ethanol
H = hexane
MeOH = methanol
THF = tetrahydrofuran
T = toluene
CHAPTER 9

9. Isolation of compounds from *Pericopsis elata*

9.1. Enrichment of the heartwood extract

The dried pulverized heartwood (5.06 kg) of *Pericopsis elata* were consecutively extracted with hexane (15 L x 4), acetone (22 L x 4), methanol (20 L x 10) and acetone-water 70/30 (22 L x 4) followed by evaporation under reduced pressure at 40 °C. Yellow residual oil (100.1g), which previously reported as terpenoid was obtained from hexane extract. Acetone and methanol extracts 498.64 g and 652.72 g, respectively, yielded dark brown material.

The acetone (120.14 g) and the methanol (120.01 g) extracts were partitioned in H₂O: sec-BuOH: hexane (5:4:1) in a fifteen-tube Craig countercurrent assembly (200 ml of organic and 200 ml of aqueous phase per tube), by ten transfers of the top phase. Following paper chromatographic analysis of the acetone extract, fractions from the Craig were combined as follows:

<table>
<thead>
<tr>
<th>Fraction</th>
<th>Tubes</th>
<th>Mass (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAP</td>
<td>1 – 3</td>
<td>3.0</td>
</tr>
<tr>
<td>ABP</td>
<td>4 – 7</td>
<td>1.36</td>
</tr>
<tr>
<td>ACP</td>
<td>8 – 10</td>
<td>1.91</td>
</tr>
<tr>
<td>ADP</td>
<td>11 - 15</td>
<td>110.06</td>
</tr>
</tbody>
</table>

Table 9.1: The four fractions of the acetone extract from the Craig countercurrent distribution.

9.2. Isolation of compounds from the acetone extract

Fraction ADP (25.01 g) was dissolved in ethanol and subjected to column chromatography on Sephadex LH-20 (4 x 150 cm column, flow rate 30 ml/32 min) in ethanol to give 10 fractions (A1-A10) after analysis with TLC (T:A:M, 6:3:1, v/v/v).
<table>
<thead>
<tr>
<th>Fraction</th>
<th>Test tubes</th>
<th>Mass (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>1-37</td>
<td>1.51</td>
</tr>
<tr>
<td>A2</td>
<td>38-97</td>
<td>0.39</td>
</tr>
<tr>
<td>A3</td>
<td>98-177</td>
<td>10.0</td>
</tr>
<tr>
<td>A4</td>
<td>178-223</td>
<td>1.32</td>
</tr>
<tr>
<td>A5</td>
<td>224-367</td>
<td>4.81</td>
</tr>
<tr>
<td>A6</td>
<td>368-553</td>
<td>0.30</td>
</tr>
<tr>
<td>A7</td>
<td>554-749</td>
<td>2.21</td>
</tr>
<tr>
<td>A8</td>
<td>752-833</td>
<td>0.21</td>
</tr>
<tr>
<td>A9</td>
<td>836-1133</td>
<td>0.45</td>
</tr>
<tr>
<td>A10</td>
<td>1134-1368</td>
<td>0.33</td>
</tr>
</tbody>
</table>

Table 9.2: Fractions obtained from the column separation of fraction ADP

Fractions A1, A5, A6, A9 and A10 are yet to be investigated.

Acetylation of fraction A2 (350 mg) followed by PLC purification (T: A: M, 90: 8: 2) gave six bands (Table 9.3).

<table>
<thead>
<tr>
<th>Bands</th>
<th>Mass (mg)</th>
<th>R_f values</th>
</tr>
</thead>
<tbody>
<tr>
<td>A2.1</td>
<td>49.7</td>
<td>0.65</td>
</tr>
<tr>
<td>A2.2</td>
<td>97.2</td>
<td>0.45</td>
</tr>
</tbody>
</table>

Table 9.3: Fractions obtained from the PLC separation of A2.

9.2.1. 4'-Acetoxy-2'-hydroxy-4-methoxy-α-methyldeoxybenzoin (72).

Band A2.1 afforded the title compound as a colourless amorphous solid (R_f 0.65, 49.7 mg).

^1H NMR Plate 6, Table 5.5.
9.2.2. \((R)-\alpha-4,2',4'-\text{Tetraacetoxydihydrochalcone}\)\(^{134}\) (71).
Band A2.2 yielded the title compound as a yellow amorphous solid (\(R_f\) 0.45, 97.2 mg).
\(^1\)H NMR \textbf{Plate 5, Table 5.4}.

Fraction A3 (200 mg) was acetylated and resolved by PLC (T: A: M, 90: 9: 1) into three bands (\textbf{Table 9.4}).

<table>
<thead>
<tr>
<th>Fraction</th>
<th>Mass (mg)</th>
<th>(R_f) values</th>
</tr>
</thead>
<tbody>
<tr>
<td>A3.1</td>
<td>16.6</td>
<td>0.55</td>
</tr>
<tr>
<td>A3.2</td>
<td>6.4</td>
<td>0.50</td>
</tr>
<tr>
<td>A3.2</td>
<td>97.5</td>
<td>0.39</td>
</tr>
</tbody>
</table>

\textbf{Table 9.5}: Fractions obtained from the PLC separation of A3.

Further PLC purification (T: A; EA, 8: 1: 1) of A3.1 afforded 2 bands A3.1.1 and A3.1.2.

9.2.3 \textit{trans}-4,3',5'-\text{Triacetoxystilbene} (73).
Band A3.1.1 yielded the title compound as a light yellow amorphous solid (\(R_f\) 0.65, 7.9 mg).
\(^1\)H NMR \textbf{Plate 7, Table 5.6}

9.2.4 5,7,4'-\text{Triacetoxyisoflavone} (69).
Fraction A3.1.2 afforded the title compound as a light yellow amorphous solid (\(R_f\) 0.49, 9.7 mg).
\(^1\)H NMR \textbf{Plate 3, Table 5.3}

9.2.5 5,7-\text{Diacetoxy-4'-methoxyisoflavone} (70).
Fraction A3.2 yielded the title compound as a colourless amorphous solid (\(R_f\) 0.50, 6.4 mg).
\(^1\)H NMR \textbf{Plate 4, Table 5.3}

9.2.6 5,7,4'-\text{Triacetoxyflavanone} (67).
Fraction A3.3 afforded the title compound as a colourless amorphous solid (\(R_f\) 0.39, 97.5 mg).
\(^1\)H NMR \textbf{Plate 1, Table 5.1}

Acetylation followed by PLC purification (T: A: EA, 8: 1: 1) of A4 (50 mg) afforded two bands A4.1 and A4.2. Band A4.1 (R_f 0.45, 10.5 mg) yielded the same compound as A3.1.1

9.2.7. *trans*-4,3',5'-Triacetoxy-3-methoxystilbene135 (75).
Fraction A4.2 afforded the title compound as a light yellow amorphous solid (R_f 0.32, 15.4 mg).
1H NMR Plate 10, Table 5.8

Acetylation of A7 (150 mg) followed by PLC purification (T: A: M, 90: 9: 1) afforded six bands.

<table>
<thead>
<tr>
<th>Fraction</th>
<th>Mass (mg)</th>
<th>R_f values</th>
</tr>
</thead>
<tbody>
<tr>
<td>A7.1</td>
<td>100.9</td>
<td>0.36</td>
</tr>
<tr>
<td>A7.2</td>
<td>19.4</td>
<td>0.25</td>
</tr>
</tbody>
</table>

Table 9.6: Fractions obtained from the PLC separation of A7.

9.2.8. *rel*-2,3-*trans*-2-(3,5-Diacetoxyphenyl)-3-(3,5-diacetoxyphenyl)-6-[2-(3,5-diacetoxyphenyl)-E-1-ethenyl]-4-acetoxy-2,3-dihydrobenzofuran (81).

Band 7.5 afforded the title compound as a light yellow amorphous powder (R_f 0.36, 100.9 mg).
1H NMR Plate 16, Table 6.6

9.2.9. *rel*-2,3-*trans*-2-(3,4-Diacetoxyphenyl)-3-(3,5-diacetoxyphenyl)-4-[2-(3,4-diacetoxyphenyl)-E-1-ethenyl]-6-acetoxy-2,3-dihydrobenzofuran (78).

Band 7.6 afforded the title compound as a light yellow amorphous solid (R_f 0.25, 19.4 mg).
1H NMR Plate 13, Table 6.3

Fraction A8 (100 mg) was acetylated and resolved by PLC (T: A: EA, 8: 1: 1) into three bands A8.1, A8.2 and A8.3 (Table 9.6).

135 G. D. Manners and E. P. Swan. Phytochemistry, 1971, 10, 607.
Table 9.6: Fractions obtained from the PLC separation of A8.

<table>
<thead>
<tr>
<th>Fraction</th>
<th>Mass (mg)</th>
<th>Rf values</th>
</tr>
</thead>
<tbody>
<tr>
<td>A8.1</td>
<td>10.4</td>
<td>0.69</td>
</tr>
<tr>
<td>A8.2</td>
<td>35.6</td>
<td>0.51</td>
</tr>
<tr>
<td>A8.3</td>
<td>45.7</td>
<td>0.42</td>
</tr>
</tbody>
</table>

Bands A8.1 yielded the same compound as A4.1 and A8.2 afforded identical compound as A4.2.

9.3. Isolation of compounds from the methanol extract

Methanol extract (30.0g) was dissolved in ethanol and subjected to column chromatography on Sephadex LH-20 (4 x 150 cm column, flow rate 30 ml/32 min) in ethanol to give 11 fractions (B1-B11) after analysis with TLC (T:A:M, 6:3:1, v/v/v).

<table>
<thead>
<tr>
<th>Fractions</th>
<th>Test tubes</th>
<th>Yields (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1</td>
<td>1-157</td>
<td>0.35</td>
</tr>
<tr>
<td>B2</td>
<td>158-189</td>
<td>1.54</td>
</tr>
<tr>
<td>B3</td>
<td>190-295</td>
<td>7.32</td>
</tr>
<tr>
<td>B4</td>
<td>296-451</td>
<td>8.92</td>
</tr>
<tr>
<td>B5</td>
<td>452-681</td>
<td>4.60</td>
</tr>
<tr>
<td>B6</td>
<td>682-725</td>
<td>0.46</td>
</tr>
<tr>
<td>B7</td>
<td>726-831</td>
<td>1.23</td>
</tr>
<tr>
<td>B8</td>
<td>832-983</td>
<td>1.23</td>
</tr>
<tr>
<td>B9</td>
<td>982-1192</td>
<td>0.78</td>
</tr>
<tr>
<td>B10</td>
<td>1194-1328</td>
<td>0.37</td>
</tr>
<tr>
<td>B11</td>
<td>1330-1714</td>
<td>0.88</td>
</tr>
</tbody>
</table>

Table 9.7: Fractions obtained from the column separation of acetone extract.

9.3.1. trans-3,4,3',5'-Tetrahydroxystilbene\(^{136}\) (48).

Fraction B5 afforded the title compound as a light yellow amorphous solid.

\(^1\)H NMR **Plate 8, Table 5.7**
9.3.2. *trans*-3,4,3',5'-Tetraacetoxy stilbene (74).
Acetylation of B5 yielded the title compound as a light yellow amorphous solid.

\[^1H \text{ NMR Plate 9, Table 5.7 } \]

Methylation of B7 (100 mg) followed by PLC purification (T: A, 8: 2) yielded five bands (Table 9.8).

<table>
<thead>
<tr>
<th>Fraction</th>
<th>Mass (mg)</th>
<th>(R_f) values</th>
</tr>
</thead>
<tbody>
<tr>
<td>B7.1</td>
<td>10.5</td>
<td>0.82</td>
</tr>
<tr>
<td>B7.2</td>
<td>9.7</td>
<td>0.71</td>
</tr>
<tr>
<td>B7.3</td>
<td>3.5</td>
<td>0.66</td>
</tr>
<tr>
<td>B7.4</td>
<td>27.3</td>
<td>0.57</td>
</tr>
<tr>
<td>B7.5</td>
<td>2.3</td>
<td>0.49</td>
</tr>
</tbody>
</table>

Table 9.10: Fractions obtained from the PLC separation of B7

9.3.3. 5,7,3',4'-Tetramethoxyflavanone (68).
Band B7.1 afforded the title compound as a yellow amorphous solid (\(R_f \) 0.82, 10.5 mg).

\[^1H \text{ NMR Plate 2 Table 5.2 } \]

9.3.4. *rel*-2,3-*trans*-2-(3,4-dimethoxyphenyl)-3-(3,5-dimethoxyphenyl)-4-[2-(3,5-dimethoxyphenyl)-\(Z \)-1-ethenyl]-6-methoxy-2,3-dihydrobenzofuran (79).

Band B7.2 afforded the title compound as a light yellow amorphous solid (\(R_f \) 0.71, 9.7 mg).

\[^1H \text{ NMR Plate 14 Table 6.4 } \]

9.3.5. *rel*-2,3-*trans*-2-(3,4-Dimethoxyphenyl)-3-(3,5-dimethoxyphenyl)-6-[2-(3,5-dimethoxyphenyl)-\(E \)-1-ethenyl]benzodioxane (76).

Band B7.3 afforded the title compound as a light yellow amorphous solid (\(R_f \) 0.66, 3.5 mg).

\[^1H \text{ NMR Plate 11, Table 6.1 } \]

\[^{136} W. \text{ Grassman and H. Endres. } J. \text{ Chem. Soc.}, \text{1965}, 4579. \]
9.3.6. \textit{rel}-2,3-\textit{trans}-2-(3,4-Dimethoxyphenyl)-3-(3,4-dimethoxyphenyl)-4-[2-(3,4-dimethoxyphenyl)-\textit{E}-1-ethenyl]-6-methoxy-2,3-dihydrobenzofuran (77).

Band B7.4 yielded the title compound as a colourless amorphous solid (R\textsubscript{f} 0.57, 27.3 mg).

1H NMR Plate 12, Table 6.2

Further PLC purification (T: A: EA, 7: 2: 1) of B7.5 yielded two bands B7.5.1 (R\textsubscript{f} 0.65 1.3 mg) and B7.5.2 (R\textsubscript{f} 0.49, 0.9 mg). Band B7.5.1 did not contain the compound pertaining to this investigation.

9.3.7. \textit{rel}-2,3-\textit{trans}-4-Formyl-2-(3,4-dimethoxyphenyl)-3-(3,5-dimethoxyphenyl)-6-methoxy-2,3-dihydrobenzofuran (80).

Band B7.5.2 afforded the title compound as a light yellow amorphous solid (R\textsubscript{f} 0.49, 0.9 mg).

1H NMR Plate 15, Table 6.5
CHAPTER 10

10. Synthesis of the monomeric and oligomeric stilbenes

10.1. Formation of the phosphonate salt

10.1.1. 3,5-Dimethoxybenzyl alcohol (83)137

To the mixture of 3,5-dimethoxybenzaldehyde (82) (30.1 mmol, 5.0 g) in EtOH (20 ml), NaBH\textsubscript{4} (10.03 mmol, 379.6 mg) was added with constant stirring at room temperature for 30 min. Addition of cold H\textsubscript{2}O and acidification by 1M HCl (1 ml) followed by extraction of the reaction mixture with EtOAc (3 x 30 ml) gave the crude product after drying (Na\textsubscript{2}SO\textsubscript{4}) and removal of the solvent. The product 3,5-dimethoxybenzyl alcohol (83) was collected as yellow crystals (4.78 g, 96%) M.p. (46-49 °C).

1H NMR (CDCl\textsubscript{3}) (Plate 17) (85): δ 6.53 (d, J 2.5 Hz, H-2,6), δ 6.39 (t, J 2.5 Hz, H-4), δ 4.64 (s, J 1.0 Hz, CH\textsubscript{2}), δ 3.57 (s, 2 x OCH\textsubscript{3}).

10.1.2. 3,5-Dimethoxybenzyl bromide (84)138

PBr\textsubscript{3} (1.2 eq) was mixed with a solution of 3,5-dimethoxybenzyl alcohol (83) (14.9 mmol, 2.5 g) in dry THF (20 ml) and the mixture stirred for 1 h at room temperature. The product 3,5-dimethoxybenzyl bromide (84) was collected as colourless crystals after crystallization from hexane (2.45 g, 98%) M.p. 69-71 °C.

1H NMR (CDCl\textsubscript{3}) (Plate 14) (84): δ 6.57 (d, J 2.5 Hz, H-2,6), δ 6.42 (t, J 2.5 Hz, H-4), δ 4.44 (s, J 1.0 Hz, CH\textsubscript{2}), δ 3.81 (s, 2 x OCH\textsubscript{3}).

10.1.3 3,5-Dimethoxy-triphenyl-benzylphosphonate (salt) (85)109

To a solution of 3,5-dimethoxybenzyl bromide (84) (8.7 mmol, 2.0 g) in dry acetonitrile, triphenylphosphine (0.22 mmol, 56.7 mg) was added and the mixture was refluxed for 1h. The cooled mixture was filtered and the precipitate dried. The product was collected as a white powder (50%).

1H NMR (CDCl\textsubscript{3}) (\textbf{Plate 19}) (85): δ 7.87 (m, J 2.5 Hz, 3 x C\textsubscript{6}H\textsubscript{5}), δ 6.37 (d, J 2.5 Hz, H-2,6), δ 6.41 (t, J 2.5 Hz, H-4), δ 5.29 (d, J 1.0 Hz, CH\textsubscript{2}), δ 3.76 (s, 2 x OCH\textsubscript{3}).

10.2. Synthesis of monomeric stilbene (87)109

A mixture of NaOMe (4.2 mmol, 0.28 ml) and 3,5-dimethoxy-diphenyl-benzylphosphonate (85) (4.7 mmol, 1.98 g) in dry DMF (20 ml) was stirred for 30 min at 0 °C. 3,4-dimethoxybenzaldehyde (86) was added to the reaction mixture and refluxed for 2h. The reaction mixture was allowed to stand overnight at room temperature. A quantity of H\textsubscript{2}O (20 ml) was added, the mixture was extracted with ether (3 x 30 ml) and dried with MgSO\textsubscript{4}. Evaporation of the solvent followed by PLC (R\textsubscript{f} 0.57 T: A, 9: 1) gave the methylated trans-stilbene (87) in 40% yield.

1H NMR (CDCl\textsubscript{3}) (\textbf{Plate 20}) (87): δ 7.07 (dd, J 8.5, 2.5 Hz, H-6), δ 7.06 (d, J 16.0 Hz, H-\textalpha), δ 7.04 (d, J 8.5 Hz, H-2), δ 6.93 (d, J 16.0 Hz, H-\textbeta), δ 6.87 (d, J 8.5 Hz, H-5), δ 6.68 (d, J 2.5 Hz, H-2',6'), δ 6.41 (t, J 2.5 Hz, H-4'), δ 3.97 (s, OCH\textsubscript{3}) δ 3.93 (s, OCH\textsubscript{3}) δ 3.85 (s, 2 x OCH\textsubscript{3}).

10.2.1. Demethylation of monomeric stilbene139

Ethanethiol (1.3 mmol, 0.062 mg in dry DMF (20 ml) was added to the suspension of sodium hydride (of a 50% oil dispersion) in dry DMF under nitrogen and stirred for 5 min. The methylated stilbene (0.41 mmol, 0.1g) in dry DMF was added and the reaction mixture was refluxed for 3 h. The cooled mixture was extracted with ether and evaporated under pressure to give the demethylated stilbene (piceatannol) 48 in 70% yield.

1H NMR data is the same as that of 48.

10.3. Synthesis of dimeric stilbenes (88 and 89)140

A mixture of AgOAc (0.21 mmol, 34.2 mg) and piceatannol (48) (0.21 mmol, 50.0 mg) in dry MeOH was heated for 1 hour at 60 °C. The reaction mixture turned to an ash colour due to the formation of the silver mirror on the inside of the flask. Removal of the solvent under reduced pressure followed by PLC separation (T: A, 5: 5) afforded two compounds, 88 (R\text{f} 0.33, 30.2 mg, 30.3\%) and 89 (R\text{f} 0.22, 15.5 mg, 15.0\%).

\textit{1}H NMR (CDCl\textsubscript{3}) (\textbf{Plate 21}) (88): \(\delta\) 8.5 (s, 6 x OH) 7.18 (d, \(J\) 2.5 Hz, H-5), 7.12 (dd, \(J\) 8.5, 2.5 Hz, H-7), \(\delta\) 7.05 (d, \(J\) 16.0 Hz, H-\(\alpha\)), \(\delta\) 6.96 (d, \(J\) 16.0 Hz, H-\(\beta\)), \(\delta\) 6.95 (d, \(J\) 8.5 Hz, H-8), \(\delta\) 6.81 (d, \(J\) 2.5 Hz H-2'), \(\delta\) 6.72 (d, \(J\) 8.5 Hz, H-5'), \(\delta\) 6.58 (dd, \(J\) 8.5, 2.5 Hz, H-6'), \(\delta\) 6.57 (d, \(J\) 2.5 Hz, H-3'), \(\delta\) 6.29 (t, \(J\) 2.5 Hz, H-4''), \(\delta\) 6.25 (d, \(J\) 2.5 Hz, H-2'',6''), \(\delta\) 6.25 (t, \(J\) 2.5 Hz, H-2''',6''''), \(\delta\) 4.86 (s, H-2,3).

10.3.1. Acetylation and methylation of dimeric stilbenes (88 and 89)

10.3.1.1. Methylation of 88125

Methylation of 88 was performed according to the procedure on page 78. The crude product was purified by PLC separation (R\text{f} 0.55, T: A, 8:2) and afforded 76 in 80\% yield.

\textit{1}H NMR data is the same as that of 76.

10.3.1.2. Acetylation of 89124

Acetylation of 89 was performed according to the acetylation procedure on page 78. Further PLC purification (R\text{f} 0.67, T: A, 9:1) afforded 81 in 60\% yield.

\textit{1}H NMR data is the same as that of 81.

Summary

Key words: Isolation, structural elucidation, *Pericopsis elata*, flavonoids, isoflavonoids, antioxidants, phytoalexins, stilbenes, dimers, synthesis.

The bark of *Pericopsis elata* (*Afrormosia elata*) is used by the local population of the Democratic Republic of Congo for the treatment of cancer and for external applications because of its weather resistance. Previous phytochemical studies on *Pericopsis elata* resulted in the isolation of flavonoids, isoflavonoids, chalcones and stilbene monomers. Among these, stilbenes are known to have biological activities such as antioxidants, antifungal, and act as microbial inhibitors. They posses COX-1 and COX-2 inhibitory effects, affect lipid peroxidation, LDL oxidation, and function as phytoalexins among other activities.

Prompted by these claims, we conducted an in depth investigation of the heartwood of *P. elata* by extraction, isolation and structural elucidation of the metabolites. The enrichment and fractionation of monomeric and dimeric constituents were accomplished mainly by Craig countercurrent distribution techniques and Sephadex LH-20 gel chromatography. Pure compounds were obtained by derivatization and preparative thin layer chromatography. Structural elucidation of the phenolics is based mainly on NMR spectroscopic methods (*^1^H NMR, *^13^C NMR, COSY, NOESY, HMBC and HMQC*), Mass spectrometry and synthetic methods.

The monomeric compounds isolated during this study comprise the flavanones (naringenin and eriodictyol), the isoflavones (genistein and biochanin A), a dihydrochalcone [(R)-α,4,2',4'-tetraacetoxydihydrochalcone] and a single α-methyldeoxybenzoin (angolensin). Among the stilbene monomers encountered are resveratrol, isorhapontigenin and large amounts of piceatannol.

Structures of the dimeric stilbnes isolated apparently originate from different combinations of piceatannol (3,4,3',5'-tetrahydroxystilbene) (the major constituent ~ 16%
of the phenolic content of *P. elata* and 3,4,3′,4′-tetrahydroxystilbene. To the best of our knowledge:

- rel-2,3-trans-2-(3,4-dimethoxyphenyl)-3-(3,5-dimethoxyphenyl)-6-[2-(3,5-dimethoxyphenyl)-E-1-ethenyl]benzodioxane,
- rel-2,3-trans-2-(3,4-dimethoxyphenyl)-3-(3,4-dimethoxyphenyl)-4-[2-(3,4-dimethoxyphenyl)]-E-1-ethenyl]-6-methoxy-2,3-dihydrobenzofuran,
- rel-2,3-trans-2-(3,4-diacetoxyphenyl)-3-(3,5-diacetoxyphenyl)-4-[2-(3,4-diacetoxyphenyl)]-E-1-ethenyl]-6-acetoxy-2,3-dihydrobenzofuran,
- rel-2,3-trans-2-(3,4-dimethoxyphenyl)-3-(3,5-dimethoxyphenyl)-4-[2-(3,5-dimethoxyphenyl)]-Z-1-ethenyl]-6-methoxy-2,3-dihydrobenzofuran,
- rel-2,3-trans-4-Formyl-2-(3,4-dimethoxyphenyl)-3-(3,5-dimethoxyphenyl)-6-methoxy-2,3-dihydrobenzofuran and
- rel-2,3-trans-2-(3,5-diacetoxyphenyl)-3-(3,5-diacetoxyphenyl)-6-[2-(3,5-diacetoxyphenyl)]-E-1-ethenyl]-4-acetoxy-2,3-dihydrobenzofuran are novel compounds.

Structural confirmation of the six novel dimeric stilbenes in particular required definition of structure *via* synthetic methods. A synthetic approach was thus developed. This protocol comprises the synthesis of piceatannol *via* the Wittig reaction followed by oxidative coupling of two piceatannols to afford novel dimeric stilbenes. ¹H NMR of the methoxy-derivative of synthetic compounds is identical to that of the derivative of two dimeric stilbenes isolated from *P. elata*.

Die bas van *Pericopsis elata* (*Afromorsia elata*) word deur die inheemse bevolking van die Demokratiese Republiek van die Kongo vir die behandeling van kanker gebruik en, danksy die weerbestandheid daarvan, ook vir eksterne aanwending. Tydens vorige fitochemiese studies van *Pericopsis elata* is flavonoïede, isoflavonoïede, chalkone en stilbeenmonomere geïsoleer, waar die bewese biologiese aktiwiteite van laasgenoemde antioksidatiewe, antifungale en mikrobiiese eienskappe insluit. Stilbene inhibeer COX-1 en COX-2, beïnvloed lipiedperoksidasie, LDL-oksidasie, en tree ook as fitoaleksiene op.

Op grond van hierdie aansprake het ons ‘n omvattende ondersoek na die bas van *P. elata* geloods deur ekstraksie, isolasie en struktuurbepaling van die metaboliete. Die verryking en fraksionering van monomeriese en dimeriese komponente is hoofsaaklik deur Craig teenstroomverspreidingstegnieke en Sephadex LH-20 jel chromatografie bewerkstellig. Suiwer verbindings is ná derivatisering en preparatiewe dunlaagchromatografie geïsoleer. Struktuurbepaling van die fenole berus hoofsaaklik op KMR spektroskopiese metodes (\(^1\)H KMR, \(^{13}\)C KMR, COSY, NOESY, HMBC en HMQC), massaspektrometrie en sintetiese metodes.

Die monomeriese verbindings wat tydens hierdie studie geïsoleer is, sluit die flavanonie (naringenien en eriodiktiol), isoflavone (genisteïen en biochanien A) ‘n dihidrochalkoon \([(R)-\alpha-?,4,2',4'-tetra-asetoksidihidrochalkoon]\) en ‘n enkele \(\alpha\)-metieldeoksibensoïen (angolensien), in. Stilbeenmonomere wat geïsoleer is sluit resveratrol, isorapontigenien en groot hoeveelhede pikeatannol in.

Die strukture van die dimeriese stilbene wat geïsoleer is, spruit oënskynlik uit verskillende kombinasies van pikeatannol (3,4,3’,5’-tetrahidroksistilbeen) (die hoofkomponent ~ 16% van die fenolie inhoud van *P. elata*) en 3,4,3’,4’-
tetahidroksistilbeen. Sover bekend is \textit{rel-2,3-trans-2-(3,4-dimetoksifeniel)-3-(3,5-
dimetoksifeniel)-6-[2-(3,5-dimetoksifeniel)-E-1-eteniel]bensodioksaan, rel-2,3-trans-2-
(3,4-dimetoksifeniel)-3-(3,4-dimetoksifeniel)-4-[2-(3,4-dimetoksifeniel)-E-1-eteniel]-6-
metoksi-2,3-dihidrobensofuraan, rel-2,3-trans-2-(3,4-diasetoksifeniel)-3-(3,5-
diasetoksifeniel)-4-[2-(3,4-diasetoksifeniel)-E-1-eteniel]-6-asetoksi-2,3-
dihidrobensofuraan, rel-2,3-trans-2-(3,4-dimetoksifeniel)-3-(3,5-dimetoksifeniel)-4-[2-
(3,5-dimetoksifeniel))-Z-1-eteniel]-6-metoki-2,3-dihidrobensofuraan, rel-2,3-trans-4-
formiel-2-(3,4-dimetoksifeniel)-3-(3,4-dimetoksifeniel)-6-metoki-2,3-
dihidrobensofuraan en rel-2,3-trans-2-(3,5-diasetoksifeniel)-3-(3,5-diasetoksifeniel)-6-
[2-(3,5-diasetoksi-feniel)-E-1-eteniel]-4-asetoksi-2,3-dihidrobensofuraan nuwe
verbindinge.

Die bevestiging van die strukture van veral die ses nuwe dimeriese stilbene, het sintese
genoodsaak. ’n Protokol vir sintese is dus ontwikkel. Laasgenoemde behels die sintese
van pikeatannol \textit{via} die Wittig-reaksie, gevolg deur die oksidatiewe koppeling van twee
pikeatannole om nuwe dimeriese stilbene. \textit{1}H KMR van die metoksi-derivatiewe van
gesintetiseerde verbindinge is identity aan dié van die derivatiewe van twee dimeriese
stilbene geïsoleer uit \textit{P. elata}.
Opsomming

Sleutelwoorde: Isolasië, struktuurbepaling, *Pericopsis elata*, flavonoïde, iso-flavonoïde, antioksidante, fitoaleksiene, stilbene, dimere, sintese.

Die bas van *Pericopsis elata* (*Afromorsia elata*) word deur die inheemse bevolking van die Demokratiese Republiek van die Kongo vir die behandeling van kanker gebruik en, danky die weerbestandheid daarvan, ook vir eksterne aanwending. Tydens vorige fitochemiese studies van *Pericopsis elata* is flavonoïde, iso-flavonoïde, chalkone en stilbeenmonomere geïsoleer, waar die bewese biologiese aktiwiteite van laasgenoemde antioksidatiewe, antifungale en mikrobiiese eienskappe insluit. Stilbene inhibeer COX-1 en COX-2, beïnvloed lipiedperoksidasie, LDL-oksidasie, en tree ook as fitoaleksiene op.

Op grond van hierdie aansprake het ons ‘n omvattend onderzoek na die bas van *P. elata* geloods deur ekstraksie, isolasië en struktuurbepaling van die metaboliete. Die verryking en fraksionering van monomeriese en dimeriese komponente is hoofskaaklik deur Craig teenstroomverspreidingstegnieke en Sephadex LH-20 jel chromatografie bewerkstellig. Suiwer verbindings is ná derivatisering en preparatiewe dunlaagchromatografie geïsoleer. Struktuurbepaling van die fenole berus hoofskaaklik op KMR spektroskopiese metodes (*^{1}H KMR, ^{13}C KMR, COSY, NOESY, HMBC en HMQC*), massaspektrometrie en sintetiese metodes.

Die monomeriese verbindings wat tydens hierdie studie geïsoleer is, sluit die flavanone (naringenien en eriodiktiol), iso-flavone (genisteëien en biochanien A) ‘n dihidrochalkoon [(R)-α-?,4,2’,4’-tetra-asetoksidihdrochalkoon] en ‘n enkele α-metieldeoksibensoïen (angolensien), in. Stilbeenmonomere wat geïsoleer is sluit resveratrol, isorapontigenien en groot hoeveelhede pikeatannol in.

Die strukture van die dimeriese stilbene wat geïsoleer is, spruit oënskynlik uitverskillende kombinasies van pikeatannol (3,4,3’,5’-tetrahydroksistilbeen) (die hoofkomponent ~ 16% van die fenoliese inhoud van *P. elata*) en 3,4,3’,4’-
tetrahydroksistilbeen. Sover bekend is 2,3-trans-2-(3',4'-dimetoksifeniel)-3-(3",5"-dimetoksifeniel)-6-[β-(3",5"-dimetoksifeniel)-E-eteniel]bensodioksaan (hexa-O-metielpikeatannol A), 2,3-trans-2-(3',4'-dimetoksifeniel)-3-(3",4"-dimetoksifeniel)-4-[2-(3",4"-dimetoksifeniel)-E-eteniel]-6-metoksi-2,3-dihidrobensofuraan (hepta-O-metielpikeatannol B), 2,3-trans-2-(3',4'-diassetoksifeniel)-3-(3",5"-diassetoksifeniel)-4-[2-(3",4"-diassetoksifeniel)-E-eteniel]-6-asetoksi-2,3-dihidrobensofuraan (hepta-O-asetielpikeatannol C), 2,3-trans-2-(3',4'-dimetoksifeniel)-3-(3",5"-dimetoksifeniel)-4-[2-(3"5"'-dimetoksifeniel)−Z-eteniel]-6-metoksi-2,3-dihidrobensofuraan (hepta-O-metielpikeatannol D), 2,3-trans-5-formiel-2-(3',4'-dimetoksifeniel)-3-(3",4"-dimetoksifeniel)-7-metoksi-2,3-dihidrobensofuraan (penta-O-metielpikeatannol E), en 2,3-trans-2-(3',5'-diassetoksifeniel)-3-(3",4"-diassetoksifeniel)-6-[2-(3"5"'-diassetoksifeniel)-E-eteniel]-4-asetoksi-2,3-dihidrobensofuraan (hepta-O-asetielpikeatannol F) nuwe verbindinge.

Die bevestiging van die strukture van veral die ses nuwe dimeriese stilbene, het sintese genoodsaak. ‘n Protokol vir sintese is dus ontwikkel. Laasgenoemde behels die sintese van pikeatannol via die Wittig-reaksie, gevolg deur die oksidatiewe koppeling van twee pikeatannole om nuwe dimeriese stilbene in goeie opbrengs te lewer. 1H KMR van die gesintetiseerde verbindinge is identies aan dié van die twee dimeriese stilbene geïsoleer uit $P. elata$.
Plate 1: ^1H NMR data of 5,7,4'-triacetoxyflavanone (67) [CDCl$_3$]
Plate 2: 1H NMR of 5,7,3',4'-tetramethoxyflavanone (68) [CDCl$_3$]
Plate 4: 1H NMR of 5,7-diacetoxy-4'-methoxyisoflavone (70) [CDCl$_3$]
Plate 4a: NOESY of 5,7-diacetoxy-4'-methoxyisoflavone (70) [CDCl₃]
Plate 5: 1H NMR of (R)-α-4,2',4'-tetraacetoxydihydrochalcone (71) [CDCl$_3$]
Plate 6: 1H NMR of 4'-acetoxy-2'-hydroxy-4-methoxy-α-methyldeoxybenzoin (72)

[CDC$_3$]
Plate 6a: NOESY of 4'-acetoxy-2'-hydroxy-4-methoxy-α-methyldeoxybenzoin (72) [CDCl₃]
Plate 7: 1H NMR data of trans-4,3',5'-triacetoxystilbene (73) [CDCl$_3$]
Plate 8: 1H NMR data of trans-3,4,3',5'-tetrahydroxystilbene (48) [CDCl$_3$]
Plate 9: 1H NMR data of trans-3,4,3',5'-tetraacetoxy stilbene (74) [CDCl$_3$]
Plate 10: 1H NMR data of trans-2,3',5'-triacetoxy-4-methoxystilbene (75) [CDCl$_3$]
Plate 10a: NOESY of trans-2,3',5'-triacetoxy-4-methoxystilbene (75) [CDCl₃]
6-[2-(3,5-dimethoxyphenyl)-E-1-ethenyl]benzodioxane (76) [CDCl₃]
Plate 11a: 13C NMR of rel-2,3-trans-2-(3,4-Dimethoxyphenyl)-3-(3,5-imethoxyphenyl)-6-[2-(3,5-dimethoxyphenyl)-E-1-ethenyl]benzodioxane (76) [CDCl₃]

Diagram of the NMR spectrum showing the chemical shifts and signals for various carbon atoms, labeled with their positions and types.
Plate 11b: NOESY of *rel*-2,3-*trans*-2-(3,4-Dimethoxyphenyl)-3-(3,5-dimethoxyphenyl)-6-[2-(3,5-dimethoxyphenyl)-*E*-1-ethenyl]benzodioxane (76) [CDCl₃]

Plate 11c: NOESY of *rel*-2,3-*trans*-2-(3,4-Dimethoxyphenyl)-3-(3,5-dimethoxyphenyl)-6-[2-(3,5-dimethoxyphenyl)-*E*-1-ethenyl]benzodioxane (76) [CDCl₃]
Plate 12: 1H NMR of *rel*-2,3-*trans*-2-(3,4-Dimethoxyphenyl)-3-(3,4-dimethoxyphenyl)-4-[2-(3,4- dimethoxyphenyl)]-*E*-1-ethenyl]-6-methoxy-2,3-dihydrobenzofuran

(77) [CDCl$_3$]
C-7a, 3‴, 4‴, 3‴′

C-4‴ C-7, 3‴′, 4′
C-1‴
C-1‴′
C-4
C-α

C-β
C-2‴
C-2‴′
C-2‴″

C-5 C-3a
C-2′
C-5‴
C-6′

C-6‴
C-6‴′

C-6‴″

5 ppm 150 140 130 120 110 100

7 x OCH₃

C-3
Plate 12b: NOESY of rel-2,3-trans-2-(3,4-Dimethoxyphenyl)-3-(3,4-dimethoxyphenyl)-4-[2-(3,4-dimethoxyphenyl)]-E-1-ethenyl]-6-methoxy-2,3-dihydrobenzofuran (77) [CDCl₃]

Plate 12c: NOESY of rel-2,3-trans-2-(3,4-Dimethoxyphenyl)-3-(3,4-dimethoxyphenyl)-4-[2-(3,4-dimethoxyphenyl)]-E-1-ethenyl]-6-methoxy-2,3-dihydrobenzofuran (77) [CDCl₃]
Plate 12d: HMBC of \textit{rel}-2,3-trans-2-(3,4-Dimethoxyphenyl)-3-(3,4-dimethoxyphenyl)-4-[2-(3,4- dimethoxyphenyl) \textit{E}-1- ethenyl]-6-methoxy-2,3-dihydrobenzofuran (77) [CDCl$_3$]
Plate 13: 1H NMR of $\text{rel-2,3-trans-2-(3,4-Diacetoxyphenyl)-3-(3,5-diacetoxyphenyl)-4-[2-(3,4-diacetoxyphenyl)]\text{-E-1-ethenyl}}$-6-acetox-2,3-dihydrobenzofuran (78) [CDCl$_3$]
Plate 13a: 13C NMR of rel-2,3-trans-2-(3,4-Diacetoxyphenyl)-3-(3,5-diacetoxyphenyl)-4-[2-(3,4-diacetoxyphenyl)]-E-1-ethenyl]-6-acetoxy-2,3-dihydrobenzofuran (78) [CDCl$_3$]
Plate 13b: NOESY rel-2,3-trans-2-(3,4-Diacetoxyphenyl)-3-(3,5-diacetoxyphenyl)-4-[2-(3,4-diacetoxyphenyl)]-E-1-ethenyl]-6-acetoxy-2,3-dihydrobenzofuran (78) [CDCl₃]

Plate 13c: NOESY of rel-2,3-trans-2-(3,4-Diacetoxyphenyl)-3-(3,5-diacetoxyphenyl)-4-[2-(3,4-diacetoxyphenyl)]-E-1-ethenyl]-6-acetoxy-2,3-dihydrobenzofuran (78) [CDCl₃]
Plate 13d: HMBC of \textit{rel}-2,3-trans-2-(3,4-Diacetoxyphenyl)-3-(3,5-diacetoxyphenyl)-4-[2-(3,4-diacetoxyphenyl)]-E-1-ethenyl]-6-acetoxy-2,3-dihydrobenzofuran (78) \[\text{CDCl}_3\]
Plate 14: 1H NMR of rel-2,3-trans-2-(3,4-dimethoxyphenyl)-3-(3,5-dimethoxyphenyl)-4-[2-(3,5-dimethoxyphenyl)]-Z-1-ethenyl]-6-methoxy-2,3-dihydrobenzofuran (79) [CDCl$_3$]
Plate 14a. 13C NMR of rel-2,3-trans-2-(3,4-dimethoxyphenyl)-3-(3,5-dimethoxyphenyl)-4-[2-(3,5-dimethoxyphenyl)]-Z-1-ethenyl]-6-methoxy-2,3-dihydrobenzofuran (79) [CDCl$_3$]
Plate 15: 1H NMR of rel-2,3-trans-4-Formyl-2-(3,4-dimethoxyphenyl)-3-(3,5-dimethoxyphenyl)-7-methoxy-2,3-dihydrobenzofuran (80) [CDCl$_3$]
Plate 15a: NOESY of rel-2,3-trans-4-Formyl-2-(3,4-dimethoxyphenyl)-3-(3,5-dimethoxyphenyl)-7-methoxy-2,3-dihydrobenzofuran (80) [CDCl₃]
Plate 16: 1H NMR of rel-2,3-trans-2-(3,5-Diacetoxyphenyl)-3-(3,5-diacetoxyphenyl)-6-[2-(3,5-diacetoxyphenyl)]-E-1-ethenyl]-4-acetoxy-2,3-dihydrobenzofuran (81) [CDCl$_3$]
6-[2-(3,5-diacetoxyphenyl)]-E-1-ethenyl]-4-acetoxy-2,3-dihydrobenzofuran (81)
Plate 16b: NOESY of rel-2,3-trans-2-(3,5-Diacetoxyphenyl)-3-(3,5-diacetoxyphenyl)-
6-[2-(3,5-diacetoxyphenyl)-E-1-ethenyl]-4-acetoxy-2,3-dihydrobenzofuran (81)
[CDC13]
Plate 17: 1H NMR of 3,5-dimethoxybenzyl alcohol (83) [CDCl$_3$]
Plate 18: 1H NMR of 3,5-dimethoxybenzyl bromide (84) [CDCl₃]
Plate 19. 1H NMR of 3,5-dimethoxy-triphenyl-benzylphosphonate (85) [(CD$_3$)$_2$CO]
Plate 20: 1H NMR of 3',4',3,5-tetramethoxystilbene (87) [CDCl$_3$]